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The world is untranslatable but it is not 
incomprehensible, as long as you know the simple 
rule that nothing of what it expresses through its 
myriad lives and creatures is followed by a question 
mark, only by exclamation marks.

— Karl Ove Knausgaard, Summer
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The MIT Press Essential Knowledge series offers accessible, 
concise, beautifully produced pocket- size books on topics 
of current interest. Written by leading thinkers, the books 
in this series deliver expert overviews of subjects that 
range from the cultural and the historical to the scientific 
and the technical.

In today’s era of instant information gratification,  
we have ready access to opinions, rationalizations, and 
superficial descriptions. Much harder to come by is the 
foundational knowledge that informs a principled under-
standing of the world. Essential Knowledge books fill that 
need. Synthesizing specialized subject matter for nonspe-
cialists and engaging critical topics through fundamentals, 
each of these compact volumes offers readers a point of 
access to complex ideas.

SERIES FOREWORD





I know two young teenagers who possess more knowledge 
than any scientist, philosopher, or scholar of ages past. 
They are my sons. No, I am not a doting father who 
marvels at how extraordinarily gifted his children are. But 
these two kids have in their pockets devices that connect 
them with the vastest repository of information that has 
ever been created. There is no factual question they cannot 
answer, now that they have mastered the art of knowing 
where to look on the internet. They can translate from and 
to foreign languages without having to browse through 
hefty dictionaries— which we still keep in the house so 
that they know how things were, only a few years back. 
News, from anywhere, reach them in an instant. They 
can communicate with their peers before you know it, no 
matter where in the world they may live. They can plan 
their goings out in perfect detail. Alas, they can waste their 
time with abandon playing games or following trends that 
change so fast that I do not know why they matter.

All the above have become possible thanks to the 
huge advances in digital technology. Today we carry more 
computing power in our pockets than was used to ferry 
humans to the moon. As these two teenagers show, the 
changes in our lives have been immense; predictions for 
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the future vary from utopias, where people will really not 
need to work, to dystopias, where the privileged few will 
lead fulfilling lives, with the rest being condemned to 
inconsequential torpor. Thankfully, we are able to shape 
this future, and an important factor in our ability to do 
this is how conversant we are with the technologies 
that underlie the achievements and the changes before 
us. Although we may lose sight of it in the bustle of our 
everyday lives, we live in the best period of human history. 
We are healthier than we have ever been, and expect to live 
longer, on average, than any generation that has ever lived. 
Despite the iniquity of glaring inequality, huge swathes of 
humanity have gotten rid of the shackles of poverty. We 
have never been closer to one another, both virtually and 
literally. We may decry the commercialism of mass global 
tourism, but cheap travel allows us to experience different 
cultures and visit places that we could once marvel about 
only in coffee table books. All this progress can and should 
continue.

To partake in this progress, however, it is not enough 
to use digital technology. We must be able to understand 
it. First, for the eminently practical reason that it offers 
excellent career opportunities. Second, because even if 
we don’t care for a career in technology, we must know 
its underlying principles to appreciate its potential and 
shape our own role in it. Digital technology is enabled as 
much by its hardware, the physical components that make 
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up computers and digital devices, as by its software, the 
programs that run on it. The backbone of programs are the 
algorithms that they implement: the set of instructions 
that describe the way to solve particular problems (if this 
does not look like a definition of what an algorithm is, 
don’t worry, we have the rest of the book to fill out the 
details). Without algorithms, computers would be useless, 
and none of modern technology would exist.

What we need to know changes through time. For most 
of human history, schooling was not deemed necessary at 
all. Most people were illiterate, and if they were taught 
something, it would be mastery of some practical skill or 
scripture. In the beginning of the nineteenth century, more 
than 80 percent of the world’s population was completely 
unschooled; now the vast majority has attained several 
years of school, and it is projected that by the end of the 
century, the proportion of unschooled people in the world 
will fall to zero. The years we spend on education have also 
increased. While in 1940 less than 5 percent of Americans 
had a bachelor’s degree, by 2015 almost a third of them 
did.1

Back in the nineteenth century, no school would teach 
molecular biology because nobody knew anything about 
it; DNA wasn’t discovered until well into the twentieth 
century. It now forms part of what we accept as the canon 
of an educated person’s learning. Similarly, even though 
algorithms were discovered in antiquity, few people 
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troubled with them until the advent of modern computers. 
The author firmly believes that we have reached a point 
where algorithms are inside the core of what we consider 
to be essential knowledge. Unless we know what they are 
and how they work, we cannot understand what they can 
do, how they can affect us, what to expect from them, what 
their limits are, and what they require in order to work. In 
a society that increasingly functions thanks to algorithms, 
it behooves us as informed citizens to be knowledgeable 
about them.

It is also possible that learning algorithms helps us in 
another way. If learning mathematics introduces us to a 
way of rigorous reasoning, a familiarity with algorithms 
introduces us to a new way of algorithmic thinking: a way 
of reasoning to solve problems in a practical way so that 
efficient implementations of algorithms as programs can 
run fast in computers. The focus on designing processes 
that are practical and efficient can be a useful mental tool, 
even if we are not professional programmers.

This book aims to introduce algorithms to a nonspe-
cialist audience in a way that the reader will understand 
how they really work. Its purpose is not to describe the 
effects of algorithms in our lives; there are other books 
that do a great job of depicting how improved processing 
of big data, artificial intelligence, and the weaving of com-
puting devices into the fabric of our everyday lives may 
change the human condition. Here we are not interested 



A familiarity with  
algorithms introduces 
us to a new way of  
algorithmic thinking:  
a way of reasoning to 
solve problems in a 
practical way so that  
efficient implemen-
tations of algorithms  
as programs can run  
fast in computers.



 PREFACE  xvii

in what may happen but rather the how this can happen. 
To do that, we’ll present real algorithms and show not only 
what they do but also how they actually function. Instead 
of hand waving, we’ll provide detailed explanations.

To the question, “What are algorithms?” the answer 
is surprisingly simple. They are particular ways to solve 
our problems. These ways to solve our problems can be 
described in easy steps so that computers can execute 
them with amazing speed and efficiency. Yet there is 
nothing magical about these solutions. The fact that they 
comprise simple elementary steps means that there is 
no reason why they should be beyond the grasp of most 
people.

Indeed, the book does not assume knowledge of 
material beyond that commonly taught in high schools. 
Some mathematics does appear in the following pages 
because you cannot talk seriously about algorithms without 
some notation. Any concepts that are commonplace in 
algorithms but are not that common outside computer 
science are explained in the text.

The late physicist Stephen Hawking wrote in the 
introduction of his best- selling book A Brief History of  
Time, published in 1988, “Someone told me that each 
equation I included in the book would halve the sales.” 
This sounds pretty ominous for the present book because 
mathematics does occur more than once. Yet I decided 
to press ahead, for two reasons. First, while the level of 
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mathematics required for Hawking’s physics is at the 
university level or beyond, the mathematics presented 
here is much more accessible. Second, as the purpose 
of this book is to show not just what algorithms are for 
but how they really work too, the reader should get to 
share some of the vocabulary we use when we discuss 
algorithms. And this vocabulary does include some 
mathematics. The notation is not the prerogative of the 
technical clerisy, and familiarity with it will help dispel 
any mystique surrounding the subject; in the end, we’ll 
see that it mostly comes down to being able to talk about 
things in a precise quantitative way.

It is impossible to cover the whole subject of algorithms 
with a book like this, but it is possible to provide an overview 
and introduce a reader to algorithmic thinking. The first 
chapter lays the ground by introducing what algorithms 
are and how we can gauge their efficiency. We can say at 
the outset that an algorithm is a finite sequence of steps 
that we can perform with a pen and paper, and this plain 
definition would not be far from the truth. Chapter 1 starts 
from there, while also exploring the relationship between 
algorithms and mathematics. A key difference between 
the two is practicality; in algorithms, we are interested 
in practical ways to solve our problems. This means that 
we need to be able to measure how practical and efficient 
our algorithms are. We’ll see that these questions can be 
carefully framed through the notion of computational 
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complexity; this will inform the discussion of algorithms 
in the rest of the book.

The next three chapters look at three of the most 
essential application areas of algorithms. Chapter 2 covers 
algorithms that deal with the solution of problems relating 
to networks, called graphs, of things. These problems may 
include finding your way in a road network or sequence 
of links connecting you to somebody on a social network. 
They also include problems in other areas that are not 
immediately obvious in terms of their relationship: 
DNA sequencing and scheduling tournaments; this will 
illustrate that distinct problems can be solved efficiently 
using the same tools.

Chapter 3 and chapter 4 explore how to search for things 
and put things in order. These may seem prosaic, yet they 
are among the most important applications of computers. 
Computers spend a lot of time sorting and searching, but 
we are largely oblivious to this fact exactly because they 
are an integral, invisible part of most applications. Sorting 
and searching also offer us a glimpse of an important facet 
of algorithms. For many problems, we know of more than  
one algorithm to solve them. We choose among the available 
algorithms based on their particular characteristics; some 
algorithms are more suitable for certain problem instances 
than others. It is therefore instructive to see how different 
algorithms, with different characteristics, go about solving 
the same problem.
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The following two chapters present important 
applications of algorithms on a large scale. Chapter 5 picks 
up graphs again to explain the PageRank algorithm, which 
can be used to rank web pages in order of significance. 
PageRank was the algorithm used by Google when it was 
founded. The success of the algorithm at ranking web pages 
in search results played a critical role in the phenomenal 
success of Google as a company. Fortunately, it is not 
difficult to grasp how PageRank works. It will give us the 
opportunity to see how an algorithm can solve a problem 
that on first impression, does not seem amenable to a 
computer solution: How do we judge what is important?

Chapter 6 introduces one of the most active areas 
in computer science: neural networks and deep learning. 
Successful applications of neural networks are reported 
in popular media. Stories pique our interest by describing 
systems that perform tasks such as image analysis, 
automatic translation, or medical diagnosis. We’ll start 
out simple, from individual neurons, building up bigger 
and bigger neural networks that are able to perform more 
and more complex tasks. We’ll see that they all work based 
on some fundamental principles. Their efficacy rises from 
the interconnection of many simple components and the 
application of an algorithm that lets neural networks learn.

After sketching what algorithms can do, the epilogue 
explores the limits of computation. We know that 
computers have performed amazing feats and expect so 
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much more from them in the future, yet are there things 
that they cannot do? The discussion of the limits of 
computing will allow me to offer a more precise explanation 
of the nature of algorithms and computing. We said that 
we could describe it as a finite sequence of steps that can 
be performed with a pen and paper, but what kind of 
steps could these be? And how close is the pen- and- paper 
analogy with what algorithms really are?
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1

WHAT IS AN ALGORITHM?

The Algorithmic Age

We like putting labels on time periods, perhaps because 
affixing a tab on time allows us to get a grip on its fluidity. 
We have therefore started speaking of the present as the 
dawning of a new algorithmic age, in which algorithms will 
reign supreme, and will govern larger and larger parts of 
our lives. It is interesting that we are not talking about 
the computer age or internet age anymore. We somehow 
take them for granted. It is when we add algorithms that 
we begin intimating that perhaps something qualitatively 
different has started taking place. “Behold the Almighty 
Algorithm, a snippet of computer code coming to stand 
for a Higher Authority in our secular age, a sort of god,” 
says Christopher Lydon, former New York Times journalist 
and host of the Radio Open Source show. And indeed, 
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algorithms are taken to be some form of higher authority 
when they are used to organize political campaigns, follow 
our traces in the online realm, shadow our shopping and 
target us with advertising, suggest dating partners, or 
monitor our health.1

There is an aura of mystery around all that, which 
perhaps flatters the acolytes of algorithms. Being 
described a “programmer” or “computer scientist” marks 
you as a decent, albeit somewhat technical, character. How 
much better to be a member of the tribe that is about to 
change almost everything in our lives?

There is definitely a sense in which algorithms are a 
sort of god. They are mostly held unaccountable, like gods; 
things happen, not because of human agency, but because 
they were decided by an algorithm, and the algorithm 
sits beyond the pale of responsibility. Machines, running 
algorithms, can surpass human performance in more 
and more fields so that it appears that the area of human 
superiority is reduced day by day; some believe that the 
day where computers will be able to surpass humans in 
every aspect of cognition is not far away.

But there is also a sense in which algorithms are 
nothing like gods, although we often lose sight of it. 
An algorithm does not produce its results by an act of 
revelation. We know exactly the rules that it follows and 
kinds of steps it takes. No matter how wonderful the 
outcome, it can always be traced back to some elementary 



 WhAt Is An AlgoRIthm?  3

operations. To people who are newcomers to algorithms, 
it may come as a surprise how elementary these may be. 
That is not to besmirch algorithms; seeing how something 
really works may take out some part of its mystique. At 
the same time, understanding how something works may 
allow us to appreciate the elegance of its design, even if it 
is no longer mysterious.

The premise of this book is that indeed algorithms 
are not mysterious. They are tools that allow us to do 
certain things well; they are specific kinds of tools whose 
purpose is to allow us to solve problems. In this way they 
are cognitive tools; as such, they are not the only ones. 
Numbers and arithmetic are also cognitive tools. It took 
us thousands of years to evolve a number system that 
children can learn in school so that they can perform cal-
culations that would be impossible without it. Now we 
take numeracy for granted, but a few generations back 
only a small minority of humans had any knowledge  
of it.

Similarly, knowledge of algorithms should not be the 
prerogative of a small elite minority; as cognitive tools 
they can be apprehended by all kinds of people, not just 
computer professionals. What is more, they should be 
understood by more people because that will allow us to 
put algorithms into perspective: to know what they do, 
how they do it, and what we can realistically expect them 
to do.
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An essential knowledge of algorithms is what we are 
after here so that we can take a meaningful part in the 
conversations on the algorithmic age. That is not an age 
that is thrust on us, but one of our own creation, based on 
tools that we have devised. The study of these tools is the 
subject of this book. Algorithms are beautiful tools, and a 
glimpse of how they are made and work can enhance our 
way of thinking.

We’ll start by dispelling an irksome notion: that 
algorithms are about computers. This, we’ll see, makes as 
much sense as saying that numbers are about calculators.

A Way to Do Things

A pen- and- paper puzzle, music, divisibility of numbers, 
and neutron accelerators in particle physics— we’ll see 
that what they all have in common is the same algorithm, 
applied to such different domains, yet working on the 
same underlying principles. How can this be?

The word “algorithm” itself does not reveal its 
meaning. It comes from the name of Muḥammad ibn 
Mūsā al- Khwārizmī (ca. 780– ca. 850), a Persian scholar 
who worked on mathematics, astronomy, and geography. 
Al- Khwārizmī’s contributions were many and widespread. 
The term “algebra” comes from the Arabic title of his most 
influential work, The Compendious Book on Calculation by 
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Completion and Balancing. His second most influential 
book, On the Calculation with Hindu Numerals, was on 
arithmetic and, translated into Latin, introduced the 
Hindu- Arabic numeral system to the West. Al- Khwārizmī’s 
name was latinized to Algorismus, which came to denote 
the method of numerical computation with the decimal 
numbers. Algorismus, influenced by the Greek word for 

“number” (arithmos, as in arithmetic), became algorithm, 
still denoting decimal arithmetic, before acquiring its 
modern sense in the nineteenth century.

You could be tempted to think that algorithms are 
something that we do with computers, but this would be 
wrong. It is wrong because we had algorithms long before 
we had computers. The first- known algorithms date back 
to ancient Babylon.2 It is also wrong because algorithms 
are not about problems that have to do with computers. 
Algorithms are about doing something in a specific way, 
following some kind of steps. That is somewhat vague. You 
may ask, What kind of steps? What specific way? We can 
dismiss all vagueness, and give a precise mathematical 
definition of what an algorithm is and what it does— such 
a definition does exist— but we don’t need to go to such 
lengths. You may be happy to know that an algorithm is 
a set of steps that you can follow with pen and paper, and 
you can be assured that this seemingly facile description 
is close to those used by mathematicians and computer 
scientists.
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So we can start our approach to algorithms with a 
problem that we can solve by just writing things down. 
Suppose we have two sets of objects and want to spread 
the objects of one of the two sets as evenly as possible 
among the objects of the other set. We will use crosses 
(×) for the objects of the first set and bullets ( • ) for the 
objects of the second set. We want to spread out crosses 
among the bullets.

If the number of crosses divides the total number of 
objects, that is easy. We just partition the crosses among 
the bullets as if we would do division. For example, if we 
have 12 objects in total, out of which three are crosses 
and nine are bullets, we put one cross, then three bullets, 
then one cross, three bullets, and finally another cross and 
three bullets:

× × ×• • • • • • • • •

But what if the total number of objects, crosses and 
bullets taken together, cannot be divided exactly by the 
crosses? What can we do if we have five crosses and seven 
bullets?

We start by putting all crosses followed by all bullets 
in one row as follows:

× × × × × • • • • • • •
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Then we take five bullets and place them under the 
crosses:

× × × × × • •

• • • • •

We notice in the pattern that emerges that we have a 
remainder of two columns to the right. We take the two re-
mainder columns, each comprising a single bullet, and put 
them under the first two columns, forming a third row:

× × × × ×
• • • • •

• •

Now we notice that we have a remainder of three col-
umns. We take the rightmost two of them and put them 
under the two leftmost columns:

× × ×

× ×

• • •

• •

• •

Now we have only one remainder column, so we stop. 
We concatenate the columns from left to right and get:
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× × × × ×• • • • • • •

This is the result. We have distributed the crosses 
among the bullets. They are not as evenly spaced as 
before, but that is impossible to do because, remem-
ber, five does not divide evenly into 12. We have man-
aged to avoid heaping all the crosses together, however, 
and have created a pattern that does not look entirely  
haphazard.

You may wonder if there is anything particular about 
this pattern; it helps if you substitute DUM for the cross 
and da for the bullet. Then the pattern goes DUM- da- d
a- DUM- da- DUM- da- da- DUM- da- DUM- da and it really is 
a rhythm. A rhythm is constituted by accented parts, also 
called onsets, and unaccented or silent parts. The rhythm 
we found is not a rhythm of our own devising. It is used by 
the Aka pygmies in the Central African Republic; it is the 
clapping, called Venda, of a South African song; it is also a 
rhythm pattern used in Macedonia, in the Balkans. There 
is more. If we rotate it, so that it starts at the second cross 
(that is, onset), then it becomes:

× × × × ×• • • • • • •

That is the Columbia bell pattern, popular in Cuba 
and West Africa, as well as a drumming pattern in Kenya, 
while it is also used in Macedonia (again). If we rotate it to 
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start on the third, fourth, and fifth onset, other popular 
rhythms around the world emerge.

Is this just a one- off thing? We can try to create 
a 12- part rhythm out of seven onsets and five silent 
parts— kind of mirroring the five onsets and seven silent 
parts that we had before. If we follow exactly the same 
procedure, we will arrive at:

× × × × × × ×• • • • •

This, again, is a rhythm. It is used in the Mpre rhythm 
of the Ashanti in Ghana, and if we start it on the last onset, 
it is used by the Yoruba in Nigeria as well as in Central 
Africa and Sierra Leone.

Lest you think we have geographic omissions, if we 
start with five beats and 11 silent parts, we arrive at the 
following:

× × × × ×• • • • • • • • • • •

That is the Bossa- Nova rhythm, rotated. The actual 
Bossa- Nova rhythm starts on the third onset, so the exact 
correspondence is:
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If we try with three beats and four silent parts, we get 
the pattern:

× × ×• • • •

This rhythm in a seven/four meter is popular, and 
not just in traditional music. Among other tunes, it is the 
rhythmic pattern of Pink Floyd’s song “Money”:

Many more rhythms can be derived in this way by 
putting crosses and bullets in columns, and moving them 
around in the way we just described. We illustrated the 
procedure by measuring remainder columns, but this 
really is a pictorial way of showing what really happens. 
Instead of creating columns, checking the geometry, and 
moving them around, we can do the same thing more for-
mally with simple numerical operations. To see what, let’s 
return to the example of 12 parts and seven onsets. We 
start by dividing 12 by 7, which gives us quotient 1 and 
remainder 5:

12 1 7 5= × +
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This tells us to put the seven onsets in the beginning, 
creating seven columns of onsets, followed by a remainder 
of the five unaccented parts:

× × × × × × × • • • • •

Now we divide again, but this time we divide the divi-
sor of the previous division, 7, by the remainder of the 
previous division, 5. This gives us a quotient of 1 again 
while the remainder is 2:

7 1 5 2= × +

This means that we need to take the five rightmost 
columns and place them under the five leftmost columns, 
leaving a remainder of 2:

× × × × × × ×
• • • • •

We repeat the same step: we divide the divisor of the 
previous division, 5, by the remainder of the previous divi-
sion, 2. The quotient is 2 and the remainder is 1:

5 2 2 1= × +
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This tells us to take twice the two rightmost columns 
and place them under the two leftmost columns, leaving 
a remainder of 1:

× × ×

× ×
× ×

• • •

• •

Note that twice means that this is equivalent to what 
we would be doing in two steps if we had worked as we 
were doing before, without using the division. We would 
go from:

× × × × × × ×
• • • • •

first to:

× × × × ×

× ×
• • • • •

and then to:
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× × ×

× ×
× ×

• • •

• •

If we concatenate the columns, we get the Mpre 
rhythm:

× × × × × × ×• • • • •

Our First Algorithm

We can write down the method we followed in a bit more 
precise terms as the following steps. We assume that we 
start with two numbers, a and b. We let a be the total num-
ber of parts. If the number of onsets is greater than the 
number of the silent parts, then b is the number of onsets. 
Otherwise it is the number of the silent parts. At the be-
ginning, we create a row with the onsets followed by the 
silent parts.

1. Perform the division of a by b. This will give us a 
quotient and remainder. If we call the quotient q and 
remainder r, we’ll have a q b r= × + . This is integer 
division as we know it. We take q times the rightmost 
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b columns and move them under the leftmost columns, 
leaving a remainder of r columns on the right.

2. If the remainder r is equal to zero or one, then we stop. 
Otherwise, we go back to step 1, but this time b will be 
the new a and r will be the new b. Or in other words, we 
go back to step 1, setting a equal to b and b equal to r.

In these two steps we perform a division repeatedly, 
until it does not make sense to repeat it. You can trace the 
steps we take in the following table, where we start with 
a = 12 and b = 7, like we did before; in each row we have 
a q b r= × + :

a q b r

12 1 7 5

7 1 5 2

5 2 2 1

If you examine the table, you can verify that each 
row corresponds to one step of the column formation 
and moving, but we have a more precise definition of the 
method we used. In fact, we have a series of steps that we 
can perform with pen and paper, so this is our first algo-
rithm! We have an algorithm for creating patterns that 
correspond to many, and indeed surprisingly many, musi-
cal rhythms. Working with different numbers of offsets 
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and silent parts, we can get about 40 rhythmic patterns 
that are found in different rhythms around the world. That 
should give us pause for a minute: it is a simple algorithm 
(only two steps, repeated) and yet able to produce so many 
interesting results.

Our algorithm does more than that, though. As we are 
talking about the division of two numbers, let us consider 
the following general problem: If we have two numbers a 
and b, what is the greatest number that divides them both? 
This is called the greatest common divisor, or gcd, of the two 
numbers. We encounter the greatest common divisor in 
elementary arithmetic, in problems such as, If we have 12 
packets of crackers and four packets of cheese, how will 
you distribute them in baskets so that you have the same 
proportion of crackers and cheese in each basket? As four 
divides 12, you will have four baskets, each containing 
three packets of crackers and one packet of cheese; the 
greatest common divisor of 12 and four is four. Things 
get more interesting if you have 12 packets of crackers 
and eight packets of cheese. You cannot divide one by the 
other, but the greatest number that divides both 12 and 
eight is four, which means that you will make again four 
baskets, each containing three packets of crackers and two 
packets of cheese.

So how can we find the greatest common divisor of any 
two integer numbers? We have seen that if one of the num-
bers divides the other, that is the greatest common divisor. 



 WhAt Is An AlgoRIthm?  17

But if that does not happen, then it turns out that in order 
to find the greatest common divisor of two numbers, we 
only need to find the greatest common divisor of the re-
mainder of the division of the two numbers and the second 
number. This is actually easier to see with symbols. If we 
have two integers a and b, the greatest common divisor of a 
and b is equal to the greatest common divisor of the remain-
der of a b÷  and b. This brings us back to our rhythms. The 
way we have been finding rhythms is in fact the same way we 
use to find the greatest common divisor between two numbers.

The way to find the greatest common divisor between 
two numbers is called Euclid’s algorithm, in honor of Eu-
clid, an ancient Greek mathematician who first described 
it in his books Elements (ca. 300 BCE). The basic idea is 
that the greatest common divisor between two numbers 
remains the same if we replace the larger number of the 
two with its difference with the smaller number. Take 56 
and 24. Their greatest common divisor is 8, which is also 
the greatest common divisor of 56 24 32− =  and 24, and 
the same goes for 32 and 24, and so on. Repeated subtrac-
tion is really division, so Euclid’s algorithm is described 
with the following steps:

1. To find the greatest common divisor of a and b, 
perform the division of a by b. This will give us a quotient 
and remainder. If we call the quotient q and remainder r, 
we’ll have a q b r= × + .
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2. If the remainder r is equal to 0, then we stop, and the 
greatest common divisor of a and b is b. Otherwise, we 
go back to step 1, but this time b will be the new a and r 
will be the new b. Or in other words, we go back to step 1, 
setting a equal to b and b equal to r.

These are essentially the same steps as before. The 
only difference is that when finding rhythms, in step 2 we 
stop when the remainder is 0 or 1, while Euclid’s algorithm 
stops when the remainder is 0. This is really the same: if 
you have a remainder of 1, then in the next repetition of 
step 1, you get a 0 remainder because 1 divides every in-
teger. Try 9 and 5: 9 1 5 4= × + , so we go to 5 1 4 1= × +  
and then 4 1 4 0= × + , so the greatest common divisor of 
9 and 5 is 1.

It may help you to see the algorithm in action with 
a = 136 and b = 56  in the following table, similar to the 
one we saw before with our rhythms. We find that the 
greatest common divisor of 136 and 56 is the number 8:

a q b r

136 2 56 24

56 2 24 8

24 3 8 0

As we noted with 9 and 5, Euclid’s algorithm works 
correctly in all cases, even when the two numbers do not 



 WhAt Is An AlgoRIthm?  19

have any common divisor apart from 1. This is what hap-
pened with a = 9  and b = 5. You can see for yourself what 
happens if you try to perform the algorithm’s steps with 
a = 55  and b = 34; it will take a few steps, but the algo-
rithm will determine that the only common divisor is 1.

The steps in Euclid’s algorithm are performed in 
a well- defined order. The description of the algorithm 
illustrates the way its component steps are combined:

1. The steps are put in a sequence.

2. Steps may describe a selection that determines which 
steps to follow. In step 2, there is a test of whether the 
remainder is 0 or not. Then there are two alternatives, 
depending on the outcome: we either stop or go back to 
step 1.

3. Steps can be put into a loop or iteration, where they 
are executed repeatedly. In step 2, if the remainder is not 
equal to 0, we go back to step 1.

We call these three ways to combine steps control struc-
tures because they dictate which action will be performed 
as we carry out the algorithm. All algorithms are struc-
tured in this way. They comprise steps doing calculations 
and processing data; these steps are assembled together 
and choreographed using these three control structures. 
More complex algorithms have more steps, and their 
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choreography may be more complex. But the three control 
structures suffice to describe the way the steps of any al-
gorithm should be put together.

The steps of an algorithm will, among other things, 
operate on the input we provide. The input is the data that 
are processed by the algorithm. If we adopt a data- centric 
view, we use an algorithm to transform some data, which 
describe a problem, to some form that corresponds to the 
problem’s solution.

We found an algorithm behind musical rhythms that 
is an application of division, but in reality, we need not 
look that far; the act of division itself is an algorithm. Even 
if you have not heard of Euclid’s algorithm, you know how 
to divide two large numbers; we have all spent time in 
our early years learning to perform long multiplication 
and long division. Our teachers spent hours drilling 
into our heads how to perform these operations: a set of 
steps for putting numbers in the right places and doing 
things with them— they are algorithms. But algorithms 
are not simply about numbers, as we have just seen. We 
just found that they are about how we can produce music. 
Yet there is nothing mystifying about that. A rhythm is a 
way to distribute stresses in a time interval, and the same 
principle is at work when we pack crackers and cheese.

The application of Euclid’s algorithm to rhythms had 
an unlikely source: a neutron source facility in the Oak 
Ridge National Laboratory in Tennessee. The Spallation 
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Neutron Source (SNS) there produces intense pulsed 
neutron beams that are used in experiments in particle 
physics. (The verb to spall means breaking a material into 
smaller pieces; in nuclear physics, we have a heavy nucleus 
emitting a large number of protons and neutrons after be-
ing bombarded with a high- energy particle.) In the opera-
tion of the SNS, some components, such as high- voltage 
power supplies, should run so that pulses are distributed 
in timing slots as evenly as possible. An algorithm de-
vised to do the distribution is essentially the same as the 
rhythm- making algorithm and Euclid’s algorithm, taking 
us from numbers to subatomic particles to music.3

Algorithms, Computers, and Mathematics

We said that algorithms are not about computers, yet 
today most people bundle them together. It is true that 
algorithms show their potential when they are coupled 
with computers, but a computer is really a machine with 
the special trait that we can order it to do certain things. 
We order it by programming it, and usually we program it 
to execute algorithms.

Which brings us to programming itself. Programming 
is the discipline of translating our intentions to some 
notation that a computer is able to understand. We call 
this notation a programming language because sometimes 
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it does look like we are writing in a human language, but 
programming languages are fairly simple affairs compared 
to the richness and complexity of human languages. Now, 
of course, a computer does not really understand anything. 
Things may change in the future, if we are able to produce 
truly intelligent machines, but right now when we say that 
a computer understands a notation, it really means that 
the notation is converted to a series of instructions for 
manipulating current in electronic circuits (we may also 
use light instead of electric current, yet the idea is the 
same).

If an algorithm is a set of steps we can carry out our-
selves, programming is the activity by which we write 
down the steps in the notation that the computer under-
stands. Then it is the computer that will carry them out. 
Computers are much faster than human beings, so they 
can execute the steps in less time. The fundamental factor 
in computing is speed. A computer cannot do something 
qualitatively different from what we humans can do, but it 
can do it faster— a lot faster. An algorithm gains power on 
a computer because it can be executed there in a fraction 
of the time it would take us to perform the same steps, but 
they are still the same steps.

A programming language gives us a way to describe to 
a computer the steps of algorithms. It also provides the 
means to structure them using the three fundamental 
control structures: sequence, selection, and iteration. We 
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write the steps and describe how they are choreographed 
using the vocabulary and syntax provided by the particu-
lar programming language we are using.

There is an additional advantage to using computers 
apart from speed; if you can recall how you learned to per-
form long multiplication and division, it may have taken a 
lot of practice, and may not have been that exciting. As we 
noted above, these things are drilled into our heads at an 
early age, and drilling inside a head is not a pleasant proce-
dure. Computers do not suffer from boredom, so an added 
reason to have them perform algorithms is to take out the 
tedium and leave us time to do more interesting things.

