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P r e f a c e

o

Until the nineteenth century, it was thought that all that was significant 
about the geometry of the triangle and the circle had been discovered by 
Euclid and his predecessors. However, during the nineteenth century, a 
plethora of articles appeared that expanded this field enormously. Many 
additional relationships were discovered that brought new life to the field 
of Euclidean geometry. This book presents the highlights of these newer 
discoveries in a reader-friendly format. In short, this book is designed to 
provide an extended view of Euclidean geometry in order to expand the 
background of the secondary school mathematics teacher.

Over the past three hundred years, many textbooks have been written to 
present Euclid’s Elements to a school audience. The most notable of these 
are Robert Simson’s Elements o f Euclid, which first appeared in 1756, and 
Adrien-Marie Legendre s Elements de geometrie, which was published (in 
French) in 1794. An English version of Legendre’s text was revised in 1828 
by Charles Davies, a West Point professor. '‘Davies’ Legendre,” as it is pop­
ularly referred to, was one of the most widely used American mathematics 
textbooks of the nineteenth century and perhaps has had the greatest 
influence on our present-day high school geometry course of any text.

Legendre’s geometry did not state the theorems in general terms. Rather, 
it employed diagrams to demonstrate the various propositions. This 
departure from Euclid was corrected by Davies, who provided a general 
statement of a proposition followed by an explanation and an accompa­
nying diagram. This book uses both approaches interchangeably, as 
appropriate.

Our study of geometry— advanced Euclidean geometry— begins where 
the high school geometry course (still for the most part fashioned after 
Davies’ Legendre) leaves off. This book does not attempt to provide an 
exhaustive study of the entire field of these advanced topics, which would 
be impossible in one small book. Instead we focus our attention on sub­
jects that are of interest to those who have mastered the high school 
geometry course, have a genuine desire or need to extend their study of 
mathematics, and will appreciate the beauty that lies in the study of 
advanced Euclidean geometry.

A unique feature of this book is the inclusion of interactive geometric 
figures provided on a CD-ROM using The Geometer’s Sketchpad®, software. 
All too often, geometry is presented in a static form in which the true and 
deeper meaning of a theorem does not get the true exposure it should. The 
reader is encouraged, whenever an interactive geometric figure is indicated 
by the CD-ROM icon (shown at left), to go to the computer and explore 
the figure by distorting it and observing the constancy being established.



VI PREFACE

To truly understand a subject and to teach it well, one must know more 
about the subject than the material being taught. The material in this 
book has been tested and evaluated during more than twenty-five years of 
use with numerous classes of secondary school teachers at The City Col­
lege, The City University of New York. Many valuable suggestions have 
been received and incorporated into this book.

A number of people provided technical support, for which I am pro­
foundly grateful. For creating The Geometer's Sketchpad, drawings (both 
static and interactive), often in most ingenious ways, much credit must go 
to Jan Siwanowicz. David Linker proofread the entire manuscript. In help­
ing develop the Instructor Resources, a group of highly talented students 
prepared some wonderful solutions to the exercises in the book. These 
students included Kamaldeep Gandhi, Seth Kleinerman, Leo Nguyen,
Oana Pascu, Peter Ruse, and Jan Siwanowicz. The technical typing for the 
entire manuscript was done in stellar form by Sandra Finken. Above all, I 
wish to thank the hundreds of students (high school math teachers in 
their own right) who have used part of this book over the past several 
years for their valuable comments about its contents. These comments 
kept me properly focused!

Alfred S. Posamentier



I N T R O D U C T I O N

This book undertakes topics that are beyond the scope of the typical high 
school geometry course, but it treats the topics using elementary methods 
and nomenclature. Thus, the book may be easily understood by interested 
high school students even though it is aimed particularly at the in-service 
or pre-service secondary school mathematics teacher. The use of familiar 
language means that readers do not have to learn entirely new concepts 
and skills, only new uses for their previous knowledge base. Readers are 
provided an opportunity to extend their knowledge of Euclidean geome­
try in a style to which they are accustomed. The book also provides 
secondary teachers with a wealth of ideas to enrich their instructional 
program.

Chapter 1 reviews the essentials of the high school geometry course. To 
focus a critical eye on this material, we inspect some fallacies in elemen­
tary Euclidean geometry. The discovery of these fallacies sharpens geomet­
ric awareness. Chapters 2 and 3, linked by the concept of duality, deal 
with the often-neglected topics of concurrency and collinearity. Theorems, 
rather difficult to prove in the high school geometry course, will now be 
much easier to prove. Moreover, experimenting with the figures on the 
CD-ROM will show that what is stated as a theorem proves to be true as 
the diagram is manipulated to demonstrate a multitude of possible cases. 
This is what a proof typically establishes. Facility with concurrency and 
collinearity enables a simple development of some other interesting theo­
rems explored in these chapters.

In the next two chapters, our attention turns to the triangle. Chapter 4 
begins our discussion by looking at some rather unusual points in a tri­
angle. Chapter 5 introduces properties of various interior segments of 
triangles (often referred to as Cevians), including angle bisectors and 
medians. Other triangle properties not previously encountered are also 
considered here.

The treatment of quadrilaterals in high school is limited to the special 
quadrilaterals: parallelogram, rhombus, rectangle, square, and trapezoid. 
Our study of quadrilaterals in Chapter 6 assumes a knowledge of the 
properties of these special quadrilaterals. We begin with the general con­
vex quadrilateral and eventually turn to the cyclic (or inscribed) quadri­
lateral. With the aid of Ptolemy’s theorem, we establish many interesting 
geometric relationships.

The only two circles associated with a triangle in the high school geome­
try course are the circumscribed and inscribed circles. While the inscribed 
circle is tangent to the three sides of the triangle and lies inside the trian­
gle, its analog, the escribed circle (or excircle) of a triangle, is also tangent

VII



VIII INTRODUCTION

to the three sides of the triangle (or their extensions) but lies outside the 
triangle. The inscribed circle and the three escribed circles of a triangle 
are known as the equicircles of the triangle. Chapter 7 explores some of 
the many relationships that involve the equicircles of a triangle.

A popular topic in advanced Euclidean geometry, with a host of surpris­
ing properties, is the nine-point circle, Midway through the investigation 
of the nine-point circle in Chapter 8, we digress to study some properties 
of the altitudes of a triangle and their associated orthic triangle that will 
permit us to develop further properties of the nine-point circle.

One of the most creative problem-solving challenges in geometry can be 
found in constructing triangles given the measures of three parts of the 
triangle, such as the lengths of its three medians, the lengths of its three 
altitudes, or the measures of two of its angles and the length of the 
included side. Such construction problems are presented in Chapter 9, 
with many illustrative examples and plenty of exercises. Requiring 
nothing more advanced than a knowledge of high school geometry, 
these construction problems offer ample opportunity to challenge even 
the best geometricians!

The “problem of Apollonius” has intrigued generations of mathematicians. 
It is presented in Chapter 10 as an application of circle constructions that 
follow certain requirements, such as passing through a given point and/or 
tangent to a given line and/or tangent to a given circle. While some of 
these constructions may be rather trivial, others are extremely challenging 
and were the focus of mathematicians in the seventeenth and eighteenth 
centuries.

The mission of the final chapter is to demonstrate a connection between 
Euclidean geometry and other branches of mathematics. This is done 
through the study of the golden section and Fibonacci numbers. Chapter 11 
merely scratches the surface of an extremely rich topic. The extended exer­
cise section should serve as a springboard for further investigation.
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REVIEW OF BASIC CONCEPTS OF GEOMETRY

Because the high school geometry course contains many theorems that are not 
easily remembered, we should take a brief look at some of the more important 
theorems. Our approach here, however, will differ from that used in your initial 
exposure to the theorems. We will consider the theorems according to their 
respective topics, not necessarily in the sequence originally presented but in a 
clear and concise fashion.

I. Quadrilaterals
A. Methods of proving that a quadrilateral is a parallelogram 

To prove that a quadrilateral is a parallelogram, prove that:
1. Both pairs of opposite sides are parallel.
2. Both pairs of opposite sides are congruent.
3. One pair of sides are both congruent and parallel.
4. Both pairs of opposite angles are congruent.
5. One pair of opposite angles are congruent and one pair of opposite 

sides are parallel.
6. The diagonals bisect each other.

B. Methods of proving that a quadrilateral is a rectangle 
To prove that a quadrilateral is a rectangle, prove that:

1. It has four right angles.
2. It is a parallelogram with one right angle.
3. It is a parallelogram with congruent diagonals.

C. Methods of proving that a quadrilateral is a rhombus 
To prove that a quadrilateral is a rhombus, prove that:

1. It has four congruent sides.
2. It is a parallelogram with two consecutive sides congruent.
3. It is a parallelogram in which a diagonal bisects an angle of the 

parallelogram.
4. It is a parallelogram with perpendicular diagonals.

D. Methods of proving that a quadrilateral is a square 
To prove that a quadrilateral is a square, prove that:

1. It is a rectangle with two consecutive sides congruent.
2. It is a rectangle with a diagonal bisecting one of its angles.
3. It is a rectangle with perpendicular diagonals.
4. It is a rhombus with one right angle.
5. It is a rhombus with congruent diagonals.
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E. Methods of proving that a trapezoid is isosceles 
To prove that a trapezoid is isosceles, prove that:

1. Its nonparallel sides are congruent.
2. The base angles are congruent.
3. The opposite angles are supplementary.
4. Its diagonals are congruent.

Note: We define a trapezoid as a quadrilateral with exactly one pair of 
opposite sides parallel. We do, however, note that some texts consider a 
trapezoid to be a quadrilateral with at least one pair of opposite sides 
parallel.

II. Midline of a Triangle
A. The midline of a triangle is the line segment joining the midpoints of two 

sides of the triangle.

B. The midline of a triangle is parallel to the third side of the triangle.

C. The midline of a triangle is half as long as the third side of the triangle.

D. If a line containing the midpoint of one side of a triangle is parallel to a 
second side of the triangle, then it also contains the midpoint of the third 
side of the triangle.

III. Similarity
A. When a line is parallel to one side of a triangle

1. If a line parallel to one side of a triangle intersects the other two 
sides, then it divides these two sides proportionally.

2. If a line divides two sides of a triangle proportionally, then the line is 
parallel to the remaining side of the triangle.

B. Proportionality involving angle bisectors
1. An interior angle bisector of any triangle divides the side of the trian­

gle opposite the angle into segments proportional to the adjacent 
sides. In Figure 1-1, AD is an angle bisector of AABC,

CD _  CA 
DB ~ AB

a INTERACTIVE 1-1

You will be able to change the 
size of the triangle by grabbing 

vertex A  B, or C and see that the 
ratio is constant.

FIGURÉ M
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FIGURE 1-2

2. An exterior angle bisector of a triangle determines, with each of the 
other vertices, segments along the line containing the opposite side of 
the triangle that are proportional to the two remaining sides. In Figure 
1-2, AD is an exterior angle bisector of AABC.

CD _ CA 
DB ~ AB

INTERACTIVE 1-2

You will be able to change the 
size of the triangle by grabbing 

vertex A  B, or C and see that the 
ratio is constant.

C. Methods of proving triangles similar
1. If two triangles are similar to the same triangle, or to similar triangles, 

then the triangles are similar to each other.
2. If two pairs of corresponding angles of two triangles are congruent, 

then the triangles are similar.
3. If two sides of one triangle are proportional to two sides of another 

triangle and the angles included by those sides are congruent, then the 
triangles are similar.

4. If the corresponding sides of two triangles are proportional, then the 
two triangles are similar.

D. Mean proportionals in a right triangle
1. The altitude to the hypotenuse of a right triangle divides the 

hypotenuse so that either leg is the mean proportional between the 
hypotenuse and the segment of the hypotenuse adjacent to that leg.

2. The altitude to the hypotenuse of a right triangle is the mean propor­
tional between the segments of the hypotenuse.

IV. Pythagorean Theorem
A. The sum of the squares of the lengths of the legs of a right triangle equals 

the square of the length of the hypotenuse.

B. Converse of the Pythagorean theorem: If the sum of the squares of the 
lengths of two sides of a triangle equals the square of the length of the 
third side, then the angle opposite this third side is a right angle.

C. In an isosceles right triangle:
1. The hypotenuse is v2  times as long as a leg.

Vi
2. Either leg is times as long as the hypotenuse.

D. In a 30-60-90 triangle:
1. The side opposite the angle of measure 30"̂  is half as long as the 

hypotenuse.
2. The side opposite the angle of measure 60° is ---- times as long as the

hypotenuse. 2 V 3
3. The hypotenuse is ------times as long as the side opposite the angle of

measure 60°.
4. The longer leg is V3 times as long as the shorter leg.
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INTERACTIVE 1-3

You will be able to change the 
size of the triangle by grabbing 

vertex A  B, or C and see that the 
Pythagorean inequality is 

maintained.

E. Pythagorean inequalities
1. In an acute triangle (Figure 1-3), the square of the length of any side 

is less than the sum of the squares of the lengths of the two 
remaining sides.

a" + fc" >  c"

2. In an obtuse triangle (Figure 1-4), the square of the length of the 
longest side is greater than the sum of the squares of the lengths of 
the two shorter sides.

a  ̂ ^

INTERACTIVE 1-5

You will be able to change the 
size of the triangle or the 

polygons and see that the 
formula still holds.

F. Extension of the Pythagorean 
theorem: If similar polygons 
are constructed on the sides of 
a right triangle (with corre­
sponding sides used for a side 
of the right triangle), then the 
area of the polygon on the 
hypotenuse equals the sum of 
the areas of the polygons on 
the legs (see Figure 1-5).

area I + area II = area III

G. Pythagorean triples 
When FIGURE 1-5

2 2 a = m -  n
b = 2mn
c = + n^

where m > n.
Some common primitive Pythagorean triples are:

(3, 4, 5) (5, 12, 13) (7, 24, 25)
(9,40,41) (11,60,61) (12,35,37)
Note that any primitive Pythagorean triple generates an infinite number of 
new Pythagorean triples by all of the terms being multiplied by the same 
natural number.

(8, 15, 17) 
(20, 21, 29)
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V. Circle Relationships
A. Angle measurement with a circle

1. The measure of an inscribed angle is one-half the measure of its 
intercepted arc.

2. The measure of an angle formed by a tangent and a chord of a circle 
is one-half the measure of its intercepted arc.

3. The measure of an angle formed by two chords intersecting in a point 
in the interior of a circle is one-half the sum of the measures of the 
arcs intercepted by the angle and its vertical angle.

4. The measure of an angle formed by two secants of a circle intersect­
ing in a point in the exterior of the circle is equal to one-half the 
difference of the measures of the intercepted arcs.

5. The measure of an angle formed by a secant and a tangent to a circle 
intersecting in a point in the exterior of the circle is equal to one-half 
the difference of the measures of the intercepted arcs.

6. The measure of an angle formed by two tangents to a circle is equal 
to one-half the difference of the measures of the intercepted arcs.

7. The sum of the measure of an angle formed by two tangents to a 
circle and the measure of the closer intercepted arc is 180°.

An alternate way to view the seven statements above is as follows:
1. When the vertex of an angle is a point of a circle, the measure of the 

angle is one-half the measure of the intercepted arc (see Figure 1-6).

mZ-APB = -  X  
2

INTERACTIVE 1-6

You will be able to drag points A, 
B, and Pto change the size of 

the angle and see that it is still 
one-half the measure of the 

intercepted arc.
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>)l INTERACTIVE 1-7

You will be able to drag points A, 
B, C, and D to change the size of 

the angles and see that the 
formula still holds.

When the vertex of an angle 
is in the interior of a circle 
(Figure 1-7), the measure of 
the angle is one-half the sum 
of the measures of the inter­
cepted arcs.

mAAPD = ^{x + y)

Q- INTERACTIVE 1-8

You will be able to drag points A, 
B, C, and D to change the size of 

the angles and see that the 
formula still holds.

3. When the vertex of an angle is in the exterior of a circle, the measure 
of the angle is one-half the difference of the measures of the inter­
cepted arcs (see Figure 1-8).

mAAPB = ^ (x  — y)

B. Methods of proving four points coney die (a cyclic quadrilateral is a 
quadrilateral whose vertices are concyclic, that is, lie on the same circle)

1. If one side of a quadrilateral subtends congruent angles at the two 
consecutive vertices, then the quadrilateral is cyclic. Quadrilateral 
ABCD in Figure 1-9 is cyclic because AD AC =  ACBD.

2. If a pair of opposite angles of a quadrilateral are supplementary, then 
the quadrilateral is cyclic.
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INTERACTIVE M O

You will be able to drag points A, 
B, and Cto change the position 

of the tangent and secant and 
see that the formula still holds.

o INTERACTIVE M l

You will be able to drag points A, 
B, and Cto change the position 
of the secants and see that the 

formula still holds.

o INTERACTIVE M 2

You will be able to drag points A  
B, C, and D to change the 

position of the chords and see 
that the formula still holds.

C. Tangent, secant, and chord segments
1. Two tangent segments that have the same 

endpoint in the exterior of the circle to 
which they are tangent are congruent.

2. If a secant segment and a tangent seg­
ment to the same circle share an end­
point in the exterior of the circle, then 
the square of the length of the tangent 
segment equals the product of the 
lengths of the secant segment and its 
external segment (see Figure 1-10).

{APf = iPQiPB)

3. If two secant segments of the same circle 
share an endpoint in the exterior of the 
circle, then the product of the lengths of 
one secant segment and its external seg­
ment equals the product of the lengths 
of the other secant segment and its 
external segment (see Figure 1-11).

(AP){BP) = {DP){CP)

4. If two chords intersect in the interior of a 
circle, thus determining two segments in 
each chord, the product of the lengths of 
the segments of one chord equals the prod­
uct of the lengths of the segments of the 
other chord (see Figure 1-12).

{AP){BP) = (DP)(CP)

FIGURE M O

FIGURE M l

VI. Concurrency
A. The perpendicular bisectors of the sides of a triangle are concurrent at a 

point that is the center of the circumscribed circle.

B. The lines containing the three altitudes of a triangle are concurrent at a 
point called the orthocenter of the triangle.

C. The medians of a triangle are concurrent at a point of each median 
located two-thirds of the way from the vertex to the opposite side. This 
point is called the centroid of the triangle and is the center of gravity of 
the triangle.

D. The angle bisectors of a triangle are concurrent at a point that is the cen­
ter of the inscribed circle.
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o . INTERACTIVE 1-13

You will be able to drag points A  
B, and CXo change the size of 

the triangle and see that the 
formula still holds.

VII. Inequalities
A. The measure of an exterior 

angle of a triangle is greater 
than the measure of either 
remote interior angle. For 
AABC in Figure 1-13:

m/-ACD > m/-A 
mAACD > m/-B

FIGURE 1-13

o. INTERACTIVE 1-14

You will be able to drag points A, 
B, and Cto change the size of 

the triangle and see that the 
inequality still holds.

B. If two sides of a triangle are 
not congruent, then the 
angles opposite those sides 
are not congruent, the angle 
with greater measure being 
opposite the longer side. For 
AABC (Figure 1-14):

If AC > ABy then 
mZ.B >  mAC.

o -y INTERACTIVE 1-15

You will be able to drag points A, 
B, and Cto change the size of 

the triangle and see that the 
relationships still hold.

C. If two angles of a triangle are 
not congruent, then the sides 
opposite those angles are not 
congruent, the longer side 
being opposite the angle with 
greater measure. For AABC 
(Figure 1-15):

If mAA > mACy then 
BC > AB,

INTERACTIVE 1-16

You will be able to drag points A, 
B, and Cto change the size of 

the triangle and see that the 
relationships still hold.

D. The sum of the lengths of 
any two sides of a triangle is 
greater than the length of the 
third side. For AABC 
(Figure 1-16):

AB + A O  BC 
AB -h B O  AC 
AC B O  AB
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INTERACTIVE 1-17

You will be able to drag points A  
B, C, D, £, and Fto change the 

size of the triangles and see that 
the inequality still holds.

INTERACTIVE 1-18

You will be able to drag points A, 
B, C, D, E, and Fto change the 

size of the triangles and see that 
the inequality still holds.

E. If two sides of a triangle are 
congruent respectively to two 
sides of a second triangle and 
the measure of the included 
angle of the first triangle is 
greater than the measure of 
the included angle of the 
second triangle (see Figure 
1-17), then the measure of 
the third side of the first triangle 
is greater than the measure of the 
third side of the second triangle.

liAB = DE and BC = EF and 
m/-B > m/-Ey then AC >  DF.

R If two sides of one triangle 
are congruent respectively to 
two sides of a second triangle 
and the measure of the third 
side of the first triangle is 
greater than the measure of 
the third side of the second 
triangle (see Figure 1-18), 
then the measure of the 
included angle of the first trian­
gle is greater than the measure of 
the included angle of the second 
triangle.

If AB = DE and BC — EF and 
AC > DFy then mAB > mAE.

G. In an acute triangky the square of the length of any side is less than the 
sum of the squares of the lengths of the two remaining sides.

H. In an obtuse triangley the square of the length of the longest side is greater 
than the sum of the squares of the lengths of the two shorter sides.

VIII. Area
A. The area of a square equals the square of the length of a side.

area of square =

B. The area of a square equals one-half the square of the length of one of its 
diagonals.

1 2
area of square ~ ~d
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C. The area of any right triangle equals one-half the product of the lengths 
of its legs.

area of right triangle = • €2 )

D. If two triangles have congruent bases, then the ratio of their areas equals 
the ratio of the lengths of their altitudes.

E. If two triangles have congruent altitudes, then the ratio of their areas 
equals the ratio of the lengths of their bases.

F. The area of any triangle equals one-half the product of the lengths of any 
two sides multiplied by the sine of the included angle.

area of triangle = • sin ¿.C

G. The ratio of the areas of two triangles that have one pair of congruent 
corresponding angles (see Figure 1-19) equals the ratio of the products of 
the lengths of the pairs of sides that include the angles.

For AABC and ADEF, AB =  AE.
areaAABC {AB){BC)

Therefore
area ADEF (DE) (EE) ’

INTERACTIVE M 9

You will be able to drag points A  
B, C, D, £, and Fto change the 

size of the triangles and see that 
the ratios remain constant.

C E

FIGURE 1-19

H.The area of an equilateral triangle equals---- times the square of the
length of a side.

. . .  , . , s^V3area or equilateral triangle = —-—

V3
I. The area of an equilateral triangle equals times the square of the 

length of an altitude.

area of equilateral triangle = —-—
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J. The area of any triangle with sides of length a, b, and c is 

V 5 (s -  fl)(s -  b){s -  c), where s =  ̂ ^  ̂ (s denotes the

semiperimeter).

K. The area of a parallelogram equals the product of the lengths of a base 
and the altitude to that base.

area of parallelogram = b • h

L. The area of a rhombus equals one-half the product of the lengths of its 
diagonals.

area of rhombus = ~(di * <¿2 )

M. The area of a trapezoid equals one-half the product of the length of the 
altitude and the sum of the lengths of the bases.

area of trapezoid = 2̂ ) = ?2 (median)

N. The area of a regular polygon equals one-half the product of the lengths 
of the apothem and the perimeter.

area of regular polygon = - a  • p

O. The area of a sector with radius r and a central angle of measure n equals 
n

P. The ratio of the areas of two similar triangles equals the square of their 
ratio of similitude.

Q. The ratio of similitude of any pair of similar triangles equals the square 
root of the ratio of their areas.

R. The ratio of the areas of two similar polygons equals the square of their 
ratio of similitude.

S. The ratio of similitude of any pair of similar polygons equals the square 
root of the ratio of their areas.

Note: The ratio of similitude can be found by taking the ratio of any pair 
of corresponding sides, altitudes, medians, angle bisectors, or any other 
line segments.
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LEARNING FROM GEOMETRIC FALLACIES

George Polya, one of the great mathematicians of our time, said, '̂Geometry is the 
science of correct reasoning on incorrect figures/' We will demonstrate in this 
section that making conclusions based on ‘‘incorrect” figures can lead us to 
impossible results. Even the statements of the fallacies sound absurd. Neverthe­
less, follow the “proof” of each statement and see if you can detect the mistake.

Fallacy 1, one of the more popular fallacies in Euclidean geometry, is based 
on the lack of a particular concept in Euclid’s Elements.

I FALLACY 1 Any scalene triangle is isosceles.

‘© r o o f ’

To prove that scalene triangle ABC is isosceles, draw the bisector of Z.C and the
perpendicular bisector of AB. From their point of intersection, G, draw perpen-  ̂  ̂ ^ ^
diculars to AC and CB , meeting these sides at points D and F, respectively.

It should be noted that there are four possibilities for the above description 
for various scalene triangles:

Figure 1-20, where CG and GE meet inside the triangle;
Figure 1-21, where CG and GE meet on AB;
Figure 1-22, where CG and ^ m e e t  outside the triangle but the perpendiculars 
GD and GF fall on AC and CB;
Figure 1-23, where CG and GE meet outside the triangle but the perpendiculars 
GD and GF meet CA and CB outside the triangle.

The “proof” of the fallacy can be done with any of these figures. Follow the 
“proof” on any (or all) of the figures.

GIVEN: AABC is scalene.
PROVE: AC = BC (or AABC is isosceles)

Because AACG = ABCG and right angle CDG = right angle CFG,
ACDG =  A CFG (SAA). Therefore DG = EG and CD = GF. Because AG = BG 
(a point on the perpendicular bisector of a line segment is equidistant from 
the endpoints of the line segment) and Z.ADG and Z.BFG are right angles.
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FIGURE 1-23

ADAG = AFBG (hypotenuse-leg). Therefore DA = FB. It then follows that 
AC = BC (by addition in Figures 1-20, 1-21, and 1-22, and by subtraction in 
Figure 1-23). •

At this point you may be somewhat disturbed, wondering where the error 
was committed that permitted this fallacy to occur. By rigorous construction, you 
will find a subtle error in the figures:

a. The point G must be outside the triangle.
b. When perpendiculars meet the sides of the triangle, one will meet a side 

between the vertices, while the other will not.

o INTERACTIVE 1-24

Drag points A, B, and Cto 
change the shape of the 

triangle. Note that either D or F, 
but not both, always lies outside 

the triangle.

In general terms used by Euclid, this 
dilemma would remain an enigma 
because the concept of betweenness 
was not defined in his Elements. In 
the following discussion, we will 
prove that errors exist in the falla­
cious proof on page 13. Our proof 
uses Euclidean methods but assumes 
a definition of betweenness.

Begin by considering the cir- 
cumcircle of AABC (see Figure 
1-24). The bisector of AACBjnust 
contain the midpoint G of AB 
(because AACG and ABCG are 
congruent inscribed angles). The 
perpendicular bisector of AB must 
bisect AB and therefore must pass
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through point G. Thus the bisector of ¿.ACB and the perpendicular bisector of 
AB intersect outside the triangle at point G. This eliminates the possibilities illus­
trated in Figures 1-20 and 1-21.

Now consider inscribed quadrilateral ACBG. Because the opposite angles of 
an inscribed (or cyclic) quadrilateral are supplementary, mACAG + m/-CBG = 
180°. If /-GAG and ACBG were right angles, then CG would be a diameter and 
AABC would be isosceles. Therefore, because A ABC is scalene, AC AG and 
ACBG are not right angles. In this case one angle must be acute and the other 
obtuse. Suppose ACBG is acute and A GAG is obtuse. Then in ACBG the altitude 
on CB must be inside the triangle, while in obtuse triangle GAG the altitude on 
AC must be outside the triangle. (This is usually readily accepted without proof 
but can be easily proved.) The fact that one and only one of the perpendiculars 
intersects a side of the triangle between the vertices destroys the fallacious '‘proof.”

I FALLACY 2 Two distinct perpendiculars can be drawn to a given line from a given 
external point.

" © ro o f ’ To “prove” this statement, draw any two circles, O and O', intersecting at points 
P and N  (Figure 1-25). Draw diameters PA and PB, Then draw AB intersecting 
circle O at point D and intersecting circle O' at point C. APDA and APCB are 
right angles because they are inscribed in semicircles of circles O and O', respec­
tively. Thus PC and PD are each perpendicular to AB. Having two distinct lines 
perpendicular to a third line implies that the sum of the measures of the angles 
of a triangle (in this case APCD) must be greater than 180°—quite disturbing in 
Euclidean geometry! •

The fallacy here is created by the improper intersections of AB and the two 
circles. We can easily prove that the intersection of AB and the two circles is in 
fact at point N.
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To do this we draw AN, RN, and PN (see Figure 1-26). Because /-ANP and 
ABNP are inscribed in semicircles, they are both right angles. Euclid’s fifth pos­
tulate ensures us that there exists a unique perpendicular to a given line through 
a given point on the line. Therefore the perpendiculars to PN at point N, AN  
and BN, are simply segments of the same line, ANB . This proves that when AB 
was first drawn it should have intersected the circles not in two points, C and D, 
but rather at one point, N, the point of intersection of the circles. Without the 
existence of points C and D, the fallacious proof could not have been produced."^

a INTERACTIVE 1-26

Drag point P and centers 0 
and O' to change the position of 

the circles.

I FALLACY 3  

“© r o o f ”

A right angle has the same measure as an obtuse angle.

We begin our “proof” by drawing a 
rectangle ABCD, We then draw CE 
outside the rectangle so that 
AD = CE. Point P is the intersection 
of the perpendicular bisectors of AE 
and CD, which intersect AE and CD 
at points M and N, respectively. 
Drawing DPy APy £P, and CP com­
pletes the diagram for this “proof” 
(Figure 1-27).

Because AP = EP and DP = CP 
(every point on the perpendicular 
bisector of a line segment is FIGURE 1-27

 ̂ Those who are disturbed about disproving the fallacy with the very same postulate that 
demonstrated the fallacy (i.e., that two distinct lines cannot be perpendicular to a third 
line) may wish to use Playfair’s postulate to show that AN  and BN are each parallel to 
0 0 '  and hence must, in fact, be part of the same line, ANB.
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INTERACTIVE 1-28

Drag points B to change the 
shape of the rectangle. Drag 

point E to reposition it.

equidistant from the endpoints of the line segment), we have AECP =  AADP 
(SSS) and mAECP = mAADP.

However, because APDC is isosceles, mADCP = mACDP. By subtraction, 
obtuse AECD has the same measure as AADQ a right angle! •

You may wish to consider the case when P is on DC or when P is in rectan­
gle ABCD. Similar arguments hold for these cases.

By now you may find that an accurate construction is the best way to isolate
the error in the “proof.” Rather than attempt to discover the error by construction,
we will analyze the situation that now exists. We notice that NP is also the perpen- —   ̂  ̂ ^ ^  
dicular bisector of AB. Consider AABE. Because NP and MP are the perpendicular
bisectors of AB and A£, respectively, they intersect at the center, P, of the circumcir-
cle of AABE. Therefore, point P must also be on the perpendicular bisector of BE.

By construction, we have BC = EC. Therefore point C must also lie on the 
perpendicular bisector of BE (see Figure 1-28). PC is the perpendicular bisector 
of BE as well as the interior angle bisector of ABCE. A reflex angle is an angle of 
measure greater than 180° and 
less than 360°. Consider reflex 
angle ECPy whose measure is 
mAPCR + mARCE. Thus EP 
in AECP is placed so that it is 
on the side of point C outside 
the rectangle. This makes the 
last step of our “proof” incor­
rect because mAECP ^  
mAECD + mADCP.

We must keep in mind 
that Euclid did not use the 
terms inside and outside in 
generalized reasoning. He 
used these words only in 
reference to specific diagrams.
We are able to discuss the 
fallacy by using these terms 
in general.

FIGURE 1-28

I FALLACY 4  

“Q r o o f ”

Every point inside a circle is on the circle.

Consider circle O with point P inside the circle. Choose point R on OP so that 
(OP)(OR) = r̂ , whjre r is the length of the radius of circle O. Let the perpen­
dicular bisector of PR intersect circle O at points S and T; let M be the 
midpoint of PR (Figure 1-29).

OP = O M -  MP
OR = O M M R  = O M M P

(I)
(II)
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By multiplying (I) and (II):

iOP){OR) = (OM -  MP){OM + MP) 
(OP)(OR) = (O M f -  {MPf

By the Pythagorean theorem:

{OM f + {M Sf = {OSf

or:

(OMY = {OSf -  {Msy

Also:

or:

(MPf + {MsY = {PsY

(mpY = {PsY -  {MsY

Now substitute (IV) and (V) into (III) to get:

(OPYOR) = [(os)̂  -  {MsY] -  [{PsY -  {MsY] 
{OP){OR) = {osY -  {PsY

Because OS is the radius of circle O:

{OSY = Y = iOP)(OR)

(III)

(IV)

(V)

(VI)

(VII)



Now substitute (VII) into (VI):

(OP)(OR) = {OP)(OR) -  {PSf

Therefore PS = 0, which implies that point P must be on the circle! •

To discover the fallacy in this “proof,” we let OP = a. Therefore OR = —.
a

Because r > a and the square of a real number is positive, (r — >  0. This
can be written as — 2ra + a " > 0 .  Thus > 2ra. Multiplying both sides

of this inequality by we get ^  ^----1- a j  >  r, which is ~(OR + OP) > r, or

OM > r. This implies that point M  must be outside the circle and that points S 
and T do not exist. This destroys the fallacious ‘‘proof.”
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I FALLACY 5 Two segments of unequal length are actually of equal length.

‘̂Q r o o f ’ Consider AABCy with MN \ \ BC 
and MN intersecting AB and AC 
in points M  and N, respectively 
(see Figure 1-^). We will now 
“prove” that BC = M N.

Because MN 11 BC, we have 
BC AB

AAMN  ~  AABC and -----= ------.
MN AM

It then follows that (BC){AM) =
(AB){MN). Now multiply both 
sides of this equality by 
{BC -  MN) to get:

(BC)^(AM) -  {BC){AM){MN) = {AB){MN){BC) -  {AB){MN)^

By adding {BC){AM){MN) — (AB){MN){BC) to both sides, we get:

{BC)\AM) -  {AB){MN){BC) = {BC){AM){MN) -  {AB){MN)^

This equation can be written as:

{BC)[{BC){AM) -  {AB){MN)] = {MN)[{BC){AM) -  (AB){MN)]

By dividing both sides by the common factor [{BC){AM) — {AB){MN)]y we find 
that BC = MN. •

No discussion of mathematical fallacies would be complete without an exam­
ple of a dilemma resulting from division by zero. We committed this mathemati­
cal sin when we divided by zero in the form of [{BC){AM) — (AB)(MN)], which 
was a consequence of the triangles proved to be similar earlier.
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COMMON NOMENCLATURE

Figure 1-31 illustrates some of the details we will consider in this book. We list 
them systematically now, with the general understanding that we may use a sym­
bol ambiguously when we can simplify our work without confusion. Thus we 
may use b to represent either a side of a triangle, its name, or its measure, as the 
context should make clear. The ambiguity reflects our choice and not our igno­
rance—our aim is clarity. The rigor and precision that support the material 
could certainly be supplied, but only with time and space that seem inappropri­
ate in our discussion.

Sides: a, by c
Angles: oiy ¡3, y

Vertices: A, By C
Altitudes: h„y hî y he
Feet of the altitudes: Ĥ , Ĥ ,,
Orthocenter (point of concurrence of altitudes): H
Medians: mi,y nic
Midpoints of sides: M̂ , Myy
Centroid (point of concurrence of medians): G
Angle bisectors:

Feet of angle bisectors: T̂ ,
Incenter (point of concurrence of angle bisectors; 
center of inscribed circle): I
Inradius (radius of inscribed circle): r
Circumcenter (point of concurrence of perpendicular 
bisectors of sides; center of circumscribed circle): O
Circumradius (radius of circumscribed circle): R
Semiperimeter (half the sum of the lengths of the 
sides: |(a  + i? -h c)): s
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E x e r c i s e s

1. Discover the fallacy in the following “proof”: I f two opposite sides of a quadri­
lateral are congruent, then the remaining two sides must be parallel.

“P r o o f” In quadrilateral ABCD, AD =  BC. Construct perpendicular 
bisectors OP and OQ of sides DC and AB at points P and Q, respectively. 
Point N  is on PO . (We let O be the intersection of the two perpendicular 
bisectors of given nonparallels, OP and OQ.) (See Figure 1-32.) Because O 
is a point on the perpendicular bisector of DC, DO =  CO. Similarly,
OA =  OB. We began with AD = BC. Therefore AADO =  ABCO (SSS) 
and mAAOD = mABOC.

We can easily establish that mADOP = mACOP. By addition, 
mAAOP = mABOP. The supplements of these angles are also equal in 
measure: mAAON = mABON. But because AAOQ =  ABOQ (SSS), 
mAAOQ = mABOQ. Because the angle bisector is unique, ON and OQ 
must coincide and the perpendiculars to these must also be parallel. Hence 
AB 11 CD. •

Repeat the “proof” for O outside the quadrilateral. Then repeat the proof for 
O on DC.
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2. Discover the fallacy in the following “proof”: 45° = 60°.

“P r o o f” Construct equilateral triangle ABC. (See Figure 1-33). On 
side AB construct isosceles right triangle ADB with AB as hypotenuse. Lay 
off EB on BC equal in length to BD^ Connect point E to point F, the mid­
point of ADy and extend to meet AB at point G. Draw GD. Construct 
perpendicular bisectors of
GD and GE. Because GD and ^
GE are not parallel, the per­
pendicular bisectors must 
meet at point K. Connect 
point К with points G, Dy £, 
and B.

Because GK = KD and 
GK = KE {г point on the 
perpendicular bisector of a 
line segment is equidistant 
from the ends of a line seg­
ment), KD = KE. We con­
structed DB = EB. Therefore 
AKBD = AKBE (SSS) and 
mAKBD = mAKBE. By 
subtraction, mADBG = 
mAEBG. But mADBG = 45°, 
while mACBG = 60°; thus 
45° = 60°. •

К

FIGURE 1-33

Parallelograms ABGF and ACDE are constructed on sides AB and AC of 
AABC (see Figure 1-34). {AABC is any type of triangle.) DE and GE 
intersect at point P. ^ in g  BC as a side, construct parallelogram BCJK so that 
BiC 11 PA and BK = PA. From this configuration. Pappus (a .d . 300) proposed 
an extension of the Pythagorean theorem. He proved that the sum of the 
area of parallelogram ABGF and the area of parallelogram ACDE is equal to 
the area of parallelogram BCJK. Prove this relationship. (Note: You may wish 
to model your proof after Euclid’s proof of the Pythagorean theorem.)

FIGURE 1-34
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4. GIVEN: BE and AD are altitudes (intersecting at H) of AABC, while F, G, 
and K are midpoints of AH, ABy and RC, respectively (see Figure 1-35).

PROVE: A.FGK is a right angle.

B

A

5. A line PQ , parallel to base BC of AAPC, intersects AB and AC at points P 
and Q, respectively (see Figure 1-36). The circle passing through P and 
tangent to AC at Q intersects AB again at point P. Prove that points P, Q, 
C, and P are concyclic.

As you proceed through the rest of this book, you may want to work with 
additional exercises. For this purpose you might use Challenging Problems in 
Geometry by A. S. Posamentier and C. T. Salkind (New York: Dover, 1996).



C H A P T E R

T W O

C O N C U R R E N C Y
O f  L I N E S  I N A

T R I A N G L E

24



INTRODUCTION

In spite of its importance, the concept of concurrency of lines (i.e., three or more 
lines containing a common point) usually gets a light treatment in an elementary 
geometry course because of higher priorities. Acquiring a truly good facility with 
the concept would require that more theorems be explored than time permits in 
the first geometry course. Familiar concurrencies such as the medians, angle 
bisectors, and altitudes of a triangle are mentioned but not often established by 
proof. Introducing a few new theorems makes the topic of concurrency quite 
simple and presents a new vista in Euclidean geometry. This chapter begins by 
demonstrating the importance of establishing concurrency. With the help of an 
important theorem, first published by Giovanni Ceva in 1678, we present a vari­
ety of interesting relationships and theorems. You will soon see how simply some 
previously difficult theorems can be proved.

Because we want to show the importance of concurrency, let us consider the 
following problem:

Two wires are placed in straight lines meeting in an inaccessible region 
(Figure 2-1). How would you locate the proper placement for a wire that 
is to bisect the angle formed by the two wires without touching the inac­
cessible region?

B

25
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Although there are many possible methods of solution to this problem, we chose 
the following solution for a reason that will soon become clear.

©  olution Draw any line through AB and CD , intersecting them at points E and F, respec­
tively (see Figure 2-2). Construct the bisectors of Z.AEF and Z.CFE, which meet 
at point /. Suppose APEF were complete. The bisector of Z.P would then have to 
contain point 7 because the angle bisectors of a triangle are concurrent.

Repeat this process for any other line GH that meets AB and CD at points 
G and H, respectively (Figure 2-3). This time, bisect LAGH and ACHG. These 
bisectors meet at point K. Once again, we notice that the required angle bisector 
(that of /-P) must contain point K. Because this required angle bisector must 
contain both J and iC, these two points determine our desired line, which is the 
location of the wire to be installed. •

This solution relies heavily on the notion that the angle bisectors of a trian­
gle are concurrent. As we have said, the topic of concurrency in a triangle 
deserves more attention than it usually gets in the elementary geometry course.
In a very simple way, we will prove that the angle bisectors of a triangle are con­
current. First, we must establish an extremely useful relationship.

Recall from elementary geometry that there are many “centers” of a triangle. 
Some examples are:

centroid—the center of gravity of the triangle, determined by the intersec­
tion of the medians;
orthocenter—the point of intersection of the altitudes of the triangle; 
incenter—the center of the inscribed circle of the triangle, determined by 
the intersection of the angle bisectors of the triangle;
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■ circumcenter—the center of the circumscribed circle (or circumcircle), 
determined by the intersection of the perpendicular bisectors of the sides 
of the triangle.

Numerous applications of these triangle centers are considered in the elementary 
geometry course. On occasion, students will consider ‘‘practical” applications that 
rely on the concurrency property of these points. We offered one such application at 
the beginning of this chapter. Yet because the traditional proofs of these concurrency 
relationships are somewhat cumbersome, the relationships are frequently accepted 
without proof With the help of the famous theorem first published"  ̂by the Italian 
mathematician Giovanni Ceva (1647-1734), which bears his name, we will produce 
simple proofs of the concurrency relationships named previously, as well as many 
others.

C EVA'S THEOREM

I THEOREM 2.1 (Ceva’s Theorem) The three lines containing the vertices A, B, and C of AABC 
and intersecting the opposite sides at points L, M, and N, respectively, are

, .,A N  BL CM
concurrent if and only if —  • —  • ---- = 1.

 ̂ NB LC MA

De lineis se invicem secantibus statica constructio (Milan, 1678).
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FIGURE 2-4

To prove this theorem, we must note that there are two possible situations in 
which the three lines drawn from the vertices may intersect the sides and still be 
concurrent. These situations are pictured in Figure 2-4. It is perhaps easier to 
follow the proof with the diagram on the left and verify the validity of the state­
ments with the diagram on the right. In any case, the statements made in the 
proof hold for both diagrams.

