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We love SET R©. The game is easy to learn, and it can be played at a
very high level by young children, while adults also find it fun and
challenging. Indeed, as the authors of this book can attest, children can
quickly surpass adults in speed and accuracy of identifying SETs (and
stay ahead forever). The game is also popular in schools, ranging from
enrichment at the elementary school level to college math clubs. At its
root, the game is about pattern recognition and matching. That simple
observation connects the game with mathematics, but as we’ll see, the
mathematics goes much deeper.

SET is one of the most popular games of the last 25 years. Since its
release in 1991, it has been recognized repeatedly as an outstanding
educational game (the Set Enterprises website lists at least 37 awards
spanning more than 20 years).

The game has also attracted the interest of the mathematics com-
munity. A wide variety of material (covering a wide variety of levels)
has been produced that is related to the game. This includes both
research and pedagogical articles about using SET in the classroom, and
projects related to specific courses in geometry, abstract algebra, linear
algebra, and combinatorics. Many questions that arise naturally when
playing the game are mathematical in nature; some of these have been
addressed on the web in different forms, occasionally with conflicting
claims.

Why DidWeWrite This Book?

We repeat, we love SET. We’ve been playing the game for years, both
as a family and with friends. We’ve introduced the game to a wide
variety of people, and all of us have spoken about some of the topics
in this book in classes and at seminars and conferences. Audiences
respond enthusiastically, and we believe the game has a universal
appeal.
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As teachers, we have also used SET as a fun way to introduce certain
topics in high-school and college math classes, including upper-level
college courses in geometry and combinatorics. People love games,
and SET is a terrific way to engage students. When students begin to
play SET, they start asking the “right” questions, learning more about
mathematics and the game at the same time.

One of our goals is to help people understand that a mathematical
approach to this game can have big payoffs. This is a two-way street:
knowing some mathematics can enhance your understanding of the
game, and playing SET can enhance your understanding of mathe-
matics. Moreover, while there is material available on the web and
in articles, this book is the first unified treatment of the mathematics
connected to the game.

Another important goal we have is for people to realize that mathe-
matics is everywhere, and if you look for it, you’ll find that mathematics
can help you understand the world. Mathematics, fundamentally, is
about patterns, and patterns are all around us. Nearly everyone can
do math, just as nearly everyone can read and write. We hope that,
in actively reading this book, you will confidently consider yourself a
“math person," regardless of your mathematical background.

The Game

The game of SET uses a special deck of cards. Each card has symbols
characterized by four different attributes:

• Number: 1, 2, or 3 symbols
• Color: red, green, or purple symbols
• Shading: empty, striped, or solid symbols
• Shape: ovals, squiggles, or diamonds

Initially, 12 cards are placed face up on a table. Three cards form a
SET if they are all the same or all different in each of the four attributes
independently. Players scan the cards; the first to see a SET calls “SET!”
and removes those cards, which are then replaced. The winner is the
person at the end with the most SETs.

The authors have also developed a variation of the game making use
of modular arithmetic. The End Game is played by hiding a card at the
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beginning of the game. At the end, when no more SETs can be found,
the hidden card can be determined from the remaining visible cards.
The goal of this game is to figure out the missing card and determine
whether two cards in the layout make a SET with that card. This gives
an idea of how mathematics can deepen one’s interest in the game.

Who DidWeWrite the Book For?

We wrote the book for anyone with a deep curiosity about games. We
hope that the exposition, the exercises, and the projects will help readers
to understand the beauty of this game and the surprising connections to
several broad areas of math. Interest in the game is the only prerequisite
for this book,1 but it doesn’t hurt to have a healthy curiosity about
mathematics as well. And the process of writing this book as a family
has beenmeaningful to all of us: really, we wrote this book for ourselves.

The first half of this book is intended for anyone interested in
mathematical aspects of the game. We do not assume any special
mathematical training. As such, we avoid the definition–theorem–
proof format common to math books.2 Instead, we introduce topics
with motivating questions and examples. We state general theorems on
occasion, often justifying themwith informal explanations or examples.

The second half of the book covers more advanced topics and will
revisit some of the topics introduced earlier. We hope that these chap-
ters will be accessible to everyone, though some additional background
might enhance your understanding in certain places.

Features

Chapter 1 introduces the main ideas that the rest of the book will
explore. Many questions are raised; only a few are answered in that
chapter. We encourage you to read a question, then get a deck of SET
cards out, play a game, and think about the question. Active reading of
books that include equations is a must; like all things academic,3 you
will get out of this what you put into it. In that spirit, we hope that you

1 Actually, if you don’t know the game already, we’ll help you become wildly interested in it.
2 In a few instances, we just couldn’t help ourselves. Proofs really are wonderful things, when

sufficiently motivated.
3 and nonacademic
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have a deck and take frequent breaks for a game or two, even if it’s a
solitaire game. (We did the same while we wrote it, and unsurprisingly,
it helped to inspire some of our lines of inquiry.)

Chapters 2–5 answer most of the questions raised in chapter 1; they
should be read in order. Each introduces concepts that will be used in
later chapters. For the most part, the chapters in the second half of the
book can be read independently; you won’t need to finish the material
on combinatorics before proceeding to the material on geometry, for
example.

Each chapter in this book has some exercises, and almost all have
projects as well. These are intended to lead interested readers, teachers,
or classes to deeper results. The authors have had substantial experience
in creating and leading such projects, from the simple (worksheets in
high-school classes) to the advanced (eight-week summer undergradu-
ate research projects). For your help, in the back of the book we include
very brief solutions to the exercises.

More Things to Say

We have really enjoyed writing this book. We hope it has the best of
each of us in it, and we hope it will be fun for you to read, working
through details as you go.

One of the major themes of the book is that asking questions and
exploring ideas (which may or may not lead to answers) enhances your
appreciation of the game.We’ve asked ourselves lots of questions, some
of which have led to ideas in the book and some of which have not. This
problem is not unique to this book—every author makes choices about
what to include and what to omit. Paraphrasing Mark Twain, we would
have written a shorter book if we’d had more time.

The topics that didn’t make the cut were not losers; we just had more
ideas than we could explore in this book. So, there’s plenty more to do.
We encourage everyone to ask more questions.4 Come up with wacky
ideas. See where they lead.

Here’s how we’re going to use the word “set” in this book. If we’re
talking about three cards, we’ll write it as a “SET.” If we’re talking about

4 Not a bad life strategy.
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Figure P.1. Students in Madagascar during a spirited game of SET.

the manufactured game (or subgames, for example, when you take all
the purple cards, so you’ve got only three attributes instead of four) we’ll
call it “SET." And, in the later chapters, when we talk about n attributes,
where n > 4, we generally use the term “the n-attribute game.” We
hope it’s not confusing.
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Drew Knight Weller, Andria Gordon, Deborah Chun, and Chubbles.
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5 If you see them, ask them to buy you a sandwich.
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that we explore in chapter 9. David Eisenstat and Brian Lynch coded
simulations to answer questions, some of which we didn’t know we
had until after they ran their simulations. Jordan Awan wrote the
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Jackson wrote an honors thesis on SET under Liz’s direction, which
started this whole enterprise. Sarah Brachfeld worked on the structure
of the six cards left at the end of the game. Mike Follett, Kyle Kalail,
Katie Pelland, and Rob Won formed Liz’s first summer research group
on SET, exploring the partitions of the deck into maximal caps, and
Jordan Awan, Claire Frechette, and Yumi Li continued that work in
another summer of research.

Now, let’s play!
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SET and You

1.1 A GAMEOF SET

Three students, Stefan, Emily, and Tanya, are playing SET, a game
played with a special deck of cards. Each card in the game of SET has
symbols characterized by four different attributes:

• Number: 1, 2, or 3 symbols
• Color: red, green, or purple symbols
• Shading: empty, striped, or solid symbols
• Shape: ovals, squiggles, or diamonds

The game is new to Tanya. Stefan is the dealer, but before he can deal
the first cards, Tanya starts asking questions.

TANYA: How many cards are in the deck?
STEFAN: That sounds like a math question.
EMILY: starts counting the cards. Give me a minute and I’ll know!
STEFAN: to Emily. Cheater! Don’t count. We can figure it out,

using. . .∗math!∗
TANYA: How did you do that?!
STEFAN: Do what?
TANYA: How did you speak asterisks like that?
STEFAN: I do not understand the question.
EMILY: He did it because we are in a book, obviously! We can speak

all the symbols we want! �
Tanya has asked the first math question that most people ask about

the game, and Stefan’s advice is directed to Tanya and Emily, but also
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Figure 1.1. First layout of cards.

Figure 1.2. Emily’s SET.

Figure 1.3. The SET not taken.

to you. Of course, if you have a deck in your hands, it’s easy to answer
this question the way Emily started to.

In the spirit of self-discovery, though, we will postpone answering
this (and other) questions until later in the book. We encourage you
to try to figure out the answers on your own. But the questions Stefan,
Emily, and Tanya ask here will motivate much of what you will see in
the coming chapters.

Stefan deals 12 cards—see figure 1.1.

TANYA: How do you play the game?
STEFAN: You find three cards that are either all the same or all

different in each of the four attributes. That’s called a “SET.”
EMILY: grabbing three cards. Like this! (See figure 1.2.)
TANYA: I see—all the cards have three symbols, there are three

different colors, all are solid, and the three different shapes
appear.

STEFAN: That’s right! In fact, there was another SET containing one
of Emily’s cards, 3 Green Solid Squiggles. (See figure 1.3.)
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Figure 1.4. Second layout of cards.

Figure 1.5. Tanya’s non-SET.

Figure 1.6. Tanya’s actual SET.

STEFAN: These are all green, but for each of the other attributes, they
are all different.

TANYA: There were two SETs in the first layout. Is that weird?
STEFAN: No. There’s a nice probability calculation that tells you the

average number of SETs in the first layout. (See chapter 3.)
Now, since we want to have 12 cards, I need to replace the
three cards Emily took. (Stefan deals out three more cards.
See figure 1.4.)

TANYA: pointing to the three solid red cards. Hey—is this a SET?
(See figure 1.5.)

STEFAN: Almost! But you see there’s a problem with shape: two are
squiggles and one is an oval. Any time you can say “two are
x and one is y,” you’re out of luck.

TANYA: Oh, now I see. How about this? (See figure 1.6.)
EMILY: Great! Some people find these SETs the hardest to see—all

four attributes are different.
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Figure 1.7. Third layout of cards.

Figure 1.8. Stefan’s SET.

Figure 1.9. Fourth layout of cards. There are no SETs!

STEFAN: Tanya’s SET was actually in the original layout, but no one
saw it till now.

Tanya takes her cards and Stefan deals three more. See figure 1.7.

STEFAN: grabbing three cards. The dealer finds a SET! That’s
allowed, you know. (See figure 1.8.)

Stefan deals another three cards, and the players stare at the layout
in figure 1.9 for a while.

EMILY: I don’t think there’s a SET in these 12 cards. I can’t find one.
STEFAN: Ow—my head hurts!
TANYA: Emily! You’re hitting Stefan in the head!
EMILY: Sorry! Sometimes I swing my arms wildly when I’m thinking.

It’s pretty dangerous.
TANYA: Are there any SETs in here? How can we be sure?
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Figure 1.10. Fourth layout of cards with three cards added.

EMILY: There aren’t. There are a few ways we could check this, but
for the most part, if everyone’s been staring for a while and no
one has found anything, we put out three more cards.

TANYA: How often does it happen that there are no SETs among the
12 cards?

STEFAN: I think that’s hard to calculate. But people have estimated
how often this happens by using computer simulations.

The interlude (following chapter 5) includes methods to verify that
there are no SETs in a given layout, and chapter 10 deals1 with
simulations. When everyone agrees there are no SETs, three cards are
added to the layout. (See figure 1.10.)

EMILY: Now there’s a SET!2
TANYA: Is it possible for 15 cards to have no SETs?
STEFAN: Yes. In fact, you can have as many as 20 cards without a

SET, and that’s the most you can have. This turns out to be
a question related to finite geometry. (See chapter 5.)

TANYA: Cool. So, I now know it’s possible for 12 cards to have no
SETs. What’s the maximum number of SETs 12 cards can
have?

STEFAN: Well, it’s kind of amazing, but this is also a geometry
question. (There’s a project at the end of chapter 5 devoted
to constructing collections of 12 cards that have a
prescribed number of SETs.)

1 This is a pun, but it was unintentional.
2 See if you can find one. Then, see if you can find a second one.
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(a) Three attributes the same and one different.

(b) Two attributes the same and two different.

(c) One attribute the same and three different.

(d) All four attributes different.

Figure 1.11. The four different kinds of SETs.

TANYA: Is it known how many SETs there are in the entire deck?
EMILY: Yes. That’s a fun calculation. (The answer appears in

chapter 2, where lots of things get counted.)
STEFAN: And every card is in the same number of SETs!
TANYA: Thanks for answering a question I didn’t ask. And I can’t

help but notice that you aren’t actually answering any of my
questions. Something else I noticed: the first few SETs we
found didn’t always have the same number of attributes that
were the same. How many different kinds of SETs are there?

EMILY: looking through the deck. Four. Here are examples of every
possibility for how many attributes are the same. (See
figure 1.11.)

At this point, the game proceeds as before, with the players taking
SETs and Stefan dealing more cards. After taking as many SETs as they
can find, there are six cards left. (See figure 1.12.)

TANYA: Are there any SETs remaining in the final layout?
EMILY: Nope. Game over!
TANYA: Is it typical for there to be six cards at the end?
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Figure 1.12. Six cards remain at the end of the game.

Figure 1.13. One card at the end of the game is missing—can you find it?

STEFAN: This is a hard probability to calculate exactly, but based on
computer simulations, it’s usually true that either six or
nine cards remain. Sometimes we can clear the deck, but
that’s fairly uncommon.

EMILY: It’s also possible for 12, 15, or 18 cards to be left, but we’ve
never actually played a game with either 15 or 18 cards left at
the end. (There are several simulations in chapter 10 that
explore this topic.)

TANYA: So always multiples of three—that makes sense. How often
are there exactly three cards left?

STEFAN and EMILY, together: Never!

At this point, the game ends, the players count their SETs, and Emily
wins. But Tanya wonders why there can’t be three cards left at the end
of the game. A complete explanation uses modular arithmetic, which
you will find in chapter 4.

TANYA: That was fun! Can we play another game?

The group plays a second game, and this time, there are eight cards
left at the end of the game. (See figure 1.13.)

TANYA: Wait! How can there be eight cards left? I thought it had to
be a multiple of three! Is there a card missing or something?

EMILY: Yes, precisely! We hid one card at the beginning of the game,
then played the usual way.
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TANYA: Why would you do that? What is the missing card?
STEFAN: The amazing thing is that you can figure it out!
TANYA: But I didn’t memorize every card that’s been played!
EMILY: You don’t need to—you can determine the missing card from

the cards left on the table!
TANYA: How!?

Rather than answer Tanya’s impassioned plea, Emily explains what
she and Stefan are doing. They (and we) call this the End Game.

The End Game

1. At the beginning of the game, remove one card from the deck
(without looking at it!) and put it aside.

2. Now deal 12 cards face up, and play the game as usual, removing
SETs and replacing the cards you took.

3. At the end of the game, you can determine the hidden card using
just the cards left on the table.

4. Finally, now that you’ve determined the hidden card, you might
be lucky enough to find a SET using the hidden card and two of
the cards that are left on the table.

We’ll explain how this procedure works in detail in chapter 4; we’ll
also discuss how often the missing card makes a SET in chapter 10.
For now, see if you can find the missing card in the configuration
in figure 1.13. [Hint: Concentrate on each attribute separately: first,
determine the color of the missing card, then the number, and so on.
The answer is at the end of the chapter.]

STEFAN: OK Tanya, here’s how to find the missing card.
(∗Inaudible whispers∗)

TANYA: Now I get it! This is so cool! The missing card is . . . (Tanya
shouts the missing card so loudly that we couldn’t hear it.)

EMILY: Perfect! It gets better. Does the missing card form a SET with
two of the eight cards left on the table?

TANYA: Yes! In fact, it’s in two different SETs.
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Figure 1.14. Find the missing card at the end of the game.

STEFAN: That’s right. It’s really impressive when you yell “SET!,”
then take two of the cards on the table and finally turn over
the hidden card.

EMILY: Yeah, it really looks like a magic trick!

For practice (without any instruction), see if you can determine the
missing card in figure 1.14. The identity of themissing card also appears
at the end of this chapter.

TANYA: Does this trick always work? Can you find the missing card if
there is a different number of cards left?

EMILY: Yes, it always works, but you won’t necessarily be able to
form a SET with two of the cards on the table.

STEFAN: By the way, when we play the End Game, if there are five
cards left, then the missing card will never form a SET with
two of the cards on the table.

TANYA: I think I understand why. Is it related to the fact that it’s
impossible to have just three cards left at the end of the
game?

STEFAN: Yes—this uses modular arithmetic.
TANYA: This is all so cool, and oddly foreshadowing! Let’s play

another game.

Stefan, Emily, and Tanya play another game. Even though she’s new
to the game, Tanya does well, partly because Stefan and Emily give
themselves a handicap by not immediately taking SETs they find. (See
the interlude for some possible ways that experienced players can play
with new players so that the game is fun for everyone.) When the game
is over, the players have another discussion.
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(a) Three cards that aren’t a SET; call them A, B, and C.

(b) These three cards make SETs with the three pairs of cards in (a): The first
card makes a SET with A and B, the second makes a SET with A and C, and

the third makes a SET with B and C.

(c) These three cards complete SETs with the cards in (b).

Figure 1.15. Completing as many SETs as possible.

TANYA: So, you two know so much about this game, there’s gotta be
another trick you can teach me.

STEFAN: Indeed, there is. I’m going to hand you three random cards
that aren’t a SET. For each pair of those cards, find the third
card that makes a SET with that pair. (Stefan puts out the
three cards in figure 1.15(a).)

TANYA, hunts through the deck and finds the three cards in
figure 1.15(b): OK, these are the three cards I found.

EMILY: Good. Now do the same thing with the three cards you just
found.

TANYA: Done. (She lays down the three cards in figure 1.15(c).)
STEFAN: Now do the same thing with the three cards you just found.
TANYA: You’ve got to be kidding. This could go on forever!
EMILY: It could, but it doesn’t. Keep going.
TANYA: What is happening?!? It’s the same cards we started with!
STEFAN: Now, look at these nine cards. Can you organize them nicely

so that you can see all the SETs?

After some reorganizing, Tanya lays out the cards in figure 1.16.

TANYA: You’re right, that was a great trick. And look at how pretty
this is!
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Figure 1.16. The nine cards in figure 1.15 nicely organized.

EMILY: This is what the Set Enterprises website calls a magic square.
Notice that no matter which two cards you pick, the third
card that makes a SET is in there!

We’ll return to these special layouts in the next section. In the
meantime, try doing this trick yourself.

1.2 MORE QUESTIONS AND A PREVIEW

In this section, we give an overview of several of the ways SET and
math are related. We hope this whets your appetite for much of what
follows. We will pose many questions, but just like Stefan and Emily,
we will answer very few of them, at least for now. We encourage you to
read actively, thinking about the questions and trying to find your own
solutions. But first, a word from our sponsor.

History

SET was invented in 1974 by Marsha Falco, a population geneticist
studying epilepsy in German shepherd dogs. She had a card for each
dog, and she placed symbols on the card to represent that dog’s
expressions of various genes. As she looked at the cards, she realized
she could make a game out of them. At first, she played with her family,
and then in 1990, she founded Set Enterprises, Inc., to develop and
market the game.

SET has repeatedly been recognized as an outstanding game, win-
ning the TDmonthly (ToyDirect) Top-10 Most Wanted Card Games
every year from 2006 to 2015, the Mensa Select Award (1991), and the
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Figure 1.17. The winner (left), Marsha Falco (right).

Parents’ Choice Best 25 games of the past 25 years (2004). There has
been one National SET Competition (in August 2006) advertised on
the Set Enterprises’ website www.setgame.com, which was won by one
of the authors of this book.3 See figure 1.17.

Counting Questions

People (including mathematicians, who are also people) started asking
questions about SET as soon as it appeared in toy stores. But, as is
typical in mathematics, just knowing the answer to a question is not
enough. Answers often lead to more questions, and, in the case of SET,
these new questions expose deeper connections between the game and
math.

We begin with the first question Tanya asked.

• How many cards are needed to make the deck?

The lazy solution is to get a deck and count all the cards. You should
get 81. A mathy explanation for this is the following: since there are
four attributes, and each attribute has three possibilities, there are
3 × 3 × 3 × 3= 34 = 81 possible cards. Why do we multiply (instead
of adding, for instance)? Because we need to choose a number AND

3 Just ask Hannah which one.

http://www.setgame.com
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Figure 1.18. The fundamental theorem of SET tells you that there is a unique card that
makes a SET with these two cards. What is it?

a color AND a shading AND a shape. Replacing AND with × is
sometimes called the multiplication principle in textbooks on discrete
math. We explain this fundamental idea more carefully in chapter 2.

• How many SETs are there?

A short answer: Enough to make the game interesting. We answer this
question in chapter 2.

• What percentage of the SETs differ in all four attributes? Three
attributes? Two attributes? Only one attribute?

The very clean answer to this question is explained rather carefully
in chapter 2. The calculation uses some basic counting techniques.
For now, you might enjoy trying to guess which kind of SET is most
common, and which is least common.

• How many different SETs contain a given card?

Stefan mentioned that each card is in the same number of SETs. But
this counting question introduces an important idea, so we’ll answer it
now. We’ll return to it in chapter 2.

Finding the number of SETs that contain a given card uses a
principle so important that we call it the fundamental theorem of SET.

FUNDAMENTAL THEOREM OF SET

Given any pair of cards, there is a unique card that completes a SET
with the pair.

Two cards are shown in figure 1.18. It should be clear that there is a
unique card that completes a SET with those two cards.

Here’s how we can apply this theorem. First, choose a card C . Then
the other 80 cards can be split up into 40 pairs, each of which makes a
SET with C . This tells us that there are 40 SETs that contain any given
card.
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Figure 1.19. Lots of SETs.

By the way, we can use this fact to calculate the total number of SETs.
Your argument might begin, “Since there are 81 cards and 40 SETs
that contain that card, we get 81× 40= 3240. But this overcounts the
number of SETs because we’ve counted each SET three times. So. . . .”

Geometry Questions

The connection between the game and geometry is surprising. The
game is played with a finite deck of cards, and standard Euclidean
geometry isn’t finite (there are an infinite number of points on a line,
lines in a plane, and so on). But the connection to finite geometry is
fundamental. We explore this in chapters 5 and 9. For a warm-up, try
this:

• How many SETs can you find in the collection of nine cards in
figure 1.19?

The answer is below.4 As Emily mentioned, the Set Enterprises website
calls a configuration like this a magic square. Unfortunately, the term
magic square means something else to mathematicians.5 It has the
largest possible number of SETs that can be found in nine cards. We
(and most mathematicians) call this configuration a plane, for reasons
that will become clear in chapter 5.

How is this related to geometry? Think of the nine cards as “points”
and the SETs as “lines.” Then we can redraw this picture as in

4 There are 12 SETs, although this may not be the answer to the question “How many can you
find?”

5 And to Ben Franklin, who made a study of magic squares. Amagic square is a square array of
distinct integers where each column, each row, and both main diagonals add up to the same sum.
There is no relation between these magic squares and SET.
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Figure 1.20. Schematic diagram of SETs in figure 1.19. This is the affine plane with
three points per line.

1

4

6

3

52

Figure 1.21. Complete the plane.

figure 1.20. (Those swoopy curves are “lines” passing through three
points, as you can see by looking at the corresponding cards in
figure 1.19. In this geometry, lines don’t have to be straight!)

If you look back at the nine cards that Tanya organized in figure 1.16,
you’ll see that the SETs in that figure are in exactly the same relative
positions as the SETs in figure 1.20. So her nine cards also form a plane.

In fact, you can make a plane like this from any three cards that do
not form a SET, like Tanya did (see exercise 1.3). She used a two-step
procedure, where first she found the cards and then she organized them.
You can also do this in one step, by following these simple instructions:
take three cards that aren’t a SET, and put them in the corner of a
square, as in the left side of figure 1.21. The numbered spaces give you
one possible order to add cards that complete SETs. The finished result
is shown in the same figure on the right.
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There are two things that seem like “magic” about planes. First, if you
take any pair of cards from the plane, the third card that completes the
SET is also in the plane. Second, if you take any three cards that aren’t a
SET from the plane, and follow the procedure in figure 1.21, you’ll get
the same nine cards.

We’ll revisit this topic in chapter 2 when we count the number
of planes in the deck, and also in chapter 5 when we investigate the
game using the axioms of geometry. These planes are also good starting
places for creating 12-card layouts that contain the maximum possible
number of SETs. You’re asked to do that in exercise 1.4.

There are a few observations that have a geometric flavor; these are
so important, we can’t wait to tell you about them:

• Given any two cards, there is a unique third card that completes a
SET with them. (The fundamental theorem of SET.)

• Given any three cards that don’t form a SET, there is a unique
plane (up to reordering the cards) containing them.

Compare these statements with the fundamental facts you (may
have) learned in high-school geometry:

• Given any two points, there is a unique line containing them.
• Given any three non-collinear points, there is a unique plane
containing them.

Our geometry is different from Euclidean geometry (in particular,
“lines” have only three points, and don’t need to be straight). But a large
and somewhat surprising amount of Euclidean geometry will apply to
SET. In chapter 5, we’ll learn that the SET cards form the affine geometry
AG(4, 3), and this will have some important consequences.

There is one interesting consequence of the geometric approach:

• All SETs are the same.

But this is crazy. We know that there are four different kinds of SETs
(see figure 1.11). However, from the geometric point of view, SETs are
simply lines in a finite geometry, and all lines are the “same.” This can
be mademore precise using linear algebra, which we do when we revisit
this question in chapter 8.
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Figure 1.22. A hyperplane.

One final comment on geometry, for now. Thinking of our SETs
as one-dimensional lines and the planes as two-dimensional objects,
we are naturally led to create three-dimensional hyperplanes, as in
figure 1.22. These consist of 27 cards that can be split up into three
parallel two-dimensional planes. For comparison, note that the plane
of figure 1.19 can be split up into three parallel lines. (Parallel SETs are
discussed in chapters 5 and 8.)

What’s special about SETs, planes, and hyperplanes? These collec-
tions of cards are closed. This means that given any pair of cards in
the collection, the card that completes the SET with that pair is also in
the collection. In chapter 8, we’ll see that there are only five types of
closed collections of cards: single cards, SETs, planes, hyperplanes, or
the entire deck.

For entertainment, try to find the locations of some SETs in the
hyperplane shown in figure 1.22. You should notice fairly quickly that
if you pick any two cards, the SET that contains them lies within the
hyperplane. As you’re looking, see if you can make some sense out of
the positions that the cards in a SET occupy in the array. If you like
looking for patterns, this should offer you lots of practice.6 We’ll count
the number of SETs in a hyperplane in chapter 6 when we consider
generalizations of the game.

Finally, the entire deck of SET cards is a four-dimensional geometry,
consisting of 81 points and lots of lines, planes, and hyperplanes. This
will be displayed in a rather striking way in chapter 5.

6 You, as a human, are wired for pattern recognition. This game, and much of mathematics, is
really an elaborate pattern recognition game.
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Probability and Simulations

Most games have an element of chance, because luck helps to spice
things up. SET is a game of skill, but the order the cards are dealt
obviously introduces uncertainty into the game. How the game unfolds
also depends on which SETs are taken along the way, which introduces
a second level of chance.

Here are a few more questions that might occur to you.

• Suppose three cards are chosen at random. What are the chances
they form a SET?

Many probability problems are just counting problems in disguise.
We’ll describe two different ways to do this in chapter 3.

• Why does the game begin with 12 cards?

Well, those are the rules. But it’s worth figuring out why 12 is the “right”
number for playing the game. We will do so in chapter 3, when we
calculate the expected number of SETs among 12 randomly chosen
cards.

The next few probability questions are frequently asked by people
who have played the game a lot. Unfortunately, they seem to be quite
difficult to answer precisely. But it’s possible to estimate the answers
by playing the game millions of times.7 We give the results of some
simulations in chapter 10.

• What is the probability that there are no SETs in the initial layout
of 12 cards?

Simulations indicate that this happens approximately 3.2% of the time.

• What is the probability that there are no cards left at the end?

Simulations suggest that this happens even more infrequently, approx-
imately 1.2% of the time.

• Suppose you have a shuffled deck in your hands. Is it always
possible that you could take SETs in such a way that there are no
cards left at the end?

7 Better yet, ask a computer to do this. Ask politely.
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TABLE 1.1.
Assignment of coordinates to cards.

Attribute Value Coordinate

Number 3, 1, 2 ↔ 0, 1, 2
Color green, purple, red ↔ 0, 1, 2
Shading empty, striped, solid ↔ 0, 1, 2
Shape diamonds, ovals, squiggles ↔ 0, 1, 2

In playing the game many times, we can backtrack (changing the game
by taking a different SET earlier) to get a different number of cards at
the end. In fact, people who have played online games where multiple
people play the same deck may have noticed that different games
(with the same deck) end with different numbers of cards left on the
table. Does every deck have a way to clear it? We give an answer in
chapter 10.8

Coordinates and Modular Arithmetic

The game of SET is intimately tied to the number 3: there are 3 cards
in a SET, 32 = 9 cards in a plane, 33 = 27 cards in a hyperplane, and
34 = 81 cards in the deck. This connection is best understood using
coordinates, where each card will have its number, color, shading, and
shape specified. Converting those attributes to numbers will allow us to
perform arithmetic on the deck.

We will need to encode each card as an ordered list of four numbers.
We make an (arbitrary) choice in table 1.1.

Using this setup,9 the card consisting of 3 Purple Empty Squiggles
will be represented by the coordinates (0, 1, 0, 2). Which card is
represented by (0, 0, 0, 0)? It’s 3 Green Empty Diamonds, which is not
special in any way. This illustrates the arbitrary nature of this process,
but we will stick to these assignments throughout this book.

8 Skip ahead, and you’ll finish the book rather quickly.
9 If you are curious, we ordered color and shape alphabetically. That’s the kind of people we

are.
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Figure 1.23. A SET.

Modular arithmetic is sometimes called clock arithmetic. Here’s a
standard problem that you may have seen before:

• It’s currently 10:30 a.m. What time will it be in 100 hours?

Here’s a solution. (Avert your eyes to do this yourself!) First, let’s
pretend that it’s 10:00 a.m. (we’ll add in the half hour at the end of the
problem). We know 10:00 is 10 hours after midnight. In 100 hours, it
will be 110 hours after (that same) midnight. Then divide by 24 and
compute the remainder: since 110 = 4 × 24 + 14, we know it’s now 14
hours after midnight (4 days later).We will write 110 = 14 (mod 24).10
So the time will be 2:30 p.m. (Alternatively, adding 100 = 4 × 24 + 4
hours adds 4 days and 4 hours to the current time. This also uses
remainders after division by 24.)

In the clock problem, we are workingmod 24 since there are 24 hours
in a day. The key step to force our final answer to be a time between
0 and 23 is to first divide by 24, then find the remainder. Modular
arithmetic concentrates solely on remainders.

Here’s how modular arithmetic, specifically mod 3, is useful to the
game of SET. Choose your favorite SET, which might be the one shown
in figure 1.23.

What are the coordinates for the cards in this SET? Using our as-
signments from table 1.1, we get (0, 1, 2, 1), (0, 1, 2, 2), and (0, 1, 2, 0),
from left to right. What happens when we add these coordinates one at
a time?

1. Adding the first coordinates (which correspond to the number of
attributes on the card) gives us 0 + 0 + 0 = 0 (mod 3).

2. Adding the second coordinates (which correspond to the color of
the card) gives us 1 + 1 + 1 = 3 = 0 (mod 3), since 3 has
remainder 0 when you divide by 3.

10 Math books usually use an “equals” sign with three bars here: 100 ≡ 4 (mod 24). For now,
we won’t.
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Figure 1.24. Not a SET.

3. Adding the third coordinates (the shading attribute) gives
2 + 2 + 2 = 6 = 0 (mod 3), since the remainder when you
divide 6 by 3 is also 0.

4. Adding the fourth coordinates (shape attribute) gives you
1 + 2 + 0 = 3 = 0 (mod 3).

So each sum is 0 (mod 3), and we get that the sum of the three cards is
just (0, 0, 0, 0) (mod 3).

What happens if we do this for three cards that are not a SET? Try
this yourself for the three cards shown in figure 1.24.

What’s the takeaway message from these two examples? It’s the
following striking result:

Takeaway Message:

• Suppose A, B , and C are the vectors for three cards that form a
SET. Then A+ B + C = (0, 0, 0, 0) (mod 3).

• Conversely, suppose A, B , and C are the vectors for three cards
that do not form a SET. Then A+ B + C �= (0, 0, 0, 0) (mod 3).

This is true regardless of how we assign our coordinates, as long as
we are consistent (and use the numbers 0, 1, and 2, and work mod 3).
Modular arithmetic will be very useful for us throughout the book.

We have one final comment about the power of modular arithmetic.
Why are the cards in figure 1.24 not a SET? The problem is shading:
two cards are empty, but one is solid. The sum of those coordinates
is (0, 0, 2, 0) (mod 3), and the nonzero coordinate occurs in the third
spot, which corresponds to shading. This will connect SET with error-
correcting codes in chapter 8.

Advanced Topics

The second half of the book is devoted to more advanced topics. Here
is a (very) brief overview. Affine geometry is an important area of
mathematics, and many of its classical theorems have interpretations
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through the game. Some of this will involve extending the game by
adding more attributes:

• SET has four attributes: number, color, shading, and shape. What
if we add more attributes to the game?

One way to play a five-attribute version of the game is to buy three
decks, and mark each card in one of the decks with polka dots and each
card in another deck with stripes, for example.11 But adding attributes
is an easy thing to do abstractly.

• Suppose there are n > 4 attributes. How many SETs are there?
How many planes? Higher-dimensional hyperplanes?

We answer these questions in chapter 6. Considering more than
four attributes will lead to general formulas, and those formulas have
connections to classical counting problems.

When there are n attributes, there are n different kinds of SETs: all
attributes different, all but one attribute different, and so on.

• How many SETs of each kind are there?

This is not too difficult to calculate exactly, and we can figure out
which kind of SET is most common, and which is least common. We
answer these questions in chapters 6 and 7.

Finally, there are famous unsolved problems that we can interpret in
terms of the n-attribute game:

• In n-attribute SET, what is the maximum number of cards you
can have with no SETs?

This number is known when n ≤ 6 (at present), but not for any
larger values. This question is the focus of some very high powered
research, and the problem has attracted the interest of some of the top
mathematicians in the world. We explore this question in chapter 9.

We love this game and its mathematics, and we hope this book
motivates you to think about SET (and other games) from a math-
ematical perspective. Like everything in math (and the rest of life),
you will understand things best by working out the details yourself.

11 Warning: Actually playing this five-attribute game will give you a headache. In the head.
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Figure 1.25. Exercise 1.2.

The exercises at the end of each chapter give you a chance to explore,
on your own, some of the ideas we’ve introduced. Some are designed
for practice and some lead to deeper topics that we’ll return to later in
the book. Enjoy!

EXERCISES

EXERCISE 1.1. The people whomanufacture SET use a shorthand notation
when they encode specific cards of the game as pdf files. For instance, the card
with 3 Red Empty Squiggles is abbreviated 3ROS. (For some reason, they use
“O” for “open” instead of “E” for “empty.”) With this shorthand scheme, what
card has a code that forms the basis of many Western religions?

EXERCISE 1.2. Suppose the six cards in figure 1.25 are left at the end of the
game.

Here’s a Stupid SET Trick:12

• Arbitrarily break up the six cards into three pairs; for example, you
could make the pairs AB , CD, and E F .

• Figure out the three cards X , Y , and Z that complete these three pairs to
make three SETs (so ABX and CDY and E F Z are all SETs).

• Then XYZ is a SET!

Try this for different ways of breaking up the six cards into three pairs (there
are 15 different ways to pair them up, but you don’t need to try this for all of
them). [We’ll see why this works in chapter 4.]

EXERCISE 1.3. There are three cards in figure 1.26. Add six cards to
complete a plane.

12 It’s actually not stupid, it’s great. Back in the day, David Letterman hosted a late night talk
show that occasionally had Stupid Pet Tricks, so we borrowed the title.
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Figure 1.26. Exercise 1.3.

Figure 1.27. Build a SET ladder from Emily’s SET to Tanya’s, in order from left to right.

EXERCISE 1.4. Find a collection of 12 cards that contain 14 different SETs.
[Hint: Start with 9 cards that form a plane, as in figure 1.19. This will reappear
as part of project 5.1.]

EXERCISE 1.5. The 27 red cards in the deck form a hyperplane. Howmany
SETs are there? [We’ll return to this question and some generalizations in
chapter 6.]

EXERCISE 1.6. Word ladders are games where you transform one word to
another by changing one letter at a time. A standard example changes the word
COLD to WARM in four steps:

COLD → CORD → CARD → WARD → WARM.

A SET ladder connects one SET to another, changing one attribute at a time.
For SET, however, we’ll insist that exactly one card stays the same at each step.
See figure 1.11 for an example, where the SET at the top of the figure is changed
to the SET at the bottom by first changing color, then shading, then shape.

a. Find a SET ladder joining the two SETs in figure 1.27. (The first is Emily’s
first SET from section 1.1, and the second is Tanya’s.)

b. Suppose you want your favorite SET to be the first SET in a ladder. How
many different SETs can be the next SET in the ladder?

c. What is the largest number of steps a SET ladder can need? Give an
example of two SETs that achieve this maximum.

d. Change the rules! You can change the rules in any way you like, and then
ask the same questions as above. For example, you could allow a color
change without requiring that one card stay the same, so an all-red SET
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Figure 1.28. Exercise 1.7.

could become an all-green SET, or a SET with all colors different could
have the colors cycle through the cards. Another choice might be to allow a
rearrangement of the cards. Armed with your new rules, find a SET ladder
between the two SETs in figure 1.27. How many SETs could be the next
SET for a particular SET? What’s the longest distance between two SETs?

EXERCISE 1.7. There is a non-SET in figure 1.28.

a. Which attribute (or attributes) are wrong for this non-SET? (An attribute
is “wrong” if you can say “two are one thing, while one isn’t.”)

b. Find the coordinates for the three cards.
c. Add the coordinates for those cards, mod 3, and call the result X . Find the

coordinate positions of X that are not 0. What is the connection between
those positions and the attribute (or attributes) that are wrong?

d. Do you think that it’s likely that these three cards could mistakenly be
taken as a SET during play of the game? Explain.

EXERCISE 1.8. The three cards of figure 1.28 are not a SET. Call these three
cards A, B , and C (in left-to-right order).

a. Replace the first card A in this non-SET (2 Green Empty Ovals) with a
card D so that BCD forms a SET. Find the number of attributes the cards
A and D differ in.

b. Now repeat part (a) for the second card B (finding a card E so that AC E
is a SET) and the last card C (finding a card F with ABF a SET). How
many attributes do B and E differ in? How about C and F ?

c. True/False:

i. The 3 pairs AD, BE , and C F all differ in the same number of
attributes.

ii. The cards D, E , and F form a SET.
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Answers to End Game questions

• Figure 1.13: The missing card is 2 Purple Striped Diamonds, and
there are two SETs that can be formed using this card and the
remaining cards on the table.
• Figure 1.14: The missing card is 1 Red Striped Diamond, and
there are no SETs that can be formed using this card and those on
the table.
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Counting Fun!

2.1 INTRODUCTION

Your friends Samantha, Ethan, and Tatiana are playing SET. They are
going to walk you through the delightful world of counting and the
game.

ETHAN: I am so excited to be in a book, you guys!
TATIANA: Me too, but what happened to Stefan, Emily, and Tanya

from the first chapter?
ETHAN: I guess they made a SET, so they got taken away and now

we’re replacing them?
SAM: Should I worry about what’s going to happen to us at the end of

this chapter?
ETHAN: Maybe when we get replaced we’ll end up in some sort of

post-apocalyptic romcom buddy-cop novel!
TATIANA: We may just have to wait for you to write that novel. For

now, we’re in a book about SET.
SAM: And it’s a good thing, because I was intrigued by some of the

counting questions that were posed in the first chapter.
TATIANA: Like what?
SAM: Well, how do we count the number of SETs, and the number of

SETs of each kind? How do we know anything? I have so many
questions!

ETHAN: Well, once we know how to count the number of SETs in the
deck, we can use that technique to figure out loads of things,
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like how many SETs there are of each kind, probabilities,
and a whole bunch of other things related to advanced math
topics. So let’s get going!

2.2 BASIC COUNTING QUESTIONS

Combinatorics is the branch of mathematics that deals with counting.
The name “combinatorics” comes from the word “combination,” which
we’ll see soon. Counting questions are found throughout mathematics,
and the techniques we develop here can be used inmany other contexts.
To get started, let’s look at the kind of question youmight see in a book.1
Sam asked several questions, so here’s the first.

Question 1: What is the total number of cards in the deck?

As mentioned in chapter 1, there are four attributes, and each
attribute has three expressions. But why does this mean that there
are 3× 3× 3× 3= 34 cards? This is a very nice application of one
of the most fundamental counting principles in combinatorics, the
multiplication principle (sometimes called the fundamental counting
principle).

The key to the solution is to realize that there is the same number of
cards for each attribute expression. Looking at color, for example, we
see the number of red cards has to be the same as the number of green
cards and the number of purple cards. Similarly, for shapes, there are
as many cards with diamonds as there are with ovals or with squiggles,
and the same holds for the number and shading attributes.

So, begin with one attribute, color, and just focus on the red cards.
Now the red cards can be broken up by shape, so pick a shape, say
diamonds. How many cards in the deck have red diamonds? You can
see them all in figure 2.1. There are three red diamond cards with one
symbol: an empty, a striped, and a solid. How about red diamond cards
with two symbols? Red diamond cards with three symbols? Of course,
there are three of each as well, so there are 3× 3= 9 cards with red
diamonds.

1 Like this one?
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Figure 2.1. All the cards with red diamonds.

Now, there should be nine cards with red squiggles and nine with
red ovals, so there are 9× 3= 27 red cards. Finally, to include the green
and purple cards, we get 27× 3= 81 cards in the deck.

As an example of the multiplication principle, consider the number
of different ways we could create a sentence using the following words:

My is .
1 2 3 4

You fill in the four blanks with words chosen from the following
columns:

1 2 3 4
tall dentist usually confused

friendly neighbor not obnoxious
disgruntled aunt often screaming

How many different sentences can you create this way? Well, if you
can use any of the choices from the columns, there are 3×3×3×3 = 81
possible sentences. For instance, “My tall neighbor is not screaming” is
one of these 81 possibilities.

Replace the table we used for our sentence creator with another table:

1 2 3 4
1 green empty diamonds
2 purple striped ovals
3 red solid squiggles

It should now be clear why there are 81 cards in the deck. We turn to
Sam’s first question.
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Sam’s SET:

Ethan’s SET:

Tatiana’s SET:

Figure 2.2. These three SETs are the same SET.

Question 2: How many SETs are there in the 81 cards?

This uses another counting technique from combinatorics. To com-
pute the total number of SETs, we need to understand permutations
and combinations. For example, let’s say Sam, Ethan, and Tatiana had
12 friends over, and they wanted to pick two friends to bring into
a secret room for cake. First picking Tiana, and then picking Silvia,
isn’t any different from picking Silvia first and Tiana second, since the
result would be that both Silvia and Tiana get to eat cake. This is a
combination: order doesn’t matter. However, if the first person they
choose gets the whole cake and the second person gets just a small
cupcake, then it wouldmatter whether Silvia or Tiana were chosen first.
That’s a permutation.2

A. When order doesn’t matter, and we are just choosing groups (or
subsets) of people or things, we’re looking at combinations.

B. When order does matter, and we are ranking people or things,
we’re looking at permutations.

To figure out the total number of SETs, order doesn’t matter. Here’s
why: Suppose Sam, Ethan, and Tatiana each create a SET in their mind,3
as shown in figure 2.2.

Clearly, it’s the same SET, listed three times, so order doesn’t matter
in creating SETs. Howmany different Sams, Ethans, and Tatianas could

2 Whoever is chosen second will think this permutation is unfair.
3 You might call this a mindset.
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have picked the same SET in different orders? There are three choices
for the first card, two for the second, and the last is determined. This is
a permutation of the three cards, giving us 3× 2× 1 = 6 ways to order
the cards.

Now we’re ready to count the number of SETs in the whole deck.
This will be a combination—order doesn’t matter. We first count the
number of ways to choose the three cards in order, then divide by the
number of ways you could have chosen those three cards, just like Sam,
Ethan, and Tatiana did above.

1. How many choices do we have for the first card in the SET? We
have 81 choices since there are 81 cards in the deck.

2. Once we’ve chosen that card, how many choices do we have for
the second card? Since we’ve removed one card, there are 80
choices.

3. How about the third card? The fundamental theorem of SET
(FTS) tells us that, given any two cards, there is a unique card
that completes the SET. That means that there’s only one card left
to complete our SET.

So the total number of ways of choosing three cards in order that
make a SET is 81 × 80 × 1 = 6480. But this isn’t the number of SETs
because, as Sam, Ethan, and Tatiana have shown us, this procedure
counts each SET 6 times. Then the total number of SETs is

81 × 80 × 1
3 × 2 × 1

= 1080.

Now that we have the total number of SETs, we’ll conclude this
section with one final basic counting question, which we’ll actually
answer twice.

Question 3: How many SETs contain a given card?

Pick a card, any card. Once you’ve selected a card, there are 80 cards
left, and if you pick one of them, then by the FTS, there is a unique
third card that completes a SET with those two. So that means the 80
cards come in 80

2 = 40 pairs, where each such pair forms a SET with our
original card.
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Figure 2.3. A relationship between cards and SETs.

ANOTHER WAY TO COMPUTE HOW MANY SETS
CONTAIN A GIVEN CARD

Mathematicians often like to count the same thing twice, because
counting something in two different ways can give you new formulas4
and answers to new questions. We will count the number of SETs
containing a given card using incidence counting, a nice way to illustrate
combinatorial reasoning.We’ll use this technique in other places in this
book, especially for more complicated counts.

To begin, we’re going to set up an incidence graph, a type of picture
with objects on the left side representing one group of items, and objects
on the right side representing another group of items. We’ll then draw
lines joining the objects on one side to the objects on the other to
represent a relationship between the two kinds of objects.

Our incidence graph is pictured in figure 2.3. On the left, we have
listed all 81 cards.5 On the right, we have all 1080 SETs. We draw a line
from a card on the left to a SET on the right if the card is in the SET.
Then each SET on the right is paired with three cards on the left. Each
card, however, is paired with a temporarily unknown number of SETs
(because we’re pretending we don’t know how many SETs a given card
is in). Call this unknown x.

Here’s what makes this beautiful: the number of lines connecting the
two sides is clearly the same, regardless of how you count them. Looking

4 Or “formulae,” if you’re into Latin.
5 No, we haven’t. But you can imagine we did. Mathematicians like to use ellipses (. . . ) in order

to avoid spending a lot of time writing very long lists.
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at the right, we have 1080 SETs with 3 lines arriving at each one, so there
are 1080×3 lines. On the other hand, on the left, there are 81 cards, and
each card has x lines leaving it. So, the number of lines is 81 × x. But
the number of lines is the same:

81 × x = 1080 × 3,

x = 40.

Again, we have shown that each card is in 40 SETs. More impor-
tantly, we have another useful counting tool.

2.3 SLIGHTLYMORE ADVANCED
COUNTING QUESTIONS

SAM: We’re so clever, we’ve figured out so many things!
ETHAN: I think the authors helped. A lot.
TATIANA: Speak for yourself. Anyway, I’m still wondering about

some of the other counting questions. We have 1080 SETs,
right? How many of those have exactly three attributes the
same and one attribute different? What about the other
possibilities?

Tatiana’s question is going to be very important in chapter 3, when
we look at probability, so let’s tackle it now.

First of all, some calculations are going to be so useful that they get
their own special names and notation. The number of ways to order
three things is “3 factorial,” which is written with an exclamationmark:6

3! = 3 × 2 × 1.

We used this in the previous section when we counted the number of
SETs in the deck: we divided by 3! = 6 because there were 3! ways to
order three cards.

Factorials are used in other important formulas in combinatorics.
For instance, the total number of ways to choose three cards (maybe a

6 See, math is exciting!
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SET, maybe not) from the 81 cards in the deck is a combination, because
order doesn’t matter. We say “81 choose 3” and write

(81
3

)
. The idea is

the same as before: There are 81 choices for the first card, 80 choices for
the second, and 79 for the third. But we’ve counted each choice of three
cards 3! times, just as before. So,

(
81
3

)
= 81 × 80 × 79

3 × 2 × 1
= 85,320.

There’s a general formula for n choose k:

(
n
k

)
= n!

k! × (n − k)!
.

Let’s use the formula to calculate
(81
3

)
to show that this formula is the

same as what we did before:(
81
3

)
= 81!

3! × (81 − 3)!
= 81!

3! × 78!

= 81 × 80 × 79 ×��78 ×��77 × · · · × �2 × �1
3 × 2 × 1 ×��78 ×��77 × · · · × �2 × �1

= 81 × 80 × 79
3 × 2 × 1

= 85,320.

Notice how the cancelation did the trick. This formula is going to be
very useful in answering Tatiana’s question.

Question 4: How many SETs have 1, 2, 3, or all 4 attributes
different?

Tatiana’s question is really four questions: we want four numbers,
one for each of the four possibilities, and those four numbers should
add up to 1080, the total number of SETs in the deck.
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Figure 2.4. Old standby: 1 Red Empty Oval.

We will need a more convenient way to describe the cards in the
deck. Here’s one: Give each of the 81 SET cards four coordinates, one
for each attribute. (You might be famiilar with coordinates from the
two-dimensional Cartesian plane, as in (x, y). This is the same idea,
bumped up to four dimensions, as in (x, y, z, w).) Each variable will
represent one of the four attributes:

• number (N = 1, 2, or 3);
• color (C = G, P, R);
• shading (Shd = E, St, So); and
• shape (Shp = D, O, Sq).7

Every card in the deck can now be written in its own unique (N, C, Shd,
Shp) coordinates. The coordinates for the card pictured in figure 2.4 are
(1, R, E, O).

In order to find the number of SETs that differ in a given number
of attributes, we will start by choosing one card; we will then choose a
second card to determine the SET, making sure these two cards differ
in the correct number of attributes. As before, we have 81 cards to
choose from at first. This means that all our calculations will begin
with 81 × x, where x will count whatever additional options we need.
Now let’s narrow down those options by actually picking a card. Since
Sam, Ethan, and Tatiana have been very attached to the red cards, let’s
choose 1 Red Empty Oval as our initial card.

Now let’s count!

ALL FOUR ATTRIBUTES ARE DIFFERENT

We have picked (1, R, E, O) as our first card. In choosing a second card,
we will need to eliminate some possibilities, namely every card with one
symbol, every red card, every empty card, and every card containing

7 Perhaps it’s awkward that five different things begin with the letter S. Thanks, English!
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ovals. That leaves us two choices for number and two choices for color
and two for shading and two for shape:

Attribute: (N, C, Shd, Shp)
↓ ↓ ↓ ↓

Number of choices: 2 × 2 × 2 × 2.

So, the number of ways of choosing two cards in order that share
no attributes is 81× 2× 2× 2× 2= 1296. (Note that we’ve used our
multiplication principle here!) Now, to finish, we need to invoke the
fundamental theorem of SET: choosing those two cards has automat-
ically chosen a SET. Even more, the third card must be different from
each of the other two in every attribute, because that’s the rule for SETs.

TATIANA: That number is too big. It’s bigger than the number of
SETs.

SAM: It’s OK. We need to remember that every SET got counted more
than once.

TATIANA: Like when we each picked the same SET but in different
orders!

ETHAN: Exactly! So we are going to need to divide that number by
3! = 6 to take care of the overcounting.

Ethan is right: we need to remember that any time we count the
number of ways to choose SETs in any form, we must divide by 3! = 6
to get rid of repeated SETs. So the total number of SETs with all
attributes different is

81 × (2 × 2 × 2 × 2)
6

= 216.

ONE ATTRIBUTE IS THE SAME AND THREE ARE DIFFERENT

We can use the same idea as above, but this time we’ll keep one attribute
the same. We will pick an attribute to stay the same, then see what
would have happened if we had picked another. Thinking about our
Old Standby, (1, R, E, O), we’ll keep the number on the card the same
but change all of the other attributes. Since Old Standby has 1 symbol,
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the card we choose must also have 1 symbol. This means that there’s
only one choice for number; next, in order for the others to be different,
there are two options for each of color, shading, and shape. We also
need to remember that once we’ve chosen those two cards, the third
card that makes a SET with them is determined (FTS!), and it must also
have 1 symbol, and everything else will be different:

(N, C, Shd, Shp)
↓ ↓ ↓ ↓
1 × 2 × 2 × 2.

This gives 81×1×2×2×2 ways to choose three cards that all share
the same first attribute. But what if we choose to keep color the same
instead of number? Then we’d have the diagram below:

(N, C, Shd, Shp)
↓ ↓ ↓ ↓
2 × 1 × 2 × 2.

There are four attributes to choose from, and we’re choosing only
one to remain the same. That sounds familiar. . . :(

4
1

)
= 4!

1! × (4 − 1)!
= 4.

We’ll then need to multiply 81 × (1 × 2 × 2 × 2) by
(4
1

) = 4, since
the numbers are the same (but moved around) for each choice of
the attribute that’s the same. And, as above, we need to divide by 3!
to account for the different orders. So the number of SETs with one
attribute the same is

81 × (1 × 2 × 2 × 2) × (41)
6

= 432.

TWO ATTRIBUTES ARE THE SAME AND TWO ARE DIFFERENT

The main ideas for this case are the same as the case we just finished.
We have 81 choices for the first card, then we want to choose a second
card with two attributes that are the same and two that are different.
We have

(4
2

)
ways of choosing those two attributes, and each choice
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TABLE 2.1.
Final counts (including percentage of total deck).

Kind of SET Number Fraction Percentage

All different 216 216
1080 20%

Three different 432 432
1080 40%

Two different 324 324
1080 30%

One different 108 108
1080 10%

Total 1080 1080
1080 100%

results in 81× 1× 1× 2× 2 ordered SETs. Then, FTS tells us that those
two cards have determined a SET with exactly two attributes the same.
Finally, dividing by 3! gives the total number of SETs with exactly two
attributes the same:

81 × (1 × 1 × 2 × 2) × (42)
6

= 324.

THREE ATTRIBUTES ARE THE SAME AND ONE IS DIFFERENT

Once again, the reasoning is very similar to the previous two cases. The
total number of SETs with three attributes the same is

81 × (1 × 1 × 1 × 2) × (43)
6

= 108.

By the way, we could have cheated for this final case, but instead of
thinking of it as cheating, we’ll think of it as checking our answers. We
know that there are 1080 SETs, and we know the answers for the first
three parts. That means that the number of SETs with three attributes
the same should be

1080 − (216 + 432 + 324) = 108.

We get 108, which agrees with the calculation above. (That’s good.) Our
results are summarized in table 2.1. We include the percentage of the
total deck each kind of SET represents, as a preview of chapter 3.
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Figure 2.5. Pascal’s triangle.

1 1

1 1

8 28 56 70 56 28 8

9 36 84 126 126 84 36 9

Figure 2.6. How to generate the ninth row of Pascal’s triangle from the eighth.

2.4 PASCAL’S TRIANGLE: A DETOUR

TATIANA: I’m super into this n choose k stuff.
ETHAN: That’s just because you asked the questions.
SAM: But I can see why Tatiana likes it—it’s really neat. I wonder

where else we can use these numbers.

