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w(x,t), ẇ(x,t), ẅ(x,t)  vibration displacement, velocity, 
and acceleration, respectively

x,y,z,t cartesian coordinates, time
E Young’s modulus
I moment of inertia
c hull beam damping coefficient
k spring stiffness
� hull beam mass distribution, in-

cluding hydrodynamic added-mass
f vibratory exciting force
� viscoelastic modulus
DOF degrees of freedom of discrete 

system model
N number of total DOF, known+ un-

known+ dynamic+static; propel-
ler blade number

L hull beam length; number of DOF 
unknown before solution 

L(r,�) lift distribution on propeller 
blades

M number of dynamic DOF in dis-
crete model; hull added mass; 
number of diesel engine cylinders

M2-D hull two-dimensional (2D) added 
mass

F vibratory exciting force ampli-
tude

W vibratory displacement complex 
amplitude

Wc; Ws cosine and sine components of W
� vibration frequency, in rad/sec

f characteristic rigid-body frequency
r characteristic flexural frequency

�c hydrodynamic damping factor
� structural damping factor
� modulus in beam vibration solu-

tion
�n resonant, or natural, frequency
�n

a anti-resonant frequency
n(x) mode shape vector for nth natural 

mode
An solution constants in eigenfunc-

tion solution
Fn nth mode modal exciting force
Kn nth mode modal stiffness
�n nth mode modal damping factor 
� one DOF system damping factor
�n nth mode modal phase angle
i ��–1
[m] vibration model mass matrix
[k] vibration model stiffness matrix
[c] vibration model damping matrix
[f] vibration model exciting force 

vector

Nomenclature

�  phase of exciting force components
[D] vibration model dynamic matrix
[D]*  vibration model dynamic matrix with zero 

damping
P(�)  characteristic polynomial for determining 

model �n; n(x)
Re real part of complex quantity
Im  imaginary part of complex quantity 
r  radius from the center of the propeller hub; 

diesel engine crank radius
�  propeller position angle, + CCW from top-

dead-center looking forward
g(r, �, p)  function for assembling propeller bearing 

forces.
G(r, �, p) amplitude of g(r, �, p)
fip  ith propeller bearing force or moment com-

ponent; i = 1 … 6
�G(r)  propeller blade geometric pitch angle at r
Kp  propeller induced pressure coefficient
Kf, KFp  propeller induced force coefficient
Fm  amplitude of harmonically oscillating 

modal excitation force on the hull
q̇  volume rate of oscillation of cavitation 

source
p(z)  bare hull oscillation induced pressure in 

propeller plane z
Vm  bare hull or cavitation volume velocity os-

cillation 
propeller angular velocity

c sonic velocity in water
n, p blade order multiples
kn acoustic wave number; n�/c
	  particle radial displacement on a spherical 

surface

 water density
vr particle radial velocity
�n acoustic wave length
I sound intensity
SPL sound pressure level
W acoustic power
dB decibel, for sound scaling
X   amplitude of vibration displacement response
Y   amplitude base vibration displacement
N2v   critical rpm for 2-noded vertical bending 

vibration
 displaced mass

Tm mean draft
m(x) hull hydrodynamic added mass
m2-D(x)  hull 2D hydrodynamic added mass distri-

bution
Jn  Lewis-Factor for nth mode hull added mass 

calculation
Z  Conformal transformation for Lewis-form 

hull section mapping
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C(x) 2D added mass distribution
B(x) hull section beam distribution
h  superstructure height above main deck
fe  fixed base superstructure natural frequency
fR  deckhouse rocking natural frequency
J  deckhouse mass moment of inertia; propel-

ler advance ratio
r̄  deckhouse radius of gyration about the effec-

tive pin at main deck
m deckhouse mass
My1, My2  iesel engine 1st and 2nd order vertical excit-

ing moments
Mz1 diesel engine 1st order transverse exciting 

moment amplitude
�  diesel engine connecting rod length
�c  longitudinal distance between diesel engine 

cylinder axes
km diesel engine firing order
vx(r, �)/U  axial wake velocity in propeller plane
vt(r, �)/U  tangential wake velocity in propeller plane
U vessel speed
Cxq(r)  complex amplitude of qth axial wake velocity 

coefficient in the propeller plane
Ctq(r)  complex amplitude of qth tangential wake ve-

locity coefficient in the propeller plane
Wj  Simpson’s weighting factors for wake inte-

gration
vn(r, �)  relative wake velocity normal to propeller 

blade section at r
�G  geometric pitch angle of propeller blade sec-

tion at r
�  hydrodynamic advance angle of propeller 

blade section at r
Va(r)  axial advance velocity of propeller
R propeller tip radius
Q wake maximum harmonic order

Vnq(r)  qth harmonic of wake velocity normal to 
blade section at radius r 

�s(r)  propeller blade skew angle at radius r
�q(r)  phase angle of wake normal velocity at radius r
�(r)  blade position angle for maximum normal 

velocity at blade radius r mid-chord line
Lq(r)  radial distribution of unsteady blade lift
CLq(r)  radial distribution of unsteady blade lift co-

efficient
�(r)  radial distribution of propeller blade ex-

panded chord length
Cs(r, k*)  Sears Function for lift of 2D section in a si-

nusoidal gust
k*  reduced frequency of sinusoidal gust
�e  projected semi-chord of propeller blade at 

radius r
T  propeller thrust
˙  blade cavitation volume velocity variation 

in time
˙

q  qth harmonic of blade cavitation volume ve-
locity variation 

CC
3hm  mth blade-rate harmonic of vertical hull sur-

face force due to blade cavitation
CNC

3hm  mth blade-rate harmonic of non-cavitating 
vertical hull surface force 

v*30x  axial velocity induced in propeller plane by 
unit downward motion of bare hull for CNC

3hm 

calc
v*31�  tangential velocity induced in propeller 

plane by unit downward motion of bare for 
hull CNC

3hm  calc
*30  velocity potential induced in propeller plane 

by unit downward of the bare hull for CC
3hm

calc
b0  design waterline offset in the vertical plane 

of the propeller disc



An Introduction to the Series

The Society of Naval Architects and Marine Engineers is experiencing remarkable changes in the Maritime Indus-
try as we enter our 115th year of service. Our mission, however, has not changed over the years . . . “an internation-
ally recognized . . . technical society . . . serving the maritime industry, dedicated to advancing the art, science 
and practice of naval architecture, shipbuilding, ocean engineering, and marine engineering . . . encouraging the 
exchange and recording of information, sponsoring applied research . . . supporting education and enhancing the 
professional status and integrity of its membership.”

In the spirit of being faithful to our mission, we have written and published significant treatises on the subject 
of naval architecture, marine engineering, and shipbuilding. Our most well known publication is the “Principles 
of Naval Architecture.” First published in 1939, it has been revised and updated three times – in 1967, 1988, and 
now in 2008. During this time, remarkable changes in the industry have taken place, especially in technology, and 
these changes have accelerated. The result has had a dramatic impact on size, speed, capacity, safety, quality, and 
environmental protection.

The professions of naval architecture and marine engineering have realized great technical advances. They in-
clude structural design, hydrodynamics, resistance and propulsion, vibrations, materials, strength analysis using 
finite element analysis, dynamic loading and fatigue analysis, computer-aided ship design, controllability, stability, 
and the use of simulation, risk analysis and virtual reality.

However, with this in view, nothing remains more important than a comprehensive knowledge of “first princi-
ples.” Using this knowledge, the Naval Architect is able to intelligently utilize the exceptional technology available 
to its fullest extent in today’s global maritime industry. It is with this in mind that this entirely new 2008 treatise 
was developed – “The Principles of Naval Architecture: The Series.” Recognizing the challenge of remaining rel-
evant and current as technology changes, each major topical area will be published as a separate volume. This 
will facilitate timely revisions as technology continues to change and provide for more practical use by those who 
teach, learn or utilize the tools of our profession.

It is noteworthy that it took a decade to prepare this monumental work of nine volumes by sixteen authors and 
by a distinguished steering committee that was brought together from several countries, universities, companies 
and laboratories. We are all especially indebted to the editor, Professor J. Randolph (Randy) Paulling for providing 
the leadership, knowledge, and organizational ability to manage this seminal work. His dedication to this arduous 
task embodies the very essence of our mission . . . “to serve the maritime industry.”

It is with this introduction that we recognize and honor all of our colleagues who contributed to this work.

Authors:
Dr. John S. Letcher Hull Geometry
Dr. Colin S. Moore Intact Stability
Robert D. Tagg Subdivision and Damaged Stability
Professor Alaa Mansour and Dr. Donald Liu Strength of Ships and Ocean Structures
Dr. Lars Larson and Dr. Hoyte Raven Resistance
Professors Justin E. Kerwin and Jacques B. Hadler Propulsion
Professor William S. Vorus Vibration and Noise
Prof. Robert S. Beck, Dr. John Dalzell (Deceased), Prof. Odd Faltinsen Motions in Waves

and Dr. Arthur M. Reed
Professor W. C. Webster and Dr. Rod Barr Controllability

Control Committee Members are:
Professor Bruce Johnson, Robert G. Keane, Jr., Justin H. McCarthy, David M. Maurer, Dr. William B. Morgan, Pro-
fessor J. Nicholas Newman and Dr. Owen H. Oakley, Jr.

I would also like to recognize the support staff and members who helped bring this project to fruition, especially 
Susan Evans Grove, Publications Director, Phil Kimball, Executive Director, and Dr. Roger Compton, Past Presi-
dent.

In the new world’s global maritime industry, we must maintain leadership in our profession if we are to continue 
to be true to our mission. The “Principles of Naval Architecture: The Series,” is another example of the many ways 
our Society is meeting that challenge.

ADMIRAL ROBERT E. KRAMEK

Past President (2007–2008)



Preface
Vibration

During the 20 years that have elapsed since publication of the previous edition of this book, there have been 
remarkable advances in the art, science, and practice of the design and construction of ships and other floating 
structures. In that edition, the increasing use of high speed computers was recognized and computational methods 
were incorporated or acknowledged in the individual chapters rather than being presented in a separate chapter. 
Today, the electronic computer is one of the most important tools in any engineering environment and the laptop 
computer has taken the place of the ubiquitous slide rule of an earlier generation of engineers. 

Advanced concepts and methods that were only being developed or introduced then are a part of common 
engineering practice today. These include finite element analysis, computational fluid dynamics, random process 
methods, numerical modeling of the hull form and components, with some or all of these merged into integrated 
design and manufacturing systems. Collectively, these give the naval architect unprecedented power and flexibility 
to explore innovation in concept and design of marine systems. In order to fully utilize these tools, the modern 
naval architect must possess a sound knowledge of mathematics and the other fundamental sciences that form a 
basic part of a modern engineering education. 

In 1997, planning for the new edition of Principles of Naval Architecture (PNA) was initiated by the SNAME 
publications manager who convened a meeting of a number of interested individuals including the editors of PNA 
and the new edition of Ship Design and Construction on which work had already begun. At this meeting it was 
agreed that PNA would present the basis for the modern practice of naval architecture and the focus would be prin-
ciples in preference to applications. The book should contain appropriate reference material but it was not a hand-
book with extensive numerical tables and graphs. Neither was it to be an elementary or advanced textbook although it 
was expected to be used as regular reading material in advanced undergraduate and elementary graduate courses. It 
would contain the background and principles necessary to understand and to use intelligently the modern analytical, 
numerical, experimental, and computational tools available to the naval architect and also the fundamentals needed 
for the development of new tools. In essence, it would contain the material necessary to develop the understanding, 
insight, intuition, experience, and judgment needed for the successful practice of the profession. Following this initial 
meeting, a PNA Control Committee, consisting of individuals having the expertise deemed necessary to oversee and 
guide the writing of the new edition of PNA, was appointed. This committee, after participating in the selection of 
authors for the various chapters, has continued to contribute by critically reviewing the various component parts as 
they are written.

In an effort of this magnitude, involving contributions from numerous widely separated authors, progress has not 
been uniform and it became obvious before the halfway mark that some chapters would be completed before others. 
In order to make the material available to the profession in a timely manner it was decided to publish each major sub-
division as a separate volume in the PNA series rather than treating each as a separate chapter of a single book.

Although the United States committed in 1975 to adopt SI units as the primary system of measurement the transi-
tion is not yet complete. In shipbuilding as well as other fields, we still find usage of three systems of units: English or 
foot-pound-seconds, SI or meter-newton-seconds, and the meter-kilogram(force)-second system common in engineer-
ing work on the European continent and most of the non-English speaking world prior to the adoption of the SI system. 
In the present work, we have tried to adhere to SI units as the primary system but other units may be found particu-
larly in illustrations taken from other, older publications. The symbols and notation follow, in general, the standards 
developed by the International Towing Tank Conference. 

This volume of the series presents the principles underlying analysis of the vibration characteristics of modern 
seagoing ships and the application of those principles in design and problem solving. The classical continuous 
beam model with steady state response to periodic excitation is presented first. This includes natural frequencies, 
mode shapes, and modal expansion. Discrete analysis is next presented based on finite element principles. Ex-
amples are discussed involving analysis of the entire ship and component parts (e.g., the deckhouse). The principal 
sources of excitation are usually the propulsion machinery and the propeller and methods of predicting the forces 
and moments produced by each are presented. There is a brief introduction to underwater acoustic radiation and 
sound as it is related to propeller effects. 
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Attention is devoted to design of the hull and propeller for vibration minimization. This includes design of the 
ship after body and appendages to ensure favorable wake characteristics, tip clearances, and selection of propeller 
characteristics such as number and shape of blades. 

There are sections on vibration surveys, sea trials, acceptable vibration standards, and criteria. Concluding 
sections treat methods of remediation of vibration problems that are found after the ship is completed, including 
modifications to propeller design, structure, and machinery.

J. RANDOLPH PAULLING

     Editor
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1.1 General. Much was accomplished in the 1970s 
and 1980s in improving the technology for designing 
ships for avoidance of excessive vibration. Because 
of this, as well as because of the downturn in ship 
production in the West, research and development 
in ship vibration experienced hiatus in the 1990s. 
It will therefore be seen that many of the reference 
sources cited in the previous edition of this chapter 
are retained in this edition. This is partially a natural 
consequence of fundamentally important basic mate-
rial that serves as building blocks and never changes. 
New material is inserted where appropriate, but engi-
neering technology that matured in the late 1980s is 
still mostly very representative of the state-of-the-art 
of ship vibration. 

An example of the capability for achievement of vi-
bration control that emerged from the 1980s was the 
success of the European cruise ship development pro-
grams of the 1990s. Vibration avoidance is a crucial is-
sue with cruise ships laden with sensitive customers. 
The success was achieved via innovation gained by: 

1. Placing engine rooms out of the immediate stern 
region to improve stern lines for low wake gradients.

2. Employing electric drive with the electric motors 
in articulating podded-propulsors, thereby avoiding the 
wake of shaft and bearing “shadows” shed into the pro-
peller disk from forward.

Such progress is gratifying, but in spite of the suc-
cess, one of the design problems of all modern ships and 
boats remains: avoidance of objectionable elastic vibra-
tion of the hull structure and machinery in response to 
external or internal forces. Such vibration, if ignored, 
will certainly occur, causing discomfort to passengers, 
interfering with performance of crew duties, and dam-
aging or adversely affecting the operation of mechani-
cal and electrical equipment on board the vessel.

Since mechanical vibration can be defined generally 
as the oscillatory motion of rigid, as well as elastic, bod-
ies, the subject of ship vibration is actually very broad 
in scope. In fact, the ship dynamics problems of primary 
interest to the naval architect, excluding maneuvering, 
all involve some form of vibration.

For convenience, the overall response of a vessel 
can be separated into two parts: one is the motion as a 
rigid body in response to a seaway and the other is the 
elastic or flexural response of the hull or other struc-
ture to external or internal forces. Rigid-body motions 
are considered under the general subject of sea keeping 
and are therefore not usually referred to as vibration. 
Flexural vibration can be excited in the form of verti-
cal and horizontal bending, torsion, and axial modes 
of the elastic structure of the hull girder, as well as in 

the form of local vibration of substructures and com-
ponents. Such vibration that is excited by propellers is 
a particularly troublesome problem, and it will be the 
principal subject of this chapter. Flexural vibration 
can also be excited directly by forces internal to rotat-
ing machinery and by the external forces of sea waves 
encountered by a ship. Vibration excited by sea waves 
(referred to as springing and whipping) is considered 
under both motions in waves and strength, although 
many of the basic principles of hull vibration covered 
in this chapter are directly applicable.

Concern about propeller-induced ship vibration has 
existed since the marine screw propeller was first de-
veloped in the mid-19th century; the French textbook 
Theorie du Navire (Pollard & Dudebout, 1894) included 
a chapter on propeller-induced ship vibration. In the 
early days, the relatively few blades per propeller and 
the low propeller revolutions per minute (RPM) excited 
ships at low frequency in a characteristically beamlike 
hull flexure. The early analytical work, such as that by 
Schlick (1884−1911) and Krylov (1936), therefore concen-
trated on the application of beam theory in developing 
methods to help avoid propeller-induced hull vibration 
problems.

As ships evolved, the character of propeller-induced 
vibration became more complex and vibration trouble 
became more frequent. The greatest problems occurred 
in the modern generation of oceangoing merchant ships, 
due in large part to two aspects of design evolution that, 
aside from a consideration of vibration, qualify as tech-
nological advancements. These two aspects are the lo-
cation of engine rooms and accommodations aft into the 
immediate vicinity of the propeller(s) and the increase 
in ship power. The increased use of diesel engines has 
also contributed to increased frequency of vibration but 
not to as great a degree. Ship vibration has become a 
greater problem in recent years because of tightening 
of standards of acceptable vibration. Most commercial 
ship specifications now establish criteria on acceptable 
vibration; compliance must be demonstrated by the 
measurement of vibration on the vessel builder’s trials. 
Today, exhaustive studies, employing both experimen-
tal and analytical methods, are conducted during the 
design of almost all large ships in attempting to avoid 
vibration troubles.

The object of this chapter is to discuss the basic  
theory and the practical problems of flexural vibration of 
ships’ hulls, and of their substructures and components, 
with particular attention to propeller-excited vibra-
tion. Machinery-excited vibration is covered to a lesser  
extent.

A working knowledge of ship vibration requires the 
reader to be reasonably well-versed in mathematics and 

1
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engineering mechanics, as well as in a set of “tricks of 
the trade” with which naval architects, and engineers 
in general, usually feel more comfortable. However, a 
comprehensive knowledge of ship vibration theory is 
not necessarily required in order to work effectively 
with the subject at certain levels. Hence, this chapter 
has been organized with the intent that readers with dif-
ferent interests and backgrounds can find material to 
meet their needs.

Section 2, Theory and Concepts, provides depth in 
understanding the fundamental concepts of ship vi-
bration as well as a foundation for further study of the 
techniques employed in vibration analysis. It is intended 
primarily for those whose theoretical tools are relatively 
close to the surface of their working knowledge.

The naval architect or shipyard engineer interested 
more in design methods can avoid some of the risk of 
becoming bogged down in theory by proceeding to Sec-
tion 3, Analysis and Design. This section is self-con-
tained but refers back to Section 2 for formulas devel-
oped there. It deals with practical solutions to potential 
vibration problems that should be addressed during the 
design stage.

The last section, Criteria, Measurements, and Post-
Trial Corrections, provides material for establishing 
whether vibration characteristics of a completed ship 
are satisfactory and how to make corrections, if neces-
sary. The ship owner or operator, typically not particu-
larly interested in design procedures and not at all in-
terested in vibration theory and concepts, may proceed 
directly to this section.

1.2 Basic Definitions. The following basic definitions 
are provided for the uninitiated. The definitions are 
loose and aimed at the context most needed and most 
often used in the theory of vibration of ships.

Vibration—Vibration is a relatively small amplitude 
oscillation about a rest position. Figure 1 depicts the 
variation in vibratory displacement with time.

Amplitude—For vibration of a fixed level of severity 
(steady-state periodic vibration), amplitude is the maxi-
mum repeating absolute value of the vibratory response 
(i.e., displacement, velocity, acceleration). Displacement 
amplitude for steady-state vibration is denoted as A in 

Fig. 1. For transient vibration, a time-dependent ampli-
tude sometimes may be defined.

Cycle—One cycle of vibration is the time between 
successive repeating points (see Fig. 1). The time re-
quired for completion of one cycle is its period.

Frequency—Frequency is the number of vibration 
cycles executed per unit time; it is the inverse of the vi-
bration period.

Natural frequency—A natural frequency is a fre-
quency at which a system vibrates when stimulated 
impulsively from the rest position. The requirement 
for natural vibration is that the system possesses both 
mass and stiffness. For continuous mass and stiffness 
distributions, the system possesses an infinite number 
of natural frequencies, even though only a relatively 
small number are usually of practical significance. On 
impulsive stimulation from rest, the continuous system 
will vibrate at all of its natural frequencies, in super-
position; the degree of vibration at any particular nat-
ural frequency will depend on the characteristics of the 
impulsive stimulus.

Mode—Each different natural frequency of a system 
defines a mode of system vibration. The modes are or-
dered numerically upward from the natural frequency 
with the lowest value.

Mode shape—A mode shape is a distribution of rela-
tive amplitude, or displacement shape, associated with 
each mode. Figure 2 depicts mode shapes typical of a 
ship hull girder. The three vertical plane mode shapes 
shown correspond to the first three vertical plane flex-
ural bending modes; two lower modes (not shown), 
with mode shapes corresponding to rigid-body heave 
and pitch, occur at lower natural frequencies. The lower 
shape in Fig. 2 is the one-noded, first mode torsional 
mode shape.

Node—A node is a null point in a distribution of vibra-
tory displacement, or in a mode shape. In general, the 
number of nodes in a mode shape increases with modal 
order (natural frequency). This is the case of the ship 
hull girder vibration depicted in Fig. 2; modes 2V, 3V, 
and 4V have successively higher natural frequencies.

Fig. 1 Vibration displacement. Fig. 2 Modes of hull girder vibration.
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Excitation—Vibratory excitation is an applied time-
dependent stimulus (force or displacement) that pro-
duces vibration. Excitation can be transient (e.g., im-
pulsive), random, or periodic. A steady-state periodic 
excitation, such as approximately produced by a stead-
ily operating ship propeller, produces a steady-state pe-
riodic forced vibration of the character of that depicted 
in Fig. 1.

Exciting frequency—For a steady-state periodic ex-
citation, the exciting frequency is the number of cycles 
of the excitation completed per unit time, which is the 
inverse of the excitation period. Under steady-state con-
ditions, the frequency of the vibration is always equal 
to the exciting frequency. However, the distribution of 
system vibration response at the steady-state exciting 
frequency can be viewed as a weighted superposition of 
the mode shapes of all the natural modes. The degree of 
participation of any mode is sensitive to the proximity 
of the natural frequency associated with that mode to 
the imposed exciting frequency.

Resonance—Resonance is the condition that occurs 
in steady-state forced vibration when the exciting fre-
quency coincides with any one of the system natural 
frequencies. The common frequency is then also called 
a resonant frequency. At resonance, the vibration am-
plitude is limited only by system damping, ignoring 

nonlinearities. The damping in engineering structures, 
including ships, is generally very light, so that resonant 
vibratory amplitudes are often disproportionately large 
relative to nonresonant levels. With the disproportionate 
amplification of one system mode at resonance, the dis-
tribution of system resonant vibration will often corre-
spond closely to the mode shape of the resonant mode.

Bandwidth—Bandwidth is a range, or band, of fre-
quency where a vibration and/or noise is concentrated.

Beat—Beating is a characteristic of systems excited 
by two or more excitation frequencies, the values of 
which are similar and vary only over a small range or are 
only slightly different. The resulting response contains 
a low beat frequency. The value of the beat frequency 
varies, but its maximum value is equal to the bandwidth 
of the exciting frequency variation.

Octave band—One of the standard frequency bands 
in which vibration (and noise) signals are analyzed (fil-
tered) and presented (see Section 2.2.4).

Decibel (dB)—A quantification of vibration level used 
primarily in acoustics; dB is defined as 10 times the log10

of a vibration amplitude divided by a reference vibration 
amplitude (see Section 2.2.4).

Sound pressure level (SPL)—is defined as 20 times 
the log10 of an absolute value of the sound pressure di-
vided by a reference sound pressure (see Section 2.2.4).

2
Theory and Concepts

2.1 Continuous Analysis. All systems that are ca-
pable of vibrating, including ships, have at least piece-
wise continuous properties. That is, the mass, elastic-
ity, damping, and excitation properties are continuous 
within pieces, but may have jumps in value where the 
pieces connect. Unfortunately, mathematical models of 
piece-wise continuous systems that are at all general are 
of little use in vibration analysis because of the intracta-
bility of their solutions; discrete models are necessary 
for most practical purposes, as is shown in Section 2.2.

However, simple continuous models, representing 
idealizations of real systems, are extremely valuable in 
understanding basic vibration concepts. Their simple 
solutions can often provide surprising insight into the 
behavior of the complex systems whose basic character 
they approximate.

The simple continuous model that has been used re-
peatedly over the years to demonstrate certain funda-
mental aspects of ship vibration (Kennard, 1955; Todd, 
1961) is the uniform continuous beam model of the ship 
hull. This model is depicted in Fig. 3 for the case of verti-
cal vibration.

Here, the ship hull girder is represented by a uniform 
one-dimensional beam. The beam is supported by a uni-
form elastic foundation, of stiffness k per unit length, 

representing the buoyancy spring of the water (water 
specific weight times section beam). The foundation 
has a uniformly distributed damping coefficient, c, rep-
resenting hydrodynamic damping.

The uniform beam mass per unit length is � (includ-
ing hydrodynamic added mass), and its uniform stiff-
ness is EI, where E is modulus of elasticity and I sec-
tional moment of inertia. The beam is acted upon by the 
distributed forcing function, f(x,t), which for purposes 
of example, represents the vibratory excitation due to 
the unsteady pressure field of a propeller.

Fig. 3 Ship hull beam model.
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However, simple continuous models, representing 
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understanding basic vibration concepts. Their simple 
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behavior of the complex systems whose basic character 
they approximate.

The simple continuous model that has been used re-
peatedly over the years to demonstrate certain funda-
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1961) is the uniform continuous beam model of the ship 
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specific weight times section beam). The foundation 
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the unsteady pressure field of a propeller.

Fig. 3 Ship hull beam model.
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The Fig. 3 model is, in a strict sense, a valid demon-
stration tool for propeller-induced ship vibration occur-
ring typically at relatively low propeller RPM. At higher 
exciting frequencies associated with modern ship pro-
pellers operating near design RPM, the dynamics of 
mass systems sprung (i.e., connected by a structure that 
acts as a spring) from the hull girder, deckhouses for ex-
ample, become important. However, as the vibration of 
the basic hull girder retains at least a beamlike charac-
ter at high frequency, the Fig. 3 model is still instructive, 
although incomplete.

The differential equation of motion governing vibra-
tion of the Fig. 3 model is available from almost any gen-
eral reference on mechanical vibration. Denoting w(x,t)
as the vertical vibratory displacement of the beam, the 
governing equation is
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Aside from the second term on the left side, equation 
(1) represents the standard Euler beam on an elastic 
foundation. The second term in equation (1) derives 
from the inclusion of a viscoelastic term in the stress-
strain law for the beam material (Kennard, 1955), v is 
the viscoelastic constant. The second term in equation 
(1), as well as the fourth, involves the first-time de-
rivative of the displacement, and therefore represents 
damping; c is the hydrodynamic damping coefficient of 
the elastic foundation, by previous definition; vI in the 
second term in equation (1) represents a material damp-
ing coefficient of the hull beam.

The Euler beam representation, equation (1), can be 
easily extended to the Timoshenko beam by including 
beam rotational inertia and shear flexibility in the deri-
vation. However, the additional terms introduced add 
substantial complexity to the equation as well as to the 
complexity of its possible analytic solutions. Since the 
purpose of this section is only to establish concepts and 
the formulas to be derived are not intended for actual 
application, shear flexibility and rotational inertia in the 
equation of motion are not included.

End conditions on the equation of motion are re-
quired for uniqueness of its solution. The end conditions 
on equation (1), corresponding to zero end moment and 
shear, are
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2.1.1 Steady-State Response to Periodic Excita-
tion. In propeller-induced ship vibration, the steady 
propeller excitation is, in reality, a random excitation 
that remains stationary while conditions are unchanged. 
However, it is approximately periodic with fundamental 

frequency equal to the propeller RPM times the number 
of blades. The excitation is therefore approximately ex-
pressible as a Fourier series in the time variable. With 
steady-state vibratory response to the periodic excita-
tion being the interest, w(x,t) is likewise expressible in 
a Fourier series.

The procedure for solving the equation of motion, 
equation (1), for the steady-state vibration response 
is to substitute the two Fourier series representations 
for w(x,t) and f(x,t) into the equation. The time depen-
dency is then cancelled out, and the resultant series of 
ordinary differential equations in x are solved term by 
term for the unknown coefficients of the displacement 
series.

For demonstration purposes, assume a one-term 
Fourier series (i.e., simple harmonic) representation for 
the excitation force distribution in time. Then optional 
forms are

( ) ( ) ( )�= txFtxf cos, (3)

  
( ) ti
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where, by identity

tite
ti ��� sincos +

and Re denotes “real part of.” F(x) is the amplitude dis-
tribution of the excitation force along the length of the 
ship, and � is its frequency. Defining � as blade-rate
frequency, N�, where � is the propeller angular veloc-
ity and N the number of blades, equation (3) would be 
a valid approximation of f(x,t) provided that the fun-
damental harmonic of the excitation is dominant (i.e., 
provided that the excitation at multiples of blade-rate 
frequency is relatively insignificant). This is often true, 
particularly in cases in which propeller blade cavitation 
does not occur.