Ceva’s theorem is an equivalence (or biconditional) and therefore requires 
two proofs (one the converse of the other). We will first prove that if the three 
lines containing the vertices of AABC and intersecting the opposite sides at points L,

, . ,  ̂ AN BL CM ,, ,
M, and N, respectivelŷ  are concurrent, then = 1. We offer three

proofs. The first (though not the simplest) requires no auxiliary lines.

Q roof I In Figure 2-4, AL, BM, and CN meet at point P. Because AABL and AACL share 
the same altitude (i.e., from point A):

area AABL 
area A ACL

Ж
LC (I)

Similarly:

area APBL 
area APCL

Ж
LC (II)

From (I) and (II):

area AABL _  area APBL 
area AACL area APCL

w y w — y \
A basic property of proportions ------- I provides that:

\  X Z OC 2 /

BL _  area AABL -  area APBL _  area AABP 
LC area AACL -  area APCL area AACP

We now repeat the process, using BM instead of AL:

area ABMC area APMCCM
MA area ABMA area АРМА

(III)
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It follows that:

CM area ABMC — area APMC area ABCP 
MA area ABMA — area АРМА area ABAP 

Once again we repeat the process, this time using CN instead of AL: 

AN  area AACN  area AAPN

(IV)

This gives us:

NB area ABCN area ABPN

AN  area AACN — area AAPN area AACP 
NB (V)area ABCN — area ABPN area ABCP

We now simply multiply (III), (IV), and (V) to get the desired result:

BL CM AN _  area AABP area ABCP area AACP _   ̂ ф
LC MA NB area AACP area ABAP area ABCP

By introducing an auxiliary line, we can produce a simpler proof.

Q r o o f  II Consider Figure 2-4, but add a line containing point A and parallel to BC that  ̂  ̂  ̂ у
intersects CP at point S and BP at point R (see Figure 2-5). The parallel lines 
enable us to establish the following pairs of similar triangles:

AAMR -  ACMB
AM AR 
M C ~  CB

ABNC ~  AANS =^—  = —  
NA SA

Л Л CL LPACLP -  ASAP => —  = —  
SA AP

ABLP ~  ARAP:
R A ~  AP

(I)

(II)

(III)

(IV)
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From (III) and (IV) we get:

This can be rewritten as:

CL
SA

a
BL

RA

RA (V)

By multiplying (I), (II), and (V), we obtain our desired result:

AM BN CL AR CB SA ^
M C ' Na ' B L ~  Cb ' Sa ' R A ~

We rearrange the terms and invert the fractions to get:

AN BL CM , ,  , , .
—  • —  • ---- = 1 (the same as the conclusion of Proof I) •
NB L C M A

By adding two auxiliary lines to the diagrams in Figure 2-4, we are able to 
produce another proof, again using the properties of similar triangles.

G roof III We begin with the diagrams shown in Figure 2-4 but add two lines to each dia­
gram. We draw a line through ĵ oint A and a line through point C each parallel to 
BP and intersecting CP and AP at points S and R, respectively (see Figure 2-6).

AASN -  ABPN : 

ABPL ~  ACRL :

AN _  AS 
NB ~ BP (I)

BL _  BP
(II)LC ~ CR

CA _  RC 
MA ~ PM

N
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This can be written as:

CA =
(RC)(MA)

PM (III)

APCM -  ASCA =f> —  = —
CM _ PM 
CA ~ AS

This can be written as:

From (III) and (IV):

This can be written as:

CA =
(A5)(CM)

PM (IV)

(RC)(MA) {AS){CM)
PM PM

(V)
CM _ RC 
MA ~ AS

To obtain our desired result, we multiply (I), (II), and (V):

N B ^ C ^  M A ~  BP' Cr ' AS ~

To complete the proof of Ceva s theorem, we must now prove the converse 
of the implication proved above; that is, we will now prove that if the lines con­
taining the vertices of AABC intersect the opposite sides in points I, M, and N,

 ̂ AN BL CM , , , ^
respectively, so that----• —  • ----- = I, then these lines, AL, BM, and CN, are
concurrent.

£7% £ ^ ^  ^ ^  ^ ^fj^ ro o i Suppose BM and AL intersect at point R Draw PC and call its intersection 
 ̂  ̂ ^ ^  ^ ^  ^ ^

with AB N \  Now that AL , BM , and CN' are concurrent, we can use the part of 
Cevas theorem proved earlier to state the following:

NB LC MA

Our hypothesis stated that:

AN' ^  CM 
N'B ' L c '  MA

AN BL CM _ 
Nb ‘ L c ‘ M A ~  ^

, AN' AN  . , . . .
Therefore —— = — , so N  and N  must coincide, proving concurrency. < N'B NB t' 7
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APPLICATIONS OF CEVAS THEOREM

One of the best ways to show the usefulness of Ceva’s theorem is to apply it to the 
proof of the concurrenq^ of the various line segments encountered in elementary 
geometry. The simplest application is to prove the concurrency of the medians of a 
triangle. To best appreciate the “power” of Ceva’s theorem, you should first recall the 
conventional method of proving the medians of a triangle concurrent. Suffice it to 
say that it is quite long and complex. Compared to this rather cumbersome proof, 
the method we use here should provoke some excitement about Cevas theorem.

application 1 Prove that the medians of a triangle are concurrent. •

In AABQ ALy BMy and CN are medians (see Figure 2-7). Therefore AN = NB, 
BL = LCy and CM = MA. Multiplying these equalities gives us:

(ANKBDiCM) = (NB){LC)(MA) or ^  ‘ ^  ~  = 1NB LC MA

INTERACTIVE 2-7

Drag vertices A, B, and Cto 
change the shape of the triangle 
and see that the medians always 

meet at one point.

Thus by Ceva’s theorem, AL, BMy and CN are concurrent. <

Again, it would be advisable to compare the conventional proof (that pre­
sented in the context of elementary geometry) for the concurrency of the alti­
tudes of a triangle to the following proof, which uses Cevas theorem.

application  2 Prove that the altitudes of a triangle are concurrent. •

Q roof In AABC, AL, BM, and CN are altitudes. You can follow this proof for both
diagrams of Figure 2-8 because the same proof holds true for both an acute and 
an obtuse triangle.

AANC ~  AAMB = 

ABLA ~  ABN C : 

ACMB ~  ACLA =

AN AC 
M A ~  AB

 ̂N B ~  BC 
CM BC 
LC ~ AC

(I)

(II)

(III)
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INTERACTIVE 2-8

Drag vertices A, B, and (7 to 
change the shape of the triangle 
and see that the altitudes always 

meet at one point.

FIGURE 2-8

Application 3 

Q roof

Multiplying (I), (II), and (III) gives us:

m a ’ n b ' lc  ~ a b ' b c ‘ A C ~  ^

Therefore the altitudes are concurrent (by Cevas theorem). •

The proof that the three angle bisectors of a triangle are concurrent is left as 
an exercise. The following proof should be helpful in working that exercise.

Prove that the bisector of any interior angle of a nonisosceles triangle and the 
bisectors of the two exterior angles at the other vertices are concurrent. •

^ ^  ^ ^
In AABQ AL bisects ABAC and meets BC at point L, BM bisects exterior i.--> <--->
LABE and meets AC at point M, and CN bisects exterior LACF and meets 
AB at point N  (see Figure 2-9).

Because the bisector (AL) of an interior angle of a triangle partitions the 
opposite side proportionally to the remaining two sides of the triangle:

LC ~ AC (I)

An exterior angle bisector partitions the side that it intersects proportionally to the 
remaining sides of the triangle. This property produces the following proportions:

<— > CM BC
(II)For B M : MA AB

i > AN AC
For CN :

NB BC (III)

By multiplying (I), (II), and (III), we get:

^  CM AN AB BC AC 
LC ' m a ’ N B ~  A C ' Ab ' BC
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INTERACTIVE 2-9

Drag vertices A  B, and CXo 
change the shape of the 
triangle and see that the 

indicated bisectors of the angles 
(interior and exterior) always 

meet at one point.

N

M

FIGURE 2-9

^ ^  ^ ^  ^ ^
By Ceva s theorem, we may conclude that AL , BM , and CN are concurrent. •

Sometimes the question of concurrency is a bit disguised, as in the following 
application.

4  In AABCy PQ IIBC and intersects AB and AC at points P and Q, respectively 
(see Figure 2-10). Prove that PC and QB intersect at a point on median AM. •

INTERACTIVE 2-10

Drag vertices A, B, and C to 
change the shape of the triangle; 
drag point Pon AB and see that 

PC and QB always meet at a 
point on AM.
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C ^roof Because PQ || BC:

AP QC _  
PB ~ QC PB* A Q ~

Because AM  is a median, BM = MC. Therefore:

BM _
MC ~

By multiplying (I) and (II), we get:

AP QC BM 
PB * AQ ‘ MC

(I)

(II)

= 1

Thus, by Ceva’s theorem, AM, QB, and PC are concurrent, or QB and PC 
intersect at a point on AM. •

Up to this point, all our applications have been used to prove concurrency.
The following application demonstrates a somewhat different use of Ceva s 
theorem.

Application 5 In AABCy where CD is the altitude to AB and P is any point on DC, AP intersects 
CB at point Q and BP intersects CA at point R (see Figure 2-11). Prove that 
ARDC =  AQDC. •

Q roof Let DR and DQ intersect the line containing C and parallel to AB, at points G 
and H, respectively.

ACGR ~  AADR ^
RA AD
BQ DB

A S D Q ~ A C H Q = > ^  = -

(I)

(II)

H
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We now apply Ceva’s theorem to AABC to get:

CR AD BQ 
Ra ' Db ' QC

Substituting (I) and (II) into (III) gives us:

= 1 (III)

^  ^  D B _  GC _
a d ’ d b  ' C H ~  ̂ CH “  ^

This implies that GC = CH. Thus CD is the perpendicular bisector of GH. 
Hence AGCD =  AHCD, and therefore ¿.RDC = AQDC. •

From the preceding applications, we have seen how Ceva s theorem easily 
enables us to prove theorems whose proofs would otherwise be quite complex. 
Ceva s theorem again demonstrates its usefulness in assisting us in proving an 
interesting point of concurrency in a triangle known as the Gergonne point

THE GERGONNE POINT

A fascinating point of concurrency in a triangle was first established by French 
mathematician Joseph-Diaz Gergonne (1771-1859). Gergonne reserved a distinct 
place in the history of mathematics as the initiator (in 1810) of the first purely 
mathematical journal, Annales des mathématiques pures et appliqués. The journal 
appeared monthly until 1832 and was known as Annales del Gergonne. During 
the time of its publication, Gergonne published about two hundred papers, 
mostly on geometry. Gergonne’s Annales played an important role in the estab­
lishment of projective and algebraic geometry by giving some of the greatest 
minds of the times an opportunity to share information. Here we consider a 
rather simple theorem established by Gergonne that exhibits concurrency and is 
easily proved using Ceva s theorem.

I THEOREM 2.2

Q roof

The lines containing a vertex of a triangle and the point of tangency of the oppo­
site side with the inscribed circle are concurrent. (This point of concurrency is 
known as the Gergonne point of the triangle.)

Circle O is tangent to sides AB, AC, and BC of AABC at points N, M, and 
L, respectively (see Figure 2-12). It follows that AN = AM, BL = BN, and 
CM = CL Each of these equalities can be written as:

CMAN _ ^  ^  _
AM ~  ̂ B N ~   ̂ CL ~ ^
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By multiplying these three fractions, we get:

AN BL CM
a m ’ b n ' cl ~ ^

Therefore:

AN  ^  CM 
b n ’ c l ’ AM ~ ^

By Ceva’s theorem, this equality implies that AL, BM, and CN are concurrent. 
The point of concurrency is the Gergonne point of AABC. •

E x e r c i s e s

1. Prove that the angle bisectors of a triangle are concurrent.

If point P is situated on BC so that 
AB + BP = AC -\- CP, point Q is situated 
on AC so that BC + CQ =_AB + AQ, 
and point R is situated on AB so that 
BC + BR = AC + AR, prove that AP,
BQ, and CR are concurrent (see Figure 
2-13). (This point of concurrency is 
known as the Nagel p o in tof AABC.) *

* Discovered by C. H. Nagel (1803-1882), the point can also be described as the intersec­
tion of the lines from the vertices of a triangle to the points of tangency of the opposite 
escribed circles.
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3. AABC cuts a circle at points £, E\ D, D \ F, and F\ as in Figure 2-14. Prove 
that if AD, BFy and CE are concurrent, then AD', BF\ and CF' are also 
concurrent.

4. In AABC (Figure 2-15),_^,_BM, and CN are concurrent at point P. Points R,
5, and T are chosen on EC, AC, and AE, respectively, so that NR || AC,
LS IIAE, and MT || EC. Prove that AR, E5, and CT are concurrent (at point Q).
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5. In AABC (Figure 2-15), AL, BM, and CN are concurrent at point P. Points 
Uy Vy and W are chosen on AJ5, AC, and BCy respectively, so that LU\\ AC, 
N V II BCy and MW' || AR. Prove that AW, RV, and CU are concurrent (at 
point K).

6. In AABC (Figure 2 -1 ^  A^BM, and CN are concurrent at point K and I, My 
and N are points on BCy AC, and AB, respectively. Points P, R, and Q are 
respective midpoints of AL, CN, and BM. Prove that DP, BQ, and PP are con­
current if D, £, and P are respective midpoints of BC, AC, and AB.

7. In AABC (Figure 2-17), AL, BM, and CN are concurrent at point P Points 
S, Q, and R are midpoints of MN, ML, and NL, respectively. Prove that A S , 
BP, and CQ are concurrent.
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8. In AABC (Figure 2-17), AL, BM, and are concurrent at point R Points S, 
Q, and R are points on MN, ML, and NL, respectively. If LS, MR, and NQ 
are concurrent, prove that AS, BR, and CQ are also concurrent.

9. Circles P, O, and Q are escribed circles of AABC, with the points of tan- 
gency indicated in Figure 2-18. Prove that AD, BE, and CF are concurrent.
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10. Given three circles, nonintersecting, mutually external, and with distinct 
radii, connect the intersection of internal common tangents of each pair of 
circles with the center of the other circle, as in Figure 2-19. Prove that the 
three resulting line segments are concurrent.
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DUALITY

Many statements in geometry involve relationships between points and lines. In a 
statement concerning points and lines in a plane, when the word point is replaced 
by the word line and the word line is replaced by the word point each time these 
words are used in the statement, the newly formed statement is said to be the 
dual of the original statement. Occasionally, other modifications may need to be 
made in order to preserve proper sentence structure. This principle of duality 
was discovered by Charles Julien Brianchon (1785-1864) while using this rela­
tionship on a theorem by Blaise Pascal. We will visit these theorems later in this 
chapter. However, the transition from Chapter 2 to Chapter 3 follows the princi­
ple of duality because concurrency of lines is the dual of collinearity of points. 
The primary focus of this chapter is collinearity.

Let us first familiarize ourselves with the principle of duality. Consider the 
following examples of dual statements:

Statement Dual Statement
1. Two distinct points determine a 1. Two distinct lines determine a

unique line. unique point.
2. Any point contains an infinite num­ 2. Any line contains an infinite num­

ber of lines. ber of points.
3. Only one triangle is determined by 3. Only one trilateral is determined by

three noncollinear points. three nonconcurrent lines.

This last example of duality demonstrates that related words also need to be 
changed when forming the dual of a statement. Specifically, note that collinear 
and concurrent are dual words, as are triangle and trilateral.

Recall Cevas theorem (see Figure 3-1):

43
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INTERACTIVE 3-2

Drag vertices A, B, and Cto 
change the shape of the 

triangle; drag points Pand Q 
and see that Menelaus's 
theorem is always true.

The three lines containing the vertices A, B, and C of AABC and intersecting 
the opposite sides at points I, M, and N, respectively, are concurrent if and 

 ̂ , A N  BL CM

For the most part, the dual of a postulate is also a postulate, and the dual of 
a definition is itself a definition. Thus, if a statement is a theorem, its dual is 
likely to be a theorem as well.’̂ In any case, we would at least have a statement 
that would be a good candidate to be a theorem. A valid proof would be needed 
to establish the statement as a theorem.

This is precisely what we will now investigate. With our knowledge of dual­
ity, we will form the dual statement of Ceva’s theorem. Actually, it was the 
rediscovery of Menelaus of Alexandria's famous but forgotten theorem,^ which 
we will discuss in the next section, that led Giovanni Ceva in the first book of 
his De lineis rectis se invicem secantibus statica constructio (Milan, 1678) to pro­
duce his theorem by the principle of duality. Note the duality relationship 
between the two theorems. \̂ / X / \ /

The three points P, Q, and R on the sides AC , AB , and BC , respectively,
AQ BR CP ±

of AABC (see Figure 3-2) are collinear if and only if — ■ • —  * —  = — 1.
 ̂  ̂ QB RC PA

This statement is in fact a theorem, known as Menelaus's theorem, that is the 
subject of the next section.

FIGURE 3-2

In a geometric system exclusively based on postulates and definitions whose respective 
duals are all true, the dual of every theorem is also a theorem. This claim is easily justified 
by realizing that the proof of the dual of a theorem can be produced by simply replacing 
each statement of the proof of the original theorem by its dual, 
t  During the Dark Ages, much of classical Greek mathematics was lost and forgotten. 
t  The reason for the negative sign is explained in the proof of this theorem.
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MENELAUS'S THEOREM

Menelaus of Alexandria, in about a .d . 100 in a work titled Sphaerica, produced 
the well-known plane version of the theorem that we will present here. He used 
the plane version to develop the spherical analogue,which was the purpose of 
his treatise. As we have mentioned, this theorem, which today bears Menelaus’s 
name, did not become popular until it was rediscovered by Giovanni Ceva as a 
part of his work in 1678.

THEOREM 3.1
^ ^  ^ ^

(Menelaus^S theorem) The three points P, Q, and R on the sides AC, AB,
1 - Л Г А Л  11. .r 1 1 ./.TlQ BR CPand BC, respectively, of /лАВС are collinear if and only i f -----• —  • —  = — 1.

^  ̂  ̂ QB RC PA

O roof I

Like Ceva’s theorem, Menelaus’s theorem is an equivalence and therefore 
requires proofs for each of the two statements (converses of each other) that 
comprise the entirê  theorem. We will first prove that if the three points P, Q, and
R on the sides AC, AB, and BC,, respectively, of AABC are collinear, then 
AQ BR CP
TT;: * ~ L We offer two proofs of this part of Menelaus’s theorem.
QB RC PA ^ ^

Draw a line containing C, parallel to AB and intersecting PQR (or QPR) at 
point D (see Figure 3-3).

ADCR ~  AQBR ^  ^  —
QB BR
DC

or DC =

APDC ~  APQA => —  = —  or DC = 
AQ PA

iQB){RC)
BR

(AQKCP)
PA

(I)

(II)

* The spherical analogue to Theorem 3.1 for spherical triangle ABC is 
sin AQ sin BR sin CP _  
sin QB sin RC sin PA
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Erom (I) and (II), we get:

(QB){RC) _  {AQ)(CP)
BR PA

or {QB)(RC){PA) = {AQ){CP){BR)

This gives us;

AQ BR CP _ 
Qb ' R C ' P A ~  ^

By taking direction into account in the left-hand diagram of Figure 3-3, we
. AQ BR , CP , . j j.

see that , — , and —  are each negative ratios; in the right-hand diagram of

BR . . , AQ  ̂CP . . . „
Figure 3-3, IS a negative ratio, whereas and —  are positive ratios. Because

in each case there is an odd number of negative ratios:

AQ BR CP 
Qb ’ R C ‘ PA ~ ^

Q roof II Once again we begin by assuming collinearity of P, Q, and R. Draw BM ± PR, 
AN  J_ PR, and CL 1  PR (see Figure 3-4).

AQ AN
A B M Q ~ A A N Q .^ ^  = -

ALCP ~  ANAP => —  = ^  
PA AN
BR BM

AMRB ~  ALRC = > -  = -—  
RC LC

By multiplying (I), (II), and (III), we get, numerically:

AQ CP BR AN LC BM 
q b ’ p a ' R C ~  Bm ‘ a n ’ LC

=  I

(I)

(II)

(III)
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AQ CP BR
In the left-hand diagram of Figure 3-4, ■—  is negative, —  is negative, and —  is 
negative. Therefore:

Qb  ' pa  ' RC ~ ^

AQ CP BR
In the right-hand diagram of Figure 3-4, ■—  is positive, —  is positive, and —  is 
negative. Therefore:

q b ' p a ' RC ~ ^

To complete the proof of Menelaus's theorem, we must now prove the con­
verse of the theorem we just proved. We will prove that if the three points P, Q,

^ ^  ^ ^  ^ ^  -^Q PR CPand R are on the sides AC, AP, and BC, respectively, and i f —----- — — -  = -  1,
then points P, Q, and R are collinear. QB RC PA

Q roof In Figure 3-2, let the line containing points R and Q intersect AC at P'. Using 
the portion of the theorem just proved, we know that:

AQ BR CP' 
QP ’ PC ’ PA

However, our hypothesis tells us that:

AQ BR CP 
QB* R c '  PA

=  - 1

=  - 1

CP' CP
Therefore —— = — which indicates that P and P' must coincide. This proves 

PA PA
the collinearity. •

Menelaus’s theorem provides us with a useful method for proving points 
collinear.
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APPLICATIONS OF MENELAUS'S THEOREM

Before investigating other famous theorems that can be proved using Menelaus s 
theorem, we will consider a few applications of Menelaus’s theorem. Each of 
these unnamed theorems presents some very interesting results that are very 
easily proved using Menelaus’s theorem.

a p p l i c a t i o n  1 Prove that the interior angle bisectors of two angles of a nonisosceles triangle
and the exterior angle bisector of the third angle meet the opposite sides in three 
collinear points. •

Q roof In AABC, BM and CN are the interior angle bisectors, while AL bisects the
exterior angle at point A (see Figure 3-5). Because the bisector of an angle (inte­
rior or exterior) of a triangle partitions the opposite side proportionally to the 
two remaining sides, we have:

CL _ AC
MC ~ BC N A ~  AC BL ~ AB

Therefore, by multiplication:

AM BN O L _ M  ^
MC* NA^ B L ~  BC^ A c '  A B ~

However, because ^  = —— : 
BL LB

AM BN CL _  
MC* N  A* LB ~

Thus, by Menelaus's theorem, points N, M, and L must be collinear. •

O p p U c a t io n  2 Prove that the exterior angle bisectors of any nonisosceles triangle meet the 
opposite sides in three collinear points. •
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C ^roof In AABQ  the bisectors of the exterior angles at A, B, and C meet the opposite 
sides (extended) at points N, L, and M, respectively (see Figure 3-6). Because the 
bisector of an angle (interior or exterior) of a triangle partitions the opposite 
side proportionally to the two remaining sides, we have:

AL ~ AB B M ~  BC CN ~ AC

Application 3 

A r o o f

N

Therefore:

CL AM BN BC AC AB .
—  • —— • ——  ---------- - —  = — 1 (because all three ratios are negative)
AL BM CN AB BC AC ^

Thus, by Menelaus’s theorem, points I, M, and N  are collinear. •

A circle through vertices B and C of AABC meets AB at point P and AC at
<-> . , QC {RC){AC)

point R. If PR meets BC at point Q, prove that =
{PB){AB)

Consider AABC with transversal QPR (Figure 3-7). By Menelaus’s theorem:

RC AP QB 
Ar ’ Pb ' C Q ~

Then, considering absolute values, we have:

QC
QB AR ’ PB (I)

However, {AP){AB) = (AR)(AC). (If two secant segments intersect outside the 
circle, the product of the lengths of one secant segment and its external segment 
equals the product of the lengths of the other secant segment and its external 
segment.) Therefore:

AR AB (II)

By substituting (II) into (I), we get our desired result:

(ROiAC) -QC
QB (PB){AB)
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Often, both Menelaus’s theorem and its dual, Ceva’s theorem, are needed 
to solve a problem or prove a theorem. The next applications demonstrate 
this.

4 In right triangle ABC, points P and Q are on BC and AC, respectively, such that
CP = CQ = 2. Through R, the point of intersection of AP and BQ a line is—  ^ ^   ̂
drawn also passing through point C and meeting AB at point S. PQ meets AB
at point T. If hypotenuse AB = 10 and AC = 8, find TS (Figure 3-8). •

S o l u t i o n  In right triangle ABC, hypotenuse 
AB = 10 and AC = 8, so BC = 6 
(by the Pythagorean theorem). In 
AABC, because AP, BQ, and CS are 
concurrent, by Ceva’s theorem:

AQ CP BS _
QC ’ Pb ' S A ~  ^

B

Q

FIGURE 3-8

Substituting, we get:

6 2 BS 
2 ’ 4 ’ 10 -  BS

= 1 or BS = 4

Opplication 5

Now consider AABC with transversal QPT. By Menelaus’s theorem:

^ . 9 1 . E l -  -
QC' Pb ‘ T A ~  ^

Because we are not dealing with directed line segments, this may be restated as: 

{AQ){CP){BT) = (QOiPBM T)

Substituting, we get:

(6)(2)(B70 = (2)(4)(BT+ 10)

Solving for BT gives us BT = 20, and thus TS = 24. •

In quadrilateral ABCD, C
AB and CD meet at point^ ^   ̂ y ^
P, while AD and BC meet 

i ^
at point Q. Diagonals AC 
and BD meet PQ at points 
X  and Y, respectively. Prove 
, PX PY ,

XQ '  ■ ?Q
Figure 3-9). •



Chapter 3 COLLINEARITY of POINTS 51

l ^ r o o f  Consider APQC with PB, QD, and CX concurrent. By Ceva’s theorem:

PX QB CD _  
Xq ‘ B C ‘ DP ~ ^

Now consider APQC with DBY as a transversal. By Menelaus’s theorem:

PY QB CD

Therefore, from (I) and (II):

YQ BC DP

PX _
X Q ~  YQ^

= - I

(I)

(II)

We will now consider some rather famous theorems that can be proved 
using Menelaus’s theorem.

DESARGUES'S THEOREM

During his lifetime, Gérard Desargues (1591-1661) did not enjoy the important 
stature as a mathematician that he has attained in later years. This lack of popu­
larity was in part due to the then recent development of analytic geometry by 
René Descartes (1596-1650) and to Desargues s introduction of many new and 
largely unfamiliar terms. (Incidentally, we make every effort in this book not to 
introduce any new terms in order to make it more reader-friendly—we want to 
learn from Desargues's misjudgment.)

In 1648, his pupil, Abraham Bosse, a master engraver, published a book titled 
Manière universelle de M. Desargues, pour pratiquer la perspective, which was not 
popularized until about two centuries later. This book contained a theorem that 
in the nineteenth century became one of the fundamental propositions of projec­
tive geometry. It is this theorem that is of interest to us here. It involves placing 
any two triangles in a position that will enable the three lines joining correspon­
ding vertices to be concurrent. Remarkably, when this is achieved the pairs of 
corresponding sides meet in three collinear points. We will prove Desargues’s 
theorem by using Menelaus’s theorem.

I THEOREM 3.2 (Desargues^s theorem) If AAiBiCi and_AA^B^ 2  ^ ê situated so that 
the lines joining the corresponding vertices, A1 A2 , B1 B2 , C1 C2 , are concur­
rent, then the pairs of corresponding sides intersect in three collinear points.
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INTERACTIVE 3-10

Drag vertices Â , B̂ ,C] and A2, 
Bi, Cl to change the shape of the 
triangles and point Pand see that 

Desargues's theorem is true.

I \ /

FIGURE 3-10

^ ^ ^  i > <---->
fj^ ro o i In Fjigure 3-10, A1A2, ^1^2, ând CiC2 âll meet at point P, by hyj^othesis.

B2C2 and BiCi meet at A'; A2C2 and AiQ  meet at B'; B2A2 and BiAi meet at C'.

Consider A'BiCi to be a transversal of APB2C2. Therefore, by Menelaus’s theorem:

PBi B2A' C 2 C 1

B1 B2  A'C2 Cl?
=  - 1

Similarly, considering CBiAi as a transversal of APB2A2'. 

PAi A2C  B2B,
A1A2 CB2 BiP

= —1 (Menelaus’s theorem)

Now, taking B'AiCi as a transversal of APA2C2. 

PCi C2B' A 2 A 1

C1C2 B'A2 AiP

By multiplying (I), (II), and (III), we get:

B2A' A2C  C2B' 
A'C2 * CB 2 * B'A2

= — 1 (Menelaus’s theorem)

(I)

(II)

(III)

=  - 1

Thus, by Menelaus's theorem, applied to AA2 B2 Q> have points A', B \ and C  
collinear. •

It should be noted that the converse of Desargues’s theorem is also true. It is 
the dual of the original theorem. We leave the proof as an exercise.

To appreciate the value of Desargues’s theorem, we will examine some 
applications. Although each may be proved in other ways, we will use the method 
employing Desargues’s theorem.
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OppUcation 6

Q roof

A circle inscribed in AABC is tangent to sides BC, CA, and AB at points L, M,^ ^  ^ ^   ̂  ̂ ^ ^  
and N, respectively. MN  intersects BC at point P, NL intersects AC at point Q,
and ML intersects AB at point P. Prove that points P, Q, and P are collinear 
(see Figure 3-11). •

Because the tangent segments from an external point to a circle are congruent: 

AN = AM NB = BL MC = LC

Therefore:
AN BL MC _
Nb ' L c ‘ AM ~ ^

By Ceva’s theorem, AL, BM, and CN are concurrent. Because these are the lines 
joining the corresponding vertices of AABC and ALMN, by Desargues s theorem 
the intersections of the corresponding sides are collinear; therefore points P, Q, and 
P are collinear. •

Opplic^tion 7 M

Q roof

In AABCy points F, Ey and D are
the feet of the altitudes drawn
from the vertices A, B, and C,
respectively. The sides of p e d ^
triangle FEDy EFy DP, and DP
intersect the sides of AABC, AB,^ ^ ^
AC, and BC, at points M, N, and 
L, respectively. Prove that points 
My Ny and L are collinear (see 
Figure 3-12). •

Let Ay By C and P, £, D be corre­
sponding vertices of AABC and 
AFED, Because AP, CD, and BP
are concurrent (they are the altitudes of AABC), the intersections of the corre- <- > <—> i  ̂ ^ ^  ^ ^  ^ ^
sponding sides DE and BC, PP and BA, and PD and CA are collinear by Desar-
gues’s theorem. •

A pedal triangle (of a given triangle) is formed by joining the feet of the perpendiculars 
from any given point to the sides of the given triangle.
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PASCAL'S THEOREM

Blaise Pascal (1623-1662), a contemporary of Desargues, is regarded today as 
one of the true geniuses in the history of mathematics. Although eccentricities 
kept him from achieving his true potential, he is considered one of the origi­
nators of the formalized study of probability (an outgrowth of his correspon­
dences with Fermat), and he made many important contributions to other 
branches of mathematics. We concern ourselves here with one of his contribu­
tions to geometry.

In 1640, at the age of sixteen, Pascal published a one-page paper titled Essay 
pour les coniques. It contained a theorem that Pascal referred to as mysterium 
hexagrammicum. The work highly impressed Descartes, who couldn't believe it 
was the work of a boy. This theorem states that the intersections of the opposite 
sides of a hexagon inscribed in a conic section are collinear. For our purposes, we 
will consider only the case in which the conic section is a circle and the hexagon 
has no pair of opposite sides parallel.

I THEOREM 3.3 (Pascal’s theorem) If a hexagon with no pair of opposite sides parallel is 
inscribed in a circle, then the intersections of the opposite sides are collinear.

Q roof Hexagon ABCDEF is inscribed in a circle (see Figure 3-13). The pairs of opposite 
sides AB and DE meet at point L, CB and EF meet at point M, and CD and 
AF meet at point N. Also, AB meets CN at point X, EF meets CN at point Y, 
and EF meets AB at point Z.

Consider BC to be a transversal of AXYZ. Then, by Menelaus’s theorem:

ZB XC YM 
B x ' c y ' MZ

Taking AF to be a transversal of AXYZ:

ZA YF XN  , , , ,
A X ‘ J z ' - 1  (Menelaus s theorem)

(I)

(II)
^ ^

Also, because DE is a transversal of AXYZ:

XD YE ZL , , , ,
—  • —  ' —  = -  1 (Menelaus s theorem) 
DY EZ LX (III)

By multiplying (I), (II), and (III), we get:

YM XN ZL {ZB){ZA) (XD){XC) (YE)(YE) 
MZ^ NY ' L x '  {EZ){FZ) ‘ (AX){BX) ’ {DY){CY)

- 1 (IV)

When two secant segments are drawn to a circle from an external point, the 
product of the lengths of one secant and its external segment equals the product 
of the lengths of the other secant and its external segment.



Chapter 3 COLLINEARITY of POINTS 55

INTERACTIVE 3-13

Drag points A  B, C, D, E, and F 
on the circle to see that Pascal's 

theorem is true.

// 
/ / 

/ /
/ /

/ /
/ /

/ /
/ /

/ /
/ /

/ /
/ /

/ /
/ I

/ I
/ /

/ /
/ /

/ /
/ /

/ /
/ /

Therefore:

(EZ){FZ)
iXD){XQ
{AX){BX)
(YE){YF)

= 1 

= 1 

= 1
(i)y)(cy)

By substituting (V), (VI), and (VII) into (IV), we get:

TM XN ZL 
M Z ’ N Y ' LX

■1

(V)

(VI) 

(VII)

Thus, by Menelaus’s theorem, points M, N, and L must be collinear. •

It is interesting to note that Pascal’s theorem can be extended in the follow­
ing manner.
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I THEOREM 3.4 (variation on Pascal’s theorem) If a hexagon has its vertices on a circle 
in any order, then the intersections (if they exist) of the opposite sides are 
collinear.

As an example of this variation, you are invited to follow the proof of 
Theorem 3.3 using the diagram in Figure 3-14. Only one minor adjustment 
needs to be made, and that is the reason for equations (V) through (VII). Note 
that the same pairs of “opposite sides” are used here as were used earlier.

N

Pascal’s theorem has many applications. We will consider only a few.

A p p lic a t io n  8 Point P is any point in the interior of AABC. Points M  and N  are the feet of the 
perpendiculars from point P to AB and AC, respectively. AK ± CP at point K, 
and AL _L BP at point L (see Figure 3-15). Prove that KM, LM, and BC are 
concurrent. #

O i*oof We can easily prove that some points A, K, M, A
P, N, and L all lie on the circle with diameter 
AP. We can justify this by realizing that right 
angles AKP and AMP are inscribed in the same 
semicircle, as is the case for right angles ALP 
and ANP Using the variation on Pascal’s theo­
rem (Theorem 3.4), we notice that for inscribed 
hexagon AKMPNL, the pairs of sides intersect as 
follows:

^  n tp  = B 

^  = C
KM n iN  = Q

By Pascal’s theorem, points B, C, and Q are 
collinear> which is to say that KM y LMy and BC 
are concurrent. •
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FIGURE 3-16

9 Select any point P not on AABC and a line € containing^? and intersecting sides 
BCy ABy and AC at points X, Yy and Z, respectively. Let AP, BP , and CP intersect 
the circumcircle of AABC at points S, and X respectively (see Figure 3-16). Prove 
that RX y SZy and TY are concurrent. •

^ ^
Q roof Let ?X intersect the circumcircle at point Q. Consider hexagon ARQTCB and

ap^ly Pascals theorem t o W e  notice that because AR fl AB at point P and
n  CB at point X, TQ Pi A? at a point on €, which must be 7 (because

AB n  € at point 7). (  ̂  ̂  ̂ ( ) ( )
Now consider hexagon ARQSBC. Because AR (1 SB at P and RQ fl CB at 

<—> <—> <—> <—>
X, SQ n  AC at a point on €, which must be Z. Thus PX , SZ , and TY are and
concurrent. •

BRIANCHON’S THEOREM

In 1806, at the age of twenty-one, a student at the École Polytechnique, Charles 
Julien Brianchon (1785-1864), published an article in the Journal de VÉcole 
Polytechnique that was to become one of the fundamental contributions to the 
study of conic sections in projective geometry. His development led to a 
restatement of the somewhat forgotten theorem of Pascal and its extension, after 
which Brianchon stated a new theorem that now bears his name. Brianchon’s 
theorem, which states 'Tn any hexagon circumscribed about a conic section, the 
three diagonals cross each other in the same point,”"*̂ bears a curious

Source Book in MathematicSy edited by D. E. Smith (New York: McGraw-Hill Book Co., 
1929), p. 336.
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resemblance to PascaFs theorem. They are, in fact, duals of each other. This can 
be easily seen by comparing the following versions of each theorem:

Pascal's Theorem
The points of intersection of the 
opposite sides of a hexagon 
inscribed in a conic section are 
collinear.

Brianchon's Theorem
The lines joining the opposite 
vertices of a hexagon circumscribed 
about a conic section are 
concurrent.

Notice that the two statements above are alike except for the underlined words, 
which are duals of one another. As with Pascal’s theorem, we will consider only 
the conic section that is a circle.

I THEOREM 3.5 (Brianchon’s theorem) If a hexagon is circumscribed about a circle (see 
Figure 3-17), the lines containing opposite vertices are concurrent.

INTERACTIVE 3-17

Drag points A  B, C, D, E, and F 
on the circle and see that 

Brianchon's theorem is true.

The simplest proofs of this theorem require knowledge of concepts from 
projective geometry. Although we are prepared at this point to prove this theo­
rem by Euclidean methods, our proof will be more concise if we wait until we 
study radical axes later in this chapter on page 71.

Brianchon suggested the following application immediately after the state­
ment of his new theorem.
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10 Pentagon ABODE is circumscribed about a circle, with points of tangency at F,
My Ny Ry and S. If diagonals AD and BE intersect at point P, prove that points C, 
Py and F are collinear (see Figure 3-18). •

Q roof Consider the hexagon circumscribed about a circle (Figure 3-17) having its sides AF 
and EF merge into one line segment. Thus AFE is now a side of a circumscribed 
pentagon with F as one point of tangency (see Figure 3-18). Thus we can view the 
pentagon in Figure 3-18 as a degenerate hexagon. We then simply apply Brianchons 
^orem _^th is degenerate hexagon to obtain our desired conclusion. That is, AD, 
BEy and OF are concurrent at point P, or points C, P, and F are collinear. •
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PAPPUS'S TH E O R EM

Consider the vertices of a hexagon AB'CKBC (Figure 3-19) located alternately 
on two lines (see Figure 3-20). Suppose we now draw the lines that were the 
opposite sides of the hexagon to locate their point of intersection. We find that 
the three points of intersection of these pairs of “opposite sides” are collinear. 
This conclusion was first published by Pappus of Alexandria in his Mathematical 
Collection circa a .d . 300.

For the purpose of providing a proof, we will restate Pappus s theorem. You 
will notice once again that the proof uses Menelaus's theorem repeatedly.

B'

INTERACTIVE 3-20

Drag points A', B', C', A, B, and 
C and see that Pappus's theorem 

is true.

I THEOREM 3.6 (Pappus’s theorem) Points A, By and C are on one line, and points B\ 
and̂  C  are on another line (in any order). If AB' and A'B meet at C", A C  and 
A'C meet at B'\ and BC  and B'C meet at A'\ then points A'\ B'\ and C" are 
collinear.

Q roof In Figure 3-20, B'C meets A'B at point Y, A C  meets A'B at point X, and B'C meets 
A C  at point Z  Consider C"AB' as a transversal of tXXYZ. By Menelaus’s theorem:

ZB' XA YC" 
YB' ’ ZA ' XC"

Taking A'B"C as a transversal of AXYZ:

YA' XB" ZC . . , .
XÂ' ' ZB" * ŸC ^  ~  ̂ (Menelaus s theorem)

(I)

(II)
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BA"C is also a transversal of AXYZ, so:

YB ZA" X C
-  = — 1 (Menelaus’s theorem)

XB YA" ZC

Multiplying (I), (II), and (III) gives us:

YC" XB" ZK' ZB' YA’ X C  XA ZC YB 
XC" ' ZB" ' YA" ' YB' ' XA' ' Z C  ' Z A ‘ Y C ‘ X B ~  ^

(III)

(IV)

Because points A, B, and C are collinear and points A', B', and C' are collinear, 
we obtain the following two relationships by Menelaus’s theorem (when we 
consider each line as a transversal of AXYZ):

ZB' YA' X C  
YB' ’ XA' ’ ZC

=  - 1

Za ' YC ' X B ~  ^

(V)

(VI)

Substituting (V) and (VI) into (IV), we get:

YC" XB" ZA"
= - I

XC" ZB" YA"

Thus, by Menelaus’s theorem, points A", B", and C" are collinear. '

THE SIMSON LINE

One of the great injustices in the history of mathematics involves a theorem 
originally published by William Wallace (1768-1843) in Thomas Leybourn’s 
Mathematical Repository (1799), which through careless misquotes has been 
attributed to Robert Simson (1687-1768), a famous English interpreter of 
Euclid’s Elements. (See pages 96-97 for more on Simson.) We will use the popu­
lar reference Simson's theorem throughout this book.

I THEOREM 3.7 (Simson^s theorem) The feet of the perpendiculars drawn from any point 
on the circumcircle of a triangle to the sides of the triangle are collinear.

^ ^  _̂y
 ̂ In Figure 3-21, point P iŝ  on the circumcircle of AABC. PY J_ AC at point 

Yy PZ ± AB at point Z, and PX ± BC at point X. According to Simson’s (i.e., 
Wallace’s) theorem, points X, Y, and Z are collinear. This line is usually referred 
to as the Simson line (sometimes called the pedal line).

Although not necessarily the simplest proof of Simson’s theorem, for the 
sake of consistency we will prove this theorem using Menelaus’s theorem.
We will provide a second method of proof to demonstrate this theorem’s 
independence.
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О INTERACTIVE 3-21

Drag vertices A  B, and Cto 
change the shape of the triangle; 

drag point Pon the circle and 
watch the Simson line.

FIGURE 3-21

C ^roof I (See Figure 3-21.) Draw PA, PB, and PC.

m/-PBA = -  m AP 
2

mZ-PCA = -  m AP 
2

Therefore mAPBA = mAPCA = a. Thus:

BZ CY BZ CY
—  = cot a = —  (in APZB and ЛРУС) or —  = —  
PZ PY  ̂ PZ PY

This implies:

^ _ P Z  
C Y ~  PY (I)

Similarly, mZPAB = mZPCB = b (both are \mPB). Therefore:

AZ , C X , AZ CX
—  = cot b = —  (m APAZ and APCX) or —  = —  
PZ PX  ̂ PZ PX

This implies:

С Х _ Ж  
AZ ~ PZ (II)

Because APBC and LPAC are opposite angles of an inscribed (cyclic) 
quadrilateral, they are supplementary. However, APAZ is also supplementary to 
LPAC. Therefore:

mAPBC = mAPAY = c
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Thus:

BX AY , BX AY
—  = cot c = —  (in APBX and APAY) or —  = —  
PX PY PX PY

This implies:

BX ~ PX (III)

By multiplying (I), (II), and (III), we obtain:

BZ CX AY PZ PX PY , ,  ̂ ,
CT ’ AZ ’ ^  ^  ^  ^  ^   ̂ considered direction)

Thus, by Menelaus s theorem, points X, Y, and Z are collinear. These three points 
determine the Simson line of AABC with respect to point P •

Q r o o f  II (See Figure 3-21.) Because APYA is supplementary to APZA, quadrilateral PZAY 
is cyclic. Draw PA, PB, and PC, Therefore:

mAPYZ = mAPAZ (I)

Similarly, because APYC is supplementary to APXC, quadrilateral PXCY is cyclic, 
and therefore:

mAPYX = mAPCB (II)

However, quadrilateral PACB is also cyclic because it is inscribed in the given 
circumcircle, and therefore:

mAPAZ{mAPAB) = mAPCB (III)

From (I), (II), and (III), mAPYZ = mAPYX, and thus points X, Y, and Z are 
collinear. •

For other proofs of Simson’s theorem, see Challenging Problems in Geometry 
by A. S. Posamentier and C. T. Salkind (New York: Dover, 1996), pages 43-45.