We agree with Sam, and it’s high time we looked at Pascal’s triangle.
As shown in figure 2.5, each row begins and ends with a 1, and the

middle numbers in a row are created from the previous row by adding
the two numbers diagonally above. For example, figure 2.6 shows how
to get several entries in the ninth row.

TATIANA: I see how to make the triangle but I don’t see how it has
anything to do with my awesome

(n
k

)
.

SAM: Well, let’s look at the numbers in the triangle. If the triangle got
introduced in response to your questions, I’m sure there’s a
connection.

ETHAN: OK, we know how to compute combinations, so let’s do some
calculations and see what happens.
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Ethan has a good idea, so let’s calculate a few numbers
(9
k

)
:

(
9
1

)
= 9!

1! × (9 − 1)!
= 9,

(
9
2

)
= 9!

2! × (9 − 2)!
= 36,

(
9
3

)
= 9!

3! × (9 − 3)!
= 84.

TATIANA: I see it—I see the pattern! The number in Pascal’s triangle
in row n and position k is

(n
k

)
, if you ignore the 1s.

SAM: Yeah, what about the 1s at the beginning and end of each row?
ETHAN: And why does the row you’re calling row 9 have 10 numbers

in it?

The procedure in figure 2.6 is called Pascal’s recursion:

(
n
k

)
=
(
n − 1
k − 1

)
+
(
n − 1
k

)
.

This works in the triangle (as we’ve drawn it) only if 1 < k < n, because
the two 1s at the ends of each row don’t have two numbers above them.
Those two numbers represent

(n
0

)
and

(n
n

)
. So apparently

(n
0

)
and

(n
n

)
equal 1, but why? If you think about it, there’s only one way to choose
nothing from 9 things, and only one way to choose all 9 things from 9
things, so we expect

(9
0

) = (9
9

) = 1. Now, look at our formula for
(n
k

)
where k = 0 and where k = n:

(
n
0

)
= n!

0! × (n − 0)!
= n!

0! × n!
and

(
n
n

)
= n!

n! × (n − n)!
= n!

n! × 0!
.



Count ing Fun! • 41

To ensure both formulas give an answer of 1 (which is the correct
answer), we need 0! = 1. Fortunately, the rest of the mathematical
world agrees with us:

0! = 1.

Again, you can justify this by arguing that there’s only one way to order
nothing.8

ETHAN: So the first term of every row corresponds to k = 0.
SAM: Yeah, and we can rewrite every row using combinations, like

this:
(
n
0

) (
n
1

) (
n
2

)
· · ·

(
n

n − 2

) (
n

n − 1

) (
n
n

)
.

TATIANA: I love it! This means that instead of writing out every row
of Pascal’s triangle to get to the eighth term of the fifteenth
row, all I have to do is figure out

(15
8

)
.

SAM: As long as you remember that the eighth term is in the ninth
spot.

TATIANA: Are you trying to confuse me?
SAM: No, 0 is trying to confuse you!

Pascal’s triangle is amazing, and it’s useful for lots of counting and
probability problems. We’ll return to these numbers in chapter 6.

2.5 ADVANCED COUNTING QUESTIONS

SAM: I really like counting. Can we try some more advanced
questions?

ETHAN: Yeah, like how many intersets are there? And how many
intersets contain a given card?

TATIANA: And the number of planes!

8 Another explanation is that a lot of math would break if 0! �= 1.
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Figure 2.7. Two SETs that include the 2 Red Solid Diamonds card.

SAM: Those might be good questions, but I don’t know what
“intersets” are, and how do we define a “plane” in reference
to SET?

There are interesting counting questions here. We begin by address-
ing Ethan’s question about intersets.

Intersets

To define an interset, we first build two SETs that have a card in
common. See figure 2.7.

If we think of the cards as points and the SETs as lines, then these two
SETs pictured above are a pair of intersecting lines with the central card
in common. (This geometric approach will be studied in chapter 5.)

Now remove the center card—this is how we define an interset: an
interset is a group of four cards that can be paired so that the missing
card is the same, i.e., two SETs that intersect in a common card, with
that common card removed. We will call the missing card the “center”
of the interset.

SAM: Oh, cute—I get it. It’s like “intersect.” So now I know what an
interset is . . .maybe. How do you know that an interset we
construct with one card as the center isn’t the same as an
interset with a different center card?

TATIANA: Are you asking whether we can take one of our intersets
that we constructed around the 2 Red Solid Diamonds
and rearrange the 4 cards so that the center card is not the
2 Red Solid Diamonds? That’s a good question.

ETHAN, scrunches his face up as he thinks: I figured it out! You can
do it with coordinates and modular arithmetic, like
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Figure 2.8. Two different intersets, each intersecting at 2 Red Solid Diamonds.

chapter 1 talked about. (You can try it yourself in
exercise 2.4.)

SAM: Why are intersets important?
ETHAN: When we play the game, we often find ourselves noticing

intersets, because they aren’t SETs but they are real
patterny. When we see too many of them, we guess that
there are likely to be fewer SETs. (In chapter 3, we will find
the expected number of intersets in a 12-card layout.)

In figure 2.8, we give two more intersets with the same center as the
interset in figure 2.7, 2 Red Solid Diamonds. These figures suggest an
approach we can take to answer Ethan’s questions. However, we’ll start
with a question he didn’t ask, because we’ll use it to answer the other
two questions.

Question 5: How many intersets can we construct using a given
card as the center?

To answer this question, we’ll use the answer to question 3: every
card is in 40 SETs. For example, take 2 Red Solid Diamonds. Because an
interset is two SETs built around the center card, we choose two SETs
that contain this card. So, the number of intersets with a given card as
the center is

(
40
2

)
= 780.

We can use the answer to this question to address the next one.
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Question 6: How many intersets are there?

Since there are 81 cards in the deck, and we just determined that each
card is the center of 780 intersets, we get the total number of intersets
in the deck is

780 × 81 = 63,180.

SAM: Wait, that’s huge—much larger than the 1080 SETs we found
earlier. Did we forget to divide by something?

TATIANA: No. One thing I’ve learned in my life is that math doesn’t
lie.

ETHAN: But this kind of makes sense. Asking how many intersets
there are is the same as asking how many pairs of SETs there
are containing a given card. And there are tons of those.

We’re now ready for Ethan’s final question.

Question 7: How many intersets contain a given card?

This is different from the first count, because the central card is not in
the interset. To do this, we set up an incidence count, as we did before.

First, we draw a graph9 with the 81 cards on the left side, and all of
the 63,180 intersets on the right. A line joins a card to an interset if the
card is in the interset.

How many lines are there? On the left, the number of lines is 81
(cards) times the number of intersets each card is in, which we’ll call
x. On the right, the number of lines is equal to 63,180 (the number of
intersets) times 4 (the number of cards in any interset). As before, the
number of lines is the same, so

81 × x = 63,180 × 4.

Solving for x gives us the number of intersets containing a given card:

x = 3120.

9 We will draw the graph in our heads, because we can. And so can you!
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1

2

Figure 2.9. Ready to start making a plane, adding card 1 to complete a horizontal SET
and card 2 to complete a vertical SET.

ETHAN: Wow. That’s a lot of intersets that contain my favorite card.
SAM: It makes sense, though, since there are so many intersets to

begin with.
ETHAN: I’m curious to see what else we can do with intersets later on!
TATIANA: Me too. But I also asked about counting planes! Can we

talk about planes now?

Planes

In section 1.2, we defined planes as special groups of nine cards with the
following property: given any pair of cards, the plane also contains the
third card that the fundamental theorem of SET guarantees will make
a SET with the pair. We also constructed a plane from three cards that
were not a SET. We’ll do so again, more carefully, so you can see that
the three cards completely determine the plane.

Take three cards that are not a SET and arrange them in the upper
left corner of a rectangle, as in figure 2.9. The cards labeled 1 and 2
indicate where we start completing SETs.

What card should we put in the box labeled 1 to complete the
horizontal SET with the other cards in the first row? 3 Purple Empty
Squiggles. What card belongs in box 2 to complete the vertical SET that
occupies the first column? 1 Green Empty Diamond. See figure 2.10.

Now the card in box 3 completes the diagonal SET with the two cards
1 Green Empty Diamond and 3 Purple Empty Squiggles—2 Red Empty
Ovals, as in figure 2.11.

Finally, the remaining three positions are filled by cards that com-
plete additional horizontal, vertical, and diagonal SETs. What order
should they be added in? It doesn’t matter! Although the numbers 4, 5,
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3

Figure 2.10. Progress on the plane; next, we’ll add the card labeled 3.

4

65

Figure 2.11. More progress on the plane; next, we’ll add the last three cards.

Figure 2.12. The completed plane.

and 6 seem to imply that’s the order you should use, you don’t have to.
That’s what’s so wonderful about planes. See figure 2.12 for the finished
product.

How many SETs does the plane contain? Figure 2.13 gives a hint, if
you’ve forgotten the answer that was given in chapter 1.

Each plane contains 12 SETs. Now that we know what a plane is, we
can count them (and finally answer Tatiana’s question).

Question 8: How many planes are there in the deck?

Recall that we started our plane with three cards that weren’t a SET.
Once those three cards are chosen, the plane is completely determined.
We have 81 choices for the first card, and 80 for the second card. For the
third card, we need a card that does not complete the SET determined
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Figure 2.13. The affine plane. We call this AG(2, 3) in chapter 5.

Figure 2.14. Are these two planes the same?

by the first two cards, leaving 78 valid choices. Multiplying, we get
81 × 80 × 78 = 505,440 ways to lay out the nine cards.

Have we overcounted? It depends on whether order matters: Is one
plane “the same” as another if it consists of the same cards, rearranged?
For example, compare the cards in the two planes in figure 2.14.

We consider these planes to be the same.10 When we think about
SETs, we don’t care about the order of the three cards. The special
property that planes have doesn’t depend on the order of the cards in
the plane. While we like the pretty picture of the plane, it’s the actual
cards that are important.

To get an answer that doesn’t depend on where the cards were
placed, we need to divide by the number of ways to rearrange the nine
cards. We have 9 choices for the upper left position, then 8 choices
for the upper middle position. For the left middle position, we have

10 So does the rest of the mathematical world.
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6 choices (since this card cannot be the card that completes a SET with
the first two cards). Once we have chosen those three cards, the rest of
the plane is determined, as before, so we get 9 × 8 × 6 = 432 ways to
rearrange the cards in the plane.

This means that the total number of planes you can make from SET
cards is

505,440
432

= 1170.

TATIANA: I love planes!
ETHAN: We know.
SAM: That was so much fun! I can’t wait to see how all of our counts

get used in the rest of the book!
ETHAN: Yeah, we did a really good job.
TATIANA: I think we should go celebrate with a rousing game of

SET. Everyone else can play with some exercises.

EXERCISES

EXERCISE 2.1. (Restricted counts) We can use the ideas in this chapter to
count various quantities for a special subset of the cards.

a. How many red cards are there?
b. How many red SETs are there?
c. Given a (red) card, how many red SETs contain your card?
d. Among the red cards, SETs can have one, two, or three attributes that

differ. How many red SETs are there of each kind?
e. How many red intersets are there?
f. How many red intersets contain a given (red) card?
g. How many red planes are there?
h. How many red planes are there that contain a given (red) card?

EXERCISE 2.2. Your friend Stefano has made a game of five-attribute SET
where each card has an extra attribute: number, color, shading, shape, and feel,
where each card feels pointy, slimy, or moving.11

11 Simpsons fans might recognize this from Episode 1F06: “Boy-Scoutz ’N the Hood.”
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a. Use the multiplication principle to figure out the number of cards in
Stefano’s deck (ignore the fact that some cards may stick together).

b. How many SETs are there in Stefano’s game?
c. How many SETs of each possible kind are there?
d. How many SETs contain a given card?
e. How many intersets are there?
f. How many planes are there?
g. Comment on how much fun playing this game might be.

EXERCISE 2.3. Edna thinks Stefano’s version in exercise 2.2 is lame. She
prefers her new version of SET with four expressions for each of the attributes:

• Number: 1, 2, 3, or 4
• Color: red, green, purple, or brown
• Shading: empty, striped, checkered, or solid
• Shape: ovals, squiggles, diamonds, or rectangles

a. How many cards would be in Edna’s deck?
b. Assume a “SET” is now defined as a collection of four cards where, for

each attribute, everything is the same or everything is different. Show that
two “SETs” can now intersect in more than one card.

EXERCISE 2.4. We claimed in section 2.5 that the center of an interset is
unique. Justify that this is true by first creating an interset with four cards A, B ,
C, and D. Then find the cards that complete SETs with each of the six pairs of
cards AB , AC, . . . . Then show that this produces five different cards, so only
one grouping of the four cards into two pairs will produce an interset. (A proof
that the center is unique, using modular arithmetic, appears in exercise 4.6.)

EXERCISE 2.5. We counted the number of planes in the deck—there are
1170. How many planes contain a given card? [Hint: Use an incidence count!]

EXERCISE 2.6. Every plane contains 12 SETs (as we saw in figure 2.12).
How many planes contain a given SET? For this problem, pick a specific SET
and count the number of different planes that include that SET. [Hint: Set up
an incidence count with SETs on one side and planes on the other.]
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PROJECTS

PROJECT 2.1. (Color-blind SET!) Several of us have had the experience
of playing SET with people who can’t fully participate because they are color-
blind and have trouble distinguishing some of the cards. First, our advice is to
get a deck and put large dots in the upper left and lower right for the red cards,
and large dots in the upper right and lower left for the green cards, which
will allow anyone to distinguish the three colors of cards. (If you like, you can
make the dots red and green. Some people say that the distraction makes the
game harder for non-color-blind people, but our response is to remind those
people that the game will be harder for a color-blind person anyway, so the
penalty is a small one to pay.) For the sake of this project, however, suppose
two people with the same kind of color-blindness want to play and have access
to an undecorated deck only. How many SETs are there? How many SETs of
each kind are there? In the problems below, you’ll get to do these counts for
various kinds of color-blindness.

a. Total color-blindness. In this condition, all colors are the same. This is as if
you had a mono-colored deck, so there are only three attributes, and every
card appears three times. That means you could have a SET with the same
card three times.

i. How many SETs are there? Show that it’s possible for two SETs to
intersect in more than one card.

ii. How many SETs are there with all three of the distinguishable
attributes different?

iii. How many SETs are there with two of the three distinguishable
attributes different and one the same?

iv. How many SETs are there with one of the three distinguishable
attributes different and two the same?

v. How many SETs are there with all the cards the same?

b. Red–green color-blindness. Some people can’t distinguish the red and
green cards, but find the purple ones distinguishable from the others.12

i. How many SETs are there?
ii. Describe the different kinds of SETs that can occur, and count as many

of these as you can.

12 There’s an app for tablets called “SET Pro HD” that has a “yellow, red, and black” color
option, which may be useful for people with this type of color-blindness.
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c. We’ve played with people who find the solid cards distinguishable, but
have trouble determining the color of the striped or empty cards. For
example, they are able to distinguish 1 Red Solid Squiggle from 1 Green
Solid Squiggle, but they cannot distinguish 2 Purple Empty Squiggles from
2 Green Empty Squiggles.

i. What are the color/shading possibilities for SETs in this case?
ii. How many SETs are there?
iii. Describe the different kinds of SETs that can occur, and count as many

of these as you can.



�������������� 3 ��������������

Probability!

3.1 INTRODUCTION

Sam, Ethan, and Tatiana have run off to play SET, using their new
counting skills. They’ve been replaced by a new set1 of friends: Sophie,
Eduardo, and Teddy. These friends have some new questions that are
related to the counting questions we answered in chapter 2.

SOPHIE: We’ve learned a lot about counting things in SET. But I’m
wondering, now that we know the number of SETs with no
attributes in common, for example, what’s the probability
that a randomly chosen SET has no attributes in common?
What about all the other kinds of SETs? What about
intersets? Planes? Can we figure out probabilities for these,
too?

EDUARDO: Wow, you’re not wasting any time. We didn’t even get a
chance to make inane chitchat!

TEDDY: Before we jump into this, we need to figure out how
probability is calculated.

EDUARDO: I think I remember from math class that we can measure
probability in percentages. If I roll a fair die, there is a
50% chance of rolling an odd number.

SOPHIE: No, a probability is a decimal between 0 and 1, so you say
the probability of rolling an odd number is 0.5.

TEDDY: Actually, you’re both right!

1 Isn’t that clever? (This is a rhetorical question.)
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3.2 WHAT IS PROBABILITY?

Let’s start with an intuitive description. The probability of an event
happening is the number of different ways the event can happen divided
by the total number of possibilities:

P(event) = number of ways event occurs
total number of possibilities

.

This means that a probability is a fraction between 0 and 1. Then, if
you like, those fractions can be converted to decimals or percentages.

In Eduardo’s example of rolling a die, the total number of possible
outcomes is simply the number of faces of the die, in this case, 6. The
outcome we want is rolling an odd number—1, 3, or 5. To find the
probability,

P(odd) = number of ways an odd number occurs
total number of possibilities

= 3
6

= 0.5.

TEDDY: So saying the probability is 1
2 is the same thing as saying

there’s a 50% chance. That’s why you can both be right.
EDUARDO: Who is righter?
TEDDY: Most of our probabilities will be fractions. It’s usually the

way mathematicians write them.
EDUARDO: OK, I can live with that. And a probability of 0 means the

event can’t happen.
SOPHIE: And a probability of 1 means that it always happens, 100%

of the time?
EDUARDO: Exactly. And all that work that Sam, Ethan, and Tatiana

did in the last chapter gave us the number of possibilities
for lots of different events.

TEDDY: Well then, let’s do a probability problem with SET.
SOPHIE: Here’s a question we should be able to answer.

Question 1: What is the probability that three randomly chosen
cards form a SET?

This is an excellent first question to consider. The event we care about
is creating a SET with three cards. There are 1080 SETs in the deck,
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so that’s going to be our numerator. For our denominator, we need the
total number of ways to choose three cards.

TEDDY: I know how to do that! It has to be the combination 81
choose 3 because we want the total number of ways to choose
any three cards!

Teddy’s right. The probability that three randomly chosen cards form a
SET is

P(SET) = number of SETs
number of three-card subsets

= 1080(81
3

) = 1080
85,320

= 1
79

≈ 1.27%.

SOPHIE: Cool! But I think there’s an easier way to do this problem.
What if I pick just two cards at random from the deck. How
could I complete a SET?

EDUARDO: Well, there’s only one card out of the remaining 79 cards
that completes the SET.

SOPHIE: Right—the fundamental theorem of SET in action! And,
since each of the 79 cards is equally likely to be chosen as the
third card, the answer is just 1

79 .

EDUARDO: That’s a nice, quick solution. But either way, there’s only
a 1.27% chance of picking a SET at random. That’s tiny!
It means that grabbing three cards at random from the
layout is not a good strategy for finding SETs.2

SOPHIE: It makes sense though, since there are so many ways to
choose three cards at random. But here’s another question.
When you start the game, you lay out 12 cards. What is the
probability that there are no SETs in the initial layout?

Question 2: Choose 12 cards at random from the deck. What is
the probability that there are no SETs among these cards?

This is one of the most common questions to ask when working
on probability problems in SET. It’s also important because the whole

2 Well, duh.
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point of the game is to find SETs in layouts of 12 cards. Unfortunately
for Sophie (and the rest of us), the calculation of this probability is so
difficult that no one has yet calculated it exactly.3

That doesn’t mean we should give up, though. One of the best
strategies for attacking a hard problem is to first solve a simpler version
of the problem. Here, we can change 12 to a smaller number. If we start
with just three cards (instead of 12), then we’re already done: Teddy just
showed that the probability that three random cards are a SET is 1

79 , so
the probability that three randomly chosen cards do not form a SET is
1 − 78

79 = 0.9873.

TEDDY: So P(SET) = 1
79 and P(no SET) = 78

79 . We’re 100% sure that
either the three cards will be a SET or they won’t since
1
79 + 78

79 = 1.
EDUARDO: Nicely done, Einstein.
SOPHIE: I think we should try more cards. How about four? If we can

figure out the probability of having a SET in any four-card
configuration, then we can figure out the probability of not
having a SET in a layout of four cards.

Question 3: Choose four cards at random from the deck. What is
the probability that there are no SETs among these cards?

We’ll use Sophie’s idea to first find the probability that the four
cards do contain a SET, then subtract our answer from 1. For the
denominator, there are

(81
4

) = 1,663,740 ways to pick four cards from
the deck, so that will be the total number of possibilities.

For the numerator, we need to figure out how many ways to lay
out four cards that do contain a SET. To do this, first pick one of the
1080 SETs, and then pick one more card. Once a SET is chosen, there
are 78 cards left in the deck, making the total number of layouts of four
cards with a SET 1080 × 78 = 84,240:

P(SET) = 84,240
1,663,740

= 4
79

≈ 5.06%.

3 Or, if someone has, they haven’t told us about it.
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EDUARDO: That fraction really simplified nicely! It’s exactly four
times as big as the probability we found for three cards. Is
that a coincidence?

SOPHIE: I don’t think so. Let’s say our four cards are A, B, C ,
and D. Then there are four possible SETs: ABC, ABD,
AC D, or BC D.

TEDDY: But we know the probability that any of those form a SET:
it’s 1

79 .

EDUARDO: I see! Since each of these four possibilities has a
probability of 1

79 , and there’s no overlap, we can get our
answer to the four-card question by adding 1

79 four times.
TEDDY: That’s cool—we found a simpler way to do the problem after

we saw the answer!
EDUARDO: And there’s no overlap because if ABC is a SET, then it’s

impossible for any of the other combinations to be a SET.

Returning to question 3, the probability of having a layout of four
cards that do not contain a SET is

1 − 4
79

= 75
79

≈ 94.9%.

A third way to find this probability appears in exercise 3.1.

SOPHIE: That was pleasant. What if there are five cards at the
beginning?

TEDDY: Well, if the probability for four cards is 4 times the
probability for three cards, I wonder if we can just multiply
by 4 again? Or maybe there’s another pattern?

EDUARDO: In general, it’s a good idea to look for patterns. But
sometimes they don’t work.

This time, we’ll see that Eduardo is right.

Question 4: Choose five cards at random from the deck. What is
the probability that there are no SETs in the five cards?

When we try to extend the count to a five-card layout, things get
more complicated. The reason is that there are now two possibilities for
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Figure 3.1. These five cards contain a pair of intersecting SETs.

Figure 3.2. These five cards contain exactly one SET.

finding a SET within five cards. We could have a pair of intersecting
SETs, in which case we have a layout of five cards containing two SETs
as in figure 3.1, or we could have only a single SET, as in figure 3.2.

We can answer question 4 completely by adding the probabilities for
these two non-overlapping cases. (When two events don’t overlap, then
the probability that both events happen is the sum of the two individual
probabilities. People say such events are disjoint ormutually exclusive.)

Case 1. There are two SETs among the five cards. This case is shown
in figure 3.1, and the count is fairly easy. We begin by picking a card. As
usual we have 81 choices. Then we want to build two SETs around that
card. Because each card lives in 40 different SETs, there are

(40
2

)
ways to

do this. (We used the same idea to count the number of intersets with
a given center in the last chapter.) This gives us the probability for this
case:

P(two SETs in five cards) = 81 × (402 )(81
5

) = 63,180
25,621,596

= 15
6083

≈ 0.25%.

Case 2. There is exactly one SET among the five cards. This arrange-
ment is shown in figure 3.2, and the counting is a little more compli-
cated. First, we pick a SET out of the 1080 SETs available. We now
have 78 cards remaining, and we need to pick two of them.
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There are
(78
2

)
ways to do this, but we must be careful: the two cards

we pick cannot form a SET with one of the three cards in our SET. Call
such a pair of cards a bad pair.
How many bad pairs are there? Looking at the SET in figure 3.2, note

that each of those three cards is contained in an additional 39 SETs.
That means that there are 39 × 3 bad pairs. Then the number of good
pairs is just

(78
2

)− 39 × 3 = 2886. So we can complete this case:

P(one SET in five cards) = 1080 × 2886(81
5

)
= 3,116,880

25,621,596
= 740

6083
≈ 12.17%.

If we add these two probabilities, we find that the probability of
finding at least one SET in an arrangement of five cards is 755

6083≈12.41%.
Putting all the pieces together finally lets us calculate the probability

that there is no SET in a random arrangement of five cards, completely
answering question 4:

• The probability of having a layout of five cards that do not contain
a SET is

5328
6083

≈ 87.59%.

TEDDY: Nuts. I just checked: the probability of no SETs in five cards
is not a nice multiple of the probability of no SET in three
cards or in four cards. It really does look like there’s no nice
pattern.

SOPHIE: I guess my question was a lot harder than I thought. That
stinks.

EDUARDO: I imagine with each additional card, it gets even more
complicated.4 No wonder no one has figured it out yet.

SOPHIE: At least we know some stuff. We know that the probability
of having no SETs in a layout of three cards is about 99%,
with four cards it’s about 95%, and with five cards it drops
to around 88%.

4 Eduardo has a good imagination. But you can do the six-card problem in exercise 3.2.
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EDUARDO: That’s good news—the probability of having no SETs
should go down each time we add a card.

TEDDY: Right, because each time we add another card to the layout,
there are so many more possibilities for finding SETs.

While we can’t determine the exact probability of having no SETs
in a layout of 12 cards, we can estimate it using computer simulations.
These simulations tell us that the probability that there are no SETs in
an initial layout of 12 cards is around 3.2%. Put another way, this means
that 12 cards do contain a SET nearly 97% of the time.

Takeaway Message: If you’re playing the game and struggling to
find a SET in the initial layout, keep looking!5

It turns out that even having 15 cards doesn’t guarantee that there
will be a SET. This has happened to us in playing the game, but it’s
quite rare. In fact, there are collections of 20 cards that have no SETs;
the guarantee doesn’t come until we reach 21 cards.

The proof that there must be a SET among any collection of 21 cards
uses some beautiful geometry. We’ll discuss this more in chapter 5
and again in chapter 9. There are a lot of other probabilities we can’t
compute by hand, though, and those will be explored in more detail in
chapter 10.

3.3 EXPECTED VALUE

Sophie, Eduardo, and Teddy lay 12 cards on the table, as though they
are starting a game. The cards they put down are shown in figure 3.3.
Instead of removing SETs, they try to find all the SETs in the layout.
(How many did they find?)

TEDDY: What’s on your mind now?
EDUARDO: Well, we found three SETs in this 12-card layout

(in figure 3.3). I wonder how many SETs there are in
a typical layout of 12 cards.

SOPHIE: I think that’s what expected value is all about!

5 97% of the time.
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Figure 3.3. Opening layout of a game. How many SETs?

Intuitively, expected value measures what happens in the long run.6
When we analyze data sets, we usually use the word “average” or
“mean,” but when we discuss probability, we refer instead to expected
value.

Here’s a standard example: What is the expected value of the roll of
a die? If the die is fair, we assume that each number is equally likely to
appear. In six rolls, we “expect” each number to come up once. So the
average of these six rolls is

1 + 2 + 3 + 4 + 5 + 6
6

= 3.5.

Alternatively, the probability the die will come up 1 is P(1) = 1
6 , and

the probability it comes up 2 is P(2) = 1
6 , and so on. Then the expected

value is

(P(1) × 1) + (P(2) × 2) + · · · + (P(6) × 6)

=
(
1
6

× 1
)

+
(
1
6

× 2
)

+ · · · +
(
1
6

× 6
)

= 3.5.

Of course, this tells us nothing about what will happen on any given
roll. But if we roll a die 100 times and keep track of the sum of the rolls,
we expect the sum to be approximately 100 × 3.5 = 350.

Back to SET. A very natural question to ask is the following:

Question 5: What is the expected value of the number of SETs in
the first layout of 12 cards?

6 “In the long run, we are all dead.” (John Maynard Keynes)
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configuration ( )81
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SET 1080

Figure 3.4. Incidence count between SETs and 12-card layouts.

Fortunately, it’s quite straightforward to answer this question. This
stands in sharp contrast to the probability question that stumped us in
the last section, namely the probability that the initial 12 cards contain
no SETs.

To answer this question, we will use an incidence count. We met
incidence counts in chapter 2. This time, we list all of the 1080 SETs
on the left side. On the right, we list all possible layouts of 12 cards.
We know (from our work in the last chapter) that there are

(81
12

)
such

layouts. Each SET on the left side will be connected to each 12-card
layout on the right side that contains that SET, as shown in figure 3.4.

The expected value is the average number of SETs per 12-card layout.
Here’s the probability connection. Each subset of 12 cards on the right-
hand side is equally likely. Concentrating on the right-hand side of the
diagram, the expected value for the number of SETs per configuration
will be the total number of lines in this diagram divided by

(81
12

)
. So we

need to find the total number of lines in the diagram.
As with any incidence count, the total number of lines is the same

when counting from the left as when counting from the right. Let’s
concentrate on the left side.

We determine the number of lines leaving the left side as follows.
First, pick a SET, and then build a 12-card configuration around it.
Our SET uses 3 of the 12 cards, which leaves 9 cards left to complete
the configuration and 78 cards to choose from. This shows that each
SET lives in

(78
9

)
12-card configurations, so each SET on the left side

will have
(78
9

)
lines connecting to the right side. This gives us a total of

1080 × (789 ) lines.
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Since we now know the total number of lines in the configuration,
we can solve for the expected value:

expected value = 1080 × (789 )(81
12

) ≈ 2.78.

Thismeans we can expect on average between 2 and 3 SETs to appear
in our initial configuration.

There is something beautiful about this calculation. We needed to
count the total number of lines in the diagram, which is easy if we look
at the left side, but very difficult if we concentrate on the right side.
Using the count from the left side gave us our expected value directly.
But if we concentrate solely on the right side, letting P(0) represent the
probability that there are no SETs in the layout of 12 cards, P(1) the
probability there is exactly one SET in the layout, and so on, we should
have EV = P(0) × 0 + P(1) × 1 + P(2) × 2 + · · · .

But we don’t know P(0) or P(1) or P(2) or anything about these
probabilities! (In fact, our inability to compute P(0) is what stopped our
calculations in the last section.) The problem is that, unlike our previous
incidence counts, not every configuration will have the same number of
SETs. So, while each SET is in the same number of configurations (the
left side of the diagram is regular), the configurations behave differently:
some configurations will have no lines (the configurations containing
no SETs), and some will have many. (The maximum number of SETs
in a 12-card configuration is 14. Can you figure out how? You’ll see this
in project 5.1.)

SOPHIE: I like expected value; it’s really useful. The answer of 2.78
SETs makes sense—we usually find two or three SETs in our
initial layouts.

EDUARDO: Yeah, even though we couldn’t figure out the exact
probabilities for our questions about not finding SETs,
it’s good to understand the averages.

TEDDY: Remember how we had easy ways to do some of the
probability questions in the last section? I’ll bet we could find
another way to get this expected value.

SOPHIE: Well, there are
(12
3

)
ways to pick 3 cards from the layout, and

the probability that any one of them is a SET is 1
79 . Shouldn’t

this tell us the expected number of SETs is just
(12
3

)× 1
79 ?
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EDUARDO gets a calculator: It’s the same!! I get 2.78.
TEDDY: That seems like magic!

This clever idea works in general—it uses the linearity of expected
value. It feels like magic because what happens in one event may affect
others—for example, if the first three cards form a SET, then we know
cards 1, 2, and 4 cannot form a SET. But that doesn’t matter for an
expected value calculation. We’ll use this approach later in this chapter,
and we’ll return to it in chapter 7.

We can also find the expected number of SETs in an initial configu-
ration of 9 or 15 cards. Using either more incidence counts or Sophie’s
cleverness, we find the following: in a random collection of 9 cards, we
expect approximately 1.06 SETs, and the calculation for 15 cards gives
us about 5.76 SETs.

SOPHIE: The expected value also shows why 12 is the right number of
cards to start the game with. For 9 cards, there aren’t
enough SETs, on average, and there are too many SETs (and
too much scanning through all those cards to find them)
with 15 cards. I really like expected value!

TEDDY: You already told us. Unfortunately, neither of these ideas
works to find the expected number of SETs in the second
layout of 12 cards, and layouts later in the game.

EDUARDO: But I wonder if we could answer similar questions for
intersets in initial layouts. . . .

3.4 FROM SETS TO INTERSETS AND PROBABILITY

Let’s turn to some questions about intersets.

SOPHIE: If I choose four cards at random, what are the chances they
form an interset?

TEDDY, sheepishly: I don’t remember what an interset is.
EDUARDO, patiently: An interset has four cards. You get one when

you take two SETs that contain the same card,
then remove that card.

TEDDY: Oh yeah, now I remember. What if the card that completes
both SETs is also present? Does that matter?
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SOPHIE: No—I assume that you’re talking about searching for
intersets in some layout of 12 cards. In that case, all we care
about are the four cards. If the card that completes the two
SETs is there, too, the four cards are still an interset.

Question 6: Suppose you choose four cards at random from the
SET deck. What is the probability they form an interset?

We now have the tools to answer this question very quickly. In
chapter 2, we found that there are 63,180 intersets in the deck.
Since the number of ways to choose four cards from the deck is

(81
4

)
,

we get

P(interset) = 63,180(81
4

) = 3
79

≈ 3.8%.

TEDDY: That’s interesting! The probability that four random cards
form an interset is exactly three times the probability that
three random cards form a SET.

SOPHIE: OK, so how about the expected value? How many intersets
can we expect to find in the initial 12-card layout?

Question 7: What is the expected value for the number of inter-
sets in an initial layout of 12 cards?

This question has a surprising answer.7 We first used the clever idea
Sophie came up with (linearity of expected value) when we found the
expected number of SETs in an initial 12-card layout.

Here’s how this works. First, there are
(12
4

)
ways to select four

cards from an initial layout of 12 cards. Each four-card subset has a
probability of 3

79 of being an interset (this is the calculation we just did,
answering question 6). Then the expected value is the product of these
two numbers:

EV(number of intersets in 12 cards) = 3
79

(
12
4

)
≈ 18.8.

Just to be safe, we’ll do this again, using a very quick incidence count.
Place the 63,180 intersets on the left and the

(81
12

)
possible layouts on the

right. Since each interset is contained in
(77
8

)
layouts of 12 cards, there

7 It was surprising to the authors, at least.
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are a total of 63,180 × (77
8

)
lines in the incidence diagram. Dividing

by
(81
12

)
, we get the expected value:

EV(number of intersets in 12 cards) = 63,180 × (778 )(81
12

) ≈ 18.8.

SOPHIE: Wait, wait, wait, wait! Wait! That cannot possibly be right!
That’s huge!

EDUARDO: But we definitely did that correctly, twice, and the math
doesn’t lie. So we better try to understand why there are
so many intersets.

TEDDY: OK, let’s start at the beginning. What makes an interset?
SOPHIE: Well, you need two pairs of cards that have the same card

that finishes a SET with them.
EDUARDO: So we need to look at all the ways we can choose four

cards from the layout and then pair them up.
TEDDY: Hmm. There are

(12
4

) = 495 ways to get four cards.
SOPHIE: But, for each collection of four cards, we could pair them up

three different ways: if the cards are A, B, C , and D, then
we could pair them as AB and C D, or AC and BD, or AD
and BC.

EDUARDO: So that means there are really 495 × 3 = 1485 things to
check.

SOPHIE: Well, for comparison, when we were looking for SETs, we
needed to check only

(12
3

) = 220 subsets. The number of
things to check now is almost 7 times bigger!

TEDDY: And the expected number is almost 7 times bigger! Spooky!
Let’s look at our cards and see how many intersets we can
spot.

The group goes back to the 12 cards of figure 3.5; these are the same
cards they met in figure 3.3. The goal this time is to find the total
number of intersets in the layout. They discover rather quickly that
searching for intersets is much slower than searching for SETs.

TEDDY: You know, we could make a new game out of this! Lay out
12 cards, and start writing down the cards that make
intersets. Set a timer, and see who has the most written down
in that time.
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Figure 3.5. Opening layout of a game. How many intersets?

SOPHIE: That might be a fun variation of SET. So, how many did we
find, all together?

In this layout, there are 17 cards that complete lines with two pairs
(making 17 intersets), while 1 card completes lines with 3 pairs (making
1 triple interset). All of these are listed at the bottom of the page, and,
in this case, none of the cards that complete intersets are present in the
layout.8

In our expected value for intersets calculation, a triple interset will
get counted 3 times, since three separate pairs will make an interset. By
the same reasoning, a quadruple interset will get counted

(4
2

) = 6 times.
Howmany triple intersets should we expect to see in our 12 card layout?
How about quadruple intersets? See exercise 3.3.

We know that the largest number of SET-free cards is 20.What about
intersets?

Question 8: What’s the largest number of cards with no intersets?

A related question has been addressed in the article “Sets, planets,
and comets,” by M. Baker et al., College Mathematics Journal, 44, no. 4
(September 2013), 258–264. In that paper, the (many) authors defined a
planet to be four cards that were in the same plane. So a planet consists
of four cards that are either an interset, or a SET plus some other card.

8 We shuffled a deck like crazy, cut it, and these were the first 12 cards. We promise. The card
that completes the triple interset is 1 Purple Solid Squiggle, while the 17 cards completing ordinary
intersets are 3 Green Striped Squiggles, 3 Red Solid Diamonds, 3 Red Solid Squiggles, 3 Red
Striped Diamonds, 3 Purple Solid Ovals, 3 Purple Striped Ovals, 3 Purple Striped Diamonds,
2 Red Empty Diamonds, 2 Red Striped Squiggles, 2 Green Empty Ovals, 2 Red Striped Ovals,
2 Purple Empty Diamonds, 2 Purple Striped Squiggles, 1 Red Empty Diamond, 1 Red Empty Oval,
1 Red Solid Oval, and 1 Purple Empty Diamond.
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Figure 3.6. Sara’s card and Eli’s card.

In their paper, the authors did a computer search to show that 10 cards
must contain a planet, but there are layouts of 9 cards that don’t contain
a planet.

One consequence of their work is that the answer to question 8 is at
least 10. However, since planets are not the same as intersets, they did
not show that every collection of 10 cards contains an interset. Clearly,
there’s work left to be done.

3.5 FINAL QUERIES

This last section explores some fun probability and expected value
problems that come from choosing two cards at random from the deck
and exploring the number of different attributes.

Question 9: Two friends, Sara and Eli, pick two cards at random
from the deck. How many attributes will they share?

For example, suppose Sara and Eli each pick a card from the deck.
What are the chances that their two cards will share no attributes? One
attribute? Two or three attributes? What happens on average—what is
the expected number of attributes their two cards will share?

To make this concrete, suppose Sara and Eli choose the two cards in
figure 3.6.

These two cards differ in three attributes: number, shading, and
shape.

Why would we care about this question? Well, once we’ve picked
two cards, we know that there’s only one way to complete a SET with
those two cards (by the fundamental theorem of SET!). Moreover,
the number of different attributes in that SET will match the number
of different attributes of our two cards. So we can model all of our
questions about the number of different kinds of SETs in terms of
selecting two cards from the deck.
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Figure 3.7. The SET containing Sara’s and Eli’s cards.

Returning to our example, we form the SET containing the cards
Sara and Eli chose (figure 3.7). This SET has one attribute the same
(color) and the other three attributes different.

Let’s compute the probability that our two cards are different in all
four attributes. Suppose Sara picks 1 Red Empty Diamond, as above.
How many cards can Eli pick that are different in every attribute?

First, number: Sara’s card has 1 symbol, so Eli’s card must have 2
or 3 symbols. For color, Sara’s card is red, so Eli’s must be green or
purple. Similarly, Eli has two choices for the shape and two for the
shading. This gives 2 × 2 × 2 × 2 = 16 choices for Eli’s card. Since
Eli has 80 cards to choose from, but only 16 match our requirements,
we see that the probability their two cards are different in all attributes is
16
80 = 20%.
We can perform these calculations when the two cards differ in one,

two, or three attributes, too. If two cards are randomly chosen from the
deck, the probability that they differ in

• all four attributes is 20%;
• exactly three attributes is 40%;
• exactly two attributes is 30%;
• exactly one attribute is 10%.

Here’s the connection with SETs: Back in chapter 2, we found that
exactly 20% of the SETs in the deck have all four attributes different,
40% have three attributes different, 30% have two attributes different,
and 10% of the SETs in the deck have one attribute different. These
answersmatch perfectly! In chapter 7, we’ll explain how this connection
can be exploited to get excellent approximations when we consider
(much larger) decks with (many) more attributes.

SOPHIE: That was fun—I feel like I understand the game better now.
EDUARDO: Yeah, we answered some interesting probability questions

and we saw a few different ways to compute expected
value.
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SOPHIE: Expected value is great—it gives you information about how
many SETs and how many intersets you should see when
you play the game. Did I tell you that I really like expected
value?

EDUARDO AND TEDDY: It may have slipped out once or twice.
SOPHIE: I know what I want to do now—isn’t it time for a game?
EDUARDO AND TEDDY: YES!

EXERCISES

EXERCISE 3.1. Question 3 in this chapter asked for the probability that
there are no SETs among four randomly chosen cards. We solved this prob-
lem in two different ways in the chapter; the answer is 4

79 . Here’s a third
approach.

a. First, choose three cards at random, A, B , and C . What is the probability
that your three cards do not form a SET?

b. Now choose a fourth card, D. Find the probability that ABD, ACD, and
BCD are not SETs by figuring out how many choices there are for D.

c. Multiply your answers from parts (a) and (b) to get the probability that
there are no SETs among the four cards. Explain why this works.

EXERCISE 3.2. Questions 2, 3, and 4 of this chapter found the probabilities
that there are no SETs in three, four, or five randomly chosen cards. Figure out
the probability that there are no SETs in six cards. [A possible first step is given
below. Feel free to ignore it.]

• You can have either one, two, or three SETs among six cards. Count the
number of possibilities for each of these three situations.

EXERCISE 3.3. A triple interset is a collection of six cards that can be
grouped into three pairs, where one card completes a SET with each pair.
For example, the six cards shown in figure 3.8 form a triple interset that is
completed by the 2 Red Solid Diamonds card.

a. Show that if six cards can be paired to form a triple interset, then the
pairing is unique, i.e., there is only one way to pair up three cards to do
this.
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Figure 3.8. Exercise 3.3.

b. Count the number of triple intersets in the deck. [Hint: Modify the
argument used to count the number of intersets.] Then use your count to
compute the probability that six randomly chosen cards form a triple
interset.

c. Use your answer to part (b) and an incidence count to compute the
expected number of triple intersets in an initial layout of 12 cards. Then
check your answer by looking for triple intersets in a few layouts.

d. (if you’re adventurous, or a little loopy). Repeat parts (b) and (c) for
eight-card quadruple intersets.

EXERCISE 3.4. Suppose that two friends, Sara and Eli, each pick a card
from the deck. Find the following probabilities. [Hint: Your answers should
match the answers given near the end of section 3.5.]

a. Calculate the probability that two random cards differ in exactly three
attributes.

b. Calculate the probability that two random cards differ in exactly two
attributes.

c. Calculate the probability that two random cards differ in exactly one
attribute.

PROJECTS

PROJECT 3.1. This project is devoted to what happens at the end of the
game when there are six cards left (figure 3.9). First, break up the cards into
three pairs. For example, you might pair them as in figure 3.10.
Now, for each pair, find the card that completes the SET. In this example, we

get the three cards in figure 3.11.
Notice that these three cards form a SET! We’ll prove this in chapter 4, but

you should try to prove it yourself now. The SET formed has two attributes the
same (color and shading) and two that differ (number and shape).
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Figure 3.9. Six cards at the end of a game.

First pair Second pair Third pair

Figure 3.10. The pairings.

Figure 3.11. These three cards complete the three SETs.

What happens if we pair the cards in a different way?We’ll always get a SET,
but it’s possible that the “SET” we get will consist of the same card, repeated
three times.
Here’s your job for this project:

a. First, for the six cards given in figure 3.9, break up the cards into three
pairs in every possible way. [Hint: There are 15 ways to break up the cards
into three pairs.]

b. For each pairing, complete the SETs to get three new cards.
c. For each of the new SETs created, determine the number of attributes that

are different.
d. The six cards have now produced 15 different SETs. How many times did

you get all attributes different? How many times were three attributes
different and one the same? Let x0 be the number of SETs produced with
zero attributes the same, x1 the number with one attribute the same, etc.
(Note that x4 = 1 precisely when the cards form a triple interset.) Call the
signature of the six cards the list of these values: {x0, x1, x2, x3, x4}.

e. (This is the main part of this project.) There are
(19
4
) = 3876 possible

signatures (this is the number of subsets, with repetition allowed, of size 15
from the SET {0, 1, 2, 3, 4}). How many of these potential signatures
actually occur among six-card configurations that arise at the end of a
game?
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SET and Modular Arithmetic

4.1 WHAT IS MODULAR ARITHMETIC?

Three more of your friends, Shamella, Erin, and Tyler, heard what
everyone else was up to and decided to join the fun and become
characters in our book. They have just begun college, and Shamella is
eager to tell them about her new math course, number theory.

SHAMELLA: Today my math teacher showed us some interesting
applications of modular arithmetic.

ERIN: What is modular arithmetic?
TYLER: Wait, we saw this in the first chapter! It’s sometimes called

clock arithmetic.
ERIN: Oh yeah, I remember now! We did a clock problem. We

learned how to figure out what time it will be 100 hours from
now. Or any number of hours from now.

SHAMELLA: Yeah, clocks are the most natural example of modular
arithmetic. Days of the week can also work, and months,
because calendars are cyclic . . . and also music scales,
because those repeat! But my teacher showed us some
uses that answer more abstract questions.

Before our group continues, here’s a reminder of the notation we
mentioned in chapter 1: we will write a = b (mod c) if a and b have
the same remainder when divided by c . So, as we saw in chapter 1,
110 = 14 (mod 24), because when you divide 110 by 24, you get a
remainder of 14. (One quick note: “mod” is short for “modulo.” We
also say 24 is the “modulus” we’re working with here.)
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4.2 MODULAR ARITHMETIC PROBLEMS

Our three students find the following problem in Shamella’s homework
assignment.

Question 1: What is the last digit of 19871987?

ERIN: I have no idea how to do this problem.
TYLER: Me neither! I just typed it into my calculator, and it said

“OVERFLOW.”
ERIN: Great—I’ll just write that down for the answer. Thanks.
SHAMELLA: All right everyone, calm down. This isn’t as hard as it

looks. We can start by doing simpler versions of this
problem.

ERIN: Okay, well, 19871 = 1987. Done!
TYLER: What about 19872? That’s too big for me to do in my head,

but we only need the last digit of 19872. Maybe we could just
square the last digit of 1987. If we square 7 we get 49, so I’m
guessing the last digit of 19872 is going to be 9 too. I can check
this on my calculator—19872 = 3,948,169, so I was right.
Cool!

SHAMELLA: Yeah, that always works—when we’re asked for the last
digit of some number raised to a power, the last digit of
the number we’re given is all we need to worry about.

ERIN: So we just need to do 71987! But that’s still too big, isn’t it?
TYLER: It certainly is. But maybe we can find a pattern. For 1987n,

the last digit is 7 when n = 1, and 9 when n = 2. What
about when n = 3?

SHAMELLA: Yes, this is how to do the problem. For n = 3, we need to
do 73, which is 343.

ERIN: Couldn’t we also have just said 72 = 49, and then 7 × 9 = 63,
so the last digit has to be 3?

TYLER: Yes! This is much easier than I thought. Okay, for n = 4, I
just have to multiply 3, which was our previous last digit, by
7. When I multiply 3 by 7 I get 21, so the last digit is 1. And
then for n = 5, we’ll be back to 7, because 1 × 7 = 7.

SHAMELLA: Sweet, we found a pattern! After 7 we have to go back to
9 because 7 × 7 = 49 and so on. That’s always what
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happens with these problems—the last digit will cycle
through some pattern and then repeat. So our pattern
goes 7, 9, 3, 1, 7, 9, 3, 1, . . . .

ERIN: Oh I see. So the last digit of 1987n will always be either 7,
9, 3, or 1, and the digits will always cycle through in that
order.

TYLER: This must be where modular arithmetic comes in! Our cycle
is four numbers, so we should work mod 4. For 1987n, when
n = 1 (mod 4), the last digit is 7; when n = 2 (mod 4), the
last digit is 9; when n = 3 (mod 4), the last digit is 3; and
when n = 4 (mod 4), the last digit is 1. So now we just need
to figure out what 1987 is mod 4.

SHAMELLA: Yup! And that should be easy enough. One note though:
4 (mod 4) = 0 (mod 4).

TYLER: Oh, that makes sense. Anything that is a multiple of 4 is 0
(mod 4).

SHAMELLA: Yeah, whenever we work mod n, n = 0 (mod n). The
biggest we can ever get mod n is n − 1.

ERIN: That means anything that is a multiple of n is going to be
equivalent to 0 (mod n).

TYLER: So we really just need to figure out how far away 1987 is from
a multiple of 4.

ERIN: Can’t we just divide 1987 by 4 to see what the remainder is?
SHAMELLA: Yes! Okay, my calculator says 1987 ÷ 4 = 496.75.

Where does that get us?
TYLER: Well 0.75 is 3

4 , so I guess the remainder is 3. But just to verify
this really fast on my calculator, 496 × 4 = 1984, so then
1987 = (496 × 4) + 3.

SHAMELLA: Great! So 1987 = 3 (mod 4). Now we just have to
remember what the last digit was when n = 3. It looks
like it was 3.

ERIN: So the last digit of 19871987 is 3.
TYLER: Ta da!
SHAMELLA: . . . That was sort of anticlimactic. Let’s try another

problem!



SET and Modular Ari thmet ic • 75

TABLE 4.1.
The possible values of a2, b2, and c2, (mod 3).

a2 b2 a2 + b2 = c2 Possible?

0 0 0 yes
0 1 1 yes
1 0 1 yes
1 1 2 no

The group gathers around the number theory book, and finds the
next question:

Question 2: Suppose a2 + b2 = c2 for positive integers a, b,
and c . Show that either a or b (or both) must be a multiple of 3.

SHAMELLA: This will be more climactic. This is a proof! Plus, it’s
about the Pythagorean theorem, which is cool.

ERIN: Okay, but once again, I have no idea where to start.
TYLER: Once again, me neither. I know we’re going to be working

mod 3, but that’s all I know.
SHAMELLA: Well, it involves squaring each of a, b, and c, so let’s

start by squaring numbers, mod 3.
ERIN: Okay, so, if I have a number equivalent to 0 (mod 3), and

I square it, 02 = 0, so the square will still be 0 (mod 3).
TYLER: I guess what you’re saying is that the square of a multiple of 3

is still a multiple of 3. We certainly could have figured that
out without the mods, though.

ERIN: Let’s look at non-multiples of 3. If I have a number equivalent
to 1 (mod 3), and I square it, 12 = 1, so the square will still be
1 (mod 3). If I have a number equivalent to 2 (mod 3), and
I square it, 22 = 4, and 4 = 1 (mod 3), so the square will be
equivalent to 1 (mod 3).

SHAMELLA: So you just figured out that perfect square numbers can
never be equivalent to 2 (mod 3).

The group decides to organize the information they’ve discovered in
a chart. See table 4.1.
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ERIN: So if we look at the first three rows in your table, then either
a2 = 0 (mod 3) or b2 = 0 (mod 3), or both. That means at
least one of a or b is a multiple of 3, which is what we were
trying to prove!

SHAMELLA: But we’re not done. Look what happens when a2 = 1
(mod 3) and b2 = 1 (mod 3). In this case, neither one
of them is a multiple of 3. But then when I add them, I
get that c2 = 2 (mod 3), but c2 can’t be equivalent to 2
(mod 3) since it is a perfect square. So this case is
impossible! Now we’re really done!

TYLER: I agree. In all of the cases that can occur, we had at least one
of a or b as a multiple of 3. So there’s our proof!

ERIN: Cool! It’s interesting how we ended up also proving that perfect
squares must be equivalent to either 0 or 1 (mod 3).

SHAMELLA: I really like number theory. It turns out perfect squares
have similar restrictions for other moduli, which is
pretty cool.

TYLER: “Moduli”?
ERIN: That must be the plural of modulus.
SHAMELLA: Indeed. When you study number theory, you get to use

cool words like “moduli.”

4.3 THAT’S ALLWELL ANDGOOD,
BUTWHAT ABOUT SET?

Application 1: Three cards are a SET if and only if their coordi-
nates sum to (0, 0, 0, 0) (mod 3).

Recall from chapter 1 that we can set up a table to assign numbers to
the different attributes. These assignments are arbitrary; we will stick to
the assignment in table 4.2 throughout the book.

Our mantra here is going to be Number, Color, Shading, Shape.
Start repeating this in your head: Number, Color, Shading, Shape.
Number, Color, Shading, Shape. It’s useful to keep this in mind when
reading the coordinates. (This will also come in handy later, when we
learn the End Game.) Now let’s pick a SET; see figure 4.1.
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TABLE 4.2.
Assignment of coordinates to cards.

Attribute Value Coordinate

Number 3, 1, 2 ↔ 0, 1, 2
Color green, purple, red ↔ 0, 1, 2
Shading empty, striped, solid ↔ 0, 1, 2
Shape diamonds, ovals, squiggles ↔ 0, 1, 2

Figure 4.1. From left to right, these cards have coordinates (2, 2, 1, 0), (2, 1, 1, 0), and
(2, 0, 1, 0).

ERIN: I remember this from chapter 1. We can label each card as a
vector1 with four coordinates, using our table.

TYLER: Right. Then we need to add up all four coordinates, mod 3.

The group converts the cards to coordinates, like so:

• 2 Red Striped Diamonds ↔ (2, 2, 1, 0),
• 2 Purple Striped Diamonds ↔ (2, 1, 1, 0), and
• 2 Green Striped Diamonds ↔ (2, 0, 1, 0).

Next, they add up the coordinates for the three vectors, working
mod 3:

1. First coordinate: 2 + 2 + 2 = 6 = 0 (mod 3).
2. Second coordinate: 2 + 1 + 0 = 3 = 0 (mod 3).
3. Third coordinate: 1 + 1 + 1 = 3 = 0 (mod 3).
4. Fourth coordinate: 0 + 0 + 0 = 0 = 0 (mod 3).

SHAMELLA: That’s so neat! All three possibilities for how the
coordinates can sum appear here, and they all give 0
(mod 3). That makes sense—we’re either adding

1 Vectors will play an important role later. We think of a vector as an ordered list of numbers,
mod 3. If you like vectors, then you will love chapter 8.
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Figure 4.2. Two lonely cards. Find the third card to complete their SET andmake them
happy.

0 + 1 + 2 or we’re adding the same number three times,
so we’ll always get a multiple of 3, which is equivalent to
0 (mod 3).

TYLER: One last question: Is it possible to get faked out by sneaky
cards? I mean, could we ever have a combination of three
cards whose coordinates add to 0 (mod 3) but who are not a
SET?

ERIN: Hmm. . . .

Tyler’s question is worth thinking about. Our plucky students have
shown that, if three cards form a SET, the coordinates sum to (0, 0, 0, 0)
(mod 3). Tyler’s question is about the converse: if three cards sum to
(0, 0, 0, 0) (mod 3), then they make a SET.

Here’s why this is true. For each coordinate, the only collections of
three numbers that sum to 0 are the ones we found:

• If a + b + c = 0 (mod 3), then either a = b = c, or a, b, and c
are the numbers 0, 1, and 2, in some order.

“Proving” this just amounts to checking that nothing else works. For
instance, if a = b = 1 and c = 2, we have a + b + c = 1 (mod 3), so
this situation can’t occur. We conclude there are no sneaky cards: three
cards form a SET precisely when their sum is (0, 0, 0, 0) (mod 3).

Application 2: Given any two cards, find the third card to create
a SET.

Given any two cards, the fundamental theorem of SET tells us there
is exactly one card that completes the SET. For the cards in figure 4.2,
it’s easy enough to do this without any coordinates, vectors, or modular
arithmetic. But it’s worth showing how the techniques of this chapter
can be applied to solve this problem.
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Figure 4.3. The cards made a friend!

