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Linear algebra has in recent years become an essential part of the mathemtical background required by 

mathematicians and mathematics teachers, engineers, computer scientists, physicists, economists, and statisti­

cians, among others. This requirement reflects the importance and wide applications of the subject matter. 

This book is designed for use as a textbook for a formal course in linear algebra or as a supplement to all 

current standard texts. It aims to present an introduction to linear algebra which will be found helpful to all 

readers regardless of their fields of specification. More material has been included than can be covered in most 

first courses. This has been done to make the book more flexible, to provide a useful book of reference, and to 

stimulate further interest in the subject. 

Each chapter begins with clear statements of pertinent definitions, principles and theorems together with 

illustrative and other descriptive material. This is followed by graded sets of solved and supplementary 

problems. The solved problems serve to illustrate and amplify the theory, and to provide the repetition of basic 

principles so vital to effective learning. Numerous proofs, especially those of all essential theorems, are included 

among the solved problems. The supplementary problems serve as a complete review of the material of each 

chapter. 

The first three chapters treat vectors in Euclidean space, matrix algebra, and systems of linear equations. 

These chapters provide the motivation and basic computational tools for the abstract investigation of vector 

spaces and linear mappings which follow. After chapters on inner product spaces and orthogonality and on 

determinants, there is a detailed discussion of eigenvalues and eigenvectors giving conditions for representing a 

linear operator by a diagonal matrix. This naturally leads to the study of various canonical forms, specifically, 

the triangular, Jordan, and rational canonical forms. Later chapters cover linear functions and the dual space V*, 
and bilinear, quadratic and Hermitian forms. The last chapter treats linear operators on inner product spaces. For 

completeness, there is an appendix on polynomials over a field. 

The main changes in the third edition have been for pedagogical reasons rather than in content. Specifically, 

the abstract notion of a linear map and its matrix representation appears before and motivates the study of 

eigenvalues and eigenvectors and the diagonalization of matrices (under similarity). There are also many 

additional solved and supplementary problems. 

Finally, we wish to thank the staff of the McGraw-Hill Schaum's Outline Series, especially Barbara Gilson, 

for their unfailing cooperation. 

SEYMOUR LIPSCHUTZ 

MARC LARS LIPSON 
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two ways to motivate the notion of a vector: one is by means of lists of numbers and 
the other is by means of certain objects in physics, We discuss these two ways below, 

assume the reader is familiar with the elementary properties of the field of real numbers, 
On the other hand, we will review properties of the field of complex numbers, denoted by C. 
of vectors, the elements of our number fields are called scalfl/'S, AI�,;�.�g�we will restrict ourselves in this chapter to vectors whose elements come from R and then 
of our operations also apply to vectors whose entries come from some arbitrary field K. 

Suppose weights (in pounds) of eight slUdents are listed as follows: 

156, 125, 145, 134. 178. 145. 162, 193 

can 1 the values in the list using only one symbol, say 11', but with different subscripts; that is 

b"""" that subscript denotes the position of the value in the list. For example, 

WI = 156. the first number, 11'2 = 125. the second number . . . 

"-"""''''"''''"' array or vector. 
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Many physical quantities, such as temperature and speed, possess only "magnitude" . These quantities 
can be represented by real numbers and are called scalars. On the other hand, there are also quantities, such 
as force and velocity, that possess both "magnitude" and "direction" . These quantities, which can be 
represented by arrows having appropriate lengths and directions and emanating from some given reference 
point 0, are called vectors. 

Now we assume the reader is familiar with the space R3 where all the points in space are represented 
by ordered triples of real numbers . Suppose the origin of the axes in R3 is chosen as the reference point 0 
for the vectors discussed above. Then every vector is uniquely determined by the coordinates of its 
endpoint, and vice versa. 

There are two important operations, vector addition and scalar multiplication, that are associated with 
vectors in physics. The definition of these operations and the relationship between these operations and the 
endpoints of the vectors are as follows. 

(i) Vector Addition: The resultant u + v of two vectors u and v is obtained by the so-called 
parallelogram law; that is, u + v is the diagonal of the parallelogram formed by u and v. 
Furthermore, if (a , b, c) and (a' , b' ,  c') are the endpoints of the vectors u and v, then 
(a + a' , b + b' ,  c + c') is the endpoint of the vector u + v. These properties are pictured in Fig. 
l - l (a) .  

z 

(ka, kb, kc) 

x 
x 

(b) Scalar Multiplication 
(a) Vector Addition 

Fig. 1-1 

(ii) Scalar Multiplication: The product ku of a vector u by a real number k is obtained by multiplying 
the magnitude ofu by k and retaining the same direction if k > 0 or the opposite direction if k < O .  
Also, if  (a , b , c) is  the endpoint of the vector u, then (ka, kb , kc) is  the endpoint of the vector ku. 
These properties are pictured in Fig. l - l (b) .  

Mathematically, we identifY the vector u with its (a , b, c) and write u = (a , b, c) . Moreover, we call the 
ordered triple (a , b , c) of real numbers a point or vector depending upon its interpretation. We generalize 
this notion and call an n-tuple (a I ' a2 , . . .  , an) of real numbers a vector. However, special notation may be 
used for the vectors in R3 called spatial vectors (Section 1 .6). 

1 .2 VECTORS IN Rn 

The set of all n-tuples of real numbers, denoted by Rn, is called n-space. A particular n-tuple in Rn, say 

is called a point or vector. The numbers ai are called the coordinates, components, entries, or elements of u. 
Moreover, when discussing the space Rn , we use the term scalar for the elements of R. 
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Two vectors, u and v, are equal, written u = v, if they have the same number of components and if the 
corresponding components are equal. Although the vectors ( 1 , 2 , 3)  and (2 , 3 , 1 )  contain the same three 
numbers, these vectors are not equal since corresponding entries are not equal. 

The vector (0, 0, ' .. , 0) whose entries are all 0 is called the zero vector, and is usually denoted by O .  

Example 1.1 
(a) The following are vectors: 

(2 ,  -5) , (7 , 9), (0, 0 , 0) , (3 , 4 , 5) 

The first two vectors belong to R2 whereas the last two belong to R3 . The third is the zero vector in R3 . 

(b) Find x, y, z such that (x - y, x + y, z - I) = (4, 2, 3) . 
By definition of equality of vectors, corresponding entries must be equal. Thus, 

x - y = 4, x +y =  2 , z - I = 3 

Solving the above system of equations yields x = 3, y = - I ,  z = 4. 

Column Vectors 

Sometimes a vector in n-space Rn is written vertically, rather than horizontally. Such a vector is called 
a column vector, and, in this context, the above horizontally written vectors are called row vectors. For 
example, the following are column vectors with 2 , 2 , 3 ,  and 3 components, respectively: 

We also note that any operation defined for row vectors is defined analogously for column vectors . 

1 .3 VECTOR ADDITION AND SCALAR MULTIPLICATION 

Consider two vectors u and v in Rn , say 

and 

Their sum, written u + v, is the vector obtained by adding corresponding components from u and v. That is, 

The scalar product or, simply,product, of the vector u by a real number k, written ku, is the vector obtained 
by multiplying each component of u by k. That is, 

ku = k(a ! , a2 " ' "  an) = (ka ! , ka2 , . . .  , kan) 

Observe that u + v and ku are also vectors in Rn . The sum of vectors with different numbers of components 
is not defined. 

Negatives and subtraction are defined in Rn as follows : 

-u = (- l )u and u - v = u + (-v) 

The vector -u is called the negative of u, and u - v is called the difference of u and v .  
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Now suppose we are given vectors Uj , U2 , " " urn in Rn and scalars kj , k2 , . . .  , krn in R. We can 
multiply the vectors by the corresponding scalars and then add the resultant scalar products to form the 
vector 

Such a vector v is called a linear combination of the vectors Uj , U2 , . . .  , Urn ' 

Example 1.2 
(a) Let u = (2 , 4 , -5) and v = ( 1 ,  -6 , 9). Then 

u + v = (2 + 1 , 4 + (-5), -5 + 9) = (3 ,-1 ,4) 
7u = (7(2), 7(4) , 7(-5» = ( 14 , 28 , -35) 
-v = (- I )( 1 ,  -6, 9) = (- I ,  6 ,  -9) 

3u - 5v = (6 ,  12, - 1 5) + (-5, 30 ,  -45) = ( 1 , 42, -60) 

(b) The zero vector 0 = (0, 0, . . .  , 0) in Rn is similar to the scalar 0 in that, for any vector u = (ai' a2, ... , an). 

Basic properties of vectors under the operations of vector addition and scalar multiplication are 
described in the following theorem. 

Theorem 1 . 1 :  For any vectors u, v ,  w in Rn and any scalars k, k' in R, 

(i) (u + v) + w = u + (v + w) , (v) k(u + v) = vu + kv, 
(ii) u + O = u , (vi) (k + k')u = ku + k'u, 

(iii) u + (-u) = 0, (vii) (kk')u = k(k'u), 
(iv) u + v =  v + u, (viii) l u  = u. 

We postpone the proof of Theorem 1 . 1  until Chapter 2, where i t  appears in the context of matrices 
(Problem 2 .3) .  

Suppose u and v are vectors in Rn for which u = kv for some nonzero scalar k in R. Then u i s  called a 
multiple of v. Also, u is said to be the same or opposite direction as v according as k > 0 or k < O. 

1 .4 DOT (INNER) PRODUCT 

Consider arbitrary vectors u and v in Rn; say, 

and 

The dot product or inner product or scalar product of u and v is denoted and defined by 

That is, u . v is obtained by multiplying corresponding components and adding the resulting products. The 
vectors u and v are said to be orthogonal (or perpendicular) if their dot product is zero, that is, if u . v = o .  
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Example 1,3 
(a) Let u = ( 1 ,  -2, 3), v = (4 , 5, - 1 ), w = (2, 7 , 4). Then: 

u · v = 1 (4) - 2(5) + 3(- 1 )  = 4 - 1 0 - 3  = -9 
u · w = 2 - 14 + 1 2  = 0 , 

Thus u and w are orthogonal. 

v . w = 8 + 35 - 4 = 39 

(6) Lot u � [ -!J ,.n " �  [ =u Th � u " � 6 - 3 + 8 � lL 

(c) Suppose u = ( 1 , 2 , 3 , 4) and v = (6 ,  k, -8 , 2). Find k so that u and v are orthogonal. 

First obtain u · v = 6 + 2k - 24 + 8 = - 1 0  + 2k. Then set u · v = 0 and solve for k: 
- 1 O + 2k = 0  or 2k = 1 0  or k = 5  

Basic properties of the dot product in Rn (proved in Problem 1 . 1 3 )  follow. 

Theorem 1.2:  For any vectors u, v ,  w in Rn and any scalar k in R: 

(iii) u · v = v . u, 

© The McGraw-Hili 
Companies, 2004 

(i) (u + v) . w = u . w + v . w, 

(ii) (ku) · v = k(u . v), (iv) u · u :::: 0, and u . u = 0 iff u = O . 

5 

Note that (ii) says that we can "take k out" from the first position in an inner product. By (iii) and (ii), 

u · (kv) = (kv) . u = k(v . u) = k(u . v) 
That is, we can also "take k out" from the second position in an inner product. 

The space Rn with the above operations of vector addition, scalar multiplication, and dot product is 
usually called Euclidean n-space. 

Norm (Length) of a Vector 

The norm or length of a vector u in Rn, denoted by l I u l l , is defined to be the nonnegative square root of 
u ' u. In particular, if u = (a ] , a2 , . . .  , an), then 

I l u l l  = ..;u-:-u = Jaj + a� + . . .  + a� 
That is, l I u l i  is the square root of the sum of the squares of the components of u. Thus I l u l l  :::: 0, and 
l I u l i  = 0 if and only if u = O . 

A vector u is called a unit vector if l I u l i  = I or, equivalently, if u . u = 1 .  For any nonzero vector v in 
Rn, the vector 

A I v v = TiViI v = TiViI 
is the unique unit vector in the same direction as v. The process of finding Ii from v is called normalizing v. 

Example 1.4 
(a) Suppose u = ( 1 ,  -2, -4, 5 , 3) . To find I l u l l , we can first find l I u l l 2 = u · u by squaring each component of u and 

adding, as follows: 
l I u l l 2 = 1 2 + (-2i + (-4i + 52 + 32 = 1 + 4 + 1 6 + 25 + 9  = 55 

Then I l u l l  = .J55. 
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(b) Let v = ( 1 ,  -3 , 4 , 2) and w = (� , -i- , � , i-) . Then 

I I v l l  = .vI + 9 + 1 6  + 4 = .J3O and 

Thus w is a unit vector but v is not a unit vector. However, we can normalize v as follows: 
, v ( 1 -3 4 2 ) v = M = 

.J3O
'
.J30

'
.J30

'
.J30 

This is the unique unit vector in the same direction as v. 

The following formula (proved in Problem 1 . 14) is known as the Schwarz inequality or Cauchy­
Schwarz inequality. It is used in many branches of mathematics . 

Theorem 1 .3 (Schwarz): For any vectors u, v in Rn, l u · v i::: I l u l l l l v l l . 

Using the above inequality, we also prove (Problem 1 . 1 5) the following result known as the "triangle 
inequality" or Minkowski's inequality. 

Theorem 1 .4 (Minkowski): For any vectors u, v in Rn, l I u + v I I  ::: l I u l l  + I l v l l . 

Distance, Angles, Projections 

The distance between vectors u = (a ] , a2 , . . .  , an) and v = (b ] , b2 , . . .  , bn) in Rn is denoted and 
defined by 

d(u, v) = l I u - v i i  = J(a ] - b] )2 + (a2 - b2)2 + ' , . + (a] - b] )2 

One can show that this definition agrees with the usual notion of distance in the Euclidean plane R
2 

or 
space R3 . 

The angle () between nonzero vectors u, v in Rn is defined by 

u · v 
cos(} = MM 

This definition is well defined, since, by the Schwarz inequality (Theorem 1 .3) , 
u · v 

- 1<---< 1  - I l u l l l l v l l -

Note that if u · v = 0, then () = 900 (or () = nI2) .  This then agrees with our previous definition of 
orthogonality. 

The projection of a vector u onto a nonzero vector v is the vector denoted and defined by 
u ' v 

proj (u ,  v) = --2 v I I v l l  
We show below that this agrees with the usual notion of vector projection in  physics. 

Example 1,5 
(a) Suppose u = ( 1 ,  -2, 3) and v = (2 , 4 , 5) . Then 

d(u, v) = )( 1 - 2)2 + (-2 - 4)2 + (3 - 5i = .vI + 36 + 4 = ,J41 
To find cos e, where e is the angle between u and v, we first find 

u . v = 2 - 8 + 1 5  = 9 , I I u l 1 2 = 1 + 4 + 9 = 14 ,  I I v l l 2 = 4 + 1 6  + 25 = 45 
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u · v 9 cos () = --- = ---==-= 
l I u l l l l v l l  .JT4.J45 

u · v 9 1 [2 4 ] proj(u, v) = 
I I v l l 2 

V = 45 (2 ,  4, 5) = 5(2 ,  4, 5) = 5' 5 , 1  

© The McGraw-Hili 
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(b) Consider the vectors u and v in Fig. 1 -2(a) (with respective endpoints A and B). The (perpendicular) projection of 
u onto v is the vector u* with magnitude 

To obtain u* ,  we multiply its magnitude by the unit vector in the direction of v, obtaining 
v u · v v u · v u* = I l u* I ITIVTI= wTIVTI= 

I I v l l 2
v 

This is the same as the above definition of proj(u, v) . 