There are many simple applications of the Simson line. We will consider a 
few of them.

11 Sides AB, BC, and CA of AABC are cut by a transversal at points Q, R, and S, 
respectively. The circumcircles of AABC and ASCR intersect at point R Prove 
that quadrilateral APSQ is cyclic. •

______ ______ ______ _______  ^ ^  ^  y ^ ^  ^  ^

C ^roof Draw perpendiculars PX, PY, PZ, and PW to A B , AC, QR, and BC , respec­
tively, as in Figure 3-22.

Because point P is on the circumcircle of AABC, points X, Y, and W  are 
collinear (Simson’s theorem). Similarly, because point P is on the circumcircle of 
ASCR, points Y, Z, and W are collinear. It then follows that points X, Y, and Z 
are collinear.

Thus point P must lie on the circumcircle of AAQS (the converse of Sim- 
son’s theorem, whose proof we leave as an exercise). Therefore quadrilateral 
APSQ is cyclic. •
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INTERACTIVE 3-22

Drag vertices A  B, and C 
to change the shape of the 

triangle and note that APSQ is 
always cyclic.

O p p li^ ^ tio n  12 AB, BCy EC, and ED form triangles ABC, FBD, EFA, and EDC. Prove that the 
four circumcircles of these triangles meet at a common point. •

Q r o o f  Consider the circumcircles of AABC and AFBD, which meet at points B and R 
From point P draw perpendiculars PX, PY, PZ, and PW to BC, AB, ED, and EC, 
respectively (see Figure 3-23). Because point P is on the circumcircle of AABC, 
points X, Y, and W are collinear. Therefore points X, Y, Z, and W are collinear.

Because points Y, Z, and W  are collinear, point P must lie on the circumcir­
cle of AEFA (the converse of Simson’s theorem). By the same reasoning, because 
points X, Z, and W are collinear, point P lies on the circumcircle of AEDC. Thus 
all four circles pass through point R •

The Simson line has many interesting properties; we present a few here.

I THEOREM 3.8 (Simson line p roperty  I) If the altitude AD of AABC meets the circum­
circle at point P, then the Simson line of P with respect to AABC is parallel to 
the line tangent to the circle at point A.
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INTERACTIVE 3-23

Drag vertices A, B, C, D, and E to 
change the shape of the triangles 

and see that the circles always 
meet at a point.

Q r o o f  Because PX and PZ are perpendicular, respectively, to sides AC and AB of AABC, 
points Xy Dy and Z determine the Simson line of point P with respect to AABC.

Draw PB (see Figure 3-24). Consider quadrilateral PDBZy where mZPDB = 
m/-PZB = 90°, thus making quadrilateral PDBZ a cyclic quadrilateral. In 
quadrilateral PDBZ:

mZ-DZB = mZDPB (I)

o/ INTERACTIVE 3-24

Drag vertices A, B, and Cto 
change the shape of the triangle 

and see that the required lines 
are parallel.

Because opposite angles are supplementary.
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However, in the circumcircle of AABC, mLGAB = \{mAB), and 

mA-DPB(inZ.APB) = \{mAB). Therefore:

m/LGAB = m/LDPB (II)

From (I) and (II), by transitivity, mADZB = mZ-GAB, and thus Simson line
 ̂  ̂ 11 1  ̂ ^XDZ is parallel to tangent GA . •

I THEOREM 3.9 (Simson line p roperty  II) From point P on the circumcircle of AA.BC, if 
perpendiculars PX, py, and PZ are drawn to sides AC, AB , and B C , respec­
tively, then (PA)(PZ) = (PB){PX) (see Figure 3-25).

Q r o o f  Because mAPYB = mAPZB = 90°, quadrilateral PYZB is cyclic."*̂  Therefore:

mZPBY = mZPZY (I)

Likewise, because mZPXA = mZPYA = 90°, quadrilateral PXAY is cyclic, and:

mZPXY = mZPAY (II)

Points X, Y, and Z are collinear (the Simson line). Therefore, from (I) and (II):

PA PB
A P A B - APXZ=^ —  = —  or (PA){PZ) = {PB){PX) •

INTERACTIVE 3-25

Drag vertices 4, B, and Cto 
change the shape of the triangle;

drag point Pon the circle and 
see that the products are equal.

FIGURE 3-25

A quadrilateral is cyclic (i.e., may be inscribed in a circle) if one side subtends congruent 
angles at the two opposite vertices.
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I THEOREM 3.10 (Simson line property III) The measure of the angle determined by the 
Simson line of two given points on the circumcircle of a given triangle is equal 
to one-half the measure of the arc determined by the two points.

Q roof In Figure 3-26, XYZ is the Simson line for point P and [/VW is the Simson line 
for point Q. Extend PX and QW to meet the circle at points M  and N, respec­
tively. Then draw AM and AN. Because mXPZB = mZPXB = 90°, quadrilateral 
PZXB is cyclic, and:

mZZXP = mZZBP
mZ-ABP = m/LAMP or mZZBP = mZAMP 

From (I) and (II), mZZXP = mZAMP. Therefore:

(I)
(II)

XYZ II AM
<-

In a similar fashion, it may be shown that UVW || AN.
Hence, if T is the point of intersection of the two Simson lines, then 

mZ-XTW = m Z I ^ N  because their corresponding sides are p a ra l^  Now, 
mZ-MAN = \{mMN),Jbut because PM || QN, we J;^ve mMN = mPQ and there­
fore mZMAN = kmPQ). Thus mZXTW  = UmPQ). •

INTERACTIVE 3-26

Drag vertices A, B, and Cto 
change the shape of the triangle; 

drag points Pand Qon the circle, 
and the angle is one-half the 

measure of the arc.

FIGURE 3-26

Here is an interesting application of Simson’s theorem to an earlier 
dilemma. Recall the proof of the fallacy that all scalene triangles are isosceles 
in Chapter 1. Perpendiculars were drawn from point G to AC, BC, and AB, 
meeting these lines at points D, B, and B, respectively. Because point G is on 
the circumcircle of AABC, Simson s theorem establishes that points D, B, and
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F are collinear. The famous postulate by Moritz Pasch (1843-1930) states that 
a straight line intersecting one side of a triangle (internally) must intersect 
exactly one of the other two sides (internally) except if the line contains a 
vertex of the triangle. Euclid had quietly assumed this idea. Yet with this pos­
tulate available to us, we are assured that the two critical perpendiculars can 
neither both fall inside nor both fall outside the triangle, which enables us to 
avoid the fallacious proof previously offered.

RADICAL AXES

Earlier in this chapter, we stated Brianchon's theorem as the dual of Pascal’s theo­
rem. At that juncture we deferred the proof because we needed some more 
knowledge about a radical axis. We will now establish some important properties 
of radical axes and then use them to prove Brianchon’s theorem.

Consider two circles R and Q (see Figure 3-27) intersecting at points A and 
B. P is any point on AB not between points A and B. PT and PS are tangents to 
circles R and Q at points T and 5, respectively.

o INTERACTIVE 3-27

Drag points Q, R, and P and 
note the radical axis.
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From our study of elementary geometry, we know that PT is the mean pro­
portional between PB and PA. Therefore {PT) '̂ = {PB){PA). Similarly, for circle 
Q, (PS)  ̂ = (PB){PA). It then follows that PT = PS. ^ ^

Because point P was selected as any external point on AB, we can 
conclude that from any external point on AB, tangent segments to circles R 
and Q are congruent. Before we can state this as a locus theorem, we must
prove that any point P that generates congruent tangents to circles R and Q 

^ ^
must he on AB. __ __

Suppose P is any point where tangent segments PT and PS are congruent. 
Let PA intersect circle R at point B and circle Q at point B'. As before, 
(PB){PA) = {PTf and iPB'){PA) = (PS)l Because PT = PS, PB = PB'. 
Therefore B and B' must coincide, and P lies on the common secant, PA, of 
the two circles. We call the line consisting of points that are common end­
points of congruent tangent segments to two circles the radical axis of the 
two circles.

We now state this result as our next theorem.

I THEOREM 3.11 The radical axis of two intersecting circles is their common secant.

It follows immediately that the radical axis of two tangent circles is their 
common tangent. Before we can investigate the radical axis of two nonintersect­
ing circles, we need to consider the following theorem.

I THEOREM 3.12 The locus of a point the difference of whose distances squared from two fixed 
points is a constant is a line perpendicular to the segment determined by the two 
fixed points.

Q r o o f  Let R and Q be the feed points and let P ^ a  pqmt on the locus (see
Figure 3-28). Draw PR and PQ. Construct P N 1 RQ. We use the Pythagorean 
theorem to get:

{PRf -  [R N f = {PN f and {PQf -  {Q N f = (PN)^

Therefore:

{PRf -  {R N f = {PQf -  {Q N f or {PRf ~ {PQ? = (R N f -  {Q N f = k 

Let RQ = d. Then, by factoring the last equality, we have:

(RN + QN)(RN -  QN) = fc 

d{RN -  Q N )= k

RN -  QN = - (I)
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Q

Remember that:

RN + Q N= d

Solving equations (I) and (II) simultaneously, we get: 

RN = ^ - ^  and Q N = ‘̂
2d 2d

(II)

This fixes the position of point N.
Because d and k are constant for any given s i tú a n ,  point P must lie on the 

line perpendicular to RQ at point N, which divides RQ in the ratio:

RN
QN

We can conclude this locus proof by showing that any point on PN satisfies the 
given conditions. This is left to the reader. •

Theorem 3.12 enables us to continue our study of radical axes. We must now 
determine the radical axis of two nonintersecting circles. Our intuition would 
probably predict the next theorem.

I THEOREM 3.13 The radical axis of two nonintersecting circles is a line perpendicular to their line 
of centers.

C ^roof Begin by letting r and q be the radii of circles R and Q, respectively. Let P be a 
point on the required locus, that is, so that tangent segments PT and PS are 
congruent (see Figure 3-29).

By applying the Pythagorean theorem to APTR and APSQ, we get:

{PRf -  = (PT)^ and {PQ? ~

But PT = PS; therefore:

(PR)^ -  = (PQf -  or {PRf ~ ~
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Because the right-hand side of this equality is a constant, we can conclude (by 
Theorem 3.12) that the locus of P is the line containing point P, which is per- 
pendicular to the line of centers RQ .'

In a manner similar to that used in the previous proof, we can determine the 
location of point N  in terms of the radii and the distance between the centers. As 
a direct consequence of Theorem 3.13, we have the following theorem.

I THEOREM 3.14

Q r o o f

The radical axes of three given circles whose centers are not collinear are 
concurrent.

^ ^  ^ ^  ^ ^
Let us consider circles R, Q, and U whose radical axes are AB, CD, and EF (see 
Figure 3-30). ^  ^  ^

Let point P be the intersection of AB and CD. Usm^ radical axis AB of 
circles R and Q, we have PT = PS. Using radical axis CD of circles Q and U, we 
have PV = PS. (Note: PT, PS , and PV are tangents to the given circles.)
^  Thus PT = PV, which indicates that point P must lie on the radical axis, 
EF, of circles R and U. This proves that the radical axes are concurrent at 
point P. •

FIGURE 3-30
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We are now ready to prove Brianchon s theorem, which we discussed earlier 
in the chapter (on page 58). The proof we will use is by A. S. Smogorzhevskii 
(The Ruler in Geometrical Constructions, New York: Blaisdell Publishing Company, 
1961, pp. 33-35).

I THEOREM 3.5 (Brianchon's theorem) If a hexagon is circumscribed about a circle, the 
lines containing opposite vertices are concurrent.

Q roof As seen in Figure 3-31, the sides of hexagon ABCDEF are tangent to a circle at 
points T, N, L, S, M, and K, Points K \ V, N', M', S', and T  are chosen on FA, 
DC, BC, FF, DF, and BA, respectively, so that:

KK' = LV = NN' = MM' = SS' = TV

Now construct circle P tangent to BA and DF at points T  and S', respec­
tively (the existence^this circle is easily justified). Similarly, construct circle Q 
tangent to M  and DC at points K' and V, respectively. Then construct circle jR 
tangent to FF and BC at points M' and N', respectively.
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Because two tangent segments to a circle from an external point have the 
same length, FM = FK. We already know that MM' = KK'. Therefore, by 
addition:

Similarly:

By subtraction:

FM' = FK'

CL = CN and LL' = NN'

CL' = CN'

We now notice that points F and C are each endpoints of a pair of congru­
ent tangent segments to circles R and Q. Thus these points determine the radical 
axis, CFy of circles R and Q. Using the same technique, we can easily show that 
AD is the radical axis of circles P and Q and that BE is the radical axis of circles 
P and R,

We proved that the radical axes of three circles with noncollinear centersi—> <—> i—̂
(taken in pairs) are concurrent (Theorem 3.14). Therefore CFy AD, and BE are 
concurrent.

We should note that the only way in which these circles would have had 
collinear centers is if the diagonals were to have coincided, which is impossible.

E x e r c i s e s

i  ̂ ^ ^  ^ ^  ^
1. Sides AB, BC, CD, and DA of quadrilateral ABCD are intersected by a 

straight line at points K, L, My and N, respectively. Prove that 
BL AK DN CM
L C ‘ k b ' Na ‘ M D ~

2. Side AB of square ABCD is extended to point P so that BP = 2(AB). With 
M  the midpoint of DC, BM intersects AC at point Q. Also, PQ intersects 
 
BC at point R. Use Menelaus's theorem to find the numerical value of — .

^ RB

3. jo in ts^and  R are on sides AB and AC, respectively, of AABC so that
AP =  AR. Prove that median AM  partitions PR into segments proportional 
to AB and AC.
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4. Prove that the tangents to the circumcircle of a triangle at its vertices inter­
sect the opposite sides in three collinear points.

5. Prove that if a line contains the centroid, G, of AABC and intersects sides ^ ^  ^
AB and AC at points M and N, respectively, then {AM)(NC) +
{AN){MB) = (AM)(AN).

__ ^ ^
6. A circlê  is tangent to side of AABC at M, its midpoint, and intersects AB

and AC at joints P, and 5, 5', respectively. If RS and P'5' are each extended 
to meet BC at points P and P', respectively, prove that {BP){BP') = (CP)(CP') 
(see Figure 3-32).

FIGURE 3-32

In AABC, P, Q, and P are the midpoints of sides AB, BC, and, AC 
respectively. AN, BL,and CM are concurrent, meeting the opposite sideŝ at̂  
points N, L, and M, respectively. If PL meets BC at point /, MQ meets AC 
at point /, and meets AB at point f t  prove that points f t  /, and /  are 
collinear (see Figure 3-33).
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8. Prove that the three pairs of common external tangents to three circles (no 
two of which are equal or concentric), taken two at a time, intersect in three 
collinear points.

9. Prove that the perpendicular bisectors of the interior angle bisectors of any 
triangle meet the sides opposite the angles being bisected in three collinear 
points.

10. Provide a proof for Application 6, using Menelaus's theorem.

11. How can Brianchon’s theorem be used to prove the existence of the 
Gergonne point of a triangle?

12. Compare Pappus's theorem to Pascal's theorem.

13. State and prove the converse of Desargues's theorem.

14. State and prove the converse of Simson's theorem.

15. In Figure 3-34, AABC, with right angle at A, is inscribed in circle O. The 
Simson line of point P with respect to AABC meets PA at point M. Prove 
that MO is perpendicular to PA at point M.

FIGURE 3-34

16. From a point P on the circumference of circle O, three chords are drawn 
meeting the circle at points A, B, and C. Prove that the three points of 
intersection of the three circles with PA, PB, and PC as diameters are 
collinear.
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17. If two triangles are inscribed in the same circle, a single point on the cir- 
cumcircle determines a Simson line for each triangle. Prove that the angle 
formed by these two Simson lines is constant, regardless of the position of 
the point.

18. Prove that the common tangent segments (if they exist) of two given circles 
are bisected by their radical axis.

19. Prove that the radical axis of the two circles whose diameters are the diago­
nals of a trapezoid contains the point of intersection of the nonparallel sides 
of the trapezoid.

20. Prove that the four points determined by the intersections of two secants 
drawn from a point on the radical axis of two circles with the two circles lie 
on a third circle.
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INTRODUCTION

Suppose that you and one of your friends are planning to set up a special remote 
computer server to store the data from your computers and that at your school. 
The three locations determine a triangle with no angle greater than 120°. Using 
a map of your town (see Figure 4.0), you seek a location for this computer that 
makes the sum of the distances from the computer to each of your houses a 
minimum. We will call this point the “minimum distance point.” How would you 
find this point?

In this chapter, we will develop some theorems that will enable us to solve 
this problem. Along the way, we will encounter a number of interesting theorems 
that highlight some fascinating properties of triangles.

n m i

78
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EQUIANGULAR POINT

INTERACTIVE 4-1

Drag points A  B, and Cto 
change the shape of the triangle 

and see that 0 remains the 
equiangular point.

Consider any convenient triangle. How would you locate the point in the triangle 
at which congruent angles are formed by drawing rays from this point to the 
vertices?

Let us set out to locate this A
point (see Figure 4-1). We will first 
find a point that has another inter­
esting property. Begin by construct­
ing an equilateral triangle externally 
on each side of the given triangle.
Draw segments joining each vertex 
of the given triangle with the 
remote vertex of the equilateral 
triangle on the opposite side (see 
Figure 4-2). Theorem 4.1 presents 
an astonishing property of these 
three line segments. After proving 
this property, we will return to our 
original problem.

FIGURE 4-2

I THEOREM 4.1 The segments joining each vertex of a given triangle with the remote vertex of the 
equilateral triangle (drawn externally on the opposite side of the given triangle) 
are congruent.
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of Proof Prove DB = AE and AE s  CF, by first proving ADCB = A  ACE and then proving 
AEBA = ACBF. •

C ^ ro o f Because mADCA = mAECB = 60°, mADCB = rtiAACE (by addition).
Also, because we have equilateral triangles, DC = AC and CB = CE. Therefore 
ADCB =  A ACE (SAS) and DB = AE. In a similar ma_nner, ^  can prove 
that AEBA =  ACBF. This enables us to conclude that AE =  CF. Thus 
DB=AE = CF. •

From the diagram in Figure 4-2, it appears that DBy AE, and CF are concur­
rent. This observation gives us our next theorem.

I THEOREM 4.2 The segments joining each vertex of a given triangle with the remote vertex of 
the equilateral triangle drawn externally on the opposite side of the given trian­
gle are concurrent. (This point is called the Fermat point* of the triangle.)

Q ian  of Proof Construct the circumcircle of each of the three equilateral triangles. Then
show that the three circles are concurrent at point O. The six segments from 
point О to points A, By Cy Dy £, and F will determine the three concurrent 
lines. •

О  roof Consider the circumcircles of the three equilateral triangles ACD, ABFy and BCE. 
Let Ky Ly and M  be the centers of these circles (see Figure 4-3).

Circles К and L meet at points О and A. Because mADC = 240° and 
because we know that mAAOC = \{mADC)y mAAOC = 120°. Similarly, 
mAAOB = \{mAFB) = 120°. Therefore mACOB = 120° (because a complete 
revolution = 360°)^

Because mCEB = 240°, АСОВ is an inscribed angle and point О must lie on 
circle M. Therefore we see that the three circles are concurrent, intersecting at 
point O.

Now join point О with points A, B, C, D, К  and F. mADOA = mAAOF = 
mAFOB = 60°, and therefore DOB. Similarly, COF and AOE. Thus it has been 
proved that DBy AB, and CF are concurrent, intersecting at point О (which is 
also the point of intersection of circles Ky Ly and M). •

Can you now determine the point in AABC at which the three sides subtend 
(i.e., determine by being opposite) congruent angles? The point О is called the 
equiangular point of AABC because mAAOB = mAAOC = mABOC = 120°. We 
will be referring to this point again later in the chapter.

Before continuing with our search for the equiangular point, let us take 
advantage of another interesting property. Sources indicate that the following 
theorem was developed by Napoleon Bonaparte, who took pride in his mathe­
matical talents. Thus the resulting equilateral triangle is often called the Napoleon 
triangle.

Named after French mathematician Pierre de Fermat (1601-1665).
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I THEOREM 4.3 The circumcenters of the three equilateral triangles drawn externally on the sides 
of a given triangle determine an equilateral triangle.

C^lan of Proof Prove that the sides of AKLM are proportional to BD, and CF. (We have 
previously proved that DB = AE = CF,) •

© r o o f Consider ADAC (see Figure 4-3). Because K is the centroid (the point of inter­
section of the medians) of ADAC, AK is two-thirds the length of the altitude 
(or median). Using the relationships in a 30-60-90 triangle, we find that 
AC:AK = v3:l. Similarly, in equilateral triangle AFB, AF:AL = V3-1. Therefore 
AOAK = AFiAL

Because mAKAC = mALAF = 30°, mACAL = mACAL (reflexive), and 
mAKAL = mACAF (addition), we have AKAL ~  ACAF Thus CF:KL =
CA-.AK = V3:l.

Similarly, we can prove that DB:KM = V3:l and AE:ML = V3:l. Therefore 
DB:KM = AEiML = CF:KL But because DB = AE = CF, as proved earlier, we 
obtain KM = ML = KL. Therefore AKML is equilateral. •
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A PROPERTY OF EQUILATERAL TRIANGLES

We need to develop one more surprising fact about equilateral triangles before 
we consider our initial problem involving the remote computer server.

Draw a large equilateral triangle. Choose any convenient point in the interior 
region of this triangle. Now measure the distances from this point to the three 
sides and record the sum of these distances. (This can be done either on paper or 
on The Geometer s Sketchpad®.)

Repeat this procedure for any other point in the interior region of this trian­
gle. How do the two sums compare? Now measure the length of the altitude of the 
triangle. How do the two sums compare to the length of the altitude of the equilat­
eral triangle? The answers to these questions suggest the following theorem.

I THEOREM 4.4 The sum of the distances from any point in the interior of an equilateral triangle 
to the sides of the triangle is constant (the length of the altitude of the triangle).

We provide two proofs of this interesting property here. The first compares 
the length of each perpendicular segment to a portion of the altitude, and the 
second involves area comparisons.

C ^ ro o f I In equilateral triangle ABQ PR 1  AC, PQ 1  BQ PS 1  AB, and AD 1  BC. Draw 
a line through point P parallel to BC, meeting AD, AB, and AC at points G, B,
and Fy respectively (see Figure 4-4). __ __

Because quadrilateral PGDQ is a rectangle, PQ = CD. Draw ET 1  AC. 
Because AAEF is equilateral, AG =  ET ( ^ th e  altitudes of an equilateral triangle 
are congruent). Draw PH\\ AC, meeting ET at point N. NT = PR. Because

INTERACTIVE 4-4

Drag point P and see that the 
sum of the distances to the 

sides is constant.



Chapter 4 SOME SYMMETRIC POINTS in a TRIANGLE 83

AEHP is equilateral, altitudes PS and EN are congruent. Therefore we have 
shown that PS PR = ET = AG. Because PQ = GD:

PS + PR PQ = AG + GD = AD (a constant for the given triangle) '

A

^ r o o f  II In equilateral triangle ABC, PR T AC, PQ ± BC, PS 1  AB, and AD 1 BC. Draw 
PA, PB, and PC (see Figure 4-5).

area A ABC = area A APB + area ABPC + area ACPA

= ^{AB){PS) + jiBQ iPQ ) + ^{AC){PR)

Because AB = BC = AC, area AABC = \  {BC)[PS + PQ + PR]. However, area 
AABC = I (PC)(AD). Therefore:

PS + PQ + PP = AD (a constant for the given triangle) •

A MINIMUM DISTANCE POINT

Before we tackle our original problem of finding the minimum distance point of 
a triangle, let us consider a quadrilateral. For which point in a quadrilateral do 
you think the sum of the distances to the vertices would be less than that for any 
other point (i.e., a minimum sum)? Your first guess was probably correct—the 
point of intersection of the diagonals, which we call the minimum distance point 
of a quadrilateral. Now let us verify this guess.

To prove that among the interior points of a quadrilateral the diagonal- 
intersection point has the smallest sum of distances to the vertices, we simply 
choose any other interior point and compare its sum of distances to the vertices 
to that of the diagonal-intersection point.
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INTERACTIVE 4-6

Drag points A, B, C, D, and P and 
see that we have a minimum 

distance point.

Consider quadrilateral ABCD with diagonals AC and BD intersecting at point 
Q. Select any point P (not at Q) in the interior of quadrilateral ABCD (see Figure 
4-6). PA + PC> QA + QC (because the sum of the lengths of two sides of a 
triangle is greater than the length of the third). Similarly, PB + PD > QB QD, By 
addition, PA PB PC + PD > QA QB QC + QD, which shows that the 
sum of the distances from the point of intersection of the diagonals of a quadrilat­
eral to the vertices is less than the sum of the distances from any other interior point 
of the quadrilateral to the vertices. This allows us to state the following theorem.

I THEOREM 4.5 The minimum distance point of a quadrilateral is the point of intersection of the 
diagonals.

It is quite natural to wonder where the minimum distance point of a triangle 
would be. This is precisely the problem posed at the beginning of this chapter. As 
you ponder this problem, you are probably seeking a symmetric point in a given 
triangle. Perhaps you consider the equiangular point, certainly a point that offers 
some symmetry. Let us build on this guess.

Consider AABC with no angle measuring greater than 120°. Let M be the 
point in the interior of AABC, where mAAMB = mABMC = mAAMC = 120° 
(see Figure 4-7). Draw lines through A, B, and C that are perpendicular to 
AM, BM, and CM, respectively. These lines meet to form equilateral triangle PQR, 
(To prove that APQR is equilateral, notice that each angle has measure 60°.
This can be shown by considering, for example, quadrilateral AMBR, Because 
mARAM = mARBM = 90° and mAAMB = 120°, it follows that 
mAARB = 60°.)

Let D be any other point in the interior of AABC. We must show that 
the sum of the distances from point M to the vertices is less than the sum of 
the distances from point D to the vertices. From Theorem 4.4, we know that 
MA + MB + MC = DE + DF + DC (where DB, DB, and DC are the perpendic­
ulars to BBQ, RBPy and QGP, respectively). But DE + DF + DC < DA + DB + 
DC. (The shortest distance from an external point to a line is the length of the 
perpendicular segment from the point to the line.) By substitution:

MA-\- MB MC < DA -{■ DB + DC
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INTERACTIVE 4-7

Drag points A, B, C, and D and 
see that we have a minimum 

distance point.

Q

FIGURE 4-7

You may wonder why we chose to restrict our discussion to triangles with 
angles of measure less than 120°. If you try to construct the point M in a triangle 
with one angle of measure of 150°, the reason for our restriction will become 
obvious.

I THEOREM 4.6 The minimum distance point of a triangle (with no angle of measure greater than 
120°) is the equiangular point (i.e., the point at which the sides of the triangle 
subtend congruent angles).

We are now prepared to solve the original problem involving the best 
location of the remote computer (i.e., the location where the sum of the 
distances to the three houses is a minimum). After drawing a triangle on the map 
(with the three houses as vertices), you would construct the minimum distance 
point by constructing the equiangular point (which is also the minimum distance 
point) in the manner described for Theorem 4.1.
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E x e r c i s e s

1. Find the sum of the lengths of the three perpendicular segments from any 
point in an equilateral triangle to each of the sides, each of which has length 10.

2. Locate by construction the point in a given acute triangle that has the least 
sum of distances to the vertices.

3. Explain why the 120° restriction is placed on Theorem 4.6.

4. If one angle of a triangle has measure greater than or equal to 120°, prove 
that the vertex of this angle is the minimum distance point of the triangle.

5. If squares are constructed externally on the sides of a triangle, prove that the 
line containing the centers of any two of these squares is perpendicular to 
the line containing the common vertex of these two squares and the center 
of the third square.

6. Prove that of all triangles with a given perimeter, the one with the greatest 
area is the equilateral triangle.

7. Prove that of all triangles with a given area, the one with the least perimeter 
is the equilateral triangle.

8. Prove that if similar triangles are erected externally on the sides of any trian­
gle, the triangle formed by the circumcenters of the three similar triangles 
determines a triangle similar to the three triangles.

9. Prove Theorem 4.3 for the case in which the three equilateral triangles are 
drawn internally. (This is called the internal Napoleon triangle, whereas the 
triangle for Theorem 4.3 is called the external Napoleon triangle.)

10. Prove that the external Napoleon triangle and the internal Napoleon triangle 
have the same center and that their areas differ by the area of the original 
triangle.
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INTRODUCTION

It is generally accepted (especially by high school geometry students) that the 
study of triangle properties forms the foundation for the study of synthetic 
geometry. After completing the high school geometry course, students tend to 
feel that they know all there is to know about triangles. Having reached this 
point in the book, you can clearly see that this is not so. However, you may still 
feel that within the realm of “elementary geometry” your knowledge about trian­
gles is complete. This may very well be the case. Read on and see how some 
seemingly innocent properties of triangles are, in fact, not so trivial after all.

ANGLE BISECTORS

Early in their studies, all high school geometry students learn that the angle bisec­
tors of the base angles of an isosceles triangle are congruent. This is rather easily 
proved. Yet the converse of this statement is conspicuously omitted. It, too, is a 
valid theorem but is quite difficult to prove.

I THEOREM 5.1 If two angle bisectors of a triangle are congruent, then the triangle is isosceles.

The proof of this theorem is regarded as one of 
the most difficult in elementary geometry. For this 
reason, we provide a number of different proofs of 
this theorem here. Each is instructional and merits 
special attention. We first restate the theorem for 
AABC.

GIVEN: AE and BD are angle bisectors of AABC. 
AE = BD (see Figure 5-1).

PROVE: AABC is isosceles.
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( ^ r o o f  I Draw ¿.DBF =  Z.AEB so that BF =  BE, Then draw DF (see Figure 5-2). Also
draw FG 1  AC and AH  J_ ^  at H _________

Because by hypothesis AE =  DB, FB = EBy and Z8 =  217, it follows that 
AAEB =  ADBF (SAS), so DP = AB and m Zl = mA4.

mZ-x = mZ.2 + mZ.3 (exterior angle of a triangle)
mA-x = mZ.1 + m2l3 (substitution)
mAx = m2l4 + mZ3 (substitution)
mZ_x = mA.7 + mZ.6 (exterior angle of a triangle)
mZ-X = mZ.7 + mAS (substitution)
m2lx = mZ.8 + mZ5 (substitution)

Therefore:

Thus:

mZ-4 + m2l3 = mZ.8 + mA5 (transitivity)

m/-z = mZ.y

Right triangle FDG = right triangle ABH (SAA), DG = BH, and FG = AH. 
Right triangle AFG = right triangle FAH (HL), and AG = FH.
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Therefore quadrilateral GFHA is a parallelogram. Also, mZ.9 = m/-10 (from 
AABH and AFDG).

mZ-DAB = mADFB (subtraction) 
mADFB = mAEBA (from ADBF and AAEB)

Therefore mADAB = mAEBA (by transitivity), and AABC is isosceles. •

Q r o o f  II (indirect) Assume AABC is not isosceles. Let mAABC > mAACB (see Figure 5-3). By__
hypothesis, BF = CE. BC = BC and CF > Through point F, construct GF 
parallel to EB. Through point £, construct GE parallel to BF. Therefore quadrilat­
eral BFGE is a parallelogram, BF =  EG, EG =  CE, and AGEC is isosceles.

mA{g + g') = mA{c + c') and mAg = mAb

Thus:

mA{b + g') = mA{c + c')

Because mAb > mAc (by hypothesis):

mAg’ < mAc'

In AGEC, we have CF < GF. But GF = BE. Thus CF < BE. The assumption of 
the inequality of mAABC and mAACB leads to two contradictory results:

CF < BE and CF > BE

Therefore AABC is isosceles. •  *

* If two triangles have two pairs of corresponding sides congruent and their included 
angles are not congruent, then the greater third side is opposite the greater included angle.
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© r o o f  III (indirect) In AABC (see Figure 5-4), the bisectors of angles ABC and ACJ5 have equal 
lengths (i.e., BE = DC).

Assume that mAABC < mZ-ACB. We then draw LFCD congruent to A ABE. 
Note that we may take point F between vertices B and A without loss of general­
ity. In AFBCy FB > FC. (If the measures of two angles of a triangle are not 
equal, then the measures of the sides opposite these angles are also unequal, the 
side with the greater measure being opposite the angle with the greater measure.) 
Choose a point G so that BG =  FC. Then draw GH || FC.

Therefore ABGH =  ABFC (corresponding angles) and ABGH =  ACFD 
(ASA). It follows that BH = DC. Because BH < BE, this contradicts the hypothe­
sis that the lengths of the angle bisectors DC and BE are equal. A similar argu­
ment will show that it is impossible to have mAACB < mAABC.

It then follows that mAACB = mAABC and that AABC is isosceles. •

Q r o o f  IV  (indirect) In AABC, assume mAB > mAC. BE and DC are the bisectors of AB and AC,
respectively, and BE = D C ^ __  A

Draw BH II DC and CH || DB; then draw EH, 
as in Figure 5-5. Quadrilateral DCHB is a paral­
lelogram. Therefore BH = DC = BE, making 
ABHE isosceles. Thus:

mABEH = mABHE (I)

From our assumption that mAB > mAC:

mACBE > mABCD and CE > DB

Because CH = DB, we have CE > CH, which 
leads to:

mACHE > mACEH (II)

In ACEH, by adding (I) and (II), mABHC > 
mABEC. Because quadrilateral DCHB is a 
parallelogram, mABHC = mABDC.

\  1 / 
 ̂V
H

FIGURE 5-5
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Thus, by substitution:

In ADBI and AECI:

mABDC > mABEC

Because mABDC > mABEC:

mADIB = mAEIC

mADBI < mAECI

By doubling this inequality, we get mAB < mAC, thereby contradicting the 
assumption that mAB > mAC. A similar argument starting with the assumption 
that mAB < mAC also leads to a contradiction. Thus we must conclude that 
mAB = mAC  and that AABC is isosceles. •

The following theorem is a direct consequence of Theorem 5.1.

I THEOREM 5.2 In a triangle, if two angles have unequal measures, the angle of greater measure 
has the shorter angle bisector.

C ^ ro o f In Figure 5-6, AABC has mAABC > mAACB. BN and CK are the angle bisec­
tors of AABC and AACBy respectively, and intersect at point I. Draw BD so that 
mADBN = mAACK. (Note: BD intersects CK at E.)

BD BN
ADBN ~  ADCE (AA), which yields —— = — . Because mAABC > mAACB:

CD CE

1 1
-  mAABC > -  mAACB or mANBC > mABCK 
2 2

By construction, mADBN = mAACK. Therefore, by addition, mADBC > mADCB.
In ADBCy BD < CD. From the above proportion we get BN < CE. There­

fore BN < CKy our desired result. •

o INTERACTIVE 5-6

Drag A  B, and Cto change the 
shape of the triangle and see that 

the larger angle always has the 
shorter bisector.
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We have already established the various concurrency relationships involving 
angle bisectors (see Chapter 2). We now turn our attention to the measure of the 
angle formed by two interior angle bisectors of a triangle.

I THEOREM 5.3 The measure of the angle formed by two interior angle bisectors of a triangle 
equals the sum of the measure of a right angle and one-half the measure of the 
third angle of the triangle.

O l* 0 0 f In Figure 5-7, the angle bisectors BN and CM intersect at point I.

A
INTERACTIVE 5-7

Drag A  B, and CXo change the 
shape of the triangle and see that 

the formula is true.

Consider ABIC:

Then:

mABIC = 180° -  mAIBC -  mAICB

mABIC = 180° -  ^{mAABC) -  ^{mAACB)

Because mAABC + mAACB = 180° — mAAy it follows that: 

^{mAABC) + ^im/LACB) = 90“ -  ^{mAA)

By substitution:

tnABIC = 180“ -  [90 - -{mAA)] or mABIC = 90“ + -{rtiAA) •
2 2

The natural extension of Theorem 5.3 involves exterior angle bisectors and is 
stated as Theorem 5.4.
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INTERACTIVE 5-8

Drag A, B, and Cto change the 
shape of the triangle and see that 

the formula is true.

I THEOREM 5.4 The measure of the angle formed by two exterior angle bisectors of a triangle 
equals the measure of a right angle minus one-half the measure of the third angle 
of the triangle.

Q r o o f  Figure 5-8 shows AABC with exterior angle bisectors BJ and C/.

mABJC = 180° -  (mAEBC)
1

imAFCB)

= 180° -  ^ (180° -  mAABC) -  ^  (180° -  mAACB) 

= 180° -  90° + ^ (mAABC) -  90° -H ^ {mAACB)

= — {m/LABC + mZ-ACB)

= -(180° -  mAA) 

mABJC = 90° -  i  {mAA) •

Our continuing study of angle bisectors now leads us to an investigation of 
the length of an angle bisector of a triangle. Specifically, we seek to find an 
expression relating the length of an angle bisector to the lengths of the sides (or 
their parts) of the triangle. This relationship is stated as Theorem 5.5.
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I THEOREM 5.5 In any triangle, the square of the length of the interior bisector of any angle is 
equal to the product of the lengths of the sides forming the bisected angle 
decreased by the product of the lengths of the segments of the side to which this 
bisector is drawn.

INTERACTIVE 5-9

Drag A  B, and Cto change the 
shape of the triangle and see that 

the formula is true.

Q roof In Figure 5-9, AD (also labeled t )̂ is the bisector of ¿.ВАС. Extend AD beyond 
point D to meet the circumcircle of AABC at point E. Then draw BE.

Because mABAD = mACAD and m/-E = mAC (both angles are inscribed in 
the same arc):

AABE -  AADC ■-
A D ~  AB

Therefore:

(AQiAB) = {AD)(AE) = {AD)(AD + DE) = (AD)  ̂ + {AD){DE) (I) 

However:

{AD){DE) = (BD){DC) (II)

Substituting (II) into (I), we obtain:

(AD)  ̂ = {AC){AB) -  {BD){DC)

Using the letter designations in Figure 5-9, we have:

= cb — mn%

The following application illustrates the use of Theorem 5.5.
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Application 1 The two shorter sides of a triangle measure 9 and 18. If the interior angle
bisector drawn to the longest side measures 8, find the measure of the longest 
side of the triangle. •

A b lu t io n  Let AB = 9, AC =18,  and the angle bisector AD = 8 (see Figure 5-10).
BD AB I ^

Because —-  = ■—  = we can let BD = m = x so that DC = n = 2x.
DC AC 2

From Theorem 5.5, we know:

ti = cb -  mn or (AD f = {AC){AB) -  (BD){DC)

Therefore:

(8)  ̂ = (18)(9) -  2x  ̂ and x = 7

Thus:

BC = 3x = 21 9

Suppose AD in Application 1 were not an angle bisector but rather just a 
nonspecific Cevian (i.e., a line segment joining a point on the side of a triangle 
with the opposite vertex). How would you then solve the problem? Would more 
information be necessary? Read on, and the answers to these questions will 
become apparent.

STEWART'S THEOREM

INTERACTIVE 5-11

Drag A, B, and Cto change the 
shape of the triangle and move 
point D and see that Stewart's 

theorem holds.

Essentially our problem is to find the length of “any” Cevian, a segment that has
one endpoint on a vertex of a given triangle and the other endpoint on the____
opposite side. That is, if for AABC (Figure 5-11) we know the lengths of AC, BC, 
AD, and BD, our problem is to find the length of CD.

This problem was first solved by the famous Scottish geometer Robert Simson, 
who presented it in lectures but allowed his notes to be used by his prize student, 
Matthew Stewart, in his famous publication General Theorems of Considerable Use 
in the Higher Parts of Mathematics (Edinburgh, 1746). Simson s generosity was 
motivated by his desire to see q
Stewart obtain the chair of mathe­
matics at the University of 
Edinburgh. He was successful. It is 
interesting to note how Simson 
was credited with a theorem he 
did not know (Theorem 3.7) yet 
was not credited with a theorem 
that he deserved to have credited 
to him (Theorem 5.6). We will 
refer to Theorem 5.6 by the author 
(Stewart) of the book in which it 
appeared.
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In fact, Simson deserves particular note for his definitive book The Elements 
of Euclid (Glasgow, 1756), which for over 150 years was published by other pub­
lishers as well. This book is the basis for all subsequent study of Euclid’s ElementSy 
including the high school geometry courses taught in the United States today.

We will first state Stewart s theorem, then prove it and provide some 
applications.

I THEOREM 5.6 (Stewart’s theorem) Using the letter designation in Figure 5-11, the 
following relationship holds: af'n + b̂ 'm = + mn).

( ^ r o o f  In AABCy let BC = a, AC = by AB = c, and CD = d. Point D divides AB into 
two segments: BD = m and DA = n. Draw altitude CE = h and let ED = p.

In order to proceed with the proof of Stewart’s theorem, we must first derive 
two formulas. The first is applicable to ACBD. We apply the Pythagorean theo­
rem to ACEB to obtain (CB)^ = (CE)  ̂ + {BE) ‘̂. Because BE = m — p:

= h  ̂ + [ m -  p f

By applying the Pythagorean theorem to AGED, we have:

{CDf = {CEf + [EDf or = d  ̂ -  p^ 

Substituting for in equation (I), we obtain:

of = d  ̂ -  p^ + {m -  pY

(I)

= d^
.2 _  J2

p^ -h — Imp + p^
a — d m — Imp (II)

A similar argument is applicable to ACDA. Applying the Pythagorean theorem to 
ACEAy we find that {CAf = {CEf + (EA)l Because EA = {n + p):

b̂  = A- {n-\- p f  (III)

However, hf = d  ̂ — so we substitute for in equation (III) as follows:

fo" = d" -  p" + (n + p f
= d  ̂ — p^ + T- 2np + p  ̂

+ 2np (IV)

Equations (II) and (IV) give us the formulas we need. Multiply equation (II) by 
n to get:

a^n = (fn  + m^n — 2mnp (V)

Now multiply equation (IV) by m to get:

b^m = dfm + + 2mnp (VI)

Adding (V) and (VI), we have:

(fn  + \fm  = dfn + dfm + n fn  + rfm  + 2mnp — 2mnp
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Therefore a^n + h^m = cf{n + m) + mn{m + n). Because m + « = c, we have: 

a^n + b^m = cfc + mnc or â 'n + = cicf' + mn)

This is the relationship we set out to develop. •

Stewart’s theorem can be applied to a variety of situations, some of which we 
offer here.

