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P reface

Until the nineteenth century, it was thought that all that was significant
about the geometry of the triangle and the circle had been discovered by
Euclid and his predecessors. However, during the nineteenth century, a
plethora of articles appeared that expanded this field enormously. Many
additional relationships were discovered that brought new life to the field
of Euclidean geometry. This book presents the highlights of these newer
discoveries in a reader-friendly format. In short, this book is designed to
provide an extended view of Euclidean geometry in order to expand the
background of the secondary school mathematics teacher.

Over the past three hundred years, many textbooks have been written to
present Euclids Elements to a school audience. The most notable of these
are Robert Simson’s Elements of Euclid, which first appeared in 1756, and
Adrien-Marie Legendre s Elements de geometrie, which was published (in
French) in 1794. An English version of Legendre’s text was revised in 1828
by Charles Davies, a West Point professor. “Davies’ Legendre,” as it is pop-
ularly referred to, was one of the most widely used American mathematics
textbooks of the nineteenth century and perhaps has had the greatest
influence on our present-day high school geometry course of any text.

Legendre’s geometry did not state the theorems in general terms. Rather,
it employed diagrams to demonstrate the various propositions. This
departure from Euclid was corrected by Davies, who provided a general
statement of a proposition followed by an explanation and an accompa-
nying diagram. This book uses both approaches interchangeably, as
appropriate.

Our study of geometry— advanced Euclidean geometry— begins where
the high school geometry course (still for the most part fashioned after
Davies’ Legendre) leaves off. This book does not attempt to provide an
exhaustive study of the entire field of these advanced topics, which would
be impossible in one small book. Instead we focus our attention on sub-
jects that are of interest to those who have mastered the high school
geometry course, have a genuine desire or need to extend their study of
mathematics, and will appreciate the beauty that lies in the study of
advanced Euclidean geometry.

A unique feature of this book is the inclusion of interactive geometric
figures provided on a CD-ROM using The Geometer’s Sketchpad®, software.
All too often, geometry is presented in a static form in which the true and
deeper meaning of a theorem does not get the true exposure it should. The
reader is encouraged, whenever an interactive geometric figure is indicated
by the CD-ROM icon (shown at left), to go to the computer and explore
the figure by distorting it and observing the constancy being established.
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PREFACE

To truly understand a subject and to teach it well, one must know more
about the subject than the material being taught. The material in this
book has been tested and evaluated during more than twenty-five years of
use with numerous classes of secondary school teachers at The City Col-
lege, The City University of New York. Many valuable suggestions have
been received and incorporated into this book.

A number of people provided technical support, for which I am pro-
foundly grateful. For creating The Geometer’s Sketchpad, drawings (both
static and interactive), often in most ingenious ways, much credit must go
to Jan Siwanowicz. David Linker proofread the entire manuscript. In help-
ing develop the Instructor Resources, a group of highly talented students
prepared some wonderful solutions to the exercises in the book. These
students included Kamaldeep Gandhi, Seth Kleinerman, Leo Nguyen,
Oana Pascu, Peter Ruse, and Jan Siwanowicz. The technical typing for the
entire manuscript was done in stellar form by Sandra Finken. Above all, I
wish to thank the hundreds of students (high school math teachers in
their own right) who have used part of this book over the past several
years for their valuable comments about its contents. These comments
kept me properly focused!

Alfred S. Posamentier



INTRODUCTION

This book undertakes topics that are beyond the scope of the typical high
school geometry course, but it treats the topics using elementary methods
and nomenclature. Thus, the book may be easily understood by interested
high school students even though it is aimed particularly at the in-service
or pre-service secondary school mathematics teacher. The use of familiar
language means that readers do not have to learn entirely new concepts
and skills, only new uses for their previous knowledge base. Readers are
provided an opportunity to extend their knowledge of Euclidean geome-
try in a style to which they are accustomed. The book also provides
secondary teachers with a wealth of ideas to enrich their instructional
program.

Chapter 1 reviews the essentials of the high school geometry course. To
focus a critical eye on this material, we inspect some fallacies in elemen-
tary Euclidean geometry. The discovery of these fallacies sharpens geomet-
ric awareness. Chapters 2 and 3, linked by the concept of duality, deal
with the often-neglected topics of concurrency and collinearity. Theorems,
rather difficult to prove in the high school geometry course, will now be
much easier to prove. Moreover, experimenting with the figures on the
CD-ROM will show that what is stated as a theorem proves to be true as
the diagram is manipulated to demonstrate a multitude of possible cases.
This is what a proof typically establishes. Facility with concurrency and
collinearity enables a simple development of some other interesting theo-
rems explored in these chapters.

In the next two chapters, our attention turns to the triangle. Chapter 4
begins our discussion by looking at some rather unusual points in a tri-
angle. Chapter 5 introduces properties of various interior segments of
triangles (often referred to as Cevians), including angle bisectors and
medians. Other triangle properties not previously encountered are also
considered here.

The treatment of quadrilaterals in high school is limited to the special
quadrilaterals: parallelogram, rhombus, rectangle, square, and trapezoid.
Our study of quadrilaterals in Chapter 6 assumes a knowledge of the
properties of these special quadrilaterals. We begin with the general con-
vex quadrilateral and eventually turn to the cyclic (or inscribed) quadri-
lateral. With the aid of Ptolemy’s theorem, we establish many interesting
geometric relationships.

The only two circles associated with a triangle in the high school geome-

try course are the circumscribed and inscribed circles. While the inscribed
circle is tangent to the three sides of the triangle and lies inside the trian-
gle, its analog, the escribed circle (or excircle) of a triangle, is also tangent

vii



viii

INTRODUCTION

to the three sides of the triangle (or their extensions) but lies outside the
triangle. The inscribed circle and the three escribed circles of a triangle
are known as the equicircles of the triangle. Chapter 7 explores some of
the many relationships that involve the equicircles of a triangle.

A popular topic in advanced Euclidean geometry, with a host of surpris-
ing properties, is the nine-point circle. Midway through the investigation
of the nine-point circle in Chapter 8, we digress to study some properties
of the altitudes of a triangle and their associated orthic triangle that will
permit us to develop further properties of the nine-point circle.

One of the most creative problem-solving challenges in geometry can be
found in constructing triangles given the measures of three parts of the
triangle, such as the lengths of its three medians, the lengths of its three
altitudes, or the measures of two of its angles and the length of the
included side. Such construction problems are presented in Chapter 9,
with many illustrative examples and plenty of exercises. Requiring
nothing more advanced than a knowledge of high school geometry,
these construction problems offer ample opportunity to challenge even
the best geometricians!

The “problem of Apollonius” has intrigued generations of mathematicians.
It is presented in Chapter 10 as an application of circle constructions that
follow certain requirements, such as passing through a given point and/or
tangent to a given line and/or tangent to a given circle. While some of
these constructions may be rather trivial, others are extremely challenging
and were the focus of mathematicians in the seventeenth and eighteenth
centuries.

The mission of the final chapter is to demonstrate a connection between
Euclidean geometry and other branches of mathematics. This is done
through the study of the golden section and Fibonacci numbers. Chapter 11
merely scratches the surface of an extremely rich topic. The extended exer-
cise section should serve as a springboard for further investigation.
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REVIEW OF BASIC CONCEPTS OF GEOMETRY

Because the high school geometry course contains many theorems that are not
easily remembered, we should take a brief look at some of the more important
theorems. Our approach here, however, will differ from that used in your initial
exposure to the theorems. We will consider the theorems according to their
respective topics, not necessarily in the sequence originally presented but in a
clear and concise fashion.

. Quadrilaterals

A Methods of proving that a quadrilateral is a parallelogram

To prove that a quadrilateral is a parallelogram, prove that:

Both pairs of opposite sides are parallel.
Both pairs of opposite sides are congruent.
One pair of sides are both congruent and parallel.
Both pairs of opposite angles are congruent.
One pair of opposite angles are congruent and one pair of opposite
sides are parallel.
6. The diagonals bisect each other.

O 0N

B. Methods of proving that a quadrilateral is a rectangle
To prove that a quadrilateral is a rectangle, prove that:
1 It has four right angles.
2. It is a parallelogram with one right angle.
3. It is a parallelogram with congruent diagonals.

C. Methods of proving that a quadrilateral is a rhombus
To prove that a quadrilateral is a rhombus, prove that:
1 It has four congruent sides.
2. It is a parallelogram with two consecutive sides congruent.
3. It is a parallelogram in which a diagonal bisects an angle of the
parallelogram.
4. It is a parallelogram with perpendicular diagonals.

D. Methods of proving that a quadrilateral is a square
To prove that a quadrilateral is a square, prove that:
1 It is a rectangle with two consecutive sides congruent.
It is a rectangle with a diagonal bisecting one of its angles.
It is a rectangle with perpendicular diagonals.
It is a rhombus with one right angle.
It is a rhombus with congruent diagonals.

ok o



a' INTERACTIVE 1-1

You will be able to change the
size of the triangle by grabbing
vertex A B, or C and see that the
ratio is constant.

Chapter 1 ELEMENTARY EUCLIDEAN GEOMETRY REVISITED 3

E Methods of proving that a trapezoid is isosceles
To prove that a trapezoid is isosceles, prove that:
1 Its nonparallel sides are congruent.
2. The base angles are congruent.
3. The opposite angles are supplementary.
4. Its diagonals are congruent.

Note: We define a trapezoid as a quadrilateral with exactly one pair of
opposite sides parallel. We do, however, note that some texts consider a
trapezoid to be a quadrilateral with at least one pair of opposite sides
parallel.

Midline of a Triangle
A The midline of a triangle is the line segment joining the midpoints of two
sides of the triangle.

B. The midline of a triangle is parallel to the third side of the triangle.
c. The midline of a triangle is half as long as the third side of the triangle.

D. If a line containing the midpoint of one side of a triangle is parallel to a
second side of the triangle, then it also contains the midpoint of the third
side of the triangle.

Similarity
A When a line is parallel to one side of a triangle
1 If a line parallel to one side of a triangle intersects the other two
sides, then it divides these two sides proportionally.
2. If a line divides two sides of a triangle proportionally, then the line is
parallel to the remaining side of the triangle.

B. Proportionality involving angle bisectors
1 An interior angle bisector of any triangle divides the side of the trian-
gle opposite the angle into segments proportional to the adjacent
sides. In Figure 1-1, AD is an angle bisector of AABC,

CD _ CA
DB ~ AB

FIGURE M
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FIGURE 1-2

INTERACTIVE 1-2

You will be able to change the
size of the triangle by grabbing
vertex A B, or C and see that the
ratio is constant.

2. An exterior angle bisector of a triangle determines, with each of the
other vertices, segments along the line containing the opposite side of
the triangle that are proportional to the two remaining sides. In Figure
1-2, AD is an exterior angle bisector of AABC.

CD _ CA
DB ~ AB

C. Methods of proving triangles similar

1 If two triangles are similar to the same triangle, or to similar triangles,
then the triangles are similar to each other.

2. If two pairs of corresponding angles of two triangles are congruent,
then the triangles are similar.

3. If two sides of one triangle are proportional to two sides of another
triangle and the angles included by those sides are congruent, then the
triangles are similar.

4. If the corresponding sides of two triangles are proportional, then the
two triangles are similar.

D. Mean proportionals in a right triangle
1 The altitude to the hypotenuse of a right triangle divides the
hypotenuse so that either leg is the mean proportional between the
hypotenuse and the segment of the hypotenuse adjacent to that leg.
2. The altitude to the hypotenuse of a right triangle is the mean propor-
tional between the segments of the hypotenuse.

Pythagorean Theorem
A The sum of the squares of the lengths of the legs of a right triangle equals
the square of the length of the hypotenuse.

B. Converse of the Pythagorean theorem: If the sum of the squares of the
lengths of two sides of a triangle equals the square of the length of the
third side, then the angle opposite this third side is a right angle.

C. In an isosceles right triangle:
1 The hypotenuse is v2 times as long as a leg.

2. Either leg is times as long as the hypotenuse.

D. In a 30-60-90 triangle:
1 The side opposite the angle of measure 30" is half as long as the

hypotenuse.
2. The side opposite the angle of measure 60° is----times as long as the
hypotenuse. Vi

3. The hypotenuse is------ times as long as the side opposite the angle of
measure 60°.
4. The longer leg is V3 times as long as the shorter leg.
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E. Pythagorean inequalities

INTERACTIVE 1-3 1 In an acute triangle (Figure 1-3), the square of the length of any side
You will be able to change the is less than the sum of the squares of the lengths of the two
size of the triangle by grabbing remaining sides.

vertex A B, or Cand see that the

Pythagorean inequality is a'+ fU'> ¢

maitained 2. In an obtuse triangle (Figure 1-4), the square of the length of the
longest side is greater than the sum of the squares of the lengths of
the two shorter sides.
al\ AN
F. Extension of the Pythagorean
INTERACTIVE 1-5 theorem: If similar polygons
You will be able to change the are constructed on the sides of
size of the triangle or the a right triangle (with corre-
polygons and see that the sponding sides used for a side
formula still holds. of the right triangle), then the

area of the polygon on the
hypotenuse equals the sum of
the areas of the polygons on
the legs (see Figure 1-5).

area | + area Il = area Il

G. Pythagorean triples

When FIGURE 1-5
a=m’- n
b = 2mn
c= +m
where m > n.
Some common primitive Pythagorean triples are:
(3, 4,5 5, 12, 13) (7, 24, 25) 8, 15, 17)
(9,40,41) (11,60,61) (12,35,37) (20, 21, 29)

Note that any primitive Pythagorean triple generates an infinite number of
new Pythagorean triples by all of the terms being multiplied by the same
natural number.
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V. Circle Relationships
A. Angle measurement with a circle
1 The measure of an inscribed angle is one-half the measure of its

2.

intercepted arc.

The measure of an angle formed by a tangent and a chord of a circle
is one-half the measure of its intercepted arc.

The measure of an angle formed by two chords intersecting in a point
in the interior of a circle is one-half the sum of the measures of the
arcs intercepted by the angle and its vertical angle.

. The measure of an angle formed by two secants of a circle intersect-

ing in a point in the exterior of the circle is equal to one-half the
difference of the measures of the intercepted arcs.

The measure of an angle formed by a secant and a tangent to a circle
intersecting in a point in the exterior of the circle is equal to one-half
the difference of the measures of the intercepted arcs.

The measure of an angle formed by two tangents to a circle is equal
to one-half the difference of the measures of the intercepted arcs.
The sum of the measure of an angle formed by two tangents to a
circle and the measure of the closer intercepted arc is 180°.

An alternate way to view the seven statements above is as follows:
1 When the vertex of an angle is a point ofa circle, the measure of the

INTERACTIVE 1-6

You will be able to drag points A,
B, and Pto change the size of
the angle and see that it is still
one-half the measure of the
intercepted arc.

angle is one-half the measure of the intercepted arc (see Figure 1-6).

mZ-APB = - x

2
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When the vertex of an angle

>)| INTERACTIVE 1-7 is in the interior of a circle
You will be able to drag points A, (Figure 1-7), the measure of
B, C, and Dto change the size of the angle is one-half the sum
the angles and see that the of the measures of the inter-
formula still holds. cepted arcs.

MAAPD =7{x +Y)

3. When the vertex of an angle is in the exterior of a circle, the measure
of the angle is one-half the difference of the measures of the inter-
cepted arcs (see Figure 1-8).

Q- INTERACTIVE 18
mAAPB = "(x —Y)

You will be able to drag points A,
B, C, and Dto change the size of
the angles and see that the
formula still holds.

B. Methods of proving four points coneydie (a cyclic quadrilateral is a
quadrilateral whose vertices are concyclic, that is, lie on the same circle)
1 If one side of a quadrilateral subtends congruent angles at the two
consecutive vertices, then the quadrilateral is cyclic. Quadrilateral
ABCD in Figure 1-9 is cyclic because ADAC = ACBD.
2. If a pair of opposite angles of a quadrilateral are supplementary, then
the quadrilateral is cyclic.

7
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INTERACTIVE MO

You will be able to drag points A,

B, and Cto change the position
of the tangent and secant and
see that the formula still holds.

0 INTERACTIVE M |

You will be able to drag points A,
B, and Cto change the position
of the secants and see that the

formula still holds.

0 INTERACTIVE M 2

You will be able to drag points A
B, C, and Dto change the
position of the chords and see

C. Tangent, secant, and chord segments
1 Two tangent segments that have the same

endpoint in the exterior of the circle to
which they are tangent are congruent.

. If a secant segment and a tangent seg-

ment to the same circle share an end-

point in the exterior of the circle, then

the square of the length of the tangent

segment equals the product of the FIGURE MO
lengths of the secant segment and its

external segment (see Figure 1-10).

{APf = iPQiPB)

. If two secant segments of the same circle

share an endpoint in the exterior of the
circle, then the product of the lengths of
one secant segment and its external seg-
ment equals the product of the lengths
of the other secant segment and its

external segment (see Figure 1-11). FIGURE M |

(APY{BP) = {DP)}{CP)

. If two chords intersect in the interior of a

circle, thus determining two segments in
each chord, the product of the lengths of
the segments of one chord equals the prod-
uct of the lengths of the segments of the

that the formula still holds.

other chord (see Figure 1-12).
{AP){BP) = (DP)(CP)

VI. Concurrency
A The perpendicular bisectors of the sides of a triangle are concurrent at a
point that is the center of the circumscribed circle.

B. The lines containing the three altitudes of a triangle are concurrent at a
point called the orthocenter of the triangle.

C. The medians of a triangle are concurrent at a point of each median
located two-thirds of the way from the vertex to the opposite side. This
point is called the centroid of the triangle and is the center of gravity of
the triangle.

D. The angle bisectors of a triangle are concurrent at a point that is the cen-
ter of the inscribed circle.



0. INTERACTIVE 1-13

You will be able to drag points A
B, and CXo change the size of
the triangle and see that the
formula still holds.

O' INTERACTIVE 1-14

You will be able to drag points A,
B, and Cto change the size of
the triangle and see that the
inequality still holds.

0 y INTERACTIVE 1-15

You will be able to drag points A,
B, and Cto change the size of
the triangle and see that the
relationships still hold.

INTERACTIVE 1-16

You will be able to drag points A,
B, and Cto change the size of
the triangle and see that the
relationships still hold.

Chapter 1 ELEMENTARY EUCLIDEAN GEOMETRY REVISITED

Inequalities
A The measure of an exterior

angle of a triangle is greater
than the measure of either
remote interior angle. For
AABC in Figure 1-13:

m/-ACD > m/-A
mAACD > m/-B

. If two sides of a triangle are

not congruent, then the
angles opposite those sides
are not congruent, the angle
with greater measure being
opposite the longer side. For
AABC (Figure 1-14):

If AC > ABy then
mZ.B > mAC.

. If two angles of a triangle are

not congruent, then the sides
opposite those angles are not
congruent, the longer side
being opposite the angle with
greater measure. For AABC
(Figure 1-15):

IfmAA > mACy then
BC > AB,

D. The sum of the lengths of

any two sides of a triangle is
greater than the length of the
third side. For AABC
(Figure 1-16):

AB + A O BC
AB -hB O AC
AC BO AB

FIGURE 1-13

9



10 ADVANCED EUCLIDEAN GEOMETRY

INTERACTIVE 1-17

You will be able to drag points A
B, C, D, £ and Fto change the
size of the triangles and see that
the inequality still holds.

INTERACTIVE 1-18

You will be able to drag points A,
B, C, D, E, and Fto change the
size of the triangles and see that
the inequality still holds.

E If two sides of a triangle are
congruent respectively to two
sides of a second triangle and
the measure of the included
angle of the first triangle is
greater than the measure of
the included angle of the
second triangle (see Figure
1-17), then the measure of
the third side of the first triangle
is greater than the measure of the
third side of the second triangle.

liAB = DE and BC = EFand
m/-B > m/-Ey then AC > DF.

R If two sides of one triangle
are congruent respectively to
two sides of a second triangle
and the measure of the third
side of the first triangle is
greater than the measure of
the third side of the second
triangle (see Figure 1-18),
then the measure of the
included angle of the first trian-
gle is greater than the measure of
the included angle of the second
triangle.

IfAB = DE and BC —EFand
AC > DFythen mAB > mAE.

G. In an acute triangky the square of the length of any side is less than the
sum of the squares of the lengths of the two remaining sides.

H. In an obtuse triangley the square of the length of the longest side is greater
than the sum of the squares of the lengths of the two shorter sides.

VIIl.  Area
A The area of a square equals the square of the length of a side.

area of square =

B. The area of a square equals one-half the square of the length of one of its
diagonals.

1
area of square ~ ~d
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C. The area of any right triangle equals one-half the product of the lengths
of its legs.

area of right triangle = *€])

D. If two triangles have congruent bases, then the ratio of their areas equals
the ratio of the lengths of their altitudes.

E If two triangles have congruent altitudes, then the ratio of their areas
equals the ratio of the lengths of their bases.

F The area of any triangle equals one-half the product of the lengths of any
two sides multiplied by the sine of the included angle.

area oftriangle = esin ¢.C

G. The ratio of the areas of two triangles that have one pair of congruent
corresponding angles (see Figure 1-19) equals the ratio of the products of
the lengths of the pairs of sides that include the angles.

For AABC and ADEF, AB = AE.
areaAABC  {AB){BC)

Therefore
area ADEF  (DE)(EE)’

INTERACTIVE M9

You will be able to drag points A
B, C, D, £ and Fto change the
size of the triangles and see that
the ratios remain constant.

CE

FIGURE 1-19

H.The area of an equilateral triangle equals---- times the square of the
length of a side.

R . _ s"V3
area or equilateral triangle = ——

. . V3 .
I.  The area of an equilateral triangle equals times the square of the

length of an altitude.

area of equilateral triangle = ——
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J. The area of any triangle with sides of length a4, b, and c is

\/S(S — a)(s — b)(s — c), where s = ﬁb—Jr—

c
(s denotes the
semiperimeter).

K. The area of a parallelogram equals the product of the lengths of a base
and the altitude to that base.

area of parallelogram = b * h

L. The area of a rhombus equals one-half the product of the lengths of its
diagonals.

1
area of rhombus = E(dl . d,)

M.The area of a trapezoid equals one-half the product of the length of the
altitude and the sum of the lengths of the bases.

area of trapezoid = %h(bl + b,) = h(median)

N.The area of a regular polygon equals one-half the product of the lengths
of the apothem and the perimeter.

