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An Introduction to the Series

The Society of Naval Architects and Marine Engineers is experiencing remarkable changes in the Maritime  Industry 
as we enter our 115th year of service. Our mission, however, has not changed over the years . . . “an  internationally 
recognized . . . technical society . . . serving the maritime industry, dedicated to advancing the art, science and 
practice of naval architecture, shipbuilding, ocean engineering, and marine engineering . . . encouraging the ex-
change and recording of information, sponsoring applied research . . . supporting education and enhancing the 
professional status and integrity of its membership.”

In the spirit of being faithful to our mission, we have written and published signifi cant treatises on the subject 
of naval architecture, marine engineering, and shipbuilding. Our most well known publication is the “Principles 
of Naval Architecture.” First published in 1939, it has been revised and updated three times – in 1967, 1988, and 
now in 2008. During this time, remarkable changes in the industry have taken place, especially in technology, 
and these changes have accelerated. The result has had a dramatic impact on size, speed, capacity, safety, qual-
ity, and environmental protection.

The professions of naval architecture and marine engineering have realized great technical advances. They 
 include structural design, hydrodynamics, resistance and propulsion, vibrations, materials, strength analysis using 
fi nite element analysis, dynamic loading and fatigue analysis, computer-aided ship design, controllability, stability, 
and the use of simulation, risk analysis, and virtual reality.

However, with this in view, nothing remains more important than a comprehensive knowledge of “fi rst  principles.” 
Using this knowledge, the Naval Architect is able to intelligently utilize the exceptional technology available to its 
fullest extent in today’s global maritime industry. It is with this in mind that this entirely new 2008 treatise was 
 developed – “The Principles of Naval Architecture: The Series.” Recognizing the challenge of remaining relevant 
and current as technology changes, each major topical area will be published as a separate volume. This will fa-
cilitate timely revisions as technology continues to change and provide for more practical use by those who teach, 
learn or utilize the tools of our profession.

It is noteworthy that it took a decade to prepare this monumental work of nine volumes by sixteen authors and 
by a distinguished steering committee that was brought together from several countries, universities, companies, 
and laboratories. We are all especially indebted to the editor, Professor J. Randolph (Randy) Paulling for providing 
the leadership, knowledge, and organizational ability to manage this seminal work. His dedication to this arduous 
task embodies the very essence of our mission . . . “to serve the maritime industry.”

It is with this introduction that we recognize and honor all of our colleagues who contributed to this work.

Authors:
Dr. John S. Letcher Hull Geometry
Dr. Colin S. Moore Intact Stability
Robert D. Tagg Subdivision and Damaged Stability
Professor Alaa Mansour and Dr. Donald Liu Strength of Ships and Ocean Structures
Professor Lars Larsson and Dr. Hoyte C. Raven Ship Resistance and Flow
Professors Justin E. Kerwin and Jacques B. Hadler Propulsion
Professor William S. Vorus Vibration and Noise
Prof. Robert S. Beck, Dr. John Dalzell (Deceased), Prof. Odd Faltinsen Motions in Waves
 and Dr. Arthur M. Reed
Professor W. C. Webster and Dr. Rod Barr Controllability

Control Committee Members are:
Professor Bruce Johnson, Robert G. Keane, Jr., Justin H. McCarthy, David M. Maurer, Dr. William B. Morgan,
Professor J. Nicholas Newman and Dr. Owen H. Oakley, Jr.

I would also like to recognize the support staff and members who helped bring this project to fruition, espe-
cially Susan Evans Grove, Publications Director, Phil Kimball, Executive Director, and Dr. Roger Compton, Past 
President.

In the new world’s global maritime industry, we must maintain leadership in our profession if we are to continue 
to be true to our mission. The “Principles of Naval Architecture: The Series,” is another example of the many ways 
our Society is meeting that challenge.

ADMIRAL ROBERT E. KRAMEK

Past President (2007–2008)



A wave amplitude
AL  lateral area of topsides and superstructure
AM area of midship section
AR aspect ratio
ARe effective aspect ratio
AT  frontal (transverse) area of topsides and 

superstructure
Atr transom area
A(�), B(�) wave amplitude functions
a coeffi cient in discretized equations
→

 a acceleration vector
B ship beam
b width of channel or plate, wing span
c wave speed, volume fraction
CB block coeffi cient of ship
CD drag coeffi cient
CDi induced drag coeffi cient
Cf local skin friction coeffi cient
CF total skin friction
CF0 total skin friction for a fl at plate
cg wave group velocity
CK, CM, CN moment coeffi cients about x, y, z-axes
CP prismatic coeffi cient of ship hull,  pressure 

resistance coeffi cient
Cp pressure coeffi cient
Cp hd hydrodynamic pressure coeffi cient
Cp hs hydrostatic pressure coeffi cient
CR residuary resistance coeffi cient
CT total resistance coeffi cient
CV viscous resistance coeffi cient
CX, CY, CZ force coeffi cients in x, y, z-directions
CW wave resistance coeffi cient
© “circular C”: ship resistance coeffi cient
D drag, diffusion conductance
Di induced drag
Ewave wave energy
Ekin kinetic energy in wave
En Euler number
Epot potential energy in wave
E
� wave energy fl ux
F volume fl ux per unit area→

 F force vector
→

 Fb,
→

 Fp,
→

 Fv  body force, pressure force, and viscous 
force, respectively

Fn, FnL Froude number based on ship length
FnB Froude number based on ship beam
Fnh Froude number based on water depth
Fntr Froude number based on ��tr

g acceleration of gravity
h water depth
H approximate wave elevation in linearization
HM  mean height of lateral projection of top-

sides and superstructure
K, M, N moments about x, y, z-axes

k  wave number, form factor, turbulent kinetic 
energy

K0,k0 fundamental wave number
kMAA roughness (Mean Apparent Amplitude)
ks equivalent sand roughness
K “circular K”: nondimensional speed
L lift
L, Lpp ship length (between perpendiculars)
Lp length scale of pressure variation
m mass
m� mass fl ux
→

 m dipole moment
n  wall-normal coordinate, inverse of exponent 

in velocity profi le formula
PD delivered power
PE effective power
Pe Peclet number
p pressure
p* approximate pressure in SIMPLE algorithm
p� pressure correction in SIMPLE algorithm
phd hydrodynamic contribution to pressure
phs hydrostatic pressure
pmax stagnation pressure
p� undisturbed pressure
Q source strength
q dynamic head
R distance
r radius of (streamline) curvature
r1, r2 principal radii of curvature of a surface
RF frictional resistance
RH hydraulic radius of channel
Rij Reynolds stress
Rn Reynolds number
RR residuary resistance
RT total resistance
RV viscous resistance
RW wave resistance
S wetted surface, source term
s, t, n coordinates of local system on free surface
Sij rate of strain tensor
T ship draught, wave period, turbulence level
t time, thrust deduction fraction
U� infl ow velocity
→

 u velocity vector
u, v, w fl ow velocity components in x, y, z-directions
u� friction velocity
u+ non-dimensional velocity in wall functions
u* approximate velocity in SIMPLE algorithm
u� velocity correction in SIMPLE algorithm
V ship speed
→
 v velocity vector

VA propeller advance velocity
→

 VTW,
→

 VAW true and apparent wind velocity, respectively
W weight of ship, Coles’ wake function

Nomenclature
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Wn Weber number
w wake fraction
X, Y, Z forces in x, y, z-directions
x, y, z coordinates of global system
y+  non-dimensional wall distance in wall  functions
zv dynamic sinkage_
ztr z-coordinate of transom centroid
� angle of attack
�  blockage ratio, boundary layer cross-fl ow 

angle
�TW, �AW true and apparent wind angle, respectively
�w wall cross-fl ow angle
� surface tension, overspeed ratio in channel
	  vortex strength, generalized diffusion coef-

fi cient

p� pressure jump due to surface tension
� weight of ship
� boundary layer thickness
�1 boundary layer displacement thickness
�ij Kronecker delta
� rate of dissipation of turbulent kinetic energy
� wave elevation
�� perturbation of wave elevation
�r  wave height deduced from double-body 

 pressure
�tr  height of transom edge above still-watersurface
D propulsive effi ciency
H hull effi ciency
R relative rotative effi ciency
0 open-water effi ciency of propeller
�  wave divergence angle, boundary layer mo-

mentum thickness
� von Kàrmàn constant
� wave length
�0  length of transverse wave, fundamental wave 

length

�x  length of wave, measured in longitu-
dinal section

� dynamic viscosity, doublet density
�eff effective dynamic viscosity
�t turbulent dynamic viscosity
� kinematic viscosity
�eff effective kinematic viscosity
�t turbulent kinematic viscosity
� density
� cavitation number, source density
�ij stress tensor
� trim angle
�w wall shear stress
�  general dependent variable in fi nite 

volume theory
� velocity potential
��  perturbation of potential, in linear-

ization
� base fl ow potential in linearization
�ij rotation tensor
�  radial frequency, specifi c rate of dis-

sipation of turbulent energy
 
→

 �  vorticity vector
	 displacement
Indices
a, w air and water, respectively
M, S model and ship, respectively
P central point in a discretization stencil
W, E, N, S, T, B  neighboring points in a discretization 

stencil
w, e, n, s, t, b cell faces
x, y, z  components of a vector in the x-, y-, 

or z-directions
1, 2, 3  components of a vector in the x-, y-, 

or z-directions (alternative represen-
tation)



Preface

Ship Resistance and Flow

During the 20 plus years that have elapsed since publication of the previous edition of Principles of Naval  Architecture,
there have been remarkable advances in the art, science and practice of the design and construction of ships and other 
fl oating structures. In that edition, the increasing use of high speed computers was recognized and computational 
methods were incorporated or acknowledged in the individual chapters rather than being presented in a  separate 
chapter. Today, the electronic computer is one of the most important tools in any engineering environment and the 
laptop computer has taken the place of the ubiquitous slide rule of an earlier generation of engineers.

Advanced concepts and methods that were only being developed or introduced then are a part of common 
engineering practice today. These include fi nite element analysis, computational fl uid dynamics, random process 
methods, numerical modeling of the hull form and components, with some or all of these merged into integrated 
design and manufacturing systems. Collectively, these give the naval architect unprecedented power and fl exibility 
to explore innovation in concept and design of marine systems. In order to fully utilize these tools, the modern 
naval architect must possess a sound knowledge of mathematics and the other fundamental sciences that form a 
basic part of a modern engineering education.

In 1997, planning for the new edition of Principles of Naval Architecture was initiated by the SNAME publica-
tions manager who convened a meeting of a number of interested individuals including the editors of PNA and the 
new edition of Ship Design and Construction on which work had already begun. At this meeting it was agreed 
that PNA would present the basis for the modern practice of naval architecture and the focus would be principles

in preference to applications. The book should contain appropriate reference material but it was not a handbook 
with extensive numerical tables and graphs. Neither was it to be an elementary or advanced textbook although it 
was expected to be used as regular reading material in advanced undergraduate and elementary graduate courses. 
It would contain the background and principles necessary to understand and to use intelligently the modern ana-
lytical, numerical, experimental, and computational tools available to the naval architect and also the fundamen-
tals needed for the development of new tools. In essence, it would contain the material necessary to develop the 
understanding, insight, intuition, experience, and judgment needed for the successful practice of the profession. 
Following this initial meeting, a PNA Control Committee, consisting of individuals having the expertise deemed 
necessary to oversee and guide the writing of the new edition of PNA, was appointed. This committee, after par-
ticipating in the selection of authors for the various chapters, has continued to contribute by critically reviewing 
the various component parts as they are written.

In an effort of this magnitude, involving contributions from numerous widely separated authors, progress has 
not been uniform and it became obvious before the halfway mark that some chapters would be completed before 
others. In order to make the material available to the profession in a timely manner it was decided to publish each 
major subdivision as a separate volume in the Principles of Naval Architecture Series rather than treating each as 
a separate chapter of a single book.

Although the United States committed in 1975 to adopt SI units as the primary system of measurement the tran-
sition is not yet complete. In shipbuilding as well as other fi elds we still fi nd usage of three systems of units: English 
or foot-pound-seconds, SI or meter-newton-seconds, and the meter-kilogram(force)-second system common in 
engineering work on the European continent and most of the non-English speaking world prior to the adoption of 
the SI system. In the present work, we have tried to adhere to SI units as the primary system but other units may 
be found, particularly in illustrations taken from other, older publications. The symbols and notation follow, in 
general, the standards developed by the International Towing Tank Conference.

A major goal in the design of virtually all vessels as varied as commercial cargo and passenger ships, naval 
vessels, fi shing boats, and racing yachts, is to obtain a hull form having favorable resistance and speed character-
istics. In order to achieve this goal the prediction of resistance for a given hull geometry is of critical importance. 
Since the time of publication of the previous edition of PNA important advances have been made in theoretical and 
computational fl uid dynamics and there has been a steady increase in the use of the results of such work in ship 
and offshore structure design. The present volume contains a completely new presentation of the subject of ship 
resistance embodying these developments. The fi rst section of the book provides basic understanding of the fl ow 
phenomena that give rise to the resistance encountered by a ship moving in water. The second section contains 
an introduction to the methods in common use today by which that knowledge is applied to the prediction of the 
resistance. A third and fi nal section provides guidance to the naval architect to aid in designing a hull form having 
favorable resistance characteristics.



xvi PREFACE 

William Froude in the 1870s proposed the separation of total resistance into frictional and residual parts, the 
former equal to that of a fl at plate of the same length, speed, area, and roughness as the ship wetted surface, and 
the latter principally due to ship generated waves. Since Froude’s time, much research has been conducted to 
 obtain better formulations of the fl at plate resistance with refi nements to account for the three dimensional nature 
of the fl ow over the curved shape of the hull. Simultaneously, other research effort has been directed to obtaining a 
 better understanding of the basic nature of the fl ow of water about the ship hull and how this fl ow affects the total 
resistance.

The three methods currently in general use for determining ship resistance are model tests, empirical meth-
ods, and theory. In model testing, refi nements in Froude’s method of extrapolation from model to full scale are 
described. Other experimental topics include wave profi le measurements, wake surveys, and boundary layer mea-
surements. Empirical methods are described that make use of data from previous ships or model experiments. 
Results for several “standard series” representing merchant ships, naval vessels, fi shing vessels, and yachts are 
mentioned and statistical analyses of accumulated data are reviewed.

The theoretical formulation of ship resistance began with the linear thin ship theory of Michell in 1898. The pres-
ent volume develops the equations of inviscid and viscous fl ow in two and three dimensions, including free surface 
effects and boundary conditions. From this basis are derived numerical and computational methods for character-
izing the fl ow about a ship hull. Modern computing power allows these methods to be implemented in practical 
codes and procedures suitable for engineering application. Today, it is probable that many, if not most, large ships 
are designed using computational fl uid dynamics, or CFD, in some form either for the design of the entire hull or 
for components of the hull and appendages.

Concluding sections describe design considerations and procedures for achieving favorable fl ow and resistance 
characteristics of the hull and appendages. Examples are covered for ships designed for high, medium, and low 
speed ranges. Design considerations affecting both wave and viscous effects are included. A fi nal section discusses 
fl ow in the stern wake that has important implications for both resistance and propeller performance.

J. RANDOLPH PAULLING

     Editor
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1.1 The Importance of Accurate Resistance Predictions A
central problem for the practicing naval architect is the 
prediction of the resistance of a new design already at an 
early stage in the project. When a new ship is ordered, a 
contract containing a specifi cation of the ship is signed
between the owner and the shipyard. One of the more 
strict specifi cations is the so-called contract speed, which 
is the speed attained at a specifi ed power consumption in 
a trial run before delivery. This trial is supposed to take 
place under ideal conditions (i.e., with no wind or seaway 
and with no infl uence from restricted water and currents). 
In reality, corrections most often have to be applied for 
the infl uence of these factors. Should the corrected speed 
be lower than the contract speed, the yard will have to 
pay a penalty to the owner, depending on the difference 
between the achieved speed and the contract speed. If 
the difference is too large, the owner might even refuse to 
accept the ship.

The dilemma for the designer and the yard is:

• Because of the fi erce competition between shipyards 
on the global market, the offer must be as least as good 
as that of the competitors. A few percent higher power 
for a given speed may result in a lost order.
• If the prediction has been too optimistic, and the ship 
does not meet the specifi cation, it could be a very ex-
pensive affair for the yard.

The engine power required to drive the ship at a cer-
tain speed is not only dependent on the resistance; an 
important factor is also the propulsive effi ciency (i.e., 
the performance of the propeller and its interaction 
with the hull). Losses in the power train must also be 
considered. However, the resistance is the single most 
important factor determining the required power.

Because the resistance, as well as other forces acting 
on the hull, are the result of shear and normal stresses 
(pressures) exerted on the hull surface by the water 
fl ow, knowledge of the fl ow around the ship is essential 
for the understanding of the different resistance compo-
nents and for the proper design of the hull from a resis-
tance point of view. Further, the fl ow around the stern 
determines the operating conditions for the propeller, 
so in this book a large emphasis is placed on describing 
the fl ow around the hull.

As in all design projects, a number of confl icting de-
mands have to be satisfi ed. The hydrodynamic qualities, 
representing only one of many important aspects, in-
clude the ship’s seakeeping and manoeuvring capabilities. 
These, and the propulsive effi ciency, will be considered in 
other volumes of the Principles of Naval Architecture.

1.2 Different Ways to Predict Resistance
1.2.1 Model Testing. Because of the co mplicated na-

ture of ship resistance, it is natural that early recourse was 

made to experiments, and it is recorded that  Leonardo 
da Vinci (1452–1519) carried out tests on three models of 
ships having different fore-and-aft distributions of dis-
placement (Tursini, 1953). The next known use of models 
to investigate ship resistance were qualitative experi-
ments made by Samuel Fortrey (1622–1681), who used 
small wooden models towed in a tank by falling weights 
(Baker, 1937). After this, there was a steady growth of 
interest in model experiment work (Todd, 1951). Colonel 
Beaufoy, under the auspices of the Society for the Im-
provement of Naval Architecture founded in London in 
1791, carried out between 9000 and 10,000 towing experi-
ments between 1791 and 1798 in the Greenland Dock, us-
ing models of geometrical shape and fl at planks (Beaufoy, 
1834). In Sweden, Fredrik af Chapman carried out a large 
number of resistance tests with bodies of simple geomet-
rical shape, presented in a thesis in 1795 (af Chapman, 
1795). In 1764, Benjamin Franklin was probably the fi rst 
American to make model experiments to verify observa-
tions he had made in Holland that resistance to motion 
increased in shallow water (Rumble, 1955).

The major problem encountered by the early inves-
tigators was the scaling of the model results to full 
scale. In what way should the measured towing force 
be extrapolated, and at which speed should the model 
be towed to correspond to a given speed at full scale? 
This problem was fi rst solved by the French scientist 
Ferdinand Reech (1844), but he never pursued his ideas 
or used them for practical purposes. Therefore, the so-
lution to the problem is attributed to the Englishman 
William Froude, who proposed his law of comparison in 
1868 (Froude, 1955). In Froude’s own words: “The (re-
siduary) resistance of geometrically similar ships is in 
the ratio of the cube of their linear dimensions if their 
speeds are in the ratio of the square roots of their linear 
dimensions.” The residuary resistance referred to is the 
total resistance minus that of an equivalent fl at plate, or 
plank, defi ned as a rectangular plate with the same area 
and length, and moving at the same speed as the hull.

The idea was thus to divide the total resistance in two 
parts: one because of the friction between the hull and the 
water, and the other (the residuary resistance) because 
of the waves generated. The friction should be obtained 
from tests with planks (which do not produce waves) both 
at model- and full-scale, whereas the residuary resistance 
should be found from the model test by subtraction of the 
friction. This residuary resistance should then be scaled 
in proportion to the hull displacement from the model to 
the ship and added to the plank friction at full scale. A pre-
requisite for this scaling was that the ratio of the speeds at 
the two scales was equal to the square root of the length 
ratios, or, in other words, the speed divided by the square 
root of the length should be the same at both scales.

1
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William Froude made his fi rst model experiments in 
1863 in a large rainwater tank using a falling weight to 
tow the hull. This was the technique used by most ear-
lier investigators, but he soon became dissatisfi ed with 
the limitations of these experiments and turned his 
mind to the use of a larger tank. He made proposals to 
the British Admiralty in 1868, which were accepted, and 
a new tank was completed near his home in Torquay in 
1871 (Froude, 1955). This tank had a length of 85 m, a 
width at the water surface of 11 m, and a depth of water 
along the centerline of 3 m. It was equipped with a me-
chanically propelled towing carriage to tow the models, 
in place of the gravitational device, and because of this 
and its size may be considered as the forerunner of the 
tanks so common today.

Froude’s hypothesis paved the way for modern resis-
tance prediction techniques, but a major weakness was 
the formula suggested for the friction of the equivalent 
plate. The correct way of scaling friction was not known 
until Reynolds (1883) found that the scaling parameter 
is a dimensionless number, which later became known 
as the Reynolds number. The Reynolds number was in-
troduced in model testing by Schoenherr (1932), who 
proposed a plank friction formula, but it was not until 
1957 that the International Towing Tank Conference 
(ITTC) recommended the use of Reynolds number scal-
ing of the friction, then by a different formula.

The modifi ed procedure, where the “ITTC-57” fric-
tion line replaces Froude’s original formula for the fric-
tion, is known as “Froude scaling” and is still used by 
some towing tanks. However, it was realized in the early 
1960s when ships with very high block coeffi cients be-
came more common, that a more detailed division of 
the resistance into components is required. All effects 
of viscosity will not be included in the plank friction, so 
another component of the viscous resistance, related to 
the three-dimensional (3D) shape of the hull, had to be 
introduced. The new technique is known as “3D extrap-
olation” and was proposed for general use by the ITTC 
in 1978. It is therefore named the “ITTC-78” procedure 
and is presently used by most tanks for scaling resis-
tance, at least for normal displacement hulls.

1.2.2 Empirical Methods. Model tests are rather 
time-consuming, particularly if a large number of alter-
native designs are to be evaluated at a very early design 
stage. There is thus a need for very fast, but not necessar-
ily as accurate, methods for resistance estimates. Such 
methods are of two different types: systematic series 
and statistical formulas based on unsystematic data.

The fi rst comprehensive series of systematic tests 
was carried out in the Experimental Model Basin in 
Washington during the fi rst years of the 20th century, 
but they were not reported in full until the 1933 edition 
of the Speed and Power of Ships, by Admiral Taylor. The 
series is known as the Taylor standard series and has 
been used extensively over the years. Unfortunately, 
the fi rst evaluations of the residuary resistance were 
made using less well-established friction coeffi cients 

from measurements in the same tank, and no correc-
tions were made for variation in the water temperature 
and the blockage effect of the tank walls and bottom. 
Further, the tests were made without turbulence stimu-
lation. To adopt the results to the more modern proce-
dure using Schoenherr’s skin friction formula, Gertler 
reanalyzed the original data and applied corrections for 
the effects mentioned (Gertler, 1954).

Although the corrected Taylor series was not pre-
sented until the 1950s, it was based on a very old ship, 
the  Leviathan, designed in 1900. All models of the series 
were obtained by systematic variation of the offsets of this 
parent model. To obtain results for more modern ships, 
the Society of Naval Architects, in cooperation with the 
American Towing Tank Conference (ATTC), initiated a 
new series in 1948. Unlike the Taylor series, this new series 
had several parent models, one for each block coeffi cient 
tested. In this way, realistic hull shapes could be obtained 
for all variations. The results of the tests were presented 
by Todd (1963) in a comprehensive report, which could be 
used for estimating the resistance of existing ships. In ad-
dition, using the design charts, new hulls could be devel-
oped with the presumably good resistance characteristics 
of the new series. Further, results were also presented for 
the self-propelled condition, which enables the designer to 
estimate the delivered power of his/her design. The new 
series was named the Series 60.

A large number of systematic tests were carried out in 
the 1950s and 1960s at various organizations. Several of 
them will be mentioned in Section 10. In more recent years, 
very few systematic tests have been carried out because of 
the very large expenses in model testing. A notable excep-
tion is, however, the extensive series of tests with sailing 
yacht models carried out in Delft from the mid-1970s. The 
series is continously extended and covers at present more 
than 50 models (Keuning &  Sonnenberg, 1998).

The fi rst attempt to develop a statistical formula for 
resistance based on unsystematic data was made by 
Doust and O’Brien (1959). They used results from tests 
of 150 fi shing vessels and tried to express the total resis-
tance at a given speed-length ratio as a function of six 
different shape parameters. The function chosen was 
a polynomial, with no terms of higher degree than two. 
An important result of the work is that optimization can 
be made with respect to the parameters tested. A simi-
lar approach has been taken by the Delft series experi-
mentalists, who have developed regression formulas for 
sailing yacht resistance (Keuning &  Sonnenberg, 1998). 
Their data were however obtained from systematic tests.

A disadvantage of the Doust and O’Brien approach is 
that the regression formula does not involve any physics, 
it is merely a polynomial in the tested parameters. A more 
scientifi c approach was proposed by Holtrop and Mennen 
(1978), who used a theoretical expression for the wave re-
sistance of two travelling pressure disturbances (the bow 
and stern) in their regression formula, where the coeffi -
cients were determined from tests with 334 hulls. Further, 
the resistance was divided  according to the 3D model-ship 
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extrapolation procedure mentioned previously. The Hol-
trop-Mennen method is the most widely used technique 
for rapid estimates of ship resistance available today.

1.2.3 Computational Techniques. Thanks to the 
rapid development of computer technology during the 
past 50 years, computational techniques in ship hy-
drodynamics have developed over a shorter time span 
than the experimental ones. However, the fi rst method 
which may be considered as computational hydrody-
namics was presented in a landmark paper by the Aus-
tralian mathematician Michell more than a century ago 
(Michell, 1898). Like all other early researchers in the 
fi eld, he neglected the viscosity of the fl uid, which con-
siderably simplifi es the theory. The mathematical ex-
pression for the inviscid fl ow around a “slender” ship 
of narrow beam placed in a uniform stream was ob-
tained. By integrating the fore-and-aft components of 
the pressure computed on the hull, an expression could 
be derived for the total wave resistance. To make the 
problem amenable to existing mathematical methods, 
Michell had to linearize the boundary conditions of the 
computational domain. The hull boundary condition 
was applied to the centerplane rather than to the ac-
tual hull surface, so that the results applied strictly to 
a vanishingly thin ship, and the condition on the free 
surface was applied to the original fl at, free surface of 
the water, the distortion of the surface resulting from 
the wave pattern being neglected.

An alternative method was developed by Havelock 
and his coworkers during the fi rst decades of the 20th 
century (see, for instance, Havelock, 1951) in which the 
wave-making resistance was measured by the energy in 
the wave system. Havelock also introduced the idea of 
sources and sinks, which he distributed on the center-
plane of the hull. Each source was assumed proportional 
to the local waterline angle, positive on the forebody and 
negative aft. Summing the wave making effect of the 
sources, the farfi eld waves could be determined, and 
thereby the wave resistance.

Important work on wave resistance was also carried 
out in Japan during the 1960s and 1970s by Inui and his co-
workers. This work, which is summarized in Inui (1980), 
included among other things theories for optimizing the 
hull from a wave resistance point of view. In the same pe-
riod, methods for experimentally determining the wave 
resistance from wave cuts on the surface near the hull 
were developed. A landmark paper on these techniques 
was presented by Eggers, Sharma, and Ward (1967).

All methods referred to so far were developed for invis-
cid fl ows, and to a large extent based on analytical tech-
niques. However, with the introduction of the  computers 
in the 1960s another technique, based on numerical 
methods* started to develop. A typical example is the 
method developed at the Douglas Aircraft Company by 
Hess and Smith (1962). This is an inviscid method where 

the velocity is obtained from a boundary condition on 
the body surface, discretized by fl at quadrilateral panels. 
 Because the method was applicable to arbitrary 3D 
 bodies, it immediately became useful in aerodynamic de-
sign. In hydrodynamics, the method also turned out to be 
of fundamental importance. It was later improved in sev-
eral papers by Hess who, among other things, introduced 
circulation and lift. Of more importance to ship hydrody-
namics was, however, the introduction of the free surface 
into a similar panel method by Dawson (1977). Dawson 
imposed a free surface boundary condition linearized 
about a “double model” solution, obtained by assuming 
the surface to be a plane of symmetry. This is a different 
linearization as compared to Michell’s, which was made 
about the undisturbed fl ow. Because for a bluff hull, the 
double model fl ow must be considerably closer to the real 
one, Dawson’s approach may be considered less approxi-
mate. Further, as in all panel methods, the exact hull 
boundary condition was satisfi ed on the hull surface. As 
we have seen previously, in Michell’s method, a linearized 
condition was applied at the hull centerplane.

One drawback of Dawson’s method is the inconsis-
tency of boundary conditions: exact on the hull and 
linearized on the free surface. This drawback was re-
moved in research during the 1980s. Larsson, Kim, and 
Zhang (1989) presented a method based on Dawson’s ap-
proach, but with an (at least in some sense) exact free-
surface boundary condition. This method was further 
refi ned and validated by Janson (1997). A similar devel-
opment was carried out in Germany by Jensen (1988) 
and in Holland by Raven (1996). Panel methods are now 
used extensively in ship design, but there is an inherent 
weakness in the assumption of zero viscosity, so it is 
unlikely that the correspondence with measured data 
will improve substantially in the future. To improve the 
accuracy further, viscosity must be taken into account.

Computational techniques for viscous fl ows† also 
started to appear with the introduction of the com-
puter. During the 1960s several new methods for two- 
dimensional (2D) boundary layer prediction were 
 presented (Kline, Coles, & Hirst, 1968). Research on 3D 
boundary layers had just begun, and it continued for the 
larger part of the 1970s. In 1980, a workshop was orga-
nized in  Gothenburg to evaluate the performance of ex-
isting methods in the prediction of ship boundary layers 
 (Larsson, 1981). The general conclusion of the workshop 
was that the boundary layer was well computed over the 
forward and middle parts of the hull, but that the stern 
fl ow could not be predicted at all using the boundary layer 
 approximation. For such a prediction to be  successful, 

†Although regions of the fl ow independent of viscosity may be 
called inviscid, there is a semantic problem fi nding a general 
name for regions where viscosity does play a part. As is most 
common, such regions will hereinafter be called viscous. 
However, some fl uid dynamicists reserve the label “viscous” 
for fl ows at very low Reynolds numbers (i.e., with very large 
viscosity). See the previous discussion. 

 *The difference between the “analytical” and “numerical” 
techniques will be explained in Section 9.  



4 SHIP RESISTANCE AND FLOW 

methods of the Reynolds-Averaged Navier-Stokes* 
(RANS) type would be needed. Such a method had just 
been applied for the fi rst time to ship fl ows by Spalding 
and his coworkers at Imperial College (Abdelmeguid 
et al., 1978), and the international research during the 
1980s was directed toward this approach. In 1990, a sec-
ond workshop was held in Gothenburg (Larsson, Patel, 
& Dyne, 1991). Seventeen out of 19 participating meth-
ods were now of the RANS type, and considerably better 
stern fl ow predictions had become possible. One prob-
lem was, however, the prediction of the wake contours in 
the propeller plane. Because of an underprediction of the 
strength of a vortex intersecting the propeller disk, the 
computed wake contours became too smooth. Therefore, 
a main target of the research in the 1990s was to improve 
the prediction of the detailed wake distribution.

To resolve the problem of free-surface/boundary layer 
interaction, free-surface boundary conditions are needed 
in RANS methods, and during the fi rst half of the 1990s, 
the research in this area accelerated. At a third workshop 
held in Tokyo in 1994 (Kodama et al., 1994), no less than 
10 methods featured this capability. However, computer 
power was still too limited to enable suffi cient resolution 
on the free surface, so the potential fl ow panel methods 
still produced better waves. Limited computer power 
was also blamed for some of the problems still encoun-
tered at the fourth workshop in 2000 (Larsson, Stern, 
& Bertram, 2003). Considerable improvements in accu-
racy, with respect to the wake, as well as the waves, were 
noted, but there was still room for improvements when it 
came to the details of the fl ow. By better resolution of the 
RANS solutions, such improvement can be expected, but 
the inherent problem of modeling the turbulence cannot 
be avoided. To overcome this diffi culty, the much more 
computer-demanding methods of Large Eddy Simula-
tion* (LES) or Direct Numerical Simulation* (DNS) type 
must be employed, and this will call for very substantial 
enhancements in computer power.

1.2.4 Use of the Methods. The three different meth-
ods for determining resistance are used at different 
stages of the ship design process. At the very early basic 
design stage, the main parameters of the hull are often 
varied and the design space explored with respect to 
length, beam, draft, block coeffi cient, and longitudinal 
position of the center of buoyancy. Because the entire de-
sign of the ship depends on these parameters, time is of-
ten short, and a reasonable estimate is required rapidly. 
Then the empirical methods come into play. A large de-
sign space may be explored with little effort and the main 
particulars of the ship determined at least approximately. 
Because the shape variation is very much linked to com-
puter-aided design (CAD), most CAD packages for ship 
design contain a module for predicting ship resistance, in 
most cases based on the Holtrop-Mennen method.

During the past couple of decades, the numerical meth-
ods have made their way into design offi ces. Thus, hav-
ing a good idea of the hull main dimensions, they may be 
further optimized using these methods. More important, 
however, is the possibility of optimizing the local shape 
of the hull, not only the main parameters. Forebody opti-
mization using potential fl ow methods is now a standard 
procedure used by most ship designers. Particular fea-
tures to look at are the size and shape of the bulb and the 
radius of the fore shoulder. The purpose is normally to 
minimize wave resistance (Valdenazzi et al., 2003).

Very recently, afterbody optimization has started to 
appear in ship design offi ces. Because the effect of the 
boundary layer is much larger at the stern than at the 
bow, viscous fl ow methods are required. Boundary layer 
theory is too approximate for computing the wake be-
hind the hull, so more advanced methods are required. 
At present, the only alternative is the RANS technique. 
Even though the computational effort is considerably 
larger than for potential fl ow methods, several alterna-
tives may be evaluated in one day, which is good enough. 
Typical features to optimize are the stern sections (V-, 
U-, or bulb-shaped) and the local bilge radius. Recently, 
the effect of the rudder has also been included. Normally, 
the purpose is not to minimize resistance, but delivered 
power, and this calls for some method to estimate the 
interaction between the hull and the propeller. Some de-
signers do that by experience, but methods are available 
for computing the effect, either approximately by repre-
senting the propeller by forces applied to the fl ow (Han, 
2008), or by actually running the real rotating propeller 
behind the hull (Abdel-Maksoud, Rieck, & Menter, 2002). 
Note that it is not only delivered power that is of inter-
est; noise and vibrations caused by the propeller in the 
uneven wake should also be considered.

Although most optimizations so far are carried out 
manually by systematically varying the hull shape, for-
mal optimization methods may be applied as well. The 
optimizer is then linked to a computational fl uid dy-
namics (CFD) code and a program for changing the hull 
shape, often a CAD tool. Given certain constraints, one 
or several objective functions may be optimized, start-
ing from an initial shape. In a typical single-objective 
optimization, delivered power may be minimized; in a 
multiobjective optimization, pressure fl uctuations may 
be considered as well, or completely different capabili-
ties such as seakeeping qualities. For a survey of optimi-
zation techniques in ship hydrodynamics, see Birk and 
Harries (2003).

To obtain a very accurate prediction of resistance 
and power, model testing is still used for the majority 
of new ships. Typically, optimization is fi rst carried out 
using numerical methods, whereas the fi nal decision 
about the hull shape is taken only after model tests of a 
few of the best candidates have been carried out. This is 
so because numerical predictions have not yet reached 
the reliability of model test results. There is no question, 
however, that the regular testing of ship models will 

* The difference between methods for viscous fl ow computation 
(RANS, Large Eddy Simulation, and Direct Numerical Simula-
tion) will be explained in Section 9.  
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be replaced by numerical predictions, sooner or later. 
 Towing tanks and other test facilities will then be used 
more for more advanced investigations and for valida-
tion of new computational techniques.

1.3 The Structure of this Book. The objective of the 
present volume of the Principles of Naval Architecture

is to provide:

• A basic understanding of the resistance problem for 
ships and other marine vehicles
• Insight into the three different methods for predicting 
resistance
• Practical guidelines for the designer.

The next six sections cover the fi rst objective. In 
Section 2, the equations governing the fl ows of interest 

are derived and discussed together with their bound-
ary conditions. These equations are used in Section 3 
to prove the similarity laws governing the extrapola-
tion of model-scale data to full scale. Thereafter, in 
Section 4, the total resistance of four widely different 
ships is divided into components, which are briefl y de-
scribed. These components are then discussed in detail 
in subsequent Sections 5 to 7, dealing with the wave 
resistance, the viscous resistance, and “other compo-
nents,” respectively. The three prediction techniques 
are  described in Sections 8 to 10, covering experimen-
tal techniques, numerical methods, and empirical pre-
dictions, respectively. Finally, in Section 11, practical 
guidelines for designing a ship with good resistance 
properties are presented.

In this section, we will derive the equations govern-
ing the viscous fl ow around a ship and discuss the 
appropriate boundary conditions. We will start by de-
fi ning the global Cartesian coordinate system x, y, z

used throughout the book. Thereafter, the continuity 
equation will be derived, followed by Navier-Stokes 
equations (three components). Together, these equa-
tions constitute a closed system for the pressure, p,
and the three velocity components u, v, and w. Bound-
ary conditions are discussed next, and the section is 
concluded by notes on surface tension and pressure 
decomposition. Note that we consider water to be an 
incompressible fl uid (i.e., the density, �, is assumed 
constant).

2.1 Global Coordinate System. As explained previ-
ously, this book deals with the fl ow around ships at 
steady forward speed, denoted V in the following. Un-
steadiness resulting from motions and waves as well 
as manoeuvring are neglected. The nomenclature 
used is the one recommended by the ITTC. Fig. 2.1 
displays the global Cartesian coordinate system ad-
opted. x is directed sternward, y to starboard, and 
z vertically upward. The origin is at midship and the 

undisturbed water level. The coordinate system thus 
moves with the ship, so we consider a ship at a fi xed 
position in a uniform infl ow from ahead. In this co-
ordinate system, the entire fl ow fi eld is steady in a 
time-averaged sense (turbulent fl uctuations fi ltered 
out, see  Section 9.7); in other words, the mean ve-
locity and pressure fi elds and the wave pattern are 
functions of the spatial coordinates but not of time. 
Turbulent fl uctuations may occur, however, so the 
equations are derived in their unsteady form for later 
use in  Section 9.7.

2.2 The Continuity Equation. The continuity equation 
may be derived easily by considering the infi nitesimal 
fl uid element dxdydz in Fig. 2.2, where the mass fl ows 
through the faces with normals in the x-direction are 
shown. It is only the u-component which can transport 
any mass through these  surfaces. The mass infl ow is �
udydz and the outfl ow  [  �u 
   � _

�x
�udx ]dydz (i.e., the 

net outfl ow in this direction is   � _
�x

�udxdydz. Correspond-

ingly, in the other two directions, the net outfl ows are
� _

�y
�vdydz and   � _

�z
�wdxdz, respectively.

2
Governing Equations

y

z

x

Figure 2.1 Global coordinate system.
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ary conditions are discussed next, and the section is 
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constant).
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used is the one recommended by the ITTC. Fig. 2.1 
displays the global Cartesian coordinate system ad-
opted. x is directed sternward, y to starboard, and 
z vertically upward. The origin is at midship and the 

undisturbed water level. The coordinate system thus 
moves with the ship, so we consider a ship at a fi xed 
position in a uniform infl ow from ahead. In this co-
ordinate system, the entire fl ow fi eld is steady in a 
time-averaged sense (turbulent fl uctuations fi ltered 
out, see  Section 9.7); in other words, the mean ve-
locity and pressure fi elds and the wave pattern are 
functions of the spatial coordinates but not of time. 
Turbulent fl uctuations may occur, however, so the 
equations are derived in their unsteady form for later 
use in  Section 9.7.

2.2 The Continuity Equation. The continuity equation 
may be derived easily by considering the infi nitesimal 
fl uid element dxdydz in Fig. 2.2, where the mass fl ows 
through the faces with normals in the x-direction are 
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Figure 2.2 Mass fl ow in the x-direction through the fl uid element.
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Figure 2.3 Pressure acting on the x-faces of the fl uid element.

Because the total net transport of mass out of the ele-
ment must be zero in the absence of mass sources, the 
following equation is obtained

   � _
�x

�udxdydz 
   � _
�y

�vdxdydz 
   � _
�z

�wdxdydz � 0

With � constant, the equation may be written

�u_
�x


   �v_
�y


   �w_
�z

� 0 (2.1)

This is the continuity equation for incompressible fl ows.
2.3 The Navier-Stokes Equations. The Navier-Stokes 

equations require a rather lengthy derivation, which is good 
to know to understand the origin of the different terms. A 
reader not interested in the details may, however, jump di-
rectly to the fi nal result: equations (2.13a) to (2.13c).

We start by by applying Newton’s second law to the 
infi nitesimal fl uid element dxdydz of Fig. 2.3

d   
→

 F � dm �  
→ a (2.2)

where d   
→

 F  * is the total force on the element, dm is its
mass, and    

→ a is its acceleration.

In fl uid mechanics, three different types of forces 

need to be considered: pressure forces d
→

 Fp, body forces 
d

→
 Fb, and viscous forces d

→
 Fv. Inserting these into equa-

tion (2.2) divided by dm yields

→ a �   
d   

→
 Fp_

dm

   d   

→
 Fb_

dm

   d   

→
 Fv_

dm
 (2.3)

But

→ a �   d   
→ u_

dt
 (2.4)

where    
→ u is the velocity vector with the components u �

u(x,y,z,t), v � v(x,y,z,t), and w � w(x,y,z,t). Applying 
the chain rule, the three components of the acceleration 
may thus be written

ax �   du_
dt

�   �u_
�t


 u   �u_
�x


 v �u_
�y


 w �u_
�z

 (2.5a)

ay �   dv_
dt

�   �v_
�t


 u �v_
�x


 v �v_
�y


 w �v_
�z

 (2.5b)

az �   dw_
dt

�   �w_
�t


 u �w_
�x


 v �w_
�y


 w �w_
�z

 (2.5c)
*Vectors are denoted by arrows.
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It now remains to determine the three forces. 
Let us start with the pressure force and consider its 
x- component dFpx. As appears from Fig. 2.3, the pres-
sure force on the left surface is pdydz, while the force

has changed to  ( p
   
�p_
�x

dx )   dydz on the right surface 

because of the  pressure gradient. The resulting force thus 
points in the negative x-direction. It may now be written

dFpx � �
�p_
�x

dxdydz

Division by the mass dm � � dxdydz yields for the 
fi rst term on the right-hand side of the x-equation

dFpx_
dm

� �   1_�    
�p_
�x

 (2.6a)

Similarly, for the other two directions
dFpy_
dm

� �   1_�    
�p_
�y

 (2.6b)

dFpz_
dm

� �   1_�    
�p_
�z

 (2.6c)

The only body force we will consider in the follow-
ing is gravity. In the coordinate system adopted (see 
Fig. 2.1), the z-direction is vertically upward, so grav-
ity has no component in the x- and y-directions. In the 
z-direction, it will be equal to �gdm, where g is the ac-
celeration of gravity. We thus have

dFbx_

dm
� 0 (2.7a)

dFby_

dm
� 0 (2.7b)

dFbz_

dm
� �g (2.7c)

The fi nal force is that due to viscosity, d
→

 Fv. For sev-
eral reasons, this is considerably more diffi cult to ob-
tain than the other two. First, we note that the viscous 
force is because of stresses acting on the sides of the 
fl uid element, both in the normal and tangential direc-
tions. This is shown in Fig. 2.4. Each stress is identifi ed 
by two indices, where the fi rst one represents the sur-
face on which the stress acts and the second one its own 
direction. The surface is identifi ed by the direction of its 
normal. Because both indices may attain three values, 
the viscous stress tensor �ij has nine components.

In Fig. 2.4, the stresses acting in the x-direction on all 
six faces of the element are shown. By adding the con-
tributions (with sign!) from opposing sides, in the same 
way as for the pressure, the total viscous force in the 
x-direction is obtained.

dFvx � [ ��xx_
�x


   
��yx_
�y


   ��zx_
�z ] dxdydz (2.8)

so the viscous term in equation (2.6a) becomes

    dFvx_
dm

�   1_� [ ��xx_
�x


   
��yx_
�y


   ��zx_
�z ]  (2.9a)

Similarly, for the other two components

   
dFvy_
dm

�   1_� [ ��xy_
�x


   
��yy_
�y


   
��zy_
�z ]  (2.9b)

   dFvz_
dm

�   1_� [ ��xz_
�x


   
��yz_
�y


   ��zz_
�z ]  (2.9c)

It now remains to determine the stresses, and here 
we have to rely on a hypothesis, however very well 
proven over the years. In his work Principia, Newton 
postulated in 1687 a linear relationship between the 
shear stress and the normal velocity gradient in the 
fl ow around a rotating cylinder. It was not until 1845, 

σzx z∂
∂σzx zd+ dxdy

σzx x ydd

yσxx y zdd σxx x∂
∂σxx xd+ dydz

x

z

dy

dz

dx

σyx y∂
∂σyx yd+ dxdz

σyx x zdd

Figure 2.4 Viscous stresses in the x-direction on the fl uid element.
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 components of equation (2.3), the following three equa-
tions are obtained

  �u_
�t


u�u_
�x


v  �u_
�y


w  �u_
�z

� �   1_�    
�p_
�x


�(    �
2u_

�x2   
   �
2u_

�y2   
   �
2u_

�z2 )    (2.13a)

   �v_
�t


u  �v_
�x


v  �v_
�y


w  �v_
�z

� �   1_�    
�p_
�y


� ( �2v_
�x2   
   �

2v_
�y2   
   �

2v_
�z2 )  (2.13b)

  �w_
�t


u�w_
�x


v�w_
�y


w�w_
�z

��   1_�    
�p_
�z

�g


� ( �2w_
�x2   
   �

2w_
�y2   
   �

2w_
�z2 ) (2.13c)

These are the  Navier-Stokes equations for incom-
pressible fl ow,* assuming that gravity is the only body 
force and that it is directed along the negative z-axis. The 
equations are written in component form. Other forms of 
the equations will be considered in later sections.

2.4 Boundary Conditions. The Navier-Stokes equa-
tions may be mathematically classifi ed as second or-
der, elliptical partial differential equations. Elliptical 
 equations require conditions on all boundaries of the 
computational domain, and we will now specify the 
boundary conditions for the unknowns u, v, w, and p in 
the  Navier-Stokes and continuity equations. The bound-
aries are of three kinds: solid surfaces, water surfaces, 
and  “infi nity.” We will consider them one by one.

2.4.1 Solid Surfaces. At the intersection between a 
solid surface and a liquid, interaction occurs at a molec-
ular level. Molecules from one phase move over to an-
other phase, thereby colliding with the molecules of the 
other phase. The phases are thus mixed in a very thin 
layer, and the tangential velocity of the molecules from 
one side of the interface is transferred to the other side. 
Velocity differences between the two phases are thus 
smoothed out, and practically all experience in fl uid 
mechanics suggests that the difference is zero (i.e., the 
liquid sticks to the submerged solid surface). This is the 
so called “no-slip” condition. Recent research (see, for 
example, Watanabe, Udagawa, & Udagawa, 1999) sug-
gests that for extremely hydrophobic (water repellant) 
surfaces, the no-slip conditions do not apply, but so far 
this hypothesis is not well proven and we will assume in 
the following that the no-slip condition holds.

As the coordinate system (see Fig. 2.1) moves with the 
hull, the no-slip condition on the hull surface is simply

u � v � w � 0 (2.14)

On other solid surfaces, fi xed to the earth, such as 
the seabed, beaches, and canal banks, the correspond-
ing equation reads

u � V, v � w � 0 (2.15)

 however, that this hypothesis was generalized to gen-
eral 3D fl ows by Stokes. For most fl ows of engineering 
interest, the viscous stress tensor �ij is proportional to a 
rate of strain tensor Sij, defi ned as

Sij �   �ui_
�xj


   
�uj_
�xi

where i and j may attain any one of the values 1, 2, 
or 3. u1, u2, and u3 are then to be interpreted as u,
v, w. The constant of proportionality is the dynamic 
viscosity �.

�ij � �Sij (2.10)

For a discussion of the theoretical background of this 
hypothesis, the reader is referred to Schlichting (1987), 
Panton (1984), or Acheson (1990). See also  Section 9. 
We note that the rate of strain tensor is symmetric 
(i.e., swapping i and j does not change the value of the 
component). There are thus six independent compo-
nents, which may be written as follows

�xx � 2�   �u_
�x

 (2.11a)

�xy � �yx � � (    �u_
�y


   �v_
�x ) (2.11b)

�zx � �xz � � (    �w_
�x


   �u_
�z ) (2.11c)

�yy � 2�   �v_
�y

 (2.11d)

�yz � �zy � � (    �v_
�z


   �w_
�y ) (2.11e)

�zz � 2�   �w_
�z

 (2.11f)

Introducing the x-components of equations (2.11a), 
(2.11b), and (2.11c) into the x-component equation (2.9a) 
yields, after some rearrangement of the terms,

  
dFvx_
dm

�   
�

 _
� [    �

2u_
�x2   
   �

2u_
�y2   
   �

2u_
�z2   
   �

2u_
�x2   
   �2v_

�x�y

   �2w_

�x�z ]
Here, the last three terms disappear because

   �
2u_

�x2   
   �2v_
�x�y


   �
2w_

�x�z
�   � _

�x [    �u_
�x


   �v_
�y


   �w_
�z ] � 0

due to continuity, as seen previously. Defi ning the
kinematic viscosity as � �   

�
 _

� , the fi nal expression for 

the viscous x-component is thus

dFvx_
dm

� � [ �2u_
�x2   
   �

2u_
�y2   
   �

2u_
�z2    ]  (2.12a)

Correspondingly, for the other two components

dFvy_
dm

� � [ �2v_
�x2   
   �

2v_
�y2   
   �

2v_
�z2    ]  (2.12b)

dFvz_
dm

� � [ �2w_
�x2   
   �

2w_
�y2   
   �

2w_
�z2    ]  (2.12c)

Introducing the acceleration in equations (2.5a) to 
(2.5c), the pressure force in equations (2.6a) to (2.6c), 
the body force in equations (2.7a) to (2.7c), and the 
viscous force in equations (2.12a) to (2.12c) into the 

*The reader who has skipped the derivation should note that 
the left-hand sides of the three equations represent the accelera-
tion of a fl uid particle in the x, y, and z directions, respectively. 
The right-hand sides represent forces on the particle per unit of 
mass. The fi rst term appears because of pressure gradients and 
the last one because of viscous forces. There is an intermediate 
term only in the z-equation. This represents the effect of gravity.
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because these surfaces will move backward at the 
speed V relative to the hull.

2.4.2 Water Surface. The previous discussion on 
the solid–liquid interface applies equally well to a liquid–
gas interface, such as the water surface (and certainly 
also to solid–gas interfaces). In the following, the water 
surface will be called the free surface, as is common in 
numerical hydrodynamics. Because of molecular inter-
change between the water and the air, both will attain 
the same speed at the interface. Further, there must be 
an equilibrium of forces across the interface. Tangen-
tially, this means that

�(ns)w � �(ns)a �(nt)w � �(nt)a (2.16)

where the indices w and a refer to water and air, respec-
tively, and s,t,n is a local Cartesian coordinate system 
with n normal to the surface. If �p� is the effect of sur-
face tension (positive for a concave surface), the normal 
force equilibrium may be written

 (�nn � p)w � (�nn � p)a 
 �p� (2.17)

These are the dynamic boundary conditions on the 
surface. However, the viscous stresses are normally very 
small and are mostly neglected. The inviscid dynamic 
boundary condition is then obtained. It reads as follows

 p � pa� �p� (2.18)

where the index has been dropped for the water pressure.
The pressure jump because of surface tension can be 

obtained from (see White, 1994, p. 28)

 �p� � � (   1_r1

   1_r2

   ) (2.19)

where � is the surface tension and r1 and r2 are the prin-
cipal radii of curvature* of the water surface.

There is also a kinematic condition on the surface ex-
pressing the fact that there is no fl ow through the surface. 
Note that this is in the macroscopic sense. In our model, 
we assume that the interface is sharp and without through 
fl ow. The molecular effects discussed previously are taken 
into account by the continuity of stresses and velocities.

If there is to be no fl ow across the boundary, the ver-
tical velocity of a water particle moving along the sur-
face must be equal to the total derivative of the wave 
height with respect to time (i.e., both the temporal and 
spatial wave height changes must be considered).

w � d� _
dt

 (2.20)

where � � �(x, y) is the equation for the free surface.
2.4.3 Infi nity. Even though the water always has a 

limited extension, it may be advantageous to consider 
the fl ow domain to be infi nite in some directions. Then, 

the boundary condition to be applied simply states that 
all disturbaces must go to zero at infi nity:

u � V v � w � 0 p � p (2.21)

where p is the undisturbed pressure. Note that these are 
the mathematical boundary conditions. As will be seen in 
Section 9, the computational domain will always have to 
be restricted in numerical methods. Therefore, artifi cial 
numerical boundaries are introduced. At such boundar-
ies, the pressure and velocities, or alternatively their de-
rivatives in one direction, will have to be specifi ed.

2.5 Hydrodynamic and Hydrostatic Pressure. In a liq-
uid at rest, the pressure increases linearly in the vertical 
direction. Each liquid element at a certain depth has to 
carry the weight of all other elements above it. This hy-
drostatic pressure phs may be computed as

phs � �� gz (2.22)

in the coordinate system adopted here.
Once the liquid is disturbed, pressure forces re-

lated to the motion are created. These pressures may 
be called hydrodynamic, phd. In general, the pressure 
which can be measured in a fl uid in motion is thus

p � phs 
 phd (2.23)

Thus,

phd � p � phs � p 
 � gz (2.24)

Consider the pressure and gravity terms in the z-
component of the Navier-Stokes equation (2.13c)!

  
dFp_
dm


   
dFb_
dm

� �   1_� 
�p_
�z

� g

This may be written

  
dFp_
dm


   
dFb_
dm

� �   1_� 
�(p 
 �gz)_

�z
� �   1_�    

�phd_
�z

Thus, if the pressure p in the z-component is replaced 

by phd, the gravity term may be dropped. Because   
�phd_
�x

�

  
�p_
�x

 and   
�phd_
�y

�
�p_
�y

, as can be easily seen from equation 

(2.24), p may be replaced by phd in the x- and y-components 
of the Navier-Stokes equations. We have now arrived at a 
very important conclusion: If the pressure in the Navier-

Stokes equations is replaced by the hydrodynamic pres-

sure, no gravity terms shall be included.

Another way of looking at this is that the hydrostatic 
pressure has been removed from the equations. The mo-
tions of the fl ow, which as we know are governed by the 
Navier-Stokes equations, are thus independent of the hy-
drostatic pressure. This is in fact obvious because the 
hydrostatic pressure is just large enough to balance the 
weight of each fl uid element. Therefore, it does not give 
rise to any motions. Note that this division of the pres-
sure into hydrodynamic and hydrostatic components is 
normally not considered in general fl uid dynamics. For 
air, it is irrelevant because the aerostatic pressure is 
very small and liquids are often considered in small sys-
tems, where the hydrodynamic effects are much larger 
than the hydrostatic effects. 

*On all suffi ciently smooth surfaces, which are not fl at, there 
is one direction in which the normal curvature is maximum 
and one at right angles thereto, in which the normal curvature 
is minimum. These are the directions of principal curvature 
and the radii of curvature in these directions are the principal 
radii of curvature.
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Most experiments in ship hydrodynamics are carried 
out with scale models. Small replicas of ships are tested 
in water basins, and forces and motions are measured. 
In the present section, we are mainly interested in the 
towing tank experiment where the model is towed by a 
carriage and the force, and perhaps the fl ow around the 
hull, is measured at different speeds. It is fairly obvious 
that the model shall be  geometrically similar to the ship 
(a geosim), but it is not as straightforward to determine 
the speed at which the model shall be run. Nor is it obvi-
ous how to scale the forces and velocities measured for 
the model. These issues will be dealt with in the present 
section.

3.1 Types of Similarity. Geometric similarity means
that the ship and the model shall have the same shape. 
This is necessary, in principle, but not down to the 
smallest details. Consider for instance the surface of 
the hull! It is virtually impossible to scale the rough-
ness exactly, but, as will be discussed in Section 6, the 
roughness has no effect if it is suffi ciently small. The 
requirement is rather easily met for the model, but not 
for the ship. Here, roughness has an important effect, 
but this is taken into account in an empirical way (see 
Section 8).

Kinematic similarity means that all velocities in 
the fl ow (including components!) are scaled by the 
same factor. This means that the streamlines around 
the hull will be geometrically similar at model and 
full scale.

Dynamic similarity means that all forces of the fl ow 
(including components!) are scaled by the same fac-
tor. Force vectors thus have the same direction at both 
scales.

3.2 Proof of Similarity. In order to derive the simi-
larity laws, the quantities in the governing equations 
and their boundary conditions are made dimensionless. 
The general idea is to see under which conditions, if 
any, the equations are rendered independent of scale. If 
that can be achieved, the solution, in nondimensional 
variables, is unique, which means that both kinematic 
and dynamic similarity has been achieved between 
any scales. Dimensional solutions can then easily be 
obtained by converting nondimensional values back to 
dimensional ones.

The following nondimensional quantities are introduced:
_
x �   x_

L
,
_
y �   

y_
L

,
_
z �   z_

L
,

_
� �   

�
 _

L
,
_
r1 �   r1_

L
,
_
r2 �   r2_

L
_
u �   u_

U

  ,
_
v �   v_

U

  ,
_
w �   w_

U

  ,
_
p �   

phd_
� U

2   , t �   t � U _
L

where L is a reference length, usually taken as the 
length between perpendiculars, Lpp, and U is a refer-
ence  velocity, normally the ship speed V.

These are introduced into the governing equations 
and their boundary conditions. Note that the hydrody-
namic pressure has been used in defi ning  

_
p! For the 

x-component of the Navier-Stokes equations, this yields

  
�(

_
u U)_

� (
_
t L_
U

   ) 
  


_
u U   

�(
_
u U)_

�(
_
x L)



_
v U   

�(
_
u U)_

�(
_
y L)




_
w U   

�(
_
uU)_

�(
_
zL)

� �   1_�     
�(

_
p� U

2)_
�(

_
xL)

   


� ( �2_
�(

_
x L)2   (  

_
u U) 
   �2_

�(
_
y L)2   (  

_
u U) 
   �2_

�(
_
z L)2   (  

_
u U))

If this is divided by   U
2

_
L

, the following x-component 
equation is obtained

  
� 
_
u_

� 
_
t



_
u   � 

_
u_

� 
_
x

   

_
v   � 

_
u_

� 
_
y



_
w   � 

_
u_

� 
_
z

� �   
� 
_
p_

� 
_
x




  �_
U L ( �2

_
u_

� 
_
x  2

   
   �
2
_
u_

� 
_
y  2

   
   �
2
_
u_

� 
_
z  2

   ) (3.1a)

and, correspondingly, in the other two directions

  
� 

_
v_

� 
_
t



_
u   � 

_
v_

� 
_
x



_
�   � 

_
v_

� 
_
y



_
w   � 

_
v_

� 
_
z

� �   
� 
_
p_

� 
_
y




  � _
U L ( �2

_
v_

� 
_
x  2

   
   �
2
_
v_

� 
_
y  2

   
   �
2
_
v_

� 
_
z 2   )  (3.1b)

  
� 
_
w_

� 
_
t



_
u   � 

_
w_

� 
_
x



_
v   � 

_
w_

� 
_
y



_
w   � 

_
w_

� 
_
z

� �   
� 
_
p_

� 
_
x




  �_
U L ( �2

_
w_

� 
_
x  2

   
   �
2
_
w_

� 
_
y  2

   
   �
2
_
w_

� 
_
z  2

    )  (3.1c)

Introduction of the nondimensional quantities in the 
continuity equation yields

  
�(

_
u U)_

� 
_
x L


   
�(

_
v U)_

� 
_
y L


   
�(

_
w U)_
� 
_
z L

� 0

and, after division by   U _
L

  � 
_
u_

� 
_
x


   � 
_
v_

� 
_
y


   � 
_
w_

� 
_
z

� 0 (3.2)

For the boundary conditions, the following is obtained
Hull surface, equation (2.14)

_
u �

_
v �

_
w � 0 (3.3)

Earth-fi xed boundaries, equation (2.15)
_
u � 1  

_
v �

_
w � 0 (3.4)

Free surface, kinematic condition, equation (2.20)
_
w U �   

d(
_
�  L)_

d (
_
t   L_

U

  )
   ⇒ 

_
w �   

d
_
�  
 _

d
_
t
 (3.5)

Free surface, dynamic condition [neglecting the vis-
cous stresses, equation (2.18)]. Note that p in equation (2.18) 

3
Similarity
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includes both the hydrodynamic and the hydrostatic 
 pressures

phd 
 phs � pa � �p� (3.6)

or

_
p�U

  2 � �g
_
� L � pa �   

�
 _

L ( 1__
r1

   
   1__
r2

   )  (3.7)

where the hydrostatic pressure at the surface  
_
�  of equa-

tion (2.22) has been introduced, as well as expression 
(2.19) for the surface tension. 

Resolving for  
_
p

_
p  �     

pa_

�U
  2   
     

gL_
 U 

  2

_
�     �   

�
 _

�U
  2 L (   1__

r1
   
   1__

r2
   )  (3.8)

Infi nity, equation (2.21)
_
u � 1  

_
v �

_
w � 0  

_
p � 0 (3.9) 

Geometrically similar bodies and boundaries may be 
represented by the functions

fi (  
_
x,

_
y,

_
z  ) � 0) (3.10)

where the fi are independent of scale.
Summarizing, the problem is defi ned by the govern-

ing equations (3.1a) to (3.1c) and (3.2), the boundary 
conditions (3.3) and (3.4) for the solid surfaces, the 
free-surface boundary conditions (3.5) and (3.8), and 
the  infi nity condition (3.9). It turns out that the only pa-
rameters appearing in these equations are the circled 
ones, i.e., the Reynolds number Rn [rather   1_

Rn
] in equa-

tions (3.1a) to (3.1c), where

 Rn �   U  L_
�  (3.11)

and the Euler number En, the Froude number 
Fn(rather   1_

Fn2  ), and the Weber number Wn (rather   1_
Wn

)

in equation (3.8), where

 En �   
pa_

�U
  2    (3.12)

 Fn �   U _

�
_

gL
 (3.13)

 Wn �   
�U

  2 L_
�  (3.14)

The Euler number is of importance because pa deter-
mines the absolute pressure level in the fl uid. An increase 
in the atmospheric pressure at the water surface will in-
crease the pressure everywhere in the water by the same 
amount. If the pressure anywhere goes below the va-
por pressure pv, cavitation will occur. A measure of the 
 “margin” to cavitation is pa � pv, which is mostly used in 
the numerator. We then obtain the cavitation number �

� �   
pa � pv_
1_
2
   � �U


  2

 (3.15)

Because the Euler and cavitation numbers differ only by 
a constant, they are exchangeable as similarity parameters.

We have now achieved the objectives specifi ed in the 
introduction to this section. Parameters have been defi ned 
such that if these parameters are unchanged between two 
scales, all equations and boundary conditions are also un-
changed, which means that the solution in nondimensional 
form is unchanged. Using the defi nition, dimensional val-
ues may then be easily obtained at each scale from the 
dimensionless values. All velocities are thus scaled by 
the same factor (U), which means kinematic similar-
ity, and all forces are scaled by another factor (� U

 2 L2), 
which means dynamic similarity. Geometric similarity is 
achieved by the linear scaling by L of all solid bodies and 
boundaries. The constancy of the Reynolds number, the 

Euler (cavitation) number, the Froude number, and the 

Weber number is a necessary and suffi cient condition for 

fl ow similarity between geosim bodies at different scales.
In the present analysis, we have used the governing 

equations and their boundary conditions to obtain the 
similarity requirements. An alternative approach is to 
use dimensional analysis, based on a theorem by Buck-
ingham (1914), known as the �-theorem. For references 
on this approach, see White (1994).

3.3 Consequences of the Similarity Requirements
3.3.1 Summary of Requirements. In theory, the 

following requirements should be satisfi ed in towing 
tank testing of ship models:

• With the exception of the surface roughness, the mod-
el and the ship must be geometrically similar.
• Because the contract conditions specifi ed for the ship 
are normally for unrestricted waters, the tank must be 
suffi ently wide and deep to avoid blockage effects (this 
will be further discussed in Section 5).
• The Reynolds number

Rn �   U L_
� 

must be the same at both scales if the effect of viscos-
ity shall be correct. Because the Reynolds number ap-
pears in the Navier-Stokes equations, it has an effect on 
all fl ows governed by these equations. This means, in 
practice, all fl ows of interest in hydrodynamics. There 
is, however, an approximation known as the “inviscid 
fl ow,” where the effect of viscosity is neglected. Under 
certain circumstances, this is a good approximation, 
and many useful results may be obtained from this the-
ory, as will be seen in Section 5. In this approximation, 
the Reynolds number is insignifi cant.

• The Froude number

Fn �   U _
�
_
gL

must be the same at both scales if the effect of gravity 
on the free surface shall be correct. Note that this pa-
rameter, as well as the remaining two, Wn and �, only 
appear in the dynamic free-surface boundary condition. 
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This means that if there is no free surface, as in most 
water tunnels (without cavitation), none of these pa-
rameters is signifi cant. In most hydrodynamic cases 
of interest there is, however, a free water surface, and 
gravity is then the driving force for the waves. A cor-
rect Froude number is thus a requirement for correctly 
scaled waves, and if the waves are correctly scaled, so 
is the resistance component caused by the wave genera-
tion (see Section 5).

• The Weber number

Wn �   
�U

 2 L_
� 

must be the same to achieve the correct effect of the 
surface tension. This means that spray and wave break-
ing, which contain water drops and air bubbles with 
small radii, are correctly scaled. This holds also for 
surface waves of very small length, where the radius of 
curvature of the surface may be very small.

• The cavitation number

� �   
pa � pv_
1_
2
     � �U


  2

must be unchanged to obtain the same cavitation pat-
tern. Note that cavitation means vapor bubbles with a 
free surface between vapor and water. Because cavita-
tion hardly ever occurs in the fl ow around the hull, it 
is not normally considered in towing tank testing, and 
it will not be further considered in this volume of the 
Principles of Naval Architecture. It may be very impor-
tant in propeller design, however, and is dealt with at 
some length in the propulsion volume.
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requirements in model testing. The other two require-
ments have to be sacrifi ced.
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tance. As will be seen, models are tested at a smaller 
speed than that at full-scale, which means that the 
Weber number is too small. This has to be accepted, 

but it means that the effect of surface tension is too 
large, which causes the following problems in model-
scale experiments:

• A different appearance of breaking waves compared 
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• A different appearance of spray at high speed with 
more coherent water fi lms than at full scale being eject-
ed sideward
• Occurrence of capillary waves at low speeds, with no 
counterpart at full scale
• Deviations in the wave pattern of the model, if the 
model speed is around 0.23 m/s, so there is a need to 
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parameter to keep constant and which one to sacrifi ce.
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_
L for constant Froude number, this means the 

wave resistance scales as L3 (i.e., in proportion to the dis-
placement). This is also what Froude had found. The les-
son to learn from this discussion is thus: the model shall be 

tested at the same Froude number as the ship. Note that 
there is indeed a small effect also of the Reynolds num-
ber on the waves because the governing equations contain 
this number, but this effect is normally much smaller than 
the main effect of the Froude number.

As will be seen in the next section, the other main 
resistance component is the viscous resistance caused 
by the fl uid viscosity. From the discussion in Section 
3.3.1, it is clear that this is mainly governed by the 
 Reynolds number. Froude suggested to compute this 
resistance component from an empirical formula based 
on plank tests, and even if a somewhat more sophisti-
cated method is used today (see Section 8), empirical 
formulas are still used. All modern formulas are func-
tions of one parameter only: the Reynolds number (see 
Section 6.3.4). However, the viscous resistance depends 
to a large extent on the wetted surface of the hull and 
appendages, and this surface is slightly infl uenced by 
the Froude number, as the wave profi le along the hull 
changes with speed. There is thus a small infl uence of 
the Froude number on the viscous resistance.

In the practical application of the similarity theory, 
the wave resistance is thus considered dependent only 
on the Froude number, whereas the viscous resistance 
is dependent only on the Reynolds number. In reality, 
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both resistance components depend on both numbers, 
but the approximation adopted has proven to be suffi -
ciently accurate for scaling model test data to full scale 
in most cases.

Knowing the scaling rules, advantages are often 
taken of the different possibilities of water tank and 
wind tunnel testing. Thus, rudders and other append-
ages are often tested in wind tunnels. Detailed bound-
ary layer measurements are also often carried out there, 
even for ship models. This is because of the easier access 
to equipment inside the wind tunnel. Requirements on 
robustness of the equipment are also often smaller in air.

On the other hand, there are situations where aerody-
namic problems are best solved in water. One example 
is the testing of automobiles in water tanks (Larsson et 
al., 1989). The great advantage here is that the car may 
be towed along the bottom of the tank thus creating the 
correct fl ow around the rotating wheels and under the 
car. In a wind tunnel, there is always a boundary layer 
in the approaching fl ow, which does not exist when the 
car moves through still air. This boundary layer has to 
be removed, and this cannot be done without problems. 
It is also very diffi cult to model the effect of the rotating 
wheels, which must not touch the wind tunnel fl oor.

Having derived the equations governing the fl ow around 
the hull and the subsequent similarity laws, we will now 
turn to a physical discussion of the fl ow and the various 
resistance components. Knowledge of the physics is re-
quired for understanding hull shape optimization and 
experimental techniques. In Section 3, we introduced the 
two main resistance components: wave resistance and vis-
cous resistance. Here, we will make a subdivision of these 
components. More detailed discussions of all components 
will then be given in the subsequent Sections 5, 6, and 7.

4.1 Resistance on a Straight Course in Calm,  Unrestricted 
Water

4.1.1 Vessel Types. In the present section, we will 
discuss the resistance decomposition of four different 
vessels operating at Froude numbers from 0.15 to 1.4. 
The fi rst three operate in the displacement speed range, 
below 0.5, whereas the fastest hull is of the fully planing 
type. Main dimensions, Froude number, and total resis-
tance coeffi cient for all hulls are given in Table 4.1. Here 
and in the following, force coeffi cients are defi ned by 
dividing the force by the dynamic head times the wetted 
surface S, in other words

CTS �   RTS_
1_
2
   �V

 S

  2 SS

 (4.1)

where RT is the total resistance and the index S stands 
for “ship” (full scale), as before. Note that large varia-
tions in dimensions and resistance components occur 
in each class of vessels. The values given may be consid-
ered typical in each class.
4.1.2 Detailed Decomposition of the Resistance. In 
Fig. 4.1, the total resistance of each of the four ships is 
represented by a bar, whose length corresponds to 100% 
of the resistance. This bar is split into components, 
given in percent of the total. To emphasize that the total 
resistance varies between the ships, the total resistance 
coeffi cient is given at the top of each bar. It is seen in 
Fig. 4.1 that the viscous resistance is now subdivided 
into four components: fl at plate friction, roughness ef-
fects, form effect on friction, and form effect on pres-
sure. The wave resistance is split into two components: 
wave pattern resistance and wave breaking resistance. 
These components will now be introduced.

Ever since William Froude’s days, naval architects 
have used the frictional resistance of an “equivalent” 
fl at plate as a measure of the frictional resistance of the 
hull. In this context, “equivalent” means a plate having 
the same wetted surface, run in water of the same den-
sity at the same Reynolds number and speed as the ship. 
Although more advanced scaling procedures are used 

4
Decomposition of Resistance

Table 4.1 Typical Data of Four Different Vessels

Quantity Tanker Containership Fishing Vessel Planing Boat

Length LWL (m) 316 248 23 22.5

Beam B (m)  56  30  7 —

Draft T (m)  20    9.5   2.5 —

Speed VS (knots)  16   23 10 40

Froude number Fn   0.15   0.24   0.34 1.4

Reynolds number Rn � 10�9   2.6   2.9   0.12 0.46

Total resistance coeffi cient CTs � 103   2.2   2.3   8.1 5.4
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today, the fl at plate friction is still used for the extrap-
olation of model-scale data to full scale. The fl at plate 
friction is exclusively due to tangential forces between 
the solid surface and the water (i.e., the skin friction).

If the surface roughness exceeds a certain limit, it 
will infl uence skin friction. Normally, ship models are 
smooth enough for this component to be insignifi cant, 
but full-scale ships always have a surface roughness 
causing a resistance increase. The roughness allowance 
shown in Fig. 4.1 is for a ship without fouling; for fouled 
surfaces, this component is much larger. In the extrap-
olation of model test data to full scale, the roughness 
 allowance is computed using a simple formula.

The fact that the hull has a 3D shape causes sev-
eral resistance components, two of which are of vis-
cous origin. As the fl ow approaching a vessel has to go 
around the hull, the local velocity of the water (outside 
the boundary layer) is different from that of the undis-
turbed fl ow ahead of the vessel. This is not the case for a 
fl at plate parallel to the fl ow, where the velocity outside 
the boundary layer is practically undisturbed. (There is 
a small increase in speed caused by the displacement ef-
fect of the boundary layer, but this is mostly neglected.) 
At the bow and stern of the ship, the velocity is reduced, 
but over the main part of the hull there is a velocity in-
crease, causing an increase in friction as compared to 
the plate. This is the form effect on friction.

The second form effect of viscous origin is caused by 
a pressure imbalance between the forebody and the af-
terbody. According to d’Alembert’s paradox  (Newman, 
1977), there is zero resistance for a body without lift in an 
inviscid fl uid without a free surface (i.e., the longitudinal 
component of the pressure forces acting on all parts of 
the body cancel each other exactly). In a viscous fl uid, a 
boundary layer will develop along the surface, and this 
will cause a displacement outward of the streamlines at 
the stern. The pressure at the aft end of the hull is then 
reduced and the integrated pressure forces will not can-
cel. There is thus a form effect on pressure caused by 
viscous forces. Note that this  resistance component is 
because of normal forces (pressures) as opposed to all 
other viscous resistance components which result from 
tangential forces (friction).

When the vessel moves along the surface water, par-
ticles are removed from their equilibrium position and 
waves are generated. If the disturbances are large, the 
waves may be steep enough to break down into eddies 
and foam. The energy thus removed from the wave 
system is found in the wake of the ship and the corre-
sponding resistance component is called wave breaking 
 resistance. The remaining wave energy is radiated away 
from the ship through the wave system and gives rise to 
the wave pattern resistance.

The grouping of the resistance components into viscous 
and wave resistance is the one normally used in ship hy-
drodynamics and adopted in this text. However, Froude’s 
division into fl at plate friction (with roughness) and 
 residuary resistance is still used at some experimen-
tal  establishments, and is indicated in Fig. 4.1. A third 

 possibility would be to group the resistance components 
into those that act through tangential forces (friction) and 
through normal forces (pressure). In order not to com-
plicate the fi gure, this division is not shown, but it differs 
from the viscous/wave resistance decomposition only 
with respect to the form effect on pressure, which is obvi-
ously a pressure component, as the two wave resistance 
components. The fi rst three components from the bottom 
in the fi gure act through friction.

4.1.3 Comparison of the Four Vessel Types. The 
fl at plate friction is the dominating component for the 
two slowest ships, which have a very small wave resis-
tance. Note that the sum of the two wave resistance 
components is only 7.5% for the tanker. Roughness resis-
tance increases with speed and is therefore a larger part 
of the viscous resistance for the high-speed hulls than 
for the slower ones. Of the two viscous form effects, that 
due to pressure is considerably larger than that due to 
friction. For the two bluntest hulls, the tanker and the 
fi shing vessel, the total viscous form effect is about 30% 
of the fl at plate friction, whereas it is about 20% for the 
containership and practically zero for the planing hull. 
There is normally a very small displacement effect of 
the relatively thin boundary layer near the stern of plan-
ing hulls with a submerged transom.

The wave breaking resistance is the largest compo-
nent of the wave resistance for the tanker, but consid-
erably smaller than the wave pattern resistance for the 
containership and the fi shing vessel. For the planing 
hull, the wave breaking is replaced by spray. Note that 
the planing hull has a resistance component missing for 
the others: appendage resistance from propeller shaft, 
brackets, etc. This component, which is of viscous 
 origin, is discussed later.

4.2 Other Resistance Components. If a vessel moves 
with a leeway, as in a turn or when there is a wind force 
component sideward, a lift force (directed sideward) is 
developed. Associated with the lift is an induced resis-
tance, which can be considerable, especially for sailing 
yachts and vessels. When the hull moves slightly sideward, 
a high pressure is developed on one side (leeward) and a 
low pressure on the other (windward). The pressure differ-
ence gives rise to a fl ow from the high to the low pressure, 
normally under the bottom or tip of the keel and rudder, 
and longitudinal vortices are generated. These vortices 
contain energy left behind and are thus associated with a 
resistance component: the induced resistance.

The appendage resistance is mainly of viscous ori-
gin and could well be included in the viscous resistance. 
There are reasons, however, to treat this component 
separately. First, the Reynolds number, based on the 
chord length of brackets, struts, etc., is considerably 
smaller than that of the hull itself and therefore a sep-
arate scaling is required. Second, the appendages are 
normally streamlined sections, for which separate em-
pirical relations apply. For sailing yachts, the correct 
shape of the appendages is of utmost importance for 
good performance, particularly because these append-
ages normally operate at an angle of attack.
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A resistance component which may be considerable, 
for instance for fully loaded containerships, is the wind 

resistance. The frontal area facing the relative wind on 
board the ship can be large and the containers do not 
have an aerodynamic shape, so large forces may be gen-
erated in strong winds. Even in still air, there is a resis-
tance component, however small. This component, the 
air resistance, is considered in the model-ship extrapo-
lation procedure described in Section 8.

In restricted waters, the fl ow around the hull and 
the wave making are infl uenced by the presence of the 

 confi ning surface. This could be the seabed in shallow 
water or the banks of a canal. All resistance compo-
nents may be infl uenced. Often, the effect is modeled 
as an additional resistance component because of the 
blockage effect of the confi ning walls. See Section 5.

Finally, a seaway will cause an additional resistance 
of the vessel. This is due mainly to the generation of 
waves by the hull when set in motion by the sea waves, 
but is also due to wave refl ection in short sea waves. 
Added resistance in waves is discussed in the seakeep-
ing volume of the Principles of Naval Architecture.

5.1 Introduction. In Section 4, some different decom-
positions of the total resistance of a ship were discussed. 
We shall now consider in more detail the principal physical 
phenomena determining a ship’s resistance. Here we shall 
use the decomposition into a wave resistance and a vis-
cous resistance, the decomposition most directly related 
with separate physical phenomena. The wave making of 
a ship, which leads to its wave resistance, and the viscous 
fl ow around the hull (causing its viscous resistance) will 
be dealt with separately in Sections 5 and 6, respectively.

Physically, these phenomena occur simultaneously 
and various interactions occur; therefore, dealing with 
wave making and viscous fl ow separately may seem 
artifi cial. On the other hand, their separation is a most 
useful approach in practice. Moreover, there is a close 
relation with two perhaps more familiar distinctions.

The fi rst is the way in which ship model tests are 
conducted. In Section 3.3.2, we saw that a dilemma 
arises as it is impossible to make both the Reynolds 
number Rn and the Froude number Fn equal for model 
and ship. The practical and well-proven approximation 
then is to test a ship model at a Froude number equal to 
that of the ship because in that case the wave pattern 
is geometrically (nearly) similar to that of the ship and 
the wave resistance can be scaled up easily. Appar-
ently, the wave  making is rather insensitive to viscous 
effects: the difference in Rn of a factor of 100 or so 
makes little difference to the wave making. Regarding 
the resistance coeffi cient, this is approximated by

CT (Fn, Rn) � CW (Fn) 
 CV (Rn)

which again excludes a viscous effect on the wave resis-
tance (and also, a wave effect on the viscous resistance).