Application 2 In an isosceles triangle with two congruent sides that measure 17, a line measur­
ing 16 is drawn from the vertex to the base. If one segment of the base, as cut by 
this line, exceeds the other by 8, find the lengths of the two segments. •

Figure 5-12, AB = AC = 17 and AD = 16. Let BD = x; therefore DC = x + 8. 
By Stewart’s theorem,

(AB)^(DC) + (AC)^(BD) = BC[(ADf + (BD)(DC)]

Therefore:

(17)^(x + 8) + (17)^(x) = (2x + 8)[(16)^ + x{x + 8)] and x = 3 

Therefore BD = 3 and DC = 11. •

3 Prove that in a right triangle the sum of the squares of the distances from the 
vertex of the right angle to the trisection points along the hypotenuse is equal to 
five-ninths the square of the measure of the hypotenuse. •

Q roof Applying Stewart’s theorem to Figure 5-13, using p as the internal line segment, 
we find that:

2a^n + b^n = c{p  ̂ + 2n^) 

Using q as the internal line segment:

â 'n + 2b^n = c{c  ̂ + 2n^)

(I)

(II)

FIGURE 5-12
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Adding (I) and (II), we get:

3a^n +  3b '̂n =  c{An^ +  +  q )̂

Because -\- iP' = ĉ :

3n{c^) = c(4n^ + p  ̂ + q )̂

Because 3n = c:

= (2n)^ 4- q̂

But 2n = -c; therefore:

application  4 To illustrate the power of Stewart's theorem, we offer another proof of Theorem 
This straightforward method takes this “elementary” theorem and places it (tem­
porarily) at a more advanced point in the development of Euclidean geometry. •

C ^roof Let BE and CD be angle bisectors in AABC, with BE = CD = x (Figure 5-14). 
We need to show that b = c. An angle bisector divides the side it is drawn to 
into segments of lengths proportional to the two other sides of the triangle. 
Thus:

^ ^ be abBD = ----- - AD = ------- AE = ------  CE =
u -\- b a + b a + c a c

FIGURE 5-14

This proof was contributed by Jan Siwanowicz.
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Applying Stewart’s theorem twice to AAEC, we obtain:

be ab
a + c fl + c

be

fcU" +
be ab

+ t
ae

a b a + b
= e +

a + e a + e 
be ae

a + b a + b

Solving for we obtain:

2 ab^e , abe^
X = ae -  --------= ab —

(a + {a + by

Thus:

ia + b)

This may be expressed simply as:

be

bê  , b̂ e 
e + ^ ^ —TTo — fc + {a + er

c l  +
{a + by

If >  c, because a, b, c >  0 we have:

be

= b \ \  +
be

{a + eY

(fl + by

Thus equality (I) does not hold.

If <  c, we have:

be
1 +

<  1 +
be

{a + eY

>  1 +
be

{a + by

Again equality (I) does not hold.

Thus b = c, which completes the proof.

{a + eY

MI QUEL'S THEOREM

You might want to try this experiment. Draw any convenient triangle and select a 
point on each side. Now construct three circles, each containing two of these points 
and the vertex determined by the two sides on which these points lie. Although you 
can do this on paper with the aid of a pair of compasses, it is particularly nice to 
do this with The Geometer’s Sketchpad. What relationship do you notice about 
these three circles? Your observation should lead you to a theorem published by 
A. Miquel in 1838. We will state this theorem as follows.
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I THEOREM 5.7 (Miquel’s theorem) If a point is selected on each side of a triangle, then 
the circles determined by each vertex and the points on the adjacent sides pass 
through a common point.

This theorem can be viewed in two ways. The expected form is shown in 
Figure 5-15. However, when two of the selected points are on the extensions of 
the sides, the theorem still holds. This form is shown in Figure 5-16.

INTERACTIVE 5-15

Drag A  B, and Cto change the 
shape of the triangle and D, E, 

and Fon the sides and see that 
the circles share a common point.

Q roof Case I Consider the problem when point M is inside AABQ as shown in Figure 
5-17. Points D, E, and F are any points on sides AC, BC, and A5, respectively, of 
AABC. Let circles Q and Ry determined by A
points Fy By E and D, C, £, respectively,__
meet at point M. Draw FM, M£, and MD.

In cyclic quadrilateral BFME:

mAFME = 180° -  mAB 

Similarly, in cyclic quadrilateral CDME: 

mADME = 180° -  mAC
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By addition:

mZ-FME + m/-DME = 360° — (mAB + mAC)

Therefore:

mAFMD = mAB + mAC

However, in A ABC:

mAB + mAC = 180° — mAA

Therefore mAFMD = 180° — mAA and quadrilateral AFMD is cyclic. Thus 
point M lies on all three circles. •

Case II Figure 5-18 illustrates the problem when point M  is outside AABC. 
Again let circles Q and R meet at point M. Because quadrilateral BFME is cyclic:

mAFME = 180° — mAB

Similarly, because quadrilateral CDME is cyclic:

mADME = 180° -  mADCE
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By subtraction:

m/-FMD = m/-FME — m/-DME = mZ.DCE -  m/-B (I)

However:

m/-DCE = Щ/-ВАС + mAB (II)

By substituting (II) into (I), we get:

mAFMD = mABAC = 180° -  mAFAD

Therefore quadrilateral ADMF is also cyclic, and point M lies on all three 
circles. •

Point M is called the Miquel point of AABC. The points F, D, and E deter­
mine the Miquel triangle, AFDE. MiquePs theorem opens the door to a variety of 
additional theorems. We present some of them here.

I THEOREM 5.8 The segments joining the Miquel point of a triangle to the vertices of the Miquel 
triangle form congruent angles with the respective sides of the original triangle.

Q roof Because quadrilateral AFMD is cyclic (see Figures 5-17 and 5-18), AAFM is sup­
plementary to A ADM, But A ADM is supplementary to ACDM. Therefore 
AAFM = ACDM, whereupon it follows that ABFM = A ADM. To complete the 
proof, merely apply the same argument to cyclic quadrilateral CDME. •

We say that a triangle is inscribed in a second triangle if each of the vertices 
of the first triangle lies on the sides of the second triangle. Thus we state the 
following theorem.

I THEOREM 5.9 Two triangles inscribed in the same triangle and having a common Miquel point 
are similar.

O l 'o o f  Consider ADEF and AD'E'F', which have the same Miquel point M  (see 
Figure 5-19). From Theorem 5.8, we find that:

AMFB =  AMDA 
AMFA = AMD^C

Therefore AMF’F -  AMD'D. Similarly, AMD'D -  AME'E. Thus: 

AFMF' = ADMD' =  AEME'
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By addition:

AFMD' = AFMD 
AFME' = AFME 
AFMD' = AEMD

Also, as a result of the above similar triangles:

MF MD ME
MF MD' ME'

Because two triangles are similar if two pairs of corresponding sides are 
proportional and the included angles are congruent, we get:

AFMD ~  AFMD 
AFM F  ~  AFME 
AE'MD' ~  AEMD

Therefore:

FD'
FD

FM
FM

and
FF
FE

FM
FM

FD'
FD

FF
FE

Similarly:

FD'
ED

FF
FE

This proves that ADEF ~  AD'E'F' because the corresponding sides are 
proportional. •
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I THEOREM 5.10 The centers of Miquel circles of a given triangle determine a triangle similar to 
the given triangle.

O roof Draw common chords FM, EM, and DM. PQ meets circle Q at point N, and RQ 
meets circle Q at point L (see Figure 5-20).

Because the line of centers of two circles is the perpendicular bisector of 
their common chord, PQ is the perpendicular bisector of FM, so mFN = mNM. 
Similarly, QR bisects EM, so mML = m LE.
Now:

m/UNQL = {mNM + mML) = ^{mFE) and mZ.FBE = ^{mFE)

Therefore:

m/-NQL = m/-FBE

In a similar fashion, it may be proved that m/-QPR = m/LBAC. Thus 
APQR ~  AABC. •

Before completing this introductory study of Miquels theorem, you will find 
it interesting to apply the theorem to an equilateral triangle as well as to special 
right triangles. Are there any new conclusions to be drawn?
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MEDIANS

Although Stewart’s theorem can certainly be applied to the medians of a triangle, 
there are many interesting properties of medians that are not direct results of 
Stewart’s theorem. Some of these are certainly worthy of our attention.

When asked for a property of the medians of a triangle, the typical high 
school geometry student will probably be quick to respond that the point of inter­
section of the medians (the centroid, or center of gravity) is a trisection point of 
each median. In Chapter 2, we used Ceva’s theorem to prove that the medians of 
a triangle are concurrent. The student may also recall that the median of a trian­
gle partitions the triangle into two triangles of equal area. This property can easily 
be extended to a realization that the three medians of a triangle partition the 
triangle into six triangles of equal area.

Our first task will be to examine the relative lengths of the medians of a 
triangle. Using The Geometer’s Sketchpad, draw a scalene triangle and its medi­
ans. Can you guess which median of the triangle is longest and which is shortest? 
Measure the medians using The Geometer’s Sketchpad. Were your guesses right? 
Knowing the lengths of the sides of this given triangle, could you order the 
lengths of the medians without measuring them? This is what our next theorem 
does for us.

I THEOREM 5.11 In a triangle, the longest side corresponds to the shortest median.

Q roof

INTERACTIVE 5-21

Drag A, B, and Cto change the 
shape of the triangle and see that 

the longest side corresponds to 
the shortest median.

Assume AC > AB. We must show 
that BE < CD (see Figure 5-21). 
AAFB and AAFC are two triangles 
that have two sides of the same 
length (i.e., BF = CF and AF = AF). 
Therefore, because AC > AB, 
mZ-AFC > mZ-AFB. AGFB and 
AGFC are also two triangles that 
have two sides of the same length. 
Therefore, because mAGFC > 
mAGFBy GC > GB. Because of the 
trisection property of the centroid, 
CD > BE, •

We can find the length of a median with Stewart’s theorem, and we know 
(from Theorem 5.11) the relationship between the lengths of the medians with 
regard to the lengths of the sides of the triangle. We turn our attention in the 
next two theorems to some interesting relationships about the sum of the 
lengths of the medians of a given triangle.



Chapter 5 MORE TRIANGLE PROPERTIES 107

I THEOREM 5.12 For any triangle, the sum of the lengths of the medians is less than the perime­
ter of the triangle.

INTERACTIVE 5-22

Drag A  B, and Cto change the 
shape of the triangle and see that 

the inequality is true.

I ^ r o o f  AFy BEy and CD are the medians of AABC. Begin 
the proof by choosing point N  on AF so that 
AF = NF (see Figure 5-22). Quadrilateral ACNB 
is a parallelogram because the diagonals bisect 
each other. Therefore BN =  AC. For AABNy 
A N  <  AB +  BNy which with appropriate 
substitutions gives us:

\  \ / 
\  \ / 

\  \ /

N

2{AF) < AB -\- AC or 2{ma) < c F b 

Similarly, we can show that:

< a F c and 2{mc) < a F h

By addition:

2(m  ̂ F rriij F ntc) < 2{a F b F c) or nia F my F trie < a F b F c

/

FIGURE 5-22

I THEOREM 5.13 For any triangle, the sum of the lengths of the medians is greater than three- 
fourths the perimeter of the triangle.

Q r o o f  We begin by using the trisection property of the centroid G of AABC (see 
Figure 5-21). In ABGC:

2 2
BG + CG > BC or -  (me) + -  {my) > a 

In a similar way, we get:

By addition:

Therefore:

2 2 2 2
-  im„) +  -  (m j > b  and -  {m„) + -  {ntb) >  c
D D Ô D

-(m^ F my F > a F b F c

m^ F my F me > -  {a F b F c) 
4
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The previous two theorems tell us that |  (a + fo + c) <  + m¿; + <
fl + + c.

We now turn our attention to the squares of the lengths of the medians of a 
given triangle.

I THEOREM 5.14 Twice the square of the length of a median of a triangle equals the sum of the 
squares of the lengths of the two including sides minus one-half the square of 
the length of the third side.

Q roof By applying Stewart's theorem to AABC in Figure 5-23, we get:

iAB)\FC) + (AQ\BF) = {BF + FC)[{AFf + (BF){FC)]

FIGURE 5-23

Let X = FC = BF. Then:

x iA B f + x^ACf = 2x[{AFf + x^]
{ABf + (,ACf = 2[(AFf + x ]̂

2(AF)^ = {ABf + {ACf -  2 ^

Because x = j(BC), we obtain our desired result:

2{AF)^ = (AB)  ̂ + {ACf -  -  (BCf •

This theorem by itself is not too exciting, yet it helps us prove some rather 
useful and interesting properties, one of which we state as Theorem 5.15.
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I THEOREM 5.15 The sum of the squares of the lengths of the medians of a triangle equals three- 
fourths the sum of the squares of the lengths of the sides of the triangle.

Q r o o f  The proof of this theorem primarily uses the result stated in Theorem 5.14, namely:

2ml = ----
2

2m\ = — -  b̂
2

2ml = + b̂  — ~c^

By addition:

2{m̂ a + ml + ml) =  2{â  +  +  ĉ ) -  b̂  + ĉ )

2 {ml +  + ml) =  + ĉ )

ml -\- ml -\- ml = -  (a  ̂ + b̂  -h ĉ )
4

This is our desired result. •

We may immediately use this result to establish a relationship between the 
sum of the squares of the lengths of the segments joining the centroid with the 
vertices and the sum of the squares of the lengths of the sides.

I THEOREM 5.16 The sum of the squares of the lengths of the segments joining the centroid with 
the vertices is one-third the sum of the squares of the lengths of the sides.

Q r o o f  The length of a segment joining the centroid with a vertex is two-thirds the 
length of its respective median. We therefore seek to find:

3 (3 (3 9

From Theorem 5.15, we have:

Therefore:

ml + ml + ml — — {c? + + ĉ )
4

^ {ml +  ml +  ml) = + ĉ )

This relationship is what was to be demonstrated.'
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The next theorem is more general—it relates arty point in the plane of a 
triangle to segments of the triangle.

I THEOREM 5.17 If P is any point in the plane of AABC with centroid G, then (AP)  ̂ + 
(BPf + (CP)^ = (AG)  ̂ + {BGf + iCG f + 3(PG)^ (see Figure 5-24).

O INTERACTIVE 5-24

Drag A, B, and Cto change the 
shape of the triangle and 

change the position of P and 
see that the equation is true.

FIGURE 5-24

Q r o o f  Begin by letting M  be the midpoint of AG (see Figure 5-24). We now apply The­
orem 5.14 to each triangle indicated:

APBC: 2{PFf = {BPf + {CPf -  - (B C f  

APAG: 2{PMf = {APf + {PGf -  ^(AG)^ 

APMF: 2(PGf = (PM f + (PF)  ̂ -  ^{MF)^

(I)

(II) 

(III)

(IV)

Because MP = f (AP) and AG = |  (AP), MP = AG.

Substituting into equation (III) and multiplying by 2, we get:

4(PG)^ = 2{PMf -f 2{PFf -  (AG)^

Adding (I), (II), and (IV):

2{PF? + 2{PMf + 4(PG)^ = {BPf + {APf + 2{PMf + {CPf + {PGf

+ 2(PFf -  ^ (B C f -  ^{A G f -  {AG?

{AP? + {BP? + {CP? -  5{PG? = ^ {AG? + ^  {BC? (V)
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A similar argument made for median BE yields:

2 _  ^ / d^\2 1  ̂ / a /-̂ \2{APy + {BPy + (CPy -  3{PGr = -  {BGY + -  (AC) (VI)

For median CD, we get:

(APf + (BPy + (CPy -  3(PGy = ^ (C G f + ^{ABy (VII)

Adding (V), (VI), and (VII):

3[(AP)^ + {BPy + {CPy -  3(PGy] = ^ [(AG)  ̂ + {BGy + (CG)^]

+ i  [{BCy + (ACy + {ABy] (VIII)

We now apply Theorem 5.16 to AABC:

{AGy + {BGy + {CGy = ^  [{BCy + {ACy + (AB)^] or 

3[(AG)^ + (BGy + {CGyi = {BCy + {ACy + {ABy 

We substitute this into equation (VIII) to get our desired result:

3[(AP)^ + {BPy + {CPy -  3{PGy] = ^  [(AG)  ̂ + {BGy + (CG)^]

+ i  (3[(AG)^ + {BGy + (CG)"])

{APy + {BPy + {CPy = {AGy + {BGy + {CGy + 3(PG)^ •

The medians of a triangle provide us with many interesting relationships. We 
will investigate some now and leave others as exercises.

I THEOREM 5.18 In any triangle, a median and the midline that intersects it (in the interior of the 
triangle) bisect each other.

Q r o o f  We wish to prove that median 
AF and midline DE bisect each
other (see Figure 5-25). By__
drawing midlines DF and EF, 
we form parallelogram ADFE
(opposite sides are parallel).__
Therefore diagonals AF and DE 
bisect each other. •

The centroid serves as a 
sort of “balancing” point of a 
triangle. We examine this prop­
erty in our next theorem.
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INTERACTIVE 5-26

Drag A, B, and Cto change the 
shape of the triangle and 

change the position of G and see 
that the equation is true.

THEOREM 5.19 In any triangle ABD, let XYZ be any line through the centroid G. If perpendic­
ulars are drawn from each vertex of AABC to this line, as shown in Figure 5-26, 
then CY= AX + BZ.

Q roof Draw medians CD, AF, and BH (see Figure 5-26). From £, the midpoint of CG, 
draw EP 1  XZ. Also draw DQ 1  XZ, Because ZCGY = AQGD and EC = EG = 
DG (property of a centroid):

AQGD =  APGE and QD = EP

AX II BZ; therefore QD is the median of trapezoid AXZB and:

QD = -  {AX + BZ) (property of median of a trapezoid)

Also:

EP = -  (CY) (property of a midline)

Therefore, by transitivity:

^{CY) = ^{A X  +BZ)  or CY = A X - h B Z 9

It is interesting to note that for a given point in a given circle an infinite 
number of inscribed triangles exist that have this point as a centroid. We state 
this property as Theorem 5.20.
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I THEOREM 5.20 An infinite number of triangles each having a given interior point as centroid can 
be inscribed in a given circle.

Q roof

INTERACTIVE 5-27

Choose any interior point as a 
centroid and note that a triangle 

can be inscribed in the given 
circle.

This proof will be somewhat different 
from others we have used so far. To show 
that there exist an infinite number of 
triangles with the necessary specifica­
tions, we will show that one such trian­
gle, randomly selectedy exists. This will 
imply that an infinite number of other 
triangles similarly constructed also exist.

We begin by selecting any point on 
circle O. This point will be point A of 
AABC (see Figure 5-27). Join point A 
with given centroid G and extend AG 
through G to point Fy so that 
GF =  j  (AG). Then draw OF. At point F, 
construct a perpendicular to OF, inter­
secting the circle at points B and C.

This easily justifiable construction proves that a triangle exists with the speci 
fied conditions. But because many other triangles can similarly be constructed 
(depending on the selection of point A), our proof is complete. •

We conclude our study of the medians of a triangle by briefly considering 
the medial trianglcy that is, the triangle formed by joining the midpoints of the 
sides of a triangle.

I THEOREM 5.21 

Q roof

A triangle and its medial triangle have the same centroid.

In AABCy median AF bisects DE at point M  (Theorem 5.18). Therefore FM is a 
median of medial triangle DEF (see Figure 5-28). Similarly, DK and EN  are 
medians of ADEF as well as being segments of medians of AABC. Because the 
medians of AABC meet at point Gy so do the medians of ADEF. •
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In looking back over this chapter, you will see that we began with a study of 
angle bisectors of a triangle. We then considered a general segment of a triangle 
(a Cevian) to exhibit the usefulness of Stewart’s theorem. Finally, we studied 
properties of the medians of a triangle. Your knowledge of triangles should now 
be considerably more extensive.

E x e r c i s e s

1. Prove that the sum of the reciprocals of the lengths of the interior angle 
bisectors of a triangle is greater than the sum of the reciprocals of the 
lengths of the sides of the triangle.

2. Prove that the feet of the four perpendiculars drawn from a vertex of a tri­
angle to the two interior and two exterior angle bisectors of the other two 
angles of the triangle are collinear.

3. Prove that the difference of the measures of the two angles that an interior 
angle bisector forms with the opposite side equals the difference of the meas­
ures of the two remaining angles of the triangle.

4. Prove that the measure of the angle formed by the exterior angle bisector 
and the opposite side of the triangle equals one-half the difference of the 
measures of the two remaining angles of the triangle.

5. In a 30-60-90 triangle with hypotenuse of length 4, find the distance from 
the vertex of the right angle to the point of intersection of the angle 
bisectors.

6. In a right triangle, the bisector of the right angle divides the hypotenuse into 
segments that measure 3 and 4. Find the measure of the angle bisector of the 
larger acute angle of the right triangle.

7. Use Stewart’s theorem to find the length of the medians of a triangle in 
terms of the lengths of its sides and their segments.

8. Prove that any triangle whose sides contain the vertices of a Miquel triangle
of a given triangle and whose vertices each lie on a Miquel circle is similar to
the given triangle.

9. Prove that two similar triangles inscribed in the same triangle have the same 
Miquel point.

10. Using Figure 5-17, prove that mABMC = mZ-BAC + m/LFED.

11. Prove that if three circles have a common point of intersection, M, then
there are three or more similar triangles for which M  is the Miquel point.

12. Prove that if a triangle is constructed with sides the length of the medians of 
a given triangle, the lengths of the medians of this newly constructed triangle 
are each three-fourths the length of the respective sides of the given triangle.

13. Prove that the area of a triangle whose sides are the length of the medians of 
a given triangle is equal to three-fourths the area of the given triangle.
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14. Prove that if two points are equidistant from the centroid of a triangle, then 
the sums of the squares of their distances from the vertices of the triangle 
are equal.

15. Prove that the line containing the midpoint of a median of a triangle and a 
vertex (not on the median) trisects a side of the triangle.

16. Prove that the medians of a triangle partition the triangle into six triangles 
of equal area.

17. Prove that the lines containing the vertices of a triangle and parallel to the 
opposite sides form a new triangle that has the original triangle as its medial 
triangle.

18. Prove that for a right triangle A  “  + 7 2  • Then prove the converse.
he ha hh

19. Prove that for a right triangle 5m^ = ml ml. Then prove the converse.
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We begin our study of quadrilaterals where high school geometry leaves off. Most 
of the study on quadrilaterals in elementary geometry deals with special quadrilat­
erals such as trapezoids, parallelograms, rhombuses, rectangles, and squares. Let us 
look first at the general quadrilateral, that is, one with no special properties, and 
then at the cyclic quadrilateral, that is, one that can be inscribed in a circle.

Suppose you were to draw any shape quadrilateral and then join (with seg­
ments) the midpoints of consecutive sides. What would you expect the resulting 
quadrilateral to look like? The Geometer s Sketchpad is very helpful in our exper­
iment. Construct a quadrilateral, locate and join the midpoints of the sides, and 
then distort the original quadrilateral, observing the shape of the quadrilateral 
formed by joining the midpoints of the sides of the original quadrilateral. What 
you will readily notice is stated as our first theorem of this chapter.

I THEOREM 6.1 The quadrilateral formed by joining the midpoints of consecutive sides of any 
quadrilateral is a parallelogram.

Q r o o f  In Figure 6-1, points P, Q, P, and S are the midpoints of the sides of quadrilat­
eral ABCD. In AADBy PQ is a midline, and therefore:

INTERACTIVE 6-1

Drag points A, B, C, and D to 
change the shape of the quadri­

lateral and see that RGBS is 
always a parallelogram.

PQ 11 DP and PQ = -  (DB)

In ACDP, SR is a midline, and therefore:

Sr \ \d B and SR = ^{DB)

Thus PQ 11 5P and PQ = SR, which 
establishes that quadrilateral PQRS is a 
parallelogram. •

The question that now arises is. What 
type of quadrilateral ABCD will produce a rectangle 
PQRS, a rhombus PQRS, or a square PQPS?

^  B
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I THEOREM 6.2 The quadrilateral formed by joining the midpoints of consecutive sides of a 
quadrilateral whose diagonals are perpendicular is a rectangle.

Because QR \ \a C in Figure 6 - 1 , quadrilateral PQRS would be a rectangle 
(i.e., a parallelogram with adjacent sides perpendicular) if PQ ± QR. This is true 
if AC 1  DB.

I THEOREM 6.3 The quadrilateral formed by joining the midpoints of consecutive sides of a 
quadrilateral whose diagonals are congruent is a rhombus.

INTERACTIVE 6-2

Drag points A  B, C, and D to 
change the shape of the quadri­

lateral and see that PQBS is 
always a rhombus.

Q r o o f  Suppose we have a quadrilateral with congru- 
ent diagonals (see Figure 6 -2 ). The midline PQ 
of AABD has the property:

PQ= -  (BD)

Similarly, for AABC and midline QR:

QR = ^{AC)

Because in this quadrilateral BD = AC, we have: 

PQ = QR

Thus parallelogram PQRS is a rhombus. •

Combining the results of Theorems 6 . 2  
and 6.3 enables us to establish the next theorem.

I THEOREM 6 A  The quadrilateral formed by joining the midpoints of consecutive sides of a 
quadrilateral whose diagonals are perpendicular and congruent is a square.
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CENTERS OF A QUADRILATERAL

We will now consider two centers of a quadrilateral. The centroid of a quadrilat­
eral is that point on which a quadrilateral of uniform density will balance. This 
point may be found in the following way. Let points M  and N  be the centroids of
AABC and AADC, respectively (see Figure 6-3). Let points K and L be the ___
centroids of AABD and ABCD, respectively. The point of intersection, G, of MN 
and KL is the centroid of quadrilateral ABCD.

Q

The centerpoint of a quadrilateral is the point of intersection of the two 
segments joining the midpoints of the opposite sides of the quadrilateral. In 
Figure 6-4, point G is the centerpoint of quadrilateral ABCD.
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I THEOREM 6.5 The segments joining the midpoints of the opposite sides of any quadrilateral 
bisect each other.

Q r o o f  Because these two segments are, in fact, the diagonals of the parallelogram
formed by joining the midpoints of the consecutive sides of the quadrilateral, 
they bisect each other. •

In Figure 6-5, points P, Q, P, and S are the midpoints of the sides of quadri­
lateral ABCD. The centerpoint G is determined by the intersection of PR and QS. 
An interesting relationship exists between the segments PR and QS and the 
segment MN joining the midpoints M  and N  of the diagonals of quadrilateral 
ABCD. We state this relationship as the next theorem.

Q

Drag points A  B, C, and D to 
change the shape of the 

quadrilateral and see that the 
relationship is always true.

I THEOREM 6.6 The segment joining the midpoints of the diagonals of a quadrilateral is bisected 
by the centerpoint.

Q r o o f  In Figure 6-5, M is the midpoint of BD and N  is the midpoint of AC.
Points P, Q, Ry and S are the midpoints of the sides of quadrilateral ABCD.

In AADC, PN is a midline; therefore:

PN\\DC  and PN = -{DC)
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In ABDC, MR is a midline; therefore:

MR 1 1 ^  and MR = ^{DC)

Thus P N 11 MR and PN = MR. It follows that quadrilateral PMRN is a
parallelogram. ___  __

The diagonals of this parallelogram bisect each other, so MN  and PR share a 
common midpoint, G, which was earlier established as the centerpoint of the 
quadrilateral. •

While we are on the topic of parallelograms, the next theorem not only pre­
sents a rather interesting relationship but together with the foregoing discussion 
also allows us to propose another interesting property about quadrilaterals.

I THEOREM 6.7 The sum of the squares of the lengths of the sides of a parallelogram equals the 
sum of the squares of the lengths of the diagonals.

In the proof of Stewart’s theorem ([II] and [IV]), we established the following
relationships (see Figure 6 -6 ), applied to parallelogram ABCD with BF 1  APEC.

INTERACTIVE 6-6

Drag points A, B, C, and Dto 
change the shape of the parallel­
ogram and see that the equation 

is always true.

For AABE:

(AB)^ = {BEf + (AE)^ -  2{AE)(FE) (I)

For AEBC:

{BCf = {BEf + {ECf + 2{EC)(FE) (II)

Because the diagonals of quadrilateral ABCD bisect each other, AE = EC. 
Therefore, by adding equations (I) and (II), we get:

{ABy + {BCr = 2(BEY + 2{AEY (III)
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Similarly, in ACAD:

(C D f + (D Af = 2{DEf + 2{CEf (IV)

Adding (III) and (IV), we get:

{ABf + {BCf + {CDf + (D Af = 2(BEf + 2{AEf + 2{DEf + 2{CEf

Because AE = EC and BE = ED, we have:

(A B f + {BCf + (CD)^ + (D Af = 4{BEf + 4{AEf
= (2BEf + (2AE)^
= {BDf + (ACf •

We now combine Theorems 6 . 1  and 6.7 to get the following theorem.

I THEOREM 6.8 The sum of the squares of the lengths of the diagonals of any quadrilateral equals 
twice the sum of the squares of the lengths of the two segments joining the mid­
points of the opposite sides of the quadrilateral.

C ^ ro o f In the proof of Theorem 6.1, we established that PQ = \ (DB) and SR =  ̂(DB).

INTERACTIVE 6-7

Drag points A, B, C, and Dto 
change the shape of the quadri­
lateral and see that the equation 

is always true.

This gives us:

(PQ)2 = 1 (£>5)2 and (5p)2 = 1 (£,5)2
4 4 (I)



Chapter 6 QUADRILATERALS 123

Similarly, QR = 5  (AC) and PS = 5  (AC). This gives us:_ i

(QP)^ = 7  (A C f and {PSf = ^  {ACf 
4 4

+ ^ {A C f = iPR f + {QSf 

{DBf + {ACf = 2 [(PR)^ + (QS)^] <

(II)

Applying Theorem 6.7 to parallelogram PQRS (Figure 6-7) gives us:

{PQf + {SRf + {QRf + {PSf = (PRf + {QSf (III)

Making the appropriate substitutions of (I) and (II) into (III) gives us:

-  (DB)^ + -  (DB)^ + -  {ACf  + -  (ACf = (PRf  + (QSf  
4 4 4 4

CYCLIC QUADRILATERALS

You are probably familiar with the famous formula of Heron of Alexandria for 
finding the area of any triangle given only the lengths of its three sides. This 
formula is:

area of a triangle = Vs(s — a){s — b){s — c)

where a, b, and c are the lengths of the sides and s =
a b c

It is natural to try to extend this formula to quadrilaterals. One common way is 
to consider the triangle as a quadrilateral with a side of zero length. Such an 
extension is credited to Brahmagupta,an Indian mathematician who lived in the 
early part of the seventh century. He used the following formula to find the area 
of a cyclic quadrilateral (i.e., a quadrilateral that may be inscribed in a circle) 
with sides of length a, b, c, and d, where s is the semiperimeter:

area

In 628, Brahmagupta (born 598) wrote Brahma-sphuta-siddhanta (“The Revised System 
of Brahma”), with the twelfth and thirteenth chapters devoted to mathematics.
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INTERACTIVE 6-8

Drag points A  C, and D to 
change the shape of the 

quadrilateral and see that 
Brahmagupta's formula is 

always true.

Note that Brahmagupta considered Heron’s formula as treating the triangle as a 
quadrilateral with d = 0.

© roof (Brahmagupta^S formula) First consider the case in which quadrilateral 
ABCD is a rectangle with a = c and b = d. Assuming Brahmagupta’s formula to 
be true, we have:

area of rectangle ABCD = V ( 5  -  a){s -  b)(s -  c)(s -  d)
= V (a + b -  a){a + b -  b){a Л- b -  a){a b -  b)
= Va'
= ab

This is the area of the rectangle as found by the usual methods.
Now consider any nonrectangular cyclic quadrilateral ABCD (see Figure 6 -8 ). 

Extend DA and CB to meet at point P, forming ADCR 
Let PC = X and PD = y. By Heron’s formula:

area ADCP =  ^V(x + у + c)(y — x + c){x + у — c){x — у + c) (I)

Because ACDA is supplementary to ACBA and because AABP is also supple­
mentary to ACBA, ACDA =  AABP Thus:

From (II), we get:

ABAP -  ADCP

area ABAP _

(II)

area ADCP 
area ADCP area ABAP _  
area ADCP area ADCP 
area ADCP — area ABAP area ABCD

area ADCP area ADCP (III)
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From (II), we also get:

X _ y  —  d  

c a
y  _  X —  b 

c a

Adding (IV) and (V), we get:

x - ^ y _ x  +  y -  b -  d  

c a
c

X +  y  =  

X -\r y  C =

c -  a 
c

(b + d)

{b c d -  a)
c — a

The following relationships are found by using similar methods:

c
y — X c =

X -\- y — c =

X -  y + c =

c a 
c

c — a 
c

c + a

{a c d — b)

{a + b + d — c) 

(a b c — d)

Now substitute (VI), (VII), (VIII), and (IX) into (I). Then: 

area ADCP

4{г -  â) 

area ADCP

V(fc + c + d -  a){a + c + d -  b){a + b + d -  c){a + b + c -  d)

/̂{b + c + d -  a){a + c + d -  b){a + b + d -  c){a + b + c -  ^  
4

A kb + c + (i — a){a + c + d — b){a + b + d — c){a + b + c — d)
 ̂¿ -a^'  V 2 2 2 2

(IV)

(V)

(VI)

(VII)

(VIII) 

(IX)

c -̂a  ̂ V
+ b + c + d-2a){a + b + c + d-2b)(a + b + c + d-2c)(a + b + c + d-2d) 

2 2 2 2

a + b -i- c d
Because s = ------------------, we get:

area ADCP = ~2----- 2  ' V(s — a)(s — b){s — c){s — d)c — a
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Rewrite (III) as:

area ADCP = ^2 ^2 c — a
(area ABCD)

Thus the area of cyclic quadrilateral ABCD = V(s -  a){s — b){s — c){s — d), •

An interesting extension of Brahmagupta's formula to the general quadrilat­
eral is given here without proof:

area of any (convex) quadrilateral___________________
2¡a -h y

= \  {s — a){s — b){s — c)(s — d) — abed • cos

where a, b, c, and d are the lengths of the sides, s = c + d  ̂ ^  ^

are the measures of a pair of opposite angles of the quadrilateral.
This formula shows that of all quadrilaterals that can be formed from four 

given side lengths, the one with the maximum area is the cyclic quadrilateral. The

maximum area is achieved when abed • cos I— -— I = 0 , which occurs when

a y = 180°, which is true only in cyclic quadrilaterals.
There are many interesting theorems about cyclic quadrilaterals. Before con­

sidering them, the reader is advised to recall the methods of proving that a 
quadrilateral is cyclic (see page 7).

Brahmagupta also found that for a cyclic quadrilateral of consecutive side 
lengths a, b, e, and d, where m and n are the lengths of the diagonals, the follow­
ing relationships hold true:

2 _m

n  ̂ =

{ab + ed){ae + bd) 
ad + he

{ae + bd){ad + be) 
ab + ed

Another interesting theorem on cyclic quadrilaterals attributed to 
Brahmagupta follows.

I THEOREM 6.9 In a cyclic quadrilateral with perpendicular diagonals, the line through the point 
of intersection of the diagonals and perpendicular to a side of the quadrilateral 
bisects the opposite side.

O r o o f  Diagonals AC and BD of cyclic quadrilateral ABCD are perpendicular at point ̂  
of intersection, G, and GE _L AED (see Figure 6-9). We want to prove that GE 
bisects BC at point P.

In right triangle AEG, Z.5 is complementary to A l  and Z_2 is complemen­
tary to Z l. Therefore Z.5 =  Z.2. Because Z2 =  Z4, we have Z5 =  Z.4.



Chapter 6 QUADRILATERALS 127

INTERACTIVE 6-9

Drag points A  B, C, and D to 
change the shape of the quadri­

lateral and see that point P 
always bisects CB.

Because A5 and Z, 6  are equal in measure to \  mDQ they are congruent. 
Therefore Z_4 =  Z 6  and BP = GP.

Similarly, because Z.7 =  Z3 and Z. 7  =  Z 8 , we have GP = PC. Thus 
CP = PB. •

An interesting way to generate a cyclic quadrilateral is provided by the next 
theorem.

i  THEOREM 6.10 If from each pair of adjacent angles of any quadrilateral the angle bisectors 
are drawn, the segments connecting their points of intersection form a cyclic 
quadrilateral.

In Figure 6-10, the angle bisectors of quadrilateral ABCD meet to determine 
quadrilateral EFGH. We will prove this latter quadrilateral to be cyclic.

mABAD + mAADC + mADCB + mACBA = 360°

Therefore:

-  mABAD + -  mZ-ADC + -  mADCB + -  m^CBA = -  (360°) = 180° 
2 2 2 2 2
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o INTERACTIVE 6-10

Drag points A  B, C, and D to 
change the shape of the quadri­

lateral and see that EFGH is 
always cyclic.

FIGURE 6-10

Substituting, we have:

mAEDC + mAECD + mZ.GAB + m/LABG = 180° (I)

Consider AABG and ADEC:

mAEDC + mAECD + mAGAB + mAABG + mAAGB
+ mADEC = 2(180°) (II)

Subtracting (I) from (II), we find that:

mAAGB + mADEC = 180°

Because one pair of opposite angles of quadrilateral EFGH are supplementary, the 
other pair must also be supplementary, and hence quadrilateral EFGH is cyclic. •

PTOLEMY'S THEOREM

Perhaps the most famous theorem involving cyclic quadrilaterals is that attributed 
to Claudius Ptolemaeus of Alexandria (popularly known as Ptolemy). In his 
major astronomical work, the Almagesf^ (ca. a .d . 150), he stated this theorem on 
cyclic quadrilaterals.

I THEOREM 6.11 (Ptolemy’s theorem) The product of the lengths of the diagonals of a cyclic 
quadrilateral equals the sum of the products of the lengths of the pairs of 
opposite sides.

The Greek title, Syntaxis Mathematical means “mathematical (or astronomical) compila­
tion.” The Arabic title, Almagest, is a renaming meaning “great collection (or compilation).” 
The book is a manual of all the mathematical astronomy that the ancients knew up to that 
time. Book I of the thirteen books that comprise this monumental work contains the theorem 
that now bears Ptolemy's name.
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INTERACTIVE 6-11

Drag points A, B, C, and D to 
change the shape of the quadri­
lateral and see that the equation 

is always true.

We provide two methods for proving Ptolemy’s theorem. The second method 
incorporates the proof of the converse as well, which we state in Theorem 6 . 1 2 .

Q ro o f I In Figure 6-11, quadrilateral
ABCD is inscribed in circle O. A 
line is drawn through point A to 
meet GE at point P so that:

m/LBAC = mZ-DAP (I)

Because quadrilateral ABCD is 
cyclic, /-ABC is supplementary to 
/-ADC. However, /-ADP is also 
supplementary to /-ADC. 
Therefore:

Thus:

mAABC = mAADP (II)

ABAC ~  ADAP (AA) (III)

AB
AD

BC {AD)(BC) 
= or DP =

DP AB (IV)

AB AC
From (I), m/-BAD = m/.CAP; from (III), —  = — . Therefore:

AD AP

AABD ~  AACP (SAS)
^  ^  ^  (AC){BD)
CP AC AB (V)

We know that:

CP = CD + DP

Substituting (IV) and (V) into (VI), we get:

(AC)(BD) ^  ^  {AD)(BC)
AB

Thus iAC){BD) = {AB)(CD) + (AD)(BC).

AB

(VI)

II In quadrilateral ABCD (Figure 6 - 1 2 ), draw ADAP on side AD similar to ACAB. 
Thus:

AB AC BC 
A P ~  AD ~ PD 

(AC){PD) = (AD){BC)

(I)

(II)
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Because mABAC = mAPAD, mABAP = mACAD. Therefore, from (I):

AB BP
ABAP ~  ACAD (SAS) =

Thus:

(ACKBP) = (AB}{CD)

Adding (II) and (III), we have:

{AC){BP + PD) = (AD)(,BC) + {AB){CD)

(III)

(IV)

Now BP + PD > BD (triangle inequality), unless P is on BD, However, point P 
will be on BD if and only if mAADP = mZ-ADB. But we already know that 
mZ-ADP = mAACB (similar triangles). If quadrilateral ABCD was cyclic, then 
m/-ADB would equal mZ.ACB and mAADB would equal mAADP Therefore we 
can state that if and only if quadrilateral ABCD is cyclic, point P lies on BD. This 
tells us that:

BP + PD = BD (V)

Substituting (V) into (IV), we get:

(AC)(BD) = (AD)(BC) + (AB)(CD) •

Notice that we have proved both Ptolemy’s theorem and its converse, which 
we now state as our next theorem.

I THEOREM 6.12 (The converse of Ptolemy’s theorem) If the product of the lengths of 
the diagonals of a quadrilateral equals the sum of the products of the lengths of 
the pairs of opposite sides, then the quadrilateral is cyclic.

Q ro o f Assume quadrilateral ABCD is not cyclic (see Figure 6 - 1 1 ). If CDP, then
m/-ADP 9  ̂ mAABC. If points C, D, and P are not collinear, then it is possible to 
have mAADP = mAABC. However, then CP < CD + DP, and from (IV) and (V)
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in Proof I of Ptolemy’s theorem:

(AOiBD) < {AB){CD) + {AD){BC) 

But this contradicts the given information that

(AC){BD) = {AB){CD) + (AD){BC) 

Therefore quadrilateral ABCD is cyclic. •

We now consider an extension of Ptolemy’s theorem.

I THEOREM 6.13 Consider a noncyclic quadrilateral ABCD. If we let a = AD, b = BD, c = CD, 
a' = BC, b' = AC, and c' = AB, then the sum of the lengths of any two of seg­
ments aa', bV, and cc' is greater than the length of the third (see Figure 6-13).

© r o o P  Construct A' on DA such that DA' = be.
Construct B' on DB such that DB' = ac. 
Construct C  on DC such that DC' = ab.

We notice that ADAB ADA'B' because they have a common LADB and the 
adjacent sides are proportional. That is:

DA' be
-----— — — e and
DB b

DB' ae
~ D Ä ~ ~ ä~ ^

DA' DB' 
DB ~ DA

This proof was developed by Professor Harry W. Appelgate of The City College of The 
City University of New York.
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A'B' X
It follows that c = , which gives us A'B' = cc\ Similarly, B 'C  = aa'

and A 'C  = bb\ From AA'B 'C \ we see (from the triangle inequality) that:

aa' + bb' > cd 
aa! + cc' >  bV 
bb' + cc' > aa' •

For the situation in Theorem 6.13, what happens when aa' + cc' — bb'\

APPLICATIONS OF PTOLEMY’S T H E O R E M

This section presents some direct consequences of Ptolemy’s theorem.

1 If any circle passing through vertex A of parallelogram ABCD intersects sides AB 
and AD at points P and R, respectively, and intersects diagonal AC at point Q, 
prove that (AQ)(AC) = {AP){AB) + {AR){AD). •

Q roof Draw RQy QPy andRP, as in Figure 6-14. mZ.4 = m/-2. Similarly, mZ_l = mZ_3. 
Because mZ.5 = mZ3, mZ.1 = mA5.