For steady-state vibration in response to f(x t), w(x,t)
will have the similar form
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where, in view of equation (5),

( ) ( ) ( )xWixWxW
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=  (6)

W(x) is the unknown complex amplitude, which in-
cludes phase as well as amplitude information. W(x) is 
to be determined by solution of the equation of motion.

Substitution of equations (4) and (6) into equation (1) 
and end conditions, equation (2), with cancellation of 
the time dependency, produces
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It is convenient to nondimensionalize the variables in 
equations (7) and (8) before considering solutions for 
W(x). Redefine the variables in nondimensional form as
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is a hydrodynamic damping factor, and denote
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as a structural damping factor.
Equation (7) then becomes
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This is the nondimensional equation for steady-state 
vibration amplitude in response to harmonic excitation. 
Its end conditions are
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2.1.2 Undamped End-Forced Solution-Demonstra-
tions. The simplest meaningful solution of equation 
(9) is obtained by specializing F(x) to be a concentrated 
end force and discarding the damping terms. This solu-
tion, obtained by direct inversion of the reduced equa-
tion is
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Here, the force is concentrated at the stern, x = 1 (see 
Fig. 3). With zero damping, W(x) is pure real and � is 
given by

( ) ( ) 224 //
frf

= �� (11)

The solution, equation (10), permits several relevant ob-
servations. These are developed as described later.

2.1.2.1 RESONANT FREQUENCIES—ADDED MASS AND BUOY-
ANCY EFFECTS. The undamped solution, equation (10), 
implies infinite vibration amplitude at the values of �
which make cosh � cos � equal to unity. These values of 
� are therefore the system resonant frequencies, which 
are denoted as �n. Denoting � = �n at values of � equal 
to �n, the resonant frequencies correspond to the infin-
ity of roots of

cosh �n cos �n = 1  (12)

where, from equation (11),

�n
4 = (�n / f)2 – ( r/ f)2 (13)

The first root of equation (12) is �0 = 0. This implies, from 
equation (13), that

L

kL
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This is just the rigid-body heave, or pitch, resonant 
frequency; the two are the same for a ship with uniform 
(or longitudinally symmetric) mass and buoyancy dis-
tributions. At the low frequency of the rigid-body reso-
nance corresponding to �0, the mass distribution � is 
frequency dependent due to the surface wave effects in 
the hydrodynamic component of �. The frequency de-
pendence of � diminishes as the vibratory frequency 
increases. In reality, ship hydrodynamic added mass is 
essentially invariant with frequency at frequencies cor-
responding to the hull flexural modes.

The second root of equation (12) is �1 = 4.73, which 
corresponds to the first hull flexural mode. All subse-
quent �n are greater than �1. Therefore, assuming � to be 
independent of frequency for n � 1, �f and �r are con-
stants in equation (13), and the first flexural mode reso-
nant frequency, and all of those above it, are directly 
available from equation (13) as

( ) =+= ,...,1;/
24
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with �n determined from equation (12).
For ships, the ratio �r/�f is typically on the order of 

1, and therefore much smaller than �n
4 in equation (14). 

This demonstrates the fact that the effect of buoyancy in 
stiffening a ship hull in vertical flexural vibration exists 
but is insignificant in normal circumstances. Discard-
ing �r/�f in equation (14), the beam resonant frequen-
cies are approximated by
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Being typically negligible, the effects of buoyancy 
will be discarded in all subsequent considerations of 
flexural vibration; �r will be deleted in the definition 
of � so that the existence of nonzero rigid-body modes 
(n = 0) is ignored. Furthermore, �f appearing in � will 
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be taken as frequency independent, since the hydrody-
namic added mass in f is a constant at high frequency.

Note that although in the case of wave-excited vibra-
tion both rigid-body and flexural vibration occur, the 
two responses are essentially independent superposi-
tions.

2.1.2.2 STERN VIBRATION LEVEL. Consider the vibra-
tion at the position of the concentrated excitation force 
by setting x = 1 in equation (10)

( )���

����

coscosh1

sincoshcossinh)1(
3

=
F

W
(16)

For exciting frequencies in the range of the beam flex-
ural resonant frequencies, the corresponding values of 
�, as arguments of the hyperbolic functions, can be con-
sidered as large. That is, for large �

��� e
2
1

coshsinh

Therefore, at high frequency

( )1tan
3

1

cos(23

sincos)1(
�

��)��

��

eF

W (17)

Equation (17) implies that, for a forcing function of fixed 
amplitude, the end vibration generally decreases with 
frequency as �−3, or �−3/2. Zero vibration at the stern oc-
curs at the antiresonant frequencies, �n

a, correspond-
ing approximately to

tan �n
a = 1

or, from equation (15),

�n
a / f = [(4n + 1)�/4]2; n = 1, . . . , (18)

Large vibration occurs only in the immediate vicinity of 
the resonant frequencies, the flexural values of which, 
from equation (17), correspond approximately to

tan �n = ±

or

�n / f = [(2n + 1)�/2]2; n = 1, . . . , (19)

As � increases, equation (17) implies a limiting state 
where the vibration is zero except at the resonances. 
But the resonant frequencies, equation (19), at which 
the vibration is infinite, occur in the limit of large n, in-
finitely far apart.

The trend toward this limiting case is exhibited in 
Fig. 4, which is a plot of equation (17) in the frequency 
range of the first few flexural modes.

With regard to the relationship of equation (17) to 
actual ship vibration, it is not true, in general, that the 
spacing of the hull girder resonances increases as fre-
quency increases. The disagreement is due to the exclu-
sion of shear and rotational inertia in the beam model, 
as well as to the exclusion of the effects of local vibra-
tory subsystems sprung from the hull beam. These ef-

fects become influential in ship hull girder vibration at 
high frequency.

The vibration is also, in reality, certainly not infinite 
at the resonant frequencies; this prediction is due to the 
deletion of damping in the solution to equation (9).

It is likewise not true that propeller-induced vibra-
tion has a generally decreasing trend with frequency, 
as equation (17) implies. In reality, however, the ampli-
tude of the propeller excitation, in this case F, increases 
with frequency, roughly as frequency squared. With an 
�2 variation of F in equation (17), W(l) then increases 
generally as �1/2, which is more realistic than decreas-
ing as �−3/2.

2.1.2.3 RELATIVE VIBRATION OF BOW AND STERN. Setting 
x = 0 in equation (10), the vibration amplitude at the 
beam end opposite that to which the excitation is ap-
plied is

( )���

��

coscosh1

sinsinh)0(
3

=
F

W (20)

Using equations (16) and (20), the ratio of the end dis-
placements is

����

��

sincoshcossinh

sinsinh

)1(
)0( =

W

W

sincoshcossinh

sinsinh

)1(
)0( =

W

W (21)

Again, replacing the hyperbolic functions by the expo-
nential for large �

Fig. 4 Hull beam response characteristics.
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( )4/cos2

1

sincos
1

sincos

sin21

)1(
)0(

��

����

� �

+
=

= e

W

W

 (22)

At the antiresonant frequencies, equation (18), W(0)/
W(1) becomes infinite since W(l) = 0 by definition of the 
antiresonance. At the resonant frequencies, equation 
(19), W(0)/W(1) = ±1, by equation (12). The minimum 
absolute value of the displacement ratio occurs at cos 
(� + �/4) = ±1. Its value is

min | W(0) / W(1) | = 1/ 2

The frequencies at which this minimum value occurs 
are

( )[ ] =+= ,,...1;
2

4/34 nn
f

�
�

(23)

This prediction is definitely contradictory to observa-
tions of ship vibration at high frequency. The simple un-
damped end-forced solution predicts that the vibration 
level at the ship bow should never be less than roughly 
70% of the vibration at the stern. In reality, propeller-in-
duced ship hull girder vibration is known to concentrate 
at the stern at high propeller RPM, with the vibration 
diminishing rapidly forward and often being hardly de-
tectable in the vessel forebody.

A reconciliation of theory and observation as to this 
particular point requires a more general solution to 
equation (9), which includes damping as well as a less 
restricted characterization of the propeller excitation. 
However, the direct analytic solution procedure used to 
produce equation (10) is no longer suitable for providing 
the desired insight in the more general case.

2.1.3 A More General Solution: Modal Expansion. 
The modal, or eigenfunction, expansion technique al-
lows damping as well as an arbitrary excitation char-
acter to be handled with relative ease. Basically, modal 
expansion is an expression of the fact that the vibration 
can be viewed as a superposition of the independent 
natural modes. The solution to the equation of motion 
is expressed as an infinite series, versus the alternative 
closed-form possibility represented by equation (10). 
The series is expanded in terms of the infinite set of nor-
mal modes of the unforced, undamped system.

2.1.3.1 NATURAL FREQUENCIES AND MODE SHAPES.
Returning to the equation of motion for the Fig. 3 uni-
form beam, equation (9), the unforced, undamped sys-
tem in this case corresponds to equation (9) with zero 
damping and excitation

04
4

4

=W
dx

Wd
� (24)

100
3

3

2

2

andxat
dx

Wd

dx

Wd ===

where � is defined by equation (11). The solution to the 
homogeneous differential equation, equation (24), is, for 
� � 0

xCxC

xCxCxW

��

��

coshsinh

cossin)(

43

21

++
+= (25)

Applying the two end conditions at x = 0 eliminates two 
of the four constants in equation (25) as

C2 = C4, C1 = C3  (26)

Application of the remaining end conditions at x = 1 
gives the following simultaneous equations for deter-
mining C3 and C4

0

0

4

3

sinhsincoshcos

coshcossinhsin
=

C

C

����

����
(27) 

or

[B]|C| = |0|
Then, by inversion

|C| = [B]–1|0|
Therefore, unless [B] is singular, the only solution to 
equations (27) is |C| = |0|. But this implies that W(x) = 0, 
which is not of interest. Nonzero |C| and nonzero W(x)
therefore require that [B] be singular. [B] is singular 
only if its determinant is zero. From equations (27),

det [B] = –2(1 – cos � cosh �)  (28)

denote the values of � which make det [B] = 0 as �n;
these values are the system eigenvalues. The infinite 
set of eigenvalues is determined so that equation (28) 
is zero, so that

cos �n cosh �n = 1, n = 1, . . . , (29)

But this is just equation (12), which established the sys-
tem resonant frequencies. From equation (11), ignoring 
the r term,

�n
4 = (�n / f)2  (30)

where �n was identified as the resonant frequencies. 
But under present considerations, �n are the frequencies 
corresponding to unforced and undamped, or natural,
system vibration; the system resonant frequencies are 
therefore synonymous with the system natural frequen-
cies.

Nonzero values of C3 and C4 from equations (27) there-
fore exist only at values of �, satisfying equation (29). 
However, the values of the constants, while not zero, 
are indeterminate, since the coefficient determinant is 
zero at these frequencies. The fact that the determinant 
of the coefficients is zero at the natural frequencies im-
plies that the two equations (27) are linearly dependent 
at the natural frequencies. That is, two independent 
equations from which to determine the two constants 
are not available. The only information available from 
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equations (27) is the relationship between C3 and C4 at 
the natural frequencies. Either one of the two equations 
can be used for this purpose; the same result will be 
obtained because of the linear dependency. From the 
second equation of equation (27)

nn

nn

C

C

��

��

coshcos

sinhsin

4

3 +
= (31)

Substitution of equation (31) and equation (26) back 
into the homogeneous solution equation (25) gives the 
beam vibration amplitude at the natural frequencies, as 
a function of x, except for a constant factor. This rela-
tive amplitude distribution at the natural frequencies is 
the eigenfunction, or mode shape, and is denoted by �n.
From equation (25), the mode shape for the Fig. 3 beam 
is

( ) [

( )]xx

xxCx

nn
nn

nn

nnn

��
��

��

���

sinhsin
coshcos

sinhsin

coshcos4

+
+

+

++=

(32)

The constant C4 is arbitrary and is conventionally set 
to unity.

Equation (32) is the beam mode shape for � � 0. This 
function has the character of the vertical mode shapes 
depicted in Fig. 2 of Section 1.2; increasing n corre-
sponds to increasing node number.

For � = 0, the solution to the homogeneous system, 
equation (24) is

W(x) = C1 + C2x + C3x2 + C4x3  (33)

The end conditions at x = 0 reduce equation (33) to

W(x) = C1 + C2x  (34)

which satisfies the end conditions at x = 1 identically. 
The mode shape identified with equation (34) is there-
fore the zeroth order rigid-body heave/pitch mode, the 
corresponding natural frequency of which was previ-
ously identified as �r by equations (12) and (13); �r has 
been assumed to be zero in consideration of the flexural 
modes.

2.1.3.2 VIBRATORY DISPLACEMENT. Modal expansion 
expresses the solution of the equations of motion, equa-
tion (9), as a weighted summation of the infinite set of 
mode shapes

( ) ( )xAxW
nn

n

�
=

=
1

(35)

Back substituting equation (35) into equation (9) and 
utilizing the orthogonality property of the mode shapes, 
which uncouples the An terms in equation (35) (see Sec-
tion 2.2, equation (72), and the material immediately fol-
lowing), the An terms are determined as

( )
nnn

nn

n
i

KF
A

���� /2/1

/
2 +

=  (36)

In equation (36), Fn, Kn, and �n represent the following.
Modal exciting force:

( ) ( )dxxxFF n
x

n �
=

=
1

0
(37)

Modal stiffness:

( )dxxK
x

n

f

n

n =
=

1

0

2

2

�
  (38)

Modal damping factor:

�n = �v(�n / f) + �c( f/�n)  (39)

Substitution of equation (36) into equation (35) gives 
the complex vibration amplitude

( )
( )

( )xn

n nnin

nKnF
xW �

����= +
=

1 /2
2

/1

/
(40)

Substitution of this result into equation (5), and using a 
trigonometric identity, gives the vibration

( )( ) ( )
( ) ( )

nn

nnn

nn tx
KF

��
���� +

c o s
/2/1

/
222

displacement at any point x along the beam at any time

( )
=

=
1

,
n

tx� (41)

The modal phase angle, �n, relative to Fn, is

( )
=

2

1

/1

/2
tan

n

nn
n

��

��
�

The form of equation (41) demonstrates that modal 
expansion can be viewed as just a superposition of the 
independent responses of an infinite number of equiv-
alent one-degree-of-freedom systems. The stiffness, 
damping, and excitation of each equivalent system are 
the modal values corresponding to equations (37), (38), 
and (39). The equivalent mass would be the modal mass, 
Mn = Kn /�n

2. The response of each of the one-degree-of-
freedom systems is distributed according to the mode 
shapes of the respective modes.

2.1.3.3 RELATIVE VIBRATION OF BOW AND STERN. The rea-
sons for the rapid attenuation of hull girder vibration on 
moving forward from the stern, which were left unex-
plained by the simple theory of the last section, can now 
be reconsidered with the aid of the modal expansion, 
equation (40).

It is first convenient, although not at all necessary, to 
normalize the eigenfunction set, equation (32), by as-
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signing specific values to the constant C4. Choosing a 
value of unity of the �n(x) at the forcing end

�n(1) = 1; n = 1, . . . , (42)

C4 in equation (32) is evaluated as

nn

nnC
��

��

sinhsin2

coshcos
4 = (43)

Then from equations (43) and (32), the eigenfunction at 
x = 0 has the values

�n(0) = (–1)n+1; n = 1, . . . ,  (44)

It will also be notationally convenient to define, Wn(x)
An �n (x) where An is given by equation (36). Equation 
(40) is then, alternatively

( ) ( )xWxW
n

n

=

=
1

  (45)

By equations (42), (44), and (45), the displacements at 
the two ends of the beam are

( ) ( )11
1=

=
n

n
WW

and  (46)

( ) ( ) ( )110
1

1
n

n

n
WW

=

+=

Equation (46) shows that the absolute values of the 
displacement components from each mode are the same 
at the beam ends. Differences in the sums must therefore 
be due only to the alternating form of the series for W(0), 
associated with phase changes occurring within the dis-
placement components at the forcing end. In fact, this 
character of the displacement series, equation (46), is the 
basis for understanding the reasons for the rapid decay of 
hull girder vibration forward from the stern. Figure 5 is 
intended as an aid in this purpose. Figure 5 is composed 
of sketches of the Wn components for six modes, arbi-
trarily, and their summations, for three different cases.

The right column in Fig. 5 depicts the displacement 
for the undamped beam with the concentrated force ap-
plied at the extreme end. This was the case studied in 
the last section and for which the minimum ratio of end 
displacements was predicted to be never less than 1/ 2. 
The center column in Fig. 5 represents the case in which 
damping remains zero but the concentrated force is ap-
plied at a position x = x0 slightly less than 1, correspond-
ing to a typical propeller position. In the third column 
on Fig. 5, the force has been replaced at the beam end 
but damping has been assumed to be nonzero and sig-
nificant.

Fig. 5 Hull beam response characteristics.
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The exciting frequency is assumed to lie arbitrarily 
between modes 3 and 4 in Fig. 5. The value of � can 
be considered as that given by equation (23) with n = 
4; equation (23) predicts the frequencies at which min 
|W(0)/W(1)| = 1/ 2 occurs for the undamped, end-forced 
case. Consider the three cases of Fig. 5 individually. 

Case 1—Undamped, end forced. From equation 
(40), with x0 = 1 and for �n = 0

( )
( )

( )x
KF

xW
n

n

n

n
�

��
2/1

/
= (47)

In general, the modal forces for the three cases of Fig. 
5 are Fn = F�n(x0), by equation (37). For x0 = 1 in the first 
case, Fn = F for all n since �n(1) = 1 by equation (42). For 
� between the two resonant frequencies, �N−1 and �N,
the beam end displacements can be written from equa-
tions (46) and (47) as

( ) ( ) ( )
==

+=
Nn

n

N

n

n
WWW 111

1

1

( ) ( ) ( )
=

+=
1

1

1 110
N

n

n

n
WW

( ) ( )
=

++
Nn

n

n
W 11 1  (48)

Here, the sign change occurring in the denominator 
of equation (47) at n = N has been explicitly assigned. At 
the end x = 1, all of the modes below � are of the same 
sign, but of opposite sign to the modes above �. Imper-
fect cancellation occurs, with the lower modes dominat-
ing the upper. At x = 0, on the other hand, interferences 
occur among the groups of modes both below and above 
� due to the alternating signs shown in equation (48). 
The dominant terms immediately above and below �,
that is, Wn−1(0) and Wn(0), have the same signs, however, 
and support rather than cancel. As a result, W(0) is rela-
tively large. In fact, the ratio |W(0)/W(1)| = 1 / 2 occur-
ring at � for x0 = 1 and �n = 0 is a maximum value of the 
minimum ratio. This is because both repositioning the 
excitation force forward and allowing nonzero damping 
result in a more rapid attenuation of displacement away 
from the forcing point.

Case 2—Undamped, x0 < 1. Considering the case 
where x0 < 1, which corresponds to the center column 
in Fig. 5, the modal force is

Fn = F�n(x0)

in equation (40). The modal forces now converge with 
increasing n, since, as the aftermost beam nodal point 
moves aft toward the forcing point with increasing n, the 
�n(x0) values decrease. Thus, the higher modes become 
less excitable by the concentrated force. The result is a 
decrease in the cancellation in W(l), by equation (48), 
as the net displacement produced by the modes above �
decreases relative to the net contribution from below.

Also, a weakening of the modes above � reduces the 
support of the large Nth mode in W(0), relative to the 
(N − 1)th. This results in a relative decrease in W(0), with 
respect to W(l), and a larger difference in the end displace-
ments. This decreasing propeller excitability of the higher 
hull girder modes by virtue of convergence of the modal 
force series was the explanation given by Baier and Or-
mondroyd (1952) for the rapid attenuation of propeller-in-
duced hull girder vibration forward from the stern region.

Case 3—Damped, end-forced. Turning to the case 
of nonzero damping, but with Fn = F, the terms in the 
displacement series are

( )
( )

( )x
i

KF
xW

n

nnn

n

n
�

���� /2/1

/
2 +

= (49)

If the modal damping factor, �n, in equation (49) increases 
with n, then the convergence of the displacement series 
is accelerated, with the same effects as produced by 
convergence of the modal forces just considered.

Damping also modifies the relative phases of the 
modes. This occurs most strongly for modes in the imme-
diate vicinity of the exciting frequency, since the damping 
in the denominator of equation (49) is relatively strongest 
for �/�n in the vicinity of 1. For zero damping, the modes 
below the exciting frequency are 180 degrees out of phase 
with the modes above due to the sign change in the de-
nominator of equation (47). Damping spreads the phase 
shift. If the damping is strong enough, the most dominant 
modes to either side of the exciting frequency can be ap-
proximately in phase and 90 degrees out of phase with 
the exciting force. This is the situation depicted in Fig. 
5, where damping has delayed the phase shift in the two 
modes below �. The result is increasing modal interfer-
ence with distance away from the forcing point.

The effect depicted in the left column of Fig. 5 is con-
tingent upon a modal damping factor that increases with 
modal order and/or is relatively large in the modes in the 
vicinity of the exciting frequency. In this regard, reconsider 
the modal damping factor that arose in the derivation of 
the uniform beam modal expansion, equation (39)

�n = �v(�n / f) + �c( f/�n)

The structural damping factor, �v, is a constant, by 
equation (9). The hydrodynamic damping factor, �c, has 
not been specifically defined, but it actually has a de-
creasing magnitude with frequency. Furthermore, �n/ f

is large for all n. Therefore, for n large

�n �v(�n / f) = (v/2E)�n

�n, therefore, increases with n, and becomes large at 
large n corresponding to � at high frequency excitation. 
The �n developed with the idealized beam model there-
fore appears to meet the requirements for the effects of 
damping exhibited in Fig. 5. Kennard (1955) suggested 
high hull damping in the frequency range of propeller 
excitation for the concentration of vibration in the stern 
of vessels when operating at high propeller RPM.
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This discussion with regard to Fig. 5 should help to 
avoid the common misconception that the concentration 
of propeller-induced vibration in the stern of a vessel is 
evidence that the vessel is exhibiting something other 
than beamlike vibration. To the contrary, sternward con-
centration of vibration at high frequency is due to inter-
ference in the beam modes at the bow and support at the 
stern. As shown, this occurrence is due both to increas-
ing modal damping and decreasing modal excitability as 
modal order, and exciting frequency, increase.

2.2 Discrete Analysis
2.2.1 Mathematical Models. Modern day ship vi-

bration analysis almost exclusively employs mathemati-
cal models that are nonuniform and discrete, rather 
than uniform and continuous. Such models represent 
the continuous mass, stiffness, damping, and excitation 
characteristics of the physical structure at a discrete 
number of points, which are called nodal points.

The equivalent nodal point properties are translated 
in terms of an assemblage of discrete, or finite, ele-
ments; the finite elements interconnect the nodal points 
of the structural model. (Note that these nodal points 
are not the same as the nodes defined in Section 1.2.)

In analyzing the discrete model, all forces and dis-
placements are referred to the model nodal points. In gen-
eral, six components of displacement, consisting of three 
translations and three rotations, and six corresponding 
components of force can exist at each nodal point of the 
model. The model is usually constrained, however, so that 
fewer than the possible six displacements are allowed at 
any nodal point. The number of such displacements al-
lowed at any point is referred to as its degrees of freedom.
If mass, or mass moment of inertia, is associated with a 
particular nodal point displacement, then that displace-
ment defines a dynamic degree of freedom. Otherwise, 
the degree of freedom is static. While the total number of 
degrees of freedom of continuous systems is always infi-
nite, the total number of degrees of freedom of a discrete 
model is finite, being the sum of the numbers assigned to 
each of the model nodal points.

Discrete analysis of ship vibration can be performed 
to any arbitrary level of detail, with model complexity 
limited primarily by available computing facilities. Of-
ten, the ship hull girder, as considered in the last section, 
is modeled along with its sprung substructures—deck-
houses, decks, double-bottoms, etc.—in a single discrete 
model (Kagawa, 1978; Reed, 1971; Sellars & Kline, 1967).

In many cases, meaningful estimates of substructure 
vibration characteristics can also be obtained using 
only a discrete model of the substructure, with approxi-
mate boundary conditions applied at its attachment to 
the hull girder (Sandstrom & Smith, 1979).

Discrete analysis is conveniently demonstrated by an 
idealized example of the latter approach noted above. 
Consider the simple finite element model for a ship 
deckhouse shown in Fig. 6. Here, the house is modeled 
two-dimensionally as a rigid box of mass m and radius 
of gyration r̄.

The house front is taken, typically, as a continuation 
of the forward engine room bulkhead; the connection at 
main deck is assumed to act as a simple pin allowing com-
pletely free rotation. The parallel connection of finite ele-
ments with axial stiffness and axial damping represents 
the supporting structure along the house after bulkhead. 
This structure would be composed, typically, of pillars 
erected within the engine room cavity. The house is base 
excited by the vertical vibratory displacement of the hull 
girder, w(�, t), � now being the axial coordinate along the 
hull girder. The applied base displacements, w(�1, t) and 
w(�2, t), are the hull girder displacements at the forward 
engine room bulkhead and at the base of the after foun-
dation; w(�1, t) and w(�2, t) are assumed at this point to be 
specified independently in advance.

Use of the Fig. 6 model for serious vibration analysis 
is not entirely valid in two respects. Primarily, the typi-
cal deckhouse does not truly act as if rigid at propeller 
excitation frequencies. While the underdeck support-
ing structure is quite often the predominant flexibility in 
propeller-induced deckhouse vibration, the bending and 
shear flexibilities of the house itself can usually not be 
considered as unimportant. Some degree of interaction of 
the house with the hull girder also occurs. Because of this, 
the base displacements are not easily prescribed with ac-
curacy independently. In spite of these shortcomings, the 
simple Fig. 6 deckhouse model is instructive; it captures 
the basic characteristics of fore- and aft-deckhouse vibra-
tion in the spirit of the simple uniform beam model for hull 
girder vertical vibration studied in the last section.

Proceeding as described, the degree-of-freedom assign-
ments of the Fig. 6 finite element model are shown in Fig. 
7. Here, xj is used to denote generalized displacement (i.e., 
rotation or translation). In view of the assumed house rigid-
ity, all displacements in the vertical/fore-and-aft plane can 
be specified in terms of the three assigned in Fig. 7. All other 
possible displacements at the two nodal points of the Fig. 7 
model are assigned zero values by virtue of their omission. 
Of the three total degrees of freedom assigned in Fig. 7, two 
are dynamic degrees of freedom. These are x1 and x2, as they 
are associated with the house mass moment of inertia and 
house mass, respectively. x3 is a static degree of freedom.

Fig. 6 Ship deckhouse vibration model.
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Also, two of the three degrees of freedom are speci-
fied from Fig. 6 as

x2 w(�1, t) and x3 w(�2, t)

Once x1 is determined, the vertical and fore-and-aft dis-
placements at any point (�, �) on the house are available, 
respectively, as

w(�, �, t) = w(�1, t) – x1(t)(� – �1)

u(�, �, t) = x1(t)� (50)

2.2.2 Equations of Motion. The equations of mo-
tion governing the general finite element model are de-
rived as follows. 

It is first required that the model be in dynamic equi-
librium in all of its degrees of freedom simultaneously. 
Application of Newton’s Law in each degree of freedom, 
in turn, produces

[m]|ẍ| = –| fs| – | fd| + | f | (51)

where, for M total degrees of freedom, [m] is the M ⋅  M
model mass matrix, |ẍ| is the M ⋅ 1 nodal point accel-
eration vector, and | fs|, | fd|, and | f | are the M ⋅  1 nodal 
point stiffness, damping, and excitation force vectors, 
respectively.

The characteristics of the model finite elements are 
established in advance to satisfy compatibility and ma-
terial constitutive requirements on the local level. Satis-
faction of these requirements for linear behavior leads 
to the following relations between the nodal point inter-
nal forces and the nodal point displacements

| fs| = [k]|x|  | fd| = [c]|ẋ| (52)

Here, [k] is the model stiffness matrix and [c] is the 
model damping matrix, both of which are square matri-
ces of order M.

Substitution of equation (52) into equation (51) pro-
duces the linear equations of motion governing the gen-
eral discrete model

[m]|ẍ| + [c]|ẋ| + [k]|x| = | f |    (53)

This M × M system of equations can be readily solved 
for the unknown nodal point displacements once [m], 
[c], [k], and | f | are specified.

Actually, the equations of motion can be interpreted 
as a general statement and conveniently used to deter-
mine their own coefficients.

For example, if the accelerations and velocities are 
set to zero, equation (53) reduces to

[k]|x| = | f |
In expanded notation:

M
x

x

x

MM
k

M
k

kk

M
kkk

f

f

f

M

=

2

1

1

2221

11211

2

1

The subscripts refer to the numbers assigned to the 
nodal point degrees of freedom. Now, defining the kij re-
quires, in addition to zero velocities and accelerations, that 
all displacements xi be zero except for i = j, and set xj = 1. 
Then, for any degree of freedom i, multiplication gives

fi = kij

The kij is, therefore, defined as the force in degree of free-
dom i due to a unit displacement in degree of freedom j,
with all other degrees of freedom completely restrained. 
Complete restraint means restraint from acceleration, 
velocity, and displacement.