Although an algorithm is usually executed on a com-
puter, after being written in a programming language, it 
is primarily written for humans, who must understand 
how it works and when it can be used. This brings us to 
something essential that even experienced computer sci-
entists and seasoned programmers forget. The only way 
to truly understand an algorithm is to perform it by hand. 
We must be able to execute the algorithm, in the same way 
the computer would execute a program that implements 
it. At this date and time, we are privileged to have at our 
disposal an amazing array of media that can help us learn: 
superb videos, animations, and simulations are one click 
away. All these are great, but when you are stuck, have your 
pen and pad nearby. The same applies to these very lines. 
Have you really understood how you can create rhythms? 
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Did you try to create one? Can you find the greatest com-
mon divisor of 252 and 24?

All programs implement a set of steps to do some-
thing, so we could be tempted to say that all programs are 
algorithms. We are a bit stricter, however, and want our 
steps to meet certain characteristics:4

1. The steps must terminate after a finite number of 
steps. An algorithm cannot run forever. (A program 
may run forever, as long as the computer on which it 
runs remains operational. That program would not be 
an implementation of an algorithm; it would just be a 
computational process.)

2. The steps must be precise, so that we can execute 
them without confusion.

3. The algorithm may operate on some input; in the case 
of Euclid’s algorithm, it operates on two integers.

4. The algorithm has some output; that is the whole 
purpose of the algorithm: to produce something as a 
result. In Euclid’s algorithm, that is the greatest common 
divisor.

5. The algorithm must be effective. A human should be 
able to execute each step in a reasonable amount of time 
with pen and paper.
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These characteristics ensure that the algorithm does 
something. An algorithm exists because it does something 
useful. Frivolous algorithms do exist, and computer 
scientists may invent useless algorithms either in jest or 
by mistake, but we are really interested in algorithms that 
have some utility to us. When working with algorithms, 
it is not enough to show that something can be done. We 
want algorithms to be of practical interest, and for that 
purpose they must do something well.

Therein lies a fundamental difference between algo-
rithms and mathematics. Most early computer scientists 
were mathematicians, and computer science uses a lot of 
mathematics, but it is not a mathematical discipline. A 
mathematician wants to prove that something is so; a com-
puter scientist wants to make it work.

Our first characteristic of an algorithm is that it should 
require a finite number of steps. That is not very precise. 
We do not want to have just a finite number of steps. We 
want to have a number of steps that is small enough to 
execute them in practice, so that our algorithm finishes in 
a reasonable amount of time. That means that coming up 
with an algorithm is not enough; the algorithm must also 
be effective in practice. Let’s see an example to illustrate 
the difference between knowing something and knowing 
how to do something efficiently. Imagine we have a grid 
like the following:
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We want to find the shortest path from the upper- left 
corner of the grid to the lower- right corner, without visit-
ing the same place twice. The length of each path is equal 
to the number of links between points on the grid. Here 
is one way to do it: find all such paths, measure how long 
each of them is, and pick up the shortest, or any of the 
shortest in case of ties. The total number of paths is 12, 
which you can see below:

There are five paths of length 4, so we can pick any one 
of them.

We are not limited to 3 3×  grids, though. We can 
have 4 4× , 5 5× , and even larger grids. Then we discover 
that our method does not scale well. There are 184 paths 
from the upper- left corner to the bottom- right corner of 
a 4 4×  grid; if we go to the 5 5×  grid, the number of such 
paths increases to 8,512. The number of paths contin-
ues to increase apace— in fact, at ever larger paces— and 
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even counting such paths is a challenge. When we reach a 
26 26×  grid, we get 8 402 974 857 881 133 471 007 083 
745 436 809 127 296 054 293 775 383 549 824 742 623 
937 028 497 898 215 256 929 178 577 083 970 960 121 
625 602 506 027 316 549 718 402 106 494 049 978 375 
604 247 408 paths. This number has 151 decimal digits 
and was found with a computer program implementing 
an algorithm; yes, we use an algorithm to understand the 
behavior of another algorithm.5

The procedure for enumerating all paths and picking 
the shortest one is undoubtedly correct, and will always 
give us the shortest path— or any of the shortest paths, 
if there are many equally short ones— yet it is definitely 
impractical. Also, it is completely useless, as there are algo-
rithms that will find the shortest path without having to 
enumerate all possible paths, thus saving a lot of time and 
allowing us to tackle grids of any size. In the 26 26×  grid, 
the number of steps required to find the answer is only in 
the order of the hundreds; we’ll see it in the next chapter.

The question of what is a practical algorithm and in 
what sense an algorithm is more practical than others is at 
the heart of any application of them. We’ll see in the rest 
of the book that there often exist different algorithms for 
solving the same problem and we choose the algorithm that 
is most appropriate for the application at each particular 
setting. Like all tools, some algorithms are more suitable 
for particular cases than others. Unlike many other tools, 
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though, we possess a well- defined way to evaluate the 
merits of algorithms.

Measuring Algorithms

When we are investigating an algorithm to solve a prob-
lem, we want to know how it is going to perform. Speed 
is always an important factor. We use algorithms on com-
puters to do things faster than a human would do.

As computer hardware improves, we are usually not 
content with knowing how a program implementing an 
algorithm runs on a particular computer. Our computer 
may be faster or slower than the one that the algorithm 
was measured on, and after some years, measurements of 
algorithms on outdated machines will have only historical 
interest. We need a way to measure how well an algorithm 
performs independent of computer hardware.

The size of the problem we are trying to solve, though, 
should be somehow reflected in how we measure the 
performance of an algorithm. We don’t really care how 
long it takes to sort 10 items; after all, we can do that by 
hand. We care how long it takes to sort a million items or 
more. We want a measure of how we expect an algorithm 
to perform in problems that are not trivial.

To do that, we need a way to quantify the size of prob-
lems fed to algorithms. The dimension of interest varies 
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among different problems. If we want to sort a number of 
items in our computer, the relevant dimension is the num-
ber of items that we want to sort (and not, say, the size 
or composition of the items). If we want to multiply two 
numbers, the relevant dimension is the number of digits 
of the two numbers (that also makes sense for humans: 
long multiplication is long because it depends on how 
many digits each number has). When we study a problem 
and candidate algorithms for tackling it, we do it always 
with the size of the problem under consideration.

Although particular problems have different ways to 
assess their size, in the end, for each problem we specify 
its size with an integer number, which we call n. Picking up 
the examples above, n is the number of either the items to 
sort or digits of the numbers we want to multiply. Then 
we want to be able to talk about the performance of algo-
rithms tackling problems of size n.

The time required by an algorithm is related to its 
computational complexity. The computational complexity 
of an algorithm is the amount of resources it requires to 
run. There are two main kinds of resources here: time, how 
long it takes, and space, how much storage it requires in 
terms of computer memory.

We are focusing on time right now. As there are com-
puters with different performance characteristics, talking 
about the time taken by an algorithm to run on a particular 
computer may give us some indication of what to expect 
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when it runs on other computers, but we would like some-
thing more general. The speed of a computer depends on 
the time it takes to execute basic operations. To get around 
such specificities, we instead choose to talk about the 
number of operations required to run an algorithm, not the 
actual time it takes on a specific computer to run these 
operations.

Now having said that, note that we’ll be abusing ter-
minology a bit and treating “operations” and “time” as 
synonyms. Although we should be strictly saying that an 
algorithm requires “x operations,” we’ll also be saying that 
the algorithm is “time x,” to indicate that it runs in the time 
required to execute x operations on any computer that the 
algorithm is actually run. Even though the actual time will 
vary with different hardware, it does not matter when we 
want to compare two algorithms that run on “time x” and 

“time y” on the same computer, whatever computer that is.
Now we return to the size of the problem given to an 

algorithm. As we are interested in nontrivial problems, we 
won’t care about what happens with small problem sizes. 
We will be concerned with what happens once we reach a 
certain size. We won’t say exactly what this size is, but we 
will always assume that it is substantial.

There is a definition of complexity that has proved to 
be useful in practice. It also has a symbol and name. We 
write O( )⋅  and call it the big O notation. Inside the big O, 
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in the place of the dot, we write an expression. The no-
tation means that the algorithm will take time that is at 
most a multiple of the expression. Let us see what that  
means:

• If you want to look for something in a sequence of 
items— there are n items— and the sequence of items is 
not ordered in any way, the complexity is O n( ). That is, 
for n items, the time required to find a particular one in 
them will not be more than a multiple of the number of 
items.

• If you want to multiply two n digit numbers using long 
multiplication, the complexity is O n( )2 . That is, the time 
required for the multiplication will not be more than a 
multiple of the square of the size of the numbers.

If we have an algorithm that has O n( ) complexity, 
then for an input size of 10,000 we expect it to need a 
multiple of ten thousand steps. If the algorithm has O n( )2  
complexity, for a similarly sized input, we expect it to need 
a hundred million steps. For many problems, this is not a 
large size. Computers routinely sort 10,000 items. But you 
see that the scale of the number of steps represented by 
the algorithm’s complexity can grow large.

Here are some examples that may help you appreci-
ate the size of some numbers that we will encounter. Take 
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the number 100 billion, or 1011; this is one with 11 zeros 
behind it. If you take 100 billion hamburgers and lay them 
end to end, you can circle the earth 216 times, go to the 
moon, and come back.

A billion of something is usually called giga something, 
at least in computers. Next after the billion, or giga, comes 
the trillion, or tera, which is 1,000 billion, 1012 . If you start 
counting one number per second, you will need 31,000 
years to get to one trillion. Up by 1,000 again and we get 
to one quadrillion, 1015, or peta; the total number of ants 
that live on the earth is between 1 and 10 quadrillion, 
according to biologist E. O. Wilson. In other words, we 
have between 1 and 10 petaants on our planet.

After quadrillion comes quintillion, or exa; a quintil-
lion is 1018  and is about the number of grains of sand in 10 
large beaches. For example, 10 Copacabana Beaches have 
one exagrain of sand. Up again, we arrive at 1021, one sex-
tillion, or zetta. The number of stars in the observable uni-
verse is one zettastars. We run out of prefixes after yotta, 
which stands for 1024, one septillion. But numbers can al-
ways get larger. The number 10100 is called a googol— yes, 
you probably know a company that has named itself after 
a purposeful misspelling. And then there is 10 raised to 
the googol power, 1010100

, which is one googolplex.6

These analogies will help us appreciate the relative 
merits of specific algorithms that we will examine in 
the rest of the book. Although in theory we could have 
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algorithms of any kind of complexity, the algorithms we 
usually deal with fall into few different groups.

Complexity Families

The fastest family of all algorithms comprises the algo-
rithms that run in no more than constant time, no matter 
what their input. We denote this complexity with O( )1 ; 
for example, an algorithm that checks if the last digit of 
a number is odd or even will not be affected by the size of 
the number and will run in constant time. The 1 in O( )1  
follows from the fact that O( )1  means that the algorithm 
needs no more than a multiple of one steps to run— that 
is, a constant number of steps.

Before we meet the next complexity family, we need 
to take a brief excursion into a particular way things can 
grow or shrink. If you add something many times, you 
multiply it. If you multiply something many times, you 
raise it to a power or exponentiate it. We just saw how 
big numbers with exponents like 1012 (or more) can 
get. What is perhaps not immediately obvious is how 
quickly exponentiation leads to dizzying escalation— a 
phenomenon called exponential growth.

The probably apocryphal story about the invention of 
chess is illustrative. The ruler of the country where chess 
was invented asked its inventor what he would like for 
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a gift (alas, it is a “he” in these stories). He replied that 
he would like one grain of rice on the first square of the 
chessboard, two on the second, four on the third, and so 
on. The king thought that he got off easily and granted 
the wish. Unfortunately, things quickly turned sour. The 
sequence grows in powers of two: 2 10 =  in the first square, 
2 21 =  in the second square, 2 42 =  in the third square, 
and thus in the last square the number of grains would 
be 263, a quantity unreachable by any means (it is equal to 
9,223,372,036,854,775,808, or about 9 quintillion).

Exponential growth can also help us understand why 
it is so difficult to fold a piece of paper many times. Each 
time you fold it, you double the number of layers of the 
folded paper. After 10 folds, you have 2 1 02410 = ,  layers. 
If your sheet is 0.1 millimeters thick, you now have a 
folded wad that is over 10 centimeters thick. Apart from 
the sheer force you will need to fold that in two, it may 
not be physically possible at all to do it, because to fold 
something it must be longer than thick.7

Exponential growth is the reason why computers 
have gotten more and more powerful over the years. 
According to Moore’s law, the number of transistors in 
an integrated circuit doubles about every two years. The 
law is named after Gordon Moore, who founded Fairchild 
Semiconductor and Intel. He made the observation in 
1965; the law proved prescient, so that we have gone from 
about 2,000 transistors in a processor in 1971 (the Intel 
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4004) to more than 19 billion in 2017 (the 32- core AMD 
Epyc).8

Having seen growth, let us explore now its opposite. If 
you have a multiple of something, you use division to re-
verse the operation and get the original value. If you have 
the power of something, an, how do you reverse the opera-
tion? The reverse of raising to a power is the logarithm.

Logarithms are sometimes taken as the boundary be-
tween mathematics for all and mathematics for the ini-
tiated; even the name has an aura of incomprehension. 
If logarithms seem somewhat hazy, you need to keep in 
mind that the logarithm of a number is the reverse of 
raising the number to a power. Just as when we raise to a 
power, we multiply repeatedly, when we take a logarithm, 
we divide repeatedly.

The logarithm is the answer to the question, “To which 
power should I raise a number to get the value I want?” The 
number we are raising is called the base of the logarithm. 
So if the question is, “To which power should I raise 10 to 
get 1000?,” the answer is 3 because 10 1 0003 = , . Of course, 
we may want to raise a different number— that is, use a 
different base. The notation for logarithms is log xa  and 
it corresponds to the question, “To which power should I 
raise a to get x?” When a = 10, we just drop the subscript, 
because logarithms base 10 are common, so instead of 
writing log x10  we simply write logx.
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There are also two other common bases. When the 
base is the mathematical constant e, we write lnx . The 
mathematical constant e, called Euler’s number, is approxi-
mately equal to 2.71828. In the natural sciences we meet 
lnx  a lot, which is why it is called natural logarithm. The 
other common base is 2, and instead of writing log x2  we 
write lgx . Base 2 logarithms are common in computer sci-
ence and algorithms, but probably unused outside these 
fields, although we have already met them. In paper fold-
ing, if a wad of paper has 1,024 layers, it has been folded 
lg lg1024 2 1010= =  times. In the chess example, the 
number of grains of rice results from the number of dou-
blings we perform, which are lg2 6363 = .

The reason we see lgx  a lot in algorithms is that it 
appears whenever we solve a problem by splitting it in two 
equal smaller problems; this is called divide and conquer, 
and it works like folding a sheet in two. The most efficient 
way to search for something in a sorted group of items has 
complexity O lgn( ). That is pretty amazing; it entails that 
to find something among one billion ordered items, you 
need only lg10 309 ≈  probes into your items.

Algorithms that have logarithmic complexity are the 
next best thing after algorithms that run in constant 
time. Next come algorithms that run in O n( ), which are 
called linear time algorithms because their time grows 
proportionally with n; that means that they grow as 
multiples of n. We saw that searching for an item in an 
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unordered set of items requires time proportional to 
the number of the items, O n( ). See how the complexity 
increased compared to when the items are ordered; 
organizing the data of our problem can have a big impact 
on how it can be solved. In general, linear time is the best 
behavior we can expect of an algorithm if it has to read 
through all the inputs of the problem, as this will require 
time O n( ) for n inputs.

If we combine linear and logarithmic times, we get 
loglinear time algorithms, where their time grows by n 
multiplied by its logarithm, nlgn. The best algorithms for 
sorting— that is, putting items in order— have complexity 
O nlgn( ). That may look a bit surprising; after all, it can be 
shown that if you have n items and want to compare each 
item with all other items, it requires time O n( )2 , which is 
bigger than O nlgn( ).9 Also, if you have n items that you 
want to sort, you definitely need O n( ) time to examine all 
of them. Sorting them requires multiplying that number 
by a smaller factor than n itself. We’ll see how this can be 
done, later on in the book.

The next computational complexity family is n raised 
to a constant power, O nk( ); this is called polynomial 
complexity. Polynomial time algorithms are efficient, 
except if k is big, but this rarely happens. When we try to 
solve a computational problem, we are usually delighted if 
we can come up with a polynomial time algorithm.
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A complexity of the form O kn( ) is called exponential 
complexity. Note the difference with the polynomial com-
plexity where the exponent was constant; here it is the 
exponent that changes. We saw how exponential growth 
explodes. The universe will not survive long enough to 
see the answer of exponential algorithms for nontrivial 
inputs. Such algorithms are interesting from a theoreti-
cal point of view because they show that a solution can 
be found. We can then search for better algorithms with 
lower complexity, or we may be able to prove that no better 
algorithms can be found, in which case we can settle for 
something less than the ideal— for instance, approximate  
solutions.

There is something that grows even faster than ex-
ponentiation, and this is the factorial. If you have not 
encountered a factorial before, the factorial of a natural 
number n— which we write as n!— is simply the product of 
all the natural numbers up to and including that number: 
100 1 2 3 100! = × × × × . Even if you have not encoun-
tered 100! you probably have encountered 52! even with-
out knowing it. That is the number of different shuffles of 
a deck of cards. Algorithms whose running time is mea-
sured in factorials have factorial complexity.

Although numbers like 100! may seem exotic, they 
arise in many nonexotic settings and not just card games. 
Take, for example, the following problem: “If we have a 
list of cities and the distances between each pair of them, 
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what is the shortest possible route that one should take 
to visit each city once and return to the origin city?” This 
is called the traveling salesman problem, and the obvious 
way to solve it is to examine every possible path taking 
in all cities. Unfortunately, for n cities this is n! The 
problem is unmanageable after, say, 20 cities. There are 
some algorithms that do it a bit better than O n( !), but 
not enough to be practical. Surprising as it may seem 
for such a straightforward problem, the only way we 
can solve it in an acceptable time is by finding a solution 
that may not be the optimal one, but is close enough to 
it. Many other problems of great practical importance are 
intractable— that is, we don’t know a practical algorithm 
to solve them exactly. Even so, the quest for better and 
better approximation algorithms is a vibrant field in 
computer science.

In the table that follows, you can see the value of vari-
ous functions, falling under the complexity families we 
presented, for different values of n. The first row gives the 
n values and also stands in for linear complexity; subse-
quent rows show families of increasing complexity. As n 
increases, the function values increase, but the way they 
increase is different. The function n3 will take us from one 
million to one quintillion, but that is nothing compared 
to 2100 or 100! We have left a blank like after the nk  row, 
separating practical from impractical algorithms. The bor-
der between the two are the polynomial algorithms, which 
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as we saw are of practical use. Algorithms with higher com-
plexity are usually not of practical use.

n

lgn

nlgn

1 10 100 1 000 1 000 000

0 3 32 6 64 9 97 19 93

0 33 22 664 39

, , ,

. . . .

. . 99 965 78 1 9 10

1 100 10 000 1 000 000 10

1 1 000 1 000 000

7

2 12

3

, . .

, , ,

, , ,

×
n

n 110 10

1 10 100 1 000 1 000 000

2 2 1 024 1 3 10 10 10

9 18

30 301 1

nk k k k k

n

, , ,

, . × 00

157 2567 10

5 5

6 7

1 3 628 800 9 33 10 4 10 10

.

.

! , , .n × ×



2

GRAPHS

In the eighteenth century, the good citizens of Königsberg 
strolled around their city on Sunday afternoons. The city 
of Königsberg was built on the banks of the river Pregel. 
The river created two large islands within the city; the is-
lands were connected to the mainland and each other with 
seven bridges in total.

Swept by the vagaries of European history, Königs-
berg passed from the Teutonic nights, to Prussia, Russia, 
the Weimer Republic, and Nazi Germany, and after the 
Second World War, it became part of the USSR and was 
renamed Kaliningrad, which is the name of the city today. 
It is part of Russia now, although not connected to Russia 
proper. Kaliningrad is situated in a Russian enclave, on the 
Baltic Sea, wedged between Poland and Lithuania.

Back in the day, the problem occupying the minds of 
the good citizens was whether it was possible to make their 
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walks while crossing all seven bridges exactly once. The con-
cern was named after its host city as the Königsberg bridge 
problem. To get a glimpse of the nature of the issue, here is 
a drawing of Königsberg at the time. The bridges are indi-
cated by ovals drawn around them. The city had two islands, 
but you can see only one island in its entirety; the other one 
extends to the right beyond the boundaries of the map.1

We don’t know exactly how, but the famous Swiss 
mathematician Leonhard Euler learned about the prob-
lem; the problem is mentioned in a letter sent on March 9, 
1736, from the mayor of Danzig, a city in Prussia 80 miles 
to the east of Königsberg (Danzig is now called Gdansk 
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and belongs to Poland). The correspondence with Euler 
seems to have been part of an effort by the mayor to en-
courage the growth of mathematics in Prussia.

Euler was at the time living in Saint Petersburg in 
Russia. He worked on the problem and presented a solu-
tion to the members of the Saint Petersburg Academy of 
Sciences on August 26, 1735. In the following year, Euler 
wrote a paper, in Latin, describing his solution.2 The solu-
tion was negative: it was not possible to make a tour of 
the city crossing each bridge only once. That would be an 
interesting piece of mathematical history, but by solving 
the problem, Euler created a whole new branch of math-
ematics: the study of graphs.3

Before we go into graphs, let’s see how Euler tackled 
the problem. First of all, he abstracted the problem to its 
bare essentials. No detailed map of Königsberg is needed to 
represent the question. Euler drew the following diagram:4
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He used the letters A and D for the two islands, and B 
and C for the two banks on the mainland. The next step is 
to abstract the diagram even more, away from the physi-
cal geometry, and to the connections between bridges, is-
lands, and mainland, because this is what really matters 
for the problem:

A

C

B

D

We have drawn the landmasses as circles, and the 
bridges as lines connecting the circles. The problem then 
can be restated as follows: If you have a pencil, is it pos-
sible to start from any of the circles, put the pencil down, 
and follow the lines without lifting the pencil from the pa-
per so that you can pass through every line exactly once?

Euler’s solution went as follows. Whenever you enter 
a landmass, you must leave it, except if this is the start 
or end of your walk. In order to do that, each landmass, 
apart from the start and finish, must have an even number 
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of bridges so that each time you enter it, you can leave it 
from a different bridge, as required. Now go to the figure 
and count the number of bridges connecting each land-
mass. You will find out that all landmasses are connected 
with an odd number of bridges: A has five bridges, and B, 
C, and D have three bridges. Whichever of the landmasses 
we choose as starting and ending points, there will be two 
other landmasses that we will visit in the midst of our tour, 
and they have an odd number of bridges each. We cannot 
enter and leave them traversing their bridges only once.

Indeed, if we arrive at B at some point on our tour, 
we must have crossed a bridge to get to it. We will cross a 
second bridge to leave it. We must cross the third bridge 
at some later time because we are required to cross all 
bridges. But then we are stuck at B because there is no 
fourth bridge and we cannot cross a second time a bridge 
that we have already crossed. The same goes for C and D, 
which also have three bridges. Exactly the same argument 
holds for A as an intermediate point as it has five bridges; 
after crossing all five bridges of A, we won’t be able to leave 
it from a different, sixth bridge because such a bridge does 
not exist.

The figure we drew consists of circles and lines con-
necting them. To use the proper terminology, we created a 
structure that is composed of nodes or vertices connected 
with edges or links between them. A structure that is com-
posed of sets of nodes and edges is a graph; Euler was the 
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first to recognize graphs as a structure and explore their 
properties. In today’s language, the Königsberg bridge 
problem deals with paths: a path in a graph is a sequence of 
edges that connect a sequence of nodes. Then the Königs-
berg problem is the problem of finding a Eulerian path or 
Eulerian walk: a trail through a graph such that each edge 
is visited exactly once. A path that starts and ends at the 
same node is called a tour or circuit. If we also add the re-
striction (not in the original problem) that we want the 
Eulerian path to start and finish at the same point, then 
we have a Eulerian tour or Eulerian circuit.

The applications of graphs are so numerous that they 
fill entire books. Anything that can be modeled by nodes 
connected to other nodes can be represented as a graph. 
Once we do that, we can ask all kinds of interesting ques-
tions about it; here we’ll have the opportunity to take just 
a glance.

Before we do that, though, here is a small detail to 
please the most rigorous minded of readers. We men-
tioned that a graph is a structure that comprises sets of 
vertices and edges. In mathematics, a set does not contain 
the same item twice. Yet in our representation of Königs-
berg, we have the same edge appear more than once; there 
are, for example, two edges between A and B. An edge is 
distinguished by its starting and ending points, so the two 
edges between A and B are in fact two instances of the 
same edge. Then the set of the edges is not really a set; it is 
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a multiset— that is, a set that allows for multiple instances 
of its elements. In the same way, the Königsberg graph is 
not really a graph but rather a multigraph.

From Graphs to Algorithms

The definition of a graph is wide so that it can encompass 
everything that can be represented as things connected 
to other things. The graph may have some relevance to 
the topology of a place, but the nodes and links may have 
nothing to do with points in space.

A social network is an example of such a graph. In a 
social network, nodes are social actors (these may be indi-
viduals or organizations), and the links represent interac-
tions between them. The social actors may be real- world 
actors, and the links may be their collaborations in films. 
The social actors can be us, and the links may be our con-
nections to other people in a social network application. 
We can then use social networks to find communities of 
people, starting from the premise that communities are 
formed by people who interact with each other. There exist 
algorithms that are able to find efficiently communities in 
graphs with millions of nodes.

The edges in the Königsberg graph are not directed, 
meaning that we can traverse them both ways; for exam-
ple, we can go from A to B and B to A. The same goes for 
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social networks, when the connections are reciprocal. That 
is not always necessary. Depending on our applications, 
edges in a graph may be directed. When this happens, we 
draw the edges with arrows at their ends. Directed graphs 
are called digraphs for short. You can see a digraph below. 
Note that this is not a multigraph; the edge from A to B is 
not the same as the edge from B to A.

A

B

C

D

The World Wide Web is an example of a (huge) directed 
graph. We can represent the web with nodes standing in 
for web pages and edges standing in for the hyperlinks be-
tween each pair of pages. This graph is a directed graph, 
because a page may link to another page, but that other 
page does not necessarily link back to the first page.

When it is possible to start from a node in a graph, 
traverse edges, and come back to the node we started from, 
we say that the graph has a cycle. Not all graphs have cy-
cles. The Königsberg graph has cycles— although it does 
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not have a Eulerian circuit. A famous cyclic graph (actually 
a multigraph) in the history of science is August Kekulé’s 
model of the molecular structure of benzene:5

A graph without a cycle is called an acyclic graph. Di-
rected acyclic graphs form an important class of graphs. 
We usually call them dags. Dags have many uses; for ex-
ample, we use them to represent priorities between tasks 
(tasks are nodes, and priorities are links between them), 
dependency relations, prerequisites, and other similar ar-
rangements. We’ll leave aside acyclic graphs now and turn 
our attention to cyclic graphs, which will provide us with a 
first window on algorithms on graphs.

Paths and DNA

One of the most important scientific developments of the 
last decades has been the decoding of the human genome. 
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Thanks to the techniques that were developed in that ef-
fort, we can now investigate genetic diseases, detect muta-
tions, and study genomes of extinct species, among other 
fascinating applications.

Genomes are encoded in the DNA, a large organic mol-
ecule that is composed of a double helix. The double helix 
is made up of four bases: cytosine (C), guanine (G), ad-
enine (A), and thymine (T). Each part of the double helix is 
constructed from a series of bases, like ACCGTATAG. The 
other part of the double helix is constructed from bases 
that are connected with their corresponding bases on the 
first part, according to the rules A- T and C- G. So if one 
part of the helix is ACCGTATAG, the other part will be 
TGGCATATC.

In order to find the composition of an unknown DNA 
piece, we can work as follows. We create many copies of 
the chain and break them up into little fragments— for 
instance, fragments containing three bases each. Using 
specialized instruments, we can identify such small frag-
ments easily. In this way we end up with a set of known 
fragments. We are then left with the problem of assem-
bling the fragments into a DNA sequence, whose composi-
tion we will then know.

Suppose then that we have the following fragments, or 
polymers as they are known: GTG, TGG, ATG, GGC, GCG, 
CGT, GCA, TGC, CAA, and AAT. Each one of them has a 
length of three; to find the DNA sequence from which 
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they were broken up, we create a graph. In that graph, the 
vertices are polymers of length two that are derived from 
the polymers of length three, taking for each polymer of 
length three the first two and last two polymers. So from 
GTG we will get GT and TG, and from TGG we will get TG 
and GG. In the graph, we add one edge for every one of the 
initial polymers or length three that was used to derive 
the two vertices. We give the name of the polymer to that 
edge. From ATG we get vertices AT and TG and the edge 
ATG. You can see the graph that results from our example:

AT

TG

GG

GC

CG

GT

CA

AA

ATG

T
G
G

T
G
C

G
G
C

GC
G

GCA

CGT

G
T
G

C
A
A

AA
T
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With the graph we have created, we only need to 
find a tour in the graph that visits all edges exactly 
once— that is, an Eulerian circuit— in order to find the 
initial DNA sequence. The Hierholzer algorithm for find-
ing Eulerian circuits on graphs was published by the Ger-
man mathematician Carl Hierholzer in 1873 and goes like  
this:6

1. We pick a starting node.

2. We go from node to node until we return to the 
starting node. The tour that we have traced to this point 
does not necessarily cover all edges.

3. As long as there exists a vertex that belongs to the 
tour we have traced, but is also part of an edge that is not 
in the path, we start another path from that vertex, using 
edges that we have not used yet, until we return to it, 
forming another tour. Then we splice this tour to the tour 
we have already traced.

If we use the algorithm in our example graph, we will 
find the path in the following figure:



56  ChAPtER 2

AT
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G

3

GCA

8

CGT

4

G
T
G

5

C
A
A

9

AA
T

10

We started from AT and made the tour AT →  TG →  
GG →  GC → CA →  AA →  AT. We made a tour, but we 
did not cover all the edges. We see that TG has an edge, 
TGC, that we have not covered yet. So we go to TG and do 
a tour starting along the TGC edge, getting TG →  GC → 
CG → GT → TG. We splice the second path into the first, 
getting the one in the figure, AT → TG (→ GC → CG →  
GT → TG) → GG → GC → CA → AA → AT. If we walk 
the resulting path from the first node to the last, without 
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stepping on the last, and concatenate the vertices keeping 
their common base only once, we get the DNA sequence 
ATGCGTGGCA. You can verify that this sequence contains 
all the polymers with which we started; CAA and CAT are 
found if you wrap around when you reach the end of the 
sequence and go to the beginning.

In this particular illustration, we only found one ad-
ditional tour that we spliced into the original one. In gen-
eral, there may be more; step 3 of the algorithm is repeated 
as long as there are vertices with edges that we have not 
covered yet. Hierholzer’s algorithm is fast: if implemented 
properly, it runs in linear time, O n( ), where n is the num-
ber of edges in the graph.7

Scheduling a Tournament

Suppose you are organizing a tournament in which the 
contestants will compete in pairs, so we’ll have a series of 
matches. We have eight contestants, and each contestant 
will play four matches. Our problem is how to schedule 
the tournament. We want to schedule the matches so that 
each contestant plays only one match per day.

