

ALGORITHMS

The MIT Press Essential Knowledge Series

A complete list of the titles in this series appears at the back of this book.

The MIT Press | Cambridge, Massachusetts | London, England

ALGORITHMS
PANOS LOURIDAS

© 2020 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from
the publisher.

This book was set in Chaparral Pro by New Best-set Typesetters Ltd.

Library of Congress Cataloging- in- Publication Data

Names: Louridas, Panos, author.
Title: Algorithms / Panos Louridas.
Description: Cambridge, Massachusetts : The MIT Press, [2019] | Series:

The MIT Press essential knowledge series | Includes bibliographical
references and index.

Identifiers: LCCN 2019040771 | ISBN 9780262539029 (paperback)
Subjects: LCSH: Algorithms—Popular works. | Computer algorithms—

Popular works.
Classification: LCC QA76.9.A43 .L668 2019 | DDC 005.13—dc23
LC record available at https://lccn.loc.gov/2019040771

10 9 8 7 6 5 4 3 2 1

https://lccn.loc.gov/2019040771

The world is untranslatable but it is not
incomprehensible, as long as you know the simple
rule that nothing of what it expresses through its
myriad lives and creatures is followed by a question
mark, only by exclamation marks.

— Karl Ove Knausgaard, Summer

Series Foreword ix

Preface xi

Acknowledgments xxiii

1 What Is an Algorithm? 1

2 Graphs 43

3 Searching 79

4 Sorting 105

5 PageRank 143

6 Deep Learning 181

 Epilogue 231

Glossary 245

Notes 263

References 269

Further Reading 275

Index 277

CONTENTS

The MIT Press Essential Knowledge series offers accessible,
concise, beautifully produced pocket- size books on topics
of current interest. Written by leading thinkers, the books
in this series deliver expert overviews of subjects that
range from the cultural and the historical to the scientific
and the technical.

In today’s era of instant information gratification,
we have ready access to opinions, rationalizations, and
superficial descriptions. Much harder to come by is the
foundational knowledge that informs a principled under-
standing of the world. Essential Knowledge books fill that
need. Synthesizing specialized subject matter for nonspe-
cialists and engaging critical topics through fundamentals,
each of these compact volumes offers readers a point of
access to complex ideas.

SERIES FOREWORD

I know two young teenagers who possess more knowledge
than any scientist, philosopher, or scholar of ages past.
They are my sons. No, I am not a doting father who
marvels at how extraordinarily gifted his children are. But
these two kids have in their pockets devices that connect
them with the vastest repository of information that has
ever been created. There is no factual question they cannot
answer, now that they have mastered the art of knowing
where to look on the internet. They can translate from and
to foreign languages without having to browse through
hefty dictionaries— which we still keep in the house so
that they know how things were, only a few years back.
News, from anywhere, reach them in an instant. They
can communicate with their peers before you know it, no
matter where in the world they may live. They can plan
their goings out in perfect detail. Alas, they can waste their
time with abandon playing games or following trends that
change so fast that I do not know why they matter.

All the above have become possible thanks to the
huge advances in digital technology. Today we carry more
computing power in our pockets than was used to ferry
humans to the moon. As these two teenagers show, the
changes in our lives have been immense; predictions for

PREFACE

xii PREFACE

the future vary from utopias, where people will really not
need to work, to dystopias, where the privileged few will
lead fulfilling lives, with the rest being condemned to
inconsequential torpor. Thankfully, we are able to shape
this future, and an important factor in our ability to do
this is how conversant we are with the technologies
that underlie the achievements and the changes before
us. Although we may lose sight of it in the bustle of our
everyday lives, we live in the best period of human history.
We are healthier than we have ever been, and expect to live
longer, on average, than any generation that has ever lived.
Despite the iniquity of glaring inequality, huge swathes of
humanity have gotten rid of the shackles of poverty. We
have never been closer to one another, both virtually and
literally. We may decry the commercialism of mass global
tourism, but cheap travel allows us to experience different
cultures and visit places that we could once marvel about
only in coffee table books. All this progress can and should
continue.

To partake in this progress, however, it is not enough
to use digital technology. We must be able to understand
it. First, for the eminently practical reason that it offers
excellent career opportunities. Second, because even if
we don’t care for a career in technology, we must know
its underlying principles to appreciate its potential and
shape our own role in it. Digital technology is enabled as
much by its hardware, the physical components that make

 PREFACE xiii

up computers and digital devices, as by its software, the
programs that run on it. The backbone of programs are the
algorithms that they implement: the set of instructions
that describe the way to solve particular problems (if this
does not look like a definition of what an algorithm is,
don’t worry, we have the rest of the book to fill out the
details). Without algorithms, computers would be useless,
and none of modern technology would exist.

What we need to know changes through time. For most
of human history, schooling was not deemed necessary at
all. Most people were illiterate, and if they were taught
something, it would be mastery of some practical skill or
scripture. In the beginning of the nineteenth century, more
than 80 percent of the world’s population was completely
unschooled; now the vast majority has attained several
years of school, and it is projected that by the end of the
century, the proportion of unschooled people in the world
will fall to zero. The years we spend on education have also
increased. While in 1940 less than 5 percent of Americans
had a bachelor’s degree, by 2015 almost a third of them
did.1

Back in the nineteenth century, no school would teach
molecular biology because nobody knew anything about
it; DNA wasn’t discovered until well into the twentieth
century. It now forms part of what we accept as the canon
of an educated person’s learning. Similarly, even though
algorithms were discovered in antiquity, few people

Digital technology is
enabled as much by its
hardware, the physical
components that make
up computers and
digital devices, as by its
software, the programs
that run on it. The
backbone of programs
are the algorithms that
they implement.

 PREFACE xv

troubled with them until the advent of modern computers.
The author firmly believes that we have reached a point
where algorithms are inside the core of what we consider
to be essential knowledge. Unless we know what they are
and how they work, we cannot understand what they can
do, how they can affect us, what to expect from them, what
their limits are, and what they require in order to work. In
a society that increasingly functions thanks to algorithms,
it behooves us as informed citizens to be knowledgeable
about them.

It is also possible that learning algorithms helps us in
another way. If learning mathematics introduces us to a
way of rigorous reasoning, a familiarity with algorithms
introduces us to a new way of algorithmic thinking: a way
of reasoning to solve problems in a practical way so that
efficient implementations of algorithms as programs can
run fast in computers. The focus on designing processes
that are practical and efficient can be a useful mental tool,
even if we are not professional programmers.

This book aims to introduce algorithms to a nonspe-
cialist audience in a way that the reader will understand
how they really work. Its purpose is not to describe the
effects of algorithms in our lives; there are other books
that do a great job of depicting how improved processing
of big data, artificial intelligence, and the weaving of com-
puting devices into the fabric of our everyday lives may
change the human condition. Here we are not interested

A familiarity with
algorithms introduces
us to a new way of
algorithmic thinking:
a way of reasoning to
solve problems in a
practical way so that
efficient implemen-
tations of algorithms
as programs can run
fast in computers.

 PREFACE xvii

in what may happen but rather the how this can happen.
To do that, we’ll present real algorithms and show not only
what they do but also how they actually function. Instead
of hand waving, we’ll provide detailed explanations.

To the question, “What are algorithms?” the answer
is surprisingly simple. They are particular ways to solve
our problems. These ways to solve our problems can be
described in easy steps so that computers can execute
them with amazing speed and efficiency. Yet there is
nothing magical about these solutions. The fact that they
comprise simple elementary steps means that there is
no reason why they should be beyond the grasp of most
people.

Indeed, the book does not assume knowledge of
material beyond that commonly taught in high schools.
Some mathematics does appear in the following pages
because you cannot talk seriously about algorithms without
some notation. Any concepts that are commonplace in
algorithms but are not that common outside computer
science are explained in the text.

The late physicist Stephen Hawking wrote in the
introduction of his best- selling book A Brief History of
Time, published in 1988, “Someone told me that each
equation I included in the book would halve the sales.”
This sounds pretty ominous for the present book because
mathematics does occur more than once. Yet I decided
to press ahead, for two reasons. First, while the level of

xviii PREFACE

mathematics required for Hawking’s physics is at the
university level or beyond, the mathematics presented
here is much more accessible. Second, as the purpose
of this book is to show not just what algorithms are for
but how they really work too, the reader should get to
share some of the vocabulary we use when we discuss
algorithms. And this vocabulary does include some
mathematics. The notation is not the prerogative of the
technical clerisy, and familiarity with it will help dispel
any mystique surrounding the subject; in the end, we’ll
see that it mostly comes down to being able to talk about
things in a precise quantitative way.

It is impossible to cover the whole subject of algorithms
with a book like this, but it is possible to provide an overview
and introduce a reader to algorithmic thinking. The first
chapter lays the ground by introducing what algorithms
are and how we can gauge their efficiency. We can say at
the outset that an algorithm is a finite sequence of steps
that we can perform with a pen and paper, and this plain
definition would not be far from the truth. Chapter 1 starts
from there, while also exploring the relationship between
algorithms and mathematics. A key difference between
the two is practicality; in algorithms, we are interested
in practical ways to solve our problems. This means that
we need to be able to measure how practical and efficient
our algorithms are. We’ll see that these questions can be
carefully framed through the notion of computational

 PREFACE xix

complexity; this will inform the discussion of algorithms
in the rest of the book.

The next three chapters look at three of the most
essential application areas of algorithms. Chapter 2 covers
algorithms that deal with the solution of problems relating
to networks, called graphs, of things. These problems may
include finding your way in a road network or sequence
of links connecting you to somebody on a social network.
They also include problems in other areas that are not
immediately obvious in terms of their relationship:
DNA sequencing and scheduling tournaments; this will
illustrate that distinct problems can be solved efficiently
using the same tools.

Chapter 3 and chapter 4 explore how to search for things
and put things in order. These may seem prosaic, yet they
are among the most important applications of computers.
Computers spend a lot of time sorting and searching, but
we are largely oblivious to this fact exactly because they
are an integral, invisible part of most applications. Sorting
and searching also offer us a glimpse of an important facet
of algorithms. For many problems, we know of more than
one algorithm to solve them. We choose among the available
algorithms based on their particular characteristics; some
algorithms are more suitable for certain problem instances
than others. It is therefore instructive to see how different
algorithms, with different characteristics, go about solving
the same problem.

xx PREFACE

The following two chapters present important
applications of algorithms on a large scale. Chapter 5 picks
up graphs again to explain the PageRank algorithm, which
can be used to rank web pages in order of significance.
PageRank was the algorithm used by Google when it was
founded. The success of the algorithm at ranking web pages
in search results played a critical role in the phenomenal
success of Google as a company. Fortunately, it is not
difficult to grasp how PageRank works. It will give us the
opportunity to see how an algorithm can solve a problem
that on first impression, does not seem amenable to a
computer solution: How do we judge what is important?

Chapter 6 introduces one of the most active areas
in computer science: neural networks and deep learning.
Successful applications of neural networks are reported
in popular media. Stories pique our interest by describing
systems that perform tasks such as image analysis,
automatic translation, or medical diagnosis. We’ll start
out simple, from individual neurons, building up bigger
and bigger neural networks that are able to perform more
and more complex tasks. We’ll see that they all work based
on some fundamental principles. Their efficacy rises from
the interconnection of many simple components and the
application of an algorithm that lets neural networks learn.

After sketching what algorithms can do, the epilogue
explores the limits of computation. We know that
computers have performed amazing feats and expect so

 PREFACE xxi

much more from them in the future, yet are there things
that they cannot do? The discussion of the limits of
computing will allow me to offer a more precise explanation
of the nature of algorithms and computing. We said that
we could describe it as a finite sequence of steps that can
be performed with a pen and paper, but what kind of
steps could these be? And how close is the pen- and- paper
analogy with what algorithms really are?

First and foremost, I am grateful to Marie Lufkin Lee at
the MIT Press for coming up with the idea for this book,
Stephanie Cohen for goading me gently through the
process, Cindy Milstein for her meticulous editing, and
Virginia Crossman for her excellent attention to detail and
taking care of everything. A book on algorithms should
be part of the Essential Knowledge series, and I am proud
that I am the one to write it.

I extend my thanks to Diomidis Spinellis for comment-
ing on parts of the book, and my special appreciation to
Konstantinos Marinakos, who read the manuscript, spot-
ted embarrassing bugs, and offered generous suggestions
for improvements.

Finally, I want to express my gratitude to two teenagers,
Adrianos and Ektor, whose lives will to such an extent be
determined by the subject matter of this book, and their
mother, Eleni; they enabled me to make this happen.

ACKNOWLEDGMENTS

1

WHAT IS AN ALGORITHM?

The Algorithmic Age

We like putting labels on time periods, perhaps because
affixing a tab on time allows us to get a grip on its fluidity.
We have therefore started speaking of the present as the
dawning of a new algorithmic age, in which algorithms will
reign supreme, and will govern larger and larger parts of
our lives. It is interesting that we are not talking about
the computer age or internet age anymore. We somehow
take them for granted. It is when we add algorithms that
we begin intimating that perhaps something qualitatively
different has started taking place. “Behold the Almighty
Algorithm, a snippet of computer code coming to stand
for a Higher Authority in our secular age, a sort of god,”
says Christopher Lydon, former New York Times journalist
and host of the Radio Open Source show. And indeed,

2 ChAPtER 1

algorithms are taken to be some form of higher authority
when they are used to organize political campaigns, follow
our traces in the online realm, shadow our shopping and
target us with advertising, suggest dating partners, or
monitor our health.1

There is an aura of mystery around all that, which
perhaps flatters the acolytes of algorithms. Being
described a “programmer” or “computer scientist” marks
you as a decent, albeit somewhat technical, character. How
much better to be a member of the tribe that is about to
change almost everything in our lives?

There is definitely a sense in which algorithms are a
sort of god. They are mostly held unaccountable, like gods;
things happen, not because of human agency, but because
they were decided by an algorithm, and the algorithm
sits beyond the pale of responsibility. Machines, running
algorithms, can surpass human performance in more
and more fields so that it appears that the area of human
superiority is reduced day by day; some believe that the
day where computers will be able to surpass humans in
every aspect of cognition is not far away.

But there is also a sense in which algorithms are
nothing like gods, although we often lose sight of it.
An algorithm does not produce its results by an act of
revelation. We know exactly the rules that it follows and
kinds of steps it takes. No matter how wonderful the
outcome, it can always be traced back to some elementary

 WhAt Is An AlgoRIthm? 3

operations. To people who are newcomers to algorithms,
it may come as a surprise how elementary these may be.
That is not to besmirch algorithms; seeing how something
really works may take out some part of its mystique. At
the same time, understanding how something works may
allow us to appreciate the elegance of its design, even if it
is no longer mysterious.

The premise of this book is that indeed algorithms
are not mysterious. They are tools that allow us to do
certain things well; they are specific kinds of tools whose
purpose is to allow us to solve problems. In this way they
are cognitive tools; as such, they are not the only ones.
Numbers and arithmetic are also cognitive tools. It took
us thousands of years to evolve a number system that
children can learn in school so that they can perform cal-
culations that would be impossible without it. Now we
take numeracy for granted, but a few generations back
only a small minority of humans had any knowledge
of it.

Similarly, knowledge of algorithms should not be the
prerogative of a small elite minority; as cognitive tools
they can be apprehended by all kinds of people, not just
computer professionals. What is more, they should be
understood by more people because that will allow us to
put algorithms into perspective: to know what they do,
how they do it, and what we can realistically expect them
to do.

4 ChAPtER 1

An essential knowledge of algorithms is what we are
after here so that we can take a meaningful part in the
conversations on the algorithmic age. That is not an age
that is thrust on us, but one of our own creation, based on
tools that we have devised. The study of these tools is the
subject of this book. Algorithms are beautiful tools, and a
glimpse of how they are made and work can enhance our
way of thinking.

We’ll start by dispelling an irksome notion: that
algorithms are about computers. This, we’ll see, makes as
much sense as saying that numbers are about calculators.

A Way to Do Things

A pen- and- paper puzzle, music, divisibility of numbers,
and neutron accelerators in particle physics— we’ll see
that what they all have in common is the same algorithm,
applied to such different domains, yet working on the
same underlying principles. How can this be?

The word “algorithm” itself does not reveal its
meaning. It comes from the name of Muḥammad ibn
Mūsā al- Khwārizmī (ca. 780– ca. 850), a Persian scholar
who worked on mathematics, astronomy, and geography.
Al- Khwārizmī’s contributions were many and widespread.
The term “algebra” comes from the Arabic title of his most
influential work, The Compendious Book on Calculation by

 WhAt Is An AlgoRIthm? 5

Completion and Balancing. His second most influential
book, On the Calculation with Hindu Numerals, was on
arithmetic and, translated into Latin, introduced the
Hindu- Arabic numeral system to the West. Al- Khwārizmī’s
name was latinized to Algorismus, which came to denote
the method of numerical computation with the decimal
numbers. Algorismus, influenced by the Greek word for

“number” (arithmos, as in arithmetic), became algorithm,
still denoting decimal arithmetic, before acquiring its
modern sense in the nineteenth century.

You could be tempted to think that algorithms are
something that we do with computers, but this would be
wrong. It is wrong because we had algorithms long before
we had computers. The first- known algorithms date back
to ancient Babylon.2 It is also wrong because algorithms
are not about problems that have to do with computers.
Algorithms are about doing something in a specific way,
following some kind of steps. That is somewhat vague. You
may ask, What kind of steps? What specific way? We can
dismiss all vagueness, and give a precise mathematical
definition of what an algorithm is and what it does— such
a definition does exist— but we don’t need to go to such
lengths. You may be happy to know that an algorithm is
a set of steps that you can follow with pen and paper, and
you can be assured that this seemingly facile description
is close to those used by mathematicians and computer
scientists.

You could be tempted to
think that algorithms
are something that we
do with computers, but
this would be wrong. It
is wrong because we had
algorithms long before
we had computers.

 WhAt Is An AlgoRIthm? 7

So we can start our approach to algorithms with a
problem that we can solve by just writing things down.
Suppose we have two sets of objects and want to spread
the objects of one of the two sets as evenly as possible
among the objects of the other set. We will use crosses
(×) for the objects of the first set and bullets (•) for the
objects of the second set. We want to spread out crosses
among the bullets.

If the number of crosses divides the total number of
objects, that is easy. We just partition the crosses among
the bullets as if we would do division. For example, if we
have 12 objects in total, out of which three are crosses
and nine are bullets, we put one cross, then three bullets,
then one cross, three bullets, and finally another cross and
three bullets:

× × ×• • • • • • • • •

But what if the total number of objects, crosses and
bullets taken together, cannot be divided exactly by the
crosses? What can we do if we have five crosses and seven
bullets?

We start by putting all crosses followed by all bullets
in one row as follows:

× × × × × • • • • • • •

8 ChAPtER 1

Then we take five bullets and place them under the
crosses:

× × × × × • •

• • • • •

We notice in the pattern that emerges that we have a
remainder of two columns to the right. We take the two re-
mainder columns, each comprising a single bullet, and put
them under the first two columns, forming a third row:

× × × × ×
• • • • •

• •

Now we notice that we have a remainder of three col-
umns. We take the rightmost two of them and put them
under the two leftmost columns:

× × ×

× ×

• • •

• •

• •

Now we have only one remainder column, so we stop.
We concatenate the columns from left to right and get:

 WhAt Is An AlgoRIthm? 9

× × × × ×• • • • • • •

This is the result. We have distributed the crosses
among the bullets. They are not as evenly spaced as
before, but that is impossible to do because, remem-
ber, five does not divide evenly into 12. We have man-
aged to avoid heaping all the crosses together, however,
and have created a pattern that does not look entirely
haphazard.

You may wonder if there is anything particular about
this pattern; it helps if you substitute DUM for the cross
and da for the bullet. Then the pattern goes DUM- da- d
a- DUM- da- DUM- da- da- DUM- da- DUM- da and it really is
a rhythm. A rhythm is constituted by accented parts, also
called onsets, and unaccented or silent parts. The rhythm
we found is not a rhythm of our own devising. It is used by
the Aka pygmies in the Central African Republic; it is the
clapping, called Venda, of a South African song; it is also a
rhythm pattern used in Macedonia, in the Balkans. There
is more. If we rotate it, so that it starts at the second cross
(that is, onset), then it becomes:

× × × × ×• • • • • • •

That is the Columbia bell pattern, popular in Cuba
and West Africa, as well as a drumming pattern in Kenya,
while it is also used in Macedonia (again). If we rotate it to

10 ChAPtER 1

start on the third, fourth, and fifth onset, other popular
rhythms around the world emerge.

Is this just a one- off thing? We can try to create
a 12- part rhythm out of seven onsets and five silent
parts— kind of mirroring the five onsets and seven silent
parts that we had before. If we follow exactly the same
procedure, we will arrive at:

× × × × × × ×• • • • •

This, again, is a rhythm. It is used in the Mpre rhythm
of the Ashanti in Ghana, and if we start it on the last onset,
it is used by the Yoruba in Nigeria as well as in Central
Africa and Sierra Leone.

Lest you think we have geographic omissions, if we
start with five beats and 11 silent parts, we arrive at the
following:

× × × × ×• • • • • • • • • • •

That is the Bossa- Nova rhythm, rotated. The actual
Bossa- Nova rhythm starts on the third onset, so the exact
correspondence is:

 WhAt Is An AlgoRIthm? 11

If we try with three beats and four silent parts, we get
the pattern:

× × ×• • • •

This rhythm in a seven/four meter is popular, and
not just in traditional music. Among other tunes, it is the
rhythmic pattern of Pink Floyd’s song “Money”:

Many more rhythms can be derived in this way by
putting crosses and bullets in columns, and moving them
around in the way we just described. We illustrated the
procedure by measuring remainder columns, but this
really is a pictorial way of showing what really happens.
Instead of creating columns, checking the geometry, and
moving them around, we can do the same thing more for-
mally with simple numerical operations. To see what, let’s
return to the example of 12 parts and seven onsets. We
start by dividing 12 by 7, which gives us quotient 1 and
remainder 5:

12 1 7 5= × +

12 ChAPtER 1

This tells us to put the seven onsets in the beginning,
creating seven columns of onsets, followed by a remainder
of the five unaccented parts:

× × × × × × × • • • • •

Now we divide again, but this time we divide the divi-
sor of the previous division, 7, by the remainder of the
previous division, 5. This gives us a quotient of 1 again
while the remainder is 2:

7 1 5 2= × +

This means that we need to take the five rightmost
columns and place them under the five leftmost columns,
leaving a remainder of 2:

× × × × × × ×
• • • • •

We repeat the same step: we divide the divisor of the
previous division, 5, by the remainder of the previous divi-
sion, 2. The quotient is 2 and the remainder is 1:

5 2 2 1= × +

 WhAt Is An AlgoRIthm? 13

This tells us to take twice the two rightmost columns
and place them under the two leftmost columns, leaving
a remainder of 1:

× × ×

× ×
× ×

• • •

• •

Note that twice means that this is equivalent to what
we would be doing in two steps if we had worked as we
were doing before, without using the division. We would
go from:

× × × × × × ×
• • • • •

first to:

× × × × ×

× ×
• • • • •

and then to:

14 ChAPtER 1

× × ×

× ×
× ×

• • •

• •

If we concatenate the columns, we get the Mpre
rhythm:

× × × × × × ×• • • • •

Our First Algorithm

We can write down the method we followed in a bit more
precise terms as the following steps. We assume that we
start with two numbers, a and b. We let a be the total num-
ber of parts. If the number of onsets is greater than the
number of the silent parts, then b is the number of onsets.
Otherwise it is the number of the silent parts. At the be-
ginning, we create a row with the onsets followed by the
silent parts.

1. Perform the division of a by b. This will give us a
quotient and remainder. If we call the quotient q and
remainder r, we’ll have a q b r= × + . This is integer
division as we know it. We take q times the rightmost

 WhAt Is An AlgoRIthm? 15

b columns and move them under the leftmost columns,
leaving a remainder of r columns on the right.

2. If the remainder r is equal to zero or one, then we stop.
Otherwise, we go back to step 1, but this time b will be
the new a and r will be the new b. Or in other words, we
go back to step 1, setting a equal to b and b equal to r.

In these two steps we perform a division repeatedly,
until it does not make sense to repeat it. You can trace the
steps we take in the following table, where we start with
a = 12 and b = 7, like we did before; in each row we have
a q b r= × + :

a q b r

12 1 7 5

7 1 5 2

5 2 2 1

If you examine the table, you can verify that each
row corresponds to one step of the column formation
and moving, but we have a more precise definition of the
method we used. In fact, we have a series of steps that we
can perform with pen and paper, so this is our first algo-
rithm! We have an algorithm for creating patterns that
correspond to many, and indeed surprisingly many, musi-
cal rhythms. Working with different numbers of offsets

16 ChAPtER 1

and silent parts, we can get about 40 rhythmic patterns
that are found in different rhythms around the world. That
should give us pause for a minute: it is a simple algorithm
(only two steps, repeated) and yet able to produce so many
interesting results.

Our algorithm does more than that, though. As we are
talking about the division of two numbers, let us consider
the following general problem: If we have two numbers a
and b, what is the greatest number that divides them both?
This is called the greatest common divisor, or gcd, of the two
numbers. We encounter the greatest common divisor in
elementary arithmetic, in problems such as, If we have 12
packets of crackers and four packets of cheese, how will
you distribute them in baskets so that you have the same
proportion of crackers and cheese in each basket? As four
divides 12, you will have four baskets, each containing
three packets of crackers and one packet of cheese; the
greatest common divisor of 12 and four is four. Things
get more interesting if you have 12 packets of crackers
and eight packets of cheese. You cannot divide one by the
other, but the greatest number that divides both 12 and
eight is four, which means that you will make again four
baskets, each containing three packets of crackers and two
packets of cheese.

So how can we find the greatest common divisor of any
two integer numbers? We have seen that if one of the num-
bers divides the other, that is the greatest common divisor.

 WhAt Is An AlgoRIthm? 17

But if that does not happen, then it turns out that in order
to find the greatest common divisor of two numbers, we
only need to find the greatest common divisor of the re-
mainder of the division of the two numbers and the second
number. This is actually easier to see with symbols. If we
have two integers a and b, the greatest common divisor of a
and b is equal to the greatest common divisor of the remain-
der of a b÷ and b. This brings us back to our rhythms. The
way we have been finding rhythms is in fact the same way we
use to find the greatest common divisor between two numbers.

The way to find the greatest common divisor between
two numbers is called Euclid’s algorithm, in honor of Eu-
clid, an ancient Greek mathematician who first described
it in his books Elements (ca. 300 BCE). The basic idea is
that the greatest common divisor between two numbers
remains the same if we replace the larger number of the
two with its difference with the smaller number. Take 56
and 24. Their greatest common divisor is 8, which is also
the greatest common divisor of 56 24 32− = and 24, and
the same goes for 32 and 24, and so on. Repeated subtrac-
tion is really division, so Euclid’s algorithm is described
with the following steps:

1. To find the greatest common divisor of a and b,
perform the division of a by b. This will give us a quotient
and remainder. If we call the quotient q and remainder r,
we’ll have a q b r= × + .

18 ChAPtER 1

2. If the remainder r is equal to 0, then we stop, and the
greatest common divisor of a and b is b. Otherwise, we
go back to step 1, but this time b will be the new a and r
will be the new b. Or in other words, we go back to step 1,
setting a equal to b and b equal to r.

These are essentially the same steps as before. The
only difference is that when finding rhythms, in step 2 we
stop when the remainder is 0 or 1, while Euclid’s algorithm
stops when the remainder is 0. This is really the same: if
you have a remainder of 1, then in the next repetition of
step 1, you get a 0 remainder because 1 divides every in-
teger. Try 9 and 5: 9 1 5 4= × + , so we go to 5 1 4 1= × +
and then 4 1 4 0= × + , so the greatest common divisor of
9 and 5 is 1.

It may help you to see the algorithm in action with
a = 136 and b = 56 in the following table, similar to the
one we saw before with our rhythms. We find that the
greatest common divisor of 136 and 56 is the number 8:

a q b r

136 2 56 24

56 2 24 8

24 3 8 0

As we noted with 9 and 5, Euclid’s algorithm works
correctly in all cases, even when the two numbers do not

 WhAt Is An AlgoRIthm? 19

have any common divisor apart from 1. This is what hap-
pened with a = 9 and b = 5. You can see for yourself what
happens if you try to perform the algorithm’s steps with
a = 55 and b = 34; it will take a few steps, but the algo-
rithm will determine that the only common divisor is 1.

The steps in Euclid’s algorithm are performed in
a well- defined order. The description of the algorithm
illustrates the way its component steps are combined:

1. The steps are put in a sequence.

2. Steps may describe a selection that determines which
steps to follow. In step 2, there is a test of whether the
remainder is 0 or not. Then there are two alternatives,
depending on the outcome: we either stop or go back to
step 1.

3. Steps can be put into a loop or iteration, where they
are executed repeatedly. In step 2, if the remainder is not
equal to 0, we go back to step 1.

We call these three ways to combine steps control struc-
tures because they dictate which action will be performed
as we carry out the algorithm. All algorithms are struc-
tured in this way. They comprise steps doing calculations
and processing data; these steps are assembled together
and choreographed using these three control structures.
More complex algorithms have more steps, and their

20 ChAPtER 1

choreography may be more complex. But the three control
structures suffice to describe the way the steps of any al-
gorithm should be put together.

The steps of an algorithm will, among other things,
operate on the input we provide. The input is the data that
are processed by the algorithm. If we adopt a data- centric
view, we use an algorithm to transform some data, which
describe a problem, to some form that corresponds to the
problem’s solution.

We found an algorithm behind musical rhythms that
is an application of division, but in reality, we need not
look that far; the act of division itself is an algorithm. Even
if you have not heard of Euclid’s algorithm, you know how
to divide two large numbers; we have all spent time in
our early years learning to perform long multiplication
and long division. Our teachers spent hours drilling
into our heads how to perform these operations: a set of
steps for putting numbers in the right places and doing
things with them— they are algorithms. But algorithms
are not simply about numbers, as we have just seen. We
just found that they are about how we can produce music.
Yet there is nothing mystifying about that. A rhythm is a
way to distribute stresses in a time interval, and the same
principle is at work when we pack crackers and cheese.

The application of Euclid’s algorithm to rhythms had
an unlikely source: a neutron source facility in the Oak
Ridge National Laboratory in Tennessee. The Spallation

 WhAt Is An AlgoRIthm? 21

Neutron Source (SNS) there produces intense pulsed
neutron beams that are used in experiments in particle
physics. (The verb to spall means breaking a material into
smaller pieces; in nuclear physics, we have a heavy nucleus
emitting a large number of protons and neutrons after be-
ing bombarded with a high- energy particle.) In the opera-
tion of the SNS, some components, such as high- voltage
power supplies, should run so that pulses are distributed
in timing slots as evenly as possible. An algorithm de-
vised to do the distribution is essentially the same as the
rhythm- making algorithm and Euclid’s algorithm, taking
us from numbers to subatomic particles to music.3

Algorithms, Computers, and Mathematics

We said that algorithms are not about computers, yet
today most people bundle them together. It is true that
algorithms show their potential when they are coupled
with computers, but a computer is really a machine with
the special trait that we can order it to do certain things.
We order it by programming it, and usually we program it
to execute algorithms.

Which brings us to programming itself. Programming
is the discipline of translating our intentions to some
notation that a computer is able to understand. We call
this notation a programming language because sometimes

Programming is the
discipline of translating
our intentions to some
notation that a
computer is able to
understand. We call this
notation a programming
language.

 WhAt Is An AlgoRIthm? 23

it does look like we are writing in a human language, but
programming languages are fairly simple affairs compared
to the richness and complexity of human languages. Now,
of course, a computer does not really understand anything.
Things may change in the future, if we are able to produce
truly intelligent machines, but right now when we say that
a computer understands a notation, it really means that
the notation is converted to a series of instructions for
manipulating current in electronic circuits (we may also
use light instead of electric current, yet the idea is the
same).

If an algorithm is a set of steps we can carry out our-
selves, programming is the activity by which we write
down the steps in the notation that the computer under-
stands. Then it is the computer that will carry them out.
Computers are much faster than human beings, so they
can execute the steps in less time. The fundamental factor
in computing is speed. A computer cannot do something
qualitatively different from what we humans can do, but it
can do it faster— a lot faster. An algorithm gains power on
a computer because it can be executed there in a fraction
of the time it would take us to perform the same steps, but
they are still the same steps.

A programming language gives us a way to describe to
a computer the steps of algorithms. It also provides the
means to structure them using the three fundamental
control structures: sequence, selection, and iteration. We

If an algorithm is a set
of steps we can carry out
ourselves, programming
is the activity by which
we write down the steps
in the notation that the
computer understands.

 WhAt Is An AlgoRIthm? 25

write the steps and describe how they are choreographed
using the vocabulary and syntax provided by the particu-
lar programming language we are using.

There is an additional advantage to using computers
apart from speed; if you can recall how you learned to per-
form long multiplication and division, it may have taken a
lot of practice, and may not have been that exciting. As we
noted above, these things are drilled into our heads at an
early age, and drilling inside a head is not a pleasant proce-
dure. Computers do not suffer from boredom, so an added
reason to have them perform algorithms is to take out the
tedium and leave us time to do more interesting things.

Although an algorithm is usually executed on a com-
puter, after being written in a programming language, it
is primarily written for humans, who must understand
how it works and when it can be used. This brings us to
something essential that even experienced computer sci-
entists and seasoned programmers forget. The only way
to truly understand an algorithm is to perform it by hand.
We must be able to execute the algorithm, in the same way
the computer would execute a program that implements
it. At this date and time, we are privileged to have at our
disposal an amazing array of media that can help us learn:
superb videos, animations, and simulations are one click
away. All these are great, but when you are stuck, have your
pen and pad nearby. The same applies to these very lines.
Have you really understood how you can create rhythms?

26 ChAPtER 1

Did you try to create one? Can you find the greatest com-
mon divisor of 252 and 24?

All programs implement a set of steps to do some-
thing, so we could be tempted to say that all programs are
algorithms. We are a bit stricter, however, and want our
steps to meet certain characteristics:4

1. The steps must terminate after a finite number of
steps. An algorithm cannot run forever. (A program
may run forever, as long as the computer on which it
runs remains operational. That program would not be
an implementation of an algorithm; it would just be a
computational process.)

2. The steps must be precise, so that we can execute
them without confusion.

3. The algorithm may operate on some input; in the case
of Euclid’s algorithm, it operates on two integers.

4. The algorithm has some output; that is the whole
purpose of the algorithm: to produce something as a
result. In Euclid’s algorithm, that is the greatest common
divisor.

5. The algorithm must be effective. A human should be
able to execute each step in a reasonable amount of time
with pen and paper.

 WhAt Is An AlgoRIthm? 27

These characteristics ensure that the algorithm does
something. An algorithm exists because it does something
useful. Frivolous algorithms do exist, and computer
scientists may invent useless algorithms either in jest or
by mistake, but we are really interested in algorithms that
have some utility to us. When working with algorithms,
it is not enough to show that something can be done. We
want algorithms to be of practical interest, and for that
purpose they must do something well.