The other related separation of physical phenomena is 
found in boundary layer theory. As will be discussed in Sec-
tion 6.2, for high Reynolds numbers viscous effects on the 
fl ow around a body are mostly confi ned to a thin bound-

ary layer close to the body surface and a narrow wake aft 
of it. In thin boundary layer theory it is derived that the 
pressure fi eld inside the boundary layer is equal to that just 

outside it, and to a fi rst approximation the  boundary layer 
does not affect that pressure distribution. Therefore, the 
pressure fi eld around the body, and its wave making, to a 
fi rst approximation are independent of viscosity.

The relation with both these accepted approxima-
tions provides a justifi cation to consider wave making 
as unaffected by viscosity. This approximation has been 
found to be extremely useful in ship hydrodynamics, 
and will form the basis of our further considerations. 
In other words, in the following we consider the wave 
making and wave pattern of a ship as an inviscid phe-
nomenon. In Section 5.7 we briefl y mention some of the 
limitations of the approximation.

This section is set up as follows. We fi rst consider 
the principal equations governing the inviscid fl ow 
around a body and introduce the concept of poten-
tial fl ows. We study the physical behavior of potential 
fl ow around a body. Section 5.3 then derives the main 
properties of surface waves. Section 5.4 derives and 
discusses various aspects of ship wave patterns, after 
which wave  resistance and its behavior in practice is 
considered.

Whereas in these sections the water depth is assumed 
to be unlimited, Sections 5.8 to 5.10 address the effect of 
limited water depth on the properties of water waves, 
ship wave patterns, and ship resistance. In Section 5.11 
we discuss “wash effects” (i.e., ship wave effects caus-
ing nuisance or damage for others) as this is a topic of 
current interest for fast ferries in coastal areas. Finally, 
channel effects, caused by limited width and depth of 
the waterway, are dealt with in Section 5.12.

5.2 Inviscid Flow Around a Body
5.2.1 Governing Equations. As an introduction to 

the wave resistance aspects, we shall fi rst consider invis-
cid fl ow around a body in case there is no free  water sur-
face present (e.g., a body deeply submerged in a fl uid). We 
use a coordinate system attached to the ship, as that in 
Fig. 2.1. There is an incoming fl ow in  positive x-direction 
with velocity U, equal and  opposite to the ship speed. The 
fl ow is undisturbed far ahead of the ship.

5
Inviscid Flow Around the Hull, Wave Making, and Wave Resistance
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making and wave pattern of a ship as an inviscid phe-
nomenon. In Section 5.7 we briefl y mention some of the 
limitations of the approximation.

This section is set up as follows. We fi rst consider 
the principal equations governing the inviscid fl ow 
around a body and introduce the concept of poten-
tial fl ows. We study the physical behavior of potential 
fl ow around a body. Section 5.3 then derives the main 
properties of surface waves. Section 5.4 derives and 
discusses various aspects of ship wave patterns, after 
which wave  resistance and its behavior in practice is 
considered.

Whereas in these sections the water depth is assumed 
to be unlimited, Sections 5.8 to 5.10 address the effect of 
limited water depth on the properties of water waves, 
ship wave patterns, and ship resistance. In Section 5.11 
we discuss “wash effects” (i.e., ship wave effects caus-
ing nuisance or damage for others) as this is a topic of 
current interest for fast ferries in coastal areas. Finally, 
channel effects, caused by limited width and depth of 
the waterway, are dealt with in Section 5.12.

5.2 Inviscid Flow Around a Body
5.2.1 Governing Equations. As an introduction to 

the wave resistance aspects, we shall fi rst consider invis-
cid fl ow around a body in case there is no free  water sur-
face present (e.g., a body deeply submerged in a fl uid). We 
use a coordinate system attached to the ship, as that in 
Fig. 2.1. There is an incoming fl ow in  positive x-direction 
with velocity U, equal and  opposite to the ship speed. The 
fl ow is undisturbed far ahead of the ship.

5
Inviscid Flow Around the Hull, Wave Making, and Wave Resistance
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The fl ow around the body is well described by the 
Navier-Stokes equations (2.13) and continuity equation 
(2.1). However, for inviscid fl ow we can drop all viscous 
terms in equation (2.13) and retain just the balance of 
convective and pressure gradient terms. This set of 
equations is called Euler equations.

We write the Euler equations as

( � _
�t


 u   � _
�x


 v   � _
�y


 w   � _
�z )    → v  � 	(�   

p_
� � gz ) (5.1)

where 	 �   ( � _
�x

   � _
�y

   � _
�z )T

 is the gradient operator. If then

we take the inner product of both sides with     
→ v, we can 

derive

→ v    �    
→ v_

�t



(5.2)

(u � _
�x


 v � _
�y


 w � _
�z ) [   1_2   (u2 
 v2 
 w2) 
   

p_
�  
 gz ]  � 0 

For steady fl ows the fi rst term is zero, so this means 
that the material derivative of the expression in square 
brackets must also be zero, so

    1_
2
   (u2 
 v2 
 w2) 
   

p_
�  
 gz � 

 constant along  
a streamline

(5.3)

This is the Bernoulli equation. It indicates that in an 
inviscid fl ow, total head (1/g times the left-hand side) is 
constant along a streamline. Without further conditions, 
the constant may differ from one streamline to another. 
But for the particular case considered here, all stream-
lines originate from an undisturbed fi eld  upstream 

where    
→ v �    

→
 U and p � pa � �gz so the  constant is equal 

for the whole fi eld.
The next simplifi cation we introduce is to suppose 

that the fl ow is irrotational. This means that the vortic-
ity, the curl of the velocity vector, is zero throughout the 
fl ow fi eld

    
→ � � 	 �    

→ v � 0

or

        �w_
�y

�   �v_
�z

� 0   �u_
�z

�   �w_
�x

� 0   �v_
�x

�   �u_
�y

� 0 (5.4)

This is an acceptable assumption as we are consid-
ering an inviscid fl ow that is uniform far upstream. 
Whereas in a viscous fl ow vorticity is being generated at 
solid boundaries due to wall friction, in an incompress-
ible inviscid fl ow this does not happen—and according 
to Kelvin’s theorem, vorticity is only being convected 
with the fl ow. Far upstream, the infl ow is uniform so 
it is irrotational, and consequently the fl ow will remain 
irrotational everywhere.

For irrotational fl ows, a most useful simplifi cation 
is to introduce a scalar function, the velocity potential
�(x, y, z), such that

    
→ v (x, y, z) � 	 � (5.5)

As the curl of a gradient always vanishes, this sim-
plifi cation guarantees that the fl ow is irrotational [as is 
also easily checked by substituting equation (5.5) into 
equation (5.4)]. Thus, because of the neglect of viscosity 
and the irrotationality of the infl ow, we consider poten-

tial fl ows in this section [i.e., fl ows that satisfy equation 
(5.5) for some scalar fi eld �].

Potential fl ows are determined by two main  equations. 
The fi rst, the Bernoulli equation, derives from the Euler 
equations; the second is the Laplace equation  derived 
from the continuity equation. For potential fl ows in 
 general, Bernoulli’s equation can be further simplifi ed. 
We use the expression (5.5) to express all  velocity terms 
in the Euler equations:

   � _
�t

(	 �)
 	 � � 	(	 �) 
 	 ( p_
�  
 gz ) � 0 (5.6)

to be recast in

	  (   �� _
�t


   1_
2
   	� � 	� 
   

p_
�  
 gz ) � 0 (5.7)

showing that

   
��

 _
�t


   1_
2
   	� � 	� 
    

p_
�  
 gz � C(t) (5.8)

as the constant can still depend on time but not on the 
position in the fi eld.

For steady potential fl ow, this means that the Bernoulli 
equation holds with a constant that now is the same for 
the entire fi eld, not just along a streamline

    1_
2
   	� � 	� 
    

p_
�  
 gz � constant (5.9)

At the undisturbed water surface far upstream of the 
ship, the pressure is atmospheric (and we put pa � 0 for 
simplicity), z � 0, and 	 � � U

→
. We use this to evaluate 

the constant and obtain the pressure directly from

p � ��gz 
   1_
2
   � ( U 

2 � 	 � � 	 �) (5.10)

where the fi rst part is the hydrostatic pressure and 
the second is the hydrodynamic contribution [see Sec-
tion 2.5, equation (2.24)].

As stated, the second equation is the continuity equa-
tion (2.1), which on substitution of equation (5.5)  becomes

   
�2�

 _
�x2   
   

�2�
 _

�y2 
   
�2�

 _
�z2 � 0  or  	2� � 0 (5.11)

which is the Laplace equation for the velocity potential.
Summing up, we fi nd that for inviscid, irrotational, 

and incompressible fl ows:

• We have been able to replace the complicated set of the 
continuity equation plus the Navier-Stokes  equations for 
the three velocity components, by the Bernoulli equa-
tion plus the Laplace equation for a  scalar, the velocity 
potential.
• Because the Laplace equation does not contain the 
pressure, the equations are uncoupled: usually the 
 potential (and thereby the velocity fi eld) can be solved 
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for fi rst, and after that the pressure can be found from 
the Bernoulli equation.
• Moreover, the Laplace equation is a linear and 
 homogeneous equation, and thus admits superposition 
of solutions for the potential or velocity fi eld; a property 
that we shall exploit both in Section 5.4 (for superposi-
tion of linear waves) and in Section 9 (superposition of 
elementary potential fi elds).

This makes potential fl ows far easier to study or 
 compute than viscous fl ows for which these simplifi ca-
tions are not allowed.

5.2.2 Inviscid Flow Around a Two-Dimensional 

Body. In the fi rst place, let us consider the potential 
fl ow around a body in a parallel fl ow without viscosity, 
as sketched in Fig. 5.1. For the moment we suppose the 
body to be 2D, so the sketch may represent the water-
plane for an infi nite-draft ship. Again we disregard the 
water surface and wave making.

Upon approaching the body, the straight streamlines 
have to bend sideward to pass it. At the fore shoulder they 
turn back to follow the middle part of the body; at the 
aft shoulder they bend inward, and thereafter outward 
again to adjust to the parallel fl ow behind the body. For 
this rather bluff body there are thus four  regions where 
the streamlines have signifi cant  curvature: at the front 
end, the fore shoulder, the aft shoulder, and the aft end.

There is a simple relation between the curvature of 
a streamline and the component of the pressure gra-
dient normal to it. This relation is easily understood 
from a  simple balance of forces acting on a fl uid volume 
dx.dy.dz that travels along a streamline with a local 
radius of curvature r (Fig. 5.2). To make the mass in 
the fl uid volume (�dx.dy.dz) follow the curvature, a cen-
tripetal force must act on it: a net lateral force on the 
volume in the direction of the centre of the curvature. 

From basic mechanics, this force is �dx.dy.dz.u2/r, if u
is the local velocity. In inviscid fl ow, this force can only 
be provided by a pressure   gradient. The pressure force 
is equal to the pressure difference between the inner 
and outer surfaces of the volume, �p/�y.dy, times the 
area dx.dz. Equating both expressions, we fi nd that

  
�p_
�r

� �u2 /r

so the pressure increases in the direction away from the 
center of the curvature.

Returning to the 2D body, at the bow and stern 
the streamline curvature is away from the body; 
at the fore and aft shoulder, the surface is convex, and the 
curvature is toward the body. We may thus infer that the 
pressure must rise toward the body at the front and aft 
ends, but it must decrease toward the body at the shoul-
ders. The streamlines have the same type of curvature 
also further away from the body;  suffi ciently far from 

Figure 5.1 Pressure variation due to streamline curvature.
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Figure 5.2 Relation between streamline curvature and pressure gradient.
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the body, all streamlines will have straightened out, the 
fl ow may be considered  undisturbed, and p � 0. Starting 
from this region (far sideward of the body) and moving 
toward the body either at the front end or the aft end, the 
pressure will rise so the pressure on the body surface 
will be higher than the undisturbed pressure level (posi-
tive) at the ends; it will drop if moving toward the shoul-
ders, so the surface pressure is negative at the shoulders. 
Fig. 5.3 illustrates this.

In inviscid fl ow, the velocity distribution along the body 
is linked with the pressure distribution via  Bernoulli’s 
law. A high pressure, such as around the bow and stern 
stagnation points, means a low velocity, and a low pres-
sure, such as at the shoulders, means a high velocity, ex-
ceeding the ship speed. The lower part of Fig. 5.4 refl ects 
this. The changes indicated for a real, viscous fl ow will 
be discussed in Section 6.

If we consider the streamline that approaches the 
body precisely along the symmetry line, symmetry con-
siderations prevent it to curve to port or starboard and 
it will end right at the bow. If subsequently it would fol-
low the hull surface at one side, that would mean the 
streamline would have infi nite curvature at the bow (it 
has a kink), requiring an infi nite pressure gradient. In-
stead, in such a point, the velocity drops to zero, and the 
pressure remains fi nite (but high): From equation (5.10) 
with 	 � � 0, we fi nd that the  hydrodynamic pressure at 
such a stagnation point is equal to

pmax �   1_
2
   � U 

2

the so-called stagnation pressure. This is the highest 
value that the hydrodynamic pressure can reach in a 

steady fl ow. It is customary to defi ne a (hydrodynamic) 
pressure coeffi cient as

Cp �   
p 
 �gz_

1_
2

� U
2
   � 1 �    

	� � 	�  
 _

U
2    (5.12)

At the stagnation points, Cp is thus equal to unity, and 
its distribution is plotted in Fig. 5.3.

5.2.3 Inviscid Flow Around a Three-Dimensional 

Body. Next we consider a 3D body, such as a ship. 
For now, we again disregard the effect of the water 
surface, which we assume to remain fl at; the meaning 
of this will be discussed in Section 9.5.5. The relation 
pointed out before between streamline curvature and 
pressure gradients is still valid. However, we make a 
distinction  between two types of curvature: stream-
line curvature in planes normal to the surface, which 
as in the 2D example causes a normal pressure gradi-
ent and a  deviation from the undisturbed pressure; 
and streamline curvature in planes parallel to the sur-
face, which is connected with pressure variation along 
the girth.

Fig. 5.5 shows the distribution of inviscid stream-
lines over a tanker hull, the so-called KVLCC2 tanker, 
a standard test case in numerical ship hydrodynamics. 
Also the hydrodynamic pressure distribution is shown 
in the form of isobars; lines for negative Cp values are 
dotted. These lines have been obtained from potential 
fl ow  calculations (see Section 9.5.5).

Again there must be at least one stagnation point at 
the bow, where a streamline impinges and the velocity 
drops to zero. This is true in general in a fi nite num-
ber of bow points, one of them at the tip of the bulb. 

Figure 5.3 Pressure distribution along a 2D body in inviscid fl ow.
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The  upper streamlines run aft essentially horizontally, 
and in this region the normal curvature causes the 
same kind of pressure distribution as for the 2D body 
shown in Fig. 5.3. On the forebody, where the approach-
ing streamlines bend outward, there is a high pressure. 
At the fore shoulder where they bend back to follow the 
parallel part of the hull, the convex curvature causes 
a low pressure. At the aft shoulder the curvature is 
convex again and the pressure must be low. Then to-
wards the stern, the fl ow bends back to parallel and 
the  pressure is high. The distribution of the hydrody-
namic pressure coeffi cient shown in Fig. 5.5 confi rms 
that there is a high pressure at the bow and stern ends 
of the hull and low pressures at the shoulders, partic-
ularly the forward one which is sharpest. Again, the 
 Bernoulli  equation links the velocity along the hull with 
the  pressure.

Further down on the forebody, the streamlines will 
move down to the bottom. In doing so they pass over 
a region of higher normal curvature: the bilge on the 
forebody. There the curvature of the streamlines in the 
normal direction is large, so a large pressure gradient 
outward will be created, and the pressure at the hull is 
low (Cp � �0.3).

On the parallel middle body there is no normal curva-
ture of the surface, so pressure gradients must be small. 

There is, however, a slight curvature of the streamlines 
a little bit outside of the hull, as away from the hull the 
streamlines tend to even out the variation in curvature 
along the hull. Thus there is still a small pressure gradi-
ent outward, giving rise to a slightly negative pre ssure 
on the parallel middle body. (The same is also observed 
in Fig. 5.3.) At the stern the fl ow from the bottom moves 
upward, and again it has to pass the bilge region, caus-
ing a low pressure. Ultimately the streamlines will end 
up in one or more stagnation points at the stern.

Evidently, a pressure distribution like this exerts a 
force on the hull surface. It would seem interesting to 
 integrate the longitudinal component of the pressure 
force over the hull in order to fi nd a resistance  component. 
However, because in this case we are  considering a 
closed body in an infi nite fl uid domain in inviscid fl ow, 
and we are disregarding the free surface, d’Alembert’s 

paradox applies: the total force is exactly zero (see e.g., 
Prandtl & Tietjens, 1957). Nevertheless, the pressure 
 distribution is still valuable, as we shall see in Section 11 
(Figs. 11.34 and 11.35).

5.3 Free-Surface Waves. Although the consideration 
of the inviscid fl ow around a body without a free surface 
gives useful insights, it does not give a wave pattern or 
wave resistance. Therefore, a next step is required, the 
explicit consideration of free-surface waves.

Figure 5.4 Pressure and velocity distribution along a 2D body.
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Fig. 5.6 shows an example of a ship wave pattern. 
The pattern has a clear and regular structure that 
 suggests a mathematical background. Understanding 
that background will help to explain the wave pattern 
and its  relation with the hull form, and thereby, will 
help to  design for minimum wave resistance. The pres-
ent  section provides the main physics and mathematics 
of ship waves; in Section 11.5, this will be practically 
 applied in hull form design.

It will appear later that a ship wave pattern is made 
up of a near-fi eld disturbance, which has several  aspects 
in common with the inviscid fl ow without free surface 
described previously, plus a system of waves that, at a 
suffi cient distance from the ship, can be considered as 
a superposition of sinusoidal wave components, gener-
ated by different parts of the hull and propagating in 
various directions. These  sinusoidal waves are  essential 

for understanding ship wave making; in this subsection, 
we fi rst focus on  sinusoidal waves in general and derive 
some of their important properties.

An important question is whether that superposi-
tion of sinusoidal waves is permitted. We previously 
derived that inviscid irrotational fl ows are governed by 
the Laplace equation for the velocity potential, which is 
a linear equation that therefore admits superposition 
of solutions. However, surface waves not only satisfy 
the Laplace equation, but also the boundary conditions 
at the water surface. To allow superposition, those 
 boundary conditions must also be (nearly) linear. Here, 
the following steps will be made.

• From the general form of the free-surface boundary 
conditions, a linear and homogeneous form is  derived, 
the so-called Kelvin condition. This is an  appropriate 

Figure 5.5 Pressure distribution and streamlines around a ship hull in inviscid fl ow. Contours labeled by Cp.
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free-surface boundary condition for waves of small 
amplitude; and as it is linear, any superposition of such 
waves again satisfi es this condition.
• From the Laplace equation and the Kelvin condition, 
the potential and velocity fi eld of sinusoidal surface 
waves is derived. This provides general relations be-
tween wave length and wave speed.
• Expressions are derived for the energy in a surface 
wave, and for the energy fl ux that accompanies a prop-
agating wave; the derivation gives rise to the group 
 velocity concept.

These derivations are incorporated for completeness 
but can be skipped by readers just interested in the phe-
nomenology. The results will be summarized and dis-
cussed in Section 5.3.2.

5.3.1 Derivation of Sinusoidal Waves. We shall 
fi rst derive some main properties of a free-surface 
wave propagating in still water of unlimited depth. 
For this general case we consider an earth-fi xed coor-
dinate system. In this system the wave moves so the 
fl ow is unsteady. Fig. 5.7 defi nes some quantities to be 
used. The free-surface boundary conditions have been 
briefl y introduced in Section 2.4.2. The dynamic free-
surface condition (2.18) is further simplifi ed because 
we  disregard the surface tension, so p � pa. We need 
to use the unsteady form of the Bernoulli equation 

[equation (5.8)]. The constant is deduced from the 
 undisturbed wave elevation far upstream, and we fi nd 
an expression for the wave elevation �,

� � �   1_g     
��

 _
�t

�   1_2g
	� � 	� (5.13)

to be evaluated at z � �.
The kinematic free-surface condition demands that 

the fl ow goes along the wave surface. In the general form 
w � d�/dt (2.20), we substitute the velocity  potential and 
obtain:
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 _
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 _
�x


 �y   
��

 _
�y

� �z � 0 at z � � (5.14)

These free-surface boundary conditions are nonlin-
ear and would not admit superposition of  simple waves. 
However, if we consider the case of waves of small am-
plitude propagating through still water, we can linearize 
these conditions as follows. We suppose that the wave 
steepness (ratio between wave height and wave length) 
is small of �(�), � �� 1. In the kinematic boundary con-
dition (5.14), all derivatives of � thus become of �(�) as 
well, which shows that also 	 � � �(�). Substitution 
in the dynamic and kinematic condition and dropping 
terms of �(�2) yields

 � � �   1_g   
��

 _
�t

     
��

 _
�t

� �z � 0 (5.15)

Eliminating � produces a simple, linear, and homoge-
neous condition for the potential,

�2�
 _

�t2   
 g�z � 0 (5.16)

This is the well-known Kelvin free-surface condition

for unsteady fl ow. It is consistent to apply it simply at z � 0, 
the undisturbed free-surface level, instead of at z � �.

Here we have completed the fi rst step: we have found 
that for waves of suffi ciently small amplitude, a linear 
form of the free-surface boundary conditions applies, 
and such waves may simply be linearly superimposed. 
(As found in practice, this still works well for waves that 
are not so small at all.) No assumption has been made 
on the direction of propagation, so waves running in dif-
ferent directions may be superimposed.

Figure 5.6 A ship wave pattern.
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Figure 5.7 Defi nitions used for derivation of wave properties.
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The second step is to determine a potential fi eld that 
represents such a surface wave and that satisfi es both the 
Laplace equation and the Kelvin condition. We suppose a 
simple sinusoidal wave of small amplitude, wave length 
�, wave propagation speed c, and a shape that does not 
change in time and is invariable in the direction along the 
crest. The water depth is supposed to be unlimited. With-
out loss of generality we suppose the wave propagates in 
the x-direction. A suitable form of the potential then is

�(x, z, t) � F (z) � sin (kx � �t) (5.17)

where the wave number k � 2�/�, the radial frequency 
� � 2�/T, in which T is the wave period, and F(z) is an 
unknown function describing the vertical distribution 
of the potential.

This potential must satisfy the Laplace equation. 
Substitution yields the condition

d2F_
dz2   � k2F(z) � 0 (5.18)

for all z, x, and t. The solution for F(z) is any sum of ekz

and e�kz contributions. However, in deep water the effect 
of the wave must vanish far beneath the water surface, 
for z → �, so only the fi rst contribution is admissible. 
Therefore, the form of the potential becomes

 � (x, z, t) � C � ekz � sin (kx � �t) (5.19)

Finally, the potential must also satisfy the Kelvin 
condition. Substitution leads to

�2 � gk (5.20)

For practical reasons we recast this expression into 
one for wave length as a function of wave speed. Since 
the wave speed is such that one wavelength passes in 
one period, c � �/T � �/k. Using this to express � in 
equation (5.20) in c and k, we fi nd

 k �   
g_
c2     or  � �   2�c2_

g   (5.21)

Collecting all results and evaluating the wave eleva-
tion, we can then write the potential of a wave propa-
gating in x direction with velocity c, in the earth-fi xed 
coordinate system, as

� � c � A � egz/c2 � sin (gx/c2 � gt/c) (5.22)

where A is the wave amplitude.
The fi nal derivation we make is for the energy in 

the waves and the energy fl ux. We consider regular 2D 
waves with length � and phase velocity c, in the same 
earth-fi xed frame of reference with x in the direction 
of the wave propagation velocity. We assume a control 
volume with length � and extending down to �(see 
Fig. 5.7). The kinetic energy in that volume is easily 
found from the gradient of the wave potential
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The excess potential energy (relative to still water) in 
the same volume is

Epot �  ∫ 
0
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 dx � ∫ 
�
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     �gzdz � ∫ 
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2
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4
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Therefore, the total amount of wave energy in the 
control volume is

Ewave �   1_
2
   �gA2� (5.23)

As the control volume is bounded by two vertical 
planes a distance � apart, at which the velocity distri-
bution is always identical, the energy fl ux through both 
planes is the same and the energy in the control volume 
is conserved. This energy fl ux to leading order is the rate 
of work done by the hydrodynamic pressure phd, which is

 E
·

� ∫ 
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This energy fl ux depends on x and t, but its average is

� E
· � �   1_

4
   �gA2 � c (5.24)

5.3.2 Properties of Sinusoidal Waves. The expres-
sions derived in the last subsection have several impor-
tant implications.

Linearity Provided the wave amplitude is suffi ciently 
small, the free-surface boundary conditions can be 
approximated and a simple, linear expression is ob-
tained. Sinusoidal waves have been derived that satis-
fy this condition and the Laplace equation, and these 
waves may therefore be superimposed to obtain new 
solutions.

Dispersion Relation The propagation velocity of wa-
ter waves depends on the wave length (but not on 
wave amplitude, as long as that amplitude is small 
enough to make linear theory applicable) according 
to a simple expression:

c � �
_
g�

 _
2�

      or  � �   2�c2
_

g  (5.25)

This is a difference with, for example, electromagnet-
ic or sound waves that have a fi xed wave speed.  Water 
waves are thus dispersive: if an initial disturbance 
of the still water surface is present at some  location, 
it can be regarded as a superposition of sinusoidal 
(Fourier) components, which will move with differ-
ent speeds. Therefore, a general disturbance will not 
keep its shape but will get dispersed and disintegrate 
into separate  sinusoidal components, which at a later 
time are found at different locations.

Vertical Distribution The disturbance caused by a 
surface wave decays exponentially with the depth 
beneath the surface, according to the function 
F(z) � exp(2�z/�). Therefore, at one half of a wave 
length beneath the water surface, the  disturbance has 
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decreased to just 4% of the magnitude it has at the sur-
face. Short waves in particular are thus confi ned to a 
thin layer along the water surface.

Velocity Field The disturbance velocity components in 
the x and z directions oscillate sinusoidally with equal 
amplitude and a 90-degree phase difference. Therefore, 
in an earth-fi xed frame of reference, fl uid particles de-
scribe circular paths with a radius A.exp(gz/c2), which 
at the surface is equal to the wave amplitude and de-
creases  exponentially with depth (Fig. 5.8). The fl uid 
particles travel along that circular path with velocity 
A

g_
c exp(gz/c2) with the same period as the wave. 

Therefore, although the wave propagation speed is 
c, the average velocity of the fl uid is zero, in linear 
 theory; and the instantaneous velocity differs from 
c as well, depending on wave amplitude and period 
rather than wave velocity.

Group Velocity The average amount of (kinetic plus po-
tential) wave energy per unit of surface area is

Ewave �   1_
2
   �gA2 (5.26)

But according to equation (5.24), the average fl ux of 
energy through a vertical plane extending down from 
the water surface is

� E
· � �   1_

4
   �gA2 � c

Therefore, contrary to what one would expect, the 
wave energy does not travel with the same speed 
as the wave crest, but at half that speed: the energy 
transport velocity, or group velocity, is

cg � � E
· � / E �    1_

2
   c (5.27)

In deep water, the group velocity is just one half 
of the phase velocity! In a regular system of plane 
waves this is not noticed, but it is in other cases. For 
 example, when one throws a stone in a pond, a pat-
tern of  circular waves results, usually in the form of a 

group of a few waves moving outward through water 
that otherwise is hardly disturbed. One might expect 
this wave group to move with a radial velocity c in 
agreement with the length of the waves. However, on 
close observation one notices that individual waves 
successively arise at the inner edge of the wave group 
and move forward until they reach the outer edge and 
disappear. The wave propagation velocity (or phase 

velocity) therefore is signifi cantly larger than the 
“group velocity.” Because the wave energy evidently 
is linked with the group of waves, the group velocity 
is equal to the energy transport velocity, which is half 
the phase velocity. In the next subsection we shall see 
some of the important consequences of this fact.

These and other properties of water waves are all 
 described much more extensively and completely 
in various textbooks, such as Lighthill (1980) and 
 Newman (1977). We have here only indicated the main 
line of the derivations, and pointed out some of the 
properties that will play a role in the following.

5.4 Ship Waves
5.4.1 Two-Dimensional Waves. After the prepara-

tory work in the last subsection, we are now in a posi-
tion to understand ship waves and their properties. Let 
us consider in the fi rst place a 2D situation, such as an 
object with infi nite width (e.g., a submerged cylinder at 
right angles to the fl ow) moving with constant speed V
through still water [Fig. 5.9]). For a steady situation, 

Figure 5.8 Orbital motion in a deep-water wave.

exp (kz)

C

Figure 5.9 Steady waves of a 2D body.

near field

Energy flux
Rw. V

2A
V

Control
volume

gλο = 2πV2



SHIP RESISTANCE AND FLOW 25

as achieved after a suffi cient time of constant motion, 
we expect a wave pattern that is steady in a coordinate 
 system that moves with the body: all waves follow the 
body and  remain at a fi xed position relative to it. There-
fore, the phase velocity of the waves in the wave pattern 
must be equal to V and the dispersion relation (5.25) 
 immediately tells that the wave length must be equal to 
� � 2�V 2/g � 2�Fn2L. So, far enough aft of the body, 
there is just a single wave component present. We know 
its wave length but not its amplitude and phase, unless 
we use other methods.

Close to the body, there must be a local disturbance 
of this simple wave fi eld: evidently the simple poten-
tial fi eld (5.22) does not satisfy the boundary condition 
on the body surface, and other potential fi elds must 
be  present. However, at some distance downstream 
the simple sinusoidal wave is recovered (provided its 
 amplitude is small).

The fact that waves only occur downstream of the 
body is a consequence of the group velocity being 
less than the phase velocity. The trailing wave system 
 contains wave energy, as derived previously. This wave 
energy does not travel with the phase speed V but with 

the group velocity cg � 1_
2
V. Therefore, a control volume 

around the body and moving with it loses wave energy 
through its downstream boundary at a rate equal to 
E.V � E

·
, where E

·
 is the energy fl ux through an earth-

fi xed vertical plane as previously derived. In a steady 
situation, this energy loss needs to be compensated by a 
continuous supply of energy by the body, which is wave 
resistance � speed. Consequently, the wave resistance 
RW (per unit span, in this 2D case) is

RW � (E.V � E
·
)/V �   1_

4
   �gA2 (5.28)

The only unknown here is the wave amplitude A.
5.4.2 Three-Dimensional Waves. In 3D cases such 

as ships, there is an additional degree of freedom which is 
the wave propagation direction, indicated as � in Fig. 5.10. 

A local disturbance, such as the bow of a ship, can gener-
ate a continuous set of wave components propagating in 
various directions ��/2 � � � 
 �/2. Waves with small 
values of � and their crests more or less at right angles to 
the path of the ship are called transverse waves; those 
with large values of � are called diverging waves. The 
limit is often chosen at � � 35 degrees, for reasons that 
will become clear later. “The transverse wave” denotes 
the wave component with � � 0. In  actual ship wave pat-
terns, components with angles up to � � 60 � 70 degrees 
can often be observed.

The wave lengths and phase velocities follow from 
equation (5.25) and Fig. 5.10. The waves with � � 0 
 essentially correspond to the waves in the 2D case. 
The requirement of their being steady in the coordi-
nate  system moving with the ship means that again 
their phase speed is equal to the speed of the ship 
V, so their length is � � 2�V 2/g � 2�Fn2L. However, 
for wave components at larger angles, the crests and 
troughs are still stationary relative to the ship if their 
phase velocity is c � V cos �, as indicated in Fig. 5.10. 
Consequently, the dispersion relation (5.25) tells that 
they have a length

� (�) � 2�c2/g � 2� Fn2 L cos2 � (5.29)

(As measured in a longitudinal cut through the 
wave pattern, the length found is �x � �/cos � �
2� Fn2 L cos �.)

The longest waves in the pattern therefore are the 
transverse waves which have a length �0 � 2�Fn2L, the 
fundamental wave length. All other steady waves are 
shorter than that by a factor cos2 �. As long as the wave 
amplitudes are small, the resulting far-fi eld wave pat-
tern is just the sum of all these components. (For larger 
amplitudes, this is still qualitatively correct.)

For later reference we derive here a general ex-
pression for the far-fi eld wave pattern. Referring to 
Fig. 5.10, for a point (x,y) in the ship-fi xed coordinate 
system (here taken with origin at the bow), we defi ne 
a function p as the distance of this point to the fi rst 

Figure 5.10 Direction, phase speed, and length of wave components in 3D cases.
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crest line at angle � passing through the bow; mea-
sured normal to that crest and positive aft. Noting that 
y is negative for positive �, as indicated in the fi gure, 
we then fi nd:

p � x cos � 
 y sin �

The wave component at angle � in this coordinate 
system is just a 2D wave, and can be written as

� � Acos   
2�p_

�
 
 Bsin   

2�p_
�

 �

Acos   
2�(x cos � 
 y sin �)

  __
�

 
 Bsin   
2�(x cos � 
 y sin �)

  __
�

 

Now, we substitute for � from equation (5.29), and we 
superimpose all wave components, which in the contin-
uous case is an integration. Thus we get

� (x, y) � ∫ 
�   � _

2
  


   � _
2     [A(�)cos   

g(x cos � 
 y sin �)
  __  

V 2 cos2 �
  


 B(�)sin   
g(x cos � 
 y sin �)

  __  
V 2 cos2 �

  ] � d�

(5.30)

5.4.3 The Kelvin Pattern.   A simple-minded con-
struction of the ship wave pattern would be to draw 
continuous crests such as those in Fig. 5.10, extending 
to infi nity, for all  � . The wave pattern would then fi ll the 
entire area behind the fi rst transverse wave crest, which 
would extend transversely from the bow. However, here 
the group velocity causes a drastic change of the appear-
ance. Consider the fi rst wave crest drawn in Fig. 5.10. It 
is generated at the bow, and energy is supplied to it there. 
This energy travels in the direction of propagation; it 
therefore leaves the bow and at later times is found at 
a transverse distance. However, as the group velocity is 
just half the wave phase velocity, the wave energy does 
not stay with the crest but lags behind—just as it does 
for waves caused by a stone thrown in a pond. Conse-
quently, the fi rst wave crest dies out, and a second one 
emerges behind it, which dies out again and generates 
the next wave. Therefore, the fact that the group veloc-
ity is less than the phase velocity is responsible for the 
fact that wave crests do not extend  indefi nitely, but are 

short and are arranged in a fan-shaped pattern, as seen 
in Fig. 5.6. 

 Let us consider the location of the wave energy that 
was generated by the bow when it was at the point P 
 indicated in Fig. 5.11. At that moment, a part of the 
wave crest was generated, which has traveled outward 
with a velocity    

→ c � (�c.cos �, c.sin �) � (�V cos2 �,
V sin � cos �) and a time  t  later is found at point C. Rel-
ative to the origin at the ship bow, which moves with 
 velocity  V  in the�x -direction, the position of the crest 
at a time  t  therefore is 

   xC � Vt  (1 � cos 2   � )  yC  � Vt  sin  �  cos  �

 But the wave energy travels with the group velocity
→ cg �   1_

2
   c � (�   1_

2
   V cos2 �,   1_

2
   V sin � cos � ) , and thus is found 

at the point E 

xE � V � t � (1 �   1_
2
   cos2 � )    yE �   1_

2
   V � t � sin � cos �

 The collection of all points  xE ,  yE forms a “ray” along 
which the wave energy of wave component  �  travels rel-
ative to the bow of the ship. The direction of this ray is 

yE /xE �   sin � cos � _
2 � cos2 �

 

 which is graphically represented in Fig. 5.12. 
 Clearly, the rays of transverse waves stay close to the 

path of the ship, like those of the most sharply  diverging 
waves. At an intermediate � the function has a maxi-
mum. This means that for all � between 0 and �/2, the 
rays cover a sector behind the bow, bounded by those 
rays for which  yE / xE  is maximum. By simple calculus, 
this is found to be for sin � � �

_
1/3  , so � � 35 degrees, for 

which the ray direction is tan �1yE/xE � 19°28�.
 Therefore, all wave energy generated by the ship is 

contained in a sector originating at the bow and with 
a half top angle of 19°28�. There are no waves aligned 
with the edge of this sector, it is just the envelope of the 
fan-shaped pattern mentioned before. Fig. 5.12 also indi-
cates that there is a range of �–values for which the ray 
direction is close to its maximum value, and for which 

Figure 5.11 Construction of ray direction. 
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consequently the wave energy is found close to the 
outer edge of the sector. This explains why in practice 
the outer edge is often more conspicuous than the wave 
components that occur inside the sector. 

 The sector that contains the wave pattern is called 
the  Kelvin wedge , after Lord Kelvin, one of the  earliest 
 researchers who, around 1900, studied ship waves 
(Thompson, 1887, 1904). He considered a single pressure 
point travelling in a straight line over the surface of the 
water, thereby sending out wave components in all direc-
tions. These combine to form a characteristic interfer-
ence pattern, now called the  Kelvin pattern , sketched 
in Fig. 5.13. A system of transverse waves is observed 
following behind the point, together with a series of di-
vergent waves, the whole pattern being contained within 
the Kelvin wedge. The transverse waves are curved back 
some distance out from the centerline and meet the di-
verging waves in cusps at the edge of the Kelvin wedge. 

 We previously derived the locus of wave components 
with a certain direction and originating from a certain 
point (e.g., the bow) as a ray with a direction dependent 
on the wave direction. Fig. 5.14 illustrates how this can 

be a well-defi ned line in practice, extending to large dis-
tances from the ship. Consequently, the wave energy of 
waves within a certain range of �–values is contained 
in a sector bounded by the rays associated with the 
limiting �–values of that range. Because the separation 
 between those rays increases linearly with distance 
from the ship, the wave energy density decreases as 
the inverse distance to the origin of the waves. As the 
 energy is quadratic in the wave amplitude, the ampli-
tude of wave components inside the Kelvin wedge must 
decay as  distance �1/2 . This applies to both transverse 
and  diverging components. However, the mathemati-
cal analysis of the Kelvin pattern shows that the waves 
right at the Kelvin wedge (those with � � 35 degrees) 
 decay with distance�1/3 (Lighthill, 1980). Therefore these 
 particular wave components decrease less rapidly than 
those of the transverse waves, and eventually at a large 
distance they tend to dominate the wave system. 

5.4.4 Ship Wave Patterns .  The Kelvin wave pattern 
illustrates and explains many of the features of the ship 
wave system. In particular, for a ship the entire wave pat-
tern is also contained in a sector bounded by lines that, 
at a suffi cient distance from the ship, make an angle of 
19°28� with the longitudinal axis. Even if nonlinear effects 
occur in the near fi eld, at a suffi cient distance the wave 
amplitude always decreases enough to make the waves 
behave as linear waves, and the properties derived pre-
viously apply. Also, the wave amplitude decay rate with 
distance is as mentioned, following a �½ or �1/3 power. 

 Like the Kelvin pattern, a ship wave pattern is de-
termined by interference between wave components 
in various directions. Again, transverse and diverging 
waves occur in general. The properties of the Kelvin 
pattern are often best recognized in the wave pattern 
generated by the bow, which usually comes closest to an 
isolated pressure point. Between the divergent waves 
on each side of the ship, transverse waves are formed 
which are most easily seen along the middle portion of a 
ship or model with parallel body or just behind the ship. 
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Figure 5.13 Kelvin wave pattern. 
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 However, there are also several differences between 
Kelvin and ship wave patterns. A ship is not a single 
 isolated pressure point, but has a number of features that 
generate waves (e.g., bow, stern, shoulders). These gener-
ate their own wave systems, contained in separate Kelvin 
wedges that overlap and interfere, with separate divergent 
and transverse components; however, not all of these are 
always so clearly distinguishable because of the general 
disturbance already present from the bow wave system. 

 As the wave-making features of a ship have a fi nite 
dimension and a fi nite spacing, some wave components 
are being generated more strongly, others less strongly. 
Therefore, as will be described later, the  ship wave 

spectrum  differs from that of the Kelvin pattern. Conse-
quently, the interference pattern differs in detail and de-
pends on ship form and speed. Although transverse and 
diverging waves are present, the typical concave shape 
of the diverging wave crests seen in Fig. 5.13 often does 
not occur, and crests are short and straight rather than 
long and concave as a result of prevalence of certain 
components in the spectrum. Fig. 5.15, from William 
Froude’s publication (Froude, 1877), illustrates this. 

 We have derived before that a system of sinusoidal waves 
propagating in still water satisfi es the  boundary  conditions 

on the water surface, for limited wave amplitudes. How-
ever, this is only a valid representation of the wave pattern 
far from the ship. The velocity fi eld corresponding with just 
these waves does not satisfy the  condition that the fl ow 
must pass around the hull. Therefore, as in the 2D example 
of Section 5.4.1, there must be a near-fi eld disturbance in 
addition to the  Kelvin wave pattern. In the near fi eld the 
fl ow is defl ected, accelerated, and decelerated. Its char-
acteristics are similar to those described in Section 5.2.3, 
although changes occur as a result of the presence of the 
water surface; some of these are discussed in Section 11.5. 

 Waves generated by the hull fi rst have to propagate over 
this curved and nonuniform fl ow in the near fi eld, leading 
to various changes of the wave direction, amplitude, and 
position (Raven, 1997). Therefore, the  direction, length, 
amplitude, and phase of the waves generated are only ob-
served precisely once they have left the near fi eld and are 
at some distance away from the hull. One consequence is 
the fact that the top of the Kelvin wedge of the bow wave 
system seems displaced forward (the cusp lines outward). 
In Fig. 5.11, the need for such an outward displacement 
can be understood from the fact that the ray drawn based 
on simple  far-fi eld considerations would pass through the 
hull, which is impossible. 

Figure 5.14 A ship wave pattern displaying some clearly defi ned rays at the outside of the Kelvin wedges from bow, shoulder, 
and stern. 
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5.4.5 Interference Effects.   The pressure distribu-
tion around a ship was discussed in Section 5.2.3. We 
recollect that at the bow the pressure is high;  Cp attains 
its maximum value of 1.0 at the stagnation points (there 
may be more than one), and is positive along most of 
the bow contour. Dependent on the type of stern a high 
pressure is often also attained there. Between the high- 
pressure regions at the bow and stern, there are normally 
two minima related to the fore and aft shoulders. For a 
hull without shoulders, such as a sailing yacht, there is 
only one minimum, and it is usually very shallow. 

 Since the surface waves can be considered to be 
generated by pressure disturbances, the most promi-
nent wave systems around a ship will be generated by 
the high pressures at the bow and stern and the low 
pressures at the shoulders. The fi rst two will produce 
waves starting with a crest, whereas the latter two will 
generate waves starting with a trough. In a classical pa-
per by Wigley (1931), the waves around a generic body 
were calculated using the “thin ship theory,” which will 
be described in Section 9.6.3. The body (Fig. 5.16) had 
waterlines defi ned by a double wedge with a parallel 
part inserted in the middle. Wigley’s results display in 
a very clear way the interference between the different 
systems and the effect on the wave resistance, and will 
therefore be described in some detail. 

 The wave systems originating from different parts 
of the hull may well contain transverse and diverging 
components in their different, partly overlapping Kelvin 
wedges. However, for the moment we just consider the 
wave profi le along the hull and centerline, which is dom-

inated by the transverse waves. As seen in Fig. 5.16, the 
wave profi le along the hull contains fi ve contributions: 

 1. A near-fi eld disturbance of the surface, with posi-
tive peaks at the bow and stern and negative peaks at 
the shoulders. In this example it has fore-and-aft sym-
metry because the hull form is symmetrical. This distur-
bance dies out quickly ahead and astern of the hull. No 
waves are thus left behind, and consequently no energy 
is radiated. This disturbance is also called the local dis-
turbance, or the Bernoulli wave. 

 2. The bow wave system, beginning with a crest 
 3. The fore shoulder wave, starting with a trough 
 4. The aft shoulder wave, also starting with a trough 
 5. The stern wave system, here starting with a crest. 

 The wave profi le along the model was then approxi-
mated by the sum of these fi ve systems. The measured 
profi le was found to be in general agreement with it and 
confi rmed the basic idea. 

 Because of the distinct sharp corners at bow, stern, 
and shoulders, the four wave systems have their origins 
fi xed at points along the hull and the primary crests and 
troughs are more or less fi xed in position. As speed in-
creases, the wave length of each of the four systems in-
creases so the second crest/trough shifts downstream. 
The total wave profi le thus will continuously change in 
shape with increasing speed as the crests and troughs 
of the different systems pass through one another. At 
speeds at which wave crests of two or more systems 
coincide, high waves result; if a crest and a trough 
 coincide, they cancel. 

 Figure 5.15 W. Froude’s sketch of characteristic bow wave train (Froude, W., 1877). 
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 For this model, the positive and negative interference 
effects are uniquely defi ned by the ratio of the wave 
length to the hull length (i.e., �0 /L � 2�Fn2). For in-
stance, the bow and stern waves will interact positively 
when this ratio is equal to one and the crests of the two 
systems coincide. We have to note here that this only 
applies strictly to the transverse waves of the different 
wave systems; waves for larger � have a smaller length 
and interfere differently. However, interference effects 
are often most prominent for nearly transverse waves, 
as other wave components quickly move away from the 
hull. Therefore, Wigley’s considerations for transverse 
waves only are still relevant. 

 For more ship-shaped forms with smooth waterlines 
without sharp discontinuities, the wave pattern often 
still can be considered to consist of fi ve components—
a near-fi eld disturbance and four free-wave systems 
(Wigley, 1934). The occurrence of recognizable shoulder 
waves and the type of stern waves depends on the hull 
form. The shoulder systems are no longer tied to defi nite 
points because the change of slope is now gradual and 
spread over the whole entrance and run. Even so, for a 
given hull shape the interference is uniquely defi ned by 
the Froude number. 

 It deserves mention that the existence of interference 
effects of this kind was known to naval architects long 
before this analysis had been developed. The Froudes 

demonstrated them in a striking way by testing a num-
ber of models consisting of the same bow and stern 
separated by different lengths of parallel body (Froude, 
R. E., 1881; Froude, W., 1877). 

5.4.6 The Ship Wave Spectrum.   As we have seen, 
far enough aft of the ship the wave pattern can be 
 considered as a superposition of sinusoidal wave com-
ponents propagating in various directions, each sat-
isfying the dispersion relation that links wave length 
and wave speed. Moreover, the requirement of the wave 
being steady in a coordinate system moving with the 
ship means a unique relation between the wave direc-
tion and the wave speed:  c � V  cos �. Therefore, for a 
wave component in a certain direction �, we know its 
length and speed, and the only unknowns are its ampli-
tude and phase. 

 This is borne out by the expression for the free-wave 
pattern, equation (5.30). The functions A(�), B(�) rep-
resent the free-wave spectrum, which by virtue of this 
fi xed relation between wave length, speed, and direction 
is a one-dimensional spectrum. This is a quite compact 
representation of the far-fi eld wave pattern that the ship 
generates. Fig. 5.17 shows an example for the amplitude  
�
__

  A(�)2 
 B(�)2   against �. This ship is found to generate 
a signifi cant transverse wave, substantial waves around 
� � 36 degrees, and a variety of less pronounced other 
wave components. The spectrum is continuous, but 

Figure 5.16 The near-fi eld disturbance and the free wave systems for the wedge hull. 
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shows the particular preference for generation of cer-
tain wave components by a given hull form at a certain 
speed. For reference, we mention that the Kelvin pat-
tern, for an isolated pressure point, has a spectrum of 
amplitude (�) � C /cos 2 � which has a large contribution 
from diverging waves. 

 To determine a ship wave spectrum experimen-
tally, several different methods have been proposed. 
The general representation of the far fi eld, equation 
(5.30), allows to solve the unknown  A (�),  B (�) from 
measured wave elevations at a suffi cient number of 
points. The most usual approaches are  wave pattern 

analysis   techniques based on measured longitudinal 
or transverse cuts through the wave pattern. Longitu-
dinal cuts are particularly easy to measure by record-
ing the wave elevation at a fi xed location in a towing 
tank against time, during passage of a model. Trans-
verse cut techniques do the same for a set of wave-
height gauges on a transverse subcarriage mounted to 
the towing carriage. The measurements are discussed 
in  Section 8.4.6.  Eggers, Sharma, and Ward (1967) give 
a comprehensive survey of the various wave pattern 
analysis  formulations. 

 Once the spectrum functions  A (�),  B (�) have been 
determined, in principle the entire potential fi eld and ve-
locity and pressure fi eld far from the ship are known as 
a superposition of the corresponding fi elds for all wave 
components. From this, it is possible to derive the en-
ergy fl ux through a vertical, transverse plane far aft of 
the ship. We come back to this in the next  section. 

5.5 Wave Resistance.   In Section 5.2 we considered 
the inviscid fl ow without free surface around a body 
and studied the pressure distribution and its relation 
with the hull form. It was pointed out that integrating 
the longitudinal pressure forces exerted on the hull by 
this pressure distribution would not yield a resistance 
because of d’Alemberts paradox. If the body is travel-
ing on or near the surface, however, a wave pattern is 
generated, and the pressure distribution over the hull is 
altered, even though the main features discussed before 
are mostly conserved. The resultant net longitudinal 
force is the wave-making resistance: 

RW � �∫ ∫  
s

p � nx � dS (5.31) 

 in which  S  is the wetted area of the hull up to the actual 
wavy waterline,  nx  is the longitudinal component of the 
outward normal on the hull surface, and  p  is the pressure, 
including both the hydrostatic and hydrodynamic parts. 
(We suppose an inviscid fl ow here because a change of the 
pressure caused by viscous effects should be included in 
the viscous pressure resistance, not the wave resistance.) 

 This pressure resistance must be of such magnitude 
that the energy expended in moving the body against it 
is equal to the energy necessary to maintain the wave 
system. The wave pattern generated by the ship con-
tains wave energy that radiates out and aft of the hull. 
Therefore, in a steady case, the same energy fl ux needs 
to be supplied by the ship, as wave resistance � speed. 
We can derive this energy fl ux from the free-wave repre-
sentation of the far fi eld, as is inherent to the ship wave 
spectrum. From this, we fi nd the following expression 
for the wave resistance (or “wave pattern resistance”) 
(Havelock, 1934): 

RW �   1_
2
   ��V 2 ∫ 

�    � _
2
  


    � _
2 ( A(�)2 
 B(�)2 )   cos3 � d� (5.32) 

 This expression as a simple integration over the free-
wave spectrum shows clearly that the wave resistance 
depends again quadratically on the wave amplitude, 
and that the phase of the waves in the far fi eld has no 
 effect on the resistance. Also, there is a weighting factor 
cos 3   � , which means that transverse waves are far more 
important for wave resistance than divergent waves, a 
signifi cant fi nding for ship hull form design. Reducing 
the far-fi eld amplitude of transverse waves (e.g., by op-
timizing the wave interference) has a direct benefi t for 
the resistance. 

 It is important to realize that a far-fi eld consideration 
of the wave pattern and radiated wave energy, and an 
integration of the pressure (in inviscid fl ow) over the 
hull, are two ways to look at the same quantity, not two 
resistance components. 

 As we have seen [e.g., in equation (5.23)], the wave 
energy is proportional to the square of the wave am-
plitude, and so is the wave resistance. Owing to this 
quadratic dependence, evidently the superposition of 
wave components does not apply to their resistance 
contributions! Therefore, interference between wave 
components plays an important role: “constructive in-
terference” in which wave systems amplify each other 
leads to a high wave resistance, whereas the opposite 
situation of “destructive interference” in which waves 
cancel each other corresponds to a low wave resistance. 
The dependence of the wave interference on the Froude 
number therefore causes an oscillatory variation of the 
wave resistance with  Fn . The resulting peaks in the re-
sistance coeffi cient curve are called  humps  and the val-
leys are called  hollows . 

 As long as interference between different systems 
plays a role, when the speed is varied there will be a 
succession of speeds when the crests of the two sys-
tems reinforce each other, separated by other speeds 
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Figure 5.17 Example of a ship wave spectrum. 
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at which crests and troughs tend to cancel each other. 
The Froude number at which a certain interference will 
take place depends signifi cantly on the hull form. It is 
good design practice to ensure whenever possible that 
in service conditions the ship is running at a favorable 
speed. The dependence of these humps and hollows on 
the Froude number accounts for the close relationship 
between economic speed and ship length. 

 To obtain some information on the location of humps 
and hollows, we fi rst consider the wedge hull again. For 
this, the wave resistance coeffi cient was found to be of 
the form 

CW �   RW_
1__
2
   �V 2S

� V4 � (constant term 

four oscillating terms) (5.33) 

 The oscillating terms are caused by the interference 
between different wave systems, as indicated in Fig. 5.18. 
For  Fn  increasing beyond about 0.48 most wave systems 
ultimately cancel each other, which compensates the 
steady increase in  CW . At still higher speeds the trans-
verse wave length is substantially larger than the ship 
length, and the interference effect for transverse waves 
vanishes. The higher the Froude number in this regime, 
the lower the value of  CW  . 

 Wigley also made calculations to show the separate 
contributions to the wave-making resistance of the trans-

verse and divergent systems (Wigley, 1942). Up to a 
Froude number of 0.4, the transverse waves are mainly 
responsible for the positions of the humps and hollows 
(Fig. 5.19), as we assumed before. Above this speed, the 
contribution from the divergent waves becomes more and 
more important, and the interference of the transverse 
waves alone will not correctly determine the position of 
the higher humps, particularly the last one at  Fn � 0.5. 

 Wigley’s study was quite simplifi ed by the choice 
of the hull form, by the main focus on interference of 
transverse waves, and by the simplifi cations in the theo-
retical method used. For an arbitrary ship, an empirical 
way to determine the position of the humps and hollows 
is to use the so-called  z-method . It considers only two of 
the wave systems: the bow wave system (starting with 
a crest) and the aft shoulder wave system (starting with 
a trough). The distance between these two was named 
the  wave-making length ,  z . A wave-making maximum 
occurs when z � (2k 
 1) .   � _

2
    and a minimum when 

z � k .�, where � is the transverse wave length and 
k � 0, 1, 2, .... Based on experiments, Baker and Kent 
(1919) proposed a formula for  z , appropriate for  k � 1, 2, 
and 3 (but not for  k � 0): 

z � CP � L 
   1_
4
    �

 where  CP  is the hull prismatic coeffi cient. Using the dis-
persion relation for the transverse waves, the Froude 
numbers corresponding to a hump thus become: 

Fn � �
__

CP__
2�(k 
 1/4) 

    

 If we take Wigley’s wedge model, with  CP � 0.637, as 
an example, humps would occur at  Fn � 0.177, 0.212, 
and 0.285. This agrees fairly well with Wigley’s result of 
hump speeds at  Fn � 0.173, 0.205, 0.269, and 0.476. 

Figure 5.18 Analysis of wave-making resistance into components, for 
wedge-shaped hull. 

Figure 5.19 Contributions of transverse and divergent waves to wave 
resistance. 
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 This slightly more refi ned estimate, which is based 
on empirical data and takes into account one aspect of 
the hull fullness, still cannot provide quite precise re-
sults because there is a substantial variability in hull 
forms and the position of their main wave systems, even 
for a given  CP  . The particulars of the hull shape deter-
mine whether and where signifi cant shoulder wave sys-
tems occur, what the type and location of the stern wave 
 system is, what wave components prevail, etc. These 
complicated dependencies are the very reason for model 
testing and adhering to the concept of “ corresponding 
speeds,” implying equal Froude numbers on the model 
and the actual ship. 

 Fig. 5.20 shows typical resistance curves for different 
types of ships (Todd, 1963). Although this fi gure is for 
old hull forms and proportions, it illustrates well that 
for different ship types, the humps are very different in 
magnitude and occur at slightly different speeds; it also 
indicates the large variation in overall slope of the re-
sistance curve between ship types. The ordinate here is 
the coeffi cient 

© �   125 RT_
1__
2

��	 2/3
V 2

   

 which is another form of resistance coeffi cient used 
in the past (see the discussion in Section 10.1.1). The 
 different graphs give a nice illustration of the humps 
and hollows in the curves (e.g., humps at Fn � 0.24, 
0.30, and 0.48), which can be more or less pronounced 
dependent on the fullness of the ship. When going from 
left to right in this diagram, we shall now indicate how 
the wave pattern changes. 

 At very low speeds, the waves made by the ship are 
very small; some diverging waves around the shoulders 
and at the bow can be noticed only on extremely full 
forms. The wave resistance is almost negligible, and the 
total resistance is almost entirely viscous in charac-
ter. As the frictional resistance varies at a power of the 
speed a little less than two, below  Fn � 0.10 the total re-
sistance coeffi cient is nearly constant, slightly decreas-
ing, as seen for curves A and B. 

 If the speed is increased to about  Fn � 0.15, a clear 
rise of the bow wave and a depression at the forward 
shoulder will be seen on fuller ships. Between the di-
verging waves and the hull and also behind the ship, a 
system of transverse waves has developed. (In addition, 
for all ships a bulbous bow that is not fully submerged 
will generate waves already at low speeds; at higher 
speeds these can disappear owing to the increased 
submergence caused by the bow wave.) A Froude num-
ber of 0.15 corresponds to the service speed of many 
large high-block ships such as very large crude carriers 
(VLCCs), and for these the magnitude of the wave resis-
tance is quite small and of the same order as the still-air 
resistance. Above this Froude number, for fuller ships 
the resistance coeffi cient starts increasing more notice-
ably. The coaster of curve B, with a prismatic coeffi cient 
CP � 0.83, cannot be driven above  Fn � 0.16 without a 
large increase in resistance. 

 At a Froude number of about 0.2, which is the service 
speed of many coastal vessels and other merchant ships 
of moderate fullness, the wave pattern is more fully 
developed. These ships are more slender than those 
 operating at a Froude number of 0.15, to reduce the mag-
nitude of the wave resistance. The energy radiated by 

Figure 5.20 Typical curves of resistance coeffi cient ©.
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the transverse waves, in particular the stern wave, is 
becoming relatively more important in this speed range. 
Attention should be paid to the interference of bow and 
fore-shoulder wave systems. 

 At speeds corresponding to a Froude number of 0.25, 
the wave resistance can be important. A Froude num-
ber of 0.25 is typical for a sea-going ferry, a cruise liner, 
or a containership. For the trawler of curve D, with a 
fi ne hull form of  CP � 0.57, the lower humps are not very 
marked, and an  Fn  value of 0.24 can be reached before 
the rise in the ©-curve begins. However, speed has great 
signifi cance in these ships, to get to the fi shing grounds 
quickly and to get home to market afterwards, and they 
are usually overdriven up to values of  Fn � 0.30. 

 Around  Fn � 0.30, interference of bow and stern 
waves becomes important. At this speed, a signifi cant 
and unwanted interference hump on the resistance 
curve is often found. The transverse waves carry a large 
part of the energy away. Froude numbers of 0.3 are typi-
cal for fi shing vessels, tugs in free running condition, 
and the cruising speed of naval vessels such as frigates. 
The cross-channel ship of curve E, of  CP � 0.58, can be 
driven to  Fn � 0.33 without excessive resistance, for 
although the prismatic coeffi cient is the same as in the 
trawler, the  L / B  ratio is perhaps twice as great, show-
ing the advantage of length in delaying the onset of 
heavy wave-making. The same goes for modern fast car 
 ferries that frequently run at  Fn � 0.32 and still have 
limited wave resistance owing to a sophisticated hull 
form  design. 

 At  Fn � 0.4, the wave length of the transverse wave 
system becomes equal to the length of the ship. This re-
sults in a sharp increase of the wave resistance until the 
main hump is reached at a Froude number around 0.5. 
Ships of moderate fullness generate a pronounced wave 
system. A slight increase of the length of these ships 
and a corresponding fullness reduction to preserve dis-
placement and capacity is extremely benefi cial from a 
powering point of view. The loosely defi ned term “hull 
speed” is sometimes used for this Froude number range, 
in which the fast increase of resistance for most dis-
placement ships can prevent a further speed increase 
even with large power. At the hump speed of  Fn � 0.5, 
the ship sails in her own wave and only transom-type 
ships designed with a fl at afterbody are able to pass the 
main hump. Ships with V-type sections in the afterbody, 
however, will meet a progressively higher wave resis-
tance in this range of Froude numbers. 

 At speeds above the main hump at a Froude number 
of 0.5, the dynamic lift acting on the (fl at) afterbody 
becomes more and more important. This is the mecha-
nism through which the ship is lifted and the resistance 
curve fl attens off. The range of speeds  Fn � 0.5 is often 
referred to as the semi-planing range. The transverse 
waves become relatively unimportant at speeds well be-
yond the main hump. The destroyer of curve F, for which 
economy in the commercial sense is not paramount, 
normally has a top speed of  Fn � 0.6 or more. 

 At a Froude number of about 1.0, the planing speed 
range is entered. It is to be noted that  Fn � 1 is no pre-
cise limit or critical speed at all, unlike, for example, 
a Mach number 1! The dynamic lift is fully developed 
here and carries the weight of the ship to a great extent. 
Here, the wave resistance is gradually becoming less 
important in a relative sense. The wave pattern is re-
duced to a narrow V-pattern. The angle of the V-pattern 
decreases as the speed is increased. Actually, the extent 
of the Kelvin wedge is unchanged, only the wave com-
ponents with  � � 35 degrees are not generated at these 
high speeds, and the cusp line is invisible. 

5.6 Wave Breaking and Spray.   In Section 5.4, the 
far-fi eld wave motion has been considered to be made 
up of sinusoidal waves, and much of the theory pre-
sented only applies to such waves with relatively small 
amplitude. However, at least closer to the ship the wave 
steepness can be substantial, and nonlinear effects 
occur that slightly modify the relation between wave 
length and wave speed. Moreover, as mentioned, the 
propagation of waves over a curved and variable fl ow 
fi eld around the hull affects the wave properties. Still 
these changes are rather mild and qualitative. 

 A completely different type of wave behavior is wave 
breaking, which may occur if the wave steepness is large, 
therefore mostly close to the hull. Steep wave slopes 
will collapse in the direction of wave  propagation, and a 
breaker is formed. Two types of wave breaking are usu-
ally distinguished. The fi rst is a “plunging” breaker, in 
which a high wave crest steepens and forms a forward-
directed jet at its tip, which falls down in forward di-
rection onto the wave surface (Tulin & Landrini, 2000). 
The other type is a “spilling” breaker, which can be re-
garded as a patch of aerated water riding on top of a 
less disturbed underlying fl ow, virtually sliding down 
the forward face of a wave (Cointe & Tulin, 1994). The 
 distinction is not always very clear, and a plunging 
breaker often becomes spilling in its later stage. 

 Typical wave breaking occurrences in steady ship 
wave patterns are: 

 • At a sharp bow, where the bow wave at higher speeds 
can climb up along the hull surface, then falls over and 
forms a breaker of the plunging type, the crest overturn-
ing sidewards; 
 • Around a blunt ship bow, where a spilling breaker 
may form at the front of the wide bow wave crest; 
 • At a pronounced fore or aft shoulder, where a spilling 
breaker can occur at the aft side of the wave trough; and 
 • Aft of the stern, as a spilling breaker on the fi rst wave 
crest aft of the transom, and sometimes breaking of the 
diverging waves from the corners of the transom. 

 A completely satisfactory explanation of the incep-
tion of the breaking process has not yet been found, but 
a few hypotheses have been put forward. For bow-wave 
breaking, it has been suggested that a thin boundary 
layer is formed on the free surface in front of the ship 
and that viscous effects in this layer cause the fl ow to 
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separate in front of the hull. This idea is substantiated 
by test results where the boundary layer has been arti-
fi cially thickened by towing a plastic sheet on the sur-
face. When thickening the boundary layer in this way, 
the breaking increased. In another hypothesis, the bow 
wave gets unstable and falls over in the forward direc-
tion. A vortex in the form of a “necklace” is then formed, 
as shown in Fig. 5.21. A notable vorticity has been mea-
sured in this region, supporting the hypothesis, but it 
is also possible that the vorticity could come from the 
other process mentioned. In some occurrences of ship 
wave breaking there is an evident effect of the viscous 
fl ow around the hull, in particular on the stern and aft 
shoulder waves. For aft shoulders, the occurrence of 
wave breaking seems accompanied by viscous fl ow sep-
aration just beneath the wave surface. 

 In the steady fl ows we are considering, a breaking 
wave still is steady in a time-averaged sense. In the 
breaking, the well-ordered orbital motions in the waves 
are converted to a turbulent fl ow with irregular eddies; 
in addition, the forward motion in the breaker generates 
a wake with a recognizable momentum loss, which, for 
bow wave breaking, fl ows along the hull and may be 
found in the wake of the ship. This phenomenon was 
fi rst measured by Baba (1969), who carried out wake 
surveys of the fl ow behind bluff hulls. Fig. 5.21 is a 
sketch of his fi ndings. There are two wake lobes, one on 
each side, outside of the main wake. 

 The relevance of wave breaking for hull form design 
is primarily that it indicates that steep waves are gen-
erated; this may be a reason to modify the design. In 
principle, wave breaking converts wave energy into tur-
bulent energy and other kinetic energy contributions, 
and that energy loss is related with a wave breaking 
resistance (as opposed to the wave pattern resistance 
representing the contribution of the radiated waves). By 
measuring the momentum loss in the wake lobes, the 
wave breaking resistance has been determined by Baba 
and others, showing that this resistance component 
could amount to 15% of the total resistance for a full 
hull form. On the other hand, the energy conversion also 

means that the amplitude of the trailing wave system is 
reduced, so simultaneously less wave energy is left be-
hind by the ship, and the sum of both is not necessarily 
much different from when no wave breaking would oc-
cur. An aspect for which the occurrence of wave break-
ing is important indeed is the generation of fl ow noise, 
relevant for naval vessels. 

 When scaling model tests to full scale, both wave 
resistance components (wave pattern resistance and 
wave breaking resistance) are scaled up directly. This is 
reasonable because both are related to the wave genera-
tion. However, the distribution of resistance between 
these two components may not be right because the 
Weber number is much smaller at model-scale, making 
the surface tension forces more important. There is thus 
considerably less breaking at model-scale, and the ap-
pearance of wave breaking is different with less white 
water, but this does not seem to have a noticeable effect 
on the extrapolation of the total wave resistance. To-
day, it is therefore not customary to make a distinction 
between the two parts of wave resistance, as this would 
give little advantage. 

 At high speeds, an additional resistance component 
can arise in connection with the water surface: spray 
drag. A sharp bow at high speeds can give rise to a thin 
sheet of water following the hull surface, then detach-
ing and breaking up into spray. The resistance conse-
quences can be reduced by mounting spray rails defl ect-
ing the sheet away from the hull. 

 For high-speed planing craft, a low deadrise angle 
and an aft trim can cause a blunt entrance of the wa-
terline at speed. The occurrence of spray is an essential 
element in the attachment of the water surface to the 
bottom of the hull. Savitsky, DeLorme, and Datia (2007) 
discuss the phenomena, propose a simple estimation 
method, and give indications on spray rail location. 

5.7 Viscous Effects on Ship Wave Patterns.   The dis-
tinction between wave making and viscous fl ow, and 
the consideration of ship wave making as an entirely 
inviscid phenomenon as proposed in Section 5.1, is an 
approximation. Viscous effects on the wave pattern do 

Wake generated by breaking

Wake generated by viscous forces along the hull
Bow vortex

Figure 5.21 Wave breaking and the resulting necklace vortex. 
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exist, but they are usually rather small. Only recently, 
with the advent of accurate free-surface viscous fl ow 
calculation methods as discussed in Section 9.8, is it 
possible to quantify these effects and to see the scale ef-
fect on the wave pattern that results from the difference 
in Reynolds number. 

 A fi rst point to be made is that viscous effects on the 
propagation  of water waves in deep water, in the form 
of viscous wave attenuation, is entirely negligible on 
a ship scale. The only effects on the wave pattern are 
due to viscous effects on the wave  generation , and in 
certain cases an effect of the wave propagating through 
the viscous wake of the ship leading to changes in wave 
length and wave direction. 

 The principal effect observed is a rather pronounced 
reduction of the stern wave system caused by the pres-
ence of the boundary layer and wake which change the 
pressure fi eld around the stern. An example from com-
putations is shown in Fig. 9.11. This reduction is usually 
larger at model-scale than at full scale as a result of the 
thicker boundary layer. More examples from computa-
tions are shown in Raven et al. (2008). In general, the 
importance of these viscous effects has been found to 
increase with the fullness of the hull form, but to de-
pend signifi cantly on hull form details. 

 Besides, viscous effects play a crucial role in the fl ow 
off an immersed transom stern that causes a recircula-
tion area aft of it (wetted-transom fl ow), and affect the 
transitions between transom-fl ow regimes. Substantial 
changes of the wave pattern can also be caused by fl ow 
separation at the waterline, such as at a sharp aft shoul-
der or a bulbous bow at a too low draft. Nevertheless, 
in most cases these are secondary effects that do not 
change the considerations in the previous sections. 

5.8 Shallow-Water Effects on Wave Properties.   In the
previous sections, we assumed that the depth and width 
of the waterway are unlimited. In many coastal regions, 
however, the water is rather shallow, which can sub-
stantially affect the fl ow and the wave and viscous resis-
tance. We shall fi rst discuss the effect of limited water 
depth on wave properties; the following sections then 
address the consequences for a ship’s wave pattern and 
its resistance. 

 In Section 5.3.1 we have derived the potential of a si-
nusoidal wave propagating in deep water. Introducing 
an unknown vertical distribution  F ( z ) of the potential 
and substituting it into the Laplace equation yielded 

d2F_
dz2   � k2F(z) � 0 

 In deep water, the wave disturbance must vanish at 
infi nite depth; this then led to the solution  F ( z ) � C . ekz.
However, in a fi nite water depth  h , the boundary condi-
tion must hold that there is no velocity normal to the 
bottom of the waterway, or  dF / dz � 0 at  z � �h . The 
solution then takes the form  C .cosh  k ( z 
 h ), so the po-
tential becomes 

 �(x ,  z ,  t ) � C .cosh  k  ( z 
 h ).sin ( kx � �t ) (5.34)

 From this form of the potential we derive the wave am-
plitude  A  using the dynamic free-surface boundary con-
dition, and thus can express the unknown  constant  C  in 
that amplitude. We then obtain the expression for the ve-
locity potential of a wave with amplitude  A   propagating 
in  x -direction with wave number  k  and  radial frequency 
�, in water of fi nite depth  h , in an earth-fi xed coordinate 
system, as 

� �   
gA_
�

     
cosh k(z 
 h)

  __
cosh kh

 sin(kx � �t) (5.35) 

 Furthermore, we substitute this form of the potential 
into the Kelvin free-surface condition 

�2�
 _

�t2   
 g�z � 0 (5.36) 

 which yields 

��2 
 gk  tanh  kh � 0 (5.37) 

 or, using k � 2�/� and � � 2�c/�, we obtain the disper-
sion relation for fi nite water depth 

c � �
__

  
g�

 _
2�

   tanh  ( 2�h_
�

 )    (5.38) 

 From this form of the potential and the dispersion re-
lation valid for small-amplitude waves in shallow water, 
we derive the following main properties: 

Dispersion Relation  Equation (5.38) differs from the 
corresponding deep-water relation equation (5.25) by

the tanh   2�h_
�

   factor. Evidently, for water depth tending

to infi nity that factor goes to unity, and the dispersion 
relation assumes the form for deep water. However, 
for larger �/h the factor introduces a depen dence 
on the ratio of wave length to water depth. Fig. 5.22 
shows this dependence. Here, 

c_
�
_
gh  

� �
__

  � _
2�h

tanh   2�h_
�

     (5.39)

 is plotted, which is a function of �/h only. In the left 
part of the graph, the curve coincides with the deep-
water relation, as indicated. Once the wave length is 
more than two to three times the water depth, it starts 
deviating from this line, in the sense that waves of 
equal length are slower in shallow than in deep wa-
ter; or, for the same propagation speed, they must be 
longer. When the depth h decreases more and more 
and the ratio �/h becomes large, tanh(2�h/�) ap-
proaches the value 2�h/�; formula (5.38) shows that 
then the wave velocity approaches a limiting value of 

c � �
_
gh   (5.40) 

 Therefore, in shallow water there is an upper limit to 
the wave propagation speed! 
 This range of constant wave speed is essentially 
reached when the water depth is less than about 7% 
of the wave length. It is also signifi cant that in this 
range of shallow-water waves, the unique relation 
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between wave length and wave speed is lost: all 
waves that are longer than about 14 h  run at essen-
tially the same speed. Thus, as far as wave proper-
ties are concerned, “shallow” means a small ratio of 
water depth to wave length; the same waterway can 
be shallow for long waves and deep for short waves. 

Velocity Field  From the expression for the potential, 
it is easy to derive the velocity fi eld induced by the 
wave. As Fig. 5.23 indicates, the circular paths of 
fl uid particles in a deep-water wave become elliptical 
paths in shallow water, with an increased horizontal 
component and decreased vertical component. At the 
bottom the latter actually vanishes and the fl uid mo-
tion is a purely horizontal oscillation. 

Vertical Distribution Fig. 5.24 illustrates the variation 
of the length of the horizontal axis of these elliptical 
paths with distance beneath the surface. It thus com-
pares the amplitude of �x  for a wave of equal length 
and amplitude in deep water and in shallow water 
for an arbitrarily chosen water depth  h � � /2 � . It is 
 noteworthy that for the same wave amplitude and 
wave length, the horizontal velocity components are 
substantially larger in shallow than in deep water.

λ/h

c/
(g

.h
)1/

2

0 5 10 15 20

0.5

1

1.5

Figure 5.22 Wave propagation speed for sinusoidal wave on shallow water (solid line) and the corresponding 
deep-water relation (dashed line).
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Figure 5.23 Paths of fl uid particles due to propagating sinusoidal wave, in 
deep water (top fi gure) and shallow water (bottom fi gure).
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Figure 5.24 Comparison of vertical distribution of horizontal velocity 
amplitude in deep and shallow water (dashed and solid line,  respectively), 
for same wave amplitude and wave length  �  � 2 �h . 
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Group Velocity In Section 5.3.2, we have seen that in 
deep water, the group velocity of a wave is just half 
the wave propagation speed. As is derived in Lighthill 
(1980), in water of depth  h  the ratio of group velocity 
cg  to wave propagation speed  c  is given by

cg/c �   1_
2
    (1 
   4�h/� __  

sinh (4�h/�)
   )  (5.41) 

 dependent on the water depth/wave length ratio. 
Fig. 5.25 illustrates its behavior. As further evidence 
of the completely different character of shallow-
water waves, we notice that for  � / h → , the group 
velocity becomes equal to the wave speed. As will 
appear, this has some important consequences. 

 With these wave properties, we have collected enough 
material to consider ship wave making in shallow water, 
which will be done in the next section. 

5.9 Shallow-Water Effects on Ship Wave Patterns.   In 
Section 5.4.2 we discussed how a ship’s wave pattern 
consists of wave components traveling in various direc-
tions, having propagation speeds  c � V  cos � , dependent 
on the divergence angle  � , the angle between the direc-
tion of wave propagation and the ship’s longitudinal 
direction. Of course this relation still holds in shallow 
water, as all wave components must be steady in a co-
ordinate frame moving with the ship. However, the rela-
tion between wave speed and wave length does change 
in shallow water. 

 We saw that in shallow water there is an upper limit 
to wave speed. The ratio between ship speed and this 
maximum wave speed will appear to be an impor-
tant parameter. This is the Froude number based on 
 water depth:  

Fnh �   V___
�
_
gh  

 Evidently, the geometry of a ship’s wave pattern in 
shallow water not only depends on its length Froude 
number but also on its depth Froude number, which 

modifi es the wave lengths and thus the interference of 
wave components. Based on the value of  Fnh various 
fl ow regimes can be distinguished, which will be dis-
cussed in the following subsections. 

5.9.1 Low Subcritical:  Fn   h   � 0.7 .  As long as the 
water depth is large compared with even the longest 
waves in the ship wave pattern, no change of the shape 
of the wave pattern is noticed. This holds as long as the 
water depth is more than one-third of the transverse 
wave length, so 

h �   2_
3
   �Fn2L or  Fnh � 0.7 

 approximately. In this depth-Froude number range, 
the wave lengths and directions will be essentially 
 unaffected. 

 However, this does not mean there are no shallow- 
water effects yet. Even for a small depth Froude num-
ber the ratio  h / T  (where T is ship draft) can be rather 
small, meaning the vessel sails with little keel clear-
ance. The bottom of the waterway then restricts the 
fl ow under the ship and forces it to pass along the sides 
of the hull rather than under its bottom. As a result, 
the fl ow will follow a more horizontal path, along wa-
terlines rather than buttocks. This path will  often have 
larger curvature and, together with the mirroring ef-
fect of the bottom, this causes larger pressure gradi-
ents. Simultaneously, the increased fl ow speed past 
the vessel due to the proximity of the bottom means a 
lower pressure, causing an increased dynamic sinkage 
of the vessel. Both factors contribute to an increase 
of the wave  amplitudes  in shallow water, even in the 
regime  Fnh � 0.7 where the wave  lengths  are still unaf-
fected. This  effect depends on geometric parameters 
such as  h / T ,  h / B , etc. 

 A further effect noticed in this regime is the fact that 
the primary wave disturbance, the area of overspeed 
next to the hull, extends to larger distances in shallow 
water. This is noticed as a stronger “suction” caused by 
a ship in shallow water or a channel. 

 Fig. 5.26 shows the computed potential fl ow past the 
hull of a tanker (the same KVLCC2 case as in Fig. 5.5) 
in deep and shallow water, illustrating the strongly in-
creased pressure gradients, the much larger extension 
of the primary disturbance (the area of water level de-
pression around the hull), and the increased wave am-
plitudes (mostly the transverse wave next to the hull). 
For this particular case with  h / T � 1.20, the calculated 
sinkage increased by a factor of 4 and the bow-down 
trim by a factor of 3. 

 Besides these changes in the potential fl ow and 
wave making, the viscous fl ow is also affected. The 
 increased overspeed next to the hull increases the fric-
tional  resistance. Moreover, the boundary layer along 
the hull is driven by the outer inviscid fl ow, and thus 
will also follow a more horizontal path and is subjected 
to larger pressure gradients. Near the stern, this may 
lead to an increased thickening of the boundary layer, 
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Figure 5.25 Ratio of group velocity and wave velocity, as a function of 
wave length/water depth ratio. 
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Figure 5.26 Hull pressure distribution and wave pattern for a tanker at FnL � 0.142. 
Top: deep water; bottom: shallow water (h/T � 1.20). 

possibly  leading to fl ow separation. Thus also the vis-
cous resistance can be increased substantially due to 
a limited  water depth, as expressed by  h / T ,  h / B , and 
similar parameters. The modifi ed fl ow direction may 
lead to  additional  effects resulting from an imper-
fect appendage alignment, causing further resistance 
 consequences. 

5.9.2 High Subcritical: 0.7 � Fn   h   � 0.9 .  For a 
fur ther decreasing water depth or increasing speed, 
the shape of the wave pattern will start to change. His-
torically, these changes have been studied by Havelock 
(1908) for a point pressure impulse traveling over a free-
water surface; Fig. 5.27 shows a graph of his results. 

 Upon a decrease of the water depth, the limit  h � � /3 
will be passed fi rst for the longest wave components, 
the transverse waves. As their speed must be equal to 
the ship speed, their length is increased by the limited 
depth, as can be read from Fig. 5.22. At the same time, 

diverging components in the ship’s wave pattern can 
still be unaffected. For further increasing  Fnh , more and 
more components will start changing. 

 The increase of wave lengths is accompanied 
by  another remarkable change. In Section 5.4.3 it 
was demonstrated that the wave pattern of a ship is 
 contained within the Kelvin wedge, the top angle of 
which is  determined by the ratio of group velocity to 
wave propagation velocity. This ratio, 0.5 in deep wa-
ter, is increased in shallow water. Reconsidering Fig. 
5.11 in Section 5.4.3, in shallow water the ray  OE  will 
thereby be further outward. The location where waves 
with a given divergence angle  �  are found moves out-
ward, and the width of the Kelvin wedge increases 
with increasing  Fnh  until, as we will see, its half top 
angle is 90 degrees at  Fn h  � 1. 

 Simultaneously with these changes in the shape of the 
wave pattern, the proximity of the bottom still  increases 
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the wave amplitudes and the wave and  viscous resis-
tance by the mechanisms mentioned before, as deter-
mined by  h / T ,  h / B , and similar parameters.  Therefore, 
two different physical shallow water  effects occur 
 simultaneously, each dependent on its own  parameters. 

