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SERIES PREFACE

In this day and age, humankind has come to the realization that the
Earth's resources are limited. In the 19" and 20™ Centuries, these resources
have been exploited to such an extent that their availability to future
generations is now in question. In an attempt to reverse this march towards
self-destruction, we have turned out attention to the oceans, realizing that
these bodies of water are both sources for potable water, food and minerals
and are relied upon for World commerce. In order to help engineers more
knowledgeably and constructively exploit the oceans, the Elsevier Ocean
Engineering Book Series has been created.

The Elsevier Ocean Engineering Book Series gives experts in
various areas of ocean technology the opportunity to relate to others their
knowledge and expertise. In a continual process, we are assembling world-
class technologists who have both the desire and the ability to write books.
These individuals select the subjects for their books based on their educational
backgrounds and professional experiences.

The series differs from other ocean engineering book series in that the
books are directed more towards technology than science, with a few
exceptions. Those exceptions we judge to have immediate applications to
many of the ocean technology fields. Our goal is to cover the broad areas of
naval architecture, coastal engineering, ocean engineering acoustics, marine
systems engineering, applied oceanography, ocean energy conversion, design
of offshore structures, reliability of ocean structures and systems and many
others. The books are written so that readers entering the topic fields can
acquire a working level of expertise from their readings.

We hope that the books in the series are well-received by the ocean
engineering community.
Rameswar Bhattacharyya

Michael E. McCormick

Series Editors
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Preface

The present monograph covers wave load and global structural response for ships. It
is primarily written as a textbook for students with an introductory background in naval
architecture and a basic knowledge of statistics and strength of materials.

The subjects are treated in detail starting from first principles. The aim has been to
derive and present the necessary theoretical framework for predicting the extreme loads
and the corresponding hull girder stresses a ship may be subjected to during its
operational lifetime.

Although some account is given to reliability analysis, the present treatment has to be
supplemented with methods for detailed stress evaluation and for structural strength
assessment before a complete structural reliability analysis can be carried out.

The content of the book has developed over the years and invaluable comments and
suggestions have been received from my colleagues at the department. Special thanks
goes to Professor Preben Terndrup Pedersen, for his constant encouragement and
friendship.

The typing of the manuscript by Vibeke Lybecker Jensen, Vivi Jessen and Linda
Andersen is highly appreciated.

Jorgen Juncher Jensen
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1 Introduction

A ship is a very complex structure consisting of more than 100,000 different parts. A
design usually starts by a shipowner’s request for a ship with the ability to carry a
specifictype and amount of cargo, possibly to sail on a specific route with a given speed.

Based on this small quantity of data, the naval architects make a preliminary design
which satisfies these requirements. Due attention is paid to a large number of problems
such as

¢ Restrictions on length, beam and draught of the ship imposed by relevant
harbours and channels.

¢ Optimal hull form with respect to wave resistance.

* Economical and environmentally friendly propulsion system.

» Effective loading and unloading of cargo.

* Location of cargo, ballast and fuel oil tank to ensure proper trim in all conditions.

¢ Hydrostatic stability in intact and in damaged conditions.

¢ Electrical consumption and generator sets.

» Lifeboats with easy access and other life-saving equipment.

* Fire resistant subdivision of the ship and required fire fighting equipment.

e Heating and ventilation.

* Accommodation for crews and, perhaps, passengers.

* Navigation equipment.

* Maintenance cost.

This list contains just some of the main issues, others may be added depending on the
type of ship.

The result of the preliminary design phase is a set of drawings. The main drawing is the
general arrangement, showing the ship in all three projections with the location of tanks,
cargo gears, life-saving equipment and machinery clearly indicated. Additional
drawings show the different loading conditions, the machinery layout as well as other
pertinent features of the ship. The drawings are supplemented with a specification of
the various equipment on board.



2 Introduction

When or if this design is approved by the shipowner, the next step is determination of
the scantlings. This step is taken in close collaboration with a classification society. On
acceptance of the structural design, the classification society issues a class notation for
the ship, which makes it possible for the shipowner to insure the ship in an insurance
company.

The classification societies have issued rules and regulations for a proper structural
analysis of a ship and selection of the scantlings. Previously, those rules rather explicitly
gave formulas for the thickness of the hull platings, the size of the stiffencrs, the
scantlings of internal bulkheads and so on. Such empirical rules must necessarily be
rather conservative in order to apply to a large variety of ships. With the advent of
powerful computers, the rules have changed. Today, the naval architect can perform the
structural analysis using mainly rational methods based on first principles. The
classification society then specifies proper safety factors against local and global failure
modes, taking into account the consequences of failure and the analysis procedure used.
A cruder method of analysis then necessitates a larger safety factor. Therefore, the
effort made by the experienced naval architect to perform a detailed structural analysis
will be paid back not just by a rational structural arrangement but often also in lesser
lightweight of the ship and thus a higher payload throughout the operational lifetime
of the ship.

The background of rational methods for ship structural design is structural and fluid
mechanics with extensive use of advanced statistical methods for determining the loads
due to the waves and for estimating the safety against structural failure.

Determination of the scantlings by rational methods can be divided into the following
main steps:

¢ Determination of hydrostatic loads in a calm sea.

* Determination of wave-induced loads taking into account the statistical nature
of ocean waves.

* Determination of hull girder stresses due to the above-mentioned loads.

+ Assessment of the safety against hull girder failure due to excessive maximum
loads. Too low safety requires a change of the scantlings of the hull plating and
other longitudinal structural members (bulkheads, girders, longitudinals).

¢ Determination of local stresses due to pressure loads from the sea and from the
cargo in association with the hull girder stresses.

* Assessment of the safety against local failure with respect to buckling, yielding
and fatigue. Redesign if insufficient safety.

¢ Determination of the forced vibration levels due to time-varying forces
generated by the machinery, the propeller and the sea. This is of less importance
to normal merchant vessels, but often needed in the case of fast vessels and
passenger ships in order to ensure a comfortable ship and to reduce problems
with fatigue cracks.

¢ Optimal inspection and repair procedures to reduce docking time and to ensure
that the ageing ship has sufficient strength. Especially, attention must be paid to
the detection and repair of fatigue cracks and corroded areas.



« Structural assessment of the consequences of accidental loads due to collision,
grounding, fire and explosion.

The present lecture notes deal with the global load and response analysis of ships,
covering mainly the first four items mentioned above.

In Chapter 2, the equilibrium position of a floating body in a calm sea is determined
together with the hydrostatic sectional loads in the hull girder. Moreover, a short
description of hydrostatic stability is given.

Chapter 3 is devoted to a stochastic description of ocean waves. The necessary
statistical methods are derived and linear as well as non-linear formulations of the wave
elevation are given.

Chapter 4 describes procedures for determination of the global wave loads on ships. The
linear formulation in the frequency domain is the basic method, but non-linear
formulations in both frequency and time domains are also treated in order to obtain
realistic extreme hull girder loads.

Chapter 5 deals with the determination of hull girder stresses due to sectional bending,
shear and torsional loads. The analysis is performed within the framework of elastic
thin-walled beam theory.

Hull vibrations are treated in Chapter 6 and, finally, in Chapter 7, the concept of
reliability analysis is introduced.

No textbooks available today cover all parts of ship structural design. However, Hughes
(1988) gives a very comprehensive discussion of many topics and can be recommended
for further reading.
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2 Hydrostatic Loads

When a structure is at rest in a calm sea, the submerged parts of the structure will be
subjected to hydrostatic pressure forces. The hydrostatic pressure p acts
perpendicularly to the exposed surfaces with a magnitude

p= —pgl 21

where p is the mass density of sea water, g is the acceleration of gravity. Z is the vertical
coordinate in a global XYZ-coordinate system, situated with the (X, Y)-coordinates in
the still water surface and with Z pointing out of the water, see Figure 2.1.

)z

Figure 2.1 XYZ-coordinate system.

Eq. (2.1) simply follows from the fact that shear stresses do not exist in a fluid like water.
Thus, the pressure on a horizontal control plane in the fluid is equal to the weight of the
fluid above this plane.

The total hydrostatic force vector F = (F v Fy, F Z) on the structure is obtained by
integration of the pressure p over the submerged surface S:

E=~j[pﬁd3 (22
S

where n = <n v My, nZ) denotes the normal vector to the surface, directed into the
water, see Figure 2.1.
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TZ
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-pnyds
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My @ v
P

L)
X My

Figure 2.2 Moments with respect to the XYZ-system.

As the normal vector is a function of (X, Y, Z), the integration in Eq. (2.2) can be quite
complicated. Later, in Section 2.2, two different procedures will be described for
performing integrations over the submerged surface.

Static equilibrium requires that the net total force and moment vectors on the structure
are zero. The moment vector M = ( My, My, M, ) due to the hydrostatic pressure
becomes see (Figure 2.2):

MX=—pr(nZY—n,,z)ds 23)

MY=—ij(nXZ—nZX)dS 2.4
S

MZ=—ij(nYX—nXY)dS 2.5)
S

Here My, My, M, are the moments of the hydrostatic pressure force with respect to
the X-, Y- and Z-axis, respectively.

Static equilibrium requires that the force F and the moment M are counteracted by other
static forces:

F=-F, 2.6)
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and

M=-M, @7

where F, and M, are the total force and moment vectors, respectively, of these other
forces. For marine structures, these forces may be gravitational forces, reaction forces
from contact with a quay or a seabed, forces due to wind and current and mooring forces.

For structures with a fixed position in the sea, as for instance bottom-supported offshore
drilling rigs or grounded ships, Egs. (2.1) - (2.5) yield F, M and the reaction forces then
follow from Egs. (2.6) - (2.7).

For floating structures like ships, semi-submersibles and tension-leg platforms, the
hydrostatic pressure resultants F, M cannot be calculated directly from Egs. (2.1) -
(2.5) as the submerged surface S is not known in advance. The equilibrium position of
the structure in the sea and thus the submerged surface S must first be determined from
Egs. (2.1) - (2.7). The solution procedure for this problem is given in Section 2.1. This
procedure makes use of some hydrostatic coefficients. Two different procedures for
calculation of these coefficients as well as other coefficients, necessary to obtain
sectional loads and to assess the hydrostatic stability, are presented in Section 2.2.
Sectional loads may then be determined as described in Section 2.3. Finally, hydrostatic
stability is discussed in Section 2.4.

2.1 EQUILIBRIUM POSITION FOR A FLOATING STRUCTURE

In this section the equilibrium position of a rigid body, floating at rest in a calm sea, is
determined. A rigid body is assumed which yields a position completely determined by
the translation and rotation of an xyz-coordinate fixed in the body with respect to the
global XYZ-system. Thus, the six equations (2.6) - (2.7) are sufficient to determine the
position of the structure in a calm sea. For a very elastic body, e.g. a subsea membrane
oil storage tank, the elastic deformations of the structure due to hydrostatic pressure
may seriously change the hydrostatic loadings. In such cases, the equilibrium condition
can only be found by solving a complete elastic structural model subjected to all
external loadings (hydrostatic pressure, gravitational loads, reaction forces) and the
relevant boundary conditions. The very large elastic deformations, which necessitate
such an approach, also make the problem highly non-linear and therefore often difficult
to solve.

However, ships and most other marine structures are so rigid that the elastic
deformations due to the hydrostatic pressure do not change the hydrostatic pressure
loads to any significant degree. A few per cent reduction in the sectional forces might
be achieved if the hull girder flexibility is taken into account. This reduction is,
however, usually neglitible considering the uncertainties in the mass distribution.

For a floating body where the submerged surface S is completely in contact with the
water, the hydrostatic pressure resultants F, M, Egs. (2.2) - (2.5), can be written more
conveniently by applying the Gauss integral theorem, which states that in general
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JJK'MSO= ffjdivde (2.8)
\Y

4]

where S, is the complete surface of the volume V. The vector v = (v v Vp vZ) is any

differentiable vector and n is the normal to the surface, pointing out of the volume.
Furthermore,

V'R =Vyhy +vyny+v,n, (2.9)

vy vy  0vg

—£ 2.10
0 aY + YA (2-10)
In the present case, S, is chosen as the submerged surface S plus the intersection surface
A,, between the structure and the still water surface, see Figure 2.3. Thus, S, becomes
asingle-connected closed surface which bounds a volume equal to the volume V of the
submerged part of the structure.

Figure 2.3 Surfaces S,, A, defining the submerged volume.

Insertion of Eq. (2.1) into Eq. (2.2) yields

E=ngjZadS=ngjZadSo (2.11)

N S,

as Z=0on A,. For v = (Z,0,0), Eq. (2.8) yields

JJZnXdSO = IJJ% av =0 (2.12)
v

1]

and similarly with y = (0, Z,0)and y = (0,0, Z):

j JZnYdSO =0 (2.13)

Sy
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[foene [ [ [[[ o=

8]

Hence
Fy=pg [ IZ”XdSO =0 (2.15)
SU
Fy=pg ] jZnYdSO =0 (2.16)
So
F,=pg I JZnZdSO = pgV 217
Sl}

The physics behind Egs. (2.15) - (2.17) were discovered by Archimedes, who stated
that the net force on a submerged body is directed vertically upwards and equal to the
weight of the displaced volume of the fluid.

Likewise, the moment vector M, Egs. (2.3) — (2.5), can be rewritten by use of Eq.
(2.8)

My = pgf [Z(nZY - nYZ)dSO = pgf [ IYdV (2.18)
v

S
My = pgf fz (nyZ — nyX)dS, = — pg[ J IXdV (2.19)
So v
M, = pg J f Z(nyX — nyY)dSy = 0 (2.20)
S

Thus, only three out of the six force and moment resultant components of the
hydrostatic pressure are different from zero. The three equilibrium equations in Egs.
(2.6) - (2.7) concerned with forces acting in the (X, Y)-directions are thus independent
of the hydrostatic pressure loadings. This implies that the horizontal position in the
XY-plane of the structure is independent of the hydrostatic pressure and is either
indeterminate, as for a freely floating structure, or determined from an equilibrium

between, for example, horizontal mooring forces and loads derived from wind and
current.
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The remaining equilibrium equations from Egs. (2.6) - (2.7) are

pgV +F =0 (2.21)
pgly + M = 0 (2.22)
—pgly+ My =0 (2.23)

where the volume moments

Ly= j j f Xav (2
v
Ly= J J ]de (2.25)

v

have been introduced. The vertical force F,;and the moments M, and M, with respect
to the X- and Y-axis, respectively, contain the contributions from all other external
forces acting on the structure than the hydrostatic pressure loads. These forces are
gravitational forces and, possibly, vertical forces due to mooring systems or
concentrated grounding forces. Except for tension-leg platforms the vertical mooring
forces are usually negligible in comparison to the gravitational forces. Grounding on
a rock may lift the ship so much vertically that the grounding reaction becomes
comparable to the gravitational loads. This special case will be considered later in this
section.

First, the normal case of a freely floating structure is considered. Here, F,;, My and
M., only contain contributions from the gravitational forces on the structure. These
forces depend on the mass distribution of the structure, which must be determined from
the general arrangement and the loading conditions. This is normally a very tedious job,
considering the number of weight items in a typical marine structure. To determine the

equilibrium position, only the total mass M and its centre of gravity (xg, Yo zg) ina

local xyz—coordinate system are necessary. These values may be obtained simply
by summing up all the individual items of mass, given by their mass M; and centre

of gravity (x5, y%, z4) as follows:

M= M, (2.26)
i

xgM = ZxéMi (2.27)
[

yeM = > yi M, (2.28)

14
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M= >z M, (2.29)
i
Then
F,=— gM (2.30)
My = — gMY, (2.31)
M,y = gMX, (2.32)

where (Xg, Yy) are the horizontal coordinates of the centre of gravity in the global

XYZ-system. The equilibrium equations (2.21) - (2.23) can then be written:

with

(2.33)

(2.34)

(2.35)

(2.36)

Figure 2.4 Relation between the local xyz- and the global XYZ-coordinate systems.

Determination of the equilibrium position is equivalent to finding the relation between
the local and the global coordinate systems. In matrix form, the relation from Figure 2.4

is seen to be
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cos@ 0 —sinff |1 0 0 x 0
{)){} =1 0 1 0 0 cos @ sing JY} + { 0 } (2.37)
Z sin@ 0 cosf | [0 —sing cos@ lz -T

or alternatively

X = xcosf + ysinfsing — zsinfcosg (2.38)
Y = ycosp + zsing (2.39)
Z = xsin@ — ycosfsing + zcosfcosqp — T (2.40)

The unknown quantities are: the trim angle 8, the hecling angle @ and the translation
T. As the still water surface is defined by Z = 0, the transtation T is the vertical distance
between the origin of the xyz-system and the still water surface and is therefore a
measure of the draught.

The three equilibrium equations (2.33) - (2.35) can now be expressed in terms of the
three variables 8, ¢ and T. Explicit expressions are found for X and Y by substitution
of x = xg, y = ygand z = zginto Egs. (2.38) and (2.39). However, the submerged
volume V and its volume moments Ly and L, also depend upon 0, ¢ and T through the
integration domain. This makes the equilibrium equations non-linear in the variables

and an iterative solution procedure must be applied in order to solve the Egs. (2.33) -
(2.35).

The solution procedure starts with an initial guess (T, 0, @) for the three unknowns.
The corresponding values of the residuals (E,, E,, E;), Egs. (2.33) - (2.35), are

probably not zero, but can be used to obtain an improved estimate T{, 8, ¢, by a
Taylor series expansion about (T, 65, @g):

OF, \ oE,
E;(Ty, 0, 1) = Efg+ =7 O(Tl —To)+ 35 0(91 = 0p)
(2.41)

oL; .
+ 30 IO(% —@o) 5 i=123

truncated after the first order terms. The notation |, means evaluation of the expression
using T}, 6, and @ For the sake of simplicity, this notation will be omitted in the
following. On the assumption that £, (T}, 64, @) = 0 for i = 1,2,3, the following
linear equations determine T, 0, and @:
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[ OE, 0E, OE,
ol 0 g T, ~ T, E,
OE, 9OE, OF,
0%y By 97 —o L= _JE
T i 6, — 0, = ) (2.42)
dE, OE; 3E; | |17 %o Es
9T 80 dp

As higher order terms in the Taylor series expansion have been omitted, E; (T}, 0;, ¢,)
are, however, normally not zero. Therefore, (T}, 8, @) mustbe used ina new iteration
replacing (T, 84, @) to yield abetter estimate (75, 8,, @,)and so forth. Usually, only
a few iterations are needed, but for complicated structures like damaged ships several
iterations may be necessary before a convergence (E; == 0) is achieved.

In order to solve Eq. (2.42), the derivatives of E; on the left hand side must be
determined. This is most conveniently done by analysing the integral J of an arbitrary
function G(X,Y) over the submerged volume V:

v= [ [ [owna
v

The integration in the Z-direction ranges from the submerged surface S, given by
Z¢ = Z(X,7), 10 the still water surface (Z = 0). It is easily seen that differentiation
of J with respect to a = (7, 0, @) yields

aJ 0Zg G 2.43
E—ff——a—d—G(X,Y)dXdYJrjffde (243)
w \%

for any single-connected submerged surface. The only assumption in Eq. (2.43) is that
the water plane area Ay, defined as the area of the plane Z = 0 inside the structure:

Ay = j jdXdY (2.44)

AW

does not change with a.

From Egs. (2.38) - (2.40) it follows that

QZ = — : -QZ = N g = -
¥ 1 30 X o = Ycos@ (2.45)
and, therefore, for G(X,Y) = 1 Eq. (2.43) yields
oV _ . oV _ . oV _
B—T = AW 5 ‘55 = — SY 5 W = SXCOSB (246)
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where the moments of the water plane Ay, :

o= | [raxar s 5= | [xarar

Ay Ay

have been introduced.

Similarly, G(X,Y) = X leads to

oLy

aT = S
aLy
0 - Iy~ L, ~TV
aLX .
W = Iyy cosf + Ly sin @

using

W —z+1n ; &= vysing

a0 I
and, finally, G(X,Y) = Y yields
aLy .
a—qo— = Iyy cosf — Ly sinf + L, cosO + TV cosfB
using
%g: ; %=—Xsin9+(l+7)cos€

Here the quadratic moments of the water plane area are given by

Iyy = f jdeXdY

AW

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)
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Iyy = f fXYdXdY (2.57)
Ay

Iy = j f X2 dX dy (2.58)
Ay

and the volume moment

L= j f I zav C59)
v

analogous to Ly and Ly defined in Egs. (2.24) and (2.25), respectively.

The derivatives of the residuals E;, E,, and E5 can now be found from Egs. (2.33) -
(2-35), (2.46), (2.48) - (2.50) and (2.52) - (2.54) along with Egs. (2.51), (2.55):

IE, 9E, Ik

) _ ) L 2.60
Wz_AW, _6_0‘_SY’ 5 Sycosf (260)
6E2 6L2 8E2 ’
e Sy s 5= Iyy—TE, — E, ; 5 = — Iyycosf + E;sing (2.61)
3E, E, IE :
E i i i xx€0s8 — E,sinf (2.62)
+ E, cos6 + TE, cos0
where

E,=7Z,V-1, (2.63)

analogous to the definitions (2.34) and (2.35) of E, and E;. Note, however, that
usually £, = 0 at equilibrium.

In the next section, the calculation of the water plane coefficients Ay, Sy, Sy

Iyy, Iyy and Iy, the volume V and the volume moments Ly, Ly and L, will be
discussed.
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Figure 2.5 Ship grounded on a rock.

Example 2.1.1

I, for instance for a grounded ship (Figure 2.5), the hull is supported by the seabed at a point (x;, v, zy),
then Eqgs. (2.30) - (2.32) for the external forces must include the unknown reaction R at this point:

F ;= —gM+R

(2.64)
M,y = — gMY, + RY, (2.65)
M,y = gMX, — RX, (2.66)

where X, and Y} are the global coordinates for the contact point, obtained from Eqs. (2.38) - (2.40)
by use of (x,¥,2) = (xy, ¥y, 2p). Hence, the equilibrium equations (2.21) - (2.23) can be written

. R R

Ey=Ej~pg=V-—>-V=0 2.67
Ey=Ey— XoE = XV — Ly~ Xo(V— V) =0 (2.68)
Ey=FE,—YE, =Y, V—L,—Y(V-V)=0 (2.69)

where the two moment equilibrium equations are now conveniently are taken with respect to the contact
point (X, Yp) to eliminate the reaction force R from the equations. Thus, R only enters into the
equilibrium equation (2.67). The four unknowns R, T, fand ¢ are determined from Egs. (2.67) - (2.69)
and the geometrical condition for the contact point, Eq. (2.40):

Eg= — T+ x,8in0 — y,cosfsing + zgcosfcosp — Zy = 0 (2.70)
where Z; is the known global vertical coordinate for the contact point. The solution to Egs. (2.67) -

(2.70) can be obtained by solving the three non-linear equations (2.68) - (2.70) for T, 6 and @ by using
the same procedure as for the freely floating structure:

ES=0 ; Ey=0 ; Ey=0 2.71)

with derivatives
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aE}
S = Syt XoAy
Oy 9, Ko O
a0~ 80 90 "' 040
=lyy — TE; — E, + (Zy + TE, — XSy
= Iy — XSy — Ea
3E} -
aqoz = = (Iyy — XoSy) cos@ + Ej sin6
oF;
aT ~ ~ Sy + YAy
IE;
693 = Iy — Y5y 2.72)
6E* * *
6(; = — (Iyx ~ Y¢Sy) cosO — E; sin@ + E; cosd
3E; OEy Ey
27 =~ 1 0 = X, 0 = Yycos 0
where
Ey = E, — ZE, (2.73)

When (2.71) has been solved for the next approximation (T, €, @), by use of the derivatives calculated
at the previous approximation (R, T, 6, ¢),_,, the new value of the reaction R;is obtained explicitly
from Egs. (2.67).

In a grounding situation, a final value of R less than zero probably implies that the ship lifts off from
the contact point and becomes freely floating again.

In the case of two contact points, only one free parameter defining the position of the ship in the water,
remains, as a new geometrical restraint similar to Eq. (2.70) holds for the second contact point. With
three points of contact, the equilibrium position is completely given and the three restraint quations
yield the three unknown reactions.