Therefore ARQP ~ AABC (AA), and because AABC = ACDA, we have: 

ARQP -  AABC -  ACDA
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Then:

AD
R P ~  R Q ~ PQ (I)

By Ptolemy’s theorem, in quadrilateral RQPA:

{AQ)(RP) = iRQ){AP) + (PQ)(AR) (II)

Multiplying each of the three equal ratios in (I) by one member of (II) gives us:

(
AC\ i AB\ I a d
— j = (RQ)(AP)( — ) + (PQ)(AR)'

RQ PQ

Thus (AQ)(AC) = (AP)(AB) + (AR){AD) . '

O p p lic a t io n  2 Express the ratio of the lengths of the diagonals of a cyclic quadrilateral in terms 
of the lengths of the sides. •

S o l u t i o n  On the circumcircle of quadrilateral ABCD, choose points P and Q so that 
PA = DC and QD = AB, as in Figure 6-15.

Applying Ptolemy’s theorem to quadrilateral ABCP gives us:

(AOiPB) = {AB){PC) + {BC)(PA) (I)

FIGURE 6-15

Similarly, applying Ptolemy’s theorem to quadrilateral BCDQ gives us:

(BD){QC) = {DOiQB) + (BOiQD) (II)

Because PA + AB = DC + QA we have m PAB = mQDC and PB = QC. 
Similarly, because^m PBC = mDBA^ we have PC = ADy and because 
mQCB = mACDy we have QB = AD.
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Finally, dividing (I) by (II) and substituting for all terms containing Q and P, 
we get:

^  ^  {AB){AD) + (BC){DC)
BD ~ (DC)(AD) + {BC){AB) ^

3 A point P is chosen inside parallelogram ABCD such that ¿.APB is supplemen­
tary to ACPD (Figure 6-16). Prove that (A5)(AD) = {BP){DP) + (AP)(CP). •

P'

О  roof On side AB of parallelogram ABCD, draw AAP'B = ADPC so that:

DP = AP' and CP = BP' (I)

Because A APB is supplementary to ACPD and ttiABP'A = tnACPD, AAPB is 
supplementary to ABP'A. Therefore quadrilateral BP'AP is cyclic. Applying 
Ptolemy s theorem to cyclic quadrilateral BPAP, we get:

From (I):

(ABXP'P) = (BP)(AP') + (AP){BP')

{AB){P'P) = {BP)(DP) + (AP)(CP) (II)

Because mABAP' = mACDP and CD 11 AB, we have PD 11 PA. Therefore PDAP' 
is a parallelogram and P'P = AD.

Thus, from (II):

(AB)(AD) = (BP)(DP) + {AP){CP) •

The next five applications develop a rather nice pattern about regular polygons.
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application 4 If isosceles triangle ABC (AB = AC) is inscribed in a circle and point P is on BC,
PA AC

prove that----------- = — , a constant for the given triangle. •
PB + PC BC

Q roof Applying Ptolemy’s theorem to cyclic quadrilateral ABPC (Figure 6-17), we get:

(PA){BC) = (PB){AC) + (PC){AB)

Because AB = AC:

PA AC ^
{PA){BC) = AC{PB + PC) and

PB + PC BC

Opplication 5 If equilateral triangle ABC is inscribed in a circle and point P is on BC, prove 
that PA = PB + PC. •

© roof Because quadrilateral ABPC is cyclic (Figure 6-18), we can apply Ptolemy’s 
theorem:

r n iB C )  = (PB)(AC) + {PC){AB) (I)

However, because AABC is equilateral, BC = AC = AB, Therefore, from (I):

PA = PB + PC 9
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6  If square ABCD is inscribed in a circle and point P is on BC, prove that 
PA + PC _  ^  ^
PB-\-PD ~ PA'

Q roof In Figure 6-19, consider isosceles triangle ABD {AB = AD). Using the results of 
Application 4, we have:

PA AD
PB + PD DB

Similarly, in isosceles triangle ADC:

PD _  ^  
PA + PC ~ AC

Because AD = DC and DB = AC, we have:

AD _ DC 
DB ~ AC

From (I), (II), and (III): 

PA PD PA + PC PD
or

(I)

(II)

(III)

PB + PD PA + PC PB + PD PA
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O p p lica tio n  7 If regular pentagon ABODE is inscribed in a circle and point P is on BC, prove 
that PA + PD = PB + PC + PE. •

Q roof In quadrilateral ABPC (see Figure 6-20), by Ptolemy’s theorem:

(PA){BC) = {BA){PC) + {PB){AC)

In quadrilateral BPCD:

(PD){BC) = {CD)(PB) + {PC){BD)

Because BA = CD and AC = BD, by adding (I) and (II) we obtain: 

BC{PA + PD) = BA{PB + PC) + AC{PB + PC) 

However, because ABEC is isosceles, based on Application 4 we have: 

CE PE (PE){BC)
BC PB + PC

Substituting (IV) into (III) gives us:

or
(PB + PC)

= CE = AC

BCiPA + PD) = BA{PB + PC) + (PB + PC)

But BC = BA. Therefore PA + PD = PB + PC + PE. •

(I)

(II)

(III)

(IV)
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8 If regular hexagon ABCDEF is inscribed in a circle and point P is on BC, prove 
that PE + PF = PA + PB + PC + PD. •

Q roof Lines are drawn between points A, E, and C to make equilateral triangle AEC 
(Figure 6-21). Using the results of Application 5, we have:

PE = PA-l- PC (I)

In the same way, in equilateral triangle BED:

PF = PB -\- PD (II)

Adding (I) and (II), we get:

PE-h PF = PA-\- PB -\- P C P D  %

Although the following problem can be solved by other means, the solution 
that uses Ptolemy's theorem is rather nice.
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Application 9 A triangle inscribed in a circle of radius 5 has two sides of length 5 and 6. Find 
the length of the third side of the triangle. •

Aolution In Figure 6-22, we notice that there are two cases to consider in this problem. 
Both AABC and AABC' are inscribed in circle O, with AB = 5 and 
AC = AC' = 6. We are to find BC and BC'.

FIGURE 6-22

Draw diameter AOD, which measures 10, and draw DC, DB, and DC'. Then:

mAACD  = mAACD = mAABD = 90°

Consider the case where AA in AABC is acute. In right triangle ACD,
DC = 8, and in right triangle ABD, BD = sV^. Applying Ptolemy's theorem to 
quadrilateral ABCD:

(AC){BD) = {AB){DC) + (AD)(BC)
(6)(SV3) = (5)(8) + (10)(BC) or BC = 3 V 3  -  4

Now consider the case where A A is obtuse, as in AABC'. In right triangle 
AC'Dy DC' = 8. Applying Ptolemy's theorem to quadrilateral ABDC':

(AC){BD) + {AB){DC) = (AD){BC)
(6)(5V3) = (5)(8) = (10)(BC') or BC = 3V3 + 4 #

We began our study of quadrilaterals by investigating properties of the general 
quadrilateral. This led to a consideration of cyclic quadrilaterals, quadrilaterals 
whose areas are a maximum for the given side lengths. The cyclic quadrilaterals 
are rich in interesting properties. Brahmagupta's formula and Ptolemy's theorem 
gave evidence of this. It is up to the reader to continue investigating the properties 
of various other kinds of quadrilaterals. The field is boundless, and the resulting 
pleasure a certainty.
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E x e r c i s e s

1 . What type of quadrilateral is formed by joining the midpoints of consecutive 
sides of:
a. a nonisosceles trapezoid
b. an isosceles trapezoid 
Prove your answers.

2. If two noncongruent isosceles triangles share a common base and have no 
part of their interior regions in common, determine the type of quadrilateral 
formed by joining the midpoints of consecutive sides of the quadrilateral 
(formed by the two isosceles triangles).

3. Is the converse of Theorem 6.1 true? Prove your answer.

4. Prove that the perimeter of the quadrilateral formed by joining the mid­
points of consecutive sides of a given quadrilateral equals the sum of the 
lengths of the diagonals of the given quadrilateral.

5. Prove that the area of the quadrilateral formed by joining the midpoints of 
consecutive sides of a given quadrilateral equals one-half the area of the 
given quadrilateral.

6 . Prove that the sum of the squares of the lengths of the sides of a quadrilat­
eral equals the sum of the squares of the lengths of the diagonals plus four 
times the square of the length of the segment joining the midpoints of the 
diagonals.

7. Find the area of a triangle whose sides have lengths 13, 14, and 15.

8 . Find the area of a cyclic quadrilateral whose sides have lengths 9, 10, 10, and 21.

9. Find the area of a cyclic quadrilateral whose sides have lengths 7, 15, 20, and 24.

1 0 . A line, PQy parallel to base BC of AABC intersects AB and AC at points P 
and Q, respectively (Figure 6-23). The circle passing through point P and 
tangent to AC at point Q intersects AB again at point R. Prove that points Ry 
Qy C, and B lie on a circle.
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11. Prove that the lines from the midpoints of the sides of a cyclic quadrilateral 
and perpendicular to the respective opposite sides are concurrent.

1 2 . To what familiar result does Ptolemy’s theorem lead when the cyclic quadri­
lateral is a rectangle? Prove your result.

13. E is a point on side AD of rectangkAECD so that DE = 6 , while DA = S 
and DC = 6 (see Figure 6-24). If CE is extended to meet the circumcircle of 
the rectangle at point E, find the length of DE. Also find the length of FB.

14. A line drawn from vertex A of equilateral triangle ABC meets BC at point D

and the circumcircle at point P (see Figure 6-25). Prove that —  = —  + — .
^ ^ PD PB PC

15. Prove that a quadrilateral has perpendicular diagonals if and only if the sum 
of the squares of the lengths of one pair of opposite sides equals the sum of 
the squares of the lengths of the other pair of opposite sides.
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POINTS OF TANGENCY

We begin this chapter in somewhat dramatic form. We recall a common theorem 
from elementary geometry:

I THEOREM 7.0 Two tangent segments to a circle from an external point are equal in length.

Consider the following problem, whose solution uses this theorem a few times.

If the perimeter of AABC (Figure 7-1) is 16, find the length of AKi.
(Note: Each of the four circles /, Ii, / 2 , / 3  is tangent to each of the three 
lines forming AABC,)

INTERACTIVE 7-1

Drag points A, B, and Cto 
change the shape of the 

triangle and see that AK̂  is 
always I  the perimeter.

143
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Applying Theorem 7.0 to this figure, we get:

BKi = BMi and CLi = CMi

The perimeter of AABC = AB + BC + AC = AB {BMi + CMi) + AC. By 
substitution:

perimeter AABC = AB + BKi + CLj + AC 
= AKi + ALi

However, AKi = ALj because these two segments are tangent segments from the 
same external point to the same circle (Theorem 7.0). Therefore:

AKi = ^  (perimeter AABC) = 8

This solution exhibits just one of the many interesting relationships involving 
equicircles, which are the three escribed circles, or excircles, and the inscribed circle, 
or incircle, of a triangle. In the discussion that follows, we will investigate other 
interesting relationships involving the equicircles and their points of tangency. 
Each equicircle is tangent to each of the three lines containing the sides of the 
triangle.

Let us first state formally the relationship developed above.

I THEOREM 7.1 The segment of a line, containing a side of a triangle, from the vertex of a tri­
angle to the point of contact of the opposite excircle has a length equal to half 
the length of the perimeter of the triangle.

By letting s represent the semiperimeter of AABC, we can restate this theo­
rem as:

A K i =  A l l  =  s

Recall that a = BC, b = AC, and c = AB. Therefore:

BMi = BKi = A K i-  AB = s -  c 
CMi = CLi = AA -  AC = s -  b

Other, analogous relationships can easily be found.

I THEOREM 7.2 The segment of a side of a triangle from the vertex to the point of tangency of 
an excircle has a length equal to the semiperimeter minus the length of the other 
adjacent side.

At this point we should briefly recall how equicircles are determined. In 
Chapter 2, we proved (Application 3) that the interior angle bisector of a triangle 
is concurrent with the two exterior angle bisectors, one at each of the other two
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vertices. This point of concurrency is the center of an escribed circle and is called 
the excenter of the triangle. Using the property that all points of an angle bisector 
are equidistant from the sides of the angle, we can easily prove that this point of 
concurrency is, in fact, the center of an escribed circle. From elementary geome­
try, you will recall that the center of the inscribed circle is the point of intersec­
tion of the interior angle bisectors of the triangle.

Despite all the work students of elementary geometry do with tangent seg­
ments from a common exterior point, they never consider the length of these 
segments in terms of the lengths of the sides of a triangle formed by common 
tangents. A proof of the next theorem fills this void.

I THEOREM 7.3 The segment of a side of a triangle from a vertex to the point of tangency of the 
incircle has a length equal to the semiperimeter minus the length of the oppo­
site side.

C^roof In Figure 7-1:

AK + AL = AB ~ KB + AC -  LC = AB + AC -  {KB + LC)

However, KB = MB and LC = MC. By substitution, we get:

AK + AL = AB + AC -  {MB + MC)
= AB + AC -  BC
= c + b - a  a + b + c
= 2s — 2a = 2 (s — a) where s = 2

Because AK = AL:

AK = AL = s -  a

In a similar manner, we get:

BM = BK = s -  b and CL = CM = s -  c 

This proves our theorem. •

Some other interesting relationships involving the points of tangency of the 
four equicircles of a triangle follow.
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I THEOREM 7.4 The length of the common internal tangent segment of the incircle and an excir- 
cle is equal to the difference of the lengths of the two sides not containing the 
common internal tangent.

Q roof We wish to find the length of MMj in terms of the lengths of the sides of the 
triangle.

From Theorem 7.2, we have:

From Theorem 7.3, we have:

Now:

CMi = CU = $ -  b

BM = BK = s -  b

MMi = BC -  BM -  CMi
= a — {s — b) -  {$ -  b)
= a - 2 { s - b )  a + b + c
= a 2b — 2s where s = 2

MM I = b - c%

Directly from this proof we can show that the midpoint of MMi is also the 
midpoint of BC. We begin by noting that BM = CMi and, for midpoint X  of 
BCy BX = CX. By subtraction, MX = MiX. We state this result as our next 
theorem.

I THEOREM 7.5 The midpoint of a side of a triangle is also the midpoint of the common inter­
nal tangent segment of the incircle and an excircle.

A natural concern for us to pursue here is what the length is of MM3 , the 
segment joining the points of tangency of the incircle and an adjacent excircle, 
that is, the common external tangent segment of the incircle and an excircle.

This length is easily established. We have MM3 ~ “  CM. From
Theorem 7.1:

CM3 = s

From Theorem 7.3:

CM = s — c

Therefore:

MM3 = 5 — (s -  c) or MM3 = c = LL3 

We state this result as Theorem 7.6.
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1 THEOREM 7.6 The length of the common external tangent segment of the incircle and an excir­
cle equals the length of the side between these two circles.

We now consider the common external tangent segments of two excircles.

1 THEOREM 7.7 The length of the common external tangent segment of two excircles equals the sum 
of the lengths of the two sides whose lines intersect this common external tangent.

Q roof We seek to find the length of M2 M3 .

M2 M3  = MM2  + MM3

From Theorem 7.6, MM2  ~  ̂ MM3  “  Therefore:

M2 M3  = + c •

This leaves us only to determine the length of the common internal tangents 
of two excircles of a triangle.

1 THEOREM 7.8 The length of a common internal tangent segment of two excircles of a triangle 
equals the length of the side opposite the vertex contained by the tangent segment.

Q roof We seek to find the length of M 1 M2 .

From Theorem 7.6:

M 1M 2  =  MM2 -  MMi

MM2 = b

From Theorem 7.4:

MMi = b -  c

By appropriate substitution, we get:

M 1 M2  = b -  {b -  c) or M 1 M2  = c •

This completes our consideration of the segments determined by the points 
of tangency of the four equicircles of a triangle.
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EQIJIRADI

We now turn our attention to the radii of the equicircles of a triangle. We refer 
to these radii as equiradii. Consider first the radius of the incircle. We call this 
the inradius of the triangle.

INTERACTIVE 7-2

Drag points A, B, and Cto 
change the shape of the triangle 

and see that the equation is 
always true.

I THEOREM 7.9 The length of the inradius of a triangle is equal to the ratio of the area of the 
triangle to its semiperimeter.

Q roof In Figure 7-2:

area AABC = area ABCI + area AACI + area AABI 

= i  (/M)(BC) + i  UDiAC) + ^  ilKKAB)

1 1 , 1  1 , , X= -  ra + -  rb -  rc = -  r (a b c) = sr
2 2 2 2

Therefore:

area AABC
r =
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We now examine the exradii (the radii of the excircles).

I THEOREM 7.10 An exradius of a triangle has length equal to the ratio of the area of the triangle 
to the difference between the semiperimeter and the length of the side to which 
the excircle considered is internally tangent.

Q r o o f  In Figure 7-3:

area AABC = area AABIi + area AACIi — area ABCIi

INTERACTIVE 7-3

Drag points A, B, and Cto 
change the shape of the triangle 

and see that the equation is 
always true.

= ^  ihK,){AB) + i  (7,L,)(AC) -  ^ (7iMi)(BC)

1  1  , - ~ r , c  + - r , b

Therefore:

ri =

“  ^ ri(c + b -  a) = ri(s -  a)

area AABC
s ~ a

In a similar manner, we can establish that: 

area AABC
r2 = s — b

and T3  =
area AABC

s — c
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If we multiply the results of Theorems 7.9 and 7.10, we get:

area AABC area AABC area AABC area AABC
r • ri • T2  • T3  =

s s — a
>\4

s — b s — c
(area AABC)

s(s — a){s — b)i$ — c)

This denominator reminds us of Heron’s formula for finding the area of a triangle:

area AABC = \ /s { s  -  a){s -  b){s -  c) 

Thus (area AABC)^ = s(s — a)(s — b){s — c). By substitution: 

r • Ti • T2  • T3  = (area AABC)^

We state this formula as our next theorem.

I THEOREM 7J1 The product of the lengths of the equiradii of a triangle equals the square of the 
area of the triangle.

Theorems 7.9 and 7.10 also enable us to prove the following theorem.

I THEOREM 7.12 The reciprocal of the length of the inradius of a triangle equals the sum of the 
reciprocals of the lengths of the exradii of the triangle.

Q r o o f  From Theorem 7.10, we have:

s — a s — b s — c
+ ------ :------ +Ti t2 T3  area AABC area AABC area AABC 

_  3 5  — (fl + + c)
area AABC 

3s — 2s
area AABC 

s
area AABC

By Theorem 7.9, we have:

Therefore:

1
r area AABC

1 1 1 1
ri T2 T3 r

A similar relationship exists involving altitudes ha, hy, and he of AABC.
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I THEOREM 7.13 The sum of the reciprocals of the lengths of the altitudes of a triangle equals the 
reciprocal of the length of the inradius.

Q r o o f  Begin by representing the area of AABC in three different ways.

area AABC = ^ ah  ̂ ~ ~ \

2 (area AABC) = ah  ̂ = bhi = chc

From Theorem 7.9, we have area AABC = sr. Therefore, by substitution:

2sr = aha — = cĥ
2s _  a _  b _  c

i  ~ 1. ~ ~ L
T ha hy h(-

2s _  a + b + c

-  ~ —
^

_]_ _  1  

r ha hi, K
Therefore:

1 1 1 1
r ha hi, he

This result and Theorem 7.12 give us our next theorem.

I THEOREM 7.14 The sum of the reciprocals of the lengths of the altitudes of a triangle equals the 
sum of the reciprocals of the lengths of the exradii.

Theorem 7.14 is stated symbolically as:

1 1 1 1 1 1

ha h  K  ^ 2  3̂

To conclude our study of equiradii, we will establish a relationship between 
the equiradii and the circumradius of a circle. This relationship is stated as 
Theorem 7.15.
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I THEOREM 7.15 The sum of the lengths of the exradii equals the sum of the length of the inra­
dius and four times the length of the circumradius.

O roof The diameter YZ of the circumcircle O of A ABC must contain ^ th e  midpoint 
of both BC and MMi (Theorem 7.5). Therefore YZ ± BC (and YZ ± M2 M3 )
(see Figure 7-4).

Because YX is a median of the trapezoid M3 / 3 / 2 M2 :

YX = ^{l2M2 + l3M ,)=^{r2 + r,)

Because the length of the segment joining the midpoints of the diagonals of 
a trapezoid equals one-half the difference of the lengths of the bases of the trape­
zoid, we have for trapezoid M/Mj/i:

XZ = ^ { M J , - M I ) = ^ { r , - r )

For circumradius Ry we have:

2R = YX -i- XZ

2 R = ^ (r2  + rj) + ^ (r, -  r)

4î  = Ti + r2  + T3  — r
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Therefore:

4R + r = ri + T2  + T3  <

We now turn our attention to the centers of the equicircles and their dis­
tances from the circumcircle. The first theorem we state has been attributed to 
Leonhard Euler (1707-1783).

I THEOREM 7A6  The distance, d, between the incenter and the circumcenter of a triangle is found 
by = R{R -  2r)._________________________________________________

Q roof Because Z is the midpoint of BC, AI must contain point Z (see Figure 7-5). 
Draw 10 to intersect circle O at points D and E, Let lO = d. Then:

(A/)(/Z) = {DI){1E) = { R -  d){R + d)

Consider quadrilateral BICIi. Because BI ± BIi (bisectors of adjacent supple­
mentary angles) and Cl _L C7i, quadrilateral BICIi is cyclic.

INTERACTIVE 7-5

Drag points A, B, and CXo 
change the shape of the triangle 

and see that the equation is 
always true.
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The center of this quadrilateral is determined by the mtersection of the 
pependicular bisector of BC (i.e., OXZ) and the diameter IIi. This point of inter­
section is Z. Therefore 7Z = CZ. By substitution:

(A/)(CZ) =

Because mLCYZ = |  mCZ = mZCAZ and mZBAZ = mZCAZ, we have:

(I)

mZCYZ = mZBAZ

Therefore:

right triangle YZC ~  right triangle AIK ^  ^  Wf)(CZ) = (IK){YZ)

Thus:

(A/)(CZ) = (r)(2 R) (II)

From (I) and (II):

R ^~  ( f  = 2Rr or ( f  = R{R -  2r)

This is our desired result. •

To complete our discussion of distances between centers, we next consider 
the distances between the circumcenter and each of the three excenters. You 
will notice that this relationship is a clear analogue of the foregoing one (see 
Figure 7-5).

I THEOREM 7 .1 7  The distances between the circumcenter and the three excenters of a triangle are 
given by (OJi)^ = R{R + 2r,), {Oh? = R{R + 2r2), and (O h f = R{R + Ir^).

The proof of this theorem is similar to that of Theorem 7.16 and is left as an 
exercise.

This chapter should have provided you with a greater understanding of the 
many interrelationships involving equicircles and the circumcircle, but it by no 
means exhausts this topic. The exercises should serve as a springboard for further 
investigation.
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E x e r c i s e s

1 . Prove that if the length of the inradius of a triangle is half the length of the 
circumradius, then the triangle is equilateral.

2 . Prove each of the following (refer to Figure 7-1):

^ 2

3̂

JL + 1  _
hi; hf-

JL 4. _L _ i.
ha h(- h¡j

_L 4_ ± _ J_
ha h\j hf-

3. Prove that the area of a right triangle equals the product of the lengths of 
the two segments into which the incircle divides the hypotenuse.

4. Prove that Rr

5. Prove that R

abc 
4s ’

abc
4 (area AAJ3C)*

6 . Prove that the ratio of the area of a triangle to the area of the triangle deter­
mined by the points of tangency of the incircle equals the ratio of twice the 
length of the circumradius to the length of the inradius of the given triangle.

7. Prove that rj
s(s -  b){s— c) 

( s -  a)

8 . Prove that the sum of the distances of the circumcenter from the sides of a 
triangle equals the sum of the length of the circumradius and the length of 
the inradius of the triangle.

9. Prove Theorem 7.17.

10. Prove that if a line containing a vertex of a triangle intersects two of the 
equicircles, then the product of the distances of two of the points of inter­
section from that vertex equals the product of the distances of the other two 
points of intersection from that vertex.

11. Prove that the lines tangent to the incircle of a triangle and parallel to the 
sides of the triangle cut off three small triangles the sum of whose perime­
ters is equal to the perimeter of the original triangle.

12. Prove that the sum of the lengths of the legs of a right triangle minus the 
length of the hypotenuse equals the diameter of the incircle.
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13. Prove each of the following:

2 rr

h  =

14. Prove each of the following:

K = 

h  = 

K =

ri -  r 
2rr2 

r i -  r 
2 rr3  

T3 -  r

2V2r3
T2 + T3

2 rir3
ri + T3
2riT2 

ri + T2

15. Prove that (07)^ + (07i)^ + (0 / 2 )̂  + (0 / 3 )̂  = 1 2 R̂  (see Figure 7-5).

16. Prove that (77i)̂  + { Ih f  + (//3 )̂  = 8R(2R -  r) (see Figure 7-5).

17. Prove each of the following, where r̂ , and are the radii of the excircles 
tangent to sides a, fo, and c, respectively:

rs
s — a 

rs
s — b 

rs

5 ( 5  -  h ){s- c) 
s — a 

s(s -  fl)(s -  c)

s(s -  a)(s -  b)
s — c
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I NTRODUCTION TO THE NI NE ' P OI NT CIRCLE

Perhaps one of the true joys in geometry is to observe how one configuration can 
produce a seemingly endless array of properties and relationships. One such situ­
ation begins with nine specific points of a triangle. These points, for any given 
triangle, are:

■ the midpoints of the sides
■ the feet of the altitudes
■ the midpoints of the segments from the orthocenter to the vertices

These points have the surprising relationship of all being on the same circle. This 
circle is called the nine-point circle of the triangle (see Figure 8-1).

After proving that these nine points are, in fact, concyclic, we will investigate 
many properties of this famous circle. In doing so, we will have to digress a bit to 
develop some rather interesting properties of the altitudes of a triangle.

In 1765, Leonhard Euler showed that six of these points, the midpoints of 
the sides and the feet of the altitudes, determine a unique circle. Yet not until 
1820, when a paper published by Charles-Julian Brianchon and Jean-Victor

INTERACTIVE 8-1

Drag points A, B, and Cto 
change the shape of the triangle. 

Notice that the nine points are 
always on the circle.
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Poncelet appeared,were the remaining three points (the midpoints of the seg­
ments from the orthocenter to the vertices) found to be on this circle. Their 
paper contains the first complete proof of the theorem and uses the name “the 
nine-point circle” for the first time.

Much of the fame of the gifted German mathematician Karl Wilhelm 
Feuerbach (1800-1834) rests on a paper he published in 1822,  ̂ in which he 
stated that “the circle which passes through the feet of the altitudes of a triangle 
touches all four of the circles which are tangent to the three sides of the triangle; 
it is internally tangent to the inscribed circle and externally tangent to each of 
the circles which touch the sides of the triangle externally.” (This is stated in this 
chapter as Theorem 8.18.) As a result of his work, the theorem is referred to as 
the Feuerbach theorem; the nine-point circle theorem is also sometimes called 
the Feuerbach theorem.

I THEOREM 8.1 In any triangle, the midpoints of the sides, the feet of the altitudes, and the 
midpoints of the segments from the orthocenter to the vertices lie on a circle.

Q r o o f  In order to simplify the discussion of this proof, we will consider each part with 
a separate diagram. Bear in mind that each of Figures 8 - 2  to 8-5 is merely an 
extraction from Figure 8 -6 , which is the complete diagram.

In Figure 8-2, points A', B', and C  are the midpoints of the three sides of 
AABC opposite each respective vertex. CF is an altitude of AABC, Because A'B' 
is a midline of AABC, A'B' IIAB. Therefore quadrilateral A'B'C'B is a trapezoid. 
B'C' is also a midline of AABC, so B'C' = \BC. Because A'F is the median to 
the hypotenuse of right triangle BCF, A'F = \BC. Therefore B'C' = A'F and 
trapezoid A'B'C'F is isosceles.

Recherches sur la determination d'une hyperbole équilatèau moyen de quartes conditions 
données (Paris, 1820).
 ̂Eigenschaften einiger merkwürdigen Punkte des geradlinigen Dreiecks und mehrere durch sie 

bestirnten Linien und Figuren. Eine analytische-trigonometrische Abhandlung 
(Nürnberg, 1822).
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Recall that when the opposite angles of a quadrilateral are supplementary, as 
in the case of an isosceles trapezoid, the quadrilateral is cyclic. Therefore quadri­
lateral A'B'CF  is cyclic. So far we have four of the nine points qn_one circle.

To avoid confusion, we redraw AABC and include altitude AD (Figure 8-3). 
Using the same argument as before, we find that quadrilateral A'B 'CD  is an 
isosceles trapezoid and therefore is cyclic. We now have five of the nine points on 
one circle (i.e., points A', B\ C', F, and D).

FIGURE 8-3

By repeating the same argument for altitude BE (see Figure 8-4), we can 
state that points D, F, and E lie on the same circle as points A', F', and C . These 
six points are as far as Euler got with the configuration.

With point H as the orthocenter (the point of intersection of the altitudes), 
we let M be the midpoint of CH (see Figure 8-4). Therefore B'My a midline of 
AACHy is parallel to AH, or altitude AD of AABC. Because B'C' is a midline of 
AABC, B'C  IIBC. Therefore, because AADC is a right angle, AMB'C  is also a 
right angle. Thus quadrilateral MB'CF  is cyclic (opposite angles are supplemen­
tary). This places point M on the circle determined by points B', C , and F. We
now have a seven-point circle. __

We repeat this procedure with point L, the midpoint of BH (see Figure 8-5). 
As before, AB'A'L is a right angle, as is AB'EL. Therefore points B', E, A', and L

B

FIGURE 8-5



INTERACTIVE 8-6

Drag points A, B, and CXo 
change the shape of the triangle. 

Notice that the center of the 
circle is always the midpoint of 

the segment.
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are concyclic (opposite angles are supplementary). We now have point L as an
additional point on our circle, making it an eight-point circle. __

To locate our final point on the circle, consider point iC, the midpoint of AH, 
As we did earlier, we find AA'B'K  to be a right angle, as is LA!DK, Therefore 
quadrilateral A'DKB' is cyclic and point K is on the same circle as points B', A', 
and D. We have proved that nine specific points lie on this circle (see Figure 8 -6 ). •

FIGURE 8-6

We are now ready to establish some basic properties of the nine-point circle.

I THEOREM 8.2 The center of the nine-point circle of a triangle is the midpoint of the segment 
from the orthocenter to the center of the circumcircle.

Q ro o f Because M C  subtends a right angle at point F, it must be the diameter of the 
nine-point circle. Therefore the midpoint, N, of MC' is the center of the 
nine-point circle (see Figure 8 -6 ).
___Draw AO to intersect circumcircle Q at point R, Then draw CR and BR.
OC' is a midline of AARB; therefore OC  IIRB. Because AABR is inscribed in a 
semicircle, it is a right angle. Both RB and CF are perpendicular to AB, so 
RB II CF. Similarly, BE II CR. We therefore have parallelogram CRBH, so RB = CH.

OC = ^R B  (OC is a midline oi AARB)

Therefore OC = \{CH) = MH, and OCHM  is a parallelogram (one pair of 
sides both congruent and parallel).

Because the diagonals of a parallelogram bisect each other, the midpoint, N, 
of MC' is also the midpoint of OH. •
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I THEOREM 8.3 The length of the radius of the nine-point circle of a triangle is one-half the 
length of the radius of the circumcircle.

Q r o o f  In Figure 8 -6 , we notice that MN  is a midline of AOHC. Therefore:

MN = -  (OC)

This proves Theorem 8.3.'

In a paper published in 1765, Leonhard Euler proved that the centroid, G, of 
a triangle trisects the segment OH; that is, OG = |(OH). This line, OH, is known 
as the Euler line of a triangle.

I THEOREM 8.4 The centroid of a triangle trisects the segment from the orthocenter to the 
circumcenter.

C ^ ro o f We have already proved that OC  II CH (see Figure 8 -6 ) and that OC' = \{CH), 
Therefore AOGC' ~  AHGC (AA) with a ratio of similitude of Therefore 
OG = |(GH), which may be stated as OG = \{OH),

It remains for us to prove that point G is the centroid of AABC, From the 
triangles we just proved similar, we have:

C'G = ^(GC) = ^(C'C)

Because C'C is a median, point G must be the centroid because it appropri­
ately trisects the median. •

It is interesting to note that:

HN 3 HO 
N G ~  I ~ OG

Thus HG is divided internally by N  and externally by O in the same ratio. This is 
known as a harmonic division.

I THEOREM 8.5 All triangles inscribed in a given circle and having a common orthocenter also 
have the same nine-point circle.

Q r o o f  Because all triangles inscribed in a given circle and having a common orthocenter 
also must have the same Euler line, the center of the nine-point circle for all
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these triangles is fixed at the midpoint of the Euler line (Theorem 8 .2 ). Because 
the length of the radius of the nine-point circle for each of these triangles is 
half the length of the circumradius (Theorem 8.3), they all have their nine- 
point circle with the same radius as well as a fixed center. Thus they all must 
have the same nine-point circle. •

We now digress a bit to study a few properties of the altitudes of a triangle 
that will enable us to prove some other interesting relationships involving the 
nine-point circle.

ALTITUDES

INTERACTIVE 8-7

Drag points A  B, and Cto 
change the shape of the triangle. 

Notice that the three triangles 
formed remain similar to the 

original triangle.

In Chapter 2, we used Ceva's theo­
rem to prove that the altitudes of 
a triangle are concurrent at a 
point known as the orthocenter of 
the triangle (see Application 2, 
page 32). Recall that a triangle 
determined by the feet of the 
perpendiculars from a given point 
to the sides of the triangle is called 
a pedal triangle, A special kind of 
pedal triangle is one in which the 
given point from which perpendic­
ulars are drawn to the sides is the 
orthocenter. This special pedal 
triangle is known as an orihic
triangle (i.e., a triangle determined by the feet of the altitudes). In Figure 8-7, 
ADEF is an orthic triangle.

I THEOREM 8.6 The orthic triangle partitions the original triangle into three additional triangles, 
each of which is similar to the original triangle.

In Figure 8-7, we have orthic triangle DEF. According to Theorem 8 .6 , 
AABC is similar to each of AD£C, AAEFy and ADBF.

Q r o o f  We will prove that AABC ~  ADEC (Figure 8-7). You need only repeat this 
proof for AAEF and ADBF to prove Theorem 8 . 6  completely.

Quadrilateral AEDB is cyclic because AAEB and AADB are right angles. 
Therefore AEAB is supplementary to AEDB (opposite angles of a cyclic 
quadrilateral). However, AEDC is also supplementary to AEDB. Therefore 
AEAB = AEDC. Thus AABC ~  ADEC (because both triangles also share 
AECD).
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Simply repeat this procedure to prove AABC ~  AAEF (use cyclic quadrilat­
eral ECBF) and AABC ~  ADBF (use cyclic quadrilateral AFDC). •

The property of an orthic triangle established as Theorem 8 . 6  leads us to an 
even more intriguing fact about orthic triangles. Consider a triangle each of 
whose vertices lies on the sides of a second triangle. Such a triangle is called an 
inscribed triangle of the second triangle. Now consider the possible inscribed 
triangles that a given acute triangle can have. Of these, the one with the shortest 
perimeter is the orthic triangle. We state this as Theorem 8.7.

I THEOREM 8.y For an acute triangle, the inscribed triangle with the minimum perimeter is the 
orthic triangle (see Figure 8 -8 ).

INTERACTIVE 8-8

Drag points A, B, and ¿ t̂o 
change the shape of the triangle. 

Drag points A ', B', and C' and 
see that the orthic triangle 

always is the minimum perimeter 
inscribed triangle.

The proof of this theorem relies 
heavily on a theorem from high 
school geometry: The shortest dis­
tance from a given point to a given 
line to another given point on the 
same side of the line is the path that 
forms congruent angles with the given 
line. For example, consider the 
points A and B on the same side of 
line € (see Figure 8-9). Let A' be the 
reflection of point A in line € so 
that AA' 1  e and AR = A'R. The 
intersection of A'B and (  is point P.
We can easily show that AP + PB is 
the shortest distance from point A to € to point B.

Because AARP =  AA'PP, AAPR =  AA'PR. Then AA'PR = ABPS. Thus 
AAPR =  ABPS, which is an important property of this minimum perimeter.

FIGURE 8-9
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To prove that AP + PB is the shortest required distance, select point Q on 
line (  distinct from point P. Now A'B < A'Q + QB, or A'P + PB <  A'Q  + QB, 
which verifies the selection of point P as the point determining the minimum 
distance, as required. We are now ready to prove Theorem 8.7.

C^roof In the proof of Theorem 8 .6 , we established that the orthic triangle determined 
three triangles similar to the original triangle. From this we can easily show that 
AAEF = ACED (see Figure 8-7), ACDE =  ABDE, and AAFE = ABED.

Therefore the shortest path from point E to AB to point D is BP + PD. Simi­
larly, the shortest path from point P to CB to point P is ED + DP, and the shortest 
path from point D to AC to point P is DP + PP. This implies that AEDF is the 
inscribed triangle of acute triangle ABC with the minimum perimeter.

Were we to compare the perimeter of orthic triangle DEE to that of any 
other inscribed triangle of AABC, we could easily show that ADEF has a smaller 
perimeter. •

From the congruent angles we established earlier, another interesting prop­
erty of an orthic triangle evolves. Note that because AAFE =  ABED and because 
AEFC is complementary to LAEE and ADFC is complementary to ADEB, we 
have AEFC = ADFC. The general case is stated as Theorem 8 .8 .

I THEOREM 8.8 The altitudes of an acute triangle bisect the angles of the orthic triangle.

Refer to Application 5 on page 35. It is interesting to realize how that proof 
can be used in this more special situation. In effect, we now have the orthocenter 
of AABC as the incenter of the orthic triangle DEE (see Figure 8-7).

Before expanding the diagram of Figure 8-7, we consider the following sim­
ple theorem.

I THEOREM 8.9 The orthocenter of a triangle partitions each altitude into two segments, with the 
product of the lengths of each pair of segments equal to the product of the 
lengths of each of the other two pairs.

CH HD
Q r o o f  Because ACDH ~  AAFH (see Figure 8-7), . This can be rewritten as:

AH HE

{CH){HF) = (AH){HD)

The proof is completed by using another pair of similar right triangles in the 
same manner. •

Consider the circumcircle of AABC (see Figure 8-10). Let CP intersect the 
circumcircle O at point S. We notice that AB bisects HS. This is generally stated 
as in our next theorem.



166 ADVANCED EUCLIDEAN GEOMETRY

INTERACTIVE 8-10

Drag points A  B, and CXo 
change the shape of the 

triangle. Notice that the side 
of the triangle always 
bisects the segment.

FIGURE 8-10

I THEOREM 8.10

Q ro o f

The segment from the orthocenter of a triangle to the intersection of the altitude 
(extended through the foot of the altitude) with the circumcircle of the triangle 
is bisected by a side of the triangle.

^cause both angles are inscribed in the same circle and intercept the same arc, 
BC, /-CSB = A.CAB (see Figure 8-10).

In AACFy AACF is complementary to LCAF. In ACEH, AECH is comple­
mentary to ACHE. But ABHF =  ACHE. Therefore ACAF = ABHF. Because 
both ACSB and ABHF are congruent to ACAB, they are congruent to each 
other. Thus AHBS is isosceles.

We can now prove AHFB = ASFB. It then follows that HF = SF, which 
proves the theorem for one altitude. A simple repetition of the proof may be 
used to verify this theorem for the other altitudes. •

Our next theorem shows that vertex B is the midpoint of arc TS (see 
Figure 8-10).
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I th eorem " ^

© ro o f

A vertex of a triangle is the midpoint of the arc of the circumcircle determined 
by the intersections of two altitudes (extended through their feet) with the cir­
cumcircle (see Figure 8-11).

Quadrilateral AFDC (Figure 8-10) is cyclic because AAFC and AADC are 
congruent (right angles). In this c y ^  qu^rilateral, AFAD =  ADCF (both 
intercept DF). It then follows that SB = TB. (Congruent inscribed angles in 
the same circle have congruent intercepted arcs.) Remember that what holds 
true for one pair of altitudes can also be shown to hold true for other pairs 
of altitudes. •

This configuration leads us to another pair of similar triangles.

I THEOREM 8.12 The triangle formed by the intersections of the altitude extensions (through the 
feet of the altitudes) with the circumcircle is similar to the orthic triangle, with 
corresponding sides parallel.

INTERACTIVE 8-11

Drag points A, B, and Cto 
change the shape of the triangle. 

Notice that the triangle formed 
is always similar to the 

orthic triangle.

FIGURE8-11

C ^ ro o f In Theorem 8.10, we established that HF = SF and HD = TD (see Figure 8-11).
Therefore, in AHST, DF is a midline and is parallel to ST. The same argument 
is used to prove Ef W US and De W TU. It then follows that ADEF ~  ATUS. •
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Theorem 8.12 leads to what will turn out to be a more useful relationship in 
our continued study of the nine-point circle.

I THEOREM 8.13 The circumradii of a triangle that contain the vertices of the triangle are per­
pendicular to the corresponding sides of the orthic triangle.

Q ro o f We will prove this theorem for one of the radii in question and leave the 
proofs for the other two radii to the reader.

In Figure 8 - 1 1 , OC is a radius of the circumcircles of AABC and ASTU. 
From Theorem 8.11, UC =  TC. Therefore OC is the perpendicular bisector of 
TU. Because OC 1 TU, OC must also be perpendicular to DE (because Theorem 
8 . 1 2  established De W TU). •

We now state a theorem that follows directly from the preceding theorem.

I THEOREM 8.14 The tangents to the circumcircle of a triangle at the vertices of the triangle are 
parallel to the corresponding sides of the orthic triangle.

Q ro o f Again we will prove this theorem for only one of the sides of the orthic triangle. 
Radius OC is perpendicular to tangent VC (see Figure 8 - 1 1 ). Flowever,
OC 1  DE (Theorem 8.13). Therefore VC || DE. The same argument holds for 
the other sides of the orthic triangle. •

THE NINE-POINT CIRCLE REVISITED

We now return to our study of the properties of the nine-point circle. The next 
two properties are a direct consequence of Theorems 8.13 and 8.14.

I THEOREM 8.15 Tangents to the nine-point circle of a triangle at the midpoints of the sides of the 
triangle are parallel to the sides of the orthic triangle.

© r o o f Radius NC' of the nine-point circle is perpendicular to tangent C W  (see 
Figure 8 - 1 2 ). By Theorem 8.13, OC 1  DE. We showed earlier that MN  was a 
midline of ACOH, and therefore Mn W OC. This implies that MNC  II OC. Thus

II —C'W  II DE.
The proof for the remaining two sides of the orthic triangle is done in the 

same manner. •
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I THEOREM 8.16

Q ro o f

Tangents to the nine-point circle at the midpoints of the sides of the given tri­
angle are parallel to the tangents to the circumcircle at the opposite vertices of 
the given triangle.

Because the tangents to the circumcircle at a vertex of the triangle and the 
tangents to the nine-point circle at the midpoints of the sides of the triangle 
are each parallel to the sides of the orthic triangle, they are parallel to each 
other. •

INTERACTIVE 8-12

Drag points A, B, and ¿7 to 
change the shape of the triangle. 

Notice that the tangents are 
always parallel to the sides of 

the orthic triangle.

An orthocentric system consists of four points, each of which is the orthocen­
ter of the triangle formed by the remaining three points. In Figure 8 - 1 2 , points 
A, By C, and H form an orthocentric system:

H  is the orthocenter of AABC;
A is the orthocenter of ABCH;
B is the orthocenter of AACH;
C is the orthocenter of AABH.