5.9.3 (Trans)critical: 0.9 � Fn   h � 1.1.   In a (not 
precisely bounded) transcritical range around  Fnh  � 1, 
shallow water effects can be dramatic. As the trans-
verse waves move as fast as the ship itself, if the depth 
Froude number  Fnh � 1 they move at the maximum 
wave speed  �

_
gh   and become pure shallow-water 

waves. This means that their length is not determined 
by the ship speed. According to linear theory, these 
waves are nondispersive and a regular trailing wave 

pattern consisting of transverse waves with constant 
length is not necessarily present. In practice, strong 
transverse crests at bow and (in particular) stern are 
often observed. 

 For these critical waves, the group velocity is equal to 
the wave speed. Consequently, the wave energy does not 
lag behind and is not spent in a trailing wave  system, but 
is kept in the wave itself where it is generated. The pres-
sure fi eld (and resistance) of the ship continuously feeds 
energy into this wave, which can grow quite strongly. 
The whole transverse wave system might not become 
steady—at least, differences in the critical wave pat-
tern dependent on the time spent at that speed have 
been measured (Doyle, Whittaker, & Elsaesser, 2001). 
Actually, the growth of the wave height will be limited 
by energy loss or dispersion caused by nonlinearities, 
wave breaking, and the growth of the lateral extent of 
the wave crests. 

 From the fact that the group velocity approaches 
the wave propagation velocity for  Fn h → 1, it can be 
 understood that the Kelvin wedge as such has ceased to 
 exist. The transverse waves extend further and further 
in lateral direction during a prolonged critical-speed 
 operation. 

 If these critical waves are substantial, a large amount 
of water is pushed ahead, and a very large increase of 
the resistance occurs, accompanied by a large trim and 
sinkage. Most displacement ships will be unable to pass 
critical speed just by lack of power or because of hitting 
the bottom. 

 It is, however, important to realize that the only 
waves that are critical at critical speed are the trans-
verse waves. At the same time, divergent waves which 
are shorter and slower are still subcritical, and some 
may even be hardly affected by water depth. For a ship, 
therefore, sharply diverging waves forming the familiar 
sequence of short crests and troughs arranged around 
the ray direction may well be observed simultaneously 
with critical transverse waves (see the middle graph of 
Fig. 5.28). 

 Critical speed effects can be quite dramatic for 
some ships, causing a large wave buildup and a dras-
tic  increase of resistance, but may be hardly notice-
able for other ships. An important insight is that this 
depends on the strength of the transverse waves the 
ship  generates. Very slender ships tend to generate di-
verging rather than transverse waves. Also, fast ships 
operating at length Froude numbers well beyond the 
primary hump ( FnL �� 0.5) hardly generate transverse 
waves. When such vessels pass critical speed, the theo-
retical effects on those transverse waves may be un-
noticeable (although a prolonged operation at critical 
speed might change this). Such an experience is re-
ported in Stumbo, Elliot, and Fox (2000). Conversely, 
if critical speed  coincides with a speed at which the 
strongest transverse waves are generated, for instance 
at  FnL � 0.4 (taking into  account the longer waves 

Figure 5.27 Change of wave pattern of a pressure patch with varying Fn   h , 
according to Havelock (1908). 
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in shallow  water), critical speed effects will be very 
large. This would be the case for  L / h � 6.25 and in a 
wide range around it. 

 If the waterway is laterally restricted as well, such 
as in a channel, but also in a towing tank, some pecu-
liar effects can be observed in the transcritical speed 
range. The lateral restriction means that the trans-
verse waves can build up and start moving ahead of the 
 vessel, forming a series of solitary waves preceding the 
vessel (or model). In a model basin, this causes periodic 
variations in all measured fl ow quantities, which would 
not be present in the corresponding unlimited-width 
 situation. For full-scale ships this phenomenon is rarely 
of importance. 

5.9.4 Supercritical:  Fn   h   � 1.   If the speed increases
or the depth decreases further, the ship enters the 
 supercritical range. The ship speed now is larger than 
the maximum wave propagation speed; therefore, trans-
verse waves cannot exist and are left behind at passage 
of the critical speed. However, diverging waves can 
still be present. Because  c � V .cos �  for all steady wave 
 components, the wave speed limit c � �

_
gh   means that 

� � cos �1  (1/ Fnh ). 
 The wave with this limiting value of  �  is a shallow-

water wave, it is nondispersive, the group velocity 
equals the phase velocity, and it forms a single con-
tinuous crest and trough without a trailing system of 
 parallel wave crests. This wave forms the outer bound-
ary of the  entire wave system at supercritical speeds. 
The higher the depth Froude number, the narrower the 
area in which the wave system is found. Although the 
wave pattern is again confi ned within a triangular area, 
this is not a Kelvin wedge: its top angle is determined by 
the ratio of ship speed and maximum wave speed, not 
by the ratio of wave speed and group velocity. 

 The outer waves have similar properties as the trans-
verse waves at critical speed, but usually have less build-
up. Because the wave energy moves outward from the 
vessel along the crest, it does not accumulate in the way 
it does at critical speed. In practical cases, for ships that 
are able to reach supercritical speeds the outer waves 
may be hardly visible, but they still can have important 
consequences, as discussed in Section 5.11. Inside the 
pattern there are still subcritical waves as well,  moving 
at larger divergence angles. The radical changes in the 
wave pattern are usually accompanied by a substantial 
decrease of the trim and sinkage and the resistance 
when critical speed is passed. 

 Figs. 5.27 and 5.28 illustrate the wave pattern in the 
various speed regimes for a pressure patch (Havelock, 
1908), and for a ship (as computed with a free-surface 
panel code). In the latter case, the computations are for 
a constant speed of the ship ( FnL � 0.35) and varying 
water depth, again yielding  Fnh � 0.40, 0.99, and 1.40. 
The change of wave properties in shallow water appears 
to bring about dramatic changes of the shape and ampli-
tude of the wave pattern. 

Figure 5.28 Effect of water depth on wave pattern for a ship at FnL � 0.35, 
as computed. Top to bottom: FnH � 0.40, 0.99, and 1.40. 
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 Fig. 5.29 is a visualization of a wash pattern of a cat-
amaran ferry running at  FnL � 0.41,  Fnh � 1.5. Remark-
ably, this is a full-scale measurement carried out on a 
lake! A laser altimetry system has been used, operated 
from an airplane, to provide a unique mapping of the 
overall wash pattern in a large domain (Bolt, 2001). 
Fig. 5.29 shows the scanned part of the pattern. Clearly, 
the leading wave of the supercritical pattern is a very 
long wave with a continuous crest and is followed by 
a second crest diverging away from it at a small angle. 
Inside this pattern, waves at larger divergence angles 
are seen, in particular a set of subcritical, dispersive 
waves forming the familiar fan-shaped pattern, prob-
ably originating from the transom sterns. Along the 
top edge of the scanned area, the waves reach a deeper 
part of the waterway and change their direction and 
length. 

5.10 Shallow-Water Effects on Resistance.   The ef-
fect on resistance caused by these changes in wave 
pattern in shallow water has already been investigated 
by Havelock (1908) for a pressure disturbance of linear 
dimension  l  travelling over water of depth  h . The resis-
tance curves are reproduced in Fig. 5.30. Each curve 
is marked with the value of the ratio of depth of wa-
ter  h  to the characteristic length of the disturbance  l , 
that marked  being for deep water. When the ratio  h / l
is 0.75, there is a marked peak at a speed correspond-
ing to a value of V/�

_
gh  � 0.86. Because  �

_
h/l � 0.866, 

this corresponds to  Fn h � 1, the critical speed. The 
same goes for the peaks in the other curves. At this 
speed, the resistance is much greater than in deep wa-
ter, in particular for small  h / l . Beyond the peak, in the 

supercritical range, the resistance falls below the deep 
water value. 

 The characteristic behavior of the resistance of 
a high-speed ship in shallow water is illustrated in 
Fig. 5.31, which shows resistance and trim curves 
for a model of a destroyer run in different depths of 
 water (Rota, 1900). Fig. 5.32 shows the same data as 
a  percentage increase in resistance relative to deep 
water, plotted against  Fnh . On each curve in Fig. 5.31, 
the critical speed  Fnh � 1 for that particular depth is 
marked by an arrow. Considering the curves for the 
shallowest depth,  h / T � 3.08, it will be seen that as 

Figure 5.29 Supercritical wave pattern at Fnh � 1.5, as measured from an airplane. (Picture courtesy of E. Bolt, Transport Research Centre, 
Ministry of Public Works and Water Management, Netherlands.) 

Figure 5.30 Effect of shallow water on wave resistance, according to 
Havelock (1908). 
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the speed of the model approaches the critical speed, 
the trim by the stern and the resistance both begin to 
increase very  rapidly. Fig. 5.32 shows that the peaks 
occur at values of V/�

_
gh   somewhat less than unity. The 

percentage increase at the peak is greater for a smaller 
ratio of draft to water depth, and for the smallest depth 
an almost threefold resistance is found! 

 When the critical speed is passed, the trim falls 
off very quickly. In addition, the resistance increase 
caused by shallow water decreases quickly above the 
critical speed. Well above critical speed the resistance 
is  somewhat less than in deep water, and the same 
generally applies to the wave amplitudes, trim, and 
 sinkage. 

 The large resistance peak at critical speed is the cause 
of the fact that nearly all displacement ships operate in 
the subcritical zone; faster ship types like planing craft, 
multihulls, and similar ship types frequently  operate in 
the supercritical range. Just as for the wave amplitudes, 
the magnitude of the resistance peak at critical speed 
also depends on the strength of transverse waves gener-
ated by the vessel at that speed. 

 For practical purposes it is important to be able 
to estimate how the resistance of a given ship will 

be  increased by limited water depth, and we will now 
 describe some simplifi ed approaches to make such 
 estimates. These are applicable to the subcritical re-
gime only. 

 In Section 5.4.5, we considered a simple theory on 
wave interference effects, based on only the trans-
verse wave lengths and the distance between locations 
on the hull where such waves are generated. In shallow 
water, a wave of a given length will move more slowly 
than in deep water; correspondingly, for a ship wave 
 pattern, the same interference will occur at a lower 
speed. Thereby, the shape of the wave resistance curve 
and its humps and hollows will be shifted to lower 
speeds. 

 This insight underlies an approximate method to 
estimate the effect of shallow water on resistance. 
 Schlichting (1934) analyzed shallow-water effects for 
subcritical speeds, based on theoretical considerations 
and on model experiments carried out in the Hamburg 
and Vienna towing tanks. His method is schematically 
illustrated in Fig. 5.33. Suppose we know the fric-
tional and total resistance curves for deep water. At 
any  particular speed  V  in deep water, they are  RF and 
RT  respectively, indicated by the points E and A in the 

Figure 5.31 Resistance of destroyer in shallow water. 
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graph. At this speed, the transverse waves generated by 
the ship have a wave length  �0  such that 

V � �
_
g�0_
2�

     (5.42) 

 In water of depth  h , the same wave length  �0  would be 
generated at some lower speed  VI   where 

VI � �
__

  
g�0_
2�

  tanh   2�h_
�0

     (5.43) 

 and the ratio of the two speeds is 

VI/V � (tanh 2�h/�0)1/2 � (tanh gh/V
2)1/2 (5.44) 

 A curve of VI/V is shown to a base of V /�
_
gh   in 

Fig. 5.34. Schlichting then assumed that the wave-mak-
ing resistance in shallow water at speed VI would be the 
same as that at speed V in deep water, in view of the 
effect of interference between transverse wave compo-
nents from, for example, the bow and stern or bow and 
fore shoulder. The total resistance at speed VI would then 
be found by adding the wave-making resistance RW to 
the appropriate frictional resistance at this speed, RFh. In 
Fig. 5.34, we thus construct point B of a curve corrected 
for shallow water effects on the wave resistance, such 
that the line AB is parallel to EF in Fig. 5.33. 

 As already stated for the low-subcritical range, 
the  reduced water depth will also affect the viscous 
 resistance. The increased fl ow speed past the hull 
caused by the proximity of the bottom increases the 
 frictional resistance, and the increased pressure gra-
dients may  increase the viscous pressure resistance. 

Schlichting also provides estimates for this resistance 
increase, again expressed as a speed reduction  �VP,
based on model tests in deep and shallow water. As 
 indicated in Fig. 5.33, this second speed correction  �VP

is now set out horizontally from B, and the resulting 
point C will be a point on the curve of total resistance in 

Figure 5.33 Determination of shallow water resistance by method of 
Schlichting (1934) .

Figure 5.32 Percentage increase in resistance in shallow water. Same model as Figure 5.31. 
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shallow water. The corresponding speed is  V   h . This con-
struction can be made for a number of points to obtain 
the whole curve. 

 Schlichting found that the principal factor control-
ling  �VP  was the ratio  �

_
AM/h, where  AM  is the maxi-

mum cross-sectional area of the hull (marked  AX  in 
Figs 5.34 and 5.35) and  h  is the water depth. Fig. 5.34 
shows the curve of  Vh / V   I, which represents the second 
speed correction, against this parameter, as derived by 
 Schlichting from his model tests. Also, the ratio  V   I / V

(the wave resistance correction ) is shown for different 
water depths. 

 The total speed loss  �V � �C 
 �VP  is shown as a per-
centage of the deep-water speed in the contour diagram 
Fig. 5.35. It should be noted that at point C in Fig. 5.33, 
the total resistance in shallow water at speed  V   h  is less 
than that in deep water at speed  V�  (point A). 

 Schlichting’s method is not theoretically rigorous, 
and several objections can be made. In particular, the 
 assumption of equal wave resistance in deep and  shallow 
water when the lengths of the ship-generated transverse 
waves are equal is a simplifi cation, as it disregards both 
the contribution from diverging waves and the increase 
of wave amplitudes due to the proximity of the bottom; 
probably both effects partly cancel in  Schlichting’s data. 
Also, the effect on viscous resistance is clearly depen-
dent on hull form. However, Schlichting’s method may 
be looked at as an engineering solution of a complicated 
problem and is useful for a fi rst estimate of limited shal-
low-water effects on the resistance of a ship. 

 A simpler method was developed by Lackenby 
(1963). Its purpose is just to correct the results of 
speed trials carried out in a somewhat limited water 
depth, and it is unlikely to be precise for more severe 
shallow-water effects. The speed correction again de-
pends on the two parameters:  �

_
AM/h representing the 

effect on viscous  resistance due to the proximity of the 
bottom, and  Fn h  representing the effect on wave resis-
tance. The speed correction is available in a diagram 
(Fig. 5.36), which largely matches that of Schlichting 
but details the area of small shallow-water effects, and 
as the expression 

    
Vs_
Vs

 � 0.1242  ( AM_
h 2   � 0.05 ) 
 1.0 �   ( tanh  ( gh_

V
s

 2   ) )
1_
2  (5.45) 

 More recently, Jiang (2001) showed for some cases 
that the water depth effect on resistance curves could 
be represented by a speed correction based on the mean 
dynamic sinkage of the model,  zv . Plotting resistance 
data measured at different water depths against the 
 effective speed 

Ve � �
_

V
s

 2

 2gzv_

1 � zv /h
 (5.46) 

 the curves essentially coincided. The mean sinkage 
is to be measured, estimated, or computed using, for 
 example, a panel code. 

Figure 5.34 Curves of velocity ratios for calculating resistance in shallow water (Schlichting, 1934). 



46 SHIP RESISTANCE AND FLOW 

 All these semi-empirical correction methods can be 
useful to provide indications of shallow-water effects in 
the subcritical regime. However, physically the effects 
are complicated and hull-form dependent, and precise 
estimates cannot be expected based on one or two 
 parameters. 

5.11 Far-Field Waves and Wash
5.11.1 Introduction.   Since 1990 there has been 

 increasing attention to detrimental effects of ship 
waves, in that context often called “wave wash.” 
Ship waves impinging on shores incidentally have 
been found to cause bank or bottom erosion, dam-
age or nuisance to moored vessels or small craft, 
 endangerment of people bathing or walking along the 
coast, or harm to natural environments. Such effects 
often are caused by operation of fast ferry services, 
sometimes also by conventional ships as a result of 
increasing traffi c, the use of larger vessels, or higher 
propulsion power. 

 In the early years of introduction of fast ferry ser-
vices, the wash problems came quite unexpectedly, as 
the waves generated by these vessels in the open sea 
are often quite low. Problems that occurred were often 
caused by operation in shallow water or by propagation 
of the ship waves into shallow water. 

 As is now understood, there are several different cat-
egories of wash-related problems: 

 • A basic difference with slower ships is the fact that fast 
vessels generate waves with longer wave periods; typi-
cal periods of 7–10 seconds are quoted. It thus has hap-
pened that the operation of fast ships caused  problems 
for  vessels moored along the waterway, as they simply 
responded more strongly to the longer wave  periods. 
 • Some of the problems have been caused by opera-
tion near critical speed. As is evident from the previous 
description, at critical speed wave generation can be 

Figure 5.36 Lackenby’s (1963) diagram for calculating reduction in speed 
in shallow water. The labels indicate the percentage change of the speed. 

Figure 5.35 Schlichting’s (1934) chart for calculating reduction in speed in shallow water. 
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strongly amplifi ed, dependent on the ship type. More-
over, the critical waves are nondispersive according 
to linear theory, and after a suffi cient duration of the 
critical-speed operation, they will have rather little 
 decrease of amplitude with distance from the track of 
the vessel. Therefore, at large distances they can be 
quite pronounced. These shallow-water waves contain 
much energy and can cause serious problems. 
 • Most unexpected have been the problems caused by 
supercritical speed operation. In view of the decrease 
of resistance in the supercritical regime and the modest 
steepness of the outer waves in the wave pattern, those 
problems initially were not well understood. To current 
understanding, the principal problems originate from the 
very large apparent wave periods at large distances and the 
slow amplitude decay, as will be discussed  subsequently. 
 • “Shoaling” effects (i.e., the increase of wave  amplitudes 
and wave steepness when waves approach a coast with 
gradually decreasing water depth) can be most pro-
nounced for the long waves generated by fast ferries. 
Consequently, even when their amplitudes seem innocent 
at sea, these waves can cause increased erosion of coast 
and bottom, cause large run-up on a beach, endanger 
bathers, or lead to other problems. 
 • In addition to the aspects mentioned previously, in 
some situations the precise bathymetry of the water-
way, the bank outlines, or the curved path sailed by the 
vessel have played a crucial role. As a result of refrac-
tion, wave focusing, and shoaling effects, large wave 
heights can occur locally. Thus it is often the combina-
tion of characteristics of the vessel and the waterway 
that determines the occurrence of wash effects. 

5.11.2 Far-Field Wave Amplitudes.   In case the 
waves propagate in water of constant depth, it is pos-
sible to estimate the far-fi eld wave amplitudes directly 
from those closer to the vessel. This estimate must be 
based on a wave pattern already at a suffi cient distance 
from the vessel to be outside near-fi eld effects and inter-
ference from wave systems originating from different 
parts of the hull. 

Subcritical Regime  Theoretically, for most wave com-
ponents the amplitude decays with the distance  y  to 
the path of the vessel as 

A(y) � y  
�1/2

 However, for waves near the Kelvin wedge boundary 
(i.e., with divergence angle  � � 35°), the decay is as 

A(y) � y  
�1/3

 There has been some discussion whether this holds 
precisely for ship wave patterns (Doctors & Day, 
2001) but in practice it is usually close to this. 
 Mathematically, it will always be the waves on the 
Kelvin wedge that will dominate in the limit to in-
fi nite distance; however, for vessels that have the 
largest wave generation in other wave components 

this may be irrelevant: if the waves inside the Kelvin 
wedge have an  a  times larger amplitude at a distance 
y  than those on the Kelvin wedge, the latter would 
only start dominating at distances greater than  a6 � y . 
This insight may resolve some of the controversy 
 regarding subcritical decay rates, as it explains that 
an inverse-square root decay may well be observed in 
practice even at large distances. 
 Although these decay rates indicate how the maxi-
mum wave amplitudes in the wave pattern depend on 
distance to the vessel, it is important to note that the 
shape of a distant wave cut cannot be estimated by 
simple scaling of a nearby wave cut using the theo-
retical decay. The shape of a longitudinal wave cut 
changes substantially with distance from the path of 
the vessel, and to actually predict this, more elabo-
rate methods are needed such as using a spectral 
 representation (Raven, 2000). 

Critical Speed Regime  Here the decay rate  cannot be 
determined from simple theory, and just some obser-
vations are available. Doyle, Whittaker, and Elsaesser 
(2001a) indicated that from some model tests, rather 
large decay rates have been found  because of a more 
local wave build-up. However, far-fi eld amplitudes ap-
peared to increase, and wave  decay rate to decrease, 
with the time spent at critical speed. Simply extrapo-
lating wave amplitudes from a model experiment 
or computation disregarding the time-dependence 
might be misleading. For prolonged critical-speed 
operation, a conservative estimate would be to as-
sume no decay of the critical waves. The more diver-
gent waves occurring simultaneously, which are still 
 subcritical, can be extrapolated using the normal 
subcritical decay rates. 

Supercritical Regime  The leading waves in the pat-
tern are again nondispersive, but steady. In special 
model tests, decay rates have been found varying 
between  y�0.2  in very shallow water to  y�0.33  at some-
what larger depth/draft ratios (Doyle, Whittaker, & 
Elsaesser, 2001a). Although these data may not yet be 
suffi ciently complete to use them for an actual wave 
extrapolation, clearly the decay of the leading waves 
is very slow; for smaller  h / L , the wave decay becomes 
slower and the wave energy at a large distance in-
creases substantially (Doyle, Whittaker, & Elsaesser, 
2001). Here again, the more diverging waves further 
inside the pattern are more dispersive and will have 
a larger decay with distance. 

 While these data on wave decay rates are for constant 
water depths, variations of the water depth can have 
complicated effects on the wave evolution. To  predict 
or estimate the amplitudes, lengths, and directions of 
ship waves after propagation over a bottom topography, 
special  methods are needed. The physical  phenomena 
playing a role in this can cause a large increase of 
wave amplitudes, so the importance of this needs to be 
 acknowledged. 
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5.11.3 Far-Field Wave Periods.   The relevance of 
the far-fi eld wave periods has mostly to do with the 
behavior of waves when propagating into shallower 
water. Very long waves usually increase much more in 
height and steepness. Moreover, unlike the waves from 
conventional ships that approach the coast as spilling 
breakers, the long waves from fast vessels have been 
reported to cause large plunging breakers and to cause 
a larger wave run-up on a beach. The fact that this hap-
pens unexpectedly when the fast ship may already be 
out of sight adds to the problems. 

 In the subcritical regime, the far-fi eld periods are 
easy to derive, being completely determined by the 
near-fi eld wave spectrum. For the critical regime, little 
information is available. 

 The supercritical regime has provided some  surprises, 
as described in Doyle, Whittaker, and  Elsaesser (2001, 
2001a). Full-scale measurements at large  distances 
from the path of a fast ferry running at supercritical 
speed have displayed some extremely large wave peri-
ods at the start of the passage of the wave system; up to 
20–40 sec at 3 km distance, with associated wave heights 
of 0.4–0.7 m. A careful examination has shown that the 
leading, critical wave and the second wave behind it 
diverge from each other at a small angle, around 10–12 
 degrees near the vessel, diminishing to some 2 degrees 
at large distances. Consequently, the separation between 
these wave crests, and thereby the  apparent wave period, 
increases with distance. The resulting long-period waves 
undergo a large magnifi cation by shoaling, and this has 
likely been the cause of some of the reported incidents 
caused by wash. 

 From the experiences with fast vessels, it can be 
 concluded that problems have resulted from wave prop-
erties not evident at fi rst sight; in particular in the super-
critical regime, a careful consideration of the possible 
consequences of very large wave periods is necessary. 
To eliminate problems, precise consideration of the 
track of the vessel, the speed sailed, and the location 
where critical speed is passed has been successful in 
several instances, but this may have consequences for 
the viability of a fast ferry service. In the design of fast 
ships, it is important to pay attention to the generation 
of the longer waves in the fi rst place. 

 Limitations for the wash generated by ships are being 
imposed in some countries. From the previous text, it 
is clear that such limitations should not just be based 
on wave heights, but also involve wave periods or wave 
energy. As this subject is currently still evolving, we will 
not discuss it further. 

5.12 Channel Effects.   If the waterway is not only 
shallow, but also has restricted width, such as in a 
 canal or a river, some additional effects occur. The 
wave propagation speeds are not affected by the width, 
so the  effects governed by  Fnh  will in a fi rst approxi-
mation be  unchanged. However, the effect of the prox-
imity of the bottom is magnifi ed by the “blockage” (i.e., 
the ratio of the midship sectional area of the ship to the 

 cross-section of the waterway). This increases the over-
speed next to the hull, thus it increases the sinkage, the 
pressure gradients, the wave amplitudes, and the vis-
cous resistance. 

 For moderate channel effects, a correction method 
similar to Schlichting’s is possible. For the wave- 
making part of the resistance, it is reasonable to as-
sume that Schlichting’s correction method (which 
depends on  Fnh ) can still be applied. The speed cor-
rection to correct for the increased viscous resistance 
(�VP ), however, has to be modifi ed. Landweber (1939) 
published the results of experiments on the resistance 
of a merchant ship model in a number of different-sized 
rectangular channels at subcritical speed. In shallow 
water of unlimited width, this second speed reduction 
is a function of  �

_
AM/h, and Landweber sought a simi-

lar parameter which would also introduce the width of 
the channel,  b . He found this in terms of the  hydraulic 

radius  of the channel,  RH . 
 This ratio is in common use in hydraulics, and is de-

fi ned as 

            RH �    area of cross-section of channel   ___   
wetted perimeter

   (5.47) 

 For a rectangular channel of width  b  and depth  h , 
RH � bh /( b 
 2 h ). When  b  becomes very large,  RH � h ; 
this corresponds to the case of shallow water of unlim-
ited width. 

 When a ship or model is in a rectangular channel, the 
hydraulic radius is 

RH � ( bh � AM )/( b 
 2 h 
 p ) (5.48) 

 where  AM  is again the maximum cross-sectional area 
of the hull and  p  is the wetted girth of the hull at this 
section. 

 From the model results, Landweber was able to 
 deduce a single curve giving the ratio  Vh / VI , in terms 
of  �

_
AM   /RH for use in restricted, shallow channels. This 

curve is also shown in Fig. 5.34, and it does not quite 
agree with that derived by Schlichting, a fact that can 
be accounted for by Schlichting’s neglect of the effect 
of the width of the tank in which his experimental data 
were obtained. 

 However, channel effects can be much more severe 
than this, as is best explained using Kreitner’s theory 
(Kreitner, 1934). Kreitner considered the case of a ship 
sailing at a small length Froude number and having a 
long parallel midbody, such that in unrestricted water, 
the fl ow along the hull would be essentially undisturbed 
and have no overspeed. In a waterway with restricted 
width and depth, an overspeed along the hull must then 
be present, such that all the infl ow from ahead (with a vol-
ume fl ow rate  Vs . b . h , in which  b  is the width of the chan-
nel) passes through the area next to the ship.  Kreitner 
assumed this overspeed to be uniformly  distributed 
over the cross-section of the waterway. If we defi ne 
the  blockage  as � ≡ AM/(b.h) and the  overspeed ratio as 
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� ≡ (VS 
 v)/VS, then for low ship speed, the  overspeed 
ratio would simply be 

� � 1/(1 � � ) (5.49) 

 However, the overspeed is accompanied by a depres-
sion of the water surface next to the ship (again as-
sumed uniformly distributed), according to Bernoulli’s 
law; this depression will also cause an equal sinkage of 
the ship. Therefore, the cross-section next to the ship is 
reduced by an amount 

b � �h �   
b V

s

 2

_
2g

 (1 � � 2) �   1_
2
   hbF n

h
 2  (1 � � 2) (5.50) 

 Therefore, the depression of the water level intro-
duces an  Fnh  infl uence on the overspeed. 

 Taking into account this further reduction of the 
cross-section and requiring that all fl ow passes through 
this reduced area, we fi nd 

� (1 � � �   1_
2
   F n

h
 2  [�2 � 1] ) � 1 (5.51) 

 a third-degree equation from which the overspeed ratio 
�  can be solved for given blockage and  Fnh . 

 The solution has some very interesting properties. Fig. 
5.37 shows how, for increasing depth Froude number, the 
overspeed  � Vs  fi rst increases linearly, but then starts 
 increasing more quickly because of the water level de-
pression. At a certain  Fnh  value, the overspeed increases 
indefi nitely, indicating it is impossible to let all fl uid pass 
along the ship. This is the lower limit of an “inaccessible 
region” (marked with II in Fig. 5.37) around  Fnh � 1 in 
which no steady solution exists. The higher the blockage, 
the wider that region. Beyond this range, there is the op-
posite phenomenon of an underspeed along the hull, caus-
ing an increase of the water level and a negative sinkage 
that again lets all fl uid pass the ship. As Kreitner derived, 
in the intermediate region the solution is unsteady and 
takes the form of a wave of translation moving ahead of 
the ship and a wave trough propagating aft that compen-
sate for the excess fl uid that cannot pass the ship. 

   Therefore, in a waterway (or towing tank) of re-
stricted width, phenomena similar to critical speed set 
in at a depth Froude number signifi cantly below 1: a 
large increase of the sinkage, a very large resistance in-
crease, and various violent fl ow phenomena. The result-
ing shift of the steep rise of the resistance curve toward 
lower  Fnh  is  something to be aware of in model testing 

Figure 5.37 Overspeed next to ship  (as a fraction of  �
_
gh  ) against  Fn  h , for a blockage  �  � 0.05. (Graph from Kreitner [1934].) 
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at high  Fnh  as it may cause gross errors if the resistance 
curve in a waterway of  unlimited width is predicted 
based on such tests. 

 Fig. 5.38 shows the overspeed ratio as a function of  Fnh

for blockage values from 0.01 to 0.49 for the subcritical 
range. The critical channel speed for a given blockage ratio 
can be read from the position of the vertical asymptotes. 

   On the other hand, the assumptions underlying 
 Kreitner’s theory, in particular that of a uniform over-
speed over the entire channel cross-section, are limited 
to ships with long parallel midbody in relatively narrow 
channels, and lead to a less realistic estimation in other 
cases. Therefore, the quantitative results of Kreitner’s 
method need to be used with caution. 

Figure 5.38 Overspeed ratio  � next to ship as a function of  Fn  h , for blockage  �  � 0.0 (0.01) 0.50. 
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Having dealt with the wave resistance in Section 5, we 
will now turn to the other major resistance component: 
the viscous resistance. As explained in Section 5, the two 
components are linked, but there are good reasons to 
treat them separately. Therefore, the waves and all other 
effects of the free surface are neglected in the present 
section. This means that the Froude number is irrelevant 
and that the only similarity parameter to consider is the 
Reynolds number. Another effect of neglecting the free 
surface is that the hydrostatic pressure, which enters 
the equations through the free-surface boundary condi-
tion, will disappear. Thus, only the hydrodynamic pres-
sure remains, and for simplicity the index “hd” will be 
dropped. Also the word “hydrodynamic” will be dropped 
when referring to the pressure in this section.

All viscous resistance components described in 
 Section 4 are related to the boundary layer around the 
hull. For a 3D body, such as a ship hull, the boundary layer 
is complex and no simple solutions of the governing equa-
tions exist. However, many of the features of the 3D case 
are also present for simpler cases, where  analytical and 
empirical results are available. So, in the present section 
boundary layers are considered for increasingly more 
complex bodies. The fl at plate is the simplest case, fol-
lowed by general 2D bodies, axisymmetric bodies, and fi -
nally the fully 3D case. Note that many relations obtained 
for the simpler cases may also be used as a fi rst estimate 
in the more complicated cases. We will start this section 
with a general description of the boundary layer concept, 
but fi rst a comment will be given on the coordinate sys-
tem adopted in this section.

6.1 Body-Fitted Coordinate System. For solving bound-
ary layer equations, it is considerably more convenient 
to use a coordinate system fi tted to the hull than the 
global Cartesian system specifi ed in Fig. 2.1. Body-fi tted 
 coordinate systems are curvilinear and in general nonor-
thogonal. However, for reasons explained later, orthogo-
nal systems may be used in boundary layers. The ITTC 
nomenclature recommends the use of the coordinates 
x, y, z for such systems. We will adopt this convention 

here, although it confl icts with the defi nition of x, y, z as a 
global Cartesian system (see Fig. 2.1), also recommended 
by the ITTC. The risk of confusion is small, however. In 
connection with boundary layer equations, x is thus along 
the surface, in the direction of the fl ow at the edge of 
the boundary layer, y is normal to the surface, and z is 
directed to form a right-handed orthogonal system (i.e., 
along the surface at right angles to x). In the following, 
the three coordinate directions will also be referred to 
as “longitudinal,” “normal,” and “lateral” for the x-, y-, and 
z-directions, respectively.

6.2 The Boundary Layer
6.2.1 Physical Description of the Boundary Layer. 

The no-slip boundary condition, discussed in Section 2.4.1, 
states that the relative velocity  between a solid surface 
and a fl uid is zero. The fl uid “sticks” to the surface because 
of molecular action at the interface. Moving away from the 
surface, the relative velocity, at least in a time-averaged 
sense, increases within a region of small thickness rela-
tive to the body dimensions.* This is the boundary layer, 
which covers the entire surface and generally grows in 
thickness downstream (Fig. 6.1). In the forwardmost part 
of the boundary layer, the fl ow is laminar, and the velocity 
increases monotonically without fl uctuations toward the 
edge of the boundary layer. Thanks to the molecular mo-
tions in the direction normal to the surface, momentum 
parallel to the surface is transferred between adjacent lay-
ers of the fl uid. A molecule from one level that jumps out to 
a higher level will have a lower momentum than the others 
at that level, and when it interacts with the others it will 
tend to reduce the speed at that level. Conversely, when a 
particle jumps inward, it will tend to increase the speed at 
the new level. The molecular motions, responsible for the 
jumps, thus tend to equalize the speed between the differ-
ent layers of the fl uid. In fl uid mechanics, the fl uid is as-
sumed a continuum and the effect of the  molecular motion 

6
The Flow Around the Hull and the Viscous Resistance

*The most common dimension to refer to is the body length. 
For a fl at plate this is an obvious choice, but for curved surfaces 
the radius of normal curvature may be a more relevant measure.

Separation
Smaller eddies

Larger eddies

Turbulent boundary layer

Viscous sublayer

Laminar boundary
layer

Transition

Flow direction

Inviscid flow

Wake

Viscous flow in boundary layer and  wake

zone

Figure 6.1 Different regions in the fl ow around the hull.
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is modelled as a stress determined by equation (2.10). The 
concept of viscosity is thus introduced through this equa-
tion, which for a 2D boundary layer is simplifi ed to

 �yx � �   �u_
�y

 (6.1)

The longitudinal shear stress is thus proportional to the 
normal gradient* of velocity, and the constant of propor-
tionality is the dynamic viscosity.

In the laminar boundary layer, fl uctuations are damped 
because of viscosity, but if the body is suffi ciently long the 
fl ow will eventually become unstable. This occurs at the 
point of neutral stability. The region that follows thereaf-
ter is called transitional. It is characterized by bursts of 
turbulence which eventually  become so frequent that the 
boundary layer may be considered turbulent. In the in-
nermost part of the turbulent boundary layer, known as 
the viscous sublayer, the fl ow is still essentially laminar, 
but interrupted by turbulent bursts.

Outside of the viscous sublayer, the turbulent bound-
ary layer contains eddies of varying sizes, the small-
est ones (Kolmogoroff scale) being of the order of 0.1 
mm at Reynolds numbers relevant to ships and ship 
models (note that the order of magnitude is the same 
at both scales). The largest ones are of the same order 
of  magnitude as the boundary layer thickness: 0.1 m at 
model-scale Reynolds numbers and 1–10 m at full scale.

The (macroscopic) effect of the eddies may be in-
terpreted in a way similar to the (microscopic) effect 
of the molecular motions. When a fl uid package due to 
fl uctuations is moved away from the surface, it will tend 
to reduce the speed of the fl uid at the new position and 
conversely when the package is moved toward the sur-
face. This effect is normally much stronger than the ef-
fect of the molecular motions, but it may be described in 
a similar way, namely by introduction of a new concept: 
the turbulent (or eddy) viscosity �t. In a turbulent 2D 
boundary layer, the shear stress may thus be computed 
using the effective viscosity �eff

�yx � �eff   �u_
�y

 (6.2)

where
�eff � � 
 �t (6.3)

Equation (6.2) may be generalized to the same form as 
equation (2.10). Note that �t is not a fl uid property, like 
�, which in hydrodynamics mostly may be considered a 
constant. The turbulent viscosity depends on the fl uctu-
ating velocities and varies in the fl ow domain. For a fur-
ther discussion of the turbulent viscosity, see  Section 9.

6.2.2 Approximations of First Order Boundary 

Layer Theory. The boundary layer concept, introduced 
by Prandtl (1904), enables a very convenient division of 

the fl ow into a region near the hull and in the wake where 
viscosity is dominating the fl ow, and an outer region, 
where viscosity may be neglected (see Fig. 6.1). Note that 
the reason why viscosity may be  neglected in the outer re-
gion is that the velocity gradients (i.e., the rates of strain) 
are negligible. Although the viscosity � is the same ev-
erywhere, its effect disappears if the velocity gradients 
can be neglected. The outer fl ow is therefore, somewhat 
inconsistently, called inviscid.

Boundary layer theory is based on the fact that the 
boundary layer thickness � is small relative to some rel-
evant dimension, say L, of the body on which it has devel-
oped. By evaluating the order of magnitude of each term 
in the Navier-Stokes equations in terms of �/L, fi rst or 
higher order boundary layer equations my be derived (see 
e.g., Schlichting [1987] for 2D equations or Nash & Patel 
[1972] for 3D ones). It turns out that the fi rst order equa-
tions yield a constant pressure across the boundary layer.

Another consequence of the thinness of the boundary 
layer is that the pressure distribution on the body can be 
obtained to fi rst order from an inviscid solution, neglect-
ing the boundary layer entirely. Together, the two approx-
imations for the pressure make it possible to develop a 
very effi cient computational procedure for the boundary 
layer. The pressure distribution on the body is computed 
fi rst, using inviscid theory, as presented in Section 5. 
Thereafter, the boundary layer equations are solved with 
the pressure at every point in the boundary layer taken 
from the point on the surface on the same normal. In this 
way, the pressure is prescribed and only velocities (and 
turbulence quantities) need to be computed. The tricky 
coupling between velocity and pressure, needed in more 
advanced viscous methods (see Section 9.7), is avoided, 
and a solution can be obtained in a small fraction of the 
time needed for the more advanced methods.

6.2.3 Local Boundary Layer Quantities. Perhaps 
the most important local boundary layer quantity is 
its thickness, �. There is not a very sharp edge of the 
boundary layer, however. The velocity within the bound-
ary layer merges smoothly with the outer inviscid fl ow. 
Therefore, the thickness is normally defi ned by the 
 position where the velocity u has reached a certain per-
centage of that just outside the layer, Ue. Both 99% and 
99.5% are used. When specifying the thickness, the cor-
responding percentage should be given.

Another important thickness measure is the dis-

placement thickness, �1, defi ned as

�1 � ∫ 
0

�

   (1 �   u_
Ue

)dy  (6.4)

A physical interpretation of this quantity is shown in 
Fig. 6.2. The volume fl ux within the boundary layer (per 
unit of width at right angles to the plane of the paper) is rep-
resented by the area within the velocity profi le. The profi le 
to the right has the same area, and thus the same volume 
fl ux, but with a constant velocity u = Ue from the boundary 
layer edge down to a distance �1 from the surface. Within 
the distance �1 from the surface, the  velocity is zero. If 

*The gradient of a scalar function is a vector whose compo-
nent in any direction is the derivative of the function in that 
direction. In fl uid mechanics the component of the gradient 
vector in a certain direction is often, inconsistently, referred 
to as the gradient in that direction (longitudinal pressure gra-
dient, etc.). This convention is adopted here.
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the body is locally  thickened by �1 and the  velocity at the 
boundary layer edge (Ue) is used all the way down to the 
thickened body, the  correct volume fl ux is thus obtained. 
In practice, this is used in procedures where the fi rst order 
boundary layer  approximation, as described previously, 
is improved by iterations with the inviscid solution. The 
pressure distribution from the fi rst inviscid fl ow solution 
is then used for  computing the boundary layer and its 
 displacement thickness, which is added to the body, af-
ter which a new inviscid fl ow solution is obtained for the 
thickened body, the boundary layer recomputed, etc.

There is also a third thickness measure, often used 
for estimating resistance. This is the momentum thick-
ness �, obtained from

� � ∫ 
0

�

     u_
Ue

   (1 �   u_
Ue

) dy (6.5)

The relation between momentum thickness and re-
sistance may be derived with respect to Fig. 6.3, which 
shows the derivation for a fl at plate. A control volume 
ABCDA is defi ned by a vertical line AB at the leading 
edge of the plate, a streamline BC just outside the bound-
ary layer, a vertical line CD at a distance L from the 
leading edge, and the surface of the plate AD between 
x = 0 and x = L. According to the momentum theorem, 
the reduction in x-momentum (mass fl ux times  velocity 

in the x-direction) when the fl uid passes the control 
volume is equal to the force in the negative x-direction 
on the volume. This force is equal but opposite to the 
frictional force on the plate, RF. Because the pressure 
is considered constant, no pressure forces are involved.

There is no velocity through the sides BC and AD

 because the former is a streamline and the latter is 
the surface of the plate. All momentum entering the 
 control volume must pass the side AB and that leaving 
the  volume must pass CD. With b as the plate width the 
 following relation thus holds

RF � ∫ 
0

h

  (�Ue)Uebdy � ∫ 
0

�

   (�u)ubdy 

which may be written

RF � � Ue
 2bh � �b ∫ 

0

�

 u2dy 

But continuity requires that the mass fl ux entering 
through AB must be the same as that leaving through 
CD, in other words

∫ 
0

h

�Uebdy � ∫ 
0

�

 �ubdy 

or

Ueh � ∫ 
0

�

 udy 

Ue

δ

u

Ue

u Ue=

Same area
(same mass flux)

δ1

Figure 6.2 Interpretation of the displacement thickness concept.

Figure 6.3 Control volume for the derivation of the relation between resistance and momentum thickness.
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Inserting this into the formula for RF yields

RF � �bUe ∫ 
0

�

 udy � �b ∫ 
0

�

 u2dy 

or, fi nally

RF � �b Ue
 2 ∫ 

0

�

      u_
U

     (1 �   u_
U

  ) dy � �b Ue
 2� (6.6)

The total frictional resistance back to a certain 
point on the plate is thus proportional to the momen-
tum thickness at that point. If the control volume is 
extended behind the plate, the momentum thickness 
will be constant aft of the trailing edge, so measuring 
the velocity profi le at any position behind the plate will 
yield the frictional resistance of the plate. (The velocity 
profi le will change, but not the momentum thickness.)

In fact, equation (6.6) holds for all 2D bodies, provided 
the velocity profi le is measured far enough behind the 
body for the pressure to have become undisturbed. Note 
that in this case it is not only friction that is computed; the 
total viscous resistance is obtained (i.e., both form effects 
and roughness effects are included). It is the total force 
on the control volume that must balance the momentum 
loss. The momentum thickness thus forms the basis for 
resistance measuring techniques based on wake surveys.

Apart from the boundary layer thicknesses the  local

skin friction coeffi cient Cf is often of interest. It is 
 defi ned as

Cf �   �w_
1_
2
   � Ue

 2
   (6.7)

where �w is the local wall shear stress.
The total skin friction coeffi cient CF defi ned like 

other force coeffi cients

CF �   RF_
1_
2
   � U

 2 S
 (6.8)

may be obtained by integrating the longitudinal compo-
nent of the local friction over the body surface.

Note that all local quantities given here are for 2D 
cases. In three dimensions, other displacement and mo-
mentum thicknesses appear. The skin friction then has 
two components (Nash & Patel, 1972). In the viscous re-
sistance relation, corresponding to equation (6.6), the 
momentum thickness is replaced by a momentum area 
(Schlichting, 1987).

6.3 The Flat Plate. The simplest boundary layer is 
that developing on a fl at plate, assumed infi nitely thin, 
parallel to the approaching fl ow and with its leading 
edge (and trailing edge, if any) at right angles to the 
fl ow. Many of the features of more general boundary 
layers are found in this simple case, which will be de-
scribed fi rst. The major reason why the fl at plate bound-
ary layer is simpler than the more general ones is that 
the pressure may be considered constant and undis-
turbed along the plate. This is in accordance with fi rst 
order boundary layer theory: the plate itself will not 
disturb the pressure, and the effect of the  displacement 

 thickness is neglected. The velocity at the boundary 
layer edge is thus considered undisturbed (i.e., Ue � U

for this case).
6.3.1 Laminar Boundary Layer. The laminar bound-

ary layer along a fl at plate is one of the few viscous fl ow 
cases for which an analytical solution exists. This so-
lution was obtained for the fi rst time by Blasius (see 
Schlichting, 1987), who showed that all velocity profi les

in the growing boundary layer along the plate could be 
made to coincide if scaled properly in the normal direc-
tion. More specifi cally, this type of “similar” solution 
was obtained in the form

u_
U

 � f ( y_
x �
_
Rnx ) (6.9)

where x is the distance from the leading edge and Rnx

is defi ned as

Rnx �   Ux_
�  (6.10)

The velocity profi le (6.9) will be shown in Fig. 6.5.
Other important results of the Blasius solution are 

the boundary layer thicknesses and the skin friction. 
The 99% boundary layer thickness is given by

� � 5.0   x_
�
_
Rnx

 (6.11)

wheras the displacement thickness is obtained from

�1 � 1.72   x_
�
_
Rnx

 (6.12)

and the momentum thickness from

� � 0.664   x_
�
_
Rnx

 (6.13)

The displacement and momentum thicknesses for a 
laminar boundary layer are thus about one-third and 
one-eighth, respectively, of the boundary layer  thickness.

The formulas for the local and total skin friction 

coeffi cients are

Cf �   0.664_
�
_
Rnx

 (6.14)

and

CF �   1.328_
�
_
Rnx

 (6.15)

respectively.
Note that the coeffi cient for the total friction is ex-

actly twice that of the local friction at any distance from 
the leading edge.

6.3.2 Transition From Laminar to Turbulent Flow.

The transition process is complex and not completely 
understood, but some useful insight may be obtained 
from boundary layer stability theory (see, for example, 
Schlichting, 1987). Here, only a few purely empirical re-
lations for the fl at plate will be given, serving relatively 
well as a fi rst approximation.

Data for ideal conditions suggest that the transition 
on a fl at plate is completed at a critical Reynolds num-
ber Rncrit equal to about 3 � 106, where

Rncrit �   Uxcrit_
�  (6.16)
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and xcrit is the distance from the leading edge at which 
transition is completed. However, this high value of 
Rncrit is seldom found in practice because it requires a 
very low turbulence level in the upstream fl ow. Defi ning 
the turbulence level T as

T �    �
__

  u�2 
 ��2 
 w�2
  ___

u
 (6.17)

where the primed quantities are root-mean-square- 
(RMS)-values of fl uctuations and the barred quantity 
the mean fl ow, the requirement on T for Rncrit to be 
equal to 3 � 106, is about 0.1%, which is only found in 
high-quality wind tunnels and in towing tanks that 
have not been used for several hours. Much higher 
levels are normally noted both in the atmospheric 
boundary layer and in the upper part of the ocean. 
A more realistic value of Rncrit often given in the lit-
erature is 5 � 105. There is thus a relatively large span 
of possibilities depending on the quality of the ap-
proaching fl ow.

Transition also depends to some extent on surface 
roughness. According to measurements by Feindt (see 
Schlichting, 1987), the critical roughness height can be 
computed from the formula

Uks_
� � 120 (6.18)

where ks is the so-called equivalent sand roughness to 
be explained in Section 6.8.2. This requirement is about 
the same as for a hydraulically smooth surface in turbu-
lent fl ow, as described in the same section.

In model testing, roughness is also of interest in 
another connection. Because models are tested at 
a considerably smaller Reynolds number than at 
full scale, transition occurs much further aft on the 
model. This complicates the extrapolation of the data 
to full scale, so in practically all testing, the laminar 
boundary layer is stimulated to achieve premature 
transition closer to the bow. Turbulence stimulation 
is described in Section 8.

For shapes other than the fl at plate, pressure gradi-
ents, particularly in the longitudinal direction, will have 
a profound infl uence on the location of transition. This 
fact is utilized for generating low drag foil sections, as 
will be shown. There is also some effect of the normal 
curvature of nonfl at surfaces.

6.3.3 Turbulent Boundary Layer. An assumption 
well validated over the years is that the velocity profi le

in the inner part of the turbulent boundary layer must be 
independent of the thickness of the layer and dependent 
only on the shear stress at the wall, �w, and the two fl uid 
properties � and �. By dimensional reasoning this rela-
tion may be written

u_
u�

 � f ( yu� _
� ) (6.19)

where u� is a scaling parameter, known as the friction 
velocity, and defi ned as

u� � �
_
�w_
�     (6.20)

Using the defi nition of Cf, equation (6.7), u� may also 
be written

u� � U �
_
Cf_
2
     (6.21)

Defi ning a nondimensional velocity u
 as

u
 �   u_u�
   (6.22)

and a nondimensional distance from the surface y
 as

y
 �   
yu� _

�  (6.23)

the generic equation (6.19) takes the simple form

u
 � f (y
) (6.24)

Another well validated assumption is that the velocity 
profi le in the outer part of the boundary layer must be 
independent of viscosity. The deviation from the exter-
nal fl ow velocity U must, on the other hand, depend on 
the boundary layer thickness, apart from the wall shear 
stress and the density. Dimensional analysis thus yields

U � u_
u�

 � f1 ( y_
�
   )   (6.25)

An important contribution to the theory of 2D bound-
ary layers is due to Millikan (see White, 2005), who 
showed that the only way for equation (6.24) to merge 
smoothly into equation (6.25) is for the intermediate re-
gion to be logarithmic in y.

The practical result of these more generic discussions 
is the profi le shown in Fig. 6.4, where the boundary layer 
is divided into four regions with different expressions 
for the velocity. This profi le is very well substantiated 
by experiments and has, at least until recently, been un-
disputed. The four regions are:

I. The viscous sublayer, 0 � y
 � 5

 u
 � y
 (6.26)

The profi le is thus linear in this region.
II. The buffer layer, 5 � y
 � 30
Here the profi le changes smoothly from linear in 

 region I to logarithmic in region III.
III. The logarithmic region, 30 � y
 � 500–10,000

u
 �   1_�   log y
 
 C (6.27)
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Figure 6.4 The wall–wake law.
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The two constants, �, known as the von Kármán 
constant, and C usually attain the values 0.41 and 5.0, 
respectively, but some variation is reported in the lit-
erature. Note that the outer edge of this region varies 
considerably, depending on the Reynolds number. The 
lower value is typical for the model scale, whereas the 
higher value is for the full scale.

IV. The wake region, between the logarithmic region 
and the boundary layer edge (the largest of the four 
 regions)

Here a special function, the law of the wake W ( y_
�
   )  is 

added to the logarithmic law

u
 �   1_�   log y
 
   � _
� W ( y_

�
  )
 C (6.28)

where the constant � is equal to 0.55 for a fl at plate. The 
wake function is normally approximated as

W ( y_
�
   )  � [sin  ( � _

2
     
y_
�
   ) ]2

 (6.29)

Knowing the friction velocity u� and the boundary 
layer thickness � the velocity profi le in regions I, III, 
and IV may be computed from the formulas given. In 
region II, the same expression as in region III, but 
with  constants that make the profi le continuous (not 
the derivatives!) at y
 � 5 and 30, respectively, is of-
ten used. Note that the wake strength parameter �
depends on the pressure distribution and is equal to 
the value given previously only for constant pressure, 
as on a fl at plate.

The four region velocity profi le is based on sound 
physical reasoning, as we have seen, and should be 
used for accurate prediction of the velocity, at least 
in the inner parts of the boundary layer. However, the 
equations are a bit complex, so an alternative, more 
approximate representation of the profi le is very often 
used. This representation is entirely empirical, and it 
is not very accurate close to the surface, but it serves 
well for estimates of the fl ow velocity if the near wall 
region is avoided. It reads

u_
Ue

�   ( y_
�
  )1_

n (6.30)

where n depends on the pressure gradient and to some 
extent also on the Reynolds number. For fl at plates at 
Rn � 107 (model-scale) n � 7 and at Rn � 109 (full 
scale) n � 9. In Fig. 6.5, the two profi les correspond-
ing to n � 7 and n � 9 are compared with the more 
exact four region wall–wake law at the model Reyn-
olds number. For comparison, the laminar Blasius ve-
locity profi le is also given. The most striking feature 
of Fig. 6.5 is the large difference between the laminar 
profi le and the turbulent profi les. The differences be-
tween the latter are small, particularly between the 
two at the same Reynolds number. To really see the 
differences, the region close to the surface has to be 
magnifi ed.

Relations for the boundary layer thicknesses and the 
skin friction may be obtained based on either the wall–
wake law or the power law. In practice, only the latter is 

used (see Schlichting, 1987). The formula for the bound-

ary layer thickness is then

� �   0.37x_
5�

____
Rnx

 (6.31)

and for the displacement thickness

�1 �   0.046x_
5�

____
Rnx

 (6.32)

whereas the momentum thickness may be computed from

� �   0.036x_
5�

____
Rnx

 (6.33)

For the turbulent boundary layer, the differences be-
tween the various thicknesses are larger than for the lami-
nar boundary layer. The displacement thickness is one-
eighth and the momentum thickness about one-tenth of 
the boundary layer thickness. These ratios are for n � 7. 
Somewhat different ratios are obtained for other powers.

The local skin friction coeffi cient is obtained from 
the following formula

Cf �   0.058_
5�

____
Rnx

 (6.34)

The total skin friction coeffi cient will be discussed in 
the next section.

Note that the turbulent boundary layer thicknesses 
are proportional to x4/5, but the laminar ones are pro-
portional to x1/2. The turbulent boundary layer grows 
faster than the laminar one. Equations (6.31) to (6.34) 
are very useful relations for rapid estimates of bound-
ary layer thickness and local skin friction even for more 
complex cases than the fl at plate.

6.3.4 Flat Plate Friction and Extrapolation Lines.

The total skin friction on a plate covered by a turbulent 
boundary layer may be obtained by integrating equation 
(6.34) along the plate. However, rather than giving the 
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Figure 6.5 Different velocity profi les.
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integrated relation directly, a historical survey will be 
made of skin friction relations for fl at plates, or planks, 
as they are often called. The reason is that the friction 
of an “equivalent fl at plate” (see Section 4) has played a 
fundamental role in model test procedures, ever since 
William Froude’s days, and some relations, which have 
been in use until recently, were derived long before the 
theory described was developed.

William Froude himself undertook a basic investiga-
tion into the frictional resistance of smooth planks in 
his tank at Torquay, England, the results of which he 
gave to the British Association (Froude, W., 1872, 1874). 
The planks varied in length from 0.6 to 15 m and the 
speed range covered was from 0.5 to 4 m/s. Froude 
found that at any given speed, the resistance per unit of 
surface area was less for a long plank than for a shorter 
one, which he attributed to the fact that toward the after 
end of the long plank, the water had acquired a forward 
motion and so had a lower relative velocity. He thus 
anticipated the existence of the boundary layer many 
years before Prandtl’s time.

Based on his plank tests, Froude gave an empirical 
formula for the resistance RF in the form

RF � fS V
n (6.35)

where S is the total wetted area and V the speed. f and 
n depend on the length and nature of the surface. For a 
smooth varnished surface, the value of the exponent n
decreases from 2.0 for the short plank to 1.83 for the 
15 m plank. For the planks roughened by sand, the ex-
ponent has a constant value of 2.0.

William Froude’s values of friction coeffi cients were 
stated to apply to new, clean, freshly painted steel sur-
faces, but they lie considerably above those now gener-
ally accepted for smooth surfaces. The original curves 
were modifi ed and extended by R. E. Froude (1888), up 
to a length of 366 m, but these extended curves had no 
experimental basis beyond the 15 m plank tests made in 
1872. Nevertheless, they have been used until recently in 
some towing tanks.

During the early years of the 20th century, many tests 
were carried out with fl at plates. In 1932, Schoenherr col-
lected most of the results of plank tests then available. He 
included the results of experiments on 6 m and 9 m planks 
towed at the Experimental Model Basin in Washington, 
DC, and some original work at the lower Reynolds num-
bers on 1.8 m catamarans with artifi cially induced turbu-
lent fl ow. At the higher Reynolds numbers, he was guided 
largely by the results given by Kempf (1929) for smooth var-
nished plates. Kempf’s measurements were made on small 
plates inserted at intervals along a 76.8 m pontoon, towed 
in the Hamburg tank. The local resistances so measured 
were integrated by Schoenherr to obtain the total resis-
tance for surfaces of different lengths. In order to present 
his results in conformity with rational physical principles, 
Schoenherr fi tted the following formula to his data

0.242_
�
_
CF

� log(RnCF) (6.36)

where Rn is the Reynolds number based on the plank 
length and the total friction coeffi cient CF is defi ned as 
in equation (6.8). The introduction of the Reynolds num-
ber as the independent variable represents a consider-
able improvement relative to Froude’s formula, but the 
Reynolds number was not known at the time of William 
Froude. Reynolds presented his revolutionary work on 
pipe fl ows, where Reynolds scaling was proposed, in the 
1880s (Reynolds, 1883).

Schoenherr’s formula was adopted by the ATTC in 
1947, and it is therefore also known as the “ATTC line.” 
To account for the roughness found even on clean new 
vessels, an allowance of 0.0004 was recommended. The 
Schoenherr line has been used extensively over the years, 
especially in the United States, and it is shown in Fig. 6.6.

One problem with the Schoenherr line, identifi ed at 
a very early stage, is that the slope is not suffi ciently 
steep at the low Reynolds numbers appropriate to small 
 models. This means that it does not give a good corre-
lation between the results of small and large models. 
Schoenherr had used data from many sources, and the 
planks were in no sense geosims, so the experimental 
fi gures included aspect ratio* and edge effects (the same 
applied to Froude’s results). To obtain a better data 
base, Hughes (1952, 1954) carried out many resistance 
experiments on planks and pontoons, in the  latter case 
up to 78 m in length, and so attained Reynolds numbers 
as high as 3 � 108. These plane surfaces covered a wide 
range of aspect ratios, and Hughes extrapolated the 
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Figure 6.6 Skin friction lines.

*The aspect ratio is the breadth of the plank divided by its 
length. An infi nite aspect ratio plank is a plank with no sides.
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 resistance coeffi cients to infi nite aspect ratio,  obtaining 
what he considered to be a curve of minimum turbulent 
resistance for plane, smooth surfaces in 2D fl ow. This 
curve had the equation

CFO �   0.066__  
 (log Rn � 2.03)  2

   (6.37)

where CFO denotes the frictional resistance coeffi cient 
in 2D fl ow.

Although Hughes’ formula may be considered a true 
fl at plate resistance relation, it could not be used for es-
timating the total viscous resistance of ships, so in 1957, 
the ITTC in Madrid decided to make some corrections, 
which would take the form effect of contemporary ships 
into account. The new formula, known as the ITTC-57 
model-ship correlation line, has since been used in the 
work of most towing tanks of the world. It reads

CF �   0.075__  
 (log Rn � 2)  2

   (6.38)

This line is also shown in Fig. 6.6. Note that this line 
was not proposed as a true fl at plate friction line. It in-
cludes some effect of the 3D shape of the ship. For typi-
cal ships of the 1950s, all such effects on the viscous 
 resistance were supposed to be included. Comparing 
with Hughes’ formula, it turns out that the ITTC friction is 
about 12% higher over the whole range of Reynolds num-
bers. A form effect of 12% may thus be considered added 
to the fl at plate line. By this addition, the total resistance 
(CT) could be obtained as the sum of only two compo-
nents, the friction (CF) and the residuary resistance (CR)
(plus some roughness allowance). Model test data could 
then be extrapolated to full scale using Froude’s original 
hypothesis. This type of extrapolation, called “Froude 
scaling,” is still used at some towing tanks. However, as 
became apparent with the introduction of very bluff ships 
during the 1960s, a more exact treatment of the effect of 
the three-dimensionality is required (i.e., the two form 
effects specifi ed in Fig. 4.1 need to be considered indi-
vidually for each ship). The procedure for taking this into 
account is known as “3D extrapolation” and will be dis-
cussed in Section 8. It was proposed by the ITTC in 1978.

In recent years, several attempts have been made to 
derive a formula for the fl at plate resistance using numeri-
cal methods. Grigson (1993) used the momentum integral 
equation for the fl at plate together with the wall–wake law, 
equation (6.28) for the velocity profi le, to compute the skin 
friction as a function of Reynolds number. The same ap-
proach was used by Katsui et al. (2005), but with slightly 
different constants � and �. The most comprehensive in-
vestigation was carried out by Eca and Hoekstra (2008), 
who used a method based on the Reynolds-Averaged 
 Navier-Stokes (RANS) equations to compute the local fric-
tion on the plate. Through systematic grid refi nement, the 
numerical error could be kept below 1%. The infl uence of 
the modeling error was studied by carrying out the cal-
culations using seven different turbulence models (see 
Section 9.7.3). Comparing the integrated friction with the 
ITTC and Schoenherr formulas, as well as with the two 

numerical procedures just mentioned, the difference be-
tween the results from the various turbulence models was 
smaller. The total error in the computations must there-
fore be considered very small.

Results for one of the turbulence models (SST k � �)
is shown in Fig. 6.6. It is seen that the slope of this curve 
is smaller at the lower Reynolds number. This is because 
the fi rst part of the fl ow on the plate was assumed lami-
nar, whereas the two other lines assume turbulent fl ow 
from the beginning. The usefulness of the numerical 
approach, even though it produces an accurate result 
for a real fl at plate boundary layer, is somewhat limited 
at small Reynolds numbers because ship models are 
normally fi tted with turbulence stimulators to promote 
early transition (see Section 8.2.3). At higher Reynolds 
numbers, the infl uence of the laminar fl ow becomes 
smaller, and it is interesting to note that the numerical 
friction line gets very close to the ITTC line (in the fi g-
ure the lines coincide) above a Reynolds number of 108.
This is somewhat surprising because the ITTC line in-
cludes a form effect, as explained.

6.4 Two-Dimensional Bodies. Flat plates serve well for 
describing the basics of boundary layer theory. However, 
as compared with the fully 3D case, there are three im-
portant effects missing: longitudinal pressure  gradients, 
lateral streamline convergence, and lateral pressure gra-
dients. We will introduce these  additional complexities 
one by one in this section and in Sections 6.5 and 6.6. In 
the present section, which deals with general 2D cases, 
the longitudinal pressure gradient appears. Remember 
that the pressure distribution in the normal direction is 
always constant in fi rst order boundary layer theory!

The interpretation of the word “2D” in this context is 
that the body is infi nitely long in one direction, z, say, 
with a constant cross-section and that the fl ow is in 
the x,y-plane. All dependent variables can then be ex-
pressed as functions of x and y. Orienting the body in 
such a way that the z-axis is at right angles to the plane 
of a sheet of paper, the body and the fl ow may be drawn 
in two dimensions on the paper. There is no possibility 
for the streamlines to bend in the z-direction; they are 
all parallel, viewed at right angles to this axis.*

6.4.1 Pressure Distribution. Figure 5.3 shows the 
pressure distribution in inviscid fl ow. In reality, the bound-
ary layer will disturb the pressure, as explained in connec-
tion with the explanation of the displacement thickness. 
In Fig. 6.7 , a sketch of the streamlines near the stern in an 
inviscid fl ow are compared with the corresponding ones in 

*If the approaching fl ow is not at right angles to the infi nitely 
long body of constant cross-section, a cross-fl ow will develop 
inside the boundary layer, as explained in the subsequent sec-
tion. However, both the longitudinal and cross-fl ow velocity 
profi les will be independent of the spanwise position on the 
body. All fl ow quantities can then be expressed in two in-
dependent coordinates. The case is mathematically 2D, but 
physically 3D. It was a neat test case for 3D boundary layer 
methods in the 1970s (Larsson, 1975).
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a fl ow with viscosity. Because the velocity is lower inside 
the boundary layer, the viscous streamlines have to be dis-
placed outward.

Figure 6.8 shows how the displacement thickness is 
added to the hull, to represent the displacement effect of 
the boundary layer on the inviscid fl ow. Using this thick-
ened body in an inviscid calculation, the pressure along 
the real body in a viscous fl uid may be obtained.* Because 
the thickened body has no aft end (the wake extends in 
principle to infi nity), there will be no stagnation pressure 
there. The straighter streamlines will cause a smaller pres-
sure variation across the streamlines and thus a smaller 
pressure at the stern than in an inviscid fl ow. The change 
is shown in Fig. 6.9., which is the same as Fig. 5.4. As a re-
sult of the lower pressure, the form effect on the pressure

(viscous pressure resistance), shown in Fig. 4.1, occurs.
6.4.2 General Effects of the Longitudinal  Variation 

in Pressure. The velocity distribution around the body 
in an inviscid fl ow is linked to the pressure  distribution 

via Bernoulli’s law, as explained in Section 5. A high pres-
sure means a low velocity, and vice versa. The velocity 
goes to zero at the stagnation points and is highest at the 
pressure minima near the shoulders. Fig. 6.9 shows the 
velocity distribution in a fl ow with viscosity, but here it 
is the velocity Ue at the edge of the boundary layer where 
pressure and velocity may be linked by Bernoulli’s law.

A fl uid element moving longitudinally in the boundary 
layer on a fl at plate is restrained only by viscous forces 
(i.e., its acceleration or deceleration is determined by the 
sum of the viscous forces in this direction). This is when 
the pressure is constant. If the pressure is not constant, 
as in the general 2D case, there are also  pressure forces 
acting in the longitudinal direction. In regions where 
the pressure is diminishing along the body the pressure 
forces will tend to accelerate the fl uid element, but in re-
gions of increasing pressure the element is decelerated. 
This has several important implications.

Because negative pressure derivatives tend to accel-
erate the fl ow within the boundary layer, the latter grows 
more slowly than on a fl at plate, and conversely, positive 
pressure derivatives give rise to a more rapid increase 
in thickness. There is also a tendency for the velocity 
profi le to become “fuller” in regions of  diminishing 
pressure and “thinner” in increasing pressure. Fuller 
means that the velocity is relatively more rapid in the 

*According to the theory (Lighthill, 1958), the pressure will 
be correct at the location of the boundary layer edge. In prac-
tice, the pressure is computed at the displacement body and 
transferred at right angles down to the body surface. See also 
the discussion of the pressure variation across the boundary 
layer later in the text.

Figure 6.7 Displacement of streamlines in inviscid fl ow due to the boundary layer.

Real streamlines

Streamlines in inviscid flow

Body
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             thickness edge 

Figure 6.8 Displacement thickness added to the body.
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 inner parts of the layer (i.e., the velocity profi le looks 
more square). To quantify these effects of pressure gra-
dients, the boundary layer equations have to be solved, 
and this is out of the scope of this more phenomenologi-
cal discussion. There are no simple relations, like those 
on a fl at plate, for general pressure gradients. On the 
other hand, if the gradients are not too large, reasonable 
estimates of boundary layer thicknesses, skin friction, 
and velocity profi les may be made using the relations for 
a fl at plate.

6.4.3 Transition. There are, however, a couple of 
effects of pressure gradients that do need to be con-
sidered. The fi rst one is the effect on transition from 
 laminar to turbulent fl ow. This is an instability phe-
nomenon causing lateral and normal fl uctuations of the 
fl ow. In regions where the fl ow is accelerated longitu-
dinally by the pressure, these fl uctuations are reduced, 
but in regions where the fl ow is decelerated they are in-
creased. Thus, a negative pressure derivative tends to 
stabilize the fl ow, thereby delaying transition, whereas 

the  opposite is true for a positive derivative. Negative 
pressure derivatives are utilized to create low-drag 
laminar airfoil sections, as will be seen in Section 7. 
In fact, the pressure gradient effect is normally stron-
ger than the Reynolds number effect on transition, so 
for a range of Reynolds numbers the transition process 
takes place near the fi rst pressure minimum on a body. 
This is where the pressure starts rising, often quite 
sharply. If the  location of transition is to be estimated, 
the fi rst pressure minimum is a good choice, at least at 
model-scale.

6.4.4 Separation. The second effect of  pressure 
gradient is related to the increase in pressure at the 
aft end of bodies. If this increase is too rapid, the 
 decelerating force on the fl uid elements very close to 
the surface may be so large that their longitudinal mo-
tion stops. The streamlines then have to leave the sur-
face, creating a zone of reversed fl ow. This phenomenon 
is called separation and is sketched in Fig. 6.10 (see 
also Fig. 6.1). The separation zone is characterized by 

Pressure distribution

SternBow

Inviscid pressure

Real pressure without
separation

Undisturbed
pressure

with separation
Inviscid stagnation point

without separation

Velocity distribution
(just outside the boundary layer)

Stagnation
point

Velocity zero
Figure 6.9 Pressure and velocity distributions along a 2D body.
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very small axial mean velocity, but large velocity fl uc-
tuations. This is in contrast to the attached turbulent 
boundary layer, where the fl uctuations are small rela-
tive to the mean longitudinal velocity. Although it is the 
pressure increase at the stern that may create separa-
tion, the separation itself will cause a reduction in the 
pressure gradient. Because the streamlines outside of 
the separation zone now move even more straight back-
ward than those shown in Fig. 6.7 for the unseparated 
boundary layer, the pressure build-up at the stern will 
be even smaller, as seen in Fig. 6.9.

6.4.5 Form Effects and Form Factor. Because of 
the effect of the pressure gradient, which causes the 
variation of the velocity at the boundary layer edge, the 
friction on the body will not be the same as on a fl at 
plate. In fact, the integrated friction is normally larger 
because the body displaces the streamlines, which will 
then be closer together over the body than at infi nity. 
This means that the velocity at the boundary layer edge 
in general is larger than for a fl at plate, thereby increas-
ing the friction on the body. This effect is the form effect 

on the friction in Fig. 4.1.
The two form effects (i.e., the one on pressure and 

the one on friction) are normally lumped together in a 
total form effect represented by a form factor, r, which 
is often written as 1 
 k. This factor is defi ned as the 
ratio of the total viscous resistance CV for the body and 
the friction on the equivalent fl at plate CF0

 1 
 k �   CV_
CF0

   �   CF + CP_
CF0

   (6.39)

where CF and CP are the skin friction and pressure resis-
tance coeffi cients, respectively, for the body. This defi ni-
tion is used also for general 3D cases. The form factor is 
very important in the ITTC-78 extrapolation procedure 
to obtain full-scale data from model tests. This will be 
further explained in Section 8.

6.5 Axisymmetric Bodies. From a boundary layer point 
of view, the fundamental difference between an axisym-
metric and a 2D body is the fact that the width of the sur-
face along which the boundary layer develops varies along 
the body.

The interpretation of the word “axisymmetric” is that 
the body is generated by a plane curve, rotating around 
an axis in the same plane as the curve. For an axisym-
metric body, the streamlines closest to the surface (on 
the surface in inviscid fl ow, just outside the surface in 
viscous fl ow) will diverge out from the forward stagna-
tion point and they will be most spread at the section 
with the largest diameter. They will converge at the tail 
toward the aft stagnation point (Fig. 6.11).

The lateral distance between the streamlines will be 
proportional to the local circumference of the body (i.e., 
proportional to the local radius). This has to have an effect 
on the boundary layer development. In regions where the 
lateral distance between streamlines increases (i.e., where 
the radius of the body increases), continuity demands that 
the boundary layer growth will be reduced, whereas the 
opposite is true for regions where the streamlines con-
verge. The initial growth of the thickness is thus smaller 
than for a 2D body at the fore end, but it is larger at the tail. 

Streamline

Varying distance between streamlines

Figure 6.11 Streamlines about an axisymmetric body in axial fl ow.

Figure 6.10 Flow near the separation point (S).

Separation point

Separated flow
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Because the streamlines close to the surface converge to-
ward a point, the lateral distance goes to zero, which would 
have caused the boundary layer thickness to go to infi nity 
had it not been for the radial spreading of the normals to 
the surface (Fig. 6.12). The lateral distance between two 
meridian planes is proportional to the radial distance from 
the axis, so away from the surface there is still some space 
for the boundary layer, even with fi nite thickness. In other 
words, the effect of the strong divergence and convergence 
of the streamlines close to the surface is reduced further 
away from the surface, but it is still signifi cant.

The equations governing the fl ow around an axisym-
metric body differ somewhat from those in two dimen-
sions because the radius of the body must be introduced. 
For a derivation, see for example Schlichting (1987). It is 
thus not possible to use the equations presented in Sec-
tion 2 based on Cartesian coordinates. We will not con-
sider the equations further, but restrict ourselves to the 
physical reasoning previously discussed. When applying 
the simple fl at plate formulas for estimating boundary 

layer quantities, the general effects of the streamline 
convergence/divergence should be kept in mind.

6.6 Three-Dimensional Bodies. Starting from the fl at 
plate boundary layer, we have now introduced two com-
plicating factors: the longitudinal pressure variation 
for the 2D body and the laterally diverging/converging 
streamlines of the axisymmetric body. We will now 
take the fi nal step toward a general case and introduce 
pressure gradients also in the lateral direction (i.e., in 
a plane parallel to the surface but at right angles to the 
fl ow at the boundary layer edge).

6.6.1 Cross-fl ow. The resulting fl ow is seen in Fig. 
6.13. To clearly illustrate the principle, a 2D boundary 
layer velocity profi le is assumed at one position on the 
surface (to the right in Fig. 6.13). Because of a pressure 

gradient   
�p_
�z

 in the plane of the surface, but at right  angles 

to the fl ow in the profi le, the external fl ow bends to the 
left (i.e., in the negative z-direction) and the  radius of 
curvature of the streamlines at the edge of the  boundary 

Maximum section On afterbody Tail

Shaded area: boundary layer
Figure 6.12 Cross-section of the axisymmetric body and a segment of the boundary layer. Thickness 
infl uenced by both the shrinking circumference and the diverging normals.
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Figure 6.13 Cross-fl ow development due to lateral curvature of streamline.
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layer is determined by the magnitude of the  pressure 
gradient, as seen in Section 5.2.1 As the pressure may 
be assumed constant in the y-direction across the 

boundary layer,* the pressure gradient   
�p_
�z

 may also be 

assumed constant with respect to y. At every distance 
from the surface on a certain normal to the surface, we 

thus have the same   
�p_
�z

. This means that   
�u2
_
r  has to be 

the same at all y. But the local velocity u varies with y,
which means that the local radius r will also vary (in 
proportion to u2). The smaller the velocity, the smaller 
the transverse radius of curvature (i.e., the closer to the 
surface the sharper the turn toward the left for the local 
streamline). Thus, the fl ow will not be parallel to that 
at the edge: a cross-fl ow will develop to the left, as seen 
in the Fig. 6.13. This is not surprising; the reduced mo-
mentum inside the boundary layer relative to the edge 
will make it easier for a given lateral pressure gradient 
to bend the fl ow. Note that the cross-fl ow profi le (in the 
yz-plane) must go to zero at the surface due to the no-
slip condition.

Should   
�p_
�z

 change sign further to the left along the ex-

ternal streamline (i.e., if there is an infl exion point and 
it starts to bend to the right), the innermost streamlines 
will react immediately, and a cross-fl ow to the right will 
develop. However, because of the higher momentum 
at the outer streamlines, it will take some time for the 
cross-fl ow in the outer part of the boundary layer to 
change sign. An S-shaped cross-fl ow profi le thus devel-
ops over a certain distance along the streamline, before 
all cross-fl ow has turned to the right.

The cross-fl ow angle � is defi ned as

 � � atan   w_u  (6.40)

At the surface there is no fl ow because of the no-slip 
condition, so equation (6.40) cannot be applied. How-
ever, according to l’Hospital’s rule, a limiting value �w

may be computed as

 �w � lim atan   w_u � lim atan   

�w_
�y_
�u_
�y

y → 0 y → 0

But the velocity gradients are related to the shear 
stress, in general according to equation (2.10) and for a 
2D boundary layer according to equation (6.1). The 3D 
analog to equation (6.1) is

 �yx � �   �u_
�y

�yz � �   �w_
�y

where the limiting value of the shear stress (�yz,�yx) at 
the wall is (�wz,�wx). Thus

 �w � atan   �wz_
�wx

(6.41)

We have now shown that the limiting value of the fl ow 
direction on the surface is the direction of the shear 
stress on the surface. If a set of lines is traced along 
the surface, based on the direction of the friction, these 
lines represent the limit on the surface of the stream-
lines in the boundary layer. They are therefore called 
limiting streamlines. In towing tank testing, the lim-
iting streamlines are obtained by a technique where 
strips of dark paint are applied girthwise at several sta-
tions on the hull. Towing the hull when the paint is still 
wet, paint particles will be dragged along the surface 
by the friction, thus creating fi ne lines of paint on the 
surface. These show the direction of the friction and 
may be used for tracing the limiting streamlines. See 
Fig. 8.10.

6.6.2 Three-Dimensional Separation. Three-dimen-
sional fl ow may separate in two different ways, both shown 
in Fig. 6.14. The bubble type, shown to the left, is the one 
most similar to that described for 2D boundary layers in 
Section 6.4.4 (the same type occurs for axisymmetric bod-
ies). In the bubble separation, the fl ow leaves the surface 
along a line (dividing line in Fig. 6.14) on the surface. A 
bubble is created, where the fl ow on the outside is directed 
backward and on the inside forward. The top view to the 
left shows a cut through the bubble and is very similar to 
the 2D picture of Fig. 6.10. Here the fl ow leaves the surface 
at a non-zero angle and the friction is zero, just as in the 
2D case. At all other points on the dividing line, the fric-
tion is different from zero and the fl ow leaves the surface 
tangentially.

The vortex sheet separation, shown to the right, oc-
curs when the streamlines near the surface converge. 
For continuity reasons, the fl ow then has to leave the 
surface, whereby the boundary layer is swept out. Two 
different boundary layers will then meet, and rela-
tively strong vortices appear in the intermediate layer. 
This vortex sheet is unstable and will ultimately break 
down into a longitudinal vortex in the fl ow direction. 
An in-depth discussion of 3D separation is found in 
Maskell (1955).

6.7 The Boundary Layer Around Ships. In Table 6.1, 
the result of the discussions so far in Section 6 are 
summarized. Based on the knowledge thus acquired 
of 3D boundary layers, we will now turn to the bound-
ary layer on a ship hull. It should be pointed out again 
that all effects of the waves are neglected in this sec-
tion. The undisturbed free surface is treated as a sym-
metry plane. The case considered is thus the real un-
derwater part of the hull plus its mirror image in the 
 undisturbed free surface, a so-called double model. As 
an example, we will use a VLCC which has been used 
extensively for CFD validation in recent years, for in-
stance at the CFD Workshops in 2000 (Larsson, Stern, 
& Bertram, 2002, 2003) and in 2005 (Hino, 2005). A 
double model of this hull was tested in a wind tunnel, 
but there are also towing tank data with the real hull 
available (see Kim, Van, & Kim, 2001; Lee et al., 2003; 
Van et al., 1998a,b). The hull was originally designed 

*For this statement to be true, the normals to the surface need 
to be parallel. According to the boundary layer assumption 
that � _

r is negligible, the variation in distance between two nor-
mals is also negligible within the boundary layer.
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at the Korea Research Institute of Ships and Ocean 
Engineering and is the second variant of a VLCC de-
sign. It is known as the KVLCC2. The block coeffi cient 
is 0.85, so it is a very bluff hull. This means that the 
effects of three- dimensionality are relatively strong 
and easily seen. For more slender displacement hulls, 
the effects are weaker, but they are present in most 
cases. For planing hulls with a submerged transom, 
the fl ow is normally somewhat simpler. Streamlines 
leave the edge of the transom without converging very 
much and often without lateral curvature, so in the 
stern region, where the boundary layer on displace-
ment ships is most complicated, the boundary layer is 
relatively 2D.

