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SERIES PREFACE 

In this day and age, humankind has come to the realization that the 
Earth's resources are limited. In the 19 th and 20 th Centuries, these resources 
have been exploited to such an extent that their availability to future 
generations is now in question. In an attempt to reverse this march towards 
self-destruction, we have turned out attention to the oceans, realizing that 
these bodies of water are both sources for potable water, food and minerals 
and are relied upon for World commerce. In order to help engineers more 
knowledgeably and constructively exploit the oceans, the Elsevier Ocean 
Engineering Book Series has been created. 

The Elsevier Ocean Engineering Book Series gives experts in 
various areas of ocean technology the opportunity to relate to others their 
knowledge and expertise. In a continual process, we are assembling world- 
class technologists who have both the desire and the ability to write books. 
These individuals select the subjects for their books based on their educational 
backgrounds and professional experiences. 

The series differs from other ocean engineering book series in that the 
books are directed more towards technology than science, with a few 
exceptions. Those exceptions we judge to have immediate applications to 
many of the ocean technology fields. Our goal is to cover the broad areas of 
naval architecture, coastal engineering, ocean engineering acoustics, marine 
systems engineering, applied oceanography, ocean energy conversion, design 
of offshore structures, reliability of ocean structures and systems and many 
others. The books are written so that readers entering the topic fields can 
acquire a working level of expertise from their readings. 

We hope that the books in the series are well-received by the ocean 
engineering community. 

Rameswar Bhattacharyya 
Michael E. McCormick 

Series Editors 
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Preface 

The present monograph covers wave load and global structural response for ships. It 
is primarily written as a textbook for students with an introductory background in naval 
architecture and a basic knowledge of statistics and strength of materials. 

The subjects are treated in detail starting from first principles. The aim has been to 
derive and present the necessary theoretical framework for predicting the extreme loads 
and the corresponding hull girder stresses a ship may be subjected to during its 
operational lifetime. 

Although some account is given to reliability analysis, the present treatment has to be 
supplemented with methods for detailed stress evaluation and for structural strength 
assessment before a complete structural reliability analysis can be carried out. 

The content of the book has developed over the years and invaluable comments and 
suggestions have been received from my colleagues at the department. Special thanks 
goes to Professor Preben Terndrup Pedersen, for his constant encouragement and 
friendship. 

The typing of the manuscript by Vibeke Lybecker Jensen, Vivi Jessen and Linda 
Andersen is highly appreciated. 

Jcrgen Juncher Jensen , 
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1 Introduction 

A ship is a very complex structure consisting of more than 100,000 different parts. A 
design usually starts by a shipowner's request for a ship with the ability to carry a 
specific type and amount of cargo, possibly to sail on a specific route with a given speed. 

Based on this small quantity of data, the naval architects make a preliminary design 
which satisfies these requirements. Due attention is paid to a large number of problems 
such as 

�9 Restrictions on length, beam and draught of the ship imposed by relevant 
harbours and channels. 

�9 Optimal hull form with respect to wave resistance. 

�9 Economical and environmentally friendly propulsion system. 

�9 Effective loading and unloading of cargo. 

�9 Location of cargo, ballast and fuel oil tank to ensure proper trim in all conditions. 

�9 Hydrostatic stability in intact and in damaged conditions. 

�9 Electrical consumption and generator sets. 

�9 Lifeboats with easy access and other life-saving equipment. 

�9 Fire resistant subdivision of the ship and required fire fighting equipment. 

�9 Heating and ventilation. 

�9 Accommodation for crews and, perhaps, passengers. 

�9 Navigation equipment. 

�9 Maintenance cost. 

This list contains just some of the main issues, others may be added depending on the 
type of ship. 

The result of the preliminary design phase is a set of drawings. The main drawing is the 
general arrangement, showing the ship in all three projections with the location of tanks, 
cargo gears, life-saving equipment and machinery clearly indicated. Additional 
drawings show the different loading conditions, the machinery layout as well as other 
pertinent features of the ship. The drawings are supplemented with a specification of 
the various equipment on board. 



2 Introduction 

When or if this design is approved by the shipowner, the next step is determination of 
the scantlings. This step is taken in close collaboration with a classification society. On 
acceptance of the structural design, the classification society issues a class notation for 
the ship, which makes it possible for the shipowner to insure the ship in an insurance 
company. 

The classification societies have issued rules and regulations for a proper structural 
analysis of a ship and selection of the scantlings. Previously, those rules rather explicitly 
gave formulas for the thickness of the hull platings, the size of the stiffeners, the 
scantlings of internal bulkheads and so on. Such empirical rules must necessarily be 
rather conservative in order to apply to a large variety of ships. With the advent of 
powerful computers, the rules have changed. Today, the naval architect can perform the 
structural analysis using mainly rational methods based on first principles. The 
classification society then specifies proper safety factors against local and global failure 
modes, taking into account the consequences of failure and the analysis procedure used. 
A cruder method of analysis then necessitates a larger safety factor. Therefore, the 
effort made by the experienced naval architect to perform a detailed structural analysis 
will be paid back not just by a rational structural arrangement but often also in lesser 
lightweight of the ship and thus a higher payload throughout the operational lifetime 
of the ship. 

The background of rational methods for ship structural design is structural and fluid 
mechanics with extensive use of advanced statistical methods for determining the loads 
due to the waves and for estimating the safety against structural failure. 

Determination of the scantlings by rational methods can be divided into the following 
main steps: 

�9 Determination of hydrostatic loads in a calm sea. 

�9 Determination of wave-induced loads taking into account the statistical nature 
of ocean waves. 

�9 Determination of hull girder stresses due to the above-mentioned loads. 

�9 Assessment of the safety against hull girder failure due to excessive maximum 
loads. Too low safety requires a change of the scantlings of the hull plating and 
other longitudinal structural members (bulkheads, girders, longitudinals). 

�9 Determination of local stresses due to pressure loads from the sea and from the 
cargo in association with the hull girder stresses. 

�9 Assessment of the safety against local failure with respect to buckling, yielding 
and fatigue. Redesign if insufficient safety. 

�9 Determination of the forced vibration levels due to time-varying forces 
generated by the machinery, the propeller and the sea. This is of less importance 
to normal merchant vessels, but often needed in the case of fast vessels and 
passenger ships in order to ensure a comfortable ship and to reduce problems 
with fatigue cracks. 

�9 Optimal inspection and repair procedures to reduce docking time and to ensure 
that the ageing ship has sufficient strength. Especially, attention must be paid to 
the detection and repair of fatigue cracks and corroded areas. 



~ Structural assessment of the consequences of accidental loads due to collision, 
grounding, fire and explosion. 

The present lecture notes deal with the global load and response analysis of ships, 
covering mainly the first four items mentioned above. 

In Chapter 2, the equilibrium position of a floating body in a calm sea is determined 
together with the hydrostatic sectional loads in the hull girder. Moreover, a short 
description of hydrostatic stability is given. 

Chapter 3 is devoted to a stochastic description of ocean waves. The necessary 
statistical methods are derived and linear as well as non-linear formulations of the wave 
elevation are given. 

Chapter 4 describes procedures for determination of the global wave loads on ships. The 
linear formulation in the frequency domain is the basic method, but non-linear 
formulations in both frequency and time domains are also treated in order to obtain 
realistic extreme hull girder loads. 

Chapter 5 deals with the determination of hull girder stresses due to sectional bending, 
shear and torsional loads. The analysis is performed within the framework of elastic 
thin-walled beam theory. 

Hull vibrations are treated in Chapter 6 and, finally, in Chapter 7, the concept of 
reliability analysis is introduced. 

No textbooks available today cover all parts of ship structural design. However, Hughes 
(1988) gives a very comprehensive discussion of many topics and can be recommended 
for further reading. 
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Hydrostatic Loads 

When a structure is at rest in a calm sea, the submerged parts of the structure will be 
subjected to hydrostatic pressure forces. The hydrostat ic  pressure  p acts 
perpendicularly to the exposed surfaces with a magnitude 

p = - p g Z  (2.1.) 

where p is the mass density of sea water, g is the acceleration of gravity. Z is the vertical 
coordinate in a global XYZ-coordinate system, situated with the (X,Y)-coordinates in 
the still water surface and with Z pointing out of the water, see Figure 2.1. 

I 
7 

lY, 
v 

Figure 2.1 XYZ-coordinate system. 

Eq. (2.1) simply follows from the fact that shear stresses do not exist in a fluid like water. 
Thus, the pressure on a horizontal control plane in the fluid is equal to the weight of the 
fluid above this plane. 

The total hydrostat ic  force  vector  F - (Fx,  Fy, Fz) on the structure is obtained by 

integration of the pressure p over the submerged surface S: 

S 

(2.2) 

where 1! = (n x,  n r, nz)_ denotes the normal vector to the surface, directed into the 
water, see Figure 2.1. 



LMz 
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My 

Figure 2.2 Moments with respect to the XYZ-system. 

As the normal vector is a function of (X, Y, Z), the integration in Eq. (2.2) can be quite 
complicated. Later, in Section 2.2, two different procedures will be described for 
performing integrations over the submerged surface. 

Static equilibrium requires that the net total force and moment vectors on the structure 

are zero. The moment vector M = ( M s, Mr, M z ) due to the hydrostatic pressure 
becomes see (Figure 2.2): 

Mx= - [ J P (nz Y - n v Z  ) dS 
s 

(2.3) 

If 
S 

(2.4) 

S 

(2.s) 

Here M X, My, M z are the moments of the hydrostatic pressure force with respect to 
the X-, Y- and Z-axis, respectively. 

Static equilibrium requires that the force F and the moment M are counteracted by other 
static forces: 

F - -  - F r ( 2 . 6 )  
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and 

M = - M r (2.7) 

where F r and M r are the total force and moment vectors, respectively, of these other 
forces. For marine structures, these forces may be gravitational forces, reaction forces 
from contact with a quay or a seabed, forces due to wind and current and mooring forces. 

For structures with a fixed position in the sea, as for instance bottom-supported offshore 
drilling rigs or grounded ships, Eqs. (2.1) - (2.5) yield F F_, M and the reaction forces then 
follow from Eqs. (2.6) - (2.7). 

For floating structures like ships, semi-submersibles and tension-leg platforms, the 
hydrostatic pressure resultants F__, M cannot be calculated directly from Eqs. (2.1) - 
(2.5) as the submerged surface S is not known in advance. The equilibrium position of 
the structure in the sea and thus the submerged surface S must first be determined from 
Eqs. (2.1) - (2.7). The solution procedure for this problem is given in Section 2.1. This 
procedure makes use of some hydrostatic coefficients. Two different procedures for 
calculation of these coefficients as well as other coefficients, necessary to obtain 
sectional loads and to assess the hydrostatic stability, are presented in Section 2.2. 
Sectional loads may then be determined as described in Section 2.3. Finally, hydrostatic 
stability is discussed in Section 2.4. 

2.1 EQUILIBRIUM POSITION FOR A FLOATING STRUCTURE 

In this section the equilibrium position of a rigid body, floating at rest in a calm sea, is 
determined. A rigid body is assumed which yields a position completely determined by 
the translation and rotation of an xyz-coordinate fixed in the body with respect to the 
global XYZ-system. Thus, the six equations (2.6) - (2.7) are sufficient to determine the 
position of the structure in a calm sea. For a very elastic body, e.g. a subsea membrane 
oil storage tank, the elastic deformations of the structure due to hydrostatic pressure 
may seriously change the hydrostatic loadings. In such cases, the equilibrium condition 
can only be found by solving a complete elastic structural model subjected to all 
external loadings (hydrostatic pressure, gravitational loads, reaction forces) and the 
relevant boundary conditions. The very large elastic deformations, which necessitate 
such an approach, also make the problem highly non-linear and therefore often difficult 
to solve. 

However, ships and most other marine structures are so rigid that the elastic 
deformations due to the hydrostatic pressure do not change the hydrostatic pressure 
loads to any significant degree. A few per cent reduction in the sectional forces might 
be achieved if the hull girder flexibility is taken into account. This reduction is, 
however, usually neglitible considering the uncertainties in the mass distribution. 

For a floating body where the submerged surface S is completely in contact with the 
water, the hydrostatic pressure resultants F F_, M__, Eqs. (2.2) - (2.5), can be written more 
conveniently by applying the Gauss integral theorem, which states that in general 
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S. V 

(2.8) 

where So is the complete surface of the volume V. The vector v = _ (Vx, Vy, Vz) is any 

differentiable vector and n is the normal to the surface, pointing out of the volume. 
Furthermore, 

v .  n = vxn x + vYnY + vzn  z (2.9) 

Ov X OVy Ov Z (2.10) 
divv = ~ + ~ + O---Z 

In the present case, So is chosen as the submerged surface S plus the intersection surface 
A w between the structure and the still water surface, see Figure 2.3. Thus, So becomes 
a single-connected closed surface which bounds a volume equal to the volume V of the 
submerged part of the structure. 

Aw 

Figure 2.3 Surfaces So, Aw defining the submerged volume. 

Insertion of Eq. (2.1) into Eq. (2.2) yields 

F = pg f f Z n d S  = p g I  I Z n d S o  

s so 

as Z = 0 on Aw. For v = (Z, 0, 0), Eq. (2.8) yields 

(2.11) 

= -5-~dV = 0 

S, V 

and similarly with v = (0, Z, O)and v = (0, O, Z): 

(2.12) 

J f = 0 Zn ydS o 

So 

(2.13) 
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Hence 

S. V V 

Fx=Pg ffZnxdSo =0 
So 

(2.14) 

(2.15) 

Fy=PgJfZn~So=O 
So 

(2.16) 

Fz=pg ffZnzdSo=Pg V 
So 

(2.17) 

The physics behind Eqs. (2.15) - (2.17) were discovered by Archimedes, who stated 
that the net force on a submerged body is directed vertically upwards and equal to the 
weight of the displaced volume of the fluid. 

Likewise, the moment vector M, Eqs. (2.3) - (2.5), can be rewritten by use of Eq. 
(2.8) 

So V 
(2.18) 

So V 

Mz =pg f f Z (nyX- nxY)dSo =0 

(2.19) 

(2.20) 

Thus, only three out of the six force and moment resultant components of the 
hydrostatic pressure are different from zero. The three equilibrium equations in Eqs. 
(2.6) - (2.7) concerned with forces acting in the (X,Y)-directions are thus independent 
of the hydrostatic pressure loadings. This implies that the horizontal position in the 
XY-plane of the structure is independent of the hydrostatic pressure and is either 
indeterminate, as for a freely floating structure, or determined from an equilibrium 
between, for example, horizontal mooring forces and loads derived from wind and 
current. 
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The remaining equilibrium equations from Eqs. (2.6) - (2.7) are 

pgV + Frz = 0 (2.21) 

pgLy + Mrx = 0 (2.22) 

- p g L  X + Mry = 0 (2.23) 

where the volume moments 

V 

(2.24) 

V 

(2.25) 

have been introduced. The vertical force Frz and the moments Mrxand Mrywith respect 
to the X- and Y-axis, respectively, contain the contributions from all other external 
forces acting on the structure than the hydrostatic pressure loads. These forces are 
gravitational forces and, possibly, vertical forces due to mooring systems or 
concentrated grounding forces. Except for tension-leg platforms the vertical mooring 
forces are usually negligible in comparison to the gravitational forces. Grounding on 
a rock may lift the ship so much vertically that the grounding reaction becomes 
comparable to the gravitational loads. This special case will be considered later in this 
section. 

First, the normal case of a freely floating structure is considered. Here, Frz, Mrx and 
Mry only contain contributions from the gravitational forces on the structure. These 
forces depend on the mass distribution of the structure, which must be determined from 
the general arrangement and the loading conditions. This is normally a very tedious job, 
considering the number of weight items in a typical marine structure. To determine the 

equilibrium position, only the total mass M and its centre of gravity (Xg, yg, zg) in a 

local xyz-coordinate  system are necessary. These values may be obtained simply 
by summing up all the individual items of mass, given by their mass M i and centre 

of gravity (x~, y~, z~)as follows" 

M = E M i  (2.26) 
i 

i M i  (2.27) xgM = EXg 
i 

i yg M = E Yg Mi (2.28) 
i 
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Then 

i M i (2.29) z g M  = Z Z g  

i 

Frz = -  gM (2.30) 

Mrx = -  gMYg (2.31) 

M r y -  gMXg (2.32) 

where (Xg, Yg) are the horizontal coordinates of the centre of gravity in the global 
XYZ-system. The equilibrium equations (2.21) - (2.23) can then be written" 

E 1 - V -  V = 0 (2.33) 

E 2 --- X g V -  L X = 0 (2.34) 

E 3 = Y g V -  L y  = 0 (2.35) 

with 

v-M p (2.36) 

Z 

0 z 

,,p Y 

X T 

Figure 2.4 Relation between the local xyz- and the global XYZ-coordinate systems. 

Determination of the equilibrium position is equivalent to finding the relation between 
the local and the global coordinate systems. In matrix form, the relation from Figure 2.4 
is seen to be 
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{i} lc~176 ~ 0 0 
= 1 cos99 sin99 

[sin 0 0 cos 0 J - sin 99 cos q9 

or alternatively 

I { i } + { O T }  (237) 

X = x cos 0 + y sin 0 sin 99 - z sin 0 cos 99 (2.38) 

Y = y cos 99 + z sin 99 (2.39) 

Z = x sin 0 - y cos 0 sin 99 + z cos 0 cos 99 - T (2.40) 

The unknown quantities are: the trim angle 0, the heeling angle tp and the translation 
T. As the still water surface is defined by Z = 0, the translation T is the vertical distance 
between the origin of the xyz-system and the still water surface and is therefore a 
measure of the draught. 

The three equilibrium equations (2.33) - (2.35) can now be expressed in terms of the 
three variables 0, r and T. Explicit expressions are found for Xg and Yg by substitution 
of x = Xg, y = yg and z = Zg into Eqs. (2.38) and (2.39). However, the submerged 
volume V and its volume moments L X and L r also depend upon 0, (p and T through the 
integration domain. This makes the equilibrium equations non-linear in the variables 
and an iterative solution procedure must be applied in order to solve the Egs. (2.33) - 
(2.35). 

The solution procedure starts with an initial guess (T o, 0 0, 990) for the three unknowns. 
The corresponding values of the residuals (El, E2, E3), Eqs. (2.33) - (2.35), are 
probably not zero, but can be used to obtain an improved estimate T1, 01, 99 1 by a 
Taylor series expansion about (To, 0o, 990): 

i OEi i OEi ( r  1 -- TO) + Ei (T1, 01, 991) = Ei[o + ~ 0 0 (01 - O o )  

+ - ~ o  OEi[ (991-  990) ; i =  1,2,3 

(2.41) 

truncated after the first order terms. The notation 10 means evaluation of the expression 
using T 0, 0 0 and 990" For the sake of simplicity, this notation will be omitted in the 
following. On the assumption that E i (T 1, 0 1, 991) = 0 for i = 1,2,3, the following 
linear equations determine T 1, 0 1 and 99 1: 
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OE 1 OE 1 OE 1 

O T O0 Oq) 

OE 2 OE 2 OE 2 

O T O0 Ocp 

3E 3 OE 3 OE 3 

O T O0 Ocp 

T 1 - T O E1 

01 00 = - E2 

1 (/90 3 

(2.42) 

As higher order terms in the Taylor series expansion have been omitted, E i (T 1, 01, q 91) 
are, however, normally not zero. Therefore, (T 1, 01, cp 1) must be used in a new iteration 
replacing (T 0, 0 o, q)o)to yield a better estimate (T 2, 0 2, q92)and so forth. Usually, only 
a few iterations are needed, but for complicated structures like damaged ships several 
iterations may be necessary before a convergence (E i = 0) is achieved. 

In order to solve Eq. (2.42), the derivatives of E i on the left hand side must be 
determined. This is most conveniently done by analysing the integral J of an arbitrary 
function G(X, Y) over the submerged volume V" 

v 

The integration in the Z-direction ranges from the submerged surface S, given by 
Z s = Zs (X ,  Y), to the still water surface (Z = 0). It is easily seen that differentiation 
of J with respect to a = (T, 0, q)) yields 

o-~ = - T g  c ( x ,  D a x ~  + Th- dV 

Aw V 

(2.43) 

for any single-connected submerged surface. The only assumption in Eq. (2.43) is that 
the water p lane  area A w defined as the area of the plane Z = 0 inside the structure" 

A w 

does not change with ~t. 

From Eqs. (2.38) - (2.40) it follows that 

OZ 
OT 

OZ OZ 
' O0 = X  ; Oq) - Y c o s 0  (2.45) 

and, therefore, for G(X, Y) = 1 Eq. (2.43) yields 

OV OV 
OT - A W  ; O0 S y  , 

OV 
Ocp = S x c o s O  (2.46) 



1 4  H y d r o s t a t i c  L o a d s  

where the moments of the water plane A w : 

S x =  I I Y d X d Y  ; 

Aw 

Sy=flx x  
Aw 

(2.47) 

have been introduced. 

Similarly, G(X, Y) = X leads to 

OL X 
OT - S r 

(2.48) 

OL X 
O0 

- - I y y - L  z -  TV (2.49) 

OL X 
Oq9 

- Ixy cos O + L y sin 0 (2.50) 

using 

OX 
O0 

- - ( z + r )  OX 
Oq9 - Y sin 0 (2.51) 

and, finally, G(X, Y) = Y yields 

OLy 

OT 
- sx  (2.52) 

0Ly 
00 

- - / x r  (2.53) 

OLy 
Ocp 

- I x x c o s 0 - L  x s i n O + L  z c o s O +  TV cos0 (2.54) 

using 

OY_ 0 ; OY 
O0 Ocp 

- - X s i n 0  + (Z + T)cos0 

Here the quadratic moments of the water plane area are given by 

Ixx=[ [y2dXdY 
A w 

(2.55) 

(2.56) 
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A w 

(2.57) 

I y y =  [ f X 2 d X d Y  

A w 

(2.58) 

and the volume moment  

Lz=Illz  
v 

(2.59) 

analogous to L x and L r defined in Eqs. (2.24) and (2.25), respectively. 

The derivatives of the residuals El,  E2, and E 3 can now be found from Eqs. (2.33) - 
(2.35), (2.46), (2.48) - (2.50) and (2.52) - (2.54) along with Eqs. (2.51), (2.55): 

dE1 _ (2.60) OE1 - OEa - -  S y  ; - -  S x c o s O  
OT - A w ; O0 0 9 

OE 2 3E 2 OE 2 
OT - - S y  ; O0 - Iyy  - TEl  - E4 ; Oq9 IxycOS0 + E3sin0 (2.61) 

OE 3 OE 3 OE 3 
OT = - S x  ; 00 - IxY ; 0cp Ixx c~ - E2sin0 (2.62) 

+ E4 cos 0 h- TE 1 cos 0 

where 

E4 = ZgV - L z (2.63) 

analogous to the definitions (2.34) and (2.35) of E 2 and E 3. Note, however, that 
usually E 4 ;~ 0 at equilibrium. 

In the next section, the calculation of the water plane coefficients A w, Sx,  S r 

Ixx,  I x y  and Iyy, the volume V and the volume moments Lx,  L y  and L z will be 
discussed. 
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Figure  2.5 S h i p  g r o u n d e d  on  a rock. 

Example 2.1.1 

If, for instance for a grounded ship (Figure 2.5), the hull is supported by the seabed at a point (x0, Y0, z0), 
then Eqs. (2.30) - (2.32) for the external forces must include the unknown reaction R at this point" 

F,. z = - g M  + R (2.64) 

Mrx = - g M Y g  + R Y  o (2.65) 

M,.~, = g M X g -  R X  o (2.66) 

where X o and Y0 are the global coordinates for the contact point, obtained from Eqs. (2.38) - (2.40) 
by use of ( x , y , z )  -- (xo, Yo, Zo). Hence, the equilibrium equations (2.21) - (2.23) can be written 

E] = E 1 - ~ g g  = V - R _ _ _  V = 0 (2.67) 
P g  

E2 = E2 - XoU~ = x g v -  L x  - X o ( V -  v) = o (2.68) 

e~ = E3 - roe~ = Y ~ V -  L y -  Y o ( V -  V) = 0 (2.69) 

where the two moment equilibrium equations are now conveniently are taken with respect to the contact 
point (X 0, Y0) to eliminate the reaction force R from the equations. Thus, R only enters into the 
equilibrium equation (2.67). The four unknowns R, T, 0and q0 are determined from Eqs. (2.67) - (2.69) 
and the geometrical condition for the contact point, Eq. (2.40): 

E o -  - T + x  o s i n 0 - y o c o s 0 s i n c p  + z  o c o s 0 c o s q g - Z  o = 0 (2.70) 

where Z 0 is the known global vertical coordinate for the contact point. The solution to Eqs. (2.67) - 
(2.70) can be obtained by solving the three non-linear equations (2.68) - (2.70) for T, 0 and g, by using 
the same procedure as for the freely floating structure: 

E 2 = o .  E ~ = o -  E a = o  (2.71) 

with derivatives 
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OT _ _ S v + X o A  w 

OE~ 0E 2 OX o OE l 
O0 - O0 O0 E1 - X ~  -0 -0  

= I ~ - -  TEI - E  4 + (Z o + T)E l - X o S  v 

= I . ,  - X o S v  - e*~ 

dcp - - ( I x r -  XoSx) cos0 + E3 sin 0 

o E ;  
m 

OT S x + YoAw 

0E; 
00 = I x v -  Y~ 

0 E ~  _ 
O c p  - - (Ixx - Y~ cos0 - E2 sin0 + E~ cos0 

0Eo 0E~ 0e~ 
0T - - 1, 00 - X~ 0q~ Y0 cos 0 

(2.72) 

where 

E4 "--- E 4 - ZoE 1 (2 .73)  

When (2.71) has been solved for the next approximation (T, 0, ~)i by use of the derivatives calculated 
at the previous approximation (R, T, 0, cp) i_ 1, the new value of the reaction Riis  obtained explicitly 
from Eqs. (2.67). 

In a grounding situation, a final value of R less than zero probably implies that the ship lifts off from 
the contact point and becomes freely floating again. 

In the case of two contact points, only one free parameter defining the position of the ship in the water, 
remains, as a new geometrical restraint similar to Eq. (2.70) holds for the second contact point. With 
three points of contact, the equilibrium position is completely given and the three restraint quations 
yield the three unknown reactions. 

2.2 H Y D R O S T A T I C  C O E F F I C I E N T S  

In order to calculate the equi l ibr ium posi t ion of the structure, the fol lowing hydrostatic 
coefficients must  be determined at each iteration step: 

Volume integrals: 

Volume V, Eq. (2.14) 

Volume moments" L x ,  L y ,  Lz; Eqs. (2.24) - (2.25), (2.59) 

Water  plane integrals: 

Water  plane area" A w; Eq. (2.44) 

Momen t s  of water  plane area" S X, S y ;  Eqs. (2.47) 

Ix_ x, Ixy, I w ;  Eqs (2.56) - (2.58) 
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It should be noted that all moments are defined in terms of the global coordinates, but 
use of the transformation (2.38) - (2.40) makes it possible to express them in the local 
xyz-coordinate system fixed in the structure. Thus, for instance 

L,--fffzav--L s,nO-LycosOs n o+L co Ocos -  
v 

(2.74) 

where the volume moments are given by 

v v 

For the integrals over the water plane area, the relation 

ox ox 
Oy 

dXdY = det 0___Y OY dxdy 

Ox Oy 

v 

(2.75) 

(2.76) 

is used. At the water plane Z - 0, Eqs. (2.38) - (2.40) imply that 

X -  x - T tan0  
COS 0 

Y Y = - xtan0tanq9 + ~ + 
T tan cp 

cos 0 

so that 

dXdY = ax@ 
cos 0 cos cp 

This yields the following expressions: 

A w = f f dXdY = 
Aw 

Aw 
cos 0 cos 

s x = f  f Y d X d Y - - - S y  tanOtancp 
cos 0 cos q0 

A w 

Sx + 
COS 0 COS2 (/9 

tan cp 
+ T Cos0 aw 

(2.77) 

(2.78) 

(2.79) 

(2.8o) 

(2.81) 

with analogous formulas for St, Ixx, Ixy and I ~ .  Here 

A~ 
(2.82) 
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is the water plane area, projected onto the local xy-plane and 

Sy = I f x d x d y  ; Sx = I l y d x d y  

A.~ A., 
(2.83) 

are the corresponding area moments. 

Example 2.2.1 

For a structure symmetrical about the plane y = 0 and with the centre of gravity in this plane (yg = 0), 
the equilibrium equation (2.35) and the relation (2.39) yield 

zgVsincp - Lzsincp = 0 (2.84) 

as Ly = 0 due to the symmetry. The vertical centre of buoyancy 

_ Lz 
zb-- V (2.85) 

usually differs from the vertical centre of gravity Zg and hence, the equilibrium equation (2.84) requires 
that tp = 0 (or ~p = 180~ The two remaining equilibrium equations (2.33) - (2.34) are solved by use 
of the derivatives of E 1 and E2, Eqs. (2.60) - (2.61), with respect to T and 0. 

For ships with a pronounced longitudinal axis, the angle of trim 0 is usually very small, so that 
cos 0 "-" 1 and sin 0 --- 0 can be assumed in the derivatives of E 1 and E 2 without reducing the rate 
of convergence towards the equilibrium position. In addition, the term E4, Eq. (2.63), is often also 
small in comparison with I~ .  In that case, the derivatives assume the simple form of 

OE l OE 1 
01" - Aw " O0 - Sy 

OE 2 OE 2 
OT - S y  " O0 

(2.86) 

containing only water plane coefficients calculated in the local xyz-system. These formulas are often 
used in hand calculations for simple geometrical structures. 

From Eqs. (2.42) and (2.86) it follows that the first estimate (A T, AO) for the correction to the assumed 
equilibrium position satisfies 

- A w A T  + SyAO = - E~ 

- S y A T  + IyyAO = - E 2 
(2.87) 

where E l and E 2 are calculated for the assumed position. The solution becomes 

A T =  
EiIyy - E2gy 

lyy A w - S2y 

AO= 
E,s~- E~Aw 
lyy Aw - S 2 

(2.88) 
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These formulas are also useful to determine the change in equilibrium position when a mass item m 
is added (or removed) from the ship. In such cases 

_ m ' m  (2.89) E 1 - -ff ; E 2 = Xg-~ 

where Xg is the centre of gravity of the additional mass m. 

By introduction of the longitudinal centre of flotation xfdefined by 

Sy= I Jxdxdy=xfAw 
Aw 

(2.90) 

the quadratic moment lyy can be written 

' y r = f l x Z d x d y = I I ( x - x y + x y ) i ~ d y  

Aw Aw 

- - I ] ( x - - x f ) 2 d g d y + x } A w  

A., 

- Ir .  + q A ~  

(2.91) 

Inserting Eqs. (2.89) - (2.91) into Eqs. (2.88) yields 

m 1 Ao = -a(~r- 4 ) ~  (2.92) 

and 

_ m  1 ATf = AT - xfAO PAw (2.93) 

The draught change A Tf is the draught change at x = xf, see Figure 2.6. 

m rAT 
. . . . . . . . . . . . . .  

Figure  2.6 Draught and trim changes due to an added mass item. 

The ratios 

m _ pAw m ( x f -  x'g) 
~ r  I " dO = P i t :  

(2.94) 
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are denoted the mass to change draught and the moment to change trim, respectively, and are very useful 
data for the captain during loading and unloading of the ship. 

Example 2.2.2 

Consider a rectangular box with the length L, the breadth B and the depth D. The total mass is M with 
a centre of gravity (Xg, O, Zg) in a coordinate system (x,y,z) with y = 0 and x = 0 at the intersection 
between the vertical planes of symmetry and with z = 0 in the bottom of the box. Thus, as in Example 
2.2.1, the angle of heel q9 is equal to zero. 

On the assumption that the depth is larger than the sectional draught along the whole length of the 
structure, the volume coefficients become 

V = L B T  

Lx = - --~ BL3 tan O 

Ly = O 

using 

fff <x,y, >dV= 
v 

i2i2f ianO t f ( x ,  y, z) dz 

-L/2 -B/2 0 

dx 

and T - T / c o s  0. Physically, lb and T are the draught amidships measured perpendicularly to the 
yz-plane and YZ-plane, respectively. 

The water plane coefficients are 

Aw = BL 

S x =  S~ = I ~  = O 

Hence, the two equilibrium equations (2.33) and (2.34) become 

E l = V - B L ] ' =  0 

E2-1x cosO z sinOIV+ BL3sinO+  L( 2+ L2tan20)sinO-O 
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by application of Eqs. (2.38) and (2.40). The first equation yields 

f _  V M 
BL pBL 

whereas the second equation provides an equation in tan 0: 

~4L2tan30 + ( - z g ~ " +  ~ 2 L 2 +  11"2)tan0 + xj '=O 

As a numerical example, let 

L = 100 m, B - 20 m, 

Then, the equilibrium position becomes 

Xg = 10 m, Zg -- 5 m and V = 14000 m 3 

~ =  V ~-L - =  7m 

and 

tan0 = - 0 . 0 8 4 7 6  =~, 0 = - 4 . 8 4 5 ~  

so that 

T =  7 ~cos0 = 6.975m 

With (7 ~, 0)o = (V/BL, 0)o as a first guess, the iteration procedure (2.42) yields 

- B L ( ~  - ~ o )  = - e ~ l  o = 0 

[ I .  - ( z ~ V -  L ~ ) ] o ,  = - E~I  ~ = - ~ v  

o r  

Tl= T o = T  = 7 m  

and 

xgf 
tan0, = - • L2 - ( z j " -  �89 ~ )  0.08507 

which implies 

01 = - 4.862~ 
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In hand calculations, see Example  2.2.1, the approximate  formula  for the derivative may be used: 

so that 

0E 2 
o0 - I .  

tan01 -- - x j '  ~L2 = - 0.08400 

01 = - 4 .802~  

In both cases, the first est imate 01 is very close to the exact value 0 = - 4.845 o. 

The transformation of the volume and water plane area integrals from the global 
XYZ-system to the local xyz-system facilitates greatly the numerical integrations as 
the surface geometry is given in the xyz-system. However, two- or three-dimensional 
integrations still have to be performed. For ships, the integration are normally 
performed by first determination of the sectional properties, e.g. the properties for x = 
constant, followed by an integration along the x-axis. For more complicated structures 
with no specific longitudinal axis or with a very complex exterior form such as a 
semi-submersible or a damaged ship with flooded compartments, it may be more 
feasible to consider individually each panel subjected to the hydrostatic pressure. These 
two procedures will be discussed in the following subsection. 

2 .2 .1  I n t e g r a t i o n  o f  S e c t i o n a l  C o e f f i c i e n t s  

In this procedure, volume integrations are carried out as 

x i ] .... f ,I 
V Xmi. A(X) 

(2.95) 

where A(x) is the submerged sectional area at x = x, see Figure 2.7. By suitable choice 
of i, j, k the volume moments Lx, Ly and Lz as well as the volume V are obtained. Xma x 
and Xmi n a re  the maximum and minimum values of the x-coordinate of the submerged 
volume, respectively, see Figure 2.7. The integrand 

Sjk(x)-- f f Jzkdydz 
A(x) 

(2.96) 

in Eq. (2.95) represents sectional hydrostatic coefficients often denoted Bonjean 
curves. If the heeling angle r is equal to zero, these coefficients will be a function of 
only the local sectional draught and can easily be visualised as curves. 
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Yrnax(x) ~Z 

X =  X X ma 

Figure 2.7 Submerged sectional area A(x) and the integration domain. 

The sectional integration domainA(x) in Eq. (2.96) is bounded by the sectional contour 

Qs: 

Zs = Zs(y) (2.97) 

and the water line f2w at x = x: 

x tan 0 T 
zw(y) = y tan 99 cos c,p + cos 0 cos tp (2.98) 

which follows from Eq. (2.40) with Z = 0. Numerical integration of Eq. (2.96) is usually 
most easily carried out by transforming the integral over A(x )  to an integral along the 
contour fl by use of Green's theorem: 

OP OQ f -r f [Qdy+Pdz] 
A f2 

(2.99) 

where P = P(y, z) and Q = Q(y, z) are any differentiable functions of y, z and where 
,(2 = f2s + f2w is the closed contour of the area A. In order to avoid problems with 
uniqueness by use of Eqs. (2.97) and (2.98), the sectional contour is normally given as 

Ys = ys(t) ; Zs = Zs(O (2.100) 

Yw = yw(t) ; Zw = Zw(t) (2.101) 

where t E [tl;t2] is a continuous parameter. Typical piece-wise third order 
polynomials in t yield a sufficiently accurate description of any hull form. The 
coefficients in these polynomials are determined from the requirement that continuity 
in both the tangent and the curvature must exist between each segment, if not otherwise 
specified. 

By use of Eqs. (2.99) - (2.101), the integral Sjk can be written: 
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Sjk 
- 

t2 

1 J / +  l(t ) zk(t) dz j + l  -~dt 
t~ 

t 2 

a [/(0 ay k + l  -~dt  
tl 

(2.102) 

OP OQ on the assumption that either ~ or - ~  is equal to yJ z k. That the expressions above are 

identical is easily verified by partial integration using y(tl) = y(t2) ; z(q) = z(t2) as 
the contour s + g2w is closed. Which of the expressions is most suitable depends on 
the parameter descriptions (2.100) and (2.101). A polynomial form of the integrand is 
seen to allow for analytical integration of Eq. (2.102). Finally, the volume integrations 
Eq. (2.95) 

Xmax 

fffxi/z  dydz: f x%<x)dx 
V Xmin 

(2.103) 

must normally be carried out numerically, for example by means of the Simpson rule. 

The water plane coefficients Aw, Sx, Sy, Ixx, Ixy and lyy are obtained by integration 
first along the y-axis then with respect to x. In general xwlI! 

A ,w xw2 B 

dx 
(2.104) 

with Xwl  <_ X <_ Xw2. Here 

y .... (x) 

~(x) ym,~ 

"+1 "+1 _ 1 (Y/max(X) _ Y/min (x))  (2.105) yJdy j + l  

where Ymin(X) <_ y (x[Z = 0) _< Ymax(X), see Figure 2.7. 

2.2.2 Integration of Submerged Panels 
For complicated submerged surfaces, definition and integration of sectional 
coefficients as described in the previous subsection may not be feasible. Alternatively, 
it may be appropriate to add directly the contributions from each submerged panel to 
the hydrostatic coefficients. 
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The water plane coefficients A w, Sx, Sy, Ixx, lxy and lyy are obtained as before from 
the general expression 

HO=-I fx i yJdXdY  

Aw 

(2.106) 

by suitable choice of (i,j). Each submerged panel thus contributes to Hij by its projection 

onto the still water surface. If the closed contour of this projection of a panelp is denoted 

K2p and given by (Xp(t), Yp(t); tip < t < t2p ), then Green's theorem, Eq. (2.99), 

yields 

n I Hq i + 1  
p=lQp 

.,n'p 1yJp dt 

1~I" "+ldXpdt 
j + 1 X~p r /  dt 

p=l~p 

(2.107) 

where n is the total number of submerged panels. Which of the two formulas to apply 
depends on the way (Xp, Yp) are given. If each panel is approximated by a polygon, the 
contour consists of a set of m straight lines, each given by for example 

Ypq -- apqXpq + bpq , q = 1, 2,..., m (2.108) 
gpq 1 < Xpq <_ Xpq 2 

where the coefficients apq, bpq are determined from the contour curve given in local 
xyz-coordinates and transformed to the XYZ-system by means of Eqs. (2.38) - (2.40). 
Taking t = Xpq, Eq. (2.107) becomes 

Hq= 

pq2 

1 i :j+l j + 1 Xpq y3pq dSpq 
p= l q= l xpqt (2.109) 

pq2 

I = ' Z + ' ' *  
j + lp=lq=lx,,,, 

so that analytical integration can easily be performed for the water plane coefficients. 
Thus the numerical integration along the x-axis using sectional coefficients, as 
described previously, is avoided. Of course, the approximation of the submerged 
surface by n flat panels introduces another numerical error. 
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The volume integration, yielding V, Lx, L r and Lz, is somewhat more elaborate but 
it can be carried out analytically, see Schalck and Baatrup (1990), where explicit results 
are also given. 

Even if it is more feasible to use integration of sectional coefficients for ship structures, 
panel integration may be used in addition to account for appendages like rudder and keel 
and for flooded compartments of a damaged ship. In such cases, the hydrostatic 
coefficients in total are obtained as the sums of the contributions from the sectional 
integration and the panel integration. 

2.3 SECTIONAL FORCES 

When the equilibrium position of the structure in the water has been determined, the 
hydrostatic loading given by Eq. (2.1) is known at the entire submerged surface. 

For complex structures where a panel discretization of the surface has been used, the 
structural analysis is most conveniently performed by applying the pressure obtained 
from Eq. (2.1) to each panel. The structural modelling may be very detailed by use of 
the so-called finite element method (FEM). The solution to the problem then yields the 
stresses and deformations at all locations in the structure. 

Although formally a straightforward procedure, the FEM analysis is usually a very 
time-consuming method, especially in terms of the manpower necessary to generate the 
structural model and to interpret the results. Such detailed analyses are typically needed 
for offshore structures and very unconventional ships. The FEM procedure is, however, 
outside the scope of the present treatment which covers mainly beam-like structures. 

A ship can usually be considered a beam-like structure with a distinctive longitudinal 
axis. For such a structure, the structural analysis is normally most easily performed in 
two steps: 

(i) Determination of sectional forces in selected positions along the longitudinal 
axis. 

(ii) On assumption of a beam-like deformation pattern, the stress field having re- 
sultants equal to the sectional forces is determined. 

The first step is carried out by applying equilibrium of external and sectional forces on 
each section. This is very easy as a floating beam is a static determinate structure with 
zero sectional forces at both ends. The results for the sectional forces will be derived 
below. 

To solve the second step, assumptions regarding the deflection pattern of the structure 
are required. For bending and shear the Navier hypothesis is applied, which states that 
the plane cuts perpendicular to the neutral axis for bending will remain plane (but not 
necessarily still perpendicular to the neutral axis) after the external load has been 
applied. This assumption results in the so-called Timoshenko beam theory and yields 
a very accurate analysis of typical ship hulls. Torsional stresses induced by torsional 
loads require further assumptions on the longitudinal deflection pattern. The Vlasov 
beam theory is the simplest formulation leading to useful results. Both the Timoshenko 
and the Vlasov beam theories are described in Chapter 6 as applied to ship hulls. Note 
that step (ii) is independent of the type of loads considered. Therefore, before 
performing step (ii) the hydrostatic loads, considered in this chapter, and the 
hydrodynamic loads, discussed in Chapter 4, may be added together. 
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The external static forces considered here are gravitational and hydrostatic forces. The 
resultants of both forces acting on a section of the structure are directed vertically in the 
global Z-direction. 

The sectional forces at an intersection x = ~- are determined from the requirement that 
the sum of external forces acting on any section should be in equilibrium with the 
sectional forces. If the section considered is defined by x _ ~ (or x _> X'), then only 
sectional forces at x = x enter this requirement as the sectional forces at the ends of the 
structure are zero. 

With external forces in the Z-direction only, the sectional forces at x = X" consist of a 
vertical force Qz(X) and two moments Mx(~), M ~ )  about the global X- and Y-axis, 
respectively. The remaining sectional forces: Qx(~), Q ~ )  (horizontal forces) and 
Mz(x- ) (moment around the vertical axis) are zero. However, if horizontal external loads 
due to wind, waves or mooring forces are present, non-zero values of these quantities 
may of course also appear. 

Figure 2.8 Sectional forces. 

The equilibrium conditions determining Q z(y.), Mx(x- ) and M~x--) are analogous to the 
equilibrium equations (2.21) - (2.23). With the sign convention shown in Figure 2.8 
vertical force equilibrium yields: 

Qz(.g') = gM(.v,) - pgV(x-) (2.110) 

where M(~') and V(~) are the mass and the total submerged volume, respectively, of the 
part of the structure where x < .~. Moment equilibrium about the global X-  and Y-axis 
gives 

Mx(x- ) = gYg(x-) M(X) - p gL y(x-) (2.111) 

and 

Mr(X) = - gXg(~) M(X) + p gLx(~) (2.112) 

respectively. Here (Xg(~), Yg(~)) are the global coordinates to the centre of gravity 
related to M(.~). Lx(X ) and Ly(x--)are volume moments: 
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Vex-) V(x--) 

(2.113) 

The sectional forces Qz(x-), Mx(X ) and M~x-) are not the real physical forces and 
moments acting at x = .~, as the hydrostatic contributions V(s Lx(~ ) and L ~ ' )  
assume that the hydrostatic pressure also acts on the submerged intersection area A(~'). 
This intersection plane is virtual and therefore the hydrostatic loads entering Eqs. 
(2.111) - (2.112) should be corrected by a force F: 

F= - P g f  IZdA 
A(x--) 

(2.114) 

perpendicular to the plane x = .~. 

The centre of gravity (Xg(x--), Yg(~)) and the volume moments Lx(X" ) and Lr(X" ) are easily 
expressed in terms of the local xyz-coordinates by use of the transformation of Eqs. 
(2.38) - (2.40). Thus, for instance 

Xg(~) = Xg(~.) COS 0 + yg(~) sin 0 sin ~ - Zg(~) sin 0 cos cp (2.115) 

Lx(~) = I f  f x d V c ~  I ydVsinOsinq9 
v(x) V(x-) 

- I J I  .,sinocos o 
V(x-) 

(2.116) 

where (Xg(R,), yg(.~), zg(Y.)) are the centre of gravity for the part of the structure where 
x _< x. As the local coordinate system is fixed in the structure, (xg(~), yg(y.), Zg(~)) do 
not depend on the equilibrium position. Liquid cargo may change position according 
to the equilibrium condition, but this effect is usually negligible. 

In order to calculate the stress distribution at x = .~, it is appropriate to transform the 
sectional forces Qz(~), Mx(~- ) and M~X) to the local xyz-system translated to x = ~. 
This transformation is obtained first by a change of the origin from (X, Y,Z) = (0,0,0) to 
(x,y,z) = (~,0,0). This does not alter Qz(x-), but the moments mx(x" ) and Mr(x- ) are 
replaced by the following (see Figure 2.8): 

Mx(x-) = Mx(x-) - Y(x) Qz(~) (2.117) 

My(~) : My(~) + X(.~) Q z(y. ) (2.118) 
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where X(X) and Y(X) are given by Eqs. (2.38) - (2.39) with x = X, y = z = 0: 

X(X) = XcosO (2.119) 

Y(x-) = 0 (2.120) 

Thus, with the present choice of coordinate system, Mx(X ) = Mx(X ). 

The next step is to express the sectional forces Qz(x--), Mx(x- ) and Mr(X ) in the local 
coordinate system. These forces and moments are denoted by (Qx(X), Qy(x--), Qz(X)) 
and (Mx(x), My(X), Mz(X)), respectively. By inverse transformation of Eqs. (2.38) - 
(2.40) they are found to be 

Qx(x-) = Oz(X) sin 0 (2.121) 

Qy(x-) = - Qz(X) cos 0 sin q9 (2.122) 

Qz(x-) = Qz(x-) cos 0 cos cp (2.123) 

and 

Mx(X) = Mx(x- ) cos 0 (2.124) 

My(V) = MX(X ) sin 0 sin c_p + My(V) cos tp (2.125) 

Mz(x--) = - Mx(X ) sin 0 cos c.p + M~x-) sin c_p (2.126) 

Finally, the longitudinal force Qx(X) should be modified by the force F, which accounts 
for the non-presence of hydrostatic pressure in the virtual intersection plane x = x, Eq. 

(2.114). Thus, the physical value Qx(X) of this force becomes 

Q x ( ~ ) = Q x ( X ) + p g l  I Z d A  

a(x-) 

(2.127) =Qx(X)-pgl f[T-XsinO+yc~176176176 
a(x-) 

: Qx(V) - p g [ ( T  - Xsin0)A(V) + S10(x-)cos0sincp - S01(X)cos0coscp] 
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by application of Eq. (2.40) and the definition of sectional hydrostatic coefficients, Eq. 
(2.96). 

For ship hulls Qx is of  no importance but for slender structures, as for instance cables 
and pipelines,  Qx is the dominant  sectional force and the physical  value, Eq. (2.127), 
must  be used for stress calculations.  

Now, the sectional forces are given in the coordinate system fixed in the structure and 
the subsequent  stress analysis can be carried out, as will be described in Chapter 6. 

Generally,  the different sectional  forces are denoted in the fol lowing manner:  

Qx: axial force 
Qy: transverse (or horizontal) shear force 
Qz: vertical shear force 

Mx : torsional moment 
My: vertical bending moment 
Mz: horizontal bending moment 

Normally,  Qz and My are the most  important sectional forces. A positive value of My 
is called a hogging condition, whereas  My < 0 corresponds to a sagging condition. 

. . . . . .  

, ,  

i ~ , -  ~ . . . . . . . . . .  
r !  

F igure 2.9 Geometry of a barge. 

Examole 2.3.1 

Consider a box-shaped barge as shown in Figure 2.9. The length and the breadth are denoted L and B, 
respectively. The total mass is assumed to be distributed homogeneously over two parts of the structure, 
point-symmetric with respect to the centre of the structure, Figure 2.9. 

Due to symmetry, it is seen that 0 = q9 = 0 and that the draught* can be expressed as 

T -  2M~ 
p BL 

where M 0 is the mass of each of the two mass distributions. With 0 = q9 = 0 the local xyz- and the global 
XYZ-system coincide except for a vertical offset of T, see Eqs. (2.38) - (2.40). The coordinate systems 
are placed so that the Z- and z-axes are in the vertical axis of symmetry for the structure. 

* The draught T can also be interpretated as the additional draught due to the unsymmetric mass 
distribution if a uniform mass over the complete barge is added. 
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Due to symmetry in the structure as well as in the mass distribution only sectional forces in the aft part 
( -  L / 2  < .~ _< 0) need to be considered. Eq. (2.110) yields 

whei'eas the moments, Eqs. (2.111) - (2.112), become 

_L_L_ < ~ <  L 
2 -  - 10 

- L - - - < ~ <  0 
1 0 -  - 

f s  �9 _ L < z <  Mx(x-) = p g B 2 T "  1 L  " - L < x < O I o -  - 

L 
10 

I -z 2 �9 -A<z< 
M ~x-) = p g B T " L 2 1-2 L < . g <  0 

4 - 0 + 2  x ; - 1--0- - 

10 

In the local xyz-system the sectional forces are 

Q*~(x) = - l p g B T 2 

Qy(x-) = 0 

Qz(x-) = Qz(x-) 

Mx(x--) = MAx- ) 

My(x-) = Mr(x-- ) + ~ Qz(x--) ; 

Mz(x--) = 0 

-A<x<A 
2- -2 

_A<%<L_ 
2- -2 

-A<X<A 
2- -2 

-A<X<A 
2- -2 

_A<X< L _ 
2- -2 

-A<X<A 
2- -2 

by use of Eqs. (2.121) - (2.127). When the values for Mr(x-- ) and Qz(x-) are inserted, My(~') can be written 

f 2 
My(x-) = p g B T" L 2 1=2 L < Y < O  

~ - ~ - ~ x  " - 1--0 - - 

L 
10 
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The variation of the non-zero sectional forces along the length is shown in Figure 2.10. As My(x-) > 0 
the barge is in a hogging condition, corresponding to the excess weight at the ends and the excess 
buoyancy in the midle of the barge. 

Vertical bending moment My>O 

Vert al ear fo ce O z 

Figure  2.10 Sectional forces in the barge in Example 2.3.1. 

The maximum value of My is found for ~- = 0: 

maxMy = ~ o p g B L 2 T  
L L 

-~._<z___ 7 

For real ship structures the result is usually somewhat lower and calculations should of course always 
be performed for the actual hull shape in all relevant loading conditions. 

[ - ] Oz(~ ),  dQz dX 

~ dx 

Figure  2.11 Equilibrium of a section. 

Examp!.e 2.3..2 

If a small section between X = X(x--) and .,Y(x-) + dX of the structure is considered, then moment 
equilibrium yields (see Figure 2.11): 

-Me(x- ) +  My(x-) + ~ dX - Q z(x-)dX-- 0 

neglecting terms of the order ( d ~  2. As dX --" 0 the following relation holds between M r• and Qz: 

dX - Qz(x-) (2.128) 

This relation also follows directly from Eq. (2.118) with X(x) and Mv(~ ) - My(x-) being replaced by 
dX and dM-r(x--), respectively. 
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From Eq. (2.128) it follows that the bending moment Mr(~ ) attains its maximum value where 
Qz(x-) = 0. This is also illustrated in Figure 2.10 in Example 2.3.1 where My(x-) --- ~rr(X--). 

Differentiation of Eq. (2.128) yields 

d2My dQ Z 
- (2.129) dX 2 dX 

which implies that the bending moment curve has a shift in c u r v a t u r e  (d2My/dX 2 - -  0 )  where the shear 
force Qz(x--) has its maximum values. Again this behaviour is illustrated in Figure 2.10. 

Finally, note that 

m 
Mr(,~ ) = XQz(x- ) + Mr(x- ) 

= - g M ( x - ) ( X g ( x - ) - X ( x - ) ) + p g J ]  ] (X - X(x-) ) d V 
V(x-) 

(2.130) 

which directly shows that Mr  is a moment taken with respect to the axis through X = X(x--), parallel 
to the Y-axis. 

Example 2.3.3. 

If the ship coordinate system xyz coincides with the global XYZ-system, the calculations can be greatly 
simplified. 

The mass M(x--) and the submerged volume V(x--) of the ship structure aft of x = .~ can be written 

/ -  

M(x-) = I m(x)ax (2.131) 
Xmin 

v(~ = p [a(x)ax 

XmJn 

(2.132) 

where m(x) andA(x) are the mass per unit length and the submerged sectional area at x=x, respectively. 

The vertical shear force Q~(x), Eq. (2.110), yields 

Qz(y.) = g J (m(x) - pA(x)) dx = I q(x)dx (2.133) 

Xmin Xmin 

where 

q(x) = g(m(x) - pA(x)) (2.134) 

is the resulting vertical load per unit length. 

The vertical bending moment My(x--) at x = s becomes 
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My(x) = - gYgM(x--) + pgLx(x-) + .2 Qz (x-) (2.135) 

using Eqs. (2.112) and (2.118). Here 

XgM(X) = f xm(x)dx 

Xrnia 

and 

Lx(X) = f xA(x)dx 

Xmin 

so that Eq. (2.135) takes the form 

~y(x,) = f[(x- - x)q(x)] dx 

Xmin 

f = f q(u)du dx : Qz(x)dx 

Xmin Xmin Xmin 

(2.136) 

(2.137) 

(2.138) 

by use of Eqs. (2.133) and (2.134). The formulas (2.133), (2.134) and (2.138) provide a convenient 
means of determining the vertical shear force and the vertical bending moment distribution in the hull 
by simple integrations. 

2.4 HYDROSTATIC STABILITY 

An important aspect related to hydrostatic loads is the concept of hydrostatic stability. 
The equilibrium position determined in Section 2.1 may be stable or unstable. Stable 
equilibrium implies that if the structure is subjected to small external forces, this will 
not lead to large changes in the equilibrium configuration and, also, that if these external 
forces are removed, then the original equilibrium position will be reestablished. If this 
is not the case, the equilibrium is characterised as unstable. 

In addition to this initial stability analysis, information is normally also needed on how 
the structure will behave if subjected to large quasi-static wind and wave loads. This 
behaviour is determined by applying additional external forces and/or moments to Eqs. 
(2.30) - (2.32). The results for ships are typically presented as the so-called righting 
arm curves which give the relation between an external heeling moment and the 
resulting heeling angle. 

The results of both types of hydrostatic stability analysis are the main input to the 
current international rules assessing the stability of floating vessels. A discussion of 
these rules is, however, outside the scope of this presentation, but it must be noted, that 
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at present even dynamic load effects are modelled in these rules by the hydrostatic 
stability properties, due to insufficient knowledge of the parameters entering a dynamic 
stability analysis. 

In the following, the two concepts of hydrostatic stability will be discussed. 

2.4.1 Initial Hydrostatic Stability 

Consider a structure at equilibrium in a calm sea. The necessary and sufficient condition 
for a stable equilibrium is that the potential energy 17 of the structure has a minimum. 
If the potential energy in the equilibrium position is assumed as reference, then a stable 
configuration requires that 

AII(AT, AO, Acp) > 0 (2.139) 

for any small changes, given by AT, A0 and At9, of the equilibrium position. 

The potential energy is equal to the work done by the external forces and moments. In 
the global XYZ-system this work becomes 

A W(A T, A O, A cp ) = A F zA T + A M rd O + A M xA q9 (2.140) 

where the force increment, AFz, and the moment increments, A M  x and AMy, are 
found from Eqs. (2.21) - (2.23) and (2.33) - (2.35)" 

FOE 1 OE 1 OE 1 ] 
A F z = - p g k-- A r + A O + -- f f  (2.141) 

JOE OE 2 
A M y  = p g A r  + W ,t0 ] (2.142) 

[0e  dE 3 
+ --go- AO 

OE3 ] (2.143) 

Inserting Eqs. (2.141) - (2.143) in Eq. (2.140) and requiring 

A W = A H > O  
(2.144) 

yield the required condition for a stable equilibrium condition. The derivatives 0E 1/0T 
etc. are given by Eqs. (2.60) - (2.62). Evaluation of the requirement (2.144) is facilitated 
by a proper choice of coordinate systems. Without loss of generality, the local xyz- and 
global XYZ-systems are taken to coincide in the equilibrium condition (i.e. T = 0 = t 9 
= 0) and, furthermore, to be orientated so that (see Example 2.4.1) 

Sx -- Sy -- lxy = 0 (2.145) 
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then,  as E 1 -- E 2 -- E 3 -- 0 in the equ i l ib r ium posi t ion:  

A W  --- Aw(ZIT) 2 -l- (Iyy - E 4 ) ( A 0 )  2 -t- (Ixx - E4)(At-/9) 2 
P g  

(2.146) 

This  s h o w s  that s table  equ i l ib r ium is ensured  if 

E 4 = ZgV - L z  < min(lxx, lyy) (2.147) 

us ing  Eq.  (2.63).  By  def in ing  the vert ical  centre o f  buoyancy  z b as 

V Lz 
- -  - -  V 

v 

(2.148) 

and the metacentr ic  he ight  z m by 

Zm =- Z b q- 
min(lxx, Iyy) (2.149) 

the r equ i r emen t  (2 .147)  s imply  b e c o m e s  

G M = -  z m - Z g  > 0 (2.150) 

The  me tacen t r e  (0,0,Zm) can be cons ide red  as the centre  of  ro ta t ion  of  the s tructure for 
smal l  excurs ions  f rom the equ i l ib r ium posi t ion.  Therefore ,  as for a pendu lum,  stable 
equ i l ib r ium requi res  that this point  is s i tuated above  the centre  of  gravity.  

.Example 2.4.1 

A water plane coordinate system (xy) satisfying Eq. (2.145) can always be determined. Let x'y' be a 
given, arbitrarily orientated system in which the moments Sx,, Sy,, Ix,x,, Ix,y, and ly,yO of the water 

plane area Aw are known. A new xy-system is defined by a translation (x0', Y0') and a rotation (ct)of 
the x'y'- system: 

x = (x' - x0' ) cos a - (y' - Y0') sin a 

y = (x' - x 0') sin a + (y' - Y0') cos a 

Substitution of this transformation into the two first requirements in (2.145) yields 
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A w 

x0Awlcoso y0A   ino 0 
A., 

implying that the centre of flotation 

Xo', Yo') = ~-~ '  

irrespective of the rotation ct. The last requirement gives: 

Aw 

tan 2a = 2 
I x , y ,  - -  xo 'Yo'A w 

After a little algebra the minimum value of I~ and lyy to be used in Eq. (2.149) becomes: 

min(l~, lyy) - 1 [Iy,y, - xo'ZAw + Ix, x, - yo'ZAw] 
1/2 

The angle ct associated with the minimum value of (I~, lyy) defines the direction towards which the 
structure has the least metacentric height and, therefore, least stability. 

2.4.2 Righting Arm 

Whereas the initial stability analysis checks the hydrostatic stability for small 
disturbances from the equilibrium position, the determination of righting arm curves 
gives information on the stability when the structures are subjected to large external 
forces in addition to the gravitational and hydrostatic loads. These forces may represent 
quasi-static loads due to wind and waves. 

The main problem in connection with this analysis is the definition of a proper measure 
of the change in equilibrium position. One possibility is always to use the angle of 



HYDROSTATIC STABILITY 39 

rotation associated with the current minimum metacentric height. However, this 
procedure has the drawback that this angle is measured relative to an axis (the x-axis) 
whose direction depends on the shape of the current water plane area, due to the 
requirement lxy = 0. Thus, even for initially symmetrical structures like ships, this 
angle of rotation is difficult to visualise. The calculation procedure is, however, 
straightforward. The external moment is conservatively assumed always to act in the 
direction of minimum metacentric height, as the structure is free to rotate about a 
vertical axis. The external moment M e is then applied in small increments 
A M e ;  i = 1,2,..., so that, for each increment, the corresponding change in 
equilibrium position can be determined from the linearised equilibrium equations 
(2.42). In order to apply A M  e in the current direction with the least metacentric height, 
it is appropriate to let the local xyz- and global XYZ-coordinates coincide at each load 
step and be orientated so that the requirements (2.145) are satisfied. This transformation 
can be done as described in Example 2.4.1. If lxx < Iyy the minimum metacentric 
height is associated with rotations about the current x-axis. Therefore, in the 
equilibrium equations (2.42), the right-hand side should be taken to be 
(0, O , -  AMe /pg ) .  As the current XY-system satisfies (2.145), the solution Eqs. 
(2.42) becomes 

A M  e 
= , = ' ( 2 . 1 5 1 )  A T  i = AO i 0 �9 Aq9 i pgV(Zm - Zg) 

where Z m (- -  Ix.x/V ) and zg are the vertical coordinates for the metacentre and the 
centre of gravity, respectively, in the current xyz-system. For the next load increment 

AMe+ 1' the equilibrium position (X i + 1, Yi + 1, Zi +l) is given by the transformation 

(2.38) - (2.40) with T, 0 and q9 given by Eqs. (2.151): 

S i + l  = x i  ; Yi+l  = Yi + z i A ~ i  ; Z i +  1 "- z i - Y i Z I c . p  i (2.152) 

The (XYZ)i + 1-system must then be transformed so that it satisfies Eq. (2.145) before 
solving for the change in equilibrium position due to the load increment AMe+ 1" 

Although this procedure yields the equilibrium position as a function of the applied 
moment, the result is difficult to interpret if the direction corresponding to the minimum 
metacentric height changes with the magnitude of applied moment. In such cases, no 
simple measure of the change in equilibrium position with applied moment normally 
exists. However, successive use of Eq. (2.152) together with the transformation 
required to satisfy Eq. (2.145) will yield the current equilibrium position relative to an 
x ' y ' z ' - s y s t em fixed in the structure. 

To avoid the difficulties described above, another procedure is normally used, 
especially for ships. The local xyz-system is kept fixed with respect to the structure and, 
rather than specifying an external m o m e n t  M e, the angle of heel ~0 is prescribed in 
increments Ac.pi. As no change in the xyz-system is made, the accumulated angle q9 is 
simply the algebraic sum of Ac.pi: 
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n 

Cpn = 2 Aqgi 
i=1 

(2.153) 

In the procedure, the external moment M e necessary to generate an angle of heel tp is 
assumed to act about the global X-axis, i.e. M~ = M e, M} = 0 and F} = 0. The 
equilibrium equations (2.21) - (2.23) can then be written 

M e 
E 1 = 0 ; E 2 = 0 ; E 3 = p g  (2.154) 

with the definitions (2.33) - (2.35) of El,  E 2 and E 3. For a given increment A ~ i  , the 
equations (2.154) are solved by use of the iterative scheme, Eqs. (2.42), as follows. 
First, the associated changes A T  i and AO i are determined iteratively by 

OE 1 OE 1 

OT O0 

OE 2 OE 2 

OT O0 

OE 1 

i. = _ ~A0. ) J  2 4r - - ~  A E 2 

(2.155) 

The coefficients in (2.155) are evaluated in the current equilibrium position: 

j -1  j -1  

T i - l +  2dT}ik) ; O i - 1  "1- 2 A O(ik) ; qgi 
k=l k=l 

(2.156) 

where T i_ 1 and 0 i _  1, are the equilibrium values obtained with cp = cpi_ 1" The 
iteration scheme usually converges very fast, so only a few iterations (m) are needed 
to get A T  i and AOi: 

m m 

A Ti -- 2 A T ( l )  ; Z O i - 2 A OOi ") 
y=l  j = l  

(2.157) 

and, hence, the new equilibrium is found: 

T i = Ti_  1 q - A T  i ; Oi = Oi_ 1 + AO i ; q)i -- 9 i -  1 -b A~i(2"158) 

After determination of the equilibrium positions (T, 0, q))i; i =  1,2,...,n the 
external moments M e needed to create these equilibrium positions are found from Eq. 