An obvious solution is to have just one match per day 
and allow the tournament to last as long as needed. As 
we have eight contestants and each contestant plays four 
matches, the tournament would roll out over 16 days 
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(8 4 2× / ; we divide by two so as not to count each match 
twice). We’ll name the eight contestants Alice, Bob, Carol, 
Dave, Eve, Frank, Grace, and Heidi. This allows us to use 
only the initial letter of their names to identify them.

We can find a better solution if we model the problem 
as a graph. We’ll have a vertex for each player and an edge 
for each match. Then the graph will look like the one on 
the left below. On the right, we have labeled the edges with 
the day on which the corresponding match will take place. 
How did we find this solution?

A B

CD

E

F

G

H

A B

CD

0

1

0

1

E

F

G

H

0

1
0

1

2

3

3

2

3

23

2

We agree to number the tournament days consecu-
tively. Let the tournament start on day zero. We’ll sched-
ule all matches, one by one.
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1. Take a match that we have not scheduled yet. If we 
have scheduled all matches, stop.

2. Schedule the match on the earliest day so that neither 
of the two players has another match on that day. Return 
to step 1.

This algorithm looks deceptively simple, and you 
may doubt that it really solves our problem. So let’s walk 
through it and see what happens. In the following table 
we can see the matches, one by one, and the day on which 
we schedule each match, as we apply the algorithm on the 
graph. You should read the first two columns of the table 
and then the next two:

Match Day Match Day

A, B 0 C, F 3

A, D 1 C, G 2

A, E 2 D, G 3

A, H 3 D, H 2

B, C 1 E, F 0

B, E 3 E, H 1

B, F 2 F, G 1

C, D 0 G, H 0
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We start by taking the match Alice versus Bob. Neither 
Alice nor Bob play any other match on day zero— that is, 
the day on which we’ll assign the match.

We then take another match we have not scheduled 
yet— say, Alice versus Dave. Although there is no require-
ment to do so, we’ll take the match players in lexicographi-
cal order as we continue, but bear in mind that we could 
take them in any other way, even randomly, as long as 
we treat each match only once. Alice already has a match 
scheduled on day zero, so the earliest available day for the 
match is day one.

Next comes the match between Alice and Eve. Alice is 
booked on day zero and day one, so we’ll schedule it on day 
two. Alice’s final match will be with Heidi; Alice is engaged on 
days zero, one, and two, so this will have to go on day three.

We are done with Alice. Moving on to Bob’s matches, 
except for the one with Alice, which we have already sched-
uled, we need to plan Bob versus Carol. Bob is already 
scheduled on day zero (with Alice), so this match will have 
to go on day one. Scheduling Bob versus Eve, we notice 
that Bob is already engaged on day zero and day one (we 
just scheduled that), while Eve is scheduled to play on day 
two with Alice; we therefore schedule Bob versus Eve on 
day three. Going to Bob versus Frank, Bob has matches on 
days zero and one, but is free on day two, while Frank has 
no matches at all as of yet. So Bob versus Frank goes on 
day two, earlier than Bob versus Eve.
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After Bob, we’ll deal with Carol’s matches. Neither 
Carol nor Dave have a match scheduled on day zero, so 
Carol versus Dave will go on the first day of the tourna-
ment. After this, the Carol versus Frank match can take 
place on day three, because Carol plays matches on day 
zero (we just arranged that) and day one (with Bob, ar-
ranged previously), while Frank plays with Bob on day two 
(also arranged previously). Carol versus Grace will take 
place earlier, on day two, as Grace has no other matches 
planned as of yet and Carol is still free on day two.

We proceed similarly with the rest of the matches; 
it is interesting that the matches in the inner and outer 
squares of the graph will happen as early as the first two 
days. These are two different groups playing in parallel be-
fore they start playing between them. At the end, the so-
lution we find is a significant improvement over the naive 
solution requiring 16 days; we only need four!

This tournament scheduling problem is in fact an in-
stance of a more general problem: the edge coloring prob-
lem. An edge coloring of the graph is an assignment of 
colors to edges so that no two adjacent edges have the 
same color. Now color should be taken figuratively here. In 
our example, the colors are the days; in general, they can 
be any other set of distinct values. If instead of the edges, 
we want to color the vertices of the graph so that no two 
vertices that are linked by an edge share the same color, 
then we have the vertex coloring problem. Both edge and 
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vertex coloring belong to the wider class of, no surprise, 
graph coloring problems.

The algorithm we described for edge coloring is simple 
and efficient (it takes each edge one by one, and only once). 
It is a so- called greedy algorithm. Greedy algorithms are al-
gorithms that try to solve a problem by finding the best 
solution at each stage, not the optimal solution in general. 
Greedy algorithms are useful in many problems when at 
each stage of the solution we have a choice to make and 
our rule is “what looks best now.” Such strategies that 
guide our choices in the evolution of an algorithm are 
called heuristics, from the Greek heuriskein, which means 

“to find” (a solution, that is).
With some thought we can realize that in algorithms, 

as in real life, what looks best right now may not really be 
the best strategy. It may pay off to delay gratification; the 
best choice right now may lead us to a trap that we’ll regret 
later on. Imagine you are climbing a mountain. The greedy 
heuristic would be to select the steepest path at each point 
(we assume that your climbing prowess is unparalleled). 
This will not necessary lead you to the top: it may well lead 
you to a plateau, from which the only way is back. The real 
way to the top may lie through gentler slopes.

The climbing metaphor is frequently used in problem 
solving in computer science. We model our problem so 
that the solution lies at “the top” of the possible moves we 
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can make and try to find the correct moves; this is called a 
hill climbing approach. When we arrive at something like a 
plateau, we say we arrived at a local optimum, but not the 
global optimum, the highest peak that we are after.

From hill climbing back to tournament scheduling, 
we selected the first available day for each match. Unfor-
tunately, this might not be the best way to schedule all 
matches. Indeed, it turns out that graph coloring is a diffi-
cult problem. The algorithm that we gave is not guaranteed 
to give the optimal solution— that is, the solution requir-
ing the smallest number of days (or colors, in general). 
The number of edges adjacent to a node is called its degree. 
It can be proven that if the largest degree of any node in 
the graph is d, the edges can be colored with at most d or 
d + 1 colors; the required number of colors for the edges 
of a graph is called its chromatic index. In our particular 
example, the solution is optimal, d = 4, and we used four 
days. Our algorithm, however, may not be able to find the 
optimal solution in some other graph. It may give us a so-
lution worse than that. The good thing about greedy graph 
coloring is that we know how far off that solution might 
be: the solution it will give may need up to 2 1d −  colors, 
instead of d, but no worse than that.

If you want to see how this may happen, consider a 
graph that consists of “stars” connected to a central node, 
like the one on the next page:
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If we have k stars, where each star has k edges plus an 
edge to the central node, and we start by coloring the stars, 
we’ll use k colors to color the edges of the stars. Then we’ll 
need k additional colors to connect the stars to the central 
node. The total is 2k colors. This is what we did on the left. 
But this is not the optimal solution. If we start by coloring 
the edges connecting the stars to the central node, we’ll 
need k colors for that. Then we can color the stars them-
selves using only one additional color, for a total of k + 1 
colors. You can see how we can do that on the right. All this 
is in accordance with theory, as each star has degree k + 1.

The problem is that the greedy algorithm decides to 
order the edges to color in a way that is not optimal at the 
end, or to use the proper terminology, in a way that is not 
globally optimal. It might hit on the best solution, but it 
might not. Then again, the difference from the optimum 
solution is not that great. That is a relief because graph col-
oring is so difficult that if we want an exact algorithm that 
can find the best solution for every graph, the algorithm 
will have exponential complexity, about O n( )2 , where n is 
the number of edges in the graph. Exact edge coloring al-
gorithms are therefore useless, except for tiny graphs.
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The greedy algorithm we have presented has one ad-
ditional nice property (apart from being practical). It is 
an online algorithm: an algorithm that works even if the 
inputs are not known when we start but instead arrive on 
the scene as we go. We don’t need to know all the edges to 
start running the algorithm. The algorithm will work cor-
rectly, even if the graph is constructed in a piecemeal fash-
ion, one edge at a time, while we are running the algorithm. 
This would happen if players are signing up for the tourna-
ment even after we have started scheduling the matches. 
We will be able to color each edge (match) as it comes, and 
whenever the graph is finished, we’ll have an edge color-
ing ready. Moreover, this greedy algorithm is the optimum 
algorithm if the graph is created incrementally in this way; 
no exact algorithm, no matter how inefficient, exists at all 
when the graph is constructed while we are solving the 
problem.8

Shortest Paths

As we saw, a greedy algorithm works by taking the best 
decision at each step— which may not be the best decision 
overall. It has a somehow opportunistic nature or carpe 
diem feeling to it. Unfortunately, as Aesop’s fable tells us, 
a grasshopper living for the day may yet live to regret the 
winter, when the ant, who is preparing for the future, ends 



66  ChAPtER 2

up cozy and warm.9 In the planning of tournaments, we 
found that the grasshopper may not end up so badly. Now 
it is time for the ant’s revenge.

In chapter 1, we discussed the infeasibility of trying 
to find the shortest path between two points on a grid by 
enumerating all the possible paths. We saw that this is im-
possible to do in practice because the number of paths in-
creases tremendously. Now with our knowledge of graphs, 
we will see that there is a way. In fact, we’ll take the prob-
lem up a notch. Instead of looking for the shortest path 
on a grid, which has a kind of nice geometry and on which 
all distances between points are equal, we will allow any 
geometric shape and even add different distances between 
points.

To do that, we’ll create a graph where we have nodes 
and edges representing a map, and want to find the short-
est way between two nodes on the map. Moreover, we’ll 
attach a weight to each edge. The weight may be positive 
or zero, and will correspond to a measure of the distance 
between the two connected nodes. It may be distance in 
miles or travel time in hours; any other nonnegative met-
ric will do. Then the path length is the sum of the weights 
along the path; the shortest path between two nodes is the 
path with the smallest length. If all weights are equal to 
one, then the path length is equal to the number of edges 
on the path. Once we allow weights to have other values, 
this is no longer true.
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In the following graph, we have six nodes connected 
by nine edges with varying weights, and want to find the 
shortest path to travel from nodes A to F.
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If we adopt a greedy heuristic, we’ll start by going from 
node A to C, then the best choice is to go to node E, and 
from there we make our way to node F. The total length 
of the path A, C, E, and F is eight, which is not, however, 
the best path. The best path is to go from A to C to D, and 
then to F, for a total length of six. So the greedy heuristic 
does not work, and in contrast to tournament planning, 
there are no guarantees as to its worst performance in re-
lation to the actual shortest path. Nevertheless, and again 
in contrast to tournament planning, there exist efficient 
algorithms for finding the shortest paths so in fact there 
is no reason to use the greedy heuristic at all.
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In 1956, a young Dutch computer scientist, Edsger 
Dijkstra, was shopping in Amsterdam with his fiancée. 
Having got tired, they sat down at a café terrace to drink a 
cup of coffee, where Dijkstra thought about the problem of 
finding the best way to go from one city to another. He de-
signed the solution in 20 minutes, although the algorithm 
took some time, three years, to get published. Dijkstra 
led an illustrious career, yet this 20- minute invention re-
mained, to his amazement, a cornerstone of his fame.10

So how does the algorithm go? We want to find the short-
est paths from one node to all other nodes in a graph. The al-
gorithm uses an idea called relaxation: we assign estimates for 
the values we want to find (here, distances). In the beginning, 
our estimates are the worst possible. Then as the algorithm 
progresses, we are able to relax these estimates from the ex-
tremely bad ones we started with to progressively better and 
better ones, until we arrive at the correct values.

In Dijkstra’s algorithm, relaxation proceeds as follows. 
We begin by assigning the worst possible value for the dis-
tances of all nodes from our starting node: we set the dis-
tance to infinity; clearly there cannot be anything worse 
than that! In the following figure, we have placed the ini-
tial estimate for the shortest path and previous node in 
that path above or below each node. For the A node, we 
have 0 / −  because the distance from A to A is zero and 
there is no previous node to A. For all other nodes, we have 
∞ −/  because the distance is infinity and we have no idea 
about the shortest path to them.
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We take the node with the shortest distance from A 
thus far. This is A itself. That is our current node, so we 
mark it gray.
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From A we can check the estimates for the shortest 
paths to its neighbors, B and C. Initially we had set them 
at infinity, but in fact now we find out that we can get to 
B from A at a cost of 3 and we can get to C from A at a cost 
of 1. We update these estimates and also indicate that the 
estimates are through A; we write 3/A above B and 1/A 
below C. We are done with node A for the rest of the algo-
rithm. We update the figure accordingly, marking A black. 
We move to the unvisited node with the best current esti-
mate. That is node C.
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From node C, we check the estimates of the shortest 
paths to its neighbors, D and E. They were at infinity, but 
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now we see that we can get to each one of them through C. 
The path from A to D through C has a total length of 5, so 
we write 5/C above D. The path from A to E through C has 
a total length of 3, so we write 3/C below E. We are done 
with node C so we mark it black and move to the unvisited 
node with the best current estimate. Both nodes B and E 
have an equally good estimate of 3. We can pick either. Let 
us pick B.
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We work in the same way. From node B, we check the 
estimates of the shortest paths to its neighbors, D and 
F. We already have an estimate of length 5 for D, coming 
from C; that is better than the length 6 that we would get 
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coming from B. So we let the estimate to D remain un-
changed. The current estimate to F is infinite so we update 
it to 9, coming from B. We mark B as visited and move to 
the unvisited node with the best current estimate. That is 
node E.
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E has F as a neighbor. The path to F from E has length 
of 8, which is better than the path we had found through 
B. We update the path, mark E as visited, and move 
to the unvisited node with the best current estimate,  
node D.
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D has F as a neighbor, to which we have found a path 
coming from E with length 8. As we can get to F through 
D with a total length of 6, we update that path. As be-
fore, we move to the unvisited node with the best current 
estimate— actually our only unvisited node, F.
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From node F we check whether we should update our 
estimate for its neighbor, node E. The current path to E 
has a length of 3, while the path through F would have a 
cost of 10. We let E remain unchanged. Visiting F did not 
make any difference, but we could not have known that 
beforehand. As we have visited all nodes, the algorithm 
finishes.
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When we were going through the algorithm, we were 
recording path lengths and the predecessor of each node 
along the shortest path. We did that so that if after finish-
ing the algorithm we want to find the shortest path from 
A to any other node in the graph— for example, F— we 
start from the end and make our way to the start. We read 
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its predecessor: D. We get the predecessor of D, which is 
C, and then the predecessor of C, which is A. The short-
est path from A to F is A, C, D, and F with a total length 
of six, as we had mentioned way back at the start of our 
discussion.

At the end, Dijkstra’s algorithm found all the short-
est paths from the starting node to all other nodes in 
the graph. The algorithm is efficient, as its complexity is 
O m n logn(( ) )+ , where m is the number of edges in the 
graph and n is the number of nodes. Here is the algorithm 
as a set of steps:

1. Assign a distance equal to infinity to all nodes except 
for the starting node; assign a distance equal to zero for 
the starting node.

2. Find the unvisited node with the minimum distance. 
This will be our current node. If there is no unvisited 
node, stop.

3. Examine all neighbors of the current node. If their 
distance is greater than the distance we would get 
passing from the current node before arriving at the 
neighbor, we relax the distance and update the path 
going to the neighbor. Go to step 2.

If we are only interested in the shortest path to a par-
ticular node, we can stop when we pick it to visit in step 2. 
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Once we do that, we have already found the shortest path 
to it, and it will not change in the rest of the algorithm’s 
execution.

We can use Dijkstra’s algorithm in any graph, directed 
or not, even if it contains cycles, provided that it does not 
have negative weights. This might happen if the edges rep-
resent some kind of rewards and penalties between nodes. 
The good news is that there are other efficient algorithms 
that we can use in the presence of negative weights, but 
this highlights that algorithms may have particular re-
quirements in their applicability. When we try to find an 
algorithm to solve our problem, we should check that our 
problem meets the requirements of the algorithm. Oth-
erwise the algorithm will not work; but note that an algo-
rithm cannot tell us that it does not work. If we implement 
the algorithm on a computer, it will still execute its steps 
even if it does not make sense to do so. It will produce an 
answer that will be nonsense. It is up to us to make sure 
that we are using the right tool for the right job.

For an extreme example, think of what would happen 
with a graph that not only has negative weights but also 
a cycle where the sum of the edges is negative: a negative 
cycle. Then no algorithm would find the shortest paths in 
the graph because they do not exist. If we have a negative 
cycle, we can go round and round its edges, and every time 
the length of the path will be reduced. We can continue 
forever, and the path along the cycle will get to negative 
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infinity. Computer scientists and programmers have a 
name for when we put something in a program that does 
not make sense for it: garbage in, garbage out. It is up to 
humans to ferret out the garbage and know what to use 
when. An important part of algorithm courses in universi-
ties is exactly to teach budding computer scientists what 
to use when.



3

SEARCHING

The fact that algorithms can do all sorts of stuff, from 
translating text to driving cars, can give us a misleading 
picture of what algorithms are mostly used for. The answer 
may seem mundane. It is unlikely that you will be able to 
find any computer program doing anything at all useful 
without employing algorithms for searching in data.

That is because searching in one form or another ap-
pears in almost every context. Programs take in data; of-
ten they will need to search for something in them and so 
a searching algorithm will almost certainly be used. Not 
only is searching a frequent operation in programs but, 
because it happens frequently, searching can be the most 
time- consuming operation in an application. A good search 
algorithm can result in dramatic improvements in speed.

A search involves looking for a particular item among 
a group of items. This general problem description 
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encompasses several variations. It makes a big difference 
whether the items are ordered in some way that is related 
to our search or come in random order. A different sce-
nario occurs when the items are given to us one by one 
and we have to decide if we have found the correct one 
right when we confront it, without the ability to rethink 
our decision. If we search repeatedly in a set of items, it is 
important to know if some items are more popular than 
others so that we end up searching for them more often. 
We will examine all these variations in this chapter, but 
keep in mind that there are more. For example, we will 
only present exact search problems, but there are many ap-
plications in which we need an approximate search. Think 
of spellchecking: when you mistype something, the spell-
checker will have to search for words that are similar to the 
one it fails to recognize.

As the data volumes increase, the ability to search ef-
ficiently in a huge number of items has become more and 
more significant. We’ll see that if our items are ordered, 
the search can scale extremely well. In chapter 1 we stated 
that it is possible to find something among a billion sorted 
items in about 30 probes; now we will see how this can be 
actually done.

Finally, a search algorithm will give us a glimpse of the 
dangers that lurk when we move from an algorithm to an 
actual implementation in a computer program, which has 
to run within the confines of a particular machine.
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A Needle in a Haystack

The simplest way to search is what we do to find the pro-
verbial needle in a haystack. If we want to find something 
in a group of objects and there is absolutely no structure 
in them, then the only thing we can do is to check one item 
after the other until we either find the item we are looking 
for or fail to find it after exhausting all items.

If you have a deck of cards and are looking for a par-
ticular one in them, you can start taking off the cards from 
the top of the deck until you find the one you are looking 
for or run out of cards. Alternatively, you can start taking 
off the cards one by one from the bottom of the deck. You 
can even take off cards from random positions in the deck. 
The principle is the same.

Usually we do not deal with physical objects in com-
puters but rather digital representations of them. A com-
mon way to represent groups of data on a computer is in 
the form of a list. A list is a data structure that contains 
a group of things in such a way that from one item we 
can find the next one. We can usually think of the list as 
containing linked items, where one item points to the next 
one, until the end, where the last item points to nothing. 
The metaphor is not far from the truth because internally 
the computer uses memory locations to store items. In a 
linked list, each item contains two things: its payload data 
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and the memory location of the next item on the list. A 
place in memory that holds the memory location of an-
other place in memory is called a pointer. Therefore in a 
linked list, each element contains a pointer to the next el-
ement. The first item of a list is called its head. The items 
in a list are also called nodes. The last node does not point 
to anywhere; we say that it points to null: nothingness on 
a computer.

A list is a sequence of items, but it is not necessary 
that the sequence is ordered using some specific criterion. 
For example, the following is a list containing some letters 
from the alphabet:

U R L A E K D

If we have an unordered list, the algorithm for finding 
an item on it goes like this:

1. Go to the head of the list.

2. If the item is the one we are looking for, report that it 
is found and stop.

3. Go to the next item on the list.

4. If we are at null, report that the search item was not 
found and stop. Otherwise, return to step 2.
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This is called a linear or sequential search. There is noth-
ing special about it; it is a straightforward implementation 
of the idea of examining each single thing in turn until 
we find the one we want. In reality, the algorithm makes 
the computer jump from pointer to pointer until it either 
reaches the item we are looking for or null. Below we show 
what is happening when we search for E or X:

U R L A E K D

U R L A E K D

If we search among n items, the best thing that can 
happen is to hit on the item we want immediately, which 
will occur if it is the head of the list. The worst thing that 
can happen is that the item is the last one on the list or 
not on the list at all. Then we must go through all n items. 
Therefore the performance of sequential search is O n( ).

There is nothing we can do to improve on that time if 
the items appear on the list in a random sequence. Going 
back to a deck of cards, you can see why this is so: if the 
deck is properly shuffled, there is no way to know in ad-
vance where we’ll find our card.

Sometimes people have trouble with that. If we are 
looking for a paper among a large pile, we may tire of going 
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one after the other. We may even think of how unlucky we 
would be should the paper turn out to be at the bottom 
of the pile! So we stop going through the pile in order and 
peek at the bottom. There is nothing wrong in peeking at 
the bottom, but it’s wrong to think that this improves our 
chances of finishing the search quickly. If the pile is ran-
dom, then there is no reason why the sought- after item is 
not the first, last, or one right in the middle. Any position 
is equally likely, so starting from the top and making our 
way to the bottom of the pile is as good a strategy as any 
other that ensures we examine each item exactly once. It 
is usually simpler to keep track of what we looked at if we 
work in a specific order, however, than jumping around er-
ratically, and that’s why we prefer to stick with a sequential 
search.

All this holds as long as there is no reason to suspect 
that the search item is in a particular position. But if this 
is not true, then things change, and we can take advan-
tage of any extra information we may have to speed up our  
search.

The Matthew Effect and Search

You may have noticed that in an untidy desk, some things 
find their way to the top of the pile, while some others 
seem to slip to the bottom. When finally cleaning up the 
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mess, the author has had the pleasant experience of dis-
covering buried deep down in a heap things he believed 
were long lost. The experience has probably occurred to 
others as well. We tend to place things we use frequently 
close; things we have little use for slip further and further 
out of reach.

Suppose we have a pile of documents on which we need 
to work. The documents are not ordered in any way. We 
go through the pile, searching for the document we need, 
processing it, and then placing it not where we found it 
but instead on the top of the pile. Then we go again with 
our business.

It may happen that we do not work with the same fre-
quency on all documents. We may return to some of them 
again and again, while we may only rarely visit others. If 
we continue placing every document on the top of the pile 
after working on it, after some time we’ll find out that the 
most popular documents will be near the top, while the 
ones we accessed the least often will have moved toward 
the bottom. This is convenient for us because we spend 
less time locating the frequently used documents and thus 
less time overall.

This suggests a general searching strategy, where we 
search for the same items repeatedly, and some items are 
more popular than others. After finding an item, bring it 
forward so that we’ll be able to find it faster the next time 
we will look for it.
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How applicable would such a strategy be? It depends 
on how often we observe such differences in popularity. 
It turns out that they happen a lot. We know the saying 

“the rich get richer, and the poor get poorer.” It is not just 
about rich and poor people. The same thing appears to a 
bewildering array of aspects in different fields of activ-
ity. The phenomenon has a name, the Matthew effect, af-
ter the following verse in the Gospel of Matthew (25:29): 

“For unto every one that hath shall be given, and he shall 
have abundance: but from him that hath not shall be taken 
away even that which he hath.”

The verse talks about material goods, so let’s think 
about wealth for a minute. Suppose you have a large sta-
dium, capable of holding 80,000 people. You are able to 
measure the average height of the people in the stadium. 
Your result may be something around 1.70 meters (5 feet, 
7 inches). Imagine that you take out somebody randomly 
from the stadium and put in the tallest person in the world. 
Will the average height differ? Even if the tallest person 
is 3 meters tall (no such height has ever been recorded), 
the average height would remain stuck at its previous 
value— the difference with the previous average being less 
than a tenth of a millimeter.

Imagine now that instead of measuring the average 
height, you measure the average wealth. The average wealth 
of your 80,000 people could be $1 million (we are assum-
ing a wealthy cohort). Now you substitute again somebody 
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inside with the richest person in the world. That person 
could have a wealth of $100 billion. Would this make a dif-
ference? Yes, it would— and a big one. The average would 
increase from $1 million to $2,249,987.5, or more than 
double. We are aware that wealth is not distributed equally 
around the world, but we may not be aware of how un-
equal the distribution is. It is much more unequal than a 
distribution of natural measures like height.

The same difference in endowments occurs in many 
other settings. There are many actors you have never heard 
of. And there are a few stars who have appeared in many 
movies, earning millions of dollars. The term “Matthew 
effect” was coined by the sociologist Robert K. Merton in 
1968, when he observed that famous scientists get more 
credit for their work over their lesser- known colleagues, 
even if their contributions are similar. The more famous 
scientists are, the more famous they will get.

Words in a language follow the same pattern: some 
of them are much more popular than others. The list of 
domains that are characterized by such jarring inequali-
ties includes the size of cities (megacities are many times 
larger than the average city) and number, links, and 
popularity of web sites (most sites are honored only by 
the occasional visitor, while others rake in millions). The 
prevalence of such unequal distributions, where a few ele-
ments of a population obtain a disproportionate amount 
of resources, has been a rich field of inquiry over the last 
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few years. Researchers are looking into the reasons and 
laws that underlie the emergence of such phenomena.1

It is possible that the items in which we are searching 
exhibit such differences in popularity. Then a search algo-
rithm that will take advantage of the varying popularity 
of the search items can work much like putting each docu-
ment that we find at the top of the pile:

1. Search for the item using a sequential search.

2. If the item is found, report that it is found, put it at 
the front of the list, at its head, and stop.

3. Otherwise, report that the item was not found and 
stop.

In the following figure, finding E on the list will bring 
it to the front:

U R L A E K D

E U R L A K D

A possible criticism of this move- to- front algorithm 
is that it will promote to the front even an item that we 
only rarely search for. That is true, but if the item is not 
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popular, it will gradually move toward the end of the list 
as we search for other items because these items will move 
to the front. We can take care of the situation, however, by 
adopting a less extreme strategy. Instead of moving each 
item we find bang to the front, we can move it just one 
position forward. This is called the transposition method:

1. Search for the item using a sequential search.

2. If the item is found, report that it is found, exchange 
it with the previous one (if it is not the first one), and 
stop.

3. Otherwise, report that the item was not found and 
stop.

In this way, items that are popular will gradually make 
their way to the front, and less popular items will move to 
the back, without sudden upheavals.

U R L A E K D

U R L E A K D

Both the move- to- front and transposition methods 
are examples of a self- organizing search; the name comes 
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because the list of items is organized as we go with our 
searches and will reflect the popularity of the searched 
items. Depending on how the popularity ranges among 
items, the savings can be significant. While with a se-
quential search we can expect a performance of O n( ), a 
self- organizing search with the move- to- front method 
can attain a performance of O n lgn( / ). If we have about a 
million items, this is the difference between 1 million and 
about 50,000. The transposition method can have even 
better results, but it requires more time to achieve them. 
That’s because both methods require a “warm- up period” 
in which popular items will show themselves up and make 
their way to the front. In the move- to- front method, the 
warm- up is short; in the transposition method, the warm-
 up takes longer, but then we get better results.2

Kepler, Cars, and Secretaries

After the celebrated astronomer Johannes Kepler (1571– 
1630) lost his wife to cholera in 1611, he set out to remarry. 
A methodical man, he did not leave things to chance. In 
a long letter to a Baron Strahlendorf, he describes the 
process he followed. He planned to interview 11 pos-
sible brides before making his decision. He was strongly 
attracted to the fifth candidate, but was swayed against 
her by his friends, who objected to her lowly status. They 
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advised him to reconsider the fourth candidate instead. 
But then he was turned down by her. In the end, after ex-
amining all 11 candidates, Kepler did marry the fifth one: 
24- year- old Susanna Reuttinger.

This little story is a stretched example of a search; Ke-
pler was searching for an ideal match, among a pool of pos-
sible candidates. Yet there was a kink in the process that 
he was probably not aware of when he started: it might 
not be possible to go back to a possible match after he had 
rejected it.

We can recast the problem in more contemporary 
terms, as looking for the best way to decide which car to 
buy. We have decided beforehand that we will visit a cer-
tain number of car dealerships. Also, our amour propre 
will not allow us to return to a car dealership after we have 
walked away from it. If we have declined a car, saving face 
is paramount, so that we cannot go back and say that we 
changed our mind. Or perhaps somebody else walked in 
and bought the car after we left. Be it as it may, we have to 
make a final decision at each dealership, to buy the car or 
let go, and not come back.

This is an instance of an optimal stopping problem. We 
have to take an action, while trying to maximize a reward 
or minimize a cost. In our example, we want to decide to 
buy the car, when this decision will result in the best car 
we can buy. If we decide too early, we may settle on a car 
that is worse than a car we have not seen yet. If we decide 
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too late, we may discover to our chagrin that we saw, but 
missed, the best car. When is the optimal time to stop and 
make a decision?

The same issue is usually described in a more callous 
way as the secretary problem. You want to select a secretary 
from a pool of candidates. You can interview the candi-
dates one by one. You must make a decision to hire or not 
at the end of each interview, however. If you reject a candi-
date, you cannot later change your mind and make an offer 
(the candidate might be too good and thus be snapped by 
somebody else). How will you pick the candidate?

There is a surprisingly simple answer. You go through 
the first 37 percent of the candidates, rejecting them all, 
but keeping a tab on the best one among them as your 
benchmark. The number 37, which seems magical, occurs 
because 37 1% /≈ e, where e is Euler’s number, approxi-
mately equal to 2.7182 (we saw Euler’s number in chapter 
1). Then you go through the rest of the candidates. You 
stop at the first of the rest that is better than your bench-
mark. That will be your pick. In algorithmic form, if you 
have n candidates:

1. Calculate n e/ , to find the 37 percent of the n 
candidates.

2. Examine and reject the first n e/  candidates. You will 
use the best one among them as a benchmark.
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3. Continue with the rest of candidates. Pick the first 
one that is better than your benchmark, and stop.

The algorithm will not always find the best candidate; 
after all, the best candidate overall may be the benchmark 
candidate you identified in the first 37 percent, and that 
you have rejected. It can be proved that it will find the best 
candidate in 37 percent (again, 1 / e) of all cases; more-
over, there is no other method that will manage to find 
the best candidate in more cases. In other words, the algo-
rithm is the best you can do: although it may fail to give 
you the best candidate in 63 percent of the cases, any other 
strategy you may decide to follow will fail in more cases 
than that.

Going back to cars, suppose we decide to visit 10 car 
dealerships. We should visit the first four and take note 
of the best offer by these four, without buying. Then we 
start visiting the remaining six dealerships and we’ll 
buy from the first dealership that gives us an offer bet-
ter than the one we noted down (we’ll then skip the rest). 
We may discover that all six dealerships make worse of-
fers then the first four that we visited without buying. But 
no other strategy can give us better odds of getting the  
best deal.