Also, as to the matter of signs, the designation force 
in degree of freedom i is interpreted as the force re-
quired at i in order to accomplish the degree of freedom 
assignment at i.

The corresponding definitions of mij and cij are simi-
larly derived from the general equation (53) by making 
the appropriate degree of freedom assignments. Defini-
tions for mij and cij identical to that above for kij result, 
but with unit accelerations and velocities, respectively, 
replacing the unit displacements.

In calculating the components of the excitation force 
vector, fi, the model is completely restrained in all de-
grees of freedom. fi is then the resultant of the applied 
forces tending to overcome the restraint in degree of 
freedom i.

In this connection consider again the simple model of 
Fig. 7. The displacements in the three degrees of freedom 
are x1, x2, and x3, with x1 to be determined and the other 
two specified. By applying zero and unit accelerations, 
velocities, and displacements in the three degrees of free-

Fig. 7 Deckhouse model degrees of freedom.
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dom, in turn, the mass, damping, stiffness, and excitation 
force matrices are assembled by the rules stated above as

[ ]=
000

0

02

mm

mrm

m

[ ]=
ccc

ccc

ccc

c

�
�

��� 2

[ ]=
kkk

kkk

kkk

k

�
�

���2

3

2

0

f

ff = (54)

The force components f2 and f3 in the excitation force 
vector above are the unknown forces associated with 
the known displacements x2 and x3; f1 is zero as no ex-
ternal moment is applied at the pin connection.

This example demonstrates the general case. Either 
the applied external force, fi, or displacement, xi, must be 
specified for each degree of freedom; both will never be 
known prior to solution of the system equations, but one 
of the two must be known. The equations correspond-
ing to the known forces are first solved for the unknown 
displacements. The unknown forces are then calculated 
using the then completely known displacements, with 
the equations corresponding to the unknown forces. For 
the Fig. 7 system, the first part of the operation described 
above produces a single equation of motion for determin-
ing the single unknown displacement x1. It is

( ) ( )32322

1
2

1
2

1
2

xxkxxcxm

xkxcxrm

++=
++

�˙�

��¨

¨ ˙

˙

(55)

On solving this equation for x1, the unknown force com-
ponents, f2 and f3, are then determined from the two re-
maining equations by multiplication as
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2
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  (56)

2.2.3 Solutions. For L of the total M model nodal 
point displacements unknown, L governing differential 
equations, in the general form of equation (53), must be 
solved. The L × 1 force vector in equation (53) will be 
completely known in terms of the L applied force com-
ponents and the M – L applied displacements.

The same basic solution procedure applied in the 
continuous analysis of the last section is also followed 
here. The approximate periodicity of the propeller ex-
citation allows the time variable to be separated from 
the differential equations by the use of Fourier series. 
For propeller angular velocity  and blade number N,
define � mN� as the mth harmonic propeller exciting 
frequency. Then, for |F| and |X| representing the mth

harmonic complex force and displacement amplitude 
vectors, the equations of motion, equation (53), can be 
satisfied harmonic by harmonic by solving

{–�2[m] + i�[c] + [k]}|X| = |F|  (57)

Define the system dynamic matrix as [D]

[D] = –�2[m] + i�[c] + [k]   (58)

Equation (57) is then

[D]|X| = |F| (59)

with solution

|X| = [D]–1|F| (60)

Returning to the deckhouse model in Figs. 6 and 7 
with

|x| = Re|X|ei�t

the system dynamic matrix, from equation (55), is

[D] = –�2mr̄ 2 + i�c�2 + k�2  (61)

which is a 1 × 1 matrix on the single unknown complex 
amplitude, X1. Likewise, the complex exciting force vec-
tor in equation (55) is

|F| F1 = –�2m�̄X2 + (i�c� + k�)(X2 – X3)

The inversion required by equation (60), using equa-
tion (61), is then simply

( )( )
2222

322
2

1 ��
��

kcirm

XXkciXm
X

++
++

=
��

��
(62)

Equation (62) can be written in the standard form for 
vibration of systems with one dynamic degree of free-
dom by writing its numerator as

F1 = F1
R + iF1

I = mod F1e–i�

and the denominator as

( )
( )[ ] ( )222 /2/1

/1

nn

i
eK

wwww +

so that
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x1 = Re X1ei�t

is, from equation (62),

( ) ( ) ( )

( ) ( )222
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where, in the above

( ) ( )2
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2

11mod IR FFF +=
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� (64)

In the general case, an analytic closed form inver-
sion of the system equations like that performed above 
for the simple one dynamic degree-of-freedom system 
is not possible. Two alternatives exist. The most obvi-
ous is just a direct numerical inversion of equation (60). 
Powerful numerical algorithms are readily available 
for inverting systems of linear simultaneous algebraic 
equations.

The alternative solution procedure is eigenvector, or 
modal, expansion. Modal expansion is the series solu-
tion of the equations of motion, equation (57), in terms 
of the natural frequencies and mode shapes of the dis-
crete model.

2.3.3.1 NATURAL FREQUENCIES AND MODE SHAPES. By 
definition, natural frequencies are frequencies of vibra-
tion of the free, or unforced, and undamped system. 
From equation (57), the equations of motion for the free, 
undamped discrete model are

{–�2[m] + [k]}|X| = |0|
(Here the system model is considered to have a total 
of L unknown degrees of freedom, with N dynamic de-
grees of freedom (DOF) and L − N static DOF [no mass 
assigned].)   

Denote

[D*(�)] = [D]|[c]=0 = –�2[m] + [k]

Then

[D*]|X| = |0| (65)

This equation implies that |X| = 0 unless [D*] is singu-
lar. But by definition of natural vibration, |X| is not zero. 
Therefore, the frequencies � which make [D*(�)] singu-
lar are the system natural frequencies; [D*] is singular 
if its determinant is zero. Define

P(�)  det [D*(�)] (66)

P(�) is called the characteristic polynomial. For N sys-
tem dynamic degrees of freedom, P(�) is a polynomial 
of order N in �2; it has N positive roots in �. The N posi-
tive values of � which make P(�) = 0 are the natural 
frequencies, �n

P(�n) = 0 n = 1, . . . N (67)

While the number of natural frequencies possessed 
by continuous systems is always infinite, the num-
ber of natural frequencies of the discrete model is 
equal to its number of dynamic degrees of freedom.
In this regard, it is worth repeating that all real physi-
cal systems are at least piece-wise continuous. There-
fore, discrete systems can be viewed only as discrete 
models of continuous systems; this distinction is not 
unimportant.

Proceeding, with the N model natural frequencies in 
hand, a return to equation (65) gives

[D*(�n)]|X| = |0| (68)

Now, |X| is not of necessity zero at � = �n since [D*(�)] 
is singular at these frequencies, but it is undefined. Just 
as with the continuous analysis, the singularity of the 
coefficient matrix of equation (68) implies a linear de-
pendency within the L equations on the unknown DOF. 
That is, only L − 1 linearly independent equations exist 
at � = �n, n = 1, . . . , N, for determining the L unknown 
components of |X|. All that is available from equation 
(68) are the relative amplitudes, called mode shapes, or
eigenvectors, at each of the N natural frequencies.

The L × 1 mode shape vector is denoted |�n|, n = 1, . . .  
N. It is determined by assuming any one of its L compo-
nents as known. Then the L − 1 equations on the remain-
ing L − 1 mode shape components at each n are solved 
in terms of the one presumed known. That is, assuming 
arbitrarily that the Lth mode shape component is known, 
equation (68) is written

nL
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2

1

� (69)

The (L − 1) × (L − 1) system of linear algebraic equa-
tions, equation (69), is then solved by standard numeri-
cal methods for the (L − 1) component |�n| for some or 
all of the N modes of interest.
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For the Fig. 6 deckhouse example, the above is simple 
since L and N are 1. The [D*] matrix from equation (61) 
is

[D*] = –�2mr̄ 2 + k�2

which is also the characteristic polynomial P(�). P(�n)
= 0 gives the natural frequency

22 / rmkn �=�

with n = 1. The mode shape |�n| is �11, which has an ar-
bitrary scale value.

2.3.3.2 MODAL EXPANSION. At this point in the devel-
opment of the solution for the uniform beam of the last 
section, a brief description of the modal expansion solu-
tion procedure, for that simple case, was followed by its 
statement. Here, it is considered worthwhile to develop 
the solution to illustrate a special difficulty that occurs 
in the more general case.

As before, the complex displacement amplitude 
vector is first written as a series of the mode shapes 
weighted by unknown coefficients, An.

n

L

n

n
AX �

=

=
1

(70)

Substitute equation (70) back into the governing equa-
tions (57)
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Now multiply equation (71) by some |�m|T, with T denot-
ing transpose and with m not necessarily equal to n
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(72)

But due to orthogonality

[ ] nmform
n

T

m
= 0��

Define, for m = n,

[ ]
mm

T

m
Mm =�� (73)

as the mth mode modal mass. By equation (73), the sum-
mation of the matrix products involving [m] in equation 
(72) is reduced to a single constant, Mm. Similar reduc-
tion of the products involving [k] in equation (72) is ac-
complished as follows.

By equation (68)

( ) [ ] [ ]{ } 02 =+ nnnn kmD ����

Multiply by |�m|T

[ ] [ ] 02 =+ n
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Therefore, in view of equation (73)
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mmm
MK

2
�= (74)

as the mth mode modal stiffness, such that

mmm MK /=�

Also, define

m

T

m
FF =� (75)

as the mth mode modal exciting force.
Substitute equations (73), (74), and (75) back into 

equation (72)
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Now, if orthogonality can be employed to reduce the 
damping term in equation (76) similarly as with the mass 
and stiffness, then the Am required in the solution (70) 
are determined. However, orthogonality on the damping 
matrix does not, in general, exist for N > 1. It exists only 
in special cases. For example, if [c] is proportional to 
[m] and/or [k], then orthogonality exists (c was propor-
tional to both k and m in the simple distributed model of 
Section 2.1; that provided the mode shape orthogonality 
required at equation [36]). That is, for

[ ] [ ] [ ]mkc
nn

�	 += (77)

where �n and 	n are constants which are allowed to vary 
only from mode to mode, then, in equation (76)

[ ]
mmmmmm

T

m
CMKc += �	�� (78)

Cm is called the modal damping coefficient. Presuming 
Cm to exist, the Am are then, from equation (76),
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where
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m

mmm

mm

m

m
M

C

�

��	

�



222
+== (80)

�m is the mth mode modal damping factor. Substituting 
equation (79) into equation (70) completes the deriva-
tion
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|x(t)| follows as
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Here, �n and �n are the modal phase angles
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Equations (81) and (82) are general equations that 
have wide application to ship vibration problems, as 
discussed in Section 3. These equations again confirm 
that modal expansion can be viewed as just a superposi-
tion of the responses of N equivalent one-DOF systems 
representing each of the N modes of the discrete model. 
The only difference between the above solution for con-
tinuous and that for discrete models is the length of the 
series. The continuous case, having infinite degrees of 
freedom, generates an infinite series.

The restriction imposed upon damping at equation 
(77) for N > 1 must also be observed in continuous anal-
ysis; this difficulty did not appear explicitly in the last 
section because the beam with uniform properties, in 
fact, possesses proportional damping automatically.

The restriction on damping is severe. For the inter-
nal material damping of structural systems, a damping 
matrix proportional to stiffness can be justified; the 
simple theory used in the last section for allowing for 
material damping of the continuous beam leads to this 
conclusion. However, where other sources of damping 
are also present, proportionality is usually destroyed, 
and, in such cases, the modal expansion, equation (81), 
does not exist, theoretically.

Nevertheless, temptations exist for applying the 
modal formula to models where proportional damping 
cannot, in reality, be justified. Ship vibration is a typi-
cal example. Three potential advantages of modal ex-
pansion over the direct numerical inversion approach, 
equation (60), exist, particularly for large models:

1. The solution, equation (81), is in terms of arbitrary 
exciting frequency, �. A summation must merely be per-
formed to evaluate the model response at any frequency 
of interest; the direct inversion requires complete nu-
merical reanalysis of each variation of �.

2. In general, a discrete model of a continuous sys-
tem is accurate for only the system modes within a lim-
ited frequency range. That is, while typically the lowest 
modes of an N degree of freedom model should repre-
sent the same modes of the continuous system with 
accuracy, the Nth mode of the discrete model would be 
expected to bear little resemblance to the Nth mode of 
the continuous system. A direct inversion theoretically 
includes the responses of all N model modes. While in-
cluding the erroneous model modes may not actually 
contaminate the results of the analysis, it is certainly 
inefficient to carry them. In modal analysis, the series 
can be truncated at levels where modeling inaccuracy 
becomes pronounced without sacrificing the accuracy 
of the analysis within the frequency range for which the 
model was constructed. This means that only a relative 
few of the N natural frequencies and mode shapes of the 
discrete model need be evaluated in order to predict the 
system vibration characteristics of concern.

3. The semianalytical form of the modal expansion 
provides insight into the relative contributions of the 
elements of mass, stiffness, damping, and excitation in-
fluencing a particular vibration problem. This visibility 
is not available with a purely numerical inversion of the 
model equations.

Returning again to the deckhouse model in Figs. 6 
and 7, the modal expansion of the one dynamic degree-
of-freedom model is just the analytic solution, equation 
(63), as comparison with equations (81) and (82) con-
firms. The deckhouse response predicted by the simple 
one-degree-of-freedom model is interesting, however. 
For simplicity, assume that the hull girder vibration in the 
vicinity of the house, Fig. 6, is rather “flat.” That is, assume 
that the aftermost hull girder nodal point at frequency �
is far enough forward of the house that w(�1, t) � w(�2, t)
in Fig. 6; the house base experiences a pure vertical 
translation. Then, in equation (62), with X2 = X3  X,

XmF ��2
1 =

Taking X real (which implies a reference phase of 
zero)

���� == andXmF
2

1mod

Also, assume that the house is in resonance at �. The 
house rocking vibration, by equation (63), is then

( ) ( )2/3cos
2

/2

1 ��



��
= t

KXm
tx n (83)

with � = �/2 at resonance. By equation (50) the fore-
and-aft vibration displacement at the house top is

u(h, t) = x1(t)h
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Substitute equation (83)
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Taking as typical values of the data in (84), �¯/r̄  = 0.75, 
h/r̄  = 1.333, and � = 0.05, the house top fore-and-aft dis-
placement is:

( ) ( )2/cos10
,

�� += t
X

thu
(85)

This simple analysis implies that the fore-and-aft vi-
bration at the house top can be 10 times the vertical vi-
bration on main deck at resonant conditions. This is not 
at all out of line with observations. Unacceptable fore-
and-aft vibration levels in deckhouses, accompanied by 
relatively low level vibration of the hull girder, and else-
where in a ship have been a common occurrence.

2.3 Propeller Exciting Forces. The propeller excita-
tion in the foregoing has been characterized as a simple 
force concentrated at some point near the aft end of the 
hull girder. This is acceptable only for elementary dem-
onstration purposes. Propeller excitation is a compli-
cated combination of concentrated forces and moments 
acting at the propeller hub, plus a distribution of fluctu-
ating pressure acting over the after-hull surfaces. The 
concentrated propeller bearing forces and moments are 
largely responsible for the vibration of main propulsion 
machinery and shafting systems but are not unimport-
ant, in general, as a source of hull vibratory excitation. 
The usually dominant hull excitation of modern ships 
is, however, the propeller-induced hull surface pressure 
field. This is particularly true when any degree of fluc-
tuating sheet cavitation occurs on the propeller blades, 
which is more often the rule than the exception. The 
fundamental concepts and theory of propeller bearing 
forces and propeller-induced hull surface forces are 
treated in the following.

2.3.1 Propeller Bearing Forces. Consider Fig. 8, 
which depicts a propeller blade rotating with angular 
velocity � in the clockwise direction, looking forward. 
By virtue of the rotation through the circumferentially 
nonuniform wake, the spanwise blade lift distribution, 
L(r, �), fluctuates with time, or with blade position angle 
� = −�t. It is of interest to determine the three force 
and three moment components in the propeller hub 
produced by the time varying lift distributions of all N
blades acting simultaneously. Toward this purpose, de-
fine the complex function

g(r, �; p) = –L(r, �)eip�ejbG  (86)

Here, i and j both denote −1, but they are to be treated 
as independent in all algebraic manipulations; the rea-
son for this artifice is only for compactness of nota-

tion. �G in equation (86) is the geometric pitch angle of 
the blade section at r, and p is an integer to be assigned 
later.

The function g (r, �; p) by equation (86) represents 
a pseudo-lift distribution on one blade of the N-bladed 
propeller. The effect of all N blades acting simultane-
ously is achieved by replacing � by � + 2�(k − 1)/N in 
equation (86) and summing over k. This operation de-
fines a new complex lift function representing the col-
lective effects of the N blades.
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(87)

Now, the circumferential wake nonuniformity appears 
from the blade to be very nearly periodic in time, with 
fundamental period T = 2�/�. With the assumption of 
linearity, the lift distribution, L(r, �)  L (r, t), is also 
periodic with the same period. L(r, �) can therefore be 
written in the Fourier series

( ) ( ) ( ) �� iq  

q

q
erLrLrL

=

+=
1

0 Re, (88)

Here, Lq(r) is the qth harmonic complex lift am-
plitude of the blade section at radius r; L0 (r) is the 
steady lift distribution associated with steady thrust 
and torque. A choice in procedures for determining 
the Lq(r) harmonics is available on specification of 
the corresponding harmonics of the wake inflow (see 
Section 3). It is presumed at this point that a sufficient 
number of the Lq(r) harmonics are available from 
some source.

Fig. 8 Propeller blade-element forces.
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An alternative representation of equation (88), which 
is useful for insertion into equation (87), is
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where the overbar denotes complex conjugate. Discard-
ing the steady lift and substituting equation (89) into 
equation (87) produces
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But it can be easily verified that the k summations ap-
pearing in equation (90) are equal to zero if q ± p is not 
some integer multiple of N, say mN, and the summations 
are equal to N for q ± p = mN. Using these facts, equa-
tion (90) reduces to a sum over m alone
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(91)

The bearing forces fip(�),i = 1, . . . , 6, Fig. 8, are now 
given in terms of G(r, �; p) from equation (91) as
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The prefixes Re and Im refer to the real and imaginary 
parts of the complex quantities involving i and j; the 
complex lift harmonic is Lq = LqR + iLqI in this regard.

As an example, consider the vertical bearing force, 
f3p. Equations (91) and (92) give
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Using the facts that

Im Z = –Re iZ

and

Im Z̄ = Re iZ
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This formula differs from that given by Tsakonas, Bres-
lin, and Miller (1967), for example, only in sign. The 
sign difference is due to the fact that positive lift is 
here taken as that with forward axial component, in the 
usual sense. This is opposite to the convention of the 
Tsakonas et al.

The following important facts should be observed 
from equations (91) and (92).

1. Propeller bearing forces are periodic with fun-
damental frequency equal to the propeller angular ve-
locity times the number of blades. The fundamental fre-
quency, N�, is called blade-rate frequency. The bearing 
forces, as written in equations (91) and (92), are com-
posed of terms at blade-rate frequency, plus all of its in-
teger multiples, or harmonics, mN�.

2. Only certain terms, or harmonics, of the unsteady 
blade lift, and therefore of the hull wake, contribute to 
the bearing forces. While the forces on a single blade 
consist of components corresponding to all wake har-
monics, a filtering occurs when the blade forces super-
impose at the propeller hub. Equations (91) and (92) 
show that the unsteady thrust and torque, f1p and f4p,
depend only on the lift, or wake, harmonics that are in-
teger multiples of blade number. The lateral forces and 
moments, on the other hand, are produced entirely by 
the wake harmonics corresponding to integer multiples 
of blade number, plus and minus one.

2.3.2 Propeller-Induced Hull Surface Pressures 
and Forces. A thorough understanding of the hull sur-
face pressure distributions produced by a propeller, and 
of the integration to resultant hull surface forces, is at-
tained only with a considerable expenditure of effort. 
The subject is very complex. Nevertheless, much has 
been accomplished since the pioneering experimental 
work of Lewis (1973) in both understanding hull surface 
excitation and developing methods for predicting it.

2.3.2.1 UNIFORM INFLOW CONDITIONS. It is useful to 
begin with the simplest possible case: the pressure in-
duced on a flat plate by a propeller operating in a uni-
form inflow. This is depicted in Fig. 9, which is a sketch 
of the water tunnel arrangement from which the data 
shown in Fig. 10 were measured (Denny, 1967).

Two different three-bladed propellers were used in 
the experiments. The propellers were identical in all re-
spects, including performance, except one had blades 
double the thickness of the other. With the assumption 
of linearity, this allowed the independent effects of blade 
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thickness and blade lift to be distinguished from the ex-
perimental data recorded with the two propellers. The 
leftside plots in Fig. 10 show the amplitude and phase of 
the plate pressure induced by blade thickness; the right-
side plots correspond to blade lift. The predictions of 
theories made available in the late 1960s are also shown 
in Fig. 10.

The pressure data shown in Fig. 10 correspond to 
blade-rate frequency. Just as in the case of bearing 
forces, all multiples of blade-rate frequency also occur, 
but the higher harmonics become negligible quickly for 
the uniform wake case. The phase indicated in Fig. 10 
is defined as the position angle of the propeller blade 

nearest the plate (see Fig. 9) when the pressure is posi-
tive (compressive) maximum; positive angle is defined 
as counterclockwise, looking forward. With this defini-
tion, the phase relative to a single cycle of the three-
cycle-per-revolution blade-rate signal is obtained by 
multiplying the phase angles in Fig. 10 by 3. This quickly 
confirms that the blade thickness pressure is approxi-
mately in-phase up- and downstream of the propeller; 
it is an even function in x, approximately. On the other 
hand, a large phase shift occurs in the pressure due to 
blade lift up- and downstream; it behaves as an odd 
function in x, approximately. This behavior suggests 
some substantial cancellation in the lift associated pres-
sure, at least, on integration to the net resultant vertical 
force on the plate. Actually, if the plate is infinite in ex-
tent, the thickness pressure and the lift pressure both 
independently integrate to produce identically zero net 
vertical force on the plate. This fact is a demonstration 
of the Breslin condition (Breslin, 1959). This was estab-
lished by integrating theoretical pressures induced by 
a noncavitating propeller operating in uniform inflow 
over the infinite flat plate and showing the identically 
zero result.

Figure 11 is a contour plot of the blade-rate pressure 
amplitude from a similar but different uniform wake, flat 
plate experiment (Breslin & Kowalski, 1964). Here, only 
amplitude is shown; the phase shift distribution respon-
sible for the cancellation on integration is not apparent 
from Fig. 11. Figures 10 and 11 clearly imply that pro-
peller-induced hull surface pressure is highly localized 
in the immediate vicinity of the propeller; the pressure 
is reduced to a small percentage of its maximum value 
within one propeller radius of the maximum. There is a 
tendency, on the basis of this observation, to draw the 
false conclusion that resultant forces occurring in the 
general ship case should be similarly concentrated on 
the hull in the near region of the propeller. This common 
misconception is explained by the considerations of the 
following section.

2.3.2.2 CIRCUMFERENTIALLY NONUNIFORM WAKE EFFECTS.
It was shown in the propeller bearing force theory that 

Fig. 9 Flat-plate pressure measurements.

Fig. 10 Flat-plate pressure amplitude and phase distributions. (A) Compari-
sons of theoretical and experimental values, thickness contribution, r/R = 
1.10, J = 0.833. (B) Comparisons of theoretical and experimental values, 
loading contribution, r/R = 1.10, J = 0.833. Fig. 11 Flat-plate pressure contours. Flat plate at J = 0.6.
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only certain shaft-rate harmonics of the nonuniform 
wake contribute to the blade-rate bearing force harmon-
ics. In the case of the propeller-induced hull surface ex-
citation, the entire infinity of shaft-rate wake harmonics 
contribute to each blade-rate excitation harmonic. But 
particular wake harmonics are nevertheless dominant, 
with the degree of dominance depending primarily on 
hull form. This will be considered in more detail later.

The pressure distribution corresponding to the wake 
operating propeller (without cavitation) has a very 
similar appearance to the uniform wake case. Figure 
12, from Vorus (1974), shows calculated and measured 
blade-rate pressure amplitude at points on a section in 
the propeller plane of a model of the DE-1040. It was as-
sumed in both of the pressure calculations shown that 
the hull surface appeared to the propeller as a flat plate 
of infinite extent. 

The upper part of Fig. 12 shows the measured pres-
sure produced by the wake-operating propeller, along 
with the corresponding calculated results. Both blade-
rate pressure calculations include the uniform wake ef-
fects of steady blade lift and blade thickness (see Figs. 
10 and 11), plus the contributions from the circumfer-

entially nonuniform part of the wake. The nonuniform 
wake contribution is represented by wake harmonics 1 
through 8 (the “zeroth” wake harmonic component re-
ferred to in Fig. 12 is equivalent to the steady blade-lift 
and blade-thickness components).

The lower part of Fig. 12 shows a breakdown of the 
calculated blade-rate pressure distribution from above, 
as indicated, into contributions from the uniform wake 
components (steady blade lift and blade thickness) and 
nonuniform wake components (sum of unsteady lift har-
monics 1 to 8). The important point is that the pressure 
is dominated by the uniform wake effects; the pressure 
associated with the uniform wake from the lower part 
of Fig. 12 is essentially identical to the total pressure 
shown in the upper. The nonuniform wake contribution 
to the blade-rate pressure is buried at a low level within 
the large uniform wake component.

Interestingly, the integral of the pressure to a vertical 
force on the relatively flat stern has an entirely differ-
ent character with regard to the relative contributions 
of the uniform and nonuniform wake components. This 
is shown in Fig. 13, also from Vorus (1974). Here, other 
than the first column result in Fig. 13, the hull surface is 
modeled accurately with zero pressure satisfied on the 
water surface. The second column in Fig. 13 shows the 
total blade-rate vertical hull surface force calculated 
on the DE-1040. The succeeding 10 columns show the 
contributions to the force from blade thickness and the 
first nine harmonics of blade lift. Figure 13 shows that 
it is the nonuniform wake components, which are small 

Fig. 12 Blade-rate flat-plate pressures on destroyer stern, station 19.
Fig. 13 Calculated blade-rate vertical hull surface forces on destroyer stern 
(DE 1040).
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in the surface pressure, that dominate the integrated 
surface force. The large uniform wake pressure due to 
steady blade lift and blade thickness integrates almost 
to zero over the (almost) flat stern surface (the Bres-
lin condition), leaving a blade-rate exciting force due 
almost entirely to the wake harmonics of orders in the 
vicinity of blade number (the DE-1040 propeller has five 
blades).

Actually, the Breslin condition, as established by 
Breslin (1959) for the uniform inflow case, can be gen-
eralized to cover the nonuniform inflow case as well. It 
can be stated that, for the case of the general noncavitat-
ing propeller, the unsteady vertical force induced on an 
infinite plate above the propeller is equal and opposite 
to the unsteady vertical force acting on the propeller; 
the net vertical force on the plate/propeller combination 
is identically zero. This, of course, covers the uniform 
inflow case since the vertical forces on the plate and 
propeller are both individually zero. The DE-1040 ex-
ample of Fig. 13 is a good approximate demonstration of 
the nonuniform inflow case. It was shown by equations 
(91) and (92) that the vertical bearing force is produced 
exclusively by the blade-order multiple harmonics of the 
wake, plus and minus one. For the propeller operating in 
a wake under an infinite flat plate, the vertical force on 
the plate, being equal but opposite to the vertical bear-
ing force, must also have to be composed exclusively of 
the blade-order wake harmonics, plus and minus one. 
These harmonics are obvious in the DE-1040 vertical sur-
face force spectrum of Fig. 13; the DE-1040 stern would 
be characterized as flat plate−like. With five blades, the 
fourth and sixth harmonics dominate the vertical blade-
rate surface force, along with the fifth. Amplification of 
the fifth harmonic is due to the presence of the water 
surface off the waterplane ending aft.

With regard to the degree of cancellation in the net 
vertical force on the DE-1040, the bearing force ampli-
tude was calculated to be 0.00205. Its vector addition 
with the surface force of 0.0015 amplitude produced a 
net force of amplitude equal to 0.00055, which reflects 
substantial cancellation. It is noteworthy that Lewis 
(1963) measured a net vertical force of amplitude 0.0004 
on a model of the same vessel at Massachusetts Institute 
of Technology. In the case of the DE-1040, the surface 
force is smaller in amplitude than the bearing force, but 
this is not a generality.

At any rate, the characteristics demonstrated in Figs. 
11, 12, and 13 clearly indicate that measured surface 
pressure is a very poor measure of merit of propeller 
vibratory excitation. Hull vibration is produced largely 
by the integral of the surface pressure, the severity of 
which is not necessarily well represented by the magni-
tude of the local surface pressure distribution.

This fact also implies the level of difficulty that one 
should expect in attempting to evaluate hull surface 
forces by numerically integrating measured hull sur-
face pressure. The measurements would have to be ex-
tremely precise so as to accurately capture the details 

of the small nonuniform wake pressure components 
embedded in the large, but essentially inconsequential, 
uniform wake pressure component.

One other relevant aspect with regard to this last 
point deserves consideration. Returning to Fig. 12, it 
was noted that the hull was assumed to be an infinite 
flat plate for purposes of the pressure calculation. This 
assumption might be expected to result in reasonable 
satisfaction of the hull surface boundary condition in 
the very near field of the propeller. So long as the pres-
sure decays rapidly within the propeller near field, rea-
sonably accurate estimates of the pressure maxima 
might therefore be expected with the flat-plate assump-
tion. Figure 12 confirms this. All of the pressure mea-
surement points, where good agreement with calcula-
tion is shown, are relatively close to the propeller and 
well inside the waterplane boundaries.