Our group starts by getting coordinates into the problem. First, they
find the coordinates for the two cards in the figure:

• 2 Purple Solid Squiggles ↔ (2, 1, 2, 2), and
• 2 Green Empty Squiggles ↔ (2, 0, 0, 2).

Now, concentrating on the vectors (instead of the cards), here’s the
procedure. Call the vector for the missing card C . Since a SET sums to
(0,0,0,0), we need

(2, 1, 2, 2) + (2, 0, 0, 2) + C = (0, 0, 0, 0).

SHAMELLA: Well, I would simplify this first by adding the first two
cards. Since (2, 1, 2, 2) + (2, 0, 0, 2) = (1, 1, 2, 1),
we get

(1, 1, 2, 1) + C = (0, 0, 0, 0).

ERIN: Now it’s easy. We just need C = (2, 2, 1, 2) to make the sum 0
in each coordinate. So I guess

C = (0, 0, 0, 0) − (1, 1, 2, 1) = (2, 2, 1, 2).

TYLER: But if I subtract, I get
(0, 0, 0, 0) − (1, 1, 2, 1) = (−1, −1, −2, −1). What gives?

SHAMELLA: These are the same! That’s the beauty of modular
arithmetic:

(−1, −1, −2, −1) = (2, 2, 1, 2) (mod 3).

The group checks table 4.2 to turn the vector (2, 2, 1, 2) back into a
card. They discover it’s 2 Red Striped Squiggles, as shown in figure 4.3,
which they knew from playing the game.
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TYLER: Isn’t there an easier way to find the vector for the missing
card? Instead of all that arithmetic, I could’ve looked at those
first two coordinates, saw they were both 2, and figured the
first coordinate of my missing card had to be 2. And for the
second coordinate, if I see a 0 and a 1, I know the second
coordinate of my missing card has to be a 2. The same idea
works for the other two coordinates, so I get (2, 2, 1, 2).
Boom!

ERIN: Yeah, you’re right—that was faster. For our purposes, I suppose
that method should work fine for finding a missing card, but I
bet it’ll also be useful for some of the material that’s coming.

SHAMELLA: I love foreshadowing!

Application 2.5: Find the third card of a SET a different way.

Modular arithmetic is powerful enough to give us a few different
ways of understanding SET. We can also find the third card using an
idea from high-school geometry, of all things.2

SHAMELLA: In fact, there’s another way we could have done it. We
could have added each coordinate for the two given
cards, then divided the result by 2. If the two given cards
are (2, 1, 2, 2) and (2, 0, 0, 2), then the third card is

C = (2, 1, 2, 2) + (2, 0, 0, 2)
2

.

ERIN: Wait. How do we divide by 2? What does this even mean?

Here’s what Shamella means. First, “dividing by 2” is the same as
multiplying by 1

2 . But
1
2 is not one of the three numbers 0, 1, or 2 that

we are allowed to use when working mod 3.
The way we work around this problem is to interpret 1

2 as the
multiplicative inverse of 2, i.e., the number that we need to multiply 2
by to get an answer of 1. But we already know that 2× 2 = 1 (mod 3),
so 1

2 = 2 (mod 3).

2 Did you see this coming? We didn’t.
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SHAMELLA: So dividing by 2 is the same as multiplying by 2 when we
work mod 3! That’s really cool, and kinda strange.

ERIN: Let’s see if this works. I get

C = 2 ((2, 1, 2, 2) + (2, 0, 0, 2))

= 2(1, 1, 2, 1)

= (2, 2, 1, 2) (mod 3).

TYLER: It works—that’s the same card we found before! But I have
another question. If you add each coordinate and divide the
result by 2, you’re using the formula that finds the midpoint
of a segment. Are you saying that the “midpoint” of two cards
would be the card that completes the SET?

ERIN: That would make things even weirder! Suppose I have three
cards A, B, and C that make a SET. If what you’re saying
about midpoints is true, then A is the midpoint of B and C,
and B is the midpoint of A and C, and C is the midpoint of A
and B:

A = B + C
2

, B = A+ C
2

, C = A+ B
2

.

That doesn’t make sense geometrically!
SHAMELLA: It doesn’t make sense if you’re thinking of the usual

Euclidean geometry you remember from high school, no.
But the geometry in these cards is not our usual
geometry.3 Anyway, the reason it works is because
dividing by 2 is equivalent to multiplying by 2 when
we’re working mod 3.

TYLER: I see. First we can sum the two coordinates and thenmultiply
by 2 to find our midpoint, which is equivalent to dividing by
2 (mod 3).

SHAMELLA: Let’s try it! Erin already did this in her head, but let’s go
through it coordinate by coordinate.

3 Evidently. See chapters 5 and 9 for more geometry.



82 • Chapter 4

Our cards had coordinates (2, 1, 2, 2) and (2, 0, 0, 2). We check the
midpoint formula for each coordinate, remembering to multiply by 2
instead of dividing by 2, since we’re working mod 3:

1. First coordinate: 2 + 2 = 4 which is 1 (mod 3), and then
1 × 2 = 2, which is 2 (mod 3).

2. Second coordinate: 1 + 0 = 1 which is 1 (mod 3), and then
1 × 2 = 2, which is 2 (mod 3).

3. Third coordinate: 2 + 0 = 2 which is 2 (mod 3), and then
2 × 2 = 4, which is 1 (mod 3).

4. Fourth coordinate is identical to the first, because we have two 2s
again. So the last coordinate is 2.

SHAMELLA: It works: we get that the coordinates of the card that
completes the SET should be (2, 2, 1, 2).

TYLER: I love how we can do the same problem different ways and
always get the same answer. It’s nice when math makes sense!

SHAMELLA: Math is supposed to make sense. That’s its job!

Application 3: The final three cards.

Having successfully applied some modular arithmetic to a few ques-
tions, our trio turn their attention to what happens at the end of the
game.

SHAMELLA: Here’s a question. What happens when we have three
cards left at the end of the game?

ERIN: I don’t think that’s ever happened.
TYLER: No, it’s impossible! Our deck has 81 cards, and we know we

can organize it into 27 SETs.4 There are probably a lot of
ways to do that, but what that means is that the (mod 3) sum
of the whole deck should be (0,0,0,0).

SHAMELLA: Here’s another way to think about this: If you consider
color, then 27 of the cards are green, 27 are purple, and
27 are red. So if you sum all of those numbers, you get

4 If you’ve ever cleared the deck while playing SET, then you’ve “organized” the deck into 27
SETs.
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27 × 0 + 27 × 1 + 27 × 2 = 27 × 3 = 0 (mod 3).
And the same will be true of number, shading, and
shape.

ERIN: Sounds good to me. Now, if we’re playing a game, then the sum
of the pile of SETs that have been removed should also be
(0,0,0,0), assuming they’re real SETs and people aren’t making
mistakes.

TYLER: I see where this is going. If we get to the end, and we have
three cards left, then we know the pile of SETs we’ve taken
away sums to (0,0,0,0), and we know the entire deck sums to
(0,0,0,0), so those last three cards also have to sum to
(0,0,0,0).

SHAMELLA: So if you get to the end and you have three cards left,
those last three cards have to be a SET!

ERIN: Yes! It would actually be pretty exciting to have this happen in
a game: If you get to the end and there are six cards left, and
you find a SET in those six cards, you know the last three are
also a SET without having to check. When this happens,
you can just immediately yell “SET! SET!” and grab all six
cards!

TYLER: Well, I don’t know that you have to yell. But yes, this
should work, as long as you trust the people you’re playing
with. . . .5

SHAMELLA: Let’s take a break and play until we clear the deck.
ERIN: Didn’t you read chapter 1? We might have to play almost a

hundred games before that happens.
TYLER: Or, we can play a variation of the game6 where we get to

redistribute SETs at the end, until we are able to clear the
remaining cards.

ERIN: That’ll still probably take a while.
TYLER: Then let’s get started. We’re wasting time talking about it.

(Hours pass. . . .)

5 Let’s hope they are playing with a full deck.
6 This variation is called Clear the Deck and is described in the interlude.
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Figure 4.4. Five cards at the end of a game; the sixth is hidden.

4.4 THE END GAME

Application 4: The End Game.

Recall from chapter 1 that we can put aside a card at the beginning of
a game, play the game, and then use the remaining cards to determine
the identity of the missing card. There’s an example in figure 4.4 where
six cards are left at the end of a game (played by Shamella, Erin, and
Tyler), and we’ve hidden one of the cards.

SHAMELLA: How can we use modular arithmetic to find the missing
card?

TYLER: Remember, the whole deck sums to (0,0,0,0). If the whole
deck sums to (0,0,0,0), and each of the SETs that we’ve
removed sums to (0,0,0,0), then the leftover cards should also
sum to (0,0,0,0).7

ERIN: Does that mean that the leftover cards are some sort of super
SET? I mean, didn’t we decide earlier that cards sum to
(0,0,0,0) if and only if they are a SET?

SHAMELLA: We did, but that’s only true for three cards. But it’s
actually an interesting question to ask what sort of
structure a collection of cards greater than three would
have that sum to (0,0,0,0).8

TYLER: I think the important part is that each individual attribute
has to sum to 0. So, if we isolate attributes, we could
determine the missing card.

ERIN: I guess we could figure out the vector coordinates for each of
those five cards, sum them together mod 3, subtract that sum
from (0, 0, 0, 0) (mod 3), and that vector would then be the
missing card.

7 “Nothing from nothing leaves nothing.” (Billy Preston)
8 We saw this in chapter 3. If it’s nine cards, then it’s been called a “comet.”
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SHAMELLA: Well, I’m not doing that. There’s gotta be a faster way to
do this.

TYLER: Yeah, I doubt many people would want to do that during an
actual game. I sure wouldn’t.

Application 4.5: Different ways of finding the missing card.

There are a few ways to determine the missing card that use ideas from
modular arithmetic. We describe two ways.

1. Sort the cards on the table into “single attribute SETs,” meaning
groups of three cards that are all the same or all different in one
specific attribute. Here’s how to apply this idea:

• Number: Looking at the cards in figure 4.4, we first find the
number for the missing card. Concentrating solely on
number (and temporarily ignoring color, shading, and
shape), we can put aside a SET of 3s. The two remaining
cards include one 3 and one 2, so the missing card must have
1 symbol. This makes two “number SETs.”

• Color: Looking at color, the first three cards are a “color
SET.” The last two cards are green and red, so the missing
card must be purple.

• Shading: For shading, the middle three cards are a “shading
SET,” and the two on the ends are both empty, so the
missing card must be empty.

• Shape: And finally, looking at shape, the three cards on the
right are a “shape SET,” and the remaining two are a
diamond and an oval, so the missing card must have
squiggles.

Putting all of this together gives us 1 Purple Empty Squiggle.9
A last comment about this method: it doesn’t matter how you
make the attribute SETs. Suppose your five cards were purple,

9 How do you keep all of this in your head? Honestly, there are plenty of times we’ve done
this and had something fall out of our brains. Advice: Remember that mantra. Number, Color,
Shading, Shape! Repeating this in your head will really help you keep track of the attributes you’ve
already found.
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Figure 4.5. Six cards at the end of a game.

purple, purple, green, and red. If you make an all-purple SET,
then the cards left are red and green, so the missing card must be
purple. On the other hand, if you make a purple–green–red SET,
then the cards left are both purple, and again, you’d find the
missing card is purple. You can convince yourself that you’ll
always get the correct answer no matter how you split up the
attribute SETs.

2. There’s a second way we can use modular arithmetic to find the
identity of the missing card. This procedure also works attribute
by attribute. The idea is that numbers need to be the same, mod
3. Here’s the procedure, explained via the example from
figure 4.4.

• Number: Among the five cards, none have 1 symbol, one has
2 symbols, and four have 3 symbols. Writing this in order,
we have 0, 1, 4 as the numbers of cards in each category. We
need our missing card to make these three numbers the
same, mod 3. That means that the missing card has one
symbol, so our ordered list will be (1, 1, 4).

• Color: We have two greens, one purple, and two reds. The
missing card must be purple in order to make these three
numbers equal, mod 3, so our ordered list is (2, 2, 2).

• Shading: There are two empty cards, three striped cards, and
no solid cards. To make these the same, mod 3, we need
another striped card. This makes the ordered list (3, 3, 0).

• Shape: There are two diamonds, two ovals, and one squiggle.
This forces our missing card to be a squiggle, so the ordered
list is again (2, 2, 2).

Putting all of this together gives the same answer as before: 1
Purple Striped Squiggle. See figure 4.5.
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Figure 4.6. End Game. Eight cards at the end of a game, with the ninth hidden. Find
the missing card, then find the SET it makes with two of the cards here.

TYLER: I get the first procedure, but why does the second way also
work? Why do the totals have to be equivalent, mod 3? Is
there really no other possibility?

SHAMELLA: staring at the cards intently. I think I get it! Let’s just
consider one attribute (like color) and organize the cards
into “single attribute SETs,” like we did before. When
you have three cards that are all the same for an
attribute, that adds 0, 3, or 6—which are all equivalent
to 0 (mod 3)—to the total for the number of cards with
that expression of the attribute. And when you have
three cards that are all different for that attribute, that
adds three 1s to the totals for each expression of that
attribute, which will still keep their totals equivalent,
mod 3. So when you look at all the “single attribute
SETs” together, the total for each expression will have to
be the same, mod 3.

ERIN: Modular arithmetic to the rescue!
TYLER: Okay, so we’ve seen the numbers of expressions of an

attribute could be (4, 1, 1), (2, 2, 2), and (3, 3, 0). Are there
other configurations we could have with six cards left?

SHAMELLA: We could have (6, 0, 0), a situation where all six leftover
cards share an attribute. So for instance, all six cards are
purple, or they’re all solid, or they’re all ovals. That’s
probably pretty rare.

ERIN: I guess those are all the possibilities for six cards.

Erin is right—the ordered lists must be rearrangements of (4, 1, 1),
(3, 3, 0), (2, 2, 2), and (6, 0, 0). In order to test these ideas, the group
hides a card, then plays another game. This time, there are eight cards
left. See figure 4.6.
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Figure 4.7. Six cards left at the end of a game played by Shamella, Erin, and Tyler.

For a challenge, use one or both of the techniques described above to
find the missing card. Then find the SET it completes. Answer below.10

With nine cards left at the end of a game, some possible attribute-
ordered lists are (3, 3, 3), (5, 2, 2), and (4, 4, 1). Are there any more
possible lists? See exercise 4.8 for a chance to figure this out on your
own.

Finally, you might wonder which technique for playing the End
Game is better: the first procedure (mentally removing attribute SETs)
or the second (making the numbers the same, mod 3). In our experi-
ence, the first procedure is faster. You can also use a mixed strategy;
find some attributes with one technique and the rest with the other, if
you like. But doing so leads to madness.11

4.5 THE SIX-CARD THEOREM

Application 5: The six-card theorem.

At this point, our three heroes take a break to play some SET. In the
meantime, we’ll discuss a theorem, sometimes referred to as the Stupid
SET Trick.12 Suppose six cards are left at the end of the game. If we
partition them into pairs, then the cards that complete the SETs for
each pair will themselves be a SET. (See figures 4.7 and 4.8.)

This works no matter how we pair up the cards! Let’s try pairing
them a different way. (See figures 4.9 and 4.10.)

10 The missing card is 2 Green Solid Ovals, and it forms a SET with 1 Red Empty Oval and 3
Purple Striped Ovals.

11 Again, we speak from experience. It’s also slow, and it’s very easy to get confused and get the
wrong answer for the missing card.

12 We saw this in exercise 1.2 and project 3.1. It was first proved by one of the authors. Well
done, Hannah.
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Figure 4.8. The cards that complete vertical SETs with the cards from figure 4.7 are
themselves a SET.

Figure 4.9. The six cards from figure 4.7, rearranged into three different pairs.

Figure 4.10. The cards that complete vertical SETs with the rearranged cards from
figure 4.9 are also a SET.

Why does this work? The explanation relies on modular arithmetic.
We have six cards left at the end of the game. Let’s call their

corresponding coordinate vectors A, B , C , D, E , and F . We know that
A + B + C + D + E + F = (0, 0, 0, 0), because these correspond to
cards left at the end of the game.

Now, we’ll add three cards, whose coordinates are X , Y, and Z , to
complete three SETs: our SETs are ABX , CDY , and E F Z . This means
that

A+ B + X = (0, 0, 0, 0) (mod 3),

C + D + Y = (0, 0, 0, 0) (mod 3), and

E + F + Z = (0, 0, 0, 0) (mod 3),

because these are SETs. Thus, adding these three equations gives us

A+ B + X + C + D + Y + E + F + Z = (0, 0, 0, 0) (mod 3).

Addition is commutative, so we can rearrange those variables:

(A+ B + C + D + E + F ) + (X + Y + Z) = (0, 0, 0, 0) (mod 3).
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Figure 4.11. Six cards at the end of a game.

But we also know A + B + C + D + E + F = (0, 0, 0, 0) (mod 3).
Subtracting equations gives X + Y + Z = (0, 0, 0, 0) (mod 3). This
tells us that XYZ is a SET. QED.13

Application 6: The six-card special case.

While you were reading that proof, Shamella, Erin, and Tyler played
a lightning fast round, and they now have six cards left, as shown in
figure 4.11.

As above, they want to complete the three vertical SETs.

SHAMELLA: Let’s try it. The card that completes the first vertical SET
is 1 Red Solid Oval.

TYLER: Okay. Wait! I get the same card for the second vertical SET!
ERIN: Me too! Whoa, that means our six cards are a triple interset.
TYLER: I thought these three new cards had to form a SET. What’s up

with that?
SHAMELLA: Well, I suppose technically, three copies of the same card

could pass as a SET—an “all four attributes the same”
SET.

ERIN: Okay, but still, what’s up with that? Like, when we’re left with
six cards at the end, how often will we end up being able to pair
them in such a way as to get a triple interset?

Erin asks an interesting question. We will get an answer using
computer simulations in chapter 10. The results suggest that this
happens about 18% of the time when there are six cards left.

13 This stands for quod erat demonstrandum, which is Latin for “which is what had to be
proved.” Traditionally, proofs in mathematics end with QED. Various teachers have also claimed
these letters stand for “quite easily done,” or more accurately, “quite enough, dammit.”
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Figure 4.12. Five cards.

One way to simplify the search for pairings that would give a triple-
interset card is to notice that certain configurations force the cards to
be paired in certain ways. For example, if the six cards include four
reds, one green, and one purple, then the color of the triple-interset
card must be red. This means we would need to pair the purple and
green cards. Similar reasoning applies to the other attributes, of course.
For instance, if there are three ovals and three diamonds among the six
cards, the triple-interset card must be a squiggle, and each pair must
include an oval and a diamond. You can practice these ideas with the
six cards from figure 4.11.

Application 7: A five-card exception.

Suppose we are playing the End Game, and there are five cards remain-
ing. Is there any restriction on those five cards? In other words, can any
five cards be left at the end of the game?

Try playing the End Game with the five cards in figure 4.12.
You should have found that the missing card is 1 Green Solid Oval.

But wait—that card is already in use!
We conclude that there are collections of five cards that cannot

possibly be the cards left at the end. These particular collections of
exceptional configurations have a very special geometric structure,
which we will explore in chapter 5.

4.6 WHAT’S SO SPECIAL ABOUT THE NUMBER 3?

What if the inventor of SET had decided that each attribute would have
four choices, instead of three? What would happen if we tried to play
this game? Consider a deck where each attribute has four expressions,
like Edna’s deck in the chapter 2 exercises, with 44 = 256 cards, and
where SETs comprise four cards. Our mantra isn’t changing—Number,
Color, Shading, Shape—but we’re adding another expression of each
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TABLE 4.3.
Assignment of coordinates to cards.

Attribute Value Coordinate

Number 4, 1, 2, 3 ↔ 0, 1, 2, 3
Color green, purple, red, brown ↔ 0, 1, 2, 3
Shading empty, striped, checkered, solid ↔ 0, 1, 2, 3
Shape diamonds, ovals, squiggles, rectangles ↔ 0, 1, 2, 3

of those attributes. For number, we add the number 4; for color, let’s
add brown; for shading, we could add a checkered pattern; and for
shape, let’s add rectangles. Now we have four expressions of each
attribute.

Let’s see what our coordinates would look like (see table 4.3). And
let’s bring back our students.

SHAMELLA: I guess now we’re working mod 4.
ERIN: That means that in order to make a SET, we need to find four

points, and each of their coordinates needs to sum to 0
(mod 4).

TYLER: Let’s pick a SET to see if this works. To make this easy, we
should pick a SET that differs in only one attribute: 1 Purple
Checkered Rectangle, 2 Purple Checkered Rectangles, 3
Purple Checkered Rectangles, and 4 Purple Checkered
Rectangles.

SHAMELLA: Sounds like a SET to me!
ERIN: Translating to coordinates using that new table, we get

(1,1,2,3), (2,1,2,3), (3,1,2,3), and (0,1,2,3). Now we need to add
the coordinates.

TYLER: Okay! First coordinate: 1+2+3+0=6.
SHAMELLA: Second coordinate: 1+1+1+1=4.
ERIN: Third coordinate: 2+2+2+2=8.
TYLER: Fourth coordinate: 3+3+3+3=12.
SHAMELLA: Now to make sure this is a SET, we need to translate

these sums into numbers modulo 4. Starting with the
first coordinate, 6 = 2 (mod 4), 4 = 0 (mod 4), 8 = 0
(mod 4), and 12 = 0 (mod 4), so the sum will be
(2, 0, 0, 0) (mod 4).
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ERIN: Wait! Isn’t the sum supposed to be (0,0,0,0)? What’s that 2
doing there?

TYLER: Did we mess up?
SHAMELLA: No, our arithmetic is fine, and that SET you picked

should have been fine too. And the latter three
coordinates worked, because those were the attributes
that were the same.

ERIN: That makes sense, because when the attributes are the same,
they’re assigned the same number, and as we keep seeing, any
multiple of n is equivalent to 0 (mod n), so any number
multiplied by 4 will always be 0 (mod 4). The coordinate
that’s not 0 is the one where the attribute expressions were all
different.

TYLER: Yeah, because we had 0, 1, 2, and 3. But when we add those
we get 6, which is not equivalent to 0 mod 4. What does this
mean?

SHAMELLA: It means that some of the modular arithmetic facts we’ve
been discussing were specific to the number 3, and will
no longer apply to this version of the game. Here’s
another problem. If I pick two cards, then there is no
longer a unique card that completes the SET. For
example, if I take the cards with coordinates (0,1,2,3)
and (1,2,3,0), then each attribute is different, so this will
be an all-different SET.

ERIN: I see. I could take (2,3,0,1) and (3,0,1,2) as the last two cards,
but I could also take (3,3,1,1) and (2,0,0,2) as the last two
cards. There are lots of other choices that would work, too.

TYLER: So there really is something special about the number 3.
ERIN: Obviously! It’s my favorite number.

Shamella is correct. SETs in this game (where there are four
expressions for each attribute) will not sum to (0,0,0,0), and this is a big
problem. But this isn’t the only problem with this game. It will also be
the case that groups of four cards could sum to (0,0,0,0) without being a
SET. For instance, in a single attribute, we could have coordinates 0, 0,
2, and 2. This violates the all-the-same-or-all-different rule of SET, but
0 + 0 + 2 + 2 = 4 = 0 (mod 4).
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Figure 4.13. Exercise 4.1.

Figure 4.14. Exercise 4.3.

Executive Summary: When it comes to SET, 3 really is the magic
number.

EXERCISES

EXERCISE 4.1. Your friend Chubbles has played a game of SET and claims
the six cards in figure 4.13 were left at the end. Assuming no mistakes were
made in the play of the game, explain why Chubbles is a rotten liar.

EXERCISE 4.2. This references exercises 2.2 and 2.3. One problem with
Edna’s version of SET is that it messes up the beauty of modular arithmetic
that we get from working mod 3. Stefano thinks his version of the game with
the added attribute of “feel” would work. Is Stefano right or wrong?

EXERCISE 4.3. Play the End Game! Suppose the five cards in figure 4.14
remain in playing the game.

a. Find the missing card.
b. Explain why the missing card cannot form a SET with any pair of cards

that remain.

EXERCISE 4.4. Here’s a larger End Game problem. Find the missing card
in figure 4.15 and determine if it makes a SET with two of the cards.

EXERCISE 4.5. When you are given two cards, there is a unique third
card that completes the SET.14 When we use coordinates for this, if we are

14 Everyone knows that by now!
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Figure 4.15. Exercise 4.4.

given cards A and B , we need to find coordinates for a card C satisfying
C = (0, 0, 0, 0) − A − B. Is it possible for this method to mess up? That
is, is it possible to have C = A or C = B?

EXERCISE 4.6. We saw in exercise 2.4 that the center of an interset is
unique. Explain why this is true using coordinates and modular arithmetic.
That is, if you have four cards A, B , C , and D, and if ABX and CDX are both
SETs for some card X , then it’s impossible for ACY and BDY to be SETs for
some other card Y .

EXERCISE 4.7. We used the midpoint formula to find the third card that
makes a SET with given cards A and B . This gives C = (A+ B)/2 = 2A+2B.

Show that if A + B + C = (0, 0, 0, 0) (mod 3), then A = 2B + 2C ,
B = 2A+ 2C , and C = 2A+ 2B.

EXERCISE 4.8. In this chapter, we found that the number of expressions of
each attribute at the end of the game must be the same modulo 3.

a. Verify that when there are 6 cards left at the end, the only possibilities are
{4, 1, 1}, {2, 2, 2}, {3, 3, 0}, and {6, 0, 0}.

b. What are the possible numbers of expressions of attributes when there are
9 cards left at the end?

c. What are the possible numbers of expressions of attributes when there are
12 cards left at the end?

EXERCISE 4.9. Three cards form a SET precisely when the sum of the
coordinates is (0, 0, 0, 0) (mod 3). This shows that three cards summing to
(0, 0, 0, 0) does not depend on how we assign coordinates to the cards.

a. Show that this is false for two cards—find an example of two cards that
sum to (0, 0, 0, 0) using one coordinate assignment, but not for a different
assignment.

b. Repeat for four cards.
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EXERCISE 4.10. Suppose we play the game with four expressions for each
attribute, as in table 4.3.

a. Suppose we choose the following two cards: 1 Purple Checkered Squiggle
and 2 Brown Checkered Rectangles. Find two different pairs of cards that
complete the SET.

b. Suppose the first two cards differ in all four attributes. How many different
SETs contain these two cards?

c. Find four cards in this version of the game that sum to (0,0,0,0), but do not
form a SET.

d. Repeat parts (b) and (c) for the game with five expressions for each
attribute.

PROJECTS

PROJECT 4.1. This project uses ideas from chapters 3 and 4. Suppose we
choose six cards at random from the deck. What is the probability these six
cards can be the six cards left at the end of a game of SET?
To get an answer, we’ll need to do a few calculations. First, we need to
figure out how many ways six cards {A, B,C, D, E , F } can be chosen so that
A+B+C+D+E +F = (0, 0, 0, 0). Once we have that number, we’ll remove
the configurations consisting of two SETs, since the game doesn’t end if SETs
remain.

a. There are
(81
5
)
ways to choose five cards, and once these five cards are

chosen, the sixth is determined by the equation A+ B + C + D + E+
F = (0, 0, 0, 0) (mod 3). Among these five-card selections, we need the
number of bad configurations where the sixth card matches one of the
previous five. Suppose E is a “bad” card for {A, B,C, D, E }, i.e., when we
use the End Game calculation to determine the sixth card, we get E . Show
that A+ B + C + D = E . This can happen

(81
4
)
ways.

b. Show that the number of bad five-card configurations is
(81
4
)− 78 × 1080.

[Hint: The
(81
4
)
ways to choose four cards A, B , C, and D include

situations when the collection {A, B,C, D} includes a SET. Explain why
these configurations need to be eliminated from the count.]
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c. Now explain why the total number of six-card configurations that sum to
(0,0,0,0) equals

(81
5
)− ((814 )− 78 × 1080

)
6

= 4,007,016.

d. Finally, to get the number of six-card configurations that can occur at the
end of the game, we need to eliminate situations where the six cards
consist of two disjoint SETs. Show that the final answer is

4,007,016 − 1080 × 962
2

= 3,487,536.

e. Conclude that the probability that six randomly chosen cards could be the
six cards at the end of a game is approximately 1.07%.
We can estimate the answer we got in part (c) above using probability.
Here are two quick and dirty ways to do this:

f. Choose six cards at random in
(81
6
)
ways. Then the sum of the first

coordinates of the six cards is (approximately) equally likely to be 0, 1, or 2
(mod 3). The same is true for the second, third, and fourth coordinates.
Conclude that the number of configurations that sum to (0,0,0,0) is
approximately

(81
6
)
/81.

g. Alternatively, note that if we choose any five cards from the deck, each of
the 81 cards in the deck is equally likely to be the sum of the five cards
chosen. Show that this argument gives

(81
5
)× 76

81 × 1
6 ways to get six cards

that sum to (0,0,0,0).
h. Show that the answers to (f) and (g) are identical, and figure out how close

these answers are to the exact value found in part (c). Then take a
break—maybe get a bite to eat.
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SET and Geometry

5.1 INTRODUCTION

All of your friends are busy playing SET, so you’ve cloned new friends.
Specifically, you have cloned three ancient scholars, Socrates, Euclid,
and Theano, who are now in your home discussing geometry. Socrates
was a classical Greek philosopher famous for his technique of posing a
series of questions (rather than simply lecturing or stating facts) to help
students come to their own realizations, now often referred to as the
Socratic method.

Euclid is widely considered the father of geometry as well as
mathematical rigor and is famous for axiomatizing geometry. His book
The Elements is considered to be the most important mathematics book
ever written. Euclidean geometry is most often taught in high school
using axioms and theorems and proofs. (Mathematical proofs could ac-
tually be taught in any branch of mathematics, but it’s thanks to Euclid
that high-school students tend to associate proofs with geometry.)

Theano was a philosopher and mathematician who ran the
Pythagorean school following the death of Pythagoras. She may also
have been the wife of Pythagoras, or the daughter of Pythagoras, but
very little is known about her. This is not surprising, given that she
lived during a time when women were considered property and were
generally not allowed to receive an education. Despite these restrictions,
she was an avid scholar and a prolific writer. She is said to have written
many texts on such diverse topics as physics, astronomy, psychology,
and medicine, but her most important work was a text on the
golden ratio.
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SOCRATES: I say, how grand it is to be alive again, and on such a fine
day! My fellow scholars, I understand we are meant to be
discussing the branch of mathematics called geometry. I
must therefore insist on beginning by posing the crucial
question: What is geometry?

EUCLID: Well Socrates, if you speak ancient Greek—which you
do—then you must know that “geometry” literally means
“earth measurement.” It is the study of shapes and sizes,
and of the general properties of space.

THEANO: Yes, quite. Traditionally, “geometry” has referred to the
study of physical space, the “measurement” of the “earth.”
However, there are branches of geometry that are more
abstract, describing spaces that can be completely
imaginary. Some of these are called non-Euclidean
geometries.

SOCRATES: My word, is that so? Do you mean to say that there are
types of geometry of which Euclid never conceived?

EUCLID: Evidently. All of the work I did on geometry was later titled
Euclidean geometry to distinguish it from more abstract
geometries. Euclidean geometry was my attempt to describe
the physical spaces we encounter in our daily lives, and it is
all built upon five axioms.

SOCRATES: Do tell. And what precisely is an axiom?
THEANO: An axiom—also known as a postulate1—is a statement

that we take to be a given, an unprovable yet indisputable
truth. We can think of axioms as the building blocks that
we use to prove theorems. We have to start somewhere—we
can’t prove anything without a set of statements we accept
to be true.2 And thus, each branch of geometry has its own
set of axioms, or put another way, each set of axioms gives
rise to a unique branch of geometry.

1 Our scholars will use the words “axiom” and “postulate” interchangeably.
2 Consider the creation of a dictionary: Each word is defined in terms of other words. This

produces undefined cycles of words, a fact we conveniently ignore most of the time by accepting
some of the most basic words of our language as essentially axiomatic. For example, most people
would probably not argue about the definition of the word “it.”
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Figure 5.1. The parallel postulate. There is a unique linem through the point P parallel
to the given line l .

SOCRATES: Most intriguing. Might you share with us some examples
of your axioms, Euclid?

EUCLID: I am glad you asked. My first axiom states that a line
segment can be drawn connecting any two points, and my
second axiom states that any line segment can be extended
infinitely in both directions to create a line. Taken together,
these postulates indicate that two points determine a unique
line.

SOCRATES: And indeed they must, for I can imagine no other
possibility. But this raises a question: What do axioms
look like in non-Euclidean geometry?

THEANO: The main axiom that changes from geometry to geometry
is the fifth Euclidean axiom, also known as the parallel
postulate. One way to state it is to say that if I have a line
and a point not on the line, then there is exactly one line
through that point that is parallel to my original line. In
figure 5.1, I’ve drawn a picture for your edification.

There are perfectly valid geometries where this axiom no longer holds.3

EUCLID: The statement Theano just gave is most likely the statement
of the parallel postulate that our readers would have
learned in school. However, my original statement of this
postulate, while logically equivalent, was a bit more
complicated: “If a straight line crossing two straight lines
makes the interior angles on the same side less than two
right angles, the two straight lines, if extended indefinitely,
meet on that side on which the angles are less than the two
right angles.” I’ve included my own illustration in figure 5.2.

3 In elliptic geometry, there are no parallel lines, and in hyperbolic geometry, there are
infinitely many lines parallel to a given line.
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Figure 5.2. Euclid’s version of the parallel postulate. If α + β is less than two right
angles, then the two lines meet on the same side.

SOCRATES: Now this is interesting, because that statement you just
gave sounds much more complicated than your initial
axioms. In fact, it sounds to me like it needs to be proved,
yet Theano said earlier that axioms are unprovable. How
is it possible that this statement needs no proof?

EUCLID: Excellent question, Socrates. There does seem to be
something different about this axiom, and in fact, I delayed
introducing it in my books as long as possible.4 And even
though I introduced the parallel postulate as an axiom,
people actually tried for a very long time to prove it as a
theorem using the other axioms. However, this is impossible,
since non-Euclidean geometries exist, meaning a consistent
geometry can arise that does not satisfy that postulate.

THEANO: Yet despite the confusion surrounding this axiom, it turns
out that some of the attempts to prove the parallel
postulate did produce important mathematics.

Theano is correct (somehow, even though this happened long
after she lived): two nineteenth-century mathematicians, Bolyai and
Lobachevsky, independently discovered that you could have a consis-
tent geometry satisfying the first four axioms but not the fifth. (Gauss
claimed he had done the same, but he never published this work.)
Elliptic and hyperbolic geometry are examples of consistent geometries
that satisfy Euclid’s first four postulates but not the fifth, the parallel
postulate. They have their own versions of a parallel postulate. So,

4 Of course, we don’t know whether Euclid tried to prove it and couldn’t, or whether he knew
it was an axiom. We embrace the mystery.
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“Euclidean” geometry is what we now call the geometry in which the
parallel postulate holds.

5.2 FINITE AFFINE GEOMETRY

THEANO: Let us now discuss a specific, non-Euclidean branch of
geometry called finite affine geometry.

SOCRATES: With pleasure, Theano, and I must once again insist on
beginning by posing the crucial question: What is finite
affine geometry?

EUCLID: I never considered the possibility of finite geometries,
because I intended geometry to be a reflection of the world
around us, which I perceive as infinite. But I suppose a finite
geometry is one that contains a finite number of points.

THEANO: Undoubtedly. In finite geometries, the third and fourth
Euclidean axioms—which essentially define circles and
right angles—do not apply. Instead, these geometries are
all about the incidences holding between finite sets of
points and lines. Finite affine geometry deals exclusively
with points, lines, planes, and hyperplanes.5

SOCRATES: Am I to understand that there are branches of geometry
in which circles and right angles do not exist? What could
be the purpose of a geometry that deals only with points
and lines?

THEANO: The purpose, as I understand it, is that points and lines in
this context are more abstract than literal points and lines.
Instead, points and lines can represent anything. For
example, maybe points are humans, and lines are
relationships between humans.

EUCLID: What a novel concept!
SOCRATES: Forsooth, this revelation unleashes a world of

possibilities. I wonder, Theano, to what other settings can
we generalize finite affine geometry?

5 The term “hyperplane” can mean a variety of things depending on context. We’ll see it
defined with respect to finite affine geometry later on in this chapter.
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THEANO: Many, Socrates, but there is one setting of particular
interest to us here. Finite affine geometry turns out to be
an excellent model of the card game SET.

EUCLID: How fortuitous that SET is the subject of this very book.
THEANO: Indubitably. The axioms for finite affine geometry

translate remarkably well into the rules of the card game.
SOCRATES: And thus, I must now ask, what are the axioms for finite

affine geometry?

To answer this question, we will begin by working in two dimen-
sions. Over the course of the rest of this chapter, we will work our
way up first to three dimensions and finally to the four dimensions that
comprise the SET deck.

Finite Affine Plane Axioms

Axiom 1. There are at least three non-collinear6 points.
Axiom 2. Every line contains at least two points.
Axiom 3. Two points determine a unique line.
Axiom 4. For any line l and any point P not on l, there is exactly one

line containing P and not containing any point on l. This line is said to
be parallel to l.

We can make some comments about these axioms:

• The purpose of axioms 1 and 2 is to avoid “boring” geometries,
for example, situations where all the points lie on a single line, or
where lines consist of a single point.

• Axiom 3 is essential to any geometric structure.
• Axiom 4 is one way of stating the parallel postulate, and is
illustrated in figure 5.1. There are others, but this one works best
for our purposes. We need to be working in a plane for this to
make sense, though. In three-dimensional space, there are skew
lines, i.e., lines that don’t intersect, but that aren’t parallel.

6 Non-collinear simply means “not on the same line.”
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What Does This Have to Do with SET?

The axioms for finite affine planes apply beautifully to SET. Think of
the cards as points in our geometry, and think of SETs as lines. With
this substitution, let’s take another look at the axioms.

Axiom 1. There are at least three cards that are not in the same SET.
SET interpretation: Self-evident.

Axiom 2. Every SET contains at least two cards.
SET interpretation: Self-evident.

Axiom 3. Two cards determine a unique SET.
SET interpretation: Every pair of cards determine a unique SET. We’ve
been calling this the “fundamental theorem of SET.”

Axiom 4. For any SET and any card not in the SET, there is exactly
one SET containing this card that is parallel to the original SET.
SET interpretation: Given a SET and a card not belonging to that SET,
there is a unique SET parallel to the given SET. To make sense of this
connection to the game, we will need to define “parallel” in the SET
universe. This will happen soon, we promise.

EUCLID: To think that seemingly abstract axioms can translate into
rules for a popular card game! I only wish we had had SET
in my day.

THEANO: We all do, Euclid. Not to mention computers. In any
case, now that we have axioms, we have a reasonable
geometry.

SOCRATES: Well yes, apparently we do, but I must admit that
until now I have been relying on faith. This geometry
seems conceivable, but what does it actually look
like?

Using just the four axioms, here’s what we can do:

1. We can prove that all lines have the same number of points. This
is reasonably entertaining to go through, and it is also the point
of exercise 5.1
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Figure 5.3. The affine plane AG(2, 3) has 9 points and 12 lines, with 3 points on each
line.

2. If we then assume each line has exactly three points, we can prove
that there is only one point–line structure that satisfies all the
axioms. This structure will consist of 9 points and 12 lines.7 This
is done in the rather long, detailed exercise 5.2. See figure 5.3.
(It’s pretty!)

Mathematicians call this plane AG(2, 3). The letters AG tell us this
is an affine geometry, and (2, 3) tells us we’re working in 2 dimensions,
with 3 points on each line.

5.3 THE PARALLEL POSTULATE AND SET

Now for the fun part. Our geometers have obtained a deck of SET cards.

SOCRATES: How do we draw a plane using the SET cards? And what
does “parallel” mean in the context of SET?

THEANO: Those are two separate questions, Socrates, but we have
actually already seen the answer to the first question in

7 Our affine plane has three points per line. Other numbers are possible, but there are
restrictions. It is known that if n = pk, where p is a prime number and k is a positive integer,
then there are affine planes with n points per line. No other numbers are known to work, but
finding precisely which numbers are possible is a famous open problem.
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Figure 5.4. The affine plane AG(2, 3). SETs occupy the same positions in this picture
that lines do in figure 5.3.

chapters 1 and 2. Let us take all the solid squiggles and
arrange them as in figure 5.4, making a plane of SET cards
similar to the ones we have previously seen. Then it is
clear the lines in the geometry in figure 5.3 match the
location of the SETs in figure 5.4.

EUCLID: This is most astonishing! In any geometry, two lines are
“parallel” if they are in the same plane and they don’t
intersect. Looking at figure 5.3, we see four collections of
lines: horizontal, vertical, and two types of diagonal8
lines, and each collection of parallel lines is colored the
same.

SOCRATES: Incredible. I believe I am beginning to understand what
could make SETs “parallel” to one another. For instance,
is it true that each horizontal SET is parallel to the other
horizontal SETs in figure 5.4, just as the horizontal lines
in figure 5.3 are parallel?

THEANO: Precisely, and the same is true for each collection. For
example, the two SETs in figure 5.5 are parallel. These
correspond to the SETs in figure 5.4 that correspond to
two of the blue diagonal lines in figure 5.3.

8 You’ve probably noticed that four of the diagonal lines are curved. Remember: This is an
abstract geometry! We can bend lines if we need to, in order to demonstrate their existence
connecting points. You may also notice that the “curves” seem to cross each other, but these
are not actual points of intersection—the only valid points in this geometry are ones we already
defined, shown in red. This may violate your intuition at first, since you may be used to thinking
in Euclidean geometry, so you may want to give yourself some time to get used to these new
axioms.
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Figure 5.5. These two SETs are parallel.

SOCRATES: Could one perhaps say that the 12 SETs in figure 5.4
break into four classes, with three parallel SETs in each
class?

THEANO: One certainly could. That is an elegant summary.

This will work for any plane we can construct. For instance, back
in chapter 2, we showed how to complete a plane using three cards
that don’t form a SET. Figure 5.3, the abstract affine plane, tells us
which SETs are parallel to each other. Since these configurations consist
of 9 cards and 12 SETs, they are quite special. They are called magic
squares on the Set Enterprises website, because for every pair of cards
in the square, we can find the card that completes their SET within
the square (this is the “closed” property we discussed in section 1.2).
We will continue to refer to such structures as planes, since we are
discussing geometry. This may be strange to you at first, because
Euclidean planes are infinite, so take a moment to get used to the idea
that a “plane” in our universe is a finite set of 9 points (cards) containing
12 lines (SETs).

Something else to notice about figure 5.4 is that we isolated two
attributes: the cards are all solid squiggles. In a sense, attributes corre-
spond to dimension. Right now we are dealing with a two-dimensional
structure, i.e., a plane, and the easiest way to do this is to “fix” two
attributes (shape and shading), allowing only the other two attributes
(number and color) to vary. The number of attributes that can vary
corresponds to dimension.

But this is not the only way to construct a plane—we can use all four
attributes, and the plane will still be “closed” (the card completing the
SET of any pair of cards in the plane will be contained in the plane), as in
figure 5.6. This works because our definition of parallel doesn’t change
as we add dimensions (attributes), which will be important soon.

EUCLID: Fellow geometers, I would like to revisit the parallel
postulate for SET.
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Figure 5.6. Another plane, with all four attributes represented.

Figure 5.7. A SET and a card. Find the SET that contains the card and is parallel to the
original SET.

Figure 5.8. Adding a card to make a vertical SET.

THEANO: Now would be a good time to do this, since we have just
seen some examples of parallel SETs.

SOCRATES: Naturally, for there remains an unaddressed question: If
I am given a SET and a card not in the SET, how can I
find the unique SET parallel to the first SET?

To satisfy our scholars, let’s pick a SET and a card not in the SET, as
in figure 5.7.

First, complete the vertical SET in the first column, as in figure 5.8.
As in chapter 2, we continue to add cards to this plane—see

figures 5.9 and 5.10. We will not need to finish the entire plane. (But
don’t let that stop you from finishing it if you’d like to!)

For the last step, complete the SET in the second row, and you can
now get rid of the extra card in the left vertical SET, as in figure 5.10.
This SET will be parallel to the original SET.
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Figure 5.9. Adding a card to complete a diagonal SET.

Figure 5.10. Adding the card to complete the SET parallel to the given SET.

Figure 5.11. A plane with four collections of parallel SETs: three horizontal, three
vertical, three diagonal with “positive slope” (lower left to upper right),
and three diagonal with “negative slope” (upper left to lower right).

SOCRATES: That is quite illuminating, but how would we be able to
determine if two SETs are parallel without determining
that additional card, 3 Red Empty Diamonds?

Socrates asks a great question. (That’s what he does.) Can we tell
whether or not two SETs are parallel by just looking at the SETs? The
answer is yes. Take a look at some of the parallel SETs, and see if you
can find some pattern based on the examples. We’ve given you another
plane in figure 5.11 to help you figure it out. (Remember, horizontal
SETs are parallel, vertical SETs are parallel, etc.)

Our solution to Socrates’ last question is all about pattern recogni-
tion. Before giving you the solution, we will first need a brief digression
on cycles.
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Cycles: A cycle of numbers (or colors, or objects of any kind)
is a sequence placed in circular order. For instance, if you seat
three people around a circular table (and label them 1, 2, and 3),
then going around the table clockwise (several times), you might
encounter the people in the order 1 → 2 → 3 → 1 → 2 →
3 → 1 · · · . We will write this cycle as (1, 2, 3). The last number
is assumed to cycle back to the first one. This means that the
cycles (1,2,3), (2,3,1), and (3,1,2) are equivalent—they correspond
to the same seating arrangement, moving clockwise around the
table.

How many ways can three people sit around a table? While
there are 3! = 3 × 2 × 1 = 6 different ways in which we
could order the numbers 1, 2, and 3, there are only two distinct
3-cycles.9 The other three ways of ordering the numbers—(3,2,1),
(1,3,2), and (2,1,3)—are also all equivalent to each other, and in
fact, they represent the (1,2,3) cycle going in reverse (or moving
counterclockwise around the table).

Staring at SETs that are parallel and SETs that aren’t (see figure 5.12
for two SETs that are not parallel), we (eventually) see that for SETs to
be parallel, we have the following conditions:

• If an attribute is the same in one SET, then it’s the same in the
other. In figure 5.10, shape is the same: the three cards in the SET
in the top row are all squiggles, and the three cards in the parallel
SET in the second row are all ovals.

• If an attribute is all different in one SET, then it’s all different in
the other. More importantly, in this case, you can place the cards
in the two SETs in some order so that, for all the attributes that
are not the same, the cyclic ordering is the same.Here’s what we
mean (refer back to figure 5.10):

– Number: Moving left to right, the cards in the first SET cycle
(1, 2, 3) and the cards in the second SET cycle (2, 3, 1),
which is equivalent to (1, 2, 3). These are the same
left-to-right cyclic order.

9 In general, there are (n − 1)! ways to seat n people around a circular table.
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Figure 5.12. Two SETs that are not parallel.

– Color: Here, the two SETs again cycle the same way: (red,
purple, green).

– Shading: Again, the two SETs cycle the same way: (solid,
empty, striped) and (striped, solid, empty), which are
equivalent.

Let’s look at this cyclic condition for two SETs that are not parallel,
the SETs in figure 5.12. Number is the same for each SET (the top SET
is all 1s, and the bottom SET is all 3s) and so is shading (all solid in the
top SET, and all striped in the bottom SET). That means we need to
check color and shape for cyclic consistency.

• Color: Both SETs share the (red, green, purple) cycle.
• Shape: Moving left to right, the first SET cycles (squiggles,
diamonds, ovals), but the second cycles (diamonds, squiggles,
ovals). These cycles are different.

We conclude the two SETs in figure 5.12 are not parallel.
Are we sure we’re right? Yes, but it’s always a good idea to check your

work. If we start completing SETs by taking a card in the top row and
another in the second row, we will quickly need more than nine cards.
In particular, this procedure forces us to add 2 Green Empty Ovals,
2 Green Empty Squiggles, 2 Green Empty Diamonds, 2 Red Empty
Squiggles, 2 Red Empty Diamonds,. . . ; in fact, we get every card with
two empty symbols. So those two SETs can’t be in a plane, so they
can’t be parallel. (In fact, we’ve constructed a hyperplane containing the
original two SETs. We’ll have more to say about hyperplanes later in
this chapter.)

Finally, we can use this idea to answer Socrates’ earlier question
a different way: find the SET parallel to the SET in figure 5.13 (this
was the top SET in figure 5.12) containing the card 3 Purple Striped
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Figure 5.13. A SET and a card. Find the SET that contains the card and is parallel to
the original SET using the cyclic procedure.

Figure 5.14. A SET and the parallel SET containing the card.

Diamonds (the left card of the bottom SET of same figure). Here’s
how we can create a parallel SET using the cyclic procedure instead of
completing a plane.

• Number: All the cards in the SET are 1s, so the cards in the
parallel SET will all be 3s.

• Color: Color cycles (red, green, purple) in the SET, and, since the
card is purple, the equivalent cycle is (purple, red, green).

• Shading: The first SET is all solid, so the cards in the parallel SET
will all be striped.

• Shape: The shapes in the SET cycle (squiggles, diamonds, ovals),
so our parallel SET will cycle (diamonds, ovals, squiggles).

This means that the next card in the SET is 3 Red Striped Ovals, and
the third card is 3 Green Striped Squiggles. That SET is pictured in
figure 5.14.

SOCRATES: This cyclic procedure is most interesting, but it raises a
question: Does the cyclic procedure depend on the order
of the cards?

Another good question, Socrates. While it looks like the definition
did depend on order, all we need for the SETs to be parallel is that
there is some order where all of this works. In fact, two SETs are parallel
if either all attributes that are different cycle the same way or they all
cycle the opposite way. See the nonparallel SETs in figure 5.12: color
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Figure 5.15. AG(3, 3) with the cards.

cycled the same way in the two SETs, but shape cycled the opposite way.
If color had also cycled the opposite way, as shape does, then the SETs
would be parallel, and we would be able to reorder the cards to make
both of those attributes cycle the same way in both SETs.

Takeaway Message: Parallelism is a property of the SETs, not of
the ordering.

Why is the cyclic description of parallel SETs equivalent to the one
we obtained from the parallel postulate? Our explanation uses vectors,
and it appears in chapter 8. Finally, we note that our descriptions of
parallel SETs do not depend on dimension. This means our notion of
parallel SETs will still work when we increase the dimension. And since
this is what we’re about to do, this is good news.

5.4 THREE-DIMENSIONAL AFFINE GEOMETRY: AG(3, 3)

Having mastered the affine plane, we’re ready to move from two
dimensions to three. The three-dimensional affine geometry whose
lines all contain three points is AG(3, 3); we will call a collection of cards
that form AG(3, 3) a “hyperplane,” as this is the term mathematicians
use. (If you liked the term “magic square,” you could potentially think
of a hyperplane as a “magic cube,” but we won’t be using that term.)

What does a hyperplane look like? It consists of three parallel planes.
Imagine stacking three planes on top of each other in three layers
to make a three-dimensional cube. Figure 5.15 shows a hyperplane,
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Figure 5.16. A model of a hyperplane as a cube.

TABLE 5.1.
Hyperplane counts.

# cards # SETs # planes
27 117 39

and figure 5.16 is a photo of a three-dimensional SET “cube” in
which SET cards are represented by balls of clay with the appropriate
symbols.10

How many SETs are there in a hyperplane? How many planes are
there in a hyperplane? Although the hyperplane is constructed from
three parallel planes, it contains more than those three planes. To
satisfy your curiosity, we give the answers to these counting questions
in table 5.1. All of these counts will be justified more thoroughly in
chapter 6.

It’s a good exercise in visualization to try to locate as many of the 39
planes in the hyperplane of figure 5.15 as you can. It’s easy to spot the

10 Some of us are good with clay. Thanks, Liz!
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Figure 5.17. AG(3, 3) with three lines highlighted.

three planes determined by shape: the squiggles form a plane, as do the
ovals, and the diamonds. But we could also take the top row of each of
these planes to make another plane (i.e., all of the red cards).

More generally, to create a plane, we could choose any SET from the
squiggles, then choose a parallel SET from the ovals. This would then
determine the remaining cards, which would be another parallel SET
from the diamonds. We have 12 choices for the SET we choose from
the squiggles, then three choices for the parallel SET from the ovals,
so we get 36 planes in this way. Adding in the 3 planes above (all the
squiggles, all the ovals, and all the diamonds), it turns out that’s all of
them, for a total of 39.

Where are the 117 SETs in AG(3, 3)? We give a schematic grid-
like picture in figure 5.17 to help clue you in. There are three types
of SETs:

• SETs entirely contained in one of the three parallel planes. For
instance, in figure 5.15, the SET that includes 1 Green Squiggle,
2 Purple Squiggles, and 3 Red Squiggles lives in the first plane.
This SET is represented in figure 5.17 as three red dots. There are
12 SETs in each plane and 3 planes, so we have a total of
12 × 3 = 36 SETs of this first type.

• SETs that use one card from each of the three planes. There are
two ways this can happen, and we again use the cards in
figure 5.15 to illustrate.

– We could choose 1 Red Squiggle, 1 Red Oval, and 1 Red
Diamond. This is represented by the green dots in
figure 5.17. Note that these cards occupy the same relative
position in each of the three planes.

– We could also choose 1 Purple Squiggle, 2 Red Ovals, and
3 Green Diamonds. This is represented by the blue dots in
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figure 5.17. This time, if we overlay the relative positions the
cards occupy in a single 3× 3 grid, we get one of the diagonal
SETs in a plane.

For SETs of this second type, if we pick a card in one plane and a
card in another plane, these cards uniquely determine a SET
(whose last card is in the third plane). Because there are 9 cards in
each plane, there are thus 9 × 9 = 81 SETs of this second type,
and 36 + 81 = 117, so this accounts for all SETs in the
hyperplane.

Notice that these possibilities for what SETs can look like in AG(3, 3)
are very reminiscent of what defines a SET: all the same or all different.
Either all the cards of the SET are in the same 3×3 subgrid, or each card
is in a different one. You can say the same about the rows and about the
columns.

So how do wemake a hyperplane? One way is to isolate one attribute.
(In fact, instructions for playing SET suggest starting with only the
red cards in the deck when teaching the game to young children. We
have found that this is not necessary, though.11) For example, all the
cards in figure 5.15 are solid. We could just as easily have taken all the
1-symbol cards, or all the green cards, or all the diamonds, etc. Recall
that earlier, in two dimensions, we isolated two attributes: solid squig-
gles. The attributes that could still vary were number and color. In this
case, in three dimensions, we no longer isolate shape, so we now have
three attributes that can vary: number, color, and shape. Again, the
number of attributes allowed to vary corresponds to dimension, in this
case three.

Just as our planes were closed (meaning the card that would com-
plete the SET for every pair of cards in the plane was itself contained
in the plane), our hyperplanes will also be closed. This is a property
of the geometry: the only groups of cards that can be closed in this
manner must be powers of 3 (31 = 3, 32 = 9, 33 = 27, 34 = 81), since
we’re working in a geometry where lines are restricted to containing
exactly 3 points. A SET (3 cards) is closed; a plane (9 cards) is closed; a

11 Children pick up the full game very quickly. Then they destroy their parents.
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Figure 5.18. A plane and one extra card.

2 7 10 4 13 16

3 8 11 5 14 17

6 9 1 12 15

Figure 5.19. Starting with a plane and one more card, the hyperplane is completely
determined. The numbers indicate one order we can use to find the
unknown cards.

hyperplane (27 cards) is closed; and as we already know, the entire deck
(81 cards) is closed. These are the only structures in our deck that can
be closed.

Building a Hyperplane: Completing SETs

We can also make a hyperplane using a mixed collection of cards. How
dowe do this? Recall that a SET plane is completely determined by three
cards that don’t form a SET: adding one more card not in the plane will
uniquely determine a whole hyperplane. So we start with a plane and a
card not in the plane (see figure 5.18).