22 HYDROSTATIC COEFFICIENTS

In order to calculate the equilibrium position of the structure, the following hydrostatic
coefficients must be determined at each iteration step:

Volume integrals:

Volume V, Eq. (2.14)

Volume moments: Ly, Ly, L, Egs. (2.24) - (2.25), (2.59)
Water plane integrals:

Water plane area: Ay; Eq. (2.44)

Moments of water plane area: Sy, Sy; Eqs. (2.47)
Iyys Iyys Iyy; Egs (2.56) - (2.58)
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It should be noted that all moments are defined in terms of the global coordinates, but
use of the transformation (2.38) - (2.40) makes it possible to express them in the local
xyz~-coordinate system fixed in the structure. Thus, for instance

L,= JJ deV = Lysin@ — Lycos@sing + L,cos@cosgp — TV (2.74)

where the volume moments ate given by

Lx=”vfxdv ; Ly=”vfydv ; LZ=”JMV @)

For the integrals over the water plane area, the relation

X oX
dx  dy

dXdy = det Yy oY dxdy (2.76)
dx dy

is used. At the water plane Z = 0, Eqs. (2.38) - (2.40) imply that

X =% — Ttan# .77
cosf
Tt
Y= ~ xtanftang + zon 7 Coznf (2.78)
so that
axay = —ZD__ 2.79)
cosf cos@
This yields the following expressions:
= - Aw
A = J jdXdY " cosBOcosg (2.80)

Ay

_ _ tan@ tang Sy tang 281
Sy = J deXa'Y— Sy 050 COS(/’+cos()coszq)+TCOSQAW (2.81)

Ay

with analogous formulas for Sy, Iyy, Ixyand [y,. Here

Aw = f J dxdy (2.82)

A,
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is the water plane area, projected onto the local xy-plane and

— " = d
Sy J fxdxdy s Sy f Jydx ly 2.83)
A A

w w

are the corresponding area moments.

Example 2.2.1
For a structure symmetrical about the plane y = 0 and with the centre of gravity in this plane (y, = 0),
the equilibrium equation (2.35) and the relation (2.39) yield

zgVsing — L sing = 0 (2.84)

as Ly, = 0 due to the symmetry. The vertical centre of buoyancy

L,

2= (2.85)

usually differs from the vertical centre of gravity zg and hence, the equilibrium equation (2.84) requires
that @ = 0 (or ¢ = 180°). The two remaining equilibrium equations (2.33) - (2.34) are solved by use
of the derivatives of £, and E,, Egs. (2.60) - (2.61), with respect to T and 6.

For ships with a pronounced longitudinal axis, the angle of trim 6 is usually very small, so that
cosf = 1 and sinf = 0 can be assumed in the derivatives of £, and £, without reducing the rate
of convergence towards the equilibrium position. In addition, the term E,, Eq. (2.63), is often also
small in comparison with Iy,. In that case, the derivatives assume the simple form of

oFE | B ) £, =5
aT w99 T Y
(2.86)
ok, _ . dE, _
E I T

containing only water plane coefficients calculated in the local xyz-system. These formulas are often
used in hand calculations for simple geometrical structures.

From Egs. (2.42) and (2.86) it follows that the first estimate (AT, 46) for the correction to the assumed
equilibrium position satisfies

—ApdT + 8,40 = —~ E,
(2.87)
- 8,4T + 1,10 = — E,
where E, and E, are calculated for the assumed position. The solution becomes
AT = Eidyy — E,Sy
Iy A, — 82
(2.88)
AQ = £,Sy — B,

IyA, - 82
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These formulas are also useful to determine the change in equilibrium position when a mass item m
is added (or removed) from the ship. In such cases

E; = % i By = x;%'- (2.89)

where X is the centre of gravity of the additional mass m.

By introduction of the longitudinal centre of flotation Xp defined by

Sy = [ dexdy = fow (290)
Aw

the quadratic moment I, can be written

Ly = f szdxdy = J J(x = x; + x)2dxdy

Ay Ay
= J j(x — xpdudy + x7A,, @91
Ay
=1, + x}Aw
Inserting Eqgs. (2.89) - (2.91) into Eqs. (2.88) yields
A6 = M~ x,;)é (2.92)
and
ATy = AT - x40 = 2 2L (2.93)
The draught change A7} is the draught change at x = x;, see Figure 2.6.
Figure 2.6 Draught and trim changes due to an added mass item.
The ratios
i ﬁ%gf‘ﬂ ~pl;,, (2.94)
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are denoted the mass to change draught and the moment to change trim, respectively, and are very useful
data for the captain during loading and unloading of the ship.

Example 2.2.2
Consider a rectangular box with the length L, the breadth B and the depth D. The total mass is M with
a centre of gravity (x,, 0, zg) in a coordinate system (x,y,z) with y = 0 and x = 0 at the intersection

between the vertical planes of symmetry and with z = 0 in the bottom of the box. Thus, as in Example
2.2.1, the angle of heel ¢ is equal to zero.

On the assumption that the depth is larger than the sectional draught along the whole length of the
structure, the volume coefficients become

V = LBT

L, = - -LBL3tan6
x 12

Ly=0

L,= % BL(T2 + % thanze)

using

L/2 B8/2 T~xtand

fx, y, 2)dzp dy|dx

[[[enm
v

and T = T/cos@. Physically, T and T are the draught amidships measured perpendicularly to the
yz-plane and YZ-plane, respectively.

-2 | -2 0

The water plane coefficients are

Hence, the two equilibrium equations (2.33) and (2.34) become

E,=V-BLT =0

£y = (xse050 — z;5inB)V + 5 BLYsin0 + LBL(7 + L 12t@n?0 )sind = 0



22 Hydrostatic Loads

by application of Eqgs. (2.38) and (2.40). The first equation yields

whereas the second equation provides an equation in tan 8:

1 42,3 I Y R ) 5
2l tan 0+ ( zgl +55L° + 5T )tanG +x, T =0
As a numerical example, let
L=100m, B=20m, xg=10m, Zg=5m and V=14000m?

Then, the equilibrium position becomes

=Y

T= BL Tm
and

tanf = — 0.08476 = 0 = — 4.845°

so that

T =Tcosf = 6.975m

With (7, ), = (V/BL, 0), as a first guess, the iteration procedure (2.42) yields

—~BL(T, — Tyy= ~ E1|0 =0
[Iy = @V = L)]0, = — E2|0 = — xV

or

and

tanf, = — - = — 008507

which implies

6, = — 4.862°
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In hand calculations, see Example 2.2.1, the approximate formula for the derivative may be used:

oE,
=8 = 1w
so that
xgT
tanf; = — 4 = — (.08400
L2
12
0, = - 4.802°
In both cases, the first estimate 0, is very close to the exact value 8 = ~ 4.845°,

The transformation of the volume and water plane area integrals from the global
XYZ-system to the local xyz-system facilitates greatly the numerical integrations as
the surface geometry is given in the xyz-system. However, two- or three-dimensional
integrations still have to be performed. For ships, the integration are normally
performed by first determination of the sectional properties, e.g. the properties for x =
constant, followed by an integration along the x-axis. For more complicated structures
with no specific longitudinal axis or with a very complex exterior form such as a
semi-submersible or a damaged ship with flooded compartments, it may be more
feasible to consider individually each panel subjected to the hydrostatic pressure. These
two procedures will be discussed in the following subsection.

221 Integration of Sectional Coefficients

In this procedure, volume integrations are carried out as

xmu

f f j xlyizhdxdydz = f xt f f ylzkdydz |dx (2.95)
\4

Kmin A(x)

where A(x) is the submerged sectional area at x = x, see Figure 2.7. By suitable choice
of i, j, k the volume moments L,, Ly and L, as well as the volume V are obtained. X,y
and x_.; are the maximum and minimum values of the x-coordinate of the submerged
volume, respectively, see Figure 2.7. The integrand

Sax) = j j yizkdydz

A@)

(2.96)

in Eq. (2.95) represents sectional hydrostatic coefficients often denoted Bonjean
curves. If the heeling angle ¢ is equal to zero, these coefficients will be a function of
only the local sectional draught and can easily be visualised as curves.
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Figure 2.7 Submerged sectional area A(x) and the integration domain.

The sectional integration domain A(x) in Eq. (2.96) is bounded by the sectional contour
Q

zs = z4(y) (2.97)

and the water line 2,, at x = x:

xtan0 T
zw(y) = ytang — cosg T cosBcos (2.98)

which follows from Eq. (2.40) with Z = 0. Numerical integration of Eq. (2.96) is usually
most easily carried out by transforming the integral over A(x) to an integral along the
contour Q by use of Green’s theorem:

ap _ 40 =
[ “a_y - 3;] dydz = J [Ody + Pdz] (2.99)
A Q

where P = P(y,z) and Q = ((y, z) are any differentiable functions of y, z and where
2 = Q, + R, is the closed contour of the area A. In order to avoid problems with
uniqueness by use of Egs. (2.97) and (2.98), the sectional contour is normally given as

Ys=ys() 5 zs = zlD) (2-100)

Yw =Yul) ;5 zZw = zZu(D) (2.101)

where ¢ € [f;;1,] is a continuous parameter. Typical piece-wise third order
polynomials in ¢ yield a sufficiently accurate description of any hull form. The
coefficients in these polynomials are determined from the requirement that continuity
in both the tangent and the curvature must exist between each segment, if not otherwise
specified.

By use of Egs. (2.99) - (2.101), the integral S jk can be written:
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__1 i+ 1o o G2
Sjk—],——-+1J'yf 020 £ a

4

(2.102)
1y
- — LA L a
k+1 dt
f
on the assumption that either %—5— or %% is equal to y/ z*. That the expressions above are

identical is easily verified by partial integration using y(t;) = y(t,); z(t) = z(t,) as
the contour 2, + 2, is closed. Which of the expressions is most suitable depends on
the parameter descriptions (2.100) and (2.101). A polynomial form of the integrand is
seen to allow for analytical integration of Eq. (2.102). Finally, the volume integrations
Eq. (2.95)

X max

fj f . J : (2.103)
x'y/z%x dy dz = X8 x) dx
v

X,

min

must normally be carried out numerically, for example by means of the Simpson rule.

The water plane coefficients A, Sy, Sy, L, Ixy and Iy, are obtained by integration
first along the y-axis then with respect to x. In general

Xy
iy l. . (2.104)
hy = xYdx dy = x Ydy| dx
Ay X2 B(x)
with x| < x < x,,. Here
VmanlX)
j _ j _ 1 i+1 i+1 2.105
J ydy = Ydy =7 ( ax@) = ¥ (x)) (210
B(x) YrinlX)

where y . (x) < y (x]Z = 0) < ymax(x), see Figure 2.7.

2.2.2 Integration of Submerged Panels

For complicated submerged surfaces, definition and integration of sectional
coefficients as described in the previous subsection may not be feasible. Alternatively,
it may be appropriate to add directly the contributions from each submerged panel to
the hydrostatic coefficients.



26 Hydrostatic Loads

The water plane coefficients Ay, Sy, Sy, Iy, {xy and 1y, are obtained as before from
the general expression

Hy = j j XiYidxdy (2.106)

Ay

by suitable choice of (1,j). Each submerged panel thus contributes to H;; by its projection
onto the still water surface. If the closed contour of this projection of a panel p is denoted
@p and given by (X,(2), Yp(t); 1, < t < 1,,), then Green’s theorem, Eq. (2.99),
yields

Hy =737 2

p IQ

P dt

n
Jx;‘,ﬂyf D

P

(2.107)
n
I iy i+t Qo
j+1ZfXPYp L dt

p=1
'QP

where 7 is the total number of submerged panels. Which of the two formulas to apply
depends on the way (Xp, Yp) are given. If each panel is approximated by a polygon, the
contour consists of a set of m straight lines, each given by for example

Ypg = apXpg +bpg 5 q=12...m (2.108)
Xpg1 = Xpg < X,

where the coefficients a,g, bp, are determined from the contour curve given in local
xyz-coordinates and transformed to the X YZ-system by means of Egs. (2.38) - (2.40).
Taking t = Xp,, Eq. (2.107) becomes

quz
1 QU i v+l
—_— ()
Hy=~—737 D2, | XngYig' dXpg
=1lg=1
P X (2.109)
qul
n m . i
=_F{_Tzz t'(apgt + bpg)  dt
p=lg=1,

so that analytical integration can easily be performed for the water plane coefficients.
Thus the numerical integration along the x-axis using sectional coefficients, as
described previously, is avoided. Of course, the approximation of the submerged
surface by » flat panels introduces another numerical error.
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The volume integration, yielding V, Ly, Ly and L, is somewhat more elaborate but
it can be carried out analytically, see Schalck and Baatrup (1990), where explicit results
are also given.

Even if it is more feasible to use integration of sectional coefficients for ship structures,
panel integration may be used in addition to account for appendages like rudder and keel
and for flooded compartments of a damaged ship. In such cases, the hydrostatic
coefficients in total are obtained as the sums of the contributions from the sectional
integration and the panel integration.

23 SECTIONAL FORCES

When the equilibrium position of the structure in the water has been determined, the
hydrostatic loading given by Eq. (2.1) is known at the entire submerged surface.

For complex structures where a panel discretization of the surface has been used, the
structural analysis is most conveniently performed by applying the pressure obtained
from Eq. (2.1) to each panel. The structural modelling may be very detailed by use of
the so-catled finite element method (FEM). The solution to the problem then yields the
stresses and deformations at all locations in the structure.

Although formally a straightforward procedure, the FEM analysis is usually a very
time-consuming method, especially in terms of the manpower necessary to generate the
structural model and to interpret the results. Such detailed analyses are typically needed
for offshore structures and very unconventional ships. The FEM procedure is, however,
outside the scope of the present treatment which covers mainly beam-like structures.

A ship can usually be considered a beam-like structure with a distinctive longitudinal
axis. For such a structure, the structural analysis is normally most easily performed in
two steps:

(i) Determination of sectional forces in selected positions along the longitudinal
axis.

(i) On assumption of a beam-like deformation pattern, the stress field having re-
sultants equal to the sectional forces is determined.

The first step is carried out by applying equilibrium of external and sectional forces on
each section. This is very easy as a floating beam is a static determinate structure with
zero sectional forces at both ends. The results for the sectional forces will be derived
below.

To solve the second step, assumptions regarding the deflection pattern of the structure
are required. For bending and shear the Navier hypothesis is applied, which states that
the plane cuts perpendicular to the neutral axis for bending will remain plane (but not
necessarily still perpendicular to the neutral axis) after the external load has been
applied. This assumption results in the so-called Timoshenko beam theory and yields
a very accurate analysis of typical ship hulls. Torsionat stresses induced by torsional
loads require further assumptions on the longitudinal deflection pattern. The Vlasov
beam theory is the simplest formulation leading to useful results. Both the Timoshenko
and the Vlasov beam theories are described in Chapter 6 as applied to ship hulls. Note
that step (ii) is independent of the type of loads considered. Therefore, before
petforming step (ii) the hydrostatic loads, considered in this chapter, and the
hydrodynamic loads, discussed in Chapter 4, may be added together.
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The external static forces considered here are gravitational and hydrostatic forces. The
resultants of both forces acting on a section of the structure are directed vertically in the
global Z-direction.

The sectional forces at an intersection x = ¥ are determined from the requirement that
the sum of external forces acting on any section should be in equilibrium with the
sectional forces. If the section considered is defined by x < X (or x = X), then only
sectional forces at x = X enter this requirement as the sectional forces at the ends of the
structure are zero.

With external forces in the Z-direction only, the sectional forces at x = ¥ consist of a
vertical force 0,(%) and two moments M y(X), M(X) about the global X- and Y -axis,
respectively. The remaining sectional forces: Q (%), Oy(X) (horizontal forces) and
M ,(x) (moment around the vertical axis) are zero. However, if horizontal external loads

due to wind, waves or mooring forces are present, non-zero values of these quantities
may of course also appear.

Figure 2.8 Sectional forces.

The equilibrium conditions determining 0 ,(%), M y(X) and M () are analogous to the
equilibrium equations (2.21) - (2.23). With the sign convention shown in Figure 2.8
vertical force equilibrium yields:

Q%) = gM(x) — pgV() (2.110)

where M(x) and V(%) are the mass and the total submerged volume, respectively, of the
part of the structure where x < X. Moment equilibrium about the global X- and Y -axis
gives

My(X) = g¥,(®) M(T) — pgLy(®) @.111)

and

My(x) = — gXg(X) M(%) + pgLx(X) (12

respectively. Here (X,(X), Y,(%)) are the global coordinates to the centre of gravity
related to M(%). Lx(X) and L (X) are volume moments:
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o= [ | [ xav v [ [rev e

() )

The sectional forces Q,(¥), My(X) and M(X) are not the real physical forces and
moments acting at x = ¥, as the hydrostatic contributions V(%), Ly(X) and L(¥)
assume that the hydrostatic pressure also acts on the submerged intersection area A(X).

This intersection plane is virtual and therefore the hydrostatic loads entering Egs.
(2.111) - (2.112) should be corrected by a force F:

F=—pgj Z dA
A®)

(2.114)

perpendicular to the plane x = *.

The centre of gravity (Xg(X), Y¢(¥))and the volume moments L y(X) and L (X) are easily

expressed in terms of the local xyz-coordinates by use of the transformation of Eqs.
(2.38) - (2.40). Thus, for instance

Xg(X) = xg(¥)cosO + yg(X)sinOsing — zg(¥)sinf cos (2.115)

Ly® = IJ deVcos9+Jj [desinGsinq;

VD) V@)

- Jj jdesinOcosq)

v®

(2.116)

where (xg(%), yg(X), 24(X)) are the centre of gravity for the part of the structure where
X = X. As the local coordinate system is fixed in the structure, (x4(X), y4(X), zg(¥)) do
not depend on the equilibrium position. Liquid cargo may change position according
to the equilibrium condition, but this effect is usually negligible.

In order to calculate the stress distribution at x = ¥, it is appropriate to transform the
sectional forces O,(X), M y(X) and M (%) to the local xyz-system translated to x = X.
This transformation is obtained first by a change of the origin from (X,¥,Z) = (0,0,0) to
(x%2) = (%0,0). This does not alter Q,(x), but the moments M y(¥) and M(X) are
replaced by the following (see Figure 2.8):

My(®) = My(®) — Y(%) 047) @.117)

M%) = My(x) + X(®) Q%) (2.118)
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where X(¥) and Y(X) are given by Eqs. (2.38) - (2.39) withx = X,y =z=0:

X(@) = Xcosf (2.119)
Y@ =0 (2.120)

Thus, with the present choice of coordinate system, My(X) = M (¥).

The next step is to express the sectional forces Q4(%), My(X) and My(X) in the local
coordinate system. These forces and moments are denoted by (Q,(X), OuX), Q%))
and (Mx(X), My(X), M,(x)), respectively. By inverse transformation of Egs. (2.38) -
(2.40) they are found to be

Ox(®) = Qy(x)sin6 (2.121)
Oyx) = — Qz(x)cosfsing (2.122)
Q%) = Q%) cosOcos 2.123)
and
M%) = My(x)cos 0 (2.124)
My(X) = My(x)sinOsinp + My(x)cos g @2.125)
M%) = — Mxy(D)sinfcosg + My(X)sing (2.126)

Finally, the longitudinal force Q,(¥) should be modified by the force F, which accounts
for the non-presence of hydrostatic pressure in the virtual intersection plane x = X, Eq.

(2.114). Thus, the physical value Q;(J—C) of this force becomes

0:(%) = 0:(%) +ng [ZdA

AX
(2.127)
= QxX) —ng J [T — %sin@ + ycosOsing — zcosOcospl dy dz
A®)

=0(%)—pg [ (T — Xsin@) A®) + S1p(X)cosOsing — Sy(X) cos@coqu]
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by application of Eq. (2.40) and the definition of sectional hydrostatic coefficients, Eq.
(2.96).

For ship hulls Qy is of no importance but for slender structures, as for instance cables
and pipelines, Q, is the dominant sectional force and the physical value, Eq. (2.127),
must be used for stress calculations.

Now, the sectional forces are given in the coordinate system fixed in the structure and
the subsequent stress analysis can be carried out, as will be described in Chapter 6.

Generally, the different sectional forces are denoted in the following manner:

Qx axial force

Qy: transverse (or horizontal) shear force
Q. vertical shear force

M,: torsional moment

M, vertical bending moment

M. horizontal bending moment

Normally, O, and My are the most important sectional forces. A positive value of M,,
is called a hogging condition, whereas My, < 0 corresponds to a sagging condition.

Az

NN

.
¥

7
EAR //Mo //J

e L

Loy

\ S

1

Figure 2.9 Geometry of a barge.

Example 2.3.1

Consider a box-shaped barge as shown in Figure 2.9. The length and the breadth are denoted /. and B,
respectively. The total mass is assumed to be distributed homogeneously over two parts of the structure,
point-symmetric with respect to the centre of the structure, Figure 2.9.

Due to symmetry, it is seen that 8 = ¢ = 0 and that the draught* can be expressed as

- 2
" pBL

where My is the mass of each of the two mass distributions. With 6 = ¢ = 0 the local xyz- and the global
XYZ-system coincide except for a vertical offset of 7, see Egs. (2.38) - (2.40). The coordinate systems
are placed so that the Z- and z-axes are in the vertical axis of symmetry for the structure.

*  The draught T can also be interpretated as the additional draught due to the unsymmetric mass

distribution if a uniform mass over the complete barge is added.
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Due to symmetry in the structure as well as in the mass distribution only sectional forces in the aft part
(— L/2 < ¥ < 0) need to be considered. Eq. (2.110) yields

%f+%> ; -%sxs-i%
Q0 =pgBT: I
- X ; —meSO
whereas the moments, Egs. (2.111) - (2.112), become
%f+%) ; —%srs—{“—o
My@) =pgB’T-
sL ; —k<z=0
2
Wi-r) o -herth
M{X)y=pgBT-
K =p _L_2+lk_2 ...L_<f<()
0 2 ’ 1077 7
In the local xyz-system the sectional forces are
* L L
Qi) = ~1pgBT ; —k<x<i
. L yv.L
o® =0 ; ———2—_<_Xs—2-
L
09 = Q%) ; —5s=Xs3
M(®) = My(®) ; —Lk=x<L
M) = My(®) + £0,(%) . Loyl
Y z ’ 27772
M%) =0 ; —k<xst

by use of Egs. (2.121) - (2.127). When the values for M(¥) and Q,() are inserted, M,(X)can be written

1{L, - _L g L
v . 5(7“‘) s T2=X¥=71
X)) =pgBT-
’ L2 1a N
0 2 ’ TR
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The variation of the non-zero sectional forces along the length is shown in Figure 2.10. As M,(x) > 0
the barge is in a hogging condition, cotresponding to the excess weight at the ends and the excess
buoyancy in the midle of the barge.

Vertical bending moment My>0
Torsional moment M, >0

I 3

Vertical shear force Q,

Figure 2.10 Sectional forces in the barge in Example 2.3.1.

The maximum value of M, is found for ¥ = 0:

1

= 1 2
max M —40prL T

L=
2ex<
3EX<

'

(3]

For real ship structures the result is usually somewhat lower and calculations should of course always
be performed for the actual hull shape in all relevant loading conditions.

q(x)
Qz(i)" 9—91 dX
ﬁ ) dx
A dx
X(x)
Qz(i) - -
M%) 2y
dX
% dx

Figure 2.11 Equilibrium of a section.

Example 2.3.2
If a small section between X = X(x) and X(¥) + dX of the structure is considered, then moment
equilibrium yields (see Figure 2.11):

- My@ + (My(m-dg-ydx) ~ 0@ dX = 0

neglecting terms of the order (dX)% As dX — 0 the following relation holds between My and Q:

= Q%) (2.128)

This relation also follows directly from Eg. (2.118) with X(x) and M (%) — M,(%) being replaced by
dX and dM (%), respectively.
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From Eq. (2.128) it follows that the bending moment M (%) attains its maximum value where
Q,(X) = 0. This is also illustrated in Figure 2.10 in Example 2.3.1 where M,(Y) = M ().

Differentiation of Eq. (2.128) yields

&M, dQ

N

a3 (2.129)

which implies that the bending moment curve has a shift in curvature (d2M ,/dX? = 0) where the shear
force Q,(%) has its maximum values. Again this behaviour is illustrated in Figure 2.10.

Finally, note that
M) = XQ,) + My(®)
= — MEXE) ~ XD) +pg [ f f X - X@)dV  (@2130)
v

which directly shows that M, is a moment taken with respect to the axis through X = X{(¥), parallel
to the Y-axis.

Example 2.3.3
if the ship coordinate system xyz coincides with the global XYZ-system, the calculations can be greatly
simplified.

The mass M(%) and the submerged volume V() of the ship structure aft of x = X can be written

ME) = J’"(x)dx (2.131)

V@ =p

X,

Alx)dx (2.132)

"‘kl

3

in

where m(x) and A(x) are the mass per unit length and the submerged sectional area at x=x, respectively.
The vertical shear force Q(x), Eq. (2.110), yields
X X
0.0 = g | (m) — pAW) dx = Iq(x)dx (2.133)

* min

where

g = gm(x) — pAKX)) (2.134)

is the resulting vertical load per unit length.

The vertical bending moment M,(¥) at x = X becomes
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My(x) = — gEM(E) + pgLa(®) + X 0: () 2.135)
using Egs. (2.112) and (2.118). Here

XM(x) = | xm(x)dx (2.136)

- ——

X

)

in

and

X

L®) = ] XA(x)dx (2.137)

Fonin

so that Eq. (2.135) takes the form

M%) = ] [@ — x)q(x)] dx

(2.138)

X x

= [ f q(u)du dx =

X

O Ax)dx

———

min *min *

ES

by use of Egs. (2.133) and (2.134). The formulas (2.133), (2.134) and (2.138) provide a convenient
means of determining the vertical shear force and the vertical bending moment distribution in the hult
by simple integrations.