(2.154): 

M e - _ pgE3(Ti ,  0 i, q9 i) (2.159) 

As T i - Ti(q)i)  and 0 i = O i(c p i )  the result can also be written 
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GZ(q)) = Me(q)) (2.160) 
pgV 

by introduction of the righting arm GZ. If GZ(q)) and t 9 have the same sign, the structure 
is hydrostatically stable at this angle of heel % GZ(q)) = 0 corresponds to an 
equilibrium configuration without any additional external moment, whereas opposite 
signs on GZ(q)) and q) signify an unstable state. 

The result (2.160) gives a simple relation between an external moment and the 
corresponding change of equilibrium position, which is a clear advantage as compared 
to the result from the first procedure. If the direction associated with the lowest 
metacentric height does not change, the two procedures will yield identical results. 
Otherwise, the first procedure yields larger changes in the equilibrium position for a 
given external moment than the second procedure. Therefore, as regards the stability 
of the structure, the second method must be considered as non-conservative. This must 
implicitly be taken into account in the formulation of stability requirements based on 
the GZ-curve, Eq. (2.160). 

The procedure leading to Eq. (2.160) is equally valid for intact and damage stability 
analysis. In intact stability analysis, the submerged volume V is constant whereas, for 
damage stability cases, it may change with the angle q~ due to successive flooding of 
compartments. The calculation of M e = Me(q)) properly takes flooding into account, 
but the definition of GZ, Eq. (2.160), can be made in different ways. The definition 
applied in the current stability rules uses Eq. (2.160) with V equal to the intact 
submerged volume. This definition, in which V is independent of % is called the "added 
weight" method as the water in the flooded compartments can be considered as 
additional weights. A more rational definition is the "lost buoyancy" method, where the 
lost buoyancy in the flooded compartments is subtracted from the intact submerged 
volume to get the real submerged volume V = V(q)) to be used in Eq. (2.160). In the 
present context, the submerged volume to be used in Eq. (2.160) is the only difference 
between the "added weight" and "lost buoyancy" methods. However, for hand 
calculations, the two methods look quite different. 

Finally, a relation between the initial stability analysis and the GZ-curve should be 
mentioned. 

For small angles of heel tp (q) ,~ 1), both procedures for the righting arm, Eq. (2.151) 
and Eq. (2.159), lead to the same result: 

Me (2.161) 
q) pgV(zm - -  Z g )  

as 

0E31 
q) = ( - -  Ixx + E4)q) = V(Zg - Zm)q) (2.162) E3( ) = e3t 0 + o 

By introduction of GM, Eq. (2.150), from the initial stability analysis and GZ, defined 
by Eq. (2.160), Eq. (2.161) can be written 
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GZ(cp) = GM'cp (cp ~ 1) (2.163) 

GM is seen to be the slope of the GZ-curve  at the equilibrium configuration (q9 - 0). 

Example 2.4.2 

The calculation of the initial stability, Eq. (2.150), and the GZ-curve, Eq. (2.160), is well suited for 
numerical calculation. The results obtained by use of the I-ship code (see e.g. Jensen, Baatrup and 
Andersen, 1995) for a Ro-Ro ship are given in Figure 2.12 as an illustrative example. 

Intact equilibrium position 

Total mass of this loading condition .............. : 
X-coordinate for center-of-gravity ................ : 
Y-coordinate for center-of-gravlty ................ : 
Z-coordinate for center-of-gravity ................ : 

16900.000 [t] 
84. 853 [m] 

.000 [m] 

10.000 [ml 

Draught at Lppl2, measured perp. to water plane ... : 
Draught at AP, measured perp. to water plane ...... : 
Draught at FP, measured perp. to water plane ...... : 
Angle of heel ..................................... : 

Calculated displacement ........................... : 
LCF measured positive forward Lpp/2 ............... : 
BMT measured upwards from center of bouyancy ...... : 
GM (upright) without free surface corrections ..... : 
GM (upright) with free surface corrections ........ : 
Corresponding roll period (IMO A.685(17)) ......... : 

6.501 [m] 
6.544 [m] 
6.458 [m] 
.000 [deg] 

16899.990 [t l 
-1.720 [m] 
7.628 [m] 
1.121 [m] 
1 . 1 2 1  [m] 

18.984 Is I 
Moment to change trim (MCT) ....................... : 24529.332 It*m/m] 
Mass to change immersion .......................... : 3040.281 It/m] 

Moulded volumen ................................... : 16422.107 [m-3] 
Block coefficient ................................. : .597 
LCB measured positive forward Lpp/2 ............... : 2.229 [m] 
KB measured in CL from the base line .............. : 3.493 [m] 
Wetted surface (moulded) .......................... : 4324.060 [m'2] 
Water plane area .................................. : 2954.311 [m~2] 
Water plane area coefficient ...................... : .698 
BML measured upwards from center of bouyancy ...... : 239.836 [m] 

Statical stability result s 

Angle of Draught AP Draught FP MS KN GZ 
heel perp. to WP perp. to WP (corrected) 

[deg] [m] Is] [m] [m] [m] 

.000 6.544 6.458 .000 .000 .O00 
I0.000 6.296 6.430 .022 1.953 .216 
20.000 5.570 6.332 .156 3.960 .539 
30.000 4.438 6.036 .394 5.955 .955 
40.000 2.922 5.322 .563 7.711 1.283 

Figure 2.12 Hydrostatic stability information sheet. 
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In the previous chapter, the hydrostatic and the gravitational loads acting on a structure 
at rest in a calm sea were derived. However, the real ocean environment always differs 
from this ideal static equilibrium state due to continuous changes in the meteorological 
conditions. As it is well known from weather forecasts, we can, with our present 
knowledge, only estimate average values of atmospheric pressure and wind speed. 
Local variations in space or time cannot be predicted. The reason is not just lack of a 
complete physical model of the earth climate, but also that local variations depend on 
the past detailed history of the global climate. Weather conditions with the same 
macroscopic (average) parameters therefore show different and unpredictable local 
variations in the key variables of the system. All these variables may thus be said to be 
random or stochastic processes, for which only average (expected) values can be 
predicted, leaving a detailed description out of reach. The average values can, however, 
be used to estimate the probability that a variable is within certain given bounds. This 
is very important as we can thus determine the probability that a load derived from the 
climatic model exceeds a given design value. These loads may be directly related to the 
wind speed at the location of the structure, but may also be derived loads such as those 
due to waves, current and ice. For fixed offshore structures, all four types are important 
but, for floating structures, which can move freely in the horizontal plane, the forces 
due to wind, current and ice are usually negligible compared to those generated by the 
ocean waves. 

As ocean waves are generated by local variation in wind speed and atmospheric 
pressure, they are to be considered a stochastic process. The magnitude of the waves 
is the result of an energy transfer between the wind and the ocean, which takes place 
in a narrow boundary layer on the surface of the sea. A complete description of this 
process is not available. Instead, the average parameters describing the state of the sea 
may be related to the average wind speed, direction, duration and fetch over the 
considered area of the sea. 

In this chapter, the statistical properties of wind-driven ocean waves will be described, 
including the necessary fundamentals of stochastic processes. This will facilitate the 
load and response analysis described in the two following chapters, as the statistical 
analysis of these processes is basically the same as for the ocean waves. 

The literature on stochastic processes is extensive and only a small fraction of the 
procedures available is discussed here. For further reference, the following textbooks 
can be recommended: Price and Bishop (1974), Madsen, Krenk and Lind (1986) and, 
especially, Ochi (1990). 
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3.1 RANDOM VARIABLES 

The probability P(X <_ x) that a random variable X is less than or equal to a particular 
value x is denoted F(x): 

V(x) = e ( x  ___ x) (3.1) 

By definition, F(x) = 0 if the event X _< x can never take place whereas F(x) = 1 if X 
always is less than or equal to x. Hence, if the random variable X is bounded, 
a < X < _  b, then 

F(a) = 0 ; F(b) = 1 (3.2) 

Furthermore, for a _ x 1 < x 2 _< b: 

P(X < x2) = P(X <- x l) + P(x 1 < X < x2) 

>- P(X <- Xl)  

as the e v e n t  P ( x  1 < X < X2) is non-negative. Thus 

F(x2) >- F(Xl) for x 2 > x 1 (3.3) 

so that F(x) is a never decreasing function of x. The definition given above hold for all 
types of random variables representing discrete as well as continuous events. In the 
present treatment, only continuous random variables are considered, and for such 
variables a probability density function p(x) can be defined by the integral 

x 

V(x) = I p(u) du 
a 

(3.4) 

Provided that F(x) is differentiable, Eq. (3.4) yields 

dF 
p ( x ) -  dx 

(3.5) 

From definitions (3.1) and (3.4) it follows that the probability thatX falls within a small 
range dx about x is 

P(x < X <_ x + dx) = p(x)dx (3.6) 

which shows that p(x) is a non-negative function of x. 

Due to the relation (3.4) between F(x) and p(x), F(x) is denoted the cumulative 
probability density function or the probability distribution function. 
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As 

X 2 

P ( x  1 < X <_ x2) -- f p(u)du 

Xl 

it is seen that 
Xo 

e ( x  = x) = f p(u)du = 0 

XO 

(3.7) 

Thus, the probability that a continuous random variable assumes a specific value is zero. 

The stochastic nature of the variable X is completely described by either F(x) or p(x). 
However, often neither F(x) nor p(x) can be derived from the physical process 
represented by X. Instead, average values of certain functions G(X) may be available 
from previous outcomes of X. These average or expected values E[G(X)] are defined 
as 

b / .  

E[G(X)] = / G(x)p(x)dx (3.8) 
d 
a 

The most useful average values are the moments: 

/~n = E[X n] ; n = 1 ,2 ,3  .... , (3.9) 

or the central moments: 

~n - E [ ( X - k t )  n] ; n = 2,3,..., (3.10) 

where the mean value 

kt ~ / t  1 = E[X] (3.11) 

The second central moment ~2 is termed the variance 

~2 = E [ ( X -  kt) 2] (3.12) 

The standard deviation s defined as 

s = ~ 2  (3.13) 

has, like the mean value At, the same physical dimension as the variable X. 

The moments/~n and ~n are clearly related. From Eq. (3.10) it follows that 
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= e [  x 2 ]  - 2 ,e[xl + t ,  2 = 

~3 = / 2 3 -  3/22/21 q- 2/2 3 1 

~4 = /24 -- 4/23/21 + 6/22/22 -- 3/24 

and so on. Obviously, ~n -" /2n if /2 = 0. 

The following non-dimensional values of the central moments are often used: 

Coefficient of variation: 1 )  - -  

/~ /2 

~3 Skewness: Yl -- (3.14) 
~2 3/2 

Kurtosis: ~4 
Y2=~222 

From the knowledge of the moments, approximations to the probability density 
function can be constructed, either as series expansions or by tranformation, see 
Sections 3.1.2 and 3.1.3. First, however, it is appropriate to introduce the normal 
distribution. 

The normal distribution plays a significant role in the theory of stochastic processes as 
the statistical properties of the majority of physical phenomena can be described by this 
distribution. Non-linear effects can, to a certain extent, also be included by 
modifications to the normal distribution, as shown in Sections 3.1.2 and 3.1.3. 

However, if we want to analyse the statistical behaviour of discrete events, like the 
occurrence of peaks or zero upcrossings, other probability distributions are more useful. 
For that purpose the Weibull distribution and the Gumbel distribution are described in 
Sections 3.1.4 and 3.1.5 respectively. Finally, probability distributions for several 
random variables are introduced in Section 3.1.6 and applied in Section 3.1.7 in order 
to derive the very important central limit theorem. 

3.1.1 The  N o r m a l  Distr ibut ion 

The normal distribution, also called the Gaussian distribution, has the probability 
density function 

Ill t] 2 (3.15) 
p(x) = Cz~-r~-ls exp - X-s/2. ," - co < x  < 

where the two parameters /2, s are the mean value and the standard deviation, 
respectively: 
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O 0  

I xp(x),~ = ~, 
- -  0 9  

i 
- - 0 0  

(x - F , )2p(x)ax  = ~2 

An analytical expression for the probability distribution function F(x) is not possible. 
Rather than using a numerical table for each combination of (u, s), it is appropriate to 
introduce the standard normal distribution with a mean value zero and a unit standard 
deviation. Its probability density function is 

1 "1 
q)(u) = - ~  e -~  u- - co < u < co (3.16) 

and the associated probability distribution function: 

U 

1 [ -k~a,, 
~(u) - f_~  e 

- - 0 0  

(3.17) 

Hence, by the transformation u = (x - p ) / s  

= ~ ( x  - s) F(x) \ 
(3.18) 

The standard normal distribution q)(u) is tabulated in Table 3.1 and shown in 
Figure 3.1 together with the probability density function cp(u). It is seen from Eq. (3.17) 
that 

qb(-  u) = 1 - qb(u) (3.19) 

so that only tabular values for u > 0 are necessary. 

Asymtotically, Abramowitz and Stegun (1966): 

~ ( - u ) -  1 e-�89 ;u > 1 (3.20) 

The moments P n of the standard normal distribution become 

t u n  - ' -  ~ n  - -  

oo 

_12 { 0  1 une ~u du = 
1 " 3 " 5 - ' ' ( n -  11 ; 

co 

n odd 

n even 
(3.21) 
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. . . . . . .  I . . . . . .  

-3 -2 -1 0 1 2 3 
Figure 3.1 Probability density function r and probability distribution function r of 

the standard normal distribution. 

Table 3.1 Standard normal distribution ~(z). 

. 0  

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 
.9 

1.0 

1.1 
1.2 
1.3 
1.4 
1.5 

1.6 
1.7 
1.8 
1.9 
2.0 

2.2 
2.3 
2.4 
2 .5  

2.6 
2.7 
2.8 
2.9 
3.0 

a11- 
3.2 
3.3 
3.4 

, , ,  i i i  i , | 1 1  i i i  . . . . . . . . . . . . . . . . . . . . . .  

.o; .oi o ~  .03 ,04 .05 .o6 .07 .08 .oo 

�9 5 0 0 0  .5040  . 5 0 8 0  .5120  .5160  . 5199  ,5239  .5279  . 5 3 1 9  .5359 
�9 5 3 9 8  .5438  . 5478  .5517  . 5 5 5 7  .5596  .5636  .5675  , 5 7 1 4  .5753 
�9 5 7 9 3  .5832  .5871 .5910  .5948  .5987  .6026  .6064  . 6 1 0 3  .6141  
. 6179  .6217  . 6255  .6293 .6331 .6368  .6406  .6443  , 6480  . 6 5 1 7  
�9 6554  .6591 .6628  .6664 .6700  .6736  .6772  .6808  . 6 8 4 4  . 6879  
�9 6 9 1 5  .6950  .6985  .7019 .7054  .7088  .7123  . 7157  . 7190  . 7224  

.7257  .7291 .7324  .7357  .7389  .7422  .7454  .7486  . 7 5 1 7  . 7 5 4 9  

. 7 5 8 0  .7611  . 7642  .7673  .7704  .7734  .7764 .7794  .7823  .7852 
�9 7 8 8 1  .7910  .7939  .7967  .7995  .8023  .8051 .8078  . 8 1 0 6  . 8 1 3 3  
�9 8 1 5 9  . 8 1 8 6  . 8212  .8238  .826, t  - . 8289  .8315  . 8340  . 8 3 6 5  . 8 3 8 9  
�9 8413  .8438  .8461  .8485  . 8 5 0 8  .8531 .8554  .8577  . 8 5 9 9  .8621  

�9 8 6 4 3  .8665  . 8 6 8 6  .8708  .8729  .8749  .8770  .8790  .8810  . 8 8 3 0  
�9 8 8 4 9  .8869  .8888  ,8907  . 8925  .8944  .8962  . 8 9 8 0  . 8997  . 9 0 1 5  
�9 9 0 3 2  .9049  . 9066  .9082  .9099  . 9115  .9131 . 9147  .9162  . 9 1 7 7  
, 9 1 9 2  . 9207  . 9 2 2 2  .9236  .9251 .9265  .9279  .9292  .9306  . 9 3 1 9  
�9 9 3 3 2  .9345  . 9357  .9370  .9382  .9394  .9406  .9418  . 9 4 2 9  .9441  

�9 9.152 .9. t63 .9474  .9484 . 9495  .9505  .9515  .9525  .9535 .9545 
.955,t .9564 .9573  .9582  .9591 .9599  .9608  .9616  . 9 6 2 5  . 9 6 3 3  
�9 9641  .9649  , 9 6 5 6  .9664  .9671  .9678  .9686 . 9693  . 9 6 9 9  . 9 7 0 6  
�9 9 7 1 3  .9719  .9726  .9732  .9738  .9744  .9750  .9756  .9761  .9767  
�9 9 7 7 2  .9778  .9783  .9788  .9793  .9798  .9803 .9808  . 9812  . 9 8 1 7  

�9 9821  .9826  .9830  983.1 .9838  .9842  .9846  .9850  .9854  . 9 8 5 7  
�9 9861  .9864  ,9868  .98~1 .9875  .9878  .9881 .9884  .9887  . 9 8 9 0  
�9 9 8 9 3  .9896  .9898  .9901 .9904 .9906  ,9909  .9911 . 9 9 1 3  . 9 9 1 6  
�9 9 9 1 8  .9920  . 9 9 2 2  .9925  .9927  .9929  .9931 .9932  .9934  . 9 9 3 6  
�9 9 9 3 8  .9940  .9941  .9943  .9945  . 9946  .9948  .9949  .9951  . 9 9 5 2  

�9 9 9 5 3  .9955  .9956  .9957  .9959  .9960  .9961 .9962  .9963  . 9 9 6 4  
.9965  . 9966  .9967  .9968  .9969  .9970  .9971 .9972  .9973  . 9 9 7 4  
�9 9 9 7 4  .9975  .9976  .9977  ,9977  .9978  .9979  .9979  .9980  .9981  
�9 9 9 8 1  .9982  .9982  .9983  .9984  .9984  .9985  .9985  . 9 9 8 6  . 9 9 8 6  
�9 9 9 8 7  .9987  .9987  .9988  .9988  .9989  .9989 .9989  .9990  . 9 9 9 0  

�9 9 9 9 0  .9991  .9991  .9991 .9992  .9992  .9992  .9992  .9993  . 9 9 9 3  
.9993  .9993  .9994  .9994  .9994  .9994  .999-t .9995  . 9995  . 9 9 9 5  
.9995  .9995  .9995  .9996  .9996  .9996  .9996 .9996  . 9 9 9 6  . 9 9 9 7  
�9 9 9 9 7  .9997  .9997  .9997  .9997  .9997  .9997  .9997  . 9 9 9 7  . 9 9 9 8  

. . . . . . . . . . . . . . . . . . .  i , i , , ,  , J ,  J ,  , ,  i ,  , J i 
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3.1.2 Series Expansion of the Probability Density Function 

Consider an unbounded random variable - co < X < ~ and define the so-called 
characteristic function 

qb(it) = f p(x)eitXdx = E[e itX] (3.22) 

CO 

where i is the imaginary unit (with the property i2._ _ 1). Substitution of the 
expansion 

oo 

Z (itx)n e itx= 1 + n! 
n = l  

into Eq. (3.22) yields 

c o  

Z It" (iOn qb(it) = 1 + 
n = l  

(3.23) 

From Eq. (3.22) or Eq. (3.23) it is seen that ~b(it) has the property 

dn~ ll = int~n (3.24) 
dtn t=0 

When the moments kin are known, a formal solution for p(x) is given by the Fourier 
transformation of Eq. (3.22)" 

c o  

1 f -itxdt p(x) = -~ :p(it)e 
OD 

(3.25) 

However, substitution of Eq. (3.23) into Eq. (3.25) yields a meaningless result as each 
of the terms 

c o  

1_!_27r I (it)ne-itxdt 
O0 

is real but infinite. To avoid this problem, other expansions can be constructed by use 
of different moments. An expansion in the cumulants Kn defined by 

c o  

ln q~(i 0 = ~ tCn (ion 
n = l  

(3.26) 
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will be shown to be very useful for generating probability density functions deviating 
only slightly from a normal distribution. By use of the expansion 

ln(1 + u) = zz-lu2 +�89 3 -  1 4 ~ .  +...  

it follows from Eqs. (3.23) and (3.26) that 

/C1 = ~ 1  
K2 -- f12 --/,/2 = ~2 

x3 = **3-  3,,zu1 + 2~,31 = C3 

K4 "- / / 4 -  4 / t 3 u , -  3k t2 + 12kt2 u2 - 6/~4 = ~ 4 -  3~2 

(3.27) 

Moments with n greater than 4 are seldom used as their estimates from e.g. 
measurements are connected with great uncertainty. 

The series expansion of p(x) in terms of the cumulants follows from Eqs. (3.25) and 
(3.26): 

(3O 

p(x) = ~ ( elnq~(it)-itXdx 

1 
2~ f IC'n (iO n - i dx exp -~. 

n = l  

Now, consider the case where the cumulants Xn are small for n > 2 .  Then p(x) can be 
written 

oo 

p(x) = ~ exp (Xl - x)it - �89 tc2 t2 

1 + ~.I (it) 3 + ~.~ (it) 4 +. . .  +~ . I  -~.( it)3 + ~-~ (it)4 +""  +. . .  at 

Introducing 

H -_  Krt  

t - Kv/~2 ' (x - x l) = f ~ , 2,, /r (3.28) 
2 

we obtain 
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1 
p(x) - 2= j,~-2 

i e-�89 {1 + T (iu)3 + ~ (iu)4 + "'" 
2 3 2 4 

) 1 (iu)3 + (iu)4 + + ~ .  ~ .-- 

2 } 
+... du 

The integration is carried out by means of the identity" 

o o  o o  

-~(u-+ ~ e-~(u-+ 2ifu) du e 2ifu)(iu)nau- ~ d] n 

d n __,p -_'f~ = ( -  1)n-T aTe 2 = He nOOe 2 
W -  

(3.29) 

where Hen(f) are denoted the Hermite polynomials of order n. The values of Hen(f) 
follow from (3.29)" 

Hel( D = f ; He2(f) = f2  _ 1 

He3(f) = f3 _ 3f ; He4(f) = f4  - 6 f 2  + 3  

(3.30) 

and so forth. 

Use of the identity (3.29) leads to the final result for p(x)" 

1 
~ e - � 8 9  [1 + 1 2  3He3(])+ ~44 24He4(D+' ' "  

, t ] + ~ 22 He6(f) + - f ~  2 2 He8( D + ~22A,3~4Hev(f) +... +... 

(3.31) 

which is the so-called Gram-Charlier series expansion. It is seen that if Xn - 0 for 
n _> 3, then Eq. (3.31) reduces to the normal distribution, which is thus characterised 
by having all cumulants tCn = 0, n > 2. This makes the use of cumulants to describe 
slightly non-Gaussian processes very convenient. Of course, even for small cumulants 
tCn, n > 2, the expansion breaks down in the tail ( f  ---, :k oo ) as the Hermite polynomials, 
Eq. (3.30), go to infinity. The expansion (3.31) is only useful if the value inside the 
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square brackets does not deviate to much from unity. A negative value signifies a 
meaningless result as p(x) must by definition be non-negative. 

Note that, according to Eqs. (3.14), (3.27) and (3.28), k 3 and ~'4 are closely related to 
the skewness 5' 1 and the kurtosis Y z: 

)]'3 -" Yl 
(3.32) 

24 = Y 2 - -  3 

For a normal distribution 5'2 = 3, and ~'4 is therefore often denoted the coefficient of  
excess. 

We will return to Eq. (3.31) later in this and in the next chapter. The derivation of Eq. 
(3.31) is given in the classical paper by Longuet-Higgins (1963) on the statistical 
properties of sea waves. 

3.1.3 Transformation of a Random Variable 

In the previous section, a rigorous series expansion was derived for the probability 
density function of a slightly non-Gaussian variable. The drawback of this expansion 
is its limited applicability, especially in the tails of the distribution. 

A much simpler result can be obtained, if a monotonic, deterministic relationship 
x = g(u)between the random variableXwith an unknown probability density function 
px(X) and another random variable U with a known distribution pu(u) can be assumed. 
Hence 

P(X <__ x) = P(X <__ e,(.)) = P(U <_ g-~(z) )  

and, from Eq. (3.6): 

px(x) dx = p u(U) du 

or du] px(X) = . ( u )  -~  .=g-~(~) (3.33) 

The validity of the assumption x = g(u) must of course be demonstrated, preferably 
by a physical model as for instance shown in Example 3.1.1. 

Example 3.1.1 
Consider the drag term in Morison's equation for wave loads on cylinders. This term is proportional 
to ulul where u is the wave particle velocity, which is usually taken to be normally distributed with the 
zero mean and standard deviation su. In this case Eq. (3.33) yields the probability density function px(X) 
for the drag term x = u ]u]: 

px(X) = ~ S u  exp - 2 f -~  
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a s  

u = g - l ( x )  = f - H . s i g n ( x )  

However ,  in many  cases an analytical relation be tween  x and u is not available, but 

instead the lowest  order  central momen t s  ~n are known for the random variable X. A 
power  series expansion of X in terms of U may  then be appropriate:  

m 

X = g(U)  = Z c j U J  

j=O 
(3.34) 

where  the determinis t ic  coefficient c i is de termined so that X has the prescribed central 

moments :  

- - - I U ; I )  

=0 

This is a non- l inea r  algebraic sys tem of equat ions in the unknown coefficients cj. For 

the number  of  coefficients to be equal to the number  N of known moments ,  m must  be 

taken to be N - 1. Fur thermore ,  the momen t s  E[UJ] ,  j = 1, 2 , . . . , N ( N  - 1) should be 
available for the r andom variable U. If U is standard and normal ly  distributed these 
momen t s  are given by Eq. (3.21). 

Examole3.1.2 

As mentioned previously, often only the four lowest moments/~, ~z, ~3 and ~4 are known with 
sufficient accuracy. In such cases Eq. (3.34) yields a cubic power series. If U is taken to be standard 
normally distributed, the coefficients c i in Eq. (3.34) are determined from 

~// --" C O -t- C 2 

r = c2 + 6c  l c  3 + 2 c ~ +  15c~ 

~3 = c 2 ( 6 c  2 +  8c22 + 72c, c 3 + 270c~) 

~4 = 60 c~ + 3 c~ + 10395 c~ + 60 c~ c 2 + 4500 c~ c23 + 630c2 c~ 

+ 936clc2c3 + 3780Cl c33 + 60c3c3 

(3.36) 

The coefficients cl, ce and c 3 must be determined numerically, for instance by application of the 
Newton-Raphson method. It should be mentioned that a good initial guess for cl, c 2 and c 3 is 
required. Here, the approximate values given by Winterstein (1985) are useful. 

The result is only valid if the transformation (3.34) is monotonic, which requires that dx/du does not 
change sign for any value of u. Differentiation of Eq. (3.34), m = 3, yields 

c I + 2 c 2 u + 3 c 3 ll 2 > 0 for all u 

o r  

c~ < 3 c I c 3 (3.37) 
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The accuracy of the transformation method given by Eqs. (3.34) and (3.35) depends 
completely on the assumption that the higher order moments of X can be neglected in 
the transformation. 

This may seem a dubious assumption but several examples, e.g. Winterstein (1985), 
show that very accurate results are obtained even for the tail of the distribution. As long 
as Eq. (3.37) is satisfied no unphysical (i.e. negative) values of the probability density 
function are obtained. 

3.1.4 The Weibull Distribution 

The probability distribution F(x) for the Weibull distribution is given by 

F(x) = 1 -  e -(x/a)a ," x > O, a > O, fl > 0 (3.38) 

This distribution is purely empirical but has proved to be a very versatile distribution 
for descriptions of the statistical properties of many practical problems. It is also one 
of the three true asymptotic extreme value distributions, see Section 3.2.5. 

The two coefficients (a, fl) can be related to the mean value ~ and the variance ~2 
through 

o o  

= f xp(x) 
o 

0 

(3.39) 

where F( ) is the Gamma function: 

o o  

r(x)= [ e -~ 
0 

e -  t dt (3.40) 

The moments JAn, Eq. (3.9), become 

~3 =i+ Bn p(x)  dx = F 1 + 

o 

If the argument of the Gamma function is an integer n, then 

F(n + 1) = nt (3.41) 
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and in general 

F(x + 1) = x F(x) (3.42) 

Thus, only tabular values of F(x) are needed for, say, 1 < x < 2, see Table 3.2. 

3.1.4.1 The Rayleigh Distribution (fl = 2) 
A special case of the Weibull distribution is the Rayleigh distribution where the 
coefficient fl = 2 yields the following distribution: 

F(x) = 1 -  e -(x/a)~, x_> 0 (3.43) 

with the mean value 

# = a F  = T a  (3.44) 

the variance 

~ 2 - - ( 1 - 4 ) a  2 (3.45) 

and the skewness 

Y a -  ~3 _ v / ~ ( ~ - 3 )  

~32'2 4(~/1 ~)3 
- 0.6311 

The probability density function p(x) becomes 

dF p (x ) -  & _ 2 x  - ( x / a ) ~  
ct 2 e ; x > 0 (3.46) 

and is shown in non-dimensional form in Figure 3.2. 

1 

xlot 1 2 

Figure 3.2 The non-dimensional Rayleigh distribution. 
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At this point, it may be convenient to illustrate different characteristic values which can 
be derived from a given probability distribution. The mean value, Eq. (3.44), is 

/, = - ~  a --- 0.8862 a (3.47) 

Alternatively, the most probable value fi, i.e. the value with the largest value of the 
probability density function, could be considered: 

alP(X) Ij = 0 ~ / i  = a__a_ = 0.7071 a (3.48) 
dx , x=/~ f2  

Finally, the 50 per  cent fractile /~ 50 defined by 

1 
P(X > P $0) = 

can also be regarded as a typical value. From Eq. (3.43) 

/,5o = a 1 ~ 2  "-- 0.8326 a (3.49) 

Due to the difference between p,  fi and /Z5o, care must be taken in interpretations of 
a cited characteristic value of a random variable. 

3.1.4.2 The Exponential Distribution (/3 - 1) 

Another special case of the Weibull distribution which deserves to be mentioned is the 
exponential distribution where fl = I giving 

F(x) = 1 - e -x /a  (3.50) 

This results in a mean value of 

/ ~ = a  

a variance 

~2 --  a 2  

and a skewness 

71 -- 
~3 
3/2 
2 

- 2  
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Table  3.2 Gamma function r(x). 

. . . . . . . .  . . . . .  r r (x )  , x !i ii ! x 
L 

1 1 !.5 0.8862269 
1 .01  0.9943259 1.51 [0,8865917 
1.02 0.9888442 1.52 0.8870388 
1 .03  0.9835500 1.53 0.8875676 
1.04 0,9784382 1.54 018881777 
1.05 0.9735043 1.55 0.8888683 
1.06 0,9687436 1.56 0.8896392 
1.07 0.9641520 !.57 0.8904897 
1.08 0.9597253 1.58 0.8914196 
1,09 0,9554595 1,59 0.8924282 
1.1 0.9513508 1.6 0.8935153 
1 .11  0.9473955 1 .61  0.8946806 
1.12 0.9435902 1.62 0.8959237 
!.13 0.9399314 1.63 0.8972442 
1.14 0.9364161 ~ 1.64 0.8986420 
!,15 0,9330409 1.65 0,9001168 
1.16 0.9298031! i.66 0.9016684 
1.17 0.9266996 1,67 0.9032965 
1.18 0.9237278 1,68 0.9050010 
1,19 0.9208850 I 1.69 0.9067818 
1.2 0.9181687 1,7 0.9086387 

1 .21  0.9155765 1 .71  0.9105717 
1.22 0.9131059 1,72 0.9125806 
1 .23  0.9107549 1,73 0.9146654 
1.24 0.9085211 1.74 0.9168260 
1.25 0,9064025 1.75 0.9190625 
1.26 0.9043971 1.76 0.9213749 
1.27 0.9025031 1.77 0.9237631 
1.28 0,9007185 1.78 0.9262273 
1.29 0.8990416 1,79 0.9287675 
1,3 0.8974707 1.8 0.9313838 
1 .31  0.8960042 1 .81  0.9340763 
1.32 0,8946405 1.82 0.9368451 
1.33 0.8933781 1.83 0.9396904 
1.34 0,8922155 1,84 0.9426124 
1.35 0.8911514 1.85 0.9456112 
1.36 0.8901845 1.86 0.9486870 
1.37 0,8893135 1,87 0.9518402 
1.38 0.8885371 1.88 0.9550709 
1,39 0.8878543 1.89 0.9583793 
1.4 0.8872638 1.9 0.9617658 

1 .41  0.8867647 !.91 0.9652307 
1.42 0.8863558 1.92 0.9687743 
1.43 0,8860362 1.93 0.9723969 
1.44 0.8858051 1.94 0.9760989 
1.45 0.8856614 1,95 0,9798807 
1.46 0.8856043 1.96 0.9837425 
1.47 0.8856331 1.97 0.9876850 
1.48 0.8857470 1.98 0,9917084 
1.49 0,8859451! 1.99 0.9958133 

.. 1-5 ~ L 0.8862269 ~ = 2 . . . . . . .  1 

.x 

2 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3 

3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4 

4.1 
4.2 
4.3 
4.4 
4.5 
4,6 
4.7 
4.8 
4.9 

5 
5.1 
5,2 
5.3 
5.4 
5.5 
5.6 
5.7 
5.8 
5.9 
6 

6.1 
6.2 
6.3 
6.4 
6.5 
6.6 
6.7 
6.8 
6.9 
7 

r(x) - .  
1 

1.0464858 
1.1018025 
1.1667119 
1.2421693 
1.3293404 
1.4296246 
1.5446858 
1.6764908 
1.8273551 

2 
2.1976203 
2.4239655 
2.6834374 
2,9812064 
3.3233510 
3.7170239 
4.1706518 
4.6941742 
5.2993297 

6 
6.8126229 
7.7566895 
8.8553434 
10.136102 
11,631728 
13.381286 
15.431412 
17.837862 
20.667386 

24 
27.931754 
32.578096 
38,077976 
44.598848 
52,342778 
61.553915 
72,527635 
85.621737 
101.27019 

120 
142.45194 
169,40610 
201.81328 
240.83378 
287.88528 
344.70192 
413.40752 
496.60608 
597,49413 

_ 7?0 
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The probability density function and the probability distribution function are shown in 
non-dimensional form in Figure 3.3. For this distribution the most probable value is 
found at the lower limit x = 0 for the distribution: 

~ = 0  

and finally 

/~s0 = a In2 --~ 0.6931 a 

t 

1 2 
Figure 3.3 The non-dimensional exponential distribution. 

3.1.5 The Gumbel  Distribution 

The Gumbel distribution is characterised by the probability distribution function 

F(x)  = e x p ( - e - ( x - a ) / ~ )  ," , _  oo < x  < oo, fl > 0 

and, by differentiation: 

p(x)  = ~ e - (x -  a)/~ F(x)  

The mean value is found to be 

/~ = a  +C/3  

(3.51) 

(3.52) 

(3.53) 

and the variance 

~2 f12 r (3.54) 
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where C is Euler 's constant, C = 0.577215...*. The most probable value ti is obtained 
from 

d p(x) I 

dx ,x=# 

The 50 per cent fractile is given as 

50 = a - fl In(In 2) "~ a + 0.3665fl  

Application of the Gumbel distribution to extreme value prediction is discussed in 
Section 3.2.5. 

3.1.6 Probability Distributions of Several Variables 

The probability distribution F(Xl, x2,...,Xn) of n random variables Xi , i = 1,2,. . . ,n,  
is defined by 

F(x 1, x2, x3,...,Xn ) = P(X 1 <- x 1, X 2 <-- x2,...,Xn -< xn) (3.55) 

as a generalisation of Eq. (3.1). For continuous variables, the joint probability density 
function p(xl ,  x2,...,Xn) is given by 

X 1 X2 Xn 

F(Xl, x 2 , . . . , X n ) - - - f  f . . .  f p ( u l ,  u2 .... ,ltn) dblldU2...dtt n 

al a2 an 

(3.56) 

where a i is the lower boundary on X i. Provided that F(Xl, x2,...,Xn) is differentiable for 
all values of xi, then 

O n F(x 1, x2,'", Xn) (3.57) 
P(Xl' X2'""Xn) -- OX 10X 2 ... OXn 

I f  the individual random variables X i are statistically independent, then Eqs. 

(3.55) - (3.57) yield 

F(Xl, x 2 ,...,Xn) = Fx,(Xl) Fx2(X2)... Fx,,(x,,) (3.58) 

and 

* These results follow from 

f i ~2 C2 In v e-"dv = - C and (In v) 2 e-"dv = --6 + 
0 0 
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P(X 1, X 2 ,...,Xn) = px,(Xl)Pxz(x2)...px.(Xn) (3.59) 

where Fx,(xi) and px,(Xi) are denoted the marginal distribution and marginal densi~ 
fimctions, respectively. For statistically dependent variables, the marginal density 
function for X i becomes 

bl bi_ 1 bi+ 1 b, 

px,<Xi)-f...fffp<xl, 
al ai_l ai+l an 

where by is the upper boundary on Xj. The marginal distribution is obtained by 

integration of Eq. (3.60): 

Xi 

F x i ( X i )  = f PXi (Ui) dui 

ai 

(3.61) 

The marginal distribution function Fxi(Xi) expresses the probability that a variable X i 
is less than or equal to x i, irrespective of the values of all the other variables 
Xj, j = 1, .., n ; j ~ i. If, on the contrary, the values of Xj are known, i.e. Xy = xj, 
j = 1, 2, .., n ; j ~ i, then the conditionalprobability distribution for X i is defined as 

P(X~IXj = xy ; j  = 1 ,2 , . . ,n  ; j  r i) = 

F(xil Xl, x2, "', x i -1 ,  xi+ 1, "', Xn) -- 

Xi 

J P(Xl, X2,.., X i -  1, U i, Xi+ 1, . - ,Xn)du i 

ai 

bi 

f P(Xl, x2, "', xi-1, ui, xi+ 1' ""Xn)dui 

ai 

(3.62) 

where the denominator is the marginal distribution of X1, X2, .., X i_ 1, Xi+ 1, ..,Xn. 
The conditional probability density function is obtained by replacing the numerator on 
the right-hand side with p(xl, x2, ..,Xn), i.e. by differentiation of Eq. (3.62) with 
respect to % 

For two random variables (X, Y) Eqs. (3.60) - (3.62) yield the following relation 
between joint, marginal and conditional probability densities: 

p(x, y) = p(x~) pyCv) (3.63) 

The moments E[G(X 1, X 2, .., Xn) ] of any combination G(X1, X 2, . . ,  Xn) o f  the random 
variables are defined by 
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bl b2 b,, 

E[G(X1, X2,.., Xn)] = I I .. I G(Xl, X2,..,Xn) p(Xl, X2,..,xn) dXldX2..dxn 

a~ a2 a,, (3.64) 

The most useful moments  are the central moments: 

~m,, m2 ..... m, "-" E [ ( X 1  - -  ~/~ l ) m l  ( S 2  - I"/2) m2.'" ( sn -- ~n) m'] (3.65) 

where the mean values are given as 

bl bz b, 

al a2 an 

bi 

= I xi Pxi (Xi) dxi 

ai 

(3.66) 

Of special importance is the covariance matrix ~: 

O'11 O'12 "'" 0-1n 

z__= 

nl "~nn 

with the components 

Grij ~ coy (xi, x]) -- EI(X i - ~ti) (Xj - tz)] 

The diagonal term 0-ii is seen to be the variance of the variable X i. 

A non-dimensional  measure of covariance is the correlation matrix p: 

P l l  P12 "'" Pln 

P =  

nl PnnJ 

where each of the correlation coefficients is defined as 

~q 
Piy - sis j 

(3.67) 

(3.68) 

(3.69) 

(3.70) 
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by use of the standard deviations 

(3.71) 

as normalisation factors. If the variables X i and Xj are independent, then 

~r~i -- E[(X i - /2 i )]  E[(Xj - /2 j ) ]  -- 0 (3.72) 

due to Eq. (3.66). Thus, statistically independent pairs of random variables have zero 
off-diagonal covariance and correlation coefficients. The reverse is not always true but 
holds for instance for the multivariate normal distribution defined by the joint 
probability density function: 

P(X l ' I2 ' " "Xn) - -  (v/-~) n V~=] 

where X is given by Eq. (3.67). I ]denotes the matrix determinant and the subscript bar 
denotes a vector. 

This joint distribution clearly becomes the product of the density functions of each of 
the variables x i if o'ij = 0 for i ~ j. Thus, in this case, zero correlation also implies 

statistical independence. 

Example 3.1.3 

Consider two variables (X1, X2) with the joint probability density function 

It is seen that p(xl, x2) satisfies 

1 1 

IIP(Xl, X2)dxldX2 = 1 
o o 

as well as 

p(xl, x2) >_- 0 for (x 1, x 2 ) E  [0,1] 

as required for a probability density function. Furthermore, the mean values are found to be 

1 1 

~i"-IIxiP(Xl,  X2) dxldX2 - - 9 " i - - 1 , 2  
o o 

and the covariance to be 
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c o d e x , ,  x ~ )  = E[(x. - ..)(x,_ - ,~)] = 

1 I 

IItx. . . . t x2  x2. . 2=o 
0 0 

The variables X 1 and X 2 are thus uncorrelated. By application of Eq. (3.60) the marginal probability 
densities become 

1 

I 4 Pxl(xl) = P(x1' X2)dx2 -" -67 Xl + 7 

o 

1 

pxz(X2 ) .._ f P(Xl ' X2 ) dx I -- 6 x2 + 47 

0 

As 

P(Xl, X2) "~ px|(Xl)Px2(X2) 

the two variables are, however, not statistically independent. 

The correlation coefficients pq, Eq. (3.70), are bounded: 

-- 1 <-Pi j  -< 1 (3.74) 

as  

,,)1 ,;)2] 
due to Schwarz' inequality*. 

A correlation coefficient equal to zero signifies uncorrelated variables. For p/j - + 1, 

it follows from Eq. (3.70) that 

This can only be satisfied for 

Xi - gi = ~ X j  - ~ j  
s i s: 

E [ ( a X -  y)z] = a2E[X 2] _ 2aE[XY] + E[Y e] _> 0 for all a ~ E[XY] 2 -< E[X e] E[Yq 
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which is a complete correlation between X i and Xj. The value of p/j therefore serves 

as a convenient measure of the correlation between two random variables. 

3.1.7 Central Limit Theorem 

In the analysis of stochastic processes, the central limit theorem plays an important role. 
The theorem states that the sum X of n independent random variables Xi, i = 1, 2,..., n 
tends toward a normal distribution for large values of n, irrespectively of the 
distributions of X i. The mean value Px and the standard deviation Sx are for any n given 

by 
n n 

"-E[X] "- Z E I x i ] -  Z P x i  (3.75) tZx 
i=l i=l 

Sex = E 02 - fix) 2 "- E - ~i = E (X i - Iti. 2 
Li=I i=1 i=1 

(3.76) 

using Eqs. (3.65) - (3.66). Thus, according to the central limit theorem, for large n, the 
distribution of X is simply given by the normal distribution, Eq. (3.15), with mean and 
standard deviation as calculated from Eqs. (3.75) - (3.76). 

The proof of this theorem is given below for the special case where all X i are identically 

distributed with mean ~ and standard deviation s. Then 

/tx = nit (3.77) 

and 

Sx = v/-ns (3.78) 

It is convenient to introduce the normalised variables Y and Uj by 

t/ 

y = X - I t x  _ X -  nlt = ~ X j - p  _ 1 Z Uj 
Sx - - A  

j = l  j = l  

(3.79) 

Now, consider the characteristic function (/)(it), Eq. (3.22), introduced in Section 3.1.2. 

With i 2 = - 1 this function becomes 

~(it) = E_e it_[11] --- E xp -" xp Uj 
�9 -- j--1 

n [ it 
= ] - [ E I + ~ n U  ] 

)=1 
(3.80) 

:{1 1 t 2 
2 n 

it 3 }n 
6n ~ ~3u +"" 
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as 

E[Uj] = 0 ; E[U 2] = 1 ; E[U~] - ,ukU (3.81) 

for j = 1, 2,..., n. The momen t s  #ku,  k = 3, 4, 5, ... are independent  of n and bounded.  

Therefore,  for large n* 

l l  

t2,2 dp(it) ---, 1 - -~ ---, e (3.82) 

The probabil i ty densi ty function for Y can then be found f rom Eq. (3.25): 

o o  

1 fq~( i t )e - i tyd t=--~  [ e - t2 /2 - i t yd t - - - -~e -Y2 /2  p(y) = 

- - 0 0  ~ 0 0  

(3.83) 

so that finally 

p(x) = p(y) dy _ 1 e - � 8 9  2 
dx ~ Sx 

(3.84) 

which  is the normal  distribution. 

Example 3.!.4 

In order to illustrate how many terms n are necessary in order to obtain a reasonable approximation by 
a normal distribution, consider the case where the individual random variables Xj are uniformly 
distributed over the range [0,1]" 

implying that 

p(xj)._ f l  0 O<_xj~l  
otherwise 

1 1 ~ = g  ; s -  

and, from Eqs. (3.77) - (3.78): 

n Itx = -~ " Sx = 

j -- 1,2 .... ,n 

* In general ( a)n 
lim 1 - --> e - "  

n - - ~  oo 
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The probability distribution function F(")(x) and the probability density function p (")(x) for 
X = X~ + X 2 + ... + X,, can be determined from the recurrence relations: 

F(")(x) = P(X <- x) = P(X 1 + X 2 + ... + Xn <- x) 

= E 12m oP(X' + X  2 + . . . + X , , _ |  <<_ x -  u ) ' P ( u  < X n  <<- u + d u )  
It 

f 
0 x-1 

and 

The recurrence starts with 

dF('O(x) _ F(" 
P ('0(x) - dx - 1)(x) - F(n- 1)(x - 1) 

and, after some algebra: 

f 
O x _ < O  

FO)(x) = x 0 < x <__ 1 

1 x>_i 

I 
x O < _ x _ < l  

(2)(x) = 2 - x  1 < x _ <  2 P 

0 otherwise 

12x2 0 < x < l  

- 3 +  3 x - x 2  1 _ < x < 2  

(3)t,.~ ][r~ = 9 1 2 2 < X < 3 P 
--3X + ~ X  -- -- 

0 otherwise 

In Figure3.4,  the dashed curves show the exact probability density functions p('O(x), 
n = 1, 2, 3 and 4, whereas the solid curves show the corresponding normal distributions with the 
same mean values and standard deviations. Although the initial uniform distribution deviates 
significantly from the normal distribution, it is clearly seen that already from n >_ 3, the normal 
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distribution yields a good approximation to the exact distributions. Of course, the exact distributions 
are bounded by x E [0, n] whereas for the normal distribution x E ] - ~,  oo [ for all n. 

p(~): 

7 . . . . . . .  , 
I 

i , 

pt~ 
# 

. . . . . . . .  -il / ~ /  

| x / .. 

o 0 1/2 1 

n X 

3/2 3 0 

\ 
\ \  

n = 2  

1 2 

p(x) [ 

• 

2 4 

Figure 3.4 Comparison between exact probability density distributions and normal dis- 
tributions based on the central limit theorem. 

3.2 S T O C H A S T I C  P R O C E S S E S  

The random variables used in the description of the ocean waves and the derived loads 
are often continuous functions of time t. If, for instance, the wave elevation is measured 
at a given location, wave elevation records as shown in Figure 3.5 may be obtained. 
However, as discussed in the introduction to this chapter, it is not possible to make a 
precise a priori description of thi.s time history. Hence, if the measurements are made 
again under apparently identical conditions, other quite different time histories may be 
found. Each record Xi(t ) will constitute a sample in the ensemble of possible time 
histories which might be the outcome of the measurements. 

For design purposes, from an infinite number of samples Xi(O, i = 1, 2, 3, .., those 
samples must be selected which represent the severest loading on the structure, and the 
probability of occurrence of these samples must be taken into acount. This analysis is 
performed by considering the complete ensemble as a stochastic (or random) process 
X(t), so that each sample Xi(t ) is just an outcome of X(t). 

For any value of time t, X(t) is a random variable and the results given in Section 3.1 
can be used to define the probabilistic behaviour of X(t). For example, the probability 
that X(t) is less than or equal to x is 

e(x(t) < x ) =  F(x; t) (385) 
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where F(x; t) is the probability distribution of X at time t. The relation between values 
of X(0 at two different instants of time X(q)and X(t2) can be characterised by the 

covariance cov(q, t2), Eq. (3.68): 

cov(t 1, t2) = E[(X( t l ) - /Z l ) (X( t2 ) - / z2 )  ] (3.86) 

where 

~ i = E[X(ti) ] (3.87) 

I 

Figure 3.5 Three 15 minutes wave elevation records, taken at Ekofisk Field, 1500 hrs 
12/12/90. Courtesy Maersk Oil and Gas. 

Alternatively, the autocorrelation R(t 1, t2) defined as 

R(tl, t2) = E[X(tl)X(t2) ] 

may be used. It is seen that 

R(tl,/2) -- cov(tl, t2) 4- [2 lf12 

(3.88) 

(3.89) 

The closer the two instants of time, t I and t2, are, the closer the correlation must be 
between X(t 0 and X(t2) as X(O is a continuous process. 

For t I = t 2 the autocorrelation becomes 
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R(tl ,  tl) = s 2 + / z  2 (3.90) 

w h e r e  s 1 is the standard deviation of X(t l ) .  

A significant reduction in the complexity of the statistical predictions for X(t) occurs, 
if the absolute value of time t does not enter the probability distribution, i.e. 
F(x; t) - F(x). On the basis of this assumption, the stochastic process is said to be 
stationary. Only stationary processes  will be considered here, as non-stationary 
processes can often be treated as a weighted sum of stationary processes. This is 
discussed later in Section 3.3.3 

3.2.i Stationary Stochastic Processes 

On the assumption that F(x; t) - F(x), the probability density function is written 

p(x; t) - dF c~ - p ( x )  

Hence, all statistical moments E[G(X)], for instance /z = E[X(t)] and 

a so become independent of t The au oco r latio, the [,--,, 
J 

covariance become functions only of the time difference v = t 2 - t  1 and the 
autocorrelation is an even function of r as 

R(v) = E[X(t)X(t + V)] 

= E [ x ( t -  ~)x(0] = R ( -  ~) 

(3.91) 

Stationarity implies that the statistical moments of the process do not change with time. 
This criterion may be used to divide a stochastic process into a series of stationary 
processes. For ocean waves and derived wave load processes each stationary process 
may have a duration of between 30 minutes and three hours. 

Based on a large set of samples Xi(t), i -- 1,2,.. . ,n, approximate values of the 
statistical moments can be obtained by averaging over the whole ensemble" 

n 

fl = 1 Z  Xi(t ) 
i=l 

S 2 .~ ~ Z ( X i ( t  ) _ f l )2  

i = 1  

(3.92) 

II 
R('g) = 1 Z Xi(t)Xi(l at- T) 

i = 1  

for a fixed value of t. 
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However, often only a single sample Xo(t ) is known. If this sample can be considered 
typical in an average sense of all possible samples, then the statistical moments of Xo(t ) 
obtained by averaging over time t: 

T/2 

= I Xo(O ,it 
-T/2 

T/2 

-I"/2 

(3.93) 

T/2 
/ -  

Ro( ) = ! Xo(t) Xo(t + r) dt 
, I  

-T/2 

will often provide good estimates for/z, s, R(r) etc. If this is the case the stationary 
process is also an ergodic process. Obviously, from Eq. (3.93), stationarity is a 
necessary condition for an ergodic process but the reverse does not have to be true. 

3.2.2 Spectral Density 
In the analysis of many physical problems, it is convenient to apply a Fourier 
transformation to a function defined in the time domain, in order to obtain a 
corresponding function defined in the frequency domain. Here the Fourier 
transformation is given in the following form" 

GO 
/ .  

A(t) = I B(w) eiC~ (3.94) 
. I  

GO 

and 
oo 

1 I i -i~~ B(oo) = ~ A t) e (3.95) 

with i 2 = - 1. 

Eqs. (3.94) and (3.95) are called the Fourier transform pair. It should be noted that this 
is not a unique definition of the Fourier transform pair. Other, albeit very similar, forms 
do exist (see for example Ochi (1990) for details). Here B(w) is called the Fourier 
transform of A(t) while A(t) is the Fourier inverse transform of B(w). 

For stationary processes, a Fourier transformation of the autocorrelation function R(r) 
is particularly useful: 
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0 o  

R(r) = f Sd(to ) eiC~ (3.96) 

- -  O0 

g o  

Sd(to) = 1 I R(r)e-i~176 " (3.97) 

The function Sd(to) is denoted the double sided spectral density. However, Sd(to) is an 
even function of to as 

CO 

S d( -- to ) = --~ f R ('Q e iWr d'r 
0 0  

g o  

1 f R(-u) e i~ z ~  - = S d ( ~ )  

g o  

by use of R(~') = R(-v), Eq. (3.91). The integrals (3.96) - (3.97) can then be reduced 
to 

o o  

R(~') = f S(to) cos tordto 

o 

(3.98) 

o o  

2 J R(r)costo~'d~ s(~o)  = 

o 

(3.99) 

by application of e ix =- cos x + i sinx. Here 

S(to) = 2 Sd(to ) oJ >_ o (3.1oo) 

is the one-sided spectral density. Whereas R(r) varies between positive and negative 
values, it can be shown that S(~o) is always a non-negative function. This is illustrated 
later for ocean waves. 

From Eqs. (3.91) and (3.98) it follows that 
0 o  

f S(to)dto -- R(O) = E[X(t) 2] "- s 2 + ~2 

o 

O.ml) 
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Thus, for/~ - 0, the area below the spectral density curve is equal to the variance of 

the process E[X(t) 2] and therefore a measure of the average magnitude of X. In Section 
3.3.2 spectral densities representing ocean waves will be discussed. Here, only a general 
discussion is given. 

From the spectral density S(w), the spectral moments can be derived: 

o o  

m,, = f wns(~176 

o 

(3.102) 

It is seen that 

m o = s 2 -F ~ 2  (3.103) 

and that average frequencies ~n can be defined as 

- -  = (mn] 1In (3.104) 

If the spectral density is narrow-banded, that is if S(oJ) has only non-zero values in a 
small frequency band [w0 - A ~o, o90 + A w], then 

mn ~ O)om 0 

(-On ~ o) 0 
s inAwr 

---, m 0 cosw0r R(r) m ocos~oo r Ao~r Ao-~O 

(3.1o5) 

Thus, it can be seen that a strong correlation exists in a narrow-banded process between 

values of X(t) separated by a large time difference r ~< (Ao)) -1 . In the limit Aw --- 0, 
the process X(t) becomes deterministic with a sinusoidal shape, frequency oJ o and 

amplitude m~0. 

Generally, the spectral densities derived for physical processes related to ocean waves 
are rather narrow-banded. The bandwidth e is usually characterised in terms of the 
spectral moments. One measure is 

e = / 1  m2 (3.106) 

g morn4 

It is seen from Eq. (3.105) that e ~ 0 for a narrow-banded spectrum. A broad-banded 
spectrum with m 4 ~ co yields the upper limit e = 1. 
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Example 3.2.1 

Consider the spectral density 

f 
0 

s (o)  = So 

0 

0 3 < 0 )  1 

031 ~< 03 ~ 032 

0 ) > 0 )  2 

From Eq. (3.102) the spectral moments become 

mn = S O 
0)~+1 _ 0)1n+1 

n + l  

- -  0 ) 2  + 0 )  1 
0)1 = 2 

_ / < , , ]  + <,,,o.,~ + <,,,~ 
0)2 = V 3 

V/I  5 1 + 2 a  + 3a 2 + 2 a 3 +  i 
e = - 9  1 + a  - F a z + a - 3 + - a  -~ 

(Z 4 

031 
where a - ~z" Finally 

R(O = 
( ) , o2o , )  2 m 0 0)2 + 031 s m k ~  r 

(032 --  03 1) r COS 2 r 

For a -o 1, the results tend to the narrow-banded solution (3.105). The other limit is a = 0, i.e. 
r 1 = 0 or w 2 ---- oo. Here the bandwidth e = 2/3.  

8 = 0 . 3 4 9 1  

. . . .  

F i g u r e  3.6 Time h i s tory  based  on a cons tan t  spec t ra l  dens i ty  wi th  e = 0.3491.  

A procedure for deriving samples from a given spectral density is outlined in Section 3.3.1.3. Figure 3.6 
and Figure 3.7 show such samples based on a = 1/2 (e = 0.3491) and a = 1/7  (e = 0.5963), 
respectively. It is seen that with increasing e the irregularities increase and for instance crests below 
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the mean level appear more freqently. Note the similarity between the measured wave elevation records 
in Figure 3.5 and the simulation in Figure 3.7 

74 Ocean Waves 

Figure 3.7 Time history based on a constant spectral density with e = 0.5963. 

3.2.3 Upcrossing and Peak Rates 

When the stochastic process X(t) represents a load or response process, it is obvious that 
the largest values of X(t) are especially important in the design phase. Generally, the 
distribution of peaks (and troughs) is needed, but also the analysis of upcrossing rates 
gives useful information for design purposes, especially for narrow-banded processes. 
The results for upcrossing rates and peak distribution were first derived by Rice (1945). 

For a stochastic process X(t), the probability that the process during the time increment 
dt crosses the level x from below can be written 

o o  

I p(x, dx dx x) 

x=O 

as an upcrossing requires 2 > 0. Here, p(x, 2) is the joint probability density of (X, X). 
dx The upcrossing rate v(x) is obtained by dividing this expression by dt. As -~- = 2: 

v(x) = [ p(x, x) x 
o 

(3.107) 

There is no correlation between a stationary process X(t) and its time derivative X(t) 
since 
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1E[ax(02] 1 (3.108) 

as the statisticalmoments of X(t) are independent of t. For some processes, among 
which the Gaussian process, lack of correlation also implies statistical independence as 
shown in Section 3.1.6. In these cases 

p(x, x) = px(x)pjc(2 ) (3.109) 

so that 
oo 

v(x) = p~(x) f pax)x dx 
0 

(3.110) 

The ratio between the upcrossing ofx and, for example, the upcrossing of the mean level 
/~x simply becomes 

v(x) _ px(x) (3.111) 

independent of the distribution of X(t). 

For a Gaussian process, the marginal distributions of X(t) and X(t) are 

[ ( )] 1 1 X t t x2  
px(X) - ] - ~ s x  eXp - - 2  Sx (3.112) 

1 [ x)2] 
Px(X) - ] -~Sx  exp _ 1 ( ~  (3.113) 

a s  

px = E[X(t)] = d E[X(t)] = 0 (3.114) 

Insertion of Eqs. (3.112) - (3.113) into Eq. (3.110) yields 

v(x) = p x ( x ) - ~  ue -~- -du = 2~Sx exp - ~ Sx 

0 

(3.115) 

and the upcrossing V(~x) of the mean level becomes 

s 2 

Vq~x) - 2~Sx (3.116) 

The standard deviation Sx of the process X(t) can be determined from the spectral 
density S(~o) of X(t) as follows. Differentiation of R(r), Eq. (3.98), twice with respect 
to r yields 
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o o  

dr2R(z ") = E[X(t)J((t + "r)] = -- (o 

o 

2 S((o) cos (or do) 

Thus, for r = 0: 

E[X(t))((t)] = - m 2 

using the definition of spectral moments, Eq. (3.102). However, 

E[X(t) *(t)] = d E[X(t) X(t)] - E[X(t) 2] = - s 2 

by use of Eq. (3.108). Hence 

Sx = r (3.117) 

so that when btx = 0" 

i m ~ 0 2 _  1 to-- 2 (3.118) v(o) = ~ 2~ 

as Sx = m ~  0 and with ~2 defined by Eq. (3.104). 

The average frequency ~2 is therefore equal to the mean upcrossing frequency 2~v(0). 
This gives ~2 a specific statistical interpretation and makes it a suitable measure of the 
average frequency of the spectral density. 

For a narrow-banded spectral density, each upcrossing of the mean level is nearly 
always followed by one and only one peak Xp. Therefore, the peak frequency is equal 
to w2 and, furthermore, the probability that the peak Xp exceeds x becomes equal to the 
ratio between upcrossing of the levels x and/~x: 

P(Xp > x) - ,,(x) 
Vq~x) 

so that the probability distribution Fp(x) of the peaks becomes 

v(x) 
Fp(x) = P(Xp <-x) = 1 v(flx) (3.1.19) 

For a Gaussian process, substitution of Eq. (3.115) into Eq. (3.119) yields 

[ 1/x  x,2] 
Fp(x) = 1 - e x p  - ~  Xx ] ; x _ > ~ x  (3.120) 
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which is the Rayleigh distribution, Eq. (3.43), with an offset Ftx. 

Broad-banded processes may, as illustrated in Figure 3.7, have several peaks for each 
upcrossing as well as peaks below the mean level. The peak rate Vp, i.e. the average 
number of peaks per unit of time, can be derived from the conditions defining a peak: 

X(t) = 0, ~'(t) < 0, which implies 

0 0 

1I I p - ~ p ( x  - o , ~ ) l d x l d ~  - p ( O , ~ ) l ~ l d ~  (3.121) 

The variables X and X are uncorrelated as 

analogously to Eq. (3.108). This means that the Gaussian processes X(t) and Jr(t) are 
also statistically independent: 

p(jc, ~) - pjc(.ic)p~(2) (3.122) 

so that 

0 

Vp = px(O) P~(~)I .~l& - ~ sx 
(3.123) 

using Eq. (3.113) and 

ex [ 1t t ] P~(~) - v ~  s~ 
(3.124) 

as  

d 2 
/ ~  = E [ x ( t ) ]  = ~ e [ x ( 0 ]  : o (3.125) 

Differentiation of the autocorrelation function R(r), Eq. (3.98), four times with respect 
to r and setting r = 0 yield 

E[X(t)xIV(t)] = m 4 (3.126) 

Furthermore, 

d,2~2 [d2~ ~t~21 4~t~21] 0 
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as both E[X(t) 2] and E[X(t) 2] are independent of t. Carrying out the differentiations 
gives 

- + : o  (3.127) 

Combination of Eqs. (3.126) - (3.127) results in 

S~= m~4 (3.128) 

The peak rate vp, Eq. (3.123), for a Gaussian process can thus be written 

1 m~m ~ lPp - - - ~  (3.129) 

and the ratio 

Vp _ /m4 mO _ 1 (3.130) 

by application of Eq. (3.106) for the bandwidth e and on the assumption that / tx  = 0. 
It is seen for narrow-banded processes (e --> 0) that Vp ~ v(O) as stated previously. In 
the extreme broad-banded case (e ----> 1), Vp tends to infinity. 

3.2.4 Peak  Distributions 
The probability that a local maximum (crest) occurs in the interval [x, x + dx] during 
a time interval dt is given by the probability density function for the local maxima pp(X) 
multiplied by dxdt. This probability can be derived from the conditions defining a crest 

in the interval" X(t') E [x,x + dx], X(t) E [0,dx], Jr(t) < 0, which implies 

0 t" 
dt = 1 I p(x, Sc = O, ~) dx ,IX dX pp(x) dx 

J 
X - " - - - o o  

or 

o 

pp(x) = 1 I p(x, 2c = O, 5/)[xldSc (3.131) 

where K is a normalisation constant needed to ensure that 

GO 

f pp(x) dx = 1 

GO 
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including positive as well as negative local maxima x C ] - oo, cr [. Eq. (3.131) is the 
general formula derived by Rice (1945). 

For a Gaussian process, the joint probability density p(x, Jc,5~) is a multivariate normal 
distribution given by Eq. (3.73). Its covariance matrix Z is of the order 3 x 3 with the 
coefficients: 

(711 = s 2 = m 0 

2 = m  2 022 -- S:t 

2 = m  4 0"33 -- sj~ 

~r12 = ~rzl = E[X(O X(t)] = 0 

"23 = "32 = EIX(0  x ( 0 1  = 0 

O"13 = O31 = E[X(t)X(t)] = - m 2 

assuming that Atx = 0". Thus 

I m 0 0 - m  2 

~ =  0 m 2 0 

--m 2 0 m 4 

The determinant becomes 

z j  = m (mo m4 - 

and the inverse matrix takes the value 

(3.132) 

(3.133) 

m2m 4 0 m 2 

~ -  1 = 1 0 morn 4 - m~ 0 (3.134) 

-- m2(  mOm4 - m2) m 2 0 mom 2 

Insertion of Eqs. (3.133) - (3.134) into Eq. (3.73) yields 

p(x, x, ~) = px(X) p~(x ,  ~) (3.~35) 

where px(.~) is the marginal normal distribution of .~ given by Eq. (3.113). px~(X, 50 is 

the joint distribution of (X, X ): 

pxi(X,2) = 1 exp { _  l_m4x2 + 2m2x2 + mox2 }(3.136) 
23:V/mom4 .i_ m 2 2 mom 4 - m~ 

* This can be done without loss of generality by a change of variable from X(t) to X(t) - k~x 
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Due to the non-zero covariance ~r]3 = - m2, the stochastic process X(t) and its second 

derivative J~(t) are correlated and hence also statistically dependent. 