We can now build the hyperplane, card by card, where each new
card completes some SET with two cards already in our collection. This
depends on knowing the location of the SETs—for that, we’ll rely on
our grid (figure 5.17). Filling in the missing cards will have the flavor of
a puzzle. There are many ways to do this—we’ve outlined one ordering
in figure 5.19. We’ll illustrate this technique by showing how to get the
first three unknown cards.
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Figure 5.20. The hyperplane!

Let’s fill in some of the 17 missing cards in figure 5.19.

1. The card labeled 1 in figure 5.19 completes a SET with 2 Purple
Empty Ovals and 1 Red Solid Squiggle. So this card must be
3 Green Striped Diamonds.

2. For the card labeled 2 in the figure, we use 1 Green Empty
Diamond and 3 Green Striped Diamonds (the card we placed in
the first step). So card 2 becomes 2 Green Solid Diamonds.

3. For practice, we’ll do one more. The card labeled 3 completes a
SET with 1 Red Solid Squiggle and 2 Green Solid Diamonds (the
card placed in step 2). This gives 3 Purple Solid Ovals. But note
that this card also completes a SET with 3 Red Empty Squiggles
and 3 Green Striped Diamonds (the first card we placed, back in
step 1). We have two options for how to find this card, but they
give us the same result, so we’re happy.

We encourage you to fill in the remaining cards on your own.
You can cheat by looking at figure 5.20, where we give the completed
hyperplane.

Two things to notice:

1. There are lots12 of different orderings of the remaining cards that
we could use to complete the hyperplane. The SET containing the
card labeled 1 must include the “extra” card—1 Red Solid
Squiggle, in this case. But that leaves nine potential spots for the
card labeled 1: each of the cards in the rightmost plane. Once we
select a position for the label 1, we can determine any other card
in the hyperplane immediately. Then we can figure out how

12 This is an understatement.
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many different orderings of the labels 1–17 will work in this
process. See exercise 5.3.

2. When we figured out card 3 above, we had two choices for the
SET we could have used. As we continue the process, we will
have more and more SETs to choose from when we determine an
unknown card.

For a thought experiment,13 try this:

• How many SETs could we use to find the last missing card?

Given any pair of cards in a hyperplane, the card that completes
the SET is also present. (As we have already seen, this is where
mathematicians use the term “closure.”) For the last missing
card, we can pair up the other 26 cards (since we have a total of
27), which would give us 13 pairs. We conclude that we have 13
different ways to figure out card 17. This also shows us that each
card is in 13 SETs.

EUCLID: That was quite enlightening. Finite geometry mixes pattern
recognition and counting with standard geometry axioms.

SOCRATES: And we have just witnessed examples of how this works
in the affine plane as well as in three-dimensional affine
space. Now, how about four-dimensional affine space,
which I am to understand is where the entire SET deck
lives? How can the analysis of four-dimensional affine
geometry shed light on SET?

THEANO: Presumably, we are about to find out.

5.5 THE ENTIRE DECK: FOUR-DIMENSIONAL AFFINE
GEOMETRY AND AG(4, 3)

We are now finally ready for the geometry of the entire deck of cards.
In constructing the hyperplane, we took a plane, then added one new
card. Adding just one more card will define the entire four-dimensional
space, i.e., the entire deck.

13 Basically, all of mathematics is a thought experiment, isn’t it?
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Figure 5.21. AG(4, 3) in all its glory.

From the affine geometry viewpoint, the deck of cards forms
AG(4, 3), the four-dimensional affine geometry with three points per
line. In constructing AG(4, 3) from the cards in the deck, we end up
with an organized, somewhat mind-blowing 9 × 9 array. Each SET,
plane, and hyperplane will be visible here.14 Figure 5.21 is one example
of such an array. We could consider this a “magic deck,” or a four-
dimensional hyperplane.

How could you do this yourself? You have all the tools you need.
First, make a hyperplane, as you did in the previous section. Choose
a card you didn’t use in the hyperplane. Then, take one of the
planes in your hyperplane and the extra card to make a new hyper-
plane. Continue, completing SETs like crazy to determine the missing
cards.

In fact, you don’t need to start with a hyperplane. To make your own
beautiful array, suitable for framing, you need to place just five cards!
Here’s why:

14 If you know where to look.
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• First, working by analogy in lower dimensions, we know that any
two cards determine a unique SET. We’ve already translated this
fact about the game into geometric terms:

Every two distinct points determine a unique line.

• When we made our first plane in chapter 1, we needed three cards
that didn’t form a SET. Then the rest of the plane was completely
determined. From the geometry point of view, this translates to
the following well-known fact:

Three non-collinear points determine a unique plane.

• For the hyperplanes, we needed four cards, provided no three of
them were in the same plane. Geometrically, this is equivalent to
the less familiar fact from four dimensions:

Four non-coplanar15 points determine a unique
three-dimensional hyperplane.

So we need five cards to build AG(4, 3), no four of which are in a
three-dimensional hyperplane. Try making your own some day when
you’ve got a full deck of cards, a clean floor, and some time on your
hands.

We conclude our treatment of AG(4, 3) with a few remarks about
the remarkable figure 5.21.

1. It’s easy to see all the SETs parallel to a single SET. For example,
take the SET consisting of 2 Purple Empty Ovals, 2 Green Solid
Squiggles, and 2 Red Striped Diamonds, i.e., the top row of the
plane in the top left of our display. Then there are 26 other SETs
parallel to this SET, and they are easy to spot. They are just the
26 horizontal SETs in the nine 3 × 3 grids. We explore this in
more detail in chapter 8.

2. Now, imagine shrinking each of the 3 × 3 grids to a point; if you
take three of them that are in the same position as a line in

15 As you might have guessed, this means “not contained in the same plane.”
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TABLE 5.2.
SET deck counts.

# cards # SETs # planes # hyperplanes
81 1080 1170 120

Figure 5.22. SETs in the “magic deck.”

AG(2, 3), then those three planes will form a hyperplane! (One
way to “visualize” this is to hold the picture really far from your
face.)

3. Finally, there are many things to be counted here. We give
the total number of SETs, planes, and hyperplanes in the
configuration in table 5.2. All of these counts are explained in
chapter 6.

Where are the SETs in figure 5.21? As we did for hyperplanes, we use
a grid in figure 5.22 to show the relative location of the SETs. There are
again three possibilities:

1. The SET is contained entirely within one 3 × 3 subgrid, where
the cards are in the same position as a SET in a plane (blue).

2. The SET has one card in each of three 3× 3 subgrids, where those
subgrids are themselves in the same position as a line in AG(2, 3),
and the cards are in the same position in each plane (red).
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3. The SET has one card in each of three planes, where those planes
are themselves in the same position as a line in AG(2, 3), and
when you superimpose them, they are in the same position as a
SET in a plane (green).

Executive Summary: Figure 5.21 is awesome, and it is well worth
your time to stare at it and look for patterns.

5.6 MAXIMAL CAPS—A PREVIEW

While you were staring at figure 5.21, our three scholars played numer-
ous rounds of SET, and now Socrates has a question.

SOCRATES: I notice it is not uncommon to come across a
configuration of 12 cards that do not contain a SET, but
when we deal out three more, are we guaranteed to be
able to find a SET in the new configuration of 15 cards?
I suppose what I am really asking is, what is the largest
number of cards we could have with no SETs?

EUCLID: As a geometer, I would ask for the largest number of
points in the geometry AG(4, 3) that did not contain
a line.

THEANO: And as a person who knows the answer, I would say “20.”

This is an important question, and geometers answered it before16
the invention of SET. We return to this question in chapter 9, where we
explore the structure in greater detail.

This can also have an impact on the play of the game. The rules of
the game say to lay out 12 cards, and in the event that there isn’t a SET
in those 12, lay out 3 more, for a total of 15. However, it is possible
(though very rare) that there is still no SET in those 15 cards.17 In fact,
even adding 3 more cards (bringing the total to a rather unwieldy 18)

16 This fact was first proved by Giuseppe Pellegrino in 1971 in a paper titled “Sul massimo
ordine delle calotte in S4,3,” long before SET was invented. It’s in Italian. We have not read it.

17 It has happened to us.



124 • Chapter 5

Figure 5.23. The largest cap has 20 cards. Search all you like, but you won’t find any
SETs here.

still does not guarantee the presence of a SET. Only after adding 3 more
cards, bringing the total to (a ghastly) 21, are we certain that there is a
SET in the layout.

Geometers call collections of points that contain no lines caps. What
does a 20-card cap look like? We give one in figure 5.23.

For now, here’s a quick preview of chapter 9 that we can’t resist. We
can understand the geometric structure of the cards in figure 5.23: the
20 cards can be broken up into 10 pairs, with the same card completing
each of these 10 SETs. To see this, look at the first two cards, and
complete the SET. Do the same thing for the next two cards, and the
next pair, and so on. Every one of these SETs is completed by 2 Purple
Empty Ovals, so the cap is a massive interset. In fact, this is a decuple18
interset.

5.7 THE SIX-CARD THEOREM

Now that we’ve discussed maximal caps, we are ready to revisit the End
Game. The cards left over at the end of the game must form a cap, since
no SETs will be contained in those cards.

How many cards can we have left at the end? The number left must
be a multiple of three, but we can’t have three cards left at the end (we
discussed this in chapter 1, and usedmodular arithmetic to explain why
in chapter 4). It’s possible (but rare) that there are no cards left, meaning
you’ve cleared the whole deck.

18 This is, apparently, the word formultiplying by ten, as in “double,” “triple,” and “quadruple,”
but for ten. We had to look it up.
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Figure 5.24. Six cards left at the end of the game played by Socrates, Euclid, and
Theano.

So if there are cards left at the end, there must be at least 6. We could
also have 9 remaining on the board with no SETs, and (infrequently)
12; it’s extremely rare that more than 12 cards remain.19

We examined the six-card case in chapter 4, where we showed that
there is some extra structure. As an application of modular arithmetic,
we showed the following:

• Break up the six cards into three pairs any way you like. Add a
card to each pair to complete a SET. Then the three cards you
added form a SET, or the three cards you added are all the same.

This tells us there are two cases to examine when six cards remain at
the end of the game:

1. The cards form a triple interset.
2. They don’t form a triple interset, so every pairing produces a

distinct SET (with no repeated cards).

We can use what we know about hyperplanes to distinguish these
two cases.

Case 1. Six cards left form a triple interset.

What does the structure of the six leftover cards look like when those
cards form a triple interset? It turns out these cards are contained in
a hyperplane. In fact, we can use these cards to determine a unique
hyperplane. Figure 5.24 shows a triple interset left at the end of a
spirited game among Socrates, Euclid, and Theano. These cards all live
in the hyperplane shown in figure 5.25.

Looking back at the triple interset of figure 5.24, we see that 3 Green
Solid Ovals completes each SET. We’ve placed this card in the upper left

19 A simulation in chapter 10 gives approximate probabilities for this.
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Figure 5.25. This hyperplane contains the triple interset in figure 5.24 left at the end of
a game played by Socrates, Euclid, and Theano.

Figure 5.26. Six cards left at the end of another game played by Socrates, Euclid, and
Theano. They play really fast.

corner of the hyperplane in figure 5.25. Now imagine our hyperplane is
a genuine, three-dimensional cube (as in figure 5.16). We’ve placed our
special six cards in such a way that these three SETs form three edges
of the cube that intersect in one point (card), the card that completes
the triple interset. This may remind you of the x-, y-, and z-axes in
three-dimensional Cartesian space.

Takeaway Message: If the six cards form a triple interset, then
they can always be situated in a hyperplane as in figure 5.25.

Case 2. Six cards left don’t form a triple interset.

What about the scenario where we have six cards left at the end of the
game, but they do not form a triple interset? As we noted in chapter 4,
this happens most of the time (roughly 80% of the time that six cards
remain, according to simulations in chapter 10). First of all, some of us
are a little sad when this happens; finding the pairing that gives a triple
interset is “fun.” But what is the geometric structure of the six cards
pictured in figure 5.26?

It turns out these six cards do not live in any hyperplane—we’ll need
the entire deck. We can place the cards in the positions occupied by
the dots in figure 5.27. You can check that the six cards of figure 5.26
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Figure 5.27. Six cards left that don’t form a triple interset can always be placed
like this.

occupy these positions in figure 5.21. Without getting all technical here,
we think the black dots in these positions look a little bit like an arrow.

If you play a game of SET, wind upwith six cards at the end, andwant
something else to do, you should first see if those cards form a triple
interset. If they don’t, you could take any five of them and place them
where the big black dots live in the upper left of the grid in figure 5.27.
If you fill out the rest of the grid with cards, completing SETs as you go,
then the last card from the six left at the end of the game will wind up
in the lower right of the entire configuration.

5.8 REVISITING THEWEIRD FIVE-CARD SCENARIO

In chapter 4, we considered onemore situation involving the EndGame
when six cards are left. Since one card is hidden in the End Game,
we have five cards visible in this (fairly common) situation. We asked
the following question:

Five-card question: Can any collection of five cards appear?

As we saw in that chapter, the answer to this question is no. It is
possible to construct a collection of five cards where the sixth card
determined by playing the End Game is one of the five cards we already
have. This means that these five cards can’t appear at the end of the
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Figure 5.28. Five cards leading to a bad End Game scenario.

game. We now show how to create such five-card collections using the
ideas in this chapter.

First, take any four cards that are not in a plane (so the corresponding
points are not coplanar). You can ensure your cards satisfy this con-
dition if they don’t contain a SET and they aren’t an interset. For the
example, we will use 1 Red Solid Squiggle, 1 Purple Striped Squiggle,
3 Purple Striped Ovals, and 1 Purple Empty Oval.

Next, find the coordinates for the cards, and then find the (mod 3)
sum of the cards (recall this procedure from chapter 4). In our case,
in order, the coordinates are (1, 2, 2, 2), (1, 1, 1, 2), (0, 1, 1, 1), and
(1, 1, 0, 1), so their (mod 3) sum is (0, 2, 1, 0), which corresponds to
3 Red Striped Diamonds, as shown in figure 5.28.

Now, when we work out the missing card using the End Game, we
get 3 Red Striped Diamonds, which is already in the layout of cards.
(Try this yourself.) This means that these five cards could never have
been an actual End Game situation. How did this happen? Recall, the
coordinates for 3 Red Striped Diamonds, (0, 2, 1, 0), were the modular
sums of the coordinates for the other four cards. That means that
the sum of the coordinates of the five cards is 2 × (0, 2, 1, 0), so the
only way to make the sum equal to (0, 0, 0, 0) is to add (0, 2, 1, 0)
again.

We can now use these cards to produce four more collections of five
bad cards. We’ll do one, and leave the rest (plus further analysis) to
exercise 5.6. We can take four cards from that group of five, but include
the 3 Red Striped Diamonds, and now start the process over again with
these four cards. We encourage you to do this yourself, using the cards
1 Purple Striped Squiggle, 3 Purple Striped Ovals, 1 Purple Empty Oval,
and 3 Red Striped Diamonds. You should find their sum is (2, 2, 0, 1),
corresponding to 2 Red Empty Ovals, pictured in figure 5.29.
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Figure 5.29. Five new cards leading to a bad End Game scenario.

As expected, playing the End Game gives you 2 Red Empty Ovals,
the card we added. Here’s an interesting thing: We took out 1 Red Solid
Squiggle and replaced it with 2 Red Empty Ovals. But these two cards
make a SET with 3 Red Striped Diamonds, which was the original card
we added. Exercise 5.6 will give you a chance to explore this idea.

5.9 CONCLUSION

EUCLID: I am truly amazed by what happens when we start with a
different collection of axioms. I suppose it had never
occurred to me that one could get a consistent, abstract
geometry by simply changing the axioms. I was just trying to
describe the world around me. In my mind, there was only
one set of axioms.

THEANO: And for thousands of years, it seems that almost everyone
thought that way. It took a long time for people to open up
to the idea of non-Euclidean geometries. Only within the
past two hundred years have these geometries been
accepted by the mathematical community. The interesting
thing is that, despite their completely abstract conception,
some of these geometries do turn out to be useful in the real
world.

SOCRATES: We have certainly seen how useful affine geometry can
be! What other abstract geometries have useful
applications?

THEANO: All sorts, Socrates! Projective geometry is another abstract
geometry that can appear in card games.20 It is also very

20 In fact, you can play a version of SET based on projective geometry. For more information,
see chapter 9.
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important for artists studying perspective. In addition,
spherical geometry is important for navigation since the
earth is (roughly) spherical, and hyperbolic geometry is
used in Einstein’s theory of general relativity.

SOCRATES: I wonder what sorts of geometries will be discovered
next!

THEANO: Why Socrates, I believe that is the first time in this whole
chapter that you have spoken without asking a question.

SOCRATES: The question was implied! But I will go ahead and ask it
explicitly: What sorts of geometries will be discovered
next?

EUCLID: That is more of a rhetorical question. Readers, I now
address you directly: Go discover some more geometry!

THEANO: And when you need a break, play SET.

EXERCISES

EXERCISE 5.1. Prove directly from the axioms for finite affine geometry
that every pair of lines has the same number of points. [Hint: You can do this
directly or by contradiction. Directly, you can first show that any two lines that
intersect must have the same number of points, and then show that this means
that any pair of parallel lines must also have the same number of points. By
contradiction, you can assume that you have two lines with different numbers
of points on them, and show then that you violate one of the axioms. Note:
You’ll need to have two cases, since the two lines might intersect, or they might
be parallel.]

EXERCISE 5.2. In this exercise, you will show that our four axioms for
finite geometry must produce the picture of AG(2, 3) we’ve come to know and
love. We assume that there are three points on each line (see exercise 5.1).

a. Draw three non-collinear points (three points not on the same line), as
guaranteed by axiom 1. Label them A, B , and D.

b. Draw the line through A and B , and add a point labeled C to this line.
c. D is not on the line ABC , so by axiom 4, there is a line through it that is

parallel to the line you drew. Draw it, and add two more points E and F to
that line.
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d. You should now have two parallel lines, ABC and DE F . There is a line
containing A and D, and it has a third point, G . Which axiom guarantees
that this is a new point?

e. There is a line parallel to ADG through B . Why must that line intersect
DE F ? We can assume that the line contains E , and then add a point H
to it.

f. There is also a line parallel to ADG through C . As before, that line must
intersect DE F . Show that this line must intersect line DE F at F . Add a
point I to this line through C .

g. Show that the line through G and H must contain I.
h. You still need a line through A and E , a line through A and F , a line

through B and D, etc. You need every possible line containing a point
from ABC and a point from DE F . Draw all those lines, and cite the
axioms you used. (When you finish adding all the lines, you should have a
nice picture of AG(2, 3), along with an airtight argument for why this
picture is “forced.”)

Congratulations! You’ve drawn the unique finite affine plane with three points
on a line.

EXERCISE 5.3. When we completed a hyperplane from a plane and one
extra card, we ordered the missing 17 cards in figure 5.19

a. Explain why any card in the rightmost plane could be the first card we
determine.

b. Explain why there are 9 × 16! possible orders we could have
used in completing the hyperplane. (By the way, 9 × 16! =
188,305,108,992,000, a very large number.)

EXERCISE 5.4. We can define parallel classes of SETs, where two SETs
are in the same parallel class if and only if they are parallel to each other.
(For those in the know, “parallel” is an equivalence relation, so we’re really
talking about the equivalence classes of that relation. We’ll see this again in
exercise 8.3.)

a. Show that there are exactly four parallel classes among the SETs that differ
in only one attribute.

b. Explain why any two parallel classes contain the same number of SETs.
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Figure 5.30. Exercise 5.6.

c. How many parallel classes are there among the SETs that differ in exactly
two attributes? Show your answer is correct twice: first, by
appealing to part (b) and then by counting directly.

d. How many parallel classes are there among the SETs that differ in exactly
three attributes? Show your answer is correct twice: first, by appealing to
part (b) and then by counting directly.

e. How many parallel classes are there among the SETs that differ in all four
attributes? Show your answer is correct twice: first, by appealing to part (b)
and then by counting directly.

EXERCISE 5.5. Suppose you’ve played SET, and you had six cards at the
end. Explain why, if there is one interset among the six cards, then the six
cards are actually a triple interset.

EXERCISE 5.6. Five bad cards: Recall, in this chapter, we started with four
cards that didn’t lie in the same plane (so, no SET, no interset), 1 Red Solid
Squiggle, 1 Purple Striped Squiggle, 3 Purple Striped Ovals, and 1 Purple
Empty Oval. We found the coordinates, and added them, mod 3, to get 3 Red
Striped Diamonds. We played the End Game with those five cards, and got
3 Red Striped Diamonds. Next, we took out the 1 Red Solid Squiggle from the
five cards and did the same thing again. The new card we got, 2 Red Empty
Ovals, created another five-bad-cards scenario. We’re going to explore this
further.

a. First, make a hyperplane starting with the cards shown in figure 5.30.
Fill out the hyperplane, and find where 3 Red Striped Diamonds is. Isn’t it
in a nice spot? Next, we took the four cards that weren’t the 1 Red Solid
Squiggle, and found that the card that makes a bad End Game scenario is
2 Red Empty Ovals. Find that card in the plane.

b. Use the coordinates of the cards to explain why, when you take four of the
five cards, leaving out a card C , the new card that you get must make a SET
with 3 Red Striped Diamonds.
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Figure 5.31. Exercise 5.7: The cards with a 1 on them are a hyperplane, and so are the
cards with a 2 on them.

Figure 5.32. Exercise 5.7: Start with four cards, as shown.

c. Use the fact from (b) to find three more bad End Game scenarios (and
verify that they work), without using coordinates. Locate the cards in the
hyperplane.

EXERCISE 5.7. Making hyperplanes. In this exercise, we’ll look at another
way to make hyperplanes. Consider figure 5.31.

In the figure, the cards in the position labeled 1 make a subplane. Similarly,
the cards in the position labeled 2 make another subplane. (You can verify
this with some of the hyperplanes from the chapter, like in figure 5.20.) You
can use this to make a hyperplane that starts with four cards, positioned as in
figure 5.32.

a. Taking the top rows from each plane and lining them up, you get the start
of a plane, as shown in figure 5.33.

Complete this plane, and then put the three rows of cards in the top
rows of the hyperplane.

b. Next, take the left columns from each plane, and line them up to get the
start of another plane, as shown in figure 5.34.

Complete this plane, and then put the three rows of cards in the left
columns of the hyperplane.

c. Now, finish all the planes to see the final hyperplane.
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Figure 5.33. Exercise 5.7: One side of our hyperplane, incomplete on the left and
complete on the right.

Figure 5.34. Exercise 5.7: Another side of our hyperplane.

Figure 5.35. Project 5.1: Twelve cards containing exactly two SETs.

PROJECTS

PROJECT 5.1. Howmany SETs can there be in a layout of 12 cards? In this
project, you’ll not only want to find layouts that contain the requested number
of SETs, you’ll also want to show how the SETs sit in AG(4, 3). For an example,



SET and Geometry • 135

see the picture in figure 5.35 to see one configuration with two SETs in it. You
should be able to see from the remaining cards that there won’t be any other
SETs. In what follows, you may use the Cap Builder (described in chapter 9,
and available at http://webbox.lafayette.edu/∼mcmahone/capbuilder.html).

a. Find a layout of AG(4, 3) with 12 cards that have no SETs. The layout
should make it clear that there are no SETs.

b. Find a layout of AG(4, 3) with 12 cards that has exactly one SET. The
layout should make it clear that there is only one SET.

c. The figure shows one collection of 12 cards with exactly two SETs. Now,
find a layout of AG(4, 3) that has exactly two SETs that intersect each
other.

d. There are lots of configurations with exactly three SETs. Show one of them
in AG(4, 3) so it’s clear that there are exactly three SETs.

e. The maximum number of SETs in 12 cards is 14. Find a configuration of
12 cards that achieves this maximum.

f. Show by example that it is possible to have every possible number of SETs
in 12 cards, from the minimum of 0 to the maximum of 14. You’ve done
five of them, so you’ve only got 10 to go!

http://webbox.lafayette.edu/%E2%88%BCmcmahone/capbuilder.html
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Interlude: How to Improve at SET

Perhaps you’re starting to wonder if all this mathematics is actually
going to help you get better at the game. The answer, sadly, is no. While
the game happens to be an excellent way to study a variety of branches
of mathematics, knowing this will probably not help you find SETs
faster. But that doesn’t mean that there aren’t ways to improve! Here
are some hints and strategies for improving your game.

I.1 HOWTO FIND SETS FASTER

Play lots and lots of SET. Teach the game to your family and friends,
and insist that they play with you. Download the SET apps, on your
phone and/or tablet. Play online at

• http://www.setgame.com.

This is the company’s website. Every day, they put up a new Daily
Puzzle, consisting of 12 cards containing six SETs, and they time you
as you try to find all six. The second of those websites allows you to play
a full game, and it also includes some of the mathematics we discuss in
this book.

This is really the only way to find SETs faster: play a lot. If you can,
play a lot with someone who’s better than you—while it’s humbling,
you really are forced to get better. As you play more and more, what
will eventually happen is that the SETs will start to “pop out” at you. In
other words, you will get to a point where you don’t have to check all
the attributes—you’ll start seeing SETs in their entirety.

http://www.setgame.com


How to Improve at SET • 137

Figure I.1. First layout of cards.

I.2 HOWTODETERMINE IF THERE ARE NO SETS
IN A GIVEN CONFIGURATION

In general, the following algorithmwill be useful any time you’re having
trouble finding a SET. It allows you to identify every SET in a given
configuration, so if you follow it carefully and find no SETs, that means
you need extra cards. It is especially important to be able to do this if
you download the SET apps, since they will deduct a point from your
score if you mistakenly click the “no SETs” icon when there actually is
a SET in the configuration.

The brute-force way to do this is to check every pair of cards to see if
the card that completes the SET is there, but this is incredibly slow and
inefficient.1 Our algorithm involves selecting an attribute and mentally
dividing the cards into expressions of that attribute.

I.2.1 A Game of SET

Three friends, Satchmo, Ella, and Thelonious,2 are playing a game of
SET. They are about to demonstrate how to use our algorithm. See
figure I.1, and follow along as they refer to specific cards.

SATCHMO: This is a fun game and all, but I don’t see any SETs. Do
either of you?

ELLA: Hey, I see a SET!
THELONIOUS: I see several SETs.
SATCHMO: Really? How many are there?
THELONIOUS: I believe there are four, but we can verify this.
1 Unless you are a computer. And we’re not computers.
2 Louis “Satchmo” Armstrong, Ella Fitzgerald, and Thelonious Monk were three jazz greats.

While we are pretty sure they never played SET, we can pretend, can’t we?
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Figure I.2. Second layout of cards.

ELLA: Yes, we can! It actually won’t be too bad—I see there is only
one oval. Do you notice that?

SATCHMO: Hmm yeah, I do now. Hang on, that’s important. . . . That
means that if there is a SET in here, then it’ll either be all
squiggles, all diamonds, or it’ll contain that card!

THELONIOUS: Well reasoned. So, let’s start by checking the
diamonds.

ELLA: There are only four diamonds, and there are no SETs among
them.

SATCHMO: Okay, then I guess we should check the squiggles. There
are seven of them. Let’s see: Among the solid squiggles,
there’s a SET. It’s all different colors, and numbers.

ELLA: That’s so. There’s also a SET with the only striped squiggle
card—it’s all 3s. That takes care of the squiggles.

THELONIOUS: Now we just need to check to see if there are any SETs
with the oval card. If there’s a SET with that card, it
will necessarily contain all three shapes. That means
we actually only have to check it against one of the
other expressions: squiggles or diamonds. There are
fewer diamonds, so we should check it against those.

SATCHMO: All right, I’m pairing diamond cards with the oval card. I
see a SET with the 3 Red Empty Diamonds. And another
one with the 3 Green Solid Diamonds. That’s four SETs
already.

ELLA: That must be all of them, because we finished this line of
reasoning. Everything’s copacetic.

One of the SETs (the all-red SET) is selected and then replaced. See
figure I.2.
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Figure I.3. Third layout of cards.

SATCHMO: Okay, now that I know what to look for, I notice there is
again only one oval—a different one from before.

ELLA: Right, but we used shape last time. Let’s isolate a different
attribute this time. Looking at numbers, I notice there’s only
one card with 1 symbol.

THELONIOUS: Correct, and there are five 2s, and six 3s.
SATCHMO: I’ll check the 2s. I don’t see any SETs in the 2s.
ELLA: I don’t either. But I’m looking in the 3s, and there is one SET

there.
THELONIOUS: Precisely. The 3s were easy, because there were no

reds, and only one purple, so it had to be all green. It
is all the 3 green striped cards.

SATCHMO: Now we just have to check cards against the 1 card. Let’s
check the 2s, since there are fewer of them. I just checked
the 1 card against all the 2 cards, and there are no SETs
among them.

ELLA: I get the same thing. So the only SET is the green one. Let’s
grab it!

The green SET is taken and then replaced. See figure I.3.

THELONIOUS: This time, I notice there are only two striped cards.
SATCHMO: Ain’t no SET there. So let’s check the solids and the

empties.
ELLA: None in the empties and none in the solids.
SATCHMO: How’d you do that so fast? There are six solids!
ELLA: Yes, but we can apply the same general algorithm at smaller

and smaller levels, once we’ve isolated an attribute. If you take
a look at all the solid cards, you’ll notice that all the 2 cards are
purple or red, and all the 1 and 3 cards are green. So we can’t



140 • Inter lude

Figure I.4. Fourth layout of cards.

have a 1–2–3 SET in here. If there were a SET in the solids, it’d
have to be the same in number, but we don’t have that.

SATCHMO: I see. Once you get to that point, it’s a lot quicker.
THELONIOUS: It sure is. Now we just have to check the striped cards

against the empty cards, one at a time. There are no
SETs with the striped purple card.

ELLA: I just checked the striped red card, and I found two SETs with
that card.

SATCHMO: Those came outta nowhere! How did no one notice them
until now?

THELONIOUS: Sometimes when you’ve been staring at some of the
same cards for too long, you can become SET-blind to
various SETs containing them.

ELLA: “SET-blind”?
THELONIOUS: It’s a term I made up just now, while playing this

game.
SATCHMO: I like it!
ELLA: Me too. Anyway, let’s take one of the SETs.

One of the SETs is taken and then replaced. See figure I.4.

SATCHMO: This time, let’s look at color. I see only two greens.
THELONIOUS: Nice. Obviously there are no SETs in the greens. There

are four reds, and I don’t see a SET in those, either.
ELLA: Now we have to check the purples. There are more of those, but

if you notice, all the 2-symbol purple cards are solid or striped,
and all the 1 and 3 cards are empty. This means that if there is
a SET in the purple cards, it can’t be 1–2–3. So we just have to
check each number.
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SATCHMO: Yeah, I see what you mean now about using the same
process to keep isolating attributes. That really does make
it easier, because there aren’t even enough 1 or 3 purple
cards to make a SET. There are three 2 purple cards, and
those don’t form a SET. So there are no purple SETs!

THELONIOUS: Finally, we have to check for all-different-color SETs.
We need to pair each green card up with each of the
red cards to see if any of those pairs make a SET.

ELLA: I don’t find any with the green diamond card.
SATCHMO: And I don’t find any with the green squiggle card.
THELONIOUS: I officially declare this configuration free of SETs.
SATCHMO: Well then put out more cards.
ELLA: I would, but we’re out of cards.
SATCHMO: Whew! That game went a lot faster than our previous

one, now that we have this algorithm.
THELONIOUS: A lot of things in life go faster when you have an

algorithm. But you already know this, because you’re
a musician! It’s like I always say: “All musicians are
subconsciously mathematicians.”

ELLA: He really did say that, by the way. Look it up!
SATCHMO: Hey cool! That means I’m a mathematician, and so are

you!3

Indeed, they are correct. The configuration in figure I.4 is an example
of 12 cards that do not contain a SET. (And they are also correct that
musicians are subconsciouslymathematicians, but don’t worry, you can
still be a mathematician even if you are not a musician.)

The systematic thought process they went through to identify all the
SETs in each configuration is an algorithm you can use any time you’re
playing the game, and it is considerably faster than checking every pair
of cards. It is especially useful in configurations where one expression
of an attribute is missing (or nearly missing): any time you happen to
notice, for instance, that there are no red cards, or just one squiggle, or
only two 3s, the game suddenly gets a lot easier.

3 Here, Louis Armstrong could be referring to either of his fellow musicians, or he could be
referring to you, the reader. This is open to interpretation.
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You should find this process most useful if you’ve been looking for
SETs for a while and get to a point where you want to be sure there
are no SETs. As you continue to play SET, keep an eye out for missing
expressions of an attribute, or expressions with only one or two cards—
noticing this will help you narrow down possible SETs a lot faster.

The Algorithm

We wrap up this procedure in a tidy, step-by-step package:

1. Select an attribute (number, color, shading, or shape). Preferably,
you will select an attribute for which one of the expressions is
underrepresented.

2. Mentally (or physically, if this is possible) divide the cards into
the different expressions of that attribute. For instance, if you
selected color, make three groups: put the red cards together, the
green cards together, and the purple cards together.

3. Check each of the three groups individually for SETs.4 This will
allow you to find every SET where the attribute you selected is all
the same.

4. Finally, identify whichever group has the least number of cards,
and check each card in that group against each card in the group
with the second least number of cards. This is the fastest way to
find SETs where the attribute you selected is all different.

5. Didn’t find any SETs? Now you may confidently put out three
more cards, knowing that if there is a SET in your new
configuration of 15 cards, it must include at least one of the cards
you just put out.

I.3 FAIR(ER) GAMES BETWEEN TWO PLAYERS
OF DIFFERENT SKILL LEVELS

We’ve played a lot of SET. We’re pretty good at it. So, how do we
play with novice players and still keep the game interesting? Our friend

4 At this point, if one of your groups has six or more cards, you can actually start the algorithm
over with a different attribute for that group of cards (the way Ella did), as this may speed up the
process.
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Carolyn Chun5 sent us suggestions for ways to play, and we’ve added
some ourselves.

1. After finding a SET, count to 10 (or 20, or 30, . . . ; experiment to
see what works best) before you are allowed to take it. You may
do this out loud, so others become aware that there is a SET on
the table, or you can do it in your head if they find it distracting.

2. You must find two disjoint (non-intersecting) SETs before you
are allowed to take one. This slows you down, and it also means
that every time you take a SET, others will know there is another
SET on the table. (You can also try this variation without the
disjoint condition, which will make it easier, but it will also mean
you are potentially depriving others of SETs.)

3. Novice players get to pick a card from the opening configuration.
The expert player cannot take a SET that uses any card that has
been selected. Novice players get a bonus point when they find a
SET with their card, and they also get to replace it with a new
card. (This is a variation of “Pick a Card,” which is item (6) from
the next section on alternate ways to play.)

4. Look at the cards from a different angle from what you are
used to, and/or sit farther away from the cards than the other
players.

5. Make up your own handicap. Maybe you have to sing a song, or
do a dance, or do something else silly every time you find a SET
before you are allowed to take it. Maybe you are allowed to use
the green cards only. Maybe you aren’t allowed to use the word
“SET!” There are a lot of ways to play slower to give novice
players the chance to catch up to you.

I.4 HOWTOUSE THE CARDS IN OTHERWAYS

For as long as SET has been around, people have been inventing
alternate games to play with the cards. They can be a nice break from
regular SET, and some will actually make you a better player.

5 She’s very good at SET, too.
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1. The End Game.We introduced the End Game in chapter 1 and
explained why it works in chapter 4. As you may recall, we can
hide a card at the beginning of a game of SET, then determine
that missing card from the cards showing at the end of the game.
The great thing about the End Game is that it comes at the end of
a regular game, so you can do it every time you play a game of
SET. What’s really fun is looking for SETs with the missing card
before it has been revealed. Since this is a lot harder than looking
for SETs with cards you can actually see, it will make the regular
game seem easier by comparison. In fact, we no longer keep track
of how many SETs each individual person took. We just play to
get to the End Game.6 There’s even an online version now, avail-
able at http://www.bluffton.edu/homepages/facstaff/nesterd/java/
setendgame.html.

2. Interset. If you’re feeling adventurous, deal the cards as usual,
but look for intersets instead of SETs. As we learned in chapter 2,
the expected value (average number) of intersets in a layout of 12
cards is about 19.7 So, unlike in the regular game, you will not
have to worry about potentially needing more cards— you
should expect to find a lot of intersets. (This isn’t to say that they
are easy to find. In fact, because there’s no real pattern
recognition, they can be a lot harder to find than regular SETs.)
You can play “Interset” as you would play the regular game, by
clearing intersets and replacing them, or you can just try to see
how many you can find in a given layout of 12 cards in a specified
amount of time. Bonus points for triple intersets (or higher).

3. SET–Planet–Comet. If you’re feeling even more adventurous,
you can play a version of the game invented by a group of
mathematicians in which nine cards are dealt and players look
for either SETs, planets, or comets.8 They defined a planet as four
cards in a plane (so either an interset or a SET plus one card, but
the interset option is more interesting, since the SET-plus-a-card

6 Partly, this is because we’re pretty sure we know who won.
7 Actually, we learned it was about 18.8, but since we don’t know what 0.8 of an interset is,

we’ll just round up.
8 M. Baker et al., “Sets, planets, and comets,” College Mathematics Journal 44, no. 4 (September

2013), 258–264. See question 8 in chapter 3 for more information about this paper.

http://www.bluffton.edu/homepages/facstaff/nesterd/java/setendgame.html
http://www.bluffton.edu/homepages/facstaff/nesterd/java/setendgame.html
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option would be more likely to be taken just as a SET), and they
defined a comet as nine cards whose coordinate-wise sum is 0,
i.e., nine cards that can be split up into single-attribute SETs.
(Since their work was independent of our work, the terminology
is different, as often happens in mathematics.) The neat thing
about this version of the game is that you will never need to add
more cards, as it was proved that any collection of nine cards
must contain a SET, a planet, or a comet. However, since you’ll
be taking things that aren’t SETs, you won’t be able to play the
End Game afterward.

4. Clear the Deck. One way to do this is to play a regular game of
SET and have no cards left, but this almost never happens. If
you’ve played a regular game and have cards left, one thing you
can do is take your pile of SETs and try to reorganize SETs until
you’ve used all the cards. If you’re playing with others, you can
split up the pile of SETs, and each person can take a turn
choosing a SET, putting it down next to the leftover cards, and
looking for different SETs. If no new SETs are found, the SET
should be removed and replaced with a different one, but if new
SETs are found, those should be taken instead. This can go on
for a while, but if you look carefully, you may eventually notice a
configuration of SETs that would allow the deck to be cleared.

5. Five-Attribute SET. As we’ve mentioned, it is possible to obtain
three decks of SET cards, draw something in the background of
all of the cards in one of the decks, and draw something different
in the background of all the cards in another one of the decks.
When we did this, we drew thick diagonal lines going across the
cards (without covering the attributes—we made it look as
though the lines went “under” the attributes) on one deck, and
thin diagonal lines going across in the other direction on another
deck. One deck is left unadulterated. Combining all three of these
decks allows you to play Five-Attribute SET.9 Play as long as you
can before you get a headache, and then, go back to playing
regular SET—you’ll be amazed how much easier it seems by
comparison.

9 We’ve heard this called Evil SET. The name is appropriate.
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6. Pick a card. Any card? Each player gets to choose one of the
cards on the table. Players can’t take any SETs that use someone
else’s card, and they get a bonus point when they find a SET with
their own card (at which time they would select a new card).
This can encourage players to develop an intuition for which
cards in a given layout are most likely to be in SETs. (Thanks,
Carolyn Chun!)

7. SET Solitaire. Of course, you can play SET in the usual way by
yourself, but it’s fun to introduce variations. We learned this
variation from Alexa Kottmeyer.10 Lay out the cards in three
separate groups of nine cards. You may take only SETs that have
one card in each pile.

8. Take a SET, leave a SET, Percocet. This version of the game
doesn’t exist—yet. It’s a catchy title, but we haven’t actually
thought of any rules to go along with the title that would make
sense. Can you?

9. The company that makes SET also has some alternate versions of
the game on their website http://www.setgame.com/teachers
corner/other-ways-to-play. They include our End Game, which is
pretty cool.

10. Make up your own version of the game. The possibilities are
endless!

I.5 HOWTOMAKE OTHERS PLAYWORSE

Finally, we offer (somewhat facetiously) a last resort method to
winning: preventing others from winning. There are many ways to
do this.

1. While you’re all sitting around the cards, start hovering over
whichever cards are closest to you. This will have the effect of
both intimidating others as well as preventing them from seeing
certain cards.

2. This method will work only if you’re the dealer. When you deal
the cards, you can lay them out very slowly and look at them

10 You won’t be surprised to learn she’s very good, too.

http://www.setgame.com/teacherscorner/other-ways-to-play
http://www.setgame.com/teacherscorner/other-ways-to-play
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before you place them out for everyone else to see. If you can see
the cards first, then you can find the SETs first.

3. Pretend you’ve found a SET when you haven’t. You have to be
careful with this one, since some people will insist on deducting a
point if you call “SET!” and turn out to be wrong, so you’ll have
to make sure not to actually call “SET!”—just suddenly start
reaching toward some of the cards, then quickly change your
mind. This will startle/annoy other players, but you can only get
away with doing it once or twice, since they’ll quickly become
desensitized to your feints.

4. Wait for someone else to call “SET!” The instant they begin, yell
“SET!” louder than them. Often, people assume whoever said it
louder must have said it first. With any luck, the person who
actually found a SET will have begun to take the cards, or at least
have indicated roughly where the SET is, so that you can easily
steal it. If they haven’t, though, you’ll have maybe three seconds
of frantic searching to find it before people will start doubting
that you actually found one.11

5. Make obnoxious noises and/or sing obnoxious songs. This is
both fun for you and incredibly annoying for others, who will
find it distracting.

6. Distract the people around you by pointing out interesting
objects in the room. When they turn to look at whatever you’re
pointing at, steal a SET from their pile of cards and say, “Oh, I
guess it was nothing. And I definitely didn’t steal one of your
SETs.”

7. Have a cat around when you play, as in figure I.5. Nothing
attracts a house cat like a group of people sitting around some
cards on the floor. What will most likely happen is your cat,
noticing where everyone’s attention is concentrated, will walk
right on top of the cards and momentarily bask in everyone’s
attention (until someone “encourages” the cat to move). This will
prevent you from seeing some of the cards, but the good news is
that it will prevent others from seeing those cards as well.

11 This technique is probably the one that is most likely to start fights.
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Figure I.5. Cats looking for SETs.

8. Finally, if all of these “methods” fail—and they will, as soon as
your fellow players decide not to tolerate your ridiculous antics
any longer—turn on the TV. We have found that television is an
excellent way to stop all original thought. Then, while everyone is
watching TV, find all the SETs, or just steal everyone else’s SETs.
Congratulations, you are now the SET champion.

As you can see, there are a variety of ways you can improve your
game. Mostly, though, the best advice is to go forth and play SET! And
when you feel like taking a break, read more about the mathematics
underlying the game. We recommend this book.

What’s up next? The remaining chapters of this book will explore some
of these mathematical concepts in more depth, and at a higher level.
Don’t let that discourage you! You can take as much time as you want
with some of the sections, and/or skip some of them. After all, this is
your book.
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More Combinatorics

6.1 PREAMBLE

The first five chapters of this book introduced you to many of the
connections between mathematics and SET. We had a large cast of
characters to help explain key ideas. We leave these folks at this point in
the book, presumably to go play SET. We hope the reward for working
through the details of what follows will be an enhanced understanding
of some deeper topics.

6.2 INTRODUCTION

In chapter 2, we saw that SET gives us lots of things to count. In this
chapter, we turn to some more advanced counting questions, usually in
higher dimensions. We will often count the same thing in two different
contexts: global counts, where we count a total for the entire deck,
and local counts, where our count is tied to one fixed, specified object
(a card, a SET, a plane, and so on).

We start with a global count. SET involves four attributes (number,
color, shading, and shape), each of which can have three different
values. One way mathematicians often generalize the game is to add
attributes, while insisting that each attribute still has only three possible
values. This means that a SET will always consist of three cards, and two
cards will always uniquely determine a SET.

For example, suppose we wish to play seven-attribute SET. Then, in
addition to number, color, shading, and shape, we could add
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• flavor: each card is chocolate, vanilla, or strawberry;
• category: each card is animal, vegetable, or mineral;
• size: each card is small, medium, or large.

For instance, let’s choose two cards in our seven-attribute game:
2 Red Empty Large Animal Chocolate Squiggles and 2 Green Empty
Small Vegetable Vanilla Squiggles. Then, as in the usual game, there is
a unique card that completes a SET (2 Purple Empty Medium Mineral
Strawberry Squiggles). We conclude that the fundamental theorem of
SET remains true in the higher-attribute game.

We can (and will) ignore the specific attributes when doing our
computations. The advantage of deriving formulas that depend on n
is obvious. Having one formula to rule them all1 allows us to answer an
infinite number of questions. Here are a few questions we’ll consider:

• How many cards are in a complete deck?
• Howmany SETs are there? How many SETs contain a given card?
• How many SETs have no attributes in common? How many have
exactly one attribute in common? More generally, how many have
k attributes in common, where 0 ≤ k ≤ n − 1?

• How many planes, hyperplanes, and higher-dimensional planes
are there?

The basic structure of our questions is the following:

Let an denote the number of (where we fill in the blank with
“cards,” “SETs,” “SETs with a given number of attributes the same,”. . . ) in the
n-dimensional version of SET. Find a formula for an in terms of n.

We answer the first two questions now, mostly as a warm-up. How
many cards are in a complete deck for the n-attribute game? Since we
have three choices for each attribute, there are 3n cards.

• There are 3n cards in a complete deck.

When n = 4, this gives us the right answer, 34 = 81 cards.2

1 This is a reference to something, we think.
2 Well, it better. It’s a good idea to check your formulas, assuming you know the answers for

some small cases. If we got the wrong answer, it would probably be a good idea to revise the
formula.
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TABLE 6.1.
The number of SETs in n-attribute SET, for n ≤ 7.

# attributes 1 2 3 4 5 6 7
# SETs 1 12 117 1080 9801 88,452 796,797

How many SETs are there in the n-attribute game? To answer this,
just note that, by the fundamental theorem, it is still true that two cards
determine a unique SET. As in chapter 2, we have 3n(3n − 1)/2 ways to
choose two cards from the deck of 3n cards. But this counts a given SET
three times since there are three ways to select two cards to produce
the same SET (again, exactly as in chapter 2). This gives us a total of
3n(3n − 1)/6.

Simplifying gives us our formula in terms of n:

• The total number of SETs in n-attribute SET is 3n−1(3n − 1)/2.

We give the total number of SETs for some small values of n in
table 6.1.

Let’s check that this formula agrees with what we already know.
There are 12 SETs in a plane (the two-attribute game), 117 SETs in a hy-
perplane (the three-attribute game), and 1080 SETs in the usual, four-
attribute version. We’ll generalize this formula in section 6.5 by finding
the number of planes, hyperplanes, and so on, in n-attribute SET.

6.3 LOCAL COUNTS

In this section, we consider two local counts for the n-attribute game:

• How many SETs contain a given card?
• How many (other) SETs intersect a given SET?

The argument we use to answer the first question is essentially the
same as the one we gave in chapter 2. First, choose a card C from the
n-attribute deck. We can break up the 3n − 1 remaining cards
in the deck into (3n − 1)/2 pairs, where each pair forms a SET with
our chosen card C . This depends only on the fundamental theorem, so
we have an answer:

• Each card is contained in (3n − 1)/2 SETs.
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TABLE 6.2.
The number of SETs meeting a given SET S in n-attribute SET, for n ≤ 7.

n 1 2 3 4 5 6 7
# SETs meeting S 0 9 36 117 360 1089 3276
Percentage of total 0% 75% 30.8% 10.8% 3.7% 1.2% 0.4%

For the second question, we note that counting the number of SETs
meeting a given SET is important when you play the game. For instance,
if two SETs have a card in common, then removing one SET destroys
the other SET.

Here’s a recipe for counting the number of (other) SETs that inter-
sect a given SET in our n-attribute game.

1. First, choose your SET. Call the three cards A, B , and C .
2. How many SETs use card A? By the computation we just did,

there are (3n − 1)/2 such SETs. Note that this includes our SET
ABC .

3. Now repeat this for cards B and C . Adding these results
(temporarily) gives us 3 × (3n − 1)/2.

4. But the answer from part (3) includes our original SET ABC
three times, so we need to subtract 3. This gives us a total of
3 × (3n − 1)/2 − 3.

After simplifying, we conclude the following:

• The number of other SETs that meet a given SET is 3
2 (3

n − 3).

It can be fun3 to look at some data for the number of SETs intersect-
ing a given SET. In table 6.2, we give the number of SETs that meet a
given SET and the percentage of all SETs this represents.

There is one number that we would like to focus on: the 117 SETs
that intersect a SET in the four-attribute game. We’ve seen the number
117 before: it’s the total number of SETs in the three-attribute game
(from table 6.1)! Is this a coincidence?4

The answer, unfortunately,5 is yes. It can be hard to convince
yourself that something is genuinely a coincidence, but it’s often worth

3 To be fair, this depends on your definition of “fun.” Greatly.
4 Whenever you see this question in a math book, the answer is always no. Except this time.
5 Maybe we should be happy. We’re not sure.
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TABLE 6.3.
Comparing the total number of SETs and the number of SETs meeting a given SET S .

n 1 2 3 4 5 6 7
# SETs 1 12 117 1080 9801 88,452 796,797
# SETs meeting S 0 9 36 117 360 1089 3276

TABLE 6.4.
Number of SETs with 0, 1, 2, or 3 attributes the same.

# attributes # SETs Percentage
the same

0 216 20%
1 432 40%
2 324 30%
3 108 10%

Total 1080 100%

the effort. Here’s one explanation. If there were a theoretical reason
these numbers should be the same, we should see the same relationship
hold when the number of attributes is not four.

How can we check if there is a connection between the number of
SETs in (n − 1)-attribute SET and the number of SETs that intersect a
given SET in n-attribute SET? In table 6.3, we compare the information
in tables 6.1 and 6.2 for n ≤ 7.

Moral: Sometimes two counts give the same answer by accident.

6.4 COUNTING THE NUMBER OF SETS
WITH k ATTRIBUTES IN COMMON

In chapter 2, we partitioned the deck of cards into four classes, depend-
ing on the number of attributes that were the same.We summarize what
we found in table 6.4.

Our goal in this section is to figure out what happens in n-attribute
SET when n �= 4. We’ll do two versions of this problem: a global
count for the whole deck and a local count for the number containing
a given card. It should be obvious that the local answer won’t depend
on the card we’ve picked. Calculating the number of SETs with exactly
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k attributes the same will involve several standard techniques used in
combinatorics. We’ll need the binomial coefficients, which we met in
chapter 2:

• Let S = {1, 2, . . . , n}; the number of subsets of S of size k is

(
n
k

)
= n!

k!(n − k)!
.

6.4.1 Global Counts

We begin by introducing some notation. Let g (n, k) equal the number
of SETs in the n-dimensional game with exactly k attributes the same.
Then g (n, k) is a function that depends on the two integers n and k,
where we assume 0 ≤ k ≤ n−1. So, for instance, g (4, 1) = 432 encodes
the fact that there are 432 SETs in the usual four-attribute game with
one attribute the same.

Our immediate goal is to find a formula for g (n, k). To do this, it
will be useful to work with the cards as vectors. Recall that a card is
represented by an ordered n-tuple (x1, x2, . . . , xn), where each xi =
0, 1, or 2. Our SET will be three cards

(a1, a2, . . . , an), (b1, b2, . . . , bn), (c1, c2, . . . , cn),

where

• ai = bi = ci for the k attributes that are the same, and
• ai , bi , and ci are all different for the n − k attributes that are all
different.

To compute g (n, k), we first choose the k attributes that will be the
same. There are

(n
k

) = n!
k!(n−k)! ways to choose these k attributes. For

instance, if n = 9 and k = 4, we could select attributes 1, 3, 6, and 8
to be the same. We indicate this by boxing those attributes that are the
same in the vectors that represent our cards:

(
∗ , ∗, ∗ , ∗, ∗, ∗ , ∗, ∗ , ∗

)
.
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Now for each of those k attributes, there are three choices for its
value. This means that there are

(n
k

) × 3k ways to specify the attributes
that are the same for the SET. Returning to our n = 9, k = 4 example,
we make the following arbitrary selections for our boxed attributes:(

0 , ∗, 2 , ∗, ∗, 1 , ∗, 1 , ∗
)
.

Finally, we need to determine the remaining n − k places where the
attributes are different. If the three cards in the SET are ordered as
card 1, card 2, and card 3, then for each of the n − k attributes that
are all different, we have three choices for that attribute in card 1, two
choices in card 2, and one choice in card 3. This gives 3! = 6 choices
for each of the n − k attributes, giving 6n−k ways to complete the SET.

But this overcounts g (n, k) by a factor of 6 because there are 3! = 6
ways we could have labeled the cards as card 1, 2, and 3. So we have
6n−k−1 ways to complete our SET. Putting all of this together gives us
the answer: g (n, k) = (n

k

)
3k6n−k−1. A little algebra allows us to rewrite

this.

• The number of SETs with k attributes the same is

g (n, k) =
(
n
k

)
3n−12n−k−1.

Plugging n = 9 and k = 4 into this formula gives g (9, 4) = 13,226,
976 SETs in the nine-attribute game that have exactly four attributes
the same. That’s a lot of SETs.6 Here is one such SET:

card 1 =
(
0 , 0, 2 , 2, 2, 1 , 1, 1 , 0

)
,

card 2 =
(
0 , 1, 2 , 0, 1, 1 , 2, 1 , 1

)
,

card 3 =
(
0 , 2, 2 , 1, 0, 1 , 0, 1 , 2

)
.

Table 6.5 gives the number of SETs with k attributes the same (for
0 ≤ k ≤ n − 1) for n ≤ 5.

6 If nothing else, this should indicate that we have left the world of game playing far, far behind.
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TABLE 6.5.
The number of SETs g (n, k) in the n-attribute game with exactly k attributes the same.

k = 0 k = 1 k = 2 k = 3 k = 4 Total

n = 1 1 — — — — 1
n = 2 6 6 — — — 12
n = 3 36 54 27 — — 117
n = 4 216 432 324 108 — 1080
n = 5 1296 3240 3240 1620 405 9801

1.5 × 108

1.0 × 108

5.0 × 107

0
0 1 2 3 4 5 6 7 8 9

N
um

be
r

Figure 6.1. The number of SETs with k attributes the same (for 0 ≤ k ≤ 9) in the
10-attribute game.

It’s always nice to visualize data, when possible. We give the dis-
tribution of the number of SETs with k attributes the same for the
10-attribute game in figure 6.1.

This graph should motivate quite a few questions for the n-attribute
game:

• What kind of SET is most common, i.e., for what value of k is
g (n, k) maximized?

• What kind of SET is least common, i.e., for what value of k is
g (n, k) minimized?

• What is the average number of attributes a SET has in common?
• Do the numbers always increase to a maximum, then decrease?
• In table 6.5, note that g (5, 2) = g (5, 1) = 3240. What other
values of n have ties for the largest value of g (n, k)?
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We will answer all of these questions, and more, in chapter 7, where we
consider the data from a probabilistic point of view.

6.4.2 Local Counts

Pick a card in the n-attribute game. There are (3n − 1)/2 SETs that
contain that card. How many of those SETs have exactly k attributes
the same? Let’s call this number l(n, k),which, like g (n, k), is a function
that depends on both n and k.

To find a formula for l(n, k), we’ll use an incidence count, as we
did back in chapter 2. To do this, we construct a bipartite graph with
all 3n cards on the left-hand side and the g (n, k) SETs with exactly k
attributes the same on the right-hand side.