The discussion in Section 6.7 will be based on com-
puted results, rather than measured data. A more com-
plete fl ow picture may be obtained in this way because 
some experimental data are not available, such as the 

detailed pressure distribution and the local friction on 
the hull. Full-scale fl ow data of all kinds are also very 
rare, and not at all available for the hull selected here. 
Very detailed validation studies for the viscous method 
used to obtain the present results have been made in 
several projects, like the different international work-
shops described, or VIRTUE, a project sponsored by the 
European Commission (see Marzi, 2008), and the au-
thors are convinced that the accuracy of the results is 
high enough for the present purposes, at least at model-
scale. The accuracy at full scale is more diffi cult to as-
sess because data are rare, but validation studies [e.g., 
in another European project, EFFORT (see Regnström 
& Bathfi eld, 2006)] indicate that the results are at least 
qualitatively correct.

6.7.1 Pressure Distribution and Boundary Layer 

Development. The boundary layer development is 
driven by the pressure distribution around the hull. In 
Fig. 5.5, the pressure around the KVLCC2 hull was given, 
assuming the fl ow to be inviscid. For convenience, the 
pressure distribution is repeated as Fig. 6.15.* The lines 
represent contours of constant pressure (isobars) and 
the value of the pressure coeffi cient Cp is given on most 
of the lines. Positive pressure coeffi cients are repre-

Table 6.1 Boundary Layer Features

Boundary Layer Type Main Flow Features

Flat plate No-slip

Two-dimensional No-slip, longitudinal pressure gradient

Axisymmetric No-slip, longitudinal pressure gradient, 
lateral streamline convergence/
divergence

Three-dimensional No-slip, longitudinal pressure gradient, 
lateral streamline convergence/
divergence, lateral pressure gradient

*All fi gures of Section 6.7 were produced by Michal Orych 
at FLOWTECH International AB and are published with his 
permission. The inviscid results were obtained by a potential 
fl ow panel method whereas the viscous ones are from a meth-
od based on the RANS equations. See Section 9 for a descrip-
tion of the different methods.

Figure 6.14 Three-dimensional separation.
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sented by full lines whereas negative ones have broken 
lines. There are two high-pressure zones, one at the bow 
and one at the stern. Low-pressure zones are found at 
the two shoulders and at the bilges near the bow and 
stern. The reasons for this variation in pressure were 
explained in Section 5.2.

In reality, the pressure will be infl uenced by the 
boundary layer because of the displacement effect, 
but this effect is very small on the forebody. On the af-
terbody, the differences are larger, as can be seen in
Fig. 6.16, where the pressure distribution at model-scale 
in a real, viscous fl ow is shown. The Reynolds number at 
model-scale is 4.6 � 106.

Comparing Figs. 6.15 and 6.16, it is seen that the �0.1 
contours, located just behind the parallel middle body, 
are almost identical. Further aft, the differences increase, 
and at the very end, close to the transom, the high inviscid 
pressure is reduced by 0.1–0.2 in Cp in the viscous fl ow. The 
pressure minimum at the bilge is about 0.05 higher in the 
real case. In general, the distribution of pressure is very 
similar in the two cases, but the variations are somewhat 
smoothed out in the real fl ow, compared to the inviscid one.

When explaining the pressure distribution in Fig. 5.5, 
use was made of the normal curvature of the hull and 
its relation with pressure gradients in the normal direc-
tion. Now we will direct our interest toward the lateral 

Figure 6.15 Pressure distribution around the KVLCC2 hull in inviscid fl ow. Contours labeled by Cp.
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pressure gradients, which are linked to the  lateral* cur-
vature of the streamlines. The streamlines of interest 
are those at the edge of the boundary layer, as seen in 
Fig. 6.13. In fi rst order boundary layer theory, these are 
assumed the same as those traced on the hull in the in-
viscid fl ow (i.e., those shown in Fig. 5.4). The streamline 
distribution is shown again in Fig. 6.17.

The lines along the upper part of the hull move more 
or less horizontally and have very little lateral curva-
ture. Little cross-fl ow is thus developed in this region. 
The streamlines in the bilge region on the forebody start 
relatively horizontally at the bow, thereafter curving 
downward to pass under the bottom. Having reached the 
bottom, they turn back to the original direction. There 
is thus an infl exion point located on the bilge; fi rst the 
line turns left, thereafter right. At the infl exion point the 
lateral pressure gradient changes sign; from positive up-
ward to positive downward. The location of the infl exion 
point varies in the longitudinal direction on the hull, as 
seen in Fig. 6.17. Above the line connecting the infl ex-
ion points, cross-fl ow is developed downward(toward a 
lower pressure) whereas it develops upward (also toward 
a lower pressure) below the line. As explained in Sec-
tion 6.6.1, it takes some time for the cross-fl ow to change 

from one direction to the other, so immediately after the 
infl exion the cross-fl ow  profi le will be S-shaped, but the 
cross-fl ows in the  inner part of the boundary layer will 
have opposite directions above and below the infl ex-
ion line. In both areas, the fl ow will be toward the line, 
which means that the fl ow will converge along the line.

We thus have the situation described in Fig. 6.14 
for the vortex type separation: because of streamline 
convergence in the inner parts of the boundary layer, 
a vortex sheet leaving the surface is created, and this 
sheet rolls up into a vortex essentially aligned with the 
external fl ow. The bilge vortex thus created is not very 
strong on most forebodies, but it may be signifi cant on 
hulls which have a small bilge radius forward. It is an 
important task for the ship designer to avoid the for-
ward bilge vortex to the largest possible extent because 
it increases the viscous resistance of the hull. One way 
to reduce the effect is to increase the bilge radius, but 
it is also possible to avoid the problems by fi tting a bow 
bulb to the hull. The bulb creates a much more horizon-
tal fl ow along the hull, even at the deeper levels, so the 
streamlines do not have to go over the sharp bilge, thus 
avoiding the low pressure in the region.

Although the bilge vortex on the forebody is normally 
weak, the corresponding one on the afterbody is much 
stronger. Looking at the streamline distribution aft, we 
see that the situation is the same as on the forebody: there 

Figure 6.16 Pressure distribution at model scale in a real, viscous fl ow. Contours labeled by Cp.

*In differential geometry, this is known as geodesic curvature.
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is a line connecting the infl exion points and the cross-fl ow 
developed will meet near this line. The reason why the 
stern bilge vortex is stronger is that the boundary layer 
is much thicker over the stern than over the bow. Related 
to this is a much smaller friction, which means that u� is 
smaller and so are the velocities in the wall law region. 
The momentum in the inner parts of the boundary layer 
is thus much smaller than on the forebody, so the fl ow 
will react much more easily to a lateral pressure gradient. 
The stern bilge vortex has a fundamental infl uence on the 
fl ow into the propeller, as will be seen shortly.

Another region of interest on the afterbody is that at 
about half draft. If we again look at the potential fl ow 
streamlines of Fig. 6.17, we see that they tend to con-
verge along an essentially horizontal line. In order for 
the streamlines to converge along this line, and become 

more or less parallel there, the lateral curving of the 
fl ow is slightly upward above the line and, more strongly, 
downward below. The associated cross-fl ows thus go in 
the directions away from the line; the situation is op-
posite to that at the bilges. In Fig. 6.18, the computed 
limiting streamlines around the stern of the tanker are 
shown. The lines are traced based on the fl ow computed 
at the innermost points in the computational grid, very 
close to the surface (y
 � 1). The conjectures from our 
discussion based on the lateral inviscid streamline cur-
vature are here confi rmed. At about half draft, the limit-
ing streamlines diverge, but at the bilge they converge.
The diverging fl ow turns almost vertical close to the aft 
contour, but there is no sign of bubble separation except 
at a very small region at the aft end of the keel. This hull 
is well designed; other very bluff hulls may encounter a 

Figure 6.17 Inviscid streamlines on the KVLCC2 hull.
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larger bubble separation in the region above the propel-
ler shaft. As a result of the strong convergence of the 
limiting streamlines at the bilge, a strong bilge vortex is 
created and has an important effect on the fl ow into the 
propeller, as will be seen subsequently.

6.7.2 Cross-sections Through the Boundary Layer.

We are now in a position to show the velocity distribution 
in several cross-planes on the afterbody. First, we note 
again that in the region at about half draft, the potential 
fl ow streamlines are convergent whereas the limiting 
streamlines are divergent. Thus, the fl ow in the outer part 
of the boundary layer, which is close to the external fl ow, 
is convergent but it is divergent close to the surface. This 
gives rise to a distinct two-layer structure of the bound-
ary layer, with a stepwise change in velocity, as noted by 
Löfdahl and Larsson (1984).

Fig. 6.19 shows isovelocity contours at three stations 
along the hull, including the propeller plane. Contours are 
given for the axial velocity component u, made dimension-
less by the undisturbed fl ow velocity U. At the foremost 
station, the contours 0.7–1.0 are given, at the next station 
contours 0.4–0.9, and at the propeller plane contours
0.3–0.9. The reason why 1.0 is not given at the last stations 
is that the fl ow at the boundary layer edge does not reach 
this value. Ue is smaller than U in the stern region.

At the fi rst station, the boundary layer is rather 
evenly distributed around the girth. This station is close 
to the parallel middle body. A considerable redistribu-
tion of the boundary layer thickness has however oc-
cured at the second station, which is in the region where 
the external streamlines (assumed equal to the invis-
cid streamlines) converge at half draft. Because of this 
convergence, the outer part of the boundary layer has 
increased considerably in thickness. Note the bulge of 
the 0.9 contour! However, the inner part of the boundary 
layer has become thinner because of the divergence of 
the inner (limiting) streamlines. This is refl ected in the 
shape of the 0.4 and 0.5 contours just above half draft.

At the last station, the same features can be seen, but 
the most striking feature at this plane is the shape of 
the contours in the propeller disk. There is an “island” 
of low-velocity fl uid, represented by the 0.3 and 0.4 con-
tours in the central part of the propeller disk. On closer 

 inspection, it turns out that this island is created by the 
bilge vortex from the stern, which hits the propeller plane 
in this region. Fig. 6.20 shows a projection of the veloc-
ity vectors in the plane. As seen in Fig. 6.19, the vortex 
tends to move low-speed fl uid outward from the region 
near the propeller center and inward further up. The pre-
diction of the bilge vortex and the associated “hooks” in 
the velocity contours was a major challenge to the CFD 
community for two decades (see Section 1.2.3), but at 
present very accurate predictions can be made. Obvi-
ously, the detailed shape of the velocity contours has an 
important effect on the operation of the propeller. This 
topic will be further discussed in Section 11.4.1.

The fi rst order boundary layer theory, introduced in 
Section 6.2.2, is adequate for predicting the boundary 
layer development over the major part of the ship hull, see 
Larsson (1981), and can be used for rapid estimates of the 
fl ow. However, the theory fails close to the stern, where 
the boundary layer is too thick for the basic assumption 
to hold. Terms neglected in the fi rst order equations be-
come important, and the inviscid pressure distribution is 
modifi ed by the boundary layer displacement effect, as 
seen in Fig. 6.16. For ship stern fl ows the less approxi-
mate methods of Sections 9.7 and 9.8 are required.

6.7.3 Effects on Viscous Resistance. The drag in-
crease due to the bow bilge vortex was mentioned pre-
viously. A similar increase occurs for the stern vortex. 
However, in this case, there are advantages that might 
outweigh the disadvantage of a larger resistance. Be-
cause the velocity contours in the propeller plane get a 
rounder shape caused by the vortex, better conditions 
for the propeller are created. If the axial velocity at a 
given radius is kept as constant as possible, variations 
in the angle of attack of the rotating propeller blades 
are minimized and so are the load variations. This has 
a favorable effect on noise and vibrations, and the pro-
pulsive effi ciciency may be increased. A more thorough 
discussion on these effects will be given in Section 11.

Although there is practically no bubble type separa-
tion for this hull, bluffer or less well designed  afterbodies 
may experience this problem, which is associated with a 
large momentum loss, and thus with a considerable drag 
increase. Therefore, bubble separation should be avoided.

Figure 6.18 Limiting streamlines at the stern, model scale.
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For both types of separation, the resistance increase 
is caused by a loss of pressure on the hull, but there is 
also a small compensating effect in a loss of friction. 
More important boundary layer effects on the friction 
are, however, the larger shear stresses in regions where 
the boundary layer is thin. This is seen in Fig. 6.21. 
Along the keel where the boundary layer is thin because 
of divergence of the external streamlines, the friction 

is very high. There is also a much higher friction on the 
forebody than on the afterbody, as expected, because of 
the thinner boundary layer.

6.7.4 Scale Effects. As appears from the fl at plate 
equations in Section 6.3, the boundary layer depends 
on the Reynolds number. The fl at plate boundary layer 
thickness, for instance, is inversely proportional to the 
Reynolds number to the one-fi fth power. Because the 
Reynolds number for a ship is normally at least two 
orders of magnitude larger than that of a model, there 
should be a considerable difference in the relative 
boundary layer thickness between the model and the 
ship. In fact, all quantities presented in Sections 6.7.1 
and 6.7.2 for the model are different for the ship, except 
the inviscid fl ow results, which are independent of scale.

Fig. 6.22 shows the pressure distribution around the 
stern of the full-scale KVLCC2 hull at a Reynolds num-
ber of 2.0 � 1010. Looking at the pressure minimum at the 
bilge and the maximum at the aft end, it is obvious that 
the full-scale pressure is closer to the inviscid results of 
Fig. 6.15, as compared with that of the model in Fig. 6.16 
(Reynolds number 4.6 � 106). The thinner boundary layer 
causes a smaller displacement effect (i.e., a reduced 
smoothing of the pressure variations).

The limiting streamlines for the full-scale hull are 
presented in Fig. 6.23. As compared with the model 
streamlines in Fig. 6.18, the full-scale ones do not di-
verge as much on the afterbody and the convergence in 
the bilge region is not so strong. The vortex separation 
is weaker and the bilge vortex less pronounced. This is 
well refl ected in the shape of the wake contours seen 
in Fig. 6.24. The hook-like shape of the innermost con-
tours for the model in Fig. 6.19 has now disappeared. 
Much smoother contours are obtained because of the 
reduced stirring effect of the bilge vortex. Comparing 
contours 0.3–0.8 at model- and full-scale also reveals 
the expected thinning of the boundary layer at the high 
Reynolds number. The outermost contour, 0.9, has not 
moved much because it is likely to be outside the bound-
ary layer, at least at full scale.

Figure 6.19 Contours of constant axial velocity at three stations, 82.5%, 
95.5%, and 99.125% of Lpp from the FP. The latter station is the propel-
ler plane. Velocities are nondimensionalized by the undisturbed velocity; 
model scale.

Figure 6.20 Projection of velocity vectors at the propeller plane; model scale.
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The smaller boundary layer displacement effect at 
full scale, and the correspondingly smaller modifi ca-
tion of the inviscid pressure distribution at the stern, 
also has an effect on resistance. The viscous pressure 
resistance becomes smaller. Although there is a very 
small increase in the form effect on friction (see Sec-
tion 4.1), the total form effect is reduced, and the general 
assumption in model testing it is that the form factor is 
constant. The viscous resistance is thus proportional to 
the fl at plate friction, according to equation (6.39). The 
validity of this assumption is discussed in Section 8.3.4.

6.8 Roughness Allowance. The boundary layer de-
velopment around increasingly complex bodies has now 
been described. We have assumed that the fl ow is not 
infl uenced by imperfections in the surface (i.e., that the 
surface is hydraulically smooth). This is most often true 

for well manufactured ship models, but not for full-scale 
ships. As appears from Fig. 4.1, the roughness resis-
tance, or allowance, may be considerable. In this sec-
tion, we will fi rst discuss the characterization of rough-
ness and thereafter its infl uence on the boundary layer 
and the resistance.

6.8.1 Roughness and Fouling on Ships. There 
are different kinds of roughness on the hull surface of 
a ship. The new plates used for the hull skin are nor-
mally shot blasted and relatively smooth, but still not 
hydraulically smooth at the speed of the ship. Welding 
joints cause additional roughness. On the plate, there 
are several layers of paint which are not smooth, and 
over time both the steel surface and the paint deterio-
rate. Further, a considerable increase in roughness may 
be caused by fouling.

Figure 6.21 Distribution of friction on the hull at model scale. Contours labeled by the local skin friction coeffi cient multiplied by 1000.
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Figure 6.22 Pressure distribution around the stern at full scale. Contours labeled by Cp.

Figure 6.23 Limiting streamlines at full scale.

Figure 6.24 Wake contours at the propeller plane at full scale.



72 SHIP RESISTANCE AND FLOW 

During the past decades, a new type of antifouling 
paint has been introduced, which eliminates some of 
the problems. The new self-polishing copolymer (SPC) 
paint becomes smoother and smoother with time, due 
to abrasion of the peaks of the roughness elements in 
the paint. Because the speed of the fl ow is higher over 
the peaks than over the valleys, the friction is larger 
and so is the abrasive effect. Thanks to the abrasion, 
fouling is also reduced. Through the introduction of the 
SPC paints, the docking period has been increased from 
typically 1.5 years to about 5. The hull may stay in ser-
vice as long as there is still enough paint left to cover 
the surface. According to Almeida, Diamantino, and de 
Sousa (2007), the SPC-active antifouling agent tributyl-
tin (TBT) accounted for close to 70% of all commercial 
ship coatings in 1999.

The introduction of the SPC paints has greatly re-
duced the roughness problem for ships, but there is an-
other trend that may again increase the problem. Thanks 
to the greater awareness of environmental problems, 
the toxicity of the antifouling paints will have to be re-
duced. The use of toxic paints in lakes is already banned 
for pleasure craft in some countries, and for such craft 
the use of the most harmful paints like TBT has been 
banned for a long time. For commercial ships, tin-based 
paints were phased out over a period from 2003 to 2008 
according to an agreement within the International 
Maritime Organization.

Because of the ban of TBT coatings, a wide array of 
substitutes have emerged on the market. Biocide coat-
ings are available within three groups: controlled deple-
tion paint, tin free-SPC, and hybrid systems. They all 
release biocides, but with less toxic antifouling agents, 
such as copper oxide and cobiocides, compared to TBT 
coatings.

Fully biocide-free alternatives are also available, 
working in a different way. Instead of killing the fouling, 
these coatings create a surface for which adhesion of 
marine organisms becomes diffi cult or impossible. One 
approach within this category is silicone or fl uoropoly-
mer coated surfaces, which usually require ship speeds 
of at least 15 knots to keep the surface clean of biofoul-
ing. Another approach is to give the surface a special 
structure preventing barnacles from attaching (Bern-
tsson et al., 2000; Dahlström et al., 2000). An excellent 
overview of antifouling paints is found in Almeida, Dia-
mantino, and de Sousa (2007).

6.8.2 Characterization of Roughness. Attempts 
have been made in the past to characterize roughness 
by several parameters and to link these parameters to 
an increase in skin friction. However, these attempts 
have not been successful. In most techniques for com-
puting the roughness resistance, some measure of the 
roughness height is the only geometrical quantity, but in 
more advanced methods height is also combined with 
some measure of the roughness effi ciency.

The classical way to compute roughness resistance is 
to refer to surfaces covered by densely packed sand. For 

such surfaces, the roughness allowance is well known. 
The so-called equivalent sand roughness, ks, for dif-
ferent types of surfaces can be found in standard text 
books on mechanical design. Some examples are given 
in Table 6.2.

In ship hydrodynamics, the generally accepted way 
to quantify roughness is to use the Mean Apparent 
Amplitude (MAA) method. The roughness of the sur-
face is registered using a needle at right angles to the 
surface, supported by a small carriage. When the car-
riage is moved along the surface on a special rail, the 
needle is allowed to move up and down and tracks the 
contour of the surface, which is registered. Normally, 
the contour is measured in this way along a straight 
line 750 mm long. This line is then divided into 50 mm 
intervals and within each interval the distance, mea-
sured normal to the surface, from the highest peak to 
the lowest valley is recorded. The roughness height 
k is obtained as the mean of the 15 values. The MAA 
value is thus a kind of mean wave height based on a 50 
mm wave length.

Fig. 6.25 shows the increase in roughness with time 
for a large number of ships before the SPC-era (Town-
sin et al., 1980). For newer ships, k (MAA) was about 
100 �, but for older ships heights of 600–700 � were 
common. Note that this was for cleaned, but not shot-
blasted hulls. As explained, the roughness does not 
increase with time for SPC-coated hulls, rather the 
 opposite.

6.8.3 Hydraulically Smooth Surfaces. Experience 
shows that a surface may be considered hydraulically 
smooth if the roughness elements are embedded in the 
viscous sublayer, defi ned by equation (6.26). The re-
quirement is thus that the roughness should be within 
y
 � 5. With k as the roughness height

u� k_
� � 5

or

 k �   5�_
u�

   (6.42)

The friction velocity u� may be obtained from the 
defi nition (6.21) using a skin friction formula such as 
equation (6.34). Because the skin friction is generally 
reduced with the distance from the bow, u� will also 
decrease, which will cause an increase in permissible 
roughness aftward.

Table 6.2 Equivalent Sand Roughness for Different Surfaces

Type of Surface Equivalent Sand Roughness, ks(�)

Glass 0.3

New tubes (brass or copper) 1.5

Cast iron 250

Concrete 30–300

Wood 20–1000
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If a very rough estimate of the permissible roughness 
is required, a very simple and easy to remember formula 
is the following

 k �   100_
V

 (6.43)

where k is the roughness height in microns and V is the 
speed in m/s. The maximum speed of pleasure craft of 
the displacement type is typically 4 m/s (8 knots), which 
yields a permissible roughness of 25 �. For large ships, a 
typical speed is 10 m/s (20 knots), which yields a height 

of 10 �. This is a conservative estimate giving the per-
missible roughness over the forebody.

6.8.4 Roughness Allowance Prediction. If the equiv-
alent sand roughness is known, the Prandtl-Schlichting di-
agram (Schlichting, 1987) may be used for determining the 
roughness allowance, �CF. However, the equivalent sand 
roughness is rarely known for ship hulls.  Experiments 
are needed to obtain data based on the MAA roughness. 
A device (fl oating element balance) used for such tests 
is shown in Fig. 6.26  (Johansson, 1984). The surface to be 

Figure 6.25 Roughness measured on ships before the SPC-era (excluding shot-blasted hulls).
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tested is mounted on the ceiling of a water or wind tunnel. 
A small piece of the surface (the element, typically 200 �
200 mm for a water tunnel) is cut out and separated from 
the surrounding plate by small slots (typically 0.2 mm). 
The element is held fl ush with the surface by a balance 
mounted outside the tunnel and the shear force is mea-
sured by the balance.

On the basis of fl oating element measurements for 
plates treated in the same way as a newly built ship, 
the diagram shown in Fig. 6.27 has been produced 
( Johansson, 1984). This diagram should be more accu-
rate than the Prandtl-Schlichting diagram, and might 
be used for ship surfaces also after a certain time in 
service. Note that the roughness height is denoted h in 
this diagram. h is measured using the MAA method.

An alternative way of measuring friction is to use 
pipes where the pressure drop is registered. This 
technique is considerably less expensive than the 
one just described, which requires a water or wind 
tunnel, but the disadvantage is that the roughness of 
interest has to be applied to the inside of the tubes. 
The method is less accurate for measuring small skin 
friction increases, and requires some assumptions and 
corrections to be applicable for fl at plates and ship 

fl ows. But for large skin  friction increases (i.e., from 
biofouling) and high  Reynolds  numbers, it is a very 
effi cient method (Leer-Andersen & Larsson, 2003). 
Other skin friction measurement methods used are fl ow 
cells or fl at plate towing in a tank .

6.8.5 Bowden’s Formula. There are still relatively 
few data available for rough surfaces in hydrodynamics, 
so rather than using the existing data, the ITTC decided 
in 1978 to use an empirical formula for the roughness 
allowance in the model-ship extrapolation procedure. 
This formula, attributed to Bowden, reads

 �CF � [105  ( k_
L )1/3

� (0.64) ]  10�3 (6.44)

where k is the MAA roughness height.
Bowden derived this formula in a very interesting way. 

He compared the results of a large number of ship trials 
with the corresponding extrapolated values from model 
tests without including any correction for the roughness 
of the ship surface. The gap thus found between “reality” 
and extrapolated values was attributed to roughness, and 
the roughness allowance was expressed as an equation 
(6.44). This �CF must contain other effects, not accounted 
for in the model-ship extrapolation procedure, but as 

Figure 6.27 Total skin friction coeffi cient for newly painted ships (Johansson, 1984; courtesy of the Royal Institution of Naval Architects).
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a means for correcting model-scale data, it is probably 
better than using data from measurements with rough 
surfaces. If, on the other hand, the true effect of roughness 
is requested, Bowden’s formula should not be used.

We will return to the roughness allowance in Sec-
tion 8 in connection with the ITTC-78 procedure for 
extrapolating model test data to full scale. It may be 
of  interest to note that before the introduction of 
Bowden’s formula, a constant �CF equal to 0.0004 was 
used by  towing tanks.

6.8.6 Fouling The roughness discussed so far 
arises from imperfections in the surface of the hull 
plates or coating. If the surface is covered by fouling, 
considerably larger increases in resistance may be seen. 
Because the geometry of such roughness elements may 
differ widely, it is hard to give any general guidelines for 
their effect on friction. However, the diagram of Fig. 6.28 
may be used for surfaces covered with densely packed 
barnacles. It was derived from measurements using a 
fl oating element balance and a surface with barnacles 5 
mm high, covering almost 100% of the surface (Johans-
son, 1984). The  diagram may be used for other heights 
of the barnacles, but they need to be densely packed. In 
a study  using the pipe fl ow technique, a large number 
of surfaces  covered with barnacles of different density 
were tested and the results may be found in Leer-Ander-
sen and  Larsson (2003).

6.9 Drag Reduction. During the past 60 years, 
the possibilities of reducing the friction to a level be-
low that of a hydraulically smooth surface have been 
known. Toms (1948) noted in experiments with dilute 
polymer solutions in tubes that the friction coeffi cient 
in the tube was very much affected by the polymers. 
Very large reductions in resistance turned out to be 
possible and in systematic experiments by Paterson 
and Abernathy (1970), drag reductions of 75% were 
noted for a  concentration of 50 parts per million (PPM) 
of long-chain molecule polymers. More recently, even 
larger  reductions, up to 90%, have been measured for 
concentrations of 100 PPM and with more effi cient poly-
mers. Even for concentrations as low as 1 PPM, effects 
are noted.

The physical mechanism behind the drag reduction 
has not been fully explained, but there is an obvious effect 
on the turbulence. It has been suggested (see Marchaj, 
1979) that the long and fl exible molecules, which align 
themselves with the fl ow, will have a damping effect on 
transverse oscillations, thereby delaying transition of a 
laminar fl ow and reducing the growth of the turbulent 
spots in the viscous sublayer in turbulent fl ow. Note that 
all polymers are not equally effective. They need to have 
a high molecular weight and good solubility. The most 
popular one for drag reduction is Polyethylene-oxide. 
Other substances have also turned out to have a similar 
effect, for instance polysaccarides, which have been pro-
posed for drag reduction of sailing yachts.

An unwanted drag reducing effect has also been found 
in towing tanks polluted by some algae. In experiments 

at the towing tank at Haslar, England, with the vessel Iris

the resistance, seemingly without reason, dropped more 
than 10%. This phenomenon, which could be explained 
later as an effect of algae in the water, has become known 
as “Iris storms” (Marchaj, 1979) and is very much dreaded 
by towing tank experimentalists. To avoid the problem, 
most towing tanks are built to avoid direct exposure to 
the sun of the water surface. Many tanks are without win-
dows, and where there are windows they normally face 
north (on the northern hemisphere).

Another drag reduction technique is to introduce air 
(or another gas) in the innermost part of the boundary 
layer. The most promising results have been achieved 
with microbubbles covering the surface, and as much as 
80% drag reduction has been demonstrated (see Merkle 
& Deutsch [1989] for a survey of the early work in this 
area). An explanation of the effect has been proposed 
by Ferrante and Elghobashi (2004). The presence of the 
bubbles induces a velocity away from the wall and this 
infl uences the structure of the fl ow near the surface. 
Longitudinal vortices are “lifted up,” and the streaky 
pattern of alternating low- and high-speed fl ow near 
the surface is changed such that the high-speed regions 
are reduced and the low-speed regions increased. The 
microbubbles should be quite small, typically 50 � in 
diameter, and it seems to be necessary to keep them 
at this level to get a large resistance reduction. Tests 
by the author (Larsson) have shown that there are sev-
eral practical problems involved in applying this tech-
nique. It is virtually impossible to create an even layer 
of bubbles beneath the horizontal surface, and once the 
bubbles are created, they tend to cohere, forming larger 
bubbles with a much larger buoyancy. If the hull sur-
face is not perfectly horizontal (which it seldom is in 
reality), the bubbles will then move rapidly toward the 
water surface.

More recently, there has also been an interest in a re-
lated technique where a thick layer of air is introduced 
in a cavity at the fl at bottom of the ship. The cavity is 
designed such that only a little air escapes downstream, 
and an air–water interface is created over a consider-
able part of the bottom. Very little friction is created at 
this interface.

Dolphins are believed to have a very high swimming 
effi ciency. Estimates by biologists (Gray, 1936) of the 
available power suggest that the resistance of the ani-
mal must be considerably lower than for a rigid body of 
the same shape and size. One explanation offered is that 
the fl exible skin of the dolphins may have a damping ef-
fect on the turbulence in the boundary layer, thereby 
 making it more laminar and thus with less friction. 
 Inspired by this idea, Kramer (1961) carried out a large 
number of tests with bodies having fl exible skins. The 
idea was also investigated by several others and drag 
reductions of some 10% were measured using compli-
ant coatings on a surface. However, in similar tests at 
the American National Aeronautics and Space Admin-
istration (NASA) (Bushnell, Hefner, & Ash, 1977), no 



76 SHIP RESISTANCE AND FLOW 

reductions were noted, and the positive results previ-
ously reported were attributed to other reasons, such 
as inadequate measuring equipment. The high swim-
ming effi ciency of the dolphins is likely because of other 
 effects, possibly an active turbulence control through 
vibrations in the skin. It has also been suggested that 
the effi ciency is simply because the dolphins jump out 

of the water regularly to breathe, and the resistance in 
the air is about three orders of magnitude smaller than 
in the water.

The skin of sharks has also been studied with inter-
est by experimentalists interested in drag reduction 
(see e.g., Bechert et al., 1986). The dermal denticles of 
the skin form a ridge-like texture, which may affect the 

Figure 6.28 Total skin friction coeffi cient for surfaces covered with densely packed barnacles (Johansson, 1984; 
courtesy of the Royal Institution of Naval Architects).
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growth of the turbulent bursts in the viscous sublayer, 
thereby making the fl ow more laminar. This idea was 
adopted by a group of NASA scientists (Walsh & Linde-
mann, 1984), who tested the effect of small riblets on the 
surface, aligned with the fl ow. The height and spacing of 
the riblets was quite small, typically about 0.1 mm, but 
the effect on the friction was signifi cant, around 10%. To 
put the idea to practical use, the American company 3M 
(St. Paul, MN) developed a plastic adhesive fi lm, with an 
exterior structured in the way suggested by the NASA 
specialists. The fi lm was used in the 1987 America’s Cup 
races by several teams, but the effect was questioned, 
most likely because of the diffi culties of sticking the 
fi lm to the nondevelopable hull surface without wrin-
kles and gaps between fi lm patches. The fi lm was not a 
success, and it is no longer produced by 3M. However, 
some scientists in Sweden observed that a structure, 
much like the 3M riblets, prevented barnacles from set-
tling on a surface (Berntsson et al., 2000). They also ob-
tained a patent of the idea of combining the antifouling 
effect with drag reduction and are presently developing 
an alternative plastic fi lm technique for application on 
pleasure craft.

Another drag reduction technique which was much 
tested during the 1980s is based on the idea of break-
ing up the large eddies in the boundary layer. As ex-
plained in Section 6.2, eddies of a range of sizes are 
present in this layer. Although the smallest eddies 
are of the order of 0.1 mm for ship models and full-
size ships, the largest ones are of the order of the 
boundary layer thickness. If the latter are disturbed, 
the entrainment of external fl uid into the boundary 
layer is affected, which could have an effect on the 
friction. To obtain a suitable disturbance, “wings” or 
steel ribbons (large eddy break-up devices [LEBUs]) 
are placed in tandem parallel to the surface at a dis-
tance of about 0.75� from the surface. The principle is 
shown in Fig. 6.29.

Earlier low Reynolds number tests indicated a 
net drag reduction (considering the extra drag of the 
LEBUs) of some 20%, but later experiments at more 
 interesting Reynolds numbers showed very disappoint-
ing results. The drag of the LEBUs was almost exactly 
as large as the reduction in friction on the plate tested. 
See Walsh and Anders (1989) for a survey. The present 
interest in this technique is low.

Figure 6.29 LEBU.
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In Section 4, the two main resistance components 
(i.e., the wave and viscous resistance) were discussed 
fi rst (in Section 4.1), and additional components were 
introduced thereafter (in Section 4.2). Having com-
pleted a more thorough discussion of the two main 
components in Sections 5 and 6, we will now turn to 
the additional resistance components. Note that the 
blockage effects were covered already in Sections 5.9 
to 5.12. According to Section 4.2, the remaining ef-
fects are:

1. Induced resistance
2. Appendage resistance
3. Air and wind resistance
4. Added resistance in a seaway

The latter is very closely linked to the theory of sea-
keeping and the reader is referred to the Seakeeping vol-
ume for an introduction. In the present section, we will 
concentrate on the fi rst three components, which may 
be of importance for a wide variety of vessels, from sail-
ing yachts to slender high-speed ships and bluff tankers.

7.1 Induced Resistance. The induced resistance is a 
component which appears because of lift generation in 
an asymmetric fl ow. It is of importance for wing-like 
bodies such as keels and rudders, but also for hulls 
 under certain circumstances. Typical examples from 
hydrodynamics are:

• Sailing yachts at non-zero leeway
• Ships at non-zero leeway
• Rudders at non-zero angle of attack
• Hydrofoils
• Bilge keels and stabilizers
• Twin skeg sterns
• Catamaran hulls
• Trimaran outriggers

It should be noted that the induced resistance is 
an inviscid phenomenon, governed by the equations of 
Section 5.

7.1.1 Lift Generation. Because the induced resis-
tance is closely linked to lift, a short explanation 
of the physics of lift generation will be given in this 
 paragraph. Note that “lift” is an expression borrowed 
from aerodynamics, where the lift force is normally 
directed upward, balancing the weight of an aircraft. In 
hydrodynamics, the lift is mostly horizontal,* acting to 
move the body sideward, relative to the direction of 
motion. The theory of lift and induced resistance was 

7
Other Resistance Components

developed in aerodynamics more than 100 years ago and 
is well described in the aerodynamics literature (see 
e.g., Kuethe & Chow [1986] or Anderson [1991]).

Consider the wing in Fig. 7.1. The wing is an ob-
stacle for the fl ow approaching from the left. Because 
the fl uid cannot penetrate the wing, it has to follow its 
 contour,* which means it will leave the trailing edge in 
a direction different from that of the undisturbed fl ow 
far ahead. The major effect of the wing on the fl uid is 
thus to change the fl ow direction. The wing exerts a 
force on the fl ow to make it turn. This force is equal, 
but opposite to the force exerted on the wing by the 
fl ow (i.e., the lift). In general, the streamlines around 
the wing will turn downward. The center of curvature 
is thus below the wing. Referring to the relation be-
tween streamline curvature and lateral pressure gra-
dients introduced in Section 5.2, it may be concluded 
that the pressure on the lower side must be higher than 
the undisturbed pressure whereas the opposite is true 
on the upper side, where a suction is developed (see 
the discussion of Fig. 5.2).

For the fl ow defl ection, and hence lift generation, 
to be effective, the trailing edge should be sharp. 
The fl ow should leave the trailing edge smoothly on 
both sides. This is called the Kutta condition and is 
a key element in inviscid fl ow theory. It may be ap-
plied either as an equal pressure condition, where the 
pressure is set equal on the two sides of the trailing 
edge, or as a fl ow direction condition, where the fl ow 
is specifi ed to be in the bisector plane immediately 
after the trailing edge.

*In a viscous fl uid, the fl ow may separate on the upper side 
of the wing. The fl ow may then be directed forward on the 
surface in the separated region. For wings operating properly, 
the separated region is small, however, and does not disturb 
the turning of the main fl ow signifi cantly.

*For sailing yachts, the lift may be inclined relative to the hor-
izontal plane. It is assumed to heel with the yacht. Figure 7.1 Lift generation.



SHIP RESISTANCE AND FLOW 79

7.1.2 Vortices and Induced Resistance. Fig. 7.2†

shows a sailing yacht keel moving at an angle of attack 
equal to the leeway angle of the hull. Because there is 
nothing preventing the fl ow on the pressure ( leeward) 
side of the keel in Fig. 7.2 to escape below the tip to 
the low pressure on the other side, a cross-fl ow around 
the tip is generated. This means that the fl ow on the 
entire pressure side will have a downward velocity 
component superimposed on the main fl ow  backward. 
On the  suction side, the opposite is true, and the ef-
fect increases toward the tip on both sides. Thus, the 
fl ows from the two sides will move in slightly different 
directions when they meet at the trailing edge. Fluid el-
ements just behind the trailing edge will experience a 
downward stress  component on one side and an upward 
stress on the other. As a result, they will start rotating 
around a horizontal axis. Longitudinal trailing vortices 
are generated. At the keel root, the fl ow is along the hull 
bottom on both sides, so there is no vortex g eneration,* 
but the closer the tip, the stronger the vortices. The vor-
tex sheet leaving the trailing edge is unstable, and it ul-
timately rolls up into one concentrated vortex behind 
the keel. Because the trailing vortex system contains 
rotational energy, it corresponds to an increase in resis-
tance, which, multiplied by the speed, will yield a work 
per time unit equal to that required for generating the 
vortices.

Figure 7.2 Vortex generation around a keel.

Note that a prerequisite for the trailing vortex system 
to appear is a free end of the keel (or wing, in general). 
If there is no free end, no trailing vortices will develop, 
and there will be no induced resistance. An example is 
a wing mounted between the walls of a wind tunnel. 
This is a set-up used for testing different cross-sections. 
There is no free end, so the fl ow cannot escape from the 
pressure side to the suction side, and hence no trailing 
vortices of this kind are generated.* A wing of constant 
section spanning a wind tunnel is an example of a 2D 
case. For such cases, the induced resistance is zero.

In Fig. 7.3, a 3D wing is represented by its vortex sys-
tem. The wing may be seen as the keel tilted 90  degrees 
and with the hull bottom as the plane of symmetry (x-z
plane) shown in the fi gure. In this mathematical repre-
sentation, the wing itself is replaced by a bound vortex 
(along the y-axis). Free trailing vortices in the local fl ow 
direction are shown behind the wing. In fact, the vortex 
system may be considered a superposition of a bunch of 
horseshoe vortex fi laments with different span. Along 
each fi lament, from the trailing part on one side through 
the bound part on the wing and back to the trailing part 
on the other side, the vortex strength is constant. At 
every spanwise position on the wing, the total bound 

*A local vortex may, in fact, appear in the junction between 
the keel and the hull (or the wing and the tunnel wall), but 
this is a completely different effect caused by interference 
between the boundary layers on the hull and the keel (or the 
wing and the tunnel wall).

†Fig. 7.2 is reproduced from Larsson and Eliasson (2007). 
Courtesy of Adlard Coles Nautical.
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vorticity strength is the sum of that of the horseshoe 
vortices at that position. At the wing center (y � 0) 
all horseshoe vortices are present, but as the tip is ap-
proached more and more vortices have left the wing and 
turned backward. The bound vorticity thus has its maxi-
mum at the centerplane and drops to zero at the two tips.

The constancy of the vortex strength along a fi la-
ment is according to Helmholz’s fi rst vortex theorem 
(See Acheson, 1990). In his second theorem, Helmholz 
states that a vortex cannot end in the fl uid, so the trail-
ing vortices have to be closed downstream. This is in 
the form of the starting vortex, which is equivalent to 
the bound part in the wing, but rotating in the other di-
rection. The horseshoe vortices are therefore in theory 
ring vortices, but in steady fl ow the effect of the starting 
vortex is mostly neglected because it is convected with 
the fl ow and assumed to be far away.*

The trailing vortex system has a very important effect 
on the fl ow. As can be seen in Fig. 7.3, all vortices on one 
side tend to generate a downward fl ow on the other side. 
They also tend to generate an upward fl ow outside the 
sheet on their own side. The result of all this is a downfl ow 
in the entire sheet, but an upfl ow outside the sheet. These 
fl ows are called downwash and upwash, respectively.

Of particular interest is the downwash generated at 
the wing (y-axis in Fig. 7.3). In Fig. 7.3, the downwash 

velocity is denoted w, which, superimposed on the un-
disturbed velocity U yields the total velocity U and the 
induced angle of attack �i

�i � atan   w_
U

 (7.1)

or, because w is always small

�i �   w_
U

 (7.2)

where �i is given in radians.
According to the Kutta-Joukowski theorem, the lift 

force on a bound vortex of strength � is at right angles 
to the approaching fl ow (i.e., at right angles to U, not U)
and its magnitude is �U�. The lift is thus tilted backward 
an angle �i relative to the z-axis. But according to the 
normal defi nitions, the lift and drag shall be computed 
at right angles to, and parallel with, the undisturbed 
fl ow U. This yields the following.

 L� � �U� cos �i � �U� (7.3)

D�i � ��U� sin �i � ��U�i (7.4)

where L� and D�i are the lift and induced resistance 
(mostly called drag in connection with wings) compo-
nents, the prime denoting force per unit span.

7.1.3 The Elliptical Load Distribution. According 
to equation (7.4), the induced drag is proportional to the 
induced angle of attack, which in turn is caused by the 
trailing vortices. This is another way of relating trailing 
vorticity and drag, as compared to the energy explana-
tion. Although equations (7.1) to (7.4) are important to 

*In unsteady fl ow, a starting vortex is generated whenever the 
velocity or angle of attack is changed. This vortex is initially 
close to the wing and cannot be neglected.
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explain the physics behind the lift and drag generation 
of a 3D wing, they are not very useful for practical cal-
culations because the circulation and induced angle of 
attack are not easily obtained. A particular case of great 
importance is the elliptical load distribution (i.e., where 
� is an elliptical function of the spanwise coordinate y). 
Then the integrated effect of the trailing vortices may be 
obtained analytically and very useful formulas for lift 
and drag obtained. With the defi nitions

 CL �   L_
1_
2
   � U 

2 Sp

CDi �   Di_
1_
2
   � U 

2 Sp

 (7.5)

where L and Di are the total lift and induced drag forces 
and Sp the projected wing area, the following simple 
 expressions are obtained (see Kuethe & Chow [1986] or 
Anderson [1991]).

CL �   2� _

1 
   2_
AR

�  (7.6)

 Ci �   
C

L

 2
_
�AR

 (7.7)

The numerator 2� in equation (7.6) is for symmetric 
wings in inviscid fl ow, and with � in radians. For � in de-
grees, the constant becomes 0.11. A more realistic value 
is however 0.10, considering the small viscous effect on 
lift. AR is the aspect ratio of the wing, defi ned for an ar-
bitrary planform as

AR �   b
2_

Sp

 (7.8)

where b is the span. For a trapezoidal wing, the aspect 
ratio is the span divided by the mean chord. The pro-
jection of the area shall be taken in a direction at right 
angles to the plane of the wing. Note the difference be-
tween Sp and S, where the latter is the total wetted sur-
face used for most coeffi cients in the present text.

In Fig. 7.2, the mirror image of the keel in the bottom 
of the hull is indicated. This image shall be considered 
in the computation of the aspect ratio (but not in the 
computation of the area). If the keel were attached to 
an infi nitely large horizontal fl at plate, the span would 
be exactly doubled thanks to the mirror image. For a 
modern fl at-bottom hull this is a good approximation.

Finite wing theory also shows that the elliptical cir-
culation distribution gives minimum induced drag and 
that it may be obtained with a wing of elliptical plan-
form (untwisted). Such a shape is thus preferable from 
a resistance point of view. For wings with other plan-
forms (most wings), the spanwise circulation distribu-
tion will not be elliptic. In fact, Schrenk (1940) showed 
empirically that for unswept and untwisted wings, the 
lift at every spanwise position is halfway between the 
elliptical and the actual chord distribution for the same 
total area and span. This approximation is exemplifi ed 
in Fig. 7.4, where the upper fi gures show the planform 
(triangular and rectangular) and the lower ones the way 

to obtain the lift distribution as the average of the ac-
tual planform shape and an ellipse.

Schrenk’s approximation applies to unswept wings. 
At non-zero sweep angle, the circulation distribution is 
infl uenced in such a way that the centroid of the distri-
bution is moved outward for positive sweep and inward 
when the sweep is negative. The defi nition of the sweep 
angle is given in Fig. 7.5.* It is seen that the angle is mea-
sured relative to the “quarter chord” line  connecting 
points 25% of the distance from the leading to the trail-
ing edges at all spanwise stations.

Fig. 7.5 also includes a defi nition of the taper ratio. For 
a rectangular wing, this ratio is 1, and for a triangular 
one it is zero. It turns out that the taper ratio of a trapezoi-
dal wing that best corresponds to an elliptical shape is 
approximately 0.45. For larger ratios, the circulation will 
be too large in the outer parts of the wing whereas the 
opposite is true for smaller ratios. However, an unfavor-
able planform distribution may be compensated at least 
partly by the sweep angle. If the tip chord is too small, 
the circulation may be increased in the outer parts of the 
wing by positive sweep and an almost elliptical lift distri-
bution is obtained. The relation between taper ratio and 
sweep angle for optimum circulation distribution (mini-
mum induced resistance) is given in Fig. 7.6. The larger 
the angle, the smaller the taper for best performance.

The computation of the lift and induced drag for arbi-
trary lift distributions is complicated and no simple ex-
pressions like (7.6) and (7.7) exist. Instead, the concept 
of an effective aspect ratio, ARe, is introduced. This is al-
ways smaller than the geometrical one defi ned in equa-
tion (7.8), and may be defi ned using equation (7.7) as

ARe �   
C

L

2
_
�CDi

 (7.9)

where CL and CD are now the lift and induced drag co-
effi cients for the nonelliptical distribution. It should be 
noted that the sensitivity for deviations from the ellipti-
cal shape is relatively small. For most shapes, ARe dif-
fers from AR by only a few percent. In Fig. 7.7, the very 
large infl uence of the aspect ratio on the lift coeffi cient is 
shown. These curves correspond very well with equation 

(a) (b)
Figure 7.4 Schrenk’s (1940) approximation of the lift distribution. Top fi g-
ures: planform. Bottom fi gures: chord distribution, elliptical distribution, and 
real lift distribution (dashed line).

*Figs. 7.5–7.17 are reproduced from Larsson and Eliasson 
(2007). Courtesy of Adlard Coles Nautical.
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(7.6). For more detailed discussions on lift and induced 
drag, see Kuethe and Chow (1986), Anderson (1991), New-
man (1977), or Larsson and Eliasson (2007). The latter 
deals with sailing yachts and, as stated in the footnotes, 
several fi gures in the present section are from this book.

7.2 Appendage Resistance. In Fig. 4.1, showing the 
resistance components for different hulls, no append-
age resistance was specifi ed for the displacement hulls. 
This is an approximation because all hulls with exposed 
shafts will have some additional resistance arising from 
the shaft and its support. As appears from Fig. 4.1, this 
resistance component may be considerable for a planing 
hull. Although the dynamic forces lift the hull and reduce 
its wetted surface, the appendages remain submerged, 
thus taking over more and more of the viscous resistance 
with increasing speed. Another type of vessel where the 
appendage drag is considerable is the sailing yacht. In the 
following, the properties of foil sections useful for sail-
ing yacht keels and rudders, as well as shaft brackets and 
fi ns of propeller-driven ships, will be presented. A sec-
tion on bluff bodies, such as propeller shafts and sailing 
yacht masts, follows thereafter. Note that appendage re-
sistance is of viscous origin; it is caused by frictional and 
viscous pressure losses around the appendage, and the 
fl ow and resistance is governed by the Reynolds number.

7.2.1 Streamlined Bodies. Streamlined sections 
are used frequently in fl uid mechanics, often for cre-

ating lift forces, but also to reduce resistance (more 
often called drag in this connection). The most promi-
nent example of lifting sections is the aircraft wing, 
whose counterpart in hydrodynamics is the hydrofoil. 
Other important hydrodynamic lifting sections are rud-
ders and keels. The possibility to reduce resistance by 
streamlining, without lift generation, is also of major 
importance whenever bodies of any kind are immersed 
in a fl owing fl uid. Typical examples in hydrodynamics 
are struts and brackets. Fig. 7.8 shows the huge effect of 
streamlining a 2D body. The two bodies shown have ap-
proximately the same drag, although the upper one has 
a frontal area which is about 30 times that of the lower 
one, which is a circular cylinder. Through streamlining, 
the fl ow along the upper body is attached all the way 
to the trailing edge whereas, for the cylinder,  massive 
 separation is found. The pressure recovery around the 
aft end, shown in Fig. 6.9, is practically absent, and the 
low pressure behind the cylinder causes a very large 
pressure resistance. In this case, friction is almost negli-
gible. The streamlined body, on the other hand, has very 
little pressure resistance. It is not zero because of the 
displacement effect of the boundary layer, but it is con-
siderably smaller than the friction. Section 7.2.1 deals 
with friction dominated fl ows on streamlined sections 
and the massively separated fl ow around bluff bodies 
will be dealt with thereafter.

Figure 7.5 Defi nition of planform parameters for trapezoidal wings.
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Figure 7.6 Relation between taper and sweep for minimum induced resistance.

Figure 7.7 Infl uence of aspect ratio on lift and drag.
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Although many foils of hydrodynamic interest are 
symmetric (keels, rudders, struts, and brackets), 
foil sections are generally asymmetric. Important 
 parameters describing an asymmetric foil are shown 
in Fig. 7.9. The mean line is midway between the up-
per and lower surfaces, and the chord length C is the 
distance between the intersections of the mean line 
and the nose and trailing edge, respectively. The local 
thickness t is measured at right angles to the mean line 
and its maximum value tmax (or tmax /C, rather) is often 
used for classifi cation of the section. The nose radius 
is defi ned as the radius of curvature of the section at 

the nose (the intersection with the mean line). In prac-
tice, the most forward part of the section may be repre-
sented by a circular arc. This approximation is usually 
good enough back to about 45 degrees on either side of 
the intersection.

Most foils used in fl uid mechanics have a section 
shape from the NACA series. NACA is the precursor 
of NASA. During the 1930s and 1940s, extensive tests 
with systematically varied wing sections were carried 
out in wind tunnels and the results presented in the 
form of pressure distributions, forces, and moments at 
varying angles of attack. The most interesting series 

Figure 7.9 Foil section parameters.

Figure 7.8 The effect of streamlining.
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from a hydrodynamic point of view are the four-digit 
and six-series (for propellers, other series may be of 
interest). Three examples are presented in Table 7.1, 
where half the thickness t is given versus distance x
from the leading edge. Both variables are given in 
percent of the chord length C. All three sections are 
symmetrical and should be useful for struts, brackets, 
 rudders, and keels.

NACA 0010 belongs to the four-digit series and the 
last two digits represent the thickness ratio tmax /C. The 
fi rst two digits defi ne the camber for an asymmetric 
section and are zero for a symmetric section. The two 
other sections belong to the six-series, indicated by 
the fi rst digit. In this case, the second digit represents 
the position of minimum pressure of the foil. When 
multiplied by 10, this digit gives the axial position of 
the pressure minimum in percent of the chord length. 
After the dash, the fi rst digit represents the camber, 

which is zero in this case, and the last two show the 
thickness ratio. A very extensive treatment of wing 
theory, including a large number of experimental re-
sults for NACA sections, is presented in Abbot and 
van Doenhoff (1949).

The nose radii for the two series versus thickness 
 ratio is presented in Fig. 7.10, which also gives the 
 radius of curvature for an elliptic section. Note that the 
four-digit series has twice as large a radius as the  ellipse 
and the six-series is somewhere in between. As a gen-
eral rule, the larger the nose radius, the less sensitive 
the section to separation at the leading edge at an angle 
of attack. The four-digit series is thus the most robust 
one in this respect. Other differences in performance 
between the sections will now be explained.

Fig. 7.11 shows the pressure distribution for three sec-
tions: 0009, 65–009, and 65–021. A comparison  between 
the fi rst two will reveal the differences between a 
four-digit section and a relatively advanced six-series 
section. The meaning of advanced will be explained 
shortly. Comparing the latter two, the differences be-
tween a thin and a fat section will be shown.

In Fig. 7.11, the pressure coeffi cient Cp is given along 
the chord with the positive axis downward. This 
 unusual coordinate system is frequently used for wings 
because the upper side normally has a negative pressure 
whereas the opposite is true for the lower side. It is seen 
that the pressure on the 0009 section has its minimum 
very far forward, around 10% of the chord from the nose. 
This is in contrast to the two six-series sections, which 
have their minima close to midchord, as expected from 
their designation. For these two foils, three curves are 
given, and a lift coeffi cient is given for each curve. CL � 0 
corresponds to zero lift (i.e., zero angle of attack), and 
the two other curves correspond to the maximum lift for 
which the pressure still has its minimum at midchord. 
For larger lift, the minimum will rapidly move to a posi-
tion much closer to the leading edge.

Why this focus on the minimum pressure? As ex-
plained in Section 6.4.3, the location of transition is very 
much dictated by the pressure distribution, a negative 
pressure gradient stabilizing the fl ow and delaying tran-
sition. In fact, over a large range of Reynolds numbers, 
transition tends to occur at the pressure minimum. De-
laying this as much as possible means a larger area of 
laminar fl ow in the boundary layer and a correspond-
ingly lower friction. This fact is exploited in the six-
series whose sections are often called laminar. The 
63-series is modest with 30% of laminar fl ow whereas 
the most extreme one, the 67-series, has 70% laminar 
fl ow for angles of attack below the critical lift. This se-
ries does, however, have several disadvantages which 
makes it less used; in practice, the most extreme series 
is the 65-series, which is displayed in Fig. 7.11.

We will now turn to the forces generated by the 
foils in the four-digit and six-series. A comparison be-
tween the drag curves of two 9% thick profi les is made 
in Fig. 7.12. The drag coeffi cient is given versus angle 

Table 7.1 Three NACA Sections (Values in Percent)
x/C t/2C t/2C t/2C

0010 63–010 65–010

   0       0       0       0

  0.5 0.829 0.772

   0.75 1.004 0.932

   1.25 1.578 1.275 1.169

   2.5 2.178 1.756 1.574

   5.0 2.178 1.756 1.574

   7.5 3.500 2.950 2.647

10 3.902 3.362 3.040

15 4.455 3.994 3.666

20 4.782 4.445 4.143

25 4.952 4.753 4.503

30 5.002 4.938 4.760

35 5.000 4.924

40 4.837 4.938 4.996

45 4.766 4.963

50 4.412 4.496 4.812

55 4.140 4.530

60 3.803 3.715 4.146

65 3.234 3.682

70 3.053 2.712 3.156

75 2.166 2.584

80 2.187 1.618 1.987

85 1.088 1.385

90 1.207 0.604 0.810

95 0.672 0.214 0.306

100 0.105       0       0
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of attack for a Reynolds number of 3 � 106. It is seen 
that the 0009 has a higher drag at small angles, but 
a smooth increase in drag with angle of attack. The 
63–009 has a low drag below about 2 degrees, but a 
rapid increase in the interval up to about 3 degrees, 
thereafter increasing the drag smoothly, but at a higher 
level than the 0009. This may now be explained by the 
fact that the six-series profi le has a larger area of lami-
nar fl ow up to the point where the pressure minimum 
moves forward. Once this has happened, this section is 
worse than the 0009.

In Fig. 7.13, the effects of thickness ratio and po-
sition of minimum pressure are presented for the 
six-series. Two profi les are 9% thick and two are 21% 
thick. Two are of the 63 type and two of the 65 type. 
The two thin profi les have the lowest drag at small 
angles, but have the rapid increase noted above be-
tween 2 degrees and 3 degrees. The profi le with the 
largest area of laminar fl ow (i.e., the 65-009) is the 
best at small angles, but the increase is faster for this 
profi le than for the 63-009, which becomes the best 
of the two at higher angles. The differences between 
these profi les are similar to those between the two in 
Fig. 7.12: the section with the smallest area of laminar 
fl ow at small angles has a smoother drag curve than 
the other.

The drag curves of the two thick profi les differ con-
siderably from those of the thinner ones. As seen in 
Fig. 7.11, the pressure minimum stays at midchord  until 

the lift coeffi cient is quite high, corresponding to an 
angle of attack of around 5 degrees. This is refl ected 
in Fig. 7.13, where the sharp increase in drag occurs 
around 5–6 degrees. The most extreme profi le, 65-009, 
has the lowest drag below the critical angle, but the 
highest drag above this limit. Note that there is a region 
(� � 3–7 degrees) where the thick profi les have lower 
drag than the thin ones. The drag at zero angle of at-
tack for the four-digit, 63-, and 65-series is shown versus 
thickness ratio in Fig. 7.14. It appears, as expected, that 
the drag increases with thickness for all profi les, and 
that the more extreme the profi le (i.e., the further back 
the pressure minimum), the lower the drag at this angle.

Although the drag differs considerably between the 
four-digit and six-series sections, the lift is quite similar, 
at least below about 7 degrees (Fig. 7.15). In fact, the 

theoretical lift slope  ( �CL_
��

  )  is the same for all symmetric 

sections, namely 2� per radian. This is seen from equa-
tion (7.6), introducing an infi nite aspect ratio, relevant 
for 2D sections. As mentioned in connection with this 
formula, 2� per radian corresponds to about 0.11 per de-
gree, but a more realistic value in a viscous fl uid is 0.10. 
The slight differences between the sections are because 
of different boundary layer developments.

Above the linear part of the lift curves, there is a 
considerable difference between the thin and the thick 
profi les. For the thick ones, the lift levels off to a more 
or less constant value whereas the thin ones exhibit a 

Figure 7.10 Nose radius for two sections and an ellipse.
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rapid drop in lift above a certain angle. The reason why 
the lift ceases to follow the straight line is fl ow separa-
tion on the suction side. The wing stalls. Depending 
on the thickness of the profi le, the separation may oc-
cur in different ways. Fig. 7.16 shows three principally 
different stall patterns. The thick profi le of Fig. 7.16a 
stalls by trailing edge separation, which starts to 

 occur at relatively small angles of attack. However, the 
increase of the separation region is gradual, and the 
lift slope is reduced until the whole suction side has 
become separated.

A completely different separation occurs for the 
very thin wing in Fig. 7.16b. Here, the fl ow around the 
sharp leading edge from the stagnation point just be-

Figure 7.11 Pressure distribution around three sections.
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low separates immediately, creating a bubble with an 
attachment point further back on the wing. At small 
angles, the separation bubble is small, but it increases 
with angle of attack until it covers the whole suction 
side. Profi les this thin have not been discussed, but 
they exhibit a similar type of lift curve as the thick 
ones: the lift slope is gradually reduced when the 
separation bubble increases. The section of Fig. 7.16c 
with moderate thickness, 9% to 12%, say, stalls by 

separation from both ends. This starts to occur at 
relatively high angles of attack, but the separation is 
developed rapidly, and the drastic drop in lift occurs 
when the two separation bubbles meet. Note that this 
is the type of section most used in hydrodynamics.

Although the lift/drag ratio is important in many 
applications, such as sailing yacht keels, the maxi-
mum lift is a key parameter in others. The rudder, 
for example, has to be designed to generate a certain 

Figure 7.12 Comparison between the drag of two sections from different series.

Figure 7.13 Drag comparison between four sections of the six-series.
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Figure 7.14 Drag at zero angle of attack versus thickness ratio.

Figure 7.15 Lift comparison between four sections of the six-series.

turning  moment on the hull and its value at a given 
speed is determined by the lift coeffi cient times the 
rudder area. For safety reasons, the maximum turn-
ing moment has to be above a certain minimum value, 
and the larger the lift coeffi cient, the smaller the area 
to generate the required moment. Sections with a 
high maximum lift before stall thus require a smaller 
wetted surface.

Fig. 7.17 shows the maximum lift coeffi cient for the 
four-digit, 63-, and 65-series. The thickness ratio is 
given on the horizontal axis, and on the curves the stall 
angle is given for a range of thickness ratios. It is seen 
that the four-digit series has the largest maximum lift. 
For a 9% thick profi le, for instance, the four-digit series 

has a CLmax of 1.32 whereas the 63- and 65-series have a 
maximum of 1.12 and 1.05, respectively. A rudder with 
a 65-series section thus needs about 25% larger area 
than a four-digit section to generate the required maxi-
mum lift. This means increased friction over a large 
range of angles of attack. However, within the drag 
bucket, the lower drag coeffi cient of the more modern 
profi le (see Fig. 7.14) approximately compensates for 
the larger area. Because rudders, as opposed to keels, 
often operate over a relatively wide range of angles, 
the four-digit series is preferable. Note that the 12% 
profi le is the best profi le for this purpose. As  presented 

Figure 7.16 Different types of stall.
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in the Manoeuvring volume of the Principes of Naval 

Architecture, other sections especially for rudders 
have been developed.

The NACA profi les were tested at three different 
Reynolds numbers: 3, 6, and 9 � 106 based on the chord. 
This is a range typical for keels and rudders of pleasure 
craft. Full-scale ships, however, have considerably 
larger appendage Reynolds numbers and ship models 
normally have much smaller. This creates a problem 
in model testing because the scale effects of the ap-
pendages are often quite different from those of the 
hull. Fig. 7.18 shows the variation in drag with Reyn-
olds number at zero lift of sections of three different 
thicknesses: 6%, 12%, and 25%. The fi gure is based on 
a collection of data by Hoerner (1965) and each line 

represents an average of data from several measure-
ments for the particular thickness. For comparison, 
laminar and turbulent fl at plate lines are also included, 
as well as the drag of a smooth circular cylinder.

It is seen that there is a gradual reduction in drag be-
low a critical Reynolds number around 105, after which 
there is an abrupt drop, followed by a more or less con-
stant region in the range 106–107, above which the slope 
follows the turbulent friction. The reasons for the differ-
ent behavior will now be explained.

Below the critical Reynolds number, the boundary 
layer is laminar and separation occurs before transi-
tion (i.e., there is no turbulent boundary layer). For 
increasingly thick profi les, the pressure drag arising 
from separation increases, and the most extreme case 
is the circular cylinder (note the logarithmic scales!). 
The cylinder drag is entirely dominated by the pres-
sure defi ciency, which does not change with Reynolds 
number, so its drag coeffi cient is constant in this re-
gion. The 6% profi le has very little separation drag, so 
the curve more or less follows the fl at plate curve and 
the two other profi les are between the two extremes.

Above the critical Reynolds number, transition oc-
curs before separation (i.e., the boundary layer turns 
turbulent before it separates). Because the eddies of 
the turbulent boundary layer stir the fl ow and transfer 
high speed fl ow into the layer, separation is delayed 
and thereby the pressure resistance is reduced. For 
the cylinder, the separation moves from a position in 
front of maximum thickness, around 80 degrees mea-
sured from the symmetry line, back to about 120 de-
grees. This has a dramatic effect on the wake width 
and the pressure in the wake, and the drag is reduced 
by about 75%. For the profi les the effect is less pro-
nounced, but clearly visible, at least in case of the 
thicker profi les.

The more or less constant level of the drag coeffi cient 
in the range 106–107 indicates that transition moves 
 forward with increasing Reynolds number, thus extend-
ing the turbulent part of the boundary layer. This would 
increase the drag, but this effect is just about offset by 
the normal drop in drag with Reynolds number, which 
can be clearly seen above 107, where transition seems 
almost fi xed.

7.2.2 Bluff Bodies. The large drop in drag at the 
critical Reynolds number for the circular cylinder may 
be explained with reference to Fig. 7.19. Here, the pres-
sure distribution is shown versus angular position, 
with zero at the forward stagnation point. For compari-
son, the inviscid distribution is also given. From the 
stagnation pressure Cp � 1.0, there is a continuous drop 
down to �3.0 in the inviscid distribution. This hap-
pens at 90  degrees, and thereafter there is a symmetric 
 increase up to 
1.0 at 180 degrees. The supercritical 
curve shows similarities with the inviscid one, but has 
a minimum of about 2.5 at approximately 90  degrees. 
The largest difference is the plateau-like distribution 
aft of 120 degrees, where the pressure coeffi cient is 

Figure 7.17 Maximum lift coeffi cient for three sections.
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Figure 7.18 Reynolds number dependence of section drag.
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slightly negative all the way to 180 degrees.  Unlike the 
inviscid case, there is no balancing of the positive pres-
sure around the stagnation point, so a pressure drag oc-
curs. This drag is, however, small compared to the one 
caused by the pressure distribution of the subcritical 
case. Here, the pressure exhibits a minimum at about 
70 degrees, thereafter becoming more or less constant 
at a CP around �1.0. This large negative pressure on the 
entire back side causes the large drag. Note that the 
curves shown are mean values. In reality, the fl ow fl uc-
tuates periodically, generating lift forces fl uctuating 
from side to side.

An interesting possibility to reduce the drag at 
Reynolds numbers below the critical value is offered 
by disturbing the boundary layer in some way. One 
possibility is to generate disturbances in the fl ow ap-
proaching the cylinder, but a more practical way is to 
introduce roughness on the surface. The roughness 
elements will disturb the laminar fl ow in the bound-
ary layer and cause premature transition. The critical 
Reynolds number is thus lowered and in the region up 
to the undisturbed critical value the drag is reduced. 
Fig. 7.20*, shows the drag of a circular mast section 
covered with sand grains of different sizes. As ex-
pected, the larger the disturbance, the larger the ef-
fect on the critical Rn. However, the minimum drag 
increases when the roughness gets higher. The pos-
sibility to reduce drag, at the same time reducing the 
wake width, is of particular interest for sailing yacht 
masts, where the additional advantage of an improved 
fl ow around the sail cannot be neglected.

A complicating factor when it comes to propeller 
shafts is that they are not at right angles to the fl ow. 
Unfortunately, the effect of the fl ow component paral-
lel to the axis is very much dependent on the Reynolds 
number, so no simple formula has been devised. A pro-
cedure for calculating the effect is however proposed 

by Kirkman and Kloetzli (1980). When computing the 
drag of appendages, it should be noted that some of 
them, notably the rudder, are in the propeller race, 
where the speed is higher than the ship speed. The ex-
cess velocity depends on the propeller loading, but 10% 
is a reasonable value. On the other hand, many append-
ages are more or less immersed in the hull boundary 
layer, where the speed is reduced. Estimations of this 
effect may be made using the fl at plate boundary layer 
formulas of Section 6.3.3

7.3 Air and Wind Resistance. A ship moving on a 
smooth sea and in still air experiences a resistance 
arising from the movement of the above-water part of 
the hull through the air. This resistance depends on the 
speed of the ship and on the area and shape of the upper 
structure.

When a wind is blowing, the resistance depends also 
on the wind speed and its relative direction. In addi-
tion, the wind generates waves which normally cause 
a further increase in resistance. The effect of waves is 
dealt with in the Seakeeping volume of the Principles 

of Naval Architecture and the effect of the air will be 
discussed here.

7.3.1 True and Apparent Wind. The true wind,*  
→

 VTW,
is termed to be the wind which is due to natural causes 
and would exist at any point above the sea, had the ship 
been absent. Zero true wind is still air. The relative or 
apparent wind,  

→

 VAW, is the vector sum of the true wind 
and the wind generated in still air due to the movement 
of the ship through the air (i.e., � 

→

 V , where  
→

 V  is the ship 
velocity)

→

 VAW �
→

 VTW �
→

 V (7.10)
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Figure 7.19 Pressure variation around a circular cylinder.

Figure 7.20 Effect of roughness on drag.

*According to normal standard in the yachting literature, the 
word “wind” is to be interpreted as “wind velocity.”

*Fig. 7.20 is reproduced from Larsson and Eliasson (2007), 
courtesy of Adlard Coles Nautical.
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Because both components may be assumed paral-
lel to the water surface, the magnitude of the apparent 
wind, VAW, may be obtained as

VAW �  ( V
TW

 2 
 V 2 
 2VVTW cos �TW)
1_
2  (7.11)

where VTW and V are the magnitudes of the true wind and 
ship velocity, respectively, and �TW is the angle  between 
the true wind and the x-axis (Fig. 7.21).

The angle �AW between the apparent wind and the 
x-axis may be obtained as

�AW � atan   
VTW sin �TW

  __  
V 
 VTW cos �TW

  (7.12)

The true wind varies with the distance z from the 
water surface because of the atmospheric boundary 
layer and, as seen in Blendermann (1990), a reason-
able approximation for the variation is [cf. equation 
(6.30)]

VTW (z) � VTW(10)   ( z_
10

   )
1_
n (7.13)

The reference value for the wind speed is usually 
given at 10 m height, as assumed in the equation. This 
wind velocity is related to the Beaufort (Bft) scale 
through the equation

VTW (10) � 0.836 (Bft)
3_
2 (7.14)

Different values of n should be used for strong and 
light winds. In stronger winds, stable atmospheric 
conditions are met and a relatively full velocity profi le 
should be used. A suitable value of n is 10. In lighter 
airs, the boundary layer is generally unstable and the 
velocity profi le less full. The value of n should then be 
about 5.

In equation (7.12), V is independent of z, but VTW

varies according to equation (7.13), which means that 

�AW will also depend on z. The apparent wind profi le 
is thus twisted. Close to the water surface, the true 
wind speed is small and the effect of the ship speed 
dominates, but the effect of the true wind becomes 
larger and larger with distance from the surface. The 
fl ow is thus directed more along the hull at lower lev-
els. This effect is important for sailing yachts, where 
the sails have to be twisted to accommodate the wind 
twist. For ships, the effect is mostly neglected, how-
ever, and the direction of the fl ow is taken as the one 
at the mean height of the lateral projection of the 
above-water part of the hull.

7.3.2 Forces and Moments. For most ships, the 
force developed by the airfl ow is considered horizontal. 
Exceptions are some high-speed hulls where the lifting 
effect of the airfl ow is utilized. The force components 
normally considered are thus X and Y in the x- and 
y-directions, respectively. Two moments are of interest: 
K and N around the x- and z-axis (roll and yaw moment), 
respectively.

Like other forces, X and Y are nondimensionalized by 
a dynamic pressure and a representative area. In this 
case, the dynamic pressure is defi ned as

qa �   1_
2
   �aV

2
AW (7.15)

where the index a stands for air.
The two force coeffi cients may be nondimensional-

ized by the same area, often the projected area AL in 
the lateral direction of the above-water part of the ship. 
Sometimes, the longitudinal force X is made dimension-
less by the (transverse) projected area AT in the longitu-
dinal direction. This convention is adopted here.

CX �   W_
qaAT

CY �   Y_
qaAL

 (7.16)

Coeffi cients for the moments are defi ned as follows

CK �   W_
qaALHM

CN �   N_
qaALL

 (7.17)

where HM is the mean height of the lateral projection 
and L is the length overall of the ship

HM �   AL_
L

 (7.18)

The force and moment coeffi cients are functions of 
the apparent wind direction. At zero apparent wind 
angle, the projection of the area in the wind direction 
is rather small (AT), but the force is along the hull. For 
non-zero angles, the projected area is larger but the 
 resulting force is not along the hull.* A maximum in the 
 resistance force X is therefore often found in the range 
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Figure 7.21 Relation between true and apparent wind.

*The force is neither along the hull nor in the main fl ow 
 direction. The fl ow is defl ected by the hull and the result-
ing force is somewhere between these two directions (see 
 Blendermann, 1990).
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20 degrees � �AW � 30 degrees and a corresponding 
minimum (maximum in the opposite direction) in the 
range 150 degrees � �AW � 160 degrees.

Wind effects on ships are most often measured in 
wind tunnels, where the atmospheric boundary layer 
may or may not be modeled. It should be noted that 
neither case is correct because the apparent wind is an 
effect of both the true wind and the velocity generated 
when moving through still air, as explained. The correct, 
twisted apparent wind profi le can be modeled, but this 
is complicated and very rarely done. At the University of 
Auckland, a special wind tunnel with a twisted infl ow is 
available (see e.g., Hansen, 2007). This tunnel is mainly 
used for sail testing, where the twist effect is important. 
Note that the infl ow profi le in this case depends on the 
speed of the hull relative to the wind speed, so there 
is one more parameter to consider compared to other 
wind tunnel tests.

The forces generated by the wind are almost exclu-
sively caused by the pressure defi ciency in separated 
regions on the leeward side of the ship. Frictional forces 
are very small. Because separation is caused by sharp 
edges around the profi le of the hull and its superstruc-
ture, the location of separation lines is independent of 
the Reynolds number. This means that all force and mo-
ment coeffi cients are independent of the Reynolds num-

ber, so the wind tunnel coeffi cients may be used with 
good accuracy at full scale.

In a very comprehensive wind-tunnel investigation, 
Blendermann (1990) measured the aerodynamic coef-
fi cients for a number of different ship types under var-
ious loading conditions. These results may be used 
for computing the aerodynamic loads of most ships 
with a reasonable accuracy. In Fig. 7.22, measured 
results are presented. Data for the ships are listed in 
Table 7.2.

The coeffi cients of Fig. 7.22 may be converted to 
include the boundary layer effect in an approximate 
way using the mean dynamic pressure over the ship’s 
height. For the special case of a ship at rest, VAW is 
equal to VTW, and equation (7.13) inserted into equation 
(7.15) yields

qa �   1_
2
   �a VTW

 2   (10)  ( z_
10

   )
2_
n (7.19)

Integrating this expression up to the ship’s mean 
height HM yields (after division by the mean height) an 
average dynamic pressure  

_
qa, which is related to the 

 dynamic pressure at the reference height q10 through 
the equation

_
qa_
q10

   �   n_
n 
 2

     ( HM_
10

   )2_
n
    (7.20)

Table 7.2. Data for the Ships of Fig. 7.22

Hull/Main Data LOA (m) LPP (m) B (m) T (m) AL (m2) AF (m2) SL (m) SH (m)

Car carrier 190.7 179.6 23.0 9.9 4257 654 �6.2 11.9

Container
vessel  I

210.8 194.5 30.5 11.6 3751 802 �3.9 10.1

Container
vessel II

210.8 194.5 30.5 9.6 3774 857 �4.9 10.2

Container
vessel III

210.8 194.5 30.5 9.6 2947 857 �2.1 8.7

Cargo/container
vessel

198.2 187.3 32.2 12.2 3690 826 �4.9 11.1

Ferry 143.9 139.6 17.4 5.9 2126 325 �1.4 8.2

Tanker, loaded 351.4 336.0 55.4 23.5 3402 1132 �24.5 6.8

Tanker, ballast 351.4 336.0 55.4 8.3/13.0 7840 1804 �8.3 12.34

Offshore
supply
vessel I

62.0 58.3 13.0 4.9 337 137 8.0 4.1

Offshore
supply
vessel II

61.00 58.35 13.0 4.9 260 110 7.1 3.1

Deep sea 
drilling
ship

150.1 137.0 21.4 7.0 1872 556 1.2 9.6

AF, front area; AL, lateral area; B, breadth; LOA, length overall; LPP, length between perpendiculars; SH, center of lateral area (vertical position relative to water line); SL, center 
of lateral area (longitudinal position relative to midship, positive forward); T, draft
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All three coeffi cients CX, CY, and CN measured with-
out the boundary layer may be converted to the bound-
ary layer case by multiplication by the factor

_
qa_
q10

   

Because the center of pressure changes vertically in 
the boundary layer, the lever arm for the rolling moment 
changes as well, and it is straightforward to show that 
CK should be multiplied by the factor

n 
 1_
n 
 2

     
_
qa_
q10

   

Assuming a mean height HM of 10 m, which is a rea-
sonable value for many ships, CX, CY, and CN will be re-
duced by 17% with n � 10 (i.e., in strong winds) and by 
29% in light winds with n � 5. The reduction in CK is 
smaller: 11% and 17%, respectively.

For the somewhat more general case with a ship 
moving in a headwind or a sternwind (i.e., �TW � �AW

� 0 degrees or �TW � �AW � 180 degrees), the mean 
dynamic pressure may be obtained by numerical inte-
gration of the velocity profi le containing the effects of 
both the ship movement and the wind [equation (7.11)]. 
Because the resulting velocity profi le will not go to 
zero at the water level, this will yield larger values of 
the coeffi cients than equation (7.20) (with the velocity 
at the reference height equal to the sum of the wind 
and ship speeds). On the other hand, the  coeffi cients 

will be smaller than the original values assuming a 
constant velocity over the ship’s height.

For the most general case with the wind in an arbi-
trary direction and the ship moving, it is very diffi cult 
to include the boundary layer effect because the appar-
ent velocity profi le is skewed. The different directions 
of the aerodynamic force at different levels will have to 
be considered when integrating over the mean height of 
the ship. The uncorrected coeffi cients obtained with-
out the boundary layer effect are likely to be too high 
and the corrected ones according to equation (7.20) too 
small. Because the twisting of the profi le gives a more 
longitudinal fl ow below the reference height, the reduc-
tion in dynamic pressure because of the boundary layer 
is somewhat compensated when it comes to the axial 
force component CX. For the transverse component 
CY, the twisting somewhat exaggerates the correction 
needed. As in the special case described previously, 
both corrections should be smaller than for the ship at 
rest. In practice, it may therefore be suffi cient to only 
consider the uncorrected coeffi cients.

The mean value of CX at zero apparent wind angle for 
all hulls in Fig. 7.22 (except the drilling ship) is 0.6. In 
still air, this yields a resistance force, often called RAA,
which may be obtained from

RAA � CX �   1_
2
   �aV

2 AT � 0.6 �   1_
2
   �aV

2 AT (7.21)

Figure 7.22 Wind forces on a series of ships according to Blendermann (1990). Note that the longitudinal force in the fi gure is positive forward. The 
apparent wind angle is denoted �. Upper left fi gure, CX; upper right, CY; lower left, CN; lower right, CK. (continued)
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Figure 7.22b (continued)
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Figure 7.22c (continued)
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Figure 7.22d (continued)
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Because all hydrodynamic coeffi cients are nondi-
mensionalized by the water density � and the wetted 
area of the ship S, it is convenient to use the same quan-
tities here. This yields

CAA �   RAA_
1_
2
   �V 2 AS

�   
0.6 �   1_

2
   �aV

2 AT

  __
1_
2
   �aV

2 AS

� 0.72 � 10�3 �   AT_
AS

 (7.22)

where the densities of the air and water are assumed 
to be 1.2 and 103 kg/m3, respectively. The coeffi cient 
CAA is used in the extrapolation from model tests to 
full scale, as will be seen in Section 8. It is normally 
assumed that the models are towed without a super-
structure and that the air resistance of the hull itself 
can be neglected because of its streamlined shape. 
CAA is thus neglected for the model but is added to the 
hydrodynamic coeffi cients for the ship. The coeffi cient 
is however considered a small correction and is com-
puted with only one signifi cant digit in the constant, 
which then becomes 0.001.

7.3.3 Indirect Effects of the Wind. When the wind 
is not along the hull, the side force generated will cause 
the hull to slide sideward such that the aerodynamic 

force is balanced by a corresponding hydrodynamic 
side force. The hull will move with a leeway angle. Nor-
mally, the two side forces will not act along the same 
line, so a yawing moment is developed. This has to be 
balanced by the rudder, so the ship will move with non-
zero rudder angle.

Because of the lift generation, both the hull and the 
rudder will cause an induced drag. In the latter case, 
equations (7.6) and (7.7) can be used for accurate com-
putations of the required lift and the corresponding 
 induced drag. For the hull, the accuracy of the equa-
tions is smaller because of the very small aspect ratio 
of the underwater part of the hull, but they should be 
useful for a rough estimate. Note that the mirror image 
of the hull in the water surface has to be included when 
computing the aspect ratio (the effective aspect ratio 
is twice the geometrical one if the free surface may be 
considered a symmetry plane).

In a thorough analysis of the effects of wind forces on 
ships, van Berlekom (1981) concluded that the order of 
magnitude of the direct wind force on the above-water 
structure of the ship is the same as that of the added 
resistance due to waves. The effect of the leeway and 
rudder is less important according to this study.

Testing of ship models to determine the resistance has 
a very long history, as shown in Section 1.2. Ever since 
William Froude’s days in the middle of the 19th century, 
the basic testing techniques have been the same, al-
though improvements have been made both on the pro-
cedures for scaling of the model data to full scale and on 
the measuring equipment. Most of the world’s leading 
towing tanks have been in operation for many years and 
have acquired a wealth of knowledge on testing tech-
niques and interpretation of results. Even though the nu-
merical methods to be presented in Section 9 have now 
acquired a level of accuracy good enough for replacing 
some of the systematic model tests in the ship design 
optimization procedure, the towing tank still provides 
the most accurate predictions of resistance and power 
for the majority of ships.