2.4 HYDROSTATIC STABILITY

An important aspect related to hydrostatic loads is the concept of hydrostatic stability.
The equilibrium position determined in Section 2.1 may be stable or unstable. Stable
equilibrium implies that if the structure is subjected to small external forces, this will
not lead to large changes in the equilibrium configuration and, also, that if these external
forces are removed, then the original equilibrium position will be reestablished. If this
is not the case, the equilibrium is characterised as unstable.

In addition to this initial stability analysis, information is normally also needed on how
the structure will behave if subjected to large quasi-static wind and wave loads. This
behaviour is determined by applying additional external forces and/or moments to Eqgs.
(2.30) - (2.32). The results for ships are typically presented as the so-called righting
arm curves which give the relation between an external heeling moment and the
resulting heeling angle.

The results of both types of hydrostatic stability analysis are the main input to the
current international rules assessing the stability of floating vessels. A discussion of
these rules is, however, outside the scope of this presentation, but it must be noted, that
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at present even dynamic load effects are modelled in these rules by the hydrostatic
stability properties, due to insufficient knowledge of the parameters entering a dynamic
stability analysis.

In the following, the two concepts of hydrostatic stability will be discussed.

24.1 Initial Hydrostatic Stability

Consider a structure at equilibrium in a calm sea. The necessary and sufficient condition
for a stable equilibrium is that the potential energy IT of the structure has a minimum.
If the potential energy in the equilibrium position is assumed as reference, then a stable
configuration requires that

AIIAT,40,4¢) > 0 (2.139)

for any small changes, given by AT, A8 and Ag, of the equilibrium position.

The potential energy is equal to the work done by the external forces and moments. In
the global XYZ-system this work becomes

AWAT, 40,4¢) = AF,AT + AM A6 + AM,Ag (2.140)

where the force increment, AF,, and the moment increments, AM and AM,, are
found from Egs. (2.21) - (2.23) and (2.33) - (2.35):

- 3, 9k, O, 2141
- 9E, ) IE, (2.142)
AMY—pg[aTAT+ 50 A0+6(p Ap
IE, 0E, OF (2.143)
AMX—- ‘—pg[TT-AT“F 50 A0 + 7 Ay

Inserting Eqs. (2.141) - (2.143) in Eq. (2.140) and requiring

AW = AIT > 0 (2144)

yield the required condition for a stable equilibrium condition. The derivatives 9E, /T
etc. are given by Egs. (2.60) ~ (2.62). Evaluation of the requirement (2.144) is facilitated
by a proper choice of coordinate systems. Without loss of generality, the local xyz- and
global XYZ-systems are taken to coincide in the equilibrium condition (i.e. T=0=¢
= 0) and, furthermore, to be orientated so that (see Example 2.4.1)

S, = Sy = Ixy =0 (2.145)
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then, as £, = E, = E; = 0 in the equilibrium position:

plg AW = AdT)? + (Iyy — Eg) (40)* + (Ixx — Eg) (49)?  (2.146)

This shows that stable equilibrium is ensured if

Ey =2,V — L, < min(le, Iyy) (2:147)
using Eq. (2.63). By defining the vertical centre of buoyancy z, as
f f J v
- v _L; (2.148)
=T =5
v
and the metacentric height z,, by
min({y, I, (2.149)
Im =z, + (xVx w)
the requirement (2.147) simply becomes
GM = 23y — 2, > 0 (2.150)

The metacentre (0,0,z,,) can be considered as the centre of rotation of the structure for
small excursions from the equilibrium position. Therefore, as for a pendulum, stable
equilibrium requires that this point is situated above the centre of gravity.

Example 2.4.1

A water plane coordinate system (xy) satisfying Eq. (2.145) can always be determined. Let x'y’ be a
given, arbitrarily orientated system in which the moments S Sy., Lo lx,y, and Iy,y. of the water
plane area A,, are known. A new xy-system is defined by a translation (x,’, y,") and a rotation (ct) of
the x'y’~ system:

x = (x'— xy)cosa — (y' — y;')sina

y = — xy)sina + (y' — y,')cosa

Substitution of this transformation into the two first requirements in (2.145) yields
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S = j [ydxdy = (Sy, - xO’Aw) sina + (SX. - yO'Aw)cosa =0

w

Sy = j dexdy = (Sy, - xO'Aw) cosa — (SX. - yO'Aw)sina =0
A,

implying that the centre of flotation

’ ’ Sy Sx'
(XU,Y())=(A—yw‘,K;)

irrespective of the rotation o. The last requirement gives:

Ly = ’ f xydidy = [1,, = %%Aw = (I = yo?Aw)|cosasing

w

+ [Ix.y, - xo’yO'AW](cosza - sinza) =0

or

t ’
Iy = Xp'yg'Aw

Lyy = XA = (Few = ¥0'Au)

tan2a = 2

After a little algebra the minimum value of /,, and I, to be used in Eq. (2.149) becomes:

min(lm Iyy) = % [[y,y, — x(),zAw + Ix‘x' _ yO'zAw]
2 2 1/2
_% I:[Iy')" - Xovaw - (]x'x' - yO’ZAw)] + 4(1x'y' - xO'YO'Aw) ]

The angle o associated with the minimum value of (I, I,y defines the direction towards which the
structure has the least metacentric height and, therefore, least stability.

24.2 Righting Arm

Whereas the initial stability analysis checks the hydrostatic stability for small
disturbances from the equilibrium position, the determination of righting arm curves
gives information on the stability when the structures are subjected to large external
forces in addition to the gravitational and hydrostatic loads. These forces may represent
quasi-static loads due to wind and waves.

The main problem in connection with this analysis is the definition of a proper measure
of the change in equilibrium position. One possibility is always to use the angle of
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rotation associated with the current minimum metacentric height. However, this
procedure has the drawback that this angle is measured relative to an axis (the x-axis)
whose direction depends on the shape of the current water plane area, due to the
requirement Iy, = 0. Thus, even for initially symmetrical structures like ships, this
angle of rotation is difficult to visualise. The calculation procedure is, however,
straightforward. The external moment is conservatively assumed always to act in the
direction of minimum metacentric height, as the structure is free to rotate about a
vertical axis. The external moment M® is then applied in small increments
AMf ; i =1,2,.., so that, for each increment, the corresponding change in
equilibrium position can be determined from the linearised equilibrium equations
(2.42). In order to apply AM7 in the current direction with the least metacentric height,
itis appropriate to let the local xyz- and global XYZ~coordinates coincide at each load
step and be orientated so that the requirements (2.145) are satisfied. This transformation
can be done as described in Example 2.4.1. If I, < Iy, the minimum metacentric
height is associated with rotations about the current x-axis. Therefore, in the
equilibrium equations (2.42), the right-hand side should be taken to be
0, 0, — AM¢/pg). As the current XY-system satisfies (2.145), the solution Egs.
(2.42) becomes

AMe

AT, =40, =0 ; Ag, = —eti
i PEV(zm — zp)

(2.151)

where z,, (= Ix/V) and z, are the vertical coordinates for the metacentre and the
centre of gravity, respectively, in the current xyz-system. For the next load increment

i

(2.38) - (2.40) with T, 0 and ¢ given by Egs. (2.151):

AM; |, the equilibrium position (X ivv Yo Z; +1) is given by the transformation

Xiy1 =% 5 Y =yi+tzde; 5 Ziy =z~ y;4¢; (2.152)

The (XYZ),, ,-system must then be transformed so that it satisfies Eq. (2.145) before

solving for the change in equilibrium position due to the load increment AM¢ ,.

Although this procedure yields the equilibrium position as a function of the applied
moment, the result is difficult to interpret if the direction corresponding to the minimum
metacentric height changes with the magnitude of applicd moment. In such cases, no
simple measure of the change in equilibrium position with applied moment normally
exists. However, successive use of Eq. (2.152) together with the transformation
required to satisfy Eq. (2.145) will yield the current equilibrium position relative to an
x'y'z' -system fixed in the structure.

To avoid the difficulties described above, another procedure is normally used,
especially for ships. The local xyz-system is kept fixed with respect to the structure and,
rather than specifying an external moment M¢, the angle of heel @ is prescribed in
increments A¢;. As no change in the xyz-system is made, the accumulated angle @ is
simply the algebraic sum of Ag;:
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n
@Pn = ZAfpi (2.153)
i=1

In the procedure, the external moment M necessary to generate an angle of heel ¢ is
assumed to act about the global X-axis, i.e. M§ = M¢, M} = 0 and Fg = 0. The
equilibrium equations (2.21) - (2.23) can then be written

- Me
Ey=0 ; Ey=0; Ey= 45 (2.154)

with the definitions (2.33) - (2.35) of E;, E, and E;. For a given increment 4¢, the
equations (2.154) are solved by use of the iterative scheme, Eqgs. (2.42), as follows,
First, the associated changes AT; and A0, are determined iteratively by

oL, oL, ) OE,

_—t == E, +—-4

T | [T 1T g 7 (2.155)

0E, 9E; | 469 IE,

T 90 ! Ey+5p 49

The coefficients in (2.155) are evaluated in the current equilibrium position:
ji—1 ji—1
Ty + 2419 5 0, + > 409 5 o (2.156)

k=1 k=1

where T;_; and 0;_,, are the equilibrium values obtained with ¢ = @, ;. The
iteration scheme usually converges very fast, so only a few iterations (i) are needed
to get AT; and A0;:

m m
AT; = ' ATD 5 46, = > 469 (2.157)
j=1 j=1

and, hence, the new equilibrium is found:

T; = Ti—l + AT[ 3 9,’ = Hi—l + AGl H (pi = q)i—l + A¢1(2158)

1

After determination of the equilibrium positions (T, 8, ¢);; i = 1,2,...,n the
external moments M{ needed to create these equilibrium positions are found from Eq.
(2.154):

Mg = = pgEx(T, 0, @) (2159)

As T; = T{p,) and 0; = 0(¢,) the result can also be written
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Me
G2Ue) = ; g(g) (2.160)

by introduction of the righting arm GZ. If GZ(¢) and @ have the same sign, the structure
is hydrostatically stable at this angle of heel ¢. GZ(p) = 0 corresponds to an
equilibrium configuration without any additional external moment, whereas opposite
signs on GZ(p) and @ signify an unstable state.

The result (2.160) gives a simple relation between an external moment and the
corresponding change of equilibrium position, which is a clear advantage as compared
to the result from the first procedure. If the direction associated with the lowest
metacentric height does not change, the two procedures will yield identical results.
Otherwise, the first procedure yields larger changes in the equilibrium position for a
given external moment than the second procedure. Therefore, as regards the stability
of the structure, the second method must be considered as non-conservative. This must
implicitly be taken into account in the formulation of stability requirements based on
the GZ-curve, Eq. (2.160).

The procedure leading to Eq. (2.160) is equally valid for intact and damage stability
analysis. In intact stability analysis, the submerged volume V is constant whereas, for
damage stability cases, it may change with the angle @ due to successive flooding of
compartments. The calculation of M® = M®(¢p) propetly takes flooding into account,
but the definition of GZ, Eq. (2.160), can be made in different ways. The definition
applied in the current stability rules uses Eq. (2.160) with V equal to the intact
submerged volume. This definition, in which V is independent of @, is called the “added
weight” method as the water in the flooded compartments can be considered as
additional weights. A more rational definition is the “lost buoyancy” method, where the
lost buoyancy in the flooded compartments is subtracted from the intact submerged
volume to get the real submerged volume V = V(@) to be used in Eq. (2.160). In the
present context, the submerged volume to be used in Eq. (2.160) is the only difference
between the “added weight” and “lost buoyancy” methods. However, for hand
calculations, the two methods look quite different.

Finally, a relation between the initial stability analysis and the GZ-curve should be
mentioned.

For small angles of heel g (p < 1), both procedures for the righting arm, Eq. (2.151)
and Eq. (2.159), lead to the same result:

SR — (2.161)
¢ ,DgV(zm - Zg)

as
OF
Eyp) = Eq|, + a—(;o(p =(~Lu+E)p = V(zg — zm)p  (2.162)

By introduction of GM, Eq. (2.150), from the initial stability analysis and GZ, defined
by Eq. (2.160), Eq. (2.161) can be written
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GZp)y=GM-¢ (p <1) (2.163)

GM is seen to be the slope of the GZ-curve at the equilibrium configuration (@ = 0).

Example 2.4.2

The calculation of the initial stability, Eq. (2.150), and the GZ-curve, Eq. (2.160), is well suited for
numerical calculation. The results obtained by use of the I-ship code (see e.g. Jensen, Baatrup and
Andersen, 1995) for a Ro-Ro ship are given in Figure 2.12 as an illustrative example.

Intact equilibrium position

Total mass of this loading condition .............. 16900.000 {t]

Moment to change trim (MCT) .eeereeerorcsasonncnnns
Mass to change immersion ....eeeeecenerscroccscanas

24529.332 [t*m/m)
3040.281 (t/m]

X-coordinate for center—of-gravity .......icocveea.. 3 84.853 [m]
Y-coordinate for center-of-gravity ..........c..... ¢ .000 (m}
Z-coordinate for center-of-gravity .......c.cce.ee. 3 10.000 [m)
Draught at Lpp/2, measured perp. to water plane ... : 6.501 (m)
Draught at AP, measured perp. to water plane ...... @ 6.544 (m)
Draught at FP, measured perp. to water plane ...... : 6.458 [m}
Angle of heel .....iiieiiiuininntenerinnonnnanenonns ¢ .000 [deg)
Calculated displacement .........eceneecencecesae.s & 16899.990 [t)
LCF measured positive forward Lpp/2 ........ccveun. =1.720 [m]}
BMT measured upwards from center of bouyancy ...... @ 7.628 [m)
GM (upright) without free surface corrections ..... : 1.121 [m}
GM (upright) with free surface corrections ........ 1.121 (m)
Corresponding roll period (IMO A.685(17)) ....ccc.. @ 18.984 [s)

Moulded vOlUmMEN .....ciiencieentoncencnoscnsrencanens 16422.107 [m~3})

Block coefficient ........ cesntcacracenrecancasanaan o .597
LCB measured positive forward Lpp/2 .......c.....-.. : 2.229 [m])
KB measured in CL from the base line .............. 3.493 [m)

Wetted surface (moulded) ....cccevcrivasncncnnscnns
Water plane ar a ....ecececccsencccascrasconnsasenns
Water plane area coefficient .....cciiiiiiennnanen
BML measured upwards from center of bouyancy ......

4324.060 [m~2]
2954.311 {m"2)
.698
239.836 (m]

a0 e e e

Statical stability results

Angle of Draught AP Draught FP MS KN GZ
heel perp. to WP{ perp. to WP (corrected)
{deg] (m} {m) {m} {m} (m)

.000 6.544 6.458 .000 .000 .000
10.000 6.296 6.430 .022 1.953 .216
20.000 5.570 6.332 .156 3.960 .539
30.000 4.438 6,036 .394 5.955 .955
40.000 2.922 5.322 .563 7.711 1.283

Figure 2.12 Hydrostatic stability information sheet.
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In the previous chapter, the hydrostatic and the gravitational loads acting on a structure
at rest in a calm sea were derived. However, the real ocean environment always differs
from this ideal static equilibrium state due to continuous changes in the meteorological
conditions. As it is well known from weather forecasts, we can, with our present
knowledge, only estimate average values of atmospheric pressure and wind speed.
Local variations in space or time cannot be predicted. The reason is not just lack of a
complete physical model of the earth climate, but also that local variations depend on
the past detailed history of the global climate. Weather conditions with the same
macroscopic (average) parameters therefore show different and unpredictable local
variations in the key variables of the system. All these variables may thus be said to be
random or stochastic processes, for which only average (expected) values can be
predicted, leaving a detailed description out of reach. The average values can, however,
be used to estimate the probability that a variable is within certain given bounds. This
is very important as we can thus determine the probability that a load derived from the
climatic model exceeds a given design value. These loads may be directly related to the
wind speed at the location of the structure, but may also be derived loads such as those
due to waves, current and ice. For fixed offshore structures, all four types are important
but, for floating structures, which can move freely in the horizontal plane, the forces
due to wind, current and ice are usually negligible compared to those generated by the
ocean waves.

As ocean waves are generated by local variation in wind speed and atmospheric
pressure, they are to be considered a stochastic process. The magnitude of the waves
is the result of an energy transfer between the wind and the ocean, which takes place
in a narrow boundary layer on the surface of the sea. A complete description of this
process is not available. Instead, the average parameters describing the state of the sea
may be related to the average wind speed, direction, duration and fetch over the
considered area of the sea.

In this chapter, the statistical properties of wind-driven ocean waves will be described,
including the necessary fundamentals of stochastic processes. This will facilitate the
load and response analysis described in the two following chapters, as the statistical
analysis of these processes is basically the same as for the ocean waves.

The literature on stochastic processes is extensive and only a small fraction of the
procedures available is discussed here. For further reference, the following textbooks
can be recommended: Price and Bishop (1974), Madsen, Krenk and Lind (1986) and,
especially, Ochi (1990).
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31 RANDOM VARIABLES

The probability P(X < x) that a random variable X is less than or equal to a particular
value x is denoted F(x):

F(x) = P(X < x) 31

By definition, F(x) = 0 if the event X < x can never take place whereas F(x) = 1 if X
always is less than or equal to x. Hence, if the random variable X is bounded,
a £ X =< b, then

F@y=0 ; Fp)=1 (32

Furthermore, fora < x; < x, < b:

PX < x)) = PC< x) + Py < X = 1))

z PX = x))

as the event P(x; < X = x,) is non-negative. Thus

F(x,) = F(x;) for x, > x, (3-3)

so that F(x} is a never decreasing function of x. The definition given above hold for all
types of random variables representing discrete as well as continuous events. In the
present treatment, only continuous random variables are considered, and for such
variables a probability density function p(x) can be defined by the integral

F(x) = Ip(u) du (3.4)

Provided that F(x) is differentiable, Eq. (3.4) yields

e =& G-3)

From definitions (3.1) and (3.4) it follows that the probability that X falls within a small
range dx about x is

P(x < X < x + dx) = p(x)dx (3.6)

which shows that p(x) is a non-negative function of x.

Due to the relation (3.4) between F(x) and p(x), F(x) is denoted the cumulative
probability density function or the probability distribution function.
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As
X,

P, <X =sxy)= [ p(uydu

X

it is seen that
Xy

PX =x)= f pwydu = 0 3.7

Xy

Thus, the probability that a continuous random variable assumes a specific value is zero.

The stochastic nature of the variable X is completely described by either F(x) or p(x).
However, often neither F(x) nor p(x} can be derived from the physical process
represented by X. Instead, average values of certain functions G(X) may be available
from previous outcomes of X. These average or expected values E[{G(X)] are defined
as

b
E[GX)] = I G)p(x)dx (38
a
The most useful average values are the moments:
un = EX" ; n=1,273,., (39
or the central moments:
h=EX - ; n=23,.., (3.10)
where the mean value
K = py = E[X] (3.11)

The second central moment &, is termed the variance
Ly = E[X — uy’] (312)

The standard deviation s defined as
s= /5, (3.13)

has, like the mean value u, the same physical dimension as the variable X,

The moments u, and &, are clearly related. From Eq. (3.10) it follows that



46 Ocean Waves

by = E[X?) — 2uE[X] + p* = py — 413
83 = 3 = 3uppy + 23
Gy =ty = Y3y + by pd - 3uf

and so on. Obviously, §, = u, if 4 = 0.

The following non-dimensional values of the central moments are often used:

g
Coefficient of variation: v = \/—Iu—g = /%
: &
Skewness: Y1 = =7 (3.14)
3
Kurtosis: Yy = C_;
&2

From the knowledge of the moments, approximations to the probability density
function can be constructed, either as series expansions or by tranformation, see
Sections 3.1.2 and 3.1.3. First, however, it is appropriate to introduce the normal
distribution.

The normal distribution plays a significant role in the theory of stochastic processes as
the statistical properties of the majority of physical phenomena can be described by this
distribution. Non-linear effects can, to a certain extent, also be included by
modifications to the normal distribution, as shown in Sections 3.1.2 and 3.1.3.

However, if we want to analyse the statistical behaviour of discrete events, like the
occurrence of peaks or zero upcrossings, other probability distributions are more useful.
For that purpose the Weibull distribution and the Gumbel distribution are described in
Sections 3.1.4 and 3.1.5 respectively. Finally, probability distributions for several
random variables are introduced in Section 3.1.6 and applied in Section 3.1.7 in order
to derive the very important central limit theorem.

311 The Normal Distribution

The normal distribution, also called the Gaussian distribution, has the probability
density function

% 3.15
p(x>=[2%3exp[—%(7“)]; —wm<x<w OO

where the two parameters y, s are the mean value and the standard deviation,
respectively:
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xp)dx = p

8 N8

& — 1)’p(ydx = s

8 S8

An analytical expression for the probability distribution function F(x) is not possible.
Rather than using a numerical table for each combination of (1, s), it is appropriate to
introduce the standard normal distribution with a mean value zero and a unit standard
deviation. Its probability density function is

(1) z/—ﬂe w0 — o <u< (3.16)

and the associated probability distribution function:

i

D(u) = ‘/% f e~ (3.17)

Hence, by the transformation u = (x — u) /s

oy = @ (x - ﬂ) (3.18)

N

The standard normal distribution ®(u) is tabulated in Table 3.1 and shown in
Figure 3.1 together with the probability density function ¢(u). It is seen from Eg. (3.17)
that

D(—u) =1 - du) (319

so that only tabular values for u > 0 are necessary.

Asymiotically, Abramowitz and Stegun (1966):

(- w) = e ¥ u>1 (3.20)

2 u

The moments u, of the standard normal distribution become

J2n 1-3-5---(n—1) ; neven

Mn =Cp = L j w'e Mdy = { 0 » n odd (321
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-

D(u)

0,5

$(u)

£
T U T T

-3 -2 -1 0 1 2 3

Figure 3.1 Probability density function @(u) and probability distribution function ®(x) of
the standard normal distribution.

Table 3.1  Standard normal distribution ®(z).

z 00 01 02 03 04 08 06 07 08 09
0 | .5000 .5040 .5080 .5120 .5160 .5199 5239 .5279 .5319 .5359
1 | 5398 5438 5478 5517 5557 .5506 .5636 .5675 .5714 .5753
2 | 5793 5832 5871 5910 5048 5987 6028 .6084 .6103 .614l
3 | 6179 6217 6255 6293 6331 .6368 .6406 6443 .6480 .6517
4 | 6554 6591 6628 .6664 .6700 6736 .6772 .6808 .6844 .6879
5| 6915 6950 .6985 7019 .7054 7088 7123 7157 7190 .7224
6 72357 7291 7324 7357 7389 7422 7454 7486 7517 7549
7 7580 7611 7642 7673 7704 7734 7764 7794 7823 7852
8 | 7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
9 | 8159 8186 8212 8238 8264 ..8289 .8315 .8340 .8363 .8389
1.0 | :8413 8438 8461 8485 .8508 .8531 .8534 .8577 .8599  .862l
1.1 | .8643 .8665 .8686 .8708 8729 .8749 .8770 .8790 .8810 .8830
1.2 | .8849 8869 8888 .8907 8925 .8944 .8962 .8980 .B997 .9015
1.3 9032 9049 9066 9082 9099 9115 9131 9147 9162 9177
14 | 9192 9207 9222 9236 9251 .9265 9279 .9292 9306 .9319
1.5 9332 9345 9357 9370 9382 .9394 9406 9418 9429 9441
1.6 L9452 9463 9474 9484 9495 9505 93515 9525 9535 9545
1.7 9554 9564 9573 9582 9591 19599 9608 9616 9625 9633
1.8 9641 9649 9656 9664 9671 9678 9686 9693 9699 9706
19 | 9713 9719 9726 9732 9738 9744 9750 9756 9761 9767
20 | 9772 9778 9783 9788 9793 .9798 .0803 .9808 9812 .9817
2.1 | 9921 9826 9830 9834 9838 .9842 .9846 .9850 .9854  .9857
2.2 9861 9864 9868 9871 9873 9878 9881 9884 9887 9890
2.3 | 9893 9896 9898 9901 9904 9906 9909 9911 .9913 .9916
2.4 9918 9920 9922 9925 9927 9929 9931 9932 9934 9936
2.5 .9938 9940 9941 9943 9945 9946 9948 9949 9951 9952
2.6 | .9953 9935 .9956 9957 9959 9960 .9961 .9962 .9963  ,9964
27 | 9965 9966 9967 9968 9969 .9970 9971 .9972 .9973  .9974
2.8 | 9974 19975 9976 .9977 9977 .9978 9979 9979 9980 9981
29 | 9981 9982 9982 9983 9984 9984 .9985 .9985 .9986 .9986
3.0 | 9987 9987 9987 9988 .9988 .9989 .9983 .998% .9990  .9990
31 | .9990 .9991 .9991 .9991 .9992  .9992  .9992 .9992  .9993  .9993
3.2 .9993 9993 9994 9994 9994 .9994 9994 9995 9995 9995
3.3 9995 9995 9993 9996 9996 19996 9996 9996 9996 9997
3.4 9997 9997 9997 9997 9997 9997 9997 9997 9997 9998
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3.1.2 Series Expansion of the Probability Density Function

Consider an unbounded random variable — o < X < oo and define the so-called
characteristic function

P(it) = I ployedx = E[e™] (322)

where i is the imaginary unit (with the property i2 = — 1). Substitution of the
expansion

n!