Outside the waterplane boundaries, the relief effects 
of the water free surface impose a very different bound-
ary condition than that of a rigid flat plate. Hull surface 
pressure in the vicinity of the waterplane extremities 
would therefore be poorly approximated by the infinite 
flat-plate assumption (Vorus, 1976). The overall valid-
ity of the flat-plate assumption should therefore depend 
on the relative importance of surface pressure near the 
waterplane extremities, outside the immediate propel-
ler near field.

From the point of view of the pressure maxima, the 
very rapid decay of the dominant uniform wake part 
justifies the flat-plate assumption. On the other hand, 
accuracy of the integrated hull surface forces depends 
on accurate prediction of the small nonuniform wake 
pressure components. While these components are rel-
atively small, they also decay much more slowly with 
distance away from the propeller. It is obvious from Fig. 
12 that the pressure persisting laterally to the water sur-
face (which is assumed to be a continuation of the flat 
plate in the calculations) is due entirely to the nonuni-
form wake components. These small pressures persist 
over large distances and integrate largely in-phase to 
produce the hull surface forces.

The flat-plate assumption should therefore be less re-
liable for the prediction of hull surface forces, than for 
hull surface pressure maxima. This is supported by Fig. 
13. The first column on Fig. 13 represents the vertical 
force amplitude calculated by integrating the calculated 
“flat-plate” pressures over the DE-1040 afterbody.

The second column in Fig. 13 is the vertical force cal-
culated using a reciprocity principle (Vorus, 1974) that 
satisfies the hull and water surface boundary conditions 
much more closely than does the flat-plate approxima-
tion. While some slight differences in the wake used in 
the two calculations were discovered, the main differ-
ence in the two total force levels shown is due primarily 
to misrepresentation of the water surface in the calcula-
tion using the flat-plate assumption.

The fact that the most important nonuniform wake 
part of the surface pressure acts over a large surface 
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area actually suggests that total integrated hull sur-
face forces are not the best measure of hull vibratory 
excitation either. It is the scalar product of pressure dis-
tribution and vibratory mode shape represented in the 
generalized forces of equations (41) or (82) that would 
properly allow for “propeller excitability” in the context 
of the discussion of Fig. 5 (Vorus, 1971).

2.3.2.3 CAVITATION EFFECTS. The propeller cavitation 
of concern from the standpoint of vibratory excitation is 
fluctuating sheet cavitation that expands and collapses 
on the back of each blade in a repeating fashion, revo-
lution after revolution (Fig. 14). The sheet expansion 
typically commences as the blade enters the region of 
high wake in the top part of the propeller disk. Collapse 
occurs on leaving the high-wake region in a violent and 
unstable fashion, with the final remnants of the sheet 
typically trailed out behind in the blade tip vortex. The 
sheet may envelope almost the entire back of the out-
board blade sections at its maximum extent. For large 
ship propellers, sheet average thicknesses are on the or-
der of 10 cm, with maxima on the order of 25 cm occur-
ring near the blade tip just before collapse.

The type of cavitation shown in Fig. 14, while of cata-
strophic appearance, is usually not deleterious from the 
standpoint of ship propulsive performance. The blade 
continues to lift effectively; the blade suction-side sur-
face pressure is maintained at the cavity pressure where 

cavitation occurs. The propeller bearing forces may be 
largely unaffected relative to noncavitating values for 
the same reason. The cavitation may or may not be ero-
sive, depending largely on the degree of cloud cavita-
tion (a mist of small bubbles) accompanying the sheet 
dynamics. The devastating appearance of fluctuating 
sheet cavitation is manifest consistently only in the field 
pressure that it radiates and the noise and vibration that 
it thereby produces. The level of hull surface excitation 
induced by a cavitating propeller can be easily an order 
of magnitude larger than typical noncavitating levels. 
The Breslin condition does not apply in the cavitating 
case, and vertical hull surface forces due to unsteady 
cavitation typically exceed vertical propeller bearing 
forces by large amounts.

Fluctuating sheet cavitation can be characterized as 
an unsteady blade thickness effect from the standpoint 
of field pressure radiation. Any unsteady blade thick-
ness effects associated with the noncavitating propeller 
are higher order, as demonstrated in the preceding. Fur-
thermore, the steady average cavity thickness (zeroth 
harmonic) produces field pressure on the order of that 
produced by the bare blade. It is the sourcelike volume 
expansion and collapse associated with the cavity un-
steadiness that produces the large blade-rate radiated 
pressure and its harmonic multiples.

Just as with the unsteadiness of blade lift in the non-
cavitating case, the cavitating hull forces are produced 
primarily by the pressure components associated with 
the higher cavitation harmonics of order near blade 
number and the blade number multiples. For the same 
maximum cavity volume, the shorter the duration of the 
cavitation, the higher is its high harmonic content.

Strength in the high harmonics of the cavitation spec-
trum results in significant excitation at the blade-rate 
multiples; slow convergence of the blade-rate excitation 
series is a characteristic of cavitating propellers.

In view of the importance of the various sets of har-
monics involved in propeller excitation, one important 
distinction between the cavitating and noncavitating 
cases should be recognized at this point. In the noncavi-
tating case, a one-to-one relationship exists between 
the harmonics of the circumferentially nonuniform 
wake and the harmonics of blade lift; the assumption of 
linearity, which makes each blade-lift harmonic a func-
tion of only the corresponding wake harmonic, has been 
established as valid because of the typically small flow 
perturbation in the noncavitating case. Such a linear 
relationship does not exist between the wake harmon-
ics and the cavitation volume harmonics. Certainly, it is 
the nonuniform wake that almost solely produces the 
fluctuating sheet cavitation. But sheet cavitation growth 
has been found theoretically to be most responsive only 
to the first few harmonics of the wake. The sheet cavi-
tation, which is produced mainly by the low harmonic 
content of the wake, typically completes its cycle within 
a relatively small fraction of one propeller revolution. 
The volume associated with this rapid expansion and Fig. 14 Fluctuating sheet cavitation.
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collapse has much more strength in its high harmonics 
than does the part of the wake that produces it.

As an aside, it may someday prove to be a fortunate 
circumstance that cavitation effects, which are most 
important in the propeller vibratory excitation problem, 
depend most strongly on only the gross features (low 
harmonics) of the nonuniform wake. Unlike the fine de-
tail of the wake to which noncavitating forces are most 
sensitive, some hope may be held for rational prediction 
of gross wake characteristics with useful accuracy.

The character of the cavitation-induced hull pres-
sure field differs from the noncavitating case in one 
important respect. The multiple blade-rate pressure 
components produced by the higher cavity harmon-
ics, which are dominant in the integrated forces, are 
no longer mere “squiggles” imbedded in a vastly larger 
zeroth harmonic field. The now-large pressure compo-
nents from the cavitation unsteadiness should be more 
accurately captured in measurements of total pressure 
signals. For this reason, measurements of cavitation-
induced point pressure would be expected to be a more 
meaningful measure of vibratory excitation than non-
cavitating pressure. However, the filtering action of the 
hull surface on integration still appears to be capable 
of producing inconsistencies between point pressure 
and integrated force levels. Higher-order cavitation har-
monics with strength in the pressure distribution will 
be modified in strength by the surface integration, to 
different degrees. Different weightings of the various 
pressure harmonic components could logically result in 
a superposition of drastically different character in the 
force resultants. From case to case, measured pressure 
of levels inconsistent with the levels of the forces that 
they integrate to produce should not be unexpected.

Greater accuracy should also be achievable in numer-
ically integrating measured cavitation-induced pressure 
to attain hull surface force estimates. This is, again, be-
cause the size of the important pressure components is 
relatively greater than in the noncavitating case. How-
ever, coverage of a large area of the model surface with 
pressure transducers should be required in view of the 
very slow attenuation of the cavitation induced pressure 
signal. In this regard, whether forces or pressures are 
the interest, it is no doubt most important that bound-
ary conditions be modeled accurately, either in analysis 
or experiments. Theory indicates, for example, that due 
to the slow spatial pressure attenuation associated with 
the cavitation volume source strength, surface pres-
sure, even in the immediate propeller vicinity, can be 
overestimated by a factor on the order of four in typical 
cases if the rigid wall boundary condition is employed 
at the water surface.

A basis for estimating excitation forces from cavitat-
ing propellers is the general reciprocity theorem applied 
by Vorus (1971, 1974). The theorem expresses recipro-
cal relations between forces and motions in linear dy-
namical systems. For the case of hull surface excitation 
forces resulting from propeller cavitation,
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where z denotes a position in the propeller plane, and 
Fm denotes the amplitude of a harmonically oscillating 
modal excitation force on the hull resulting from a simi-
larly oscillating cavitation source having volume-rate 
amplitude, q̇. On the right side, the pressure, p, is that 
induced at the propeller by the hull modal velocity, Vm.
The idea is that the unknown force per unit cavitation 
volume velocity on the hull is equal to the pressure in 
the propeller plane per unit forced hull motion, which 
can be either measured or calculated.

Reciprocity relationships similar to equation (93) 
also exist for the noncavitating hull surface forces.

Approximate formulas for evaluating propeller-in-
duced vibratory forces are proposed in Section 3.

2.4 Underwater Radiated Noise. The sources of ship 
vibration, as well as ship vibration itself, are “noisy.” 
This is especially true with regard to noise radiated sub-
surface through the liquid medium. Underwater radi-
ated noise is particularly important in vessels involved 
in military operations, where easy detection from far 
distances can be fatal.

2.4.1 Cavitation Dynamics as a Noise Source. The 
principal source of ship underwater noise is propeller 
cavitation. This occurs indirectly as structure-born 
noise from vessel vibration produced by propeller cavi-
tation. But the most important source of underwater ra-
diated noise is that due directly to the dynamics of fluc-
tuating sheet cavity volumes on the rotating propeller 
blades (see Fig. 14). The large cavitation-induced field 
pressure cited in the last section as most important in 
producing vibratory surface forces on the near-field hull 
boundaries also produces large noise levels in both the 
near- and far-fields of the vessel. The first line of defense 
against excessive noise in military vessels is effective 
suppression of propeller cavitation dynamics, and this 
is effectively achieved in modern U.S. warships. 

First considerations in analysis of propeller cavita-
tion as a vibration and noise source are developed in the 
next section. The effort in this current section is to lay 
some of the theoretical groundwork for understanding 
the basics of the problem. The principal acoustic refer-
ences used here are the fundamental texts of Beranek 
(1960) and Kinsler and Frey (1962).

Propeller sheet cavitation manifests in the field as 
the pressure from the expanding and collapsing, and 
rotating, cavity volume distributions on the propeller 
blades. This cavity dynamic is assumed to be periodic, 
with the same pattern repeating on each propeller blade 
revolution after revolution. It is composed theoretically 
of distributions of multipole singularities (i.e., mono-
poles, dipoles, quadripoles, etc.) with the content in the 
successively higher-order singularities reflecting the 
increasing complexity of the cavitation pattern at the 
local level. But the sound pressure in the field produced 
by the higher-order multipole content diminishes most 
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quickly with distance away from the propeller. The field 
pressure is dominated more and more by the fundamen-
tal monopole, or source, component of the distribution 
as distance increases. In the far field, which is most 
critical from the standpoint of acoustic detectability, 
propeller sheet cavitation can therefore be conceptu-
ally characterized as set of N symmetrically spaced 
monopoles, or point sources, attached to and rotating 
with each of the N blades. The strength of each rotating 
source is q(�), with � = −�t; refer to Section 2.3 and Fig. 
14. The strength of each point source is the periodically 
pulsating velocity of the cavity volume variation ˙ (�). 
As a Fourier series
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Following the development of the propeller bearing 
force formula in Section 2.3, equation (94) is first writ-
ten in the alternative form
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Now replace � by � + 2�(k − 1)/N in equation (95) and 
sum over N to obtain the source strength, Q(�), repre-
senting all blades collectively.

= =
+=

1 1

)1(2

2
1

)(
p

N

k

N

kip

ip
p eeQ

�
�� �

+
=

N

k

N

kip

ip
p ee

1

)1(2�
�� (96)

But as developed on Section 2.3, the k summations in 
equation (96) are zero if ±p is not an integer multiple of 
N, say mN, and the k summations are equal to N for ±p = 
mN. This reduces equation (96) to:
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� = – t in equation (97), consistent with Section 2.3.
With ˙ q denoting the complete set of single-blade cav-

ity volume velocity harmonics, as complex amplitudes, 
N the propeller blade number, and  the propeller an-
gular velocity, N  is the blade-rate frequency funda-
mental. Summing over the multiple blades has therefore 
resulted in filtering of the complete cavitation volume 
velocity spectrum to just the blade-rate frequency com-
ponent and its harmonics, as seen in the propeller far-
field.

2.4.2 Far-Field Sound Pressure. The dynamics of 
this net cavitating propeller source produces an oscil-
lating pressure, p(r, t) in the field, where r is the radius 
from the source center. This sound pressure is governed 
by the general acoustic wave equation
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where c is the velocity of sound in water.
At 0° C, c = 1403 m/sec. The value in air at 0° C is 332 

m/sec. This dramatic difference in sound propagation 
speed in air and water, due to the density difference, is 
reflective of the much lower attenuation, and greater 
reach, of sound in water than in air, and hence the criti-
cality with regard to subsurface detectability.

For spherical waves with only a radial spatial depen-
dence, as produced by the point sources, equation (98) 
reduces to
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A general form of the solution to equation (99), in 
view of the linearity of the equation and the Fourier se-
ries representation of the source disturbance, is
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�  –N  in equation (100), with the An being a set of 
constants to be determined. Equation (100) can also be 
written in the alternative forms
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�n  2�c/n� and kn n�/c = 2�/�n in equation (101) are 
the acoustic wavelength and acoustic wave number,
respectively.

The exponential in equations (100) and (101) clearly 
identifies sound waves of different lengths, �n, but all 
traveling at the same speed. Zero value of the exponen-
tial argument in equation (100) implies an observer ad-
vancing at the speed of the wave system; the instanta-
neous position of the observer is r = ct, from the form of 
equation (100). 

It is necessary to relate the An constants in the solu-
tion (100), (101) to the cavity volume velocity harmon-
ics in equation (97). For this purpose, it is necessary to 
recognize that the governing equation is an alternative 
statement of Newton’s Law applied to the radially ex-
panding particles

2
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p = (102)

where 
 is the (constant) water density and 	 is the par-
ticle radial displacement on spherical surfaces.
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Integration of equation (102) in time gives the normal 
(radial) particle velocity

dt
r

p

t
vr =



1 (103)

Substitution of equation (101) produces
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On the surface, r = r0(t), of the effective spherical 
cavity represented by the oscillating source, the radial 
velocity of the surface must equal the radial fluid veloc-
ity, vr. The radial velocity of the surface is, by definition, 
just the instantaneous source strength divided by spher-
ical surface area 4�r0

2. Equation (104) then becomes
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For knr0 = n�r0/c << 1 on the scale of the far-field, equa-
tion (105) takes the limiting form:
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Now, substitute equation (97) and match terms on the 
two sides of equation (106) to obtain

nNn inNA = ��
�4
1 (107)

Back-substitution into equation (97) gives the solution 
of equation (98) for outgoing acoustic pressure waves 
generated by the periodically varying point source in its 
far-field
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Note from equation (108) that for knr small, the sound 
pressure recovers the incompressible limit, which im-
plies effectively infinite wave speed and instantaneous 
propagation over the small range of r/�n. This is the 
pressure involved in the near-field forces addressed in 
Section 2.3.

2.4.3 Far-Field Sound Intensity and Acoustic 
Power. Sound intensity, I, is defined as the average 
over a fundamental cycle of time of the sound power 

transmitted per unit area of the spherical surface. This 
is expressed as

dtpv
T

I

T

r=
0

1
(109)

with the fundamental period T = 2�/�.
First, evaluate vr by substitution of An from equation 

(107) into equation (104):
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Write vr in a proper form for multiplication with p as
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with the overbar again denoting complex conjugate, 
and

221 rkmm +� , rkrkK mmm
1tan .

Substitute equations (108) and (111) into equation (109)
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The time integral in equation (112) is zero, by orthog-
onality, except when m = n in the second term within 
the integral. The result is then
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The acoustic power, W, at any r, being the total acous-
tic power transmitted across the sphere of radius r, is 
then just the sound intensity times the spherical area

W = 4�r2I (114)

In consideration of I and W by equations (113) and (114), 
it can be observed that the product of the ˙

nN terms, 
being conjugates, is positive real and is the sum of the 
squares of the real and imaginary parts of ˙

nN. Both I
and W can therefore be written as pure real and positive
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But with 221 rknn +=� , equation (115) simplifies to
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The back-substitution � = –N  is also included in equa-
tions (116) and (117).

These forms confirm that the acoustic power trans-
mitted across a spherical surface of arbitrary radius 
is independent of the radius. This is necessary with no 
inclusion of acoustic damping in the governing wave 
equation, equation (98). W, by equation (117), is consid-
ered to be the acoustic power of the sound source.

2.4.4 Decibel Scaling. Because of the wide varia-
tion in acoustic quantities, it is standard to use a scale 
to reduce variability of the presented data; this is the dB
scale, which expresses the acoustic quantities nondi-
mensionally in terms of logarithms. But the constants of 
the log scaling differ for the different quantities (power, 
intensity, pressure), adjusted so that all fall numerically 
in the same compressed number range.

2.4.4.1 DECIBEL SCALE FOR POWER, W.  Sound power 
level (PWL) is expressed as

PWL = 10 log10(W/Wref) dB (118)

According to Beranek (1960), the line of thinking here 
is that if the reference power Wref = 1 watt, and W = 10 
watts, then PWL = 10 dB1 since the log10(10/1) = 1. How-
ever, in consideration of desirable numerical ranges of 
scaling, the Wref that is now used for acoustic power level 
specification for underwater noise is Wref = 10−13 watts. 

1The term “level” is used exclusively in acoustics to denote the 
logarithmic dB scale.

From equation (118), with this reference power, and 
W in watts:

PWL = 10log10(W) + 130 dB (119)

This scaling generally places marine acoustic noise 
power levels in the 50 to 150 dB range.

With intensity, equation (113), the reference scaling 
is conventionally Iref = 10−12 for I in watts/m2, so that

IL = 10 log10(I) + 120 dB (120)

For sound pressure, there is an additional consider-
ation. Power and intensity are both positive quantities 
and both depend on sound pressure squared, so that the 
log in equations (119) and (120) is well defined. Pressure 
due to the oscillating source is both positive and negative 
with time. Taking the log of a negative number, which is 
undefined, is avoided by squaring the pressure:

SPL = 10 log10(p/pref)2

refp

p
Log1020 (121)

The convenient reference pressure here for marine 
acoustics pressure levels expected is pref = 0.0002 micro-
bars. This is also considered to be the pressure ampli-
tude threshold for hearing (Beranek, 1960, Chapter 3). 
With a microbar = 1 dyne/cm2 = 1 standard barometric 
pressure (1 bar) × 10−6, equation (121) therefore be-
comes, with p in microbars,

SPL = 
refp

p
Log1020

= ( )pLog1020  + 74 dB (122)

The uncertainty for application of equations (98) 
through (122) is the cavitation volume velocity har-
monic set, ˙ q. This was discussed more qualitatively in 
the last section. The limited cavity volume velocity data 
available is used in a specific example of underwater 
sound propagation in Section 3.

3
Analysis and Design

3.1 Introduction. More and more over the years, ship 
designers are being faced with the requirement to deal 
effectively with propeller and machinery-induced vibra-
tion in design work. The uninitiated may feel uncom-
fortable, if not bewildered, by the seemingly endless 
complexity of the problem and the myriad of physical 
interrelationships influencing the required decisions.

Indeed, a mere description, without accompanying 
quantitative analysis, presents an imposing problem. 
Excluding effects of the seaway, the ship hull is excited 
mechanically by rotating machinery systems and hy-

drodynamically by its propeller(s). These excitation 
sources are essentially periodic, but they are not, in gen-
eral, simple harmonic (i.e., purely sinusoidal). Because 
of this, excitations also occur at all multiples of a fun-
damental exciting frequency associated with each exci-
tation source. The strengths of the various excitations, 
and their harmonics, are often highly sensitive to the 
details of design and fabrication. Moderate propeller 
cavitation, for example, which may be acceptable in all 
other respects, can produce hull vibratory excitation 
forces on the order of tens of tons, persistent at frequen-
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is conventionally Iref = 10−12 for I in watts/m2, so that
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and both depend on sound pressure squared, so that the 
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with time. Taking the log of a negative number, which is 
undefined, is avoided by squaring the pressure:
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bars. This is also considered to be the pressure ampli-
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The uncertainty for application of equations (98) 
through (122) is the cavitation volume velocity har-
monic set, ˙ q. This was discussed more qualitatively in 
the last section. The limited cavity volume velocity data 
available is used in a specific example of underwater 
sound propagation in Section 3.

3
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3.1 Introduction. More and more over the years, ship 
designers are being faced with the requirement to deal 
effectively with propeller and machinery-induced vibra-
tion in design work. The uninitiated may feel uncom-
fortable, if not bewildered, by the seemingly endless 
complexity of the problem and the myriad of physical 
interrelationships influencing the required decisions.

Indeed, a mere description, without accompanying 
quantitative analysis, presents an imposing problem. 
Excluding effects of the seaway, the ship hull is excited 
mechanically by rotating machinery systems and hy-

drodynamically by its propeller(s). These excitation 
sources are essentially periodic, but they are not, in gen-
eral, simple harmonic (i.e., purely sinusoidal). Because 
of this, excitations also occur at all multiples of a fun-
damental exciting frequency associated with each exci-
tation source. The strengths of the various excitations, 
and their harmonics, are often highly sensitive to the 
details of design and fabrication. Moderate propeller 
cavitation, for example, which may be acceptable in all 
other respects, can produce hull vibratory excitation 
forces on the order of tens of tons, persistent at frequen-
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cies out to several multiples of the blade-rate fundamen-
tal (RPM times number of blades).

The infinity of excitations stimulate the ship to vi-
brate in generally all directions. The degree to which 
the ship responds is sensitive to its natural vibration 
characteristics or natural vibratory modes. Coincidence 
of the natural frequency identified with some natural 
mode and the exciting frequency of some excitation 
component corresponds to a condition of resonance. At 
resonance, rigidity is counterbalanced by inertia, and 
limitless vibratory amplification by the excitation is op-
posed only by damping, to first order. Since in ships, as 
in most engineering structures, damping is small, reso-
nance is in general a condition that would be desirable 
to avoid.

Unfortunately, resonances cannot be avoided. The 
infinity of excitation frequencies overlies an even more 
dense infinity of natural frequencies. The natural modes 
vary in character from the overall lateral bending, axial, 
and torsional modes of the hull girder to highly local-
ized vibration of plating panels, piping, handrails, and 
a plethora of others. Transmission paths of the vibra-
tion through the ship structure are highly influenced by 
distributions of local resonances, or near resonances; 
impedance to vibration transmission is reduced in re-
gions where local resonances occur, and vice versa. 
The propagation of low-level, generally nonresonant 
vibration through a ship provides the base excitation 
capable of resonating local elements; this can often 
be observed in regions far removed from the source of 
the responsible excitation. The seeming complexity of 
it all is amplified upon recognition of the existence of 
dynamic as well as static coupling; excitations occur-
ring in one direction can produce resonant vibration in 
other directions through the directional coupling of in-
tervening structure. Substructures, or subregions, of a 
vessel that are treated as independent of one another 
in more conventional design considerations can be dy-
namically coupled to a significant degree. For example, 
longitudinal resonance in the main propulsion system 
can produce foundation dynamic forces and moments 
large enough to excite objectionable fore-and-aft rock-
ing/bending of the vessel deckhouse, depending on the 
compliance of the intervening structure.

It is fortunate, in view of the above limitless lattice-
work of unavoidable resonances, that, as frequency level 
increases, the various series of excitation harmonics do 
converge, the relevant natural vibratory modes become 
more difficult to excite, and the predominant damping 
mechanisms increase in strength.

Ship vibration is, in practice, not as difficult to deal 
with as the preceding description might suggest. With 
patience, the complexities can be systematically sorted 
out, more or less understood, and dealt with in a reason-
ably effective way through the basic vehicle of rational 
mechanics. Indeed, the general response formulas de-
veloped in the preceding section, equations (41) or (82), 
contain the near totality of possibilities for influencing 

any vibration. These formulas predict the vibratory 
displacement of continuous (equation [41]), or discrete 
(equation [82]) mathematical models of vibratory sys-
tems. In either case, the system displacement is written 
as a superposition of displacements of a set of equiva-
lent one-mass systems. The mass, stiffness, damping, 
and excitation force elements of each of the equivalent 
one-mass systems are constructed as explained in Sec-
tion 2. The vibratory behavior of any complex system 
can therefore be dealt with in terms of the collection of 
equivalent one-mass systems vibrating simultaneously. 
For this reason, much insight into the various sensitivi-
ties of the vibration of any particular system, whether 
simple or complex, can be gained by applying a few sim-
ple observations from the theory for one-mass systems.

3.1.1 Basic Considerations. The general one-mass 
system is depicted in Fig. 15. The M, K, and C denote the 
mass, stiffness, and damping of the system, respectively, 
and f(t) is the simple harmonic exciting force of ampli-
tude F and frequency �. The values of M, K, C, and F
can be considered as independent of time, but vary, in 
general, with the exciting frequency, �.

Either of the general response formulas of Section 
2, equation (41) or (82), reduces to the following simple 
formula on application to the Fig. 15 one-mass system.
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Here, X is the amplitude of the steady-state simple har-
monic vibration displacement at frequency �, and � is 
the displacement phase angle relative to f(t)
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Fig. 15 Steady-state harmonic vibration of one-mass system.
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By equations (74) and (80), the �n and � in equations 
(118) and (119) are
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When considered in light of the general response for-
mula, equation (82), the one-mass system displacement 
x(t), can, by equation(123), be alternatively viewed as 
the contribution of one of the set of system modes to the 
complete system vibration. In this view, the M, K, C, and 
F are the modal values whose magnitudes vary from 
mode to mode depending on the distributions of system 
mass, stiffness, damping, and excitation relative to the 
mode shape of the particular mode; this is according to 
equations (73) through (78) of Section 2.

Figure 16 is the familiar plot of X/(F/K) and � from 
equations (123) and (124) versus frequency ratio, �/�n.
Note that the function F/K is the vibratory displacement 
amplitude that would be predicted by quasistatic analy-
sis. X/(F/K) can therefore be viewed as a correction fac-
tor on the quasistatic displacement for dynamic effects. 
This ratio is called the dynamic magnification factor.
It is apparent from Fig. 16 that the magnification factor 
can act to reduce the quasistatic displacement ampli-
tude as well as to magnify it.

While Fig. 16 displays the basic character of the one-
mass system vibration of interest, some care must be ex-
ercised in its interpretation. As noted, the M, C, K, and F
are frequency dependent, in general. The curves of Fig. 16 
can therefore be misleading with regard to the variation 
of vibratory amplitude and phase angle with frequency. 
For example, for an exciting force amplitude increasing 
as �2, such as in the case of a rotating machinery unbal-
ance, multiplication of the Fig. 16 response characteristic 
with �2 is required in order to represent the correct fre-
quency dependence of the actual displacement.

The Fig. 16 curves are instructive. However, the possi-
bilities for influencing vibration are most directly appar-
ent from formula (123) for one-mass system response. 
All possibilities lie in only four variables:

1. Excitation, F
2. Stiffness, K
3. Frequency ratio, �/�n

4. Damping, �

It is obvious from equation (123) that any of the fol-
lowing contribute to vibration reduction.

1. Reduce exciting force amplitude, F. In propeller-in-
duced ship vibration, the excitation is reduced by chang-
ing the propeller unsteady hydrodynamics. This may 
involve lines or clearance changes to reduce the nonuni-
formity of the wake inflow, or it may involve geometric 
changes to the propeller itself. Specifics in this regard are 
identified in the section on propeller excitation.

2. Increase stiffness, K. Stiffness, which is defined as 
spring force per unit static deflection, cannot be consid-
ered independently of frequency ratio, �/�n, since 
K = �n

2M. However, equation (123) shows that stiff-
ness should be increased rather than decreased when 
variations in natural frequency are to be accomplished 
by variations in stiffness. It is bad practice, in general, 
to reduce system stiffness in attempts to reduce vibra-
tion.

3. Avoid values of frequency ratio near unity; �/�n = 
1 is the resonant condition. From equation (123) at reso-
nance

X = (F/K)/2� (126)

Here, the excitation is opposed only by damping; note the 
peak in the frequency response curve of Fig. 16 at reso-
nance. Obviously, �/�n can be varied by varying either 
� or �n. The spectrum of � can be changed by changing 
the RPM of a relevant rotating machinery source, or, in 
the case of propeller-induced vibration, by changing the 
propeller RPM or its number of blades. �n is changed by 
changes in system mass and/or stiffness, by equation 
(125); increasing stiffness is the usual and preferred ap-
proach. Specific measures for resonance avoidance in 
ships are considered in the next section.

