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chapter

An Introduction
to Limits

his chapter discusses the importance of limits

to the study of both differential and integral
calculus. Differential calculus involves finding a
derivative—such as the slope of a tangent line or
the rate of change of a balloon’s volume with
respect to its radius—of the maximum or minimum
value of a function. Integral calculus involves
finding an integral—such as determining the
velocity function from its acceleration function,
calculating the area under a curve, finding the
volume of an irregular solid, or determining the
length of an arc along a curve. Starting with some
examples of how you can use limits in calculus,
I then introduce an intuitive notion of limits. From
the formal definition of a limit, you learn ways to
determine limits of functions from their graphs,
as well as how to use some basic limit properties.
The chapter concludes with a brief discussion of
continuity and two important theorems related to
continuity.

7

Definition of the Limit of

Determine Limits from the Graph

Calculate Limits Using Properties

Continuity at a Point or

The Intermediate Value and

Limitsin Calculus ...............

aFunction.........ooeeveennnn.

One-Sided Limits . ...............

ofaFunction.........ccovvuunn.

of Limits ....oovviiinneneennnns

onanlInterval..................

Extreme Value Theorems.........




This section gives you some examples of how to use algebraic techniques to compute limits. These
include the terms of an infinite series, the sum of an infinite series, the limit of a function, the slope
of a line tangent to the graph of a function, and the area of a region bounded by the graphs of
several functions.

TERMS OF AN INFINITE SERIES

@ Let’s take a look at the series (1111 1 1 1
(1111 1 1 ) ’2°4°816°32° 10247 524,288
,Q,Z,g,ﬁ,g,—z,...,wwherenlsa for n =11 for n =20

positive integer. As n gets larger and larger,

the term % gets smaller and smaller.

@ If n were large enough (say n approached =), it appears that the terms lim 1 0
n—1 =
approach 0. In the language of limits, you can say that the limit of %, as 2
n approaches , is 0.
LIMIT OF A SUM OF AN INFINITE SERIES
© Let’s go one step further and try to find the 1,1 ,1,1 1 1
sum of the terms of the series mentioned Ity tgtgtigtsn to t T

earlier, as n gets very large.
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@ For increasing values for n =1 - sum =1
of n, the sum of that 1 1
number of terms is for n =2 — sum =1 +7 =1§
shown at the right. 11 3
for n =3 - sum =1 +§+ZZIZ
_ ol 1 .7
_ Ll r 1.1 . 1,1, 1 4127
forn—8—»sum—1+2+4+8+]6+32+64+128—11 3

© It appears that the sum of the terms of this series is approaching 2. In the language of limits, we say

1

the limit of the sum of the terms Tkl approaches , is 2.

[ TIP ]

Remember that the symbol X (sigma) represents
“the sum of.”

lim 2 51) =2




Limits in Calculus

(continued)

LIMIT OF A FUNCTION

@ The graph of f{x) = (x + 3)(x — 2)* is shown at the right. It appears that as x gets closer and closer to 2
(from both the left and the right), f(x) gets closer and closer to 0.

Jo) = (x+3)(x - 2)°

lim fix) =0 ??
x->2
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@ Try some values for x close to 2, finding their y coordinates to verify that the limit really is 0.

x and f(x) Values for f(x) = (x + 3)(x - 2)?

x flx) = (x +3)(x - 2)
0.5 7.875
1.0 4
1.5 1.125
1.8 0.192  x approaches 2 from the left
1.9 0.049
1.99 0.0005
1.999 0.000005
2 0
2.001 0.000005
2.01 0.0005
2.1 0.051
2.2 0.208  x approaches 2 from the right
2.5 1.375
3.0 6
3.5 14.625
© From the chart, it appears that as x gets closer and closer to 2, the value of lim f(x) =0

x—2

f(x) gets closer and closer to 0.




Limits in Calculus

(continued)

SLOPE OF LINE TANGENT TO A CURVE S

© The graph of f{x) = (x — 2)> + 1 is shown at the right ’X- ) =(x =20+ 1
with a line tangent to the curve drawn at the point with

x-coordinate 3.

@ Let’s approximate the slope of that red tangent line. Select some values of x that approach 3 from the
right side: 4, 3.5, 3.1, 3.01, and, of course, 3. Letting Ax (read “delta x”’) equal the difference between
the selected value of x and 3, you can complete the chart at the right.

Selected Points of the Graph of fix) = (x - 2)* + 1

Ax 3+ Ax J3+ Ax) Resulting Point
1 4 5 4,5) A
0.5 3.5 3.25 (3.5,3.25) B
0.1 3.1 2.21 (3.1,2.21) C
0.01  3.01 2.0201 (3.01,2.0201) D
0 3 2 (3,2) T
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© Next, compute the slopes of the secant lines Sfx)
H’ , ﬁ, ﬁ, and ﬁ

f)=(x-27+1

forx=3

35-3 05
=7 _221-2 _0.21 _
slope of CT = 313 — 01 =2.1
slope of DT =2.0201-2 _0.0201 _, o,

3.01-3 0.01

T

tangent a




Limits in Calculus

(continued)
O As the chosen points A, B, C, and D get closer At x = 3, the slope of the line tangent
and closer to point T (Ax — 0), the slope of the to the graph of (x) = (x-2)> + 1 is 2.

line tangent at x = 3, gets closer and closer to 2.

@ For any point P close to T, the slope of PT fix) f)=(x—-27%+1
is of f(3+4x) —f (3) P
is given by (3 +Ax) —3 (3 +Ax, f3 + Ax))
_fB+4x)=f(3)
Ax
A3+ Ax - f3))
X
3+ Ax
0 As Ax — 0, the point P moves extremely close to the . f(3+4Ax)—f(3) _
point T; in this case, the slope of the line tangent at point Er}}) Ax =2
T will be the expression in Step 5 above.
@ The expression in Step 6 in the right '(3) =i f(3+4x)—f(3)
column is also known as the derivarive of 1) A Ax
tx =3, and is denoted by /'(3).
]IC1(1X)C§ agt ors 3a_ré ;}iui{:ﬁﬁ e arill‘};rfaliy Therefore, the slope of the line tangent to
5 — 2 — 21
techniques for determining the derivative the graph of fix) = (x - 2)"+ L atx=3is 2.

of a function.
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RIEMANN SUM: AREA UNDER A CURVE
@ The last limit example involves approximating the area below the graph of f{x) = x?, above the x-axis,
right of the line x = 1, and left of the line x = 5.

Note: Try to find both a lower and an upper approximation to the actual area. A lower approximation
uses inscribed rectangles and an upper approximation uses circumscribed rectangles.

fo) =x*

som— Arca = 77




Limits in Calculus

(continued)

@ Using four inscribed rectangles, each
having a base of 1 unit, their corresponding
heights are found: f(1) =1, f(2) =4,
f(B)=9,and f(4) = 16. The area
computation is shown at the right.

Area=1f(D+1-A2)+1-f3)+1-£f(4)
=1-1+1-4+1.-9+1-16
=30

This area approximation is /ess than
the actual desired area.
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© Next, using four circumscribed rectangles, y
each having a base of 1 unit, their
corresponding heights are found: f(2) = 4,
f(3)=9,f(4)=16,and f(5) = 25. The area
computation is shown at the right.

fo) = x?

Area=1+f2)+1-f3) + 1 -fid) +1-A5)
=1.4+1-9+1.16+1.25
=54

This area computation is greater
than the actual desired area.




Limits in Calculus

(continued)

O The actual area of the region described in y
Step 1 is greater than 30 and less than 54. If rf (x) =x*
you wanted a closer approximation of the
actual area, you would use a very large
number of rectangles, each having a base of
5-1

Ax ==—, where 7 is the number of

rectangles used. The corresponding height for
each rectangle would then be f(x)), where /
represents the 1st, or 2nd, or 3rd, or 4th

rectangle of the n rectangles used.

—{-height = f(x,)

5-1

\ r—base:Ax:T

X

=

|
vl
X, X,
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® The sum of the areas of these
rectangles is represented by the
expression at the right, an
example of what’s called a
Riemann Sum, the use of which
is to predominately find the sum
of areas of rectangles under a
curve. The area of one green
rectangle (see previous page)
would be f(x,) - Ax.

M=

0 The actual area would be found by letting n — oo, so that
A — 0, and then finding the limit of the Riemann Sum.

@ If f(x) is defined on a closed interval [a,b] and
lim<.nZ1 f (xi) Ax) exists, the function f(x) is said to be

n—oo

integrable on [a,b] and limit is denoted by [’ £ (x)dx-

© The expression [, f (x)dx is called the definite
integral of f from a to b.

© In Chapter 12, you will compute these sorts of areas,
after learning some techniques of integration.

f(x,) - Ax= sum of the areas of all n rectangles.

Area =lim<i§lf(x,y)Ax)

n—-0

lim<
n—oo \ i=1

> f(x,-)AX) [ £ (x)dx

In our example, Area = x’ dx.

Actual Area =] x’dx =41%




Definition of the

Limit of a Function

This section introduces the precise definition of the limit of a function and discusses its use in
determining or verifying a limit.

THE A-E DEFINITION OF THE LIMIT OF A FUNCTION

Let f'be a function defined for numbers in some open interval containing ¢, except possibly at the
number c itself. The limit of f(x) as x approaches ¢ is L, written as lim f (x) =L, if for any € > 0, there is

a corresponding number & > 0 such that if <|x —c|< &, then ‘f(x) —L| <E,

© Let’s break down the definition of the limit as stated above. As x — ¢, then f(x) — L,
Since |x — c| is the distance between x and ¢, and ‘ f(x)- L| so that hfnf (x) =L.

is the distance between f(x) and L, the definition could be

worded: lim f (x) =L, meaning that the distance from f(x) to

L can be made as small as we like by making the distance

from x to ¢ sufficiently small (but not 0).

@ Note that 0 <|x —c| < implies that x lies in the f(x)
y =fx)

interval (c — 6, ¢) orin (c, ¢ + 6). Also,

h
+
&

‘ f(x) —9‘ < £ implies that L lies in the interval
(L-¢ L+e).

™~
I
Ny~

0<|fx)-L|<E

c-d c¢c c+9d
0<|x—c|<?d
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Using the 5-¢c Definition to Verify a Limit

Use the 0—¢ definition to verify that [jm x>= 9.
x—3

© You must show that for any &> 0, there corresponds |?C2 _9‘ =[x +3[|x =3|

If you move left and right of x =3

i . just 1 unit, x would be in the
<|x —=3|< & . Since your choice of & depends on interval (4,5) so that <|x +3/ <8

a 8> 0 such that: | f (x) —9| < £ whenever

your choice of €, you need to find a connection

between |x” —9|and |x —3|

@ Letdbee/8. It follows that when O<\x—3|<5:%

the result is |x* —9| =[x +3]x =3

FINDING A VALUE OF A, GIVEN A SPECIFIC VALUE OF E
Given that lim (3x — 1) = 5, find a value of 8 such that |(3x -1)- 5| <0.01 whenever |x —2|< 4.
x—2

@ First, find a connection between ‘(3x -1)- 5‘ ‘(3x —1) —5‘ =|3x —6] =3|x —2|
and |x —2|.




Definition of the Limit

of a Function (continued)

@ You are given that ‘(336_ 1)- 5‘ <0.0L |(3x —1) —5| <0.01
3|x —2[<0.01

.01
|X—2|<T

® Select 5 :%.

This choice of 8 works since () < |x—2|<d implies that
|(3x —1) =5 =3]x 2|
<3(8)
.01

<0.01 the given requirement.




One-Sided

Limits An Introduction to Limits chapterl

Here, I illustrate limits from the left and from the right—commonly known as one-sided limits.

Notation for One-Sided Limits, with Examples

@ For the function f(x) = % at the right, there is no Sx)
limf (x). Notice that as x — 0 from the left, f(x) fix) = 1
*= x

— —% but as x — 0 from the right, f{x) — +cc.

“The limit of f(x) as x approaches ¢ from the left is L”
1s written as: M @---mn-

@ Each limit in Step 1 is called a one-sided limit. f(x) /

fim f (x) =L i

QI
“The limit of f{x) as x approaches c from the right is :
M is written as: / : X

lim f (x) =M




One-Sided

Limits (continued)

ONE-SIDED LIMITS FOR A RATIONAL
FUNCTION

2
For f(x)=—=* o find limf (x) and
X — x—2
lilgf(x).
From the graph, lirgg f(x) =0 and

limf (x) =-oo.
x-2"

Note: When you write lxiflclf (x)=o0, jt
does not mean that the limit exists.

The limit actually does not exist
because f(x) increases without bound as
X approaches c.

ONE-SIDED LIMITS FOR A CONDITIONAL fx)
FUNCTION

For the function f{x) = x if x > 0, but fix) =—x -1,
if x <0, find lirg;f(x) and 1ir})1f(x).

@ From the graph at right, you can see that 1i1101 =-1

and lir(r)}f(x) =0. N N
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@ Notice that since the left-sided and right-sided limits are different, lim f (x) does not exist.

ONE-SIDED LIMITS FOR A POLYNOMIAL FUNCTION

3 2
For the function f (x) = % - XT —3x, find linzlif (x)and lim f(x).

X — — xX— =2

@ From the graph at the right, you can fx)
2
see that lim f(x) =3% and T - 33
x——2"

- —22
Jim £ (x) =33.

3 2
f)=¢-5-3x

IS

@ Since the left-sided and right-sided limits are the same, we can say that lilp2 f(x)=3




Determine Limits from

the Graph of a Function

Using just the graph of a function, you can determine one-sided limits, as shown in this section.

LIMITS FROM THE GRAPH OF A Sx)
FUNCTION: FIRST EXAMPLE ¢
Using the graph of the function f(x) at the :
right, determine each limit below. E
;
S
v
x=5
limf (x) limf (x) =4

x—-3 x—-3

As x approaches —3, f(x) approaches 4.

lim f (x) lir}}+f(x) =1

x—-1

As x approaches —1 from the right,
Jf(x) approaches 1.

lim f (x) lim £ (x) =3

As x approaches —1 from the left,
f(x) approaches 3.




lim f (x)

x——1

lim f (x)

x—3

lim f (x)

x—-5

lim £ (x)

An Introduction to Limits chapterl

lim f'(x) is nonexistent

As x approaches -1 from the left and then from
the right, two different limits are concountered.

lim f'(x) =3

As x approaches 3 (from the left or the right),
Jf(x) approaches 3.

lim f (x) =—oo(or nonexistent)
x—5

As x approaches 5 from the left, f(x) decreases
without limit (approaches —).

lim f (x) =0

X — 00

As x gets really large, f(x) appears to be
getting really small.




Determine Limits from the

Graph of a Function (continued)

LIMITS OF A TRIGONOMETRIC FUNCTION fx .
To the right is the graph of f(x) = sinx. Determine f () =sinx
each limit below. 14

| /
izt
L
=
g
3 S~
=

lifrol(sinx) lizrol(sinx) =0
lim(sinx) lim(sinx) =0
lim (sinx) lim (sinx) =0

lim (sinx) is nonexistent, sinx oscillates between —1 and 1.

lim (sinx)

X — o0




Calculate Limits Using
chapterl

Properties of Limits An Introduction to Limits

There are many properties that enable you to calculate such limits as sums, products, powers, and
even composites of functions.

\ Properties of Limits

Listed below are the more common limit properties and a Let N _1
corresponding example in the right column. Let k and ¢ flx)=x"+Tand g(x) =5
be constants, let n be a positive integer, and let f and g be

functions such that limf (x) = L and lim = M.

Scalar Product: 1}{13[1C -f(x)] lxifrzl[S .f(x)]
=k- 1331f(x)] =5 -[1x15121f(x)]
=k- L =5(2"+1)

=25

Sum or Difference: lxifrcl[f(x) + g(x)] lar[%[f(x) —g(x)]

=limf (x) £limg(x) =lim f (x) —lim g (x)

=L+M [(_1)2+1] _<_L1>
=2 +1
=3

Product: l}f‘}[f(x) . g(x)] {ig;[f(x) . g(x)]
=lim f'(x)-limg (x) =lim f (x)-lim g (x)

=[5)"+1]- [is]
=(1.25)-2
=25



Calculate Limits Using

Properties of Limits (continued)

Quotient: f(x) | f(x)
~o|g(x) l"l‘r‘gl g(x)
lim f (x) _lim f (x)
~limg(x) lim g (x)
=Litmzo -1
3
=30
Power hm[f(x)]n lxlfrzl[f(x)]
=|tim 7 ()] =|tim 1 (x>]3
=(2°+1)
=125
Composite: lim £(g(x)) limf (g(x))
= (timg (x)) = (timg ()
=f (M) if lim f (x) =f (M) ~f(%)
%) +1
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Special Trigonometric Limits: lim ( sig X ) —1 lim ( SiI'lx 3x

—lim (1 +cosx)x(1 —CoS X)

. 1 —cosx
—lxll’rol(l +cosx)- (T)

=1i i L=C0sx
=lim (1 +cosx) 111101( < )

=1-0
=0




Continuity at a Point

or on an Interval

This section discusses continuity of a function along with methods for determining continuity. It
also introduces some applications of continuity, including the Intermediate Value Theorem and the
Extreme Value Theorem.

Definition of a Function Continuous at a Point

@ The function fis continuous at the fx)
number c if the following conditions are

satisfied:
1 C) exists

i) lim f (x) exists

i) 1im f (x) =f (c) / c

i) floo=L

i) lim f(x) =L

xXx—c

i) lim /(x) =L =f (x)
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@ A practical test for continuity means you fix)

can sketch the graph of the function y =fx)

without lifting your pencil off the paper.

Another test for continuity by viewing “hole” on graph at x=c
o . Jf(x) not continuous at x=c

the function’s graph is that the graph has /

no holes, no jumps, and no vertical /

asymptotes.

X

O ===

An example of the first figure is

= 5%+ 9x*— 5x— 2
f(x): X X x_xz X

C(x=2)(x"= 3x7+ 3x+ 1)
- x— 2 y =fx)

An example of the second figure is

(x— 1)+ 2if x>2 _

2 . h “j 7 at x=c
B _ _ graph “jumps” a
(x 1) 3if x<2 f(x) not continuous at x=c

f(x)=

An example of the third figure is

_ 1
F0= 1

=+ 1 1)

e
<
i
=
=
)

1
1
1
1
1
1
1
1
1

A\

X

o

/

vertical asymptote at x=c
f(x) not continuous at x=c

\]




Continuity at a Point

or on an Interval (continued)

REMOVABLE DISCONTINUITY Jx)

Given a function f which is not continuous at
some number: the discontinuity at c is called
removable if f can be made continuous at ¢ by B ]
defining or redefining f(c) so that the function f'is
continuous af c.

xif x#3

The graph of f(x) =is §r=3 is shown at the

right. Explain why f(x) is not continuous at x = 3.

=

This is done by checking each of the three )
conditions needed for a function to be continuous 1) f3)=5

atx = 3. i) lxifrslf(x) =3
i) f(3) exists i) lim f (x) =3 #5 =f (3)

ii) lim f(x) exists

ot B Condition iii of the definition fails.
ii1) 1}5131 f(x)=rG) Note the “hole” at x = 3. This is also
known as a removable discontinuity.




JUMP DISCONTINUITY

xif x=2
lif x< 018 shown at the
right.

The graph of f(x) =

Explain why f{(x) is not continuous at x = 2.

INFINITE DISCONTINUITY

The function f'is said to have an
infinite discontinuity at c if
lim f (x)=o0 or lim f (x) = —oo.

Note: x can approach c from the left or from
the right.

The graph of f (x) =—*

x—1

is shown at right.

Explain why f{(x) is not continuous at x = 1.

An Introduction to Limits chapterl

Otaf------

1) f2)=2
ii) 1im f (x) is nonexistent
Condition ii) of the definition fails.

Note the “jump” at x = 2. This is also
known as a jump discontinuity.

i) f(1) is not defined
i) lim f(x)
Conditions 1) and ii) of the definition fail.

Note the “vertical asymptote” at x = 1. This
is also known as an infinite discontinuity.




Continuity at a Point

or on an Interval (continued)

If k is a real number and functions f{x) and g(x) are continuous at x = ¢, then the following functions are
also continuous at x = c.

Scalar Multiple: k- fx) and k - g(x) Quotient: g ; provided that g(c)#0
Sum and Difference: f(x) £ g(x)
Product: fx) - g(x) Composite: ( (x ) )) if f(x) is continuous at g(c)

ADDITIONAL CONTINUOUS FUNCTIONS

@ Polynomial functions are continuous everywhere: fx)=5x"-13x3 +4x -5

() =ax+ lt gl taxta is continuous everywhere.
pxX)=ax +d, , 2 I 0

@ The following functions are continuous at every point in Flx)= X +5 X + 17
their domain. =
fx

Rational: 7 (x) = g(x)) where g (x)#0 is continuous everywhere

except at x = 1.

Radical: f (x)=1/x f(x)=/x+1

is continuous for x = — 1.

Trigonometric: sinx, cosx, tanx, cscx, secx, tanx

f (x) =tanx =gogy

_T
is continuous except at ¥ =5 TAT
where k is an integer.
Exponential: f(x) = n* f{x) = 3*~2is continuous everywhere.
Logarithmic: f(x) =logx or f{x) = Inx: fix) =log(1 — x) is continuous when x < 1.
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DEFINITION OF CONTINUITY ON AN Sfx)
OPEN INTERVAL

A function is continuous on an open interval
(a,b) if and only if it is continuous at every
number c in (a,b) (i.e., no holes, jumps, or
vertical asymptotes in (a,b) ).

y = flx)

f(x) is continuous on the open interval (a,b).

DEFINITION OF CONTINUITY ON A
CLOSED INTERVAL

A function f(x) is continuous on the closed
interval [a,b] if it is continuous on the open
interval (ab) and lim f (x) =f (a) and

lim f (x)=£ (b).

f(x) 1s continuous on the open interval (a,b)
1) limf(x)=L and f(a)=L

i) lim f (x) =M and f(b) =M

Therefore, f(x) is continuous on the closed
interval [a,b].




The Intermediate Value and

Extreme Value Theorems

There are two theorems that you will find useful: The Intermediate Value Theorem and the
Extreme Value Theorem.

The Intermediate Value Theorem is this: If a
function f'is continuous on [a,b] and m is any
number between f(a) and f(b), then there is at least
one number, ¢, between a and b, for which f(c) = m.

Show that the function f{x) = x* — x*> — 2x has at least one zero in the interval [1,2] and then find that zero.

@ Find f(1) and f(2). fx)=x3 —x2 - 2x
fAh=13-12-2(1)=-2
f3)=33-322(3)= 12
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@ Apply the conclusion of the Intermediate Value Since f(1) < 0 and f(3) > 0, there
Theorem. must be at least one number ¢ in
[-2, 12] for which f(c)=0.

© Set the original function equal to 0. 0=x-x*-2x

@ Factor the right-hand side. 0=x(x*-x-2)
O=x(x-2)x+1)

® Solve for x. x=0,x=2,x=-1

The only value of x the interval (1,3) is 2. Therefore, ¢ = 2.




The Intermediate Value and

. Extreme Value Theorems (continued)

\ Extreme Value Theorem

If a function fis continuous on [a,b], then fhas both a maximum value and a minimum value on [a,b].

Case I: f has both a minimum and a maximum Case II: f'has an extreme value at a and another
value on (a,b). extreme value in (a,b).

fix) Jx)
max

min
I —X
a b 7 b

min

=

Case III: f has an extreme value at b and another Case IV: fhas the same maximum and minimum
extreme value in (a,b).

value.

Jx) fx)

max

“ all points max. and min.
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Algebraic Methods to
Calculate Limits

his chapter presents a variety of algebraic

methods for calculating limits. Where
indeterminate forms occur, techniques are
introduced, such as factor/reduce, dividing by the
largest power of the variable, rationalizing the
denominator/numerator, and finding the least
common denominator. The chapter ends with
locating horizontal asymptotes for the graph of
a function, a process that involves finding limits
at infinity.

-
Direct Substitution.................

Indeterminate Forms i% andg......
Dealing with Indeterminate Forms ...

Limits at Infinity: Horizontal

Asymptotes ......ccvvvivincennnas
x




Direct

Substitution

Many times, you can find the limit lxiflcl f (x) by simply substituting ¢ for x and then evaluating

the resulting expression. In this section, you will see examples of how to determine the limits of

polynomial, radical, and trigonometric functions, as well as how to determine the limit of a

quotient of rational expressions.

LIMIT OF A POLYNOMIAL FUNCTION
Determine lim (x*+3x)

© Begin with the original limit statement.

@ Substitute 2 for x, then simplify.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

LIMIT INVOLVING A RADICAL FUNCTION

Determine lim 7'{2)_1
X

x—5

© Begin with the original limit statement.

@ Substitute 5 for x, then simplify.

lim(x2+ 3x)

x—2

=27+3(2)
=4+6=10

ooooooooooooooooooooooooooooooooooooooooooo




Algebraic Methods to Calculate Limits chapterz

LIMIT INVOLVING A TRIGONOMETRIC FUNCTION

. COSX
e lIm
Determine 120 755,

© Begin with the original limit statement.

@ Substitute 7 for x; then simplify.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Determine !EE m
X
X

@ Begin with the original limit statement.

@ Substitute « for x; then simplify.

oooooooooooooooooooooooooooooooooooooo

. COSX
1}3? 2x
_COST
2.1

_-l

2r
5+ 4L
lim —7—%¢
54040
7-0+4+0

=2
~7




Indeterminate

Forms and

Sometimes when using direct substitution to calculate a limit, you may encounter expressions such
as i% or % These are known as indeterminate forms. When you encounter indeterminate forms,
appropriate algebraic methods must be used to alter the form of the expression the limit of which

you are attempting to calculate.

INDETERMINATE FORM INVOLVING TRIGONOMETRIC lim $103x
FUNCTION M x
Here, x is being replaced with the number that x is approaching— _sin(3-0)
it’s what substitution is all about. Meanwhile, the colors show that - 0
an appropriate number is being substituted for the x. _sin0
. 0
. 1s Sin3x
Determine 1}1101 T _0
0
INDETERMINATE FORM INVOLVING RATIONAL FUNCTION lim X2 43x
e i X+ 3 = T =20
Determine !HE T _’+3-00
7 =200
—_©
INDETERMINATE FORM INVOLVING RECIPROCALS 1, 2
1 2 lim X—x+1
x7t oo 3
Determine lim XTX'H x?+x
x*+x 1 2
ot oF
3
oo’ +oo
_0+0
0




Indeterminate Forms

Dealing with
chapterz

When you encounter an indeterminate form, you can use a variety of algebraic techniques to
determine the limits. Among these techniques are factoring and reducing, dividing by the largest
power of the variable, using the common denominator, and rationalizing the denominator (or the
numerator).

| Factor and Reduce |

Using this technique, you factor the numerator and denominator, cancel like factors, and then use direct
substitution to evaluate the resulting expression.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

LIMIT OF A RATIONAL FUNCTION li x’=5x+6
1IM—> 5 7
. X'=5x+6 -2 x +3x—10
Determine lim 5————.
x—o00 X +3x_10 _22_5'2+6
T 2°4+3-2-10
@ Try direct substitution, 2 for x. 4-10 +6
“4+6-10
-0
0
@ Since you ended up with an indeterminate form, return to the T x> —5x +6
original limit statement and then factor both the numerator and Y +3x—10
the denominator, cancel the common factor, and then use direct (x _3)M
substitution. =lim—F——+
=2 (x +5)(x~7)
o x—3
_lxlpzl x+

2-3
2+5
7

—1




Dealing with Indeterminate

Forms (continued)
LIMIT OF A RATIO OF TRIGONOMETRIC FUNCTIONS

. . sinx+sin2x
lim~———""=>
Determine lim Sinx

@ Try direct substitution, O for x.

@ Again, you ended up with an indeterminate form. Return to
the original limit statement and substitute 2 sinx cosx for
sin2x. Then factor, reduce, and use direct substitution.

Divide by Largest Power of the Variable I

 dinx +si
lim S0 sin2x
oy sinx

_sin(0) +sin2(0)
- sin (0)

. sinx +sin2x
lim >
20 sinx

 dinx 400
— i $10X 2 81N X COSX
<20 sinx

—lim six (1 +2cos x)
70 sink

=lim (1 +2cos.x)

=1+2cos(0)

—1+42-1

=3

When the limit involves a rational function, you can divide all terms by the highest power of the variable
in the rational function—or you can multiply by the reciprocal of the highest powered term instead.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

LIMIT OF A RATIONAL FUNCTION

2
Determine lim ox +3x—2

e X’ —4x+6

ooooooooooooooooooooooooooooooooooooooo
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© Try direct substitution, « for x. . 5x*43x =2
v !LIE 7x*—4x +6

~5(00) +3(00) =2
(o) —4 () +6

o0

oo

@ Return to the original limit statement and multiply the (557 +3x-2)
numerator and denominator by %, x? being the highest !}}E (7x2 —4x +6) '

owered variable term.
P 5¢  3x_2
=lim 2,

2
o 7% —4—)26 +=




Dealing with Indeterminate

Forms (continued)

LIMIT INVOLVING A RADICAL FUNCTION
=2
Determine !HB T3

© Try direct substitution, < for x.