We have assumed that we want to find the best pos-
sible candidate and will settle for nothing less. But what if 
we can in fact settle for something less? That means that 
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even though ideally we would want the best secretary or 
car, we can make do with another choice, with which we 
may be happy, although not as happy had we picked up 
the best. If we frame the problem like that, then the best 
way to make our selection is to use the same algorithm 
as above, but examining and discarding the square root, 

n , of the candidates. If we do that, the probability that 
we will make the best choice increases with the number of 
candidates: as n increases, the probability that we’ll pick 
the best goes to 1 (that is, 100 percent).3

Binary Search

We have considered different ways to search, correspond-
ing to different scenarios. A common thread in all these 
was that the items that we examine are not given to us in 
any specific order; at best, we order them gradually by pop-
ularity in a self- organized search. The situation changes 
completely if the items are ordered in the first place.

Let’s say we have a pile of folders, each one of which 
is identified by a number. The documents in the pile are 
ordered according to their identifier, from the lowest to 
highest number (there is no need for the numbers to be 
consecutive). If we have such a pile and are looking for a 
document with a particular identifier, it is foolish to start 
from the first document and make our way to the last until 
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we find the one we are looking for. A much better strategy 
is to go straight to the middle of the pile. Then we compare 
the number identifier on the document in the middle to 
the number of the document that we are looking for. There 
are three possible outcomes:

1. If we are lucky, we may have landed exactly on the 
document that we want. We are done; our search is 
over.

2. The identifier of the document we are looking for is 
greater than the identifier of the document we have in 
our hands. Then we know for sure that we can discard the 
document at hand as well as all preceding documents. As 
they are ordered, they will all have smaller identifiers. We 
have undershot our target.

3. The opposite happens: the identifier of the document 
we are looking for is smaller than the identifier of the 
document we have in our hands. Then we can safely 
discard the document at hand as well as all the documents 
that come after it. We have overshot our target.

In either of the last two outcomes, we are now left 
with a pile that is at most half the original one. If we start 
with an odd number of documents, say n, splitting n docu-
ments in the middle gives us two parts, each with n / 2 
items (discarding the fractional part in the division):
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   ×

With an even number of items, splitting them will 
give us two parts, one with n / 2 1−  items and another 
one with n / 2 items:

  ×

We have still not found what we were looking for, but 
we are much better than before; we have much fewer items 
to go through now. And so we do. We check the middle 
document of the remaining items and repeat the procedure.

In the figure on the following page, you can see how 
the process evolves for 16 items, among which we are look-
ing for item 135. We mark out the boundaries inside which 
we search and the middle item with gray.

In the beginning, the domain of our search is the full 
set of items. We go to the middle item, which we find out is 
384. This is bigger than 135, so we discard it, along with all 
the items to its right. We take the middle of the remaining 
items, which turns out to be 72. This is smaller than 135, 
so we discard it, along with all the items on its left. Our 
search domain has shrunk to just three items. We take the 
middle one and find that it is the one we want. It took us 
only three probes to finish our search, and we did not even 
need to check 13 of the 16 items.
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The process will also work if we are looking for some-
thing that does not exist. You can see that in the next fig-
ure, where we are searching among the same items for one 
labeled 520.

This time, 520 is greater than 384, so we restrict our 
search to the right half of the items. There we find that the 
middle of the upper half is 613, greater than 520. Then we 
limit our search to just three items, the middle of which 
is 507. This is smaller than our target of 520. We discard 
it and now are left with only one item to check, which 
we discover is not the one we want. So we can finish our 
search reporting that it was unsuccessful. It took us only 
four probes.

The method we described is called binary search be-
cause each time we cut in half the domain of values in 
which we search. We call the domain of values where we 
perform our search the search space. Using this concept, 
we can render the binary search as an algorithm compris-
ing these steps:

1. If the search space is empty, we have nowhere to look, 
so report failure and stop. Otherwise, find the middle 
element of the search space.

2. If the middle element is less than the search term, 
limit the search space from the middle element onward 
and go back to step 1.
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3. Otherwise, if the middle element is greater than the 
search term, limit the search space up to the middle 
element and go back to step 1.

4. Otherwise, the middle element is equal to the search 
term; report success and stop.

In this way, we divide by two the items that we have 
to search. This is a divide- and- conquer method. It results 
in repeated division, which as we have seen in chapter 1 
gives us the logarithm. Repeated division by two gives us 
the logarithm base two. In the worst case, a binary search 
will keep dividing and dividing our items, until it cannot 
divide any further, like we saw in the unsuccessful search 
example. For n items, this cannot happen more than lgn 
times; it follows that the complexity of a binary search is 
O lgn( ).

The improvement compared to a sequential search, 
even a self- organized search, is impressive. It will not take 
more than 20 probes to search among a million items. 
Viewed from another angle, with a hundred probes we are 
able to search and find any item among 2 1 27 10100 30≈ ×. , 
which is more than one nonillion.

The efficiency of a binary search is astounding. Its 
efficiency is probably only matched by its notoriety. It is 
an intuitive algorithm. But this plain method has proved 
time and again tricky to get right in a computer program. 
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For reasons that have nothing to do with the binary search 
algorithm per se, but rather the way we turn algorithms 
into real computer code in programming language, pro-
grammers have been prey to insidious bugs that have crept 
into their implementations. And we are not talking about 
rookies; even world- class programmers have failed to get 
it right.4

To get an idea of where such bugs may lurk, consider 
how we find the middle element among the items we want 
to search in the first step of the algorithm. Here is a simple 
idea: the middle element of the mth and nth elements is 
( ) /m n+ 2, rounded if the result is not a natural number. 
This is true, and it follows from elementary mathematics, 
so it applies everywhere.

Except in computers. Computers have limited re-
sources, memory among them. It is not possible, therefore, 
to represent all the numbers we want on a computer. Some 
numbers will simply be too big. If the computer has an 
upper limit on the size of the numbers that it can handle, 
then both m and n should be below that limit. Of course, 
( ) /m n+ 2 is below that limit. But to calculate ( ) /m n+ 2, 
we have to calculate m n+  and then divide it by two, and 
that sum may be larger than the upper limit! This is called 
overflow: going beyond the range of allowable values. So 
you get a bug that you had never thought would bite you. 
The result will not be the middle value but instead some-
thing else entirely.



Do not despair if you 
find yourself wretched 
poring over a line of 
code that does not do 
what you think it should 
do. You are not unique. 
It happens to all; it 
happens to the best.
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Once you know about it, the solution is straightfor-
ward. You do not calculate the middle as ( ) /m n+ 2 but 
rather m n m+ −( ) / 2. The result is the same, but no over-
flow occurs. In retrospect it seems simple. In hindsight, 
though, everybody is a prophet.

We are interested in algorithms, not programming, 
here, but let the author share a bit of advice for those who 
write or want to write computer programs. Do not despair 
if you find yourself wretched poring over a line of code 
that does not do what you think it should do. Do not be 
dismayed if the following day you realize that, indeed, the 
bug was before your eyes all the time. How could you have 
failed to see it? You are not unique. It happens to all; it 
happens to the best.

Binary search requires that the items should be sorted. 
So to reap its benefits, we should be able to sort items 
efficiently— which allows us to segue to the next chapter, 
where we’ll see how we can sort things with algorithms.



4

SORTING

The US Constitution postulates that a decennial census 
should take place in order to apportion taxes and repre-
sentatives among the several states of the union. The first 
census following the American Revolution took place in 
1790, and a census has been done every ten years since.

In the hundred years since 1790, the United States 
grew rapidly— from a bit less than 4 million people in the 
first census, to more than 50 million in 1880. And therein 
lay a problem: it took eight years to count these people. 
When the next census year came, in 1890, the population 
was even bigger. If the count were taken in the same way, 
it would probably not have been completed before the fol-
lowing census of 1900.

At that time, Herman Hollerith, a young graduate 
from Columbia University’s School of Mines (he gradu-
ated in 1879, when he was 19), was working for the US 
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Census Bureau. Aware of the pressing timing problem, he 
tried to find a way to speed up the census process using 
machines. Hollerith was inspired by the way conductors 
used holes punched in railway tickets to record traveler 
details; he invented a way in which punched cards could be 
used to record census details. These cards could then be 
processed by tabulating machines, electromechanical de-
vices that could read the punched cards and use the data 
stored in them to make a tally.

Hollerith’s tabulating machine was used in the 1890 
census and brought down the time required to complete 
it to six years— when it came out that the US population 
had grown to approximately 63 million people. Hollerith 
presented his tabulating machines to the Royal Statistical 
Society, noting that “it must not be considered that this 
system is still in an experimental stage. Over 100,000,000 
punched cards have been counted several times over on 
these machines, and this has afforded ample opportunity 
to test its capabilities.”1 Following the census, Hollerith 
started a business, called the Hollerith Electric Tabulating 
System. This company, via a series of renames and amal-
gamations, evolved into International Business Machines 
(IBM) in 1924.

Today sorting is so ubiquitous that is largely invisible. 
Just a few decades ago, offices were full of file cabinets con-
taining labeled folders, and corporate office personnel took 
care to keep them in the required order, like alphabetic or 
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chronological. By contrast, we can sort the messages in 
our mailboxes just by clicking, and are able to order them 
using different criteria such as subject, date, and sender. 
Our contacts are kept sorted in our digital devices with-
out us taking notice; again, a few years ago we would take 
pains to make sure we had our contacts organized in our 
diaries.

Going back to the US census, sorting was one of the 
first examples of office automation; it is not surprising, 
then, that it was one of the first applications of digital 
computers. A lot of different sorting algorithms have 
been developed. Some of them are not used in practice, 
but there are still a number of different sorting algorithms 
that are popular with programmers because they offer dif-
ferent comparative advantages and disadvantages. Sort-
ing is such a fundamental part of what computers do that 
any book on algorithms will always devote some part to 
it, yet exactly because there are many different sorting 
algorithms, their exploration allows us to appreciate an 
important aspect of the work of computer scientists and 
programmers. Like toolsmiths, they have a whole toolbox 
at their disposal. There may be different tools for the same 
task. Think of different types of screwdrivers. We have slot, 
Phillips, Allen, and Robertson drivers, to name but a few. 
Although all of them have the same objective, particular 
screws require particular drivers. Sometimes we can make 
do using a slot driver on a cross screw; in general, though, 
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we must use the proper tool for the job. The same with 
sorting. While all sorting algorithms put things in order, 
each is more suitable for particular uses.

Before we start exploring these algorithms, let’s look 
at some explanations of what exactly these algorithms 
do. Sure, they sort stuff, but that really begs the question, 
What exactly do we mean by sorting data?

We assume that we have a group of related data—
usually called records— that contains some information 
that is of interest to us. For example, such data could be 
the emails in our in- box. We want to rearrange these data 
so that they appear in a specific order that is useful to us. 
The rearrangement has to take place using some specific 
feature or features of the data. In our email illustration, we 
may want to order our messages by delivery date, chrono-
logically, or the sender’s name, alphabetically. The order 
may be ascending, from earlier messages to more recent 
ones, or descending, from recent messages going back in 
time. The output of the sorting process must be the same 
data as the input; in technical terms, this must be a per-
mutation of the original data— that is, the original data in 
different order, but not changed in any other way.

The feature we are using to sort our data is usually 
called a key. A key may be atomic, when we consider that we 
cannot decompose it to parts, or it may be composite, when 
the key consists of more than a single feature. If we want 
to sort our emails by delivery date, this is an atomic key 
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(we do not care that a date can be broken up in year, month, 
and day, and may also contain the exact time of delivery). 
But we may want to sort our emails by the sender’s name, 
and then for all the messages from the same sender, order 
them by delivery date. The combination of date and sender 
forms the composite key of our sort.

Any kind of feature can be used as a key for sorting, as 
long as its values can be ordered. Obviously this holds true 
for numbers. If we want to sort sales data by the number 
of sales per items sold, the number of sales is an integer. 
When our keys are textual, such as senders’ emails, the 
ordering that we usually want is lexicographical. Sorting 
algorithms need to know how to compare our data so as 
to deduce their order, but any valid way to compare will do.

We’ll start our exploration of sorting methods with 
two algorithms that may be familiar because they are 
probably the most intuitive and even used by people with 
no knowledge of algorithms when they have to sort a pile 
of stuff.

Simple Sorting Methods

Our task is to sort the following items:

4 6 10 1 7 9 3 2 8 5
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Admittedly, if you take a look at the task, it’s pretty 
trivial; these are the numbers from one to ten. But keeping 
things simple will allow us to concentrate on the logic of 
the sorting task.

First, we go through all the items and find the mini-
mum among them. We take it from where we found it and 
place it first. The minimum of the items is 1, so this must 
be put into the first position. As this position is already 
taken, we have to do something with 4, which is currently 
at the first position; we cannot just throw it away. What we 
can do is to swap it with the minimum: move the minimum 
item to the first position and move the item previously 
in the first position to the position left vacant by moving 
the minimum. So we go from here, where the minimum is 
painted black,

4
6 10 7 9 3 2 8 5

to here,

1 6 10 4 7 9 3 2 8 5

where the minimum is painted white, to indicate that it is 
in its correct, ordered position.
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Now we do exactly the same thing with all the numbers, 
save for the minimum we found— that is, all the numbers 
from the second position onward (the gray numbers). We 
find their minimum, which is 2, and swap it again with the 
first of the unsorted numbers, 6:

1 6 10 4 7 9 3 8 5

1 2 10 4 7 9 3 6 8 5

Again we do the same. We deal with the items from the 
third one onward; we find the minimum, which is 3, and 
swap it with the item currently in the third place, 10:

1 2
10

4 7 9 6 8 5

1 2 3 4 7 9 10 6 8 5

If we continue this way, item 4 will stay put because it 
is already in its correct place and we’ll go on to place 5 in 
its sorted position:

1 2 3 4
7

9 10 6 8

1 2 3 4 5 9 10 6 8 7
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At each point we go through fewer and fewer items to 
find their minimum. In the end, we’ll find the minimum of 
the last two items, and once we’ve done that, all our items 
will be sorted.

This sorting method is called selection sort because 
each time, we select the minimum of the unsorted items 
and place it where it should be. As all sorting algorithms 
that we will examine, selection sort has no problem with 
ties— that is, elements that have the same order. If we find 
more than one minimum when we examine the unsorted 
items, we just pick any one of them as our working mini-
mum. We’ll find the tied item next time around and put it 
next to its equal.

Selection sort is a straightforward algorithm. Is it also 
a good one? If we pay attention to what we are doing, we 
are going from the beginning to the end of the items that 
we want to sort, and each time we try to find the minimum 
of the remaining unsorted items. If we have n items, the 
complexity of the selection sort is O n( )2 . This is not bad 
in itself; such complexity is not prohibitive, and we can 
tackle large problems (read: sort a lot of items) in a reason-
able amount of time.

The thing is, exactly because sorting is so important, 
algorithms do exist that are faster than that. So although 
selection sort is not inherently bad, we usually prefer to 
use other, more advanced algorithms when we have a lot 
of items at hand. At the same time, selection sort is not 
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only easy to understand by humans but is also easy to im-
plement on a computer in an efficient way. So it is clearly 
not of just academic interest; it is really used in practice.

The same can be said for another simple sorting algo-
rithm that we’ll describe now. Like selection sort, this is 
a sorting method that is easy to understand beyond com-
puters. In fact, this is the way we may sort our hand in a 
card game.

Imagine that you play a game of cards in which you are 
dealt ten cards (for example, you could be playing Rummy). 
As you take one card after the other, you want to sort them 
in your hand. We assume that the card rank, from the low-
est to highest, is:

2 3 4 5 6 7 8 9 J Q K A

In fact, in many games (and Rummy), the ace can be 
the lowest-  and highest- ranking card, but we’ll assume 
that there is a single order only.

You are dealt each card, so you start with one card in 
your hand and nine cards to follow:

4

Now you get a second card; it is a six:
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6
4

Six is fine next to four, so you leave it there and take 
another card, which turns out to be two:

6
2

4

This time, so as to keep your hand in order, you need 
to move two to the left of four, thus pushing four and six 
one position to the right. You do that before you are dealt 
another card, a three:

64
3

2

You insert the three between the two and four, and 
see the next card, a nine. This is already in the right place 
in your hand.

43 6
9

2
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You may continue with your hand— for instance, 7, Q, 
J, 8, and 5. In the end, you will end up with a sorted hand.

Each new card was inserted in the right place in rela-
tion to the previous cards that had been dealt. This way of 
sorting is called insertion sort for that reason, and it works 
for any kind of objects, not just playing cards.

Like selection sort, insertion sort is straightforward 
to implement. It turns out that it has the same complexity: 
O n( )2 . It does have a distinct characteristic, though: as in 
our playing cards example, you don’t need to know the items 
in advance before you sort them. In effect, you sort them as 
you get them. That means that you can use insertion sort 
when the items to be sorted are somehow streamed to  
you live. We met this kind of algorithm, which works live 
as it were, when we discussed the tournament problem in 
graphs in chapter 2, and we called it an online algorithm. 
If we have to sort an unknown number of items, or if we 
must be able to stop immediately and provide a sorted list 
whenever we are suddenly called to do so, then insertion 
sort is the way to go.2

Radix Sort

Let us now return to Hollerith. His tabulating machines 
did not use selection sort, nor insertion sort. They actu-
ally used a precursor of a method still in use today, called 
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radix sort. As a tribute to the first machine- enabled sorting 
application, it is worth spending some time on how radix 
sort works. It is also interesting because this is a sorting 
method in which the items to be sorted are not really com-
pared to each other. At least not entirely, as we will see. 
What’s more, radix sort is not just of historical interest, as 
it performs fantastically. What’s not to like in a venerable 
yet practical algorithm?3

The easiest way to see a radix sort is by using playing 
cards again. Suppose that we have a full deck of cards that 
has been shuffled and want to sort it. One way to do it is 
to form 13 piles, one for each rank value. We go through 
the deck, taking each card and placing it in the respective 
pile. We’ll get 13 piles of four cards each: a pile containing 
all the aces, another one containing all the twos, and so on.

A 2 3 4 5 6 7 8 9 10 J Q K

Then we collect the cards, pile by pile, taking care to 
put each pile we pick at the bottom of the cards we are 
collecting. In this way we’ll have all the cards in our hands, 
partially sorted. The first four cards will be aces, the next 
four twos, and all the way to the kings.

We now create four new piles, one for each suit. We’ll 
go through the cards, taking each card and putting it into 
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the corresponding pile. We’ll get four piles of suits. Be-
cause the values were already sorted, in each pile we will 
have all cards of a single suit, in rank order.

A A A A

To finish sorting our cards, we only need to collect 
them pile by pile.

This is the essence of radix sort. We did not sort the 
cards by fully comparing cards between them. We per-
formed partial comparisons, first by rank, and then by  
suit.

Of course, if radix sort was applicable only to cards, it 
would not merit our attention here. We can see how radix 
sort works with integer numbers. Suppose that we have 
the following group of integers:

926 742 151 612 961 162 261 760 639 532 364

165 970 412 417 855 245 317 568 812 709 787

496 5 97 577 845 53 274 590 840 981 686
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We make sure that all the integers have the same num-
ber of digits. So we pad the numbers with zeros on the left 
if necessary, turning 5 to 005, 97 to 097, and 53 to 053. We 
go through all our numbers and triage them by their right-
most digit. We use that digit to place them in ten piles:

760

970

590

840

151

961

261

981

742

612

162

532

412

812 053

364

274

165

855

245

005

845

926

496

686

417

317

787

097

577 568

639

709

We lightened up the numbers’ fill color to indicate 
that they are partially sorted; each pile contains the 
numbers with the same rightmost digit. All the numbers 
in the first pile end in zero, and in the second pile they 
end in one, up to the last pile, where they end in nine. 
We now collect the ten piles, starting from the first on 
the left and adding piles at the bottom (taking care not 
to shuffle the numbers in any way). Then we redistribute 
them into ten piles using the second digit from the right  
and get:
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005

709

612

412

812

417

317 926

532

639

840

742

245

845

151

053

855

760

961

261

162

364

165

568

970

274

577

981

686

787

590

496

097

This time all the numbers in the first pile have their 
second from the right digit equal to zero; in the second 
pile they have their second from the right digit equal to 
one, and similarly for the other piles. At the same time, 
the items in each pile are sorted by their last digit because 
that’s what we did when we piled them the first time.

We finish by collecting the piles and redistributing the 
numbers, using the third digit from the right this time:

005

053

097

151

162

165

245

261

274

317

364

412

417

496

532

568

577

590

612

639

686

709

742

760

787

812

840

845

855

926

961

970

981
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Now the items in each pile start with the same digit 
and are sorted by their second digit, as a result of the pre-
vious piling, and their last digit, as a result of the first pil-
ing. To get our sorted numbers, we just collect the piles 
one final time.

Radix sort can work with words or any sequence of 
alphanumeric characters as well as integers. In computer 
science, we call a sequence of alphanumeric characters and 
symbols a string. Radix sort works with strings; the strings 
may be composed of digits, like in our example, but they 
may be any kind of strings. The number of piles for alpha-
betic strings will be equal to the number of distinct char-
acters comprising the alphabet (for instance, 26 piles for 
English), but the operations will be exactly the same. What 
is distinctive in radix sort is that even when the strings are 
composed entirely of digits, we treat them as alphanumeric 
sequences, not as numbers. If you check how we worked, 
we did not care for the values of the numbers, but we were 
working each time with one particular digit from the num-
ber, in the same way that we would work by extracting char-
acters from a word, going from the right to left. That is why 
radix sort is sometimes called a string sorting method.

Do not let this fool you and lead you to think that radix 
sort can order strings while the other sorting methods we 
present here cannot. All of them can. We can sort strings, 
as long as the symbols that compose them can themselves 
be ordered. Human names are strings to computers, and 
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we can sort them because letters are ordered alphabetically 
and names can be compared lexicographically. The appel-
lation “string sorting” is because radix sort treats all keys, 
even numbers, as strings. The other sorting methods in this 
chapter treat numbers as numbers and strings as strings, 
and work by comparing numbers or strings, as is appropri-
ate. It is only for convenience that we use numbers as keys 
in our examples in the different sorting algorithms.

The way radix sort works by processing the items to 
be sorted digit by digit (or character by character) makes 
it efficient. If we have n items to sort, and the items con-
sist of w digits or characters, then the complexity of the 
algorithm is O wn( ). That is much better than the O n( )2  
complexity required by selection and insertion sorts.

And so we come full circle to tabulating machines. 
A tabulating machine worked in a similar way, sorting 
punched cards. Imagine that we have a deck of cards where 
each card has ten columns; punched holes in each column 
indicate a digit. The machine could recognize the holes in 
each column, thus figuring out the corresponding digit. 
An operator put the cards in the machine, and the machine 
placed the cards in ten output bins depending on their last 
column— that is, the least significant digit. The operator 
collected the cards from the output bins, being careful not 
to mix them in any way, and fed them again into the ma-
chine, which this time distributed them into the output 
bins using their one but last column, the digit next to the 
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least significant one. After repeating the process ten times, 
the operator could collect an ordered pile of cards. Voilà.

Quicksort

Suppose we have a group of kids milling around in a yard 
(perhaps at school) and want to put them in line, from 
the shortest to tallest. Initially we ask them to get in line, 
which they will do, in whatever order they want:

Now we pick a kid at random:

We tell the kids to move around so that all kids who 
are shorter than the chosen one should move to the left of 
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them and all the rest should move to their right. In the fol-
lowing figure we show where the kid we picked ended up, 
and you can check that those kids who are taller are to the 
right and those who are shorter are to the left:

We did not ask the kids to put themselves in the right 
order. We only asked them to move relatively to the kid 
we chose. So they formed two groups, on the left and right 
of the chosen one. The kids in these groups are not in any 
shorter- to- taller sequence. We do know, however, that one 
kid is certainly in the final position in the line we are try-
ing to form: the very kid we picked. All the kids on the left 
are shorter and all the kids on the right are at least as tall. 
We call the kid we picked pivot because the rest of the kids 
have moved around them.

As a visual aid, we will follow the convention of paint-
ing white the kids who are put in the right position. When 
we select a kid as a pivot, we will paint them black; when 
we have moved the rest of the kids around the pivot, we 
will use a small black hat to indicate the final position of 
the pivot (it’s white because it’s in the right position, with 
a black top, to indicate that it was the pivot).
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Now we shift our attention to one of the two groups, 
left or right— say the left. Again we pick a pivot in that 
group at random:

We ask the kids in that group to do the same thing 
as before: move so that if they are shorter, they move to 
the left of the pivot and otherwise they should end to the 
right. We will have again two new, smaller groups, which 
you can see below. One of them is a group of one, so that 
kid is in their right place in that trivial group. Then we 
have the rest of the kids to the right of the second pivot. 
The second pivot is in the right place, with all the shorter 
kids to the left, and all the rest to the right. This group to 
the right extends to the first pivot. We then pick a new, 
third pivot from that group.
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When we tell the kids in the group to move as before, 
related to how tall they are with respect to the third pivot, 
two smaller groups will be formed. We focus our attention 
to the one on the left. We do as before. We pick a pivot, our 
fourth, and we ask the kids in this group of three to move 
around it.

When they do, the pivot ends up being the first of the 
three, so we have a remaining group of two kids on the 
pivot’s right. We pick one of the pair as a pivot, and the 
other kid will move, if needed, to their right.

It turns out that this kid does not need to move at all. 
Right now, we have managed to put about half the kids 
in order; there are two groups that we had left when we 
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were dealing with previous pivots. We go back to the first 
of these two groups from the left in order to pick a pivot 
there and repeat the process.

Again, no movement around was necessary and so we 
go to the last group of unsorted kids to pick a pivot.

We get a group of one, on the pivot’s right, and a group 
of two, on the pivot’s left. We focus on the left group and 
select one of the two as our last pivot.
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We are done. All the kids are in order of height.

Let’s take stock of what we did. We managed to put the 
kids in order by putting one kid in their right place each 
time. To do that, we only needed to ask the rest of the kids 
to move around them. This will always work, of course, not 
just with kids but also with anything that we may want to 
sort. If we have a group of numbers that we can sort, we 
can follow a similar process, picking up a number at ran-
dom and moving around the rest of the numbers so that 
those that are smaller end up before our chosen number, 
and the rest end up after it. We’ll repeat the process in the 
smaller groups that are formed; in the end, we’ll have all 
the numbers in the right order. This is the process that 
underlies the quicksort algorithm.

Quicksort is based on the observation that if we man-
age to position one element in the correct position with re-
spect to all the rest, whatever that position might be, and 
then repeat this with the remaining elements, we’ll end up 
with all the elements in their correct positions. If we think 
back on what we did with selection sort, there we also took 
each element and positioned it correctly with respect to all 
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the rest, but the element we took was always the minimum 
of the remaining ones. This is a crucial difference: in quick-
sort, we should not pick the minimum of the remaining ele-
ments as our pivot. Let’s see what happens if we do so.

If we start again with the same group of kids, we’ll get 
the shortest of all kids as our pivot. That one will go to the 
beginning of the line, and all the rest will move behind the 
pivot.

Then we’ll get the kid who is immediately taller than 
the first one and put them second in line. All the rest of the 
kids will go, again, behind the pivot.

Doing the same thing with the third kid gets us to  
this point:
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But notice how this looks eerily like a selection sort, as 
we are filling in the line from the left to the right with the 
shortest of the remaining kids.

We have not said how we choose an element as a pivot 
each time. We now see we should not choose the minimum 
of the elements. First, choosing the minimum requires ef-
fort; we should really go and find the minimum each time. 
Second, it behaves like an algorithm we already know and 
so there should not be much point in doing it.

The truth is that quicksort is better than selection 
sort because “normally” (we’ll see what normally means 
shortly) we’ll pick as our pivot something that partitions 
our data in some more equitable way. Choosing the mini-
mum element creates the most unequal partition: noth-
ing on the left of the pivot, and all the rest to the right of 
the pivot. Each time, then, we just manage to position the 
pivot itself.

If the partition is better, then we do not just manage 
to position the pivot. We also manage to position all the 
elements to the left of the pivot in their correct positions 
with respect to the elements to the right of the pivot. Yes, they 
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are not in their final positions yet. But overall, they are 
in better positions than before. So we have one element, 
the pivot, in the best position possible, and the other ele-
ments better positioned than before.

This has an important effect on the performance of 
quicksort: its expected complexity is O nlgn( ), which is 
way better than O n( )2 . If we want to sort 1 million items, 
O n( )2  works out to 1012, a trillion, while O nlgn( ) is about 
20 million.

It all hinges on picking the proper pivot. Searching 
for a pivot that would partition our data in the best pos-
sible way each time does not make sense; it would require 
searching to find the right pivot, so this would add com-
plexity to the process. A good strategy, then, is to leave it 
to chance. Just pick a pivot at random and use what you 
picked to partition the data.

To see why this is a good strategy, let us see why it is 
not a bad one. It would be a bad one if it led to a behavior 
like the one we just saw, where quicksort degenerates to 
selection sort. This would happen if we pick each time as a 
pivot an item that does not really partition the elements. 
This can happen if we pick each time the minimum or max-
imum of the items (the situation is exactly the same). The 
overall probability of all this happening can be found to 
be 2 1n n− / !

A probability such as 1 / !n  is hard to grasp because it 
is abysmally low. To put it into context, if you take a deck 
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of 52 playing cards and shuffle it randomly, the probability 
that the deck will end up being in order is 1 52/ ! This is 
about the same as flipping a coin and coming out heads 
226 times in a row. When you multiply by 2 1n− , things 
are not improved much. The number 2 5251 / ! is approxi-
mately equal to 2 8 10 53. × − . To put the matter in cosmic 
perspective, the earth is composed of about 1050 atoms. 
If you and a friend of yours were to pick independently 
an atom from the earth, the probability that you would 
pick the same atom would be 10 50− , actually greater than 
2 5251 / !— the probability of pathological quicksort on a 
deck of cards.4

That explains that “normally” we pick a pivot in a more 
equitable way, as we said above. Excepting a streak of bad 
luck of cosmic proportions, we do not expect to pick the 
worst pivot possible each time. The odds actually work bet-
ter in our favor: it is by picking pivots at random that we 
expect to get a complexity of O nlgn( ). It is theoretically 
possible to do worse than that, but the possibility is only 
of academic interest. Quicksort will be as fast as we expect 
it to be for all practical purposes.

Quicksort was developed by the British computer 
scientist Tony Hoare in 1959– 1960.5 It is probably the 
most popular sorting algorithm today because when im-
plemented correctly, it outruns all others. It is also the 
first algorithm that we see whose behavior is not entirely 
deterministic. Although it will always sort correctly, we 
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cannot guarantee that it will always have the same run-
time performance. We can guarantee that it is extremely 
unlikely that it will exhibit pathological behavior. This is 
an important concept, which brings us to the so- called 
randomized algorithms: those algorithms that use an ele-
ment of chance in their operation. This runs contrary to 
our intuition; we expect algorithms to be the ultimate 
deterministic beasts, slavishly following the instruc-
tions we lay down for them on a preordained path. And 
yet randomized algorithms have blossomed in recent 
years, as it has turned out that chance can help us solve 
problems that remain intractable to more standard  
approaches.6

Merge Sort

We’ve met radix sort, which essentially sorts items by 
distribution: in each round through the data, it places 
each item in a correct pile. Now we’ll meet another sort-
ing method, which sorts item by merging stuff together 
instead of splitting them apart. The method is called 
merge sort.