4. Increase damping, �. Damping of structural sys-
tems in general, and of ships in particular, is small; � <
1. Therefore, except very near resonance, the vibratory 
amplitude is approximately
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which is damping independent. Damping is therefore 
relatively unimportant except in resonant vibration, by 
equation (126). Furthermore, damping is difficult to in-
crease significantly in systems such as ships; � is the 
least effective of the four parameters available to the 
designer for implementing changes in ship vibratory 
characteristics.

3.1.2 Recommended Design Approach. While the 
basic vibratory behavior of ships is described quali-
tatively by the simple one-mass system formula, im-Fig. 16 Vibration response characteristic, one-mass system.
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plementation of more general formulas, such as equation 
(82), is necessary if attempts at detailed quantification 
of ship vibratory response are to be made. However, it 
is widely accepted that the present state-of-the-art does 
not provide accurate enough defi nition of all of the sys-
tem parameters, principally damping, to make detailed 
calculations of ship vibration response worth the effort 
as a routine design exercise. The designer should keep 
in touch with continuing research developments that 
may affect this view.

Accurate beforehand prediction of ship vibration 
response for, say, comparison against established hab-
itability criteria would be desirable. However, experi-
ence has proved that such is not only impossible but 
also unnecessary in designing ships with consistently 
acceptable vibration characteristics. Four elements and 
their relationship to vibration reduction were identified 
in the preceding as being influential in determining ship 
vibratory response. While quantification of all four ele-
ments is required in predicting vibratory response level, 
acceptable results can usually be achieved with reason-
able effort by focusing attention in design on only two of 
the four elements and de-emphasizing the importance of 
vibration response calculations, except in special cases. 
The two of the four elements of crucial importance in 
equation (123) are excitation and frequency ratio. The 
achievement in design of two objectives with regard to 
these elements has proved to result in ships with consis-
tently acceptable vibration characteristics:

1. Minimization of the dominant vibratory excita-
tions within the normal constraints imposed by other 
design variables, and

2. Avoidance of resonances involving active partic-
ipation of major subsystems in frequency ranges where 
the dominant excitations are strongest.

Fortunately, unlike vibration response, the excita-
tion and frequency ratio elements involved in these 
objectives are predictable with reasonable reliability. 
Detailed hydrodynamic calculation procedures in con-
junction with model testing have been established in ex-
citation analysis, at least to the level of reliable relative 
predictions. Natural frequencies involving the ship hull 
and its major subsystems are predictable using judicious 
modeling and modern numerical structural analysis 
methods. Hence, the accuracy levels achievable in pre-
dictions of propeller and engine excitation and of ship 
natural frequencies have been found to be high enough 
to consistently achieve the two objectives cited above. 
Approximate methods are discussed subsequently.

The detailed calculations and experiments required 
in assuring excitation minimization and resonance 
avoidance are usually performed by specialist groups 
or model basins, and are usually not the immediate re-
sponsibility of the ship designer. A main function of the 
ship designer in this regard is, however, to establish a 
concept or preliminary design to serve as the subject of 
the detailed investigations. The quality of the prelimi-

nary design will be reflected in the number of detailed 
iterations required for achieving an acceptable final 
design. For the purpose of establishing high-quality 
preliminary designs, which require a minimum of ex-
pensive and time-consuming calculations and model 
testing, the designer is desirous both of guidance as to 
the areas of his design likely to be in most need of atten-
tion and of some simple methodology for identifying the 
critical areas. As suggested by Johannessen and Skaar 
(1980), attention to vibration in preliminary design of 
large ships can usually be limited to the following main 
items.

1. Hull girder vertical vibration excited by a diesel 
main engine

2. Main machinery longitudinal vibration excited by 
the propeller

3. Superstructure longitudinal vibration excited by 
hull girder vertical vibration and/or main machinery 
longitudinal vibration

Many good sources are available for seeking help in 
resonance avoidance and excitation minimization with 
regard to these three critical items (American Bureau of 
Shipping, 2006; Bourceau & Voley, 1970; Breslin, 1970; 
Bureau Veritas, 1979; Johannessen & Skaar, 1980; Ward, 
1982). The remainder of this section is directed specifi-
cally to the same need; the focus is on providing addi-
tional insight into, and facility in using, methodology 
of established effectiveness for approximate estimates 
of natural frequencies and exciting force levels for the 
three critical items cited above.

3.2 Approximate Evaluation of Hull Girder Natural Fre-
quencies. The vertical beamlike modes of vibration of 
the hull girders of modern ships are dangerous in two 
respects:

1. They can be excited to objectionable levels by res-
onances with the dominant low-frequency excitations of 
low-RPM diesel main engines.

2. Vertical vibration of the hull girder in response to 
propeller excitation is a direct exciter of objectionable 
fore-and-aft superstructure vibration.

The propeller is generally incapable of exciting the 
hull girder modes to dangerous levels. This is primarily 
because the higher hull girder modes, whose natural fre-
quencies fall in the range where propeller excitation is 
significant, have low excitability (refer to the discussion 
of Fig. 5 in Section 2). However, the low-level vertical 
hull girder vibration that does occur serves as the base 
excitation for excessive vibration of superstructures 
and other attached subsystems that are in resonance 
with the propeller exciting frequencies. The mechanics 
of this excitation is demonstrated by the base-excited 
deckhouse example of Section 2.

The natural frequencies corresponding to the two-
noded vertical bending modes of conventional ship 
hulls can be estimated with reasonable accuracy using 
either the Burrill (1934−1935) or the Todd (1961) for-
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mula, of which the latter can take account of the effect 
of long superstructures. A later formulation was given 
by Kumai (1968). Kumai’s formula for two-noded verti-
cal bending is

cpm
L

I
N

i

v

v 3
6

2 1007.3= (127)

where

Iv = moment of inertia (m4)

i = +
mT

B

3
1

2.1

 = displacement, including virtual added mass of water 
(tons)

L = length between perpendiculars (m)

B = breadth amidships (m)

Tm = mean draft (m)

Table 1, from Johannessen and Skaar (1980), gives an 
indication of the accuracy that can be expected from 
equation (127). The table compares the prediction of 
the two-noded vertical hull bending natural frequency 
by Kumai’s formula with the predictions of detailed fi-
nite element calculations performed on seven different 
ships.

The two-noded hull vertical bending natural frequen-
cies actually lie well below the dangerous exciting fre-
quencies of either typical diesel main engines or pro-
pellers, and are therefore of little consequence in these 
considerations. As will be demonstrated further on, it is 
hull girder modes with typically a minimum of four or 
five nodes that can be excited excessively by the diesel 
main engine. In the case of the propeller, the hull girder 
vertical bending modes that fall near full-power propel-
ler blade-rate excitation are typically more than seven-
noded. Full-power blade-rate excitation of large ships is 
usually in the range of 8 to 12 Hz; as indicated in Table 
1, the two-noded vertical hull bending mode, on the or-
der of 1 to 2 Hz, is well below the blade-rate excitation 
frequency level during normal operation.

It is observed that hull girder natural frequencies 
increase more or less linearly with node number from 

the two-noded value for the first few modes. The data 
shown in Fig. 17, from Johannessen and Skaar (1980), 
provide estimates of the natural frequencies of the first 
four vertical bending modes of general cargo ships and 
of the first five vertical bending modes of tankers. Note 
the good agreement between the Table 1 data and Fig. 
17 for two-noded cases. Also, note that the 6 Hz maxi-
mums represented by Fig. 17 still lie well below typical 

Table 1 Comparison of Two-noded Hull Vertical Vibration Natural Frequencies, Hz

Ship Number Type Size (tons) Kumai Method Finite Element Method Dev. %

1 reefer 15,000 1.54 1.51 +2

2 RO/RO 32,000 1.46 1.16 +26

3 RO/RO 49,000 1.49 1.6 −7

4 RO/RO 42,000 1.04 0.94 +10

5 chemical tanker 33,000 1 1 +8

6 bulk carrier 73,000 0.63 0.64

7 multipurpose 15,500 2 1.62 +23

Fig. 17 Natural frequencies of vertical hull vibration.
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full-power propeller excitation frequencies, and the 
accuracy of the data fits indicated on the figure is de-
teriorating rapidly as modal order increases. The pri-
mary reason for the increasing data scatter with node 
number is the increasing influence of local effects (i.e., 
approaching resonances of deckhouses, decks, etc.) on 
the basic beam modes still identifiable.

The Kumai (1968) formula, in conjunction with Fig.
17, is, however, useful in preliminary steps to avoid 
resonances with a main diesel engine. The following 
formula, from Johannessen and Skaar (1980) and repre-
senting the Fig. 17 data, expresses the first few vertical 
bending natural frequencies in terms of the two-noded 
value.

Nnv N2v(n –1)� (128)

� = 0.845 general cargo ships
   = 1.0 bulk carriers
   = 1.02 tankers

Here N2v is the two-noded vertical natural frequency 
and n is the number of nodes; n should not exceed 5 
or 6 in order to remain within the range of reasonable 
validity of equation (128). Note the approximate propor-
tionality of Nnv to node number in equation (128); this is 
also evident in Fig. 17.

More accurate estimates of the lower hull girder modes 
can be obtained by modeling the hull girder as a nonuni-
form beam. The basic model required is essentially that 
used in static calculations of longitudinal strength. The 
natural frequency analysis should therefore be within the 
capability of the conventional design office, which now 
routinely engages in computerized longitudinal strength 
calculations. The nonuniform beam dynamic analysis 
differs from the static analysis in one major respect, how-
ever. A hydrodynamic added mass distribution must be 
estimated and superimposed on the vessel mass distribu-
tion in order to obtain natural frequency estimates with 
any degree of realism. Estimation of the required added 
mass distribution for use in calculating the hull girder 
vertical modes by way of nonuniform beam analysis is 
the subject of the next subsection.

3.3 Hydrodynamic Added Mass. Ships are unlike 
most other vehicles because of the substantial inertial 
effects to which they are subjected by the high-density 
medium in which they operate. The water inertia forces, 
being proportional to ship surface accelerations, imply 
an equivalent, or effective, fluid mass, imagined to ac-
celerate along with the ship mass. This effective mass is 
termed hydrodynamic added mass.

Hydrodynamic added mass is usually large. For ex-
ample, in the case of a deeply submerged circular cyl-
inder in heave motion, ideal fluid theory predicts an 
added mass per unit length of the cylinder equal to 
the mass per unit length of displaced fluid. The cor-
responding value for a sphere is one half the mass of the 
fluid displaced. Added mass effects cannot be ignored 
in ship vibration analysis.

The calculation method of Lewis (1929) currently re-
mains the most popular method for estimating the added 
mass distribution of a vertically vibrating ship. By Lewis, 
the hydrodynamic added mass per unit length at longitu-
dinal position x along the vertically vibrating ship is

m(x) = (�/8)
B2(x)C(x)Jn t/m (129)

where

 
 = density of water, t/m3

B(x) = section beam, m
C(x) =   section two-dimensional added mass coeffi-

cient
Jn =   Lewis J-factor, representing a reduction factor 

on the two-dimensional added mass for three-
dimensionality of the vibration-induced flow

The two-dimensional section added-mass coefficient, 
C(x), is determined using the so-called Lewis form con-
formal mapping of the ship sections.

This transformation of the form

( ) ( )
3

z

xb

z

x
zZ ++= �

(130)

transforms a unit circle from the z plane into the ship 
section plane Z. The shape of the particular ship sec-
tion is represented in equation (130) by the mapping pa-
rameters a(x) and b(x); a(x) and b(x) are determined 
so that the section area coefficient and beam/draft ratio 
are preserved in the transformation. On specification of 
a and b, the ideal fluid solution for the unit circle ma-
nipulates to give the two-dimensional added mass for 
the ship section. All of this is concisely represented in 
Fig. 18, which was constructed by Todd (1935). C(x) can 
be extracted from Fig. 18 on specification of the section 
area coefficient, A(x)/[B(x)T(x)], and the section beam/

Fig. 18 Virtual-mass coefficients.
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draft ratio. Typical Lewis form section shapes are shown 
in Beck and Reed (2010) on motions on waves.

The J-factor in equation (129) is most easily defined 
by rewriting the equation as

m(x) = m2–D(x)Jn (131)

where

m2–D = (�/8)
B2C (132)

m2−D is the two-dimensional added mass per unit length 
at section x. Then, integrating equation (132) over the 
ship length,

( )
nDDn JMdxxmJM = 22

gives

Jn = M/M2–D (133)

where Jn is the ratio of the total added mass in n-noded 
vibration to the total value assuming two-dimensional 
flow, section by section. 

 Lewis assumed that this ratio, equation (133), for a 
ship was approximately equal to that for a spheroid (el-
lipse of revolution) of the same beam/length ratio. The 
exact theoretical value of M, as well as that of M2−D, is 
available for the spheroid ideal fluid flow theory.

Jn so determined from the spheroid calculations 
(Vorus & Hylarides, 1981), can be extracted from Fig. 19;

B/L in Fig. 19 involves the midship beam, B, rather than 
the section beam, B(x), used in Fig. 18. The Jn are func-
tions of the number of nodes, n, in the hull girder vibra-
tion; the Jn, and therefore the added mass, varies mode 
by mode. Note from Fig. 19 that the Jn decreases with in-
creasing n; this is due to the increasing three-dimension-
ality of the flow in the higher modes.

For example, consider a ship section with A(x)/[B(x)
T(x)] = 0.9, B(x)/T(x) = 2, and B/L = 0.15. From Fig. 18, 
C(x) = 1.17. Assume that the seven-noded hull vertical 
natural frequency is of interest. For seven nodes, from 
Fig. 19, J7 = 0.515.

With 
 = 1 t/m3 for SW, the added mass per unit length 
at the section is, from equation (129),

m(x) = 0.237 B2 t/m

3.4 Approximate Evaluation of Superstructure Natural 
Frequencies. With the movement of engine rooms and 
deckhouses aft over the propeller, propeller-induced vi-
bration of stern-mounted superstructures became one 
of the naval architectís greatest concerns. As proposed 
in the preceding section, a nonuniform beam model that 
ignores the dynamics of sprung substructures produces 
useful estimates of the hull girder lower natural frequen-
cies for purposes of resonance avoidance with a main 
diesel engine. It is indeed fortunate that the lower rock-
ing/bending natural frequencies associated with stern su-
perstructures, which usually fall in the range of propeller 
blade-rate exciting frequencies, can, conversely, be esti-
mated with useful accuracy by ignoring the dynamics of 
the hull girder. This is the case when the mass of the su-
perstructure is small relative to the effective mass of the 
hull girder near the coupled natural frequencies of inter-
est. Any consideration of vibratory response versus natu-
ral frequencies alone must, on the other hand, allow for 
the dynamic coupling. This is clear considering the fact 
that, in the preponderance of cases, superstructure vibra-
tion is excited by the hull girder vibration at its base.

The superstructure vibration mode of primary con-
cern is a fore-and-aft rocking/bending mode excited 
through vertical vibration of the hull girder; an ideal-
ization of this mode was developed for conceptual pur-
poses in Section 2.1.

For obtaining preliminary estimates of superstruc-
ture fore-and-aft rocking/bending natural frequencies, 
the semiempirical method of Hirowatari and Matsu-
moto (1969) has proved to have great utility (Sandstrom 
& Smith, 1979). The Hirowatari method was developed 
from correlation of simple analysis and measured 
fore-and-aft superstructure natural frequencies on ap-
proximately 30 ships. In this method, the fore-and-aft 
“fixed-base” natural frequency of the superstructure 
(i.e., superstructure cantilevered from the main deck) 
is determined according to deckhouse type and height. 
The fixed-base natural frequency is then reduced by a 
correction factor to account for the rotational flexibility 
of the underdeck supporting structure. Specifically, the 
procedure of Hirowatari is as follows.Fig. 19 Lewis J-factor (n is mode number).
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1. Select superstructure type from Fig. 20.
2. Determine superstructure height, h.
3. Read ƒ  (fixed-base natural frequency) as a func-

tion of h from Fig. 21.
4. Read ƒe /ƒ (the correction factor) from Table 2.
5. Compute ƒe (the expected deckhouse natural fre-

quency in the first fore-and-aft mode) from the following 
formula.

fe = f ( fe /f ) (134)

It is reported in Sandstrom and Smith (1979) that this 
procedure generally produces results that are within 
15% of measurements from shaker tests. However, the 
method becomes inapplicable when the superstructure 
type varies significantly from those given in Fig. 20. 
Furthermore, there is some uncertainty regarding the 
use of the correction factors for superstructure support 
flexibility given in Table 2, since the supporting struc-
ture may vary from deep beams to column supports 
to structural bulkheads. Despite these difficulties, the 
method seems to work quite well in most cases, con-
sidering the limited input that is required. This feature 
makes the Hirowatari method particularly attractive in 

the early design stages when the design data are sparse 
or unknown.

In either design studies or in postdesign corrective 
investigations, the best approach is often to develop, or 
to calibrate, a mathematical model from which to evalu-
ate the effects of design changes. Proceeding with the 
idea of approximations using simple analysis, the two 
basic effects influencing the fundamental fore-and-aft 
superstructure natural frequency are exemplified in Hi-
rowatari’s approach:

1. Cantilever (fixed-base) bending and shear of the 
superstructure as a beam over its height h (see Fig. 21)

2. Rocking of the superstructure as a rigid box on the 
effective torsional stiffness of its supporting structure

Ordinarily, one of the superstructure main trans-
verse bulkheads will be a continuation of one of the two 
engine room transverse bulkheads. The intersection of 
the continuous bulkhead and the deck identified with 
the superstructure base (see Fig. 20) can usually be 
taken as the axis about which the rocking of the house 
occurs.

The fore-and-aft natural frequency of the super-
structure due to the combined effects of rocking and 
bending/shear can be estimated using Dunkerley’s equa-
tion (Thomson, 1973) as

22 /1/1

1

R

e
ff

f
+

= (135)

Here, ƒ  has been identified as the fixed base cantilever 
natural frequency, from Fig. 21, or by analysis. ƒR in equa-
tion (135) is the rocking natural frequency of the rigid su-
perstructure, of height h, on its supporting stiffness

cpmJKf
fR

/2/60 �= (136)

J is the mass moment of inertia of the superstructure 
about the rocking axis, and Kf is the effective torsional 
stiffness of the superstructure foundation, also about 
the axis of rotation.

The Hirowatari procedure, in conjunction with equa-
tions (135) and (136), has utility in design or postdesign 
corrective studies where estimates must be made as to 
the relative effects of structural changes. This is demon-
strated by the numerical example that follows:

Assume that a conventional Type A superstructure (see 
Fig. 20) has been preliminarily designed. The house height, 
h, is 16 m. Referring to Figs. 20 and 21 and Table 1,

f  = 750 cpm

Fig. 20 Deckhouse types.

Fig. 21 Fixed base superstructure natural frequencies.

Table 2 Flexible Base Correction Factors

Type ƒe/ƒ

A,C 0.625

B 0.602

D 0.751
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and

fe /f = 0.625

which gives the estimated fore-and-aft house natural 
frequency, ƒe, as

fe = 0.625(750) = 469 cpm

The rocking frequency is estimated from equation 
(135) as

cpm
ff

f

e

R 601
/1/1

1
22

==

From equation (136) then,

Kf/J = (2�/60)2fR
2 = 3961 rad2/sec2 (137)

Now assume that the mass of the house, m, has been 
estimated as 300 tons. Also assume that the house front 
is a continuation of the engine room forward transverse 
bulkhead, so that the house effectively rotates about its 
front lower edge (Fig. 22). Assume a radius of gyration, 
r̄, of the house about this axis of 10 m. The house mass 
moment of inertia, J, is then

J = mr̄ 2 = 3 ⋅  107 kg – m2

The effective rotational stiffness of the foundation is 
then estimated from equation (137) as

Kf = 1.19 ⋅  1011 N – m/rad (138)

Proceeding with the scenario, assume that stiffening 
is proposed in the form of two parallel pillars made up 
of 20 cm extra-heavy steel pipe, each 6 m long, and lo-
cated under the house side bulkheads as indicated in 
Fig. 22.

The effective axial stiffness of the parallel pillars, al-
lowing serial stiffness of the structure at the pipe con-
nections, is calculated to be

k = 4 ⋅  108 N/m

The pillars are located at a distance a = 6 m aft of the 
forward bulkhead, so that the incremental rotational 
stiffness added by the pillars is

	Kf = ka2 = 1.44 ⋅  1010 N – m/rad

The stiffness of the stiffened foundation is, in view of 
equation (138),

Kf ’ = Kf + 	Kf = 1.334 x 1011 N – m/rad

which represents a 12.1% increase. The new rocking fre-
quency, from equation (136), becomes

cpmff RR 636121.1 ==

Then, from equation (137), the house fore-and-aft nat-
ural frequency is raised to

cpm
ff

f

R

e 485
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=

which represents a 3.4% increase over the value of 469 
cpm without the pillars.

The simple analysis in this example should have 
been at least useful for judging that the proposed pillars 
would not be very effective in raising the superstructure 
natural frequency.

3.5 Main Thrust Bearing Foundation Stiffness. This 
subject has been a naval architecture responsibility very 
important to longitudinal vibration of main propulsion 
machinery, which is the second critical subject identi-
fied in Section 3.1. However, with the shift to almost uni-
versal use of diesel main engines for commercial ves-
sels, the mounting length of the engine itself provides 
inherently greater stiffness than tended to occur with 
steam plants. That is, the length of the diesel engine re-
duces the opportunity for rocking/bending on the spring 
of the double bottom structure. This subject is therefore 
removed from the critical list for treatment here, and the 
reader is referred to Harrington (1992).

3.6 Diesel Engine Excitation. Diesel engine vibratory 
excitation can be generally considered as composed of 
three periodic force components and three periodic mo-
ment components acting at the engine foundation. Actu-
ally, the periodic force component along the axis of the 
engine is inherently zero, and some other components 
usually balance to zero depending on particular engine 
characteristics.

Two distinctly different types of forces can be as-
sociated with the internal combustion reciprocating 
engine: (a) gas pressure forces due to the combustion 
processes, and (b) inertia forces produced by the accel-
erations of the reciprocating and rotating engine parts. 

As shown by Den Hartog (1956), the gas pressures 
can produce only torsional moments about the engine 
fore-and-aft axis; the vertical and transverse gas pres-
sure forces balance within the engine and, assuming 
engine rigidity, do not appear at the foundation. The 
vertical force and moment, which are of primary con-
cern with regard to hull vibratory excitation, and the Fig. 22 Deckhouse stiffening.
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transverse force and moment as well, are due entirely to 
unbalanced inertial effects. But following the Den Har-
tog analysis, it is readily seen that for engines of more 
than two cylinders, which is the case of interest with 
ships, the vertical and transverse inertia force com-
ponents also balance identically to zero at the engine 
foundation. This leaves only the vertical and transverse 
moments about which to be concerned. These moments 
can be written as

( ) ti

y

ti

yy eMeMtm += 2
21 ReRe( ) ti

y

ti

yy eMeMtm += 2
21 ReRe (139)

and:

( ) ti

zz
eMtm = 1Im

Here, my is the vertical moment about the transverse y
axis (Fig. 23), and mz is the transverse moment about 
the vertical z axis. � in equation (139) is the engine an-
gular velocity, in radians per second.

The complex notation in equation (139) is for con-
venience in defining the moment amplitudes. By defi-
nition

xixe
ix sincos +

where i = �–1.
The Re and Im in equation (139) imply the use of only 

the real or imaginary part, respectively, of the complex 
numbers formed from the products of the complex mo-
ment amplitudes and the complex exponentials.

Equation (139) shows that the vertical moment, my,
has both once-per-revolution and twice-per-revolution 

components; the transverse moment occurs exclusively 
at the once-per-revolution engine RPM frequency.

The complex moment amplitudes in equation (139) 
are given by the following formulas.
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The variables in equation (140) are, with the aid of Fig. 
23,

rec and Mrot represent the equivalent masses expe-
riencing the accelerations of the piston and crank pin, 
respectively, of one cylinder, due to the constant crank-
shaft angular velocity . The mass Mrec is composed of 
the mass of the piston assembly and piston rod, plus a 
fraction of the mass of the connecting rod. The mass 
Mrot is composed of the balance of the connecting rod 
mass, plus an equivalent mass at the crank pin repre-
senting the weight eccentricity of the crank throw.

 is the crank radius, � is the connecting rod length, 
�c is the longitudinal distance between the cylinder axes, 
M is the number of cylinders, and km is the firing order 
of the mth cylinder; for m = 1, . . . M, km has generally 
nonconsecutive integer values 1, . . . , M.

The real amplitudes of the moment components, which 
correspond to the maximum values of interest, are just 
the respective moduli of equation (140). The values of 
the moment amplitudes are usually tabulated in the 
manual for a particular engine. They can also be cal-
culated by equation (140). This is demonstrated by the 
following example.

The majority of low speed marine diesels currently in 
service have six cylinders. A typical firing order for such 
engines is 1-5-3-4-2-6. With M = 6 and km = 1, 5, 3, 4, 2, 6 
for m = l, . . . , 6, the summations in equation (140) are
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The foundation moment amplitudes are therefore:

My1 = 0

My2 = –Mrec(r2/�) 2�c(3 + 1.732i) Mz1 = 0

This shows that in the case of the six-cylinder engine 
of the above firing order, only the second-order vertical 
moment, aside from a torsion, exists to excite the hull. 
The magnitude of this moment, usually denoted as M, isFig. 23 Diesel engine excitation.
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( )
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Data for the Sulzer RND 76M engine, from Sulzer Bros. 
(1977), is

Stroke: 2r 1.55 m
Connecting rod length, � 3.775 m

and mass, 3.22 tons
Mass of piston, piston rod,  

and cross-head 4.76 tons
Crankshaft length 9.6 m
RPM 122

Taking one half of the connecting rod mass as effec-
tive in reciprocating with the piston, the data for use 
with equation (140) are

Mrec = 6.37 
r = 0.775 

 � = 3.775 m
  = 122 (2 /60) = 12.78 rad/sec
 �c = 9.6/5 = 1.92 m

Substitution of the data into equation (141) gives

M2v = 112.3 t-m

The value from the data book for this engine is 119.4 
t-m.

The second-order vertical moment of this example is 
the diesel engine excitation of most concern; it is larger 
than the first-order moments, in general. One guideline 
(Johannessen & Skaar, 1980) recommends attention in 
cases where M2v exceeds 50 t-m. The potential danger is 
in resonating one of the lower hull girder vertical modes 
with a large second-order vertical moment. This possi-
bility is demonstrated by the following example.

Table 1 in Section 3.2 gives estimated values for the 
fundamental two-noded vertical hull critical for a num-
ber of different ships. Section 3.2 also suggests a simple 
extrapolation equation (128) for estimating the first few 
higher-mode natural frequencies, given the fundamen-
tal value

Nnv  N2v (n − 1)� (n not to exceed 5 )

Assuming the “reefer,” ship number 1 of Table 1, for ex-
ample, N2v = 92.4 cpm, and � = 0.845. The first four verti-
cal hull-girder modes of this vessel would then be pre-
dicted to have corresponding natural frequencies of

n = N (cpm)
2 = 92.4
3 = 166
4 = 234
5 = 298

The frequency of the second-order engine excitation 
from the previous example is 2 ⋅  RPM = 244 cpm. It is 
relatively close to the predicted natural frequency of the 
four-noded third hull girder mode.

While the natural frequency estimate of 234 cpm is in-
deed rough, it should at least have been reliable enough 

to dictate further analysis to refine the hull girder natu-
ral frequency estimates in this particular example.

In the case of projected high excitability in resonant 
vibration with the diesel engine moments, which does 
develop in the course of design on occasion, the exci-
tation moment components can usually be reduced ef-
fectively by the incorporation of compensators (Sulzer 
Bros., 1977). These devices consist of rotating counter-
weights usually geared directly to the engine crank. 
They are rotated at the proper rate and with the proper 
phase to produce cancellation with the undesirable first- 
or second-order engine-generated moment.

An alternative that has seen increasing popularity 
with medium-speed engines is the installation of main 
diesel (x) engines on resilient mounts. Schlottmann et 
al. (1999, 2000a, 2000b) provided an introduction into 
the basics of resilient mounting and the models used for 
analysis. The question of whether to use rigid or flex-
ible engine mountings is underlined by a project (Rub-
ber Design BV, Deutz MWM) in which a rigid mounting 
installation was replaced by a flexible one via resilient 
mounts (Anonymous, 1997). Due to reportedly success-
ful results, the owner altered a series of seven ships on 
the basis of his belief that isolating the main engine on 
resilient mounts was the best approach to minimizing 
hull vibration and structure-born noise.

3.7 Propeller Excitation. Propeller excitation is far 
more difficult to quantify than the excitation from in-
ternal machinery sources. This is because of the com-
plexity of the unsteady hydrodynamics of the propel-
ler operating in the nonuniform hull wake. In fact, the 
nonuniform hull wake is the most complicated part; it 
is unfortunate that it is also the most important part. 
Propeller-induced vibration would never be a consid-
eration in ship design if the wake inflow to the propeller 
disk was circumferentially uniform. Any treatment of 
propeller excitation must begin with a consideration of 
the hull wake.

3.7.1 Hull Wake Characteristics. In reality, hull 
wakes are both time-varying and circumferentially 
nonuniform. Under steady-ahead operation, which is 
the condition of primary interest when ship vibration 
is the concern, time variations of the wake are entirely 
random variations associated with the random char-
acter of boundary layer turbulence and the seaway in 
which the ship operates. Random vibration analyses of 
ships are therefore implied. However, the present and 
forseeable technology allows for the circumferential 
nonuniformity of hull wakes, but assumes, for steady 
operation, that wake is time invariant in a ship-fixed co-
ordinate system.