@ Since you got another indeterminate form, multiply the

. 1
numerator and the denominator by ‘/?

Use the largest power of the variable x in
whatever form it appears.

For /x*—2x, use ‘/lx—z .

For /5x+x’, use #

JxP—=2x

!}E{,} 5x =3

_ [oo® =2 (o)

5(c0) =3
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 Use the Common Denominstor |

When an expression involves rational terms, you use the least common denominator of all rational terms.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

LIMIT INVOLVING RATIONAL EXPRESSIONS: EXAMPLE 1
1.1

= + =
T L
Determine }1}}13 13

© Try direct substitution, —3 for x.

@ Since you encountered an indeterminate form, return to the
original limit. The least common denominator for all fractions is
3x. Change both fractions in the numerator to this common
denominator.

Note: Multiplying all terms in the numerator and denominator
by 3x gives you the same result that appears in Step 3 (see
following page.)

ooooooooooooooooooooooooooooooooooo

1.1
i X713
M3

1/3) 1
I EA 6
=lim =73

3 X
3x T3x

:}1}2 x+3

3 +x
3x

=lim

x—--3 X +3




Dealing with Indeterminate

Forms (continued)

© Invert and multiply, simplify the fraction, and then use direct —i 3+x 1
substitution, —3 for x. M Y 3
RTINS O
}1}2 3x
N
3(-3)
__1
9
LIMIT INVOLVING RATIONAL EXPRESSIONS: EXAMPLE 2
1 2
Determine lim XTM
X +x
@ Try direct substitution, < for x. 1, 2
X +1
Iim X
X — 00 3
X +x
1 2
_otoH
3
TIP | o
_0+0
1 1 1 0
> approaches 0, as do ~+1 and -

+o0’ 0
0
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@ Having encountered an indeterminate form, return 1 n 2
to the original limit statement, writing all fractions lim X x+1
in terms of the least common denominator of all e
of the terms: x(x + 1). 1 2
X Ty
Note: The goal is to eventually get rid of all of the :!}f{} -3
denominators in both the top and bottom of the m
original fraction.
1 x+I + 2 x
=11mx X+1 3X+1 X
ﬂ x(x+1)
x+1 n 2x
_ox(x+1D) x(x+1)
=lim 3
x(x+1)
3x+1
lim > (x3+ 1)
X (x+1)
(3 i%igs:ﬁi multiply, then simplify the resulting e x (e+T)
. - X — o0 M 3
o 3x+1
=lim =55
_3() +1
o 3
=00

Therefore, limit does not exist.




Dealing with Indeterminate

Forms (continued)

Rationalize the Numerator (or Denominator) /

In this technique, use the conjugate of a radical expression to calculate the limit.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

RATIONALIZE THE NUMERATOR

. Jx-3
Calculate 1,}{191 =0 -

@ Try direct substitution, 9 for x; an indeterminate form results. _ ‘/; -3
1351 x=9
J/9-3
—9-9
_0
0
@ Multiply the numerator and denominator by ,/x +3, the . Jx=3 Jx+3
. o . . lim .
conjugate of ,/x — 3, simplify the resulting expression, and then o x—=9 ‘/; +3
use direct substitution.
i

:l.
TIP | im ="

(/m — number)(m + number) = /51

just equals 1st term + (number)z.
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RATIONALIZE THE DENOMINATOR

. -2
Calculate lim ——=
=2 x+3- /g
@ Direct substitution, 2 for x, leads to an indeterminate form. ‘m x—2
=2 Jx+3 -5
___2-2
J2+3-/5
-0
0
@ Multiply the numerator and denominator of the y x =2 /x +3 + ﬁ
original expression by ./ +3 +/§, the conjugate ) Jx+3 —ﬁ Jx+3 +ﬁ
of /x+3 —,/5. Then simplify the result. (x _2)( /% +3 +/§)
im0 3 =3
i M(,/x +3 +/§)
=lim
xo2 M
Use direct substitution in the resulting expression. —1;
(3] ubstitu g exp lim(/x +3 +/5)
=/2+3+/5
=/5+/5

=25




Limits at Infinity:

Horizontal Asymptotes

This section discusses the behavior of the graph of a function as x approaches * «, in other words,
limits at infinity.

Definition of a Horizontal Asymptote

The line y = L is a horizontal asymptote S

y=fx)
of the graph of y = f(x) if either /

lim f(x) =L or lim f (x) =L. Infrequently, /

lim f (x) and lim f (x) are not the same e »y=L
X — 00 X — 00 X
number; in which case there can be two

different horizontal asymptotes (see the fourth f) y =)

example at the right.)

In the first figure, lim = L. J:é kﬂ} ay=L

X——0o0

In the second figure, 1i1+n =L.

X—Too

In the third figure, lim = L.

X——00

In the fourth figure, lim = M, but lim = L.

X—=— Xx—+oo
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A FUNCTION WITH THE X-AXIS AS ITS HORIZONTAL ASYMPTOTE

Find the horizontal asymptote for the graph of f (x) = xi T

@ Set up the limit statement as x approaches « and then evaluate the limit. lim
x—00 X — 1
__3
T oo—1
=0

3
x=1
its horizontal asymptote at y = 0. Note that the

@ At the right is the graph of f(x)= with fi

=
~

graph also has a vertical asymptote at x = 1, the y =f(x)
point at which the function is undefined, i.e., its

denominator equals 0.

Note: Substituting —© for x would have given you
the same result of y = 0.

IR e Rl
~<
I
(e}

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

HORIZONTAL ASYMPTOTE OF A RATIONAL FUNCTION

S5x°=3x+2

Find the horizontal asymptote for the graph of f (x) = T Ty — 40

© Set up the limit statement as x approaches .

. 5x*=3x+2
i v =42



Limits at Infinity: Horizontal

Asymptotes (continued)

@ If you were to use direct substitution, i 5x°—=3x+2
an indeterminate form would result. T+ Tx —42
Instead, divide all terms by x°, then 5¢2 3x . 2
simplify. N T2

x~m7_x2+7x _42
x> x X

53 +5

=lim———
74l —%

© Now substitute  for x and simplify s_3 .2
the result. _- ®

_7+7 42

[S.
_5-0+4+0
~ 7+0-0

=%; therefore y :% is the horizontal asymptote.

Note: Substituting —© for x would have given

you the same result of y = =.
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O At the right is the graph of fi

=
~

2
f(x)= X =30+ 2 ith its horizontal

Tx*+Tx—42

asymptote at y :%, along with its two

A
1
1
1
1
1
1
1
1
1
1

vertical asymptotes at x = -3 and x = 2.

[ e T T T B e i
|| [ Ry U N U R UG U U g g R U R S

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

HORIZONTAL ASYMPTOTE OF A RATIONAL FUNCTION USING MULTIPLE LIMIT TECHNIQUES
. . _2x’—x—6
Find the horizontal asymptote for the graph of f (x) = Panp Wy

© Set up the limit statement as x approaches . lim 2x°—x—6

e X+ 2x— 8

@ If you used direct substitution, you would encounter an lim 2x’—x —6
indeterminate form. Next factor the numerator and s X7 +2x —8
denominator and then reduce the resulting expression. ; (2x +3)(x~7)

=lim
= (x +4)(x~7)
—lim 2x +3




Limits at Infinity: Horizontal

Asymptotes (continued)

© If you were to directly substitute at this point, an indeterminate form 2x
again would result. Instead, divide all terms by x, and then simplify. =]im -

@ Now use direct substitution, o for x. 24 3
— O
Note: Substituting — for x would have given us the same result of y = 2. a + %
_240
140
=2
_2xX°'—x—6. Jix)
@ The graph of f(x) = P L shown ?
at the right with its horizontal asymptote at .
vy =fx)
y=2. :
Note the “hole” in the graph at x = 2. In Step P gl ;-------.----------.yfz
2 (see preceding page), the factor x — 2 was | /?_—’ X
cancelled, so x # 2. E 2
y

x=-4
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FUNCTION WHOSE GRAPH HAS 2 HORIZONTAL ASYMPTOTES

Find the horizontal asymptote(s) for the graph of f (x)=

© Set up the limit statement as x approaches .

3x+2

JxX+3-1

@ Direct substitution would result in an indeterminate form. Divide

all terms by x and then simplify where possible.

© Last, substitute o for and simplify.

=3

So, y = 3 is a horizontal
asymptote.




Limits at Infinity: Horizontal

Asymptotes (continued)

JxX'+3-1

O Let’s take another look at the original function. f(x)= 3x+2

__positive number

= — so the
positive number

a) x—+w f(x)

horizontal asymptote is y = 3.

negative number

— so the
positive number

b) butasx — —» f(x)=

horizontal asymptote is y = -3.

@ At the right is the graph of f(x)= % with its fx) =
two horizontal asymptotes, y = 3, and y = -3. T~




Introduction to
the Derivative

major topic in the study of calculus is

differentiation, the process of finding a
derivative. After introducing some common uses
of a derivative, this chapter shows how the formal
definition is used to compute derivatives. The
chapter then covers some alternate notations for the
derivative, and discusses a variety of applications
using the derivative. Finally, this chapter concludes
with the relationship between differentiability and
continuity.



What Can Be Done

With a Derivative?

This section introduces some common uses for a derivative.

FIND SLOPE OF A TANGENT LINE Sfx)

You can use a derivative to find the slope of a
line tangent to the graph of a function at a given
point P.

y =fx)

MAXIMUM AND MINIMUM ON GRAPH OF A
FUNCTION

You can also use a derivative to find points on the
graph of a function where the relative maximum

and relative minimum occur. inc/

Intervals on the graph that are increasing or 7 Rel. Min. X

decreasing can also be found.
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ANALYZE RATES OF CHANGE vV

sphere ™

% nr’
You can use a derivative to analyze rates of change. Given the
dv. _ 4mr? dr

formula for the volume of a sphere, you can use the derivative to dt dt
dv

relate the rate of change of the volume, o

, to the rate of change of

its radius, i

ANALYZE MOTION ON A OBJECT st)=-52+Tt-15

Given a function, s(7), that describes the position of an object, v(t)=32 - 10t +7
you can use derivatives to find both the velocity function, v(7), a(t) = 6t — 10
and the acceleration function, a(7).

OPTIMIZE WORD PROBLEMS 10

Let’s say that equal squares are cut from each

corner of a rectangular sheet of metal which is

10 inches by 6 inches. After removing the 6— Zx{
squares at each corner, the “flaps” are folded up

to create a box with no top.

=
=

%}w N
=
=
N Y

You can use a derivative to find the size of each 10 — 2x
square to be removed so that the resulting box

has the maximum volume. /
6—-2x

x|

10 - 2x

Volume Box = x (10 — 2x)(6 — 2x)




Derivative as the Slope

of a Tangent Line

Find the slope of the line tangent to the graph of
f(x) = x* — 3x at the point with x-coordinate 2.

© Select a point P that is Ax units to the right of
point 7.

@ The coordinates of point 7" are (2, f (2))
The coordinates of point P are ( 2 + Ax, f(2 + Ax) )

© Find the slope of the secant line TP.

O As Ax — 0, the slope of the secant line TP gets
closer and closer to the line tangent at x = 2.

Sfx)
fix)=x*-3x

P/ *

R2 +40) - f2)
T

—

Ax

--N__

slope of TP =%

_f2+4)—f(2)
(2+4x) =2

The slope of the tangent line at
f(2+4x) =f(2)

point I'=}m = 5 ) —2
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© Find (2 + 49 and f2) vsing f1x) = = 3 |(2+40)" =32 +4x)| -[22-3 2]
then simplify. =1
e stmply Jim, >4 —2
_ A+44 Ax +(Ax) —6 —34x —4 +6
=lim
A0 Ax
+
—ljm (A
A0 Ax
0 Factor out Ax, cancel like factors, then substitute O for Ax. . A x (1 +4x)
=lim ———=
Ax -0

=E£r})(1 +Ax)

=140
@ The last expression, 1, above on the right, is the slope of Therefore, the slope of line
the line tangent to the graph of f(x) = x> — 3x at the point tangent at x = 2 is 1.

where x = 2.

The limit process used above to find the slope of the line

L F2+A) 1 (2)

tangent at x = 2 is called the derivative of f(x) at x = 2, f(2) :}blho Nx
denoted as f'(2) (read “f prime of 27).




Derivative

by Definition

As you can see from the previous example, when you replace the Ax with an & and the 2 with an
arbitrary number ¢, you end with a formal definition of the derivative of f(x) at x = c.

FIRST FORM OF THE DEFINITION
This is the first of the two most common definition forms.

The derivative of a function f at a number c, denoted by ,o .. fle+h)—=f(c)
f(c), is given by the statement to the right. f(e) _l,}frol 7

As h — 0, point P gets closer and closer to point 7. fx) (c+h, flc+h))

Note: The process of finding a derivative is called
differentiation.

y =fx)
fc+h)—flo)

it A
e : :
_f(c +hh) —f(c) : :
A0 oy
slope of line tangent at point 7' = lim fe +hh) —f(c) —f'(c) é . N P
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USING THE FIRST FORM OF THE DEFINITION
Using the definition above, find the derivative of f{x) = x> — 5x + 3 at x = 2; that is, find /(2).

@ Set up the limit statement from the definition.

, . f(2+h)—f(2
ARSI

h—

@ Find /(2+h) and /(2) by using 2 .
flx) =x*—5x+3. =lim[(2 +h) =5(2 +h);3] [2°-5-2+3]

©® Expand the numerator and simplify the 44+4h+h>—10—5h+3 —4+10-3

resulting expression. =1h1£rol h
?2) = i —h R’
Therefore, '(2) = -1 _1]11?01T

Note: —1 is actually the slope of the line

tangent to the graph of f(x) = x> — 5x + 3 at T h0

the point with x-coordinate 2. =lim (—1 +h)
h—0




Derivative by

Definition (continued)

SECOND FORM OF THE DEFINITION fx) (x, f(x))
The derivative of a function f at a number c, denoted by 1
f'(c) is given by: y =f(x)
£ () =tim LX) L) @7 =0
..... [
T
As x — ¢, the point P gets closer and closer to point 7. AR
rq | .
slope of TP = _f(x) _f( ) / E E
i - X
Slope of line tangent at point 7 é )IC

() f(C)_f()

USING THE SECOND FORM OF THE DEFINITION
Using the definition above, find the derivative of f(x) = x> — 5x + 3 at x = 2, that is, find /"(2).

© Set up the limit statement from the second form of the

i L= (2)
x—2

derivative definition. f(2)= Pty
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@ Find f(x) and f(2) using f{x) = x> — 5x + 3, and then
simplify.

_lim[x2—5x+3]—[22—5-2 +3]

x—2 X -2
2
x—2 X 2
2
x—2 X -2
©® Direct substitution leads to the indeterminate form 0/0. Instead, ( x//2>( x=3)
factor the numerator, cancel the common factor, and then use =lim
direct substitution. iz x~2
Therefore, '(2) = -1 zlxlflzl (x=3)
=2-3
Note: This is the same result as finding f'(2) using the first form of
the definition of the derivative. =-1
DERIVATIVE OF A SPECIFIC POLYNOMIAL FUNCTION
For flx) = 3x* — 12x + 9, find f'(x), the derivative at any point.
@ Set up the limit process. , . f(x+h)—f(x
-y L
@ Find f(x + 1) and f(x) using f(x) = [3(x +h) —12(x +h) +9] —[3x*—12x +9]
3x? - 12x + 9, expand the lim ?
numerator, and then simplify. =0
—1i 3x>+6xh +3h° —12x —12h +9 —3x° +12x —9
—i h
2
h—0

_




Derivative by

Definition (continued)

©® Factor out 4 in the numerator, cancel like factors, and then . J(6x+3h—12)
finish up with direct substitution. =lim
=lhiIr01(6x +3h —12)
=6x+3-0—12
Therefore f'(x) = 6x — 12 =6x —12

DERIVATIVE OF A RADICAL FUNCTION
Find f'(x) for f(x)=yx+3

@ Begin with the limit statement from the derivative vy e f(x+h)—f(x)
definition. f1(x) =lim 7
@ Using f(x)=y/x+3, find flx + /) and f(x). i X th 3 —/x +3
T =0 h
©® Direct substitution leads to an —lim /x +h+3 —/x +3 ) /x +h+3 +/x +3
indeterminate form. In this case, h=0 h / x+h+3 +/ x+3

multiply the numerator and

denominator by ./x +/ +3 4+,/x +3.
the conjugate of the numerator.
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O Expand the numerator and simplify it, but leave the i (x +h+3) —(x +3)
denominator as is. _hI%h(/x +h43 +/x+3)
—lim x+h+3—x—-3
W] h=0 h(/x+h +3+/x +3)
| i
The product, =lim
h=0 +h+3+/x+
(/lst term — /2nd term)(/lst term + ,/2nd term), }i(/x h3+/x 3>
is just 1st term — 2nd term. =lim 1
=0 /x +h+3 +/x 43
@ Last, use direct substitution, O for /. _ 1
Jx+0+34+/x+3
_ 1
Jx+3+/x+3
_ 1
2/x+3

1

Therefore, f'(x) =
erefore, [’ (x) Wers

LTIP |

Definition:

If the derivative of a function (or the derivative
at a number) can be found, the function is said
to be differentiable.




Derivative by

Definition (continued)

DERIVATIVE OF A GEOMETRIC FORMULA
The volume of a sphere with radius r, is given by: V = %mﬁ

Find V' (7).
Set up the limit : Th) —
O Se up the limit process V'(r) =1hi£I(}V(r h])l V(r)
© Find V(r + /1) and V(1) using V=3 r° dr(rn) =4
=lim 7
h—0
3
© Factor out the %n‘, expand the numerator, and _4 . lim (r+h) —r ’
then simplify. 37 -0 . h , L
_4 lim L3 h+3rh”+h’—r
—3 T h
2 2 3
=%n- lim 3r'h +%rh +h
h—0
O Factor out / in the numerator, simplify and then use 4 K (3 rr+3rh + h2)
direct substitution, O for A. =3 T lhl_I}(} ]'i
_4_
=37 lim(3r* +3rh +1")
4 2
=57 (37 43r-0+(0))
_4_ Lo
=3 T 3r
=4nr’

Therefore, V'(r) = 4mr?




Find the Equation of a

chapter3

Line Tangent to a Curve

Let’s say you want to find an equation of the line tangent to the graph of f(x) = x* — 6x* + 9x — 13 at

the point with x-coordinate 2.

To find the equation of a line, two things are needed: a slope and a point on the line.

@ To find the slope of the tangent line, use /'(x), found in the
“Derivative of a Cubic Polynomial” example earlier in this
chapter

@ Substitute 2 for x, in /'(x), the derivative.

© Next find the y-coordinate of the point with x-coordinate 2.
Substitute 2 for x in the original function f(x).

The point is (2, —11)

@ Last, find the equation of the line having slope —3 and containing
point (2, —11).

Therefore, y = —3x — 5 is the equation of the line tangent to the
graph of f(x) = x> — 6x? + 9x — 13 at the point with x-coordinate 2.

fx)=x>-6x>+9x—-13
f'(x)=3x2-12x+9

f(2)=3-(22-12-2+9
f(2)=12-24+9
f@=-3
-3 is the slope of the line
tangent at x = 2

fix)=x—6x*+9x - 13

f2)=8-24+18-13
f2)=-11

y=y, =mx-x)

y— (1) =-3(x-2)
y+11=-3x+6
y=-3x-15




Horizontal

Tangents

For many problems in calculus, you need to locate the horizontal tangent to a curve. An example
of such a problem is finding the maximum and minimum values or a function. The slope (that is,
derivative) at the point of tangency will be zero.

Find the coordinates of each point on the graph of f(x) = x* — 6x? + 9x — 13 at which the tangent line is
horizontal.

@ The slope of the tangent line is given by f'(x). fx)=x'—6x>+9x - 13
f(x)=3x>-12x+9

@ The slope of the horizontal tangent is 0. Set f'(x) = 0 0=3x"-12x+9
and solve for x. 0=3(x*—4x+3)
0=3x-1(x-3)
sox=1lorx=3

These are the x-coordinates of
the points at which the tangent
line is horizontal.

© Find the y-coordinates for the points with fx)=x—6x*+9x - 13
x-coordinates 1 and 3. fi)y=13-6.1249.1-13
A =-9
f3)=33-6.32+9.3-13
f3)=-13

The points on the graph of
fl)y=x-—6x*+9x - 13

at which the tangent lines are
horizontal are (1, -9) and (3, —13)
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O At the right is the graph of f{x) = x* — 6x* + 9x — 13
with horizontal red lines at (1, -9) and (3, —13).

Note: In Chapter 8 you will study the larger topic of
relative extrema— the maximum and minimum

values of a function. In this example, —9 is a relative
maximum for f(x), while —13 is a relative minimum.

Jx)

fix)=x—6x*+9x - 13

I e e e T TN SR

~
—
M

-9)

e B0

(3,-13)




There are many ways to indicate finding the derivative of the given function y = f(x). Listed below
in the left column are some directions you may encounter when doing a calculus problem. In the
right column is the notation you would use as you write out your solution (as well a ‘“pronunciation

guide”).

¢ Find the derivative of f(x).
¢ Find the derivative of f(x).
¢ For y = f(x), find the derivative of y.

o For y = f(x) (that is, y is a function of x), find the
derivative of y.

Earlier in this section, for the function f(x) = 3x*> — 12x + 9, it was
determined that f'(x) = 6x — 12. You can write this fact in many
ways.

f'x)
d/dx f (x)

’

y

dyldx

read “f prime of x”
read “dee dee x of f(x)
read “y prime”

read “dee y dee x”

or “the derivative of y
with respect to x”’

For fix) =3x* - 12x+ 9
) =6x—12
or

%f(x) =6x —12

Fory=3x*>-12x+9

y=6x-12
or
Gl =6x —12

dx —
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Some notations for the derivatives mentioned below are given in the right column.

e Second Derivative 2y d?
>l f (0]

® Third Derivative P
V(0 2 L ()

e nth Derivative dy g

VL), G A £ ()]

forn=4




The derivative notation @ (or in other problems dx dy dv @) can also be interpreted as a rate

dx dz’> dt’ dr’ dy
of change. A few examples of derivative as a rate of change are air being pumped into a balloon,

and the velocity and acceleration of a moving object.

BALLOON PROBLEM

Air is being pumped into a spherical balloon at the rate of 87 cubic inches per minute. Find the rate of
change of the radius at the instant the radius is 2 inches.

@ The information you are given is that » = 2 and ‘fi_‘t/ =8m.

@ Start with the formula for the volume of a sphere with radius r. 45
\% (I’ ) =3 r
©® You determined V'(r) in a previous example in this chapter, labeled as V'(r) = 4nr?
“Derivative of a Geometric Formula.”
@ Use an alternate notation for V'(r). av _ A

dr
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@ Multiply both sides of the equation by the term dr. dV = 4nridr

0 Divide both sides of the equation by the term dr (dt on the left and dr

dV _yp.2dr
on the right. dr =g
@ Using the given information, substitute 87 for cil_‘t/ and 2 for r, and 87 =41 22 dr
then solve the resulting equation for dr di
dt _ dr
8n=16m- dr
When the radius is 2 inches, the radius is changing at the rate of% 8n _dr
inches per minute. lom — di
1 _dr




Differentiability

and Continuity

This chapter concludes with some comments on the relationship between differentiability and

continuity.

When a Function Fails to Be Differentiable

The graph of a function can reveal points at which the function fails to be differentiable. This can occur
at points at which the graph has a sharp turn, a vertical tangent, a “jump,” or a “hole.”

A GRAPH WITH A SHARP TURN

To the right is the graph of f (x) =|1 —x

, and a comment

about its differentiability at x = +1.

A GRAPH WITH A VERTICAL TANGENT LINE

1
To the right is the graph of f (x) =x’, and a comment about its
differentiability at x = 0.

Jx)
f) =1 -

-1 1

f(x) is not differentiable at
x=-1and x = 1, since the
slopes left and right of
each of these numbers are
not equal.

f(x) is not differentiable
at x = 0, because f has a
vertical tangent at x = 0.
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A GRAPH WITH A “JUMP”

2if x>2

To the right is the graph of f (x){ lifx<2 and a comment

about its differentiability at x = 2.

A GRAPH WITH A “HOLE"

2 — —
To the right is the graph of f (x) =% and a comment

about its differentiability at x = 3.

Note: The function at the right is not defined for x = 3, because it
would result in a zero denominator.

S o o 2ifx>2
f(x)_{lifxsz
24 o0—
L
2

1

f(x) is not differentiable at
x = 2 because it is not
continuous at x = 2 (there
is a “jump” in the graph
atx = 2).

f(x) is not
differentiable at x = 3
because there is a
“hole” in the graph.




Differentiability and

Continuity (continued)

If the function fis differentiable at x = ¢ (that is in other words, f"(c) exists there), then fis continuous at
x=c.

Below are some graphs that we can analyze differentiability and continuity at a given point.

Jfx)
/ \ /ky = flx)
/ c \ t X
c
y=fx)
f(x) is differentiable at Jf(x) is not differentiable at
x=c and flx) is X = ¢, but f{x) is continuous
continuous at x = c. atx =c.
Sx) fx)
y=fx)
\ y = flx)
\ /
CI' * / [& \ X
f(x) is not differentiable f(x) is not differentiable at
at x = ¢, but f{x) is X = ¢, and f(x) is not
continuous at x = c. continuous at x = c.




chapter

Derivatives
by Rule

n Chapter 3 you used the limit definition to find

derivatives. In this chapter you will start to make
use of many rules of differentiation, which enable
you to find derivatives without using the time-
consuming limit definition for derivatives.

Chapter 3 also introduces L Hopital’s Rule —

another technique to help you find limits that are
one of the indeterminate forms.
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Derivatives of Constant, Power,

and Constant Multiple

This section introduces the Constant, Power, and Constant Multiple rules for finding derivatives
and then includes an application of finding the equation of a line tangent to a curve.

THE CONSTANT RULE d

——(c) =0
If ¢ is a constant, then %(c) =0. d ( dx/_)
—=(5n/3)=0
d.
THE POWER RULE i(x5) — 5,8
If n is any rational number, then dx B
i(x") =n-x"".
dx Ify =/x, then
_d
Y=gl /)
—d(a\=1l,~>__1_
N (xz) 2 X 2.J/x

If £(x) =%, then

=)=y =-se=3




THE CONSTANT MULTIPLE RULE

If ¢ is a real number, and f(x) is a differentiable
. d d
function, then E[C -f(x)] =c- [a(f(x))]

Just move the constant in front of the variable
function. Next, multiply the constant by

the function’s derivative.

Derivatives by Rule chapter4

4 (s5r)=5-L(x)=5.30=15¢

If y=4/x, then
d
a4/ =4 ()




Derivatives of Sum, Difference,

Polynomial, and Product

This section introduces the rules for finding the derivatives of sums and differences of functions,
the derivative of a polynomial function, and the derivative of the product of two functions.

\ The Sum/Difference Rule

If fand g are both differentiable functions, then: %[f(x) " g(x)] =%f(x) + %g(x)

Note: A function is differentiable if its derivative
can be found.

This can also be written as:

LI f(x)*g(x)]=f (x) 5 (x)

Or, using a popular shorthand notation, this could be written as:

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

FIND THE DERIVATIVE OF A POLYNOMIAL FUNCTION

Using repeated applications of the first 4 Iffx)=ax"+a,_ x"'+.+ax’ +ax+a,
differentiation rules—Constant, Constant th e'I’I f (x)n=_n a4 (1)
Multiple, Sum/Difference, and Power—you o,

can now find the derivative of any a, X' et 2 ax +a,
polynomial function.

If f(x) = 5x3 — 6x% + 9x — 13,
Then
f(x)=5-3x>-6-2x+9
=15x2-12x+9




[ The Product Rule |

Derivatives by Rule chapter4

If fand g are both differentiable
functions, then:

This can also be written as:

der. of Ist der. of 2nd
f_/% lgt

%[f(x)-g(X)] = %f(x)-g?xj +[%g(x)]-7(?)