1
area of regular polygon = 38° p

O.The area of a sector with radius r and a central angle of measure n equals

LI 3
360

P. The ratio of the areas of two similar triangles equals the square of their
ratio of similitude.

Q. The ratio of similitude of any pair of similar triangles equals the square
root of the ratio of their areas.

R. The ratio of the areas of two similar polygons equals the square of their
ratio of similitude.

S. The ratio of similitude of any pair of similar polygons equals the square
root of the ratio of their areas.

Note: The ratio of similitude can be found by taking the ratio of any pair
of corresponding sides, altitudes, medians, angle bisectors, or any other
line segments. '
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LEARNING FROM GEOMETRIC FALLACIES

| EALLACY 1

‘©roof’

George Polya, one of the great mathematicians of our time, said, ~Geometry is the
science of correct reasoning on incorrectfigures/' We will demonstrate in this
section that making conclusions based on “incorrect” figures can lead us to
impossible results. Even the statements of the fallacies sound absurd. Neverthe-
less, follow the “proof” of each statement and see if you can detect the mistake.

Fallacy 1, one of the more popular fallacies in Euclidean geometry, is based
on the lack of a particular concept in Euclid’s Elements.

Any scalene triangle is isosceles.

To prove that scalene triangle ABC is isosceles, draw the bisector of Z.C and the
perpendicular pisectqr of AB. From their point of intersection, G, draw perpen-

diculars to AC and CB , meeting these sides at points D and F, respectively.
It should be noted that there are four possibilities for the above description
for various scalene triangles:

Figure 1-20, where CG and GE meet inside the triangle;

Figure 1-21, where CG and GE meet on AB;

Figure 1-22, where CG and “m e et outside the triangle but the perpendiculars
GD and GF fall on AC and CB;

Figure 1-23, where CG and GE meet outside the triangle but the perpendiculars
GD and GF meet CA and CB outside the triangle.

The “proof” of the fallacy can be done with any of these figures. Follow the
“proof” on any (or all) of the figures.

GIVEN: AABC is scalene.
PROVE: AC = BC (or AABC is isosceles)

Because AACG = ABCG and right angle CDG = right angle CFG,

ACDG = ACFG (SAA). Therefore DG = EG and CD = GF. Because AG = BG
(a point on the perpendicular bisector of a line segment is equidistant from

the endpoints of the line segment) and Z.ADG and Z.BFG are right angles.
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0 INTERACTIVE 1-24

Drag points A, B, and Cto
change the shape of the
triangle. Note that either D or F,
but not both, always lies outside
the triangle.

A/ h B
/N E BN
/ AN ///
N\ /
D,/l\ AN s
/ ~ o N ’ s
\\\\ //
N g
G
FIGURE 1-23

ADAG = AFBG (hypotenuse-leg). Therefore DA = FB. It then follows that
AC = BC (by addition in Figures 1-20, 1-21, and 1-22, and by subtraction in
Figure 1-23). »

At this point you may be somewhat disturbed, wondering where the error
was committed that permitted this fallacy to occur. By rigorous construction, you
will find a subtle error in the figures:

a. The point G must be outside the triangle.
b. When perpendiculars meet the sides of the triangle, one will meet a side
between the vertices, while the other will not.

In general terms used by Euclid, this
dilemma would remain an enigma
because the concept of betweenness
was not defined in his Elements. In
the following discussion, we will
prove that errors exist in the falla-
cious proof on page 13. Our proof
uses Euclidean methods but assumes
a definition of betweenness.

Begin by considering the cir-
cumcircle of AABC (see Figure
1-24). The bisector of AACBjnust
contain the midpoint G of AB
(because AACG and ABCG are
congruent inscribed angles). The
perpendicular bisector of AB must
bisect AB and therefore must pass
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through point G. Thus the bisector of ZACB and the perpendicular bisector of
AB intersect outside the triangle at point G. This eliminates the possibilities illus-
trated in Figures 1-20 and 1-21.

Now consider inscribed quadrilateral ACBG. Because the opposite angles of
an inscribed (or cyclic) quadrilateral are supplementary, m/ CAG + m£CBG =
180°. If £CAG and £ CBG were right angles, then CG would be a diameter and
AABC would be isosceles. Therefore, because AABC is scalene, £ CAG and
£ CBG are not right angles. In this case one angle must be acute and the other
obtuse. Suppose £ CBG is acute and £ CAG is obtuse. Then in ACBG the altitude
on CB must be inside the triangle, while in obtuse triangle CAG the altitude on
AC must be outside the triangle. (This is usually readily accepted without proof
but can be easily proved.) The fact that one and only one of the perpendiculars
intersects a side of the triangle between the vertices destroys the fallacious “proof.”

I FALLACY 2 Two distinct perpendiculars can be drawn to a given line from a given
external point.
“@roof” To “prove” this statement, draw any two circles, O and O’, intersecting at points

P and N (Figure 1-25). Draw diameters PA and PB. Then draw AB intersecting
circle O at point D and intersecting circle O’ at point C. ZPDA and £PCB are
right angles because they are inscribed in semicircles of circles O and O’, respec-
tively. Thus PC and PD are each perpendicular to AB. Having two distinct lines
perpendicular to a third line implies that the sum of the measures of the angles
of a triangle (in this case APCD) must be greater than 180°—quite disturbing in
Euclidean geometry! @

The fallacy here is created by the improper intersections of AB and the two
circles. We can easily prove that the intersection of AB and the two circles is in
fact at point N.
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a INTERACTIVE 1-26

Drag point P and centers 0
and O' to change the position of
the circles.

| EALLACY 3

“©Oroof”

To do this we draw AN, RN, and PN (see Figure 1-26). Because /-ANP and
ABNP are inscribed in semicircles, they are both right angles. Euclid’ fifth pos-
tulate ensures us that there exists a unique perpendicular to a given line through
a given point on the line. Therefore the perpendiculars to PN at point N, AN
and BN, are simply segments of the same line, ANB. This proves that when AB
was first drawn it should have intersected the circles not in two points, C and D,
but rather at one point, N, the point of intersection of the circles. Without the
existence of points C and D, the fallacious proof could not have been produced."

A right angle has the same measure as an obtuse angle.

We begin our “proof” by drawing a
rectangle ABCD, We then draw CE
outside the rectangle so that

AD = CE. Point P is the intersection
of the perpendicular bisectors of AE

and CD, which intersect AE and CD
at points M and N, respectively.
Drawing DPy APy £P, and CP com-
pletes the diagram for this “proof”
(Figure 1-27).
Because AP = EP and DP = CP
(every point on the perpendicular
bisector of a line segment is FIGURE 1-27

~Those who are disturbed about disproving the fallacy with the very same postulate that
demonstrated the fallacy (i.e., that two distinct lines cannot be perpendicular to a third
line) may wish to use Playfair’s postulate to show that AN and BN are each parallel to

00" and hence must, in fact, be part of the same line, ANB.



INTERACTIVE 1-28

Drag points B to change the
shape of the rectangle. Drag
point Eto reposition it.

| EALLACY 4

uQ rOOf"
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equidistant from the endpoints of the line segment), we have AECP = AADP
(SSS) and mAECP = mAADP.

However, because APDC is isosceles, mMADCP = mACDP. By subtraction,
obtuse AECD has the same measure as AADQ a right angle! «

You may wish to consider the case when P is on DC or when P is in rectan-
gle ABCD. Similar arguments hold for these cases.

By now you may find that an accurate construction is the best way to isolate
the error in the “proof.” Rather than attempt to discover the error by construction,
we will analyze the situation that now exists. We notjce that NP is also the perpen-
dicular bisector of AB. Consider AABE. Because NP and MP are the perpendicular
bisectors of AB and AE, respectively, they intersect at the center, P, of the circumcir-
cle of AABE. Therefore, point P must also be on the perpendicular bisector of BE.

By construction, we have BC = EC. Therefore point C must also lie on the
perpendicular bisector of BE (see Figure 1-28). PC is the perpendicular bisector
of BE as well as the interior angle bisector of ABCE. A reflex angle is an angle of
measure greater than 180° and
less than 360°. Consider reflex
angle ECPy whose measure is
mAPCR + mARCE. Thus EP
in AECP is placed so that it is
on the side of point C outside
the rectangle. This makes the
last step of our “proof” incor-
rect because mAECP
mAECD + mADCP.

We must keep in mind
that Euclid did not use the
terms inside and outside in
generalized reasoning. He
used these words only in
reference to specific diagrams.

We are able to discuss the
fallacy by using these terms FIGURE 1.28
in general.

Every point inside a circle is on the circle.

Consider circle O with point P inside the circle. Choose point R on OP so that
(OP)(OR) = r" whijre r is the length of the radius of circle O. Let the perpen-
dicular bisector of PR intersect circle O at points S and T; let M be the
midpoint of PR (Figure 1-29).

OP=0OM- MP 0
OR=OMMR =OMMP )
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e

By multiplying (I) and (II):

(OP)(OR) = (OM — MP)(OM + MP)

(OP)(OR) = (OM)* — (MP)?
By the Pythagorean theorem:
(OM)* + (MS)* = (0S)?
or:
(OM)? = (0S)*> — (MS)’
Also:
(MP)* + (MS)* = (PS)?
or:
(MP)* = (PS)* — (MS)*

Now substitute (IV) and (V) into (III) to get:

(OP)(OR) = [(0S)* — (MS)*] — [(PS)* — (MS)?]

(OP)(OR) = (0S)* — (PS)?
Because OS is the radius of circle O:

(0S)? = * = (OP)(OR)

(I11)

(Iv)

V)

(VD)

(VII)
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Now substitute (VII) into (VI):
(OP)(OR) = (OP)(OR) — (PS)*

Therefore PS = 0, which implies that point P must be on the circle! @
2
To discover the fallacy in this “proof,” we let OP = a. Therefore OR = r_.
a

Because r > a and the square of a real number is positive, (r — a)®> > 0. This

can be written as r* — 2ra + a*> > 0. Thus r* + a*> > 2ra. Multiplying both sides
2

1 1 1
of this inequality by 27 Ve get 2 (r_ + a) > r, which is E(OR + OP) > r, or
a a

OM > r. This implies that point M must be outside the circle and that points S
and T do not exist. This destroys the fallacious “proof.”

I FALLACY 5

“Gl‘OOf”

Two segments of unequal length are actually of equal length.

Consider AABC, with MN || BC_ A
and MN intersecting AB and AC
in points M and N, respectively
(see Figure 1-30). We will now
“prove” that BC = MN.
Because MN ” BC, we have

AAMN ~ AABC and B—C = AB M N

MN AM
It then follows that (BC)(AM) =
(AB)(MN). Now multiply both B

sides of this equality by
(BC — MN) to get: m

(BC)*(AM) — (BC)(AM)(MN) = (AB)(MN)(BC) — (AB)(MN)*

By adding (BC)(AM)(MN) — (AB)(MN)(BC) to both sides, we get:
(BC)*(AM) — (AB)(MN)(BC) = (BC)(AM)(MN) — (AB)(MN)?
This equation can be written as:
(BC)[(BC)(AM) — (AB)(MN)] = (MN)[(BC)(AM) — (AB)(MN)]

By dividing both sides by the common factor [(BC)(AM) — (AB)(MN)], we find
that BC = MN! @

No discussion of mathematical fallacies would be complete without an exam-
ple of a dilemma resulting from division by zero. We committed this mathemati-
cal sin when we divided by zero in the form of [(BC)(AM) — (AB)(MN)], which
was a consequence of the triangles proved to be similar earlier.
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COMMON NOMENCLATURE

Sides: a, by c

Angles: ay i3, y

Vertices: A, By C

Alltitudes: hy Hy he

Feet of the altitudes: HY H©,

Orthocenter (point of concurrence of altitudes): H

Medians: myy nic
Midpoints of sides: M, My

Figure 1-31 illustrates some of the details we will consider in this book. We list
them systematically now, with the general understanding that we may use a sym-
bol ambiguously when we can simplify our work without confusion. Thus we
may use b to represent either a side of a triangle, its name, or its measure, as the
context should make clear. The ambiguity reflects our choice and not our igno-
rance—our aim is clarity. The rigor and precision that support the material
could certainly be supplied, but only with time and space that seem inappropri-
ate in our discussion.

Feet of angle bisectors: T

Incenter (point of concurrence of angle bisectors;
center of inscribed circle): |

Inradius (radius of inscribed circle): r

Circumcenter (point of concurrence of perpendicular
bisectors of sides; center of circumscribed circle): O

Circumradius (radius of circumscribed circle): R

Semiperimeter (half the sum of the lengths of the
sides: |(a + ?-h C)): s

Centroid (point of concurrence of medians): G

Angle bisectors:



Chapter 1 ELEMENTARY EUCLIDEAN GEOMETRY REVISITED 21

EXERCISES

1.

Discover the fallacy in the following “proof”: If two opposite sides of a quadri-
lateral are congruent, then the remaining two sides must be parallel.

“@roof”  In quadrilateral ABCD, AD = BC. Construct perpendicular
bisectors OP ald) OQ of sides DC and AB at points P and Q, respectively.
Point N is on PO . (We let O be the intersection of the two perpendicular
bisectors of given nonparallels, OP and OQ.) (See Figure 1-32.) Because O
is a point on the perpendicular bisector of DC, DO = CO. Similarly,

OA = OB. We began with AD = BC. Therefore AADO = ABCO (SSS)
and m£AOD = m/BOC.

We can easily establish that m£DOP = m/ COP. By addition,
m/LAOP = m/ BOP. The supplements of these angles are also equal in
measure: mZAON = m/ BON. But because AAOQ = ABO&)(SSS),
m/AOQ = m/BOQ. Because the angle bisector is unique, ON and OQ
must coincide and the perpendiculars to these must also be parallel. Hence
AB||cD.®@

Repeat the “proof” for O outside the quadrilateral. Then repeat the proof for
O on DC.
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2. Discover the fallacy in the following “proof™: 45° = 60°.

“Qroof” Construct equilateral triangle ABC. (See Figure 1-33). On
side AB construct isosceles right triangle ADB with AB as hypotenuse. Lay
off EB on BC equal in length to BR) Connect point E to point F, the mid-

point of AD, and extend to meet AB at point G. Draw GD. Construct
perpendicular bisectors of
GD and GE. Because GD and
GE are not parallel, the per-
pendicular bisectors must
meet at point K. Connect
point K with points G, D, E,
and B.

Because GK = KD and
GK = KE (a point on the
perpendicular bisector of a
line segment is equidistant
from the ends of a line seg-
ment), KD = KE. We con-
structed DB = EB. Therefore
AKBD = AKBE (SSS) and
m/KBD = m/KBE. By
subtraction, mZDBG =
m/ EBG. But m£.DBG = 45°,
while mZ CBG = 60° thus
45° = 60°. @

3. Parallelograms ABGF and ACDE are constructed on sides AB and /E) of
AABC (see Figure 1-34). (AABC is any type of triangle.) DE and GF
intersect at point P. Using BC as a side, construct parallelogram BCJK so that
BK H PA and BK = PA. From this configuration, Pappus (A.D. 300) proposed
an extension of the Pythagorean theorem. He proved that the sum of the
area of parallelogram ABGF and the area of parallelogram ACDE is equal to
the area of parallelogram BCJK. Prove this relationship. (Note: You may wish
to model your proof after Euclid’s proof of the Pythagorean theorem.)
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4. GIVEN: BE and AD are altitudes (intersecting at H) of AABC, while F, G,
and K are midpoints of AH, AB, and BC, respectively (see Figure 1-35).

PROVE: £FGK is a right angle.

-

C E A

> —_— — —_—
5. A line PQ , parallel to base BC of AABC, intersects AB and AC at points P
and Q, respectively (see Figure 1-36). The circle passing through P and

tangent to AC at Q intersects AB again at point R. Prove that points R, Q,
C, and B are concyclic.

P/ a

FIGURE 1-36

As you proceed through the rest of this book, you may want to work with
additional exercises. For this purpose you might use Challenging Problems in
Geometry by A. S. Posamentier and C. T. Salkind (New York: Dover, 1996).
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INTRODUCTION

In spite of its importance, the concept of concurrency of lines (i.e., three or more
lines containing a common point) usually gets a light treatment in an elementary
geometry course because of higher priorities. Acquiring a truly good facility with
the concept would require that more theorems be explored than time permits in
the first geometry course. Familiar concurrencies such as the medians, angle
bisectors, and altitudes of a triangle are mentioned but not often established by
proof. Introducing a few new theorems makes the topic of concurrency quite
simple and presents a new vista in Euclidean geometry. This chapter begins by
demonstrating the importance of establishing concurrency. With the help of an
important theorem, first published by Giovanni Ceva in 1678, we present a vari-
ety of interesting relationships and theorems. You will soon see how simply some
previously difficult theorems can be proved.

Because we want to show the importance of concurrency, let us consider the
following problem:

Two wires are placed in straight lines meeting in an inaccessible region
(Figure 2-1). How would you locate the proper placement for a wire that
is to bisect the angle formed by the two wires without touching the inac-
cessible region?

25
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© olution

Although there are many possible methods of solution to this problem, we chose
the following solution for a reason that will soon become clear.

Draw any line through jQ_B) and CT)) , intersecting them at points E and F, respec-
tively (see Figure 2-2). Construct the bisectors of £ AEF and £ CFE, which meet
at point J. Suppose APEF were complete. The bisector of ZP would then have to
contain point J because the angle bisectors of a triangle are concurrent,

Repeat this process for any other line GH that meets AB and CD at points
G and H, respectively (Figure 2-3). This time, bisect ZAGH and £ CHG. These
bisectors meet at point K. Once again, we notice that the required angle bisector
(that of £ P) must contain point K. Because this required angle bisector must
contain both J and K, these two points determine our desired line, which is the
location of the wire to be installed. @

This solution relies heavily on the notion that the angle bisectors of a trian-
gle are concurrent. As we have said, the topic of concurrency in a triangle
deserves more attention than it usually gets in the elementary geometry course.
In a very simple way, we will prove that the angle bisectors of a triangle are con-
current. First, we must establish an extremely useful relationship.

Recall from elementary geometry that there are many “centers” of a triangle.
Some examples are:

m centroid—the center of gravity of the triangle, determined by the intersec-
tion of the medians;

m orthocenter—the point of intersection of the altitudes of the triangle;

m incenter—the center of the inscribed circle of the triangle, determined by
the intersection of the angle bisectors of the triangle;
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m circumcenter—the center of the circumscribed circle (or circumcircle),
determined by the intersection of the perpendicular bisectors of the sides
of the triangle.

Numerous applications of these triangle centers are considered in the elementary
geometry course. On occasion, students will consider “practical” applications that
rely on the concurrency property of these points. We offered one such application at
the beginning of this chapter. Yet because the traditional proofs of these concurrency
relationships are somewhat cumbersome, the relationships are frequently accepted
without proof With the help of the famous theorem first published"” by the Italian
mathematician Giovanni Ceva (1647-1734), which bears his name, we will produce
simple proofs of the concurrency relationships named previously, as well as many
others.

CEVAS THEOREM

| THEOREM 2.1

(Ceva’s Theorem) The three lines containing the vertices A, B, and C of AABC
and intersecting the opposite sides at points L, M, and N, respectively, are

. AN BL CM
concurrent if and only if — o— ¢—= 1

De lineis se invicem secantibus statica constructio (Milan, 1678).
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@roof 1

To prove this theorem, we must note that there are two possible situations in
which the three lines drawn from the vertices may intersect the sides and still be
concurrent. These situations are pictured in Figure 2-4. It is perhaps easier to
follow the proof with the diagram on the left and verify the validity of the state-
ments with the diagram on the right. In any case, the statements made in the
proof hold for both diagrams.

Ceva’s theorem is an equivalence (or biconditional) and therefore requires
two proofs (one the converse of the other). We will first prove that if the three
lines containing the vertices of AABC and intersecting the opposite sides at points L,
M and N ivel " AN i BL . CM

, ana N, respectively, are concurrent, tnen NB LC MA

proofs. The first (though not the simplest) requires no auxiliary lines.

= 1. We offer three

In Figure 2-4, AL, BM, and CN meet at point P. Because AABL and AACL share
the same altitude (i.e., from point A):

area AABL ﬂ
arca AACL  LC D

Similarly:

area APBL  BL

area APCL E (1

From (I) and (II):

area AABL _ area APBL
area AACL area APCL

A basic property of proportions (v_v =L P ) provides that:
X z x—z

BL _ area AABL — area APBL _ area AABP
LC area AACL — area APCL  area AACP

(1I1)

We now repeat the process, using BM instead of AL:

CM _ area ABMC _ area APMC
MA  area ABMA  area APMA
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It follows that:

CM  area ABMC — area APMC  area ABCP
—_—= = (IV)
MA  area ABMA — area APMA  area ABAP

Once again we repeat the process, this time using CN instead of AL:

AN _ area AACN _ area AAPN
NB  area ABCN  area ABPN

This gives us:

AN _ area AACN — area AAPN _ area AACP V)
NB  area ABCN — area ABPN  area ABCP

We now simply multiply (III), (IV), and (V) to get the desired result:

ﬁ C_M AN _ area AABP _area ABCP area AACP _ 1@
LC MA NB area AACP area ABAP area ABCP

By introducing an auxiliary line, we can produce a simpler proof.

@roof I  Consider %}re 2-4, but add (iline containing point A and parallel to BC that
intersects CP at point S and BP at point R (see Figure 2-5). The parallel lines
enable us to establish the following pairs of similar triangles:

AM AR

AAMR ~ —_—==
MR ~ ACMB =C " CB (D

BN CB

A ~ — ==
BNC ~ AANS = NA = Sa (11)

CL LP

ACLP ~ ASAP = — = —
= SA AP (II1)

BL LP

(V)

ABLP ~ ARAP= — = —
RA AP
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Qroof 111

From (III) and (IV) we get:

c_B
SA RA

This can be rewritten as:
e (V)
BL RA

By multiplying (I), (II), and (V), we obtain our desired result:

AM BN CL AR CB SA _

MC NA BL

CB SA RA
We rearrange the terms and invert the fractions to get:

AN BL CM _

NB LC MA 1 (the same as the conclusion of Proof I) @

By adding two auxiliary lines to the diagrams in Figure 2-4, we are able to
produce another proof, again using the properties of similar triangles.