Then each of the 3n cards is joined to l(n, k) SETs, so the total
number of edges in the bipartite graph is 3n×l(n, k).On the other hand,
each of the g (n, k) SETs on the right-hand side is joined to exactly 3
cards on the left (since each SET has 3 cards), giving a total of 3×g (n, k)
edges in the bipartite graph.

Equating these two values for the total number of edges gives us a
formula relating the local and global counts:

3nl(n, k) = 3g (n, k).

Then we can use our formula for g (n, k) from section 6.4.1 to give us
the formula for l(n, k):

• The number of SETs with k attributes the same containing a given
card is

l(n, k) =
(
n
k

)
2n−k−1.

Table 6.6 gives l(n, k) for some small values of n. For instance, we
see that l(4, 0) = 16,which tells us that 16 (of the 40) SETs that contain
a given card will have no attributes the same.

Let’s reconnect to SET. Choose your favorite card in the deck, 2
Purple Striped Squiggles,7 and look at the SETs containing it. Figure 6.2

7 If this isn’t your favorite card, you should write your own book. We’ll buy it.
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TABLE 6.6.
The number of SETs with k attributes the same containing a given card.

k = 0 k = 1 k = 2 k = 3 k = 4 Total

n = 1 1 — — — — 1
n = 2 2 2 — — — 4
n = 3 4 6 3 — — 13
n = 4 8 16 12 4 — 40
n = 5 16 40 40 20 5 121

Figure 6.2. All of the SETs containing 2 Purple Striped Squiggles, organized by the
number of attributes that are the same.

shows the 40 SETs that contain this card, partitioned into four classes
based on the number of attributes that are the same.

Finally, recall that 20% of the SETs in the whole deck have no
attributes the same, 40% have one attribute the same, 30% have
two attributes the same, and 10% have three attributes the same.
The percentages for our local counts are the same: given a specific card,
20% of the 40 SETs that contain that card have no attributes the same,
40% have one attribute the same, 30% have two attributes the same,
and 10% have three attributes the same.
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Figure 6.3. The deck. Stare at this and find patterns for the locations of SETs, planes,
and hyperplanes.

Is this a coincidence?8 You now have all the ingredients needed to
calculate both the local and the global percentages for the n-attribute
version of the game—see exercise 6.2 for the details.

6.5 COUNTING PLANES, HYPERPLANES,
AND q-BINOMIALS

6.5.1 Make Yourself a Pretty Picture

In this section, we explore some counting questions associated with the
geometric structure of the deck. In figure 6.3, there’s a beautiful picture
of the entire deck similar to one we gave in section 5.5. This figure
allows you to “see” all 1080 SETs at once.
• How many different ways could we construct such a wonderful
picture?

8 This time, no.



160 • Chapter 6

Our procedure for making this picture gives us the answer. We’ll
use ordered pairs of the form (row, column) to label the positions of
the cards, with (1, 1) corresponding to the upper left corner and (9, 9)
corresponding to the lower right.

a. Place a card in position (1, 1). There are 81 = 34 choices for
this card.

b. Place a card in position (1, 2) immediately to the right of the card
you just placed. There are 80 = 34 − 1 choices for this card. These
first two cards also determine the card in position (1, 3), because
the three cards in positions (1, 1), (1, 2), and (1, 3) form a SET.

c. Place a card in position (2, 1). There are 78 = 34 − 3 choices for
this card. As we’ve seen before, the cards in positions (1, 1),
(1, 2), and (2, 1) uniquely determine the whole plane in the upper
left corner of the grid, i.e., all cards occupying positions (x, y)
with 1 ≤ x, y ≤ 3 are now fixed.

d. Now choose a card to place in position (1, 4). There are
72 = 34 − 32 choices for this card. This card, together with the
nine cards already determined, uniquely determines the
hyperplane occupying the first three rows of the grid, i.e., all
cards in positions (x, y) where 1 ≤ x ≤ 3. (This is identical to
the procedure we used in figure 5.17.)

e. Finally, choose a card to place in position (4, 1). There are
54 = 34 − 33 choices for this card. At this point, the positions of
all the remaining cards are completely determined, as we saw in
chapter 5.

Putting this all together gives us the number of “different” pictures
we can create:

34(34 − 1)(34 − 3)(34 − 32)(34 − 33) = 1,965,150,720.

That’s a big number.9 On the other hand, if everyone on the planet
made their own picture, there would be some repeats.10 More to the

9 For instance, if you and your friend Elvis each create your own pictures of the entire deck,
you’ll probably wind up with different configurations.

10 This follows from the pigeonhole principle, and knowing something about the population
of the earth. And a vivid imagination.
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point, the product 3n(3n−1)(3n−32) · · · (3n−3m) will be very important
when we try to count planes and hyperplanes when n > 4, which we
turn to now.

6.5.2 Counting Planes and Hyperplanes

From the geometric point of view, a SET is simply a line, i.e., a
one-dimensional object. We play ordinary SET by removing one-
dimensional objects from the collection of cards facing up on the table.
In theory, we could play a game where the goal would be to remove a
two-dimensional plane, or a three-dimensional (or higher) hyperplane.
The point here is that SETs are just special cases of a more general
structure.

Our first goal is finding a formula for the number of k-dimensional
hyperplanes in the n-attribute game, where 1 ≤ k ≤ n−1.When k = 1,
a k-dimensional hyperplane is simply a SET, and we’ve already counted
the number of SETs in the n-attribute game. So, let’s turn our attention
to k = 2, and count the two-dimensional planes in n-attribute SET.
Here’s a guide to counting the number of planes.

COUNTING PLANES

• We assume n ≥ 2. A plane is determined by three non-collinear
points. There are 3n choices for the first point, 3n − 1 choices for
the second point, and 3n − 3 choices for the third (since the third
can’t be on the line determined by the first two points). This gives
us the product 3n(3n − 1)(3n − 3).

• However, this procedure overcounts the number of planes. Since
the order of the cards within a plane doesn’t matter, we need to
divide by the number of ways the nine cards in our plane could
have been placed: We had 9 (= 32) choices for the first point
we could have chosen, and 8 (= 32 − 1) for the second, and 6
(= 32 − 3) for the third. This tells us each plane has been counted
9 × 8 × 6 = 432 times by the above procedure.

• Thus, the number of planes is

3n(3n − 1)(3n − 3)
32(32 − 1)(32 − 3)

.
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TABLE 6.7.
The number of k-dimensional hyperplanes in the n-attribute game (n, k ≤ 7).

SETs
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

n = 2 12 1 — — — — —
n = 3 117 39 1 — — — —
n = 4 1080 1170 120 1 — — —
n = 5 9801 32,670 10,890 363 1 — —
n = 6 88,452 891,891 914,760 99,099 1092 1 —
n = 7 796,797 24,169,509 74,987,451 24,995,817 895,167 3279 1

As a quick check, we plug n = 2, 3, and 4 into this formula. This will
tell us how many planes are contained in a plane, a hyperplane, and the
SET deck, respectively.

When n = 2, we get (9 × 8 × 6)/(9 × 8 × 6) = 1: there is one plane
contained in a plane. For n = 3,we have (27×26×24)/(9×8×6) = 39
planes, which agrees with our calculation from chapter 5. For the usual
four-attribute SET, we get (81 × 80 × 78)/(9 × 8 × 6) = 1170 planes,
which agrees with what we discovered in chapter 2.

The procedure we used to count the number of planes suggests a
general formula. We let h(n, k) represent the number of k-dimensional
hyperplanes for k ≤ n. Then

h(n, k) = 3n(3n − 1)(3n − 3)(3n − 32) · · · (3n − 3k−1)
3k(3k − 1)(3k − 3)(3k − 32) · · · (3k − 3k−1)

.

Table 6.7 contains several values of h(n, k).
Several comments are in order:

1. First, it’s rather amazing that this fraction is always an integer, i.e.,
all the stuff in the denominator cancels out. This should remind you
of what happens for the binomial coefficient

(n
k

)
, where the

denominator k!(n − k)! is completely canceled out by factors of the
numerator n!.

2. The value of h(n, 1) is the number of one-dimensional hyperplanes,
i.e., the number of SETs. Indeed,

3n(3n − 1)
3(3 − 1)

= 3n−1(3n − 1)
2

,
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which agrees with the formula we found in the introduction to this
chapter.

3. When n = k, the formula reduces to 1, i.e., there is one hyperplane
of dimension n. This is a trivial case, of course, but it’s nice that the
formula gives us something reasonable.

4. Finally, an examination of table 6.7 may convince you that the
numbers in any row seem to increase to a maximum, then decrease.
A sequence of numbers with this property is said to be unimodal.
There are lots of interesting sequences that are unimodal, and there
are some very challenging open problems in combinatorics
concerning unimodal sequences.

6.5.3 HowMany Hyperplanes Contain a Given Card?

We conclude this section with a local version: How many hyperplanes
of dimension k contain a given card? We’ve done one version of this
problem already:
• When k = 1 and n is arbitrary, we found each card is in
(3n − 1)/2 SETs.

To find a general formula, we can use another incidence count.
Here’s the setup: There are 3n cards on one side, h(n, k) hyperplanes of
dimension k on the other side. As usual, we join a card to a hyperplane
of dimension k if the card is in the hyperplane. We know that each
such hyperplane contains 3k cards. We let x represent the unknown
number of hyperplanes containing a given card. Then we get
3nx = 3kh(n, k), so

x = h(n, k)
3n−k .

Then, using our formula for h(n, k) and a bit of cancelation, we now
have a formula for x:

x = (3n − 1)(3n − 3)(3n − 32) · · · (3n − 3k−1)
(3k − 1)(3k − 3)(3k − 32) · · · (3k − 3k−1)

.

It turns out these numbers are famous, and there is standard
notation for them. The number of hyperplanes of dimension k
containing a given card is written

[n
k

]
3. These are the q-binomial
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TABLE 6.8.[n
k

]
3 is the number of k-dimensional hyperplanes in n-attribute SET (n ≤ 7)

containing a given card.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

n = 2 1 4 1 — — — — —
n = 3 1 13 13 1 — — — —
n = 4 1 40 130 40 1 — — —
n = 5 1 121 1210 1210 121 1 — —
n = 6 1 364 11,011 33,880 11,011 364 1 —
n = 7 1 1093 99,463 925,771 925,771 99,463 1093 1

coefficients or, alternatively, the Gaussian coefficients, named in honor
of the great nineteenth-century mathematician Carl Friedrich Gauss.
The q-binomial coefficient

[n
k

]
q gives the number of k-dimensional

subspaces of an n-dimensional vector space over a finite field with q
elements.11 The general formula looks like this:

[
n
k

]
q

= (qn − 1)(qn − q)(qn − q2) · · · (qn − qk−1)
(qk − 1)(qk − q)(qk − q2) · · · (qk − qk−1)

.

To get our formula, just plug in q = 3.
We can also restate our hyperplane count h(n, k) in terms of the

q-binomials:

h(n, k) = 3n−k

[
n
k

]
3

.

See table 6.8 for some small values of
[n
k

]
3. Concentrating on n = 4

(the usual game of SET), we note that
[4
1

]
3 = 40. This corresponds to the

familiar fact that every card is in 40 SETs. We also see that
[4
2

]
3 = 130

and
[4
3

]
3 = 40, i.e., every card is in 130 planes and 40 hyperplanes.

There is a world of interesting mathematics associated with these
numbers, and it is beyond the scope of this book to explore that world in

11 If you know some linear algebra, all subspaces contain �0, so counting subspaces corresponds
to counting the hyperplanes that contain a given, fixed card. If you don’t know linear algebra, don’t
read this footnote.
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detail. But we make a few comments, to possibly motivate you to learn
more about it on your own.

1. The numbers in every row of the table are symmetric: they form a
palindrome.12 For example, in the four-attribute game, we see
that the number of SETs that contain a given card is the same as
the number of hyperplanes that contain that card, i.e.,[4
1

]
3 = [43]3 = 40. In general, you can show the following

(exercise 6.6(b)): [
n
k

]
q

=
[

n
n − k

]
q

.

2. For any nonnegative integers q , n, and k (with k ≤ n), the
q-binomial coefficient

[n
k

]
q is an integer. In fact, more is true: if

we think of q as a variable, then
[n
k

]
q is a polynomial in q for any

legal n and k. For example, with n = 6 and k = 3, we have[
6
3

]
q

= (q6 − 1)(q6 − q)(q6 − q2)
(q3 − 1)(q3 − q)(q3 − q2)

= (q + 1)
(
q2 + 1

) (
q2 − q + 1

) (
q4 + q3 + q2 + q + 1

)
= q9 + q8 + 2q7 + 3q6 + 3q5 + 3q4 + 3q3 + 2q2 + q + 1.

This always simplifies to a polynomial—for any n, k, and q, you
can always cancel all the factors in the denominator with
corresponding factors in the numerator.
Moreover, the coefficients of the polynomial form a symmetric,

unimodal sequence: the coefficients of
[6
3

]
q given above are

{1, 1, 2, 3, 3, 3, 3, 2, 1, 1}, a nice palindrome.
3. Plugging in q = 1 gives the ordinary binomial coefficients:[n

k

]
1 = (nk). (To plug in q = 1, you must first reduce the

expression for
[n
k

]
q to get a polynomial in q .)

We’ll use many of the counts from this chapter in chapter 7, where
we study probability and expected value.

12 The first name of one of the authors of this book is a palindrome. See if you can figure out
which one.
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yx
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y

Figure 6.4. A proof without words: (x + y)2 = x2 + 2xy + y2.

EXERCISES

EXERCISE 6.1. We found a formula for the number of SETs l(n, k) with k
attributes the same, that contain a given card, in section 6.4.2. That proof used
an incidence count and the formula for the global count g (n, k). Give a direct
proof that l(n, k) = (nk)2n−k−1.

EXERCISE 6.2. In this exercise, you’ll show that the global and local per-
centages of SETs with k attributes the same are identical. Fix n and k, where
0 ≤ k ≤ n−1, and define g (n, k) and l(n, k) as in section 6.4. Use the formulas
for g (n, k) and l(n, k) to show that

g (n, k)
3n−1(3n − 1)/2

= l(n, k)
(3n − 1)/2

,

i.e., the global and local percentages of SETs with k attributes the same are
equal.

EXERCISE 6.3. In chapter 2, we defined an interset to be a collection of four
cards that are formed by taking two SETs that contain a common card, with
that card removed. How many intersets are there in n-attribute SET? [Hint:
Adapt the argument given in chapter 2.]
The next two exercises use the binomial theorem:

(x + y)n =
n∑

k=0

(
n
k

)
xn−k yk.

EXERCISE 6.4. (Binomial theorem, small cases).

a. The n = 2 case of the binomial theorem is the familiar
(x + y)2 = x2 + 2xy + y2. Explain how the picture in figure 6.4
demonstrates this.
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b. Try to construct a model that demonstrates the n = 3 case:

(x + y)3 = x3 + 3x2y + 3xy2 + y3.

[Hint: Your model should consist of eight three-dimensional blocks.]

EXERCISE 6.5. Recall that g (n) = 3n−1(3n − 1)/2 is the total number of
SETs in the n-attribute version of the game.

a. Show that g (n + 1) ≈ 9 × g (n) for n large. (For example,
g (10) = 9.0003 × g (9).)

b. Use the binomial theorem to show that adding up the number of SETs
with k attributes the same gives the total number of SETs:

n−1∑
k=0

(
n
k

)
3n−12n−k−1 = g (n).

c. Verify algebraically that the local versions of part (b) also work: Pick a card
C in n-attribute SET. Recall that the number of SETs containing C with k
attributes the same is l(n, k) = (nk)2n−k−1, and the total number of SETs
containing C is (3n − 1)/2. Show that

n−1∑
k=0

l(n, k) = 3n − 1
2

.

[Hint: Use part (b).]

EXERCISE 6.6. Prove the following facts about the q-binomial coefficient[n
k
]
q . [Non-Hint: There are clever solutions that use facts concerning vector

spaces. Attempt to use those at your own risk.]

a.
[n+1

k
]
q = qk[n

k
]
q + [ n

k−1
]
q . [Hint: Use the formula for

[n
k
]
q and lots of

algebra.]
b.
[n
k
]
q = [ n

n−k
]
q . [Hint: Again, use the formula and cancel like crazy.]

c. Treat q as a variable, and show that
[n
k
]
q is a polynomial in q of degree

k(n − k). [Hint: Use (a) and math induction on n.]
d. Show that evaluating

[n
k
]
q at q = 1 gives the binomial coefficient

(n
k
)
.

[Hint: Use (a) and math induction.]
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EXERCISE 6.7. (“Not” counting) Do the following counts in the
n-attribute game:

a. How many collections of three cards are there that do not form a SET?
b. How many collections of four cards are there that are not coplanar?
c. Simplify your answers to parts (a) and (b) as much as possible, and then

find a nice, general formula for the number of subsets of k cards (where
k ≤ n + 1) that do not contain a SET, a plane, a three-dimensional
hyperplane, and so on. Such a collection of points is said to be in general
position. [Hint: See the argument in section 6.5.1.]

EXERCISE 6.8. Pick a card in four-attribute SET, then pick a SET contain-
ing your card, then pick a plane that contains your SET, then pick a hyperplane
that contains your plane. This ordered card–SET–plane–hyperplane sequence
is called a flag:

a. How many different flags are there in four-attribute SET?
b. Now find a formula for the number of flags in the n-attribute game.

EXERCISE 6.9. Use incidence counts (or the material developed in sec-
tion 6.5) to find the following:

a. How many planes contain a given card in the n-attribute game?
b. How many planes contain a given SET in the n-attribute game?
c. Why don’t we just move on to the big question: How many k-dimensional

hyperplanes contain a given d-dimensional hyperplane (where
0 ≤ d ≤ k ≤ n)?

PROJECTS

PROJECT 6.1. Suppose you split the deck into two piles, with k cards in
one pile and 81 − k cards in the other. How many SETs meet both piles, i.e.,
how many SETs are there that include at least one card in each pile?
There is a quick answer to this problem, but there are some interesting

consequences. Let’s call a SET that contains cards from both sides of the
partition a crossing SET. To count the number of crossing SETs, choose one
card from each side. This determines a crossing SET, but note that every
crossing SET is counted twice by this procedure, since the two cards in



More Combinator ics • 169

the SET on the same side of the partition will each give rise to the same
crossing SET.

a. Generalize to the n-attribute game: Partition the 3n cards in the deck into
two parts. Let cr(n, k) be the number of crossing SETs with k cards in one
part and 3n − k cards in the other. Then

cr(n, k) = k(3n − k)
2

.

The idea of looking at crossing SETs is due to Macula. He derives a formula
equivalent to this in his article “An analysis of the lines in the
three-dimensional affine space over F3,” Ars Combinatoria 52 (1999),
161–171. (More recently, Jim Vinci posted a similar formula in the
Teachers’ Corner section of the Set Enterprises website.)

Consequences: You can prove several results from this chapter
using this formula.

b. Use the formula for cr(n, k) to show that the number of SETs containing a
given card is (3n − 1)/2, which agrees with the calculation in this chapter.

c. Use the formula for cr(n, k) to show that the number of SETs meeting a
given SET is 3 × (3n − 3)/2, again agreeing with our previous work.

d. The number of crossing SETs does not depend on the configuration of the
cards on either side, but only on the number of cards on each side. Use this
idea to show the following: Let S be a collection of three cards that do not
form a SET. Show that the number of SETs meeting S is also
3 × (3n − 3)/2.

e. For the usual game with 81 cards, find the maximum and minimum
numbers of SETs among the 69 cards that remain after the first 12 cards
have been dealt. [Hint: Think about the 12 cards that have been dealt.]

f. Choose any two disjoint SETs S and T (so n ≥ 2). Show that the number
of other SETs that meet either S or T (or both) is 3n+1 − 18. (Note that
this formula works whether or not the two SETs are coplanar.)

g. Is there a formula for the number of SETs that meet three disjoint SETs?
Here’s how you can answer this question.

i. Suppose we choose the three SETs in a plane, as in figure 6.5, and
assume we’re working in four-attribute SET. (It doesn’t matter which
three disjoint SETs we choose for this problem.)
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Figure 6.5. Three disjoint SETs form a plane.

Figure 6.6. Three pairwise coplanar SETs.

Show that there are 333 SETs that meet one of these three SETs (not
including the three given SETs). Then show that the general formula is
9 (3n − 7) /2 for the n-attribute game when the three given SETs form a
plane.

ii. Redo part (i) for the three SETs of figure 6.6. Show that this time there
are 324 SETs that meet one of these three SETs (not including the three
given SETs). This time, the general formula is 9 (3n − 9) /2. This
assumes that every pair of the three SETs are coplanar, but they do not
form a plane.
Conclude that no general formula exists for the three disjoint SETs

problem. In the four-attribute game, show that 324 is the smallest
number of SETs that meet one of three given (disjoint) SETs, and 333 is
the largest such number.

h. Let S be a collection of 2 × 3n−1 cards. Show that S contains at least
3n−2(3n−1 − 1) SETs.
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Probability and Statistics

7.1 INTRODUCTION

In chapter 6, we answered all sorts of counting questions involving the
n-attribute version of the game. In this chapter, we will use some of
those answers to compute probabilities and expected values. Questions
about probability and expected value come up naturally in playing SET.
We start with a motivating example.

7.1.1 Pick Three Cards. Is it a SET?

What is the probability that three randomly chosen cards in the
n-attribute game form a SET? Recall that we compute the probability
of an event by finding the number of ways that event can occur, then
dividing by the total number of possibilities.

In chapter 3, we found the answer to this question for the four-
attribute game (it’s 1/79). To generalize to the n-attribute game, we
need two counts from chapter 6. The numerator is the total number
of SETs in the n-attribute game, 3n−1(3n − 1)/2. For the denominator,
the total number of ways to choose three cards from the deck is

(3n
3

) =
3n(3n − 1)(3n − 2)/6. Then the probability that our three chosen cards
form a SET is

# SETs
# ways to choose 3 cards

= 3n−1(3n − 1)/2
3n(3n − 1)(3n − 2)/6

= 1
3n − 2

.

It is often the case that there are alternate ways to compute a
probability. As in chapter 3, to find the probability that three randomly
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TABLE 7.1.
The probability that three random cards form a SET in the n-attribute game for n ≤ 8.

n 1 2 3 4 5 6 7 8
Probability 100% 14% 4% 1.27% 0.4% 0.14% 0.04% 0.015%

chosen cards form a SET, imagine we choose two cards initially. Then
only one of the remaining 3n − 2 cards will complete a SET with these
first two cards, so there is a 1/(3n − 2) chance our three cards will form
a SET.

These probabilities approach 0 rapidly as n increases. For example,
in the six-attribute game, the chances of getting a SET by picking three
random cards is 1/(36 − 2) = 0.0013755 . . . ≈ 0.14%. We list these
probabilities for n ≤ 8 in table 7.1.

This computation tells us that choosing three cards at random
in the usual four-attribute game produces a SET with probability
approximately 1.3%. This means you can’t just grab three cards and
hope they’re a SET when you’re playing the game—the odds are
overwhelmingly against you. On the other hand, this implies that
approximately once every 79 times, the three cards you add to a layout
should be a SET. Since you add three cards around 23 times during a
typical game of SET, you might expect this to happen once in every
three or four games.

7.1.2 An Expected Value Problem

One reason the game is both challenging and fast paced1 is that there
will usually be a few SETs present in any layout of 12 cards. How many
SETs are there, on average, in the first layout of 12 cards?

In chapter 3, we introduced linearity of expected value to answer this
question for the four-attribute game. To generalize, if we are playing
the n-attribute game and we lay outm cards initially, there are

(m
3

)
ways

to choose three of the cards from the table, and the probability that any
one of those three-card subsets forms a SET is 1/(3n − 2), from above.
That means we can expect to find

(m
3

)
/(3n − 2) SETs, on average.

1 This depends on who is playing.
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TABLE 7.2.
Number of cards needed in initial layout to ensure an average of approximately

2.78 SETs.

# attributes 2 3 4 5 6 7 8 9 10
# cards in
initial layout 6 8.5 12 16.9 24 34.2 48.8 70 100.5

Here’s one way we can apply this result. Suppose we wanted to play
seven-attribute SET, but we still wanted around 2.78 SETs (on average)
in the initial layout. How many cards do we need? We must solve the
equation (

m
3

)
1

37 − 2
= 2.78.

Since
(m
3

) = m(m − 1)(m − 2)/6, we can use some algebra to rewrite
this equation:

m3 − 3m2 + 2m − 36,445.8 = 0.

Solving cubic equations is no picnic,2 but it’s easy enough using a
computer algebra system (we used Mathematica). Then we find three
solutions, which we’ve rounded to the nearest tenth:

m ≈ −15.6 − 28.7i, −15.6 + 28.7i, or 34.2.

The first two solutions are complex numbers involving the imaginary
number i = √−1. It would take us too far afield to give any background
on what these are and where they arise in mathematics, and we would
end up rejecting those two solutions anyway. So we conclude that an
initial layout of 34.2 cards would produce an average of around 2.78
SETs.

Of course, it’s not possible to lay out fractions of cards.3 We give the
approximate number of cards needed to hit this target for 2 ≤ n ≤ 10
in table 7.2.

2 Assuming you enjoy picnics, but not solving cubic equations. General cubic equations can
be solved exactly using the famous Cardano formulas, the generalization of the quadratic formula
discovered during the early sixteenth century, but not by Cardano.

3 Well, it’s possible, but we don’t recommend it.
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Finally, there’s nothing special about the number 2.78. In fact, it
might be hard to play the seven-attribute game with 35 cards in
an initial layout when there are only 2.78 SETs, on average.4 See
exercise 7.3 for a different approach to this problem.

7.2 STATISTICS FOR THE NUMBER OF SETS
WITH k ATTRIBUTES THE SAME

What does a typical SET in the n-attribute game look like?We interpret
this somewhat vague question in two different ways:

Q1: A SET is picked at random in the n-attribute game. What is
the probability that exactly k attributes are the same?

Q2: When a SET is randomly chosen, what is the expected
number of attributes that are the same?

We’ll start with Q1, finding the probability P(n, k) that our SET has
precisely k attributes the same. This is the ratio of the number of all
such SETs to the total number of SETs. In chapter 6, we figured out
that there are exactly

g (n, k) =
(
n
k

)
3n−12n−k−1

SETs with k attributes the same. Using this expression for our numer-
ator, our formula for the total number of SETs 3n−1(3n − 1)/2 for our
denominator, and a little algebra, we can completely answer Q1:

• The probability that a randomly chosen SET will have k attributes
the same is

P(n, k) =
(
n
k

)
2n−k

3n − 1
.

4 Honestly, if you’re playing the seven-attribute game, there will be bigger challenges than this
one.
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TABLE 7.3.
The probabilities a random SET will have k attributes the same.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

n = 1 100% — — — — — — —
n = 2 50% 50% — — — — — —
n = 3 30.7% 46.2% 23.1% — — — — —
n = 4 20% 40% 30% 10% — — — —
n = 5 13.2% 33.1% 33.1% 16.5% 4.1% — — —
n = 6 8.8% 26.4% 33% 22% 8.2% 1.6% — —
n = 7 5.8% 20.5% 30.7% 25.6% 12.8% 3.8% 0.6% —
n = 8 3.9% 15.6% 27.3% 27.3% 17% 6.8% 1.7% 0.2%
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Figure 7.1. The percentages of SETs with k attributes the same in the eight-attribute
game. Note that k = 2 and k = 3 are tied for the maximum value. The
average is around 2.66—this is the “balance point” on the horizontal axis
for the graph.

We give some data for P(n, k) in table 7.3. Note that the “nice”
percentages of 20%, 40%, 30%, and 10% that appear in row 4 of the table
agree with our earlier computations. So, for instance, in the usual four-
attribute game, there is a 40% chance your SET will have one attribute
the same and three different.

If you like to visualize your data (and you should), then check out
the graph for the eight-attribute game in figure 7.1.

For Q2, we need to figure out the expected value for the number of
attributes that are the same. Let’s start with four-attribute SET, the game
we all know and love. There are 216 SETs with zero attributes the same,
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432 with one attribute the same, 324 with two the same, and 108 with
three the same. Then we get

expected value = 216×0+432×1+324×2+108×3
1080

= 13
10

= 1.3.

What we’re after is an exact formula for the expected number of
attributes that are the same for the general, n-attribute game. We will
need the binomial theorem (introduced in exercises 6.4 and 6.5):

Binomial Theorem

(x + y)n =
(
n
0

)
xn +

(
n
1

)
xn−1y +

(
n
2

)
xn−2y2 + · · · +

(
n
n

)
yn.

Now we’re ready to find a formula. Here’s a guide:

1. Call the expected value an. Then the expected value is given by

0× g (n, 0)+1× g (n, 1)+2× g (n, 2)+· · ·+ (n−1)×g (n, n−1)
3n−1(3n − 1)/2

.

2. We can use the formula g (n, k) = (nk)3n−12n−k−1 from chapter 6
and some algebra to simplify this sum:

an=
0× (n0)2n+1×(n1)2n−1+2×(n2)2n−2+· · ·+(n − 1)×( n

n−1

)
21

3n − 1
.

At this point, we will use sigma notation to rewrite the sum on
the top of the fraction more compactly:

0 ×
(
n
0

)
2n + 1 ×

(
n
1

)
2n−1 + · · · + (n − 1) ×

(
n

n − 1

)
21

=
n−1∑
k=0

k

(
n
k

)
2n−k.
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If the notation
∑n−1

k=0 k
(n
k

)
2n−k is new to you, it might look scary.5

But the big
∑

just means “add up a bunch of terms,” where each
term corresponds to a value of k from 0 to n − 1.

3. To simplify this formula, we’ll use the binomial theorem.6 We
concentrate on the top of the fraction, T =∑n−1

k=0 k
(n
k

)
2n−k, and

find an expression (using the binomial theorem and calculus7)
that (almost) gives us T .
i. First, plug y = 2 into the binomial theorem
(x + y)n =∑n

k=0

(n
k

)
xk yn−k to get

(x + 2)n =
n∑

k=0

(
n
k

)
xk2n−k.

ii. Now, take the derivative of each side with respect to x:

n(x + 2)n−1 =
n∑

k=0

k

(
n
k

)
xk−12n−k.

iii. Now plug in x = 1. This gives us

n(1 + 2)n−1 =
n∑

k=0

k

(
n
k

)
1k−12n−k.

Simplifying, we get

n × 3n−1 =
n∑

k=0

k

(
n
k

)
2n−k.

iv. We’re getting close. The expression
∑n

k=0 k
(n
k

)
2n−k is almost T.

The only problem is that we’ve got the k = n term, which does
not appear in T (because we can’t have a SET with n attributes

5 Might?
6 Or a computer algebra package. But it’s more fun to do it by hand, don’t you think?
7 If you haven’t taken calculus, just trust us. Or mosey on over to exercise 7.2 for an alternate

approach.
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TABLE 7.4.
The expected value for the number of attributes that are the same in a randomly

chosen SET in the n-attribute game.

n 1 2 3 4 5 6 7 8 9 10
Expected value 0 0.5 0.92 1.3 1.65 2.00 2.33 2.67 3.00 3.33

the same—this would be the same card three times):

n × 3n−1 =
(

n−1∑
k=0

k

(
n
k

)
2n−k

)
+ n

(
n
n

)
2n−n = T + n.

Solving for T gives us T = n(3n−1 − 1).
v. Now that we have an expression for T , we can use it to get a

formula for the expected value an. The expected number of
attributes that are the same is

an = T
3n − 1

= n(3n−1 − 1)
3n − 1

.

An alternate (and very slick) derivation that makes use of the
linearity of expected value appears in exercise 7.1. Table 7.4 summarizes
the expected number of attributes that are the same for a randomly
chosen SET.

The expected number of attributes that are the same rises slowly. In
fact, adding an attribute increases the expected number of attributes
that are the same by roughly 1

3 when n increases by 1. We’ll look more
closely at this in the next section.

7.3 COIN FLIPPING, SET, AND
THE CENTRAL LIMIT THEOREM

The two questions Q1 and Q2 from section 7.2 give us some informa-
tion about what a typical SET looks like. But we can reformulate these
questions. Doing so will eventually lead us to an unexpected connection
between the n-attribute game and coin flipping.
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Our reformulation of Q1 and Q2 involves picking cards from the
deck. Suppose you and your friend Sumiko each pick a card from the
n-attribute deck, and then you compare your cards.

Q3: What is the probability that your two cards will be the same
in exactly k attributes?

Q4: What is the expected number of attributes that will be the
same for your two cards?

But these are the same questions we considered in section 7.2: Q1
and Q3 have the same answer for any n and any value of k < n, and Q2
and Q4 are also identical for any n. Why? There are two reasons, both
of which are familiar:

• Every pair of cards determines a unique SET (the fundamental
theorem).

• If two cards in a SET have exactly k attributes the same, then all
the cards in the SET have k attributes the same.

Think of this as the legacy of the fundamental theorem: when we
know two cards, we know everything we need to know about the third
card in the SET they determine.

The advantage of considering questions Q3 and Q4 is that we are
choosing just two cards from a deck, without replacement. People who
study probability distinguish between drawing cards with replacement
or without replacement. It’s always easier to do the computations in the
former case: once you replace the card, you can assume the second draw
is independent from the first, and that means lots of nice things happen.
But we’re working without replacement here: once you’ve drawn your
card, you keep it. Sumiko’s choice depends on what you’ve picked: she
can’t pick your card.

7.3.1 Approximate Solutions

What happens if we solve the problem with replacement? We’ll get the
wrong answer, but it will be very close to the exact answers we found in
section 7.2. In fact, when n is reasonably large, the difference between
the exact answer and this approximation will be very, very small. You’ll
see.
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To do the problem with replacement, assume you pick a card at
random from the deck, then you replace it, and then Sumiko picks her
card.

APPROXIMATE SOLUTION TO Q3

1. There are k choices (among the n attributes) for the attributes
that will be the same for your two cards. Choose these k attributes
in
(n
k

)
ways.

2. Now choose the other attributes. For each of the n − k attributes
that are different, there are two choices. For instance, if your card
is red, and color was not one of the attributes that are the same,
then Sumiko’s card must be green or purple. Since there are two
choices for each of these n − k attributes, we have 2n−k cards that
Sumiko can choose that are different in these n − k attributes.

3. Finally, since there were 3n cards Sumiko could have selected, the
probability her card will match yours in precisely k attributes is(n
k

) 2n−k

3n .

How good is our approximation? From section 7.2, we have the exact
answer of

P(n, k) =
(
n
k

)
2n−k

3n − 1
.

Our approximation just replaces the 3n − 1 term in the denominator
of the formula for P(n, k) by 3n. The difference between the exact
and approximate answers is trivial when n is large. For example, when
n = 8, the approximations for all possible values of k agree with the
corresponding exact values in at least four decimals. See table 7.5.

What happens in the four-attribute game? In this case, our approxi-
mations are still quite good. See table 7.6 for the data.

You might notice something from the numbers in tables 7.5 and
7.6: all of the approximations are slightly smaller than the exact values.
Here’s why: When we choose cards with replacement, the chances that
Sumiko’s cardmatches your card in all n attributes is ( 13 )

n. But Sumiko’s
card must be different from your card, so this probability should
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TABLE 7.5.
The exact and approximate probabilities a random SET will have k attributes the same

in eight-attribute SET.

k Approximate Exact Difference

0 0.0390184 0.0390244 5.9479 × 10−6

1 0.156074 0.156098 0.0000237917
2 0.273129 0.273171 0.0000416355
3 0.273129 0.273171 0.0000416355
4 0.170706 0.170732 0.0000260222
5 0.0682823 0.0682927 0.0000104089
6 0.0170706 0.0170732 2.60222 × 10−6

7 0.00243865 0.00243902 3.717458 × 10−7

TABLE 7.6.
Approximate and exact probabilities that two cards agree in 0, 1, 2, or 3 attributes in

four-attribute SET.

# attributes the same 0 1 2 3
Approximate 19.8% 39.5% 29.6% 9.9%
Exact 20% 40% 30% 10%

equal 0. This extra case is the difference between working with replace-
ment and without replacement, and it means that the percentages in the
approximation add up to (slightly) less than 100%. But this error is very
small when n is large.

This approach works for the expected values, too.

APPROXIMATE SOLUTION TO Q4

Q4: What is the expected number of attributes that will be the
same for your two cards?

Here’s the solution, again assuming you replace your card before
Sumiko chooses her card.

1. There is a 1
3 chance Sumiko’s card will match yours in the first

attribute, a 1
3 chance it will match in the second attribute, and

so on.
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TABLE 7.7.
Expected value (exact and approximate) for the number of attributes that are the same

in a randomly chosen SET in the n-attribute game.

n Approx. Exact Difference n Approx. Exact Difference

1 0.333333 0 0.333333 6 2 1.99451 0.00549451
2 0.666667 0.5 0.166667 7 2.333333 2.3312 0.0021348
3 1 0.923077 0.0769231 8 2.666667 2.66585 0.000813008
4 1.333333 1.3 0.0333333 9 3 2.9997 0.000304847
5 1.666667 1.65289 0.0137741 10 3.333333 3.33322 0.000112902

2. Then the expected number of attributes that are the same is
simply

1
3

+ 1
3

+ · · · + 1
3︸ ︷︷ ︸

n times

= n
3
.

Back in section 7.2, we found the exact answer an = n(3n−1−1)/(3n−1).
Again, the approximation of n/3 is excellent. To see this, let’s rewrite an:

an = n(3n−1 − 1)
3n − 1

= n
3

×
(
3n − 3
3n − 1

)
.

When n is large, the term (3n − 3)/(3n − 1) is very close to 1, so an
is very close to n/3. We give the exact and approximate values for the
expected values in table 7.7 for n ≤ 10.

7.3.2 Coin Flipping

Before we connect our approximate solutions to Q3 and Q4 to coin
flipping, we take a brief time-out to review some background material
we will need. Here’s a problem you might encounter in a probability
course:

Question: Flip a coin 10 times. What is the probability you got
exactly 6 heads?

A standard solution might look like this: First, there are
(10
6

) =
210 ways to choose the six times the coin came up heads. We could
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(in theory) list all 210 possibilities:

HHHHHHTTTT,HHHHHTHTTT, . . . ,TTTTHHHHHH.

Each of these 210 possibilities occurs with probability ( 12 )
10. Since these

events are disjoint, the answer is 210 × ( 1
210
) ≈ 20.5%.

In order to relate coin flipping to Q3 and Q4, we need to use a
weighted coin.8

COIN-FLIPPING FORMULATION FOR Q3

Question: Flip a weighted coin n times, where heads comes up
with probability 1

3 and tails comes up with probability 2
3 . What is

the probability you got exactly k heads?

The solution should look familiar: Choose the k places for heads in(n
k

)
ways. Then the probability that a sequence of flips came up heads k

times and tails n− k times is ( 13 )
k( 23 )

n−k, and this probability is the same
for any sequence of k heads and n − k tails. Putting the pieces together
gives

(
n
k

)(
1
3

)k (2
3

)n−k

=
(
n
k

)
2n−k

3n
.

This agrees with our answer to Q3 from section 7.3.1.

COIN-FLIPPING FORMULATION FOR Q4

For Q4, the expected number of heads in n flips will be n/3. Again, this
matches our approximate solution to Q4 from section 7.3.1. The prin-
cipal advantage to using the coin-flipping model is that the percentages
of flips that give k heads (for 0 ≤ k ≤ n) follow the (very well-known)
binomial distribution from statistics.

8 If someone offers you the chance to play a betting game with a weighted coin, don’t.
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Figure 7.2. The standard normal curve has mean 0 and standard deviation 1. The total
area under the curve is 1.

7.3.3 The Normal Curve

Lots of data in statistics follow the familiar bell curve distribution, called
the normal curve9 by statisticians. For example, the distribution of the
heights of all adults in the United States follows this curve quite closely.
Normal curves are all similar to each other: we can always obtain one
from another by rescaling.

Normal curves are completely characterized by two numbers: the
mean and the standard deviation. The standard deviation tells you how
spread out the curve is. See figure 7.2 for a graph of the normal curve
with mean 0 and standard deviation 1.

We mention one more fact about this distribution. Most of the data
are clustered rather closely to the mean. In fact, about 68% of the data
are within one standard deviation of the mean and 95% are within two
standard deviations. We’ll use this in the next section, when we connect
coin flipping to the normal curve.

9 The word normal is overused in mathematics, with definitions in geometry (normal vectors),
analysis (normal numbers), algebra (normal subgroups and normal field extensions), topology
(normal spaces), and the list goes on. The name is apt in statistics—many, many different
distributions follow this curve, approximately, so it’s “normal.”
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7.3.4 The Bell Curve and Coin Flipping

When you flip a (weighted or unweighted) coin n times, the probability
distribution for the number of heads (or tails) is very well behaved.
When n is reasonably large, this distribution approaches a normal
curve.

Why is this true? It follows from one of the most important results
in probability and statistics, the central limit theorem. This theorem
essentially tells us that whenever you flip a coin (weighted or not)
repeatedly and count the frequencies for the number of heads, the
bar graph for the number of heads approaches a bell-shaped curve.
The more flips, the better the approximation. (In fact, the central limit
theorem tells us much more, but it’s beyond the scope of this book to
explore this topic.)

As a general rule, if n is the number of flips and p is the probability
that your weighted coin comes up heads, you can use the normal
approximation whenever both np > 10 and n(1− p) > 10. In our case,
we know p = 1

3 , so we would be confident using this approximation
for n > 30.

We summarize the main point of this section with an example.

Question: In 60-attribute SET, what percentage of all SETs have
between 15 and 25 attributes the same? A quick glance at the graph
in figure 7.3 should convince you the answer is “most of them.”

We’ll do this problem twice: once exactly, and once using our coin-
flipping model.

1. Exact: First, the probability that our randomly chosen SET has
exactly k attributes the same in n-attribute SET is
P(n, k) = (nk)2n−k/(3n − 1). Then the exact answer to our
problem is a sum:

(
60
15

)
245

(360 − 1)
+
(
60
16

)
244

(360 − 1)
+ . . .

+
(
60
25

)
235

(360 − 1)
= 86.9026 . . .%.
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Figure 7.3. The percentages of SETs with k attributes the same in the 60-attribute game.
The red curve is a bell-shaped normal curve, with mean 20 and standard
deviation (approximately) 3.65.

2. Coin-flipping approximation:Next, we approximate our answer
by using the binomial, coin-flipping model. This time, our sum is

(
60
15

)
245

360
+
(
60
16

)
244

360
+ · · · +

(
60
25

)
235

360
= 86.9026 . . .%.

How close are these two answers? We find the approximation and
the exact answers agree in the first 28 decimals; this difference is smaller
than any human could possibly care about. (The normal curve also gives
us a way to estimate the answer—see exercise 7.6.)

We conclude this section with a discussion of how the normal
approximation can give us information about what most SETs look like
when n is large. Using a standard fact about normal curves, we know
that approximately 95% of all SETs will have the number of attributes
the same within two standard deviations of the mean, and virtually all
of the SETs (around 99.7%) will have this number within three standard
deviations.

You can see this for yourself in figure 7.4, which shows the total
number of SETs with k or fewer attributes the same in a cumulative
distribution function. The graph of such a function always moves
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Figure 7.4. The cumulative distribution function for the percentage of SETs with k or
fewer attributes the same in the 100-attribute game. Virtually all of the SETs
have between 20 and 40 attributes the same.

from 0 (representing none) to 1 (representing all) on the vertical axis
as you move from left to right on the horizontal axis.

This means that if you’re playing 100-attribute SET,10 don’t waste
too much time looking for SETs with lots of attributes the same, or
lots of attributes different. The probability that a randomly chosen SET
will have between 19 and 47 attributes the same is greater than 99%.
(Actually, don’t waste your time at all on the 100-attribute game. From
our earlier calculations, you’d need to have around 1.45689×1016 cards
on the table for there to be three SETs, on average.)

7.4 MEDIAN ANDMODE: A PREVIEW

We now know the expected value for the number of attributes that
are the same in a randomly chosen SET in the n-attribute version of
the game—it’s very close to n/3. From the data analysis point of view,
this tells us that the mean or average number of attributes shared is
approximately n/3. What is the median value, i.e., the number m of
attributes where half the SETs have no more thanm attributes the same

10 Where do you keep your deck of 3100 cards?
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TABLE 7.8.
The mean, median, and mode for the number of attributes that are the same in a SET.

# attributes 1 2 3 4 5 6 7 8 9 10
Mean 0 0.5 0.9 1.3 1.7 2.0 2.3 2.7 3.0 3.3
Median 0 0.5 1 1 2 2 2 3 3 3
Mode 0 0,1 1 1 1,2 2 2 2,3 3 3

and half the SETs have no less than m attributes the same? What is
the mode, i.e., the number of attributes that is the most likely to occur?
These three numbers, the mean, median, and mode, are standard ways
to measure the “middle” of the data.

For 10-attribute SET, the mean is about 3.3, the median is 3, and the
mode is also 3 (there are more SETs with 3 attributes the same than
any other number). One consequence of the close approximation of the
data by the normal curve is that, like the mean, both the median and
mode are very close to n/3.

If you like this sort of thing, you might enjoy working through the
details of project 7.1, where you can find formulas for the median
and mode. We give the mean, median, and mode for the number
of attributes that are the same in n-attribute SET for n ≤ 10 in
table 7.8.

We encourage you to ask questions, to search for patterns, and to
convince yourself those patterns always hold. For instance, for what
values of n are the median and mode equal? When are there two equal
modes? Is n = 2 the only time the median isn’t an integer? (Themedian
is not an integer when n = 2 because exactly half the SETs have no
attributes the same and half have one attribute the same.)

Finally, in four-attribute SET, we’ve known for some time that 20%
of the SETs have no attributes the same, 40% have one attribute the
same, 30% have two attributes the same, and 10% have three attributes
the same. Recall that P(n, k) is the probability that a randomly chosen
SET will have k attributes the same. Putting these probabilities in
decreasing order, we have

P(4, 1) > P(4, 2) > P(4, 0) > P(4, 3).
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Figure 7.5. The percentages of SETs with k attributes the same in the 10-attribute game.
Order the percentages from highest to lowest.

What happens for the general n? For instance, glancing at the graph
for n = 10 in figure 7.5 should convince you that those probabilities
are ordered as follows (where, for convenience, we write pk instead of
P(10, k)):

p3 > p4 > p2 > p5 > p1 > p6 > p0 > p7 > p8 > p9.

Does this pattern11 always hold? We encourage you to investigate!

EXERCISES

EXERCISE 7.1. In section 7.2, we found the formula for an, the expected
number of attributes that are the same in a randomly chosen SET in the
n-attribute game. In this exercise, we outline a quick derivation that takes
advantage of the linearity of expected value. For two cards A and B, let Xi = 1
if A and B are the same in attribute i, and 0 otherwise.

a. Show that P(Xi = 1) = (3n−1 − 1)/(3n − 1) by counting the number of
cards B that agree with card A in attribute i .

b. Explain why E (Xi ) = P(Xi = 1), where E (Xi ) is the expected value of Xi .

11 A perfectly reasonable question would be, “What pattern?”
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c. Now use the linearity of expected value to show

an = E (X1) + E (X2) + · · · + E (Xn) = n(3n−1 − 1)
3n − 1

.

EXERCISE 7.2. In our derivation of a formula for the average number of
attributes a random SET has the same (section 7.2), we used calculus to show

n∑
k=0

k
(
n
k

)
2n−k = n3n−1.

In this exercise, we’ll show that this is true by counting the same thing in two
different ways. First, we need a story.

A big SET tournament is taking place, and n people have entered. There will be
one champion, who receives a nice savings bond, and everyone else will receive
a certificate. There are three types of certificates: A level, B level, and C level.

a. With this backstory, let’s count the number of possible outcomes of the
tournament. Show that there are n3n−1 possible outcomes by first picking
the champion, then giving out the certificates to everyone else.

b. Now let’s count the number of possible outcomes slowly. First, we’ll
choose the champion and the A level people: choose k people, pick one as
the champion, and give A level certificates to the remaining k − 1 of them.
Next, distribute B and C level certificates to the remaining n − k people.
Show that, counting this way, the number of possible tournament
outcomes is

∑n
k=1 k

(n
k
)
2n−k . (Note that the k = 0 case is not counted here,

but that case contributes nothing to the sum.)
c. Conclude that the identity is true. This is a standard example of

combinatorial reasoning, where we count the same thing in two different
ways.

EXERCISE 7.3. Maybe one reason the four-attribute game is so good is that
2.78 SETs (on average) in the first 12 cards is the “right” ratio of SETs to cards,
namely 2.78/12 ≈ 0.23.

a. How many cards would we need to lay out in seven-attribute SET to
ensure this ratio is the same? [Hint: Letm be the number of cards needed
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in the initial layout to make the expected number of SETs equal to 0.23m.

Then solve the equation
(m
3
) 1
37−2 = 0.23m. Note that this reduces to a

quadratic equation.]
b. Now solve part (a) for the general n-attribute game. Make this as general as

possible: Let a be the target ratio for the expected number of SETs in the
initial layout, and determine the initial number of cards needed in the
n-attribute game to achieve this target. Your answer should depend on
both a and n. [Hint: As in part (a), there will be a quadratic equation inm
to solve. Check your answer by setting a = 0.23 and n = 4. You should get
m ≈ 12.]

EXERCISE 7.4. Suppose we play four-attribute SET, but we remove two-
dimensional planes, instead of lines (lines are the usual SETs, of course). How
many cards would you need to lay out to have a reasonable number of planes
present, on average? (Define “reasonable” to be 3.)

EXERCISE 7.5. Let p(n, k) = 1
3n−1

∑k
i=0
(n
i
)
2n−i be the percentage of SETs

with k or fewer attributes the same.

a. Let q(n, k) = (3n − 1)p(n, k). Show that q(n, k) satisfies the following
recursion:

q(n + 1, k) = 2q(n, k) + q(n, k − 1).

b. Use part (a) to show

p(n + 1, k) = 3n − 1
3n+1 − 1

(2p(n, k) + p(n, k − 1)).

Thus, when n is reasonably large (say n ≥ 10), we have

p(n + 1, k) ≈ 2
3 p(n, k) + 1

3 p(n, k − 1).

(Note that this recursion is exact for the coin-flipping approximation.)
c. Use part (b) to show p(n, k) < p(n + 1, k + 1) for 0 ≤ k ≤ n − 1 and n

“sufficiently large.”
d. Use part (b) to show p(n, k) > p(n + 1, k). As above, we require n to be

large enough for the approximation in part (b) to be quite good. (For
instance, there is a greater percentage of SETs with seven or fewer
attributes the same when n = 11 than there is when n = 12.)
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EXERCISE 7.6. We wish to use the normal curve to approximate the
percentage of SETs with between 15 and 25 attributes the same in the
60-attribute game. We know that the answer is approximately 86.9% from our
work in section 7.3.4.

a. Show that the mean is 20 and the standard deviation is (approximately)
3.65. [Hint: The standard deviation for the binomial distribution is√
p(1 − p)n, where p is the probability of heads and n is the number of

flips.]
b. Use a table or a computer to look up the area under the curve between

X1 = 15 and X2 = 25.
c. The approximation in (b) is not very accurate; the error is around 4%. One

reason for this discrepancy is that vertical lines at x = 15 and x = 25 cut
the vertical bars of the histogram in half, so our approximation is too
small. We can fix this problem by using X1 = 14.5 and X2 = 25.5 for our
vertical lines on the normal curve (this is usually called the continuity
correction). Repeat part (a) using these new X-values. (Your new
approximation should be accurate to within a tenth of a percent.)

EXERCISE 7.7. We know that the mean for the number of attributes the
same for a randomly chosen SET in the n-attribute game is approximately n/3.
The standard deviation for this distribution is approximately

√
2n/3. Show

that the exact value for the standard deviation is

√
32n−3(2n) (3n − 2n − 1)

(3n − 1)
(
32n−1 − 3n−1 − 2

) .
[Hint: Look up the definition of standard deviation somewhere, then use what
you know about the mean. To simplify your formula, either spend lots of effort
doing some algebra, or use a computer algebra system.]

PROJECTS

PROJECT 7.1. (Median andmode) In this project, you’ll work through the
various properties of the sequence for the number of SETs with k attributes the
same. See table 7.9.
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TABLE 7.9.
The number of SETs with k attributes the same.

k = 0 k = 1 k = 2 k = 3 k = 4

n = 1 1 — — — —
n = 2 6 6 — — —
n = 3 36 54 27 — —
n = 4 216 432 324 108 —
n = 5 1296 3240 3240 1620 405

TABLE 7.10.
Maximum number of SETs for n-attribute SET (n ≤ 15) occurs when k attributes are

the same for the given k.

# attributes 1 2 3 4 5 6 7 8 9 10 11 12
Mode 0 0,1 1 1 1,2 2 2 2,3 3 3 3,4 4

We will need our formula for the number of SETs with k attributes the
same:

g (n, k) =
(
n
k

)
3n−12n−k−1.

We know that the graph of our data closely matches the normal curve (see
figure 7.3), so the median and mode should both be very close to the mean,
which is approximately n/3. The problem is that the median and mode will
both be integers, so this gives us the median and the mode only when n is
divisible by 3. For the other cases, we need some more work.

Part 1: Mode

For ordinary, four-attribute SET, 40% of all the SETs have exactly one attribute
the same and three different, and this percentage is larger than the alternatives.
This means that the mode occurs for k = 1. All the modes for n ≤ 12 are given
in table 7.10.

Let’s figure out the mode for n-attribute SET. Here’s the deal. Fix n, and
recall (from chapter 6) that

g (n, k) =
(
n
k

)
3n−12n−k−1
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is the number of SETs with exactly k attributes the same. The goal of this part
of the project is to show that the mode occurs when k = ⌊ n

3
⌋
(this is the floor

function—round down if n is not divisible by 3).

a. Letm = ⌊ n3 ⌋. Show
i. g (n, 0) < g (n, 1) < · · · < g (n,m), and
ii. g (n,m) ≥ g (n,m + 1) > g (n,m + 2) > · · · > g (n, n − 1).

[Hint: Consider the ratio g (n, k + 1)/g (n, k). Note that we allow the
possibility that g (n,m) = g (n,m + 1)—see part (b).] (A sequence that
increases to a maximum, then decreases, is called unimodal.)

b. When is there a tie for the maximum? Use part (a) to show that the
maximum occurs at two adjacent k values precisely when n + 1 is a
multiple of 3, i.e., when n = 2, 5, 8, 11, . . . .

c. What about the minimum value? Show that the minimum occurs when
k = n − 1, i.e., when all but one of the attributes are the same. [Hint: Use
part (a) to compare g (n, 0) and g (n, n − 1).]

d. What percentage of all the SETs are represented by the maximum? Let’s
look at some data, in table 7.11.

It appears that the percentage of the SETs that occur at the mode
represents a smaller and smaller percentage of all the SETs, as n increases.
Our goal is to show that this is true—the percentage of SETs at the mode
tends to 0 as n increases. This will have the flavor of an estimate from real
analysis.

i. Call the fraction of SETs at the mode pn. Show that

pn =
(
n
m

)
2n−m

3n − 1
,

wherem = ⌊ n3 ⌋. [Hint: Use the expressions we already have for the
mode, the number of SETs g (n,m) withm attributes the same, and the
total number of SETs in n-attribute SET.]

ii. To estimate pn, we will need to estimate
(n
m
)
. This, in turn, will use

Stirling’s formula:

n! ≈ 1√
2π

(n
e

)n
.
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TABLE 7.11.
The percentage of the SETs that occur at the mode.

n 20 40 60 80 100
Mode 6 13 20 26 33
Percentage 18.2% 13.3% 10.1% 9.4% 8.4%

TABLE 7.12.
How good is the approximation?

n 100 200 300 400 500
Mode 33 66 100 133 166
Exact pn 0.0843827 0.0596057 0.0488128 0.0422834 0.0377872
Approx. 3/

√
4πn 0.0846284 0.0598413 0.0488603 0.0423142 0.037847

To make the calculations a little easier, we’ll use k = n
3 instead of

⌊ n
3
⌋

for our estimates. (This won’t make a difference for large values of n.)
Show that

pn ≈ 3√
4πn

.