Therein lies a fundamental difference between algo-
rithms and mathematics. Most early computer scientists
were mathematicians, and computer science uses a lot of
mathematics, but it is not a mathematical discipline. A
mathematician wants to prove that something is so; a com-
puter scientist wants to make it work.

Our first characteristic of an algorithm is that it should
require a finite number of steps. That is not very precise.
We do not want to have just a finite number of steps. We
want to have a number of steps that is small enough to
execute them in practice, so that our algorithm finishes in
a reasonable amount of time. That means that coming up
with an algorithm is not enough; the algorithm must also
be effective in practice. Let’s see an example to illustrate
the difference between knowing something and knowing
how to do something efficiently. Imagine we have a grid
like the following:

28 ChAPtER 1

We want to find the shortest path from the upper- left
corner of the grid to the lower- right corner, without visit-
ing the same place twice. The length of each path is equal
to the number of links between points on the grid. Here
is one way to do it: find all such paths, measure how long
each of them is, and pick up the shortest, or any of the
shortest in case of ties. The total number of paths is 12,
which you can see below:

There are five paths of length 4, so we can pick any one
of them.

We are not limited to 3 3× grids, though. We can
have 4 4× , 5 5× , and even larger grids. Then we discover
that our method does not scale well. There are 184 paths
from the upper- left corner to the bottom- right corner of
a 4 4× grid; if we go to the 5 5× grid, the number of such
paths increases to 8,512. The number of paths contin-
ues to increase apace— in fact, at ever larger paces— and

 WhAt Is An AlgoRIthm? 29

even counting such paths is a challenge. When we reach a
26 26× grid, we get 8 402 974 857 881 133 471 007 083
745 436 809 127 296 054 293 775 383 549 824 742 623
937 028 497 898 215 256 929 178 577 083 970 960 121
625 602 506 027 316 549 718 402 106 494 049 978 375
604 247 408 paths. This number has 151 decimal digits
and was found with a computer program implementing
an algorithm; yes, we use an algorithm to understand the
behavior of another algorithm.5

The procedure for enumerating all paths and picking
the shortest one is undoubtedly correct, and will always
give us the shortest path— or any of the shortest paths,
if there are many equally short ones— yet it is definitely
impractical. Also, it is completely useless, as there are algo-
rithms that will find the shortest path without having to
enumerate all possible paths, thus saving a lot of time and
allowing us to tackle grids of any size. In the 26 26× grid,
the number of steps required to find the answer is only in
the order of the hundreds; we’ll see it in the next chapter.

The question of what is a practical algorithm and in
what sense an algorithm is more practical than others is at
the heart of any application of them. We’ll see in the rest
of the book that there often exist different algorithms for
solving the same problem and we choose the algorithm that
is most appropriate for the application at each particular
setting. Like all tools, some algorithms are more suitable
for particular cases than others. Unlike many other tools,

30 ChAPtER 1

though, we possess a well- defined way to evaluate the
merits of algorithms.

Measuring Algorithms

When we are investigating an algorithm to solve a prob-
lem, we want to know how it is going to perform. Speed
is always an important factor. We use algorithms on com-
puters to do things faster than a human would do.

As computer hardware improves, we are usually not
content with knowing how a program implementing an
algorithm runs on a particular computer. Our computer
may be faster or slower than the one that the algorithm
was measured on, and after some years, measurements of
algorithms on outdated machines will have only historical
interest. We need a way to measure how well an algorithm
performs independent of computer hardware.

The size of the problem we are trying to solve, though,
should be somehow reflected in how we measure the
performance of an algorithm. We don’t really care how
long it takes to sort 10 items; after all, we can do that by
hand. We care how long it takes to sort a million items or
more. We want a measure of how we expect an algorithm
to perform in problems that are not trivial.

To do that, we need a way to quantify the size of prob-
lems fed to algorithms. The dimension of interest varies

 WhAt Is An AlgoRIthm? 31

among different problems. If we want to sort a number of
items in our computer, the relevant dimension is the num-
ber of items that we want to sort (and not, say, the size
or composition of the items). If we want to multiply two
numbers, the relevant dimension is the number of digits
of the two numbers (that also makes sense for humans:
long multiplication is long because it depends on how
many digits each number has). When we study a problem
and candidate algorithms for tackling it, we do it always
with the size of the problem under consideration.

Although particular problems have different ways to
assess their size, in the end, for each problem we specify
its size with an integer number, which we call n. Picking up
the examples above, n is the number of either the items to
sort or digits of the numbers we want to multiply. Then
we want to be able to talk about the performance of algo-
rithms tackling problems of size n.

The time required by an algorithm is related to its
computational complexity. The computational complexity
of an algorithm is the amount of resources it requires to
run. There are two main kinds of resources here: time, how
long it takes, and space, how much storage it requires in
terms of computer memory.

We are focusing on time right now. As there are com-
puters with different performance characteristics, talking
about the time taken by an algorithm to run on a particular
computer may give us some indication of what to expect

32 ChAPtER 1

when it runs on other computers, but we would like some-
thing more general. The speed of a computer depends on
the time it takes to execute basic operations. To get around
such specificities, we instead choose to talk about the
number of operations required to run an algorithm, not the
actual time it takes on a specific computer to run these
operations.

Now having said that, note that we’ll be abusing ter-
minology a bit and treating “operations” and “time” as
synonyms. Although we should be strictly saying that an
algorithm requires “x operations,” we’ll also be saying that
the algorithm is “time x,” to indicate that it runs in the time
required to execute x operations on any computer that the
algorithm is actually run. Even though the actual time will
vary with different hardware, it does not matter when we
want to compare two algorithms that run on “time x” and

“time y” on the same computer, whatever computer that is.
Now we return to the size of the problem given to an

algorithm. As we are interested in nontrivial problems, we
won’t care about what happens with small problem sizes.
We will be concerned with what happens once we reach a
certain size. We won’t say exactly what this size is, but we
will always assume that it is substantial.

There is a definition of complexity that has proved to
be useful in practice. It also has a symbol and name. We
write O()⋅ and call it the big O notation. Inside the big O,

 WhAt Is An AlgoRIthm? 33

in the place of the dot, we write an expression. The no-
tation means that the algorithm will take time that is at
most a multiple of the expression. Let us see what that
means:

• If you want to look for something in a sequence of
items— there are n items— and the sequence of items is
not ordered in any way, the complexity is O n(). That is,
for n items, the time required to find a particular one in
them will not be more than a multiple of the number of
items.

• If you want to multiply two n digit numbers using long
multiplication, the complexity is O n()2 . That is, the time
required for the multiplication will not be more than a
multiple of the square of the size of the numbers.

If we have an algorithm that has O n() complexity,
then for an input size of 10,000 we expect it to need a
multiple of ten thousand steps. If the algorithm has O n()2
complexity, for a similarly sized input, we expect it to need
a hundred million steps. For many problems, this is not a
large size. Computers routinely sort 10,000 items. But you
see that the scale of the number of steps represented by
the algorithm’s complexity can grow large.

Here are some examples that may help you appreci-
ate the size of some numbers that we will encounter. Take

34 ChAPtER 1

the number 100 billion, or 1011; this is one with 11 zeros
behind it. If you take 100 billion hamburgers and lay them
end to end, you can circle the earth 216 times, go to the
moon, and come back.

A billion of something is usually called giga something,
at least in computers. Next after the billion, or giga, comes
the trillion, or tera, which is 1,000 billion, 1012 . If you start
counting one number per second, you will need 31,000
years to get to one trillion. Up by 1,000 again and we get
to one quadrillion, 1015, or peta; the total number of ants
that live on the earth is between 1 and 10 quadrillion,
according to biologist E. O. Wilson. In other words, we
have between 1 and 10 petaants on our planet.

After quadrillion comes quintillion, or exa; a quintil-
lion is 1018 and is about the number of grains of sand in 10
large beaches. For example, 10 Copacabana Beaches have
one exagrain of sand. Up again, we arrive at 1021, one sex-
tillion, or zetta. The number of stars in the observable uni-
verse is one zettastars. We run out of prefixes after yotta,
which stands for 1024, one septillion. But numbers can al-
ways get larger. The number 10100 is called a googol— yes,
you probably know a company that has named itself after
a purposeful misspelling. And then there is 10 raised to
the googol power, 1010100

, which is one googolplex.6

These analogies will help us appreciate the relative
merits of specific algorithms that we will examine in
the rest of the book. Although in theory we could have

 WhAt Is An AlgoRIthm? 35

algorithms of any kind of complexity, the algorithms we
usually deal with fall into few different groups.

Complexity Families

The fastest family of all algorithms comprises the algo-
rithms that run in no more than constant time, no matter
what their input. We denote this complexity with O()1 ;
for example, an algorithm that checks if the last digit of
a number is odd or even will not be affected by the size of
the number and will run in constant time. The 1 in O()1
follows from the fact that O()1 means that the algorithm
needs no more than a multiple of one steps to run— that
is, a constant number of steps.

Before we meet the next complexity family, we need
to take a brief excursion into a particular way things can
grow or shrink. If you add something many times, you
multiply it. If you multiply something many times, you
raise it to a power or exponentiate it. We just saw how
big numbers with exponents like 1012 (or more) can
get. What is perhaps not immediately obvious is how
quickly exponentiation leads to dizzying escalation— a
phenomenon called exponential growth.

The probably apocryphal story about the invention of
chess is illustrative. The ruler of the country where chess
was invented asked its inventor what he would like for

36 ChAPtER 1

a gift (alas, it is a “he” in these stories). He replied that
he would like one grain of rice on the first square of the
chessboard, two on the second, four on the third, and so
on. The king thought that he got off easily and granted
the wish. Unfortunately, things quickly turned sour. The
sequence grows in powers of two: 2 10 = in the first square,
2 21 = in the second square, 2 42 = in the third square,
and thus in the last square the number of grains would
be 263, a quantity unreachable by any means (it is equal to
9,223,372,036,854,775,808, or about 9 quintillion).

Exponential growth can also help us understand why
it is so difficult to fold a piece of paper many times. Each
time you fold it, you double the number of layers of the
folded paper. After 10 folds, you have 2 1 02410 = , layers.
If your sheet is 0.1 millimeters thick, you now have a
folded wad that is over 10 centimeters thick. Apart from
the sheer force you will need to fold that in two, it may
not be physically possible at all to do it, because to fold
something it must be longer than thick.7

Exponential growth is the reason why computers
have gotten more and more powerful over the years.
According to Moore’s law, the number of transistors in
an integrated circuit doubles about every two years. The
law is named after Gordon Moore, who founded Fairchild
Semiconductor and Intel. He made the observation in
1965; the law proved prescient, so that we have gone from
about 2,000 transistors in a processor in 1971 (the Intel

 WhAt Is An AlgoRIthm? 37

4004) to more than 19 billion in 2017 (the 32- core AMD
Epyc).8

Having seen growth, let us explore now its opposite. If
you have a multiple of something, you use division to re-
verse the operation and get the original value. If you have
the power of something, an, how do you reverse the opera-
tion? The reverse of raising to a power is the logarithm.

Logarithms are sometimes taken as the boundary be-
tween mathematics for all and mathematics for the ini-
tiated; even the name has an aura of incomprehension.
If logarithms seem somewhat hazy, you need to keep in
mind that the logarithm of a number is the reverse of
raising the number to a power. Just as when we raise to a
power, we multiply repeatedly, when we take a logarithm,
we divide repeatedly.

The logarithm is the answer to the question, “To which
power should I raise a number to get the value I want?” The
number we are raising is called the base of the logarithm.
So if the question is, “To which power should I raise 10 to
get 1000?,” the answer is 3 because 10 1 0003 = , . Of course,
we may want to raise a different number— that is, use a
different base. The notation for logarithms is log xa and
it corresponds to the question, “To which power should I
raise a to get x?” When a = 10, we just drop the subscript,
because logarithms base 10 are common, so instead of
writing log x10 we simply write logx.

38 ChAPtER 1

There are also two other common bases. When the
base is the mathematical constant e, we write lnx . The
mathematical constant e, called Euler’s number, is approxi-
mately equal to 2.71828. In the natural sciences we meet
lnx a lot, which is why it is called natural logarithm. The
other common base is 2, and instead of writing log x2 we
write lgx . Base 2 logarithms are common in computer sci-
ence and algorithms, but probably unused outside these
fields, although we have already met them. In paper fold-
ing, if a wad of paper has 1,024 layers, it has been folded
lg lg1024 2 1010= = times. In the chess example, the
number of grains of rice results from the number of dou-
blings we perform, which are lg2 6363 = .

The reason we see lgx a lot in algorithms is that it
appears whenever we solve a problem by splitting it in two
equal smaller problems; this is called divide and conquer,
and it works like folding a sheet in two. The most efficient
way to search for something in a sorted group of items has
complexity O lgn(). That is pretty amazing; it entails that
to find something among one billion ordered items, you
need only lg10 309 ≈ probes into your items.

Algorithms that have logarithmic complexity are the
next best thing after algorithms that run in constant
time. Next come algorithms that run in O n(), which are
called linear time algorithms because their time grows
proportionally with n; that means that they grow as
multiples of n. We saw that searching for an item in an

 WhAt Is An AlgoRIthm? 39

unordered set of items requires time proportional to
the number of the items, O n(). See how the complexity
increased compared to when the items are ordered;
organizing the data of our problem can have a big impact
on how it can be solved. In general, linear time is the best
behavior we can expect of an algorithm if it has to read
through all the inputs of the problem, as this will require
time O n() for n inputs.

If we combine linear and logarithmic times, we get
loglinear time algorithms, where their time grows by n
multiplied by its logarithm, nlgn. The best algorithms for
sorting— that is, putting items in order— have complexity
O nlgn(). That may look a bit surprising; after all, it can be
shown that if you have n items and want to compare each
item with all other items, it requires time O n()2 , which is
bigger than O nlgn().9 Also, if you have n items that you
want to sort, you definitely need O n() time to examine all
of them. Sorting them requires multiplying that number
by a smaller factor than n itself. We’ll see how this can be
done, later on in the book.

The next computational complexity family is n raised
to a constant power, O nk(); this is called polynomial
complexity. Polynomial time algorithms are efficient,
except if k is big, but this rarely happens. When we try to
solve a computational problem, we are usually delighted if
we can come up with a polynomial time algorithm.

40 ChAPtER 1

A complexity of the form O kn() is called exponential
complexity. Note the difference with the polynomial com-
plexity where the exponent was constant; here it is the
exponent that changes. We saw how exponential growth
explodes. The universe will not survive long enough to
see the answer of exponential algorithms for nontrivial
inputs. Such algorithms are interesting from a theoreti-
cal point of view because they show that a solution can
be found. We can then search for better algorithms with
lower complexity, or we may be able to prove that no better
algorithms can be found, in which case we can settle for
something less than the ideal— for instance, approximate
solutions.

There is something that grows even faster than ex-
ponentiation, and this is the factorial. If you have not
encountered a factorial before, the factorial of a natural
number n— which we write as n!— is simply the product of
all the natural numbers up to and including that number:
100 1 2 3 100! = × × × × . Even if you have not encoun-
tered 100! you probably have encountered 52! even with-
out knowing it. That is the number of different shuffles of
a deck of cards. Algorithms whose running time is mea-
sured in factorials have factorial complexity.

Although numbers like 100! may seem exotic, they
arise in many nonexotic settings and not just card games.
Take, for example, the following problem: “If we have a
list of cities and the distances between each pair of them,

 WhAt Is An AlgoRIthm? 41

what is the shortest possible route that one should take
to visit each city once and return to the origin city?” This
is called the traveling salesman problem, and the obvious
way to solve it is to examine every possible path taking
in all cities. Unfortunately, for n cities this is n! The
problem is unmanageable after, say, 20 cities. There are
some algorithms that do it a bit better than O n(!), but
not enough to be practical. Surprising as it may seem
for such a straightforward problem, the only way we
can solve it in an acceptable time is by finding a solution
that may not be the optimal one, but is close enough to
it. Many other problems of great practical importance are
intractable— that is, we don’t know a practical algorithm
to solve them exactly. Even so, the quest for better and
better approximation algorithms is a vibrant field in
computer science.

In the table that follows, you can see the value of vari-
ous functions, falling under the complexity families we
presented, for different values of n. The first row gives the
n values and also stands in for linear complexity; subse-
quent rows show families of increasing complexity. As n
increases, the function values increase, but the way they
increase is different. The function n3 will take us from one
million to one quintillion, but that is nothing compared
to 2100 or 100! We have left a blank like after the nk row,
separating practical from impractical algorithms. The bor-
der between the two are the polynomial algorithms, which

42 ChAPtER 1

as we saw are of practical use. Algorithms with higher com-
plexity are usually not of practical use.

n

lgn

nlgn

1 10 100 1 000 1 000 000

0 3 32 6 64 9 97 19 93

0 33 22 664 39

, , ,

. . . .

. . 99 965 78 1 9 10

1 100 10 000 1 000 000 10

1 1 000 1 000 000

7

2 12

3

, . .

, , ,

, , ,

×
n

n 110 10

1 10 100 1 000 1 000 000

2 2 1 024 1 3 10 10 10

9 18

30 301 1

nk k k k k

n

, , ,

, . × 00

157 2567 10

5 5

6 7

1 3 628 800 9 33 10 4 10 10

.

.

! , , .n × ×

2

GRAPHS

In the eighteenth century, the good citizens of Königsberg
strolled around their city on Sunday afternoons. The city
of Königsberg was built on the banks of the river Pregel.
The river created two large islands within the city; the is-
lands were connected to the mainland and each other with
seven bridges in total.

Swept by the vagaries of European history, Königs-
berg passed from the Teutonic nights, to Prussia, Russia,
the Weimer Republic, and Nazi Germany, and after the
Second World War, it became part of the USSR and was
renamed Kaliningrad, which is the name of the city today.
It is part of Russia now, although not connected to Russia
proper. Kaliningrad is situated in a Russian enclave, on the
Baltic Sea, wedged between Poland and Lithuania.

Back in the day, the problem occupying the minds of
the good citizens was whether it was possible to make their

44 ChAPtER 2

walks while crossing all seven bridges exactly once. The con-
cern was named after its host city as the Königsberg bridge
problem. To get a glimpse of the nature of the issue, here is
a drawing of Königsberg at the time. The bridges are indi-
cated by ovals drawn around them. The city had two islands,
but you can see only one island in its entirety; the other one
extends to the right beyond the boundaries of the map.1

We don’t know exactly how, but the famous Swiss
mathematician Leonhard Euler learned about the prob-
lem; the problem is mentioned in a letter sent on March 9,
1736, from the mayor of Danzig, a city in Prussia 80 miles
to the east of Königsberg (Danzig is now called Gdansk

 gRAPhs 45

and belongs to Poland). The correspondence with Euler
seems to have been part of an effort by the mayor to en-
courage the growth of mathematics in Prussia.

Euler was at the time living in Saint Petersburg in
Russia. He worked on the problem and presented a solu-
tion to the members of the Saint Petersburg Academy of
Sciences on August 26, 1735. In the following year, Euler
wrote a paper, in Latin, describing his solution.2 The solu-
tion was negative: it was not possible to make a tour of
the city crossing each bridge only once. That would be an
interesting piece of mathematical history, but by solving
the problem, Euler created a whole new branch of math-
ematics: the study of graphs.3

Before we go into graphs, let’s see how Euler tackled
the problem. First of all, he abstracted the problem to its
bare essentials. No detailed map of Königsberg is needed to
represent the question. Euler drew the following diagram:4

46 ChAPtER 2

He used the letters A and D for the two islands, and B
and C for the two banks on the mainland. The next step is
to abstract the diagram even more, away from the physi-
cal geometry, and to the connections between bridges, is-
lands, and mainland, because this is what really matters
for the problem:

A

C

B

D

We have drawn the landmasses as circles, and the
bridges as lines connecting the circles. The problem then
can be restated as follows: If you have a pencil, is it pos-
sible to start from any of the circles, put the pencil down,
and follow the lines without lifting the pencil from the pa-
per so that you can pass through every line exactly once?

Euler’s solution went as follows. Whenever you enter
a landmass, you must leave it, except if this is the start
or end of your walk. In order to do that, each landmass,
apart from the start and finish, must have an even number

 gRAPhs 47

of bridges so that each time you enter it, you can leave it
from a different bridge, as required. Now go to the figure
and count the number of bridges connecting each land-
mass. You will find out that all landmasses are connected
with an odd number of bridges: A has five bridges, and B,
C, and D have three bridges. Whichever of the landmasses
we choose as starting and ending points, there will be two
other landmasses that we will visit in the midst of our tour,
and they have an odd number of bridges each. We cannot
enter and leave them traversing their bridges only once.

Indeed, if we arrive at B at some point on our tour,
we must have crossed a bridge to get to it. We will cross a
second bridge to leave it. We must cross the third bridge
at some later time because we are required to cross all
bridges. But then we are stuck at B because there is no
fourth bridge and we cannot cross a second time a bridge
that we have already crossed. The same goes for C and D,
which also have three bridges. Exactly the same argument
holds for A as an intermediate point as it has five bridges;
after crossing all five bridges of A, we won’t be able to leave
it from a different, sixth bridge because such a bridge does
not exist.

The figure we drew consists of circles and lines con-
necting them. To use the proper terminology, we created a
structure that is composed of nodes or vertices connected
with edges or links between them. A structure that is com-
posed of sets of nodes and edges is a graph; Euler was the

48 ChAPtER 2

first to recognize graphs as a structure and explore their
properties. In today’s language, the Königsberg bridge
problem deals with paths: a path in a graph is a sequence of
edges that connect a sequence of nodes. Then the Königs-
berg problem is the problem of finding a Eulerian path or
Eulerian walk: a trail through a graph such that each edge
is visited exactly once. A path that starts and ends at the
same node is called a tour or circuit. If we also add the re-
striction (not in the original problem) that we want the
Eulerian path to start and finish at the same point, then
we have a Eulerian tour or Eulerian circuit.

The applications of graphs are so numerous that they
fill entire books. Anything that can be modeled by nodes
connected to other nodes can be represented as a graph.
Once we do that, we can ask all kinds of interesting ques-
tions about it; here we’ll have the opportunity to take just
a glance.

Before we do that, though, here is a small detail to
please the most rigorous minded of readers. We men-
tioned that a graph is a structure that comprises sets of
vertices and edges. In mathematics, a set does not contain
the same item twice. Yet in our representation of Königs-
berg, we have the same edge appear more than once; there
are, for example, two edges between A and B. An edge is
distinguished by its starting and ending points, so the two
edges between A and B are in fact two instances of the
same edge. Then the set of the edges is not really a set; it is

 gRAPhs 49

a multiset— that is, a set that allows for multiple instances
of its elements. In the same way, the Königsberg graph is
not really a graph but rather a multigraph.

From Graphs to Algorithms

The definition of a graph is wide so that it can encompass
everything that can be represented as things connected
to other things. The graph may have some relevance to
the topology of a place, but the nodes and links may have
nothing to do with points in space.

A social network is an example of such a graph. In a
social network, nodes are social actors (these may be indi-
viduals or organizations), and the links represent interac-
tions between them. The social actors may be real- world
actors, and the links may be their collaborations in films.
The social actors can be us, and the links may be our con-
nections to other people in a social network application.
We can then use social networks to find communities of
people, starting from the premise that communities are
formed by people who interact with each other. There exist
algorithms that are able to find efficiently communities in
graphs with millions of nodes.

The edges in the Königsberg graph are not directed,
meaning that we can traverse them both ways; for exam-
ple, we can go from A to B and B to A. The same goes for

The definition of a graph
is wide so that it can
encompass everything
that can be represented
as things connected to
other things.

 gRAPhs 51

social networks, when the connections are reciprocal. That
is not always necessary. Depending on our applications,
edges in a graph may be directed. When this happens, we
draw the edges with arrows at their ends. Directed graphs
are called digraphs for short. You can see a digraph below.
Note that this is not a multigraph; the edge from A to B is
not the same as the edge from B to A.

A

B

C

D

The World Wide Web is an example of a (huge) directed
graph. We can represent the web with nodes standing in
for web pages and edges standing in for the hyperlinks be-
tween each pair of pages. This graph is a directed graph,
because a page may link to another page, but that other
page does not necessarily link back to the first page.

When it is possible to start from a node in a graph,
traverse edges, and come back to the node we started from,
we say that the graph has a cycle. Not all graphs have cy-
cles. The Königsberg graph has cycles— although it does

52 ChAPtER 2

not have a Eulerian circuit. A famous cyclic graph (actually
a multigraph) in the history of science is August Kekulé’s
model of the molecular structure of benzene:5

A graph without a cycle is called an acyclic graph. Di-
rected acyclic graphs form an important class of graphs.
We usually call them dags. Dags have many uses; for ex-
ample, we use them to represent priorities between tasks
(tasks are nodes, and priorities are links between them),
dependency relations, prerequisites, and other similar ar-
rangements. We’ll leave aside acyclic graphs now and turn
our attention to cyclic graphs, which will provide us with a
first window on algorithms on graphs.

Paths and DNA

One of the most important scientific developments of the
last decades has been the decoding of the human genome.

 gRAPhs 53

Thanks to the techniques that were developed in that ef-
fort, we can now investigate genetic diseases, detect muta-
tions, and study genomes of extinct species, among other
fascinating applications.

Genomes are encoded in the DNA, a large organic mol-
ecule that is composed of a double helix. The double helix
is made up of four bases: cytosine (C), guanine (G), ad-
enine (A), and thymine (T). Each part of the double helix is
constructed from a series of bases, like ACCGTATAG. The
other part of the double helix is constructed from bases
that are connected with their corresponding bases on the
first part, according to the rules A- T and C- G. So if one
part of the helix is ACCGTATAG, the other part will be
TGGCATATC.

In order to find the composition of an unknown DNA
piece, we can work as follows. We create many copies of
the chain and break them up into little fragments— for
instance, fragments containing three bases each. Using
specialized instruments, we can identify such small frag-
ments easily. In this way we end up with a set of known
fragments. We are then left with the problem of assem-
bling the fragments into a DNA sequence, whose composi-
tion we will then know.

Suppose then that we have the following fragments, or
polymers as they are known: GTG, TGG, ATG, GGC, GCG,
CGT, GCA, TGC, CAA, and AAT. Each one of them has a
length of three; to find the DNA sequence from which

54 ChAPtER 2

they were broken up, we create a graph. In that graph, the
vertices are polymers of length two that are derived from
the polymers of length three, taking for each polymer of
length three the first two and last two polymers. So from
GTG we will get GT and TG, and from TGG we will get TG
and GG. In the graph, we add one edge for every one of the
initial polymers or length three that was used to derive
the two vertices. We give the name of the polymer to that
edge. From ATG we get vertices AT and TG and the edge
ATG. You can see the graph that results from our example:

AT

TG

GG

GC

CG

GT

CA

AA

ATG

T
G
G

T
G
C

G
G
C

GC
G

GCA

CGT

G
T
G

C
A
A

AA
T

 gRAPhs 55

With the graph we have created, we only need to
find a tour in the graph that visits all edges exactly
once— that is, an Eulerian circuit— in order to find the
initial DNA sequence. The Hierholzer algorithm for find-
ing Eulerian circuits on graphs was published by the Ger-
man mathematician Carl Hierholzer in 1873 and goes like
this:6

1. We pick a starting node.

2. We go from node to node until we return to the
starting node. The tour that we have traced to this point
does not necessarily cover all edges.

3. As long as there exists a vertex that belongs to the
tour we have traced, but is also part of an edge that is not
in the path, we start another path from that vertex, using
edges that we have not used yet, until we return to it,
forming another tour. Then we splice this tour to the tour
we have already traced.

If we use the algorithm in our example graph, we will
find the path in the following figure:

56 ChAPtER 2

AT

TG

GG

GC

CG

GT

CA

AA

ATG

1

T
G
G6

T
G
C

2

G
G
C

7

GC
G

3

GCA

8

CGT

4

G
T
G

5

C
A
A

9

AA
T

10

We started from AT and made the tour AT → TG →
GG → GC → CA → AA → AT. We made a tour, but we
did not cover all the edges. We see that TG has an edge,
TGC, that we have not covered yet. So we go to TG and do
a tour starting along the TGC edge, getting TG → GC →
CG → GT → TG. We splice the second path into the first,
getting the one in the figure, AT → TG (→ GC → CG →
GT → TG) → GG → GC → CA → AA → AT. If we walk
the resulting path from the first node to the last, without

 gRAPhs 57

stepping on the last, and concatenate the vertices keeping
their common base only once, we get the DNA sequence
ATGCGTGGCA. You can verify that this sequence contains
all the polymers with which we started; CAA and CAT are
found if you wrap around when you reach the end of the
sequence and go to the beginning.

In this particular illustration, we only found one ad-
ditional tour that we spliced into the original one. In gen-
eral, there may be more; step 3 of the algorithm is repeated
as long as there are vertices with edges that we have not
covered yet. Hierholzer’s algorithm is fast: if implemented
properly, it runs in linear time, O n(), where n is the num-
ber of edges in the graph.7

Scheduling a Tournament

Suppose you are organizing a tournament in which the
contestants will compete in pairs, so we’ll have a series of
matches. We have eight contestants, and each contestant
will play four matches. Our problem is how to schedule
the tournament. We want to schedule the matches so that
each contestant plays only one match per day.

An obvious solution is to have just one match per day
and allow the tournament to last as long as needed. As
we have eight contestants and each contestant plays four
matches, the tournament would roll out over 16 days

58 ChAPtER 2

(8 4 2× / ; we divide by two so as not to count each match
twice). We’ll name the eight contestants Alice, Bob, Carol,
Dave, Eve, Frank, Grace, and Heidi. This allows us to use
only the initial letter of their names to identify them.

We can find a better solution if we model the problem
as a graph. We’ll have a vertex for each player and an edge
for each match. Then the graph will look like the one on
the left below. On the right, we have labeled the edges with
the day on which the corresponding match will take place.
How did we find this solution?

A B

CD

E

F

G

H

A B

CD

0

1

0

1

E

F

G

H

0

1
0

1

2

3

3

2

3

23

2

We agree to number the tournament days consecu-
tively. Let the tournament start on day zero. We’ll sched-
ule all matches, one by one.

 gRAPhs 59

1. Take a match that we have not scheduled yet. If we
have scheduled all matches, stop.

2. Schedule the match on the earliest day so that neither
of the two players has another match on that day. Return
to step 1.

This algorithm looks deceptively simple, and you
may doubt that it really solves our problem. So let’s walk
through it and see what happens. In the following table
we can see the matches, one by one, and the day on which
we schedule each match, as we apply the algorithm on the
graph. You should read the first two columns of the table
and then the next two:

Match Day Match Day

A, B 0 C, F 3

A, D 1 C, G 2

A, E 2 D, G 3

A, H 3 D, H 2

B, C 1 E, F 0

B, E 3 E, H 1

B, F 2 F, G 1

C, D 0 G, H 0

60 ChAPtER 2

We start by taking the match Alice versus Bob. Neither
Alice nor Bob play any other match on day zero— that is,
the day on which we’ll assign the match.

We then take another match we have not scheduled
yet— say, Alice versus Dave. Although there is no require-
ment to do so, we’ll take the match players in lexicographi-
cal order as we continue, but bear in mind that we could
take them in any other way, even randomly, as long as
we treat each match only once. Alice already has a match
scheduled on day zero, so the earliest available day for the
match is day one.

Next comes the match between Alice and Eve. Alice is
booked on day zero and day one, so we’ll schedule it on day
two. Alice’s final match will be with Heidi; Alice is engaged on
days zero, one, and two, so this will have to go on day three.

We are done with Alice. Moving on to Bob’s matches,
except for the one with Alice, which we have already sched-
uled, we need to plan Bob versus Carol. Bob is already
scheduled on day zero (with Alice), so this match will have
to go on day one. Scheduling Bob versus Eve, we notice
that Bob is already engaged on day zero and day one (we
just scheduled that), while Eve is scheduled to play on day
two with Alice; we therefore schedule Bob versus Eve on
day three. Going to Bob versus Frank, Bob has matches on
days zero and one, but is free on day two, while Frank has
no matches at all as of yet. So Bob versus Frank goes on
day two, earlier than Bob versus Eve.

 gRAPhs 61

After Bob, we’ll deal with Carol’s matches. Neither
Carol nor Dave have a match scheduled on day zero, so
Carol versus Dave will go on the first day of the tourna-
ment. After this, the Carol versus Frank match can take
place on day three, because Carol plays matches on day
zero (we just arranged that) and day one (with Bob, ar-
ranged previously), while Frank plays with Bob on day two
(also arranged previously). Carol versus Grace will take
place earlier, on day two, as Grace has no other matches
planned as of yet and Carol is still free on day two.

We proceed similarly with the rest of the matches;
it is interesting that the matches in the inner and outer
squares of the graph will happen as early as the first two
days. These are two different groups playing in parallel be-
fore they start playing between them. At the end, the so-
lution we find is a significant improvement over the naive
solution requiring 16 days; we only need four!

This tournament scheduling problem is in fact an in-
stance of a more general problem: the edge coloring prob-
lem. An edge coloring of the graph is an assignment of
colors to edges so that no two adjacent edges have the
same color. Now color should be taken figuratively here. In
our example, the colors are the days; in general, they can
be any other set of distinct values. If instead of the edges,
we want to color the vertices of the graph so that no two
vertices that are linked by an edge share the same color,
then we have the vertex coloring problem. Both edge and

62 ChAPtER 2

vertex coloring belong to the wider class of, no surprise,
graph coloring problems.

The algorithm we described for edge coloring is simple
and efficient (it takes each edge one by one, and only once).
It is a so- called greedy algorithm. Greedy algorithms are al-
gorithms that try to solve a problem by finding the best
solution at each stage, not the optimal solution in general.
Greedy algorithms are useful in many problems when at
each stage of the solution we have a choice to make and
our rule is “what looks best now.” Such strategies that
guide our choices in the evolution of an algorithm are
called heuristics, from the Greek heuriskein, which means

“to find” (a solution, that is).
With some thought we can realize that in algorithms,

as in real life, what looks best right now may not really be
the best strategy. It may pay off to delay gratification; the
best choice right now may lead us to a trap that we’ll regret
later on. Imagine you are climbing a mountain. The greedy
heuristic would be to select the steepest path at each point
(we assume that your climbing prowess is unparalleled).
This will not necessary lead you to the top: it may well lead
you to a plateau, from which the only way is back. The real
way to the top may lie through gentler slopes.

The climbing metaphor is frequently used in problem
solving in computer science. We model our problem so
that the solution lies at “the top” of the possible moves we

 gRAPhs 63

can make and try to find the correct moves; this is called a
hill climbing approach. When we arrive at something like a
plateau, we say we arrived at a local optimum, but not the
global optimum, the highest peak that we are after.