After some lengthy algebra substitution of Eqs. (3.135) - (3.136) into Eq. (3.131) 
followed by integration with respect to 5~ yields 

pp(x) = 

o 

l p~(x,~) I~1 a~ 
t30 

oo 0 

N O 0  ~ 0 0  

[~ '/,,/~) ~ / i '  i2 ,.2 (/1 - ~2 = e e-_~ + u e - ~  q~ e )], 
" m~0 

(3.137) 

where 
x 

u -  m ~  0 (3.138) 

and e is the bandwidth, Eq. (3.106). The above derivation was first carried out by 
Cartwright and Longuet-Higgins (1956). 

leigh 

-4 -3 -2 -1 0 1 2 3 4 
Figure 3.8 Probability density functions of individual maxima for different bandwidths 

- 0 (Rayleigh), 0.2, 0.4, 0.6, 0.8 and 1.0 (normal). 

Figure 3.8 shows the probability density function pp(u) = pp(x) f~o  for various values 
of the only parameter e which enters into the expression for the probability distribution. 
In the narrow banded case (e ~ 0): 
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e-~ u2 ; u _> 0 
pp(u) 

; u < 0  

which is the Rayleigh distribution, Eq. (3.46), with a = ]2. This is in accordance with 
the result, Eq. (3.120), derived in the previous section, relating the peak distribution to 
the upcrossing rate for narrow-banded processes. It is seen that only positive peaks exist 
for e = 0. 

For extreme broad-banded cases (e = 1), the probability density function for the 
maxima becomes 

! 

pp(U) = - ~  e-~ u2 

which is the normal distribution. In this case, the maxima are distributed just like the 
process itself and hence there is no reason to consider the distribution of maxima 
separately. 

The probability density function, Eq. (3.137), can be integrated to yield the probability 
distribution for the local maxima: 

U 

Fp(u) = f pp(u) du 
J 

= @ ( u ) _  ]1 - e 2  @ (~ 4/1 _=e2)e-�89 ~ 
(3.139) 

1 
---- 1 - e-~ u2 for e = 0 

From the probability density function pp(x), Eq. (3.137), the lowest statistical moments 
may be derived: 

/Ux = ~ o  ~/ ~ ~ - I 

Standarddeviation Sx=  m~o r  ) (3.140) 

Mean 

Skewness 
1 - /~2 ]3/2 

The limiting cases of e = 0 and e = 1 are again seen to correspond to the results for 
the Rayleigh and the normal distribution, respectively. Extension to slightly 
non-Gaussian processes given by the Gram-Charlier series expansion (3.31) is 
presented by Longuet-Higgins (1964). 
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3.2.5 Extreme Value Predictions 

Consider a stationary stochastic process X(t). One of the most important questions is 
often how to determine the expected maximum (or minimum) value of this process 
during a given period of time T. 

As the process is assumed to be continuous in time t, the maximum value is the largest 
peak. Therefore, the probability distribution Fz(x ) for the maximum value can be 
expressed as 

F T(X ) = P(Xpl < x, Xp2 < x,..., XpN < x) (3.141) 

where Xpi , i = 1, 2,...,N are the peaks in t E [0, T] and N is the expected number of 

peaks: 

N = vpT (3.142) 

The peak rate vp is given by Eq. (3.121) or, for a Gaussian process, by Eq. (3.129). 

If the peaks Xpi, i = 1, 2,...,N can be assumed to be statistically independent, then 

Fi(x ) =_ FN(X ) = [Fp(x)] N (3.143) 

as all peaks in a stationary process have the same probability distribution. The 
corresponding probability density function pN(x) becomes 

_ .  PN(X) -  dx pp(X) (3.1441 

2-1 pp(X)Sx 10000 
1000 

1 

10 

_ 

J 

0 1 2 3 4 5 X/Sx 6 
Figure 3.9 Probability density fimctions pN(x)for the largest peaks among N peaks as- 

suming a narrow-banded Gaussian process, e -- O. 

where pp(x) is the probability density function of the individual maxima, Eq. (3.131). 
Knowing the probability distribution Fp(x) of the individual maxima makes it thus 
possible to calculate the probability distribution of the largest peak among N peaks. For 
a narrow-banded Gaussian process such results are shown in Figure 3.9. 
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Any statistical moment or characteristic value of the largest peak may be calculated 
from Eq. (3.144). For example, the mean value/~N: 

0o oo  

~U = x p A x )  ~x = N x pp(x) dx (3.145) 

- - 0 0  - - 0 0  

the most probable value fiN" 

dpp I = 0 (3.146) aPu~X) = 0 ~ (U - 1)p~o~a N) + Fp~au) W = ~  
dx x=#L N x 

and the 50 per cent fractile fiN, 50: 

- -  
(3.147) 

Closed-form expressions for/~N and fiN are normally difficult to obtain. If, however, 
N is sufficiently large, approximate values for ~U and fiN can be determined. First fin 
is considered. Later, in Example 3.2.3,/t N is derived for a Gaussian process. 

For large values ofN, fiuwill correspond to a value in the tail of the distribution function 
Fp(x). This implies that Fp(fiu ) = 1 and PP(fiN) ~ O. From l'H6pital's rule, it follows 
that 

- 

Insertion of this result into Eq. (3.146) yields 

FP(fiN) = N -  1 

o r  

1 (3.148) = 1 - 

As 

the probability that each individual peak exceeds fiN is approximately equal to 1/N. 
With an average total of N peaks, only 1 in N peaks during the time T will exceed fin 
in average. Hence, T may be considered as the return period for the extreme peak fiN" 

The probability that the largest peak among N peaks exceeds fiN follows from Eqs. 
(3.141), (3.143) and (3.148): 
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i=1,2 . . . . .  

N 
o.6,  (3.149) 

N 
as lim(1- ) - e - ~  

N---~ oo 

For design purposes, fiN may therefore not be a very appropriate value because the high 
probability of exceeding this value during the period T (e.g. the lifetime of the 
structure). 

The formula for the 50 per cent fractile fiN, 5O may also be simplified if N is large. In 

that case 

- -  e - ~  l n 2  ~__ I - -  I n  2 

so that Eq. (3.147) becomes 

Fp(fiN, 50) -'-1 -- 1 1 n 2  (3.150) 

The probability that the maximum peak among the N peaks exceeds fiN, 50 is per 

definition equal to 50 per cent so that fiN < fiN, 50" For design purposes, it may be 

preferable to use the q-fractile fiNq defined as the value which the largest peak exceeds 

with a given small probability q: 

o r  

q 
Fp Nq = (1 - q) l /N= 1 N (3.151) 

For a Gaussian process, the probability distribution Fp(x) and the associated probability 
density function pp(x) are given by Eqs. (3.139) and (3.137), respectively. For large 

values of N, fiN will be much greater than s = m~0, see Figure 3.9, and if, furthermore, 
the bandwidth measure e is less than about 0.9, the standard normal distribution 
functions in these equations are very close to unity so that, omitting for simplicity the 
subscript x on sx, 

Fp(x) ~ 1 - vii e 2 e -�89 (3.152) 
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and 

x ]1  - e 2 - '  (xis)2 (3.153) pp(X)  = - ~  e 

The most probable value flN of the largest peak is obtained from Eq. (3.148): 

l i N = S  r  l ~ f - ~ -  e2N) (3.1.54) 

From Eqs. (3.130) and (3.142): 

v/1 - e ~ U = v/1 - e 2 Vp T = v(O) T - N z 
(3.a55) 

so that f i n  can be expressed more simply in terms of the number N z of 
zero-upcrossings: 

f i N  • S v/21nNz (3.156) 

The 50 per cent fractile fiN, 50 follows from Eq. (3.150): 

~U, 50 = s  r  2) (3.157) 

using Eq. (3.155) and, finally, the q-fractile f iN, q, Eq. (3.151), becomes 

f o r N  z > >  1, q < <  1. 

Examt)le 3.2.2 
A 

(3.158) 

For stochastic processes where no analytical probability distribution Fp(x) for the individual peak 
values is available, an empirical fit of the individual maxima to a Weibull distribution, Eq. (3.38): 

Fp(x) = 1 - e -(x/ay~ 

(3.159) 

often proves useful. The most probable largest value f in  is then found from Eq. (3.148): 

f in = a (lnN) l/f~ 

The fundamental assumption in the previous derivations is that the peaks are 
statistically independent and therefore can be rearranged in ascending order. This 
analysis is called o r d e r  s ta t i s t i cs .  Another procedure based on so-called P o i s s o n  
p r o c e s s e s  assumes statistically independent upcrossings of any given level x. A 
discussion of Poisson processes is beyond the scope of this treatment of stochastic 
processes, but it can be shown, see e.g. Ochi (1990), that the probability distribution for 
the upcrossing of the level x during a period of time T becomes 
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F ~ x )  = e-V(x) r (3.160) 

where v(x) is the upcrossing rate, Eq. (3.107). For Gaussian processes, substitution of 
Eq. (3.115) by/~x = 0 into Eq. (3.160) yields 

F ~ x )  - Fu(x) = exp ( -  N z  e-�89 2) (3.161) 

with N z = v(O)T and s = Sx. For upcrossings of extreme levels, Eq. (3.161) can be 
approximated by 

Fu(x ) = 1 - Nze- �89  2 (3.162) 

which is the same result as obtained previously by use of order statistics, Eqs. (3.143), 
(3.152): 

FN(X ) " - ( 1 - ~ / 1  'E 2 e-�89 N 

" ' ' 1 

"" 1 - N I l  - e 2 e -~ (x/s)2 

= 1 - N z e  -�89 

Therefore, whether to use order statistics or Poisson upcrossing is not so important in 
the present context as they asymptotically lead to the same results. It should, however, 
be mentioned that both procedures rely on some assumptions about statistically 
independent peaks which are only satisfied approximately in real physical processes. 
For estimations of wave loads on ships, the results presented here are generally 
sufficiently accurate. 

Examole 3.2.3 

From the probability distribution function FN(x ) given by Eq. (3.161), the mean value /~N can be 
derived. 

The monotonic transformation 

y - - , n N z  + 
(3.163) 

implies that y is Gumbel distributed, Eq. (3.51): 

FN(Y ) = exp ( -  e -y) 

Hence, from Eq. (3.53), the mean value of y becomes 

E[y] = C ( =  0.577215 .... ) 

In order to determine the mean value/~N = E[x] of x, the transformation (3.163) is linearised around 
the most probable largest value ti N given by (3.156), assuming/.t N to be close to fiN" 
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If x = fin the corresponding value of y is equal to zero by use of (3.163) such that 

ely fin 
Y = -dx ]x=f'u (x - fiN) = -ST (x - fiN) 

Hence 

yielding 

fiN 
E[yl  = T i  ~uu - #~u) = c 

~,~ = ~  + c~_ ~ 

It is seen that PN > fin and, furthermore, from Eq. (3.157) that 

flu < fiN,5o < PN 

(3.164) 

To apply order statistics or Poisson upcrossing a knowledge of the individual peak 
distribution or upcrossing rates is needed. For linear and slightly non-linear problems 
they can usually be determined theoretically but for highly non-linear problems or 
when actual measurements are used, information in the form of samples Xi ( t  ) of the 
process may only be available. In such cases the theory of asymp to t i c  d is t r ibut ions  o f  
ex t reme  va lues  may be very useful. The theory does not make use of the individual peak 
distribution or upcrossing rate but relies on a proof, see e.g. Ochi (1990), that the 
extreme peaks follow a specific distribution, depending mainly on whether the process 
is bounded or not. For unbounded processes, this distribution is the Gumbel 
distribution, Eq. (3.51), provided all statistical moments of the initial distribution 
exist*. Its two parameters, (a, fl), must be determined numerically. This can be done 
in a least square sense by relating (a, fl) to the mean value and the standard deviation 
of the set of known extreme peaks, by application of Eqs. (3.53) - (3.54). 

Another method which usually provides better results is the m a x i m u m  l ike l ihood 

procedure ,  in which it is assumed that the set of known extreme peaks X'l, ~2,'", -~n is 

the most probable set of peaks to be found. This implies that the joint probability density 
p(x~,  x 2 .... , xn) should have its maximum value for xi = xi, 1, 2,...,  n. On the 
assumption that the peaks are statistically independent and that each follows the same 
Gumbel distribution 

* The Weibull distribution, Eq. (3.38), is another extreme value distribution applicable to 
processes without an upper limit. 
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n 

,2,..., 13p( i; a, 
i = 0  

(3.165) 

where p(x.i; a, fl) is the Gumbel probability density function, Eq. (3.52), with x = -~i. 

The parameters (a, fl) are then determined so that p(Xl,  x2,'", xn) is maximised: 

Op = 0 " 019 = 0 (3.166) 
Oa ' Off 

As p > 0 Eq. (3.166) can be replaced by 

Olnp _ 0 
Oa 

0 lnp _ 0 (3.167) 
' o~ 

The use of lnp rather thanp makes the solution for (a, fl) easier, because the products 
in Eq. (3.165) are replaced by a summation: 

0 lnp _ 2 0 lnp(~i; a, fl) = 0 (3.168) 
OR Oa 

i = 1  

Differentiation with respect to fl is done analogously. This results in two non-linear 
equations in (a, fl ) which must be solved numerically. 

The special property inherent in the Gumbel distribution is that its type is invariant with 
respect to the number of peaks. Consider a Gumbel distribution 

- ex (- (3.169) 

derived for the largest peak among n peaks. The distribution of the largest peak among 
N = m �9 n peaks becomes 

FN(X ) - Fn(x) N/n -- Fn(x) m --- exp ( - e  -(x-a'`)  /P~') (3.170) 

where a N = a n -4- p In m and fiN = fin. FN(X) is therefore also a Gumbel distribution, 
only the shift parameter a has been modified. The most probable largest peak value 
f in  = aN as shown in Section 3.1.5. 

Comparing Eq. (3.161) with Eq. (3.170) seems to indicate a difference in exponent on 
x, making the two distributions incompatible. However, this disagreement disappears 
when n ---- ~ as shown below. 

Eq.(3.161) can be written 
r 

FN(X ) = exp / - -  
[ 

exp 

[ ()2]] 
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using Eq. (3.156). I fN is large then fiN -- S v/21nNz is also large and, hence, it can be 

expected that ~x" - fiNI ~ fiN" Thereby, 

2 2 
- + - - f i n  

- _  ) 
such that 

which is the Gumbel distribution with 

alv =/~N = /iN 

The same asymptotic behaviour can easily be proven for any individual peak 
distribution satisfying 

Fp(x) = 1 - e -q(x) ; - m < x < m (3.171) 

provided Eq. (3.148) also holds. Again the Gumbel distribution is strictly only valid for 
N ---, ~ ,  because of the approximation 

q(x) -'-- q(fiN) + d r~~lfi(x -- fiN) (3.172) 

The Gumbel distribution can be applied to a realization (sample) X(t), 0 < t <_ T of 
a stochastic process by dividing the sample into M equidistant time epochs 

M 
i Xi(O ; i 1, T <  T < _ ~ T  ; i =  1,2, . . .M 

and then extract the maximum value -~i in each epoch 

x-/ = m a x  (Xi(t)) ; i = 1, 2, ...M 

These M maxima then determine aM, tiM in the Gumbel distribution by either Eqs. 
(3.53)-(3.54) or the maximum likelihood method, Eq. (3.167). For a given sample 
length T it might be difficult to choose a proper value of M. If M is too high then 
X"/ '~ tiM in several of the then small equidistant time epochs, violating the assumption 

lXi- ~MI <~ tiM" O n  the other hand, if M is too small, tiM ~ max (~i), also 
contradicting this assumption. A remedy can be to transform the variable x. As the 
approximation (3.172) holds exactly if q(x) is a linear function of x, the optimal 
transformation is 

x = q - l ( y )  (3.173) 
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Thus, for a Gaussian process, the transformation x = v / ~ / s  will transform Eq. (3.161) 
2 

to a Gumbel distribution with a M = 0 . 5  (~M/S) a n d  tiM - -  1 in the variable y, a 

property also used in Example 3.2.3. In real cases q(x) is of course not known (because 
then there is no need for the Gumbel distribution as FN(X ) is known!). However, some 
knowledge of the underlying physical processes can be apply to define a transformation 
which extend the validity of the Gumbel distribution significantly, Naess, Storli and 
Storm (1996). 

The main disadvantage with the application of the Gumbel distribution is that only the 
largest maxima in each time epoch is utilized. Thus many large maxima may be omitted 
from the analysis, resulting in a large loss of information. An alternative is to assume 
that all data above a certain threshold value u are important for the extreme value 
distribution. An appropriate model for the probability distribution function Fu(v) for the 
excess V = X -  u is the Generalized Pareto (GP) distribution. Each of the three 
asymptotic extreme value distributions has a corresponding GP distribution, Pickands 
(1975). For the Gumbel distribution this GP distribution is 

F u ( v ) =  1 - e  v/7 ; r > 0  (3.174) 

The relation between the parameter in the two distributions, Eq. (3.51) and (3.174) can 
be determined from the assumption that the number of peaks exceeding the threshold 
is Poisson distributed, Pickands (1975), and becomes 

a = u + g l n n u  ; fl = Y (3.175) 

where nu is the number of peaks above the threshold level u. 

In order to derive extreme value predictions from a sample X(t); 0 < t < T of a 
stochastic process, the following procedure based on the Peak-Over Threshold method 
can be used: 

�9 Select a moderately high threshold u and collect all peaks ~'i ; i = 1, 2,..., nu 
above u. The number nu depends clearly on both u, Tand the actual sample. Thus 
nu is a random number. 

�9 Fit the excesses vi = x - / -  u ; i  = 1,2,...,nu to the GP distribution, Eq. 
(3.174). For instance the maximum likelyhood procedure, Eq. (3.168), with 
p(v ; y) derived from Eq. (3.174) yields simply 

nu 

i = 1  

(3.176) 

Calculate a,  fl in the Gumbel distribution from Eq. (3.175). 

Determine the cumulative probability distributions for the largest peak over a 
period Te > T from Eq. (3.170) with 

a N = a + 3 In ( T e / T )  -" U + r In (ntdV) 

where N = Te/T. 
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The mean value/2N, the most probable value fiN and the 50 per cent fractile of 
the largest peak becomes 

fiN = aN + CflN ~-- aN + 0.5772 fiN 

fiN = aN 

fi50.N = aN -- fiN In (ln2) = a N + 0.3665 fin 

(3.177) 

according to the results derived in Section 3.1.5. The value with a return period Te 
1 follows from F N (XN) = 1 -- ~." 

-- a + fl InN = a N = fiN 
(3.178) 

�9 The result should be rather insensitive to the choice of threshold u. Therefore the 
analysis should be done with different values of u to check the validity of the GP 
distribution for the excess. 

The procedure outlined above assumes that the extreme value distribution is of the 
Gumbel type. This is so for many of the stochastic processes related to wave loads. 
However, in some cases the two other asymptotic extreme value distributions (Fr6chet 
and Weibull) and their associated GP distributions might be useful. A detailed 
description of these distributions and their applications is given in Castillo (1988). 

3.2.6 Conditional Mean Processes 

The expected (mean) variation < X (0 > of a stochastic process X(O in the vicinity of 
a large peak x 0 at t=O is also of interest. It is given by 

< x ( t )  > =_ e [x ( t )  l x ( o )  = Xo, X(O) : Xo = o] 
o o  

= f up(ulXO, "~0 = 0) dx (3.179) 

GO 

where p (x [ x0, 0) is the conditional probability density function of X(t), given X(O) = 
x 0 and X(O)=O. From Eq. (3.62) it follows that 

p (x I Xo, Xo) = P ( x ~  (3.18o) 
p (Xo, Xo) 

where p (Xo, X,X ) and p (Xo, Xo) are the joint probability density functions of 

X(O), X(O), X(t) and X(0), X(0), respectively. For Gaussian processes these functions 
become multivariate normal distributed, Eq. (3.73). The result for p (Xo, Xo) is given by 
Eqs. (3.109), (3.112) and (3.113) 
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( 1 
~Xo, JC o = O)= 2.rr Sx Sx P  xp[ ] (3.181) 

assuming E IX(t)] = 0. The elements 0.i in the covariance matrix X of p (Xo,./o, x ) are 

~1~ = ~ Ix(o)2] = s~ = m0 

--  Sj: - - m  2 

0"33 = E [X(t) 2] = s 2 = m 0 (3.182) 

O"13 -- 0.31 -" E [X(0)X(t)]  = R(O 

using the properties of stationary processes. The autocorrelations R(t) and S(t) are the 
only functions of t in Eq. (3.182). The determinant ~] becomes 

= m 2 m 2 - R(t)2m2 - S(t) 2 m 0 (3.183) 

and the inverse matrix takes the form 

m m 2 -- 8 (0  2 R(O S(t) - R(t) m 2 
Z - 1  _- 1 IR(t ) S(t) m 2 - R(t) 2 - S(t) mo (3.184) 
= N 

- -  [ -  R(t)m 2 - S(t)m 0 mom 2 

T 
Carrying out the matrix multiplications in Eq. (3.73) using x = {Xo,JC 0 = 0,x} yield 

1 • (3.185) (xo, O,x(0) - ( ~ 1 ~  

[ 21(m~176176 
e x p  - , .~, 

and hence Eq. (3.180) becomes [ ( )2] 
1 exp 1 x ( t ) -  r(t)x o 

p (x(0JXo, k 0 = 0) = ~ u(t) - 2  u(O (3.186) 

after a little algebra. Here 

u(t) = v/mo(1 - r 2 ( t ) -  s2(t)) (3.187) 
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with 

n(t) 
r(t) -- in o 

s(t)  - s ( o  

v/-m0m2 

From Eq. (3.186) it is seen that x(O,  given X(0) = x 0 and X(O) =0, is a normal 
distributed, non-stationary process with mean value 

< X(t)  > = r ( t ) x  0 (3.188) 

and standard deviation u(t). As u(t) is independent of x0, the conditional process 
<X(t)>tends  toward the deterministic mean value, Eq. (3.188), for large peak values x 0. 
Thus the very simple result 

E IX(0 X(0)] 
<X(t)>= E[X2(0) ] x 0 (3.189) 

provides a good estimate of the variation of a stochastic process around a large peak x 0 
at t=O. This result can for instance be used to define critical wave episodes, as shown 
later in Example 3.3.2, for application in time-domain simulations of ship responses 
in waves. 

The result, Eq. (3.189), can be generalized to processes conditional on several 
parameters, Friis Hansen and Nielsen (1995) and slightly non-Gaussian processes, 
Jensen (1996). 

3.3 RANDOM SEA WAVES 

Measurements of the surface elevation in the open sea have shown that over a relative 
short period, in the order of hours, the elevation can be considered as a stationary 
stochastic process with a probability distribution close to a normal distribution and a 
relatively narrow-banded spectral density. 

For most practical purposes, the wave elevation can therefore be taken to be normally 
distributed but in large storm-generated waves, the non-linearities in the free surface 
conditions result in some skewness in the distribution. This phenomenon is equivalent 
to the behaviour seen in regular waves where small amplitude waves have a nearly 
sinusoidal profile. If the wave amplitude increases with a constant wave length the 
profile changes form so that it exhibits vertical asymmetry, as described by for example 
a Stokes fifth order wave. 

The measured observations can be explained mathematically by potential flow 
modelling of surface waves. This is done in Section 3.3.1. 

As shown in Section 3.2, a Gaussian process is completely described by the spectral 
density S(o9). Unfortunately, it is not possible to determine the spectral density for ocean 
waves analytically due to its basis on a complex energy transfer from the atmospheric 
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condition to the waves. Section 3.3.2 deals with the spectral model, normally applied 
for ocean-going ships. 

In the prediction of design wave loads, the limitation to stationary processes of a 
duration measured in hours has to be relaxed. In Section 3.3.3, the standard procedure 
where the long-term extreme values are obtained by proper weighting of all stationary 
(short-term) processes is described. 

This ends the description of ocean waves as the necessary results are available for the 
prediction of hull girder loads and, to some extent, local sea pressure loads required for 
fatigue analysis. However, for the analysis of bottom-supported offshore structures, 
extensions regarding the wave kinematics (velocities, accelerations) are needed 
together with methods of accounting for strong non-linearities in the load description 
for drag-dominated slender structural members. Several textbooks are available on this 
subject, see for instance Chakrabarti (1987) and Clauss, Lehmann and Ostergaard 
(1992). 

3.3.1 Surface Waves 

The theory of surface waves is based on the assumption that the fluid, i.e. the sea water, 
can be considered as incompressible and irrotational and that any viscous effects can 
be neglected. Thus, the kinematics in the complete domain of water can be derived from 
a velocity potential q~(X, Y, Z, t) satisfying the Laplace equation: 

02~b 02~b 02~b 
v 2 4  = + + = 0 (3.190) 

where the global XYZ-coordinate system can conveniently be positioned as in Chapter 
2 with the Z-axis pointing upwards and with the XY-plane coinciding with the position 
of the still water surface.* From the velocity potential ~b, wave particle velocities 
vx, vr, v z become 

Oq~ Oq~ Oq~ (3.191) 
V x -  OX ; v r -  OY ; Vz = - ~  

and the pressure p follows from Bernouilli's equation: 

p + p ~ + pgZ + pv 2 __ P a t m  (3.192) 

where p is the mass density of sea water, g the acceleration of gravity, v the scalar 
velocity: 

* From here on X, Y, Z do not any longer represent statistical processes but global coordinates as 
in Chapter 2! 
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v 2 " v 2 + v 2 + Vz 2 (3.193) 

and Patm the atmospheric pressure just above the water surface. The velocity potential 
~(X, Y,Z, t) and the wave elevation h(X, Y, t) follow from the linear field equation, 
(3.190) with appropriate boundary conditions. Assuming periodicity in the horizontal 
X-, Y-directions and zero vertical velocity at the seabed leaves only the boundary 
conditions at the free, but unknown, water surface h. Here two conditions apply. The 
first is Eq. (3.192) evaluated at the free surface Z = h(X, Y, t): 

[&P 1 2] + gZ + ~  v = 0 (3.194) 
Z=h 

and the second requirement is that the vertical velocity at the free surface should satisfy 

0._.~_~ II = D_..h_h (3.195) 
OZ ,Z=h Dt 

because water particles on the free surface stay there. The total derivative D/Dt is 
needed as the waves propagate with respect to the fixed XYZ-system. Hence Eq. 
(3.195) can be written 

Od? i _ Oh Oh Od? Oh O?P I (3.196) 
O-Z Z=h O t - k - - ~ - ~ - t - - - - ~ - - ~  Z=h 

by application of Eq. (3.191). It is seen that both free-surface boundary conditions are 
non-linear in the unknown functions ~p, h. This makes a general analytical solution 
impossible and various approximate procedures have been developed. The standard 
method is a perturbational procedure in which q~, h are expressed as power series in a 
small parameter e: 

(p(X, Y, Z, t) -- t~b(1)(X, Y, Z, t) + t~2~b(2)(X, Y, Z, t) + ... 

h(X, Y, t) = 6h(1)(X, Y, 0 + ~2h(2)( X, Y, t) + ... 
(3.197) 

Substitution of these series expansions into the governing equations makes it, at least 
in principle, possible to set up equations which can be solved analytically. For 
deterministic waves Stokes' fifth order wave theory is such a solution including terms 

up to q~(5), h(5) using the wave slope as the small parameter. Solutions which can 
describe the wave elevation h as a stochastic process have been derived to second order. 
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Higher than second order solutions are very difficult to obtain, not only because of the 
complexities of solving for higher order terms but also, due to lack of physical 
knowledge of the interaction between different wave components. 

3.3.1.1 Linear (Airy) Waves 

Substitution of the expansion Eq. (3.197) into the free-surface conditions Eqs. (3.194) 
and (3.196) and retainment only of terms of the order 0(e) yield 

+ gh = 0 (3.198) 
Ot z=0 

and 

0~b I = 0..hh (3.199) 
OZ Iz=0 Ot 

These two equations can be reduced to one equation in ~b alone: 

[ 02  
- ~ -  + g -b-Z 

z=0 

= 0 (3.200) 

The field equation (3.190), horizontal periodicity conditions, the bottom condition and 
the free-surface condition (3.200) constitute a homogeneous, linear system. Depending 
on the periodicity conditions, various but unique solutions are easily found. In the 
present case two-dimensional (long-crested) waves travelling in the X-direction are 
considered. Furthermore, infinite water depth is assumed to be most relevant for sea 
loads on ships. Thus, the velocity potential ~p becomes 

~o ekZ s in (kX-  0)t + 0) o = (3.201) 

where the frequency 0) and the wave number k are related by the so-called dispersion 
relation: 

0) 2 =  kg (3.202) 

derrived from Eq. (3.200). The solution contains three undetermined parameters a, 0) 
(or k) and 0. The wave elevation h follows from Eq. (3.198) and Eqs. (3.201) - (3.202): 
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h(1)(X, t) = a c o s ( k X -  cot + O) (3.203) 

from which it is seen that a is the amplitude of the sinusoidal wave elevation and 0 a 
phase lag, relative to the choice of origo of time and space. 

Finally, the pressure p = p(X, Z, t) in the water becomes 

P = Ps + p(1) 

where Ps is the hydrostatic pressure in a calm sea: 

P s(Z) -- P atm -- p gZ 

and 

0q~(1) 
p(1)(X,Z, t) = - p  Ot - p g a e k Z  cos(kX- cot + 0) (3.204) 

is the first order pressure due to the water particle motions described by ~b(1). 

For application to a stochastic wave description, it is important to realise that the first 
order solution is obtained from a homogeneous linear differential equation with 
homogeneous boundary conditions and, therefore, any values of a, co and 0 can be 
chosen and, furthermore, any sum of n such solutions will also be a solution. A general 
solution can thus be written 

n 

h(1)(X't) = Z ai c ~  coit q- Oi) 
i=1 

(3.205) 

n coi 
qb(1)(X'Z't) -- Z ai-~i e k ~ s i n ( k i X -  coit + Oi) 

i=1 
(3.206) 

P(1)(X'Z't) = Pg Z a iek tc~  X - coi t + Oi) 
i = 1  

(3.207) 

where each pair of co i, k i must satisfy Eq. (3.202). 

3.3.1.2 Second Order Waves 

The second order solutions q~(2), h(2) follow from solution of the same linear differential 
equation (3.190), but with non-homogeneous boundary conditions at the free surface, 
see e.g. Longuet-Higgins (1963). The non-homogeneous terms consist of quadratic 
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terms in the first order solution, as such terms will be of the order e 2 like the second 

order solutions. So, ~p(2) and h (2) depend on the first order solution ~b0), h(l), and thus 
on the undetermined coefficients ai, o9i and 0i. The second order solutions become (see 
e.g. Jensen and Pedersen ( 1979))" 

n ti 
h(2)(X't) -- �88 Z Z a i a j [  (k i + kj) cos(~i + ~j) - [k i - kj[ cos (~ i -  ~j)] 

i=1 j=l 
(3.208) 

11 II 
~b(2)(X'Z't) "- �89 Z Zaiay max(- (1)i,O)j) elki-k~Zsin (~i - ~j) 

i=~ j=l  
(3.209) 

n n 
p(2)(X, Z, t) = - -~ p Z Z a i a y 

i=1 j= l  

+ O) i O)j e(ki+kj) Z] COS ( ~ i -  ~Oj) 

where 

(3.210) 

and 

( ) { --o) i if O) i > O)j 
max - ~oi, O)j ~ O)j if O)i < O)j 

~i =- k iX-  O)i t + 0 i 

(3.211) 

(3.212) 

It should be noted that, due to the non-homogeneous equations governing the second 
order solution, no new constants appear. The second order solution is uniquely given 
by the first order solution. It should also be noted that, in the present case of 
unidirectional deep water waves, the second order velocity potential and pressure only 
contain difference frequencies 

~i - l~j - - ( k  i - k j ) X -  (0) i - o)j)t -t- 0 i - Oj 

in the trigonometric functions. 

3.3.1.3 Random Linear Surface Waves 

Consider the linear solution, Eq. (3.205), for the wave elevation. Both the amplitudes 
a i and the phase lags 0 i can be chosen freely. A stochastic wave elevation H(X, t) 
satisfying the linearised wave equations can therefore be obtained by taking one or both 
of these parameters to be random variables. 
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Here the phase lags Oi, i = 1, 2 .... , h are taken to be statistically independent random 
variables, each uniformly distributed between 0 and ZTr*- 

1 0 < 0 i < 2 ~  

p(O 0 = 

otherwise 

(3.213) 

From the wave elevation process 

11 

n ( x ,  t) -- Z a i COS (ki X - o)i t q- 0 i) 
i=1 

(3.214) 

and Eq. (3.213), statistical moments  E[G(H)] of H(X, t) can be derived: 

2zr 2;r 

o o 
2~ 2~ (3.215) 

o o 

It is easily seen that, due to the integration over a full period of the trigonometric 
functions in Eq. (3.214), E[G(H)] will be independent of X, t. Thus, the wave elevation 
H(X, t) given by Eq. (3.214) is a stationary stochastic process and X = 0, t = 0 can 
be used in Eq. (3.214) without loss of generality in calculations of the statistical 
moments.  

The mean va lue /~n  becomes 

" , ,  i: ai c~ ~ i ~ 0 
(3.216) 

a s  

2;r 

if E[cosOi] -- - ~  cosOi dO i -- 0 

0 

* This is a fundamental assumption, based partly on measurements. However, the possibility of 
wave groupings (coupling between phases) are thereby ignored for the linear terms. 
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With zero mean value the variance is found to be 

~2 -- $2 t - -  E aicosO i 
i=1 

(3.217) 

n n 

= Za2E[cos20i] = 1 Z a  2 
i=1 i=1 

as 
2~ 

271: f cOS20i dO i -- 1 

0 

If the number of terms n is large, further moments are not needed since the central limit 
theorem, Section 3.1.7, implies that the wave elevation H is normally distributed with 
the mean v a l u e / ~ / =  0, the standard deviation 

s. _ -  i,2~ (3.218) 

and the probability density function p(h) 

1 
p ( h ) -  ~ S ~ l  

1 e-~_ (h/s,,) 2 
(3.219) 

Thus, the wave elevation process, Eq. (3.214), satisfies the measured observations that 
over a short period of time the wave elevation can be considered approximately as a 
stationary Gaussian process. 

The individual amplitudes a i needed to compute s H by means of Eq. (3.218) can be 
related to the spectral density S(~o) -- S/4(~o ) of the wave elevation through the 
autocorrelation Eq. (3.91): [{n l{n, ,}] 

R(z') -- E Z a/cos 0 i Z aj cos Oj - ~jT 
i=1 j= l  

n 

2E[cosocos(oi- A..aai i 09 
i=1 

(3.220) 

n 

2 
i--1 
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a s  

2zr 

1 I Oi(c~176 + sin0isin(oiz") dOi �89 cos(o/z" - ~  COS - -  

0 

A comparison of Eq. (3.220) with Eq. (3.98) shows that 

a i = v/2S(mi)Ami (3.221) 

where d(o i = (oi - (oi- 1" Therefore, with the knowledge of the spectral density the 
stochastic process H(X, t), Eq. (3.214), is completely defined. It is seen from Eq. (3.221) 
that S(w) must be an non-negativ function. 

For each set of 0 i, i - 1, 2,..., n Eq. (3.214) represents a sample of the process H in 

X or t. The number n of terms should be taken so that [(o 1, (on] covers the range where 

the spectral density is (nearly) different from zero. Note that the sample repeats itself 
after a period of time of 2~/(o 1 or in space after a length of 2~/kp if an equidistant step 
length A(o (or Ak) is chosen. 

3.3.1.4 Random Second Order Surface Waves 
Inclusion of the second order terms Eq. (3.208), in the stochastic model, does not 
introduce new parameters. The stochastic process is still stationary due to the 
periodicity in its variation with X, t. 

In order to calculate the statistical moments of the wave elevation 11, it is appropriate 
again to take X = t = 0 and write H as 

n tl n 
1 

, t  = ~ a~cosO/+~ 2 2[(~i + ~,1 (co~O/cosO,-~in0~ si~0~) 
i=1 i=l  j = l  

-r~/-  ~,t (cos0/coso, + s~nO/sinO, l ] 
n 1l n 

-- Z aic~ + 1 Z Z ai aj [min (ki, kj) cos0i cos0j 
i=1 i=1 j = l  

- max (~/,~,t s~oo/sin0,] 
= H(D + H (2) (3.222) 

where H(1), H (2) are the linear and the second order terms, respectively. 

The mean value/~tt  of H becomes 

(3.223) 
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and the variance 

t7 

S 2 = E[H 2] = E[(H(1))2] + 2E[H(1)H(2)] + E[(H(2))2] ._. 1 Z . a  2 

i=1 
(3.224) 

neglecting the last term, which is of the order a/4. Thus, the mean value and the standard 
deviation are the same as in the linear model. However, as the second order part of H 
contains products of statistically independent variables the central limit theorem no 
longer holds. Therefore, the probability distribution is not necessarily a normal 
distribution. For moderate values of the amplitudes ai, or actually the wave slopes a iki , 
the second order terms may be expected only to change the distribution slightly so that 
the Gram-Charlier series, Eq. (3.31), can be applied. To lowest order the probability 
density function becomes 

' I/s l 3 p(h) - v/~S H e 1 q- ~ 1], 3 -- 3 h (3.225) 

where the skewness 

r u[H ] 
a3 -- ~1 23/2 S 3 (3.226) 

~2 H 

From Eq. (3.222) 

E[H 31 -- E[(H(1)) 3] q- 3E[(H(1))2H (2)] 4- 3E[H(1)(H(2)) 2] -Jr E[(.(2)) 3] 

The first and third terms are of odd order in cos 0 i and therefore vanish in evaluations 

of the expected value. In the following, the last term, which is of the order a 6, is 
neglected leaving 

n min( i,   ) [cos2Oicos O,] 
I= 1 .i=1 

= 3  Z ~ (1 a 2) (1 a 2) min(ki, k)) (3.227) 
i=1 j=a 

In the limit Ao) ---- 0 and n --+ oo, Eq. (3.227) becomes 

oo o o  

o 0 

by use of Eq. (3.202). Integration by parts shows that 
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GO (D oo  oo  

0 0 0 w 

so that E[H 3] can be written 

0 ~o 

(3.228) 

and, finally, the skewness ~,1 is obtained by Eq. (3.226). It is seen that the second order 
stochastic modelling of the surface elevation is described completely by the spectral 
density S(to) of the first order elevation. Accurate higher order moments (kurtosis etc.) 
require inclusion of third and higher order terms in the expansion, Eq. (3.197) which 
is not feasible. 

3.3.2 Spectral Density of Ocean Waves 

Basically, the wave spectral density S(to) at a given location can be obtained by a 
Fourier analysis of a measured time history (sample) by use of Eq. (3.221), and by 
assuming stationarity and neglecting all non-linearities. Such spectral densities may be 
appropriate for structures located in the same position throughout their lifetime. 
Otherwise, more general spectral density formulations applicable to world-wide use 
are desirable. These are mostly smooth functional relations which involve a limited 
number of free parameters. Thereby, different stationary sea states at different locations 
taking account of average wind speed, direction, duration and fetch can be modelled. 

For the analysis of ocean-going ships, fully developed sea states are usually assumed. 
Only one free parameter, the average wind speed, is left, but often an additional 
parameter is included to add some flexibility to the model. Only spectral densities valid 
for fully developed sea state will be treated here. For a treatment of other spectral 
models, see e.g. Chakrabarti (1987). 

An upper boundary on the spectral density S(to) was developed by Phillips (1958). In 
this solution it is assumed that a kind of equilibrium exists in the sense that the waves 
have reached their maximum size independent of the wind speed. Hence, as seen from 
the governing equations, (3.201) - (3.203), the only parameters on which S(to) may 
depend are the acceleration of gravity g and the frequency to. From Eq. (3.221) S(to) 

has the dimension length 2 �9 time (LZT) and a dimensional analysis yields 

S(to) = a gn tom 

L 2 T  = a ( L T - 2 ) n  ( T - 1 )  m 

implying n = 2, m - -5. Hence 

S(to) = a g2 to - 5 (3.229) 
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The constant a is denoted Phillips' constant and takes the value a = 0.0081 (from 
measurements). This spectrum is an upper limit independent of the severity of the sea 
state. The assumption of equilibrium is in practice only valid for the high-frequency 
range. In the low-frequency range modifications are needed. Based on a large number 
of measurements Pierson and Moskowitz (1964) proposed a spectral density in the form 
of 

[ ( S(o)) = a g2 o) -5  exp - 0.74 -~Uw (3.230) 

where Uw is the average wind speed. It is seen that for o) ---, co this spectral density 
approaches Eq. (3.229). Today the explicit dependence on wind speed Uw is generally 
of less practical use as stationary sea states are normally characterised by two 
parameters related to the spectral moments too, m 1 or m 2. To obtain such formulations, 
Eq. (3.230) is written 

S(o)) = A o) - 5  e - B ~  (3.231) 

Eq. (3.231) allows for an explicit calculation of all spectral moments, Eq. (3.102): 
oo  oo 

o o 

- 5  e - B o9-4do ) 

(3.232) 

where F( ) is the Gamma function, Eq. (3.40). Thus 

A 
mo -- ~-- ~ 

o) l 
m 1 
m 0 

-- B 1 / 4 1 " ( 3 )  = 1 .2254B1/4 

m~ B1/4 ~/ff  (�89 B)I/4 % = = = (~ 

so that the Pierson-Moskowi tz  (P-M)  spectrum can be written 

-5 
m~ (~1-1) - ~ (~~ S(o)) = 1.774 ~ e (3.233) 

or 

-5  
(3.234) 
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Most often periods rather than characteristic frequencies are used: 

2n Mean period: Ts = ~---- 
o)l 

(3.235) 

Zero-upcrossing period: Tz = ~ (3.236) 
o92 

Hence 

S(o)) "-- 2765 m o Ts (o) Ts)- 5e -691 (a~ Ts)-' (3.237) 

and 

_~3 (o~ Z./2)-' S(o)) = 64 ~3 mo Tz (o) Tz)- Se (3.238) 

0,4 

0,3 

0,2 

0,1 

S((.o)/(moTz ) 

- -  - -  i ' t  . . . . . .  

0 5 10 O)Tz 15 

Figure 3.10 Pierson-Moskowitz spectrum. 

Figure 3.10 shows the Pierson-Moskowitz (P-M) spectrum. It is seen that it has a steep 
(exponential) increase towards its peak value and a more modest decrease, following 
Eq. (3.229), in the high-frequency tail. The peak frequency o)p follows from 

do) co =o9~ 
= 0  

which implies 

(4.)1,4 ~/4 
= ( ~ ) ~ 2  = 0-710~-2 

and the P-M spectrum can thus also be written 
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S(0)) = 80 ~4 mo Tp (0)Tp) 
- 5  [ 4] 

exp - 20 ~4  (0)Tp) (3.239) 

where Tp is the spectral peak period: 

2z _ 1.408 ~ (3.240) Tp = 0)p 0) 2 

All formulations, Eqs. (3.231), (3.233), (3.234), (3.237), (3.238) and (3.239) for S(0)), 
are of course identical. The actual choice only depends on the characteristic period or 
frequency available to characterise the stationary sea state. Most oceanographic data 
uses the zero-crossing period Tz and, therefore, the formulation Eq. (3.238) is mostly 
applied. Table 3.3 yields the relations between the different characteristic periods. 

Table 3.3 Relations between different characteristic periods for the P-M spectrum. 

_'i .... Ts Tz Tp 

..... - i " ' Ts0.920 Ts ' l.086TZTz ' -- . . . . . . . .  0.7100"772Tp - - T p  ,, -_ 

] .296 Ts 1.408.Tz ,,Tp 

The variance m o of the wave elevation can either be derived from Eq. (3.230): 

A ag 2 ag2 T~z (3.241) 
m ~  4 B -  4B - 64~ 3 

for one-parameter spectra or be allowed to vary independently of Tz in two-parameter 
length 2 it is obvious to relate m ~  0 to some characteristic spectra. As has dimension m 0 a 

wave elevation. The measure chosen is the mean value of the one-third largest wave 
heights, measured from a wave trough to the next wave crest. This value is denoted 
2hl/3 and in its derivation a narrow-banded spectral density is assumed. Thus, the 

probability density of a peak follows closely the Rayleigh distribution, Eq. (3.137) with 
/ ~ = 0 "  

m• ' h2/m" pp(h) = e -~- ; h >_ 0 (3.242) 

The probability density function of a minimum is exactly the same in this linear wave 
model, which consists of a sum of sinusoidal wave components. Therefore, the mean 
value 2h--l/3 of the one-third largest wave heights is given by 
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hi~3 

o o  oo  

h 1/3 h 1/3 

o o  

I pAh) dh 

hl/3 

1 - F p ( h l / 3 )  

where hi~ 3 is the lower limit for the one-third largest wave peaks. From 

= !  

it follows that 

hi~  3 = r 

and thus 
oo 

I h~/3 = 3 h pp(h) dh 

hl/3 

= 3 - u e - ~- u2 + e - ~- u2 du 

r 3 

= 3 m ~  0 [�89 ~ ( 1 -  q~(~/2fn3))] 

= 2.00 m~o 

(3.243) 

(3.244) 

o r  

, ; 0 -  s . -  (3.245) 

which gives the standard deviation s H of the wave elevation a precise statistical 
interpretation. For simplicity 2h-1/3 is usually called the s ign i f i can t  w a v e  he igh t  Hs:  

I t s  = 2 h i~  3 (3.246) 

so that 

SH = ~ 0  = �88 H s  (3.247) 
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EAST DELLWOOD BUOY GIANT WAVE 
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HOURLY BUOY REPORTS, DECEMBER 1993 

The chart above compares the variation of the maximum wave heights with the significant wave heights from Decem. 
be," 7 to December 14, 1993. The chart below compares the peak wind speed to the maximum waves. The maxi- 
mum wave height occurred well after the peak gust but during the period of the strongest winds. This region is the 
very same where the USCG icebreaker Polar Sea ran into a series of "three sister" waves back in October of 1985 
~Iar iners  Weather Log, Vohtme 30, Number 4) resulting in one death and two injuries. 
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F i g u r e  3 . 1 1  Measurements of  average wind speed, maximum one hour wave heights and 
average wave heights. Gower (1994). 
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For one -pa ramete r  spectra of the form Eq. (3.231), Hs and Tz are related through Eq. 

(3.241): 

T z =  ~ ~ @ s =  11.12 f f / r~  (3.248) 

using a = 0.0081. Fur thermore,  f rom Eq. (3.230) H s c a n  be related to the average wind 

speed Uw: 

Hs = 0.209 U2w (3.249) 
g 

Example 3.3..1. 
In Figure 3.11 simultaneous measurements of significant wave heights Its and wind speed are shown 
for a period of 7 days, divided into stationary sea conditions which are each of the duration of one hour. 
There is clearly a relation between Hs and Uw but it is not as well-defined as Eq. (3.249). The maximum 
wave height Hm measured in each one-hour period is also shown. Ideally, it should be related to Hs 
through Eq. (3.156). By application of 

v(0) - Tz 11.12 

this relation becomes* 

ltm = 2 �88 Hs f2 ln v(O)T 

with Tequal toone hour in the present case. Asan example, the highest Hs -~ 13 m yields Hm "" 22 m 
in reasonable agreement with the measurements except for the single largest value. Eq. (3.249) also 
yields quite reasonable results as a wind speed of 50 knots ( = 25.7 m/s) corresponds to Hs ~ 14 m. 

H s (m)  I ! - I / I 01 

1 5 -  @ Highest NDBC Wave Height / 

�9 Banner Bridge Storm 

10 - Extreme Steepness 

5 - o * C!irnatic Steep Seas 

O -  l . . . . . . . .  I . . . .  

0 4 8 12 16 20 Tpr 

Figure 3.12 Significant wave height Hs as a fimction of Tp, Buckley (1988), with inclusion 
of Eq.(3.248) (fidl line) and Eq. (3.250) ( dash-dot line). 

* The factor 2 appears because Hm is measured fiom trough to crest. 
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Very steep waves will break. Therefore, the significant wave height Hs and the 
zero-upcrossing period cannot be chosen completely freely in two-parameter spectra. 
A limitation is indicated in Figure 3.12: 

Tp > 11.4 V/-~ (3.250) 

or, if a P-M spectrum is representative of the sea states: 

Tz > 8.1 ~ (3.251) 

The figure shows that Eq. (3.248) represents waves with moderate steepness. 

In the derivation of h 1/3 it was assumed that the spectral density was narrow-banded. 

However, it follows from Eq. (3.232) that for a P-M spectrum m 4 = /-'(0) is infinite. 
Thus, the bandwidth e = 1 and the spectrum are actually broad banded. This behaviour 
is mainly due to improper inclusion of the high frequency tail in the spectrum. Usually, 
a cut-off of the tail is applied making m 4 finite and with a value which makes e = 0.6 
as representative of bandwidths derived from measured wave records. Of course, this 
inconsistency is somewhat disappointing but it does not pose any difficulties in analyses 
of wave loads on ships, as will be discussed in the next chapter. 

The autocorrelation R(v), Eq. (3.98), is shown in Figure 3.13 for the P-M spectrum. It 
is seen that two adjacent peaks are slightly correlated, violating the assumption of 
statistically independent peaks in the extreme value predictions. However, the results 
derived in Section 3.2.5 are still very accurate. 

~ 1 ---" ~ 3 4 tlTz 

Figure 3.13 Autocorrelation R(x) for the P-M spectrum. 

The formulations of spectral densities given above are in the frequency domain. In some 
applications it may be preferred to use the wave number k or the wave length 2: 

2 = ~ (3.252) 
k 

as independent variable. By use of Eq. (3.202) and 
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S(o9) da~ = S(k)  dk  = SO,) d2 (3.253) 

spectral  densi t ies  as funct ions  of  k or 2 may  be obta ined f rom (3.231)  or equivalent  

fo rmula t ions  in 09. L ikewise ,  character is t ic  w a v e  numbers  or wave  lengths  may be 

defined.  For  example ,  for  deep  wate r  waves  the m e a n  w a v e  n u m b e r  k b e c o m e s  

o o  

I kS(k) dk 

- 0 

k =  

I s(k) dk 

o 

o o  

f O) S(o)) doJ 

o 
oo 

g f S@)d~o 
o 

m 2 ~22 

gmo  g 
(3.254) 

Al ternat ively ,  a m e a n  w a v e  length  A: 

f Z S(Z ) dZ 
- -  0 ~ =  

c o  

I Sr 
o 

m _  2 ~ 2 g  
= 2 z r g  mo - ~-2 

is found by use of  Eq. (3 .232)  wi th  n = -2.  It should,  however ,  be noted that of ten the 

m e a n  wave  length is def ined  as 2.~/k-, which  is different  f rom ~-. 

Example 3_.3.2 

A critical wave episode can be defined as a deterministic wave profile <tt> which in some average sense 
represents the most severe wave a ship or offshore structure might encounter during its operational 
lifetime. The photograph, Figure 3.14, might be such a severe wave. 

The simplest form for such a critical wave episode is a linear, uni-directional regular 
wave: 

< H(X,  t) > = h o cos(kX - wt) 

where the wave parameters h0, k and co must be determined so as to maximize the load, keeping the 
wave parameters within reasonable limits. 

The wave amplitude h 0 is usually defined as the most probable largest value within a 3 hours operation 
in an extreme sea state, characterized by a suitable wave spectral density. For ships the P - M  spectrum 
is normally assumed and from Eqs. (3.156) and (3.247) it follows that 

h0 = ~,.. = s. ,/~ 1. Nz 

_ Hs ~/2 In (3hours/T~) = II~ 
4 

where the last approximation is slightly on the conservative side as Tz is around 8-12 seconds in 
extreme sea states. 
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F i g u r e  3.14 An extreme wave! Reproduced from Buckley (1983) 

The most obvious choice for the two other parameters k, to in < H (X, t) > is 

2~ 

satisfying the dispersion relation, Eq. (3.202) and representing spectral mean values of these quantities. 
However, the wave loads on ships are usually largest for wave lengths close to the length L of the ship. 
Hence, 

A L 

is a better choice for such applications than k = k_ The corresponding value of 09 follows from Eq. 
(3.202). 

Before applying any of these proposals as a design wave it must be verified that the wave < H(x, t) > 
is not too steep. For regular deep water waves the following criteria must be fulfilled to avoid wave 
breaking 

h0 1 
2 14 

which for h 0 = H~, k = k yields 

Tz > 9.4 H~ 



RANDOM SEA WAVES 113 

i.e. slightly more restrictive than Eq. (3.251). 

The second choice requires 

L > 1 4 H s  

Usually Hs = 12 - 15 m for the extreme waves and therefore the choice A = L is preferable for ships 
with length greater that about 160 m. For shorter vessels the wave length 2 should be taken as 

X = 1 4 H s  

The periodicity of the regular waves does not represent the real behaviour of ocean waves very well, 
see e.g. Figure 3.5. In addition the spectral density S(o~) of the waves does not influence the wave 

profile, except for Hs and, possibly, k. 

An alternative critical wave episode has therefore been proposed ("New Wave", Tromans et al. (1991)), 
based on conditional mean processes. The expected wave elevation < H(X, t) > around a peak (crest) 
of size h 0 is given by Eq. (3.188): 

< H(X, t) > = r(X, t )h  0 

where the normalized autocorrelation r(X, t) can be written 

r(X, t )  = 2 ~ O i Z l a 2 c o s ( k i  ogit ) 

_ 1 ~ S ( c o i ) A w i c o s  ( k i X  _ o)it ) 
m o 

i=1 

using Eqs. (3.220) - (3.221) and a straightforward extension to include k i X  in the trigonometric 
arguments. Substituting e.g. S(o9) from Eq. (3.234) yields 5[ 

exp 1 cos/ki  oitt oi 
i=1 

which clearly shows that this deterministic wave depends on the complete shape of the wave spectral 
density. Furthermore, <H(X,t)> depends linearly on h 0 and is independent of Hs. With the 

dimensionless time r, frequency ~b and length ~ scales 

z - ~ 2 t  
(D 

O) 2 

the result can be written 

4 Z o3/-5 exp( ~-fOi )COS < H(X, t )  > = < H(~,'c) > = -~h o _ I - - 4  ((~o2~ _ ~fgi.g~(~o i 
i=1 

This result is shown in Figure 3.15 for the two limiting cases: ~ = 0 (the variation in time at a fixed 
point in space) and r = 0 (the variation in space at a fixed point in time). The difference is solely due 
to the different factors on ~ and r in the trigonometric function. 
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\ i/.....<H(~,o)> '- 
/ 

-~ - 'H (O ,~ )>  

Figure  3.15 Most probable extreme surface displacement for Pierson-Moskowitz spectrum. 

As discussed in Section 3.2.6 the conditional process is normal distributed around it mean <H(X,O> 
with a standard deviation depending ofX, t. Close to the crest (X=O, t=0), the standard deviation is much 
smaller than the average value and thus the process is nearly deterministic here. However, already at 
the first crossing of the zero wave elevation level, the standard deviation becomes close to the value 

m ~  0 of the unconditional process. If h 0 is taken as Hs as discussed above for the regular wave case 

ho/m~ 0 = 4, implying a rather deterministic form of the extreme crest profile. For further 
discussions, see e.g. Tromans et al. 1991. 

3.3.2.1 Skewness of Deep Water Waves 

For  sl ightly non - l i nea r  s ta t ionary stochast ic  waves ,  the skewness  ~,1 of  the probabi l i ty  

dis tr ibut ion of  the wave  e levat ion is obta ined f rom Eq. (3.228). Subst i tut ion of  Eq. 
(3.231) into Eq. (3.228) yields  

o o  

~[,,31 = ~ [ ~ A ~  ~e "o' A (~-e  "~ ?-~ do) 

6 I i m 0  m2 1 - ~ - A w 2 w - 5 e -  2Bw-4 d~o 

0 

6 
- - - ~ m  0 m 2 _  1 A u 2 u -5 e -B"-4 du 

0 

6mom2(1, 
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and the skewness 

) " 1  - 

6m2( ) 
m3/2 -- g r - -  1 - 

o ~/m~ --~ 

Expressed in terms of the significant wave Hs, Eq. (3.247), and the peak period Tp, Eq. 
(3.240), the skewness becomes 

1j2,, ,2 ( 1 )  ~, =6( .~ )  ~,~,,J �88 ~ ~ 

  44,,s 
(3:255) 

In Figure 3. I6 this theoretical result is compared with measurements made during some 
storm events in the northern North Sea, Vinje and Haver (1994). The narrow-banded 
approximation given by 

6 
(~l)nb -- -~ m203/2 (02 ,7/,,2 t l s  Ms - = 6 - ---- 59.2 w ~.-,,,)"~."~'v~ 

m ~ gT2p gT~p 

is also included in the figure. It is clear that the P-M spectrum models the measured 
skewness better than the narrow-banded approximation, although the spread of the 
measurements is significant. 
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gT~ 
Figure 3.16 Skewness Y1 as a function of the average wave steepness for the P-M spectrum 

and a narrow-banded spectrum compared to measurements in the northern 
North Sea, Vinje and Hayer (1994). 
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The skewness  is proport ional  to the average  wave  s teepness  Hs/gT 2. F r o m  Eq. (3.250) 

the s teepness  is, due to the breaking of the waves ,  bounded  by the fo l lowing  (Buckley  
(1988)):  

Ms 
J < 0 .00776 

which ,  for a P - M  spectrum,  implies  

Yl < 0.27 

Example 3.3.3 

A first approximation for the probability distribution for the non-linear wave elevation process is found 
by integration of the probability density function, Eq. (3.225): 

Yl y |  
= - - e - ~  u ( P ( u )  :--2- ( u  2 1 ) cp(u) Fn(u ) ~ ( u ) 6 f _ ~ ( u  2 1 ) ,  2 =  - o - 

where u = his H and where (/)(u) and eft(u) are the probability distribution and density function for the 
standard normal distribution, Eqs. (3.17) and (3.16). The probability that the wave elevation is greater 
than, say, 3sn becomes 

P(h > 3st4 ) = 1 - b~(3) = 1 - (/)(3) + 0.0016 

assuming that ~'1 = 0.27, i.e. very steep waves. From Table 3.1, 1 - @(3) = 0.0013 and the second 
order term then double the probability of exceeding the level 3s,. 
From Eq. (3.225) it is seen that p(h) < 0 if 

1 + 1 2 3 ( u 3 - 3 u )  < 0 

or, 

h < - 3.165 st_ / 

which shows the limited applicability of the Gram-Charlier series expansion in the tail of the 
distribution. 

Provided the non-linear waves are narrow-banded, the individual peak distribution is given by Eq. 
(3.119) with the upcrossing rate v(x) determined from Eq. (3.107). The calculations make use of the 

joint probability density function p(h, h), which can be obtained by a procedure similar to the one used 
for deriving Eq. (3.31). The final result for the probability distribution function Fp(h)of the individual 
peaks becomes (Longuet-Higgins (1963)): 

Fe(h) = 1 - e - ~ -  1 + 23(u 3 -  3u) + 212u 

again only retaining the dominant non-linear terms. The coupling te rm '~'12 between the wave 
elevation h and its derivative h is given by 



RANDOM SEA WAVES 117 

)]'12 -- 
s H S 2 H 

Substitution of Eq. (3.222) into this expression yields /]'12 in a form similar to Eq. (3.228), but with 
the fourth spectral moment m 4 involved. Thus, for a Pierson-Moskowitz  wave spectrum, Eq. (3.231), 

12 will be infinite without introduction of a cut-off  frequency, which is of course also needed to ensure 
a narrow-banded spectral density. 

Higher order terms may also be included in a consistent way, Jensen and Pedersen (1978), which, 
unfortunately, only results in a modest increase in the range of applicability of the Gram-Charl ier  series 
expansion.  A generalisation to broad-banded spectral densities is given by Longuet-Higgins (1964). 

An alternative to the Gram-Charl ier  Series expansion is the transformation procedure Eq. (3.34). By 
use of only the three lowest statistical moments of the normalized wave elevation 

u = ( . ( ' ) +  . (2>)is .  

the series expansion becomes 

U - -  c O + c I V + c 2 g 2 ~ g(V) 

where V =- HO) /s  n is standard normal distributed. The coefficients cj follows from Eq. (3.36) with 

c 3 = 0 and can be reordered as 

4c 3 - 6c 2 -I- Y l = 0 

c~ = 1 -  2 ~  

C O -- _ C 2 

The analytical solution to the cubic equation in r has one real root. For small values of )'1, the solution 

becomes c 2 = 7,1/6 and, hence, c 1 = 1 and c o "- - ) '1/6. Also because )'1 is small, the reverse 
relation is 

- Y 1  v = g ' ( ~  = u -  Z - ( ~  ~ -  1) 

Thereby, 

FH(U ) = P(U  < u) = P (V < g - l ( u ) ) =  r 

Clearly Fn(u  ) is wel l -behaved for all value of u. Now 

P(h > 3 s n )  = 1 - ~ ( g - 1 ( 3 ) )  = 1 - ~ ( 2 . 6 4 )  = 0 . 0 0 4 1  

with Y l = 0.27. This value differs from the corresponding Gram-Charl ier  result" 0.0029, calculated 
above. However, assymptotically, for )'1 --~ 0, both procedures yield the same result as 

1 �9 (g- ,(u)) - ~ ( . )  + 

u -~(u 2 - l) 

J 
u 
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3.3.2.2 Directional Spreading 
The P-M spectrum is a unidirectional spectrum describing waves travelling in one 
direction in accordance with the wave elevation process, Eq. (3.214). However, wind 
driven waves will be generated in all directions relative to the wind. For each angle 99 
relative to the wind direction, a spectral density S(w, qg) for the wave elevation can be 
defined. The spectral density must satisfy 

Yt' c~ 

s2 = f ] S@, cp) dcp (3.257) 

- - ~  0 

Due to lack of more accurate formulations, S(w, 99) is usually taken in the form: 

S(to, 99) = S(to) f(99) (3.258) 

As 
oo  

f s(o,) do = 
o 

the spreading function f(99) must satisfy 

(3.259) 

and obviously also f(99) = f(-99) .  Furthermore, only very small waves are generated 
opposite to the wind direction, which implies that f(99) - 0 for 199] > ~ /2 .  Finally, it 
must be expected that f(99) is a decreasing function of 99. The most commonly used 
spreading function is 

An COS n 99 

f@)  = 

0 

< 

otherwise 

with n = 2 or 4. From Eq. (3.259) it follows that A 2 = 2/:r  and A 4 = 8/(3~). 

3.3.3 Long-Term Predictions 

The analysis presented so far has been limited to stationary processes. The ocean waves 
only behave as stationary processes over a period of time measured in hours c.f. 
Figure 3.11, so over a time scale measured in years the wave process is clearly a 
non-stationary process which covers everything between nearly calm sea and extreme 
storm events. 
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To overcome this problem, two approaches may be used for estimating the highest 
waves over a period of years. The first is to assume that the largest waves appear in the 
severest stationary sea state encountered in that period. However, because the 
maximum wave height depends on the number of peaks in this period, see Eq. (3.156) 
as well as on the standard deviation s u = Hs/4, the maximum waves may be found in 
a lower sea state which occurs much more frequently. Therefore, in the second method 
all the sea states encountered at a given location are weighted according to their 

probability of occurrence. The probability density function pep(h) for the individual 
peak values in the non-stationary process is derived by taking the probability density 
function pp(h) in each stationary sea state to be a probability, which is conditional on 
the parameters describing the stationary condition. For waves, these parameters are 
usually taken to be the significant wave height Hs and the zero upcrossing period Tz. 
From Eq. (3.60) it follows that 

1 IIv(O]Hs, Tz)pp(h, Hs, Tz) dTzdH s PeP(h) = ~(0) 
Hs 

1 I I v(O~Hs'Tz)pp(hlHs'Tz)p(Hs'Tz)dTzdHs v(o) 
H~T,_ 

(3.261) 

where pp(hlHs, Tz) is given by Eq. (3.137) or, for a narrow-banded process, by Eq. 
(3.242). 

The use of zero-crossing rate v(0) rather than the peak rate Vp is justified by the 
derivations of Eqs. (3.154) - (3.155). For a Gaussian wave process, Eq. (3.118) yields 

_ 1 (3.262) v(OlH~, Tz) - 

so that 

f l  v(O) = ~ p(Tz) dTz 
r. 

(3.263) 

where p(Tz) is the marginal probability density function of Tz : 

f 
p(T~) = ~ p(Hs, Tz) dHs 

J 
us 

(3.264) 

The peak distribution pp(h~r-Is, Tz) only depends on m 0 = H2s/16 and the bandwidth 
parameter e, but as e normally is less than 0.9, the approximation, Eq. (3.153), with a 
fixed value of e or even Eq. (3.242) may be applied. Thereby, 
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= a IJ p, (hlH > (Hs, Tz) dTzdHs Pep(h) ~(O) P 
H,T ,  

- f pp (him)/~ (Hs) all, 
H~ 

(3.265) 

where ~(Hs) is the marginal distribution of Hs, weighted by the zero-crossing rate: 

1 [ 1 p(Hs, Tz) dTz i , ( H s )  - 

T. 

(3.266) 

The integration should cover all possible vaues of Hs and Tz. The distribution p(Hs, Tz) 
cannot be derived by any theoretical method, but must be obtained from measurements. 
The most comprehensive measurements are those published by Hogben et al. (1986). 
This book contains tabulated values of p(Hs, Tz) for 104 ocean areas, denoted Marsden 
areas, covering all the major ship trading routes. The data are given in increments of 
1 m for Hs and 1 sec for Tz and are furthermore given for 8 global directions. An 
example is shown in Figure 3.17. By use of these data and the condition probability 

density pp(hlHs ) the long-termprobability density function pep(h) of the individual peak 
values for the wave elevation can be carried out numerically. 
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Figure 3.17 Scatter diagram for the North Atlantic, Hogben et al. (1986). 