A z 

0 B 0 
v 

x 
Projection u· of u onto v 

(a) 

Fig. 1-2 

P(bj-aj, bz-a2 bra3) 

I ! B(b" b" b,l 

A(aj, az' a3) 

u�B-A 

(b) 

1.5 LOCATED VECTORS, HYPERPLANES, LINES, CURVES IN Rn 

Y 

This section distinguishes between an n-tuple P(ai) == P(al , a2 , . . .  , an) viewed as a point in Rn and an 
n-tuple u = [cl , C2 " ' "  cn] viewed as a vector (arrow) from the origin 0 to the point C(CI , C2 " ' "  cn) .  

Located Vectors 

Any pair of points A(ai) and B(bi) in Rn defines the located vector or directed line segment from A to -----+ -----+ 
B, written AB . We identify AB with the vector 
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-----+ 
since AB and u have the same magnitude and direction. This is pictured in Fig. 1 -2(b) for the 
points A(a l , a2 , a3 ) and B(bl , b2 , b3 ) in R3 and the vector u = B - A which has the endpoint 
P(bl - a i ' b2 - a2 , b3 - a3 ) '  

Hyperplanes 

A hyperplane H in Rn is the set of points (XI ' x2 , . . .  , xn) which satisfy a linear equation 

a lxl + a2x2 + . . .  + anxn = b 
where the vector u = [a i ' a2 , . . .  , anl of coefficients is not zero .Thus a hyperplane H in R2 is a line and a 
hyperplane H in R3 is a p�. We show below, as pictured in Fig. 1 -3 (a) for R3, that u is orthogonal to 
any directed line segment PQ ,  where P(Pi) and Q(qi) are points in H. [For this reason, we say that u is 
normal to H and that H is normal to u . l 

Since P(Pi) and Q(qi) belong to H, they satisfy the above hyperplane equation, that is, 

Let 

Then 

a lPl + a2P2 + . . .  + anPn = b and a l ql + a2q2 + . . .  + anqn = b 
-----+ 

v =  PQ = Q - P = [ql - PI , q2 - P2 , . . .  , qn - Pnl 

u · v = a l (q l - PI ) + az (q2 - P2) + . . .  + an (qn - Pn) 
= (a l ql + a2q2 + . . .  + anqn) - (a lPl + a2P2 + . . .  + anPn) = b - b = 0 

-----+ 
Thus v = PQ is orthogonal to u, as claimed. 

(a) (b) 
Fig. 1-3 

Lines in Rn 

The line L in Rn passing through the point P(bl , b2 , . . .  , bn) and in the direction of a nonzero vector 
u = [a i ' a2 , . . .  , anl consists of the points X(XI , X2 , . . .  , xn) that satisfy 

or I 
XI = a l t + bl 

:: : ::: :: 
where the parameter t takes on all real values. Such a line L in R3 is pictured in Fig. 1 -3 (b) .  
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(a) Let H be the plane in R3 corresponding to the linear equation 2x - 5y + 7z = 4. Observe that pe l ,  1 ,  1) and 
Q(5 ,  4, 2) are solutions of the equation. Thus P and Q and the directed line segment 

-----* v = PQ = Q - P = [5 - 1 ,  4 - 1 ,  2 - 1 ]  = [4 , 3 , 1 ]  

lie on the plane H .  The vector u = [2 ,  -5 ,  7 ]  is normal to H ,  and, a s  expected, 

u . v = [2 , -5 , 7] · [4 , 3 ,  1] = 8 - 1 5  + 7 = 0 

That is, u is orthogonal to v. 
(b) Find an equation of the hyperplane H in R4 that passes through the point P( 1 ,  3 ,  -4, 2) and is normal to the 

vector u = [4, -2, 5 , 6]. 
The coefficients of the unknowns of an equation of H are the components of the normal vector u; hence the 

equation of H must be of the form 

Substituting P into this equation, we obtain 

4( 1 )  - 2(3) + 5(-4) + 6(2) = k or 4 - 6 - 20 + 1 2  = k or k = - l O  

Thus 4Xl - 2x2 + 5x3 + 6X4 = - 1 0  i s  the equation o f  H. 
(c) Find the parametric representation of the line L in R4 passing through the point P( 1 ,  2, 3 ,  -4) and in the direction 

of u = [5 , 6 ,  -7, 8] . Also, find the point Q on L when t = 1 . 
Substitution in the above equation for L yields the following parametric representation: 

Xl = 5t + 1 ,  X2 = 6t + 2 , x3 = -7t + 3 ,  X4 = 8 t  - 4 

or, equivalently, 

L(t) = (5t + l ,  6t + 2, -7t + 3 ,  8t - 4) 

Note that t = 0 yields the point P on L. Substitution of t = 1 yields the point Q(6 ,  8, -4, 4) on L. 

Curves in Rn 

Let D be an interval (finite or infinite) on the real line R. A continuous function F: D -+ Rn is a curve 
in Rn . Thus, to each point t E D  there is assigned the following point in Rn : 

F(t) = [Fl (t) , F2 (t) , . . .  , Fn(t)] 

Moreover, the derivative (if it exists) of F(t) yields the vector 

( ) = 
dF(t) 

= 
[dFI (t) dF2 (t) dFn(t)] V t dt dt ' dt , . . .  , dt 

which is tangent to the curve. Normalizing Vet) yields 

Vet) T(t) = 
I I  V(t) I I  

Thus T(t) i s  the unit tangent vector to  the curve. (Unit vectors with geometrical significance are often 
presented in bold type.) 
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Example 1,7, Consider the curve F(t) = [sint, cost, t] in R3. Taking the derivative of F(t) [or each component of F(t)] 
yields 

Vet) = [cos t, - sin t, 1 ]  

which i s  a vector tangent to the curve. We normalize Vet) . First we obtain 

II V(t) 1 1 2 = cos2 t + sin2 t + 1 = 1 + 1 = 2 

Then the unit tangent vection T(t) to the curve follows: 

Vet) [cos t - sin t 1 ] T(t) = 
II V(t) II 

= "fi ' "fi ' "fi 

1.6 VECTORS IN R3 (SPATIAL VECTORS), ijk NOTATION 
Vectors in R3, called spatial vectors, appear in many applications, especially in physics. In fact, a 

special notation is frequently used for such vectors as follows : 

i = [1, 0, 0] denotes the unit vector in the x direction. 
j = [0, 1, 0] denotes the unit vector in the y direction. 
k = [0, 0, 1] denotes the unit vector in the z direction. 

Then any vector u = [a, b, c] in R3 can be expressed uniquely in the form 

u = [a, b, c] = ai + bj + cj 

Since the vectors i, j, k are unit vectors and are mutually orthogonal, we obtain the following dot products: 

i·i = l, j·j = l, k·k = l and i . j = 0, i· k = 0, j. k = ° 

Furthermore, the vector operations discussed above may be expressed in the ijk notation as follows. 
Suppose 

and 

Then 

and 

where c is a scalar. Also, 

and I l u l l  = ...;u:-u = aj + a� + a� 

Example 1.8 Suppose u = 3i + 5j - 2k and v = 4i - Sj + 7k. 

(a) To find u + v, add corresponding components, obtaining u + v = 7i - 3j + 5k 
(b) To find 3u - 2v, first multiply by the scalars and then add: 

3u - 2v = ( 9i + 1 3j - 6k) + (-Si + 1 6j - 14k) = i + 29j - 20k 
(c) To find u . v, multiply corresponding components and then add: 

u · v = 12 - 40 - 14 = -42 
(d) To find I l u l l , take the square root of the sum of the squares of the components: 

I l u l l  = -19 + 25 + 4 = .J38 
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There is a special operation for vectors II and v in R) that is not defined in R" for 11 ¥- 3. This operation 
is called the cross prodllc/ and is denoted by II X v. One way to easily remember the formula for II x v is to 
use the determinant (of order two) and its negative, which are denoted and defined as follows: 

and 

l'lere a and (/ are called the diagol1al elements and band c are the 1100uliagol1al elements. Thus the 
determinant is the product ad of the diagonal elements minus the product be of the nondiagonal elements, 
but vice versa for the negative of the determinant. 

Now suppose II =a1i + a:J +aJk and v = b1i + b2j + b)k. Then 

1/ x v = (a2b) - a3b2)i + (a3b1 - a 1 b3)j + (a 1 b2 - a2b1)k 

That is, the three components of II x v are obtained from the array 

[ a, 
b, aJ 1 bJ 

(which contain the components of II above the component of v) as follows: 

(I) Cover the first column and take the determinant. 
(2) Cover the second column and take the negative of the determinant. 

(3) Cover the third column and take the determinant. 

UJ I' b
J 

Note that II x v is a vector; hence II x v is also called the IICc/or prodllct or ollter prodllct of II and v. 
Example 1.8. Find U x Ii where: (u) u =4i +3j +6k, v = 2i +5j -3k, (b) u = [2. -1.5), Ii = [3, 7,6]. 

(a) usc[� � _nIOgCIIIXV = (-9- 30)i+(12+ 12)j +(20- 6)k = -39i+24j+14k 

[' -I '] (b) Usc 
3 

7 
6 

logctllxV = [-6-35.15-12.14+3) = (-41.3.17) 

Remark: The cross products of the vectors i, j, k are as follows: 

ixj=k. 
j x i = -k. 

j x k = i. 
kxj=-i. 

k x i =j 
i x k =-j 

Thus, if we view the triple (i, j. k) as a cyclic pemlutation, where i follows k and hence k precedes i, then 
the product of two of them in the given direction is the third one, but the product of two of them in the 
opposite direction is the negative of the third one. 

Two important properties of the cross product are contained in the following theorem. 

Theorem 1.5: Let II. v. II' be vectors in R3. 

(a) The vector II x v is orthogonal to both 11 and v .  
(b) The absolute value of the "triple product" 

II '  V X)ll 

represents the volume of the paralle10piped formed by the vectors /I, v, w. 
[See Fig. 1-4(a).] 
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We note that the vectors u, v, u x v form a right-handed system, and that the following formula gives 
the magnitude of u x v :  

where e is the angle between u and v .  

1.7 COMPLEX NUMBERS 

I l u x v I I  = I l u l l l l v l l  sin e 

The set of complex numbers is denoted by C. Formally, a complex number is an ordered pair (a , b) of 
real numbers where equality, addition and multiplication are defined as follows: 

(a , b) = (c, d) if and only if a = c and b = d 
(a , b) + (c, d) = (a + c, b + d) 
(a , b) . (c, d) = (ac - bd, ad + be) 

We identify the real number a with the complex number (a , 0); that is, 

a � (a , 0) 

This is possible since the operations of addition and multiplication of real numbers are preserved under the 
correspondence; that is, 

(a , 0) + (b, 0) = (a + b , 0) and (a , 0) . (b, 0) = (ab , 0) 

Thus we view R as a subset of C, and replace (a, 0) by a whenever convenient and possible. 
We note that the set C of complex numbers with the above operations of addition and multiplication is 

a field of numbers, like the set R of real numbers and the set Q of rational numbers. 
The complex number (0, 1 )  is denoted by i. It has the important property that 

i2 = ii = (0 , 1 )(0, 1 )  = (- 1 , 0) = - 1 or i = vCI 

Accordingly, any complex number z = (a , b) can be written in the form 

z = (a , b) = (a , 0) + (0, b) = (a , 0) + (b , 0) . (0, 1 )  = a + bi 



Lipschulz-Lipson:Schaum's I 1, Vectors in RAn and CAn, I Text 

Outline ofTheory and Spatial Vectors 

Problems of Linear 

Algebra,3/e 

CHAP. 1 ]  VECTORS IN Rn AND en, SPATIAL VECTORS 

© The McGraw-Hili 
Companies, 2004 

13 

The above notation z = a + bi, where a == Re z and b == 1m z are called, respectively, the real and 
imaginary parts of z, is more convenient than (a , b) . In fact, the sum and product of complex number 
z = a + bi and w = c + di can be derived by simply using the commutative and distributive laws and 
P = -1: 

z + w = (a + bi) + (c + di) = a + c + bi + di = (a + b) + (c + d)i 
zw = (a + bi)(c + di) = ac + bci + adi + bdP = (ac - bd) + (bc + ad)i 

We also define the negative of z and subtraction in C by 

-z = -lz and w - z =  w +  (-z) 

Warning: The letter i representing R has no relationship whatsoever to the vector i = [1, 0 ,  0] in 
Section 1.6 . 

Complex Conjugate, Absolute Value 

Consider a complex number z = a + bi. The conjugate of z is denoted and defined by 

Z = a + bi = a - bi 

Then zz = (a + bi)(a - bi) = a2 - b2P = a2 + b2 . Note that z is real if and only if z = z. 

The absolute value of z, denoted by Iz l , is defined to be the nonnegative square root of zZ. Namely, 

Iz l = v'ii = J a2 + b2 

Note that Iz l is equal to the nonn of the vector (a , b) in R2 . 

Suppose z -I- O. Then the inverse z- I 
of z and division in C of w by z are given, respectively, by 

and 
w WZ - I 
- - --=- = wz z zz 

Example 1.9. Suppose z = 2 + 3i and w = 5 - 2i. Then 

Complex Plane 

z + w = (2 + 3i) + (5 - 2i) = 2 + 5 + 3i - 2i = 7 + i 
zw = (2 + 3i)(5 - 2i) = 1 0  + l Si - 4i - 6i2 = 1 6  + I I i 

Z = 2 + 3i = 2 - 3i and w = 5 - 2i = 5 + 2i 
w 5 - 2i (5 - 2i)(2 - 3 i) 4 - 1 9i 4 1 9 . - = -- =  = -- = ---/ z 2 + 3i (2 + 3 i)(2 - 3 i) 1 3  1 3  1 3  
Iz l = ,J4 + 9 = ,J13 and Iw l = ,J25 + 4 = ,J29 

Recall that the real numbers R can be represented by points on a line. Analogously, the complex 
numbers C can be represented by points in the plane. Specifically, we let the point (a , b) in the plane 
represent the complex number a + bi as shown in Fig. l -4(b) . In such a case, Iz l is the distance from the 
origin 0 to the point z. The plane with this representation is called the complex plane, just like the line 
representing R is called the real line. 
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1.8 VECTORS IN Cn 

The set of all n-tup1es of complex numbers, denoted by Cn, is called complex n-space, Just as in the 
real case, the elements of Cn are called points or vectors, the elements of C are called scalars, and vector 
addition in Cn and scalar multiplication on Cn are given by 

[zl , z2 " " , zn] + [Wl , W2 " " , Wn] = [zl + Wl , z2 + w2 , . . .  , zn + wn] 
z[zl , Z2 , . . .  , zn] = [zzl , ZZ2 , . . .  , zZn] 

where the Zi ' Wi' and Z belong to C.  