8.1 Experimental Facilities. In towing tank testing, a 
model is towed at constant speed in still water. Com-
mercial towing tanks employ mechanically or electri-
cally driven towing carriages, running on rails along the 
model basin. They use models 4 to 10 or more  meters in 
length and conduct resistance tests, propulsion tests, 
and various other experiments on ship models and 
other bodies. The carriage is equipped with computer 

systems for data processing, permitting direct inspec-
tion and fi rst analysis of the measurement data. Plat-
forms on the carriage permit close observation of the 
test and of the fl ow features. During the tests, photo-
graphs and video recordings are usually taken for later 
inspection.

Typical dimensions of these larger tanks are 250 m 
long, 10 m wide, and 5 m deep. For investigations in shal-
low water, some establishments have adopted a basin 
in excess of 20 m wide and a (variable) depth of up to 
about 3 m. High-speed craft need extra long tanks. In 
that case, often relatively narrow basins are employed, 
typically 4 m wide and 4 m deep, and the speed of the 
towing carriages needs to be well in excess of the 
maximum speed of about 10 m/sec normally employed 
in other tanks. Some towing tanks are equipped with 
wave makers for seakeeping tests. Fig. 8.1 shows a typi-
cal model basin and towing  carriage.

Besides these tanks for commercial operation, there 
is a considerable number of small tanks generally as-
sociated with educational and research establishments, 
using models 1 to 3 m in length.

Water tunnels are not used for measuring resistance, 
but they are very suitable for measuring and visualizing 

8
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Because all hydrodynamic coeffi cients are nondi-
mensionalized by the water density � and the wetted 
area of the ship S, it is convenient to use the same quan-
tities here. This yields
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where the densities of the air and water are assumed 
to be 1.2 and 103 kg/m3, respectively. The coeffi cient 
CAA is used in the extrapolation from model tests to 
full scale, as will be seen in Section 8. It is normally 
assumed that the models are towed without a super-
structure and that the air resistance of the hull itself 
can be neglected because of its streamlined shape. 
CAA is thus neglected for the model but is added to the 
hydrodynamic coeffi cients for the ship. The coeffi cient 
is however considered a small correction and is com-
puted with only one signifi cant digit in the constant, 
which then becomes 0.001.

7.3.3 Indirect Effects of the Wind. When the wind 
is not along the hull, the side force generated will cause 
the hull to slide sideward such that the aerodynamic 

force is balanced by a corresponding hydrodynamic 
side force. The hull will move with a leeway angle. Nor-
mally, the two side forces will not act along the same 
line, so a yawing moment is developed. This has to be 
balanced by the rudder, so the ship will move with non-
zero rudder angle.

Because of the lift generation, both the hull and the 
rudder will cause an induced drag. In the latter case, 
equations (7.6) and (7.7) can be used for accurate com-
putations of the required lift and the corresponding 
 induced drag. For the hull, the accuracy of the equa-
tions is smaller because of the very small aspect ratio 
of the underwater part of the hull, but they should be 
useful for a rough estimate. Note that the mirror image 
of the hull in the water surface has to be included when 
computing the aspect ratio (the effective aspect ratio 
is twice the geometrical one if the free surface may be 
considered a symmetry plane).

In a thorough analysis of the effects of wind forces on 
ships, van Berlekom (1981) concluded that the order of 
magnitude of the direct wind force on the above-water 
structure of the ship is the same as that of the added 
resistance due to waves. The effect of the leeway and 
rudder is less important according to this study.

Testing of ship models to determine the resistance has 
a very long history, as shown in Section 1.2. Ever since 
William Froude’s days in the middle of the 19th century, 
the basic testing techniques have been the same, al-
though improvements have been made both on the pro-
cedures for scaling of the model data to full scale and on 
the measuring equipment. Most of the world’s leading 
towing tanks have been in operation for many years and 
have acquired a wealth of knowledge on testing tech-
niques and interpretation of results. Even though the nu-
merical methods to be presented in Section 9 have now 
acquired a level of accuracy good enough for replacing 
some of the systematic model tests in the ship design 
optimization procedure, the towing tank still provides 
the most accurate predictions of resistance and power 
for the majority of ships.

8.1 Experimental Facilities. In towing tank testing, a 
model is towed at constant speed in still water. Com-
mercial towing tanks employ mechanically or electri-
cally driven towing carriages, running on rails along the 
model basin. They use models 4 to 10 or more  meters in 
length and conduct resistance tests, propulsion tests, 
and various other experiments on ship models and 
other bodies. The carriage is equipped with computer 

systems for data processing, permitting direct inspec-
tion and fi rst analysis of the measurement data. Plat-
forms on the carriage permit close observation of the 
test and of the fl ow features. During the tests, photo-
graphs and video recordings are usually taken for later 
inspection.

Typical dimensions of these larger tanks are 250 m 
long, 10 m wide, and 5 m deep. For investigations in shal-
low water, some establishments have adopted a basin 
in excess of 20 m wide and a (variable) depth of up to 
about 3 m. High-speed craft need extra long tanks. In 
that case, often relatively narrow basins are employed, 
typically 4 m wide and 4 m deep, and the speed of the 
towing carriages needs to be well in excess of the 
maximum speed of about 10 m/sec normally employed 
in other tanks. Some towing tanks are equipped with 
wave makers for seakeeping tests. Fig. 8.1 shows a typi-
cal model basin and towing  carriage.

Besides these tanks for commercial operation, there 
is a considerable number of small tanks generally as-
sociated with educational and research establishments, 
using models 1 to 3 m in length.

Water tunnels are not used for measuring resistance, 
but they are very suitable for measuring and visualizing 
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the fl ow around the hull. A special type of water tunnel 
is the circulating water channel, where the measuring 
section has a free water surface. Resistance and wave 
tests may then be carried out. Normally, these facili-
ties allow only small models to be tested, but there are 
larger circulating water channels as well, such as the 
one at the Technical University of Berlin, with a length 
of 11 m and a width of 5 m.

In the normal towing tank resistance tests, measure-
ment of the carriage speed and the resistance force are 
often combined with sinkage and trim measurements. 
For fl ow measurements or observation, towing tanks 
usually have available pitot tubes for wake measure-
ments, and underwater observation possibilities for 
tuft tests. Some tanks have laser-Doppler velocim-
etry (LDV) systems for fl ow measurements but, today, 
 particle-image velocimetry (PIV) systems are in in-
creasing use. These additional experiments are briefl y 
described in Section 8.4.

8.2 Model Resistance Tests
8.2.1 General. The resistance test is usually the 

fi rst test done with a model. It serves to predict the re-
sistance of the full-scale vessel, is a part of the predic-
tion procedure of the full-scale required power, and, by 
comparing with available resistance data for compara-
ble vessels or empirical/statistical methods, provides a 
measure of the quality of the design from a resistance 
point of view.

Resistance tests are carried out with the model at-
tached to the carriage. The model is ballasted and 
trimmed to the required displacement and waterline, and 
attached to the resistance dynamometer of the towing 
carriage. A clear statement as to whether molded or total 
displacement is meant should be included. The model is 

free to take up any sinkage or trim dictated by the water 
forces, but any yawing motion is prevented by guides.

On a test run, the carriage is driven at the desired 
constant speed and records are taken of speed and re-
sistance. Besides measuring the so-called towing force, 
the sinkage of the model at the forward and aft perpen-
dicular is measured and observations and photo and 
video recordings of the waves close to the model are 
often made, as an aid to subsequent understanding of 
the results.

For any given displacement and trim condition, a 
number of test runs are made at different speeds and a 
curve of resistance against speed is obtained. It is im-
portant that suffi cient time is taken between the test 
runs to make sure that the waves and current in the ba-
sin generated by the towing of the model have died out, 
as otherwise these would disturb the measurements.

Before proceeding to propulsion tests, a number of 
other experiments are often made, such as fl ow mea-
surements; wake fi eld measurements; measurements to 
determine the best line for bilge keels; experiments to 
determine the fl ow around the afterbody to settle the 
best alignment for bossings, shaft brackets, and rud-
ders; and in some cases, to determine the fl ow over the 
whole form by paint tests. Sometimes models are modi-
fi ed if there is reason to do so, and tests are repeated.

The “jump” in Reynolds number going from model 
to ship is very large; in the case of a 125-m ship and a 
5-m model, the speeds of the ship and model are, for ex-
ample, 25 and 5 knots, respectively, so that the values 
of Reynolds number, proportional to the product VL,
would be in the ratio of 1 to 125. (This is not always 
realized in looking at experiment plots because it is gen-
eral to use a base of log Rn, which greatly reduces the 

Figure 8.1 Model basin and towing carriage. (Photo: Sven Wessling. Courtesy of SSPA.) 
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apparent degree of extrapolation.) The measurement of 
the model resistance must therefore be extremely ac-
curate to minimize errors in the extension to the ship. 
Constancy of speed of the towing carriage is a most 
important basic requirement, as is the accuracy of the 
towing dynamometer. Also, the models must be made to 
close tolerances, the surface correctly fi nished, and the 
models properly ballasted and trimmed.

8.2.2 Model Size. The choice of model size is gov-
erned by several considerations. The larger the model, 
the more accurately it can be made and the larger the 
forces to be measured, both features leading to greater 
accuracy in the measurement of resistance. However, the 
bigger the model, the more expensive it is to build and 
handle, and the larger are the facilities and instruments 
necessary, so a compromise in size must be reached.

If the model is too large for a particular basin, in-
terference from the walls and bottom will increase 
the resistance. There is still no real agreement on the 
proper assessment of this interference effect. Broadly 
speaking, the model length should not be much in ex-
cess of the water depth or half the width of the basin 
in order to avoid interference with the wave resis-
tance. The midship cross-sectional area of the model 
should not exceed about 1/200 of that of the basin in 
order to avoid setting up appreciable return fl ow in 
the water around the model, the so-called blockage ef-
fect.  However, in cases where wave making is small, 
larger models can be used and corrections made for 
the remaining blockage effect (Comstock & Hancock, 
1942; Emerson, 1959; Hughes, 1957, 1961; Kim, 1962; 
Telfer, 1953). For high-speed models, care must also 
be taken to avoid the critical depth Froude number 
V/( �

_
gh  ) � 1. A model run at any speed above about 0.7 

of this value will give a resistance different from that 
appropriate to deep water.

If self-propelled model experiments are to follow the 
resistance tests, as is usual, the size of the model propel-
lers has also to be considered when choosing the scale 
for the hull model. Finally, an important consideration 
in choosing the model size is the need to avoid presence 
of signifi cant regions of laminar fl ow on the model (see 
following discussion).

8.2.3 Turbulence Stimulation. In all model test-
ing, it is important to ensure that the fl ow over the model 
is fully turbulent because the fl ow around the full-scale 
ship is turbulent. The presence of laminar fl ow can usu-
ally be detected from the shape of the resistance curve 
(Fig. 8.2). At low values of the Froude number, where 
the wave resistance is vanishingly small, the CT curve 
should run more or less parallel to the curve of skin fric-
tion coeffi cient CF, as ABC. A curve which falls away in 
this region or even becomes horizontal, such as ABD or 
ABE, is at once suspect as being subject to partial lami-
nar fl ow, which will yield too small a resistance.

The practical answer to the laminar fl ow problem 
is to deliberately “trip” the laminar fl ow by some kind 
of roughness near the bow. Trip-wires about 1 mm 

diameter placed around the hull at a station 5% of 
the length from the forward perpendicular are now 
standard practice. Other devices, used particularly 
for stimulating the fl ow around appendages (but also 
for the hull itself), are sandstrips or studs. A typical 
stud height is 2.5 mm, and the diameter is normally 
about 3 mm. The studs are placed in a row parallel to 
the leading edge of the appendage or the stem of the 
ship. The stimulating device increases the resistance 
because of its own parasitic drag. If it is placed too 
close to the stem, there is a danger of the laminar fl ow 
reestablishing itself if the pressure gradient is favor-
able, but when placed in the usual position (5% Lpp 
aft of the stem) it leaves the laminar fl ow (if it exists) 
undisturbed over the fi rst part of the length up to the 
stimulator. In this case, the resistance of this portion 
of the surface will be less than the turbulent resis-
tance desired. It is usual to assume that this defect 
in resistance balances the additional parasitic drag of 
the wire or studs.

8.3 Prediction of Effective Power. The effective power 
PE of the ship is the power required to drive the ship at a 
certain speed without any propulsive losses (i.e., it is the 
resistance times the speed of the ship, RT � V). To deter-
mine the full-scale (index S) resistance from the model 
(index M) test, essentially only two methods have been 
in use: Froude’s method and the method recommended 
by the ITTC in 1978. The latter is presently used by most 
tanks, but there are still cases where Froude’s method is 
employed. Both will be described in the following.

Ship model resistance tests are generally based on 
the following principles, which have been described in 
more detail Section 3.3.

1. Froude’s hypothesis that the resistance of a  model 
or ship can be split in two independent parts: a viscous 
or frictional resistance, and a pressure- related, wave, 
or “ residuary” resistance (such decompositions are 
discussed in Section 4.1)

Figure 8.2 Effects of laminar fl ow on the resistance at low speed. 
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2. In Section 3.3, it has been pointed out that these two 
parts are essentially governed by two different nondi-
mensional parameters: the Froude number Fn � V/( �

_
gL)

and the Reynolds number Rn � (VL)/�. It is not possible 
to make both parameters equal for model and ship, and a 
choice needs to be made (see Section 3.3.2).

3. The practical solution is to test the model at the 
same Froude number as the ship, which is done by 
choosing VM � VS �

_
LM/LS . In that case, the wave (or 

residuary) resistance coeffi cient of ship and model, 
CR � RR /(0.5� V 2S), are equal (see Section 3.3.2).

4. Then the viscous or frictional resistance cannot 
be scaled up directly, and an approximation needs to 
be made for its Rn-dependence. In Froude’s method, 
the Rn-dependence is supposed equal to that of the 
frictional resistance of a fl at plate, whereas in the ITTC-
78 method, the viscous resistance is supposed to be 
proportional to the frictional resistance of a fl at plate. 
The constant of proportionality is the form factor.

The two basic extrapolation methods will be de-
scribed. Because the major difference between the two 
methods is the form factor, a description will be given of 
the determination of this factor in Section 8.3.3. As be-
fore, all force coeffi cients are obtained from the forces 
by division by 0.5� V 2S, where V is the speed and S the 
wetted surface.

8.3.1 Froude’s Method. In Froude’s method, the de-
composition of the resistance is in a frictional resistance 
that is supposed equal to that of an equivalent fl at plate 
(i.e., a fl at plate with equal wetted surface and equal length 
towed at equal speed [so, equal Rn]) and a residuary re-
sistance, which is everything else. Therefore, the residu-
ary resistance not only incorporates the wave resistance, 
but also the form effect on friction and the form effect on 
pressure (see Section 4.1). In modern terminology,

CT(Rn, Fn) � CF0(Rn) 
 CR(Fn) (8.1)

in which CF0 is the plate friction coeffi cient and CR the 
residuary resistance coeffi cient. In practice, the fl at 
plate friction CF0 is now replaced by CF from the ITTC-
57 line, equation (6.38). Because this contains 12% form 
effect, which in the original procedure should have been 
included in CR, the procedure is not quite as proposed 
by Froude.

The following steps are taken when extrapolating the 
measured model resistance RTM to the full-scale resis-
tance RTS.

1. Perform resistance tests with the model at the same 
Froude number as the ship (i.e., VM � VS �

_
LM/LS ). Measure 

the total resistance coeffi cient CTM

2. Compute the friction coeffi cient of the model us-
ing the ITTC-57 formula

CFM �   0.075__  
(10log RnM � 2)2   (8.2)

where the Reynolds number RnM is for the model; or use 
another extrapolation line (see Section 6.3.4)

3. Compute the residuary resistance CRM for the model

CRM � CTM � CFM (8.3)

4. Because the Froude number is the same, the re-
siduary resistance coeffi cient is also the same at the two 
scales

CRS � CRM (8.4)

5. Compute the friction coeffi cient of the ship

CFS �   0.075__  
(10log RnS � 2)2   (8.5)

where the Reynolds number RnS is for the ship
6. Compute the total resistance coeffi cient for the 

ship

CTS � CFS 
 CRS 
 �CF (8.6)

where the roughness allowance coeffi cient is set as a 
constant �CF � 0.0004

7. The full-scale resistance RS is fi nally computed as

RS � CTS �   1_
2

�SV S

2 SS (N) (8.7)

and the effective power PE as

PE � RS � VS (8.8)

A graphical representation of the method is shown 
in Fig. 8.3.

8.3.2 ITTC-78. We will now describe the method 
most widely used by towing tanks today, the ITTC-
78 method. In this method, the decomposition is in 
a viscous resistance, which includes the form effect 
on friction and pressure, and a wave resistance. The 
form factor is the ratio of the viscous resistance of the 
ship, and the frictional resistance of an equivalent fl at 
plate. Through the introduction of the form factor, a 
better division of the total resistance is obtained, and 
the components can be better scaled. Therefore, the 
assumption is

CT(Rn, Fn) � (1 
 k)CF0(Rn) � CW(Fn) (8.9)

in which CF0 is the plate friction coeffi cient, 1 
 k the 
form factor, and CW the wave resistance coeffi cient. How 
the form factor is determined in practice is described in 
Section 8.3.3. Again, the fl at plate friction CF0 is replaced 
by CF from the ITTC-57 line, equation (6.38). This will be 
discussed later. The following steps are taken.

1. Perform resistance tests with the model at the same 
Froude number as the ship (i.e., VM � VS �

_
LM/LS ).  Measure 

the total resistance coeffi cient CTM

2. Compute the friction coeffi cient of the model ac-
cording to ITTC-57

CFM �   0.075__  
(10log RnM � 2)2    (8.10)

where the Reynolds number RnM is for the model
3. Determine the form factor k (usually by the 

 Prohaska method, Section 8.3.3)
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4. Compute the wave resistance CWM of the model

CWM � CTM � (1 
 k) � CFM (8.11)

5. Assume that CWS � CWM. Note that this wave re-
sistance is smaller than the residuary resistance for the 
Froude method!

6. Compute the friction coeffi cient CFS of the ship

CFS �   0.075__  
(10log RnS � 2)2   (8.12)

where the Reynolds number RnS is for the ship
7. Compute the roughness allowance �CF according 

to Bowden

�Cf � (105 �   ( kMAA_
L )

1_
3 � 0.64 ) � 10�3 (8.13)

where kMAA is the roughness in microns(10�6 m), mea-
sured according to the MAA method (Section 6.8.2). 
ITTC recommends kMAA = 150 microns  as a typical value.

8. Determine the air resistance coeffi cient

CAA � 0.001 �   AT_
S

 (8.14)

where AT is the frontal area of the ship above the water
9. Compute the total resistance coeffi cient of the ship

 CTS � (1 
 k) � CFS 
 CWS 
 �CF 
 CAA (8.15)

10. The total resistance RS may now be obtained as

RS � CTS � 1_
2
   �SVS

  2 SS (8.16)

and the effective power as

 PE � RS � VS (8.17)

A graphical representation of the method is shown 
in Fig. 8.4.

These are the steps taken when extrapolating a re-
sistance test to full scale. Considerably more steps are 

Figure 8.3 Froude’s method. 
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Figure 8.4 The ITTC-78 method. 
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required for extrapolating self-propulsion tests, as de-
scribed in the Propulsion volume of the Principles of 

Naval Architecture.
8.3.3 Determination of the Form Factor. The 

form factor 1 
 k was defi ned in equation (6.39) and it 
represents the ratio of the (smooth) viscous resistance 
and the resistance of the equivalent fl at plate. It thus 
incorporates the form effect on the viscous resistance: 
the increased fl ow speed and pressure gradients due to 
the thickness of the body (Section 4.1), the effect of the 
boundary layer and wake displacement on the pressure 
at the stern (Sections 4.1 and 6.4.1), and possible fl ow 
separation. The formula was given for 2D fl ows, but it 
holds also for 3D fl ows.

In the strict defi nition, the real friction for the plate, 
CF0, appears, and one of the plate friction lines dis-
cussed in Section 6.3.4 should be used, but as seen, the 
ITTC-57 formula (6.38) is mostly used. Recall that this 
formula already includes about 12% form effect, so the 
approach is not logical, but it will lead to correct results 
provided the form factor is used together with the fric-
tion formula it is intended for (and with a consistent 
roughness allowance). Three different ways of deter-
mining the form factor will now be described.

Empirical Formula The most popular empirical for-
mula for determining the form factor is attributed to 
Watanabe

k � �0.095 
 25.6 �   CB_

( L_
B )

2

�
_
B_
T

 (8.18)

In this formula, CB is the block coeffi cient, L the 
length between perpendiculars, B the beam, and T
the draft. Note that equation (8.18) can be used only 
in combination with the ITTC-57 formula.

Determination at Low Speed An apparently very 
simple way of determining the form factor is to run 
the model at low speed (e.g., Fn � 0.15) where the 
wave resistance is negligible. The form factor k can 
then be determined from equation (8.9) with CW � 0 

and CF0 approximated by the ITTC-57 formula. Un-
fortunately, problems with laminar fl ow may occur, 
as explained, and the forces at these low speeds are 
normally very small, making accurate measurements 
diffi cult. The procedure is explained in Fig 8.5.

Prohaska’s Method The most widely used method for 
determining the form factor is attributed to  Prohaska 
(1966). The method is based on the assumption that 
the wave resistance coeffi cient is proportional to the 
Froude number to the fourth power, which is sup-
ported by the calculations by Wigley described in 
Section 5.4.5. The total resistance coeffi cient, CT, may 
the be written

 CT � (1 
 k) CF 
 k1Fn 
4 (8.19)

Division by CF yields

CT_
CF

� (1 
 k) 
 k1   Fn 
4

_
CF

 (8.20)

which is a straight line in Fig. 8.6.
If the assumption on the wave resistance is correct, 
the measurement points will fall on the straight line 
with (1 
 k) as the intercept on the vertical axis. Nor-
mally, this is true for the points in the lower Froude 
number range. The line is thus adjusted to go through 
these points as well as possible, and the form factor 
is read on the intersection with the vertical axis. De-
pendent on the hull form, Prohaska’s method can be 
applied to model tests at a somewhat higher speed 
than a simple low-speed test.

8.3.4 Discussion. The two extrapolation meth-
ods discussed would, without further corrections, give 
substantially different full-scale resistance predictions 
(e.g., for a ship with a form factor 1 
 k � 1.2, the total 
form effect amounts to 20% of the plate friction resis-
tance). As the plate friction coeffi cient for the ship is of 
the order of one-half of that for a model, that form effect 
is supposed also to decrease by about one-half in the 
ITTC-78 method, but to remain equal in Froude’s method, 
in which it is included in the residuary  resistance. This 

C

Rn

CF

(1+k)CF= CV

measured
total resistance, CT

Figure 8.5 Determination of the form factor at low speed. 
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gives a difference in full-scale resistance of 10% of the 
plate friction drag, so perhaps some 5% of the total resis-
tance. However, the “correlation allowances” or “rough-
ness allowances” for Froude’s method are different, and 
generally smaller, than those for the ITTC-78 method. 
On average, this compensates for the difference in ex-
trapolated resistance level. Therefore, the true measure 
of the validity of an extrapolation method is the vari-
ability of the correlation allowances that are needed to 
get the correct trial predictions.

Although the ITTC-78 method is generally preferred 
and considered more physically correct, it is not always 
easy to determine the form factor. Prohaska’s method 
supposes that the wave resistance is a sixth-order func-
tion of the speed; other orders may be tried as well, but 
in any case the condition is that in the low-speed re-
gime considered there are no clear wave interference 
effects playing a role. However, a bulbous bow close to 
the water surface can produce local waves already at 
low speed (as the local Froude number is high), some-
times causing a nonsmooth behavior of the resistance, 
and preventing an accurate determination of the form 
factor. Also, an immersed transom that is only dry at 
higher speeds can cause inaccuracies. In case an ex-
perimental determination of the form factor fails, em-
pirical formulas can be used, but still the accuracy is 
limited. On the other hand, a less accurate form fac-
tor does not immediately cause gross errors in the 
 extrapolated  resistance.

The form factor approach, or the assumption that 
the viscous resistance is proportional to the frictional 
resistance of an equivalent fl at plate, is also of limited 
validity. It probably holds well for rather slender ships 
without fl ow separation. But for full hull forms hav-
ing a bubble-type fl ow separation at model-scale that 
is perhaps absent at full scale, there is little reason to 
believe in this proportionality. For vessels with sharp 
edges from which fl ow separation takes place, the ex-
tent of the separation is independent of Rn and it may 
be better to apply a direct scaling of the associated 

 resistance contribution. The problems with the scaling 
of appendage resistance were discussed in Section 7.2.1, 
in  connection with Fig. 7.18. In order not to introduce 
unnecessary errors when the appendage resistance is 
large, this component should be scaled separately.

Another approximation inherent to the extrapolation 
methods is the basic assumption of independence of the 
wave making and the viscous fl ow, governed by Fn and 
Rn, respectively. In reality, the stern wave system is 
generally reduced by viscous effects, and less so at full 
scale than at model-scale; therefore, some increase of 
the wave resistance coeffi cient from model- to full scale 
can be expected. Moreover, the viscous resistance can 
well be Fn-dependent: the wavy water surface along the 
hull, and the change of the pressure distribution because 
of the wave making, also affect the viscous fl ow and the 
wetted surface and can even lead to fl ow separation. 
Therefore, the form factor determined in a low-speed 
test may not be entirely appropriate for higher speeds. 
For a computational study of scale effects on form fac-
tors and wave resistance, see Raven et al. (2008).

Nevertheless, the methods to predict the power from 
model test results presented here, or variants thereof, 
still are the best established approaches. But the short-
comings discussed mean that the correlation allow-
ances, which have been determined by regression of 
trial data, contain a variety of unknown corrections, not 
only roughness effects. In practice, the predictions and 
intermediate results of extrapolation procedures are 
usually compared with results for similar vessels, and 
further corrections are applied when needed. Therefore, 
experience is still important to predict the full-scale ef-
fective power accurately from model test results.

8.4 Model Flow Measurements. Besides resistance 
tests, a variety of other tests are carried out in towing 
tanks to determine the properties of the fl ow around 
the hull. We will fi rst briefl y describe the principal tech-
niques used for measuring velocities and wave eleva-
tions. Then, we will review the usual tests carried out 
in model basins that are relevant to resistance and fl ow.

CT
CF
------

F4

CF
------

}1+k

direction coeff. = k1

Figure 8.6 Prohaska’s method. 
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8.4.1 Measurement Techniques for Flow Velocities 

and Wave Elevations. For measurement of the veloc-
ity fi eld around the hull, the following devices are used 
in towing tanks.

• A fi ve-hole pitot tube (Fig. 8.7) measures the pres-
sure differences between the fi ve holes in the spherical 
head of the tube. The fl ow velocity magnitude and di-
rection can then be determined from a relation found 
by calibration. Larger incidence angles, proximity of a 
wall, and large velocity gradients or turbulent fl uctua-
tions reduce the accuracy of the measurement.

• For Laser-Doppler Velocimetry (LDV), monochro-
matic light from a laser is split in two beams that by op-
tical systems are made to intersect, in a small “measure-
ment volume” in the fl ow at a distance from the optical 
devices. Particles in the fl ow (naturally present in the 
towing tank, or introduced by “seeding”) pass through 
the volume and refl ect or scatter the light. Owing to the 
particle velocity, the light from the two beams is refl ect-
ed by the particle with a different Doppler shift of the 
frequency, resulting in interference. A photodetector 
detects this interference frequency, which is used to de-
rive the local fl ow speed and direction in the measure-
ment volume. Based on records of a suffi cient number of 
particles, the average fl ow speed and turbulence quanti-
ties can be deduced.

• Particle-Image Velocimetry (PIV) is a more recent 
technique for fl ow speed measurement. A laser sys-
tem casts a thin sheet of light into the fl ow. Particles 
in the fl ow pass that sheet and are briefl y illuminated. 
Two photographs are taken of the measurement plane, 
at a very small time interval (typically some millisec-
onds). In the two photographs, the same particles will 
be found at slighty different positions, and their shift 
over the known time interval is a measure of their speed 
tangential to the measurement plane. To recognize the 
same groups of particles in the two photographs, pat-
tern recognition methods are applied. The result is a dis-
tribution of the instantaneous tangential fl ow velocity 
distribution in the measurement plane. By using stereo 
photography in the same set-up, the velocity component 
normal to the laser sheet can also be determined.

For measuring wave elevations, the most widely used 
devices are capacitance or conductance probes. These 
produce an electric signal dependent on their immer-
sion, which is read out at a given scanning frequency, 
thus providing a record of wave elevation against time. 
Such probes are available as (twin) wires mounted to a 
support rod, but also incorporated in fl exible tape that 
can be attached to the model surface.

This type of probe is less suited for measurement of 
the wave elevation if there is a substantial fl ow speed 
relative to the wave probe. For that purpose, servo-
driven probes touching the water surface and follow-
ing its motion have been used, sometimes called “fi nger 
probes.” Alternative measurement techniques have also 
been used (e.g., based on stereo photography, giving a 
height map of the water surface, or based on pictures 
taken of a vertical laser sheet that intersects and illumi-
nates the wave surface).

These techniques are used in towing tanks, mainly 
for the following measurements.

8.4.2 Wake Field/Flow Field Measurement. A con-
ventional wake fi eld measurement specifi cally deter-
mines the velocity fi eld at the location of the propeller. 
This is done for a model without propeller and is called 
the “nominal wake fi eld” to distinguish it from the fi eld 
with the operating propeller. It is normally measured us-
ing a pitot tube rake that can be rotated around the pro-
peller shaft center and is set at various angles and radii to 
scan the propeller plane. All three velocity components 
(axial, radial, and tangential) are measured. Usually, it 
takes several runs through the basin to complete this 
test. The nominal wake fi eld gives important fi rst indi-
cations on the propeller infl ow and thus on the risk of 
cavitation.

A wake fi eld can also be measured using LDV or PIV 
methods. LDV systems have been used successfully in 
model basins, enabling precise measurements of the 
fl ow and turbulence around the hull, but also the infl ow 
to a working propeller. For these applications, the entire 
LDV system must be attached to the carriage, and the 
measurements require a large number of runs. There-
fore, their use in towing tanks has never become pop-
ular. LDV is much more easily operated in circulating 
water channels.

A particular application of LDV systems is for mea-
surements of the boundary layer and wake of full-scale 
ships; in this case, the equipment is positioned inside 
the ship hull and operated through Plexiglas windows 
in the underwater hull surface.

PIV is used in model basins for determining the fl ow 
fi eld around a ship model, using either an earth-fi xed or 
a carriage-fi xed system. The method is quite fast, as a 
whole measurement plane is measured at once, but sev-
eral measurements are needed to get the proper average 
velocity fi eld in a turbulent fl ow. The optical  accessibility 
of the measurement plane (requiring proper camera 
 angles) can be problematic in practice, and often requires 
the use of streamlined underwater housings attached to 

Figure 8.7 Rake for wake measurements containing two fi ve-hole pitot 
tubes. (Photo: Sven Wessling. Courtesy of SSPA.) 
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the carriage. Fig. 8.8 shows an example of the set-up for 
measurements in shallow water.

It is believed that PIV can become an alternative to 
the conventional pitot tube measurements of wake fi elds 
for routine use in towing tanks, and may already well be 
more practical if several planes need to be measured.

Besides these quantitative fl ow measurements, more 
qualitative information on the fl ow is often collected in 
towing tanks, as an aid to understanding and improving 
the model’s performance:

8.4.3 Tuft Test. In a tuft test, the model is fi tted 
with short pieces of yarn mounted on the surface and 
at the tip of pins of about 50 mm height. The tufts will 
align themselves with the fl ow, and observing them 
with an underwater video camera gives an idea of the 
local fl ow direction and the skewing of the fl ow within 
the fi rst 50 mm from the surface. The local unsteadi-
ness of the fl ow is seen and the possible occurrence of 
fl ow separation may also be displayed. The result is a 
rather qualitative indication of the fl ow properties in 
the area in which tufts are mounted. Fig. 8.9 shows an 
example.

8.4.4 Paint Test. A paint test is a more detailed 
and quantitative fl ow measurement. Special paint is ap-
plied in girthwise strips on the model, which then is run 
through the tank at the desired speed. Because of the 
precisely tuned paint properties, it is smeared out by the 
fl ow, forming traces in the direction of the surface shear 
stress (skin friction). This indicates the so-called limit-
ing streamlines (see Section 6.6.1). The paint fl ow traces 
are used to construct a set of “streamlines” which will 
indicate the skin friction direction, separation regions, 
etc. However, in the stern area, the low skin friction 
makes it hard to get good paint traces. Fig. 8.10 shows 
an example of a paint test.

8.4.5 Appendage Alignment Test. Although a 
paint test provides the shear stress direction on the hull 
surface, the fl ow direction at a distance from the hull is 
needed for aligning shaft support struts. To determine 
this experimentally, either pitot tubes are used, or vari-
ous other devices such as small vanes on a rod mounted 

at the position of the strut, or plates to which paint is 
applied that gives paint traces indicating the local fl ow.

8.4.6 Wave Pattern Measurement. Wave pattern 
measurements are most easily done using a wave gauge 
at a fi xed position in the tank. The probes are read out 
at a set frequency and thus provide a record of wave 
elevation against time during the passage of the model 
at constant speed. This registration can easily be con-
verted to wave elevation against position relative to the 
model using the model speed, scanning frequency, and a 
starting signal given when the model is at a known posi-
tion. The result is a longitudinal cut through the steady 
wave pattern of the model. The useful part of the regis-
tration is from the arrival of the wave disturbance of the 
model, until the moment that waves refl ected from the 
tank wall reach the wave probes.

Such measured longitudinal wave cuts are used for 
comparison between model variations; for compari-
son with computational predictions; for generating 
far-fi eld wave (wash) predictions (see Section 5.11); or 
for wave pattern analysis, a technique to deduce the 
wave  spectrum (Section 5.4.6) and from it, the wave 

Figure 8.9 Tuft test on the afterbody of a ship model. 

Figure 8.8 PIV measurements.  Left: photo from a towing tank test; right: velocity  distribution at some measurement planes. 
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 resistance directly. Although, in the 1960s, much work 
was done on wave pattern analysis (Eggers, Sharma, 
& Ward, 1967) with the hope to use the resulting wave 
resistance directly to improve extrapolation methods, 
this seems to be hardly used in practice today.

Such measurements can provide longitudinal cuts 
at a minimum distance of half the beam of the model, 
and alternative techniques are needed to measure wave 
 elevations in the path of the vessel (e.g., aft of the stern). 
Finger probes mounted to a subcarriage running along 

a rail attached to the carriage, photographs taken of the 
water surface illuminated by a laser sheet, or stereo 
photography from the ceiling of the towing tank build-
ing have been used.

Simpler but less meaningful is a determination of the 
wave profi le along the hull. Although the fl exible wave 
gauge strips could be used for this, a steady wave profi le 
is usually just determined by taking a photograph of the 
model and measuring the wave profi le relative to a grid 
of waterlines and sections painted on the model surface.

 Figure 8.10 Paint test on the forebody of a ship model. 

9
Numerical Prediction of Resistance and Flow Around the Hull

9.1 Introduction. After having considered the main 
physical phenomena in the fl ow around a ship hull in 
steady motion in still water in Sections 5 and 6, and after 
having discussed experimental techniques in Section 8, 
we shall now consider the principal techniques used to 
predict fl ow and resistance by purely theoretical means.

Theoretical predictions of resistance and fl ow play 
an important role in ship design today. Since about 1980, 
a revolutionary growth of the possibilities for theoreti-
cal prediction and optimization of ship performance 
has taken place. Major contributing factors to this have 
been the availability of fast computers, the development 
of improved numerical techniques, growing insight in 
an adequate modeling of the principal phenomena, and 
the development of specialized computation methods 
for ship hydrodynamic problems.

Today computations of wave pattern and wave resis-
tance are routinely used in ship hull form design, not 

just by specialized ship hydrodynamic institutes but 
also by many shipyards. Such computations have given 
increased insight in favorable hull form characteristics 
and have reduced the need for extensive model testing 
because much of the hull form refi nement is done in a 
computational preoptimization. Also viscous fl ow com-
putations play an increasing role in practical ship de-
sign and a more routine use is developing. In principle, 
these techniques can bring a level of completeness of 
the analysis and refi nement of the hull form design that 
in several respects is higher than what a towing tank 
can offer; on the other hand, ship performance predic-
tions based on CFD do not yet reach the same level of 
accuracy as model tests.

Consequently, a consideration of theoretical predic-
tions of resistance and fl ow is indispensable in this book; 
even though it should be noted that a fast development is 
taking place and some of the assessments of capabilities 
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 resistance directly. Although, in the 1960s, much work 
was done on wave pattern analysis (Eggers, Sharma, 
& Ward, 1967) with the hope to use the resulting wave 
resistance directly to improve extrapolation methods, 
this seems to be hardly used in practice today.

Such measurements can provide longitudinal cuts 
at a minimum distance of half the beam of the model, 
and alternative techniques are needed to measure wave 
 elevations in the path of the vessel (e.g., aft of the stern). 
Finger probes mounted to a subcarriage running along 

a rail attached to the carriage, photographs taken of the 
water surface illuminated by a laser sheet, or stereo 
photography from the ceiling of the towing tank build-
ing have been used.

Simpler but less meaningful is a determination of the 
wave profi le along the hull. Although the fl exible wave 
gauge strips could be used for this, a steady wave profi le 
is usually just determined by taking a photograph of the 
model and measuring the wave profi le relative to a grid 
of waterlines and sections painted on the model surface.

 Figure 8.10 Paint test on the forebody of a ship model. 
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9.1 Introduction. After having considered the main 
physical phenomena in the fl ow around a ship hull in 
steady motion in still water in Sections 5 and 6, and after 
having discussed experimental techniques in Section 8, 
we shall now consider the principal techniques used to 
predict fl ow and resistance by purely theoretical means.

Theoretical predictions of resistance and fl ow play 
an important role in ship design today. Since about 1980, 
a revolutionary growth of the possibilities for theoreti-
cal prediction and optimization of ship performance 
has taken place. Major contributing factors to this have 
been the availability of fast computers, the development 
of improved numerical techniques, growing insight in 
an adequate modeling of the principal phenomena, and 
the development of specialized computation methods 
for ship hydrodynamic problems.

Today computations of wave pattern and wave resis-
tance are routinely used in ship hull form design, not 

just by specialized ship hydrodynamic institutes but 
also by many shipyards. Such computations have given 
increased insight in favorable hull form characteristics 
and have reduced the need for extensive model testing 
because much of the hull form refi nement is done in a 
computational preoptimization. Also viscous fl ow com-
putations play an increasing role in practical ship de-
sign and a more routine use is developing. In principle, 
these techniques can bring a level of completeness of 
the analysis and refi nement of the hull form design that 
in several respects is higher than what a towing tank 
can offer; on the other hand, ship performance predic-
tions based on CFD do not yet reach the same level of 
accuracy as model tests.

Consequently, a consideration of theoretical predic-
tions of resistance and fl ow is indispensable in this book; 
even though it should be noted that a fast development is 
taking place and some of the assessments of capabilities 
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and practical use may need to be adjusted over time. 
We start our discussion by considering the general ap-
proach used to develop a method to compute fl uid fl ow 
phenomena and the approximations made in this. This 
is followed by a brief discussion of the general process 
to establish the adequacy of a computational method. 
Then we shall review and explain the main classes of 
computational methods and their possibilities.

9.2 Sources of Error in Numerical Methods. In general 
it is important to be aware of the steps taken in devel-
oping a numerical method to predict a physical phe-
nomenon and the approximations made in the process. 
An understanding of these approximations allows an 
assessment of the value of a numerical prediction and 
judgement of the validity of a method.

Fig. 9.1 shows in principle how the physical reality is 
modeled when carrying out computations using a com-
puter code in science and engineering. The fi rst step 
in the development is to establish a conceptual model.
Here, the problem is specifi ed, principal physical phe-
nomena are identifi ed, and effects that may be assumed 
less important are sorted out. For instance, it is often 
assumed that the fl ow around the above-water part of a 
ship is unimportant for the water fl ow, a very good ap-
proximation in most cases.

Having formed a conceptual model, this is translated 
into a continuous mathematical model. In physics, this 
model often contains a set of differential or integral 
equations. For these to be solvable with reasonable ef-
fort, various approximations of the full model are often 
introduced. Examples are linearizations or introduction 
of empirical data, such as in turbulence models.

To be able to solve the continuous equations numeri-
cally, they have to be discretized. Derivatives are re-
placed by differences, integrals by sums, etc. Various 
numerical methods are used, such as fi nite-difference 
methods, fi nite-volume methods, fi nite-element meth-
ods, boundary element methods. The discretization 
means an approximation of the actual values and thus 
introduces discretization errors.

There may be other steps introducing errors, such 
as choosing a fi nite domain size for an effectively un-
bounded fl ow problem and imposing far-fi eld boundary 
conditions at the outer boundaries.

The discretized mathematical model needs to be 
solved by numerical algorithms. Most numerical meth-
ods for technical computations use some kind of it-
erative approach to reach a solution, either because a 
direct solution is not possible because of nonlineari-
ties in the equations, or because an iterative solution 
is faster. If the iterative solution converges, the dif-
ference between two successive iterations becomes 
smaller and smaller and the equations more and more 
precise. Once a given convergence criterion is met, 
the iterative procedure is terminated and the solution 
is supposed to have been reached. However, because 
of imperfect convergence, it still contains convergence 

errors.
Finally, roundoff errors caused by the internal rep-

resentation of numbers in the computer may affect the 
result. For certain problems, these round-off errors can 
accumulate and can affect the results more seriously 
than one might expect, therefore double precision is of-
ten recommended.

Figure 9.1 Sources of errors in computed results.
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We have left out of account programming errors here, 
considering that these are supposed to have been re-
moved prior to any error quantifi cation or validation, 
otherwise leading to unpredictable results. Careful code 
verifi cation, for which techniques have been proposed, 
can help detect such mistakes.

Clearly there are several sources of errors that may 
affect the computed results. A common distinction is 
between numerical errors (discretization errors, con-
vergence errors, roundoff errors) and modeling errors

(due to approximations in the conceptual and continu-
ous mathematical model). In addition there can be er-
rors due to a fi nite computational domain size, less 
adequate far-fi eld boundary conditions, etc. These can 
either be classifi ed as modeling errors or as belonging 
to a different category, input parameter errors. Differ-
ent error taxonomies have been proposed and are dis-
cussed in Roache (2009). Whatever the classifi cation, a 
good understanding of the possible error sources and a 
good control of their magnitude are essential for achiev-
ing a sound computational result and assessing its va-
lidity. Some of the errors are the responsibility of a code 
developer, some of the code user, and some errors de-
pend on both developer and user. In particular, the dis-
cretization errors and convergence errors can be rather 
variable in practice and cause that experienced users 
can often achieve better results with a given method.

Discretization errors depend on the type of numeri-
cal scheme used and on the discretization spacing, 
the step length between two successive discretization 
points. For a sound numerical method, the effect of the 
discretization errors on the result must vanish when the 
step size is reduced so the numerical solution must ap-
proach the solution of the continuous problem. In other 
words, on refi nement of the grid, the result should con-

verge toward a grid-independent result.
How fast the numerical solution approaches the 

continuous one when the step size is reduced theoreti-
cally depends on the order of accuracy of the method: 
In a fi rst order method the error is proportional to the 
step size, in a second order method it is proportional 
to the step size squared, etc. In practice, however, for 
complicated problems on realistic grids, the actual 
behavior can be different and the theoretical order of 
the error might only be found on impractically dense 
grids. First-order discretization methods tend to make 
the numerical method more stable; however, they are 
too inaccurate in many cases. The order of accuracy 
is therefore often a compromise between stability and 
accuracy of the solution. In many commercial CFD 
codes, stability is prioritized at the expense of accu-
racy and the user should be aware of this.

The user of a code may have options available to se-
lect a type of discretization, but in any case he or she 
has the responsibility to keep the discretization errors 
at a low level by selecting a suffi ciently dense grid with 
a good quality. What is considered good quality depends 
on the problem and the code, but it includes aspects like 

small deviation from orthogonality, limited cell aspect 
ratio, smooth distribution of cell sizes, refi nement in re-
gions of high gradients, alignment of grid lines with fl ow 
directions, etc.

The level of iterative convergence reached is also a 
responsibility of the person making a computation. Dif-
ferent criteria can be used to judge convergence. The 
difference in the solution between two successive itera-
tions is one possibility, but this criterion is dangerous 
because small differences may occur also due to slow 
or stagnating convergence. A convergence criterion 
based on the residuals (i.e., the difference between the 
left- and right-hand side of the discretized equations 
when the solution is substituted) is usually better. It-
erative convergence can be determined as some kind of 
average over all grid points (e.g., an L2–norm) or as the 
maximum absolute values occurring anywhere. It is not 
possible to say in general what level of convergence is 
required for accurate results, as this depends on many 
details. Monitoring an integral value only and stopping 
the computation whenever this does not change any-
more, without considering other fl ow properties, is a 
dangerous practice.

9.3 Verifi cation and Validation. As described, differ-
ent classes of errors are introduced in a computational 
method. Therefore, it is not evident that the result of a 
computation will agree with physical reality, and care-
ful testing of the quality of a method is necessary to as-
certain this.

One might suppose that the best way to do this is 
to simply compare the result of a computation with an 
experimental result. However, if the comparison is fa-
vorable, that might be due to a fortuitous canceling of 
modeling errors and numerical errors for the particular 
case considered. But these errors in general follow en-
tirely different rules, and for another case the modeling 
and numerical errors might add up rather than cancel. 
Therefore, without further information, that favorable 
conclusion cannot be generalized to other cases. To 
have any certainty on the quality of a computational 
method, we must have a good idea of the separate ef-
fects of modeling errors and numerical errors.

The proper approach in most cases is therefore, fi rst 
to determine the numerical errors. As stated previously, 
provided the iterative convergence errors have been 
made negligible, these errors should ultimately vanish 
when the discretization is refi ned. If we make succes-
sive grid refi nements until we obtain a grid-independent 
result (which is not always feasible, see below), we thus 
obtain the actual solution of the continuous mathemati-
cal model. A solution on a coarser grid can be compared 
with that fi ne-grid solution, so we can determine what 
is the effect of numerical errors on that coarse grid. 
This fi rst step is called solution verifi cation. Verifi ca-
tion thus means checking that the solution accurately 
agrees with that of the continuous mathematical model. 
Experimental results play no role in this stage; it is a 
purely numerical exercise. (It is noted that verifi cation 
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can also address the effects of fi nite domain size and 
perhaps other artifi cial parameters used in the compu-
tation, by systematically varying these.)

Having done the verifi cation, the next step is valida-

tion. The computed results have to be validated against 
data in which one has more confi dence, usually experi-
mental data. Here the (ideally) grid-independent result 
is compared with experimental data. Any disagree-
ment must now be a shortcoming of the continuous 
mathematical model. Carrying out this verifi cation and 
validation process for more cases, we learn about the 
 validity of the mathematical model, which permits us to 
increase our understanding or improve the model, and 
we fi nd out what is the required discretization to control 
the numerical errors.

In practice a true grid-independent result may not be 
achievable, and we may have to live with the numerical 
uncertainty resulting from the discretization errors that 
have been estimated in the verifi cation phase. Also the 
experimental data will contain an experimental uncer-
tainty. In comparing the computed results for a given dis-
cretization with experimental data, we need to take into 
account both uncertainty bands and may need to be more 
cautious in stating the validity of the method considered. 
A standard procedure for doing this is described in Amer-
ican Society of Mechanical Engineers (2008). In any case, 
only by making both the verifi cation and the  validation 

step can we come to sound conclusions on the applicabil-
ity of a computational method and largely rule out false 
conclusions based on fortuitous error cancellation.

The process to estimate the numerical errors is 
known as CFD uncertainty analysis, and it has been a 
hot topic in hydrodynamics over the past 10 years. The 
main problem with the procedure described is how to 
quantify the numerical uncertainty based on results on 
different grids, if a true grid-independent result cannot 
be achieved. Several verifi cation procedures have there-
fore been proposed (e.g., Eça & Hoekstra, 2006; Roache, 
1998; Stern et al., 2001) and workshops have been held 
to test various methods (e.g. Eça and Hoekstra, 2008a). 
Roache (2009) is a recent, comprehensive book on the 
subject of verifi cation and validation.

However, the main point to be made here is that any 
comparison of a computed result with experimental 
data can only demonstrate a method’s applicability if a 
solid indication of the effect of discretization errors on 
the computed result is available.

9.4 Separation of Physical Phenomena—The Zonal 
Approach. After these general words on numerical 
methods, we shall start considering the conceptual 
model for the fl ows of interest. Fig. 9.2 sketches the situ-
ation we are addressing. As before, we consider the fl ow 
around a ship moving with constant velocity on a straight 
course in still water, described in a coordinate system 

Figure 9.2 The fl ow phenomena to be modeled.
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fi xed to the hull. In this system, there is a uniform incom-
ing fl ow with velocity U from ahead, and the fl ow fi eld is 
(assumed to be) steady, at least in an average sense (not 
considering the time-dependent turbulent motion).

In this situation, the two main physical phenomena 
that have been considered in Sections 5 and 6 occur 
 simultaneously:

• The generation of a wave pattern, which extends to 
large distances from the hull
• A viscous fl ow in a region quite close to the hull, with 
a turbulent, vortical motion, extending aft into a wake 
fi eld.

(In addition, wave breaking and spray may occur, but 
these will here be disregarded because their impact is 
usually limited and satisfactory computational meth-
ods for these phenomena are lacking.) As in the physi-
cal considerations and in model testing, in setting up 
computational methods we shall have to answer the 
question of how to deal with these different but simulta-
neous phenomena.

The appropriate mathematical model for viscous fl uid 
fl ows in the regimes of interest consists of the continu-
ity and Navier-Stokes equations derived in Section 2. 
Together with suitable boundary conditions on the hull 
and on the water surface these adequately describe the 
viscous fl ow fi eld and the wave pattern generated by the 
ship. The practical impossibility to solve these equa-
tions for a ship fl ow is discussed in Section 9.7.1, and as 
shown there a more feasible problem is defi ned by the 
Reynolds-Averaged Navier-Stokes (RANS) equations, 
which are obtained by time-averaging. To solve this 
mathematical model for the fl ow around the hull with 
free surface, one could discretize the equations on a 
3D grid surrounding the hull and fi tted to (or extending 
through) the wavy water surface; and make small time 
steps for the transient form of the equations, updating 
the wave surface until a steady state solution is reached. 
A fl ow-fi eld prediction is thus obtained that incorporates 
the wave pattern, the viscous fl ow around the hull and in 
the wake, and all interactions between both.

Although, today, several methods exist that do solve 
the complete viscous free-surface fl ow problem (see 
Section 9.8), this was unusual until about 1995. Part of 
the diffi culty of this problem comes from combining 
phenomena with quite disparate spatial and temporal 
scales in a single mathematical model. The boundary 
layer is relatively thin, has large velocity gradients, and 
small-scale structures are important for the fl ow behav-
ior, so in any viscous fl ow computation a very dense dis-
tribution of points (a dense grid) is needed in order to 
resolve the small-scale phenomena. But the wave mak-
ing is a large-scale process, with wave lengths compa-
rable to the ship length and a rather slow adjustment 
in time. Therefore, the dense grid should also cover a 
larger region to include the relevant wave pattern, and 
the time stepping must continue over a longer period 
until all transient wave phenomena have died out. Thus 

methods for computing viscous fl ow with free surface 
are usually much more time-consuming than other vis-
cous-fl ow computations, and defi nitely much less practi-
cal than the methods to be described in Section 9.6.

A reasonable simplifi cation, and until around 2003 
the only practical approach for predicting the fl ow fi eld 
around a ship, is a separation of the two different physi-
cal aspects. In Section 5.1 we have motivated that the 
main phenomena contributing to the resistance, viz. the 
wave making and the viscous fl ow, to a large extent can 
be regarded as independent. This assumption can be 
founded in boundary layer theory, which states that the 
pressure fi eld around a body is only slightly affected by 
the presence of a boundary layer, and it is consistent 
with the principle underlying ship model testing and re-
sistance extrapolation. A similar decomposition is often 
made in computational methods:

• The wave generation is considered as an inviscid pro-
cess in the whole domain around the ship.
• The viscous fl ow is considered as unaffected by wave 
making and occurring in a relatively narrow region 
around the hull and in a wake.

The separate treatment of the viscous fl ow and the 
wave making simplifi es the methods and makes the 
computation more effi cient and more practical; in par-
ticular for the wave making which can then be calcu-
lated with a much coarser discretization and (as will 
appear) simpler methods. Obviously, viscous effects on 
the wave making, and wave effects on the viscous fl ow, 
do occur in reality (see Section 5.7), but they are consid-
ered as “interaction effects” of secondary importance.

Correspondingly, this section will be set up as fol-
lows. Section 9.5 describes the prediction of inviscid fl ow 
around arbitrary closed bodies. Section 9.6 considers the 
prediction of wave pattern and wave resistance based 
on the assumption of inviscid fl ow. Section 9.7 considers 
the computation of the viscous fl ow around the hull, in 
which the wave making is left out of account. Section 9.8 
reviews methods in which the wave making and the vis-
cous fl ow are combined in a single computational model.

9.5 Prediction of Inviscid Flow Around a Body
9.5.1 Introduction. In this subsection, we intro-

duce and discuss some methods to compute inviscid 
fl ow around a body. We limit ourselves here to nonlifting 
bodies in an unbounded domain, without a free surface.

In Section 5.2.1 it was described how, from the as-
sumption of inviscid fl ow, the mathematical model of 
the fl ow could be substantially simplifi ed. We recall 
some of the main steps taken:

• For inviscid, irrotational fl ow, the velocity fi eld can 
be represented by the gradient of a scalar velocity po-
tential:  

→
 v � 	�

• For incompressible fl ow, this potential must satisfy 
the Laplace equation
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• The pressure follows from the Bernoulli equation

1_
2
   �� � �� 
   

p_
�   
 gz � constant (9.2)

where the constant is equal in the entire fl ow fi eld.
• The Laplace equation is linear and homogeneous, so 
it admits superposition of solutions for � and  

→
 v  (but not 

for p)

As pointed out in Section 5.2, the original set of four 
coupled equations has thus been reduced to a single equa-
tion for the potential and an equation for the pressure. 
Because the pressure does not occur in the  Laplace equa-
tion, the potential fi eld can be computed fi rst, and then 
the pressure can be determined afterwards from equation 
(9.2). The main task in computing a potential fl ow is there-
fore fi nding a solution of the Laplace equation in the fl uid 
domain, satisfying the boundary conditions imposed.

The main classes of methods to do this are Boundary 
Integral Methods or Panel Methods. Here, we shall fi rst 
give a simple explanation of their principle, followed by 
a more formal and general derivation for fl ow around a 
nonlifting body in an unbounded domain.

9.5.2 Use of Singularities. As in the consideration 
of ship wave patterns in Section 5, we exploit the lin-
earity of the Laplace equation to compose the solution 
of the potential fl ow problem from a superposition of 
elementary potential fl ows. We shall select the superpo-
sition in such a way as to obtain the desired fl ow fi eld: 
one representing fl ow around a solid body.

As elementary potential fl ows, we fi rst consider the 
fl ow fi elds induced by so-called singularities: sources, 
vortices, and dipoles.

• A source is a point from which fl uid emerges at a rate 
Q and spreads evenly in all directions. The potential and 
velocity fi eld induced in point  

→
 x by a source at the point   

→
 x0, in a 3D space, are

 �(
→

 x) � �   Q_
4�R

vR(
→

 x) �   Q_
4�R2   (9.3)

in which  R � � 
→

 x �
→

 x0 �  and vR is the velocity in radial 
direction away from the source. The radial velocity falls 
off inversely with the square of the distance from the 
source, such that a constant fl ow rate Q passes through 
each sphere centered at the source point. A negative 

source, which absorbs fl uid that streams toward it from 
all sides, is called a sink.
• A dipole is a pair of a source and a sink of equal 
strength, in the limit of their strength tending to infi nity 
and their distance vanishing, such that the product of 
distance and strength (the dipole moment  

→
 m pointing 

from sink to source) is constant. The potential and ve-
locity fi eld are given by
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 x0) (9.4)

• A vortex is an isolated line in a 3D fi eld (or a point in 2D) 
around which the fl ow circulates. For an infi nite straight 
line vortex, the velocity decreases proportionally with 
the inverse distance from the vortex. In general, the in-
duced velocity fi eld in 3D is given by the  Biot-Savart law:

→
 v(

→
 x) �   	 _

4�
  ∫        

→
 ds �

→

 R_
R3   (9.5)

where the integral is along the length of the (possibly 
curved) vortex.

It can be checked that, regardless of the position  
→

 x0,
each of these potentials satisfi es the Laplace equa-
tion, except at  

→
 x �

→
 x0, the location of the singularity 

itself, where the velocity is infi nite and its direction 
 indeterminate.

As a fi rst illustration of the use of singularities in con-
structing potential fl ows, let us consider a uniform fl ow 
which meets a single source of strength Q. The veloc-
ity fi eld is the superposition of the uniform fl ow and the 
source-induced fl ow:

→
 v �

→

 U 
   Q_
4�R3   � ( 

→
 x  �  

→
 x0) (9.6)

and because both satisfy the Laplace equation, that is 
also the case for the composed fi eld which is, there-
fore, an incompressible potential fl ow. Fig. 9.3 shows 
the streamline pattern found from equation (9.6). The 
incoming fl ow from the right is retarded and defl ected 
on approaching the source point. There is a stagnation 
point on the x-axis (at a distance  �

_
Q/(4�U)   upstream 

of the source) where the velocity vanishes as the two 

Figure 9.3 Sketch of the fl ow generated by a single point source in a uniform fl ow.
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 contributions from uniform fl ow and source fl ow  cancel. 
It can be observed that the streamlines coming from the 
stagnation point form a stream surface that separates 
the fl ow originating from the source and the fl ow com-
ing from infi nity.

If we superimpose more source fl ows, we can con-
struct other fl ow fi elds. For example, if we add a sink 
�Q at a point on the x-axis downstream of the source, 
the fl uid emerging from the source is absorbed by the 
sink, and the stream surface coming from the forward 
stagnation point closes again in a rear stagnation point, 
making the streamline pattern fore-and-aft symmetric. 
(In the limiting case, a dipole in a uniform fl ow gener-
ates a spherical stream surface.)

There is now a single closed stream surface in the fl ow. 
The fl ow originating from upstream never crosses that sur-
face, just as it would never cross a solid body, and actually 
the potential fl ow fi eld outside the stream surface is iden-
tical to that around a body with the shape of that stream 
surface. (On the other hand, the fl ow inside the stream sur-
face is meaningless in the context of fl ow around a body.) 
We can thus determine the inviscid fl ow around such a 
body from a sum of simple source potentials.

A variety of axisymmetric bodies can thus be “gener-
ated” using an arrangement of sources and sinks on the 
axis. Other 3D bodies can be generated using spatial ar-
rangements of singularities. However, usually we want 
to compute the fl ow around a given body, rather than de-
termining the body corresponding with a given source 
distribution. It then appears that a small  number of point 
sources cannot always generate the desired shape. A 
generalization is necessary to make it work in practice.

9.5.3 Panel Methods. This generalization is a 
source distribution (or similarly, a dipole or vortex dis-
tribution). The fl ow now does not emerge from a single 
point, but from a surface—for which usually the surface 
of the body itself is chosen. This surface has a source 

density � (fl ow rate per unit of surface area) which 
may vary from point to point. The potential and velocity 
fi elds induced by a source distribution on a surface S in 
a uniform infl ow are a generalization of those induced 
by a point source
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 ∫      ∫ 
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 x  �  
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 � )dS (9.7)

in which R� � 
→

 x  �
→

 �  � . Similarly, dipole and vortex distri-
butions can be used, but these will not be specifi cally 
addressed here.

For using these expressions in a numerical solu-
tion method, they are discretized. Conventionally, the 
 surface on which the source distribution is located is 
subdivided in source panels, usually triangular or quad-
rilateral, which together approximate the surface S.
Each of them carries a source density with a certain 
distribution. The simplest (and most popular) panels 

are quadrilaterals having a constant source density. 
Like a point source, each panel induces a potential and 
velocity fi eld in the entire space. These simple quadri-
lateral source panels were used in the method of Hess 
and Smith (1962), probably the fi rst practical method to 
compute inviscid fl ow over an arbitrary body.

Spreading out a point source over a panel has an impor-
tant advantage: whereas the velocity near a point source 
tends to infi nity, near a source distribution it tends to a 
constant velocity �/2, normal to both sides of the surface; 
so there is a jump in the normal velocity of magnitude �.
Whereas point sources should not be put at the bound-
ary of a fl ow domain, source distributions can. On the 
other hand, at larger distances the induced velocity fi eld 
of a source panel approaches that of a point source with 
equal total strength � � A (i.e., radially outward from the 
panel with a velocity inversely proportional to the square 
of the distance). The potential fi eld induced by a source 
panel located anywhere in the domain satisfi es the La-
place equation everywhere except at the panel itself; the 
same therefore goes for the potential fi eld induced by any 
arbitrary combination of source panels.

Suppose we want to compute the potential fl ow 
around a given closed body in an infi nite fl uid domain, 
in an infl ow with velocity U. The following steps (illus-
trated in Fig. 9.4) are then taken.

First we subdivide the surface of the body in N

source panels. The geometric properties of the panels 
are thereby fi xed. Each panel j is here supposed to have 
a uniform source density �j. The induced potential and 
velocity can be found from equation (9.7), where S now 
is the entire paneled area. This then takes the form
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�j � Vj ( 
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therefore a summation of the uniform infl ow and contri-
butions from all panels; each consisting of the product 
of the actual source density of the panel and the induced 
velocity of the panel if it would have a unit source den-
sity. These panel inductions Vj depend only on the panel 
geometry and the position of the point  

→
 x relative to the 

panel center.
For fl at panels with constant source density, and sev-

eral more complicated ones, analytical expressions are 
known for the induced potential and velocity fi eld in 
terms of basic geometric properties of the panel.

The panel source densities �j are then the only un-
knowns in the problem. These must be selected so as to 
satisfy the boundary conditions. For fl ow around a body 
we require again that a closed stream surface coincides 
with the body surface; so in all points of the body sur-
face, the velocity component normal to the body must 
be zero

→
 v �  

→
 n �   

��
 _

�n
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In a numerical method this condition can only be im-
posed in a somewhat approximate form. A usual way 
is to impose it in a discrete set of collocation points,
rather than all over the surface. On each panel we 
choose one particular collocation point (usually the 
panel center). We demand that the normal component 
of the velocity vanishes, which from equation (9.8) 
yields the expression

� 
j�1

N

�j �  
→

 ni� 
→

 Vj ( 
→

 xi) � � 
→

 U �  
→

 ni (9.9)

This equation, written out for all N collocation points, 
has the form

� 
j�1

N

    Aij ��j � RHS i � 1,N (9.10)

in which the matrix elements Aij are the “infl uence coef-
fi cients,” in this case the contribution to the normal ve-
locity in collocation point i, of the velocity fi eld induced 
by a unit source density on panel j. These coeffi cients 
can be easily derived from the analytical expressions 
for Vj mentioned previously.

The boundary conditions imposed at all N col-
location points thus form a closed set of N algebraic 
equations with N unknowns. Because each condition 
 contains all N source strengths, the matrix A is full. 
Solving this system of equations yields the source 
strengths �j. With these, we can compute the veloc-
ity at every desired point in the fl ow by evaluating the 
expression (9.7), and we have got the potential fl ow 
around the given body. Using Bernoulli’s equation, we 
can fi nd the pressure.

The explanation given here applies to the method of 
Hess and Smith (1962), which is widely used and fairly 
accurate. However, there are other ways of casting the 
boundary value problem for the Laplace equation into 
the form of a boundary integral equation (Hess, 1990; 
Hunt, 1980). The principle of panel methods will now be 
derived more formally, in order to provide a more gen-
eral framework. This piece of theory could be skipped 
by those just interested in the overall ideas.

9.5.4 General Derivation of Panel Methods. Sup-
pose we have an internal fl uid domain �I within a closed 
boundary S (Fig. 9.5). Green’s second identity then 
states that, for two arbitrary, C 2�continuous functions 
�I  and G

∫      ∫      ∫ 
�I

    [�I�
2G � G�2�I ] d�

 � ∫      ∫ 
S

     [ ��� _
�n

� G � �I �   �G_
�n ] dS (9.11)

in which 	2 is the Laplace operator and n is a direction 
normal to S into the fl uid domain. For G we take the 
Green’s function

G ( →

 � ;
→

 x ) � �   1_
4� � 

→

 x� 
→

 �  � 
  

in which  
→

 x is a fi xed point and  
→

 �  is the variable point in 
the integration. For �I we take a potential in the inter-
nal domain that satisfi es the Laplace equation. So both 
	2�I � 0 and 	2G � 0, with the exception of the singular
point of G at  

→

 x �
→

 � . We except this point from the  domain 

Figure 9.4 A panel method for fl ow around a closed body.
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�I by adding a sphere of vanishing radius around it 
and carrying out the surface integration also over the 
sphere. This produces an expression for the potential as 
an integral over the domain boundary only

T � �I(
→

 x)�  ∫     ∫ 
S

     [ ��I(
→

 �  )_
�n

� G (
→

 � ;
→

 x  )� �I(
→

 � ) �   
�G(

→

 � ;
→

 x)_
�n

] dS (9.12)

and a corresponding equation for 	�I. The integral is to 
be taken in a principal value sense. The left-hand side 
originates from the integration over the small sphere, 
and T is the fraction of the sphere that is inside the do-
main �I: for points  

→
 x in the interior of the domain T � 1, 

for points on a smooth part of the boundary T � 1/2, and 
for points outside the domain T � 0.

However, in the applications considered in this sec-
tion we have to deal with a fl uid domain �E external to 
a (supposedly nonlifting) body. We fi rst add a spherical 
outer boundary surrounding the body at an “infi nite” 
distance (see Fig. 9.5), and apply the same expressions 
to the “internal” domain enclosed between the body and 
the far boundary. This results in an expression identical 
to equation (9.12) but with the integral running over the 
body and over the far boundary. In the limit of infi nite 
radius of the far boundary, the latter contributes just 
the undisturbed potential � � U � x, which would pre-
vail in the absence of the body. The resulting boundary 
integral expression for the potential �E in the external 
domain is then

T � �E(
→

 x) � � 


∫      ∫ 
S

 [ ��E(
→

 � )_
�n

  � G(
→

 � ;
→

 x) � �E (
→

 � ) �   
�G(

→

 � ;
→

 x)_
�n ]dS  (9.13)

This expression in itself is a useful basis for a Bound-
ary Integral Method. For points on a smooth part of the 
boundary (T � 1/2), it expresses the potential on the 
boundary as an integral over the boundary; the inte-
grand containing the potential and its normal derivative. 
For example, in case Neumann boundary conditions are 
given prescribing ��/�n all over the boundary, the fi rst 
term in the integrand is known and we have obtained 
an integral equation involving only the unknown poten-
tial on the boundary. After discretization this is easily 
transformed to a set of algebraic equations for the po-
tential in collocation points on the boundary. This class 
of methods, in which the original integral equation is 
used without any assumption on the potential fi eld in-
side the body, is often called Green’s identity methods.

The source-only method described in simple terms 
in Section 9.5.3 is derived more formally by adding 
the expressions (9.12) and (9.13), taking into account 
the change of sign due to the opposite orientation of the 
inward normals, and the different defi nition of T. This 
yields

T � �E 
 (1 � T)�I � � 


  ∫      ∫ 
S

    [ ( ��E_
�n

�   
��I_
�n ) � G (

→

 � ;
→

 x  ) � (�E��1)�   �G_
�n ]dS (9.14)

and a similar expression for the velocity fi eld. Here 
n now is the outward normal direction on the body 
surface, and T is the coeffi cient relevant for the outer 
domain.

This expression in itself cannot be used for determin-
ing the external potential yet. However, for a surface 
source distribution as used in the previous section, we 
have already mentioned the result that there is a discon-
tinuity in the normal velocity across the surface

��E_
�n

�   
��I_
�n

� �

In addition, it can be derived that the potential is con-
tinuous across a surface source distribution: �E � �I � 0. 
Substituting this in equation (9.14) and in a corresponding 
equation for the velocity fi eld yields

�E(
→

 x) � � 
 ∫ 
S

     ∫     �(
→

 � )G(
→

 � ;  
→

 x)dS (9.15)

��E(
→

 x)���(
→

 x)
 (1 � T)�(
→

 x)
→

 n
  ∫ 
S

     ∫    �(
→

 � ) �→
 x
 G(

→

 � ;  
→

 x)dS (9.16)

which corresponds with equation (9.7). This is a general 
expression valid for points inside the outer domain �E

(T � 1) or on the surface S (T � 1/2).
It is to be noted that the use of a source-only distri-

bution thus implies an assumption on the internal po-
tential �I inside the body. In this case, that potential is 
fi xed by the Dirichlet condition �I � �E over the entire 
boundary. Although �I is physically meaningless, it is 
important that the implied problem that defi nes it is 
well-posed; some less sound formulations lead to a non-
existent or nonunique solution for �I.

Similarly, for a distribution of normal dipoles, the 
normal derivative of the potential is continuous across 

boundary
at “Infinity”

S

ΩE

ΩI

�E

�I

U∞

nE

nI

Figure 9.5 Defi nition sketch for derivation of panel method.
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the surface but there is a jump in the potential itself, 
equal to the local dipole density:

��E_
�n

�   
��I_
�n

� 0 �E � �I � ��

and on substitution now the other part of the integrand 
vanishes. The internal potential is fi xed by an internal 
Neumann condition now.

Moreover, various mixes of source and dipole dis-
tributions can be used, provided that care is taken for 
the well-posedness of the implied problem for �I. The 
general expression valid for any mixed distribution of 
sources � and normal dipoles � is

�E(
→

 x) � �(
→

 x) � (1�T)�(
→

 x) 


∫ 
S

      ∫      [�(
→

 � )G(
→

 � ;  
→

 x) 
 �(
→

 � )   
�G(

→

 � ;  
→

 x)_
�n

]dS (9.17)

and a somewhat more intricate equation for the velocity 
fi eld, for which we refer to Hunt (1980).

Whatever the precise singularity type used, an in-
tegral expression is thus obtained for the potential or 
velocity on the boundaries of the domain. The bound-
ary conditions, which prescribe either � or ��/�n or 
any combination of both, are then substituted. The 
boundaries are discretized into panels on which cer-
tain modes of the unknowns are assumed. Writing out 
the discretized integral equation in collocation points 
leads to a set of algebraic equations for the unknowns: 
the potential, its normal derivative, or the source or 
dipole strength on the panels, depending on the for-
mulation. After solution, all other quantities can be 
computed.

The framework presented here accommodates a va-
riety of methods. For familiar types of boundary condi-
tions, the properties of these methods are well known 
and discussed at length elsewhere (e.g., Hess, 1990; 
Hunt, 1980). The particular choice of a Green’s identity 
method or any source and/or dipole distribution has 
various consequences, such as:

• Numerical accuracy: boundary conditions are only 
imposed at discrete points, and will in general not be 
precisely satisfi ed between those points. This “leakage” 
generally is minimized by choosing a singularity distri-
bution that is as weak and smooth as possible (i.e., has 
limited magnitude and small gradients). Different types 
of problems may ask for different choices.
• Existence, uniqueness, well-posedness: some singu-
larity distribution types, combined with certain bound-
ary conditions, may lead to nonexistent or nonunique 
 solutions for the singularity strength, which is to be avoid-
ed (e.g., by reformulation of the boundary  conditions).
• Type of integral equation: this depends on the type 
of singularity and the boundary conditions. Some of the 
resulting integral equations, after discretization, lead to 
a system of equations that lends itself well to iterative 
solution, others do not.

• Computational effort: the number of panel-to-collocation-
point inductions (a few times N2) to be computed differs 
between methods. This affects computation time and 
storage.
• Computation of physical quantities: often the velocity 
distribution is needed. In methods in which the poten-
tial is the unknown that is solved for, the velocity may 
need to be found by fi nite differencing over the body 
surface, which can be complicated.

In addition, methods differ in the order of the dis-
cretization. For example, the singularity strengths may 
be assumed to be constant over each panel, or have 
a linear or higher-order distribution over the panels. 
The representation of the geometry must be of a cor-
responding level: fl at, parabolic, or more general panel 
shapes. Higher-order methods are more accurate for a 
given number of panels or require fewer panels to reach 
a certain accuracy, but the expressions for the induced 
velocities are more complicated, so the advantage in 
computation time often is small.

9.5.5 Application to a Ship: Double-Body Flow.

The general methods described here addressed the po-
tential fl ow around closed nonlifting bodies of arbitrary 
form in a fl uid domain of infi nite extent. This may be ap-
propriate for a submarine far beneath the water surface, 
but not for a surface ship, for which the fl ow domain is 
also bounded by the water surface where wave making 
occurs. This requires extended methods described in 
the next section.

However, the basic panel methods described may 
still be a useful approximation for surface ships in 
case the wave making is limited. Section 5 derived 
that the perturbation caused by a surface wave decays 
with depth under the water surface, and that the short 
waves occurring at low Froude numbers are confi ned 
to a region close to the surface. Below that region, 
the velocity fi eld is essentially equal to that without 
waves. Therefore, in the limit for low Froude numbers 
the fl ow fi eld with waves can be supposed to approach 
that with a fl at water surface, except in a region of 
thickness d/L�O(Fn2) along that surface. Therefore, 
knowledge of the potential fl ow around the hull under 
a fl at, undisturbed water surface is often practically 
useful.

The potential fl ow around the ship hull with a fl at 
water surface could be computed using an additional 
panel distribution on the water surface and imposing 
the boundary condition ��/�n � 0 there. However, it is 
more accurate and effi cient to represent the water sur-
face by a symmetry plane in the calculation. As Fig. 9.6 
illustrates, the fl ow fi eld of interest is identical to the 
lower half of the fl ow around a double model of the un-
derwater body, symmetrical with respect to the undis-
turbed waterplane. The double body is again a closed 
body in an infi nite fl uid, and the double-body fl ow can 
thus be computed using any of the Boundary Integral 
Methods described.
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Results of such a double-body potential fl ow computa-
tion already can be useful in assessing properties of the 
hull form, as the discussion in Section 5.2.3 and Fig. 5.5 
 illustrated. Specifi cally, the magnitude of streamline cur-
vature along the hull, fl ow directions, and pressure max-
ima and minima can be observed. On the other hand, in 
the vicinity of the water surface the accuracy will be lim-
ited because of the neglect of the wave pattern. Moreover, 
mirroring of the underwater part of the hull introduces 
a sharp knuckle at the waterline for fl ared sections, or a 
narrow area between a bulbous bow and its mirror image, 
which locally further invalidate the double-body fl ow.

For all nonlifting potential fl ows around closed 
bodies in an infi nite fl uid, including double body fl ow, 
d’Alembert’s Paradox applies: no resistance acts on the 
hull. To compute the wave resistance, wave pattern, 
and the fl ow around the hull including the wave-making 
effect, a further step is needed.

9.6 Prediction of Inviscid Flow with Free Surface
9.6.1 The Free-Surface Potential Flow Problem.

We have seen how a panel method can be used to com-
pute the fl ow around a body immersed in a fl ow without 
free surface, or the fl ow around a ship hull if the effect 
of the free surface is disregarded. In such a double-body 
fl ow, the pressure at the still water surface in general is 
not constant and not equal to the atmospheric pressure, 
so this cannot be a valid solution of the true problem 
with free surface. The pressure imbalance will cause an 
adjustment of the fl ow near the water surface, leading 
to surface waves radiating out and trailing downstream.

As in Section 5.4, to compute the fl ow with wave mak-
ing we make the assumptions that the fl ow and wave 
pattern are steady in the coordinate system fi xed to 
the hull (shown in Fig. 2.1); that viscous effects can be 
disregarded and a potential fl ow model used; and that 
wave breaking and spray will not be modeled. In addi-
tion, surface tension is not modeled, being of little im-
portance for the larger-scale fl ow behavior.

Another assumption is that the wave surface can be 
described as a single-valued function of the horizontal 
coordinates, z � �(x, y); this excludes a description of 
overturning waves.

The problem again is described by the Laplace equa-
tion for the velocity potential �, but some of the bound-
ary conditions are substantially more complicated than 
in the preceding section:

Body Boundary Condition As in Section 9.5, this simply 
states that the fl ow passes along the hull surface:

��/�n � 0

Dynamic Free-Surface Condition Because we dis-
regard viscous stresses, surface tension, and the dy-
namics of the air fl ow above the water surface, the 
pressure in the water at the surface must be constant 
and equal to the atmospheric pressure pa. The Ber-
noulli equation then yields

pa 
 �gz 
   1_
2

� (�� � ��) � C at z � � 

We evaluate the constant by considering the situation 
far upstream, where z � 0 and 	� �

→

 U at the still wa-
ter surface. We can then derive an expression for the 
wave elevation

� �   1_
2g

( U 
2 � �� � �� )  (9.18)

The difference with the similar expression derived in 
Section 5.3.1 comes from the fact that now we con-
sider a steady fl ow in a coordinate system moving 
with the ship, rather than a time-dependent fl ow in 
an earth-fi xed system.
It is useful to express this in nondimensional quanti-
ties, obtained by dividing lengths by the ship length L
and velocities by the ship speed U, yielding

_
� �   1_

2
   Fn2(1 � �

_
� � �

_
� ) at  

_
z �

_
�  (9.19)

Kinematic Free-Surface Condition The fl ow goes 
along the wave surface. As derived in Section 2, the 
general form is

w �   
D�

 _
Dt

If the time dependence is omitted and a velocity po-
tential is substituted, this becomes equal to the ex-
pression derived in Section 5.3.1

�x   
��

 _
�x


 �y   
��

 _
�y

� �z � 0 at z � � (9.20)

in which the subscripts indicate partial derivatives: 
�x � ��/�x. The nondimensional form is an identical 
expression in  

_
� ,

_
� , etc.

Figure 9.6 Double-body fl ow, representing the fl ow with a fl at water surface.
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Bottom Boundary Condition In most cases, the 
depth of the water is assumed infi nite, and the asso-
ciated far-fi eld condition is

� → Ux or, in nondimensional form, _
� →

_
x for z → � (9.21)

Instead, for shallow water with depth h, a boundary 
condition is to be imposed on the bottom

�z � 0 at z � �h   (9.22)

Radiation Condition As to the behavior at infi nity, 
simply requiring decay of the disturbance with dis-
tance from the body, such as in Section 2.4.3, is often 
not appropriate for wave-making problems. For in-
stance, for 2D cases the trailing wave system persists 
downstream with constant amplitude, and the fl ow 
never returns to an unperturbed state. A (decaying) 
wave-like behavior must be admitted downstream, 
but special formulations may be needed to exclude 
any waves upstream of the bow, where a nonwavy 
disturbance decaying as

� � x 
 O ( 1_
�
_
x2 
 y2

   )  for x → � (9.23)

is present. The precise form of this “radiation condi-
tion” depends on the particular method to solve the 
problem.

Transom Conditions Besides these general condi-
tions applying to all surface-piercing bodies, special 
conditions may be required to model the fl ow behav-
ior at the edge of a transom stern (see the part on 
 “Transom Sterns” in Section 9.6.5).

Trim and Sinkage Equilibrium Usually, the case of 
interest is that in which the ship changes attitude 
freely under the action of the hydrodynamic pres-
sure distribution. This dynamic sinkage and trim are 
found from a balance between the hydrodynamic and 
hydrostatic pressure forces on the hull and the ship’s 
weight distribution.

This completes the statement of the steady wave re-
sistance problem. From here on, the overbars will be 
omitted and nondimensional quantities will be used.