. s (i)t
elb( = 1 + Z (ttx)
n=1

into Eq. (3.22) yields

Il

iy =1+ > Eny (3.23)
n=1
From Eq. (3.22) or Eq. (3.23) it is seen that ¢(if) has the property

d"¢
di"

= i"u, (3.24)
t=0

When the moments u,, are known, a formal solution for p(x) is given by the Fourier
transformation of Eq. (3.22):

px) = "2135 j P(it)e ~dt (3.25)

However, substitution of Eq. (3.23) into Eq. (3.25) yiclds a meaningless result as each
of the terms

1

2

(it)"e " *dt

§ 3

is real but infinite. To avoid this problem, other expansions can be constructed by use
of different moments. An expansion in the cumulants x,, defined by

o0

Ing(ity = > %(it " (3.26)

n=1
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will be shown to be very useful for generating probability density functions deviating
only slightly from a normal distribution. By use of the expansion

ey 12 13 1.2
In(1 +u) =u 2u+3u 4u +...

it follows from Egs. (3.23) and (3.26) that
Ky =t
2 = Uy — ,“% =g
3 = iy — 3oty + 2u3 = &3
Ky = g — dugy — 3ud + uquf — ou =&, - 303

(3:27)

Moments with n greater than 4 are seldom used as their estimates from e.g.
measurements are connected with great uncertainty.

The series expansion of p(x) in terms of the cumulants follows from Egs. (3.25) and
(3.26):

1 o Knponn
=3~ I exp[ zlz'!'—(tt)" ltx]dx
n=

Now, consider the case where the cumulants «,, are small for n > 2 . Then p(x) can be
written

px) = 2—175— J exp[(/c1 = x)it — %/cth]

2
K K
{1 + %(it)3 + %(it)“ +o+ 517(3—?(”)3 + iy’ +) +...}dz

Introducing
u f Kn
t= s (x - K:l) = f K2 H An = ’1/2 (328)
‘/KZ KZ

we obtain
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) A A
- - Y+ 2if A3 o3 Mg
px) = Ie o+ 2ifu) {1+ 3 ()’ + 51 (in)* +

l 2
+_1_(6 (in)® + 57 (iu)4+...) +...¢du

The integration is carried out by means of the identity:

1 e—%(u2+2ifu)(iu)n du = 3= 1)” d" j e—«;{uz+2ifu) du
fox o

(3.29)

= (= 1) a‘i'i, e3P = Heyf) e 3

where He,(f) are denoted the Hermite polynomials of order n. The values of He,(f)
follow from (3.29):

Hey(f) = f; Hex) =f2 -

(3.30)
Hey(f) = f> = 3f ; Heyf) = f*— 6> + 3
and so forth.
Use of the identity (3.29) leads to the final result for p(x):
-1 —ip
X) = 1+ = /1 He + /1 He () + ..
P( ) ‘/571,'72 [ 3 3(f) 4 4(’)
(3.31)

1({1
+ E<~3—6- A’% Heﬁ(f) + =5z 576 ﬂ'zHes(f) + 2}.3}‘41'187(}‘) +...) +.]

which is the so-called Gram-Charlier series expansion. 1t is seen that if «,, = 0 for
n = 3, then Eq. (3.31) reduces to the normal distribution, which is thus characterised
by having all cumulants «,, = 0, n > 2. This makes the use of cumulants to describe
slightly non-Gaussian processes very convenient. Of course, even for small cumulants
£, n>2, the expansion breaks down in the tail (f — £ o)asthe Hermite polynomials,
Eq. (3.30), go to infinity. The expansion (3.31) is only useful if the value inside the
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square brackets does not deviate to much from unity. A negative value signifies a
meaningless result as p(x) must by definition be non-negative.

Note that, according to Egs. (3.14), (3.27) and (3.28), A, and A, are closely related to
the skewness v, and the kurtosis y,:

Ay =y,
(3.32)

For a normal distribution y, = 3, and ), is therefore often denoted the coefficient of
excess.

We will return to Eq. (3.31) later in this and in the next chapter. The derivation of Eq.
(3.31) is given in the classical paper by Longuet-Higgins (1963) on the statistical
properties of sea waves.

3.1.3 Transformation of a Random Variable

In the previous section, a rigorous series expansion was derived for the probability
density function of a slightly non-Gaussian variable. The drawback of this expansion
is its limited applicability, especially in the tails of the distribution.

A much simpler result can be obtained, if a monotonic, deterministic relationship
x = g(u)between the random variable X with an unknown probability density function
Px(x) and another random variable U with a known distribution p,(«) can be assumed.
Hence

P(X < x) = P(X < g) = PU < g~ '(v))

and, from Eq. (3.6):
px(x) dx = p,(u) du
or

pot) = [putr %] 6

w=g1(x)

The validity of the assumption x = g(u) must of course be demonstrated, preferably
by a physical model as for instance shown in Example 3.1.1.

Example 3.1.1

Consider the drag term in Morison’s equation for wave loads on cylinders. This term is proportional
to ulu where u is the wave particle velocity, which is usually taken to be normally distributed with the
zero mean and standard deviation s,. In this case Eq. (3.33) yields the probability density function p;(x)
for the drag term x = u |u|:

-1 iy 1.
""(")'/z—n‘s,,e""( zsg) R
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as

u=g7'() = /] sign(x

However, in many cases an analytical relation between x and u is not available, but
instead the lowest order central moments &, are known for the random variable X. A
power series expansion of X in terms of U may then be appropriate:

X=g0)= ) U (3.34)
j=0

where the deterministic coefficient c; is determined so that X has the prescribed central
moments:

m

G= E[6 =] = £| 1 ¢ (07 - E[U]) (.39

This is a non-linear algebraic system of equations in the unknown coefficients c;. For
the number of coefficients to be equal to the number N of known moments, m must be
taken to be N - 1. Furthermore, the moments E[U'], j = 1,2,..., N(N — 1) should be

available for the random variable U. If U is standard and normally distributed these
moments are given by Eq. (3.21).

Example 3.1.2

As mentioned previously, often only the four lowest moments u, &,, {3 and {, are known with
sufficient accuracy. In such cases Eq. (3.34) yields a cubic power series. If U is taken to be standard
normally distributed, the coefficients c; in Eq. (3.34) are determined from

#=cotoy

L=l +6cpcy+ 2654+ 1562

&y = cy (6} + 83+ 72¢)cy + 270 c2)

ty = 60ch+ 3¢t + 10395 cf + 60 ¢ c? + 4500 ¢3 2 + 6302 2
+ 936c,c%c3 + 3780clc§ + 6Oc¥c3

il

(3.36)

The coefficients c;, ¢, and c; must be determined numerically, for instance by application of the
Newton-Raphson method. It should be mentioned that a good initial guess for ¢,, ¢, and c; is
required. Here, the approximate values given by Winterstein (1985) are useful.

The result is only valid if the transformation (3.34) is monotonic, which requires that dx/du does not
change sign for any value of u. Differentiation of Eq. (3.34), m = 3, yields

i+ 2cu+3cyu’ >0 for all u

or

g <3epey (3.37)



54 Ocean Waves

The accuracy of the transformation method given by Eqgs. (3.34) and (3.35) depends
completely on the assumption that the higher order moments of X can be neglected in
the transformation.

This may seem a dubious assumption but several examples, e.g. Winterstein (1985),
show that very accurate results are obtained even for the tail of the distribution. Aslong
as Eq. (3.37) is satisfied no unphysical (i.e. negative) values of the probability density
function are obtained.

3.1.4  The Weibull Distribution
The probability distribution F(x) for the Weibull distribution is given by

Fy=1-¢ & ;. x>0, a>0 >0 (3.38)

This distribution is purely empirical but has proved to be a very versatile distribution
for descriptions of the statistical properties of many practical problems. It is also one
of the three true asymptotic extreme value distributions, see Section 3.2.5.

The two coefficients (@, f) can be related to the mean value u and the variance {,
through

u = pr(x)dx=af(1 +é)
0

) (3.39)
¢, = l(x — w2 p(x) dx = a? F(l +%> - [F(l +BL) ]
0
where I( ) is the Gamma function:
I'x) = f Fle tar (3:40)
0

The moments u,, Eq. (3.9), become
By = I x"p(x)dx = a"F(l +§)
0

If the argument of the Gamma function is an integer n, then

Ir(n+1) =n (341)
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and in general

T+ 1) = xI'(x) (3.42)
Thus, only tabular values of I'(x) are needed for, say, 1 < x < 2, see Table 3.2.

3.1.4.1 The Rayleigh Distribution ($ = 2)
A special case of the Weibull distribution is the Rayleigh distribution where the
coefficient § = 2 yields the following distribution:

Fy=1-e & x>0 . (3.43)
with the mean value
u = aF(g) = —/2: (3.44)
the variance
g:@—gﬁ (3.45)
and the skewness
yy = % = -——:’—‘ ( "n3)3 = 0.6311
(Vi-3)

The probability density function p(x) becomes
p(x) = flE = —21 ~{x/a) ;o x=0 (3.46)

and is shown in non-dimensional form in Figure 3.2.
1

F(x)

p(x)a

0 r
0 1 2 xlo 3

Figure 3.2 The non-dimensional Rayleigh distribution.
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At this point, it may be convenient to illustrate different characteristic values which can
be derived from a given probability distribution. The mean value, Eq. (3.44), is

J

p="5a=0862a (3:47)

Alternatively, the most probable value ji, i.e. the value with the largest value of the
probability density function, could be considered:

=>/1=

a
— —==0.7071a (3.43)
dx x=g fi

Finally, the 50 per cent fractile u ., defined by
1
PX > i) = %

can also be regarded as a typical value. From Eq. (3.43)
s = a JIn2 = 08326 a (349

Due to the difference between u, fi and us,, care must be taken in interpretations of
a cited characteristic value of a random variable.

3.1.4.2  The Exponential Distribution (§ = 1)

Another special case of the Weibull distribution which deserves to be mentioned is the
exponential distribution where § = 1 giving

F(X) =1 - e~x/a (3.50)
This results in a mean value of
H=a
a variance
8y = a?
and a skewness
&3
| ey e
c3/2
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Table 3.2

Gamma function I'(x).

X T'(x) X I'(x) X T'(x)

1 1 1.5 0.8862269 2 1
1.0t 0.9943259 1.5 0.8865917 2.1 1.0464858
1.02 0.9888442 1.52 0.8870388 22 1.1018025
1.03 0.9835500 1.53 0.8875676 23 1.1667119
1.04 0.9784382 t.54 0.8881777 24 1.2421693
1.05 0.9735043 1.55 0.8888683 25 1.3293404
1.06 0.9687436 1.56 0.8896392 2.6 1.4296246
1.07 0.9641520 1.57 0.8904897 2.7 1.5446858
1.08 0.9597253 1.58 0.8914196 2.8 1.6764908
1.09 0.9554595 1.59 0.8924282 29 1.8273551

1.1 0.9513508 1.6 0.8935153 3 2
1 0.9473955 1.6} 0.8946806 31 2.1976203
1.12 $.9435902 1.62 0.8959237 32 2.4239655
1.13 0.9399314 1.63 0.8972442 33 2.6834374
1.14 0.9364161 1.64 0.8986420 34 2.9812064
1.15 0.9330409 1.65 0.9001168 35 3.3233510
1.16 0.9298031 1.66 0.9016684 3.6 3.7170239
117 0.9266996 1.67 0.9032965 3.7 4.1706518
1.18 0.9237278 1.68 0.9050010 38 4.6941742
1.19 0.9208850 1.69 0.9067818 39 5.2993297

1.2 0.9181687 1.7 0.9086387 4 6
1.21 0.9155765 1.71 0.9105717 4.1 6.8126229
1.22 0.9131059 1.72 0.9125806 42 7.7566895
123 0.9107549 1.73 0.9146654 43 8.8553434
124 0.9085211 1.74 0.9168260 44 10.136102
125 0.9064025 1.75 0.9190625 4.5 11631728
1.26 0.9043971 1.76 0.9213749 4.6 13.381286
1.27 0.9025031 1.77 0.9237631 47 15.431412
1.28 0.9007185 1.78 0.9262273 48 17.837862
1.29 0.8990416 1.79 0.9287675 4.9 20.667386

13 0.8974707 18 0.9313838 5 24
131 0.8960042 1.81 0.9340763 5.1 27931754
132 0.8946405 1.82 0.9368451 52 32.578096
1.33 0.8933781 1.83 0.9396904 53 38.077976
134 0.8922155 1.84 0.9426124 54 44,598848
1.35 0.8911514 1.85 0.9456112 55 52.342778
136 0.8901845 1.86 0.9486870 56 61.553915
137 0.8893135 1.87 0.9518402 57 72.527635
1.38 0.8885371 1.88 0.9550709 58 85.621737
1.39 0.8878543 1.89 0.9583793 59 101.27019

1.4 0.8872638 1.9 0.9617658 6 120
141 0.8867647 191 0.9652307 6.1 142.45194
1.42 0.8863558 1.92 0.9687743 6.2 169.40610
143 0.8860362 1.93 0.9723969 63 201.81328
1.44 0.8858051 1.94 0.9760989 6.4 240.83378
1.45 0.8856614 1.95 0.9798807 6.5 287.88528
1.46 0.8856043 1.96 0.9837425 6.6 344.70192
1.47 0.8856331 1.97 0.9876850 6.7 413.40752
148 0.8857470 1.98 0.9917084 6.8 496.60608
1.49 0.8859451 1.99 09958133 6.9 597.49413
1.5 0.8862269 2 1 7 720
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The probability density function and the probability distribution function are shown in
non-dimensional form in Figure 3.3. For this distribution the most probable value is
found at the lower limit x = 0 for the distribution:

a=0
and finally
Hsg = a In2 = 0.6931 a
1
F(x)
p(x)o
0 T T
0 1 2 oo 3

Figure 3.3 The non-dimensional exponential distribution.

315 The Gumbel Distribution
The Gumbel distribution is characterised by the probability distribution function

Fr) = exp(_ e~(x~a)/ﬁ.) ; —mw<x<w®, >0 (351

and, by differentiation:

pex) = % e~ =B F(x) (3.52)
The mean value is found to be
p=a+Cp (3.53)
and the variance
&, = n? B? (3.59)
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where C is Euler’s constant, C = 0.577215...*. The most probable value /i is obtained
from

d p(x) i

The 50 per cent fractile is given as
fisg = a — f In(In2) = a + 0.3665

Application of the Gumbel distribution to extreme value prediction is discussed in
Section 3.2.5.

3.1.6 Probability Distributions of Several Variables

The probability distribution F(x,, x,,...,X,) of nrandom variables X;, i = 1,2,...,n,
is defined by

F(xy, xp X3500%n) = PX| < Xy, Xy < Xppees Xy < Xp) (3.55)

as a generalisation of Eq. (3.1). For continuous variables, the joint probability density
function p(x;, x,,...,xy) is given by

Xy X, Xu

F(xq, Xp5eyXp) = f [ ]p(ul, Uy,..., p) duy du,...duy, (3.56)

a, a, a,

where a; is the lower boundary on X, ;- Provided that Fi(x;, x,,...,x,)is differentiable for
all values of x;, then

or F(xl, xz,...,x,,) (357)

PXs Xgpeens Xn) = 0x, 09X, ... 0xy

If the individual random variables X; are statistically independent, then Egs.

(3.55) - (3.57) yield

F(xy, Xy ey Xp) = Fy (1) Fy (6. Fy, () (3:58)

and

*  These results follow from

x

I Invedv = ~ C and f(lnv)ze"‘dv = EGj + C?
0

0
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P15 X ey Xn) = Px,(X1) Px,(X2)-+ Pr,(Xn) (359

where Fy(x;) and p,(x;) are denoted the marginal distribution and marginal density

functions, respectively. For statistically dependent variables, the marginal density
function for X; becomes

bl bi—l bi+l bn

pxfx;) = J I Jp(xl, Xgpers Xp) iy, _y dix; q...dx, (3-60)

ay iy Giyy Gy

where b; is the upper boundary on X;. The marginal distribution is obtained by
integration of Eq. (3.60):

Fyfx;) = [Px,- (u;) du; (3.61)

The marginal distribution function F, (x;) expresses the probability that a variable X;
is less than or equal to x; irrespective of the values of all the other variables
X]-, Jj=1,.,n; j = ilf onthe contrary, the values of Xj are known, i.e. Xj = X
i =12,.,n; j = i, then the conditional probability distribution for X, is defined as

P(XllXj = x];.] = 152"-7n;j¢ l) =

X;

jp(xl, Koy ey Xj_ 1> Upy Xj 410 -0 Xn) dU;

a;

Fr xg, Xp ey X205 X150 Xn) =~
[p(xl, Xgseer Xj_ 15 Wiy Xjy s - Xn) dUY;

a;

i

(3.62)

where the denominator is the marginal distribution of X, X,,.., X;_{, X;1 5. Xn.
The conditional probability density function is obtained by replacing the numerator on
the right-hand side with p(x;, x,,..,xz), i.e. by differentiation of Eq. (3.62) with
respect to x;.

For two random variables (X, Y} Egs. (3.60) - (3.62) yield the following relation
between joint, marginal and conditional probability densities:

P, y) = p(xly) py(y) (3.63)

The moments E{G(X,, X,, .., X,,)] of any combination G(X;, X,, .., X,;) of the random
variables are defined by
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b, b, b,
E[GX,, X,,.., Xp)] = j j . J G(x1, X953 Xn) P(Xqs Xpy ooy Xp) dXydxy..dxy
& @y  a (3.64)
The most useful moments are the central moments:
é‘m:,mz,...,mn = E[(Xy — u)™ Xy = pp)™. (Xn — pun)™] (3.65)

where the mean values are given as
bl bz b,,

j [..inp(xl, Xy, iy Xp) dxydy..dxy

a, a, 4,

(3.66)
b,

= J X; Pyi (%;) dx;

a;

u; = E[Xj]

i

Of special importance is the covariance matrix 2:

z= ' (3.67)

O Oun
with the components

o5 = cov (xpx) = E[(X; — 1) (X; — )] (3.68)

The diagonal term o, is seen to be the variance of the variable X;.
A non-dimensional measure of covariance is the correlation matrix p:

Pu Piz - Pin

p= (3.69)

Pm Pnn

where each of the correlation coefficients is defined as

= 7 3.
Pij = 575, (.70)
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by use of the standard deviations
si = VEIX;, — )] = Jo S

as normalisation factors. If the variables X; and X; are independent, then
0y = E|(X; — 1)) E[(X; —up] = 0 (3.72)

due to Eq. (3.66). Thus, statistically independent pairs of random variables have zero
off-diagonal covariance and correlation coefficients. The reverse is not always true but
holds for instance for the multivariate normal distribution defined by the joint
probability density function:

P(X{5 X900y Xn)

=—1  expl-Ll(x- T 1y - :
N LR R R

where X is given by Eq. (3.67). | | denotes the matrix determinant and the subscript bar
denotes a vector.

This joint distribution clearly becomes the product of the density functions of each of
the variables x; if o;; = O for i # j. Thus, in this case, zero corrclation also implies

statistical independence.

Example 3.1.3
Consider two variables (X; X,) with the joint probability density function

Py, X)) = g, (ry +x) + % s ) €10,1)

It is seen that p(x, x,) satisfies
1

1
[ [P(xl» xy)dxydxy =1
00

as well as
plxy x;) 2 0 for (x;, x,) € [0,1]

as required for a probability density function. Furthermore, the mean values are found to be
11

M= foip(xlv Xy) dx dx, 21%; ;o i=12
00

and the covariance to be
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cov(xy, xp) = E[(Xl — ) (X, - Hz)] =

1

i
J [(xl ~,“1) (xz “ﬂz) plxy, xp)dxy dxy = 0
00

The variables X; and X, are thus uncorrelated. By application of Eq. (3.60) the marginal probability
densities become

1

6 4
P x1) = jP(xp xp)dxy = 7% + 7
0

1

6 4
Pr(%3) = fP(xb x) dxy = Fhts

0

P(xys X3} # Py (X1)Px,(%2)

the two variables are, however, not statistically independent.

The correlation coefficients Pij» Eq. (3.70), are bounded:
~l=<p;=i (3.74)

el o )] = o] = e 1= )

due to Schwarz’ inequality*.

A correlation coefficient equal to zero signifies uncorrelated variables. For py=%1,
it follows from Eq. (3.70) that

E[(Xl- - ,ui)(Xj - ﬂj)] =4 55

This can only be satisfied for

E[(@X ~ Y)} = a®E[X?] - 2aE[XY] + E[Y’] = 0 for alla = E[XY) = E[X?] E[Y?]
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which is a complete correlation between X; and X;. The value of p; therefore serves
as a convenient measure of the correlation between two random variables.

3.1.7 Central Limit Theorem

In the analysis of stochastic processes, the central limit theorem plays an important role.
The theorem states that the sum X of n independent random variables X, i = 1,2,...,n
tends toward a normal distribution for large values of n, irrespectively of the
distributions of X;. The mean value 1, and the standard deviation s, are forany n given
by

n n

«=EX) = S EX] = > u, (3.75)

i=1 i=1

= E[(X - :ux)z] = E[i("’i - ,“i)z} = iE[(Xi - /“i)z] = izil s (376)

oy

using Eqs. (3.65) - (3.66). Thus, according to the central limit theorem, for large n, the
distribution of X is simply given by the normal distribution, Eq. (3.15), with mean and
standard deviation as calculated from Egs. (3.75) - (3.76).

The proof of this theorem is given below for the special case where all X, are identically
distributed with mean u and standard deviation s. Then

P (3.77)
and
sx = ns (3.78)
It is convenient to introduce the normalised variables Y and U f by
X—px _X—m 1 Xi—#_1 3.79
Y = = = — = U. ( . )
R P X

Now, consider the characteristic function ¢(if), Eq. (3.22), introduced in Section 3.1.2.
With i2 = — 1 this function becomes

o(if) = E[eitY] =E exp{% i Uj} = ﬁE[exp(% Uj)]
j=1 j=1

2

3
—HE1+—’/‘=U +21'(f) U? + ;,(7’—%) U 4| (380)
ji=1
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as

E[Uj] =0 : E[U?] =1 E[Uﬂ = 1y (3.81)

for j = 1,2,...,n. The moments pt,,, k = 3,4,5, ... are independent of n and bounded.

Therefore, for large n*

o) > (1 -3 ﬁ) N (382)

The probability density function for Y can then be found from Eq. (3.25):

g

p(y)=~21; J ¢(it)e“"‘ydt=§;— I e P2-igy = L o2 (3.83)

so that finally

d 1 {X=#y
p(x) = p(y) d_z = /2_; - e 315 (3.84)

which is the normal distribution.

Example 3.1.4
‘In order to illustrate how many terms n are necessary in order to obtain a reasonable approximation by
a normal distribution, consider the case where the individual random variables X ; are uniformly

distributed over the range [0,1]:

plx) = J=12,...n

implying that

and, from Egs. (3.77) - (3.78):

=
=
il
INIES
b
il
_
)

* In general n
lim (1 - %) — e

n—o
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The probability distribution function F(®)x) and the probability density function p®(x) for
X =X, + X, +... + X, can be determined from the recurrence relations:

FO) = PX < x) = P(X; + X, +... + X, < )

sx—u Pu<X,<u+dy

n-1

= > lim PR, + X, 4. + X
" du—0
I

= ]F("”')(x — ) f(u)ydu = IE(”_D(X - u)du = Iﬂ"*‘)(v) dv
0 -

x

and

()
pP(x) = d_F_le_(’Q = FO () — F~D(x — 1)

The recurrence starts with

0 x=0
F(l)(x)= X 0<x=<1
1 x =
and, after some algebra:
X 0=x=<1
p(z)(x)= 2-x 1=x=<2
0 otherwise
1.2
3 0<x=s1
—§+3x——x2 1<sx=<2
O)p) = 2
P @3" 9 3 1.2 2 < <3
i -~ 3x + EX =X
0 otherwise

In Figure 3.4, the dashed curves show the exact probability density functions p@(x),
n = 1,2,3 and 4, whereas the solid curves show the corresponding normal distributions with the
same mean values and standard deviations. Although the initial uniform distribution deviates
significantly from the normal distribution, it is clearly seen that already from n = 3, the normal
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distribution yields a good approximation to the exact distributions. Of course, the exact distributions
are bounded by x € [0, n] whereas for the normal distribution x €] — oo, oo for all .