FIGURE 8-12

I THEOREM 8.17 The four triangles of an orthocentric system have the same nine-point circle.

Q ro o f The proof of this property is left to the reader. All that is required is to check to 
see if, for each of the four triangles, the nine determining points all lie on the 
same circle N  (Figure 8-12). •
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One of the most famous properties of the nine-point circle was first discov­
ered (and proved) by German mathematician Karl Wilhelm Feuerbach in 1822. 
This property establishes a relationship between the nine-point circle and the 
incircle and excircles of the original triangle.

I THEOREM 8.18 (Feuerbach^S theorem) The nine-point circle of a triangle is tangent to the 
incircle and excircles of the triangle (see Figure 8-13).

INTERACTIVE 8-13

Drag points A, B, and Cto 
change the shape of the triangle. 

Notice that the nine-point circle 
is always tangent to the two 

other circles.

The proof of this property is quite complex and time-consuming. The inter­
ested reader will find four different proofs of Feuerbach’s theorem in Modern 
Geometry, by Roger A. Johnson (Houghton Mifflin, 1929, pp. 200-205). The proof 
that Feuerbach actually used consists of computing the distances between the cen­
ter of the nine-point circle and the centers of the inscribed circle (p), the circum­
scribed circle (R), and the circle inscribed in the orthic (or pedal) triangle DEF and 
showing that they equal the sum and difference of the corresponding radii:

(O lf = 2Rp 
ilirf- = 2p  ̂ -  2Rr 

{OH f = R ^~  4Rr

(N lf  = ^  [(OI)^ + (H lf] -  (N H f = ^R^ -  Rp + p^ =2 4

(Note: I is the center of the inscribed circle, H is the orthocenter, and O is the 
center of the circumscribed circle.)
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E x e r c i s e s

1. Prove that the circumcenter of a given triangle is the orthocenter of the 
triangle formed by joining the midpoints of the sides of the original triangle.

2. Prove that the lengths of the altitudes of a triangle are inversely proportional 
to the lengths of the sides of the triangle.

3. Prove that in Figure 8 - 1 2  A A 'B 'C  = AA'B'F.

4. Prove that in Figure 8 - 1 2  CC and OM bisect each other.

5. Why did we consider only an acute triangle when we proved that the orthic 
triangle had the minimum perimeter of all triangles inscribed in the original 
triangle (Theorem 8.7)?

6 . Prove that the product of the lengths of the two segments into which the alti­
tude partitions a side of a given triangle equals the product of the lengths of 
this altitude and the perpendicular segment from the orthocenter to the side.

7. Prove that the angle formed by the altitude and the circumradius containing 
the same vertex of a given triangle has a measure equal to the difference of 
the measures of the remaining two angles of the triangle.

8 . Prove that the angle formed by the altitude and the circumradius containing 
the same vertex of a given triangle is bisected by the angle bisector of the 
triangle containing the vertex.

9. Prove that the circumcircle of a given triangle is congruent to the circle con­
taining two vertices and the orthocenter of the triangle.

10. Prove that the length of the perpendicular segment from the circumcenter of 
a triangle to a side is equal to one-half the length of the segment from the 
opposite vertex to the orthocenter of the triangle.

11. Prove that the sum of the lengths of the three altitudes of a triangle is less 
than the perimeter of the triangle.

12. Prove that the nine-point circle of the triangle determined by any three of 
the incenter and excenters of the triangle is the circumcircle of the original 
triangle.

13. Prove that a line containing the orthocenter and the midpoint of a side of a 
given triangle intersects on the circumcircle the circumdiameter containing 
the opposite vertex.

14. Prove that the feet of the perpendiculars from the orthocenter to the exterior 
and interior angle bisectors of one vertex of a given triangle are collinear 
with the midpoint of the side opposite that vertex and the center of the 
nine-point circle of the triangle.

15. Prove that if a triangle has a fixed vertex and a fixed nine-point circle, then 
the locus of points that can be the circumcenter is a circle.
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NTRODUCTION

The earliest postulates on the congruence of triangles are directly related to the 
construction of triangles. For example, the postulate that two triangles are con­
gruent if they agree in two sides and their included angle (SAS) is a direct conse­
quence of the fact that, with the usual postulates on the use of traditional 
construction instruments (the unmarked straightedge and a pair of compasses), a 
unique triangle can be constructed if we are given two of its sides and the angle 
between them. This triangle is unique in the sense that, if we tried to construct 
another triangle from the same information (i.e., two sides and their included 
angle), we would inevitably (by repeating the steps in the construction) end up 
with a triangle that agrees with the first one in all of its parts and whose only 
possible difference from the first is its position in the plane. Thus we say that the 
given information about the triangle, SAS, determines the triangle. In the past, 
traditional constructions were made on paper. Today, however, we have in 
addition a computer program that produces far more accurate drawings: The 
Geometer’s Sketchpad.

Figure 9-1 illustrates some of the details of triangles we will consider in this 
chapter. We list these systematically here with the general understanding that a 
symbol’s use is clear from the context in which it is found. For instance, we may 
use h to denote either a side of a triangle, its name, or its measure. The ambigu­
ity reflects our choice, not our ignorance. Our aim is clarity. The rigor and preci­
sion that support the material could certainly be supplied, but only with time 
and space that seem inappropriate in our discussion.

Sides: a, b, c
Angles: a, j8 , y
Vertices: A, B, C
Altitudes: /z«, hyy he
Feet of the altitudes: Ha, Hy,
Orthocenter (point of concurrence of altitudes): H
Medians: my, me
Midpoints of sides: Ma, Me
Centroid (point of concurrence of medians): G
Angle bisectors: ta, ty, te
Feet of angle bisectors: Ta, Ty, Te
Incenter (center of inscribed circle, the point of concurrence of angle bisectors): I 
Inradius (radius of inscribed circle): r
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Circumcenter (center of circumscribed circle, the point of concurrence of the 
perpendicular bisectors of the sides): O
Circumradius (radius of circumscribed circle): R
Semiperimeter (half the sum of the lengths of the sides: ^(a + b + c)): s

Note that we use a lowercase letter, in general, to represent a measure of a 
length and an uppercase letter to represent a point. An exception is the use of the 
uppercase letter R to represent the length of the circumradius in order to agree 
with the general use in the literature.

Much of the study of geometry is concerned with relations among the items 
listed. Many triangle relations (e.g., that the sum of the measures of the angles of 
a triangle is 180°) are already known to you. Others (e.g.. Theorem 7.13, which 
states that the reciprocal of the length of the inradius is equal to the sum of the

reciprocals of the lengths of the altitudes, or -  = ^  you have just
r h„ hb K

learned. We will use whatever relations we may need in our constructions, with 
brief indications of their proofs where appropriate. You are urged to follow through 
on these by completing the proof if you can or looking up the proof in a more 
comprehensive reference. You might even find some new relations on your own.
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We approach triangle constructions on two levels. On the first level, we 
assume that an actual triangle exists somewhere, that someone has. handed us 
some parts of that triangle, and that our job is to reconstruct the original triangle. 
On this first level, we assume that a solution exists and that we are to find it. Our 
method in this case is usually to try to find a sequence of steps and appropriate 
relations in order to reconstruct the triangle. On the second level, we do not 
necessarily assume that a solution exists. We examine the given material only in 
light of the possibility that a solution exists, and if so, we are to determine the 
relation between the given information and the nature and number of possible 
solutions. We illustrate both approaches in solving a familiar problem: Construct 
a triangle given the lengths of the three sides, a, b, and c.

By the first approach, if we assume that someone actually had AABC and 
then ‘Took it apart” and gave us just the three lengths, a, b, and c, we can quickly 
reconstruct that triangle. On any line, take any point as the vertex A; then with
arc {A, c) cut the line at point B, thus constructing AB = c (Figure 9-2). Then__
draw arcs (A, b) and (B, a) to intersect at point C. Drawing segments AC and BC 
will give us the required triangle, AABC,

The second approach to the problem does not assume that a solution exists 
but rather “examines the gift horse in the mouth.” If, for example, the given lengths 
are 2, 3, and 6 , it should not take long to see that no triangle can be drawn with 
these measures as the lengths of its sides. Any attempt to carry through such steps 
will soon show the impossibility of an essential event: the intersecting of the arcs 
(A, b) and {By a)y without which we do not have the third vertex, C (Figure 9-3).

We are thus led to an essential requirement of any set of three lengths that 
we propose as the lengths of sides of a triangle: The sum of any two lengths 
must be greater than the third. If this condition, called the triangle inequalityy is 
not satisfied, there can be no solution (i.e., no triangle can exist). If this condi­
tion is satisfied, then we can construct the triangle. As a matter of fact, the arcs 
(A, b) and {By a) will intersect in two points, C and C', one above and the other 
below AB . The two triangles we obtain in this way, AABC and AABC', are sym­
metric across AB and are congruent, so we have essentially one solution to this 
problem. (What happens if a -h = c?)
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Discussions of the possibility and number of solutions and their relations to 
the given data can lead to deeper and more interesting mathematics. We will do 
some of this discussion in later work, and we urge you to pursue such ideas as 
often as possible.

Another difficulty may arise on both levels of construction. Consider, for 
example, the problem of constructing a triangle given the measures of its three 
angles {a, jS, y}. If these measures came from an actual triangle, we know that 
the sum of their measures has to be the measure of a straight angle; that is, the 
measure of any one of them would be the supplement of the sum of the mea­
sures of the other two. Thus, if we are given the measures of any two of these 
angles, we need not be given the third because we can find it from the two that 
are given. A set of information for which some part need not be given because it 
can be found from the rest is called a redundant set.

In this case, we are given essentially only some information about two angles, 
say a and j8 , which “actually” came from AABC but could as well have come 
from any one of infinitely many similar triangles, AABiCi, AA52C2, AAB3C3, . . .  
(Figure 9-4).

If, on the other hand, we start with any three given angles {a, /3, 7 }, there 
can be no triangle with these three given angles unless they satisfy the necessary 
condition that the sum of their measures is the measure of a straight angle.

It should be clear that in order to construct or reconstruct any particular 
triangle, we must have three independent pieces of information about it. Any 
dependencies among these pieces of information may make the set redundant 
and therefore insufficient to determine a triangle. Note that the set {a, fc, c} is 
independent because a choice of a and b does not determine c. Of course, we are 
bound by the triangle inequality, which we can restate as a — b < c < a - \ - b .  
(Can you show how the first kind of inequality follows from the second kind?)

The set {a, j8 , y} is quite familiar as a redundant set. We now call attention 
to two other, less familiar redundant sets. Because a right triangle is determined
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FIGURE 9-4

when we know its hypotenuse and one acute angle, it follows that the set 
{a, b, he] is a redundant set. From Figure 9-5, it should be clear that we could 
construct right triangle ACHc given any two of the set {a, b, h^. Vertex B could then 
be taken anywhere on AHc so that we certainly have not determined any particu­
lar AABC. In the right triangle, we have = b sin a, so the set {a, by he] is 
redundant. If we are given a and by we need not be given he because we can find 
it ourselves. We have an analogous situation if we are given {a, j8 , /ẑ }, which is 
another redundant set (consider right triangle BCHe) and does not determine any 
unique AABC.

Another, less obvious redundant set is (iz, a, R). Suppose, as in Figure 9-6, 
that we have drawn the circumcircle of AABC and also radii OB and OC and 
altitude OM„ of isosceles triangle OBC. From relations involving central and 
inscribed angles, we can see that if a is acute, then mABOC = 2mAay while if a 
is obtuse, then mABOC = 2 mZ.(supp. a'). But from right triangle OCM ,̂ we

have -  = sin a. Therefore, in both cases, a 
2

2R sin a. Because of this

relationship, it should be clear that if we are given any two of the set (a, a, R)y 
we can find the third ourselves. Thus this set is redundant.
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Following is a systematic and comprehensive listing of all 179 sets of three 
independent data that may determine a triangle. By changing around the letters, 
we could have listed each set in various other ways. Thus set 2  below, {a, by a}, 
which can be verbalized as “two sides and the angle opposite one of them,” could 
have been represented by other choices of sides and angles, as long as we have 
two sides and the angle opposite one of them—for example, {a, b, j8 }, {a, c, or}, 
[a, Cy y}y {b, c, p}y or {b, Cy y}. If you make up or come across a construction 
problem of this type, you can find it in this listing by writing the given informa­
tion in the order that we use in each set: sides, angles, altitudes, medians, angle 
bisectors, circumradius, inradius, and semiperimeter.

1 . {a, b, c} 19. {a, a. ma}
2 . {a, b, a} 2 0 . {a, a. my}
3. {fl. h y] 2 1 . {a, 13, ma}
4. {a, a, ¡3} 2 2 . {a> Amy}
5. {a, b, h„} 23. {«. Ame}
6 . {a, b, he] 24. {a. Ama}
7. {a, a, h j 25. {a, ha, ma}
8 . [a, a, hi,} 26. [a>ha> my}
9. [a, A 27. [a, hy. ma}

1 0 . {a> A h ] 28. {a, hy. my}
1 1 . [a, A K] 29. {i?> hy. me}
1 2 . {a, ha, hi,} 30. {«. ha, ma}
13. {a, hy, he} 31. {a, ha, my}
14. [a, he„ hy} 32. [a, hy. ma}
15. [a, hy, he} 33. [a, hy, my}
16. {ha, hy, he} 34. {a, hy, me}
17. [a, b, nia} 35. [ha, hy, ma]
18. {a, b, me} 36. {ha, hy. Me}
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37. {a,m„,mb] 87. {m„, i^C l
38. {a, nib, me} 88. {ma, tb, cl
39. {a, m„, mb} 89. |C> tb. Cl
40. {a, mb, m j 90. 1),R1
41. {h„,ma,mb} 91. {a,l3,R}
42. m j 92. {a,jS,R}
43. {w„, mfc, m j 93. {fl, ha, R}
44. {a,b,t„} 94. (a, hb, R}
45. 95. {a,/j„,Rl
46. {a, a, t„} 96. (a, hb, i?l
47. {fl, a, tb} 97. (/j„,lii„Rl
48. {a, ¡3, t j 98. {a, ma, R1
49. [a, ¡3, tb} 99. {a, mb, i?l
50. {a,l3,te} 1 0 0 . {a, ma, R}
51. {a, 13, t„} 1 0 1 . {a,mb,R}
52. la, ha, to} 1 0 2 . {ha,m„,R}
53. {a, ha, tb} 103. {ha,mb,R}
54. {a,hb,t„} 104. {ma, mb, R1
55. {a, hb, tb} 105. {a, to, R1
56. {a, hb, te} 106. {a, tb, R}
57. (a, 107. {a, ta, R}
58. [a, ha, tb} 108. {a, tb, R}
59. {a, hb, ta} 109. {ha, to, R}
60. {a, hb, tb} 1 1 0 . {ha,tb,R}
61. {a, hb, Cl 1 1 1 . {m^C..Rl
62. {ha,hb,ta} 1 1 2 . {ot̂ C. ^ 1
63. {ha,hb,te} 113. {ta,tb,R}
64. {a,ma,to} 114. {a, b, r}
65. {a, m«, Cl 115. {a, a, r}
6 6 . [a, mb, ta} 116. {a,p, r)
67. (fl, mb, tb} 117. {a,p,r}
6 8 . {fl, Mi;,, cl 118. {a,ho,r}
69. {a, ma, Cl 119. {a,hb,r}
70. {a, m„, cl 1 2 0 . {a, ha, r}
71. {a, mb, cl 1 2 1 . {a,hb,r}
72. {a, Mi;,, c l 1 2 2 . {ha, hb, r}
73. {a, Wfc, Cl 123. {a, ma, r}
74. {ha, ma, cl 124. {a, mb, r}
75. {ha, ma, cl 125. {a, ma, r}
76. {ha, mb, cl 126. {a, mb, r)
77. {/i„, mi,,cl 127. {ha,ma,r}
78. {/ja, mfc, cl 128. {ha, mb, r}
79. {m„, OTfc, Cl 129. {ma,mb,r}
80. {m^mi,,Cl 130. {a,ta,r}
81. {fl, to, cl 131. {a, tb, r)
82. {fl, tb, cl 132. {a, ta, r}
83. (a, Cl 133. {a, tb, r}
84. {a, tb, cl 134. {ha,ta,r}
85. {ha, to. Cl 135. {ha,tb,r}
86. {/i(p C. cl 136. {ma, ta, r}
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137. {m„, ty, r] 159. {ma,ntb,s}
138. {to, th, r} 160. {a,ta,s}
139. {a, R, r} 161. {a,tb,s\
140. {a,R,r} 162. {a, to, 5}
141. {h„, R, r} 163. {a, tb, 5}
142. {m„,R,r} 164. {ha,ta,s}
143. {ta,R,r} 165. {ha, tb, s}
144. {a, b, 5} 166. {nta,t„,s}
145. {a, a, s} 167. {ma,tb,s}
146. {a,l3,s} 168. {ta, tb, s]
147. {a,l3,s} 169. {a, i?, 5}
148. {a, ha, i} 170. { a ,« ,s }
149. {a, hb, 5} 171. {ha,R,s}
150. {a, h„, 5} 172. {ma,R,s}
151. {a,hb,s} 173. {ta,R,s]
152. {ha, hb, s] 174. {a,r,s\
153. {a, m„, i} 175. (a, ns}
154. {a,mb,s} 176. {ha, r, s]
155. {a, nta, s} 177. {ma,r,s}
156. {a, nib, 178. {i„, ns}
157. {ha, nta, s} 179. {R,r,s}
158. {ha,mb,s}

This list can be considered as a list of 179 construction problems, which you 
are invited to plunge into. We will do several of these constructions in the rest of 
this chapter to demonstrate some useful techniques and to develop some geomet­
ric information you may not have come across before. In the first few construc­
tions, we will discuss rather fully the possibility and number of solutions under 
various conditions, but in later problems, we will leave this interesting (and more 
difficult) work for you.

SELECTED CONSTRUCTIONS

I CONSTRUCTION 5 {a, b, h j

iscussion

On any line, take point and construct perpendicular of length h„ 
(see Figure 9-7). Let arc (A, b) intersect this base line at point C, and let arc 
(C, a) intersect this base line at points B and B'. The two solutions are AABC 
and AAB'Cy each of which has the given {a, b, h j.

Because arc (A, b) must intersect the base line to obtain point C, a necessary 
condition for a solution is that b ^  Because this arc will intersect the line 
again at point C  (to the right of point H«), we will also have another pair of
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solutions, but these will be reflections of the solutions we already have. Another 
possibility would follow if we had taken the perpendicular at point below as 
well as above the base line, but again we would have reflections of the solutions 
we found before. In later work, we will not discuss such reflections or symmetric 
solutions that contribute nothing essentially new. If b = ha, then there will be 
just one point of contact between arc (A, b) and the base line, at the point Ha 
itself, which is then a point of tangency of this arc. In this case, triangles ACB 
and ACB' become congruent right triangles; that is, we have essentially a single 
solution. If b > ha, 'we get two solutions no matter what length is chosen for a. 
Thus, finally, the condition b > ha is necessary and sufficient for any solution to 
this problem, with the equality leading to one solution and the inequality leading 
to two solutions. •

I CONSTRUCTION 7 {a, a, h j

This problem is nicely done by the intersection of loci. On any line, construct 
BC = a (see Figure 9-8). Then one locus for vertex A is a line parallel to BC at 
distance ha, that is, Li, because every point on Lj is at distance ha from this base 
line. Another locus for vertex A is the circular arc that subtends BC and in which 
any inscribed angle would have measure equal to a. Thus, to solve this problem, 
we construct Li and L2 as indicated to intersect at point A and then draw AB 
and AC to finish the solution triangle ABC, (Another solution, congruent to this 
one, would come from A', the other intersection of the loci.)

(d isc u ss io n  We will have solutions if and only if the two loci intersect, which will occur if ha 
is not “too big.” Consider the “tallest” triangle, AA"5C, and in particular right 
triangle A"BMa, in which mZ.BA"Ma = and BM = \a. The original problem 
will have a solution if and only if ha ^  A"M ,̂ which becomes, from relations in 
that right triangle, ha ^  \a cot \a. With equality in this situation, we will have Li 
tangent to L2 at point A" and the only solution will be isosceles triangle A"BC;
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A"

with inequality, we will have two congruent triangles, AABC and AA'BQ  or 
essentially one solution. •

I CONSTRUCTION 13 {a, /Zfc, he)

On any line, construct BC = a and a semicircle with BC as diameter 
(Figure 9-9). This semicircle is a locus for both and because both ABHyC 
and ABHcC are right angles. Now draw arc (5, hy) to intersect this semicircle at
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^ ^
point Hij and arc (C, hf.) to intersect it at point Finally, BHc and CH;, inter­
sect at point A to give us the solution triangle ABC,

We leave the full discussion to the reader, with a hint that you should 
examine the relative lengths a, ĥ y and that determine the intersections of the 
various arcs that enter into the construction.

I CONSTRUCTION 16 {h„, h ,  K

S o l u t i o n  I Because the area of AABC is ^ah^y which equals {bĥ y which equals \chcy we have 
aha — bhij = chcy from which we could write:

ha hij hf̂

These equations tell us that the lengths of the sides of a triangle are inversely 
proportional to the lengths of their corresponding altitudes. Conversely, we also 
have:

L . 1 -  L . 1 -  L . i  ha • ‘ u *a b c

If we make a new APQR, with sides hy, and ĥ  (Figure 9-10), the lengths of 
the altitudes of APQR, hay hy, and /ẑ , will also be inversely proportional to the 
lengths of the sides of the new triangle, hay hy, and ĥ :

K-h,^

But we can see that the lengths of these new altitudes will be directly propor­
tional to the lengths of the sides of the original triangle ABC:

a:ha = b:hy = c:h'r

A'

FIGURE 9-10
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Therefore a new triangle whose sides have length hjj, and ĥ . will be similar to 
the required triangle ABC,

The construction then follows these steps: ( 1 ) Construct APQR whose sides 
are the given altitudes, ha, hy, and /ẑ ; (2 ) find the altitudes h'a, hi, and of 
APQR; (3) construct AA'B'C' whose sides are the altitudes just found [AA'B'C  
is similar to the solution triangle ABC) (see Figure 9-10); (4) construct any alti­
tude, say A'H'a, of AA'B'C'y and on A'H'a construct A'Ha congruent to the given 
altitude of length ha, (5) through Ha draw a perpendicular to A'Ha intersecting 
A'B' andA'C' at points B and C. Then AA'BC is the required triangle. •

0 o lu tio n  II If secants are drawn from a point £ to a circle, then EF • EG = EK • EL =
EM • EN, and so on (Figure 9-11). These equal products can be related to the 
equal products aha ~ bh  ̂ = chc with the following construction: From any 
point E outside any circle, draw secants to the circle so that EE = ha, EK = hy, 
and EM = he, as shown in Figure 9-11. These secants will intersect the same 
circle again at points G, L, and N, respectively, with the corresponding lengths

EG = a'y EL = h'y and EN = c'. By construction, a'ha = h'hy = c'/ẑ , and by 
division we obtain a : a ' = b : b' = c : c'. Thus a triangle whose sides have 
lengths a'y b, and c,' just found, will be similar to the solution triangle A ^ .  We 
continue the construction by making AA'B'C' with sides congruent to £G, EL, 
and EN and then proceed as in Solution I. In both cases, AA 'B 'C  will be simi­
lar to the solution triangle ABC. •
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I CONSTRUCTION 20 {a, a, my}

On any line, construct BC = a and then construct circular arc BAC to contain 
a. This arc is a locus for the vertex A, and its circle is the circumcircle of AABC. 
Then construct the circle with diameter OC. This circle, Li, is a locus for the mid­
points of all arcs of the first circle that can be drawn from point C and is thus a 
locus for point My. Because the distance from point B to point My is the given 
median length my, another locus for point My is L2 , the circle (B, my) that we 
draw. Thus point My is at the intersection of these loci, as shown in Figure 9-12, 
and CMy will meet the first circle at point A. Then AABC is our solution.

I CONSTRUCTION 29 {a, hyy

Suppose the triangle is constructed. If we extend CM  ̂its own length to 
point D, then quadrilateral ACBD is a parallelogram because the diagonals bisect 
each other (Figure 9-13). The lengths a and hy determine the right triangle BHyC
and thus the parallelogram ACBD. Hence the construction. __

On any line, construct CB = a and then construct a semicircle on diameter BC. 
(This semicirck is a locus for point Hy). With arc {B, hy)y cut this semicircle at point 
Hy; then draw CHy and draw BD through point B and parallel to With arc
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<—>
(C, 2mc), cut BD at point D, which will be a third vertex of the parallelogram.
Through point D, draw a line parallel to BC to intersect CHy at point A, the fourth 
vertex of the parallelogram and the third vertex of our solution triangle ABC.

I CONSTRUCTION 35

Suppose the triangle is available. Then in AAMaH^, we know the hypotenuse,
. rriai and leg ha, so the triangle is determined. In right triangle AMaK, because is 
the midpoint of side BCy its distance to side AC will be half the distance from point 
B to AC; that is, MaK = \hi. Thus, in this right triangle AMaK, we also know the 
hypotenuse length, m«, and the length of leg MaK = Hence the construction.

On any line, make AMa = and then draw a circle with AMa as diameter 
(Figure 9-14). This circle is a locus for both point Ha and point K. Cut this circle 
with arc (A, hg] to locate point Hg, then with arc (M ,̂ to locate point K. 
Then AK and HgMa intersect at vertex C. Finally, extend CMg its own length to 
point B and draw AB to complete the solution triangle ABC.
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I CONSTRUCTION 43 {may

Suppos£ the triangle is available. Extend GM̂  its own length to point D 
and draw AD and (see Figure 9-15). Then quadrilateral ADBG is a parallelogram 
because diagonals AB and GD bisect each other. But AG = f AD = BG = \mi, 
and GD = 2{GMc) = Thus AADG has sides whose lengths are, respectively, 
two-thirds the lengths of the given medians. Hence the construction.

Construct segments whose lengths are two-thirds the lengths of the given 
medians, and with these segments construct AADG with sides AD =
DG = \mcy and GA = \ma. Now construct median of this triangle and double 
i^length to point By a vertex of the required triangle. Finally, double the length of 
DG to point C and draw sides AC and BC of the solution triangle ABC.

I CONSTRUCTION 56 {fl, hy t,]

Suppose the triangle is available. Then right triangle is determined 
because we know its hypotenuse, and a leg, h¡j. But in this right triangle, we 
have ABCHijy which is also an angle of the solution triangle ABC. Thus we have 
the construction.

On any line, select the point and draw a perpendicular there, making 
HyB = hy (Figure 9-1^. Then arc (B, a) will intersect this base line at point 
Gy and we can draw BC. Then bisect ABCHy and on this bisector make
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CTc = ic- Finally, the intersection of BT^ and CHy is the vertex A of solution 
triangle ABC,

I CONSTRUCTION 63 {̂ a> ĉ\

Suppose the triangle is available. From T ,̂ draw T^Y perpendicular to BC 
(Figure 9-17). Now, because an angle bisector divides the opposite side into seg­
ments whose lengths are proportional to the lengths of the adjacent sides, we 

AT b
have Also, as previously shown, the lengths of the sides of a triangle are

T^B a
inversely proportional to the lengths of the corresponding altitudes. Thus we have
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i’ /¡n „  , . . , . K-  = Combining these equations both = -  , we have —  —
a hh \ a)
proportion, we obtain:

= 7 .̂ From this 
TcB h

ha hy _  ATf. +  Tf-B AB

h  ^

From right triangle BAHa and right triangle BTcY, we also have:

AB AH^ K
T,B T,Y T J

Therefore, finally:

hr, + hu h ^
T,Y

This shows TcY as fourth proportional’̂ to known quantities and therefore
constructible. ___

The construction starts with finding the segment T^Y as fourth proportional 
from the available lengths, ha + h ,̂ hi,, and ha. Then we construct right triangle 
CYTc from its known hypotenuse CT^ = and leg T^Y. But this right triangle 
contains LYCTcy which has half the measure of ABCA of our solution triangle. 
If we copy AYCTc on the other side of CTc, then CA is a locus, Li, for vertex A. 
But because this vertex is also at distance ha from its opposite side, another locus 
for vertex A is L2, the line parallel to CY and at distance ha from it. These two
loci intersect at vertex A, and finally the lines ATc and CY intersect at B, the 
third vertex of our solution triangle ABC.

(d isc u ss io n  This solution was obtained by an algebraic analysis that was far from obvious. Of 
course, it was necessary to know the geometric relations that led to the propor­
tions. Our later constructions lean on even more unfamiliar geometric relations, 
and you are urged to deepen and extend your knowledge of geometry as you 
venture into the rougher waters that lie ahead. •

I CONSTRUCTION 74 {ha> â>

Suppose, as usual, that the solution triangle is available. Then right triangle 
AHaTa and right triangle AHaMa are both determined by a known leg and 
hypotenuse. If we draw the circumcircle and then radius OA and radius OMoD 
(Figure 9-18), we can prove a minor theorem of essential importance in this 
construction.

The fourth proportion refers to the last part of a proportion. In the following proportion,
n r

d is called the fourth proportion: -  =b d
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FIGURE 9-18

I THEOREM An angle bisector of a triangle also bisects the angle formed by the altitude and 
circumradius from the same vertex.

ф го о £ The perpendicular from circumcenter О to AB meets AB at Me, the midpoint of 
AB. Because central angle AOB and inscribed angle ACB intercept the same arc, 
we have у = \mAAOB = mZ.AOMc. Therefore, from right triangle ACHa and 
right triangle OAMc, we have mLCAHa = m/-OAMc =  complement of y.
But because AT^ bisects ABAC, we have шАВАТ^ = m AC AT a. Therefore, by 
subtraction, we have mAOAT^ = mAHoATa, thus AT^ bisects not only ABAC 
but also АН^АО. •

The same figure leads to another useful conclusion.

I THEOREM An angle bisector of a triangle meets the perpendicular bisector of its opposite 
side on the circumcircle of that triangle.

That is, OMa and AT^ meet at point D, on the circumcircle (see Figure 
9-18). This result follows immediately from the fact that both of these lines must 
bisect BC.
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Our construction follows readily from the first of these two theorems. Con­
struct right triangle and right triangle as usual and then double
¿.HaATa beyond ЛТд to obtain one locus, Li, for the circumcenter О (АТд bisects 
/.ЯдАО). Another locus for О is the ̂ erp^endicular, L2 , to АдЛ̂ д at point Мд. 
Finally, the circle (O, OA) will meet ЯдМд at points В and C, the other two ver­
tices of the solution triangle ABC.

(d isc u ss io n  Of course, we must have both Шд and greater than in order to construct our 
first two right triangles. •

I CONSTRUCTION 99 {a, гпь, R]

Construct isosceles triangle OBC with known sides OB = OC = R and
BC = a (Figure 9-19). Then circle (O, R) is a locus, Li, for the third vertex of the
solution triangle ABC. But because M¿, is the midpoint of AC, one locus for My
is the circle, Li, with OC as diameter. Because My is at a known distance, triyy
from vertex B, another locus for My is L2 , the circle (B, m^), which will intersect 

^ ^   ̂ ^
Lj at My and My. Then CMy and CMy will meet the circumcircle (O, R) at the 
third vertices, A and A', of the solution triangles ABC and A'BC.
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In this case, we have shown two distinct solutions obtained from the given 
data. Of course, the given lengths could have led to loci that did not intersect at 
all, in which case there would have been no solution.

I CONSTRUCTION 102 {h„, m„, R}

Suppose the solution is available. Then in right triangle AHaMa, we know 
the length of hypotenuse AMa = rria and the length of leg AH^ = hay so this 
triangle is determined. But the circumcenter can then be found bepuse it is on 
the perpendicular bisector of BC, that is, on the perpendicular to at point 
May and it is also at known distance R from vertex A. Hence the construction.

Construct right triangle AHaMa with known hypotenuse length AMa ^  
and known leg length AHa = ha (Figure 9-20). Then one locus for circumpnter 
O is Li, circle (A, R). Another locus for O is L2 , the perpendicular to HaMa at 
point Mfl. These loci interact at the circumcenter O. Finally, with (O, R) we 
intersect the base line HaMa at points B and C, the other two vertices of the 
solution triangle ABC.
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Q

FIGURE 9-21

I CONSTRUCTION 105 {a, R]

Suppose we have the solution triangle ABC and its circunKircle (O, R) avail­
able. Then the diameter perpendicular to side BC will bisect BC at point and 
meet the circumcircle at points P and Q, as shown in Figure 9-21. The bisecto 
of /LBACy AT a, will also meet the circumcircle at point P, the midpoint of PPC, 
as indicated in Construction 74. Then AQAP is a right angle because it is 
inscribed in a semicircle, and the right triangles PAQ and PM̂ T̂  are similar 
because they have acute angle APQ in common. These relationships give us the

PTa _  PQ
proportion — ^T- If we name the appropriate lengths as indicated in 

t'Ma FA X _  2R
Figure 9-21, then the proportion becomes ^  ^  ̂ •

Because PQ is the circumdiameter, its length, 2 P, is known, and of course ta 
is given. The length d is readily found once we have drawn the chord of length a 
in the circumcircle of radius P, because d is exactly the distance from the mid­
point of that chord to the midpoint of its arc. (Could you show that

d = R
R^ -

?)

Thus the proportion leads to an equation in which x is found in terms of 
available lengths, d, 2P, and : x{x + = d{2R). We now show a geometric
solution to equations o i^ e  form x{x + u ) ^  vw, where w, v, and w are known.
On any line, construct JK of length v and JL of length w; then draw LM of length 
u in any direction. Circumscribe AKLM with circle tti and then find the distance, 
Zy from its center to LM. Now draw circle {Yy z) and draw a tangent to this circle 
from outside point /, to intersect circle tti at points D and E (see Figure 9-22).
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M

By the construction, chords DE and ML are equidistant from Y, the center 
of circle TTj, so DE = ML. Finally, because }D • JE = JK • JL, we have 
JD • iJD + DE) = JK • JL; that is, JD • (JD u) = vw. We have thus found 
JD = X and x{x u) = vw, as desired.

To put these steps together for our actual construction, we start by drawing 
circumcircle (O, R) and placing in it chord BC of given length a. Perpendicular 
bisector BC gives us the lengths d = PM^ and 2R = PQ for the next construc­
tion steps, to be drawn in a separate figure.

On any line, draw JK = PM^ = d and JL = PQ = 2R. Then from point L in 
any direction, draw LM of given length Circumscribe AKLM as described and 
then draw the perpendicular from the center Y to LM. Then draw circle 7 T2 , con­
centric with 7 Ti and tangent to LM. Draw, as in Chapter 1 , a tangent JDE to
circle 7 7 2 , from the theory stated earlier, we now have JD = _

Back in our first figure, we draw the circle (P, x) to intersect BC at point T«, 
and finally PT„ will meet the circumcircle at point A, the third vertex of the 
solution triangle ABC.

(discussion We have utilized a lot of good algebra and geometry, and we leave further details 
and comments to you, noting only that in the original figure the four points A, 
Q, Mrt, and Ta all lie on a circle (with diameter QT^) because both A T ^Q  and 
ATJS/IJQ are right angles. •

I CONSTRUCTION 115 {a, a, r}

This solution will also lead us through some interesting geometry that may 
not be familiar to you. Suppose, as usual, that the solution triangle is available. 
We know that the bisector of ABAC goes through the incenter I and the mid­
point P of the opposite arc, BPC, of the circumscribed circle (Figure 9-23).
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FIGURE 9-23

Consider APBL Because /.BPI and ABCA are inscribed angles both of which 
intersect ABy we have mABPI = mZ-BCA = y. Also, because BI and AI are both 
angle bisectors of the solution triangle ABC:

a B
m/-PBI = mAPBC + mZ-CBI = — f- —

2 2

a B
Thus, because a + p y = 180°, we find that mABIP = — I—  and therefore

APBI is isosceles, with PB = PL But PB can be found from the given informa­
tion because a and a are enough to determine the circumcircle, as indicated 
earlier in this chapter, and once we have placed the known chord BC in the 
known circumcircle (O, OB), we can ^ i ly  draw radius OP as the perpendicular 
bisector of that chord and then draw PB.

Thus we have one locus, Li, for the incenter I: the circle (P, PB) that is avail­
able from the given information. Another locus for /  follows from the fact that 
the incircle is tangent to each side of the solution triangle and its center, /, is 
thus r units distant from each side. Thus our second locus for /  is the line L9 , ̂ y
parallel to BC and r units above it. The construction follows this analysis.

Construct right triangle BCA', with BC = a, right angle at vertex C, and 
mLCBA! = complement of a\ then circumscribe this triangle. This circle,
(O, OB), is the circumcircle of the solution triangle because any angle inscribed 
in BA!C will have angle measure a, as arranged for LBA'C. Draw radius OP 
perpendicular to BC and then draw the circle (P, PB), which is our first locus, Li, 
for the incenter I. Now draw the second locus, L2 , which is a line parallel to 
BC and r units above it. These two loci meet at the incenter /, and then PI 
meets the circumcircle at A, the third vertex of solution triangle ABC.
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(discussion Of course, Li and L2 must meet if we are to locate I, and if they meet once, they 
may meet again. We leave further discussion about the number and nature of the 
solutions to the reader. •

I CONSTRUCTION 122 {h„, h ,  r}

We will not solve this problem completely here but instead will indicate how 
we can reduce it to a problem we have already solved. Recall Theorem 7.13,

which stated that “  = "p + The algebraic consequence of this equation
r ha ht K

is that given any three of these four quantities we can find the fourth. Because 
this problem starts with ha> ht> and r as given, it has now been reduced, theoreti­
cally at least, to Construction 16, in which we were given the three altitudes.

There still remains the question of constructing the reciprocal of any given 
length X. We require a unit length, PT, and any circle tangent to PT at point T 
(see Figure 9-24). Let the circle (P, x) intersect this circle at point Q and consider 
jR, the other intersection of PQ with the first circle. Because PQ • PR = P'f' = 1 , 
it follows that PQ and PR are reciprocals. If (P, x) does not intersect the first cir­
cle, just take any larger circle tangent to PT at point T and proceed as before.

FIGURE 9-24

The actual solution construction will only be indicated here and not com­
pletely done. Use the reciprocal construction to find reciprocals of r, ha and hy. 
Subtract to find the reciprocal of ĥ :

1  -  i  _  ±  _  i_
K r h„ hh

Then find the reciprocal of this reciprocal to obtain he itself. Now we are right 
back to Construction 16, which we did earlier (page 183).
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I CONSTRUCTION 150 {a, K,  5}

^ ^
Suppose the solution triangle is available. On BC, make BP = BA = c and 

CQ = CA = b (Figure 9-25). Thus the length of PBCQ is a b c = 2s, which 
is known. In isosceles triangle BPA, the measure of each of the congruent base 
angles is half the measure of the exterior angle at vertex B; that is, 
m/-PAB = {p. Analogously, mAQAC = \  Thus, at vertex A, we have:

m^PAQ = + a +  ^ y  = ( ^ a +  = 90° +

Thus mZ-PAQ is also known in terms of the original given material.

A Lg

A
/ \

FIGURE 9-25

On the known segment PQ, the point A subtends a known angle 90° + 
and the locus of point A is thus known to be a circular arc, Li. Another locus for 
point A is the line L2 , parallel to BC and at a distance ha above it. We start the 
actual construction by finding Lj.

On any line, draw PQ = 2s, which is the perimeter of the solution triangle 
ABC. At point Py construct PU perpendicular to PQ and then make AUPV con- 
gruent to the given angle of measure a (see Figure 9-26). Bisect LUPV with 
PW; thus mLQPW  = 90° + \a, as in the analysis. Then O, the center of arc Lj, 
will be found at the intersection of the perpendicular bisector of PQ and the 
perpendicular to PW at point P. Finally, (O, OP) is the actual locus Li.

The other locus, L2, is easily drawn, as indicated in Figure 9-26, and the two 
loci intersect at vertex A of the solution triangle. Then, at last, the perpendicular 
bisectors of AP and AQ meet the base line at points B and C, the other two 
vertices of the solution triangle ABC.

We have solved only a few of the 179 problems on our list, but we have 
selected those that lead to relevant and, we hope, interesting geometric material. 
We urge you to explore this territory in much more detail because you will be 
rewarded with knowledge, satisfaction, and pleasure.
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E XERCISE S

1 . Refer to Construction 20 (Figure 9-12). Could we take Mj, as the other inter­
section of the two loci? Explain your answer.

^ ^
2. Refer to Construction 29 (Figure 9-13). The arc (C, 2mJ may intersect BD 

at another point, D'. Discuss the construction and the solution you get from 
there on.

3. Refer to Construction 29 (Figure 9-13). If a has length 10 inches, what are 
possible lengths for For m̂ ? Discuss your response.

4. Refer to Construction 35 (Figure 9-14). Suppose we took K and on the 
same side of AM„ rather than on opposite sides, as in our figure. Complete 
the new figure and discuss your findings.

5. Refer to Construction 35 (Figure 9-14). Under what conditions would AK 
and H^Ma fail to meet? How would our “solution” be affected in that 
case?

6 . Refer to Construction 35 (Figure 9-14). If = 10 inches, discuss the possi­
ble lengths of ha and hy for any solution or for any number of solutions.

7. Refer to Construction 43 (Figure 9-15). What conditions must the lengths
Hie satisfy if we are to have any solution?
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8 . Refer to Construction 43 (Figure 9-15). What are the consequences if any 
two or all three of the given medians have equal length?

9. Refer to Construction 56 (Figure 9-16). What conditions on a and /í¿, would 
make it impossible to construct right triangle BCHy^

10. Refer to Construction 56 (Figure 9̂ -16). What length of the angle bisector 
CTc would make it impossible for BT^ and C H to meet?

1 1 . Refer to Construction 74 (Figure 9-18). Discuss the situations in which there 
is any equality among the three given lengths.

12. Refer to Construction 74 (Figure 9-18). We took and T„ on the same side 
of Ha. Discuss the consequences of taking these points on opposite sides of Ha.

13. Refer to Construction 74 (Figure 9-18). Under what circumstances would 
the circle (O, OA) fail to meetiT^M^?

14. Refer to Construction 99 (Figure 9-19). Discuss the number and possibility 
of solutions with different selections of the given lengths {a, nti, R}.

15. For Construction 99, see if you can arrive at the following necessary and 
sufficient conditions for any solution

+ 2a  ̂ -  J? <  2mt <  V r  ̂ + 2a  ̂ + R

16. Refer to Construction 102 (Figure 9-20). Under what circumstances would it 
be impossible to draw the first right triangle, AAItT̂ M̂?

17. Refer to Construction 102 (Figure 9-20). Under what circumstances would 
the loci Li and L2 fail to intersect?

18. Refer to Construction 102 (Figure 9-20). Loci Lj and L2  might intersect 
twice: at O, as shown, and at O', not shown. Follow through on this 
possibility.

19. Refer to Construction 102 (Figure 9-20). Once we have the intersection O, 
could we ever fail to get the last two vertices, B and C? Discuss your 
response.

Our last exercise in this chapter is a big one!