-e To derive the most probable largest peak/~N over a period of several years, Eq. (3.148) 
is applied 
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~ e  /tN 

e -e f 1 (3.267) Fp(fiN ) = pep(U) du = 1 U 

-e 
The solution to this implicit equation in/iN can be carried out numerically when the total 
number of peaks is specified. An estimate of this number N is the average number 

N = v(O)T (3.268) 

where T is the total time period considered. Alternatively, the number N of wave peaks 

during a 20 year period is often taken to be simply 108. 

~e 
A closed-form expression o f / t  u can be obtained from Eq. (3.267) if pep(h) is fitted in 
with an analytical distribution. Often the Weibull distribution, Eq. (3.38), gives a very 
good fit. Hence, Eq. (3.159) reads (see Example 3.2.2): 

~e /z N = a (INN) I/c/ (3.269) 

where a,  fl are the two parameters in the Weibull distribution. 

The tabulated values for p(Hs, Tz) given in Hogben et al. (1986) can also be fitted in 
with marginal, conditional or joint distributions, see for example Friis Hansen (1994), 
where Weibull distributions are found to be most accurate for the marginal distributions 
of Hs and the conditional distribution of Tz given Hs. As the largest wave usually occurs 
in the extreme and very rare sea states, care must be taken in applications of such 
analytical formulas as they may be quite inaccurate in the tails of the distributions, 
especially in extrapolations to values of (Hs, Tz) which are not measured in practice. On 
the other hand, the tabulated values in Hogben et al. (1986) only cover sea states which 
appear with a frequency greater than or equal to 0.001. This corresponds to at least 7 
days over a period of 20 years, so these tabulated values may also have filtered out some 
very rare but physically possible extreme events. This may result in an underestimation 
of the extreme loads on ships by about 30 %. As a final comment, it may be mentioned 
that at present the most uncertain part of the derivation of the extreme wave loads on 
ships appears to be the choice of the scatter diagram p(Hs, Tz). Therefore, the 
classification societies usually specify the scatter diagram to be used in the analysis. 

Example 3.3.4 

Assume that the marginal distribution of the significant wave height Hs, as defined by Eq. (3.266) is 
a one-sided normal distribution: 

/~(Hs) - 2 ' ' Ho e-~(14dno)- . IIs >-- 0 (3.270) 

where H 0 is a constant depending on the ocean area considered. Substitution of Eqs. (3.270) and 
(3.242) into Eq. (3.265) yields 
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oo 

Fee(h) = f Fp(hlHz)p(H~)dHs 

0 

f - ( 1 -  

o 
co 

- - l - - ~ I e - ( 2 h / H o ) Z u - 2 - U 2 d t  t 

o 

= 1 - e -4h/Ho 

! 

e -~-(Hdu")2dtts (3.271) 

which is an exponential distribution. 

By use of Eq. (3.269) with a = Ho/4 and /3 = 1 the most probable largest peak during a period of 
20 years becomes using 

-e Ho 
kin = T InN (3.272) 

As the troughs are distributed like the peaks in a linear wave analysis, the most probable largest 
trough-to-crest height becomes 1/2 H o InN. For the North Atlantic H 0 - 3.5 m, so that the maximum 
wave height is about 36 m in 20 years. 

The probability distribution function FeN (h) for the largest peak becomes 

Fe(h )  = [Fpe ( h ) ] N =  ( 1 -  e -4h/no)Iv 
(3.273) 

= 1 - Ne -4h/n'' = e x p ( -  Ne -4h/Ho) 

provided 
~e 4h > > l n N o r h  > PN 

Ho 

If this result is compared with Eq. (3.170) it is seen that the long-term distribution of the largest peak 
is Gumbel distributed in this example as expected. 



Wave Loads on Ships 

When a ship is sailing in waves the motions of the ship are influenced by the waves and 
the waves are modified by the presence of the ship. The governing equations for the 
complete ship-wave problem are those for the waves alone, Eq. (3.190) - (3.196), the 
equations of motion for ship and an interaction condition, stating that the water particles 
cannot penetrate the hull, nor can a vacuo develops between the hull and the water. If 
the velocity vectors of the ship and the water particles are 

V__ = V_(X, Y, Z, t) = ( V X, Vy, Vz) (4.1) 

and 

= v(x.  r.  z .  0 = v .  (4.2) 

respectively, with v given by Eq. (3.191), this interaction condition can be written: 

_V-n = V "  JA on S (4.3) 

Here S denotes the instantaneous wetted hull surface with the associated normal vector 
n. Due to the motions of the ship, both S and n will change with time t. 

In addition to the previous unknown variables: velocity potential qS(X, Y, Z, t) and 
surface elevation h(X, Y, t), a new unknown vector __V is introduced, determined by the 
equations of motion for the ship and Eq. (4.3). The governing equations are non-linear 
due to the free surface conditions Eq. (3.194) - (3.196) but more important also because 
S and n depend on the instantaneous position of the ship relative to the waves. Hence 
no general solutions exist and even a numerical solution to the complete 
three-dimensional problem by a time-step procedure is far beyond the present 
capabilities of computers. A rough estimate, Faltinsen (1988), indicates that simulation 
of a ship sailing 10 minutes in an stochastic seaway may require a computer time of the 
order years on a Cray-1 super computer. In addition one should mention that even if 
such solution was feasible, it does not represent the true reality for ships sailing in rough 
sea as forces e.g. related to wave breaking on the ship's bow cannot be modelled 
mathematically today. Some assumptions therefore have to be made in order to get a 
tractable problem formulation. Two different kind of approximations may be 
introduced. 

Firstly, small waves and small motions of the ship may be assumed implying use of the 
linearized free surface conditions Eqs. (3.198) - (3.199) together with a linearized 
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version of Eq. (4.3). Thereby, a three-dimensional linear problem is obtained, which 
can be solved, see e.g. Inglis and Price, (1982). However, difficulties are still present 
mainly due to the influence of the waves generated by the ship sailing with forward 
speed. Recently, some account of the non-linearities in the ship motion have been made 
possible, Beck et al. (1996), at the expensive of large computer time. As will be 
illustrated later, inclusion of non-linear effects are necessary to explain measured 
results of the sectional forces in the ship hull girder. 

On the other hand, numerical results indicate that three-dimensional effects are not so 
important for the wave load on normal merchant ships. Thus the longitudinal 
component of the velocity potential may be ignored. The result is a set of 
two-dimensional problems, each considering an infinite long cylinder with a cross 
sectional shape equal to a vertical intersection in the hull. The solution to each problem 
is the hydrodynamic force per unit length acting on the cylinder. This force is in the 
transverse plane and will depend on the geometry and motion of the cylinder and on 
parameters describing the waves. It is not straightforward to set up a two-dimensional 
formulation as the forward speed induces a longitudinal flow which must be included. 
In the general non-linear case no exact two-dimensional formulation exists, but if the 
motions of the ship and the wave amplitudes are small, several theories have been 
developed. The most consistent formulation is due to Salvesen, Tuck and Faltinsen 
(1970), but still new theories are derived aiming at better predictions in e.g. the low 
frequency region or for fast ships. The ultimate formulation is certainly not available 
yet, but from an engineering point-of-view these two-dimensional, so-called strip 
theories can be considered as sufficient accurate for application to conventional ships. 
A thorough description of various ship theories can be found in Bishop and Price (1979) 
and Odabasi and Hearn (1977). The latest development of non-linear hydrodynamic 
formulations may be found in Proc. Symposium on Naval Hydrodynamics, taking place 
every third year from where also one of the previous cited references is taken. 

In the present treatment focus is mainly on loads important in the structural analysis of 
the ship hull girder. The analysis will therefore be restricted to a strip theory 
formulation, originating from a linear theory suggested by Gerritsma and Beukelman 
(1964), and extended empirically to non-linear motions and waves by Jensen and 
Pedersen (1979). As will be shown this theory is able to predict wave-induced 
non-linear vertical sectional forces in the ship hull girder, which are in reasonable 
agreement with measurements. Only vertical loads and the corresponding vertical 
motions and sectional forces are treated as horizontal and torsional wave-induced loads 
are of minor importance for normal merchant ships. 

A rather thorough derivation of this strip theory is given. Conventionally the 
hydrodynamic force is divided into two terms. One is the Froude-Krylov force, based 
on integration of the undisturbed wave-induced pressure over the submerged hull. It 
is derived in Section 4.2 taking into account non-linear waves and ship motions. The 
second term deals with the interaction effects, Eq. (4.3), and is often named the 
hydrodynamic force. For the linear case a general derivation of this term is given in 
Section 4.2 with a strong emphasis on the relations between time- and 
frequency-domain formulations. The motions of the vessel then follow from solution 
of the equilibrium equations as described in Section 4.3. Using the force description in 
the frequency-domain extreme value responses are easily obtained in stochastic 
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seaways by application of the procedures described in Chapter 3. This is discussed in 
Section 4.4 assuming linearity between wave and response amplitudes. 

When a ship is sailing in rough sea slamming and water on deck might occur. The 
probability of such events are discussed in Section 4.5 together with the associated 
non-linear forces. 

These non-linear forces as well as non-linearities in the Froude-Krylov and the 
hydrodynamic term associated with the continuously change of submerged hull surface 
can only be included in the load prediction by a time-domain solution of the 
equilibrium equations. Also transient motions and loads following for instance a 
grounding or a collision calls for a time-domain solution. Such solutions are the topics 
in Section 4.6. Finally Section 4.7 provides some results for design loads aiming at a 
quantification of the non-linear effects as function of some main ship hull parameters. 

4.1 FROUDE-KRYLOV FORCE 

If the interaction condition, Eq. (4.3), is ignored, the hydrodynamic force _F FK on the 
ship can be obtained by integration of the undisturbed pressure p in the waves over the 
submerged surface S, completely analogous to the hydrostatic analysis, Eq. (2.2). 
Thereby, 

F F K - " - I I p n _ d S  
S 

(4.4) 

where the pressure p follows from Bernoulli's equation, Eq. (3.192). As discussed in 
Section 3.3.1 no general solution for p exists and a perturbational expansion of p 
analogous to Eq. (3.197) is usually applied. Another complication is that S varies with 
the position of the ship in the waves. 

In the present treatment the ship is divided by transverse planes into prismatic sections. 
For each of these sections, the force can be written q FK d,x, where 

c 1 FK(X, t) = -- I p n dl (4.5) 

e 

with g = e(x, t) being the instantaneous submerged sectional contour and dx the length 
of the section. 

The waves will be assumed to be deterministic and long-crested, but of course 
extensions to stochastic waves will be given later in Sections 4.4-4.7. If the waves 
travel in the global X-direction, both the surface elevation h = h(X, t) and the pressure 
p = p(X, Z, t) will be independent of Y. 

Without loss of generality the local xyz-coordinate system fixed in the ship will be 
chosen such that in calm sea, the xy and XY planes coincide. With a constant forward 
speed Vx = V and no wave-induced motion of the ship, the relation between the two 
coordinate systems becomes 
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X = (x + Vt) cosfl - y sin fl 

r = (x + Vt) sinfl + ycosfl  

Z = z  

(4.6) 

where fl is the heading angle. When the ship is sailing in waves the relations (4.6) are 
violated to some extend, but still represent the mean course taken. 

v y 

l - t  

• 

Figure 4.1 Ship heading relative to the wave direction. 

The calculation of the force q FK' Eq. (4.5), on a section is performed using Gauss 

integral theorem, Eq. (2.8). Thereby, the two non-zero components qFKy, qFKz of q FK 

becomes: 

op 

A 

(4.7) 

and 

qFKz = -- - ~  dA 

A 

(4.8) 

where the integrals extent over the instantaneous submerged sectional area A. 

From the perturbational solution to the wave equations, see Eqs. (3.201) - (3.212); it 
is seen that X only appears through the term 

k X = k(x + Vt) cos fl - ky sin fl (4.9) 

in the trigonometric functions. For wave lengths much larger than the breadth of the 
section, the last term in Eq. (4.9) can be neglected. Thereby, both the pressure p and the 
wave elevation h at a section will be independent of y. From Eq. (4.7) the transverse 
force component qFKy becomes zero such that the net sectional force is in the vertical 

direction. 
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Z 

ii0ul  , h z0 

Figure 4.2 Sectional contour of  X=x. Left: section at rest. Right: section displaced verti- 
cally in waves. 

Figure 4.2 show a sketch of a section. The water elevation is h(x, t) and the ship motion 
is assumed to be vertical with an unknown displacement u = u(x, t). The integral in 
Eq. (4.8) is conveniently carried out in the local yz-system fixed in the section. Thus, 

h m t t  

I ~ S(x,z) dz qFKz = -- - ~  

- T  

(4.10) 

where T = T(x) is the draft of the section measured with respect to z=0 and where 
B(x, z) is the sectional breadth as function of z. The derivative 

@ _ op]l (4.11) 
Oz OZ Z=z+u 

a s  

Z --- z + u (4.12) 

has replaced the last equation in (4.6). Hence, the final expression for the vertical force 
qFxz per unit length on a prismatic section becomes 

h ~ Lt 

qFKz(X; h ,  u ,  t )  - -  - - ~  z = z + u 

- T  

B(x , z )  dz (4.13) 

If the waves can be represented by the linear wave solution, Eqs. (3.201)-(3.204), then 

OZ Z=z+u 
Z = z + u  

= _ p g  + pgkh(1)e~(Z+ u) 
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such that 

h-u h-u 

qFKz = pg l B ( x , z ) d z - p g k h  ] ek(Z+U)B(x,z)dz 

-T  -T  

(4.14) 

omitting the index on h for the sake of brevity. 

Provided the wave elevation h and the vertical motion u of the section are small 
compared to the wave length and, furthermore, that the breadth does not vary too much 
within 0 < z < h - u, then Eq. (4.14) can be approximated by 

0 
/ -  

qFKz = pgAo + pgBo(h - u) - pgkh I ekz B(x,z)dz (4.15) 
,J 

-T  

neglecting quadratic and higher order terms in h, u. In Eq. (4.15) 

o 

A o = A o ( x ) =  I B ( x , z ) d z  

-T  

(4.16) 

and 

B o = Bo(x ) ~ B(x,z = O) (4.17) 

The first term on the right hand side of Eq. (4.15) is the hydrostatic load in calm water 
qs per unit length. The remaining part due to the dynamic undisturbed pressure in the 
waves is called the Froude-Krylov force and can be written 

qFKz-  qs -- - - p g B o ( u -  tch) (4.18) 

where the Smith correction factor 

o 

K = K(x) = a - I e  B(x,O 
Bo(x ) dz 

-T  

(4.19) 

has been introduced. It is seen that the force qFK -- qs is proportional to the measure 

~. = 2(x, t) =- u(x, t) - to(x) h(x, t) (4.20) 

of the relative motion between the wave surface and the section. The Smith correction 
factor arises because the dynamic pressure decays exponentially with respect to the 
vertical distance from the free surface contrary to the linear increase of the hydrostatic 
pressure. 
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For  m a n y  sec t ions ,  see E x a m p l e  4.1.1,  the S m i t h  co r r ec t i on  fac tor  can  be a p p r o x i m a t e d  
by 

to(x) = e - k A~176 (4.21) 

Example 4.1.1 

Rectangular section: 

Eq. (4.19): 

Wedge section: 

Eq. (4.21): 

Eq. (4.19): 

Eq. (4.21): 

0 

x =  1 -  k ] ekZ dz = e -kr  

-T 

-kT Ic - e 

o 

x =  1 - k  f e ~ Z ( l + ~ ) d Z = ~ T ( 1 - e - k r  ) 

-T 

Ir "- e-�89 kT 

As shown in Figure 4.3 the difference between the two results is small. 

Circular section: 

Eq. (4.19): 

~/2 
/ -  

= 1 - kR ! sin2 a e - kR cos ada  /( 
J 
0 

=/2 

= I COS a e -kRc~ da 

o 

using z = - Rcos a and B = 2 R s i n a  �9 ae[0,zr/2]. 

Eq. (4.21): x = e -~  kR 

Again, see Figure 4.3, the difference between the two expressions is small. 

1 ' " 

Wedge 
K 

- . . . . .  

0 1 kT 2 

1 . . . . . . . . . . . .  

Semi-circle 
K 

0 . . . .  i . . . . . .  

o 1 kT 2 
F igu re  4.3 Comparison between exact (fidl lines) and approximate (dashed lines) values 

o f  the Smith correction factor for  two sections. For g (dashed-dot  line), see 
Example  4.2.4. 
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4.2 LINEAR HYDRODYNAMIC FORCES 

The Froude-Krylov force, Eq. (4.13), must be supplemented with forces accounting for 
the modification of the wave potential required to satisfy the interaction condition (4.3). 
In the general non-linear case this is, as discussed in the beginning of this chapter, very 
difficult. Therefore, a linear analysis is considered first. 

In the linear analysis the wave elevation and the ship motion are assumed so small that 
the total fluid potential can be represented as a sum of different potentials each 
representing specific parts of the solution. 

The Froude-Krylov force, Eq. (4.18), yields a quasi-static force in the sense that it only 
depends on the instantaneous position of the section in the waves. Hydrodynamic forces 
proportional to the velocity and acceleration of the section and the wave particles must 
be added. Contrary to the Froude-Krylov force these forces not only depend on 
instantaneous value of the motion, but also on its past history. This may be illustrated 
by the observation that if a floating body is given an impulse, then the body will oscillate 
for a long period. The system behaves as having a memory in the sense that what 
happens at one instant of time will affect the system at all later times. The free surface 
is responsible for this behaviour, as it allows for a transmission of energy away from 
the body by generating surface waves. 

4.2.1 Impulse Response Functions 

Consider a time-invariant linear system. The response r(O at time t due to a disturbance 
(impulse) f ( r ) A r  at time r < t can then be written 

r(t) = f ( t ) / l t  k(t - r) (4.22) 

where the unit impulse response function or kernel function k(t - r) only depends on 
the time difference t - ~'. For a continuous excitation, Eq. (4.22) can be integrated to 

t oo 

r (0  "'- I f ("]ff) k (t m "~') d"~ --" ff f ( t  ~ "~) k ('~) d~ (4.23) 

-oo 0 

Dealing with stationary stochastic processes, a transformation from time to frequency 
domain is very useful as illustrated in Chapter 3. Fourier transformation of the unit 
impulse response function k(t) yields 

(30 OO 

K((J)) -- f k(t)e-i('~ dt -- f k(t) e-i~ dt 

-oo 0 

(4.24) 

Notice that the lower limit can be replaced by zero as k(t)=O for t < 0. The inverse 
relation becomes 
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oo 

(4.25) 

The factor 1/2~ has for convenience here been applied to the integral over the 
frequency domain, opposite to the convention used when defining spectral densities in 
Chapter 3. As k(t) is a real function it follows from Eq. (4.24) - (4.25) that the real (Re) 
and imaginary (Ira) part of the transfer function K@) satisfy 

oo 

Re(K(o O) = Re (K( -  a~)) = f k(t)cos~t dt 

0 

(4.26) 

oo 

Im(K@)) = - Im(K( - co)) = - f k(t) sin cot dt 

0 

(4.27) 

Provided 

lim K(w) = 0 (4.28) 
0 ) - - - ~  O0 

Fourier cosine and sine transformations of Eq. (4.26) and (4.27) can be performed, 
yielding 

0o 

2f k(O = -~ Re (K(w)) coswt d~o 

o 

(4.29) 

and 

co 

2 I k(t) = - -~ Im (K(w)) sin wt do 

0 

(4.30) 

Hence, k(t) can be determined from either Re(K@)) or Im(K@)). The implicit relation 
between the real and imaginary part of K(w) is due to the property that k(t) is real. The 
relations (4.29)-(4.30) are a special case of more general relations known as the 
Kramers-Konig relations. 

4.2.2 Sinusoidal Excitation 

If the excitation f(O is a sinusoidal function 

f(t) = fo (o))cos (wt + e) (4.31) 
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the response r(t) is obtained from Eq. (4.23)" 
(30 

r(t) = f o f  cos (to(t - r) + e) k(r) dr 

o 

= ]CO cos (tot + e) J cos (to'r) k(r)dr 

0 
oo 

+ f0 sin (tot + e) I sin (tot) k(r)dr 

0 

= fo [Re (K (to))cos (tot + e) - Im (K(to))sin (tot + e)] 

"- f0 q/K*(to) K(to) COS (tot + ~?r (to)) 

- r0cos (tot + er (to)) 

(4.32) 

using Eqs. (4.26) - (4.27). Here K*(to) is the complex conjugate of K(to) and 

In  (K(to)) 
e r = e +Arctan ~ ( ~ ]  (4.33) 

The significance of the transfer function is then that it is the amplitude ratio of the 
sinusoidal response to a sinusoidal excitation: 

*o 
(4.34) 

In general, the transfer function K(to) is obtained by substitution of 

f (t) = f o eiwt 

into Eq. (4.23): 
oo  

r(O = I fo ei~ ( '-  ~ k (r) ar 
o 

= fo eiwt f e-i~or k (r) dr 

o 

= f(O K (,,,) 



LINEAR HYDRODYNAMIC FORCES 133 

Example 4.2.1 

Consider a single degree of freedom linear mass-spring-dashpot system. The equation of motion can 
be written 

i;(t)  + 2 ~ t o o i ' ( t )  + t o 2 r ( t )  = f ( t )  �9 t > 0 

where too and ~ are the eigenfrequency and damping ratio, respectively. A overdot denotes as usual 
differentiation with respect to time t.  

The solution r(t) is given by the sum of a particular rp(t) and the homogeneous rh(t ) solution. The 
particular solution is taken as the Duhamel integral: 

t 
/ .  

= t o - l - d l f ( r ) s i n ( t o d ( t -  v ) ) e -~oo ( t -~ )d . r  rp(t) 
d 
0 

where 

tog = too,/1 ~2 

The homogeneous solution is 

r h (t) = (A costo d t + B sinto d t) e -~% '  

where the constants A and B follow from the initial conditions. As r(0) = t~(0) = 0 the homogeneous 
solution vanishes. Hence, r(t) = rp(t) and it is seen that r(t) is written in the form (4.23) with the kernel 

sin to  d T: - ~ to o 7 
e 

k(r)  . . . .  tod 

which then is the unit impulse response function for this system. Hence, usual dynamic problems within 
rational mechanics also exhibit a memory. 

The transfer function K(to) can be obtained by substitution of k(r) into Eq. (4.24). However, as the 
transfer function is the solution for a sinusoidal excitation it is much easier to insert 

f ( t )  = f o  e'it~ 

into the governing equation. Thereby, 

r ( t )  " -  r 0 e i~ 

with 

such that 

and 

r o [(/to) 2 + 2 ~ too i to + to2] = fo  

K( to)  - r(t) _ r o 2 - 
f ( t )  fo  [t~ - to + 2 i ~ too to ] ' 

[Ioo   2)2+t2 000)2] 2 
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The result Eq. (4.34) makes response predictions of linear systems subjected to 
stationary stochastic excitations very easy as will be discussed in Section 4.4. First, 
however, the determination of k(t) and K(w) for the hydrodynamic loads must be 
carried out. 

4.2.3 Added Mass and Hydrodynamic Damping 

For a section of the hull executing a vertical motion u = u (t) in calm sea, the 
hydrodynamic vertical force q~r (t) can in general be written 

qn(O = - c 2 / / ( / )  - C l t J ( / )  - CoU(t) - 

t 

f /i(I') k 2 (t - r) dr 

t t 

f it(r) kl (t - r) dr - f u(r) ko (t - r) dr 
~ 0 0  ~ 0 0  

(4.35) 

as the fluid motion around the section is completely characterized by the motion u(t), 
velocity U(t) and acceleration ii(O of the section, provided these variables are small 
enough to neglect non-linear terms. 

The three coefficients C2, C 1 and c o represent the parts of the force proportional to the 
instantaneous values of //(t), t~(t) and u(t), respectively. They could of course be 
included in the kernel functions k2, k 1 and k 0 using Dirac's delta function. The kernel 
functions as well as the coefficients c2, c 1 and c o must be determined by solving the 
governing equations for the motion of the fluid, which as stated previously is very 
complicated. A thorough discussion is given by Ogilvie (1964). It is found that a Fourier 
transformation to the frequency domain provides an effective procedure. 

First, however, Eq. (4.35) can be simplified by integration by parts of the first and last 
integral on the right hand side" 

qn(t) = - c 2 / / ( t  ) - C l /~(t  ) - CoU(t ) 

- ( t -  , ] ' _  oo - 

t 

f U(Z') k 2  ( t  - z') dT  - 

t 

O 0  

ti('r) ko(t - r) dr 

! 

] t~(r) k 1 (t - r) dr 

m (X3 

where 
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k 0 (t - z') = 

co  

t--Z" 

Hence, 

q H ( t )  = --  C2i i ( t  ) - -  b ' i t ( t ) -  c ' u ( t )  

t 

a(r)k ' ( t -  r)ar 
03 

(4.36) 

where the coefficients 

b' = c 1 + k2(O ) 

03 

c' = c o + ] k0(r)dr 

0 

(4.37) 

and the kernel function 

oo 

k ' ( ' t ' )  - -  /r n t- kl(Z" ) d- f ko(~)d ~ 
17 

(4.38) 

The transfer function K(co) relating the force qH to the amplitude u o in a sinusoidal 
excitation is obtained by substitution of 

u ( O  = u 0 e i~ (4.39) 

into Eq. (4.36): 

q H ( t )  = [C2CO 2 -  i cob '  - c '  - /oK'(co)] UO eic~ (4.40) 

using 
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l O0 

- -oo 0 

co 

= itoUo ei~ f e 

o 

- io)r k' (v) dv = i toK'( to)u  0 e i~~ 

Hence 

K(to)  - qH(O _ c2to2 _ itob' - c' - ito K ' ( to )  (4.41) 
U 0 e i t~ 

The transfer function K'(to) corresponding to the kernel function k' (r) will in general 
by a complex function. The transfer function K(to) can then be written 

K ( t o )  --  c2to 2 - c '  + tolm(K'(to)) 

- i[wb'  + toRe(K'( to))]  
(4.42) 

Rather than finding the coefficients and kernel functions in the time domain 
formulation (4.36), it is normally much easier to determine the transfer function for 
different frequencies to. This may for instance be done by calculations or measurements 
of qH, assuming a sinusoidal motion with a given frequency. Usually, qH is then given 
as a differential equation 

qH(t) = -- mw(to)i i( t)  -- N ( w )  it(t) - Cu( t )  (4.43) 

where the real coefficients mw(to )andN(og)  depend on the frequency w of the motion. 
Substitution of Eq. (4.39) into Eq. (4.43) yields 

K(to) = mw(to)to 2 - iwN(to)  - C (4.44) 

The coefficients mw, N and C can then be expressed in terms of the coefficients derived 
from the time domain formulation Eq. (4.42). Taking C as independent of to ensure a 
unique definition of m w ( W ) a n d  C 

mw(to)to 2 = c2to 2 + to lm(K ' ( to ) )  (4.45) 

N ( w )  = b'  + Re  (K'( to))  (4.46) 

C = c' (4.47) 

It should be emphasised that whereas Eq. (4.36) is a true time domain formulation, Eq. 
(4.43) is not as it implicitly assumes a sinusoidal motion. 
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Provided thetransfer function K'(to) satisfy Eq. (4.28) the corresponding impulse 
response function k'(t) can be written 

GO 

2 I (N(o9) - b') cos wt dto k'(t)  - -~ 

o 

(4.48) 

o r  

oo 

2 f to(c 2 mw(to)) sin wt dto k'(t)  = -~ 

o 

(4.49) 

using Eqs. (4.29), (4.30) and (4.45), (4.46). As K'(to) is assumed to vanish for to ~ oo, 
a and b' can be interpretated as 

= oo ( 4 . 5 0 )  c 2 lim m w ( t o ) =  mw 
09--->00 

b ' -  lim N(to) (4.51) 
(D--~ oO 

For surface waves generated by a point source b'= 0. The sectional hydrodynamic load 
qtc(t) can now finally be written 

t 

ql4(t) = - m ~  ii(t) - C u(t) - f tl(r) k ' ( t  - r) dr 

O0 

O0 

= - mw ii(t) - C u(t) - J it(t - ~:) k'(r) d'r 

o 

(4.52) 

where the second expression follows from Eq. (4.23). 

Whether to use Eq. (4.48) or (4.49) to calculate k'(O depends on the procedures 
available for determination of mw(to) and N(to). However, as both equations should 
give the same result, they can also be used to check the consistency of the values for 
mw(to) and N(to). 

The coefficients mw(to) and N(to) are denoted the added mass  (of  water) and the 
damping  coefficient, respectively. This notation follows from the fact that - mwii is of 
the form of an inertia force whereas - Nt~ represent a damping term responsible for 
the decay in the motion due to generation of surface waves. Both mw(to) and N(to) 
depend on the sectional shape as well as on the frequency to. Several procedures exist 
to determine mw(tO) and N(to), ranging from simple Lewis transformation, 
Example 4.2.3, to very accurate boundary element methods, Andersen and He (1985). 
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Finally, the term C proportional to the motion is the restoring term from the linearized 
Froude-Krylov force, Eq. (4.18)" 

C = p g B  o (4.53) 

Examole 4.2.2 

An approximate formula for the sectional damping coefficient N(~o) is given by Yamamoto et al (1986): 

N(o)) j~ [ /'(D2B ~ ( .~)]2 
= - - ~  2 s i n ~ 2 g ] e X p  - ,' co >__ 0 

where B and T are the water line breadth and the draught, respectively. It is clear, that with only two 
parameters to describe the sectional contour, the formula cannot describe the variation of N(og) with 
different sectional shapes very well. A more accurate formula is given in Example 4.2.3. 

For the draught to beam ratio 

s  1.2 
B 

Figure 4.4 shows N(w) and Figure 4.5 k'(t), the last obtained by numerical integration of Eq. (4.48). 

It is seen that k'(0-40 for relative modest values of t. Thereby, the upper boundary on the convolution 
integral in Eq. (4.52) can be replaced by a finite value, greatly facilitating the numerical evaluation of 
the integral. 

Finally, the sectional added mass is obtained by numerical integration of Eq. (4.27) using Eq. (4.45): 

co g, 
mw((,) - m~  = - 1 i k'(t)sinogt dt 

, I  
0 

This relation yields the variation of the added mass with frequency. The result is shown in Figure 4.6. 
To get its absolute value, the added mass a at to ---> oo must be derived. This is rather easy, because no 
surface waves are generated as to ---> ~ .  Mapping procedures, see e.g. Bishop and Price (1979), 
including the simple Lewis transformation are convenient methods. It is also seen that mw(og) ---> oo for 
to --> 0. This can lead to numerical problems for ships sailing in following sea, where the frequency 
of encounter can be close to zero. 



0,4 

0,2 

N(~o) 

0,3 

0,1 

-0,1 

0,5 

L I N E A R  H Y D R O D Y N A M I C  F O R C E S  139 

i 

1 

Figure 4.4 Sectional hydrodynamic damping coefficient N(w) for  T/B - 1.2. Yamamoto et 
al. (1986). 
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Figure 4.5 Sectional impulse response fimction k'(t) for the hydrodynamic load qH �9 
T/B = 1.2. 
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mw(~o) - m, O's 

pB z 

0,3 

-0,3 

, . .  

Figure  4.6 Sectional added mass mw(w) relative to its value m~ at co -+ ~ .  T/B = 1.2. 

Example 4.2.3 

A very useful transformation of a unit circle to ship-like sections was proposed by Lewis (1929): 

y = d[(1 + a t )  c o s 0 + a  3cos30] 

z = - d[(1 - a l ) s i n 0 -  a3sin30 ] 

Here 8 is the angle in the unit circle, measured from horizontal axis, see Figure 4.7. 

I - l 

, _  8 ._! 

I-- iz -I 
I 

J 

. . . . . . .  ~ y 

t+ 
Figure  4.7 Transformations o f  the unit circle to a ship-l ike sectional contour. 

The non-dimensional constants al, a 3 c a n  be expressed in the draught to beam ratio 

fl = 2T 
B 

and the sectional area coefficient 
A 

a = ~ -  T 

where B, T andA are the water line breadth, the draught and the sectional submerged area respectively. 
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From 

and 

1 - a  1 + a  3 
fl = 1 + a 1 + a 3 

A = ydz = 2 y(O) -dO dO 

o 

the following relations are found 

a I = C ( 1 - f l )  ; a 3 = C(1 + f l ) -  1 

where 

-1 

The scale parameter d with dimension length becomes 

Figure 4.8 shows sectional contours derived from this Lewis transformation. It is readily seen that 
ship-like sectional contours are obtained, provided a is not too small. 

The usefulness of the transformation is that it can be shown that the added mass of water mw in the high 
frequency limit, Eq. (4.50) becomes 

oo 
mw = C m p A  

where p is the mass density of water and 

Cm 
(1 + al)2 + 3a~ 

1 - aj z - 3a~ 

A derivation of the damping coefficient N(w) for these sectional shapes has been given by Tasai (1959). 
The result is written as an infinite integral to be evaluated numerically" 

with 

and 

A =  

N(oo) - 

pgZA 2 

0) 3 

oo fll+al   {( 4+al 2+a3 
1 + a i + a  3 \ ~ T - -  + y 4 ] c ~  r (1 + a 1 + a3)y3 

1 

0)2B 
r -  2g 

11)  
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2T/B = 5 
A/BT = 0.1-1.0 

! ] [ 2T/B = 1.0 

- - - - "  ~ , ; ~  , ~ . . . . . . . . .  

Figure 4.8 Lewis form sections. 

With both N(o~) and mw known, the added mass mw(oJ) can be obtained analogous to the derivation 
in Example 4.2.2. It is seen that A- ---> 23 irrespectively of al, a 3 for ~: ~ 0 such that N(~o) -~ wpBZfor 

~ 0 for al__! sectional shapes. 

4.2.4 Total Hydrodynamic Force 

If waves are present, then a wave- induced force must be added to Eq. (4.43). Like the 
force due to the motion of the section, this force can be found by a Fourier 
transformation of the wave- induced force in the time domain solution. For the restoring 

term it was found in Section 4.1 that this term was equal to Ctch, see Eq. (4.18). This 

is the same form as the restoring term due to u, only u should be replaced by - tch. For 

the damping and inertia terms substitution of u by - tch in Eq. (4.43) also gives fairly 
accurate expressions for these parts of the wave- induced load. This is illustrated in 

Example 4.2.4 for a circular section. Hence, 

q/4 = -[mw(~O).~ + N ( ~ ) ~  + C~.] (4.54) 
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can be used as an expression for the total hydrodynamic force per unit length for a 
section executing sinusoidal motion in regular waves. Here the relative vertical motion 
2 is given by Eq. (4.20). 

A more consistent approach is to calculate the diffraction forces on the ship using the 
velocity potential for the waves with the boundary condition (4.3), and assuming the 
ship at rest. Such formulation has been used by Salvesen, Tuck and Faltinsen (1970) in 
their derivation of the most often sited strip theory (STF) in the literature. However, the 
correlation between results from both strip theory formulations and measurements are 
usually very good and no conclusive statements can be made whether one or the other 
formulation yields the most accurate results a priori. See e.g. Odabasi and Hearn (1977) 
for a very thorough discussion of the various strip theory formulations. 

For the expression, Eq. (4.54), to be valid the frequency for the motion and the 
excitation frequency as experienced at the section must be the same. The linear wave 
elevation h(X, t) is given by Eq. (3.203): 

h(X,  t) = a cos(kX - tot + e) 

such that at the section x = x, 

h(x, t) = a cos(kx cos fl - ky sin fl + e - oget) (4.55) 

where the f r e q u e n c y  o f  encounter  toe: 

og e = r - k V cos fl = r - o) 2 V ~-cosfl (4.56) 

is the apparent wave frequency seen from the section. The Doppler shift k V c o s f l  

depends on the wave frequency o9, forward speed V and the heading angle ft. 

The frequency used when evaluating the sectional coefficients mw and N should 
therefore be toe. In addition the time derivative 

()=~ 

should be replaced by the total der ivat ive  

D 0 t 0 d x _  0 -  VO__O_ (4.57) 
Dt  Ot Ox dt  Ot ax 

to account for the fact that Eq. (4.43) is formulated in the global XYZ system, but 
represents a load on a section moving with the speed V in this system. It is not 
straightforward, however, to make the replacement of d/dt  by D / D t  consistently 
because the coefficients mw and N depend on x. Two formulations have often been 
applied in the literature. The first is due to Gerritsma and Beukelman (1964) and here 
the sec t ional  h y d r o d y n a m i c  load qIt  is taken in the form 
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q H (x, t) = -- m w(X, (.0 e) ~ q- U(x, r e) N + p g B  (4.58) 

in which the first term in Eq. (4.54) has been replaced by the change in momentum 
because mw depends on t through the last term in Eq. (4.57). 

In the time-domain the corresponding equation is 

D2 D2(t - r) k*(x, r) dr (4.59) qH(x, t) = -- mw (x) ~ + pgBo(x ) Y. + Dr  

0 

where k* (x,O can be found by inserting 2,(x, t) = Zo(X)e i~176 in Eq. (4.59). The resulting 
equation should be equal to Eq. (4.58) and thus 

oo 
/ -  

(x, ~Oe) = / k*(x, r)e K* iw~rd~ 
J 

0 

= N + - ~ . ( m w  - m w )  + ia~ (mw - m w )  

' ~ ~ = K (~Oe) "b (mw - m w ) 

where N = N(x, OOe) and mw = mw(X, COe). From Eq. (4.25) the kernel k*(x,t) then 
becomes 

GO 

k*(x, t) = ~ f K*(x, o))eir~ 

oo 

= k'(x, t) + -~ (row - m~, ) c o s  cotd~o 

0 

The somewhat pecular second term is due to the empirical nature of Eq (4.58). 

The second formulation follows from the solution of the linearized potential flow 
problem. Thereby, it is more rational than Eq. (4.58). It comply with the STF approach, 
but based on the relative motion assumption. In the time domain the result becomes, Xia 
et al. (1998): 

_~ DY. Dg (t - ~) dr - pgBo(x ) qH(x, t) = -- __ mw (X) -Di + Dr  

o (4.60) 
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where 

k"(x,r) = I k'(x,r) ar 
oo oo 

= ~ ~ s m  o)r d o  = ~ (mw (x, m) - mw (x))  c o s  o r  d o  

0 0 

(4.61) 

It is easily seen that both Eq. (4.59) and (4.60) become identical to Eq. (4.52) for zero 
forward speed, V = 0. The frequency domain equation corresponding to Eq. (4.60) is 

obtained by inserting 2(x, 0 = Zo(X) ei~ in Eq. (4.60). Hence, 

] qH(X,(De) = -- i(DeZ ~ + i(Demw 

O~t" + O)e2eK"(cot - i~Oee - pgB  d 

and with 

. N  
K " ( (D e ) = m w - m w - t -~--~e 

from Eq. (4.61), the result becomes 

Dmw 
qll(X,(De) "-- 2 (D2mw-  i(De Dt i(D eN D N  ] Dt  pgBo 

or, by eliminating (D e 

qH(X,(De) = -  [-~(mw(X,(De)-~tt) + D (N(x,(De)Z) + pgB05] (4.62) 

The difference between the two frequency domain formulations Eq. (4.58) and Eq. 
(4.62) is seen to be in the damping term N, only. As DN/dt=-VdN/dx  the difference 
depends on the forward speed V. 

The unknown is the equations (4.58)-(4.60) is the absolute vertical motion u(x,t) of the 
ship. This function is determined from the vertical equilibrium equations for the ship 
using some assumptions on the variation of u along the length of the vessel. Usually, 
the ship is treated as a rigid body, but hull flexibility can also be taken into account. The 
equilibrium equations are derived in Section 4.3 and solved for the case, where qn has 
a sinusoidal variation in time, Eq. (4.58). In Section 4.4 the results in the frequency 
domain are extended to cover the ship responses in stationary and instationary sea 
states, using the stochastic methods derived in Chapter 3. Section 4.5 deals with special 
non-linear effects and, finally Section 4.6 consider time-domain solutions based on 
e.g. (4.59) or (4.60). Such time-domain formulations are necessary, albert often very 
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t ime consuming  with respect  to compute r  resources,  for transient  p rob lem (e.g. 

col l is ion or grounding)  or w h e n  signif icant  non- l inear i t i e s  need to be included (e.g. 

ship responses  in severe sea). 

Example 4.2.4 

For the very simple case of a uniform flow past a circular cylinder embedded in an infinite fluid domain 
the velocity potential ~b is known: 

~b = UR 2 cosa 
r 

Here R is the radius of the cylinder and r, a the polar coordinates for a point in the fluid, see Figure 4.9. 

I I I I  
I I  I 

I I I1~ , ~  
I I l l  

Figure 4.9 Flow past a circular cylinder in a infinite fluid domain. 

The pressure p in the fluid is given by the linearized Bernoulli equation 

de 2 cosa d(pAU) 
P = - P dt Jr r dt 

where, for later comparisons, the sectional area 

2 A = ~ R  

of the lower half of the circular shape is introduced. The sectional vertical force q acting on this lower 
half of the cylinder becomes 

~/2 

q = 2 1  plr=R cos aRda 

0 

~/2 

4 J d  = - ~ (pA U) cos 2 a da 

0 

In order to relate this result to the vertical motions of a ship section, the fluid velocity is taken as 

du 
U = - d i - v z  
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where u is the motion of the cylinder and Vz the vertical wave particle velocity 

OqO - kn cosa dh 
Vz = --~ = e dt 

for a fictitious Airy wave h with a still water level in the horizontal symmetry plane of the cylinder and 
wave potential q~ given by Eq. (3.201). The exponential decay function is valid for deep water waves. 
Inserting this expression for U in the sectional force q yields 

. 

q = - ~  -d-tJ] 

where the non-dimensional parameter 

~/2 

g = 4 1 exp ( -  kRcosa)cos2a da 

0 

is shown in Figure 4.3. It is seen that E is very close to the Smith correction factor t~ for the circular 
cylinder, such that 

d d2 d mw~_ 7 
q = - ~  2i - - ~  

Hence, the relative motion assumption is seen to be a very accurate model for the added mass term for 
a circular cylinder supporting the use of this concept also for other sections. Finally, it is noted, that the 
added mass, m,, derived above, actually is 

mw = lim mw(tO) = mw = pA 
to.-.-.-~ o o  

due to the neglecting of surface wave generation by use of the velocity potential for an infinite fluid 
domain. Thus the high frequency added mass for a circular cylinder is equal to the displaced fluid. This 
is also in accordance with the result in Example 4.2.3 for a 1 - - -  a 3 - -  0. 

4.3 E Q U A T I O N S  O F  M O T I O N  

As  men t ioned  above  the sect ional  h y d r o d y n a m i c  load qH depends  on the vert ical  

mot ion  u(x, t) of  the section.  This  mot ion  is de te rmined  by the equa t ions  of  mot ion  for  
the ship 

J d2 u f m ( x ) - ~  dx = qH(x, u, t)dx 

L L 
(4.63) 

f d2tt f m(x)x - ~  dx = q tl(X, u, t)xdx 

L L 
(4.64) 
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where the integrations extend over the length L of the ship i.e. 

Xmax 

i f , Xmax --  Xmi n 

L Xmi n 

The left hand sides are the inertia contributions due to the mass distribution m(x) of the 
ship whereas the right hand sides contain the total time-varying external forces on the 
ship. The equations express dynamic force equilibrium in the vertical direction and 
moment equilibrium about the y-axis, respectively. The remaining four equilibrium 
equations do not depend on the vertical sectional force qH, provided the ship and its 
mass distribution are symmetrical about the centre-plane y=O. If this is not the case, 
coupling between the vertical and horizontal motions may occur. Here only the vertical 
motion u(x) and the associated sectional forces are considered. For coupled 
horizontal-torsional loads, see e.g. Bishop and Price (1979). 

To perform the integrations over the length of the ship, Eqs. (4.63)-(4.64) must be 
supplemented with an equation specifying the variation of u(x, t) with the respect to x. 
If the hull girder can be considered rigid, then u(x, t) can be written 

u(x, t) = w(t) - (x - Xcog)O(t) (4.65) 

where the heave w(t) is the vertical motion of the centre of gravity Xcog and the pitch 
O(t) is the angle of rotation about a axis parallel to the y-axis. The centre of gravity 

X cog = 

-1 

(4.66) 

For very flexible or very fast ships, the elastic global response of the ship subjected to 
wave loads might be of some importance, especially as regard fatigue damage. In such 
cases Eq. (4.65) must be replaced by a suitable beam formulation of the hull girder. This 
is considered in details in Chapter 6. 

Substitution of Eq. (4.65) into the equilibrium equations (4.63) and (4.64) yields 

Miv = f q H ( x , w , O , t ) ~  

L 

(4.67) 

JO = - f (x - Xcog) qlt(X, w, O, t)dx 

L 
(4.68) 

where displacement M and mass moment of inertia J are 
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M = f m(x)dx 

L 

(4.69) 

J = [ (X-Xcog)2m(x)dx  

L 

(4.70) 

and an overdot, as before, denotes differentiation with respect to time. 

The right hand sides in Eqs. (4.67) and (4.68) can be expressed explicitly in the heave 
w, pitch 0 and the wave elevation h(x,t) using an appropriate formulation of qn like Eq. 

(4.58). In this formulation the coefficients mw(x, oge),N(x, oge)and Bo(x ) must be 
known. Furthermore, the relative motion 2(x, O, Eq. (4.20), becomes 

e(x ,  0 = w( t )  - (x  - Xcog)O(O - x ( x ) h ( x ,  0 (4.71) 

Inserting Eq. (4.71) and the wave elevation h(x,t), Eq. (4.55), with y=O and e = 0 in 
Eq. (4.58) and carrying out the differentiations according to Eq. (4.57) yields 

qn(X,t) = -- [mw(X)(fv + 2VO - ~0) 

+ ( N ( x ) -  Vm'w(X))(W + V O -  Y.O) 

+ pgBo(x)(w - X'0)] (4.72) 

+ tc(x)a[(,ogBo(x ) - mw(x)o9 2) c o s ( k  e x --  (D e t) 

+ (N(x) - Vm'w (x)) o9 sin(kex - O)et)] 

where ( )' denotes differentiation with respect to x and where 

X = x - Xcog (4.73) 

k e " -  k c o s f l  (4 .74)  

Substitution of Eq. (4.72) into the equilibrium equations (4.67)-(4.68) and collecting 
all terms depending on the heave w and pitch 0 on the left hand sides yield two coupled 
second order ordinary differential equations with constant coefficients: 
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(M + Io)f+ + (N O - V[mw])(v + pgAww-  I10 

+ (VI 0 + V[mw~] -N1)O + (VN 0 - V2[mw]- pgSy)0 

= a(F 1 cos toet + F2sintoet ) 

(4.75) 

and 

- I l W -  (N 1 + VI 0 - V[mw~])rb- pgSyw 

+ (J + 12)0 + ( N 2 -  ~mwX2])O 

+ ( -  VN 1 - V2Io + V2[mw~] + pgIyy)O 

= a(F 3 cos to e t + F4 sin to e t) 

(4.76) 

where the following constants have been introduced: 

li(toe) -- f mw(X, We)(X -- Xcog)idx 

L 

N i (We) = f N(x, r - Xcog)idx 

L 

together with the water plane area Aw, Eq. (2.82) 

Aw = f Bo(x)dx 
L 

and its first and second moments with respect to the centre of gravity: 

sy = f (x - Xcog)Bo(x)dx 
L 

Iyy -- J ( x -  Xcog)2Oo(x)dx 

L 

(4.77) 

(4.78) 

(4.79) 

(4.80) 

(4.81) 
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Furthermore, with Xmi n --< X <_ Xmax, terms of the type 

[H(x)] - H(xmax) -  H(xmin) (4.82) 

appear in the differential equations (4.75) - (4.76) due to possible abrupt termination 
of the sectional constants at the ends of the ship. These terms are important for relative 
fast ships with a transom stern, as for instance container ships. 

Finally, the four coefficients F1, F 2, F 3 and F 4 follow from the terms in qn depending 
on the wave elevation: 

FI(W e) = ~ ]'1( x, o)e)dx 
J 

L 

F2(o) e) "-- f f2( x, 0)e)dx 

L 

F3((Oe) -" - f (x - Xcog ) f l  (x, o) e)dx 

L 

where 

F4(tOe) -- - f (x - Xcog ) f2(x, O)e)dx 

L 

f l = x(pgBo - mw w2) cos ke x + xto(N - Vm'w) sin kex 

f2 "- lc(pgBo -- mwf~ sin ke x - Icto(N - Vm'w)  cos kex 

As qH depends linearly on the wave amplitude a, the right hand sides in Eqs. 
(4.75)-(4.76) are as shown linear in a, too. 

4.3.1 Response Amplitude Operator 
The solution to Eqs. (4.75)-(4.76) can be written as the sum of a particular and the 
homogeneous solution. The homogeneous solution depends on the initial conditions 
and will decay exponentially with time. It is therefore omitted as the response to a steady 
state excitation h(x, t) is requested here. Later in Section 4.6 transient motions are 
discussed. The particular solution will have the same frequency co e as the right hand 
sides: 
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W(t) = a(IPw(o)e) COS(o)el if- Ew(o)e) ) (4.83) 

O(t) = a~o(o)e) COS(o)et 4- EO(o)e) ) (4.84) 

where the amplitude functions ~w and ~0 and the phase lags Ew and c 0 are 
determined by substitution of Eqs. (4.83) - (4.84) into Eq. (4.75) - (4.76). As the 
excitation is given by the wave elevation, 

h(x, 0 = a cos(kex - o)e t) 

the amplitude functions ~w and 4~ 0 are closely related to the complex transfer 
functions Kw(o)e)and Ko(o)e ) associated with the heave and pitch motion, 
respectively. From Eq. (4.34) it follows that 

~w(o)e) -" [Kw(o)e)! (4.85) 

~O(o)e) = IKo(c~ (4.86) 

Often the amplitude functions 4~ are named frequency response functions. 

The square of the amplitude function 

{/)2(o) e) -" [K(o) e)[ 2 "- K*(o9 e)g(o) e) (4.87) 

is denoted the response amplitude operator*. 

Having determined the heave w(t) and pitch motion O(t) for the ship sailing in a regular 
wave, the hydrodynamic force qH(x, t) per unit length, Eq. (4.72), is also known and can 
be written on the form" 

qH(X, t) = a~qn(X, (1) e) COS(O) et + eqn(X, (1) e)) (4.88) 

as seen from Eq. (4.72). The total force q per unit length becomes 

q(x, t) = - m(x)(fv(t) - (x - Xcog)O(t)) + qn(X, t) 

= a~q(X, o) e) cos(o) et q- e q(X, (9 e)) 
(4.89) 

where the first term is the inertia (D'Alembert) force. Integration of q(x,t) yields the 
vertical wave- induced shear force Qz(x, t) 

* In the literature �9 is also often denoted the response amplitude operator (RAO)! Therefore, care 
has to be taken when interpretating results, quoted in the literature. 
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x 

Q z(x, t) = - I q(Yc, t)d2 

Xmin 

-- atI) Q(X, toe) COS(toet -t- Eq(X, toe)) 

(4.90) 

and the vertical wave bending moment 

X 

My(x, t) = - J (x - $)q(Y, Od$ 

Xmin 

= a~M(X, to e) COS(toet + EM(X, toe)) 

(4.91) 

using the same sign convention as in Chapter 2. As seen from Eqs. (4.88)-(4.91) any 
response R depending linearly on the wave elevation can be written on the same form, 
given by the wave amplitude a, an amplitude function q~R, a phase lag e R and the 
frequency of encounter to e: 

R(t) = a@R(toe)COS (toet + 6.R(toe)) (4.92) 

The validity of the results can be established by experiments in model basins, where 
regular waves can be generated. Extensive comparisons have been performed in the 
past, see for instance Flokstra (1974) and generally, the various hydrodynamic strip 
theory formulations yield quite accurate results. As seen from Eqs (4.75)-(4.76) the 
forward speed V may influence the results quite significantly and usually the 
applications of strip theories are restricted to forward speeds V corresponding to a 
Froude number Fn 

_ V < 0 . 3  ( 4 . 9 3 )  Fn q/gZ 

However, recent experiments, Naonosuke et al. (1993) have shown very good 
agreement with strip theory predictions at Froude numbers up to 0.6. Also comparisons 
with results from three-dimensional linear formulations have indicated that strip theory 
with its assumption of a two-dimensional flow pattern may be used for load predictions 
even for very fast slender monohull ships. 

Example 4.3.1 

For a homogeneous loaded prismatic barge with length L, breadth B and draft 7, the equations 
(4.75)-(4.76) can be solved analytically. The constants in the equations become 
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I 0 = m w L  �9 11 = 0 �9 

N O = N L  �9 N 1 - 0 �9 

A w = BL  �9 Sy --- 0 ; 

M = mL �9 Jy = 1-~mL3 

[mw] = 0 ; ImP] = rnw/_, 

12 -- l ~ m w L  3 

N 2 = - -~NL 3 

lyy = ~ 2 B L  3 

�9 [ m ~  2] = 0 

Assuming head sea, fl = 180 ~ and a wave crest at the centre of gravity at t=O, the coefficients 
F1,F2,F 3 and F 4 become 

F 1 = 2 x ( p g B -  mwtOZ)sin-k~ 

- 

e3--/r k2-~2 (sin---k2L2- - --k~- cos--k~) 

m 2 2  . k l  F 4 =  x ( p g B -  wtO )~-~(sln~-- --~-cos--~-) 

With these coefficients, Eqs. (4.75)-(4.76) can be written 

(1 + 17)Mr + N L w  + p g B L w  + 2rlvMO + VNLO = a (F  1 costoet + F2sintOet  ) (4.94) 

and 

12 (F3 costOet + F4 sintOet) (1 + rl)MO + NLO + p g B L O  = a - ~  (4.95) 

where r/is the ratio between the added mass of water and the displacement of the ship: 

to mw 
~ 1 -  M m 

Substitution of Eqs. (4.83)-(4.84) into Eqs. (4.94)-(4.95) yields the amplitude functions @w and 4 0 
after some algebra. The results are shown in the Figure 4.10 as function of A l L ,  where the wave length 
2 = 2 r t / k .  This is the only independent wave parameter as 

~o2 = kg = - -~g 

tOe = tO - k V c o s f l  = tO + k V  
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The following values have been assumed: 

LIB  = 8 �9 B / T  = 2 

mw = m �9 N = pg2(O.45)2/(tOe) 3 

The values for mw and N are reasonable values, except for very long waves. 

As the right hand side of Eq. (4.95) is zero for 

kL 
sin - ~ - -  cos -if- = 0 

the amplitude function ~o will be zero for the value of ;t/L satisfying: 

tan---~ = --~-=,,--~-= 4.4934094 

o r  

2__ = 0.699 
L 

irrespectively of the value of all other parameters (V,L,B,  T, rn,, etc.) for a homogeneous loaded 
box-shaped ship. 

W " 

1.0 

,5 

| . , ,  

I )~/L 2 

1.0 

.5 

F n -  .1 

X/L 2 

Figure  4.10 Ampl i tude  funct ions  ~ w  and ~o  for  heave and pitch o f  a homogeneous  
loaded barge. 

For the heave motion, the coupling between heave and pitch through Eq. (4.94) implies that a similar 
type of relation does not exist. However, for zero forward speed, the coupling terms disappear and hence 
~w = 0 for sinkL/2 = 0 or 2/L = 1, see Figure 4.10. 

For very long wave length, 2 > > L, the ship will behave as cork moving with the wave surface. Hence, 
in general 

~w--" 1 for 2/L --~ 

0 --" k for 2/L ---, oo 
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as the pitch will tends towards the wave slope given by 

dh _ aks in (kX-  cot + e) 
dX 

For 2/L ---, 0 the wave number k ---> ~ .  As the coefficients F1, F2, F 3 and F 4 are inversely 
proportional to k the right hand sides in Eq. (4.94)-(4.95) will tend to zero such that 

q'w --- 0 for 2/L  --, 0 

�9 o k ---> 0 for ~/L ~ 0 

As seen in Figure 4.10 large variations in q)w and q~0 occur for wave lengths comparable with the length 
of the ship. With the solutions ~/'w and r inserted in Eq. (4.89) the total force per unit length q(x,t) 
is obtained. The result is shown in Figure 4.11 for three different values of 2/L. The forward speed is 
taken as zero, but the results only depend on the forward speed through the frequency of encounter o9 e 
in the expression for the damping coefficient N. This special result is due to the extreme symmetry in 
the present example. As usual the amplitude function q~q for q(x,t) is shown in non-dimensional form 
using appropriate normalization parameters. 

1 

0.5 

- L h  ~ x L h 
Figure  4.11 Amplitude function @ q for the load q along the length of  the hull. 

Finally, the vertical bending moment My, Eq. (4.91), is determined. Usually, it will be largest around 
amidship with a smooth decay to zero at the ends of the ship. For the present example a very simple 
result is obtained for the bending moment amidship, albeit after some algebra: 

~ M = ~ 2 ( 1 - c o s - - ~ - - - ~ s i n - ~ ) ' ( p g B - - m w c o 2 )  2 + (Nco) 2 (4.96) 

This result is shown in Figure 4.12 in non-dimensional form. For both very long or very short wave 
lengths the wave bending moment tends to zero, which also is obvious by physical arguments. It is 
interesting to compare the Froude-Krylov result (mw = N = 0) with the result Eq. (4.96). The 
inclusion of dynamic effects through especially the added mass of water mw significantly reduce the 
wave bending moment. The result shown in Figure 4.12 is for V=O but as V only enters in Eq. (4.96) 
through the frequency of encounter oge inN, the variation with Vis very modest in the present example. 
This is not generally so. Normally, the bending moment will increase quite significantly when the 
Froude number Fn = V/f-g-{ exceeds about 0.2 to again reach a stable level for Fn greater than about 
0.25. The maximum value of the amplitude function q~M is typically in the range of 0.02 pgBL 2 to 

0.035 pgBL 2. 
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0 1 Z, IL 2 
Figure 4.12 Amplitude fimction ~M for the vertical bending moment amidship. 

4.4 LINEAR WAVE RESPONSES IN RANDOM SEAS 

It was shown in Section 3.3.1.3 that a stationary stochastic seaway can be represented 
by a wave elevation H(X,t) given as a sum of sinusoidal functions each with different 
amplitude, Eq. (3.214). For each of these sinusoidal wave components, the response is 
conveniently found by Fourier transformation as shown in Section 4.2. The result is 
given by Eq. (4.34) or more explicitly for ship motion responses by Eqs. (4.83)-(4.84) 
and Eqs. (4.88)-(4.92). 

Due to linearity the response R to the wave elevation given by Eq. (3.214) becomes 

R(I) -- ~ aicI)R((.Oe, i ) c o s  ((JOe, it n t- ER((_Oe, i )) 
i=1 

(4.97) 

where the phase angle e R includes the deterministic contribution, 

Arctan ( Im(K(~ e)) 

derived from the transfer function K(w), but also the random phase lag, Oi, from Eq. 
(3.214). The statistical properties of the response can be derived as in Section 3.3.1.3. 
The only difference in that the amplitude a i n o w  is replaced by a i f[gR(O)e,i). Hence any 

statistical moment E[G(R(t)] will be independent of t, such that the response R becomes 
a stationary stochastic process. Analogous to Eqs. (3.216)-(3.220), the mean value is 

,u R = 0 (4.98) 
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whereas the variance becomes 

i= )2 ~R2 = s2 = 1 ~l(ai~R((De, i) (4.99) 

Further moments are not needed if n is large as the response then due to the central limit 
theorem applied to Eq. (4.97) with statistically independent phase lags e R will be 
normal distributed like the wave elevation itself. Hence the probability density function 
PR for the response becomes 

1 

PR(r) -- ~ SR -~(r/s")2 (4.100) 

Finally, the autocorrelation RR(V ) takes the form 

RR(~ ) 1 ~ (ai~R((De,i)) 2 " -  COS (D e,i "r 
i = 1  

(4.101) 

The wave amplitudes a i a r e  given by Eq. (3.221) and in the limit n ---> ~ ,  the variance 
and the autocorrelation then become 

c o  

= I 
0 

(4.102) 

and 
o o  

RR(T ) -- f ~)2((De)S((D) COS (De T d(D 

0 

(4.103) 

respectively. 

In order to perform the integrations either the frequency of encounter (D e should be 
expressed in terms of the wave frequency (D or vice versa using Eq. (4.56) and Eq. 

(3.253). As illustrated in Example 4.3.1 the response amplitude operator q~2 is often 

given as function of 2/L. In such cases s 2 is most conveniently obtained as 

0 

(4.104) 

by use of Eq.(3.202). 

In a short-crested seaway characterized by a wave spectral density on the form given 

by Eq. (3.258), the variance s 2 becomes 
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o o  

0 - -~  

(4.105) 

where/~ is the angle between the ship heading and the wind direction. The response 
amplitude operator (Pz(w, fl) must then be calculated for a number of heading angles 
fl =/~ - cp covering the range of c.p, see Figure 4.13. 

/~Wind 
~ component 

Figure 4.13 Ship sailing in a short-crested seaway. 

Upcrossing rates and peak distributions for the response are easily obtained using the 
results in Section 3.2.3 and 3.2.4 for Gaussian processes as the only information needed 
are the spectral moments: 

o o  

mRO =-- s 2 = ] SR(~ 

0 

(4.106) 

(DO (30 

o o 
(4.107) 

o o  o o  

0 0 

(4.108) 

where 

(4.109) 

is denoted the response spectral density. 

The probability density function for the individual peaks is given by Eq. (3.137) with 
the spectral bandwidth obtained from Eq. (3.106) using Eqs. (4.106)-(4.108). As the 
response amplitude operator (p2 usually is narrow compared to the wave spectral 
density itself, the Rayleigh distribution, Eq. (3.153), is normally a very accurate 
approximation for the peak distribution of the response. 



The spectral moments mRn are based on o n rather than on w n, because We reflects the 

t ime-varying behavior of the response R in the ship coordinate system, where the 
response is measured. The zero-upcrossing frequency of the response becomes 

~/ mRO (4.110) 

Example 4.4.1 

For the homogenously loaded barge considered in Example 4.3.1, the response amplitude operator q~2 
for the vertical wave bending moment amidship is given by Eq. (4.96) for the ship sailing in head sea. 

The variance s 2 becomes 
~ o  

o 

and by use of Eq. (4.104) this integral is transformed to an integral over 2/L. Numerical integration 
using the Pierson-Moskowitz spectrum, given by Eq. (3.238) yields the result shown in Figure 4.14. 

For the present example, the forward speed does not influence the result very much, as discussed in 
Example 4.3.1. The result in Figure 4.14 is for zero forward speed. 

Usually, the bending moment is made non-dimensional as in Figure 4.14. Only very seldom, the 
standard derivation s M exceeds the value 0.01 pgBL2H s for any ship. Notice that s M is linear in Hs 
because of the form of the Pierson-Moskowitz spectrum. 

0.005 

0.004 

0.003 

0.002 

0.001 

i I 

SM/pgBL2Hs 
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, i 

0 1 2 3 4 Tz(g/L) ~ 5 
Figure 4.14 Standard derivation SM of the midship vertical wave bending moment as func- 

tion of the zero-upcrossing period Tz for a homogeneously loaded barge. 

In a long-term analysis considering the ship during its complete operational lifetime, 
the statistical analysis is performed analogous to the procedure for wave peaks in 

Section 3.3.3. 

The probability density function pep(r) for the individual peak values is then obtained 

as 
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pe(r) = ~ f  J J f v ( O ' l ~ ,  V, Hs, Tz)pp(r, tt, V, Hs, Tz)dl~dVdTzdHs 
(4.111) 

H s T z  V /~ 

where, compared to Eq. (3.261), the ship speed V and the ship heading/~ relative to the 
wind direction have been included, because the standard derivation s M and hence pp 
depend on these parameter. Other parameters may also enter the expression, the most 
obvious is the ship's loading condition. 