Example 1.10. Consider vectors u = [ 2  + 3 i ,  4 - i, 3 ]  and v = [ 3  - 2 i ,  5 i ,  4 - 6i] i n  C3. Then 

u + v [2 + 3i , 4 - i, 3] + [3 - 2i, 5i, 4 - 6i] = [5 + i, 4 + 4i, 7 - 6i] 
(5 - 2i)u = [(5 - 2i)(2 + 3i) ,  (5 - 2i)(4 - i) , (5 - 2i)(3)] = [ 1 6  + I I i, 1 8  - 1 3i, 1 5  - 6i] 

Dot (Inner) Product in en 

Consider vectors u = [z 1 , Z2 , . . .  , zn] and v = [w 1 , W2 , . . .  , W n] in Cn . The dot or inner product of u and 
v is denoted and defined by 

u · v = zlw l + z2w2 + . . .  + znwn 
This definition reduces to the real case since Wi = Wi when Wi is real. The norm of u is defined by 

I l u l l  = � = y'ZIZI + Z2Z2 + . . .  + ZnZn = J IZl 1 2 + IZ2 1 2 + . . .  + I Vn l 2 

We emphasize that u . u and so l I u l l  are real and positive when u -I- 0 and 0 when u = O . 

Example 1.10. Consider vectors u = [2 + 3i ,  4 - i, 3 + 5i] and v = [3 - 4i, 5i ,  4 - 2i] in C3. Then 

u . v = (2 + 3i)(3 - 4i) + (4 - i) (Sf) + (3 + 5i)(4 - 2i) 
= (2 + 3i)(3 + 4i) + (4 - i)( -5i) + (3 + 5i)(4 + 2i) 
= (-6 + 13 i) + (-5 - 20i) + (2 + 26i) = -9 + 1 9i 

u · u = 1 2 + 3 i l 2 + 1 4 - i l 2 + 1 3 + 5i l 2 = 4 + 9 + 1 6  + 1 + 9 + 25 64 
I l u l l  = .J64 = 8 

The space Cn with the above operations of vector addition, scalar multiplication, and dot product, is 
called complex Euclidean n-space. Theorem 1 .2 for Rn also holds for Cn if we replace u . v = v . u by 

u · v = u · v 
On the other hand, the Schwarz inequality (Theorem 1 .3)  and Minkowski's inequality (Theorem 1 .4) are 
true for Cn with no changes. 

Solved Problems 
VECTORS IN Rn 

1 .1 .  Determine which of the following vectors are equal: 

Ul = ( 1 , 2 , 3 ) ,  U2 = (2 , 3 ,  1 ) ,  U3 = ( 1 , 3 ,  2) ,  U4 = (2 , 3 ,  1 )  

Vectors are equal only when corresponding entries are equal; hence only U2 = U4' 
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1.2. Let U = (2 , -7 ,  1 ) ,  v = (-3 , 0 , 4), w = (0, 5 ,  -8) ,  Find: 

(a) 3u - 4v, 
(b) 2u + 3v - 5w, 

First perform the scalar multiplication and then the vector addition. 
(a) 3u - 4v = 3 (2 ,  -7, 1 )  - 4(-3, 0, 4) = (6 ,  -2 1 ,  3) + ( 1 2, 0, - 1 6) = ( 1 8 ,  -2 1 ,  - 1 3) 
(b) 2u + 3v - 5w = (4 ,  - 14, 2) + (-9, 0, 1 2) + (0, -25 , 40) = (-5 ,  -39 , 54) 

(a) 5u - 2v, 
(b) -2u + 4v - 3w. 

First perform the scalar multiplication and then the vector additioin: 

1.4. Find x and y, where: (a) (x, 3) = (2 , x + y), (b) (4 , y) = x(2 , 3 ) .  

© The McGraw-Hili 
Companies, 2004 

(a) Since the vectors are equal, set the corresponding entries equal to each other, yielding 

x =  2, 3 = x +y 

Solve the linear equations, obtaining x = 2, y = 1 . 

1 5  

(b) First multiply by the scalar x to obtain (4, y) = (2x, 3x) . Then set corresponding entries equal to each 
other to obtain 

4 = 2x, y =  3x 

Solve the equations to yield x = 2, y = 6. 

1.5. Write the vector v = ( 1 ,  -2 , 5) as a linear combination of the vectors Uj = ( 1 , 1 , 1 ) ,  U2 = ( 1 , 2 , 3) ,  
u3 = (2 , - 1 ,  1) .  

We want to express v in the form v = XUj + YU2 + ZU3 with x, y, Z as yet unknown. First we have 

(It is more convenient to write vectors as columns than as rows when forming linear combinations.) Set 
corresponding entries equal to each other to obtain 

x +  y + 2z = 1 
x + 2y - z = -2 
x + 3y +  Z =  5 

or 
x +  y + 2z = 1 

y - 3z =  -3 
2y - Z =  4 

or 
x + y + 2z = 

y - 3z = -3 
5z = 1 0  

This unique solution o f  the triangular system i s  x = -6, y = 3 ,  z = 2 . Thus v = -6uj + 3U2 + 2U3 ' 
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1 .6. Write v = (2 , -5 , 3)  as a linear combination of u]  = ( 1 ,  - 3 ,  2), U2 = (2 , -4, - 1 ),  u3 = ( 1 , -5 , 7) ,  

Find the equivalent system of linear equations and then solve. First, 

[-�] = x [-�] +y [-;] + z [-�] = [-3� �Z � 5; ] 
3 2 - 1  7 2x - y + 7z 

Set the corresponding entries equal to each other to obtain 

x + 2y +  Z =  2 
-3x - 4y - 5z =  -5 

2x - y + 7z = 3 
or 

x + 2y +  Z =  2 
2y - 2z =  

- 5y + 5z =  - 1  
or 

x + 2y +  Z =  2 
2y - 2z = 1 

0 = 3  
The third equation, Ox + Oy + Oz = 3 ,  indicates that the system has no solution. Thus v cannot be written as a 
linear combination of the vectors Uj , U2 , u3 ' 

DOT (INNER) PRODUCT, ORTHOGONALITY, NORM IN Rn 

1 .7. Find U · v where: 

(a) U = (2 ,  -5 , 6) and v = (8 , 2 ,  -3) 

(b) U = (4, 2, -3 , 5 ,  - I )  and v = (2 ,  6, - 1 ,  -4, 8). 
Multiply the corresponding components and add: 

(a) U · v = 2(8) - 5(2) + 6(-3) = 1 6  - 1 0 - 1 8 = - 1 2  
(b) U · v = 8 + 12 + 3 - 20 - 8 = -5 

1 .8. Let u = (5 , 4 , 1 ) ,  v = (3 , -4,  1), W = ( 1 , -2 , 3) .  Which pair of vectors, if any, are perpendicular 
(orthogonal)? 

Find the dot product of each pair of vectors: 

U • v = 1 5  - 1 6  + 1 = 0, v · w = 3 + 8 + 3 = 14, 
Thus U and v are orthogonal, u and w are orthogonal, but v and w are not. 

1 .9. Find k so that u and v are orthogonal, where: 

(a) u = ( 1 , k, -3) and v = (2 , -5 , 4) 

(b) u = (2 ,  3k, -4, 1 , 5) and v = (6 ,  - 1 , 3 , 7 ,  2k) . 
Compute u . v ,  set u . v equal to 0, and then solve for k: 

u · w = 5 - 8 + 3 = 0 

(a) U · v = 1 (2) + k(-5) - 3(4) = -5k - 1 0. Then -5k - 1 0  = 0, or k = -2. 
(b) U · v = 12 - 3k - 12 + 7 + 1 0k = 7k + 7 . Then 7k + 7 = 0, or k = - 1 . 

1.10.  Find I l u l l ,  where: (a) u = (3 , - 1 2 ,  -4), (b) u = (2 , - 3 ,  8 ,  -7) .  

First find I I u l 1 2 = u . u by squaring the entries and adding. Then I l u l l  = �. 
(a) l I u l l 2 = (3? + (_ 12)2 + (-4? = 9 + 144 + 1 6  = 1 69. Then I l u l l  = .JT69  = 1 3  
(b) l I u l l 2 = 4 + 9 + 64 + 49 = 1 26 . Then I l u l l  = .JI26. 
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1 . 11 .  Recall that normalizing a nonzero vector v means finding the unique unit vector v in the same 
direction as v, where 

A 1 
v = rz;rrV 

Normalize : (a) u = (3 , -4), (b) v = (4, -2, -3 , 8), (c) W = (�, �, -�), 
(a) First find I l u l l  = ,J9+T6 = v"i3 = 5 . Then divide each entry of U by 5, obtaining £i = (�, - �). 
(b) Here I l v l l  = .J1 6  + 4 + 9 + 64  = 

.J93. Then 

A ( 4 -2 -3 8 ) v = .J93'.J93'.J93'.J93 
(c) Note that w and any positive multiple ofw will have the same normalized form. Hence first multiply w by 

1 2  to "clear fractions" ,  that is, first find Wi = l2w = (6 , 8 ,  -3) . Then 

""" � ( 6 8 -3 ) 1Iw'11 = .J36 + 64 + 9 = v 1 09 and w = Wi = ""'" ""'" """ v 1 09 v 1 09 v 1 09 

1.12.  Let u = ( 1 , - 3 , 4) and v = (3 , 4 , 7) .  Find: 

(a) cos e, where e is the angle between U and v; 
(b) proj(u, v), the projection of U onto v; 
(c) d(u, v), the distance between u and v. 

First find U · v = 3 - 12 + 28 = 1 9, l I u l l 2 = 1 + 9 + 16 = 26, I I v I 1 2 = 9 + 16 + 49 = 74. Then 

U · v 1 9  
(a) cose = MM = v'26v'74' 

(b) ro'(u v) - U · v v _ .!.2.(3 4 7) _ (57 76 1 3 3) _ (57 38 1 3 3) p � , - I I v l 1 2 - 74 " - 74 ' 74 ' 74 - 74 ' 37 ' 74 
(c) d(u, v) = l I u - v i i  = 11(-2, -7 - 3) 1 1  = .J4 + 49 + 9 = v'62. 

1.13.  Prove Theorem 1 .2 :  For any u, v, w in Rn and k in R: 
(i) (u + v) . w = u . w + v . w, (ii) (ku) · v = k(u . v) , 
(iv) u · u :::: 0, and u . u = 0 iff u = O . 

(i) Since u + v = (uj + Vj , U2 + V2 , . . .  , un + vn)' 

(iii) u · v = v . u, 

= UjWj + VjWj + U2W2 + . . .  + UnWn + VnWn 
= (UjWj + U2W2 + . . .  + unwn) + (VjWj + V2w2 + . . .  + vnwn) 
= U ' W + V ' W 

(ii) Since ku = (kuj , ku2 , . . .  , kun), 

(ku) . v = kuj Vj + ku2V2 + . . .  + kunvn = k(uj Vj + u2V2 + . . .  + unvn) = k(u . v) 

(iii) U · v = Uj Vj + U2V2 + . . .  + UnVn = Vj Uj + V2U2 + . . .  + VnUn = V . U 
(iv) Since u; is nonnegative for each i, and since the sum of nonnegative real numbers is nonnegative, 

u . u = ui + ui + . .  · + u� :::: O 
Furthermore, U . U = 0 iff Uj = 0 for each i, that is, iff U = O. 
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1.14.  Prove Theorem 1 . 3 (Schwarz) : l u, v i  � I l u l l l l v l l . 

For any real number t, and using Theorem 1 .2, we have 

0::::: (tu + v) . (tu + v) = f(u . u) + 2t(u . v) + (v . v) = I I u l 1 2 t2 + 2(u . v)t + I I v l 1 2 

Let a = l I u l l 2 , b = 2(u · v) , c = I I v 1 1 2 . Then, for every value of t, at2 + bt + c :::: O. This means that the 
quadratic polynomial cannot have two real roots. This implies that the discriminant D = b2 - 4ac ::::: 0 or, 
equivalently, b2 ::::: 4ac. Thus 

Dividing by 4 gives us our result. 

1.15.  Prove Theorem 1 .4 (Minkowski) : l I u  + v I I  � l I u l l  + I l v l l . 

By the Schwarz inequality and other properties of the dot product, 

I l u + v l 1 2 = (u + v) . (u + v) = (u . u) + 2(u . v) + (v · v) ::::: I I u l 1 2 + 2 1 1 u l l l l v i l  + I I v l 1 2 = ( l i u l l  + I I v l l )2 

Taking the square root of both sides yields the desired inequality. 

POINTS, LINES, HYPERPLANES IN Rn 

Here we distinguish between an n-tuple P(al , a2 , . . .  , an) viewed as a point in Rn and an n-tuple 
u = [ C I , C2 , " " cn] viewed as a vector (arrow) from the origin 0 to the point C( C I , C2 , " " cn) . 

----+ 
1 .16. Find the vector u identified with the directed line segment PQ for the points: 

(a) P( I ,  -2 , 4) and Q(6 , 1 ,  -5) in R3 , (b) P(2 , 3, -6 , 5) and Q(7 , 1 , 4 , -8) in R4 . 
-----+ 

(a) u = PQ = Q - P = [6 - 1 , 1 - (-2), -5 - 4] = [5 , 3 , -9] 
-----+ 

(b) u = PQ = Q - P = [7 - 2, 1 - 3 , 4 + 6 , -8 - 5] = [5 , -2, 1 0 , - 1 3] 

1 .17. Find an equation of the hyperplane H in R4 that passes through P(3 , -4, 1 ,  -2) and is normal to 
u = [2 , 5 ,  -6 ,  -3] .  

The coefficients of the unknowns of an equation of H are the components of the normal vector u .  Thus an 
equation of H is of the form 2x1 + 5x2 - 6X3 - 3X4 = k. Substitute P into this equation to obtain k = -26. 
Thus an equation of H is 2x1 + 5x2 - 6x3 - 3x4 = -26. 

1.18.  Find an equation of the plane H in R3 that contains P( 1 ,  - 3 ,  -4) and is parallel to the plane H' 
determined by the equation 3x - 6y + 5z = 2 .  

The planes H and H' are parallel i f  and only if  their normal directions are parallel or  antiparallel (opposite 
direction). Hence an equation of H is of the form 3x - 6y + 5z = k. Substitute P into this equation to obtain 
k = 1 . Then an equation of H is 3x - 6y + 5z = 1 . 

1.19.  Find a parametric representation of the line L in R4 passing through P(4 , -2 , 3 ,  1 )  in the direction 
of u = [2 , 5 ,  -7 ,  8] .  