From hill climbing back to tournament scheduling,
we selected the first available day for each match. Unfor-
tunately, this might not be the best way to schedule all
matches. Indeed, it turns out that graph coloring is a diffi-
cult problem. The algorithm that we gave is not guaranteed
to give the optimal solution— that is, the solution requir-
ing the smallest number of days (or colors, in general).
The number of edges adjacent to a node is called its degree.
It can be proven that if the largest degree of any node in
the graph is d, the edges can be colored with at most d or
d + 1 colors; the required number of colors for the edges
of a graph is called its chromatic index. In our particular
example, the solution is optimal, d = 4, and we used four
days. Our algorithm, however, may not be able to find the
optimal solution in some other graph. It may give us a so-
lution worse than that. The good thing about greedy graph
coloring is that we know how far off that solution might
be: the solution it will give may need up to 2 1d − colors,
instead of d, but no worse than that.

If you want to see how this may happen, consider a
graph that consists of “stars” connected to a central node,
like the one on the next page:

64 ChAPtER 2

1
2 3

1
2 3

1
2 3

4
5

6

2
3 4

1
3 4

1
2 4

1
2

3

If we have k stars, where each star has k edges plus an
edge to the central node, and we start by coloring the stars,
we’ll use k colors to color the edges of the stars. Then we’ll
need k additional colors to connect the stars to the central
node. The total is 2k colors. This is what we did on the left.
But this is not the optimal solution. If we start by coloring
the edges connecting the stars to the central node, we’ll
need k colors for that. Then we can color the stars them-
selves using only one additional color, for a total of k + 1
colors. You can see how we can do that on the right. All this
is in accordance with theory, as each star has degree k + 1.

The problem is that the greedy algorithm decides to
order the edges to color in a way that is not optimal at the
end, or to use the proper terminology, in a way that is not
globally optimal. It might hit on the best solution, but it
might not. Then again, the difference from the optimum
solution is not that great. That is a relief because graph col-
oring is so difficult that if we want an exact algorithm that
can find the best solution for every graph, the algorithm
will have exponential complexity, about O n()2 , where n is
the number of edges in the graph. Exact edge coloring al-
gorithms are therefore useless, except for tiny graphs.

 gRAPhs 65

The greedy algorithm we have presented has one ad-
ditional nice property (apart from being practical). It is
an online algorithm: an algorithm that works even if the
inputs are not known when we start but instead arrive on
the scene as we go. We don’t need to know all the edges to
start running the algorithm. The algorithm will work cor-
rectly, even if the graph is constructed in a piecemeal fash-
ion, one edge at a time, while we are running the algorithm.
This would happen if players are signing up for the tourna-
ment even after we have started scheduling the matches.
We will be able to color each edge (match) as it comes, and
whenever the graph is finished, we’ll have an edge color-
ing ready. Moreover, this greedy algorithm is the optimum
algorithm if the graph is created incrementally in this way;
no exact algorithm, no matter how inefficient, exists at all
when the graph is constructed while we are solving the
problem.8

Shortest Paths

As we saw, a greedy algorithm works by taking the best
decision at each step— which may not be the best decision
overall. It has a somehow opportunistic nature or carpe
diem feeling to it. Unfortunately, as Aesop’s fable tells us,
a grasshopper living for the day may yet live to regret the
winter, when the ant, who is preparing for the future, ends

66 ChAPtER 2

up cozy and warm.9 In the planning of tournaments, we
found that the grasshopper may not end up so badly. Now
it is time for the ant’s revenge.

In chapter 1, we discussed the infeasibility of trying
to find the shortest path between two points on a grid by
enumerating all the possible paths. We saw that this is im-
possible to do in practice because the number of paths in-
creases tremendously. Now with our knowledge of graphs,
we will see that there is a way. In fact, we’ll take the prob-
lem up a notch. Instead of looking for the shortest path
on a grid, which has a kind of nice geometry and on which
all distances between points are equal, we will allow any
geometric shape and even add different distances between
points.

To do that, we’ll create a graph where we have nodes
and edges representing a map, and want to find the short-
est way between two nodes on the map. Moreover, we’ll
attach a weight to each edge. The weight may be positive
or zero, and will correspond to a measure of the distance
between the two connected nodes. It may be distance in
miles or travel time in hours; any other nonnegative met-
ric will do. Then the path length is the sum of the weights
along the path; the shortest path between two nodes is the
path with the smallest length. If all weights are equal to
one, then the path length is equal to the number of edges
on the path. Once we allow weights to have other values,
this is no longer true.

 gRAPhs 67

In the following graph, we have six nodes connected
by nine edges with varying weights, and want to find the
shortest path to travel from nodes A to F.

A

B

C

D

E

F

3

1

3

4

6

2

5

1

2

If we adopt a greedy heuristic, we’ll start by going from
node A to C, then the best choice is to go to node E, and
from there we make our way to node F. The total length
of the path A, C, E, and F is eight, which is not, however,
the best path. The best path is to go from A to C to D, and
then to F, for a total length of six. So the greedy heuristic
does not work, and in contrast to tournament planning,
there are no guarantees as to its worst performance in re-
lation to the actual shortest path. Nevertheless, and again
in contrast to tournament planning, there exist efficient
algorithms for finding the shortest paths so in fact there
is no reason to use the greedy heuristic at all.

68 ChAPtER 2

In 1956, a young Dutch computer scientist, Edsger
Dijkstra, was shopping in Amsterdam with his fiancée.
Having got tired, they sat down at a café terrace to drink a
cup of coffee, where Dijkstra thought about the problem of
finding the best way to go from one city to another. He de-
signed the solution in 20 minutes, although the algorithm
took some time, three years, to get published. Dijkstra
led an illustrious career, yet this 20- minute invention re-
mained, to his amazement, a cornerstone of his fame.10

So how does the algorithm go? We want to find the short-
est paths from one node to all other nodes in a graph. The al-
gorithm uses an idea called relaxation: we assign estimates for
the values we want to find (here, distances). In the beginning,
our estimates are the worst possible. Then as the algorithm
progresses, we are able to relax these estimates from the ex-
tremely bad ones we started with to progressively better and
better ones, until we arrive at the correct values.

In Dijkstra’s algorithm, relaxation proceeds as follows.
We begin by assigning the worst possible value for the dis-
tances of all nodes from our starting node: we set the dis-
tance to infinity; clearly there cannot be anything worse
than that! In the following figure, we have placed the ini-
tial estimate for the shortest path and previous node in
that path above or below each node. For the A node, we
have 0 / − because the distance from A to A is zero and
there is no previous node to A. For all other nodes, we have
∞ −/ because the distance is infinity and we have no idea
about the shortest path to them.

 gRAPhs 69

A

0/−

B

C

D

E

F

3

1

3

4

6

2

5

1

2

We take the node with the shortest distance from A
thus far. This is A itself. That is our current node, so we
mark it gray.

A

0/−

B

C

D

E

F

3

1

3

4

6

2

5

1

2

70 ChAPtER 2

From A we can check the estimates for the shortest
paths to its neighbors, B and C. Initially we had set them
at infinity, but in fact now we find out that we can get to
B from A at a cost of 3 and we can get to C from A at a cost
of 1. We update these estimates and also indicate that the
estimates are through A; we write 3/A above B and 1/A
below C. We are done with node A for the rest of the algo-
rithm. We update the figure accordingly, marking A black.
We move to the unvisited node with the best current esti-
mate. That is node C.

0/−

B

3/A

C

1/A

D

E

F

3

1

3

4

6

2

5

1

2

From node C, we check the estimates of the shortest
paths to its neighbors, D and E. They were at infinity, but

 gRAPhs 71

now we see that we can get to each one of them through C.
The path from A to D through C has a total length of 5, so
we write 5/C above D. The path from A to E through C has
a total length of 3, so we write 3/C below E. We are done
with node C so we mark it black and move to the unvisited
node with the best current estimate. Both nodes B and E
have an equally good estimate of 3. We can pick either. Let
us pick B.

A

0/0

B

3/A

C

1/A

D

5/C

E

3/C

F

3

1

3

4

6

2

5

1

2

We work in the same way. From node B, we check the
estimates of the shortest paths to its neighbors, D and
F. We already have an estimate of length 5 for D, coming
from C; that is better than the length 6 that we would get

72 ChAPtER 2

coming from B. So we let the estimate to D remain un-
changed. The current estimate to F is infinite so we update
it to 9, coming from B. We mark B as visited and move to
the unvisited node with the best current estimate. That is
node E.

0/0

3/A

1/A

D

5/C

E

3/C

F

9/B

3

1

3

4

6

2

5

1

2

E has F as a neighbor. The path to F from E has length
of 8, which is better than the path we had found through
B. We update the path, mark E as visited, and move
to the unvisited node with the best current estimate,
node D.

 gRAPhs 73

A

0/0

B

3/A

C

1/A

D

5/C

E

3/C

F

8/E

3

1

3

4

6

2

5

1

2

D has F as a neighbor, to which we have found a path
coming from E with length 8. As we can get to F through
D with a total length of 6, we update that path. As be-
fore, we move to the unvisited node with the best current
estimate— actually our only unvisited node, F.

0/0

3/A

1/A

5/C

3/C

F

6/D

3

1

3

4

6

2

5

1

2

74 ChAPtER 2

From node F we check whether we should update our
estimate for its neighbor, node E. The current path to E
has a length of 3, while the path through F would have a
cost of 10. We let E remain unchanged. Visiting F did not
make any difference, but we could not have known that
beforehand. As we have visited all nodes, the algorithm
finishes.

0/0

3/A

1/A

5/C

3/C

6/D

3

1

3

4

6

2

5

1

2

When we were going through the algorithm, we were
recording path lengths and the predecessor of each node
along the shortest path. We did that so that if after finish-
ing the algorithm we want to find the shortest path from
A to any other node in the graph— for example, F— we
start from the end and make our way to the start. We read

 gRAPhs 75

its predecessor: D. We get the predecessor of D, which is
C, and then the predecessor of C, which is A. The short-
est path from A to F is A, C, D, and F with a total length
of six, as we had mentioned way back at the start of our
discussion.

At the end, Dijkstra’s algorithm found all the short-
est paths from the starting node to all other nodes in
the graph. The algorithm is efficient, as its complexity is
O m n logn(())+ , where m is the number of edges in the
graph and n is the number of nodes. Here is the algorithm
as a set of steps:

1. Assign a distance equal to infinity to all nodes except
for the starting node; assign a distance equal to zero for
the starting node.

2. Find the unvisited node with the minimum distance.
This will be our current node. If there is no unvisited
node, stop.

3. Examine all neighbors of the current node. If their
distance is greater than the distance we would get
passing from the current node before arriving at the
neighbor, we relax the distance and update the path
going to the neighbor. Go to step 2.

If we are only interested in the shortest path to a par-
ticular node, we can stop when we pick it to visit in step 2.

76 ChAPtER 2

Once we do that, we have already found the shortest path
to it, and it will not change in the rest of the algorithm’s
execution.

We can use Dijkstra’s algorithm in any graph, directed
or not, even if it contains cycles, provided that it does not
have negative weights. This might happen if the edges rep-
resent some kind of rewards and penalties between nodes.
The good news is that there are other efficient algorithms
that we can use in the presence of negative weights, but
this highlights that algorithms may have particular re-
quirements in their applicability. When we try to find an
algorithm to solve our problem, we should check that our
problem meets the requirements of the algorithm. Oth-
erwise the algorithm will not work; but note that an algo-
rithm cannot tell us that it does not work. If we implement
the algorithm on a computer, it will still execute its steps
even if it does not make sense to do so. It will produce an
answer that will be nonsense. It is up to us to make sure
that we are using the right tool for the right job.

For an extreme example, think of what would happen
with a graph that not only has negative weights but also
a cycle where the sum of the edges is negative: a negative
cycle. Then no algorithm would find the shortest paths in
the graph because they do not exist. If we have a negative
cycle, we can go round and round its edges, and every time
the length of the path will be reduced. We can continue
forever, and the path along the cycle will get to negative

When we try to find an
algorithm to solve our
problem, we should
check that our problem
meets the requirements
of the algorithm.
Otherwise it will not
work; but an algorithm
cannot tell us that it
does not work.

78 ChAPtER 2

infinity. Computer scientists and programmers have a
name for when we put something in a program that does
not make sense for it: garbage in, garbage out. It is up to
humans to ferret out the garbage and know what to use
when. An important part of algorithm courses in universi-
ties is exactly to teach budding computer scientists what
to use when.

3

SEARCHING

The fact that algorithms can do all sorts of stuff, from
translating text to driving cars, can give us a misleading
picture of what algorithms are mostly used for. The answer
may seem mundane. It is unlikely that you will be able to
find any computer program doing anything at all useful
without employing algorithms for searching in data.

That is because searching in one form or another ap-
pears in almost every context. Programs take in data; of-
ten they will need to search for something in them and so
a searching algorithm will almost certainly be used. Not
only is searching a frequent operation in programs but,
because it happens frequently, searching can be the most
time- consuming operation in an application. A good search
algorithm can result in dramatic improvements in speed.

A search involves looking for a particular item among
a group of items. This general problem description

Searching in one form or
another appears in
almost every context. . . .
A good search algorithm
can result in dramatic
improvements in speed.

 sEARChIng 81

encompasses several variations. It makes a big difference
whether the items are ordered in some way that is related
to our search or come in random order. A different sce-
nario occurs when the items are given to us one by one
and we have to decide if we have found the correct one
right when we confront it, without the ability to rethink
our decision. If we search repeatedly in a set of items, it is
important to know if some items are more popular than
others so that we end up searching for them more often.
We will examine all these variations in this chapter, but
keep in mind that there are more. For example, we will
only present exact search problems, but there are many ap-
plications in which we need an approximate search. Think
of spellchecking: when you mistype something, the spell-
checker will have to search for words that are similar to the
one it fails to recognize.

As the data volumes increase, the ability to search ef-
ficiently in a huge number of items has become more and
more significant. We’ll see that if our items are ordered,
the search can scale extremely well. In chapter 1 we stated
that it is possible to find something among a billion sorted
items in about 30 probes; now we will see how this can be
actually done.

Finally, a search algorithm will give us a glimpse of the
dangers that lurk when we move from an algorithm to an
actual implementation in a computer program, which has
to run within the confines of a particular machine.

82 ChAPtER 3

A Needle in a Haystack

The simplest way to search is what we do to find the pro-
verbial needle in a haystack. If we want to find something
in a group of objects and there is absolutely no structure
in them, then the only thing we can do is to check one item
after the other until we either find the item we are looking
for or fail to find it after exhausting all items.

If you have a deck of cards and are looking for a par-
ticular one in them, you can start taking off the cards from
the top of the deck until you find the one you are looking
for or run out of cards. Alternatively, you can start taking
off the cards one by one from the bottom of the deck. You
can even take off cards from random positions in the deck.
The principle is the same.

Usually we do not deal with physical objects in com-
puters but rather digital representations of them. A com-
mon way to represent groups of data on a computer is in
the form of a list. A list is a data structure that contains
a group of things in such a way that from one item we
can find the next one. We can usually think of the list as
containing linked items, where one item points to the next
one, until the end, where the last item points to nothing.
The metaphor is not far from the truth because internally
the computer uses memory locations to store items. In a
linked list, each item contains two things: its payload data

 sEARChIng 83

and the memory location of the next item on the list. A
place in memory that holds the memory location of an-
other place in memory is called a pointer. Therefore in a
linked list, each element contains a pointer to the next el-
ement. The first item of a list is called its head. The items
in a list are also called nodes. The last node does not point
to anywhere; we say that it points to null: nothingness on
a computer.

A list is a sequence of items, but it is not necessary
that the sequence is ordered using some specific criterion.
For example, the following is a list containing some letters
from the alphabet:

U R L A E K D

If we have an unordered list, the algorithm for finding
an item on it goes like this:

1. Go to the head of the list.

2. If the item is the one we are looking for, report that it
is found and stop.

3. Go to the next item on the list.

4. If we are at null, report that the search item was not
found and stop. Otherwise, return to step 2.

84 ChAPtER 3

This is called a linear or sequential search. There is noth-
ing special about it; it is a straightforward implementation
of the idea of examining each single thing in turn until
we find the one we want. In reality, the algorithm makes
the computer jump from pointer to pointer until it either
reaches the item we are looking for or null. Below we show
what is happening when we search for E or X:

U R L A E K D

U R L A E K D

If we search among n items, the best thing that can
happen is to hit on the item we want immediately, which
will occur if it is the head of the list. The worst thing that
can happen is that the item is the last one on the list or
not on the list at all. Then we must go through all n items.
Therefore the performance of sequential search is O n().

There is nothing we can do to improve on that time if
the items appear on the list in a random sequence. Going
back to a deck of cards, you can see why this is so: if the
deck is properly shuffled, there is no way to know in ad-
vance where we’ll find our card.

Sometimes people have trouble with that. If we are
looking for a paper among a large pile, we may tire of going

 sEARChIng 85

one after the other. We may even think of how unlucky we
would be should the paper turn out to be at the bottom
of the pile! So we stop going through the pile in order and
peek at the bottom. There is nothing wrong in peeking at
the bottom, but it’s wrong to think that this improves our
chances of finishing the search quickly. If the pile is ran-
dom, then there is no reason why the sought- after item is
not the first, last, or one right in the middle. Any position
is equally likely, so starting from the top and making our
way to the bottom of the pile is as good a strategy as any
other that ensures we examine each item exactly once. It
is usually simpler to keep track of what we looked at if we
work in a specific order, however, than jumping around er-
ratically, and that’s why we prefer to stick with a sequential
search.

All this holds as long as there is no reason to suspect
that the search item is in a particular position. But if this
is not true, then things change, and we can take advan-
tage of any extra information we may have to speed up our
search.

The Matthew Effect and Search

You may have noticed that in an untidy desk, some things
find their way to the top of the pile, while some others
seem to slip to the bottom. When finally cleaning up the

86 ChAPtER 3

mess, the author has had the pleasant experience of dis-
covering buried deep down in a heap things he believed
were long lost. The experience has probably occurred to
others as well. We tend to place things we use frequently
close; things we have little use for slip further and further
out of reach.

Suppose we have a pile of documents on which we need
to work. The documents are not ordered in any way. We
go through the pile, searching for the document we need,
processing it, and then placing it not where we found it
but instead on the top of the pile. Then we go again with
our business.

It may happen that we do not work with the same fre-
quency on all documents. We may return to some of them
again and again, while we may only rarely visit others. If
we continue placing every document on the top of the pile
after working on it, after some time we’ll find out that the
most popular documents will be near the top, while the
ones we accessed the least often will have moved toward
the bottom. This is convenient for us because we spend
less time locating the frequently used documents and thus
less time overall.

This suggests a general searching strategy, where we
search for the same items repeatedly, and some items are
more popular than others. After finding an item, bring it
forward so that we’ll be able to find it faster the next time
we will look for it.

 sEARChIng 87

How applicable would such a strategy be? It depends
on how often we observe such differences in popularity.
It turns out that they happen a lot. We know the saying

“the rich get richer, and the poor get poorer.” It is not just
about rich and poor people. The same thing appears to a
bewildering array of aspects in different fields of activ-
ity. The phenomenon has a name, the Matthew effect, af-
ter the following verse in the Gospel of Matthew (25:29):

“For unto every one that hath shall be given, and he shall
have abundance: but from him that hath not shall be taken
away even that which he hath.”

The verse talks about material goods, so let’s think
about wealth for a minute. Suppose you have a large sta-
dium, capable of holding 80,000 people. You are able to
measure the average height of the people in the stadium.
Your result may be something around 1.70 meters (5 feet,
7 inches). Imagine that you take out somebody randomly
from the stadium and put in the tallest person in the world.
Will the average height differ? Even if the tallest person
is 3 meters tall (no such height has ever been recorded),
the average height would remain stuck at its previous
value— the difference with the previous average being less
than a tenth of a millimeter.

Imagine now that instead of measuring the average
height, you measure the average wealth. The average wealth
of your 80,000 people could be $1 million (we are assum-
ing a wealthy cohort). Now you substitute again somebody

88 ChAPtER 3

inside with the richest person in the world. That person
could have a wealth of $100 billion. Would this make a dif-
ference? Yes, it would— and a big one. The average would
increase from $1 million to $2,249,987.5, or more than
double. We are aware that wealth is not distributed equally
around the world, but we may not be aware of how un-
equal the distribution is. It is much more unequal than a
distribution of natural measures like height.

The same difference in endowments occurs in many
other settings. There are many actors you have never heard
of. And there are a few stars who have appeared in many
movies, earning millions of dollars. The term “Matthew
effect” was coined by the sociologist Robert K. Merton in
1968, when he observed that famous scientists get more
credit for their work over their lesser- known colleagues,
even if their contributions are similar. The more famous
scientists are, the more famous they will get.

Words in a language follow the same pattern: some
of them are much more popular than others. The list of
domains that are characterized by such jarring inequali-
ties includes the size of cities (megacities are many times
larger than the average city) and number, links, and
popularity of web sites (most sites are honored only by
the occasional visitor, while others rake in millions). The
prevalence of such unequal distributions, where a few ele-
ments of a population obtain a disproportionate amount
of resources, has been a rich field of inquiry over the last

 sEARChIng 89

few years. Researchers are looking into the reasons and
laws that underlie the emergence of such phenomena.1

It is possible that the items in which we are searching
exhibit such differences in popularity. Then a search algo-
rithm that will take advantage of the varying popularity
of the search items can work much like putting each docu-
ment that we find at the top of the pile:

1. Search for the item using a sequential search.

2. If the item is found, report that it is found, put it at
the front of the list, at its head, and stop.

3. Otherwise, report that the item was not found and
stop.

In the following figure, finding E on the list will bring
it to the front:

U R L A E K D

E U R L A K D

A possible criticism of this move- to- front algorithm
is that it will promote to the front even an item that we
only rarely search for. That is true, but if the item is not

90 ChAPtER 3

popular, it will gradually move toward the end of the list
as we search for other items because these items will move
to the front. We can take care of the situation, however, by
adopting a less extreme strategy. Instead of moving each
item we find bang to the front, we can move it just one
position forward. This is called the transposition method:

1. Search for the item using a sequential search.

2. If the item is found, report that it is found, exchange
it with the previous one (if it is not the first one), and
stop.

3. Otherwise, report that the item was not found and
stop.

In this way, items that are popular will gradually make
their way to the front, and less popular items will move to
the back, without sudden upheavals.

U R L A E K D

U R L E A K D

Both the move- to- front and transposition methods
are examples of a self- organizing search; the name comes

 sEARChIng 91

because the list of items is organized as we go with our
searches and will reflect the popularity of the searched
items. Depending on how the popularity ranges among
items, the savings can be significant. While with a se-
quential search we can expect a performance of O n(), a
self- organizing search with the move- to- front method
can attain a performance of O n lgn(/). If we have about a
million items, this is the difference between 1 million and
about 50,000. The transposition method can have even
better results, but it requires more time to achieve them.
That’s because both methods require a “warm- up period”
in which popular items will show themselves up and make
their way to the front. In the move- to- front method, the
warm- up is short; in the transposition method, the warm-
 up takes longer, but then we get better results.2

Kepler, Cars, and Secretaries

After the celebrated astronomer Johannes Kepler (1571–
1630) lost his wife to cholera in 1611, he set out to remarry.
A methodical man, he did not leave things to chance. In
a long letter to a Baron Strahlendorf, he describes the
process he followed. He planned to interview 11 pos-
sible brides before making his decision. He was strongly
attracted to the fifth candidate, but was swayed against
her by his friends, who objected to her lowly status. They

92 ChAPtER 3

advised him to reconsider the fourth candidate instead.
But then he was turned down by her. In the end, after ex-
amining all 11 candidates, Kepler did marry the fifth one:
24- year- old Susanna Reuttinger.

This little story is a stretched example of a search; Ke-
pler was searching for an ideal match, among a pool of pos-
sible candidates. Yet there was a kink in the process that
he was probably not aware of when he started: it might
not be possible to go back to a possible match after he had
rejected it.

We can recast the problem in more contemporary
terms, as looking for the best way to decide which car to
buy. We have decided beforehand that we will visit a cer-
tain number of car dealerships. Also, our amour propre
will not allow us to return to a car dealership after we have
walked away from it. If we have declined a car, saving face
is paramount, so that we cannot go back and say that we
changed our mind. Or perhaps somebody else walked in
and bought the car after we left. Be it as it may, we have to
make a final decision at each dealership, to buy the car or
let go, and not come back.

This is an instance of an optimal stopping problem. We
have to take an action, while trying to maximize a reward
or minimize a cost. In our example, we want to decide to
buy the car, when this decision will result in the best car
we can buy. If we decide too early, we may settle on a car
that is worse than a car we have not seen yet. If we decide

 sEARChIng 93

too late, we may discover to our chagrin that we saw, but
missed, the best car. When is the optimal time to stop and
make a decision?

The same issue is usually described in a more callous
way as the secretary problem. You want to select a secretary
from a pool of candidates. You can interview the candi-
dates one by one. You must make a decision to hire or not
at the end of each interview, however. If you reject a candi-
date, you cannot later change your mind and make an offer
(the candidate might be too good and thus be snapped by
somebody else). How will you pick the candidate?

There is a surprisingly simple answer. You go through
the first 37 percent of the candidates, rejecting them all,
but keeping a tab on the best one among them as your
benchmark. The number 37, which seems magical, occurs
because 37 1% /≈ e, where e is Euler’s number, approxi-
mately equal to 2.7182 (we saw Euler’s number in chapter
1). Then you go through the rest of the candidates. You
stop at the first of the rest that is better than your bench-
mark. That will be your pick. In algorithmic form, if you
have n candidates:

1. Calculate n e/ , to find the 37 percent of the n
candidates.

2. Examine and reject the first n e/ candidates. You will
use the best one among them as a benchmark.

94 ChAPtER 3

3. Continue with the rest of candidates. Pick the first
one that is better than your benchmark, and stop.

The algorithm will not always find the best candidate;
after all, the best candidate overall may be the benchmark
candidate you identified in the first 37 percent, and that
you have rejected. It can be proved that it will find the best
candidate in 37 percent (again, 1 / e) of all cases; more-
over, there is no other method that will manage to find
the best candidate in more cases. In other words, the algo-
rithm is the best you can do: although it may fail to give
you the best candidate in 63 percent of the cases, any other
strategy you may decide to follow will fail in more cases
than that.

Going back to cars, suppose we decide to visit 10 car
dealerships. We should visit the first four and take note
of the best offer by these four, without buying. Then we
start visiting the remaining six dealerships and we’ll
buy from the first dealership that gives us an offer bet-
ter than the one we noted down (we’ll then skip the rest).
We may discover that all six dealerships make worse of-
fers then the first four that we visited without buying. But
no other strategy can give us better odds of getting the
best deal.

We have assumed that we want to find the best pos-
sible candidate and will settle for nothing less. But what if
we can in fact settle for something less? That means that

 sEARChIng 95

even though ideally we would want the best secretary or
car, we can make do with another choice, with which we
may be happy, although not as happy had we picked up
the best. If we frame the problem like that, then the best
way to make our selection is to use the same algorithm
as above, but examining and discarding the square root,

n , of the candidates. If we do that, the probability that
we will make the best choice increases with the number of
candidates: as n increases, the probability that we’ll pick
the best goes to 1 (that is, 100 percent).3

Binary Search

We have considered different ways to search, correspond-
ing to different scenarios. A common thread in all these
was that the items that we examine are not given to us in
any specific order; at best, we order them gradually by pop-
ularity in a self- organized search. The situation changes
completely if the items are ordered in the first place.

Let’s say we have a pile of folders, each one of which
is identified by a number. The documents in the pile are
ordered according to their identifier, from the lowest to
highest number (there is no need for the numbers to be
consecutive). If we have such a pile and are looking for a
document with a particular identifier, it is foolish to start
from the first document and make our way to the last until

96 ChAPtER 3

we find the one we are looking for. A much better strategy
is to go straight to the middle of the pile. Then we compare
the number identifier on the document in the middle to
the number of the document that we are looking for. There
are three possible outcomes:

1. If we are lucky, we may have landed exactly on the
document that we want. We are done; our search is
over.

2. The identifier of the document we are looking for is
greater than the identifier of the document we have in
our hands. Then we know for sure that we can discard the
document at hand as well as all preceding documents. As
they are ordered, they will all have smaller identifiers. We
have undershot our target.

3. The opposite happens: the identifier of the document
we are looking for is smaller than the identifier of the
document we have in our hands. Then we can safely
discard the document at hand as well as all the documents
that come after it. We have overshot our target.

In either of the last two outcomes, we are now left
with a pile that is at most half the original one. If we start
with an odd number of documents, say n, splitting n docu-
ments in the middle gives us two parts, each with n / 2
items (discarding the fractional part in the division):

 sEARChIng 97

 ×

With an even number of items, splitting them will
give us two parts, one with n / 2 1− items and another
one with n / 2 items:

 ×

We have still not found what we were looking for, but
we are much better than before; we have much fewer items
to go through now. And so we do. We check the middle
document of the remaining items and repeat the procedure.

In the figure on the following page, you can see how
the process evolves for 16 items, among which we are look-
ing for item 135. We mark out the boundaries inside which
we search and the middle item with gray.

In the beginning, the domain of our search is the full
set of items. We go to the middle item, which we find out is
384. This is bigger than 135, so we discard it, along with all
the items to its right. We take the middle of the remaining
items, which turns out to be 72. This is smaller than 135,
so we discard it, along with all the items on its left. Our
search domain has shrunk to just three items. We take the
middle one and find that it is the one we want. It took us
only three probes to finish our search, and we did not even
need to check 13 of the 16 items.

98 ChAPtER 3

6
1
1

3
1

7
2

1
1
4

1
3
5

2
4
4

3
8
4

5
0
3

5
0
7

5
4
1

6
1
3

6
8
0

7
4
2

8
7
1

9
5
7

6
1
1

3
1

7
2

1
1
4

1
3
5

2
4
4

3
8
4

5
0
3

5
0
7

5
4
1

6
1
3

6
8
0

7
4
2

8
7
1

9
5
7

6
1
1

3
1

7
2

1
1
4

1
3
5

2
4
4

3
8
4

5
0
3

5
0
7

5
4
1

6
1
3

6
8
0

7
4
2

8
7
1

9
5
7

 sEARChIng 99

The process will also work if we are looking for some-
thing that does not exist. You can see that in the next fig-
ure, where we are searching among the same items for one
labeled 520.

This time, 520 is greater than 384, so we restrict our
search to the right half of the items. There we find that the
middle of the upper half is 613, greater than 520. Then we
limit our search to just three items, the middle of which
is 507. This is smaller than our target of 520. We discard
it and now are left with only one item to check, which
we discover is not the one we want. So we can finish our
search reporting that it was unsuccessful. It took us only
four probes.

The method we described is called binary search be-
cause each time we cut in half the domain of values in
which we search. We call the domain of values where we
perform our search the search space. Using this concept,
we can render the binary search as an algorithm compris-
ing these steps:

1. If the search space is empty, we have nowhere to look,
so report failure and stop. Otherwise, find the middle
element of the search space.

2. If the middle element is less than the search term,
limit the search space from the middle element onward
and go back to step 1.

100 ChAPtER 3

6
1
1

3
1

7
2

1
1
4

1
3
5

2
4
4

3
8
4

5
0
3

5
0
7

5
4
1

6
1
3

6
8
0

7
4
2

8
7
1

9
5
7

6
1
1

3
1

7
2

1
1
4

1
3
5

2
4
4

3
8
4

5
0
3

5
0
7

5
4
1

6
1
3

6
8
0

7
4
2

8
7
1

9
5
7

6
1
1

3
1

7
2

1
1
4

1
3
5

2
4
4

3
8
4

5
0
3

5
0
7

5
4
1

6
1
3

6
8
0

7
4
2

8
7
1

9
5
7

6
1
1

3
1

7
2

1
1
4

1
3
5

2
4
4

3
8
4

5
0
3

5
0
7

5
4
1

6
1
3

6
8
0

7
4
2

8
7
1

9
5
7

×

 sEARChIng 101

3. Otherwise, if the middle element is greater than the
search term, limit the search space up to the middle
element and go back to step 1.

4. Otherwise, the middle element is equal to the search
term; report success and stop.

In this way, we divide by two the items that we have
to search. This is a divide- and- conquer method. It results
in repeated division, which as we have seen in chapter 1
gives us the logarithm. Repeated division by two gives us
the logarithm base two. In the worst case, a binary search
will keep dividing and dividing our items, until it cannot
divide any further, like we saw in the unsuccessful search
example. For n items, this cannot happen more than lgn
times; it follows that the complexity of a binary search is
O lgn().

The improvement compared to a sequential search,
even a self- organized search, is impressive. It will not take
more than 20 probes to search among a million items.
Viewed from another angle, with a hundred probes we are
able to search and find any item among 2 1 27 10100 30≈ ×. ,
which is more than one nonillion.

The efficiency of a binary search is astounding. Its
efficiency is probably only matched by its notoriety. It is
an intuitive algorithm. But this plain method has proved
time and again tricky to get right in a computer program.

102 ChAPtER 3

For reasons that have nothing to do with the binary search
algorithm per se, but rather the way we turn algorithms
into real computer code in programming language, pro-
grammers have been prey to insidious bugs that have crept
into their implementations. And we are not talking about
rookies; even world- class programmers have failed to get
it right.4

To get an idea of where such bugs may lurk, consider
how we find the middle element among the items we want
to search in the first step of the algorithm. Here is a simple
idea: the middle element of the mth and nth elements is
() /m n+ 2, rounded if the result is not a natural number.
This is true, and it follows from elementary mathematics,
so it applies everywhere.

Except in computers. Computers have limited re-
sources, memory among them. It is not possible, therefore,
to represent all the numbers we want on a computer. Some
numbers will simply be too big. If the computer has an
upper limit on the size of the numbers that it can handle,
then both m and n should be below that limit. Of course,
() /m n+ 2 is below that limit. But to calculate () /m n+ 2,
we have to calculate m n+ and then divide it by two, and
that sum may be larger than the upper limit! This is called
overflow: going beyond the range of allowable values. So
you get a bug that you had never thought would bite you.
The result will not be the middle value but instead some-
thing else entirely.

Do not despair if you
find yourself wretched
poring over a line of
code that does not do
what you think it should
do. You are not unique.
It happens to all; it
happens to the best.

104 ChAPtER 3

Once you know about it, the solution is straightfor-
ward. You do not calculate the middle as () /m n+ 2 but
rather m n m+ −() / 2. The result is the same, but no over-
flow occurs. In retrospect it seems simple. In hindsight,
though, everybody is a prophet.

We are interested in algorithms, not programming,
here, but let the author share a bit of advice for those who
write or want to write computer programs. Do not despair
if you find yourself wretched poring over a line of code
that does not do what you think it should do. Do not be
dismayed if the following day you realize that, indeed, the
bug was before your eyes all the time. How could you have
failed to see it? You are not unique. It happens to all; it
happens to the best.

Binary search requires that the items should be sorted.
So to reap its benefits, we should be able to sort items
efficiently— which allows us to segue to the next chapter,
where we’ll see how we can sort things with algorithms.