Writing 

pp(r, t~, V, Hs, Tz) - pp(r~, V, Hs, Tz)p(fl, V, Hs, Tz) (4.112) 

with the first term on the right hand side given by Eq. (3.137) or Eq. (3.242) using Eqs. 
(4.106)-(4.108) for the statistical moments, the difficult part is the joint probability 
density function p~,  V, Hs, Tz). Nearly no data are available to estimate this function 
as it combines weather data, Hs, Tz, with ship operational data,/~, V. Usually the angle 
/t is taken to be uniformly distributed between 0 and 2z~ and statistically independent 
of V, Hs and Tz. Hence 

1 p~,  V, Hs, Tz) = -~ p (V, Hs, Tz) ; /~E[0, 2:r] (4.113) 

It would clearly be wrong to assume that the speed Vis independent of Hs and Tz as the 
ship has to reduce its speed in heavy sea, see also Figure 4.17. A reasonable 
approximation could be to take V as a deterministic function of Hs: 

v =  V(Hs) (4.114) 

such that V will be between the service speed Vse r and a minimum steering speed Vmin, 
depending on Hs. This relation may require calculation of the response amplitude 

operator (/)2 for many values of V. To avoid this, an alternative to the relation Eq. 
(4.114) might be, Jensen and Dogliani (1996) 

V -- I Vmin with a probability a = a(Hso ) 

L Vse r with a probability 1 - a(Hso ) 
(4.115) 

where the probability c~ depends on a threshold value Hs = Hso 
Using Eq. (4.114), Eq. (4.111) becomes 

g 
2a: (4.116) 

l 
2zc v(O) 

H,T,_ 0 
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whereas Eq. (4.115) leads to 

with 

H,. H,o 

1 f f  [ f ( V m i n ) d H s + ( l - a l ) [  f(Vser)dHs PeP(r) = 2= v(O) 1 
T._ kt 0 0 

H . . . .  H ~  . . . .  q 

+ a2 f f(Vmin)dHs + ( 1 -  a2) I f(Vser)dHs ] dttdTz 
H~o H,o 

(4.117) 

a l = a ( t h  _</-/so) 

and 

a 2 =a(Hs >Hso ) 

f(V) = v(O l P, V, n=, T=) pp(r l bt, V, n~, T=)p(ns, T=) 

The procedure, Eqs. (3.267)-(3.269) to obtain long term extreme values for the waves 
is equally valid for ship responses, provided account is taken as above for the additional 

dependence on V and /,. The use of a Weibull fitting for pe(r) to the numerical 
integrated values obtained by Eq. (4.116) or (4.117) is often quite accurate. An example 
is given in Figure 4.15. 

0 1 2 3 4 
0 " s d . . . . .  ~ . . . .  

-2 

-4 

-6 

-8 

-10 

Bending moment (GNm) 

Loglo(1-Fp I) 

Figure 4.15 Probability distribution Fp e(m) of the long-term individual peaks in the ver- 
tical wave bending moment amidship in a container ship, (L= 270m). Thick 
line: direct calculation, thin line." Weibull approximation. 
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With N = 108 as a reasonable value for the total number of response peaks during the 
lifetime of the ship, the most probable value of the response occurs for 

I O g l 0 ( 1  --  Fep(m))= l O g l 0 1  = - 8  

using Eq. (3.267). This is the reason for the chosen horizontal axis in Figure 4.15. 

Numerically, Eq. (4.111) is usually carried as 

M 
1 (r,  i) pep(V) = - ~ z z ~ N z i p p  " 

i=1 

where 

gzi --  ~'(0 I,tt, V, Hs, Tz) rp (JA, V~ gs, Tz)dptdVdHsdTz 

is the number of zero upcrossing in each of the M stationary conditions 
(~, V, ns, Tz) -- (fl, V, Hs, Zz) i , i = 1, 2, ...M. Furthermore, 

pp(r; i) = pp (r It t, V, H s, Tz) 

is the corresponding probability density function for the individual peaks. Similarly the 
probability distribution becomes 

M 
1 Fep(r) = Nz ~'~ Nzi Fp (r; i) 

i = 1  

where for Rayleigh distributed individual peaks 

[ Fp(r; i )  = 1  - exp - 1 s~/ 

with 

SRi = SR (lU, V, Hs, Tz) 

The probability distribution F e (v) for the largest peak amoung N peaks is finally 
derived from the assumption of statistically independent peaks 
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= 1 Nzi Fp (r; i) 
i=1 

_ 1 Nziexp _ � 8 9  r 
= 1  Nzz.= 

--~ exp - ~"Nziexp - ~ 
i=1 

By this formulation numerical problems related to a power N = 10 8 are avoided. 

4.5 SLAMMING AND GREEN WATER ON DECK 

In addition to the linear wave-induced forces considered in the previous sections, two 
other wave-induced loads need to be addressed. Both are non-linear functions of the 
relative motion of the ship and can therefore be calculated when the statistics of the 
relative motion is known. 

Figure 4.16 Bow flare slamming in heavy sea. 
Photograph by Lauritzen Group. 
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Figure 4.17 Speed reduction scheme in stationary sea states. 0.4G: Vertical acceleration 
greather than 0.4g every 15 rain; S 15: Slamming occurs every 15 rain. 
Adapted from SSPA. 

Measurements have shown that if the forward part of the ship hits the water surface with 
a sufficient high relative velocity after a bow emergence, then a high impulsive loads, 
a slam, will be experienced. Figure 4.16 gives an impression of such event. This 
phenomenon can lead to structural damage and hence the captain will usually reduce 
the speed or change the heading if the number or the severity of the slams become too 
high. An example of such procedure is shown in Figure 4.17. As seen this voluntary 
speed reduction is usually larger in heavy sea than the automatic reduction due to added 
resistance in waves. The opposite to a slam is deck submergence when a wave runs over 
the deck. This may cause severe damage to deck cargo, deck equipment and even to the 
deck house. 

In the following a statistical treatment of these two events is given. 

4.5.1 Slamming 

Two conditions must be satisfied to experience a slam during a wave cycle. First the 
relative vertical motion 

z(x, t) - w(t)  - x O(t) - h(x, t) (4.118) 

should be larger than the draft T(x) at the section considered. Secondly, the relative 
velocity D z / D t  must be larger than a threshold velocity v0: 

_ D z _  O z _  vOZ > Vo 
zt = D t  3t 3x - (4.119) 
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Due to the linear relations, Eqs. (4.118)-(4.119), the relative motion z and its time 
derivative zt can be written on the form Eq. (4.92), where the amplitude functions q~z 
and q~zt are obtained by substitution of Eqs. (4.83), (4.84) and (4.55) into Eqs. 
(4.118)-(4.119). 

In a stationary stochastic seaway both z and zt will therefore be normal distributed with 
zero mean values and standard deviations sz and Szt given by Eq. (4.102): 

o o  

S2z(X) = S e~(co,x) s(oo) d~o 
o 

(4.120) 

o o  

o 

(4.121) 

or, for short-crested seaways, by Eq. (4.105). 

The probability that the individual peak values zp of the relative motion exceeds the 
draft T(x) is 

[ [T(x)~ 2] (4.122) P (Zp > T(x)) = 1 - Fz (T(x)) --" exp - 1 J 
provided the spectral bandwidth ez, Eq. (3.106) with the moments Eqs. (4.106)- (4.108) 
is sufficiently small (ez <- 0.6) to apply the Rayleigh distribution, Eq. (3.153), for the 
individual peak values. 

The second criteria, Eq. (4.119), becomes 

[ ()21 1"0 
> (4.123) 

in a stationary seaway, analogous to Eq. (4.122). As Z(t) and DZ(t)/Dt are statistically 
independent processes, see Eq. (3.108), the probability to experience a slam becomes 

P(slam) = P(Zp > T(x))P(-~tlz=z e 
.f/~,:~.~ ~ 

:-vo) = ~ - �89 i,,s~,:x~, j /sz O, t2}] 
(4.124) 

The number Ns of slams within a time period t can be determined as 

Ns = v(O)t P(slam) (4.125) 
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where v(0) is the zero-upcrossing rate for z(t): 

1 /m2z(X) 
= (4.126) 

The sectional force qst(X, t) associated with a slam has been found to be approximately 
proportional to the relative velocity Dz/Dt: 

2 

qsl(X, t) = a~D t ] (4.127) 

By comparison with Eq. (4.58), it is seen that qst has the same form as the momentum 
slamming force 

D m w D 2 _  Omw(D2) 2 
qms(X, 0 -- Dt Dt 02 -Di (4.128) 

to be included in Eq. (4.58) in a non-linear generalization, in which mw and all other 
coefficients depend on the instantaneous relative immersion z or, to be consistent with 
Eq. (4.58), 2. A momentum slamming force can therefore easily be included in a 
non-linear time-domain solution of the equilibrium equations (4.63)-(4.64). Such a 
procedure is discussed in Section 4.7. It should be noticed that the force only act during 
downward motions (Dz/Dt < 0) and that the force is proportional with the change of 
added mass mw with relative immersion 2. This formulation covers quite well what is 
known as bow flare slamming, experienced in ships with a large bow flare. An other 
type of slamming is bottom slamming, taking place when a fiat bottom hits the water 
surface. This is relevant for e.g. a tanker or a bulk carrier. Here the momentum slamming 
model cannot be used, because Omw/OZ is not defined at the instant of slamming. 
Several empirical formulations have been proposed, see e.g. Bishop and Price (1979). 
Most of them apply the relative motion formulation, Eq. (4.127). More recently, Zhao 
and Faltinsen (1993) have developed a rational formulation for slamming loads 
covering all practical cases and including pressure distributions over the slamming 
area. Here, however, no further consideration of the slamming pressure will be given 
as the resulting sectional forces usually are sufficient accurately dealt with by the 
momentum slamming force qms(X, t), defined by Eq. (4.128). 

4.5.2 Green Water on Deck 

Completely analogous to slamming green water will appear on the deck if the relative 
immersion is larger than the freeboard F(x). Hence, at a section X=x, the probability of 
green water on deck becomes 

[ ] Pgw =- P(green water on deck at X = x) = exp - ~Sz(X)] (4.129) 

and the number Nv of deck wetnesses during a time period t is given by 
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Nv = v(O)t Pgw (4.130) 

The loading on the deck plates due to green water is very difficult to asses, because 
actually the water flow has a very complicated pattern, including spays. For 
applications in the present strip theory formulation, the following formula for the 
sectional force qgw(X, t) due to green water on deck has been found useful, Wang et al. 
(1998): 

qgw(X, 0 = - gmgw(X, t) - D mgw(X, 0 Dt J (4.131) 

Here mgw is the sectional mass of water on deck and Ze is a modified relative vertical 
motion, depending on z and the Smith correction factor tc. 

The first term in Eq. (4.131) is simply the gravity force due to the mass mgw, whereas 
the last term is analogous to the momentum slamming force qms, Eq. (4.128). Because 
mgw depends on z, the green water load can only been included in a time-domain 
solution of the equilibrium equation (4.63)-(4.64). 

4.6 TRANSIENT AND NON-LINEAR HYDRODYNAMICS 

The frequency-domain formulation Eq. (4.58), considered in Section 4.3 is very 
powerful, because the extreme value analysis easily can be carried out as shown in 
Section 4.4. However, the analysis is based on two assumptions. The first is that the load 
depends linearly on the wave height and the second is that the wave elevation and 
associated wave kinematics have a sinusoidal variation. Thereby, neither non-linear or 
transient problems can in general be solved in the frequency-domain. In the following 
the application of time-domain formulation to these problems is shortly described. 

4.6.1 Transient Problems 

Transient hydrodynamic problems may be related to for instance collision or grounding 
accidents where the interest will be on the motions and sectional forces for a ship 
following an external load acting at, say, time t = 0. Hence, the motion of the vessel prior 
to t = 0 can be assumed known. In the present case where the emphasis is on the vertical 
motion, then a grounding at t = 0 of a ship in still water will imply that 

0 t < 0 (4.132) 
~(x ,0  = u ( x , 0  t _ 0 

and thereby the expression qH(x, t) for the sectional hydrodynamic load, Eq. (4.60) 

becomes 

q H(x, t) = i f 1 D oo Du(x, t) Du(x, t - r) k"(x,  v)dr - pgBou(x, t) 
Dt mw (x) Dt + Dr (4.133) 

o 
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withD/Dt, mw (x) and k' '(x, r) given by Eq. (4.57), (4.50) and (4.61), respectively. The 
range of the convolution integral is now reduced from infinity to [0, t], greatly 
facilitating a numerical evaluation. 

The unknown vertical motion u(x,t) is found by vertical force and momentum 
equilibrium analogous to the procedure described in Section 4.3, but including the 
grounding force. The solution u(x, 0 ; t > 0 can be found numerically either by a time 
integration algorithm or by model superposition. Short descriptions of these methods 
are given in Chapter 6 dealing with hull girder vibrations, whereas an extensive 
discussion of the transient grounding scenario can be found in Simonsen (1997). 
Usually, the convolution integral poses no problem in these cases, because the 
integration is restricted to a small range [0,t]. In other cases, ~ ~ 0 for t < 0 and care 
has then to be taken when the upper (infinity) boundary on the convolution integral is 
replaced by a finite time T. If T is too small then the convolution integral becomes 
inaccurate whereas a too large T will increase the computational effort. It has here to 
be recognized, that the integral must be evaluated in full at any new time step in the 
solution procedure, because of the two different arguments t - r and r in the integral. 

This problem is encountered when dealing with transient loads like slamming and green 
water on deck for a ship sailing in a random seaway. 

4.6.2 Non-linear Hydrodynamic Analysis 

Generally, the vertical motion characteristics of ships are predicted quite well by the 
linear strip theory but significant non-linearities are observed in measurements of the 
sectional forces in the hull girder. 

Two examples are shown i Figure 4.18 and Figure 4.19. Both of them concern the 
vertical bending moment amidships which is the most important wave load parameter 
in the design of ships larger than 100 m (i.e. dominated by beam bending rather than 
local pressure on the hull platings). 

Figure 4.18 shows the probability distribution functions for the peak (sag) and trough 
(hog) values of the bending strain obtained from measurements in a container vessel 
during an operational period of about 20 minutes. A sea state can normally be assumed 
stationary within such a short period and the theoretical linear distribution function will 
be the same for both the peak and trough values and close to a Rayleigh distribution. 
However, as seen from the figure, non-linearities tend to increase the sagging bending 
moment significantly and slightly decrease the hogging bending moment. 

The same trend is noted in Figure 4.19, showing bending stresses obtained from 
measurements in a specific class of frigates. Altogether measurements covering an 
operational period of 9 years are included. The measured results have been obtained in 
different sea states, yielding a distribution function far from a Rayleigh distribution, and 
more resembling extreme value distributions of the Gumbel or Weibull type. However, 
also in this case a linear analysis will lead to exactly the same probability distribution 
for the sagging and hogging stresses. 

In design procedures the significant difference observed between the magnitude of the 
sagging and hogging bending moment at the same probability level must be accounted 
for and in the following an outline is given of two non-linear strip theories capable of 
predicting at least some of these non-linearities. The methods are illustrated by recent 
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calculations for the wave bending moment in different vessels both in severe stationary 
seaways and covering the whole operational life of the ship. 
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Figure 4.18 Short term statistical representation of the peaks�9 in the wave induced 
bending strain e derived from Northern Atlantic measurements on CTS TO- 
KYO EXPRESS (1018 GMTDec 27, 1973). A low pass filter was applied to 
remove contributions from the 2-node vibration taking place around 5 rad/s. 
After Hackmann (1979). 
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Figure 4.19 Gumbel plot of long-term deck stress measurements in a narrow beam 
LEANDER Class frigate. A probability of exceedance of 2.10  -5 corre- 
sponds to a 20 years' return period. After Clarke (1986). 

Only the vertical wave-induced loads are considered. As two-dimensional strip 
theories usually yield predictions close to measurement in small amplitude waves, a 
non-linear generalisation of the linear strip theory therefore seems to be an appropriate 
starting point for the derivation of a non-linear wave loads analysis. 

4.6.2.1 Second-order, Frequency Domain Ship Theory 

A straightforward non-linear, but empirical generalization of Eq. (4.58) for the 
sectional hydrodynamic load qH is simply to assume that the added mw, the 
hydrodynamic damping N and the restoring force all depend on the instantaneous 
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sectional draught T(x) + 2(x, t), where T(x) is the still water draught used in the linear 

formulation, Eq. (4.58), when calculating m(w x), N(x) and Bo(x ). Hence, 

qH(X't) = DtD ~D mw(X,2, ) ~  +N(x,2,o~)--~- i + qFkz (4.134) 

where qFKz is the non-linear Froude-Krylov force, Eq. (4.13). 

The non-linearities responsible for the difference between the hogging and sagging 
responses shown in Figure 4.18 and Figure 4.19 are mainly the variations in added 
mass, hydrodynamic damping and Froude-Krylov force with the relative immersion of 
the hull. In addition, non-linearities in the wave profile and associated wave kinematics 
can be important, too. All these non-linearities have asymmetric terms and thus a 
second order model might be appropriate for moderate non-linearities. This is the basic 
idea behind the quadratic strip theory, proposed by Jensen and Pedersen (1979). 
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Figure 4.20 Probability distribution function for peak values of the non-dimensional mid- 
ship bending moment (M = Mmean) /CrM where cr m is the standard deviation 
of the first-order (linear) contribution. The ship is sailing in head sea. 

A second order formulation of qH is obtained by a Taylor series expansion in 2, retaining 

only terms proportional to 2 and 22. The derivatives of mw and N with respect to 2 are 
calculated from mw and N determined at two water lines displaced ~ 6 from the still 
water line: 

Omw (x, ~)] = mw(x, 6, og) - mw(x, --. .6, W) 
02 le=0 26 

and analogously for N. This procedure has given reasonable results although it does not 
comply with a consistent second order solution of the ship-wave problem. The 
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restoring term in Eq. (4.58) is replaced by the first two terms in a Taylor series expansion 
in 2 of qFkz(X,Z-), Eq. (4.13), using the second order pressure distribution Eqs. (3.207) 
and (3.210). Finally, second order Stokes waves, Eq. (3.208), are used as the incident 
waves. From the equilibrium equations, Eqs. (4.61)-(4.63) a set of first and second 
order wave-induced responses R can be found in the same form as for instance the wave 
elevation, Eq. (3.205) and (3.208). Hence, precisely the same statistical methods as 
discussed in Section 3.3.1.4 can applied. The result can be presented as a probability 
density function p(r), analogous to the Gram-Charlier expansion, Eq. (3.225), or as 
statistical moments including the skewness, Eq. (3.226) and the kurtosis. In the second 
case an approximate probability density function can be defined as described in Section 
3.1.3 and illustrated in Example 3.3.3. The agreement with the measured response in 
Figure 4.18 is very good as shown in Figure 4.20. It is seen that the Gram-Charlier 
distribution gives results closest to the measurements, but also that this series 
expansion only is valid up to a probability of exceedance equal to about I per cent for 
the individual peak values. For lower probabilities the series expansion diverges, 
yielding negative probability densities as discussed in Example 3.3.3. The Hermite 
transformation, Eq. (3.34), based on the four lowest statistical moments is seen to give 
nearly as accurate predictions as the Gram-Charlier series, but without numerical 
problems in the tail of the distribution. Of course, as no measurements are available in 
the tail, one cannot make conclusions regarding the validity of the transformation 
method for very small probabilities of exceedance, but generally is is expected to be 
rather good, Winterstein (1988). 

4.6.2.2 Non-linear Time-domain Strip Theory 
The second order formulation can capture some of the non-linearities, including bow 
flare slamming, but it cannot be applied for severe non-linearities or when transient 
load effects become important. For these cases a time-domain formulation must be 
used. Again taking the starting point from a linear strip theory, either Eq. (4.59) or 
(4.60), a non-linear empirical formula for qi4(x, t) can be obtained by taking k'(t) and 
thereby mw and N as functions of the instaneous draught as before. The equilibrium 
equations can then be solved by a time-step procedure, but because 
mw(x, to, z-), N(x, to,~ and k'(x,2, t) have to be calculated at each time step together 
with the convolution integral, this procedure is computationally very expensive. One 
possible simplification is to neglect the non-linearities in mw and N and hence also in 
k'(t) assuming the non-linearities in the Froude-Krylov force qFkz to be the dominating 
non-linear term. In general reasonable results are obtained, but usually the 
non-linearities in mw and N account for 20-30 per cent of the total non-linearities and 
should therefore not be neglected. 

In order to avoid the convolution integral an approximation of mw and N by rational 
polynomina in the frequency co can be applied, S6ding (1982), Xia et al. (1998). 
Thereby, all non-linearities can still be included, albeit in a somewhat empirical way. 

In a time-domain solution, the input is a wave sequence, either regular or stochastic. 
An example of the results from the first type is shown in Figure 4.21. Here the amplitude 
of the wave-induced vertical bending moment distribution along the length of a vessel 
($175, which is a container ship of length L= 175 m) is shown. The wave is sinusoidal 
with an amplitude a=L/60 and a wave length ~.= 1.2 L. The ship is sailing in head sea 
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with a Froude No. Fn=0.25. Results from the second-order frequency-domain and a 
non-linear time-domain strip theory are shown together with measured values 
obtained from model test. The agreement is very good and the large difference between 
the sagging (>0)* and hogging (<0) bending moment is clearly visible. Thus, a linear 
formulation will be insufficient in this case. 
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Figure 4.21 Non-linear sagging (positive) and hogging (negative) bending moments of 
the S175 Containership sailing in the regular wave, ,~ = 1.2 L,a = L/60, 
Fn = 0.25. The comparison is made for the experiments, Watanabe et al. 
(1989), a time-domain non-linear strip theory, Xia et al. (1998) and the sec- 
ond-order strip theory, Jensen and Pedersen, (1979). 

The steady-state contribution shown in the figure is due to the change of trim and 
draught when the ship is sailing as compared to the values at rest. This difference cannot 
be calculated by the strip theories given here but requires a full three dimensional 
hydrodynamic analysis. However, as the contribution to the load is small it is usually 
neglected. 

An example with a stochastic wave elevation as input is shown in Figure 4.22. 

The calculated response is the midship vertical wave bending moment. Two different 
ships ($175(O) and S175 (M)) are considered, the difference being that S175(M) has 
a larger bow flare than the other, original hull form. This is seen that the larger bow flare 
results in larger slamming forces leading to larger bending moments and to significant 
transistent, so-called whipping, vibrations of the hull girder. These vibrations will be 
discussed in Chapter 6. 

The importance of the non-linearities due to bow flare slamming and green water on 
deck is illustrated in Figure 4.23. 

For this rather extreme realization, where both slamming and green water on deck occur 
for two adjacent wave peaks, the green water load, calculated from Eq. (4.131), is very 
large and increases the hogging bending moment significantly. 

Having performed a large number of realizations of the wave-induced responses 
needed, the extreme value statistics discussed in Section 3.2.5 can be applied. 

* In Figure 4.21-Figure 4.23 sagging is positive opposite the definition in Chapter 2. 
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Figure 4.22 Calculated time histories of the midship bending moment of the original and 
the modified $175 Containership moving in a particular realization of a moder- 
ate head sea with significant wave height Hs = 8.3 m, mean period Ts = 11.1 
sec; Fn =0.25, Xia et al. (1998). 
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Figure 4.23 Time histories of wave elevation, effective relative motion Ze, momentum slam- 
ming force fsl and green water force -lift all at the forward perpendicular, to- 
gether with midship bending moment fgw for the $175 container ship in head 
sea. The sea state and forward speed are the same as in Figure 4.22. Wang et 
al. (1998). 
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4.7 DESIGN LOADS 

In the structural analysis of the hull girder, design loads are needed. As discussed in 
Chapter 3 two fundamental different approaches can be applied. The first makes use of 
design waves, either regular or conditional, see Example 3.3.2 and the result could be 
as shown in Figure 4.21 (although the wave in that figure is too small to represent a 
design wave). The other approach is to apply the long-term statistical method, Section 
3.3.3 and Section 4.4, but taking into account the most significant non-linear effects. 
Such analysis is described below. 

The quadratic strip theory has been used to obtain design values for the midship bending 
moment in various types of vessels. Two different approaches are used. In the first, 
Mansour and Jensen (1995), the design value is taken as the most probable largest value 
during a 3 hours operation in a short-term severe sea state characterised by a 
Pierson-Moskowitz wave spectrum with a significance wave height Hs = 15 m and 
a zero crossing period Tz = 12 s. This rather unrealistic sea state is often used as an 
equivalent to a complete long-term analysis. A low forward speed and a heading angle 
equal to 135 degrees are assumed. 
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Figure 4.24 Variation of skewness and kurtosis with the bow flare coefficient CF for six 
ships. Results are for the midship sagging wave bending moment. For hog the 
sign of the skewness should be changed. 

The vessels considered are a tanker (T), a frigate (F), an oil-bulk-ore carrier (O), a 
floating oil production vessel (P) and two containerships (C1, C2). The degree of 
non-linearities in the bending moment is depicted in Figure 4.24 showing the skewness 
)'1 and kurtosis )'2 of the response. For comparison, a linear response to a Gaussian sea 
will have 71=0 and )'2=3. The different ships are here characterized by one single 
parameter, the bow flare coefficient CF, measuring the flare of the forward 20 per cent 
of the hull. Of course, this is a rather crude measure, which cannot completely describe 
the difference in hull forms seen among these ships. However, a clear trend towards 
increasing skewness and kurtosis with flare coefficient is noted. The skewness is 
responsible for the difference between the sagging and hogging moments, whereas a 
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kurtosis greater than 3 implies a larger probability of obtaining larger peak and trough 
values than in the Gaussian case. 

From the polynomial (or Hermite) series approximation, Eq. (3.34) the ratio between 
non-linear and linear design values of the bending moment is obtained. The results are 
shown in Figure 4.25. 
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Figure 4.25 Variation of the ratio of hogging and sagging wave bending moment to the 
linear wave bending moment with the bow flare coefficient C F for six ships. 

Again some spreading in the results is seen, but the trend is an increase in the sagging 
and a decrease in the hogging bending moment with bow flare. 

A drawback in this analysis is the rather arbitrary choice of equivalent sea state and that 
neither the service speed nor different heading angles are taken into account. This can 
only be done through a full long-term analysis in which the wave statistics in the 
different ocean areas covered by the ship's operational profile is weighted and 
combined with a speed reduction procedure in severe sea states. Such an analysis has 
been performed by Jensen, Banke and Dogliani (1994) for 7 ships, some of them 
identical to those used in the above-mentioned short-term analysis. The main results 
are given in Figure 4.26. The abscissa is now a combined bow flare and forward speed 
coefficient CFV 

CFV = C F + 0.5 Fn (4.135) 

where the Froude No. Fn is based on the nominal service speed. Clearly the same trend 
and the same range for the ratio between the non-linear and linear predictions for the 
design values of the wave-bending moments are found in the long-term analysis as in 
the stationary, short-term case. It should be noted, that because of the very large 
extreme bow motions yielding both bow emergence and deck wetness, a proper 
definition of the flare must be used, see the last cited reference. 



DESIGN LOADS 177 

1.5 

M 
Mtin 

1.0 

1 

1 
0.1 

�9 M = M sQg 

x M = M h o g  

o2  

6 7 

34  
Q I i  

0.2 0.3 CFV 0.4 
x I - l 
2 

x 
3 x  x x 

4 5 6 
7 
x 

0.7 
Figure 4.26 Ratio between the median (i.e 50 per cent fractile) values of the long-term 

extreme values of the wave-induced sagging and hogging bending moments 
amidships and the corresponding results from linear strip theory for 7 ships 
(1: tanker, 2: dry cargo ship, 3+5 frigates, 4: floating production vessel, 
6+ 7: container ships). 

Finally, it should be mentioned, that the classification societies provide empirical 
values for the design loads depending solely the main particulars of the ships. These 
formulas are based on a large in-house knowledge accumulated over many years. In 
general, these formulas predict design values in reasonable agreement with direct 
calculations performed as described in this chapter. However, for novel ship design care 
has to be taken not to rely on purely empirical formulas, derived for other kind of ships. 
Therefore the classification societies also recommend or even request direct 
calculations for novel ship types. 

4.7.1 Rule  Values  for the Hull  Girder  Loads  

The Classification Societies issue very detailed information on how to estimate the 
design loads on ship. It is outside the scope of the present treatment to discuss the rules 
but an example is given below, using the rules from Det Norske Veritas, 1999 edition: 

Example 4.7.1 

The container ship analyzed in Figure 4.15 has the main dimensions L= 270 m, B= 32.2 m and 
C B = 0.6. The service speed is 24.5 knots = 12. 6 m/s, corresponding to a Froude No. Fn = 0.245. 

From Figure 4.15 it follows that linear wave-induced bending moment with a returned period of 20 
years (N = 108) is approximately 3.2 109 Nm. The non-linear corrections factors for hog and sag can 
be obtained from Figure 4.26 as the ship is the same as ship No. 7. Thus the design wave-bending 
moments become 

Msag - 1.4 �9 3.2 109 Nm = 4.5 109 Nm 

Mhog -- 0.75 �9 3.2 109 Nm = 2.4 109 Nm 

whereas the rule values are 

Mrule 2B(CB + sag = 0.11CwL 0.7) kNm = 3.6 109Nm 

Mt rute = 0.19 CwL2BCB kNm = 2.8 109Nm 
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However, the rule based sagging bending moment must be corrected for speed and flare as the 
coefficient CAF in the rules becomes 

= 0 2  2 4 . 5  CAF . - - ~  + 0.3 = 0.6 > 0.5 

The correction factor is thus 1.2 according to the rules, such that 

Mrule sag = 1.2 " 3.6 109Nm = 4.3 109Nm 

It is seen that there is a very good agreement between the calculated design values and the rule values, 
the differences being about 10 per cent. 

Finally, it should be mentioned, that the rule based design still water bending moments amidships 
become 

Ms rule = 2.1 109 Nm 
ill water', sag 

M rule = 2.8 109 Nm 
still water, hog 

These values or, better direct calculated still water bending moments should be added to the wave 
bendings to obtain the total bending moments. 



Hull Girder Response 

When the design loads on the ship hull have been identified, a stress and deformation 
analysis can be carried out. In the main large parts of these loads are only dependent on 
the outer geometry of the ship. However, the stress calculation requires knowledge of 
the structural layout of the complete ship. As a rule, this geometry is determined from 
functional and economic requirements. It is then the purpose of the strength analysis 
to provide sufficient scantlings, so that the hull structure with reasonable certainty can 
be expected not to suffer damages during normal operational conditions, which impede 
its ability to function. 

Figure 5.1- Figure 5.5 adapted from Guldhammer and Meldahl (1971) show a number 
of characteristic structural elements of ships. Figure 5.1 shows a section of a vessel with 
longitudinal stiffening in the bottom and the deck and transverse stiffening in the sides. 
A double bottom with transverse stiffening is shown in Figure 5.2. As seen from these 
two double-bottom structures, the transversely stiffened design is the best as regards 
production as a result of far less intersecting plate elements. Therefore, transverse 
stiffening is normally used in small ships, where the necessary longitudinal strength, 
i.e. the section modulus of the hull girder, is obtained automatically by the plate 
thicknesses for bottom and deck needed for the local strength. 

For large ships (more than approximately 100 m long) longitudinal stiffening of 
especially deck and bottom will lead to smaller plate thicknesses of the outer plating 
of the ship. This saving of weight compensates for the disadvantages of a more 
complicated production process. Figure 5.3 shows a longitudinally stiffened section of 
an older medium-sized tanker. It is seen that the ship has no double bottom, now 
mandatory for tankers entering US ports, and that there are two longitudinal bulkheads. 
The division of the tanker into a number of tank compartments both longitudinally and 
transversely is mainly due to hydrostatic stability requirements. When the longitudinal 
bulkheads are designed, it must be taken into account that e.g. the central tank may be 
empty and the side tank full. This necessitates in Figure 5.3 the two strong horizontal 
beams between the side shell and the longitudinal bulkhead. 

While longitudinal stiffening is thus used in the midship sections of large ships, the 
forepart and the stern are normally transversely stiffened, see Figure 5.4 and Figure 5.5. 
The shown hull cross-sections are only examples of hull design. Other examples can 
be found especially in shipbuilding magazines. 
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1. plate keel 6. bilge keel 11. deck girder 

2. centre girder 7. bilge bracket 12. hatch coaming 

3. tank top 8. longitudinal 13. hatch end coaming 

4. margin plate 9. frame 14. deck transverse 

5. floor 10. beam knee 15. centre bulkhead 

16. gunwale 

Figure 5.1 Sectional view of a vessel with longitudinal stiffening in the deck and bottom 
and transverse stiffening in the sides. 
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3. web (web frame, deck transverse, floor or floor transverse) 

4. longitudinal 

5. bulkhead stiffener 

6. stiffening of web plate with stiffener or bracket 

Figure 5.3 Longitudinally stiffened tanker. 
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Figure 5.5 Structural layout of a stern. 

With the tanker cross-section in Figure 5.3 in mind, the transmission of forces can in 
principle be described as follows. The water pressure on a plate element is transferred 
to the longitudinals, which then "pass" their load to the strong transverse web frames. 
The frames are connected to side, deck and bottom platings as well as to possible 
longitudinal bulkheads. These elements together form the hull girder. The transmission 
of force effects will thus be 

plate -+ longitudinal --+ web frame --+ panel --+ hull girder 

where panel designates the side plating and the longitudinal bulkheads with their 
stiffening. Because of the large differences in stiffness between the five levels, each 
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level can approximately be analysed separately. Here only the hull girder analysis is 
considered. It should, however, be mentioned that a division into partly independent 
levels is not absolutely necessary, because the whole ship may be analysed by the finite 
element method (FEM). However, this is a time-consuming procedure, especially in 
preparation of input data and in verification of the results. Therefore, the present 
analysis is based on thin-walled beam theory, which accurately model the global stress 
distribution in the hull girder. 

The hull girder means all the structural elements (plating, longitudinals, longitudinal 
bulkheads, decks and the like) with a certain longitudinal extent. As an example 
Figure 5.6 shows (half) of a midship section in a container ship. The stress analysis 
assumes that the hull girder is prismatic, which means that the cross-section does not 
vary much in the neighbourhood of the considered section. Moreover, it is presupposed 
that the deformation of the hull girder is linearly elastic. 

In Chapter 2 and 4, the loads on the hull girder are treated. The results were given as 
sectional forces Qx(x), Qy(x), Qz(x) and sectional moments Mx(x), My(x), Mz(x), c.f. 
Figure 5.7, referring to an xyz-coordinate system fixed in the ship, where the x-axis is 
the longitudinal coordinate and the z-axis lies in the centre line plane. These sectional 
forces and moments are, as described in Chapter 2 and 4, due to hydrostatic and 
hydrodynamic forces as well as inertia forces from the mass distribution of the ship. The 
sectional loads depend solely on the outer hull geometry and the mass distribution of 
the ship and are therefore assumed given here. 

The stresses found in the hull girder at a section x = x are, because of the assumption 
of a prismatic hull girder, only dependent on the sectional quantities Qx(x), Qy(x), 
Qz(x), Mx(x), My(x) and Mz(x) and the sectional geometry of the hull girder*. The 
stresses from each sectional load components can be treated separately. They may be 
divided into four main groups: 

�9 Bending stresses due to My and Mz 

�9 Shear stresses due to Qy and Qz 

�9 Torsional stresses due to Mx 

�9 Axial stresses due to Qx 

Finally, the stresses which result from uneven heating / cooling of the cross-section as 
subjected to the ambient air and water temperature will also be considered: 

�9 Temperature-induced stresses 

The cross-section shown in Figure 5.6 is used as a common example. 

* Except for the warping torsional stresses considered in Section 5.3.4. 
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Geometry of cross-section of a container ship 

Length in metres 

Plate thicknesses and profile specification in 
millimetres. 

400X 301:~ 

320x131 
/ i 

12 0 0 ~  I 17.4,1 

i21 ~o?,<3p~ 

- , ,  

400x30~;15 

m m 

250x3o~ - 
13 . I 0  

8 . 5  

All double-bottom longitudinals 250 X 11 bulb 
profiles are equated with 250 x 13,5 flat bars. 
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21 ,~ 22 ' 
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11 l ] . 1 . 3 s  
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I . . . .  h , , , i -  ...... I ' ! " I .  i = ]  
0 1 2 3 4 5 m  

Figure 5.6 Geometry of a cross-section of a container ship. 
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t M z x = constant 

Z 

1 7~ 
X Qx 

Figure 5.7 Definition of sectional forces and sectional moments in relation to the xyz- 
coordinate system fixed in the ship. 

5.1 BENDING RESPONSE 

If an infinitely long, prismatic beam is exposed to bending, the cross-section of the 
deformed beam will remain plane (the so-called Navier's hypothesis). Thus, the elastic 
normal strain e in an arbitrary section x = x becomes a linear function of the coordinates 
(y,z) of the cross-section: 

e = e(y,x) = a + by + cz 

The corresponding normal stress cr, according to Hooke's law for uniaxial tension will 
be: 

cr(y,x) = E(y,z) (a + by + cz) (5.2) 

where E is the modulus of  elasticity of the cross-sectional material. The value of E may 
vary over the cross-section, if e.g. some parts of the cross-section are made of 
aluminium and the rest consists of steel plates. 

The constants a, b and c shall be determined so that the resultant of the stress cr over 
the cross-section is equal to the sectional moments My and Mz. Thus: 

f , aa = a f Eaa + b fEyaA + c f Ezaa = Qx = O 
A A A A 

f yadA = a f Eyaa + b f Ey2dA + c f EyzdA = - M z  

A A A A 

A A A A 

where A is the cross sectional area of the longitudinal structural members (not to be 
confused with the immersed sectional area!). 
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If, as usual for ship cross-sections, it is assumed that the cross-section is symmetric 
about the z-axis, the terms with a integrand linear in y become zero (as E(y,z) =E(-y,z)), 
which gives 

~r(y,z) = E(y,z) [My ] ~(~ - Zo) - ~ y  
(5.3) 

where 

Zo-fEz~4/fE~4 
A A 

A A 

Ez = f Ey2dA 

A 

(5.4a) 

For cross-sections consisting of N rectilinear, evenly thick, thin plates the integrations 
can be replaced by summations 

EdA = Eihie i 
i=1 

A 

f EzdA = E ih ie i~ i 
i=1 A 

f ( / Ez2dA ~__ ~ E ihiei 2 2 _1. 1-~z 2 
i=1 

A 

~2 1 ^2 
EY 2dA ~ Z Eihifi Yi + -~Yi 

i=1 
A 

where, according to Figure 5.8, the modulus of elasticity, the thickness and the length 
of the ith plate element are respectively Ei, h i og e i and where 

z'i - l (Zli q" z2i), zi "-- z2i - Zli 

1 
)7i -- ~CVli + Y2i); 3 3 - Y 2 i -  Yli 

with (Yli, Zli) and (Y2i, z2i) as the coordinates of the endpoints for the ith plate element. 
The line z = z 0 is normally denoted the neutral axis of the cross-section, as the bending 



BENDING RESPONSE 187 

stresses due to the moment My are here zero. The horizontal sectional moment Mz will 

usually be of much lesser importance that My since both Mz < My and Ez > Ey. 

(Y1,Z1)i 

(Y2jZ2) i 

-v 

Figure 5.8 A rectilinear, evenly thick plate element. 

For most ships the modulus of elasticity will be constant for the whole cross-section, 
so that Eq. (5.3) reduces to 

My M~ 
,~O, ,z )  = w - ( z -  Zo) - -~-z y , y  

(5.5a) 

where the moments of inertia Iy and Iz are 

Iy -- Iz2dA -- Z~}A ; 

A 

Iz = J y2dA 

A 

z o = IzdA/A 
A 

(5.5b) 

If the modulus of elasticity E is constant, the largest stress O'ma x will be 

amax = ~~, l Zmax + ~ Ymax 

where 

Zmax = m a x  Iz --  ZoI 

Ymax = max lyl 

(5.6) 

provided z = Zmax, y = Ymax occur at the same material point, e.g. a deck corner. 

The quantities Wz and Wy defined by 

Wy --jz ly = Iz (5.7) 
- Zol w ~  -~ 

are called the section modulus and are usually calculated for the outer contour of the 
cross-section. 
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When the bending stiffness of the cross-section, given by Ey, Ez or Iy, Iz, are to be 
calculated, the continuity of the individual longitudinal elements must be assessed. 
Normally hatch coamings and superstructures cannot be completely included in the 
stiffness of the hull girder, see the left figure in Figure 5.9. Also, possible longitudinal 
hatch beams cannot be effectively included as they are only connected to the hull girder 
in their endpoints and therefore may be vertically displaced relative to the deformed 
cross-section of the hull girder, see Figure 5.9 right. 

Hatch beam 

Figure 5.9 Structural ineffective parts of the ship during bending. 

For calculation of the moment of inertia of a cross-section it is common practice to use 
computers. For hand calculations it is advantageous to use a table as Table 5.1 to 
determine z 0 and Iy. 

Table 5.1 Calculation of sectional properties 

e (m) h (m) eh (m 2) ~, (m) ~ (m) 
. . . .  

& 

eh2 (m 3) eh(2 2 + z2/12) (m4) ' 

$2 $3 
. . . . .  

If only half the cross-section y _ 0 is considered, $1, S 2 andS 3 shall be multiplied by 2 ! 

Cross-sectional area A = S 1 (m 2) 
The vertical distance of the neutral axis above keel z 0 = $2/S 1 (m) 

Moment of inertia ly = S 3 - $2/S1 (m4) 

Section modulus at keel Wkeel -- Iy/Z 0 (m 3) 

Section modulus at deck Wdeck = ly/(Zdeck -- ZO) (m 3) 

Finally, it should be stressed that use of the beam theory implies that plane 
cross-sections remain plane during bending, Eq. (5.1). This assumption is not quite 
fulfilled for the deck and bottom plating. By use of a so-called "effective breadth" this 
can be corrected for, but this is not discussed here on since the effect is normally of no 
practical importance for the global loads on the hull girder. 

Example 5.1.1. 

Determination of the bending stiffness for the cross-section shown in Figure 5.6. The material is steel 
everywhere. 
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Nodal point numbers �9 and 
plate plate element numbers 
(underlined) 
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Figure 5.10 Modelling of hull cross-section for determination of cross-sectional con- 
stants. The modelling is based on the cross-section shown in Figure 5.6. 

~88 
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To be able to use Eqs. (5.4b) the cross-section must be approximated as a system of rectilinear plates 
of uniform thickness. This approximation is shown in Figure 5.10. It should particularly be noted that 
two nodal points (Nos 17 and 19) are placed in the bilge to obtain reasonable modelling of the rounding 
and that nodal points (Nos 22 and 37) are placed where the plate thicknesses change. Besides, the bulb 
profile of the longitudinals is approximated by an evenly thick plate element of the same height and 
area as the bulb profile. Finally, the hatch beam has not been included, while the hatch coaming is 
assumed to be fully effective. 

The following result is obtained: 

z 0 = 7.238 m 

ly = 106.1 m 4 

lz = 294.1 m4 

in the 0,,z)-coordinate system with origo in the keel at the centre line (that is at nodal point No 1 in 
Figure 5.10). The neutral axis is thus 7.238 m above the keel. 

The main particulars of the ship are: 

The perpendicular length of the ship L = 185.93 m 

The breadth moulded midship B = 25.92 m 

The block coefficient C B = 0.6 

A container ship will due to its slender hull form always be in a hogging condition. Therefore no 
longitudinal compressive stresses occur in the deck, making it possible to use flat bars rather than 
T-profiles or bulb profiles as longitudinals. The maximum tensile stresses in the deck can be estimated 

using My = 2 109 Nm, c.f. Chapter 4, Section 4.7.1. 

With this bending moment the maximum tensile stress becomes 

O - m a  X . - -  

2 109 Nm 
106.1m 4 

�9 (17.44 - 7.238) m = 192 M N / m  2 

and it occurs in the upper plate element of the hatch coaming. 

As in this example the neutral axis is usually closer to the keel of the ship than the deck because of the 
double bottom. Thus, the largest bending stresses occur in the deck, and therefore high-tensile steel 
is often used in here. The very heavy longitudinals (400 • 30 mm flat bars) just below the deck have 
been introduced to raise the neutral axis in order to lower the deck stresses. 

Examole 5.1_.2 

Consider the simplified cross-section of a hull with a superstructure shown in Figure 5.11. 

The hull girder is made of steel and the superstructure of aluminium. The cross-sectional dimensions 
are shown in Figure 5.11. Only the stresses as a result of a vertical moment My are considered. 

1 O r e  - ,  

/ i 
Plate thicknessesain m m  I am 

_ I 

- "  i5'm 

Figure 5.1] Simplified hull cross-section with a superstructure. 
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If the hull girder alone is considered, Eq. (5.5a) gives 

My My 
, ,  = - r - ~ z -  z0) = , y  

with 

z 0 = 3.61 m" ly = 9.56 m 4 

If the superstructure is included, calculated as fully effectively then 

M~, My 

, ,  = =-- W y  

is obtained where 

E = Estee l = 2.1 1011 N/m 2 for the hull girder 

E = Eah, = 0.7 1011 N/m2 for the superstructure 

and where 

z~ = (2.76 + 1 1.67)/(0.765 + � 8 9  4.05 m 

E y =  [ ( 1 9 . 5 2 +  � 8 9  1 0 . 1 6 ) ] ' E s t e e l  

= 11.95m 4 �9 Estee I 

The result is given in Table 5.2 by the section modulus Wy and Wy, without and with the superstructure 
included: 

Wy - iz 9.56 m 4 11.95 m 4 Esteel 
Z 3.61 ml" IVy ~ [z - 4.05 m]" E 

T a b l e  5 .2  

z(m) Wy(m 3) W~y(m 3) 

top deck house . . . . . . . .  - . . . . . . . . . . .  5.15' 

bottom deck house 
, , ,  

top hull girder 

11.0 

8.0 

...... '8.0 

9.08 

2.18 3.03 
. . . . . . . . . . . .  

bottom hull girder 0 2.65 2.95 
. . . . . .  

As the normal stress a is inversely proportional to the section modulus, it is seen from the results that 
the stresses in the superstructure will be smaller than in the hull girder. However, the permissible stress 
for aluminium is smaller than for steel and hence the stresses in the superstructure may be the critical 
ones. This result applies generally to passenger ships with relatively high and long superstructures. To 
reduce the stress level in the superstructure, expansion joints are therefore often introduced in the upper 
decks of the superstructure. Alternatively, the coupling between the superstructure and the hull girder 
can be made flexible by e.g. letting the superstructure rest on relatively weak transverse frames. 
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Example 5.1.3 

The vertical deflection of the hull girder can be determined accurately as discussed in Chapter 6, taking 
into account inertia effects as well as bending and shear deformations. However, a simple estimate of 
the vertical deflection 6 amidships, defined relative to a straight line throughAP and FP can be obtained 
assuming a prismatic hull with a constant bending moment Ms,. With these assumptions it follows from 
Figure 5.12 that 

d = R  1 -  cos 8R 8 x  

where L is the length of the ship, R the radius of curvature and tc the curvature: 

K" -- 
R dz E~ 

Hence, 

a - M ~ Z 2  

8Ely 

As an example, consider the ship also used in Example 5.1.1" 

= 2109-  185.932 m = 0.39m 
8" 2.1 1011 �9 106.1 

This is the maximum upwards deflection experienced only if the vessel is subjected to its maximum 
design (still water + wave) bending moment. In still water typically only half or less of this value is 
obtained. 

In the above analysis both the moment of inertia ly and the bending moment My are assumed constant 

along the length of the vessel. This is of course not so for a real ship, but as long as the ratio My/ly 
is constant the above analysis is rather accurate. Deflections due to shear is ignored as it only gives a 
small contribution. 

L (i + J" )/2 

s .... - - I -  + : !  " 

/ \N.A. 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

\ / 
\ t 

/ 
/ 

/ 
/ 

/ 

Figure 5.12 Definition of the radius of curvature R and the height 6. 

5.2 SHEAR RESPONSE 

If a sect ion dx of  a beam e lement  is considered,  Figure  5.13, with a sect ional  bend ing  

momen t  M(x), a sectional  shear ing force Q(x) and a dis t r ibuted load q(x) the fo l lowing  

is obta ined by moment  equi l ibr ium: 
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~ '  dO -- O ( x ) *  : - -  dx  

dM Mix) M(x) + ~ dx 
Figure 5.13 Considerations of equilibrium for a beam element. 

dM - ( Q(x) 
x+dx 

+ - ~ - a x  ax - (u - 0 q(u)  au  = o 

x 

which, for dx ---- 0, reduces to 

dM dMy Qz and dMz 
dx = Q or dx - dx - - Qy (5.8) 

as also derived in Chapter 2, Example 2.3.2. 

If a small cut-out of a thin-walled, symmetric beam is considered next, Figure 5.14, 
the following formula is obtained by force equilibrium, using Eq. (5.3) and Eq. (5.8): 

OS - -  OX "- - -  h ( s ) ~  X ( s )  , E y  ( z ( s )  - Z o )  - 

= _ h(s) E(s) . [Oz(x , ay(x) ] (5.9) Ey (z(s)-  zo) + Ez y(s) 

In the Eq. (5.9) s is an arc length parameter and h = h(s) is the thickness of the plate 
element. Finally, z- = z-(x,s) is the shear stress. By integration 

r(x ,s )  = Qz(x) [ 
- Ey h(s)  h ( s ) E ( s ) ( z ( s )  - Zo) ds 

s 

Qy(x) [ h(s) E(s) y(s) ds + r(x, O)h(O)/h(s) 
e zh(s) 

s 

(5.10) 

which shows that the shear stress r at an arbitrary point in the cross-section of course 
is a linear combination of a contribution from each of two shear stress components Qz(x) 
and Qy(x). 
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Figure 5.14 Segment of thin-walled beam-section. 

It follows from Eq. (5.9) that d(hr)/Os = 0 if z(s) = z o and y(s) = 0. Hence, the 
maximum values of hr occur at the neutral axes for bending, i.e. where the bending 
induced normal stresses are zero. 

For a rectilinear, evenly thick plate element with length 1 (c.f. Figure 5.8) and constant 
modulus of elasticity for the whole section, Eq. (5.10) reduces to 

r ( x , s )  = Qz(x) [ Iy 1 (z2 - Zl)] e (Z 1 -- Z0) S q-- LS 2 

Qy(x) Yl 1 (Y2--YI)]  S -b LS 2 -1- ~(X, O) 
e 

(5.11) 

with the parameter s given by 
/ 

, , 

s = ~ / ( y  - + ( z  - yl)  2 Zl) 2 , O < _ s < _ e  

and where (Y l, z l) and (y2,,z2) are the endpoints of the plate element. 

It is seen from Eq. (5.11) that, if the shear stress r is known at one point of the plate 
element, it can be calculated at any another point. The variation is parabolic in s. 

For a cross-section, composed of N evenly thick, rectilinear plate elements, Eq. (5.11) 
can be applied for each plate element. The constants r(x, s = 0) for each individual 
plate element are determined by force equilibrium in the x-direction at the points where 
the plate elements are connected to each other: 
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J 
= 0 

j = l  

for all points (5.12) 

where J is the number of plate elements joining together in the point. Note that all shear 
stress components must be measured positive either away from or towards the point, 
c.f. Figure 5.14. 

Especially Eq. (5.12) shows that 

r = 0 at a free edge (5.13) 

provided the thickness h is not tapered to zero. 

�9 =0 ~ f f l - - " ~  
Eq. (5.[3) / f l l  II 

i1111 

: : 1  ....... ] : : : !  

q =h' [  

S h e a r i n g  f o r c e s  q = hi: in a n  o p e n  c r o s s - s e c t i o n  

Figure 5.15 Determination of the shear stress distribution in a symmetric, open cross-sec- 
tion due to a vertical shearing force Q. 
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The relations (5.12) and (5.13) are sufficient to determine the unknown constants 
(r(x, s = 0) for each plate element in a cross-section, in which the plate elements do 
not form closed cells. At a symmetry line where only two plate elements join, see e.g. 
Figure 5.15, Eq. (5.12) implies that the shear stress is zero. Another example is given 
in Figure 5.15. 

Examole 5.2.1 

Determine the shear stress distribution in a thin-walled beam with a box-shaped cross-section as 
shown in Figure 5.16 and subjected to a sectional shearing force Q in the symmetry line. 

t t 

B/2  

z 

0 

~ - 0  

- Z- -0  
T 

Y 

, , l ~  _ 

I 1 
! 

3 

s 

t 
s 

Figure 5.16 B o x - s h a p e d  cross -sec t ion .  

Because of symmetry the shear stress z- will be zero in the symmetry line. Hence, the calculation can 
be made solely on one half of the cross-section. 

With the (y,z)-coordinate system inserted as shown in Figure 5.16, the following is obtained according 
to Eq. (5.5b): 

z 0 = (h 1BD + h2D2)/((hl + h3)B + 2h2D ) 

2 3 + h3) B + 2h2D ) ly = h 1BD 2 + -~h2O - z~ ((h I 

If the plate elements with the plate thicknesses h 1, h2 and h 3 are designated respectively 1, 2 and 3, the 
result of (5.11) is 

Q 
Plate e lement l"  r l (s  ) = - ~ (D - zo)S ; s = y 

Plateelement2" r2 ( s )=  - ~ y [ - Z 0 S +  �89  ; s = z  

O Plate element 3" r3(s ) = ~ z 0 s  ; s = y  

as s is measured from the symmetry line for plate elements 1 and 3 and from the lower endpoint for 
plate element 2. At the latter endpoint the equilibrium condition Eq. (5.12) gives 

h 3r3(1 ) -  h 2r2(0 ) = 0 

o r  

h3 QB ~:~(o) = ~ ~-;zo 
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and thus 

o[ h3 ] 
T,2(S) ---- _ Iyy _ ZO S ft. 1S  2 _ ~2 BZo 

The resulting stress distribution is shown in Figure 5.17 for B/D = 2 and h2/h I = 2, h3/h I = 1.5. 

iI 
Figure 5.17 Shear stress distribution (B/D = 2 and h2/hl = 2, h3/hl = 1.5). 

By symmetry, it is seen directly that the horizontal resultant of the shear stresses is zero, while the 
vertical resultant becomes 

D 

2h 2 ra(s)ds = Q .  

0 

D2zoh2-  �89 3 + DBzoh 3 
1y = O  

after some rewriting. 

The maximum shear stress in the side (plate element 2) is found from 

and is thus found at the bending neutral axis of the cross-section. 

If the cross-section contains closed cells, the Eqs. (5.12) and (5.13) are no longer 
sufficient to determine the unknown constants ri(0 ). This is seen by considering for 
instance a closed cell consisting of three rectilinear plate elements (of the same 
thickness). If Eq. (5.12) is written down for each plate element, then the following 
equations are obtained: 

r l (0  ) -  1"3(0 ) = A t  3 ; r 2 ( 0 ) -  r l (0  ) = A t  1 ; r 3 ( 0 ) -  r2(0 ) = Z I r  2 

where the right sides are known quantities given by Eq. (5.11): ZIz" i = ri(1) - ri(O ). 

However,  these three equations are linearly dependent, and therefore 
r l(0) ,  r2(0 ) and r3(0) cannot be determined by them. So for cross-sections containing 
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closed cells the static considerations Eqs. (5.9) and (5.12) are not sufficient to 
determine the shear stresses. In order to solve the problem the deformation of the 
cross-section has to be included in the analysis. Thus, opposite to the open section, the 
result will now depend on the kinematic conditions, e.g. linear elastic materials. 

Consider a small rectangular plate segment of dimensions dx �9 ds and subjected to a 
shear stress r. It is seen from Figure 5.18 that the decrease ~b of the right angle due to 
the deformation is equal to twice the shear strain e sx: 

Ou s Ott x 
~b = --~ + - -~  = 2exs (5.14) 

where Us and Ux are the deformation in the direction of the arc length s and of the beam 
axis x, respectively. 

~ U x  , / / - - -~-  ds 

ds 

~ U  s . _ _  
- -  - d x  d x a )  ax 

Un 

U 

u S 

Figure 5.18 Shear deformation of a plate element. 

If Eq. (5.14) is integrated around the closed cell, 

ds = -~ u s ds + - -~  ds = -~ u ~ds (5.15) 

as Ux is continuous in x. 

Consistent with a beam theory it is assumed that the cross-section do not change shape 
during the deformation. Hence, the cross-section undergo a pure translation: 

~y(X. s) = Uy(X). .~(x. s) = .~(x) 

and as 

dy dz u,(x.s) = uy-~  + ~ 

the first integral in Eq. (5.15) becomes 

~ usds = Uy(X) ~ dy + Uz(X) ~ dz = O 

so that 
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~~ ds = 0 

In order to relate the deformation ~p to the shear stress r, the material is assumed to be 
linear elastic. Hence, according to Hooke's law: 

dp(s) = z'(s)IG(s) (5.16) 

where the shear modulus G may vary over the cross-section, G = G(s). Insertion of Eq. 
(5.16) in Eq. (5.15) gives 

~ r ( s ) .  

--~(s) aS = 0 
(5.17) 

which is the necessary extra condition giving, together with Eq. (5.10) and Eq. (5.12) 
the shear stress distribution in closed cells. The following procedure, c.f. Figure 5.19, 
is an efficient method for determining the constants ri(0) in a cross-section composed 
of rectilinear evenly thick plate elements forming closed cells. For reasons of simplicity 
G(s) is assumed to be constant for each cell. 

(i) 

(ii) 

"Cut up" all closed cells and use Eqs. (5.10) - (5.12) for 
determination of all constants r i(0) in the thus produced open, 
fictitious cross-section. 
This is most easily done by starting from all free edges, where 
ri(0 ) = 0 and then apply Eq. (5.12). The resulting stress distribution 
is denoted ~-(s) and contains no unknown constants. 

It is seen directly from Eqs. (5.9) and (5.12) that addition of a 

constant shearing force qj = (hr)j to all plate elements forming part 

of the jth closed cell gives a new stress distribution, which still fulfils 
Eqs. (5.11) and (5.12). For each of the total of M closed cells, (hr) 
is determined by Eq. (5.17): 

~ r(s) ds = 

cell j 

ds 2q/ 
~(s) as + qj h(0 /= 

cell j cell j i ~ j  i n j 

(5.18) 

f 
where the integral ! .  

a /  N j 
Figure 5.19. 

is extended over the joint plate elements of cells i and j, see 
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6 
~h 

4- 

to t ~ 
Figure 5.19 Shear stress calculation for a beam cross-section with closed cells. 

The above M equations can be written in matrix form: 

[r/] {q} = - {B} (5.19) 

where It/] is an M •  matrix with the elements 

~JJ= -h--' r / q = ~ j ~ = -  -h-- 
j inj  

; i , j =  1 , 2 , . . . , M  

and where the vectors 

{q} = {ql, q2,'", qM} T 

~,~ = {,~, , ~ , . ,  ,M} ~ 

with 

Bj = ~ ~(s)as 
Y 

The solution {q} to Eq. (5.19) is 

{q} = - It/] -1  {B} (5.20) 

When ql, q2,-", qM have thus been determined, the shear stress in each individual plate 

element in the real cross-section can be written 

1 
~i(S) -- Ti(S) 4- ~ Z 6 ik qk 

k 

(5.21) 

where 

-t- 1 if plate element No. i is part of cell No. k 

(~ik - 0 otherwise 
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For 6 ik, +1 is used if the arc length parameter s for the plate element No."/" has the same 

direction as "rk, otherwise -1 is used, c.f. Figure 5.19. 

Example 5.2.2 

A simplified hull cross-section with two longitudinal bulkheads is shown in Figure 5.20. It is assumed 
that all plate thicknesses are the same (= h) and that the distance from the centre line to the longitudinal 
bulkhead is B/4 and that the moulded depth is half the breadth B = 2a. The material is the same 
everywhere. 

a/2 

J 
Q 

a) 

5 6 

Z 

1 . 2 3 

b) 

F i g u r e  5.20 S i m p l i f i e d  hu l l  c r o s s - s e c t i o n  wi th  two  l o n g i t u d i n a l  bu lkheads .  

Due to symmetry only the cross-section to the right of the centre line plane is considered. With the 
(y,z)-coordinate system placed in the keel as shown in the figure, (5.5b) gives 

z 0 = a / 2  

4 3 Iy = -~a h 

If the cut is placed in the closed cell at point A, see Figure 5.20, Eqs. (5.11)-(5.13) give 

~-l(s = y) = fly 

~-2(s = y -  a /2 )  = fly 

~'3(s = z) = fl(a + z -  z2 /a)  

e4(* = z) = / 3 ( ~ -  ~2/a) 
%(~ = y) = _/~y 

T'6(S - "  y - -  a /Z )  = - f l y  

with 

fl - 2r0 
a 

3Q 
r~ - 1 6 a h  

Eq. (5.19) then gives with M = 1' 
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3 a  
r / l l -  h 

a/2 0 a/2 0 

7a r o 
2 

7 
ql  = hr l  = - B l / r l l l  = - ~hro 

According to Eq.(5.21) the final result then becomes 

rl  = f l y  

r2 = f l ( Y -  7 a )  

r 5 = - f l y  

and it is shown in Figure 5.21. 

rr 

l "  . ..... 

F igu re  5.21 R e s u l t i n g  s h e a r  s t ress  d i s t r i bu t i on .  

The maximum stress is obtained in the longitudinal bulkhead for z= a/2, i. e. at the neutral axis: 

5 5 Q _ 5  
r m a x - -  "K0 -- 16 ah -4 ~" . . . .  

where 

Q 
• m e a n  - "  4ah 
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is the mean stress defined as the shearing force divided by the total area of the vertical plate elements. 

If the longitudinal bulkhead is omitted then, from Example 5.2.1" 

7 Iy = -~ a3h 

and 

15 Q 
r,,,ax = 2---8 a---h 

Hence, the addition of the longitudinal bulkheads implies a 33 per cent increase in material, a 12.5 per 
cent reduction of the bending normal stresses and 42 per cent reduction in maximum shear stress. 

Example 5.2.3 

Figure 5.22 shows the resulting shear stress distribution for the ship cross-section given in Figure 5.6. 
The calculations have been made by means of a computer program. The number of closed cells is 
M = 1 3 .  

The results show that the maximum shear stress for Q = 1N is 

rmax "-~ 1.6 N/m 2 --" 2.4 rmea,, 

as the vertical area is 1.535 m 2. The reason for the high maximum stress relative to the mean stress is 
that the vertical area here includes the area of the longitudinals. As seen from the results in Figure 5.22, 
the longitudinals do almost not carry any shear stresses and thus do not contribute to the shear stiffness 
of the cross-section. It should be mentioned that an effective shear  area (to be defined in Chapter 6), 

becomes 0.7414 m 2. The mean stress based on this area becomes 1.2 N/m 2 and thus rmax/'t: . . . .  - ' -  1.3. 

As mentioned in Example 5.1.1 the design bending moment is approximately 

My ~-- 2 109 Nm 

The magnitude of the maximum shear force Q can be estimated as 

Q "-" My/O.3L  = 3.6 107N 

so that the maximum shear stress will be 

rmax "" 1.6" 3.6 107N/m 2 = 58MN/m 2 

It should be emphasised again that this maximum stress is found at the bending neutral axis where the 
bending stresses are zero. 
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Figure  5.22 Resulting shear stress distribution for a unit shear force. 

Example 5.2.4 

In the Example 5.2.3 it was shown that the shear stresses in the longitudinal are negligible due to the 
free edge condition Eq. (5.13). Therefore, in hand calculations these stiffeners can be omitted by 
introducing an effective thickness 

fi = h + As/s 

of the associated plating, see Figure 5.23, where h is the original thickness, and s and As is the spacing 
between and area of the longitudinals, respectively. Thereby, the moment of inertia ly and position of 
the neutral axis z 0 becomes approximately the same as in an exact calculation. However, Eq. (5.9) has 
to be replaced by 

O ( h r )  _ 

Os 
_ ~o9_a 

Ox 
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as r and cr now act on the thickness h and h, respectively. Hence, the shear stress calculated by Eq. (5.11) 
should be multiplied by h/h. 

h 
: _As 
]* 

h h 

~h  

, m  

~h 

Figure 5.23 Effective thickness approximation for shear stress calculations. 

5.3 T O R S I O N A L  RESPONSE 

If a prismatic beam is exposed to a torsional load, the deformation of the beam will 
consist partly of a rotation about a lengthwise torsional axis and partly of an axial 
deformation. These two deformation mechanisms are called St Venant torsion and 
warping torsion, respectively. 

For prismatic beams built up of thin-walled elements which form one or more closed 
cells, c.f. Figure 5.19, the St Venant torsional stiffness will be dominant, so that the 
warping deformation can be neglected. On the contrary, if the thin-walled elements do 
not form large closed cells, the St Venant torsional stiffness will be so small that the 
torsional deformation of the beam is mainly limited by the fixation of the beam towards 
axial deformation. 

Because of this division into two different deformation mechanisms, closed and open 
cross-sections are dealt with separately. 

d$ 

dA 

1: 

X 

! 

o = ~ ras  

Figure 5.24 St Venant torsion of closed pipes. 
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5.3.1 Single-ceil, Closed Cross-section 

Figure 5.24 shows a thin-walled beam of this type. If this beam is subjected to a torque 
Mx, moment equilibrium yields 

MI = ~ r(s) h(s) r(s) ds = ~ q(s) r(s) ds (5.22) 

where the integral is extended along the complete circumference of the beam 
(0 < s < e). As before, the shear stress is r(s) and the wall thickness is h(s), while 
q(s) = r(s) h(s) is called the shearing force. Finally, r(s) is the moment arm for r (s), 
c.f. Figure 5.24. 

As the stiffness of the cross-section towards axial deformation is neglected, axial 
stresses a in the cross-section are also neglected. It follows then from the equilibrium 
equation (5.9) that q = h(s) r(s) is independent of the arc length s, and hence it is 
constant along the circumference of the pipe. Thus, Eq. (5.22) can be written 

Mx = q ~ r(s) ds = 2Aoq (5.23) 

where A 0 is the area circumscribed by the contour of the beam. According to Eq. (5.23), 
the shear stress r = r(s) becomes 

Mx (5.24) 
r ( s )  = 2A ~ h(s) 

and it is approximately constant over the wall thickness. 