We begin with the diagrams shown in Figure 2-4 but add two lines to each dia-
gram. We draw a lm(e_tproug (_gomt A and a line through point C each parallel to

BP and intersecting CP and AP at points S and R, respectively (see Figure 2-6).

AN _AS

AAS
N~ ABPN = 1o =20 I
BL _BP
ABPL ~ ACRL
CRL=7C=CR (1n)
4 RC
APAM ~ ARAC = A

MA PM
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This can be written as:

(RC)(MA)
A =
C. 5 (I11)
CM PM
A = —— =
APCM ~ ASCA = CA - AS
This can be written as:
_ (AS)(CM)
CA = oM (Iv)

From (III) and (IV):

(RC)(MA) _ (AS)(CM)

PM PM
This can be written as:
CM RC
= V)
MA AS

To obtain our desired result, we multiply (I), (II), and (V):

AN BL CM _AS BP RC
NB LC MA BP CR AS

=1@

To complete the proof of Ceva’s theorem, we must now prove the converse
of the implication proved above; that is, we will now prove that if the lines con-
taining the vertices of AABC intersect the opposite sides in points L, M, and N,

AN BL CM
respectively, so that — « — + —— =1, then these lines, AL BM and CN are
NB LC MA

concurrent.

@roof Suppose BM and AL intersect at pom(u’i Draw PC and call its intersection

—
with AB N’. Now that AL , BM , and CN' are concurrent, we can use the part of
Ceva’s theorem proved earlier to state the following:

A_N' BL M -
NB LC MA
Our hypothesis stated that:
AN BL CM _
NB LC MA
Therefore —— = —, so N and N’ must coincide, proving concurrency. @

NB NB
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APPLICATIONS OF CEVAS THEOREM

application 1

INTERACTIVE 2-7

Drag vertices A, B, and Cto
change the shape of the triangle
and see that the medians always

meet at one point.

application 2

Qroof

One of the best ways to show the usefulness of Ceva’s theorem is to apply it to the
proof of the concurreng” of the various line segments encountered in elementary
geometry. The simplest application is to prove the concurrency of the medians of a
triangle. To best appreciate the “power” of Ceva’s theorem, you should first recall the
conventional method of proving the medians of a triangle concurrent. Suffice it to
say that it is quite long and complex. Compared to this rather cumbersome proof,
the method we use here should provoke some excitement about Cevas theorem.

Prove that the medians of a triangle are concurrent. ¢

In AABQ ALy BMy and CN are medians (see Figure 2-7). Therefore AN = NB,
BL = LGy and CM = MA. Multiplying these equalities gives us:

. — N EN ~ =
(ANKBDICM) = (NB{LC)(MA) or o "1~y =1

Thus by Ceva’s theorem, AL, BMy and CN are concurrent. <

Again, it would be advisable to compare the conventional proof (that pre-
sented in the context of elementary geometry) for the concurrency of the alti-
tudes of a triangle to the following proof, which uses Cevas theorem.

Prove that the altitudes of a triangle are concurrent. ¢
In AABC, AL, BM, and CN are altitudes. You can follow this proof for both

diagrams of Figure 2-8 because the same proof holds true for both an acute and
an obtuse triangle.

AANC ~ AAMB = AN AC
= MA-~ AB ()
ABLA ~ ABNC: (N
ANB~ BC
CM  BC
ACMB ~ ACLA = (1)

LC ~ AC
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Drag vertices A, B, and (7to
change the shape of the triangle
and see that the altitudes always

meet at one point.

Application 3

Qroof
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FIGURE 2-8

Multiplying (1), (11), and (I11) gives us:

ma’'nb'lc ~ab'bc‘AC~
Therefore the altitudes are concurrent (by Cevas theorem). o

The proof that the three angle bisectors of a triangle are concurrent is left as
an exercise. The following proof should be helpful in working that exercise.

Prove that the bisector of any interior angle of a nonisosceles triangle and the
bisectors of the two exterior angles at the other vertices are concurrent. ¢

TAWAY VAWAN

In AABQ AL blsects ABAC and meets BC at point L, BM bisects exterior
LABE and meets AC at point M, and CN bisects exterior LACF and meets
AB at point N (see Figure 2-9).

Because the bisector (AL) of an interior angle of a triangle partitions the
opposite side proportionally to the remaining two sides of the triangle:

LC ~ AC 0

An exterior angle bisector partitions the side that it intersects proportionally to the
remaining sides of the triangle. This property produces the following proportions:

<> CM BC
ForBM: \ya  AB (1

e by AN AC
ortNC B BC (1

By multiplying (1), (), and (I11), we get:

A~ CM AN AB BC AC
LC'ma’NB~ AC'Ap 'BC
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INTERACTIVE 2-9

Drag vertices A B, and CXo
change the shape of the
triangle and see that the

indicated bisectors of the angles

(interior and exterior) always

meet at one point.

INTERACTIVE 2-10

Drag vertices A, B, and Cto
change the shape of the triangle;
drag point Pon AB and see that

PC and QB always meet at a

point on AM.

M
FIGURE 2-9
NN NN NN

By Cevas theorem, we may conclude that AL , BM , and CN are concurrent. ¢

Sometimes the question of concurrency is a bit disguised, as in the following
application.

In AABCy PQ IIBC and intersects AB and AC at points P and Q, respectively
(see Figure 2-10). Prove that PC and QB intersect at a point on median AM.
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Q@roof
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Because PQ || BC:

AP_4Q AP QC_

PB_qQc & PB AQ )

Because AM is a median, BM = MC. Therefore:

M an
MC

By multiplying (I) and (II), we get:

AP QC BM _
PB AQ MC

Thus, by Ceva’s theorem, A_M, aﬁ, and PC are concurrent, or @ and PC
intersect at a point on AM. @

Up to this point, all our applications have been used to prove concurrency.
The following application demonstrates a somewhat different use of Ceva’s
theorem.

In AABC, where _C_,'B_is the altitude to AB and P is any point on DC, AP intersects
CB at point Q and BP intersects CA at point R (see Figure 2-11). Prove that
LRDC = ~,QDC. @

— — P
Let DR and DQ intersect the line containing C and parallel to AB, at points G
and H, respectively.

CR GC
ACGR ~ AADR = RA = 2D (1
ABDQ ~ ACHQ = 5Q _DB (In
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We now apply Ceva’s theorem to AABC to get:

CR AD BQ _ 1 "
Ra 'Db ' QC (m
Substituting (1) and (II) into (I11) gives us:
NN DB_ GC _
ad’db "CH~ 7 CH* ~

This implies that GC = CH. Thus CD is the perpendicular bisector of GH.
Hence AGCD = AHCD, and therefore ¢(.RDC = AQDC.

From the preceding applications, we have seen how Cevas theorem easily
enables us to prove theorems whose proofs would otherwise be quite complex.
Cevas theorem again demonstrates its usefulness in assisting us in proving an
interesting point of concurrency in a triangle known as the Gergonne point

THE GERGONNE POINT

| THEOREM 2.2

Qroof

A fascinating point of concurrency in a triangle was first established by French
mathematician Joseph-Diaz Gergonne (1771-1859). Gergonne reserved a distinct
place in the history of mathematics as the initiator (in 1810) of the first purely
mathematical journal, Annales des mathématiques pures et appliqués. The journal
appeared monthly until 1832 and was known as Annales del Gergonne. During
the time of its publication, Gergonne published about two hundred papers,
mostly on geometry. Gergonne’s Annales played an important role in the estab-
lishment of projective and algebraic geometry by giving some of the greatest
minds of the times an opportunity to share information. Here we consider a
rather simple theorem established by Gergonne that exhibits concurrency and is
easily proved using Cevas theorem.

The lines containing a vertex of a triangle and the point of tangency of the oppo-
site side with the inscribed circle are concurrent. (This point of concurrency is
known as the Gergonne point of the triangle.)

Circle O is tangent to sides AB, AC, and BC of AABC at points N, M, and
L, respectively (see Figure 2-12). It follows that AN = AM, BL = BN, and
CM = CL Each of these equalities can be written as:

AN A M

AM ~ » BN~ CL ~ 7



Chapter 2 CONCURRENCY of LINES in A TRIANGLE 37

By multiplying these three fractions, we get:

AN BL CM _
AM BN CL

1

Therefore:

AN BL CM _
BN CL AM

By Ceva’s theorem, this equality implies that AL, BM, and CN are concurrent.
The point of concurrency is the Gergonne point of AABC. @

EXERCISES

1. Prove that the angle bisectors of a triangle are concurrent.

2. If point P is situated on BC so that A
AB + BP = AC + CP point Q is situated
on AC so that BC + CQ = AB + AQ,
and point R is situated on AB so that
BC + BR = AC + AR, prove that AP, Q
BQ, and CR are concurrent (see Figure
2-13). (This point of concurrency is
known as the Nagel point* of AABC.)

* Discovered by C. H. Nagel (1803—1882), the point can also be described as the intersec-
tion of the lines from the vertices of a triangle to the points of tangency of the opposite
escribed circles.



38 ADVANCED EUCLIDEAN GEOMETRY

3. AABC cuts a circle at points £ E\ D, D\ F, and F\ as in Figure 2-14. Prove
that if AD, BFy and CE are concurrent, then AD', BF\ and CF' are also
concurrent.

4. In AABC (Figure 2-15), ~,_BM, and CN are concurrent at point P. Points R,
5 and T are chosen on EC, AC, and AE, respectively, so that NR | AC,
LS HIAE, and MT | EC. Prove that AR, E5, and CT are concurrent (at point Q).
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5. In AABC (Figure 2-15), AL Eﬁind CN V_are concurrent at point P. Points
U, V;, and W are chosen on AB, AC, and BC, respectively, so that LU || AC,

NV || BC, and MW || AB. Prove that AW, BV, and CU are concurrent (at
point K).

6. In AABC (Figure 2-16), AL, BM, and CN are concurrent at point K and L, M,
and N are points on BC, AC, and AB, respectively. Points B, R, and Q are
respective midpoints of AL, CN, and BM. Prove that DP, EQ, and FR are con-
current if D, E, and F are respective midpoints of BC, AC, and AB.

7. In AABC (Figure 2-17), AL, BM, and CN are concurrent at point P Poiﬁs)
S;) Q, and L are midpoints of MN, ML, and NL, respectively. Prove that AS,
BR, and CQ are concurrent.

A

FIGURE 2-17
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8. In AABC (Figure 2-17),A:L, @, and Q_Ij are concurrent at point P. Points S,
Q, and R are points on MN, ML, and NL;;espectively. If LS, MR, and NQ

are concurrent, prove that AS, BR, and CQ are also concurrent.

9. Circles P, O, and Q are escribed circles of AABC, with the points of tan-
gency indicated in Figure 2-18. Prove that AD, BE, and CF are concurrent.
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10. Given three circles, nonintersecting, mutually external, and with distinct
radii, connect the intersection of internal common tangents of each pair of
circles with the center of the other circle, as in Figure 2-19. Prove that the
three resulting line segments are concurrent.

FIGURE 2-19
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DUALITY

Many statements in geometry involve relationships between points and lines. In a
statement concerning points and lines in a plane, when the word point is replaced
by the word line and the word line is replaced by the word point each time these
words are used in the statement, the newly formed statement is said to be the
dual of the original statement. Occasionally, other modifications may need to be
made in order to preserve proper sentence structure. This principle of duality
was discovered by Charles Julien Brianchon (1785-1864) while using this rela-
tionship on a theorem by Blaise Pascal. We will visit these theorems later in this
chapter. However, the transition from Chapter 2 to Chapter 3 follows the princi-
ple of duality because concurrency of lines is the dual of collinearity of points.
The primary focus of this chapter is collinearity.

Let us first familiarize ourselves with the principle of duality. Consider the
following examples of dual statements:

Statement Dual Statement

1 Two distinct points determine a 1 Two distinct lines determine a
unique line. unique point.

2. Any point contains an infinite num- 2. Any line contains an infinite num-
ber of lines. ber of points.

3. Only one triangle is determined by 3. Only one trilateral is determined by
three noncollinear points. three nonconcurrent lines.

This last example of duality demonstrates that related words also need to be
changed when forming the dual of a statement. Specifically, note that collinear
and concurrent are dual words, as are triangle and trilateral.

Recall Cevas theorem (see Figure 3-1):

43
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INTERACTIVE 3-2

Drag vertices A, B, and Cto
change the shape of the

triangle; drag points Pand Q

and see that Menelaus's
theorem is always true.

The three lines containing the vertices A, B, and C of AABC and intersecting
the opposite sides at points I, M, and N, respectively, are concurrent if and
~N AN BL CM

For the most part, the dual of a postulate is also a postulate, and the dual of
a definition is itself a definition. Thus, if a statement is a theorem, its dual is
likely to be a theorem as well.” In any case, we would at least have a statement
that would be a good candidate to be a theorem. A valid proof would be needed
to establish the statement as a theorem.

This is precisely what we will now investigate. With our knowledge of dual-
ity, we will form the dual statement of Ceva’s theorem. Actually, it was the
rediscovery of Menelaus of Alexandria's famous but forgotten theorem,™ which
we will discuss in the next section, that led Giovanni Ceva in the first book of
his De lineis rectis se invicem secantibus statica constructio (Milan, 1678) to pro-
duce his theorem by the principle of duality. Note the duality relationship
between the two theorems. Y \ J/

The three points P, Q, and R on the sides AC , AB, and BC , respectively,
Q BR CP +
of AABC (see Figure 3-2) are collinear if and only, if — B RC A
This statement is in fact a theorem, known as Menelaus's theorem, that is the
subject of the next section.

FIGURE 3-2

In a geometric system exclusively based on postulates and definitions whose respective
duals are all true, the dual of every theorem is also a theorem. This claim is easily justified
by realizing that the proof of the dual of a theorem can be produced by simply replacing
each statement of the proof of the original theorem by its dual,

t During the Dark Ages, much of classical Greek mathematics was lost and forgotten.
t The reason for the negative sign is explained in the proof of this theorem.
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MENELAUS'S THEOREM

Menelaus of Alexandria, in about a.a. 100 in a work titled Sphaerica, produced
the well-known plane version of the theorem that we will present here. He used
the plane version to develop the spherical analogue,which was the purpose of
his treatise. As we have mentioned, this theorem, which today bears Menelaus’s
name, did not become popular until it was rediscovered by Giovanni Ceva as a
part of his work in 1678.

NN NN

THEOREM 3.1  (Menelaus™S theorem)  The threepoints P, Q, and R onthesidesAC,AB,
= T A 1 1.4TIQ, BR CP _
ana1 BC, resRectlvéfly\, o'fA/nABC are coII|r]1Jear if an&onLy |4 3B RC 'PA —1

Like Ceva’s theorem, Menelaus’s theorem is an equivalence and therefore
requires proofs for each of the two statements (converses of each other) that
comprise the entirg*theorem. We will first prove that if the three points P, Q, and

R on the sides AC, AB, and BC,, respectively, of AABC are collinear, then

AQ BR CP _
" *RC A L We offer two proofs of this part of Menelaus’s theorem.

Oroof I Draw a line containing C, parallel to AB and intersecting PQR (or QPR) at
point D (see Figure 3-3).

- A A _ _ IQBX{RC)

ADCR ~ AQBR" 4. g or DC = o )
DC (AQKCP)

APDC = APQA =0 = o or DC = L )

* The spherical analogue to Theorem 3.1 for spherical triangle ABC is
sinAQ sinBR sin CP _
sin QB sin RC  sin PA
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Qroof 11

From (I) and (II), we get:

(QB)(RC) _ (AQ)(CP) _
BR - PA or (QB)(RC)(PA) = (AQ)(CP)(BR)

This gives us:

AQ BR CP _
QB RC PA

By taking direction into account in the left-hand diagram of Figure 3-3, we

cp
and — are each negative ratios; in the right-hand diagram of

AQ
that —
seethat 9B’ re’ ™ pa

BR - .
Figure 3-3, RC is a negative ratio, whereas & and A 2re positive ratios. Because

in each case there is an odd number of negative ratios:

AQ BR CP _

= -1
QB RC PA i

— &
Once again we begin by assuming collinearity of P, Q, and R. Draw BM L PR,
- & —
AN 1 PR, and CL 1 PR (see Figure 3-4).

AQ _ AN
ABM
BMQ ~ AANQ = QB =M ¢))
Cp _ILC
ALCP ~ ANAP = PA - AN (I1)
BR BM
AMRB ~ ALRC = RC - IC (111)

By multiplying (I), (I1), and (III), we get, numerically:
AQ CP BR AN IC BM

QB PA RC BM AN Ic
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: : AQ. . CP. . BR .

In the left-hand diagram of Figure 3-4, —g is negative, — is negative, and — is

negative. Therefore: Q PA RC
AQ CP BR
QB PA RC

= -1

A cp BR
In the right-hand diagram of Figure 3-4, 4Q is positive, — is positive, and — is
. QB PA RC
negative. Therefore:

AQ CP BR
—r——=-10
QB PA RC

To complete the proof of Menelaus’s theorem, we must now prove the con-

verse of the theorem we just proved. We will prove that if the three points B, Q,
B e K e — . ..AQ BR CP
and R are on the sides AC, AB, and BC, respectively, and if — + — +— = —1,

then points P, Q, and R are collinear. QB RC PA

In Figure 3-2, let the line containing points R and Q intersect ACat P'. Using
the portion of the theorem just proved, we know that:

AQ BR CP _ |
QB RC PA
However, our hypothesis tells us that:
AQ BR CP _
QB RC PA
CPr _Ccp ... . , o ,
Therefore A" PA which indicates that P and P’ must coincide. This proves

the collinearity. @

Menelaus’s theorem provides us with a useful method for proving points
collinear.
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APPLICATIONS OF MENELAUS'S THEOREM

Before investigating other famous theorems that can be proved using Menelaus s
theorem, we will consider a few applications of Menelaus’s theorem. Each of
these unnamed theorems presents some very interesting results that are very
easily proved using Menelaus’s theorem.

application 1 Prove that the interior angle bisectors of two angles of a nonisosceles triangle
and the exterior angle bisector of the third angle meet the opposite sides in three
collinear points. *

Qroof In AABC, BM and CN are the interior angle bisectors, while AL bisects the
exterior angle at point A (see Figure 3-5). Because the bisector of an angle (inte-
rior or exterior) of a triangle partitions the opposite side proportionally to the
two remaining sides, we have:

CL_AC
MC ~ BC NA~ AC BL ~ AB

Therefore, by multiplication:

AM BN OL_M ~*
MC* NA* BL~ BC* Ac' AB~

However, because » :
BL LB

AM BN CL_
MC* NA* LB ~

Thus, by Menelaus's theorem, points N, M, and L must be collinear. ¢

OppUcation 2 Prove that the exterior angle bisectors of any nonisosceles triangle meet the
opposite sides in three collinear points. ¢
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@roof In AABC, the bisectors of the exterior angles at A, B, and C meet the opposite

@pplication 3

@roof

sides (extended) at points N, L, and M, respectively (see Figure 3-6). Because the
bisector of an angle (interior or exterior) of a triangle partitions the opposite
side proportionally to the two remaining sides, we have:

CL_BC AM _AC . BN _AB
AL AB BM BC CN AC

Therefore:

CL AM BN _BC AC AB_ |4 Il three rati ative)
- —_— Se€ a 10S are ne
AL BM CN AB BC AC ecau fec ra &

Thus, by Menelaus’s theorem, points L, M, and N are collinear. @

A circle through vertices B and C of AABC meets AB at point P and AC at
QC _ (RO)(AC)

QB (PB)(AB)’
Consider AABC with transversal QPR (Figure 3-7). By Menelaus’s theorem:

point R. If PR meets BC at point Q, prove that ——

RC AP QB _

AR PB cQ
Then, considering absolute values, we have:

QC _RC AP

QB AR PB M

However, (AP)(AB) = (AR)(AC). (If two secant segments intersect outside the
circle, the product of the lengths of one secant segment and its external segment
equals the product of the lengths of the other secant segment and its external
segment.) Therefore:

AP _AC
=== (In)
AR AB

By substituting (II) into (I), we get our desired result:

QC _ (RONAQ)
QB (PB)(AB)
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@pplication 4

© olution

@pplication 5

Often, both Menelaus’s theorem and its dual, Ceva’s theorem, are needed
to solve a problem or prove a theorem. The next applications demonstrate
this.

In right triangle ABC, points P and Q are on BC and AC, respectively, such that
CP = CQ = 2. Through R, the point of intersection of AP and BQ aline i is
drawn also passing through point C and meeting AB at point S. PQ meets AB
at point T. If hypotenuse AB = 10 and AC = 8, find TS (Figure 3-8). @

In right triangle ABC, hypotenuse T A
AB =10 and AC = 8,50 BC = 6 R

(by the Pythagorean theorem). In P Q

AABC, because AP, BQ, and CS are
concurrent, by Ceva’s theorem:

AQ CP BS _

QC PB SA
Substituting, we get:

BS
10 — BS

6 2
P =1 or BS=4
2 4

Now consider AABC with transversal QPT. By Menelaus’s theorem:

AQ CP BT _

QC PB TA
Because we are not dealing with directed line segments, this may be restated as:
(AQ)(CP)(BT) = (QC)(PB)(AT)
Substituting, we get:
(6)(2)(BT) = (2)(4)(BT + 10)

Solving for BT gives us BT = 20, and thus TS = 24. @

In quadrilateral ABCD, C

— > .

AB and CD meet at point
R —

B, while AD and BC r(n_e)et

at point Q. Diagonals A B

paint Q. Diagonals AC
and BD meet PQ at points A

X and Y, respectively. Prove

PX PY
that — = ——— (see

XQ  YQ
Figure 3-9). @ FIGURE 39 |




I"roof

DESARGUES'S

| THEOREM 3.2
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Consider APQC with PB, QD, and CX concurrent. By Ceva’ theorem:

PX QB CD _
Xq ‘BC*DP ~ A 0

Now consider APQC with DBY as a transversal. By Menelaus’s theorem:

PY QB CD _
YQ BC DP an

Therefore, from (1) and (11):

PX _
XQ~ YQ©

We will now consider some rather famous theorems that can be proved
using Menelaus’ theorem.