4

SORTING

The US Constitution postulates that a decennial census
should take place in order to apportion taxes and repre-
sentatives among the several states of the union. The first
census following the American Revolution took place in
1790, and a census has been done every ten years since.

In the hundred years since 1790, the United States
grew rapidly— from a bit less than 4 million people in the
first census, to more than 50 million in 1880. And therein
lay a problem: it took eight years to count these people.
When the next census year came, in 1890, the population
was even bigger. If the count were taken in the same way,
it would probably not have been completed before the fol-
lowing census of 1900.

At that time, Herman Hollerith, a young graduate
from Columbia University’s School of Mines (he gradu-
ated in 1879, when he was 19), was working for the US

106 ChAPtER 4

Census Bureau. Aware of the pressing timing problem, he
tried to find a way to speed up the census process using
machines. Hollerith was inspired by the way conductors
used holes punched in railway tickets to record traveler
details; he invented a way in which punched cards could be
used to record census details. These cards could then be
processed by tabulating machines, electromechanical de-
vices that could read the punched cards and use the data
stored in them to make a tally.

Hollerith’s tabulating machine was used in the 1890
census and brought down the time required to complete
it to six years— when it came out that the US population
had grown to approximately 63 million people. Hollerith
presented his tabulating machines to the Royal Statistical
Society, noting that “it must not be considered that this
system is still in an experimental stage. Over 100,000,000
punched cards have been counted several times over on
these machines, and this has afforded ample opportunity
to test its capabilities.”1 Following the census, Hollerith
started a business, called the Hollerith Electric Tabulating
System. This company, via a series of renames and amal-
gamations, evolved into International Business Machines
(IBM) in 1924.

Today sorting is so ubiquitous that is largely invisible.
Just a few decades ago, offices were full of file cabinets con-
taining labeled folders, and corporate office personnel took
care to keep them in the required order, like alphabetic or

 soRtIng 107

chronological. By contrast, we can sort the messages in
our mailboxes just by clicking, and are able to order them
using different criteria such as subject, date, and sender.
Our contacts are kept sorted in our digital devices with-
out us taking notice; again, a few years ago we would take
pains to make sure we had our contacts organized in our
diaries.

Going back to the US census, sorting was one of the
first examples of office automation; it is not surprising,
then, that it was one of the first applications of digital
computers. A lot of different sorting algorithms have
been developed. Some of them are not used in practice,
but there are still a number of different sorting algorithms
that are popular with programmers because they offer dif-
ferent comparative advantages and disadvantages. Sort-
ing is such a fundamental part of what computers do that
any book on algorithms will always devote some part to
it, yet exactly because there are many different sorting
algorithms, their exploration allows us to appreciate an
important aspect of the work of computer scientists and
programmers. Like toolsmiths, they have a whole toolbox
at their disposal. There may be different tools for the same
task. Think of different types of screwdrivers. We have slot,
Phillips, Allen, and Robertson drivers, to name but a few.
Although all of them have the same objective, particular
screws require particular drivers. Sometimes we can make
do using a slot driver on a cross screw; in general, though,

108 ChAPtER 4

we must use the proper tool for the job. The same with
sorting. While all sorting algorithms put things in order,
each is more suitable for particular uses.

Before we start exploring these algorithms, let’s look
at some explanations of what exactly these algorithms
do. Sure, they sort stuff, but that really begs the question,
What exactly do we mean by sorting data?

We assume that we have a group of related data—
usually called records— that contains some information
that is of interest to us. For example, such data could be
the emails in our in- box. We want to rearrange these data
so that they appear in a specific order that is useful to us.
The rearrangement has to take place using some specific
feature or features of the data. In our email illustration, we
may want to order our messages by delivery date, chrono-
logically, or the sender’s name, alphabetically. The order
may be ascending, from earlier messages to more recent
ones, or descending, from recent messages going back in
time. The output of the sorting process must be the same
data as the input; in technical terms, this must be a per-
mutation of the original data— that is, the original data in
different order, but not changed in any other way.

The feature we are using to sort our data is usually
called a key. A key may be atomic, when we consider that we
cannot decompose it to parts, or it may be composite, when
the key consists of more than a single feature. If we want
to sort our emails by delivery date, this is an atomic key

Although all of them
have the same objective,
particular screws
require particular
drivers. . . . The same
with sorting. While
all sorting algorithms
put things in order,
each is more suitable
for particular uses.

110 ChAPtER 4

(we do not care that a date can be broken up in year, month,
and day, and may also contain the exact time of delivery).
But we may want to sort our emails by the sender’s name,
and then for all the messages from the same sender, order
them by delivery date. The combination of date and sender
forms the composite key of our sort.

Any kind of feature can be used as a key for sorting, as
long as its values can be ordered. Obviously this holds true
for numbers. If we want to sort sales data by the number
of sales per items sold, the number of sales is an integer.
When our keys are textual, such as senders’ emails, the
ordering that we usually want is lexicographical. Sorting
algorithms need to know how to compare our data so as
to deduce their order, but any valid way to compare will do.

We’ll start our exploration of sorting methods with
two algorithms that may be familiar because they are
probably the most intuitive and even used by people with
no knowledge of algorithms when they have to sort a pile
of stuff.

Simple Sorting Methods

Our task is to sort the following items:

4 6 10 1 7 9 3 2 8 5

 soRtIng 111

Admittedly, if you take a look at the task, it’s pretty
trivial; these are the numbers from one to ten. But keeping
things simple will allow us to concentrate on the logic of
the sorting task.

First, we go through all the items and find the mini-
mum among them. We take it from where we found it and
place it first. The minimum of the items is 1, so this must
be put into the first position. As this position is already
taken, we have to do something with 4, which is currently
at the first position; we cannot just throw it away. What we
can do is to swap it with the minimum: move the minimum
item to the first position and move the item previously
in the first position to the position left vacant by moving
the minimum. So we go from here, where the minimum is
painted black,

4
6 10 7 9 3 2 8 5

to here,

1 6 10 4 7 9 3 2 8 5

where the minimum is painted white, to indicate that it is
in its correct, ordered position.

112 ChAPtER 4

Now we do exactly the same thing with all the numbers,
save for the minimum we found— that is, all the numbers
from the second position onward (the gray numbers). We
find their minimum, which is 2, and swap it again with the
first of the unsorted numbers, 6:

1 6 10 4 7 9 3 8 5

1 2 10 4 7 9 3 6 8 5

Again we do the same. We deal with the items from the
third one onward; we find the minimum, which is 3, and
swap it with the item currently in the third place, 10:

1 2
10

4 7 9 6 8 5

1 2 3 4 7 9 10 6 8 5

If we continue this way, item 4 will stay put because it
is already in its correct place and we’ll go on to place 5 in
its sorted position:

1 2 3 4
7

9 10 6 8

1 2 3 4 5 9 10 6 8 7

 soRtIng 113

At each point we go through fewer and fewer items to
find their minimum. In the end, we’ll find the minimum of
the last two items, and once we’ve done that, all our items
will be sorted.

This sorting method is called selection sort because
each time, we select the minimum of the unsorted items
and place it where it should be. As all sorting algorithms
that we will examine, selection sort has no problem with
ties— that is, elements that have the same order. If we find
more than one minimum when we examine the unsorted
items, we just pick any one of them as our working mini-
mum. We’ll find the tied item next time around and put it
next to its equal.

Selection sort is a straightforward algorithm. Is it also
a good one? If we pay attention to what we are doing, we
are going from the beginning to the end of the items that
we want to sort, and each time we try to find the minimum
of the remaining unsorted items. If we have n items, the
complexity of the selection sort is O n()2 . This is not bad
in itself; such complexity is not prohibitive, and we can
tackle large problems (read: sort a lot of items) in a reason-
able amount of time.

The thing is, exactly because sorting is so important,
algorithms do exist that are faster than that. So although
selection sort is not inherently bad, we usually prefer to
use other, more advanced algorithms when we have a lot
of items at hand. At the same time, selection sort is not

114 ChAPtER 4

only easy to understand by humans but is also easy to im-
plement on a computer in an efficient way. So it is clearly
not of just academic interest; it is really used in practice.

The same can be said for another simple sorting algo-
rithm that we’ll describe now. Like selection sort, this is
a sorting method that is easy to understand beyond com-
puters. In fact, this is the way we may sort our hand in a
card game.

Imagine that you play a game of cards in which you are
dealt ten cards (for example, you could be playing Rummy).
As you take one card after the other, you want to sort them
in your hand. We assume that the card rank, from the low-
est to highest, is:

2 3 4 5 6 7 8 9 J Q K A

In fact, in many games (and Rummy), the ace can be
the lowest- and highest- ranking card, but we’ll assume
that there is a single order only.

You are dealt each card, so you start with one card in
your hand and nine cards to follow:

4

Now you get a second card; it is a six:

 soRtIng 115

6
4

Six is fine next to four, so you leave it there and take
another card, which turns out to be two:

6
2

4

This time, so as to keep your hand in order, you need
to move two to the left of four, thus pushing four and six
one position to the right. You do that before you are dealt
another card, a three:

64
3

2

You insert the three between the two and four, and
see the next card, a nine. This is already in the right place
in your hand.

43 6
9

2

116 ChAPtER 4

You may continue with your hand— for instance, 7, Q,
J, 8, and 5. In the end, you will end up with a sorted hand.

Each new card was inserted in the right place in rela-
tion to the previous cards that had been dealt. This way of
sorting is called insertion sort for that reason, and it works
for any kind of objects, not just playing cards.

Like selection sort, insertion sort is straightforward
to implement. It turns out that it has the same complexity:
O n()2 . It does have a distinct characteristic, though: as in
our playing cards example, you don’t need to know the items
in advance before you sort them. In effect, you sort them as
you get them. That means that you can use insertion sort
when the items to be sorted are somehow streamed to
you live. We met this kind of algorithm, which works live
as it were, when we discussed the tournament problem in
graphs in chapter 2, and we called it an online algorithm.
If we have to sort an unknown number of items, or if we
must be able to stop immediately and provide a sorted list
whenever we are suddenly called to do so, then insertion
sort is the way to go.2

Radix Sort

Let us now return to Hollerith. His tabulating machines
did not use selection sort, nor insertion sort. They actu-
ally used a precursor of a method still in use today, called

 soRtIng 117

radix sort. As a tribute to the first machine- enabled sorting
application, it is worth spending some time on how radix
sort works. It is also interesting because this is a sorting
method in which the items to be sorted are not really com-
pared to each other. At least not entirely, as we will see.
What’s more, radix sort is not just of historical interest, as
it performs fantastically. What’s not to like in a venerable
yet practical algorithm?3

The easiest way to see a radix sort is by using playing
cards again. Suppose that we have a full deck of cards that
has been shuffled and want to sort it. One way to do it is
to form 13 piles, one for each rank value. We go through
the deck, taking each card and placing it in the respective
pile. We’ll get 13 piles of four cards each: a pile containing
all the aces, another one containing all the twos, and so on.

A 2 3 4 5 6 7 8 9 10 J Q K

Then we collect the cards, pile by pile, taking care to
put each pile we pick at the bottom of the cards we are
collecting. In this way we’ll have all the cards in our hands,
partially sorted. The first four cards will be aces, the next
four twos, and all the way to the kings.

We now create four new piles, one for each suit. We’ll
go through the cards, taking each card and putting it into

118 ChAPtER 4

the corresponding pile. We’ll get four piles of suits. Be-
cause the values were already sorted, in each pile we will
have all cards of a single suit, in rank order.

A A A A

To finish sorting our cards, we only need to collect
them pile by pile.

This is the essence of radix sort. We did not sort the
cards by fully comparing cards between them. We per-
formed partial comparisons, first by rank, and then by
suit.

Of course, if radix sort was applicable only to cards, it
would not merit our attention here. We can see how radix
sort works with integer numbers. Suppose that we have
the following group of integers:

926 742 151 612 961 162 261 760 639 532 364

165 970 412 417 855 245 317 568 812 709 787

496 5 97 577 845 53 274 590 840 981 686

 soRtIng 119

We make sure that all the integers have the same num-
ber of digits. So we pad the numbers with zeros on the left
if necessary, turning 5 to 005, 97 to 097, and 53 to 053. We
go through all our numbers and triage them by their right-
most digit. We use that digit to place them in ten piles:

760

970

590

840

151

961

261

981

742

612

162

532

412

812 053

364

274

165

855

245

005

845

926

496

686

417

317

787

097

577 568

639

709

We lightened up the numbers’ fill color to indicate
that they are partially sorted; each pile contains the
numbers with the same rightmost digit. All the numbers
in the first pile end in zero, and in the second pile they
end in one, up to the last pile, where they end in nine.
We now collect the ten piles, starting from the first on
the left and adding piles at the bottom (taking care not
to shuffle the numbers in any way). Then we redistribute
them into ten piles using the second digit from the right
and get:

120 ChAPtER 4

005

709

612

412

812

417

317 926

532

639

840

742

245

845

151

053

855

760

961

261

162

364

165

568

970

274

577

981

686

787

590

496

097

This time all the numbers in the first pile have their
second from the right digit equal to zero; in the second
pile they have their second from the right digit equal to
one, and similarly for the other piles. At the same time,
the items in each pile are sorted by their last digit because
that’s what we did when we piled them the first time.

We finish by collecting the piles and redistributing the
numbers, using the third digit from the right this time:

005

053

097

151

162

165

245

261

274

317

364

412

417

496

532

568

577

590

612

639

686

709

742

760

787

812

840

845

855

926

961

970

981

 soRtIng 121

Now the items in each pile start with the same digit
and are sorted by their second digit, as a result of the pre-
vious piling, and their last digit, as a result of the first pil-
ing. To get our sorted numbers, we just collect the piles
one final time.

Radix sort can work with words or any sequence of
alphanumeric characters as well as integers. In computer
science, we call a sequence of alphanumeric characters and
symbols a string. Radix sort works with strings; the strings
may be composed of digits, like in our example, but they
may be any kind of strings. The number of piles for alpha-
betic strings will be equal to the number of distinct char-
acters comprising the alphabet (for instance, 26 piles for
English), but the operations will be exactly the same. What
is distinctive in radix sort is that even when the strings are
composed entirely of digits, we treat them as alphanumeric
sequences, not as numbers. If you check how we worked,
we did not care for the values of the numbers, but we were
working each time with one particular digit from the num-
ber, in the same way that we would work by extracting char-
acters from a word, going from the right to left. That is why
radix sort is sometimes called a string sorting method.

Do not let this fool you and lead you to think that radix
sort can order strings while the other sorting methods we
present here cannot. All of them can. We can sort strings,
as long as the symbols that compose them can themselves
be ordered. Human names are strings to computers, and

122 ChAPtER 4

we can sort them because letters are ordered alphabetically
and names can be compared lexicographically. The appel-
lation “string sorting” is because radix sort treats all keys,
even numbers, as strings. The other sorting methods in this
chapter treat numbers as numbers and strings as strings,
and work by comparing numbers or strings, as is appropri-
ate. It is only for convenience that we use numbers as keys
in our examples in the different sorting algorithms.

The way radix sort works by processing the items to
be sorted digit by digit (or character by character) makes
it efficient. If we have n items to sort, and the items con-
sist of w digits or characters, then the complexity of the
algorithm is O wn(). That is much better than the O n()2
complexity required by selection and insertion sorts.

And so we come full circle to tabulating machines.
A tabulating machine worked in a similar way, sorting
punched cards. Imagine that we have a deck of cards where
each card has ten columns; punched holes in each column
indicate a digit. The machine could recognize the holes in
each column, thus figuring out the corresponding digit.
An operator put the cards in the machine, and the machine
placed the cards in ten output bins depending on their last
column— that is, the least significant digit. The operator
collected the cards from the output bins, being careful not
to mix them in any way, and fed them again into the ma-
chine, which this time distributed them into the output
bins using their one but last column, the digit next to the

 soRtIng 123

least significant one. After repeating the process ten times,
the operator could collect an ordered pile of cards. Voilà.

Quicksort

Suppose we have a group of kids milling around in a yard
(perhaps at school) and want to put them in line, from
the shortest to tallest. Initially we ask them to get in line,
which they will do, in whatever order they want:

Now we pick a kid at random:

We tell the kids to move around so that all kids who
are shorter than the chosen one should move to the left of

124 ChAPtER 4

them and all the rest should move to their right. In the fol-
lowing figure we show where the kid we picked ended up,
and you can check that those kids who are taller are to the
right and those who are shorter are to the left:

We did not ask the kids to put themselves in the right
order. We only asked them to move relatively to the kid
we chose. So they formed two groups, on the left and right
of the chosen one. The kids in these groups are not in any
shorter- to- taller sequence. We do know, however, that one
kid is certainly in the final position in the line we are try-
ing to form: the very kid we picked. All the kids on the left
are shorter and all the kids on the right are at least as tall.
We call the kid we picked pivot because the rest of the kids
have moved around them.

As a visual aid, we will follow the convention of paint-
ing white the kids who are put in the right position. When
we select a kid as a pivot, we will paint them black; when
we have moved the rest of the kids around the pivot, we
will use a small black hat to indicate the final position of
the pivot (it’s white because it’s in the right position, with
a black top, to indicate that it was the pivot).

 soRtIng 125

Now we shift our attention to one of the two groups,
left or right— say the left. Again we pick a pivot in that
group at random:

We ask the kids in that group to do the same thing
as before: move so that if they are shorter, they move to
the left of the pivot and otherwise they should end to the
right. We will have again two new, smaller groups, which
you can see below. One of them is a group of one, so that
kid is in their right place in that trivial group. Then we
have the rest of the kids to the right of the second pivot.
The second pivot is in the right place, with all the shorter
kids to the left, and all the rest to the right. This group to
the right extends to the first pivot. We then pick a new,
third pivot from that group.

126 ChAPtER 4

When we tell the kids in the group to move as before,
related to how tall they are with respect to the third pivot,
two smaller groups will be formed. We focus our attention
to the one on the left. We do as before. We pick a pivot, our
fourth, and we ask the kids in this group of three to move
around it.

When they do, the pivot ends up being the first of the
three, so we have a remaining group of two kids on the
pivot’s right. We pick one of the pair as a pivot, and the
other kid will move, if needed, to their right.

It turns out that this kid does not need to move at all.
Right now, we have managed to put about half the kids
in order; there are two groups that we had left when we

 soRtIng 127

were dealing with previous pivots. We go back to the first
of these two groups from the left in order to pick a pivot
there and repeat the process.

Again, no movement around was necessary and so we
go to the last group of unsorted kids to pick a pivot.

We get a group of one, on the pivot’s right, and a group
of two, on the pivot’s left. We focus on the left group and
select one of the two as our last pivot.

128 ChAPtER 4

We are done. All the kids are in order of height.

Let’s take stock of what we did. We managed to put the
kids in order by putting one kid in their right place each
time. To do that, we only needed to ask the rest of the kids
to move around them. This will always work, of course, not
just with kids but also with anything that we may want to
sort. If we have a group of numbers that we can sort, we
can follow a similar process, picking up a number at ran-
dom and moving around the rest of the numbers so that
those that are smaller end up before our chosen number,
and the rest end up after it. We’ll repeat the process in the
smaller groups that are formed; in the end, we’ll have all
the numbers in the right order. This is the process that
underlies the quicksort algorithm.

Quicksort is based on the observation that if we man-
age to position one element in the correct position with re-
spect to all the rest, whatever that position might be, and
then repeat this with the remaining elements, we’ll end up
with all the elements in their correct positions. If we think
back on what we did with selection sort, there we also took
each element and positioned it correctly with respect to all

 soRtIng 129

the rest, but the element we took was always the minimum
of the remaining ones. This is a crucial difference: in quick-
sort, we should not pick the minimum of the remaining ele-
ments as our pivot. Let’s see what happens if we do so.

If we start again with the same group of kids, we’ll get
the shortest of all kids as our pivot. That one will go to the
beginning of the line, and all the rest will move behind the
pivot.

Then we’ll get the kid who is immediately taller than
the first one and put them second in line. All the rest of the
kids will go, again, behind the pivot.

Doing the same thing with the third kid gets us to
this point:

130 ChAPtER 4

But notice how this looks eerily like a selection sort, as
we are filling in the line from the left to the right with the
shortest of the remaining kids.

We have not said how we choose an element as a pivot
each time. We now see we should not choose the minimum
of the elements. First, choosing the minimum requires ef-
fort; we should really go and find the minimum each time.
Second, it behaves like an algorithm we already know and
so there should not be much point in doing it.

The truth is that quicksort is better than selection
sort because “normally” (we’ll see what normally means
shortly) we’ll pick as our pivot something that partitions
our data in some more equitable way. Choosing the mini-
mum element creates the most unequal partition: noth-
ing on the left of the pivot, and all the rest to the right of
the pivot. Each time, then, we just manage to position the
pivot itself.

If the partition is better, then we do not just manage
to position the pivot. We also manage to position all the
elements to the left of the pivot in their correct positions
with respect to the elements to the right of the pivot. Yes, they

 soRtIng 131

are not in their final positions yet. But overall, they are
in better positions than before. So we have one element,
the pivot, in the best position possible, and the other ele-
ments better positioned than before.

This has an important effect on the performance of
quicksort: its expected complexity is O nlgn(), which is
way better than O n()2 . If we want to sort 1 million items,
O n()2 works out to 1012, a trillion, while O nlgn() is about
20 million.

It all hinges on picking the proper pivot. Searching
for a pivot that would partition our data in the best pos-
sible way each time does not make sense; it would require
searching to find the right pivot, so this would add com-
plexity to the process. A good strategy, then, is to leave it
to chance. Just pick a pivot at random and use what you
picked to partition the data.

To see why this is a good strategy, let us see why it is
not a bad one. It would be a bad one if it led to a behavior
like the one we just saw, where quicksort degenerates to
selection sort. This would happen if we pick each time as a
pivot an item that does not really partition the elements.
This can happen if we pick each time the minimum or max-
imum of the items (the situation is exactly the same). The
overall probability of all this happening can be found to
be 2 1n n− / !

A probability such as 1 / !n is hard to grasp because it
is abysmally low. To put it into context, if you take a deck

132 ChAPtER 4

of 52 playing cards and shuffle it randomly, the probability
that the deck will end up being in order is 1 52/ ! This is
about the same as flipping a coin and coming out heads
226 times in a row. When you multiply by 2 1n− , things
are not improved much. The number 2 5251 / ! is approxi-
mately equal to 2 8 10 53. × − . To put the matter in cosmic
perspective, the earth is composed of about 1050 atoms.
If you and a friend of yours were to pick independently
an atom from the earth, the probability that you would
pick the same atom would be 10 50− , actually greater than
2 5251 / !— the probability of pathological quicksort on a
deck of cards.4

That explains that “normally” we pick a pivot in a more
equitable way, as we said above. Excepting a streak of bad
luck of cosmic proportions, we do not expect to pick the
worst pivot possible each time. The odds actually work bet-
ter in our favor: it is by picking pivots at random that we
expect to get a complexity of O nlgn(). It is theoretically
possible to do worse than that, but the possibility is only
of academic interest. Quicksort will be as fast as we expect
it to be for all practical purposes.

Quicksort was developed by the British computer
scientist Tony Hoare in 1959– 1960.5 It is probably the
most popular sorting algorithm today because when im-
plemented correctly, it outruns all others. It is also the
first algorithm that we see whose behavior is not entirely
deterministic. Although it will always sort correctly, we

 soRtIng 133

cannot guarantee that it will always have the same run-
time performance. We can guarantee that it is extremely
unlikely that it will exhibit pathological behavior. This is
an important concept, which brings us to the so- called
randomized algorithms: those algorithms that use an ele-
ment of chance in their operation. This runs contrary to
our intuition; we expect algorithms to be the ultimate
deterministic beasts, slavishly following the instruc-
tions we lay down for them on a preordained path. And
yet randomized algorithms have blossomed in recent
years, as it has turned out that chance can help us solve
problems that remain intractable to more standard
approaches.6

Merge Sort

We’ve met radix sort, which essentially sorts items by
distribution: in each round through the data, it places
each item in a correct pile. Now we’ll meet another sort-
ing method, which sorts item by merging stuff together
instead of splitting them apart. The method is called
merge sort.

Merge sort starts by admitting to a limited capability
for sorting; imagine that we are unable to sort our items
if they are given to us in any random arrangement. We are
only able to do the following: if we are given two groups

Randomized algorithms
have blossomed in
recent years, as it has
turned out that chance
can help us solve
problems that remain
intractable to more
standard approaches.

 soRtIng 135

of items, and each group is already sorted, we can merge
them together and get a single, sorted group.

For example, say we have the following two groups,
one per row (although in our example the two groups have
the same number of items, there is no need for the groups
to be equal in size):

15 27 59 82 95

21 35 51 56 69

As you can see, each of the two groups is already sorted.
We want to merge them in order to create a single sorted
group. This is really simple. We check the first item of both
groups. We see that 15 is smaller than 21, so this will be
the first item of our third group:

27 59 82 95

21 35 51 56 69

15

We examine again the first elements of the two groups,
and this time 21 from the second group is smaller than
27 from the first group. So we take it and append it to the
third group.

136 ChAPtER 4

27 59 82 95

35 51 56 69

15 21

If we continue in this way, we’ll take 27 from the first
group and then 35 from the second group, adding them to
the end of the third group:

59 82 95

51 56 69

15 21 27 35

Now 51 is smaller than 59, and 56 is smaller than 59.
As we already have moved 35 from the second group to the
third, in the end we’ll have moved three items in a row from
the second group to the third. That is fine because in this way
we keep items in the third group sorted. There is no reason
why the two first groups should diminish at the same rate.

59 82 95

69

15 21 27 35 51 56

 soRtIng 137

We return to the first group, as 59 is smaller than 69,
so we add it to the third group:

82 95

69

15 21 27 35 51 56 59

Next, by moving 69 to the third group we empty the
second group completely:

82 95

15 21 27 35 51 56 59 69

We finish by moving the last remaining elements of
the first group to the third group— they are definitely
larger than the last element of the third group or other-
wise we would not have moved it there previously. Our
items are completely sorted now:

15 21 27 35 51 56 59 69 82 95

138 ChAPtER 4

It’s nice to have a way of producing a sorted group
from two sorted groups, but this does not seem to solve
our problem of sorting a single group of unsorted items.
It is true it does not, yet it is an important component of
the solution.

Imagine now that we have a group of people. We give to
one of them a group of items to sort. That person does not
know how to sort them, but they do know that if somehow
they had two sorted parts of the items, they could produce
a final sorted group. So what they do is this: they split the
group in two and pass it on to two other people. They say
to the first of them, “Take this group and sort it. Once you
are done, return it to me.” They say the same thing to the
second person. Then they wait.

Although our first point of contact does not know
how to sort the items, if the two new contacts man-
age somehow to sort their own parts and return them,
then the first person would return to us the final, com-
pletely sorted group. But the two other contacts know
no more than our initial contact— they don’t know how
to sort but rather only how to merge sorted stuff us-
ing the algorithm above— so has anything really been
achieved?

The answer is yes, provided that they do the same:
they split their part in two, and each delegates their part
to two other persons, waiting for them to do their bidding
and provide them with two sorted parts.

 soRtIng 139

This seems like the ultimate pass- the- buck game, but
look at what happens if we try to see it unfold with an
example. We start with the numbers 95, 59, 15, 27, 82, 56,
35, 51, 21, and 79. We give them to Alice (A), who splits
them in two, and passes them to Bob (B) and Carol (C).
You can see that in the first level of the upside- down tree
below:

A: 95, 59, 15, 27, 82, 56, 35, 51, 21, 79

B: 95, 59, 15, 27, 82

D: 95, 59, 15

H: 95, 59

P: 95 Q: 59

I: 15

E: 27, 82

J: 27 K: 82

C: 56, 35, 51, 21, 79

F: 56, 35, 51

L: 56, 35

R: 56 S: 35

M: 51

G: 21, 79

N: 21 O: 79

Then Bob splits his numbers into two, and passes them
on to Dave (D) and Eve (E). Similarly, Carol splits her num-
bers, and passes them on to Frank (F) and Grace (G). Our
cast of characters continue passing the buck. Dave divides
his numbers to Heidi (H) and Ivan (I); Eve distributes her
two numbers to Judy (J) and Karen (K); Frank and Grace
split to Leo (L) and Mallory (M) and Nick (N) and Olivia
(O), respectively. Finally, Heidi splits her pair to Peggy (P)

140 ChAPtER 4

and Quentin (Q), while Leo splits his pair to Robert (R)
and Sybil (S).

The people at the leaves of the tree have really nothing
to do. Peggy and Quentin receive a number each, and they
are told to sort it. But a single number is sorted by defini-
tion: it is in order with itself. So Peggy and Quentin just
give their number back to Heidi. Also, Ivan, Judy, Karen,
Robert, Sybil, Mallory, Nick, and Olivia return the num-
bers they received.

Now let’s move to the tree on the next page. In this
tree we’ll move from the leaves, at the top (so this looks
like a normal tree, not upside down), to the root at the bot-
tom. Let’s concentrate on Heidi. She gets back two num-
bers, each one of which is (trivially) sorted. Heidi knows
how to merge two sorted groups to produce a single group
so she can use 95 and 59 to make 59, 95. She then returns
this sorted group of two to Dave. Leo will act the same:
he will get 35 and 56, which are already sorted (by them-
selves), and knows how to put these two in order and cre-
ate 35, 56, which he returns to Frank.

Dave, who was clueless about the numbers 95, 59, 15
that he had initially received, now gets 59, 95 from Heidi
and 15 from Ivan. Both of these groups are already sorted,
which means that Dave can merge them to create 15, 59,
95. In the same way, Frank gets 35, 56 from Leo and 51
from Malory, and can produce 35, 51, 56.

 soRtIng 141

A: 15, 21, 27, 35, 51, 56, 59, 79, 82, 95

C: 21, 35, 51, 56, 79

G: 21, 79

O: 79N: 21

F: 35, 51, 56

M: 51L: 35, 56

S: 35R: 56

B: 15, 27, 59, 82, 95

E: 27, 82

K: 82J: 27

D: 15, 59, 95

I: 15H: 59, 95

Q: 59P: 95

If everybody acts in the same way, when the numbers
reach Alice, she will get two sorted lists, one from Carol
and one from Bob. She will merge them to create the final
sorted list.

These two trees are the essence behind merge sort. We
delegate the sorting as much as we can, to the point that no
sorting can take place because lone items are already sorted
by definition. Then we merge larger and larger groups, until
we absorb all elements in a single, final, sorted group.

The smarts that we require from our characters is min-
imal. You can see in the first tree that Eve got from Bob a
group of numbers that as it happened was already sorted:
27, 82. It does not matter. She does not stop to check
whether they need sorting or not— and we don’t want her
to because such a check would take time. She just splits
and passes them down. She will get them back and merge

142 ChAPtER 4

them to produce what she already got. That’s all right; in
the large scheme of things, this gratuitous pas de trois be-
tween Eve, Judy, and Karen won’t affect the performance
of the algorithm.

The complexity of merge sort is as good as that of
quicksort, O nlgn(). That means that we have two algo-
rithms with the same performance. In practice, program-
mers may choose one or the other depending on additional
factors. Usually quicksort programs run faster than merge
sort ones because their concrete implementation in a pro-
gramming language is faster. Merge sort splits the data
before merging them, which means that they can be par-
allelized, so that vast amounts of data can be sorted by a
computer cluster, where each computer acts like our hu-
man sorters above.

Merge sort is as old as computers. Its inventor was
a Hungarian American, Neumann János Lajos, better
known under his American name, John von Neumann
(1903– 1957). In 1945, he wrote a manuscript, in ink, 23
pages long, for one of the first digital computers, the Elec-
tronic Discrete Variable Automatic Computer, or EDVAC
for short. At the top of the first page, the phrase “TOP SE-
CRET” was penciled in (and later erased), as work on com-
puters was classified in 1945 due to its connections with
the military. The subject of the paper was a nonnumerical
application of computers: sorting. The method that von
Neumann described was what we now call merge sort.7

5

PAGERANK

If you are below a certain age, the words HotBot, Lycos,
Excite, AltaVista, and Infoseek mean nothing to you, or
if they do mean something, they probably do not mean
search engines. Yet all of them were vying for our atten-
tion at some point or other, trying to get us to use them
as the gateway to the web.

This is history now, as the search engine landscape is
dominated by two services, Google, run by Alphabet, and
Bing, run by Microsoft. The explosion of many compet-
ing solutions in a new market, and their subsequent con-
solidation, is a pattern that we have witnessed in many
industries in history. What is remarkable in the search
engine space is that we know that a large factor in the
evolution is the phenomenal success of Google, which in
turn was based on an algorithm that its founders invented.
The founders were Larry Page and Sergey Brin, doctoral

144 ChAPtER 5

candidates at Stanford University, and they named their
algorithm PageRank, after Page (and not after “page” and
rank, as one might expect).

Before we embark on a description of PageRank, we
need to understand what exactly search engines do. This
is actually two things. First, they crawl the web, reading
and indexing all the web pages they can come across. In
this way, when we type in a search term, search engines
look into the data they have stored on the crawled web
pages and find the ones that match our query. So if we
search for “climate change,” the search engines will search
through the data they have amassed to find the web pages
that contain this search term.

If our search term describes a popular topic, the results
can be numerous. At the time of this writing, the query

“climate change” on Google returns more than 700 million
results; this number may be different when you read these
lines, but you get an idea of the scale. This brings us to the
second thing that search engines do. They must present
the search results so that those that are more pertinent
to what we are looking for appear first, and those that are
less likely to interest us appear later. If you are trying to
learn the facts about climate change, you would expect to
see results from the United Nations, National Aeronautics
and Space Administration (NASA), or Wikipedia come up
on top. You would be rather surprised if the top result was
a web page explaining the view of the Flat Earth Society on

 PAgERAnk 145

the topic. From the hundreds of millions of web pages that
may be related to your query, many will be trivial; others
may be bloviating, and yet others will be utter nonsense.
You want to hone in on those that are to the point and
authoritative.

When the Google search engine arrived on the scene
(the author is old enough to remember), people (the au-
thor included) started switching to the newcomer from
other, older, now- extinct search engines because its re-
sults were better and they arrived faster. It also helped
that the Google web page was plain, containing only rel-
evant information, instead of being flush with all sorts
of paraphernalia, which had been the fashion. We’ll leave
aside the second factor, illuminating though it is (Google
understood that users cared for good and fast search re-
sults, not for bells and whistles), and deal with the first.
How could Google deliver better results than the others,
fast?

If the web were small, we could create a catalog of it,
and have editors to curate the catalog and assign an im-
portance to its entries— the web pages. But the scale of
the web precludes such an approach, although there were
such attempts before it became obvious that the size of
the web would make this an impossible task.

The web consists of web pages, linked to each other
through links. We call these links hyperlinks; text that
contains such cross- references to other parts of the text

If you are trying to learn
the facts about climate
change, . . . you would
be rather surprised if
the top result was a web
page explaining the view
of the Flat Earth Society
on the topic.