As a result of the torque Mx, the pipe will be twisted the angle 0 per unit of length along 
the beam axis (the x-axis). Hence, 

Ous _ 0 r(s) 
Ox 

where, c.f. Figure 5.18, Us = Us(X,S) is the deformation in the direction of the arc 
length. The change of the angle ~b, given by Eq. (5.14), becomes 

OU x 
d? = 0 r(s) + O---s- 

which, by integration along the circumference of the cross-section and by use of 
Hooke's law: r(s) = G(s)q~(s), gives 

~ r(s) 
-~(s) dS = 2Ao O 

or, by insertion of Eq. (5.24): 
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Mx ~ ds 
o : 

I f  the  shea r  m o d u l u s  G,  as usua l ly ,  is c o n s t a n t ,  Eq .  ( 5 . 25a )  is w r i t t e n  as 

(5.25a) 

0 = Mx (5.25b) 
Cld 

w h e r e  the St  Venant  tors iona l  cons tan t  I d is 

= d s  
Id h(s) J 

(5.25c) 

and 

M~ 
r - 2BDh 

To get an impression of the order of magnitude of the deformation 0 for a ship the following rather 
extreme expression is assumed for the torque, c.f. Example 2.3.1 in Chapter 2. 

Mx ~ 1 pg B 2 TL 

where p is the density of the water and T is the additional draught due to the asymmetric mass 
distribution. If "realistic" numerical values are inserted (T= lm, L = 200 m, B -- 30 m, D = 20 m, 

h = 30 ram, G = Gsteet= 8.1 • 10 l~ N/m 2), the result is 

0 = 6 10 -6 rad/m 

and 

r = 6 M N / m  2 

It is seen directly that the shear stress is negligible. The deformation is also very small as it corresponds 
to a horizontal displacement of the deck, measured from aft to fore part, of 

0 L D/2  --~ 12mm 

The same order of magnitude for ~: and 0 are found assuming a severe wave-induced torsional moment. 

Th i s  resu l t  is c a l l e d  Bredt ' s  f o r m u l a .  

Example 5.3.1 

For a (single-cell) closed box-shaped profile with the breadth B, the depth D and the constant wall 
thickness h the following is obtained: 

4(BD) 2 h 
I d =  2 (B + D) 
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5.3.2 Multicel l ,  Closed Cross - sec t ion  

For a single-cell cross-section, the shear stress r could be determined by Eq. (5.24) 
without considering the deformation of the cross-section. Analogously to the 
determination of the shear stress due to a shear force Q, this is not possible if the 
cross-section contains several closed cells. 

Figure 5.25 Cross-section with several closed cells. 

If a cross-section M with closed cells is considered, c.f. Figure 5.25, it is seen that, as 
in the case of a single-cell cross-section, the shearing force q = z'(s) h(s) is constant 
along any plate element. In addition force equilibrium at each nodal point, Eq. (5.12), 
again yields 

J 
Zqj=0 

J=l  
at all points 

These two conditions are satisfied by assuming constant shearing forces qi = 1,2, .., M 
around each of the closed cells. These M unknown qi are determined by the following 
equations. 

Moment equilibrium gives one equation: 

Mx = i ~  1 qir(s) ds = qi r(s) ds = 2qiA i 
"= . = i=1 

z i 

(5.26) 

where A i is the area which cell No. i circumscribes. This equation is sufficient i fM=l 
otherwise additional equations must be formulated. These are obtained by considering 
the deformation of the cross-section. Since the cross-section as a whole rotates about 
a longitudinal axis, the angular displacement 0 per unit of length will be the same for 
all M cells. So, if the change of angle (p given by Eq. (5.14) is integrated around each 
cell, application of Hooke's law leads to 

~ r(s) 
~(s)  ds = 2Aj O; 

J 

j =  1,2, . . . ,M 

or, for constant shear modulus G: 



TORSIONAL RESPONSE 209 

M f ds ds = 
qJ ~ ( s ) - Z  qi ~(s) 2GA]O; 

i = 1  
j i;~j i N j  

j = 1,2,...,M (5.27) 

Eqs. (5.26) and (5.27) total M + I equations for determination of the M + 1 unknowns 
ql,q2 ..... qM and 0. 

IfEq. (5.27) is compared with Eqs. (5.18) - (5.19) it is seen that Eq. (5.27)can be written 

[r/]{q} = 2GO{A} (5.28) 

where, as earlier, [17] is an M x M matrix with the elements 

~ ds f ds i, j l, 2, ... M 
17 jj  = --h ; 17 ij = 17 j i = - h ; = 

j i N j  

and where the vectors 

{q} = {ql, q2,...,qM} T 

and 

{A} = {A1,A2,..AM} T 

If Eq. (5.28) is inserted in Eq. (5.26) the result is 

Mx = 2{A}T{q} = 4GO{A}T[rl]-I{A} 

or  

o -  Mx 
G I d (5.29a) 

with 

I d = 4{A } T[17]_ I{A } (5.29b) 

The M + 1 unknowns are found most appropriately by first calculating [17]- 1, then 
determining 0 by use of Eqs. (5.29a-b) and finally {q} by Eq. (5.28): 

2Mx - 1 {q} = 2G 0117]- 1 {A } = ~ [17] {A } (5.28a) 
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It should be emphasised that the matrix [r/] is the same as in the calculation of the shear 
stresses in Section 5.2. Moreover, it should be noted that the number of closed cells, 
even in the most complicated ship cross-sections, is usually modest (M < 25), so that 
an inversion of the matrix [r/] is an acceptable numerical method of solution by use of 
computers. When the shearing forces ql, q2,'",qM have been determined, the stress 

"ri(s) in the ith plate element is found to be 

M 

rLs) h ~ )  _ ~J qJ (5.30) 

where 

+ i if plate element No.i is part Cell No.j 

ij = 0 otherwise 

The sign of 6 ij is chosen to be positive, if ri(s) and qj have the same direction, otherwise 

to be negative. 

Example 5.3.2 
The simplified box-shaped ship cross-section with two longitudinal bulkheads and constant plate 
thickness h, shown in Figure 5.20 and used in Example 5.2.2, is analysed. 

In Example 5.2.2 symmetry (r  = 0 at C~) was used to reduce the problem to including only one 
closed cell. This cannot be done in the torsional stress calculation. However, the symmetry can be 
utilised to see that the shearing forces in the two outer cells must be the same but with opposite sign. 
If the central cell is called cell "1" and the outer cells "2", the following is obtained: 

4a 
r / l l -  h 

3a 6a 
r/22 = 2 x - h h 

/']12--2 x ( - ~ )  = 2ah 

or 

Besides 

a [  4 - 2 ]  1--~[~ 1] 
[r/] = ~  _ 2  6 =>[r/]-I = 

A 1 = a 2 
1 2 a 2 A 2 = 2 • ~a  = 

Eq. (5.29b) gives 

3 
I d = 4a41~a {1,1} 1 
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while Eq. (5.28a) leads to 

h r2 = q2 - I d lOa 1 

If the torsional stiffness I d is compared with the result without longitudinal bulkhead (Example 5.3.1 
with B = 2a, D = a): 

8 3 h I d = -~a 

it is seen that the longitudinal bulkheads only increase the torsional stiffness by 5 per cent, even if the 
increase of the material is 33 per cent. So, whereas the longitudinal bulkheads are very effective with 
regard to the bending and shearing rigidities, see Example 5.2.2, they have only a limited influence on 
the torsional rigidity. 

5.3.3 open Cross-sections 

For cross-sect ions with closed cells the torque Mx is "carried" by shear stresses r(s)  
which are constant through the plate thickness h = h(s). This gives torsionally very stiff 
cross-sect ions with a torsional stiffness let of the order of magnitude" 

I d ~ b3h 

where b and h are respectively a characteristic cross-sectional  dimension and an 
average plate thickness. 

In the case of thin-wal led cross-sect ions without closed cells, the torque Mx must be 
"carried" solely by a variation of the shear stress r = r (s,h) over the plate element 
thickness h, as a constant value of r cannot be found because of the presence of free 
edges, c.f. Eq. (5.13) and Figure 5.26 - Figure 5.27. The problem is dealt with in 
standard textbooks on strength of materials and only some main results will be given 
here as this case is not strickly relevant for ship sections. 

Figure 5.26 Shear stress distribution due to torsion for respectively a closed and an open 
cross -section. 
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"% 

Figure 5.27 Shear stress distribution v in a closed cross-section with open plate elements 
exposed to torsion. 

As for closed cells, the angle of torsion 0 per unit of length can be written 

o _  Mx 
G I  d 

but the torsional stiffness now becomes 

e 

(5.31) 

where the integration is extended over all plate elements. The above value for I d is of 
the order of magnitude 

I d ~ bh 3 

and thus 

(Id)open 

For typical ship cross-sections b / h  ~ 103, so that an open cross-section will rotate in 
the order of magnitude of 1 million times more than the corresponding closed 
cross-section exposed to the same torque! This is of course physically unrealistic and 
is impeded by limitations in the axial (warping) deformation. Before warping 
deformation is considered, it should also be mentioned that the maximum transverse 
shear stress for an open cross-section is 

"~max -- G Ohmax (5.32) 
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and it is thus largest in the thickest plate element. In order to get a physical picture of 
the variation of the shear stresses over the plate elements, it may be mentioned that this 
variation will be the same as the variation of the inclination of a soap bubble blown over 
the same cross-section.  If Eq. (5.32) is compared with Eq. (5.24), it is seen that the 
maximum shear stresses for an open cross-section are of the order of magnitude of b/h 
times larger than for a similar closed cross-section, again without considering 
limitations in the axial deformation. 

Example 5.3.3 
If the same box-shaped cross-section as used in Example 5.3.1 is considered but slit e.g. in the deck 
as shown in Figure 5.28, the result of Eq. (5.31) is 

id = 2 h3(B + D) 

whereas Eq. (5.32) yields 

rmax-- GO h - M x h  _ 3 Mx 
I d 2(B + D)h  2 

Figure 5.28 Slit box-shaped cross-section. 

With the same numerical values as in Example 5.3.1 

0 = 0.3 rad/m 

is obtained, which corresponds to the hull girder fromAP to FP rotating OL = 620 rad = 100 rounds] 

5.3.4 Warping Torsion 

To get a realistic description of the deformation of beams with open, thin-walled 
cross-sections, the warping deformation Ux must be analysed, as well. 

As shown above, the shear stresses are, as a result of a torque, equal to zero in the middle 
of open plate elements. According to Hooke 's  law: r = Gq~, the change of angle q~ also 
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becomes zero in the centre line of the plate elements. Thus, it is obtained from Eq. (5.14) 
that 

0 U x  qb = 0 r(s) +- -~-  = 0 (5.33) 

The variation of the warping Ux can then be found to be 

= - O ~ r ( s )  ds = - Ot2(s) U x  

J 
(5.34) 

where the sector coordinate E2(s) is defined as 

~(s) - [ ~(s) ds 
3 

(5.35) 

The warping Ux(S,X) given by Eq. (5.34) and Eq. (5.35) will thus have the same variation 
over the cross-section for any section of a prismatic beam, as the sector coordinate s 
is the same, but the amplitude varies proportionally to O, being the derivative of the 

angular displacement Ox " 0 = dOx/dx = O'x. See Figure 5.29. 

I 
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Figure 5.29 Illustration of the sector coordinate s the angular displacement Ox and the 
warping Ux for a beam with an open cross-section exposed to a torque. 

It is only possible to impede the warping deformation Ux by introducing normal stresses 
Ow into the cross-section, as it e.g. happens at the fixation shown to the left in 
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Figure 5.29. When restrictions are placed on the warping, the angular displacement of 
the beam will also be reduced. This may be illustrated by the idea of an empty cardboard 
shoe box exposed to torsion. Without a lid the angular displacement is much larger than 
with a lid. The lid impedes the warping of the ends of the box. 

To determine the moment arm r(s), c.f. Figure 5.24, and thus the sector coordinate g2(s), 
the torsional centre has to be determined. According to Hooke's law, the axial stress aw 
becomes 

OUx _ _ EO'Q(s) (5.36) Crw = E Ox 

with 0' = dO/dx. This normal stress crw, denoted the warping normal stress, must not 
lead to sectional bending moments nor an axial force on the cross-section, which gives 

[ ~rw ydA = - O' [ Eg2(s) y(s) h(s) ds = O 

A e 

f ~rw zdA = - O' f Et2(s) z(s) h(s) ds = O (5.37) 

A e 

J crwdA = - O' I Eg2(s)h(s)ds = O 

A 

z 

Figure  5.30 Determination of the torsional centre R with the coordinates (yR, ZR ). 

It is seen from Figure 5.30 that the moment arm r(s) measured from the torsional centre 
or the shear centre R can be expressed by the arm F(s), measured from the (arbitrary) 
zero point of the yz-coordinate system, as 

F(s)  = y s inf l  - z co s f l  

r(s) = F(s) - Y Rs in f l  + zncos fl 
(5.38a) 

or as cosfl = dy s i n f l -  dz 
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dz dy 
r(s) = F( s )  - yn ~ + ZR 

(5.38b) 

If Eq. (5.38b) is inserted in Eq. (5.35), the result is 

s = oo(s)- yRz + ZRy + c (5.39) 

where c is an unknown constant to be determined and 

(5.40) 

can be considered to be known. If Eq. (5.39) is inserted in Eq. (5.37), the result 
becomes* 

f toY h d s -  y R I y z h d s  + zR f y2hds + c f yhds = O 
e t e e 

f ~ozhds-  yR f z2hds + zn f yzhds  + c f zhds = O 
e e e e 

f c o h d s - y R f  zhds + z n ] y h d s +  c f  hds=O 
e e ~ e 

(5.41) 

which are the three linear equations to determine the torsional centre yn, zn and the 
g ,  

constant c. The integral / extends over all plate elements in the cross-section. If the 
J 
e 

cross-section, as it is usual for ship hulls, is symmetric about the z-axis, Eq. (5.41) is 
reduced to 

YR = 0 
I "  

= - I~oyhds/Iz ZR 
d e 

c = 0  

(5.42) 

( 
where Iz = I y2 h ds is the moment of inertia about the symmetry axis. Here use is 

J 
e 

made of ~o(y,z) = - e~(- y,z) for cross-sections which are symmetric about the 
z-axis. 

* In the following, it is assumed that the modulus of elasticity is constant. 
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It is seen that 

f O(s) h a~ = o 
e 

(5.43) 

When the sector coordinate g2(s) has been determined by application of Eqs. (5.38a), 
(5.40), (5.41) as well as (5.39) only determination of 0 = O(x) remains in order that the 
warping deformation Ux(X,S) and the corresponding normal stress aw(X,S) can be 
calculated. The determination of 0 = O(x) is treated now. 

If a segment of a plate element is looked at, considerations of equilibrium, c.f. 
Figure 5.14 and Eq. (5.9), imply that the warping normal stress Ow leads to a warping 
shear stress, rw, given by 

Ohrw _ _ h Ot~w O' 
Os - - ~  = eh  '(x) ~(s)  

by use of Eq. (5.36). If the above expression is integrated, the outcome is 

hrw = EO"(x) f h(s) O(s) ds 
1 

(5.44) 

There is a discrepancy between Eq. (5.33) and Eq. (5.44), as Eq. (5.33) assumes that 
there is no shear stress in the mean lines of the plate elements, while Eq. (5.44) gives 
precisely such stresses. This discrepancy is neglected by assuming that the contribution 
of the warping shear stresses rw'S to the shear strain 0p/2) is insignificant. 

By analogy with Eq. (5.22), the torque from rw becomes 

Mw(x)= fhrwrds =EO"f[fhQds]rds 
e e 

= EO,, I!ht2ds f rds _ f[ht.2 f rds]ds e 

by partial integration. The expression can also be written as 

Mw(x) = - O"(x) E f ~Q2 h ds -- - E [g2g 2 0 " ( x )  

f 

(5.45) 

by use of Eq. (5.35) and Eq. (5.43). 

The constant 
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- f h ds 
e 

(5.46) 

is called the sectorial moment of inertia or the warping constant. Table 5.3 gives the 
values of I ~  for a number of simple open cross-sections. 

The sectional moment Mx thus implies two distributions of shear stresses: One due to 
St Venant torsion and one (rw) due to warping shear stresses. Each of these two 
distributions of shear stresses gives a resulting torque whose sum shall be the sectional 
moment Mx: 

GI d 0 - EIt~ a 0" = Mx (5.47) 

For a prismatic beam the differential equation has the homogeneous solution for the 
derivative 0 of the angular displacement Ox: 

O(x) = A cosh(ax) + B sinh(ax) (5.48) 

where A and B are two arbitrary constants and where 

(5.49) 

To the solution Eq. (5.48) a particular solution dependent on Mx must be added up. As 
an example Mx equal to a constant is considered. Then the complete solution can be 
written 

o(x) = ~ d  + A cosh(ax) + B sinh(ax) (5.50) 

The constantsA and B can be determined from given values of 0 at the ends of the beam 
(x = 0, L). If it is assumed that the beam is fixed towards warping at the beam ends then 
0(0) = O(L) = 0, and the following is obtained: 

A =  M~ 
Ola 

B = Mx c o s h a L -  1 _ Mx tanh(aL/2) 
Girl sinh aL Girl 

and thus, by insertion in Eq. (5.50): 

0 ( x ) =  Mx [ cosh[a(x - L/2)]] 
1 -  cosh(aL/2) 

(5.51) 
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Table 5.3 Sectorial moment of inertia for open cross-sections. 

I b, 
Al=blt I , A2=b2t 2 A, 

h 2 2 
h 2 AlblA2b 2 

Albl+A2b 2 

b AI=�89 Flange area 
~ A 1  A2= Web area 

A2 b2h2 3A 2 

r! 
33 33 

I~= ~6(blt I + b2t2 ) 

4 

I~ = l~463t 3 b 2-t2 
b2+t 2 

5 

~t 1' ~6(b3t3 + �88 

AI A]=�89 
A2= kropareal 

h 

b2h 2 A 2 
AI I~ = -~--AI(I+3A ~) 

Integrating O(x) yields total angular deflection 

L 

Ox(L) = O(x)dx = - ~ a  L 1 - a L / 2  

0 

(5.52) 

It follows from Eq. (5.47) that the part of the torque Mx which is taken by St Venant 
torsion will be 
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cosh[a(x - L/2)]] 
Ms(x) =- Glcl 0 = Mx 1 - cosh(aL/2) (5.53a) 

while the warping torque becomes 

Mw(x) = - EIo, O 0"  = Mx 
cosh[a(x - L/2)] 

cosh(aL/2) (5.53b) 

These two torques are shown in Figure 5.31. 

1 

MJMx ~L = 1 

, 

- =  . . . . .  i . . . . . . . . .  

~L =0.1 
0 

MJMx 

0 0.1 0.2 0.3 0.4 rdL 0.5 

Figure 5.31 The variation of the St Venant torque Ms and the warping torque Mw along 
the beam axis for a beam fixed at the ends and with different values of c~. 

It is seen that the greater dimensionless constant 

[ GI a 
aL = ~/ EI~ L 

(5.54) 

the less importance is the warping torsion, except at the fixations where 0 = 0 implies 
that the St Venant moment GI a 0 is zero, irrespective of the value of aL. 

Finally, it should be noted that, if the beam can be freely deformed at the beam ends, 
it follows from Eq. (5.36), with ~rw = 0, that 

o ' ( o )  = O'(L)  = 0 

The solution Eq. (5.50) of the differential Eq. (5.47) then becomes 

O(x) = M-x- = constant 
GI d 

i.e. solely St Venant torsion. 
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When the deformation 0 = O(x) has been determined, the normal stresses aw can be 
determined by Eq. (5.36) and the warping shear stresses rw by Eq. (5.44). Both stresses 
aw and Tw are (approximately) constant over the plate element thickness h. 

It should be emphasised here that the necessity of determining the deformation of the 
whole beam 0 = O(x) when the stresses in a given section is to be calculated, is a major 
difference of the warping stress determination compared to both the bending stress and 
the shear stress calculation as well as to St. Venant torsion. 

Example 5.3.4 

The sector coordinate g2(s) and the sectorial moment of inertia for the cross-section shown in 
Figure 5.32 is determined. The plate thickness is h everywhere. 

'1" 

~ J 

B 

Figure  5.32 Open box profile. 

Y 

First the torsional centre R is determined. As indices 1 and 2 designate plate elements 1 and 2, Eq. 
(5.38a) gives 

Fl(s ) = O; Fz(S ) = B/2  

which, by insertion in Eq. (5.40), yields 

o~l(s) = 0 
w2(s ) = sB/2; O < s < D  

The torsional centre is determined by Eq. (5.42): 

YR = 0 
D 

2 J 3D zn = - Iz s B  B h ds = - D B + 6i) 

o 

as lz = B2h(B/12 + D / 2 ) .  Since z R is negative, the torsional centre lies under the keel. Eq. (5.39) 
gives the sector coordinate, with c = 0 

~QI(S) = COl(S ) q- ZRy = ZRS 

J22(S ) = W2(S ) + zR B / 2  = B (s + Zg) 

This variation is shown in Figure 5.33 for B/D = 2. 
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5_ D 2 

..... L 

Ro 

F i g u r e  5.33 The sector  coord ina te  g2(s)and the tors ional  centre R (B/D = 2). 

According to Eq. (5.46), the sectorial moment of inertia becomes 

l'n/2 o 1 

= l h B 2 D 3 2 B  + 3D 
12 B + 6 D  

in agreement with Table 5.3 case 2. 

The constanta, given by Eq. (5.49), becomes 

a = ~/E-~a ~ = 2f f -~"  1 + v) 
(B + 2D)(B + 6D) 

1) (2B + 30) 

Insertion of the same numerical values as in Example 5.3.1: L = 200 m, B = 30 m, D = 20 m, h = 30 
mm as well as Poisson's ratio v = 0.3 results in 

z n = - 8m ; aL = .026 

The variation of the angular displacement is given by Eq. (5.51). Assuming clamped ends: 
0(0) = O(L) = 0 the largest angular variation occurs in the middle of the beam: 

0r = Mx ( ~ 1 - ~  1) 
cos h a L / 2  = 8.4 " 10 - 5 MXGld 

This angular displacement per unit of length is thus much smaller than that which would occur, if the 
beam could be freely deformed axially at the ends of the beam. 

With the same empirical torque 

Mx = 2.26 108Nm 

as in Example 5.3.1, the following is obtained: 

O(L/2) = 8.4 10 -5 �9 4.43 rad/m = 3.7 10 -4 rad/m 
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which is only approximately 100 times greater than found in Example 5.3.1 for the closed box-shaped 
cross-section. The total angular deflection, Eq. (5.52), becomes 

Ox(L) = 0.05 rad 

corresponding to a horizontal shear of the deck of 0.05(D - zn) = 1.4m, which of course is larger than 
accepted and additional stiffening against torsional deformation is required. 

5.3.5 Cross-sections with both Open and Closed Cells 

A real ship cross-section contains both open plate elements and plate elements forming 
closed cells, see e.g. Figure 5.6. 

The following calculation method is used for determining the deformation 0 = O(x) 
and the corresponding stresses in such cross-sections subjected to a torque Mx: 

First the St Venant torsional stresses rs are determined for the closed cells, neglecting 
all open plate elements, by application of the Eqs. (5.26)-(5.30) for a unit torque 
Mx = l(Nm). This "stress" distribution is designated r0(s ). Eq. (5.14) now gives 

OUx r s to(S) Ms(x)  (5.55) 
(p = O r ( s ) +  O---s-= G - -G 

which by integration gives 

u~(x, s) = - O(x) f r(~) 
J 

ds + " G r0(s ) ds 

or, as 0 = M s / G I d :  

= - O(x) f [ r ( s )  - Iclro(s)]ds = - 0 Ux(X, S) s 
J 

(5.56) 

where the sector  coordinate  g2(s) defined as 

s = ( [ r ( s )  - I d r o ( s ) ] d s  
3 

(5.57) 

is a generalisation of the definition Eq. (5.35) for open cross-sections. Subsequently, 
the analysis and the results are the same as found for the open cross-sections: 

Torsional centre: 

Warping normal stress aw: 

Warping shear stress rw: 

Equilibrium equation: 

Eqs. (5.37)-(5.42) 

Eq. (5.36) 

Eq. (5.44) 

Eqs. (5.47)-(5.54) 



224 Hull Girder Response 

Finally, it should be noted that the present analysis is the so-called classical method for 
torsional analysis of prismatic beams. The assumption about a prismatic beam applies 
only approximately to a ship's hull. Especially, the coupling of two prismatic beam 
segments with quite different torsional stiffness (open and closed cross-sections) must 
be accounted for in a rational manner. This is discussed in Section 5.3.6. 

Example 5.3.5. 
The closed single-cell box-shaped cross-section used in Example 5.3.1 is reconsidered. 

From Example 5.3.1 

r~ = J D h  (= constant) 

so that Eq. (5.57) gives 

with 

O(s) = I[r(s) - ~]ds 

k - ld - BD 
2BDh B + D 

For reasons of symmetry it is seen directly that the torsional centre has the coordinates (yn, zR) = 
(0, D/2). 

BD B-D 
"~- ~u 

Q 

Figure 5.34 The sector coordinate (2(s) for  a closed b o x - s h a p e d  cross-sec-  
tion. 

Thus, the sector coordinate Q(s) becomes 

- 2 B + D  s - 

B < s < B / 2  
2 - - 

O < s < _ D  
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where index 1 indicates the keel (and the deck with an opposite sign), and index 2 indicates the right 
side (and the left side with an opposite sign). The sector coordinate is shown in Figure 5.34. 

The sectorial moment of inertia is obtained by Eq. (5.46): 

B/2 D/2 1 
l s ~ =  4 h i !  g22( s )dS+Io  g22(s)ds 

_ h [BD(B - D)I 2 
24 B + D  

It is seen that, for a quadratic cross-section (B = D), IQo= 0. Such cross-sections are called 
warping-free, to which also circular, thin-walled cross-sections belong. 

The constant a, given by Eq. (5.49), becomes 

GId _ 1 . V/ 24 

Again the same numerical values are inserted as in Example 5.3.1. This gives 

aL = 85.9 

It is seen from Figure 5.31 that, in this case, the warping moment - EIa~ 0 "  will be of no importance, 
except in a very small region around the fixed edges (x = 0, L). This supports the original assumption 
that the warping deformation can be neglected for closed, thin-walled cross-sections. 

Examole 5.3.6 

The ship cross-section, given in Figure 5.6 and previously considered in Example 5.1.1 and 
Example 5.2.2, is analysed on computer. 

The result is 

Torsional centre R (Yn, zn) = (0, - 7.901 m) 

St Venant torsional constant I a = 5.614 m 4 

Sectorial moment of inertia I~Q - 9752 m 6 

Figure 5.35-Figure 5.37 show respectively the St Venant shear stress r~, Eq. (5.30), the warping 
normal stress a~, Eq. (5.36) and the warping shear stress r,,, Eq. (5.44), all for a unit load: 

St Venant shear stress: rs/M~ =- r ~ 

Warping normal stress: aw/MQ = a ~ 

Warping shear stress: r~/Mw =-- r ~ 

where the St Venant torque Ms = GldO , the warping torque Mw =- - EIs~QO", and the warping 
bimoment M o  =-- - EIQoO' have been use for the normalization of the stresses. All these factors can 
be calculated when O(x) is known. 
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f,/ 

Figure 5.35 St Venant distribution of  shear stresses. 
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Figure 5.36 The warping normal stress. 
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Figure  5.37 The warping shear stress. 

To get an idea of the deformation of this container ship as a consequence of a constant representative 
value of the torque 

Mx = 5.4 107 Nm 

it is assumed that the shown cross-section is unchanged amidships over a length of e = 120 m and that 
the section can be considered as fixed against axial deformations at the engine room and at the forepart. 
This results in 

ae  = 1.79 

and the angular displacement O(x) per unit of length becomes 

O(x) = Mx [ cosh[a(x -- e /2 ) l ]  
1 - cosh(a f /2)  J 

The total angular displacement 0x of the section from the engine room to the forepart is obtained by 
integration of 0(x); Eq. (5.52) 
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e 

J  ,I1  tanh cJ2,1 0~ - 0(~) a~ = 

0 

Mx 3 = 0.202-==-. e = 2.9 10-  rad c~le 

As the torsional centre lies 7.901 m below the keel, the horizontal deformation U of the hatch coaming, 
measured from the engine room to the forepart and with a distance from keel to hatch coaming of 17.44 
m, becomes 

U -= 0x x (17.44 + 7.901) = 73 mm 

When 0 = O(x) has been determined, the corresponding stresses can be determined by 
Figure 5.35-Figure 5.37. As an example the warping normal stress a,, in the hatch coaming at the 
passage to the engine room (x = 0) becomes 

aw ~ 1.2 10 -2 • ( -  EI~o • 0 ' (O))N/m 2 

= - 1.2 10 -2 • ltanh(ae/2)Mx = - 31 MN/m 2 

However, this result should be considered with some scepticism as it depends much on the modelling 
of the fixation. 

5.3.6 T o r s i o n a l  A n a l y s i s  o f  H u l l s  

The  torque to be absorbed  by a sh ip ' s  hull  which  sails in waves ,  see Figure  5.38, affects 

to the greates t  extent  ships wi th  open  c ross - sec t ions ,  because  these are " tors ional ly"  

w e a k  and because  the torque about  the tors ional  centre  is increased,  as the torsional  

centre  for open  c ross - sec t ions  usual ly  lies far be low  the sh ip ' s  bot tom.  

f 

,.., 0 

~ ' " x  

i E 

�9 dx  _~m_ 
 jr__ 

0 1  

! 

Section 

Section 

, ~ B ~  

F igure  5.38 Wave-induced torque Mx on ship's hull. 
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The simplest possible torsional model of a ship's hull is obtained by neglecting the 
influence of possible deck beams, so that a long, almost prismatic hold is obtained, see 
Figure 5.39. If it can be assumed that the hold is entirely prismatic, an analytical 
solution of the governing differential equation, Eq. (5.47), with constant coefficients, 
can be determined as shown in the previous sections. As regards the influence of the 
ends of the ship, it is modelled either by introducing a warping stiffness or by assuming 
that the open area is a little longer than it actually is and subsequently assuming that the 
prismatic hull element is clamped towards warping at the ends. The method requires 
great experience, as the result with respect to both stresses and deflections depends 
strongly on the assumed edge conditions. 

' I I , | , , ,  , ,  , , ,  , , ,  ,,,, �9 

I - i I 
I , ', 

�9 l _ 

. . . . . . . .  Lo 6Loaf 
. . . . . . . .  I 

I �9 " I 

' ! ; I I . I I d O x  . v  ,.~ 

" i i 
I , .  Ox . . . . . .  
I 
I 

F i g u r e  5.39 Simple model for torsional analysis of ship's hull. 

Example 5.3.7 

Spring-stiffened end conditions. 
. . . . . . .  . . . . . . .  

- -  I--- l O w  Ux 
. . . .  

x=O 

Ii iiiil---- 
Ux Ow 

x=L 

F i g u r e  5.40 End conditions for torsional analysis of beams. 

At the ends x = 0 and x = L a flexibility can be introduced by the spring stiffnesses k 0 and k L, see 
Figure 5.40: 

k 0 ux(0, s) = aw(0, s) 
kL u~(L, s) = - o~(L,  s) 

From Eqs. (5.34) and (5.36) it follows that 

~00(0) = E0'(o) 

and 
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k L 0 ( L )  = - E 0 ' ( L )  

For a prismatic beam with k 0 - k L = k and a constant torque Mx, the solution to Eq. (5.47) with these 
boundary conditions becomes 

0(x)= M~ + A cosh (a(L/2 - x)) + B sinh (a(L/2 - x)) 

Due to symmetry, B = 0 and 

+ acosh  o sinh  L,2, 

or  

A = _ Mx 1 
GId cosh (aL/2) + -~ sinh (aL/2) 

and hence, 

O(x) = Mx [ cosh (a (L /2-x ) )  ] 
~ d  1 -- cosh (aL/2) + ~ sinh (aL/2) 

It is seen that for the solutions corresponding to k ~ 0 and k ---- oo free and a clamped beam are 
obtained, respectively. Note, that the unit for k is force/length 3. Generally, it is very difficult to assign 
appropriate values to k, but the classification societies have some recommended, albeit empirical 
values. 

A model which models the whole ship and thus avoids assumptions about the edge 
conditions must comprise open sections as well as closed sections at the engine room 
and at the ends of the ship, see Figure 5.41. Torsional analysis can be performed of both 
the open and the closed sections. However, difficulties arise in coupling these different 
sections in a consistent way, because the sections warp differently. That is, the plane of 
the sections is deformed in such a way in the longitudinal direction that the deformation 

patterns do not match as the sector coordinates g2(s) are different. A formulation 
minimizing this gab is given by Pedersen (1983). The method makes use of a coupling 
between torsion and horizontal bending. In the coupling procedure the two sections can 
normally not be made to cohere entirely without overlap and voids. But the additional 
deformations needed to make the sections compatible are of a local kind, so that the 
stresses and deformations which they imply quickly die out. It may be said that the St 
Venant assumption applies. This does not mean that the stresses corresponding to these 
necessary extra deformations are small. They may only be considered as local stress 
concentrations. 
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~ J ~ " ~ "  lrp nslhOll L~iOene? closed and 

Figure 5.41 Transition between closed and open hull section. 

x ~  X 

Figure 5.42 Deformation of deck beams due to warping. 

When the hull cross-section warps, the deck beams are deformed as shown in 
Figure 5.42. Hence, the deck beams contribute to preventing the warping of the hull and 
thus to making the hull stiffer towards torsional loading. The extent of the stiffening 
effect depends on the moment of inertia of the deck beams for bending in the horizontal 
plane, the torsional stiffness of the deck beams, the value of the sector coordinate ~ at 
the connection of the deck beams to the hull and, finally, the degree of fixation. The 
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flexibility at the fixation may partly be due to a common bending of the upper deck as 
shown in Figure 5.42 and partly to a more local deformation as shown in Figure 5.43. 

P 

I 

I = ~ 

\-N 
Figure 5.43 Local deformation of importance to the degree of fixation of the deck beam. 

Figure 5.44 Box girder with open section exposed to torsion. 



234 Hull Girder Response 

However, from a geometric description of the hull and the deck beam the required 
stiffnesses can be obtained, which can then be introduced as discontinuity conditions 
into the equations. 

To get an impression of the accuracy which can be obtained by a beam model, an 
extremely simple model of a ship's hull is considered, see Figure 5.44. It is a box girder 
exposed to a torque. It has a torsionally weak, open central section, which to some 
degree is prevented from warping by two closed end sections. 

The shape of the warping is given by the sector coordinates (~Q) for the two sections. 
These sector coordinates have been derived in Example 5.3.5 and Example 5.3.4. 

It is seen from Figure 5.45 that these functions are different. But by means of the 
above-mentioned coupling procedure, it is in this case possible to couple bending and 
warping so that the two sections match. There is full compatibility in this special case. 

~,.~ =a  b a - b  

r I 
I _ .  

3 b ~ a  
Q = 2 ( 6 b  �9 a) ab 

l z 

Figure 5.45 Sector coordinates for open and closed sections. 

Figure 5.46 shows qualitatively the deformation of the box girder exposed to a torque 

Mx = 103 Nm, and Figure 5.47 shows how the angular displacement Ox is distributed 
along the beam according to the beam theory described above with and without account 
for the transitional conditions between the closed and the open sections. Figure 5.47 
also shows the results obtained by application of the finite element method. 

Figure 5.46 Deformation of box girder exposed to torque. 
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0.004 

0.002 

- 0.002 

- 0,004 

0 .[Present b e a m  model  ~ - - - _ _ _ _ .  \ 
" • ~ - - ' ~ " ~ , X ~ B e a m  model  wi thout  discontinuity condi t ion 

~ I i I . I .... l~,~,,, , ,l I ' I I I x 
�9 0 1 . 2 ~  b e a m  m o d e l 2 . 4 0 m  

�9 ~ .  ~r-.~ ---.. ~ _... ~._= 
~Plane  stress f inite e l e m e n t  

�9 x .  model  with 7 2 0  quadr i la tera l  
~ ,  e l e m e n t s .  

Figure 5.47 Torsional angular displacement Ox of torsionally loaded box girder with a 
open central section, Pedersen (1983). 

As a last example the numerical results for the container ship shown in Figure 5.48 are 
given. The ship is the same as used in the previous examples in this chapter. 

AlP @ | | | | | | | | | 
F-------~I--- - ~  ! I ' I I I I- 

0 50 . . . .  100 150 2 t0  m 

f 

Figure 5.48 Container ship. 

The longitudinal variation of the inner structure is depicted in Figure 5.49. The midship 
section is given in Figure 5.6. 

The hull has three major discontinuities and seven deck beams. The distribution of 
sectional quantities, such as I ~ ,  along the hull girder is based on calculations for the 
shown sections. A torque of the form 

Mx = 1.315 108 sin nx Nm (0 <_ x <_ Lpp) 
Lpp 

is assumed, yielding the qualitative deflection shown in Figure 5.49. The characteristic 
S-form should be noted here. The total angular deflection is about 0.01 rad, 
corresponding well with the result in Example 5.3.6, taking into account the higher 
external torque Mx and the flexibility of the connections to the machinery space and 
forepeak. 
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Figure 5.49 Cross-sections of a container ship and the deformation when the hull is ex- 
posed to a torque. 

5.4 AXIAL RESPONSE 

If a prismatic beam is subjected to an axial force Qx parallel with the x-axis of the beam, 
the result will be that apart from axial normal stresses, which are constant over the whole 
cross-section, also bending stresses will arise if the axial force Qx does not act in the 
bending neutral axis of the beam. 

When the stresses due to an axial force Qx are to be determined, this force is therefore 
replaced by the static equivalent system Q--x, My, M--z given by (see Figure 5.50)" 

My 

Neutral axis O 

Qx 

Figure 5.50 Axial force. 
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Qx = Qx 

My = - zo Qx 

Mz  = Yo Qx 

(5.58) 

The  b e n d i n g  s t resses  which  fo l low f rom the sect ional  m o m e n t s  My and Mz are 

de t e rmined  as in Sec t ion  5.1, where  the de te rmina t ion  of  the neutral  axis  (Yo, Zo) also 

is given.  
m 

On ly  the con t r ibu t ion  f r o m  the axial  force Qx = Qx is left. This  force  y ie lds  a no rma l  

stress aa" 

Qx (5.59) o- a --- --~-- 

where  A is the area o f  the s t ructural  m e m b e r s  in the t h i n - w a l l e d  c ros s - sec t ion .  

Examole 5.4.1 

For the container ship shown in Figure 5.6 the cross-sectional area 

A = 2.781 m 2 

�9 has been found. 

According to Archimedes' principle, the axial force in still water becomes 

T 

Qx = - pg f b(r r = - pg B �89 T 2 

o 

c.f. Chapter 2, Eq. (2.127). The design draught of the ship is T = 8.4 m, and if this is used together with 
the breadth B = 25.92 m 

Qx "~" - 9.2 MN 

is obtained and hence the axial stress 

Ora = -- 9.2 MN/2.781 m 2 = - 3 MN/m 2 

which is of no practical importance. 

The axial force acts approximately T/2 = 4.2 m above the heel. Therefore, it give rise to a vertical 
bending moment, Eq. (5.58), equal to 

My "- 9.2MN �9 (7.238m - 4.2m) = 28MNm 

and the corresponding longitudinal deck stress becomes, c.f. Example 5.1.1 

= 28MNm ( 1 7 . 4 4 -  7.238)m ---- 3 MN/m 2 
106.1m 4 

also of no importance. 
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5.5 TEMPERATURE-INDUCED RESPONSE 

If there is a temperature difference A TO,, z) over the cross-section in a prismatic beam, 
a deformation of the cross-section will take place and normal stresses ~T will arise in 
the direction of the beam axis (the x-axis). 

Due to symmetry, plane cross-sections remain plane as for bending, and thus, 
analogously to the analysis of the bending stresses in Section 5.1, the thermal strain e r 

can be written 

e r = a + by + cz (5.60a) 

while the corresponding normal stress o r becomes 

az(y , z  ) = E(y ,z)  {a + by + c z -  a ( y , z ) A T ( y , z ) }  (5.60b) 

where a is the thermal expansion coefficient of the material (a = 12 10 -6 ~  1 for 
steel). The constants a, b and c are determined by 

f a r d A  = Qx = 0 

A 

f aT YdA = - Mz = 0 

A 

O'TzdA = My = 0 

A 

(5.61.) 

as no sectional forces and moments are applied. 

If the cross-section is symmetric about the z-axis, the following is obtained: 

A A A 

bfEy2da=fEaATyda 
A A 

A A A 

(5.62) 

Introduction of the definitions, Eqs. (5.4a) gives by solution of Eq. (5.62) and insertion 
in Eq. (5.60b): 
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yf z(y, z) = E(y, z) EaA raA + ~ Eazl ~yaA 

A 

z - z 0 I  TI + ----~y - EaA r(z - Z o ) ~  - azl 

A 

(5.63) 

where E is 

j E =  EdA 

A 

With constant modulus of elasticity E(y,z) = E and constant thermal expansion 
coefficient a, the result is: 

f l  ! Y l  z - z ~  T t (r T = Ea A TdA + ~ A TydA + Iy A T(z - zo)dA - A (5.64) 

A A 

While the stresses a T are usually modest (< 10 MN/m 2) for normal temperature 
gradients over the hull cross-section, the deformation may be relatively large. 

If only the curvature of the beam about the y-axis is considered (corresponding to 

[ATydA=IATdA=O),thecurvatureofthebeamtccanbewritten, accordingto 
A A 
Figure 5.12 

dedz - lya I A T(z - Zo) dA (5.65) 

A 

Hence, the radius of curvature R becomes 

R 1  Iy 
K 

a I z l r ( z  - z0)da 

A 

(5.66) 

The height d, defined as the relative vertical deformation of the beam axis relative to 
a straight line through AP and FP is 
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6 = R(1 - cos(L/2R))-~ L---~2 
8R 

or 

L2 f AT(z-zo)dA 
A 

(5.67) 

Examole 5.5.1 

For the container ship shown in Figure 5.6, heating of the upper half of the cross-section by 20~ will 
give 

I A  - .~ 200~ 3 r(z z0)dA 

A 

If this is inserted in Eq. (5.67), the height ~ becomes 

~} = 185'932 �9 12 10 - 6 .  200 = 0 .10m 
8 �9 106.1 

is obtained, which is of the same order of magnitude as the static deflection as a consequence of the 
hydrostatic still-water loads described in Chapter 2, see Example 5.1.3. 



Hull Girder Vibrations 

Ships are subjected by periodic or time-varying loads and therefore structural 
vibrations will inevitably occur. If the frequencies of the external forces are close to one 
of the natural frequencies of the ship, the permissible vibration levels may be exceeded. 
Generally, the vibration problems can be divided into three groups: 

�9 Fatigue failure in the structure 

�9 Destruction of electronic and mechanical equipment 

�9 Too high noise level 

For ships the most important excitation forces related to these vibration problems are 

�9 The propeller 

�9 The main engine 

�9 Auxiliary machinery 

�9 The sea 

and as a result too high vibration levels may occur in 

�9 The hull girder 

�9 The stern and the superstructures 

�9 Transverse frames, plate panels and plate elements 

�9 The propeller shaft 

�9 The main engine 

The present chapter deals only with the hull girder, as local vibrations in substructures 
is outside the scope of the present treatment, dealing with global responses, only. 

The most relevant global vibration modes are depicted in Figure 6.1. The two-noded 
vertical vibration mode has normally the lowest natural frequency, but very open types 
of ships (container ships) may have an even lower natural frequency in the torsional 
vibration mode. Typically, the vibration modes shown in Figure 6.1 correspond to 
natural frequencies in the range 0.6-6 Hz. 

Relatively simple beam models can often with good accuracy be used for determination 
of the lowest natural frequencies for the hull girder. Such methods will be treated here. 

Before discussion in more detail of these global vibrations in ships, a general method 
(Stodola's method) for exact determination of natural frequencies for continuous 
systems will be described in Section 6.1, exemplified by a Timoshenko beam. 
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V E R T I C A L  BENDING VIBRATIONS 

---N- . . . .  " '  ' ' ~  
.. J 

2 nodes 
Amplitude ~ _ 

_L__ ~ ~ - C ' ~  
S % 

3 nodes 

- _ _  

HORIZONTAL BENDING VIBRATIONS LONGITUDINAL VIBRATIONS 

Figure 6.1 Beam vibration modes for a ship's hull. 

To determine the global vibrations of the hull girder, the following data must be known: 

�9 Time-varying loads on the hull girder (Section 6.2) 

�9 The distribution of stiffness and mass of the hull girder (Section 6.3) 

�9 Structural and hydrodynamic damping (Section 6.4) 

The vibration level is determined as solution to a forced vibration problem. An efficient 
method for this is modal superposition, Section 6.5, where the solution sought for is 
expressed as a linear combination of relevant natural vibration modes. On the basis of 
the thus achieved results and relevant criteria, a reduction of the vibration level may 
finally take place as outline in Section 6.6. 
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6.1 NATURAL FREQUENCIES 

6.1.1 Timoshenko Beam Theory 

In the Timoshenko beam theory Bernoulli's assumption that plane cross-sections 
remain orthogonal to the neutral axis of the beam is replaced by the assumption that the 
angle between the neutral axis and the normal of the cross-section is proportional to the 
shear force. 

This modification of the Bernoulli-Euler beam theory is needed for calculation of the 
higher hull girder modes, where the distance between the nodes cannot be considered 
to  be large in relation to the cross-sectional dimensions of the hull girder. 

Consider a beam with the length L, the modulus of elasticity E, the mass per unit of 
length m, the moment of inertia I(x), the cross-sectional area A(x) and the mass moment 

of inertia mrZ(x). The linear transverse deflection v(x) of the beam neutral axis can be 
divided into contributions from bending and shear as follows. 

y v , 0  
av 

Bending plus shear ~ .  : ~ , 0 

r "q~- Only bending ~'~" =(D 

.. . . , . - _  x"- 

Figure 6.2 Timoshenko beam element. 

Let (p be the angle which the cross-section of the beam forms with the y-axis, when only 
Ov bending is considered, then, ~-~ = (p due to assumption in the Bernoulli beam theory. 

If the cross-section is subsequently exposed to shear, the cross section does not rotate 
further but the neutral axis change its angle with the x-axis by the angle 0, see 
Figure 6.2, implying: 

O V  _ ~ - ~ -  (p + 0 (6.1) 

The constitutive equations within linear elasticity are 

,OAO 

where M is the bending moment, Q is the shear force, G is the shear modulus 

) a constant dependent on cross-section geometry. A 

\ 

E 
G = 2(1 + v) and k is the 

/ 

thorough discussion of k is given later in Section 6.3.1. 
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Y pdx 

• 

Figure 6.3 Equilibrium for Timoshenko beam element. 

The equilibrium conditions yield, c.f. Example 2.3.2 and Figure 6.3. 

OQ _ (6.3) OM + mx = - Q and Ox - q 
Ox 

Here mx is the moment per unit of length and q is the load per unit of length. If free 
vibrations are assumed, i.e. no external forces, the d'Alembert principle gives 

q = - m i )  and mx = - m r 2 ( b  (6.4) 

where ( ) = 0( )lOt, and r is the mass radius of gyration of the cross-section. 

By insertion of the constitutive equations (6.2) in the equilibrium equations, a set of 
partial differential equations is obtained: 

(Elcp')' + kGa(v '  - d ? )  = mr2~ (6.5) 

[kGa(v '  - q~)]' = mi) 

0( ) 
where ( )' -- 

Ox 

The standard homogeneous boundary conditions for this system of equations are given 
in Figure 6.4: 

L . . . . .  j 

-~ v(O, t) = cp(O, t) = v(L, t) = cp(L, t) = 0 

,4,. 

A- 

; b~  ,,(0,t) = ~(0 , t )  = u(c ,  t) = e I e  ( c , t )  = 0 

. . . .  ~ ( o , t )  = ~ ( o , t )  = E i ~ , ( c , t )  = k ~ A ( v ' ( C , t )  - ~ ( c , t ) )  = 0 

Figure 6.4 Simple boundary conditions for Timoshenko beam element. 

The solutions to the system of equations (6.5) with a set of homogeneous boundary 
conditions will have the form: 

v(x, t)  -- u(x) sin(rot + /p) 
~(x,  t) = a(x)  sin(ogt +/p)  

(6.6) 
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If this solution is inserted in Eq. (6.5), the following set of ordinary differential 
equations is obtained: 

- (EIa ' ) '  - kGA (u' - a )  = 092mr2a 

- [kGA(u'  - a)] '  = 092mu 
(6.7) 

If a set of eigenvectors  Us(X), as(x)  corresponds to a certain natural  f requency  09s, then 

- (Ela's)' - kGA(u ' s  - as)  = 092mr2as (6.8) 

- [kGA(u's  - as)]'  = 092mus (6.9) 

and, similarly, that Ur(X), ar(x)  correspond to a/r, so that 

- (EIa ' r ) '  - kGA(u ' r  - ar)  = 092rmr2ar (6.10) 

- [ k G A ( u ' r -  at)] '  = 092mur (6.11) 

Multiplication of Eq. (6.8) by at ,  of Eq. (6.9) by Ur, Eq. (6.10) by as and Eq. (6.11) by 
Us and subsequent integration of Eqs. (6.8) + (6.9) - (6.10) - (6.11) from 0 to L give 

L 

I { -  a r (EIa ' s ) '  - a rkGA(u ' s  - as)  - ur[kGA(u 's  - as)] '  + 

0 

+ as (EIa ' r ) '  + a s k G A ( u ' r  - ar)  + us[kGA(u 'r  - a , . )] '}dx = 
L 

(09 2 -- 09 2) f ( m t ' 2 a s a r  + mUsur)dx 

0 

(6.12) 

Partial integration of the left side of Eq. (6.12) yields 

[ -  a r (EIa 's )  - u r {kGA(u ' s  - as)} + a s(EIa'r)  + u s { k G a ( u ' r  - a rl}]Lo = 
L 

(o92 _ 0 9 2 ) I ( m r 2 a s a r  + mUsur)dx (6.13) 

0 

It is seen that, for all the boundary conditions in Figure 6.4, the left side of Eq. (6.13) 
will be zero. Hence, the following orthogonal i ty  condit ion is found: 

L 

f (mr2aras  + mUrus)dx = 0 

0 

for Ogr ;~ (as (6.14a) 
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Another orthogonality condition is obtained from 

L 

' ' ~  
o 

L 

0 

(6.14b) 

These orthogonality conditions are important later, in Eqs. (6.15)-(6.17) and in Eq. 
(6.57). 

Examole 6.1.1 

Determine the natural frequencies and the vibration modes for a uniform, homogeneous beam, simply 
supported at the ends. Note, that these boundary conditions are not relevant for the hull girder. The 
example only serves to illustrate the" mode forms for a Timoshenko beam. 

The boundary conditions are, see Figure 6.4 

u(o)  = u(IO = a ' (O)  = a ' ( L )  = o 

It is from Eq. (6.7) seen immediately that a = constant and u = 0 is a solution giving the frequency 

~o~ - k G A  
mr 2 

To find the other eigenfunctions and associated eigenfrequences a is eliminated from Eq. (6.7) yielding 
one differential equation in u(x) :  

with 

E1 ... .  ( EI  ) , r  u092+094_2 m " ~ u  + ~ + r 2 u' -- t - k -~ t t  = 0 

u(O) = u(L)  = 0 

The remaining two boundary conditions in u follow from the last equation of Eq. (6.7) 

, , ,  m 2 a = u + ~ .  u w  
k~iA 

implying that u " ( O )  = u " ( L )  = O. 

To this eigenvalue problem a solution of the following type 

�9 ~ X  
u = s l n ~  

L 

satisfy the boundary conditions and insertion in the differential equation gives 

-~]\-- f f  ] - o )  2 I + \ L ] ~,kGA + r2 +co,  ~ = 0  
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o r  

v/{ 1 + ,-L-] ,k--G-A + r2 :t= 1 + ,-L-, ,k-dX + r:z -4r2k--gX, A (-~)(~) 4 

2 m 2r 

including the solution n = 0. 

It is seen that, for each value of n, two different values of to~ are obtained. 

�9 ttTi;x The corresponding angle a,, becomes with tt = s l n - - ~  and co = tOn 

m ~ L codex a,, . . . .  + ~ h-K 

by integration of the last equation of Eq. (6.7). It can be shown for each n that the lowest value of o)2 

always has the effect that the content within the braces { } becomes negative and that the largest value 

of to~ makes the content positive. The vibration modes will therefore be as sketched in Figure 6.5. 

n : O  n=l  h : 2  

. x x x x x x \ \ \  ~ ~ 1  ~ , , , , , ,  
\ \  x x \ x \  \ \ \  ~ t , , , , , , ~ ~ , , ~ , , t r . - t . 5 1 q . r  IT. 

F i g u r e  6.5 Lowest natural vibration modes for a uniform, homogeneous Timoshenko 
beam, simply supported at the ends. 

From the solution for to,, it is seen that the shear stiffness kGA and the mass moment of inertia both enter 
the result. For a homogeneous beam, where the mass is distributed as the structural material, 

m=pa 

and 

mr 2 = pl  

where p is the mass density. Hence 

+ r2 = + 1) 

and, as v -~ 0.3 and k = 0(1), both terms are seen to be of equal importance. 
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. .a l~  

3 - "  
/ r 

0 0,5 1 
lip 

L 

Figure 6.6 Natural frequencies for uniform, homogeneous Bernoulli-Euler and Timo- 
shenko beams (k = 8/15 and G/E = 3/8, m =pA, mr 2 = p 1). 

The frequencies o9,,, are shown in Figure 6.6 as functions of the radius of gyration r = /M~ and 

compared with the frequencies found by means of Bernoulli's beam theory ~on = - ~  . The 

/-~GA included as n frequency to0 = ~ ~ is not = 0. 

It should be noted that it is doubtful if the vibration modes corresponding to the frequencies marked 
iI in Figure 6.6 represent real, possible vibration modes for thin-walled beams, as the assumption that 
the cross-section does not deform is hardly fulfilled for these vibration modes. 

6.1.2 Stodola's Method 

For beams with variable cross-sectional parameters, a numerical determination of the 
natural vibrations is needed. Although the Finite Element Method (FEM) is generally 
applicable for that purpose, Stodola's method is a very elegant alternative, Collatz 
(1963). The algorithm for this method is: 

�9 Calculate Vn, 7n from the boundary value problem, given by the differential 
equations 

-(EI(}'*n)' ) ' -  kGA((v*n)' - } ' n )  = mr2)'n _ 1 
(6.15) 

- [ k G a ( ( v n ) ' -  ~'n)]' = mVn-1 

and the relevant set of boundary conditions. The solution is easily obtained by 
successive integrations and an arbitrary initial guess (v o, }'0), i.e random 
generated numbers. 
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Normalize the functions 

(v+, g +) = (v,*z,~'*n)/fln where 

L . . . . . . . . . .  

fin = mr (Yn) + m(vn) 2 dx 
0 

(6.16) 

Orthogonalise the set of functions towards the previously found r eigenfunctions 

(uj, aj) ; j =  1,2,...,r 

r 

= v.+ - X . i  
j=l  

L 

f { .+mr2a, + 
o 

L f{mrZ f + muf}dx 

0 

(6.17) 

~'n =~'+ - ~ a j  
J=l  

L 
I {y+mr2aj + v+muj}dx 
o 

L 

J{rnr2a 2 + mt~.2}dx 

o 

where uj, aj designate the r sets of eigenfunctions which have already been 

determined by the iterative procedure. After repeated use of this algorithm the 

natural frequency o r + 1 can be approximated by 1 / ~ n  and the eigenfunction 
set (ar+ 1, Ur+l) by (~'n, Vn). The convergence is very fast. 

When Stodola's method is used for determination of hull girder vibrations, the 
procedure must be amended to account for that the boundary conditions (moment and 
shear force equal to zero at both ends) imply that the ship can make rigid body motions. 
These rigid body motions can be determined from the condition that the resulting force 
and moment on the hull girder due to the d'Alembert forces Eq. (6.4) shall be zero. This 
gives 

L L 

f qdx = O ~ f mudx = O 
o o 

(6.18) 
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L L 

0 0 

(6.19) 

where Xg is the centre of gravity of the ship: 

L L 

o o 

(6.20) 

The set of functions (vn, Yn) given by Eq. (6.17) must be corrected by a rigid body 
motion C 1 + C2(x - Xg), so that Eqs. (6.18)-(6.19) are satisfied: 

V--n = Vn - (C 1 -I-- C 2 ( x -  Xg)) 

)'~ = ~ - C 2 
(6.21) 

L L L 

fmVnex-O Cl-fmvndx/fmdx 
o o o 
L 

f [ m ( x -  Xg)Vn + mr2~n]dx : 0 

o 
L L 

=r C 2 =  f [m(X - Xg)Vn + mr2yn]/ I [m(x  -Xg)2 + mr2]dx 

0 0 

(6.22) 

If Eqs. (6.21)-(6.22) are compared with Eq. (6.17), it is seen that correction for rigid 
body motion corresponds to orthogonalising the set of functions (Vn, Yn) towards the 
two eigenfunctions: 

translation" (u_ 1, a _  1) = (1, O) 

rotation" (uo, ao) = (x - Xg, 1) (6.23) 

which both have the natural frequency zero. Thus, Eq. (6.17) only has to be modified 
to start at j = - 1 rather than at j = 1 to take account of rigid body motions. 

A similar procedure can be applied for torsional hull girder vibrations, see Pedersen 
(1983). 

6.2 TIME-VARYING LOADS ON THE HULL GIRDER 

The most common source for the generation of hull vibrations is propeller-induced 
forces. Formerly, the main engines (diesel) were also a considerable source of vibration 
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problems, but better balancing of the movable parts in the large diesel engines has 
reduced significantly the magnitude of unbalanced vibratory forces and moments. 
Wave-induced forces may, for some ship types, also cause hull girder vibrations of 
some significance. 

6.2.1 Propeller-Induced Forces 

When the propeller of the ship rotates in the inhomogeneous wake field, periodic 
pressure forces will arise in the stern. These hydrodynamic forces will act partly on the 
propeller and be transferred to the hull girder via the bearings of the propeller axis and 
partly on the plating of the stern in the form of a pulsating water pressure, see Figure 6.7. 

It is common to both types of loads that it is very difficult to calculate them by 
theoretical methods because of the complicated hydrodynamic flow conditions around 
the propeller. Therefore, it is often necessary to use model experiments and empirical 
formulas. Reference may be made to Breslin and Andersen (1994). 

Figure 6.7 Propeller-induced periodic forces. 

The magnitude of the periodic forces and moments transferred from the propeller to the 
propeller axis can in principle be determined by calculating the hydrodynamic lift L 
on each propeller blade. To do this, it is required that the inhomogeneous wake field 
around the propeller is known, which is difficult to do theoretically. The lift is 
determined by "lifting surface" analyses, see e.g. Breslin and Andersen (1994). To get 
an idea of the propeller-induced forces and moments, it is assumed in the following that 
the resulting lift Lj on a propeller blade No. j is known. The lift is a function of the 

position of the blade, given by the angle 0 relative to a vertical position of the propeller 
blade, see Figure 6.8. 
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MH 

Fv 

T 

Figure 6.8 Resulting forces and moments on the propeller 

For each blade, the lift Ly can be divided into two force components: The blade thrust 

Tj (0) and the resistance Pj (0), having effect in respectively the direction of the 

propeller axis and perpendicularly to the axis of the propeller blade. The distance r from 
the propeller axis to the point of action of these forces must, as the lift, be determined 
by hydrodynamic calculations. This distance is here assumed to be independent of the 
blade position 0, but variation of r with 0 can easily be included. The lift Ly and thus 

also Tj and Pj are periodic with the period 2r~. Hence, Tj and Pj can be expanded in 

Fourier series 

oo 

I)(0) = la  0 + E ancosnO 
n = l  

P j ( O )  - -  �89 0 "Jr" E bncOSnO 
n = l  

(6.24) 

It can be proved from hydrodynamics that the Fourier coefficients an and bn only 
depend on the corresponding nth component in the wake field. In Eq. (6.24) it is 
assumed that the propeller axis lies in the centre line plane of the ship. If not as for ships 
with two propellers, there will also be sine components in the Fourier expansions due 
to the asymmetric wake field. 

Subsequently, the resulting load components on the propeller axis at the propeller can 
be determined by adding up the loads Ty and Pj from the total of Z similar propeller 

blades" 
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Propeller thrust 

Propeller moment 

Vertical Force 

Vertical Bending Moment 

Horizontal Force 

Z 

j = l  

Z 

Q(O) : r Z PJ (Oj) 
j = l  

Z 

Iv(O ) = ~ Pj (Oj)sin 0y 
j = l  

Z 

Mv(O ) = r E Tj (Oj)cosOj 
j = l  

Z 

v~o)  = Z PJ (oj~ co~ oj 
j = l  

Z 

Horizontal Bending Moment MH(O ) = r Z Ty (Oj) sin Oj 
j = l  

(6.25) 

27r where Oj = 0 + - ~ ( j -  1) (6.26) 

Then Eq. (6.24) is inserted in Eq. (6.25), so that the load components T, Q, F v, My, FH, 
and M n are expressed in the coefficients an and bn. The expressions can be reduced 
considerably by application of the formulas 

Zcos n(O+ 1,) = coskZ0 
j= l  

Zsi .  1,) sinkZ0 
j= l  

for n = kZ, kinteger 
otherwise 

for n = kZ, kinteger 
otherwise 

(6.27) 

The validity of Eq. (6.27) follows from (with i = v/- 1): 

Z 

~ ~ ein(O + ~q- 1)) einO ] -- e i2nn 
j =  l I -- e i2nn/Z  

_ _  f r for n = kZ, k integer 

t0 otherwise 

The results become 
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T = a0 + an cos n = Z a 0 + akz cos kZO 
n = l  k = l  

Q = rZ bo + b~coskZO 
k = l  

F v = b 0 + bn cos sin Oj 
n = l  

Z ~ Z 

- l b o Z s i n O j + l ? l ( [  1)0j] sin[(n 1)0j]) 
- -  -~ ~ b n Z sin (n + - - 

j = l  = j = l  
cx~ 

= 1 Z Z ( b k z _  1 _ bkz+l)sinkZO (6.28) 

k = l  

M V = -~.Z a I akz-1 akz+l 
k = l  

F H = �89 b 1 + ( b ~ _  1 + bkz+l)COskZO 
k = l  

oo 

MH = -~ Z -1 1) sin kZO 
k = l  

It is seen from the results, Eq. (6.28), that all load components are periodic with the 
period 27r/Z, because the same propeller configuration occurs each time a new blade 
gets in the same position as the preceding blade. If the propeller axis rotates with the 
constant frequency g2 then 

0 = s 

and the load components, Eq. (6.28), will thus only contain periodic components with 
frequencies which are multiples of the blade frequency Zg2. 

In addition to the propeller thrust T and the moment Q, also the vertical bending 
moment M v and the horizontal force F H have a time-independent component. These 
mean values may be of importance in the determination of the lay-up of the propeller 
axis. Moreover, it is seen that only the harmonic components of the wake field 
corresponding to multiples of the blade frequency ~ t'2 enter into the expressions for 
Fv, Mv, F n and M H, while only components which are multiples of the blade 
frequency form part of the propeller thrust and moment. 

As a rule, the most important components in the Eq. (6.28) in relation to generation of 
hull vibrations are the terms which vary with the blade frequency. If only these terms 
are kept, the result is as follows: 
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T1 = Za z cos Z~Q t 

Q 1 - rZbz cos Zg2t 

Fv1 - �89 Z ( b z -  1 - bz + 1) sin Zg2t 

r Z(az  - + az 1) cosZt2t My1 = -~ 1 + 

FH1 = 1 Z ( b z _  l + bz + l) COs ZOt  

MH 1 = -2r Z ( a z _  a - az + 1) sin Zg2t 

(6.29) 

The odd harmonic components in the wake field are usually much smaller than the even 
components in the wake field. It follows then from Eq. (6.29) that, for a propeller with 
an even number of blades, the most important periodic loads will be T 1 and Q 1 while, 
for a propeller with an odd number of blades, Fvl ,  Mv1, F m and MH1 will be the 
dominant vibratory loads. 

For conventional ships, the size of the time-varying loads T 1, Q1,... is of the order of 
magnitude of 5 - 20% of respectively the mean propeller thrust and moment. 

The significance of the time-varying loads on the propeller is mainly that they may 
cause too large vibrations of the propeller axis. Their contribution to the generation of 
hull girder vibrations is normally considerably smaller than the contribution from the 
pulsating hydrodynamic forces induced on the stern as a consequence of the 
inhomogeneous wake field around the rotating propeller. This is especially so, if the 
propeller cavitates, as this effect strongly enhances the latter load but does not increase 
substantially the forces on the propeller. 

There is no reliable theoretical method for determination of the hydrodynamic pressure 
induced by the rotating propeller on the stern, especially not if the propeller cavitates. 
However, as those loads may often lead to vibration problems, it is of great importance 
to be able to estimate their size and their variation with characteristic geometric 
quantities for the propeller and the stern. Halden (1980) gives an attempt to obtain such 
bases of estimation through correlation with extensive measurements. 