Figure 3.4 Comparison between exact probability density distributions and normal dis-
tributions based on the central limit theorem.

3.2 STOCHASTIC PROCESSES

The random variables used in the description of the ocean waves and the derived loads
are often continuous functions of time ¢. If, for instance, the wave elevation is measured
at a given location, wave elevation records as shown in Figure 3.5 may be obtained.
However, as discussed in the introduction to this chapter, it is not possible to make a
precise a priori description of this time history. Hence, if the measurements are made
again under apparently identical conditions, other quite different time histories may be
found. Each record X(£) will constitute a sample in the ensemble of possible time
histories which might be the outcome of the measurements.

For design purposes, from an infinite number of samples X (D, i =1,2,3,., those
samples must be selected which represent the severest loading on the structure, and the
probability of occurrence of these samples must be taken into acount. This analysis is
performed by considering the complete ensemble as a stochastic (or random) process
X(t), so that each sample X(7) is just an outcome of X(¢).

For any value of time ¢, X(f) is a random variable and the results given in Section 3.1
can be used to define the probabilistic behaviour of X(¢). For example, the probability
that X(¢) is less than or equal to x is

PX() < x) = F(x;1) (3:85)
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where F(x; £} is the probability distribution of X at time ¢. The relation between values
of X(#) at two different instants of time X(t;)and X{(¢,) can be characterised by the

covariance cov(ly, I,), Eq. (3.68):
cov(ty, 1) = E|(X(t)) = p1)(X(t) — )] (3.86)

where
#i = E{X(Ii)] (3:87)

e
Wit

Figure 3.5 Three 15 minutes wave elevation records, taken at Ekofisk Field, 1500 hrs
12/12/90. Courtesy Maersk Oil and Gas.

Alternatively, the autocorrelation R(t,, t;) defined as
R(ty, 1) = E[X(t,)X(t,)] (3.:88)

may be used. It is seen that
3.89
R, 1) = cov(ty, tp) + piiy 359

The closer the two instants of time, ¢; and ,, are, the closer the correlation must be
between X(¢,) and X(¢,) as X(¢) is a continuous process.

For t; = t, the autocorrelation becomes
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R(ty, 1) = 57+ p? (3.90)

where s, is the standard deviation of X(¢)).

A significant reduction in the complexity of the statistical predictions for X(f) occurs,
if the absolute value of time ¢ does not enter the probability distribution, i.e.
F(x;t) = F(x). On the basis of this assumption, the stochastic process is said to be
stationary. Only stationary processes will be considered here, as non-stationary
processes can often be treated as a weighted sum of stationary processes. This is
discussed later in Section 3.3.3

3.2.1  Stationary Stochastic Processes

On the assumption that F(x; f) = F(x), the probability density function is written

dF
pest) = - = p(x)
Hence, all statistical moments E[G(X)], for instance u = E[X(t)] and
§2 = E[(X(t) - ,u)z], also become independent of t. The autocorrelation and the

covariance become functions only of the time difference 7 = t, — ¢; and the
autocorrelation is an even function of 7 as

R@@) = E[X(OX(t + 7)]
(3.91)
= E[X(t - DX(®)] = R(- 7)

Stationarity implies that the statistical moments of the process do not change with time.
This criterion may be used to divide a stochastic process into a series of stationary
processes. For ocean waves and derived wave load processes each stationary process
may have a duration of between 30 minutes and three hours.

Based on a large set of samples X,(1), i = 1,2,...,n, approximate values of the
statistical moments can be obtained by averaging over the whole ensemble:

(3.92)

R@) = > XXt + 1)

i=1

for a fixed value of t.
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However, often only a single sample X(#) is known. If this sample can be considered
typical in an average sense of all possible samples, then the statistical moments of X(f)
obtained by averaging over time #:

/2
o =% [ Xo(t) dt
~1n
/2
2
s2=1 | (Xo(®) - o) dr (3.93)

-7/2
172

Ry(®) = 7 f Xo(t) Xo(t + 7) dt
~T/2

will often provide good estimates for u, s, R(7) etc. If this is the case the stationary
process is also an ergodic process. Obviously, from Eq. (3.93), stationarity is a
necessary condition for an ergodic process but the reverse does not have to be true.

3.2.2 Spectral Density

In the analysis of many physical problems, it is convenient to apply a Fourier
transformation to a function defined in the time domain, in order to obtain a
corresponding function defined in the frequency domain. Here the Fourier
transformation is given in the following form:

A = J B(w) e'dw (3.94)
and
B©) = 5 J A(t) e~ (3.95)

with i2 = — 1.

Egs. (3.94) and (3.95) are called the Fourier transform pair. It should be noted that this
is not a unique definition of the Fourier transform pair. Other, albeit very similar, forms
do exist (see for example Ochi (1990) for details). Here B(w) is calied the Fourier
transform of A(f) while A(¢) is the Fourier inverse transform of B(w).

For stationary processes, a Fourier transformation of the autocorrelation function R(7)
is particularly useful:
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R(r) = J S (@) e dw (3.96)

Sy) = 2= J R(r) e =% (3.97)

The function S (w) is denoted the double sided spectral density. However, S j(w) is an
even function of w as

SA—w) = —21; f R(r) e¥%dr

1 —i =
=5 R(-u) e™"®"du = S ()

g3

by use of R(r) = R(-7), Eq. (3.91). The integrals (3.96) - (3.97) can then be reduced
to

Ry = J S(w) cos wrdw (3.98)
0

S(w) = %j R(t) cos wrdr (3.99)
0

by application of ¢ = cosx + isinx. Here
S(w) =2840) o©=0 (3-100)

is the one-sided spectral density. Whereas R(r) varies between positive and negative

values, it can be shown that S(w) is always a non-negative function. This is illustrated
later for ocean waves.

From Egs. (3.91) and (3.98) it follows that

f S(w)dw = R0) = E[X(H)*] = s> + u? (3.101)
0
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Thus, for 4 = 0, the area below the spectral density curve is equal to the variance of

the process ELX{ (t)z] and therefore a measure of the average magnitude of X. In Section
3.3.2 spectral densities representing ocean waves will be discussed. Here, only a general
discussion is given.

From the spectral density S(w), the spectral moments can be derived:

m, = j O"S(@)da (3.102)
0

It is seen that

my = s2 + u? (3.103)
and that average frequencies @, can be defined as

—_— (m)l/” (3.104)
n mO

If the spectral density is narrow-banded, that is if S(w) has only non-zero values in a
small frequency band (@, — dw,w, + dw], then

My = wgmg
@y = 0, (3.105)
sinAdwt

R(T) = mycosw1-——— — T
® 0 " Awr dwso 0 %0

Thus, it can be seen that a strong correlation exists in a narrow-banded process between

values of X(7) separated by a large time difference T < (Aw)™! . In the limit Aw — 0,
the process X(f) becomes deterministic with a sinusoidal shape, frequency w and

amplitude /nTO.

Generally, the spectral densities derived for physical processes related to ocean waves
are rather narrow-banded. The bandwidth ¢ is usually characterised in terms of the
spectral moments. One measure is

(3.106)

It is seen from Eq. (3.105) that ¢ — 0 for a narrow-banded spectrum. A broad-banded
spectrum with m, — o yields the upper limit ¢ = 1.
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Example 3.2.1
Consider the spectral density

0 @ < Wy
S)y=13 S0 @ =0 =sw

0 W > w,

From Eq. (3.102) the spectral moments become

ortl — pntl
=5 2 i
Mo =900

2 2
o _oyte, o [03+ 0@, + oy

¢ = [1—31+2a+3a®+ 23+ at
9 1+a+a’+a’+at

w .
where a = a)_; Finally
+ —
R@) = 21y cosf Y2t 01 r) sin(w2 % r)
(@3 — o) 2 2

For a —> 1, the results tend to the narrow-banded solution (3.105). The other limit is a = 0, i.e.
@, = 0orw, — . Here the bandwidth ¢ = 2/3.

€ =0.3491

VA‘V/\vA\/M\/

Figure 3.6 Time history based on a constant spectral density with £ = 0.3491.

A procedure for deriving samples from a given spectral density is outlined in Section 3.3.1.3. Figure 3.6
and Figure 3.7 show such samples based on @ = 1/2 (¢ = 0.3491) and @ = 1/7 (¢ = 0.5963),
respectively. It is seen that with increasing € the irregularities increase and for instance crests below



74 Ocean Waves

the mean level appear more fregently. Note the similarity between the measured wave elevation records
in Figure 3.5 and the simulation in Figure 3.7

€ =0.5963

/\/\[\H,\A LA
IR

Figure 3.7 Time history based on a constant spectral density with £ = 0.5963.

3.23 Upcrossing and Peak Rates

When the stochastic process X(f) represents a load or response process, it is obvious that
the largest values of X(¥) are especially important in the design phase. Generally, the
distribution of peaks (and troughs) is needed, but also the analysis of upcrossing rates
gives useful information for design purposes, especially for narrow-banded processes.
The results for upcrossing rates and peak distribution were first derived by Rice (1945).

For a stochastic process X(f), the probability that the process during the time increment
dt crosses the level x from below can be written

[ p(x,x) dx dx
x=0

as an upcrossing requires x > 0. Here, p(x, X) is the joint probability density of (X, X).

The upcrossing rate v(x) is obtained by dividing this expression by dr. As % =x

v(x) = f plx, %) x dx (3.107)
0

There is no correlation between a stationary process X(f) and its time derivative X(t)
since
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cov(x, x) = E[X()X(1)] = %E[a‘fZ X(t)z] = %— Z%f E[x(n?] = 0 (3.108)

as the statistical moments of X(f) are independent of . For some processes, among
which the Gaussian process, lack of correlation also implies statistical independence as
shown in Section 3.1.6. In these cases

P, %) = p()px) (3.109)

so that

V(x) = px(¥) [ pix) x dx (3.110)
0

The ratio between the upcrossing of x and, for example, the upcrossing of the mean level
Uy simply becomes

V) _ P (.111)
V(ix)  Pxlti)

independent of the distribution of X(r).

For a Gaussian process, the marginal distributions of X(¢) and X(¢) are

[ a2
Py = kel ~ 4(E) ] (3112)
Sx |
[ 32
P®) = [2% ex| = %(si):l (3.113)
g x
as
ny = EX@)} = 4 EIX(@) = 0 (31149

Insertion of Egs. (3.112) - (3.113) into Eq. (3.110) yields

S 12 S, — 2
v(x) = px(x)—/—%—r-f ue Mdu = 27:9x exp[ - %(%&) ] (3.115)

0

and the upcrossing v(i) of the mean level becomes

S5

Vi) = s, (3.116)

The standard deviation s, of the process X(f) can be determined from the spectral

density S(w) of X(¢) as follows. Differentiation of R(t), Eq. (3.98), twice with respect
to T yields
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ad;ziR(T) = EX() X(t + )] = — f w? S(w) coswt dw
0

Thus, for 7 = 0:

EX@) X()] = ~ m,
using the definition of spectral moments, Eq. (3.102). However,

Ex %) = & E[xe ¥0)] - ¥y = - 52

X

by use of Eq. (3.108). Hence

s = Jmy (3.117)
so that when u, = 0:
1 /M _ 1 -
»(0) = 37 1 g = 5= ) (3.118)

as sy = Jmyg and with @, defined by Eq. (3.104).

The average frequency @, is therefore equal to the mean upcrossing frequency 27v(0).
This gives @, a specific statistical interpretation and makes it a suitable measure of the
average frequency of the spectral density.

For a narrow-banded spectral density, each upcrossing of the mean level is nearly
always followed by one and only one peak X),. Therefore, the peak frequency is equal
to @, and, furthermore, the probability that the peak X}, exceeds x becomes equal to the
ratio between upcrossing of the levels x and py:

P(X, > x) = v”éfz)

so that the probability distribution F,(x) of the peaks becomes

Fpx) = PX, s x) = 1 — vvgg) (3.119)

For a Gaussian process, substitution of Eq. (3.115) into Eq. ( 3.119) yields

a2
Fpx) =1 — exp[~ % (%) ] ;X = Uy (3.120)
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which is the Rayleigh distribution, Eq. (3.43), with an offset 1.

Broad-banded processes may, as illustrated in Figure 3.7, have several peaks for each
upcrossing as well as peaks below the mean level. The peak rate v, i.c. the average
number of peaks per unit of time, can be derived from the conditions defining a peak:

X(®) = 0, X(¢) < 0, which implies
0

The variables X and X are uncorrelated as

0
vp plx = 0,8)|didi = f (O, E)|¥|d (3.121)

1
dt

= — o

EX@ X@)] = 2 4 5xp?] = 0

analogously to Eq. (3.108). This means that the Gaussian processes X(¢) and X(t) are
also statistically independent:

P, X) = piX) py(X) (3.122)

so that

0
N S 3.123
vp = p(0) Jpx(xﬂ id = % G12)
X

using Eq. (3.113) and

2
(%) = —1 _1l(x 3.124
Px( ) ‘/—2; 55(; exp[ 2 (Sx) ] ( )
as
. d2
uy = E[X(0)] = ) E[X(n] = 0 (3.125)

Differentiation of the autocorrelation function R(r), Eq. (3.98), four times with respect
to T and setting 7 = 0 yield

E[ X x™(0)] = m, (3.126)

Furthermore,

';11722 [j—; E[x(y?] - 4E[X(t)2]] =0
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as both E[X(#)?] and E[X(¢)?] are independent of . Carrying out the differentiations
gives

— E[X(?] + E[x@ x| = 0 (3.127)

Combination of Eqs. (3.126) - (3.127) results in
s = Jmy (3.128)

The peak rate v, Eq. (3.123), for a Gaussian process can thus be written

N ) (3.129)
2r Y My

Vp

and the ratio

vp _ [mamg _ 1

v0)  m: fi_ g2

(3.130)

by application of Eq. (3.106) for the bandwidth € and on the assumption that g, = 0.
1t is seen for narrow-banded processes (¢ — 0) that v, — v(0) as stated previously. In
the extreme broad-banded case (¢ — 1), v,, tends to infinity.

3.24 Peak Distributions

The probability that a local maximum (crest) occuss in the interval [x,x + dx] during
atime interval dt is given by the probability density function for the local maxima pp(x)
multiplied by dxdt. This probability can be derived from the conditions defining a crest

in the interval: X(?) € [x,x + dx], X(¢) € [0,dx], X(?) < 0, which implies

K

x=

0
ppt)dc dt = L I PO % = 0,%) dx di di

[+

or

0
ppx) = % J ple,x = 0, %)fldi (3.131)

X=— o

where K is a normalisation constant needed to ensure that

fpp(x)dx =1
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including positive as well as negative local maxima x €]— o, »[. Eq. (3.131) is the
general formula derived by Rice (1945).

For a Gaussian process, the joint probability density p(x, x, £) is a multivariate normal
distribution given by Eq. (3.73). Its covariance matrix X is of the order 3 x 3 with the
coefficients:

= 2 =
all—sx—mo

L8 V)
!

02225 —m2

o
|

O33 = S = My

01, = 05 = EX(O) X(@)] = 0
0y3 = 03, = E[X(H) X(9)] = 0

013 = 03 = EX(@O X)) = ~ m,

assuming that u, = 0*. Thus

mO O - m2
3= 0 m 0 (3.132)
-my, 0 my
The determinant becomes
&) = my(mym, — m3) (3.133)
and the inverse matrix takes the value
mymy, 0 m3
e e It B Y
my\{mom, — m
2 0 4 2 m% 0 momz
Insertion of Egs. (3.133) - (3.134) into Eq. (3.73) yields
p(x, X, X) = puX) plx, X) (3.135)

where p(x) is the marginal normal distribution of x given by Eq. (3.113). p_y(x, %) is
the joint distribution of (X, X):

. myx? + 2myxx + m v2
Plx,X) = S S— exp 4 — 174 ot (3.136)
2 2 2
momy — m2 m0m4 - m2

*

This can be done without loss of generality by a change of variable from X(z) to X(t) - p,.
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Due to the non-zero covariance 643 = — m,, the stochastic process X(f) and its second
derivative X(1) are correlated and hence also statistically dependent.

After some lengthy algebra substitution of Egs. (3.135) - (3.136) into Eq. (3.131)
followed by integration with respect to ¥ yields

0

f Pi(%,X) ¥ di

ppx) = 0

] ] Py, X) i di dx (3.137)

e-sure) 4 /1 — g2 ue'éuz@( 1 ;82 u) L
Jmq

B

where
n= = (3.138)

and ¢ is the bandwidth, Eq. (3.106). The above derivation was first carried out by
Cartwright and Longuet-Higgins (1956).

Pp(u) Rayleigh
Normal
0.8
9, /
-4 3 -2 -1 0 1 2 3 4

Figure 3.8 Probability density functions of individual maxima for different bandwidths
£ = 0 (Rayleigh), 0.2, 0.4, 0.6, 0.8 and 1.0 (normal).

Figure 3.8 shows the probability density function py(12) = pp(x) /;Z(‘) for various values
of the only parameter £ which enters into the expression for the probability distribution.
In the narrow banded case (¢ — 0):
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which is the Rayleigh distribution, Eq. (3.46), with @ = /2. This is in accordance with
the result, Eq. (3.120), derived in the previous section, relating the peak distribution to
the upcrossing rate for narrow-banded processes. It is seen that only positive peaks exist
fore = 0.

For extreme broad-banded cases (¢ = 1), the probability density function for the
maxima becomes .

1,2
2

iy =

which is the normal distribution. In this case, the maxima are distributed just like the
process itself and hence there is no reason to consider the distribution of maxima
separately.

The probability density function, Eq. (3.137), can be integrated to yield the probability
distribution for the local maxima:

i

Fp(u) J pp(w) du

(3.139)

= d)(%) —J1-¢2 (D(% V1 —.sz)e_%"2

R 1
—-1—e 2" for ¢ =0

From the probability density function p,(x), Eq. (3.137), the lowest statistical moments
may be derived:

Mean py = Jmy % (1 - €2
Standard deviation sy = Jmg ‘/1 - (g‘ - 1) (1-¢?) (3.140)
3/2
Skewness - \/i _ 1 — g2
y (- 3
bV 1~ (2-1)(1-¢y

The limiting cases of ¢ = Qand ¢ = 1 are again seen to correspond to the results for
the Rayleigh and the normal distribution, respectively. Extension to slightly
non-Gaussian processes given by the Gram-Charlier series expansion (3.31) is
presented by Longuet-Higgins (1964).
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3.2.5 Extreme Value Predictions

Consider a stationary stochastic process X(¢). One of the most important questions is
often how to determine the expected maximum (or minimum) value of this process
during a given period of time T.

As the process is assumed to be continuous in time f, the maximum value is the largest
peak. Therefore, the probability distribution F(x) for the maximum value can be
expressed as

Fpx) = Py < X, Xpp < X,y Xy < X) (3.141)

where XPi’ i = 1,2,...,N are the peaksin ¢ € [0, T} and N is the expected number of

peaks:
N =T (3.142)

The peak rate v, is given by Eq. (3.121) or, for a Gaussian process, by Eq. (3.129).

If the peaks X » i = 1,2,...,N can be assumed to be statistically independent, then

Fo(x) = Fpx) = [Fp)V (3.143)

as all peaks in a stationary process have the same probability distribution. The
corresponding probability density function p,(x) becomes

/3 N—1
Pyx) = -d_xﬂ = N[Fp(x)] Pp(x) (3.144)
2
Pp(X)Sx 10000
1000
100
1 10
N=1
0 T L i
0 1 2 3 4 5 X, &

Figure 3.9 Probability density functions py(x)for the largest peaks among N peaks as-
suming a narrow-banded Gaussian process, € = 0.

where p(x) is the probability density function of the individual maxima, Eq. (3.131).
Knowing the probability distribution Fp(x) of the individual maxima makes it thus
possible to calculate the probability distribution of the largest peak among N peaks. For
a narrow-banded Gaussian process such results are shown in Figure 3.9.
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Any statistical moment or characteristic value of the largest peak may be calculated
from Eq. (3.144). For example, the mean value p,:

y = [ xpy) dx = N j x[Fp(x)]Nﬁlpp(x)dx (3.145)

the most probable value fi,:

d
= 0= (v - Dy + By 2| =0 G

N x=4,

dpp(x)
dx

x=f

and the 50 per cent fractile 4y 5o

1 (3.147)

. 1/N
3 N(/ZN, 50) = §=>F P(/ZN, 50) = (5)

Closed-form expressions for u, and 4i, are normally difficult to obtain. If, however,
N is sufficiently large, approximate values for i and i, can be determined. First ji
is considered. Later, in Example 3.2.3, u, is derived for a Gaussian process.

Forlarge values of N, ji,, will correspond to a value in the tail of the distribution function

Fp(x). This implies that Fp(i ) == 1 and pp(fiy) == 0. From I’H6pital’s rule, it follows
that

poliy)  (pold)

1~ Fyly) = ppliin)

Insertion of this result into Eq. (3.146) yields

Fpliy) “N-1
1= Folgiy)
or
Fliy) =1 -+ (3.148)
As

P(X, > iiy) = 1= Fyliiy) = +

the probability that each individual peak exceeds i is approximately equal to 1/N.
With an average total of N peaks, only 1 in N peaks during the time T will exceed i
in average. Hence, T'may be considered as the return period for the extreme peak /i N

The probability that the largest peak among N peaks exceeds fi  follows from Egs.
(3.141), (3.143) and (3.148):
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g i) = 1=
N
= 1 - [Fplay)]

1Y 1 3.149

a N
1 —— = a
as lim (1 N) e -,

For design purposes, fi , may therefore not be a very appropriate value because the high
probability of exceeding this value during the period T (e.g. the lifetime of the
structure).

The formula for the 50 per cent fractile f N, so may also be simplified if N is large. In
that case

1 YN -+ 1n2 1
= = 7 ie —_——
(2) e =1 N1n2

so that Eq. (3.147) becomes

Fyliiy, 50) = 1 = x1n2 (3.150)

The probability that the maximum peak among the N peaks exceeds fiy s, is per
definition equal to 50 per cent so that gy < 4 w, so- For design purposes, it may be
preferable to use the g-fractile ji Nq defined as the value which the largest peak exceeds
with a given small probability g:

FN(lqu) =1-g¢q
or

Fp<ﬂNq) =0-9M=1-1 (3.151)

For a Gaussian process, the probability distribution Fp(x) and the associated probability
density function pp(x) are given by Egs. (3.139) and (3.137), respectively. For large
values of N, g, will be much greater than s = /nT ,see Figure 3.9, and if, furthermore,
the bandwidth measure ¢ is less than about 0.9, the standard normal distribution
functions in these equations are very close to unity so that, omitting for simplicity the
subscript x on sy,

Fyx) =1 = 1 = &2 e tle/s) (3.152)
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and

() = ﬁ‘/l o2 i) (3.153)

The most probable value g, of the largest peak is obtained from Eq. (3.148):

by =$ 2ln(\/1 - £2N> (3.154)

From Eqgs. (3.130) and (3.142):

V1 -2 N=J1-¢2 v T =v(0)T = N, (3.155)

so that g, can be expressed more simply in terms of the number N, of

ZEro-upcrossings:
fy=s /2InN, (3.156)

The 50 per cent fractile fiy s, follows from Eq. (3.150):

fiy so =5 \J2In(N, /In2) (3.157)

using Eq. (3.155) and, finally, the g-fractile ¢ Eq. (3.151), becomes

fi,q = s J2In(N; /q) (3-158)

forN, >>1, g << 1.

Example 3.2.2
For stochastic processes where no analytical probability distribution F,(x) for the individual peak
values is available, an empirical fit of the individual maxima to a Weibull distribution, Eq. (3.38):

Fyx)=1— e &

often proves useful. The most probable largest value 4 is then found from Eq. (3.148):

Ay =a(nN)/F (3.159)

The fundamental assumption in the previous derivations is that the peaks are
statistically independent and therefore can be rearranged in ascending order. This
analysis is called order statistics. Another procedure based on so-called Poisson
processes assumes statistically independent upcrossings of any given level x. A
discussion of Poisson processes is beyond the scope of this treatment of stochastic
processes, but it can be shown, see e.g. Ochi (1990), that the probability distribution for
the upcrossing of the level x during a period of time T becomes
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Fyx) = e7"®T (3.160)

where v(x) is the upcrossing rate, Eq. (3.107). For Gaussian processes, substitution of
Eq. (3.115) by uy = 0 into Eq. (3.160) yields

FT(X) = FN()C) = €Xp (— NZ e_%(x/s)z) (3.161)

with N, = »(0)T and 5 = s,. For upcrossings of extreme levels, Eq. (3.161) can be
approximated by

Fyx) = 1 = Nye 0] (3.162)

which is the same result as obtained previously by use of order statistics, Egs. (3.143),
(3.152):

AN
F(x) = (1 -1 -¢? e'%(x/s))

Therefore, whether to use order statistics or Poisson upcrossing is not so important in
the present context as they asymptotically lead to the same results. It should, however,
be mentioned that both procedures rely on some assumptions about statistically
independent peaks which are only satisfied approximately in real physical processes.
For estimations of wave loads on ships, the results presented here are generally
sufficiently accurate.