Although several empirical formulations have been 
proposed for estimating time average ship wake dis-
tributions (Holden, Fagerjold, & Ragnar, 1980), it is gen-
erally accepted at this time that model tests are required. 
The model nominal wake field, which is conventionally 
measured in the propeller disk by pitot tube survey with 
the propeller removed (Pien, 1958), is, however, not a 
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completely accurate representation of the time average 
inflow. Both distortions of the rotational flow by the pro-
peller and the diffraction flow component from the hull 
boundary are absent, and scaling is a problem. Efforts 
are usually made to apply corrections to model nominal 
wakes for these effects (Dyne, 1974; Huang & Groves, 
1981; Sasajima & Tanaka, 1966). However, the uncor-
rected model nominal wakes are probably adequate for 
the relative types of evaluation often of primary interest 
in design studies.

Model nominal wake data are presented either as a 
contour plot or as curves of velocity versus angular po-
sition at different radii in the propeller disc. The latter 
representation for the axial and tangential velocity com-
ponents for a conventional stern single screw merchant 
ship (Hadler & Cheng, 1965) is shown in Fig. 24; a radial 
component also exists, of course, but it has little influ-
ence on propeller vibratory forces.

The position angle, �, in Fig. 24 is taken as positive 
counterclockwise, looking forward, and x is positive 
aft. The axial and tangential wake velocities in Fig. 24 
are nondimensional on the ship forward speed, U.

Note from Fig. 24 that the axial velocity is symmetric 
in � about top dead-center (even function) and the tan-
gential velocity is asymmetric (odd function). This is a 
characteristic of single screw ships due to the transverse 
symmetry of the hull relative to the propeller disk; such 

wake symmetry does not exist with twin-screw ships. 
Usually, velocities are measured only over the half-circles 
of the propeller disk in single screw cases, with opposite-
hand projections on the basis of the required symmetry. 
Occasionally, the full circles are measured; the measured 
deviations from symmetry reflect the inaccuracies of 
model construction and instrumentation, as well as pos-
sible inconsistencies in obtaining true time averages.

The wake illustrated in Fig. 24 represents one of the 
two characteristically different types of single-screw 
ship wakes. The flow character of the conventional 
cruiser or clearwater stern in Fig. 24 is basically wa-
terline flow; the streamlines are more or less horizontal 
along the skeg and into the propeller disk. The flow com-
ponents along the steep buttock lines forward of the pro-
peller disk are small. The dominant axial velocity field 
of the resultant wake has a substantial defect running 
vertically through the disk along its vertical centerline, 
at all radii. This defect is the shadow of the skeg im-
mediately forward. The tangential flow in the propeller 
disk, being the component of the upward flow toward 
the free surface, is relatively small. The idealization of 
this wake is the two-dimensional flow behind an infi-
nitely long vertical strut placed ahead of the propeller. 
In this idealization, the axial velocity distribution is in-
variant vertically, and the tangential (and radial) veloci-
ties are symmetric about the transverse disk axis. The 
basic character can be detected in the Fig. 24 data.

A characteristically different wake flow is that as-
sociated with the strut or barge-type stern, which has 
a broad counter above the propeller disk and little ir-
regularity forward. The flow character over this type of 
stern is basically along the buttock lines, versus the wa-
terlines. Some wake nonuniformity may be produced by 
appendages forward, such as struts and bearings, or by 
shaft inclination, but the main wake defect, depending 
on the relative disk position, will be that of the coun-
ter-boundary layer overhead. In this case, a substantial 
axial wake again exists but only in the top of the propel-
ler disk. As generally only the blade tips penetrate the 
overhead boundary layer, the axial wake defect occurs 
only at the extreme radii near top dead-center, rather 
than at all radii along the vertical centerline, as in the 
characterization of the conventional single-screw stern. 
Just as in the case of the conventional stern, the tangen-
tial disk velocity with the strut stern will be generally 
small; the vertically upward velocity ratio through the 
propeller disk will have average values on the order of 
the tangent of the sum of the buttock and shaft incli-
nation angles. The idealization in the case of the barge 
stern, as a sequel to the vertical strut idealization of the 
wake of the conventional stern, is an infinite horizontal 
flat plate above the propeller. Here, the degree of axial 
wake nonuniformity depends on the overlap between 
the propeller disk and the plate boundary layer. The 
tangential and radial wake components are due entirely 
to the shaft inclination angle in this idealization, as the 
flat-plate boundary layer produces only an axial defect.

Fig. 24 Nominal wake distribution, DTMB model 4370, CB =0.602, mod-
erate V-stern.
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3.7.1.1 PROPELLER/HULL CLEARANCE. The distinction 
between the two different wake types is important to 
understanding the importance of clearances between 
the propeller blades and local hull surfaces. First of all, 
it is helpful to consider the hull surface excitation as 
composed of two effects:

Wake effect—The effect of changing the wake inflow to 
the propeller according to a specified propeller relo-
cation but with the propeller actually fixed in position 
relative to the hull.

Diffraction effect—The effect of changing the propeller 
location relative to the hull but with the wake inflow 
to the propeller held fixed.

It is a common misconception that the cruciality of 
propeller/hull clearances has to do primarily with the 
diffraction effect. To the contrary, studies show that for 
wake inflow held invariant, propeller-induced excitation 
level is relatively insensitive to near-field variations in 
propeller location. It is the high sensitivity of propeller 
blade pressures and cavitation inception to the varia-
tions in wake nonuniformity accompanying clearance 
changes that dictate the need for clearance minima. In 
general, the wake gradients become more extreme as 
propeller/hull clearances are decreased.

Reconsider the conventional and strut-stern wake 
types in light of the above fact. It is probable that too 
much emphasis is often placed on aperture clearances 
in conventional stern single-screw ships. From the point 
of view of vertical clearance, there is no signifi cant 
boundary layer on the narrow counter above the propel-
ler with this stern type. Furthermore, from the point of 
view of the vertical strut idealization of the skeg, the 
axial velocity distribution would be invariant with ver-
tical disk position. The critical item with vertical tip 
clearance in the conventional stern case seems to be the 
waterline slope in the upper skeg region. Blunt water-
line endings can result in local separation and substan-
tially more severe wake gradients in the upper disk than 
suggested by the strut idealization. Fore-and-aft clear-
ances in the conventional stern case should be even less 
critical than the vertical clearances. Wakes attenuate 
very slowly with distance downstream. While increas-
ing the fore-and-aft clearances between the blade tips 
and the skeg edge forward certainly acts to reduce the 
wake severity, the reduction will be marginally detect-
able within the usual limits of such clearance variation. 
An exception may exist in the case of separation in the 
upper disk due to local waterline bluntness. The closure 
region of the separation bubble exhibits relatively large 
gradients in axial velocity.

For the broad, flat-countered, strut-stern vessel, the 
vertical tip clearance is a much more critical consid-
eration. A relatively uniform wake will result if the 
propeller disk does not overlap the overhead boundary 
layer. This is, in general, the condition achieved on naval 
combatant vessels; the rule of thumb in U.S. Naval de-
sign practice is a minimum vertical tip clearance of one 

quarter the propeller diameter. Vibration problems are 
almost unheard of on U.S. Naval combatants.

Some wake nonuniformity on strut-stern ships does 
result from shaft struts and from the relatively high 
shaft inclinations often required to maintain the 25% 
overhead tip clearances. With proper alignment to the 
flow, shaft struts produce highly localized irregulari-
ties in the wake that are generally not effective in the 
production of vibratory excitation. The main effect of 
shaft inclination is a relative upflow through the pro-
peller disk. The cavitation that can result at the 3- and 
9-o’clock blade positions has proved to be of concern 
with regard to noise and minor blade erosion, but the 
hull vibratory excitation produced has never been con-
sidered to be of significance.

The clearance minimum of 25% of a propeller diam-
eter is more or less the standard in commercial prac-
tice as well as naval, although some classification rules 
show less. In conventional stern merchant ships, the 
vertical clearances tend to average slightly less ( 0.15 
D) and forward clearances from blade tips to skeg aver-
age slightly more ( 0.3 D). Some conservatism exists in 
these rules of thumb, or they would not have withstood 
the test of time. However, the studies needed to provide 
a rationale for clearance selection on a case-by-case ba-
sis have never been conducted; guidance for deviating 
from the accepted standards is lacking at this time.

3.7.1.2 SKEW CONSIDERATIONS. It was pointed out pre-
viously in the case of the conventional single-screw 
ship wake, Fig. 24, that the shadow of the vessel skeg 
produces a heavy axial wake defect concentrated along 
the disk vertical centerline. The blades of conventional 
propellers ray out from the hub (i.e., the blade midchord 
lines are more or less straight rays emanating from 
the hub centerline). Such “unskewed” blades abruptly 
encounter the axial velocity defect of the conventional 
stern wake at the top and bottom dead-center blade 
positions. The radially in-phase character of the abrupt 
encounter results in high net blade loads and radiated 
pressure.

A more gradual progression of the blades through the 
vertical wake defect is accomplished by curving the blade 
midchord lines. Different radii enter and leave the wake 
spike at different times; cancellation results in the radial 
integrations to blade loads and radiated pressure, with 
the result of sometimes drastically reduced vibratory ex-
citation. Two such successfully used skewed propellers 
are shown in Fig. 25, from Hammer and McGinn (1978).

Skew will work less effectively with strut-stern wakes, 
since the axial velocity defect tends to be concentrated 
more in the outer extreme radii. The more radially uni-
form distributions of the conventional stem case with 
which to achieve as high a degree of dephasing and ra-
dial cancellation are generally not available with the strut 
stern. Of course, the strut-stern vessel is in less need of 
propeller design extremes, as vibration problems are al-
ready essentially eliminated by the stern form selection, 
provided proper clearances are incorporated.
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Care must be taken in incorporating skew, particularly 
in replacement propellers, that adequate clearances be-
tween the blade tips and the rudder be maintained. As 
the blades are skewed in the pitch helix, the tips move 
downstream, closing up blade tip/rudder clearances.

The consequences can be increased hull vibratory 
forces transmitted through the rudder, as well as rudder 
erosion caused by the collapsing sheet cavitation shed 
downstream off the blade tips as they sweep through 
the top of the propeller disk. The recourse is to incorpo-
rate warp into the blades along with the skew. Warping 
is a forward raking of the skewed blades back to (and 
sometimes beyond) the propeller disk. It is equivalent to 
skewing the blades in the plane of the disk rather than 
in the pitch helix.

It should be noted for the sake of completeness that 
skew has a beneficial effect in reducing the effects of 
vibration-producing fluctuating sheet cavitation, even 
when such cavitation may be concentrated at the blade 
tips. The blade curvature is thought to result in a radi-
ally outward flow component in the vicinity of the blade 
tips, which tends to sweep the cavity sheets into the tip 
vortex, where the critical collapse phase usually occurs 
more gradually downstream.

3.7.1.3 HARMONIC ANALYSIS. It is necessary to progress 
beyond mere descriptive considerations of hull wake for 
ensuring achievement of acceptably small propeller ex-
citation. Harmonic, or Fourier, analysis of the predicted 
wake is required in almost all procedures for assessing 
propeller excitation severity.

The axial and tangential wake velocity components 
(see Fig. 24) can be written as the following Fourier se-
ries in position angle �, for selected radii.
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In equation (142), Va(r)/U is the steady circumferen-
tially average axial velocity, which is the radially varying 
speed of advance through the propeller disc; the steady 
average tangential velocity is taken as zero, since ship 
wakes have negligible steady swirl. The prefix Re de-
notes the real part of the complex series, as previously 
noted, and eiq� is, by identity

eiq�  cos q� + i sin q�

The complex coefficients Cxq(r) and CTq(r) are deter-
mined from the numerical wake data using the for-
mula
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The series in equation (142) are truncated at Q
terms, and are therefore denoted as approximations. 
It has been found that a value of Q on the order of 
10 reproduces wake contours, typically Fig. 24, with 
reasonable accuracy. For Q values no higher than ap-
proximately 10, it has also been found that the coef-
ficients in equation (142) can be calculated with ac-
ceptable accuracy by employing Simpson’s rule at 
equation (143), with points spaced at even 5-degree 
increments. Using this procedure, the coefficients are 
calculated as

Fig. 25 Highly skewed propeller installations.
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where � j = −� + (j − 1)�/36 in radians, and the Wj are the 
Simpson’s multipliers, Wj = 1, 4, 2, 4, . . . , 4, 1.

Given the wake data in the form of Fig. 24, equation 
(139) is executed for q = 1 to 10 for typically eight differ-
ent radii in the propeller disc; the eight radial stations 
are usually r/R = 0.25, 0.35, . . . , 0.95.

When executing equations (143) or (144), it will be found 
that for single-screw ships, the Cxq(r) values are pure real, 
and the CTq(r) values are pure imaginary. This is due to 
the symmetry of single-screw ship wakes. For multi-screw 
ship wakes, both the real and imaginary parts of both sets 
of coefficients will be nonzero, in general.

3.7.2 Approximate Selection of Propeller Blade 
Skew. As discussed in the last section, if one is forced 
to accept the highly irregular wake imposed by the con-
ventional single-screw stern, then propeller blade skew 
may be an alternative means for limiting the propeller-
induced vibratory excitation to acceptable levels. 

Skew is normally specified as an angle in the pro-
jected plane of the blade. Skew angle is defined in Fig. 
26 and denoted �s(r); it is the angle at some radius r in 
the projected view between the ray bisecting the blade 
section at the hub, and the ray bisecting the blade sec-
tion at r. Percentage skew is given by the formula

% skew = �s(R)N ⋅  100/360 (145)

where �s(R) is the skew angle at the blade tip and N is 
the number of blades. By equation (140), 100% skew, 
for example, corresponds to the tip of one blade lying 
on the generator line through the root of the follow-

ing blade; both of the propellers shown in Fig. 25 have 
100% skew. High skew is considered to be 50% or more. 
While skew is always made positive, or zero, at the 
blade tip, it is often negative at intermediate radii; the 
skew angle is conventionally positive counterclock-
wise, looking forward.

The increasing use of controllable pitch propellers 
(CPPs) with diesel and gas turbine engines has led to 
an alternative definition of blade skew. This is the blade 
tip angle less the maximum negative angle of the blade 
leading edge, which occurs at an intermediate radius. 
This is to reflect the leading edge sweep needed for spin-
dle torque reduction that is employed in CPPs. 

Actually, leading edge sweep has been proposed by 
some as the best definition of skew from the standpoint 
of force reduction.

The idea of skew, as previously explained, is to syn-
chronize the lift fluctuations over the radii of the blades 
in such a way that cancellations occur in the radial 
integrations. By shifting the blade sections unequally 
along the helices, the sections can be made to enter the 
regions of wake concentration at different angles, with 
the result of reduced net forces.

Actually, rough judgments as to effective amounts 
of blade skew for a given application can be made from 
the wake data alone, without any explicit calculations 
of forces at all. This procedure was proposed by Cum-
ming, Morgan, and Boswell (1972), and is as follows.

Referring to Fig. 26, the relative velocity normal to 
the blade section at (r, �) is

vn(r, �) = –vx cos �G + ( r + vt) sin �G (146)

where vx(r, �) and vt(r, �) are the axial and tangential 
nominal wake velocities and �G(r) is the blade geo-
metric pitch angle. Normal velocity is important to the 
magnitude of the propeller blade pressure distribution; 
by linear theory, the pressure distribution is, in fact, 
proportional to the normal velocity distribution, as is 
shown subsequently.

It is convenient to replace �G by � in equation (146). 
The slightly smaller hydrodynamic advance angle elimi-
nates the specific blade particulars, for convenience. 
From Fig. 26,
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where J is the advance ratio, U⁄nD. The difference in �
and �G is not within the accuracy of this exercise.

Substituting the wake Fourier series, equation (142), 
into equation (141)
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Fig. 26 Propeller geometry and nomenclature.
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The qth harmonic normal velocity complex amplitude in 
equation (148) is

Vnq = –Cxq cos � + CTq sin � (149)

with Cxq(r) and CTq(r) being the qth harmonic axial and 
tangential wake Fourier coefficients from equation 
(144). Equation (148) can be written alternatively as
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where, for harmonic q,
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In equation (150),
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and

�q = tan–1(–Vng
I/Vng

R) (151)

with the superscripts R and I denoting real and imag-
inary parts. 

Values of q in equation (150) correspond to maximum 
values of the wake normal velocity, which occur for

cos(q� – �q) = 1

giving

q� – �q(r) = 2n�; n = 0, 1, . . .

The blade position angles for maximum normal ve-
locity at the section r midchord line are therefore

�(r) = (�q(r) + 2n�)/q; n = 0, 1, 2, . . . (152)

�(r) can be plotted versus r from equation (152) to show 
contour lines of the normal velocity maxima in the 
propeller disk. A skew-line of �s(r) versus r can then 
be sketched that interferes appropriately with the �(r)
lines to imply the desired cancellation. This procedure 
is best illustrated with the following example.

Table 3 shows the computation of �(r) from equation 
(152) for the fourth harmonic of the Series 60, CB = 0.6, 
wake (Stuntz, Pien, Hinterthan, & Ficken, 1960), which 
is essentially that depicted in Fig. 24. The computations 
are performed at eight radii, as indicated.

A value of J of 0.834 was used. The same calculation 
for q = 3 was also performed. The �(r) versus r curves by 
equation (152) are plotted for q = 3 in Fig. 27 and for q = 4 
in Fig. 28. The solid lines in the figures are the normal ve-
locity maxima corresponding to n = −1, 0, 1 for q = 3 and 
to n = −1, 0, 1, 2 for q = 4. The dashed lines are the normal 
velocity minima midway between the maxima.

Assume, for purposes of example, that alternat-
ing propeller thrust is of primary concern, and should 
therefore dictate the skew selection. Also assume that a 
four-bladed propeller is to be used. As shown in Section 
2, for N propeller blades, blade-rate alternating thrust, 
as well as torque, is produced exclusively by the Nth 

wake harmonic (i.e., q = 4 in this example). Therefore, 
based on the q = 4 curves of Fig. 28, a linearly varying 
skew of 40 degrees, or 44%, is selected. This is the line 

Table 3 Locus of Normal Velocity Maxima for Fourth Harmonic of Series 60, CB = 0.6, wake J = 0.834
r/R 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Va/U 0.522 0.640 0.736 0.791 0.813 0.818 0.828 0.845

�, degrees, 
equation (146)

0.0 26.2 23.5 20.9 18.4 16.1 14.5 13.3

Cx4 equation 
(143)

0.0 0.0475 −0.0747 −0.0802 −0.0705 −0.0567 −0.0460 −0.0370

CT4 0.0201 i 0.0184 i 0.0173 i 0.0137 i 0.0089 i 0.0075 i 0.0056 i 0.0062 i

Vn4 = −Cx4 cos 
� equation 
(148)

0.0 0.0426 0.0685 0.0749 0.0669 0.05435  0.0445 0.0360

Vn4 = +CT4 sin 
� equation 
(148)

0.0097 i 0.0081 i 0.0069 i 0.0049 i  0.0028 i  0.0021 i  0.0056 Ii 0.0014 Ii

�4, degrees, 
equation (150)

−90.0  −10.8 −5.8 −3.7 −2.4 −2.2 −1.8 −2.2

�, degrees, 
equation (151)
n = −1

−112.5 −92.7 −91.5 −90.9 −90.6 −90.6 −90.5 −90.6

n = 0 −22.5 −2.7 −1.5 −0.93 −0.60 −0.55 −0.45 −0.55

n = 1 67.5 87.3 88.5 89.1 89.4 89.5 89.6 89.5

n = 2 157.5 177.3 178.5 179.1 179.4 179.5 179.6 179.5
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denoted �s(r) in Fig. 28. Rotating this line in � shows 
that roughly equal parts of the blade fall in regions of 
positive and negative normal velocity at all times; this 
skew distribution should therefore produce the desired 

radial cancellation and result in significantly reduced 
unsteady thrust over that which would be developed by 
an unskewed blade.

The linear 44% skew distribution selected is also 
drawn on the third harmonic wake contour plot in Fig. 
27. Here, as the skew line is shifted in �, it is seen that 
some degree of radial interference also occurs but not 
to the same degree as with q = 4. The critical midregion 
of the blade, between approximately the 0.4 and 0.8 ra-
dii, still encounters roughly in-phase normal velocity 
maxima and minima with the 40-degree skew. From 
the bearing force formula of Section 2, equation (93), 
the third- and fifth-wake harmonics produce the lateral 
bearing forces and moments for four blades; the lower 
harmonic, in this case the third, usually dominates be-
cause of the convergence of the wake Fourier series. 
Therefore, in this example, the propeller designer might 
also expect some reduction in the lateral bearing forces 
and moments on incorporating 44% skew, but not as 
much as in the alternating thrust.

Actually, cases occur in the exercise demonstrated 
by this example in which, with any possible consecu-
tive sequence of wake harmonics around blade number, 
some normal velocity contours are skewed (out-of-phase 
radially) and some are unskewed. Since the general rule 
is that the blade should be skewed if the wake is un-
skewed, and vice versa, it may then be impossible in 
such cases to avoid actually increasing certain bearing 
force components when decreasing others with skew in-
corporation. This is often the case with the single-screw 
conventional stern merchant ship wake; it can be seen 
to a slight degree in the third and fourth harmonics of 
the Series 60, CB = 0.6 wake in Figs. 27 and 28. The even 
wake harmonics are characteristically unskewed and 
the odd harmonics are characteristically skewed in this 
wake type (Cumming et al., 1972). An order of impor-
tance of the various force components must therefore 
be established beforehand in such cases to provide a ra-
tional basis for the skew selection.

3.7.3 Estimation of Propeller Bearing Forces. As 
described to some depth in Section 2, the propeller ex-
citation consists of a set of three force and three mo-
ment components acting in the propeller hub, plus a 
distribution of unsteady pressure over the after-hull 
surfaces.

The propeller hub forces, or bearing forces, are the 
collective effects at the propeller hub of the unsteady 
blade pressure resulting from operation of the propeller 
in the circumferentially nonuniform wake.

The formula for calculating the bearing force com-
ponents is developed in Section 2, as formula (93). This 
formula is written in terms of the radial distribution of 
unsteady blade lift, denoted Lq(r). As discussed in Sec-
tion 2, Lq(r) can be estimated by various approaches, 
with various levels of accuracy and needing various 
levels of effort. One procedure that is relatively simple 
to apply, and is at least accurate enough for meaningful 
relative evaluations for variations in design parameters, 

Fig. 27 Nominal wake maxima, Series 60, third harmonic in the circumfer-
entially nonuniform wake.

Fig. 28 Nominal wake maxima, Series 60, fourth harmonic.
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such as wake and skew, is the two-dimensional gust 
theory of von Karman and Sears (1938), applied strip-
wise (Lewis, 1963). It has the following form:

Lq(r) = 
U2RCLq(r) (153)

with
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The variables in equation (153) are the following.

Lq(r): qth harmonic complex lift amplitude distribution

: fluid density
U: ship speed
R: propeller radius
Vr(r): relative velocity tangent to blade section pitch 

line. From Fig. 26, ignoring the propeller self-induced 
velocities,
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with J = U/nD.
Vng(r) − qth harmonic complex wake velocity normal 

to blade section pitch line at r. This is essentially equa-
tion (149), but definition of the normal using the true 
geometric pitch rather than the hydrodynamic advance 
(see Fig. 26) is recommended:

Vnq(r) = –Ccq cos �G + CTq
 sin �G (155)

Here Cxq(r) and CTq(r) are qth harmonic axial and tan-
gential wake coefficients from equation (144) (and Table 
3), and �G is the geometric pitch angle. From Fig. 26,
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where P(r) is the blade pitch distribution. 
�(r) in equation (153) is the blade section chord 

length at r (in the expanded view) (see Fig. 26). C̄s(r, 
k ) is the complex conjugate of the Sears function, from 
Fig. 29. This is an Argand diagram that gives the real 
and imaginary parts of Cs as a function of the section 
reduced frequency, k .

Cs = Cs
R + iCs

I

The reduced frequency is defined as

k*(r) = q�e(r) (157)

where q is the harmonic order, and �e is the blade sec-
tion projected semichord angle. In terms of the section 
chord length l(r),
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where �s(r) is the blade section skew angle, in radians 
(see Fig. 26). The fip of equations (91) and (92) can be 
manipulated into the following form useful for compu-
tation.
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where the blade position angle � = − t from Fig. 8. N is 
blade number in equation (159) so that the series rep-
resents the superposition of blade-rate harmonics. Fipm

is the mth blade-rate harmonic complex amplitude of 
the ith force component. The real amplitude and phase 
angle in equation (159) are given in terms of the real and 
imaginary parts of Fipm as

( ) ( )22 I

ipm

R

ipmipm
FFF += (160)

and

=
R

ipm

I

ipm

ipm
F

F

mN

1tan
1

� (161)

The �ipm in equation (161) corresponds to the position 
angle of the propeller blade nearest top dead-center 
when the mth blade-rate harmonic of the ith force compo-
nent is positive maximum. The positive force directions 
are indicated on Fig. 8 and the propeller blade position 
angle, �, is positive counterclockwise, looking forward.

The fundamental blade-rate harmonic of the bearing 
forces is usually predominant, so that attention can be 
restricted to m = 1 in equations (159) through (161) in 
most cases.

If one of the bearing force components must be sin-
gled out as most worthy of the designer’s attention, it 
would be the alternating thrust, as the exciter of lon-
gitudinal vibration of main propulsion machinery. The 
hull surface excitation component, rather than the bear-

Fig. 29 Sears function Cs (k*).
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ing forces, is the more critical direct exciter of the hull, 
as will be considered later.

Focusing attention on the alternating thrust (i = 1) 
specifically, the complex amplitude from equations (91) 
and (92) can be written as

( ) ( )
=

=
R

rhr

GmNipm
drrrLNF �cos (162)

Here, rh denotes propeller hub radius, and the lift har-
monic order q in equation (153) is mN. In terms of the 
nondimensional lift coefficient of equation (153), equa-
tion (162) can be rewritten as
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For purposes of computation, a rectangle rule inte-
gration at eight equally spaced radial stations is of com-
mensurate accuracy with that of the recommended for-
mulas. For rh/R = 0.2, which is the usual case, equation 
(163) becomes

=
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GLmNpm jj
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The steps in the computation by equation (164) are il-
lustrated in the following example.

Consider an NSMB Series B.4 propeller (Troost, 1937–
1951) with four blades, operating in the Series 60, CB = 0.6 
wake of the previous example. A propeller which matches 
the Series 60 wake and the J of 0.834 has a P(r)/D = 1.024 
at r/R = 0.7 and an expanded area ratio of 0.471. Table 
4 outlines the computation of the blade-rate alternating 
thrust coefficient, C1p1, from equation (163).

First of all, the phase angle, �1p1, from Table 4 is sen-
sible. �1p1 = 42.4 degrees implies that the alternating 
thrust is maximum aft (positive) when a propeller blade 
is 42.4 degrees before top dead-center (with right-hand 
rotation clockwise looking forward). But the blade-rate 
alternating thrust executes four complete cycles, each 
of 90 degrees duration, in one 360-degree revolution. 
The thrust therefore alternates in direction from maxi-
mum aft to maximum forward in 45 degrees. The phase 
angle of 42.4 degrees therefore corresponds to a blade 
position of −2.6 degrees, or effectively at top dead-cen-
ter, when the alternating thrust is maximum forward. 
This is intuitively satisfactory.

r/R 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

P/D 0.876 0.945 0.999 1.024 1.024 1.024 1.024 1.024

l/R 0.418 0.465 0.500 0.518 0.521 0.497 0.428 0.305

�8, rad 0.023 0.060 0.105 0.143 0.160 0.190 0.232 0.275

	G, deg, (155) 48.12        40.68 35.25 30.65 26.64 23.49 20.98 18.94


e, rad, (157) 0.558 0.504 0.454 0.405 0.358 0.304 0.235 0.152

k*, (156) 2.23 2.02 1.82 1.62 1.43 1.22 0.94 0.61
Va, Table 2
U

0.522 0.640 0.736 0.791 0.813 0.818 0.828 0.845

Vr, (153)
U

1.077 1.465 1.848 2.218 2.580 2.941 3.307 3.677

C8 = C8
R + iC8

I (Fig. 29)
0.018 0.077 0.133 0.190 0.245 0.307 0.385 0.485

0.226i 0.269i 0.262i 0.245i 0.220i 0.177i 0.109i �002i

Cx4 Table 2 0. �.0475 �.0747 �.0802 �.0705 �.0567 �.0460 �.0370

CT4 0.0201i 0.0184i 0.0173i 0.0137i 0.0089i 0.0075i 0.0056i 0.0062i

Vnq = �Cx4 cos �G + CT4

sin �G (154) 
0. 0.0360 0.0610 0.0690 0.0630 0.0520 0.0430 0.0350

0.0150i 0.0120i 0.0100i 0.0070i 0.0040i 0.0030i 0.0020i 0.0020i

CL4 = (CL4
R + iCL4

I) �

10�2 (152)

.4750 1.694 4.579 7.740 8.777 8.112 5.858 2.384

.0823i �1.518i      �2.165i �1.831i     .2500t 2.560i    4.921i 5.494i

C1p1 = (C1p1
R + i C1p1

I) �

10�2 (162)

�13.93

�2.810

|C1p1|, (159) 0.142

	1p1, deg, (160) 42.2

Table 4 Blade-Rate Alternating Thrust Coefficient, NSMB B.4 Prop, P/D = 1.02, Ear = 0.471 Series 60, CB = 0.6
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The force coefficient of |C1p1| = 0.152 from Table 4 is a 
typical value for cases for which specific measures have 
not been taken to reduce vibratory excitation. Alternat-
ing thrust amplitude is often expressed as a percentage 
of steady thrust. Assume that the propeller and wake 
of Table 3 belong to a ship with 17,800 DHP and a speed 
of 20 knots. Assume that the propeller diameter is 6 m. 
Then,

tRUF p 2.14142.0 22
11 ==

Taking a QPC of 0.65 and a thrust deduction fraction 
of 0.1 as typical values, the steady thrust for this vessel 
would be

( ) t
tU

QPCDHP
T 134

1

550 ==

The alternating thrust in this example is therefore 10.6% 
of the steady thrust.