6.2.2 Unbalanced Forces from Diesel Engine 

Figure 6.9 shows a schematic cross-section of a cylinder in a diesel engine. It is seen 
from the figure that the vertical motion x of the piston can be written 

x = (r + f ) -  (r cos0 + e cos cfl) (6.30) 

where r is the radius of the crank motion and e is the length of the connecting rod. The 
definition of the angles 0 and (p appear from the figure. Moreover, 

esincp = rs in0 (6.31) 

and 

0 = tot (6.32) 
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where co is the frequency of revolutions of the engine. 

If (p is eliminated from Eq. (6.30) by use of Eq. (6.31), the result is 

[ J / t2 ] x(t)  = r ( 1 - c o s 0 )  + e  1 -  - sin 20 

2 
= r ( 1 - c o s 0 ) + l ~ ( ~ )  sin20 

l r  = r(1 - coswt + ~ - s in2wt )  

I 

*"-,~ Piston 

cting rod 

Crank shaft 

Figure 6.9 Schematic cross-section of  a cylinder. 

If the above expression is differentiated twice with respect to time, the acceleration 5~ 
is obtained: 

r ) (6.33) 2(0 = o92r coswt + ~-cos2wt 

The resulting d'Alembert force F 2 on the parts (mass m 1) following the vertical motion 
of the piston becomes 

F 1 = ml.f,(t ) (positively upwards) (6.34) 

To this must be added the centrifugal force F 2 as a result of the circular motion of the 
crank: 
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2 F 2 = m2rto 

or resolved in the vertical (F2v) and the horizontal (FzH) direction: 

F2v = m2rto 2 cos tot 

F2H = m2roo 2 sin tot 

(6.35) 

The mass m 2 is the part which follows the motion of the crank shaft. 

The resulting mass forces are F 1 + F2v in the vertical direction and FZH in the 
horizontal direction. 

To balance these forces and associated moments for the engine as a whole, the phase 
shift between the ignition for the single cylinders can be chosen in an appropriate way 
and rotating masses can be added to the crankshaft. It is seen from Eq. (6.34) that F 1 
also includes a contribution varying with twice the number of revolutions of the engine. 
The engine manufacturer provide today very accurate balanced engines, using various 
correction procedures. An excellent description may be found in MAN B&W (1992). 

Resulting unbalanced forces and moments, if any, are transferred to the hull girder via 
the engine foundation and the bottom structure of the ship. 

6.2.3 Wave-Induced Loads 

Wave-induced loads on the ship are dealt with in Chapter 4. So here only a short 
summary will be given. 

On the basis of the assumption of linearity between wave amplitudes and derived loads 
on the ship, it follows that the load q = q(x, 0 per unit of length along the hull girder (the 
x-axis) can be written as a sum of harmonic components, Eq. (4.97): 

q(x, t) = Z aj tlg q (X, toj) COS (to e,jt q- ~j(X) d- • qj) 
j = l  

(6.36) 

where aj is the wave amplitude for the wave component which has the frequency toj and 

where ~q(X, toY) is the amplitude function, defined as the amplitude of the load in the 

position x - x, if the wave is a harmonic wave with unit amplitude and frequency toj. 

Moreover, Ogej is the frequency of encounter given as, Eq. (4.56) 

o ~ j  = ~oj - k jVcos /3  (6.37) 

where kj, V and fl are respectively the wave number corresponding to the frequency to) 

(kj = tof/g for deep-water waves), the forward speed and the angle of encounter, 

given as the angle between the sailing direction and the wave direction, see Figure 4.1. 

In Eq. (6.36) the stochastic nature of the sea waves is included, partly through the 
deterministic amplitude aj, which is determined as, Eq. (3.221) 
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aj = 9/2S(coj) Ocoj ; Ocoj = coj+ 1 - coy (6.38) 

where S(coj) is the wave spectrum and 6coj is the difference between the single discrete 

frequencies in Eq. (6.36), and partly through the statistical phase angle eqj*, which, for 

each j, can be chosen to be statistically independent and uniform distributed between 
0 and 2x. 

Hence, the linear response of the ship - which may e.g. be the vertical motion of the 
stern including the contribution from the elastic deformation of the hull girder - 
becomes, according to the central limit theorem, statistically normally distributed with 
a mean value of zero and a variance equal to the sum of the variances for the response 
calculated for each load components, Eq. (4.99). The response of the ship for each 
individual component can thus be considered separately without accounting for the 
stochastic phase angle eqj, which does not enter into the variance. Hence, the loading 

can be represented by a number of deterministic loads given in each individual case as 
a load per unit of length of the type 

f(x, coj) cos(tOe,it + ~j(x)) (6.39) 

Wave-induced vibrations of the hull girder only occur in relatively rare cases. The 
reason is that the wave amplitude aj, which enters into f (x ,  coj) -- aj~q(X, coj), is 

normally negligibly small for frequencies of encounter coej of the order of the lowest 

natural frequency of the hull girder. In Section 6.5, the calculation of wave-induced 
vibrations will be treated in more detail. 

6.3 STIFFNESS AND MASS DISTRIBUTION OF THE HULL GIRDER 

As it is seen from Section 6.1, it is necessary to know the stiffness and mass distribution 
of the hull girder to be able to determine the natural frequencies and natural vibration 
modes of the hull girder. 

6.3.1 Stiffness Distribution 

The stiffness parameters do not differ from those of a static analysis of the hull girder 
described in Chapter 5. However, some points will be treated in more detail in the 
following. 

The relevant stiffness parameters for vertical and horizontal vibration modes are the 
bending stiffness ( Ely (x) for vertical vibrations and Elz (x) for horizontal vibrations) 
and the shear stiffness (kzGA(x) and kyGA(x)). Calculation of the bending stiffness is 
described in detail in Section 5.1, also for the cases where the hull cross-section is built 
up of materials with different modulus of elasticity. However, one point will be stressed 
here again, namely the effectiveness of longitudinal elements which do not extend 
along (almost) the whole length of the ship. Such elements may be the longitudinal 
bulkheads in the holds, superstructures and deck areas between hatches, c.f. Figure 5.9 
and Figure 6.10, adapted from Hughes (1988). 

* ej(x) is the deterministic phase angle, determined by the same analysis as the amplitude q'q 
function, see Section 4.4. 
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In all cases the hatched areas are ineffective in relation to the bending stiffness of the 
hull girder. A reasonable value for the angle O, which is a purely empirical quantity, is 
15 ~ . 

The shear stiffness kGA, however, needs some comments. While the cross-sectional 
area A = A(x) is easy to calculate, the calculation of the dimensionless constant k 
depends on some assumptions which can approximate the real three-dimensional 
deformation pattern with relevant beam deformation measures. These assumptions, 
which must also include assumptions about the applied load, cannot be postulated 
without objections, and therefore several calculation methods for the constant k are 
found in the literature. 

~ I -" -  
I_.LONGITUDINAL BULKIIEADS.~ ] 
I -  I 

Figure 6.10 Efficiency of longitudinal elements. 

Let us first consider a simple method which does not include the influence of the lateral 
contraction (corresponding to a Poisson ratio v = 0). The shear energy Es per unit of 
length along the beam axis can be written 
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Es=�89 rCdA=�89 ~dA 
A A 

(6.40) 

as the shear strain q~ and the shear stress r are related by Hooke's law r = G~b. 
Alternatively, the shear energy Es can be expressed by the "integrated" beam quantities: 
the sectional force Q and the shear deformation 0: 

1 Q2 
Es = Q O - 2kGA 

by use of the constitutive eqv.ations (6.2): Q = kGAO. If the two expressions for Es are 
set to be equal, the following formula for the shear coefficient k is obtained: 

k ._. 1 
-1 

provided the shear modulus G is the same over the whole beam cross-section. The unit 
shear stress distribution r o is defined as 

r 0 = z/Q 

For a thin-walled cross-section the area element dA can be written as hds, where h = 
h(s) is the plate thickness as a function of the arc length s, and where the integration 
extends over all the plate elements in the cross-section. Thus, 

k 

A f r2hds 

e 

(6.41a) 

where the integration f is over all plate element in the cross-section. 

A calculation method for determination of the unit stress distribution ~0 = r0(s) for a 
general thin-walled cross-section is given in Section 5.2. If the individual plate 
element are rectilinear and of uniform thickness, then r0(s ) will at most be a second 
order polynomial in the arc length s. Thus, the integral in Eq. (6.41a) can be easily 
calculated. 

If the stress distribution r0(s ) has not been determined, it may, as a rather rough 
approximation, be assumed that ~0 is proportional to the angle ~(s), which each plate 

element forms with the direction of the shear force. Thus, r0(s) = f cos cp where the 

constant f must be chosen so that force equilibrium in the direction of Q is fulfilled: 

f r o cos tp hds = f f COS2~ h d s  = 1 

f e 
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Eq. (6.41a) thus reduces to 

k ___ 

Af 2 J cos2cp hds 

e 

1 I --  ~" COS 2 ~ hds 

e 

(6.41b) 

f 
The integral / cOs2 qghds is often called the projected area Ap. 

J 

In the above calculations of k the effect of Poisson's ratio v is neglected. 

The perhaps most consistent procedure for determination of k has been given by 
Cowper (1966). The reduction of the three-dimensional elasticity theory to a beam 
theory given there is relatively complicated, and here only the result for a cross-section 
built up of thin-walled elements is presented, assuming the same modulus of elasticity 
E throughout: 

k 
2(1 + V)Iy 

v j 7 (Iz - Iy) + A ~P ro hds 

e 

(6.41c) 

where ly and Iz are the moments of inertia about respectively the y- and the z-axis. 

A corresponding expression exists for a horizontal shear force. 

The function ~0 = ~p(s) is given by 

v ((z 2 _ y2) cos 2yz sin qg) (6.42) = 2(1 + V)Iyro(S ) +-~ q9 + 

where, as above, r0(s ) is the shear stress in the section, when the cross-section is 
subjected to a unit shear force in the z-direction, and where q9 = ~(s) is the angle 
between the plate element at s = s and the z-axis. 

For rectilinear evenly thick plate elements the integral in Eq. (6.41c)can be analytically 
integrated, as in this case r 0 = r0(s ) is at most a second order polynomial in the arc 
length s and, moreover, ~ is constant, and y = y(s) and z = z(s) vary linearly with s. Thus, 

= ~p(s) becomes a second order polynomial in s. 

It is seen that for v = 0 the Eqs. (6.41a) and (6.41c) become identical. 

It follows from Eqs. (6.41a) and (6.42) that if the shear stress distribution r(s) is known, 
the shear coefficient k can be determined. The calculation of the shear stress distribution 
is described in Chapter 5, to which reference is made for comments. It should be noted 
that manual calculation of k according to Formula (6.41a), even for simple 
cross-sections, is rather comprehensive, see Example 6.3.1. 

For realistic hull cross-sections the shear area kA will be of the order of magnitude of 
50 - 90% of the projected area Ap defined previously as 
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Ap -- f cos 2 ~hds (6.43) 

provided longitudinals and similar short webs with one free end are not included in Eq. 
(6.43), as such elements can absorb almost no shear stresses, c.f. Example 5.2.3. and 
Example 5.2.4. 

Table 6.1 Shear coefficents for a container ship. 

(6.41a) (6.41b) (6.41c) 
. . . . . . . . . . . .  

k 0.257 0'552 0.267 
, 

Figure 6.11 Shear coefficient k for vertical shear for the midship section in a container 
ship.All longitudinals are included in the calculation of lg Jensen (1983). 

An uncertainty of 20 - 30% in the shear area is normally not acceptable. Therefore, it 
is recommended to use Eq. (6.41c) or Eq. (6.41a) for determination of the shear 
coefficient k, although this implies a calculation of the shear stress distribution T 0. As 
an illustration of this, reference is made to Table 6.1, which, for a midship section in a 
container ship, shows that the shear area is only approximately half of the projected area 
which again is only about half the cross sectional area A. On the contrary, it is seen that 
inclusion of the effect of Poisson's ratio v only gives a modest, approximately 4%, 
increase of the shear coefficient and thus also of the shear stiffness. A discussion on the 
various formulas for the shear coefficient k can be found in Jensen (1983). 

The importance of the shear stiffness kGA compared with the bending stiffness E1 
grows with the number of nodes in the natural vibration mode. For the two-noded 
vertical natural vibration mode, the bending stiffness is normally dominant; but the 
shear stiffness contributes considerably to the deformation in all other vertical and 
horizontal natural vibration modes. While both the magnitude of the bending and the 
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shear stiffnesses are of importance to the natural vibration modes,  their variation along 
the hull girder will often be of less importance. Therefore, it is usually enough to 
calculate these stiffnesses for a few cross-sect ions (3-10)  along the hull girder and use 
interpolation between these values. 

Example 6.3.1 

Consider the cross-section in Figure 6.12. 

I_ 2a  

L �9 
~2 

Figure 6.12 Box-shaped cross-section with plate thickness h throughout. 

The shear stress distribution for a vertical shear force was calculated in Example 5.2.1. For the present 
cross-section dimensions it becomes for Q = 1 (N): 

3 1 D'[ r~(y) = ~ ~ -a- 

with the sign convention shown in Figure 6.12. 

In order to determine the shear coefficient k, the integral in Eq. (6.41a) is evaluated 

J r~hds = 4h 

e 

q(y)dy + ~(~) 
0 

36 1 q- (1 "t- U -  u2)2d 
49 ah 

o 
183 1 
245 ah 

Hence, the shear coefficient k becomes 

k =  1 
6ah 183 ! 

245 ah 

245 - 0.2231 
1098 
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Based on the projected area Ap, Eq. (6.41b), the result is 

that is, 50 per cent too large! 

Vibration mode 1 
Natural freouency 0 .82Hz 

Vibration mode 2 Vibration mode 3 
Natural freouency 1.25Hz Natural frequency 2 .46Hz  

Figure 6.13 The three lowest natural vibration modes corresponding to horizontal 
bending - torsion models for a container ship. Pedersen (1983). 

The global stiffness parameters needed for description of the torsional vibration modes 
are the St Venant torsional constant Ia, Eq. (5.29b) and the warping constant IQo, Eq. 
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(5.46). The determination of both parameters is described in Chapter 5. For ships 
without large openings (small or no hatches) only the St Venant stiffness I a will enter 
into the governing equations for torsional vibrations. These natural vibrations will, 
however, be unimportant, as the corresponding natural frequencies are so large that they 
cannot be excited by the periodic forces dealt with in Section 6.2. 

If the ship has large hatch openings, the warping deformation may be of importance to 
the torsional vibration modes and the corresponding natural frequencies. Moreover, due 
to the great distance between the torsional centre - which for sections with large 
hatchways lies considerably under the keel - and the bending axis for horizontal 
bending - which lies within the section - there will be a considerable coupling between 
torsional vibrations and horizontal bending vibrations. 

In Pedersen (1983), a beam theory is developed which can handle such coupled bending 
- torsion problems. Basically, the torsional deformations are modelled as in Section 5.3 
whereas a Timoshenko beam model is applied for the horizontal bending deformations. 
As discussed in Section 5.3.6 due account must be taken to include the effect of deck 
strips between the hatches and to reduce the incompatibility between open and closed 
sections. As an example Figure 6.13 shows the three lowest natural vibration modes 
corresponding to horizontal bending-torsion for a container ship. 

6 . 3 . 2  M a s s  D i s t r i b u t i o n  

When the hull girder vibrates, the surrounding water will to a larger or smaller degree 
be forced to follow the motions of the ship. Close to the hull the motion of the water 
particles will be the same as the motion of the hull as regards frequency and amplitude. 
At a larger distance from the hull the amplitude of the water particles will quickly 
decrease while the frequency remains unchanged. This was also the case in the 
calculation of the wave-induced motions of the ship, treated in Section 4.2. 

The relevant mass data entering into the calculation of the natural vibrations of the hull 
girder, described in Section 6.1 must therefore contain both the mass distribution of the 
hull girder, including the mass of the cargo, and a contribution which reflects the 
associated motion of water. 

The determination of the mass distribution ms(x) of the hull girder can be made from 
knowledge of the steel weight of the ship, the equipment weight and the like and can 
be made precisely as described in Chapter 2 for still-water loads. In addition to the mass 
ms = ms(x) per unit of length, the associated mass radii of gyration ry(x) and rz(x) for 

vibrations in respectively the horizontal and the vertical plane should be determined. 
The total mass of the ship can, as a rule, be regarded as fully effective, perhaps with the 
exception of large quantities of liquid cargo, which by horizontal and torsional 
vibrations is only partly effective. However, in the following only vertical hull 
vibrations will be treated. 

It is shown in Example 4.2.3 that provided the excitation frequency is very high then 
the added mass o f  water per unit of length mw (x) by a vertical motion of a hull section 
can be written 

m ~ (x) = Cm(x) pa (x) (6.44) 
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where p is the density of the water and where A(x) is the submerged area of the section 
as measured to the still water line. The dimensionless coefficient Cm depends on the 
shape of the cross-section, and in Example 4.2.3 a formula for Cm is given based on 
the so-called Lewis transformation. 

As the natural frequencies of the hull girder usually are rather high, the use of the added 
mass for infinite frequency is normally sufficient accurate. 

Due to the short wave length of the vibration modes, it is necessary to correct for the 
three-dimensional water flow around the hull girder. This can be done by a factor 
J "- Jn, s o  that 

mw(x,n) = JnCm(x) pA(x ) (6.45) 

where n is the number of nodes in the vibration mode. The factor J is called the 
three-dimensional reduction factor and is defined as the relation between the kinetic 
energy of the real, three-dimensional flow around the hull and the kinetic energy 
obtained by integration of the two-dimensional flow along the hull girder. By this 
formulation, the factor J becomes constant for all cross-sections in the hull. In general, 
few analytical solutions are known for three-dimensional fluid flow, even under the 
present assumptions about linear potential flow and no free surface effects 
(mw = mw). Two solutions therefore form the basis of the determination of J for ship 
forms of current interest. 

One method is based on the known solutions for three-dimensional flows around 
half-submerged elliptic bodies. This method is suitable for ships with fine lines. A good 
fit to these solutions is, Townsin (1969) 

( 1) B (6.46) Jn - "  1 . 0 2 -  3 1 . 2 -  T 

where B is the water line breadth amidships and where L is the length of the ship. The 
formula only applies to vertical vibrations with n = 2 - 5. 

For more full-form ship types (tankers, bulkcarriers), three-dimensional solutions 
derived for half-submerged prismatic cylinders of finite length can be used. Such 
solutions are derived by Kumai (1962) and apply to cross-sections defined by the Lewis 
transformation. The result for vertical vibrations is, Kumai (1962): 

= 16 Z m2 
 2[(1 + • 

(6.47) 
. (1 + al)2 9a 2 

1 + kmKo(km)/Kl(km ) -b 3 q" kmK2-~m)/K3(km)j 

where the summation Z is over even values of m, if n is odd and vice versa. 
m 

In Eq (6.46) the dimensionless wave number km is given by 



SI]FFNESS AND MASS DISTRIBUTION OF THE HULL GIRDER 267  

B (6.48) 
km -- m 4-CL 

where the constant C is given in Example 4.2.3. Moreover, K i ( ) is the Bessel function 
of the second kind of order i. These functions are tabulated in standard collections of 
mathematical tables, as e.g. Abramowitz and Stegun (1970). 

1.0 

Jn 
.9 

..6 

.3 

I w i r w I " = 

EF... ~ - - 0 -  - - -s  

C C 0 

,, I I I , I ,, I I I 

2 3 4 5 6 7 8 n 9 
Number of nodes 

Figure 6.14 Three-dimensional vertical reduction factor Jn ]'or a 340, 000 dwt 
tanker. Dash lines: Eq. (6.46), Full lines Eq. (6.47). Madsen (1978). 

Figure 6.14 shows a comparison of the two calculations, (6.46) and (6.47), of the 
reduction factor J, exemplified by a 340,000 dwt tanker. 

It is seen from the figure that at the two-noded vibration mode the J factor represents 
a reduction of 30% of the two-dimensional mass of water. As the added mass of water 
is of the same order of magnitude as the mass of the ship, this reduction has a 
considerable influence on the natural frequency. It is also seen from the figure that the 
two formulas for J give more or less the same results. However, it should be emphasised 
that Eq. (6.46) is partly empirical and therefore must be used cautiously in the case of 
untraditional ship forms. 

Theoretically, the added mass of water is zero at the ends of the ship, which cannot be 
represented by the definition of J used above, as it gives a mean value for the reduction, 
constant along the hull girder. The effect of this simplification is normally small, as the 
immersed sectional area A is much smaller at the ends of the ship than around 
amidships. But contrary to this, the largest vibration amplitudes are found at the ends 
of the ship. A calculation method for determination of so-called local reduction factor 
j, varying along the hull beam, is given in Madsen (1978), from where Figure 6.15 is 
taken. 
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0.8 n = 2  
n = 3  

=4 
06  n . 5  "- 

0.4 
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' ' o' o 0.2 o 4 o.e a X / L  

Figure 6.15 Local reduction factors j for vertical vibrations with n nodes for half-sub- 
merged circular cylinder with L/B = 6 (n = 0 and n = 1 are rigid-body mo- 
tions). Madsen (1978). 
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Figure 6.16 Reduction factor J2 for two-noded vibration for two different cross-sections. 
Madsen (1978). 

From the same reference Figure 6.16 is taken, depicting the variation of the global 
reduction factor J with the length to breath ratio L/B. A fluid element method for 
calculation of the added mass of water without free surface effects is described in 

Madsen (1978). 

6.4 DAMPING 

In the determination of the natural frequencies of the hull girder treated in Section 6.1, 
the influence of damping, structural as well as hydrodynamic, was neglected. This is 
permissible when the damping is small, and in order to illustrate this briefly, Figure 6.17 
is considered, which shows the classical example of a vibrating concentrated mass m, 
held by a spring with the stiffness / and a viscous damper with the damping c. 

It is seen from Figure 6.17 that, if the damping c is much smaller than the critical 
damping c o, the natural frequency ~o d for the damped system will practically coincide 
with the the natural frequency to 0 of the undamped system. As regards measuring 
technique, the damping ratio ~ is a somewhat inconvenient quantity. Therefore, the 
logarithmic decrement ~, defined as the natural logarithm to the relation between two 
successive maxima in x, is often used. The logarithmic decrement can be determined 
by giving the structure an impulse load ("impact") and recording the decrease of the 

vibration. 
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x ( t )  

m 

L i 
l l l / / / l l  

Equation of motion: ms + cs + kx = 0 

x(O) = o 

Solution for c < Co = 2 k~m" 

x ( t )  = A exp ( -  ~m0t)sin(m,/t) 

2 ~ - co - damping ratio 

Co = critical damping 

o90 = ~/m k--- = natural frequency of undamped system 

m a = 0% ~/1 L ~z = natural frequency of damped system 

6 = 2 a r ~ / f l  - ~2 = logarithmic decrement 

F i g u r e  6.17 Natural vibration of damped system with one degree of freedom. 

While the damping in slightly damped vibrations may be neglected in the determination 
of the natural frequencies of the system, the damping will have a significant influence 
on the vibration amplitude around the natural frequencies. For the system shown in 
Figure 6.17, the dynamic amplification factor Q given by 

Xo 
Q(~o) Fo/k 

,/t t 2 + 

determines the motion amplitude x 0 of the mass m when this is subjected to a periodic 
force F 0 cos wt. It is seen from this expression that at resonance, w = w0: 

Q(w0) = 

so that the motion is limited at resonance in contrast to the undamped system. 

The above shows that the magnitude of the damping is of decisive importance to the 
analysis of forced vibrations when the frequency of the external loads is close to the 
natural frequencies of the structure. 

If ship hull vibrations are considered, damping will mainly be due to structural damping 
from hysteresis effects in the steel, especially as a consequence of welding. An eminent 
overview of the various possible effects can be found in Betts et al. (1977). 

Moreover, damping takes place (by dry friction) in cargoes of grain and the like, as well 
as through hydrodynamic damping. However, all these effects are usually so small that 
they can be neglected in relation to the internal structural damping in the welded steel 
structure in the frequency range of interest. 

Calculation of the magnitude of damping in hulls is not possible because the theoretical 
damping mechanisms cannot today be calculated for so complex structures as ships. 
Therefore, calculation of forced hull vibrations must be based on empirical formulas 
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for the damping, derived from full-scale measurements. A number of these formulas 
are shown in Figure 6.18. 

z ~ s 1 
~07 

Q06 

~ 0.05 
~ 6 

~ o.o4 4 

0.01 

2 3 I 5 6 NODES 7 
s.o 1o~, ,Lo 2~,~, 

NATURAL FREQUENCY 

1 6, = .0073 ~o, 4 8. = 3.5/L �9 (to,/~oz) 3/4 
2 6 ,=~o9 ,  5 6,=r/~/o9, 

3 6, = 2 ~  6 6, = .01065~o! 

Figure 6.18 Examples of published values for the logarithmic decrement 0 as a function 
of frequency o9 for a 340,000 dwt tanker. Jensen and Madsen (1977). 

It is seen from Figure 6.18 that the logarithmic decrement is usually assumed to increase 
with the natural frequency. The variation may be reasonably well represented by an 
expression of the form: 

b 
fS i = ao9 i q- -@i 

where a and b are constants. 

For the example in Figure 6.17 such a variation of the logarithmic decrement requires 

that the damping 

c =  2 k ~ 6 / 2 n  = ~ k + a  b m  

is a linear combination of the mass m and the spring stiffness k. A generalisation of the 
above expression is often used in the calculation of forced vibrations by means of the 
finite element method, not to be considered here. 

In a beam formulation a more useful description of the internal damping is a linear 
'viscous' damping, defined by a generalisation of the usual constitutive equations for 
Timoshenko beams, Eq. (6.2). Thus, 
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0 ) &P (6.49) M = E I  1 +kt-b- ~ Ox 

(6.50) 

where the constants /t and e are normal and tangential damping coefficients, 
respectively. By insertion of these constitutive equations in the equations of motions for 
the Timoshenko beam, Eq. (6.5), the following eigenvalue problem for damped beam 
vibrations is obtained: 

/ t  651, O---x -~ ~ + kGA 1 + e,--~- i - ~ - q ~  = mr 2 0 t  2 

~ b--~ - ~p = m  .......... 
0t 2 

It is normally assumed that the damping parameters /~, e are equal and independent of 
the cross-section of the beam: 

/~ = e = constant (6.53) 

This assumption is reasonable for practical calculations of hull vibrations, as it is not 
possible to measure the damping per section, but only to estimate the overall damping 
in the vibration. 

6 . 5  MODAL SUPERPOSITION 

Several methods are available for determination of forced beam vibrations: 

�9 Numerical integration in time 

�9 Separate solution for selected load frequencies 

�9 Modal superposition 

Numerical integration in time requires solution of initial value problems- 

O---x ~ --~ + kGA 1 + e-~ - ~ - q ~  - m r  - - ~ - =  0 

O [ k G A ( l + e O ) (  Ov )] 02v O--x ~ - ~ - ~  - m - - f (x, t)  Ot 2 

(6.54) 

with appropriate initial conditions for t = t 0. 

Thus, a boundary value problem must be solved for each point of time t > to, and the 
method is therefore only used, if it is required only to analyse relatively short periods 
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of time. This may be the case, iff(x, t) represents a transient load ("impact"), e.g. due 
to water impacts on the ship. Such wave-induced, transient vibrations are called 
"whipping". The solution method will not be discussed here, but results are shown in 
Figure 4.22. 

A direct solution can be applied if the load is periodic in time. 

f(x, 0 = fo(Z) o t  

Then a particular solution of Eq. (6.54) may be written 

v(x, t) = ~l(x) cos g2t + ~2(x) sin t2t 

~(x , t )  = ~-l(x)cosQt + ~-2(x)sing2t 

which, inserted in Eq. (6.54), gives four coupled time-independent, ordinary 
differential equations for determination of ~l(x), ~-2(x), ~-t(x)and ~-2(x). This 
solution method is therefore well suited if the vibrations of the beam are only to be 
determined for a few load frequencies, say the blade frequency and its superharmonies. 

If the first n natural frequencies to i of the hull girder and the corresponding natural 
vibration modes (deflection u i (x)and angular displacement a i (x)) ; i - 1,2,3,....,n have 
been determined, modal superposition will be an efficient solution method. 

In this method the deflection v(x,t) and the angular displacement q~(x,t) are 
approximated by linear combinations of the known eigenfunctions u i(x), a/(x): 

n 

•(X, 0 "-- Z tti(X)Wi(t) 
i=i 

n (6.55) 

~b(x,t) = Z a i ( x ) w i ( t )  
i=1 

where the weight functions wi(t ) are determined by insertion of Eq. (6.55) in Eq. (6.54). 
This gives 

n 

i - 1  

-- mr2a ifi, i} = 0 
n 

Z {(kOA( u'i - iT"i))'( wi "t- F.wi) - mui(.i,i} -- - f(x, t) 
i = 1  

(6.56) 

where 

( ) '  = d /dx  and ( ) - d/dt .  
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If the first and second equations in Eq. (6.56) are multiplied by respectively otj(x) and 

uj(x), the following is obtained by subsequent addition of the equations and integration 

over the length of the beam: 

i ff I 
o 

L 

+ w~ I[o,(~,~'i) ' + ~ ,~~(o '~-  ~it + o , ~ ( ~ ( , . i -  ~i/)' ]~ 
o 

L L 

o 0 

If the orthogonality conditions (6.14a-b) are utilised and on the assumption that It and 
e are independent of x, the above expressions are reduced to 

- w2Ajwj(t) - w2Aj Itwj(t) -ajf~(t) 
L 

+ ( e -  I t ) Z  f[ajkGZ(u'  i - a i ) +  uj(kGZ(u' i - ai ) ) ' ]  dx 
i = 1  

o 
L (6.58) 

= -- f ujf(x,t)dx 
0 

where 

L 

Aj = I(mrea2 +mu2)dx 

0 

(6.59) 

It is seen that the differential equation system (6.58) for determination of wi(t ) ; 
i = 1,2,.., n is decoupled if / t  = e. As previously mentioned, the damping can only be 
determined empirically, and the assumption It --- e seems to be reasonable. Thus, Eq. 
(6.58) is reduced to 

L 

o 

(6.60) 
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1 By comparison with Figure 6.17 it is observed that the damping relation ~ = -~pO)j 

holds. The right-hand side Fj(t) can be determined when the external load f(x,t) is 
known. A particular solution wlP(t ) to Eq. (6.60) is 

t 

w/P.(t) = ~ Fj(r)exp ( -  1 pe )} ( t -  Q)sin [waj(t- Q]dr (6.61) 

0 

where 

The solution sought for is then given by Eq. (6.61) and the homogeneous solution 

1 2 wh(O = exp(-- -~ttr + bsinwdjt ) (6.62) 

where the constants a and b are determined from the initial conditions at t = 0. 

The most difficult problem of the use of the modal superposition method for hull girder 
vibrations arises due to the added mass of water mw as this mass, through the frequency 
and the global reduction factor J, depends on the vibration mode. Thus, the 
orthogonality conditions Eq. (6.14) no longer apply, and hence Eq. (6.56) cannot be 
reduced to the uncoupled system (6.60). 

There are two ways to overcome this problem. In the first method the d'Alembert forces 
- mwi~ from the mass of water are regarded as an external load like f(x,t). Thus, the 
eigenvalue problem will only comprise the natural, frequency-independent mass ms of 
the ship, and the orthogonality conditions Eq. (6.14) will be satisfied. The natural 
vibration modes will correspond to the hull girder vibrating in air. If these natural 
frequencies and vibration modes are denoted by ~b i, ~i(x), 6i(x), the following is 
obtained analogously to Eq. (6.55) and Eq. (6.60)" 

n 

V(X, t) -- ~ lti(X)Wi(t) 
i = 1  

tl 

qb(x, t) - ~ r 
i=l 

(6.63) 

where Wi(t ) is determined as the solution to 

fO(t) + p~o2ifvi(t) + cb2wi(t) = 

L f n ] 
A i  j=l 

0 
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or 

L 

n I = 1 Z (f}ij + aij)wj(l ) + fl~2Wi(t ) + ~2wi(t ) (ti(x)f(x,t)dx 

j=l o 

(6.64) 

where 6 0 is Kronecker's delta and where 

a 0 

L 

11 fi i(x)m w(X, ~b i)(tj(x)dx 

0 

with 

L 

Aj = J[msr2~ 2 + msgt2]dx 

o 

It is seen from Eq. (6.64) that the weight functions wi(t ) can no longer be found 
separately, but instead have to be determined by a matrix equation. This is a 
disadvantage of the method. The method is, however, very useful for analysis of 
wave-induced vibration as shown in Section 6.5.1. 

An alternative method is to use the value for the added mass of water mw, based on the 
two-noded vibration mode, for all higher vibration modes. In this case the calculated 
vibration modes and natural frequencies will normally not be quite correct with the 
exception of the two-noded vibration. If, however, 

m(x, wi) = ms(x) + mw(X, toi) ~ bim(x, to 1) (6.65) 

where w 1 is the natural frequency corresponding to the two-noded vibration mode, it 
is seen from Eq. (6.7) that also the higher vibration modes will be correct, while the 

higher, real natural frequencies o) i from the calculated natural frequencies o3ion the 
basis of m(x, ~o 1) are found to be 

09 i -- ~O i/ ~ i  (6.66) 

The validity of the condition Eq. (6.65) cannot be argued from a physical point of view, 
but it applies usually with sufficient accuracy. Thus, Eq. (6.60) still applies, if only o)j 

is replaced by o3j: 

L 

,,2 ,,2 = 1 / 
wj(t) + lzwj wj(t) + wj wj(t) ~j J uj(x)f (x, t)dx 

0 

(6.67) 
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As Eq. (6.60), this equation determines the weight functions Wi(t ) separately. This 
method is therefore easier to use than the method where the eigenfunctions of the hull 
girder in air are used. However, it should be noted that the assumption Eq. (6.64) 
introduces an error, which cannot be reduced only by including more eigenfunctions. 

It should finally be mentioned that if the load f(x,t) is a function of the deformation of 
the hull girder f (x ,  0 = f(vi,  x, t), the right-hand side in Eq. (6.60) or (6.67) will give 
a coupling between the single weight functions wi(t ), and in such cases it is 
advantageous to use Eqs. (6.63) - (6.64). This is the case with wave-induced hull 
vibrations. In the following, such vibrations will be treated in more detail. 

6.5.1 Wave-induced Hull Vibrations 

One formula for the wave-induced load qH(x,t) per unit of length along the hull girder 
is given by Eq. (4.58): 

f (x )  = q ~ x , t )  = - mw(X, foe)-D- i + N(x, foe ) -~  + pgB(x)z  (6.68) 

where 2 = 2(x,t) is a measure of the relative vertical distance between the surface of 
the sea and the ship at x = x, Eq. (4.20): 

e(x, 0 = v(x, 0 - x(x)h(x, 0 (6.69) 

In Eq. (6.68)N(x) is the hydrodynamic damping and B(x) is the water line breadth. 
Furthermore, x(x) is the Smith correction factor and h(x,t) is the wave elevation. The 
latter may for linear, regular, long-crested waves be written, Eq. (4.55): 

h(x, t) = a cos(kex - tOet) (6.70) 

where a is the wave amplitude and where 

ke = kcosfl 
fOe = tO -- keV 

(6.71) 

Here k is the wave number and w the frequency of the wave, while fl is the heading 
angle. Finally, V is the forward speed. 

The load given by Eqs. (6.68) - (6.69) has been derived from some assumptions which 
are reasonable in the wave length range relevant for determination of the rigid body 
motions of the ship. However, for generation of the lowest hull vibration modes much 
smaller wave length are required. Thus, the basic assumption in Eq. (6.68) about 
two-dimensional water flow around the hull girder is violated. But, for lack of anything 
better, Eq. (6.68) is used for determination of wave-induced hull vibration modes as 
well. However, the added mass of water mw is corrected, as mentioned previously, by 
a global reduction factor J for three-dimensional flow. 
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The lowest natural vibration modes of the hull girder, calculated in air, are denoted 
~i(x), (~i(x), while the corresponding natural frequencies are designated O5 i. To ensure 
equilibrium for the ship as a whole, the rigid-body motions, Eq. (6.23), are introduced 
as extra eigenfunctions, both having zero natural frequency (o3_ 1 = ~ = 0). 
Moreover, all eigenfunctions are normalized, so that 

L 

o 

for i,j = - 1 ,0 ,1  .... ,n 

Thereby, the equilibrium equation (6.64) can be written 

[M/jw(t) -b Cijdvj(t ) h- Sijwj(t)] = Fi(t ) 
j = - I  

; i = - 1, O, 1...,n (6.72) 

where 

L 

MO = f~O + I (ti(x)mw(x)(tJ(X)dx 
o 

L 

Cij = Ito52c~ij + f (ti(x)[(N(x) - Vm'w(X))(tj(x)- 2Vmw(x)ft'j(x)]dx (6.73) 

o 
L 

S i j -  o52f~ij ff ] (ti(x)[pgB(x)ftj(x ) - V(N(x)-  Vm'w(X))(t'j.) + V2mw(X)ft"j(x)]dx 
0 

and 

L 

F i (t) = a 0 f [ ( - -  mw(X)O) 2 h- pgB(x))cos(kex - O)et) 
0 

+ ( N ( x ) -  Vm'w(X))cosin(kex- O)et)]x(x)dx 

= a(Flicoscoet + F2isin~et ) 

(6.74) 

The solution to Eqs. (6.72) - (6.74) can be written 

wi(t ) = WliCOSO)et -I- w2isin fOet (6.75) 
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and if this assumption of solution is inserted in Eq. (6.72), two linear algebraic systems 
of equations are obtained, each of the order n + 2, for determination of the 2(n + 2) 
unknown constants Wli , w2i ; i = -1,O,1...,n. It should be noted that for n = 0 the usual 
system of equations is obtained for determination of the motions of the ship in regular 
waves, treated in Section 4.3. 

It follows from Eq. (6.74) and Eq. (6.72) that all the weight factors w li and W2i will 
vary linearly with the wave amplitude, such that 

wi(t ) = a @i(09e)COS(09et + ewi ) 

where @i are the amplitude functions for the weight functions. 

On the basis of the solution Eq. (6.63), all relevant sectional quantities in the hull girder 
can be determined, as e.g. the bending moment My(x). The direct method is to use Eq. 
(6.49): 

My(x, t) = El(x) Z ~'i(x)(wi(t) + ~tl/vi(t)) 

i=0 (6.76) 

= a~M(X, 09 e) cos(09 et + ~M(X, 09 e)) 

The bending moment can thus be written on the same form as in Section 4.3 with an 
amplitude given as the product of the wave amplitude a and an amplitude function 

(Ik M(X, 09 e ). 

As regards numerical calculations, Eq. (6.76) is not suitable for determination of the 
sectional forces, as the truncation (finite value of n) may lead to rather large errors*. It 
is better to insert the solution, Eq. (6.75), in the expression for qn, Eq. (6.68), and for 
the d'Alembert forces and then integrate these forces from the stern to the section x = 
x concerned. This is the same as done in Section 4.3 and the result can of course be 
written on the same form as Eq. (6.76). 

From the solution of the system of equations (6.72) for a number of discrete wave 
frequencies w, the amplitude function CPR(W e) for all linear responses (bending moment 
etc) can be determined as a function of the wave frequency 09. The natural frequencies 
in water is identified as the frequency of encounter where the amplitude function 
exhibits large peaks. The lowest natural frequency correspond to a vibration mode with 
two nodes, see Figure 6.1, and is often the only one of interest. 

Subsequently, statistical quantities in a stationary, stochastic sea can be calculated on 
the basis of a given wave spectrum S(09), as shown in Section 4.4. Here it should only 
be noted that the response R is normal distributed with mean value zero and a standard 
deviation s R given by 

* If only rigid body modes are included, i.e. n=0, thenMy = 0, as ~_1 = 0 and a0 = 1! 
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co 

= I 
o 

(6.77) 

The  w a v e - i n d u c e d  vibrat ions ,  also denoted  springing; might  increase  the stress level  

in modera te  sea state, c.f. E x a m p l e  6.5.1 below.  Howeve r ,  s ignif icant  spr inging 

vibra t ions  required  ei ther  a large fo rward  speed in head sea (conta iner  ships, fast 

vesse ls )  or a very  low hull  s t i ffness (Great  Lake  bulk carriers) .  

.Example 6.5.1 

In Jensen & Pedersen (1981) and Jensen and Dogliani (1996) a container ship is analysed (Lpp = 270 
m, B = 32.2 m, T = 10.85 m, C 8 = 0.598). The mass distribution is approximated by a fourth degree 
polynomial in x, with a centre of gravity of 10.12 m abaft midship and a longitudinal radius of gyration 
of 0.248 Lpp. A transverse radius of gyration of 5 m is assumed, constant along the length of the ship. 
The added mass of water mw and the hydrodynamic dampingN are calculated on the basis of the body 
plan of the ship using Lewis transformation. Finally, the stiffness of the hull girder is approximated by 
E1 = 8.681013 Nm 2, kGA = 6.25 101~ N for the central half of the ship, with linear reduction towards 
the ends of the ship with the values at the ends equal to 10 per cent of the midship values. 

The damping coefficient is set to / t  = 10 -3 secs and the ship sails in head sea (/3 = 180 ~ with a 

forward speed V = 0.245 gorge. 

The bending moment amidships M =- My(x = Lpp/2) is calculated without account for the elastic 
deformation of the hull girder (n = 0, "rigid hull") as well as by inclusion of the two-noded vibration 
mode (n = 1, "flexible hull"). The two-noded natural frequency for the ship vibrating in air becomes 
o51 = 0.8Hz. 

In Figure 6.19 the amplitude function q~M(~0e) is shown as a function of the frequency of encounter We. 
It is seen that the lowest natural frequency of the hull girder in water is approximately 4.2 rad/sec = 
0.7 Hz, and it corresponds to wavelengths of approximately Lpp/lO. 

rigid hull 

. . . . . . , ,  , . . . . .  ~ ~ ,?, Lpp/~ 
0.~ t o  1. s 2'.0 2.5 a.o a.5 4.0 ~ a)e (a/)'ra-'ser 

Figure  6.19 Amplitude function for bending moment amidships (I)M(O)e) as a function of 
the frequency of encounter weand ship length to wave length ratio (Lpp/2 ). 
Container ship. 

To be able to assess the importance of the flexibility of the hull girder the response spectral density c.f. 
Eq. (4.109) 

S M(OJ e) = ~) 2M(O) e)S(O) e) 
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is plotted in Figure 6.20 for a sea state characterised by a Pierson-Moskowitz  spectrum with Hs = 4 m 
and Ts = 7.1 secs. 

z l  

' I i I I , 

- - - -  : f l e x | h i e  hu l l  

- -  - -  - -  : r i g i d  hu l l  

I 

4 

We (rad/sec) 

F i g u r e  6.20 Response spectral density SM(Cge ) for the bending moment amidships in a 
container ship. 

It is seen that the most essential part of the response spectrum can be determined without taken into 
account to the flexibility of the hull girder. However, it should be noted that the high-frequency part 
around the lowest natural frequency of the hull girder may influence the fatigue strength of the hull 
girder. 

Table 6.2 

Container ship, Head Sea 

Standard values: 

Change of standard values 

None 

2-noded vibration included (n = 1) 

E1 = 8.68 1013 Nm 2, p = 10 -3  secs, ~1 = 0.8Hz 

Fn = 0.245, Hs = 4m, Ts = 7.1 secs 

SM 

Rigid hull (n = 0) 

Increased hull flexibility: El = 7.72 1013 Nm z 

Reduced forward speed: Fn = 0.20 

Reduced forward speed: Fn = 0.1'5 .... 

Increased structural damping: / t  = 2 10 -3  secs 

Lower sea state: Hs = 2.74 m; Ts = 5.88 secs 

More severe sea state:Hs = 5.61 m;Ts = 8.41 secs 

Non-l inear  effects included 

108Nm 

2.18 

1.99 

2.22 

2.41 

2.33 

2.18 

" '  1.0i 

4.24 

2.31 

In Table 6.2 it is shown how the standard deviation SM, given by 
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c o  

s2/= I sM(~o)aro) 

o 

varies with changes in some of the parameters. 

It should finally be noted that Jensen and Pedersen (1981) and Jensen and Dogliani (1996) also contain 
an analysis where non-linear effects are included. For the container ship these non-linear effects may 
be as significant as the effect of the flexibility of the hull girder, c.f. Table 6.2. 

6.6 R E D U C T I O N  OF T H E  V I B R A T I O N  L E V E L  

To judge if a ship will experience hull girder vibration problems, it is necessary to 
determine the vibration level, as described in the preceding sections, and to have criteria 
to which this level can be compared. 

Figure 6.21 Curves for assessment of the vibration level (ISO 6954, "Guidelines for 
overall evaluation of vibration in merchant ships") 
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These criteria must reflect that a too high vibration level may lead to fatigue failure 
(crack propagation) in the structure, to damage of the electronic and mechanical 
equipment, and/or adverse comments from the crew and passengers. In the high 
frequency range it will usually be the latter point which decides if the vibration level 
can be tolerated. Thus, a rational criterion for permissible vibration levels cannot be set 
up, as this must primarily be due to a subjective estimate. Based on a collection of data 
from existing merchant ships, guidelines, as shown in Figure 6.21, have been 
established for assessment of the vibration level. The guideline shown apply to the 
frequency range up to 100 Hz and reflect that, for frequencies larger than approximately 
5 Hz, the velocity level is decisive for human subjective judgement of the vibration 
level, while it is rather the acceleration level for lower frequencies. 

However, as regard hull girder vibrations these guidelines are of limited value as the 
frequency is usually below 1 Hz. 

If a vibration analysis shows that the hull girder is likely to be exposed to vibration 
problems, there are in principle three possibilities for reduction of the vibration level: 

�9 reduction of the amplitudes of the existing forces 

�9 change of the frequency of the existing forces 

�9 change of the natural frequencies of the hull girder 

Figure 6.22 Diagram for assessment of possible vibration problems. 

These three possibilities will be dealt with in the following, but first a practical diagram 
is presented, Figure 6.22, for use in the assessment of vibration problems at the design 
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stage. In the figure are shown the lowest natural frequencies for the hull girder, the blade 
frequency for a number of alternative propellers with a varying number of blades, the 
engine frequency and its first overharmonics. As a consequence of partly the 
uncertainty of the calculations and partly the different possible loading conditions of 
the ship, the natural frequencies are indicated by frequency bands instead of lines. It is 
seen from the figure that the ship in question may experience problems with the first 
overharmonic engine frequency, as this frequency at service speed lies close to the 
natural frequency of the four-noded vertical hull vibration mode. 

It should be noted that the classification societies issue very detailed guidelines on how 
to avoid vibration problems by proper design considerations. In the following only 
some overall guidelines are therefore given. 

6.6.1 Reduction of the Amplitudes of the Forces 

The most important time-varying loads are treated in Section 6.2. As regards the 
propeller-induced forces, vibration problems are as a rule due to the strong 
hydrodynamic pressure variations which may arise on the plating of the stern, if the 
propeller cavitates. Determination of the "force" of the cavitation is difficult and subject 
to large uncertainty. However, it is known that the radial velocity variation of the wake 
field at the propeller has a large influence on the cavitation. This velocity variation is 
often considerably larger at a V-shaped stern than at a U-shaped stern, and thus the 
latter type can be chosen to avoid vibration problems, although it may imply a less 
suitable hull from a propulsive and structural point of view. Other, less drastic, changes 
of the stern to reduce the variation of the wake field may be to increase the distance 
between plating and propeller, to mount fins ("vortex generators") or to mount a nozzle 
around the propeller. The amplitudes of the pressure variations can also be reduced by 
change of the propeller geometry. A number of model experiments have shown that 
propellers of the "skew back" type can reduce the load amplitude by 50 - 75% 
compared to a conventional propeller. The reason is that the propeller tip on "skew 
back" propellers is relatively unloaded with subsequently smaller cavitation. The 
disadvantages of the use of "skew back" propellers are more expensive propeller 
production as well as a small loss of propulsion efficiency (2 - 4%). 

As regards the propeller-induced forces, transferred to the hull via the bearings of the 
propeller axis, these will normally only pose problems if the blade frequency is close 
to one of the natural frequencies of the shaft system. The force amplitudes can be 
reduced by choosing a propeller with another number of blades, c.f. the discussion in 
Section 6.1 on the dependence of the forces on the even and odd harmonic components 
of the wake field. 

To reduce unbalanced forces from the main engines, electric or mechanical balancing 
mechanisms may be used which generate forces of the same magnitude and frequency 
as the unbalanced forces, but with in opposite phase. 

6.6.2 Change of the Frequency of the Forces 

Propeller-induced forces contain components, which vary in time with multiples of the 
blade frequency (= number of revolutions x number of propeller blades). Since the 
number of revolutions is usually around 1.5 - 2 Hz and the number of blades n = 3 - 
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5, it is mainly the blade frequency (~ 4 - 10 Hz) which is of importance to hull 
vibrations. If the blade frequency is close to one of the natural frequencies of the hull 
girder, the possibility of vibration problems may be reduced by changing the number 
of propeller blades. 

Concerning wave-induced hull vibrations, the load frequency, which is equal to the 
frequency of encounter We, may be changed by changing the forward speed of the ship 
and/or its course. This possibility is as a rule used by the captain to avoid or reduce these 
vibrations, as wave-induced vibrations are normally not taken into account at the 
design stage. 

6.6.3 Change of the Natural Frequencies of the Hull Girder 

The alternative to change the frequency of the load is to change the natural frequencies 
of the hull girder. This may be done by changing the stiffness (El, kGA) and/or the mass 
distribution ms. Change of the stiffness is normally not possible, because it is 
determined from strength criteria and an increase in stiffness will be expensive as 
regards higher steel weight of the ship and subsequent smaller cargo carrying capacity. 
It is also difficult to change the mass distribution. The only possibility may be to move 
the ballast in the ballast tanks. 



Hull Girder Reliability 

In the structural assessment procedure the calculated stresses and deformations are 
compared to permissible values taking into account all possible failure modes of the hull 
girder. Basically all relevant failure modes depend on either the yielding, ductility or 
fatigue behaviour of the material and hence the structural capacity depends on these 
material parameters. In addition the stress state depends on the modulus of elasticity E 
and Poisson's ratio v as seen in the previous chapters. 

The first step in the structural assessment procedure is therefore the selection of the 
material for the strength elements. Steel is by far the most common material for ships 
and numerous qualities exist with different yield strength and ductility. Usually, the 
higher the yield stress and ductility the more expensive the material becomes regarding 
handling in the ship manufacturing process. Also, the fatigue resistance is not increased 
proportionally implying that high tensile steel is relatively more prone to fatigue failure. 

For smaller vessels, aluminium and glass-fibre reinforced panels or sandwich elements 
(GRP) have gained increased use. For high speed ferries, the displacement is the 
decisive factor to achieve the requested speed and therefore the lesser mass density of 
aluminium as compared to steel (approximately one-third) is very important. In the 
recent years the material properties (yield strength, ductility, weldability, fatigue 
strength) of aluminium have improved significantly with the advent of the so-called 
5000, 6000 and 7000 series. 

Material properties are discussed in Section 7.1 in some details from a structural 
point-of-view. 

With the structural material chosen for the strength elements in the hull girder, the 
maximum loads the hull can withstand without damage or failure can be calculated. 
With the hull girder considered as a beam, the overall failure mode can be classified as 
either ultimate hull girder failure due to hull girder bending and shear or to fatigue 
failure in significant structural members. The former analysis involves buckling of 
longitudinal members in compression and therefore requires a non-linear structural 
analysis of the behaviour of plate panels. Such analysis is outside the scope of the 
present treatment and only some results from the literature are quoted. 

The final step is then to compared the stresses derived in Chapter 5 and 6 due to the loads 
from Chapter 2 and 4, taking into account the stochastic properties of the loads and 
statistical uncertaincies with the failure criteria in the structural and geometrical 
parameters as well as the modelling uncertainties and our ignorance in the analysis 
procedures applied. Such hull girder reliability analysis is carried out in Section 7.3. 

7.1 MATERIAL PROPERTIES 

The material properties which, from a strength point-of-view, are decisive for the 
choise of material are yield strength, ductility and fatigue limit. These properties are to 
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some extent independent of each other and is therefore treated in different sections 
below. 

7.1.1 Modulus of Elasticity and Yield Strength 

If a uniaxial tensile test is carried out on a test specimen of a material, stress-strain 
diagrams as shown in Figure 7.1 will be obtained qualitatively. The fully drawn curves 
represent experiments with low strain-rates until the test specimen fails at point C. 
During this load sequence, the largest stress in the material, based on the undeformed 
cross-sectional area of the test specimen, is found at point B and it is called the tensile 
strength a b. Table 7.1 shows representative* values of a b and the elongation at 
fracture or fi'acture strain %. If the experiment is stopped (e.g. at point D) before 
fracture takes place and the load removed, the test specimen will be relieved as indicated 
by the broken line DE. 

Table 7.1 Strength properties for shipbuilding materials. 

Modulus of elas- 
ticity E ( M N / m  2) 

Yield stress 
ay ( M N / m  2) 

Tensile strength 
a b ( M N / m  2) 

Fracture strain 
% %  

Impact strength 
(Nm) 

Fracture toughness 
KIC M N / m  -3/2 

Density (kg /m 3) 
. . . . . . . .  

Normal strength 
steel 

210 000 

235-250 

400-490 

High ......... 
strength steel 

2i0 000 

265-390 

400-650 

Extra high 
strength steel 

210 000 

420-690 

530-940 

15-23 

20-30 

10-100 

7850 

20-22 

30-40 

10-100 

7850 

20-22 

30-40 

10-100 

7850 

Aluminium 
alloy 

1500 series 

70 000 

135-270 

200-340 

5-10 

15-25 

25-50 

2500 

When the load is removed the stress in the test specimen becomes zero, while the strain 
will assume a value ep whose magnitude depends on the position of the point D. The 
slope &r/dE of the stress-strain path DE is the same as that of the path OA and equal 
to the modulus of elasticity E of the material. Thus, the residual strain (the plastic strain) 
will only be zero, if D is on the rectilinear path OA. Usually, the yield stress o'y must 
not be exceeded as the deformation of the material increases strongly with the load when 
the yield point (point A) is exceeded. 

* The uncertainty of the data is no expression of an uncertainty in this parameter, but it indicates 
(roughly) the limits between which this material property is found by different chemical 
composition. The purpose of Table 7.1 is only to indicate the magnitude of a few of the materials 
parameters. For further information see the rules from the classification societies, where also the 
required test of the materials are precisely stated. 
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Figure 7.1 Qualitative stress-strain diagrams for uniaxial tensile tests of steel and 
aluminium. 

Today, it is possible to increase the yield point and the fatigue limit of steel by means 
of small alloy elements and by controlling carefully the production process. Density 
and modulus of elasticity remain almost unchanged. 

The advantage of using high strength steel in ships is to obtain a smaller steel weight. 
However, the price of the material is larger than for normal strength steel and the 
welding of high strength steel requires better quality control. Therefore high strength 
steel is only used if essential savings in weight can be achieved. Typically high strength 
steel is used for deck and keel plates in ships. 

It should be noted that a weight saving by use of high tensile steel can only be achieved 
if the permissible stresses depend mainly on the yield stress of the material. This is not 
the case for fatigue failure which must be taken into account when selecting the steel 
quality. 

An alternative method for reducing the weight of the structure is to use materials with 
a lower density. Aluminium with a density of approximately 1/3 of the density of steel 
and glass-fibre reinforced plastic with an even lower density are suitable materials. 

For aluminium the weight advantage is partially counteracted by the fact that the 
modulus of elasticity E and the yield stress ~ry of aluminium are both also approximately 
1/3 of the corresponding values for steel. Thus, in order to obtain the same safety against 
yielding and the same deformation, it is often necessary to use aluminium plating 
thicknesses which are about three times larger than for steel. Moreover, aluminium is 
a more expensive material than steel and also more complicated as regards welding. 
Other disadvantages of aluminium are its high thermal coefficient of expansion and its 
relatively low melting point. On the other hand, aluminium has better corrosion 
resistance, non-magnetic properties and its ductility is better at low temperatures. 

These advantages and disadvantages have meant that aluminium has mainly been used 
as hull structure material for small craft and naval vessels (mine-sweepers). In addition, 
superstructures of large passenger ships have been built in aluminium, because the 
weight saving here leads to considerably improved hydrostatic stability due to the lower 
centre of gravity. Care must, however, be taken that the stresses in the superstructure 
imposed by vertical bending of the hull girder do not exceed what is permissible, see 
Example 5.1.2. 
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The recent improvement in the quality and yield stress of aluminium in the so-called 
5000 and 6000 series has increased its use, especially for high speed ferries where the 
weight savings are very important. 

The use of glass-fibre reinforced plastic (GRP) in major substructures in large ships is 
rare, although a larger weight saving might be obtained. One reason is the quite different 
form of production. While steel and aluminium sections are welded up, glass-fibre 
reinforced structures must be layered up in a mould. 

The future development of new glass-fibre reinforced materials, such as sandwich plate 
elements with even better strength-weight ratios and more well defined materials 
properties, may increase the use of this material. Several naval vessels have today such 
hull structure among them the Danish Navy vessel Standardflex. 

7.1.2 Ductility 

The ductility of a material means its capability to absorb large, plastic deformations 
without initiation of fracture. Particularly two items are important, one concerning the 
workability of the material, the other concerning its capability to prevent propagation 
of cracks. 

It is inevitable that there will always be cracks in a welded structure, as microcracks and 
slag confinements from the welding process cannot be avoided. When the structure is 
at sea the dynamic loads will sometimes be so great that the stress in a crack tip exceeds 
the tensile strength v b of the material. This leads to elongation of the crack but as the 
load is again diminished, the crack propagation usually stops. However, each material 
has a characteristic (critical) crack length so that, if this crack length is exceeded, the 
crack will continue its extension at a very great speed and result in an almost momentary 
brittle fracture. It is evident that the chosen material must have a critical crack length 
which is much larger than the cracks and slag confinements induced by the production 
process. One way to ensure this is to use a material with a large fracture strain eb. For 
ships e b should be larger than 13 %. In order to be able to mend these cracks as they 
grow, it will also be practical if they can be detected easily before they reach the critical 
length. This has led to the concept "leak-before-break", which e.g. for the steel in the 
ship's bottom means that water will penetrate the crack before the crack becomes 
critical. 

Lamellar tearing, illustrated in Figure 7.2, is a type of fracture which have occurred 
previously. This fracture begins when the welded seam solidifies, because the plate has 
acquired a layered structure by the rolling process due to separation of non-metallic 
slags. Thus, the ductility of the material is small when loaded in the direction of the plate 
thickness. 

This subsection deals with the determination of the critical crack length and equivalent 
quantities for a plate exposed to a static load. In the following subsection, the effect of 
dynamic, repeated loads will be analysed under the designation of fatigue failure. 



M A T E R I A L  P R O P E R T I E S  2 8 9  

! 

X_ 
/ . . . . . .  , ,  ..... i i 

\ �9 N 

cracks 

Figure 7.2 "Lamellar tearing" of a rolled steel plate due to confinement of slags in the 
plate material. 

Problems with a number of ships (the Liberty ships) built about 1950 led to demands 
on the ductility of the material. Several of these ships broke in two as a consequence 
of a combination of too brittle steel, low temperature and bad design and production 
(large stress concentrations). At that time, no usable theoretical determination of the 
ductility of materials were available, so the requirements to the ductility of the materials 
were formulated as requirements of a so-called Charpy - V test on test specimens of 
the material concerned. In this test a drop hammer, suspended as a pendulum (see 
Figure 7.3), is made to hit a specimen with a given dimension and a given notch. During 
the experiment, it is measured how far the drop hammer swings up after it has broken 
the test specimen, and this result is recalculated to a lost potential energy, which is again 
equal to the plastic work left in the test specimen. 

Contrary to aluminium alloys the ductility for carbon steel falls steeply when the 
temperature falls below the freezing point. This led to problems with ships for use in 
Arctic regions and tankers for transport of liquid natural gas (LNG) ships, where the 
temperature in the tanks is kept at -196 ~ to large avoid boil-off of the LNG. The 
material for these tanks is either an aluminium alloy or a 9% nickel steel. In Figure 7.4 
the importance of the content ofNi, C and A e for the ductility is illustrated for steel alloy 
at different temperatures. 

The impact strength test is an good method of controlling the ductility of given 
materials, but not suitable for a quantitative a priori determination of the influence of 
the pertinent parameters (production method, alloy content and type) on the ductility 
of the material. 

However, a theoretical method for analysis of the ductility of materials has been 
developed in recent years, and it can today be used to assess the influence of crack 
geometry, yield stress, load distribution and temperature on the ductility of the material. 
The method is called fracture mechanics and it will be outlined in the following. For 
a description of the subject in more detail, see one of the many textbooks available. 
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Figure 7.3 Charpy-V test of specimens. The dimensions are in mm. 

Figure 7.5 shows a section of a plate with a single through-the-thickness crack of the 
length 2a. 

When the plate is loaded by an inplane stress field, the stress vector (~rll , r , r ) in 
a small area given by the polar coordinates (r, O) around the crack tip (at x I = x2 = 0) 
can be written 

~ 11] 
2 2 ~ -  KI 
12J 

30 1 - sin0sin 7 

1 + s i n0s in -~  

sin-02 cos- ~ 

0 (7.1) cos~ + O(r) 

if the load is symmetric as regards the x 1, x2-plane (called Mode I). It is seen from Eq. 

(7.1) that the stress at the crack tip is singular because of the factor r-�89 The quantity 
K I is called the stress intensity factor and it does not depend on (r,O), but only on the 
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geometry of the body, the length of the crack and the load distribution. In the simplest 
case where the extent of the body is much larger than the crack length 2a and where, 
the external load is a constant, uniaxial tensile stress (~) in the xz-direction , it can be 
shown that 

(7.2) 

1 0 0  

Nm 

8O 

6 0  

40  

20  

0 
- 2 0 0  5 0  

. . . . . . . . . . . .  i 

/ 

#/ 
,~" J 

-150 - 1 0 0  - 5 0  0 

Temperature ~ 

Figure 7.4 Results of impact strength tests of steel alloys with a varying quantity of alloy 
element and at different temperatures T. In both figures the ordinate is the im- 
pact strength from Charpy-V tests. 
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Figure 7.5 Plate with a through-the-thickness crack of  the length 2a. 

In other cases the result is written 

K 1 = tr ~ f ( a )  (7.3) 

wheref(a) typically assumes a value in the range 0.5 to 3, dependent on geometry, crack 
length and external load. Results similar to (7.1) - (7.3) are found if the external loads 
lead to a shear stress state in the body. These results, which are designated Modes II and 
III, are not presented here, mainly because Mode I usually represents the most critical 
load of the crack. Results for Modes II and III can be found in textbooks on fracture 
mechanics. 

Because of the singularity r-k, the stress state given by Eq. (7.1) will, even by a very 
small external load, exceed the tensile strength of the material. This is not in complete 
accordance with experimental results. The main reason is that Eq. (7.1) presupposes a 
linear elastic material, while plastic deformations and thereby stress equalisation will 
actually take place in a small area around the crack tip. The order of magnitude of the 
plastic area can be estimated by setting 0 = 0 and O'11 "-  0"y. This gives 

1 0" (7.4) rp= \ay =-~ ~ a 

Although Eq. (7.1) cannot be used for determination of crack propagation, it leads to 
reasonable modelling of the stress distribution around the crack if r e ~ a. This part of 
the fracture mechanics is called "small-scale yielding" contrary to fracture problems 
where the plastic area has the same extent as the crack length ("large-scale yielding"). 

If the load (o) applied to a test specimen with a well defined initial crack (2a) is 
increased slowly, it is found that when the load takes a certain value (0.c), then the crack 
will grow quickly with a brittle fracture as a consequence. From Eq. (7.3) a 
corresponding critical value K c of K I can be determined: 

K C = cr c v/~ a f ( a )  (7.5) 

The reason for introducing the stress intensity fac tor  K C instead of the stress 0.c is that 
K c has proved to be almost independent of crack and material geometry and of the load 
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distribution. The only parameters affecting K C with clear effect are the thickness h of 
the plate and the temperature. 

Figure 7.6 

Kc 

Kxc 

,~- plane strain 

thickness h 

Qualitative variation of the critical value Kc for the stress intensity factor with 
the material thickness. 

Figure 7.6 shows the qualitative variation of Kcwith the materials thickness h. It is seen 
that the lowest value of K C is found when the material thickness is large, corresponding 
to plane strain. This lower limit is denoted the fracture toughness Kxc , and it is tabulated 
in the literature on fracture mechanics for a large number of materials. The fracture 
toughness can be considered as a material constant like for instance the yield stress. It 
should be noted that KIC can be very dependent on temperature. Figure 7.7 shows the 
qualitative variation of KIc with the temperature Tfor typical steel alloys. The transition 
range which marks the transition from brittle to ductile material can, especially for steel 
alloys, be very small (50 ~ A comparison of Figure 7.4 and Figure 7.7 indicates that 
the experimental impact strength is related to KIc. 

Figure 7.7 

K~c I ductile 

i I 
I I 

I I 
I I +=_ 

T 
Qualitative variation of the critical value K1cfor the stress intensity factor with 
temperature. 