Example 3.2.3
From the probability distribution function F,(x) given by Eq. (3.161), the mean value uy can be
derived.

The monotonic transformation

y= -, 1

(3.163)
implies that y is Gumbel distributed, Eq. (3.51):
Fyy) = exp (= e™)

Hence, from Eq. (3.53), the mean value of y becomes

E[y] = C (= 0.577215....)

In order to determine the mean value py = E[x] of x, the transformation (3.163) is linearised around
the most probable largest value i, given by (3.156), assuming u, to be close to fiy.
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If x = fi, the corresponding value of y is equal to zero by use of (3.163) such that

dy N ] _
Y= bewgry, 06 = fiy) = s_;v (= ay)

Hence
By =58 - = ¢
yielding
oy =iy + Co

or

C
=s/2InN, [ 1+ 3.164
a z ( ,/21nNZ:| ( )

It is seen that u, > i, and, furthermore, from Eq. (3.157) that

By < flysy < Hy

To apply order statistics or Poisson upcrossing a knowledge of the individual peak
distribution or upcrossing rates is needed. For linear and slightly non-linear problems
they can usually be determined theoretically but for highly non-linear problems or
when actual measurements are used, information in the form of samples X(f) of the
process may only be available. In such cases the theory of asymptotic distributions of
extreme values may be very useful. The theory does not make use of the individual peak
distribution or upcrossing rate but relies on a proof, see e.g. Ochi (1990), that the
extreme peaks follow a specific distribution, depending mainly on whether the process
is bounded or not. For unbounded processes, this distribution is the Gumbel
distribution, Eq. (3.51), provided all statistical moments of the initial distribution
exist*. Its two parameters, (a, ), must be determined numerically. This can be done
in a least square sense by relating (a, f) to the mean value and the standard deviation
of the set of known extreme peaks, by application of Eqgs. (3.53) - (3.54).

Another method which usually provides better results is the maximum likelihood
procedure, in which it is assumed that the set of known extreme peaks Xy, Xp,ey Xy s
the most probable set of peaks to be found. This implies that the joint probability density
P(x4, X5,..., X,) should have its maximum value for x; =X, 1, 2,.., n. On the
assumption that the peaks are statistically independent and that each follows the same
Gumbel distribution

* The Weibull distribution, Eq. (3.38), is another extreme value distribution applicable to

processes without an upper limit.
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Py Ty %) = [ [ (%5 @, B) (3.165)
i=0

where p(¥;; a, f3)is the Gumbel probability density function, Eq. (3.52), with x = X;.
The parameters (a, f) are then determined so that P(Xy, Xg,..., X,) is maximised:

w_y

As p > 0 Eq. (3.166) can be replaced by
dlnp _ . Olnp
w =0 B 0 (3.167)

The use of In p rather than p makes the solution for (a, f) easier, because the products
in Eq. (3.165) are replaced by a summation:

sinp _ S dlnp(si @, ) _

30 3a 0 (3.168)

i=1
Differentiation with respect to 8 is done analogously. This results in two non-linear
equations in (a, § ) which must be solved numerically.
The special property inherent in the Gumbel distribution is that its type is invariant with

respect to the number of peaks. Consider a Gumbel distribution

Fy(x) = exp (— e~ G /B) (3.169)

derived for the largest peak among n peaks. The distribution of the largest peak among
N = m - n peaks becomes

Fy(x) = FaeN/" = Fu(xy™ = exp (— e Ga /f’N) (3.170)

where ay = a, + flamand By = f,. F)(x) is therefore also a Gumbel distribution,
only the shift parameter & has been modified. The most probable largest peak value
fiy = a, as shown in Section 3.1.5.

Comparing Eq. (3.161) with Eq. (3.170) seems to indicate a difference in exponent on
x, making the two distributions incompatible. However, this disagreement disappears
when n — o as shown below.

Eq.(3.161) can be wriiten

1x2 , 1[A
Fp(x) = exp | — exp -—5(3;-) +§(—SIX)
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using Eq. (3.156). If N is large then 1, = s /2InN, is also large and, hence, it can be
expected that [x — gi,| < fiy. Thereby,

o (52 - 29

Fyx) = exp[— exp(— : — ﬂN)]

Hn

such that

which is the Gumbel distribution with
N =By =iy
The same asymptotic behaviour can ecasily be proven for any individual peak
distribution satisfying
Fpry=1—-€e 9 ; — o <x< o (3.171)

provided Eq. (3.148) also holds. Again the Gumbel distribution is strictly only valid for
N — o, because of the approximation

40 = qliiy) + 5 l (x — Ay (3.172)
The Gumbel distribution can be applied to a realization (sample) X(1), 0 < 1 < T of
a stochastic process by dividing the sample into M equidistant time epochs

M1T< T <ﬁ Coi=1,2,.M

X0 3

and then extract the maximum value X; in each epoch

X = max (X)) ; i=1,2,.M

These M maxima then determine &, £, in the Gumbel distribution by either Egs.
(3.53)-(3.54) or the maximum likelihood method, Eq. (3.167). For a given sample
length T it might be difficult to choose a proper value of M. If M is too high then
X; < i inseveral of the then small equidistant time epochs, violating the assumption
l; — diy) < fi,. On the other hand, if M is too small, iy < max (%;), also
contradicting this assumption. A remedy can be to transform the variable x. As the
approximation (3.172) holds exactly if g(x) is a linear function of x, the optimal
transformation is

x = ¢4 (3.173)
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Thus, for a Gaussian process, the transformation x = /2y /s will transform Eq. (3.161)

to a Gumbel distribution with a,, = 0.5 (ﬂM/S)Zand By = 1 in the varjable y, a
property also used in Example 3.2.3. In real cases g(x) is of course not known (because
then there is no need for the Gumbel distribution as Fy(x) is known!). However, some
knowledge of the underlying physical processes can be apply to define a transformation
which extend the validity of the Gumbel distribution significantly, Naess, Storli and
Storm (1996).

The main disadvantage with the application of the Gumbel distribution is that only the
largest maxima in each time epoch is utilized. Thus many large maxima may be omitted
from the analysis, resulting in a large loss of information. An alternative is to assume
that all data above a certain threshold value u are important for the extreme value
distribution. An appropriate model for the probability distribution function F () for the
excess V = X — u is the Generalized Pareto (GP) distribution. Each of the three
asymptotic extreme value distributions has a corresponding GP distribution, Pickands
(1975). For the Gumbel distribution this GP distribution is

F)=1-¢€" ; v>0 (3.174)

The relation between the parameter in the two distributions, Eq. (3.51) and (3.174) can
be determined from the assumption that the number of peaks exceeding the threshold
is Poisson distributed, Pickands (1975), and becomes

a=u+ylnn, ; B=y (3.175)

where n,, is the number of peaks above the threshold level u.

In order to derive extreme value predictions from a sample X(f); 0 < ¢ < T of a
stochastic process, the following procedure based on the Peak-Over Threshold method
can be used:

* Select a moderately high threshold u and collect all peaks %;; i = 1,2,...,n,
above u. The number n, depends clearly on both u, T and the actual sample. Thus
n, is a random number.

* Fit the excesses ¥, = X; — u; { = 1,2,...,n, to the GP distribution, Eq.
(3.174). For instance the maximum likelyhood procedure, Eq. (3.168), with
p(v; v) derived [rom Eq. (3.174) yields simply

T AN 7 (3.176)

e Calculate ¢, f§ in the Gumbel distribution from Eq. (3.175).

* Determine the cumulative probability distributions for the largest peak over a
period T, > T from Eq. (3.170) with

ay =a+ BIn(T,/T) = u + yin (n,N)
By=B=v

where N = T./T.
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* The mean value u, the most probable value g and the 50 per cent fractile of
the largest peak becomes

py =ay+ CBy=ay + 057728y
by = ay (3177
fisoy = ay — Byln(In2) = ay + 03665 B

according to the results derived in Section 3.1.5. The value with a return period T,

follows from F (xy) = 1 — % :

=g — _ _ 1
w=a—h 1“[ l“( N)] (3.178)
=qa+ BN =ay = jiy

¢ The result should be rather insensitive to the choice of threshold u. Therefore the
analysis should be done with different values of  to check the validity of the GP
distribution for the excess.

The procedure outlined above assumes that the extreme value distribution is of the
Gumbel type. This is so for many of the stochastic processes related to wave loads.
However, in some cases the two other asymptotic extreme value distributions (Fréchet
and Weibull) and their associated GP distributions might be useful. A detailed
description of these distributions and their applications is given in Castillo (1988).

3.2.6 Conditional Mean Processes

The expected (mean) variation < X (#) > of a stochastic process X(z) in the vicinity of
a large peak x, at ¢=0 is also of interest. It is given by

< X() > = E[X(t)| X(0) = x¢,X(0) = %, = 0]

= f up (u| xg, X5 = 0)dx (179

where p (x | xq, 0) is the conditional probability density function of X(#), given X(0) =
xg and X(0)=0. From Eq. (3.62) it follows that

‘ P (Xg, Xg, X)

P x| xgxy) = ———- (3.180)
( I 0 0) p (XO’ xO)

where p (xp,x,x) and p(xg,xy) are the joint probability density functions of

X(0), X(0), X(¢) and X(0), X(0), respectively. For Gaussian processes these functions

become multivariate normal distributed, Eq. (3.73). The result for p (x,, %,) is given by

Egs. (3.109), (3.112) and (3.113)
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2
c =)= 1 1{*o
p(xo,xo - 0) T 2mses, F [_ _2_(3) } (3.181)

X

assuming E [X(7)] = 0. The elements o; in the covariance matrix X of p (x,, x, x) are

oy = E[X(©)?] = s} = m,

Oy = E[X(O)z] = sﬁ = m,

012 = 0y = E[X(0) X(0)] = 0

o33 = E[X(@)?] = 52 = m, (3182)
a13 = 03 = E X©0) X()] = R@)

033 = 03 = E[X0) X()] = S()

using the properties of stationary processes. The autocorrelations R(z) and S(#) are the
only functions of ¢ in Eq. (3.182). The determinant [2] becomes

Bl = m3m, — R(ty’m, — S(t)* m,, (3.183)

and the inverse matrix takes the form

mym, — S()?  R(f) S() — R(t)y m,
= é R(t) S(f) mi—RE)?: - S()ym,| (184
= |~ R(@m, — S(t) my min,

T
Carrying out the matrix multiplications in Eq. (3.73) using x = [xo’)'co = O,x] yield

P (x0,0,x(t)) = (f_—)%—lz_l x (3-185)
27 > ‘
K (mgmy — S@®)2) x2 + mgmy x()> — 2 R(t) myxq x(1)
exp > @
and hence Eq. (3.180) becomes
2

! x(fy — r(tx

P (x(Obgy %g = 0) = /ﬁlu(z) exp | — %(L)*u—(t)—o) (3.186)

after a little algebra. Here

u(t) = [mol1 — P21 — (1)) (3.187)
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with

r() = «[,Sn%—

N )
O Ty

From Eq. (3.186) it is seen that X(z), given X(0) = x; and X(0) =0, is a normal
distributed, non-stationary process with mean value

< X() > = r(®) x (3.188)

and standard deviation u(#). As u(t) is independent of x,, the conditional process
<X(t)>tends toward the deterministic mean value, Eq. (3.188), for large peak values x;,.
Thus the very simple result

E [X(¢) X(0)]

<X >= E[Xz(O)] X

(3.189)

provides a good estimate of the variation of a stochastic process around a large peak x;,
at 1=0. This result can for instance be used to define critical wave episodes, as shown
later in Example 3.3.2, for application in time-domain simulations of ship responses
in waves.

The result, Eq. (3.189), can be generalized to processes conditional on several
parameters, Friis Hansen and Nielsen (1995) and slightly non-Gaussian processes,
Jensen (1996).

33 RANDOM SEA WAVES

Measurements of the surface elevation in the open sea have shown that over a relative
short period, in the order of hours, the elevation can be considered as a stationary
stochastic process with a probability distribution close to a normal distribution and a
relatively narrow-banded spectral density.

For most practical purposes, the wave elevation can therefore be taken fo be normally
distributed but in large storm-generated waves, the non-linearities in the free surface
conditions result in some skewness in the distribution. This phenomenon is equivalent
to the behaviour seen in regular waves where small amplitude waves have a nearly
sinusoidal profile. If the wave amplitude increases with a constant wave length the
profile changes form so that it exhibits vertical asymmetry, as described by for example
a Stokes fifth order wave.

The measured observations can be explained mathematically by potential flow
modelling of surface waves. This is done in Section 3.3.1.

As shown in Section 3.2, a Gaussian process is completely described by the spectral
density S(w). Unfortunately, it is not possible to determine the spectral density for ocean
waves analytically due to its basis on a complex energy transfer from the atmospheric
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condition to the waves. Section 3.3.2 deals with the spectral model, normally applied
for ocean-going ships.

In the prediction of design wave loads, the limitation to stationary processes of a
duration measured in hours has to be relaxed. In Section 3.3.3, the standard procedure
where the long-term extreme values are obtained by proper weighting of all stationary
(short-term) processes is described.

This ends the description of ocean waves as the necessary results are available for the
prediction of hull girder loads and, to some extent, local sea pressure loads required for
fatigue analysis. However, for the analysis of bottom-supported offshore structures,
extensions regarding the wave kinematics (velocities, accelerations) are needed
together with methods of accounting for strong non-linearities in the load description
for drag-dominated slender structural members. Several textbooks are availabie on this
subject, see for instance Chakrabarti (1987) and Clauss, Lehmann and Ostergaard
(1992).

3.3.1 Surface Waves

The theory of surface waves is based on the assumption that the fluid, i.e. the sea water,
can be considered as incompressible and irrotational and that any viscous effects can
be neglected. Thus, the kinematics in the complete domain of water can be derived from
a velocity potential ¢ (X, Y, Z, t) satisfying the Laplace equation:

2, 2, 2
AR L2

where the global XYZ-coordinate system can conveniently be positioned as in Chapter
2 with the Z-axis pointing upwards and with the XY-plane coinciding with the position
of the still water surface.* From the velocity potential ¢, wave particle velocities
Vy, Vy, V5 become

i . 4
xTx 0 Ty 2 V2T 3z (3-191)

and the pressure p follows from Bernouilli’s equation:

2
pEp 'a%b“ +pgZ + % pv2 = pu (3.192)

where p is the mass density of sea water, g the acceleration of gravity, v the scalar
velocity:

*  From here on X, ¥, Z do not any longer represent statistical processes but global coordinates as
in Chapter 2!
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2 -2 2 2
vE=vy vy vy (3.193)

and p,,, the atmospheric pressure just above the water surface. The velocity potential
@(X,Y,Z,1) and the wave elevation i(X,7, f) follow from the linear field equation,
(3.190) with appropriate boundary conditions. Assuming periodicity in the horizontal
X-, Y-directions and zero vertical velocity at the seabed leaves only the boundary
conditions at the free, but unknown, water surface h. Here two conditions apply. The
first is Eq. (3.192) evaluated at the free surface Z = (X, Y, t):

ap 1.2 _
[at +gZ+ 3 L:h =0 (3.194)

and the second requirement is that the vertical velocity at the free surface should satisfy

op _ Dh
azl,_, = Di (3.195)

because water particies on the free surface stay there. The total derivative D/Dt is
needed as the waves propagate with respect to the fixed XYZ-system. Hence Eq.
(3.195) can be written

91 _oh, 0h 3P on ¥ (3.196)
Z gy A AKX Y 0V,

by application of Eq. (3.191). It is seen that both free-surface boundary conditions are
non-linear in the unknown functions ¢, . This makes a general analytical solution
impossible and various approximate procedures have been developed. The standard
method is a perturbational procedure in which ¢, /4 are expressed as power series in a
small parameter ¢:

PX,Y,Z,0) = e, Y, Z,0) + 2D, Y,Z,0) +...
(3.197)
hX, Y, 6y = ehDX, Y, 1) + e2h DX, Y, 1) +...

Substitution of these series expansions into the governing equations makes it, at least
in principle, possible to set up equations which can be solved analytically. For
deterministic waves Stokes’ fifth order wave theory is such a solution including terms

up to ¢©), h®) using the wave slope as the small parameter. Solutions which can
describe the wave elevation /1 as a stochastic process have been derived to second order.
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Higher than second order solutions are very difficult to obtain, not only because of the
complexities of solving for higher order terms but also, due to lack of physical
knowledge of the interaction between different wave components.

3.3.1.1 Linear (Airy) Waves

Substitution of the expansion Eq. (3.197) into the free-surface conditions Egs. (3.194)
and (3.196) and retainment only of terms of the order 0(e) yield

3
Sl teh=0 (3.198)

and

9l ok (3.199)
0Z g O

These two equations can be reduced to one equation in ¢ alone:

% o _
[Fﬁ +g 57]2—0 _, (3.200)

The field equation (3.190), horizontal periodicity conditions, the bottom condition and
the free-surface condition (3.200) constitute a homogeneous, linear system. Depending
on the periodicity conditions, various but unique solutions are easily found. In the
present case two-dimensional (long-crested) waves travelling in the X-direction are
considered. Furthermore, infinite water depth is assumed to be most relevant for sea
loads on ships. Thus, the velocity potential ¢ becomes

O, 2,0 = a 2 e sin(kX — wt + 0 (3.201)
P ¢

where the frequency o and the wave number k are related by the so-called dispersion
relation:

0? = kg (3.202)

derrived from Eq. (3.200). The solution contains three undetermined parameters a, w
(ork) and 6. The wave elevation / follows from Eq. (3.198) and Egs. (3.201) - (3.202):
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KX, 1) = a cos(kX — wt + 6) (3.203)

from which it is seen that a is the amplitude of the sinusoidal wave elevation and 6 a
phase lag, relative to the choice of origo of time and space.

Finally, the pressure p = p(X, Z, t) in the water becomes

p=ps+pW

where py is the hydrostatic pressure in a calm sea:

Ps(Z) = Patm — PEL
and

)
P02, = - p 2 = peack ot — ot +6)  (:209)

is the first order pressure due to the water particle motions described by ¢,

For application to a stochastic wave description, it is important to realise that the first
order solution is obtained from a homogeneous linear differential equation with
homogeneous boundary conditions and, therefore, any values of a, @ and 6 can be
chosen and, furthermore, any sum of n such solutions will also be a solution. A general
solution can thus be written

Id

KOX, 1) = > a; cos(k; X — 0t + 6)) (3.205)
i=1
n .
O Z,0) = 3 a; 2 Msin X — ot +0)) (3.206)
i=1 :
n
X, 2,0 = pg z a; ek cos(h, X —wit +0) (3.207)

i=1
where each pair of ;, k; must satisfy Eq. (3.202).

3.3.1.2 Second Order Waves

The second order solutions ¢, A follow from solution of the same linear differential
equation (3.190), but with non-homogeneous boundary conditions at the free surface,
see e.g. Longuet-Higgins (1963). The non-homogeneous terms consist of quadratic
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terms in the first order solution, as such terms will be of the order £2 like the second
order solutions. So, $® and 4 depend on the first order solution (), A, and thus
on the undetermined coefficients a;, w; and 6. The second order solutions become (see
e.g. Jensen and Pedersen ( 1979)):

K060 =15 S aay[ (ks + ) cosl, + ;) - I~ 4 cos (v, = v,) |

i=1j=1
(3.208)

¢ X, Z,1) = %i i a; max( wi,wj) elk=kiZ gip (wi - t/)j) (3.209)

T
i=1j=1

p(z)(X,Z, = - %P i i [max( j) lwi - a)].| e["-'—"J'IZ

=1j=1
i=1J (3.210)
+ 0;0; e(k,~+k,-)~] cos (I/) w,)
where
| e if w; > w;

max (~w, ;) = o, i v, <0, (3.211)

and
Yi=kX—-wt+0, (3.212)

It should be noted that, due to the non-homogeneous equations governing the second
order solution, no new constants appear. The second order solution is uniquely given
by the first order solution. It should also be noted that, in the present case of
unidirectional deep water waves, the second order velocity potential and pressure only
contain difference frequencies

vi— ;= (k= k) X = (o —w;) 1+ 6, - 0,
in the trigonometric functions.

3.3.1.3 Random Linear Surface Waves

Consider the linear solution, Eq. (3.205), for the wave elevation. Both the amplitudes
a; and the phase lags 0, can be chosen freely. A stochastic wave elevation H(X, 1)
satisfying the linearised wave equations can therefore be obtained by taking one or both
of these parameters to be random variables.
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Here the phase lags 0, i = 1,2,..., h are taken to be statistically independent random
variables, each uniformly distributed between 0 and 27 *:

1
5= 006,527

p(f),.) = (3.213)
0 otherwise

From the wave elevation process

n
HX,1) = > a;cos (k,X — ot + 6)) (3.214)

i=1

and Eq. (3.213), statistical moments E[G(H)] of H(X, ?) can be derived:

2r 2w
E[G(H)] = j J G(A(6},05....0x)) p(01) p(0,)... p(6,) d0,8,... 4B,
0 0

(3.215)

2 2
B (2;)" [ j G(M0},0,,..-,0r)) 40,d0),... 46,
o 0

It is easily seen that, due to the integration over a full period of the trigonometric
functions in Eq. (3.214), E[G(H)] will be independent of X, ¢. Thus, the wave elevation
H(X, ?) given by Eq. (3.214) is a stationary stochastic process and X = 0, t = Ocan
be used in Eq. (3.214) without loss of generality in calculations of the statistical
moments.

The mean value u;; becomes

Hy = E[ Z aicosei] = Z a; E[cos®;] = 0 (3.216)
i=1

i=1

as

21
E[cosei] = _2%] cos®; df; = 0
0

*  This is a fundamental assumption, based partly on measurements. However, the possibility of

wave groupings (coupling between phases) are thereby ignored for the linear terms.
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With zero mean value the variance is found to be

n
5%1 = [zaiCOSOi]

i=1

&2

(3.217)

as

f c0529,- do,; =

0

L 1
27 2

If the number of terms n is large, further moments are not needed since the central limit
theorem, Section 3.1.7, implies that the wave elevation H is normally distributed with
the mean value uy = 0, the standard deviation

Z (3.218)

ﬁ

and the probability density function p(#)

P(h) = e -3 (h/su)2

o (3.219)

Thus, the wave elevation process, Eq. (3.214), satisfies the measured observations that
over a short period of time the wave elevation can be considered approximately as a
stationary Gaussian process.

The individua! amplitudes a; needed to compute s, by means of Eq. (3.218) can be

related to the spectral density S(w) = Sy(w) of the wave elevation through the
autocorrelation Eq. (3.91):

E [iaicosei] 2(1 cos(6, - wr)]

R(@)

= S a? E\cos0;cos(0;, — o (3.220)
14
st

n
z aiz CoOsSw;T
i=1

=
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as

2
%J COSGi(COSOiCOSCUi‘L’ + sinOisina)ir) do; = % cos w;T
h

A comparison of Eq. (3.220) with Eq. (3.98) shows that
a; = [28w)Adw; (3.221)

where Aw; = w; — o, _,. Therefore, with the knowledge of the spectral density the
stochastic process H(X, 1), Eq. (3.214), is completely defined. It is seen from Eq. (3.221)
that S(w) must be an non-negativ function.

For each setof 0,, i = 1,2,...,n Eq. (3.214) represents a sample of the process H in

X or . The number n of terms should be taken so that [wl, w,,] covers the range where
the spectral density is (nearly) different from zero. Note that the sample repeats itself
after a period of time of 277/ or in space after a length of 27 /k, if an equidistant step
length Aw (or Ak) is chosen.

3.3.1.4 Random Second Order Surface Waves

Inclusion of the second order terms Eq. (3.208), in the stochastic model, does not
introduce new parameters. The stochastic process is still stationary due to the
periodicity in its variation with X, ¢.

In order to calculate the statistical moments of the wave elevation H, it is appropriate
again to take X = ¢ = 0 and write H as

H = i a;cosB; + i— i [ (ki + kj) (cos@i cos()j — sin@, sin@i)
i=1 i=1j=1
- Iki - kj’ (0059,- cosf; + sinb; sinej) ]
n 13 n
= Z a;cos0; +% Z z a;a; [min (ki, kj) cos @, cosﬂj
i=1 i=1j=1
— max (ki, kj) sinf; sin@l.}
= HO 4+ gO (3.222)

where H), H® are the linear and the second order terms, respectively.