 PAgERAnk 147

or other texts is called hypertext. The notion of hypertext
predates the web. The first description of a system of orga-
nizing knowledge by interlinking documents was written
by the US engineer Vannevar Bush and appeared in 1945
in the Atlantic. The World Wide Web, or simply the web as
it became known, was developed by the British computer
scientist Tim Berners- Lee in the 1980s. Berners- Lee was
working at CERN, the European Organization for Nuclear
Research, outside Geneva, Switzerland, and wanted to
create a system to help scientists share documents and
information. They could do that by making their docu-
ments available online and also adding links from their
documents to other documents that were available online.
The web has grown, and continues to grow, organically by
people adding new pages. Authors of web pages write the
content of the pages and link to existing pages that are
relevant to the content of the pages they write.

Imagine you are the author of an online article that
provides an overview of the effects of climate change in
your country. In the article, as you introduce the topic, you
may want to let your readers navigate to a web page that
you believe is an authoritative source on the matter, so
you add a link to that web page. In this way you help your
readers by allowing them to delve deeper into the subject,
while at the same time you add gravitas to your own writ-
ing because you substantiate your statements by those of
another web page that you trust.

148 ChAPtER 5

There are many people like you, writing their own
online articles on the effects of climate change in their
countries or regions. Each one of them may also want to
link to what they believe is an authoritative source on the
topic. Hyperlinks will emanate from these online articles
to point to relevant sources of information.

The reason why NASA might come up on top in a
search for climate change is that lots of authors, each one
writing their own article, decided to place a hyperlink to
the NASA web page on climate change. Authors made their
own choices individually, but it is likely that many chose
the same page, such as, for instance, NASA’s page. It there-
fore makes sense that this page on climate change should
be judged important, relative to other web pages.

The whole system acts as a kind of democracy. Authors
of web pages link their pages to other pages. The more
links that a web page accrues, the more authors judged it
important enough to link to it from their own page, and
thus the more important it becomes overall.

There is, though, a conceptual difference from de-
mocracy as we usually practice it. Not all of these articles
that are written are equal. Some of them appear on more
prestigious web sites than others. An article on a blog that
is read by a handful of people carries less weight than an
article in an online publication that rakes in hundreds of
thousands of readers. This indicates that we should not
consider just the number of links pointing to a web page

The whole system acts as
a kind of democracy.
Authors of web pages
link their pages to other
pages. The more links
that a web page accrues,
. . . the more important
it becomes overall.

150 ChAPtER 5

in order to gauge its importance. Who is pointing to a web
page is also significant, not just how many. It is reasonable
to expect that a link from a prestigious web page carries
more weight than a link from an obscure site. Although
you should not judge a book by its cover, an endorsement
by a prominent author is more important than a good re-
view by an unknown reviewer. Every link from one page to
another page acts as an endorsement from the first page
to the second, and the weight of the endorsement depends
on the status of the endorser. At the same time, if a page
links to many other pages, its endorsement should be di-
vided, as it were, among the pages that receive it.

The set of pages linked by hyperlinks forms an enor-
mous graph, containing billions of pages and many more
links between them. Every web page is a node in the graph.
Every link from one page to another is a directed edge in
this huge graph. The fundamental insight behind Page-
Rank is that following the reasoning we have just outlined,
we can use the structure of the web graph to give us the
importance of each web page. To be more precise, we can
get the importance of each page through a number. This
number, which we will call its pagerank, will measure the
significance of a web page related to the other web pages.
The more important a web page is, the higher its pagerank
will be. The PageRank algorithm follows the ramification
of this insight on a humongous scale, on the graph repre-
senting the whole web.

 PAgERAnk 151

The Basic Principles

When we are on a web page, the links on that page point to
other pages that are relevant to the page we are currently
browsing. The very existence of the link indicates that the
web page at the end of the link is important— otherwise
the author of the web page would not link to it in the first
place. Consider the example graph below, representing a
small set of web pages that link to each other:

1 2

3

4 5

In such a graph, we call the links that point to a web
page backlinks; by extension, we will also call the pages that
point to a web page backlinks. In this way, the backlinks of
web page 3 are the edges pointing to it, its incoming edges,
as well as the nodes from which they emanate: web pages
2, 4, and 5. As in this chapter we will be concerned with

152 ChAPtER 5

graphs that are made up of web pages, we will be using the
terms “node” and “page” interchangeably.

We will build an algorithm for finding the importance
of each web page based on two basic principles:

1. The importance of a web page depends on the
significance of the web pages that link to it— that is, on
the importance of its backlinks.

2. A web page divides its importance evenly over the web
pages to which it links.

Say we want to find the importance of page 3. We saw
that its backlinks are 2, 4, and 5. We take each one of them
in turn and assume we know their own significance. Page
2 divides its importance over pages 3 and 5, and therefore
will give half its importance to page 3. Page 4 also divides
its importance over two pages, 3 and 1, and hence will give
half its significance to page 3. Finally, page 5 divides its im-
portance over pages 2, 3, and 4, and thus will give a third of
its importance to page 3. To save typing, let us denote by
r Pi() the importance of page i; r will stand for rank. Then
the importance of page 3 will be:

r P
r P r P r P

()
() () ()

3
2 4 5

2 2 3= + +

 PAgERAnk 153

In general, if we want to find out the importance of
a certain web page and we know the importance of each
backlink, it is easy to find what we are looking for: divide
the importance of each backlink page by the number of
web pages it links to and add the result to the contribu-
tions of the other backlinks of the page.

You may think of the calculation of importance as a
voting contest between web pages. Each voting page has
some significance, which it can use as a vote for those web
pages that it deems important. If it considers only one
web page as important, it just gives its vote to that web
page. But if it considers more than one web page as sig-
nificant, then it splits its vote and gives a part of the vote
to each of these web pages. Therefore, if a web page wants
to vote three web pages as being important, it will give to
each one of them one- third of its vote. To which pages will
a web page apportion its vote? To those at the end of its
hyperlinks— that is, to those to which it links. And how is
the importance of a web page derived? From the impor-
tance of its backlinks.

The two principles do endow some aura of democracy
to the ranking of web pages. There is no single authority
that decides what is most significant. A web page is impor-
tant if other web pages think it is important, and they vote
with their links. In contrast with the one person, one vote
principle that holds in most real- world elections, however,
not all web pages have equal votes here. The votes of a web

154 ChAPtER 5

page depend on how important it is— which, again, is de-
termined by the other web pages.

This may seem like casuistry because in effect it tells
us that to find the importance of a web page, we must find
the importance of its backlinks. If we follow the same
reasoning, to find the importance of each of its backlinks,
we must find the importance of that backlink’s backlinks.
Then the process seems to regress more and more, from
backlinks to backlinks, and in the end, we are left with-
out knowing how to calculate the significance of the web
page from where we started. Worse, we may find out that
we run in circles. In our example, to calculate the impor-
tance of page 3, we need the importance of each of pages
2, 4, and 5. To calculate the importance of page 2, we need
the importance of page 1 (and page 5, but let us leave that
aside for a bit). To calculate the importance of page 1, we
need the importance of page 4, and to find that, we need
to know the importance of page 3. We are back where we
started.

An Example

To see how we get out of the problem, let us assume
that before we begin calculating the importance of the
web pages, we give them all equal significance. In terms
of our voting metaphor, we give each web page exactly

 PAgERAnk 155

one vote. When the voting starts, each one of the pages
will vote in the way we described, spreading its vote to
the pages to which it links. Each page will then receive
votes from all its backlinks. The transfer of votes will look
like this:

1 2

3

4 5

1

1/
2

1/2

1/3

1/3

1/3
1/2

1/2

1/3

1/3

1/3

Page 1 sends its vote to page 2, the only page it links
to. Page 2 divides its vote into two parts, and sends 1 2/
to page 3 and 1 2/ to page 5. Page 3 divides its vote into
three parts and sends 1 3/ to each of pages 1, 4, and 5.
Pages 4 and 5 vote using the same method.

Once voting is over, each page will calculate the total
from the sum of the votes, or fractions of the votes, it has
received from its backlinks. For example, page 1, having
received votes from pages 3 and 4, will have 1 / 2 + 1 / 3

156 ChAPtER 5

= 5 / 6 votes, while page 3, having received votes from
pages 2, 4, and 5, will have 1 2 1 2 1 3 4 3/ / / /+ + =
votes. We see that page 1 decreased its share of votes com-
pared to where it started, while page 3 increased it.

Now let us change the setup a little bit. Instead of giv-
ing each page one vote before the voting starts, we give
each page 1 5/ of a vote so that all votes sum up to one. In
general, if we have n pages, we give 1 / n votes to each one
of them. The rest of the process is exactly the same. The
overall importance of all web pages is equal to one, and
the importance is again distributed evenly over all the web
pages.

After the voting ends, the importance of each web
page will have changed. Instead of having all of them equal
to 1 5 0 2/ .= , if we do the calculations, we will find that
they will be equal to 0.17, 0.27, 0.27, 0.13, and 0.17 for
each of the pages in turn. Web pages 2 and 3 have gained
in importance, while web pages 1, 4, and 5 have lost im-
portance. The total significance of all web pages sums up
to one.

We can now start another voting round, with exactly
the same rules. The pages will spread the votes they have
gathered to the pages to which they link. At the end of this
second round, each page will count its votes to determine
its standing in terms of accumulated importance. After
the calculations, the new importance values will be 0.16,
0.22, 0.26, 0.14, and 0.22.

 PAgERAnk 157

We’ll do exactly the same process again. In fact,
we’ll repeat the voting again and again. If we do that,
the votes— that is, the importance apportioned to each
page— will evolve as in the following table, which shows
the initial values and results after each voting round:

Round Page 1 Page 2 Page 3 Page 4 Page 5

start 0.20 0.20 0.20 0.20 0.20

1 0.17 0.27 0.27 0.13 0.17

2 0.16 0.22 0.26 0.14 0.22

3 0.16 0.23 0.26 0.16 0.20

4 0.17 0.22 0.26 0.15 0.20

5 0.16 0.23 0.25 0.15 0.20

6 0.16 0.23 0.26 0.15 0.20

If we go on to perform another, seventh voting round,
we’ll discover that the situation will remain unchanged
with respect to the sixth voting round. The votes, and
therefore the importance of the web pages, will remain the
same. This then gives us our final result. The ranking of the
web pages is that page 3 is the most important, followed
by page 2, then page 5, then page 1, and last comes page 4.

Let’s step back and reflect on what we did. We started
with two principles that give us rules for calculating the
importance of a web page, provided we know the impor-
tance of each of its backlinks. Before we start, we set up all

158 ChAPtER 5

n web pages with equal importance, equal to 1 / n. Then
we calculate the significance of each web page by sum-
ming the shares it gets from its backlinks. This gives us
new values for the significance of each web page, different
from the 1 / n value from where we started. We repeat the
process beginning with these values. We find another set
of values. After a number of repetitions of this process, we
found that the situation stabilized: the measure of impor-
tance would not change from one repetition to the next.
At this point we called it a stop and reported the values
that we found.

The question of course is whether the approach that
we have just described works in general and not in the par-
ticular example that we chose. Moreover, does it produce
sensible results?

The Hyperlink Matrix and Power Method

The method of calculating the importance of a page from
the importance of its backlinks has an elegant formula-
tion. We start from the graph that describes the links be-
tween our web pages. We can represent a graph by using a
matrix of numbers, which we call its adjacency matrix. The
construction is straightforward. We create a matrix with
as many rows and columns as the nodes in the graph. Then
we put one for each intersection that corresponds to a link

 PAgERAnk 159

and zero for all other intersections. The adjacency matrix
for our example is:

1 2

3

4 5

0 1 0 0 0

0 0 1 0 1

1 0 0 1 1

1 0 1 0 0

0 1 1 1 0

We can also represent the importance of the web pages
using a single row or vector:

r P r P r P r P r P() () () () ()1 2 3 4 5[]

As we now get into the nuts and bolts of the PageRank
algorithm, we’ll start using the term pagerank to refer to
the significance of a web page. You will see that the term
will be justified as we will be able to derive a ranking, in
terms of importance, of all the pages on the web. As our
row contains all the pageranks, we will call it the pagerank
vector of our graph.

160 ChAPtER 5

The importance of each web page is divided over the
pages to which it links. Now that we have the adjacency
matrix at hand, we can do that by going to each row and
dividing each one in the row by the number of ones in that
row. This is equivalent to dividing each page’s vote by the
number of outgoing links to that page. If we do that, we
get the following matrix:

0 1 0 0 0

0 0 1 2 0 1 2

1 3 0 0 1 3 1 3

1 2 0 1 2 0 0

0 1 3 1 3 1 3 0

/ /

/ / /

/ /

/ / /

We call this matrix the hyperlink matrix.
If we look carefully at the hyperlink matrix, each col-

umn shows how the importance of a page is derived from
the pages that link to it. Take the first column, which relates
to the importance of page 1. This page takes its significance
from pages 3 and 4. Page 3 gives 1 3/ of its importance to
page 1 because it links to three pages, and page 4 gives 1 2/
of its importance to page 1 because it links to two pages.
Page 1 receives zero significance from the other pages in the
graph because they do not link to it. We can express this as:

r P r P
r P r P

r P
r P r P

() ()
() ()

()
() ()

1 2
3 4

5
3 40 0 3 2 0 3 2× + × + + + × = +

 PAgERAnk 161

But this is exactly the definition of r P()1 , the pagerank
of page 1. We got the pagerank by summing the products of
the elements of the pagerank vector with the correspond-
ing elements of the first column of the hyperlink matrix.

Let’s see what is happening if we take the pagerank
vector and sum the products of its elements with the cor-
responding elements of the second column of the hyper-
link matrix:

r P r P r P r P
r P

r P
r P

() () () ()
()

()
()

1 2 3 4
5

1
51 0 0 0 3 3× + × + × + × + = +

That is exactly the definition of r P()2 , the pagerank of
page 2. The sum of the products of the elements of the
pagerank vector with the contents of the third column of
the hyperlink matrix will similarly give us r P()3 , the page-
rank of page 3:

r P
r P

r P
r P r P r P r P r P

()
()

()
() () () () ()

1
2

3
4 5 2 4 50 2 0 2 3 2 2 3× + + × + + = + +

You can verify that using the fourth and fifth columns
of the hyperlink matrix we’ll get r P()4 and r P()5 , respec-
tively. This operation— of summing the products of the
elements of the pagerank vector with the contents of each
column of the hyperlink matrix— is actually the product of
the pagerank vector with the hyperlink matrix.

162 ChAPtER 5

Unless you are familiar with matrix operations, this
may be confusing because we usually talk about the prod-
uct of two numbers, which is the common multiplication,
and not about the product of constructs like vectors and
matrices. We can define mathematical operations on other
entities, not just numbers, as long as it suits us. The prod-
uct of a vector with a matrix is such an operation. There is
no mystery involved in it: it is simply an operation that we
define as a particular calculation involving the elements of
the vector and matrix.

Suppose that we make bagels and croissants that we
sell for $2.00 and $1.50, respectively. We have two shops;
on a particular day, the first shop sells 10 bagels and 20
croissants, while the second shop sells 15 bagels and 10
croissants. How do we find the total sales per shop?

To find the total sales from the first shop, we will mul-
tiply the price of a bagel with the number of bagels sold in
that shop, and the price of a croissant with the number of
croissants sold there, and we’ll add these two:

2 00 10 1 50 20 50. .× + × =

We’ll do the same thing to find the total sales from the
second shop:

2 00 15 1 50 10 45. .× + × =

 PAgERAnk 163

To express this more succinctly, we write down the
prices for the bagels and croissants as a vector:

2 00 1 50. .[]

We also write down the daily sales in a matrix. The
matrix will have two columns, one per shop, and two rows,
one for the bagels and one for the croissants:

10 15

20 10

Then to find the total sales per shop, we multiply the
elements of the vector with each column of the sales ma-
trix and add them up. This defines the product of the vec-
tor with the matrix:

2 00 1 50
10 15

20 10
2 00 10 1 50 20 2 00 15 1 50 10

. .

[. . . .]

[] ×

= × + × × + ×
== []50 45

The product of a vector with a matrix is a special case
of the product of two matrices. Let’s extend the example
so that instead of having a vector with the prices of the

164 ChAPtER 5

bagels and croissants, we have a matrix with the prices and
profits per sale:

2 00 1 50

0 20 0 10

. .

. .

To find the total sales per shop and total profit per
shop, we will create a matrix in which the entries in the
ith row and jth column will be the sum of products of the
ith row of the prices and profits matrix with the jth row
of the sales matrix. This is the definition of the product of
the two matrices:

2 00 1 50

0 10 0 20

10 15

20 10

2 00 10 1 50 20 2

. .

. .

. . .

×

=
× + ×

000 15 1 50 10

0 10 10 0 20 20 0 10 15 0 20 10

50 45

5 3

× + ×
× + × × + ×

=

.

. . . .

.55

Returning to pagerank, in each round the calculation
of the pagerank vector is really the product of the value
of the pagerank vector in the previous round with the hy-
perlink matrix. As we go through the rounds, we get suc-
cessive estimates of the pageranks— that is, successive
estimates of the pagerank vector that is made up of them.

 PAgERAnk 165

To get these successive estimates of the pagerank vector
we only need to multiply the vector in each round with
the hyperlink matrix, thereby getting the vector for the
next round.

In the first round, we start with a pagerank vector
whose contents are all equal to 1 / ,n where n is the num-
ber of pages. If we denote this first pagerank vector by π1,
the pagerank vector at the end of the first round by π2, and
the hyperlink matrix by H, we have:

π π2 1= × H

In each round we use the pagerank vector of that round
to calculate the pagerank vector for the following round.
In the second voting round, where we got our third page-
rank estimates— that is, our third pagerank vector— we
performed the calculation:

π π π π π3 2 1 1 1
2= × = × × = × × = ×H H H H H H() ()

In the third voting round, we got our fourth pagerank
vector:

π π π π π4 3 1
2

1
2

1
3= × = × × = × × = ×H H H H H H() ()

As in every iteration, we multiply the result of the
previous iteration by the hyperlink matrix, and in the end

166 ChAPtER 5

this is a series of products of the successive estimates of
the pagerank vector by the hyperlink matrix. As we see,
this is equivalent to multiplying the initial pagerank vec-
tor with increasing powers of the hyperlink matrix. This
method of calculating successive approximations is called
the power method. We see therefore that the calculation of
the pageranks of a set of web pages is an application of the
power method to the pagerank vector and hyperlink ma-
trix, until the resulting pagerank vector does not change,
or as we say, until it converges to a stable value— our final
pagerank metrics.

We have just reached a more precise description of
how to calculate the pageranks of a web graph:

1. Form the hyperlink matrix of the graph.

2. Start with initial pagerank estimates, giving a
pagerank of 1 / n to each page, where n is the total
number of pages.

3. Apply the power method, multiplying the pagerank
vector by the hyperlink matrix until the values of the
pagerank vector converge.

Apart from being succinct, this formulation allows us
to transfer the problem to the realm of linear algebra, the
branch of mathematics that treats matrices and opera-
tions on them. There is a well- established body of theory

 PAgERAnk 167

that we can use to investigate the power method as well as
performant implementations of matrix operations, such
as the multiplication that we described. The matrix for-
mulation of the problem will also help investigate whether
the power method will always converge so that we can al-
ways come up with a solution to the pageranks of a graph.

Dangling Nodes and the Random Surfer

We now turn to an example of a simpler graph, consisting
of just three nodes:

1

3

2

We want to find the pageranks of these three nodes. We
follow the same algorithm. We initialize the pagerank vector
to 1 3/ , giving equal pageranks to all nodes. Then we multi-
ply the pagerank vector with the hyperlink matrix, which is:

0 1 2 1 2

0 0 1

0 0 0

/ /

168 ChAPtER 5

If we start the iterations of the power method, mul-
tiplying the pagerank vector with the hyperlink matrix
to update the pagerank vector, and then again and again,
we’ll find out that after four iterations, all pageranks have
gone down to zero:

Round Page 1 Page 2 Page 3

start 0.33 0.33 0.33

1 0.00 0.17 0.50

2 0.00 0.00 0.17

3 0.00 0.00 0.00

That is clearly a problem. We do not expect all pages
to have zero importance here. After all, page 3 has two
backlinks and page 2 has one backlink, so somehow we
would expect this to show on the results, let alone the
fact that we also want the total sum of the pageranks
to be one. Here nothing ended up being of any import
at all.

The cause of the problem is node 3. Although this node
has backlinks and would thereby gain importance, it has
no outgoing links. So in a way it sucks importance from the
rest of the graph, but does not redistribute it anywhere. It
acts as a selfish node or black hole: what goes in, does not
go out. After a few iterations, it has acted as a sink where
all pagerank values have gone in and vanished.

 PAgERAnk 169

Such nodes are called dangling nodes because they
hang at the (dead) ends of the graph. On the web, noth-
ing prohibits the existence of such pages. Although web
pages usually have both incoming and outgoing links, a
page with no outgoing links can appear and would wreak
havoc with the power method as we have described it.

To overcome the problem, we work with a metaphor.
We imagine that we have a human who surfs the web, jump-
ing from page to page. To go from one page to another, the
surfer normally follows a link. But then the surfer comes
on a dangling node: a page with no links to any other page.
We don’t want our surfer to remain trapped in there so we
give the surfer the capability to jump to any other page,
anywhere on the web. It is as if we are surfing the web
from page to page until we reach a dead end. When we
get there, we don’t give up and stop. We can always type
another address in our web browser and move to any other
web page we want, even if no links exist to it from the dan-
gling page. This is what we want our surfer to do. When at
a loss about where to go, the surfer will pick a page, any
page, from the web and go there to continue surfing. The
surfer becomes a random surfer, equipped with a teleporta-
tion device that can take the surfer instantly to any place
at all.

To take this metaphor back to pagerank, we interpret
the hyperlink matrix as giving us the probabilities that a
surfer will follow a link to go to a particular page. In our

170 ChAPtER 5

three- nodes example, the first row of the hyperlink matrix
tells us that when on page 1, the surfer will choose either
page 2 or 3 with equal probability. The second row tells
us that when on page 2, the surfer will always choose to
visit page 3. Going back to our first example for a moment,
if the surfer lands on page 5, then it is possible to go to
page 2, 3, or 4 with a probability of 1 3/ for each of these
outcomes.

A dangling node manifests itself in the presence of
a row full of zeros. Then there is no probability that the
surfer will go anywhere. This is where the random surfer
kicks in. As we said, that surfer will jump to any page in the
graph. That means that in effect, we change the hyperlink
matrix so that it no longer has rows with zeros. As we want
the surfer to jump to any web page with equal probability,
instead of zeros we’ll fill the row with 1 / n, or in our ex-
ample, 1 3/ . Our matrix will become:

0 1 2 1 2

0 0 1

1 3 1 3 1 3

/ /

/ / /

Now the surfer who lands on page 3 can go to any
page in the graph with equal probability. The surfer may
even stay temporarily on the same page, but that does not
matter, as the surfer can try again and again, and at some
point a different target page will be selected at random.

 PAgERAnk 171

We call this modified hyperlink matrix, where we change
zero rows to rows with values equal to 1 / n, the S matrix.
If we run the power method using the S matrix, then the
evolution of the pageranks will be:

Round Page 1 Page 2 Page 3

start 0.33 0.33 0.33

1 0.11 0.28 0.61

2 0.20 0.26 0.54

3 0.18 0.28 0.54

4 0.18 0.27 0.55

5 0.18 0.27 0.54

This time the algorithm converges to nonzero val-
ues; no sucking out of importance occurs. Also, the re-
sults make sense. The highest pagerank is achieved by
page 3, which has two backlinks; then comes page 2, with
one backlink, and then page 1, which has no backlinks
at all.

The Google Matrix

We seem to have solved the problem, but a similar issue
raises its head in more complex situations. The following
graph has no dangling nodes:

172 ChAPtER 5

1 2 3

4 5 6

If we run the algorithm, we find that two nodes, pages
1 and 4, end up with zero pagerank:

Round Page 1 Page 2 Page 3 Page 4 Page 5 Page 6

start 0.17 0.17 0.17 0.17 0.17 0.17

1 0.08 0.22 0.14 0.00 0.42 0.14

2 0.00 0.25 0.25 0.00 0.29 0.21

3 0.00 0.22 0.22 0.00 0.33 0.22

What happened is that even though there is no dan-
gling node, there is a set of nodes that act as a sink for the
rest of the graph. If you scrutinize the graph, you will see
that the nodes 2, 3, 5, and 6, taken together as a group,
have only incoming links. It is possible to go from node 1
or 4 to this group, but once we are in, we can only move in-
side the group. We are not able to go outside. Our random
surfer will be trapped, not inside a single web page this

 PAgERAnk 173

time, but inside a group of pages that link only between
themselves.

1 2 3

4 5 6

We need again to help the random surfer escape from
this trap. This time the solution requires more compre-
hensive changes to the hyperlink matrix. Our initial hy-
perlink matrix allowed the surfer to go from page to page
only using the existing links in the original graph. Then we
modified the hyperlink matrix to handle rows with all zero
elements and came up with the S matrix that allowed the
surfer to get away from dangling nodes. This enabled the
random surfer to jump to anywhere in the graph when in
a dangling node. Now we will change the behavior of the
random surfer a bit more by modifying the S matrix.

Right now, when a surfer lands on a node, the pos-
sible moves are those indicated by the S matrix. In the last

174 ChAPtER 5

example, the S matrix is the same as the hyperlink matrix
because no zero rows exist:

0 1 2 0 0 1 2 0

0 0 1 2 0 1 2 0

0 1 2 0 0 0 1 2

1 2 0 0 0 1 2 0

0 1 3 1 3 0 0 1 3

0 0 0 0 1 0

/ /

/ /

/ /

/ /

/ / /

If the random surfer lands on page 5, then the pos-
sible moves are to pages 2, 3, or 6, all with 1 3/ probabil-
ity, as the S matrix indicates. We will make the random
surfer more agile, with the power to move following the
S matrix not always, but with some probability a that we
will choose; then for some probability ()1 − a , the random
surfer will jump anywhere in the graph, unconstrained by
the S matrix.

The ability to jump from anywhere to anywhere in the
graph means that we cannot have any zeros at all in the
matrix— because a zero entry denotes a move that cannot
be made. To achieve what we want, we will need to increase
the zero entries in a row by some value and decrease the
nonzero entries so that the whole row always sums up to
one. The exact final values of the matrix can be calculated
through linear algebra, based on S and the probability a.

 PAgERAnk 175

The new matrix that will be derived is called the Google
matrix, and we use the symbol G. If the behavior of the
random surfer is determined by the Google matrix, it will
work out as we want: the surfer will appear to be following
the S matrix with probability a and move independently
with probability ()1 − a . In our example, the Google ma-
trix is:

3
120

54
120

3
120

3
120

54
120

3
120

3
120

3
120

54
120

3
120

54
120

3
120

3
120

54
1120

3
120

3
120

3
120

54
120

54
120

3
120

3
120

54
120

3
120

3
120

3
120

37
120

37
1120

3
120

3
120

37
120

3
120

3
120

3
120

3
120

105
120

3
120

Compare that to the S matrix. Observe that in the first
row, we had two entries with 1 2/ and the rest were zero.
Now in the Google matrix, we have the two 1 2/ entries
turned to 54 120/ , and the rest of the entries turned from
0 to 3 120/ . Similar transformations have occurred in the
other rows. If, then, the random surfer lands on page 1, the
possible moves out are to pages 2 and 5 with probability

176 ChAPtER 5

54 120/ for either of them, or any other page with prob-
ability 3 120/ for each one of them.

We are now able to give the final definition of the
PageRank algorithm:

1. Form the Google matrix of the graph.

2. Start with initial pagerank estimates, giving a
pagerank of 1 / n to each page, where n is the total
number of pages.

3. Apply the power method, multiplying the pagerank
vector by the Google matrix until the values of the
pagerank vector converge.

We simply substituted “Google matrix” for “hyperlink
matrix” of the initial algorithm. If we trace this algorithm
in our graph with the group of sink nodes, we’ll get:

Round Page 1 Page 2 Page 3 Page 4 Page 5 Page 6

start 0.17 0.17 0.17 0.17 0.17 0.17

1 0.10 0.14 0.14 0.10 0.31 0.21

2 0.07 0.15 0.17 0.07 0.31 0.23

3 0.05 0.14 0.18 0.05 0.32 0.26

4 0.05 0.14 0.17 0.05 0.33 0.27

It works out fine; we get no zero pageranks anymore.

 PAgERAnk 177

The power method with the Google matrix will work
always. Linear algebra tells us that it will always converge
to a final set of pagerank values, the sum of which will be
one, without suffering from dangling nodes or parts of
the graph draining the pageranks of the rest of the graph.
We don’t even need to initialize the pageranks to exactly
1 / n when we start. Any initial set of values will do, as
long as they sum up to one.

PageRank in Practice

Having established that we have a method to find the
pageranks in any graph, the question remains whether the
results are in the end sensible.

The pagerank vector, in the way that we have defined it,
is a special vector in relation to the Google matrix. When
the power method finishes, the pagerank vector does not
change any more. Therefore if we multiply the Google ma-
trix by the pagerank vector we will get simply the same
pagerank vector. In linear algebra, this vector is called the
first eigenvector of the Google matrix. Without going deep
into the mathematics, the underlying theory supports the
notion that this vector has some special significance to the
matrix.

Beyond mathematics, the final arbiter of whether Page-
Rank is a good way to assign importance to web pages is

178 ChAPtER 5

the utility of its results to us humans. The Google search
engine gives good results, meaning that the results are in
accordance with what we, the users of the search engine,
regard as being important. If the pagerank vector was a
mathematical curiosity that bore no relation to the sig-
nificance of web pages, we would not be concerned with
it today.

An additional advantage of PageRank is that it can be
implemented efficiently. The Google matrix is huge; we
need one row and one column for every single page on
the web. Yet the Google matrix is derived, as we saw, from
the S matrix, which in turn is derived from the hyperlink
matrix. We do not really need to create and store the
Google matrix itself; we can create it dynamically with
matrix operations on the hyperlink matrix. This is con-
venient. In contrast to the Google matrix, which has no
zeros anywhere, the hyperlink matrix has lots and lots of
zeros. The web may have billions of pages, but every sin-
gle page links to only a small number of other web pages.
The hyperlink matrix is what we call a sparse matrix: one
that is mostly full of zeros, with only some nonzero en-
tries, which are scales of magnitude fewer than the zero
entries. Thus we can store the matrix using clever tech-
niques that instead of requiring a big slab of memory to
fill with mostly zeros and a few nonzeros, store only the
positions where the nonzeros occur. Rather than storing

 PAgERAnk 179

the whole hyperlink matrix, we need only store the co-
ordinates of the nonzero entries, which will require only
a fraction of the storage space. This gives us big lever-
age in the practical implementations of the PageRank
algorithm.

Finally, an important caveat. Although we know that
PageRank played a crucial role in the success of Google, we
do not know how, or even if, PageRank is used in Google
today. The Google search engine has been evolving during
the years, and the changes are not made public. We know
that Google uses our past searches to fine- tune the results
that it presents to our queries. It can tune the results de-
pending on the country that we live in. It can also take
into account the overall trends in the queries that other
people make all around the world. All these are part of the
secret sauce that Google uses to improve its product and
retain its position in the search engine business against
competitors. This, however, does not detract from the al-
gorithm’s efficiency in solving the problem of ranking web
pages, represented as nodes in a graph.1

PageRank highlights an additional aspect of algo-
rithms. The success of an algorithm does not hinge only
on its elegance and efficiency. It also has to do with the
mapping of the algorithm to a problem. This is a creative
act. To solve the problem of web search, one has to over-
come the issue of the sheer size of the web. But once you

180 ChAPtER 5

conceive of the web as a graph, its size turns into an ad-
vantage, not a hindrance. It is exactly because there are
so many pages, hyperlinked to each other, that you may
expect that a method that is based on the link structure of
the graph will in the end work. Finding the way to model a
problem is the first step in finding the way to solve it with
an algorithm.

6

DEEP LEARNING

Deep learning systems have burst onto the scene in recent
years, often making headlines in mainstream media. There
we see computer systems performing feats that were the
purview of humans. Even more tantalizing is the fact that
these systems are frequently presented as having some
similarities to the way the human mind works— which
of course cues to the idea that perhaps the key for artifi-
cial intelligence may be to mimic the workings of human
intelligence.

Brushing aside the hype, most scientists working on
deep learning do not ascribe to the view that deep learning
systems work like the human mind. The goal is to exhibit
some useful behavior, which we often associate with in-
telligence. We do not go about copying nature, however;
in fact, the architecture of the human brain is much too

182 ChAPtER 6

complicated to emulate on a computer. But we do take
some leaves out of nature’s book, simplify them a lot,
and try to engineer systems that could, in certain fields,
do things usually done by biological systems that have
evolved over millions of years. Moreover, and this con-
cerns us here in this book, deep learning systems can be
understood in terms of the algorithms they employ. This
will shed some light on what they do exactly, and how. And
it should help us see that underneath their accomplish-
ments, the main ideas are not complicated. That should
not belittle the achievements of the field. We’ll see that
deep learning requires an enormous amount of human in-
genuity in order to come to fruition.

To understand what deep learning is about, we need
to start small, from humble beginnings. On these we will
build a more and more elaborate picture, until, at the end
of the chapter, we will be able to make sense of what the

“deep” in deep learning stands for.

Neurons, Real and Artificial

Our starting point will be the main building block of deep
learning systems, which does come from biology. The brain
is part of the nervous system, and the main components of
the nervous system are cells called neurons. Neurons have
a particular shape; they look different from the globular

 DEEP lEARnIng 183

structures that we usually associate with cells. You can see
below one of the first images of neurons, drawn in 1899 by
the Spanish Santiago Ramón y Cajal, a founder of modern
neuroscience.1

184 ChAPtER 6

The two structures that stand out in the middle of the
image are two neurons of the pigeon brain. As you can see,
a neuron consists of a cell body and the filaments that ex-
trude from it. These filaments connect a neuron to other
neurons through synapses, embedding the neurons in a
network. The neurons are asymmetrical. There are many
filaments on the one side and one filament on the other
side of each neuron. We can think of the many filaments
on the one side as the neuron’s inputs, and the long outgo-
ing filament on the other side as the neuron’s output. The
neuron takes input in the form of electric signals from its
incoming synapses and may send a signal to other neurons.
The more inputs it receives, the more likely it is to output
a signal. We say that the neuron then fires or is activated.