Now, the skew of the NSMB series propeller blade 
is relatively low; it is 16.7% at the blade tip, as can be 
deduced from Table 4. It was judged in the example of 
the preceding section that a significant reduction in al-
ternating over that of an unskewed propeller operating 
in the Series 60 wake could be achieved with a linearly 
varying skew out to 40 degrees at the tip, or 44% with 
the four-bladed propeller.

The Table 4 computation has been repeated in Table 
5 with the above increased skew, and with all other 
propeller geometric data held fixed (a slight pitch ad-
justment would actually have to accompany the new 
skew distribution to maintain the same performance, 
but this is higher order to the unsteady force com-
putations). A drop in |C1p1| from 0.142 to 0.106 on increas-
ing skew from 16.7% to 44% represents a 25% reduction 
in alternating thrust. Greater increases in skew would 
result in greater reductions in alternating thrust. In fact, 
skew distributions can theoretically be found which re-
sult in zero alternating thrust. The 100% skew distribu-
tions that have been incorporated with the conventional 
single screw merchant ship wake on several occasions 
(see Fig. 25) typically approach this limit. However, as 
was described relative to the example of the preceding 

section, skew distributions designed to accomplish re-
ductions in a single bearing force component, such as 
alternating thrust, will generally not reduce the other 
force components by the same degree, and some in-
creases may even occur.

To demonstrate this last point, the vertical bearing 
force corresponding to the propeller and wake of Table 
4 was calculated. Formula (92) for i = 3 was imple-
mented in a similar tabular format as Table 5. As indi-
cated by formula (92), the blade-rate lateral forces and 
moments are due to the wake harmonics to either side 
of blade number, versus the blade number harmonic in 
the case of alternating thrust. It is convenient to write 
the respective complex amplitudes for i = 2, 3, 5, and 6 
(see Fig. 8) in the following form.

( )+

+

+=

+=

ipmipm

ipmipmipm

CCRU

FFF

22 (165)

Here the + and – superscripts denote the contributions 
of the mN + 1 and mN – 1 wake harmonics, respectively. 
For blade-rate (m = 1) excitation with the four-bladed 
example propeller, the lift harmonics corresponding to 
q = 3 and q = 5 were evaluated by equation (129) and 
substituted into the respective i = 3 formula of equa-
tion (92). For the original NSMB propeller of Table 3, 
this computation produced the following vertical force 
components.

( ) 2
13 103740.05020.0+ += iC p

( ) 2
13 10248.1650.1 += iC p

(166)

From equation (166),

0199.013 =
p

C

This coefficient corresponds to 1.49% of the 134-ton 
steady thrust of the example ship and is a typical value 
for the conventional stern merchant ship wake. For the 
propeller with greater skew (see Table 5), on the other 
hand,

( ) 2
13 1072920.01260.+ += iC

p

( ) 2
13 10590.1886.1= iC p

Table 5 Blade-Rate Alternating Thrust Coefficient, Repeat of Table 4 Computation with Increased Blade Skew*

r/R 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

�s, rad 0.0436 0.1309 0.2182 0.3054 0.3927 0.4800 0.5672 0.6545

CL4= (CL4
R + iCL4

I) × 10–2 0.4667 2.051 5.261 7.112 5.442 0.9842 -3.456 -5.362

0.1211i –0.9832i −0.3480i 3.102i 6.891i 8.419i 6.825i 2.670i

C1p1 = (C1p1
R + iC1p1

I) × 10–2 −3.900

−9.800i

|C1p1| 0.1055

�1p1, deg  27.9

*Only data that are different from Table 4 are included in Table 5.
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Fig. 30 Ratio of lift calculated using unsteady two-dimensional formula 
stripwise to exact unsteady result for aspect ratios 1 and 4.

Again, from equation (166)

0193.013 =
p

C

The comparison predicts that the vertical bearing 
force decreases by 3% with the skew increase. The prob-
ability of a lateral force reduction less than achieved 
in alternating thrust (26%) was to be expected on the 
basis of Figs. 27 and 28, as described in the associated 
example.

While the relatively simple two-dimensional approxi-
mation of lift by equation (148) is considered to be reli-
able for the types of relative evaluations represented by 
the preceding examples, a warning is in order with re-
gard to the interpretation and use of the absolute mag-
nitudes so predicted. Applying the two-dimensional the-
ory stripwise, as is suggested, is equivalent to assuming 
that the propeller blade has infinite aspect ratio (span 
to chord ratio) in regard to the evaluation of the self-
induced velocities, which is accomplished by the Sears 
function in equation (153). This assumption results in 
a not insignificant overestimate of lift for aspect ratios 
typical of marine propeller blades. The approximate de-
gree of overestimate can be judged with the aid of Fig. 30 
(Breslin, 1970). This figure applies to rectangular wings, 
of aspect ratios 1 and 4, traversing sinusoidal gusts of 
reduced frequency k*. The ordinate is the ratio of un-
steady lift calculated by the two-dimensional strip-wise 
approximation, equation (129), to that calculated by a 
lifting surface theory which allows for the finite aspect 
ratio effects. On consideration that the aspect ratios of 
marine propellers are typically on the order of 2 to 3 and 
reduced frequencies are on the order of 1 to 2, Fig. 30 
suggests lift overestimates on the order of 30% to 50% 
by the two-dimensional formulation. This is consistent 
with the conclusion of the comparative analysis of vari-
ous propeller force calculation procedures reported in 
Boswell, Kim, Jessup, and Lin (1983). However, the pro-
posed two-dimensional formulation incorporates all of 
the design variables, other than aspect ratio, in the cor-

rect physical structure, and is therefore, as previously 
stated, useful in the design type of trade-off investiga-
tions where the premium is on reliable relative evalu-
ations. It is consistent with the proposed objective of 
minimizing the propeller excitation within the normal 
design constraints, which requires force evaluations 
with reasonably high relative, rather than absolute,  
accuracy.

An alternative simple method for calculating pro-
peller vibratory bearing forces is that of Tanibayashi 
(1980). This method is essentially the quasisteady 
method of McCarthy (1961), with semiempirical mod-
ifications to allow for nonzero frequency effects. The 
comparisons of the latter reference suggest that the 
Tanibayashi method may have better absolute accuracy 
than the two-dimensional unsteady strip method for 
some ranges of the variables. However, the Tanibayashi 
method, being less rational, does not appear to be as 
generally reliable in predicting the correct trends with 
changes in the variables. As discussed above, this char-
acteristic is important to the relative accuracy required 
in many design considerations. For the types of design 
exercises illustrated by the preceding examples (as well 
as those to follow), the two-dimensional unsteady strip 
method is recommended over other methods of the sim-
ple type.

3.7.4 Estimation of Propeller-Induced Hull Surface 
Excitation. Other than in the case of longitudinal vi-
bration of main propulsion machinery and some main 
shafting vibration problems, the propeller bearing forces 
covered in the immediately preceding section are of sec-
ondary importance; the hull surface force excitation is 
the primary source in propeller-induced ship vibration. 
But this is only because of the common occurrence of 
some degree of moderate fluctuating sheet cavitation 
on the propeller blades. As discussed to some depth in 
Section 2, the bearing forces are relatively insensitive 
to fluctuating sheet cavitation, and it is usually ignored 
in their analysis. This is not the case, however, with the 
hull surface excitation; fluctuating sheet cavitation can 
amplify the propeller-induced hull surface pressures 
and resultant forces by easily an order of magnitude 
over the noncavitating levels. The occurrence of propel-
ler cavitation cannot be ignored in attempts to quantify 
propeller-induced hull surface excitation and resultant 
hull vibration.

Unfortunately, while developing rapidly, the state-of-
the-art has not yet produced a methodology for design 
stage estimation of hull surface excitation of relative 
accuracy and utility equal to that available for bearing 
force estimation. Wilson (1981) summarized the simple 
formulas and criteria then available to the designer for 
dealing with hull surface excitation. Wilson compared 
the various proposed formulations against data from 
the few cases of recent U.S. Naval ship vibration prob-
lems and concluded that none of the formulations ap-
peared capable of providing reliable indications about 
the likelihood of ship vibration trouble. Theoretical irra-
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tionality is no doubt responsible, in large part, for the in-
adequacy of the quick estimation techniques then, and 
currently, available; they are, for the most part, little 
more than rules of thumb based simply on intuition and 
empiricism.

Actually, experience has shown that if wake nonuni-
formity is at least not ignored in stern-lines design, and 
if state-of-the-art propeller design is employed, which 
includes incorporating blade skew for bearing force 
control and maintenance of cavitation inception stan-
dards (Cox & Morgan, 1972), then serious vibration will 
seldom occur. Nevertheless, a simple, rational, though 
incomplete, formulation for hull surface force predic-
tion is outlined in the remainder of this section. While 
the formulation should be of some limited utility to the 
designer in its present form, it is presented mainly as a 
rational framework to be filled out as the state-of-the-
art in this area advances.

As vertical hull vibration has been identified as the 
main girder vibration of concern, attention is focused 
here on the vertical component of the hull surface force. 
Hull surface force, rather than pressure, is considered 
to be the more appropriate measure of merit of hull sur-
face excitation for minimization considerations, on the 
basis of the reasons cited in Section 2. The noncavitat-
ing and cavitating cases are considered separately.

3.7.4.1 NONCAVITATING VERTICAL HULL SURFACE FORCES.
Vorus, Breslin, and Tein (1978) derive the following for-
mula, based on reciprocity (Section 2) for the complex 
amplitude of a noncavitating hull vertical surface force 
coefficient.

*
313

*
313

*
3013

�� vCivCi

vCC

pmPM

xpm

NC

hm

++

=

(167)

The terms in equation (162) are the following.

CN
3h

C
m: mth blade-rate harmonic vertical (i = 3) noncavi-
tating hull surface force coefficient;

NC

hm

NC

hm
CRUF 3

22
3 =

C1pm: mth blade-rate harmonic alternating thrust coeffi-
cient (e.g., Tables 4 and 5)

C+
3Pm–: mth blade-rate harmonic vertical bearing force 
coefficients corresponding mN + 1 (+) and mN − 1 (–) 
wake harmonic contributions (e.g., equation [164])

v*30x and v*31�: velocities induced in the propeller disk by 
vertically downward unit velocity motion of the bare 
hull, as described in Vorus, Breslin, and Tein (1978). 
v̄*31�  is the complex conjugate of v*31�.

Formula (167) applies to the stern type for which 
the breadth of the counter directly above the propeller 
can be characterized as large. It is unfortunately not 
applicable to the case of the cruiser type stern of con-
ventional single screw merchant ships, whose counter is 
narrow. For the broad stern type, however, for which the 
propeller bearing forces have been estimated, formula 

(167) can be used to estimate the noncavitating vertical 
hull surface force provided that the bare–hull-induced 
velocity data is available.

Table 6 gives approximate average values of the re-
quired induced velocity data appropriate for use with 
single-screw and twin-screw ships.

The numbers in the table are approximate averages 
from detailed calculations of the induced velocities for 
many ship cases. The tangential velocity component, 
v31 *, is most sensitive to waterplane breadth over the 
propeller; v31 * increases with waterplane breadth. The 
extreme value of v31 * that has been encountered, ap-
proximately –0.6i, was for a single-screw, barge-stern 
laker where the ratio of waterplane breadth aft to pro-
peller diameter approached 4.0. The more sensitive of 
the velocity components to stern geometry is, however, 
the axial component, v30x, in equation (167). This compo-
nent depends most strongly on the axial distance from 
the propeller to the waterplane ending. For propeller 
inset distance denoted x, the extreme values of v30x* en-
countered have been 0.15 for a twin-screw naval cruiser 
with deep inset D/x0 0.5, and 0.75 for the same barge-
stern single-screw laker with a very shallow inset D/x0

2. A few of the cases for which this data has been evalu-
ated are described by Vorus, Breslin, and Tein (1978).

In the following example, assume a broad countered 
single-screw ship with a skeg, configured such that the 
Series 60 wake of Fig. 24 is reasonably representative 
(this is assumed for example only; a wake evaluated 
from model tests should be used in actual analysis). 
Also assume that the propeller is the NSMB B.4 subject 
of the examples in the preceding section. The bearing 
force coefficients required in equation (167) for blade-
rate surface force evaluation are therefore the values 
from Table 4 and equation (166). That is

C1p1 = (–1.50 – 0.272i)10–2

C3p1
+ = (0.502 + 0.374i)10–2

C3p1
– = (–1.65 + 1.25i)10–2

Using the induced velocity values corresponding to the 
single-screw ship case of Table 6, equation (167) gives

CN
3h

C
1 = 0.0132 – 0.00676 (168)

whose amplitude and phase are

0149.013 =NC

h
C

deg8.6
0132.0

00676.0
tan

4
1 1

13 ==NC

h
�

Table 6 Hull-Induced Velocity Data for Use

Equation (161)

(Broad Countered Stern Forms)

v31x* v31�*

Single screw 0.5 –0.5i

Twin screw 0.3 –0.4 to –0.45i
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The noncavitating vertical surface force calculated 
above is slightly smaller than the vertical bearing force, 
whose magnitude was calculated in equation (166) as 
|C3p1| = 0.0199.

The most appropriate measure of hull girder ver-
tical vibratory excitation should actually be the net 
vertical force, represented by the vector addition of 
the vertical bearing and vertical surface forces. De-
noting the net vertical force coefficient as CN

3h
C
1,

CN
3N

C
1 = CN

3h
C
1 + C3p1

Substituting from equations (166) and (168), for the sub-
ject example

CN
3N

C
1 = (0.174 + 0.9i)10–2

with amplitude and phase

|CN
3N

C
1| = 0.00956

�N
3N

C
1 = –19.9 deg

Thus, the net vertical force predicted in this example is 
smaller than both the individual vertical bearing force 
and vertical surface force components. This is to be 
expected in the case of the broad countered stern to 
which equation (167) applies (refer to the discussion of 
the Breslin condition in Section 2.3). The comparison 
is shown on the bar graph (Fig. 31); the bar heights de-
note the percentages of thrust of the example propeller 
and the numbers at the tops of the bars are the phase 
angles.

3.7.4.2 CAVITATING VERTICAL HULL SURFACE FORCES. On 
the basis of reciprocity, as covered in Section 2, Vorus, 

Breslin, and Tein (1978) also derive a rational formula 
for the vertical hull surface force coefficient due to un-
steady sheet cavitation. It is

=
2

0

*
3002

3
URbR

b

J
NmiC mNc

hm

��� (169)

where

N = propeller blade number
J = advance ratio, U/nD

b0 = design waterline offset in the vertical plane of 
the propeller disk

 30
* = velocity potential induced in the propeller disk 

by vertically upward unit velocity motion of the 
bare hull, as described in Vorus, Breslin, and 
Tein (1978)

 ˙
mN = the mth harmonic of the cavitation volume ve-

locity variation on one propeller blade

Formula (169), like the noncavitating counterpart 
(167), is reduced from a general reciprocity formulation 
on the basis of broad waterplane aft. However, due to 
more rapid convergence characteristics of the hull in-
duced potential, 30*, in formula (169) versus the hull-
induced velocity components in formula (167), formula 
(169) has been found to work quite well for vessels whose 
sterns are characterized as narrow. Furthermore, the 
function 30*/b0 has been found to vary only moderately 
from one stern to the next. In the many detailed calcu-
lations of 30* that have been performed, the extreme 
values of 30*/b0 encountered have been approximately 
0.4 and 0.7. However, most fall very close to the average 
of these extremes; a value of 30*/b0 = 0.5 for all cases 
should be consistent with the best accuracy achievable 
in estimating the cavity volume term in formula (169) and 
with the intended use of the formula.

The illusive term in formula (166) is the cavity volume 
velocity harmonic, ˙ mN. It is for lack of data in this regard 
that the cavitating force formula (169) must be held in re-
serve at this time. However, work has been conducted in 
pursuing this goal (Lee, 1979; Stern & Vorus, 1983), and 
is currently being conducted, so that it can be expected 
that the dynamics of unsteady sheet cavitation will be 
quantified to the degree needed for, at least, reliable rela-
tive evaluations at some point in the future. 

Some limited cavitation volume velocity data are, 
however, available at this time. For example, cavity vol-
ume dynamics were estimated by the numerical method 
of Stern and Vorus (1983) in the excitation force analysis 
of the Navy oiler documented in Vorus and Associates 
(1981). The data in this reference are of unsubstantiated 
accuracy, but it is, at any rate, useful here for demon-
strating the character of the required term and the cavi-
tating hull surface force computation by equation (169). 
This is done in the context of an example.

Figure 32 shows a cavity volume velocity curve cal-
culated by the theory of Stern and Vorus (1983) for the 
seven-bladed highly skewed propeller of a naval oiler. 
The x-values on the figure indicate the result of sum-

Fig. 31 Blade-rate vertical forces, Series 60, CB =0.60, NSMB B-Series 
Propeller. 
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ming the Fourier series expansion of the curve using 21 
terms; the series is of the form

( ) �� iq

q

q
e

=

21

0

Re �� (170)

with the ˙
q harmonics calculated using the same gen-

eral formula as used in the wake harmonic analysis (i.e., 
equation [144]). 

While Fig. 32, as stated, is not of verified accuracy, 
it cannot be in large error. The expansion commences 
10 degrees prior to the blade reaching top dead-center, 
reaches a maximum volume at around 55 degrees, and 
terminates in an oscillatory collapse at just over 100 
degrees. The mean maximum cavity thickness is esti-
mated from the calculated data to be around 8 cm. All 
of this is at least consistent with the wake survey and 
observations from the cavitation tests of the model pro-
peller during the correction phase.

The 21 nondimensional complex ˙ q  coefficients com-
puted for equation (170) are tabulated in Table 7. In this 
regard, comparing the calculated and Fourier-fit curves 
on Table 7, there is clearly significant high harmonic 
content not covered by the first 21 harmonics.

The oiler is single-screw with a conventional mer-
chant ship stern; b0/R = 0.587 in equation (169). Other 
relevant data are

J = 1.032 
N = 7
D = 6.4 m
U = 21.4 knots
thrust, T = 139 t

Taking 30
*/b0 = 0.5 in equation (169) (the actual cal-

culated value was 0.63), the vertical force coefficient for 
blade-rate harmonic m is

( )273 /55 URimC m
c
hm

= �
(171)

This coefficient, along with the corresponding frac-
tions of steady thrust, are listed in Table 8 for the first 
three blade-rate harmonics.

The 7.8% vertical blade-rate force calculated above is 
not unusually large, as cavitation-induced forces go. Values 
on the order of 30% of steady thrust are not unheard of. It 
is, however, seven times larger than the noncavitating sur-
face force from the example of the preceding section (Fig. 
33). The naval oiler of this example did, in fact, not have a 
particularly severe vibration at blade-rate frequency.

The perhaps more alarming aspect of the Table 8 
data are the high multiple blade-rate force components. 
This substantial high harmonic content is a character-
istic of the excitation induced by cavitating propellers. 
It is due, mathematically, to the slow convergence of the 
volume velocity Fourier series, as is obvious from Table 
7. Physically, it is due to the rapid expansion and col-
lapse of the cavitation (see Fig. 32). The strong higher 
blade-order excitation harmonics of cavitating propel-
lers are quite capable of producing excessive vibration, 
and also, because of the higher frequencies, excessive 
noise. The subject naval oiler did, in fact, suffer more 
from an excessive noise problem, which was attributed 
to propeller cavitation.

3.8 Propeller Cavitation Noise. Section 2.4 derives 
formula for calculating far-field radiated noise from a 

Table 7 Harmonic Coefficients of Cavitation Volume Velocity for 
a Naval Oiler

Harmonic Order

q ˙
q/UR2 ×10–2

0 0.00713 +i

1 0.355 –0.288i

2 0.733 +0.196i

3 0.285 +0.774i

4 –0.416 +0.541i

5 –0.433 0.0908i

6 0.00608 –0.238i

7 0.149 0.0256i

8 –0.0228 –0.116i

9 –0.0795 0.0139i

10 0.0185 0.0573i

11 0.0539 +0.0125i

12 0.0070 +0.0455i

13 –0.0287 +0.0227i

14 –0.0323 –0.0127i

15 –0.00333 0.0385i

16 0.0376 0.0175i

17 0.0239 +0.0333i

18 –0.0326 +0.0271i

19 –0.0333 0.0313i

20 0.0241

0.0388i

21 0.0384 0.0141i

Fig. 32 Estimated cavitation volume velocity, U.S. Naval Oiler.
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cavitating propeller. Those formulas—equations (108), 
(116), and (117)—require the same general cavitation 
volume velocity spectrum, such as is given in Fig. 32 and 
Table 7 of Section 3.7 for the Navy auxiliary oiler. That 
example will therefore be continued to underwater radi-
ated underwater noise estimates for the auxiliary oiler 
for the purpose of demonstrating the basic calculations 
that are performed.

It must first of all be acknowledged that the Chapter 
2 theoretical formulas are quite idealized. They assume 
far-field transmission through infinite homogeneous liq-
uid with no reflections from the bottom, from the wa-
ter free surface, or from any body surfaces, and with-
out sound wave energy dissipation. But the model of an 
oscillating cavity source has been used over the years 
to model far-field noise (Beranek, 1960; Kinsler & Frey, 
1962), and judgments as to noise severity can be made 
on the basis of these predictions.

3.8.1 Source Power. Formula (117), Section 2.4 ex-
presses the power of the noise source, W. For the three 
blade-rate harmonics of the cavity volume variation 
available from Table 7, the power, truncated to three 
terms, is

nNnN

n

nnk
N

W =
=

��

1

3

8�

 
(117)

The operating data listed just above Table 7 gives  = 
10.48 rad/sec and N = 7 blades. From Section 2, the wave 
number kn = 2�/�n with �n being the nth harmonic sound 
wavelength, �n = 2�c/nN . c is the velocity of sound in 
water, whose nominal value is c = 1403 m/sec (in dis-
tilled water at 0 degrees. 

Table 9 gives the calculated wave lengths, wave num-
bers, and power for each of the three blade-order har-
monics, and the power sum, by equation (117).

Note that the source sound power is independent of 
the radius from the source. This is because wave damp-
ing has not been included in the derivation via the acous-
tic wave equation (98).

Note also from Table 9 the lack of convergence of the 
acoustic power series to three terms. This is again re-
flected in the same character of the cavitation volume 
velocity harmonics, implying that the Table 9 calcula-
tion is an underestimate of the source power. The maxi-
mum frequency of cavitation oscillation represented 
by Table 7 is 35 Hz in the 21st harmonic. This is a very 
low frequency in the acoustic range. The threshold fre-
quency for hearing is 20 to 30 Hz. Most presentations 
of the variation of acoustic data with frequency start at 
100 Hz as the lower limit. So again, there is much more 
frequency content in the Fig. 32 volume velocity curve 
than was extracted in Table 7, at least for acoustic anal-
ysis purposes.

The source power is converted to PWL in dB in Table 
10. This is according to equation (119) in Section 2.

The power levels corresponding to the individual har-
monics cannot be simply added in dB to obtain the sum, 
since adding logarithms is not equivalent to adding their 
arguments. By equation (119),

PWL = 10 log10(W) + 130 = 156 dB

with W = 410.8 watts from Table 8.
3.8.2 Sound Pressure. PWL is not the most com-

monly selected acoustic quantity from which to estab-
lish criteria for judgment of underwater noise severity. 
Sound pressure at a point in the far-field is readily mea-
sured in noise surveys and experimental programs using 

Table 8 Cavitation I-Induced Vertical Surface Forces

Blade-Rate �m7/UR2(10−2) | Cc
3hm | �3hm | Fc

3hm |

Harmonic m Equation (170) Degrees T

1 0.149 + 0.0256i 0.0832 11.5 0.0776

2 −0.0323 − 0.0127i 0.0382 −8.0 0.0356

3 0.0384 − 0.0141i 0.067 5.3 0.0675

Table 9 Source Acoustic Power Harmonics and Sum

n �n (m) �̇n (m3/sec)  Wn (watts)

1 120.1 0.1680−0.0289i 217.0

2 60.1 −0.0364−0.0143i 46.9

3 40.0 0.0433−0.0159i 146.9

W = Wn = 410.8

Table 10 Source Acoustic Power Level, Harmonics, and Sum

n PWLn = 10 log10(Wn) + 130 dB

1 153

2 147

3 152

Fig. 33 Oiler P(r, t) and SPL at r = 1 m.
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hydrophones. However, sound pressure level (SPL) is a 
function of radius in the far-field of the source, whereas 
PWL is not, ideally. From Section 2, formula (108),
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Because of the dependence on radius, a standard for 
evaluating sound pressure is at a radius of effectively 1 
m from the center of the sound source.

Figure 31 is a plot of the cavitation sound pressure 
from equation (108) for the oiler over one cycle, T = 
0.0856 sec, at r = 1 m. This radius is certainly not in the 
far-field of the cavitation source, which is assumed in 
the derivation of equation (108), but it is used neverthe-
less as a standard reference radius.

Chapter 15 of Kinsler and Frey (1962) report the SPL 
of a submerged submarine of 124 dB at 100Hz and at an 
effective radius r = 1 m. The equivalent for a destroyer is 
claimed to be 10 dB higher than the submarine, and that 
for an aircraft carrier to be 25 dB higher. On this basis, 
the prediction of 176 dB in Fig. 31 would project the oiler 
as a very noisy ship, as-built, and it was.

Of course, the combatant vessels cited by Kinsler and 
Frey were of early 1960s vintage, and a great deal has 

been accomplished in quieting of the U.S. Navy combat-
ant fleet since that time. It is suspected that the far-field 
noise of modern submarines is hardly above the level of 
the ambient background of the sea.

A far-field noise prediction using the oiler data in 
equation (108) is shown in Fig. 34, a plot of sound pres-
sure from 20 to 1000 m from the source, at the time of 
0.0668 seconds when the sound pressure was highest at 
20 m (which was arbitrary).

A three-dimensional plot of sound pressure versus 
both r and t would be desirable, but the time and wave 
length scales differ drastically (T = 0.0865 sec compared 
to � = 120 m). The rescaling required in the plotting 
would limit the perception of the process characteris-
tics desired from a three-dimensional plot.

Ambient sea noise under moderate wind conditions is 
indicated in Chapter 15 of Kinsler and Frey (1962) to be 
50 to 55 dB at 100 Hz. The level of 116 dB at 1000 m from 
Fig. 31 would be easily detectable at this range, as well 
as at far greater range, by passive listening devices. In 
fact, the simple formula (108) predicts that three blade-
order harmonics of the estimated Navy oiler propeller 
blade cavitation would require a distance of 1 ⋅  106 m to 
fall below the level of the ambient sea noise. This is 540 
nautical miles!

The predictive capability of such as formula (108) 
would be severely degraded at a 500 Nm range due to 
the compounding effects of all the approximations 
involved in application of the simple formula to deep-
ocean acoustics.

3.8.3 Other. Underwater acoustics, as applied to 
ships, and to propeller cavitation in particular, has a 
long history and is well developed, although much the 
modern technology and understanding has been ad-
vanced in military applications and lies in the classified 
domain.

In the recent open literature, de Jong and de Regt 
(1998) reviewed the different approaches for the predic-
tion of propeller cavitation noise, namely deterministic, 
semiempirical, and statistical methods for tonal and 
broad band noise description. Gesret (2000) presents a 
comparison of full-scale measurements and a statistical 
approach for propeller cavitation noise. Bobrovnitskii 
(2001) has proposed an improved source model for ex-
tension into bounded spaces. Research product of this 
type may not be entirely new, but it is at least openly 
available to the field of marine dynamics.
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4
Criteria, Measurements, and Posttrial Corrections

4.1 Criteria of Acceptable Vibration. It has become 
more the rule than the exception that new ship speci-
fications require measurement of vibration on builders’ 
trials and place contractual limits on acceptable vibra-
tion levels. The vibration of primary concern is that 
occurring within habitable spaces, principally within 
deckhouses and engine rooms, and criteria are conse-
quently based primarily on habitability standards. Lim-
its on levels of equipment vibration, from an operability 
standpoint, are sometimes involved in specifications, 
particularly for naval vessels. 

Most of the criteria established by the classification 
societies for commercial ships, which then reappear as 
limits in ship specifications, are at least consistent with 
Fig. 35, if not based directly upon it; ISO 6954 (1984) is 
a slightly more recent criteria of the same type. Figure 
35, from SNAME (1980), is a plot of vibration response 
amplitude versus its frequency. The zones identified in 
Fig. 35 represent different levels of vibration severity; 
they are defined as follows.

Zone I—Vibration levels in this zone are low enough 
that adverse comments from personnel would not be 
expected.