L7 8(0] =7 (x)8(1) +¢' ()£ (0

Using shorthand d (e N g .
notation, it can also be dx(f 8 ) =frgts-f
R If 7 (x) =(3x"—5x)(4x +7),
der. of 1Ist o der. of 2nd Lst
’ . i 2 _ T i 2 _
then /' (x) = dx(3x 5x)|- (4x +7) + dx(4x +7)|-(3x* —5x)
=(6x —5)(4x +7) +4(3x* =5x)
=24x" +42x —20x —35 +12x* —20x
h (x)=36x"+2x —35
If you had first found the product of the two functions, h(x) = (3x> = 5x)(4x + 7)

you would have:

h(x) = 12x3 + x* =35z,
then find the derivative
h'(x) =36x*+2x-35



Derivatives of Sum, Difference,

Polynomial, and Product (continued)

ANOTHER PRODUCT RULE EXAMPLE
Find the derivative of /2 (x) =¢/x(3x” —6x).

© Start with the original function, rewriting ,/x as a power. h(x)= Jx (3 x2— 6x)

= x%(?)xz— 6x)

@ Find h'(x) using the Product Rule. h(x) =x%(3x2 —6x)

,—M i IISt . 2nd . der. of 2nd ,—1qu
h'(x) =[%x7 +(3x* —6x) +(6x —6)- (xi)

© Next, expand the terms on the right and simplify.

Il
—

O To finish up, factor % x% out of each term, and simplify to _ %x% (15x— 18)

complete the process.

;

X

W (x) ="5-(15x —18)
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ANOTHER LOOK AT THE PREVIOUS PROBLEM
Find the derivative of (x) = y/x(3x”= 6x), without the Product Rule.

@ Start with original function, rewriting Jxasa power;
then distribute.

@ Now find /'(x) by finding the derivative of each term;
then simplify.

1
©® As in the previous problem, factor % x? out of each

term, and simplify to complete the process.

h(x)= /}(3)62— 6x)
=x%(3x2— 6x)
h(x)= Sx%— 6x%




The General

Power Rule

The General Power Rule gives you a means to find the derivative of the power of any function. It is
a special case of the Chain Rule, which will be introduced in Chapter 5.

\ General Power Rule

If fis a differentiable function and # is a rational n+ (inside funcﬁon)"" der.of imide
1
number, then: unction

A= n[rm] " Lr

This can also be written as: o o
ne <1n51de funcuon) der. of inside

function

A= @]

Using shorthand notation, you can also write:

j_x[fn] =l

n n—1
A L
-~

4 (20-3)"=10-(2x-3)" -2

=20(2x —3)’
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It is usually helpful to write a radical expression as a If f(x)=%4x+5, then
power before attempting to compute its derivative. J
f(x) =gV 4x +5

X

1
=%(4x +5)?

( inside )
n der. of
~ r—’ﬁ inside

_14 -2 /=
—g(x+5) - 4

_ 4
= 2
3(4x +5)°
, 4
fx)=——"—=
33/4x +5
After writing the radical expression in the d ? —d__ S :
denominator as a power, move it up to the dx Jx*+3 dx ( 2 +3)7
numerator to avoid having to use the General :
P Rule. _d \2
ower Rule =£ 5 (x2+3)
_<.d N
—5.4](113) ]

(inside) )
der. of
—— e
3 inside

(x*+ 3)75- (2x)

2
1
2




The Quotient

Like the Product Rule, the Quotient Rule involves putting pieces in the right places in the right
formula and then simplifying the resulting expression. As in the Product Rule, your Algebra skills
will be put to the test.

\ Statement of the Quotient Rule

If fand g are differentiable der. of top der. of bottom

bottom top

functions, and g(x) # 0, then: i(f()g)) ) %f(x) -;(;)— %g(x) ;(;)
dr| g(x) |2
(bonam)Z
This can also be written as: i(f(x)) f(x)-g(x) =g (x)-f(x)
ale) ™ oo
Or in shorthand notation, it can dif\ _fre—¢g-f
be written as: E(?) =7(g 2
If 7 (x) =2, then
, [%m —2)] (5% +4) —[j—x(sx +4)] .(3x—2)
h (x) - 2
(5x +4)
_3-(5x+4)-5-(3x-2)
(5x +4)2
_15x+12—15x +10
(5x +4)L
W (x)=—22

C(sxra)
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DERIVATIVE OF QUOTIENT OF RADICAL FUNCTIONS

Find f'(x) for f(x) = Vet

© Rewrite each radical expression as a power. (2x — 5)%
f(x)= T
(3x +1)°
@ Find f'(x) using the d(f\_f-g-&f
Quotient Rule. dx\ &) ( g)2
d i | d 3
4 (ox—5)2 |3 +1) [ (3x +1)*|[(2x —5)
fx) = =
(3x +1)§]
1 1 2 1
Note: You found each 1(2x —=5) *-2-(3x +1)° ——(3x +1) *-3-(2x =5)?

2

derivative on the top by
using the General Power

1 _2 1
Rule. _(2x-5) 2(Bx +1)° ~(3x+1) (25 -5)"

(3x +1)3

(3x —I—1)3




The Quotient

Rule (continued)

©® Next take out the common factor and then
simplify the resulting expression.

O Last, rewrite the denominator in
radical form.

(2 —5)_%(3x + 1)‘%[(3x +1) =(2x =5)]
GBx+1)°

_(2x=5) *(3x +1) (x+6)
(3x +1)%
_ x1+6
(26 —5)2(3x +1)

4
3

f(x) ===

J2x =53/ (3x +1)°

x+6

S = S Gr + 1) 1




Rolle’s Theorem and the

Mean Value Theorem Derivatives by Rule chapter4

This section covers two important theorems that relate continuity and differentiability:
Rolle’s Theorem and the Mean Value Theorem.

[ Rolie’s Theorem|

Let f'be a function satisfying the following 3 conditions:

© /is continuous on the closed interval [a,b]

@ fis differentiable on the open interval (a,b)
O fla) = fb)

Then, there exists at least one number c in (a,b) for which f'(c) = 0.

Jx) fx)

Q m————

: i '
78R

Jx) Jx)
siies IR O 1
L L st

« J

.
¢ is any number in (a, b)




Rolle’s Theorem and the Mean

Value Theorem (continued)

For the function f(x) = x> — 8x + 19, find the value of ¢ in the open interval (2, 6) that is mentioned in
Rolle’s Theorem.

© To make use of Rolle’s Theorem, Condition #1: Since f(x) = x> - 8x+ 19is a
you must first show that f{x) polynomial, it is everywhere continuous —
satisfies all 3 conditions mentioned so it is continuous on [2, 6].

in the theorem: L . .
Condition #2: Since fix) =x*>-8x+ 19is a

polynomial, it is everywhere differentiable —
so it is differentiable on (2, 6).

Condition #3: After finding the values for f{2)
and f(6), you can see that f(2) =7 = f(0).

@ Since f(x) = x*> — 8x + 19 satisfies the 3 conditions listed in the flx)=x*>-8x+ 19
theorem, you can apply the conclusion: fl(x)=2x-8

There is at least one number c in (2, 6) for which f'(c) = 0.

Find f'(x).
© Substitute ¢ for x, set f'(c) = 0, and finish by f'(c)=2c-38
solving for c. 0=2c¢_28
4=c
4 is in the open interval (2, 6) and
f'4)=0.
O At the right is the graph of f(x) = x> — 8x + 19, showing the flx)
horizontal tangent at x = 4 (where f'(x) = 0 ) in the interval (2, 6). f(x) = x> — 8x + 19

N—====|= === =
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[ The Mean Value Theorem |

Let f be a function which satisfies the following two conditions:

@ fis continuous on the closed interval [a,b]

@ fis differentiable on the open interval (a,b)

Jx)
Then there exists at least one number ¢ in (a,b) for which
, b)—
L)
(b, fib))
\(@ fi@) :
L )L
e < 5

Note that the term f”(c) is just the slope of the tangent to the graph of f(x) at the point with coordinates
(c, flo)).

The other term on the right is the slope of the secant line containing the points (a, f(a) ) and

(b, fib) ).

For some number c in (a,b), the tangent line and the secant line have equal slope.

f(b)=f(a)
b—a

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

For f(x) = x* — x> — 2x, find the value of c in the interval (-1,1), which is mentioned in the Mean Value
Theorem.

@ To make use of the Mean Value Theorem, you must first show that f(x) satisfies both of the conditions
mentioned in the theorem

Condition #1: Since f(x) = x* — x> — 2x is a polynomial, it is everywhere continuous, so it is
continuous on (—1,1).

Condition #2: Since f(x) = x> — x?> — 2x is a polynomial, it is everywhere differentiable, so it is
differentiable on (-1,1).




Rolle’s Theorem and the Mean

Value Theorem (continued)

@ Next, find f'(x) and then replace the x with the ¢ to fx)=x—x*-2x
get f'(c). f(x)=3x>-2x-2
f(c)=3c*-2c-2

© The interval in the problem is (-1,1) so thata=—1and b = 1
Find the values of f(a) and f(b).

Using f(x) = x> — x> — 2x, you find that: fla) =f=1)
= (-1’ = (=1)* = 2(-1)
=0
and
fb) =f1)
=(1)° = (1> = 2(1)
=-2

O Now put all the pieces together and solve for c. _f(b)—f(a)

f'(c) b—a

-2 -0

1=(-1)
3¢°—2x—2=-1
3x*—2x—1=0

(3¢ +1)(c—1)=0

3¢ —2x -2 =

The ¢ = 1 is not in the open interval (—1,1). Therefore ¢ =%1 ore<=1




Limits: Indeterminate Forms
chapter4

and L'Hopital’s Rule
0

In Chapter 2 you encountered the indeterminate forms 0 and % when trying to calculate limits.
These forms were dealt with by using tedious algebraic methods. I’Hopital’s Rule gives you a

quicker alternative.

[ CHépitar's Rule

If lim S (x) is one of the indeterminate forms 2 and %, then limm =lim f ; (x) .
e g(x) 0 e g(x) e g'(x)
The indeterminate form % may be one of the forms:
o0 —00 o0 —0O0
% OF & O x5 =
TIP

Do not confuse this rule with the Quotient Rule.

Here you are merely finding the derivative of the

top and then the derivative of the bottom function

and then finding the limit of their ratio.
L'HOPITAL'S RULE: EXAMPLE 1

12
Determine lim *, 1.
=1 x =1 0
© Direct substitution leads to the indeterminate form 0 lim x?—1 —lim 12x"
m_q 5 10
Apply L'Hopital’s Rule S L
@ Now use direct substitution, 1 for x. 12-1"
10
In Chapter 2, you would have divided all terms by x'2. } ; I

—
—




Limits: Indeterminate Forms

and L'Hopital’s Rule (continued)

LHOPITAL'S RULE: EXAMPLE 2

1.1
. .. XT3
Determine lim ——=-
x—--3 X +3

© The indeterminate form % results from direct substitution.

First rewrite the term 1

+ as a power in preparation for finding the
derivative of the top and the bottom.

1.1
i X 3
xir?% x+3
x '+ 1
=lim ———
x--3 X +3
@ Apply L’Hopital’s Rule, taking the derivative of the top and the bottom —lim =L X2
_x -=3 1
—im e
© Substitute x = 3. _-1
9
In Chapter 2, you would have found a common denominator.
LHOPITAL'S RULE: EXAMPLE 3
o 2=Jx
Determine 1)(1{1} T —x
@ After encountering the indeterminate form %, rewrite ,/ x as a power. . 2—Jx
IXIR? 4 —x
1
e 2—x?
_1)5151 4 —x




Derivatives by Rule chapter4

@ Apply L’Hopital’s Rule — derivative of top and then derivative of bottom. -1 -+

© Substitute x = 4 and simplify. _ 1
In Chapter 2, you would have multiplied the numerator and denominator 2/4
by the conjugate of the numerator. :%
LHOPITAL'S RULE: EXAMPLE 4
2
Calculate lim x—if—2
x—2 X 2
@ Direct substitution leads to the indeterminate form % L =X =2
im
Use L"Hopital’s Rule. X2
=lim =7
x—2
=lim (2x—1)
@ Put 2 in for x and then simplify. =2-2-1

In Chapter 2, you would have factored and reduced.

[FAQ,

How do I know when to use I’Hopital’s Rule versus
the techniques shown in Chapter 2?

If direct substitution leads to one of the indeterminates and you
can find the derivative of both numerator and denominator, use
L’Hopital’s Rule to find the limit.
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Derivatives of
Trigonometric
Functions

In this chapter, you will greatly expand your
ability to find derivatives—specifically
derivatives of trigonometric and inverse

trigonometric functions. L’Hopital’s Rule returns,
and you are introduced to the Chain Rule (finding

the derivative of a composite function).

\
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I’Hopital’s Rule and Trigonometric
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Trigonometric Functions.......... 110




Derivatives of Sine,

Cosine, and Tangent chapter5

This section covers how to find the derivatives of three of the trigonometric functions: sine, cosine, and

tangent. To the right is a “unit circle,” which gives the cosine and sine of radian measures in the interval
[0,27].

 sine and cosine |

Listed at right are the formulas for finding the i(sinx) — cosx and i(cosx) — inx
derivatives of the sine and cosine functions. dx dx

Following this text are some examples of how

these two derivatives can be used.



Derivatives of Sine, Cosine,

and Tangent (continued)

DERIVATIVE OF A SUM
Find f'(x) for fix) = 3sinx + 2cosx.
© Start with the original function. Jix) = 3sinx + 2cosx
@ Find the derivative using the Constant Multiple vy d oo d
and Sum Rules (see Chapter 4): f(x)=3 d (sinx) +2 dx (cosx)

=3cosx + 2(—sinx)

f(x)=3cosx —2sinx

DERIVATIVE OF A PRODUCT
Find % (cosxsinx).

@ Begin with the original expression. % (cos xsinx)

@ Apply the Product Rule.

=[%cosx sinx+[%sinx CcoSXx

©® Find the derivatives of cosine and sine and then = —SInx - Sinx + COSX + COSX
simplify. = —sin%x + cos’x
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DERIVATIVE OF PRODUCT OF ALGEBRAIC AND TRIGONOMETRIC FUNCTION

Find f'(x) for f(x) = x’sinx.

@ Start with the original function.

@ Apply the Product Rule (see Chapter 4).

© Simplify.

DERIVATIVE OF A QUOTIENT
I _ 1+ cosx
Find f"(x) for f (x)= — ">

@ Beginning with the original function, apply
the Quotient Rule (see Chapter 4).

@ Simplify.

© Group the —sin’x and —cos’x together and then

use the Pythagorean Identity: sin’x + cos’x = 1.

Sflx) = x?sinx

f'(x) = (2x)sinx + (cosx) - x?

= 2xsinx +x2cosx

1+
=t

_ (—sinx)sinx —(cosx)(1 + cosx)

f(x)

(sinx)2

_ —sin’x— cosx— cos’x
sin’x

_ —sin’x —cos’x — cosx
sin”x
c 2 2
—(sin”x + cos’x) — cosx

sin’x

_ —1 —cosx
sin’x




Derivatives of Secant,

Cosecant, and Cotangent

This section covers the derivatives of the other four trigonometric functions: tangent, secant,
cosecant, and cotangent.

Formulas for Derivatives of Secant, Cosecant, and Cotangent l

d
~—tanx = sec’x
dx

isecx = secxtanx
dx

icscx = —cscxcotx
dx

4 cotx = —csc’x
dx

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

DERIVATIVE OF SECANT AT SPECIFIC VALUE
For f (x)= secux, find f'(%).

@ Start with the original function and find its derivative. Sflx) = secx
f'(x) = secx tanx

@ Find f(%) f(%) = sec(%)tan<ﬂ)
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DERIVATIVE OF ANOTHER PRODUCT
Find f'(x) for fix) = secx tanx.

© Find the derivative using the Product Rule. f(x)=secxtanx
f(x)= [% secx] tanx + [% tanx] secx

X =secxtanx+seczxsecx
f(x)

@ Simplify and factor. = secx tan’x + sec’x

— 2 2
Note: Although it is not required that you factor your = secx(tan’x + sec’x)

derivatives, you will find in later chapters that it can be
very helpful.

DERIVATIVE OF A RADICAL TRIGONOMETRIC FUNCTION
Find y' for y = /2 + tanx.

© Rewrite the original function as a power. y =42+ tanx

=

= (2 + tanx)

@ Find y’ using the General Power Rule. y= %(2 n tanx)_%seczx

© Simplify the result. _ _ sec’x :
2(2+ tanx)?

sec’x

) 2/2+ tanx




L'Hopital’s Rule and

Trigonometric Functions

This section covers L’Hopital’s Rule and its use in determining the limits of some of the
trigonometric functions.

EXAMPLE1
Determine lim %

Using direct substitution leads to the indeterminate form %.

© Apply L’Hopital’s Rule <lim ?) lim %
— i OSX
x—0 ].
@ Use direct substitution, 0 for x. _cos(0)
-1
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EXAMPLE 2

.. 11— sinx
Determine lim —553—

X—

2
Using direct substitution results in an indeterminate form.

. 1—sinx
lim —&5¢%

© Apply L’Hopital’s Rule.

. —COSX
lim—=>=
~n —sinx

2

— i SO8X
=z sinx

@ Use direct substitution, % for x.

(@}
o
[72)
S
ol
~——

w
—
=]
—_
(SIP
~——

0
I
0




The Chain

Frequently in your calculus studies, you will need to find the derivative of a composite function
f(g(x)). This section discusses the Chain Rule—the tool to do this.

 The Chain Rule: st Form |

If f and g are both differentiable and H is the composite function defined by H (x)= f (g (x)), then H is
differentiable and H'(x) is given by:

H'(x)=]f(2(x)]- £ (x)

Stated another way, you can write the Chain Rule as:

der. of outer ;valualfed att der. of outer gvaluatfed :‘t der. of inner
‘on inner funct. ; inner funct. mes  functi
funCthn A funCllOn A times funCthn
’ ’
U (gon=r 0 (gx0) - g

In shorthand notation, it can be written as:

If y=f(g), theny'=f"(g)- g

----------------------------------------------------------------------------------------------------------------------------

CHAIN RULE (FIRST FORM): EXAMPLE 1
Find %(sin 3x).

@ Begin with the original expression.
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@ Identify the outer and the inner functions. dr .
y I [sm (3x)]
© Apply the Chain Rule and then simplify. der of e of
——_—— =
=cos (3x) - 3
= 3cos 3x

CHAIN RULE (FIRST FORM): EXAMPLE 2

Find %(cos x*).

@ Beginning with the original expression, identify the outer and

inner functions. E(COSX )
=4 (cosx?)

@ Apply the Chain Rule and simplify. der. of 67 s der. of
= —sin <x3) - 3x?
= —3x’sinx’

CHAIN RULE (FIRST FORM): EXAMPLE 3

- d

Find LV Sinx.

© Once again, identify the outer and inner functions. d /—

oV sinx

=4 /onx

1
%(sinx)2




The Chain Rule

(continued)
@ Apply the Chain Rule and then simplify. der. otf ( ) -
Note: You could also have just used the General Power Rule. 1’f’j times_sinx
=5(sinx) * - cosx

COS X

- 2.,/sinx

CHAIN RULE (FIRST FORM): EXAMPLE 4

Calculate % sin(tanx).

@ Rewrite the original expression, noting the outer and inner functions. d .
25 Sin (tanx)

= %sin(tanx)

@ Apply the Chain Rule and simplify. = cos(tanx) « sec’x
= cos(tanx)sec’x

The Chain Rule: Second Form I

If y = f(u) is a differentiable function of u and if u = g(x) is a differentiable function of x, then the

. . _ . . . dy _dy du
composite function y = f ( g (x)) is a differentiable of x, and = dudr

Stated another way:

The derivative of y with respect to x equals the product of the derivative of y with respect to u and the
derivative of u with respect to x.
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CHAIN RULE (SECOND FORM): EXAMPLE 1

. dy .
Find I for y = sin3x.

@ Start with the original function and write it as a composite of two functions. y = sin3x

@ Let y = the outer function and let « = the inner function.
©® Find dy and d_)z?

du d.

O Apply the Chain Rule: Second Form.

® Substitute 3x for 1.

y = sin(3x)

y = sin(u) u=3x

d d
d_Z:COS(”) d—§=3

d)’_ﬂ.du

dx — du dx
=cos(u)-3

=3cos(u)

= 3cos(3x)

Therefore, dy = 3cos3x-
dx




The Chain Rule

(continued)

CHAIN RULE (SECOND FORM): EXAMPLE 2

. d
— qin3d Y
For y = sin’x, find dc

@ Rewrite the original function as a composite of two functions. y = sin’x
y = (sinx)?
@ Let y = the outer function and let « = the inner function. y=u’ u = sinx
d D du dy du
QFlndEand T %=3u2 g = Cosx
O Apply the Chain Rule: Second Form. dy _dy du
dx ~ du dx
= 3u’- cosx
= 3u’- cosx
@ Substitute sin x for u. = 3(sinx)?cosx
= 3cosxsin’x

Therefore, EZ = 3cosxsin’x -




Trigonometric Derivatives 5
chapter

and the Chain Rule

After the use of the Chain Rule, the trigonometric derivatives, with u as a function of x, can now be
written as follows.

= %(Sinu) = cosu du d%(sinSx) = cos(5x)-5 =5cosx5x
i — o1 i 3: P 3. 3 2: _3 2 . 3
= I (cos u)— sinu du dx COS X sinx’- 3x X sSinx
d 2 d 2 1 _sec’x
:dx(tanu)—sec u du dxtan/;—sec/;.z‘/;_z/;

= %(cse u)=—cscucotu du %csc 3x = —csc3xcot3x -3 = —3csc3xcot3x
- %(secu) = secutanu du %secx2= secx’tanx’- 2x = 2xsecx’tanx’

- %(cotu) = —csclu du %cot(x‘% 7)=—csc(x'+7)-4x’csc(x*+7)




Derivates of the Inverse

Trigonometric Functions

Another set of derivatives you will need are those of the six inverse trigonometric functions.

INVERSE TRIGONOMETRIC FUNCTIONS

Read the last equation of “if sin y = u, then y = arcsinu,” as “arc sine of #” or “inverse sine of u”
(sometimes written as y = sin"'u). For example, since cos (%) = %, you can write % = arccos (%), or
%: cos_l<%>.

INVERSE TRIGONOMETRIC DERIVATIVES
If u is a function of x, then the derivative forms are as follows.

1—x

d .oov_ _du d ooy 2x
7 (arcsinu) = fow 7 (arcsinx?)

u=x2sodu="2x

= d%c(arccos u)= —_fu R j—x(arccos 3x)= —1_—39x2
u=3x,sodu=3
d _ _du d _ 1 _ 1 S _ 1
= - (arctanu) = T+ i (arctan\/;) e > /xl 1) with u = /x then, du —2/;

1+ (/%)
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- _ 2.2
= dix(arc cotu)= szz %(arc cotx3) =1 -E,))Cc(’ with u= x°, du= 3x’
d du d 3 1
= ——(arc sec u)= —— ——(arc sec3x)= = for u= 3x, du= 3
dx( ) |u| u2_ 1 dx( ) |3x|/(3x)2— 1 |x|/9x2_ 1 u
- dix(arc cscu)= —|u|_;;”_ - %(arc cscxz) = ‘x2|;§f_ . = xz‘;x%x_ . Let u = x° so that du = 2x




Derivatives of
Logarithmic and
Exponential Functions

he first theme of this chapter is that of

differentiating logarithmic functions—natural
logarithmic as well as other base logarithmic
functions. L’Hopital’s Rule is visited again, and
then the chapter concludes with the derivative of
exponential functions.



Derivatives of Natural
chapter6

Logarithmic Functions

The natural logarithmic function, written as Inx, has as its base the number e. The number e is
defined many ways, and its approximate value is 2.71828.

At right are two of the more common ways of . ! . 1
— 1 _

defining the number e. €= },1}2(1 + ﬁ) ore = 1}{‘3(1 +x)
In each case, you end up with an expression: fix)
(1+ really small number) ! big power,

y=lInx
Instead of writing log x, you just write Inx. | +--- 7,/’

: x
) e

| Properties of Natural Logarithms

Listed below are some properties of natural logarithms. These can be used to alter the form of a
logarithmic expression or equation.

© If Inx = n, then ¢" = x. This shows the relationship between Iflnx=3,thenx=e’.
natural log equation and an exponential equation. Ifx=e72 thenlnx=-2.
@ In(xy) = In x + In y = the log of a product property. In(2x) = In2 + Inx

In(x?) + In(y?) = In(x2y?)



Derivatives of Natural Logarithmic

Functions (continued)

2

X\ = — 1 =
(3 ln(y> Inx — Iny = the log of a quotient property. ln<§> —1n2 —In3

the log of a quotient property.

o (x
1nx—1n5_1n(5)

O In x" =n - In x = the log of a power property. Inx’=31Inx
Iny/x=1nx"= %lnx

%lnx = Inx*= In}/x’

(5 log, x log,,5
Inx = loiﬁ =the change of base property. In5 = ﬁ
log;12 _ nl12

log,e

Listed below are the formulas used to find the derivative of Inx, or Inu where u is some function of x.
Following these formulas are some examples showing their uses in a variety of applications.

(1) %(lnx) = %

@ If u is a differentiable function of x, then d%c (Inu) =52

d

DERIVATIVE OF A NATURAL LOG OF A POWER
Find f'(x) for f{x) = In(x?).

@ This can be done one of two ways. Let’s use derivative form f(x) = In(x?) where u = x?
number 2 (listed above) first. and then du = 2x

Identify the u function.
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du

@ Apply derivative form number 2 (see p. 114, “Derivative F(x)= % < this is the <%

of the Natural Logarithm Function).

----------------------------------------------------------------------------------------------------------------------------

A second way to approach the same problem is to take advantage of your log properties—specifically
the log of a power property. ) = In(:2)

© Rewrite the original function using the log of a power property. =2-Inx

@ Use the natural log derivative form number 2 from above.

----------------------------------------------------------------------------------------------------------------------------

DERIVATIVE OF A LOG OF A RADICAL
Find <L (In/x+ 1),
4 (1n /x+ 1)

@ Using the log of a power property, rewrite the x
original function. _ di In(x+ 1)1/2
X

%[%-ln(x+ 1)]

Letting u = x+ 1, you have du =

@ Find the derivative using the % form. —




Derivatives of Natural Logarithmic

Functions (continued)

DERIVATIVE OF A QUOTIENT CONTAINING A NATURAL LOG
Find f'(x) for f (x)= 18X,

@ Write the original function.

@ Use the Quotient Rule to find the derivative.

© Simplify the result.

DERIVATIVE OF A POWER OF A NATURAL LOG
Find f'(x) for f{x) = (In x)*.

@ Start with a given function.

@ Use the General Power Rule (or Chain Rule) to differentiate.

fx) =15

x—l Inx

f(x)=

fx) = (In x)*

2

£/(x)=3(Inx) -+
3(lnx)

f(x)=
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DERIVATIVE OF A COMPLICATED NATURAL LOG EXPRESSION

Fl)=1 x(x2+ 1)2

. ' x)= In| ——=

Find f'(x) for ‘/m . 2

x(x*+ 1)

Here’s where the real power of the natural log properties comes into use. You can write In o1 |3

a sum and/or a difference and/or a multiple of natural log expressions. .

@ Begin with the function. )

2
F(x)=In x(x + 1)
J2x—1

@ Use the log of a quotient property. —In [x (xz " l)zl l m

© Use the log of a product property. = Inx + 1n(x2+ 1)2_ In/2x— 1

O Rewrite the last term as a power. =Inx+ In(x* + 1)> = In(2x — 1)

@ Use the log of a power property. — Inx+ 21n(x2+ 1) _ % ln(2x3— 1:

. . . . 2
O Finally, find the derivative of each In expression. F=142 ( xl‘zf 1) B %( . x63x_ 1)

Remember the % for each In derivative.




Derivatives of Natural Logarithmic

Functions (continued)

DERIVATIVE OF A TRIGONOMETRIC FUNCTION EVALUATED AT A NATURAL LOG
Find f'(x) for fix) = cos(In x).

@ Start with the original function. F(x)=cos(Inx) let u = Inx, then du = %

. N | o
@ Find the derivative using —-(cos u) = —sinu - du. f'(x)=—sin(lnx)°%

_ —sin(Inx)
X




Derivatives of Other Base
chapter6

Logarithmic Functions

This section covers derivatives of logarithmic functions with bases other y
than e, the base of the natural logarithmic function. You write these
logarithms as log x and read them as “the logarithm of x in base a” or as

“the logarithm in base a of x.” 1 +--- 70/'

TIP | /l é

I
Log 1 = 0 for all positive bases n
Log,1 =0since 7° =1 Y
Log,1 =0 since 3° =1

\ Properties of Logarithms

If x and y are positive numbers and a > 0, then the log,,1,000 = 3 because 10°= 1,000
following properties of logarithms can be used. 0N |
Notice the similarity of these properties to those of Since (7> =16 then logm(ﬁ) =4

the natural logarithmic properties.