An important alternative form of the free-surface 
boundary conditions is obtained by using the dynamic 
free-surface condition (9.19) to eliminate the wave el-
evation � from the kinematic boundary condition (9.20):

   1_
2

   Fn2 (�x   � _
�x


 �y   � _
�y


 �z   � _
�z ) (�� � ��) 
 �z � 0

 at z � � (9.24)

This combined free-surface boundary condition

can replace either the kinematic or the dynamic condi-
tion (but not both at the same time). Although it defi nes 
exactly the same problem, it has different properties in 
numerical solution methods.

In the previous section, the problem of potential fl ow 
around a body was solved by covering the boundaries 

of the fl ow domain with source panels, imposing the 
boundary condition in the panel centers, and solving 
the resulting system of algebraic equations. A similar 
approach will be applied to the free-surface potential 
fl ow problem defi ned now, but we shall meet additional 
diffi culties. In the fi rst place the free-surface conditions 
are nonlinear, as they contain squares and cross prod-
ucts of unknowns. Therefore, if the term 	� � 	� in the 
dynamic free-surface condition is expressed in the ve-
locities induced by N panels, this leads to an expression 
containing   1_

2
N�(N 
 1) products �m � �n, not to a form 

(9.10). Secondly, boundary conditions are to be im-
posed on the free surface, the shape of which is still 
unknown. Similarly, the free trim and sinkage of the 
hull make the location of the collocation points on 
the hull unknown. Therefore, we have to solve a “non-
linear free-surface problem,” where the nonlinearity 
comes from the boundary conditions, not from the fi eld 
equation (the Laplace equation) which is still linear.

Generally, there are two possible approaches: either 
the problem is simplifi ed by linearization and the solu-
tion of the linearized problem is used, or the fully non-
linear problem is solved by an iterative procedure. Both 
approaches will be discussed.

9.6.2 Linearization of the Free-Surface Potential-

Flow Problem. Until about 1990, it was not practi-
cally possible to solve the full nonlinear problem, and 
the only practical option was to solve an approximate, 
linearized problem. Today, linearized methods are dis-
appearing, having been superseded by solution of the 
nonlinear problem, but they will be described here for 
completeness, historical interest, and understanding.

The principle of linearization is to replace an un-
known quantity by the sum of a known estimate and 
an unknown perturbation. If the estimate is good, the 
perturbation is small, and any quadratic or higher-order 
terms in the perturbation can be neglected, such that 
only linear terms are retained.

In our problem, linearization is used to solve both 
the problem of the nonlinearity of the free-surface 
boundary conditions and the problem of the unknown 
location where those conditions are to be imposed. We 
introduce estimates for the potential fi eld and the wave 
elevation

�� � �� 
 ��� and � � H 
 �� 

in which the “base fl ow” 	�(x, y, H) and the approxi-
mate wave surface H(x, y) must be known.

The kinematic and dynamic boundary conditions, 
linearized in these perturbations, then read

�x�x 
 �y�y 
 ��x Hx 
 ��yHy � �z � ��z � 0 (9.25)

(with neglected terms ��x��x 
 ��y��y);

� �   1_
2
Fn2(1 � �x

2 � �y
2 � �z

2   

� 2�x�x� � 2�y�y� � 2�z�z�) (9.26)
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(with neglected terms � 1_
2

Fn2 [(�x�)2 
 (�y�)2 
 (�z�)2 ] ). 
Squares and cross products in the perturbations have 
here been dropped, and the resulting conditions are 
linear in the unknown perturbation ��. However, they 
still are to be satisfi ed on the unknown free surface 
z � �. To allow a solution, they must be transfered 
to the known estimated surface z � H, which can be 
done by a Taylor expansion from z � H. For exam-
ple, for the velocity at the free surface this would be

��(z��(x,y)) � ��(z�H(x,y)) 
 ���(z�H(x,y)) 
 ���   ��� _
�z

where again nonlinear terms have been dropped.
In several methods, such additional “transfer terms” 

either disappear, being of higher order, or are disre-
garded. If we disregard them here and simply impose 
the linearized free-surface boundary conditions on the 
known surface z � H, we fi nd for the combined free-
surface boundary condition

�  1_
2
   Fn2 ( �x   � _

�x

 �y   � _

�y

 �z   � _

�z )   
 [ �x

2 
 �y
2 
 �z

2 
 2�x��x 
 2�y��y 
 2�z��z]  (9.27)

 
 ��xHx 
 ��yHy � �z � ��z � 0

(Note that, in contrast with the original kinematic 
condition, z-derivatives are needed here as well because 
the term in square brackets is a function of three coordi-
nates, whereas � is a function of x and y only.)

The next steps differ depending on the type of linear-
ization used. We shall consider three options:

Linearization Relative to a Uniform Flow  giving rise 
to the Kelvin free-surface boundary conditions, meth-
ods based on the use of Kelvin or Havelock sources, 
Neumann-Kelvin theory, and the further simplifi ca-
tions to thin ship, fl at ship, and slender-body theories;

Linearization Relative to Double-Body Flow, lead-
ing to slow-ship linearized methods, among which is 
Dawson’s method;

Linearization Relative to the Result of a Previous 

Iteration, which is the usual solution method for 
the nonlinear problem.

9.6.3 Uniform-Flow Linearization. The simplest 
kind of linearization is that with respect to the undis-
turbed, uniform fl ow. This supposes that at the free sur-
face, the entire disturbance caused by the presence of 
the ship is small. Therefore,

� � x H � 0 �(x, y, z) � x 
 ��(x, y, z) (9.28)

where the perturbation potential is supposed to be 
�� � �(�), ���1. Substituting this into the dynamic free-
surface condition (9.26) and in the combined condition 
(9.27) results in

� � �Fn2��x (9.29)

Fn2��xx 
 ��z � 0 (9.30)

or an identical condition for �. This is the well-known 
Kelvin free-surface condition, which long has been the 
basis for all theoretical considerations of wave making. 
It is consistent to impose it at the undisturbed free sur-
face z � 0 since all transfer terms are of higher order. 
A very similar time-dependent form has been derived in 
Section 5.3.1.

The original nonlinear free-surface problem has now 
been reduced to a linear problem in a fi xed domain, 
bounded by the ship hull and the undisturbed water 
 surface. Therefore, simple source panel methods can 
be applied again. To enforce the free-surface boundary 
condition, panels and collocation points on the undis-
turbed water surface are then needed, in addition to 
those on the hull surface.

It is actually quite possible to solve this problem in 
that way. However, the simplicity of the Kelvin condition 
(specifi cally, the fact that it has constant coeffi cients) 
admits a particular solution method which has played 
a principal role in early ship wave-making research. 
An elementary potential fi eld can be constructed that 
not only satisfi es the Laplace equation in the fl ow do-
main, but also the Kelvin condition at the undisturbed 
free surface and the radiation condition, regardless of 
the location of the singular point  

→
 x �

→
 x0 (provided that 

z0 � 0). The potential fi elds induced by a distribution 
of such Kelvin sources (or Havelock sources) then only 
need to be superimposed in such a way that the hull 
boundary condition is satisfi ed.

The potential fi eld of a Kelvin source with unit 
strength located at  

→
 x � (x0, y0, z0) is derived in, e.g., We-

hausen (1973) and can be written as

�(x, y, z) � �   1_
4�R


   1_
4�R1

   


   K0_
�2    ∫ 

0

� _
2   d� sec2 � ∫ 

0



dk   e
k(z
z0)__  

k � K0 sec2 �
 �

 cos [k(x�x0) cos �] � cos[k(y�y0) sin �] 


   K0_
�    ∫ 

0

� _
2   d� sec2 � e

K0(z
z0) sec  2 � �

 sin [K0(x�x0) sec �] cos [K0 (z�z0) sin � sec 2 �]

 (9.31)

in which K0 � g/U
     2 , R � �
___

   (x�x0)2 
 (y�y0)2 
 (z�z0)2   ,
and R1 � �

___
   (x�x0)2 
 (y�y0)2 
 (z
z0)2   .

Using this Kelvin source potential, or its generalization 
to a Kelvin source distribution, the linearized free- surface 
potential fl ow problem can be solved in a way quite simi-
lar to the approach described before: the underwater 
part of the ship hull is covered with Kelvin source panels; 
the velocities induced by all panels at all hull collocation 
points are computed; and the hull boundary  condition at 
the collocation points is expressed in these velocities. 
This yields an equation of the form (9.10), which is solved 
to fi nd the source strengths. The velocity fi eld along the 
hull and the wave pattern can then be found.

These methods are generally denoted Neumann-

Kelvin methods, as they solve the Neumann-Kelvin
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problem: the potential-fl ow problem defi ned by a Neu-
mann boundary condition on the hull (i.e., given ��/�n)
and the Kelvin condition on the water surface (Brard, 
1972). Quite reasonable predictions of the wave resis-
tance curves for some cases were shown in, e.g., Baar 
and Price (1988). Although the approach is appar-
ently straightforward, the automatic satisfaction of 
the Kelvin free- surface boundary condition comes at a 
price. Evaluating the Kelvin source potential at a large 
 number of points, as is needed in a panel method, is a 
computationally demanding operation, although sev-
eral  approximations for this expression have been pub-
lished (Noblesse, 1977, 1978). In the past, however, the 
possibility to satisfy the free-surface conditions with-
out necessarily using thousands of sources on the water 
surface and solving large systems of equations has been 
a signifi cant advantage.

Thin-Ship Theory Thin-ship theory was fi rst pro-
posed by J. H. Michell in 1898 already (Michell, 1898; 
Tuck, 1989). It is a further simplifi cation of the uniform-
fl ow linearization, valid for ships with a small beam/
length ratio. The idea is to linearize also the hull bound-
ary condition, and to impose it in the centerplane rather 
than at the hull surface.

Suppose we have a slender ship hull form defi ned 
by y/L � �F(x,z)/L � �(�). A vector normal to the hull 

surface is   ( �   �F_
�x

  1 �   �F_
�z )T

. As we still assume that �(x, y, z) �

x 
 ��(x, y, z), the hull boundary condition can be lin-
earized to

   
��

 _
�n

� ��F/�x 
 ��/�y 
 �(�2) � 0 

so
��/�y � �F/�x (9.32)

If the left-hand side is now expressed in the values 
at y � 0
 by a Taylor expansion, it appears that this 
adds just more terms of �(�2) or higher, and no change 
is needed. Consequently, ��/�y in the centerplane is ex-
plicitly given by equation (9.32); and it has a jump there 
from ��F/�x to 
�F/�x.

A Kelvin source distribution is now positioned in the 
centerplane within the hull. This is a plane surface, and 
at any point in the centerplane the normal velocity has a 
contribution from the local source panel only, not from 
any other panel. Therefore, the local source density is 
given explicitly in terms of the waterline slope at the 
corresponding location on the hull:

�(x, z) � 2   
�F(x, z)_

�x

The wave pattern can be evaluated directly from this 
source distribution. This linearization of the hull bound-
ary condition therefore not only reduces the number of 
panels needed, but also eliminates the need to solve a 
system of equations.

The wave resistance according to the thin-ship the-
ory can be expressed directly in the hull form, without 

any explicit calculation of a pressure distribution or 
wave pattern, by the so-called Michell integral, which 
can be written in various forms, among which

RW �   
4g2�_
�U

 2    ∫ 
0

� _
2    sec3 �[P2(�) 
 Q2(�)]d� (9.33)

in which

P �  ∫       ∫ 
S0

    �F(x,z)_
�x

e
K0z�sec2 �  cos (K0x sec �)dxdz

Q �  ∫       ∫ 
S0

     
�F(x,z)_

�x
e

K0z�sec2 �  sin (K0x sec �)dxdz

in which S0 is the ship’s centerplane area.
Thin-ship theory has taken a most prominent place in 

the research on ship waves. Although initially Michell’s 
work stayed unnoticed, it was taken up again in the 1930s 
by Havelock (1932, 1934) who has studied the wave pat-
terns found from this approximation, has analyzed many 
properties, and has applied it to several bodies. All this 
work, and that by other researchers, has contributed 
much to the understanding of the physics of ship waves.

On the other hand, the results found from thin-ship the-
ory for practical vessels are generally inaccurate. At some-
what lower Froude numbers in particular, the resistance 
curve thus found usually displays large humps and hollows 
because of an exaggeration of interference effects. This 
can be understood if we realize that strictly the validity 
of thin-ship theory is confi ned not only by the requirement 
B �� L but also by B �� �; the latter permitting the trans-
fer of the boundary condition to the centerplane. At lower 
Froude numbers this cannot be satisfi ed. In general, the 
thin-ship linearization has been found to be limited to very 
thin vessels only, or to multihull vessels which have nar-
row hulls in most cases. (This requires the use of Kelvin 
source distributions in multiple centerplanes, and permits 
inclusion of the wave interference effect. For incorporat-
ing induced resistance or dealing with asymmetric side-
hulls, Kelvin dipole distributions are needed in addition.)

While today other methods are used for most practi-
cal applications, thin-ship linearization still fi nds some 
application in the context of automatic optimization, in 
which the small computation time needed is of interest; 
and in computing far-fi eld wave patterns of high-speed 
craft, in which the analytical expressions have the ad-
vantage of having no numerical damping and admitting 
high resolution (Doctors & Day, 2000; Tuck, Scullen, & 
Lazauskas, 2002).

Various alternative simplifi cations of the hull form 
have been studied, such as slender-body theory and fl at-
ship theory. None of these has a suffi ciently large range 
of application to still fi nd frequent application. Subse-
quent research in the period from 1960 to 1975 focused 
on various ways to extend the linear thin-ship theory 
to second order. However, this met many diffi culties 
and questions. Alternative approaches were inspired by 
good results shown for a method proposed by  Guilloton 
(1964), who applied a coordinate transformation to the 



SHIP RESISTANCE AND FLOW 121

source  distribution in the centerplane of a thin-ship 
method. This coordinate transformation was based on 
the fi rst-order result and could be shown to lead to the 
satisfaction of second-order boundary conditions on hull 
and water surface. Alternative formulations of the coor-
dinate straining were then proposed (Dagan, 1975; No-
blesse, 1975; Noblesse & Dagan, 1976). However, further 
research on this topic seems to have been interrupted by 
the demonstrated success of slow-ship theories.

9.6.4 Slow-Ship Linearization. After extensive 
 research had been done on the thin-ship and Neumann-
Kelvin formulations, around 1974 several authors de-
rived an alternative linearization of the free-surface 
boundary conditions. Early research on this was done 
by Ogilvie (1968) and Dagan (1972). In the same period, 
important studies on the physics of ship waves and the 
adequacy of linearizations were done by Inui and Ka-
jitani (1977), who pointed out the importance of the 
curved fl ow fi eld around the hull on the propagation of 
ship waves and thereby on wave pattern and wave re-
sistance. One of the fi rst implementations of a slow-ship 
method was that of Baba and Takekuma (1975), and re-
sults for ships were shown in Baba and Hara (1977).

The idea behind this so-called slow-ship lineariza-

tion is that, in order to improve the validity of the wave 
resistance computations for fuller hull forms, we can-
not assume that the perturbation of a uniform fl ow is 
small. Whatever the signifi cance of wave making, the 
fl ow at least needs to go around the hull. A more refi ned 
linearization then is based on the assumption that the 
fl ow around the hull with waves is a small perturbation 
of the fl ow around the hull without waves. We refer to 
the statement made in Section 9.5.5: for Fn → 0, the fl ow 
fi eld approaches the double-body fl ow, except for short 
waves superimposed on it. Therefore, if we decompose 
the velocity fi eld as

�� � �� 
 ��� (9.34)

where 	� is the double-body fl ow velocity, for a suffi -
ciently low Froude number the perturbation should be 
small enough to admit linearization. An appropriate 
perturbation parameter for the linearization then is 
� � Fn2, and we assume that the perturbation velocity 
	�� � �(Fn2) �� 1.

For the wave elevation, the corresponding decompo-
sition follows from the linearized dynamic free-surface 
condition (9.26)

 �(x,y) �   1_
2
Fn2 (1 � �� � ��) �   1_

2
Fn2(2 �� � ���)

� �r(x,y) 
 ��
(9.35)

in which the nonlinear terms

�   1_
2
Fn2 (��� � ���) � �(Fn6)

have been neglected. �r is the “double-body wave height.” 
The linearized combined free-surface boundary condi-
tion is simply (9.27) with H � �r.

The fi nal step is the transfer of the boundary condi-
tion from the unknown wave surface to a known ap-
proximate surface, by means of a Taylor expansion. It 
would seem rational to choose the surface z � �r for 
this. However, evaluating the double-body fl ow veloci-
ties 	� at points above the still water surface may not 
be a good idea. Instead, most slow-ship linearized meth-
ods apply the linearized boundary condition on the still 
water surface z � 0. In principle, this simply requires 
transfer over a distance � in the same way. However, a 
diffi culty arises here. We expect that the perturbation 
will have a wave-like character, with a wave number ap-
proximately proportional to Fn�2. Each differentiation 
of the perturbation potential �� then reduces its order 
by a factor Fn2. Because � � �(Fn2), each term in the 
Taylor expansion is formally of the same order in Fn2

and the expansion cannot be consistently truncated.
Because of this problem, different assumptions on 

the order of the terms have been made by different 
authors, leading to a variety of slow-ship free-surface 
conditions, such as those of Baba and Takekuma (1975), 
Newman (1976), Eggers (1981), and Brandsma and Her-
mans (1985). However, by far the most common form 
of the slow-ship condition simply omitted the transfer 
terms altogether, which yields

Fn2(�x
2��xx 
 2�x�y��xy 
 �y

2��yy) �

 2��x�rx
  � 2 ��y�ry 
 ��z � �x�rx


 �y�ry

(9.36)

at z � 0. This was proposed by Dawson (1977), although 
in his method he used an even simpler form based on 
streamline coordinates, in which further approxima-
tions were hidden.

The popularity of this condition had more to do with 
the practical solution method proposed in the same pa-
per than with mathematical correctness. Nevertheless, 
in a comparative study of several slow-ship formula-
tions (Raven, 1996), Dawson’s formulation appeared to 
be a fairly reliable choice for most practical hull forms, 
whereas the more consistent formulation of Eggers 
(1981) could lead to problems for blunt hull forms.

Dawson’s Method The slow-ship linearization again 
reduces the original nonlinear free-surface problem 
to a linear problem in a fi xed domain, bounded by the 
ship hull and the undisturbed water surface. Unlike the 
Kelvin boundary condition, slow-ship conditions have 
spatially varying coeffi cients depending on the double-
body fl ow fi eld, and an elementary potential fi eld satis-
fying the free-surface condition cannot be constructed. 
Therefore, an alternative solution method had to be 
devised. We here describe essentially the method pro-
posed by Dawson (1977), which has been widely used 
for some time, mostly in the period from 1985 to 1995.

The method uses the principles of the source panel 
methods described in Section 9.5.3, and like those, 
uses the simple Rankine source potential fi eld (9.3), not 
the Kelvin source potential. Therefore, the elementary 
fl ow fi eld does not satisfy the free-surface boundary 
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 conditions or the radiation condition. The free-surface 
boundary conditions are explicitly enforced by a free-
surface source distribution on a part of the undisturbed 
water surface around the hull. As Dawson found, this 
free-surface panel domain could be relatively small, of 
the order of half a ship length to all sides, and he used 
only some hundreds of panels on each side of the free sur-
face. Of course, much fi ner panelings could be used later.

The fi rst step to be made is to compute the double-
body fl ow as described before, using a panel method. 
Then, a panel distribution is constructed on the still wa-
ter plane around the hull, usually by algebraic methods. 
Next, at the free-surface collocation points, usually the 
panel centers, the double-body fl ow velocity compo-
nents are evaluated, and thereby the coeffi cients in �x,
�y, �r, etc., that occur in the free-surface boundary con-
dition (9.36).

The next step is to express the �� terms in the free-
surface condition in the induction of all panels: both 
the panels on the water surface and those on the hull. 
It is noted that the boundary condition now not only 
contains unknown velocities, but also their deriva-
tives along the water surface, ��xx and ��yy. An original 
contribution from Dawson was to express these in the 
velocities at collocation points, using fi nite difference 
schemes. For example, if we have a row of collocation 
points ... i � 2, i � 1, i, i 
 1, ... in the x-direction, a term 
�xx can be approximated as

 (�xx)i � a0(�x)i 
 a1(�x)i�1 
 a2(�x)i�2 
 a3(�x)i�3

Each of the �x-terms is a sum of contributions from 
all panels. Collecting the contributions from each panel 
to all four terms, we obtain a form (�xx)i � 	j�1

N  Cij � �j.
The fi nal matrix entries (infl uence coeffi cients) are then 
composed from contributions from the various terms in 
the free-surface boundary condition. In this way, a sys-
tem of equations of the form

Aij 

→
 � � R

→

 H S (9.37)

is again obtained. The number of equations and un-
knowns is the sum of the number of hull and free- 
surface panels. Solving the system provides the source 
strengths on hull and water surface. The velocity fi eld 
is then easily obtained from equation (9.8), in which the 
summation is over all hull and free-surface panels. The 
wave pattern follows from evaluating the dynamic free-
surface condition, either in linearized form [equation 
(9.35)] or in the nonlinear form (9.19). The pressure is 
found from the Bernoulli equation, and the wave resis-
tance is found from integrating the longitudinal compo-
nent of the pressure forces acting on all hull panels.

An important detail is the consideration that formally, 
the solution of the problem is still nonunique because 
the radiation condition has not been imposed yet, and 
solutions with waves upstream of the bow could still be 
found. But Dawson found that it is possible to enforce 
this condition indirectly by using an upstream differ-
encing for the longitudinal derivatives of the velocities 

in the free-surface condition, together with the proper 
conditions at the upstream edge of the free-surface do-
main. This usually provides the right bias in the solution 
procedure to ensure satisfaction of the radiation con-
dition. A variety of upstream difference schemes have 
this property, but following Dawson four-point upwind 
schemes are mostly used.

An alternative to the use of difference schemes is to 
compute the velocity derivatives analytically as a sum 
of contributions from all panels. This removes numeri-
cal errors arising from the difference schemes, but re-
quires a different treatment of the radiation condition, 
proposed in Jensen (1987). It consists of adding an ad-
ditional row of collocation points at the upstream edge 
of the free-surface domain and an additional row of 
source panels downstream. Such a “staggered” free- 
surface panel arrangement is actually used successfully 
in some methods.

Dawson’s method contained several original ideas, 
while of course making use of earlier research by oth-
ers; such as the development of slow-ship linearizations, 
by Baba and Takekuma (1975) and Newman (1976), an 
earlier method using Rankine sources to model surface 
waves by Bai and Yeung (1974), and a similar but ear-
lier method for the wave resistance problem by Gadd 
(1976). However, the simplicity and promising results 
of Dawson’s paper attracted much interest and initiated 
a sort of breakthrough in wave pattern calculation ca-
pabilities. Whereas the great majority of earlier meth-
ods used Kelvin sources, since about 1980 most work 
on wave resistance prediction concerned this new class 
of “ Rankine-source methods.” The drawback of the 
much larger number of panels due to the necessity of a 
free-surface paneling is largely offset by the far simpler 
arithmetic operations and by the fl exibility in imposing 
different free-surface boundary conditions and dealing 
with various geometric confi gurations.

In its original form Dawson’s method contained sig-
nifi cant numerical errors, leading to, for example, in-
correct wave lengths. Moreover, for dense free-surface 
panelings, oscillations in the velocity fi eld occurred. 
These drawbacks could be removed by using higher-
order panels, improved numerical schemes, or explicit 
dispersion corrections. An important theoretical analy-
sis of the numerical properties of this class of methods 
was published by Sclavounos and Nakos (1988), based 
on earlier work by Piers (1983). This was later applied to 
select suitable difference schemes by Strobel and Cheng 
(1992), and by Raven (1996) for a nonlinear method. The 
research on these methods (Nakos, 1990; Nakos and 
Sclavounos, 1994; Raven, 1988) has given the method a 
stronger foundation and has provided alternatives and 
improvements.

In general, the wave pattern as predicted by these 
methods was far more realistic than that found from 
previous methods, in particular for fuller hull forms. 
But the “slow-ship” methods actually were found also to 
work well for faster, more slender ships: for  increasing 
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slenderness of the hull, the free-surface condition re-
duces to the normal Kelvin condition, which is not 
limited to low Froude numbers. Transverse wave com-
ponents, and the wave profi le along the hull, were in 
general well predicted. On the other hand, the bow wave 
crest is systematically too low (sometimes by 50%) for 
all linearized methods, and diverging wave components 
from the bow are also often far underestimated. Pre-
dicted wave amplitudes at a distance from the hull are 
often much too low. An explanation has been given in 
Raven (1997). The predicted stern waves are often too 
high and rather unrealistic, so slow-ship linearized 
methods were mainly used for optimizing the forebody.

Wave resistance predictions from Dawson’s method 
were usually fairly good for slender ships at relatively 
high Froude numbers, such as frigates and sailing 
yachts, but not for most merchant vessels. The fuller the 
hull form and the lower the Froude number, the more 
the predicted wave resistance was usually underesti-
mated; for cases such as tankers, the predicted wave 
resistance was often negative, a paradoxical result that 
could be explained by certain properties of the linear-
ization (Raven, 1996).

On the other hand, differences in wave pattern be-
tween hull form variations were usually qualitatively 
well predicted, making the method practically useful 
for design. Dawson’s method and its developments were 
used intensively in ship hull form design in the period 
until 1995 approximately; after which they were quickly 
replaced by nonlinear methods. With their shortcom-
ings, they have proven to be most useful tools for ship 
design, provided the predictions were considered with 
care (van den Berg, Raven, & Valkhof, 1990).

9.6.5 Solution Methods for the Nonlinear Wave 

Resistance Problem. While linearization on the one 
hand makes the solution much easier and has been a ne-
cessity in the past, it introduces certain errors that are 
responsible for the shortcomings mentioned in the pre-
vious section. There are many nonlinear contributions 
omitted in such methods, which for completeness and 
accuracy need to be taken into account:

• All nonlinear terms in the free-surface boundary 
conditions need to be included. Among others, these in-
clude effects of wave propagation over the curved and 
uneven fl ow fi eld around the hull, found to be essential 
for good prediction of diverging bow waves in particular 
(Raven, 1997).
• The boundary conditions need to be imposed on the 
actual wave surface, not on any approximate surface or 
the still waterplane; this is a requirement for an accu-
rate prediction of bow wave height and is also essential 
where the fl ow fi eld has large vertical variations, such 
as around a bulbous bow.
• The actual fl ow domain extends up to the wavy free 
surface, and a part of the hull form above the design 
waterline plays a role; but in linearized calculations, the 
domain is bounded by the undisturbed free surface and 

anything above that is not felt. This can be particularly 
important in case of, for example, a large bow fl are, a 
bulbous bow extending above the still water surface, or 
a fl at stern above the still water surface.
• Linearized methods usually disregarded the dynamic 
trim and sinkage, and also these can be important non-
linear contributions.

Therefore, solution of the complete, nonlinear prob-
lem without any linearization is preferred. As a matter 
of fact, when fully nonlinear methods became available, 
they produced a surprisingly large improvement of the 
predictions in many cases. Fig. 9.7 (Raven, 1996) illus-
trates an early result for a containership, showing the 
difference in bow wave height and diverging bow wave 
system. The nonlinear result here closely agreed with 
the experimental data.

To some extent, a nonlinear method can be set up 
as an extension of a linearized method. Linearization 
starts with selecting an estimated free-surface shape 
and free-surface velocity fi eld. The unknowns are de-
fi ned to be a perturbation of the estimates; and the 
better the estimates are, the smaller the errors intro-
duced by the linearization. A crude estimate such as 
double-body fl ow thus produces a fairly realistic slow-
ship solution. If we reuse this solution as an improved 
estimate for a next step, the next result should be even 
closer to reality. This process can be repeated, leading 
to an iterative solution procedure. If this procedure is 
properly formulated and it converges (i.e., the change 
between successive iterations decreases below a small 
tolerance), the terms neglected in the linearization van-
ish and the result is a solution of the exact nonlinear 
inviscid problem without any approximation, except for 
discretization and other numerical errors.

However, there is no guarantee that it will converge 
to a fi nal solution. Actually, in the fi rst years of the devel-
opments, converged solutions were hard to achieve for 
all cases having substantial nonlinear effects. Impor-
tant convergence diffi culties were the rule, and no dis-
tinct improvement compared to linearized predictions 
had been obtained until about 1990. Numerical  details 
appear to be crucial for the convergence, and success 
hinges on a correct and careful treatment of many mod-
eling and implementation issues.

One of the earliest relevant attempts was made by 
Gadd (1976), even preceding Dawson’s paper! The non-
linear free-surface boundary conditions were solved 
iteratively, but were imposed at the still waterplane. 
His method was very original, using distributions of 
 Rankine sources over the hull and the still water sur-
face and several numerical tricks to improve stability 
and accuracy. But the hardware then available forced to 
use excessively coarse discretizations, and the results 
could not be any better than those of later slow-ship lin-
earized methods.

Another very early nonlinear method, which was 
based on Dawson’s ideas, was proposed by Daube and 
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Dulieu in 1981. The exact combined free-surface con-
dition was cast in a form containing derivatives along 
free-surface streamlines, which were approximated 
by the streamlines of the double-body fl ow. Other non-
linear effects were included and, on convergence, the 
free-surface condition was imposed on the actual free 
surface. After publication of some fi rst results, the de-
velopment seems not to have been pursued. Some other 
methods using an incomplete nonlinear free-surface 
condition were published in those years, mostly impos-
ing that condition on the still water surface.

A complete nonlinear free-surface condition in a 3D 
fl ow was imposed by Xia (1986) in Gothenburg, who 
studied some prototype iterative methods, with some-
what limited success. This development was continued 
more successfully by Ni (1987), Kim (1989), and Janson 
(1997), resulting in the SHIPFLOW code.

Another development was initiated around 1986 at 
Institut für Schiffbau in Hamburg, Germany, by Jensen 
et al. (Jensen, 1988; Jensen, Bertram, & Söding, 1989; 
Jensen, Mi, & Söding, 1986). This method is based on 
the use of simple point sources at a distance above 
the wave surface, an approach that subsequently has 
widely been adopted, with modifi cations, in other so-
lution methods. Satisfaction of the radiation condition 
was accomplished by shifting the free-surface sources 
back over one source spacing relative to the collocation 
points. The resulting code was called SHALLO, its current 
successor v– SHALLO (Gatchell et al., 2000).

A development started in 1990 by Raven (1992, 1996) 
at MARIN led to an alternative method based on raised 
source panels and using difference schemes for the free-
surface condition. This was implemented in the code 
RAPID.

Figure 9.7 Wave pattern for a containership, predicted by Dawson’s method (code DAWSON) and a fully 
nonlinear method (RAPID). Wave heights magnifi ed 5 times.
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Besides these three codes, which are probably those 
with the widest distribution and most frequent use, 
some others have been developed subsequently, mostly 
along similar lines but often differing in numerics, solu-
tion methods, or modeling details. We mention here the 
codes SPLASH, ODYSSEE, VSAERO-FSWAVE (Hughes, 1997), and 
DASBOOT (Wyatt, 2000) as examples. Today, the princi-
pal methods deal with a wide variety of practical cases 
without convergence diffi culties and are routinely ap-
plied in ship design.

Basic Formulation The basics of the main methods 
are now rather similar, though they still differ in several 
numerical issues. In general, the iterative procedure 
consists of the following steps:

1. Choose an initial approximation of the free  surface, 
H(x, y), and an initial velocity distribution 	�(x, y, H)
on that surface.

2. Defi ne a panel distribution on the hull and (on or 
above) the free surface. Choose collocation points on 
the free surface H(x, y).

3. At the free-surface collocation points, impose 
the combined free-surface condition (9.27) or a simi-
lar form, linearized in perturbations of the estimated 
velocity distribution and wave elevation. Impose the 
hull boundary condition at the hull collocation points. 
Solve the resulting set of linear equations for the source 
strengths.

4. Compute the velocity and pressure fi eld. Calculate 
a new estimate of the wave elevation �(x, y) from the 
dynamic free-surface condition. Compute a new free-
surface velocity fi eld 	�(x, y, �).

5. Determine the resistance, vertical force, and trim-
ming moment by integrating pressure forces over the 
hull. Determine the imbalance of the ship’s weight dis-
tribution and the forces, and estimate the new dynamic 
trim and sinkage from hydrostatics.

6. Calculate the residual errors in the nonlinear free-
surface conditions (i.e., the normal velocity through the 
free surface and the deviation from atmospheric pres-
sure). If these or the trim and sinkage change exceed the 
specifi ed tolerances: Adjust the attitude of the hull for trim 
and sinkage changes; update the estimated wave surface 
H(x, y) and free-surface velocity fi eld 	�(x, y, H) using 
the latest result; and return to step 2. Otherwise, stop.

Implementation Some of the details are now de-
scribed.

In step 1, the initial approximation is usually a fl at 
water surface and a uniform fl ow, as there is no need to 
bother about something better. The fi nal solution does 
not depend on the initial approximation.

In step 2, the free-surface panel generation is usually 
algebraic, and is not Cartesian or fl ow-aligned. There-
fore, the derivatives in x- and y-direction occurring in 
the free-surface condition need to be transformed to de-
rivatives along the local panel coordinates.

As in Dawson’s method and its variations, in the non-
linear methods the radiation condition is also imposed 

“numerically,” using either of the same two basic ap-
proaches: one is the use of an upwind fi nite difference 
scheme applied to the dominant terms in the combined 
free-surface condition and the other is a forward shift 
of the collocation points relative to the panels over one 
panel length, a method introduced in Jensen, Mi and 
Söding (1986) and Jensen (1987). Both approaches are 
combined with suitable zero-perturbation conditions at 
the upstream edge of the free-surface domain.

The entire system again takes a form as equation 
(9.37). As opposed to the system obtained for just a 
body boundary condition, the matrix A is not diagonally 
dominant, as a result of the form and implementation of 
the free-surface boundary condition. Although the sys-
tem has long been considered unsuited to iterative solu-
tion, a fast iterative solution is possible by using modern 
preconditioners and iterative solvers.

Once the source strengths are known, the velocity 
fi eld again follows from equation (9.8), summation going 
over all hull and free-surface panels. This is typically 
evaluated only at the collocation points, but is possible 
just as well for any other point in the fl ow domain, pro-
vided such a point is not close to a panel edge or outside 
the area covered with free-surface panels. The pressure 
fi eld again is found from the Bernoulli equation.

In step 6, one could just choose H(x, y) and 	�(x, y, H)
identical to the last results from step 4 (� and 	�). How-
ever, to improve the stability and convergence of the it-
erative procedure, underrelaxation is often used; i.e., the 
new estimates of the wave surface and velocity fi eld are 
defi ned as weighted averages of the old estimates and 
the latest solutions.

The number of iterations needed (for rather strict con-
vergence criteria) depends strongly on the case and on the 
panel density chosen, but usually lies between 5 and 20.

Desingularization A noteworthy common feature 
of several of the principal methods is the use of “raised 
panels” or “desingularization” for the free surface. This 
means that the singularities are at a certain distance 
above the free surface. The collocation points (where the 
free-surface condition is satisfi ed) must still be on the 
free surface itself. This is theoretically permissible; 
the derivation of the source panel method is still just as 
valid, except that in equation (9.16), we must set T � 1 in 
evaluating the boundary conditions. There are, however, 
limits on the distance of the panels from the boundary.

Such raised-singularity methods have some advan-
tages in the present context:

• Because of the distance between the panels and the 
free surface, the velocity fi eld induced in the fl uid do-
main is smoother than with a usual method.
• Since the distance from the panels to the free surface 
is arbitrary within certain limits, it is no longer neces-
sary to adapt the source panels to the new free surface 
in each iteration. We only have to move the  free-surface 
collocation points up or down to the new approximation 
of the free surface.
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• As shown theoretically in Raven (1996) and found in 
practice, the raised-panel formulation admits a large re-
duction of numerical dispersion errors and elimination 
of point-to-point oscillations that were found in earlier 
methods such as Dawson’s. This is partly achieved by 
exploiting the liberty in choosing the position of the col-
location points relative to the panels.
• The iterative solution procedure for the nonlinear 
problems has been found to have better convergence 
and stability properties if raised-singularity methods 
are used.

Raised-singularity methods were fi rst used in ship 
wave pattern calculations by Xia (1986) and by Jensen 
et al. (1986). In the form of raised source panels, this has 
now been adopted in most methods for the nonlinear 
ship wave-making problem. In all methods, the singu-
larities are at around one typical panel dimension (or 
source spacing) above the wave surface. In most meth-
ods, they are adjusted from time to time during the iter-
ation process in order to keep the distance more or less 
constant, which is important for accuracy and stability. 
Theoretical analyses of the numerical dispersion and 
damping for various choices of discretization are found 
in Raven (1996) and Janson (1997).

Transom Sterns The fl ow off a transom stern has 
some particular properties that require a separate 
treatment in these methods. It is important to note that 
only a fl ow regime in which the free surface detaches 
smoothly from the transom edge (dry-transom fl ow) 
can be adequately modeled in inviscid methods; cases 
in which the transom is wetted are strongly affected by 
viscosity and their modeling in an inviscid method is 
only approximate.

For dry-transom fl ows, the proper model is one in 
which the water surface detaches from the transom 
edge, and the free-surface conditions are satisfi ed ev-
erywhere. Just aft of the transom, the fl ow is governed 
by the requirement of tangential fl ow off the hull and of 
atmospheric pressure at the transom edge. Different im-
plementations are used; free-surface panel strips aft of 
the transom are normally added and no body boundary 
condition ��/�n � 0 should be imposed on the transom.

Validations have shown that the resulting wave 
pattern is reasonably accurate for cases in which the 
transom is really dry, although deviations are some-
what larger than elsewhere because of the effect of 
the boundary layer that detaches from the hull (Raven, 
1998). Unfortunately, for a range of transom immersions 
it is possible to obtain a dry-transom fl ow prediction 
from a potential-fl ow code, while in reality the transom 
would be wetted; therefore, assessment is needed. For 
transom immersions larger than 0.4(V2/2g), a converged 
inviscid dry-transom solution is unlikely to be found.

Practical Aspects As these nonlinear methods to-
day are the principal tools to compute a ship’s wave 
making, we shall pay some attention to the practical as-
pects of such calculations.

The fi rst step is the generation of a panel distribution 
on the hull surface. The most practical way is a panel 
generation tool which is based on the CAD system used 
or is able to read a general hull shape description writ-
ten by a CAD system. Panel generation then proceeds 
largely automatically, but should admit control of panel 
density, local refi nements, etc., by the user.

Choosing a suitable hull panel distribution is impor-
tant. The panel size must be small enough to resolve all 
essential aspects of both the hull geometry and the fl ow 
fi eld. For example, local refi nement of the paneling is of-
ten needed on a bulbous bow to resolve the strong curva-
ture and large pressure gradients there. What density is 
required for an acceptable accuracy is basically a matter 
of experience. A too coarse hull paneling primarily af-
fects the accuracy of the wave resistance evaluation by 
pressure integration over the hull, while the wave pat-
tern is somewhat less sensitive. Today, a few thousand 
panels for each symmetric half of the hull is usual.

The free-surface paneling is generated either fully 
automatically or based on user input of its density and 
extent. Typically, the paneling is generated algebra-
ically. Free-surface panels must be small enough to 
resolve the principal waves, and as a rule their length 
should be no more than 5% of the transverse wave 
length �0 � 2�Fn2L. The free-surface paneling is usu-
ally cut off at a few transverse wave lengths aft of the 
stern, and should be wide enough to cover the Kelvin 
wedge over that length. In practice, 5000–10,000 panels 
for half the water surface are often used, dependent on 
Fn. Fig. 9.8 illustrates the hull and free-surface paneling 
(2300 
 5200 panels per symmetric half, in this case) 
used for a case at Fn � 0.26.

In the course of the iterative solution process, both 
panelings will usually need to be adjusted. Raised sin-
gularity distributions normally are adjusted in order to 
stay at a more or less constant distance from the wave 
surface. Therefore, the intersection of the free-surface 
panels and the hull changes during the solution process, 
and as far as the panelings match that intersection, they 
need to be adjusted automatically as well.

Once the converged solution has been obtained, the 
results are inspected using visualization tools: the wave 
pattern, the hull pressure distribution, the (inviscid) 
streamline direction along the hull, a hull wave profi le, 
longitudinal wave cuts, and integral quantities: the wave 
resistance, dynamic trim, and sinkage. In case lifting sur-
faces have been modeled (hydrofoils, keels, rudders) by 
special methods not discussed here, the lift force and in-
duced resistance can also be computed. It has been found 
useful to compute the wave resistance not only from 
pressure integration, but also from a wave pattern analy-
sis approach, based on a number of transverse or longi-
tudinal wave cuts through the computed wave pattern 
(Heimann, 2000; Raven and Prins, 1998). This quantity is 
less sensitive to the hull panel density than the  resistance 
from hull pressure integration. More on the use of the re-
sults in ship design is discussed in Section 11.5.
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Besides the results on the hull and wave surface, the 
velocity and pressure in fi eld points can also be com-
puted using postprocessors. This can be useful for ap-
pendage alignment. Here, however, one has to realize 
that the velocity fi eld computed is that in inviscid fl ow, 
and inside the boundary layer and wake the velocity 
magnitude will be much different in reality, and the ve-
locity direction deviates as well due to the cross-fl ow. 
The computed velocities on the hull are actually close 
to those at the edge of the boundary layer in reality. For 
bilge keel alignment, these methods will normally be ad-
equate, for shaft support struts rarely.

A complete nonlinear computation for a usual case 
with 8000–12,000 panels may take 2–5 minutes of com-
puter processing unit (CPU) time on a single 3GHz pro-
cessor if the fastest codes are used. Therefore, whereas 
only 10 years ago solving the nonlinear free-surface po-
tential fl ow problem meant quite an effort, today it forms 
a small computational task. Nonlinear  free-surface 

 potential fl ow tools are thus suitable for incorpora-
tion in a systematic hull form variation or optimization 
procedure (Heimann, 2006; Hoekstra and Raven, 2003; 
Valdenazzi et al., 2003).

Validations The general experience is that nonlin-
ear free-surface potential fl ow codes can provide very 
good predictions of the wave pattern for a large class of 
cases. For somewhat more slender ships in particular, 
the predictions are often quite accurate. As an example, 
Fig. 9.9 compares the predicted and measured wave pat-
tern for the Kriso Container Ship (KCS) at Fn � 0.26, 
a benchmark case for which measurements have been 
made in Korea and Japan (Kume, Ukon, & Takeshi, 
2000; Van et al., 1998b). The prediction captures most 
wave-making features, but overestimates the wave sys-
tem originating aft of the transom. The latter is due to 
the effect of the boundary layer on the transom fl ow, but 
in addition the transom might not have been entirely dry 
in the experiment.

Figure 9.8 Example of hull and free-surface paneling.

Y
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Compared with previous linearized methods there 
is a big improvement in the prediction of the bow wave 
height; the systematic underestimation has been re-
moved, although thin sheets of water rising along a 
sharp bow cannot be predicted. Also the previous 
severe underestimation of the diverging bow wave 
system has been eliminated; this feature is studied in 
Raven (1997).

The resistance estimates are far better than with lin-
earized methods, at least for somewhat fuller hull forms 
such as containerships and ferries. However, in absolute 
values the accuracy of the predicted wave resistance is 
still not very high. This is due to the fact that this resis-
tance is often a small difference between large contri-
butions (pressure forces on different parts of the hull) 
which almost cancel each other, making the result very 
sensitive to small numerical errors. The resistance may 
be used for comparisons between different designs, pro-
vided the Froude number is not too small or too large. 
At low Froude numbers, below 0.15 say, the wave resis-
tance is so small that it may be of the same order as the 
discretization error.

The recommended way to use these panel methods is 
to study the wave pattern and pressure distribution and 
draw conclusions on possible hull form improvements 
from those, as discussed in Section 11.5. For this, it is 
of primary importance that differences in wave pattern 
between models are well predicted. Fig. 9.10 compares 

 longitudinal wave cuts for two variations of a RoRo ves-
sel, as measured in the towing tank and as predicted. The 
agreement is quite favorable (Valdenazzi et al., 2003).

Some more validation can be found in Raven (1996, 
1998, 2000), Janson (1997), Gatchell et al. (2000), and 
others. In general, it appears that for most practical 
cases, good results are obtained if suffi cient care is 
given to the paneling and numerics. Applicability is by 
no means restricted to the forebody only. Although limi-
tations result from the neglect of viscous effects (see 
the restrictions mentioned later), this usually affects the 
stern wave system only, and free-surface potential-fl ow 
codes can still be most adequate for aft-shoulder waves, 
for example. For slender vessels with dry-transom fl ow, 
they can also be helpful for stern design, as shown by an 
example of a duck tail optimization in Raven (1998), but 
one needs to be much more careful here.

Restrictions Based on experience with nonlinear 
free-surface potential fl ow codes, and based on the as-
sumptions made in their derivation, the following assess-
ment of their restrictions and limitations can be made:

• Evidently, these potential-fl ow methods provide no 
information on the viscous fl ow. The velocity fi eld com-
puted contains no boundary layer or wake. Therefore, 
locally close to the wall and in the wake it is incorrect; 
the pressure fi eld is less affected. Also, fl ow separation 
is not indicated.

Figure 9.9 Wave pattern of KRISO containership (KCS). Top: prediction (using RAPID); bottom: experiment.
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• In Section 5.7 we briefl y considered some viscous ef-
fects on ship wave patterns. Physically, the presence of 
a thick boundary layer reduces the pressure level at the 
stern, and sharp pressure rises at the stern are  unlikely 
to occur in a viscous fl ow. These effects are disregarded 
in potential fl ow codes, which gives restrictions on their 
applicability. Specifi cally, it prevents making a quantita-
tively accurate prediction of the stern wave system for 
all but the most slender vessels. In general, the ampli-
tude of the stern wave system is overestimated by in-
viscid codes; very little for slender transom-stern ships 
such as frigates or fast ferries, but substantially for 
fuller vessels such as container ships. Fig. 9.11 gives an 
example. Larger disagreement occurs if the transom in 
reality is not cleared while in the computations that is 
assumed. In general, the disagreement is smaller for full 
scale than for model scale.
• It is also not possible to make a quantitatively accu-
rate prediction of the wave resistance for cases in which 

the stern wave system is substantially affected by vis-
cous effects.
• The numerical accuracy of the predicted wave resis-
tance is limited, in particular for full hull forms at low 
Froude number.
• Differences in resistance between design variations 
can be fairly well predicted using the best codes with 
a suffi ciently dense paneling, as long as no hull form 
changes are allowed at the stern. If the viscous effects 
on the stern wave system vary signifi cantly between 
design variations, inviscid codes may not give the right 
result (Janson & Larsson, 1996).
• Based on these computations, it cannot be predicted 
(but can sometimes be assessed) whether the fl ow off a 
transom stern will be a dry-transom or wetted-transom 
fl ow. This is a rather unstable process dependent on fac-
tors not included in the potential fl ow model used. For 
deeply immersed transoms, the dry-transom model that is 
consistent with inviscid fl ow may have no solution at all.

Figure 9.10 Comparison of predicted and measured wave cuts for two variations of a RoRo vessel.
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• The neglect of wave breaking in potential-fl ow com-
putations seems no serious omission in most practi-
cal cases and still mostly admits a good prediction of 
the wave pattern. Deviations should occur for cases 
in which wave breaking occurs close to the hull and 
dissipates a substantial part of the wave energy. It 
may even be impossible to produce a converged invis-
cid solution for cases displaying heavy wave break-
ing in reality. Otherwise, the computations provide 
no direct indication on whether or not waves will 
break, except based on semi-empirical wave steep-
ness  criteria.
• Unless planing effects are explicitly modeled, they 
will probably not be represented accurately.
• In addition, deviations may occur as a result of nu-
merical errors. Insuffi cient panel densities on the hull 
cause a poor resistance estimate and a lack of resolution 
of the pressure distribution. A too coarse free- surface 
paneling smoothes the wave system, reduces the wave 
amplitude at a distance from the vessel, and may modify 
the wave lengths and directions due to the effect called 
“numerical dispersion.” For comparing different varia-
tions of a design, the use of similar panel distributions 
is recommended.

Predicting the inviscid fl ow past the hull is now a 
quick and effi cient procedure and provides a compre-
hensive view of the fl ow properties, but it appears that 
some aspects are just useful in a comparative sense 
rather than for performance prediction, for example. 
As indicated, this is largely fundamental to the basic 
fl ow model. Removing the limitations listed primarily 
requires modeling the viscous effects on the fl ow and 
wave making, a topic discussed in Section 9.8. However, 
provided that the restrictions are duly taken into ac-
count and the results are sensibly considered, analyzed, 
and interpreted, nonlinear free-surface potential fl ow 
codes can be very powerful and practical tools in ship 
design. The use of their predictions will be further dis-
cussed in Section 11.5.

9.7 Prediction of the Viscous Flow Around a Body.
Having introduced the numerical methods most com-
monly used for inviscid fl ow, we will now turn to the vis-
cous fl ow methods. Referring to Section 9.4, we will fi rst 
make use of the zonal approach (i.e., to consider the vis-
cous fl ow independent of the free-surface fl ow). In Sec-
tion 9.7, we will thus assume that the free surface is fl at, 
or more precisely a symmetry plane, as in  Section 9.5.5. 
The double-model approach is thus  employed in the 

Figure 9.11 Effect of viscosity on stern wave system. Computed longitudinal wave cuts at centerline aft of 
transom stern for the “Hamburg Test Case” containership; for model scale, full scale, and according to 
inviscid approximation. From Raven et al. (2008).
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present section. Then, in Section 9.8, the free surface 
will be introduced.

9.7.1 Classifi cation of Methods Based on the 

Navier-Stokes Equations. As explained in Section 
2, incompressible fl uid fl ows with constant viscosity 
are governed by the Navier-Stokes equations (2.13a) to 
(2.13c) and the continuity equation (2.1), together with 
relevant boundary conditions (2.14) to (2.21).

In principle, these equations may be solved numeri-
cally, but the problem is the required computational 
 effort. To understand the formidable task of solving 
the Navier-Stokes equations for a full-scale ship, con-
sider the size of the smallest eddies in the fl ow around 
the hull and compare their size with the total domain 
of the fl ow in which we need to solve the equation (the 
computational domain). The smallest eddies in the tur-
bulent ship boundary layer are of the order of 0.1 mm; 
to be able to compute an eddy, it has to be resolved by 
several grid points in each direction. The step size of 
the grid must thus be of the order of 0.01 mm. On the 
other hand, the computational domain needs to be a 
few ship lengths long and about one ship length wide 
and deep. To get an order of magnitude estimate, as-
sume that all three dimensions are 100 m. With the 
resolution just described, this means 107 steps in each 
direction and a total number of grid points of the or-
der of 1021! At present, the achieveable number of grid 
points is of the order of 109. So, with a linear increase 
in computational effort with number of grid points (the 
best  possible  scalability), computers would need to be 

1012 times faster than  today. Now, the resolution does 
not need to be that high in the entire computational 
domain, so the requirements are somewhat lower. On 
the other hand, the number of time steps required will 
increase one or two orders of magnitude relative to to-
day’s computations. Therefore, the estimate is in no way 
exact, but it reveals the enormous computational power 
required to solve the Navier-Stokes equations for a ship 
fl ow. The same reasoning may also be used for showing 
that the computational effort for a ship model case is 
considerably smaller, but still out of reach at present. It 
is smaller because the absolute size (not relative to the 
hull size) of the smallest eddies in a ship model bound-
ary layer are of the same order as those of the ship. The 
computational domain is, however, one to two orders of 
magnitude (depending on the scale factor) smaller than 
for the ship in each direction. Solution techniques based 
on the Navier-Stokes equations without modifi cations 
are known as DNS methods (see Fig. 9.12).

To obtain manageable computational times, tech-
niques have been developed where the details of the 
fl ow are neglected. Obviously, it is not of great inter-
est to know the development of each small eddy (of the 
order of 0.1 mm) in a ship boundary layer. The larger 
eddies may however play a more important role, for in-
stance in the prediction of pressure fl uctuations, vibra-
tions, and noise. Moreover, the larger eddies are often 
anisotropic and therefore more diffi cult to model than 
the smaller ones, which may be assumed isotropic. 
Methods where the mean fl ow and the larger eddies are 

Figure 9.12 Classifi cation of methods used in viscous computational hydrodynamics.
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computed, whereas the smaller ones are modeled, are 
known as LES methods. The Navier-Stokes equations 
now have to be somewhat modifi ed through a fi lter-
ing process, where eddies smaller than a certain size, 
the fi lter width, are removed. When applying the fi lter 
to the equations, the nonlinear terms will give rise to 
additional unknowns, which have to be modeled in 
some way, so separate equations have to be derived and 
solved for these quantities. The equations are referred 
to as subgrid scale models.

In general fl uid mechanics, there is a strong interest 
in LES methods and subgrid scale models of increas-
ing complexity are being developed. However, the 
problem with computations in hydrodynamics is the 
high Reynolds number, even at model-scale. It is not 
feasible today to carry out a complete LES calculation 
for a ship model, and certainly not for a full-scale ship. 
To accomplish this, the fl ow close to the hull surface 
must be treated in a different way. One possibility is to 
apply wall functions, based on the similarity proper-
ties of the fl ow in this region, as explained in Section 
6.3.3. Another possibility is to compute the fl ow using 
a RANS method (see later discussion) near the hull 
and to match this solution to a LES solution further 
out. The most well known of these hybrid methods

was proposed by Spalart and Allmaras (1992) and is 
known as Detached Eddy Simulation. In any case, 
the computational effort is too large for routine ap-
plications. For ships, the required effort is of the order 
of 105 CPU-hours. A good survey of LES for high Reyn-
olds number fl ows is found in Fureby et al. (2003), 
and an overview of ship hydrodynamic applications is 
given in Fureby (2008).

To make the equations really useful for practical 
purposes, one step further has to be taken. All turbu-
lent fl uctuations have to be removed and the Navier-
Stokes equations solved only for the mean fl ow. This 
is achieved through a process where the equations 
are averaged over a time larger than the largest tur-
bulent scale (but smaller than the scale for mean fl ow 
 variations). The resulting equations are known as the 
RANS equations. As in the LES equations, additional 
unknowns, here called the Reynolds stresses, appear, 
and separate equations, the turbulence model, are re-
quired for these quantities. RANS methods have been 
the subject of intense research (see Section 1.2.3) over 
the past 30 years, not least in hydrodynamics, and 
methods based on this technique are just making their 
way into the design offi ces.

In all methods discussed so far, the full Navier-
Stokes equations are used, sometimes with additional 
terms including new unknowns. There are, however, 
several classes of methods available where terms in 
the original equations have been dropped. The three 
second derivatives in the viscous part of the equations 
may be interpreted as representing the diffusion of 
momentum in the three different directions. If a typi-
cal length scale of the fl ow is small in one direction, 

 derivatives in this direction are large and the diffu-
sion may be assumed important. The full RANS equa-
tions are required if the mean fl ow scales are small in 
all three directions, as in a region of 3D separation. 
However, in a typical 3D attached boundary layer, the 
scale is small only in the direction normal to the sur-
face. Momentum diffusion may then be neglected in 
the two directions along the surface, but is important 
in the third direction. Only one of the viscous terms 
then has to be retained (in the y-direction). This gives 
rise to the boundary layer approximation of the Na-
vier-Stokes equations. As mentioned in Section 6.2.2, 
another result of the boundary layer approximation 
is that the equation in the normal direction degener-
ates to the simple statement that the normal derivative 
of the pressure is zero. The pressure is thus constant 
through the boundary layer.

Because the RANS equations maintain all three 
viscous terms in the Navier-Stokes equations and the 
boundary equations retain only one, there are two 
other possibilities, mentioned here for completeness 
(see Fig. 9.12). If two terms are maintained, in the nor-
mal and girthwise directions, the partially parabolic 

approximation is obtained. This was used in some of 
the fi rst hydrodynamic Navier-Stokes methods and sim-
plifi ed the solution of the RANS equations because a 
marching procedure could be applied in the solution. 
The other possibility is to drop all the viscous terms, 
which results in the Euler equations. These are used 
both in fl uid machinery calculations and in aircraft 
aerodynamics and are an alternative to the potential 
fl ow methods described, which are based on the con-
tinuity equation. The problem with both methods is 
that boundary layers cannot be represented, so some 
matching to boundary layer solutions is needed close 
to the boundaries. Euler methods are hardly used at all 
in hydrodynamics.

By far, the most important technique for viscous fl ow 
computations today is the RANS approach. It is rela-
tively accurate, can account for complex fl ow situations 
like massive separation and propeller effects, and it can 
be used for unsteady problems such as cavitation, ma-
noeuvring, and even seakeeping. It is still on the verge 
of being too computer demanding, at least for unsteady 
problems, but it is rapidly gaining popularity as a design 
tool. In the following, we will give brief introduction to 
the theory of RANS methods. For obvious reasons, this 
introduction has to be brief. More comprehensive de-
scriptions may be found in textbooks on the subject, like 
the classical introductory book by Patankar (1980), the 
very similar but updated one by Versteeg and Malalase-
kera (1995), or the excellent, more comprehensive one 
by Ferziger and Peric (1999).

The purpose of the present text is to familiarize the 
reader with the main concepts related to RANS compu-
tations. Whenever a computer code based on the RANS 
equations is to be applied, the user has a number of 
choices, which require some background knowledge of 
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these concepts. In the following, they will be introduced 
under the headings:

• The Reynolds-Averaged Navier Stokes equations
• Turbulence modeling
• Grid
• Discretization
• Boundary conditions

9.7.2 The Reynolds-Averaged Navier-Stokes  Equations.

9.7.2.1 COORDINATE SYSTEM AND BASIS VECTORS. As will 
be seen in Section 9.7.4, the numerical grid used for dis-
cretizing the governing equations will be curvilinear, 
in general. This is so because it is easier to represent 
the hull boundary conditions in this type of grid than 
in a Cartesian grid.* The fact that the coordinates run 
along curved lines does not necessarily mean that the 
basis vectors, to which vector and tensor quantities are 
referred, have to be aligned with these lines. These ba-
sis vectors can be of several different forms: Cartesian, 
cylindrical, covariant, or contravariant. In the fi rst two 
cases, the direction of the vectors is constant in space, 
but in the latter two cases the direction of the vector 
is determined by the grid. Covariant basis vectors are 
aligned with the grid lines, but contravariant vectors are 
at right angles to the coordinate surfaces. In any case, 
the governing equations have to be transformed, and 
they will become considerably more complex, involv-
ing geometrical quantities related to the curvature of 
the grid lines. The increase in complexity is particularly 
large if covariant or contravariant basis vectors are se-
lected. For this reason, Cartesian or cylindrical basis 
vectors seem to be the most popular choice at present.

The increased complexity is related to the introduc-
tion of metrics, representing the stretching of the coor-
dinates. Derivatives of these metrics (up to third order 
for covariant and contravariant basis vectors) appear in 
the equations. The basic features of the methods to be de-
scribed later are however independent of these geomet-
rical complications, so in the following we will assume 
Cartesian coordinates. Transformation to other systems 
is described, for instance, in Ferziger and Peric (1999).

9.7.2.2 TIME AVERAGING OF THE NAVIER-STOKES  EQUATIONS.
To make the Navier-Stokes equations and the continuity 
equation more compact, Cartesian tensors will be used 
in the following.† This means that vector components are 
denoted by one index and tensor components by two. Be-
cause we are interested in 3D cases the indices run from 
1 to 3. The velocity components are represented by ui, the 
three coordinate components by xi and the stress tensor 
components by �ij . The most  important rule, which makes 

the equations more compact, is Einstein’s  summation 
rule: if an index is repeated in a term, summation from 1 
to 3 shall be made with respect to this index.

Now, the Navier-Stokes equations (2.13a) to (2.13c) 
may be written in a compact form as

   �ui_
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�ui_
�xj
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�xi
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 (9.38)

With the same notation, the continuity equation (2.1) 
reads

�ui_
�xi

� 0 (9.39)

To obtain the fi nal expression for the viscous term in 
the derivation of the Navier-Stokes equations, it was as-
sumed in Section 2 that the viscous stresses �ij are pro-
portional to the rate of strain tensor Sij, in other words

�ij � �Sij (9.40)

where � is the dynamic viscosity and

Sij �   �ui_
�xj
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As appears from the derivation in Section 2, this 
means that

�   �2ui_
�xj �xj

�    1_�     
��ji_
�xj

Using equation (9.39), the second term of equation 
(9.38) may be expressed as follows
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Equation (9.38) may then be written
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We want to rewrite the equations such that all fl uctua-
tions arising from turbulence are removed. This is done 
by averaging the equations over a time larger than the 
largest scale of the turbulence.* The mean values of ve-
locity, pressure, and stress are denoted  

_
ui,

_
p, and  

_
�ij , re-

spectively, whereas the instantaneous deviations from 
the mean are ui�, p�, and �ij�. Fi is assumed constant. Thus,

ui �
_
ui 
 ui� p �

_
p 
 p� �ij �

_
�ij 
 �ij� (9.43)

Introduce equation (9.43) in (9.42) and time-average 
the whole equation!

_
�
_
ui_
�t


   

_
�ui�_
�t




_
� _
�xj

 ( 
_
uj

_
ui) 


_
� _
�xj

 ( 
_
uj ui�) 


_
� _
�xj

 (u�j
_
ui) 


__
� _
�xj

 (uj� ui�) �  (9.44)

 �   1_�    

_
�
_
p_

�xi

�

_

1_
�     

�p�
 _

�xi


 Fi 
   1_�    

_
�
_
�ji_

�xj


   1_�    

_
��ji�

 _
�xj

*Note that this time-averaging is not unambiguous. By fi lter-
ing out time variations arising from turbulence, variations of 
the mean fl ow may also disappear. This may render unsteady 
RANS computations uncertain, particularly for fl ows with 
rapid changes, such as cavitating fl ows. A more rigorous ap-
proach is to use ensemble averaging (see Wilcox, 1998).

*Cartesian, non–boundary-fi tted grids are indeed used in some 
methods especially in aerodynamics, but their lack of ability to 
resolve the fl ow very close to a no-slip wall makes them unsuit-
able for viscous fl ow computations. They may work well, however, 
for Euler methods. Overlapping grid methods often use Cartesian 
background grids, in which the body-fi tted grids are embedded.
†For a short introduction to Cartesian tensors, see Wilcox (1998).
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Note that the time-average of the fl uctuations u�, p�,
and �ij� is zero by defi nition. This holds also for their 
derivatives. We thus have

�
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(9.45)

Here we have used the fact that the average of the 
derivative of a quantity is equal to the derivative of its 
average.

Note that equation (9.45) is very similar to equation 
(9.42). Except that the instantaneous values of equa-
tion (9.42) have been replaced by the averaged values 
in equation (9.45), there is only one new term: the third 
term. The reason for the appearance of this term is 
 nonlinearity. For all linear terms, the fl uctuating contri-
bution disappears in the averaging process, but the non-
linear term of equation (9.42) gives rise to a non-zero 
product of fl uctuating contributions.

As the new term contains derivatives with respect to 
the same variable as the stress term, it is tempting to 
combine them. This yields
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(9.46)

where

Rji � Rij � ��  
_
ui�uj� (9.47)

Equation (9.46) is the basis for methods of the RANS 
type. We have removed the turbulent fl uctuations from 
the equations, but we have introduced a new quantity 
Rij, which is unknown and must be modelled. Rij is a cor-
relation between two fl uctuating velocity components, 
but appears in the equations in the same way as �ij, and 
may therefore be interpreted as an additional stress, 
known as the Reynolds stress. Like �ij, Rij is symmetric 
and contains six independent components. In order to 
compute these, a turbulence model is required.

Unlike the Navier-Stokes equations, no new terms are 
introduced when time-averaging the continuity equa-
tion (9.39). Because the equation is linear, all turbulent 
contributions will disappear and the equation looks as 
before, but with the instantaneous velocities replaced 
by the mean values.

�
_
ui_

�xi

� 0 (9.48)

We will return to the question of boundary conditions 
for equations (9.46) and (9.48) in connection with the 
discretization.

9.7.3 Turbulence Modeling. Turbulence modeling 
has been one of the most important research areas of 
fl uid mechanics in the past 40 years, and a large number 
of models have been proposed. An excellent  overview 

is found in Wilcox (1998). All turbulence models in-
clude empirical constants and no model capable of gen-
erating accurate results for all possible conditions has 
been developed. The best models work well for certain 
classes of fl ows, but less well for others. To obtain the 
best possible accuracy, different turbulence models 
must be tested for the type of problem at hand. In ship 
hydrodynamics, this has been the topic of the series of 
international workshops held approximately every 5 
years since 1990 (Hino, 2005; Kodama et al., 1994; Lars-
son, Patel, & Dyne, 1991; Larsson, Stern & Bertram, 
2002, 2003).

In the following, we will give a brief introduction to 
fi ve classes of turbulence models:

• Zero-equation models, in which no transport (differ-
ential) equation is used for turbulent quantities
• One-equation models, based on one transport equa-
tion for turbulence
• Two-equation models with two transport equations
• Algebraic stress models (ASM)
• Reynolds stress models (RSM)

The basis for the fi rst three models is the classical 
Boussinesq assumption (Boussinesq, 1877).

9.7.3.1 THE BOUSSINESQ ASSUMPTION. The Boussinesq 
assumption is perhaps the most important approxima-
tion in turbulence theory. It is assumed that the Reyn-
olds stresses Rij can be computed from the rate of strain 
tensor Sij in the same way as the viscous stresses, the 
only difference being that the molecular viscosity � is 
now replaced by a turbulent equivalent �T. Because the 
viscous stresses arise from molecular mixing, it is thus 
inherently assumed that the turbulent mixing resembles 
the molecular mixing. However, whereas � is a physi-
cal constant, the turbulent viscosity �T is unknown and 
must be computed at every point in the fl ow.

Because Sii is zero according to the continuity equa-
tion, Rii would be zero as well, without further assump-
tions. But according to equation (9.47)

Rii � ��  
_
ui�ui� (9.49)

and  
_
ui�ui� may be interpreted as twice the turbulent ki-

netic energy k per unit of mass. Therefore,

Rii � �2�k (9.50)

so the Boussinesq assumption may be written

Rij � �TSi j �   2_
3
�k�i j (9.51)

where �ij is the Kronecker delta.*

�ij � { 
 0 for i � j

1 for i � j
    (9.52)

To describe turbulence, one velocity scale, !, and one 
length scale, l, must be known. Because, according to 

*Note that �ii � �11 
 �22 
 �33 � 3, which explains the factor 
3 in the denominator of the second term of equation (9.51).
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equation (9.51), �T shall have the dimension [kg/(m � s)], 
dimensional analysis shows that

�T � const � �!l (9.53)

9.7.3.2 ZERO-EQUATION MODELS. In the zero-equation 
models, turbulent quantities are computed using alge-
braic equations and they are therefore often referred 
to as algebraic models. The most common approach is 
the mixing length models, where the length scale is pre-
scribed analytically (for instance as a function of the 
distance to the wall) and the velocity scale is computed 
as the length scale times the dominant velocity gradient. 
Mixing length models were developed for thin shear lay-
ers, notably boundary layers, where the only important 
derivative of the velocity vector is that in the direction 
normal to the surface. These models work well for thin 
attached boundary layers, and a special development, 
the Baldwin-Lomax model (Baldwin & Lomax, 1978), 
became very popular in aerodynamics for many years, 
particularly for predicting the fl ow around wings. The 
Baldwin-Lomax model was used to a considerable ex-
tent also in ship hydrodynamics in the fi rst RANS meth-
ods, and at the CFD Workshop in Tokyo in 1994 (Ko-
dama et al., 1994), some good results were presented. 
However, a closer analysis revealed that limiters used in 
the method actually helped predicting the wake for the 
test cases. More advanced models are needed to predict 
the complex fl ows around a ship stern.

9.7.3.3 ONE-EQUATION MODELS. Over the years, a num-
ber of turbulence models have been proposed where one 
transport equation is solved for k (Wilcox, 1998). The 
velocity scale ! may then be determined as k1/2,which 
has the dimension [m/s]. The length scale l in these 
one-equation models is prescribed analytically, as in 
the zero-equation models. No method of this kind has 
become popular, most likely due to the requirement for 
prescribing l.

A different kind of one-equation model was proposed 
by Spalart and Allmaras (1992). Rather than comput-
ing the turbulent viscosity �T from the length and ve-
locity scales, they devised a transport equation for a 
quantity �, closely related to �T directly. This model has 
become rather popular in recent years, also for ship 
fl ows, and some notably good wake predictions have 
been made using the model (see the Workshop results in 
Hino, 2005; Larsson, Stern, & Bertram, 2002, 2003). The 
model does, however, contain eight empirical constants, 
and the good wake results were obtained by varying one 
of the constants. One way of doing so is to apply a cor-
rection for vortical fl ows, devised by Dacles-Mariani et 
al. (1995). An interesting feature of the Spalart-Allma-
ras model is that it can be used also in Detached Eddy 
Simulation methods, where RANS is used in the bound-
ary layer and LES in the outer fl ow.

9.7.3.4 TWO-EQUATION MODELS. The most common of 
all turbulence models in the past 30 years has been the 
two-equation k � � model (Jones & Launder, 1972) in 

which one transport equation for the turbulent kinetic 
energy per unit mass, k, and one for its rate of dissipa-
tion, �, are solved. Because k has the dimension [m2/s2], 
� must have the dimension [m2/s3]. The length scale l
may thus be defi ned as k3/2/� and because the velocity 
scale ! may be set as k1/2, equation (9.53) may be written

�T � const � � k
2_

�
  (9.54)

The k � � model has been enhanced in several ways, 
for instance using Renormalization Group Theory (Yak-
hot et al., 1992). By remodeling some of the terms in the 
equations, the “realizable” k � � model was developed 
by NASA (Shih, Zhu, & Lumley, 1992). In ship hydrody-
namics, the k � � model and its variants have always 
been a popular choice. At all workshops, there has been 
a number of methods employing this model. However, 
it has become increasingly clear that the detailed fea-
tures of the ship wake cannot be obtained in this way. 
The wake contours, which are often quite irregular, are 
smoothed out. It is well known from other fl uid mechan-
ics applications that this model is not suitable for fl ows 
with strong streamwise vorticity, and as we have seen 
in Section 6.7.2, the ship wake is dominated by such vor-
ticity, generated at the aft bilges, at least for full-bodied 
ships. Therefore, a somewhat different approach, the 
k � � model, has gained in popularity. This will now be 
described.

Rather than solving for the dissipation rate � di-
rectly, an equation for the specifi c dissipation rate 
� � �/k is solved. The physical signifi cance of � has 
been a matter for discussion for a long time and a good 
review is given in Wilcox (1998). We will not repeat this 
discussion here. It is suffi cient to note that the k � �
model has shown superior performance when predict-
ing ship fl ows, as compared to the k � � model. Replac-
ing the dynamic viscosities � and �T by their kinematic 
 equivalents
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the equations in the k � � model are as follows

�T �   k_� (9.56)

�k_
�t



_
uj   �k_

�xj

�   
�i j_
�     �

_
ui_

�xj

� � * k� 


� _
�xj

[ (� 
� * �T)   �k_
�xj

]
(9.57)

�� _
�t



_
uj    �� _

�xj

� �   � _
k

  
�i j_
�     �ui_

�xj

� ��2 


    � _
�xj

[ (� 
 �� T)   �� _
�xj

]
(9.58)

The empirical constants are as follows

! � 5/9  " � 3/40  "* � 9/100  # � 1/2  #* � 1/2

Note that the structure of the two transport equa-
tions (9.57) and (9.58) is quite similar to that of the mo-
mentum equation (9.46).
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One diffi culty with the � equation is that it is hard to 
defi ne a robust boundary condition at the outer edge. 
On the hull surface, � goes to infi nity, but this prob-
lem can be handled in different ways, as will be seen in 
Section 9.7.6. Because � has a well-defi ned value at the 
boundary layer edge, Menter (1993) proposed a blend-
ing of the two transport equations such that the result-
ing equation represents only � at the surface and only 
� outside of the boundary layer. This modifi cation of 
the original method is referred to as the Baseline (BSL) 
k � � model. Menter also suggested a further modifi -
cation of the BSL model, by which an improved predic-
tion of the principal shear stress is obtained in adverse 
pressure gradients. This is known as the Shear Stress 
Transport (SST) model.

9.7.3.5 ALGEBRAIC STRESS AND REYNOLDS STRESS MODELS.
The Boussinesq assumption, which is the basis for all 
models described so far, has had a tremendous impor-
tance for turbulence modeling and most RANS calcula-
tions carried out rest on this approximation. However, 
the basic assumption that the stress tensor is propor-
tional to the rate of strain tensor* is questionable. The 
relation is true for viscous stresses, created by mo-
lecular activity, but it is not generally true for turbu-
lent stresses, which depend on turbulent fl uctuations 
infl uenced, for instance, by history effects, presence 
of boundaries, and free-stream turbulence. Therefore, 
many attempts have been made to improve the assump-
tion, and in the most advanced methods, it has been 
abandoned altogether.

A logical way of extending the Boussinesq assump-
tion is to include nonlinear terms in the constitutive re-
lation (9.51). Such terms may include not only the mean 
rate of strain tensor  

_
Sij, [see equation (9.41)], but also 

the mean rotation tensor $ij, defi ned as
_
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A nonlinear k � � model attributed to Craft, Laun-
der, and Suga (1996) was tested by Svennberg (2001) for 
ship stern fl ow and a considerable improvement was 
obtained, relative to the conventional model. This ap-
proach has not been much used in ship hydrodynamics, 
however.

One result of the effort to develop nonlinear models 
is the ASMs. These are based on transport equations 
for the individual Reynolds stresses and each partial 
derivative with respect to the stresses is modelled al-
gebraically. A nonlinear set of algebraic equations then 
evolves, not necessarily including turbulent viscosity. 
The complexity of the equations depends on the model-
ing and the models normally include k and either � or �.
The ASMs thus have to be used in connection with a two-
equation model. A particularly successful ASM devel-
oped in recent years is that reported by Deng, Queutey 

and  Visonneau (2005). At the Tokyo workshop in 2005 
(Hino, 2005), this model performed almost as well as the 
full Reynolds stress model (Fig. 9.13). This ASM uses 
k and � from the k � � BSL model as described.

In the Reynolds stress (RSM) models, transport 
equations for each of the six Reynolds stress compo-
nents are solved. Further equations are required be-
cause many of the terms in the equations have to be 
modeled. Most often, the modeled equations contain 
k and �, which means that one additional equation (for 
�) has to be included. k can be obtained directly from 
the normal Reynolds stresses. The most recent devel-
opment of RSMs for ship fl ows is reported in Deng, 
Queutey and Visonneau (2005). Because these models 
represent the physics better than the other models de-
scribed, they can be expected to be more accurate. Al-
though the ASM are very close, this has indeed been the 
case in all investigations known to the authors, where 
these models have been compared with others (see, for 
instance, Hino, 2005; Larsson, Stern, & Bertram, 2002, 
2003; Svennberg, 2001). The disadvantage of the RSMs 
is the increased computational effort caused not only 
by the need for solving more equations, but also by 
the loss in stability of the solution procedure. In many 
cases, it may be diffi cult to make the iterative solution 
procedure converge at all, and even if the iterations 
converge, the rate is normally slower than for other 
 turbulence models.

Fig. 9.13 shows a comparison between predictions of 
the stern fl ow of a full-bodied tanker using three differ-
ent turbulence models: a Reynolds stress model, an ex-
plicit ASM, and the k � � SST model. Measured data are 
also shown at the top. The results are from the Tokyo 
workshop in 2005 (Hino, 2005) and were all obtained by 
the same group from Ecole Centrale de Nantes using the 
same numerical method and the same grid of about 3M 
cells. Of interest are the details of the fl ow in the central 
part of the wake (i.e., the propeller disk). Comparing the 
predicted wake contours with the measured ones, it is 
seen that the RSM results are most detailed and rather 
accurate. Some smoothing may be seen in the ASM re-
sults, which are still quite good. The SST results are less 
detailed.

The wake contours around the same hull were dis-
cussed in Section 6.7.2. Because the propeller operates 
in the region with the most “hooked” contours, the exact 
shape of the contours is important for the designer. In 
fact, an experienced ship designer can move the bilge 
vortex, creating the contours, to a position where the fl ow 
into the propeller is optimum (see Section 11.4.1). Today, 
numerical methods are often used for this  purpose.

A discussion of the boundary conditions for the tur-
bulence transport equations will be given in connection 
with the discretization scheme.

9.7.4 Grid. For the numerical solution of the mo-
mentum and continuity equations (9.46) and (9.48), 
as well as of turbulence equations such as (9.57) and 
(9.58), most numerical methods will require a grid on 

*This means that the principal axes of one tensor coincide 
with the corresponding ones of the other tensor.
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Figure 9.13 Wake contours (left) and cross-fl ow velocity vectors (right) in the propeller plane of a VLCC (Hino, 2005; courtesy of 
the author). Top: Experiments; second from top: Reynolds stress model; second from bottom: ASM; bottom: k � � SST model.
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which the continuous equations can be discretized. 
The whole computational domain must be covered by 
the grid and in the discretized equations, values of the 
dependent variables will be the computed at the grid 
nodes. There are two main types of grids: structured

and  unstructured. In both cases, the entire grid may 
consist of only one block—single block grids—or it may 
be  divided into two or more grid blocks—multiblock 

grids. For the multiblock grids, combinations of struc-
tured and unstructured blocks may be used as well.

9.7.4.1 SINGLE-BLOCK STRUCTURED GRIDS. In a 3D struc-
tured grid, each grid point may be uniquely defi ned by 
a triplet of indices (i, j, k), where each index runs from 
1 and upward along a grid line, defi ned by constant val-
ues of the two other indices. This logical structure of 
the points simplifi es the programming and leads to a 
banded structure of the matrix in the numerical solu-
tion procedure, as will be seen. Because there are very 
effi cient solution procedures for banded matrices, this 
is a great advantage.

Fig. 9.14 shows a single block structured grid of a 
VLCC. The grid is enclosed in a cylindrical domain with 
a radius of 1.5 hull lengths from the centerline. A sym-
metry plane represents the free surface, and the cylin-
der is truncated 0.8 hull lengths in front of and behind 
the hull. The inner surface of the grid is the hull itself. It 
is seen that the organization of the grid points, at the in-
tersection between the grid lines, is very regular. There 
are three families of grid lines: in the longitudinal, ra-
dial, and girthwise directions, respectively, and in each 
one of them the lines run smoothly from one boundary 
to the opposite one without intersecting.

Note that the longitudinal grid lines are concen-
trated close to the hull and the radial lines near the bow 
and stern, where the variations in fl ow quantities are 

 largest. Close to the hull the inner part of the boundary 
layer has to be resolved very accurately. The grid shown 
has been coarsened for clarity and contains only about 
30,000 cells whereas real grids normally contain at least 
a million cells.

If i, j, k are the indices running along the lines in 
the longitudinal, radial, and girthwise directions, re-
spectively, the grids in the i, j-planes will be of H-type 
(i.e., both families of lines will run from one boundary 
to the opposite one), together forming an H-pattern. 
However, the grids in the j, k-planes will be of the O-
type. The k-lines are thus halves of deformed circles 
surrounding the hull (the free surface is a symmetry 
plane). Grids of the type shown Fig. 9.14 are called 
H-O grids and are the most common ones in ship hy-
drodynamics. Other types do exist, however. In O-O 
grids, the i-lines are closed loops around the hull; in 
C-O grids, the i-lines form a C-shape around the bow 
(i.e., they start at the downstream boundary, run up-
stream around the bow, and back to the exit plane). 
The advantage of the H-O grids is that the fl ow is more 
or less aligned with the i-lines, which may reduce nu-
merical diffusion, as will be seen later. For O-O and 
C-O grids, the fl ow is more at right angles to the grid 
lines at the bow, and the same hold for the stern in case 
of the O-O grids. The disadvantage of the H-O grids 
is that they contain singularity points on lines down-
stream of the stern and upstream of the bow. At such 
points, the curvature of the j-lines is infi nite, which 
may cause diffi culties in the numerical solution.