Merge sort starts by admitting to a limited capability 
for sorting; imagine that we are unable to sort our items 
if they are given to us in any random arrangement. We are 
only able to do the following: if we are given two groups 
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of items, and each group is already sorted, we can merge 
them together and get a single, sorted group.

For example, say we have the following two groups, 
one per row (although in our example the two groups have 
the same number of items, there is no need for the groups 
to be equal in size):

15 27 59 82 95

21 35 51 56 69

As you can see, each of the two groups is already sorted. 
We want to merge them in order to create a single sorted 
group. This is really simple. We check the first item of both 
groups. We see that 15 is smaller than 21, so this will be 
the first item of our third group:

27 59 82 95

21 35 51 56 69

15

We examine again the first elements of the two groups, 
and this time 21 from the second group is smaller than 
27 from the first group. So we take it and append it to the 
third group.
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27 59 82 95

35 51 56 69

15 21

If we continue in this way, we’ll take 27 from the first 
group and then 35 from the second group, adding them to 
the end of the third group:

59 82 95

51 56 69

15 21 27 35

Now 51 is smaller than 59, and 56 is smaller than 59. 
As we already have moved 35 from the second group to the 
third, in the end we’ll have moved three items in a row from 
the second group to the third. That is fine because in this way 
we keep items in the third group sorted. There is no reason 
why the two first groups should diminish at the same rate.

59 82 95

69

15 21 27 35 51 56
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We return to the first group, as 59 is smaller than 69, 
so we add it to the third group:

82 95

69

15 21 27 35 51 56 59

Next, by moving 69 to the third group we empty the 
second group completely:

82 95

15 21 27 35 51 56 59 69

We finish by moving the last remaining elements of 
the first group to the third group— they are definitely 
larger than the last element of the third group or other-
wise we would not have moved it there previously. Our 
items are completely sorted now:

15 21 27 35 51 56 59 69 82 95



138  ChAPtER 4

It’s nice to have a way of producing a sorted group 
from two sorted groups, but this does not seem to solve 
our problem of sorting a single group of unsorted items. 
It is true it does not, yet it is an important component of 
the solution.

Imagine now that we have a group of people. We give to 
one of them a group of items to sort. That person does not 
know how to sort them, but they do know that if somehow 
they had two sorted parts of the items, they could produce 
a final sorted group. So what they do is this: they split the 
group in two and pass it on to two other people. They say 
to the first of them, “Take this group and sort it. Once you 
are done, return it to me.” They say the same thing to the 
second person. Then they wait.

Although our first point of contact does not know 
how to sort the items, if the two new contacts man-
age somehow to sort their own parts and return them, 
then the first person would return to us the final, com-
pletely sorted group. But the two other contacts know 
no more than our initial contact— they don’t know how 
to sort but rather only how to merge sorted stuff us-
ing the algorithm above— so has anything really been  
achieved?

The answer is yes, provided that they do the same: 
they split their part in two, and each delegates their part 
to two other persons, waiting for them to do their bidding 
and provide them with two sorted parts.
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This seems like the ultimate pass- the- buck game, but 
look at what happens if we try to see it unfold with an 
example. We start with the numbers 95, 59, 15, 27, 82, 56, 
35, 51, 21, and 79. We give them to Alice (A), who splits 
them in two, and passes them to Bob (B) and Carol (C). 
You can see that in the first level of the upside- down tree 
below:

A: 95, 59, 15, 27, 82, 56, 35, 51, 21, 79

B: 95, 59, 15, 27, 82

D: 95, 59, 15

H: 95, 59

P: 95 Q: 59

I: 15

E: 27, 82

J: 27 K: 82

C: 56, 35, 51, 21, 79

F: 56, 35, 51

L: 56, 35

R: 56 S: 35

M: 51

G: 21, 79

N: 21 O: 79

Then Bob splits his numbers into two, and passes them 
on to Dave (D) and Eve (E). Similarly, Carol splits her num-
bers, and passes them on to Frank (F) and Grace (G). Our 
cast of characters continue passing the buck. Dave divides 
his numbers to Heidi (H) and Ivan (I); Eve distributes her 
two numbers to Judy (J) and Karen (K); Frank and Grace 
split to Leo (L) and Mallory (M) and Nick (N) and Olivia 
(O), respectively. Finally, Heidi splits her pair to Peggy (P) 



140  ChAPtER 4

and Quentin (Q), while Leo splits his pair to Robert (R) 
and Sybil (S).

The people at the leaves of the tree have really nothing 
to do. Peggy and Quentin receive a number each, and they 
are told to sort it. But a single number is sorted by defini-
tion: it is in order with itself. So Peggy and Quentin just 
give their number back to Heidi. Also, Ivan, Judy, Karen, 
Robert, Sybil, Mallory, Nick, and Olivia return the num-
bers they received.

Now let’s move to the tree on the next page. In this 
tree we’ll move from the leaves, at the top (so this looks 
like a normal tree, not upside down), to the root at the bot-
tom. Let’s concentrate on Heidi. She gets back two num-
bers, each one of which is (trivially) sorted. Heidi knows 
how to merge two sorted groups to produce a single group 
so she can use 95 and 59 to make 59, 95. She then returns 
this sorted group of two to Dave. Leo will act the same: 
he will get 35 and 56, which are already sorted (by them-
selves), and knows how to put these two in order and cre-
ate 35, 56, which he returns to Frank.

Dave, who was clueless about the numbers 95, 59, 15 
that he had initially received, now gets 59, 95 from Heidi 
and 15 from Ivan. Both of these groups are already sorted, 
which means that Dave can merge them to create 15, 59, 
95. In the same way, Frank gets 35, 56 from Leo and 51 
from Malory, and can produce 35, 51, 56.
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A: 15, 21, 27, 35, 51, 56, 59, 79, 82, 95

C: 21, 35, 51, 56, 79

G: 21, 79

O: 79N: 21

F: 35, 51, 56

M: 51L: 35, 56

S: 35R: 56

B: 15, 27, 59, 82, 95

E: 27, 82

K: 82J: 27

D: 15, 59, 95

I: 15H: 59, 95

Q: 59P: 95

If everybody acts in the same way, when the numbers 
reach Alice, she will get two sorted lists, one from Carol 
and one from Bob. She will merge them to create the final 
sorted list.

These two trees are the essence behind merge sort. We 
delegate the sorting as much as we can, to the point that no 
sorting can take place because lone items are already sorted 
by definition. Then we merge larger and larger groups, until 
we absorb all elements in a single, final, sorted group.

The smarts that we require from our characters is min-
imal. You can see in the first tree that Eve got from Bob a 
group of numbers that as it happened was already sorted: 
27, 82. It does not matter. She does not stop to check 
whether they need sorting or not— and we don’t want her 
to because such a check would take time. She just splits 
and passes them down. She will get them back and merge 
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them to produce what she already got. That’s all right; in 
the large scheme of things, this gratuitous pas de trois be-
tween Eve, Judy, and Karen won’t affect the performance 
of the algorithm.

The complexity of merge sort is as good as that of 
quicksort, O nlgn( ). That means that we have two algo-
rithms with the same performance. In practice, program-
mers may choose one or the other depending on additional 
factors. Usually quicksort programs run faster than merge 
sort ones because their concrete implementation in a pro-
gramming language is faster. Merge sort splits the data 
before merging them, which means that they can be par-
allelized, so that vast amounts of data can be sorted by a 
computer cluster, where each computer acts like our hu-
man sorters above.

Merge sort is as old as computers. Its inventor was 
a Hungarian American, Neumann János Lajos, better 
known under his American name, John von Neumann 
(1903– 1957). In 1945, he wrote a manuscript, in ink, 23 
pages long, for one of the first digital computers, the Elec-
tronic Discrete Variable Automatic Computer, or EDVAC 
for short. At the top of the first page, the phrase “TOP SE-
CRET” was penciled in (and later erased), as work on com-
puters was classified in 1945 due to its connections with 
the military. The subject of the paper was a nonnumerical 
application of computers: sorting. The method that von 
Neumann described was what we now call merge sort.7
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If you are below a certain age, the words HotBot, Lycos, 
Excite, AltaVista, and Infoseek mean nothing to you, or 
if they do mean something, they probably do not mean 
search engines. Yet all of them were vying for our atten-
tion at some point or other, trying to get us to use them 
as the gateway to the web.

This is history now, as the search engine landscape is 
dominated by two services, Google, run by Alphabet, and 
Bing, run by Microsoft. The explosion of many compet-
ing solutions in a new market, and their subsequent con-
solidation, is a pattern that we have witnessed in many 
industries in history. What is remarkable in the search 
engine space is that we know that a large factor in the 
evolution is the phenomenal success of Google, which in 
turn was based on an algorithm that its founders invented. 
The founders were Larry Page and Sergey Brin, doctoral 
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candidates at Stanford University, and they named their 
algorithm PageRank, after Page (and not after “page” and 
rank, as one might expect).

Before we embark on a description of PageRank, we 
need to understand what exactly search engines do. This 
is actually two things. First, they crawl the web, reading 
and indexing all the web pages they can come across. In 
this way, when we type in a search term, search engines 
look into the data they have stored on the crawled web 
pages and find the ones that match our query. So if we 
search for “climate change,” the search engines will search 
through the data they have amassed to find the web pages 
that contain this search term.

If our search term describes a popular topic, the results 
can be numerous. At the time of this writing, the query 

“climate change” on Google returns more than 700 million 
results; this number may be different when you read these 
lines, but you get an idea of the scale. This brings us to the 
second thing that search engines do. They must present 
the search results so that those that are more pertinent 
to what we are looking for appear first, and those that are 
less likely to interest us appear later. If you are trying to 
learn the facts about climate change, you would expect to 
see results from the United Nations, National Aeronautics 
and Space Administration (NASA), or Wikipedia come up 
on top. You would be rather surprised if the top result was 
a web page explaining the view of the Flat Earth Society on 
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the topic. From the hundreds of millions of web pages that 
may be related to your query, many will be trivial; others 
may be bloviating, and yet others will be utter nonsense. 
You want to hone in on those that are to the point and 
authoritative.

When the Google search engine arrived on the scene 
(the author is old enough to remember), people (the au-
thor included) started switching to the newcomer from 
other, older, now- extinct search engines because its re-
sults were better and they arrived faster. It also helped 
that the Google web page was plain, containing only rel-
evant information, instead of being flush with all sorts 
of paraphernalia, which had been the fashion. We’ll leave 
aside the second factor, illuminating though it is (Google 
understood that users cared for good and fast search re-
sults, not for bells and whistles), and deal with the first. 
How could Google deliver better results than the others, 
fast?

If the web were small, we could create a catalog of it, 
and have editors to curate the catalog and assign an im-
portance to its entries— the web pages. But the scale of 
the web precludes such an approach, although there were 
such attempts before it became obvious that the size of 
the web would make this an impossible task.

The web consists of web pages, linked to each other 
through links. We call these links hyperlinks; text that 
contains such cross- references to other parts of the text 
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or other texts is called hypertext. The notion of hypertext 
predates the web. The first description of a system of orga-
nizing knowledge by interlinking documents was written 
by the US engineer Vannevar Bush and appeared in 1945 
in the Atlantic. The World Wide Web, or simply the web as 
it became known, was developed by the British computer 
scientist Tim Berners- Lee in the 1980s. Berners- Lee was 
working at CERN, the European Organization for Nuclear 
Research, outside Geneva, Switzerland, and wanted to 
create a system to help scientists share documents and 
information. They could do that by making their docu-
ments available online and also adding links from their 
documents to other documents that were available online. 
The web has grown, and continues to grow, organically by 
people adding new pages. Authors of web pages write the 
content of the pages and link to existing pages that are 
relevant to the content of the pages they write.

Imagine you are the author of an online article that 
provides an overview of the effects of climate change in 
your country. In the article, as you introduce the topic, you 
may want to let your readers navigate to a web page that 
you believe is an authoritative source on the matter, so 
you add a link to that web page. In this way you help your 
readers by allowing them to delve deeper into the subject, 
while at the same time you add gravitas to your own writ-
ing because you substantiate your statements by those of 
another web page that you trust.
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There are many people like you, writing their own 
online articles on the effects of climate change in their 
countries or regions. Each one of them may also want to 
link to what they believe is an authoritative source on the 
topic. Hyperlinks will emanate from these online articles 
to point to relevant sources of information.

The reason why NASA might come up on top in a 
search for climate change is that lots of authors, each one 
writing their own article, decided to place a hyperlink to 
the NASA web page on climate change. Authors made their 
own choices individually, but it is likely that many chose 
the same page, such as, for instance, NASA’s page. It there-
fore makes sense that this page on climate change should 
be judged important, relative to other web pages.

The whole system acts as a kind of democracy. Authors 
of web pages link their pages to other pages. The more 
links that a web page accrues, the more authors judged it 
important enough to link to it from their own page, and 
thus the more important it becomes overall.

There is, though, a conceptual difference from de-
mocracy as we usually practice it. Not all of these articles 
that are written are equal. Some of them appear on more 
prestigious web sites than others. An article on a blog that 
is read by a handful of people carries less weight than an 
article in an online publication that rakes in hundreds of 
thousands of readers. This indicates that we should not 
consider just the number of links pointing to a web page 



The whole system acts as 
a kind of democracy. 
Authors of web pages 
link their pages to other 
pages. The more links 
that a web page accrues, 
. . . the more important 
it becomes overall.
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in order to gauge its importance. Who is pointing to a web 
page is also significant, not just how many. It is reasonable 
to expect that a link from a prestigious web page carries 
more weight than a link from an obscure site. Although 
you should not judge a book by its cover, an endorsement 
by a prominent author is more important than a good re-
view by an unknown reviewer. Every link from one page to 
another page acts as an endorsement from the first page 
to the second, and the weight of the endorsement depends 
on the status of the endorser. At the same time, if a page 
links to many other pages, its endorsement should be di-
vided, as it were, among the pages that receive it.

The set of pages linked by hyperlinks forms an enor-
mous graph, containing billions of pages and many more 
links between them. Every web page is a node in the graph. 
Every link from one page to another is a directed edge in 
this huge graph. The fundamental insight behind Page-
Rank is that following the reasoning we have just outlined, 
we can use the structure of the web graph to give us the 
importance of each web page. To be more precise, we can 
get the importance of each page through a number. This 
number, which we will call its pagerank, will measure the 
significance of a web page related to the other web pages. 
The more important a web page is, the higher its pagerank 
will be. The PageRank algorithm follows the ramification 
of this insight on a humongous scale, on the graph repre-
senting the whole web.
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The Basic Principles

When we are on a web page, the links on that page point to 
other pages that are relevant to the page we are currently 
browsing. The very existence of the link indicates that the 
web page at the end of the link is important— otherwise 
the author of the web page would not link to it in the first 
place. Consider the example graph below, representing a 
small set of web pages that link to each other:

1 2

3

4 5

In such a graph, we call the links that point to a web 
page backlinks; by extension, we will also call the pages that 
point to a web page backlinks. In this way, the backlinks of 
web page 3 are the edges pointing to it, its incoming edges, 
as well as the nodes from which they emanate: web pages 
2, 4, and 5. As in this chapter we will be concerned with 
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graphs that are made up of web pages, we will be using the 
terms “node” and “page” interchangeably.

We will build an algorithm for finding the importance 
of each web page based on two basic principles:

1. The importance of a web page depends on the 
significance of the web pages that link to it— that is, on 
the importance of its backlinks.

2. A web page divides its importance evenly over the web 
pages to which it links.

Say we want to find the importance of page 3. We saw 
that its backlinks are 2, 4, and 5. We take each one of them 
in turn and assume we know their own significance. Page 
2 divides its importance over pages 3 and 5, and therefore 
will give half its importance to page 3. Page 4 also divides 
its importance over two pages, 3 and 1, and hence will give 
half its significance to page 3. Finally, page 5 divides its im-
portance over pages 2, 3, and 4, and thus will give a third of 
its importance to page 3. To save typing, let us denote by 
r Pi( ) the importance of page i; r will stand for rank. Then 
the importance of page 3 will be:

r P
r P r P r P

( )
( ) ( ) ( )

3
2 4 5

2 2 3= + +
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In general, if we want to find out the importance of 
a certain web page and we know the importance of each 
backlink, it is easy to find what we are looking for: divide 
the importance of each backlink page by the number of 
web pages it links to and add the result to the contribu-
tions of the other backlinks of the page.

You may think of the calculation of importance as a 
voting contest between web pages. Each voting page has 
some significance, which it can use as a vote for those web 
pages that it deems important. If it considers only one 
web page as important, it just gives its vote to that web 
page. But if it considers more than one web page as sig-
nificant, then it splits its vote and gives a part of the vote 
to each of these web pages. Therefore, if a web page wants 
to vote three web pages as being important, it will give to 
each one of them one- third of its vote. To which pages will 
a web page apportion its vote? To those at the end of its 
hyperlinks— that is, to those to which it links. And how is 
the importance of a web page derived? From the impor-
tance of its backlinks.

The two principles do endow some aura of democracy 
to the ranking of web pages. There is no single authority 
that decides what is most significant. A web page is impor-
tant if other web pages think it is important, and they vote 
with their links. In contrast with the one person, one vote 
principle that holds in most real- world elections, however, 
not all web pages have equal votes here. The votes of a web 
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page depend on how important it is— which, again, is de-
termined by the other web pages.

This may seem like casuistry because in effect it tells 
us that to find the importance of a web page, we must find 
the importance of its backlinks. If we follow the same 
reasoning, to find the importance of each of its backlinks, 
we must find the importance of that backlink’s backlinks. 
Then the process seems to regress more and more, from 
backlinks to backlinks, and in the end, we are left with-
out knowing how to calculate the significance of the web 
page from where we started. Worse, we may find out that 
we run in circles. In our example, to calculate the impor-
tance of page 3, we need the importance of each of pages 
2, 4, and 5. To calculate the importance of page 2, we need 
the importance of page 1 (and page 5, but let us leave that 
aside for a bit). To calculate the importance of page 1, we 
need the importance of page 4, and to find that, we need 
to know the importance of page 3. We are back where we 
started.

An Example

To see how we get out of the problem, let us assume 
that before we begin calculating the importance of the 
web pages, we give them all equal significance. In terms 
of our voting metaphor, we give each web page exactly 
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one vote. When the voting starts, each one of the pages 
will vote in the way we described, spreading its vote to 
the pages to which it links. Each page will then receive 
votes from all its backlinks. The transfer of votes will look  
like this:

1 2

3

4 5

1

1/
2

1/2

1/3

1/3

1/3
1/2

1/2

1/3

1/3

1/3

Page 1 sends its vote to page 2, the only page it links 
to. Page 2 divides its vote into two parts, and sends 1 2/  
to page 3 and 1 2/  to page 5. Page 3 divides its vote into 
three parts and sends 1 3/  to each of pages 1, 4, and 5. 
Pages 4 and 5 vote using the same method.

Once voting is over, each page will calculate the total 
from the sum of the votes, or fractions of the votes, it has 
received from its backlinks. For example, page 1, having 
received votes from pages 3 and 4, will have 1 / 2 + 1 / 3  
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= 5 / 6 votes, while page 3, having received votes from  
pages 2, 4, and 5, will have 1 2 1 2 1 3 4 3/ / / /+ + =  
votes. We see that page 1 decreased its share of votes com-
pared to where it started, while page 3 increased it.

Now let us change the setup a little bit. Instead of giv-
ing each page one vote before the voting starts, we give 
each page 1 5/  of a vote so that all votes sum up to one. In 
general, if we have n pages, we give 1 / n votes to each one 
of them. The rest of the process is exactly the same. The 
overall importance of all web pages is equal to one, and 
the importance is again distributed evenly over all the web 
pages.

After the voting ends, the importance of each web 
page will have changed. Instead of having all of them equal 
to 1 5 0 2/ .= , if we do the calculations, we will find that 
they will be equal to 0.17, 0.27, 0.27, 0.13, and 0.17 for 
each of the pages in turn. Web pages 2 and 3 have gained 
in importance, while web pages 1, 4, and 5 have lost im-
portance. The total significance of all web pages sums up 
to one.

We can now start another voting round, with exactly 
the same rules. The pages will spread the votes they have 
gathered to the pages to which they link. At the end of this 
second round, each page will count its votes to determine 
its standing in terms of accumulated importance. After 
the calculations, the new importance values will be 0.16, 
0.22, 0.26, 0.14, and 0.22.
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We’ll do exactly the same process again. In fact, 
we’ll repeat the voting again and again. If we do that, 
the votes— that is, the importance apportioned to each 
page— will evolve as in the following table, which shows 
the initial values and results after each voting round:

Round Page 1 Page 2 Page 3 Page 4 Page 5

start 0.20 0.20 0.20 0.20 0.20

1 0.17 0.27 0.27 0.13 0.17

2 0.16 0.22 0.26 0.14 0.22

3 0.16 0.23 0.26 0.16 0.20

4 0.17 0.22 0.26 0.15 0.20

5 0.16 0.23 0.25 0.15 0.20

6 0.16 0.23 0.26 0.15 0.20

If we go on to perform another, seventh voting round, 
we’ll discover that the situation will remain unchanged 
with respect to the sixth voting round. The votes, and 
therefore the importance of the web pages, will remain the 
same. This then gives us our final result. The ranking of the 
web pages is that page 3 is the most important, followed 
by page 2, then page 5, then page 1, and last comes page 4.

Let’s step back and reflect on what we did. We started 
with two principles that give us rules for calculating the 
importance of a web page, provided we know the impor-
tance of each of its backlinks. Before we start, we set up all 
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n web pages with equal importance, equal to 1 / n. Then 
we calculate the significance of each web page by sum-
ming the shares it gets from its backlinks. This gives us 
new values for the significance of each web page, different 
from the 1 / n value from where we started. We repeat the 
process beginning with these values. We find another set 
of values. After a number of repetitions of this process, we 
found that the situation stabilized: the measure of impor-
tance would not change from one repetition to the next. 
At this point we called it a stop and reported the values 
that we found.

The question of course is whether the approach that 
we have just described works in general and not in the par-
ticular example that we chose. Moreover, does it produce 
sensible results?

The Hyperlink Matrix and Power Method

The method of calculating the importance of a page from 
the importance of its backlinks has an elegant formula-
tion. We start from the graph that describes the links be-
tween our web pages. We can represent a graph by using a 
matrix of numbers, which we call its adjacency matrix. The 
construction is straightforward. We create a matrix with 
as many rows and columns as the nodes in the graph. Then 
we put one for each intersection that corresponds to a link 
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and zero for all other intersections. The adjacency matrix 
for our example is:

1 2

3

4 5

0 1 0 0 0

0 0 1 0 1

1 0 0 1 1

1 0 1 0 0

0 1 1 1 0

We can also represent the importance of the web pages 
using a single row or vector:

r P r P r P r P r P( ) ( ) ( ) ( ) ( )1 2 3 4 5[ ]

As we now get into the nuts and bolts of the PageRank 
algorithm, we’ll start using the term pagerank to refer to 
the significance of a web page. You will see that the term 
will be justified as we will be able to derive a ranking, in 
terms of importance, of all the pages on the web. As our 
row contains all the pageranks, we will call it the pagerank 
vector of our graph.
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The importance of each web page is divided over the 
pages to which it links. Now that we have the adjacency 
matrix at hand, we can do that by going to each row and 
dividing each one in the row by the number of ones in that 
row. This is equivalent to dividing each page’s vote by the 
number of outgoing links to that page. If we do that, we 
get the following matrix:

0 1 0 0 0

0 0 1 2 0 1 2

1 3 0 0 1 3 1 3

1 2 0 1 2 0 0

0 1 3 1 3 1 3 0

/ /

/ / /

/ /

/ / /























We call this matrix the hyperlink matrix.
If we look carefully at the hyperlink matrix, each col-

umn shows how the importance of a page is derived from 
the pages that link to it. Take the first column, which relates 
to the importance of page 1. This page takes its significance 
from pages 3 and 4. Page 3 gives 1 3/  of its importance to 
page 1 because it links to three pages, and page 4 gives 1 2/  
of its importance to page 1 because it links to two pages. 
Page 1 receives zero significance from the other pages in the 
graph because they do not link to it. We can express this as:

r P r P
r P r P

r P
r P r P

( ) ( )
( ) ( )

( )
( ) ( )

1 2
3 4

5
3 40 0 3 2 0 3 2× + × + + + × = +



 PAgERAnk  161

But this is exactly the definition of r P( )1 , the pagerank 
of page 1. We got the pagerank by summing the products of 
the elements of the pagerank vector with the correspond-
ing elements of the first column of the hyperlink matrix.

Let’s see what is happening if we take the pagerank 
vector and sum the products of its elements with the cor-
responding elements of the second column of the hyper-
link matrix:

r P r P r P r P
r P

r P
r P

( ) ( ) ( ) ( )
( )

( )
( )

1 2 3 4
5

1
51 0 0 0 3 3× + × + × + × + = +

That is exactly the definition of r P( )2 , the pagerank of 
page 2. The sum of the products of the elements of the 
pagerank vector with the contents of the third column of 
the hyperlink matrix will similarly give us r P( )3 , the page-
rank of page 3:

r P
r P

r P
r P r P r P r P r P

( )
( )

( )
( ) ( ) ( ) ( ) ( )

1
2

3
4 5 2 4 50 2 0 2 3 2 2 3× + + × + + = + +

You can verify that using the fourth and fifth columns 
of the hyperlink matrix we’ll get r P( )4  and r P( )5 , respec-
tively. This operation— of summing the products of the 
elements of the pagerank vector with the contents of each 
column of the hyperlink matrix— is actually the product of 
the pagerank vector with the hyperlink matrix.
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Unless you are familiar with matrix operations, this 
may be confusing because we usually talk about the prod-
uct of two numbers, which is the common multiplication, 
and not about the product of constructs like vectors and 
matrices. We can define mathematical operations on other 
entities, not just numbers, as long as it suits us. The prod-
uct of a vector with a matrix is such an operation. There is 
no mystery involved in it: it is simply an operation that we 
define as a particular calculation involving the elements of 
the vector and matrix.

Suppose that we make bagels and croissants that we 
sell for $2.00 and $1.50, respectively. We have two shops; 
on a particular day, the first shop sells 10 bagels and 20 
croissants, while the second shop sells 15 bagels and 10 
croissants. How do we find the total sales per shop?

To find the total sales from the first shop, we will mul-
tiply the price of a bagel with the number of bagels sold in 
that shop, and the price of a croissant with the number of 
croissants sold there, and we’ll add these two:

2 00 10 1 50 20 50. .× + × =

We’ll do the same thing to find the total sales from the 
second shop:

2 00 15 1 50 10 45. .× + × =
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To express this more succinctly, we write down the 
prices for the bagels and croissants as a vector:

2 00 1 50. .[ ]

We also write down the daily sales in a matrix. The 
matrix will have two columns, one per shop, and two rows, 
one for the bagels and one for the croissants:

10 15

20 10






Then to find the total sales per shop, we multiply the 
elements of the vector with each column of the sales ma-
trix and add them up. This defines the product of the vec-
tor with the matrix:

2 00 1 50
10 15

20 10
2 00 10 1 50 20 2 00 15 1 50 10

. .

[ . . . . ]

[ ] × 





= × + × × + ×
== [ ]50 45   

The product of a vector with a matrix is a special case 
of the product of two matrices. Let’s extend the example 
so that instead of having a vector with the prices of the 
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bagels and croissants, we have a matrix with the prices and 
profits per sale:

2 00 1 50

0 20 0 10

. .

. .






To find the total sales per shop and total profit per 
shop, we will create a matrix in which the entries in the 
ith row and jth column will be the sum of products of the 
ith row of the prices and profits matrix with the jth row 
of the sales matrix. This is the definition of the product of 
the two matrices:

2 00 1 50

0 10 0 20

10 15

20 10

2 00 10 1 50 20 2

. .

. .

. . .







× 





=
× + ×

   

000 15 1 50 10

0 10 10 0 20 20 0 10 15 0 20 10

50 45

5 3

× + ×
× + × × + ×







=

.

. . . .

.55






Returning to pagerank, in each round the calculation 
of the pagerank vector is really the product of the value 
of the pagerank vector in the previous round with the hy-
perlink matrix. As we go through the rounds, we get suc-
cessive estimates of the pageranks— that is, successive 
estimates of the pagerank vector that is made up of them. 
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To get these successive estimates of the pagerank vector 
we only need to multiply the vector in each round with 
the hyperlink matrix, thereby getting the vector for the 
next round.

In the first round, we start with a pagerank vector 
whose contents are all equal to 1 / ,n  where n is the num-
ber of pages. If we denote this first pagerank vector by π1, 
the pagerank vector at the end of the first round by π2, and 
the hyperlink matrix by H, we have:

π π2 1= × H

In each round we use the pagerank vector of that round 
to calculate the pagerank vector for the following round. 
In the second voting round, where we got our third page-
rank estimates— that is, our third pagerank vector— we 
performed the calculation:

π π π π π3 2 1 1 1
2= × = × × = × × = ×H H H H H H( ) ( )

In the third voting round, we got our fourth pagerank 
vector:

π π π π π4 3 1
2

1
2

1
3= × = × × = × × = ×H H H H H H( ) ( )

As in every iteration, we multiply the result of the 
previous iteration by the hyperlink matrix, and in the end 
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this is a series of products of the successive estimates of 
the pagerank vector by the hyperlink matrix. As we see, 
this is equivalent to multiplying the initial pagerank vec-
tor with increasing powers of the hyperlink matrix. This 
method of calculating successive approximations is called 
the power method. We see therefore that the calculation of 
the pageranks of a set of web pages is an application of the 
power method to the pagerank vector and hyperlink ma-
trix, until the resulting pagerank vector does not change, 
or as we say, until it converges to a stable value— our final 
pagerank metrics.

We have just reached a more precise description of 
how to calculate the pageranks of a web graph:

1. Form the hyperlink matrix of the graph.

2. Start with initial pagerank estimates, giving a 
pagerank of 1 / n to each page, where n is the total 
number of pages.

3. Apply the power method, multiplying the pagerank 
vector by the hyperlink matrix until the values of the 
pagerank vector converge.

Apart from being succinct, this formulation allows us 
to transfer the problem to the realm of linear algebra, the 
branch of mathematics that treats matrices and opera-
tions on them. There is a well- established body of theory 
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that we can use to investigate the power method as well as 
performant implementations of matrix operations, such 
as the multiplication that we described. The matrix for-
mulation of the problem will also help investigate whether 
the power method will always converge so that we can al-
ways come up with a solution to the pageranks of a graph.

Dangling Nodes and the Random Surfer

We now turn to an example of a simpler graph, consisting 
of just three nodes:

1

3

2

We want to find the pageranks of these three nodes. We 
follow the same algorithm. We initialize the pagerank vector 
to 1 3/ , giving equal pageranks to all nodes. Then we multi-
ply the pagerank vector with the hyperlink matrix, which is:

0 1 2 1 2

0 0 1

0 0 0

/ /
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If we start the iterations of the power method, mul-
tiplying the pagerank vector with the hyperlink matrix 
to update the pagerank vector, and then again and again, 
we’ll find out that after four iterations, all pageranks have 
gone down to zero:

Round Page 1 Page 2 Page 3

start 0.33 0.33 0.33

1 0.00 0.17 0.50

2 0.00 0.00 0.17

3 0.00 0.00 0.00

That is clearly a problem. We do not expect all pages 
to have zero importance here. After all, page 3 has two 
backlinks and page 2 has one backlink, so somehow we 
would expect this to show on the results, let alone the 
fact that we also want the total sum of the pageranks 
to be one. Here nothing ended up being of any import  
at all.