1\ _ 2_1
Property #1: If log x = n, then a" = x. If 10g3<9> =—2, then 3= 9
Property #2: log (xy) = log,,(99) =log,,(9 - 11) =log, 9 + log,,11 =10g9 + logl1
log x +log,y Note: Logarithms in base 10 are called “common logs.”

Instead of writing log, x, you just write logx.
log,3 + log,5 =log,(3 - 5) = log,15




Derivatives of Other Base

Logarithmic Functions (continued)

Property #3: 10ga<§) = log,x —log,y

lo&(%) = log,10 — log,7

log,17 — logg13 = 10g8<%)

Property #4: log x" = n - log x log,x’=5-log, x

log;/x + 1 =1log,(x + 1)1/2= %log3(x +1)

x3y2 3.2
log; 1/2 = logs(x y )_ logst/Z
= log,x’+ logsy’— log,z"”

= 3log;x + 2log,y —%logsz

Property #5: 1og, x = log, x

Tog, a log,,11 logll

log,11 = log,,3 =~ log3

log,15
Tog,13 — 10815

Listed below are the formulas for finding the derivative of just log x, or log u where u is some function
of x. Following these derivative formulas are some examples of how those formulas can be put to use.

0 L(log,x)=1L-1

Ina

@ If u is a differentiable function of x, then %(10&1 u) __1 du



Derivatives of Logarithmic and Exponential Functions chapter6

DERIVATIVE OF A LOG OF A POLYNOMIAL
Find f'(x) for fix) = log,(x* + 3).

@ Start with the original function.

@ Identify the « and du.

©® Find the derivative.

DERIVATIVE OF LOG OF A QUOTIENT
3
Find f'(x) for f (x)= 10&(#).

© Rewrite the original function using the log of a quotient
property.

@ Use the log of a power property on the first term.

fx) =log (x* +3)

Letu = x° + 3 and du = 2x

) _ 1 2x
fix)= 1H5<x2+ 3)
_ 2x

(x2+ 3)ln5

() = tog, (7
=log,x'—log;(2x — 1)

= 3log,x —log,(2x — 1)




Derivatives of Other Base

Logarithmic Functions (continued)

© Find the derivative of each term using ﬁ . %

DERIVATIVE OF A LOG OF A RADICAL FUNCTION
Find f'(x) for f (x)= log, ¥ x’- 3.

© Rewrite the radical as a power.

@ Use the log of a power property.

©® Find the derivative.

1 2
[(x)= 31n3x 3 2x—1

3 2

~xIn3” (2x—1)In3

1 (3__2
T In3\x 2x—1




Logarithms, Limits,
chapter6

and L'Hopital’s Rule

L’Hopital’s Rule returns here. You apply it to limits of natural log and a variety of other functions.
It is restated below for your use:

li M = lim S (x) if the first limit is one of the indeterminate forms ~ O

m g(x) m g (x) 0°

o)
I o

LIMITS AND LOGS: EXAMPLE 1
n(3x)

Determine 11m

@ Direct substitution leads the form %, so apply L’Hopital’s Rule. . In(3x)
}claoo xZ
_ 3/(3x)
- Yoo 2X
@ Simplify and then use direct substitution. i 1
= limz—
x—o0 2X
1




Logarithms, Limits, and

L'Hopital’s Rule (continued)

LIMITS AND LOGS: EXAMPLE 2
sinx

Determine lim T\
ol
0A 8— form results when replacing x with t. L’Hopital’s Rule is lim sinx
applicable. ln <%)

@ Simplify and substitute 1t for x. =limxcosx

X—T

=TCOST
=m--1
=-T




Functions

Derivatives of Exponential
chapter6

This section introduces you to additional techniques
of differentiating functions, such as f(x) = 2 Jx, Sf(x)
= ¢, and f(x) = " *, These are called exponential 2495 12
functions, with the base being a constant and an

1 : : 1
exponent that contains a variable. / L L \
T T
1

There are two rules for differentiating exponential functions—one involves bases other than e, and the
other involves e as the base.

Case I: The base is other than e.

If u is a differentiable function of x, then % (a“) =a"-du-lna.

. . d /o5 -
Using this formula, find 5(35 )- der; of




Derivatives of Exponential

Functions (continued)

Case II: The base is e.
If u is a differentiable function of x, then % (e“) = e“du.

. . d /¢ : 3
Using this formula, find a(e ) %(ex ) — o3y

Provided below are some additional examples that illustrate the use of the derivatives of exponential
functions.

y= 2sinx f(x) = 3 +5x
y' =2%"%.cos x-1In2 fl(x)=e"*>*. (2x+5)-1n3
ﬂx) — 72x+3 y= 3@
f'(x)=7*%*3.2.1n7 _ g
or N
F) =T I = 3o
_ 72x+3
= 72+31n49 y'= 30, %(%) 1n3
_In3-3™
B 2x
glx) = x’e™ y = 2
£ =3 - €2 + [ 2] - x° . (Y. o
= 33202 4 D3y y= (2 -1-1n2)-e2—(e)-2

= x%¢>(3 + 2x) (¢)
_2%'In2 —¢e"2"
(e)
_2'In2-2"
= =
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We return to L’Hopital’s Rule and apply it to limits which involve exponential functions. L"Hopital’s
Rule is restated below for your use:

fO) e S

lim if the first limit is one of the indeterminate forms 2 or 2.
i—e g(x)  xec g (x)’ 0 °f =
MORE LIMITS AND L'HOPITAL'S RULE: EXAMPLE 1
Find hn(} 2 7x
© Substituting 0 for x results in the indeterminate form % Apply T 25— 7"
L’Hopital’s Rule. e X
 jjp 2102 7'In7
x—0
@ Simplify. =1im(2"In2-7"lim7)

2°In2—- 7°In7
In2—- 1n7

1n(%>

© Use direct substitution and simplify again.




Derivatives of Exponential

Functions (continued)

MORE LIMITS AND L'HOPITAL'S RULE: EXAMPLE 2

3x

Determine lim <.
x—oo X
© The original limit results in a o indeterminate form, so apply lim 63:
L’ Hopital’s Rule. o x3x
=lim <5
x—w 3x
@ Simplifying leads to another % form, so apply L’Hopital’s Rule again. — lim e
- 2
x—oo X
et 3
=lm =5
L 3 e3x
1112 2x
© Simplifying leads to another % form, so apply L’Hopital’s Rule one 3 (63X. 3)
=lim——=—~=
more time. w2
L. 9 e3x
=Im=5
= o0

Therefore, no
limit exists.




chapter

Logarithmic and
Implicit Differentiation

his chapter introduces a technique called

logarithmic differentiation—finding the
derivative of a function having both a variable base
and a variable exponent. Chapter 7 also covers
implicit differentiation—finding the derivative of
an equation having 2 or more variables for which it
may be difficult or impossible to express one of the
variables in terms of the other variables.

p
Logarithmic Differentiation ........

Techniques of Implicit
Differentiation ..................

Applications of Implicit
Differentiation ..................




Logarithmic

Differentiation

Up to this point, you have been able to determine a%()f ) and -4 ( 3”) in which the variable is in

dx
either the base or the exponent, but not in both places. A function of the form y = [f(x)]**), such as
Sf(x) =x5"* or y = (cos x)¥, can be differentiated using logarithmic differentiation—taking the

natural log on both sides and then differentiating both sides.

EXAMPLE 1
Find y' for y = (3x)*.
@ Start with the original equation. y=0 x>
@ Take the natural log of both sides. Iny = In(3 x)x2
© Use the log of a power property on the right. Iny = x?In(3x)
O Differentiate both sides—In on the left, product rule on y’ 3
the right. R e RUCORE B
O Simplify. Y= 2x-In (3x)+ x

y
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O Multiply both sides by y. y' = y(2xIn(3x) + x)
@ Substitute (?))c)"2 fory. y'= (3x)x2(2xln(3x) +x)
or

y'= (3x)x2(ln(3x)2x +x)

EXAMPLE 2

. d . COS X
Find E(smx) )
© Let y = (sin x)°~, y = (sin x)<os~
@ Take In of both sides. In y = In(sin x)<°s~
©® Use the log of a power property on the right. In y = cos x - In(sin x)
@ Take the derivative of both sides—In on the y . . COSX

left, Product Rule on the right. 5 =[—sinx]-In(sinx) +| "G+ ] Lot




Logarithmic Differentiation

(continued)
© Simplify. yy = —sinx-In(sinx)+ cotx - cosx
O Multiply both sides by y. y'= y[-sin x - In(sin x) + cot x - cos x]
@ Substitute (sin x) cosx for y. y' = (sin x)°***[—sin x - In(sin x) + cot x - cos x]
y' = (sin x)***[cot x - cos x — sin x - In(sin x)]
y' = y' = (sin x)***[cot x - cos x — In(sin x)¥"*
EXAMPLE 3
Find f'(x) for fix) = (In x)*.
@ Starting with the original function, take the natural log of S = (In x)*
both sides. In fix) = In(In x)*
@ Use the log of a product property and then Inf (x)=x-In(Inx)
differentiate the result. 1
f'(x) x
o [1]-In(Inx) +| 3 |- x
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© Simplify and then multiply both sides by f(x). f(x)
f(x)

£ = () in (i) + 1o |

_ 1
=In(lnx)+ T

O Substitute (In x)* for f(x). £(x)=(Inx)'

Inx

In(Inx)+ I ]

[FAQ ]

How do you know when to use ‘logarithmic differentiation’?
Use logarithmic differentiation when you are finding the derivative of
a function such as [f(x)]°® and discover that both the base and
exponent contain variables.




Techniques of Implicit

Differentiation

Up to this point, the functions you encountered were expressed in an explicit form—that is, writing

one variable in terms of another: y = x* + 3x,s(t) = > - + 15t =7, 0r V (r) = %nr3. Unfortunately,

many relationships are not written explicitly and are only implied by a given equation: x> + y? = 25,

xy =7, 0r x +xy + 2y° = 13, These equations are written in implicit form. It may not be possible to

change an implicit form into an explicit form. For those cases, you use implicit differentiation.

Y AS A FUNCTION OF X (% AS THE DERIVATIVE)

d
Find d_i for x3 + xy —y?> = 12.

© Start with the original equation.

@ Find the derivative of each term, treating y as
a function of x.

© Isolate all % terms of the left.

dy
@ Factor out I

XHxy-y*=12

d d d d
e )+ ) = e (v7) = 4 (12)
power product rule

rule
2 dy 5 dy _
3x +1-y+a-x ZyE—O

dy dy_ 2
S ZyE— -3x =y

d
(x— 2y)d—3;= —-3x’—y
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O Solve for % dy _—3x’—y
Note: We took to the opposite of both the top and the bottom, dx — x—2y
thus using fewer symbols in the final answer. or
dy _3x’+y
dx 2y —x

Y AS A FUNCTION OF X (Y' AS THE DERIVATIVE)

Find y’ for (In x) . y*> = &¥ . x2.

@ Start with the original equation. (Inx)-y’=ev- ¥’

@ Differentiate implicitly, treating y as
a function of x. Use the Product Rule
on the left and on the right.

(%)-y3+(3y2~y')-lnx = (e -y')-x2+(2x)-ey

© Simplify. )’7_,_ 3y’ Inx-y'= e x* y'+ 2xe’

3

O Isolate all y’ terms on the left. , , y
3y’ Inx-y'— e’ x’ y'=2xe’ — ~

@ Factor out y’ on the left. 3
Y (3y’Inx— e’ x*)y'= 2xe’— £



Techniques of Implicit

Differentiation (continued)

O Solve fory'. 3
y (3y21nx - eyxz)y'= 2xe” — yT
3
V= xe’— yy
3y’Inx — e’ x°

X AND Y AS FUNCTIONS OF AN UNKNOWN VARIABLE (DX AND DY AS THE DERIVATIVES)
Find d_;) for e” +sinx=1Iny.

d
@ Write the given equation. e +sinx=Iny
@ Differentiate implicitly, treating x and y . S d
as functions of an unknown variable. e” (dx -y +dy -x) +cosx-dx = 7}’
© Simplify.

e ydx+ e® xdy + cosxdx = %

@ Put all dx terms on the left and all dy
terms on the right.

e ydx + e* xdy + cos xdx = %
ay
y

e ydx + cosxdx = - — e xdy
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@ Factor out dx on the left and dy on the right. (exyy " cosx) dx = (% _ e”x) dy

d
O Solve for d—i (e*yy + cosx)dx = <% - e’“yx>dy
e’y +cosx _ dy
% — eV x dx
X AND Y AS FUNCTIONS OF ¢ (dt AND fly AS THE DERIVATIVES)
dy
Find a for —3xy + 2x* — 3y = 5y.
@ Begin with the original equation. “3xy + 2x* - 3y* =3y
@ Differentiate, treating _adx dy\, sdx g2 dy _ < dy
both x and y as functions ( 3 dt)y t\ar (=3x)+ 8x dt Iy dr >dr dr
of some variable ¢.
© Isolate all the % terms on the left and all - 3x z,); 9 2?; 5 Ccll)t] 3y Z); 8x’ ‘Zl);

the % terms on the right.




Techniques of Implicit

Differentiation (continued)

O Factor out % on the left and % on the right.

Multiply both sides by dr.
O Simplify. (=3x -9y - 5)dy = (3y — 8x%)dx
@ Solve for % (=3x—9y*—5)dy = (3y — 8x’dx)
dy _ 3y-— 8x’

dx  —3x—9y’—5
or

dy  8x’—3y

dx  3x+9y°+5




plications of Implicit
chapter7

Differentiation

You can use the process of implicit differentiation in many word problems in calculus. Three
examples follow—from differentiating a geometric formula, to solving a rate of change problem, to
finding the equation of tangent line to a curve the equation of which is stated implicitly.

GEOMETRY FORMULA: V, R, AND H AS FUNCTIONS OF T(cfi—‘t/, Zv:, nd ‘gtl AS THE DERIVATIVES)

Differentiate V = mtréh.

@ Start with the given formula. V =nrh
@ Differentiate implicitly, treating V, r, and & as functions dv [2 ] ha dh] 2
of the variable t. dr ~ |V ar o
© Simplify. dv _ dr 2dh
dr =g T g

----------------------------------------------------------------------------------------------------------------------------

BALLOON RATE OF CHANGE PROBLEM USING IMPLICIT DIFFERENTIATION
A spherical balloon is being filled with air so that when its radius is 3 feet, the radius is increasing at the

rate of % Jt./min. Find the rate of change of the volume at that instant.

@ Start with the formula for the volume, V, of a sphere in terms of its radius r.

@ Differentiate implicitly, treating both V and r as functions of time . dv _4 3 2dr




Applications of Implicit

Differentiation (continued)

© Simplify. dV _ . adr
W = 47r E
- _ dr _2
O Substitute r =3 and - = = av _ 4 (3)- 2
dt 3
@ Simplify. ‘il—‘t’ = 247 f¢* /min

So, volume is increasing at a rate of 247ft*/min.

----------------------------------------------------------------------------------------------------------------------------

LADDER SLIDING DOWN THE SIDE OF A BUILDING
PROBLEM

A 20-foot ladder leans against the side of a building. The bottom
of the ladder is 12 feet away from the bottom of the building and
is being pulled away from the base of the building at a rate of 1.5
feet/second. Find the rate at which the distance from the top of
the ladder to the base of the building is changing.

@ Write a relationship between the vertical distance v and the v+ h? =207
horizontal distance h.

@ Differentiate implicitly, treating both v and / as functions dv dh _
. v=+2h=-=0
of time, . dt dt
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© If it is known that % = 1.5 and h= 12, find a corresponding v:+ h? =202
value of v by using the original equation (from the v+ 122 =20
2 —
Pythagorean Theorem). Vot 1442400
v2 =256
v=16

@ Substitute values from Step 3 into the derivative from dv dh _
S v +2h=5-=0
tep 2. dt dt

2(16)2 +2(12)(1.5) =0

@ Simplify and then solve for %

dv _
3ZE+36—0
dv _ 36
dr — 32
dv __ 9
dt 8

The top of the ladder is sliding down (that’s what the negative sign represents) the side of the building at

arate of% ft./sec. But the answer to the question posed in this problem is that the distance from the top

of the ladder to the base of the building is changing at a rate of — % ft./sec.
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Applications of
Differentiation

his chapter shows you some of the many

applications of a derivative. From horizontal
tangents to equations of lines tangent to a curve,
you will move on to critical numbers of a function
and how to determine the intervals over which a
function is increasing or decreasing. The chapter
continues with finding extrema on a closed interval.
From finding minimums and maximums over the
complete domain of a function using the first
derivative, you will move on to determining
concavity, finding inflection points, and verifying
relative extrema using the second derivative.
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Extrema of a Function: Second
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Tangent Line to Graph of
chapter8

a Function at a Point

You saw many examples of this in Chapter 3. Following is one new example just as a gentle
reminder of the process used.

Tangent Line to the Graph of a Trigonometric Function l

Find the equation of the line tangent to the graph of f(x) = x*In x at the point with x coordinate e.

@ Find fle). ) = Plnx
fle) = e’lne
fley=¢e3-1

fle) = & point is (e,e%)

@ Find the slope at x = e. f(x)=x"Inx
f/(x)=[3x*]- Inx + [%] X
f(x)=3"1nx + x°
f'(e) =3e’Ine + ¢

=3¢ 1+¢
f'(e)=4e’ slope is 4¢’

© Write the equation of the tangent line. y—e&=4e*(x—e)
y— e’ =4e*x —4é?

y=4e’x - 3e




Horizontal

Tangents

A tangent line is horizontal when its slope is zero. After finding the derivative of a function, you set
it equal to zero and then solve for the variable.

Horizontal Tangent to Graph of Polynomial Function l

Find the coordinates of each point on the graph of f(x) = x* — 12x? + 45x — 55 at which the tangent line is

horizontal.
@ Find f'(x). flx) =x3—12x* + 45x - 55
f'(x) =3x? = 24x + 45
@ Set f'(x) = 0 and solve for x. f'(x) =3x> = 24x + 45
0=3x>-24x+45
0=3x*-8x+15)
0=3x-3)x-5)
x=3orx=5
© Using f(x), find the corresponding y coordinate for each x in fB3)=-1,/(5=-5
Step 2.

Tangent lines are horizontal at (3,—1) and (5,-5).
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Horizontal Tangent to Graph of a Trigonometric Function

Find the x coordinate of each point on the graph of f{(x) = cos 2x + 2cos x in the interval [x,27] at which
the tangent line is horizontal.

© Find /(). f(x) = cos2x + 2cosx
f'(x) =—sin(2x) - 2 + 2(—sin x)
f'(x) = —2sin2x — 2sinx

@ Set f'(x) =0. 0 = —2sin2x — 2sinx

© Replace sin 2x with 2sin x cos x and then simplify. 0 = —2(2sinxcosx) — 2sinx
0 = —4sinxcosx — 2sinx

O Factor and then solve for x. 0 =—2sinx(2cosx + 1)
0 =—2sinx 0=2cosx+1
0 = sinx —% = cosx




Critical

Numbers

The critical numbers of a function play an important role in this chapter. You will use the critical
numbers to help locate maximums and minimums for a function and inflection points for its graph.

DEFINITION OF CRITICAL NUMBERS

The number c is a critical number for f(x) if and only if
f'(c) =0 or if f'(c) is undefined.

In the first figure, the graph has a vertical asymptote at
x=0.

In the second figure, a sharp corner occurs at x = c; the
slopes of the curve left and right of x = ¢ are different—
positive to the left, but negative to the right.

In the third figure, horizontal tangents to the graph occur
atx=aand x =b.

y =fx)

critical number
atx=0

x  f’(0) undefined

0
y
critical number
y :f (x) . atx=c
Vo f'(c) undefined
— 1 ¢ <t
y

atx=aandx=5>b

&

y =fx)

} critical numbers
X

fia)y=0
Ny =0

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

CRITICAL NUMBERS OF A POLYNOMIAL FUNCTION
Find the critical numbers for f(x) = 2x + 3x% — 6x + 4.

© Find the derivative of the given function.

flx)=2x3+3x>—6x+4
fi(x)=6x>+6x—6
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@ Set f'(x) = 0. Other than taking out a common factor of 6, you can’t 0=6x>+6x—6
factor further, so use the Quadratic Formula to solve for x. - )
0=6 (x +x— 1)

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

CRITICAL NUMBERS OF A RADICAL FUNCTION
Find the critical numbers for f (x)= y/2x°— 8x.

@ Rewrite the original function as a power. f(x)=y2x>— 8
fx)=(2x"~ 8)c)”2
@ Find f'(x) using the General Power Rule (or Chain , 1 -2
Rule{ (1) using ( F(x) =42 -8x) (4 —8)
, 2x—4
fr(x)=—7=

J2x*— 8x

© Set the numerator equal to 0; this is where f'(x) = 0. 0 Iy — 4
Set the denominator equal to O; this is where f'(x) is T a.
undefined. 2B

0=2x—4 O=1/2x2—8x

O Solve for x. 2=x 0=2x>—8x
0=2x(x—-4)
x=0,orx=4




Increasing and

Decreasing Functions

This section shows you how to make use of the function’s derivative and critical numbers in order
to find the intervals over which the functional values are increasing or decreasing.

DEFINITION OF INCREASING/DECREASING y
FUNCTION ON AN INTERVAL y =fx)
@ The function fis increasing on an open interval %
(a,b), if for any two numbers ¢ and d in (a,b) + when ¢ <d, flc) <f(d)

with ¢ < d, then f(c) < f(d). o’ f1s increasing

: x
d

when ¢ < d, f(c) > f(d)

) Y 1 \_ o f1s decreasing
y=Jjx '
@ The function fis decreasing on an open interval :
(a,b), if for any two numbers ¢ and d in (a,b), :
with ¢ < d, then f(c) > f(d). E
L

o -
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PROPERTIES OF INCREASING/DECREASING FUNCTIONS y
ON AN INTERVAL
Let fbe a continuous function on the closed interval [a,b] and f CI(l)r(lztan)t
differentiable on the open interval (a,b). on o, ¢
S f'(x =0 —

@ If f'(x) > 0 for all x in (a,b), then fis increasing on [a,b]. L/ \Z, | .

Y 1 1
@ If f'(x) < O for all x in (a,b), then fis decreasing on [a,b]. a Q b c [\o d
© If f'(x) = 0 for all x in (a,b), the fis constant on [a,b].

fincreasing fdecreasing

You now have a means to determine over which intervals a on (a, b) on (¢, d)

function is increasing, decreasing, or constant.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

INCREASING/DECREASING INTERVALS FOR A POLYNOMIAL FUNCTION
Find the intervals over which f{(x) is increasing/decreasing for the function f(x) = 2x* + 3x* — 12x.

Note: In the following examples, it is assumed that you will be able to use the appropriate methods to
find the derivatives, which will merely be stated (but not derived step by step).

@ Find f'(x) in simplified and factored form. Sflx) =2x% +3x2 - 12x
fl(x)=6x>+6x—12
fx)=6(x*+x-2)
f'x)=06(x+2)(x-1)

@ Set f'(x) = 0 and solve for x. 0=6(x+2)(x—-1)
x=-2,x=1




Increasing and Decreasing

Functions (continued)

© Using the zeros of f'(x), create three open intervals x<-2,2<x<l,andx>1

and select a “test number” within each interval. x=-3 x=0 x=2

@ Determine the sign of f'(x) (+, —, or f'(x)=6(x+2)(x~-1)
0) at each “test number.”

x<-=-2 -2<x<1 x>1
Note: See Step 7 at the end of this F1(=3)=+-— £'0) = ++ f'(2) = +++
problem. It shows how you can quickly - : :
determine the sign at each “test number” f(=3)>0 [0 <0 f2)>0
by using the factored form of f'(x). / N J
inc. dec. inc.

@ From the chart, you can easily identify the f(x) is increasing for x < -2 and for x > 1

regions over which f(x) is either increasing [or, in interval notation, (- ,—2)

() or decreasing (\,). and (1,)].

f(x) is decreasing for -2 < x < 1 [or, in
interval notation, (-2,1)].

O To the right is the graph of fix) = 2x* + 3x* — 12x. fx)

f(x) =22+ 3x*— 12x

sl
G
<
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@ Here’s the note about the sign f(x)=6(x+2)(x—1)
determination of f'(x) at each test number e nes. pee.
. f e ~r A N A N
that was mentioned earlier: F(=3)="6(=3 + 2)(—3 — 1) = positive
Use the derivative /'(x) = 6(x + 2)(x — 1) in shorthand notation, it looks like:
and the test numbers x = -3, x =0, and , _ _
x=2. ff(=3)=4+——=+
f(=3)>0
so f(x)is 7 (inc.)
ff(x)=6(x+2)(x—1)
FAQ pos. pos. neg.
[ , PN .
How do I know which “test numbers” to f(0)=6(0+2)(0—1)=negative
use in my computation? in shorthand notation, it looks like:
Always use numbers that will make your f0)=++-—=-—
computation easy. 0)<0
1) If you want x < e”'3, use e £ (0)< .
2) If you want3<x</ﬁ,usex:4. 50 f(x) is s (dec.)
3) If 0uwant£<x<3—n use x:u
y 4 4 2" f(x)=6(x+2)(x—1)

f(2)=6(2+2)(2~—1)=+++ = positive
or in shorthand notation, it looks like:
ff2)y=+++

f(2)>0

so f(x)is 7 (inc.)

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

INCREASING/DECREASING INTERVALS FOR A PRODUCT INVOLVING A NATURAL LOG FUNCTION
Find the intervals over which f{(x) is increasing/decreasing for the function f(x) = x’Inx.




Increasing and Decreasing

Functions (continued)

© Find the simplified form of f'(x). fix) =x’Inx  note that the domain
of f(x)isx>0

f'(x)=x*Glnx + 1)

@ Set f'(x) = 0 and solve for x. 0=x’3lnx+1)
x’=0 3lInx+1=0
_ —_1
x=0 Inx = 3
x = e*l/3

© Create the chart showing appropriate first derivative f'(x) = x*(3Inx + 1)

computations. O<x<el3 x>elB3

fleh=+-  flo=++
feh<0  f(©>0
N 7/

@ From the chart, you can easily identify the regions over which f(x) is either increasing (/) or
decreasing (\,).

@ See the graph at right. Sfx)

-1/3 ]. ].
re — —
Note 73 3/7
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INCREASING/DECREASING INTERVALS FOR A PRODUCT OF TRIGONOMETRIC FUNCTIONS
Find the intervals over which f{(x) is increasing/decreasing for the function f{x) = sin x cos x for 0 < x < 2m.

@ Find the simplified form of f'(x). f(x) = sinxcosx
f'(x) =cos?x —sin%x

2 < 2
@ Set f'(x) = 0 and solve for x. 0 =cos’x —sin’x
sin’x = cos’x
sinx = +cosx

_n _3n _5t _n
X=X T YT X Ty

©® Create the first derivative chart.

03x<% %<x<%E %Tn<x<%E %Tn<x<?Tn ?Tn<x<2n
, , '(t) >0 , ,
f<%)>0 f(%)<o fm f(37’°><0 f(”T”)>o

/ N\ / N\ /7




Increasing and Decreasing

Functions (continued)

@ From the chart, you can easily f(x) is increasing for
identify the regions over which T 3%; 5m n
f(x) is either increasing () or O=x<z g <x<7g»and 4~ <x<im.
d i . . .
ecreasing (\) f(x) is decreasing for % <x< %‘ and %Tn <x< zTn :

@ Sce the graph at right. Jx) f(x) = sinx cosx




Extrema of a Function
chapter8

on a Closed Interval

The highs (maximums) and lows (minimums) of a function are known as its extrema. In this
section, you learn how to locate these extrema on a closed interval, rather than on the entire
domain of the function.

DEFINITION OF EXTREMA ON AN INTERVAL f(x) £(x)
If fis a function defined on an interval containing c,
then: /
© f(¢) is a minimum of fon that interval, if f(c) < f(x) \ c !
for all x in that interval. b

(e, fle) (b, f(b))
f(c) minimum f(b) minimum
on [a,b] on [a,b]
@ f(c) is a maximum of f on that interval, if f{c) > maximum  maximum
f(x) for all x in that interval. on [a,b] on [a,b]

|
(cfe)  (afia)
o

i

c b

X)

@/

Q
o

X

-~ s
\\

The extrema can occur at points within the interval or at an endpoint of an interval, called endpoint

extrema.