9.7.4.2 MULTIBLOCK STRUCTURED GRIDS. The advantage 
of the structured grids is that they are computationally 
effi cient. The disadvantage is that it is very diffi cult to 
represent complex boundaries. For instance, it is almost 
impossible to incorporate appendages on a hull, such as 

Figure 9.14 Single-block structured grid for a VLCC.
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fi ns, brackets, or shafts. Rudders, placed in the  symmetry 
plane, may be somewhat easier to include, but even that 
is diffi cult. If the grid is divided into different blocks, the 
fl exibility is increased. A typical example of a multiblock 
structured grid is shown in Fig. 9.15. It is the same hull 
as in Fig. 9.14, but only a close-up of the stern region is 
presented, and for clarity only the boundaries (hull and 
symmetry planes) are shown. At the block intersections, 
the grid density and the direction of the gridlines change 
abruptly. In the present grid, the lines from both sides of 
a common boundary match each other, but this condi-
tion may be relaxed. It is possible to develop techniques 
for conserving fl ow quantities, even without this match 
(Ferziger & Peric, 1999). To handle the multiblock grids, 
a more complex solution technique is required.

9.7.4.3 OVERLAPPING GRIDS. Even larger fl exibility is 
offered if the different blocks are allowed to overlap. 
Grid components may then be generated around each 
part of a complex boundary, for instance around a rud-
der, fi n, bracket, or shaft outside a hull. Complex re-
gions of the hull itself may also be covered by several 
overlapping grids. The body-fi tted, curvilinear compo-
nent grids may be immersed into one or more Cartesian 
background grids. Fig. 9.16 shows an overlapping grid 
around the stern of a tanker hull. As in Fig. 9.15, only the 
boundaries are shown. Several overlapping body-fi tted 
grids are used to accurately represent the stern shape, 
and these grids are immersed into a background grid 
with several levels of refi nement.

As for the “butt-joined” multiblock grids, the interac-
tion between the grid components has to be taken care 
of by the solution algorithm. The demands are larger, 
however, on an overlapping grid. Another disadvantage 
is that it is diffi cult to ensure conservation across over-
lapping grid boundaries.

9.7.4.4 UNSTRUCTURED GRIDS. In structural mechan-
ics, unstructured grids are used almost exclusively, in 

Figure 9.15 Multiblock structured grid for a VLCC (Bull, 2005; courtesy of the author).

Figure 9.16 Overlapping grids around the stern of a tanker (Regnström, 
Broberg, & Larsson, 2000).
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combination with fi nite element numerical solvers. So 
far, this technique has not reached the same popularity 
in fl uid mechanics, and particularly not in hydrodynam-
ics. Here single or multiblock structured grids domi-
nate, but there is an increasing interest in unstructured 
techniques, mainly in connection with fi nite volume 
solvers. The major advantage of unstructured grids is 
fl exibility. It is considerably easier to fi t an unstructured 
grid to a complex boundary, and automatic grid genera-
tion techniques are well developed. Further, the waste 
of cells in bands where a large density is not required 
(see Fig. 9.14) is avoided. The disadvantage is the irregu-
lar data structure. The connectivity between the cells as 
well as their location has to be stored and the solution 
matrix loses its diagonal structure, which increases the 
computational effort. Another disadvantage is the larger 
numerical diffusion associated with this type of grid.

An example of an unstructured grid is shown in 
Fig. 9.17. It shows one cross-section of a grid around a 
frigate. The hull is seen at the top right corner, and the 
undisturbed free surface is in the middle of the dense 
spacing of the horizontal lines. Computations are to be 
carried out using the free-surface capturing method, to 
be explained later, and the grid extends above the un-
disturbed surface. Note that close to the boundaries, 
where a very high resolution in the normal direction 
is required, a structured grid is used. A high enough 
resolution in this region can hardly be achieved with 
a completely unstructured grid, but other techniques 
based on prisms in the normal direction are also used. 
The grid shown is based on planes of constant x, even 

for the unstructured part. Grid cells in this plane are 
triangles. In a completely unstructured grid, the cells 
are most often tetrahedra, and are not aligned with 
cross-sections.

9.7.5 Discretization.

9.7.5.1 THE GENERAL TRANSPORT EQUATION. The RANS 
equations (9.46) and the two turbulence equations (9.57) 
and (9.58) may be written in a common format

��
 _

�t

   � _

�xi

(ui�) �   � _
�xi

(�   
��

 _
�xi

)
 S (9.60)

where � is the general dependent variable (i.e., ui, k,
or �), � is a generalized diffusion coeffi cient, and S* is 
a source term. The defi nitions of � and S are linked to 
the dependent variable and differ considerably between 
the RANS equations and the turbulence equations. Sub-
sequently, the overbar is dropped for mean quantities.

Equation (9.60) is a general transport equation for the 
quantity �. Referring to an infi nitesimal fl uid element, it 
may be interpreted as

Rate of increase of � 
 Net rate of fl ow of � out �
Rate of increase of � due to diffusion 
 Rate of 

increase of � due to sources

The fi rst term is only relevant for unsteady problems, 
and most fl ows in ship hydrodynamics are indeed un-
steady. However, when computing the calm water re-
sistance of a ship, the fl ow may be considered steady, 

Figure 9.17 Unstructured grid around a frigate (Deng, Guilmineau,  Queutey, & Visonneau, 2005; courtesy of the authors).

*This scalar is not to be mixed up with the rate of strain rate 
tensor Sij defi ned in equation (9.41)!
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as has been seen in connection with the potential fl ow 
methods. Then the fi rst term is zero. The second term 
represents the effect of convection of the fl uid quantity 
of interest (i.e., the transport of the quantity by the ve-
locity of the fl uid).

On the right-hand side, the fi rst term expresses the 
effect of diffusion of the quantity. In theory, this dif-
fusion is only because of molecular motions, but as 
we have introduced the Reynolds stresses in previous 
equations, the diffusion by the macroscopic turbulent 
motions should be included as well. The convection is 
thus, in our approximation, only due to the mean veloci-
ties. Sources in the fl uid element represent mechanisms 
for producing the quantity in question. A negative sign 
means that the quantity is destroyed.

In the following, we shall look at the numerical so-
lution of equation (9.60), which has several important 
properties.

First, equation (9.60) is nonlinear. In the convective 
term, the transported quantity � is multiplied by the 
unknown velocity ui.* To resolve this problem, itera-
tions are required. By far, the most common technique 
is Picard linearization, where the required velocity is 
taken from a previous iteration.† This technique will be 
adopted in the following.

Second, convection and diffusion are two very 
different physical processes, and the numerical ap-
proximation has to refl ect these differences. Although 
 information can only be transported in the fl ow direc-
tion by convection, it is transported in all directions, 
even upstream, by diffusion. As we will see, the relative 
importance of these two transport mechanisms will 
have an impact on the discretization scheme.

Third, in the RANS equations, the source terms in-
clude the pressure gradient, which causes a problem 
because there is no explicit equation for the pressure. If 
the continuity equation is introduced, there are indeed 
as many equations (six) as there are unknowns (u1, u2,
u3, p, k, �), so the system of equations is closed, but the 
fact that the continuity equation does not include pres-
sure causes a major problem in the numerical solution. 
Different means for overcoming this problem will be 
discussed in Section 9.7.5.3, but fi rst we will discuss the 
discretization of the linearized equations.

9.7.5.2 DISCRETIZATION OF THE CONVECTION-DIFFUSION

EQUATION. The problems associated with the numeri-
cal solution of convection-diffusion problems may be 
explained by considering a simple 1D case. Because the 

time derivative and the source term do not infl uence the 
particular behavior of interest, they may be dropped as 
well. Here, we will start with this simplifi ed problem, 
thereafter generalizing to the fully 3D case.

After introducing the simplifi cations, equation (9.60) 
reads

d_
dx

 (u�) �   d_
dx (�   

d�
 _

dx ) (9.61)

This has to be solved together with the continuity 
equation

du_
dx

� 0 (9.62)

The notation used in the following is defi ned in 
Fig. 9.18. P represents the node point in the control vol-
ume where the equation is to be discretized and W and E
the west and east neighboring nodes. w and e represent 
the west and east faces of the control volume and the �s
stand for distances, as seen in Fig. 9.18. A is the cross-
section of the control volume. The task is to derive a 
formula relating � at P, �P, to � at W and E, �W and �E,
respectively.

Two different techniques dominate in hydrody-
namic CFD to link the nodal values. In the fi nite 

difference techniques, the derivatives in the govern-
ing equations are replaced by fi nite difference ap-
proximations derived from Taylor expansions of the 
unknown function [see the derivation of the order of 
accuracy below, equations (9.77) and (9.78)]. In the 
fi nite volume methods, on the other hand, the nodes 
are linked through integration of the equations over 
each grid cell (control volume). At the most recent 
hydrodynamics CFD workshop (Hino, 2005), approxi-
mately two-thirds of the  methods belonged to the 
second category, and this is also the most common 
technique in commercial CFD software, so it will be 
adopted here. It is interesting to note that the fi nite 

element technique, which completely dominates in 
structural mechanics, is very little used in CFD, par-
ticularly in hydrodynamics. No fi nite element method 
has been used in any of the four hydrodynamic CFD 
workshops since 1990.

Integrating equation (9.61) over the 1D control vol-
ume yields

 (uA�)e � (uA�)w �   (�A
d�

 _
dx )  

e


   (�A
d�

 _
dx )  

w

 (9.63)

and equation (9.62) gives

 (uA)e � (uA)w � 0 (9.64)

*Under some circumstances, the fl ow may be assumed un-
infl uenced by the transported quantity �. This may hold, for 
instance, for chemical species in a pollution problem. Then 
the fl ow may be computed fi rst and the known velocities in-
troduced in the transport equation for �. This equation is then 
linear.
†More rapid convergence is obtained using Newton lineariza-
tion (Ferziger & Peric, 1999), but the equations become con-
siderably more complex. Figure 9.18 Notation for 1D convection-diffusion problem.

W P Ew e

x � �xwe

�xwP

�xWP �xPE

�xPe
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Now, defi ne two quantities representing the volume 
fl ux per unit area, F, and the diffusion conductance, D,
respectively

F � u D �   � _
�x

 (9.65)

Because the governing equations (9.46) and (9.48) are 
written in Cartesian coordinates, the cross-sectional 
area A is inherently assumed constant along the control 
volume.* Equations (9.63) and (9.64) may now be  written

Fe�e � Fw�w � De(�E � �P) � Dw (�P � �W) (9.66)

and

Fe � Fw � 0 (9.67)

where the x-derivatives in the diffusion terms of equa-
tion (9.63) have been obtained by a central fi nite dif-
ference approximation (see later) of the values at two 
neighboring node points. Fe and Fw are assumed known, 
normally from a previous iteration.

In order to link �P to �W and �E, the values of � at 
the west and east boundaries, �w and �e, must be cal-
culated. Several different schemes for this interpolation 
have been proposed. Here, we will take a look at the 
three most common ones.

Central differencing means that the function is ap-
proximated as a straight line between two points, one on 
each side of the point where the function is to be evalu-
ated. This approach was used for approximating the de-
rivative in the diffusion terms. It seems natural to apply 
the same approximation for obtaining �w and �e, in the 
convective terms. For constant grid spacing, we get

�w � (�W 
 �P)/2 (9.68)

and

�e � (�P 
 �E)/2 (9.69)

If this is inserted into equation (9.66), the following 
expression is obtained

 Fe(�P 
 �E)/2 � Fw(�W 
 �P)/2
� De (�E � �P) � Dw (�P � �W) (9.70)

Collecting the coeffi cients in front of �P, �W, and �E,
this relation may be written

aP�P � aW�W 
 aE�E (9.71)

where

aW � Dw 
   Fw_
2
   (9.72)

aE � De �   Fe_
2
   (9.73)

aP � aW 
 aE 
 (Fe � Fw) (9.74)

or, using equation (9.67),

aP � aW 
 aE (9.75)

To solve equation (9.61), the expression (9.71) is used 
for all grid nodes. This yields a system of equations in 
the unknown � at all nodes. Note that the boundary 
conditions have to be considered as well.

Central differencing seems a natural choice, but it is 
easy to show an example where it fails completely. For 
instance, assume the following

Dw � De � 1 Fw � Fe � 4 �W � 100 �E � 200

The result is �P � 50. Now, for a convection-diffusion 
problem in the absence of sources, it is physically im-
possible for the value to fall outside the range defi ned 
by the values at the neighbors, so the result is wrong!

In order to ensure a physical behavior of a discreti-
zation scheme, it must possess three basic properties. 
The fi rst one is boundedness, which states that in the 
absence of internal sources, the value of any quantity �
shall be bounded by its boundary values. To ensure this, 
all coeffi cients in the discretization scheme must have 
the same sign. This means physically that an increase in 
� at one point shall imply an increase also in the neigh-
boring points.

According to the defi nition of aE in equation (9.73), 
its sign depends on the relative magnitude of Fe and De.
Defi ning a local Peclet number as

Pe �   F_
D

 (9.76)

its value at the east face, Pee, will determine the sign of 
aE. The requirement for aE to be positive is that Pee � 2. 
On the other hand, aW will be negative for Pew � �2, 
so the same sign of all coeffi cients is ensured only if  
� Pe � � 2.

This constraint on Pe is satisfi ed for suffi ciently small 
F (i.e., suffi ciently low velocity), according to the defi ni-
tion in equation (9.65). However, according to the defi ni-
tion of D in the same formula, this quantity is inversely 
proportional to the grid step size, so the smaller the step 
the larger the value of D, and the larger the permissible 
velocity. High velocities thus require fi ne grids. In our 
example, Pe � 4, so the requirement on boundedness is 
not satisfi ed.

The second requirement of the discretization scheme 
is transportiveness. As the Peclet number increases, the 
infl uence of convection on the transportation becomes 
more and more pronounced, relative to that of diffusion.
This means that the higher the Peclet number, the more 
important the upstream infl uence of the transportation. 
For high Peclet numbers, the discretization scheme 
therefore must be adapted to the direction of the fl ow. 
Obviously, the central differencing scheme does not 
satisfy this requirement because it puts an equal weight 
upstream and downstream.

*For A to be variable, the equations must be written in cur-
vilinear coordinates. Metrics and their derivatives are then 
introduced, and they would have been retained also in the 1D 
equations (9.61) and (9.62). Note that the present approach 
yields u � const, which means that equation (9.61) is linear. 
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A third requirement is conservativeness. This means 
that no fl ux shall be lost or generated at boundaries be-
tween grid cells. The fl ow that enters a cell through a 
face shall be exactly equal to that leaving the adjacent 
cell. This is accomplished by applying the same expres-
sion for the fl ux at both sides of the face. As we have 
seen, this is indeed the case for central differencing, but 
we may envisage a scheme where different expressions 
are used. For instance, if a higher order (i.e., higher 
order than linear) interpolation is used for obtaining 
the values at a cell face, more grid points than those 
next to the cell face are included in the approximation. 
These “extra” points may well be different, depending 
on whether the face is considered an east boundary in 
a cell or a west boundary of the adjacent cell. The ap-
proximation of the fl uxes may then be different. Note 
that not all higher order discretization schemes suffer 
from this problem.

Having discussed the three fundamental require-
ments of a discretization scheme, it may be of interest 
also to discuss its accuracy. In the derivation of the 
discretization formula (9.71), two approximations were 
made. The fi rst one was related to the x-derivatives in 
the diffusion terms of equation (9.63). These were to be 
evaluated at the cell faces e and w. In equation (9.66), 
the derivatives were computed by central differencing 
using the values at the two adjacent nodes (i.e., E,P and 
P,W, respectively). The second approximation was made 
in the computation of the �-values at the cell faces, re-
quired in the convective terms of equation (9.63). Ac-
cording to equation (9.68) and (9.69), �e and �w were 
approximated by linear interpolation between the adja-
cent grid points. We will analyze both approximations.

To compute the error of the derivative approxima-
tion, use Taylor expansion forward and backward from 
a point x

�(x 
 �x) � �(x) 
   ( ��
 _

�x )
x

�x 
   ( �2�
 _

�x2   )
x

   �x2_
2
   
 HOT (9.77)

�(x � �x) � �(x) �   ( ��
 _

�x )
x

�x 
   ( �2�
 _

�x2   )
x

   �x2_
2
   
 HOT (9.78)

where HOT stands for higher order terms.
Subtracting the two equations and dividing by twice 

the step size gives

   
�(x 
 �x) � �(x � �x)

  ___  
2�x

�   ( ��
 _

�x )
x


 �(�x2) (9.79)

where the last term means terms of order �x2 (higher 
order terms are also included).

Equation (9.79) shows that the approximate deriva-
tive on the left-hand side differs from the exact deriva-
tive on the right-hand side only by the last term of or-
der �x2. The error is thus proportional to the step size 
squared and the method is said to be of second order. 
When �x is reduced, for instance, in a grid refi nement 
study, the error is reduced as �x2.

Applying equation (9.79) to the east face of the con-
trol volume, x defi nes position e, x 
 �x position E and 
x � �x position P. If �x is set equal to �x /2,* the follow-
ing expression is obtained for the derivative at e

( ��
 _

�x )
e

�   
�E � �P_

�x
� �(�x2) (9.80)

that is, the approximation is second order accurate. The 
same conclusion holds for the derivative at the west face.

The approximation of the face values in the convec-
tive terms may be analyzed easily by adding equation 
(9.77) and (9.78). Dividing by two, this yields

   
�(x 
 �x) 
 �(x � �x)

  ___  
2

� �(x) 
 �(�x2) (9.81)

that is, the approximate value of � at x differs from the 
exact value by terms of order �x2. This approximation 
is then also of second order. Defi ning the position of e,
E, and P as previously shown, we see that

�e �   
�E 
 �P_

2
   � �(�x2) (9.82)

similarly for �w. We have now shown that the central dif-
ferencing approximations related to both diffusion and 
convection are of second order.

It may now be of interest to look at another differenc-
ing scheme, where the drawbacks related to bounded-
ness and transportiveness are removed. Such a scheme 
is obtained by upwind differencing. Note, however, that 
we only need to modify the approximation related to 
convection. Central differencing is very suitable for dif-
fusion, and it is used in most CFD methods.

The simple approach in upwind differencing is to 
set the face value equal to the value at the closest up-
stream node point. Thus for uw � 0 and ue � 0, �w � �W

and �e ��P, whereas for uw � 0 and ue � 0, �w � �P and 
�e � �E. In the fi rst case (i.e., fl ow in the positive direc-
tion), the equivalent of equation (9.70) reads

Fe�P � Fw�W � De(�E � �P) � Dw(�P � �W) (9.83)

Using the discrete continuity equation (9.67), Fe � Fw

and equation (9.83) may be rewritten as

aP �P � aW �W 
 aE �E (9.84)

that is, the same equation as (9.71). The difference lies in 
the coeffi cients, which now are

aW � Dw 
 Fw (9.85)

and

aE � De (9.86)

As before [equation (9.75)]

aP � aW 
 aE (9.87)

*Note that for the derivation to be exact, the cell face has to 
be midway between E and P. This may not be the case for 
stretched grids, and then the order of magnitude analysis will 
only be approximate. 
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For fl ow in the negative direction

aW � Dw (9.88)

and

aE � De � Fe (9.89)

and equations (9.84) and (9.87) are unchanged. Short 
forms of aW and aE, valid for both fl ow directions, are

aW � Dw 
 max(Fw, 0) (9.90)

aE � De 
 max(0, �Fe) (9.91)

In the upwind scheme, all coeffi cients are guaran-
teed to be positive. The boundedness criterion is thus 
satisfi ed. Further, the scheme obviously adapts to the 
direction of the fl ow and is thus transportive. Consis-
tent expressions are used in and out at a cell face so the 
scheme is also conservative. It therefore looks to be an 
ideal scheme, but as we will see, it is not as accurate as 
the central differencing scheme.

Apply equation (9.78) at the west boundary w. With 
�x as the distance between the node point W and w

�W � �w �   ( ��
 _

�x )
w

�x 
 HOT (9.92)

or

�w � �W 
 �(�x) (9.93)

The approximation is thus of fi rst order in �x, and 
the same holds for the east boundary. This means that 
the solution converges slower toward the continuous 
solution when the grid is refi ned, as compared to the 
second order central difference scheme. At least for 
coarse grids, the upwind difference solution is there-
fore too smooth; particularly if the grid lines in a 2D 
or 3D case are not aligned with the fl ow, consider-
able errors may occur. In fact, second order accuracy 
is considered the minimum for good CFD methods, 
and some journals refuse to accept results from fi rst 
 order methods.

We have now seen one discretization method which 
has good accuracy, but which turns unstable for Peclet 
numbers larger than 2. In addition, we have seen one 
method that is stable, but with poor accuracy. There 
are, however, a large number of other methods avail-
able, all of which attempt to optimize both accuracy 
and stability.

An early attempt by Spalding (1972) was to combine 
central and upwind differencing in such a way that cen-
tral differencing is used for all terms if  � Pe �� 2, whereas 
upwind differencing for convection terms and a total 
neglect of diffusion terms is used otherwise. This dis-
cretization is called the hybrid scheme.

A more accurate representation of the fl ux through 
the cell faces is obtained by the power law scheme pro-
posed by Patankar (1979). Here, diffusion is neglected for  
� Pe � � 10 and upstream differencing is used for convec-
tion. For  � Pe � � 10, the fl ux through a cell face exhibits a 

smoother dependence of Pe than for the hybrid method, 
where the approximation is rather  unsatisfactory near  
� Pe � � 2. In the power law, the fl ux depends on a fi fth 
power expression in Pe.

Another popular scheme is quadratic upstream in-

terpolation for convective kinetics (QUICK) proposed 
by Leonard (1979). Note that this is only used for the 
convective terms. Here, three node points are used for 
a quadratic interpolation of the values at the cell faces. 
The three points are the closest ones on each side of the 
face plus another one upstream.

Both the hybrid and the power law schemes satisfy 
the requirements on boundedness, transportiveness, 
and conservativeness, but they deteriorate to fi rst order 
for high Peclet numbers. They are thus stable, but not 
highly accurate under all circumstances. This problem 
is avoided in the QUICK scheme, which may be shown 
to be third order accurate, again at the expense of less 
stability because boundedness cannot be assured for 
all fl ow conditions. QUICK does satisfy the transport-
iveness and conservativeness criteria, and the problems 
with unboundedness are often restricted to small over-
shoots in the solution.

It should be mentioned that there is also a large 
number of more modern schemes, which avoid the 
oscillations often seen in the QUICK solutions. This 
holds particularly for the so-called Total Variation 

Diminishing schemes developed for capturing shocks 
in aerodynamic computations (see Chakravarthy & 
Osher, 1985).

The numerical accuracy may be increased with-
out increasing the computational effort signifi cantly 
using the deferred correction approach (Khosla & 
Rubin, 1974). The formal accuracy of the discretiza-
tion depends on the degree of the polynomial used for 
interpolating values to the cell faces. The higher the 
degree of the polynomial, the higher the possible ac-
curacy. However, a higher degree of the polynomial 
requires more node points to determine its coeffi -
cients, which means that the discretization stencil 
(i.e., the node points involved in the discretization of 
the governing equation at one point) becomes large. 
This calls for a larger computational effort when solv-
ing the resulting system of equations. In the deferred 
correction approach, the values at points other than 
the closest ones are taken from a previous iteration. 
Only the values at the closest points are then consid-
ered as unknowns, which reduces the solution efforts. 
If the method converges, the difference between the 
previous and the new values tend to zero and the con-
verged solution is the same as for the higher order 
method.

Based on the simple equation (9.61), we have been 
able to derive a number of important properties of dis-
cretized convection-diffusion equations. These prop-
erties are common to the complete equation (9.60). As 
shown, for instance, in Patankar (1980), Versteeg and 
Malalasekera (1995), and Ferziger and Peric (1999), it is 
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relatively straightforward* to generalize the derivation 
to the general case and the result is as follows.

With N, S, T, and B representing the north, south, top, 
and bottom neighbors of the point P and n, s, t, and b
the cell faces with normals in these directions, the dis-
cretized equation (9.60) reads

aP�P � aE�E 
 aW�W 
 aN�N 
 aS �S 

aT�T 
 aB�B 
 b (9.94)

which can be compared with the discretized equation 
(9.61) in equation (9.71). A compact notation is

aP�P � � anb�nb 
 b (9.95)

where the index nb stands for a value at a neighboring 
point. Note that equations (9.94) and (9.95) do not ac-
commodate higher order techniques, where more nodes 
than the neighboring ones are involved. The generaliza-
tion is rather straightforward, however.

The coeffi cients of equations (9.94) and (9.95) are as 
follows

aE � DeA(� Pee �) 
 max(�Fe, 0) (9.96)

aW � DwA(� Pew �) 
 max(Fw, 0) (9.97)

aN � DnA(� Pen �) 
 max(�Fn, 0) (9.98)

aS � DsA(� Pes �) 
 max(Fs, 0) (9.99)

aT � DtA(� Pet �) 
 max(�Ft, 0) (9.100)

aB � DbA(� Peb �) 
 max(Fb, 0) (9.101)

 aP � aE 
 aW 
 aN 
 aS 
 aT 
 aB 
 a
P

0
 Sp�V (9.102)

b � Sc�V 
 a
P

0 �
P
0 (9.103)

The convective fl ow rate, F, and the diffusion conduc-
tance, D, may be defi ned as in equation (9.65), except 
that they now have to include the area of the cell face 
where they are to be evaluated

F � uAface Di �   � _
�xi

 Aface (9.104)

In the 1D derivation the area of the inlet cell face area 
was assumed to be the same as that of the outlet face, 
which meant that this area disappeared from the equa-
tion. For Cartesian coordinates in 3D, opposing cell 
faces will have the same area, but this area may differ 
in the three coordinate directions, so it needs to be re-
tained. Note that the step size used for defi ning D may 
differ between the three directions. The Peclet number, 
Pe, is defi ned as in equation (9.76)

Pei �   F_
Di

 (9.105)

 a
P

0  is a coeffi cient arising from the time derivative

a
P

0 � � 
P
0    �V_

�t
 (9.106)

The index0 refers to a known value from a previous 
time step.

SP and SC in the previous equations arise from a 
 linearization of the source term, which is expressed as

_
S � SC 
 SP�P (9.107)

where  
_
S is the mean value of S in the cell. The func-

tion A(Pe) differs between the different discretization 
schemes. For the central, upwind hybrid and power law 
schemes, it is given in Table 9.1 (Patankar, 1980).

The discretized form of the continuity equation reads

 Fe � Fw 
 Fn � Fs 
 Ft � Fb � 0 (9.108)

9.7.5.3 PRESSURE-VELOCITY COUPLING. The governing equa-
tions in a RANS method are the momentum equations 
(9.46), the continuity equation (9.48), and a set of equations 
for  turbulent quantities, such as equations (9.57) and (9.58). 
There is no explicit equation for pressure, but the pressure 
gradient in equation (9.46) drives the velocity and the veloc-
ity has to satisfy the continuity equation (9.48), so there is 
an indirect coupling between the pressure distribution and 
the continuity equation. In a large class of CFD methods, 
this link is used to derive an equation for the pressure or 
for the pressure correction. These kinds of pressure-based 

methods will be discussed, followed by a brief description of 
other alternatives.

Before we start the discussion of the pressure-based 
methods, we need to take a look at the discretization of 
the pressure gradient in equation (9.46). In the previous 
discussion, this gradient was assumed included in the 
source term of the general transport equation (9.60), but 
at this stage it has to be taken out of the source term 
and considered separately. A natural way to obtain the 
pressure gradient, for instance in the x-direction at the 
node point P, would be to use the pressure difference 
between the two opposing faces and divide by the cell 
length in this direction, in other words

( �p_
�x )  

P
  �   

pe � pw_

�x
 (9.109)

*Integrating equation (9.60) over a control volume in 3D in-
volves evaluations of both surface and volume integrals. 
Normally, these are approximated to second order by the 
function’s value at the cell face center times the face area, re-
spectively the value at the cell center times the cell volume 
(Ferziger & Peric, 1999).

Table 9.1 The Function A (P ) for Different Discretization Schemes

Scheme A(P)

Central difference 1 �   1_
2

    � Pe �

Upwind 1

Hybrid max (0, 1 �   1_
2

    � Pe � )
Power law max (0, 1 �   1_

10
    � Pe �5 )
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The problem with this approach is that p is not known 
at the cell faces. Let us assume that it is obtained by lin-
ear interpolation between the closest node points. This 
gives*

pe �   
pE � pP_

2
pw �   

pP � pW_

2
 (9.110)

and, after introduction in equation (9.109)

( �p_
�x )  

P
  �   

pE � pW_

2�x
 (9.111)

The pressure gradient is thus obtained from the pres-
sures at the two node points adjacent to P, but the value 
at P is not included. This sparse discretization stencil 
may give rise to point-to-point oscillations in the pres-
sure. See, for instance, the 1D pressure distribution 
shown in Fig. 9.19.

Using the discretization formula (9.111), the pres-
sure gradient obtained at all node points will be zero, 
in spite of the fact that the pressure fl uctuates heavily. 
Similar problems may occur in all three directions of 
a 3D  problem. This is not an acceptable feature of the 
numerical method.

The classical remedy to the point-to-point oscilla-
tion problem (checker-board oscillations in 2D) is to 
shift the location of the cells for discretizing the ve-
locity components. Thus, only the scalar values, like 
pressure or turbulence quantities, are computed at 
the regular grid points, whereas velocity components 
are computed at the cell faces. The u-velocity is thus 
obtained at the center of the east cell face, and a new 
cell is constructed around this point. Similarly, a new 
cell for the v-velocity is defi ned around the center of 
the north face and cell for the w-velocity around the 
top face center. We now have a staggered grid. It is 
messy to display in 3D, but a 2D example is shown in 
Fig. 9.20.

Using the staggered grid, the computation of the 
pressure gradient becomes very simple and the point-
to-point oscillation problem is removed. See, for in-
stance, the computation of the pressure gradient in the 
u-cell shown in Fig. 9.21 . The cell is centered around the 

point e, and the pressure gradient is naturally obtained 
from the values at E and P

( �p_
�x )  

e
  �   

pE � pP_

�x
 (9.112)

The discretization stencil for the pressure gradient is 
now compact and contains values at two adjacent node 
points. Similar discretization can be done in the other 
two coordinate directions.

Because staggered grids solved the pressure oscilla-
tion problem, they were very popular during the 1970s 
and 1980s, but during the 1990s the interest in these grids 
decreased, mainly because of the increased  complexity 
in storing unknowns at different locations, especially in 
3D. In the following, we will derive the most common 
equations for pressure-velocity coupling in staggered 

*Assuming constant grid spacing. The problem to be discussed 
is present also for varying spacing, but in a less clear way.

Figure 9.19 Point-to-point oscillations in pressure.

Pressure

W P Ew e

x

Figure 9.20 A 2D staggered grid. Pressure and turbulence quantities are 
computed at the grid nodes, marked as circles. u-velocities are obtained at 
the location of the horizontal arrows, and v-velocities are obtained at the 
vertical arrows. For u and v, new cells are constructed around the arrow.

y

x

y

x

P Ee

Figure 9.21 A cell for discretization of the u-velocity.
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grids, thereafter explaining their use also in nonstag-
gered (colocated) grids.

Let us fi rst write equation (9.95) for a u-cell with the 
pressure gradient removed from the constant b (which 
is thus redefi ned).

aeue � �    anbunb 
 b �   
pE � pP_

�x

Vu (9.113)

where �Vu is the volume of the u-cell (�Vu comes 
from the integration over the cell). The equation may 
be written

aeue � �    anbunb 
 b 
 (pP � pE)Ae (9.114)

The fact that the cell is now centered around e rather 
than P does not change the expressions for the con-
stants, but the fl ow rate, F, and diffusion conductance, 
D, must now be evaluated at E and P, rather than e and 
w. Equations corresponding to equation (9.114) may be 
set up for v and w.

The basis for pressure-based methods is the semi-im-
plicit method for pressure-linked equations (SIMPLE) 
algorithm proposed by Patankar and Spalding (1972). 
In SIMPLE, an equation for the pressure correction is 
used. It will now be derived.

Assume that an estimate, p*, of the pressure fi eld is 
known. Inserting this into equation (9.114) yields a ve-
locity fi eld, u*, from the following equation

aeu*e � �    anbu*nb 
 b 
 (p*P � p*E)Ae (9.115)

Because the pressure is not likely to be correct, there 
is an error also in the velocities. To obtain the right val-
ues, corrections have to be added. If these are denoted 
by primes, the following relations hold

 p � p* 
 p� (9.116)

 u � u* 
 u� (9.117)

If equation (9.115) is subtracted from equation (9.114), 
an equation for the velocity correction is obtained

aeue� � �    anbunb� 
 (pP� � pE�)Ae (9.118)

In the SIMPLE algorithm, it is assumed that �anbunb�
is negligible relative to the pressure term. This is 
not well substantiated and may be a reason why the 
method converges slowly, but it should be noted that 
on convergence, all u� shall be negligible, so there is 
no error introduced in the fi nal solution. We thus have, 
approximately

 aeue� � (pP� � pE�)Ae (9.119)

Introducing de � Ae /ae, the correct velocity ue may be 
written using equation (9.117)

 ue � u*e 
 de(pP�� pE�) (9.120)

This is a velocity correction formula, and similar 
 expressions can be derived for the two other velocity 
components. To obtain a pressure correction formula, 
equation (9.120) and its counterparts are introduced 

into the discretized continuity equation (9.108). The re-
sult may be written

 aPpP� � aEpE� 
 aWpW� 
 aNpN� 
 aSpS� 

aTpT� 
 aBpB� 
 b� (9.121)

where

 aE � (Ad)e aW � (Ad)w aN � (Ad)n (9.122)

 aS � (Ad)s aT � (Ad)t aB � (Ad)b (9.123)

 aP � aE 
 aW 
 aN 
 aS 
 aT 
 aB (9.124)

and

 b� � (u*A)w �(u*A)e 
 (v*A)s � (v*A)n 

 (w*A)b � (w*A)t

(9.125)

Note that �b� corresponds to the left-hand side of the 
continuity equation (9.108) if u* rather than u is used for 
defi ning the fl ow rate F. Thus, when the iterations con-
verge and u* approaches u, b� will tend to zero. As long 
as b� is non-zero, it will act as a source term to force the 
pressure correction to yield a fl ow fi eld satisfying the 
continuity equation. Note that if the guessed pressure 
p* is far from the correct one, the pressure correction 
will be so large that the iterative process diverges. To 
resolve this problem, underrelaxation is used. In every 
new iteration, only part of the newly computed correc-
tions for pressure and velocities are included.

We are now in a position to describe the iterative 
scheme in SIMPLE:

1. Start with a guessed pressure fi eld p*. This could 
come from, for instance, a potential fl ow solution. Even 
assuming a constant pressure will work with suitable 
underrelaxation.

2. Use p* and solve equation (9.115) and its coun-
terparts in the other two directions. This yields u*, v*, 
and w*.

3. Compute p� from equation (9.121).
4. Calculate p from equation (9.116) using p* and p�.
5. Calculate u, v, and w from equation (9.120) and its 

counterparts in the other two directions.
6. Solve the transport equation (9.95) for turbulence 

quantities using the just computed velocity fi eld.
7. Return to step 2 and use the calculated p from step 

4 as the new guessed pressure p*. Continue the process 
until convergence.

The weakest point of SIMPLE is the neglect of the 
neighboring correction velocities �anbunb� in equation 
(9.119). This makes the burden of the pressure correc-
tion rather heavy and considerable underrelaxation will 
be required. However, as shown by Patankar (1980), the 
velocity fi eld often converges much more rapidly than 
the pressure fi eld, so a more effi cient algorithm could be 
constructed if the pressure correction was used only to 
update the velocities, and the pressure itself was com-
puted by another procedure. This is done in SIMPLE 
Revised (SIMPLER; Patankar, 1979). Here a  separate 



148 SHIP RESISTANCE AND FLOW 

 equation for the pressure, p, is used. This equation turns 
out to look the same as the one for the pressure correc-
tion p�,  equation (9.121), and the only difference lies in 
the computation of the source term b�, which can now be 
computed from a known velocity fi eld. SIMPLER there-
fore starts with a guessed velocity fi eld used to obtain a 
pressure, which can be set as the initial guess, p*, needed 
in the SIMPLE algorithm. The rest of the iteration sweep 
is unchanged, but the pressure is never updated by the 
pressure correction; it is always computed from the 
pressure equation at the beginning of each sweep.

Another variant of SIMPLE is SIMPLE Consistent 
(SIMPLEC; van Doormal & Raithby, 1984), which in-
cludes a modifi cation of the velocity correction equation 
(9.119), such that the approximation is less severe. Oth-
erwise, the procedure is the same as that of SIMPLE.

Of the three pressure-velocity coupling techniques 
described so far, SIMPLER is by far most widely used. 
It is known to converge considerably faster than both 
SIMPLE and SIMPLEC. However, another technique, 
known as Pressure Implicit with Splitting of Operators, 
or PISO (Issa, 1986), has gained in popularity in recent 
years. Here, a second pressure correction step is intro-
duced, where a second pressure correction equation is 
solved to yield an updated pressure from which the ve-
locity fi eld is obtained. Otherwise, the procedure is the 
same as for SIMPLE.

Staggered grids solve the problem with point-to-point 
oscillations, but they are not convenient in 3D problems, 
particularly if the grid is curvilinear. Therefore, a tech-
nique proposed by Rhie and Chow (1983) has become 
popular in recent years. Using this approach, SIMPLE 
and its variants can be used also on colocated grids.

Checking the SIMPLE procedure described, it is seen 
that it can be used together with a central differencing 
scheme for obtaining the starred velocities u*, v*, and w*, 
if only the source term b� in the pressure correction equa-
tion can be estimated. b� is obtained from equation (9.125), 
where the starred velocities are required at the cell faces.

It seems natural to just interpolate these velocities 
linearly to a cell face using the values computed at the 
adjacent nodes. However, this would lead to the same 
problem with point-to-point oscillations as we have seen 
for p previously. A simple 1D example will show this.

In 1D, assuming a constant face area, equation (9.125) 
may be written

 b� � u*w � u*e (9.126)

Linear interpolation* yields

b� �   u*P 
 u*W_
2
   �   u*E 
 u*P_

2
   �   u*W 
 u*E_

2
   (9.127)

The discretization point P is thus not involved in the 
computation of the source term b�. In a point-to-point 
 oscillation, where the values at W and E are the same, 
but different from that at P, the source term in the 

p�- equation (9.121) would be zero, and no pressure cor-
rection would be computed, in spite of the fl uctuating 
pressure fi eld.

To resolve the problem, Rhie and Chow (1983) pro-
posed adding a damping term to the computation of b�.
The task of the damping term should be to reduce os-
cillations, and its order should be higher than that of 
the basic discretization scheme, so that the formal order 
of accuracy of the method would not change due to the 
inclusion of this artifi cial term. A suitable form of the 
damping term was also derived. It was shown to be of 
fourth order in �x and thus formally smaller than the 
second or third order errors obtained in most discreti-
zation schemes. Using this damping, point-to-point os-
cillations are effectively damped.

The pressure-based procedures described so far are 
all based on iterations, where the transport equations 
are solved sequentially (segregated solutions) in each 
sweep of the solution process. This takes care of the 
nonlinearity as well as the coupling between the equa-
tions. In the CFD vocabulary, these iterations are often 
referred to as outer iterations, and the inner iterations 
are related to the solution of the system of equations. 
For time dependent problems, there is also a time- 

stepping loop outside of the two iteration loops. Con-
vergence of the latter is required before a new time step 
can be taken. However, in many cases, time-stepping 
methods are used also for steady state computations. 
In this case, the solution converges in time toward the 
steady state, but the iterations in each time step do not 
have to be fully converged.

Although the pressure-based methods dominate hy-
drodynamic CFD, there are other methods in use. In a 
compressible fl ow, the continuity equation contains a 
time derivative of the density, and pressure is linked to 
density through an equation of state. There is thus a di-
rect coupling between pressure and velocities. This is 
not so for incompressible fl ows, where density is inde-
pendent of pressure, but one idea proposed by  Chorin 
(1967) is to include an artifi cial time derivative of the 
pressure in the continuity equation for steady state 
incompressible fl ows. If the steady state is reached 
through time stepping, this extra term will tend to zero 
as the solution converges. The continuity equation may 
then be written

1_
�

     
�p_
�t


   � _
�xi

(�Ui) � 0 (9.128)

where � is a parameter, whose value has to be chosen by 
experience. Values of � that are too large make the sys-
tem of equations diffi cult to solve (i.e., an iterative equa-
tion solver will converge slowly). On the other hand, 
values that are too small will put strong requirements 
on the convergence of the global time-stepping scheme. 
Techniques based on this approach are known as artifi -
cial compressibility methods.

Techniques that have gained in popularity in re-
cent years are the direct solution methods where no *Constant spacing.
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explicit pressure equation is used. An early method of 
this kind was proposed by Rubin (1984). The system 
of equations is solved directly with at least the mo-
mentum and continuity equations coupled. Methods 
based on this technique are those by Hoekstra (1999), 
and Regnström et al. (2005). Present experience from 
the methods is that they are more robust than the tra-
ditional segregated methods and converge faster, par-
ticularly for the very stretched grids used in full-scale 
computations.

9.7.6 Boundary Conditions. Boundary  conditions 
for velocities and pressure have been discussed in 
Section 2.4 in connection with the derivation of the 
Navier-Stokes equations. These are the mathematical 
conditions needed for a the solution of the continuous 
differential equations. In the numerical solution of the 
RANS equations, some boundary conditions have to be 
modifi ed because we now have a fi nite computational 
domain with artifi cial external boundaries. Here we 
will treat conditions for the following boundaries:

1. Inlet
2. Outlet
3. Symmetry (centerplane and water surface)
4. External
5. Wall 

9.7.6.1 INLET. In most CFD methods for the fl ow 
around the hull, the inlet plane is located well in front of 
the hull, so in principle undisturbed conditions may be 
applied. The axial velocity is then set equal to the ship 
speed and the other two components are set to zero. Dif-
ferent ways of setting the pressure are used. Dirichlet 
conditions (i.e., fi xed values) are specifi ed in some cases. 
In double-model solutions, the pressure is then set to a 
constant; in a free-surface case, the effect of the hydro-
static pressure has to be added. Neumann conditions 
(i.e., zero derivative normal to the inlet plane) are used 
in some methods and in others the pressure is extrapo-
lated from interior nodes. Even if turbulence should be 
negligible at this position, inlet values of transported 
quantities such as k and � or % must be specifi ed. These 
are computed based on estimated length and velocity 
(or turbulence intensity) scales.

9.7.6.2 OUTLET. At the outlet plane the fl ow is not 
known, even if it is placed far downstream, because 
the wake from the hull has to pass the plane. Therefore, 
velocities or turbulence quantities cannot be specifi ed. 
The usual choice is to specify a Neumann condition for 
these quantities. Zero variation of the quantities normal 
to the plane is thus assumed. Alternatively, zero diffu-
sion may be assumed, which means zero second deriva-
tive normal to the plane of these variables. As to the 
pressure, the Neumann condition could be specifi ed 
as well, but if this condition has also been applied up-
stream, the pressure must be given at one point at least. 
Otherwise, the magnitude of the pressure in the compu-
tational domain would be undetermined; only the gra-
dients could be computed. If the plane is far away, say 

at least half a ship length, the pressure may be assumed 
undisturbed. Some methods apply this condition for all 
outlet points.

9.7.6.3 SYMMETRY. Symmetry conditions are nor-
mally applied at the centerplane outside the hull and (in 
the double-model approximation) at the water surface. 
At the centerplane, this is a true condition only if the 
(symmetric) hull is moving straight ahead and there is 
no propeller action. The propeller induces rotation in 
the slipstream, which is not accounted for if symmetry 
is assumed. Most ship fl ow calculations are, however, 
without a propeller, and even if the propeller is included, 
the slipstream rotation is often neglected. This assump-
tion reduces the computational effort considerably be-
cause the grid then has to cover only one side of the hull. 
Symmetry conditions for tangential velocities, pressure, 
and turbulence quantities are zero gradient normal to 
the surface (i.e., a Neumann condition). For the velocity 
component normal to the surface, a Dirichlet condition 
applies: this velocity component is zero.

9.7.6.4 EXTERNAL. At the external (or far-fi eld) bound-
ary of the computational domain symmetry conditions 
are often applied. This means that there is no fl ow 
through the boundary and the normal derivative of the 
tangential velocity is zero, implying no shear stress at the 
surface. Therefore, symmetry conditions are also called 
slip conditions. Great care should be exercised when ap-
plying this condition at the external boundary because 
the fl ow is then constrained by the “tube” defi ned by the 
boundary. If this is far away, say at least a ship length, 
this is acceptable, but if the boundary is closer, there 
must be a way for the fl ow to pass the boundary. This can 
be accomplished by applying Dirichlet conditions for all 
variables except the normal velocity. The latter may be 
determined by applying the continuity equation at cells 
adjacent to the boundary. Values for the Dirichlet condi-
tion may be set the same as at the inlet (i.e., undisturbed 
fl ow), or they may be obtained from a matching potential 
fl ow solution at the boundary.

9.7.6.5 WALL. Two types of wall boundary condi-
tions are used. The most straightforward one is the no-
slip condition, where all velocity components are zero. 
With zero tangential velocity, the pressure gradient 
normal to the wall is also zero according to the rela-
tion between streamline curvature and pressure gradi-
ents in  Section 5.2.2.* A Neumann condition can thus be 
 applied on the surface.

The no-slip condition implies that the fl uctuating part 
of the velocity is also zero, which means that k is zero 
on the surface.

As shown by Wilcox (1998), � tends to infi nity as 
y approaches zero. A fi nite value can be determined, 

*In Section 5.2, the effect of the viscous stresses is neglected, 
but because the normal velocity is identically zero on the sur-
face, and so is its derivative in the normal direction (due to 
continuity), there will be no viscous stresses in the normal 
direction generated.
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 however, if the surface is assumed to have a roughness. 
This value may be obtained from

% �   u�
2

_
� SR (9.129)

where SR is defi ned as

SR �
     

50_
kS


    kS

 � 25

    100_
kS


    kS

 � 25  

 (9.130)

and kS

 is the nondimensional equivalent sand rough-

ness (see Section 6.8.2) defi ned by

kS

 �   u�kS_

�  (9.131)

In practice, a small value (kS

 � 5) is set for a hydrau-

lically smooth surface.
The surface boundary condition for � is more diffi cult 

to express in a simple way because the � equation can-
not be directly integrated through the viscous sublayer. 
A large number of so-called low Reynolds number cor-
rections to the equation have been proposed. These yield 
different boundary conditions, the simplest one being a 
Neumann condition. For a review, see Wilcox (1998).

To resolve the boundary layer close to the wall, the 
grid has to be extremely fi ne in this region. With y1

 defi ning the distance from the wall to the fi rst discreti-
zation point, a corresponding y


1 may be obtained ac-
cording to the defi nition (6.23)

y

1 �   

u�y1_
�  (9.132)

y

1 should be no larger than 1 for the no-slip conditions to 

be applied, so the point has to be well within the  viscous 
sublayer (see Section 6.3.3). Note that y


1 � 1 corresponds 
to a distance of about three microns for a full-scale ship.

A large number of points may be saved if the fl ow 
 closest to the wall is modeled by empirical relations such 
as the wall law, equation (6.27). In this wall function ap-
proach, y


1 is typically in the range 30 � y

1 � 100. Bound-

ary conditions for the velocity are then set at y1. Because 
the wall law requires a value of u�, the skin friction has 
to be estimated. One way of doing this is to fi t the wall 
law to u2 (i.e., the value at the second point) in the previ-
ous iteration. v1 is obtained by setting v1/u1 equal to v2/u2

in the previous iteration and w2 is set to zero.
Boundary conditions for k, �, and � may be obtained 

in a straightforward way by assuming that the effects of 
convection, pressure gradient, and molecular diffusion 
may be neglected in the wall law region (the wall law 
itself may be derived from the momentum equations in 
the same way). The result for the k � � model is

 k �   u�
2

_
�
_
�*

   � �   u� _
�
_
�*�y1

(9.133)

where � is the von Kármán constant (see Section 6.3.3) 
and "* is defi ned in connection with the model (9.58). 
For the k � � model, the following relations hold

 k �   u�
2

_

�
_
C�  

  � �   u�
3

_
�y1

   (9.134)

where Cμ is a constant in the k � � model (� 0.09).

The disadvantage of the wall law is that the assump-
tions on the near wall fl ow might deteriorate under cer-
tain conditions, such as close to separation. Experience 
shows that bubble-type separation is delayed and that 
vortex-type separation is reduced. Wall laws are there-
fore avoided as boundary conditions in modern hydro-
dynamics CFD.

9.8 Prediction of Viscous Flow with a Free Surface. In 
Section 9.7, the free surface was assumed to be a sym-
metry plane (i.e., the double model approximation was 
applied), and no waves were considered. In the pres-
ent section, we will introduce the free-surface waves. 
Note that this is just another boundary condition; the 
main solution procedure for the RANS equations, as de-
scribed in Section 9.7, is still applicable.

Before we go into the fully viscous approach, we will 
introduce a hybrid method employing both potential 
fl ow and RANS methods.

9.8.1 The Hybrid Approach. Because the intro-
duction of the free-surface boundary conditions in the 
RANS method will call for a considerably increased 
computer effort, at least if the waves away from the 
hull are to be computed without too much damping, it 
is tempting to try to combine potential fl ow and RANS 
methods. Then the free-surface waves could be com-
puted fi rst using the potential fl ow method and there-
after the viscous fl ow could be calculated with a fi xed 
wavy free surface. The computational effort required 
for the RANS solution would then be approximately the 
same as for the double-body approach of Section 9.7. 
This hybrid approach was fi rst presented by Raven and 
Starke (2002), who fi tted their viscous fl ow grid to their 
precomputed wavy surface and applied free-slip condi-
tions (zero shear stress and zero normal velocity) in the 
RANS solution. Another application of the same tech-
nique is found in Regnström and Bathfi eld (2006). The 
wave effect on the viscous fl ow is thus taken into ac-
count, but not the viscous fl ow effects on the waves. Be-
cause the latter is important mainly in the wake behind 
the hull, the solution is good everywhere, except in this 
region, where the waves in the potential fl ow solution 
are exaggerated because of the neglect of the boundary 
layer displacement effect.

9.8.2 Fully Viscous Solutions. To obtain the full 
free-surface/viscous fl ow interaction, the boundary 
conditions presented in Section 2.4 need to be consid-
ered in the viscous fl ow method. Equation (2.20) repre-
sents the kinematic condition, which ensures that there 
is no fl ow through the surface, and equations (2.16) and 
(2.17) express the dynamic conditions in the tangential 
and normal directions, respectively. Very few methods 
use the complete dynamic equations, but an exception 
was presented by Alessandrini and Delhommeau (1996). 
Often, the effect of the viscous stresses is neglected, as 
well as the surface tension.

There are two principally different ways of treat-
ing the free surface in RANS methods. In the interface 

tracking methods, the numerical grid is fi tted to the 
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surface  (another name is surface-fi tting methods) and 
updated in each iteration or time step when the surface 
changes its shape. The kinematic and dynamic bound-
ary conditions are applied on the surface and the fl ow is 
computed only in the water. In the interface  capturing

methods, on the other hand, the grid is fi xed, and the 
location of the free surface in the grid is computed in 
every iteration/time step. The fl ow may be computed in 
both air and water, in which case the surface is just an 
internal boundary where viscosity and density change 
in a region as thin as possible, but where no boundary 
conditions are applied. Alternatively, the fl ow may be 
computed only in the water, in which case the boundary 
conditions may be used.

Comparing the two types of methods, it is obvious 
that the tracking techniques will have problems with 
complex surface shapes, such as overturning waves, 
and they will not at all be able to handle plunging break-
ers, drops, and enclosed air bubbles. In principle, these 
restrictions do not apply to interface capturing meth-
ods, which have therefore gained in popularity in recent 
years. However, the resolution required to predict details 
like drops and smaller air cavities is not high enough 
with affordable grids, so the advantage of the interface 
capturing methods is not very large in this respect. Also, 
there is a problem with these methods in keeping the in-
terface sharp. The numerical damping may be very large 
in the free-surface region, which smears out the inter-
face. Compressive discretization schemes (Orych et al, 
2010) alleviate this problem, as does an approach by the 
same authors, where a component grid of high density is 
located at the surface in a overlapping grid method.

9.8.2.1 INTERFACE TRACKING METHODS. Practically all 
interface tracking methods use a time stepping  approach 
where the dynamic-free surface boundary condition 
is applied to compute the fl ow below the free surface 
obtained in the previous time step. At the end of each 
new step, the free surface is updated using the kine-
matic boundary condition. The only exception known to 
the authors is the method by Raven, van der Ploeg, and 
Starke (2004), where the problem is solved by iterations 
without time stepping in very much the same way as in 
free-surface potential fl ow methods. Thus, a combined 
kinematic and dynamic boundary condition is applied at 
a surface obtained in the previous iteration, after which 
the surface is updated using the dynamic condition.

A typical fi nite volume time stepping method using 
SIMPLE is described by Ferziger and Peric (1999). One 
time step is thus as follows.

1. Set p* as the hydrodynamic pressure (equal to 
the hydrostatic pressure, but with the opposite sign) at 
the current location of the free surface. Compute the 
starred velocities ui* obtained from equation (9.115) and 
the corresponding equations in the other two  directions.

2. Solve the pressure correction equation (9.121) for 
p� with a Dirichlet boundary condition, p� � 0 on the 
free surface.

3. Calculate ui from equation (9.120) and its counter-
parts in the other two directions. Because p� was set 
to zero on the surface, this step will produce a velocity 
through the surface (as long as p* is not the converged 
value).

4. Move the free surface in every surface cell such 
that the volume fl ux due to the movement is the same as 
that through the surface in step 3.

5. Iterate between steps 2 and 4 until convergence.
6. Take the next time step.

The largest problem is the vertical movement of the 
surface in step 4. Since the procedure only specifi es 
the additional volume required at each step, while the 
unknowns are the cell corners (usually four) on the 
surface, all nodes have to be considered as unknowns 
and solved via a system of equations, each one ex-
pressing the required additional volume for one cell 
in terms of its corner displacements. A simplifi ed pro-
cedure is however proposed by Muzaferija, Peric, and 
Yoo (1996).

9.8.2.2 INTERFACE CAPTURING METHODS. At present, 
two techniques dominate among the interface cap-
turing methods. The Volume of Fluid (VOF) method, 
originally proposed by Hirt and Nichols (1981), is the 
most well-known one and is standard for general free-
surface fl ow problems. However, in recent years the 
other alternative, the Level Set method proposed by 
Osher and Sethian (1988), has become very popular in 
hydromechanics. At the 2005 Tokyo Workshop (Hino, 
2005), there were twice as many Level Set methods as 
VOF methods. One reason for this may be the excellent 
performance of one of the two Level Set methods at the 
previous workshop in Gothenburg (Cura Hochbaum & 
Vogt, 2002).  Recently, a combination of the two methods 
has also been used (Wang et al, 2009).

In the VOF method, a transport equation is solved for 
the void fraction, c (i.e., the fraction of a cell contain-
ing water). c � 1 means that the cell is completely fi lled 
with water, and c � 0 means that it is fi lled with air. The 
transport equation for c is

�c_
�t


   � _
�xi

  (uic)� 0 (9.135)

c is initialized at time t � 0 and computed at every time 
step in connection with the other transport equations. 
The free surface at every step is located within a do-
main in which 0 � c � 1. Unfortunately, this domain 
is not very thin because numerical diffusion tends to 
spread the c-values within the critical range to several 
cell widths. Therefore, c � 0.5 is often taken as the 
 surface.

Most VOF methods compute the fl ow in air and water 
simultaneously, and the value of the physical constants 
is defi ned by the void fraction as

� � �wc 
 �a(1 � c) � � �wc 
 �a(1 � c) (9.136)

Techniques for one-phase computations are also 
available.
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In the Level Set method, a scalar function � is initial-
ized in the computational domain at t � 0 and its trans-
port is thereafter computed from the equation

��
 _

�t

   � _

�xi

  (ui�)� 0 (9.137)

which (using the continuity equation) can be written as
��

 _
�t


 ui   
��

 _
�xi

� 0 (9.138)

With ui �
�xi_
�t

, this relation may be interpreted as the 

total derivative of � with respect to time. � will thus change 
in time and space as if every water particle was marked 
with a fi xed value of �. Because the kinematic boundary 
condition states that there is no fl ow through the surface, 
every particle originally on the surface must stay there at 
all times. Thus, if these particles initially could be marked 
with a distinguishing value of �, the surface at all later times 
could be found by looking for that value. The approach cho-
sen is to initially set � equal to the distance from the sur-
face, positive in one direction and negative in the other. A 
linear distribution with zero at the surface is thus obtained. 
After every time step, the surface can be found at � � 0.

To integrate equation (9.138), fl ow velocities are re-
quired around the interface; in most Level Set methods, 
the fl ow is computed simultaneously in the water and the 
air. Because the numerics cannot handle discontinuous 
variations in the physical quantities � and �, smoothing is 
applied near the surface. The smoothing function is nor-
mally a function of �. Parametric investigations of the re-
quired thickness of the smoothing layer and the number 
of cells within this layer are reported by Vogt and Larsson 
(1999). Here also a technique is proposed where the fl ow 
solution is restricted to the water region, obtaining the 
necessary fl ow velocities around the interface by extrap-
olation employing the dynamic boundary condition. The 
advantage of the latter approach, apart from the obvious 
saving in grid cells, is that � and μ are constant in the 
entire computational domain. This stabilizes the solution 
and keeps the interface sharp, but the extrapolation can 
be cumbersome in regions with a complex surface shape 
(such as overturning waves). The latter approach is often 
referred to as the single-phase Level Set technique, as op-
posed to the two-phase technique normally applied.

Experience shows that the level set function gets 
rather complicated after several time steps, so a pro-
cedure for reinitialization was proposed by Sussman 
et al. (1994). A separate differential equation (Hamilton-
Jacobi) was proposed, which produces a new � fi eld of 
the same sign and with the same zero level as the origi-
nal one, but with a smoother distribution. This separate 
equation has to be solved once at every nth time step, 
where the optimum number of n can be found by experi-
ence (see, for instance, Vogt & Larsson, 1999).

Note that the sharpness of the free surface, both in 
Level Set and VOF methods, depends to a large extent 
on the discretization scheme for solving the governing 
equations (9.135) and (9.138), respectively. First order 

upwind differences are bound to fail because they will 
introduce too much numerical diffusion. Higher order 
schemes are required, and special compressive schemes 
for maintaining discontinuities have been developed 
(see Ubbink, 1997, & Orych et al., 2010).

Free surface RANS computations have been in use 
in hydrodynamics since the early 1990s. In general, the 
wave profi le along the hull is very well predicted, but the 
waves away from the hull are often damped because of 
numerical viscosity. Grid densities required for accurate 
wave predictions at some distance from the hull are of-
ten hard to afford, and there is in general a considerable 
increase in computer effort associated with the intro-
duction of the free surface. Obviously, these problems 
will be alleviated with the expected future increase in 
computer power. In any case there is much progress in 
this fi eld, and the possibility for computational predic-
tion of viscous and scale effects on wave patterns, wave 
resistance, transom fl ow regimes, etc. starts being used 
in research and in practical ship design.

9.9 Practical Aspects of Ship Viscous Flow  Computations.
After the discussion of solution methods for ship vis-
cous fl ow, we shall now summarize some practical as-
pects. This may help to set up a computation with an 
existing fl ow code for a ship viscous fl ow computation. 
In addition we aim at providing a background that may 
help a naval architect, confronted with CFD results for 
a certain vessel, to assess their quality and reliability. 
We give some general guidelines based on what is cus-
tomary today, as, e.g., observed in workshops such as 
the Gothenburg 2000 workshop (Larsson et al. 2002, 
2003) and the CFD Workshop Tokyo 2005 (Hino, 2005). 
Clearly, with the expanding use of RANS computations 
in ship design these guidelines will change over time.

9.9.1 Modeling. There are some modeling aspects 
to be considered when setting up a computation. A fi rst 
question is whether a computation with free surface is 
needed, or a double-body fl ow computation is suffi cient, 
or perhaps a “hybrid” computation (Section 9.8.1). Gen-
erally, free-surface RANS methods are still somewhat 
less established, ask longer computation times, and 
more care is needed to reach the same numerical ac-
curacy. While they are of course in principle more com-
plete, they are not in all cases the best choice yet. This 
depends on the objective, for example:

• For predicting the wake fi eld in the propeller plane, 
incorporating the free surface is not essential for most 
merchant ships at moderate Froude numbers. Its main 
effect is a slightly different vertical velocity in the pro-
peller plane, but usually it gives little qualitative change 
in the wake fi eld. However, for rather full hull forms that 
generate large waves, larger effects may occur, as a re-
sult of a change of the location of fl ow separation.
• For predicting viscous and scale effects on wave mak-
ing and wave resistance, wave-induced fl ow  separations, 
or detailed viscous fl ow phenomena close to the water 
surface, free-surface RANS computations are  required.
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• For aligning appendages and scoops, the effect of the 
wave profi le on the local fl ow direction can be impor-
tant, and a hybrid or free-surface viscous fl ow computa-
tion is often desired.

Another modeling aspect is the choice of turbulence 
model. This has been discussed in Section 9.7.3. Entirely 
algebraic turbulence models are now obsolete, some 
one-equation models perform well, two-equation mod-
els from the k - � class are most common, and EASM 
methods are also used successfully.

The domain in which the computation is carried out 
differs between methods. One example was shown in 
Fig. 9.3. Required domain size depends on the objective 
(e.g., viscous pressure resistance for a full hull form is 
very sensitive) and on the type of outer boundary condi-
tions. Typical extensions are: the infl ow plane at about 
1 ship length (L) upstream of the bow, the outfl ow plane 
at 1.5 L or more downstream of the stern, and lateral 
boundaries again at 1 L distance or even more, depen-
dent on the boundary conditions imposed. For free-sur-
face computations using an unsteady formulation, larger 
domains are frequently chosen to limit wave  refl ections.

A fi nal modeling aspect is whether or not to use wall 
functions. Using wall functions saves many grid points, 
and for very large and complicated problems can be de-
sired for that reason; but it does introduce deviations 
for strongly three-dimensional fl ows, thick boundary 
layers and fl ow separations, thus possibly affecting the 
wake fi eld. For many codes, using wall functions is still 
the only way to compute fl ows at full scale, due to nu-
merical aspects. Therefore, in general the use of wall 
functions is not desirable but not uncommon either.

9.9.2 Discretization. Section 9.7.5 described dis-
cretization schemes and their properties. Methods used 
differ mainly in the discretization of the convective 
terms in the momentum equations, which has a pro-
found infl uence on the accuracy for our applications. 
The robust and simple fi rst-order upwind schemes are 
too inaccurate and should be considered sub standard, 
but also the blended or hybrid upwind schemes which 
mix fi rst-order upwind and central schemes are to be 
avoided. Higher-order upwind schemes, the QUICK 
scheme, or so-called high-resolution schemes should 
be used in practical calculations. On the other hand, 
for the turbulence model transport equations, low-order 
schemes are widely used and are considered  acceptable.

The grid could have a large infl uence on the computed 
results. It must be of a good quality and must be dense 
enough. Grid quality is not easy to defi ne and differs 
between the grid categories described in Section 9.7.4, 
but if possible, in general there should be a smooth and 
gradual variation of cell sizes and direction of grid lines, 
even for unstructured grids; cells should have a limited 
deviation from orthogonality because too skewed cells 
reduce accuracy and convergence; and it can be benefi -
cial for accuracy if one set of grid lines is more or less 
fl ow-aligned. In unstructured grid methods, tetrahedral 

cells can be used but these cause a larger numerical dif-
fusion; hexahedral cells have better properties. In high-
Rn boundary layers, tetrahedral cells cannot be used at 
all and normally a structured-grid layer along walls is 
used, with hexahedral or prismatic cells.

Required grid density depends on the method and the 
objective. The grid must be dense enough to resolve all 
signifi cant variations of fl ow variables. This means:

• a strong grid contraction towards the wall, to resolve 
the large velocity gradients in high-Rn turbulent fl ows. 
This requires y
 � 1 if no wall functions are used, or 
the right y
-range for wall functions (dependent on the 
Reynolds number);
• typically, at least some 30 cells across the boundary 
layer, if no wall functions are used;
• increased grid density near bow and stern;
• for free-surface RANS computations, dense enough 
to resolve the relevant ship waves. This often requires 
some 50 cells per wave length, which leads to severe re-
quirements for low Fn and diverging waves.
• for free-surface capturing methods, dense enough 
in the area of the wave surface, with small cell sizes 
normal to the surface in particular; to limit numeri-
cal  errors in the free surface treatment (e.g., interface 
smearing, wave damping).

In practice, typically 1.5 to 5 million cells are used 
today, with the larger numbers applying to free-surface 
computations; but these are for relatively simple, sym-
metric, unappended single-screw cases without propel-
ler modeling. Other cases require larger cell numbers.

As was pointed out in Section 9.3, grid dependence 
checks are desired for each new method and each new 
class of applications, whether or not accompanied by 
a formal numerical uncertainty analysis. In particular 
if detailed quantities need to be predicted, e.g., scale 
effects, the grid dependence on the result needs to be 
established. Probably the most grid-dependent aspects 
in the results are the wake fi eld in the propeller plane, 
in particular the effect of longitudinal vorticity; and the 
wave pattern at a distance from the hull.

9.9.3 The Computation. As was pointed out, sev-
eral iterative procedures are used in the solution of the 
RANS equations: outer loops in pressure correction 
methods; the corresponding pseudo-time integration 
in artifi cial-compressibility methods; time-stepping 
in time-dependent computations for steady problems; 
and inner loops or iterative equation solvers. The latter 
are usually of little concern, but the convergence of the 
pressure-velocity coupling procedure is an issue. Few 
methods are able to reach machine accuracy in this iter-
ation, in practice convergence often stagnates at a cer-
tain residual* level. Sound convergence criteria need to 
be imposed and satisfi ed, based on the level of residuals 

*The residual is the difference between the left and right sides 
of an equation and is thus a measure of the (lack of) conver-
gence in an iteration.
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and/or related with the maximum change between iter-
ations, not only based on inspection of integral quanti-
ties such as the computed resistance; see Section 9.2. It 
is not unusual to express the convergence criterion as a 
certain reduction of a norm of the residuals compared 
to that in the fi rst iteration, but clearly that depends 
on the initial solution chosen; a bad initial guess thus 
could lead to an inaccurate fi nal solution. Also, if the 
maximum difference between consecutive iterations is 
below a certain convergence level, the local error can 
still be much higher than that level, in particular if con-
vergence is slow. Therefore convergence criteria should 
be rather strict.

If the convergence criteria have not been met and the 
maximum norm of the residuals still exceeds the desir-
able level, it can be an option to identify the location of 
the larger residuals. If these are at a relatively harmless 
location, e.g., far from the ship, the computed results 
may still be qualitatively useful, although there are no 
guarantees.

In time-dependent formulations for steady problems, 
the time integration performs the same role as an itera-
tive procedure. The result should converge to a steady 
solution in which all transients vanish. If that is not the 
case, in most cases one should consider the result as 
“unconverged.” Only in particular cases a physical time-
dependence can be assumed, e.g., blunt-body fl ows, 
ships at large leeway angles, with small keel clearance 
or close to a side bank of the waterway, or vortex shed-
ding from cylindrical structures; but usually not for the 
type of fl ows considered in this book. A rather typical 
remaining time-dependence is in RANS/FS computa-
tions, caused by sloshing between domain boundaries 
or due to slowly decaying transient waves. A graph of 
the computed time history of, e.g., the resistance often 
clearly reveals this.

9.9.4 Assessment of Accuracy. It is not easy to as-
sess the accuracy of a CFD result provided, unless in-
sight in several of the aspects mentioned above is given. 
In any case, generally plausible results and attractive 
visualizations are no guarantee for practical usability.

The smoothness of the fl ow fi elds obtained can give 
some indication. If contours show traces of the grid 
resolution, this often means that the resolution is insuf-
fi cient. If there are wiggles in the solution, or the solu-
tion is not smooth towards the boundaries, there are 

 numerical problems; not always invalidating the result 
but asking some attention. As opposed to this, low-or-
der discretization leads to too smooth fl ow fi elds with 
possibly large errors. For free-surface computations, if 
a Kelvin wedge with a sequence of crests and troughs 
is not visible, probably the grid is too coarse or the dis-
cretization is of a too low order.

From validations of state-of-the-art computations we 
can deduce the following indications of accuracy now 
to be expected:

• Wake fi elds are sensitive to the turbulence model 
used and to grid density, but can be predicted fairly 
accurately using today’s preferred turbulence models 
(such as SST) and a grid of a few million grid points for 
a bare-hull case.
• Limiting streamlines, and streamline patterns in gen-
eral, for most of the hull are probably accurate, but with 
larger variations at separation (due to grid density, or 
wall functions).
• Frictional resistance is sensitive to the turbulence 
model but less so to the grid density.
• Viscous pressure resistance, for full hull forms at least, 
is sensitive to grid density, domain size, and boundary 
conditions at the outer and outfl ow boundaries.
• For free-surface RANS computations, the wave pro-
fi le along the hull is generally well predicted, but waves 
at a distance are often too much damped.
• For the resistance at model scale, with much care for 
the numerics and modeling an accuracy of a few percent 
is possible for the usual benchmark cases. At the Tokyo 
workshop 2005 (Hino, 2005) the standard deviation of 
all predictions for total resistance varied from 4% to 7% 
for the cases considered, while the mean values for the 
different hulls were within the experimental accuracy 
of around 2%. However, geometric complications, such 
as appendages, probably increase the errors.
• Full-scale resistance predictions are helpful for study-
ing scale effects, but not yet for direct power predic-
tions, as long as no roughness effects are incorporated 
and no correlation allowances have been  established.

We hope that the general statements made above 
will help to make an educated and fruitful use of RANS 
computations in practical naval architecture. There are 
great benefi ts of doing so, but attention to quality and 
accuracy is needed.
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At an early stage in the ship design process, the designer 
often wants to make a selection between several pos-
sible alternatives and may then benefi t from methods 
which are not as accurate as models tests or numerical 
predictions, but which are good enough for a  ranking of 
various alternatives, often differing considerably even 
in the main parameters. Such methods may be very 
rapid, enabling the designer to investigate a large num-
ber of alternatives in a short time. Many CAD  packages 
for ship design include methods of this kind. In this 
 section, an overview will be given of rapid methods 
based on empirical data.

As discussed in Section 1.2.2, there are two prin-
cipally different approaches: systematic series and 
statistical evaluation of unsystematic data. In a sys-
tematic series, variations in main parameters have 
been made in a large test program and the results pre-
sented in the form of diagrams and tables in which the 
 resistance of a new design can be obtained by inter-
polation. More modern series, such as the Delft series 
of sailing yachts (see Keuning & Sonnenberg, 1998), 
are presented in the form of formulas containing hull 
parameters, where the coeffi cients have been obtained 
through  regression analysis of the systematic data. 
This principle is borrowed from methods based on the 
analysis of  unsystematic data, fi rst proposed by Doust 
and O’Brien (1959).

10.1 Systematic Series
10.1.1 Parameters Varied. In a systematic series, 

one or more parent models known to have good resis-
tance properties are used to develop other hulls through 
a systematic variation of main dimensions and form pa-
rameters. The developed hull forms are assumed to, in 
some sense, inherit the main shape of the parents.

Examples of parameters systematically varied are:

• The block coeffi cient CB or the prismatic coeffi cient CP

• The slenderness ratio L/	 1/3, where 	 is the volume 
displacement
• The length/beam ratio L/B
• The beam/draft ratio B/T
• The longitudinal position of the center of buoyancy 
(LCB)
• The bottom loading coeffi cient for planing hulls AP/	 2/3,
where AP is the vertical projection of the wetted area.

Results are presented in different ways. For dis-
placement hulls, the residuary resistance coeffi cient CR

is often, at least in more modern series, presented as a 
function of Froude number for different form param-
eters. By simply adding the ITTC-57 friction, the total 
resistance can be obtained at any scale. Note that this 
procedure is based on the Froude scaling described 
earlier, with the limitations stated.

In older literature, the speed is often given as the 
speed/length ratio

V_
�
_
L

where V is given in knots and L in feet, or the “circu-
lar K,” defi ned as

K � �
_

4�   L_
	1/3    FnL (10.1)

The total resistance is sometimes given as “circular C” 
for a “standard” ship length of 400 feet, or 122 m

C �   125_
�     S_

	2/3   CT (10.2)

Note that this coeffi cient depends on the size of the 
ship. It may be converted to other scales by computing 
the total resistance for L � 122m, subtracting the vis-
cous resistance for this scale and adding this resistance 
at the scale of interest. For best accuracy, the form fac-
tor should be included in this procedure. [It has to be 
estimated, for instance from equation (8.18).]

For planing and semiplaning hulls, the weight is very 
important and the Froude number is defi ned using the 
third root of the volume displacement rather than the 
length

Fn	 �   V_

�
_
 g	1/3   

   (10.3)

There is thus a simple relation between K and Fn	

K � �
_
4� Fn	 (10.4)

The beam may also be used to represent the length

FnB �   V_
�
_
gB

 (10.5)

The resistance is in some cases presented for a given 
weight, and conversions, as indicated previously, must 
be done to other weights (i.e., scales).

10.1.2 Summary of Systematic Series. In Table 10.1, 
the parameter range is presented for three different types 
of series:

1. Displacement hulls
2. Semiplaning hulls
3. Planing hulls.

References are given to all series. It is seen that all of 
them are decades old except for the sailing yacht series 
from Delft, which is in fact still expanding. The reason 
why so few series are more recent is the very large cost 
in building and testing the models. In the past, these ex-
penses were affordable, but this is not so any longer. On 
the other hand, CFD may be expected to take over the 
role of empirical methods in the future.

10
Empirical Resistance Prediction
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10.1.3 Series 60. It is out of the scope of this text to 
present all the series listed in Table 10.1, but one exam-
ple will be given. Although many years old, the Series 60 
is by far the most well-known series, and it is still used 
to some extent; a short presentation will be given.

The models of most methodical series have been de-
rived from a single parent form by changes in the area 
curve and proportional geometrical changes. When 
used for very different proportions and for fullness co-
effi cients suitable to very different values of the Froude 
number, such changes led to unrealistic forms, regard-
less of how good the parent lines may have been for 
the original design conditions. In Series 60, another ap-
proach was used. Five parent forms of CB � 0.60, 0.65, 
0.70, 0.75, and 0.80 were developed, each incorporating 
the features considered necessary for good resistance 
qualities at its appropriate value of CB, as deduced from 
results for successful ships. The sectional area and wa-
terline curves for these parents were plotted and faired 
to a base of the prismatic coeffi cients of entrance and 
run and cross-faired with the area curves and body 

plans. Auxiliary curves showed the lengths of parallel 
middle body for each value of CB, and the necessary 
lengths of entrance and run to be associated with these 
to give any desired position of LCB. The sectional area 
curves for the fi ve parent models are shown in Fig. 10.1.

A number of models were then run to determine the 
optimum location of LCB for each block coeffi cient, 
their lines being derived from the design charts just 
described. The results of these tests are summarized 
in Fig. 10.2. This shows the optimum LCB locations 
and the corresponding minimum circular C values. For 
a given value of CB, the optimum LCB location moves 
aft as the value of circular K is increased. When CB

and circular K are known, this fi gure will give the op-
timum LCB position and the corresponding minimum 
circular C value if the proportions and lines of the ship 
conform with those of the Series 60 parents. Thus, for 
a CB � 0.65 and a circular K � 2.1, the best position of 
LCB is 1.45% of L, aft of midships, the corresponding 
minimum circular C value for a length of 122 m (400 ft) 
being 0.73 and Fn � 0.244. A point of considerable 

Table 10.1 Parameter Variation in Some Systematic Series
DISPLACEMENT SHIPS

Series CB L/	1/3 L/B B/T FnL

Taylor (1933) 0.48–0.86 5–11 2.25 and 3.75 0.09–0.6

Series 60 (Todd, 1963) 0.6–0.8 5.1–6.1 6.5–8.5 2.5–3.5 0.1–0.32

Lindblad (1946, 1948, 1950) 0.535–0.7 7.4 2.4 0.18–0.32

SSPA fast cargo liners (Nordström, 1948–1949) 0.625 5.5–6.8 6.3–8.7 2.2–2.8 0.21–0.31

SSPA cargo liners (Williams, 1969) 0.525–0.725 5.1–6.9 6.2–8.4 2.4 0.18–0.32

SSPA tankers (Edstrand, Freimanis, & Lindgren (1953–1956) 0.725–0.8 7.2–8.1 2.3–2.5 0.14–0.22

SSPA coastal ships (Warholm, 1953–1955) 0.60–0.75 4.5–6.1 5.5–7.5 2.0–2.8 0.16–0.36

BSRA (Lackenby & Parker, 1966) 0.65–0.80 4.2–5.8 5–8 2.1–3.9 0.14–0.28

MARAD (Roseman, 1987) 0.80–0.875 4.5–6.5 3.0–4.5 0.10–0.20

Delft sailing yachts (Keuning & Sonnenberg, 1998) Cp � 0.52–0.60 4.34–8.5 2.73–5 2.46–19.4 0.1–0.6

SEMIDISPLACEMENT SHIPS

Series CB L/	  
1/3 L/B B/T FnL

Taylor, extended (Graff, Kracht, & Weinblum, 1964) 0.48–0.86 5–11 2.25–3.75 0.09–0.9

KTH/NSMB Series (Nordström, 1951) 0.35–0.55 5.8–7.8 3.2–4.4 � 0.9

Series 63 (Beys, 1963) 2.5–6.0

Series 64 (Yeh, 1965) 0.35–0.55 8–12 8.5–18 2–4 0–1.5

SSPA small, fast displacement ships (Lindgren, 1969) 0.40–0.55 6–8 3–4 0.35–1.3

NPL (Bailey, 1976) 0.40 3.3–7.5 1.7–10.2 0.3–1.2

PLANING HULLS

Series CB L/	1/3 L/B Ap/	
2/3 Fn	

EMB Series 50 (Davidson & Suarez, 1949) 0.35–0.42 5.5–9 � 4

Series 62 (Clement, 1963) 0.44–0.50 4.1–7.7 2–7 4.3–8.5 0.5–6

Series 65 (Hadler, Hubble, & Holling, 1974) 4–10.4 2.4–9.4 5–8.5 0–3

BSRA,British Ship Research Association; EMB, Experimental Model Basin (at the Washington Navy Yard); KTH, Royal Institute of Technology (Stockholm); NSMB, Netherlands 
Ship Model Basin (presently MARIN); MARAD, Maritime Administration (USA); NPL, National Physical Laboratory (London).
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Figure 10.1 Series 60. Sectional area curves of parent models.

Figure 10.2 Series 60 minimum circular C values (for a 122 m ship) and optimum LCB positions.
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 interest is the remarkable constancy of the minimum 
circular C value at the Troost sustained sea speeds, 
which varies only between 0.72 and 0.74 over the full 
range of block  coeffi cients.

The optimum location of LCB was then assumed to ap-
ply to all models of a given block coeffi cient, regardless of 
L/B and B/T, and these ratios were varied on a number of 
models to cover the range of values shown in Table 10.1. 
The results of all tests were presented in two ways:

1. Residuary resistance contours RR /W in lbs per 
long ton (2240 lb) of displacement, against CB, and L/B,
each chart being for given values of B/T and V/(�

_
L ).

2. Contours of circular C for a length of 122 m against 
CB, and L/B, each chart being for given values of B/T and 
circular K. The circular C-values included a model ship 
roughness allowance of 0.0004.

For design use, assuming that L, B, T, and 	 are known, 
these charts enable the resistance and effective power 
to be estimated over a range of speeds for a ship having 
Series 60 lines and an LCB in the position chosen for the 
parent forms. For any other position of LCB dictated by de-
sign needs, the change in RTs and PE can be estimated from 
the results of the auxiliary LCB variation series.

Using presented contours of sectional area and load wa-
terline coeffi cients, a body plan may be produced quickly 
which will fulfi ll all the foregoing design  conditions.

The data may also be used to explore the effects on 
power of changes in principal dimensions and coeffi -
cients during feasibility studies, so as to ensure the best 
results within the design conditions or to determine the 
penalties involved in such changes.

Further, the contours can be used for comparative pur-
poses. If a new design has secondary characteristics which 
differ from those of its Series 60 equivalent, but model re-
sults are available for some other ship which more closely 
resembles it in these respects, the latter may be used as 
a “basic ship.” Calculations of PE can then be made from 
the contours for the Series 60 equivalents of both the new 
design and the basic ship. Then approximately

PEnew � PES60new   PEbasic_
PES60basic

 (10.6)

Fig. 10.3 shows the predicted PE for a bulk carrier 
with CB � 0.78 derived in this way, using a tanker as the 
basis ship, compared with the PE derived from actual 
model tests.