THEOREM

During his lifetime, Gérard Desargues (1591-1661) did not enjoy the important
stature as a mathematician that he has attained in later years. This lack of popu-
larity was in part due to the then recent development of analytic geometry by
René Descartes (1596-1650) and to Desargues s introduction of many new and
largely unfamiliar terms. (Incidentally, we make every effort in this book not to
introduce any new terms in order to make it more reader-friendly—we want to
learn from Desargues's misjudgment.)

In 1648, his pupil, Abraham Bosse, a master engraver, published a book titled
Maniere universelle de M. Desargues, pour pratiquer la perspective, which was not
popularized until about two centuries later. This book contained a theorem that
in the nineteenth century became one of the fundamental propositions of projec-
tive geometry. It is this theorem that is of interest to us here. It involves placing
any two triangles in a position that will enable the three lines joining correspon-
ding vertices to be concurrent. Remarkably, when this is achieved the pairs of
corresponding sides meet in three collinear points. We will prove Desargues’
theorem by using Menelaus theorem.

(Desargues”™s theorem) If AAIBiCi and_AA™B' ! ¥ situated so that

the lines joining the corresponding vertices, AlAl, BBl , CICl, are concur-
rent, then the pairs of corresponding sides intersect in three collinear points.
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INTERACTIVE 3-10

Drag vertices A, B\C] and A2,

Bi, Cl to change the shape of the
triangles and point Pand see that
Desargues's theorem s true.

fi*rooi

FIGURE 3-10
- n A i > <-.--> - - -
In Higure 3-10, AlA2, ~172,7and CiC27%dall meet at point P, by hyj~othesis.
B2C2 and BiCi meet at A'; A2C2 and AiQ meet at B'; B2A2 and BiAi meet at C'.
Consider A'BiCi to be a transversal of APB2Cz. Therefore, by Menelaus’s theorem:

PBi B2A' cac:

BIBL AC2 Cl? )
Similarly, considering CBiAi as a transversal of APB2A2".
PAI A€ B2B, _ 1 (Menelaus’s theorem)
AlA2 CB2 BiP (I
Now, taking B'AiCi as a transversal of APA2Cz.
PCI C2B azn: 1 (Menelaus’s theorem)
CIC2 BA: AP (1

By multiplying (1), (11), and (I11), we get:

B2A" A2C  CoB'

- -1
A'C2 *CB2 *B'A2

Thus, by Menelaus's theorem, applied to AAIBIQ>  have points A', B\ and C
collinear. ¢

It should be noted that the converse of Desargues’ theorem is also true. It is
the dual of the original theorem. We leave the proof as an exercise.

To appreciate the value of Desargues’s theorem, we will examine some
applications. Although each may be proved in other ways, we will use the method
employing Desargues’s theorem.
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FIGURE 3-11

A circle inscribed in (éz)QBC is tange%to sides BC, @; and AB at Bgints L M,
and 1(V,_)respectively. (_AgN intersects BC at point P, NL intersects AC at point Q,

and ML intersects AB at point R. Prove that points P, Q, and R are collinear
(see Figure 3-11). @

Because the tangent segments from an external point to a circle are congruent:

AN =AM NB=BL MC=1LC
Therefore:

AN BL MC _
NB LC AM

By Ceva’s theorem, <A_L), W , and CN are concurrent. Because these are the lines
joining the corresponding vertices of AABC and ALMN, by Desargues’s theorem
the intersections of the corresponding sides are collinear; therefore points B Q, and
R are collinear. @

In AABC, points E, E, and D are
the feet of the altitudes drawn
from the vertices A, B, and C,
respectively. The sides of pedal*
Y —
triangle FED, EF, DF, and DE
intersect the sides of AABC, AB
«—> «—>
AC, and BC, at points M, N, and
L, respectively. Prove that points
M, N, and L are collinear (see
Figure 3-12). @

Let A, B, C and E E, D be corre-
sponding vertices of AABC and_
AFED. Because AF, CD, and BE
are concurrent (they are the altitudes of AABC), the mtersectlons of the corre-
spondmg sides DE and BC, FE and BA and FD and CA are collinear by Desar-
gues’s theorem. @

* A pedal triangle (of a given triangle) is formed by joining the feet of the perpendiculars
from any given point to the sides of the given triangle.
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PASCAL'S THEOREM

| THEOREM 3.3

Qroof

Blaise Pascal (1623-1662), a contemporary of Desargues, is regarded today as
one of the true geniuses in the history of mathematics. Although eccentricities
kept him from achieving his true potential, he is considered one of the origi-
nators of the formalized study of probability (an outgrowth of his correspon-
dences with Fermat), and he made many important contributions to other
branches of mathematics. We concern ourselves here with one of his contribu-
tions to geometry.

In 1640, at the age of sixteen, Pascal published a one-page paper titled Essay
pour les coniques. It contained a theorem that Pascal referred to as mysterium
hexagrammicum. The work highly impressed Descartes, who couldn't believe it
was the work of a boy. This theorem states that the intersections of the opposite
sides of a hexagon inscribed in a conic section are collinear. For our purposes, we
will consider only the case in which the conic section is a circle and the hexagon
has no pair of opposite sides parallel.

(Pascal’s theorem) If a hexagon with no pair of opposite sides parallel is
inscribed in a circle, then the intersections of the opposite sides are collinear.

Hexagon ABCDEF is inscribed in a circle (see Figure 3-13). The pairs of opposite
sides AB and DE meet at point L, CB and EF meet at point M, and CD and
AF meet at point N. Also, AB meets CN at point X, EF meets CN at point Y,
and EF meets AB at point Z

Consider BC to be a transversal of AXYZ. Then, by Menelaus’s theorem:

7B XC YM
BX' cy' MZ ()

Taking AF to be a transversal of AXYZ:

ZA YF XN , Y
AX‘Jz' -1 (Menelaus s theorem) )}

NN

Also, because DE is a transversal of AXYZ:
XD . YE, ZL _
DY EZ LX
By multiplying (1), (11), and (lI1), we get:

YM XN ZL {ZB){ZA) (XD){XC) (YE)(YE)
MZ~ NY 'Lx' {EZ}{F2) * (AX)}{BX) ’ {DY){CY)

- 1 {Menelaus’s theorem) (1)

(V)

When two secant segments are drawn to a circle from an external point, the
product of the lengths of one secant and its external segment equals the product
of the lengths of the other secant and its external segment.
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=

I

INTERACTIVE 3-13
Drag points A B, C, D, E and F ////
on the circle to see that Pascal's //
theorem s true. !/
/]
/
/
/
/
/
/
/
|
Therefore:
(EZ){FZ) - V)
iXD){X
IXD){XQ _ V1)
{AX){BX)
(YE){YF)
. = I
y)(ey) VD
By substituting (V), (VI1), and (VII) into (IV), we get:
™ XN ZL
MZ'NY'LX

Thus, by Menelaus’s theorem, points M, N, and L must be collinear. ¢

It is interesting to note that Pascal’s theorem can be extended in the follow-

ing manner.
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I THEOREM 3.4

@pplication 8

Oroof

(variation on Pascal’s theorem) If a hexagon has its vertices on a circle
in any order, then the intersections (if they exist) of the opposite sides are
collinear.

As an example of this variation, you are invited to follow the proof of
Theorem 3.3 using the diagram in Figure 3-14. Only one minor adjustment
needs to be made, and that is the reason for equations (V) through (VII). Note
that the same pairs of “opposite sides” are used here as were used earlier.

Pascal’s theorem has many applications. We will consider only a few.

Point P is any point in the interior of AéEC. Points M and_ N age_;he feet of the
perpegiiculilg from point P to AB and AC, respectively. AK (_l_) CP at (E())int K,
and AL L BP at point L (see Figure 3-15). Prove that KM, LM, and BC are
concurrent. @

We can easily prove that some points A, K, M,

P, N, and L all lie on the circle with diameter
AP. We can justify this by realizing that right
angles AKP and AMP are inscribed in the same
semicircle, as is the case for right angles ALP
and ANP. Using the variation on Pascal’s theo-
rem (Theorem 3.4), we notice that for inscribed
hexagon AKMPNL, the pairs of sides intersect as
follows:

«— «—
AM NLP =B
> >
AN NKP =C
«—> >
KM NIN =Q

By Pascal’s theorem, points B, (C_,)and Q are

collinear, which is to say that KM, LM, and BC
are concurrent. @
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FIGURE 3-16

9  Select any point P not on AABC and a line € containing”™? and intersecting sides
BCy ABy and AC at points X, Y and Z, respectively. Let AP, BP, and CP intersect
the circumcircle of AABC at points S, and X respectively (see Figure 3-16). Prove
that RXySZy and TY are concurrent. ¢

AA

Qroof Let ?X intersect the circumcircle at point Q. Consider hexagon ARQTCB and
ap”ly Pascals theorem t 0 W e notice that because AR fl AB at point P and
n CB at point X, TQ P A? at a point on €, which must be 7 (because
AB n € at point 7). (n~ AN () ()
Now consider hexagon ARQSBC. Because AR (1 SB at P and RQ fl CB at
<> <> . ; <> <>
X, SQ n AC at a point on € which must be Z. Thus PX , SZ, and TY are and
concurrent. ¢

BRIANCHON’S THEOREM

In 1806, at the age of twenty-one, a student at the Ecole Polytechnique, Charles
Julien Brianchon (1785-1864), published an article in the Journal de VEcole
Polytechnique that was to become one of the fundamental contributions to the
study of conic sections in projective geometry. His development led to a
restatement of the somewhat forgotten theorem of Pascal and its extension, after
which Brianchon stated a new theorem that now bears his name. Brianchon’s
theorem, which states "Tn any hexagon circumscribed about a conic section, the
three diagonals cross each other in the same point,”*®bears a curious

Source Book in MathematicSy edited by D. E. Smith (New York: McGraw-Hill Book Co.,
1929), p. 336.
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resemblance to PascaFs theorem. They are, in fact, duals of each other. This can
be easily seen by comparing the following versions of each theorem:

Pascal's Theorem Brianchon's Theorem

The points of intersection of the The lines joining the opposite
opposite sides of a hexagon vertices of a hexagon circumscribed
inscribed in a conic section are about a conic section are

collinear. concurrent.

Notice that the two statements above are alike except for the underlined words,
which are duals of one another. As with Pascal’s theorem, we will consider only
the conic section that is a circle.

| THEOREM 3.5 (Brianchon’s theorem) If a hexagon is circumscribed about a circle (see
Figure 3-17), the lines containing opposite vertices are concurrent.

INTERACTIVE 3-17

Drag points A B, C,D, E and F
on the circle and see that
Brianchon's theorem is true.

The simplest proofs of this theorem require knowledge of concepts from
projective geometry. Although we are prepared at this point to prove this theo-
rem by Euclidean methods, our proof will be more concise if we wait until we
study radical axes later in this chapter on page 71.

Brianchon suggested the following application immediately after the state-
ment of his new theorem.
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Pentagon ABCDE is circumscribed about a circle, with points of tangency at F,
M, N, R, and §. If diagonals AD and BE intersect at point B prove that points C,
P, and F are collinear (see Figure 3-18). @

Consider the hexagon circumscribed about a circle (Figure 3-17) having its sides AF
and EF merge into one line segment. Thus AFE is now a side of a circumscribed
pentagon with F as one point of tangency (see Figure 3-18). Thus we can view the
pentagon in Figure 3-18 as a degenerate hexagon. We then simply apply Brianchon’s
theorem to this degenerate hexagon to obtain our desired conclusion. That is, AD,
BE, and CF are concurrent at point B or points C, P, and F are collinear. @
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PAPPUS'S THEOREM

B

INTERACTIVE 3-20

Drag points A', B, C, A, B, and
Cand see that Pappus's theorem
is true.

| THEOREM 3.6

Qroof

Consider the vertices of a hexagon AB'CKBC (Figure 3-19) located alternately
on two lines (see Figure 3-20). Suppose we now draw the lines that were the
opposite sides of the hexagon to locate their point of intersection. We find that
the three points of intersection of these pairs of “opposite sides” are collinear.
This conclusion was first published by Pappus of Alexandria in his Mathematical

Collection circa a.a. 300.
For the purpose of providing a proof, we will restate Pappus s theorem. You

will notice once again that the proof uses Menelaus's theorem repeatedly.

(Pappus’s theorem) Points A, By and C are on one line, and points B\
and*C are on another line (in any order). If AB' and A'B meet at C", AC and
A'C meet at B\ and BC and B'C meet at A"\ then points A"\ B'\ and C" are
collinear.

In Figure 3-20, B'C meets A'B at point Y, AC meets A'B at point X, and B'C meets
AC at point Z Consider C"AB' as a transversal of tXXYZ. By Menelaus’ theorem:

ZB' XA YC"
YB' * ZA ' XC" 0
Taking A'B"C as a transversal of AXYZ:

YA' XB" ZC L
XA' ' ZB" *YC ~ ~ ~(Menelaus s theorem) (1
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BA"C is also a transversal of AXYZ, so:

YB ZA" XC

XB YA" 7C —1 (Menelaus’s theorem) (1

Multiplying (1), (1I), and (IIl) gives us:

YC" XB" ZK' ZB' YA’ XC XA ZC YB

XC"'"ZB" " YA"'YB''XA''ZC 'ZA‘YC‘XB~ A (V)

Because points A, B, and C are collinear and points A', B, and C' are collinear,
we obtain the following two relationships by Menelaus’ theorem (when we
consider each line as a transversal of AXYZ):

ZB' YA' XC

YB'’XA'’ZC = )

Za 'YC'XB~ vh

Substituting (V) and (VI) into (IV), we get:

YC" XB" ZA" _

=
XC" ZB" YA"

Thus, by Menelaus’ theorem, points A", B", and C" are collinear. '

LINE

One of the great injustices in the history of mathematics involves a theorem
originally published by William Wallace (1768-1843) in Thomas Leybourn’s
Mathematical Repository (1799), which through careless misquotes has been
attributed to Robert Simson (1687-1768), a famous English interpreter of
Euclid’s Elements. (See pages 96-97 for more on Simson.) We will use the popu-
lar reference Simson's theorem throughout this book.

(Simson”s theorem) The feet of the perpendiculars drawn from any point
on the circumcircle of a triangle to the sides of the triangle are collinear.

NN N

A In Figure 3-21, point P is*on the circumcircle of AABC. PY J AC at point

YW PZ + AB at point Z, and PX = BC at point X. According to Simson’ (i.e.,
Wallaces) theorem, points X, Y, and Z are collinear. This line is usually referred
to as the Simson line (sometimes called the pedal line).

Although not necessarily the simplest proof of Simson’s theorem, for the
sake of consistency we will prove this theorem using Menelaus’s theorem.
We will provide a second method of proof to demonstrate this theorem’s
independence.
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O INTERACTIVE 3-21

Drag vertices A B, and Cto
change the shape of the triangle;
drag point Pon the circle and
watch the Simson line.

FIGURE 3-21

C~roof I (See Figure 3-21.) Draw PA, PB, and PC.

m/-PBA = p m AP

mZ-PCA = p m AP

Therefore mMAPBA = mAPCA = a Thus:

g =cota = %(( (in APZB and JIPYC)  or E—i = %{
This implies:
n_PZ
CY~ PY 0
Similarly, mZPAB = mZPCB = b (both are \mPB). Therefore:
%; =coth = %( (m AI%(AZ and APCX)  or %; = g—;((
This implies:
CX_X
AZ ~ PZ an

Because APBC and LPAC are opposite angles of an inscribed (cyclic)
quadrilateral, they are supplementary. However, APAZ is also supplementary to
LPAC. Therefore:

MAPBC = mAPAY =¢
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Thus:
BX AY . BX AY
_——= t = — _— = —
X cot¢ 1% (in APBX and APAY) or X PY
This implies:
AY PY
BX  PX (i)

By multiplying (I), (II), and (III), we obtain:

BZ CX AY _PZ PX PY |\ osidered direction)
Y AZ BX_PY Pz PX or — 1, had we considered direction
Thus, by Menelaus’s theorem, points X, Y, and Z are collinear. These three points

determine the Simson line of AABC with respect to point P. @

(See Figure 3-21.) Because ZPYA is supplementary to £ PZA, quadrilateral PZAY
is cyclic. Draw PA, PB, and PC. Therefore:

m/PYZ = m/PAZ I

Similarly, because £ PYC is supplementary to £PXC, quadrilateral PXCY is cyclic,
and therefore:

m/ PYX = m/PCB (11)

However, quadrilateral PACB is also cyclic because it is inscribed in the given
circumcircle, and therefore:

m/PAZ(m/PAB) = m/PCB (1)

From (I), (II), and (III), m£PYZ = m/ PYX, and thus points X, Y, and Z are
collinear. @

For other proofs of Simson’s theorem, see Challenging Problems in Geometry
by A. S. Posamentier and C. T. Salkind (New York: Dover, 1996), pages 43—45.

There are many simple applications of the Simson line. We will consider a
few of them.

— & >
Sides AB, BC, and CA of AABC are cut by a transversal at points Q, R, and S,
respectively. The circumcircles of AABC and ASCR intersect at point P. Prove
that quadrilateral APSQ is cyclic. @
— — D ) —
Draw perpendiculars PX, PY, PZ, and PW to AB, AC, QR, and BC , respec-
tively, as in Figure 3-22.

Because point P is on the circumcircle of AABC, points X, ¥, and W are
collinear (Simson’s theorem). Similarly, because point P is on the circumcircle of
ASCR, points Y, Z, and W are collinear. It then follows that points X, ¥, and Z
are collinear.

Thus point P must lie on the circumcircle of AAQS (the converse of Sim-
son’s theorem, whose proof we leave as an exercise). Therefore quadrilateral
APSQ is cyclic. @
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INTERACTIVE 3-22

Drag vertices A B, and C

to change the shape of the
triangle and note that APSQ is
always cyclic.

Opplir~tion 12

Qroof

| THEOREM 3.8

AB, BCy EC, and ED form triangles ABC, FBD, EFA, and EDC. Prove that the
four circumcircles of these triangles meet at a common point. ¢

Consider the circumcircles of AABC and AFBD, which meet at points B and R
From point P draw perpendiculars PX, PY, PZ, and PW to BC, AB, ED, and EC,
respectively (see Figure 3-23). Because point P is on the circumcircle of AABC,
points X, Y, and W are collinear. Therefore points X, Y, Z, and W are collinear.

Because points Y, Z, and W are collinear, point P must lie on the circumcir-
cle of AEFA (the converse of Simson’s theorem). By the same reasoning, because
points X, Z, and W are collinear, point P lies on the circumcircle of AEDC. Thus
all four circles pass through point R

The Simson line has many interesting properties; we present a few here.

(Simson line property 1) If the altitude AD of AABC meets the circum-
circle at point P, then the Simson line of P with respect to AABC is parallel to
the line tangent to the circle at point A.
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INTERACTIVE 3-23

Drag vertices A, B, C, D, and Eto
change the shape of the triangles
and see that the circles always
meet at a point.

Qroof Because PX and PZ are perpendicular, respectively, to sides AC and AB of AABC,
points Xy Dy and Z determine the Simson line of point P with respect to AABC.
Draw PB (see Figure 3-24). Consider quadrilateral PDBZy where mZPDB =
m/-PZB = 90°, thus making quadrilateral PDBZ a cyclic quadrilateral. In

quadrilateral PDBZ:
mZ-DZB = mZDPB 0)

O/ INTERACTIVE 3-24

Drag vertices A, B, and Cto
change the shape of the triangle
and see that the required lines
are parallel.

Because opposite angles are supplementary.
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| THEOREM 3.9

Qroof

INTERACTIVE 3-25

Drag vertices 4, B, and Cto
change the shape of the triangle;
drag point Pon the circle and
see that the products are equal.

However, in the circumcircle of AABC, mLGAB = \{mAB), and
mA-DPB(inZ.APB) = \{mAB). Therefore:
m/LGAB = m/LDPB (1

I/:\ron)\ () and (1), by transi/t\ivi}y, mADZB = mZ-GAB, and thus Simson line
XDZ is paraﬁLetho tangent GA .«

(Simson line property 1) From point P on the circumcircle of AABC, if
perpendiculars PX, py, and PZ are drawn to sides AC, AB , and BC, respec-
tively, then (PA)(PZ) = (PBY{PX) (see Figure 3-25).

Because mMAPYB = mAPZB = 90°, quadrilateral PYZB is odic"*" Therefore:

mZPBY = mZPZY 0)

90°, quadrilateral PXAY is cyclic, and:

Likewise, because mZPXA = mZPYA
mZPXY = mZPAY (1
Points X, Y, and Z are collinear (the Simson line). Therefore, from (1) and (11):

APAB- APXZ=" EA = EB or (PA){PZ) = {PB)}{PX)

FIGURE 3-25

A quadrilateral is cyclic (i.e., may be inscribed in a circle) if one side subtends congruent
angles at the two opposite vertices.
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| THEOREM 3.10 (Simson line property I11) The measure of the angle determined by the
Simson line of two given points on the circumcircle of a given triangle is equal
to one-half the measure of the arc determined by the two points.

Qroof In Figure 3-26, XYZ is the Simson line for point P and [/VW is the Simson line
for point Q. Extend PX and QW to meet the circle at points M and N, respec-
tively. Then draw AM and AN. Because mXPZB = mZPXB = 90°, quadrilateral
PZXB is cyclic, and:

MZZXP = mZZBP 0)
mZ-ABP = m/LAMP or mZZBP = mZAMP an

From (1) and (II), mZZXP = mZAMP. Therefore:
XYZ 1AM

In a similar fashion, it may be shown that fJVW | AN.

Hence, if T is the point of intersection of the two Simson lines, then
mZ-XTW = m Z "N because their corresponding sides are paral™ Now,
mZ-MAN = \{mMN),Jbut because PM | QN, weJ;ve mMN = mPQ and there-
fore mnZMAN = kmPQ). Thus mZXTW = UmPQ). ¢

INTERACTIVE 3-26

Drag vertices A, B, and Cto
change the shape of the triangle;
drag points Pand Qon the circle,

and the angle is one-half the
measure of the arc.