The mean value u,; of H becomes

py = E[H] = E[HO] + E[H®] = 0 (3.223)
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and the variance

sy = E[H?] = E[@HM)?] + 26[HOHO)] + E|HO)] = %i'a? (3.224)
i=1

neglecting the last term, which is of the order a?. Thus, the mean value and the standard
deviation are the same as in the linear model. However, as the second order part of H
contains products of statistically independent variables the central limit theorem no
longer holds. Therefore, the probability distribution is not necessarily a normal
distribution. For moderate values of the amplitudes a;, or actually the wave slopes ak;,
the second order terms may be expected only to change the distribution slightly so that
the Gram-Charlier series, Eq. (3.31), can be applied. To lowest order the probability
density function becomes

, 3
) = —— e —Hn/si) [1 + % Ay [(%) -3 s_f;;” (3.225)

o sy

where the skewness

& _ EF]
Ay =y, = C3—~;’2 = 3 (3.226)
2

From Eq. (3.222)
B[] = E[(HOY] + 3E[HD)2HO)| + SE[HOE®)?] + E[H)?)]

The first and third terms are of odd order in cos 8, and therefore vanish in evaluations

of the expected value. In the following, the last term, which is of the order a?, is
neglected jeaving

E[H"’] = 3E[(H(1))2H(2)] =6 z": i a% a}z % min(kl-, k}-) E[cosz()icoszﬂj]
I=1 j=1
=3 i i (% al.z) (% a]?) min(ki, kj) (3.227)
i=1j=1

In the limit Aw — 0 and n — oo, Eq. (3.227) becomes

0

Hi) =3 [ S() J min(0?,&°) $(5) di do
0 0

by use of Eq. (3.202). Integration by parts shows that
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[ S() J »° S(@) di> do = J 02 S(w) ] S(@) di> do
0 0 0 w

so that E[H3] can be written

Hr?] =

Qi

J > S(w) J S(@) dé> dw (3.228)
0 w

and, finally, the skewness Y, is obtained by Eq. (3.226). It is seen that the second order
stochastic modelling of the surface elevation is described completely by the spectral
density S(w) of the first order elevation. Accurate higher order moments (kurtosis etc.)
require inclusion of third and higher order terms in the expansion, Eq. (3.197) which
is not feasible. '

3.3.2 Spectral Density of Ocean Waves

Basically, the wave spectral density S(w) at a given location can be obtained by a
Fourier analysis of a measured time history (sample) by use of Eq. (3.221), and by
assuming stationarity and neglecting all non-linearities. Such spectral densities may be
appropriate for structures located in the same position throughout their lifetime.
Otherwise, more general spectral density formulations applicable to world-wide use
are desirable. These are mostly smooth functional relations which involve a limited
number of free parameters. Thereby, different stationary sea states at different locations
taking account of average wind speed, direction, duration and fetch can be modelled.

For the analysis of ocean-going ships, fully developed sea states are usually assumed.
Only one free parameter, the average wind speed, is left, but often an additional
parameter is included to add some flexibility to the model. Only spectral densities valid
for fully developed sea state will be treated here. For a treatment of other spectral
models, see e.g. Chakrabarti (1987).

An upper boundary on the spectral density S(w) was developed by Phillips (1958). In
this solution it is assumed that a kind of equilibrium exists in the sense that the waves
have reached their maximum size independent of the wind speed. Hence, as seen from
the governing equations, (3.201) - (3.203), the only parameters on which S(w) may
depend are the acceleration of gravity g and the frequency . From Eq. (3.221) S()

has the dimension length? - time (LZT) and a dimensional analysis yields
S(w) = ag"w™

LT = a (LT“Z)H (T‘l)m

implying n = 2, m = -5. Hence

S@)=ag?w™> (3.229)
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The constant « is denoted Phillips’ constant and takes the value a = 0.0081 (from
measurements). This spectrum is an upper limit independent of the severity of the sea
state. The assumption of equilibrium is in practice only valid for the high-frequency
range. In the low-frequency range modifications are needed. Based on a large number
of measurements Pierson and Moskowitz (1964) proposed a spectral density in the form
of

~4
Sw) = ag’o ™5 exp [— 0.74 (“’gw) ] (3.230)

where U, is the average wind speed. It is seen that for @ — oo this spectral density
approaches Eq. (3.229). Today the explicit dependence on wind speed U, is generally
of less practical use as stationary sea states are normally characterised by two
parameters related to the spectral moments m,, m; or m,. To obtain such formulations,
Eq. (3.230) is written

S)=Aw Se B (3.231)

Eq. (3.231) allows for an explicit calculation of all spectral moments, Eq. (3.102):

my, = f 0" S(w) do = Aj w"w Se B0y
0

0 (3.232)

_ A pnja ( _E)
a8 T\1-4

where I'() is the Gamma function, Eq. (3.40). Thus

A

m0=2‘_§

D, = oL = pl/Ap () 1.2254 B1/4

@, ‘/7 B/ / = (z B)/*

so that the Pierson-Moskowitz (P-M) spectrum can be written

g
II

-5
S(w) = 1.774 g:(l) ( %)I ) o~ 04435 (0/@) (3.233)

or

SI| 3

-5
S() = sj‘% (___) o~ (/@) n (3.234)

2 \W2
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Most often periods rather than characteristic frequencies are used:

. 3.235
Mean period: T, = % (3.235)
Zero-upcrossing period: 7, = c% (3.236)
Hence
S(@) = 2765 my Ts (0 Tg) e =01 @) (3.237)
and
S@) = 6473 my T, (0 T) e~ @T/2) (3.238)
04
S(@)(m,T;)
0,3
0.2 1
0.1
0 T T
0 5 10 ol, 15

Figure 3.10 Pierson-Moskowitz spectrum.

Figure 3.10 shows the Pierson-Moskowitz (P~M) spectrum. It is seen that it has a steep
(exponential) increase towards its peak value and a more modest decrease, following
Eq. (3.229), in the high-frequency tail. The peak frequency w, follows from

as _
dw w=w, =0
which implies
1/4 1/4
wp = (% B) = (%) @, = 0.710 @,

and the P-M spectrum can thus also be written
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S(@) = 80 7% my T, (0T,) ™ exp [ —20 7% (wT) *4] (3.239)

where T), is the spectral peak period:

T, = £ = 1.408 =L (3.240)

All formulations, Eqs. (3.231), (3.233), (3.234), (3.237), (3.238) and (3.239) for S(@),
are of course identical. The actual choice only depends on the characteristic period or
frequency available to characterise the stationary sea state. Most oceanographic data
uses the zero-crossing period T, and, therefore, the formulation Eq. (3.238) is mostly
applied. Table 3.3 yields the relations between the different characteristic periods.

Table 3.3  Relations between different characteristic periods for the P-M spectrum.

L L T,
T; T 1.086 7; 0.772 T,
T 0.9207; T, 07107,
T, 1296 T; 1.408 7, 7,

The variance m, of the wave elevation can either be derived from Eq. (3.230):
A _og®_ ag’ (3.241)

for one~parameter spectra or be allowed to vary independently of T, in two-parameter
spectra. As mj has a dimension length? it is obvious to relate Jmyg to some characteristic
wave elevation. The measure chosen is the mean value of the one-third largest wave
heights, measured from a wave trough to the next wave crest. This value is denoted
251 /3 and in its derivation a narrow-banded spectral density is assumed. Thus, the

probability density of a peak follows closely the Rayleigh distribution, Eq. (3.137) with
g€ =0:

pp(h) = 'n'% emth/m o p=0 (3.242)
The probability density function of a minimum is exactly the same in this linear wave

model, which consists of a sum of sinusoidal wave components. Therefore, the mean
value 2}71 /3 of the one-third largest wave heights is given by
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s} oo

J h pp(h) dh I h pp(h) dh
_— h1/3 hl/}
hyjs = — =
j ppydn 1 = Fy(hy3)
hl/3

where h, /3 is the lower limit for the one-third largest wave peaks. From
=1
P(Hp > by ) = 1= Fyfhy5) = 1

it follows that

h1/3 = [2mgyIn3 (3.243)

and thus
By =3 jhpp(h)dh
h1/3
= 3 /m, [— ne i 4 Ie e du] (3.244)
V2In3

= 3 my [% 2003 + /27 (1 - <I>(,/21n3))]

= 2.00 Jm,
or

Jmg = sy = zi‘ (2 171/3) (3.245)

which gives the standard deviation s, of the wave elevation a precise statistical
interpretation. For simplicity ZEI /3 is usually called the significant wave height H :

Hy =2k, (3.246)
so that
s = mg = 5 Hi (3.247)
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The chart above compares the variation of the maximum wave heights with the significant wave heights from Decem-
ber 7 to December 14, 1993, The chart below compares the peak wind speed to the maximum waves. The maxi-
mum wave height occurred well after the peak gust but during the period of the strongest winds. This region is the
very same where the USCG icebreaker Polar Sea ran into a series of “three sister” waves back in October of 1985

(Marine

rs Weather Log, Volume 30, Number 4) resulting in one death and two injuries.
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Figure 3.11 Measurements of average wind speed, maximum one hour wave heights and

average wave heights. Gower (1994).
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For one~parameter spectra of the form Eq. (3.231), H; and T, are related through Eq.

(3.241y:
_ 4f4x® [Hs _ 1H

usinga = 0.0081. Furthermore, from Eq. (3.230) /1 canbe related to the average wind
speed Uy,

2
H, = 0.209 —gi”- (3.249)

Example 3.3.1

In Figure 3.11 simultaneous measurements of significant wave heights ; and wind speed are shown
for a period of 7 days, divided into stationary sea conditions which are each of the duration of one hour.
There is clearly arelation between Hand U, but it is not as well-defined as Eq. (3.249). The maximum
wave height H,, measured in each one-hour period is also shown. Ideally, it should be related to H;
through Eq. (3.156). By application of

=1L _1 /&
YO0 =7 =113 T

Hy =2 3 H, [ZvOT

this relation becomes*

with T equal to one hour in the present case. As an example, the highest H; = 13 myields H,, = 22 m
in reasonable agreement with the measurements except for the single largest value. Eq. (3.249) also
yields quite reasonable results as a wind speed of 50 knots ( = 25.7 m/s) corresponds to H; = 14 m.

T T T T o
Hg (m) )
15F ¢ Highest NDBC Wave Height ]
® Bonner Bridge Storm /
10 Extreme Steepness ]
Climatic Steep Seas
5 ]
1) ———— 1 [
0 4 8 12 16 20 Tols)

Figure 3.12 Significant wave height H; as a function of 1, Buckley (1988), with inclusion
of £q.(3.248) (full line) and Eq. (3.250) ( dash-dot line).

*  The factor 2 appears because H,,, is measured from trough to crest.
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Very steep waves will break. Therefore, the significant wave height H and the
zero-upcrossing period cannot be chosen completely freely in two-parameter spectra.
A limitation is indicated in Figure 3.12:

Hy

T, > 11.4 2 (3.250)
or, if a P-M spectrum is representative of the sea states:
T, > 8.1 Hgf (3.251)

The figure shows that Eq. (3.248) represents waves with moderate steepness.

In the derivation of 4. 1/3 it was assumed that the spectral density was narrow-banded.

However, it follows from Eq. (3.232) that for a P-M spectrum m, = I'(0) is infinite.
Thus, the bandwidth ¢ = 1and the spectrum are actually broad banded. This behaviour
is mainly due to improper inclusion of the high frequency tail in the spectrum. Usually,
a cut~oft of the tail is applied making m finite and with a value which makes ¢ = 0.6
as representative of bandwidths derived from measured wave records. Of course, this
inconsistency is somewhat disappointing but it does not pose any difficulties in analyses
of wave loads on ships, as will be discussed in the next chapter.

The autocorrelation R(r), Eq. (3.98), is shown in Figure 3.13 for the P-M spectrum. It
is seen that two adjacent peaks are slightly correlated, violating the assumption of
statistically independent peaks in the extreme value predictions. However, the results
derived in Section 3.2.5 are still very accurate.

1

R(t)/m,

-1
Figure 3.13 Autocorrelation R(t) for the P-M spectrum.

The formulations of spectral densities given above are in the frequency domain. In some
applications it may be preferred to use the wave number & or the wave length 4:

= 2n
A=7 (3.252)

as independent variable. By use of Eq. (3.202) and
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S(w) do = S(k) dk = SQA) di (3.253)

spectral densities as functions of k or A may be obtained from (3.231) or equivalent
formulations in w. Likewise, characteristic wave numbers or wave lengths may be
defined. For example, for deep water waves the mean wave number k becomes

I ke S(k) dk [ »? S@) do
0 0

—2
r = = = Y
k=— = — = s = % (3.254)
[ S(k) dk g ] S(w) dw
0 0
Alternatively, a mean wave length A
J A SRy dA
7-0 g Moz T8
A=— 2ng ity (T)%
j S(t) dA
0

is found by use of Eq. (3.232) with # = -2. It should, however, be noted that often the
mean wave length is defined as 27/k, which is different from A.

Example 3.3.2

A critical wave episode can be defined as a deterministic wave profile <H> which in some average sense
represents the most severe wave a ship or offshore structure might encounter during its operational
lifetime. The photograph, Figure 3.14, might be such a severe wave.

The simplest form for such a critical wave episode is a linear, uni-directional regular
wave:
< H(X,t) > = hycos(kX — wt)

where the wave parameters g, kand @ must be determined so as to maximize the load, keeping the
wave parameters within reasonable limits.

The wave amplitude /1 is usually defined as the most probable largest value within a 3 hours operation
in an extreme sea state, characterized by a suitable wave spectral density. For ships the P-M spectrum
is normally assumed and from Egs. (3.156) and (3.247) it follows that

hy = fiy = syy2l0 N,

= s

2 V2 (Bhours/T,) = I

where the last approximation is slightly on the conservative side as T, is around 8-12 seconds in
extreme sea states.
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LF

Figure 3.14 Arn extreme wave! Reproditced from Buckley (1983)

The most obvious choice for the two other parameters &, w in < H (X,1) >is

2

=12} _ ¢

k—g(Tz) i
2T _

w:-]—‘z—z 5

satisfying the dispersion relation, Eq. (3.202) and representing spectral mean values of these guantities.

However, the wave loads on ships are usually largest for wave lengths close to the length L of the ship.
Hence,

—,2_7}_::
k=5

=R

is a better choice for such applications than k = k. The corresponding value of @ follows from Eq.
(3.202).

Before applying any of these proposals as a design wave it must be verified that the wave < H(x,1) >
is not too steep. For regular deep water waves the following criteria must be fulfilled to avoid wave
breaking

which for kg = H,, k = k yields

H
T,>94 /-575
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i.e. slightly more restrictive than Eq. (3.251).

The second choice requires

L > 14 H;

Usually H; = 12 — 15 m for the extreme waves and therefore the choice A = L is preferable for ships
with length greater that about 160 m. For shorter vessels the wave length A should be taken as

A =14H,

The periodicity of the regular waves does not represent the real behaviour of ocean waves very well,
see e.g. Figure 3.5. In addition the spectral density S(w) of the waves does not influence the wave

profile, except for H; and, possibly, k.

An alternative critical wave episode has therefore been proposed ("New Wave”, Tromans et al. (1991)),
based on conditional mean processes. The expected wave elevation < H(X,#) > around a peak (crest)
of size hy is given by Eq. (3.188):

< HX,t) > = rX,0) hy

where the normalized autocorrelation r(X, ) can be written

rX, f) = 5;11—- a?cos (X — wit)
i=1

1
g
1

0= 5

S, Aw; cos (k,X — o)

t

using Egs. (3.220) - (3.221) and a straightforward extension to include k; X in the trigonometric
arguments. Substituting e.g. S(w) from Eq. (3.234) yields

-5 -4
h
< H(X,f) > = %w_f; Z(%};) exp| — %(%) cos (k; X ~ w;t) Aw,

which clearly shows that this deterministic wave depends on the complete shape of the wave spectral
density. Furthermore, <H(X,t)> depends linearly on hy and is independent of H, With the

dimensionless time 7, frequency ¢ and length £ scales

T =0t
o=

@Dy
E=Ix

the result can be written

n
<HX) > = < HED > = 4 Z(ﬁ,—“fexP( - %a”)f“)cos (% - 6.2 s,

=1

This result is shown in Figure 3.15 for the two limiting cases: £ = 0 (the variation in time at a fixed
point in space) and T = 0 (the variation in space at a fixed point in time). The difference is solely due
to the different factors on & and 7 in the trigonometric function.
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Figure 3.15 Most probable extreme surface displacement for Pierson-Moskowitz spectrum.

As discussed in Section 3.2.6 the conditional process is normal distributed around it mean <H(X,1)>
with astandard deviation depending of X, 1. Close to the crest (X=0, t=0), the standard deviation is much
smaller than the average value and thus the process is nearly deterministic here. However, already at
the first crossing of the zero wave elevation level, the standard deviation becomes close to the value

Jmy of the unconditional process. If h is taken as H; as discussed above for the regular wave case

ho//nTo = 4, implying a rather deterministic form of the extreme crest profile. For further
discussions, see e.g. Tromans et al. 1991,

3.3.2.1 Skewness of Deep Water Waves

For slightly non-linear stationary stochastic waves, the skewness y of the probability

distribution of the wave elevation is obtained from Eq. (3.228). Substitution of Eq.
(3.231) into Eq. (3.228) yields

E[H] = g ] 0Ap~5e Bo fg (1-e 3 do

0

|
oqfon

oo
my mZ—AI wlo e B0 gy
0
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and the skewness

Expressed in terms of the significant wave Hy, Eq. (3.247), and the peak period T, Eq.
(3.240), the skewness becomes

6 (52\"2( 22\ 1 i
71=§(T) (‘T;) ZHS(1_§)

=32 5w [1-L) Hs <344 HSZ
2] 873 g T3

(3.255)

In Figure 3.16 this theoretical result is compared with measurements made during some
storm events in the northern North Sea, Vinje and Haver (1994). The narrow-banded

approximation given by

6 12 52
_ngwP__ 2 }Is — Hs
(Vl),,b = mg/z =6x 272 = 59.2 213 (3.256)

is also included in the figure. It is clear that the P-M spectrum models the measured
skewness better than the narrow-banded approximation, although the spread of the
measurements is significant.

,v 04 T
1
L band
035 narrow ban ~\‘ /
03 + / ug - a

0.002 0.004 0,006 H 0.008
)

gT?

o
+
-

Figure 3.16 Skewness y; as a function of the average wave steepness for the P-M spectrum
and a narrow-banded spectrum compared to measurements in the northern
North Sea, Vinje and Haver (1994).
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The skewness is proportional to the average wave steepness H/ ng. From Eq. (3.250)

the steepness is, due to the breaking of the waves, bounded by the following (Buckley
(1988)):

A < 0.00776
81;

which, for a P-M spectrum, implies

vy < 027

Example 3.3.3

A first approximation for the probability distribution for the non-linear wave elevation process is found
by integration of the probability density function, Eq. (3.225):

Vi

6 2z

Fpy(u) = O(u) — (12 - 1)e71 = o) - 22 - 1) o)

where # = h /sy and where @(u) and ¢(u) are the probability distribution and density function for the
standard normal distribution, Egs. (3.17) and (3.16). The probability that the wave elevation is greater
than, say, 3s;, becomes

P(h > 3s) = 1 ~ Fy(3) = 1 ~ &@3) + 0.0016

assuming that y; = 0.27, j.e. very steep waves. From Table 3.1, 1 — @(3) = 0.0013 and the second
order term then double the probability of exceeding the level 3s,,.

From Eq. (3.225) it is seen that p(h) < 0 if

L+ 45 (0 = 3u) <0

or,

h < — 31655,

which shows the limited applicability of the Gram-Charlier series expansion in the tail of the
distribution.

Provided the non-linear waves are narrow-banded, the individual peak distribution is given by Eq.
(3.119) with the upcrossing rate v(x) determined from Eq. (3.107). The calculations make use of the
joint probability density function p(k, k), which can be obtained by a procedure similar to the one used
for deriving Eq. (3.31). The final result for the probability distribution function F (k) of the individual
peaks becomes (Longuet-Higgins (1963)):

Fp(h) = 1-—3'1"2(1 +—é—l3(u3—3u)+%llzu)

again only retaining the dominant non-linear terms. The coupling term A, between the wave
elevation £ and its derivative £ is given by
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E[HH? ]

2
SH SH

12

Substitution of Eq. (3.222) into this expression yields 1, in a form similar to Eq. (3.228), but with
the fourth spectral moment m, involved. Thus, for a Pierson-Moskowitz wave spectrum, Eq. (3.231),
Ao will be infinite without introduction of a cut-off frequency, which is of course also needed to ensure
a narrow-banded spectral density.

Higher order terms may also be included in a consistent way, Jensen and Pedersen (1978), which,
unfortunately, only results in 2 modest increase in the range of applicability of the Gram- Charlier series
‘expansion. A generalisation to broad-banded spectral densities is given by Longuet-Higgins (1964).

An alternative to the Gram-Charlier series expansion is the transformation procedure Eq. (3.34). By
use of only the three lowest statistical moments of the normalized wave elevation

U = (HV + H®)/sy,

the series expansion becomes

U=cy+c,V+ e, V? =gl

where V = H/s,, is standard normal distributed. The coefficients c; follows from Eq. (3.36) with
c3 = 0 and can be reordered as

4¢3 — 6c, +y, =0

2_ 1 _ 9,2
ci=1- 2

Co= — €

The analytical solution to the cubic equation in ¢, has one real root. For small values of y,, the solution

becomes ¢, = y,/6 and, hence, ¢; = 1 and ¢y = — y,/6. Also because y, is small, the reverse
relation is

v=glw)=v-Bv-1)

Thereby,
Fyu) = PU <w) = P(V < g~'w) = ¢(g ')

Clearly F{u) is well-behaved for all value of u. Now

Plh > 3sy) = 1 — @{g7'(3)) = 1 — & (2.64) = 0.0041
with y, = 0.27. This value differs from the corresponding Gram-Charlier result: 0.0029, calculated
above. However, assymptotically, for y, — 0, both procedures yield the same result as

u*%‘(uz' 1)

P{g™ () = D) + /—1_2;; J exp(— %zz) dt = d(u) — %‘ (? = 1) p(u)



118  Ocean Waves

3.3.2.2 Directional Spreading

The P-M spectrum is a unidirectional spectrum describing waves travelling in one
direction in accordance with the wave elevation process, Eq. (3.214). However, wind
driven waves will be generated in all directions relative to the wind. For each angle ¢
relative to the wind direction, a spectral density S(w, ¢) for the wave elevation can be
defined. The spectral density must satisfy

a"a

[ S(w, @) do dp (3.257)
0

Due to lack of more accurate formulations, S(w, @) is usually taken in the form:

S, ) = S() flp) (3.258)

I S(w) do = s%{
0

the spreading function f(@) must satisfy

(3.259)

i
-

J flp) dp

and obviously also fig) = f(— ). Furthermore, only very small waves are generated
opposite to the wind direction, which implies that f{gp) = 0 for |p| > z/2. Finally, it
must be expected that fig) is a decreasing function of @. The most commonly used
spreading function is

An cos®p @ < I%l (3.260)
flp) =

0 otherwise

with n = 2 or 4. From Eq. (3.259) it follows that A, = 2/7 and A, = 8/(37).

333 Long-Term Predictions

The analysis presented so far has been limited to stationary processes. The ocean waves
only behave as stationary processes over a period of time measured in hours c.f.
Figure 3.11, so over a time scale measured in years the wave process is clearly a
non-stationary process which covers everything between nearly calm sea and extreme
storm events.



RANDOM SEA WAVES 119

To overcome this problem, two approaches may be used for estimating the highest
waves over a period of years. The first is to assume that the largest waves appear in the
severest stationary sea state encountered in that period. However, because the
maximum wave height depends on the number of peaks in this period, see Eq. (3.156)
as well as on the standard deviation s;; = H,/4, the maximum waves may be found in
a lower sea state which occurs much more frequently. Therefore, in the second method
all the sea states encountered at a given location are weighted according to their
probability of occurrence. The probability density function pf;(h) for the individual
peak values in the non-stationary process is derived by taking the probability density
function p,(h) in each stationary sea state to be a probability, which is conditional on
the parameters describing the stationary condition. For waves, these parameters are
usually taken to be the significant wave height H; and the zero upcrossing period T.
From Eq. (3.60) it follows that

pp(h) 'V(O) I J V(OIHS, Tz) pp h Hs, Tz) dTZ st
. (3.261)

s T,
ﬁ [ [ V(OWs, T,) Pp ths, z) (HS, Tz) dT, dH,

H, T,

where p,(h|Hj, T;) is given by Eq. (3.137) or, for a narrow-banded process, by Eq.
(3.242).