Another name for the minimum and maximum is extrema.




Extrema of a Function on a

Closed Interval (continued)

FINDING EXTREMA ON A CLOSED INTERVAL
Follow these steps to locate the extrema of continuous function f on a closed interval [a,b].

© Find the critical numbers of fin [a,b].
@ Evaluate f at each critical number in [a,b].
© Evaluate f at each endpoint of [a,b].

O The smallest of these values is the minimum, and the largest of these values is the maximum.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXTREMA OF A FUNCTION ON A CLOSED INTERVAL: POLYNOMIAL FUNCTION
Find the extrema of f(x) = 5x* — 4x* on the interval [-1,2].

© Find f'(x). flx) =5x* —4x3
f1(x) =20x° — 1247
f'(x) =4x*(5x - 3)

@ Set f'(x) = 0 and solve for x—these are the critical numbers. 0 = 4x*(5x — 3)

_ _3
x=0 xX=3
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© Evaluate f{x) at each endpoint of the interval and at each critical number. (Note that you are not
finding f'(x) at each critical number.)

left endpoint critical number critical number right endpoint
f=1)=9 f0)=0 7 3\- _27 f(2) =48
5 125
minimum maximum
@ State the maximum and minimum The maximum of fon [-1,2] is 48 (at x = 2).

values of flx) in the interval. The minimum of fon [-1,2] is —% (at x = %).

@ See the graph at right. f(x) = 5x'— 4
Jx)




Extrema of a Function on a

Closed Interval (continued)

EXTREMA OF A FUNCTION ON A CLOSED INTERVAL: TRIGONOMETRIC FUNCTION
Find the extrema of f(x) = sin’x + cosx on the interval [0,27].

© Find f'(x). f(x) = sin%x + cosx
= (sinx)? + cosx
f'(x) = 2(sinx)cosx — sinx
f'(x) = 2sinxcosx — sinx

@ Set f'(x) = 0 and solve for x—these 0 = 2sinxcosx — sinx

are the critical numbers. 0 = sinx(2cosx — 1)

sinx =0 2cosx—1 =0
x=0,x=m x=27 cosx=%
_T _5n
r=3 0 T3

© Evaluate f{x) at each endpoint of the interval and at each critical number.

left endpt. and crit. # critical # crit. # crit. # right endpt. and crit. #
=1 :
f0) f<%> =2 fm=-1 f(%“) =2 fem =1

maximum minimum maximum
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@ State the maximum and minimum The maximum of fon [0,27] is %(at % and 5%)
values of f(x) in the interval.

The minimum of fon [0,27] is —1 (at 7).

@ See the graph at right. fx) = sin’x + cosx

@3




Relative Extrema of a Function:

First Derivative Test

You are now ready to find the relative extrema over the entire domain of the function—not just on

a closed interval, as in the last section.

DEFINITION OF RELATIVE EXTREMA

® f(c) is called a relative maximum of fif
there is an interval (a,b) containing ¢ in
which f(c) is a maximum.

® f(c) is called a relative minimum of fif
there is an interval (a,b) containing ¢ in
which f(c) is a minimum.

rel. max.

1

(a.fia))

Jx)

rel. max.

(e, flo)

/

N f==-=-=-==-

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

THE FIRST DERIVATIVE TEST

Let f'be a function that is continuous on an open interval
(a,b) containing a critical number c of f. If fis also
differentiable on (a,b), except possibly at ¢, then:

® f(c) is a relative minimum of fif f'(x) < 0 for x < ¢, but
f'(x)>0forx>c.

® f(c) is a relative maximum of fif f'(x) > 0 for x < ¢, but
f'(x)<0forx>c.

(a, fla))

L rel. min.
1— rel. max.

(b, (b))
<

Q 3

7 G
) &)
> S0
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RELATIVE EXTREMA OF A POLYNOMIAL FUNCTION
Find the relative extrema of f(x) = 3x* — 28x> + 60x>.

© Find f'(x). Sflx) = 3x* - 28x° + 60x°
f(x) = 12x3 — 84x> + 120x
f(x)=12x (x> = 7x + 10)
f'(x)=12x (x=2)(x-5)

@ Find the critical numbers of f by setting f'(x) = 0 and then solving 0=12x(x-2)(x-5)
for x. x=0x=2x=5

© Set up a first derivative chart to determine increasing or decreasing intervals for a function.

£'(x) = 12x(x - 2)(x - 5)

x<0 0<x<2 2<x<5 x=>5
f'=DH<0 S (1H>0 f'3)<0 f'(6)>0
N / N /
rel. min. rel. max. rel. min.

@ Identify the x coordinates of the relative The relative minimum occurs at x = 0
minimum/maximum of the function. Then find and at x =5 (f{0) = 0 and f(5) = —125).
fx) for each of these x values. So the relative minimum values are

0 and —125.

The relative maximum occurs at x = 2
(f(2) = 64). So the relative maximum
value is 64.




Relative Extrema of a Function:

First Derivative Test (continued)

The graph of f(x) = 3x* — 28x3 + 60x? is
© showgn zﬁ righjtf.( : U Jx) = 3x* - 28x7 + 60x?
rel. max.
(2,64)
0.0) g
rel. min.
(5,-125)
rel. min.
RELATIVE EXTREMA OF A RATIONAL FUNCTION
Find the relative extrema of 1+ x2
f(x) = 1 _ x2
) .. 5
© Find the derivative of f{x). Flx)= } t iz X = +1 not in the domain of f
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@ Find the critical numbers for f(x), setting both 0= 4x
denominator and numerator equal to 0. - (1 _ x2)2
4x=0 (1-x)=
x=0 1—-x"=0
x ==l
x<-1 -1<x<0 O<x<l1 x>1
’ . ’ 1 . ’ 1 o + "y +
ren=3  r(-3)=F  rl)=F ro=%
£1(=2)<0 f’(—%><0 f’(%)>0 £12)>0
N\ N\ / /
rel. min.
O Identify the x coordinates of the points at which the The relative minimum occurs
relative minimum/maximum occur. atx=0(f(0)=1).

The relative maximum is 1.




Relative Extrema of a Function:

First Derivative Test (continued)

@ To the right is the graph of f(x)
flo=1 X A A
1 - 2 1 1 1 2
. : : ) =155
Note the vertical asymptotes at x = —1 and E E
x = 1. When x = %1, the denominator of ' '
f(x) is zero. ! !
E 0,1)54— rel. min.
E E x
“-gz------- _-1-5- ------ -E
| I
v b




Concavity and Point

of Inflection Applications of Differentiation chapter8

The second derivative (f"'(x)) allows you to find the intervals over which the graph of a function is
concave up or concave down. The points at which the concavity changes (up to down, or down to
up) locate points of inflection.

[ efinition o Concavity |

o If the graph of flies above all its f(x) f(x)
tangents on an interval (a,b), then f'is

said to be concave upward on (a,b). \‘é/ ﬁ\

o If the graph of flies below all its ! , ,
tangents on an interval (a,b), then f'is E : :
said to be concave downward on (a,b). 0 b X b X

a
fconcave fconcave
upward on (a,b) downward on (a,b)
Jx)
concave

downward

concave /
\ X

downpward ~——
concave concave
upward upward

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

TEST FOR CONCAVITY
o If /"(x) > 0O for all x in (a,b), then the graph of fis concave upward on (a,b).

o [f /"(x) = <0 for all x in (a,b), then the graph of fis concave downward on (a,b).

Note: In the examples that follow, it is necessary to find both ['(x) and ["(x) for the given function.
Since you have already seen many, many examples of finding derivatives, f'(x) and " (x) will be merely
stated—their derivations will not be shown here. Remember; ["(x) is just the derivative of ['(x).




Concavity and Point

of Inflection (continued)

CONCAVITY FOR GRAPH OF A POLYNOMIAL FUNCTION
For the function f{x) = x* + 2x* — 12x? — 15x + 22, find the intervals over which its graph is concave

upward or downward.

© Find f'(x) and f"(x).

@ Set f"(x) = 0 and then solve for x.

© Create a second derivative chart
using the critical numbers of
f'(x)—that is, the zeros of /" (x)—
to set up the appropriate intervals.

O Identify the intervals of concavity:

f)=x*+2x° - 12x* — 15x + 22
f(x) =4x3 + 6x* —24x - 15
Fr00) = 1202 + 12x — 24

0=12x*>+12x-24
0=12(x>+x-2)
0=12x+2)(x-1)
x=-"2,x=1

f'(x) = 12(x + 2)(x - 1)

x<-2 2<x<1 x>1
f'(B)=+— [f"(0)=++ J'(2) = +++
J"(=3)>0 /"(0)<0 f"2)>0

U N U
conc. up conc. down conc. up

The graph of fis concave upward when
x <=2 and when x > 1.

The graph of fis concave downward
when -2 <x< 1.
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@ To the right is the graph of o4 3 192
fx) =t + 22— 122 — 15x + 22. fix) =2+ 2x fgz)x [ox+22
X
Note: The graph will have two relative minimums
and one relative maximum. Locate these points by conc. down
using f'(x) and a first derivative chart.

conc. up

conc. up




Concavity and Point

of Inflection (continued)

Other features of concavity are listed below:

o The graph of fis concave upward on (a,b) if f'is
increasing on (a,b).

o The graph of fis concave downward on (a,b) if ' is
decreasing on (a,b).

Definition of an Inflection Point

Note: —, 0, + indicate slope
of curve, i.e., f!(x)

Jx)

<

><F--
=

Qf----,1

f(x) increasing on (a,b)
<concave up>

S0 o f
an

a b "

f(x) decreasing on (a,b)
<concave down>

The point P is called a point of inflection for the
graph of fif the concavity changes at the point P.

concave
down

concave
up

concave
down P

concave
up
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DETERMINING CONCAVITY AND FINDING AN INFLECTION POINT: POLYNOMIAL FUNCTION
Find the intervals over which the graph of f{x) = 4x* — x* is concave upward and downward, and find any

inflection points.

@ Find £'(x) and " (x).

@ Set f"(x) = 0 and solve for x.

©® Create a second derivative chart.

@ Identify the intervals of
concavity and any points
of inflection.

flx) =4x3 —x*
F(x) = 12x% — 4x3
f(x) = 24x — 12x?
f"(x) =12x(2 — x)

0 =24x - 12x2
0=12x(2 —-x)
x=0 x=2
f"(x) = 12x(2 -x)
x<0 0<x<2 x>2

') =— £(1) = ++ £'(3) = +—
"D <0 f'(1)>0 f'(3)<0
N U N

conc. down conc. up conc. down

The graph of fis concave downward when 0 < x < 2.
The graph of fis concave upward when x < 0 and when x > 2.

Since the concavity changes at x = 0 and then again at x = 2,
these are the x coordinates of the points of inflection for the
graph of f. f(0) = 0 and f(2) = 16.

Therefore, (0,0) and (2,16) are the points of inflection.




Concavity and Point

of Inflection (continued)

@ To the right is the graph of fix) = 4x* — x*.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

J)

(2,16)

flx) =4x° —x*

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

DETERMINING CONCAVITY AND FINDING AN INFLECTION POINT: RADICAL FUNCTION
For the graph of f(x)= x/x+2 find the intervals of concavity and any inflection points.

@ Calculate f'(x) and f"(x).

@ Find the critical numbers of f'(x) and set both the
numerator and denominator of f"(x) = 0.

f(x)=x/x+2 domain of fisx>-2
, +4
f0=5%

2/2x+2

” o 3x+8
f (x)_ 4(x+ 2)3/2

_ 3x+ 8
4(x+2)"
3x+8=0

32

4(x+2) =0

x=-=8 x=-2
3
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© Prepare the second derivative chart. Notice that since the domain 7 (x)= 3x+ 8
of fis x > -2, you will have only one column in your chart. Y= 4(x+ 2)3’2
Note: Since x = %8 is not in the domain of the function, the only x>—=2
numbers to check are x > 2. f7(0)= $
f(0)>0
U
conc. up
O Identify the intervals of concavity and any The graph of fis concave upward for x > —2;
points of inflection. in other words, everywhere in its domain.

As such, there are no points of inflection.

See the graph of f(x)= x/x+ 2 at right.
(5] graph of f(x)= x/ g fx) o) = T2
) .
\-/ concave up
everywhere




Extrema of a Function:

Second Derivative Test

Sometimes you can avoid making a first derivative chart when trying to locate the relative
minimum or maximum values of a function f. Using both the first and second derivatives allow you
to save some time and work.

The Second Derivative Test for Relative Extrema /

Let fbe a function for which f'(¢) = 0 and the flx)

second derivative of fexists at c¢. Then:
. e e i a relative i f©>0 f
o If f"(c) > 0, then f(c) is a relative minimum. \ fcol?gave - rel. min. fc)
—7"(c)=0
' X
c
o If /"(c) <0, then f{c) is a relative maximum. Sfx)
o If f"(c) = 0, then the second derivative test < rel. max. flc)
fails; you must use the first derivative test
instead.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

SECOND DERIVATIVE TEST AND RELATIVE EXTREMA OF A POLYNOMIAL FUNCTION
Find the relative extrema for f{x) = x> — 3x> = 9x + 7.
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© Find f'(x).

f)=x-3x2-9x+7
F1(6) =3¢ 6x -9

@ Set f'(x) = 0 and then solve for x. 0=3x>-6x-9

© Find /" (x).

O Find f"(x) for
each value of x
in Step 2.

@ Find f(-1) and f(3).

0=3(x*-2x-3)
0=3(x+1D(x-3)
x=-1 x=3

f'(x) =3x>-6x-9
f'x)=6x-6

S =6(-1)-6 f"(3)=6(3)-6
=) =-12 "3)=12
/=<0 f"3)>0

Since f'(=1) =0 and /"(-1) < 0, there is a relative maximum at x = —1.
Since /'(3) =0 and f"(3) > 0O, there is a relative minimum at x = 3.

f(x)=x>-3x>-9x +7
f(-1)=12 f(3) =-20

Therefore, 12 is the relative maximum and —20 is the relative minimum.




Extrema of a Function: Second

Derivative Test (continued)

O The graph of f(x) = x* — 3x> — 9x + 7 is shown at fx)
right. (-1,12)4 Jf()=x-3x"-9x+7
NG T
(3,-20)
SECOND DERIVATIVE TEST FOR EXTREMA: TRIGONOMETRIC FUNCTION
For f(x) = sin x + cos x, find the relative extrema on the interval [0,27].
© Find the first derivative. f(x) = sinx + cosx

f'(x) = cosx — sinx

@ Set f'(x) = 0 and solve for x. 0 =cosx —sinx
sinx = cosx

_T _5n
x—4andx— 4

©® Find the second derivative. f'(x) = cosx — sinx
f"(x) = —sinx —cosx




O Find
f

eFindf(%) andf(%)'

O Atright is the graph of f{x) = sin x + cos x.

)
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With f* (%) =0 and f ”(%) <0, there is a relative maximum
at x = % Therefore, ‘/5 is the relative maximum.
With f '(ST) =0 and [’ (%Tn) >0 , there is a relative minimum
X

Tn. Therefore, —,/2 is the relative minimum.

T _7)




Additional Applications
of Differentiation:
Word Problems

he derivative is used to solve many types of

word problems in calculus. The first type of
word problem covered in this chapter is optimization,
in which you are asked to determine such things as
the largest volume or the least cost. The second type
of problem contains related rates in which you will
find the rate at which the water level in a tank is
changing or the rate at which the length of a shadow
is changing. The last type of word problem requires
you to use the derivative to go from a position
function to its velocity and its acceleration functions.



Optimization Additional Applications of Differentiation: 9
Word Problems \\chapter

A common application of the use of the derivative in calculus is determining the minimum and
maximum values of a function which describes a word problem—for example, the largest area,
least time, greatest profit, or the most optimal dimensions.

Volume of a Box Problem

Let’s say you are cutting equal squares from each corner X X
of a rectangular piece of aluminum that is 16 inches by 21

inches. You will then fold up the “flaps” to create a box

with no top. Find the size of the square that must be cut

from each corner in order to produce a box having 16<
maximum volume.

21
@ Let x be the length of a side of each square to be

X X
removed. After the squares are removed from X X
each corner, the aluminum now looks like the poT T TTTTTmmm T
figure at right. 16 — 2x :

X X
X X
\_ _/




Optimization

(continued)

@ When the flaps are folded up, the box has the dimensions
shown.

© Letting V(x) represent the volume of the box, you have:

O Since the length, width, and height of the box
must be greater than 0, you have:

@ Expand V(x) and simplify.

0 Since you are trying to find a maximum volume,
calculate V'(x) and set it equal to 0.

@ Factor and then solve for x.

x{ i

\ - ~
21 —2x

V(x) = (21 —2x)(16 — 2x)x

x>0 21 -2x>0 16-2x>0

21 > 2x 16 > 2x

x<10.5 x<8

So the domain of V(x) must be 0 < x < 8.

V(x) = 4x3 — 74x* + 336x

V'(x) = 12x> — 148x + 336
0= 12x> - 148x + 336

0=4(3x"— 37x + 84)
0=4(x—3)3x—28)

x=3or % not in domain of V (x)
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@ Since you are locating a maximum in a closed interval V(x) = (21 = 2x)(16 — 2x)x
[0,8], find the value of V at the endpoints and at the V(0)=0
critical numbers in that interval. V(3) = (21 — 6)(16 — 6)3 = 450
x=3 V(8)=121-16)(16-16)8 =0
© V(3) =450 is the maximum box volume. From each corner, cut squares of 3 inches.

Cylindrical Can Construction Problem

A right circular cylinder has a volume of 27 cubic inches. Find the can dimensions
that require the least amount of aluminum to be used in the can’s construction.

- ~-~o

\
4

@ You are looking for the least (that is, minimum) total surface area A =27’ + 2nrh
of the can.

Let A = area function, r = base radius, and /& = can height.

@ You need to have the area function A in terms of just one variable. Use the V=mnr’h
given volume to find a relationship between % and r. = rlh




Optimization

(continued)

© Substitute / = % into the area function A.
r

® Find A'(r).
TIP |

Instead of using the Quotient Rule to find the last
term’s derivative, bring the r up to the top and use the
Power Rule.

@ Set A'(r) = 0 and then solve for 7.

[TIP |

Multiply all terms by 7 to get rid of the denominator
in the last term of the equation.

A =2mr’+ 2nrh
A=2mr’+ 2nr<%)

A(r)=2mr’+ == 471:

A(r)=2mr’+ == 471'

A(r)=2mr’+ 4nr !
A'(r)=4mr —4nr™?

A(r)= 47tr—4—7t
A(r)= 4nr—4—n
0= 47tr—4—7t
2
0=4mr’—4n
0= 47'c(r3— 1)
r=1

The radius of the base is 1.
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O Verify that r = | yields a minimum value for A(r). A'(r)=4mr — Aty
This time, let’s use the second derivative test. poN 3
A"(r)=4n + 8nr
A(r)=dn+ 5%
A’(1) = 4n +81—’§ =121

Since A"(1) > 0, graph of A(r) is
concave upward at r =1, A(r) will
have a minimum value at r = 1.

@ Find value of A, using r = 1. b= 2
- 2

Note: The result says that the can’s height and base 2
radius should be the same number. h = It
h=2

Sor=1and h =2 results in a can
with the desired volume, yet the
minimum (least) cost to construct.

| Bus Company Fare Problem

A bus company currently carries an average of 8,000 riders daily. In anticipation of a fare increase, the
bus company conducts a survey of its riders revealing that for each 5¢ increase in the fare, the company
will lose an average of 800 riders daily. What fare should the company charge in order to maximize its
fare revenue?

© Let R(f) be the daily revenue function, for Jor-each 5 cont will lose
which f = the number of 5¢ fare increases. e Berease | 800 giders
This is shown at right. R(f)=(20+ 5/)(8000 — 800 )

R(f)= — 4,000+ 24,0001 + 160,000

_




Optimization

(continued)
@ Find R'(f). R'() = —8,000f + 24,000
© Set R'(f) = 0 and solve for f. 0 =-8,000f + 24,000
8,000f = 24,000
f=3

Increasing the fare 3 times
gives you 3(5¢) = 15¢. The
new fare, therefore, should
be 20 + 5(3) = 35¢.

@ Verify that f = 3 gives the company its maximum revenue. R'(f) = -8,000f +24,000
R"(f) =-8,000

Since R"(f) < 0, the
graph of R(f) is concave
downward, f = 3 results
in a maximum.




Additional Applications of Differentiation:
Word Problems

In Chapter 7, you found derivatives such as 4y dx dV by using implicit differentiation. You will

dy’ dt’ dt
use the same process in this section when two or more related variables are changing with respect

to the same third variable—here, time.

A conical tank (with its vertex down) is 8 feet tall and 6 feet across its diameter. If water is flowing into
the tank at the rate of 2 ft.>/min., find the rate at which the water level is changing at the instant the water
depth is 2 ft.

@ Let i = the depth of the water in the tank and let r = radius of the circular
surface to the water at that time.

@ Write a formula for the volume of the water in the tank for a given height _1_ 2
. V=3mr'h
and radius. 3
© Since you need to have the volume function in terms of The red right triangle is similar
just one variable, find a relationship between 4 and r to the blue right triangle.

by using the similar triangles in the figure at right.

3_
8

r
h

_



Related Rates

(continued)

O Cross-multiply and then solve for r in terms of A, you are

given %, so you need to have the volume formula in terms of

just h.

© Substitute % = r into the volume formula.

0 Differentiate, treating V and # as functions of time, .

@ The given data is <~ av _ =2,and h = % Substitute into the

dt
derivative and then solve for %

35 =8
3h_
)
V=%7T,r2h
1_(3h
v(h=1in (8)h
1 op?
v(hy=1n- 2
(h)_37th3
dV _ 30 ,2dh
ar - od g
AV _ 31 4,2 dh
T ed 3
5 9m(2\ dh
od\3) ur
_Tmdh
2=16
32 _dh
T dt

The water depth is changing

at a rate of % ft./ min.




Additional Applications of Differentiation: Word Problems chapter9

Light Pole and Shadow Problem

A 5-foot-tall woman walks at a rate of 4 feet per second away from a 12-foot-tall pole with a light on top

of it.

PART A

Find the rate at which the tip of the woman’s shadow is moving away from the base of the light pole.

© Let w = the distance from the woman to the light
pole and let L = the distance from the tip of the
shadow to the light pole.

@ Using similar right triangles, write a relationship between L and w.

© Cross-multiply and then solve for L in terms of w.

12_ 5
L~ L—w
12(L—w)=5L
12L — 12w = 5L
7L = 12w
L=%w

_




Related Rates

(continued)
O Differentiate and again treat all variables as some function dL _ 12 dw
of time, . dt — T dt
itute 4 — dL dL _ 12
O Substitute 7 =4 and then solve for i =4
Note: It may seem strange, but the rate at which her shadow is dL _ 48
moving away from the pole is independent of her distance d 7

Jfrom the pole!
The tip of her shadow is

moving away from the

pole at a rate of g ft./sec.

PART B
Find the rate at which the length of the woman’s shadow is changing.

@ Let w = the distance from the woman to the light
pole and let L = the length of the shadow (the
distance from the woman to the tip of the shadow).
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@ Relate w and L using the red and blue similar right triangles. 12 _ 5
w+L L
©® Solve for L in terms of w. 12L=5(w+L)
12L = 5w + 5L
7L = 5w
=2
L= 7w
O Differentiate with respect to time, 7. dL _ 5dw
T dt
@ Substitute AW _ 4 and then solve for 9L, dL 5
dt dt a7 4
dL _ 20
e~ 7
The length of her

shadow is changing at

a rate of % ft./sec.




Position, Velocity,

and Acceleration

In previous chapters, you found that if s(¢) = the position function, then s'(f) = v(¢) = the velocity
function and s''(f) = v '(f) = a(¢) = the acceleration function.

[ Rocket Problem |

A small toy rocket is shot into the air from the top of a tower. Its position, s, in feet, ¢ seconds after
liftoff, is given by the equation s(7) = —167” + 327 + 240.

PART A
Find the velocity of the rocket 2 seconds after liftoff.
@ Starting with the position function s(7), find the velocity s(t) = —16¢% + 321 + 240
function v(7). s'(1) = v(f) = =32t + 32
@ Find v(2). v(t) =-32t+ 32
v(2) =-32(2) + 32
v(2) =-32

After 2 seconds, the rocket’s velocity is —32
feet/second. (The negative velocity indicates
that the rocket is moving downward.)

PART B s(t)=— 16+ 32t+ 240

For how many seconds will the rocket be in the air? 0=— 163+ 321+ 240

Find the time at which the rocket lands on the ground—that is, 0=—16(r*+ 21— 15)

when s() = 0. 0==16(t— 5)(r+ 3)
t=5 1=

The rocket is in the air
for 5 seconds.

|
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PART C

With what velocity will the rocket hit the ground?

@ Start with the velocity function v(7). V() =-321+32
@ Find v(5). v(5)=-32.5+32

Note: We used t = 5, since that’s the time v(5) =-160 +32
when the rocket hits the ground. v(5) =-128

The rocket hits the ground with a velocity of
—128 feet/second. Again, the negative indicates
that the rocket is moving downward.

PART D v(t) =-32t + 32
How many seconds after liftoff will the rocket reach its 0=-32¢+32
maximum height? 32/=32

You need to find when the rocket stops moving—that is, =1

when v(7) = 0.

The rocket reaches its maximum
height after 1 second.

PART E
Find the maximum height reached by the rocket.

© Start with position function, s(7). s(f) = =167 + 32t + 240

_



Position, Velocity, and

Acceleration (continued)

@ Find s(1). s(1) =—16(1)2 + 3291) + 240

s(1)=-16+32 + 240
s(1) =256

The maximum height reached
by the rocket is 256 feet.

This type of problem is also known as a “rectilinear motion” problem. A particle moves along the x-axis
so that its x-coordinate at time 7 (seconds) is given by the position function: x(7) = 37* — 287° + 607°.

PART A
At what time is the particle at rest?

@ The particle is at rest when its velocity is 0. First, find

x(1) = 3t* — 281 + 607
the velocity function.

x'(f) =v(f) = 128 — 841> + 120t

@ Set v(7) = 0 and then solve for t. 0=12£ -84+ 120t

0=12¢(>* -7t + 10)
0=121(t - 2)(t - 5)
t=0,t=2,andt=5

The particle is at rest at 0, 2, and
5 seconds.




Additional Applications of Differentiation: Word Problems

PART B
During what time intervals is the particle

moving to the left? During what time intervals

is the particle moving to the right?

Create a first derivative chart, using the
numbers obtained in Part A.

When the velocity is negative, the particle is

moving left.

When the velocity is positive, the particle is

moving right.

PART C

O<r<?2 2<t<5 t>5
v(1)>0 v(3)<0 v(6)>0
— «— -
right left right

The particle is moving right when 0 <7< 2
and when 7 > 5.

The particle is moving left when 2 <7< 5.

Find the total distance traveled by the particle in the first 5 seconds.

@ Start with the position function, x(7).

x(¢) = 3t* — 288 + 60¢?

@ Using the zeros of v(7), t =0, =2, and ¢ = 5, find the value of x(0)=0

x(1r) for each of these times.

©® Find the distance traveled in each time
interval, and then find the sum of these
two distances.

x(2) = 64
x(5) = 125

From O to 2 seconds: 64 — 0 = 64 units
From 2 to 5 seconds: 64 — (—=125) = 189 units

Total distance traveled in first 5 seconds is
64 + 189 =253 units.

_




Position, Velocity, and

Acceleration (continued)

PART D

What is the particle’s acceleration at t = 1?7

@ Start with the velocity function v(7). v(t) = 126 — 841 + 120¢

@ Find a(1), the acceleration function. v'(H) = a(t) = 361> — 168t + 120

® Find a(1). a(1)=36(1)>-168(1) + 120
a(l)y=-12

The particle’s acceleration at r = 1 is —12 fi/sec?,
with the negative indicating that the particle is
slowing down or “decelerating.”

PART E
At what time is the particle moving with constant velocity?

@ Begin with the acceleration function, a(7). a(t) = 361> — 168t + 120
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@ The particle moves at constant velocity when it is not 0 =361 - 1687+ 120
accelerating, so set a(t) = 0. 0=12(3 - 14t + 10)
© Since the equation factors no further, use the —(=14)+ J(—=14Y = 4(3)(10
Quadratic Formula to find the values of 7. t= (t14)+ /(2 (3)) (3)0)
- 14+ ,/196 — 120
N 6
_14+2,/19
=76
7+,/19
t= 3

The particle is moving with constant
velocity at approximately 3.79 seconds
and 0.88 seconds.