Here L consists of the points X(x;) that satisfy 

X = P + tu or Xi = ait + bi or L(t) = (ait + bi) 
where the parameter t takes on all real values. Thus we obtain 

Xl = 4 + 2t, X2 = -2 + 2t, x3 = 3 - 7t, X4 = 1 + 8t or L(t) = (4 + 2t, -2 + 2t, 3 - 7t, 1 + 8t) 
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1 .20. Let C be the curve F(t) = (t2 , 3t - 2, f3 , P + 5) in R4, where 0 � t � 4.  

(a) Find the point P on C corresponding to t = 2. 
(b) Find the initial point Q and terminal point Q ' of C. 

(c) Find the unit tangent vector T to the curve C when t = 2. 

(a) Substitute t = 2 into F(t) to get P = f(2) = (4 , 4 , 8 , 9). 

© The McGraw-Hili 
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(b) The parameter t ranges from t = 0 to t = 4. Hence Q = f(O) = (0, -2, 0 , 5) and 
Q ' = F(4) = ( 1 6 ,  lO ,  64, 2 1 ) .  

(c) Take the derivative of F(t), that is, of each component of F(t), to obtain a vector V that is tangent to the 
curve: 

dF(t) Vet) = ---;]t = [2t, 3 ,  3r ,  2t] 

Now find V when t = 2; that is, substitute t = 2 in the equation for Vet) to obtain 
V = V(2) = [4, 3 ,  1 2 , 4] . Then normalize V to obtain the desired unit tangent vector T. We have 

II V I I  = .J16 + 9 + 144 + 1 6  = .J185 and 

SPATIAL VECTORS (VECTORS IN R3), ijk NOTATION, CROSS PRODUCT 

1.21.  Let u = 2i - 3j + 4k, v = 3 i + j - 2k, w = i + 5j + 3k. Find: 

(a) u + v, (b) 2u - 3v + 4w, (c) u · v and u . w, (d) I l u l l  and I l v I I . 
Treat the coefficients of i, j, k just like the components of a vector in R3 . 

(a) Add corresponding coefficients to get u + v = 5i - 2j - 2k. 
(b) First perform the scalar multiplication and then the vector addition: 

2u - 3v + 4w = (4i - 6j + 8k) + (-9i + 3j + 6k) + (4i + 20j + 1 2k) 
= -i + 1 7j + 26k 

(c) Multiply corresponding coefficients and then add: 

u . v = 6 - 3 - 8 = -5 and u · w = 2 - 1 5  + 1 2  = - 1 

(d) The norm is the square root of the sum of the squares of the coefficients: 

I l u l l  = .J4 + 9 +  1 6  = v'29 

1 .22. Find the (parametric) equation of the line L:  

(a) through the points P( 1 ,  3 ,  2) and Q(2 , 5 ,  -6); 

and I l v l l  = .J9 + 1 + 4 = ,J14 

(b) containing the point P( 1 ,  -2, 4) and perpendicular to the plane H given by the equation 
3x + 5y + 7z = 1 5 . 

-----* (a) First find v = PQ = Q - P = [ 1 , 2 ,  -8] = i + 2j - 8k. Then 

L(t) = (t + 1 ,  2t + 3 ,  -8t + 2) = (t + 1 )i + (2t + 3)j + (-8t + 2)k 

(b) Since L is perpendicular to H, the line L is in the same direction as the normal vector N = 3i + 5j + 7k 
to H. Thus 

L(t) = (3 t + 1 ,  5t - 2, 7t + 4) = (3 t + l )i + (5t - 2)j + (7t + 4)k 
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1 .23. Let S be the surface xl + 2yz = 1 6  in R3 , 

(a) Find the normal vector N(x, y, z) to the surface S. 
(b) Find the tangent plane H to S at the point P( I ,  2, 3) . 

(a) The formula for the normal vector to a surface F(x, y, z) = 0 is 
N(x, y, z) = Fxi + Fyj + Fzk 

where FX' Fy, Fz are the partial derivatives. Using F(x, y, z) = xY + 2yz - 16 ,  we obtain 

Fx = I, Fy = 2xy + 2z, 
Thus N(x, y, z) = Ii + (2xy + 2z)j + 2yk. 

(b) The normal to the surface S at the point P is 

N(P) = N( 1 ,  2, 3) = 4i + I Oj + 4k 

[CHAP. 1 

Hence N = 2i + 5j + 2k is also normal to S at P. Thus an equation of H has the form 2x + 5y + 2z = e. 
Substitute P in this equation to obtain e = 1 8 . Thus the tangent plane H to S at P is 2x + 5y + 2z = 1 8 . 

1 .24. Evaluate the following determinants and negative of determinants of order two : 

(a) (i) I� �I' (ii) I; -�I' (iii) I� =�I 
(b) ( . ) 1 3 6 1 ( 0 0 ) 1 7 -5 1 ( 0 0 ' ) 1 4 

1 -
4 2

, 11 -
3 2

, 111 -
8 

- 1 1 
-3 

Use I: � 1 = ad - be and -I: � 1 = be - ad. Thus: 

(a) (i) 27 - 20 = 7, (ii) 6 + 4 = 1 0, (iii) -8 + 15 = 7 . 
(b) (i) 24 - 6 = 1 8 , (ii) - 1 5  - 14  = -29, (iii) -8 + 1 2  = 4. 

1 .25. Let u = 2i - 3j + 4k , v = 3i + j - 2k , w = i + 5j + 3 k . 
Find: (a) u x v, (b) u x w 

(a) Use [ ; -3 
_� ] to get u x v = (6 - 4)i + ( 1 2  + 4)j + (2 + 9)k = 2i + 1 6j + 1 1 k 

(b) Use [� -3 �] to get u x w = (-9 - 20)i + (4 - 6)j + ( 1 O + 3)k = -29i - 2j + 13k 5 

1 .26. Find u x v, where: (a) u = ( 1 , 2 , 3) ,  v = (4 , 5 ,  6); (b) u = (-4, 7 , 3) ,  v = (6 , -5 , 2) .  

(a) Use [ ! ; �] to get u x v = [ 1 2 - 1 5 ,  1 2 - 6 , 5 - 8] = [-3 , 6 , -3] 

(b) Use [ -: _� � ] to get u x v = [14 + 15 , 18 + 8 ,  20 - 42] = [29, 26, -22] 

1 .27. Find a unit vector u orthogonal to v = [ 1 , 3 , 4] and w = [2 , -6, -5] .  

First find v x w, which is orthogonal to v and w. 
The array [ ; _� _� ] giVes v x w = [- 1 5 + 24 ' 8 + 5 , -6 - 6 1 ] = [9 , 1 3 , - 1 2] 

Normalize v x w to get u = [9/v'394, 1 3/v'394, - 1 2/v'394] 



Lipschulz-Lipson:Schaum's I 1, Vectors in RAn and CAn, I Text 

Outline ofTheory and Spatial Vectors 

Problems of Linear 

Algebra,3/e 

CHAP. I ]  VECTORS IN Rn AND en, SPATIAL VECTORS 

© The McGraw-Hili 
Companies, 2004 

2 1  

1 .28. Let u = (a I ' a2 , a3 ) and v = (b l , b2 , b3 ) so u x v = (a2b3 - a3b2 , a3b l - a l b3 , a l b2 - a2bl ) ,  
Prove: 

(a) u x v is orthogonal to u and v [Theorem 1 .5 (i)] 
(b) l I u x v l l 2 = (u · u)(v · v) - (u · V)2 (Lagrange 's identity). 
(a) We have 

u . (u x v) = a] (a2b3 - a3b2) + a2(a3 b] - a] b3 ) + a3 (a] b2 - a2b] ) 
= al a2b3 - al a3b2 + a2a3bl - al a2b3 + al a3 b2 - a2a3b1 = 0 

Thus u x v is orthogonal to u. Similarly, u x v is orthogonal to v. 
(b) We have 

I l u X v l l 2 = (a2b3 - a3b2i + (a3b1 - a1 b3i + (a1 b2 - a2b] )
2 ( 1 ) 

(u · u)(v · v) - (u · V)2 = (ai + ai + aj)(bi + bi + bj) - (a1 b1 + a2b2 + a3b3)
2 (2) 

Expansion of the right-hand sides of ( 1 ) and (2) establishes the identity. 

COMPLEX NUMBERS, VECTORS IN en 

1 .29. Suppose z = 5 + 3i and w = 2 - 4i. Find: (a) z + w, (b) z - w, (c) zw. 
Use the ordinary rules of algebra together with i2 = -I to obtain a result in the standard form a + bi. 

(a) z + w = (5 + 3 i) + (2 - 4i) = 7 - i 
(b) z - w = (5 + 3 i) - (2 - 4i) = 5 + 3i - 2 + 4i = 3 + 7i 
(c) ZW =  (5 + 3i)(2 - 4i) = 10 - 14i - 12P = 10 - 14i + 1 2  = 22 - 14i 

1 .30. Simplify: (a) (5 + 3 i)(2 - 7i), (b) (4 - 3i)2 , (c) ( 1  + 2i)3 . 
(a) (5 + 3i)(2 - 7i) = 1 0  + 6i - 35i - 2 1P  = 3 1  - 29i 
(b) (4 - 3ii = 1 6  - 24i + 9i2 = 7 - 24i 
(c) ( 1 + 2i)3 = I + 6i + 1 2P + 8i3 = I + 6i - 12  - 8i = - I I  - 2i 

1 .31 .  Simplify: (a) z{J , i3 , i't, (b) i5 , t" i7 , i8 , (c) i39 , i1 74 , P52 , i3 1 7 . 
(a) I{) = I ,  P = i2 (i) = (- I )(i) = -i, i4 = (i2)(i2) = (- 1 )(- 1 )  = 1 . 
(b) is = (i4)(i) = ( I )(i) = i, I" = (j" )(i2) = ( 1 )(i2) = i2 = - I ,  P = i3 = -i, i8 = i4 = 1 . 
(c) Using i4 = I and in = t'q+r = (i4)q i' = I q i' = i', divide the exponent n by 4 to obtain the remainder r: 

PS2 = I{) = I ,  

1 .32. Find the complex conjugate of each o f  the following: 
(a) 6 + 4i, 7 - 5i, 4 + i, -3 - i, (b) 6, -3 ,  4i, -9i. 
(a) 6 + 4i = 6 - 4i, 7 - 5i = 7 + 5i, 4 + i = 4 - i, -3 - i = -3 + i. 
(b) 6 = 6, -3 = -3, 4i = -4i, -9i = 9i. 
(Note that the conjugate of a real number is the original number, but the conjugate of a pure imaginary number 
is the negative of the original number.) 

1 .33. Find zz and Iz l when z = 3 + 4i. 
For z = a + bi, use zz = a2 + b2 and z = -JZZ = ,J a2 + b2. 

zz = 9 + 1 6  = 25 , Iz l = v'25 = 5 



Lipschulz-Lipson:Schaum's I 1, Vectors in RAn and CAn, I Text 

Outline ofTheory and Spatial Vectors 

Problems of Linear 

Algebra,3/e 

22 

. 'fy 2 - 7i 
1 .34. Simpi 5 + 3 i ' 

VECTORS IN Rn AND en, SPATIAL VECTORS 
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To simplify a fraction z/w of complex numbers, multiply both numerator and denominator by W, the 
conjugate of the denominator: 

2 - 7i 
5 + 3i 

(2 - 7i)(5 - 3i) 
(5 + 3 i)(5 - 3i) 

- 1 1 - 4 1 i  1 1  4 1 . 
--"'3-:-4- = - 34 - 34 1 

1 .35. Prove: For any complex numbers z, w E C, (i) z + w = Z + lV, (ii) zw = ZW, (iii) z = z. 

Suppose Z = a + bi and w = e + di where a, b, e, d E R. 

(i) z + w = (a + bi) + (e + di) = (a + e) + (b + d)i 
= (a + c) - (b + d)i = a + e - bi - di 
= (a - bi) + (e - di) = z + w 

(ii) zw = (a + bi)(e + di) = (ae - bd) + (ad + be)i 
= (ae - bd) - (ad + be)i = (a - bi)(e - di) = zw 

(iii) z = a + bi = a - bi = a - (-b)i = a + bi = Z 

1 .36. Prove: For any complex numbers z, W E  C, Izw l = Iz i lw i . 

By (ii) of Problem 1 .35 ,  

Izw l 2 = (zw)(zw) = (zw)(zw) = (zz)(wW) 
The square root of both sides gives us the desired result. 

1 .37. Prove: For any complex numbers z, W E  C, Iz + wi s Iz l + Iw i . 

Suppose Z = a + bi and w = e + di where a, b, e, d E  R. Consider the vectors u = (a, b) and v = (e, d) 
in R2 . Note that 

Iz i = Ja2 + b2 = l I u l l , Iw l = Jc2 + d2 = I I v l l  
and 

Iz + w i = I (a + c) + (b + d)i l = J(a + e)2 + (b + d)2 = l I (a + e, b + d) 1 I  = l I u + v i i  
By Minkowski 's inequality (Problem 1 . 1 5), I l u + v i i  s I l u l l  + I l v l l , and so 

Iz + w i = I l u + v i i  s I l u l l  + I I v l l  = Iz l + Iw l 

1 .38. Find the dot products u · v and v · u where: (a) u = ( 1  - 2i, 3 + i) , v = (4 + 2i, 5 - 6i) , 
(b) u = (3 - 2i, 4i, 1 + 6i), v = (5 + i, 2 - 3i ,  7 + 2i) .  

Recall that conjugates of the second vector appear in the dot product 
(Zj , . . .  , zn) ' (Wj , . . .  , wn) = ZjWj + . . .  + znwn 

(a) u · v = ( 1 - 2i)(4 + 2i) + (3 + i)(5 - 6i) 
= ( 1 - 2i)(4 - 2i) + (3 + i)(5 + 6i) 

v · u = (4 + 2i)(l - 2i) + (5 - 6i)(3 + i) 
= (4 + 2i)( l + 2i) + (5 - 6i)(3 - i) 

- 1 0i + 9 + 23 i  = 9 +  1 3 i  

l Oi + 9 - 23 i  = 9 - 1 3 i  
(b) u · v = (3 - 2i)(5 + i) + (4i)(2 - 3 i) + ( 1 + 6i)(7 + 2i) 

= (3 - 2i)(5 - i) + (4i)(2 + 3i) + ( 1 + 6i)(7 - 2i) = 20 + 35i 
v . u = (5 + i)(3 - 2i) + (2 - 3i)(4i) + (7 + 2i)(l + 6i) 

= (5 + i)(3 + 2i) + (2 - 3 i)( -4i) + (7 + 2i)( 1 - 6i) = 20 - 35i 
In both cases, v . u = �. This holds true in general, as seen in Problem 1 .40. 
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(a) u + v; (b) 2iu; (c) (3 - i)v; (d) u · v; (e) I l u l l  and I I v l l . 