2 0 . Complete the solutions of as many of the 179 problems on pages 179-180 as 
you can. Discuss for each the conditions for the possibility of any solution 
and the relations among conditions for the nature and number of any 
solutions.
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INTRODUCTION

In this chapter, we investigate in detail the solution of problems that involve 
constructing a circle to fit given conditions. One situation was the construction 
of a circle through the three vertices of a triangle, that is, the circumscribed 
circle of a given triangle (AABC). The solution to this problem is well known 
and unique: The perpendicular bisectors of the sides are concurrent at the 
circumcenter O, and the required circle has center O and radius OA (or OB 
or OC).

Also previously discussed was the construction of the inscribed circle of a 
given triangle, that is, the circle tangent to the three sides of a triangle. This solu­
tion is also well known and also unique: The three angle bisectors are concurrent 
at the incenter 7, which is the center of the desired circle. The radius is the dis­
tance from I to any of the three sides of the original triangle.

THE PROBLEM OE APOLLONIUS

Both of these problems involve the construction of a circle through given points 
or tangent to given lines. A natural generalization would be the problem of con­
structing a circle through one or more points (P) and tangent to one or more 
lines (L), and perhaps tangent to one or more circles (C). This larger, general 
problem, sometimes called the “problem of Apollonius,” is analyzed for the ten 
situations listed here:

1. PPP
2 . PPL

3. PLL
4. LLL

5. PPG
6 . PLC

7. LLC
8 . PCC

9. LCC 
1 0 . CGC

We will examine each of these cases in the constructions that follow.

Apollonius (ca. 262 B.c.-ca. 190 B.c.) was born in Perga, a small Greek city in southern 
Asia Minor. The fame that Apollonius enjoys today results from his work on conic sec­
tions. In addition to his work Conics, Pappus mentions the contents of six other works of 
Apollonius, which form part of the Treasury of Analysis. The only work to have survived 
(originally written in Arabic and translated into Latin by Edmund Halley in 1706) is 
referred to as the “Two Books.” It is his treatment of a tangencies problem, today referred 
to as the “problem of Apollonius,” that we study in this chapter. Euclid, in Elements, Book 
IV, treated the first two cases. Apollonius’s Book I treated cases 3, 4, 5, 6 , 8 , and 9, while 
the treatment of 7 and 10 took up all of Book II. Many famous mathematicians, notably 
Vieta and Newton, were fascinated by case 10. The reconstruction of the remaining four 
books of Apollonius consumed mathematicians in the seventeenth and eighteenth centuries.

201
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I CONSTRUCTION 1 PPP

We have discussed this case when the three points are the vertices of a 
triangle, but a special situation to be considered is the one in which the three 
points do not form a triangle, that is, they are collinear. In this event, the only 
“circle” to go through the three points is a “circle” of infinite radius, that is, a 
straight line.

I CONSTRUCTION 2 PPL

___ If the solution were available, we would see that the line containing chord
P1P2 meets the given line at a point. A, that is an external point from which a 
tangent and secant are drawn to a circle (see Figure 1 0 - 1 ). But we know that in 
such a situation the tangent length is the mean proportional between the length 
of the whole secant and the length of its external segment.

FIGURE 10-1

Let P1P2 intersect line L at point A. Find, by construction, the mean propor­
tion, ty between APi and AP2, and on line L, on either side of point A, draw 
points Ti and T2 so that ATi = AT2 = t. Thus Ti and T2  are tangent points of 
the required circles on line L. The centers of these circles are on both the perpen­
dicular bisector of P1P2 and the perpendicular to L at points Tj and T2 .
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I CONSTRUCTION 3 PLL

If the solution were available, we would see that there are, in general, two 
solutions with two common points P and P'. These points must be symmetrically 
placed with respect to the angle bisector OB (see Figure 10-2). Furthermore, 
the line containing common chord PP' must meet one of the sides, say L2 , at 
point A. We can find OB, a bisector of one of the angles formed by the given 
lines Li and l 2> we can thus also find P', the point symmetric to P with 
respect to OB. Therefore we have reduced the case PLL to the case PPL discussed 
previously.

I CONSTRUCTION 4 LLL

We have discussed the inscribed circle of the triangle formed by three lines 
that meet in three distinct points. A, B, and C. Figure 10-3 shows the situation 
that develops when we consider the three lines that form AABC. The construc­
tions are simple enough: Because each circle is tangent to three lines, its center 
must lie on the bisectors of the angles formed by these lines. Once we have the 
centers, we can easily find the radii (how?) and then draw the required circles. 
We urge you to study this figure carefully; it shows some remarkable properties 
involving collinearity and perpendicularity.

I CONSTRUCTION 5 PPG

Suppose the solution is available. Then the circles would be tangent at 
point T, at which point we could draw a common tangent line. If from any 
point A on this tangent line we draw secants to intersect the desired circle at 
points Pi and ? 2  arid the given circle at points Q and R (see Figure 10-4), we 
would have

APi • AP2 = AT^ = A R - A Q
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Thus, because APi • AP2 = AR • AQ, the four points ?i, P2> Q, and R are cyclic. 
(See exercise 18 at the end of this chapter.) We can easily draw a circle through 
given points Pi and P2 that will intersect given circle C. The construction follows.

First draw the perpendicular bisector of P1P2 (this is a locus for centers of all 
circles through Pi and P2 )- On this perpendicular, take any point E and draw the 
circle {E, EPi) to intersect given circle C at points Q and R. Draw QR to intersect 
P1P2 at point A. From point A, draw tangent AT  to the given circle. Then draw 
ST through center S of the given circle and point T just found, to intersect 
the perpendicular bisector of ^ 1 ^ 2  at O, the center of the required circle. (The 
tangent AT to the given circle is only one of two possible tangent lines. Discuss 
the construction that uses the other tangent line, AT', not drawn in Figure 10-4.)



Chapter 10 CIRCLE CONSTRUCTIONS 205

I CONSTRUCTION 6  PLC

If the solution were available, it could appear in Figure 10-5 as circle 
(£, EG), tangent to the given circle C at point T, tangent to the given line L at 
point G, and passing through the given point R The line of centers, OE, must go 
through point T (why?). Draw the perpendicular from center O to line L, inter­
secting the given circle at points A and B, the ends of a diameter; then draw the
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perpendicular from center E ^ lin ^ L , meeting it at point G, which is a point of 
tangency (why?). Then draw BTy ATy and TG and finally draw AP to intersect 
the desired circle at point H. OF and EG are parallel, and AOAT and ATEG are 
isosceles, with congruent vertex angles at centers O and E.

Thus the base angles of AOAT and ATEG are congruent, and in particular 
AOAT = AETG. Hence AT  and TG lie on the same straight line and ABTG and 
ABTA are right angles. Because ABFG is also a right angle, we know that quadri­
lateral BFGT is cyclic (on diameter BG). Therefore we have secants from outside 
point Ay and hence AB * AF = AT • AG. But points T G, P, and H  are also cyclic, 
and, as before, AT • AG = AH  • AP; therefore AB • AF = AH • AP Because 
points Ay By Fy and P are all quickly available from the given material, we can 
find point H. The problem has thus been reduced to PPL, or Construction 2 .

Briefly, to find point H  we draw the perpendicular from O, the center of 
given circle C, to line I, intersecting circle G at points A and B and meeting line

<—> ----  AP AB
L at point R Draw AP, and on it construct AH, found from —  = Now

proceed with P, H, and L as with P1P2L in Construction 2.
AF AH

I CONSTRUCTION 7 LLC

Suppose, as usual, that a solution S is available, as shown in Figure 10-6. 
Because circle S is tangent to given circle G, the length of OA, joining their cen­
ters, is equal to the sum of their radii, x unknown and r known and given. Thus 
another circle S', concentric with circle S and with radius x + r, will go through 
the center A of given circle G and be tangent to lines Li and L'2 , parallel respec­
tively to the given lines Li and L2 and at distance r beyond them. But because 
these lines are easily constructed, the problem has been reduced to that of Con­
struction 3 (PLL), with P the center A of given circle G and with the lines as Li 
and L2  parallel to the given lines Li and L2  and at distance r beyond them. The 
solution circle S to this problem will give us the desired center O. We know from
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Construction 3 that there are, in general, two solutions, so we should have two 
solutions here also: S and S*, as sketched in Figure 1 0 -6 .

Another possibility must still be investigated: Suppose the solution circle T is 
internally tangent to the given circle. In that case, the length of O'A, the segment 
joining their centers, will be equal to the dijference of their radii rather than the sum, 
as before. Now a new auxiliary circle T', concentric with circle T but inside it and 
with radius x' -  r, will go through the center A of the given circle and be tangent to 
two auxiliary lines L'[ and L̂ ', parallel respectively to given lines Li and L2 but inside 
the angle formed by their intersection rather than beyond the angle as before. We 
have again reduced the problem to PLL, with point A and lines L'[ and L'2. There are 
two solutions in this case also, but only one of them, circle T, is shown.

I CONSTRUCTION 8 PCC

Suppose that a solution, circle S, is available, tangent externally to both given 
circles. Cl and C2 , at p̂ oints Ti and T2 , respectively, as in Figure 10-7.^Let̂ the 
common tangent K1K2 to the given circles meet the line of centers, O i^ ^ a t 
point R. This is a center of similitude of these two circles. Assume that T1 T2 will 
go through point R (this is true; can you prove it?) and draw the other lines as 
indicated in Figure 10-7. Then AUiOiTi, AT 1 OT2 , and AT 2O2 U2 are all isosce- 
les and all their base angles are congruent. Thus OiUi || OO2  and OOi || 02U2̂  
Thus, from two pairs of similar triangles, we have:

RUi ROi 
RT2 RO2

RTi
RU2

Therefore RUi • RU2 = RTi • RT2. But for each circle separately, we have: 

RUi • RTi = RKi and RU2 • RT2 = RKI
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Thus:

(RUi • RTi) • {RU2 RT2) = RK] • RKl = (RUi 
= (RTi • RT2)̂

RU2) • (RT, • RT2)

Therefore RTi • RT2 = RKi • RK2. This means that the four points Ti, T2 , K2, 
and i<Ci are cyclic (as are the four points Ti, T2 , P, and Q), as indicated in exercise 
18. Thus RQ- RP = PTi • RT2 = RK  ̂ • RK2.

This last product is known because it is obtainable directly from the given 
circles as soon as we construct their common external tangent. (To construct this 
tangent, we start by drawing the circle C  = (O2 , 0 2 iC), where the length of O2K 
is equal to the difference of the radii of the given circles; then we draw a tangent 
line from Oi to this circle C . The common tangent to the two circles will be 
parallel to this tangent OiK and at distance OiKi beyon^it.)

From RQ • RP = RKi • RK2y we locate point Q in RP by a fourth propor­
tional construction and have thus reduced the problem to Construction 5 (PPG), 
with points P and Q and either of the given circles.

Because circle S could have been drawn internally tangent to either or both of 
the given circles and because P might be in a variety of locations relative to the 
given circles, which might in turn be in a variety of positions relative to each other, 
there are many specific situations to investigate. We leave the details to the reader.

I CONSTRUCTION 9 LCC

We suppose, as usual, that a solution is available, as depicted in Figure 10-8. We 
are given circle Ci and circle C2  with radii rj and r2 , respectively, and line L  If we 
draw the circle 5' concentric with the solution circle S but with radius OOi, then we 
have “expanded” the solution circle S to S', S' will pass through Oi, be tangent to a 
new circle that is concentric with circle C2  with radius equal to the difference of



Chapter 10 CIRCLE CONSTRUCTIONS 209

the given radii, and be tangent to a new line V  that is parallel to line L and beyond it 
by the distance ri. Clearly we can construct circle C'2 and line L'; thus we can con­
struct circle S' as a solution of Construction 6  (PLC) with given point Oi, given line 
L'y and given circle C. Once we have circle S', it is easy to get the solution circle S.

I CONSTRUCTION 10 ccc

This last construction of the set is often called by itself the “problem of 
Apollonius” or the “circle of Apollonius.” The given circles may lie in various 
relative positions, any one of which may lead to a number of solutions. (Can you 
draw the given circles so that there is no solution?)

We discuss here the most general case, that in which the circles are exterior 
to one another. This case leads, in general, to eight solutions. We draw only one 
solution—the circle that is externally tangent to all three of the given circles. 
Other solutions would be externally tangent to some of the given circles and 
internally tangent to the others. Suppose the solution is available, as usual. Circle 
S with radius r is to be drawn tangent to given circles Ci, C2, and C3, with cen­
ters Oi, O2 , and O3  and radii rj, r2 , and r3  (see Figure 10-9).
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With the solution to Construction 9 in mind, we can “expand” the solution 
circle S concentrically to circle S' with radius r + ri. Then we “shrink” circle Ci 
to its center Oi, circle C2  to circle C2  with radius V2 — ri, and circle C3  to circle 
C3  with radius r3  — rj. Thus circle S'would pass through point Oi and be tangent 
to circles C2  and a .  which brings us neatly back to Construction 8  (PCC) 
because we have point Oi and can easily construct circles Q  and C3 . We easily 
get the solution circle S by “shrinking” circle S' concentrically, with center O and 
radius o r  = OOi -  ri.

WeVe sketched another solution, in which circle S is internally tangent to 
circle Cl but externally tangent to circles C2 and C3, as shown in Figure 10-10. 
The solution proceeds very much as before, with circle S' still found as a solution 
to the construction PCC, but in this case circle C2 has radius V2 + ri and circle C3 

has radius r3  + ri.

This completes our discussion of all ten construction problems, but you 
would be missing a lot of interesting geometry if you did not try to clear up all 
the delightful special cases that arise when we move the given parts around a bit, 
as in the exercises that follow.
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E x e r c i s e s

We indicate special situations that may exist among the given parameters in each 
construction. These special situations lead to different solutions and different 
numbers of solutions.

For exercises 1-4 (PPL), discuss the situation for the special cases indicated.

1. PiP\ is parallel to L (one solution).

2. Pi is on L (one solution).

3. Pi and P2 are both on L.

4. L lies between Pi and P2 .

For exercises 5-9 (PLL), discuss in detail the special cases indicated.

5. Li and I 2  ^re parallel, and P lies on Li.

6 . Li and L2 are parallel, and P lies between them.

7. Li and L2  ^re parallel, and P lies outside of them.

8 . Li and L2 intersect, and P lies on Li.

9. Li and I 2  intersect at P.

Exercises 10-17 (LLL, Figure 10-3) indicate some details that you are asked to 
work out by yourself. Try to find (and prove) other relations.

1 0 . The circle with center I is called the inscribed circle of AABC and has 
radius r. The circles with centers Î y ly, and are called the escribed circles 
of AABCy with radii r ,̂ and respectively. They are all related by a 
remarkable formula:

1 1 1 1
r ry r.

Prove this formula. (Hint: Use areas.)

1 1 . The four radii of the inscribed and escribed circles are also related to AABC 
in other ways: Each can be found directly from the lengths of the sides.
Thus, with semiperimeter s = |(a  + b + c), we have:

r =
(s -  a)(s -  b){s -  c)

ra =
s(s — b)(s — c) 

{ s - a )

ri =
s(s — a){s — c) 

i s - b ) rr =
s{s — a){s — b)

(s -  c)
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Prove these formulas. (Hint: Use areas, particularly Heron's formula: 
area AABC = Vs(s — a)(s — b){s —

12. Prove that the reciprocal of the inradius is equal to the sum of the reciprocals

of the lengths of the altitudes, that is, -  = -— I- -— h .
r ha h  K

13. a. Prove that the product of all four of the radii is equal to the square of the
area of the triangle.

b. Prove that the sum of the three exradii is equal to the sum of the inradius 
and four times the circumradius.

14. Prove that each vertex of AABC is collinear with the incenter, J, and its 
opposite excenter (e.g.. A, I, and la are collinear).

15. Prove that each vertex of AABC is also collinear with its two adjacent excen­
ters (e.g.. Ay I¡y, and 1̂  are collinear).

16. Prove that in Alahh the altitudes are exactly the bisectors of the angles of 
AABC, which meet at the incenter, I.

17. Using the result from exercise 16, prove that the four points I, lay h> and 
form an orthic quadrilateral, which means that if we select any three of them 
and draw the altitudes of that triangle, then those altitudes will be concur­
rent at the fourth point.

For exercises 18 and 19 (PPG), prove the relationships indicated.
^ ^  ^ ^

18. If, as indicated, P1P2 and QR intersect at point A and APj • AP2  = AR • AQ, 
prove that Pi, P2 , Q, and R are cyclic. (Hint: Obtain a proportion from the 
given equation, then prove a pair of triangles similar, then get a pair of 
angles supplementary, and then use the fact that a quadrilateral can be 
inscribed in a circle if and only if both pairs of opposite angles are supple­
mentary.)

19. Prove that if two circles are externally tangent, their line of centers contains 
their common point of tangency.

Discuss each of the special situations in exercises 20-31 (LLC), with figures and
constructions.

2 0 . Li and L2 are parallel, and C is tangent to both.

2 1 . Li and L2 are parallel, and C intersects both.

2 2 . Li and L2 are parallel, and C intersects Li and is tangent to L2 .

23. Li and L2 are parallel, and C intersects but not L2 .

24. Li.and L2 are parallel, and C lies between them and is tangent to L¡ but not
to jL2 *

* For a proof of Heron’s formula, see Alfred S. Posamentier and Charles T. Salkind, Chal­
lenging Problems in Geometry (New York: Dover, 1988), pp. 135-137.
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25. Li and L2  are parallel, and C lies between them but is not tangent to either.

26. Li and L2 intersect at point K, which is interior to C.

27. Li and L2 intersect at point K, which is on C.

28. Li and L2 intersect at point K, and C is tangent to Li at point K,

29. Li and L2  intersect at point K outside C, but C is tangent to Lj and L2 .

30. Li and L2  intersect at point K outside C, but C is tangent to Li and
intersects L2 .

31. Li and I 2  intersect at point K outside C, but C intersects both Lj and l 2 -

Discuss each of the special situations in exercises 32-39 (LCC), with figures and 
constructions.

32. Cl is inside C2  (not tangent), and L intersects both Ci and C2 .

33. Cl is inside C2  (not tangent), and L is tangent to Ci.

34. Cl is inside C2  (not tangent), and L intersects C2  but not Ci.

35. Cl is inside C2  (not tangent), and L is tangent to C2 .

36. Cl is inside C2  (not tangent), and L intersects neither circle.

37. Cl is internally tangent to C2  at point T. Discuss the solutions for each possi­
ble position of L relative to these circles as described in exercises 32-36.

38. Cl and C2  intersect at points P and Q. Discuss the nature and number of 
solutions for each position of L relative to these two circles as described in 
exercises 32-36.

39. Cl and C2  are externally tangent at point T. Discuss the nature and number 
of solutions for each position of L relative to these two circles as described in 
exercises 32-36.

For each situation in exercises 40-59 (CCC), draw the figure and discuss and 
carry out the constructive solution.

40. Cl is inside C2  (not tangent), which is inside C3  (not tangent).

41. Cl is inside C2 (not tangent), which is internally tangent to C3.

42. Cl is inside C2  (not tangent), and C3  intersects both Ci and C2 .

43. Cl is inside C2  (not tangent), and C3  intersects C2  but not Ci.

44. Cl is inside C2  (not tangent), and C3  intersects C2  and is tangent to Ci.

45. Cl is inside C2  (not tangent), and C3  is tangent to both Ci and C2 .

46. Cl is inside C2  (not tangent), and C3  intersects Ci but not C2 .

47. Cl is inside C2  (not tangent), and C3  is externally tangent to C2 .
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48. Cl is inside C2  (not tangent), and C3  is also inside C2  (not tangent) but 
outside Cl.

49. Cl is inside C2  (not tangent), C3  is also inside C2  (not tangent), and Ci and 
C3  are externally tangent.

50. Cl is internally tangent to C2  at point Ti, and C3  is tangent to both Ci and 
C2  at point Ti (four cases).

51. Cl is internally tangent to C2  at point Ti, and C3  is tangent to both Ci and 
C2  but not at point Tj.

52. Cl is internally tangent to C2  at point Ti, and C3  intersects both Ci and C2  
at point Ti as well as at other points.

53. Cl is internally tangent to C2  at point Ti, and C3  intersects both Ci and C2  
but not at point Ti.

54. Cl is internally tangent to C2 at point Ti, and C2 is internally tangent to C3 

at point T2.

55. Cl is internally tangent to C2  at point Ti, and C3  is internally tangent to C2  
but not at point Ti and intersects Ci.

56. Cl is internally tangent to C2  at point Ti, and C3  is tangent to Ci and inter­
sects C2 .

57. Cl is internally tangent to C2  at point Ti, and C3  is externally tangent to C2  
at point T2 .

58. Cl is internally tangent to C2  at point Ti, and C3  is exterior to both Ci and C2 .

59. Cl intersects C2  at points P and Q. Discuss the possible positions of C3  rela­
tive to the given circles and the consequent solutions.
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THE GOLDEN RATIO

To this point our excursion into advanced Euclidean geometry has been largely 
geometrical. Yet geometry interrelates with many other branches of mathematics. 
It is therefore appropriate for our last chapter to exhibit an example of this inter­
relationship. In this chapter, we show some astonishing relationships between the 
golden section (or golden ratio) and the Fibonacci numbers. Many interesting 
relationships will be unveiled as we study these topics.

We begin by introducing and defining the golden section, or, as it is often
a

called, the golden ratio. This ratio, ~ ~  1.61803398874987..., at first sight seems

like nothing special. You will soon see that it turns into quite an interesting ratio. 
b

You will find that “  ~  0.61803398874987---- When have we previously seen that
a _ b   ̂ ^
^ + 1? This is quite unusual! So read on and let yourself be entertained by

this most unusual series of relationships.

P

FIGURE 11-1

—   ̂ AB AP
Consider a point P located on AB so that

AP
—  (see Figure 11-1). We

say that point P has partitioned AB in the golden ratio. Why is this ratio referred 
to as the golden ratio? Let us construct a rectangle whose length and width are 
the two segments AP = € and BP = w. It is said that the shape of this rectangle 
is the most pleasing to look at. Through the ages, this rectangle has been associ­
ated with beauty. Which of the two rectangles in Figures 1 1 - 2  and 11-3 appears 
more pleasing to look at?

216
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FIGURE 11-2

Q

FIGURE 11-3

According to psychologists who have experimented with this question 
(Gustav Fechner, 1876 and Edward Lee Thorndike, 1917), the rectangle in 
Figure 11-2 is clearly more pleasing to look at. They indicate that a glance at rec­
tangle ABCD catches the entire rectangle at once, while looking at rectangle PQRS 
(Figure 11-3) requires a horizontal scanning motion of the eyes by most people.

The beauty of this rectangle, called the golden rectangle, is not a new discov­
ery. Ancient civilizations were quite familiar with it. For example, in architecture 
we find this rectangle in famous structures such as the Parthenon in Athens, 
Greece (Figure 11-4), and the doors of the Cathedral of Chartres, France 
(Figure 11-5). There are many examples of this type of rectangle around us. Try 
to find some. The golden rectangle has its length and width in a golden ratio;
, . w €

that IS, — = --------- 7 .
€ w + €

FIGURE 11-4 FIGURE 11-5
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FIGURE 11-6

How do we construct a golden rectangle? Perhaps one of the simpler ways 
is to begin with a square, ABEF (see Figure 11-6), with M the midpoint of AF. 
Then, with radius M F center M, draw a circk to intersect AF at point D. 
The perpendicular to AF at point D intersects BF at point C. We now have 
rectangle ABCD, a golden rectangle.

Let us verify that rectangle ABCD is, in fact, a golden rectangle. Without loss 
of generality, we let quadrilateral ABFF be a unit square. Therefore FF = AF = 1

1 V s
and MF = -. By the Pythagorean theorem, MF =

V s  + 1
Therefore AD = --------- . To verify that rectangle ABCD is a golden rectangle, we

must show that:

w _  -c 
€ w + €

AD
or

CD
AD CD + AD

Substituting the above lengths, we get:

V s  + 1

V s  + 1  ̂  ̂ V 5  + 1

This is a true equality.
The Greek letter </> is often used to represent the golden ratio. We can find 

an approximate value for 0  (you might want to use a calculator!):

 ̂ AD V s  + 1
1.61803398874987483...



Chapter 11 t h e  GOLDEN SECTION a n d  FIBONACCI NUMBERS 219

(/) = !(/) + 0  
</>̂ = !( /)+  1  
(f>̂ — 2(f> + I 

= 3(j) + 2 
= 50 + 3

d>̂ =
0^ =130 + 8 

0® = 210 + 13 
0^ = 340 + 21 

0̂ ® = 550 + 34

+ 5

This number 0 is most peculiar. Consider its reciprocal, 0
V5 -  1

0  V5 + 1
= FD «  0.61803398874987483 . . .

Therefore not only is it true that 0 * ^ = 1  (obviously!) but also 0  — -  = 10 0
(try to verify this). Furthermore, 0  and — are the roots of the equation0

— X — I = Oy a property we will discuss later.
It is interesting to inspect powers of 0. We first must find the value of 0^ in 

terms of 0 :

2 / 2  2  

The rest of the powers of 0  can be obtained as follows:

4>̂ = 0  • 4>̂--- (f>{(l> + 1 ) — 0  ̂ + 0  — ( 0  + 1 ) +<^ = 2 ( ^ + 1

<t>̂ = 0 ^ = {<!> + + 1 ) = 0  ̂ + 2 0 + 1  = ([<l> + 1) + 2<l> + 1
= 30 + 2

4>̂ = 4>' = (2(f) + l){(f> + 1 ) == 2<f>̂ + 3(f> + 1--= 2{<l> + 1) + 3<j) + 1
= 5(f) + 3
= d>̂ = (2 </> + 1 )(2 <̂ + 1 ) = 4<f>̂ + 4</> + 1 = 4{<}> + 1) + 4(f> + 1
= S4> + 5
= <t>̂ '<f>̂ = (3<̂  + 2){2<t> + 1 ) = 6<f>̂ + 7<j) + 2 = 6 (<̂  + 1 ) + 7<̂  + 2

FIGURE 11-7

= 130 + 8

We summarize the powers of 0  in Figure 11-7. Notice that the coefficients 
and constants seem somewhat related. As a matter of fact, they form a 
pattern that will become more familiar to you shortly. These numbers may be 
considered the basis for the connecting link between many branches of 
mathematics (including geometry). Before continuing with our study of the 
golden ratio in geometry, we will digress a bit to examine these numbers 
more carefully.
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FIBONACCI NUMBERS

The origin of this sequence of numbers is rather interesting. The numbers first 
appeared as the solution to a problem posed in a book on algebraic methods and 
problems. This book, Liber Abaci, was written in 1202 by Leonardo of Pisa, better 
known as Fibonacci (1180-1250).’̂ The problem we will examine involves the 
regeneration of rabbits. It may be stated as follows:

How many pairs of rabbits will be produced in a year, beginning with a 
single pair, if in every month each pair bears a new pair, which becomes 
productive from the second month on?

It is from this problem that the famous Fibonacci sequence emerged. If we 
assume that a pair of baby rabbits (5) matures in one month to become a pair of 
offspring-producing adults (A), then we can set up the chart in Figure 11-8. The 
number of pairs of mature rabbits living each month determines the Fibonacci 
sequence (column 3):

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,...

If we let /„ be the nth term of the Fibonacci sequence, then:

/l = 1
/2 = 1
/3 /2 + /l = 1 +
/ 4 = /3 + /2  = 2 +

/5 “  / 4 + /3  = 3 +

fn-= /«--1 +/«■- 2

That is, each term after the first two terms is the sum of the two preceding terms.

Fibonacci was not a clergyman, as might be expected of early scientists; rather, he was a 
merchant who traveled extensively throughout the Islamic world and took advantage of 
reading all he could of the Arabic mathematical writings. He was the first to introduce the 
Hindu-Arabic numerals to the Christian world in his Liber Abaci (1202; revised in 1228), 
which first circulated widely in manuscript form and was first published in 1857 as Scritti 
di Leonardo Pisano (Rome: B. Buoncompagni). The book is a collection of business mathe­
matics, including linear and quadratic equations, square roots and cube roots, and other 
new topics, seen from the European viewpoint. He begins the book with: “These are the 
nine figures of the Indians 9 8 7 6 5 4 3 2  1. With these nine figures, and with the sign 0, 
which in Arabic is called zephirum, any number can be written, as will be demonstrated 
below.” From here on he introduces the decimal position system for the first time in 
Europe. (Note: The word zephirum evolves from the Arabic word as-sifr, which comes from 
the Sanskrit word, used in India as early as the fifth century, sunya, referring to “empty”)
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Month Pairs
Number of Pairs 

of Adults (A)
Number of Pairs Total

of Babies (B) Pairs

Jan. 1 

Feb. 1 

Mar. 1 

Apr. 1 

May 1 

June 1 

July 1 

Aug. 1 

Sept. 1 

Oct. 1 

Nov. 1 

Dec. 1 

Jan. 1

A B A A

A
A

A B
A  \
A B A

A  I IX
A B A A B

X /  A  \-A
B A A B A B

A  \  \X
B A B A A B A A B

1

1

2

3

5

8

13

21

34

55

89

144

233

0

1

1

2

3

5

8

13

21

34

55

89

144

1

2

3

5

8

13

21

34

55

89

144

233

377

FIGURE 11-8

O  sample Using the “rule” of the Fibonacci sequence, find the ten numbers that would 
precede the first 1  if we allow nonpositive n.

O olution  Because /„ +, = /„ + /„_ i, we have _ i = f„+i ~ fn- Therefore:

/ o = / 2 - / i  = 1 - 1 = 0
/ - 1  = / i  - / o  =  1 -  0 =  1

f-2  — fo ~  / - 1  = 0  — 1  = — 1  
/_ 3 = / _ , - / _ 2 = 1 - ( - 1 ) = 2  
/ _ 4 = / - 2 - / - 3 =  - 1  - 2  = - 3  
/ - 5  = f-3  — / - 4  = 2 — ( —3 ) = 5  
/ _ 6 = / _ 4 - / _ 5 =  - 3 - 5  = - 8  
/ _ 2 = / _ 5 - / - 6  = 5 - ( - 8 )  = 13 
/_ 8 = / _ 6 - / - 7 = - 8 -  13 = -21  
/ _ 9  = / _ 7  -  / _ 8  = 13 -  (-21) = 34 •

The preceding example was done deductively. Often, more pleasure is derived 
from an inductive discovery of a relationship, as in the next example.
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(E xam ple Find the sum of the first two terms, three terms, four terms, five terms,. . . ,  nine 
terms, and ten terms of the Fibonacci sequence. Then generalize this pattern to 
find the sum of the first n terms.

S o l u t i o n  By taking the successive sums required |̂ i.e., ^  f„jjy we may easily form the first

three columns of the chart in Figure 11-9. Thus we have the sum of the first two
2

Fibonacci numbers, ^  fm ~ fi fi  ~ 1 + 1 = 2, the sum of the first three,
^  m =  1
2  /m = /i + /2  + /3  ^  1 + 1 + 2  = 4, and so on. •

m = l

n n n n

f S in /2 s e
m 'm /n=l m=1 /n=1 •m /77=1

1 1 1 1 1 1

2 1 2 1 1 2

3 2 4 3 4 6

4 3 7 4 9 15

5 5 12 8 25 40

6 8 20 12 64 104

7 13 33 21 169 273

8 21 54 33 441 714

9 34 88 55 1,156 1,870

10 55 143 88 3,025 4,895

11 89 232 144 7,921 12,816

12 144 376 132 20,736 33,552

13 233 609 377 54,289 87,841

14 377 986 609 142,129 229,970

15 610 1,596 987 372,100 602,070

16 987 2,583 1,596 974,169 1,576,239

17 1,597 4,180 2,584 2,550,409 4,126,648

18 2,584 6,764 4,180 6,677,056 10,803,704

FIGURE 11-9

Clearly, each term in the column of sums ^  fm] is one less than a
« \ m=l  /

Fibonacci number. More specifically, ^  fm = /« + 2  ~ 1- That is, the sum of the
m= 1

first n Fibonacci numbers is one less than the {n + 2 )nd Fibonacci number. We 
state this observation as Theorem 11.1.
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I THEOREM 11.1
ftn fn + 2 ^

O roof By the definition of Fibonacci numbers, / 1  + / 2  = / 3 . Therefore:

/1 ^  h  ~ fi
f 2 = f . - h
/3 = fs ~ fii 
/4 = f ^ - f 5

fn-l ~ fti
fn ~ ftt + 2

n
By addition, 2  />» = /« + 2 “  /2 = /« + 2 “  L •

m=l

Consider the series of odd-numbered terms of the Fibonacci sequence. 
Figure 11-9 can be helpful in finding the pattern of sums of these terms:

/1  + /3  + /5  + /7  + * "  + flm -l = 1 +  2 + 5 +  13 + ••• + f 2„j- 1

You may already have anticipated our next theorem.

I THEOREM 1 1 . 2

Q roof

E/2-H-. =/2,

f x = h  
h  = - h - h
fs — fs ~ fit 

fi?=fit-fiB

fin -3 ~ filn^
fin -  1 ~ fin ~ fST^

By addition, ^  /2»--1 = fm-
m=\

We already know from Theorem 1 1 . 1  that:

n
'2tf"> = fn+i - 1

m  =  1
(I)
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If we double the number of terms in (I), we get;

2 «
fm  f i n  4- 2 1 (II)

I THEOREM 11.3

Suppose we now subtract all the odd-numbered terms from (II); we would be 
left with the even-numbered terms. That is:

n In n

2  / 2»» ~ ^  fm ~ 2  f̂ m -  1
m = 1 m=\ ni=l

~  f l n  + 2 ~  1 —  f i n

= fin+\ -  1  (because/ 2 « = / 2  ̂+ 2  ~ fm -i)

This result proves our next theorem.

2  f2rn ~  f i n  + 1  1

An inspection of the column of the table of Fibonacci numbers in 
Figure 11-9 reveals a relationship between Fibonacci numbers and their 
squares. This relationship is stated as our next theorem.

I THEOREM 11.4

Before proving this theorem, we will discuss an alternate type of proof, 
mathematical induction. Consider a set of dominoes with an endless number of 
tiles set up as illustrated in Figure 11-10. If we were asked to knock down all the 
tiles, we could consider two methods: (1) We could knock down each tile 
separately, or (2 ) we could knock down just the first tile if we were sure that any 
tile that is knocked down automatically knocks down the tile after it.

The first method would not only be inefficient but would also never assure 
us of knocking down all the tiles (because the end might never be reached). The

i )

1 (

FIGURE 1M 0
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second method guarantees that all the tiles are knocked down. After we have 
knocked down the first tile, we are then assured that any knocked down tile also 
knocks down its successor tile. That is, the first tile knocks down the second, 
which knocks down the third, which knocks down the fourth, and so on. All the 
tiles will be knocked down. This second method is directly analogous to the 
axiom of mathematical induction:

A proposition involving the natural number n is true for all natural 
numbers:

a. if the proposition is correct when n = 1;
b. if given that the proposition is correct for n = k, the proposition 

is also correct for n = k 1 .

We now use mathematical induction to prove Theorem 11.4.

Q r o o f  When n = 1, we have f i  = f„ -i • /„+ 1  = / i  -  / 0  ' / 2  = 1 “  (0)(1) =
1  = (—1 )^“  ̂ ( / 0  = 0 ; see the first example on page 2 2 0 ).

We assume the proposition is true for n = k; that is:

= (-!)*"*

Now we show that the proposition is true for n = k 1 ; that is:

Because/ * + 2  = fk+ fk+ v

fk+\ ~ fkfk+2 = / * + 1  ~ fkifk + fk+l)
~ fk + 1  ~ fk ~ fk ' fk + 1  
~ fk+ l(fk+ 1 ~ fk) ~ fk 
= fk+ lfk-l ~ fk

This proves our theorem. •

From Figure 11-9, you can see that the relationship that we state as our next 
theorem is justified.

I THEOREM 11.5

Q ro o f (by mathematical induction) When n =  1, we have /i * /2  ~ ^ • /i
1  • 1  -  0  • 1  = 1  = / 1 .

We assume the proposition is true for n = k; that is: 

fk ' fk+l ~ fk - \  ' fk=  fk
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We now show that the proposition is true ior n — k 1 , that is:

fk+l * fk + 2 " fk ‘ fk+I ~~ fk+\(fk + 2 ~ fk)

We know that / ^ : + 2  ~ fk = A+i- Therefore:

fk+ \ • A + 2 ^ fk*fk+l = fk+l(fk + 2 '  fk) -  fk+l • A+l  = fk+l

This proves our theorem. •

A careful inspection of 2  in Figure 11-9 reveals an interesting relation­

ship: Each term equals the p'ioduct of the corresponding Fibonacci number and 
the succeeding Fibonacci number. We state this relationship as our next theorem.

I THEOREM 11.6
2 / ^ ,= / , • /« + !

Q r o o f  From Theorem 1 1 .5 , we have f^ — fm * fm+i fm-i  * fm- Therefore:

/ 2  = y; . / 2  -  /o . /i = (because/ 0  = 0 )

/ 2  = ~ fr'~h
f l  = fr+ k  -  f r ^

fn- 1 ~ fn=T*-fn ~  //i-i /«-1 
fn =fn 'f„+l

By addition, ^  f ,̂ = f„f„+i- '
m = l

There are many other fascinating relationships involving Fibonacci numbers. 
The proofs of some of them are offered as exercises.

LUCAS NUMBERS

Fibonacci numbers were so named in 1877 by the French mathematician 
François-Édouard-Anatole Lucas (1842—1891). At that time he also established 
another sequence of numbers, based on the same recursive definition but begin­
ning with 1 , 3  instead of 1, 1: the sequence 1 , 3, 4, 7, 1 1 , . . . .  This sequence, 
which now bears the name Lucas numbers, is shown in Figure 11-11.
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n n n 17

m
p 2  2̂/71-1 2  2̂/n /2/71=1 /77=1 /n=1 /77=1

1 1 1 1 1 1

2 3 4 3 9 10

3 4 8 5 16 26

4 7 15 10 49 75

5 11 26 16 121 196

6 18 44 28 324 520

7 29 73 45 841 1,361

8 47 120 75 2,209 3,570

9 76 196 121 5,776 9,346

10 123 319 198 15,129 24,475

11 199 518 320 39,601 64,076

12 322 840 520 103,684 167,760

13 521 1,361 841 271,441 439,201

14 843 2,204 1,363 710,649 1,149,850

15 1,364 3,568 2,205 1,860,496 3,010,346

16 2,207 5,775 3,570 4,870,849 7,881,195

17 3,571 9,346 5,776 12,752,041 20,633,236

18 5,778 15,124 9,348 33,385,284 54,018,520

FIGURE 11-11

As was the case with the Fibonacci numbers, many interesting relationships 
can be discovered from the table in Figure 1 1 - 1 1 . We will state some of these 
relationships as theorems.

I THEOREM 11.7
X  C  = C  + 2  -  3

m = \

C ^ ro o f We will use mathematical induction as an alternative to the method of proof
used for Theorem 1 1 . 1 .

1
Let /1 = 1 ; then ^  = €i + 2 “ 3  = € 3  — 3 = 4 -  3 = l.

m =  1
We assume the proposition is true for n = k; that is:

2  “  ^k + 2 3
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We must now show that the proposition is true ior n = k + 1; that is:

k+ 1
X  ~ ^{k+l) + 2 ~  ̂ — ^k + 3

m = l

From our assumption, we have:

k
2  ^k+l ~ ^k + 2 — 3 + ^k+1

m = l
k+l
2  = ^k+ 3  -  3 (because ik + 2  + 4 + i  = ^k+3)

m = l

This proves our theorem. •

The next theorem for Lucas numbers is analogous to Theorem 11.2.

I THEOREM 11.8
2  ^2 m-l ~ ^2m 2

Q r o o f  (by mathematical induction) Let n = \; then ^  ^2m-i = ^2{i) -  2  = 3 — 2 = 1.
m= 1

We assume the proposition is true for n = k; that is:

k
2  ^2m-l — ^2k “ 2  

m=l

We must now show that the proposition is true forn = k-\- 1; that is:

k+ 1
2  ^2m-l — ^2{k+l) “  2  = ^2k+2 ~ 2  

m=l

From our assumption, we have: 

k
2  ^2m-\ + ^2{k-\-\)-\ ~ ^2k “  2  + ^2{k+\)-\ 

k+ 1
2  ^2m- \ — "̂ 2  ̂ + ■̂2 it+l “ 2  = €2 A: + 2  “ 2

= 1  
k+ 1

m=\

This proves our theorem. •

Because the sum of the first n Lucas numbers has been established 
(Theorem 11.7) and the sum of the first n odd-numbered terms of the Lucas 
sequence has been established (Theorem 11.8), it is relatively simple to find the
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sum of the first n even-numbered terms of the Lucas sequence. We use the same 
method that we used for Fibonacci numbers.

2  2  ^2m-\711 =1 in=\ tn=\
~  ^ 2 t i  +  2 ~ 3 — (€2/, “  2)
~ ^ 2 t i  +  2  ~  ^ 2 t i  ~ 3 + 2 
~ "̂ 2 «+ 1 ~ 1

This gives us our next theorem, whose proof by mathematical induction is left as 
an exercise.

I THEOREM 11.9
2  ^2m ~ ^2n + l 1

The sum of the squares of terms of the Lucas sequence also presents an inter­
esting pattern. Careful inspection of the table of Lucas numbers in Figure 11-11 
shows that each entry in the column is two less than the product of the 
entry in the same row and the entry in the succeeding row of the column 
This implies the following theorem, the proof of which is left as an exercise.

I THEOREM 11.10
2  C  = -  2

To this point, Lucas numbers have appeared as merely a sequence analogous 
to the Fibonacci sequence (which it is); however, the truly remarkable feature of 
the Lucas sequence is its interrelationship with the Fibonacci sequence. Consider 
the tables in Figures 11-9 and 11-11 together. For example:

/ 4
/ 5
/e

€4 = 3 • 7 = 21 = /g 
€5 = 5 • 11 = 55 =/,o 

= 8  • 18 = 144 = / , 2

We might conclude that:

fn • = / 2 « for n >  1  (a)

Other interesting relationships between Fibonacci and Lucas numbers evolve:

~  f 77- I  / 7 7 +  I

5/« = 7̂7-1 “*■ 7̂7+1 
^77 ~  fl7 + 2 ~~ f 77-2

5/« “  'f/J + 2  ~ ^77-2

for « >  1  
io rn>  1

(b)
(c)

(d)

(e)
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These relations can be proved more easily later. However, if we accept (b) as true, 
then we can easily prove (c) and (d).

Q ro o f of (c) Because = f„~\ + /„+ 1 , we have:

^,1 - 1 = fn- 2  + fn and f „ + 1  = /„ + / „ + 2

Therefore:

+ ^n+l = fn-2 + 'ifn + fn + 2
= fn ~ fn-l  + 2/„ + fn + fn+ 1
= 4/„ + /„
= 5/„ •

Q ro o f of (d) f„ + 2  = /„+ /„+ 1  and / „ _ 2  1

Therefore:

/« + 2 ~ fn-2 ~ fn + fn+l ~ (ft ~ fn-l) ~ fn+1 + /«-1

Because € „ = /„  + 1 + / „ - 1 , we get:

■̂/i fn + 2 fn — 2 ^

The reader should attempt other such proofs.