TIP |

|
For the quadratic equation ax? + bx + ¢ =0, the

solution is
—-bx,/ b2— 4ac

= 2a
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Antiderivatives: Differentiation
chapter].() |

versus Integration

The process of finding a function from which a given derivative is derived is known as
antidifferentiation, or integration. This section introduces that relationship and covers the
indefinite integral and its properties.

A function, F; is called an antiderivative of function f on an interval if F'(x) = f{x) for all x in that
interval.

Let F(x) = x* — 7x + 6; then F'(x) = fix) = 3x*> - 7.

@ One antiderivative of f{x) = 3x?> — 7 is the function F(x) at right. Fx)=x*-Tx+6

@ A second antiderivative of f(x) = 3x*> — 7 is the function Fx)=x>-Tx-15
F(x) at right.

© In each case above, F'(x) = f(x). So it appears You, therefore, write the most general
that a given function f(x) has an infinite number antiderivative of f(x) = 3x” — 7 as
of antiderivatives, F(x), all differing from each F(x) =x* = 7x + ¢, where c is just

other by just a constant. some constant.




Antiderivatives: Differentiation

versus Integration (continued)

© Find the antiderivative of f(x) = cos x. F(x) =sin x + ¢ because F'(x) = f(x)

@ Find the antiderivative of f (x) = % F(x) =Inx + ¢ because F'(x) = f(x).

© Find the antiderivative of f(x) = ¢*. F(x) = e* + c because F '(x) = f(x).




The Indefinite Integral .
et chapter].() |

and Its Properties the Integral

This section introduces the indefinite integral (an antiderivative) of a function along with its
properties. The section also includes some examples of finding indefinite integrals.

The indefinite integral of a function f(x), written as f f(x)dx, is the set of all antiderivatives of the
function f(x).

In the expression f f(x)dx: f f(x)dx is read
f is the integral symbol. “the integral of f of
“f(x)” is called the integrand. x with respect to x.”

“dx” tells you that the variable of integration is x.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

FINDING SOME INDEFINITE INTEGRALS

© Because %(xS— Ix)=3x"=7 = f(3x2— T)dx =x’=Tx+c
@ Since %(sinx) =cosx = fcosxdx =sinx+c¢

© Because d%c(ez") =2¢" = f(2e2")dx =e"+c




The Indefinite Integral and

Its Properties (continued)

ince -4 =1
O Since nx)=x = f(%)dx=ln|x|+c

[ TIP |

The | x|is there since you can’t take the
natural log of a negative number.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

FINDING A PARTICULAR ANTIDERIVATIVE
Find the particular antiderivative of f'(x) = 3x> — 7 that satisfies the condition f(1) = 3.

You need to find a specific or “particular” value of ¢ for the antiderivative of 3x* — 7.
0 /()= [ [ (x)dx Fx)= [ (32— 7)dx
f(x)=x"—Tx+c¢

This was shown in the
preceding section.

@ Since f(1) =3, when x = 1, f{x) = 3. 3=y =-7(1)+c
9=c
© Since you found a particular (or specific) value of ¢, flx) =x*—7x + 9 is the particular
you have found a “particular” antiderivative of antiderivative of /'(x) = 3x> — 7.
fi(x)=3x>-17.

L TIP

Continuity Implies Integrability
If a function f'is continuous on the closed interval [a,b], then f'is also integrable
on [a,b]. (The term integrable means that you are able to integrate it.)
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FINDING A FUNCTION FROM ITS SECOND DERIVATIVE
Find the function f(x) for which f"(x) = 32, f'(1) = 36, and (1) = 16.

© Find /'(x) from the given data /"(x) = 32. F(x)= f £ (x)dx

f'(x)= [32dx
f(x)=32x+¢,

@ You are given ['(1) = 36; use this to find the value of c, S')=32(1) + ¢,
36=32+c,
4=c,

Therefore, f'(x) = 32x + 4.

© Find /(x). f(x)= [ (x)dx

Note: A second constant, c,, is used here. The constant ¢ is f(x)= f (32x+ 4)dx
Jfrom the first integration step. We cannot assume that these are B 5
equal, so they need to be labeled separately. f(x)= 16x% 4x+c,

O You areftold that /(1) = 16; use this fact to find the F1(1)=16(1)* + 4(1) +c,
value of ¢,. 16=16+4+c,
4 =c,

Thus, flx) = 16x? + 4x — 4.




The Indefinite Integral and

Its Properties (continued)

If fand g are continuous functions and defined on the same interval and K is some constant, then the
following properties apply:

© Integral of dx: fdx =xtc dex =5x+c

@ Integral of a constant: fkdx = kx+c f%dx - %x +c

© Integral of constant times a function: f 4 (3x2_ 7) d= 4 f (3 X2 7) dx
Jk-f(x)dx= 5[ f(x)dx, where 4c = m is just = 4(xt Txtc)
another constant. = 4xi 28x+ 4c

= 4x*- 28x+m

Another way to deal with the constant is as follows: f 4(3x2— 7) dx= 4 f (3x2— 7) dx
= 4(x*- Ix)+c
= 4x> 28x+ ¢

Just integrate everything and put a
+ ¢ at the end.

O Integral of the sum/difference of functions: [ ( cosx 4+ %) dx= [cosxde+ [ % dx
J(r () £(0))dx= [ f(x)drt g (x)dx

= sinx+ In|x|+c

Note that only one “+ ¢” was written; if
you used separate “+ constant” for each
function, their sum would just be another
constant anyway.




Common
Integral Forms Introduction to the Integral chapter].()

To create an integral formula from a known derivative formula, just write the formula in
“reverse,’ adding the correct integral notation and the “+ c¢.”” For example, since %(sinx) = CosX,
you can also write that f cosxdx = sinx+ c, The following integral formulas were created by just

reading an existing differentiation formula in reverse.

4

POWER JxPdx= %+cor%x4+c

Use the formula below to

integrate some power of a "

variable. If you were to f 1. flx‘l’zdx: LxZly o= x4 o= Jx+ ¢
. . . . ) /} dx 2 21 1

differentiate the right side, )

you would end up with the

left side.

n+1

fx"dxz ;_F 1t c, forn#-1

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

POLYNOMIAL f(3x2— 6+ 5) dx
Using a combination of the properties listed in previous ; 2
sections and the Power Rule listed above, you can find the =3. % -6- xz_k S5x+ ¢

integral of a polynomial as follows: ; 2
Xx'=3x+ S5x+c

f(a,,x”+ a, it ...+ ax* a,x'+ a,)dx

n+1 xn x3 x2
ta, 5+ ...a2?+ a17+ agx+ ¢C

"n+ 1




Common Integral

Forms (continued)

NATURAL LOGARITHM

Integrating the expression % is just a matter of using the
derivative on /nx in reverse. Since % Inx = % the
following formula must be true.

[Ldx=1nx|+c

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXPONENTIAL

The following derivative rules come from their appropriate
derivative counterparts for exponential functions found in
Chapter 6.

X

fe”dx: e*+ c and fa"dx: la +c
na

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

TRIGONOMETRIC: COSINE AND SINE

The following integral formulas follow directly from their
derivative counterparts found in Chapter 5.

fcosxdx = sinx+ ¢

Arsinxdx: —Ccosx+ ¢

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

TRIGONOMETRIC: SOME OF THE OTHERS
Looking back at the trigonometric derivative formulas in

Chapter 6, you can see that the following integral formulas
result from the process of antidifferentiation.

[ sec®xdx = tanx+ ¢

[ esc?xdx = —cotx + ¢

fsecxtanxdx = secx+ ¢

_rcscxcotxdx = —cscx+ ¢

[3ax=3fLax= 3mn|x|+c

Note: Since you cannot find
the natural log of a negative
number, the absolute value
|n|x| is used.

oooooooooooooooooooooooooooooooooooooooooooooo

fSe"dx = Sfe"dx: Se'+ ¢

Sy = 2

oooooooooooooooooooooooooooooooooooooooooooooo

f(200sx+ 3sinx)dx
fZCosxdx+ f3sinxdx

2fcosxdx+ 3f sinxdx
2sinx+ 3¢ cosx)+ ¢

2sinx— 3cosx +c¢

oooooooooooooooooooooooooooooooooooooooooooooo

f (seczx + secxtanx) dx

= [sec’xdx+ [ secxtanxdx
= tanx + secx +c

= tanx + secx +c¢




First Fundamental
chapter].()

Theorem of Calculus Introduction to the Integral

If the function f is continuous on the closed interval [a,b] and F is an antiderivative of f (that is,
b
F'(x) = f(x) ) on the interval [a,b], then fa f(x)dx= F(b)- F(a)

Another way to write the final result is = [ F (x)]b: F(b)— F(a) . In other words, it says “after finding
the antiderivate, F(x), find the value at the top limit of integration, F(b), then find the value at the bottom

limit of integration, F(a), and then find their difference, F(b) — F(a).”

b
The a and b on the integral sign f S (x)dx are called the limits of integration, and the dx indicates that
a and b are x values; thus the function f{x) being integrated must be a function of x.

b
The expression f . f(x)dxis called a definite integral.

b
Note: The definite integral f [ (x)dx represents a number (a definite value), while the indefinite
integral f(x)dx represents a family of functions (remember the “+ ¢”), and not a definite, or specific,
function.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EVALUATE A DEFINITE INTEGRAL: b b

EXPONENTIAL FUNCTION S, fx)dx= [F(x)] =F(b)=F(a)

Evaluate fl e dx follow the pattern above for problem below
. .

flo e'dx = [ex];= el—e'=e—1

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EVALUATE A DEFINITE s e (m 1 1
INTEGRAL: TRIGONOMETRIC J, cosxdx=[sinx]}" = Sln(g) —sin(0)=75-0=73
FUNCTION

/6
Evaluate f , Cosxdx.




First Fundamental Theorem

of Calculus (continued)

EVALUATE A DEFINITE INTEGRAL: POLYNOMIAL FUNCTION
2
Evaluate [ (2x - 3x%)dx.

. . e . )
@ Find the integral with limits written on the bracket. f—l (2x B 3x2) dx

2
2 3
=[x"=x"]

@ With F(x) = x> -, find F(2) — F(-1). = (2= 2) (1 - (1))

F(2) F(-1)

—(4-8)—(1+1)

=6




The Definite Integral

and Area Introduction to the Integral

One of the applications of the definite integral is finding the
area of a region bounded by the graphs of two functions.

Let f be a continuous function on [a,b] for which f{x) = 0 for all x
in [a,b]. Let R be the region bounded by the graphs of y = f(x) and

the x-axis and the vertical lines x = a and x = b. Then the area, A,

b
of the region is given by A , = fa f(x)dx-

chapterl()

Find the area of the region bounded by the graph of y = 2x, y =0
(the x-axis), and the lines x = 0 (the y-axis) and x = 3.

© Sketch a diagram of the bounded region.

@ Set up the integral with ¢ = 0, b = 3, and f(x) = 2x.

W
<
Il

=]

A
1
1
1
1
1
J
1
J
1
!
1
1
1
1
1

\/

A= S F(x)dx
= fz 2xdx




The Definite Integral

and Area (continued)

© Evaluate the integral.

@ You could have just found the area of the triangle with a base A= 1
of 3 and a height of 6. 2

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

AREA OF A BOUNDED REGION: TRIGONOMETRIC FUNCTION

Find the area of the region bounded by the graphs of y = cos x, y =0,
and x = 0.

@ Sketch a diagram; note that cos x = 0 when x = %

/2

A= fo cos xdx

@ Set up the appropriate integral representing the area of the
given region.

© Evaluate the integral. _ [sinx]ga: sin(%) —sin(0)=1-0=1
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\ Some Properties of the Definite Integral

© If the function fis defined at x = a, then | £ (x)dx = 0.
It simply states that the area fromx=atox=ais0.

There is no work required; the area is just 0.

@ If the function fis integrable on [a,b], then
b a
fu f(x)dx= - fb f (x)dx. This makes sense, since by
switching the order of the limits of integration, you just

switch the order of the subtraction when you evaluate

the integral.

© For a < b < ¢, if the function f'is integrable on [a,b], [b,c],
c b c
and [a,c], then faf(x)dx: faf(x)dx+ fbf(x)dx.

5
J. (Inx+ "+ sinx)dx = 0

[or(xyd=—[ f(x)dx

y
y =flx)
d
D X
a b c

In terms of area,

[Lrdc= [, f(x)ds+ f ()

area of green area of red area of blue

region region region




The Definite Integral

and Area (continued)

O If the function fis 2 2 47
[2cde=12-f xdx= 12[%] - 12(%—%) - 12(%) = 45
integrable on [a,b] 1
and k is a constant,
b b
then [, k-f (x)dx=k- [, f(x)dx
@ If the functions f and g are integrable on [a,b], then f: (% " ex) dx

fz (f(x)i-g(x))dx: fif(x)dxif: g(x)dx.

=ff%dx+fje"dx
=In(e)—In(1)+e'— ¢
=1-0+e—e

=1+e'—e




Second Fundamental

Theorem of Calculus Introduction to the Integral chapterl()

Let f be a function that is continuous on [a,b], and let x be any number in [a,b]; then

L[ ft)di=f(x)-

Remember, if you let F'(x) = f : f (#)dt, then the theorem is just saying that /" (x) = f(x). For example,

g—xf; (Int+e")dr = Inx + ¢ . Justreplace /(1) with f(x).
| —_—

0 )

EXAMPLE 1
X
Find 4 [ (= 2¢)dr. L[ ()= 2tdi =’ 2x or just x*~ 2x
() 7(x)

EXAMPLE 2

X
Find %fs (sint +e'—1*)dr = sinx + ¢*— x°

or just sinx + e*—x°.
EXAMPLE 3
Findifx ﬁ+lntdt_ d [ 1ﬂ+lntdt:\/;+lnxOr1/;+lnx
dxdon dxdas P P e




Second Fundamental Theorem

of Calculus (continued)

SECOND FUNDAMENTAL THEOREM OF CALCULUS: TOP LIMIT IS A FUNCTION OF X
What happens when the top limit of integration is some function of x, other than x itself?

: . d "
If u is a function of x, then Efa f(t)dt=f(u) du .

. d ¥ ' . )
(1] Flndaf4 (Int+e')dr - %_h (lnt+e')dtZ[ln(x3)+€x]'éﬁ
—_— \ ————— der. of
f(l) f(x3) dx3f

or just [lnx3+ e’“B] - 3x7

P) Findd%cf:x(tz-l- sint ) dt ifl:x (>4 sint)dt = [(lnx)2+ sin(lnx)]- %

dx ,

(1) £ (1nx) 1 .




chapter

Techniques of
Integration

his chapter introduces many techniques of

integration, the process of finding the integral
of a function. A lot of these techniques depend upon
your being able to recognize a pattern in the way
the function is, or can be, written—such as in an
exponential function or some power of a function,
or a function whose integral will result in a
logarithmic function.

This chapter introduces integration techniques
such as integrals involving trigonometric functions,
or integrals that result in inverse trigonometric
functions. Sometimes multiple techniques are
required to integrate a given function. The use of
algebraic substitution covers some integrals that do
not seem to fit any other pattern of integration. The
chapter concludes with solving some differential
equations.
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Power Rule: Simple

and General

There are two versions of the Power Rule to consider when finding the integral of a function: the
Simple Power Rule, in which you integrate powers of the term x, and the General Power Rule, in
which you integrate powers of a function of x.

Simple Power Rule l

fx”dx = + P + ¢, where n # —1
EXAMPLE 1
f x*dx .
@ Start with the given expression. f ?2 dx
@ Integrate, applying the Simple Power Rule, by increasing the power of x to 3 »
and then dividing the new term by 3. _ox c
-3
e
3
=5+

EXAMPLE 2
1
fxz dx

@ Rewrite the integrand as a negative power of x. _ f 2dx




Techniques of Integration chapterll

@ Apply the Simple Power Rule by adding 1 to the exponent and dividing the A
new term by the new exponent of —1. _x !
-1
pre
© Simplify the resulting expression. __1.
=—% sl
EXAMPLE 3
f 3\/? dx
@ Rewrite the radical term as an exponential term. f 3‘/? dx
- [
@ Apply the Simple Power Rule and simplify the result. X" + e
-5
3
= %x5/3+ c

© Rewrite the result as a radical term since the original integrand was a _ 3./
. =ZTVXxX tc
radical term. 5




Power Rule: Simple and

General (continued)

EXAMPLE 4
4 2
f<3x = 4x’+ 7)dx
X
@ Rewrite the original rational expression as three f 3x'—4x’+7 dx
separate rational expressions. x?
4 2
=J(2 -t e
X X
@ Simplify each rational expression. _ J‘ (3 PR 7x*2) dx
© Break up the expression into three separate integrals. =3 f oy — f Adx + 7 fx*Z dx
Remember, you can just move the constants, 3 and 7,
outside of the integral sign.
O Evaluate each integral by adding just one “+ ¢” at (X x !
the end. —3<§>—4x+7<_—]>+c

7

_ 3
=x—4dx—5+c

General Power Rule I

If u is a function of another variable, say x, then f w'du = n”+ i

Remember that du is just the derivative of the function «. Another way to view this is

n+1

n+1

+ ¢, wheren#—1.

(orig. funct.)
n+ 1

f(orig. funct.)n- (der. of orig. funct.) = +c




Techniques of Integration chapterll

EXAMPLE 1
6
f (x*+5) 2xdx
@ Identify the u, n, and du for this problem.

@ Apply the General Power Rule: (orig. funct.)nH '—2u’?"~’7:'
ES B _ ) +c
7
e
= %(xz—l- 5) +c
EXAMPLE 2
fo(x3— 7)4dx
@ Although this integral looks like it might be a Simple Power f 20 3 4\
o K X (x 7) dx
Rule situation, let’s move the terms around to be sure. )
= (x - 7) - X dx
@ Unfortunately, the x>dx term is not quite the derivative of the _ % ( 3_ 7)4 32 dx
inside function x* — 7. Since the derivative of x* — 7 = 3x’dx, you v du

can multiply by 3 inside the integral, and compensate for it by

multiplying the outside by %




Power Rule: Simple and

General (continued)

© Now that the integral fits the General Power Rule pattern, you can
just increase the exponent 4 by 1 to a 5, and then divide this term
by 5.

EXAMPLE 3 (USING CHANGE OF VARIABLE OR U-SUBSTITUTION TECHNIQUE)
fxz(x3— 7)4dx

@ After writing the original integrand in a more useful form (it looks f xz( JEI 7)4 dx
like a General Power Rule pattern), you have the expression at right. \
= f(x3— 7) - x”dx

@ Let’s try a different approach by using let u = x"—7, then du = 3x”dx
what is called the “change or variable” or 1 ,
“u-substitution” technique, letting u = the or 3du = Xx"dx
;Itlsrli(zclgif unction and then proceed s shown Notice that you now have all the terms of

the original integrand written in terms of
the new variable u.

© Now substitute the u terms found in Step 3 for the corresponding parts in
Step 2.
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O Move the % out in front of the integral and apply the General Power Rule.

® You need to return to a function in terms of x, (xs_ 7)5

not u. So substitute for = x* — 7 in the result =5 tcorjust— s="+c
from Step 4.

EXAMPLE 4 (WITH LIMITS OF INTEGRATION)

J.Z 5 x2 d
X
O /x+ 1
© Rewrite the integrand by bringing the radical term from the f2 5x2 d
) . X
denominator up to the numerator as an exponential term ° /3 + 1
instead. )
_ 5x d
—Jo 724X
(x + 1)

= fz5x2(x3+ 1)_mdx

® Move some of the terms so that it looks more like a General
Power Rule situation.

= fz(x3+ 1)_1/2-5x2dx




Power Rule: Simple and

General (continued)

©® Rewrite the term 5x? as the derivative of the inside
function x3 + 1 (that is, you need a 3x?, not a 5x?).

Wl
— W=

@ You are finally ready to apply the General Power Rule. 2

@ Plug in the limits of integration to simplify the result. _ %[ Jor 1= S0+ 1]

<90 i)

10 20
=3@)=73
EXAMPLE 5
/2
fo COSs X /sinx dx
© First, note that the derivative of sin x is cos x. Use this fact to fm /— d
set up the integrand in the General Power Rule format. o COSXYSINXAX

—_— du
2 . 1/2,_/%
= fo (sinx) = cosxdx
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@ Dectermine the integral and transfer the limits of
integration.

© Evaluate the last expression by plugging in the limits of
integration.




Integrals of Exponential

Functions

au
Ina

If u is a function of some other variable, say x, then f e"du=e"+ ¢ and f a'du = + c¢. Another

some funct._( that funct.

way to write the first integral above is f e der. of funct.)=e + c. For example,
u du u

Z’S;HH_ g; . 3x
e -3dx=e"+corjuste +c.

EXPONENTIAL INTEGRAL: EXAMPLE 1

f xe* dx
© Rewrrite the integrand in a form that is closer to the f et dx
exponential integral pattern. ,

= f e xdx

= % f gf - 2xd.
Notice how the % and the 2 were used to get the correct o
du term.
@ Use the exponential integral pattern to finish the problem. N

= j e C

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXPONENTIAL INTEGRAL: EXAMPLE 2

Inx
e
f X dx
@ Rewrite the integrand to try to make the derivative of the exponent, Inx, PLE I
X
follow the term e *. Remember that di(lnx) = % ”
X B ——
_ [,mnx, 1
f e 5dx
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@ Apply the exponential integral formula. =e" + ¢

EXPONENTIAL INTEGRAL: EXAMPLE 3 (WITH LIMITS OF INTEGRATION)
9 Jx

fl ‘e/;dx

© Rewrite the integrand so it follows the J.9 e 4
X
Jeome e (der. of funct.)= ™ "% ¢ pattern. " x
9 xlfz
e
= f 1 Fdx
9 12
=), ¢ x"dx
@ You don’t quite have the correct derivative of the exponent yet, , J:
but ‘E)y inserting a /> inside and a corresponding 2 outside, -9 fl P % V2
you’ll get what you need.
©® Complete the formula for the exponential integral and carry _1 [ /;]9
over the limits of integration. -2l
@ Plug in the limits and simplify the result. _ l[e/a _ eﬁ]

= gle’-e]




Integrals of Exponential

Functions (continued)

EXPONENTIAL INTEGRAL-BASE OTHER THAN e: EXAMPLE 1
f25x+7dx

@ You are trying to fit this into the f a"du =

au
Ina
so, you need to have the derivative of the exponent (5x + 7) follow

+ ¢ formula. To do f25x+7 dx

u du
_ l'fZSX”';d;

(9]

the exponential term.

@ Apply the formula for the non e base exponential 12
integral. =5 o | T ¢
25x+7 S5x+7 S5x+7

=52 +cor 'V +cor 32 +c

EXPONENTIAL INTEGRAL-BASE OTHER THAN e: EXAMPLE 2
f x5 dx
@ Try to fit the original integrand into the exponential integral pattern. f 5% dx

u du
.
=1 [5 2xdx

@ Complete the integral using the exponential

integral formula. 1 5§
= 5| 2|+ ¢
2| In5
I of base
5" 5° 5

=—21n5+cor —ln52+cor —ln25+c




Integrals That Result in a
chapterll

Natural Logarithmic Function

If u is a function of some other variable, say x, then f % = In|u|+ c. Another way to write this is
du

/—’_\
der. of funct. _ 3x 3x dx _
u In’ ‘
NATURAL LOG INTEGRAL: EXAMPLE 1
x+1
f X+ 2x—1 dx
@ You want the top to be the derivative of the bottom. Since f x+1 di
2 —
%(x2+ 2x — 7) = 2x+ 2, you just need to multiply the | x +22)(Cx +11)
numerator by 2 and then compensate with a % outside the -2 f 4+ 2x—1 d
du
integral symbol. f (2x +2)dx

x4+ 2x—1
G —

u

u

——
X+ 2x—1

@ Complete the formula, which results in In|u|+ c. {

2711’1 +c

or just %ln‘x2+ 2x—1|+c

or ln(|x2+ 2x — 1|)1/2

orln/x*+2x—1+¢




Integrals That Result in a Natural

Logarithmic Function (continued)

NATURAL LOG INTEGRAL: EXAMPLE 2 (USING A U-SUBSTITUTION)

e”+ 1
f e+ 2x dx
. . . du
@ Since you are trying to make this fit the f 0
pattern, let u = ¢ + 2x and then proceed as

shown at right.

@ Substitute the terms found in Step 1 into the appropriate spots in the
original integrand.

Note: All expressions containing the variable X have been replaced with
u variable terms.

© Now that the integral is in the %, complete the formula with the

In|u|+ ¢ portion.

O You need to get back to a solution in terms of x, not u, so
substitute u = > + 2x.

let u = ™+ 2x, then du = (Zez"—lr Z)dx

du=2(e”+1)dx
or %du = (ezv+ 1)dx

—

= 7[1n|u|]+ c

= %ln|ez"+ 2x‘+ c

or just %ln‘e“+ 2xf ¢
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NATURAL LOG INTEGRAL: EXAMPLE 3 (USING A U-SUBSTITUTION)

3 x3
f2 x*+ 4dx

@ Since you are trying to fit this to a natural log form let u= x* 4,so that du= 4x’dx

du ; — o
f o let u be the denominator, so u = x* + 4. or % du = x*dx

@ Since you are making a u-substitution, you may as well u=x*+4
f:hange j[he original x limits to the new u limits of forx=3—>u=3*+4=85
integration. forx=2—u=2"+4=20

© Make a lot of substitutions, including f3 X’ d
the limits of integration, so that the 2 444 X
original problem changes from x S dx ) )
terms and limits to u terms and limits. BN the lim. of int. are x values

g5 (%)du
= fZO
u

u
1 4
Z'fon

< the lim. of int. are u values

@ Complete the integral, carry over the limits of 1 [1 | |]85
integration, plug them in, and simplify the result. = g,

= H[In85 - m20]

ﬁ’ _ lln<85)
4

20

By changing from x limits to u limits of integration, you
don’t have to change back to x terms at the end.

or other forms, such as

1/4
%ln(%) or lnG—Z) or lnag/g




Integrals of Trigonometric

Functions

If u is a function of some
variable, say x, then:

fcosudu=sinu+c fsecutanuduzsecu+c

[sinudu=—cosu+c  [esc’udu = —cotu + ¢

fseczudu =tanu + ¢ fcsc ucotudu = —cscu + ¢

The integral formulas written
above are just the result of reading
backward the derivative formulas
for the six trigonometric functions.

If u is a function of some variable,
say x, then:

The integral formulas above are a bit more

difficult to verify. One example is shown at right.

For example, since

%(sinu) = cos udu — cosudu = sinu + ¢

Similarly, since

%(sec u) = secutanudu — fsec utanudu = secu + ¢

ftanudu = —In|cosu|+ ¢ or In|secu|+ ¢
fcotudu = In|sinu|+ ¢
fsecudu = In|secu + tanu|+ ¢

fcscudu = In|cscu — cotu|+ ¢

der. of
the funct.
——

fcotudu = f (s:?r?g du =1n

sinu |+ ¢
e —

the funct.

the funct.
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TRIGONOMETRIC INTEGRAL: EXAMPLE 1

f cos Sxdx
@ To make this fit the f cos udu pattern, you need the derivative f cos Sxdx
of 5x, namely 5, to follow the cos5x term. So insert a 5 and |
compensate with a % outside the integral symbol. =5 J (COS éﬁ) ' 5_5[3

@ You can now complete the integral using the right-hand side of the 1.
' = 3sin x+ ¢
formula fcos udu = sinu + c. u

----------------------------------------------------------------------------------------------------------------------------

TRIGONOMETRIC INTEGRAL: EXAMPLE 2
[x?sin(x*)dx
@ Let’s try the u-substitution method on this integral. But first, f sin ( x3) dx

rewrite the integrand so it looks more like the f sinudu pattern. f . ( 3) 2
= Jsin(x’)-x"dx

@ Let u = x° and then find du. let u = x°, then du = 3x”dx

or %du = x*dx




Integrals of Trigonometric

Functions (continued)

(3] g?ebpstlitute the expressions from Step 2 for the appropriate terms in _ J‘ sin ( x3) 2 dx
= f sinu - %du
= % . f sinudu

@ You can now complete the f sinudu =— cosu+ ¢ formula and 1
= 3(—cos u)+c

= —%cos(ﬁ) +c

replace the u with x? to finish the problem.

TRIGONOMETRIC INTEGRAL: EXAMPLE 3
f sec 3xtan 3xdx

@ This integral looks like the f secutanudu = secu+ c form; f sec 3x tan 3xdx

you need a 3 to be the derivative of 3x. 1
= gfsecéﬁtanég-S_ch

u du

@ Complete the right-hand side of the red formula
above.