(a) u + v = (7 - 2i + I + i, 2 + 5i - 3 - 6i) = (8 - i, - I  - i) 
(b) 2iu = ( 14i - 4P ,  4i + I OP) = (4 + 14i, - 1 O + 4i) 
(c) (3 - i)v = (3 + 3i - i - P ,  -9 - 1 8i + 3i + 6P) = (4 + 2i, - 1 5  - 15 i) 
(d) u · v = (7 - 2i)( 1 + i) + (2 + 5i)(-3 - 6i) 

= (7 - 2i)( I - i) + (2 + 5i)(-3 + 6i) = 5 - 9i - 36 - 3i = -3 1 - 12i 

(e) l I u l i  = J72 + (-2i + 22 + 52 = .J82 and I I v l l  = JF + F + (_3)2 + (_6)2 = -J47  

23 

1 .40. Prove: For any vectors u ,  v E Cn and any scalar Z E C, (i) u · v = v . u, (ii) (zu) · v = z(u . v), 
(iii) U ·  (zv) = z(u . v) . 

Suppose u = (z\ , z2 , ' "  , zn) and v = (w\ , W2 , " " wn) . 
(i) Using the properties of the conjugate, 

� = w\z\ + W2z2 + . . .  + wnzn = w\z\ + W2z2 + . . .  + wnzn 
= w\z\ + w2z2 + . . .  + wnzn = z\w\ + z2w2 + . . .  + znwn = U · v 

(ii) Since zu = (zz\ , ZZ2 , . . .  , zZn), 
(zu) · V = ZZ\W\ + zZ2W2 + . . .  + zZnwn = z(z\w\ + z2W2 + . . .  + znwn) = z(u · v) 

(Compare with Theorem 1 .2 on vectors in Rn .) 
(iii) Using (i) and (ii), 

u · (zv) = (zv) · u = z(�) = z(�) = z(u · v) 

Supplementary Problems 
VECTORS IN Rn 

1.41. Let u = ( 1 ,  -2, 4), v = (3 , 5 ,  I ) ,  W = (2 ,  I , -3) . Find: 
(a) 3u - 2v; (b) 5u + 3v - 4w; (c) U · v, u . w, v . w; 
(e) cos e, where e is the angle between u and v; if) d(u , v); 

1 .42. Ropeat Probl= L4 1 fo, wcroffi U � [ j 1 u � m w � [ -H 
1 .43. Let u = (2 , -5 , 4 , 6 ,  -3) and v = (5 ,  -2 , I , -7 , -4). Find: 

(a) 4u - 3v; (b) 5u + 2v; (c) U · v; (d) I l u l l  and I l v l l ; 
if) d(u , v). 

1 .44. Normalize each vector: 

(d) l I u l l , I l v l l ; 
(g) proj (u, v). 

(e) proj (u, v); 

(a) u = (5 ,  -7) ; (b) v = ( 1 , 2 ,  -2, 4); (c) W = (� - �  �) . 2 ' 3 ' 4 
1.45. Let u = ( 1 , 2 , -2), v = (3 ,  - 1 2 , 4), and k = -3 . 

(a) Find I l u l l , I l v l l , l I u + v I I , l l ku l l  
(b) Verify that l l ku l l  = Ik i l i u l l  and l I u + v I I  :::: l I u l i  + I l v l l . 

1.46. Find x and y where: 
(a) (x, y + I) = (y - 2, 6) ; (b) x(2 , y) = y( 1 ,  -2). 
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1.47, Find x, y, z where (x, y + 1 ,  y + z) = (2x + y, 4, 3z) . 

1.48. Write v = (2 ,  5) as a linear combination of Uj and U2 where: 

(a) Uj = ( 1 ,  2) and U2 = (3 ,  5); 

(b) Uj = (3 ,  -4) and U2 = (2 ,  -3). 

1.50. Find k so that U and v are orthogonal, where: 

(a) U = (3 ,  k, -2), v = (6 ,  -4, -3) ; 
(b) U = (5 ,  k, -4, 2), v = ( 1 ,  -3 , 2 , 2k) ; 
(c) U = ( 1 ,  7, k + 2, -2), v = (3 ,  k, -3 ,  k) . 

LOCATED VECTORS, HYPERPLANES, LINES IN Rn 
-+ 

1.51. Find the vector v identified with the directed line segment PQ for the points: 

(a) P(2 , 3, -7) and Q(l , -6, -5) in R3 ; 
(b) P( 1 ,  -8 ,  -4, 6) and Q(3 ,  -5 , 2 , -4) in R4 . 

1.52. Find an equation of the hyperplane H in R4 that: 

(a) contains P(1 ,  2, -3 , 2) and is normal to U = [2, 3 ,  -5 ,  6] ; 
(b) contains P(3 ,  - 1 ,  2, 5) and is parallel to 2xj - 3X2 + 5x3 - 7X4 = 4. 

1.53. Find a parametric representation of the line in R4 that: 

(a) passes through the points P( l ,  2 , 1 , 2) and Q(3 ,  -5 , 7 ,  -9); 

© The McGraw-Hili 
Companies, 2004 

[CHAP. 1 

(b) passes through P( l ,  1 , 3 , 3) and is perpendicular to the hyperplane 2xj + 4X2 + 6x3 - 8X4 = 5 .  

SPATIAL VECTORS (VECTORS IN R3), ijk NOTATION 

1.54. Given U = 3i - 4j + 2k, v = 2i + 5j - 3k, w = 4i + 7j + 2k. Find: 

(a) 2u - 3v; (b) 3u + 4v - 2w; 

1 .55. Find the equation of the plane H: 

(c) U · v, U · w, v · w; (d) I l u l I , I I v l l , I l w l l · 

(a) with normal N = 3i - 4j + 5k and containing the point pel ,  2 , -3) ; 
(b) parallel to 4x + 3y - 2z = 1 1  and containing the point Q(2 , - 1 ,  3) . 

1 .56. Find the (parametric) equation of the line L: 
(a) through the point P(2 , 5, -3) and in the direction of v = 4i - 5j + 7k; 

(b) perpendicular to the plane 2x - 3y + 7z = 4 and containing P( l ,  -5 , 7). 

1 .57. Consider the following curve C in R3 where 0 ::::: t ::::: 5 :  

F(t) = t3 i - rj  + (2t - 3)k 
(a) Find the point P on C corresponding to t = 2. 
(b) Find the initial point Q and the terminal point Q ' .  
(c) Find the unit tangent vector T to the curve C when t = 2 . 
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1.58, Consider a moving body B whose position at time t is given by R(t) = Pi + t3 j + 3 tk [Then Vet) = dR(t)/dt 
and A(t) = dV(t)/dt denote, respectively, the velocity and acceleration of B. ] When t = 1 ,  find: 

(a) position; (b) velocity v; (c) speed s; (d) acceleration a of B. 

1.59, Find a normal vector N and the tangent plane H to each surface at the given point: 

(a) surface xly + 3yz = 20 and point P(I ,  3 ,  2); 
(b) surface xl + 31 - 5z2 = 1 60 and point P(3 ,  -2, I ) .  

CROSS PRODUCT 

1.60, Evaluate the following determinants and negative of determinants of order two : 

(a) I ;  � I ,  
(b) - I � � I ' 

1 3 -6 1 1 -4 -2 1 1 -4 ' 7 -3 

_ 1 1 -3 1 _ I 8 -3 1 2 4 ' -6 -2 

1.61. Given u = 3i - 4j + 2k, v = 2i + 5j - 3k, w = 4i + 7j + 2k, Find: 

(a) u x v, (b) u x w, (c) v x w. 

1.62, Given u = [2, 1 , 3 ] , v = [4, -2, 2], w = [ 1 ,  1 , 5] , find: 

(a) u x v, (b) u x w, (c) v x w. 

1.63. Find the volume V of the parallelopiped formed by the vectors u, v, w in: 

(a) Problem 1 .60, (b) Problem 1 .6 1 . 

1.64. Find a unit vector u orthogonal to : 

(a) v = [ 1 , 2 , 3] and w = [ 1 ,  - 1 , 2] ; 
(b) v = 3i - j + 2k and w = 4i - 2j - k. 

1.65. Prove the following properties of the cross product: 

(a) u x v = -(v x u) 
(b) u x u = 0 for any vector u 
(c) (ku) x v = k(u x v) = u x (kv) 

(d) u x (v + w) = (u x v) + (u x w) 
(e) (v + w) x u = (v x u) + (w x u) 
if) (u x v) x w = (u . w)v - (v · w)u 

COMPLEX NUMBERS 

1.66. Simplify: 

(a) (4 - 7i)(9 + 2i) ; 

1.67. Simplify: (a) 2i ' 
2 + 3i (b) 7 - 3i ' 

(c) 4 _ 7i' (d) 9 + 2i (e) 3 - 5i' 

(d) (3 � ir 

( 1 - i)3 . 
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1.68, Let z = 2 - 5i and w = 7 + 3i. Find: 

(a) v + w; (b) zw; (c) z/w; 

1.69, Show that: 

(d) z, w; (e) Iz l , Iw l . 

(a) Re z = ! (z + z) (b) Im z = ! (z - z) (c) zw = O implies z = O or w = O. 

VECTORS IN en 

1.70. Let u = ( 1 + 7i, 2 - 6i) and v = (5 - 2i, 3 - 4i) . Find: 

(a) u + v (b) (3 + i)u (c) 2iu + (4 + 7i)v (d) U · v (e) I l u l l  and I l v l l . 

1.71. Prove: For any vectors u, v , w in Cn : 

(a) (u + v) . w = u . w + v · w, (b) w · (u + v) = w · u + w · V. 

1.  72. Prove that the norm in en satisfies the following laws: 

1.41. 

[NI ] For any vector u, l I u l i  :::: 0; and l I u l i  = 0 if and only if u = O. 
[N2] For any vector u and complex number z, I lzu l l  = Iz i l i u l i . 
[N3 ] For any vectors u and v, l I u + v I I  ::::: l I u l i  + I I v l l . 

(a) (-3 , - 1 6 , 4); 
(e) -3/.J2T.J35; 

Answers to Supplementary Problems 
(b) (6, 1 ,35) ; 
if) ,J62; 

(c) -3, 1 2 , 8 ;  (d) .J2T, .J35, ,JT4; 
(g) -is (3 , 5 , 1 )  = (- /s, - H, - is) 

© The McGraw-Hili 
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1.42. (Column vectors) (a) (- 1 , 7 , -22); (b) (- 1 , 26, -29) ; (c) - 1 5 ,  -27, 34; 

1.43. 

1.44. 

1.45. 

1.46. 

1.47. 

1.48. 

1.49. 

1.50. 

1 .51.  

(d) -J26, .J30; (e) - 1 5/(-J26.J30); if) .J86; (g) - � v = (- 1 ,  - ! , - �) 
(a) (- l 3 ,  - 14 ,  1 3 , 45 , 0) ; (b) (20, -29, 22, 1 6 ,  -23); (c) -6; (d) v'9O, y'95, 
(e) - /s v; if) v'167 

(a) (5/v76, 9/v76); (b) (! , � , - � , �); (c) (6/.JT33, -4.JT33, 9.JT33) 

(a) 3 ,  1 3 ,  .JT2O, 9 

(a) x =  -3 , y = 5 ;  

x = -3 , y  = 3 ,  z = � 

(a) v = 5uI - u2 ; 

v = 3uI - U2 + 2u3 

(a) 6 '  , (b) 3 '  , 

(a) v = [- 1 ,  -9 , 2] ; 

(b) x = O, y = O, and x = l , y = 2 

(b) v = 1 6uI - 23u2 

(c) � 

(b) [2, 3 , 6 ,  - 1 0] 
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1.52. (a) 2x1 + 3Xl - 5x3 + 6X4 = 35 ;  

1.53. (a) [2t + 1 ,  -7t + 2 , 6t + 1 ,  - l 1 t + 2] ; (b) [2t + 1 ,  4t + 1 ,  6t + 3 , -8t + 3] 

1.54. (a) -23j + 1 3k; (b) 3i - 6j - 1 0k; (c) -20, - 1 2 ,  37 ;  (d) .,fi,9, v'3], ../69 
1.55. (a) 3x - 4y + 5z = -20; (b) 4x + 3y - 2z = - 1 

1.56. (a) [4t + 2, -5t + 5 ,  7t - 3] ; (b) [2t + 1 ,  -3t - 5, 7t + 7] 

1.57. (a) P = F(2) = 8i - 4j + k; (b) Q = F(O) = -3k, g = F(5) = 1 25i - 25j + 7k; 
(c) T = (6i - 2j + k)/.J4T 

1.58. (a) i + j + 2k; (b) 2i + 3j + 2k; (c) .jf7; (d) 2i + 6j 

1.59. (a) N = 6i + 7j + 9k, 6x + 7y + 9z = 45; (b) N = 6i - 12j - 1 0k, 3x - 6y - 5z = 1 6  

1.60. (a) -3 ,  -6, 26; (b) -2, - 1 0, 34 

1.61. (a) 2i + 1 3j + 23k; 

1.62. (a) [5 , 8 ,  -6]; (b) 

1.63. (a) 143 ;  (b) 1 7  

1.64. (a) (7 ,  1 ,  -3)/./59; 

(b) -22i + 2j + 37k; (c) 3 l i - 1 6j - 6k 

[2, -7, 1 ] ;  (c) [-7, - 1 8 , 5] 

(b) (5i + l lj - 2k)/.Jf55 

1.66. (a) 50 - 55i; (b) - 1 6  - 30i; (c) is (4 + 7i) ; (d) � ( 1 + 3i) ; (e) -2 - 2i 

1.67. (a) - � i; (b) ts (5 + 27i) ; (c) - 1 ,  i, - 1 ;  

1.68. (a) 9 - 2i; (b) 29 - 29i; (c) ir (- l  - 4 1 i) ; 

1.69. (c) Hint: If zw = 0, then Izw l = Iz l lw l = 1 0 1 = 0 

1.70. (a) (6 + 5i, 5 - 1 0i) ; (b) (-4 + 22i, 1 2 - 1 6i) ; 
(d) 1 2  + 2i; (e) .J95, .J54 

(d) s'o (4 + 3i) 

(d) 2 + 5i, 7 - 3 i; (e) 

(c) (-8 - 4 1 i, -4 - 33i) ; 

.,fi,9, v's8 

27 
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, t by these matrices (rectangular arrays). On the other hand, the abstract treatment 

investigates matrices and algebraic operations defined on them. These matrices may be 
arrays of elements where each enuy depends on two subscripts (as compared with 

entry depended on only one sUbscript). Systems of linear equations and their solutions 
be efficiently investigated using the language of matrices. Furthennore, certain abstract 

i�;
,
�
!