Zone II—Vibration levels in this zone indicate that while 
vibration is noticeable, few adverse comments would 
be expected.

Zone III—In this zone, vibration levels and human re-
sponse increase rapidly in severity and adverse com-
ments would be expected.

The “response” of Fig. 35 can be chosen as displace-
ment response, velocity response, or acceleration re-
sponse, as indicated by the three different scales on the 
figure. For simple harmonic vibration, which Fig. 35 as-
sumes, a simple relationship exists among the scales of 
displacement, velocity, and acceleration in Fig. 35. That 
is, for vibration displacement response at a point occur-
ring as

x(t) = X cos �t (172)

the displacement response amplitude is X. The velocity 
response, on the other hand, is, from equation (172),

v(t) = ẋ(t) = �X cos(�t + �/2) (173)

The velocity response amplitude is therefore X, with 
being the vibratory frequency in radians per unit time. 
The acceleration response amplitude is similarly, 2X,
by differentiation of formula (173).

As an example of the interchangeability, consider the 
vibration response corresponding to a displacement 
amplitude of X = 1 mm at a frequency of 5 Hz. The veloc-
ity amplitude is

X� = 1(5)2� = 31.4 mm per sec

and the acceleration amplitude is

X�2 = 1[(5)2�]2 = 996 mm per sec2

Of course, these are all the same point in Fig. 35.
Velocity has replaced displacement in recent years 

as the popular unit for referring to ship vibration level. 
Full-power propeller blade-rate excitation frequency for 
the modern large ship is, for example, on the order of 10 
Hz. Zone II of Fig. 35, whose vibration levels would be 
noticed by exposed personnel, has extremes of 4 and 9 
mm/sec in the 10 Hz range. The vibration limits for hab-
itable spaces imposed by most ship specifications seem 
generally to lie within this band.

For example, criteria that appear to have been ad-
opted in a number of ship specifications, both naval and 
commercial, set an objective of 6.4 mm/sec and 3.8 mm/
sec maximum vertical and horizontal, respectively, for 
vibration velocity of the hull girder. The design objec-
tive on major substructure maximum vibration, such 
as deckhouses, is 7.6 and 5.1 mm/sec vertical and hor-
izontal, respectively. Note that all of these values fall 
within Zone II of Fig. 35, for typical propeller blade-rate Fig. 35 Guidelines for ship vibration (vertical and horizontal, single amplitude).
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frequencies. The criteria further recommend that maxi-
mum acceptable limits be set at 150% of the above val-
ues. The resulting vertical upper limits can then be seen 
to fall in lower Zone III in Fig. 35, with the correspond-
ing horizontal limits falling in upper Zone II.

Figure 35, and other criteria like it, are readily ap-
plied when the vibration can be at least approximately 
characterized as simple harmonic (i.e., periodic at a sin-
gle frequency). However, as noted in the last section, in 
general, ship vibration is not simple harmonic; it is not 
even periodic. Ship vibration is random (i.e., it is com-
posed of components at all frequencies, rather than at 
a single one). The random character of ship vibration 
is clearly evident in records from underway vibration 
surveys. But the data from such complex records must 
often be compared with simple criteria, such as Fig. 35, 
to quantify its severity. ISO 6954 (2000) is a relatively 
new criteria expressed in terms of frequency-weighted 
root-mean-square (RMS) response levels, which is an 
attempt to account for randomness in the ship vibration 
record.

In propeller-excited ship vibration cases where cavi-
tation is not heavily involved, propeller input spectra 
are narrow-band around blade-rate frequency, as men-
tioned in the last section. Furthermore, for structural 
resonance, or near resonance, at blade-rate frequency, 
the band of the vibration response spectra around the 
resonant frequency is further narrowed. In such cases, 
which are not uncommon, analog records unmistakably 
display a dominant blade-rate frequency characteristic. 
The RMS vibratory response amplitude is then usually 
evaluated from the records, either by “eyeball” or more 
precisely by spectral analysis, and matched with blade-
rate frequency, as in equation (172), for comparison with 
the established limit criteria (see Fig. 35).

In the other extreme, where cavitation is heavily in-
volved in nonresonant vibration, measured vibration re-
cords still usually exhibit a basically periodic character, 
but components at more than one discrete frequency 
are clearly evident. The component frequencies are the 
strong blade-rate multiples of the slowly convergent 
hull surface excitation associated with the cavitation 
intermittency. In this case, with significant component 
vibration occurring simultaneously at several different 
frequencies, it is not always clear how guidelines such 
as Fig. 35 are to be used. It is in such cases that criteria 
based on RMS level (i.e., ISO 6954, 2000) are the proper 
recourse.

A realistic and yet concise standard for the specifi-
cation of propeller-induced ship vibration limits or cri-
teria appears, in some respects, to be hardly less elusive 
than some parts of the design methodology needed to 
provide assurance in meeting such standards. Progress 
is, however, being made. A more recent interpretation 
of the zones of Fig. 35, according to (a) passenger cab-
ins, (b) crew accommodations, and (c) working areas is 
presented in a matrix with the Discomfort Zones in ISO 
6954 (2000). There, the velocity and acceleration ampli-

tudes are specifically to be interpreted as RMS values to 
allow for the vibration not being simple harmonic.

4.2 Vibration Measurement
4.2.1 Design Verification. The SNAME Code for 

Shipboard Vibration Measurement (SNAME, 1975) rec-
ommends a very comprehensive program and instru-
mentation package for shipboard vibration surveys. The 
Code is invoked in many ship vibration specifications. 
An elaboration on the SNAME Code and proposal of a 
somewhat more advanced instrumentation package is 
that of de Bord, Hennessy, and McDonald (1998).

The instrumentation package proposed in the above 
SNAME Code has proved to be adequate in establish-
ing compliance, or noncompliance, with the typical ship 
vibration specification. The instrumentation consists of 
a set of 12 inductance-type velocity pick-ups, with sig-
nal processing through an equal number of integrating 
amplifiers and with a permanent record of the resultant 
vibration displacement signature recorded graphically 
on a multichannel recorder. In providing the capability 
for simultaneous multipoint vibration measurement, 
this instrumentation can be used to establish vibration 
frequency, amplitude, and local relative displacement 
(mode shape). Evaluation of ship vibration for purposes 
of comparison against the typical specification will re-
quire the measurement of frequency and amplitude at 
the pre-established survey points, but not the phase re-
lationships between points. Amplitude and frequency 
information can be obtained with acceptable accuracy 
using relatively simple portable instruments, with accel-
eration measurements at the survey points performed in 
some sequence, rather than simultaneously.

Of course, if the simple vibration survey of a new 
ship should establish that the specification limits are 
badly exceeded, then the type of measurement pack-
age proposed in SNAME (1975) may become absolutely 
essential to expeditious rectification. In this respect, 
invoking the SNAME Code, or its equivalent, in design 
specifications may be considered insurance worth the 
extra investment.

4.2.2 Posttrial Corrective Investigations. The ap-
proach to resolving a ship vibration problem, as with 
most engineering problems, involves two steps. The first 
step is to clearly establish the cause of the problem, and 
the second step is to implement the changes required to 
eliminate it in an efficient manner.

In about 80% of cases, the basic cause of a ship vibra-
tion problem is its propeller. This fact seems to be elusive 
to the vibration analyst familiar only with land-based 
power plant-oriented vibration problems; ship vibration 
is indeed a case of “the tail wagging the dog” most of 
the time. Whether or not the vibration of a particular 
ship has its source in the propeller is easily established 
from underway vibration measurements. If at some 
shaft RPM, the measured frequency of the vibration is 
predominantly RPM times propeller blade number, and 
varies directly with shaft RPM, then the propeller is def-
initely the exciting source. If blade-rate frequency, or its 
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multiples, is not strongly detectable in the records, then 
it is almost certain that the propeller is not the primary 
excitation, unless the records exhibit a strong shaft-rate 
frequency, which could indicate propeller mechanical 
or hydrodynamic unbalance difficulties, but these are 
rather rare.

Once the excitation frequency has been established 
from the underway measurements, next is to establish 
whether resonance with structural natural frequencies 
plays a significant role in the magnitude of the vibration. 
For noncavitating propellers, excessive hull vibration 
should be expected to be resonant vibration. Resonant 
vibration is established by varying shaft RPM in steps 
and recording vibration amplitude successively at each 
RPM in the region where the problem has been identi-
fied as being most intense. If a plot of displacement am-
plitude versus RPM shows a definite peak with increas-
ing RPM, followed by decline, then resonant vibration 
is established and the position of the peak establishes 
the natural frequency of the resonant structural mode. 
If the amplitude/RPM characteristic does not peak but 
has an increasing trend as roughly RPM squared in the 
upper power range, then structural resonance is not 
playing a major role. If, alternatively, the amplitude/
RPM characteristic increases very rapidly only in the 
immediate vicinity of full power, without establishing a 
definite peak up to the maximum obtainable RPM, a full 
power resonance may or may not be indicated. This ex-
hibition can be entirely the manifestation of the onset of 
propeller cavitation, which tends to produce almost dis-
continuous amplification of the hull surface excitation 
at the onset RPM. The sudden appearance of strong har-
monics of blade-rate frequency in the vibration records, 
accompanied by violent pounding in spaces above the 
counter, are good indications of a full-power nonreso-
nant vibration problem caused by excessive propeller 
cavitation.

If nonresonant vibration due to propeller cavitation 
is established, then the underway survey could probably 
be discontinued, with attention then turned to hydro-
dynamic design changes in the stern/propeller configu-
ration. This course of action is considered in the next 
section.

If the problem is established as highly localized res-
onant vibration of plating panels, piping, and the like, 
then the vibration survey likewise need go no further. 
In such cases, it is usually quite obvious how natural 
frequency changes, through local stiffening, can be ef-
fectively and expediently accomplished to eliminate the 
locally resonant conditions.

If, on the other hand, the vibration problem is es-
tablished as a resonant condition of a major substruc-
ture, such as a deckhouse, which has been all too often 
the case, then the vibration survey should proceed to 
obtain mode shape information in the interest of an ex-
peditious correction program.

4.3 Posttrial Corrections. Just as in developing a vi-
bration-sufficient ship design, all possibilities for cor-

recting a vibration-deficient one are explicitly reflected 
in the general response formula (82) of Section 2. Prac-
tically speaking, there are three possibilities: (a) reduce 
vibratory excitation, (b) change natural frequencies to 
avoid resonance, or (c) change exciting frequencies to 
avoid resonance. Except in the rather uncommon case 
of excessive diesel engine-excited hull vibration, which 
can usually be corrected by moment compensators 
(Sulzer Bros., 1977) or engine resilient mounting (Anony-
mous, 1997), achievement of any of the three correction 
possibilities identified above will almost always involve 
modifications in either stern/propeller hydrodynamics 
or hull structure.

4.3.1 Hydrodynamic Modifications. The most 
effective way to reduce propeller vibratory excitation 
is to reduce the circumferential nonuniformity of the 
hull wake in which the propeller operates. In the de-
sign stage, acceptable wakes can be achieved by taking 
proper care with stern lines (see Section 3.7.) In a post-
design corrective situation, basic lines changes are not 
possible. However, with good luck in the case of poor 
stern lines, considerable improvements in wake can be 
accomplished by back fitting one of the several types 
of wake adapting stern appendages. The partial tun-
nel (Fig. 36) has been the most broadly applied of the 
wake-adapting appendages, which also include vortex 
generators and wake-adapting propeller ducts. The par-
tial tunnel was apparently first retrofitted for vibration 
reduction purposes by Baier and Ormondroyd (1952) on 
the laker Carl D. Bradley in 1951. The idea is to divert 
the upward flow along the buttock lines forward longitu-
dinally into the upper propeller disc to reduce the wake 
spike near top dead-center. This device will work most 
effectively on the buttock-flow type of stern; the partial 
tunnel has been applied successfully over the years on 
the Great Lakes ore carriers, most of which have barge-
type sterns with very steep buttock angles. On the other 
hand, for sterns which exhibit a basically waterline-flow 
character, the partial tunnel would be expected to be 
more or less ineffective due to the lack of upward flow 
to divert. However, the effectiveness of the partial tun-
nel cannot always be accurately judged by simply clas-
sifying a prospective application as one of the two limit-
ing cases of buttock versus waterline flow. For example, 
the stern shown in Fig. 36, from Rutherford (1978−1979) 
might be classified as more of a waterline flow, yet the 
modifications shown produced significant improvement 
in the nominal wake, as exhibited by the before and after 
axial velocity contours. The Fig. 36 modifications, how-
ever, include vortex generators as well as the partial tun-
nel, and the contributions of each to the wake improve-
ments shown are not known. A more direct indication of 
the effectiveness of the partial stern tunnel in reducing 
vibratory excitation is given in Fig. 37 and in Table 11, 
from Hylarides (1978). Figure 37 shows the stern lines 
of four ships on which partial stern tunnels were fitted 
as a result of posttrial corrective studies conducted at 
the Netherlands Ship Model Basin (NSMB). Pressures 
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were measured on model sterns in the NSMB cavitation 
tunnel, integrated, and then harmonically analyzed to 
produce the first three harmonics of blade-rate vertical 
hull surface force. The force amplitudes, as percentages 
of steady thrust, are listed in Table 11 for each case. In 
the two cases where the outcome of the tunnel retrofit is 
indicated, the vibration was judged to be acceptable.

The force results of Table 11 for the two cases where 
measurements are listed both before and after the tun-
nel addition are surprising in one respect. In both cases, 
significant reductions in the second and third blade-rate 
amplitudes are attributed to the tunnels, but an increase 

in the blade-rate forces is indicated. This is not impos-
sible, yet it seems unlikely. In spite of the success of 
such model test programs in solving vibration problems 
associated with propeller hydrodynamics, it is difficult 
to have high confidence in the accuracy of force predic-
tions of the type listed in Table 11. This is for the general 
reasons cited in Section 2. In view of the advances that 
are being made in the development of analytical/nu-
merical hydrodynamic models, it seems certain that at 
some time in the future, hybrid schemes, exploiting the 
best features of numerical and experimental analysis, 
in combination, will be available to replace the purely 

Fig. 37 Model sterns for force measurements (see Table 9).
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experimental programs typical of that which produced 
the data of Table 11.

The decision to retrofit a wake-adapting stern ap-
pendage should not be made lightly without quantifi-
cation of the advantages and disadvantages; a price is 
usually paid for appendages in increased hull resistance. 
As a minimum, model tuft-tests with and without the 
appendage should be performed to observe the change 
in stern surface flow. The absence of any noticeable 
smoothing may be misleading; however, a wake survey 
can show improvements in the propeller plane not dis-
cernible in the tuft behavior. Furthermore, aside from 
nominal wake considerations, it has been found that 
greatest wake improvements are sometimes achieved 
through propeller/appendage interaction (Hylarides, 
1978). This implies that model tuft-tests should be con-
ducted both with and without the operating propeller. 
In these cases, the best indicator of significant effective 
wake improvements from the standpoint of vibratory 
excitation may be an improvement, by several percent-
age points, in the propulsive efficiency from model SHP 
test conducted with and without the wake adapting ap-
pendage, as explained in Hylarides (1978).

Aside from wake improvements, the only recourse for 
reducing propeller excitation is modification or replace-
ment of the propeller. Some instances of successful mod-
ifications of troublesome propellers have been reported. 
For example, trimming blade tips by several centimeters 
to reduce wake severity at the extreme propeller radii 
can produce improvements, but some degree of RPM 
increase must then be tolerated. Successful modifica-
tions of existing propellers are rare because of the usu-
ally unacceptable trade-offs of performance degradation 
against vibration improvement. The same disadvantages 
exist in propeller replacement considerations. Replace-
ment propellers, with modified features such as changed 
blade number, reduced diameter (for increased hull clear-

ance), increased blade area, reduced pitch in the blade 
tips, etc., may relieve the vibration problem, but often 
for a dear price in vessel performance. It is unfortunate 
that, with the exception of blade skew, essentially all of 
the measures available in propeller design for reducing 
vibratory excitation, once the stern lines are established, 
act also to reduce propeller efficiency (refer to Chapter 5 
for propeller design considerations). It cannot be empha-
sized strongly enough that the greatest insurance against 
propeller-induced vibration problems, and the persistent 
difficulties which then almost always ensue, is to place 
high emphasis on wake uniformity in making trade-offs 
in the original establishment of vessel lines.

4.3.2 Structural Modifications. The most cost-ef-
fective approach for eliminating structural resonances 
is usually to shift natural frequencies through struc-
tural modifications; the alternative is to shift exciting 
frequency by changes in engine RPM or number of pro-
peller blades.

Just as with hydrodynamics-related problems, the 
most intelligent way to approach the correction of a 
vibration problem that promises to involve significant 
structural modifications is through the use of the tools 
of rational mechanics. A structural math model should 
first be calibrated to approximately simulate the ex-
isting vibration characteristics. Modification possibili-
ties are then exercised with the model, and their prob-
ability of success is established on paper. In this way, 
the probability of a “one-shot” success when shipboard 
modifications are subsequently implemented is maxi-
mized. The alternative and unenlightened “cut-and-try” 
approach to the solution of serious ship vibration prob-
lems is fraught with frustration, and with the real pos-
sibility of expending vast amounts of time and money 
and never achieving complete success.

Of course, the paper-studies proposed as a tool for 
use in correcting a serious ship vibration problem must 

Table 11 Vertical Surface Force Measurements on Models of Fig. 37

Ship Identification Before Application
of Partial Tunnel

After Application
of Partial Tunnel

Application of Partial
Stern Tunnel

Application of Partial
Stern Tunnel

A 6.8/4.2 — Unacceptable Acceptable

2.0/2.0*

1.9/0.5

B 12.6 15.3 Unacceptable Acceptable

12.4 4.0

7.7 0.9

C 32.7/12.1 — Unacceptable ?

13.6/14.6*

5.4/5.7

D 28.0 41.9 Unacceptable ?

6.9 3.4

4.4 1.4

*Different propellers
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be concluded quickly; several months, or even several 
weeks, is not available when delivery of a vessel is 
stalled, awaiting the resolution of vibration deficiencies. 
This places a premium on formulation of the simplest 
possible structural models which still retain adequate 
realism to provide the basis for the required judgments 
as to the relative effects of vessel modifications. This 
is where the collection of thorough trial vibration data 
can pay for itself. Measurement of vibratory mode shape 
data is often a near necessity for securing guidance in 
formulating calibration models of the desired simplicity, 
but with sufficient accuracy. This is illustrated by the 
following simple example.

Assume that excessive vibration of a Type A deck-
house (see Fig. 20) occurs on the builder’s trials of a ves-
sel. Vibratory displacement amplitude data are recorded 
with phase-calibrated pick-ups mounted at points on the 
house and on the main deck. The records establish the 
following information.

1. The vibration occurs at predominantly blade-rate 
frequency, confirming the propeller as its exciting source.

2. The vibration amplitude peaks at 94 RPM, and the 
propeller has five blades. A resonance of the house at 
470 cpm is therefore established.

3. Vibration recorded at 94 RPM show that the vibra-
tion of the house is predominantly fore-and-aft, with 
fore-and-aft amplitude increasing with a quasilinear 
characteristic from low levels at main deck to a maxi-
mum of 0.75 mm at the house top. The house top is 16 m 
above main deck.

4. The 100 RPM record also shows that the amplitude 
of the vertical vibration at main deck is approximately 
uniform at 0.1 mm over the house length. The vertical vi-
bration amplitude is also approximately constant at this 
same level up the house front, which is a continuation of 
the forward engine room bulkhead.

The above characteristics are judged to allow the use 
of the simple rocking/bending house model in conjunc-
tion with the Hirowatari method (see Figs. 20 and 21 
and Table 2 in Section 3).

4.3.3 Determination of Model Constants. For a 
Type A house with h = 16 m, the fixed-base fundamental 
house natural frequency is estimated from Fig. 21 as  
f = 750 cpm.

Using the Dunkerley formula, formula (135), with the 
measured house natural frequency e = 470 cpm, the ef-
fective rocking frequency is

22 /1/1

1=
ff

f
e

R

= 601 cpm (145)

The two frequencies f  and fR can be used to deter-
mine the effective stiffnesses of the house and its under-
deck supporting structure for use in the simple model 
of Fig. 38.

For a house mass established as m = 300 t, with a ra-
dius of gyration, r, about the house forward lower edge 
of 10 m, the effective torsional stiffness of the under-
deck supporting structure is, from equation (136),

( ) JfK
Rf

2260/2�=

radpermN⋅= 111019.1 (175)

where

272 103 mkgrmJ ⋅==

An approximate effective bending / shear stiffness of 
the house is obtained by first lumping the house mass at 
the radius of gyration above the assumed pin support on 
the main deck at the forward bulkhead; this preserves 
the mass moment of inertia in the Fig. 38 model. Then, 
for the house base fixed,

( )  mperNmfkH
922 1085.160/2 ⋅== � (176)

The effective combined torsional stiffness for use in 
the equivalent reduced one-mass system of Fig. 39 is 
then

( )
radpermN

rkK
K

Hf

⋅=

+
=

11

2

10724.0

/1/1

1

(177)

Fig. 38 Mass-elastic model of deckhouse and support structure.
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This combined stiffness can also be deduced directly 
from the measured natural frequency and the house 
mass moment of inertia as

( )
  rad permN

JfK e

⋅=

=
11

22

10724.0

60/2�

(178)

The effective exciting moment due to the vertical hull 
girder vibration can be estimated using the formula de-
veloped in the simple rigid box deckhouse analysis of 
the second section. Referring to the development of for-
mula (83), the amplitude of the exciting moment is

XmM
e

� 2= (179)

Here, �� is the longitudinal coordinate to the house CG, 
measured aft from the house front, say, 5 m, and X is the 
0.1 mm amplitude of the main deck vertical vibration. In 
terms of arbitrary hull girder vibration frequency ,

Me = 150 �2 N – m (180)

The final remaining element of the Fig. 39 equivalent 
1-mass model, the damping factor �, is estimated using 
the measured 0.75 mm house top vibration amplitude. 
With  being the amplitude of the equivalent vibratory 
rocking rotation angle of the house, the fore-and-aft dis-
placement amplitude of the house top is approximated as

U = h

where h is the 16 m house height above main deck. Sub-
stituting the response formula for the Fig. 39 model, 
equation (94),

( )[ ] ( )222 /2/1

/

nn

e
KMh

U

��
�� +
= (181)

But at resonance, � = �n, so that

2

/ KMh
U e= (182)

or

UK

Mh
e

2
= (183)

For � = �n = 2�fe/60 = 49.1 rad/sec in equation (180),

Me = 3.62 ⋅  105 N – m

The damping factor is then, from equation (183),

( )
( )( )
053.0

1075.010724.02

1062.316
311

5

=
⋅⋅

⋅=


(184)

With the calibrated model so established as an equiv-
alent one degree of freedom system, with constants, J,
K, �, and M, the above formula can be reused to evalu-
ate changes in the house-top vibratory displacement, U,
resulting from selected changes in the array of design 
variables included in the simple formulation.

4.3.4 Structural Modifications. To demonstrate 
this procedure, assume that stiffening in the form of the 
added parallel pillars of the Section 3.4 and Fig. 22 ex-
amples are contemplated. Following that example, the 
torsional stiffness of the underdeck supporting struc-
ture is raised from the above value of 1.19 ⋅  1011 Nm per 
radius to 1.33 ⋅  1011 Nm per radius by the pillar addi-
tion. Resubstituting into equations (176) and (177), the 
increased combined stiffness of K = 0.775 ⋅  1011 Nm per 
radius results in a 3.4% increase in natural frequency 
from the measured value of 469 cpm to 485 cpm.

Continuing with the scenario, assume that the full 
power RPM of the vessel is 98, which corresponds to a 
full power blade-rate exciting frequency of 490 cpm; the 
critical has therefore been raised only to a higher (more 
dangerous) level in the operating range (i.e., it has been 
raised from 94 to 97 RPM).

At 97 RPM, the 0.1 mm vertical hull girder vibration 
measured at 94 RPM would be increased by at least the 
frequency increase squared. This is assuming a flat fre-
quency response characteristic of the hull girder (not 
close to a hull girder critical) as well as a noncavitating 
propeller. Assuming a frequency squared increase, the 
vertical hull girder vibration amplitude becomes

X = 0.1(97/94)2 = 0.107 mm

with the exciting moment from equation (179) increas-
ing to

Me = 4.13 ⋅  105 N – m

at the new resonant frequency � = �n= (2�) (485/60) = 
53.8 radius/sec. The house top fore-and-aft vibratory 
displacement amplitude resulting from the foundation 
stiffening is changed, from equation (182), to

( )
( )

mm

U

85.0

05.02

10775.0/1013.416 115

=

⋅⋅=

Fig. 39 Equivalent one-mass system.
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This is an increase in vibration of 13% over the origi-
nal 0.75 mm level! The inadequate stiffening has sim-
ply raised the critical to a higher point in the operating 
range where the excitation is more intense. Some care is 
required here in order to achieve a satisfactory result.

It would be intelligent at this point to evaluate the 
stiffness increase required in order to achieve a sat-
isfactory vibration level. It is necessary to move the 
critical above the full power RPM of 98. This establishes 
the exciting frequency at the full power RPM

f = 490 cpm = 8.17 Hz

� = 8.17 (2�) = 51.3 rad per sec

On consulting Fig. 35, a limiting house-top fore-and-
aft vibratory velocity amplitude of 5 mm per second is 
selected at this frequency. This corresponds to a house-
top displacement amplitude

U = 5/� = 0.097 mm

The exciting moment, for use in formula (181), con-
tinuing to assume a frequency squared variation in the 
hull vertical displacement amplitude, is now, from equa-
tion (179),

    Me = (51.3)2(3 ⋅  105)(5)(.1)(98/94)2/1000
= 4.31 ⋅  105 N – m

From equation (181), for 2��/�n << [ 1 − (�/�n)2] for �/
�n < 1,

( )2/1

/

n

KhMe
U

��
= (185)

Then, with �n = �K/J,

K = hMe/U + J�2 (186)

Substituting the values, the required combined stiff-
ness is

K = 1.50 ⋅  1011 N – m per rad

This requires more than doubling the as-built combined 
effective stiffness of 0.724 ⋅  1011 Nm per radius (equation 
[177]).

Little can normally be done to change the house stiff-
ness; functional requirements of the house usually will 
not permit the modifications necessary to accomplish 
any significant increases in house casing section mo-
ment of inertia and shear area. Assume that stiffening of 
the underdeck supporting structure is the only possibly 
effective structural modification that can be accommo-
dated. The required Kf is, using equation (178),

radpermN
rK

K

H

f ⋅== 11
2

1087.7
/1 K/1

1

Therefore, meeting the vibration limit of 5 mm/sec at 
the house-top will require increasing the torsional stiff-
ness of the underdeck supporting structure by a factor 
of

6.6
1019.1

1087.7
11

11
=

⋅
⋅

and this would be impossible in any real case. For ex-
ample, if the two parallel pillars of the example in Sec-
tion 3.4 were doubled in number from 2 to 4 and moved 
3 m aft to line up under the house after bulkhead, rather 
than under the house sides (see Fig. 22), Kf would be 
increased to only

( )( )
radpermN

K f

⋅=

⋅+⋅=
11

2811

1070.1

810421019.1

which is still a factor of more almost 5 below the re-
quired value.

At this point, the virtual impossibility of rectifying 
the problem through structural modifications should be 
clear, and attention would be turned to ordering a new 
propeller.

4.3.5 A Propeller Change. Considering an alterna-
tive four-bladed propeller, the critical would be shifted 
to

94(5/4) = 117.5 RPM

which is well beyond the operating range. With the foun-
dation unchanged, the house-top vibration at the full 
power RPM of 98 would be, from equation (185),

( )
( )

mm

U

313.0

1000
5.117/981

10724.0/1031.416
2

115

=

⋅⋅⋅=

which assumes an unchanged propeller excitation level. 
The new house-top displacement corresponds to a ve-
locity amplitude of

0.313(41.05) = 12.84 mm/sec

This would probably not be acceptable, on the basis of 
Fig. 35.

Another possibility for the propeller would be to 
change to six blades and lower the critical well below 
full power to

94(5/6) = 78.3 RPM

At full power in this case

( )
( )

mm

U

168.0

1000
3.78/981

10724.0/1031.416
2

115

=

⋅⋅⋅=

and the velocity is

0.168(98/6) = 2.74 mm/sec

This would be clearly acceptable, by Fig. 35. The poten-
tial disadvantage to six blades is the resonance at 78 RPM. 
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At 78 RPM, the exciting moment, equation (179), should be 
down by at least frequency squared (which ignores any re-
duction at all in the hull girder vibration level).

Me = 4.31 × 105(78.3/98)2 = 2.75 × 105 N – m

so that the resonant amplitude should be, at most, from 
equation (182),

( )
( )

mm

U

608.0

1000
05.02

10724.0/1075.216 115

=

⋅⋅⋅=

For

f = 6(78.3)/60 = 7.83 Hz and

� = 2�f = 49.2 rad per sec

the vibratory velocity amplitude would be

0.608(49.2) = 29.9 mm per sec

While this level is excessive (see Fig. 35), it would not 
necessarily disqualify a six-bladed propeller, as contin-
uous operation at any particular lower RPM is not usu-
ally critical, and 83 RPM could be simply avoided except 
in passing.

This example, which is from an actual case history, 
does demonstrate effectively the real danger of design-
ing and building a vibration problem into a ship and the 
difficulty in removing it.
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