[Hint: Write
(n
k
) = n!

k!(n−k)! , and then use Stirling’s formula to estimate
n!, k!, and (n − k)!, where k = n/3. Then do a ton of algebra.]

iii. Conclude that pn → 0 as n → ∞.

How good is this approximation? Rather than go through a detailed
analysis, we just look at some data, in table 7.12.

Part 2: Median

Half the data are greater than or equal to the median and half are smaller or
equal. Here, we need to find the smallest value of k so that the number of SETs
with k or fewer attributes the same is at least half the total number of SETs, i.e.,

g (n, 0) + g (n, 1) + · · · + g (n, k) ≥ 3n−1(3n − 1)
4

.

Unfortunately, there are no nice, easy-to-digest formulas for g (n, 0)+g (n, 1)+
· · · + g (n, k). Exact formulas for this sum involve hypergeometric functions,
which are beyond the scope of the book. But it turns out we can still find a nice
formula for the first time this sum exceeds 50%.
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Figure 7.6. The proportion of SETs with k or fewer attributes the same in 20-attribute
SET, where k = 0, 1, . . . , 19. The dashed line represents 50% of the total
number of SETs. Since this line is above the data point for k = 6 but below
the k = 7 point, the median is 7.

The graph in figure 7.6 shows how to find the median for the number of
attributes that are the same in 20-attribute SET. We give the percentage of
SETs with fewer than k attributes the same, for all possible values of k.

When n = 20, we find that 47.9% of all SETs have six or fewer attributes
the same, and 66.1% of all SETs have seven or fewer attributes the same. This
tells us that the median is k = 7.

a. Compute the median for n = 1, 2, 3, 4. Check that your answers match
those given in table 7.8.

b. Let med(n) be the median for the number of attributes that are the same in
n-attribute SET. Show med(n) ≤ med(n + 1). [Hint: In exercise 7.5, note
that if p(n, k) > 0.5, then k ≥ med(n). Use part (c) of that exercise.]

c. Show med(n + 1) ≤ med(n) + 1, i.e., the median increases by at most 1 in
moving from the n-attribute game to the (n + 1)-attribute game. [Hint:
Exercise 7.5(d).]
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Vectors and Linear Algebra

8.1 INTRODUCTION

Way back in chapter 1, we introduced coordinates for the SET cards, so
that every card could be written as a 4-tuple of numbers modulo 3. We
continue to use the scheme in table 8.1.

Thinking about the cards as vectors has been useful throughout this
book. In fact, the property that three cards form a SET if and only if the
sums of the individual coordinates are all 0 (mod 3) gave us our first
meaingful connection between the game and coordinates. We explore
the connections between vectors and the game in more detail here, con-
cluding with affine transformations, which provide a way to measure
the symmetry of the deck. In particular, we describe precisely those
transformations that also preserve the number of different attributes
of all SETs.

8.2 PARALLEL SETS

We begin by showing how we can use coordinates to define parallel
SETs. While most of our examples are in the usual four-dimensional
game, these ideas generalize easily to n dimensions.

8.2.1 Parallel SETs

Parallel SETs were introduced in chapter 5. Recall that two SETs
are parallel if they are coplanar and they don’t intersect. We’ll use
vector translation to define parallel SETs here, and then we’ll show
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TABLE 8.1.
Assignment of coordinates to cards.

Attribute Value Coordinate

Number 3, 1, 2 ↔ 0, 1, 2
Color green, purple, red ↔ 0, 1, 2
Shading empty, striped, solid ↔ 0, 1, 2
Shape diamonds, ovals, squiggles ↔ 0, 1, 2

Figure 8.1. Two parallel SETs. We created the SET on the right by adding the vector
�w = (1, 0, 1, 2) to the coordinates of each card in the SET on the left.

that this definition agrees with the two descriptions of parallel SETs
we introduced in chapter 5. (If vectors are new to you, we hope
the examples will provide you with some geometric and algebraic
intuition.)

We demonstrate our procedure for creating a SET parallel to a given
SET via an example. First, choose a SET, as on the left in figure 8.1.

To do any algebraic operations, we need to find the coordinates for
each of the cards in this SET:

1 Green Empty Diamond �→ (1,0,0,0),
1 Purple Solid Oval �→ (1,1,2,1),
1 Red Striped Squiggle �→ (1,2,1,2).

Next, choose any vector �w. For the example, we select
�w = (1, 0, 1, 2). (This vector is completely arbitrary here. It also
corresponds to a card in the deck, but we’ll ignore that.)

Now add �w to each of the three vectors corresponding to the cards
in the SET:

(1, 0, 0, 0) + (1, 0, 1, 2) = (2, 0, 1, 2),

(1, 1, 2, 1) + (1, 0, 1, 2) = (2, 1, 0, 0),

(1, 2, 1, 2) + (1, 0, 1, 2) = (2, 2, 2, 1).
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Figure 8.2. Two parallel lines in the Euclidean plane. You can create the top line by
adding the same vector to every point on the bottom line.

Finally, figure out what cards correspond to these three new vectors.
Those cards are shown on the right in figure 8.1.

This operation may be familiar, if you’ve studied vector addition in
the Euclidean plane. Adding the same vector to every point on a line
produces a line with the same slope, so the new line is parallel to the
original. See figure 8.2.

Furthermore, even thoughwe used our coordinates repeatedly in this
procedure, the fact that the two SETs are parallel does not depend on
how we assign the coordinates. For example, we could change our as-
signment of numbers to colors to red �→ 0, green �→ 1, and purple �→ 2.
Then, as long as we’re consistent with this new assignment, everything
we’ve done here is still valid.

This might seem a little surprising, but it’s important: we want
parallelism to be a property of the SETs, not the specific coordinates.
Said another way,

If you and your friend Theano each devised your own, different, coordinate
assignments, the procedure above would give the same pairs of parallel SETs.
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Figure 8.3. We want to find the SET containing the card on the right parallel to the SET
on the left.

8.2.2 Vectors and the Parallel Postulate

Adding a vector to a SET gives us a parallel SET. Let’s connect this idea
to the parallel postulate:

Given a SET and a card not in that SET, there is a unique SET containing that
card and parallel to the given SET.

How canwe accomplish this using vector addition? Consider the SET
on the left in figure 8.3 and the card shown on the right.

The coordinates for 3 Purple Striped Diamonds are �v = (0, 1, 1, 0),
so what vector �w should we add to the coordinates of the cards in the
SET?We have a choice: choose any of the cards in the SET, and subtract
its coordinates from (0, 1, 1, 0). (It turns out that we’ll end up with the
same parallel SET, regardless of which card we choose from the SET.
See exercise 8.1.)

So, for example, take the first vector, (1, 0, 0, 0). Then

�w = (0, 1, 1, 0) − (1, 0, 0, 0) = (−1, 1, 1, 0) = (2, 1, 1, 0) (mod 3).

Now, add �w = (2, 1, 1, 0) to each of the three vectors that corre-
spond to the cards in our SET:

(1, 0, 0, 0) + (2, 1, 1, 0) = (0, 1, 1, 0),

(1, 1, 2, 1) + (2, 1, 1, 0) = (0, 2, 0, 1),

(1, 2, 1, 2) + (2, 1, 1, 0) = (0, 0, 2, 2).

What two new cards are produced by this procedure? We get 3
Red Empty Ovals (from (0, 2, 0, 1)) and 3 Green Solid Squiggles (from
(0, 0, 2, 2)), as in figure 8.4. (This procedure must include the given
card �v in the parallel SET, because �v1 + (�v − �v1) = �v. In this case,
we have �v = (0, 1, 1, 0).)
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Figure 8.4. We found the parallel SET.

8.2.3 Vectors and Cyclic Attributes

In section 5.3, we gave two different ways to define two parallel SETs.
We now explain why the vector description above agrees with the cycle
description of parallel SETs from chapter 5. Recall, two SETs are parallel
if you can place the two SETs so that, for all the attributes that are
not the same, the cyclic ordering is the same. Also recall that the cyclic
orderings (a, b, c), (b, c, a), and (c, a, b) are considered the same.

First, let’s check that the two SETs in figure 8.1 have all the attributes
cycling in the same way:

• Number: Each card in the first SET has 1 symbol, while each card
in the second SET has 2 symbols.

• Color: In both SETs, from left to right, the color cycle is (green,
purple, red).

• Shading: In both SETs, from left to right, the shading cycle is
(empty, solid, striped).

• Shape: Again, in both SETs, from left to right, the shape cycle is
(diamonds, ovals, squiggles).

Why does vector addition preserve these cycles? Here’s a brief
explanation. Call the three vectors in the original SET �v1, �v2, and �v3,

and write

�v1 = (a1, b1, c1, d1), �v2 = (a2, b2, c2, d2), �v3 = (a3, b3, c3, d3).

Now create a parallel SET by adding a vector �w = (r, s, t, u) to each of
the three vectors in the SET.

• If the three expressions of an attribute are the same in the
first SET, they’re the same in the second. In the example,
we have a1 = a2 = a3 = 1, so, setting r = 1, we have
a1 + r = a2 + r = a3 + r = 2.
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• If the three expressions are different in the first SET, then they
remain different and cycle the same way in the second. This time,
looking at the third coordinate, we have the numbers c1 = 0,
c2 = 2, and c3 = 1. Adding t = 1 to each, we have c1 + t = 1,
c2 + t = 0, and c3 + t = 2.

This process will always produce an equivalent cycle. Since it
doesn’t matter which number in a cycle comes first, adding the
same number to each number in a cycle (working mod 3) will
simply shift the cycle, producing the same cyclic ordering of the
attributes.

8.2.4 Direction Vectors and Parallel SETs

Given two SETs, how can we use vectors to determine if they’re parallel?
Our solution involves direction vectors. Here’s how it works.

1. First, compute the direction vector �d of a SET by taking the
difference between any two vectors corresponding to cards in the
SET. For the SETs in figure 8.1, we use the first two cards for each
SET to get direction vectors:

SET 1: �d1 = (1, 1, 2, 1) − (1, 0, 0, 0) = (0, 1, 2, 1),

SET 2: �d2 = (2, 1, 0, 0) − (2, 0, 1, 2) = (0, 1, 2, 1).

2. Then the two SETs are parallel if and only if �d1 = �d2 or �d1 = 2�d2.
In this case, we have �d1 = �d2.

Direction vectors are determined only up to (scalar) multiples. For
instance, had we used �v1 and �v3 to determine our direction vector for
our first SET, we would have

�d1 = �v3−�v1 = (1, 2, 1, 2)−(1, 0, 0, 0)= (0, 2, 1, 2)= 2(0, 1, 2, 1)= 2�d2.

But the direction vector does not depend on the assignment of
coordinates: if Theano assigned vectors to the cards in a different way,
she would get the same direction vectors we got. (See exercise 8.2.)
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Figure 8.5. We can add three different vectors to the SET on the left to produce the
parallel SET on the right.

Takeaway Message: Two SETs are parallel if and only if their
corresponding direction vectors are multiples of each other.

8.2.5 The Number of Parallel SETs

Chapters 6 and 7 were devoted to counting things. In that spirit, we ask
the following question:

• How many SETs are parallel to a given SET?

Suppose you have a SET in the usual four-dimensional game. To
find a parallel SET, we could add any of the 34 = 81 possible vectors
�w to coordinates corresponding to our three cards. But this will
overcount the number of parallel SETs. To see why, let’s look at an
example.

Choose the SET on the left in figure 8.5, with cards corresponding
to the vectors �v1 = (2, 0, 2, 0), �v2 = (1, 1, 0, 1), and �v3 = (0, 2, 1, 2).
Let �d = �v2 − �v1 = (2, 1, 1, 1) be a direction vector for this SET. Then
adding �d to each of the vectors in this SET will simply reorder the cards
in our SET:

�v1 + �d = (2, 0, 2, 0) + (2, 1, 1, 1) = (1, 1, 0, 1) = �v2,

�v2 + �d = (1, 1, 0, 1) + (2, 1, 1, 1) = (0, 2, 1, 2) = �v3,

�v3 + �d = (0, 2, 1, 2) + (2, 1, 1, 1) = (2, 0, 2, 0) = �v1.

In fact, there are three vectors that leave the original SET unchanged
when we add them to the three vectors �v1, �v2, and �v3, namely �d =
(2, 1, 1, 1), 2�d = (1, 2, 2, 2), and 0 × �d = (0, 0, 0, 0). So, given any
SET, there are three vectors we could add to the vectors representing
the cards in that SET that “do nothing.”

Howmany different vectors could we add to the vectors belonging to
the original SET to produce another, parallel SET? Symbolically, if the
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parallel SET has representing vectors �u1, �u2, and �u3, howmany different
vectors �w are there that satisfy

{ �v1 + �w, �v2 + �w, �v3 + �w} = {�u1, �u2, �u3}

in some order?
Returning to our example, the three cards in the SET on the right

in figure 8.5 have coordinates �u1 = (0, 1, 1, 0), �u2 = (2, 2, 2, 1), and
�u3 = (1, 0, 0, 2). Now let �w1 = �u1 − �v1 = (1, 1, 2, 0). Adding �w1 to the
vectors �v1, �v2, and �v3 gives

�v1 + �w1 = (2, 0, 2, 0) + (1, 1, 2, 0) = (0, 1, 1, 0) = �u1,

�v2 + �w1 = (1, 1, 0, 1) + (1, 1, 2, 0) = (2, 2, 2, 1) = �u2,

�v3 + �w1 = (0, 2, 1, 2) + (1, 1, 2, 0) = (1, 0, 0, 2) = �u3.

But we could also have used �w2 = �w1 + �d or �w3 = �w1 + 2�d, where
�d = (1, 2, 2, 2) is the direction vector above. Adding either �w2 or �w3 to
each of �v1, �v2, and �v3 in turn would produce the same three vectors �u1,
�u2, and �u3, in some order. This gives three separate ways to transform
the first SET into the second:

+�w1 +�w2 +�w3

�v1 �→ �u1 �v1 �→ �u2 �v1 �→ �u3

�v2 �→ �u2 �v2 �→ �u3 �v2 �→ �u1

�v3 �→ �u3 �v3 �→ �u1 �v3 �→ �u2

We can now use this information to answer the original question.
Given a SET, we can produce a parallel SET by adding three different
vectors. Thus, there are 81/3 = 27 SETs parallel to a given SET. But
this includes the original SET, which is parallel to itself. So this leaves
26 other SETs parallel to the given SET.

Instead of using vectors, we could have answered this question using
the Parallel Postulate. Since every card is in exactly one SET parallel to
the given SET, the entire deck must be the disjoint union of the SET
and its parallel SETs. This means that in the n-dimensional version of
the game, there must be 3n−1 SETs parallel to a given SET (including
the given SET).
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Figure 8.6. The entire deck, again. For a challenge, find all 26 SETs parallel to the
SET consisting of 1 Green Solid Diamond, 2 Green Striped Squiggles, and
3 Green Empty Ovals.

Adding the same vector to every vector in a SET (or the entire deck)
is an example of an affine transformation. We’ll study these in detail in
section 8.4.

We end this section with a familiar picture. You can see the entire
deck in figure 8.6. Pick a SET, then try to find all the SETs parallel to
your SET. For example, if you choose the three cards in the top row of
the upper left plane (2 Green Striped Squiggles, 3 Red Empty Ovals, and
1 Purple Solid Diamond), then the SETs parallel to this SET are the 27
horizontal SETs in the picture (including the SET, which is parallel to it-
self). Note that each of these SETs has all four attributes different. Exer-
cise 8.4 asks you to findmore SETs parallel to a given SET in this figure.

8.2.6 Using Parallel SETs to Create a Plane

Parallelism is intimately connected to planarity. More precisely, we can
make the following statement.

• Two non-intersecting SETs are parallel if and only if there is a
plane containing both SETs.
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TABLE 8.2.
Every plane can be partitioned into three parallel SETs.

�v1 �v2 �v3

�v1 + �w �v2 + �w �v3 + �w

�v1 + 2 �w �v2 + 2 �w �v3 + 2 �w

Plane 1 Plane 2 Plane 3

Figure 8.7. Three planes. Plane 1 is parallel to either plane 2 or plane 3 (but not the
other). Which one?

Here’s why two parallel SETs live in a unique plane. If you have two
parallel SETs, write them using coordinates:

SET 1:{�v1, �v2, �v3}, SET 2: {�v1 + �w, �v2 + �w, �v3 + �w}.

Then it’s easy to complete the plane—the last three cards will be �v1+2 �w,
�v2 + 2 �w, and �v3 + 2 �w. Then these nine cards, as in table 8.2, form
a plane, because the lines in AG(2, 3) exactly match the collections of
three vectors that sum to �0 (mod 3). (There are several sums to check,
but all of this works out nicely.)

Conversely, if we are given a plane, how do we know that the vectors
can be arranged to look like table 8.2? This is the point of exercise 8.5,
where you are asked to connect the way we constructed a plane in
chapter 5 (from three cards that do not form a SET) to the construction
in table 8.2.

8.2.7 Parallel Planes, Hyperplanes, Etc.

When are two planes parallel? Here’s a quiz: There are three planes in
figure 8.7. Plane 1 is parallel to either plane 2 or plane 3, but not both.
See if you can figure out which pair are parallel.
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TABLE 8.3.
The vector representations of the cards in plane 1.

(1,0,0,0) (1,1,2,1) (1,2,1,2)

(2,0,1,2) (2,1,0,0) (2,2,2,1)

(0,0,2,1) (0,1,1,2) (0,2,0,0)

TABLE 8.4.
Adding �w = (1, 2, 0, 2) to every vector in table 8.3.

(2,2,0,2) (2,0,2,0) (2,1,1,1)

(0,2,1,1) (0,0,0,2) (0,1,2,0)

(1,2,2,0) (1,0,1,1) (1,1,0,2)

We will determine when two planes are parallel algebraically, exactly
as we did for SETs. Given a plane, we can construct a parallel plane as
follows: As before, first convert the nine cards in our plane to vectors.
Next, choose a vector �w to add to each of your nine vectors. Finally,
convert those nine vector sums back to cards in the deck.

For example, choose plane 1 in figure 8.7. This plane is represented
by the nine vectors1 in table 8.3. Then adding �w = (1, 2, 0, 2) to each
vector in plane 1 gives the vectors in table 8.4.

You can now check that the nine vectors in table 8.4 correspond
to the cards in plane 3 of figure 8.7 (although they aren’t in the same
order). We have a winner! (You can also check that there is no vector
that will transform plane 1 to plane 2 in this way.)

We can also use this procedure to define parallel hyperplanes of any
dimension. So the entire (four-dimensional) deck can be partitioned
into 27 parallel SETs, or 9 parallel planes, or 3 parallel hyperplanes. For
example, the 27 cards in the first 9 × 3 column of figure 8.6 form a
hyperplane, and the other two hyperplanes parallel to it are the other
two 9 × 3 columns in the figure.

1 A useful app for your electronic device, or special glasses, would “see” the cards and translate
them into their vector representations. (This is an excellent place for a joke using the words “set
cards,” “vectors,” and “The Matrix.” We leave this joke to the interested reader.)
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Figure 8.8. Five cards at the end: find the missing card.

Figure 8.9. The End Game. What you expected (left) and what you got (right).

8.3 ERROR CORRECTING, VECTORS, AND SET∗

We introduced the End Game in chapter 1, and we revisited it in
chapter 4. Suppose you play a game and come up with the collection
of five cards in figure 8.8.

Being a SET expert at this point, you quickly announce, “3 Red Solid
Squiggles!” (shown on the left in figure 8.9). Dramatically, you flip the
missing card, and you see the card on the right in the figure.

You didn’t get the right card! You were expecting a card with three
symbols, but the card you turned over had only one symbol. How could
that have happened? Someone must have made a mistake during the
game—they took three cards that were not a SET. Let’s use vectors to
analyze what went wrong.

The End Game works because vectors for the cards at the end of
the game must sum to �0. This follows from the argument we gave in
chapter 4: the whole deck sums to �0, and each of the SETs taken during
the play of the game sums to �0. If the End Game fails, there is only one
possible explanation: there must be at least one “SET” that got taken
that was not a SET. We can think of the End Game as a parity check:
it can detect if a mistake was made during the play of the game. (Parity
checks are common: UPC symbols and bank routing transit numbers
both use check digits to detect errors.)

Nowwhat? Having found that a mistake wasmade, you look through
all of the SETs taken, and you discover the non-SET in figure 8.10.

∗ Note: Some of the information in this section first appeared in the chapter “Error detection
and correction using SET” (by two of the authors of this book), in The Mathematics of Various
Entertaining Subjects: Research in Recreational Math, J. Beineke and J. Rosenhouse eds., Princeton
University Press, 2015.
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Figure 8.10. This non-SET was taken during the game.

Figure 8.11. Let’s hope this non-SET was never taken during a game.

Figure 8.12. Two canceling non-SETs.

Notice that themistaken SET was incorrect in number. This is visible
in the End Game: the difference between the card we expected (3 Red
Solid Squiggles) and the card we got (1 Red Solid Squiggle) was also in
number. This is not a coincidence. Using vectors, the coordinate that
caused the non-SET in figure 8.10 to fail to be a SET will affect the same
coordinate in the End Game.

What if your predicted card differs from the card you turn over in
more than one attribute? There are two possibilities:

1. One non-SET was taken, but it failed to be a SET in more than
one attribute, as in figure 8.11. This kind of mistake is rare among
experienced players.

2. More than one non-SET was taken during the game.

Can the End Game detect all mistakes made during the play of the
game? No! It is possible that two mistakes are made that cancel each
other out, as in figure 8.12. In this case, the End Game works perfectly
because the two non-SETs together sum to �0. (In fact, these could be six
cards left at the end of the game, for the same reason.)

8.3.1 HammingWeight

Coding theory is the study of error-correcting codes, which are used for
transmitting data in a variety of applications. For instance, codes are
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essential when images are sent to earth from space. They are also used
in reading mp3 files and transmitting data over a wireless network, and
in electronic devices of all sorts.

For SET, here’s how coding theory enters the picture. Recall that
when we had the non-SET in figure 8.10, the mistake was in number.
What happens if you add the coordinates of the cards in that figure?
The three cards have coordinates (0, 1, 2, 1), (0, 2, 0, 1), and (2, 0, 1, 1)
in the order they are shown in the figure. The (mod 3) sum of these
coordinates is (2, 0, 0, 0), and the one nonzero entry is in position 1,
which corresponds to number.

If S is any collection of three cards, define the Hamming weight of
S to be the number of nonzero coordinates (it doesn’t matter if the
nonzero element is a 1 or a 2) in the (mod 3) sum of the coordinates
of the cards of S .

Look at figure 8.11 for an example of three cards that are not a SET.
The coordinates for the cards in the figure are (0, 2, 2, 0), (2, 1, 2, 1),
and (1, 1, 1, 2). Their (mod 3) sum is (0, 1, 2, 0), which has Hamming
weight 2, because there are two nonzero coordinates. And, indeed, this
non-SET is wrong in two attributes. Further, the nonzero entries of the
sum are in positions 2 and 3, which correspond to color and shading,
exactly the attributes that were wrong in the non-SET. Treating each
coordinate separately, the argument is the same as the argument we
used in justifying the End Game.

8.3.2 Correcting the Error

Suppose we play the EndGame and detect an error. Can we then correct
it?2 That will depend on what we mean by “correct.”

Look again at our example of a non-SET in figure 8.11, where the
sum of the coordinates is (0, 1, 2, 0). Then

(0, 2, 2, 0) + (2, 1, 2, 1) + (1, 1, 1, 2) + 2 × (0, 1, 2, 0) =
(0, 0, 0, 0) (mod 3).

We call the vector 2 × (0, 1, 2, 0) = (0, 2, 1, 0) the error vector, E .

2 Coding theory is all about correcting errors, because you want your picture of Pluto to look
perfect.
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Figure 8.13. Mistake fixed, three times. Each row is potentially the “corrected” version
of the non-SET in figure 8.11. Note that each of these SETs has two cards
in common with the non-SET.

Here is a strategy for fixing the mistake. First, find the coordinates
for the cards: A = (0, 2, 2, 0), B = (2, 1, 2, 1), and C = (1, 1, 1, 2).
Since A+ B + C + E = (0, 0, 0, 0) (mod 3), we can add E to each of
A, B, and C, in turn.
This will fix the error, producing three different SETs:

{A+ E , B,C }, {A, B + E ,C }, {A, B,C + E }.

Now A + E = (0, 1, 0, 0) = 3 Purple Empty Diamonds, B + E =
(2, 0, 0, 1) = 2 Green Empty Ovals, and C + E = (1, 0, 2, 2) = 1 Green
Solid Squiggle. This gives three genuine SETs—see figure 8.13.

One consequence: We can’t tell which card was “wrong” in
figure 8.11. In reality, no single card is “wrong,” but you may get
that impression if you find a non-SET during the game. This is a
psychological issue, not a mathematical one.

8.4 AFFINE EQUIVALENCE: ALL SETS ARE THE SAME

In this chapter, we’ve relied on the vector representations of cards and
SETs, but we haven’t yet needed more sophisticated linear algebra. To
analyze the symmetry of the deck, we will need to understand special
functions, called affine transformations.

Our goal in this section is to explain how all SETs are geometrically
the “same.” This is also valid for planes and hyperplanes, but we need
matrices to understand why.
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For our purposes, amatrix is a square array of n2 numbers,3 arranged
in n rows and n columns. We will want to think of an n × n matrix
as a function, where the input and output are vectors with n entries.
We’ll use n = 4 for the applications to SET, but this generalizes to any
positive integer n.

It’s almost always easiest to understand a new idea via an example.
Let M be the following 4 × 4 matrix:

M =

⎛
⎜⎜⎜⎜⎜⎝

1 2 0 1

1 0 2 0

0 0 1 2

2 0 1 2

⎞
⎟⎟⎟⎟⎟⎠ .

Let �v be the following vector:

�v =

⎛
⎜⎜⎜⎜⎜⎝

1

0

1

2

⎞
⎟⎟⎟⎟⎟⎠ .

(We will want to write our vectors as columns throughout this section,
but they still correspond to cards in the SET deck.)

We compute the matrix product M�v,where all of our arithmetic will
be done mod 3.

Then we get

M�v =

⎛
⎜⎜⎜⎜⎜⎝

1 2 0 1

1 0 2 0

0 0 1 2

2 0 1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1

0

1

2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0

0

2

1

⎞
⎟⎟⎟⎟⎟⎠ .

3 For other people’s purposes, matrices aren’t necessarily squares. But we don’t need to be
those people here.
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Think of the vector �v = (1, 0, 1, 2) as the input here, and the matrix M
transforms �v into the output vector (0, 0, 2, 1) (where we write both �v
and the output vector M�v horizontally for convenience).

The definition of a linear transformation using a matrix appears
below.4 Remember, the matrix is just an array of numbers, and the
vectors are columns of numbers. The n2 entries of M are indexed
a11, a12, . . . , ann. Then M�v is computed as follows:

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

v1

v2

...

vn

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

a11v1 + a12v2 + · · · + a1nvn

a21v1 + a22v2 + · · · + a2nvn

...

an1v1 + an2v2 + · · · + annvn

⎞
⎟⎟⎟⎟⎟⎠.

If you haven’t seen matrix multiplication before, this definition may
look strange. Although the output vector on the right-hand side of the
equals sign looks forbidding, each entry is just the sum of a bunch of
products of numbers that appear on the left-hand side. To learn more
about linear algebra (and maybe get more out of this chapter), we have
two suggestions: Sheldon Axler wrote a book with the promising title
Linear Algebra Done Right, and if you like free books, Robert Beezer
has an online text called A First Course in Linear Algebra, available at
http://linear.ups.edu/html/fcla.html.

As we mentioned above, we think of the vector �v as the input and
the new vector M�v as the output of an operation. Applying this to SET,
we can view the matrix M as a recipe for permuting the cards. In the
example, our input vector (1, 0, 1, 2) corresponds to the card 1 Green
Striped Squiggle, and the output vector (0, 0, 2, 1) is the card 3 Red
Solid Ovals. Again, we’ve written these vectors horizontally, purely for
convenience.5

Matrix multiplication is a linear transformation. Linear transfor-
mations have the following very important property: if a and b are
constants and �v1 and �v2 are vectors, then M(a · �v1+b · �v2) = a ·M( �v1)+
b · M( �v2). (We note that most functions do not have this property. A

4 If this is scary, take a deep breath. It will all be over soon.
5 Our convenience.

http://linear.ups.edu/html/fcla.html


214 • Chapter 8

common mistake many students make when they learn algebra is to
implicitly assume all functions are linear.6)

Why do we care about transformations of vectors? We are inter-
ested in the permutations of the deck that preserve SETs, planes, and
hyperplanes. The transformations we will develop in section 8.4.1 are
precisely the functions that have these properties. We’ll also figure out
the total number of symmetries of the entire deck; it will be a number
we’ve met before.

8.4.1 Affine Transformations

Matrix multiplication is important in defining our transformations of
the deck, but it is also unnecessarily restrictive. Here’s the problem:
If M is any 4 × 4 matrix, then we always have the matrix product
M�0 = �0. That means that the card corresponding to �0 (3 Green Empty
Diamonds) must be fixed by every linear transformation. But this card
is arbitrary, of course, and we want all cards to be treated the same by
our transformations.

To fix this problem, we will define an affine transformation. We’ll
stick to the n = 4 case here (corresponding to the usual game of SET),
but all of what we are about to do works for a general n.

Let M be a 4 × 4 matrix and let �b be a 4-tuple. Define a function on
the SET of all vectors of length 4 by

T (�v) = M�v + �b.

Let’s try this for the matrix M above and the vector �b= (0, 1, 1, 2).
For practice, we apply the transformation to three vectors that
form a SET: �v1 = (1, 1, 0, 2), �v2 = (0, 1, 2, 1), and �v3 = (2, 1, 1, 0). For
�v1 = (1, 1, 0, 2), we find M�v1 + �b= (2, 2, 2, 2). We think of this as
mapping the card corresponding to �v1 (1 Purple Empty Squiggle) to
the card corresponding to T (�v1)= (2, 2, 2, 2) (2 Red Solid Squiggles).
You can see what T does to the other two vectors in table 8.5.

Note that the three cards �v1, �v2, and �v3 form a SET, and so do T (�v1),
T (�v2), and T (�v3) (see figure 8.14). (You might also note that these SETs

6 We wish we had a dollar for every time we saw the mistake
√
x + y = √

x + √y. We would
then have at least $10.
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TABLE 8.5.
Applying the transformation T(�v) = M�v + �b to three cards that form a SET.

Input Card Output Card

(1,1,0,2) 1 Purple Empty Squiggle (2,2,2,2) 2 Red Solid Squiggles
(0,1,2,1) 3 Purple Solid Ovals (0,2,2,0) 3 Red Solid Diamonds
(2,1,1,0) 2 Purple Striped Diamonds (1,2,2,1) 1 Red Solid Oval

Figure 8.14. T maps the first SET to the second.

have different numbers of attributes the same: the first SET has one
attribute the same, and the second has two.) This always works for affine
transformations:

• Affine transformations map SETs to SETs.

We can prove this. Assume that �v1, �v2, and �v3 form a SET. Then we
know �v1 + �v2 + �v3 = �0. We must show that the same thing is true for
T (�v1), T(�v2), and T (�v3), i.e.,

T (�v1) + T (�v2) + T (�v3) = �0.

Now

T (�v1) + T (�v2) + T(�v3) = (M(�v1) + �b) + (M(�v2) + �b) + (M(�v3) + �b)

= M(�v1 + �v2 + �v3) + 3�b

= M�0 + �0

= �0.

Affine transformations also preserve intersets, planes, and hyper-
planes (see exercise 8.8). We conclude that affine transformations
preserve all the things we want them to preserve. (In chapter 9, we’ll
see they preserve even some things you might not have thought about,
like collections of cards with no SETs.)
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Figure 8.15. Find an affine transformation taking the first SET to the second.

For our transformations to be permutations of the deck, we will want
the matrix to be nonsingular. This will mean that the transformation
is one-to-one, so we never have two input cards mapped to the same
output card. There are a variety of ways to see if a matrix is nonsingular,
but we won’t need them now.

Here’s a provocative statement:

• All SETs are the same, up to the symmetry of affine
transformations.

Here’s what we mean: if you take any two SETs, there is some affine
transformation T that takes one to the other. (In fact, there are quite a
few, as we’ll see.) We say that any two SETs are affinely equivalent.

It’s time for an example. Consider the two SETs with vector
representations {(1, 0, 0, 0), (2, 1, 2, 1), (0, 2, 1, 2)} and {(1, 1, 2, 0),
(1, 1, 2, 1), (1, 1, 2, 2)}. These SETs are pictured in figure 8.15. We’re
going to find an affine transformation that takes the first SET to the sec-
ond. Write the first SET as {�v1, �v2, �v3} and the second as { �w1, �w2, �w3}.

Let

M =

⎛
⎜⎜⎝
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎞
⎟⎟⎠ and �b =

⎛
⎜⎜⎝
b1
b2
b3
b4

⎞
⎟⎟⎠ .

We have 20 unknowns to determine. We will choose our matrix M and
vector �b so that T (�v1) = �w1, T (�v2) = �w2, and T (�v3) = �w3. This leads
us to the following system of 12 equations:

T (�v1) = �w1 =⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a11 + b1 = 1,
a21 + b2 = 1,
a31 + b3 = 2,
a41 + b4 = 0;
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T(�v2) = �w2 =⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2a11 + a12 + 2a13 + a14 + b1 = 1,
2a21 + a22 + 2a23 + a24 + b2 = 1,
2a31 + a32 + 2a33 + a34 + b3 = 2,
2a41 + a42 + 2a43 + a44 + b4 = 1;

T(�v3) = �w3 =⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2a12 + a13 + 2a14 + b1 = 1,
2a22 + a23 + 2a24 + b2 = 1,
2a32 + a33 + 2a34 + b3 = 2,
2a42 + a43 + 2a44 + b4 = 2.

We give one solution for M and �b:

T (�v) =

⎛
⎜⎜⎝
0 1 1 0
1 1 0 1
0 2 0 1
0 1 0 0

⎞
⎟⎟⎠ �v +

⎛
⎜⎜⎝
1
0
2
0

⎞
⎟⎟⎠ .

You can check that this affine transformation sends the SET
{(1, 0, 0, 0), (2, 1, 2, 1), (0, 2, 1, 2)} to the SET {(1, 1, 2, 0), (1, 1, 2, 1),
(1, 1, 2, 2)}, in that order. (We spared you the gory details, but the
12 equations can be reduced to just 8 equations. Since there are more
variables than equations, the system is underdetermined, so we expect
multiple solutions.)

We are now ready to answer the motivating question for this section:

Question: How many affine transformations are there?

We interpret this question geometrically: we can uniquely determine
the affine transformation from its action on a collection of five points
in free position, i.e., no three are collinear, no four are coplanar, and no
five are cohyperplanar. Affine transformations preserve this property: if
a collection of points is in free position, then so are its images under an
affine transformation.

Thus, an affine transformation is completely determined by the
images of five points in free position. We choose five special points:
(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), and (1, 0, 0, 0). So, how
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many different images are there? The answer is 81 × 80 × 78 × 72 ×
54 = 1,965,150,720, the same number we found in chapter 6 when
we determined the number of ways to place cards in our display of the
entire deck.

Finally, how does this generalize to n dimensions? The argument
here can be modified to give us an answer. The number of symmetries
of the n-dimensional deck is

3n(3n − 1)(3n − 3)(3n − 32) · · · (3n − 3n−1).

We point out that this is the numerator of h(n, n − 1) from
chapter 6.

8.5 PRESERVING THE NUMBER OF DIFFERENT
ATTRIBUTES OF A SET

The affine transformations treat all SETs the same because all SETs are
affinely equivalent. But one of the special features of SET is that we
perceive SETs differently depending on how many attributes are the
same. We’ve seen in the n-dimensional version of the game that the
number of SETs with k attributes the same depends on both n and k.
This was the focus of much of chapters 6 and 7.

Furthermore, paying attention to the different kinds of SETs is im-
portant when playing the game. SETs with only one attribute different
are the easiest to find formany players, but there are fewer of those SETs
than any other type.

With this motivation, we ask the following question:

Question: How many affine transformations preserve the num-
ber of attributes that are the same for all SETs?

We’ll use linear algebra to answer this question. We’ll see that the
affine transformations that preserve the varying number of attributes
correspond precisely to the different ways we could have assigned
coordinates to the cards. First, let’s give examples of the type of affine
transformations that work.
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1. Permutations of the coordinates. There are 4! ways to reorder the
coordinates.

• For instance, given a card, we can reorder the attributes by
permuting the last three coordinates in a 3-cycle. Using
vectors, this gives

(v1, v2, v3, v4) �→ (v1, v4, v2, v3).

For example, suppose our initial card is 1 Green Empty
Oval. We encode this as the vector (1, 0, 0, 1), as usual.
Then the 3-cycle on the last three coordinates maps this
vector to (1, 1, 0, 0), which corresponds to the card 1 Purple
Empty Diamond.

2. Permutations of the expressions of an attribute. Each attribute
has three values, so there are 3! ways to permute each one.

• For instance, we could swap the numbers 0 and 2 in the
second attribute. In cards, this corresponds to swapping the
colors green and red. Returning to the vectors, we have

(v1, v2, v3, v4) �→ (v1, 2 − v2, v3, v4).

In our example, let’s see what this operation does to the
card 1 Purple Empty Diamond, which was the output of the
previous operation. This time, we find
(1, 1, 0, 0) �→ (1, 1, 0, 0). This means that this operation
fixes this card (and all purple cards, in fact).

• Finally, concentrating on the first attribute, we could also
create the 3-cycle 1 �→ 2 �→ 0. In vector form,

(v1, v2, v3, v4) �→ (v1 + 2, v2, v3, v4).

Returning to our running example, the vector
(1, 1, 0, 0) �→ (0, 1, 0, 0), so the output is the card 3 Purple
Empty Diamonds.
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Figure 8.16. The affine transformation preserves the number of attributes that are the
same. Each SET has one attribute the same and three different.

We can combine these three operations to produce one affine trans-
formation:

(v1, v2, v3, v4) �→ (v1 + 2, 2 − v4, v2, v3).

What does this transformation do to a SET? Let’s look at an example.
Take the SET with vector representation {(1, 0, 0, 1), (2, 0, 2, 0),

(0, 0, 1, 2)}. Applying the above transformation to the three vectors
gives

(1, 0, 0, 1) �→ (0, 1, 0, 0), (2, 0, 2, 0) �→ (1, 2, 0, 2),

(0, 0, 1, 2) �→ (2, 0, 0, 1).

In cards, this maps the SET on the left in figure 8.16 to the one on the
right. (The first card is the running example we used in our description
of the operations above.) Note that each SET has one attribute the
same and three different—this transformation preserves the number of
varying attributes.

WhatmatrixM and vector �b correspond to this transformation? You
can verify that

M =

⎛
⎜⎜⎝
1 0 0 0
0 0 0 −1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ and �b =

⎛
⎜⎜⎝
2
2
0
0

⎞
⎟⎟⎠

do the job.
It’s clear that operations that permute the numbers in a given

coordinate will affect every card the same way. This won’t change the
number of attributes that are the same in a given SET. Neither will
permuting the coordinates themselves.

How many transformations do these operations account for? There
are 4!= 24 permutations of the coordinates themselves, and there are
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3!= 6 ways to permute each of the 4 coordinates. So we get 4! ×
64 = 31,104 legal affine transformations using these operations.

Are there any more? The answer is no. This will take some work, and
we’ll use several of the ideas developed in the last two sections to explain
why.

1. First, suppose T (�v)= M�v + �b is an affine transformation that
preserves the number of different attributes of all the SETs. Let’s
look at T (0, 0, 0, 0) and T (1, 0, 0, 0).

Using T (�v)= M�v + �b, we get T (0, 0, 0, 0)= �b since M�0= �0.
Now T (1, 0, 0, 0)= �c1 + �b, where �c1 is the first column of the
matrix M. To see why, just multiply a matrix M by the vector
(1, 0, 0, 0). This follows immediately from how we define the
multiplication of a matrix and a vector.

2. Next, note that the SET {(0, 0, 0, 0), (1, 0, 0, 0), (2, 0, 0, 0)}
differs in just one attribute. That means the SET {T(0, 0, 0, 0),
T (1, 0, 0, 0), T (2, 0, 0, 0)} also differs in just one attribute. In
particular, it means

T (1, 0, 0, 0) − T (0, 0, 0, 0) has only one nonzero entry.

This nonzero entry will appear in the position corresponding to
the one attribute of the image SET that is different.

3. But T (1, 0, 0, 0) − T (0, 0, 0, 0) = �c1, the first column of the
matrix M. We conclude from part (2) that �c1 has only one
nonzero entry.

4. The same thing is true for the second column—use the SET

{(0, 0, 0, 0), (0, 1, 0, 0), (0, 2, 0, 0)}.

This argument can be repeated for the third and fourth columns,
too. So each column of the matrix has exactly one nonzero entry.
This means that the entire matrix has only four nonzero entries.

5. Finally, each row of the matrix also has exactly one nonzero
entry. Why? If this were false, then we would have a matrix with
a row of 0s, which would force the transformation to fail to be
one-to-one. (The real problem here is that such transformations
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reduce dimension—they are not permutations of the cards
in the deck.)

We conclude that the matrix M is a signed permutation matrix. This
matrix has exactly one nonzero entry in each row and each column, and
each nonzero entry is ±1. Then there are 4! ways to pick the positions
for the nonzero entries of M, and 24 ways to assign 1 or −1 to these
positions. This gives 24 × 4! signed permutation matrices.

But we still need to choose a translation vector �b. There are 34 vectors
to choose from. It should be clear that translation will never change the
number of varying attributes in a SET.

Putting all of this together tells us that the number of permutations
that preserve the number of different attributes is 24 × 4!× 34. But this
equals 31,104—our two answers are the same! So linear algebra tells
us we can’t do anything except for the (relatively) simple operations of
permuting the coordinates and permuting the numbers appearing in a
fixed coordinate.

The general argument for the n-dimensional version of the game is
identical. We conclude that there are 6n×n! permutations that preserve
the number of varying attributes of the SETs in the n-dimensional
game. And we needed linear algebra to prove there are no more.

Executive Summary: Affine transformations map SETs to SETs.
If you also want an affine transformation that preserves the num-
ber of varying attributes in all the SETs, then your transformation
must be a composition of permutations of the coordinates and
permutations of the numbers in a coordinate. There are 6n × n!
such transformations.

We conclude this section with three pithy comments:

1. In the spirit of coding theory, call the number of attributes that
are different in a given SET the weight of the SET. We’ve just
determined when a transformation will preserve the weight of
every SET. But our general proof used only the property that
SETs of weight 1 are preserved. So we have a stronger conclusion:

• If an affine transformation preserves the weights of all SETs
of weight 1, then it preserves the weights of all SETs.
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2. Throughout this book, we’ve mentioned the arbitrary nature of
our coordinate scheme. How many different schemes are
possible, with the restriction that each coordinate will be 0, 1,
or 2, and we will always work mod 3? The answer is 64 × 4! for
SET, and 6n × n! in general. To see this, note that any relabeling
involves just the operations discussed in this section: a
permutation of the n coordinates and n separate permutations of
{0, 1, 2} for each coordinate. But that’s precisely what the affine
transformations in this section do.

3. (if you know some group theory) In fact, we can describe the
structure of the subgroup of weight-preserving transformations:
(S3)n � Sn, where Sn is the symmetric group of all permutations
of n symbols and� represents a semidirect product.

EXERCISES

EXERCISE 8.1. For the SET and additional card in figure 8.3, verify that
the procedure in section 8.2.2 does not depend on which card from the SET
we choose to create the vector �w. That is, show that we get the same parallel
SET when we use the second or third card in the SET to obtain �w.

EXERCISE 8.2. This exercise justifies using direction vectors to determine
whether two SETs are parallel.

a. Suppose you are given a SET S . Show that the direction vector is uniquely
determined up to multiplication by 2, i.e., show that there is a nonzero
vector �d such that, given any pair of vectors in the SET �u and �v, either
�u − �v = �d or �u − �v = 2�d.

b. Use part (a) to show that two SETs are parallel if and only if their direction
vectors are multiples of each other.

EXERCISE 8.3. Define a relation on the class of all 3n−1(3n − 1)/2 SETs in
n-dimensional SET as follows: two SETs S1 and S2 are related if S1 = S2 or
they are parallel. Use the vector formulation of parallelism to show that this
relation is transitive, i.e., show that if S1 is parallel to S2 and if S2 is parallel to
S3, then S1 is parallel to S3.
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TABLE 8.6.
Create a plane using the three non-collinear points �x, �y, and �z.

�x �y
�z

EXERCISE 8.4. Look at figure 8.6, the entire deck laid out nicely. Consider
the card in the upper left, 2 Green Striped Squiggles.

a. Start with a SET containing that card that lies in the subplane in the upper
left (other than the one described in the chapter). Identify (and describe)
the 26 SETs parallel to your SET.

b. Now take a SET containing that card that doesn’t lie entirely in the
subplane in the upper left (other than the one described in the figure).
Identify (and describe) the 26 SETs parallel to your SET. Bonus points for
a really spread-out SET.

EXERCISE 8.5. Choose three cards that do not form a SET, with corre-
sponding vectors �x, �y, and �z.

a. Fill in the spots for the remaining positions in table 8.6 to form a plane.
Note: All of your answers should be written in terms of �x, �y, and �z.

b. Show that the labelings in table 8.6 and table 8.2 are equivalent by finding
equations relating the four vectors �v1, �v2, �v3, and �w from table 8.2 to the
three vectors �x, �y, and �z here.

EXERCISE 8.6. Use vectors to show that two disjoint SETs are parallel if
and only if there is a plane that contains them both.

EXERCISE 8.7. Pick your favorite card, and find two SETs containing it,
where each SET has one attribute that is the same. For this exercise, make sure
the two SETs are different in which attribute is the same.

a. Construct the plane containing those two SETs. Show that every SET in
this plane has exactly one attribute the same.

b. The plane has four classes of parallel SETs, and these partition the 12 SETs
in your plane. Note that the attribute that’s the same is different for each of
these classes, i.e., one class will be the same in color, one class in number,
one in shading, and one in shape (where all of the other attributes will vary
for the given class). Use vectors to explain why this must be true.
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c. Show that every card in the deck that’s not in your plane differs from
exactly one of the cards in the plane in exactly one attribute. Take each
card in the plane you made in (a), and collect all eight cards that are
different from that card in exactly one attribute. (We call these code planes.
For more information about this plane, see “Error detection and
correction using SET”, in The Mathematics of Various Entertaining
Subjects: Research in Recreational Math, J. Beineke and J. Rosenhouse eds.,
Princeton University Press, 2015.)

EXERCISE 8.8. Suppose T is an affine transformation. Use the fact that T
takes SETs to SETs to show that

a. T preserves intersets;
b. T preserves planes;
c. T preserves hyperplanes;
d. T preserves collections of cards (of the same size) that contain no SETs.

EXERCISE 8.9. Find the unique affine transformation that sends all the
following vectors to the given images:

(1, 0, 0, 0) �→ (1, 1, 2, 0),

(2, 1, 2, 1) �→ (1, 1, 2, 1),

(0, 1, 0, 2) �→ (2, 0, 1, 0),

(2, 2, 2, 0) �→ (2, 0, 0, 1),

(1, 1, 1, 2) �→ (0, 0, 0, 0).

EXERCISE 8.10. Show that affine transformations preserve parallelism, i.e.,
if T is an affine transformation and A and B are parallel SETs, then so are
T (A) and T (B).

PROJECTS

PROJECT 8.1. (Perpendicular SETs) We can define perpendicular SETs.
First, we need to define the dot product of two vectors:

Let �v1 = (a1, b1, c1, d1) and �v2 = (a2, b2, c2, d2) be two vectors. Define the
dot product (also called the inner product or scalar product) as

�v1 · �v2 = a1a2 + b1b2 + c1c2 + d1d2 (mod 3).
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Figure 8.17. Two perpendicular SETs. The direction vectors satisfy �d1·�d2 = 0 (mod 3).

In ordinary Euclidean geometry, the dot product equals the cosine of the angle
θ between the two vectors times the lengths of the vectors:

�u · �v = |�u||�v| cos θ.

Since cos 90◦ = 0, we immediately get the following way to tell if two vectors
are perpendicular:

�u ⊥ �v if and only if �u · �v = 0.

To make this work for SET, we will use direction vectors for SETs. As
before, we compute the direction vector �d by taking the difference of any two
vectors in the SET. Consider the two SETs in figure 8.17.
Then we compute the direction vectors:

SET 1: �d1 = (2, 1, 2, 1) − (1, 0, 2, 2) = (1, 1, 0, 2),

SET 2: �d2 = (2, 1, 1, 0) − (2, 0, 0, 2) = (0, 1, 1, 1).

Then �d1 · �d2 = (1, 1, 0, 2) · (0, 1, 1, 1) = 1 × 0 + 1 × 1 + 0 × 1 + 2 ×
1 = 0 (mod 3), so these SETs are perpendicular. Note that using �d2 =
(2, 2, 2, 1) − (2, 0, 0, 2) = (0, 2, 2, 2) = 2(0, 1, 1, 1) makes no difference:
(1, 1, 0, 2) · (0, 2, 2, 2) = 0 (mod 3), too.

a. Find all SETs that are perpendicular to themselves. (Yep—that can
happen.)

b. Show that perpendicularity is not preserved by affine transformations, i.e.,
find two perpendicular SETs A and B and a transformation T with T (A)
and T (B) not perpendicular.

c. Show that a transformation T preserves perpendicularity if and only if T is
one of the special transformations of section 8.5.

d. How many SETs are perpendicular to a given SET? Show that this number
does not depend on the SET chosen, and describe the geometric structure
of all the SETs perpendicular to a given SET.



Vectors and Linear Algebra • 227

Figure 8.18. Two perpendicular SETs intersecting at a card.

e. Suppose A, B , and C are three SETs. Show that if A and B are
perpendicular SETs, and A and C are parallel, then B and C must be
perpendicular.

f. It seems difficult7 to determine if two SETs are perpendicular at a glance.
To simplify this, we’ll concentrate on intersecting SETs. Consider the SETs
in figure 8.18. Show that if a SET A is perpendicular to both of these SETs,
then A is perpendicular to every SET in the plane determined by these
SETs.

g. Find any characterization of perpendicularity that could be quickly
checked without using coordinates. (Try for something in the spirit of the
cyclic attributes property that parallel SETs enjoy.)

PROJECT 8.2. (Affine closure)We’ve seen that planes and hyperplanes are
closed in the following sense: given any two cards in a plane or hyperplane, the
third card that completes the SET determined by the first two cards is in the
plane or hyperplane. This seems to be the reason the Set Enterprises website
refers to planes as “magic squares.”

Youmay have seen closure before: it appears in algebra, where you are often
interested in the subsets of an algebraic object (a group, ring, vector space, . . . )
that are closed under binary operations. They also appear in topology, where a
subset is closed if its complement is open.

We are interested in affine closure. We need a few definitions:

• A point P ∈ AG(n, 3) is an affine combination of the collection of points
{P1, P2, . . . , Pk} if both of the following conditions hold:

a. P = c1P1 + c2P2 + · · · + ck Pk, where each ci = 0, 1, or 2, and
b. c1 + c2 + · · · + ck = 1 (mod 3).

• A subset S ⊆ AG(n, 3) is affinely closed if every affine combination of
points of S is in S.

7 Honestly, finding a pattern here looks hopeless. But there’s hope.
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• If S ⊆ AG(n, 3), we define S to be the smallest affinely closed subset
containing S. We call S the affine closure of S .

With this background, do the following:

a. Suppose S = {P1, P2} is any collection of two SET cards. Show that S is
the SET containing those two cards.

b. Show that a subset of AG(4, 3) is affinely closed if and only if it is a point, a
SET, a plane, a hyperplane, or the entire deck.

c. Let S ⊆ AG(n, 3) be any subset of points. Show

i. S ⊆ S, and
ii. S = S.

d. Show that we can build S from S by repeatedly adding points to S as
follows:

i. Replace S by S ∪ S ′, where S ′ is the collection of all points that
complete SETs with pairs of points of S .

ii. Repeat step (i) until no new points are added.

Apply this procedure to the following subsets of the SET deck, keeping
track of the number of times step (i) needs to be applied before you
reach S :

• S consists of two cards;
• S consists of three cards that do not form a SET;
• S consists of four cards that are not coplanar;
• S consists of five cards that are not cohyperplanar.

e. What happens if you remove the condition c1 + c2 + · · · + ck = 1 given
above?
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Affine Geometry Plus

9.1 INTRODUCTION

In chapter 5, we explored the connections between SET and affine
geometry. We revisit that connection here and introduce some new
geometric concepts. Recall that each card is a point in our geometry,
and each SET is a line. The entire deck forms AG(4, 3), the affine
geometry of dimension 4 and order 3. In this context, dimension 4
corresponds to the number of attributes in the game, and order 3
corresponds to the fact that each line contains exactly three points, i.e.,
three cards make a SET.

Using this connection, you can also visualize the finite geometries
AG(3, 3) and AG(2, 2) with SET cards. For AG(3, 3),we can take the 27
red cards, for example, where the three varying attributes are number,
shading, and shape; these cards form a hyperplane. Similarly, the nine
red solid cards form a plane—these cards correspond to AG(2, 3). As a
reminder, figure 9.1 shows all the lines in AG(2, 3).

In this chapter, we concentrate on a fundamental question in finite
geometry that predates the invention of the game by several decades
and which is getting a great deal of attention in the mathematical
community as this book goes to press:

• What is the maximum number of points you can have with no
three on a line?

From the viewpoint of SET, this question becomes,

• What is the maximum number of cards that do not include a SET?
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Figure 9.1. The finite geometry AG(2, 3) is an affine plane.

TABLE 9.1.
The largest cap sizes in dimensions ≤ 6.

Dimension 1 2 3 4 5 6
Cap size 2 4 9 20 45 112

Geometers call a collection of points in AG(n, 3) that contains no
lines a cap. The largest possible size of a cap1 is known in AG(n, 3) only
for n ≤ 6.

The game of SET corresponds to dimension 4 in table 9.1. Thus, the
maximum number of cards that do not contain any SETs is 20. You can
find this fact discussed in many places on the web, along with various
proofs. There’s also an excellent proof in B. Davis and D. Maclagan’s
wonderful article “The card game SET” (Mathematical Intelligencer 25,
no. 3 (2003), 33–40). We can also interpret the results for n= 1, 2,
and 3 by looking for caps in planes and hyperplanes; this will help
build intuition for n= 4. Using the cards to visualize the caps, we’ll see
that the maximum-size caps have some interesting geometric structure.
One goal in this chapter is to analyze this structure. We’ll also look at a
variation of SET that is based on projective geometry, rather than affine.

One final comment for now is that the connection between geometry
and SET goes in both directions: using the cards allows us to
visualize and understand the geometry in new ways, and the (very

1 Large cap sizes may spark pictures of big heads, or perhaps sinking ships. We leave other
puns to the interested reader.
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well-developed) geometric theory gives rise to facts about collections
of cards and SETs in SET. We will use both directions, advancing our
understanding of both geometry and the game.

9.2 MAXIMAL CAPS

We begin with a comment on terminology. One of the difficulties in
mathematics is that people who come up with a “new” mathematical
idea need to name it. This means we cannot always be certain that a
concept is, in fact, new: someone elsemight have come upwith the same
idea earlier, but called it something else.Who would guess that the term
“cap” would be used for the collections of cards we’re interested in?2

Another difficulty is that the standard term for the largest collections
of points containing no lines is “maximal cap,” despite the fact that
mathematicians would usually call such a thing a maximum cap. A
SET having some property is usually called maximal with respect to
a property if adding additional elements to the collection destroys the
property, though it might not be the largest such object. However,
since this name is now standard, we will stick with it. We will use the
following terminology: a “complete cap” is one that may not be of the
largest possible size, but where adding any other point creates a line,
while a “maximal cap” is a (complete) cap of largest possible size. We’ll
use these terms throughout the chapter.