The human brain is a vast network of neurons, which
number about one hundred billion, and each one of them
is connected on average to thousands of other neurons.
We do not have the means to build anything like that, but
we can build systems out of simplified, idealized models of
neurons. This is a model of an artificial neuron:

 DEEP lEARnIng 185

That is an abstract version of a biological neuron,
being just a structure with a number of inputs and one
output. The output of a biological neuron depends on its
input; similarly, we want the artificial neuron to be ac-
tivated depending on its input. We are not in the realm
of brain biochemistry, but in the world of computing, so
we need a computational model for our artificial neuron.
We assume that the signals received and sent by neu-
rons are numbers. Then the artificial neuron takes all its
inputs, calculates some arithmetic value based on them,
and produces some result on its output. We do not need
any special circuit for implementing an artificial neuron.
You can think of it as a small program inside a computer
that takes its inputs and produces an output, much like
any other computer program. We do not need to build ar-
tificial neural networks literally; we can and do simulate
them.

Part of the learning process in biological neural net-
works is the strengthening or weakening of the synapses
between neurons. The acquisition of new cognitive abili-
ties and absorption of knowledge result in some syn-
apses between neurons getting stronger, while others get
weaker or even drop off completely. Moreover, synapses
may not only excite a neuron to fire but also inhibit its
activation; when a signal arrives on that synapse, the neu-
ron should not fire. Babies have actually more synapses

186 ChAPtER 6

in their brains than adults. Part of growing up is pruning
the neural network inside our heads. Perhaps we could
think of the infant brain as a block of marble; as we go
through the years in our lives, the block is chipped through
our experiences and the things we learn, and a form
emerges.

In an artificial neuron, we approximate the plasticity
of synapses, their excitatory or inhibitory role, through
weights we apply to the inputs. In our model artificial neu-
ron, we have n inputs, x1, x2, . . . , xn. To each one of them
we apply a weight, w1, w2, . . . , wn. Each weight is multiplied
by the corresponding input. That final input received by a
neuron is the sum of the products: w x w x w xn n1 1 2 2+ + + .
To this weighted input we add a bias b, which you can think
of as the propensity the neuron has to fire; the higher the
bias, the more likely it is to be activated, while a negative
bias added to the weighted input will actually inhibit the
neuron from firing.

The weights and bias are the parameters of the neu-
ron because they influence its behavior. As the output of
a biological neuron depends on its inputs, so the output
of an artificial neuron depends on the input it gets. This
happens by feeding the input into a special activation func-
tion, the result of which is the neuron’s output. This is what
happens, diagrammatically, using f ()⋅ as a stand- in for the
activation function:

 DEEP lEARnIng 187

The simplest activation function is a step function,
giving us a result of 0 or 1. The neuron fires and outputs 1
if the input to the activation function is greater than 0, or
stays silent outputting 0 otherwise:

–5 5

0

0.75

0.5

0.25

2.50–2.5

1

Instead of a bias, it is helpful to think of a thresh-
old. The neuron outputs 1 if the weighted input

188 ChAPtER 6

exceeds a threshold or outputs 0 otherwise. Indeed, if
we write the behavior of the neuron as a formula, the
first condition is w x w x w x bn n1 1 2 2 0+ + + + > or
w x w x w x bn n1 1 2 2+ + + > − . By using t b= − , we get
w x w x w x tn n1 1 2 2+ + + > , where t, the opposite of the
bias, is the threshold that the weighted input needs to
pass for the neuron to fire.

In practice we tend to use other, related activation
functions instead of the step function. On the next page
you can see three common ones.

The one on the top is called sigmoid because it has an
S shape.2 Its output ranges from 0 to 1. A large positive
input results in outputs close to 1; a large negative input
results in an output close to 0. This approximates a bio-
logical neuron that fires on large inputs and stays silent
otherwise, and is a smooth approximation to the step
function. The activation function in the middle is called
tanh, short for hyperbolic tangent (there are various ways
to pronounce it: “tan- H,” “then,” or “thents” with a soft
th, as in thanks).3 It looks like the sigmoid function, but
it differs in that its output ranges from −1 to +1; a large
negative input results in a negative output, mimicking
an inhibitory signal. The function at the bottom is called
a rectifier; it turns all negative inputs to 0, otherwise its
output is directly proportional to its input. The following
table shows the output of the three activation functions
for different inputs.

 DEEP lEARnIng 189

2.5–2.5–5 0 5

0

1

0.75

0.5

0.25

2.5–2.5–5 0 5

–1

1

0.5

0

–0.5

0

2

4

2.5–2.5–5 0 5

190 ChAPtER 6

- 5 - 1 0 1 5

sigmoid 0.01 0.27 0.5 0.73 0.99

tanh - 1 - 0.76 0 0.76 +1

rectifier 0 0 0 1 5

If you wonder why the proliferation of activation
functions (there are also others), it is because it has been
found in practice that particular activation functions are
more suitable in some applications than others. As the ac-
tivation function is crucial for the behavior of a neuron,
neurons are often named by their activation functions. A
neuron that uses the step function is called a Perceptron.4
Then we have sigmoid and tanh neurons. We also call neu-
rons units, and a neuron using the rectifier is called a ReLU,
for rectified linear unit.

A single artificial neuron can learn to distinguish be-
tween two sets of things. For example, take the data in
the figure on the top of the next page, portraying a set
of observations with two features, x1, on the horizontal
axis, and x2, on the vertical axis. We want to build a sys-
tem that will tell apart the two blobs. Given any item, the
system will be able to decide whether the item falls in one
group or another. In effect, it will create a decision bound-
ary, like in the figure at the bottom. For any combination
of (,)x x1 2 , it will tell us whether the item belongs to the
lighter or darker group.

 DEEP lEARnIng 191

5

5

3

3

1

1

–3

–3

–5

–5

–1

–1

5

5

3

3

1

1

–3

–3

–5

–5

–1

–1

192 ChAPtER 6

The neuron will have only two inputs. It will take each
(,)x x1 2 pair and calculate an output. If we are using the
sigmoid activation function, the output will be between
0 and 1. We’ll take the values greater than 0.5 to fall into
one group and the other values to fall into the other. In
this way the neuron will act as a classifier, sorting our data
into distinct classes. But how does it do that? How can the
neuron get to the point of being able to classify data?

The Learning Process

At the moment of its creation, our neuron cannot recog-
nize any kind of data; it learns to recognize them. The way
it learns is by example. The whole process is akin to having
a student learn something by giving them a large bunch
of problems on a subject, along with their solutions. We
ask the student to study each problem and its solution.
If they are diligent, we expect that after the student has
gone through a number of problems, they will have fig-
ured out how to get from a problem to its solution and will
even be able to solve new problems, related to the ones
they studied, but this time without having recourse to any
solutions.

When we do this, we train the computer to find the
solutions; the set of solved example problems is called the
training data set. This is an instance of supervised learning

At the moment of its
creation, our neuron
cannot recognize any
kind of data; it learns to
recognize them. The way
it learns is by example.

194 ChAPtER 6

because the solutions guide the computer, like a supervi-
sor, toward finding the right answers. Supervised learning
is the most common form of machine learning, the entire
discipline that deals with methods where we train comput-
ers to do things. Apart from supervised learning, machine
learning also encompasses unsupervised learning, where
we provide the computer with a training data set, but not
with any accompanying solutions. There are important
applications of unsupervised learning, like, for example,
grouping observations into different clusters (there is no
a priori solution to what a correct cluster of observations
is). In general, though, supervised learning is more power-
ful than unsupervised learning, as we provide more infor-
mation during training. We will only deal with supervised
learning here.

After training, the student often passes some tests
to see how well they mastered the material. Similarly, in
machine learning, after training we give the computer an-
other data set that it has not seen before and ask it to solve
this test data set. Then we evaluate the performance of the
machine learning system based on how well it manages to
solve the problems in the test data set.

In the classification task, training for supervised
learning works by giving the neuron network a large num-
ber of observations (problems) along with their classes
(solutions). We expect that the neuron will somehow learn
how to get from an observation to its class. Then if we give

 DEEP lEARnIng 195

it an observation it has not seen before, it should classify
it with reasonable success.

The behavior of a neuron for any input is determined
by its weights and bias. When we start, we set them at
random values; the neuron knows nothing, like a clue-
less student. We give the neuron one input in the form
of a (,)x x1 2 pair. The neuron will produce an output. As
we have random weights and bias, the output will also be
random. For each of our observations in the training data
set, however, we do know what the correct answer from
the neuron should be. We can then calculate how far off
the neuron’s output is from the desired one. This is called
the loss: a measure of how wrong the neuron is for a given
input.

For example, if for an input the neuron produces as
output the value 0.2, while the desired output is 1.0, we
can calculate the loss by the difference between the two
values. To avoid having to deal with signs, we usually take
as the loss the square of the difference; here it would be
(. .) .1 0 0 2 0 642− = . If the desired output were 0.0, then
the loss would be (. .) .0 0 0 2 0 042− = . Be it as it may, hav-
ing calculated the loss, we can now adjust the weights and
bias so as to minimize it.

Going back to the human student, after each failed
attempt to solve an exercise, we nudge them to perform
better. The student figures out that they have to change
their approach a bit and try with the next example. If they

196 ChAPtER 6

fail, we nudge them again. And again. Until after a lot of
examples in the training data set, they will start getting
things right more and more, and will be able to tackle the
test data set.

When a student learns, neuroscience tells us that the
wiring inside the brain changes; some synapses between
neurons get stronger, some get weaker, and some are
dropped. There is no direct equivalent to an artificial neu-
ron, but something similar happens. Recall once more that
the behavior of a neuron depends on its input, weights,
and bias. We have no control over the input; it comes from
the environment. But we can change the weights and bi-
ases. And this is what really happens. We update the val-
ues of the weights and bias in such a way that the neuron
will minimize its errors.

The way that the neuron achieves that is by taking ad-
vantage of the nature of the task it is called to perform.
We want it to take each observation, calculate an output
corresponding to a class, and adjust its weights and bias to
minimize its loss. So the neuron is trying to solve a minimi-
zation problem. Given an input and the output it produces,
the problem is, How are we to recalibrate the weights and
bias to minimize the loss?

This requires a conceptual change of focus. Up to this
point we have described a neuron as something that takes
some inputs and produces an output. Viewed in this way,
the whole neuron is a big function that takes its inputs,

 DEEP lEARnIng 197

applies the weights, sums the products, adds the bias,
passes the result through the activation function, and pro-
duces the final output. But if we think of it another way,
our inputs and outputs are actually given (that is our train-
ing data set), while what we can change are the weights
and bias. So we can view the whole neuron as a function
whose variables are the weights and bias because these are
what we can really affect, and for every input we want to
change them so as to minimize the loss.

If we take as an illustration a simple neuron, with just
one weight and no bias, then the relationship between the
loss and weight might be as in the left part of the figure on
the next page. The thick curve shows the loss as a function
of the weight for a given input. The neuron should adjust
its weight so that it reaches the minimum value of the
function. The neuron, for the given input, has currently
a loss at the indicated point. Unfortunately, the neuron
does not know what is the ideal weight that would mini-
mize the loss, given that the only thing it does know is
the value of the function at the indicated point; it is not
endowed with a vantage point of view like we have with
the figure at our disposal. The neuron may only adjust its
weight by a small amount— either increase or decrease
it— so that it moves closer to the minimum.

To find out what to do, whether to increase or decrease
the weight, the neuron can find the tangent line at the cur-
rent point. Then it can calculate the slope of the tangent

198 ChAPtER 6

line; this is the angle with the horizontal axis, which we
have also shown in the figure. Note that the neuron can
do that without any special capabilities apart from being
able to carry out calculations at the local point. The slope
of the tangent is negative because the angle is clockwise.
The slope shows the rate of change of a function; therefore
a negative slope indicates that by increasing the weight,
the loss decreases. The neuron thereby discovers that
to decrease the loss, it has to move to the right. As the
slope is negative and the required change in the weight is
positive, the neuron finds that it must move the weight
in a positive direction— opposite to what is indicated by
the slope.

Now turn to the figure on the right. This time the neu-
ron is to the right of the minimum loss. It takes the tan-
gent again and calculates its slope. The angle and therefore

 DEEP lEARnIng 199

slope is positive. A positive slope indicates that by increas-
ing the weight, the loss increases. The neuron then knows
that in order to minimize the loss, it has to decrease the
weight. As the slope is positive and the required change in
the weight is negative, the neuron finds again that it must
move in the opposite direction than that indicated by the
slope.

In both cases, then, the rule is the same: the neuron
calculates the slope and updates the weight in the opposite
direction from the slope. All this might look familiar from
calculus. The slope of a function at a point is its derivative.
To decrease the loss, we need to change the weight by a
small amount that is opposite to the derivative of the loss.

Now a neuron does not usually have a single weight
but rather has many, and also has a bias. To find out how
to adjust each individual weight and the bias, the neuron
proceeds like we described for the single weight. In math-
ematical terms, it calculates the so- called partial deriva-
tive of the loss with respect to each individual weight and
bias. For n weights and a bias, that will be n + 1 partial
derivatives in total. A vector containing all the partial de-
rivatives of a function is called its gradient. The gradient
is the equivalent of the slope when we have multivariable
functions; it shows the direction along which we have to
move to increase the value of the function. To decrease it,
we move in the opposite direction. Thus to decrease the
loss, the neuron updates each weight and the bias in the

200 ChAPtER 6

opposite direction than the one indicated by the partial
derivatives forming its gradient.5

The calculations are not really performed by drawing
tangents and measuring angles. There are efficient ways
to find the partial derivatives and gradient, but we don’t
need to get into the details. What is important is that we
have a well- defined way to adjust the weights and bias
to improve the results of the neuron. With this at hand,
the learning process can be described by the following
algorithm:

For each input and desired output in the training data
set,

 1. Calculate the output of the neuron and loss.

 2. Update the weights and bias of the neuron to
minimize the loss.

Once we have completed a training by going through
all the data in the training data set, we say that we have
completed an epoch. Usually we do not leave it at this. We
repeat the whole process for a number of epochs; it is as
if the student, after going through all the study material,
started all over again. We expect that the next time they’ll
do better, as this time they do not start from zero— they
are not completely clueless— having already learned some-
thing from the previous epoch.

 DEEP lEARnIng 201

The more we repeat the training by adding epochs into
our training regime, the better we get with the training
data. But too much training can be a bad thing. A student
who studies again and again the same set of problems
will probably learn to solve them by rote— without really
knowing how to solve any other problems that they have
not encountered before. We see that happening when a
seemingly well- prepared student fails abysmally in the ex-
ams. In machine learning, when we train the computer on
a training data set, we say that it fits the data. Too much
training results in what is called overfitting: excellent per-
formance with the training data set, and bad performance
with the test data set.

It can be proven that following this algorithm, a neu-
ron can learn to classify any data that are linearly separable.
If our data have two dimensions (like our example), then
that means that they should be separable by a straight line.
If our data have more features, not just (,)x x1 2 , the princi-
ple is generalized. For three dimensions— that is, three in-
puts (, ,)x x x1 2 3 — the data are linearly separable if they can
be separated by a simple plane in the three- dimensional
space. For more dimensions, we call the equivalent of the
line and plane a hyperplane.

At the end of the training, our neuron has learned to
separate the data. “Learned” means that it has found the
right weights and bias, in the way we described: it started
out with random values and then gradually updated them,

202 ChAPtER 6

minimizing the loss. Recall the figure with the two blobs,
which the neuron learned to separate with a decision
boundary. We got from the neuron below at the left, to
the neuron at the right, where you can see the final values
of its parameters.

That does not always happen. A single neuron, acting
alone, can only perform certain tasks, like this classifica-
tion of linearly separable data. To handle more compli-
cated tasks, we need to move from a lone artificial neuron
to networks of neurons.

From Neurons to Neural Networks

As in biological neural networks, we can build artificial
neural networks out of interconnected neurons. The input
signals of a neuron can be connected to the outputs of
other neurons, and its output signal can be connected to

 DEEP lEARnIng 203

the inputs of other neurons. In this way we can create neu-
ral networks like this one:

x2

x6

x3

x4

x5

x1

This artificial neural network has its neurons arranged
in layers. This is often done in practice: many neural net-
works that we construct are made of layers of neurons,
with each layer stacked next to a previous one. We have
also made all the neurons on one layer connect to all
the neurons on the next layer, going from left to right.
This, again, is common, although not necessary. When
we have layers connected like that, we call them densely
connected.

204 ChAPtER 6

While the first layer is not connected to any previous
one, the output of the last layer is similarly not connected
to any following layer. The output of the last layer is the
output of the whole network; it will provide the values
that we want it to calculate.

Let us return to a classification task. Our problem now
is to pick apart two sets of data, shown in the figure on the
top of the next page. The data fall into concentric circles. It
is clear to a human that they belong to two distinct groups.
It is also clear that they are not linearly separable: no
straight line can separate the two classes. We want to cre-
ate a neural network that will be able to tell the two groups
apart so that it will tell us in which group any future obser-
vation will belong. This is what you see in the figure at the
bottom. For any observation on the light background, the
neural network will recognize that it belongs to one group;
for any observation on the dark background, it will tell us
that it belongs to the other group.

To achieve the results that we see in the lower figure,
we build a network layer by layer. We put two neurons on
the input layer, one for each coordinate of our data. We
add one layer with four neurons, densely connected to the
input layer. Because this layer is not connected to the in-
put or output, it is a hidden layer. We add another hidden
layer with two neurons, densely connected to the first hid-
den layer. We finish the network with an output layer of
one neuron, densely connected to the last hidden layer. All

 DEEP lEARnIng 205

4

4

2

2

0

0

–4

–2–4

–2

4

4

2

2

0

0

–4

–2–4

–2

206 ChAPtER 6

the neurons use the tanh activation function. The output
neuron will produce a value between −1 and +1, displaying
its belief that the data fall in one or the other group. We’ll
take that value and turn it into a binary decision, yes or no,
depending on whether it exceeds 0.0 or not. This is what
the neural network looks like:

x2

x1

The Backpropagation Algorithm

In the beginning, the neural network knows nothing, and
no adjustment has taken place; we start with random
weights and biases. This is what ignorance means in the
neural network world. Then we give the neural network an
observation from our data— that is, a set of coordinates.
The x1 and x2 coordinates will go on the input layer. Both
neurons take the x1 and x2 values and they pass them as
their output to the first hidden layer. All four neurons of

 DEEP lEARnIng 207

that layer calculate their output, which in their turn, they
send to the second hidden layer. The neurons on that layer
send their own output to the neuron on the output layer,
which produces the final output value of the neural net-
work. As the calculations proceed from layer to layer, the
neural network propagates the results of the neurons for-
ward, from the input to the output layer:

x2

x1

x2

x1

208 ChAPtER 6

x2

x1

x2

x1

Once we reach the output layer, we calculate the loss,
as we did with the single neuron. And then we want to
adjust the weights and bias of not just one neuron but
rather all the neurons in the network so as to minimize
the loss.

It turns out that it is possible to do that by going in
the opposite direction, from the output to the input layer.
Once we know the loss, we can update the weights and

 DEEP lEARnIng 209

biases of the neurons on the output layer (here we have
just a single neuron, but this need is not always so). Having
updated the neurons on the output layer, we can update
the weights and biases of the neurons on the layer before
that— the last hidden layer. Having done that, we can up-
date the weights and biases of the layer before that— the
one- but- last hidden layer. And so on, until we reach the
input layer:

x2

x1

x2

x1

210 ChAPtER 6

x2

x1

x2

x1

The way the weights and biases of the neurons are
updated is similar to the way a single neuron is updated.
Again, the updates are calculated based on mathematical
derivatives. You can think of the whole neural network as
an enormous function whose variables are the weights
and biases of all the neurons. Then we can calculate the
derivative of each and every weight and bias with respect
to the loss, and use that derivative to update the neuron.

 DEEP lEARnIng 211

With this we arrive at the heart of the learning process in
neural networks: the backpropagation algorithm.6

For each input and desired output,

 1. Calculate the output and loss of the neural network
proceeding layer by layer, going forward from the input
to the output layer.

 2. Update the weights and biases of the neurons to
minimize the loss, going backward from the output to
the input layer.

Using the backpropagation algorithm, we can build
complex neural networks and train them to perform dif-
ferent tasks. The building blocks of deep learning systems
are simple. They are artificial neurons, with their limited
computational capabilities: taking inputs, multiplying by
weights, summing, adding a bias, and applying an activa-
tion function on the resulting value. Their power derives
from connecting lots and lots of them in special ways,
where the resulting networks can be trained to perform
the task that we want them to perform.

Recognizing Clothes

To render the discussion more concrete, let us assume that
we want to build a neural network that recognizes items

212 ChAPtER 6

of clothing displayed in images, so this is going to be an
image recognition task. Neural networks have been found
to be exceptionally good at this.

Each image will be a small photo, of dimensions
28 28× . Our training data set consists of 60,000 images,
and our test data set consists of 10,000 images; we’ll use
60,000 images for training the neural network, and an-
other 10,000 images for evaluating how well it learned.
Here is an example image, on which we have added axes
and a grid to help the discussion that follows:7

5

0

10

15

20

25

50 10 15 20 25

 DEEP lEARnIng 213

The image is broken into small distinct parts because
that is how we handle images digitally. Taking the whole
image as a rectangular plot, we divide it into small patches,
28 28 784× = of them, and each patch is given an integer
value from 0 to 255, corresponding to a shade of gray, with
0 being completely white and 255 being completely black.
The above image is actually the matrix on the following page.

In reality, neural networks require that we usually
scale their inputs to a small range of values, such as be-
tween 0 and 1, otherwise they may not work well; you may
think of it as having large input values that lead neurons
astray. That means that before using this matrix we would
divide each cell by 255, but we’ll ignore this in the rest of
the discussion.

The different items of clothing may belong to ten dif-
ferent classes, which you can see in the table below. To a
computer, the classes are just different numbers, which we
call labels:

Label Class Label Class

0 T- shirt/top 5 Sandal

1 Trouser 6 Shirt

2 Pullover 7 Sneaker

3 Dress 8 Bag

4 Coat 9 Ankle boot

 DEEP lEARnIng 215

In the following figure, we show a random sample of
ten items from each kind of clothing. There is quite a va-
riety in the images, as you can see, and not all of them are
picture- perfect examples of each particular clothing class.
That makes the problem somewhat more interesting. We
want to create a neural network that takes as its input im-
ages like these and provides an output that tells us what
kind of image it believes its input is.

216 ChAPtER 6

Again, we’ll build our neural network in layers. The
first layer, comprising the input neurons, will have 784
neurons. Each one of them will take a single input, from a
single patch in the image, and will simply output the value
that it gets in its input. If the image is the ankle boot, the
first neuron will get the value in the top- left patch, a 0, in
its input, and it will output that 0. The rest of the neu-
rons will get the values of the patches proceeding row wise,
from top to bottom, left to right. The patch with the value
58, at the right end of the heel of the boot (the fourth row
from the bottom, and the third column from the right) will
get this 58 and copy it on its output. As rows and columns
are counted in the neural network from the top and left,
this neuron is in the twenty- fifth row from the top and
twenty- sixth column from the left, making it the input
neuron number 24 28 26 698× + = .

The next layer will be densely connected to the input
layer. It will consist of 128 ReLU neurons. This layer is not
directly connected to the input images (the input layer is)
and will not be directly connected to the output (we’ll add
another layer for that). Therefore it is a hidden layer, as
we cannot observe it from the outside of the neural net-
work. Being densely connected, this will result in a large
number of connections between the input and hidden
layer. Each neuron on the hidden layer will be connected
to the outputs of all neurons on the input layer. There

 DEEP lEARnIng 217

will be 784 input connections per neuron, for a total of
784 128 100 352× = , connections.

We will add another, last layer, which will contain the
output neurons that will carry the results of the neural net-
work. This will contain 10 neurons, one for each class. Each
output neuron will be connected to all the neurons of the
hidden layer, for a total of 10 128 1 280× = , connections.
The grand total of all the connections between all the layers
in the neural network will be 100 352 1280 101 632, ,+ = .
The resulting neural work will look, in schematic form, like
the one on the next page. As it is impossible to fit all the
nodes and edges, you can see dotted boxes standing for
the bulk of nodes on the input and hidden layers; there are
780 nodes in the first box and 124 nodes in the second box.
We have also collapsed the arrows going to the individual
nodes inside the boxes.

The output of our neural network will consist of 10
outputs, one from each neuron on the layer. Each output
neuron will represent one class, and its output will repre-
sent the probability that the input image belongs to this
class; the sum of the probabilities of all 10 neurons will be
1, as it must happen when we deal with probabilities. This
is an example of yet another activation function, called
softmax, which takes as input a vector of real numbers and
converts them to a probability distribution. Let’s see the
two examples that follow.

218 ChAPtER 6

in
p
u
t

im
a
g
e

in
p
u
t

la
y
e
r

7
8
4

n
e
u
ro

n
s

h
id

d
e
n
 l

a
y
e
r

1
2
8

n
e
u
ro

n
s

o
u
tp

u
t

la
y
e
r

t-
sh

ir
t/

to
p

tr
o
u
se

r

p
u
ll

o
v
e
r

d
re

ss

c
o
a
t

sa
n
d
a
l

sh
ir

t

sn
e
a
k
e
r

b
a
g

a
n
k
le

b
o

o
t

In the first example, on the left, after training we get
this at the output of the network:

Output Neuron Class Probability

1 T- shirt/top 0.09

2 Trouser 0.03

3 Pullover 0.00

4 Dress 0.83

5 Coat 0.00

6 Sandal 0.00

7 Shirt 0.04

8 Sneaker 0.00

9 Bag 0.01

10 Ankle boot 0.00

220 ChAPtER 6

That means that the neural network tells us that it is
pretty certain it is dealing with a dress, giving it an 83 per-
cent probability, leaving aside small probabilities for the
input image being a T- shirt/top, shirt, or trouser.

In the second example, on the right, the network
produces:

Output Neuron Class Output

1 T- shirt/top 0.00

2 Trouser 0.00

3 Pullover 0.33

4 Dress 0.00

5 Coat 0.24

6 Sandal 0.00

7 Shirt 0.43

8 Sneaker 0.00

9 Bag 0.00

10 Ankle boot 0.00

The neural network is 43 percent certain that it is deal-
ing with a shirt— and it is wrong; the photo is really a pic-
ture of a pullover (in case you couldn’t tell). Still, it did give
its second best, at 33 percent, to the image being a pullover.

We gave one example where the network comes up
with the right answer, and another instance where the

 DEEP lEARnIng 221

network comes up with the wrong answer. Overall, if we
give the network many images to recognize, all the 60,000
images in our training data set, we’ll find out that it man-
ages to get right about 86 percent of the 10,000 images in
the test data set. That is not bad, considering that the neu-
ral network, even though it is way more complicated than
the previous one, is still a simple one. From this baseline,
we can create more complicated network structures that
would give us better results.

Despite the increased complexity, our neural network
learns in the same way as our simpler networks recogniz-
ing blobs of data and concentric circles. For each input dur-
ing training we obtain an output, which we compare to the
desired output to calculate the loss. The output now is not
a single value but rather 10 values, yet the principle is the
same. When the neural network recognizes a shirt with
about 83 percent probability, we can compare that with the
ideal, which would be to recognize it with 100 percent prob-
ability. Therefore we have two sets of output values: the one
obtained by the network, with various probabilities assigned
to the different kinds of clothes, and what we would like to
have gotten from the network, which is a set of probabilities
where all of them are zero apart from a single probability, cor-
responding to the right answer, which is equal to one. In the
last example, the output contrasted to the target would be as
follows:

222 ChAPtER 6

Output Neuron Class Output Target

1 T- shirt/top 0.00 0.00

2 Trouser 0.00 0.00

3 Pullover 0.33 1.00

4 Dress 0.00 0.00

5 Coat 0.24 0.00

6 Sandal 0.00 0.00

7 Shirt 0.43 0.00

8 Sneaker 0.00 0.00

9 Bag 0.00 0.00

10 Ankle boot 0.00 0.00

We take the last two columns and we calculate again a
loss metric— only this time, as we do not have a single value,
we do not calculate a simple squared difference. There exist
metrics to calculate the difference between sets of values
like these. In our neural network we used one such metric,
called categorical cross- entropy, which indicates how much
two probability distributions differ. Having calculated the
loss, we update the neurons on the output layer. Having
updated them, we update the neurons on the hidden layer.
In short, we perform backpropagation.

We go through the same process for all images in our
training data set— that is, for a whole epoch. When we are
done, we do this all over again for another epoch. We re-
peat the process while trying to strike a balance: enough

 DEEP lEARnIng 223

epochs so that the neural network will learn as much as
possible from the training data set without going into
too many epochs where the neural network will learn too
much from the training data set. During learning, the net-
work will be adjusting the weights and biases of its neu-
rons, which are a lot. The input layer just copies values to
the hidden layer, so no adjustments need to be done to the
input neurons, but there are 100,352 weights on the hid-
den layer, 1,280 weights on the output layer, 128 biases on
the hidden layer, and 10 biases on the output layer, for a
total of 101,770 parameters.

Getting to Deep Learning

It can be proven that even though a neuron on its own can-
not do much, a neural network can perform any computa-
tional task that can be described algorithmically and run
on a computer. Therefore there is nothing that a computer
can do that a neural network could not do. The whole idea,
of course, is that we do not need to tell the neural net-
work exactly how to perform a task. We only need to feed it
with examples while using an algorithm to make the neu-
ral network learn how to perform the task. We saw that
backpropagation is such an algorithm. Although we lim-
ited our examples to classification, neural networks can be
applied to all sorts of different tasks. They can predict the

224 ChAPtER 6

values of a target quantity (for instance, credit scoring),
translate between languages as well as understand and
generate speech; and beat human champions in the game
of Go, in the process baffling experts by demonstrating
completely new strategies of playing a centuries- old game.
They have even learned how to play the game of Go start-
ing with just a knowledge of the rules, without access to a
library of previously played games, and then proceeding to
learn as if the neural network were playing games against
itself.8

Today, successful applications of neural networks
abound, yet the principles are not new. The Perceptron was
invented in the 1950s, and the backpropagation algorithm
is more than 30 years old. In this period, neural networks
came and went out of fashion, with enthusiasm for their
potential ebbing and flowing. What has really changed in
the last few years is our capability to build really big neural
networks. This has been achieved thanks to the advances
in manufacturing specialized computer chips that can per-
form the calculations executed by neurons efficiently. If
you picture all the neurons of a neural network arranged
inside a computer’s memory, then all the required compu-
tations can be carried out by operations on vast matrices
of numbers. A neuron calculates the sums of the weighted
products of its inputs; if you recall the discussion on Page-
Rank in the previous chapter, the sum of the products is
the essence of matrix multiplication.

 DEEP lEARnIng 225

It has turned out that graphics processing units (GPUs)
are perfectly suited for this. GPUs are computer chips that
are specially designed to create and manipulate images
inside a computer; the term builds on central processing
units (CPUs), the chip that carries out the instructions of
a program inside a computer. GPUs are built to carry out
instructions for computer graphics. The generation and
processing of computer graphics requires numerical op-
erations on big matrices; a computer- generated scene is a
big matrix of numbers (think of the shoe). GPUs are the
workhorses of game consoles. The same technology that
arrests human intelligence in hours of diversion is also
used to advance machine intelligence.

We started with the simplest possible neural network,
consisting of a single neuron. Then we added a few neu-
rons, and then we added a few more hundreds. Still, the
image recognition neural network that we created is by no
means a big one. Nor is its architecture complicated. We
just added layer on layer of neurons. Researchers in the
field of deep learning have made big strides in devising
neural network designs. These architectures may comprise
dozens of layers. The geometry of these layers need not
be a simple one- dimensional set of neurons, like the ones
we have here. For example, neurons inside a layer may be
stacked on two- dimensional canvas- like structures. More-
over, it is not necessary to have each layer densely con-
nected to the one before; other connection patterns are

226 ChAPtER 6

possible. Nor is it necessary to have the outputs of a layer
simply connected to the inputs of the next layer. We may,
for instance, have connections between non-consecutive
layers. We may bundle up layers and treat them as mod-
ules, combining them with modules containing other lay-
ers to form more and more complex configurations. Today
we have a menagerie of neural network architectures at
our disposal, such that particular architectures are well
suited for specific tasks.

The neurons on the layers in all the neural network
architectures update the values of the weights and biases
as they learn. If we reflect on what is happening, we can
see that we have a set of inputs that transforms the lay-
ers during the learning process. Once the training stops,
the layers have somehow, via the adjustments in their
parameters, taken in the information represented by
the input data. The weights and biases configuration of
a layer represents the input it has received. The first hid-
den layer, which comes in direct contact with the input
layer, encodes the neural network’s input. The second hid-
den layer encodes the output of the first hidden layer, to
which it is directly connected. As we proceed deeper and
deeper into a multilayer network, each layer encodes the
output received by the previous layer. Each representation
builds on the previous one and therefore is on a higher
level of abstraction from the one of the preceding layer.
Deep neural networks, then, learn a hierarchy of concepts,

 DEEP lEARnIng 227

proceeding to higher and higher levels of abstraction. It
is in this sense that we talk of deep learning. We mean an
architecture whereby successive levels represent deeper
concepts, corresponding to higher levels of abstraction. In
image recognition, the first layer of a multilayer network
may learn to recognize small local patterns, such as edges
in the image. Then the second layer may learn to recognize
patterns that are built from the patterns recognized by the
first layer, such as eyes, noses, and ears. The third layer
may learn to recognize patterns that are built from the
patterns recognized by the second layer, like faces. Now
you can see that our neural network for recognizing the
images was somewhat naive; we did not try to implement
actual deep learning. By building abstractions on abstrac-
tions, we expect our network to find patterns that humans
find, from structures in sentences, to signs of malignancy
in medical images, to recognizing handwritten characters,
to detecting online fraud.

Yet, you may say, it all boils down to updating simple
values on simple building blocks— the artificial neurons.
And you would be correct. When people realize that, some-
times they feel let down. They want to learn what machine
and deep learning are, and the simplicity of the answer
disappoints: something that appears to have human capa-
bilities can be reduced to fundamentally elementary op-
erations. Perhaps we would prefer to find something more
involved, which would not fail to flatter our self- esteem.

228 ChAPtER 6

We should not forget, however, that in science we
believe that nature can be explained from first principles,
and try to find such principles that are as simple as pos-
sible. That does not preclude complex structures and be-
haviors arising out of simple rules and building blocks.
Artificial neurons are much simpler than biological ones,
and even if the workings of biological neurons can be ex-
plained in simple models, it is thanks to the vast number
of interconnected biological neurons that intelligence, as
we know it, can arise.

This helps put some things into perspective. True, ar-
tificial neural networks can be uncanny in their potential.
In order to make them work, however, an amazing amount
of human creativity and terrific engineering effort is re-
quired. We have only scratched the surface in our account
here. For instance, take backpropagation. That is the fun-
damental algorithm behind neural networks, allowing us
to perform efficiently what is at heart a process of finding
mathematical derivatives. Researchers have been busy de-
vising efficient calculation techniques, such as automatic
differentiation, a mechanism for calculating derivatives
that has been widely adopted. Or take the exact way that
changes in the neural network parameters are calculated.
Various different optimizers have been developed, allowing
us to deploy bigger and bigger networks that are at the
same time more and more efficient. Turning to the under-
lying hardware, hardware engineers are designing better

Artificial neurons are
much simpler than
biological ones, and
even if the workings of
biological neurons can
be explained . . . , it is
thanks to the vast
number of inter-
connected biological
neurons that intelligence
. . . can arise.