FIGURE 3-26

Here is an interesting application of Simson’s theorem to an earlier
dilemma. Recall the proof of the fallacy that all scalene triangles are isosceles
in Chapter 1 Perpendiculars were drawn from point G to AC, BC, and AB,
meeting these lines at points D, B and B, respectively. Because point G is on
the circumcircle of AABC, Simson s theorem establishes that points D, B, and
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F are collinear. The famous postulate by Moritz Pasch (1843-1930) states that
a straight line intersecting one side of a triangle (internally) must intersect
exactly one of the other two sides (internally) except if the line contains a
vertex of the triangle. Euclid had quietly assumed this idea. Yet with this pos-
tulate available to us, we are assured that the two critical perpendiculars can
neither both fall inside nor both fall outside the triangle, which enables us to
avoid the fallacious proof previously offered.

RADICAL AXES

Y INTERACTIVE 3-27

Drag points Q R, and P and
note the radical axis.

Earlier in this chapter, we stated Brianchon's theorem as the dual of Pascal’s theo-
rem. At that juncture we deferred the proof because we needed some more
knowledge about a radical axis. We will now establish some important properties
of radical axes and then use them to prove Brianchon’s theorem.

Consider two circles R and Q (see Figure 3-27) intersecting at points A and
B. P is any point on AB not between points A and B. PT and PS are tangents to
circles R and Q at points T and 5, respectively.
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From our study of elementary geometry, we know that PT is the mean pro-
portional between PB and PA. Therefore (PT)*> = (PB)(PA). Similarly, for circle
Q (PS)> = (PB)(PA). It then follows that PT = PS.

Because point P was selected as any e)((t_er)nal point on AB, we can
conclude that from any external point on AB, tangent segments to circles R
and Q are congruent. Before we can state this as a locus theorem, we must
prove that ar(l)point P that generates congruent tangents to circles R and Q
must lie on AB, e o

_S_gppose P is any point where tangent segments PT and PS are congruent.
Let PA intersect circle R at point B and circle Q at point B’. As before,
(PB)(PA) = (PT)” and (PB')(PA) = (PS)". Because PT = PS, PB = PB’.
Therefore B and B’ must coincide, and P lies on the common secant, PA, of
the two circles. We call the line consisting of points that are common end-
points of congruent tangent segments to two circles the radical axis of the
two circles.

We now state this result as our next theorem.

I THEOREM 3.11

The radical axis of two intersecting circles is their common secant.

It follows immediately that the radical axis of two tangent circles is their
common tangent. Before we can investigate the radical axis of two nonintersect-
ing circles, we need to consider the following theorem.

I THEOREM 3.12

Qroof

The locus of a point the difference of whose distances squared from two fixed
points is a constant is a line perpendicular to the segment determined by the two

fixed points.

Let R and Q be the fixed points and let P be a point on the locus (see
Figure 3-28). Draw PR and PQ. Construct PN L RQ. We use the Pythagorean

theorem to get:
(PR)> — (RN)?> = (PN)® and (PQ)*> — (QN)*> = (PN)’
Therefore:
(PR)? — (RN)? = (PQ)* — (QN)* or (PR)* — (PQ)* = (RN)* — (QN)* =
Let RQ = d. Then, by factoring the last equality, we have:
(RN + QN)(RN — QN) =k

d(RN — QN) =k

ey

N

RN — QN =
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-
R N Q

Remember that:

RN+ QN =4d 41))
Solving equations (I) and (II) simultaneously, we get:

A +k d*—k
RN = =
2 nd QN=—x

This fixes the position of point N.
Because d and k are constant for any given situation, point P must lie on the
line perpendicular to RQ at point N, which divides RQ in the ratio:

RN & +k
QN & -k

. . «—
We can conclude this locus proof by showing that any point on PN satisfies the
given conditions. This is left to the reader. @

Theorem 3.12 enables us to continue our study of radical axes. We must now
determine the radical axis of two nonintersecting circles. Our intuition would
probably predict the next theorem.

I THEOREM 3.13

Qroof

The radical axis of two nonintersecting circles is a line perpendicular to their line
of centers.

Begin by letting 7 and g be the radii of circles R and Q, respectively. Let P be a
point on the required locus, that is, so that tangent segments PT and PS are

congruent (see Figure 3-29).
By applying the Pythagorean theorem to APTR and APSQ, we get:

(PR)? — 12 = (PT)> and (PQ)* — q°> = (PS)’
But PT = PS; therefore:
(PR)> = r* = (PQ)* — q> or (PR}’ — (PQ’=1"~¢’
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FIGURE 3-29

Because the right-hand side of this equality is a constant, we can conclude (by
Theorem 3.12) that the locus of P is the line containing point P, which is per-

—
pendicular to the line of centers RQ. @

In a manner similar to that used in the previous proof, we can determine the
location of point N in terms of the radii and the distance between the centers. As
a direct consequence of Theorem 3.13, we have the following theorem.

I THEOREM 3.14

@roof

The radical axes of three given circles whose centers are not collinear are
concurrent.

o & «

Let us consider circles R, Q, and U whose radical axes are AB, CD, and EF (see
Figure 3-30). PN s PN

Let point P be the intersection of AB and CD. Using radical axis AB of
circles R and Q, we ha& P’I(: PS. l(Jii;]g radical axis CD of circles Q and U, we
have PV = PS. (Note: PT, PS, and PV are tangents to the given circles.)

Thus PT = PV, which indicates that point P must lie on the radical axis,
EF, of circles R and U. This proves that the radical axes are concurrent at
point P. @
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We are now ready to prove Brianchon’s theorem, which we discussed earlier
in the chapter (on page 58). The proof we will use is by A. S. Smogorzhevskii
(The Ruler in Geometrical Constructions, New York: Blaisdell Publishing Company,
1961, pp. 33-35).

I THEOREM 3.5

Qroof

(Brianchon’s theorem) If a hexagon is circumscribed about a circle, the
lines containing opposite vertices are concurrent.

As seen in Figure 3-31, the sides of hexagon ABCDEF are tangent to a circle 32}
points T, N, L, S, M, and K. Points K’, L', N’, M, §’, and T" are chosen on FA,
- — — — .

DC, BC, FE, DE, and BA, respectively, so that:

KK’ = LL" = NN' = MM’ = §§' =TT’

Now construct circle P tangent to E‘&) and IE:“) at points T” and §’, respec-
tively (the e_)u;)stence of this circle is easily justified). Similarly, construct circle Q
tangent to FA and DC at points K’ and L’, respectively. Then construct circle R
tangent to FE and BC at points M’ and N’, respectively.
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Because two tangent segments to a circle from an external point have the
same length, FM = FK. We already know that MM’ = KK’. Therefore, by
addition:

FM’ = FK’
Similarly:
CL=CN and LL = NN’
By subtraction:
CL" = CN’

We now notice that points F and C are each endpoints of a pair of congru-
ent t%ent segments to circles R and Q. Thus these points determine the radical
axis, CF, of circles R and Q. Using the same technique, we can easily show that
AD is the radical axis of circles P and Q and that BE is the radical axis of circles
Pand R.

We proved that the radical axes of three circles with n((m_c)olli_nfar cen(tigs
(taken in pairs) are concurrent (Theorem 3.14). Therefore CF, AD, and BE are
concurrent.

We should note that the only way in which these circles would have had
collinear centers is if the diagonals were to have coincided, which is impossible.

EXERCISES

1. Sides AB, BC, CD, and DA of quadrilateral ABCD are intersected by a

straight line at points K, L, M, and N, respectively. Prove that
BL AK DN CM _

IC KB NA MD

2. Side AB of square ABCD is extended to point P so that BP = 2(AB). With
M the midpoint of DC, BM intersects AC at point Q. Also, PQ intersects

— CR
BC at point R. Use Menelaus’s theorem to find the numerical value of RE

3. Points P and R are on sides AB and AC, respectively, of AABC so that
AP = AR. Prove that median AM partitions PR into segments proportional
to AB and AC.
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4. Prove that the tangents to the circumcircle of a triangle at its vertices inter-
sect the opposite sides in three collinear points.

5. (lﬁ_())ve that(_ig a line contains the centroid, G, of AABC and intersects sides
AB and AC at points M and N, respectively, then (AM)(NC) +
(AN)(MB) = (AM)(AN).

— —
6. A cir(%) is tangent to side BC of AABC at M, its midpoint, and intersects AB
and AC at points R, R’ and §, ', respectively. If RS and R'S’ are each extended

to meet BC at points P and P’, respectively, prove that (BP)(BP’) = (CP)(CP’)
(see Figure 3-32).

7. In AABC, P, &) a(ril) R arsLh)e midpoints of sides /ﬁ, R‘,and, AC
respectively. AN, BL,and CM are cc(gcurrent, meeting the op&s)ite sides at
points N, L, am(i_]\)/l, respe(ct_i\)/ely. If PL meets BC at point J, MQ meets AC

at point I, and RN meets AB at point H, prove that points H, I, and J are
collinear (see Figure 3-33).
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Prove that the three pairs of common external tangents to three circles (no
two of which are equal or concentric), taken two at a time, intersect in three
collinear points.

Prove that the perpendicular bisectors of the interior angle bisectors of any
triangle meet the sides opposite the angles being bisected in three collinear
points.

Provide a proof for Application 6, using Menelaus’s theorem.

How can Brianchon’s theorem be used to prove the existence of the
Gergonne point of a triangle?

Compare Pappus’s theorem to Pascal’s theorem.

State and prove the converse of Desargues’s theorem.

State and prove the converse of Simson’s theorem.

In Figure 3-34, AABC, with right angle at A, is inscribed in circle O. The

Simson line of point P with respect to AABC meets PA at point M. Prove
that MO is perpendicular to PA at point M.

From a point P on the circumference of circle O, three chords are drawn
meeting the circle at points A, B, and C. Prove that the three points of
intersection of the three circles with PA, PB, and PC as diameters are
collinear.
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17. If two triangles are inscribed in the same circle, a single point on the cir-
cumcircle determines a Simson line for each triangle. Prove that the angle
formed by these two Simson lines is constant, regardless of the position of
the point.

18. Prove that the common tangent segments (if they exist) of two given circles
are bisected by their radical axis.

19. Prove that the radical axis of the two circles whose diameters are the diago-
nals of a trapezoid contains the point of intersection of the nonparallel sides
of the trapezoid.

20. Prove that the four points determined by the intersections of two secants
drawn from a point on the radical axis of two circles with the two circles lie
on a third circle.
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Suppose that you and one of your friends are planning to set up a special remote
computer server to store the data from your computers and that at your school.
The three locations determine a triangle with no angle greater than 120°. Using
a map of your town (see Figure 4.0), you seek a location for this computer that
makes the sum of the distances from the computer to each of your houses a
minimum. We will call this point the “minimum distance point.” How would you
find this point?

In this chapter, we will develop some theorems that will enable us to solve
this problem. Along the way, we will encounter a number of interesting theorems
that highlight some fascinating properties of triangles.
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EQUIANGULAR POINT

INTERACTIVE 4-1

Drag points A B, and Cto
change the shape of the triangle
and see that O remains the
equiangular point.

79

Consider any convenient triangle. How would you locate the point in the triangle

at which congruent angles are formed by drawing rays from this point to the

vertices?

Let us set out to locate this
point (see Figure 4-1). We will first
find a point that has another inter-
esting property. Begin by construct-
ing an equilateral triangle externally
on each side of the given triangle.
Draw segments joining each vertex
of the given triangle with the
remote vertex of the equilateral
triangle on the opposite side (see
Figure 4-2). Theorem 4.1 presents
an astonishing property of these
three line segments. After proving
this property, we will return to our
original problem.

FIGURE 4-2

A

| THEOREM 4.1 The segments joining each vertex of a given triangle with the remote vertex of the

equilateral triangle (drawn externally on the opposite side of the given triangle)

are congruent.



80 ADVANCED EUCLIDEAN GEOMETRY

@Ilan of Proof

Qroof

Prove DB = AE and AE = CF, by first proving ADCB = A ACE and then proving
AEBA = ACBF. @

Because m/ DCA = m/ECB = 60°, m£.DCB = m/ACE (by addition).

Also, because we have equilateral triangles, DC = AC and CB = CE. Therefore
ADCB = AACE (SAS) and DB = AE. In a similar manner, we can prove
that AEBA = ACBF. This enables us to conclude that AE = CF. Thus
DB=AE=CF. @

From the diagram in Figure 4-2, it appears that ﬁ, E, and CF are concur-
rent. This observation gives us our next theorem.

I THEOREM 4.2

@ lan of Proof

Q@ roof

The segments joining each vertex of a given triangle with the remote vertex of
the equilateral triangle drawn externally on the opposite side of the given trian-
gle are concurrent. (This point is called the Fermat point* of the triangle.)

Construct the circumcircle of each of the three equilateral triangles. Then
show that the three circles are concurrent at point O. The six segments from
point O to points A, B, C, D, E, and F will determine the three concurrent
lines. @

Consider the circumcircles of the three equilateral triangles ACD, ABF, and BCE.
Let K, L, and M be the centers of these circles (see Figure 4-3).

Circles K and L meet at points O and A. Because mADC = 240° and
because we know that mZAOC = %(mADC ), m£AOC = 120°. Similarly,

m/ AOB = %(m AFB) = 120°. Therefore m/.COB = 120° (because a complete
revolution = 360°).

Because m CEB = 240°, /. COB is an inscribed angle and point O must lie on
circle M. Therefore we see that the three circles are concurrent, intersecting at
point O.

Now join point O with pomA, B,C,D, E and FE m(L_D)OA = m/AOF =
m/FOB = 60°, and therefore DOB. Similarly, COF and AOE. Thus it has been
proved that DB, AE, and CF are concurrent, intersecting at point O (which is
also the point of intersection of circles K, L, and M). @

Can you now determine the point in AABC at which the three sides subtend
(i.e., determine by being opposite) congruent angles? The point O is called the
equiangular point of AABC because m/ AOB = m/£AOC = m£BOC = 120°. We
will be referring to this point again later in the chapter.

Before continuing with our search for the equiangular point, let us take
advantage of another interesting property. Sources indicate that the following
theorem was developed by Napoleon Bonaparte, who took pride in his mathe-
matical talents. Thus the resulting equilateral triangle is often called the Napoleon
triangle.

* Named after French mathematician Pierre de Fermat (1601—-1665).
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I THEOREM 4.3

@Ilan of Proof

@roof

The circumcenters of the three equilateral triangles drawn externally on the sides
of a given triangle determine an equilateral triangle.

Prove that the sides of AKLM are proportional to AE, BD, and CF. (We have
previously proved that DB = AE = CF.) @

Consider ADAC (see Figure 4-3). Because K is the centroid (the point of inter-
section of the medians) of ADAC, AK is two-thirds the length of the altitude
(or median). Using the relationships in a 30-60-90 triangle, we find that
AC:AK = V31, Similarly, in equilateral triangle AFB, AF:AL = V/3:1. Therefore
AC:AK = AFAL.

Because m/ KAC = m/LAF = 30°, m£CAL = m/ CAL (reflexive), and
m/ KAL = m/ CAF (addition), we have AKAL ~ ACAF. Thus CF:KL =
CA:AK = V31

Similarly, we can prove that DB:KM = V/3:1 and AE:ML = V/3:1. Therefore
DB:KM = AE:ML = CF:KL. But because DB = AE = CF, as proved earlier, we
obtain KM = ML = KL. Therefore AKML is equilateral. @
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A PROPERTY OF EQUILATERAL TRIANGLES

| THEOREM 4.4

C~roof |

INTERACTIVE 4-4

Drag point P and see that the
sum of the distances to the
sides is constant.

We need to develop one more surprising fact about equilateral triangles before
we consider our initial problem involving the remote computer server.

Draw a large equilateral triangle. Choose any convenient point in the interior
region of this triangle. Now measure the distances from this point to the three
sides and record the sum of these distances. (This can be done either on paper or
on The Geometer s Sketchpad®.)

Repeat this procedure for any other point in the interior region of this trian-
gle. How do the two sums compare? Now measure the length of the altitude of the
triangle. How do the two sums compare to the length of the altitude of the equilat-
eral triangle? The answers to these questions suggest the following theorem.

The sum of the distances from any point in the interior of an equilateral triangle
to the sides of the triangle is constant (the length of the altitude of the triangle).

We provide two proofs of this interesting property here. The first compares
the length of each perpendicular segment to a portion of the altitude, and the
second involves area comparisons.

In equilateral triangle ABQ PR 1 AC, PQ 1 BQ PS 1 AB, and AD 1 BC. Draw
a line through point P parallel to BC, meeting AD, AB, and AC at points G, B,
and Fy respectively (see Figure 4-4). .

Because quadrilateral PGDQ is a rectangle, PQ = CD. Draw ET 1 AC.
Because AAEF is equilateral, AG = ET (~the altitudes of an equilateral triangle
are congruent). Draw PH\\ AC, meeting ET at point N. NT = PR. Because
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AEHP is equilateral, altitudes PSand EN are congruent. Therefore we have
shown that PS PR = ET = AG. Because PQ = GD:

PS+ PR PQ = AG + GD = AD (a constant for the given triangle) '

A

Aroof Il Inequilateral triangle ABC, PR T AC, PQ + BC,PS 1 AB, and AD 1 BC. Draw
PA, PB, and PC (see Figure 4-5).

area AABC = area AAPB + area ABPC + area ACPA
= MAB){PS) + jiBQiPQ) + MAC){PR)

Because AB = BC = AC, area AABC = \ {BC)[PS + PQ + PR]. However, area
AABC = | (PC)(AD). Therefore:

PS + PQ + PP = AD (a constant for the given triangle) ¢

A MINIMUM DISTANCE POINT

Before we tackle our original problem of finding the minimum distance point of
a triangle, let us consider a quadrilateral. For which point in a quadrilateral do
you think the sum of the distances to the vertices would be less than that for any
other point (i.e., a minimum sum)? Your first guess was probably correct—the
point of intersection of the diagonals, which we call the minimum distance point
of a quadrilateral. Now let us verify this guess.

To prove that among the interior points of a quadrilateral the diagonal-
intersection point has the smallest sum of distances to the vertices, we simply
choose any other interior point and compare its sum of distances to the vertices
to that of the diagonal-intersection point.
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INTERACTIVE 4-6

Drag points A, B, C, D, and P and
see that we have a minimum
distance point.

| THEOREM 45

Consider quadrilateral ABCD with diagonals AC and BD intersecting at point
Q Select any point P (not at Q) in the interior of quadrilateral ABCD (see Figure
4-6). PA + PC> QA + QC (because the sum of the lengths of two sides of a
triangle is greater than the length of the third). Similarly, PB + PD > QB  QD, By
addition, PA PB PC+PD> QA QB QC + QD, which shows that the
sum of the distances from the point of intersection of the diagonals of a quadrilat-
eral to the vertices is less than the sum of the distances from any other interior point
of the quadrilateral to the vertices. This allows us to state the following theorem.

The minimum distance point of a quadrilateral is the point of intersection of the
diagonals.

It is quite natural to wonder where the minimum distance point of a triangle
would be. This is precisely the problem posed at the beginning of this chapter. As
you ponder this problem, you are probably seeking a symmetric point in a given
triangle. Perhaps you consider the equiangular point, certainly a point that offers
some symmetry. Let us build on this guess.

Consider AABC with no angle measuring greater than 120°. Let M be the
point in the interior of AABC, where mMAAMB = mABMC = mAAMC = 120°
(see Figure 4-7). Draw lines through A, B, and C that are perpendicular to
AM, BM, and CM, respectively. These lines meet to form equilateral triangle POR,
(To prove that APQR is equilateral, notice that each angle has measure 60°.

This can be shown by considering, for example, quadrilateral AMBR, Because
MARAM = mARBM = 90° and mAAMB = 120 it follows that
mAARB = 60°)

Let D be any other point in the interior of AABC. We must show that
the sum of the distances from point M to the vertices is less than the sum of
the distances from point D to the vertices. From Theorem 4.4, we know that
MA + MB + MC = DE + DF + DC (where DB, DB, and DC are the perpendic-
ulars to BBQ, RBPy and QGP, respectively). But DE + DF + DC < DA + DB +
DC. (The shortest distance from an external point to a line is the length of the
perpendicular segment from the point to the line.) By substitution:

MA-\- MB MC < DA @®DB + DC



INTERACTIVE 4-7

Drag points A, B, C, and D and
see that we have a minimum
distance point.

| THEOREM 4.6
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FIGURE 4-7

You may wonder why we chose to restrict our discussion to triangles with
angles of measure less than 120°. If you try to construct the point M in a triangle
with one angle of measure of 150° the reason for our restriction will become
obvious.

The minimum distance point of a triangle (with no angle of measure greater than
120°) is the equiangular point (i.e., the point at which the sides of the triangle
subtend congruent angles).

We are now prepared to solve the original problem involving the best
location of the remote computer (i.e., the location where the sum of the
distances to the three houses is a minimum). After drawing a triangle on the map
(with the three houses as vertices), you would construct the minimum distance
point by constructing the equiangular point (which is also the minimum distance
point) in the manner described for Theorem 4.1.
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10.

EXERCISES

Find the sum of the lengths of the three perpendicular segments from any
point in an equilateral triangle to each of the sides, each of which has length 10.

Locate by construction the point in a given acute triangle that has the least
sum of distances to the vertices.

Explain why the 120° restriction is placed on Theorem 4.6.

If one angle of a triangle has measure greater than or equal to 120°, prove
that the vertex of this angle is the minimum distance point of the triangle.

If squares are constructed externally on the sides of a triangle, prove that the
line containing the centers of any two of these squares is perpendicular to
the line containing the common vertex of these two squares and the center
of the third square.

Prove that of all triangles with a given perimeter, the one with the greatest
area is the equilateral triangle.

Prove that of all triangles with a given area, the one with the least perimeter
is the equilateral triangle.

Prove that if similar triangles are erected externally on the sides of any trian-
gle, the triangle formed by the circumcenters of the three similar triangles
determines a triangle similar to the three triangles.

Prove Theorem 4.3 for the case in which the three equilateral triangles are
drawn internally. (This is called the internal Napoleon triangle, whereas the
triangle for Theorem 4.3 is called the external Napoleon triangle.)