The cause of the problem is node 3. Although this node 
has backlinks and would thereby gain importance, it has 
no outgoing links. So in a way it sucks importance from the 
rest of the graph, but does not redistribute it anywhere. It 
acts as a selfish node or black hole: what goes in, does not 
go out. After a few iterations, it has acted as a sink where 
all pagerank values have gone in and vanished.
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Such nodes are called dangling nodes because they 
hang at the (dead) ends of the graph. On the web, noth-
ing prohibits the existence of such pages. Although web 
pages usually have both incoming and outgoing links, a 
page with no outgoing links can appear and would wreak 
havoc with the power method as we have described it.

To overcome the problem, we work with a metaphor. 
We imagine that we have a human who surfs the web, jump-
ing from page to page. To go from one page to another, the 
surfer normally follows a link. But then the surfer comes 
on a dangling node: a page with no links to any other page. 
We don’t want our surfer to remain trapped in there so we 
give the surfer the capability to jump to any other page, 
anywhere on the web. It is as if we are surfing the web 
from page to page until we reach a dead end. When we 
get there, we don’t give up and stop. We can always type 
another address in our web browser and move to any other 
web page we want, even if no links exist to it from the dan-
gling page. This is what we want our surfer to do. When at 
a loss about where to go, the surfer will pick a page, any 
page, from the web and go there to continue surfing. The 
surfer becomes a random surfer, equipped with a teleporta-
tion device that can take the surfer instantly to any place  
at all.

To take this metaphor back to pagerank, we interpret 
the hyperlink matrix as giving us the probabilities that a 
surfer will follow a link to go to a particular page. In our 
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three- nodes example, the first row of the hyperlink matrix 
tells us that when on page 1, the surfer will choose either 
page 2 or 3 with equal probability. The second row tells 
us that when on page 2, the surfer will always choose to 
visit page 3. Going back to our first example for a moment, 
if the surfer lands on page 5, then it is possible to go to 
page 2, 3, or 4 with a probability of 1 3/  for each of these 
outcomes.

A dangling node manifests itself in the presence of 
a row full of zeros. Then there is no probability that the 
surfer will go anywhere. This is where the random surfer 
kicks in. As we said, that surfer will jump to any page in the 
graph. That means that in effect, we change the hyperlink 
matrix so that it no longer has rows with zeros. As we want 
the surfer to jump to any web page with equal probability, 
instead of zeros we’ll fill the row with 1 / n, or in our ex-
ample, 1 3/ . Our matrix will become:

0 1 2 1 2

0 0 1

1 3 1 3 1 3

/ /

/ / /

















Now the surfer who lands on page 3 can go to any 
page in the graph with equal probability. The surfer may 
even stay temporarily on the same page, but that does not 
matter, as the surfer can try again and again, and at some 
point a different target page will be selected at random. 
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We call this modified hyperlink matrix, where we change 
zero rows to rows with values equal to 1 / n, the S matrix. 
If we run the power method using the S matrix, then the 
evolution of the pageranks will be:

Round Page 1 Page 2 Page 3

start 0.33 0.33 0.33

1 0.11 0.28 0.61

2 0.20 0.26 0.54

3 0.18 0.28 0.54

4 0.18 0.27 0.55

5 0.18 0.27 0.54

This time the algorithm converges to nonzero val-
ues; no sucking out of importance occurs. Also, the re-
sults make sense. The highest pagerank is achieved by 
page 3, which has two backlinks; then comes page 2, with 
one backlink, and then page 1, which has no backlinks  
at all.

The Google Matrix

We seem to have solved the problem, but a similar issue 
raises its head in more complex situations. The following 
graph has no dangling nodes:



172  ChAPtER 5

1 2 3

4 5 6

If we run the algorithm, we find that two nodes, pages 
1 and 4, end up with zero pagerank:

Round Page 1 Page 2 Page 3 Page 4 Page 5 Page 6

start 0.17 0.17 0.17 0.17 0.17 0.17

1 0.08 0.22 0.14 0.00 0.42 0.14

2 0.00 0.25 0.25 0.00 0.29 0.21

3 0.00 0.22 0.22 0.00 0.33 0.22

What happened is that even though there is no dan-
gling node, there is a set of nodes that act as a sink for the 
rest of the graph. If you scrutinize the graph, you will see 
that the nodes 2, 3, 5, and 6, taken together as a group, 
have only incoming links. It is possible to go from node 1 
or 4 to this group, but once we are in, we can only move in-
side the group. We are not able to go outside. Our random 
surfer will be trapped, not inside a single web page this 
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time, but inside a group of pages that link only between 
themselves.

1 2 3

4 5 6

We need again to help the random surfer escape from 
this trap. This time the solution requires more compre-
hensive changes to the hyperlink matrix. Our initial hy-
perlink matrix allowed the surfer to go from page to page 
only using the existing links in the original graph. Then we 
modified the hyperlink matrix to handle rows with all zero 
elements and came up with the S matrix that allowed the 
surfer to get away from dangling nodes. This enabled the 
random surfer to jump to anywhere in the graph when in 
a dangling node. Now we will change the behavior of the 
random surfer a bit more by modifying the S matrix.

Right now, when a surfer lands on a node, the pos-
sible moves are those indicated by the S matrix. In the last 
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example, the S matrix is the same as the hyperlink matrix 
because no zero rows exist:

0 1 2 0 0 1 2 0

0 0 1 2 0 1 2 0

0 1 2 0 0 0 1 2

1 2 0 0 0 1 2 0

0 1 3 1 3 0 0 1 3

0 0 0 0 1 0

/ /

/ /

/ /

/ /

/ / /

























If the random surfer lands on page 5, then the pos-
sible moves are to pages 2, 3, or 6, all with 1 3/  probabil-
ity, as the S matrix indicates. We will make the random 
surfer more agile, with the power to move following the 
S matrix not always, but with some probability a that we 
will choose; then for some probability ( )1 − a , the random 
surfer will jump anywhere in the graph, unconstrained by 
the S matrix.

The ability to jump from anywhere to anywhere in the 
graph means that we cannot have any zeros at all in the 
matrix— because a zero entry denotes a move that cannot 
be made. To achieve what we want, we will need to increase 
the zero entries in a row by some value and decrease the 
nonzero entries so that the whole row always sums up to 
one. The exact final values of the matrix can be calculated 
through linear algebra, based on S and the probability a. 
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The new matrix that will be derived is called the Google 
matrix, and we use the symbol G. If the behavior of the 
random surfer is determined by the Google matrix, it will 
work out as we want: the surfer will appear to be following 
the S matrix with probability a and move independently 
with probability ( )1 − a . In our example, the Google ma-
trix is:
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Compare that to the S matrix. Observe that in the first 
row, we had two entries with 1 2/  and the rest were zero. 
Now in the Google matrix, we have the two 1 2/  entries 
turned to 54 120/ , and the rest of the entries turned from 
0 to 3 120/ . Similar transformations have occurred in the 
other rows. If, then, the random surfer lands on page 1, the 
possible moves out are to pages 2 and 5 with probability 
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54 120/  for either of them, or any other page with prob-
ability 3 120/  for each one of them.

We are now able to give the final definition of the  
PageRank algorithm:

1. Form the Google matrix of the graph.

2. Start with initial pagerank estimates, giving a 
pagerank of 1 / n  to each page, where n is the total 
number of pages.

3. Apply the power method, multiplying the pagerank 
vector by the Google matrix until the values of the 
pagerank vector converge.

We simply substituted “Google matrix” for “hyperlink 
matrix” of the initial algorithm. If we trace this algorithm 
in our graph with the group of sink nodes, we’ll get:

Round Page 1 Page 2 Page 3 Page 4 Page 5 Page 6

start 0.17 0.17 0.17 0.17 0.17 0.17

1 0.10 0.14 0.14 0.10 0.31 0.21

2 0.07 0.15 0.17 0.07 0.31 0.23

3 0.05 0.14 0.18 0.05 0.32 0.26

4 0.05 0.14 0.17 0.05 0.33 0.27

It works out fine; we get no zero pageranks anymore.
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The power method with the Google matrix will work 
always. Linear algebra tells us that it will always converge 
to a final set of pagerank values, the sum of which will be 
one, without suffering from dangling nodes or parts of 
the graph draining the pageranks of the rest of the graph. 
We don’t even need to initialize the pageranks to exactly 
1 / n when we start. Any initial set of values will do, as 
long as they sum up to one.

PageRank in Practice

Having established that we have a method to find the 
pageranks in any graph, the question remains whether the 
results are in the end sensible.

The pagerank vector, in the way that we have defined it, 
is a special vector in relation to the Google matrix. When 
the power method finishes, the pagerank vector does not 
change any more. Therefore if we multiply the Google ma-
trix by the pagerank vector we will get simply the same 
pagerank vector. In linear algebra, this vector is called the 
first eigenvector of the Google matrix. Without going deep 
into the mathematics, the underlying theory supports the 
notion that this vector has some special significance to the 
matrix.

Beyond mathematics, the final arbiter of whether Page-
Rank is a good way to assign importance to web pages is 
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the utility of its results to us humans. The Google search 
engine gives good results, meaning that the results are in 
accordance with what we, the users of the search engine, 
regard as being important. If the pagerank vector was a 
mathematical curiosity that bore no relation to the sig-
nificance of web pages, we would not be concerned with 
it today.

An additional advantage of PageRank is that it can be 
implemented efficiently. The Google matrix is huge; we 
need one row and one column for every single page on  
the web. Yet the Google matrix is derived, as we saw, from 
the S matrix, which in turn is derived from the hyperlink  
matrix. We do not really need to create and store the 
Google matrix itself; we can create it dynamically with 
matrix operations on the hyperlink matrix. This is con-
venient. In contrast to the Google matrix, which has no 
zeros anywhere, the hyperlink matrix has lots and lots of 
zeros. The web may have billions of pages, but every sin-
gle page links to only a small number of other web pages. 
The hyperlink matrix is what we call a sparse matrix: one 
that is mostly full of zeros, with only some nonzero en-
tries, which are scales of magnitude fewer than the zero 
entries. Thus we can store the matrix using clever tech-
niques that instead of requiring a big slab of memory to 
fill with mostly zeros and a few nonzeros, store only the 
positions where the nonzeros occur. Rather than storing 
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the whole hyperlink matrix, we need only store the co-
ordinates of the nonzero entries, which will require only 
a fraction of the storage space. This gives us big lever-
age in the practical implementations of the PageRank  
algorithm.

Finally, an important caveat. Although we know that 
PageRank played a crucial role in the success of Google, we 
do not know how, or even if, PageRank is used in Google 
today. The Google search engine has been evolving during 
the years, and the changes are not made public. We know 
that Google uses our past searches to fine- tune the results 
that it presents to our queries. It can tune the results de-
pending on the country that we live in. It can also take 
into account the overall trends in the queries that other 
people make all around the world. All these are part of the 
secret sauce that Google uses to improve its product and 
retain its position in the search engine business against 
competitors. This, however, does not detract from the al-
gorithm’s efficiency in solving the problem of ranking web 
pages, represented as nodes in a graph.1

PageRank highlights an additional aspect of algo-
rithms. The success of an algorithm does not hinge only 
on its elegance and efficiency. It also has to do with the 
mapping of the algorithm to a problem. This is a creative 
act. To solve the problem of web search, one has to over-
come the issue of the sheer size of the web. But once you 
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conceive of the web as a graph, its size turns into an ad-
vantage, not a hindrance. It is exactly because there are 
so many pages, hyperlinked to each other, that you may 
expect that a method that is based on the link structure of 
the graph will in the end work. Finding the way to model a 
problem is the first step in finding the way to solve it with 
an algorithm.



6

DEEP LEARNING

Deep learning systems have burst onto the scene in recent 
years, often making headlines in mainstream media. There 
we see computer systems performing feats that were the 
purview of humans. Even more tantalizing is the fact that 
these systems are frequently presented as having some 
similarities to the way the human mind works— which 
of course cues to the idea that perhaps the key for artifi-
cial intelligence may be to mimic the workings of human 
intelligence.

Brushing aside the hype, most scientists working on 
deep learning do not ascribe to the view that deep learning 
systems work like the human mind. The goal is to exhibit 
some useful behavior, which we often associate with in-
telligence. We do not go about copying nature, however; 
in fact, the architecture of the human brain is much too 



182  ChAPtER 6

complicated to emulate on a computer. But we do take 
some leaves out of nature’s book, simplify them a lot, 
and try to engineer systems that could, in certain fields, 
do things usually done by biological systems that have 
evolved over millions of years. Moreover, and this con-
cerns us here in this book, deep learning systems can be 
understood in terms of the algorithms they employ. This 
will shed some light on what they do exactly, and how. And 
it should help us see that underneath their accomplish-
ments, the main ideas are not complicated. That should 
not belittle the achievements of the field. We’ll see that 
deep learning requires an enormous amount of human in-
genuity in order to come to fruition.

To understand what deep learning is about, we need 
to start small, from humble beginnings. On these we will 
build a more and more elaborate picture, until, at the end 
of the chapter, we will be able to make sense of what the 

“deep” in deep learning stands for.

Neurons, Real and Artificial

Our starting point will be the main building block of deep 
learning systems, which does come from biology. The brain 
is part of the nervous system, and the main components of 
the nervous system are cells called neurons. Neurons have 
a particular shape; they look different from the globular 
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structures that we usually associate with cells. You can see 
below one of the first images of neurons, drawn in 1899 by 
the Spanish Santiago Ramón y Cajal, a founder of modern 
neuroscience.1
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The two structures that stand out in the middle of the 
image are two neurons of the pigeon brain. As you can see, 
a neuron consists of a cell body and the filaments that ex-
trude from it. These filaments connect a neuron to other 
neurons through synapses, embedding the neurons in a 
network. The neurons are asymmetrical. There are many 
filaments on the one side and one filament on the other 
side of each neuron. We can think of the many filaments 
on the one side as the neuron’s inputs, and the long outgo-
ing filament on the other side as the neuron’s output. The 
neuron takes input in the form of electric signals from its 
incoming synapses and may send a signal to other neurons. 
The more inputs it receives, the more likely it is to output 
a signal. We say that the neuron then fires or is activated.

The human brain is a vast network of neurons, which 
number about one hundred billion, and each one of them 
is connected on average to thousands of other neurons. 
We do not have the means to build anything like that, but 
we can build systems out of simplified, idealized models of 
neurons. This is a model of an artificial neuron:
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That is an abstract version of a biological neuron, 
being just a structure with a number of inputs and one 
output. The output of a biological neuron depends on its 
input; similarly, we want the artificial neuron to be ac-
tivated depending on its input. We are not in the realm 
of brain biochemistry, but in the world of computing, so 
we need a computational model for our artificial neuron. 
We assume that the signals received and sent by neu-
rons are numbers. Then the artificial neuron takes all its 
inputs, calculates some arithmetic value based on them, 
and produces some result on its output. We do not need 
any special circuit for implementing an artificial neuron. 
You can think of it as a small program inside a computer 
that takes its inputs and produces an output, much like 
any other computer program. We do not need to build ar-
tificial neural networks literally; we can and do simulate  
them.

Part of the learning process in biological neural net-
works is the strengthening or weakening of the synapses 
between neurons. The acquisition of new cognitive abili-
ties and absorption of knowledge result in some syn-
apses between neurons getting stronger, while others get 
weaker or even drop off completely. Moreover, synapses 
may not only excite a neuron to fire but also inhibit its 
activation; when a signal arrives on that synapse, the neu-
ron should not fire. Babies have actually more synapses 
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in their brains than adults. Part of growing up is pruning 
the neural network inside our heads. Perhaps we could 
think of the infant brain as a block of marble; as we go 
through the years in our lives, the block is chipped through 
our experiences and the things we learn, and a form  
emerges.

In an artificial neuron, we approximate the plasticity 
of synapses, their excitatory or inhibitory role, through 
weights we apply to the inputs. In our model artificial neu-
ron, we have n inputs, x1, x2, . . . , xn. To each one of them 
we apply a weight, w1, w2, . . . , wn. Each weight is multiplied 
by the corresponding input. That final input received by a 
neuron is the sum of the products: w x w x w xn n1 1 2 2+ + + . 
To this weighted input we add a bias b, which you can think 
of as the propensity the neuron has to fire; the higher the 
bias, the more likely it is to be activated, while a negative 
bias added to the weighted input will actually inhibit the 
neuron from firing.

The weights and bias are the parameters of the neu-
ron because they influence its behavior. As the output of 
a biological neuron depends on its inputs, so the output 
of an artificial neuron depends on the input it gets. This 
happens by feeding the input into a special activation func-
tion, the result of which is the neuron’s output. This is what 
happens, diagrammatically, using f ( )⋅  as a stand- in for the 
activation function:
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The simplest activation function is a step function, 
giving us a result of 0 or 1. The neuron fires and outputs 1 
if the input to the activation function is greater than 0, or 
stays silent outputting 0 otherwise:

–5 5

0

0.75

0.5

0.25

2.50–2.5

1

Instead of a bias, it is helpful to think of a thresh-
old. The neuron outputs 1 if the weighted input  
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exceeds a threshold or outputs 0 otherwise. Indeed, if 
we write the behavior of the neuron as a formula, the 
first condition is w x w x w x bn n1 1 2 2 0+ + + + >  or 
w x w x w x bn n1 1 2 2+ + + > − . By using t b= − , we get 
w x w x w x tn n1 1 2 2+ + + > , where t, the opposite of the 
bias, is the threshold that the weighted input needs to 
pass for the neuron to fire.

In practice we tend to use other, related activation 
functions instead of the step function. On the next page 
you can see three common ones.

The one on the top is called sigmoid because it has an 
S shape.2 Its output ranges from 0 to 1. A large positive 
input results in outputs close to 1; a large negative input 
results in an output close to 0. This approximates a bio-
logical neuron that fires on large inputs and stays silent 
otherwise, and is a smooth approximation to the step 
function. The activation function in the middle is called 
tanh, short for hyperbolic tangent (there are various ways 
to pronounce it: “tan- H,” “then,” or “thents” with a soft 
th, as in thanks).3 It looks like the sigmoid function, but 
it differs in that its output ranges from −1 to +1; a large 
negative input results in a negative output, mimicking 
an inhibitory signal. The function at the bottom is called 
a rectifier; it turns all negative inputs to 0, otherwise its 
output is directly proportional to its input. The following 
table shows the output of the three activation functions 
for different inputs.
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- 5 - 1 0 1 5

sigmoid 0.01 0.27 0.5 0.73 0.99

tanh - 1 - 0.76 0 0.76 +1

rectifier 0 0 0 1 5

If you wonder why the proliferation of activation 
functions (there are also others), it is because it has been 
found in practice that particular activation functions are 
more suitable in some applications than others. As the ac-
tivation function is crucial for the behavior of a neuron, 
neurons are often named by their activation functions. A 
neuron that uses the step function is called a Perceptron.4 
Then we have sigmoid and tanh neurons. We also call neu-
rons units, and a neuron using the rectifier is called a ReLU, 
for rectified linear unit.

A single artificial neuron can learn to distinguish be-
tween two sets of things. For example, take the data in 
the figure on the top of the next page, portraying a set 
of observations with two features, x1, on the horizontal 
axis, and x2, on the vertical axis. We want to build a sys-
tem that will tell apart the two blobs. Given any item, the 
system will be able to decide whether the item falls in one 
group or another. In effect, it will create a decision bound-
ary, like in the figure at the bottom. For any combination 
of ( , )x x1 2 , it will tell us whether the item belongs to the 
lighter or darker group.
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The neuron will have only two inputs. It will take each 
( , )x x1 2  pair and calculate an output. If we are using the 
sigmoid activation function, the output will be between 
0 and 1. We’ll take the values greater than 0.5 to fall into 
one group and the other values to fall into the other. In 
this way the neuron will act as a classifier, sorting our data 
into distinct classes. But how does it do that? How can the 
neuron get to the point of being able to classify data?

The Learning Process

At the moment of its creation, our neuron cannot recog-
nize any kind of data; it learns to recognize them. The way 
it learns is by example. The whole process is akin to having 
a student learn something by giving them a large bunch 
of problems on a subject, along with their solutions. We 
ask the student to study each problem and its solution. 
If they are diligent, we expect that after the student has 
gone through a number of problems, they will have fig-
ured out how to get from a problem to its solution and will 
even be able to solve new problems, related to the ones 
they studied, but this time without having recourse to any  
solutions.

When we do this, we train the computer to find the 
solutions; the set of solved example problems is called the 
training data set. This is an instance of supervised learning 



At the moment of its 
creation, our neuron 
cannot recognize any 
kind of data; it learns to 
recognize them. The way 
it learns is by example.
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because the solutions guide the computer, like a supervi-
sor, toward finding the right answers. Supervised learning 
is the most common form of machine learning, the entire 
discipline that deals with methods where we train comput-
ers to do things. Apart from supervised learning, machine 
learning also encompasses unsupervised learning, where 
we provide the computer with a training data set, but not 
with any accompanying solutions. There are important 
applications of unsupervised learning, like, for example, 
grouping observations into different clusters (there is no 
a priori solution to what a correct cluster of observations 
is). In general, though, supervised learning is more power-
ful than unsupervised learning, as we provide more infor-
mation during training. We will only deal with supervised 
learning here.

After training, the student often passes some tests 
to see how well they mastered the material. Similarly, in 
machine learning, after training we give the computer an-
other data set that it has not seen before and ask it to solve 
this test data set. Then we evaluate the performance of the 
machine learning system based on how well it manages to 
solve the problems in the test data set.

In the classification task, training for supervised 
learning works by giving the neuron network a large num-
ber of observations (problems) along with their classes 
(solutions). We expect that the neuron will somehow learn 
how to get from an observation to its class. Then if we give 
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it an observation it has not seen before, it should classify 
it with reasonable success.

The behavior of a neuron for any input is determined 
by its weights and bias. When we start, we set them at 
random values; the neuron knows nothing, like a clue-
less student. We give the neuron one input in the form 
of a ( , )x x1 2  pair. The neuron will produce an output. As 
we have random weights and bias, the output will also be 
random. For each of our observations in the training data 
set, however, we do know what the correct answer from 
the neuron should be. We can then calculate how far off 
the neuron’s output is from the desired one. This is called 
the loss: a measure of how wrong the neuron is for a given 
input.

For example, if for an input the neuron produces as 
output the value 0.2, while the desired output is 1.0, we 
can calculate the loss by the difference between the two 
values. To avoid having to deal with signs, we usually take 
as the loss the square of the difference; here it would be 
( . . ) .1 0 0 2 0 642− = . If the desired output were 0.0, then 
the loss would be ( . . ) .0 0 0 2 0 042− = . Be it as it may, hav-
ing calculated the loss, we can now adjust the weights and 
bias so as to minimize it.

Going back to the human student, after each failed 
attempt to solve an exercise, we nudge them to perform 
better. The student figures out that they have to change 
their approach a bit and try with the next example. If they 



196  ChAPtER 6

fail, we nudge them again. And again. Until after a lot of 
examples in the training data set, they will start getting 
things right more and more, and will be able to tackle the 
test data set.

When a student learns, neuroscience tells us that the 
wiring inside the brain changes; some synapses between 
neurons get stronger, some get weaker, and some are 
dropped. There is no direct equivalent to an artificial neu-
ron, but something similar happens. Recall once more that 
the behavior of a neuron depends on its input, weights, 
and bias. We have no control over the input; it comes from 
the environment. But we can change the weights and bi-
ases. And this is what really happens. We update the val-
ues of the weights and bias in such a way that the neuron 
will minimize its errors.

The way that the neuron achieves that is by taking ad-
vantage of the nature of the task it is called to perform. 
We want it to take each observation, calculate an output 
corresponding to a class, and adjust its weights and bias to 
minimize its loss. So the neuron is trying to solve a minimi-
zation problem. Given an input and the output it produces, 
the problem is, How are we to recalibrate the weights and 
bias to minimize the loss?

This requires a conceptual change of focus. Up to this 
point we have described a neuron as something that takes 
some inputs and produces an output. Viewed in this way, 
the whole neuron is a big function that takes its inputs, 
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applies the weights, sums the products, adds the bias, 
passes the result through the activation function, and pro-
duces the final output. But if we think of it another way, 
our inputs and outputs are actually given (that is our train-
ing data set), while what we can change are the weights 
and bias. So we can view the whole neuron as a function 
whose variables are the weights and bias because these are 
what we can really affect, and for every input we want to 
change them so as to minimize the loss.

If we take as an illustration a simple neuron, with just 
one weight and no bias, then the relationship between the 
loss and weight might be as in the left part of the figure on 
the next page. The thick curve shows the loss as a function 
of the weight for a given input. The neuron should adjust 
its weight so that it reaches the minimum value of the 
function. The neuron, for the given input, has currently 
a loss at the indicated point. Unfortunately, the neuron 
does not know what is the ideal weight that would mini-
mize the loss, given that the only thing it does know is 
the value of the function at the indicated point; it is not 
endowed with a vantage point of view like we have with 
the figure at our disposal. The neuron may only adjust its 
weight by a small amount— either increase or decrease 
it— so that it moves closer to the minimum.

To find out what to do, whether to increase or decrease 
the weight, the neuron can find the tangent line at the cur-
rent point. Then it can calculate the slope of the tangent 
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line; this is the angle with the horizontal axis, which we 
have also shown in the figure. Note that the neuron can 
do that without any special capabilities apart from being 
able to carry out calculations at the local point. The slope 
of the tangent is negative because the angle is clockwise. 
The slope shows the rate of change of a function; therefore 
a negative slope indicates that by increasing the weight, 
the loss decreases. The neuron thereby discovers that 
to decrease the loss, it has to move to the right. As the 
slope is negative and the required change in the weight is 
positive, the neuron finds that it must move the weight 
in a positive direction— opposite to what is indicated by  
the slope.

Now turn to the figure on the right. This time the neu-
ron is to the right of the minimum loss. It takes the tan-
gent again and calculates its slope. The angle and therefore 
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slope is positive. A positive slope indicates that by increas-
ing the weight, the loss increases. The neuron then knows 
that in order to minimize the loss, it has to decrease the 
weight. As the slope is positive and the required change in 
the weight is negative, the neuron finds again that it must 
move in the opposite direction than that indicated by the 
slope.

In both cases, then, the rule is the same: the neuron 
calculates the slope and updates the weight in the opposite 
direction from the slope. All this might look familiar from 
calculus. The slope of a function at a point is its derivative. 
To decrease the loss, we need to change the weight by a 
small amount that is opposite to the derivative of the loss.

Now a neuron does not usually have a single weight 
but rather has many, and also has a bias. To find out how 
to adjust each individual weight and the bias, the neuron 
proceeds like we described for the single weight. In math-
ematical terms, it calculates the so- called partial deriva-
tive of the loss with respect to each individual weight and 
bias. For n weights and a bias, that will be n + 1 partial 
derivatives in total. A vector containing all the partial de-
rivatives of a function is called its gradient. The gradient 
is the equivalent of the slope when we have multivariable 
functions; it shows the direction along which we have to 
move to increase the value of the function. To decrease it, 
we move in the opposite direction. Thus to decrease the 
loss, the neuron updates each weight and the bias in the 
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opposite direction than the one indicated by the partial 
derivatives forming its gradient.5

The calculations are not really performed by drawing 
tangents and measuring angles. There are efficient ways 
to find the partial derivatives and gradient, but we don’t 
need to get into the details. What is important is that we 
have a well- defined way to adjust the weights and bias 
to improve the results of the neuron. With this at hand, 
the learning process can be described by the following  
algorithm:

For each input and desired output in the training data  
set,

 1. Calculate the output of the neuron and loss.

 2. Update the weights and bias of the neuron to 
minimize the loss.

Once we have completed a training by going through 
all the data in the training data set, we say that we have 
completed an epoch. Usually we do not leave it at this. We 
repeat the whole process for a number of epochs; it is as 
if the student, after going through all the study material, 
started all over again. We expect that the next time they’ll 
do better, as this time they do not start from zero— they 
are not completely clueless— having already learned some-
thing from the previous epoch.
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The more we repeat the training by adding epochs into 
our training regime, the better we get with the training 
data. But too much training can be a bad thing. A student 
who studies again and again the same set of problems 
will probably learn to solve them by rote— without really 
knowing how to solve any other problems that they have 
not encountered before. We see that happening when a 
seemingly well- prepared student fails abysmally in the ex-
ams. In machine learning, when we train the computer on 
a training data set, we say that it fits the data. Too much 
training results in what is called overfitting: excellent per-
formance with the training data set, and bad performance 
with the test data set.

It can be proven that following this algorithm, a neu-
ron can learn to classify any data that are linearly separable. 
If our data have two dimensions (like our example), then 
that means that they should be separable by a straight line. 
If our data have more features, not just ( , )x x1 2 , the princi-
ple is generalized. For three dimensions— that is, three in-
puts ( , , )x x x1 2 3 — the data are linearly separable if they can 
be separated by a simple plane in the three- dimensional 
space. For more dimensions, we call the equivalent of the 
line and plane a hyperplane.

At the end of the training, our neuron has learned to 
separate the data. “Learned” means that it has found the 
right weights and bias, in the way we described: it started 
out with random values and then gradually updated them, 
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minimizing the loss. Recall the figure with the two blobs, 
which the neuron learned to separate with a decision 
boundary. We got from the neuron below at the left, to 
the neuron at the right, where you can see the final values 
of its parameters.

That does not always happen. A single neuron, acting 
alone, can only perform certain tasks, like this classifica-
tion of linearly separable data. To handle more compli-
cated tasks, we need to move from a lone artificial neuron 
to networks of neurons.

From Neurons to Neural Networks

As in biological neural networks, we can build artificial 
neural networks out of interconnected neurons. The input 
signals of a neuron can be connected to the outputs of 
other neurons, and its output signal can be connected to 
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the inputs of other neurons. In this way we can create neu-
ral networks like this one:

x2

x6

x3

x4

x5

x1

This artificial neural network has its neurons arranged 
in layers. This is often done in practice: many neural net-
works that we construct are made of layers of neurons, 
with each layer stacked next to a previous one. We have 
also made all the neurons on one layer connect to all 
the neurons on the next layer, going from left to right. 
This, again, is common, although not necessary. When 
we have layers connected like that, we call them densely  
connected.
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While the first layer is not connected to any previous 
one, the output of the last layer is similarly not connected 
to any following layer. The output of the last layer is the 
output of the whole network; it will provide the values 
that we want it to calculate.

Let us return to a classification task. Our problem now 
is to pick apart two sets of data, shown in the figure on the 
top of the next page. The data fall into concentric circles. It 
is clear to a human that they belong to two distinct groups. 
It is also clear that they are not linearly separable: no 
straight line can separate the two classes. We want to cre-
ate a neural network that will be able to tell the two groups 
apart so that it will tell us in which group any future obser-
vation will belong. This is what you see in the figure at the 
bottom. For any observation on the light background, the 
neural network will recognize that it belongs to one group; 
for any observation on the dark background, it will tell us 
that it belongs to the other group.