The use of zero-crossing rate ¥(0) rather than the peak rate v, is justified by the
derivations of Egs. (3.154) - (3.155). For a Gaussian wave process, Eq. (3.118) yields

vO|H,, T;) = 71_ (3.262)
z
50 that
3.263
v(0) = I% p(T) dT, (3.263)
z
T,

where p(T) is the marginal probability density function of T :

p(Tz) = [ p(Hs, T7) dH; (3.264)

H;

The peak distribution p,(h|H, T) only depends on my = H?/16 and the bandwidth
parameter €, but as ¢ normally is less than 0.9, the approximation, Eq. (3. 153), with a
fixed value of € or even Eq. (3.242) may be applied. Thereby,
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plh) = %0) J f %pr (h|H ) p (Hs, T,) dT dH

H. T,

= J pp (hHS) p (Hs) dH
H,

(3.265)

where p(H 9 is the marginal distribution of H,, weighted by the zero-crossing rate:

p(H,) = ;ﬁ j le p(H,, T,) dT, (3.266)

T,

The integration should cover all possible vaues of Hgand T,. The distribution p(Hj, T>)
cannot be derived by any theoretical method, but must be obtained from measurements.
The most comprehensive measurements are those published by Hogben et al. (1986).
This book contains tabulated values of p(H,, T;) for 104 ocean areas, denoted Marsden
areas, covering all the major ship trading routes. The data are given in increments of
1 m for H and 1 sec for T, and are furthermore given for 8 global directions. An
example is shown in Figure 3.17. By use of these data and the condition probability

density p,(h|H) the long-term probability density function pg(h) of the individual peak
values for the wave elevation can be carried out numericatlly.
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Figure 3.17 Scatter diagram for the North Atlantic, Hogben et al. (1986).

To derive the most probable largest peak /11‘:, over a period of several years, Eq. (3.148)
is applied
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A
4 1 3.267
Fiay) = f piwdu =1 - (3267

The solution to this implicit equationin ,df:, can be carried out numerically when the total
number of peaks is specified. An estimate of this number N is the average number

N =0T (3.268)

where T is the total time period considered. Alternatively, the number N of wave peaks
during a 20 year period is often taken to be simply 108,

A closed-form expression of ,di, can be obtained from Eq. (3.267) if pf;(h) is fitted in
with an analytical distribution. Often the Weibull distribution, Eq. (3.38), gives a very
good fit. Hence, Eq. (3.159) reads (see Example 3.2.2):

Y = a (inN)yVP (3.269)

where a, 8 are the two parameters in the Weibull distribution.

The tabulated values for p(H,, T;) given in Hogben et al. (1986) can also be fitted in
with marginal, conditional or joint distributions, see for example Friis Hansen (1994),
where Weibull distributions are found to be most accurate for the marginal distributions
of Hand the conditional distribution of T'; given H. Asthe largest wave usually occurs
in the extreme and very rare sea states, care must be taken in applications of such
analytical formulas as they may be quite inaccurate in the tails of the distributions,
especially in extrapolations to values of (H,, T;) which are not measured in practice. On
the other hand, the tabulated values in Hogben et al. (1986) only cover sea states which
appear with a frequency greater than or equal to 0.001. This corresponds to at least 7
days over a period of 20 years, so these tabulated values may also have filtered out some
very rare but physically possible extreme events. This may result in an underestimation
of the extreme loads on ships by about 30 %. As a final comment, it may be mentioned
that at present the most uncertain part of the derivation of the extreme wave loads on
ships appears to be the choice of the scatter diagram p(H,, T,). Therefore, the
classification societies usually specify the scatter diagram to be used in the analysis.

Example 3.3.4

Assume that the marginal distribution of the significant wave height H,, as defined by Eq. (3.266) is
a one-sided normal distribution:

P(Hy) = /EZH e M)y =0 (3:270)
0

where f1; is a constant depending on the ocean area considered. Substitution of Eqs. (3.270) and
(3.242) into Eq. (3.265) yields
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Fih) = j F (hlH ) p(t) dH
0
- — o —8(h/H) 2 ~ L HH g1,
I(l e ) ‘/EHO e 2 ' dH (3271)
0

o

=1 -2 | -y,

N
0

=] - e—4h/"0

which is an exponential distribution.

By use of Eq. (3.269) with @ = H,/4 and B = 1 the most probable largest peak during a period of
20 years becomes using

~6 __ HO
fiy = — InN (3.272)

As the troughs are distributed like the peaks in a linear wave analysis, the most probable largest
trongh-to-crest height becomes 1/2 HjInN. For the North Atlantic H = 3.5 m, so that the maximum
wave height is about 36 m in 20 years.

The probability distribution function F ,‘;, () for the largest peak becomes

Fiy = [Fpey [V = (1 — e /a)¥

i

(3.273)

R

1= Ne %/ = exp(-— Ne“‘"’/HU)

provided
Ao s InNorh > ﬂe
H, N

If this result is compared with Eq. (3.170) it is seen that the long~term distribution of the largest peak
is Gumbel distributed in this example as expected.



4 Wave Loads on Ships

When a ship is sailing in waves the motions of the ship are influenced by the waves and
the waves are modified by the presence of the ship. The governing equations for the
complete ship-wave problem are those for the waves alone, Eq. (3.190) - (3.196), the
equations of motion for ship and an interaction condition, stating that the water particles
cannot penetrate the hull, nor can a vacuo develops between the hull and the water. If
the velocity vectors of the ship and the water particles are

V= V2,0 = (Ve V) )

and

V=X, Y,Z,1) = (v, vy vy) (4.2)

respectively, with v given by Eq. (3.191), this interaction condition can be written:

V-n=v-n onS 4.3)

Here S denotes the instantaneous wetted hull surface with the associated normal vector
n. Due to the motions of the ship, both S and n will change with time ¢.

In addition to the previous unknown variables: velocity potential ¢(X,Y, Z, ) and
surface elevation h(X, Y, f), a new unknown vector V is introduced, determined by the
equations of motion for the ship and Eq. (4.3). The governing equations are non-linear
due to the free surface conditions Eq. (3.194) - (3.196) but more important also because
Sand n depend on the instantaneous position of the ship relative to the waves. Hence
no general solutions exist and even a numerical solution to the complete
three-dimensional problem by a time-step procedure is far beyond the present
capabilities of computers. A rough estimate, Faltinsen (1988), indicates that simulation
of a ship sailing 10 minutes in an stochastic scaway may require a computer time of the
order years on a Cray-1 super computer. In addition one should mention that even if
such solution was feasible, it does not represent the true reality for ships sailing in rough
sea as forces e.g. related to wave breaking on the ship’s bow cannot be modelled
mathematically today. Some assumptions therefore have to be made in order to get a
tractable problem formulation. Two different kind of approximations may be
introduced.

Firstly, small waves and small motions of the ship may be assumed implying use of the
linearized free surface conditions Eqs. (3.198) - (3.199) together with a linearized
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version of Eq. (4.3). Thereby, a three-dimensional linear problem is obtained, which
can be solved, see e.g. Inglis and Price, (1982). However, difficulties are still present
mainly due to the influence of the waves gencrated by the ship sailing with forward
speed. Recently, some account of the non-linearities in the ship motion have been made
possible, Beck et al. (1996), at the expensive of large computer time. As will be
illustrated later, inclusion of non-linear effects are necessary to explain measured
results of the sectional forces in the ship hull girder.

On the other hand, numerical results indicate that three-dimensional effects are not so
important for the wave load on normal merchant ships. Thus the longitudinal
component of the velocity potential may be ignored. The result is a set of
two-dimensional problems, each considering an infinite long cylinder with a cross
sectional shape equal to a vertical intersection in the hull. The solution to each problem
is the hydrodynamic force per unit length acting on the cylinder. This force is in the
transverse plane and will depend on the geometry and motion of the cylinder and on
parameters describing the waves. It is not straightforward to set up a two-dimensional
formulation as the forward speed induces a longitudinal flow which must be included.
In the general non-linear case no exact two-dimensional formulation exists, but if the
motions of the ship and the wave amplitudes are small, several theories have been
developed. The most consistent formulation is due to Salvesen, Tuck and Faltinsen
(1970), but still new theories are derived aiming at better predictions in e.g. the low
frequency region or for fast ships. The ultimate formulation is certainly not available
yet, but from an engineering point-of-view these two-dimensional, so~-called strip
theories can be considered as sufficient accurate for application to conventional ships.
A thorough description of various ship theories can be found in Bishop and Price (1979)
and Odabasi and Hearn (1977). The latest development of non-linear hydrodynamic
formulations may be found in Proc. Symposium on Naval Hydrodynamics, taking place
every third year from where also one of the previous cited references is taken.

In the present treatment focus is mainly on loads important in the structural analysis of
the ship hull girder. The analysis will therefore be restricted to a strip theory
formulation, originating from a linear theory suggested by Gerritsma and Beukelman
(1964), and extended empirically to non-linear motions and waves by Jensen and
Pedersen (1979). As will be shown this theory is able to predict wave-induced
non-linear vertical sectional forces in the ship hull girder, which are in reasonable
agreement with measurements. Only vertical loads and the corresponding vertical
motions and sectional forces are treated as horizontal and torsional wave-induced loads
are of minor importance for normal merchant ships.

A rather thorough derivation of this strip theory is given. Conventionally the
hydrodynamic force is divided into two terms. One is the Froude-Krylov force, based
on integration of the undisturbed wave-induced pressure over the submerged hull. It
is derived in Section 4.2 taking into account non-linear waves and ship motions. The
second term deals with the interaction effects, Eq. (4.3), and is often named the
hydrodynamic force. For the linear case a general derivation of this term is given in
Section 4.2 with a strong emphasis on the relations between time- and
frequency-domain formulations. The motions of the vessel then follow from solution
of the equilibrium equations as described in Section 4.3. Using the force description in
the frequency-domain extreme value responses are easily obtained in stochastic
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seaways by application of the procedures described in Chapter 3. This is discussed in
Section 4.4 assuming linearity between wave and response amplitudes.

When a ship is sailing in rough sea slamming and water on deck might occur. The
probability of such events are discussed in Section 4.5 together with the associated
non-linear forces.

These non-linear forces as well as non-linearities in the Froude-Krylov and the
hydrodynamic term associated with the continuously change of submerged hull surface
can only be included in the load prediction by a time-domain solution of the
equilibrium equations. Also transient motions and loads following for instance a
grounding or a collision calls for a time-domain solution. Such solutions are the topics
in Section 4.6. Finally Section 4.7 provides some results for design loads aiming at a
quantification of the non-linear effects as function of some main ship hull parameters.

4.1 FROUDE-KRYLOYV FORCE

If the interaction condition, Eq. (4.3), is ignored, the hydrodynamic force F g on the
ship can be obtained by integration of the undisturbed pressure p in the waves over the
submerged surface S, completely analogous to the hydrostatic analysis, Eq. (2.2).

Thereby,
Frg= - f J pnds (4.4)

N

where the pressure p follows from Bernoulli’s equation, Eq. (3.192). As discussed in
Section 3.3.1 no general solution for p exists and a perturbational expansion of p
analogous to Eq. (3.197) is usually applied. Another complication is that S varies with
the position of the ship in the waves.

In the present treatment the ship is divided by transverse planes into prismatic sections.
For each of these sections, the force can be written g FK dx, where

_q_pK(x’ n= - Ip ndl 4.5)
[4

with £ = £(x, 7) being the instantaneous submerged sectional contour and dx the length
of the section.

The waves will be assumed to be deterministic and long-crested, but of course
extensions to stochastic waves will be given later in Sections 4.4-4.7. If the waves
travel in the global X~-direction, both the surface elevation A = h(X, ) and the pressure
P = p(X, Z, t) will be independent of ¥,

Without loss of generality the local xyz-coordinate system fixed in the ship will be
chosen such that in calm sea, the xy and XY planes coincide. With a constant forward
speed V, = Vand no wave-induced motion of the ship, the relation between the two
coordinate systems becomes
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X = (x + Vi)cosf} — ysinf
Y = (x+ Vi)sinf + ycosf (4.6)
Z=1z

where f is the heading angle. When the ship is sailing in waves the relations (4.6) are
violated to some extend, but still represent the mean course taken.

AY

ped

>
X

t=0

Figure 4.1 Ship heading relative to the wave direction.

The calculation of the force g rr E4- (4.5), on a section is performed using Gauss
integral theorem, Eq. (2.8). Thereby, the two non-zero components g Fiy 9Kz Of 9 g
becomes:

ap
drgy = — IJ@ dA “4.7)
A
and
J
e[ [
A

where the integrals extent over the instantaneous submerged sectional area A.

From the perturbational solution to the wave equations, see Egs. (3.201) - (3.212), it
is seen that X only appears through the term

kX = k(x + Vt)cosf — kysinf 4.9

in the trigonometric functions. For wave lengths much larger than the breadth of the
section, the last term in Eq. (4.9) can be neglected. Thereby, both the pressure p and the
wave elevation & at a section will be independent of y. From Eq. (4.7) the transverse
force component g, becomes zero such that the net sectional force is in the vertical

direction.
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o
————7
i
(=

z=-T

z=-T

Figure 4.2 Sectional contour of X=x. Left: section at rest. Right: section displaced verti-
cally in waves.

Figure 4.2 show a sketch of a section. The water elevation is A(x, £) and the ship motion
is assumed to be vertical with an unknown displacement u = u(x, f). The integral in
Eq. (4.8) is conveniently carried out in the local yz-system fixed in the section. Thus,

h—u
?
Grs = — I £ B(x,2) dz (4.10)
~T

where T = T(x) is the draft of the section measured with respect to z=0 and where
B(x, z) is the sectional breadth as function of z. The derivative

ap a_p
9z~ 0Ziz=z4u @11)

as
Z=z+u (4.12)

has replaced the last equation in (4.6). Hence, the final expression for the vertical force
9y, per unit length on a prismatic section becomes

h~u

ap
Gty = — -
F. ( 02 7=z4u

-T

B(x,2) dz (4.13)

If the waves can be represented by the linear wave solution, Egs. (3.201)-(3.204), then

ap _alps + p)

k(z+u)
0217 =74u dz

= — pg + pgkhVe

Z=z+u
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such that
h—u h—u
drx, = P8 J B(x,z)dz — pgkh j et B, 7)dz (4.14)
=T =T

omitting the index on / for the sake of brevity.

Provided the wave elevation h and the vertical motion u of the section are small
compared to the wave length and, furthermore, that the breadth does not vary too much
within 0 < z < & ~ u, then Eq. (4.14) can be approximated by

0
Arx: = P8Ay + pgBo(h — u) — pgkh J e B(x,2)dz (4.15)
-T

neglecting quadratic and higher order terms in A, u. In Eq. (4.15)

0
Ay = Aylx) = jB(x,z)dz (4.16)
-T
and
By = By(x) = B(x,z = 0) (4.17)

The first term on the right hand side of Eq. (4.15) is the hydrostatic load in calm water
gs per unit length. The remaining part due to the dynamic undisturbed pressure in the
waves is called the Froude-Krylov force and can be written

9rr; — 9s = — pg&By(w — Kh) (4.18)

where the Smith correction factor

e BED (4.19)

k=Kk(x)y=1-k By00) z

i
Hs_'c
Q

has been introduced. It is seen that the force gpx — g5 is proportional to the measure

Z = #x, ) = u(x,f) — k(x) h(x, 1) (4.20)

of the relative motion between the wave surface and the section. The Smith correction
factor arises because the dynamic pressure decays exponentially with respect to the
vertical distance from the free surface contrary to the linear increase of the hydrostatic
pressure.
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For many sections, see Example 4.1.1, the Smith correction factor can be approximated
by
IC(X) = g _kAO(x)/BO(x) (421)

Example 4.1.1
Rectangular section:

0
Eq. (4.19): k=1-k je"z dz = e ¥

Eqg. (4.21): Kk =¢e ¥

Wedge section:

0
Eg. (4.19): k=1-k Je"z(l+%)dz=—l——(] —-e_”)
=T

Eq. (421): & = e 34T
As shown in Figure 4.3 the difference between the two results is small.

Circular section:
xf2

Eq. (4.19): k=1—kR | sinfae *Reosajy

0

f2
= I cos @ e kReosa gy
0

using z = — Rcos a and B = 2 Rsina ; ae[O,:r/2].

Eq. (421 &k = "I

Again, see Figure 4.3, the difference between the two expressions is small.

1 1

Wedge Semi-circle
K K
0 y 0 T

0 1 kT2 0 1 kT 5

Figure 4.3 Comparison between exact (full lines) and approximate (dashed lines) values
of the Smith correction factor for two sections. For K (dashed-dot line), see
Example 4.2.4.
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4.2 LINEAR HYDRODYNAMIC FORCES

The Froude-Krylov force, Eq. (4.13), must be supplemented with forces accounting for
the modification of the wave potential required to satisfy the interaction condition (4.3).
In the general non-linear case this is, as discussed in the beginning of this chapter, very
difficult. Therefore, a linear analysis is considered first.

In the linear analysis the wave elevation and the ship motion are assumed so small that
the total fluid potential can be represented as a sum of different potentials each
representing specific parts of the solution.

The Froude-Krylov force, Eq. (4.18), yields a quasi-static force in the sense that it only
depends on the instantaneous position of the section in the waves. Hydrodynamic forces
proportional to the velocity and acceleration of the section and the wave particles must
be added. Contrary to the Froude-Krylov force these forces not only depend on
instantaneous value of the motion, but also on its past history. This may be illustrated
by the observation that if a floating body is given an impulse, then the body will oscillate
for a long period. The system behaves as having a memory in the sense that what
happens at one instant of time will affect the system at all later times. The free surface
is responsible for this behaviour, as it allows for a transmission of energy away from
the body by generating surface waves.

4.2.1 Impulse Response Functions

Consider a time-invariant linear system. The response (2) at time ¢ due to a disturbance
(impulse) f(r)dr attime 7 < ¢ can then be written

rt) = f)At k(t — 1) 4.22)

where the unit impulse response function ot kernel function k(t — 1) only depends on
the time difference ¢ — 7 . For a continuous excitation, Eq. (4.22) can be integrated to

!

() = j F@k(@ ~1)dr = f ft - ) k(@) de (4.23)
0

- 00

Dealing with stationary stochastic processes, a transformation from time to frequency
domain is very useful as illustrated in Chapter 3. Fourier transformation of the unit
impulse response function k(t) yields

K(w) = f k(fye =" dt = J k() e =™ dt (4.24)
e J

Notice that the lower limit can be replaced by zero as k(1)=0 for ¢ < 0. The inverse
relation becomes
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ki) = 5= J K@) ¢! do (4.25)

The factor 1/2x has for convenience here been applied to the integral over the
frequency domain, opposite to the convention used when defining spectral densities in
Chapter 3. As k(t) is a real function it follows from Eq. (4.24) - (4.25) that the real (Re)
and imaginary (fm) part of the transfer function K(w) satisty

o

Re(K(w)) = Re(K(— w)) = J k(f)coswt dt (4.26)
0
Im(K()) = — Im(K(— w)) = — j k(2) sinwt dt (4.27)
0
Provided
lim K(w) = 0 (4.28)

Fourier cosine and sine transformations of Eq. (4.26) and (4.27) can be performed,
yielding

k@) = % f Re (K(w)) coswt dw (4.29)
0

and

k@) = - % f Im (K(w)) sin ot dw (4.30)
0

Hence, k(t) can be determined from either Re(K(w)) or Im(K{(w)). The implicit relation
between the real and imaginary part of K(w) is due to the property that () is rcal. The
relations (4.29)-(4.30) are a special case of more general relations known as the
Kramers-Konig relations.

4.2.2 Sinusoidal Excitation

If the excitation f{?) is a sinusoidal function

f(®) = fy (w)cos (wt + €) (4.31)
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the response r(z) is obtained from Eq. (4.23):

1) = f, I cos (w(t — 1) + €) k(r) dr
0
= fycos (wt + €) j cos (wt) k(t)dr
0

+ fosin (0t + €) j sin (@) Kr)dr (432)
0

= fy[Re (K (w)) cos (@t + €) — Im (K(w))sin (w? + €)]

= fyVK (@) K(®) cos (@t + €, (@))

rocos (wt + €, (w))

using Egs. (4.26) - (4.27). Here K'(w) is the complex conjugate of K(w) and

€, = € + Arctan (%%E—Zg—;) (4.33)

The significance of the transfer function is then that it is the amplitude ratio of the
sinusoidal response to a sinusoidal excitation:

;_0 = JK' (@)K @) = | kw)l (4.34)
o

In general, the transfer function K(e) is obtained by substitution of

f(t) — fO eiwt
into Eq. (4.23):

r(f) = f foe® Dk () dr
0
— fO eile e-—ia)rk (T) dr
0

= f(O K (@)
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Example 4.2.1
Consider a single degree of freedom linear mass-spring-dashpot system. The equation of motion can
be written

P+ 28w F() +0ir(=f() ; t=0

where w, and { are the eigenfrequency and damping ratio, respectively. A overdot denotes as usual
differentiation with respect to time ¢ .

The solution r(¢) is given by the sum of a particular r,(f) and the homogeneous r(#) solution. The
particular solution is taken as the Duhamel integral:

t
o(t) = a%de(") sin (w4 (t — “l'))e*C”J oDy
0

where

w0, = w1l —?

The homogeneous solution is

ry () = [Acosw,t + Bsinw, t)e” 5!
where the constants A and B follow from the initial conditions. As r(0) = #(0) = 0the homogeneous
solution vanishes. Hence, r(f) = rp(f)and itis seen that r(z) is written in the form (4.23) with the kernel

sinw, T

- wgT
w,; ¢

k(r) =

which then is the unit impulse response function for this system. Hence, usual dynamic problems within
rational mechanics also exhibit a memory.

The transfer function K(w) can be obtained by substitution of () into Eq. (4.24). However, as the
transfer function is the solution for a sinusoidal excitation it is much easier to insert

f(t) — fO eiwl
into the governing equation. Thereby,

r(f) = ry e

with
rol(i)? + 2L wgio + ol] = f,
such that
K(w) =}% = ;_3 = [0 - 0 + 2itw,0]
and

[ K@)l = [(wg - w2)2 + (ZCwow)z]_]/z
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The result Eq. (4.34) makes response predictions of linear systems subjected to
stationary stochastic excitations very easy as will be discussed in Section 4.4. First,
however, the determination of (z) and K(w) for the hydrodynamic loads must be
carried out.

423 Added Mass and Hydrodynamic Damping

For a section of the hull executing a vertical motion u = u (¢) in calm sea, the
hydrodynamic vertical force g, (£) can in general be written

!

qu () = — cyii(t) — cqu(t) — cqu(t) — J i)k, (t — ) dr

(435)
t

t
- Ju(r)kl(t—r)dr— Ju(t)ko(t—r)dt

—_

as the fluid motion around the section is completely characterized by the motion u(),
velocity u(f) and acceleration ii(t) of the section, provided these variables are small
enough to neglect non-linear terms.

The three coefficients c,, c; and c, represent the parts of the force proportional to the
instantaneous values of #(f), u(f) and u(t), respectively. They could of course be
included in the kernel functions &,, k; and kg, using Dirac’s delta function. The kernel
functjons as well as the coefficients c,, ¢, and ¢, must be determined by solving the
governing equations for the motion of the fluid, which as stated previously is very
complicated. A thorough discussion is given by Ogilvie (1964). It is found that a Fourier
transformation to the frequency domain provides an effective procedure.

First, however, Eq. (4.35) can be simplified by integration by parts of the first and last
integral on the right hand side:

g (t) = — cyii(t) — cqu(t) — cou(t)
t

t
— i@y ky (2 - r)]'_oo - [ (r) ky (t — 7) dr — [ i) ky (¢ — 7) dt

— 00

t
- [u(‘c) ko (t — r]l_w + J uT) ko(t — 1) dr

where
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kot —7) = Jko(f)dg

1—

Y

Hence,

() = — cyii(t) — b'u(t) — c'u(f)

‘ (4.36)
- J w(r)k'(t — v)dr

— 00

where the coefficients

b = c, + ky(0)
[ (4.37)
¢ =cy+ | kyr)dr
0
and the kernel function
k'(t) = ky(r) + k(@) + J ky(&)dE (4.38)
T

The transfer function K(w) relating the force g to the amplitude lg in a sinusoidal
excitation is obtained by substitution of

u(t) = uge! (4.39)

into Eq. (4.36):

() = [0 = iwb’ — ¢’ — iK' )] uge™” (4.40)

using
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!

j wo)k'(t ~ 1)dr

- 00

J u(t — t)k'(rydr
0

fes]
iwuoei‘”’[ e Tk (1) dr = iK' (w)ug ™!
0

Hence

qn(0)

iwt
uO e

K(w) = = 0% — iwb' — ¢’ - in K'(w) (4.41)

The transfer function K'(w) corresponding to the kernel function k'(7) will in general
by a complex function. The transfer function K(w) can then be written

K@) = c,w? — ¢’ + olm(K'(0)) @)
— fjwb’ + wRe(K'(w))] ‘

Rather than finding the coefficients and kernel functions in the time domain
formulation (4.36), it is normally much easier to determine the transfer function for
different frequencies w. This may for instance be done by calculations or measurements
of gy, assuming a sinusoidal motion with a given frequency. Usually, g, is then given
as a differential equation

q(t) = — my(w)ii(t) — N(w) u(t) — Cu(r) (4.43)

where the real coefficients m,,(w) and N(w) depend on the frequency @ of the motion.
Substitution of Eq. (4.39) into Eq.