Prove that the external Napoleon triangle and the internal Napoleon triangle
have the same center and that their areas differ by the area of the original
triangle.
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INTRODUCTION

It is generally accepted (especially by high school geometry students) that the
study of triangle properties forms the foundation for the study of synthetic
geometry. After completing the high school geometry course, students tend to
feel that they know all there is to know about triangles. Having reached this
point in the book, you can clearly see that this is not so. However, you may still
feel that within the realm of “elementary geometry” your knowledge about trian-
gles is complete. This may very well be the case. Read on and see how some
seemingly innocent properties of triangles are, in fact, not so trivial after all.

ANGLE BISECTORS

| THEOREM 5.1

Early in their studies, all high school geometry students learn that the angle bisec-
tors of the base angles of an isosceles triangle are congruent. This is rather easily
proved. Yet the converse of this statement is conspicuously omitted. It, too, is a
valid theorem but is quite difficult to prove.

If two angle bisectors of a triangle are congruent, then the triangle is isosceles.

The proof of this theorem is regarded as one of
the most difficult in elementary geometry. For this
reason, we provide a number of different proofs of
this theorem here. Each is instructional and merits
special attention. We first restate the theorem for
AABC.

GIVEN: AE and BD are angle bisectors of AABC.
AE = BD (see Figure 5-1).

PROVE: AABC is isosceles.
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@roof I Draw £ DBF = £ AEB so that BF = BE. Then draw DF (see Figure 5-2). Also
draw FG L ACand AH | FBatH.
Because by hypothesis AE = DB, FB = EB, and /8 = /7, it follows that
AAEB = ADBF (SAS), so DF = ABand mZ1 = m/4.

mix = ms2 + ml3 (exterior angle of a triangle)
m/x = m/1 + ms3 (substitution)
m/x = m/4 + m/3 (substitution)
mix = ms7 + m/6 (exterior angle of a triangle)
msx =m/7 + m/5 (substitution)
mix = m/8 + m/5 (substitution)

Therefore:
mi4 + msL3 = mL8 + mL5 (transitivity)
Thus:
miz = mdly

Right triangle FDG = right triangle ABH (SAA), DG = BH, and FG = AH.
Right triangle AFG = right triangle FAH (HL), and AG = FH.
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@ roof II (indirect)

Therefore quadrilateral GFHA is a parallelogram. Also, m£9 = m/10 (from
AABH and AFDG).

m/ DAB = m/DFB (subtraction)
m/.DFB = m/ EBA (from ADBF and AAEB)

Therefore m£ DAB = m/EBA (by transitivity), and AABC is isosceles. @

Assume AABC is not isosceles. Let m£ ABC > m/ ACB (see Figure 5-3). By
hypothesis, BF = CE. BC = BC and CF > BE.* Through point F, construct GF
parallel to EB. Through point E, construct GE parallel to BF. Therefore quadrilat-
eral BFGE is a parallelogram, BF = EG, EG = CE, and AGEC is isosceles.

ms(g+g')=msL(c+ ') and msLg= msb
Thus:
ms(b+ g')=msL(c+ (')
Because mZb > m/.c (by hypothesis):
msg < msc

In AGFC, we have CF < GF. But GF = BE. Thus CF < BE. The assumption of
the inequality of m£ ABC and m/ ACB leads to two contradictory results:

CF<BE and CF > BE

Therefore AABC is isosceles. @

* If two triangles have two pairs of corresponding sides congruent and their included
angles are not congruent, then the greater third side is opposite the greater included angle.
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Ql‘oof III (indirect) In AABC (see Figure 5-4), the bisectors of angles ABC and ACB have equal

@roof IV (indirect)

lengths (i.e., BE = DC).

Assume that mZABC < m/ ACB. We then draw £FCD congruent to ZABE.
Note that we may take point F between vertices B and A without loss of general-
ity. In AFBC, FB > FC. (If the measures of two angles of a triangle are not
equal, then the measures of the sides opposite these angles are also unequal, the
side with the greater measure being opposite the angle with the greater measure.)
Choose a point G so that BG = FC. Then draw GH || FC.

Therefore £ BGH = £/ BFC (corresponding angles) and ABGH = ACFD
(ASA). It follows that BH = DC. Because BH < BE, this contradicts the hypothe-
sis that the lengths of the angle bisectors DC and BE are equal. A similar argu-
ment will show that it is impossible to have mZ ACB < m/ABC.

It then follows that mZ ACB = m/ ABC and that AABC is isosceles. @

In AABC, assume m/B > m/C. BE and DC are the bisectors of 2B and 2C,
respectively, and BE = DC. A
Draw BH || DC and CH | DB; then draw EH,
as in Figure 5-5. Quadrilateral DCHB is a paral-
lelogram. Therefore BH = DC = BE, making
ABHE isosceles. Thus:

m/BEH = m/BHE (I
D E
From our assumption that m£B > m/.C:
m/.CBE > m/BCD and CE > DB
Because CH = DB, we have CE > CH, which BK \ C
leads to: S -
N [
m/.CHE > m/CEH (I S v/
> ~ W/
In ACEH, by adding (I) and (II), m£BHC > Sy
m/ BEC. Because quadrilateral DCHB is a H

parallelogram, mZBHC = m/BDC. m
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| THEOREM 5.2

C” roof

O INTERACTIVE 5-6

Drag A B, and Cto change the
shape of the triangle and see that
the larger angle always has the
shorter bisector.

Thus, by substitution:

mABDC > mABEC
In ADBI and AECI:

mADIB = mAEIC
Because mMABDC > mABEC:

mADBI < mAECI

By doubling this inequality, we get mAB < mAC, thereby contradicting the
assumption that mAB > mAC. A similar argument starting with the assumption
that mAB < mAC also leads to a contradiction. Thus we must conclude that
mAB = mAC and that AABC is isosceles. ¢

The following theorem is a direct consequence of Theorem 5.1.

In a triangle, if two angles have unequal measures, the angle of greater measure
has the shorter angle bisector.

In Figure 5-6, AABC has mAABC > mAACB. BN and CK are the angle bisec-
tors of AABC and AACBY respectively, and intersect at point I. Draw BD so that
mADBN = mAACK. (Note: BD intersects CK at E.)

BD BN
ADBN ~ ADCE (AA), which yields az T Because mMAABC > mAACB:

1 1
—ZmAABC >2— mMAACB or mANBC > mABCK

By construction, mMADBN = mAACK. Therefore, by addition, mMADBC > mADCB.
In ADBCy BD < CD. From the above proportion we get BN < CE. There-
fore BN < CKy our desired result. ¢



| THEOREM 5.3

ol*o0f

INTERACTIVE 5-7

Drag A B, and CX0 change the
shape of the triangle and see that
the formula is true.
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We have already established the various concurrency relationships involving
angle bisectors (see Chapter 2). We now turn our attention to the measure of the
angle formed by two interior angle bisectors of a triangle.

The measure of the angle formed by two interior angle bisectors of a triangle
equals the sum of the measure of a right angle and one-half the measure of the
third angle of the triangle.

In Figure 5-7, the angle bisectors BN and CM intersect at point I.

A

Consider ABIC:
mABIC = 180° - mAIBC - mAICB

Then:

mABIC = 180° - ~{mAABC) - "{mAACB)

Because mMAABC + mAACB = 180° —mAAy it follows that:
MmMAABC) + Nim/LACB) = 90 - ~{mAA)
By substitution:
tnABIC = 180 - [90 - —Z{mAA)] or mABIC = 90“ + -2{rtiAA) .

The natural extension of Theorem 5.3 involves exterior angle bisectors and is
stated as Theorem 5.4.



94 ADVANCED EUCLIDEAN GEOMETRY

INTERACTIVE 5-8

Drag A, B, and Cto change the
shape of the triangle and see that
the formula is true.

| THEOREM 5.4  The measure of the angle formed by two exterior angle bisectors of a triangle
equals the measure of a right angle minus one-half the measure of the third angle
of the triangle.

Qroof Figure 5-8 shows AABC with exterior angle bisectors BJ and C/.
1
mABJC = 180° - (mAEBC) imAFCB)

= 180° - A (180° - MAABC) - " (180° - MAACB)

180° - 90° + A (MAABC) - 90° H” {mAACB)

= —{m/LABC + mZ-ACB)

-(180° - mAA)

MABJC = 90° - i {mAA)

Our continuing study of angle bisectors now leads us to an investigation of
the length of an angle bisector of a triangle. Specifically, we seek to find an

expression relating the length of an angle bisector to the lengths of the sides (or
their parts) of the triangle. This relationship is stated as Theorem 5.5.
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| THEOREM 55 In any triangle, the square of the length of the interior bisector of any angle is
equal to the product of the lengths of the sides forming the bisected angle
decreased by the product of the lengths of the segments of the side to which this
bisector is drawn.

INTERACTIVE 59

Drag A B, and Cto change the
shape of the triangle and see that
the formula is true.

Qroof In Figure 5-9, AD (also labeled t) is the bisector of ¢.BAC. Extend AD beyond
point D to meet the circumcircle of AABC at point E Then draw BE.
Because mMABAD = mACAD and m/-E = mAC (both angles are inscribed in
the same arc):

AABE - AADCm AD~ AB

Therefore:

(AQIAB) = {AD)(AE) = {AD)(AD + DE) = (AD)* + {ADXDE) (I)
However:

{AD){DE) = (BD)}{DC) ()]
Substituting (11) into (1), we obtain:
(AD)™ = {AC)Y{AB) - {BD){DC)
Using the letter designations in Figure 5-9, we have:
=ch—mn%

The following application illustrates the use of Theorem 5.5.
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Application 1 The two shorter sides of a triangle measure 9 and 18. If the interior angle

Ablution

bisector drawn to the longest side measures 8, find the measure of the longest
side of the triangle. ¢

Let AB = 9, AC =18, and the angle bisector AD = 8 (see Figure 5-10).

Because BD —AIB— - we canll\et BD = m =xsothat DC = n =
DC AC 2 B S

From Theorem 5.5, we know:
ti=cb- mn or (ADf = {AC}{AB) - (BD){DC)
Therefore:
@™ =(18)9 - 2 and x =7
Thus:
BC=3&=219

Suppose AD in Application 1 were not an angle bisector but rather just a
nonspecific Cevian (i.e., a line segment joining a point on the side of a triangle
with the opposite vertex). How would you then solve the problem? Would more

information be necessary? Read on, and the answers to these questions will
become apparent.

STEWART'S THEOREM

INTERACTIVE 511

Drag A, B, and Cto change the
shape of the triangle and move
point D and see that Stewart's

theorem holds.

Essentially our problem is to find the length of “any” Cevian, a segment that has
one endpoint on a vertex of a given triangle and the other endpoint on the_
opposite side. That is, if for AABC (Figure 5-11) we know the lengths of AC, BC,
AD, and BD, our problem is to find the length of CD.

This problem was first solved by the famous Scottish geometer Robert Simson,
who presented it in lectures but allowed his notes to be used by his prize student,
Matthew Stewart, in his famous publication General Theorems of Considerable Use
in the Higher Parts of Mathematics (Edinburgh, 1746). Simsons generosity was
motivated by his desire to see q
Stewart obtain the chair of mathe-
matics at the University of
Edinburgh. He was successful. It is
interesting to note how Simson
was credited with a theorem he
did not know (Theorem 3.7) yet
was not credited with a theorem
that he deserved to have credited
to him (Theorem 5.6). We will
refer to Theorem 5.6 by the author
(Stewart) of the book in which it
appeared.
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In fact, Simson deserves particular note for his definitive book The Elements
of Euclid (Glasgow, 1756), which for over 150 years was published by other pub-
lishers as well. This book is the basis for all subsequent study of Euclid’s Elements,
including the high school geometry courses taught in the United States today.

We will first state Stewart’s theorem, then prove it and provide some
applications.

I THEOREM 5.6

Q@roof

(Stewart’s theorem) Using the letter designation in Figure 5-11, the
following relationship holds: a*n + b’m = c(d*> + mn).

In AABC, let BC = a, AC = b, AB = ¢, and CD = d. Point D divides AB into
two segments: BD = m and DA = n. Draw altitude CE = h and let ED = p.

In order to proceed with the proof of Stewart’s theorem, we must first derive
two formulas. The first is applicable to ACBD. We apply the Pythagorean theo-
rem to ACEB to obtain (CB)? = (CE)* + (BE)>. Because BE = m — p:

a=h+(m- p)2 )
By applying the Pythagorean theorem to ACED, we have:
(CD)* = (CE)* + (ED)* or W =d* —p’
Substituting for h? in equation (I), we obtain:
ad=d - p*+ (m—p)
=& -p +m —2mp + p
= +m* - 2mp 1)

A similar argument is applicable to ACDA. Applying the Pythagorean theorem to
ACEA, we find that (CA)*> = (CE)* + (EA)> Because EA = (n + p):

b* = h + (n + p) (111)
However, h* = d* — p’, so we substitute for h* in equation (III) as follows:

B =d—-p°+ (n+p)
=& -p+n*+2mp+p°
bV =d*+ n* + 2np (Iv)

Equations (II) and (IV) give us the formulas we need. Multiply equation (II) by
n to get:

a’n = d*n + m’n — 2mnp V)
Now multiply equation (IV) by m to get:

b*m = d*m + n’m + 2mnp (VD)
Adding (V) and (VI), we have:

an + b’m = d°n + &®m + m’n + n’m + 2mnp — 2mnp
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@pplication 2

© olution

@pplication 3

Q@roof

Therefore a’n + b*m = d*(n + m) + mn(m + n). Because m + n = ¢, we have:
a’n + b*m = d*c + mnc or a*n+ b*m = o(d® + mn)
This is the relationship we set out to develop. @

Stewart’s theorem can be applied to a variety of situations, some of which we
offer here.

In an isosceles triangle with two congruent sides that measure 17, a line measur-
ing 16 is drawn from the vertex to the base. If one segment of the base, as cut by
this line, exceeds the other by 8, find the lengths of the two segments. @

In Figure 5-12, AB = AC = 17 and AD = 16. Let BD = x; therefore DC = x + 8.
By Stewart’s theorem,

(AB)*(DC) + (AC)X(BD) = BC[(AD)? + (BD)(DC)]
Therefore:
(17)%(x + 8) + (17)%(x) = (2x + 8)[(16)®> + x(x + 8)] and x = 3

Therefore BD = 3 and DC = 11. @

Prove that in a right triangle the sum of the squares of the distances from the
vertex of the right angle to the trisection points along the hypotenuse is equal to
five-ninths the square of the measure of the hypotenuse. @

Applying Stewart’s theorem to Figure 5-13, using p as the internal line segment,
we find that:

2a°n + b’n = o(p* + 2n%) I
Using q as the internal line segment:

a’n + 2b°n = o«(q* + 2n%) (Im




@pplication 4

Qroof
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Adding (I) and (II), we get:
3a°n + 3b°n = c(4n® + p* + q°)
Because a° + b> = c*:
3n(c®) = c(4n®* + p* + ¢°)
Because 3n = ¢

A =0n)+p+ 4

2
But 2n = gc; therefore:

2V s
p2+q2=c2—(—c) =§cz.

9

To illustrate the power of Stewart’s theorem, we offer another proof of Theorem 5.1.*

This straightforward method takes this “elementary” theorem and places it (tem-

porarily) at a more advanced point in the development of Euclidean geometry. @

Let BE and CD be angle bisectors in AABC, with BE = CD = x (Figure 5-14).

We need to show that b = c. An angle bisector divides the side it is drawn to
into segments of lengths proportional to the two other sides of the triangle.
Thus:

ac be bc ab
BD = AD = AE = CE =
a+b a+b a+c a+tc

* This proof was contributed by Jan Siwanowicz.
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Applying Stewart’s theorem twice to AAEC, we obtain:

be ab W be ab
fcU" +
a+c fl+c a+te ate
be ae be ae
+ t =e +
a b a+b a+b a+b

Solving for  we obtain:

X2:ae- ___ql_)_/\_e_:ab'_ am/\

Thus:

e+ '\’\be/—\'lTo—ﬁ:+
ia + b) {a+er

This may be expressed simply as:

be =b\ +

cl +
{a + by {a + eY

If > c because a, b, ¢ > 0 we have:

be < 1+ be
(fl + by {a+ ey

Thus equality (1) does not hold.

If < c we have:

be be

1+
{a + by > 1+ {a+ eY

Again equality (1) does not hold.

Thus b = ¢, which completes the proof.

MI QUEL'S THEOREM

You might want to try this experiment. Draw any convenient triangle and select a
point on each side. Now construct three circles, each containing two of these points
and the vertex determined by the two sides on which these points lie. Although you
can do this on paper with the aid of a pair of compasses, it is particularly nice to
do this with The Geometer’s Sketchpad. What relationship do you notice about
these three circles? Your observation should lead you to a theorem published by

A Miquel in 1838. We will state this theorem as follows.



| THEOREM 5.7

INTERACTIVE 5-15

Drag A B and CtO change the
shape of the triangle and D, E,
and Fon the sides and see that
the circles share a common point.

Qroof
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(Miquel’ theorem) If a point is selected on each side of a triangle, then
the circles determined by each vertex and the points on the adjacent sides pass
through a common point.

This theorem can be viewed in two ways. The expected form is shown in
Figure 5-15. However, when two of the selected points are on the extensions of
the sides, the theorem still holds. This form is shown in Figure 5-16.

Case | Consider the problem when point M is inside AABQ as shown in Figure
5-17. Points D, E, and F are any points on sides AC, BC, and A5, respectively, of
AABC. Let circles Q and Ry determined by A
points FyBy E and D, C, £, respectively,
meet at point M. Draw FM, M£, and MD.

In cyclic quadrilateral BFME:

mAFME = 180° - mAB
Similarly, in cyclic quadrilateral CDME:

mADME = 180° - mAC
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By addition:
m/ FME + m/DME = 360° — (m/B + m/C)
Therefore:

m/FMD = m/B + m/C
However, in AABC:

msB + msC = 180° — mLA

Therefore m/ FMD = 180° — m/A and quadrilateral AFMD is cyclic. Thus
point M lies on all three circles. @

Case II Figure 5-18 illustrates the problem when point M is outside AABC.
Again let circles Q and R meet at point M. Because quadrilateral BEME is cyclic:

m/FME = 180° — m/B

Similarly, because quadrilateral CDME is cyclic:

m/ DME = 180° — m/DCE




Chapter 5 MORE TRIANGLE PROPERTIES 103

By subtraction:
m/FMD = m/ FME — m{DME = m/DCE — m/B 0))
However:
m/ DCE = m/BAC + m/B (11)
By substituting (II) into (I), we get:
m/FMD = m/BAC = 180° — mLFAD

Therefore quadrilateral ADMF is also cyclic, and point M lies on all three
circles. @

Point M is called the Miquel point of AABC. The points F, D, and E deter-
mine the Miquel triangle, AFDE. Miquel’s theorem opens the door to a variety of
additional theorems. We present some of them here.

I THEOREM 5.8

Qroof

The segments joining the Miquel point of a triangle to the vertices of the Miquel
triangle form congruent angles with the respective sides of the original triangle.

Because quadrilateral AFMD is cyclic (see Figures 5-17 and 5-18), ZAFM is sup-
plementary to ZADM. But LADM is supplementary to ZCDM. Therefore
LAFM = £ CDM, whereupon it follows that ZBFM = / ADM. To complete the
proof, merely apply the same argument to cyclic quadrilateral CODME. @

We say that a triangle is inscribed in a second triangle if each of the vertices
of the first triangle lies on the sides of the second triangle. Thus we state the
following theorem.

I THEOREM 5.9

Qroof

Two triangles inscribed in the same triangle and having a common Miquel point
are similar.

Consider ADEF and AD'E'F', which have the same Miquel point M (see
Figure 5-19). From Theorem 5.8, we find that:

LMFB = £ MDA
LMFA = LMD'C

Therefore AMFF ~ AMD'D. Similarly, AMD'D ~ AME'E. Thus:

/FMF' = /DMD' = /EMF'
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By addition:

LFMD' = £LFMD
LF'ME' = (FME
LE'MD' = LEMD

Also, as a result of the above similar triangles:
MF _MD ME
MF  MD' MF
Because two triangles are similar if two pairs of corresponding sides are

proportional and the included angles are congruent, we get:

AF'MD ~ AFMD
AFME' ~ AFME
AE'MD' ~ AEMD

Therefore:
FD'_FM . FE_FM_ FD'_FE
m M ™ TFE FM T FD  FE
Similarly:
ED'_FE'
ED FE

This proves that ADEF ~ AD'E'F' because the corresponding sides are
proportional. @
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I THEOREM 5.10 The centers of Miquel circles of a given triangle determine a triangle similar to
the given triangle.

Qroof Draw common chords F—M, EM, and DM. PQ meets circle Q at point N, and RQ
meets circle Q at point L (see Figure 5-20).
Because the line of centers of two circles is the perpendicular bisector of
their common chord, PQ is the perpendicular bisector of FM, so mEN = mNM.
Similarly, QR bisects EM, so mML = mLE.
Now:

—— — 1 — 1 —
m/NQL = (mNM + mML) = E(mFE) and m/FBE = E(mFE)

Therefore:
m/NQL = m/FBE

In a similar fashion, it may be proved that mZ QPR = m/BAC. Thus
APQR ~ AABC. @

Before completing this introductory study of Miquel’s theorem, you will find
it interesting to apply the theorem to an equilateral triangle as well as to special
right triangles. Are there any new conclusions to be drawn?
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MEDIANS

| THEOREM 5.11

Qroof

INTERACTIVE 521

Drag A, B, and Cto change the
shape of the triangle and see that
the longest side corresponds to
the shortest median.

Although Stewart’s theorem can certainly be applied to the medians of a triangle,
there are many interesting properties of medians that are not direct results of
Stewart’s theorem. Some of these are certainly worthy of our attention.

When asked for a property of the medians of a triangle, the typical high
school geometry student will probably be quick to respond that the point of inter-
section of the medians (the centroid, or center of gravity) is a trisection point of
each median. In Chapter 2, we used Ceva’s theorem to prove that the medians of
a triangle are concurrent. The student may also recall that the median of a trian-
gle partitions the triangle into two triangles of equal area. This property can easily
be extended to a realization that the three medians of a triangle partition the
triangle into six triangles of equal area.