Finally, the models of Series 60 were all run self-
propelled, and Todd (1963) includes contours of wake 
fractions, thrust deduction fractions, and propulsive 
effi ciencies for a number of propeller diameters and 
power characteristics. These data, together with the PE

values, enable close estimates to be made of the deliv-
ered horsepower, PD, at the propeller.

10.2 Statistical Methods. Apart from the results of the 
systematic series, there is a huge data bank of unsystem-
atic material available at all towing tanks. A natural way to 
exploit this would be to statistically evaluate this material 

to fi nd empirical relations between the resistance and the 
form parameters. This technique was pioneered by Doust 
and O’Brien (1959) who used the results from towing tests 
with 150 fi shing vessels and tried to express the total resis-
tance as a function of six different form parameters. The 
coeffi cients of a large polynomial up to second order in the 
form parameters were determined by regression analy sis 
of the empirical data for each speed of  interest. A very im-
portant result of including the second degree terms in the 
equation was that optimization with respect to the form 
parameters could be carried out.

10.2.1 The Holtrop-Mennen Method. The Doust and 
O’Brien method is interesting in a historical perspective, 
but it is not in much use today. Instead, a more modern 
method attributed to Holtrop and Mennen (1978) has 
 acquired widespread recognition. One disadvantage of 
the fi rst statistical methods was that the formulas were 
entirely numerical, without any consideration of the phys-
ics. Holtrop and Mennen tried to include physical aspects 
in their formulas, but used the experimental data for de-
termining the coeffi cients. A summary of their method 
which is based on test results from 334 models of tank-
ers, cargo ships, trawlers, ferries, etc., will now be given.

The resistance is split into viscous and wave resistance. 
For the viscous resistance, the standard formula is used

 CV � (1 
 k)CF (10.7)

where CF is obtained from the ITTC-57 formula. The 
form factor k is determined from a formula obtained 

Figure 10.3 Comparison of effective power from model tests of a bulk 
carrier with estimate from Series 60 charts.
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statistically as k � f(B/L, T/L, L/LR, L3/	, CP, c). c is a 
coeffi cient dependent on the shape of the afterbody and 
LR is the length of the afterbody. If LR or S are unknown, 
they may be obtained from other statistically derived 
formulas.

The appendage resistance is considered as a correc-
tion to the form factor.

For the wave resistance, Holtrop and Mennen use a 
theoretical expression attributed to Havelock (1913), 
obtained by replacing the hull by two pressure distur-
bances separated by the wave making length of the 
hull. The original expression is, however, somewhat 
elaborate and a simplifi cation is made. This leads to the 
 following equation

   RR_
W

� C1C2C3e  
mFnd


 m2 cos(�Fn�2)  (10.8)

where W is the weight of the ship and C1, C2, C3, m, and 
m2 are coeffi cients, which are functions of the form pa-
rameters of the hull. Different coeffi cients are used for 
Fn � 0.40 and Fn � 0.55. In the intermediate range, the 
residuary resistance is obtained by an interpolation for-
mula between the two limits.

Holtrop and Mennen also suggest a formula for the 
roughness allowance �CF and compute the total resis-
tance as

RT �   1_
2
   �V 2S [CF(1 
 k) 
 �CF ] 
   RW_

W
 W (10.9)

10.2.2 Savitsky’s Method for Planing Hulls. Al-
though the Holtrop-Mennen method is by far the most 
widely used for displacement hulls, the method attrib-
uted to Savitsky (1964) and Hadler (1966) is still in very 
frequent use for planing hulls. It is based on systematic 
tests with planing prisms, where the trim angle, dead-
rise angle, wetted length, and wetted length/beam ratio 
were systematically varied.

Given the values of the speed V, the weight W, the 
deadrise angle ", and the maximum beam b, mea-
sured between the chines, Savitsky’s formulas give 
the wetted length Lm, the trim angle �, and the re-
lation between the dynamic lift and the buoyancy. 
When planing, the resistance of the hull may be com-
puted from

R � W tan � 
   

1_
2

 �V 2 LmbCF

  __
cos � cos �

   (10.10)

where CF is obtained from a Reynolds number based on 
the wetted length Lm and a velocity which is lower than 
the free speed because the pressure is higher on the bot-
tom of the hull than in the free stream. The fi rst term in 
the equation is the wave resistance, which is thus easily 
calculated for the planing hull as the horizontal com-
ponent of the pressure force acting on the bottom. The 
second term is the friction. Form effects are very small 
for planing hulls.

11
Hull Design

Although the considerations of the present section may 
be of guidance to naval architects in the choice of hull 
shape and dimensions, they must meet many other de-
mands and will be infl uenced to a large extent by the 
knowledge of the particulars of existing successful 
ships. The process of design is essentially an iterative 
one, in which the various elements are changed until a 
proper balance is attained. In order to do this, paramet-
ric surveys have to be made on the effects of changes 
in dimensions, hull form, machinery types, and so on. 
Thanks to the rapid development in computer tech-
nology, the designer may now consider a far greater 
 number of possible solutions than could ever be made 
in the past.

We will start this section with general discussions 
on the choice of main dimensions and form parameters. 
These topics will be discussed in Sections 11.1 and 11.2, 
respectively. Because the minimization of propulsive 
power also involves the hull/propeller interaction, a 
short note on the relation between resistance and de-
livered power is presented in Section 11.3, followed by 
a discussion of design principles for four different ship 

types in Section 11.4. The possibilities of locally improv-
ing the hull shape have increased considerably during 
the past years, particularly due to the development of 
the numerical methods descibed in Section 9, but also 
due to the more advanced experimental techniques 
of Section 8. In Sections 11.5 and 11.6 the application 
of these modern tools for local hull refi nement will be 
 presented.

11.1 Main Dimensions. The length of the ship is 
mainly determined from considerations which are not of 
a hydrodynamic nature. Such considerations are building 
cost, scantlings, equipment, and geometrical restrictions 
because of the slipway, building dock, locks or harbors. 
Schneekluth and Bertram (1998) give a formula for the 
optimum length considering production cost

Lpp � 3.2  �0.3
V

0.3    CB 
 0.5__  
0.145/Fn 
 0.5

   (11.1)

The formula is applicable for bulbous bow ships with 
� � 1000t and 0.16 � Fn � 0.32. Ships optimized for 
yield are about 10% longer than those optimized using 
equation (11.1).
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statistically as k � f(B/L, T/L, L/LR, L3/	, CP, c). c is a 
coeffi cient dependent on the shape of the afterbody and 
LR is the length of the afterbody. If LR or S are unknown, 
they may be obtained from other statistically derived 
formulas.

The appendage resistance is considered as a correc-
tion to the form factor.

For the wave resistance, Holtrop and Mennen use a 
theoretical expression attributed to Havelock (1913), 
obtained by replacing the hull by two pressure distur-
bances separated by the wave making length of the 
hull. The original expression is, however, somewhat 
elaborate and a simplifi cation is made. This leads to the 
 following equation
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where W is the weight of the ship and C1, C2, C3, m, and 
m2 are coeffi cients, which are functions of the form pa-
rameters of the hull. Different coeffi cients are used for 
Fn � 0.40 and Fn � 0.55. In the intermediate range, the 
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Holtrop and Mennen also suggest a formula for the 
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10.2.2 Savitsky’s Method for Planing Hulls. Al-
though the Holtrop-Mennen method is by far the most 
widely used for displacement hulls, the method attrib-
uted to Savitsky (1964) and Hadler (1966) is still in very 
frequent use for planing hulls. It is based on systematic 
tests with planing prisms, where the trim angle, dead-
rise angle, wetted length, and wetted length/beam ratio 
were systematically varied.

Given the values of the speed V, the weight W, the 
deadrise angle ", and the maximum beam b, mea-
sured between the chines, Savitsky’s formulas give 
the wetted length Lm, the trim angle �, and the re-
lation between the dynamic lift and the buoyancy. 
When planing, the resistance of the hull may be com-
puted from

R � W tan � 
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where CF is obtained from a Reynolds number based on 
the wetted length Lm and a velocity which is lower than 
the free speed because the pressure is higher on the bot-
tom of the hull than in the free stream. The fi rst term in 
the equation is the wave resistance, which is thus easily 
calculated for the planing hull as the horizontal com-
ponent of the pressure force acting on the bottom. The 
second term is the friction. Form effects are very small 
for planing hulls.

11
Hull Design

Although the considerations of the present section may 
be of guidance to naval architects in the choice of hull 
shape and dimensions, they must meet many other de-
mands and will be infl uenced to a large extent by the 
knowledge of the particulars of existing successful 
ships. The process of design is essentially an iterative 
one, in which the various elements are changed until a 
proper balance is attained. In order to do this, paramet-
ric surveys have to be made on the effects of changes 
in dimensions, hull form, machinery types, and so on. 
Thanks to the rapid development in computer tech-
nology, the designer may now consider a far greater 
 number of possible solutions than could ever be made 
in the past.

We will start this section with general discussions 
on the choice of main dimensions and form parameters. 
These topics will be discussed in Sections 11.1 and 11.2, 
respectively. Because the minimization of propulsive 
power also involves the hull/propeller interaction, a 
short note on the relation between resistance and de-
livered power is presented in Section 11.3, followed by 
a discussion of design principles for four different ship 

types in Section 11.4. The possibilities of locally improv-
ing the hull shape have increased considerably during 
the past years, particularly due to the development of 
the numerical methods descibed in Section 9, but also 
due to the more advanced experimental techniques 
of Section 8. In Sections 11.5 and 11.6 the application 
of these modern tools for local hull refi nement will be 
 presented.

11.1 Main Dimensions. The length of the ship is 
mainly determined from considerations which are not of 
a hydrodynamic nature. Such considerations are building 
cost, scantlings, equipment, and geometrical restrictions 
because of the slipway, building dock, locks or harbors. 
Schneekluth and Bertram (1998) give a formula for the 
optimum length considering production cost

Lpp � 3.2  �0.3
V
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 0.5__  
0.145/Fn 
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The formula is applicable for bulbous bow ships with 
� � 1000t and 0.16 � Fn � 0.32. Ships optimized for 
yield are about 10% longer than those optimized using 
equation (11.1).
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Hydrodynamically, a longer ship will normally per-
form better in a seaway. As to the resistance, a longer 
ship at a given speed will operate at a lower Froude 
number than a shorter one, which will reduce the wave 
resistance, as explained in Section 5. As this resistance 
component increases very rapidly at higher speeds, this 
effect can be signifi cant. On the other hand, it has to 
be balanced against the increased wetted surface which 
will cause an increased viscous resistance. Because the 
ratio of the two resistance components (i.e., RW/RV) in-
creases with speed, a high-speed ship should be longer 
than a low-speed ship at a given displacement. A classi-
cal formula based on statistics from actual ships is at-
tributed to Ayre (see Schneekluth & Bertram (1998)

Lpp_

	
1_
3
   
   � 3.33 
 10.2Fn (11.2)

Here the original speed/length ratio has been re-
placed by the Froude number, assuming an acceleration 
of gravity of 9.81 m/s2. This formula is for ships without 
a bulbous bow. A bulb should reduce the Lpp by 75% of 
the bulb length in front of the forward perpendicular. 
Other formulas are also given in Schneekluth and Ber-
tram (1998).

The length should be chosen such that a hollow in 
the wave resistance curve occurs at the design speed of 
the ship. If this is not possible, at the very least humps 
should be avoided. As explained in Section 5, humps 
and hollows arise from interference effects between the 
wave systems around the hull. This interference is com-
plex and can only be accurately evaluated through ex-
periments or numerical predictions using methods de-
scribed in Section 9. An approximate evaluation of the 
interference might be made using the Baker and Kent 
theory mentioned in Section 5.5 but it must be stressed 
that this theory is too simple to account for large dif-
ferences in hull shape. In Table 11.1, empirical values 
for the Froude number of different ships are given. The 
speed of a displacement hull is normally restricted by 
the last hump and it is often hard to achieve higher 
Froude numbers than about 0.45.

Having determined displacement and length, the 
next step is often to fi x the block coeffi cient CB. This 
will be dealt with in the Section 11.2. The product B � T

can then be obtained from the defi nition of the block 
coeffi cient

CB �   	 _
L � B � T

 (11.3)

It remains to determine the B/T ratio.
The beam, B, is one of the governing factors in ensur-

ing adequate stability, and a minimum value of B/T is 
generally necessary on this account. An increase in B/T
will increase the resistance because volume is moved 
closer to the surface, which will increase the wave resis-
tance. In cases of low-speed ships, however, a small re-
duction in length and a compensating increase in beam, 
because of the resulting decrease in wetted surface, may 
result in little or no increase in resistance. This results 
in a cheaper ship and also meets the need for increased 
stability for ships with large  superstructures. This idea 
has been exploited in a number of large tankers.

The minimum wetted surface for a given displace-
ment is also sensitive to the B/T ratio, the optimum 
value of which is about 2.25 for a block coeffi cient of 
0.80 and about 3.0 for CB � 0.50. However, the penalty 
for normal departures from these values is not very 
great. The effects of changes in B/T on wave-making re-
sistance can be studied from model-experiment results. 
Generally, stability considerations and draft limits usu-
ally preclude values of B/T below 2.25 for full ships and 
2.5 or even more, for fi ne, higher speed ships. It should 
be noted that a larger draft normally gives more space 
for the propeller, whose diameter may be increased and 
the propulsive effi ciency improved.

11.2 Fullness and Displacement Distribution. The full-
ness of a ship and its longitudinal distribution of dis-
placement is determined by the sectional area curve, 
which is an important output from all CAD programs 
for ship design. It is often desirable to start with a good 
sectional area curve and try to keep this more or less 
unchanged while optimizing the detailed hull shape. As 
will be seen, particularly critical regions are the fore 
and aft shoulders, where a too large normal curvature 
of the hull in the fl ow direction will cause unnecessar-
ily deep wave troughs. Such curvatures may be avoided 
with a suitable shape of the sectional area curve. Ex-
amples of good sectional area curves will be given in 
the more detailed description of several classes of ships 
in Section 11.4.

The two main parameters derived from the sectional 
area curve are the prismatic coeffi cient CP and the LCB.
Optimum values of these parameters are strongly Froude 
number dependent, and the sectional area curve should 
be designed such that optimum values of the param-
eters are achieved. In this section, the reasons for the 
different optima will be explained. Five different Froude 
number ranges will be discussed, as defi ned in Fig. 11.1. 
It should be mentioned that the optimum is also depen-
dent to some extent on the specifi c form of the fore and 
afterbody lines. For instance, a barge-type stern should 
have a more aftward LCB than a V-type stern.

Table 11.1 Approximate Froude Numbers for Humps and Hollows
Fn Hump/Hollow Typical Hull

0.19 Hollow Medium size tankers

0.23 Hump

0.25 Hollow Containerships, dry 
cargo ships, ferries

0.29–0.31 Hump Fishing vessels

0.33–0.36 Hollow Reefers, sailing yachts 
upwind in a breeze

0.45–0.50 Hump (last) Frigates, destroyers
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Fig. 11.1 is based on results from four different sources 
and shows the optimum* prismatic coeffi cient for all 
Froude numbers from low speed to planing. It is seen 
that at the lowest speeds, the optimum hull is very full 
and prismatic coeffi cients as high as 0.85 or even higher 
are the best. Increasing the Froude number, the optimum 
CP is rapidly reduced to a minimum of 0.55–0.60 in the 
region Fn � 0.30–0.35, thereafter increasing relatively 
rapidly to 0.60–0.65 around the main hump. In the semi-
planing range, CP increases slowly to 0.65–0.70, and this 
increase continues in the planing range.

The prismatic coeffi cient may be converted into the 
block coeffi cient using the midship section coeffi cient 
CM as follows

 CB � CM � CP (11.4)

CM varies with fullness. For the most full-bodied 
slow ships, it may be as high as 0.995. As the fullness 
decreases and the length of the parallel middle body 
becomes shorter, it is necessary to ease the midship 
section area somewhat to avoid too pronounced shoul-
ders in the lower waterlines. Typical relations among 
CB, CP, and CM for displacement ships are shown in 
Table 11.2.

The variation of LCB is shown in Fig. 11.2, where 
the optimum position relative to midship is presented. 
The distance is made dimensionless by the Lpp and is 
positive forward. There is a very rapid shift aftward of 

the LCB, from about 
3% to about �2% in the Froude 
number range 0.15–0.25. Thereafter, the shift is more 
gradual, reaching �6% at a Froude number of 1.0.

The reason for the changes in CP and LCB is the 
relative weight of the two main resistance compo-
nents: viscous and wave resistance. At low speed, the 
viscous resistance is dominant, but its importance is 
reduced as the speed is increased. How this affects 
the fullness and displacement distribution will now 
be explained.

11.2.1 Low Speed (Fn � 0.2). As was seen in 
Fig. 4.1, the viscous resistance is by far the largest 
resistance component for a tanker. This means that 
emphasis should be placed on minimizing the wetted 
surface and that the stern should be fi ne enough for 
the boundary layer to develop slowly. Separation, par-
ticularly of the bubble type, should be avoided and the 
boundary layer should be as thin as possible to mini-
mize the momentum losses. A reasonably fi ne stern is 
also necessary to obtain a good wake fi eld. Fig. 11.3 
shows a principal sketch of the design waterline of a 
ship optimized for this low speed range.

An elongated, pointed bow will have a relatively large 
wetted surface, so it is better to make the bow more bluff, 
particularly as the forward shoulder may then be made 

*Strictly speaking, the data from Saunders (1957), Marin (Holtrop, 
1999), and Jensen (1994) indicate a design lane (i.e., a range within 
which most existing ships are designed). Other aspects than pure 
resistance are thus considered. The resistance is however the major 
parameter, and in the case of the Delft series this is the only param-
eter considered.

Table 11.2 Typical Relations among Block, Prismatic, and  Midship 
Section Area Coeffi cients for Displacement Ships
CB 0.80 0.75 0.70 0.65 0.60 0.55 0.54–0.52

CP 0.805 0.758 0.710 0.661 0.614 0.59 0.59–0.575

CM 0.994 0.990 0.986 0.982 0.978 0.93 0.915–0.905

Source: Lewis, E. (Ed.). (1988). Principles of Naval Architecture (2nd rev., Vol. II). 
Jersey City, NJ: SNAME.

Figure 11.1 Optimum prismatic coeffi cient versus Froude number.
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Figure 11.3 Low speed shape (principle).

softer (i.e., with a larger radius). Although the wave 
 resistance is very small (7.5% of the total in Fig. 4.1), 
a reduction by making the shoulder wave trough less 
deep is noticeable.

Because the stern has to be more slender than the 
bow, the LCB is forward of midship. The large fullness 
of the bow causes CP and CB to be high.

11.2.2 Medium Displacement Speed (0.2 � Fn � 0.3). 

The wave resistance is now more important (17.5% of 
the total in the example shown in Fig. 4.1), and the bow 
needs to be shaped to reduce the large peak in pressure 
caused by a bluff bow. A much thinner and elongated 
pointed bow is thus required, as seen in Fig. 11.4. Other-
wise, the bow wave would be very large.

Because the bow is now much thinner, the LCB is 
moved aft and CP and CB are reduced considerably to 
the minimum value presented in Fig. 11.1.

11.2.3 High Displacement Speeds (0.3 � Fn � 0.5). 

We are now in a speed range typical of the fi shing vessel 
in Fig. 4.1, and the wave resistance is the largest com-
ponent (62.5% in the example). There are reasons not 
to make the ends too fi ne in this case. With fi ne ends, 
the pressure disturbance is reduced, but the peak of the 
pressure is moved toward midship at both ends (i.e., the 
wave-making length is reduced). This effect is shown for 
the forebody in Fig. 11.5.

Also, with the ends too fi ne, a large part of the vol-
ume is concentrated near midship, which may cause the 

Figure 11.2 Optimum location of center of buoyancy versus Froude number.
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normal curvature of the waterlines in this area to be un-
necessarily large, resulting in a deep wave trough being 
generated. This so-called “diamond effect” gives rise to 
a too large wave resistance.

At the afterbody, there is an additional advantage 
of a somewhat fuller stern. As was shown in Fig. 6.9, 
the pressure is reduced because of the displacement 
effect of the boundary layer, particularly if the fl ow 
separates (bubble type). Unfortunately, this gives 
rise to the viscous pressure resistance, but it also 
gives rise to a reduction in the stern waves. Further, 
the hull is elongated, as seen in Fig. 11.5, and this in-
creases the wave-making length. A full stern means 
a thick boundary layer, possibly even with some bub-
ble-type separation, and is thus advantageous from a 
wave resistance point of view. Great care should be 
exercised, however, not to increase the viscous pres-
sure resistance too much.

A fi nal reason for having a relatively full stern at 
these Froude numbers is to reduce the trim, which can 
be excessive approaching the last hump.

The not-too-thin bow and the relatively full stern 
means a higher CP than at medium speed and the LCB

continues to move backward.
11.2.4 Semiplaning (0.5 � Fn � 1.0) and  Planing 

(Fn � 1.0) Speeds. Around the main hump in the re-
sistance curve (Fn � 0.5), the wave resistance is the 
dominating component. Higher up, both the wave and 
the viscous resistance are important. Typical of hulls at 
these high speeds is the submerged transom.* The fl ow 
leaves the bottom tangentially backward at the transom 
edge where the hydrodynamic pressure is low and the 
wave has a trough. The fi rst crest (rooster tail wave) is 
formed behind the hull (Fig. 11.6). Of course, this is pro-
vided the water clears the transom. At a certain criti-
cal Froude number, the rooster tail wave will become 

Stern

Waves
smaller

Bow

Waves
too large

Figure 11.4 Medium displacement speed shape (principle).

Figure 11.5 High displacement speed shape (principle).
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*Transom sterns are also used at lower speeds. In fact, even the slowest ships may have a small submerged transom, but that is not dry. This 
is to make the ship as short as possible. An alternative would have been to steepen the slope of the buttocks aft, but that may cause even more 
recirculating fl ow and resistance than the small transom. Dry transoms may occur in the upper high displacement speed range to lengthen 
the effective waterline length. A more comprehensive  discussion of transom sterns will be given in Section 11.5.11.1.
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very steep just behind the transom and start breaking, 
with breakers rolling forward. At speeds lower than the 
critical value, the transom will become fully wetted. 
In  Section 11.5.11, considerations for estimating the 
critical Froude number are given and guidelines are pre-
sented for optimizing the transom stern hull.

The disadvantage of dry transoms is that the hydro-
static pressure ��gz is lost in this area. Because there is 
no water, the pressure must be atmospheric. In a linear-
ized sense (see Section 9.6.2), the hydrostatic pressure for 
a ship without a transom does not give rise to any force 
in the horizontal plane. Integrating this pressure compo-
nent around the hull up to the undisturbed waterline z �
0 should give a zero net force horizontally. (As opposed to 
vertically, where the buoyancy force is obtained.) For a 
dry transom, the loss of the force pointing forward gives 
rise to a resulting hydrostatic pressure force of equal 
magnitude pointing backward (i.e., a resistance compo-
nent). In coeffi cient form, this may be computed as

Ctr �
��g
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(11.5)

Here, b is the local width of the transom and  
_
ztr and 

Atr the z-coordinate of the centroid and the area of the 
submerged part of the transom, respectively (Fig. 11.7). 
Note that  

_
ztr is negative.

The previous discussion is for the linearized case 
where the integration of the pressure is made only up to 

the undisturbed water level (see Section 9.6.2). In real-
ity, the integration must be made up to the wavy surface 
(Section 9.6.5). If this is done all around the hull, the 
hydrostatic part of the pressure force is then generally 
non-zero, even for hulls without a transom. This is how-
ever a higher order effect and the estimated pressure 
force in equation (11.5) is a good approximation. The 
transom resistance coeffi cient is thus inversely propor-
tional to the Froude number squared. At speeds slightly 
above the critical value, where the transom is dry, Ctr is 
often considerably larger than the resistance associated 
with the hydrodynamic pressure. The transom area 
must therefore be kept rather small at these speeds, nor-
mally considerably smaller than the area of the midship 
section. As the speed increases, the convex curvature 
of the buttocks aft of midship tends to suck the hull into 
the water and should therefore be straightened out, with 
a larger transom as a consequence. There is thus a bal-
ance between the lift generating full afterbody and the 
transom resistance. The larger the speed, the more im-
portant the full afterbody, so the prismatic coeffi cient 
goes up steadily and the LCB moves aft with speed.

11.3 Resistance and Delivered Power. Before  entering 
into a discussion of the more detailed design of some 
common ship types, the relationship between resistance 
and delivered power must be clarifi ed. Focusing entirely 
on the resistance aspects will lead to a suboptimization 
which might very well produce a nonoptimum shape 
from the point of view of overall propulsive power. To 
minimize the power consumption, the interaction be-
tween the hull and the propeller must be taken into ac-
count and this is strongly dependent on the shape of the 
afterbody.

The power useful for moving the ship is called the 
 effective power, PE. This is related to the total resis-
tance, RT, through the equation

 PE � RTV (11.6)

The power delivered to the propeller by the shaft is 
the delivered power, PD. A propulsive effi ciency D may 
thus be defi ned as

D �   PE_
PD

(11.7)

In the Propulsion volume of the Principles of Naval 

Architecture, it is shown that D may be subdivided as 
follows

 D � HR0 (11.8)

Figure 11.6 Transom stern hull and rooster tail wave (cut through centerplane).

TransomWave in
center plane

Figure 11.7 Transom defi nitions.
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where 0 represents the effi ciency of the propeller op-
erating in an undisturbed fl ow and R accounts for the 
change in propeller effi ciency when operating in the 
highly turbulent fl ow behind the hull. The parameter 
of interest in the present context is H, the hull effi -
ciency. This takes into account both the suction effect 
from the propeller on the fl ow around the stern and the 
reduction in infl ow velocity to the propeller due to the 
boundary layer/wake from the hull. It turns out that H

is larger than 1 for many ships, which may seem impos-
sible for an effi ciency factor, but it is related to the fact 
that the momentum loss in the boundary layer/wake 
may be utilized to increase the propulsive effi ciency. 
The basic principle may be explained with reference 
to Fig. 11.8.

Seen by an observer onboard the ship, the wake of 
the hull generally exhibits smaller velocities than in 
the undisturbed fl ow further out. However, in the slip-
stream behind the propeller, the velocity is higher than 
the undisturbed velocity. A rather uneven distribution 
of velocity is therefore often left behind the hull. If the 
excess velocities in the slipstream could be designed to 
exactly compensate for the velocity defi cit in the entire 
wake, an undisturbed fl ow would be left behind the hull. 
This is the optimum case, and it cannot be achieved in 
practice. But the mere fact that there is some compen-
sation gives rise to an increase in the total propulsive 
effi ciency, manifested through a hull effi ciency larger 
than 1. In the optimization process, the designer has to 
consider this effect as well as the resistance.

Figure 11.8 Nonoptimum and optimum velocity distribution in the far fi eld behind a propelled ship (principle).
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Figure 11.9 Optimum LCB for high-block ships (MARIN).

11.4 Typical Design Features of Four Classes of Ships.*
In this section, typical features of four classes of ships 
will be described. The classes are:

1. Full ship forms
2. Slender hull forms
3. Ferries and cruise liners
4. High-speed ships

General guidelines will be given for the main pa-
rameters and for the forebody and afterbody design. 
Note that further discussions on the design of the fore-
body and afterbody will be presented in Sections 11.5 
and 11.6.

11.4.1 Full Ship Forms

11.4.1.1 FULLNESS AND DISPLACEMENT DISTRIBUTION. Ships 
covered here have block coeffi cients in the range of 
0.76–0.90. They operate at low Froude numbers in the 
range 0.13–0.19. A rough estimate of LCB may be made 
using Fig. 11.2, but a better optimization can be obtained 
using the diagram presented in Fig. 11.9. The diagram is 
for cylindrical bows with a U-type single screw  afterbody. 
For  deviations from this shape, the recommendations of 
Table 11.3 are given. A typical sectional area curve for 

Table 11.3 Corrections to the Optimum LCB from Figure 11.9
Form Deviation Shift of Optimum LCB

Bulb Forward

Noncylindrical bow Aft

Barge-type afterbody Aft

Twin screw Aft

Increase B/T Aft

*Most of the material in Section 11.4 is based on a course synopsis 
by Jan Holtrop, MARIN, Holland (Holtrop, 1999). Some parts of these 
are due to older material composed by E. Vossnack and others. The 
authors are indebted for the permission to use this synopsis. Many 
comments and discussions are added, however.
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a  conventional tanker with a bulbous bow is shown in 
Fig. 11.10.

11.4.1.2 FOREBODY DESIGN. Designing the forebody 
of these full ship forms is a subtle balance between the 
bluntness of the bow and the sharpness of the forward 
shoulder. The only wave interaction of importance for 
this ship type is that between the bow and the forward 
shoulder wave. If the bow is made too blunt, the wave 
gets very steep and considerable breaking may occur. On 
the other hand, if the bow is made more sharp, volume 
is moved aft and the shoulder will be more pronounced. 
This may cause the wave trough to be very deep.

One way to remove volume from the shoulder area is 
to move it to the aftbody and a successful change in this 
direction is presented in Fig. 11.11. For the two hulls, 
experiments indicated a reduction in ship resistance of 
12% to 15% by this modifi cation. In this case, the hull 

was run at a relatively high Froude number, so the wave 
resistance was considerably larger than the normal 
circa 10% for a tanker.

Considerable improvements in resistance are also 
obtained by fi tting a suitable bulb to the bow. In fact, 
in this case reductions larger than the wave resistance 
are also obtained. There is thus also an effect on the 
viscous fl ow and this may be explained with reference 
to Fig. 11.12. As shown in Fig. 6.17, the fl ow on a full 
forebody without a bulb has a considerable downward 
component. Fig. 6.17 shows potential fl ow streamlines, 
which essentially represent the fl ow at the edge of the 
boundary layer. But, as explained in the text, the fl ow 
close to the surface points even more downward in the 
region above the infl exion point in the potential fl ow 
streamlines. Below this point, the innermost fl ow moves 
upward and the convergence of the  limiting  streamlines 

Figure 11.10 A typical sectional area curve for a conventional tanker (Valkhof, 1999).

Figure 11.11 Smoothing the forward shoulder.
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creates a vortex-type separation (see Fig. 6.14). A 
bilge vortex is thus created on the forebody, and this 
increases resistance. If a bulb is fi tted to the forebody 
the fl ow becomes more horizontal, and thereby the bilge 
vortex gets weaker or may disappear completely.

Modern bulbs for this class of ships may be designed 
to operate at two different drafts. At full load, the bulb 
works as described but, at ballast draft, the bulb works 
as an extension of the hull. Thus, the bulb has a very 
large cross-section at the forward perpendicular FP 
(up to 15% of the midship section). The lower part, sub-
merged also at ballast draft, is created by extending 
the waterlines without knuckles from the forebody to 
the more or less sharp forward end of the bulb. A quite 
slender forebody is then created. Fig. 11.13 shows an ex-
ample of a modern bulb for a tanker/bulk carrier.

Cylindrical forebodies have been used relatively suc-
cessfully for many years, but they have now become 
 obsolete. The general idea is to move volume forward to 
reduce the sharpness of the forward shoulder and this 
may work for the fullest forms, at full load. In ballast 
conditions, the results of measurements indicate zero 
or even negative effects, relative to a conventional bow. 
The transition from the vertical stem to the horizontal 
bottom is critical. If not properly designed, vortex sepa-
ration may occur in this region. The cylindrical bow has 
a disadvantage relative to the conventional bow in short 
waves of encounter, where the added resistance may 
 increase considerably.

11.4.1.3 AFTERBODY DESIGN. Three types of con-
ventional sterns are shown in Fig. 11.14 and the cor-
responding wake distributions in Fig. 11.15. The wake 
fraction w presented as contour lines in Fig. 11.15 is 
defi ned as

w � 1 �   VA_
V

 (11.9)

where VA is the local axial velocity.

The most traditional stern is the V-shape, which has 
the lowest resistance. However, it also has some unde-
sired features when it comes to the wake distribution. 
As appears from Fig. 11.15, the high wake (i.e., the low 
speed) is concentrated to a V-shaped region around the 
propeller center. From a hull effi ciency point of view, 
this is not optimal because the excess velocities in the 
cylindrical propeller slipstream can hardly balance the 
velocity defi cit in an area of such different shape. Fur-
ther, the propeller blades will encounter rapidly varying 
axial fl ow velocities during rotation. This means a rap-
idly varying angle of attack and a pulsating load, which 
will give rise to vibrations.

The U-shaped stern has a considerably more axisym-
metric distribution of the wake, and a further improve-
ment is obtained with the bulb shape. Both are thus 
more desirable from a hull effi ciency and vibration point 
of view. The mechanism behind the improvement may 
be explained with reference again to Section 6.7, where 
the generation of the stern bilge vortex was described in 
some detail. It is seen in Fig. 6.19 that the vortex hits the 
propeller plane and redistributes the velocity contours. 
In fact, there is a considerable reshuffl ing of the contours 
by the vortex. This is utilized by ship designers to move 
contours out from the central and lower parts of the pro-
peller disk and to squeeze them together at the top of the 
disk, as seen in Fig. 11.16. The trick is thus to generate a 
suitably strong vortex and to position it correctly. By go-
ing from the V-shape, via the U-shape to the bulb shape, 
the vortex becomes stronger and stronger because the 
bilge radius gets smaller and smaller in the region in front 
of the propeller. This is a well known and safe way to op-
timize the stern from a hull effi ciency and vibration point 
of view. To fi nd the optimum solution, the positioning of 
the vortex is important, however, and this may call for 
considerable experimentation either in laboratories or in 
CFD. Note that there may be signifi cant scale effects in 
the model tests, as explained in Section 6.7.

Figure 11.12 Reduction in downward fl ow at the bow due to the bulb.
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Figure 11.13 A modern bulb for a tanker/bulk carrier (Valkhof, 1999).
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Figure 11.14 Three conventional full-body stern forms.

Figure 11.15 Wake distributions for the three sterns of Figure 11.14.

The disadvantage of the U- and bulb-shaped sterns 
is that the vortex requires energy. The resistance is in-
creased and this increase is often large enough to just 
cancel the advantage of the higher hull effi ciency. From 
a propulsive power point of view, the stern type is thus 
not too important; the real advantage of the vortex gen-
erating sterns is the reduced variation in propeller load-
ing and the resulting smaller vibrations.

In Fig. 11.17, two full-body sterns of the barge type are 
shown. This type is characterized by straight and fl at 
buttocks and a central gondola in which the  machinery 
is located. Such hulls have proven to have a very low 
 resistance and vortices can be avoided entirely by care-
ful design of the bilge region. As seen Fig. 11.17, hard 
chines may be utilized as well, often with little or no 
increase in resistance. It should be stressed, however, 
that if the bilges are not well designed, so that vortices 
are created, the positive effect described does not ma-
terialize because they will pass the propeller plane far 
outside of the propeller disk.

Because the hull boundary layer will be spread over 
the large girth of the stern sections, there will be no 
 concentration in the propeller disk, which will only col-
lect the much thinner boundary layer from the gondola. 
The hull effi ciency is therefore much lower than for a con-
ventional stern, and there is also a tendency for a larger 
suction effect of the propeller at the stern (larger thrust 
deduction) so the advantage of the small resistance is lost.

The reason why the barge shape is still of interest is 
that the fl at stern sections are less prone to separation, 
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Figure 11.16 Utilizing the bilge vortex for creating a circular wake.

Even propeller loading
Easy to fill hull wake ⇒
high hull efficiency

Low velocity
fluid

vortex vortex

Figure 11.17 Two barge type full-body sterns.

so the stern may be made fuller than for a conventional 
shape. In fact, this shape is only of interest for CB � 0.8. 
Larger deck areas are also possible in many cases.

A third possibility for the stern shape is the twin skeg, 
shown in Fig. 11.18. This type of stern for full ships is partic-
ularly advocated by SSPA in Sweden. Savings in  delivered 
power of 10% to 20% are reported by van Berlekom (1985), 
but more recent data indicate that the gain ranges from a 

few percent up to around 10% compared with conventional 
sterns. The shape is particularly advantageous for beamy 
and shallow hulls, especially if the block coeffi cient is 
large. A careful design of the gondolas is however required 
because the upper part has to follow the inviscid stream-
lines, whereas the lower part necessarily must be aligned 
with the shafts in the axial direction. This calls for tilted 
gondola sections, as seen in Fig. 11.18.
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Figure 11.18 A twin skeg tanker (van Berlekom, 1985; courtesy of SSPA).

Figure 11.19. A typical sectional area curve for a containership/reefer (Valkhof, 1999). 

As pointed out before, most modern full ships have 
transoms which are somewhat submerged. This is seen 
in the body plans of Figs. 11.14, 11.17, and 11.18.

11.4.2 Slender Hull Forms. In this section, we will 
consider slender hull forms operating at Froude num-
bers around 0.25. Typical ships of this kind are con-
tainerships, reefers, and various Ro-Ro ships (Ro-Ro, 
Ropax, and car carriers).

The most spectacular designs of this class are the 
very large single screw containerships with a capac-
ity of over 7000 TEU and propeller powers approach-
ing 100 MW on a single shaft. Because the wake peak 
may be rather deep, and the clearance between the tip 
of the propeller and the hull must be kept at a mini-
mum to give space for the propeller, there is a risk of 
excessive cavitation and the associated vibrations and 
 propeller erosion. The design of this class of ships is 
thus a  challenge.

11.4.2.1 FULLNESS AND DISPLACEMENT DISTRIBUTION. A typi-
cal sectional area curve is shown in Fig. 11.19.

11.4.2.2 FOREBODY DESIGN. The forebody of these 
ships is often optimized by potential fl ow methods. In 
recent years, the bulb shape has evolved toward a goose-
neck shape, shown later for a ferry or a cruise liner in 
Fig. 11.26. It is characterized by a maximum cross-section 
ahead of the FP and with lines sloping down aftward. It 
is very well integrated with the hull lines. The downslope 
of the upper surface and the convex curvature preced-
ing it will help to draw the fl ow down, thus reducing the 
wave height. Further, the longitudinal inclination of the 
lines may reduce the viscous resistance. As pointed out 
previously, the streamlines in the bow region point down-
ward, and with this bulb shape, the fl ow will experience 
a smaller curvature of the surface when passing along 
the bulb and the forebody. This minimizes the boundary 
layer growth and the risk of vortex separation.

The forebody sections should be V-shaped and the 
design waterline straight. In this case, it is imperative 
to keep the shoulder as smooth as possible. As will be 
seen later, the position of the shoulder is also important.
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11.4.2.3 AFTERBODY DESIGN. The wake of a slender 
single screw afterbody is considerably less homogenous 
than that of full forms, although the mean value of the 
velocity in the propeller plane is higher (the mean wake 
is lower). Great emphasis must therefore be placed 
on the optimization of the stern lines. Figs. 11.20 and 
11.21 show the systematic improvement of the wake of 
a  Ro-Ro containership (Vossnack et al., 1977). The hull 
sections are gradually changed from a typical V-form 
to a bulb-like form and this has two positive effects, 
clearly visible in the wake distributions shown in Fig. 
11.22. As before, the larger curvature of the bilge causes 
the vortex to be stronger, which redistributes the veloc-
ity contours in a favorable way. Further, the lines above 
the propeller shaft become more slender, as seen in 
Fig. 11.21, which reduces the deep wake peak at the top 
of the propeller disk. The resulting wake pattern, shown 

at the bottom of Fig. 11.22, is considerably better than 
the top one, both from a vibration and a hull effi ciency 
point of view.

Barge-type forms are used also for slender hulls. In 
Fig. 11.23, the body plan of a containership is shown. 
Here, the main engine is located in the gondola, which 
should be kept as slender as possible, both from a resis-
tance and a propulsion point of view. The wake distribu-
tion is shown in Fig. 11.24.

Because of the extreme power required for the very 
large containerships, it would be tempting to use a 
twin screw arrangement either with open shafts or 
with twin-skegs. However, the disadvantage of large 
appendage drag makes the fi rst alternative less attrac-
tive, and the advantages of the twin-skeg design are 
much smaller for these slender hulls than for the full 
and more beamy ones described previously.  Therefore, 

Figure 11.20 Three different sterns of a Ro-Ro containership.
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it is questionable whether a twin screw concept is 
 feasible today.

For ships operating at Froude numbers around 0.25, the 
transom should be designed to be above the still  waterline.

11.4.3 Ferries and Cruise Liners

11.4.3.1 FULLNESS AND DISPLACEMENT DISTRIBUTION. The 
block coeffi cient of these ships is in the range 0.60–0.65, 
but values as high as 0.69 have been seen. They operate 
at Froude numbers around 0.25. The center of buoyancy 
is relatively far aft, in several designs as far back as 
4%–5% aft of midship. However, more optimum designs 
have their LCB around −3.5%. Even this is far aft at this 
moderate Froude number, as appears from Fig. 11.2.

A typical sectional area curve for a ferry is shown in 
Fig. 11.25.

11.4.3.2 FOREBODY DESIGN. As for slender cargo ships, 
goose-neck bulbs are used for ferries and cruise liners. 
An example is shown in Fig. 11.26.

To minimize resistance, the waterlines are mostly 
straight, at least if an optimum bulb can be designed. 
If certain restrictions must be applied on the bulb de-
sign, slightly concave lines may be preferable. As in the 
other cases discussed previously, it is very important to 
smooth the forward shoulder.

11.4.3.3 AFTERBODY DESIGN. Ferries and cruise liners 
are mostly twin screw ships, either with open shafts or 
with twin-skegs. Four principally different stern shapes 
are used for this class of ships (see Tikka & van der 
Baan, 1985).

The conventional stern shape is used for unsheltered 
waters, where seakeeping performance is important. 
Particularly for stern seas, this shape is better than the 
others, which may experience broaching and slamming 
on the fl at afterbody.

Twin-skeg sterns are developed mainly for increasing 
the space for the propeller. As can be seen in Fig. 11.27, 
the lines are optimized for that purpose. However, quite 
a sharp wake peak is often encountered just behind 
the skeg and this may cause vibrations, which are very 
 critical for this type of ship. The solution is to use highly 
skewed propellers which even out the pressure loads on 
the blades when passing the wake peak.

The mixed and barge shapes have open shafts and 
rather undisturbed fl ow into the propeller, which is 
good from a vibration point of view. By proper shaping 
of the bilges, the hull resistance can be made very small, 
but there is a considerable appendage drag. The hull ef-
fi ciency is low because the boundary layer on the hull 

Figure 11.21 Straightening the diagonals to avoid separation.
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body plan for the mixed shape a tendency for a tunnel 
shape is seen.

All afterbody shapes in Fig. 11.27 are quite fl at with 
wide transoms. The buttock shape is then very impor-
tant, not least for the wave generation, as explained in 
Section 11.5.11. In this case, the transom should be de-
signed to be above the still waterline.

The fl at sterns offer the possibility of using podded 
propulsors. This possibility is often utilized, particu-
larly for cruising ships. Using rotatable pods, rudders, 
and tunnel thrusters at the stern may be dispensed 
with and the drag is smaller than for open shaft solu-
tions. Further, if the propeller is in front of the pod, 
the  approaching fl ow is undisturbed, which minimizes 
the risk of vibrations, a very important advantage for a 
cruising ship. Because the electrical power equipment 
may be placed much more freely on the ship than a con-
ventional engine, the general arrangement of the ship is 
simplifi ed.

11.4.4 High-Speed Ships. Considerable research has 
been carried out during the past decades on the resis-
tance of various types of high-speed craft and advanced 
marine vehicles (see Faltinsen [2005] for an overview). 
Such craft can be distinguished by the means adopted to 
support their weight: through buoyancy, through hydro-
dynamic lift, through aerostatic lift, or through combina-
tions of these. Fig. 11.28 displays the subdivision that can 
be made in this way (Lewis, 1988). The fi rst category is 
composed of round-bilge and hard chine monohulls, and 
the second is composed of catamarans and small water-
plane area twin hulls (SWATH) ships. The third category 
includes surface piercing and submerged hydrofoil craft, 
and the fourth category contains air cushion vehicles 
(ACVs) and surface effect ships (SESs).

In the following, we will discuss monohull ships. The 
reader interested in multihulls, with or without hydro-
foil support, is referred to the very comprehensive book 
Multi-Hull Ships by Dubrovsky and Lyakhovitsky (2001).

11.4.4.1 HYDROSTATIC AND HYDRODYNAMIC LIFT. Fig. 11.29 
shows in principle how the hydrostatic (buoyancy) 
forces are replaced by hydrodynamic forces for in-
creasing Froude numbers. Even at very low speeds, 
the  vertical component of the generated hydrodynamic 
pressure on the hull surface will cause the hull to 
change its attitude from that at zero speed. Although 
not shown in Fig. 11.29, the generated lift may well be 
negative. Increasing the speed, the effect of the hydro-
dynamic pressure becomes more and more important 
because it increases with speed squared, while the hy-
drostatic pressure is constant. The relation between 
the forces (rather than the pressures) is however much 
more complicated because the attitude of the hull and 
the wetted surface also change with speed.

In the displacement speed region, the hydrostatic 
forces dominate; in the fully planing region, the hy-
drodynamic forces take over the major part of the lift 
 required to support the hull. In an intermediate re-
gion, both hydrostatics and hydrodynamic forces are 

Figure 11.22 The wakes of the hulls in Figure 11.20.

will only partly pass through the propeller disk. Most 
of the velocity defi cit passes above the disk. The mixed 
shape is a mix between the conventional and the barge-
type stern. To increase the propeller diameter, tunnels 
at the bottom of the hull are sometimes used, and in the 
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Figure 11.23 A containership with a barge-type stern.

Figure 11.24 The wake of the containership of Figure 11.23.
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Figure 11.25 A typical sectional area curve for a ferry (Valkhof, 1999).

Figure 11.26 A goose-neck bulb for a ferry or a cruise liner.

 important. Somewhat arbitrarily, the upper limit for dis-
placement speeds is usually set at Fn � 0.5, whereas 
the lower limit for planing is defi ned as Fn � 1.0. The 
 intermediate region is called the semiplaning or semidis-
placement speed range.

As has been obvious from the previous discussion, the 
normal curvature of the hull surface is very important for 
a displacement speed ship. The hull needs to be smooth, 
and sharp edges must be avoided, at least if not aligned 
with the fl ow. This is to avoid a thick boundary layer 
and separation and the associated large viscous resis-
tance. On the other hand, if the hull is to be supported by 

 hydrodynamic lift forces, the convex curvatures required 
at lower speed will be detrimental because they tend 
to generate low pressures. In the high-speed case, fl at 
or concave surfaces are better, and this calls for sharp 
edges on the surface. Hulls with hard chines are more ef-
fi cient. In practice, it has turned out that the Froude num-
ber limit where the hard chine hulls become preferable is 
around 1.0 (i.e., the limit for planing). In the semiplaning 
range, the round bottom hulls are more effi cient, but in 
both cases submerged transom sterns are required.

11.4.4.2 FULLNESS AND DISPLACEMENT  DISTRIBUTION. While 
the Froude number ranges of  interest for the three types of 
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Figure 11.27 Four stern shapes.

Figure 11.28 Main types of high-speed craft and advanced marine vehicles.
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displacement hulls discussed above were quite restricted, 
the range covered by the high-speed hulls is very large, in 
principle all Froude numbers above 0.5. There is thus a con-
siderable variation in the optimum sectional area curves 
as well as in the associated prismatic coeffi cients and 
LCBs. As a general rule, the size of the optimum transom 
increases with speed and the corresponding optimum af-
terbodies therefore become fuller and fuller as the speed 
increases. This means an increase in prismatic coeffi cient 
and an aftward shift in LCB. Table 11.4 indicates optimum 
values of Cp, LCB (% LWL from midship) and the size of the 
submerged part of the transom when the ship is at rest, Atr

(AM is the maximum sectional area) for different Froude 
numbers. The values given for the fi rst two quantities cor-
respond to those of Figs. 11.1 and 11.2.

11.4.4.3 HULL SHAPE. Because the hull of a high-
speed ship is supported by the dynamic lift from the 
high pressure on the bottom, the most effi cient bottom 
from a  resistance point of view has zero deadrise. Most 
of the water hitting the bottom of the hull will then be 
defl ected downward, with a resulting large lifting force. 
For a hull with fi nite beam, some water will however 

always be defl ected sideward as spray. At non-zero 
deadrise, more defl ected water will have a component 
of  velocity sideward, so the generated force will be 
 directed inward. In fact, neglecting friction, the force is 
always at right angles to the surface.

Although the zero deadrise bottom (with a large 
beam) is the most effi cient one, it cannot be used for 
seakeeping reasons. A hull with this shape would ex-
perience very uncomfortable motions in a seaway, so 
some deadrise (and a reasonably small beam) is  always 
required. It turns out that a good compromise is the 
warped bottom, where the relatively large deadrise on 
the forebody is gradually reduced to a much smaller 
value at the stern. Typical stern values are 10–15 de-
grees, whereas the forebody values may be more than 
twice that. Of course, these numbers are mainly rele-
vant for hard-chine hulls, but the principle also applies 
to round bottoms.

A way to reduce the lateral defl ection of water 
(i.e., to minimize the spray) is to fi t spray rails along 
the bottom. These are longitudinal strips of triangu-
lar cross-section that defl ect the spray downward, 
thereby generating lift (Fig. 11.30). It is important to 
keep the outer edge of the rail sharp; the bottom side 
may be inclined downward up to 10 degrees to maxi-
mize the lift. Normally, the width of the rail is 1.5% –2% 
of the hull beam. Because the fl ow separates on the 
rail, the wetted surface of the hull gets narrower than 
when separation occurs at the sharp bilge. The wet-
ted part thus often becomes somewhat longer. This is 
an advantage because the longitudinal stability of the 
hull is then improved.

The bottom of a modern hard-chine craft operating at 
two different speeds is seen in Fig. 11.31. The inner rails 
are shortened, and the outer ones extend all the way 
to the transom. Because the fl ow is directed more out-
ward on the forebody, the rails are most effi cient there. 

Figure 11.29 Distribution of hydrostatic and hydrodynamic lift.

Table 11.4 Optimum Values of Cp, LCB, and Atr for High-Speed 
Ships
Fn Cp LCB (negative aft) Atr /AM

0.35 0.6 �1.5 to –2.5 0.0

0.4 0.58−0.62 �2.0 to –3.5 0.0–0.09

0.5 0.62 �3.0 0.14

0.6 0.63 �3.3 0.18

0.8 0.64−0.68 �4.7 0.28

1.0 0.64−0.70 �4.5 to –7.0 0.4–0.5

� 1 0.70–0.82 Approximately �10 0.7–0.95
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Close to the stern where the fl ow is more or less 
straight back, they might even increase the resistance. 
This is why the inner ones are cut short. The reason for 
keeping the outer rails all the way is that the wetted 
surface at the higher speed is short. Had there been no 
rail close to the stern, the fl ow would have separated at 

the bilge and the wetted surface would have been wider 
and shorter.

Another design feature of high-speed hulls is the trim 
wedge. This is fi tted to the aftbody (Fig. 11.32). The pur-
pose is to generate concave buttocks with an associated 
high pressure close to the stern, which increases the lift 

Figure 11.30 Cross-section of a spray rail.

Figure 11.31 A bottom with spray rails.
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and reduces the trim of the hull. In a Froude number 
range of approximately 0.3–1.2, this may cause a reduc-
tion in resistance. Normally, a trim wedge occupies 1.5% 
to 2% of the length at waterline. The optimum angle 
depends on the speed and on the transom immersion. 
Angles as large as 15 degrees, or even higher, are found 
around the hump speed, but the optimum angle is re-
duced gradually to zero at the upper and lower speeds 
where they are effective. If the transom is larger than 
normal (see Table 11.4), the wedge angle should be re-
duced and vice versa.

Less common today is the stepped hull, where one 
or more steps in the buttocks are used to reduce resis-
tance (Fig. 11.33). The idea is to suck in air behind each 
step such that the wetted surface is reduced. When the 
fl ow passes over the edge of the step, a low pressure is 
 generated. If no air was supplied, a massive separation 
zone would be generated behind the step and the pres-
sure resistance would be huge. However, the low pres-
sure may be used to suck air, either from the sides of the 
hull or through tubes from the deck. If this is permit-
ted, the pressure is increased, the pressure resistance 
 reduced, and, thanks to the reduced friction, the total 
resistance may be reduced. Stepped hulls have been 

used, particularly for racing boats, since the 1930s and 
have shown good performance. However, some  notable 
accidents have occurred for hulls with air suction 
through tubes when the inlet has been blocked for some 
reason, for instance by water from a wave. The resis-
tance then  increases abruptly resulting in a very sudden 
deceleration.

11.4.4.4 APPENDAGES. As shown in Fig. 4.1, the ap-
pendage drag of a high-speed hull may be consider-
able. This is so because the hull will be lifted more 
and more out of the water as the speed increases. The 
wetted surface of the hull is thus reduced, and so is 
its viscous resistance. Appendages, on the other hand, 
such as shafts, brackets, fi ns, etc., rarely get out of 
the water, which means that their proportion of the 
viscous resistance is increased. For very high speeds 
 (racing hulls), the wetted hull surface is practically 
zero, which would mean that almost all viscous re-
sistance would come from the appendages. To reduce 
resistance, appendages must therefore be avoided, 
through waterjet propulsion or surface piercing pro-
pellers, where the shaft goes out through the transom. 
In recent years, the interest in waterjet propulsion has 
increased considerably and is now considered a most 
important  alternative to the open shaft propeller for 
speeds above 30 knots.

If shafts are required, they should be aligned with 
the fl ow to the largest possible extent (i.e., they should 
be as horizontal as possible considering the diameter, 
tip clearance, and the arrangement of engine and gear-
boxes inside the hull). Brackets should be designed to 
avoid cavitation. In Zondervan and Holtrop (2000), a se-
ries of sections designed to delay the onset of cavitation 
and suitable for brackets is presented.

11.5 Detailed Hull Form Improvement—Wave-Making 
Aspects

11.5.1 Introduction. After the general guidelines 
on main parameters and hull lines discussed in the pre-
vious subsections, here we shall consider several as-
pects of the more detailed hull form design. First, we 
address ship wave making and how it affects the design.

The wave pattern and wave resistance of a ship are 
most sensitive to details of the hull form design. This 
makes the design a critical issue, but also provides the 
opportunity to make substantial improvements with-
out violating any practical constraints. In this section, 
we will provide some specifi c guidelines on hull form 
 aspects, but fi rst we propose and demonstrate a meth-
odology for minimizing wave making that can be  applied 
more generally. This methodology has emerged from the 
practical application of free-surface potential fl ow cal-
culations in ship design at MARIN since 1987 ( Hoekstra 
& Raven, 2003; Raven & Valkhof, 1995; Raven et al., 
1998; vanden Berg, Raven & Valkhof, 1990). It provides 
general, qualitative insights based on the theory of ship 
waves described in Section 5, and an understanding of 
the relation between hull form and wave pattern. This 
usually permits a directed hull form improvement rather 

Figure 11.32 A trim wedge.
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than just a trial-and-error approach. Even for systematic 
hull form variation or optimization, such understanding 
is very effective to decide on the design variations to be 
investigated and to assess the computed trends (Hunt & 
Zondervan, 2007). The resulting procedure has proven 
to be successful and to lead frequently to substantial re-
ductions of the wave making.

The procedure starts with a given wave pattern for 
an initial hull form and provides guidelines to analyze 
that wave pattern and decide on possible improvements 
of the hull form from a wave-making point of view. This 
initial wave pattern may have been observed or mea-
sured or it can be a computed pattern, for example from 
one of the methods discussed in Sections 9.6 [free-sur-
face potential fl ow] or 9.8 [free-surface viscous fl ow]. As 
will appear, availability of the hydrodynamic pressure 
distribution, usually only available from computations, 
is of great help in the analysis.

In the examples given, we use free-surface potential 
fl ow calculations. As argued in Section 9.6, these give a 
generally accurate prediction of the wave pattern, except 
usually for stern waves, but they do not always provide 
accurate wave resistance predictions. Using such codes 
in a process to minimize wave resistance may seem 
risky. On the other hand, with suffi cient care such com-
putations give good predictions of the effect of hull form 

changes on the fl ow fi eld and wave pattern. The analysis 
procedure we propose is based on this  predicted fl ow 
fi eld and wave pattern rather than just on the predicted 
resistance, and thus avoids the result to be signifi cantly 
affected by shortcomings in the prediction method used. 
Moreover, fl ow fi eld and wave pattern provide much 
clearer indications on how to improve a hull form.

Using the predicted fl ow fi eld and wave pattern to 
 decide on possible modifi cations of the hull form is 
an approach that requires some guidelines or insights 
and experience. The guidelines and insights we use 
are based on the theoretical observations on ship wave 
making in Section 5, but simplifi cations are applied. 
This leads to an understanding of the main trends, but 
fi nding the right measure and the right compromise 
 depends much on experience. What is discussed here 
addresses just a number of aspects, but it demonstrates 
the approach and possibilities.

11.5.2 The Basic Procedure. Suppose one has avail-
able a computed wave pattern and fl ow fi eld for an initial 
design at a given speed, and the question is whether and 
how the wave resistance can be reduced by adjustments 
of the hull form.

From a free-surface potential fl ow computation, the 
wave resistance can be found by integrating the pres-
sure forces over the hull. One might suppose that the 

Figure 11.33 A stepped hull.
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hull pressure distribution would already indicate how 
to reduce the wave resistance (e.g., by reducing the pres-
sure at the forebody, increasing it at the afterbody). How-
ever, the relationship between pressure distribution and 
wave resistance is subtle. The hull pressure distribution 
in a potential fl ow without free surface  often looks very 
similar but actually yields zero resistance (d’Alembert’s 
paradox). Therefore, reducing resistance by simple ma-
nipulation of the pressure distribution is rarely feasible.

Therefore, instead we base our approach on the rela-
tion between the wave pattern and the wave resistance. 
Section 5 demonstrated that at a suffi cient distance from 
the ship hull, the wave pattern can be regarded as a su-
perposition of linear wave components, originating from 
different parts of the hull, propagating in various direc-
tions and interfering. This simplifi cation is based on the 
linearity of the system (Laplace equation 
 linearized 
free-surface boundary conditions) that is satisfi ed for 
small wave amplitudes. For larger wave amplitudes, the 
validity of the approximation will be somewhat less, but 
still it provides essentially the right answers. A some-
what bolder step is to use a similar analysis relatively 
close to the ship hull, where a near-fi eld disturbance is 
present that sometimes affects the analysis. The pos-
sible deviations arising from this should kept in mind.

In Section 5.5, an expression has been given for the 
wave resistance in terms of the amplitudes of wave 
components in the far fi eld:
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in which [A(�)2 
 B(�)2] is the amplitude squared of a 
wave component propagating in a direction making an 
angle � with the ship’s course. The far-fi eld wave com-
ponents result from the waves generated by different 
parts of the hull (bow, shoulders, etc.) that propagate 
away from the hull and interfere. Therefore, to reduce 
the wave resistance one needs to reduce the amplitudes 
of the waves where they are generated, and to improve 
the interference between wave systems generated by 
different parts of the hull, in order to minimize their 
amplitude in the far fi eld.

Accordingly, the principal aspect to be considered is 
the far-fi eld wave pattern, which is directly related to 
the wave resistance. This can be in the form of, for ex-
ample, a visual representation of the wave pattern, one 
or more longitudinal wave cuts, and/or a wave spectrum 
that indicates the distribution of wave energy over the 
wave propagation directions. “Far fi eld” does not nec-
essarily mean a large distance here, but far enough to 
discern separate wave components, their directions and 
amplitudes, outside the immediate neighborhood of the 
hull (so in practice, perhaps 0.2 to 0.5Lpp away from 
the centerline). This consideration also demands that 
a computational method predicts the wave pattern at 
some distance from the hull with reasonable accuracy.

The analysis should in general not be based only 
on the wave profi le along the hull: there is no direct 

 relation between the wave profi le along the waterline 
and a far-fi eld wave amplitude or the wave resistance, 
and the hull wave profi le is strongly affected by the 
near-fi eld disturbance that is meaningless for the wave 
resistance. The main use of the hull wave profi le is that 
it may help to identify the location where waves that are 
observed in the far fi eld are being generated.

The approach to be followed to analyze and improve 
a wave pattern using calculations is:

• Study a visualization of the wave pattern and assess 
which components are dominant for the resistance. One 
should take into account here the fact that transverse 
waves contribute more to the wave resistance than di-
verging waves of the same amplitude. Therefore, wave 
steepness is not the critical aspect, but amplitude and 
direction (or wave length) are.
• Identify the hull form features that generate these 
waves, and adjust these features in order to reduce the 
wave amplitudes and to improve their interference.
• Carry out a wave pattern calculation for the modifi ed 
hull, and check what has been achieved. If necessary, 
repeat the procedure for a further fi ne-tuning or for 
 other hull form aspects.

The second stage requires insight into the compli-
cated connection between hull form and wave  making. 
That connection is not easy to grasp in general. In prac-
tical applications it has been found useful to apply a 
two-step analysis to get that insight:

1. Consider the relation of the hull form to the hydro-
dynamic pressure distribution.

2. Consider the relation of the pressure distribution 
to wave making.

[We note here that, if one would consider this as 
strictly separate and consecutive computational steps, 
the fi rst step would require computation of the pressure 
distribution at the still water surface in double-body 
fl ow; and the second step would require computation of 
the wave pattern generated by that pressure distribu-
tion. However, we follow such a procedure only loosely, 
just to provide an understanding of the mechanisms, 
and we shall often use pressure distributions from 
free-surface potential fl ow computations also in step 1. 
 Section 11.5.6 provides some further discussion.]

This gives rise to the general procedure, which is 
a formalization of the approach developed at MARIN 
based on many practical hull form development projects 
using free-surface potential fl ow computations. The 
procedure will be further explained now. The next two 
subsections address the two steps, then we discuss the 
simplifi cations and limitations of the approach.

11.5.3 Step 1: Relation of Hull Form and Pressure 

Distribution. The quantity to be considered is the hy-
drodynamic pressure coeffi cient
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simply denoted as cP in the later text. We shall inspect 
the cP distribution over the hull surface and, as a result 
of that, over the still water surface. This pressure dis-
tribution is determined by the hull form and conditions 
such as ship speed, water depth, etc. To a large extent 
it can be approximated by the pressure in a potential 
fl ow around the hull, but at the stern, deviations occur 
caused by the boundary layer and wake.

In Sections 5.2.2 and 5.2.3, some characteristics of po-
tential fl ows around bodies have already been discussed. 
In general, the relation between hull form and pressure dis-
tribution can be summarized by the following guidelines:

High pressures occur:

Near stagnation points: Exactly at a stagnation 
point, such as occurs at the bow of a ship, the pressure 
coeffi cient is cP � 1, which is the maximum value in 
steady fl ow. In an area around that point the pressure 
will be relatively high. Normally there is also a pres-
sure rise towards the stern, although this  depends on 
the stern type and is reduced by viscous effects.
At concave streamwise curvatures: Where the 
fl ow goes over a part of the hull surface that is con-
cave in the direction of the streamlines, the centrifu-
gal acceleration acting on fl uid particles must be bal-
anced by a pressure increase toward the wall (see 
Fig. 5.2). Consequently, the pressure is higher at the 
hull surface.
At large streamwise slopes: A large angle of the 
wall streamlines relative to the longitudinal direction 
(outward on the forebody or inward on the aftbody) 
will often have a somewhat elevated pressure (due to 
the streamwise curvature further away from the hull).
Under a wave crest: If a wave system is gener-
ated at some point, the wave trailing aft will cause 

 alternating high and low pressures on the hull near 
the water surface. Therefore, such pressures are the 
result of waves, not the cause of waves, and they are 
not related to a local hull form aspect. In double-body 
fl ow results this does not occur.

Low pressures occur:

At convex streamwise curvatures: Caused by the 
same mechanism as described above. The centrifu-
gal acceleration is directed outward, and the pres-
sure decreases toward the hull.
Due to displacement effect: The presence of the 
hull causes a speedup of the fl ow next to it, lead-
ing to a slight underpressure. (In Section 5.2.2 this 
was explained from the slight streamline curvature 
at a distance from the hull.) In unrestricted water 
this is a weak effect; in restricted water it is much 
stronger.
Under a wave trough: Again as a result of waves 
generated somewhere upstream.
Except for the stagnation point effect, the effect of 

streamwise curvature is by far the strongest in most 
practical cases for ship hulls.

Fig. 11.34 illustrates some of these aspects. The pres-
sure distribution shown is for double-body fl ow, so there 
is no effect of waves visible in the graph. The resulting 
more direct relation between hull form and pressure 
distribution is a merit of this type of result. The follow-
ing features are noticeable (the numbers refer to loca-
tions indicated in Fig. 11.34):

1. There is a small high-pressure area on the tip of 
the bulbous bow, where the stagnation point is located.

2. There is another area of elevated pressure near 
the waterline aft of the bow (cP � 
0.22), which is partly 
caused by the concave waterline curvature here.

Figure 11.34 Double-body pressure distribution. Colors indicate cp distribution: red is high and blue is low. (The numbers indicate 
features discussed in the text.)
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3. Low-pressure areas are observed at the fore and 
aft shoulder (cP � �0.13), caused by the convex curva-
ture of the waterlines.

4. There is a low-pressure area at the stern bulb and 
bottom of the stern sections (cP � �0.19), where again 
the curvature is convex for the streamlines coming from 
under the bottom and going in an upward direction.

5. Along the midbody, the pressure is around cP � �0.08 
as a result of the displacement effect.

6. Large pressure variations are present on the bul-
bous bow, with a pronounced underpressure (cP � �0.30) 
at its sides; again this is caused by the strong convex cur-
vature of the bulb waterlines.

Clearly, using the guidelines given, the pressure dis-
tribution is easily understandable in qualitative terms, 
and it is evident how details of the hull form could be 
modifi ed to change that distribution: if desired, the 
 underpressures at locations 3, 4, and 6 could be reduced 
by reducing the local convex curvature in the stream-
line direction; the overpressure at the bow (location 2) 
could be reduced (or moved forward) by avoiding the 
concave curvature; but nothing could be done on the 
stagnation pressure (location 1), or the reduced pres-
sure due to displacement effect (location 5) which 
 depends on the main hull dimensions rather than on the 
detailed hull form.

Fig. 11.35 shows the pressure distribution on the 
same hull form but now including the effect of the ship 
wave pattern, from a free-surface potential fl ow com-
putation. The distribution corresponds in general with 
the double-body fl ow case, but the underpressures 
(location 3 in Fig. 11.34) near the water surface at the 
fore and aft shoulder are lower (−0.20 to −0.25) and are 
somewhat shifted aft; the overpressure on the forebody 
near the waterline (location 2) is higher (0.35). For the 
stern bulb region there is a rather small change. Along 
the aft midbody, an area of increased pressure is now 
visible (location 7), which is a result of a wave crest of 
the wave system generated by bow and forebody.

Therefore, there is a qualitative agreement of Figs. 11.34 
and 11.35, although there are differences mainly closer to 
the water surface. Also for situations with free-surface 
waves, many features of the hull pressure distribution 
are still directly related to the local hull form; and the 
guidelines given still hold, at least for moderate Froude 
numbers (0.28 in this case), which gives support to the 
applicability of our procedure.

The aspect of this pressure fi eld that generates waves 
is the pressure distribution at the still water surface. If 
the pressure at the still water surface deviates from 
zero in the vicinity of the ship, it will set the water sur-
face into motion, in a way addressed in step 2.

We thus have to relate the hull pressure distribution to 
the resulting pressure distribution on the still water sur-
face. Clearly, pressure variations on the hull close to the 
water surface have a larger effect than those further be-
neath the water surface. To illustrate how a pressure vari-
ation caused by a hull form feature at some point is felt at 
a distance, Fig. 11.36 shows the pressure fi eld of a single 
submerged point source in a uniform fl ow, on the still 
water surface, for three different submergence distances 
of the source. The amplitude of the pressure variation 
induced at the still water surface decreases quickly with 
distance (inversely proportional to distance squared, for 
this case), whereas the length scale of that pressure varia-
tion increases with distance to the source. In general:

• A short, local pressure variation caused by a hull 
form feature far beneath the water surface hardly con-
tributes to the pressure at the still water surface.
• A longer scale pressure variation at the same depth, 
however, has less decrease of its amplitude and is felt 
more strongly at the still water surface.
• Therefore, the pressure distribution on the still water 
surface is caused by all hull pressure variations close to 
the waterline, and by the larger-scale pressure variations 
farther beneath the water surface. Pressure variations at 
the water surface with small length scales can only be 
generated by form features close to the water surface.

Figure 11.35 Pressure distribution for same hull with free surface, at Fn = 0.28.



186 SHIP RESISTANCE AND FLOW 

Figure 11.37 Pressure distribution for Series 60 parent hull in double-body fl ow.

Figure 11.36 Pressure fi eld at the still water surface induced by a submerged source (indicated by the dot) for different submergence distances.

Raven (2010) provides some more illustration of 
these guidelines.

Fig. 11.37 shows an example of the double-body fl ow 
pressure fi eld of a Series 60 parent hull (CB � 0.60). Evi-
dently, the pressure fi eld is continuous from hull to still 
water surface. On the still water surface, we observe 

an overall pressure variation with a length comparable 
to the ship length, with an area of elevated pressure 
around the bow and stern, and a reduced pressure next 
to the hull. The lower pressures near the shoulders, be-
ing of smaller extent but located adjacent to the water-
line, are also visible on the water surface. On the other 
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hand, the low pressure at the bilge in the afterbody is a 
localized disturbance far beneath the water surface and 
is not noticeable at the water surface. Instead, Fig. 11.38 
shows an example of a barge-type stern that has a low-
pressure area of larger size at the bottom caused by 
the convex curvature of the buttocks. As a result of its 
greater length scale, this underpressure is visible at the 
water surface, albeit with reduced amplitude.

11.5.4 Step 2: Relation of Pressure Distribution and 

Wave Making. It is the pressure distribution on the still 
water surface (or rather, its derivative in the streamwise 
direction) in double-body fl ow that is regarded as the 
cause of the generation of waves. The challenge of the 
second step is to understand qualitatively the connection 
between this pressure distribution and the height, length, 
and direction of the waves generated. For simplicity we 
here consider the effect of the pressure distribution in 
isolation (i.e., in absence of the ship), an approximation 
briefl y addressed in Section 11.5.6.

The dynamic free-surface boundary condition given in 
Section 9.6.1 leads to an expression for the wave elevation

� �   1_
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using again the hydrodynamic pressure coeffi cient. 
Thus, if cP is high on a part of the hull just below the wa-
ter surface, this will generate a local wave crest plus a 

trailing wave system. Similarly, a low pressure will gen-
erate a local wave trough plus a trailing wave system.

An isolated local pressure at the still water surface 
(e.g., at the tip of the bow or at a sharp convex corner 
of the waterline) in principle would generate a com-
plete Kelvin wave system made up of wave components 
propagating in all directions. However, a smooth hull 
form causes a smooth pressure distribution as well; 
and an almost equal pressure in the vicinity would can-
cel some of those wave components and amplify some 
others. Therefore, a smooth pressure distribution does 
not generate the same complete Kelvin pattern but gen-
erates some preferred components, and much less of 
the  others. So, which wave components will be signifi -
cant and which will not?

The answer can be formulated as the following guide-
line: A wave of a certain length is most effectively 

generated by a pressure variation of comparable 

length and shape. To illustrate this, suppose the pres-
sure on a part of the hull surface has a more or less 
 sinusoidal variation with a length LP. One example, 
 illustrated in Fig. 11.39, is the usual overall pressure 
pattern on a ship hull, with a high pressure at the bow, a 
lower pressure beside the hull, and often a higher pres-
sure again at the stern. This overall pressure pattern 
has a typical length LP � L.

Figure 11.38 Pressure distribution for a barge-type stern in double-body fl ow.
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As we have seen in Section 5.4.2, for a ship speed V the 
length of wave components in the steady wave pattern is

� � 2�   V
2_

g cos2 � � �0 cos2 �

and the wave length measured in the longitudinal direc-
tion is

�x � 2�   V
2_

g cos � � �0 cos �

Therefore, wave lengths vary between 0 and �0 depen-
dent on the divergence angle �.

The top sketch in Fig. 11.39 shows the case of a rather 
low Froude number, at which �0 �� LP. The length scale 
of the pressure distribution is much larger than the length 
of any wave (regardless of �), so any high- or low-pres-
sure region would act on crests and troughs alike and is 
ineffective to generate a wave. Therefore, the ship-scale 
pressure distribution will not generate waves at this low 
Fn—but local pressure variations (e.g., around the bow 
and forebody) may well be better matched with the pos-
sible waves and are more important at low Fn.

The middle sketch of Fig. 11.39 illustrates the situa-
tion in which the transverse wave length �0 � LP. The 
higher pressure at the bow, the lower pressure next to 
the hull, and the higher pressure at the stern all cooper-
ate to generate a substantial transverse wave.

Finally, at high Froude numbers when �0 �� LP, the 
pressure variation occurs over just a small fraction of the 
length of the transverse wave. Positive and negative pres-
sures effectively cancel on the length scale of the trans-
verse wave, and as a result this pressure variation will 

not generate a transverse wave: it does not have a com-
parable length. However, there is a value of � for which 
�x(�) � LP, and waves with that divergence angle are quite 
effectively generated by this pressure variation.

A similar reasoning applies to other, more local pres-
sure variations. The guideline provides a general under-
standing of wave making that is helpful to anticipate 
and explain ship wave patterns.

We note that this guideline on the relationship be-
tween a free-surface pressure distribution and its wave 
pattern, is an interpretation of the theoretical expres-
sion according to linear theory (Wehausen & Laitone, 
1960). This indicates that the amplitude of waves in 
direction � generated is proportional to the 2D Fourier 
transform of the distribution of the longitudinal pres-
sure derivative at the wave frequency,

sec3 � 

F



S

   
�p_
�x

exp  [i g(x cos � 
 y sin �
  __  

V 2 cos2 �
   ]  dxdy

and comparison with equation (5.30) confi rms our 
guideline.

11.5.5 Some Consequences. The general insights 
explained help in understanding a variety of well-known 
physical phenomena:
• As remarked, transverse waves are most effectively 
generated by the ship-scale pressure distribution if 
�0 � L (the middle sketch of Fig. 11.39), which is the case 
at Fn � 0.4. As a matter of fact, transverse waves are 
strongly amplifi ed in this speed range. Since transverse 
waves contribute most to the wave resistance, this leads 
to the primary resistance hump which occurs at Fn � 0.5.

LP

λο

LP

λο

Figure 11.39 Pressure distribution and wave making. Top: low Froude number; middle: Fn � 0.4; bottom: high Froude number.
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• The guideline applies not only to the longitudinal but 
also to the transverse direction: a pressure disturbance 
over a substantial width tends to generate transverse 
waves. Much care is therefore needed in designing wide 
fl at transom sterns.
• Except at low Froude number, local pressure distur-
bances of small extent generate shorter, diverging waves, 
not transverse waves. Around the bow stagnation point, 
the pressure is high; on a sharp bow, it decreases quickly 
with distance from the stagnation point, so the pressure 
distribution has a small length scale, and sharp bows 
thus generate primarily diverging waves. On a blunt bow, 
the high-pressure region is more extensive and of great-
er lateral extent, and it will tend to generate transverse 
waves as well (in particular at low Froude numbers).
• Similarly, local features such as the corners of a tran-
som stern will generate diverging waves.
• For very high Froude numbers, all pressure variations 
present on the hull surface are short relative to most of 
the possible waves (e.g., at Fn � 1, �0 � 6.25L), and only 
diverging waves for � � 80 degrees have �x � L. Conse-
quently, for Fn increasing above the primary resistance 
hump, transverse waves are gradually disappearing, 
and any wave energy goes into diverging waves of larger 
and larger angles. This explains the observation that 

the whole wave pattern gets narrower. Fig. 11.40 shows 
an example. There is, however, no change of the Kelvin 
angle: the theoretical envelope is still at the same angle, 
but the outer waves are too weak to be noticeable.
• At low Froude numbers, all waves are short relative 
to the dimensions of the ship. These waves are gener-
ated by shorter components of the free-surface pressure 
distribution. Those components can only be caused by 
hull form features close to the water surface, whereas 
a pressure disturbance or hull form feature at greater 
depth has no effect. Therefore, at low Froude numbers, it 
is the waterline shape that dominates the wave  making.
• At higher Froude numbers, however, waves are longer 
and thus respond to longer components of the free-surface 
pressure distribution, which are determined by the entire 
hull shape. The shape of the sectional area curve thus be-
comes more important at higher Froude numbers.
• Pressure variations over a short length far beneath the 
water surface are normally insignifi cant for the wave mak-
ing (but of course can be detrimental for viscous fl ow).

11.5.6 Discussion of the Procedure—Simplifi cations 

and Limitations. The two-step procedure to relate the 
wave pattern to the hull form is a substantial simplifi cation 
of the entire problem. This makes it easier to understand, 

Figure 11.40 Wave pattern at high Froude number. Transverse waves nearly absent; no Kelvin angle visible; only sharply  diverging 
waves.
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but one may question the validity. We shall address that 
here. A more complete discussion and validation is pro-
vided in Raven (2010).

A fi rst approximation is that we try to explain the 
hull pressure distribution from the local hull form only. 
But the pressure distribution we use is normally the 
one found in a free-surface potential fl ow calculation, 
and the wave making changes the distribution to some 
extent. As demonstrated, the effect of the wave mak-
ing on the pressure distribution is rather limited for 
usual merchant-ship speeds. In the analysis, we keep 
in mind that the free surface increases the pressure 
extremes, shifts them slightly aft, and contains pres-
sure variations caused by waves generated upstream 
(see Fig. 11.35). To clarify the analysis one could use a 
double-body pressure distribution, but that would intro-
duce other deviations in certain cases.

A second approximation is that the analysis of the waves 
generated by the pressure distribution entirely disregards 
the boundary condition on the hull surface; and ignores 
the fact that the waves propagate over the curved fl ow 
fi eld with variable velocity around the hull, which slightly 
affects the wave amplitudes and locations. However, these 
approximations are justifi ed as long as we aim only at a 
qualitative understanding and use a more complete method 
for quantitative prediction of the wave pattern.

In Raven (2010) it is demonstrated that the decom-
position into two steps and the simplifi cations applied 
in each correspond closely with the earliest slow-ship 
linearized methods (see Section 9.6.4), such as that of 
Baba and Takekuma (1975). Also, to illustrate the valid-
ity of the procedure, some computations are shown by 
a strict computational equivalent of it: fi rst the pressure 
distribution p(x, y) on the still water surface in a dou-
ble-body fl ow around the hull is determined, then the 
wave pattern generated by −p(x, y) acting on the wa-
ter surface (omitting the hull) is computed. It is shown 
that this wave pattern often agrees closely with that of 
the ship itself. Fig. 11.41 shows an example from Raven 
(2010), comparing the wave pattern of the  free-surface 
pressure distribution with that of the ship, for the 
 Series 60 parent hull at Fn � 0.316. The agreement is 
just remarkable. For other cases, in particular with pro-
nounced differences between the double-body and free-
surface pressure fi elds, larger differences occur, but the 
usefulness of the procedure for general understanding 
is supported.

The approach outlined above and the simple guide-
lines given enable us to foresee what sort of pressure 
distribution a given hull form will have, which aspects 
of that pressure distribution will generate waves at cer-
tain speeds, and conversely, how the dominant waves 

Figure 11.41 Computed wave patterns of Series 60 CB � 0.60 at Fn � 0.316 (left), and of its double-body pressure fi eld 
 moving at the same speed over the still water surface (right).
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Figure 11.62 Afterbody of a twin-screw dredger, with twin gondolas, ducted propellers, tunnels, headboxes, and central skeg. (Courtesy of IHC Dredg-
ers B.V., The Netherlands.)

In summary, the detailed hull form design to achieve 
a good viscous fl ow is complicated by having to con-
sider different, partly opposing objectives regarding 
resistance and wake fi eld; by the sensitivity of the vis-
cous fl ow to hull form changes; and by the substantial 

scale effects. The aim of the present section has been 
to provide basic insight in trends that will be useful, for 
example, in improving a design based on available ex-
perimental or computational information on the viscous 
fl ow around the hull.
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