While every maximal cap is a complete cap, in AG(3, 3) and higher
dimensions, you can have complete caps that are not maximal. For
example, consider the eight solid cards pictured in figure 9.2. Those
cards form a complete cap in AG(3, 3): you can verify that every solid
card completes at least one SET with two cards in the cap. However, the
size of a maximal cap is nine cards, as indicated in table 9.1.

People have been interested in finding the maximal caps in various
finite geometries since at least the 1940s; it’s a bit hard to be certain
because the terminology has changed. As far as we can tell, R. C. Bose
(“Mathematical theory of the symmetrical factorial design,” Sankhyā:
The Indian Journal of Statistics 8 (1947), 107–166) was the first to

2 No one.
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Figure 9.2. A complete cap in AG(2, 3): any solid card completes at least one SET with
two cards from this collection of cards.

explicitly enumerate maximum-size line-free collections of points in
AG(3, 3); he showed that the answer is 9, as table 9.1 indicates. In 1970,
G. Pellegrino (“Sul massimo ordine delle calotte in S4,3” [The maximal
order of the spherical cap in S4,3], Matematiche (Catania) 25 (1970),
149–157) proved that the answer is 20 in AG(4, 3). This paper is written
in Italian and has not been translated into English.3

For dimensions 2, 3, and 4, we will be interested in several questions
related to maximal caps:

1. How many cards are there in a maximal cap?
2. How many different maximal caps are there?
3. How many different maximal caps are there, up to affine

equivalence? (See section 8.4.)
4. What is the geometric structure of a maximal cap?
5. What are the sizes of all the complete caps?

We will answer some of these questions in the chapter, and leave some
as exercises and projects.

9.2.1 Caps in Dimension 2

Let’s start small. In figure 9.3, you’ll find a nice plane containing all the
cards with 2 solid symbols. What’s the largest collection of cards you
can make with no SETs? Can you find a smaller collection of cards with
no SETs?

It’s not hard to see that any collection of three cards that aren’t
a SET can be augmented without creating a SET. Furthermore, it’s
not hard to see that any four cards that don’t contain a SET will
form a maximal cap. Jordan Awan wrote the Cap Builder applet

3 We haven’t read it. Ci scusiamo!
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Figure 9.3. A nice plane.

1 1 2
1
1

Figure 9.4. The Cap Builder shows a maximal cap in two dimensions. The numbers
indicate the number of lines each of the five remaining points completes
with the cap.

http://webbox.lafayette.edu/∼mcmahone/capbuilder.html, which al-
lows you to choose points to form a cap in any dimension between
2 and 7.

Figure 9.4 contains output from this program. If we want our
cap to be the four cards in the upper left of the plane in figure 9.3
(2 Green Solid Diamonds, 2 Green Solid Ovals, 2 Purple Solid
Diamonds, 2 Purple Solid Ovals), select those positions, which will be
represented by 4 large black dots.

What do the red numbers in figure 9.4 tell us? Note that the number 1
appears in the top right position (corresponding to 2 Green Solid
Squiggles); this means that adding this card to the cap will produce
exactly 1 SET: the SET determined by the top row of figure 9.3. The
2 in the lower right of the figure indicates that the card 2 Red Solid
Squiggles completes 2 different SETs with the cards from the cap.

Thus, this maximal cap is an interset: two lines through a single
point, with that point removed; further, every maximal cap in two
dimensions is an interset. We will call the point that completes two
lines an anchor point. (In chapter 2, we called this point the center of
the interset, but that has a different meaning in geometry, so we won’t
use it here.) In figure 9.4, the anchor point is in the lower right: 2 Red

http://webbox.lafayette.edu/%E2%88%BCmcmahone/capbuilder.html
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× ×

×
Figure 9.5. Choose the three boxed cards. Each of the cards not crossed out can be

added to those three to make a maximal cap.

Figure 9.6. The affine geometry AG(3, 3) as a hyperplane in SET.

Solid Squiggles. In exercises 2.4 and 4.6, you had opportunities to show
that the anchor point is unique.

Are there any complete caps that aren’t maximal in AG(2, 3)? No.
You can prove this by taking three cards that don’t make a SET.
Consider pairs of cards from those three and complete the SET for
each pair. This eliminates three cards (shown with ×’s on them in
figure 9.5): these cards cannot be added to the cap. But then any of the
three remaining cards can be added to the three original cards to make
a maximal cap.

9.2.2 Caps in Dimension 3

Since AG(3, 3) is a hyperplane in AG(4, 3), we can use any hyperplane
in the deck for our geometry. We’ll use all of the solid cards as our
model here. See figure 9.6.

In contrast to the situation in AG(2, 3), there are caps in AG(3, 3)
that are complete but not maximal. Those caps have size 8, and you can
explore them in project 9.1.

Not all complete caps with 8 points are affinely equivalent. Two
different caps are pictured in figure 9.7. Note that the numbers in red
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Figure 9.7. Two different complete caps in three dimensions.

2222 2
2
22

2
2

2
2

22
2

2

2
2

Figure 9.8. A maximal cap in three dimensions.

are different for these caps: in the first instance, two points complete
three lines, but for the second cap, no points complete three lines.
Since affine transformations send lines to lines, a point that completes
k lines with points from the cap will have to be sent to a point
that completes k lines with the image of the cap. This tells us that
these two caps cannot be transformed into one another with an affine
transformation.

In AG(3, 3), all maximal caps contain nine points. One such cap is
shown in figure 9.8. Note that every point not in the cap completes
exactly two lines with points from the cap. Further, you can show
that the sum of the coordinates of all the points in a maximal cap in
AG(3, 3) is �0.

We saw that any collection of four points, with no three on a line,
forms a maximal cap in AG(2, 3). Further, all of these four-point caps
are affinely equivalent. It turns out this is also true in three dimensions:

• All maximal caps in AG(3, 3) are affinely equivalent.

This was originally proved by Bose using fairly sophisticated argu-
ments, although it’s also possible to construct a direct proof. But the
details are too technical for us to worry about here.
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Figure 9.9. A complete cap in four dimensions.

9.2.3 Caps in Dimension 4, the Game of SET

Now, we’re ready for the maximal caps in AG(4, 3), i.e., collections of
cards from the usual SET deck that are as large as possible, but contain
no SETs. Since the largest possible cap has 20 cards, we now know that
any collection of 21 cards is guaranteed to contain a SET. It’s possible
to find complete caps with 16, 17, 18, or 20 cards, but not 19 (any cap
with 19 points is actually a subset of a maximal cap).

There’s quite a large number of complete caps that are not affinely
equivalent. If you go to the Cap Builder, there’s a button that allows
you to create a random complete cap. Playing with that for a while
should convince you of two things: we weren’t kidding4 when we said
that there are lots of complete caps that aren’t affinely equivalent, and
it’s extremely rare that you get a maximal cap.

As before, it is useful to picture caps by using a grid to represent
AG(4, 3), i.e., the entire deck. Here, we use a 9 × 9 grid, divided into
3× 3 subgrids, to represent the 81 cards in the deck. Figure 9.9 gives an
example of a complete cap of size 16.

Given how we can organize the cards, you can see that this cap can
be created by taking all the cards that have

4 We leave to the astute reader the task of finding the places where we were kidding. There are
a bunch.
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Figure 9.10. A maximal cap in AG(4, 3).

• number: 1 or 2 symbols;
• color: red or green symbols;
• shading: empty or striped symbols;
• shape: diamonds or ovals.

If we add any of the remaining 65 cards to this collection, we are
forced to create a SET, so this is a complete cap. But this is not a
maximal cap; those have 20 cards.

We are interested in the geometric structure of the 20 cards that form
a maximal cap. It turns out the cap will consist of 10 lines through a
point,5 with that point then removed. If you’re keeping track, that gives
us 20 points, as advertised.

As we did in the two-dimensional case, we call the point on these
10 lines the anchor point of the cap. One example of a maximal cap is
shown in figure 9.10, where the anchor point is in the upper left corner,
and a pair of points in the cap are the same color if that pair forms a
SET with the anchor point.

What does this cap look like in cards from the deck? We give an
example in figure 9.11. The anchor card is 1 Green Empty Diamond,
and it’s outlined. It’s a useful exercise to find all 10 SETs that contain
the anchor card.

What else can be said about maximal caps in AG(4, 3)?

5 Such a collection of lines is properly called a pencil of lines, which should remind the reader
of group terms like pride of lions ormurder of crows. We believe this is an excellent name.
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Figure 9.11. Four-dimensional complete cap, in cards; the anchor card is outlined in
the upper left.

• As was the case in two and three dimensions, it turns out that all
maximal caps in AG(4, 3) are affinely equivalent. This fact was
first shown by R. Hill in 1983 (“On Pellegrino’s 20-caps in S4,3,”
Annals of Discrete Mathematics 18 (1983), 433–447).

• If you put the cap shown in figure 9.10 into the Cap Builder, you’ll
find that any point not in the cap (and not the anchor point)
completes exactly three lines with points from the cap. A picture
using the Cap Builder appears in figure 9.12; an example of a card
not in the SET and the three SETs it completes (with the cards in
figure 9.11) is shown in figure 9.13.

• Two maximal caps with different anchors must intersect. This
was verified with a computer search by M. Follett, K. Kalail,
E. McMahon, C. Pelland, and R. Won (“Partitions of AG(4, 3)
into maximal caps,” Discrete Mathematics 337 (2014), 1–8),
and it was proved directly (without the computer) by J. Awan,
C. Frechette, and Y. Li.

• It is possible to find disjoint caps that use the same anchor point.
This will lead us to some beautiful partitions of the entire deck
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Figure 9.12. A maximal cap of 20 cards, shown using the Cap Builder program. Note
that each non-anchor point not in the cap completes exactly three lines
with points in the cap. The point labeled A is the anchor—it’s not in the
cap, and it completes 10 SETs with the points in the cap.

Figure 9.13. The top card is not in the cap shown in figure 9.11. This card forms a SET
with three pairs of cards in the cap.

into disjoint maximal caps. We study these in some detail in
section 9.3.

9.2.4 Caps in Higher Dimensions

Table 9.2 presents what is known about maximal caps in dimensions 5
and 6. (“Lines completed” refers to howmany lines every (non-anchor)
point not in the cap completes with pairs of points in the cap.)

In five dimensions, there is no anchor point, but the coordinates of
the points of the cap sum to �0 (as was the case in three dimensions). In
six dimensions, there is an anchor point (as was the case in two and four
dimensions); the cap consists of 56 lines through the anchor point, with
that point removed. Notice that the maximal caps in even dimensions
(2, 4, and 6) contain anchor points, while in nontrivial odd dimensions
(3 and 5), there are no anchor points.
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TABLE 9.2.
Known sizes of maximal caps.

Dimension Size of All affinely Lines Anchor
max cap equivalent? completed point?

5 45 yes 5 no
6 112 yes 10 yes

What is known in dimensions greater than 6? Very little. You
may find it surprising that no other maximal cap sizes are known.
The results for dimension 5 were established in 2002 by Y. Edel,
S. Ferret, I. Landjev, and L. Storme (“The classification of the largest
caps in AG(5, 3),” Journal of Combinatorial Theory A 99, no. 1 (2002),
95–110), and dimension 6 was completed by A. Potechin (“Maximal
caps in AG(6, 3),” Designs, Codes and Cryptography 46, no. 3 (2008),
243–259) when he was an undergraduate student in 2008. It would be
great if a reader of this book were to find the size of a maximal cap in
AG(7, 3).

Finally, this problem is not solely of interest to SET enthusiasts. In
2007, Fields Medalist Terence Tao wrote in his blog,

Perhaps my favourite open question is the problem on the maximal
size of a cap set. (https://terrytao.wordpress.com/2007/02/23/open-question
-best-bounds-for-cap-sets/)

The Fields Medal is often referred to as the “Nobel Prize of Math-
ematics.” Tao is one of the premier mathematicians of the twenty-
first century, winning that prize in 2006. If nothing else, this should
convince you that a general formula for the maximal cap size in n
dimensions is probably hopeless.

Write cap(n) for the size of the largest cap in AG(n, 3). Currently,
the best known bounds for cap(n) are

(2.2174 . . .)n ≤ cap(n) ≤ c · (2.756)n

where c is a constant that does not depend on n. The lower bound is
due to Edel, and the upper bound represents a major breakthrough,
which was announced in May 2016 by Ellenberg and Gijswijt, building
on previous work by Croot, Lev, and Pach.

https://terrytao.wordpress.com/2007/02/23/open-question-best-bounds-for-cap-sets/
https://terrytao.wordpress.com/2007/02/23/open-question-best-bounds-for-cap-sets/


Aff ine Geometry Plus • 241

A

Figure 9.14. A partition of AG(2, 3) into two maximal caps with anchor point A.

9.3 PARTITIONS OFMAXIMAL CAPS

Is it possible to break up the entire SET deck into maximal caps, all
using the same anchor point, with no cards appearing in more than
one cap? This is a question about partitioning a finite geometry into
caps, and such questions have received a fair amount of attention from
people who study finite geometry. Aided by the visualization provided
by SET, we’ll see how this is possible for n = 4.

That such a partition exists for the SET deck was first noticed by the
mathematician Anthony Forbes of the UK (personal communication);
since his discovery, two research groups have studied the geometric
structure of these partitions. These groups have also shown that similar
partitions are possible in lower dimensions.

9.3.1 Partitions in Dimension 2

In AG(2, 3),we know that there are exactly four lines through any point
(corresponding to the four SETs that contain any card in figure 9.3).
Start with a maximal cap in a plane, and call its anchor point A. The
cap consists of two lines through A, with A removed. Then there are
two more lines through A, and those two lines (again with A removed)
also form a maximal cap. This means that we can use the four lines
through A to decompose AG(2, 3) into two disjoint maximal caps,
together with their common anchor point. Such a partition is shown in
figure 9.14.

In figure 9.14, you can see the anchor point A along with the four
lines through A. The four red points are a maximal cap and the four
blue points are a disjoint maximal cap, so this gives us one partition.
Similarly, the four solid points and the four open points are a second
pair of disjoint maximal caps, so that is a different partition.
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Maximal cap 1 Maximal cap 2 Anchor point

Figure 9.15. Two maximal caps plus their common anchor point partition AG(2, 3).

Figure 9.16. AG(3, 3) partitioned into three disjoint maximal caps.

Fixing the anchor point A, there are (at least) two natural counting
questions:

• How many maximal caps are there that use anchor point A?
• How many partitions are there with anchor point A?

You’ll get a chance to answer these questions yourself in exercise 9.2.
In figure 9.15, you’ll see the cards that correspond to one partition
of AG(2, 3) into two disjoint maximal caps plus the anchor point
(where we use the configuration of cards in figure 9.3). This partition
corresponds to choosing the four red points for one cap and the four
blue points for the other from figure 9.14.

Notice that, in AG(2, 3), once a maximal cap is chosen, the second
cap in a partition is determined. In exercise 8.7(a), you were asked
to prove that all intersets are affinely equivalent (this is true in any
dimension), so all maximal caps in AG(2, 3) are affinely equivalent, so
all partitions of AG(2, 3) are affinely equivalent. See exercise 9.3.

9.3.2 Partitions in Dimension 3

We know that AG(3, 3) consists of 27 points, and there are 9 points
in a maximal cap. Are there partitions of AG(3, 3) into three disjoint
maximal caps? Indeed there are! One such is pictured in figure 9.16. In
the exercises, you’ll be asked to prove that a given maximal cap is in a
unique partition of AG(3, 3) into disjoint maximal caps, just as was the
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Maximal cap 1 Maximal cap 2 Maximal cap 3

Figure 9.17. Partition of AG(3, 3) into three disjoint maximal caps.

case in AG(2, 3), i.e., once you’ve picked one maximal cap, the other
two caps that complete the partition are completely determined.

In figure 9.17, you’ll see the cards that correspond to this partition.
Again, you can check that each cap contains no lines and that every
solid card is in exactly one cap. There are other wonderful patterns in
there, so you might want to spend a little time looking for them.

It’s interesting to compare the three caps of figure 9.17 with the
cards that form a plane (see figure 9.3). These collections of nine cards
are opposite, in some sense: the nine cards that form a plane contain
12 SETs, while each of the three caps in figure 9.17 contains no SETs.
You can explore more of the patterns in this partition in project 9.1.

9.3.3 Partitions in Dimension 4, the Game of SET

Are there partitions of AG(4, 3) into disjoint maximal caps? The
numbers are promising: there are 81 points in total, 20 points in a
maximal cap, and 81= 4× 20+ 1. There are 40 lines through a given
point, and a maximal cap accounts for 10 such lines. In a perfect world,
it would be possible to partition these 40 lines into four groups of
10 lines, with each collection of 10 lines a maximal cap (remembering
that we never include the anchor point in the cap, of course).

It turns out that, at least in this instance, the world is perfect.6 As we
mentioned above, Anthony Forbes found such a partition in 2007. We
give one example, both in grid form, and using the cards: figure 9.18
shows the partition using our grid and figure 9.19 shows the same
partition in cards.

There is much more to explore with these partitions. Anthony
Forbes also did a number of computer searches and found several

6 Make up your own footnote here. The authors are speechless.
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Figure 9.18. A partition of AG(4, 3).

Figure 9.19. Partition of AG(4, 3) into four disjoint maximal caps, plus their common
anchor point.

interesting facts:

• Given a particular maximal cap C , there are exactly 198 maximal
caps disjoint from it, and each has the same anchor point.

• Every maximal cap is in 216 partitions, and every pair of disjoint
maximal caps is in at least 1 partition.
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Finally, two groups of undergraduate students proved the following:

• It is not the case that all partitions are affinely equivalent, but
rather there are two affine equivalence classes. Work in
understanding the geometric difference between these classes has
given rise to an interesting substructure of the maximal caps.
(M. Follett, K. Kalail, C. Pelland, R. Won, J. Awan, C. Frechette,
and Y. Li)

9.3.4 Higher Dimensions

Are partitions like the ones we found in dimensions 2, 3, and 4 possible
in dimension 5 or 6? Unfortunately, no. The maximal cap in AG(5, 3)
has 45 points, and 45 does not divide 35. Similarly, 112 does not divide
36 − 1, so this is impossible in AG(6, 3), too. However, there might still
be some undiscovered structure these caps possess. And you might be
the person who figures out what that structure is.

9.4 A PROJECTIVE VERSIONOF SET

As we have mentioned (repeatedly), the game of SET is a model for a
finite affine geometry. There are also finite projective geometries that
can form the basis for SET-like games.

Davis and Maclagan’s article from the Mathematical Intelligencer
(“The card game SET,” previously mentioned in this chapter) describes
a projective version of SET. A game called Zero SumZ (or referred
to as ProSET, short for Projective SET) was designed by A. Erickson,
M. Guay-Paquet, and J. Lenchner; it can be played online at http://www
.zerosumz.com and is available for purchase on the web. There are
(at least) two other online versions: A. Geraschenko’s at http://stacky
.net/wiki/index.php?title=Projective_Set and D. Adams’ at https://www
.ocf.berkeley.edu/∼dadams/proset/.

There are important differences between these games and SET. Some
versions allow SETs with more than three cards, and these games
usually require the symbols, or attributes, to appear an even number
of times, which has a different feel from the game of SET.

https://www.ocf.berkeley.edu/~dadams/proset/
http://stacky.net/wiki/index.php?title=Projective_Set
http://www.zerosumz.com
https://www.ocf.berkeley.edu/~dadams/proset/
http://stacky.net/wiki/index.php?title=Projective_Set
http://www.zerosumz.com
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There is another approach to modifying the game of SET to
make it a projective geometry, taken by D. Burkholder. In a version
called Complete SET, he starts with the actual SET deck and adds
40 cards to it to make a projective deck. An abstract of a presentation
he gave on this game can be found online: https://jointmathematics
meetings.org/amsmtgs/2168_abstracts/1106-a1-1254.pdf. While this
version uses the regular SET cards (along with the additional cards),
SETs in this version contain four cards, rather than three.

In the interest of completeness, we first give a brief introduction to
projective geometry, then present another version of SET based on this
geometry.

We begin by looking at the axioms for a projective plane. The main
difference between affine and projective planes is that in an affine plane,
the parallel postulate holds: given a line l , and a point P not on l , there
is a unique line l ′ through P parallel to l . In the projective plane, there
are no parallel lines at all; every pair of lines intersect.

Axioms for a Finite Projective Plane

Axiom 1. There exist four points where no three are on the
same line.

Axiom 2. Any two points lie on a unique line.
Axiom 3. Any two lines intersect in a unique point.

There are several things to notice here. The first axiom rules out
the trivial geometries where all the points lie on a line or where all
lines pass through the same point. Note the symmetry between the
second and third axioms. If we interchange the words “point” and “line”
(and if we’re willing to be flexible about the meaning of “lie on” and
“intersect in”), then axiom 2 becomes axiom 3 and vice versa. This is
called “point–line duality” for projective planes. Thus, once we prove
the dual to the first axiom (namely that there are at least four lines,
no three through the same point), then for any theorem that we prove,
the words “point” and “line” can be interchanged, giving a new, dual
theorem. For instance, suppose we have a projective plane with the
property that every line has exactly three points. Then it must also be
true that every point is on exactly three lines.

https://jointmathematicsmeetings.org/amsmtgs/2168_abstracts/1106-a1-1254.pdf
https://jointmathematicsmeetings.org/amsmtgs/2168_abstracts/1106-a1-1254.pdf
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Figure 9.20. The Fano plane is a projective plane with three points on every line.

The simplicity of the axioms and the point–line duality make projec-
tive geometry a very attractive field. While projective geometry might
seem less natural than affine geometry (because Euclidean geometry
is affine), mathematicians have spent more time studying projective
geometries. Moreover, standing on train tracks7 should convince you
that parallel lines appear to intersect “at infinity.” In fact, much of
the early work in projective geometry was devoted to understanding
perspective in art.

Although the axiom systems are different, there is a close connection:

• Every affine plane is contained in a projective plane. A projective
plane is obtained from an affine plane by adding a “line at
infinity.”

This connection has been exploited by mathematicians. In fact, most
of what we know about caps in affine geometries comes from theorems
about caps in projective geometries.

As usual, the best way to understand a new concept is by looking
at examples. The Fano plane in figure 9.20 is the smallest projective
plane, with seven points and seven lines (where the circle is also a
three-point line). The first person to describe this geometry was G. Fano
(“Sui postulati fondamentali della geometria proiettiva,” Giornale di
Matematiche 30 (1892), 106–132). This paper is in Italian, just as
Pellegrino’s was.8 There is a long history of research on projective
geometry in Italy, dating back to the Renaissance.

7 Please do this only when no trains are nearby. Please.
8 Should we feel guilty for not reading papers in Italian? Probably.
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TABLE 9.3.
Assignment of coordinates to points in the Fano plane.

Point a b c d e f g
Coordinates (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1)

There is a lot of symmetry in this geometry. Here are some relevant
facts you might notice:

1. There are seven points and seven lines in the geometry. (Axiom 1
is satisfied.)

2. Every pair of points determines a unique line. (Axiom 2 is
satisfied.)

3. Every pair of lines meets at a unique point, i.e., there are no
parallel lines. (Axiom 3 is satisfied.)

4. Every point is on three lines.
5. Every line has three points.

To model a card game on the Fano plane, we could create a card
for each of the seven points. Then the “SETs” could be the lines,
exactly matching the situation for SET. While this game would not be
interesting to play (there aren’t enough cards), the geometry has the
properties that make SET so attractive: every SET has three cards, and
every pair of cards is in a unique SET. The projective version of the
game we describe below is based on this geometry. To understand how
this projective game works, we will need coordinates, much as we have
throughout this book.

While the coordinate schemewe use heremight seem like it’s coming
out of the blue, it’s the standard approach to representing projective
planes by vectors. We will still use modular arithmetic, but we’ll now be
working mod 2, instead of mod 3. We will use ordered triples (a, b, c),
where each coordinate is 0 or 1, to assign coordinates to the seven points
in the Fano plane, except that we won’t assign the (0,0,0) vector to any
of our points, leaving the seven ordered triples we need.

We give our assignment in table 9.3.
The Fano plane is denoted PG(2, 2), for projective geometry of

dimension 2, where our arithmetic is done modulo 2. Working
mod 2 gives these coordinates a remarkable (and quite familiar)
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property:

• Three points are collinear if and only if their sum is (0, 0, 0)
(mod 2).

For example, the three points a, b, and e are a line in the geometry.
Adding their coordinates,

(1, 0, 0) + (0, 1, 0) + (1, 1, 0) = (2, 2, 0) = (0, 0, 0) (mod 2).

The other six lines also sum to (0, 0, 0) (mod 2). Furthermore, if you
look at three points that do not lie on a line, their coordinates will not
sum to (0, 0, 0) (mod 2). For example, the points a, c , and d are not
collinear, and

(1, 0, 0) + (0, 0, 1) + (1, 1, 1) = (2, 1, 2) = (0, 1, 0) (mod 2).

The main point is that this matches the situation for SET, except that
the arithmetic is done modulo 2. (From the viewpoint of linear algebra,
three points are collinear if and only if the corresponding vectors are
linearly dependent.)

The Fano plane has three points per line, with every pair of points
determining a unique line. These are desirable properties, but, as we
remarked above, this is too small to make an interesting game. In order
to make this a game we could reasonably play, we need to increase the
number of points. To do this, we’ll add three more coordinates, so our
points now correspond to ordered 6-tuples (x1, x2, x3, x4, x5, x6), where
each xi = 0 or 1.We remove the 6-tuple (0, 0, 0, 0, 0, 0), leaving us with
a deck of 26 − 1= 63 cards. Although it is difficult to visualize this five-
dimensional object, a model of the three-dimensional PG(3, 2) is shown
in figure 9.21. In exercise 9.7, you are asked to show that there are a total
of 651 lines, each of which will be a “SET” in the game.

How do you turn the coordinates into cards? Our version was
inspired by a comment in the Davis and Maclagan paper; we chose
it because we wanted to maintain the property of having three
expressions for attributes. Group the coordinates in pairs, writing
(a1, a2; b1, b2; c1, c2), where each coordinate is 0 or 1 (and we insist that
not all of these coordinates are chosen to be 0).
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Figure 9.21. A model of three-dimensional projective space PG(3, 2) has three points
per line. This geometry has 15 points and 35 lines.

Nowwe construct the deck bymaking faces on the cards; each pair of
coordinates represents one attribute: eyes, mouth, hair. Our faces will
now have eyes that are closed, brown, blue, or red,9 a mouth that is
missing, straight, smiling, or open, and a head that’s bald, or has blonde,
brown, or black hair. See table 9.4 for an assignment and figure 9.22 for
a picture of some of the cards we made.

9 Vampires?
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TABLE 9.4.
Translating coordinates to cards.

Coordinates Card Coordinates Card
(0, 0; ∗, ∗; ∗, ∗) eyes closed (∗, ∗; 0, 1; ∗, ∗) mouth smiling
(1, 0; ∗, ∗; ∗, ∗) brown eyes (∗, ∗; 1, 1; ∗, ∗) mouth open
(0, 1; ∗, ∗; ∗, ∗) blue eyes (∗, ∗; ∗, ∗; 0, 0) no hair
(1, 1; ∗, ∗; ∗, ∗) red eyes (∗, ∗; ∗, ∗; 1, 0) blonde hair
(∗, ∗; 0, 0; ∗, ∗) no mouth (∗, ∗; ∗, ∗; 0, 1) brown hair
(∗, ∗; 1, 0; ∗, ∗) mouth closed (∗, ∗; ∗, ∗; 1, 1) black hair

Figure 9.22. A Fano plane in cards.

A “SET” is a collection of three cards whose coordinates sum to the
zero vector. Note that the card with all attributes missing (eyes closed,
no mouth, no hair) corresponds to the vector (0,0,0,0,0,0). This card is
not in the deck; using our definition, it would never be in any SET.

How can you recognize a SET? There are three ways an attribute can
appear or not in a SET:

1. The attribute could be missing on all three cards.
2. One expression for the attribute could appear on two cards and

the third card would have that attribute missing.



252 • Chapter 9

3. Each card has a different one of the three visible expressions for
the attribute.

For example, listing the cards in the order (eyes, mouth, hair), the three
cards

(brown, none, black), (brown, none, brown), (closed, none, blonde)

form a SET, since this corresponds to the three vectors

(1, 0; 0, 0; 1, 1) + (1, 0; 0, 0; 0, 1)

+(0, 0; 0, 0; 1, 0) = (0, 0; 0, 0; 0, 0) (mod 2).

In exercise 9.8, you are asked to verify that these really are the only
ways that the cards will sum to the zero vector. Note that if you
have three cards with the same visible expression of an attribute (for
example, three with red eyes), the coordinates for that attribute could
not sum to (0,0). So you’ll never see the same attribute on each card
in a SET.

We call this game PSET. The rules for PSET are more complicated
than the rules for SET. There is also an unsettling lack of symmetry in
the rules, since eyes closed, nomouth, and no hair are treated differently
from the other expressions. Also, the fact that you can’t have the same
expression appearing three times makes good SET players worse at this
game. See if you can find the seven “SETs” in figure 9.22. [Hint: Think
about the lines in the Fano plane.]

Much of the analysis that we’ve done for SET can be done for PSET.
For example, if you take all the cards with red eyes and blue eyes, you
can’t have any SETs, so you can have a cap with 32 cards! (This is the
best possible: J. Bierbrauer and Y. Edel point out that 2k is in fact the size
of the unique maximal cap in PG(k, 2) in “Large caps in small spaces,”
Designs, Codes and Cryptography 23, no. 2 (2001), 197–212.)

We have played this game. It has the potential to be a fun game, but
the asymmetry in the rules makes it more difficult than SET. Like most
things in life, (1) it would take a lot of practice to get good at it, but
(2) you do get better at it as you play. And in that way, it is certainly
similar to SET.
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EXERCISES

EXERCISE 9.1. In a plane, take any three points that are not a SET. Show
that there are exactly three maximal caps containing those three points.
What can you say about the anchor points for each of those three maximal
caps?

EXERCISE 9.2. These questions all refer to the plane AG(2, 3).

a. Choose a point A. Howmany maximal caps are there with anchor point A?
b. Again, with A chosen, how many partitions into two disjoint maximal caps

are there with anchor point A?
c. How many maximal caps are there in all of AG(2, 3)?
d. How many partitions into two pairs of maximal caps together with their

common anchor point are there in all of AG(2, 3)?

EXERCISE 9.3. Use linear algebra (chapter 8) to prove that any two maxi-
mal caps in AG(2, 3) are affinely equivalent, either by constructing an affine
transformation that takes one to the other or by creating one by specify-
ing the images of three points. (It’s not illegal to do both.) Conclude that
all partitions of AG(2, 3) into two maximal caps plus a point are affinely
equivalent.

EXERCISE 9.4. Suppose C is a maximal cap in AG(3, 3). Show that if you
slice AG(3, 3) by three parallel planes, then those planes can intersect C in one
of only two ways: either each plane contains three points, or two planes contain
four points and one contains one point.

EXERCISE 9.5. Prove that a given maximal cap in AG(3, 3) is in a unique
partition of AG(3, 3) into mutually disjoint maximal caps. [Hint: Because any
twomaximal caps are affinely equivalent, it’s enough to show the statement for
a single maximal cap.]

EXERCISE 9.6.

a. Use the Cap Builder to find a maximal cap in AG(4, 3) that’s different
from the one shown in the chapter. It will help a great deal to remember
that you’ll need 10 lines through a given point.

b. Find a partition of AG(4, 3) that includes your maximal cap.
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EXERCISE 9.7. The PSET deck is based on the geometry PG(5, 2).

a. Show that there are 651 lines.
b. Find the number of lines in PG(n, 2). If you’ve read section 6.4 on

q-binomial coefficients, show that your answer is given by
[n+1

2
]
2.

EXERCISE 9.8.

a. Verify that the three ways of finding a SET in PSET (listed in the chapter)
correspond to the coordinates summing to (0, 0; 0, 0; 0, 0) (mod 2).

b. Verify that no other collections of three cards can sum to (0, 0; 0, 0; 0, 0)
(mod 2).

c. Verify that any pair of cards determines a unique SET.

EXERCISE 9.9. Make up your own deck of PSET cards, and find someone
to play with. Who won?

PROJECTS

PROJECT 9.1. This project explores the complete caps that are in
AG(3, 3).

a. Prove that no collection of seven points in AG(3, 3) can be a complete cap.
b. How many different complete caps of size 8 are there, up to affine

equivalence, in AG(3, 3)? Prove your assertion.
c. In figure 9.17, we gave a partition of AG(3, 3) into three disjoint maximal

caps. No SETs are contained within any cap (that’s what it means to be a
cap), but these 27 cards contain 117 SETs in total. Some of those SETs are
composed of one card from each of the three caps, and the rest are
composed of two cards from one cap and one from another. Thus, there
are seven different kinds of SETs.

i. Count the number of SETs of each type for the partition of figure 9.17.
ii. Will your numbers be the same for any partition of AG(3, 3) into

maximal caps?

PROJECT 9.2. After doing exercise 9.4, analyze what the configurations of
cards in parallel plane slices must look like.

a. If you start with three points in one plane, what must the three points in
the next plane look like? What about the last plane?
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b. If you start with four points in one plane, what must the plane containing
four points look like? What is the relation of the single point to those two
planes?

PROJECT 9.3. Now that we’ve developed the game of PSET, you can redo
many of the counts we’ve done for SET in that context.

a. How many SETs are there? How many SETs include a given point?
b. Describe the different kinds of SETs (recall, in ordinary SET, we had SETs

with one attribute the same and three different, etc.), and then count how
many SETs of each kind there are.

c. How many Fano planes are there?
d. How many intersets are there?
e. Make up one more good question and answer it.
f. What other questions can you explore with this game?
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Computing and Simulations

10.1 INTRODUCTION

Throughout this book, we’ve used SET to generate interesting counting
and probability questions.1 We’ve answered several of these questions,
primarily in chapters 2, 3, 6, and 7. But, along the way, we’ve also seen
plenty of good questions that seem difficult or impossible to answer
exactly. In this chapter, we’ll revisit some of those questions using
computer simulations to estimate various counts, probabilities, and
expected values. Some of the results we present surprised us, and we
believe these deserve further exploration.

Using computer simulations to estimate answers to difficult ques-
tions is usually called the Monte Carlo method, after the Monte Carlo
Casino. The earliest Monte Carlo simulations were done in the 1940s
for the Manhattan Project, which developed the first nuclear weapons.
Since that time, this method has been an extremely powerful tool in the
physical sciences and in mathematics, often giving precise estimates for
otherwise intractable problems.

In 2004, during an NSF-funded undergraduate research summer
at Lafayette College, David Eisenstat (then an undergraduate at the
University of Rochester) wrote a computer program that simulated
playing the game millions of times to estimate the probabilities for
how many cards are left on the table at the end of the game. Two
years later, Maureen Jackson, a Lafayette College student, ran more
simulations while exploring SET in her honors thesis. Brian Lynch,

1 Well, at least we found them interesting.
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another Lafayette student studying the game in 2013, modified the
program to run many additional simulations. In this chapter, we’ll
summarize some of these results. David and Brian kindly allowed us to
share some of their Java code, which is available on the book’s website;
you can use this code as is or modify it to run some of your own
simulations.

Here is a brief synopsis of how these programs work: First, encode
the cards as integers from 0 to 80 as follows: if the card has (mod 3)
coordinates (a, b, c, d), then assign this card the integer 27a + 9b +
3c + d. For example, the card 2 Green Striped Ovals corresponds to the
4-tuple (2, 0, 1, 1), which gives 27× 2+ 9× 0+ 3× 1+ 1 = 58. (This
corresponds to the base-3 expansion of 58 = 20113.)

Next, choose a random permutation of the numbers from 0 to 80 to
simulate shuffling the deck. The first 12 numbers in that permutation
represent the first layout of cards on the (virtual) table. Once a SET is
chosen, the three cards in the SET are removed and the next three cards
are “dealt.”

To “play” the game, start with the first 12 cards, and follow this
algorithm:

1. There are 12 cards available (or fewer if the deck has run out).
Search all triples of those cards and list all SETs found. If there is
at least one SET, go to (2). If there are no SETs, and there are
cards left in the deck, add three cards and go to (3). If there are
no SETs, and there are no cards left in the deck, go to (4).

2. Choose one SET from the list of SETs (how that choice is made
will be explored later in the chapter) and remove it. If there are
cards left in the deck, add three additional cards, and return to
(1). If there are no cards left in the deck, there’s nothing to add,
so return to (1).

3. There are 15 cards available. Search through all triples and list all
SETs found. If there is a SET, go to (a). If there are no SETs, and
there are cards left in the deck, add three cards and go to (b).
If there are no SETs, and there are no cards left in the deck,
go to (4).

a. Choose one SET and remove it. Do not add any more cards.
Go to (1).
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b. There are now 18 cards available. Search through all triples
and list all SETs found. If there is at least one SET, go to (i).
If there are no SETs, and there are cards left in the deck, add
three cards and go to (ii). If there are no SETs, and there are
no cards left in the deck, go to (4).

i. Choose one SET and remove it. Do not add any more
cards. Go to (3).

ii. There are 21 cards available, so there must be a SET. List all
SETs, choose one, and remove it. Go to (b).

4. You are done.

10.1.1 Why Simulations Are Necessary

Why can’t we have the computer run through every possible permuta-
tion of the deck, then, for each permutation, run through all possible
plays of the game? Here’s why: First, there are 81! permutations of the
deck. This is approximately 5.8 × 10120, much larger than the estimate
for the number of atoms in the universe.2

This has overcounted the number of decks from the point of view of
the game. To find the number of different SET decks, first choose 12
cards for the initial layout, then repeatedly choose three cards from the
remainder of the deck. This still leaves around 1.5 × 1094 decks, which
is larger than any human can comprehend.3 You can do this calculation
for yourself in exercise 10.2.

But we don’t need to run through the entire deck to answer some of
the questions we care about. For instance, how many initial configura-
tions of 12 cards contain no SETs? To answer this question completely,
why can’t we run through all possible configurations of 12 cards, then
count how many times there were no SETs? Even this problem is too
big: there are

(81
12

) ≈ 7.07 × 1013 subsets of 12 cards taken from the

2 We are always happy when we see the phrase “number of atoms in the universe.” We’re not
sure why. Physicists estimate the number of atoms in the observable universe to be between 1078
and 1082. That means if each atom looked at one deck every millisecond, it would still take more
than a quadrillion (1015) years for all those atoms to check all possible decks.

3 This is a direct challenge to you. Go ahead and comprehend.



Comput ing and Simulat ions • 259

entire deck. Running through all those possibilities to look for SETs
would still take too much time.4

Finally, the number of ways to continue play is also too large to be
able to enumerate. (Mathematicians use the term game tree to describe
all possible ways the game can be played.) For instance, for a single
ordering of the deck, suppose there are two SETs available in each
12-card layout you encounter in a game (no matter which SETs were
taken during the game). If the game has 24 rounds, we would have
224 = 16,777,216 possible plays of the game for one single such deck.

Takeaway message: We need simulations.

10.2 NUMBER OF SETS IN A LAYOUT

As you play SET, the number of SETs on the table at any given point
has a huge influence on how quickly the game proceeds. In this section,
we’ll find the frequencies for the differing numbers of SETs in the initial
layout, then investigate how things change over the course of a “typical”
game.

10.2.1 SETs in the Initial Layout

To get data, we simulate the beginning of the game 100,000,000 times.
Our simulation first “shuffles” the deck, and then selects 12 cards and
counts the number of SETs present. (SETs are allowed to overlap
here; if the same card is in two or more different SETs, each of those
SETs is counted.) The number of SETs in those initial layouts varies
from 0 (the minimum) to 14 (the maximum). Table 10.1 gives the
results of the trials; the same information is shown graphically in
figure 10.1.

How can we tell if the simulation is giving reasonable answers? There
are a few ways to check. We begin by verifying something we already
know: the expected number of SETs in the initial layout of 12 cards.

4 Doing 100,000,000 simulations of the game on aMacBook Pro takes more than an hour. This
problem is about 70,000 times larger—at this rate, it would take around eight years to exhaust
all the cases. But this might be feasible with streamlined code and faster machines or parallel
processing.



260 • Chapter 10

TABLE 10.1.
The number of SETs in the first layout (100,000,000 trials, random SET removal).

# SETs # Layouts Percentage

0 3,228,460 3.2%
1 14,519,427 14.5%
2 26,096,625 26%
3 27,258,094 27%
4 18,024,022 18%
5 7,989,819 8%
6 2,331,884 2.3%
7 468,357 < 0.5%
8 68,288 ≈ 0.07%
9 11,659 ≈ 0.01%
10 2964 very small
11 229 very, very small
12 137 tiny
13 31 very tiny
14 4 very, very tiny
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Figure 10.1. Percentage of times there was a given number of SETs in the first layout of
12 cards.

If we calculate the average number of SETs from the trials in our
simulation, our answer should be very close to 220/79 ≈ 2.7848, the
value we calculated in chapter 3 for the expected number of SETs in the
initial layout of cards.
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Using the data from the simulation, we find the average number of
SETs is 2.78487. . . , very close indeed to the predicted value of 2.78481.
This gives us some confirmation that our simulation is doing what we
thought it was doing.5 Moreover, we can use the standard deviation of
the data (around 1.38) to estimate how close our numbers should be to
the theoretical values.6 We find that our approximation should agree in
the first 3 or 4 places after the decimal, which it does.

But we have much more information than that. For instance, we can
address a question we asked way back in chapter 1.

• How often does it happen that there are no SETs in the opening
layout of 12 cards?

This question is also important in playing the game; in fact, the
instructions that comewith SET say that the odds that there are no SETs
in the initial 12-card layout is approximately 33:1, giving a probability
of 1/34 ≈ 2.94%. This claim has received a fair amount of attention
on the web, where people have tried to figure out how that number was
calculated or run simulations to try to verify it.

In the simulation, we find that the initial layout contains no SETs
around 3.2% of the time, slightly more often than the 2.94% claim from
the instructions. Our estimate agrees with what other people who have
run simulations have posted online.7

It’s interesting to note that we expect to have either two or three SETs
present in the initial layout a little more than 50% of the time. And,
while it’s possible for more than six SETs to be present in the initial
layout, this happens very rarely.

There is another way to verify the accuracy of the simulation:
the expected number of times we get 14 SETs in the initial 12-card
configuration. (This is the maximum possible. See project 5.1.) We can
calculate the expected number of times this will happen in 100,000,000
trials exactly. This theoretical expected value turns out to be about 4.3;
since we got 14 SETs 4 times in our 100,000,000 trials, we have another

5 That’s a good thing.
6 This sweeps lots of assumptions under the rug. Watch your step.
7 That’s also a good thing.
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Figure 10.2. A typical SET puzzle. Find the six SETs.

reason to believe the simulations.8 See exercise 10.1 for the details of
this calculation.

Finally, we consider one last number from table 10.1: the percentage
of times there are exactly six SETs among the first 12 cards. This
happened about 2.3% of the time in our simulation. But such configura-
tions should be familiar to many readers: these are precisely the layouts
you see in the SET Daily Puzzle, with a new puzzle every day available
at http://www.setgame.com/set/puzzle (see figure 10.2).

This suggests the following strategy for designing the Daily Puzzle
(consisting of 12 cards that contain exactly six SETs): Randomly gener-
ate a large number of 12-card configurations, say 1000, and count the
number of SETs in each of them. Then, with probability greater than
99%, you will have at least one configuration that contains exactly six
SETs, suitable for the Daily Puzzle. (Computing this probability is a
standard exercise in using the normal curve to approximate a binomial
distribution—see the discussion in chapter 7.)

10.2.2 Counting SETs Later in the Game

As we play the game, the expected number of SETs in successive layouts
changes. Table 10.2 gives the results of 100,000,000 simulated games;
figure 10.3 shows the data for the first 24 layouts graphically. For each
game, we keep track of the average number of SETs in each 12-card
layout encountered during the game. In the table, layout 1 corresponds
to the initial layout of 12 cards, layout 2 corresponds to the second

8 If this ever happens to you in a game, you can confidently claim that someone arranged the
deck rather carefully before dealing. We’ll take your side in the ensuing argument.

http://www.setgame.com/set/puzzle
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TABLE 10.2.
Average number of SETs in each 12-card layout (except for the last three layouts):

100,000,000 trials, with SETs removed randomly.

Layout # SETs Layout # SETs Layout # SETs
1 2.7849 9 2.3755 17 2.3580
2 2.5322 10 2.3724 18 2.3572
3 2.4364 11 2.3696 19 2.3566
4 2.4012 12 2.3668 20 2.3563
5 2.3892 13 2.3642 21 2.3560
6 2.3846 14 2.3621 22 2.3555
7 2.3814 15 2.3606 23 2.3553
8 2.3785 16 2.3593 24 2.3542
25 0.6689 26 0.0509 27 1
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Figure 10.3. Mean number of SETs in each of the first 24 layouts (100,000,000 trials,
SETs chosen randomly).

layout (after a SET chosen randomly has been removed and those three
cards have been replaced), and so on.

We have a few observations about the average number of SETs as the
game progresses:

1. The average number of SETs in successive layouts drops. This
result is perhaps not very surprising to experienced players. As
the game progresses, it can become harder to find SETs. In fact, it
is often the case that you need to add three cards to a layout at
some point during the game.
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2. We were surprised to see that the average number of SETs
remains above 2 throughout the game (until we encounter
layouts with fewer than 12 cards). This helps explain why the
game is so well designed: on average, there will be more than two
SETs to find for each layout.

3. The largest drop in the average number of SETs seems to occur
in moving from the first layout to the second (from 2.78 to 2.53, a
decrease of roughly 9%). Why should this be true? Here’s a
partial justification: Note that once a SET has been removed from
the initial layout, the 117 SETs that meet that SET are also
eliminated from the deck. This reduces the total number of SETs
in the rest of the deck by more than 10%.

4. The data for the last three layouts are included, but they have
been separated at the bottom of table 10.2. For layouts 25 and 26,
there are fewer than 12 cards on the table. For layout 27 (if there
is one), the three cards must form a SET.

Technical notes on the simulation. In running this simulation, we
require all layouts (except the ones near the end of the game) to have
exactly 12 cards. Of course, it is possible that there are no SETs in some
12-card layouts. Here’s a short description of how our algorithm gets
from one layout to the next. Suppose we have taken n− 1 SETs, and we
now have 12 cards forming layout n. Then layout n+1 is created in one
of two ways:

1. There’s a SET: Layout n has 12 cards, and a SET is found. Record
the number of SETs in the layout. Then remove a SET and add 3
more cards. Those 12 cards form layout n + 1.

2. There’s no SET: Layout n has 12 cards, but there are no SETs.
Record 0 as the number of SETs in layout n. Add 3 more cards,
then find a SET and remove it. This leaves us with 12 cards to
form layout n + 1.

How could this procedure fail? In the second situation above, it’s
possible that there are still no SETs among the 15 cards. Then we
add 3 more cards, bringing the total to 18. Now, assuming there is a
SET among these 18 cards, we remove a SET, reducing the total to 15.
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TABLE 10.3.
The number of cards left at the end of the game in 100,000,000 trials.

Cards Average number of SETs Expected number of SETs
left remaining in the deck in a random collection

18 9.98 10.33
15 5.38 5.76
12 2.35 2.78
9 0.67 1.06
6 0.05 0.25

Assuming there is a SET among the 15 remaining cards, we remove that
SET, bringing the total number of cards back to 12.

In this situation, we have skipped layout n + 1 entirely; from the
viewpoint of our simulation, we move directly from the 12-card layout
n to the 12-card layout n + 2. Thus, a layout is not counted in our data
any time we need more than 15 cards to continue the game.

How often did this happen? In layout 2, a total of 36,294 of the
100,000,000 trials were not counted. This represents 0.036% of the
data, small enough for us to ignore any ambiguity that might arise in
discarding these cases.

10.2.3 SETs at the End

The simulation also keeps track of how many SETs are left in the
remainder of the deck (on the table and not yet dealt) at each layout. For
the cards left near the end of the game, this generates some interesting
data. Table 10.3 gives the number of cards remaining, the average
number of SETs those cards contained in the simulation, and the
theoretical expected value for the number of SETs in that number of
randomly chosen cards.

You can see that the cards remaining (on the table and in the deck)
contain fewer SETs, on average, than a random collection of the same
number of cards. We conclude that these collections of cards are not
random. Since the cards remaining to be dealt are a completely random
collection, the problem must be the cards on the table. Those cards
have had opportunities to be removed at different points during the
game, but they weren’t. The difference between the expected number of
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TABLE 10.4.
The number of cards left on the table at the end of the game in 100,000,000 trials.

Cards left Percentage of
outcomes

0 1.22%
3 0%
6 46.8%
9 44.5%
12 7.37%
15 0.077%
18 5.4 × 10−5%

SETs and the actual number of SETs is more pronounced when there
are fewer cards left, because the cards on the table represent a larger
proportion of the total.

10.2.4 Number of Cards Left at the End

We know a game cannot end with 3 cards left on the table. We also
know (from the study of maximal caps in chapter 9) that any collection
of 21 cards must contain at least one SET. So the number of cards
remaining on the table at the end of the game could be 0, 6, 9, 12, 15, or
18. How likely are each of these outcomes? Using the same simulation
as above, we can answer these questions. Table 10.4 summarizes the
results from 100,000,000 simulated games.

As expected, we never find 3 cards left at the end. Also, note that a bit
over one time per hundred, no cards are left—we cleared the deck. This
is consistent with our experience playing the game. It happens quite
infrequently, although we haven’t kept track of how often we’ve cleared
the deck over our years and years of play. This gives you another reason
to play tons of games.

Finally, note that 12 or more cards remain at the end of a game
infrequently (less than 7.5% of the time). This is consistent with our
earlier simulation; the final 12 cards on the table contained more than
two SETs, on average (of course, two SETs could share a card). On the
other hand, comparing the probability that there are no SETs in the
initial layout of 12 cards (around 3.2%) with the probability that there
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will be no SETs in the final 12 cards (around 7.4%), we note the latter
situation occurs more than twice as often.

10.3 HOWTO REMOVE SETS?

In all the simulations that we did in the previous section, the computer
was programmed to remove SETs by identifying all SETs on the table
and choosing one at random. This does not necessarily reflect the way
that most people play. It is our experience that people usually see SETs
with the most attributes in common first.9

Does this matter? More precisely, we ask the following question.

Question: Does the procedure for removing SETs change the
expected number of SETs in each layout during the game?

Before we ran our simulations, we didn’t think so. We ran four
different simulations, each one removing SETs in one of four different
ways:

• Random: Choose a SET at random (as in the last section).
• MostAttributes: Select the SET with the most attributes the same
(and choose randomly in the case of ties).

• Lexicographic: List all cards as 4-tuples and order them using
lexicographic order.10 Take the SET with the earliest card in
lexicographic order (and use the second card in the SET if that
card is in more than one SET).

• SetSum: First, convert all the cards to ordered 4-tuples, then add
up the four coordinates (not mod 3—just compute the sum) for
each card. Call this the CardSum. The SetSum is the sum of the
CardSums for the cards in the SET. For example, if the three
vectors are (1,2,1,0), (2,1,1,2), and (0,0,1,1), then the three

9 We have only anecdotal evidence for this. One of the authors claims that she usually sees the
all-different SETs first. The rest of us aren’t sure what to think, but she is fast enough at the game
that we believe her.

10 Lexicographic order is sometimes called “alphabetical” order: the earliest card is the one with
the lowest number in the first coordinate. In the case of a tie, take the one with the lowest number
in the second coordinate, and so on.
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Figure 10.4. Average number of SETs per layout using four different strategies in
100,000,000 trials.

CardSums are 4, 6, and 2, so the SetSum is 12. Remove the SET
with the smallest SetSum. (In the case of a tie, choose randomly.)

Will all four ways of removing SETs give approximately the same
average number of SETs in each layout? If not, which procedure will
give the largest expected values and which one will give the smallest?
(It’s worth thinking about this before plunging heedlessly ahead.) The
results from our simulations are shown in the graph in figure 10.4.

Wewere surprised by the findings.11 Different strategies for choosing
SETs give different expected numbers of SETs as you play the game.
Each starts at the same point (2.78 SETs in the first 12-card layout),
but even after taking the first SET, we see a difference in the expected
number of SETs in the second layout. Why should it matter which
algorithm you use to remove the first SET? We find this puzzling.

Here are a few observations about the four simulations based on the
data in figure 10.4:
1. Removing SETs using the SetSum strategy seems to be the best

for having the most SETs available as you play the game, while
the MostAttributes algorithm seems to leave the fewest.

11 “Astonished” might be a better description of our reaction. Programmer Brian Lynch was
particularly surprised. He’d devised SetSum because it was easy to program, and he genuinely
didn’t think it mattered.
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2. We initially thought the SetSum, Lexicographic, and Random
algorithms would produce similar results, but this seems to be
false. Removing SETs randomly reduces the number of SETs
available, compared to the SetSum and Lexicographic strategies.

3. As we mentioned earlier, we believe most people play SET by
removing SETs with more attributes in common. As the graph
shows, this way of playing results in fewer SETs on the table as
the game progresses (compared with the other three strategies
explored). This is unfortunate, and it bears further exploration. Is
this a consequence of the fact that there are fewer SETs with three
attributes the same (these represent 10% of all the SETs) than
there are for the SETs with fewer attributes the same?

4. How does changing our coordinate assignment of cards to
vectors affect these procedures? On the one hand, the specific
coordinates chosen for the cards shouldn’t change the overall
behavior of any of these procedures, i.e., we would expect our
graph in figure 10.4 to be the same. In fact, the coordinates
chosen will have no effect on the Random and MostAttributes
procedures. But changing the coordinate system will radically
change how SETs are selected using the SetSum or Lexicographic
methods.

It might be interesting to stop each simulation after 20 rounds, say, to
measure how “skewed” the cards on the table are. One way this might be
measured is to list all the vectors for all the cards in the layout, then take
the mean of each coordinate. We would expect the different procedures
to yield different results, on average.

Results similar to ours can be found on H. Warne’s blog
(http://henrikwarne.com/2011/09/30/set-probabilities-revisited/, a re-
sponse to a blog post by P. Norvig at http://norvig.com/SET.html).
Warne’s simulation compared removing the first SET found (likely to
be very close to our Lexicographic procedure), finding all SETs and
taking one randomly (our Random procedure), and removing the SET
with the most attributes the same (our MostAttributes procedure). (He
did not include the SetSum choice.) As we have, he found a difference
between taking the first SET found and the other two choices.

On the other hand, we don’t need to get too worked up about all
of this. The difference between the “best” and “worst” procedures is

http://norvig.com/SET.html
http://henrikwarne.com/2011/09/30/set-probabilities-revisited/
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approximately 0.05, or about a twentieth of a SET, and this difference
persists throughout the latter stages of the game. Thus, we would expect
to see about one more SET every 20 games or so when we use SetSum,
compared with MostAttributes.

But there is a difference! We conclude this section with a philo-
sophical comment. We know all SETs are the same (we showed they
were all affinely equivalent in chapter 8). But by removing the SETs
in different ways, the game proceeds differently. Does this mean SETs
really are different? We encourage you to embrace this mystery, and
perhaps attempt to resolve it.

10.4 REMOVINGDISJOINT SETS FROM
THE ENTIRE DECK

One point of this chapter is that you can simulate the game in a variety
of ways. But, until now, we’ve tried to have the computer imitate
the way an actual game proceeds, laying out 12 cards, taking a SET,
replacing the cards taken, and so on.12 But there are other ways we
could have programmed the computer to remove SETs from the deck.
In particular, what if we simply lay out the entire deck, then take SETs
at random:

Question: Is there a difference between removing SETs from the
entire deck or removing SETs randomly from 12-card layouts in
a series of rounds?