= %sec§£+c or just %sec3x+ c

u
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TRIGONOMETRIC INTEGRAL: EXAMPLE 4

/2 .
sinx
dx

IO 1+ cosx

@ This looks like a natural log integral form,
because the top is almost the derivative of the
bottom. Let # = 1 + cosx and then find du. At
the same time, let’s change from the given x
limits of integration to the new u limits.

@ Replace all x terms and limits with
their appropriate u term counterparts.

© Notice that the upper limit of integration is smaller than the lower
limit. Since you are probably used to having the upper limit bigger
than the lower limit, switch the limits and also take the opposite of the

integral.

@ Complete the natural log integral form with the right-hand side of the
formula f du_ 1, \u|. (The “+ ¢” was dropped because there are limits

u
of integration involved in this problem.)

@ Plug in the limits and simplify the result.

with u =1 + cosx :

forx=%—»u=1+cos(%>=l+0=l

forx=0 ->u=14+cos0=1+1=2

/2 :
Sinx dx

fO 1+ cosx

2 .
™ sinxdx

= fo T+ cosx &% terms and x lim. of int.

l —
= f2 Lilu <u terms and u lim. of int.

1

=-[-1 4

2
-1 4

2
1

[ln|u|]

In|2|= In]l|
In2—1In1
In2-0

= In2




Integrals of Trigonometric

Functions (continued)

TRIGONOMETRIC INTEGRAL: EXAMPLE 5

4
cos’ x
f cscx dx

@ In searching for an appropriate integration technique to use here, f cos*x d
the one that first comes to mind is a natural log. But in this case, cscx 4X
the top is not the derivative of the bottom, so the natural log _ f cos* x - dx
, ) " . . cscx
won’t work. Let’s try rewriting the integrand to see if some other
technique presents itself. = f cos® x - sinxdx

= f(cosx)4- sinxdx

@ Now it looks like a General Power Rule pattern, but the “_n du
derivative of the inside function, cos x, is actually —sin x, = _ f (cosx)* - (—sinx)dx
so we need a negative sign to get the General Power Rule
just right.

n+l
©® Complete the General Power Rule formula: f u"du = n” T1te¢ P S
(cosx) ?
== 5 +c
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TRIGONOMETRIC INTEGRAL: EXAMPLE 6

[ sec* xtanxdx

O Let s use a blt of an unusugl strategy on this integral. First, f sec’ xtanxdx
rewrite the integrand, making the power of sec x more A
obvious. = f (secx) -tanxdx

@ This almost looks like a General Power Rule pattern, except j‘
that the derivative of sec x is sec x tan x. So “borrow” a sec x
term from the (sec x)*. = f

3
secx) - secxtanxdx

(
(secx)3 -secxtanxdx

n+1

© Now that your integral fits the f u"du= nu 11 ¢ pattern, ,(;1‘;)%1
complete the right-hand side of the General Power Rule =—7x t¢
formula. | el
= rsec’x+ ¢

|
&




Integrals That Result in an

Inverse Trigonometric Function

If u is a function of some variable, say x, and a is some constant, then du .u
f ﬁ = arcsm5+ C
a—u

du _ 1 u
fa2+u2—5arctan5+c

du 1 |ul
fm—aarcsec7+c

At right are brief [ S
examples of each f 3dx f 3dx = arcsin L + ¢ or arcsin 2% + ¢
of these integral /25 — 9x> 5 —(3x)’ 2 S
formulas. v = ‘
du JHZ ,
10xd. 10xd. 1 5 1 5
f 49 +x2gcx4 = f - +265;C2)2 = 7arctan% +cor 7arctan% +c
du ,_L
5 5
f odx 2dx 2=%arcsec%+c=%arcsec%+c

5x/25x— 16 éﬁ/(5x)2_4

Nl a a
a

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

INVERSE TRIGONOMETRIC INTEGRAL: EXAMPLE 1

J‘L
/25 —4x®

© How do you determine which inverse trigonometric form to use? In f dx
this case, the denominator has a radical that contains a constant /25— 4x°
minus a function square, as in ,/a”— u” . So this is an arcsin form. S —
2

You need to write the integrand in that form.
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@ You're close to the correct form, except that the numerator is not e
. . _ 1 2dx
the derivative of the u term, 2x. Since i(2x) = 2, you need to =0T
dx 2
. . . 50— (%)
insert a 2 on top of the integrand and compensate with a /> «
outside.

©® Now the integral fits the left side of the formula u

-~

1 2x 1 2x
f /7 = arcsin 4+ ¢, so just complete the = 5|arcsin |+ ¢ or yarcsin %+ ¢
a—u -

right-hand side.

a

INVERSE TRIGONOMETRIC INTEGRAL: EXAMPLE 2

x’dx
16+ x°

@ If this is an inverse trigonometric integral, it has to be arctan, because x2dx

there is no radical in the denominator. Rewrite the integrand to try to get 16 + x°

it into the arctan pattern. 2 dx

= 2
4>+ ( x3)

@ Let’s use the u-substitution this time—it appears that let u = x°, then du = 3x” dx

1 = x>. Find du also.

du _ >
or 3—xdx




Integrals That Result in an Inverse

Trigonometric Function (continued)

© Substitute the u terms from Step 2 for the appropriate x terms in _ x2dx
Step 1. 4%+ (X3)2
du
=[5
42+
_1 du
39 47+ u?

@ With a = 4, this now fits the arctan formula: 1

[Z arctan %] +c

f azc_li_uu2 — %arctan % + ¢. Now complete the right-hand side of

the formula.

Lz arctan% +c

[y

@ Last, make the substitution of 1 = x° to

complete the problem by returning to x terms. 1 ! ’

= ﬁarctanxz + c or %arctanxz +c




Combinations of Functions
chapterll

and Techniques

You will occasionally encounter an integral that by itself cannot be integrated. In some of these
cases you will have to first alter the form of the integrand in order to use multiple techniques to
complete the integration process.

“Combo” Technique: General Power Rule and an Arcsin l

x+4
f‘/_ix

@ This does not fit any of the forms you have studied
so far. Split the original integral into two separate
integrals to see if that helps.

9— x? - x’

@ The blue integral is in a General Power Rule _ f (9 B xz)_ v edit 4- f dx
form, and the red integral is in an arcsin form. 32 (x)2
Modifying the integrands further will make
these forms more apparent.

. . 1 2\ 12 dx
© The first integral needs a -2 inside =—5" f(9 —X ) “(—=2)xdx +4- f ( )2
1 37— (x

(with a —5 outside); the second

integral’s form is fine.

O Use the General Power Rule for the blue and an _ <9 N ) ] 4
arcsin for the red integral. 2

= _f‘/ — x>+ 4arcsin% +c

. arcsin%] +c




Combinations of Functions

and Techniques (continued)

Regarding “Look-Alike” Integrals l

The integral forms in each ¥’ X ¥’ X
colored pair listed at right f 9+ x* dx and f 9+ y* dx f /9 + x* dx and f 9 — y* dx
are frequently mistaken for

one another.

@ Take a closer look at the red pair as you rewrite

3 .x
their integrands to reveal the particular technique f 9 X dx f 9+ x* b
appropriate to that integral. T X
4 79+ x* (x )
natural log 1 2x
=5- dx
2794 (x)
tan
@ Take a closer look at the blue pair 3 ¥
as you rewrite their integrands to f ﬁ f 9_ o dx
reveal the particular technique roax
appropriate to that integral. = f (9+ x4)7 " 3 dx = f X  dx
1 12 5 9- (xz)
=Z-f(9+x) “4x”dx
- v P f __2x d
general power rule - 2 2 X

arcsin




Algebraic
Substitution Techniques of Integration chapterll

Sometimes you encounter an integral that doesn’t seem to fit any of the more common integration
forms. In this case, the u-substitution technique may be useful.

EXAMPLE 1
fx Jx— ldx
© Let u be the most let u = /x — 1, or in another form # = (x — 1) to be used later

complicated part of

: . then u’=x — 1
the integrand; in this

case, lety =./x — 1. sothat u’+ 1 =x
Now find dx and solve and 2udu = dx

for x in terms of .

@ Now you can make a large series of substitutions, plugging data f v/ x— 1dx

from Step 2 into the original integral.
= f(u2+ 1)- u-2udu

© Expand and simplify the integrand in Step 2. = (2+ 1) 20 du

= 2-f(u4+ u*)du

O Use the Simple Power Rule on both terms of the integrand. R
=2 [g + ? +c

2 2

= §u5+§u3+c




Algebraic Substitution

(continued)

O You need to replace the u terms with their 2 i\ 2 12\*
. o == 1") +5(x-1)") +e
appropriate x terms, this time using the
S 172 . 2 s 2 32
substitution # = (x — 1)~ found in Step 1. =5(x—1) +3(x—1) +c

or in another form
6 s2 10 32
=15(x = 1) +1s(x—1) +c
2 312
={5(x—1) [3(x—1)+5]

=&(x—1)"(3x+2)

EXAMPLE 2
1
X
———dx
e
© Let’s work Example 2, but this letting u = /x + 3 forx=1lu=,/1+3=2
time change the x limits to u

limits. Letting u =,/ x + 3,
proceed as before in finding dx
and x in terms of u.

then u’=x+3 for x=-2wu=/-2+3=1
so that u”’—3 = x
and then 2udu = dx




Techniques of Integration chapterll

@ Make your long list of substitutions ! X . . .
into the original integral, changing f -2 v+ 3 dx < this has x lim. of int.
all x terms and limits to u terms and 5
limits. —f2—<”_3>-2,4d t d u lim. of int
=) u < u terms and u lim. of int.
2
=2 f , (uz— 3)du

© Integrate and then plug in the « limits.

LTIP

If we had not changed from the x limits to the « limits
of integration the computation at the end of the problem
would have been much different — yet the final answer
would be the same. Try it and see what happens.




Solving Variables Separable

Differential Equations

When you find the derivative of some function, the resulting equation is also known as a

2
differential equation. For example, % = xy + Tx, 0r y'= x7 ,or (3 +x%)y’—2xy =0. Our goal in this
section is to determine from which original equation, or function, the differential equation was

derived.

GENERAL SOLUTION 1

Using this technique, you will separate the variables (hence the name for the technique) so that all the y
and dy terms are on one side of the equation and all the x and dx terms are on the other. Then, by
integrating both sides, you will arrive at an equation involving just x and y terms.

2
Solve the differential equation % = xT and write the solution in the form . . . = some constant.”
@ Cross-multiply to get the dy and y terms on the left side and the dx and x dy  x?
terms on the right. -y
ydy = x"dx
@ Now Fhat you have separated the variables, integrate both sides of the fy dy = f 2 dx
equation. g \
y _x
Notice that is only one “+ ¢.” If you were to put “+ d” on the left and 5 =3 Tc
“+ m” on the right, they would eventually combine to make some
third constant “+ ¢.”
© Put all the y and x terms on the left (the answer form y’ 3 y’ 3

that was requested). 2
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O If you chose to, or if it was requested of you, you could
eliminate the fractions by multiplying all terms of the equation
by 6.

m = 6c is just another constant.

GENERAL SOLUTION 2 p
Y

For the differential equation T =Xy +3x, write its solution in the form “y=. ...

@ This problem takes a little more creativity to get the variables
separated.

@ Multiply both sides by dx.

© Divide both sides by y + 3, and the variables will finally be
separated.

O You're ready to find the integral of each side.

-------------------------------

2

%=xy+3x

d
d—zzx(y+3)

dy =x(y + 3)dx
dy _
m—xdx




Solving Variables Separable

Differential Equations (continued)

@ Rewrite the last natural log equation as an exponential one instead, ‘ y+ 3‘ =t

and then simplify the right-hand side. .
‘y + 3‘ =e e

TIP | U
If In y = x, then y = e*. ‘)""3‘:6’)6%2'”1
‘y + 3‘ =m-e" 2
0 Get rid of the absolute value symbol on the left and then simplify y+3=tm.e"*?
the constant on the right. y=ke 23
GENERAL SOLUTION 3
Solve the differential equation (3 + x2)y’— 2xy = 0 and write the solution in the form “y=....”
© Add 2xy to both sides and then replace the y’ with % (3 + x2) y—2xy=0

(3 + xz)y'= 2xy
(3 + x2)% = 2xy

(3 + xz)% = 2xy

@ Multiply both sides by dx. (3 + x*)dy = 2xydx
© Divide both sides by y. (3+ xz)% — xdx
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@ Divide both sides of the equation by 3 + x°. dy 2x
-~ = 2 dx
Yoo 3+x
@ With the variables f dy _ f 2x g
separated, you can Vo 34y’ *
integrate both sides. ln‘ y‘ =1n|3+x|+c

In|y|=1n(3+x") +c Note that 3 + x” is always positive.

O There are two ways to deal with this double natural log In ‘ y‘ =1In (3 + xz) +Ine*
situation. We’ll use one method here and then demonstrate
the other method later in the problem.

Replace the ¢ with Ine“.

@ Use your log properties to rewrite the right-hand side of the In ‘ y‘ =1In [( 3+ xz) . eC]
equation as a single natural log.

@ Since the natural log of left quantity equals the natural log of the ‘ y| = (3 + xz) e’
right quantity, you can get rid of the /n on both sides. I
=(3+x%)-
TIP | b= m
e° is just another constant, say m. ‘y | - m(3 tx )
© Take out the absolute value symbols on the left and insert a £ sign y== m(3 + xz)
on the right. I
EiT 1 =k(3+x
TIP ; y=k(3+x)

+m is just another constant, say k.




Solving Variables Separable

Differential Equations (continued)

(@ Here’s the promised f dy f 2x _dx

alternate solution,
beginning with Step 5. ln‘y‘ _ ln‘3 +x2‘+ c

In|y|=1n(3+x")+c Note that 3+’ is always positive.

@ If m =1, then ¢ = ¢" must also be true. So in our case, In

e |yl — eln(3+x )+e
eleft side of equation — eright side of equation
- . Inly| — InG+x’ ).
e =e e
|
eln|y| _ eln(3+x) m
e nly| — m'eln(3+x)
@ Using the natural log property ¢ * = x, simplify y=m(3 +x?) orjusty =m(3 + x?)

both sides of the equation.

Particular Solution /

The general solution of a differential equation will always have some constant in the solution. If you are
given additional information, often called an initial condition, you will be able to find a particular value
of the constant, and thus a particular solution to the differential equation.

Given the initial condition of y(1) = 3, find the particular solution of the differential equation yy'— 3x = 0.

@ Replace the y’ with %

dy
ya’x 3x=0
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@ Add 3x to both sides.

© Multiply both sides by dx to separate your variables.

O Integrate both sides.

@ Multiply both sides by 2 and simplify the new constant on the
right side.

0 Using the initial condition that y(1) = 3 (that is,
when x = 1, then y = 3), you can find a particular
value of the constant m and thus a particular
solution to the differential equation.

yvdy = 3xdx

fydy=f3xdx
fydy=3-fxdx

y’ x’
7:3'7+C

y'=3x>+2c
|/
y'=3x+m

You just found the
general solution.

y?=3x*+m
(3)=3(1) +m
—-6=m

Therefore, the particular solution is
y?=3x2-6.




Applications of
Integration

he chapter opens with integration of functions

related to the motion of an object and then
moves on to finding the area of a region bounded
by the graphs of two or more functions using an
appropriate integral.

Revolving a bounded region about a given
vertical or horizontal line produces a solid the
volume of which you will be able to compute using
an appropriate integral. Three methods for doing
this are introduced: disk, washer, and shell.



Acceleration, Velocity,
chaptcr12

Hgs
and Position Applications of Integration
In Chapters 3—6 on derivatives, you found a If acceleration function is a(7), then
way to move from the position to the: velocity velocity function is v (1) = f a( ) dt, and
and then on to the acceleration function by o o N
differentiating. Now you will reverse the position function is s (1) = Jv ()dr.

process, going from acceleration back to the
position function by integrating.

----------------------------------------------------------------------------------------------------------------------------

MOTION PROBLEM: ACCELERATION TO VELOCITY

The acceleration function, a(7), for an object is given by a(7) = 367 — 1687 + 120. If v(1) = 28, find the
velocity function, v(7).

@ Beginning with the acceleration function, a(t)= 361> — 168¢ + 120
find its integral to get the velocity function.
srio g Y v(t)= fa(t)dt = [ (361°— 1681 + 120) i

36t _ 168t
v)="3-—"2
v(t)=12t"— 84+ 120t + ¢

+ 120t +c¢

@ Using the given data that v(1) = 28, substitute | D=12(1)=84(1 '+ 120(1) +
for r and 28 for v(1) to solve for the constant c. vl(l ) M) ) ()+e
28=12—-84+ 120+ ¢
—-20=c
© Replace the ¢ with —20 in the velocity function. v(t)= 12— 841>+ 120t + ¢

U
y(t)= 12— 841>+ 120t — 20




Acceleration, Velocity,

and Position (continued)

MOTION PROBLEM: VELOCITY TO POSITION
If s(1) =38 and v(r) = 121 — 847 + 1201 + 20, find the position function, s(7).

© Integrate v(7) to get 5(1). s(t)= [v(r)dr = [ (12— 84r*+ 1201 +20) dt
4 3 2
s(t)= 1%{ - 8‘;’ + lzgt +20r+k

s(t)=3t"—28+ 60+ k

Note: Since c is used for the constant in the
problem above, k is used here so that there is
no confusion about which constant goes with
which problem.

@ Use the data s(1) = 38 to make appropriate D=3(1) =281V +60(1) + k
substitutions and then solve for k. g (ll) M) M) M)
38=3-28+60+k
3=k
© Replace the k with 3 in the velocity function. s(t)=3t"— 28+ 60+ k

l
s(t)=3t"— 28+ 60t + 3
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If the acceleration function of an object is given by a(7) = sin 7 + cos ¢ and v(1) = 2, while s(rt) = 1, find

the position function s(7).

© Find the velocity function v(7) by integrating

the acceleration function «a(7), and then find the
position function s(7) by integrating the velocity

function v(7).

@ Use the data v(t) = 2 to find the value of c.

© Find the position function s(7).

O You are given additional data, s(m) = 1,
which will allow you to find the value
of k.

v(t)= fa(t)dt = f(sint+cost)dt
v(t)=—cost+sint +c¢

v(m)=—cosa+sinT + ¢
l
2=—(-1)+0+c
I=c
therefore v (7) = —cosz +sint + 1

s(t)=fv(t)dtzf(—cost+sint+ 1)dt
s(t)=—sint cost r+Kk

s(n)=—sint—cosm+ m+k
U
1=—(0)—(-)+mn+k
—n=Kk
thus s(7)= —sinsr —cotr +1—m7




Area between Curves:

Using Integration

There are two scenarios to consider when finding the area of the region bounded by the graphs of
two or more equations: Either the graphs of the equations do not intersect or the graphs of the
equations intersect at one or more points. You will use integration to compute the area of the
bounded region.

@ The region, the area of which you are y
trying to compute, is bounded by the
graphs of two functions that do not
intersect v,= f (x) and y,= g(x) and
the graphs of two vertical or horizontal
lines (x = a and x = b).

@ Notice the thin green “representative” area of “rep.” rect. = height - base = (y, — y,)dx
rectangle. Its base is a small change in
x, typically labeled as Ax, or just dx. Its
height is the difference in y coordinates
for the two functions—in this case y, — y,.

© If you were to add the areas of an infinite number of very thin
such rectangles, you could find their sum by using just an
integral.

Area = fa (yl—yz)dx
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O If you substitute y, = f(x) and y, = g(x), you end up with o
an integral representing the area of the region bounded Area = f a (f (x) =g (x )> dx
by the graphs of the two given functions and the two
given vertical lines. Notice that f(x) is the top function

and g(x) is the bottom function in
the diagram shown in Step 1. (See
p. 250.)

@ The region, the area of which you y = h=y,~y;
are trying to compute, is bounded =12
by the graphs of two functions _
y1=fx)
w=/(x)and y,= g(x), which N 1
intersect at points where x = a, x = b, pd : !
and x = c. ! T ! T = g(x)
| dx | de
X = o——>X
a b c
@ Each green shaded region has a thin green area of left rep. rect. = (y, — y,)dx
rectangle with base dx, but they have different area of right rep. rect. = (y, -y )dx

heights. The one on the left has a height of y, —y,,
and the one on the right has a height of y, -y ;
notice that in either case, the height is just the top
function minus the bottom function.




Area between Curves:

Using Integration (continued)

© If you were to add the areas of total area = area of left region + area of right region
an infinite number of very thin 5 .
rectangles in each region, their = fa (yl— yz)dx + fb (yz_ yl)dx

sum could be found by the sum
of two integrals.

Make the substituti b c
o v, i;(atc)i;zl;l ;ztliu;((;gsto total area = fa (f(x) — g(x))dx + fb (g(x) —f(x))dx

get the area in terms of the
given functions and the x
coordinates of the points of
intersection of their graphs.

EXAMPLE 1

Find the area of the region bounded by the y
graphsof y=x,y=0, x = 1, and x = 4.

yp =X

R
X

© Find the area of the green representative rectangle. area rep. rect. = hb = (y, — y,)dx
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@ If you find the sum of lots of these rectangles, you get an integral
that represents the area of the green shaded region.

© Since the term at the end of the integral is dx, the integrand can
contain x variables and/or numbers. Substitute y, = x* and y, = 0
and then simplify.

O Evaluate the integral to get the area of the green shaded
region.

EXAMPLE 2
Find the area of the region bounded by the graphs of y = 3x — x> and y = 0.

@ You have not been given the limits of integration, so you will have to find
them by setting the equations equal to one another and then solving for x.

4
A= 1xzdx
1" 64 163
X _64_1_63
A=13]=37373
A =21
3x-x2=0
x3-x)=0

x=0,x=3




Area between Curves:

Using Integration (continued)

@ Sketch a graph showing the bounded Yy
region and a representative rectangle
indicating its base and its height.

© Write the formula to find the area of the representative rectangle.

O Set up the integral that represents the sum of lots of these
rectangles, and thus the area of the green shaded region.

@ Substitute the appropriate x or number equivalents for the
terms y, and y, and simplify (since there is a dx term at
the end, you need all x or numerical terms in the integrand)
y,=3x-x"and y,=0.

0 Evaluate the integral, finding the area of the desired
bounded region.

N
> h=y-y,
y, y,=0
0 } 3\ o
dx

area rep. rect. = hb
= (y 1 Yy z)dx

3

A= fo (yl—yz)dx




Applications of Integration

EXAMPLE 3

Find the area of the region bounded by the graphs of y = x* — 9x and y = 0.

@ Find the x coordinates of any points of intersection of the ¥ -9x=0
graphs of the two functions. This will also aid in sketching x(2=9x) =0
the graph of the first function. X+ 3)(x—3) =0

x=0,x=-3,x=3

Note: These will serve as
your limits of integration.

@ Sketch the graphs of the two y
functions, indicating the bounded
regions whose area you are going to
compute. Also, show a representative h=y=y,
rectangle for each region, along with
its base and appropriate height. dx x| = x3-9x

=0
dx Y2
h=y,=y
© Find the area of the representative rectangle for area of left rep. rect. = (y, — y,)dx
each region and then find their sum. area of right rep. rect. = (y, —y,)dx
O Set the sum of the two integrals: one to _ .
find the area of the green shaded region total area = f_3 (M= y2)dx + fo (2= 1) dx

from x = -3 to x = 0, and the other from
x=0toxto3. Notice that for each integrand, it’s the top

function minus the bottom function within
each interval of integration.




Area between Curves:

Using Integration (continued)

© Substitute y, = x* — 9x and y, = 0 and then simplify each integrand.

Now the integrands will
match variables with the dx
term at the end of each
integral. All expressions
will be in terms of the
variable x.

0 Evaluate each integral and
find their sum. This will be
the sum of the areas of the
two green shaded regions.

total area = f:((xS— 9x) - O)dx + fz <0 — (x3— 9x)>dx

= [ (P = 9x)dx+ [ (—x'+ 9x) dx

0 3
total area = f_3 (x3— 9x)dx + fo (—x3+ 9x)dx

Xt oox? Cxt o’
NN et
—lo_(81_81 _81 ., 81\_
—[0 <4 2>+[( 4+2) o]
81

REPRESENTATIVE RECTANGLE IS HORIZONTAL
Occasionally you encounter a situation in which you have to draw the representative rectangle

horizontally rather than vertically.

@ The region, the area of which you are
trying to determine, is bounded by the
graphs of x, = f(y) and x, = g(y), which
intersect at the points with y
coordinates y = ¢ and y = b.

Note: The height of the representative
rectangle is just the right function minus
the left function for the shaded region.

Yy X =8(y)

x; =f(y)

ae----




Applications of Integration

@ The green representative rectangle has a base area “rep.” rect. = (x, — x,)dy
of dy and a height of x, — x,. Its area is found
at right. (Notice that the representative
rectangle has a horizontal orientation rather
than the usual vertical orientation. If you try to
make the rectangle vertical, at the left end of
the bounded region, the height would be x —x =0.)

© If you add up an infinite number of these very thin Area = —x)\d
rectangles, their sum can be found by the integral at right. red f“ (x2 xl) Y

@ Substitute x, = f(y) and x, = g(y) so that the variables Areq =
within the integrand match the dy term at the end of the red f“ (g (y )_ f (y )) y
integral.

EXAMPLE 4

Find the area of the region bounded by the graphs of x = y* and x = y + 2.

@ Find the x coordinates of any points of intersection; these will V=y+2
also serve as your limits of integration. Y-y-2=0

O+Dy-2)=0

y=-1l,y=2




Area between Curves:

Using Integration (continued)

@ Sketch the graphs of the two functions,
indicating the bounded region the area
of which you are going to compute.
Also show a representative rectangle
for the region, along with its base and
appropriate height.

Note: Notice that the height of the

green horizontal rectangle is the right
Junction minus the left function.

© Write the area of the green representative rectangle.

-1e¢-

area “rep.” rect. = (x,— x,)dy

O Set up the integral to find the area of the green shaded region. ?
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@ Since you have a dy term at the end of the integral, you 2 5
need to make the substitutions x, = y* and x, = y + 2, so A=l <(y + 2) R )dy
that the integrands contain just y terms and numerical 2 R
values. A=, (y +2-y )d}’

0 Evaluate the integral and simplify the resulting ¥ ¥ ’
computation to find the area of the green shaded A= [7 + 2y — 7]
region. -1




Volume of Solid of Revolution:

Disk Method

The region bounded by the graphs of y = f(x),y =0, x = a, and x = b is revolved about the x-axis.
Find a formula for computing the volume of the resulting solid.

© Atright is a figure showing the bounded y
region with three thin red rectangles.
v
rd y =fx)
L |
a b y=0x
@ After the bounded region is revolved (or Y

rotated) about the x-axis, it creates a solid
as shown at right. Notice that each thin
red rectangle traces out a thin red disk
(or cylinder).

-

Q




Applications of Integration

© The “representative” disk toward the center of the solid has a V= nwr’h
height of dx and a radius of r = y = f{x). Using the formula for the
volume of a cylinder with radius r and height /4, you end up with a
formula for the volume of the representative disk. or with all x terms

Vig= T (f (x)>2dx

Vg = Ty *dx

O If you were to find the sum of the volumes of an infinite number Ve fb v d
of very thin disks, an integral could be used to do that =), Tyax
computation. or

@ When doing a specific problem, it is not y
necessary to try to sketch the three-
dimensional figure. A suggested sketch is
shown at right.

\—
S

TIP |

The thickness of the representative disk is
really the height of this thin cylinder, in this
case h = dx. The radius of the disk is
always measured from the axis of
revolution to the graph being rotated.

W
=

:
|

—>\

=
I
&




Volume of Solid of Revolution:

Disk Method (continued)

0 The appropriate work would be shown as demonstrated to the V= Trh
right. 2
= my dx
V= Ty’ dx,
I then volume of solid is
|
Make sure that all variables match (x and dx or y and dy) V= f LU y2 dx,
before attempting to integrate. or to get all x terms,

V= f: n(f(x))zdx

EXAMPLE 1

The region bounded by the graphs of y = x?, y =0, x = 1, and x = 2 is revolved about the x-axis. Find the
volume of the resulting solid.

© Sketch a side view of the revolved

region. Label the height (looks like the
thickness from the side) and the radius /

of the representative disk.




Applications of Integration

@ Find the volume of a representative disk. V. =Trh
= Ty’dx
©® Now you are ready to set up the volume integral. Ve J-f ny’dx
Notice that the y terms were substituted with appropriate x terms and 2 2
the constant T was moved out in front of the integral. V= f T (x ) dx
2
V=mrn f xtdx
@ Evaluate the integral and plug in the limits of integration to e 30
compute the volume of the solid that results. V=mrn T T (T - g)
1
_3ln
V=73
EXAMPLE 2

The region bounded by the graphs of y = x?, y = 2, and x = 0 is rotated about the y-axis. Find the volume
of the solid that results.