To achieve the results that we see in the lower figure, 
we build a network layer by layer. We put two neurons on 
the input layer, one for each coordinate of our data. We 
add one layer with four neurons, densely connected to the 
input layer. Because this layer is not connected to the in-
put or output, it is a hidden layer. We add another hidden 
layer with two neurons, densely connected to the first hid-
den layer. We finish the network with an output layer of 
one neuron, densely connected to the last hidden layer. All 
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the neurons use the tanh activation function. The output 
neuron will produce a value between −1 and +1, displaying 
its belief that the data fall in one or the other group. We’ll 
take that value and turn it into a binary decision, yes or no, 
depending on whether it exceeds 0.0 or not. This is what 
the neural network looks like:

x2

x1

The Backpropagation Algorithm

In the beginning, the neural network knows nothing, and 
no adjustment has taken place; we start with random 
weights and biases. This is what ignorance means in the 
neural network world. Then we give the neural network an 
observation from our data— that is, a set of coordinates. 
The x1 and x2 coordinates will go on the input layer. Both 
neurons take the x1 and x2 values and they pass them as 
their output to the first hidden layer. All four neurons of 
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that layer calculate their output, which in their turn, they 
send to the second hidden layer. The neurons on that layer 
send their own output to the neuron on the output layer, 
which produces the final output value of the neural net-
work. As the calculations proceed from layer to layer, the 
neural network propagates the results of the neurons for-
ward, from the input to the output layer:

x2

x1

x2

x1
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x2

x1

x2

x1

Once we reach the output layer, we calculate the loss, 
as we did with the single neuron. And then we want to 
adjust the weights and bias of not just one neuron but 
rather all the neurons in the network so as to minimize  
the loss.

It turns out that it is possible to do that by going in 
the opposite direction, from the output to the input layer. 
Once we know the loss, we can update the weights and 
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biases of the neurons on the output layer (here we have 
just a single neuron, but this need is not always so). Having 
updated the neurons on the output layer, we can update 
the weights and biases of the neurons on the layer before 
that— the last hidden layer. Having done that, we can up-
date the weights and biases of the layer before that— the 
one- but- last hidden layer. And so on, until we reach the 
input layer:

x2

x1

x2

x1
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x2

x1

x2

x1

The way the weights and biases of the neurons are 
updated is similar to the way a single neuron is updated. 
Again, the updates are calculated based on mathematical 
derivatives. You can think of the whole neural network as 
an enormous function whose variables are the weights 
and biases of all the neurons. Then we can calculate the 
derivative of each and every weight and bias with respect 
to the loss, and use that derivative to update the neuron. 
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With this we arrive at the heart of the learning process in 
neural networks: the backpropagation algorithm.6

For each input and desired output,

 1. Calculate the output and loss of the neural network 
proceeding layer by layer, going forward from the input 
to the output layer.

 2. Update the weights and biases of the neurons to 
minimize the loss, going backward from the output to 
the input layer.

Using the backpropagation algorithm, we can build 
complex neural networks and train them to perform dif-
ferent tasks. The building blocks of deep learning systems 
are simple. They are artificial neurons, with their limited 
computational capabilities: taking inputs, multiplying by 
weights, summing, adding a bias, and applying an activa-
tion function on the resulting value. Their power derives 
from connecting lots and lots of them in special ways, 
where the resulting networks can be trained to perform 
the task that we want them to perform.

Recognizing Clothes

To render the discussion more concrete, let us assume that 
we want to build a neural network that recognizes items 
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of clothing displayed in images, so this is going to be an 
image recognition task. Neural networks have been found 
to be exceptionally good at this.

Each image will be a small photo, of dimensions 
28 28× . Our training data set consists of 60,000 images, 
and our test data set consists of 10,000 images; we’ll use 
60,000 images for training the neural network, and an-
other 10,000 images for evaluating how well it learned. 
Here is an example image, on which we have added axes 
and a grid to help the discussion that follows:7
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The image is broken into small distinct parts because 
that is how we handle images digitally. Taking the whole 
image as a rectangular plot, we divide it into small patches, 
28 28 784× =  of them, and each patch is given an integer 
value from 0 to 255, corresponding to a shade of gray, with 
0 being completely white and 255 being completely black. 
The above image is actually the matrix on the following page.

In reality, neural networks require that we usually 
scale their inputs to a small range of values, such as be-
tween 0 and 1, otherwise they may not work well; you may 
think of it as having large input values that lead neurons 
astray. That means that before using this matrix we would 
divide each cell by 255, but we’ll ignore this in the rest of 
the discussion.

The different items of clothing may belong to ten dif-
ferent classes, which you can see in the table below. To a 
computer, the classes are just different numbers, which we 
call labels:

Label Class Label Class

0 T- shirt/top 5 Sandal

1 Trouser 6 Shirt

2 Pullover 7 Sneaker

3 Dress 8 Bag

4 Coat 9 Ankle boot
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In the following figure, we show a random sample of 
ten items from each kind of clothing. There is quite a va-
riety in the images, as you can see, and not all of them are 
picture- perfect examples of each particular clothing class. 
That makes the problem somewhat more interesting. We 
want to create a neural network that takes as its input im-
ages like these and provides an output that tells us what 
kind of image it believes its input is.
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Again, we’ll build our neural network in layers. The 
first layer, comprising the input neurons, will have 784 
neurons. Each one of them will take a single input, from a 
single patch in the image, and will simply output the value 
that it gets in its input. If the image is the ankle boot, the 
first neuron will get the value in the top- left patch, a 0, in 
its input, and it will output that 0. The rest of the neu-
rons will get the values of the patches proceeding row wise, 
from top to bottom, left to right. The patch with the value 
58, at the right end of the heel of the boot (the fourth row 
from the bottom, and the third column from the right) will 
get this 58 and copy it on its output. As rows and columns 
are counted in the neural network from the top and left, 
this neuron is in the twenty- fifth row from the top and 
twenty- sixth column from the left, making it the input 
neuron number 24 28 26 698× + = .

The next layer will be densely connected to the input 
layer. It will consist of 128 ReLU neurons. This layer is not 
directly connected to the input images (the input layer is) 
and will not be directly connected to the output (we’ll add 
another layer for that). Therefore it is a hidden layer, as 
we cannot observe it from the outside of the neural net-
work. Being densely connected, this will result in a large 
number of connections between the input and hidden 
layer. Each neuron on the hidden layer will be connected 
to the outputs of all neurons on the input layer. There 
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will be 784 input connections per neuron, for a total of 
784 128 100 352× = ,  connections.

We will add another, last layer, which will contain the 
output neurons that will carry the results of the neural net-
work. This will contain 10 neurons, one for each class. Each 
output neuron will be connected to all the neurons of the 
hidden layer, for a total of 10 128 1 280× = ,  connections. 
The grand total of all the connections between all the layers 
in the neural network will be 100 352 1280 101 632, ,+ = . 
The resulting neural work will look, in schematic form, like 
the one on the next page. As it is impossible to fit all the 
nodes and edges, you can see dotted boxes standing for 
the bulk of nodes on the input and hidden layers; there are 
780 nodes in the first box and 124 nodes in the second box. 
We have also collapsed the arrows going to the individual 
nodes inside the boxes.

The output of our neural network will consist of 10 
outputs, one from each neuron on the layer. Each output 
neuron will represent one class, and its output will repre-
sent the probability that the input image belongs to this 
class; the sum of the probabilities of all 10 neurons will be 
1, as it must happen when we deal with probabilities. This 
is an example of yet another activation function, called 
softmax, which takes as input a vector of real numbers and 
converts them to a probability distribution. Let’s see the 
two examples that follow.
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In the first example, on the left, after training we get 
this at the output of the network:

Output Neuron Class Probability

1 T- shirt/top 0.09

2 Trouser 0.03

3 Pullover 0.00

4 Dress 0.83

5 Coat 0.00

6 Sandal 0.00

7 Shirt 0.04

8 Sneaker 0.00

9 Bag 0.01

10 Ankle boot 0.00
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That means that the neural network tells us that it is 
pretty certain it is dealing with a dress, giving it an 83 per-
cent probability, leaving aside small probabilities for the 
input image being a T- shirt/top, shirt, or trouser.

In the second example, on the right, the network 
produces:

Output Neuron Class Output

1 T- shirt/top 0.00

2 Trouser 0.00

3 Pullover 0.33

4 Dress 0.00

5 Coat 0.24

6 Sandal 0.00

7 Shirt 0.43

8 Sneaker 0.00

9 Bag 0.00

10 Ankle boot 0.00

The neural network is 43 percent certain that it is deal-
ing with a shirt— and it is wrong; the photo is really a pic-
ture of a pullover (in case you couldn’t tell). Still, it did give 
its second best, at 33 percent, to the image being a pullover.

We gave one example where the network comes up 
with the right answer, and another instance where the 
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network comes up with the wrong answer. Overall, if we 
give the network many images to recognize, all the 60,000 
images in our training data set, we’ll find out that it man-
ages to get right about 86 percent of the 10,000 images in 
the test data set. That is not bad, considering that the neu-
ral network, even though it is way more complicated than 
the previous one, is still a simple one. From this baseline, 
we can create more complicated network structures that 
would give us better results.

Despite the increased complexity, our neural network 
learns in the same way as our simpler networks recogniz-
ing blobs of data and concentric circles. For each input dur-
ing training we obtain an output, which we compare to the 
desired output to calculate the loss. The output now is not 
a single value but rather 10 values, yet the principle is the 
same. When the neural network recognizes a shirt with 
about 83 percent probability, we can compare that with the 
ideal, which would be to recognize it with 100 percent prob-
ability. Therefore we have two sets of output values: the one 
obtained by the network, with various probabilities assigned 
to the different kinds of clothes, and what we would like to 
have gotten from the network, which is a set of probabilities 
where all of them are zero apart from a single probability, cor-
responding to the right answer, which is equal to one. In the 
last example, the output contrasted to the target would be as  
follows:



222  ChAPtER 6

Output Neuron Class Output Target

1 T- shirt/top 0.00 0.00

2 Trouser 0.00 0.00

3 Pullover 0.33 1.00

4 Dress 0.00 0.00

5 Coat 0.24 0.00

6 Sandal 0.00 0.00

7 Shirt 0.43 0.00

8 Sneaker 0.00 0.00

9 Bag 0.00 0.00

10 Ankle boot 0.00 0.00

We take the last two columns and we calculate again a 
loss metric— only this time, as we do not have a single value, 
we do not calculate a simple squared difference. There exist 
metrics to calculate the difference between sets of values 
like these. In our neural network we used one such metric, 
called categorical cross- entropy, which indicates how much 
two probability distributions differ. Having calculated the 
loss, we update the neurons on the output layer. Having 
updated them, we update the neurons on the hidden layer. 
In short, we perform backpropagation.

We go through the same process for all images in our 
training data set— that is, for a whole epoch. When we are 
done, we do this all over again for another epoch. We re-
peat the process while trying to strike a balance: enough 
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epochs so that the neural network will learn as much as 
possible from the training data set without going into 
too many epochs where the neural network will learn too 
much from the training data set. During learning, the net-
work will be adjusting the weights and biases of its neu-
rons, which are a lot. The input layer just copies values to 
the hidden layer, so no adjustments need to be done to the 
input neurons, but there are 100,352 weights on the hid-
den layer, 1,280 weights on the output layer, 128 biases on 
the hidden layer, and 10 biases on the output layer, for a 
total of 101,770 parameters.

Getting to Deep Learning

It can be proven that even though a neuron on its own can-
not do much, a neural network can perform any computa-
tional task that can be described algorithmically and run 
on a computer. Therefore there is nothing that a computer 
can do that a neural network could not do. The whole idea, 
of course, is that we do not need to tell the neural net-
work exactly how to perform a task. We only need to feed it 
with examples while using an algorithm to make the neu-
ral network learn how to perform the task. We saw that 
backpropagation is such an algorithm. Although we lim-
ited our examples to classification, neural networks can be 
applied to all sorts of different tasks. They can predict the 
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values of a target quantity (for instance, credit scoring), 
translate between languages as well as understand and 
generate speech; and beat human champions in the game 
of Go, in the process baffling experts by demonstrating 
completely new strategies of playing a centuries- old game. 
They have even learned how to play the game of Go start-
ing with just a knowledge of the rules, without access to a 
library of previously played games, and then proceeding to 
learn as if the neural network were playing games against  
itself.8

Today, successful applications of neural networks 
abound, yet the principles are not new. The Perceptron was 
invented in the 1950s, and the backpropagation algorithm 
is more than 30 years old. In this period, neural networks 
came and went out of fashion, with enthusiasm for their 
potential ebbing and flowing. What has really changed in 
the last few years is our capability to build really big neural 
networks. This has been achieved thanks to the advances 
in manufacturing specialized computer chips that can per-
form the calculations executed by neurons efficiently. If 
you picture all the neurons of a neural network arranged 
inside a computer’s memory, then all the required compu-
tations can be carried out by operations on vast matrices 
of numbers. A neuron calculates the sums of the weighted 
products of its inputs; if you recall the discussion on Page-
Rank in the previous chapter, the sum of the products is 
the essence of matrix multiplication.
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It has turned out that graphics processing units (GPUs) 
are perfectly suited for this. GPUs are computer chips that 
are specially designed to create and manipulate images 
inside a computer; the term builds on central processing 
units (CPUs), the chip that carries out the instructions of 
a program inside a computer. GPUs are built to carry out 
instructions for computer graphics. The generation and 
processing of computer graphics requires numerical op-
erations on big matrices; a computer- generated scene is a 
big matrix of numbers (think of the shoe). GPUs are the 
workhorses of game consoles. The same technology that 
arrests human intelligence in hours of diversion is also 
used to advance machine intelligence.

We started with the simplest possible neural network, 
consisting of a single neuron. Then we added a few neu-
rons, and then we added a few more hundreds. Still, the 
image recognition neural network that we created is by no 
means a big one. Nor is its architecture complicated. We 
just added layer on layer of neurons. Researchers in the 
field of deep learning have made big strides in devising 
neural network designs. These architectures may comprise 
dozens of layers. The geometry of these layers need not 
be a simple one- dimensional set of neurons, like the ones 
we have here. For example, neurons inside a layer may be 
stacked on two- dimensional canvas- like structures. More-
over, it is not necessary to have each layer densely con-
nected to the one before; other connection patterns are 
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possible. Nor is it necessary to have the outputs of a layer 
simply connected to the inputs of the next layer. We may, 
for instance, have connections between non-consecutive 
layers. We may bundle up layers and treat them as mod-
ules, combining them with modules containing other lay-
ers to form more and more complex configurations. Today 
we have a menagerie of neural network architectures at 
our disposal, such that particular architectures are well 
suited for specific tasks.

The neurons on the layers in all the neural network 
architectures update the values of the weights and biases 
as they learn. If we reflect on what is happening, we can 
see that we have a set of inputs that transforms the lay-
ers during the learning process. Once the training stops, 
the layers have somehow, via the adjustments in their 
parameters, taken in the information represented by 
the input data. The weights and biases configuration of 
a layer represents the input it has received. The first hid-
den layer, which comes in direct contact with the input 
layer, encodes the neural network’s input. The second hid-
den layer encodes the output of the first hidden layer, to 
which it is directly connected. As we proceed deeper and 
deeper into a multilayer network, each layer encodes the 
output received by the previous layer. Each representation 
builds on the previous one and therefore is on a higher 
level of abstraction from the one of the preceding layer. 
Deep neural networks, then, learn a hierarchy of concepts, 
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proceeding to higher and higher levels of abstraction. It 
is in this sense that we talk of deep learning. We mean an 
architecture whereby successive levels represent deeper 
concepts, corresponding to higher levels of abstraction. In 
image recognition, the first layer of a multilayer network 
may learn to recognize small local patterns, such as edges 
in the image. Then the second layer may learn to recognize 
patterns that are built from the patterns recognized by the 
first layer, such as eyes, noses, and ears. The third layer 
may learn to recognize patterns that are built from the 
patterns recognized by the second layer, like faces. Now 
you can see that our neural network for recognizing the 
images was somewhat naive; we did not try to implement 
actual deep learning. By building abstractions on abstrac-
tions, we expect our network to find patterns that humans 
find, from structures in sentences, to signs of malignancy 
in medical images, to recognizing handwritten characters, 
to detecting online fraud.

Yet, you may say, it all boils down to updating simple 
values on simple building blocks— the artificial neurons. 
And you would be correct. When people realize that, some-
times they feel let down. They want to learn what machine 
and deep learning are, and the simplicity of the answer 
disappoints: something that appears to have human capa-
bilities can be reduced to fundamentally elementary op-
erations. Perhaps we would prefer to find something more 
involved, which would not fail to flatter our self- esteem.
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We should not forget, however, that in science we 
believe that nature can be explained from first principles, 
and try to find such principles that are as simple as pos-
sible. That does not preclude complex structures and be-
haviors arising out of simple rules and building blocks. 
Artificial neurons are much simpler than biological ones, 
and even if the workings of biological neurons can be ex-
plained in simple models, it is thanks to the vast number 
of interconnected biological neurons that intelligence, as 
we know it, can arise.

This helps put some things into perspective. True, ar-
tificial neural networks can be uncanny in their potential. 
In order to make them work, however, an amazing amount 
of human creativity and terrific engineering effort is re-
quired. We have only scratched the surface in our account 
here. For instance, take backpropagation. That is the fun-
damental algorithm behind neural networks, allowing us 
to perform efficiently what is at heart a process of finding 
mathematical derivatives. Researchers have been busy de-
vising efficient calculation techniques, such as automatic 
differentiation, a mechanism for calculating derivatives 
that has been widely adopted. Or take the exact way that 
changes in the neural network parameters are calculated. 
Various different optimizers have been developed, allowing 
us to deploy bigger and bigger networks that are at the 
same time more and more efficient. Turning to the under-
lying hardware, hardware engineers are designing better 
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and better chips to run more and more neural computa-
tions faster while using less computing power. Looking at 
network architectures, new neural network architectures 
are proposed that improve on existing ones. This is a hot-
bed of research and experimentation, and even encom-
passes efforts to build neural networks that design other 
neural networks. So every time you see a news report that 
a neural network has reached a new achievement, doff your 
hat to the hardworking people who made this possible.9



EPILOGUE

On July 15, 2019, Mark Carney, the Bank of England gov-
ernor, presented the design of the new £50 note, expected 
to enter circulation about two years later. The Bank of 
England had decided in 2018 to celebrate a character from 
science with the new banknote and opened a six- week 
public nomination period for the selection. It received a 
total of 227,299 nominations for 989 eligible characters. 
From this, the Banknote Character Advisory Committee 
decided on a short list of 12 options. Then the governor 
made the final decision, selecting Alan Turing. He com-
mented, “Alan Turing was an outstanding mathematician 
whose work has had an enormous impact on how we live 
today. As the father of computer science and artificial in-
telligence, as well as war hero, Alan Turing’s contributions 
were far ranging and path breaking. Turing is a giant on 
whose shoulders so many now stand.”1

Turing (1912– 1954) was a genius who explored the 
limits and nature of computation, foresaw the rise of ma-
chines that would display intelligent behavior, grappled 
with the question of whether machines could think, con-
tributed to mathematical biology and mechanisms of mor-
phogenesis, and played a crucial role in the cryptanalysis 
of encrypted German messages during World War II (his 
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contribution remained a secret for decades). In a tragic 
turn of events, Turing died by suicide. He had been ar-
rested and convicted in 1952 for homosexuality, which 
was criminal in the United Kingdom at the time, and com-
pelled to get hormonal treatment. An official pardon was 
issued in 2013. His appearance on the new note is a form 
of rehabilitation that would have been unthinkable a few 
decades back.2

Throughout this book we have been describing algo-
rithms as consisting of simple steps, elementary enough 
that they can be carried out using a pen and paper. Given 
that we implement algorithms in computer programs, the 
question of what really is an algorithm will help us un-
derstand what can really be computed. This requires us 
to dig deeper into the nature of these simple steps. After 
all, what a primary school student can do with a pen and 
paper is different than what a college graduate can do. Is 
it possible to define precisely what kind of steps an algo-
rithm could be made of? Turing offered an answer even 
before digital computers were built. He proposed a model 
machine in 1936 in order to answer the question of what 
a computer, any computer, can do. A Turing machine is a 
simple contraption. It consists of the following parts:3

1. A tape. The tape is divided into squares or cells. Each 
cell can be blank or contain a symbol from some alphabet. 
The tape can be infinitely long.
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2. A head that can move left and right along the tape, 
one position at a time. The head can read the symbol 
in the cell underneath. We call the symbol in that cell 
the scanned symbol. The head can erase or overwrite the 
scanned symbol.

3. A finite control, also called a state register. The finite 
control can be in any of a finite set of states. You can 
think of it as a dial inscribed with states, and an indicator 
that can point to any one of them.

4. A finite instructions table. Each instruction specifies  
the next move of the machine. This is what the machine 
will do, given its current state and the scanned  
symbol.

You can see a Turing machine in the figure on the next 
page.4

The alphabet of this particular Turing machine con-
sists of 1 and . The finite control shows that the machine 
can be in one of seven states, q q q0 1 6, , ,… . The instructions 
table has one row for each possible state, and one column 
for each possible symbol; we use B to stand in for blank so 
that we can see it. The current state is indicated by the row, 
and the scanned symbol by the column. Each entry in the 
instructions table contains a triplet, describing a move, or 
a dash, meaning that the machine has nothing to do in this 
row and column combination.
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A move of the machine consists of three actions:

1. The machine may change or remain in the same state. 
The new state is the first element of the triplets in the 
finite instructions table.

2. It will write a symbol under the head. The symbol may 
be the same with the one already there (then the result is 
that the existing symbol remains in the cell). The symbol 
to be written is the second element of the triplets.

3. The head will shift either to the left (L) or right (R) 
of the current cell. The shift is the third element of the 
triplets.

Our example Turing machine executes an algorithm 
that computes the difference of two numbers a and b when 
a b> ; otherwise, it returns zero. This operation is called 
monus or proper subtraction, and we write a –∙ b. We have 
4 –∙ 2 = 2 and 2 –∙ 4 = 0.

Initially, we place the machine’s input on the tape. 
The input is a finite string of symbols from the machine’s  
alphabet. All other cells of the tape, to the left and right 
of it, are blank. In this Turing machine, the input is 
1111 11 . The input represents the numbers four and two 
in the unary numeral system, separated by .

This machine starts with its head on the leftmost in-
put cell. The finite control points at the q0 state. Then the 
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machine starts working and performs its moves. If we fol-
low the machine’s operation for the first six moves, we’ll 
see that it goes like this:

1. We are at state q0 and the scanned symbol is 1:

The instruction table gives us ( , , )q B R1 , so the 
machine will change its state to q1, overwrite 1 with 
blank, and move right. The tape and head will be:

2. For the q1 state and scanned symbol 1, the instruction 
table gives us ( , , )q R1 1 . The machine will read and write 1, 
leaving the cell as it is, and will move right, remaining at 
state q1:
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3. The machine does the same as step 2, reading and 
writing 1, remaining at q1, and moving right:

4. Again, the machine will read and write 1, remain at q1, 
and move right:

5. The head has moved over the   symbol and remained 
at state q1. The instruction is ( , , )q R2  . The machine will 
change state, to q2, leave   on the tape, and move right:

6. The head has moved over the 1 to the right of   and is 
at state q2. The instruction is ( , , )q L3  . The machine will 
change state, to q3, write   over the 1, and move back 
left:
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The machine will continue working in this way, per-
forming the moves prescribed by the instruction table. If 
we take a higher- level view, we’ll realize that the machine 
executes a loop. In each iteration, it finds the leftmost 1 
and replaces it with a blank. It then searches right for a 
 . When it finds it, it continues going right until it finds a 
1, which it turns into a . Therefore in each iteration, the 
machine strikes out a 1 on the left and right of  . At some 
point, this will no longer be possible. Then the machine 
will replace all  symbols with blanks and will terminate. 
The tape will contain 11, equivalent to the number 2, sur-
rounded by blanks. To indicate termination, the machine 
enters the state q6, where according to the instructions 
table there is nothing to do, and it stops.

If we provide as input 11 1111 , the machine will 
beaver away until it stops with a tape full of blanks, which 
is equivalent to 0. If we give the machine any input con-
sisting of a ones followed by an asterisk and then b ones, 
it will follow its moves until it leaves the tape with either 
a b−  ones, if a b> , or otherwise all blanks.

This Turing machine executes an algorithm for com-
puting the monus operation based on its input and fol-
lowing the instructions described in its instructions table. 
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The steps are so elementary that the head of the Turing 
machine scampers around a lot in order to perform the op-
eration. It will take 21 moves to find that 2 –∙ 4 = 0 and 34 
moves to find that 4 –∙ 2 = 2. But how simple these moves 
are! Anybody with a modicum of intelligence can carry 
them out. The rudimentary nature of the steps is exactly 
the point. You do not need any advanced qualifications 
to perform the steps of a Turing machine; you only need 
to look up a table, move around on a tape, read and write 
one symbol at a time, and keep track of what your state is. 
That is all. Yet it is not trivial because the answer to the 
question of what kind of steps an algorithm could be made 
of, is that they are the steps that a Turing machine could 
perform.

In this book we have been describing algorithms at a 
higher level, with more complex steps. That is for our con-
venience because a Turing machine works at such a low 
level of detail that it would be unwieldy to use it to describe 
our algorithms. But all the steps of all the algorithms we 
have depicted could be presented as steps of a properly 
constructed Turing machine. We have described a simple 
Turing machine to implement the monus operation. For a 
more complex algorithm we would need a Turing machine 
with more states, a bigger alphabet, and a bigger instruc-
tions table. But we could still build it, if we wanted.

The simplicity of the Turing machine belies its ambit; 
given any algorithm, we can construct a Turing machine 
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that implements it. As computers run algorithms, any al-
gorithm that is computable by a computer is computable 
by a Turing machine. Or in other words, whatever we can 
do with an algorithm, we can do with a Turing machine. That 
is a loose rendering of the Church- Turing thesis, named 
after Turing and the US mathematician Alonzo Church 
(1903– 1995), one of the founders of theoretical computer 
science. It being a thesis, it is not something that has been 
proved, and we do not know if it can be proved mathemati-
cally. It is theoretically possible that it could be disproved, 
if somebody devises some alternative form of computa-
tion that computes things that a Turing machine cannot 
compute. We do not believe this is likely to happen. We 
therefore take the Turing machine to be a formal descrip-
tion of the notion of an algorithm.5

You can imagine any computer, as powerful as you 
want it. The computer will be way faster than a Turing 
machine that operates on a tape of symbols as we have 
described it. But everything it calculates algorithmically, 
a Turing machine can calculate too. You can even imag-
ine computers that we have not been able to manufacture 
yet. Our computers work with bits, which can exist in only 
two states, 0 and 1. Quantum computers work with qubits. 
When we examine the state of a qubit, this will be 0 or 1, 
like a bit. Yet a qubit, when we don’t examine it, can be in a 
combination, called superposition, of the two binary states 
0 and 1. It is as if a qubit is both 0 and 1, until we decide to 
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read it, when it decides to be one of these two values. This 
allows quantum computers to represent multiple states of 
computation at once. A quantum computer would allow 
us to solve fast problems that are not easily solved by clas-
sical computers. Unfortunately, building a quantum com-
puter is difficult with the current technology. And even a 
quantum computer could not do something that a Turing 
machine cannot do. Even though it would be able to solve 
some problems more efficiently than any existing classical 
computer, or any Turing machine for that matter, it still 
won’t be able to solve any problems that a Turing machine 
cannot solve.

Our computational limits are given by Turing ma-
chines. Anything a computer can do, we could really do 
with a pen and paper, working on a tape of symbols. Every-
thing you see executed on any digital device is, in essence, 
a series of such elementary symbol manipulations. In the 
natural sciences, we behold the world and believe that we 
can explain it using fundamental principles. In comput-
ing, it is the other way around. We have our fundamental 
principles and believe that we can do amazing feats with 
them.

When Turing proposed his machine as a model for 
computation, digital computers did not even exist. That 
did not prevent him from exploring the capabilities of 
computing machines that would be created in the future. 
When we think about the limits of computers, we should 
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also keep in mind that inside these limits, the human in-
tellect has created wonders. The limits of computation 
have not curtailed our creativity to continue developing 
algorithms for every aspect of our lives. When writing was 
invented in Mesopotamia, its purpose was to aid record 
keeping, not write literature. The first writers were prob-
ably accountants, not authors, yet from such humble be-
ginnings emerged William Shakespeare. Who knows what, 
in time, algorithms will bring.



GLOSSARY

activation (neuron)
The emission of output from a neuron.

activation function
A function that determines the output of a neuron based on its input.

acyclic graph
A graph that has no cycle.

adjacency matrix
A matrix that represents a graph. It has a row and column for each vertex of 
the graph. Its contents are 1 in each entry whose row and column correspond 
to two vertices connected by an edge in the graph; all other entries are 0.

algorithm
1. Go to the first page of the book.

2. Read the current page.

3. If you don’t understand, go to step 2. Otherwise go to step 4.

4. If there is a next page, make it your current page and go to step 2. Other-
wise terminate.

approximation
Solving a problem by using an algorithm that may not find the optimal solu-
tion, but one that is not far from it.

automatic differentiation
A set of techniques to evaluate the derivative of a function numerically— that 
is, not analytically, which would entail using the calculus rules for differentiat-
ing functions.

backlink
A link that points to the web page we are visiting, and by extension, the web 
pages that contain links that point to the web page we are visiting.
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backpropagation algorithm
A fundamental algorithm for training neural networks. The network corrects 
its configuration (its weights and biases) by propagating adjustments from the 
final layer back toward the first layer.

bias
A numerical value attached to a neuron that controls its propensity to fire.

big O
A notation for computational complexity. Given an algorithm and input 
greater than some threshold, it gives us an upper bound on the expected num-
ber of steps required by the algorithm to complete. We want the input to be 
larger than some threshold because we are interested in the behavior of an 
algorithm on large data. The big O complexity for an algorithm gives us a guar-
antee that for large data, the algorithm will not require more than a particular 
number of steps. For example, a complexity of O n( )2  means that for input of 
size n that exceeds some threshold, the algorithm will not take more than a 
constant multiple of n2 steps to complete.

binary search
A search algorithm that works on ordered data. We check the item in the mid-
dle of the search space. If it matches the one we are looking for, we are fine. 
Otherwise, we repeat the procedure to the left or right half, depending on 
whether we have overshot or undershot our target.

bit
The basic unit of information stored on a computer. A bit can take one of two 
values, 0 or 1. The word bit comes from binary digit.

bug
An error in a program. The term bug was used by Thomas Edison for a techni-
cal fault. In the early days of computing, real bugs would make their way into 
the machinery, causing them to fail. A moth that did that was found inside 
the Harvard Mark II computer in 1947. The moth has been preserved in the 
machine’s logbook, which is part of the collection of the Smithsonian National 
Museum of American History.

categorical cross- entropy
A loss function that calculates the difference between two probability 
distributions.
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central processing unit (CPU)
The chip that carries out the instructions of a program inside a computer.

chromatic index
In graph coloring, the minimum number of colors required to color the edges 
of the graph.