FIBONACCI NUMBERS AND LUCAS NUMBERS 
IN GEOMETRY

The basic connection of the Fibonacci and Lucas sequences to geometry is 
through the golden ratio. Consider the ratios of consecutive Fibonacci and Lucas 
numbers. The table of fractions (Figure 1 1 - 1 2 ) seems to be approaching </>,
the golden ratio. Let us investigate this notion. As a review of the golden

___ __
ratio, consider APB, with point P partitioning AB such that —  = —
(Figure 11-13).

Let X = — . Therefore:
AP

AB AP-\-PB PB AP 1
x = —  = -----------= 1 + —  = 1 + —  = 1 + -

AP AP AP AB X
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fn+t

fn

/̂1+1
(a

1 =  1.000000000 ? = 3.000000000 
1

1  = 2.000000000 ^ = 1.333333333

1  = 1.500000000
2

7 = 1.750000000 
4

1 = 1.666666667 y =  1.571428571

? = 1.600000000 
5

y  = 1.636363636

^  = 1.625000000 
0

29
— = 1.611111111 
18

^ =  1.615384615 
13

S  = 1.620689655 
29

^ =  1.619047619
76
77 = 1.617021277 
47

55
— = 1.617647059 
34

123
—  = 1.618421053

89
— =1.618181818 
55

199
7 - =  1.617886179 
123

144
—  = 1.617977528 
89

322
7— = 1.618090452 
199

233
—  = 1.618055556 
144

521
- - - =  1.618012422 
322

377
—  = 1.618025751 
233

843
—  = 1.618042226 
521

610
—  = 1.618037135 ^!^^  = 1.618030842 

843
987
—  = 1.618032787 
610

2 207
- ^ =  1.618035191 
1,364

FIGURE 11-12

P

FIGURE 11-13
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Thus:

X = l + -  or X — X -  I = 0
X

The roots of this equation are:

1 + Vs
X l =

1 -  Vs
1.6180339887 and X2  = ----------«  -0.6180339887

Because we are concerned with lengths of line segments, we will use only the 
positive root, a. Let a and b represent the roots of the equation x^ — x — 1=0'-

— Cl 1
b̂  = b-^ \

Multiplying (I) by a” (where n is an integer), we get:

a — a + a

Multiplying (II) by b” (where n is an integer), we get:

^n + 2 ^  ¡jt,

Subtracting (IV) from (III) gives us:

+ 2 _  ,̂1 + 2 ^  (^«+1 _  ,̂,+ 1) ^

Now dividing by a — b = V s  (thus nonzero) gives us:
^« + 2 _ ^ „  + 2

(I)
(II)

(III)

(IV)

a — b a -  b a — b

Let t„ = -------Then t„ + 2 =  i„+i + t,„ the same as the Fibonacci sequenced b
definition.

All that remains to be shown in order to be able to establish as the nth 
Fibonacci number, /„, is that = 1 and t2 = 1. We have:

h =

h —

2̂ -  b̂
a - b  ^

-  b̂  _  {a -  b){a + b) (V s)(l)
a — b a — b Vs

= 1

Therefore:

fn = a — b
^ 1 + Vs , 1 - Vs ,

where a = ---- ;---- , b = ---------- , and n = 1 , 2 , 3 , . . .

This is how a Fibonacci number is expressed in Binet form, that is, in terms of 
non-Fibonacci numbers.
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Qxample

S o l u t i o n

Find /g.

/6  =

{c  ̂ ~ b̂ ){cî  + b )̂ (cj ~ b)(a^ + ab + b̂ ){cî  + b̂ )

Oxample

S o l u t i o n

a -  b a — b a -  b

= (a  ̂ + ab + b^){a  ̂ — ab + b^){a + b)
= (2)(4)(1) = 8 #

Now add (III) and (IV) from page 232:

fl" + 2  + b« + 2  = + ¿")

Let w„ = a" + b". Therefore:

W„ + 2 = W„+i + w„

To further inspect the sequence w,„ consider Wj and W2-

, 1 + Vs 1 - Vs
Wi — a + h —------------ 1------------— 1

6 + 2 V 5 6 -  2V 5
= ---------- + ------------= 3

4 4

Because Wi = 1 , W2  = 3, and w„ + 2  = > ^ « + 1  + n̂> is the nth Lucas number: 

+ fo” where a =  ̂ ^  n = 1, 2, 3 , . . .

This is how a Lucas number is expressed in Binet form.

Prove that / 2 « = /„ • „ (equation (a) on page 229).

/̂1 _ Ĵ n

Because /„ = -------— and €„ = + fc”, we have:
a -  b

fn • A, =  1 • («" +  b")a -  b 
-  b^̂  

a — b ~  /22 «

Returning to the table of fractions in Figure 11-12, we now consider
fn+l J  + 1—  and —

Jn

H ^ O O

-  b'’* ' 
a — b 

a" -  b" 
a — b

a"+i _  ¿ , " + 1

a" -  h"
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Now we divide all terms by a"

1™ / » + 1  = ______^
«^00 1  -  —

Because lim fo” = 0, we have:

lim = a = = 0  (the golden ratio)
« ^ 0 0  /„ 2

This result justifies the conjecture we made at the start of this section.

The proof that lim = (j
«->00

have the following two theorems.

£
The proof that lim = </> may be carried out in a similar way. We now

«->00

I THEOREM 11.11 /„+ , 7lim — -  = (f)
« - ^ C O

I THEOREM 11.12 €„+i 7lim —— = (p
«^00

It is interesting to consider an alternate proof of Theorem 1 1 . 1 1 .

( ^ r o o f  Let X = lim The definition of /„ enables us to get:
fn

Therefore:

fn+l ~ fn + fn-l

T fn fti+I
X =  lim -----------

«^00

fn-= lim 1  + '
Jh

= lim 1  + lim —
«-> 00 n-> “ fn

We have:
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Therefore:

x = I + - = > x ^ - x - I  = 0 and X = (b '
X

The Binet form of /„ provides us with a simple way to establish 
equation (b) on page 229.

-  f n - l  + / / H

^ « - 1  _  y n - l  _  ^ « + 1
+

a -  b a — b

----- ^  + a - a "  -  b-b"
a b

a — b

-"'‘■4 h 4 4
a — b

Because a = \  and b = - , we have: 
b a

€„ = a!\a + b) — V\a + b) 
= a \ \ )  -  b \ \ )
= -  b^

We now return to the powers of (f), which originally spurred our discussion 
of the Fibonacci numbers (see Figure 11-7). With our knowledge of these num­
bers, we can state a general term for powers of 0 :

We now have two clear connections between the golden ratio, </>, and Fibonacci 
numbers.

THE GOLDEN RECTANGLE REVISITED

We continue with our discussion of golden rectangle ABCD. We established in 
Figure 11-6 that when a square is constructed internally (as in Figure 11-14), if

AF = ly then PD = “ 7  and AD = 1  + - 7  = Thus rectangle CDFE in
0  (p

Figure 11-14 has dimensions PD = — and CD = 1  and is also a golden rectangle.
<P
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FIGURE 11-14

We continue the process of constructing an internal square. In golden rec­
tangle CDFE, we construct square DFGH (Figure 11-15). We find that

CH = 1  — 7  = —2 , thereby establishing rectangle CHGE as a golden rectangle.
0  0

Continuing this scheme, we construct square CHKJ in golden rectangle CHGE
1

1 1 0 - 1  0 1
and find that FJ = — -  = - j -  = . (Note: We showed earlier that

(p (p (p (p (p

0 — - 7  “  !)• Once again, we have a new golden rectangle, this time rectangle 
0

EJKG, By continuing this process, we get golden rectangle GKML, golden 
rectangle NMKR, golden rectangle MNST, and so on.

0

FIGURE 11-15
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Suppose we now draw the following quadrants (quarter circles) (see 
Figure 11-16):

center E, radius EB 
center G, radius GF 
center Ky radius KH 
center My radius MJ 
center Ny radius NL 
center Sy radius SR

FIGURE 11-16

The result is a logarithmic spiral We also notice that the centers of these squares 
lie in another logarithmic spiral (Figure 11-17).

The spiral in Figure 11-16 seems to converge at a point in rectangle ABCD. 
This point is at the intersection, point P, of AC and ED (Figure 11-18). Consider 
once again golden rectangle ABCD (Figure 11-18). Earlier we established that 
square ABEF determines another golden rectangle, CEFD, Because all golden 
rectangles have the same shape, rectangle ABCD is similar to rectangle CEFD, 
This implies that AECD ~  ACDA. Therefore ACED =  ADCA and ADCA is 
complementary to AECA. Therefore ACED is complementary to AECA. Thus 
AEPC must be a right angle, which tells us that AC 1  ED.

If the width of one rectangle is the length of the other and the rectangles 
are similar, then the rectangles are said to be reciprocal rectangles. In Figure 
11-18, we see that rectangle ABCD and rectangle CEFD are reciprocal rectangles.
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FIGURE 11-17

Furthermore, we see that reciprocal rectangles have corresponding diagonals per­
pendicular. In the same way as before, we can prove that rectangles CEFD and 
CEGH are reciprocal rectangles, with diagonals ED and CG perpendicular at point P, 
We may extend this proof to each pair of consecutive golden rectangles in Figure 
11-16. Clearly point P ought to be the limit of the spiral in Figure 11-16.

I THEOREM 11.13 Reciprocal rectangles have perpendicular diagonals.

O r o o f  The case in which one rectangle is in the interior of the other rectangle was
proved earlier. Therefore we will consider only the case in which the two recipro­
cal rectangles share no common interior region (Figure 11-19).
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Rectangles ABCD and CEFD in Figure 11-19 are similar. Therefore 
ACDA ~  AFDC and AFCD = ACAD. However, ACAD is complementary to 
ADCA. Therefore AFCD is complementary to ADCA. Thus AC 1  CF. •

I THEOREM 11.14 If two rectangles have one pair of corresponding diagonals perpendicular and a 
width of one is the length of the other, then the rectangles are reciprocal.

C ^ ro o f Rectangles ABCD and CEFD have diagonals AC 1  ED at point P (Figure 11-20). 
We must show that the two rectangles are similar.

Both ACED and ADCA are complementary to AECA. Therefore ACED =  
ADCA. This enables us to establish that ACED ~  ADCA, whereupon it follows 
that the rectangles are similar (because the corresponding sides are proportional), i

Theorem 11.14 has interesting applications. For one thing, it provides us 
with another way to construct consecutive golden rectangles. We could simply 
begin with golden rectangle ABCD, construct a perpendicular from point D to 
AC, and from its intersection E with BC construct a perpendicular to AD to 
complete the second golden rectangle. This process can be repeated indefinitely.
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THE GOLDEN TRIANGLE

FfGURE 11-21

Just as we “admired” the golden rectangle, so too have we a triangle worthy of 
admiration. It is built on the golden ratio and has many wonderful properties, 
somewhat analogous to those of the golden rectangle. We begin with an isosceles 
triangle whose vertex angle has measure 36° and construct the bisector BD of 
AABC (Figure 1 1 -2 1 ). We find that mADBC = 36°. Therefore AABC -  ABCD. 
Let AD = X and AB = \. Because AADB and ADBC are isosceles, BC = BD = 
AD = X. From the similarity of triangles ABC and BCD:

I
X \ — X

This gives us:

x^ X — I = 0 and X =
Vs - 1

(We disregard th^egative root because we are dealing with length.)

Recall that---- ----- = —. The ratio 7 ^  for AABC is -  = </>. We therefore
2  0  base x

call AABC a golden triangle, ____________ _______
By taking consecutive angle bisectors BD, CE, DF, EG, and FH of a base angle

of each newly formed 36-72-72 triangle, we get a series of golden triangles (see
Figure 1 1 -2 2 ). These golden triangles (with angles of measure 36°, 72°, 72°) are
AABC, ABCD, ACDE, ADEF, AEFG, and AFGH. Had space permitted we
could have continued to draw angle bisectors and thereby generate more golden
triangles.

Our study of the golden triangle parallels that of the golden rectangle. We
side

begin by letting HG = 1  (Figure 1 1 -2 2 ). Because the ratio - —  of a golden trian­
gle is (j), we find that for golden triangle FGH:

9 1 - i .
HG ~ 1  1  ~ 1

Therefore GF = (f).
FE 6

Similarly, for golden AEFG, —  = —. But GF = 6, so:
GF 1

FE =

In golden ADEF, —  = —. But FE = <j)̂ , so:
FE 1

ED = <f)̂
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DC (b o
Again, for ACDEy----= —. But ED =  d/y so:

 ̂ ED \

DC =

CB 6
For ABCDy —-  = —. But DC = so: 

DC I ^

CB = (f>̂

BA 6
Finally, for AABCy —  = —. But CB = 0^, so:

CB 1

BA = (f>̂

Using our knowledge of powers of (f) (developed earlier), we can summarize these 
results as follows:

HG = (/)® = 0 (/> + 1  = /o(/> + / - 1
GF = (f)̂  = Icf) + 0 = fi(f) + fo
EE = (f)̂ ' = I (f) I = f2(f> + fi

ED = (l>̂ = 2(1) -h I =f,ct>-^ /2
DC = = 3</> + 2 = / 4 </) + /3 ̂
CB = = 5</> + 3 = / 5 </> + / 4
BA = </>̂ = 8 (̂  + 5 = / 6 (/> + / 5

As we did with the golden 
rectangle, we can generate a logarithmic 
spiral by drawing arcs to join the vertex 
angle vertices of consecutive golden 
triangles (see Figure 11-23).

That is, we draw circular arcs as 
follows:

AB (circle center at point D)
BC (circle center at point E)
CD (circle center at point F)
DE (circle center at point C)
EF (circle center at point H)
EG (circle center at point /)
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Many other truly fascinating relationships emanate from the golden ratio. 
After you have been exposed to the golden triangle, the next logical place to turn 
for more applications is the regular pentagon and regular pentagram (the five- 
pointed star), which are essentially composed of many golden triangles. We offer 
a number of these and other relationships as exercises for you to work on with 
the hope that they will entice you to further study the golden ratio and Fibonacci 
numbers. Along the way you will certainly come to appreciate the close connec­
tion between geometry and other branches of mathematics.

E x e r c i s e s

Verify each of the relationships in exercises 1-4.

1 - a. -  / 5  + / 7  
J6

2 . a. ^ f = f , + f e
/ 5

3. a. / 1 1  = / 5  + fe

b. ^  = € , 0  + 1

b. -  = ^. + 1

4. a. b. f  = U - ^

Using the table in Figure 11-9, fill in each missing term in exercises 5-10.

5. +/^+1 = _______________

6- f i n  —  f n + \  ~  ---------------------------------

7. / - „  = --------
Figure 11-9.)

8. f i n  - _______

9 * fn  +  3  f n - 3  -  fe

1 0 . 2 /m = ______

* /„ (You might want to extend the table of

- f n - l  +  f n + 1

- 1

1 1 . Represent ^ g e o m e trica lly .
m = l

8

12. Represent ^  geometrically.
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Express each sum in exercises 13-16 in terms of other Fibonacci numbers.

n n
13. 2 / 4 «̂ î i* 2 / 4 ^ - 1m = 1  m = I

n n
13. ^  — 2  13» —3

m=I m=I

Prove each of exercises 17-21 by mathematical induction.

n
17. X  hm — fln+1 “ 1

m = \ 
n

18. 2 /»  =/«■/"+!
m = l

r219. /.?-/„ + 2*/„-2 =  ( - i r

20. f2„ + /«-1  = fn + l

21- fin ~ fn ' fn-\ fn * fn+\
22- 25. Prove by mathematical induction each of the results obtained in

exercises 13-16.
4n

26. Show that the sum of the sums of exercises 13-16 equals ^  /̂ „.

Using the tables in Figures 11-9 and 11-11, fill in the missing term in each of 
exercises 27-30.

27. 5/2„ + i + , +

28. + 2 = _____

29. 5/L =

30. 5/|„ =

-  2 

-  4

31. Represent 2  geometrically.
m = l

8

32. Represent ^  geometrically.
m =  1

Express each of the sums in exercises 33-36 in terms of Fibonacci numbers.

n

34. ^  ^4m-l
m=l 

n
36. 2 ^ 4

33. 2^4 ,,,
m=l

35. ^  ^4m-2
m = \

4̂m — 3



244 ADVANCED EUCLIDEAN GEOMETRY

37. Prove Theorem 11.9 by mathematical induction.

38. Prove Theorem 11.10 by mathematical induction.

39. Show by example how the first 25 natural numbers may be expressed as the 
sum of distinct Lucas numbers.

40. Show how any natural number may be expressed as the sum of 
distinct Fibonacci numbers (e.g., 15 = / 3  + / 7  = / 3  + / 5  + / 5 , etc., or
45 = / 4  + / 5  + / 9 ). First represent the numbers from 1  to 100 in terms of 
Fibonacci numbers; then try to prove that any natural number can be 
expressed in terms of Fibonacci numbers. Can all natural numbers be repre­
sented in terms of Fibonacci numbers if any one Fibonacci number is missing? 
If any two Fibonacci numbers are missing? Show by examples that if / 1  is 
missing, then any natural number can be expressed in terms of Fibonacci 
numbers (excluding / 1 ) in exactly one way if no two consecutive terms 
(4and/^+i) are chosen (e.g., 17 = /2 + /4 + /7).

41. Set up a table of differences of the terms of the Fibonacci sequence. You 
might want to start from the table in Figure 11-24 and then expand it. 
Notice the patterns!

5 -3 2 -1 1 0 1 1 2 3 5
-8  5 -3 2 -1 1 0 1 1 2

13 -8  5 ■3 2 -1 1 0 1 1
-21 13 -8 5 -3 2 -1 1 0

34 -21 13 8 5 -3 2 -1
-55 34 -21 13 -8 5 -3

89 55 34 -21 13 -8
-144 89 55 34 -21

FIGURE 11-24

42. Set up a table of differences for the Lucas numbers as you did for Fibonacci 
numbers in exercise 41.

43. Consider the divisibility of Fibonacci numbers. Note that / 5  |/io (which reads 
“ / 5  divides / 1 0 ”) and / 5 1 / 1 5 ; also / 4  |/s > / 4  | / i 2 > / 4  |/i6> and so on. Find a general 
pattern for divisibility of Fibonacci numbers and justify your conclusion.

44. Divide each of / 1 , / 2 , / 3 >. • •, / 3 1  by 7 and inspect the remainders. Now divide 
each of / 1 , / 2 , / 3 >. . .  > / 3 1  by 5 and inspect the remainders. What conclusions 
can you draw regarding the remainders? Which natural numbers divide 
Fibonacci numbers? Try divisions by other natural numbers and establish 
various patterns.
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45. The Pascal triangle is shown in Figure 11-25. See if you can find sums of 
numbers that generate the Fibonacci sequence. Can you justify this?

Use the Binet form of /„ and to find the value of each expression in exercises 
46-49.

1

46. / 7

47. ^7

48. € 9

49. / 9

Verify each of the equalities in exercises 50-55

50. (n-~ fn -l  + fn+1
51. 5f„ — ^n-l + ^«+1
52. €„ =~ fn +2 ~ fn-2
53. 5/„ — ^n + 2 + ^ft-2
54. 5/?

55. 5 / 2 «1 + 1  “  ^fj+l +

56. Prove by mathematical induction that /„ =

. 1 -  Vs ,b = ---- ----- , and n = 1 , 2 , 3 ,___

a — b 
a — b

1 + Vs



246 ADVANCED EUCLIDEAN GEOMETRY

57. Prove by mathematical induction that = a" + fc”, where a, by and n are as 
defined in exercise 56.

1
58. Consider the quotient “  /i + /2  ̂ /3̂  ̂ + • • • + /„x” ^

1 -  X -
where /„ is the «th Fibonacci number. Justify why this relationship occurs. 

59. Consider the powers of a = (¡) (the golden ratio), that is:

1 + Vs
a =

3̂ _

^5 _

6 + 2V 5 _ 3 + Vs 
4 ~  2

8 + 4V 5 _ 4 + 2V 5 
4 ~ 2

14 + eVs _ 7 + 3V 5
4 ~ 2

22 + loVs _ 11 + sVs
4 ~ 2

36 + leVs _ 18 + sVs
4 ~ 2

Discuss this result as well as other representations of powers of a = <l>, 
such as:

2_3 + V 5 _ 1 + V s , , _  ,,
= -----------= -------------- h 1 — fl + 1

2 2
= 2a + I
= 3a-\-2

60. Establish some additional connections between the golden ratio and 
Fibonacci and Lucas numbers.

61. Prove that the lengths of the sides 
of a triangle can never be three 
consecutive Fibonacci numbers or 
three consecutive Lucas numbers.

62. Prove that if points P, Q, R, and S 
partition each of the sides of square 
ABCD into the golden ratio, as 
shown in Figure 11-26, then 
quadrilateral PQRS is a golden 
rectangle.

63. Identify the golden section on the 
regular pentagram in as many 
places as you can.

Q
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64. Identify the golden section on the regular pentagon in as many places as 
you can.

65. Prove that the following construction partitions AB into the golden ratio: 
Construct a perpendicular CB to AB at point B so that CB = \ {AB). Draw 
AC (see Figure 11-27). Then draw a circle with center C and radius CB to 
intersect AC at point R The point, P, at which the circle with center A and 
radius AF intersects AB is the point at which AB is partitioned into the

^ . AB AP
golden section; that is, —  = — .

66. Prove that in Figure 11-22 area ABCD : area AABD : area A ABC =

67. Show that sin 18° =
20

68. Find cos 27° in terms of 0.

69. Prove that the bisector of the vertex angle of a golden triangle partitions 
each of the other angle bisectors into the golden ratio.

70. Prove that the following construc­
tion partitions QB into the golden 
ratio: Begin with square ABCD 
(Figure 11-28) and construct a 
semicircle internally on AB. With 
M the midpoint of AB, draw CM 
and DM to intersect the semicircle 
at points E and F, respectively.
From point E, construct a perpen­
dicular to AB at point P. From 
point F, construct a perpendicular

—  PQto AB at point Q. —  = 0. (The
BP

dashed lines in Figure 11-28 serve 
as a hint.)
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71. Prove that the following construction partitions MN  into the golden ratio: 
Begin with square ABCD, with M the midpoint of CD. Circle /  is inscribed 
in AAMB and is tangent to AM, BM, and AB at points E, F, and N, respec­
tively (Figure 11-29). Also, MN  intersects circle I at point R We then have

----- MR RN
point R partitioning MN  into the golden ratio; that is,----= ------.
^ ^  ̂  ̂ RN MN

M

72. Show that the lengths of the medians of the base angles of consecutive 
golden triangles form a Fibonacci sequence.

73. Prove that the area of a regular pentagon with side length s equals
5s^

4V3 -  </)'
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A
acute triangle(s) 

altitudes of, 165 
inequalities of, 5,10  
orthic triangle and, 164-165 
See also triangle(s)

A/magesi (Ptolemy), 128 
altitudes of a triangle 

collinearity and, 53 
concurrency of, 32-33  
as constant, in equilateral triangle, 82-83  
exradii length and, 151 
feet of, 20,53,159-161,163  
inradius length and, 151 
mean proportionals, 4 
nine-point circle and, 159-161 
properties of, 163-168 
symbols for, 2 0

See also orthocenter; perpendiculars 
angle(s)

fallacy involving measure of, 16-17  
measurement of, with circle, 6 -7 ,6 7  
symbols for, 2 0  

See also angle bisectors 
angle bisectors of a quadrilateral, 127-128 
angle bisectors of a triangle

altitude/circumradius angle and, 190 
collinearity and, 48-49  
concurrency of, 8 ,26 ,2 7 -3 1 ,3 3 -3 4  
incenter, 20,26
of isosceles triangle, proving with, 88-92 ,99-100  
length of, and angles of unequal measure, 92 
length of, finding, 94-96  
measure of angle formed by exterior, 93-94  
measure of angle formed by interior, 93 
and perpendicular bisector of opposite side, 

190-191
proportionality involving, 3 -4  

Afínales del Gergonne, 36 
Apollonius, 201 
Apollonius, problem of, 201 
Arabic numbers, 220 
architecture, 217 
area

of a cyclic quadrilateral, 123-126 
of a parallelogram, 1 2  

of a polygon, 1 2

of a quadrilateral (noncyclic), 126 
of a rhombus, 1 2  

of a sector, 1 2  

of a square, 1 0  

of a trapezoid, 1 2  

area of a triangle, 1 1 - 1 2

cyclic quadrilaterals and formula for, 123 
exradius length and, 149-150 
inradius length and, 148 
median partitions and, 106

B
betweenness, 14
biconditionals (equivalences), 28,45
Binet form, 232-234
bisectors

of angle. See angle bisectors 
perpendicular. See perpendicular bisectors 

Bosse, Abraham, 51 
Brahmagupta, 123 
Brahmagupta's formula, 123-126 
Brahmagupta's theorem, 126-127 
Brianchon, Charles Julien, 43,52,158-159  
Brianchon's theorem, 58 

application of, 58-59  
as dual o f Pascal's theorem, 57-58  
proof of, 72-73

centerpoint of a quadrilateral, 119-121 
centroid of a quadrilateral, 119 
centroid of a triangle

as balancing point, 1 1 1 - 1 1 2  

defined, 8 ,20,26  
Euler line and, 162 
inscribed triangles in circle and, 113 
of medial triangle, 113 
segment length and, 109-111 
trisection property of, 106 
See also medians 

Ceva, Giovanni, 25,27,44,45  
Ceva's theorem, 27

appplications of, 32-36 ,50-51  
converse of, 31
dual statement o f  See Menelaus's theorem 
and Gergonne point proof, 36-37  
proofs of, 28-31  

Cevian 
defined, 96
length of, finding, 96-100  

chord(s), properties of, 8 

circle(s)
angle measurement with, 6 -7 ,6 7  
area of sector, 1 2

circumscribed. See circumcircle(s) 
collinearity and, 49 ,54-57, 70-73  
concurrency and, 71-73  
concyclic points, 7 
construction of, 2 0 1 - 2 1 0  

equicircles. See equicircles 
escribed. See excircles 
fallacy involving, 17-19 
inscribed. See incircle 
inscribed triangles in, 113 
nine-point. See nine-point circle 
radical axes o f  See radical axes 
segment properties of, 8 

See also cyclic quadrilaterals

249
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circumcenter 
defined, 20,27 
excenter distances from, 154 
incenter distance from, 153-154 
nine-point circle and, 161 

circumcircle(s)
and altitudes, properties of, 165-167 
and angle bisectors, 190-191 
center of. See circumcenter 
collinearity and, 57 ,61-68  
and nine-point circle, 169 
and orthic triangle, 168 
radius of. See circumradius 

circumradius 
defined, 2 0

length of exradii and, 152-153 
nine-point circle and, 162 
orthic triangle and, 168 
symbol for, 174

circumscribed circle. See circumcircle(s) 
collinearity o f points 

altitudes of a triangle and, 53 
angle bisectors of a triangle and, 48-49  
Brianchon’s theorem (circumscribed hexagons). See 

Brianchon’s theorem 
circles and, 49, 54 -57 ,70-73  
circumcircles and, 57,61-68  
conic sections and, 54 
cyclic quadrilaterals and, 62 -63 ,65 -66  
Desargues’s theorem (corresponding vertices), 51-53  
as dual of concurrency of lines, 43-44  
hexagons and, 54-56 ,60-61  
Menelaus s theorem. See Menelaus’s theorem 
Pappus’s theorem (hexagon sides), 60-61  
Pascal’s theorem (inscribed hexagons), 54-58  
perpendiculars and, 53,61-68  
quadrilaterals and, 50 
right triangles and, 50
Simson’s theorem (feet of perpendiculars). See Simson’s 

theorem
concurrency of lines, 8 ,25 -27  

altitudes of a triangle, 32-33  
angle bisectors o f a triangle, 8 ,2 6 ,2 7 -3 1 ,3 3 -3 4  
Brianchon’s theorem (circumscribed hexagon), 58-59  
centroid. See centroid 
Ceva’s theorem and. See Ceva’s theorem 
circles and, 71-73  
circumcenter. See circumcenter 
conic sections and, 57-58  
as dual of collinearity of points, 43 
Fermat point, 80 
Gergonne point, 36-37  
hexagons and, 58 -59 ,72-73  
incenter, 20,26 
orthocenter. See orthocenter 
radical axes, 71-73  
and vertices, 51-53

concyclic points, proving, 7 
congruence

Ceva’s theorem and, 35-36  
construction of triangles and, 173 

conic sections 
collinearity and, 54 
concurrency and, 57-58  

construction of circles, 2 0 1 - 2 1 0  

construction of triangles
congruence of triangles and, 173 
examples of, 180-198 
list of data sets, 178-180 
redundant sets, 176-177 
solutions of, 175-177 
symbols used in, 173-174 

corresponding sides
congruency in, compared triangles and, 90 
proportionality in, 4,104  

cyclic quadrilaterals
area formula for, 123-126 
collinearity and, 62 -63 ,65 -66  
defined, 65,66,126
generation of, angle bisectors and, 127-128 
length of diagonals/sides. See Ptolemy’s theorem 
perpendicular diagonals as bisectors, 126-127 
proving methods, 7

D
Davies, Charles, v 
Desargues, Gérard, 51 
Desargues’s theorem, 51-53  
Descartes, René, 51,54  
diagonals of a quadrilateral 

as bisecting each other, 1 2 0  

length of, 121-123,128-131  
midpoints of bisected by centerpoint,

120-121
perpendicular, 126-127 
reciprocal rectangles and, 238-239  

distance, shortest, 164-165 
division, zero as denominator, 19 
duality, 43-44

Elements (Euclid) 
betweenness as undefined in, 14 
inside/outside as specific terms in, 17 
interpretations of, 61 
Legendre’s text and, v 
and lines intersecting triangles, 6 8  

and problem of Apollonius, 201 
Simson’s text and, 97 

Elements degeometrie (Legendre), v 
Elements of Euclid, The (Simson), 97 
equiangular point (minimum distance point), 78,79-81, 

84-85
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equicircles 
defined, 144 
equiradii of, 148-153 
tangent segments and, 143-147 
See also excircles; incircle 

equilateral triangle(s) 
altitude of, as constant, 82-83  
equiangular point and, 79 -81 ,84-85  
Napoleon triangle, 80-81,86  
Ptolemy’s theorem and, 135 
See also triangle(s) 

equivalences (biconditionals), 28,45 
escribed circles. See excircles 
Euclid. See Elements (Euclid)
Euler, Leonard, 158,162 
Euler line, 162-163 
excenter, 145,154 
excircles

center of (excenter), 145,154 
defined, 144-145 
nine-point circle and, 170 
radius of (exradius), 149-153 
tangent segments and, 144,146-147 

exradius, 149-153

fallacies, 13-19 ,67-68
feet of altitudes, 20, 53,159-161,163
Fermat, Pierre de, 54, 80
Fermat point, 80
Feuerbach, Karl Wilhelm, 159,170 
Feuerbach’s theorem, 159,170 

See also nine-point circle 
Fibonacci, 220
Fibonacci numbers, 220-226  

Binet form of, 232-233  
and golden ratio, 230-232  
interrelationship with Lucas numbers, 

229-230
fourth proportion, 189

Gergonne, Joseph-Diaz, 36 
Gergonne point, 36-37  
golden ratio, 216

aesthetics of, 216-217  
equations with, 219,230,232,234-235  
powers of, 219,235,241 
symbol for, 218
See also golden rectangle(s); golden triangle(s) 

golden rectangle(s), 216-217  
construction of, 218,235-237,239  
and logarithmic spiral, 237 
reciprocal rectangles, 237-239  

golden triangle(s), 240-241 
Greek mathematics, loss of, 44

H
harmonic division, 162 
Heron of Alexandria, 123,124 
hexagon(s)

collinearity and, 54 -56 ,60-61  
concurrency and, 58 -59 ,72-73  
Ptolemy’s theorem and, 138

I
incenter, defined, 20,26 
incircle

center of (incenter), 20,26 
defined,144,145 
nine-point circle and, 170 
radius of. See inradius 
tangent segments and, 145-147 

induction, mathematical, 224-225  
inequalities, Pythagorean, 5,10  
inequalities, triangle, 5 ,9 -10 ,175 ,176  
inradius, 148,150-153  

defined, 20,148 
inscribed circle. See incircle 
inscribed quadrilateral. See cyclic quadrilateral 
inscribed triangle, 164 
isosceles right triangle(s), properties of, 4 
isosceles triangle(s)

angle bisectors, proving with, 88 -92 ,99-100
Cevians, finding length of, 98
golden, 240-241
Ptolemy’s theorem and, 135
right, 4
See also triangle(s)

Legendre, Adrien Marie, v 
Leonardo o f Pisa (Fibonacci), 220 
Leybourn, Thomas, 61 
Liber Abaci, 220 
line(s)

concurrency of. See concurrency of lines 
parallel, 3 ,34 -35  
segments. See segment(s)
See also altitudes of a triangle; medians of a triangle; midline 

of a triangle; perpendiculars 
locus of a point, 69-70  
logarithmic spiral, 237,241 
Lucas, François-Édouard-Anatole, 226 
Lucas numbers, 226-229  

Binet form of, 233-234
interrelationship with Fibonacci numbers, 229-230

M
Mathematical Collection (Pappus), 60 
mathematical induction, 224-225 
Mathematical Repository (Leybourn), 61
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mean proportionals of right triangles, 4 
medial triangle, 113 
medians of a trapezoid, 112 
medians of a triangle

area of triangles formed by, 106 
concurrency and, 32 
length of, 106-109 
midlines as bisecting. 111 
symbols for, 20 
See also centroid of a triangle 

Menelaus of Alexandria, 44,45 
Menelaus's theorem, 45 

applications of, 48-51  
and Desargues’s theorem proof, 52 
as dual of Ceva’s theorem, 44, 50-51 
and Pappus’s theorem proof, 60-61  
and Pascal’s theorem proof, 54-55  
proofs of, 45-47  

midline of a triangle 
medians as bisecting, 111 
properties of, 3,112 

midpoints of a quadrilateral 
and centerpoint, 119-121 
forming quadrilateral, 117-118 
length of, and diagonals, 122-123 

midpoints of a triangle 
equicircles and, 146 
nine-point circle and, 159-161 
symbols for, 20 

minimum distance point 
of a quadrilateral, 83-84
of a triangle (equiangular point), 78, 79 -81 ,84-85  

Miquel, A., 100 
Miquel point, 103-105 
Miquel triangle, 103 
Miquel’s theorem, 100-103

additional theorems and, 103-105

N
Nagel, C. H., 37 
Nagel point, 36 
Napoleon Bonaparte, 80 
Napoleon triangle, 80-81,86  
Newton, Sir Isaac, 201 
nine-point circle

discovery of, 158-159 
points composing, 158 
proof of, 159-161 
properties of, 161-163,168-170  

nomenclature, 20,173-174

o
obtuse triangle(s) 

inequalities and, 5,10  
See also triangle(s) 

orthic triangle, 163-165,167-168

orthocenter
and altitudes, properties of, 165-166 
defined, 8 ,20,26
nine-point circle and, 161,162-163,168-170  
See also altitudes 

orthocentric system, 169

Pappus of Alexandria, 22, 60,201 
Pappus’s theorem, 60-61
parallel lines, proportion of segments by, 3 ,34 -35  
parallelogram(s)

lengths of sides of, 121-123,134  
proving methods, 2
as quadrilateral formed by midpoint connection, 

117-118
See also quadrilateral(s)

Pascal, Blaise, 43,54, 57 
Pascal triangle, 245 
Pascal’s theorem, 54-57  

as dual of Brianchon’s theorem, 57-58  
extension of, 56-57  

Pasch, Moritz, 68 
pedal line. See Simson line 
pedal triangle, 53,163 

See also orthic triangle 
pentagon(s), Ptolemy’s theorem and, 137 
perpendicular bisectors 

angle bisectors and, 190-191 
concurrency of. See circumcenter 

perpendiculars
and centroid as balancing point, 112 
collinearity and, 53 ,61-68  
radical axes and, 69-71
sum of, as constant in equilateral triangle, 82-83  
See also altitudes of a triangle 

Playfair’s postulate, 16 
point(s)

centerpoint of a quadrilateral, 119-121 
collinearity of. See collinearity of points 
concyclic, 7
equiangular, 78 ,79 -81 ,84 -85
Fermat point, 80
Gergonne point, 36-37
locus of, 69-70
midpoints. See midpoints
minimum distance. See minimum distance point
Miquel, 103-105
Nagel point, 37
See also centroid; circumcenter; incenter; orthocenter 

polygon(s) 
area of, 12
extension of Pythagorean theorem and, 5 
Ptolemy’s theorem and, 135-139 

Poncelet, Jean-Victor, 158-159 
primitive Pythagorean triples, 5
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proportion
angle bisectors and, 3 -4  
of corresponding parts, 4,104 
cyclic quadrilateral and, 133-134 
fourth, 189
of secant segments intersecting, 49 
of segments by parallel lines, 3 ,34-35  

Ptolemy, 128 
Ptolemy *s theorem, 128 

applications of, 132-139 
converse of, 130-131 
extension of, 131-132 
proofs of, 129-130 

Pythagorean inequalities, 5,10  
Pythagorean theorem, 4 

and 30-60 right triangle, 4 
converse of, 4 
extension of, 5,22  
and isosceles right triangle, 4 

Pythagorean triples, 5

Q
quadrilateral(s) 

area of, 126
centerpoint of, 119-121
centroid of, 119
collinearity and, 50
cylic. See cyclic quadrilaterals
diagonals of. See diagonals of a quadrilateral
midpoints of. See midpoints of a quadrilateral
minimum distance point of, 83-84
parallelogram. See parallelogram(s)
proofs of, 2 -3
Ptolemy’s theorem and, 131-133 
rectangle. See rectangle(s) 
rhombus. See rhombus(es) 
square. See square(s) 
trapezoid. See trapezoid(s)
See also golden rectangle(s)

R
radical axes

Brianchon’s theorem proved by, 72-73  
properties of, 68-72  

radius
of circumcircle. See circumradius 
of excircle (exradius), 149-153 
of incircle. See inradius 

ratio of similitude, 12 
reciprocal rectangles, 237-239 
rectangle(s)

golden. See golden rectangle(s) 
midpoints forming, 118 
proving methods, 2 
reciprocal, 237-239  
See also quadrilateral(s)

redundant sets, 176-177 
rhombus(es) 

area of, 12
midpoints forming, 118 
proving methods, 2 
See also quadrilateral(s) 

right triangle(s)
30-60 right triangle, 4 
Cevian lengths and, 98-99  
collinearity and, 50 
isosceles, 4
mean proportionals in, 4 
properties of. See Pythagorean theorem 
See also triangle(s)

scalene triangle(s), fallacy involving, 13-15 ,67-68  
secant segment(s) 

properties of, 8 
proportion of intersecting, 49 

segment(s)
centroid of a triangle and length of, 109-111 
Cevians, 96-100
midline of a triangle. See midline of a triangle 
secant, 8,49
tangent. See tangent segment(s) 

semiperimeter, defined, 20 
sides, symbols for, 20 
similarity 

area and, 12 
ratio of similitude, 12 

similarity of triangles
and altitudes, properties of, 167 
angle bisectors of a triangle and, 3 -4  
area and, 12
Miquel points and, 103-105 
parallel lines and, 3 
proving methods, 4 
ratio of similitude, 12 
right triangles, 4 

similitude, ratio of, 12 
Simson line, 61 ,64-68  
Simson, Robert, 61 ,96-97  
Simson’s theorem, 61 

applications of, 63-64  
proofs of, 61-63
and properties of Simson line, 64-68  

spherical analogue, 45 
spiral, logarithmic, 237, 241 
square(s) 

area of, 10
midpoints forming, 118 
proving methods, 2 
Ptolemy’s theorem and, 136 
See also quadrilateral(s)

Stewart, Matthew, 96
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Stewart’s theorem, 96-100,106
subtend, as term, 80
symbols used in text, 20,173-174,218

tangent segment(s) 
and equicircles, 144-147 
and nine-point circle, 168-169 
and orthic triangle, 168 
properties of, 8,143-144  
radical axis and, 69 

theorems, duals of, 44 
30-60-90 triangle, properties of, 4 
trapezoid(s) 

area of, 12 
definition of, 3 
median of, 112 
proving methods, 2 
See also quadrilateral(s) 

triangle(s)
acute. See acute triangle(s) 
altitudes of. See altitudes of a triangle 
angle bisectors of. See angle bisectors of a triangle 
area of. See area of a triangle
centers of. See centroid of a triangle; circumcenter; incenter;

orthocenter 
Cevians of, 96-100
circumscribed circles. See circumcircle(s) 
collinearity and. See collinearity of points 
concurrency and. See concurrency of lines 
congruence and. See congruence 
construction of. See construction of triangles 
equiangular point (minimum distance point) of, 78 ,79-81, 

84-85

equicircles of. See equicircles 
equilateral. See equilateral triangle(s) 
fallacies involving, 13-15 
golden, 240-241 
inequalities of, 5 ,9 -10 ,175 ,176  
isosceles. See isosceles triangle(s) 
medial, 113
medians of. See medians of a triangle
midline of. See midline of a triangle
Miquel theorem and, 100-103
Napoleon, 80-81,86
nine-point circle of. See nine-point circle
obtuse, 5,10
pedal, 53,163
Ptolemy’s theorem and, 135,139
right. See right triangle(s)
scalene, 13-15, 67-68
similarity of. See similarity of triangles
vertices of. See vertex (vertices)

triangle inequalities, 5 ,9 -10 ,175 ,176

V
vertex (vertices)

concurrency and, 51-53  
symbols for, 20

Vieta, Franciscus, 201

w
Wallace, William, 61

zero
division by, 19
introduction to Europeans, 220
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GEOMETRY
Geometry is mandated in state curriculum standards, and more is being added 
to both the pre-service mathematics education curriculum and in-service 
teacher training. Yet many secondary teachers know only enough geometry to 
teach the course. Most feel fortunate to stay one chapter ahead of the very 
students they are teaching! Most college-level geometry texts don't address 
their specific needs. Advanced Euclidean Geometry: Excursions for Secondary 
Teachers and Students was written to fill this void.

Some features of this package are:

• A solid review of the essentials of the high school geometry course for 
both in-service and pre-service teachers.

• Further elaboration of concepts such as advanced Euclidean geometry and 
19th- and 20th-century expansions of Euclid's work, to give teachers more 
confidence in guiding student explorations and answering questions.

• Hundreds of illustrations created in The Geometer's Sketchpad®  Dynamic 
Geometry® software.

• A dual-platform CD-ROM (Windows®/Macintosh®) containing nearly 
100 interactive sketches using The Geometer's Sketchpad. (Requires 
The Geometer's Sketchpad software, available separately from Key 
College Publishing.)

• Ihstructor Resources consisting of solutions and teaching hints and notes. 
Also available online.

Key College Publishing opened its doors in 1999 as a division of Key 
Curriculum Press, in cooperation with Springer-Verlag New York. Key 
College Publishing provides texts and courseware for mathematics and 

\statistics, as well as mathematics and statistics education, with an emphasis 
on innovative content, curriculum, and delivery. For further information

contact our customer service department at