Our first task will be to examine the relative lengths of the medians of a
triangle. Using The Geometer’s Sketchpad, draw a scalene triangle and its medi-
ans. Can you guess which median of the triangle is longest and which is shortest?
Measure the medians using The Geometer’s Sketchpad. Were your guesses right?
Knowing the lengths of the sides of this given triangle, could you order the
lengths of the medians without measuring them? This is what our next theorem
does for us.

In a triangle, the longest side corresponds to the shortest median.

Assume AC > AB. We must show
that BE < CD (see Figure 5-21).
AAFB and AAFC are two triangles
that have two sides of the same
length (i.e., BF = CF and AF = AF).
Therefore, because AC > AB,
mZ-AFC > mZ-AFB. AGFB and
AGFC are also two triangles that
have two sides of the same length.
Therefore, because mMAGFC >
mAGFBy GC > GB. Because of the
trisection property of the centroid,
CD > BE,

We can find the length of a median with Stewart’ theorem, and we know
(from Theorem 5.11) the relationship between the lengths of the medians with
regard to the lengths of the sides of the triangle. We turn our attention in the
next two theorems to some interesting relationships about the sum of the
lengths of the medians of a given triangle.



| THEOREM 5.12

I"roof

INTERACTIVE 5-22

Drag A B, and Cto change the
shape of the triangle and see that
the inequality is true.

| THEOREM 5.13

Qroof
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For any triangle, the sum of the lengths of the medians is less than the perime-
ter of the triangle.

AFy BEy and CD are the medians of AABC. Begin
the proof by choosing point N on AF so that

AF = NF (see Figure 5-22). Quadrilateral ACNB
is a parallelogram because the diagonals bisect
each other. Therefore BN = AC. For AABNy

AN < AB + BNy which with appropriate
substitutions gives us:

/
2{AF) <AB A+ AC or 2{ma) <cFb \ \ \\ //
Similarly, we can show that: A
N
<aFc and 2{mc)<aFh
FIGURE 5-22

By addition:

2mM FmijFntc)<2faFbFc or naFmyFtie<aFbFc

For any triangle, the sum of the lengths of the medians is greater than three-
fourths the perimeter of the triangle.

We begin by using the trisection property of the centroid G of AABC (see
Figure 5-21). In ABGC:

2 2
BG+ CG>BC or - (me+-{my)>a

In a similar way, we get:

éim,,) + ?D(mj >b and ? {m,) + %D{nlb)> c
By addition:
-(mMFmy F >aFbFc
Therefore:

m"meFme>—4{anFc)
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The previous two theorems tell us that % (a+b+c)<mg+my+ m <
at+b+ec

We now turn our attention to the squares of the lengths of the medians of a
given triangle.

| THEOREM 5.14 Twice the square of the length of a median of a triangle equals the sum of the
squares of the lengths of the two including sides minus one-half the square of
the length of the third side.

@roof By applying Stewart’s theorem to AABC in Figure 5-23, we get:
(AB)*(FC) + (AC)*(BF) = (BF + FC)[(AF)* + (BF)(FC)]

]
N F

FIGURE 5-23

Let x = FC = BF. Then:

x(AB)? + x(AC)? = 2x[(AF)* + x%]
(AB)? + (AC)* = 2[(AF)* + x%)
2(AF)? = (AB)* + (AC)?® — 2x*

Because x = %(BC), we obtain our desired result:
1
2(AF)* = (AB)* + (AC)® — E(BC)Z ®

This theorem by itself is not too exciting, yet it helps us prove some rather
useful and interesting properties, one of which we state as Theorem 5.15.
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I THEOREM 5.15 The sum of the squares of the lengths of the medians of a triangle equals three-
fourths the sum of the squares of the lengths of the sides of the triangle.

@roof The proof of this theorem primarily uses the result stated in Theorem 5.14, namely:
2 2 2 1 2
2m, = b+ ¢ —=a
2
2 2 1 2
2mp=a’+ ¢ - Eb
2_ 2,2 L1,
2mi =a" + b* — —¢
2
By addition:
1
20m2 + mj + m?) = 2(a* + B® + &2) — E(a2 + b+ 2
2 2 2 3 2 2 2
2(ma+m,,+mc)=5(a + b+ )
2 2 2_3, 2,42, 2
m,.+m,,+mc=z(a + b+ %)
This is our desired result. @

We may immediately use this result to establish a relationship between the
sum of the squares of the lengths of the segments joining the centroid with the
vertices and the sum of the squares of the lengths of the sides.

I THEOREM 5.16 The sum of the squares of the lengths of the segments joining the centroid with
the vertices is one-third the sum of the squares of the lengths of the sides.

Qroof The length of a segment joining the centroid with a vertex is two-thirds the
length of its respective median. We therefore seek to find:

2 2 2 2 2 2 4
(gm,,) + (5 m,,) + (5 mc) = g(mﬁ + mj + m?)

From Theorem 5.15, we have:
2 2 2 3 2 2 2
m,,+m,,+mc=z(a + b+ )

Therefore:
1

4
o (e + mi + mi) = 2@ + b7 + &)

This relationship is what was to be demonstrated. @
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The next theorem is more general—it relates arty point in the plane of a
triangle to segments of the triangle.

If P is any point in the plane of AABC with centroid G, then (AP +

| THEOREM 5.17
(BPf + (CP)" = (AG" + {BGf + iCGf + 3(PG)" (see Figure 5-24).

) INTERACTIVE 5-24

Drag A, B, and Cto change the
shape of the triangle and
change the position of P and
see that the equation is true.

FIGURE 5-24

Begin by letting M be the midpoint of AG (see Figure 5-24). We now apply The-

Qroof
orem 5.14 to each triangle indicated:
APBC: 2{PFf = {BPf + {CPf - -(BCf ()
APAG: 2{PMf = {APf + {PGf - NAG)" (D)
APMF: 2(PGf = (PMf + (PF)* - M{MF)" D)

Because MP = f (AP) and AG = | (AP), MP = AG.
Substituting into equation (I11) and multiplying by 2, we get:

4(PG)N = 2{PMf f 2{PFf - (AG" (V)
Adding (1), (1), and (1V):

2{PF? + 2{PMf + 4(PG)* = {BPf + {APf + 2{PMf + {CPf + {PGf
+ 2(PFf - ~(BCf - MAGf - {AG?

{AP? + {BP? + {CP? - 5{PG? =" {AG? + " {BC? V)
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A similar argument made for median BE yields:

(AP)* + (BP)*> + (CP)* — 3(PG)* = %(BG)Z + %(AC)Z (VI)
For median CD, we get:

(AP)? + (BP)* + (CP)* — 3(PG)* = %(cc;)2 + %(AB)Z (VID)
Adding (V), (VI), and (VII):
3[(AP)* + (BP)> + (CP)* — 3(PG)’] = %[(AG)z + (BG)? + (CG)?]

+ % [(BC)? + (AC)? + (AB)?]  (VIII)

We now apply Theorem 5.16 to AABC:

(AG)? + (BG)* + (CG)? = %[(BC)" + (AC)* + (AB)*] or
3[(AG)? + (BG)* + (CG)*] = (BC)* + (AC)* + (AB)?

We substitute this into equation (VIII) to get our desired result:
3
3[(AP)* + (BP)* + (CP)* — 3(PG)*] = By [(AG)* + (BG)* + (CG)?]
1
+s (3[(AG)* + (BG)? + (CG)*])

(AP)* + (BP)? + (CP)* = (AG)* + (BG)* + (CG)* + 3(PG)* @

The medians of a triangle provide us with many interesting relationships. We
will investigate some now and leave others as exercises.

I THEOREM 5.18

Oroof

In any triangle, a median and the midline that intersects it (in the interior of the
triangle) bisect each other.

We wish to prove that median
AF and midline DE bisect each A
other (see Figure 5-25). By
drawing midlines DF and EF,
we form parallelogram ADFE
(opposite sides are parallel).
Therefore diagonals AF and DE
bisect each other. @

The centroid serves as a
sort of “balancing” point of a

triangle. We examine this prop-
. FIGURE 5-25
erty in our next theorem.
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INTERACTIVE 5-26

Drag A, B, and Cto change the
shape of the triangle and
change the position of G and see
that the equation is true.

THEOREM 5.19

Qroof

In any triangle ABD, let XYZ be any line through the centroid G. If perpendic-
ulars are drawn from each vertex of AABC to this line, as shown in Figure 5-26,
then CY= AX + BZ

Draw medians CD, AF, and BH (see Figure 5-26). From £, the midpoint of CG,
draw EP 1 XZ. Also draw DQ 1 XZ, Because ZCGY = AQGD and EC = EG =
DG (property of a centroid):

AQGD = APGE and QD =EP
AX I BZ; therefore QD is the median of trapezoid AXZB and:

QD =- {AX + BZ) (property of median of a trapezoid)
Also:
EP =- (CY) (property of a midline)
Therefore, by transitivity:
NCY) =~{AX +BZ) or CY=AX-hBZ9

It is interesting to note that for a given point in a given circle an infinite
number of inscribed triangles exist that have this point as a centroid. We state
this property as Theorem 5.20.



| THEOREM 5.20

Qroof

INTERACTIVE 5-27

Choose any interior point as a
centroid and note that a triangle
can be inscribed in the given
circle.

| THEOREM 5.21

Qroof
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An infinite number of triangles each having a given interior point as centroid can
be inscribed in a given circle.

This proof will be somewhat different
from others we have used so far. To show
that there exist an infinite number of
triangles with the necessary specifica-
tions, we will show that one such trian-
gle, randomly selectedy exists. This will
imply that an infinite number of other
triangles similarly constructed also exist.
We begin by selecting any point on
circle O. This point will be point A of
AABC (see Figure 5-27). Join point A
with given centroid G and extend AG
through G to point Fy so that
GF = j (AG). Then draw OF. At point F,
construct a perpendicular to OF, inter-
secting the circle at points B and C.
This easily justifiable construction proves that a triangle exists with the speci
fied conditions. But because many other triangles can similarly be constructed
(depending on the selection of point A), our proof is complete. ¢

We conclude our study of the medians of a triangle by briefly considering
the medial trianglcy that is, the triangle formed by joining the midpoints of the
sides of a triangle.

A triangle and its medial triangle have the same centroid.

In AABCy median AF bisects DE at point M (Theorem 5.18). Therefore FM is a
median of medial triangle DEF (see Figure 5-28). Similarly, DK and EN are
medians of ADEF as well as being segments of medians of AABC. Because the
medians of AABC meet at point Gy so do the medians of ADEF. ¢
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In looking back over this chapter, you will see that we began with a study of

angle bisectors of a triangle. We then considered a general segment of a triangle
(a Cevian) to exhibit the usefulness of Stewart’s theorem. Finally, we studied
properties of the medians of a triangle. Your knowledge of triangles should now
be considerably more extensive.

10.
11.

12.

13.

EXERCISES

. Prove that the sum of the reciprocals of the lengths of the interior angle

bisectors of a triangle is greater than the sum of the reciprocals of the
lengths of the sides of the triangle.

Prove that the feet of the four perpendiculars drawn from a vertex of a tri-
angle to the two interior and two exterior angle bisectors of the other two
angles of the triangle are collinear.

Prove that the difference of the measures of the two angles that an interior
angle bisector forms with the opposite side equals the difference of the meas-
ures of the two remaining angles of the triangle.

Prove that the measure of the angle formed by the exterior angle bisector
and the opposite side of the triangle equals one-half the difference of the
measures of the two remaining angles of the triangle.

. In a 30-60-90 triangle with hypotenuse of length 4, find the distance from

the vertex of the right angle to the point of intersection of the angle
bisectors.

In a right triangle, the bisector of the right angle divides the hypotenuse into
segments that measure 3 and 4. Find the measure of the angle bisector of the
larger acute angle of the right triangle.

Use Stewart’s theorem to find the length of the medians of a triangle in
terms of the lengths of its sides and their segments.

. Prove that any triangle whose sides contain the vertices of a Miquel triangle

of a given triangle and whose vertices each lie on a Miquel circle is similar to
the given triangle.

Prove that two similar triangles inscribed in the same triangle have the same
Miquel point.

Using Figure 5-17, prove that m/ BMC = m/BAC + m/FED.

Prove that if three circles have a common point of intersection, M, then
there are three or more similar triangles for which M is the Miquel point.

Prove that if a triangle is constructed with sides the length of the medians of
a given triangle, the lengths of the medians of this newly constructed triangle
are each three-fourths the length of the respective sides of the given triangle.

Prove that the area of a triangle whose sides are the length of the medians of
a given triangle is equal to three-fourths the area of the given triangle.



14.

15.

16.

17.

18.

19.
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Prove that if two points are equidistant from the centroid of a triangle, then
the sums of the squares of their distances from the vertices of the triangle
are equal.

Prove that the line containing the midpoint of a median of a triangle and a
vertex (not on the median) trisects a side of the triangle.

Prove that the medians of a triangle partition the triangle into six triangles
of equal area.

Prove that the lines containing the vertices of a triangle and parallel to the

opposite sides form a new triangle that has the original triangle as its medial
triangle.

1 1
— + -5 . Then prove the converse.
ha hb

Prove that for a right triangle 5m2 = m’ + mj,. Then prove the converse.

1
Prove that for a right triangle P
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| THEOREM 6.1

Qroof

INTERACTIVE 6-1

Drag points A, B, C, and Dto
change the shape of the quadri-
lateral and see that RGBS is
always a parallelogram.

We begin our study of quadrilaterals where high school geometry leaves off. Most
of the study on quadrilaterals in elementary geometry deals with special quadrilat-
erals such as trapezoids, parallelograms, rhombuses, rectangles, and squares. Let us
look first at the general quadrilateral, that is, one with no special properties, and
then at the cyclic quadrilateral, that is, one that can be inscribed in a circle.

Suppose you were to draw any shape quadrilateral and then join (with seg-
ments) the midpoints of consecutive sides. What would you expect the resulting
quadrilateral to look like? The Geometer s Sketchpad is very helpful in our exper-
iment. Construct a quadrilateral, locate and join the midpoints of the sides, and
then distort the original quadrilateral, observing the shape of the quadrilateral
formed by joining the midpoints of the sides of the original quadrilateral. What
you will readily notice is stated as our first theorem of this chapter.

The quadrilateral formed by joining the midpoints of consecutive sides of any
quadrilateral is a parallelogram.

In Figure 6-1, points P, Q, P, and S are the midpoints of the sides of quadrilat-
eral ABCD. In AADBy PQ is a midline, and therefore:

PQ IDP and PQ =- (DB)
In ACDP, SR is a midline, and therefore:
Sr WdB and SR =7{DB)

Thus PQ 1L5P and PQ = SR, which
establishes that quadrilateral PQRS is a
parallelogram. ¢

The question that now arises is. What

type of quadrilateral ABCD will produce a rectangle
PQRS, a rhombus PQRS, or a square PQPS?

117
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| THEOREM 6.2

| THEOREM 6.3

Qroof

INTERACTIVE 6-2

Drag points A B, C, and Dto
change the shape of the quadri-
lateral and see that PQBS is
always a rhombus.

| THEOREM 6A

The quadrilateral formed by joining the midpoints of consecutive sides of a
quadrilateral whose diagonals are perpendicular is a rectangle.

Because QR \\a C in Figure ¢ -|, quadrilateral PQRS would be a rectangle
(i.e., a parallelogram with adjacent sides perpendicular) if PQ + QR. This is true
if AC 1 DB.

The quadrilateral formed by joining the midpoints of consecutive sides of a
quadrilateral whose diagonals are congruent is a rhombus.

Suppose we have a quadrilateral with congru-
ent diagonals (see Figure 6 -1 ). The midline PQ
of AABD has the property:

PQ= - (BD)
Similarly, for AABC and midline QR:
QR =™AC)

Because in this quadrilateral BD = AC, we have:
PQ = QR
Thus parallelogram PQRS is a rhombus. ¢

Combining the results of Theorems 6.1
and 6.3 enables us to establish the next theorem.

The quadrilateral formed by joining the midpoints of consecutive sides of a
quadrilateral whose diagonals are perpendicular and congruent is a square.
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CENTERS OF A QUADRILATERAL

We will now consider two centers of a quadrilateral. The centroid of a quadrilat-
eral is that point on which a quadrilateral of uniform density will balance. This
point may be found in the following way. Let points M and N be the centroids of
AABC and AADC, respectively (see Figure 6-3). Let points K and L be the
centroids of AABD and ABCD, respectively. The point of intersection, G, of MN
and KL is the centroid of quadrilateral ABCD.

The centerpoint of a quadrilateral is the point of intersection of the two
segments joining the midpoints of the opposite sides of the quadrilateral. In
Figure 6-4, point G is the centerpoint of quadrilateral ABCD.
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| THEOREM 6.5

Qroof

Drag points A B, C, and Dto
change the shape of the
quadrilateral and see that the
relationship is always true.

| THEOREM 6.6

Qroof

The segments joining the midpoints of the opposite sides of any quadrilateral
bisect each other.

Because these two segments are, in fact, the diagonals of the parallelogram
formed by joining the midpoints of the consecutive sides of the quadrilateral,
they bisect each other. ¢

In Figure 6-5, points P, Q, P, and S are the midpoints of the sides of quadri-
lateral ABCD. The centerpoint G is determined by the intersection of PR and QS.
An interesting relationship exists between the segments PR and QS and the

segment MN joining the midpoints M and N of the diagonals of quadrilateral
ABCD. We state this relationship as the next theorem.

Q

The segment joining the midpoints of the diagonals of a quadrilateral is bisected
by the centerpoint.

In Figure 6-5, M is the midpoint of BD and N is the midpoint of AC.
Points P, Q, Ry and S are the midpoints of the sides of quadrilateral ABCD.

In AADC, PN is a midline; therefore:

PNWDC and PN=-{DC)



| THEOREM 6.7

INTERACTIVE 6-6

Drag points A, B, C, and Dto
change the shape of the parallel-
ogram and see that the equation

is always true.
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In ABDC, MR is a midline; therefore:
MR11”~ and MR =7*{DC)

Thus PN MR and PN = MR. It follows that quadrilateral PMRN is a
parallelogram. . .

The diagonals of this parallelogram bisect each other, so MN and PR share a
common midpoint, G, which was earlier established as the centerpoint of the
quadrilateral. «

While we are on the topic of parallelograms, the next theorem not only pre-
sents a rather interesting relationship but together with the foregoing discussion
also allows us to propose another interesting property about quadrilaterals.

The sum of the squares of the lengths of the sides of a parallelogram equals the
sum of the squares of the lengths of the diagonals.

In the proof of Stewart’s theorem ([lI] and [IV]), we established the following
relationships (see Figure § -6 ), applied to parallelogram ABCD with BF | APEC.

For AABE:

(AB)* = {BEf + (AE)* - 2{AE)(FE) 0
For AEBC:

{BCf = {BEf + {ECf + 2{EC)(FE) ()

Because the diagonals of quadrilateral ABCD bisect each other, AE = EC.
Therefore, by adding equations (1) and (I1), we get:

{ABy + {BCr = 2(BEY + 2{AEY 1l
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Similarly, in ACAD:
(CDf + (DAf = 2{DEf + 2{CEf (V)
Adding (I11) and (1V), we get:
{ABf + {BCf + {CDf + (DAf = 2(BEf + 2{AEf + 2{DEf + 2{CEf
Because AE = EC and BE = ED, we have:

(ABf + {BCf + (CD)* + (DAf

4{BEf + 4{AEf
(2BEf + (2AE)
= {BDf + (ACf+

We now combine Theorems §.! and 6.7 to get the following theorem.

| THEOREM 6.8  The sum of the squares of the lengths of the diagonals of any quadrilateral equals
twice the sum of the squares of the lengths of the two segments joining the mid-
points of the opposite sides of the quadrilateral.

C/roof In the proof of Theorem 6.1, we established that PQ =\ (DB) and SR =" (DB).

INTERACTIVE 6-7

Drag points A, B, C, and Dto
change the shape of the quadri-
lateral and see that the equation

is always true.

This gives us:

(FQZZ}(%Z ad @)2:}(552 )
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Similarly, QR =5 (AC) and PS = ! (AC). This gives us:
(QP)* =17, (ACT and {PSf = {ACT ()

Applying Theorem 6.7 to parallelogram PQRS (Figure 6-7) gives us:
{PQf + {SRf + {QRf + {PSf = (PRf + {QSf (1

Making the appropriate substitutions of (I) and (lI) into (lI) gives us:

5 (DB)" + - (DB)" + 4 {ACf + , (ACT = (PR + (QSf
+MACT = iPRf + {QSf
{DBf + {ACf =1 [PR) + (QS)"] <

CYCLIC QUADRILATERALS

You are probably familiar with the famous formula of Heron of Alexandria for
finding the area of any triangle given only the lengths of its three sides. This
formula is:

area of a triangle = Vs(s —a){s —b){s —c¢)

. a
where a, b, and c are the lengths of the sides and s =

It is natural to try to extend this formula to quadrilaterals. One common way is
to consider the triangle as a quadrilateral with a side of zero length. Such an
extension is credited to Brahmagupta,an Indian mathematician who lived in the
early part of the seventh century. He used the following formula to find the area
of a cyclic quadrilateral (i.e., a quadrilateral that may be inscribed in a circle)
with sides of length a, b, ¢, and d, where s is the semiperimeter:

area

In 628, Brahmagupta (born 598) wrote Brahma-sphuta-siddhanta (“The Revised System
of Brahma”), with the twelfth and thirteenth chapters devoted to mathematics.
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INTERACTIVE 6-8

Drag points A C,and Dto
change the shape of the
quadrilateral and see that
Brahmagupta's formula is
always true.

©roof

Note that Brahmagupta considered Heron’s formula as treating the triangle as a
quadrilateral with d = 0.

(Brahmagupta”*S formula) First consider the case in which quadrilateral
ABCD is a rectangle with a = cand b = d. Assuming Brahmagupta’s formula to
be true, we have:

area of rectangle ABCD =V (§ - a)}{s- b)(s- ¢)(s- d)
V(a+b-afa+b- b{asrtb- ajfa b- b
= Va'

= ab

This is the area of the rectangle as found by the usual methods.