Church- Turing thesis
The hypothesis that everything that can be computed by an algorithm can be 
computed by a Turing machine.

classifier
A program that classifies an observation in one out of a number of possible 
classes.

complexity (computational complexity)
The time required for an algorithm to run. The time is expressed on the order 
of elementary computational steps required to complete.

complexity class
A set of problems that require the same amount of a resource (such as time or 
memory) to be solved.

control structure
The three ways in which steps can be combined in an algorithm or program: 
sequence, selection, and iteration.

cycle
In graphs, a path that starts and end at the same node.

dangling node
In the PageRank algorithm, a node with only incoming edges and no outgoing 
edges.

data structure
A way to organize data, such that we can handle the data with a set of specific, 
prescribed operations.
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decision boundary
The values of one or more variables that form the boundary between two dif-
ferent outcomes of a single decision based on the variable or variables.

deep learning
Neural networks that consist of many hidden layers, arranged such that suc-
ceeding layers represent deeper concepts, corresponding to higher abstraction 
levels.

degree (node)
The number of edges adjacent to a node.

densely connected
Layers in a neural network arranged such that all the neurons of a layer are 
connected to all the neurons of the following layer.

derivative
The slope of a function at a point; equivalently, the rate of change of a func-
tion. For example, acceleration is the derivative of speed (the rate of change 
of speed in time).

Dijkstra’s algorithm
An algorithm invented in 1956 by a young Dutch computer scientist, Edsger 
Dijkstra, to find the shortest path between two nodes in a graph. It works with 
graphs that contain positive weights.

directed graph
A graph in which the edges are directed. A directed graph is also called a di-
graph for short.

divide and conquer
A problem- solving method where we solve a problem by breaking it into smaller 
problems (typically two) and then do the same on the smaller problems, until 
the problems get so small that the solution is straightforward to find.

edge coloring
The assignment of colors to the edges of a graph so that no two adjacent edges 
share the same color.
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eigenvector
In linear algebra, an eigenvector is a vector that, when we multiply it by a 
specific matrix, the result is the same vector multiplied by a number; that 
number is its eigenvalue. PageRank finds the first eigenvector of the Google 
matrix— that is, the eigenvector of the Google matrix with the largest eigen-
value, which is equal to one.

epoch
In machine learning, a pass, during training, through the whole training data 
set.

Euclid’s algorithm
An algorithm for finding the greatest common divisor of two integers, pre-
sented in the Elements, a set of 13 books written by the ancient Greek math-
ematician Euclid (ca.  300 BCE). The Elements treats geometry and number 
theory, starting from axioms and proving theorems based on the axioms. It is 
the oldest extant work of mathematics that uses this deductive approach, and 
as such, one of the most influential books in the history of science.

Eulerian path
A trail through a graph such that each edge is visited exactly once. It is also 
called a Euleurian walk.

Eulerian tour
A Eulerian path that starts and ends at the same node. It is also called a Eu-
lerian tour.

Euler’s number
The mathematical constant e, approximately equal to 2.71828. It is the limit of 
( / )1 1+ n n as n approaches infinity.

execution path
The series of steps that an algorithm carries out during its execution.

exponential growth
A growth pattern in which a number of things is successively multiplied by 
itself. For example, we may start with a things, and then we’ll get a a×  things, 

then a a a× × , and in general a a a a
n

n× × × =�
� ��� ���

. Numbers grow fast with ex-
ponential growth.
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factorial
The factorial of a natural number n is the product of all numbers from 1 up to 
and including n. We use the symbol n! so we have n n! = × × ×1 2  . The defini-
tion can be extended to all real numbers, but that does not concern us here.

factorial complexity
Computational complexity that follows factorial growth. In big O notation, 
it is O n( !).

fire (neuron)
See activation (neuron).

fitting
In machine learning, the process of learning from the data. In this process we 
construct a model that fits the observations.

garbage in, garbage out
If we feed a program garbage, instead of its expected input, we should expect 
no miracles: the program will produce garbage instead of its expected output.

global optimum
The best overal solution to a problem.

Google matrix
A special kind of matrix (a modification of the hyperlink matrix) that is used 
in the power method in the PageRank algorithm.

gradient
A vector containing all the partial derivatives of a function.

graph
A set of nodes, also called vertices, and edges, also called links, connecting 
them. Graphs can be used to model any kind of linked structure, from people 
to computer networks. As a result, many problems can be modeled as graphs, 
and many algorithms have been developed that work on top of them.

graph coloring
The edge or vertex coloring of a graph.
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graphics processing unit (GPU)
A chip specially designed to handle the instructions for the creation and ma-
nipulation of images inside a computer.

greatest common divisor (gcd)
Given two integers, the largest integer that divides both.

greedy algorithm
An algorithm in which when we have to choose between alternative courses 
of action, we choose the one that gives us the greatest immediate payoff. This 
does not necessarily lead to the optimum outcome in the end.

hardware
The physical components that make up a computer or digital device. The term 
complements software.

head
The first item in a list.

heuristic
A strategy for making choices among alternatives in an algorithm. A greedy 
heuristic would require us to take the option that looks best right now (never 
mind what could happen in the future).

hidden layer
A neural network layer that is not directly connected to the input or output 
of the network.

Hierholzer algorithm
An algorithm for finding Eulerian circuits on graphs. It was published by the 
German mathematician Carl Hierholzer in 1873.

hill climbing
A metaphor for describing problem solving. The solution is at the top of the 
hill, and we have to climb from its foot. At each step there may be a decision 
to take among alternative paths. Depending on our choices, we may select the 
best path overall, a path that is not the best but still takes us to the top, or alas 
a path that leads to a plateau. If the worst happens and we reach a plateau, we’ll 
have to go back to a previous position to start moving along a different path.
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hyperlink
A reference from a text to another part of the text or a different text. On the 
web, hyperlinks are links between web pages that the user may follow while 
browsing.

hyperlink matrix
A matrix representing the structure of a graph; it is like an adjacency matrix, 
but we divide the elements of its row by the number of nonzero elements in 
the row.

hyperplane
The generalization of the plane in more than three dimensions.

hypertext
Text that contains hyperlinks.

image recognition
The computational task of recognizing patterns in images.

insertion sort
A sorting method where we take each item and insert it into its correct posi-
tion among the already sorted items.

internet
A global network of computers and digital devices, interconnected by means 
of a common suite of communication protocols. Initially, it was with its first 
letter capitalized (Internet) because internet could refer to any network that 
extended beyond the internal confines of an institution, which is called an 
intranet. As the global internet took off, however, the initial capital fell out of 
favor, probably saving a significant amount of ink.

intractable problem
A problem for which the best algorithms we know will take an inordinate 
amount of time to handle anything but trivial cases.

iteration
See loop.
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key
A part of a record that we use for sorting or finding it. A key may be atomic, 
when it cannot be decomposed into smaller parts (for instance, an identifica-
tion number), or composite, when it consists of smaller pieces of data (like the 
full name comprising first name, middle name, and surname).

label
In machine learning, a value representing the category to which an observa-
tion belongs. In training, the computer is given problems along with their 
solutions; when the problem is classification, the solutions are the labels rep-
resenting the classes.

linear search
A search algorithm in which we examine each item in turn until we find the one 
we are looking for. It is also called a sequential search.

linear time
Time proportional to the input of an algorithm, written as O n( ).

linearly separable
A data set whose observations can be separated into two categories by a 
straight line in two dimensions, plane in three dimensions, or hyperplane in 
more dimensions.

list
A data structure that contains items. Each item points to the next one, apart 
from the last item, which points nowhere, or to null, as we say. The items are 
therefore linked to each other, and such a list is also called a linked list.

local optimum
A solution that is better than all the other neighboring solutions, but not the 
overall best. A neighboring solution is a solution in which we can get with a 
single move from the solution we are now.

logarithm
The inverse of raising to a power. The logarithm is the answer to the ques-
tion, “To which power should I raise a number to get the value I want?” If we 
ask, “To which power should I raise 10 to get 1,000?,” the answer is 3 because 
10 1 0003 = , . The number we will raise to the power is called the base of the 
logarithm. We write log x ba =  if a bx = . For a = 2 we write lgx.
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logarithmic time
Time proportional to the logarithm of the input of an algorithm— for example, 
O lgn( ). Good searching algorithms take logarithmic time.

loglinear time
Time proportional to the product of the size of the input and logarithm of the 
input of an algorithm— for example, O nlgn( ). Good sorting algorithms take 
loglinear time.

loop
A sequence of instructions in a computer program that is repeated. A loop 
ends when a condition is fulfilled. A loop that does not end is an infinite loop 
and is usually a bug because it may lead to a program that fails to terminate. 
See iteration.

loss
The difference between the actual and desired output of a machine learning 
algorithm. It is typically calculated by a loss function.

machine learning
The use of algorithms that solve problems by learning automatically from 
examples.

matrix
A rectangular array, typically of numbers or more generally mathematical 
expressions. The contents of a matrix are arranged horizontally in rows and 
vertically in columns.

Matthew effect
The phenomenon of the rich getting richer and poorer getting poorer. Named 
after the Gospel of Matthew (25:29), it has been found to apply to many con-
texts, not just material wealth.

minimization problem
A problem in which, among the possible solutions, we try to find the one with 
the minimum value.

merge sort
A sorting method that works by repeatedly merging larger and larger sets of 
sorted items.
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Moore’s law
The observation, made in 1965 by Gordon Moore, founder of Fairchild Semi-
conductor and Intel, that the number of transistors in an integrated circuit 
doubles about every two years. It is an example of exponential growth.

move to front
A self- organizing search algorithm. When we find the item we are looking for, 
we move it to the first position.

multigraph
A graph in which an edge can occur more than once.

multiset
A set in which an element can appear multiple times; in mathematics, in a 
normal set an element cannot appear more than once.

node
An item in various data structures. Items in lists are called nodes.

neuron
A neuron is a cell that forms the basic building block of the nervous system. 
It receives signals from other neurons and propagates them to other neurons 
in the nervous system.

null
Nothingness in a computer.

online algorithm
An algorithm that does not require the full input to a problem in order to 
produce a solution. An online algorithm gets the input incrementally, as this 
arrives, and at each point produces a solution that takes account of the input 
it has received so far.

onset
The accented part of a rhythm.

optimal stopping problem
The problem of knowing the best time to stop when you are trying to maximize 
a reward or minimize a penalty.
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optimizers
Algorithms that optimize the value of a function. In machine learning, opti-
mizers typically minimize the value of the loss function.

overfitting
The equivalent of learning by rote in machine learning. The model that we are 
trying to train follows the training data so closely that it fits them too well. As 
a result, it does not predict correct values for other, unknown data.

overflow
Going beyond the range of allowable values on a computer.

PageRank
An algorithm used to rank web pages in terms of their importance. It was 
developed by the founders of Google and was the foundation of the Google 
search engine. The rank of a web page is its pagerank.

pagerank vector
A vector containing the pageranks of a graph.

partial derivative
In a function of many variables, the derivative of the function with respect to 
one variable, holding all other variables constant.

path
In a graph, a sequence of edges that connect a sequence of nodes.

path length
The sum of the weights along a path in a graph. If a graph does not have 
weights, it is the number of the links constituting the path.

Perceptron
An artificial neuron that uses the step function for its activation.

permutation
A rearrangement of some data in a different order.

pointer
A place in computer memory that holds the address of another place in com-
puter memory. In this way, the former points to the latter.



 glossARY  257

polynomial time
Time proportional to the input to an algorithm raised to a constant power, 
such as O n( )2 .

power method
An algorithm that starts with a vector, multiplies it by a matrix, and then 
repeatedly multiplies the result by the matrix until it converges into a stable 
value. The power method is at the heart of PageRank; the vector at which it 
converges is the first eigenvector of the Google matrix.

program
A set of instructions, written in a programming language, that describes a 
computational process.

programming
The art of writing computer programs.

programming language
An artificial language that can be used to describe computational steps. A pro-
gramming language can be executed on a computer. Like a human language, 
a programming language has syntax and grammar, specifying what can be 
written in it. Several programming languages exist, and new programming 
languages are developed all the time in an effort to make programming more 
productive (or because many people cannot resist creating their own language 
and hope it will be widely adopted). A programming language can be high level, 
when it looks somewhat akin to a human language, or low level, when its con-
structs are rudimentary, mirroring the underlying hardware.

punched card
A piece of stiff paper that records information by the location of the punched 
holes on it. It is also called a punch card. The cards were used in early com-
puters, and before that, in machines such as Jacquard looms, in which they 
described the pattern to be woven.

quantum computer
A computer that leverages quantum phenomena to perform computations. 
Quantum computers work with qubits instead of bits. Some problems can be 
solved much faster on quantum computers than on classical ones. The manu-
facture of quantum computers presents difficult physical challenges.
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qubit
The basic unit of quantum information. A qubit can exist in a superposition 
of two states, 0 and 1, until we measure it, when it collapses to one of the two 
binary values. A qubit can be implemented using quantum properties, such as 
the spin of an electron.

quicksort
A sorting method that works by repeatedly selecting an item and moving the 
other items around it so that all smaller items are on the one side and all the 
rest on its other side.

radix sort
A sorting method that works by breaking the keys into their parts (for exam-
ple, digits for numerical keys) and placing the items into piles corresponding 
to the values of their parts (ten piles, one for each digit). We start by forming 
piles based on the last digit, then we stack all piles and redistribute to piles 
based on the one but last digit, and so on. When we do the procedure for the 
first digit, we end up with a sorted pile. It is a string sorting method because 
we treat numerical keys as a string of digits.

random surfer
A person who surfs the web by going from page to page, choosing the next page 
according to the probability given by the Google matrix.

randomization
The use of randomness in algorithms. In this way, an algorithm may be able to 
find good solutions to a problem in most cases, even if it would be computa-
tionally infeasible to find the optimal solution.

record
A set of related data describing an entity for a particular application. For ex-
ample, a student record can include identification data, enrollment year, and 
transcripts.

rectifier
An activation function that turns all negative inputs to zero, or otherwise its 
output is directly proportional to its input.
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relaxation
A method in graph algorithms, where we assign the worst possible value to the 
values we want to find, and the algorithm proceeds by producing better and 
better estimates for these values. We therefore start with the most extreme 
values possible, and gradually relax them with values that are closer and closer 
to the final result.

ReLU
A neuron that uses a rectifier as its activation function. ReLU stands for recti-
fied linear unit.

search space
The domain of values in which we search.

secretary problem
An optimal stopping problem. From a pool of candidates, we examine each one 
in turn. We must make the decision to hire or not on the spot, without being 
able to reverse past decisions, and without having examined the remaining 
candidates.

selection
In algorithms and programming, a choice, based on some logical condition, 
between alternative series of steps to be executed.

selection sort
A sorting method where each time we find the minimum of the unsorted items 
and put it into its correct position.

self- organizing search
Search algorithms that take advantage of the popularity of search items by 
moving them to positions where we’ll be able to find them faster.

sequence
In algorithms and programming, a series of steps executed one after the other.

shortest path
The shortest path between two nodes in graph.

sigmoid
An S- shaped function whose values range from 0 to 1.
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social network
A graph in which nodes are people, and the edges are the relationships be-
tween them.

softmax
An activation function that takes as input a vector of real numbers and turns 
it into another vector that is a probability distribution.

software
The set of programs running on a computer or digital device; the term comple-
ments hardware. The terms have been used before computers in a different 
setting. In 1850, rubbish- tip pickers were using the terms “soft- ware” and 
“hard- ware” to distinguish between material that would decompose and ev-
erything else. These meanings may bring solace to anybody struggling with a 
computer that won’t do what it is supposed to do.

spallation
Breaking a material into smaller pieces. In nuclear physics, the material is a 
heavy nucleus that emits a large number of protons and neutrons after being 
bombarded with a high- energy particle.

sparse matrix
A matrix in which most elements are equal to zero.

string
A sequence of symbols. Traditionally a string was a sequence of characters, but 
nowadays what can go into a string depends on the actual application; it may 
be digits, alphabetic characters, punctuation, or even more recently invented 
symbols such as emojis.

string sorting method
A sorting method that treats its keys as a sequence of symbols. For example, 
the key 1234 is treated as the string of symbols 1, 2, 3, 4 instead of the number 
1,234.

supervised learning
A machine learning approach in which we provide an algorithm with input 
problems accompanied by their solutions.
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synapse
A connection between neurons.

tabulating machine
Electromechanical devices that could read punched cards and use the informa-
tion on them to produce a tally.

tanh (hyperbolic tangent)
An activation function that looks like the sigmoid function, but its output 
ranges from −1 to 1.

test data set
Data that we set aside during training so that we can use them to check how 
well a particular machine learning approach will perform with real- world data.

tour
A path that starts and ends at the same node in a graph. It is also called a 
circuit.

training
In machine learning, the process of providing an algorithm with example in-
puts so that it can learn to produce correct outputs.

training data set
Data that we use with machine learning algorithms to train them to solve 
problems.

transposition method
A self- organizing search algorithm. When we find an element, we swap it with 
the one preceding it. In this way, popular items are moving to the front.

traveling salesman problem
Also known as the traveling salesperson problem, but people did not put much 
thought into gender definitions. The problem that asks us, If we have a list of 
cities and the distances between each pair of them, what is the shortest pos-
sible route that one should take to visit each city once and return to the origin 
city? It is probably the most famous intractable problem.
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Turing machine
An idealized (abstact) machine, described by Alan Turing, consisting of an infi-
nite tape and movable head that reads and writes symbols on the tape follow-
ing a set of prescribed rules. The Turing machine can implement any algorithm 
and therefore can be used as a model of what can be computed.

unary numeral system
The number system using a single symbol for representing numbers; for in-
stance, a stroke representing a unit, so that III represents three.

undirected graph
A graph in which the edges are undirected.

unsupervised learning
A machine learning approach in which we provide an algorithm input prob-
lems without their solutions. The machine learning algorithm then must de-
rive what the expected input should be in order to be able to produce it.

vector
A horizontal row or vertical column of numbers (or more generally, mathemati-
cal expressions). Usually we meet vectors in geometry, where it is a geometric 
entity with a length and direction, represented as a row or column containing 
their numerical coordinates; however, the notion of a vector is more general than 
that—take, for example, the pagerank vector. A vector is a special case of a matrix.

vertex coloring
The assignment of colors to the vertices of a graph so that no two adjacent 
vertices share the same color.

weight (graph)
A number attached to an edge of a graph. Such a number may, for example, 
model a reward or penalty associated with the link between the nodes con-
nected by the edge.

weight (neuron)
A numerical value attached to a synapse in a neuron. From each synapse, the 
neuron receives an input multiplied by the weight of the synapse.

weighted input (neuron)
The sum of the products of the inputs with the weights of a neuron.



NOTES

Preface
1. For these and more indicators of the global progress achieved through the 
ideas of the Enlightenment, see Pinker 2018.

Chapter 1
1. “The Algorithmic Age” was aired on February 8, 2018, on Radio Open Source.
2. For an account of algorithms in ancient Babylon, see Knuth 1972.
3. The algorithm for distributing a number of pulses in timing slots in the SNS 
was given by Eric Bjorklund (1999). Godfried Toussaint (2005) noticed the 
parallel with rhythms, and his work is the basis for our exposition. For a more 
extensive discussion, see Demaine et al. 2009. For a book- length treatment of 
algorithms and music, see Toussaint 2013.
4. The criteria come from Donald Knuth (1997, sec. 1), who also starts his 
exposition with Euclid’s algorithm.
5. For a discussion of the enumeration of the paths on the grid, see Knuth 
2011, 253– 255; it is the source for the example and path images. For the algo-
rithm that gives the number of possible paths, see Iwashita et al. 2013.
6. For these number descriptions, see Tyson, Strauss, and Gott 2016, 18– 20. 
In Dave Eggers’s novel The Circle, a thinly disguised technology company cal-
culates the number of grains of sand in the Sahara Desert.
7. To fold paper n times, the paper must be large enough. If you fold it always 
along the same dimension, you will need a long sheet of paper. The length is 

given by the formula L t n n= +( ) −( )π
6 2 4 2 1 , where t is the paper’s thickness 

and n is the number of folds. If you fold a square sheet of paper in alternate 
directions, then the width of the square must be W t n≈ −( )π 2 3 2 1( / ) . The reason 
why the formulas are more complicated than simple powers of two is that 
every time you fold the paper, you lose some part of it as it curves along the 
edge of the fold; it’s from calculating these curves that π enters the picture 
in these formulas. The formulas were found in 2002 by Britney Crystal Gal-
livan, then a junior in high school. She went on to demonstrate that a 1,200 
meters– long sheet of toilet paper could be folded in half 12 times. For a nice in-
troduction to the power of powers (including this example), see Strogatz 2012,  
chapter 11.
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8. “Transistor Count,” Wikipedia, https://en.wikipedia.org/wiki/Transistor_ 
count.
9. That is because to compare n items between them, you need to take one of 
them and compare it to all the other n − 1 items, then you take another one 
and compare it to the other n − 2 items (you have already compared it to the 
first item you used), and so on. That gives 1 2 1 1 2+ + + − = − ( ) ( ) /n n n  
comparisons. Then you get O n n O n n O n( ( ) / ) ( / ) ( )− = − =1 2 22 2 , because  
according to the definition of big O, if your algorithm runs in time O n( )2 , it will 
certainly run in time O n n( / )2 2− .

Chapter 2
1. Image retrieved from the Wikipedia Commons at https://commons 
.wikimedia.org/wiki/File:Konigsberg_Bridge.png. The image is in the public 
domain.
2. The paper (Eulerho 1736) is available from the Euler Archive (http://
eulerarchive.maa.org), maintained by the Mathematical Association of Amer-
ica. For an English translation, see Biggs, Lloyd, and Wilson 1986.
3. The literature on graphs is vast, as is the subject itself. For a good starting 
point, see Benjamin, Chartrand, and Zhang 2015.
4. Image from the original publication (Eulerho 1736) retrieved from the 
Wikipedia Commons at https://commons.wikimedia.org/wiki/File:Solutio_
problematis_ad_geometriam_situs_pertinentis,_Fig._1.png. The image is in 
the public domain.
5. Image from Kekulé 1872, retrieved from the Wikipedia at https://
en.wikipedia.org/wiki/Benzene#/media/File:Historic_Benzene_Formulae_Ke 
kul%C3%A9_(original).png. The image is in the public domain.
6. For the original publication in German see Hierholzer 1873.
7. For more details on Hierholzer’s algorithm and other algorithms for Eule-
rian paths, see Fleischner 1991. For the use of graphs in genome assembly, 
see Pevzner, Tang, and Waterman 2001; Compeau, Pevzner, and Tesler 2011.
8. For an analysis of the optimality of the greedy algorithm for online edge 
coloring, as well as the example of the starlike graph to show the worst case, 
see Bar- Noy, Motwani, and Naor 1992.
9. In the original fable, the two characters are an ant and cicada. These two 
characters also feature in Latin translations of the original ancient Greek and 
Jean de La Fontaine’s retelling of the fable in French.
10. The invention episode is recounted by Dijkstra in his interview in Misa 
and Frana 2010.

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor_count
https://commons.wikimedia.org/wiki/File:Konigsberg_Bridge.png
https://commons.wikimedia.org/wiki/File:Konigsberg_Bridge.png
http://eulerarchive.maa.org
http://eulerarchive.maa.org
https://commons.wikimedia.org/wiki/File:Solutio_problematis_ad_geometriam_situs_pertinentis,_Fig._1.png
https://commons.wikimedia.org/wiki/File:Solutio_problematis_ad_geometriam_situs_pertinentis,_Fig._1.png
https://en.wikipedia.org/wiki/Benzene
https://en.wikipedia.org/wiki/Benzene
https://en.wikipedia.org/wiki/Benzene
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Chapter 3
1. For the first description of the Matthew effect, see Merton 1968. For 
overviews of the range of phenomena manifesting unequal distributions, see 
Barabási and Márton 2016; West 2017. For the stadium height and wealth 
disparity, see Taleb 2007.
2. John McCabe (1965) presented a self- organized search. For analyses of 
the performance of the move- to- front and transposition methods, see Rivest 
1976; Bachrach, El- Yaniv, and Reinstädtler 2002.
3. The secretary problem appeared in Martin Gardner’s column in February 
1960 in Scientific American. A solution was given in the March 1960 issue. For 
its history, see Ferguson 1989. J. Neil Bearden (2006) provided the solution 
for the not all- or- nothing variant. Matt Parker (2014, chapter 11) presents 
the problem, along with several other mathematical ideas and an introduction 
to computers.
4. Binary search goes back to the dawn of the computer age (Knuth 1998). 
John Mauchly, one of the designers of the ENIAC, the first general- purpose 
electronic digital computer, described it in 1946. For the checkered history of 
binary search, see Bentley 2000; Pattis 1988; Bloch 2006.

Chapter 4
1. Hollerith 1894.
2. Selection and insertion sort have been with us since the dawn of comput-
ers; they were included in a survey of sorting published in the 1950s (Friend 
1956).
3. According to Knuth (1998, 170), the idea behind radix sort that we have 
seen here seems to have been around at least since the 1920s.
4. Flipping the coin 226 times follows from 1 52 1 2 226/ ! ( / )≈ . The example of 
picking an atom from the earth is from David Hand (2014), according to whom 
probabilities less than one in 1050 are negligible on the cosmic scale.
5. See Hoare 1961a, 1961b, 1961c.
6. For more on randomized algorithms, see Mitzenmacher and Upfal 2017.
7. For an account of von Neumann’s life and the environment around the 
origins of digital computers, see Dyson 2012. For a presentation of von Neu-
mann’s merge sort program, see Knuth 1970.

Chapter 5
1. The original PageRank algorithm was published by Brin and Page (1998). 
We glossed over the mathematics used by the algorithm. For a more in- depth 
treatment, see Bryan and Leise 2006. For an introduction to search engines 
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and PageRank, see Langville and Meyer 2006; Berry and Browne 2005. Apart 
from PageRank, another important algorithm used for ranking is Hypertext 
Induced Topic Search, or HITS (Kleinberg 1998, 1999), developed before Page-
Rank. Similar ideas had been developed in other fields (sociometry, the quan-
titative study of social relationships, and econometrics, the quantitative study 
of economic principles) much earlier, going back to the 1940s (Franceschet 
2011).

Chapter 6
1. Although today we can use technology to see neurons in much greater detail, 
Ramón y Cajal was a pioneer, and his drawings rank among the most elegant il-
lustrations in the history of science. You can find neuron images aplenty on the 
web, but this image is enough for us, and a simple web search should convince 
you of the beauty and enduring power of Ramón y Cajal’s illustrations. The im-
age is in the public domain, retrieved from https://commons.wikimedia.org/
wiki/File:PurkinjeCell.jpg.
2. To be accurate, sigmoid would refer to the Greek letter sigma, which is Σ, 
yet its appearance is closer to the Latin S.
3. The tangent of an angle is defined as the ratio of the opposite side to the 
adjacent side in a straight triangle, or equivalently, by the sine of the angle 
divided by the cosine of the angle in the unit circle. The hyperbolic tangent is 
defined as the ratio of the hyperbolic sine by the hyperbolic cosine of an angle 
on a hyperbola.
4. Warren McCulloch and Walter Pitts (1943) proposed the first artificial 
neuron. Frank Rosenblatt (1957) described the Perceptron. If they are more 
than half a century old, how come neural networks have become all the rage 
recently? Marvin Minsky and Seymour Papert (1969) struck a major blow 
to Perceptrons in their famous book of the same name, which showed that 
a single Perceptron had fundamental computing limitations. This, coupled 
with the hardware limitations of the time, ushered in a so- called winter in 
neural computation, which lasted well until the 1980s, when researchers 
found how to build and train complex neural networks. Interest in the field 
then revived, but still a lot more work was required to advance neural net-
works to the media- grabbing results that we have been seeing in the last  
few years.
5. One of the challenges in neural networks is that the notation can be 
off- putting and hence the material seems approachable only to the initiated. 
In fact, it is not that complicated once you know what it is about. You often 

https://commons.wikimedia.org/wiki/File:PurkinjeCell.jpg
https://commons.wikimedia.org/wiki/File:PurkinjeCell.jpg
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see derivatives; the derivative of a function f x( ) with respect to x is written 
df x

dx
( ) . The partial derivative of a function f of many variables, say, x1, x2, . . . , 

xn, is written ∂
∂

f
xi

. The gradient is written ∇ = ∂
∂ … ∂

∂f f
x

f
xn

( , , )
1

.

6. The backpropagation algorithm came onto the scene in the mid- 1980s (Ru-
melhart, Hinton, and Williams 1986), although various derivations of it had 
appeared back in the 1960s.
7. This image is from the Fashion- MNIST data (Xiao, Rasul, and Vollgraf 
2017), which was developed as a benchmark data set for machine learning. 
This section was inspired by the basic classification TensorFlow tutorial at 
https://www.tensorflow.org/tutorials/keras/basic_classification.
8. For a description of the first system to beat the Go human champion, see 
Silver et al. 2016. For an improved system that does not require human knowl-
edge in the form of previously played games, see Silver et al. 2017.
9. The literature on deep learning is vast. For a comprehensive introduction 
to the topic, see Goodfellow, Bengio, and Courville 2016. For a shorter and 
more approachable treatment, see Charniak 2018. For a concise overview, see 
LeCun, Bengio, and Hinton 2015. For deep and machine learning, see Alpay-
din 2016. For a survey of automated neural architecture search methods, see 
Elsken, Hendrik Metzen, and Hutter 2018.

Epilogue
1. Besides Turing, other names on the short list were Mary Anning, Paul 
Dirac, Rosalind Franklin, William Herschel and Caroline Herschel, Dorothy 
Hodgkin, Ada Lovelace and Charles Babbage, Stephen Hawking, James Clerk 
Maxwell, Srinivasa Ramanujan, Ernest Rutherford, and Frederick Sanger. Bab-
bage, Lovelace, and Turing were all computer pioneers. Babbage (1791– 1871) 
invented the first mechanical computer and developed the essential ideas 
of modern computers. Lovelace (1815– 1852), the daughter of Lord Byron, 
worked with Babbage, recognized the potential of his invention, and was 
the first to develop an algorithm that would run on such a machine. She is 
now considered to have been the first computer programmer. For the £50 
design, see the official announcement at https://www.bankofengland.co.uk/
news/2019/july/50-pound-banknote-character-announcement.
2. See the excellent biography by Andrew Hodges (1983). Turing’s role in 
breaking the German Enigma cryptographic machine were dramatized in the 
2014 film The Imitation Game.
3. For a description of the machine, see Turing 1937, 1938.

https://www.tensorflow.org/tutorials/keras/basic_classification
https://www.bankofengland.co.uk/news/2019/july/50-pound-banknote-character-announcement
https://www.bankofengland.co.uk/news/2019/july/50-pound-banknote-character-announcement
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4. The Turing machine example is adapted from John Hopcroft, Rajeev 
Motwani, and Jeffrey Ullman (2001, chapter 8). The figure is based on Se-
bastian Sardina’s example at http://www.texample.net/tikz/examples/turing 
-machine-2/.
5. For more on the Church- Turing thesis, see Lewis and Papadimitriou 1998, 
chapter 5. For a discussion of the history of the Church- Turing thesis and vari-
ous variants, see Copeland and Shagrir 2019.

http://www.texample.net/tikz/examples/turing-machine-2/
http://www.texample.net/tikz/examples/turing-machine-2/
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