With a given value of K c (or KIC if the material thickness is large), Eq. (7.3) gives 

2a = 2 ac) ==- 2ac (7.6) 

where 2ar is denoted the critical crack length. For a given load ~ a crack with an initial 
length larger than 2ar will become longer. It is seen from Eq. (7.6) that if a given 
minimum critical crack length is used as a requirement of the ductility of the material, 
then the required fracture toughness K C must be proportional to the design load. This 
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must be taken into consideration when high strength steel is used, as such steel grades 
normally have the same fracture toughness KIc as normal strength steel. Table 7.2 gives 

some examples for ac and related parameters. The above formula offers no possibility 
of judging if the crack propagation will be stable or unstable, i.e. continue until fracture. 
This is decided by the degree of brittleness of materials. For the materials which can 
be treated by the fracture theory given here ("small-scale yielding"), a momentary 
brittle fracture will as a rule occur if a >_ ac (o') and the load or is kept during the crack 
propagation. 

Table 7.2 Ductile properties 

Material T 
. 

( Cry (MN/m 2) KIc(MNI m312) 
rp 

(mm) 
2ac 

(mm) 
cr = Cry~2 

A e  (6061) 20 135 33 5 120 

~/e (7075) 20 310 .... 36 0.'35 8.4 
, ,  

Steel (AISI 4340) 0 750 33 0.05 1.2 

Steel (A533-B)  93 310 200 , 11 130 
, . ,  

Example 7.1.1 
Typical steel qualities used in ships have a yield stress of Cry = 270-500 MN/m 2 and, independent of 

this, a fracture toughness of K1c = 60-120 MN/m 3/2 at 20 ~ The choice of yield stress is normally 
determ, ined by the requirement that the maximum stress crmust not exceed a given percentage of Cry. 
If e.g. or= 0.670"y, Eq. (7.6) gives values for the critical crack length 2acas shown in Table 7.3. It is 
assumed that f(ac) = 1. 

Table 7.3 Critical crack lengths. 

KIc 

60 M N / m  3/2 

120 M N / m  3/2 i 

270 

M N / m  2 

700mm (h > 120mm) 

280mm (h > 490ram) 

5OO 

M N / m  2 

20mm (h > 36mm) 

80mm (h > 140mm) 

The critical crack lengths presented in Table 7.3 must be multiplied by Kc/KIc,  if the material 
thickness is smaller than 2.5 (Kic/~ry)2, being approximately the lower limit on h where a plane strain 
state can be assumed. This value is also given in Table 7.3 in parentheses. Only for the combination 
O'y = 500 MN/m 2 and KIC = 60 MN/m 3/2, the assumption K C = KIC will be reasonable for plate 
thicknesses of current interest. As the relation Kc/Kic may be considerably larger than 1, the results 
in Table 7.3 thus represent a rather conservative estimate of the critical crack length. 

Because the critical crack length and the fracture toughness increase with decreasing material thickness 
it is necessary to change to a better material (larger KIC ), if thicker plates are to be used (at unchanged 
loading). As typical examples where steel with large fracture toughness will be used may be mentioned 
deck corners in ships. 
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7.1.3 Fatigue Strength 

The preceding section dealt with materials with built-in defects (cracks) exposed to a 
static load. This led to the concept of critical crack length (2ac): 

2ac = 2ac(tr) (7.7) 

giving the maximum length which a crack may have without growing with possible 
fracture due to a static load ~r. Thus, crack lengths smaller than 2ac pose no structural 
problems as regards a static load. 

This might not be so if the load cr varies periodically in time t about a mean stress ~rmean: 

~(0 --" (7mean + �89 s i n ~ o t  (7.8) 

with or(t) representing a tensile stress in at least some time intervals. 

Even if the stress intensity factor* 

K m a x  = (~rmean + �89 ~-~ f(a) (7.9) 

defined by Eq. (7.3) is smaller than the critical value K o an initial crack of the length 
2ao will grow slowly with each cycle. When the crack length reaches the value 2ac, 
fracture will normally take place almost instantaneously. If the crack length is plotted 
as a function of time t or number of periods N in the load, a qualitative behaviour as 
shown in Figure 7.8 will be obtained. 

c rack  length 

2a~ U ..... 

Nc N : ~)t/2TT 

Figure 7.8 Crack growth during cyclic loading. 

Measurements have shown that the crack propagation velocity, defined as da/dN, is 
essentially only a function of the stress intensity variation AK: 

AK = K m a x  - K m i  n 

= ~rmean + ~A~r 

= Zlty f - ~  f(a) 

* As earlier only Mode I is considered here, for other types of cracks, as e.g. surface cracks, relevant 
formulas must be used. 
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and the variation is typically as shown in Figure 7.9. 

For very low values of AK (range A in Figure 7.9), the crack will not grow. The limit, 
AKt, between ranges A and B is difficult to determine experimentally and here just an 
example, concerning normal strength steel is given: 

A K  e = 7.6 - 4.3 R MN/m 3/2 (7.11) 

where the stress ratio R is defined as 

R __ 
O'mi n _ Kmi n _ ( r m e a n  - 0.5Ao'  (7.12) 

O'max Kmax ~ m e a n  "]- 0.5Ao" 

If Eqs. (7.11) and (7.12) are inserted in Eq. (7.10), it is seen that cracks with a length 
smaller than 2ao, where 

ao = i ~f(a)A(r]  
(7.13) 

do not grow. 

Figure 7.9 

, -~ 
! 

Iog(AK|' l . . . .  Iog(JKu) 
Iog(AK ) 

Typical variation of the crack propagation velocity da/dN as a function of the 
stress intensity factor AK. 

In range B in Figure 7.9 the crack velocity is small, sometimes in the order of magnitude 
of one atom lattice distance per cycle. A quantitative description of the relation between 
AK and da/dN cannot be given in this area. 

In a welded structure the initial crack lengths 2a and the cyclic stress variations A~r are 
usually so large that AK, given by Eq. (7.10), already from the beginning lies in range 
C in Figure 7.9. Extensive measurements show that in this area, a linear relation holds 
between ln(da/dN) and ln(AK), implying 

da _ C (AK) m (7.14) 
dN 

The formula is due to Paris, who also proposed the exponent m = 4. Later experimental 
results have given values of m between 1 and 15, with most of the values in the interval 
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3 to 4. When the crack length 2a has grown to a value near the critical crack length 2ac, 
AKwill be so large that the velocity of the crack propagation rises steeply corresponding 
to range D in Figure 7.9. The upper bound of AK - AKu is determined by Kmax -- K C 
or, as AK = (1 - R) Kmax according to Eqs. (7.10) and (7.12): 

AKu = (1 - R) K C (7.15) 

As mentioned, the initial crack length 2ai is normally so large that the crack propagation 
starts in range C. Hence, one of the most important results which the present fracture 
mechanics analysis can give is the remaining lifetime of the material, defined as the 
number of load periods Nfbefore fracture takes place. This value is determined by the 

integration of Eq. (7.14) from a = a i to a = ac: 

ac 

= f da (7.16) 
Nf C (f~lAo')m a, a~ (f (a)) m 

as the relatively few periods (102 - 104) occurring in range D can be neglected in 

comparison with the number of periods (10 7 - 10 9) in the range C. 

Thus, from Eq. (7.16) the remaining lifetime of the material Tf = 2~Nf/oo can be 

determined for a given crack length (2ai) in a given material (characterised by C, m) 
and by a given load, am, Act, with the given frequency w. 

Iffcan be assumed to be independent of the crack length, Eq. (7.16) can be integrated 
to 

l - m ~ 2 _  al -m/2 
ac i 

Nf  --- C (f v~ Zcr)m(]. - m/2) 
; m ~ 2  

(7.17) 

The fatigue strength of materials (and welds) are normally described by WOhler curves 
or S-N curves, which gives the number of periods Nf before fracture for a constant 
stress variation Act" 

N[ = N[(Acr) (7.18) 

It is seen from Eq. (7.16) that 

Nf = A (Act)  - m  (7.19) 

o r  

logNf = log A - m log (Ao') (7.20) 

Figure 7.10 shows qualitative S-N curves for welded details. Quantitative S-N curves 
can be found in e.g. Fricke et al. (1997, 1998) for welded joints in ships. 
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Figure 7.10 S-N curves for welded detail. 
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Curve A shows an S-N curve where Eq. (7.20) applies with a constant exponent m for 
all stress amplitudes. This form can be used for welds in corrosive environments. Curve 
A is also representative of aluminium alloys. Curve B represents an S-N curve where 
stress amplitudes below a level Acru have no influence on the fatigue strength (the crack 
propagation). Curve B can normally only be used for fatigue calculations for details in 
non-corrosive environments (e.g. in air). 

Finally, curve C shows an example of an S-N curve where the exponent depends on the 
stress amplitude. This may be a suitable description, but usually experimental 
determinations of S-N curves show so large scattering of the results that such a variation 
in m cannot be determined. This scattering is also the reason why S-N curves are 
normally given with their statistical standard deviation s. The curve 

log N f  = log A - m log (A ~r) - 2 log s (7.21) 

corresponding to the mean S-N curve corrected for twice the standard deviation is often 
used in design, as the probability that the real S-N curve is below this curve is 2.3 %, 
on the assumption that the measured results used for determination of the S-N curve 
are statistically normal distributed. This curve is indicated in Figure 7.11. 

log(Act) 

�9 ~ .  m e a n  

: �9 : : :  

Figure 7.11 Mean S -N  curve Eq. (7.20) and S-N curve, calculated so that only 2.3% of 
the measurements are below the curve Eq. (7.21). 

S-N curves for test specimens made of material taken at some distance from welds are 
influenced by a possible mean stress tTmean , as seen from the relation 
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2 I(K   1__R,2 
ac-- - .  ~ 

A so-called Smith diagram can be used to correct the S-N curve for the influence of 
the mean stress. 

For welds the mean stress can be assumed constant and equal to the yield stress of the 
material under tension. The reason is that such stress state is found around the welded 
seam in the form of residual stresses produced by the solidification and the subsequent 
shrinkage of the welded seam. Therefore S-N curves for welds are usually not corrected 
for the mean stress. It should be noted that the nominal stress calculated by e.g. beam 
theory must be corrected for stress concentrations due to weld geometry, misalignment 
and distortion as specified in connection to the S-N curve to be applied. Some very 
useful stress concentration factors are given by Ximenes et al. (1997). 

So far it has been assumed that the stress variation Act was kept constant until fracture 
and the S-N curves are determined on this assumption. However, real structures are 
usually exposed to loads of varying amplitudes. A relevant example is wave-induced 
loads, which will give varying stresses in the hull. Hence, it is not a constant stress 
amplitude which will lead to fatigue fracture, but the cumulative effect of all stress 
amplitudes. There is no rational theoretical calculation procedure for this effect, but an 
empirical relation called the Palmgren-Miner rule: 

~ Ui 
i=1 ~-fi = D, (D > 0 . 1 -  1 ~ fatigue failure) (7.22) 

gives a description which can be used. In Eq. (7.22) N i is the total number of load 

periods with stress variations close to A~ri, and Nfi is the number of loads before fracture 

at a constant stress variation A~ri, as determined from the S-N curve. To evaluate Eq. 

(7.22), the stress variation range 0 __<_ A~r _< A O'max is divided into an appropriate 
number n of discrete values A cri, i = 1,2...,n, and the number of loads N i within each 
range is determined from the load analysis. An example of this is given in Section 7.3.4 
for a stochastic stress variation. 

The main drawback inherent in the Palmgren-Miner rule is that it takes no account of 
the succession of occurrence of each individual stress variation. Measurements have 
proved that small stress variations occurring just after major stress variations will 
reduce the fatigue strength much more than if the succession of these stress variations 
was reversed. This sequence effect is taken into account in the rain-flow counting, peak 
counting and range counting methods, see e.g. Madsen et al. (1986). 

Finally, it should be mentioned again that high strength steel usually has no better 
fatigue properties than normal strength steel, as it is rather the ductility of the material 
than its yield stress which determines the fatigue life of the material, especially if the 

number of periods before fracture is larger than 104 - 105. 

A detailed and comprehensive description of the assessment of fatigue strength related 
to ship structures is given by Fricke et al. (1997, 1998) and strongly recommended for 
further readings. 
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7.1.4 Corrosion Resistance 

By corrosion is meant a chemical decomposition of materials under the influence of the 
environment. For ships it is especially the destructive effect of sea water on steel alloys 
which poses problems, but also possible corrosion in tanks and pipes with oil, water and 
chemical liquids should be considered. 

The corrosion process is in principle the same for all metals. It is here exemplified by 
steel in contact with water. The chemical process is as follows: 

1 Fe + ~02 -Jr- n 2 0  ~ Fe (OH)2 (---~ Fe (OH)3 , nil20 ) (7.23) 

i.e. iron + oxygen + water --+ rust where rust is a mixed ferri - oxide - hydroxide. 

Thus, rusting requires admission of both oxygen and water to the iron in steel alloys. 

If an unprotected ordinary steel plate is placed in sea water, the plate will becoming 
0.5-1.5 mm thinner annually due to corrosion. As a ship is designed for 20 years of 
operation, such a corrosion rate is unacceptable. 

To limit the corrosion the following methods can be used, either together or separately: 

�9 Painting 

�9 Cathodic protection 

�9 Inhibitors 

�9 Alloy materials 

Cathodic protection is obtained by attaching a material with a lower electrochemical 
potential than iron into electric contact with the steel. Thus, the corrosion of the steel 
will cease at the expense of the other material (the sacrificial anode), usually zinc or 
aluminium. The process is illustrated in Figure 7.12. 

Figure 7.12 Cathodic protection. 

It is seen from the reaction (7.23) that oxygen must be present in order that corrosion 
can take place. Corrosion in tanks with a limited quantity of liquid can therefore be 
prevented by addition of oxygen-consuming substances (inhibitors, e.g. nitrite and 
borate) in so far as this is allowable in consideration of the later use of the liquid. 
Alternatively, the access of the oxygen to the iron in the steel can be impeded either by 
physical separation (with paint or epoxy) or by addition of alloy materials to the steel 
(stainless steel). 

Finally, it should be mentioned that corrosion problems for aluminium are minor, but 
also that welds and bolted joints between iron and aluminium will lead to quick 
corrosion of aluminium if the joints are exposed to sea water. 
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From a structural point-of-view corrosion poses two problems. One concerns the 
reduction of plate thickness as a consequence of corrosion. This is usually taken care 
of in the design by providing the structural elements exposed to corrosion with an 
increase of thickness, not included in the structural analysis. 

The other problem concerns the fatigue strength of the material, as this changes due to 
corrosion. These changes may be described as a change of the parameters C and m in 
Eq (7.14), which gives the crack propagation velocity da/dN as a function of the stress 
intensity variation AK. For instance cathodic protection may lead to increased crack 
propagation velocity and hence lower fatigue strength. The reason for this seems mainly 
to be hydrogen separated by the cathodic protection. 

7.2 HULL GIRDER STRENGTH 

The two main failure modes of the hull girder is fatigue failure and collapse of the hull 
girder due to an excessive vertical bending moment. In the fatigue failure analysis linear 
elastic stresses are compared to the capacity of the structural element given by their S-N 
curves, Eq. (7.22). This analysis is considered later in Section 7.3.4. 

The collapse strength of the hull girder can, however, only be determined by a 
non-linear elastic-plastic structural analysis, taking into account buckling failure of the 
individual plate panels in compression. Different methods exist to calculate the hull 
girder collapse strength ranging from a full non-linear finite element analysis to 
ingenious engineering models. Among the latter is a method proposed by Caldwell 
(1965). Basically the collapse is assumed to take place between two adjacent transverse 
frames, which are assumed undeformed such that plane sections remain plane. With this 
assumption the deformation of all longitudinal strength elements are coupled together 
and from the force-elongation curve for the longitudinal and girders with attached 
plating the moment-curvature relation for the hull girder until collapse can be 
established. Since the method was proposed in 1965 significant improvements have 
been suggested, notably Smith (1977), Rutherford and Caldwell (1990), Yao and 
Nikolov (1991, 1992) and Hansen (1996). A detailed discussion is outside the scope of 
the present treatment and only some results from the literature are given below. In the 
analysis due account is taken of imperfections in the structure as specified by the 
out-of-straightness of stiffners and platings and by welding-induced residual stresses. 
The results are compared to the first-yield moment My, defined as 

My = ~ry Wy (7.24) 

where Wy is the elastic section modulus, Eq. (5.7), is the deck or bottom, whichever 
smallest. An applied moment larger than My will thus lead to longitudinal stresses larger 
than the yield stress ~ry. For comparison also the plastic moment Alp is used. This 
moment corresponds to a longitudinal stress state with cr = ~ry throughout the section. 
Hence 

Mp = ~ry Wp (7.25) 

where Wp is the plastic section modulus, given as 



302 Hull Girder Reliability 

Wp = A (el + e2) (7.26) 

HereA is the area of the longitudinal structural members in the cross-section and el, e2 

are the vertical distances to the geometrical centre of the areas A above and below the 

horizontal axis, that divide the area A into two equal parts. The two moments My and 
Mp are illustrated in Figure 7.13. For typical ship sections Wp is 15-25 per cent larger 
than Wy. 

My 

,,n.  - -  

i-i 

O'y O'y 

(o.) (b) O'y 

Figure 7.13 Stress distribution ~ for the first-yield moment My and the plastic 
moment Mp. 

Figure 7.14 Midship section of the container ship. 
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A collapse analysis of a container ship was performed in Hansen (1996). The ship is 
190 m long with a deadweight of 34,150 tons. The midship section is shown in 
Figure 7.14. The frame spacing for the bottom structure is 1.634 m and 3.268 m for the 
side structure. The material parameters and imperfections are chosen to be those in 
Table 7.4 and the sectional parameters are given in Table 7.5. 

Table 7.4 Material parameters and imperfections for the container ship. 

oY 356 M N / m  2 Yield stress for upper side structure 
, , ,  

236 M N / m  2 Yield stress for lower side and for bottom structure 

OR oy/lO Residual stress 

6p t /]0 Plate imperfection (t = plate thickness) .... 

" ds 1/500 ' Stiffener imperfection (l = frame spacing) 
. .  

Table 7.5 Cross-sectional parameters for the container ship. 

Sectional area A 1.43 m 2 

Moment of inertia ly 54.6 m 4 

Position of elastic neutral axis (from BL) 6.64 m 

Plasticmoment Mp . . . . .  2.32 G N m  
,,  

Position of plastic neutral axis (from BL) 7.39 m 

Elastic section moduius (deck)Wy 4.98 m 3 

Elastic Section modulus (bottom) Wy 8.23 m 3 

Elastic moment (first yield)My 1.77 GNm 

Mp 

My 

o 

- 0.0006 

- M y  

- M p  

SAGGING ~ HOGGING M / N r n  
2,5 x 10 9 

2.0 x 10 9 

1.5 x 10 9 

1.0 x 10 9 

0,5 x 109 

0 

- 0 .5x  109 

- 1 . 0  x 10 9 

- 1 . 5 x  10 9 

-2 .0  x 10 9 

-2 .5  x 10 9 
- 0 . 0 0 0 4  - o . o o o z  0 o .oooz 0 .0004  0 .0006 

e/rad 
Figure 7.15 Moment vs rotation for the container ship. Hansen (1996). 
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The applied moment as function rotation is shown in Figure 7.15. The rotation 0 is 

related to the curvature tc of the hull girder by 0 = / tc where l is the frame spacing of 

the side structure (3.268 m). Collapse in sagging begins by compression failure of the 
extreme deck stiffeners but later in the loading history, collapse is dominated by tension 
failure of the bottom structure. Collapse in hogging is purely due to compression failure 
of the bottom structure. 

Normally the hogging collapse moment is expected to be numerically larger than the 
sagging collapse moment. However, this was not found in this analysis. 

A collapse analysis of a VLCC was also performed in Hansen (1996). The VLCC 
tanker is 320 m long with a deadweight of 280,000 tons and it is built as a single plating 
construction with a frame spacing of l = 5.316 m. The midship section is shown in 
Figure 7.16 and the material parameters and imperfections are chosen to be those given 
in Table 7.6. The sectional parameters and imperfections are given in Table 7.7. 

The moment vs rotation is shown in Figure 7.17. Collapse in sagging is purely 
controlled by compression failure of the deck stiffeners, while collapse in hogging is 
controlled by both compression failure of the bottom stiffeners and yielding of the deck 
stiffeners. 

Table 7.6 Material parameters and imperfections for the VLCC. 
. . . .  

ay 310 M N / m  2 Yield stress 

a R ay/lO " Residuai stress 
, ,  

dp t/20 Plate imperfection (t = plate thickness) 

d s 1/200 . . . .  Stiffener imperfection (1 = stiffener spacing) 
. . . . . . . . . .  

Ll11.11111111 l - f r r r f f r r r r r l r r  

Figure 7.16 Midship section of the VLCC. 
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Table 7.7 Cross-sectional parameters for the VLCC. 

Section area A 3.54 m 2 

Moment of inertia Iy 531.7 m 4 

Position of elastic neutral axis (from BL) 14.0 m 

Plastic moment Alp 12.3 GNm 

Position of plastic neutral axis (from BL) 12.6 m 

Elastic section modulus (deck)Wy 32.6 m 3 

Elastic section modulus (bottom) Wy 38.6 m 3 

Elastic moment (first yield)My 10.1 GNm 

Figure 7.17 Moment vs rotation for the VLCC. Hansen (1996). 

From Figure 7.15 and Figure 7.17 it is seen that the ultimate moment capacity, i.e. the 
collapse strength, of the ships considered is close to the first-yield moment My both in 
sagging and hogging. This is generally so for most types of merchant ships, see 
Figure 7.18, taken from ISSC (1994). However, this is not a design criteria, but a result 
of a proper selection of dimensions of the individual plates and stiffeners. The principle 
behind this selection is mainly govern by the local buckling strength, a topic not covered 
here. 
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i LxB• 
No. (in Meter) 

" 1 : 21'5'rx 32 .2  X ' 1 7 . 8  

2 "217"x '32.26"x 18.3 
3 2r6 x ;t5 x 24.~ "' 

:4 247.4 x 36.2 x 21.8 
5 " 3 1 5 X 5 7 X  30.8 

6 31~ x 5 8 •  30,4 
.... f ]$~x 30 x la.2. 

8 815 x 52 x 2SL4s 
9 180 x 32.26 x 30.55 

230"x 32.2 x 2i.5 

[ . . . . .  
MY I "M'p/My'MI~s/MY Mr/s/MY M, pH/M Y M~f./My (~To.S.m) 

.... 0.5405x10 ~ 1'1~34 . . . .  0.9204 0 ~ 9 8 1 3  0.9251 ' "  1.103i' 
0'~'592 xlO '~ 1.2~i6 0 .849~i  0.9312" 0.9408 1.1296 
0.1344 x 10 z ' 1.1584 ' 0.8702 
o.7917 x'io ~ 1.226o o.95oi 

0.2193 x lO 7 1 . 2 6 8 1  0.9134 
' 0.2098 XlO z 1.4i47 0.9214"' 

0.2912 x 106 1 . 6 3 2 6  0.8908 
0.195'i xlO a 1 . 1 8 8 6  0.9846 

i 0.4892x10 # 1 . 6 4 9 2  0.4583 . . . .  

0.9400 0.9470 1,0803 
1.6213 .... 0.95'53 ' 1.1698 

0 . 9 2 3 4  1.0119"  IA172 
0.9473 '-1.0119 - 1.2312 
1.0251 i.0261 1:,t214 .... 

...... 1.0359 0.9800 ' 1.1220 
03482 0.9663 1.2122 ,,, 

Mr:  Initial Yielding Strength . Mp: Fully Plastic Bending Moment 
MFS: Initial Member Collapse Strength under Sagging Condition 
Mr~s: Ultimate Strength under Sagging Condition 
Mr/t: Initial Member Collapse Strength under Hogging Condition 
Mr/u: Ultimate Strength under Hogging Condition 

No.l: Bulk Carrier No.2: Bulk Carrier No.3: Bulk Carrier No.4: Oil Tanker 

No.5: VLCC No.6: VLCC (Double Hull) No.7: Product Carrier 

No.8: Ore Carrier No.9: Car Carrier No.10: Container Carrier 

Figure 7.18 Collapse strength of various types of ships. ISSC (1994). 

7.3 S T R U C T U R A L  R E L I A B I L I T Y  

In the structural assessment procedure the load and the strength are compared taking 
into account the inevitable uncertainty in both results. The aim is to assure that the 
probability of failure is sufficiently low, given the economical and environmentally 
consequences of such failure. Previously, most assessment methods were deterministic 
in the sense that an assumed upper limit of the load (~re) was compared with an assumed 
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lower limit of the strength (as)*. The requirement, the so-cal led limit state format,  was 
then simply 

(tTS)lowe r > (tTe)uppe r (7.27) 

However, rational values of these upper and lower limits could only seldom be defined 
for real structures. With the construction of larger, more complicated and 
environmentally sensitive structures (nuclear power plants, large bridges, dams, 
offshore oil production plants etc.) the need for better, more rational methods was 
obvious. Out of this has developed within the last 30 years the very powerful structural 
reliability theory. Several excellent textbooks are available, Madsen, Krenk an Lind 
(1986), Melchers (1999) to mention just two very eminent books. The present treatment 
will only outline some of the pertinent features of structural reliability theory with the 
textbooks mentioned above as obvious choices for further readings. 

Basically, structural reliability assessment can be divided into four levels of different 
complexities. 

Level 1 is the lowest level. It corresponds roughly to Eq. (7.27) but with the rather 
arbitrary lower and upper limits replaced by characteristic values derived from the 
assumed probability distributions of t~s and t~e. Safety factors are multiplied on these 
characteristic values to account for known and unknown (!) uncertainty in our 
mathematical modelling of the load and strength processes. The safety factors should 
also reflect the consequences of a failure. Various codes have been formulated in this 
so-called partial safety factor format and the ship classification society rules for ships 
and offshore structures can be considered among them. It is the most common 
procedure today. 

Level 2 methods apply the basis statistical knowledge (mean, variance and correlation) 
of the pertinent parameters in the load and strength models to arrive at a nominal 
probabili ty offailure, usually expressed in terms of a reliability or safety index to avoid 
too much focus on the number itself. 

Level 3 methods aim at a direct calculation of the probability of failure using the full 
joint probability distribution of all relevant parameters. The result becomes strongly 
dependent on the modelling of the tails of the probability distributions involved. This 
tail sensitivity makes the use of Level 3 methods very difficult in practice as for instance 
the tail in the response is rather uncertain. 

Level 4 methods are extensions of the Level 3 methods and include the consequences 
of a failure in economical and environmental terms. Thereby these methods may be 
considered as a decision support tool as it can be used to compare the overall (life cycle) 
cost of various alternatives. 

In the following Level 1, 2 and 3 methods will be discussed and exemplified by 
problems related to hull girder collapse. 

Although the procedures can be applied for both fatigue failure and for ultimate limit 
state failure; i.e. hull girder failure due to an excessive bending moment the focus is on 
the latter failure mode. Fatigue failure is only considered in Section 7.3.4. 

The use of o to denote the load and strength variable is taken because often stresses are compared. 
However, other measures might of course be used, e.g. bending moment as long as corresponding 
values of load and strength are compared. 
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7.3.1 Level 1 - Partial Safety Factors 

It is assumed that the load er e and the strength ers are statistically independent stochastic 
variables. Their probability density functions are denoted Ps(ers) and pe(~re), 
respectively, and they are assumed known, derived from say, a combination of 
theoretical analyses and measurements. An example can be a Rayleigh distribution for 
the load and a normal distribution for the strength. 

In the partial safety factor method the model uncertainty is divided into two main 
groups: The objective uncertainty and the subjective uncertainty. The first group 
comprises the stochastic description of the load and the strength as specified by the 
probability density functions Pe(ere) and Ps(ers). The subjective uncertainty covers the 
remaining uncertainty, notably the expected modelling accuracy of the load and 
strength analysis and the consequences of a failure. The subjective uncertainty cannot 
be calculated but has to be assessed from past experience and the economical, 
environmental and social consequences a failure may infer. 

The objective uncertainty is described by characteristic values, erec and ersc, 
representing values of the load and strength which seldom will be exceeded from below 
and above, respectively: 

P(cr e > ~rec ) = a e ~ 1 
P(as < asc) = a~ ~ 1 (7.28) 

where a e, as  typically can be of the order 0.01-0.05 when the period considered covers 
the expected lifetime of the structure. The ultimate limit state format, Eq. (7.27) can thus 
be written 

Osc >-- O ec (7.29) 

provided the analysis is completely in accordance with the physical realities. This is 
never so for real complicated structures as e.g. the hull girder. Hence, safety factors have 
be to included to account for the subjective uncertainty. In the simplest case one central 
safety factor  ?, > 1 can be applied: 

asc > ?'aec (7.30) 

where 7 normally is factorized as, say, 

Y = ?'c Ya Ye ~'s 

to account individually for different uncertaincies: 

Ys: model uncertainty in the strength analysis (Ys = 1.0 - 1.2) 

?'e: model uncertainty in the load analysis (?'e = 1.0 - 1.6) 

?'a: consequences due to loss of serviceability ( T m  - -  1 . 0  - -  1.4) 

?'c: consequences due to loss of safety (?'c = 1.0 - 1.4) 
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Subsequently, the responsible authorities must specify values for these safety factors. 
Typical values are indicated above in the parentheses and the actual values depend on 
the analysis method, the material quality, the inspection and repair procedures during 
operation and the consequences of failure. The partial safety factor method is illustrated 
in Figure 7.19. 

l oad  Or t t r e n g t h  0 s 

' pt( ci ) Ps( cl ) 

-% II 

Figure 7.19 The partial safety factor method, fJ 

In real applications, a large number of different load cases are to be combined, e.g. still 
water loads and wave loads. The model uncertainty may be different for each load case, 
necessitating different partial safety factors. The same holds for the strength as e.g. 
material yielding in tension is much better understood than compression failure of plate 
panels. Thus different collapse mechanisms may have different partial safety factors. 
A general ultimate limit state formula is therefore for each failure mode 

•sc ~ 7c 7d 7s 7ei ~reci 
Li=I ~,j 

; j = 1,2,... (7.31) 

where j is the number of load combinations (e.g. various operational conditions (ballast 
laden), collision, grounding, docking), i the number of load types (e.g. still water loads, 
wave loads, collision load). Many design codes and standards are today based on this 
method. It is easy to apply but the main problem is the selection by the authorities of 
appropriate values of the partial safety factors. However, by breaking down the central 
safety factor in Eq. (7.30) in various subelements, Eq. (7.31), the experience from one 
type of structure can more easily be transferred to another structure because on an 
element level they might look alike. 

.Example 7.3.1 

The Danish Code of Practice DS 449 (1984) is based on the partial safety factor method. The various 
partial safety factors named partial coefficients for the action (i.e. loads) and the material parameters 
( i.e. the strength ) are given in Figure 7.20. 
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Table 5.2.1 Action combinations and partial coefficients for actions 

action combination 

use failure 

type of action 2.1 

a b c d 

failure failure accident 

2.2 2.3 3.1 3.2 

a,b,c,d 

permanent action 
dead load 1.0 1.0 1.0 1.0 1.0 0.9 1.15 1.0 1.0 

dead load of 
soil and hydro- 
static water 
pressure 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

variable action 
imposed action 1.0 1.32 1.0 1.0 1.0 as 2.1 0 1.0 1.0 

a,b,c,d 
natural action 

waves and 
current 4 '  0.75 1.3 1.0 0.75 0 1.0 ~ 0 
wind ~ 0.5 1.0 1.3 0.5 0 1.03 0 

snow and ice ~o I 0.5 0.5 0.5 1.3 0 0 0 

action from 
deformation 1.0 1.0 1.0 1.0 1.0 1.0 0 0 0 

accidental 
action 0 0 0 0 0 0 0 0 1.0 

Table 5.2.2 a. Partial coefficients for steel parameters 

action combinations 2 and 3.1 

safety class 

material parameters normal high 

yield stress fy 1.09 1.21 
tensile strength fu 1.34 1.48 

punching strength rg 1.21 1.34 

modulus of  elasticity E 1.34 1.48 

coefficient of  friction p: 
normal  friction joints 1.09 1.21 

unlimited slip possible 1.34 1.48 

F igu re  7.20 Partial safety factors in the Danish Code of Practice (1984). 

For a complete description of the use of the values in the figure, the code should be consulted. Here 
only a few comments are given. ~ 

The code does not consider explicitly serviceability but only failure. The consequences of a failure are 
divided into two safety classes: normal and high as applied to the partial coefficient for strength Vs. 
It should be emphasised that Ys represents the uncertainty in the analysis model, for instance the 
approximate description of buckling failure of panels. This is the reason for the large safety factor on 
the modulus of the elasticity E, which of course in itself is a very accurately known parameter. 
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7.3.2 Level  2 - Second M o m e n t  Reliability Method 

The partial safety factor format makes use of the probability distributions of the load 
and strength to define some characteristic values, Eq. (7.28), depending mainly on the 
lowest statistical moments of the load and strength processes. Thereby, the method does 
not give any information of the probability that a failure will occur, but rather define 
a safe set of load and strength parameters, Eq. (7.31). 

If the probability distributions of the load and strength are known exactly, then the 
probability of failure Pf can be calculated as, see Eq. (3.56) 

co o- e 

m O O  m O O  

CO CO 

= I Pe (ae)Fs (ae) dae = l - f Fe (os)Ps (as) dcrs 
~ C O  ~ C O  

(7.32) 

provided the load and strength processes are statistically independent. The result is 
illustrated in Figure 7.21. 

�9 , . . . . . .  ~ , , . ,_  

Figure 7.21 Illustration of the calculation of the probability of failure, Eq. (7.32). (Note 
that the common area below both curves is no___!t the probability of failure). 

Rather than considering the load and strength individually in the calculation of the 
probability of failure, a safety margin o" m can be defined 

am = O's - cre (7.33) 

The probability of failure Pf can then be written 

0 

Pf = P(qm < O) = f p,n((;rm)d~rm = Fro(O) (7.34) 
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An analytical solution is readily obtained if both the load and strength are normal 
distributed. Then also the safety margin becomes normal distributed, see e.g. Section 
3.1.7, with mean value 

~trn = ffs -- ~t e 

and variance 

- -  + 

Hence, from Eq. (3.18) 

-- ~t m [ ~t s - ~z/? ] 
pf__  Fro(O,- " r ) = 4 - ~2~.--$2 ) (7.35) 

or 

P[ = 4 ( -  tic) (7.36) 

with the safety index tic defined as, Cornell (1969) 

~c - Pm _ kts - Ire (7.37) 
Sm v/S2s nt_ s~ 

In the Level 2 methods all variables are assumed normal distributed and hence alone 
characterized by their mean and standard deviation. Therefore the name: Second 
moment  methods. 

The border line between the safe and failure region is given by the limit state or failure 
function 

G(a,,ae) = a , -  cre = a m  = 0 (7.38) 

with the property 

G(as,ae) < 0 for as, a e E F 

G(as,ae) > 0 0 s ,  a e E S 
(7.39) 

where F and S denote the failure and safe sets of combinations of ~rs, ere. 

Generally, both the load ~r e and strength ~rs are function of other stochastic variables, 
e.g. geometrical and material parameters. These basic variables are denoted X i and 
hence Eq. (7.38) can be written 

G(X') = 0 (7.40) 
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where X is a vector containing the basic variables. 

If the basic variables are statistically independent and normal distributed with mean fii 
and standard deviation s i and, furthermore the limit state function is a linear 
combination of X i 

n 

G(X) = a o + Z a i Xi = 0 
i=1 

(7.41) 

then the safety margin am 

n 

Crm "-- a 0 -J- Z a i X i  
i=1 

is normal distributed with mean value 

n 

tim = ao + Z a i f i  
i=1 

and variance 

n 

S 2 = Z ( a i  Si) 2 

i=1 

The safety index tic, Eqs. (7.36), (7.37), becomes 

n 

ao + Z ai f i i  

tic = (jb-l(pf) _ f i n  _ i=1 
Sm ...... (7.42) 

/~_~(a  i si)2 
i=1 

as a natural generalization of Eq. (7.37). The result can be given a geometrical 
interpretation if the basic variables X i are transformed to standard normal distributed 
variables Z i (with zero mean and unit variance): 

Xi - fii (7.43) 
Z i = si 

Expressing X i in terms of Z i and substition in the limit state function, Eq. (7.41) yields 

n n 

G(z) = .o + 2 . i , ,  + 2..,s zi = o 
i=1 i-1 

tl 

=- bo + Z bi Zi 
i=1 

(7.44) 
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and thus tic is simply the distance from the origin Z = _0 to the hyperplane G(Z) = 0, 
as measured in the n-dimensional coordinate system Z1, Z2,... ,Z n. This is illustrated in 
Figure 7.22 for n = 2. 

Z 2 

Y 

O(z) = b o*b lz 1*b 2z 2=0 

S-~(((//. F ~  ~blzz-bzzl  =0 
bo 

~ : - - - - ~ - - - 2 { b l ,  b z) 
...... ~{~/, .......... bl"* bz" 

Figure 7.22 Illustration of  limit state function G(Z_), design point D and safety index tic in 
a normalized two-dimensional space Z l, Z2. 

Extension to correlated normal distributed basic variables X i is straightforward, see e.g. 
Madsen et. al (1986), as G(Z) = 0 still is a line in n-space. However, if G(Z) = 0 is 
a non-linear function of Z_, then G(_Z) is a curved surface in n-space. It is not obvious 
then to define a proper safety index. One way is to linearize the limit state function 
around a point z0: 

+oGI (z- G(Z) ~--- G(z_o ) + i~=lCgZ---~lz, ' Zoi ) (7.45) 

and then use the result, Eq. (7.42), derived for linear limit state functions. Unfortunately, 
the result depends on both OG/Oz i and the choice of linearization point. Thus for 
instance the limit state function 

G(crs, ere) = a n - cr~ = 0 ; n > 1 

will yield different results for different n, see also Example 7.3.2. The most obvious 
linearization point is the mean value: z o = / z ,  but this point might be far away from the 
design point  i.e the most probable failure point  and certainly not on the limit state 
function. It is, however, often used and the corresponding safety index is called the 
mean-value  f irst-order second-moment  safety index and becomes from Eq. (7.45) 
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fiFO = -- 2 (7.46) 

For a linear limit state function, fiFO = tic as readily seen from Eqs. (7.42) and (7.46). 

The lack of invariance with respect to the limit state function and linearization point is 
solved by defining a new safety index flHL, Hasofer and Lind (1974), as the shortest 
distance in the normalized Z space from the origin to the limit state surface, Figure 7.23. 

flnL : min r  (7.47) 
G(Z) = 0 

For a linear limit state su r face  flltL -= tic and the design point D, is easily determined 
as shown in Figure 7.22. 

It should be stressed that only for a linear limit state surface Pf is exactly equal to 

~ ( -  flltL)" However, for other limit state functions, the error introduced by taking 

Pf = ~ ( -  flttL) is usually small if flltL > 3, because q~(- u) decreases rapidly for 

u > 3 "  

1 u2 
] e - ~  ; u > 3 (7.48) �9 ( -  . ) - - -  _=_ 

r // 

This implies that the contribution to Pf from the failure set F decreases rapidly with the 

distance u > flHL" 

In the general case where G(Z) = 0 is a curved surface, the design point D must be 
determined numerically as the point on G(_Z) = 0 closest to the origo. This problem 
can be formulated as an optimization problem similar to Eq. (7.47), see e.g. Madsen et. 
al (1986). 

The derivatives of the safety factor flHL with respect to the variables Z i are denoted the 
sensitivity factors. A small sensitivity factor imply that flHL does not vary much with 
changes in this variable, which then can be taken as deterministic in order to reduce the 
computational effort. Before doing so, a transformation back to the physical variables 
X i is necessary. 
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l y  
Z1 
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Figure 7.23 Def in i t ion  o f  the H a s o f e r - L i n d  safety index  flHL" 

Although the H a s o f e r - L i n d  s a f e t y  i n d e x  may have some deficits for highly curved limit 

state functions, it general ly provides a reasonable measure of the probabili ty of failure. 

The second moment  (Level  2) methods are very convenient  provided the basic variables 

are normal distributed. For marine structures, where the wave loads are far from normal  
distributed, the probability of failure can only be est imated by a Level  3 analysis. 

Example 7.3.2 

In order to illustrate the difference between the safety indices fiFO and fltIL consider a hull girder 
loaded by a deterministic (still water) bending moment M =/tin. The limit state is assumed to be 
yielding in a deck panel with a stochastic yield stress Y and section modulus W. Both parameters are 
taken as normal distributed with mean values fly,/2 w and standard deviations, Sy, Sw, respectively. 

The limit state function can be written in an infinite number of ways, satisfying Eqs. (7.38) and (7.39). 
Here two are considered: 

GI(Y,  W ) = Y W  - tt m = 0 

and 

Gz(Y ,IV) = Y - ~ = 0 

The first corresponds to comparison of bending moments and the latter of stresses. Both limit state 
functions are non-linear and the mean value first-order second-moment safety index fiFO is obtained 
by linearization around the mean values, that is by Eq. (7.45) with Zol = fly, Zoz = t~w: 

G1(Y , W) ~-- ~Uy l, tw - t~m + ~uw(Y - It),) + ~ y ( W  - ~llw) 

and 

G2(Y  , W) "-" ~y  - ~ + ( Y -  ~y) + ( W -  Hw) 

Hence from Eq. (7.46) 
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~ F 0 1  --" ~ y ~ w  -- flrn 

+  .ysw) 
+ 

and 

f iFO2 = 

t tl m 
Py -VTw 

2 ( sw) 
V - 1  ...._ 

_,_ 

where the coefficients of variation, Eq. (3.14) 

= s__zy 
Vy ~/y 

Sw 
�9 I j w - - - - - ~ w  

and the safety factor of the means 

fly flw 
) ' -  l~m 

have been introduced. As ~, > 1 it is clear that tirol and flEo2 are different, although the physical 
problem is the same. 

The invariant safety index flHF, Eq. (7.47), will be the same for both formulations as it does not make 
use of the derivative of the limit state function. The value can be obtained by replacing Y, W by the 
standard normal distributed variables: 

Y -  fly W -  flw 
Z 1  - Sy ' Z 2  - S w  

yielding 

G I ( Z I , Z 2 )  - -  ( S y Z l  -1- fly)(SwZ 2 + / / /w)  - tim --- 0 

or  

G2(Zl,Z2) = Gl(Zl,  Z2)/(swZ 2 + Itw) = 0 

and hence for both cases, the distance from (0,0) to G(Z1,Z2) = 0 becomes: 

• 

_.. 2 + S w(SyZtlllrn-[- t"ly) - -  S---w 

= + ! _ Z  
~,v~,vw(z~ + 1/Vy) Vw 

The Hasofer-Lind safety index flnL is defined as the minimum value of Z V / ~ .  For given values of 

Vy, Vw and ~' the solution is easily found by e.g. plotting ~ as a function of Z I. 
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As an example 

yields 

Vy = 0.10, v,, = 0.05 and ?' = 1.5 

~FO1 -- 2 . 9 8 1  

fiFO2 "- 4 .000 

tint, = 3 . 1 4 4  (for Z ! = Z1D - -  - -  2.94, Z 2 - Z2D - "  - -  1.10) 

A significant difference between the safety indices is clearly seen and only tint can be used to estimate 
Pf through Pf = @(flt4t). The design point D, i.e. the most probable values of Y and Wif failure occur 
become 

YD "- SyZ1D dr Fly -- ~ly(WYZlD q- 1 )  --" 0 . 7 0 6 ] , l y  

W o = swZ2o + Itw = ttw(v,/Z2o + 1) = 0.945/z,, 

corresponding to a yield stress 29.4 per cent below its mean value and a section modules 5.5 per cent 
below its mean value. 

7.3.3 Level 3 - Probability of  Failure 

In the Level 3 methods the "real" probability distributions of the basis variables X i are 

used. Otherwise, the analysis is generally the same as in the Level 2 methods. If only 
a few variables are needed to represent the load and strength, a direct calculation of the 
probability of failure Pf  may be possible. The simplest case is the one where the load 

er e and the strength Os are defined with their probability distributions. Then Eq. (7.32) 
gives the probability of failure as a convolution integral, easily carried out either 
analytically or numerically. Example 7.3.3 illustrates this case for a Rayleigh 
distributed load r and a normal distributed strength ers. 

In general, the probability of failure can be written 

Pf  = P(G(X) <_ O) = f ... I px__(_x) dx 2 ... dxn 

G(x) <_ O 

(7.49) 

for any limit state function G(x) = 0 depending on any number of basic variables X i. 
Here px_(x) is the joint probability density function of the basic variables. The number 
of integrals to be carried out is equal to the number n of basic variables. For a large 
number of variables it might be computationally very difficult to carry out all these 
integrals. A much more effective method is then often to make simulations of the 
behaviour of the system. This is called Monto Carlo simulations. Basically, all basic 
variables X i are sampled a large numberN of times and each time the limit state function 

G(X) is evaluated. From the definition (7.49) it then follows that 

p f  =_ N -  (7.50) 
N 
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where N -  is the number of times where G(X) turns out to be less than or equal to zero. 
In order to get a reasonable accuracy in P[, N has to be large. This is clear for instance 

that if Pf is of the order 10-4  then at least 10 + 5 simulations must be carried out. 

Various improvements of this direct sampling procedure can be made, see e.g. Melchers 
(1999) for a very detailed description. 

The Monto-Carlo simulation requires simulations of random variables with given 
distributions. Usually, a computer can generate a random number U uniformly 
distributed between 0 and 1. A basic variable X with the known probability distribution 
F(x) can then be generated from 

F(x) = P(X < x) = P(U < u) = u (7.51) 

implying that 

x = F -  l(tt) (7.52) 

Thus for instance a realization of a Rayleigh distributed variable X, Eq. (3.43), can be 
obtained as 

XRayleig h - -  6t f - -  ln(1 - U) (7.53) 

For a normal distributed variable X, the inverse probability distribution, Eq. (7.52), is 
not available in analytical form. Then a more convenient generation of realizations of 
X is 

Snormal-- r  U 1 cos(Za'U2) (7.54) 

where U 1 and U 2 are two independent realizations of U, see Example 7.3.4. Another 
normal distributed variable independent of Xnormal above is obtained by replacing 
cosine with sine. 

Finally, the use of the Hasofer-Lind safety index flHL, Eq. (7.47), can be generalized 
to cover non-normal distributed basic variables. In that case a method for 
transformation of a general set of non-normal dependent variables to a set of standard 
normal distributed independent variables is needed. The so-called Rosenblatt 
transformation, see e.g. Madsen et. al (1986) is here a very powerful procedure. 

From the value of tint, the probability of failure Pf can then be estimated as 

Pf ~- ~ ( -  flHL) (7.55) 

corresponding to a linearization of the limit state function G(Z) = 0 around the design 
point D. This is called a first-order reliability method (FORM) A second order 
reliability method (SORM) is obtained by retaining also the second order terms in the 
Taylor series expansion of G(Z) = 0 around the design point. Breitung (1984) has 
derived an expression for the probability of failure in the SORM analysis. Basically, Eq. 
(7.55) is modified by a term involving the curvature of the limit state surface around 
the design point as expected from the applied series expansion. 
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A final remark is that the present treatment is just a short outline of a very important 
field within structural design. The reader is strongly recommended to consult the 
textbooks mentioned previously for further readings. 

Example 7.3.3 
In a stationary sea the individual peaks in the wave load response is Rayleigh distributed, Eq. (3.242), 
provided the response is linear and narrow-banded: 

F e ( a t )  = 1 - e x p  _ 1  ae se ; ue > ~e 

Here se is the standard deviation of the wave response and ae is the corresponding deterministic still 
water response. 

The strength is approximated by a normal distribution 

ps(as)  = f-~sSeXp( - 1 (  as SsktS) 2) 

where fls and S s are the mean and standard deviation of the strength. Thereby, the probability of 
failure Pp Eq. (7.32) becomes 

oo 

Pf= 1 -  I Fe(a~)P~(as)da~ 

o e 

as the load a e > ae. After some algebra the results can be written, Mansour (1972) 

P f =  ~ ( - ~ / 1  +~]2) + l ~ ~ q ~ ( ~ ) e x p ( _ l f l z )  (7.56) 

where 

as 

and 

,us - a e 

Normally, the safety index fl is larger than 3 and thus the result can be approximated by 

t'I--- j1 +~ 

using Eq. (7.48). 

The corresponding first order reliability method (FORM) can be carried out as follows. The basic 
variables a e and as are replaced by the standard normal distributed variables Z 1 and Z z, defined 
through 
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Fe(~re) = q~(Zl)  

and 

G(~rD = r 

implying 

ere = se 7 -  21n (1 - @(Z , ) )+  ~e 

and 

~s = Ss Z2 + ~ts 

Thereby, the limit state function 

G ( Z I , Z 2 )  = ~ Y s -  (re = 0 

can be written 

G ( Z i , Z 2 )  = r/Z z + fl ~/1 + r/2 - 7 -  2In(1 - ~b(/l) ) = 0 

The Hashofer-Lind safety index flHL is obtained from Eq. (7.47) 

flt4t = min 
c ~ = 0  

or 
! 

minSP -d, ] zl flHL = z,c=/ct[r # -~7-21n(1-+(Z1) )  + 

As an example consider the container ship treated in Example 4.7.1. 

The most probable largest sagging wave bending moment during its operational life time was found 
to be 4.5 109 Nm. 

Assume a stationary sea state where this moment was equal to the most probable largest value during 
3 hours operations (i.e. 1000 peaks). Then the corresponding standard deviation s g becomes 

s M - - "  4.5 109 Nm/~/2 In 1000 "--" 1.2 109 Nm 

assuming Rayleigh distributed peaks (i.e. ignoring the influence of the non-linearities on the tail of the 
distribution). The still water sagging bending moment is taken as the rule value, see Example 4.7.1. 

or- M = 2.1 109 Nm 

This is very conservative as the still water moment normaly is in hogging for all loading conditions 
for a container vessel. To get an estimate for the strength of the hull girder, it is assumed that hull girder 
collapse will take place if the stress in the deck reaches the nominal yield stress equal to 235 MN/m 2. 
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In order to compare the strength and the stress, it is assumed that the section modulus W of the deck 
is given by 

M role + M rule 
W - -  sag, ru l e  sag,stillwater = 4.3 109 + 2.1 109 = 35 m 3 

180MN/m 2 180 106 

i.e. the most probable largest bending moment will yield a stress of 180 MN/m 2. Hence, 

SM.... 
se = - ~  -- 35 M N / m  2 

O" M 
o--e = W - -  60 M N / m  2 

/ts = 235 M N / m  2 

and finally, the standard deviation of the yield stress Ss is taken to be 

Ss = 15 M N / m  2 

Thereby, 

Ss 
7"/ = ~ = 0.4286 

2 3 5 - 6 0  = 4.596 

and, numerically, 

tint. = 4.069 

for Z 1 = 3.69 and Z 2 --" - 1.70, corresponding to a design point of esO = Creo = 210 M N / m  2. 

The exact probability of failure becomes 

P s  ~ ( - 1 1 . 6 7 ) +  0.919 @(9.80)exp(--12 4.5962) = 2.4 10-5  

whereas 

q~(-  fl) = 0.2 10 -5 

and 

~ ( -  flHL) = 2.4 10 -5 

The approximation 

Pr = ~ ( -  ~.t) 

is thus very accurate. The reason is that the failure surface is nearly linear in Z1 ,Z  2 for a large range 
around the design point. 

The probability of failure calculated above relates to each peak in the load. Thus for the complete 3 
hours operation (N = 1000 peaks ): 
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Pf(3hours) = 1 - P(no failure) = 1 - (1 - Pf)N 

= 1 -- (1 -- 2.4 10-5)  l~176176 = 0.023 

assuming as usual that the probability of failure for each peak is statistically independent of each other. 
This might seem a rather high probability of failure, but the sea state is only expected once in the life 
time of the vessel. 

Rather than calculating the probability of failure for each peak in the load and then summing up as above 
for all 1000 peaks, one can also consider failure during the most probable largest peak. Its probability 
distribution is given by 

Feu(t~e) = [Fe(oe)] N 

and thus the only difference in the FORM analysis is that the load transformation now becomes 

[Fe(tTe)] u -  q~(Z1) 

or 

The numerical result for the present example becomes 

fl,qL = min ~ = 2.088 
G~  

and 

Pf (3 hours) -- q ) ( -  ~IIL) " "  0.018 

This result is less than the value 0.023 obtained previously, because only failure at the largest load peak 
is considered. The design point becomes ZID = 1.53, ZZD = -  1.42 corresponding to 

OeD = CrsD = 214MN/m 2. 

Finally, it should be mentioned that if the strength is deterministic, Ss -- 0, then Eq. (7.56) reduces to 

which of course is equal to 

exp( 
P [ =  P("e  - #e > #s) = 1 - Fe(tt s - #e) 

Hence, for the numerical example 

Pf - -  exp ~ 5 60 2 

implying that in the present example the uncertainty in the strength is also important. 
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Examole 7.3.4 A 

In the following a proof that the stochastic variable X, Eq. (7.54), is normal distributed is given. 

P ( X < I ) = F x ( x ) =  J fPu,(Ul)Pu2(u2)du, du2 
X < x  

X < x  

as U l and U 2 are statistically independent and uniformly distributed between 0 and 1. From the 
definition of X 

X = v / - 2 1 n  U 1 cos(2~U2) 

the bound X < x can be transformed to bounds on u I and /12 

h(x) <_ u 2 < 1 - h(x) 

0_< Ul <_ e x p ( - l x  2) 

where 

Hence 

1 (  h(x, Ul) =- Arccos v/ x ) 
21nu 1 

1 ? 
e - - • -  1 - h(X,U l ) 

F x ( x ) = [ 1  du2dUl 
0 h(x,u 0 

e --~rr 2 

1 I h(X, Ul)dUl = 1 - ~  

0 

Differention yields 

exp(-�89 2) 

dFx(x) J dul 
dx = p:,(x) = 1 ~/Z 21nu,  - x ~ 

0 

as Arccos 1 = 0. 

Taking v 2 - - 2 In u I - x 2 gives 
oo 

p.(x) = 1 J e-~V2+X2)dv 

0 
co 

l e_~2  J , z _ ~  , , = e-~ v dv = e -W = cp(x) 

0 

showing that px(X) is a standard normal distributed. 
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7.3.4 Fatigue Failure under Stochastic Loading 
To estimate the probability of fatigue failure in a maritime structure as a result of 
long-term wave loads, the wave-induced stress amplitudes aa are assumed to be 
Weibull distributed with the following probability density function, Section 4.4: 

fl O.afl-lexp(_ (aa/a) ~) pp(aa) = -~ (7.57) 

where/3 and a are parameters in the distribution. If/3 is equal to 1 it becomes the 
exponential distribution, and if/3 is equal to 2 it is a Rayleigh distribution. The 
parameter a is a measure for the stress level, a and fl can be related to the most probable 
largest stress amplitude/i N among the total N stress peaks through Eq. (3.159). 

The number of stress peaks in which the stress amplitude lies between 
aa and r + dcra is Npp(qa)dua. Thus, the cumulative fatigue damage coefficient D 
defined by Eq. (7.22) can be written 

o o  

] N pp(aa)d(l a 

D = A(2aa) -m 
o 

= 2ANE[am ] (7.58) 

by use of the S-N curve, Eq. (7.19). The expectation E[a m] in Eq. (7.58) can be 
integrated yielding 

D = (2a)AmNF(1 + m/fl) (7.59) 

using Eq. (7.57) and the definition, Eq. (3.40), of the Gamma function F(x). 

If failure is expected for D = Dcr the lifetime L in years can be determined by 

Dcr L = --~-T (7.60) 

where D is given by Eq. (7.59) and T is the operational life time corresponding to N 
peaks in the wave load. 

Theoretically, failure will occur when Dcr = 1. Therefore, it is possible, by specifying 
a maximum acceptable D, to take into account the consequence of a failure as well as 
the possibility of detecting and repairing a fatigue crack. Typically, 0.1 < D < 1 
where D = 0.1 applies to significant structural elements, difficult to inspect during 
operation. 

A Level 2 or Level 3 analysis can be performed using the failure surface 

G(X) = Dcr - D = 0 (7.61) 

where the basic variables are 

X =  {D,a,  fl, A , m }  
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The probability distributions of the basic variables are very difficult to determine and 
the Level 2 method using mean values and standard deviations of these variables might 
be the most appropriate method. However, normally, Eqs. (7.59)-(7.60), are applied 
with the uncertainty in the strength taken into account by using the S-N curve 
corresponding to the mean minus two standard deviations. 
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A 
added mass (of water), 137 

added mass of water, 265 

added weight method, 41 

aluminium, 287 

amplitude function, 152 

angular displacement, 214 

asymptotic distributions of extreme values, 87 

autocorrelation, 68, 69, 100, 110, 158 

autocorrelation function, 70 

average frequency, 72, 76 

axial force, 31 

B 
bandwidth, 72, 80 

bending stiffness, 258 

Bernouilli's equation, 94 

Bernoulli's assumption, 243 

blade frequency, 254 

Bonjean curves, 23 

bottom condition, 96 

bottom slamming, 167 

Bredt's formula, 207 
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broad-banded processes, 77 

broad-banded spectrum, 72 

C 
central limit theorem, 46, 64 

central moments, 45, 61 

central safety factor, 308 

centre of rotation, 37 

Charpy - V test, 289 
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coefficient of variation, 46 

conditional probability densities, 60 

conditional probability distribution, 60 

conditional process, 93 

constitutive equations, 243 

correlation coefficients, 61, 63 

correlation matrix, 61 

covariance, 68 

covariance matrix, 61, 92 

critical crack length, 288, 293 

critical damping, 268 

critical wave episode, 93, 111, 113 

cumulants, 49 

cumulative fatigue damage coefficient, 325 

cumulative probability, 44 

D 
D'Alembert, 152 

damping coefficient, 137 

damping coefficients, 271 

damping ratio, 268 

density function, 44 

design wave, 112 

diffraction forces, 143 

dispersion relation, 96 

distribution of peaks, 74 

Doppler shift, 143 

double sided spectral density, 71 

dynamic amplification factor, 269 

E 
effective shear area, 203 

eigenvectors, 245 
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equilibrium conditions, 244 

equilibrium equations, 244 

equilibrium equations, 10, 11, 12 

ergodic process, 70 

Euler's constant, 59 

expected (mean) variation, 91 

expected maximum, 82 

expected values, 45 

exponential distribution, 56 

F 
fatigue strength of materials, 297 

first order pressure, 97 

first-order reliability method, 319 
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first-yield moment, 301 

Fourier transformation, 49, 70, 130 

fractile, 56, 83, 84, 85 

fracture mechanics, 289 

fracture strain, 286 

fracture toughness, 293 

free-surface condition, 95, 96 

J 
joint probability density function, 59, 62, 91 

K 
kernel function, 130 

kinematic conditions, 198 

frequency of encounter, 143 

Froude-Krylov force, 128 

G 
Gamma function, 54, 104 

Gauss integral theorem, 7 

Gaussian distribution, 46 

Generalized Pareto (GP) distribution, 90 

Kramers-Konig relations, 131 

kurtosis, 46 

L 
I'H6pital's rule, 83 

Lamellar tearing, 288 

Laplace equation, 94 

local reduction factor, 267 

glass-fibre reinforced plastic, 288 

global XYZ-coordinate system, 5 

Gram-Charlier series, 51, 81, 102 

green water on deck, 173 

Green's theorem, 24, 26 

grounded ship, 16 

Gumbel distribution, 58, 87 

H 
Hasofer-Lind safety index, 316, 319 

heading angles, 159 

heave, 148, 152 

Hermite polynomials, 51 

high strength steel, 287 

hogging bending moment, 169 

hogging condition, 31 

horizontal bending moment, 31 

hydrodynamic force, 152 

hydrodynamic vertical force, 134 

hydrostatic force vector, 5 

hydrostatic load, 128 

hydrostatic pressure, 5, 6, 9, 97 

hydrostatic stability, 35 

I 
Impact strength tests, 289 

impulse response function, 130 

local xyz-coordinate system, 10 

logarithmic decrement, 268, 270 

long-crested, 96 

long-term probability density function, 120 

lost buoyancy method, 41 

bow flare slamming, 167, 173 

M 
marginal density functions, 60 

marginal distribution, 60, 75 

Marsden areas, 120 

mass to change draught, 21 

maximum likelihood procedure, 87 

mean value, 45, 81, 83 

mean period, 105 

mean upcrossing frequency, 76 

mean wave length, 111 

mean wave number, 111 

mean-value first-order second-moment safety 
index, 314 

metacentric height, 37 

modal superposition, 272 

modulus of elasticity, 185, 286 

moment arm, 206 

moment to change trim, 21 

moments, 45 

moments of inertia, 187 

moments of water plane area, 14, 17 
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momentum slamming force, 167 

Monto Carlo simulations, 318 

most probable largest, 120 

most probable value, 56, 83, 85 

multivariate normal distribution, 62, 91 

N 
narrow-banded, 72, 81 

narrow-banded Gaussian process, 82 

narrow-banded processes, 78 

narrow-banded spectral density, 76 

natural frequency, 245 

Navier's hypothesis, 185 

non-linear time-domain strip theory, 172 

non-stationary process, 118 

normal distribution, 46 

normal strength steel, 287 

O 
objective uncertainty, 308 

one-sided spectral density, 71 

order statistics, 85, 87 

orthogonality condition, 245 

P 
Palmgren-Miner rule, 299 

peak distributions, 159 

peak frequency, 76, 105 

peak rate, 77, 78 

periodicity conditions, 96 

perturbational procedure, 95 

Phillips' constant, 104 

Pierson-Moskowitz (P-M) spectrum, 104, 105 

pitch, 148, 152 

plastic moment, 301 

plastic section modulus, 301 

Poisson processes, 85 

Poisson upcrossing, 87 

potential energy, 36 

power series expansion, 53 

probability density function, 158 

probability density function, 44, 78, 100 

probability distribution for local maxima, 81 

probability distribution function, 44 

probability of failure, 307 

projected area, 261 

Q 
q-fractile, 84, 85 

quadratic moments of the water plane area, 14 

quadratic strip theory, 171 

R 
random, 67 

Rayleigh distribution, 55, 77, 81 

relative motion, 166 

relative velocity, 165 

response amplitude operator, 152 

response spectral density, 159 

restoring term, 138 

return period, 83 

righting arm, 35, 38, 41 

rigid body, 145 

S 
S-N curves, 297 

safety index, 312 

sagging bending moment, 169 

sagging condition, 31 

scatter diagram, 121 

Schwarz' inequality, 63 

second moment methods, 312 

second order reliability method, 319 

second order solutions, 97 

second-order, frequency domain ship theory, 170 

section modulus, 187 

sectional forces, 27, 29 

sectional hydrodynamic load, 143, 147 

sector coordinate, 214, 223 

sectorial moment of inertia, 218 

sensitivity factors, 315 

shear centre, 215 

shear coefficient k,  260 
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shear energy, 259, 260 

shear modulus, 199 

shear stiffness, 258, 259 

shear strain, 198 

shear stress, 193 

shearing force, 199 

short-crested seaway, 158 

significant wave height, 107 

skewness, 46, 81, 102, 114, 115 

slam, 165 

slightly non-Gaussian processes, 81 

Smith correction factor, 128 

spectral density, 103, 118 

spectral moments, 72, 76, 104 

spreading function, 118 

springing, 279 

St Venant torsion, 205 

St Venant torsional constant, 207 

stable equilibrium, 35, 37 

standard deviation, 45, 81 

standard normal distribution, 47 

static considerations, 198 

static equilibrium, 6 

stationary process, 69 

statistically independent, 59 

steep waves, 110 

stochastic, 67 

stochastic process, 74 

stochastic wave elevation, 98 

Stodola's method, 248 

stress intensity factor, 290, 292 

stress intensity variation, 295 

stress ratio, 296 

stress-strain diagrams, 286 

subjective uncertainty, 308 

T 
tensile strength, 286 

termal strain, 238 

three-dimensional reduction factor, 266 

time-invariant system, 130 

Timoshenko beam theory, 243 

torsional centre, 215 

torsional moment, 31 

total derivative, 95, 143 

total hydrodynamic force, 143 

transfer function, 131, 132, 135, 152 

transformation, 89 

transformation method, 54 

transient problems, 168 

transverse shear force, 31 

U 
unidirectional spectrum, 118 

upcrossing, 85 

upcrossing rate, 74, 86, 159 

upcrossings of extreme levels, 86 

V 
variance, 45, 158 

velocity potential, 95, 96 

vertical bending moment, 31 

vertical centre of buoyancy, 37 

vertical motion, 147 

vertical shear force, 31 

vertical wave bending moment, 153 

vertical wave-induced shear force, 152 

volume, 8, 17, 23 

volume integrations, 25 

volume moments, 10, 15, 17, 23 

voluntary speed reduction, 165 

W 
warping, 217 

warping bimoment, 225 

warping constant, 218 

warping deformation, 213 

warping normal stress, 215 

warping torsion, 205 

water plane area, 13, 17, 19 

water plane coefficients, 25 

wave spectral density, 103 

Weibull distribution, 54, 56, 121 

whipping, 173 

W6hler curves, 297 

Y 
yield stress, 286 
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Z 
zero-upcrossing period, 105 

zero- upcrossings, 85 
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