;�:::�
i"

�
I,:'

::
"

�
r chapters, such as "change of basis", "linear lransfonnations", and "quadratic 

hf 'i"",,, presented later on will give us new insight into the structure of these matrices. 
in our matrices will come from some arbitrary, but fixed, field K. The elements of K are 

n",,,b,ir' or scalars. Nothing essential is lost if the reader assumes thaI K is the real field R. 

n"w··'ix·� ove/' afield K or, simply, a matrix A (when K is implicit) is a rectangular array of scalars 
P""'"i"d in Ihe following fonn: 

lVII'S of 

a" 

a" 

a" ] a" 

am, 

a matrix A are the m horizontal lists of scalars: 

(al l ' a12' . . . •  alII)' (a21' an· . . . .  a2ll)' 

'h, coltann, },fA are the n vertical lists of scalars: [ a" ] [ a" ] [ a" ] a21 an aln . . . . . . 
. . . . . . . . .  
ami am2 am" 

Ihal lhe ,}im,,"' aij' called the ij-elllry or ij-elemelll, appears in row i and column). We frequently 
""""!,-", ,,,,, ,.., m,'m by simply writing A = [aij)' 

28 
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A matrix with m rows and n columns is called an m by n matrix, written m x n .  The pair of numbers m 
and n is called the size of the matrix. Two matrices A and B are equal, written A = B, if they have the same 
size and if corresponding elements are equal. Thus the equality of two m x n matrices is equivalent to a 
system of mn equalities, one for each corresponding pair of elements. 

A matrix with only one row is called a row matrix or row vector, and a matrix with only one column is 
called a column matrix or column vector. A matrix whose entries are all zero is called a zero matrix and will 
usually be denoted by O . 

Matrices whose entries are all real numbers are called real matrices and are said to be matrices over R. 
Analogously, matrices whose entries are all complex numbers are called complex matrices and are said to 
be matrices over C. This text will be mainly concerned with such real and complex matrices. 

Example 2.1 
(a) The rectangular array A = [ �  -; _; ] is a 2 x 3 matrix. Its rows are ( 1 , -4, 5) and (0, 3 ,  -2), and its 

columns are 

(b) The 2 x 4 zero matrix is the matrix 0 = [ �  � � � 1 
(c) Find x, y, z, t such that 

[ x +y 2Z + t ] = [ 3 7 ] x - y z - t  1 5 

By definition of equality of matrices, the four corresponding entries must be equal. Thus: 

x +y = 3 , x - y =  1 , 2z + t = 7, z - t = 5  

Solving the above system of equations yields x = 2, Y = 1 ,  z = 4, t = - 1 .  

2.3 MATRIX ADDITION AND SCALAR MULTIPLICATION 

Let A = [ay] and B = [by] be two matrices with the same size, say m x n matrices. The sum of A and 
B, written A + B, is the matrix obtained by adding corresponding elements from A and B. That is, 

a ln + bIn ] 
a2n + b2n 

amn + bmn 

The product of the matrix A by a scalar k, written k . A or simply kA, is the matrix obtained by multiplying 
each element of A by k. That is, 

Observe that A + B and kA are also m x n matrices. We also define 

-A = (- 1 )A  and A - B = A + (-B) 

The matrix -A is called the negative of the matrix A, and the matrix A - B is called the difference of A and 
B. The sum of matrices with different sizes is not defined. 
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Example 2,2, Let A = [ �  -� ; J and B = [ � _� _� l Then 

[ 1 + 4 -2 + 6 3 + 8 ] [ 5 4 
A + B - -

0 + 1 4 + (-3) 5 + (-7) 1 

3A = [ 3( 1 )  3(-2) 3 (3) ] 
= [ 3 -6 9 ] 

3(0) 3(4) 3 (5) 0 1 2  1 5  [ 2 - 4  6 ] [ - 1 2  - 1 8  -24 ] [ - 1 0  
U - � = + = o 8 1 0  -3 9 2 1  -3 

The matrix 2A - 3B is called a linear combination of A and B. 

1 1  ] 
-2 

-22 - 1 8 ] 
1 7  3 1  

© The McGraw-Hili 
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Basic properties of matrices under the operations of matrix addition and scalar multiplication follow. 

Theorem 2.1 : Consider any matrices A ,  B, C (with the same size) and any scalars k and k' . Then: 

(i) (A + B) + C = A + (B + C), (v) k(A + B) = leA + kB, 

(ii) A + O = O + A = A , (vi) (k + k')A = leA + k'A, 

(iii) A + (-A) = (-A) + A = 0 ,  (vii) (kk')A = k(k'A), 

(iv) A + B = B + A (viii) I · A = A . 

Note first that the 0 in (ii) and (iii) refers to the zero matrix. Also, by (i) and (iv), any sum of matrices 

A l + A2 + . . .  + An 

requires no parentheses, and the sum does not depend on the order of the matrices. Furthermore, using (vi) 
and (viii), we also have 

A + A = 2A , A + A + A = 3A , 

and so on. 
The proof of Theorem 2 . 1 reduces to showing that the ij-entries on both sides of each matrix equation 

are equal. (See Problem 2 . 3 .) 
Observe the similarity between Theorem 2 . 1 for matrices and Theorem 1 . 1  for vectors . In fact, the 

above operations for matrices may be viewed as generalizations of the corresponding operations for 
vectors . 

2.4 SUMMATION SYMBOL 

Before we define matrix multiplication, it will be instructive to first introduce the summation symbol L 
(the Greek capital letter sigma). 

Suppose J(k) is an algebraic expression involving the letter k. Then the expression 
n 

LJ(k) or equivalently 
k=1 

has the following meaning. First we set k = 1 in J(k), obtaining 

J( 1 )  

Then we set k = 2 in J(k), obtaining J(2), and add this to J( 1 ) ,  obtaining 

J( I )  + J(2) 
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Then we set k = 3 in f(k), obtaining f(3), and add this to the previous sum, obtaining 

f( l )  + f(2) + f(3) 

We continue this process until we obtain the sum 

f( l )  + f(2) + , . .  + fen) 

© The McGraw-Hili 
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Observe that at each step we increase the value of k by 1 until we reach n .  The letter k is called the index, 
and 1 and n are called, respectively, the lower and upper limits. Other letters frequently used as indices are i 
and j. 

We also generalize our definition by allowing the sum to range from any integer n ] to any integer n2 ' 
That is, we define 

nz L f(k) = fen ] ) + fen ] + 1 )  + fen ] + 2) + . . .  + f(n2) k=nj 

Example 2.3 
s 

(a) L Xk = Xj + X2 + x3 + X4 + XS k=] 

n 
and L aibi = aj bj + a2b2 + . . .  + anbn i=] 

(b) tl = 22 + 32 + 42 + 52 = 54 and t aixi = ao + ajX + a2xZ + . . .  + anxn j=2 i=O 
p (c) L aikbkj = ail blj + ai2b2j + ai3b3j + . . .  + aipbpj k=] 

2.5 MATRIX MULTIPLICATION 

The product of matrices A and B, written AB, is somewhat complicated. For this reason, we first begin 
with a special case. 

The product AB of a row matrix A = [a;] and a column matrix B = fbi] with the same number of 
elements is defined to be the scalar (or 1 x 1 matrix) obtained by multiplying corresponding entries and 
adding; that is, 

AS � [a " a" . . .  , a"{ ::. ] � a ,b ,  + a,b, + . . .  + a"b" � ,t. a,b, 

We emphasize that AB is a scalar (or a 1 x 1 matrix) . The product AB is not defined when A and B have 
different numbers of elements. 

Example 2.4 

(a) [7, -4, 5{ j] � 7(3) + (-4)(2) + 5(- 1 )  � 2 1  - 8 - 5 � 8 

(6) [6, - 1 , 8 ,  3{ =; ] � 24 + 9  - 1 6 + 1 5  � 34 

We are now ready to define matrix multiplication in general. 
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Definition: Suppose A = [a,d and B = [bij] are matrices such that the number of columns of A is equal 
to the number of rows of B; say, A is an II! x p matrix and B is a p x 1/ matrix. Then the 
product A 8 is the II! x 11 matrix whose ij-entry is obtained by multiplying the ith row of A by 
the jth column of B. That is, 

where 

[ a" . . .  a,, ] [b" 

a'l . . . a'r . 
. . . . . . 

ami . . .  amp bpi 

The product AB is not defined if A is an III x p matrix and B is a q x 1/ matrix, where p =I- q. 

Example 2.5 

(a) Find AB where A = U -n and B =  [; -� -:l 

Since A is 2 x 2 and B is 2 x 3, the product AB is dcfined and AB is a 2 x 3 matrix. To obtain thc first row of 
thc product matrix AB, multiply the first row [ I ,  3] of A by cach column of B, 

[;] [-n [-:] 
respectively. That is, 

To obtain Ihe second row of AB, multiply Ihe second row [2. - I ]  of A by each column of B. Thus 

[ 17 -6 AB = 4 - 5  0 + 2  

(b) Suppose A = [� ;] and B =  [� -�l Then 

AB =
[ 5 + 0  

1 5 + 0  
6 - '] 

[
5 

18 - 8 = 15 I�] 

14 ] [ 17 -6 14] 
-8 - 6  = -I 2 -14 

BA _ [5 + 18 1 0 + 24] _ [ 23 34] 
- 0 - 6 0 - 8 - -6 -8 

The above example shows that matrix multiplication is not commutative, i.e. the products AB and BA 
of matrices need not be equal. However, matrix multiplication does satisfy the following properties. 

Theorem 2.2: Let A. B. C be matrices. Then, whenever the products and sums are defined: 

(i) (AB)C = A(BC) (associative law), 

(ii) A(B + C) = AB + AC (left distributive law), 

(iii) (B + C)A = BA + CA (right distributive law), 

(iv) k(AB) = (kA)B = A(kB), where k is a scalar. 

We note that OA = 0 and BO = 0, where 0 is the zero matrix. 
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The transpose of a matrix A, written AT, is the matrix obtained by writing the columns of A, in order, 
as rows. For example, 

and [ I , -3 ,  -51' � [ ::i ] 
In other words, if A = [ay] is an m x n matrix, then AT = [by] is the n x m matrix where by = aji '  

Observe that the tranpose of a row vector is a colunm vector. Similarly, the transpose of a colunm 
vector is a row vector. 

The next theorem lists basic properties of the transpose operation. 

Theorem 2.3 : Let A and B be matrices and let k be a scalar. Then, whenever the sum and product are 
defined: 

(i) (A + B)T = AT + BT, (iii) (kAl = kAT, 
(ii) (ATl = A , (iv) (ABl = BT AT . 

We emphasize that, by (iv), the transpose of a product is the product of the transposes, but in the 
reverse order. 

2.7 SQUARE MATRICES 

A square matrix is a matrix with the same number of rows as colunms. An n x n square matrix is said 
to be of order n and is sometimes called an n-square matrix. 

Recall that not every two matrices can be added or multiplied. However, if we only consider square 
matrices of some given order n, then this inconvenience disappears. Specifically, the operations of addition, 
multiplication, scalar multiplication, and transpose can be performed on any n x n matrices, and the result 
is again an n x n matrix. 

Example 2.6. The following are square matrices of order 3 :  

A � [ -; 2 -� ] B �  [: -5 -i] -4 and 3 
6 2 -4 

The following are also matrices of order 3 :  

A + B - [ -: -3 -H 2A - [ -: 4 -:] A' - [ : -4 : ] - 1  -8 -4 
8 1 0  1 2  14 -4 

AB - [ - I: 7 - I S ] [ 27 30 33 ] 
0 20 , BA = -22 -24 -26 

1 7  7 -35 -27 -30 -33 
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Diagonal and Trace 

Let A = [ay] be an n-square matrix. The diagonal or main diagonal of A consists of the elements with 
the same subscripts, that is, 

The trace of A, written tr(A), is the sum of the diagonal elements. Namely, 

tr(A) = a l l  + a22 + a33 + . . .  + ann 
The following theorem applies. 

Theorem 2.4: Suppose A = [ay] and B = [by] are n-square matrices and k is a scalar. Then: 

(i) tr(A + B) = tr(A) + tr(B), (iii) treAT) = tr(A), 
(ii) tr(kA) = k tr(A), (iv) tr(AB) = tr(BA). 

Example 2.7. Let A and B be the matrices A and B in Example 2.6 .  Then 

Moreover, 

diagonal of A = { 1 ,  -4, 7} 
diagonal of B = {2 , 3 ,  -4} 

and 
and 

tr(A) = I - 4 + 7 = 4 
tr(B) = 2 + 3 - 4 = I 

tr(A + B) = 3 - 1 + 3 = 5 ,  tr(2A) = 2 - 8 + 14 = 8 ,  treAT) = 1 - 4 + 7 = 4 
tr(AB) = 5 + 0 - 35 = -30,  tr(BA) = 27 - 24 - 33 = -30 

As expected from Theorem 2.4, 

tr(A + B) = tr(A) + tr(B) ,  tr(lA) = 2 tr(A) 

Furthermore, although AB i- BA, the traces are equal. 

Identity Matrix, Scalar Matrices 

The n-square identity or unit matrix, denoted by 1m or simply I, is the n-square matrix with l 's on the 
diagonal and D 's elsewhere. The identity matrix I is similar to the scalar I in that, for any n-square matrix 
A,  

AI = IA = A 

More generally, if B is an m x n matrix, then BIn = 1mB = B. 
For any scalar k, the matrix kJ that contains k's on the diagonal and D 's elsewhere is called the scalar 

matrix corresponding to the scalar k. Observe that 

(kJ)A = k(IA) = kA 
That is, multiplying a matrix A by the scalar matrix kJ is equivalent to multiplying A by the scalar k. 

Example 2.8. The following are the identity matrices of orders 3 and 4 and the corresponding scalar matrices for k = 5 :  [ 1 0 0 ] 
o 1 0 , 
0 0 1 

o 0 ] 
5 0 , 
o 5 
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Remark 1 :  It i s  common practice t o  omit blocks o r  patterns of O 's when there i s  no  ambiguity, a s  in 
the above second and fourth matrices. 

Remark 2 :  The Kronecker delta Junction bij i s  defined by { o  if i i=j bij = 1 if i = j 

Thus the identity matrix may be defined by 1 =  [bij]' 

2.8 POWERS OF MATRICES, POLYNOMIALS IN MATRICES 

Let A be an n-square matrix over a field K. Powers of A are defined as follows: 

Polynomials in the matrix A are also defined. Specifically, for any polynomial 

J(x) = ao + a lx + a2.>? + . . .  + an.>!' 

where the ai are scalars in K, J(A) is defined to be the following matrix: 

J(x) = aoI + a lA + a2A2 + . . .  + anAn 

and 

[Note that J(A) is obtained from J(x) by substituting the matrix A for the variable x and substituting the 
scalar matrix aoI for the scalar ao. ]  IfJ(A) is the zero matrix, then A is called a zero or root ofJ(x) .  

Example 2.8. Suppose A = [ �  _� J . Then 

2 [ 1 2 ] [ 1 2 ] [ 7 -6 ] A = 3 -4 3 -4 = -9 22 and 

Suppose f(x) = az - 3x + 5 and g(x) = xZ + 3x - 1 0. Then 

f(A) = 2 [ _� �� J - 3 [ � _� J + 5 [ � � J = [ -�� 
-�� J 

g(A) = [ _� �� J + 3 [ � _� J - 1 O [ � � J = [ � � J 

Thus A is a zero of the polynomial g(x). 