230 ChAPtER 6

and better chips to run more and more neural computa-
tions faster while using less computing power. Looking at
network architectures, new neural network architectures
are proposed that improve on existing ones. This is a hot-
bed of research and experimentation, and even encom-
passes efforts to build neural networks that design other
neural networks. So every time you see a news report that
a neural network has reached a new achievement, doff your
hat to the hardworking people who made this possible.9

EPILOGUE

On July 15, 2019, Mark Carney, the Bank of England gov-
ernor, presented the design of the new £50 note, expected
to enter circulation about two years later. The Bank of
England had decided in 2018 to celebrate a character from
science with the new banknote and opened a six- week
public nomination period for the selection. It received a
total of 227,299 nominations for 989 eligible characters.
From this, the Banknote Character Advisory Committee
decided on a short list of 12 options. Then the governor
made the final decision, selecting Alan Turing. He com-
mented, “Alan Turing was an outstanding mathematician
whose work has had an enormous impact on how we live
today. As the father of computer science and artificial in-
telligence, as well as war hero, Alan Turing’s contributions
were far ranging and path breaking. Turing is a giant on
whose shoulders so many now stand.”1

Turing (1912– 1954) was a genius who explored the
limits and nature of computation, foresaw the rise of ma-
chines that would display intelligent behavior, grappled
with the question of whether machines could think, con-
tributed to mathematical biology and mechanisms of mor-
phogenesis, and played a crucial role in the cryptanalysis
of encrypted German messages during World War II (his

232 EPIlogUE

contribution remained a secret for decades). In a tragic
turn of events, Turing died by suicide. He had been ar-
rested and convicted in 1952 for homosexuality, which
was criminal in the United Kingdom at the time, and com-
pelled to get hormonal treatment. An official pardon was
issued in 2013. His appearance on the new note is a form
of rehabilitation that would have been unthinkable a few
decades back.2

Throughout this book we have been describing algo-
rithms as consisting of simple steps, elementary enough
that they can be carried out using a pen and paper. Given
that we implement algorithms in computer programs, the
question of what really is an algorithm will help us un-
derstand what can really be computed. This requires us
to dig deeper into the nature of these simple steps. After
all, what a primary school student can do with a pen and
paper is different than what a college graduate can do. Is
it possible to define precisely what kind of steps an algo-
rithm could be made of? Turing offered an answer even
before digital computers were built. He proposed a model
machine in 1936 in order to answer the question of what
a computer, any computer, can do. A Turing machine is a
simple contraption. It consists of the following parts:3

1. A tape. The tape is divided into squares or cells. Each
cell can be blank or contain a symbol from some alphabet.
The tape can be infinitely long.

Is it possible to define
precisely what kind of
steps an algorithm could
be made of? . . . [Turing]
proposed a model
machine in 1936 in
order to answer the
question of what a
computer, any computer,
can do.

234 EPIlogUE

2. A head that can move left and right along the tape,
one position at a time. The head can read the symbol
in the cell underneath. We call the symbol in that cell
the scanned symbol. The head can erase or overwrite the
scanned symbol.

3. A finite control, also called a state register. The finite
control can be in any of a finite set of states. You can
think of it as a dial inscribed with states, and an indicator
that can point to any one of them.

4. A finite instructions table. Each instruction specifies
the next move of the machine. This is what the machine
will do, given its current state and the scanned
symbol.

You can see a Turing machine in the figure on the next
page.4

The alphabet of this particular Turing machine con-
sists of 1 and . The finite control shows that the machine
can be in one of seven states, q q q0 1 6, , ,… . The instructions
table has one row for each possible state, and one column
for each possible symbol; we use B to stand in for blank so
that we can see it. The current state is indicated by the row,
and the scanned symbol by the column. Each entry in the
instructions table contains a triplet, describing a move, or
a dash, meaning that the machine has nothing to do in this
row and column combination.

 EPIlogUE 235

236 EPIlogUE

A move of the machine consists of three actions:

1. The machine may change or remain in the same state.
The new state is the first element of the triplets in the
finite instructions table.

2. It will write a symbol under the head. The symbol may
be the same with the one already there (then the result is
that the existing symbol remains in the cell). The symbol
to be written is the second element of the triplets.

3. The head will shift either to the left (L) or right (R)
of the current cell. The shift is the third element of the
triplets.

Our example Turing machine executes an algorithm
that computes the difference of two numbers a and b when
a b> ; otherwise, it returns zero. This operation is called
monus or proper subtraction, and we write a –∙ b. We have
4 –∙ 2 = 2 and 2 –∙ 4 = 0.

Initially, we place the machine’s input on the tape.
The input is a finite string of symbols from the machine’s
alphabet. All other cells of the tape, to the left and right
of it, are blank. In this Turing machine, the input is
1111 11 . The input represents the numbers four and two
in the unary numeral system, separated by .

This machine starts with its head on the leftmost in-
put cell. The finite control points at the q0 state. Then the

 EPIlogUE 237

machine starts working and performs its moves. If we fol-
low the machine’s operation for the first six moves, we’ll
see that it goes like this:

1. We are at state q0 and the scanned symbol is 1:

The instruction table gives us (, ,)q B R1 , so the
machine will change its state to q1, overwrite 1 with
blank, and move right. The tape and head will be:

2. For the q1 state and scanned symbol 1, the instruction
table gives us (, ,)q R1 1 . The machine will read and write 1,
leaving the cell as it is, and will move right, remaining at
state q1:

238 EPIlogUE

3. The machine does the same as step 2, reading and
writing 1, remaining at q1, and moving right:

4. Again, the machine will read and write 1, remain at q1,
and move right:

5. The head has moved over the symbol and remained
at state q1. The instruction is (, ,)q R2 . The machine will
change state, to q2, leave on the tape, and move right:

6. The head has moved over the 1 to the right of and is
at state q2. The instruction is (, ,)q L3 . The machine will
change state, to q3, write over the 1, and move back
left:

 EPIlogUE 239

The machine will continue working in this way, per-
forming the moves prescribed by the instruction table. If
we take a higher- level view, we’ll realize that the machine
executes a loop. In each iteration, it finds the leftmost 1
and replaces it with a blank. It then searches right for a
 . When it finds it, it continues going right until it finds a
1, which it turns into a . Therefore in each iteration, the
machine strikes out a 1 on the left and right of . At some
point, this will no longer be possible. Then the machine
will replace all symbols with blanks and will terminate.
The tape will contain 11, equivalent to the number 2, sur-
rounded by blanks. To indicate termination, the machine
enters the state q6, where according to the instructions
table there is nothing to do, and it stops.

If we provide as input 11 1111 , the machine will
beaver away until it stops with a tape full of blanks, which
is equivalent to 0. If we give the machine any input con-
sisting of a ones followed by an asterisk and then b ones,
it will follow its moves until it leaves the tape with either
a b− ones, if a b> , or otherwise all blanks.

This Turing machine executes an algorithm for com-
puting the monus operation based on its input and fol-
lowing the instructions described in its instructions table.

240 EPIlogUE

The steps are so elementary that the head of the Turing
machine scampers around a lot in order to perform the op-
eration. It will take 21 moves to find that 2 –∙ 4 = 0 and 34
moves to find that 4 –∙ 2 = 2. But how simple these moves
are! Anybody with a modicum of intelligence can carry
them out. The rudimentary nature of the steps is exactly
the point. You do not need any advanced qualifications
to perform the steps of a Turing machine; you only need
to look up a table, move around on a tape, read and write
one symbol at a time, and keep track of what your state is.
That is all. Yet it is not trivial because the answer to the
question of what kind of steps an algorithm could be made
of, is that they are the steps that a Turing machine could
perform.

In this book we have been describing algorithms at a
higher level, with more complex steps. That is for our con-
venience because a Turing machine works at such a low
level of detail that it would be unwieldy to use it to describe
our algorithms. But all the steps of all the algorithms we
have depicted could be presented as steps of a properly
constructed Turing machine. We have described a simple
Turing machine to implement the monus operation. For a
more complex algorithm we would need a Turing machine
with more states, a bigger alphabet, and a bigger instruc-
tions table. But we could still build it, if we wanted.

The simplicity of the Turing machine belies its ambit;
given any algorithm, we can construct a Turing machine

 EPIlogUE 241

that implements it. As computers run algorithms, any al-
gorithm that is computable by a computer is computable
by a Turing machine. Or in other words, whatever we can
do with an algorithm, we can do with a Turing machine. That
is a loose rendering of the Church- Turing thesis, named
after Turing and the US mathematician Alonzo Church
(1903– 1995), one of the founders of theoretical computer
science. It being a thesis, it is not something that has been
proved, and we do not know if it can be proved mathemati-
cally. It is theoretically possible that it could be disproved,
if somebody devises some alternative form of computa-
tion that computes things that a Turing machine cannot
compute. We do not believe this is likely to happen. We
therefore take the Turing machine to be a formal descrip-
tion of the notion of an algorithm.5

You can imagine any computer, as powerful as you
want it. The computer will be way faster than a Turing
machine that operates on a tape of symbols as we have
described it. But everything it calculates algorithmically,
a Turing machine can calculate too. You can even imag-
ine computers that we have not been able to manufacture
yet. Our computers work with bits, which can exist in only
two states, 0 and 1. Quantum computers work with qubits.
When we examine the state of a qubit, this will be 0 or 1,
like a bit. Yet a qubit, when we don’t examine it, can be in a
combination, called superposition, of the two binary states
0 and 1. It is as if a qubit is both 0 and 1, until we decide to

242 EPIlogUE

read it, when it decides to be one of these two values. This
allows quantum computers to represent multiple states of
computation at once. A quantum computer would allow
us to solve fast problems that are not easily solved by clas-
sical computers. Unfortunately, building a quantum com-
puter is difficult with the current technology. And even a
quantum computer could not do something that a Turing
machine cannot do. Even though it would be able to solve
some problems more efficiently than any existing classical
computer, or any Turing machine for that matter, it still
won’t be able to solve any problems that a Turing machine
cannot solve.

Our computational limits are given by Turing ma-
chines. Anything a computer can do, we could really do
with a pen and paper, working on a tape of symbols. Every-
thing you see executed on any digital device is, in essence,
a series of such elementary symbol manipulations. In the
natural sciences, we behold the world and believe that we
can explain it using fundamental principles. In comput-
ing, it is the other way around. We have our fundamental
principles and believe that we can do amazing feats with
them.

When Turing proposed his machine as a model for
computation, digital computers did not even exist. That
did not prevent him from exploring the capabilities of
computing machines that would be created in the future.
When we think about the limits of computers, we should

Our computational
limits are given by
Turing machines.
Anything a computer
can do, we could really
do with a pen and
paper. . . . Everything
you see executed on any
digital device is . . . a
series of such
elementary symbol
manipulations.

244 EPIlogUE

also keep in mind that inside these limits, the human in-
tellect has created wonders. The limits of computation
have not curtailed our creativity to continue developing
algorithms for every aspect of our lives. When writing was
invented in Mesopotamia, its purpose was to aid record
keeping, not write literature. The first writers were prob-
ably accountants, not authors, yet from such humble be-
ginnings emerged William Shakespeare. Who knows what,
in time, algorithms will bring.

GLOSSARY

activation (neuron)
The emission of output from a neuron.

activation function
A function that determines the output of a neuron based on its input.

acyclic graph
A graph that has no cycle.

adjacency matrix
A matrix that represents a graph. It has a row and column for each vertex of
the graph. Its contents are 1 in each entry whose row and column correspond
to two vertices connected by an edge in the graph; all other entries are 0.

algorithm
1. Go to the first page of the book.

2. Read the current page.

3. If you don’t understand, go to step 2. Otherwise go to step 4.

4. If there is a next page, make it your current page and go to step 2. Other-
wise terminate.

approximation
Solving a problem by using an algorithm that may not find the optimal solu-
tion, but one that is not far from it.

automatic differentiation
A set of techniques to evaluate the derivative of a function numerically— that
is, not analytically, which would entail using the calculus rules for differentiat-
ing functions.

backlink
A link that points to the web page we are visiting, and by extension, the web
pages that contain links that point to the web page we are visiting.

246 glossARY

backpropagation algorithm
A fundamental algorithm for training neural networks. The network corrects
its configuration (its weights and biases) by propagating adjustments from the
final layer back toward the first layer.

bias
A numerical value attached to a neuron that controls its propensity to fire.

big O
A notation for computational complexity. Given an algorithm and input
greater than some threshold, it gives us an upper bound on the expected num-
ber of steps required by the algorithm to complete. We want the input to be
larger than some threshold because we are interested in the behavior of an
algorithm on large data. The big O complexity for an algorithm gives us a guar-
antee that for large data, the algorithm will not require more than a particular
number of steps. For example, a complexity of O n()2 means that for input of
size n that exceeds some threshold, the algorithm will not take more than a
constant multiple of n2 steps to complete.

binary search
A search algorithm that works on ordered data. We check the item in the mid-
dle of the search space. If it matches the one we are looking for, we are fine.
Otherwise, we repeat the procedure to the left or right half, depending on
whether we have overshot or undershot our target.

bit
The basic unit of information stored on a computer. A bit can take one of two
values, 0 or 1. The word bit comes from binary digit.

bug
An error in a program. The term bug was used by Thomas Edison for a techni-
cal fault. In the early days of computing, real bugs would make their way into
the machinery, causing them to fail. A moth that did that was found inside
the Harvard Mark II computer in 1947. The moth has been preserved in the
machine’s logbook, which is part of the collection of the Smithsonian National
Museum of American History.

categorical cross- entropy
A loss function that calculates the difference between two probability
distributions.

 glossARY 247

central processing unit (CPU)
The chip that carries out the instructions of a program inside a computer.

chromatic index
In graph coloring, the minimum number of colors required to color the edges
of the graph.

Church- Turing thesis
The hypothesis that everything that can be computed by an algorithm can be
computed by a Turing machine.

classifier
A program that classifies an observation in one out of a number of possible
classes.

complexity (computational complexity)
The time required for an algorithm to run. The time is expressed on the order
of elementary computational steps required to complete.

complexity class
A set of problems that require the same amount of a resource (such as time or
memory) to be solved.

control structure
The three ways in which steps can be combined in an algorithm or program:
sequence, selection, and iteration.

cycle
In graphs, a path that starts and end at the same node.

dangling node
In the PageRank algorithm, a node with only incoming edges and no outgoing
edges.

data structure
A way to organize data, such that we can handle the data with a set of specific,
prescribed operations.

248 glossARY

decision boundary
The values of one or more variables that form the boundary between two dif-
ferent outcomes of a single decision based on the variable or variables.

deep learning
Neural networks that consist of many hidden layers, arranged such that suc-
ceeding layers represent deeper concepts, corresponding to higher abstraction
levels.

degree (node)
The number of edges adjacent to a node.

densely connected
Layers in a neural network arranged such that all the neurons of a layer are
connected to all the neurons of the following layer.

derivative
The slope of a function at a point; equivalently, the rate of change of a func-
tion. For example, acceleration is the derivative of speed (the rate of change
of speed in time).

Dijkstra’s algorithm
An algorithm invented in 1956 by a young Dutch computer scientist, Edsger
Dijkstra, to find the shortest path between two nodes in a graph. It works with
graphs that contain positive weights.

directed graph
A graph in which the edges are directed. A directed graph is also called a di-
graph for short.

divide and conquer
A problem- solving method where we solve a problem by breaking it into smaller
problems (typically two) and then do the same on the smaller problems, until
the problems get so small that the solution is straightforward to find.

edge coloring
The assignment of colors to the edges of a graph so that no two adjacent edges
share the same color.

 glossARY 249

eigenvector
In linear algebra, an eigenvector is a vector that, when we multiply it by a
specific matrix, the result is the same vector multiplied by a number; that
number is its eigenvalue. PageRank finds the first eigenvector of the Google
matrix— that is, the eigenvector of the Google matrix with the largest eigen-
value, which is equal to one.

epoch
In machine learning, a pass, during training, through the whole training data
set.

Euclid’s algorithm
An algorithm for finding the greatest common divisor of two integers, pre-
sented in the Elements, a set of 13 books written by the ancient Greek math-
ematician Euclid (ca. 300 BCE). The Elements treats geometry and number
theory, starting from axioms and proving theorems based on the axioms. It is
the oldest extant work of mathematics that uses this deductive approach, and
as such, one of the most influential books in the history of science.

Eulerian path
A trail through a graph such that each edge is visited exactly once. It is also
called a Euleurian walk.

Eulerian tour
A Eulerian path that starts and ends at the same node. It is also called a Eu-
lerian tour.

Euler’s number
The mathematical constant e, approximately equal to 2.71828. It is the limit of
(/)1 1+ n n as n approaches infinity.

execution path
The series of steps that an algorithm carries out during its execution.

exponential growth
A growth pattern in which a number of things is successively multiplied by
itself. For example, we may start with a things, and then we’ll get a a× things,

then a a a× × , and in general a a a a
n

n× × × =�
� ��� ���

. Numbers grow fast with ex-
ponential growth.

250 glossARY

factorial
The factorial of a natural number n is the product of all numbers from 1 up to
and including n. We use the symbol n! so we have n n! = × × ×1 2 . The defini-
tion can be extended to all real numbers, but that does not concern us here.

factorial complexity
Computational complexity that follows factorial growth. In big O notation,
it is O n(!).

fire (neuron)
See activation (neuron).

fitting
In machine learning, the process of learning from the data. In this process we
construct a model that fits the observations.

garbage in, garbage out
If we feed a program garbage, instead of its expected input, we should expect
no miracles: the program will produce garbage instead of its expected output.

global optimum
The best overal solution to a problem.

Google matrix
A special kind of matrix (a modification of the hyperlink matrix) that is used
in the power method in the PageRank algorithm.

gradient
A vector containing all the partial derivatives of a function.

graph
A set of nodes, also called vertices, and edges, also called links, connecting
them. Graphs can be used to model any kind of linked structure, from people
to computer networks. As a result, many problems can be modeled as graphs,
and many algorithms have been developed that work on top of them.

graph coloring
The edge or vertex coloring of a graph.

 glossARY 251

graphics processing unit (GPU)
A chip specially designed to handle the instructions for the creation and ma-
nipulation of images inside a computer.

greatest common divisor (gcd)
Given two integers, the largest integer that divides both.

greedy algorithm
An algorithm in which when we have to choose between alternative courses
of action, we choose the one that gives us the greatest immediate payoff. This
does not necessarily lead to the optimum outcome in the end.

hardware
The physical components that make up a computer or digital device. The term
complements software.

head
The first item in a list.

heuristic
A strategy for making choices among alternatives in an algorithm. A greedy
heuristic would require us to take the option that looks best right now (never
mind what could happen in the future).

hidden layer
A neural network layer that is not directly connected to the input or output
of the network.

Hierholzer algorithm
An algorithm for finding Eulerian circuits on graphs. It was published by the
German mathematician Carl Hierholzer in 1873.

hill climbing
A metaphor for describing problem solving. The solution is at the top of the
hill, and we have to climb from its foot. At each step there may be a decision
to take among alternative paths. Depending on our choices, we may select the
best path overall, a path that is not the best but still takes us to the top, or alas
a path that leads to a plateau. If the worst happens and we reach a plateau, we’ll
have to go back to a previous position to start moving along a different path.

252 glossARY

hyperlink
A reference from a text to another part of the text or a different text. On the
web, hyperlinks are links between web pages that the user may follow while
browsing.

hyperlink matrix
A matrix representing the structure of a graph; it is like an adjacency matrix,
but we divide the elements of its row by the number of nonzero elements in
the row.

hyperplane
The generalization of the plane in more than three dimensions.

hypertext
Text that contains hyperlinks.

image recognition
The computational task of recognizing patterns in images.

insertion sort
A sorting method where we take each item and insert it into its correct posi-
tion among the already sorted items.

internet
A global network of computers and digital devices, interconnected by means
of a common suite of communication protocols. Initially, it was with its first
letter capitalized (Internet) because internet could refer to any network that
extended beyond the internal confines of an institution, which is called an
intranet. As the global internet took off, however, the initial capital fell out of
favor, probably saving a significant amount of ink.

intractable problem
A problem for which the best algorithms we know will take an inordinate
amount of time to handle anything but trivial cases.

iteration
See loop.

 glossARY 253

key
A part of a record that we use for sorting or finding it. A key may be atomic,
when it cannot be decomposed into smaller parts (for instance, an identifica-
tion number), or composite, when it consists of smaller pieces of data (like the
full name comprising first name, middle name, and surname).

label
In machine learning, a value representing the category to which an observa-
tion belongs. In training, the computer is given problems along with their
solutions; when the problem is classification, the solutions are the labels rep-
resenting the classes.

linear search
A search algorithm in which we examine each item in turn until we find the one
we are looking for. It is also called a sequential search.

linear time
Time proportional to the input of an algorithm, written as O n().

linearly separable
A data set whose observations can be separated into two categories by a
straight line in two dimensions, plane in three dimensions, or hyperplane in
more dimensions.

list
A data structure that contains items. Each item points to the next one, apart
from the last item, which points nowhere, or to null, as we say. The items are
therefore linked to each other, and such a list is also called a linked list.

local optimum
A solution that is better than all the other neighboring solutions, but not the
overall best. A neighboring solution is a solution in which we can get with a
single move from the solution we are now.

logarithm
The inverse of raising to a power. The logarithm is the answer to the ques-
tion, “To which power should I raise a number to get the value I want?” If we
ask, “To which power should I raise 10 to get 1,000?,” the answer is 3 because
10 1 0003 = , . The number we will raise to the power is called the base of the
logarithm. We write log x ba = if a bx = . For a = 2 we write lgx.

254 glossARY

logarithmic time
Time proportional to the logarithm of the input of an algorithm— for example,
O lgn(). Good searching algorithms take logarithmic time.

loglinear time
Time proportional to the product of the size of the input and logarithm of the
input of an algorithm— for example, O nlgn(). Good sorting algorithms take
loglinear time.

loop
A sequence of instructions in a computer program that is repeated. A loop
ends when a condition is fulfilled. A loop that does not end is an infinite loop
and is usually a bug because it may lead to a program that fails to terminate.
See iteration.

loss
The difference between the actual and desired output of a machine learning
algorithm. It is typically calculated by a loss function.

machine learning
The use of algorithms that solve problems by learning automatically from
examples.

matrix
A rectangular array, typically of numbers or more generally mathematical
expressions. The contents of a matrix are arranged horizontally in rows and
vertically in columns.

Matthew effect
The phenomenon of the rich getting richer and poorer getting poorer. Named
after the Gospel of Matthew (25:29), it has been found to apply to many con-
texts, not just material wealth.

minimization problem
A problem in which, among the possible solutions, we try to find the one with
the minimum value.

merge sort
A sorting method that works by repeatedly merging larger and larger sets of
sorted items.

 glossARY 255

Moore’s law
The observation, made in 1965 by Gordon Moore, founder of Fairchild Semi-
conductor and Intel, that the number of transistors in an integrated circuit
doubles about every two years. It is an example of exponential growth.

move to front
A self- organizing search algorithm. When we find the item we are looking for,
we move it to the first position.

multigraph
A graph in which an edge can occur more than once.

multiset
A set in which an element can appear multiple times; in mathematics, in a
normal set an element cannot appear more than once.

node
An item in various data structures. Items in lists are called nodes.

neuron
A neuron is a cell that forms the basic building block of the nervous system.
It receives signals from other neurons and propagates them to other neurons
in the nervous system.

null
Nothingness in a computer.

online algorithm
An algorithm that does not require the full input to a problem in order to
produce a solution. An online algorithm gets the input incrementally, as this
arrives, and at each point produces a solution that takes account of the input
it has received so far.

onset
The accented part of a rhythm.

optimal stopping problem
The problem of knowing the best time to stop when you are trying to maximize
a reward or minimize a penalty.

256 glossARY

optimizers
Algorithms that optimize the value of a function. In machine learning, opti-
mizers typically minimize the value of the loss function.

overfitting
The equivalent of learning by rote in machine learning. The model that we are
trying to train follows the training data so closely that it fits them too well. As
a result, it does not predict correct values for other, unknown data.

overflow
Going beyond the range of allowable values on a computer.

PageRank
An algorithm used to rank web pages in terms of their importance. It was
developed by the founders of Google and was the foundation of the Google
search engine. The rank of a web page is its pagerank.

pagerank vector
A vector containing the pageranks of a graph.

partial derivative
In a function of many variables, the derivative of the function with respect to
one variable, holding all other variables constant.

path
In a graph, a sequence of edges that connect a sequence of nodes.

path length
The sum of the weights along a path in a graph. If a graph does not have
weights, it is the number of the links constituting the path.

Perceptron
An artificial neuron that uses the step function for its activation.

permutation
A rearrangement of some data in a different order.

pointer
A place in computer memory that holds the address of another place in com-
puter memory. In this way, the former points to the latter.

 glossARY 257

polynomial time
Time proportional to the input to an algorithm raised to a constant power,
such as O n()2 .

power method
An algorithm that starts with a vector, multiplies it by a matrix, and then
repeatedly multiplies the result by the matrix until it converges into a stable
value. The power method is at the heart of PageRank; the vector at which it
converges is the first eigenvector of the Google matrix.

program
A set of instructions, written in a programming language, that describes a
computational process.

programming
The art of writing computer programs.

programming language
An artificial language that can be used to describe computational steps. A pro-
gramming language can be executed on a computer. Like a human language,
a programming language has syntax and grammar, specifying what can be
written in it. Several programming languages exist, and new programming
languages are developed all the time in an effort to make programming more
productive (or because many people cannot resist creating their own language
and hope it will be widely adopted). A programming language can be high level,
when it looks somewhat akin to a human language, or low level, when its con-
structs are rudimentary, mirroring the underlying hardware.

punched card
A piece of stiff paper that records information by the location of the punched
holes on it. It is also called a punch card. The cards were used in early com-
puters, and before that, in machines such as Jacquard looms, in which they
described the pattern to be woven.

quantum computer
A computer that leverages quantum phenomena to perform computations.
Quantum computers work with qubits instead of bits. Some problems can be
solved much faster on quantum computers than on classical ones. The manu-
facture of quantum computers presents difficult physical challenges.

258 glossARY

qubit
The basic unit of quantum information. A qubit can exist in a superposition
of two states, 0 and 1, until we measure it, when it collapses to one of the two
binary values. A qubit can be implemented using quantum properties, such as
the spin of an electron.

quicksort
A sorting method that works by repeatedly selecting an item and moving the
other items around it so that all smaller items are on the one side and all the
rest on its other side.

radix sort
A sorting method that works by breaking the keys into their parts (for exam-
ple, digits for numerical keys) and placing the items into piles corresponding
to the values of their parts (ten piles, one for each digit). We start by forming
piles based on the last digit, then we stack all piles and redistribute to piles
based on the one but last digit, and so on. When we do the procedure for the
first digit, we end up with a sorted pile. It is a string sorting method because
we treat numerical keys as a string of digits.

random surfer
A person who surfs the web by going from page to page, choosing the next page
according to the probability given by the Google matrix.

randomization
The use of randomness in algorithms. In this way, an algorithm may be able to
find good solutions to a problem in most cases, even if it would be computa-
tionally infeasible to find the optimal solution.

record
A set of related data describing an entity for a particular application. For ex-
ample, a student record can include identification data, enrollment year, and
transcripts.

rectifier
An activation function that turns all negative inputs to zero, or otherwise its
output is directly proportional to its input.

 glossARY 259

relaxation
A method in graph algorithms, where we assign the worst possible value to the
values we want to find, and the algorithm proceeds by producing better and
better estimates for these values. We therefore start with the most extreme
values possible, and gradually relax them with values that are closer and closer
to the final result.

ReLU
A neuron that uses a rectifier as its activation function. ReLU stands for recti-
fied linear unit.

search space
The domain of values in which we search.

secretary problem
An optimal stopping problem. From a pool of candidates, we examine each one
in turn. We must make the decision to hire or not on the spot, without being
able to reverse past decisions, and without having examined the remaining
candidates.

selection
In algorithms and programming, a choice, based on some logical condition,
between alternative series of steps to be executed.

selection sort
A sorting method where each time we find the minimum of the unsorted items
and put it into its correct position.

self- organizing search
Search algorithms that take advantage of the popularity of search items by
moving them to positions where we’ll be able to find them faster.

sequence
In algorithms and programming, a series of steps executed one after the other.

shortest path
The shortest path between two nodes in graph.

sigmoid
An S- shaped function whose values range from 0 to 1.

260 glossARY

social network
A graph in which nodes are people, and the edges are the relationships be-
tween them.

softmax
An activation function that takes as input a vector of real numbers and turns
it into another vector that is a probability distribution.

software
The set of programs running on a computer or digital device; the term comple-
ments hardware. The terms have been used before computers in a different
setting. In 1850, rubbish- tip pickers were using the terms “soft- ware” and
“hard- ware” to distinguish between material that would decompose and ev-
erything else. These meanings may bring solace to anybody struggling with a
computer that won’t do what it is supposed to do.

spallation
Breaking a material into smaller pieces. In nuclear physics, the material is a
heavy nucleus that emits a large number of protons and neutrons after being
bombarded with a high- energy particle.

sparse matrix
A matrix in which most elements are equal to zero.

string
A sequence of symbols. Traditionally a string was a sequence of characters, but
nowadays what can go into a string depends on the actual application; it may
be digits, alphabetic characters, punctuation, or even more recently invented
symbols such as emojis.

string sorting method
A sorting method that treats its keys as a sequence of symbols. For example,
the key 1234 is treated as the string of symbols 1, 2, 3, 4 instead of the number
1,234.

supervised learning
A machine learning approach in which we provide an algorithm with input
problems accompanied by their solutions.

 glossARY 261

synapse
A connection between neurons.

tabulating machine
Electromechanical devices that could read punched cards and use the informa-
tion on them to produce a tally.

tanh (hyperbolic tangent)
An activation function that looks like the sigmoid function, but its output
ranges from −1 to 1.

test data set
Data that we set aside during training so that we can use them to check how
well a particular machine learning approach will perform with real- world data.

tour
A path that starts and ends at the same node in a graph. It is also called a
circuit.

training
In machine learning, the process of providing an algorithm with example in-
puts so that it can learn to produce correct outputs.

training data set
Data that we use with machine learning algorithms to train them to solve
problems.

transposition method
A self- organizing search algorithm. When we find an element, we swap it with
the one preceding it. In this way, popular items are moving to the front.

traveling salesman problem
Also known as the traveling salesperson problem, but people did not put much
thought into gender definitions. The problem that asks us, If we have a list of
cities and the distances between each pair of them, what is the shortest pos-
sible route that one should take to visit each city once and return to the origin
city? It is probably the most famous intractable problem.

262 glossARY

Turing machine
An idealized (abstact) machine, described by Alan Turing, consisting of an infi-
nite tape and movable head that reads and writes symbols on the tape follow-
ing a set of prescribed rules. The Turing machine can implement any algorithm
and therefore can be used as a model of what can be computed.

unary numeral system
The number system using a single symbol for representing numbers; for in-
stance, a stroke representing a unit, so that III represents three.

undirected graph
A graph in which the edges are undirected.

unsupervised learning
A machine learning approach in which we provide an algorithm input prob-
lems without their solutions. The machine learning algorithm then must de-
rive what the expected input should be in order to be able to produce it.

vector
A horizontal row or vertical column of numbers (or more generally, mathemati-
cal expressions). Usually we meet vectors in geometry, where it is a geometric
entity with a length and direction, represented as a row or column containing
their numerical coordinates; however, the notion of a vector is more general than
that—take, for example, the pagerank vector. A vector is a special case of a matrix.

vertex coloring
The assignment of colors to the vertices of a graph so that no two adjacent
vertices share the same color.

weight (graph)
A number attached to an edge of a graph. Such a number may, for example,
model a reward or penalty associated with the link between the nodes con-
nected by the edge.

weight (neuron)
A numerical value attached to a synapse in a neuron. From each synapse, the
neuron receives an input multiplied by the weight of the synapse.

weighted input (neuron)
The sum of the products of the inputs with the weights of a neuron.

NOTES

Preface
1. For these and more indicators of the global progress achieved through the
ideas of the Enlightenment, see Pinker 2018.

Chapter 1
1. “The Algorithmic Age” was aired on February 8, 2018, on Radio Open Source.
2. For an account of algorithms in ancient Babylon, see Knuth 1972.
3. The algorithm for distributing a number of pulses in timing slots in the SNS
was given by Eric Bjorklund (1999). Godfried Toussaint (2005) noticed the
parallel with rhythms, and his work is the basis for our exposition. For a more
extensive discussion, see Demaine et al. 2009. For a book- length treatment of
algorithms and music, see Toussaint 2013.
4. The criteria come from Donald Knuth (1997, sec. 1), who also starts his
exposition with Euclid’s algorithm.
5. For a discussion of the enumeration of the paths on the grid, see Knuth
2011, 253– 255; it is the source for the example and path images. For the algo-
rithm that gives the number of possible paths, see Iwashita et al. 2013.
6. For these number descriptions, see Tyson, Strauss, and Gott 2016, 18– 20.
In Dave Eggers’s novel The Circle, a thinly disguised technology company cal-
culates the number of grains of sand in the Sahara Desert.
7. To fold paper n times, the paper must be large enough. If you fold it always
along the same dimension, you will need a long sheet of paper. The length is

given by the formula L t n n= +() −()π
6 2 4 2 1 , where t is the paper’s thickness

and n is the number of folds. If you fold a square sheet of paper in alternate
directions, then the width of the square must be W t n≈ −()π 2 3 2 1(/) . The reason
why the formulas are more complicated than simple powers of two is that
every time you fold the paper, you lose some part of it as it curves along the
edge of the fold; it’s from calculating these curves that π enters the picture
in these formulas. The formulas were found in 2002 by Britney Crystal Gal-
livan, then a junior in high school. She went on to demonstrate that a 1,200
meters– long sheet of toilet paper could be folded in half 12 times. For a nice in-
troduction to the power of powers (including this example), see Strogatz 2012,
chapter 11.

264 notEs

8. “Transistor Count,” Wikipedia, https://en.wikipedia.org/wiki/Transistor_
count.
9. That is because to compare n items between them, you need to take one of
them and compare it to all the other n − 1 items, then you take another one
and compare it to the other n − 2 items (you have already compared it to the
first item you used), and so on. That gives 1 2 1 1 2+ + + − = − () () /n n n
comparisons. Then you get O n n O n n O n(() /) (/) ()− = − =1 2 22 2 , because
according to the definition of big O, if your algorithm runs in time O n()2 , it will
certainly run in time O n n(/)2 2− .