@ Sketch a side view of the figure showing
the height and radius of the
representative disk.




Volume of Solid of Revolution:

Disk Method (continued)

@ Find the volume of the representative red disk. V. =Trh
= nx’dy
© Set up the appropriate volume integral, noting that the dy at the end ot
means that the integrand must eventually be in y terms also. V=J,mx"dy
2
V= [, mydy
2
V=r f o ydy

O Integrate and substitute the limits to find the volume of the NE
solid. T :ni_g
2 |o 2 2
V=2n
EXAMPLE 3

The region bounded by the graphs of y = %, v =0, and x = 2 is revolved about the x-axis. Find the
volume of the resulting solid.

@ Sketch a side view of the solid. Label y
the radius and height of the
representative disk. Note that there is
no right hand limit of integration, so in
this problem it will be +°.

base = dx




Applications of Integration chapter12

@ Find the volume of the red disk. V. =Trh

© Set up your volume integral and then substitute to get all x terms.

O Integrate and then plug in the limits to get the volume e 1 1
of the solid. V= 75[_7]2 = n(‘a‘(‘z))
It’s interesting that the area of the region is finite, v==X
even though its right hand limit of integration is 2

infinite!




Volume of Solid of Revolution:

Disk Method (continued)

EXAMPLE 4
(axis of revolution not x or y axis)

The region bounded by the graphs of y = x?, y = 0, and x = | is rotated about the line x = 1. Find the
volume of the solid that results.

© Sketch a side view of the solid, noting X
the height and radius of the horizontal
representative red disk. Notice that the

[y

o |

z)eft hand limit of integration is just x = y D!
y=x2 [\
TIP | N
X X .
Be sure to measure the radius from the — 1 A
axis of revolution back to the original & 7 >3 h=dy
curve. / I )
/ ® "o
0 B 1 y=0
r=1-x
— — _J
1
@ Find the volume of the representative red disk. Viw= nrh
= (1 —x)’dy

© Set up the integral used to find the volume of the solid.

V=f:)7c(1—x)2dy
V=th:)(1—x)2dy
V=7tf:)(l—2x+x2)dy
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O Since there is a dy at the end of the integral, all terms before "
that must in terms of y also. With V= nf —2yTty dy
y = x°, you also have y"’=
@ Last, integrate and then plug in the limits. 27
V=r|y—2y"+%
R
_ _4 1)
=T (1 3t 2) 0]




Volume of Solid of Revolution:

Washer Method

The region bounded by the graphs of y, = f(x), y, = g(x), the x-axis(y = 0), x = a, and x = b is
revolved about the x-axis. Find the volume of the resulting solid.

@ Sketch the bounded region. y
y=flx)

y=g(x)

.

S |---
w---

@ Try to envision the three-dimensional y
solid with a “hole” through it, which
results from rotating the bounded
region about the x-axis. It sort of looks
like a candle holder on its side. Notice
the thin red “washer” with the hole in
it.




Applications of Integration

© Let’s look at just the thin red washer for a moment. It has an
inner radius of r and outer radius of R, with a height (or

thickness) of /.
Derive a formula for the volume of the thin red washer. (@
\
| R
TIP | r
R is the radius of the disk and r is the
radius of the hole.
h
washer = disk Vhole
= tR*h — tr*h
Vwasher = TC(R2 - rz)h

O In the process of doing a problem with a “hole,”
it is not necessary to try to sketch the three-
dimensional version. Just sketch a side view
and label the big R, the little 7 and the height /.

1

1

1

1

1

TIP | ;

Both the large radius R and the small radius » must E. ------

be measured from the axis of revolution; R from the ! S
axis to the outer curve and r from the axis to the L

inner curve. S.l




Volume of Solid of Revolution:

Washer Method (continued)

O Substitute the appropriate pieces into the volume Vaer= T (R’ = rz) h
of the washer formula.

O If you were to add the volumes of an infinite number fb 2 2 J
of thin red washers, you could compute that sum by T (( ) N ( ) ) x
using an integral.

@ With the dx term at the end of the integral, you need ot 2 2
to make sure that the integrand has only numerical or v=J o ((f (x )> - <g (x)) \)dx

X terms.

EXAMPLE 1

The region bounded by the graphs of y = x and y = x* in the first quadrant is rotated about the x-axis.
Find the volume of the solid that results.

© Sketch a side view of the solid; draw in a y vy =x3
representative red washer and label its big and
small radius as well as its height.




Applications of Integration chaptcr12

washer

@ Write the formula for the thin red washer’s volume. Vyuier=T(R*=7*)h

V

washer: T ((y2)

© Write the appropriate integral to compute the volume of the ! 2 2
solid. v= L) - () )dx

v=nf,((5:) = (n))ax

O Replace each y term with its corresponding x term ! 2
equivalent. v=nf, <(x) - (x3)> dx

V= nf; (xz—x6)dx

@ Integrate, evaluate, and simplify to get the volume of the PR
desired solid. V=m|Lt - X
37,
—al(lo1)




Volume of Solid of Revolution:

Washer Method (continued)

EXAMPLE 2

The region bounded by the graphs of y = x°, the x-axis, and x = 2 is revolved about the y-axis. Find the
volume of the resulting solid.

© Sketch a side view of the solid; draw y
in a representative red washer, and
label its big and small radius as well as
its height.

TIP |

The large raduis R is fixed at 2. Only
the small radius r is changing.

@ Create a formula for the volume of this particular thin red V. iher = T(R> = )R
washer. Vo =m22-x)dy
Vwasher = TC(4 a xz)dy
© Set up the volume integral that enables you to compute the V= f‘o‘ - ( 4— xz) dy

volume of the resulting solid.

@ As usual, make sure that the variable within the integrand matches _ 4—v\d
the dy at the end of the integral. v=nf,(4-y)dy



Applications of Integration

@ Integrate and evaluate the result using the limits of integration.

V = mn[dy -],
= 1[(16 — 8) — 0]
V=_8n

EXAMPLE 3

The region bounded by the graphs of y = x?, y =0, and x = | is rotated about the line x = 3. Determine

the area of the resulting solid.

@ Sketch a side view of the figure; label

both large and small radii, as well as
the height of the thin red washer.

L TIP

Measure large radius R from the axis
of revolution (x = 3) to the outer curve
(y = x?). The small radius r is measured
from the axis of revolution (x = 3) to
the inner curve (x = 1).

@ Write the formula for the thin red washer’s volume, Vv
substituting for appropriate parts labeled on your figure.

w

V.

w

asher ™~

asher —

=n(R*~r*)h

m((3—x) = 2°)dy




Volume of Solid of Revolution:

Washer Method (continued)

© Write the integral for calculating the volume of the B 2
resulting solid. V= fo n<(3 —x) =2 )dy

O Using y = x” so that y"”*= x, substitute so that all B o
variables within the integrand match the dy term at the 4 nf 0(5 6y Tty ) dy
end of the integral.

@ Now you’re ready to integrate and evaluate using the
limits to determine the volume of the solid. V=mn




Volume of Solid of Revolution:
chapter12

Shell Method

The region bounded by the graphs of y = f(x), the x-axis, x = a, and x = b is revolved about the
y-axis. Find an expression that represents the volume of the resulting solid.

@ To the right is a diagram of the Yy
bounded region before being revolved
about the y-axis.

@ After being revolved about the y-axis, y
the figure shown at right results.

-

-~
=~

-~

1
1
1
1
1
1
1
1

4
L
-
+




Volume of Solid of Revolution:

Shell Method (continued)

© In the new technique, named the “shell
method,” you find the volume of the
resulting solid by finding the sum of
an infinite number of very thin “shells”
(or pieces of pipe).

@ Let’s take a look at just one of those many “shells” (or pieces
of pipe). The shell has an outer radius, r,; an inner radius, r ;
and a height of just /. One other dimension, labeled R, is the
distance from the axis of revolution to the center of the thin red
shell.

@ Find a formula for the volume of that thin red shell.

V

shell

= n(r,)*h — (r)*h

This is just the volume
of the piece of pipe
without the hole, minus
the volume of the hole.




Applications of Integration chapterlz

0 Play with the formula
a bit to rewrite it in
another form.

Note: Big R is really
just the average
radius. It is measured
from the axis of
revolution to the
center of the shell.

@ In the process of doing an actual
problem, the figure you sketch will

look more like the one at right. R is the

Vigen= T rz)zh_ n(rl)zh

(
Vaar= ()= (1) )

V

Ry

wen= T(75+ rl)(rz— rl)h —Factored the middle term above.

r,t* r

)(rz— rl)h < Mult. and then div. by 2.

Voer= 275( 5 1>h(r2— r,)—Moved the / to the left one term.

Voer= 20 R h t
VRN
ave. radius height shell’s thickness
Voen= 2TRht
y

radius from the axis of revolution to the y=fx)

center of the shell, and ¢ is the
thickness, dx or dy.

R —— |

N




Volume of Solid of Revolution:

Shell Method (continued)

© Using the formula V| = 2R/, substitute the appropriate pieces Vo = 2nRht
labeled on your diagram to get a formula for the volume of the thin Voo = 2Txydx
red shell. o

© As in other volume techniques, if you were to add the volumes of an
infinite number of very thin red shells, the volume of the resulting
solid could be determined by using an integral.

b
V= [ 2nRhtdx

----------------------------------------------------------------------------------------------------------------------------

EXAMPLE 1

The region bounded by the graphs of y = x*, y =0, and x = 1 is revolved about the y-axis. Find the
volume of the resulting solid.

© Sketch a side view of the solid, with y
the two thin red rectangles actually 3
representing the side view of a shell. D y=x
Label the average radius R, the height ‘\‘
h, and the thickness . '
\}\
AR t =ldx :
: ” . }A/E h=y
s = | B x
-1 —— I y=0
R=x
@ Plug the pieces labeled on your diagram into the formula for the V en = 2TRAt

volume of a generic shell. V. = 21xydx




Applications of Integration

© Set up the integral to find the volume of the solid,
substituting to get the integrand in terms of the same
variable as the dx at the end.

V=f;2ﬂ:xydx
V=2nf;xydx

1
V=2nf0x-x3dx

1
V=2n f 0 x*dx
O Integrate and evaluate the result. 51
v=2n|%| =2n(4-0)
This problem could also have been done using the washer S, 5
method. 21
V= ?

TIP |

When using either the disk or the washer method, the
“representative” disk or washer is drawn perpendicular to the
axis of revolution. In the shell method, the “representative”
shell is always drawn parallel to the axis of revolution. If you
have a choice between using the washer or the shell method,
it is usually easier to set up the shell method — you need to
find only one radius.




Volume of Solid of Revolution:

Shell Method (continued)

EXAMPLE 2

The region bounded by the graphs of y = x>, y = 0, and x = 2 is revolved about the x-axis. Find the
volume of the resulting solid.

© Sketch a side view of the solid, y

: . )
showing a representative shell. y=x

’
’
’

@ Plug the pieces labeled on your diagram into the formula for the Vo = 2nRht
volume of a generic shell. V. = 21y(2 — x)dy

© Set up the integral to find the volume
of the solid, substituting to get the
integrand in terms of the same
variable as the dy at the end.

4
V= [, 2my(2- x)dy Notice they lim. of int.
4
V= 271:f0 y(2— x)dy
4
V= 27tf0 y(2— ym)dy

4
V= 27tf0 (2y— y")dy




Applications of Integration

O Integrate and then find the value of the resulting expression. B ) 2 4
V=2r|y 5Y
0
=2 (16—%-32)—0]
32n
V="3

This problem could also have been done using the disk method.

EXAMPLE 3
The region bounded by the graphs of y = x? and y = —x* + 2x is revolved about the line x = 3. Find the
volume of the resulting solid.

@ Find the x-coordinates of the points of intersection of the graphs of the x*=—x>+2x
two equations. 0=-2x2+2x
0=-"2x(x-1)
x=0x=1

@ Sketch a side view of the solid and
label the appropriate pieces, both the
radii and the height.

[ TIP

The radius R must be measured from
the axis of revolution (x = 3) to the
middle of the shell.




Volume of Solid of Revolution:

Shell Method (continued)

©® Find the volume of the thin red shell. %
V

@ Set up the integral to determine the volume of the
solid and then evaluate using the limits of
integration.

@ Integrate and then evaluate using the limits of
integration.

shell —

, = 21Rht
=21(3 = x)(y, — yi)dx

V= f 21 (3 — x)(y,— y,)dx
V=2ﬂf0( x)(y2—yi)dx
V=21tf:)( 3 —x)(—x*+ 2x — x*) dx
V=2nf;(3—x)(—2x2+2x)dx

V= 21tf:) (2x"— 8x*+ 6x) dx




Appendix

\ Common Differentiation Rules

In the following, ¢ is a constant and a is a constant. In cases where u appears, u is some function of

another variable and the du is just the derivative of u.

GENERAL FORMS

Lc)=0

O dlrix)yrg(n)= 1 (x)te (x)
(Sum/Difference Rule)

© d1r(x)g(x)]= £/ (x)-g(x)+ g (x)f (x)
(Product Rule)

EXPONENTIAL FORMS
® d e = e"du (in particular, %e": e)‘>
D d

aa"z a“-lna-du

TRIGONOMETRIC FORMS

® %(sinu)= cosudu
® i(cos u)= —sinudu
® d

(tan u)= sec’udu

0,
dx

f(0) 8 (x) = 8/(x)f (x)
[2(0]

f(x)|_
g(x) |

(Quotient Rule)

? %[ﬁg(x))]: f'(8(x)) 8 (x)
(Chain Rule)

9;11;( )_ ne !

(Simple Power Rule)
Qd;/ .
o)

-1
=n-u" -du

(General Power Rule)

LOGARITHMIC FORMS

®d (lnu)— == (in particular, %(lnx): %)
® q 1 du

allog,u)= =
®d

E(csc u)= —cscucotudu

® d

(sec u)= secutanudu

dx
o di(cotu) —csc’udu



INVERSE TRIGONOMETRIC FORMS

D %(arcsinu) = /%uz
D %(arccos u)= /l_iiiubﬁ
D %(arctanu)z 1_|C_luu2

\ Common Integration Formulas

® 4 _ __—du
dx(arc cscu) 7|u| e

D d du
——(arc secu) = —7r——
dx( Lt) |u| M2_1

® d _ _—du
E(arc cotu) = 0

In the following, k is a constant, ¢ is a constant. In cases where u appears, u is some function of another

variable and the du is just the derivative of u.

GENERAL FORMS
o fdxz x+c

O (kax=kx+c

O [1£(x)tg(x)]dx= [f(x)dvt [g(x)dx
LOGARITHMIC FORMS

(6 f% _

= In|ul+ ¢

In particular f%dx =In|x|+c

n+1

efx”dx: nx+ [+ e(n#-1)

n+1

efu”alu: #+ c(n#-1)

EXPONENTIAL FORMS
o fe“duz e+ c

In particular f e'dx=e'tc




TRIGONOMETRIC FORMS

o fsinuduz —cosu+ c

% fcosudu: sinu+ ¢

®ftanudu= —In|cosu|+c or In|secu| +c
@ fcscudu: In|cscu— cotu|+ ¢

® fsecuduz In|secu + tanu|+ ¢

INVERSE TRIGONOMETRIC FORMS

® du .u
I— =arcsin—+¢
Jat —u’ a

(19) du 1 u
= —arctan— + C

j\/&2+u2 a a

®  cotudu = In|sinu| +¢ or — In|cscu| +c¢
® [sec’udu = tanu+ c

® fcscucotua’uz —cscu+ ¢

® fsecutanudu: secut+ c

7 [ esc*udu=—cotu+ c

® J.L :1arcsecM+c
uwut +a* 4 a

Unit Circle and Some Common Trigonometric Identities

0°

360° 2w

330°
Uz

315°



PYTHAGOREAN IDENTITIES
cosx + sin?x = 1 tan2x + 1 = secxx 1 + cot®x = cscx

SUM AND DIFFERENCE IDENTITIES
cos(x y)=cosx cosy F sinx siny sin(x £ y) =sinx cos y * cos x sin y

DOUBLE-ANGLE IDENTITIES

sin2x = 2sinx cos x c0s2x = cos2x — sin?

X cos2x = 2cos?x - 1 cos2x = 1 — 2sin?x

HALF-ANGLE IDENTITIES

cos(%): + /%(1 + cosx) sin(

o=

)i %(1 — CcOosx)




Index

A

acceleration function (a(?)), 57, 188, 247, 249

acceleration problems. See word problems
algebraic functions, 99
algebraic substitution, 237-239
antiderivatives, 195-196
antidifferentiation, 195
approximations, 9
arcsins, 110, 232, 235
area

bound regions, 205-208

curves, 9-13, 250-259

asymptotes. See horizontal asymptotes; vertical asymptotes

average radius, 277

balloon rate of change problem, 72-73, 139-140
bound regions, 205-208, 250-259. See also solids of revolution

bus company fare problem, 181-182

C

Chain Rule, 96, 104-109
change of base property, 114
change of variable technique, 216-217
circumscribed rectangles, 9, 11
closed intervals, 31, 155-159
“combo” technique, 235
common definition forms, 60-63
common denominators, 43-45
common logs, 119
complicated natural log expressions, 117
composite continuity property, 30
composite functions, 96, 104-109
composite limit property, 24
concavity, 165-168
conditional functions, 18-19
conical water tank problem, 183-184
Constant Multiple Rule, 79
Constant Rule, 78
continuity, 26-31, 76
cosecant, 100-101
cosine, 97-99, 202
cotangent, 100-101
critical numbers, 146-147
curves

area, 9-13, 250-259

tangents, 6-8, 67-69

cylindrical can construction problem, 179-181

D
A-E definition of limits of functions, 14-16

decreasing functions. See increasing/decreasing functions

definite integrals, 13, 203, 205-208

denominators, 43-45, 47
derivatives. See also differentiation
alternate notations for, 70-71
analyzing motion on objects with, 57
analyzing rates of change with, 57, 72-73
defined, 1
definition forms, 60-63
differentiability, 74-76
of exponential functions, 125-128
finding equation of lines tangent to curves with, 67
finding horizontal tangents with, 68-69
finding points where relative maximums/minimums occur with, 56
finding slope of tangent lines with, 56, 58-59
formulas, 66, 97, 114, 119
of logarithmic functions, 113-122
Mean Value Theorem, 91-92
optimizing word problems with, 57
Rolle’s Theorem, 89-90
rules, 78-88, 93-95, 123-124
second, 71, 165, 200
of specific functions at specific numbers, 63-66
of trigonometric functions, 96-111
differential calculus, 1
differential equations, 240-245
differentiation. See also derivatives
concavity, 165-168
and continuity, 76
critical numbers, 146-147
defined, 55, 60, 65, 80
extrema, 155-164, 172-175
finding tangent lines to graphs of functions at points, 143
horizontal tangents, 144-145
implicit, 129, 134-141
increasing/decreasing functions, 148-154
inflection points, 168-171
versus integration, 195-196
logarithmic, 129-133
overview, 142-175
rules of, 283-284
when functions fail to have, 74-75
word problems, 176-193
direct substitution, 36-37
discontinuity, 28-29
disk method, 260-267
dividing by largest power of variables, 40-42
Double-Angle Identities, 286

E, 14-16
e 113
equations
differential, 240-245
graphs of, 250-251
of lines tangent to curves, 67
written in implicit form, 134




explicit form, 134
exponential functions
continuous, 30
derivatives of, 125-128, 283
First Fundamental Theorem, 203-204
integral formulas, 201, 284
integrals of, 202, 220-222, 284
expressions
logarithmic, 113-114, 117
rational, 37, 43-45
extrema, 155-159, 160-164, 172-175. See also maximums/minimums
Extreme Value Theorem, 34

F

f, 14
factor and reduce technique, 39-40
first derivative test, 160
First Fundamental Theorem, 203-204
formulas. See derivatives; integrals
functions. See also specific functions by name
algebraic, 99
composite, 96, 104-109
conditional, 18-19
power, 201

G

General Power Rule
and arcsins, 235
with natural logarithmic functions, 116
overview, 84-85, 214-219
with radical trigonometric functions, 101
geometric formulas, 66, 139
graphs of functions
concavity for, 166-168
determining limits from, 20-22
finding maximums/minimums on, 56
finding tangent lines to at points, 143
with “holes”, 75
with “jumps”, 75
polynomial, 144
with sharp turns, 74
that have two horizontal asymptotes, 53-54
trigonometric, 145
with vertical tangent lines, 74
when intersect once or more, 251-259

H

h (height), 139

Half-Angle Identities, 286

height (h), 139

highs, 155. See also maximums/minimums

“holes”, 27-28, 75, 268-269

horizontal asymptotes
functions whose graphs have two, 53-54
functions with x-axis as, 49

overview, 48

of rational functions, 49-52
horizontal rectangles, 256-259
horizontal tangents, 68-69, 144-145

|
implicit differentiation, 129, 134-141
implicit form, 134
increasing/decreasing functions, 148-154
indefinite integrals, 197-200
indeterminate forms, 38-47, 93-95
infinite discontinuity, 29
infinite series, 2-3
infinity, limits at, 48-54
inflection points, 146-147, 168-171
initial conditions, 244
inner radius (r), 139, 269
inscribed rectangles, 9-10
integrable, defined, 198
integral calculus, 1
integrals. See also integration
antiderivatives, 195-196
definite, 205-208
of exponential functions, 220-222
First Fundamental Theorem, 203-204
formulas, 201-202, 226, 232, 284-285
indefinite, 197-200
“look-alike”, 236
overview, 1, 194
Second Fundamental Theorem, 209-210
that result in inverse trigonometric functions, 232-234
that result in natural logarithmic functions, 223-225
of trigonometric functions, 226-231
integrands, 197, 235
integration. See also antidifferentiation; integrals
algebraic substitution, 237-239
“combo” technique, 235
definition, 211
differential equations, 240-245
versus differentiation, 195-196
finding area between curves, 250-259
finding volume of solids of revolution, 260-282
General Power Rule, 214-219
limits of, 203, 217-218
overview, 211-245, 246
problems, 247-249
Simple Power Rule, 212-214
Intermediate Value Theorem, 32-33
intervals, 31-33, 148-150, 155-159
inverse trigonometric functions. See trigonometric functions

J
“jumps”, 27, 29, 75




L
L, 14
ladder sliding down side of building problem, 140-141
large radius (R), 272-273
L'Hopital’s Rule, 93-95, 102-103, 123-124, 127-128
light pole and shadow problem, 185-187
limits
calculating with algebraic methods, 35-54
calculating with properties of, 23-25
continuity of functions, 26-31
determining from graphs of functions, 20-22
Extreme Value Theorem, 34
of functions, 4-5, 14-16
indeterminate forms, 93-95
of integration, 203, 217-218
Intermediate Value Theorem, 32-33
L'Hopital’s Rule, 93-95, 123-124
one-sided, 17-19
overview, 1
Riemann Sums, 9-13
slopes of lines tangent to curves, 6-8
of sums of infinite series, 2-3
terms of infinite series, 2
line tangent. See tangents
linear functions, 205-206
log of a power property, 114, 117, 122
log of a product property, 113, 117
log of a quotient property, 114, 117
logarithmic differentiation, 129-133
logarithmic expressions, 113-114, 117
logarithmic functions. See also natural logarithmic functions
continuous, 30
derivatives of, 119-122
differentiation, 283
integration, 284
L'Hopital’s Rule and, 123-124
“look-alike” integrals, 236
lower approximations, 9
lows, 155. See also maximums/minimums

maximums/minimums
on closed intervals, 155
finding with critical numbers, 146
on graphs of functions, 56
relative, 56, 160-164, 172
word problems, 177
Mean Value Theorem, 91-92
motion on objects, analyzing, 57
multiples, scalar, 30

natural logarithmic functions
derivatives, 113-118, 119
integrals, 202, 223-225, 284
products involving, 151-152

negative sign, 141

negative velocity, 191

nth derivatives, 71
numerators, rationalizing, 46

o

one-sided limits, 17-19

open intervals, 31

optimization problems. See word problems
outer radius (R), 266

P

particle moving along straight line problem, 190-193
polynomial functions
continuous, 30
critical numbers of, 146-147
direct substitution to find limits of, 36
extrema of, 156-157, 161-162, 172-174
finding derivatives of, 63-64, 80
First Fundamental Theorem, 204
increasing/decreasing functions for, 149-151
inflection points, 169-170
integrals, 201
logarithmic functions of, 121
one-sided limits for, 19
position function, 188
position problems. See word problems
positive velocity, 191
power functions, 201
power limit property, 24
Power Rule, 78
powers, 24, 114-116, 201
problems. See word problems
product limit property, 23
Product Rule, 81-83, 101
properties of continuity, 30
properties of limits, 23-25
Pythagorean Identities, 99, 286

Q

quotient continuity property, 30
quotient limit property, 24
Quotient Rule, 86-87, 116
quotients
continuous, 30
derivatives of, 99, 116, 121-122
limited, 24
of radical functions, 87-88
of rational expressions, 37

r (inner/small radius), 139, 269
R (outer/large radius), 272-273




radical functions
continuous, 30
critical numbers of, 147
derivatives of at specific numbers, 64-65
derivatives of trigonometric, 101
direct substitution to find limits involving, 36
finding derivatives of quotient of, 87-88
inflection points, 170-171
limits involving, 42
logarithmic functions of, 122
natural logarithmic functions of, 115
radius
average, 277
inner/small, 139, 272-273
measuring, 266
outer/large, 272-273
representative disk, 261
rates of change, 57, 72-73, 139-140
rational expressions, 37, 43-45
rational functions
continuous, 30
horizontal asymptotes of, 49-52
indeterminate forms involving, 38
limits of, 39-41
one-sided limits for, 18
relative extrema of functions, 162-164
rationalizing, 46-47
reciprocals, 38
rectangles, 9-11, 250, 256-259
rectilinear motion problem, 190-191
regions. See bound regions
related rates problems. See word problems
relative extrema. See extrema
relative maximums/minimums. See maximums/minimums
removable discontinuity, 28
representative disks, 261
representative rectangles, 250, 256-259
reversed differentiation formulas. See integrals
revolved bound regions. See bound regions
Riemann Sums, 9-13
rocket problem, 188-190
Rolle’s Theorem, 89-91
rotations. See bound regions

S

e (sum of), 3

scalar multiple continuity property, 30
scalar product limit property, 23

secant, 58, 100-101

second derivative test, 172-175

second derivatives. See derivatives
Second Fundamental Theorem, 209-210
sharp turns, 74

shell method, 275-282

Simple Power Rule, 212-214

sine, 97-99, 202
slope, 6-8, 56, 58-59
small radius (r), 139, 272-273
solids of revolution, finding volume of
disk method, 260-267
shell method, 275-282
washer method, 268-274
special trigonometric limit property, 24-25
Sum and Difference Identities, 286
sum of (¢ ), 3
sum or difference continuity property, 30
sum or difference limit property, 23
Sum/Difference Rule, 80
sums, 23, 30, 98

T

t. See time
tangents
derivatives of, 97-99
to graphs of trigonometric functions, 143
horizontal, 68-69, 144-145
slope of, 56, 58-59
vertical, 74
terms of infinite series, 2
thickness, representative disk, 261
third derivatives, 71
three-dimensional solids. See solids of revolution
time (f), 137-139, 183-187
trigonometric functions
continuous, 30
definite integrals, 206
derivatives of, 96-111, 283
evaluated at natural logarithmic functions, 118
extrema of, 158-159, 174-175
First Fundamental Theorem, 203
graphs of, 143
indeterminate forms involving, 38
integrals, 202, 226-231, 285
inverse, 110-111, 232-234, 284-285
limits of, 22, 37, 40
products of, 153-154
special, 25
trigonometric identities, 99, 286

u

unit circles, 97, 285

unknown variables, 136-137

upper approximations, 9
u-substitution technique, 216-217, 237

Vv

V (volume), 139
variables, 40-42, 136-137, 240-245




velocity, 191. See also word problems w

velocity functions, 57, 188 _
vertical asymptotes, 27, 29, 49, 51 washer method, 268-274
vertical tangent lines, 74 word problems_ e
volume (I/)gl39 ' implicit differentiation, 139-141
volume of l')ox roblem, 177-179 optimization, 57, 177-182 :
| f <ol dp  revolut lids of \uti position, velocity, and acceleration, 188-193, 247-249
volume of solids of revolution. See solids of revolution rate of change, 72-73

related rates, 183-187
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