To answer this question, the computer removed SETs, chosen at
random from the full deck, one at a time, and then counted how many
SETs remained in the deck at each stage in the process. The results are
shown in table 10.5; a graph of the average number of SETs remaining
per layout is shown in figure 10.5. Different trials of the simulation gave
a wide variation in the number of SETs left after a given number of
SETs had been removed. In our simulation, we found the largest range
occurred after 13 SETs had been removed, with a maximum of 168
SETs remaining on the board and a minimum of 106 SETs remaining.

12 But much faster—it’s a computer.
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TABLE 10.5.
100,000,000 trials, SETs chosen randomly: average number of SETs left in the deck

after disjoint lines have been removed.

SETs Average Maximum Minimum SETs Average Maximum Minimum
removed number of removed number of

SETs left SETs left
0 1080 1080 1080 14 113.86 142 83
1 962 962 962 15 88.75 115 61
2 853 853 853 16 67.62 94 43
3 752.63 753 744 17 50.10 94 28
4 660.52 662 653 18 35.87 61 19
5 576.31 580 562 19 24.57 48 8
6 499.62 507 479 20 15.87 34 4
7 430.11 443 408 21 9.45 26 1
8 367.39 384 333 22 4.96 22 1
9 311.11 330 276 23 2.08 13 1
10 260.92 281 225 24 0.59 6 1
11 216.45 239 180 25 0.04 2 2
12 177.36 201 141 26 1 1 1
13 143.28 168 106
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Figure 10.5. Average number of SETs remaining in the entire deck when n SETs have
been removed.

The difference between playing the game and simply removing SETs
from the whole deck has been discussed on the web. For example, on
StackExchange’s MathOverflow website, there was a discussion of the
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TABLE 10.6.
Comparing the frequencies for different numbers of cards left at the end of the game

using two different simulations of 100,000,000 trials.

Cards Percentage of Percentage of
left outcomes, playing outcomes, removing

the game SETs from whole deck

0 1.22% 0.878%
3 0% 0%
6 46.8% 41.46%
9 44.5% 47.25%
12 7.37% 10.26%
15 0.077% 0.151%
18 5.4 × 10−5% 1.68 × 10−4%

odds of having a “perfect” game of SET, i.e., a game where the entire
deck is cleared. Here is a question from that discussion:

Say all 81 cards are laid down face up, and SETs are removed randomly until
no SETs remain. Is the probability of having no left over cards the same as
it is when the game is played normally? (anonymous questioner, MathOver-
flow at StackExchange, http://mathoverflow.net/questions/66400/probability
-of-having-a-perfect-game-of-set)

In the discussion, Warne said he leaned toward there not being a
difference, but he wasn’t completely convinced. Our data indicate that
the probabilities are different.

In table 10.6, we compare the data obtained from the simulation in
section 10.2 (when the computer plays the game as usual) with the data
from the simulation above (when SETs are chosen randomly from the
entire deck).

We conclude that there is a difference between these two
procedures—taking SETs randomly from the entire deck increases the
number of cards remaining at the end of the game. The average number
of cards left at the end of the game for the simulation from section 10.2
is around 7.7; for the simulation in this section that removes SETs from
the entire deck, it’s around 8.

Moreover, the chances of clearing the deck are dramatically differ-
ent.13 Although the absolute difference between these two probabilities

13 Maybe we’re being melodramatic here, but your authors are an expressive group.

http://mathoverflow.net/questions/66400/probability-of-having-a-perfect-game-of-set
http://mathoverflow.net/questions/66400/probability-of-having-a-perfect-game-of-set
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is 1.22%–0.878% = 0.342%, which is small, the right way to look at this
is through ratios:

1.22%
0.878%

≈ 1.4.

Thus, we are approximately 40% more likely to clear the deck when
playing the game, compared to removing SETs randomly from the
entire deck. This addresses the question from the MathOverflow
website.

We conclude this section with a final puzzler. Here are two situations
to compare.

1. Choose a SET and put it aside. Now, deal 9 cards from the rest of
the deck. How many SETs are there, on average, among those 9
cards? This can be calculated exactly: the theoretical expected
value is 1.0622.

2. Next, deal 12 cards from the deck, and remove one SET at
random from those 12. (If there are no SETs present, pick up the
cards, shuffle, and redeal.) What is the expected number of SETs
in the 9 cards that remain? This cannot be calculated easily, but
in our simulation, we found an average of 0.8147 SETs among
those 9 cards. (In the simulation, collections of 12 cards that had
no SETs were discarded.)

This difference is significant, both practically and statistically. We
see that there is a fundamental difference between first dealing, then
removing a SET, versus first removing a SET, then dealing. This is worth
further exploration; see projects 10.2 and 10.3.

10.5 THE LAST SIX CARDS

Suppose you have played a game of SET, and there are six cards left.
These cards will have an interesting property: when you randomly
partition them into three pairs, either the three cards that complete
SETs with each pair must themselves form a SET, or the same card
completes each of these three SETs. (We’ve addressed this situation
twice—see exercise 1.2 or the extended discussion in section 5.7.) We
also note that the six cards that remain must sum to �0.
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Our simulations allow us to address the next question:

Question: Among all configurations of six cards that sum to �0 and
that do not include any SETs, what proportion can be partitioned
into three pairs so that the same card completes the SET for each
pair?

If we can partition the six cards into three pairs so that the same card
completes the SET for each pair, we have a triple interset. If we assume
each legal configuration of six cards (meaning those cards sum to �0) is
equally likely to occur, we can calculate (no simulations needed!) how
often this happens: about 21.74% of all the legal configurations of six
cards are a triple interset.

But is each legal six-card configuration equally likely to appear? To
check this, we can run another simulation. This simulation has two
parts.

1. The first part is what we’ve already done several times, with a
twist: just play the game, repeatedly removing random SETs, but
keep only those trials that result in six cards at the end.

2. Check if those six cards form a triple interset.

When this simulation was run with 100,000,000 trials, with SETs
removed randomly, the six cards at the end of the game formed a triple
interset 18.1545% of the time. This means that the assumption that
these configurations occur with equal probabilities is wrong, at least if
the SETs are removed randomly.

What can we conclude? Since the triple interset possibility appears
less frequently than we’d expect, that kind of configuration must be
destroyed more often in playing the game. To explore further, we can
repeat the simulation, but use different ways to remove SETs—see
exercise 10.8.

10.6 THE END GAME

We play the End Game every single time14 we play SET. At the
beginning of the game, one card is set aside face down. You then play

14 Here’s why: We love the End Game.
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TABLE 10.7.
Percentage of times the game ends with n cards, and the probability of the End Game
being won in each case. Note that 17 cards were left in 309 of the 100,000,000 trials.

# cards Percentage Win percentage
remaining

2 1.34% 100%
5 25.7% 0%
8 55.9% 39.54%
11 16.6% 59%
14 0.52% 85.4%
17 (309) 86%

the usual way to the end, until there are no SETs left to be found among
the cards remaining on the table. Then you figure out the card that you
set aside at the beginning of the game from the cards that are left on the
table. If you are the first to find a SET containing that card, you “win”
the End Game. Unfortunately, it doesn’t always happen that the card
makes a SET, so in that case, no one wins.

• How often is there an End Game winner?

Unlike the situation in the last section, even if we assume that all
final layouts are equally likely, calculating the probability that the End
Game produces a card that completes a SET with the cards left on the
table would be extremely difficult, if not impossible. So this situation is
eagerly waiting for a simulation.

For this simulation, we remove one card from the deck, then play
the game until we reach the End Game. At the end, we find out if that
card forms a SET with two of the remaining cards. Table 10.7 shows the
results of these simulations.

As we’ve seen before, when two cards are left, there must be a SET
with the missing card, and when five are left, there can’t be a SET.
When there are more cards, your chances of finding a SET with the
missing card increase. Of course, the more cards there are, the harder
it is to figure out the missing card. Presumably, this makes playing the
End Game more rewarding—you’re more likely to find a SET under
those conditions.
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We can use the data in table 10.7 to answer our motivating question:

• The overall probability of the End Game being won is about
33.6%.

There’s another intriguing bit of data in the table. Note that the
situations when the entire deck is cleared correspond precisely to the
times there are two cards left. This happens 1.34% of the time, according
to our simulation. But in our original simulation back in section 10.2,
we cleared the deck 1.22% of the time. This means that if you put a card
aside, it is more likely that you will be able to clear the deck than if you
hadn’t removed the card.

• How does putting a card aside help you clear the deck?

We don’t know, and it gets worse.15 We ran this simulation four
times; in addition to using our Random procedure, we also ran
100,000,000 trials for each of the MostAttributes, SetSum, and Lexi-
cographic algorithms from section 10.2. The percentages for each of
these procedures are very close to the percentages in table 10.7. But
the SetSum and Lexicographic procedures each cleared the entire deck
1.47% of the time, higher than the 1.34% above, and a 20% increase
from the 1.22% we found in our original simulation (which did not put
a card aside).

10.7 CAN YOU ALWAYS CLEAR THE DECK?

There once was a website that had a (non-approved) version of SET.
Every day, a new deck was generated, so everyone played the same deck.
The game proceeded as a solitaire version of SET—12 cards were dealt,
a SET was taken, new cards were dealt, and the game proceeded until
there were no more SETs to take.

The website also included lots of data: For each person who played,
they listed the username, how long they took to play the deck, and how
many SETs they took. In addition, the website kept track of the top ten
players (best average times over the course of a month) and the top ten

15 Or better, depending on whether you want more puzzles.



Comput ing and Simulat ions • 277

times overall. Often the monthly top ten times ranged from less than
a minute and a half to between two and a half to three minutes; the
best-ever time was 1 minute, 7 seconds.16

The data showed that some decks were clearly harder to play
than others: for some decks, the top ten players didn’t play it at all,
possibly because those players started the game, but quit before the
deck cleared.17

This leads to a natural question:

• Given one particular deck, how many different ways are there to
play the game?

You can imagine that if a layout has two SETs that share a card, then
taking one of those SETs could lead to a different game compared to
taking the other. How different will those games be? This is a question
worth exploring. One way to think about this is to play the same deck
over and over. Exercise 10.7 asks you to run a simulation to do this.
Even better, you could write a program to keep track of the game tree.
If you do so, let us know.

There was another intriguing piece of data from the non-approved
site. It happened fairly regularly that one player (or, much less com-
monly, two) would clear the entire deck. This raises another natural
question:

• Given a particular deck, is it always possible that there is some
sequence of SETs you could take that will clear that deck?

The answer is no, and we give an example, starting in figure 10.6.
In this example, each layout of 12 cards has exactly one SET, leading
to a final layout of 12 cards with no SETs. Since there is only one
SET to take at each stage of the game, there is no way to clear the
deck.

We encourage you to go through the successive layouts, in
figures 10.6 to 10.8. Here is a tip to make finding SETs a little easier:

16 That’s pretty quick. Since there would be 25 SETs or so taken in a game, and each SET
consists of three cards, and each card would need to be selected on the computer, this requires
around 75 card choices, which means more than one click per second.

17 One of us must admit that she did this, more than once.
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Layout 1 Layout 2

Layout 3 Layout 4

Layout 5 Layout 6

Layout 7 Layout 8

Layout 9 Layout 10

Figure 10.6. Play this game all the way through. Good luck! There’s exactly one SET in
each layout.
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Layout 11 Layout 12

Layout 13 Layout 14

Layout 15 Layout 16

Layout 17 Layout 18

Layout 19 Layout 20

Figure 10.7. Keep playing.
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Layout 21 Layout 22

Layout 23 Layout 24

Layout 25: The last layout, no SETs

Figure 10.8. The end of the game.

Since you know each layout has only one SET, once you find that SET,
you know that there are no SETs in the remaining cards. That means
that in the next layout of cards, the (unique) SET must contain one of
the new cards that are dealt into the positions occupied by the previous
SET.

As you go through the layouts, you may notice a few things. A few
cards stick around for quite a while. In fact, 3 Green Empty Squiggles
is in the initial layout of 12 cards, and it survives until the end. More
generally, how long does a typical card stick around?

• On average, how long does a given card stay on the table?

This is a question we hope you can explore on your own.18

18 Please write to the authors with your results. Some of them will get very excited.
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10.8 FINALWORDS

We hope this chapter has raised more questions than it has answered. It
hardly seems necessary to note that computers are an important tool in
discovering new mathematics, but we hope that’s one of the messages
that gets through as you read about the various simulations we’ve run.

Once we started running simulations, we realized there was more to
be done. We are particularly intrigued by the differences we see when
SETs are removed in different ways; we don’t understand yet why this
makes a difference, and we want to. Some of our questions are explored
in the exercises and projects that follow, but we sincerely hope you’ve
asked other questions we didn’t ask.

CALCULATION EXERCISES

The exercises in this chapter are a little different, as all but the first two
require computer programming. The exercises generally require only
minor changes to the programs that have already been written, while
the projects require new ideas and new programs.

EXERCISE 10.1. This problem completes a calculation from section 10.2.1.
It is possible for 12 cards to contain 14 SETs. (This was explored in project 5.1.)
To do this, start with a plane. It is now possible to add three cards to bring the
total number of SETs to 14.

a. How many ways can you choose 12 cards that contain 14 SETs?
b. Compute the probability that 12 randomly chosen cards will have this

structure.
c. Compute the expected number of these structures you would encounter in

100,000,000 trials.

EXERCISE 10.2. This problem explores how many different SET games
there are. (We used this calculation in section 10.7.)

a. First, how many different ways are there to lay out 12 cards, then 3 cards,
then 3 cards, etc.? (This is asking for the number of different decks that are
possible from the viewpoint of the game.)
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b. For each of the layouts, use the expected number of SETs from one of the
simulations in this chapter to estimate the total number of games possible
for a given deck of cards.

COMPUTER SIMULATION EXERCISES

EXERCISE 10.3. How does the probability that there are a given number of
SETs in each layout change over the course of a game?

a. First, run a simulation that keeps track of the number of SETs in each
layout of a game, where SETs are removed randomly. How does the
number of times there are no SETs on the table change over the course of
the game? How does the number of times there are 14 SETs on the table
change over the course of the deck? What happens with the number of
SETs in between?

b. Now, rerun the simulation where the SETs are taken in different ways. Are
the results significantly different from when the SETs were removed
randomly?

EXERCISE 10.4. How much of a difference does the way we remove the
SETs affect the sizes of the final layouts? This problem asks you to explore this.
Rerun the simulations that play the game from section 10.2 in the different
ways that were described in section 10.3.

a. Do a simulation that removes the SETs chosen randomly.
b. Do a simulation that removes the SETs that share most attributes in

common (with ties, choose randomly).
c. Do a simulation that removes the SETs with the first card in lexicographic

order (with ties, choose either randomly or by selecting the SET with the
second smallest card).

d. Do a simulation that removes the SETs with the smallest SetSum (again,
choose randomly with ties).

e. Compare the results you got.

EXERCISE 10.5. This problem explores the ways that SETs are removed
from the entire deck.

a. Run two simulations that remove SETs from the entire deck. Stop the
simulations after 13 SETs (which means that just under half the deck has
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been removed) and count the total number of SETs in the cards that
remain. (In (i), you need to run only one simulation, but in (ii) you should
run millions.)

i. Run a simulation that removes SETs using lexicographic ordering. You
need to do only one of these, as the SETs will be removed the same way
every time. Explain why.

ii. Run simulations that remove SETs using the SetSum ordering.

b. Now run two more simulations. Again, stop the simulations after 13 SETs
(or close to half the deck) and look at the cards that remain. How many of
each expression of attributes are there within the cards left?

i. Run simulations that remove SETs by the number of attributes in
common.

ii. Run simulations that remove SETs randomly.

c. Are there significant differences between the answers you get for the two
pairs of simulations in parts (a) and (b)? Are there further questions you
can ask? [Hint: The answer to the last question is yes.]

EXERCISE 10.6. In section 10.4, we ran a simulation of taking SETs from the
entire deck, randomly choosing the SETs to remove. (Note that if you remove
the SETs using lexicographic order, then the SETs will be removed the same
way every time.) Rerun the simulation by choosing SETs to remove the other
two ways. In each case, have the computer list the SETs in the order they are
taken.

a. Remove SETs by taking those with the most attributes in common (in the
case of ties, remove randomly). Keep track of how many SETs taken had
three attributes the same, two attributes the same, etc.

b. Remove SETs by taking those with the lowest SetSum (in the case of ties,
choose randomly). What are the SetSums of the SETs removed?

c. How much variation is there in the simulation results?

EXERCISE 10.7. Given one particular deck, how many different ways are
there to play the game? Explore the answer to this question here.

a. Have the computer choose a random deck. Play the game repeatedly with
the same deck. How many SETs are left at the end in each trial?
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b. Figure out a way to keep track of the actual paths through the game.
Warning: This will get huge for your garden-variety deck, so you’ll need
lots of computer memory and a good way to visualize it.

c. Figure out a way to generate your own deck with a single SET per layout.

EXERCISE 10.8. When six cards are left at the end of the game, sometimes
you can pair them up so they make a triple interset, and sometimes you can’t.
In section 10.5, we found that when SETs are removed randomly, not all
configurations of six cards that contain no SETs and sum to �0 are equally likely.
Is the same true if you remove SETs in different ways?

a. Write a program to play the game, removing SETs using lexicographic
ordering, but discard any trials that don’t end in six cards. Then write a
subroutine that tests whether those six cards contain a triple interset. Keep
track of the results.

b. Repeat (a), removing SETs by the number of attributes in common.
c. Repeat (a), removing SETs using SetSum.
d. Discuss your results.

EXERCISE 10.9. Run a simulation to test the average amount of time a card
stays on the table during the course of a game. Does it matter which way cards
are removed?

EXERCISE 10.10. This question was mentioned in chapter 4. When there
are six cards left at the end of the game, it is possible that they all share one
attribute. For example, they could all be purple, or they could all be striped.
It’s our guess that this is pretty rare. Run a simulation to test this. How many
configurations ending in six cards share one attribute? How many share two
attributes? Do any share three attributes?

PROJECTS

PROJECT 10.1. This project concerns the situation that arises when you are
playing a game of SET and there’s a layout that has no SETs in it. In our house,
when we hit upon this situation, we don’t add the three cards all at once; rather,
we add them one at a time and see if there’s a SET with the new card. We’ve
found that you typically don’t need all three of the cards to find a SET. Design
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and run a simulation to explore the following questions, plus others you might
think of.

a. What percentage of games never need three additional cards during the
play?

b. What percentage of games require three additional cards more than once?
c. What percentage of games have a situation where the number of cards on

the table reaches 18 cards? 21 cards?
d. When games do have a layout that requires additional cards, on average,

which layout is the first that did so?
e. If a layout required additional cards, does the next layout require

additional cards more frequently, less frequently, or approximately the
same?19

f. When a layout requires additional cards, what percentage of those times
did the first card complete a SET? What percentage of those times did the
first not complete a SET but the second did? What percentage needed a
third card? a fourth card? a fifth?. . . ?

PROJECT 10.2. This project explores the difference between (1) taking a
SET and then dealing and (2) dealing and then taking a SET, as discussed at
the end of section 10.4.

a. Choose one SET (since all SETs are the same, you can choose any SET)
and remove it from the deck, leaving 78 cards.

i. How many SETs do those 78 cards contain? Choose 9 cards from the
78 that remain. Calculate the expected number of SETs in those 9
cards, as in chapter 3.

ii. Run the following simulation: Begin the usual simulation for playing
SET. In the first layout, find all the SETs. If there are none, skip what
follows and redeal. If there is a SET, remove one SET chosen
randomly, but do not replace the cards. Compute the average number
of SETs contained by the 9 remaining cards.

iii. Compare the numbers you got in (i) and in (ii). What does the
difference tell you?

19 We sometimes find that the layouts following one where additional cards were needed are
particularly unpleasant.
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b. Now start to play the game, two different ways.

i. Choose one SET (since all SETs are the same, you can choose any SET)
and remove it from the deck. Choose 12 cards from the 78 to start the
game (after the first SET has been removed). Calculate the expected
number of SETs in this layout of 12 cards, as in chapter 3.

ii. Run the following simulation: Begin the usual simulation for playing
SET. In the first layout, find all the SETs. If there are none, skip what
follows and redeal. If there is a SET, remove one chosen randomly,
replace the cards, and compute the average number of SETs in the 12
cards.

iii. In section 10.2, the simulation we did counted the expected number of
SETs in two scenarios: (1) when there was a SET, we removed it, and
replaced it with three new cards, and (2) when there were no SETs, we
added three cards, and found a SET in that collection of 15 cards. In
that simulation, we got an expected number of SETs in the new layout
of around 2.53. Compare three numbers: 2.53, the number from (i),
and the number from (ii), which included the number of SETs from
scenario (1) only. What does the difference tell you?

PROJECT 10.3. This project continues the ideas of the previous project, but
in a slightly different way. Here, we ask about the difference between a layout
of 12 cards that is guaranteed to contain a SET and a layout of cards generated
by putting a SET on the table and then adding 9 cards from the cards that
are left in the deck. Brian Lynch, who ran simulations from project 10.2, came
up with two hypotheses that could explain the differences seen in that project.
Hypothesis A was that adding a given SET to a random collection of 9 cards
would yieldmore SETs on average than 12 cards that are guaranteed to contain
at least one SET. Hypothesis B was that the average number of SETs that one
card in a (particular) SET from a layout of 12 cards containing a SET would be
greater than the average number of SETs that one card in a SET chosen from
the deck would be in from 9 cards chosen from the rest of the deck.

a. Create two setups for simulations, and run two different simulations for
each.

i. Let setup A consist of one specific SET (the same as before, the first
SET in the ordering) added to 9 cards chosen randomly from the deck.

ii. Let setup B consist of 12 cards with at least one SET.
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iii. Now, run two different simulations:

I. Have simulation 1 count the average number of SETs in each of
setup A and setup B.

II. Have simulation 2 count the average number of SETs that each
card in the chosen SETs of setup A and setup B completes.

b. Use your results to corroborate the results in project 10.2 where results
were obtained by counting the average number of SETs in 9 cards under
two scenarios. The average number of SETs using one card from each
setup can be tripled to count the average number of SETs meeting the
three cards in that SET. Then the SETs remaining are the original SET plus
all the SETs that meet the original SET, plus the SETs that remain. How
close are your results?

i. Scenario 1 was where one SET was removed from the deck and then 9
cards were dealt. This corresponds to setup A, where we chose one SET
from the deck and then added 9 cards.

ii. Scenario 2 was where we removed a SET from 12 cards that contained a
SET. This corresponds to setup B, where we looked at 12 cards
containing a SET.

c. Now you can use a technique similar to the incidence counts from
chapters 3 and 7 to count as many of these as you can.

d. Finally, analyze your results. What do you think the difference between the
two situations really boils down to?
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Conclusion

This book has been a labor of love for the authors. We hope that you
have a new appreciation for the game, for mathematics, and especially
for the connections between them. As we said early in this book, we
have found that mathematics has enhanced our appreciation of the
game and that the game has enhanced our appreciation of the related
mathematics.

When the game was introduced in the early 1990s, manymathemati-
cians realized that SET was a model for the finite geometry AG(4,3).
Because finite geometry is an extremely well-studied area of mathemat-
ics, some researchers thought that there was nothing new to be learned
from the game. This idea misses several important points, however:
Finite geometry treats all SETs as the same, but we have seen that this is
not true, both in the play of the game, and in the related mathematics.
Furthermore, the visualization of AG(4,3) provided by the game has led
to new results in geometry, results that almost certainly would not have
been discovered without SET. Finally, the game provides an inviting
way to get more people interested in geometry, and, more broadly,
mathematics. That is a major theme of this book.

And of course, there is so muchmore that can be done. SET has been
a source of family fun, but also research projects. We find that we play
differently now: we are often asking questions while we play, so that the
game is more of a puzzle than a competition. We hope that as you read,
you begin to come up with your own questions to investigate. This book
is certainly not the last word on SET.

Remember that all of this came from a simple card game. We
encourage you to find new questions to answer and to let us know
what you discover. Does fame await? Fortune? Probably not, but there’s
plenty of fun to be had.
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Solutions to Exercises

CHAPTER 1

1.1. 1GOD

1.2. It works!

1.3. The answer is in figure S.1.

1.4. Count the SETs in the 12 cards in figure S.2.

1.5. 27 × 26/6 = 117. Choose the first card, then the second card, and the
SET is determined, but you’ve overcounted by the number of ways you could
choose the same SET.

1.6. a. See figure S.3. Then you can find a different ladder.
b. 3× 4× 2 = 24. First, choose the card that stays the same, then choose

the attribute you’re going to change, then choose the way to change
the expression of that attribute for one of the two other cards.

c. 8. Choose two SETs where each card in the first SET differs from each
card in the second SET in every attribute, and each SET consists of
cards that are different in every attribute. Then, since one card in the
ladder must stay the same, it will take four steps to change the first
card of the first SET to the second card of the second SET while
leaving the third card the same. But now, it will take another four
steps to change the second card of the first SET to the second card of
the second SET. An example is given in figure S.4.

d. Since you made up the rules, only you can answer this.

1.7. a. It’s wrong in number and in shape.
b. (2, 0, 0, 1), (0, 2, 1, 1), (2, 1, 2, 0).
c. The sum is (1, 0, 0, 2). The nonzero coordinates are the first and last,

which correspond to number and shape, the attributes that were
wrong!
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Figure S.1. Exercise 1.3 solution.

Figure S.2. Exercise 1.4 solution.

Figure S.3. Exercise 1.6(a): One of many solutions.

Figure S.4. Exercise 1.6(c) solution.

d. We think that only an inexperienced player would make a
two-attribute mistake. And since the wrong-shaped card is solid, this
seems even less likely a mistake.

1.8. a. A = 2 Green Empty Ovals, D = 1 Green Empty Squiggle. They
differ in two attributes.

b. B = 3 Red Striped Ovals, E = 2 Red Striped Squiggles; they differ in
two attributes. The same is true of C = 2 Purple Solid Diamonds and
F = 1 Purple Solid Oval.

c. i. True, because you’re correcting the wrong attributes.
ii. False, because the original three weren’t a SET.
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CHAPTER 2

2.1. a. 3 (shading) × 3 (number) × 3 (shape) = 27 red cards.
b. 27 choices for the first card, 26 for the second, with each SET

overcounted 6 times: 27×26
6 = 117.

c. Given a red card, there are 26 cards it can be paired with. This counts
every SET twice, so that gives 13 SETs.

d. Using the same principle from our original count, we get coordinates
using number, shading, and shape: (N, Shd, Shp). We have three
attributes and 27 cards that we are choosing from:

• All different: 27×(2×2×2)
6 = 36.

• One the same, two different: 27×(1×2×2)×(31)
6 = 54.

• Two the same, one different: 27×(1×1×2)×(32)
6 = 27.

e. Red intersets:
(13
2
)× 27 = 2106.

f. Red intersets containing a given card:
(13
2
)× 27 × 4 = 27 × x, thus

x = 312.
g. Red planes: As before but with 27 cards, 27×26×24

9×8×6 = 39.
h. Incidence: 39 × 9 = 27 × x, so x = 13.

2.2. a. 3 × 3 × 3 × 3 × 3 = 243
b. As before: 243×242

6 = 9801.
c. Using the same principle from our original count, we get coordinates

using number, color, shading, shape, and feel: (N, C, Shd, Shp, F). We
have three attributes and 243 cards that we are choosing from:

• All different: 243×(2×2×2×2×2)
6 = 1296.

• One the same, four different: 243×(1×2×2×2×2)×(51)
6 = 3240.

• Two the same, three different: 243×(1×1×2×2×2)×(52)
6 = 2430.

• Three the same, two different: 243×(1×1×1×2×2)×(53)
6 = 1620.

• Four the same, one different: 243×(1×1×1×1×2)×(54)
6 = 405.

d. Given a card, there are 242 cards to pair with it. This counts every
SET twice, so the answer is 121.

e. Intersets:
(121

2
)× 243 = 1,764,180.

f. Planes: As before but with 243 cards, 243×242×240
9×8×6 = 32,670.
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2.3. a. 4 × 4 × 4 × 4 = 256.
b. Take the two cards 1 Empty Red Oval and 2 Striped Green Squiggles.

Then we can complete the SET in more than one way. Adding 3
Checkered Purple Diamonds and 4 Solid Brown Rectangles makes a
SET, but so does 3 Solid Purple Rectangles and 4 Checkered Brown
Diamonds, for instance.

2.4. Place the four cards in a plane, noting that no three form a SET. There are
five other cards in this plane, each of which completes at least one SET
with the given cards. Since there are six pairs of cards, exactly one of those
five cards completes SETs with two disjoint pairs of the given cards.

2.5. The number of planes containing a given card: 1170 × 9 = 81 × x, thus
x = 130.

2.6. The number of planes containing a given SET: 1170×12 = 1080×x, thus
x = 13.

CHAPTER 3

3.1. a. There is a 78/79 chance that three cards do not form a SET.
b. There are three cards from the remaining 78 that we can’t pick, so

there are 75 that will work. So the probability that ABD, ACD, and
BCD are not SETs is 75

78 .
c. The probability the four cards contain no SETs is 78

79 × 75
78 = 75

79 .

3.2. Six cards—no SETs. Follow the hint:

• Exactly one SET is contained: Choose the SET in 1080 ways, then choose
the other three cards in 78×75×69

6 ways. This gives
1080×78×7×69

6 = 72,657,000 ways.
• Exactly two SETs are contained:

– The two SETs are disjoint: There are 1080 × (1080 − 118) =
1,038,960 ways to do this.

– The two SETs intersect: Choose the intersection card in 81 ways,
then choose the two SETs in

(40
2
)
ways. Finally choose the last card

in 72 ways, to give a total of 4,548,960.

• Exactly three SETs are contained: If the cards are A, B , C , D, E , and F ,

then we must have SETs ABC , CDE , and AE F . Choose the three
cards A, C, and E in

(81
3
)− 1080 ways, then the remaining cards are

determined. This gives a total of 84,240.



Solut ions to Exercises • 293

Adding up all the cases gives 78,329,160 ways to have a bad configuration
of six cards. So the probability that there are no SETs among the six cards is
(
(81
6
)− 78,329,160)/

(81
6
) = 75.86%.

3.3. a. A triple interset contains an interset. By exercise 2.4, we know that the
center is unique.

b. Choose a card in 81 ways, then choose 3 SETs that contain that card
in
(40
3
)
ways. This gives 800,280 triple intersets. To get the probability

that 6 randomly chosen cards form a triple interset, divide by
(81
6
)
:

this gives 0.00246 . . . ≈ 0.25%.

c. Expected number of triple intersets among 12 cards is
(
(12
6
)× 81 × (403 ))/(816 ) = 2.278.

d. EV = 9/79 = 0.1139 . . . .

3.4. a. There are
(4
1
)
23 ways to choose the second card. This gives 32 possible

cards, so the probability is 32/80 = 40%.

b. This time, there are
(4
2
)
22 = 24 ways to choose the second card, so the

probability is 24/80 = 30%.

c. There are
(4
3
)
2 = 8 ways to choose the second card. The probability is

10%.

CHAPTER 4

4.1. These cards don’t add up to (0, 0, 0, 0), so they can’t be the ones left at
the end of a game.

4.2. Stefano is right—everything works fine in the five-attribute game. In
particular, two cards determine a unique SET.

4.3. a. 1 Green Empty Diamond.
b. If this formed a SET with two of the other cards, there would be three

cards left at the end of the game, which is impossible.

4.4. 2 Green Empty Ovals. This forms two different SETs with the other cards.

4.5. No. Start with two different cards A and B. If A+ B + C = (0, 0, 0, 0),
then if C = A, for instance, we would have 2A+ B = (0, 0, 0, 0). But 2A =
−A (mod 3), so 2A+ B = (0, 0, 0, 0) is the same as −A+ B = (0, 0, 0, 0).
So A = B, which is a contradiction.

4.6. The center of an interset in unique. Here’s why: If ABX and CDX are
SETs for some card X, then A + B + X = C + D + X = (0, 0, 0, 0). Then
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A+ B = 2X and C + D = 2X, so A+ B + C + D = 2X + 2X = 4X = X.

This means that the center of the interset is the sum of the four cards in the
interset, so it’s unique.

4.7. If A + B + C = (0, 0, 0, 0), then C = −A − B = 2A + 2B (mod 3).
Similarly for the other two equations.

4.8. In all cases, three numbers {a, b, c} can occur if they are the same, mod 3,
i.e., we can reach {0, 0, 0} by repeatedly either subtracting 3 from a, b, or c , or
subtracting 1 from each of a, b, and c .

a. When you play the End Game attribute by attribute, there are no
other possibilities.

b. {9, 0, 0}, {7, 1, 1}, {6, 3, 0}, {5, 2, 2}, {4, 4, 1}, {3, 3, 3}.
c. {12, 0, 0}, {10, 1, 1}, {9, 3, 0}, {8, 2, 2}, {7, 4, 1}, {6, 6, 0}, {6, 3, 3},

{5, 5, 2}, {4, 4, 4}.

4.9. a. Take the two cards represented by (1, 1, 1, 1) and (2, 2, 2, 2) in the
usual assignment. These sum to (0, 0, 0, 0), but they wouldn’t if we
decided ovals ↔ 0, for instance.

b. Take the four cards (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (2, 2, 2, 0).
These sum to (0, 0, 0, 0), but if our assignment swapped the 0 in the
last position with a 1, these four cards would sum to (0, 0, 0, 1).

4.10. a. For example, we could use the pairs (3 Red Checkered Diamonds
and 4 Green Checkered Ovals) or (3 Green Checkered Diamonds
and 4 Red Checkered Ovals).

b. There are 23 = 8 pairs of cards that complete the “SET.”
c. (0, 0, 0, 0), (0, 0, 2, 2), (2, 2, 0, 0), (2, 2, 2, 2).

CHAPTER 5

5.1. Take two intersecting lines L 1 and L 2. Let P be a point not on either
line. Show that each line through P either meets both L 1 and L 2, or is parallel
to one, but not the other. Show that this gives a one-to-one correspondence
between the points on L 1 and L 2. When L 1 and L 2 are parallel, find a third
line that meets both L 1 and L 2, then use the first part.
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Figure S.5. Exercise 5.5 hyperplane, filled in.

5.2. Get out paper and pencils for this one.

5.3. a. Any card in the right-hand plane completes a SET with the 1 Red
Solid Squiggle card and a card in the left-hand plane.

b. We have nine choices for the first card (by part (a)). Then you can
check that any ordering of the remaining 16 cards is legal here—each
card completes at least one SET with the cards already placed.

5.4. a. We know that there are 108 SETs that differ in exactly one attribute.
By the parallel postulate, there are 27 SETs parallel to a given SET S
(including S). Since 108/27 = 4, these SETs must fall into 4 classes.

b. This follows from the parallel postulate: Apply the postulate to a given
SET and each of the 78 cards in the deck that are not in the SET. This
gives 78/3 = 26 SETs parallel to the given SET.

c. As in (a): There are 324 SETs in this category, and 324/27 = 12
parallel classes.

d. As in (a): There are 432 SETs in this category, and 432/27 = 16
parallel classes.

e. As in (a): There are 216 SETs in this category, and 216/27 = 8
parallel classes.

5.5. If the cards are A, B , C , D, E , and F , then assume ABX and CDX are
both SETs for some other card X. Then let Y be the card that completes the
SET with D and E . By the work from this chapter, 2X + Y = (0, 0, 0, 0), so
X = Y.

5.6. a. Figure S.5 shows the hyperplane; 3 Red Striped Diamonds is right in
the middle.

b. Let’s call the five cards A, B , C , D, and E , where E is the card
produced when playing the End Game, i.e.,
A+ B + C + D + E + E= (0, 0, 0, 0). Note that
A+ B + C + D = E . We use the following procedure for creating
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new collections of five bad cards, i.e., collections where the End Game
fails.

• First, choose three of the first four cards in this list. We choose B , C,

and D.

• Then choose a card F to complete a SET with cards A and E , so
F = 2A+ 2E .

• Now the five cards B , C , D, E , F are a bad collection. To see this,
note that B +C + D + E + F + F = B +C + D + E + 4A+ 4E =
A+ B + C + D + E + E = (0, 0, 0, 0).

We can do this three more times: let G = 2B + 2E , completing the
SET with B and E , let H = 2C + 2E , completing the SET with C and
E , and let I = 2D + 2E , completing the SET with D and E . Then
the same argument shows that each of the following is a bad collection
of five cards: ABCDE , BCDE F , ACDEG , ABDE H, ABC E I.

• In this example, A is 1 Red Solid Squiggle, B is 1 Purple Striped
Squiggle, C is 1 Purple Empty Oval, D is 3 Purple Striped Ovals, and
E is 3 Red Striped Diamonds. Then F is 2 Red Empty Ovals, G is 2
Green Striped Ovals, H is 2 Green Solid Squiggles, and I is 3 Green
Striped Squiggles. Finally, note that the four SETs AE F , BEG ,
C E H, and DE I all have 180◦ symmetry in the hyperplane of
figure S.5.

CHAPTER 6

6.1. First choose the k attributes that are the same. For the remaining
attributes, howmany ways are there to choose the expressions? And howmuch
did we overcount?

6.2. Just do the algebra: g (n,k)
3n−1(3n−1)/2 = l(n,k)

(3n−1)/2 = (nk) 2n−k

3n−1 .

6.3. Choose a card, then choose two SETs that contain that card: 3n(3n − 1)
(3n − 3)/8.

6.4. Make the model.

6.5. a. g (n+1)
g (n) = 9 × 3n+1−1

3n+1−3 . When n is large, the fraction (3n+1−1)
(3n+1−3) ≈ 1.

b.
∑n

k=0
(n
k
)
2n−k = (1 + 2)n = 3n. Remove the n = k term:
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∑n−1
k=0
(n
k
)
2n−k = (1 + 2)n = 3n − 1. Then divide both sides by 2, and

multiply both sides by 3n−1.

6.6. a. Use the hint.
b. Again, this is just a lot of algebra.
c. When n = 1, we get

[1
0
]
q = [11]q = 1. Assuming the result for n, we

find qk[n
k
]
q is a polynomial of degree k(n + 1 − k) and

[ n
k−1
]
q is a

polynomial of degree (k − 1)(n + 1 − k). Then qk[n
k
]
q + [ n

k−1
]
q is a

polynomial of degree k(n + 1 − k), as desired.
d. Use the hint:[n+1

k
]
q→1 = qk[n

k
]
q→1 + [ n

k−1
]
q→1 = (nk)+ ( n

k−1
) = (n+1

k
)
.

6.7. a. 3n(3n − 1)(3n − 3)/3!.
b. 3n(3n − 1)(3n − 3)(3n − 9)/4!.
c. 3n(3n − 1) · · · (3n − 3k−2)/k!.

6.8. a. 81 × 40 × 13 × 4 = 168,480.
b. 3n(3n − 1)(3n−1 − 1) · · · (32 − 1)(3 − 1)/2n.

6.9. a.
[n
2
]
3 = (3n − 1)(3n − 3)/(32 − 1)(32 − 3).

b.
[n−1

1
]
3 = (3n−1 − 1)/2.

c.
[n−d
k−d
]
3.

CHAPTER 7

7.1. a. There are 3n − 1 potential choices for B , and 3n−1 − 1 of these
choices will agree with A in attribute i .

b. E (Xi ) = 0 × P(Xi = 0) + 1 × P(Xi = 1) = P(Xi = 1).
c. an =∑n

i=1

(
3n−1−1
3n−1

)
= n(3n−1−1)

3n−1 .

7.2. a. There are n choices for the champion, and 3n−1 ways to distribute
certificates.

b. Choose k people in
(n
k
)
ways, then choose a champion from that

group in k ways. Finally, distribute B and C certificates to everyone
else in 2n−k ways. Now sum over k.
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7.3. a. Rounding, we solvem2 − 3m − 3013 = 0. This givesm ≈ 56.
b. The simplified equation ism2 − 3m + 2 − 2a3n+1 + 12a = 0. The

solution is

m = 1
2

(√
8a3n+1 − 48a + 1 + 3

)
.

7.4. We need at least 44 cards to give an expected number of planes larger
than 3.

7.5. a. q(n, k) =∑k
i=0
(n
i
)
2n−i . Then

2q(n, k) + q(n, k − 1) =
k∑

i=0

((
n
i

)
+
(

n
i − 1

))
2n+1−i

=
k∑

i=0

(
n + 1
i

)
2n+1−i

= q(n + 1, k).

b. Just use the definition of q(n, k) in terms of p(n, k).
c. Note that p(n, k + 1) > p(n, k) from the definition of p(n, k). Then,

by part (b),

p(n + 1, k + 1) ≈ 2
3 p(n, k + 1) + 1

3 p(n, k)

> 2
3 p(n, k) + 1

3 p(n, k) = p(n, k).

d. Using (b),
p(n+1, k) ≈ 2

3 p(n, k)+ 1
3 p(n, k−1) < 2

3 p(n, k)+ 1
3 p(n, k) = p(n, k).

7.6. a. Plug n = 60 and p = 1
3 into the formulas for the mean and standard

deviation.
b. Using a calculator, the area is approximately 82.9%.
c. This time, area ≈ 86.8%.

7.7. Letµ = n(3n−1−1)/(3n−1) be themean and let g (n, k) = (nk)3n−12n−k−1

be the number of SETs with exactly k attributes the same. Then use the
following formula (or something equivalent) for the standard deviation:√∑n−1

k=0 g (n, k)(k − µ)2

3n−1(3n − 1)/2
.
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CHAPTER 8

8.1. For example, take the second card: 1 Purple Solid Oval corresponds to
(1, 1, 2, 1). Subtracting from (0, 1, 1, 0) gives �w = (2, 0, 2, 2).
Adding �w to the three vectors in the SET gives (0, 0, 2, 2), (0, 1, 1, 0),
and (0, 2, 0, 1), as before.

8.2. a. The three vectors in the SET are �u, �v, and 2�u + 2�v. Then there are
three ways to pair these up to get a direction vector �d:

�d1 = �v − �u,

�d2 = (2�v + 2�u) − �u = �u − �v,

�d3 = (2�u + 2�v) − �v = �v − �u.

In all three cases, the direction vector is ±(�u − �v).
b. Let S1 = {�u1, �v1, �w1} and S2 = {�u2, �v2, �w2} be two SETs. If they are

parallel, then there is a vector �z with �u1 + �z = �u2, �v1 + �z = �v2, and
�w1 + �z = �w2. Then a direction vector for S1 is �d1 = �v1 − �u1, while a
direction vector for S2 is �v2 − �u2 = (�v1 + �z) − (�u1 + �z) = �d1.
Conversely, if �d2 = �d1 or 2�d1, then you can check that there is a
vector �z that can be added to each of the three vectors in S1 to
produce the three vectors in S2.

8.3. This follows immediately from the direction-vector characterization of
“parallel” in the solution to the previous exercise.

8.4. Both parts are fun activities. Have fun!

8.5. Behold table S.1.
TABLE S.1.
Exercise 8.5: Table 8.6 completed.

�x �y 2�x + 2�y
�z 2�x + �y + �z �x + 2�y + �z

2�x + 2�z �x + �y + 2�z 2�y + 2�z

8.6. As in the solution to exercise 8.2(b), let S1 = {�u1, �v1, �w1} and S2 =
{�u2, �v2, �w2} be two SETs. If they are parallel, then there is a vector �z with
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TABLE S.2.
Exercise 8.7

(0,0,0,0) (0,1,1,1) (0,2,2,2)
(1,1,2,0) (1,2,0,1) (1,0,1,2)
(2,2,1,0) (2,0,2,1) (2,1,0,2)

�u1 + �z = �u2, �v1 + �z = �v2, and �w1 + �z = �w2. Then the three cards
�u1 + 2�z, �v1 + 2�z, and �w1 + 2�z complete the plane.

For the converse, if S1 and S2 are disjoint SETs in a plane, you can check
that they must be parallel using the vector representation of a plane in
exercise 8.5.

8.7. a. Using vectors, take the two intersecting SETs (0, 0, 0, 0), (0, 1, 1, 1),
(0, 2, 2, 2) and (0, 0, 0, 0), (1, 1, 2, 0), (2, 2, 1, 0). Then fill in the
rest of the plane, as in table S.2.

b. In the plane, note that the first attribute is the same in each row, the
last is the same in each column, the second is the same in the SW–NE
diagonals, and the third is the same in the other diagonals.

c. Each card in the plane has eight cards that differ in one coordinate. If
card C is distance 1 from one of these cards, then C is at least distance
2 from any other card in the plane (or else there would be two cards in
the plane closer than distance 3). This means 8 × 9 = 72 cards are
distance 1 from one of the cards here. But that’s the rest of the deck.

8.8. a. An interset is determined by two intersecting SETs. Since a pair of
intersecting SETs is sent to another pair of intersecting SETs,
the interset is preserved.

b. A plane is determined by two intersecting SETs. Now proceed as in
part (a).

c. A hyperplane is determined by three intersecting SETs, not all in a
plane. These must be sent to three intersecting SETs. Since our
transformations do not reduce dimension, they must preserve the fact
that not all of the SETs are in a plane.

d. This follows from the fact that these transformations are invertible, so
if T produced a SET, then T−1 would take a SET to a non-SET,
which is a contradiction.
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8.9. M =

⎛
⎜⎜⎜⎝
0 1 1 0
0 1 0 2
2 1 0 0
0 2 0 2

⎞
⎟⎟⎟⎠ and �b =

⎛
⎜⎜⎜⎝
1
1
0
0

⎞
⎟⎟⎟⎠ .

8.10. Suppose S1 and S2 are parallel SETs and T is an affine transformation.
Let P be the plane containing S1 and S2. Then T (P ) is a plane (by
exercise 8.8(b)), and T (S1) and T (S2) don’t intersect, so they are still
parallel.

CHAPTER 9

9.1. You can’t add the three points that complete SETs with pairs from the
three points, but you can add any of the other three points.

9.2. a.
(4
2
)= 6; b.

(4
2
)
/2= 3; c. 81× (42)= 486; d. 81× (42)/2= 243.

9.3. Either way, send the first anchor to the second, one point from the first
cap to a point from the second, and then a point from the other line in the
first cap to a point in the other line of the second. This must send the
first cap to the second and the unique partition containing the first cap to
the second.

9.4. [Hint: You can assume the three planes correspond to the first coordinate.
Add the first coordinates of the points in C , and explore the possibilities
for nine points.]

9.5. Choose a single maximal cap, as in figure 9.8. Using exercise 9.4, add nine
points for a second cap, leaving nine for a third.

9.6. Good luck!

9.7. a. 63 × 62/6 = 651; b. (2n+1 − 1) × (2n+1 − 2)/6 = [n+1
2
]
2.

9.8. a. • If the attribute is missing on all cards, all coordinates for that
attribute are (0, 0), so they sum to (0, 0).

• If one expression appears on two cards and the attribute is missing
on the third card, then you have (a, b) + (a, b) + (0, 0) = (0, 0)
(mod 2).

• Among the three attributes, one is (1, 0), one is (0, 1), and the third
is (1, 1), so their sum is (0, 0) (mod 2).
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b. The only way that three numbers can add to 0 (mod 2) is if all are 0 or
if two are 1 and the third is 0. Now, concentrate on one attribute: if
(a, b) + (c, d) + (e, f ) = (0, 0), show that there are only three
possibilities and that these correspond exactly to the three conditions.

c. Consider just one attribute. If it’s missing on both, it must be missing
on the third. If it’s missing on one and is an expression on the second,
then the third card must have the same expression. If the attribute is
the same on both, it must be missing on the third. If the attribute is
different on the two cards, the third card must have the third
expression.

9.9. We hope you did.

CHAPTER 10: CALCULATION EXERCISES

10.1. a. 3,032,640; b. 0.000000043; c. 4.29.

10.2. a. 81!(12!(3!)23) = 1.53 × 1094.
b. Multiplying 2.78× 2.53× 2.4× · · · from table 10.2 gives 4.2× 107.
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WEBSITES THATHAVE DISCUSSED SET

• www.setgame.com [Of course, our first entry will be the SET website, thanks to Set
Enterprises. On the game’s website, you can find a Teachers’ Corner that includes
various papers about SET, and other information about the game.]

• http://www.bluffton.edu/homepages/facstaff/nesterd/java/setendgame.html
[Darryl Nester wrote this app to play the End Game online.]

• http://webbox.lafayette.edu/~mcmahone/capbuilder.html [Jordan Awan wrote the
Cap Builder, which allows you to create maximal caps, as discussed in chapter 9.]

• http://mathtourist.blogspot.com/2010/07/set-math.html [Ivars Peterson wrote “SET
Math,” discussing several problems, including maximal caps and affine planes.]

• http://www.ams.org/samplings/feature-column/fc-2015-08 [David Austin wrote a
feature column on the American Mathematical Society’s web page called “Game.
SET. Line,” which explored collections of cards with no SETs and the probability
that the initial configuration of cards has no SET.]

WEBSITESWITH VARIANTS OF THE GAME

• http://works.bepress.com/jeffrey_pereira/ [Jeffrey Pereira wrote a paper about a
variant he called SuperSET.]

• http://www.zerosumz.com [The website for Zero SumZ, a projective version of SET,
created by Alejandro Erickson, Jonathan Lenchner, and Mathieu Guay-Paquet.]

• https://www.ocf.berkeley.edu/~dadams/proset/ [D. Adams also wrote an online
version that he calls ProSET.]

• http://socksgame.com/homepage.php [Anna L. Varvak has a version called Socks,
which you can play online or purchase.]

• http://stacky.net/wiki/index.php?title=Projective_Set [Anton Geraschenko
discusses how he made cards and includes code to make your own.]

• https://jointmathematicsmeetings.org/amsmtgs/2168_abstracts/1106-a1-1254.pdf
[Doug Burkholder discussed a different way to make a projective version of SET
directly from the SET cards in a talk at the Joint Mathematics Meeting in 2015.]

https://jointmathematicsmeetings.org/amsmtgs/2168_abstracts/1106-a1-1254.pdf
http://stacky.net/wiki/index.php?title=Projective_Set
http://socksgame.com/homepage.php
https://www.ocf.berkeley.edu/~dadams/proset/
http://www.zerosumz.com
http://works.bepress.com/jeffrey_pereira/
http://www.ams.org/samplings/feature-column/fc-2015-08
http://mathtourist.blogspot.com/2010/07/set-math.html
http://webbox.lafayette.edu/~mcmahone/capbuilder.html
http://www.bluffton.edu/homepages/facstaff/nesterd/java/setendgame.html
http://www.setgame.com
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DISCUSSIONS OF VARIOUS PROBLEMS
IN THE SET UNIVERSE

• http://norvig.com/SET.html [Peter Norvig posted a question on his blog about the
odds of finding a SET in a layout of 12 cards.]

• http://henrikwarne.com/2011/09/30/set-probabilities-revisited/ [Henrik Warne’s
blog has a reply entry discussing simulations to find probabilities for various
situations in SET.]

• http://mathoverflow.net/questions/66400/probability-of-having-a-perfect-game-of-
set [StackExchange’s MathOverflow website hosted a discussion of the odds of
having a “perfect” game of SET, i.e., a game where the entire deck is cleared.]

• https://terrytao.wordpress.com/2007/02/23/open-question-best-bounds-for-cap-
sets/ [Terence Tao’s blog discussed the problem of finding the size of maximal
caps.]

GENERAL JOURNAL ARTICLES ABOUT SET

• Mike Baker, Jane Beltran, Jason Buell, Brian Conrey, Tom Davis,
Brianna Donaldson, Jeanne Detorre-Ozaki, Leila Dibble, Tom Freeman, Robert
Hammie, Julie Montgomery, Avery Pickford, and Justine Wong, “Sets, planets, and
comets,” College Math. J. 44, no. 4 (2013), 258–264. [This article introduces the idea
of planets (4 coplanar points) and comets, and then discusses a game based on these
definitions.]

• Anna Bickel and Zsuzsanna Szaniszlo, “SET, affine planes and Latin squares,”Math
Horizons (2007) 36–39. [This article introduces the geometry behind the game and
connects it to Latin squares, a combinatorial topic.]

• Ben Coleman and Kevin Hartshorn, “Game, set, math,”Math. Mag. 85 (2012),
83–96. [This article counts the number of ways to place a certain number of cards,
up to symmetry, using Pólya theory, a combinatorial topic.]

• Benjamin Davis and Diane Maclagan, “The card game SET,”Math. Intelligencer 25,
no. 3 (2003), 33–40. [A survey of geometry and other considerations.]

• Norman Do, “Mathellaneous,” Austral. Math. Soc. Gaz. 31 (2004), 222–233.
[This article gives a summary of techniques used to bound the number of points
in a cap.]

• Gary Gordon and Elizabeth McMahon, “Error detection and correction using SET,”
chapter 14 of The Mathematics of Various Entertaining Subjects: Research in
Recreational Math, J. Beineke and J. Rosenhouse eds., Princeton University Press,
2015. [This covers topics from chapter 8.]

• Hannah Gordon, Rebecca Gordon, and Elizabeth McMahon, “Hands-on SET,”
PRIMUS 23 (June 2013), 646–658. [The article describes some interesting activities
that could be used in the classroom, mostly geometric.]

https://terrytao.wordpress.com/2007/02/23/open-question-best-bounds-for-cap-sets/
https://terrytao.wordpress.com/2007/02/23/open-question-best-bounds-for-cap-sets/
http://mathoverflow.net/questions/66400/probability-of-having-a-perfect-game-of-set
http://mathoverflow.net/questions/66400/probability-of-having-a-perfect-game-of-set
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http://norvig.com/SET.html
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over F3,” Ars Combin. 52 (1999), 161–171. [This article focuses on counting the
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RESEARCH ARTICLES ON GEOMETRY, MOSTLY
ABOUTMAXIMAL CAPS

• Gino Fano, “Sui postulati fondamentali della geometria proiettiva” [On the
fundamental postulates of projective geometry], Giornale di Mat. 30 (1892),
106–132. [Discusses the projective geometry now called the Fano plane.]

• Raj Chandra Bose, “Mathematical theory of the symmetrical factorial design,”
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affine space.]
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affine geometry, 16, 102, 214, 229
affine transformations: preserving the number
of different attributes, 218

axioms, 99; finite affine geometry, 103; finite
projective geometry, 246

binomial coefficients, 34, 154, 165; binomial
theorem, 166, 176

binomial distribution, 183

caps, 124, 230; cap builder, 232; maximal, 231
central limit theorem, 185
closure, 17, 107, 116, 227
color-blind SET, 50
combination, 30
coordinate assignments, 19, 76, 197
counts: global, local, 149; incidence, 32, 61,
163, 157

crossing sets, 168
cycle, 110

End Game, 8, 84, 94, 124; error correcting and,
208

error-correcting codes, 209
expected value, 60, 64; linearity of, 63, 172

Falco, Marsha, 11, 12
Fano plane, 247
five-card exception, 91, 127; exercise, 132
fundamental theorem of SET, 13, 78,
104, 179; use of, 31, 36, 54

Hamming weight, 210
hyperplane, 17, 111, 113

incidence count, 32, 61 157, 163
interset, 42, 63, 69, 90, 95, 124, 233; counts of,
44, 166

magic square, 14
maximal caps, 231; partitions of, 241
matrix, 212
mean, 60, 187
midpoint, 81, 95
modular arithmetic, 20, 72
multiplication principle, 13, 28, 36

normal distribution, 184

parallel postulate, 100, 200, 204
parallel sets, 17, 105, 110, 197, 201; classes,
131; direction vectors and, 202

Pascal’s triangle, 39
permutation, 30
perpendicular sets, 225
plane, 14, 45
plane, number of, 48
probability, 53, 171; coin flipping, 182; no sets,
55

projective geometry, 129, 245
PSET: projective SET, 252

q-binomial coefficients, 164, 167

SET, variations of, 66, 83, 143
six-card theorem, 88; geometric structure of,
125

standard deviation, 184, 192
Stirling’s formula, 195
stupid SET trick, 23

vectors, 77, 197; addition of, 199
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