Chapter 2
1. Image retrieved from the Wikipedia Commons at https://commons
.wikimedia.org/wiki/File:Konigsberg_Bridge.png. The image is in the public
domain.
2. The paper (Eulerho 1736) is available from the Euler Archive (http://
eulerarchive.maa.org), maintained by the Mathematical Association of Amer-
ica. For an English translation, see Biggs, Lloyd, and Wilson 1986.
3. The literature on graphs is vast, as is the subject itself. For a good starting
point, see Benjamin, Chartrand, and Zhang 2015.
4. Image from the original publication (Eulerho 1736) retrieved from the
Wikipedia Commons at https://commons.wikimedia.org/wiki/File:Solutio_
problematis_ad_geometriam_situs_pertinentis,_Fig._1.png. The image is in
the public domain.
5. Image from Kekulé 1872, retrieved from the Wikipedia at https://
en.wikipedia.org/wiki/Benzene#/media/File:Historic_Benzene_Formulae_Ke
kul%C3%A9_(original).png. The image is in the public domain.
6. For the original publication in German see Hierholzer 1873.
7. For more details on Hierholzer’s algorithm and other algorithms for Eule-
rian paths, see Fleischner 1991. For the use of graphs in genome assembly,
see Pevzner, Tang, and Waterman 2001; Compeau, Pevzner, and Tesler 2011.
8. For an analysis of the optimality of the greedy algorithm for online edge
coloring, as well as the example of the starlike graph to show the worst case,
see Bar- Noy, Motwani, and Naor 1992.
9. In the original fable, the two characters are an ant and cicada. These two
characters also feature in Latin translations of the original ancient Greek and
Jean de La Fontaine’s retelling of the fable in French.
10. The invention episode is recounted by Dijkstra in his interview in Misa
and Frana 2010.

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor_count
https://commons.wikimedia.org/wiki/File:Konigsberg_Bridge.png
https://commons.wikimedia.org/wiki/File:Konigsberg_Bridge.png
http://eulerarchive.maa.org
http://eulerarchive.maa.org
https://commons.wikimedia.org/wiki/File:Solutio_problematis_ad_geometriam_situs_pertinentis,_Fig._1.png
https://commons.wikimedia.org/wiki/File:Solutio_problematis_ad_geometriam_situs_pertinentis,_Fig._1.png
https://en.wikipedia.org/wiki/Benzene
https://en.wikipedia.org/wiki/Benzene
https://en.wikipedia.org/wiki/Benzene

 notEs 265

Chapter 3
1. For the first description of the Matthew effect, see Merton 1968. For
overviews of the range of phenomena manifesting unequal distributions, see
Barabási and Márton 2016; West 2017. For the stadium height and wealth
disparity, see Taleb 2007.
2. John McCabe (1965) presented a self- organized search. For analyses of
the performance of the move- to- front and transposition methods, see Rivest
1976; Bachrach, El- Yaniv, and Reinstädtler 2002.
3. The secretary problem appeared in Martin Gardner’s column in February
1960 in Scientific American. A solution was given in the March 1960 issue. For
its history, see Ferguson 1989. J. Neil Bearden (2006) provided the solution
for the not all- or- nothing variant. Matt Parker (2014, chapter 11) presents
the problem, along with several other mathematical ideas and an introduction
to computers.
4. Binary search goes back to the dawn of the computer age (Knuth 1998).
John Mauchly, one of the designers of the ENIAC, the first general- purpose
electronic digital computer, described it in 1946. For the checkered history of
binary search, see Bentley 2000; Pattis 1988; Bloch 2006.

Chapter 4
1. Hollerith 1894.
2. Selection and insertion sort have been with us since the dawn of comput-
ers; they were included in a survey of sorting published in the 1950s (Friend
1956).
3. According to Knuth (1998, 170), the idea behind radix sort that we have
seen here seems to have been around at least since the 1920s.
4. Flipping the coin 226 times follows from 1 52 1 2 226/ ! (/)≈ . The example of
picking an atom from the earth is from David Hand (2014), according to whom
probabilities less than one in 1050 are negligible on the cosmic scale.
5. See Hoare 1961a, 1961b, 1961c.
6. For more on randomized algorithms, see Mitzenmacher and Upfal 2017.
7. For an account of von Neumann’s life and the environment around the
origins of digital computers, see Dyson 2012. For a presentation of von Neu-
mann’s merge sort program, see Knuth 1970.

Chapter 5
1. The original PageRank algorithm was published by Brin and Page (1998).
We glossed over the mathematics used by the algorithm. For a more in- depth
treatment, see Bryan and Leise 2006. For an introduction to search engines

266 notEs

and PageRank, see Langville and Meyer 2006; Berry and Browne 2005. Apart
from PageRank, another important algorithm used for ranking is Hypertext
Induced Topic Search, or HITS (Kleinberg 1998, 1999), developed before Page-
Rank. Similar ideas had been developed in other fields (sociometry, the quan-
titative study of social relationships, and econometrics, the quantitative study
of economic principles) much earlier, going back to the 1940s (Franceschet
2011).

Chapter 6
1. Although today we can use technology to see neurons in much greater detail,
Ramón y Cajal was a pioneer, and his drawings rank among the most elegant il-
lustrations in the history of science. You can find neuron images aplenty on the
web, but this image is enough for us, and a simple web search should convince
you of the beauty and enduring power of Ramón y Cajal’s illustrations. The im-
age is in the public domain, retrieved from https://commons.wikimedia.org/
wiki/File:PurkinjeCell.jpg.
2. To be accurate, sigmoid would refer to the Greek letter sigma, which is Σ,
yet its appearance is closer to the Latin S.
3. The tangent of an angle is defined as the ratio of the opposite side to the
adjacent side in a straight triangle, or equivalently, by the sine of the angle
divided by the cosine of the angle in the unit circle. The hyperbolic tangent is
defined as the ratio of the hyperbolic sine by the hyperbolic cosine of an angle
on a hyperbola.
4. Warren McCulloch and Walter Pitts (1943) proposed the first artificial
neuron. Frank Rosenblatt (1957) described the Perceptron. If they are more
than half a century old, how come neural networks have become all the rage
recently? Marvin Minsky and Seymour Papert (1969) struck a major blow
to Perceptrons in their famous book of the same name, which showed that
a single Perceptron had fundamental computing limitations. This, coupled
with the hardware limitations of the time, ushered in a so- called winter in
neural computation, which lasted well until the 1980s, when researchers
found how to build and train complex neural networks. Interest in the field
then revived, but still a lot more work was required to advance neural net-
works to the media- grabbing results that we have been seeing in the last
few years.
5. One of the challenges in neural networks is that the notation can be
off- putting and hence the material seems approachable only to the initiated.
In fact, it is not that complicated once you know what it is about. You often

https://commons.wikimedia.org/wiki/File:PurkinjeCell.jpg
https://commons.wikimedia.org/wiki/File:PurkinjeCell.jpg

 notEs 267

see derivatives; the derivative of a function f x() with respect to x is written
df x

dx
() . The partial derivative of a function f of many variables, say, x1, x2, . . . ,

xn, is written ∂
∂

f
xi

. The gradient is written ∇ = ∂
∂ … ∂

∂f f
x

f
xn

(, ,)
1

.

6. The backpropagation algorithm came onto the scene in the mid- 1980s (Ru-
melhart, Hinton, and Williams 1986), although various derivations of it had
appeared back in the 1960s.
7. This image is from the Fashion- MNIST data (Xiao, Rasul, and Vollgraf
2017), which was developed as a benchmark data set for machine learning.
This section was inspired by the basic classification TensorFlow tutorial at
https://www.tensorflow.org/tutorials/keras/basic_classification.
8. For a description of the first system to beat the Go human champion, see
Silver et al. 2016. For an improved system that does not require human knowl-
edge in the form of previously played games, see Silver et al. 2017.
9. The literature on deep learning is vast. For a comprehensive introduction
to the topic, see Goodfellow, Bengio, and Courville 2016. For a shorter and
more approachable treatment, see Charniak 2018. For a concise overview, see
LeCun, Bengio, and Hinton 2015. For deep and machine learning, see Alpay-
din 2016. For a survey of automated neural architecture search methods, see
Elsken, Hendrik Metzen, and Hutter 2018.

Epilogue
1. Besides Turing, other names on the short list were Mary Anning, Paul
Dirac, Rosalind Franklin, William Herschel and Caroline Herschel, Dorothy
Hodgkin, Ada Lovelace and Charles Babbage, Stephen Hawking, James Clerk
Maxwell, Srinivasa Ramanujan, Ernest Rutherford, and Frederick Sanger. Bab-
bage, Lovelace, and Turing were all computer pioneers. Babbage (1791– 1871)
invented the first mechanical computer and developed the essential ideas
of modern computers. Lovelace (1815– 1852), the daughter of Lord Byron,
worked with Babbage, recognized the potential of his invention, and was
the first to develop an algorithm that would run on such a machine. She is
now considered to have been the first computer programmer. For the £50
design, see the official announcement at https://www.bankofengland.co.uk/
news/2019/july/50-pound-banknote-character-announcement.
2. See the excellent biography by Andrew Hodges (1983). Turing’s role in
breaking the German Enigma cryptographic machine were dramatized in the
2014 film The Imitation Game.
3. For a description of the machine, see Turing 1937, 1938.

https://www.tensorflow.org/tutorials/keras/basic_classification
https://www.bankofengland.co.uk/news/2019/july/50-pound-banknote-character-announcement
https://www.bankofengland.co.uk/news/2019/july/50-pound-banknote-character-announcement

268 notEs

4. The Turing machine example is adapted from John Hopcroft, Rajeev
Motwani, and Jeffrey Ullman (2001, chapter 8). The figure is based on Se-
bastian Sardina’s example at http://www.texample.net/tikz/examples/turing
-machine-2/.
5. For more on the Church- Turing thesis, see Lewis and Papadimitriou 1998,
chapter 5. For a discussion of the history of the Church- Turing thesis and vari-
ous variants, see Copeland and Shagrir 2019.

http://www.texample.net/tikz/examples/turing-machine-2/
http://www.texample.net/tikz/examples/turing-machine-2/

REFERENCES

Alpaydin, Ethem. 2016. Machine Learning. Cambridge, MA: MIT Press.

Bachrach, Ran, Ran El- Yaniv, and Martin Reinstädtler. 2002. “On the Competi-
tive Theory and Practice of Online List Accessing Algorithms.” Algorithmica 32
(2): 201– 245.

Barabási, Albert- László, and Pósfai Márton. 2016. Network Science. Cambridge:
Cambridge University Press.

Bar- Noy, Amotz, Rajeev Motwani, and Joseph Naor. 1992. “The Greedy Algo-
rithm Is Optimal for Online Edge Coloring.” Information Processing Letters 44
(5): 251– 253.

Bearden, J. Neil. 2006. “A New Secretary Problem with Rank- Based Selection
and Cardinal Payoffs.” Journal of Mathematical Psychology 50:58– 59.

Benjamin, Arthur, Gary Chartrand, and Ping Zhang. 2015. The Fascinating
World of Graph Theory. Princeton, NJ: Princeton University Press.

Bentley, Jon. 2000. Programming Pearls. 2nd ed. Boston: Addison- Wesley.

Berry, Michael W., and Murray Browne. 2005. Understanding Text Engines:
Mathematical Modeling and Text Retrieval. 2nd ed. Philadelphia: Society for In-
dustrial and Applied Mathematics.

Biggs, Norman L., E. Keith Lloyd, and Robin J. Wilson. 1986. Graph Theory,
1736– 1936. Oxford: Clarendon Press.

Bjorklund, Eric. 1999. “The Theory of Rep- Rate Pattern Generation in the SNS
Timing System.” SNS- NOTE- CNTRL- 99. Spallation Neutron Source. https://
ics-web.sns.ornl.gov/timing/Rep-Rate%20Tech%20Note.pdf.

Bloch, Joshua. 2006. “Extra, Extra— Read All about It: Nearly All Binary
Searches and Mergesorts Are Broken.” Google AI Blog, June 2. http://
googleresearch.blogspot.it/2006/06/extra-extra-read-all-about-it-nearly.html.

Brin, Sergey, and Lawrence Page. 1998. “The Anatomy of a Large- Scale Hyper-
textual Web Search Engine.” Computer Networks and ISDN Systems 30 (1– 7):
107– 117.

https://ics-web.sns.ornl.gov/timing/Rep-Rate%20Tech%20Note.pdf
https://ics-web.sns.ornl.gov/timing/Rep-Rate%20Tech%20Note.pdf
http://googleresearch.blogspot.it/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.it/2006/06/extra-extra-read-all-about-it-nearly.html

270 REFEREnCEs

Bryan, Kurt, and Tanya Leise. 2006. “The $25,000,000,000 Eigenvector: The
Linear Algebra behind Google.” SIAM Review 48 (3): 569– 581.

Charniak, Eugene. 2018. Introduction to Deep Learning. Cambridge, MA: MIT
Press.

Compeau, Phillip E. C., Pavel A. Pevzner, and Glenn Tesler. 2011. “How to Apply
de Bruijn Graphs to Genome Assembly.” Nature Biotechnology 29 (11): 987– 991.

Copeland, B. Jack, and Oron Shagrir. 2019. “The Church- Turing Thesis: Logical
Limit or Breachable Barrier?” Communications of the ACM 62 (1): 66– 74.

Demaine, Erik D., Francisco Gomez- Martin, Henk Meijer, David Rappaport,
Perouz Taslakian, Godfried T. Toussaint, Terry Winograd, and David R. Wood.
2009. “The Distance Geometry of Music.” Computational Geometry: Theory and
Applications 42 (5): 429– 454.

Dyson, George. 2012. Turing’s Cathedral: The Origins of the Digital Universe. New
York: Vintage Books.

Elsken, Thomas, Jan Hendrik Metzen, and Frank Hutter. 2018. “Neural Ar-
chitecture Search: A Survey.” ArXiv, Cornell University. August 16. http://
arxiv.org/abs/1808.05377.

Eulerho, Leonhardo. 1736. “Solutio Problematis Ad Geometrian Situs Perti-
nentis.” Commetarii Academiae Scientiarum Imperialis Petropolitanae 8:128– 140.

Ferguson, Thomas S. 1989. “Who Solved the Secretary Problem?” Statistical
Science 4 (3): 282– 289.

Fleischner, Herbert, ed. 1991. “Chapter X Algorithms for Eulerian Trails and
Cycle Decompositions, Maze Search Algorithms.” In Eulerian Graphs and Re-
lated Topics, 50:X.1– X.34. Amsterdam: Elsevier.

Franceschet, Massimo. 2011. “PageRank: Standing on the Shoulders of Gi-
ants.” Communications of the ACM 54 (6): 92– 101.

Friend, Edward H. 1956. “Sorting on Electronic Computer Systems.” Journal of
the ACM 3 (3): 134– 168.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.
Cambridge, MA: MIT Press.

Hand, David J. 2014. The Improbability Principle: Why Coincidences, Miracles, and
Rare Events Happen Every Day. New York: Farrar, Straus and Giroux.

http://arxiv.org/abs/1808.05377
http://arxiv.org/abs/1808.05377

 REFEREnCEs 271

Hawking, Stephen. 1988. A Brief History of Time. New York: Bantam Books.

Hierholzer, Carl. 1873. “Ueber die Möglichkeit, einen Linienzug ohne Wieder-
holung und ohne Unterbrechung zu Umfahren.” Mathematische Annalen 6 (1):
30– 32.

Hoare, C. A. R. 1961a. “Algorithm 63: Partition.” Communications of the ACM
4 (7): 321.

Hoare, C. A. R. 1961b. “Algorithm 64: Quicksort.” Communications of the ACM
4 (7): 321.

Hoare, C. A. R. 1961c. “Algorithm 65: Find.” Communications of the ACM 4 (7):
321– 322.

Hodges, Andrew. 1983. Alan Turing: The Enigma. New York: Simon and Schuster.

Hollerith, Herman. 1894. “The Electrical Tabulating Machine.” Journal of the
Royal Statistical Society 57 (4): 678– 689.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2001. Introduction to
Automata Theory, Languages, and Computation. 2nd ed. Boston: Addison- Wesley.

Iwashita, Hiroaki, Yoshio Nakazawa, Jun Kawahara, Takeaki Uno, and Shin- ichi
Minato. 2013. “Efficient Computation of the Number of Paths in a Grid Graph
with Minimal Perfect Hash Functions.” Technical Report TCS- TR- A- 13- 64. Di-
vision of Computer Science, Graduate School of Information Science, Technol-
ogy, Hokkaido University.

Kekulé, August. 1872. “Ueber Einige Condensationsprodukte Des Aldehyds.”
Annalen der Chemie und Pharmacie 162 (1): 77– 124.

Kleinberg, Jon M. 1998. “Authoritative Sources in a Hyperlinked Environment.”
In Proceedings of the Ninth Annual ACM- SIAM Symposium on Discrete Algorithms,
668– 677. Philadelphia: Society for Industrial and Applied Mathematics.

Kleinberg, Jon M. 1999. “Authoritative Sources in a Hyperlinked Environ-
ment.” Journal of the ACM 46 (5): 604– 632.

Knuth, Donald E. 1970. “Von Neumann’s First Computer Program.” Computing
Surveys 2 (4): 247– 261.

Knuth, Donald E. 1972. “Ancient Babylonian Algorithms.” Communications of
the ACM 15 (7): 671– 677.

272 REFEREnCEs

Knuth, Donald E. 1997. The Art of Computer Programming, Volume 1: Fundamen-
tal Algorithms. 3rd ed. Reading, MA: Addison- Wesley.

Knuth, Donald E. 1998. The Art of Computer Programming, Volume 3: Sorting and
Searching. 2nd ed. Reading, MA: Addison- Wesley.

Knuth, Donald E. 2011. The Art of Computer Programming, Volume 4A: Combina-
torial Algorithms, Part 1. Upper Saddle River, NJ: Addison- Wesley.

Langville, Amy N., and Carl D. Meyer. 2006. Google’s PageRank and Beyond: The
Science of Search Engine Rankings. Princeton, NJ: Princeton University Press.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning.”
Nature 521 (7553): 436– 444.

Lewis, Harry R., and Christos H. Papadimitriou. 1998. Elements of the Theory of
Computation. 2nd ed. Upper Saddle River, NJ: Prentice Hall.

McCabe, John. 1965. “On Serial Files with Relocatable Records.” Operations
Research 13 (4): 609– 618.

McCulloch, Warren S., and Walter Pitts. 1943. “A Logical Calculus of the Ideas
Immanent in Nervous Activity.” Bulletin of Mathematical Biophysics 5 (4):
115– 133.

Merton, Robert K. 1968. “The Matthew Effect in Science.” Science 159 (3810):
56– 63.

Minsky, Marvin, and Seymour Papert. 1969. Perceptrons: An Introduction to
Computational Geometry. Cambridge, MA: MIT Press.

Misa, Thomas J., and Philip L. Frana. 2010. “An Interview with Edsger W. Dijk-
stra.” Communications of the ACM 53 (8): 41– 47.

Mitzenmacher, Michael, and Eli Upfal. 2017. Probability and Computing: Ran-
domization and Probabilistic Techniques in Algorithms and Data Analysis. 2nd ed.
Cambridge: Cambridge University Press.

Parker, Matt. 2014. Things to Make and Do in the Fourth Dimension: A Mathemati-
cian’s Journey through Narcissistic Numbers, Optimal Dating Algorithms, at Least
Two Kinds of Infinity, and More. London: Penguin Books.

Pattis, Richard E. 1988. “Textbook Errors in Binary Searching.” SIGCSE Bulletin
20 (1): 190– 194.

 REFEREnCEs 273

Pevzner, Pavel A., Haixu Tang, and Michael S. Waterman. 2001. “An Eulerian
Path Approach to DNA Fragment Assembly.” Proceedings of the National Acad-
emy of Sciences 98 (17): 9748– 9753.

Pinker, Steven. 2018. Enlightenment Now: The Case for Reason, Science, Human-
ism, and Progress. New York: Viking Press.

Rivest, Ronald. 1976. “On Self- Organizing Sequential Search Heuristics.” Com-
munications of the ACM 19 (2): 63– 67.

Rosenblatt, Frank. 1957. “The Perceptron: A Perceiving and Recognizing Au-
tomaton.” Report 85- 460- 1. Cornell Aeronautical Laboratory.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. “Learn-
ing Representations by Back- Propagating Errors.” Nature 323 (6088): 533– 536.

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, et al. 2016. “Mastering the Game of
Go with Deep Neural Networks and Tree Search.” Nature 529 (7587): 484– 489.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, et al. 2017. “Mastering the Game of Go
without Human Knowledge.” Nature 550 (7676): 354– 359.

Strogatz, Steven. 2012. The Joy of x: A Guided Tour of Math, from One to Infinity.
New York: Houghton Mifflin Harcourt.

Taleb, Nassim Nicholas. 2007. The Black Swan: The Impact of the Highly Improb-
able. New York: Random House.

Toussaint, Godfried T. 2005. “The Euclidean Algorithm Generates Traditional
Musical Rhythms.” In Renaissance Banff: Mathematics, Music, Art, Culture, ed-
ited by Reza Sarhangi and Robert V. Moody, 47– 56. Winfield, KS: Bridges Con-
ference, Southwestern College.

Toussaint, Godfried T. 2013. The Geometry of Musical Rhythm: What Makes a
“Good” Rhythm Good? Boca Raton, FL: CRC Press.

Turing, Alan M. 1937. “On Computable Numbers, with an Application to
the Entscheidungsproblem.” Proceedings of the London Mathematical Society
S2– 42:230– 265.

Turing, Alan M. 1938. “On Computable Numbers, with an Application to the
Entscheidungsproblem. A Correction.” Proceedings of the London Mathematical
Society S2– 43:544– 546.

274 REFEREnCEs

Tyson, Neil deGrasse, Michael Abram Strauss, and Richard J. Gott. 2016. Wel-
come to the Universe: An Astrophysical Tour. Princeton, NJ: Princeton University
Press.

West, Geoffrey. 2017. Scale: The Universal Laws of Life, Growth, and Death in
Organisms, Cities, and Companies. London: Weidenfeld and Nicholson.

Xiao, Han, Kashif Rasul, and Roland Vollgraf. 2017. “Fashion- MNIST: A Novel
Image Dataset for Benchmarking Machine Learning Algorithms.” August 28.
https://arxiv.org/abs/1708.07747.

https://arxiv.org/abs/1708.07747

FURTHER READING

Broussard, Meredith. 2018. Artificial Unintelligence: How Computers Misunder-
stand the World. Cambridge, MA: MIT Press.

Christian, Brian, and Tom Griffiths. 2016. Algorithms to Live By: The Computer
Science of Human Decisions. New York: Henry Holt and Company.

Cormen, Thomas H. 2013. Algorithms Unlocked. Cambridge, MA: MIT Press.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms. 3rd ed. Cambridge, MA: MIT Press.

Denning, Peter J., and Matti Tedre. 2019. Computational Thinking. Cambridge,
MA: MIT Press.

Dewdney, A. K. 1993. The (New) Turing Omnibus: 66 Excursions in Computer Sci-
ence. New York: W. H. Freeman and Company.

Dyson, George. 2012. Turing’s Cathedral: The Origins of the Digital Universe. New
York: Vintage Books.

Erwig, Martin. 2017. Once upon an Algorithm: How Stories Explain Computing.
Cambridge, MA: MIT Press.

Fry, Hannah. 2018. Hello World: How to Be Human in the Age of the Machine.
London: Doubleday.

Harel, David, and Yishai Feldman. 2004. Algorithmics: The Spirit of Computing.
3rd ed. Harlow, UK: Addison- Wesley.

Louridas, Panos. 2017. Real- World Algorithms: A Beginner’s Guide. Cambridge,
MA: MIT Press.

MacCormick, John. 2013. Nine Algorithms That Changed the Future: The Inge-
nious Ideas That Drive Today’s Computers. Princeton, NJ: Princeton University
Press.

O’Neil, Cathy. 2016. Weapons of Math Destruction: How Big Data Increases In-
equality and Threatens Democracy. New York: Crown Publishing Group.

276 FURthER READIng

Petzold, Charles. 2008. The Annotated Turing: A Guided Tour through Alan Tur-
ing’s Historic Paper on Computability and the Turing Machine. Indianapolis: Wiley
Publishing.

Sedgewick, Robert, and Kevin Wayne. 2017. Computer Science: An Interdisciplin-
ary Approach. Boston: Addison- Wesley.

Activation function, 186
Acyclic graph, 52
Adenine, 53
Adjacency matrix, 158
Aesop, 65
Algebra, 4
Algorithm, etymology of, 4–5
Algorithmic age, 1
al-Khwārizmī, Muḥammad

ibn Mūsā. See Khwārizmī,
Muḥammad ibn Mūsā al-

Alphabet (company), 143
Altavista (search engine), 143
Approximate search, 81
Approximation algorithm, 41
Artificial neural network, 202
Atomic key, 108
Automatic differentiation,

228

Backlink, 151
Backpropagation algorithm,

211
Bank of England, 231
Base (logarithm), 37
Benzene, 52
Berners-Lee, Tim, 147
Bias (neuron), 186
Big O notation, 32
Binary search, 95–104
Bing (search engine), 143
Bossa-Nova (rhythm), 10
Brin, Servey, 143
Bush, Vannevar, 147

INDEX

Carney, Mark, 231
Categorical cross-entropy, 222
Census, US, 105–107
Central processing unit (CPU),

225
CERN (European Organization for

Nuclear Research), 147
Chess, invention of, 35–36
Chromatic index, 63
Church, Alonzo, 241
Church-Turing thesis, 241
Circuit, graph, 48
Classifier, 192
Cognitive tools, 3
Columbia bell pattern (rhythm), 9
Composite key, 108
Computational complexity, 31
Constant complexity, 35
Control structure, 19
Cycle, graph, 51–52
Cytosine, 53

Dangling node, 167–171
Decision boundary, 190
Deep learning, 181, 223–230
Densely connected layers, 203
Derivative, 199
Dijkstra, Edger, 68
Dijkstra’s algorithm, 68–78
Directed acyclic graph (dag), 52
Directed graph (digraph), 51
Divide-and-conquer method,

38
DNA assembly, 52–57

278 InDEx

Edge, graph, 47
Edge coloring, 61
Edge weight, 66
EDVAC (Electronic Discrete Variable

Automatic Computer), 142
Eigenvalue, 249
Eigenvector, 177
ENIAC (Electronic Numerical

Integrator and Computer),
265n4 (chap. 3)

Epoch, 200
Euclid, 17
Euclid’s algorithm, 17
Euler, Leonhard, 44–47
Eulerian path or walk, 48
Eulerian tour or circuit, 48
Euler’s number, 38
Exa, 34
Exact search, 81
Excite (search engine), 143
Exponential complexity, 40
Exponential growth, 35–36

Factorial, 40
Factorial complexity, 40
Flat Earth Society, 144, 146

“Garbage in, garbage out,” 78
Giga, 34
Global optimum, 63
Google, xx, 143–145, 179
Google matrix, 171–177
Googol, 34
Googolplex, 34
Gradient, 199
Graph, 47
Graphics processing unit (GPU),

225
Greatest common divisor (gcd), 16

Greedy algorithm, 62
Guanine, 53

Hawking, Stephen, xvii
Heuristic, 62
Hidden layer, 204
Hierholzer, Carl, 55
Hierholzer algorithm, 55
Hill climbing approach, 63
Hoare, Tony, 132
Hollerith, Herman, 105–106
Hotbot (search engine), 143
Hyperlink, 145
Hyperlink matrix, 158–167
Hyperplane, 201
Hypertext, 147

Image recognition, 212
Infoseek (search engine), 143
Insertion sort, 114–116
International Business Machines

(IBM), 106
Intractable problems, 41
Iteration (control structure), 19

Kaliningrad, 43
Kekulé, August, 52
Kepler, Johannes, 91–92
Key, 108
Khwārizmī, Muḥammad ibn Mūsā

al-, 4
Knuth, Donald, i–244
Königsberg, 43
Königsberg bridge problem, 44

Label (classification), 213
Layers, densely connected,

203
Linearly separable data, 201

 InDEx 279

Linear search, 84
Linear time algorithms, and

complexity, 38
Link, 47
Linked list, 82
List, 82
List head, 83
Local optimum, 63
Logarithm, 37
Loglinear time algorithms, and

complexity, 39
Loop (control structure), 19
Loss (machine learning), 195
Lycos (search engine), 143
Lydon, Christopher, 1

Machine learning, 194
Matrix, 158
Matthew effect, 85, 87, 88
Merge sort, 133–142
Merton, Robert King, 88
Microsoft, 143
Moore, Gordon, 36
Moore’s law, 36
Move-to-front algorithm, 89
Mpre rhythm, 10
Multigraph, 49
Multiset, 49

NASA (National Aeronautics and
Space Administration), 144,
148

Natural logarithm, 38
Neuron, 182
Neutron source, 20
New York Times, 1
Node, graph, 47
Node, list, 83
Null, 83

Online algorithm, 65, 116
Onset (rhythm), 9
Optimal stopping problem, 92
Overfitting, 201
Overflow, 102

Page, Larry, 143
PageRank, xx, 143–144, 176
Pagerank vector, 159
Partial derivative, 199
Path, graph, 48
Path length, 66
Perceptron, 190
Permutation, 108
Peta, 34
Pivot, 124
Pointer, 83
Polynomial complexity, 39
Power method, 166
Programming, 21
Programming language, 21
Punched cards, 106

Quantum computer, 241
Qubit, 241
Quicksort, 123–133

Radio Open Source, 1
Radix sort, 116–123
Ramón y Cajal, Santiago, 183
Randomized algorithm, 133
Random surfer, 167–171
Rate of change, 198
Record, 108
Rectifier, 188
Relaxation, 68
ReLU (rectified linear unit),

190
Rhythm, in music, 9–14

280 InDEx

Search space, 99
Secretary problem, 93
Selection (control structure), 19
Selection sort, 110–114
Self-organizing search, 90
Sequence (control structure), 19
Sequential search, 84
Shortest path, 66
Sigmoid, 188
Social network, 49
Softmax, 217
Sorting methods,

insertion, 114–116
merge, 133–142
quicksort, 123–133
radix, 116–123
selection, 110–114
string, 121

Spallation Neutron Source (SNS),
20–21

Spalling, 21
Sparse matrix, 178
String, 121
String sorting method, 121
Superposition, 241
Supervised learning, 192
Synapse, 184

Tabulating machine, 106
Tanh (hyperbolic tangent), 188
Tera, 34
Test data set, 194
Thymine, 53
Tour, graph, 48
Tournament scheduling, 57–65
Training (machine learning), 192
Training data set, 192
Transposition method, 90
Traveling salesman problem, 41

Turing, Alan, 231
Turing machine, 232–244

Unary numeral system, 236
United Nations, 144
Unsupervised learning, 194
US Census, 105–107

Vector, 159
Vertex, 47
Vertex coloring, 61
von Neumann, John (Neumann

János Lajos), 142

Weight, edge, 66
Weighted input, 186
Weights (neuron), 186
Wikipedia, 144
Wilson, E. O., 34
World Wide Web, 51, 147

Yotta, 34

Zetta, 34

The MIT Press Essential Knowledge Series

AI Ethics, Mark Coeckelbergh
Algorithms, Panos Louridas
Anticorruption, Robert I. Rotberg
Auctions, Timothy P. Hubbard and Harry J. Paarsch
The Book, Amaranth Borsuk
Carbon Capture, Howard J. Herzog
Citizenship, Dimitry Kochenov
Cloud Computing, Nayan B. Ruparelia
Collaborative Society, Dariusz Jemielniak and Aleksandra Przegalinska
Computational Thinking, Peter J. Denning and Matti Tedre
Computing: A Concise History, Paul E. Ceruzzi
The Conscious Mind, Zoltan E. Torey
Contraception, Donna Drucker
Critical Thinking, Jonathan Haber
Crowdsourcing, Daren C. Brabham
Cynicism, Ansgar Allen
Data Science, John D. Kelleher and Brendan Tierney
Deep Learning, John D. Kelleher
Extraterrestrials, Wade Roush
Extremism, J. M. Berger
Fake Photos, Hany Farid
fMRI, Peter A. Bandettini
Food, Fabio Parasecoli
Free Will, Mark Balaguer
The Future, Nick Montfort
GPS, Paul E. Ceruzzi
Haptics, Lynette A. Jones
Information and Society, Michael Buckland
Information and the Modern Corporation, James W. Cortada
Intellectual Property Strategy, John Palfrey
The Internet of Things, Samuel Greengard
Irony and Sarcasm, Roger Kreuz
Machine Learning: The New AI, Ethem Alpaydin
Machine Translation, Thierry Poibeau
Macroeconomics, Felipe Larraín B.
Memes in Digital Culture, Limor Shifman
Metadata, Jeffrey Pomerantz

The Mind– Body Problem, Jonathan Westphal
MOOCs, Jonathan Haber
Neuroplasticity, Moheb Costandi
Nihilism, Nolen Gertz
Open Access, Peter Suber
Paradox, Margaret Cuonzo
Post- Truth, Lee McIntyre
Quantum Entanglement, Jed Brody
Recommendation Engines, Michael Schrage
Recycling, Finn Arne Jørgensen
Robots, John Jordan
School Choice, David R. Garcia
Self- Tracking, Gina Neff and Dawn Nafus
Sexual Consent, Milena Popova
Smart Cities, Germaine R. Halegoua
Spaceflight, Michael J. Neufeld
Spatial Computing, Shashi Shekhar and Pamela Vold
Sustainability, Kent E. Portney
Synesthesia, Richard E. Cytowic
The Technological Singularity, Murray Shanahan
3D Printing, John Jordan
Understanding Beliefs, Nils J. Nilsson
Virtual Reality, Samuel Greengard
Waves, Frederic Raichlen

PAnos loURIDAs is Associate Professor in the Department of Management
Science and Technology at the Athens University of Economics and Business.
He works on algorithmic applications, software engineering, security, practical
cryptography, and applied machine learning. He is the author of Real- World
Algorithms: A Beginners Guide, published by the MIT Press. He has been an
active programmer for more than a quarter of a century.

	Contents
	Series Foreword
	Preface
	Acknowledgments
	1: What Is an Algorithm?
	The Algorithmic Age
	A Way to Do Things
	Our First Algorithm
	Algorithms, Computers, and Mathematics
	Measuring Algorithms
	Complexity Families

	2: Graphs
	From Graphs to Algorithms
	Paths and DNA
	Scheduling a Tournament
	Shortest Paths

	3: Searching
	A Needle in a Haystack
	The Matthew Effect and Search
	Kepler, Cars, and Secretaries
	Binary Search

	4: Sorting
	Simple Sorting Methods
	Radix Sort
	Quicksort
	Merge Sort

	5: PageRank
	The Basic Principles
	An Example
	The Hyperlink Matrix and Power Method
	Dangling Nodes and the Random Surfer
	The Google Matrix
	PageRank in Practice

	6: Deep Learning
	Neurons, Real and Artificial
	The Learning Process
	From Neurons to Neural Networks
	The Backpropagation Algorithm
	Recognizing Clothes
	Getting to Deep Learning

	Epilogue
	Glossary
	Notes
	Preface
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Epilogue

	References
	Further Reading
	Index