2.9 INVERTIBLE (NONSINGULAR) MATRICES 

A square matrix A is said to be invertible or nonsingular if there exists a matrix B such that 

AB = BA = 1  

where I is the identity matrix. Such a matrix B is unique. That is, if ABI = BIA = I and AB2 = B2A = I, 
then 

We call such a matrix B the inverse of A and denote it by A - I . Observe that the above relation is symmetric; 
that is, if B is the inverse of A,  then A is the inverse of B. 
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[ 2 
5 J [ 3 

-5 J Example 2,9, Suppose that A = 1 3 and B = - 1  2 '  Then 

AB = [ 6 - 5 - 1 0 +  l O J = [ I 0
I J 3 - 3 -5 + 6 0 

Thus A and B are inverses. 

and BA = [ 6 - 5 I S  - I S  J = [ I 0 J -2 + 2 -5 + 6 0 I 

[CHAP. 2 

It is known (Theorem 3 . 1 5) that AB = I if and only if BA = I. Thus it is necessary to test only one 
product to determine whether or not two given matrices are inverses. (See Problem 2 . 1 7 .) 

Now suppose A and B are invertible. Then AB is invertible and (AB)- I = B- IA- I . More generally, if 
A I ' A2 , . . .  , Ak are invertible, then their product is invertible and 

(A IA2 · ·  . Ak)- I = Ak l . . .  Al iAi l 

the product of the inverses in the reverse order. 

Inverse of a 2 x 2 Matrix 

Let A be an arbitrary 2 x 2 matrix, say A = [ � � ] . We want to derive a formula for A - I , the inverse 

of A . Specifically, we seek 22 = 4 scalars, say Xl> Yl > X2 , Y2 , such that 

[ a b ] [XI X2 ] = [ 1 0 ] e d YI Y2 0 1 or ax2 + bY2 ] [ 1 0 ] 
eX2 + dY2 - 0 1 

Setting the four entries equal to the corresponding entries in the identity matrix yields four equations, 
which can be partitioned into two 2 x 2 systems as follows: 

aXI + bYI = I ,  ax2 + bY2 = 0 
eX2 + dY2 = I 

Suppose we let IA I = ab - be (called the determinant of A). Assuming IA I i= 0, we can solve uniquely for 
the above unknowns XI , YI , X2 , Yz ,  obtaining 

-e a 
YI = !AT '  -b X2 = !AT '  Y2 = !AT 

Accordingly, 

A- I = [ a
e 

b ] - 1 = [ dl lA I -bI IA I ] I [ d 
d -e/ IA I al lA I 

= !AT -e 
In other words, when IA I i= 0, the inverse of a 2 x 2 matrix A may be obtained from A as follows : 

( 1  ) Interchange the two elements on the diagonal. 
(2) Take the negatives of the other two elements. 
(3) Multiply the resulting matrix by I / IA I or, equivalently, divide each element by IA I . 

In case IA I = 0, the matrix A is not invertible. 

Example 2.10. Find the inverse of A = [ � ; J and B = [ ;  � 1 
First evaluate IA I = 2(5) - 3(4) = 1 0 - 1 2  = -2. Since IA I =1= 0, the matrix A is invertible and 

A- I = � [ 5 -3 J = [ - � � J  - 2  -4 2 2 - 1 
Now evaluate IB I = 1 (6) - 3(2) = 6 - 6 = O. Since IB I = 0, the matrix B has no inverse. 
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Remark: The above property that a matrix is invertible if  and only if  A has a nonzero determinant i s  
true for square matrices of any order. (See Chapter 8) .  

Inverse of  an  n x n Matrix 

Suppose A is an arbitrary n-square matrix. Finding its inverse A- I reduces, as above, to finding the 
solution of a collection of n x n systems of linear equations. The solution of such systems and an efficient 
way of solving such a collection of systems is treated in Chapter 3 .  

2.10 SPECIAL TYPES O F  SQUARE MATRICES 

This section describes a number of special kinds of square matrices. 

Diagonal and Triangular Matrices 

A square matrix D = [dij] IS diagonal if its nondiagonal entries are all zero . Such a matrix is 
sometimes denoted by 

D = diag(dl l , d22 , . . .  , dnn) 

where some or all the dii may be zero . For example, 

[ ! o 0 ] 
-7 0 , 

o 2 

are diagonal matrices, which may be represented, respectively, by 

-9 J 
diag(3 , -7 , 2) , diag(4 , -5) , diag(6 , 0 ,  -9,  8) 

(Observe that patterns of O 's in the third matrix have been omitted.) 
A square matrix A = [aij] is upper triangular or simply triangular if all entries below the (main) 

diagonal are equal to 0, that is, if aij = 0 for i > j. Generic upper triangular matrices of orders 2, 3 ,  4 are as 
follows: 

(As with diagonal matrices, it is common practice to omit patterns of O 's .) 
The following theorem applies. 

Theorem 2.5: Suppose A = [aij] and B = [bij] are n x n (upper) triangular matrices. Then: 

(i) A + B, kA, AB are triangular with respective diagonals .  

(a l l  + bl l , . . .  , ann + bnn) ,  (ka l l ' . . .  , kann) , (a l l  b l l , . . .  , annbnn) ,  

(ii) For any polynomial f(x), the matrix f(A) is triangular with diagonal 

(f(a l l ) ,f(a22) ,  . . .  ,f(ann)) 

(iii) A is invertible if and only if each diagonal element aii -I- 0, and when A - I exists it is 
also triangular. 
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A lower triangular matrix is a square matrix whose entries above the diagonal are all zero , We note 
that Theorem 2 ,5  is true if we replace "triangular" by either "lower triangular" or "diagonal" ,  

Remark: A nonempty collection A of  matrices i s  called an algebra ( of  matrices) i f  A i s  closed under 
the operations of matrix addition, scalar multiplication, and matrix multiplication, Clearly, the square 
matrices with a given order form an algebra of matrices, but so do the scalar, diagonal, triangular, and 
lower triangular matrices. 

Special Real Square Matrices: Symmetric, Orthogonal, Normal 

Suppose now A is a square matrix with real entries, that is, a real square matrix. The relationship 
between A and its transpose AT yields important kinds of matrices. 

(a) Symmetric Matrices 

A matrix A is symmetric if AT = A . Equivalently, A = [aij] is symmetric if symmetric elements (mirror 
elements with respect to the diagonal) are equal, that is, if each aij = aji '  

A matrix A is skew-symmetric if  AT = -A or, equivalently, if  each aij = -aji '  Clearly, the diagonal 
elements of such a matrix must be zero, since aii = -aii implies aii = O . 

(Note that a matrix A must be square if AT = A or AT = -A.) 

Example 2.11. Let A = [ -� -� ; ] , B = [ -� � -� ] , c = [ 01 0 O J 
5 7 -8 4 -5 0 0 1 . 

(a) By inspection, the symmetric elements in A are equal, or A T = A. Thus A is symmetric. 
(b) The diagonal elements of B are 0 and symmetric elements are negatives of each other, or BT = -B. Thus B is 

skew-symmetric. 
(c) Since C is not square, C is neither symmetric nor skew-symmetric. 

(b) Orthogonal Matrices 

A real matrix A is orthogonal if AT = A- I , that is, if AAT = AT A = I. Thus A must necessarily be 
square and invertible. [ I S  

4 ] 9 9 - 9 
Example 2.12. Let A = � - � - � . Multiplying A by AT yields I; that is, AA T = I. This means AT A = I, as well. 

S 1 
4 9 9 9 

Thus AT = A- I ; that is, A is orthogonal. 

Now suppose A is a real orthogonal 3 x 3 matrix with rows 

Since A is orthogonal, we must have AAT = I. Namely 
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Multiplying A by AT and setting each entry equal to the corresponding entry in I yields the following nine equations: 

aT + a� + a� = I , 
bl al + b2a2 + b3a3 = 0, 
CI al + C2a2 + c3a3 = 0, 

al bl + a2b2 + a3b3 = 0, 
bT + bi + b� = I , 

CI bl + C2b2 + c3 b3 = 0, 

ai ci + a2c2 + a3 c3 = 0 
bi ci + b2C2 + b3 C3 = 0 

aT + a� + a� = 1  

Accordingly, UI ' U I  = I ,  U2 . U2 = I ,  u3 . u3 = I ,  and uj • uj = 0 for i oF j. Thus the rows UI , Uz , u3 are unit vectors 
and are orthogonal to each other. 

Generally speaking, vectors UJ , U2 , . . .  , urn in Rn are said to form an orthonormal set of vectors if the 
vectors are unit vectors and are orthogonal to each other, that is, { 0 if i -j. j ui . uj = 

I if i = j 

In other words, Ui . uj = bg where bg is the Kronecker delta function. 
We have shown that the condition AAT = I implies that the rows of A form an orthonormal set of 

vectors . The condition AT A = I similarly implies that the colunms of A also form an orthonormal set of 
vectors . Furthermore, since each step is reversible, the converse is true. 

The above results for 3 x 3 matrices is true in general. That is, the following theorem holds. 

Theorem 2.6: Let A be a real matrix. Then the following are equivalent: 
(a) A is orthogonal. 
(b) The rows of A form an orthonormal set. 
(c) The colunms of A form an orthonormal set. 

For n = 2, we have the following result (proved in Problem 2.28) .  

Theorem 2.7:  Let A be a real 2 x 2 orthogonal matrix. Then, for some real number e, 

(c) Normal vectors 

A = [ c�s e  Sin e ] - sm e cos e 
or A = [ c�s e  

sm e 
Sin e ] - cos e 

A real matrix A is normal if it commutes with its transpose AT, that is, if AAT = AT A . If A is 
symmetric, orthogonal, or skew-symmetric, then A is normal. There are also other normal matrices. 

[ 6 -3 J Example 2.13. Let A = 
3 6 ' Then 

Since AAT = AT A, the matrix A is normal. 

2.11  COMPLEX MATRICES 

and ATA = [ 6 3 J [ 6 - 3 J = [ 45 O J -3 6 3 6 0 45 

Let A be a complex matrix, that is, a matrix with complex entries. Recall (Section 1 .7) that if 
z = a + 'pi is a complex number, then z = a - bi is its conjugate. The conjugate of a complex matrix A, 
writtep. A, is the matrix obtained from A by taking the conjugat� of each entry in  A . That is, if  A = [ag] ,  
then A = [bg] , where bg = ag ' (We denote this fact by writing A = [ag] . )  
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The two operations of transpose and conjugation commute for any complex matrix A, and the special 
notation AH is used for the conjugate transpose of A, That is, 

AH = (A)T = (AT) 

Note that if A is real, then AH = AT . [Some texts use A* instead of AH . ] [ 2 + 8i 5 - 3i 4 - 7i ] 
H 

[ 2 - 8 � -6i j 
Example 2.14. Let A = 

6i J - 4i 3 + 2i 
. Then A = � : ;: � � �: . 

Special Complex Matrices: Hermitian, Unitary, Normal 

Consider a complex matrix A . The relationship between A and its conjugate transpose AH yields 
important kinds of complex matrices (which are analogous to the kinds of real matrices described above). 

A complex matrix A is said to be Hermitian or skew-Hermitian according as 

or AH = -A . 

Clearly, A = [aij] is Hermitian if and only if symmetric elements are conjugate, that is, if each aij = aji ' in 
which case each diagonal element aii must be real. Similarly, if A is skew-symmetric, then each diagonal 
element aii = O. (Note that A must be square if AH = A or AH = -A.) 

A complex matrix A is unitary if AHA- I = A- IAH = I, that is, if 

AH = A- I . 

Thus A must necessarily be square and invertible. We note that a complex matrix A is unitary if and only if 
its rows (columns) form an orthonormal set relative to the dot product of complex vectors . 

A complex matrix A is said to be normal if it commutes with AH, that is, if 

AAH = AHA 

(Thus A must be a square matrix.) This definition reduces to that for real matrices when A is real. 

Example 2.15. Consider the following complex matrices : [ 3 I - 2i 4 + 7i ] 
A = 1 + 2i -4 -2i 

4 - 7i 2i 5 

-i 

- I + i 

- I  + i ] 
1 +  i 
o 

c = [ 2 + 3i  I ] 
i 1 + 2i 

(a) By inspection, the diagonal elements of A are real and the symmetric elements I - 2i and I + 2i are conjugate, 
4 + 7i and 4 - 7i are conjugate, and -2i and 2i are conjugate . Thus A is Hermitian. 

(b) Multiplying B by BH yields I, that is, BBH = I. This implies BH B = I, as well . Thus BH = B-1 , which means B 
is unitary. 

(c) To show C is normal, we evaluate CCH and CH c: 

CCH = [ 2 + 3i I ] [ 2 - 3i -i ] [ 14  4 - 4i ] 
i I + 2i I I - 2i - 4 + 4i 6 

and similarly CH C = [ 4 �\i 
4 � 4iJ Since CCH = CH C, the complex matrix C is normal. 

We note that when a matrix A is real, Hermitian is the same as symmetric, and unitary is the same as 
orthogonal. 
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Using a system of horizontal and vertical (dashed) lines, we can partition a matrix A into submatrices 
called blocks (or cells) of A . Clearly a given matrix may be divided into blocks in different ways. For 
example : [ } -��-: - -�- � - �� ] 

3 1 1 4 5  9 ' 
- - - -1 - - - - - - -4 6 I -3 1 8 

q _ �} _ _ !_+ _-�J l 4  6 -3 I 1 8 J 
The convenience of the partition of matrices, say A and B, into blocks is that the result of operations on A 
and B can be obtained by carrying out the computation with the blocks, just as if they were the actual 
elements of the matrices. This is illustrated below, where the notation A = [Aij] will be used for a block 
matrix A with blocks Aij ' 

Suppose that A = [Aij] and B = [Bij] are block matrices with the same numbers of row and column 
blocks, and suppose that corresponding blocks have the same size. Then adding the corresponding blocks 
of A and B also adds the corresponding elements of A and B, and multiplying each block of A by a scalar k 
multiplies each element of A by k. Thus 

[ An + Bn A I2 + B12 A ," + B," ] 
A2 1 + B2 1 A22 + B22 A2n + B2n A + B = 

. . .  
Ami + Bml Am2 + Bm2 . . .  Amn + Bmn 

and 

[ U n kAI2 U , "  ] 
kA = �� I kA22 kA2n 

kAml kAm2 kAmn 

The case of matrix multiplication is less obvious, but still true. That is, suppose that U = [Uik] and 
V = [V1g] are block matrices such that the number of columns of each block Uik is equal to the number of 
rows of each block V Ig '  (Thus each product U;k V Ig is defined.) Then 

UV = [ ��.: ��� 
Wml Wm2 

where 

The proof of the above formula for UV is straightforward, but detailed and lengthy. It is left as an exercise 
(Problem 2 . 85) . 

Square Block Matrices 

Let M be a block matrix. Then M is called a square block matrix if: 

(i) M is a square matrix. (ii) The blocks form a square matrix. 
(iii) The diagonal blocks are also square matrices. 

The latter two conditions will occur if and only if there are the same number of horizontal and vertical 
lines and they are placed symmetrically. 
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The block matrix A is not a square block matrix, since the second and third diagonal blocks are not square. 
On the other hand, the block matrix B is a square block matrix. 