Now consider any nonrectangular cyclic quadrilateral ABCD (see Figure § -5 ).
Extend DA and CB to meet at point P, forming ADCR

Let PC = Xand PD =y. By Heron’ formula:

areaADCP = "W(X +y + o)y X+ ofx+ty—ofx—y+0 (I

Because ACDA is supplementary to ACBA and because AABP is also supple-
mentary to ACBA, ACDA = AABP Thus:

ABAP - ADCP ()
From (I1), we get:

area ABAP _
area ADCP
area ADCP  area ABAP _
area ADCP  area ADCP
area ADCP —area ABAP  areaABCD
area ADCP area ADCP (1)
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From (II), we also get:

4 (Iv)

- %)
Adding (IV) and (V), we get:

x+y x+y—-b-d
c a

c
+y=——(b+
xty=——(b+d
x+y+c=L(b+c+d—a) (VI)
c—a

The following relationships are found by using similar methods:

c

-x+c= +c+d-b

ymxte=——fl+c ) (Vi)
c

ty—c= +b+d-—

xty—c=—"—(@ 0 (VIII)
c

x—y+c=c+a(a+b+c—d) (IX)

Now substitute (VI), (VII), (VIII), and (IX) into (I). Then:
area ADCP

=ﬁ Vb+c+d-aa+c+d=—bla+b+d-a+b+c—ad

area ADCP

¢ Vb+ctd-aatctd—ba+tb+d-ga+b+c—d
d-a 4

_Z _\/(b+c+d—a)(n+c+d—b)(a+b+d—c)(n+b+c—d)
a 2 2 2 2

&2 \/(a+b+c+d—2n)(n+b+c+d—2b)(a+b+c+d—2c)(a+b+c+d—2d)
T2 2 2 2 2

a+b+c+d
Because s = - we get:

area ADCP = = c_ el V(s = a)(s — b)(s — (s — d)
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Rewrite (III) as:

2

area ADCP = — < 5
¢ —a

(area ABCD)

Thus the area of cyclic quadrilateral ABCD = V(s — a)(s — b)(s — o)(s — d). @

An interesting extension of Brahmagupta’s formula to the general quadrilat-
eral is given here without proof:

area of any (convex) quadrilateral

= \/(s —a)(s — b)(s — ¢)(s — d) — abcd - cosz(a : y)

at+tb+c+d
2
are the measures of a pair of opposite angles of the quadrilateral.
This formula shows that of all quadrilaterals that can be formed from four
given side lengths, the one with the maximum area is the cyclic quadrilateral. The
ty

where a, b, ¢, and d are the lengths of the sides, s = , and « and y

. . . o .
maximum area is achieved when abcd - cosz( = 0, which occurs when

a + vy = 180°, which is true only in cyclic quadrilaterals.

There are many interesting theorems about cyclic quadrilaterals. Before con-
sidering them, the reader is advised to recall the methods of proving that a
quadrilateral is cyclic (see page 7).

Brahmagupta also found that for a cyclic quadrilateral of consecutive side
lengths a, b, ¢, and d, where m and n are the lengths of the diagonals, the follow-
ing relationships hold true:

= (ab + cd)(ac + bd)
ad + bc

= (ac + bd)(ad + be)
ab + cd

Another interesting theorem on cyclic quadrilaterals attributed to
Brahmagupta follows.

I THEOREM 6.9

Qroof

In a cyclic quadrilateral with perpendicular diagonals, the line through the point
of intersection of the diagonals and perpendicular to a side of the quadrilateral
bisects the opposite side.

Diagonals AC and BD ((igyclic quadrilateral ABCD are perpendicular at poi(n_t_)
of intersection, G, and GE L AED (see Figure 6-9). We want to prove that GE
bisects BC at point P.

In right triangle AEG, £.5 is complementary to £1 and £2 is complemen-
tary to £ 1. Therefore £5 = £ 2. Because £2 = /4, we have £5 = /4.
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INTERACTIVE 6-9

Drag points A B, C, and Dto
change the shape of the quadri-
lateral and see that point P
always bisects CB.

Because A5 and Z¢6 are equal in measure to \ mDQ they are congruent.
Therefore Z4= Z¢ and BP = GP.

Similarly, because 2.7 = Z3 and Z1 = Z#§,we have GP = PC. Thus
CP =PB. »

An interesting way to generate a cyclic quadrilateral is provided by the next
theorem.

i THEOREM 6.10 If from each pair of adjacent angles of any quadrilateral the angle bisectors
are drawn, the segments connecting their points of intersection form a cyclic
quadrilateral.

In Figure 6-10, the angle bisectors of quadrilateral ABCD meet to determine
quadrilateral EFGH. We will prove this latter quadrilateral to be cyclic.

mABAD + mAADC + mADCB + mACBA = 360°

Therefore:

- mABAD + - mZ-ADC + - mADCB + - m"CBA = - °) = 180°
2m 2m C 2m C 2mC 2(360) 80
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O INTERACTIVE 6-10

Drag points A B, G and Dto
change the shape of the quadri-
lateral and see that BFGHis
always cyclic.

FIGURE 6-10

Substituting, we have:
mAEDC + mAECD + mZ.GAB + m/LABG = 180° )
Consider AABG and ADEC:

mAEDC + mAECD + mAGAB + mAABG + mAAGB
+ MADEC = 2(180°) (I

Subtracting (1) from (1), we find that:
mAAGB + mADEC = 180°

Because one pair of opposite angles of quadrilateral EFGH are supplementary, the
other pair must also be supplementary, and hence quadrilateral EFGH is cyclic.

PTOLEMY'S THEOREM

| THEOREM 6.11

Perhaps the most famous theorem involving cyclic quadrilaterals is that attributed
to Claudius Ptolemaeus of Alexandria (popularly known as Ptolemy). In his
major astronomical work, the Almagesf* (ca. a.a. 150), he stated this theorem on
cyclic quadrilaterals.

(Ptolemy’s theorem) The product of the lengths of the diagonals of a cyclic
quadrilateral equals the sum of the products of the lengths of the pairs of
opposite sides.

The Greek title, Syntaxis Mathematical means “mathematical (or astronomical) compila-
tion.” The Arabic title, Almagest, is a renaming meaning “great collection (or compilation).”
The book is a manual of all the mathematical astronomy that the ancients knew up to that
time. Book | of the thirteen books that comprise this monumental work contains the theorem
that now bears Ptolemy's name.
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We provide two methods for proving Ptolemy’ theorem. The second method
incorporates the proof of the converse as well, which we state in Theorem 6.7 .

Qroof I In Figure 6-11, quadrilateral
ABCD is inscribed in circle O. A
line is drawn through point A to

meet GE at point P so that:
INTERACTIVE 6-11

Drag points A, B, C, and Dto m/LBAC = mZ-DAP (|)

change the shape of the quadri- i i
lateral and see that the equation Because quadrllateral ABCD is

is always true. cyclic, /-ABC is supplementary to
[-ADC. However, /-ADP is also
supplementary to /-ADC.

Therefore:
mAABC = mAADP ()]
Thus:
ABAC ~ ADAP (AA) (1
AB BC {AD)(BC)
= DP =
ap pp ¥ AB (V)

AB AC
From (1), m/-BAD = m/.CAP; from (111), D = P Therefore:

AABD ~ AACP (SAS)

A AN (AC){BD)
CP AC AB V)

We know that:
CP =CD + DP (V1)
Substituting (IV) and (V) into (VI), we get:

(AC)BD) * " {AD)(BC)
AB AB

Thus iAC){BD) = {AB)(CD) + (AD)(BC).
Il In quadrilateral ABCD (Figure 6 -12 ), draw ADAP on side AD similar to ACAB.
Thus:

AB AC BC
AP~ AD ~ PD 0
(AC){PD) = (AD){BC) 0
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Because m/BAC = m/PAD, m/.BAP = m/ CAD. Therefore, from (I):

ABAP ~ ACAD (SAS) = % = %
Thus:
(AC)(BP) = (AB)(CD) (111)
Adding (II) and (III), we have:
(AC)(BP + PD) = (AD)(BC) + (AB)(CD) (1v)

Now BP + PD > BD (triangle inequality), unless P is on BD. However, point P
will be on BD if and only if m£ADP = m/ADB. But we already know that
m/ADP = m/ ACB (similar triangles). If quadrilateral ABCD was cyclic, then
m/ ADB would equal mZACB and mZ ADB would equal m/ ADP. Therefore we
can state that if and only if quadrilateral ABCD is cyclic, point P lies on BD. This
tells us that:

BP + PD = BD (V)
Substituting (V) into (IV), we get:
(AC)(BD) = (AD)(BC) + (AB)(CD) @

Notice that we have proved both Ptolemy’s theorem and its converse, which
we now state as our next theorem.

I THEOREM 6.12

@ roof

(The converse of Ptolemy’s theorem) If the product of the lengths of
the diagonals of a quadrilateral equals the sum of the products of the lengths of
the pairs of opposite sides, then the quadrilateral is cyclic.

Assume quadrilateral ABCD is not cyclic (see Figure 6-11). If CDP, then
m/ADP # m/ ABC. If points C, D, and P are not collinear, then it is possible to
have m/. ADP = m/ ABC. However, then CP < CD + DB and from (IV) and (V)
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in Proof I of Ptolemy’s theorem:

(AC)(BD) < (AB)(CD) + (AD)(BC)
But this contradicts the given information that

(AC)(BD) = (AB)(CD) + (AD)(BC)

Therefore quadrilateral ABCD is cyclic. @

We now consider an extension of Ptolemy’s theorem.

I THEOREM 6.13 Consider a noncyclic quadrilateral ABCD. If we let a = AD, b = BD, ¢ = CD,
a’ = BC, b’ = AC, and ¢’ = AB, then the sum of the lengths of any two of seg-
ments aa’, bb’, and cc’ is greater than the length of the third (see Figure 6-13).

—
@roof* Construct A’ on DA such that DA’ = bc.
—
Construct B’ on DB such that DB’ = ac.
—
Construct C’ on DC such that DC’ = ab.

We notice that ADAB ~ ADA’B’ because they have a common ZADB and the
adjacent sides are proportional. That is:
DA’ _ bc DB’ ac DA' DB’

DB b5 ¢ ™ AT T DB DA

* This proof was developed by Professor Harry W. Appelgate of The City College of The
City University of New York.
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[Te]

AB' X
It follows that ¢ = , Which gives us A'B' = cc\ Similarly, B'C = aa'

and A'C = bb\ From AA'B'C\ we see (from the triangle inequality) that:

aa' + bb' > cd
aal + cc' > bV
bb' + cc' > aa'

For the situation in Theorem 6.13, what happens when aa' + cc' —bb'\

APPLICATIONS OF PTOLEMY’'S THEOREM

Qroof

This section presents some direct consequences of Ptolemy’s theorem.

If any circle passing through vertex A of parallelogram ABCD intersects sides AB
and AD at points P and R, respectively, and intersects diagonal AC at point Q,
prove that (AQ)(AC) = {AP){AB) + {AR){AD). ¢

Draw RQy QPyandRP, as in Figure 6-14. mZ.4 = m/-2. Similarly, mZ | = mZ 3.
Because mZ.5 = mZ3, mZ1 = mAb.

Therefore ARQP ~ AABC (AA), and because AABC = ACDA, we have:

ARQP - AABC - ACDA



@pplication 2

© olution
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Then:
AC_AB _AD
RP RQ PQ

By Ptolemy’s theorem, in quadrilateral RQPA:
(AQ)(RP) = (RQ)(AP) + (PQ)(AR) (I1)

Multiplying each of the three equal ratios in (I) by one member of (II) gives us:
AC AB AD
(AQ)(RP)(E) = (RQ)(AP)(E) + (PQ)(AR)<E)

Thus (AQ)(AC) = (AP)(AB) + (AR)(AD). @

Express the ratio of the lengths of the diagonals of a cyclic quadrilateral in terms
of the lengths of the sides. @

On the circumcircle of quadrilateral ABCD, choose points P and Q so that
PA = DC and QD = AB, as in Figure 6-15.
Applying Ptolemy’s theorem to quadrilateral ABCP gives us:

(AC)(PB) = (AB)(PC) + (BC)(PA) I

Similarly, applying Ptolemy’s theorem to quadrilateral BCDQ gives us:
(BD)(QC) = (DC)(QB) + (BC)(QD) (I

Because PA + AB = DC + QD, we have m PAB = m6\DC and PB = QC.
Similarly, because m PBC = mDBA, we have PC = AD, and because
mQCB = mACD we have QB = AD.
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Finally, dividing (I) by (II) and substituting for all terms containing Q and P,
we get:

AC _ (AB)(AD) + (BC)(DC) °
BD  (DC)(AD) + (BC)(AB)

@pplication 3 A point P is chosen inside parallelogram ABCD such that Z APB is supplemen-

tary to £CPD (Figure 6-16). Prove that (AB)(AD) = (BP)(DP) + (AP)(CP). @

@roof On side AB of parallelogram ABCD, draw AAP'B = ADPC so that:

DP = AP’ and CP = BP’

(M
Because ZAPB is supplementary to ZCPD and m£BP'A = m/ CPD, LAPB is

supplementary to ZBP'A. Therefore quadrilateral BP’AP is cyclic. Applying
Ptolemy’s theorem to cyclic quadrilateral BP’AP, we get:

(AB)(P’'P) = (BP)(AP’) + (AP)(BP’)
From (I):

(AB)(P’'P) = (BP)(DP) + (AP)(CP)

(Im)
Because m/ BAP’ = m/ CDP and CD H AB, we have PD ” PA. Therefore PDAP’
is a parallelogram and P'P = AD.

Thus, from (II):

(AB)(AD) = (BP)(DP) + (AP)(CP) @

The next five applications develop a rather nice pattern about regular polygons.
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A A
°
(o)
D
B C
B v Cc
S 3
@pplication 4  If isosceles triangle ABC (AB = AC) is inscribed in a circle and point P is on BC,
rove that ————— = AC a constant for the given triangle. @
P PB+PC  BC & g
Q@ roof Applying Ptolemy’s theorem to cyclic quadrilateral ABPC (Figure 6-17), we get:

Qpplication 5

®roof

(PA)(BC) = (PB)(AC) + (PC)(AB)
Because AB = AC:

PA AC
-0

PA = + P d —— =
(PA)(BC) = AC(PB + PC) and —o=—- = 22

If equilateral triangle ABC is inscribed in a circle and point P is on BC, prove
that PA = PB + PC. @

Because quadrilateral ABPC is cyclic (Figure 6-18), we can apply Ptolemy’s
theorem:

(PA)(BC) = (PB)(AC) + (PC)(AB) (1
However, because AABC is equilateral, BC = AC = AB. Therefore, from (I):

PA=PB+ PC®
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@pplication 6 If square ABCD is inscribed in a circle and point P is on BC, prove that
PA+PC _ PD

PB+PD PA’

@roof In Figure 6-19, consider isosceles triangle ABD (AB = AD). Using the results of
Application 4, we have:
- 20 )
PB+PD DB

Similarly, in isosceles triangle ADC:

_m__ a
PA + PC AC

Because AD = DC and DB = AC, we have:

AD _ DC ()
DB AC
From (I), (II), and (III):
PA _  PD PA+PC _PD o
PB+PD PA+PC O PB+PD PA
A
B \‘ D
P A
c



@Opplication 7

@ roof
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If regular pentagon ABCDE is inscribed in a circle and point P is on BC, prove
that PA + PD = PB + PC + PE. @

In quadrilateral ABPC (see Figure 6-20), by Ptolemy’s theorem:
(PA)(BC) = (BA)(PC) + (PB)(AC) 4))
In quadrilateral BPCD:
(PD)(BC) = (CD)(PB) + (PC)(BD) (1)
Because BA = CD and AC = BD, by adding (I) and (II) we obtain:
BC(PA + PD) = BA(PB + PC) + AC(PB + PC) (11)
However, because ABEC is isosceles, based on Application 4 we have:

CE __ PE (PE)(BC)

= = CE = AC 1\
BC pB+PC " (PB+ PC) (V)

Substituting (IV) into (III) gives us:

(PE)(BC)

__(PB + PC) (PB + PC)

BC(PA + PD) = BA(PB + PC) +

But BC = BA. Therefore PA + PD = PB + PC + PE. @
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@pplication 8 If regular hexagon ABCDEF is inscribed in a circle and point P is on BC, prove
that PE + PF = PA+ PB+ PC + PD. @

@roof Lines are drawn between points A, E, and C to make equilateral triangle AEC
(Figure 6-21). Using the results of Application 5, we have:

PE=PA + PC 1)
In the same way, in equilateral triangle BFD:
PF = PB + PD (1)
Adding (I) and (II), we get:
PE+PF=PA+PB+PC+PD@®

Although the following problem can be solved by other means, the solution
that uses Ptolemy’s theorem is rather nice.



@pplication 9

O olution

Chapter 6 QUADRILATERALS 139

A triangle inscribed in a circle of radius 5 has two sides of length 5 and 6. Find
the length of the third side of the triangle. @

In Figure 6-22, we notice that there are two cases to consider in this problem.
Both AABC and AABC’ are inscribed in circle O, with AB = 5 and
AC = AC’ = 6. We are to find BC and BC'.

Draw diameter AOD, which measures 10, and draw D_C, ﬁ, and DC'. Then:
m/AC'D = m£LACD = m/.ABD = 90°

Consider the case where £A in AABC is acute. In right triangle ACD,
DC = 8, and in right triangle ABD, BD = 5\/3. Applying Ptolemy’s theorem to
quadrilateral ABCD:

(AC)(BD) = (AB)(DC) + (AD)(BC)
(6)(5V3) = (5)(8) + (10)(BC) or BC=3V3-4

Now consider the case where £ A is obtuse, as in AABC'. In right triangle
AC’'D, DC’" = 8. Applying Ptolemy’s theorem to quadrilateral ABDC’:

(AC')(BD) + (AB)(DC') = (AD)(BC)
(6)(5V3) = (5)(8) = (10)(BC') or BC' =3V3+4@

We began our study of quadrilaterals by investigating properties of the general
quadrilateral. This led to a consideration of cyclic quadrilaterals, quadrilaterals
whose areas are a maximum for the given side lengths. The cyclic quadrilaterals
are rich in interesting properties. Brahmagupta’s formula and Ptolemy’s theorem
gave evidence of this. It is up to the reader to continue investigating the properties
of various other kinds of quadrilaterals. The field is boundless, and the resulting
pleasure a certainty.
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EXERCISES

10.

. What type of quadrilateral is formed by joining the midpoints of consecutive

sides of:

a. a nonisosceles trapezoid
b. an isosceles trapezoid
Prove your answers.

If two noncongruent isosceles triangles share a common base and have no
part of their interior regions in common, determine the type of quadrilateral
formed by joining the midpoints of consecutive sides of the quadrilateral
(formed by the two isosceles triangles).

Is the converse of Theorem 6.1 true? Prove your answer.

Prove that the perimeter of the quadrilateral formed by joining the mid-
points of consecutive sides of a given quadrilateral equals the sum of the
lengths of the diagonals of the given quadrilateral.

Prove that the area of the quadrilateral formed by joining the midpoints of
consecutive sides of a given quadrilateral equals one-half the area of the
given quadrilateral.

Prove that the sum of the squares of the lengths of the sides of a quadrilat-
eral equals the sum of the squares of the lengths of the diagonals plus four
times the square of the length of the segment joining the midpoints of the
diagonals.

Find the area of a triangle whose sides have lengths 13, 14, and 15.
Find the area of a cyclic quadrilateral whose sides have lengths 9, 10, 10, and 21.
Find the area of a cyclic quadrilateral whose sides have lengths 7, 15, 20, and 24.

A line, (P—Q), parallel to base BC of AABC intersects AB and AC at points P
and Q, respectively (Figure 6-23). The circle passing through point P and
tangent to AC at point Q intersects AB again at point R. Prove that points R,
Q, C, and B lie on a circle.
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11. Prove that the lines from the midpoints of the sides of a cyclic quadrilateral
and perpendicular to the respective opposite sides are concurrent.

12. To what familiar result does Ptolemy’s theorem lead when the cyclic quadri-
lateral is a rectangle? Prove your result.

13. Eis a point on side AD of rectangle ABCD so that DE = 6, while DA = 8
and DC = 6 (see Figure 6-24). If CE is extended to meet the circumcircle of
the rectangle at point F, find the length of DF. Also find the length of FB.

F

14. A line drawn from vertex A of equilateral triangle ABC meets BC at point D

1 1 1
he ci ircle at point P Fi 6-25). Prove that — = — + —.
and the circumcircle at point P (see Figure ). Prove tha 0P8 PC
A
D
B c
P

15. Prove that a quadrilateral has perpendicular diagonals if and only if the sum
of the squares of the lengths of one pair of opposite sides equals the sum of
the squares of the lengths of the other pair of opposite sides.
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POINTS OF TANGENCY

| THEOREM 7.0 Two tangent segments to a circle from an external point are equal in length.

INTERACTIVE 7-1

Drag points A, B, and Cto
change the shape of the
triangle and see that AK™ is
always | the perimeter.

Consider the following problem, whose solution uses this theorem a few times.

If the perimeter of AABC (Figure 7-1) is 16, find the length of AKi.
(Note: Each of the four circles /, li, /1, /3 is tangent to each of the three

lines forming AABC,)

We begin this chapter in somewhat dramatic form. We recall a common theorem
from elementary geometry:

143
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Applying Theorem 7.0 to this figure, we get:
BK} = BM] and CLI = CM]

The perimeter of AABC = AB + BC + AC = AB + (BM, + CM,) + AC. By
substitution:

perimeter AABC = AB + BK, + CL, + AC
= AK] + ALl

However, AK; = AL, because these two segments are tangent segments from the
same external point to the same circle (Theorem 7.0). Therefore:

1
AK, = > (perimeter AABC) = 8

This solution exhibits just one of the many interesting relationships involving
equicircles, which are the three escribed circles, or excircles, and the inscribed circle,
or incircle, of a triangle. In the discussion that follows, we will investigate other
interesting relationships involving the equicircles and their points of tangency.
Each equicircle is tangent to each of the three lines containing the sides of the
triangle.

Let us first state formally the relationship developed above.

I THEOREM 7.1

The seg