Block Diagonal Matrices 

Let M = [Aij] be a square block matrix such that the nondiagonal blocks are all zero matrices, that is, 
Aij = 0 when i -I-j. Then M is called a block diagonal matrix. We sometimes denote such a block diagonal 
matrix by writing 

or 

The importance of block diagonal matrices is that the algebra of the block matrix is frequently reduced to 
the algebra of the individual blocks. Specifically, suppose /ex) is a polynomial and M is the above block 
diagonal matrix. Then /(M) is a block diagonal matrix and 

Also, M is invertible if and only if each Aii is invertible, and, in such a case, M- 1 is a block diagonal matrix 
and 

M-1 = diag(Aj/ , Ail , . . .  , A;,.
l ) 

Analogously, a square block matrix is called a block upper triangular matrix if the blocks below the 
diagonal are zero matrices, and a block lower triangular matrix if the blocks above the diagonal are zero 
matrices. 

Example 2.16. Determine which of the following square block matrices are upper diagonal, lower diagonal, or diagonal: 

c = �}: -� - � i , l O l 4 5 J  

(a) A is upper triangular since the block below the diagonal is a zero block. 
(b) B is lower triangular since all blocks above the diagonal are zero blocks. 
(c) C is diagonal since the blocks above and below the diagonal are zero blocks. 

1 1 2 1 ° l  D = t} -:� � j  I 

(d) D is neither upper triangular nor lower triangular. Also, no other partitioning of D will make it into either a block 
upper triangular matrix or a block lower triangular matrix. 
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Solved Problems 
MATRIX ADDITION AND SCALAR MULTIPLICATION 

2.1 .  Give A = [ ! -� _� ]  and B = [ _ � 0 � J . find: 

(a) A + B, (b) 2A - 3B, 
(a) Add the corresponding elements: 

A + B = [ 1 + 3 -2 + 0 3 + 2 ] [ 4 6 5
2 ] 4 - 7  5 + 1 -6 + 8 - -3 6 

(b) First perform the scalar multiplication and then a matrix addition: 

2A - 3B = [ � �� - 1� ] + [ �i -� -�! ] = [ -�� -; -3� ] 
(Note that we multiply B by -3 and then add, rather than multiplying B by 3 and subtracting, This 
usually prevents errors.) 

Write each side as a single equation: 

[ 3X 3Y ] [ x + 4  X + Y + 6 ] 
3z 3t - z + t - 1 2t + 3 

Set corresponding entries equal to each other to obtain the following system of four equations : 

or 
3x = x + 4,  3y = x + y + 6 ,  

2x = 4,  2y = 6 + x, 

The solution is x = 2,  y = 4, z = 1, t = 3 . 

3z = z + t  - 1 , 

2z = t - 1 , 

3t = 2t + 3 

t = 3 

2.3. Prove Theorem 2 . 1 (i) and (v) : (i) (A + B) + C = A + (B + C), (v) k(A + B) = kA + kB. 
Suppose A = [ay] , B = [by] , C = [cy] . The proof reduces to showing that corresponding ij-entries in each 

side of each matrix equation are equal. [We only prove (i) and (v), since the other parts of Theorem 2. 1 are 
proved similarly. ]  
(i) The ij-entry of A + B is aij + bij ; hence the ij-entry of (A + B) + C is (aij + bij) + cij ' On the other hand, 

the ij-entry of B + C is bij + cij ' and hence the ij-entry of A + (B + C) is aij + (bij + cij) ' However, for 
scalars in K, 

(aij + by) + cy = aij + (by + cy) 

Thus (A + B) + C and A + (B + C) have identical ij-entries. Therefore (A + B) + C = A + (B + C). 

(v) The ij-entry of A + B is aij + bij ; hence k(ay + bij) is the ij-entry of k(A + B). On the other hand, the 
ij-entries of kA and kB are kaij and kbij' respectively. Thus kaij + kbij is the ij-entry of kA + kB. However, 
for scalars in K, 

k(ay + bij) = kaij + kby 
Thus k(A + B) and kA + kB have identical ij-entries. Therefore k(A + B) = kA + kB. 
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MATRIX MULTIPLICATION 

(a) Mulliply the corresponding entries and add: 

(e) [3.8. -2. 4{ -1] 
18.-4.5{ j] � 8(3)+(-4)(2) + 5(-1) � 24 - 8 - 5  � I I 

(b) Mulliply the corresponding entries and add: 

(c) The product is not defined when the row matrix and the column matrix have different numbers of 
clements. 

2.5. Let (r x s) denote an r x s matrix. Find the sizes of those matrix products that are defined: 

2.6. 

(a) (2 x 3)(3 x 4). 
(6) (4 x 1)(1 x 2), 

(c) (I x 2)(3 x I). 

(<I) (5 x 2)(2 x 3), 

(e) (4 x 4)(3 x 3) 

(j) (2 x 2)(2 x 4) 

[n each case, the product is dcfined if the inncr numbers are equal, and then the product will have the size 
of the outer numbers in the given order. 
(,) 2 x 4, (c) not defined, (e) not defined 
(6) 4 x 2, (d) 5 x 3, Ul 2 x 4  

Let A = [� -n and B = [� 0 -4] Find: (a) AB, (b) BA. 
-2 6 . 

(a) Since A is a 2 x 2 and B a 2 x 3 matrix, the product AB is defined and is a 2 x 3 matrix. To obtain the 

entries in the firsl row of AB, mulliply Ihe first row ! L 31 of A by the columns [; l [ _� l [ -:] of B, 

respectively, as follows: 

-6 14] 
To obtain the cntries in the second row of AB, multiply the second row [2. -11 of A by the columns of B: 

Thus 

[ I 3 ] [2 0 -'] [ " -6 14 ] AB = 
2 -1 3 -2 6 

= 
4 - 3  0+2  -8 - 6  

[ I I  
AB = 1 

-6 14] . 2 -14 

(b) The size of B is 2 x 3 and Ihal of A is 2 x 2. The inner numbers 3 and 2 arc not equal ; hence the product 
BA is not defined. 
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2.7. 

2.8. 

Find AB, where A = [ ;  3 
-2 

- 1 
3 

o 6 ] 
-5 1 , 
-2 2 

Since A is a 2 x 3 and B a 3 x 4 matrix, the product AB is defined and is a 2 x 4 matrix. Multiply the 
rows of A by the columns of B to obtain 

AB = [ 4 + 3 - 4 -2 + 9 - 1  0 - 1 5 + 2 12 + 3 - 2 J [ 3 6 - 1 3 1 3 J 8 - 2 + 20 -4 - 6 + 5 0 + 10 - 10 24 - 2 + 1 0 - 26 -5 0 32 . 

Find: (a) [ 1 6 ] [ 2 ] 
-3 5 -7 ' (c) [2 , -7] [ -� � l 

(a) The first factor is 2 x 2 and the second is 2 x 1 , so the product is defined as a 2 x 1 matrix: 

[ 1 6 J [ 2 J [ 2 - 42 J [ -40 J -3 5 -7 - -6 - 35 - -41 
(b) The product is not defined, since the first factor is 2 x I and the second factor is 2 x 2. 
(c) The first factor is I x 2 and the second factor is 2 x 2, so the product is defined as a I x 2 (row) matrix: 

[2 , -7] [ _; � J = [2 + 2 1 ' 12 - 35] = [23 , -23] 

2.9. Clearly OA = 0 and AO = 0, where the O 's are zero matrices (with possibly different sizes) . Find 
matrices A and B with no zero entries such that AB = O .  

2.10.  Prove Theorem 2 .2(i) : (AB)C = A(BC) . 

Let A = [aij] ' B = [bjk] ,  C = [Ckl] ,  and let AB = S = [Sik] ,  BC = T = [tjl] '  Then 
m 

Sik = L aijbjk j=l 

Multiplying S = AB by C, the il-entry of (AB)C is 

and 
n 

�l = L bjkCkl k=l 

n n m 
sil cl l + s12cZl + . . .  + sincnl = L Sikckl = L L(aijbjk)ckl k=l k=l j=l 

On the other hand, multiplying A by T = BC, the il-entry of A(BC) is 
m m n 

ail ti l + a,'2 tZl + . . .  + ain tnl = L aij�l = L L aij(bjkCkl) j=l j=l k=l 

The above sums are equal; that is, corresponding elements in (AB)C and A(BC) are equal. Thus 
(AB)C = A(BC). 

2.11. Prove Theorem 2.2(ii) : A(B + C) = AB + AC. 

Let A = [aij] ' B = [bjk] ,  C = [Cjk] ,  and let D = B + C = [�k] ' E = AB = [eik] , F = AC = [Jik] '  Then 
m 

eik = L aijbjk o j=l 
m 

Jik = L aijCjk j=l 
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Thus the ik-entry of the matrix AB + AC is 
m m m 

eik + fik = L aijbjk + L aijcjk = L ayCbjk + Cjk) j=l j=l j=l 

On the other hand, the ij-entry of the matrix AD = A(B + C) is 
m m 

ail dlk + ai2d2k + . . .  + aimdmk = L aij�k = L aij(bjk + Cjk) j= l j=l 

Thus A(B + C) = AB + AC, since the corresponding elements are equal. 

[CHAP. 2 

TRANSPOSE 

2.12.  Find the transpose of each matrix: 

-2 
8 

2 
4 
5 n c = [ 1 ,  -3 , 5 ,  -7] ,  

Rewrite the rows of each matrix as columns to obtain the transpose of the matrix: [ 1  2 3 ] 
BT = 2 4 5 ,  

3 5 6  
DT = [2, -4, 6] 

(Note that BT = B; such a matrix is said to be symmetric. Note also that the transpose of the row vector C is a 
column vector, and the transpose of the column vector D is a row vector.) 

2.13.  Prove Theorem 2 .3 (iv) : (ABl = BT AT .  
Let A = [aik] and B = [bkj] '  Then the ij-entry of AB i s  

ail blj + ai2b2j + . . .  + aimbmj 

This is the}i-entry (reverse order) of (AB)T . Now column} of B becomes row} of BT, and row i of A becomes 
column i of AT . Thus the ij-entry of BT AT is 

[b lj ' b2j , . . • , bny'] [ail ' ai2 , • . .  , aimf = bljail + b2ja12 + . . .  + bmjaim 

Thus (AB)T = BT AT, since the corresponding entries are equal. 

SQUARE MATRICES 

2.14. Find the diagonal and trace of each matrix: 

(a) A =  [ � -; � ] ,  (b) B = [ � -� 
4 -2 9 -5 0 

(c) c = [ ! 2 
-5 

-3 ] 
6 . 

(a) The diagonal of A consists of the elements from the upper left corner of A to the lower right corner of A 
or, in other words, the elements al l , a2b a33 ' Thus the diagonal of A consists of the numbers 1 , -5,  and 
9 . The trace of A is the sum of the diagonal elements. Thus 

tr(A) = 1 - 5 + 9 = 5 

(b) The diagonal of B consists of the numbers 2, -7, and 2. Hence 
tr(B) = 2 - 7 + 2 = -3 

(c) The diagonal and trace are only defined for square matrices. 
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2.15.  Let A = [ ! _; ] , and Ietf(x) = 2x3 - 4x + 5 and g(x) = i2 + 2x + 1 1 ,  Find: 

(a) A2 , (b) A3 , (c) f(A), (d) g(A), 

(a) A2 = AA = [ � -� J [ � -� J = [ � � �2 � � � J - [ -� �; J 
(b) A3 = AA2 = [ _� _� ] [ _� �; J = [ 3� � ;� -�: � �� J = [ �6 -�� J 
(c) First substitute A for x and 51 for the constant inf(x), obtaining 

f(A) = 2A3 _ 4A + 5/ = 2 [ �6 _�� J - 4 [ � _; J + 5 [ � n 
Now perform the scalar multiplication and then the matrix addition: 

[ -14 60 J [ -4 -8 J [ 5 O J [ - 1 3 52 J f(A) = 120 - 1 34 + -1 6 12 + 0 5 = 104 - 1 1 7 
(d) Substitute A for x and I II for the constant in g(x), and then calculate as follows: 

g(A) = A2 + 2A - I ll = [ 9 -4 J + 2 [ 1 2 J - I 1 [ I O J -8 17 4 -3 0 I 
= [ -: �; J + [ ! -: J + [ - I � - 1 � J = [ � � J 

Since g(A) is the zero matrix, A is a root of the polynomial g(x) . 

2.16. Let A = [ ! _; l (a) Find a nonzero column vector u = [; ] such that Au = 3u .  

(b) Describe all such vectors . 

(a) First set up the matrix equation Au = 3u, and then write each side as a single matrix (colunm vector) as 
follows: 

and then [ x + 3y J [ 3X J 4x - 3y - 3y 
Set the corresponding elements equal to each other to obtain a system of equations : 

x + 3y = 3x 
4x - 3y =  3y or 2x - 3y =  0 

4x - 6y =  0 or 2x - 3y = 0 
The system reduces to one nondegenerate linear equation in two unknowns, and so has an infinite 
number of solutions. To obtain a nonzero solution, let, say, y = 2; then x = 3 . Thus u = (3 , 2l is a 
desired nonzero vector. 

(b) To find the general solution, set y = a, where a is a parameter. Substitute y = a into 2x - 3y = 0 to 
obtain x = � a. Thus u = (�a, a)T represents all such solutions. 

INVERTIBLE MATRICES, INVERSES 

2.17. Show that A � [ � -� ; ] and B = [ -�! � 
1 8 6 - 1 

� ]  are inverses. 
- 1 

Compute the product AB, obtaining [ - I I  + 0 + 12 2 + 0 - 2 
AB = -22 + 4 + 1 8 4 + 0 - 3  

-44 - 4 + 48 8 + 0 - 8 
2 + 0 - 2 ] [ I 0 0 ] 
4 - 1 - 3  = 0 1 0 = 1 
8 + 1 - 8 0 0 I 

Since AB = I, we can conclude (Theorem 3 . 1 5) that BA = I. Accordingly, A and B are inverses. 
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2.18.  Find the inverse, if possible, of each matrix: 

(a) A = [ � ; l (b) B =  [ � -3 ] 
3 ' (c) [ -2 6 ] 

3 -9 ' 

Use the formula for the inverse of a 2 x 2 matrix appearing in Section 2.9 . 
(a) First find IA I = 5(2) - 3(4) = 10 - 12 = -2. Next interchange the diagonal elements, take the 

negatives of the nondiagonal elements, and multiply by 1 / IA I : 

A- I = -H -� -n = [ -� -n 
(b) First find IB I = 2(3) - (-3)( 1 ) = 6 + 3 = 9. Next interchange the diagonal elements, take the negatives 

of the nondiagonal elements, and multiply by l / IB I :  

B- 1 = � [ 3 3 ] = [ t t ] 
9 - 1 2 _ 1  £ 9 9 

(c) First find I C I = -2(-9) - 6(3) = 1 8 - 1 8 = O. Since I C I = 0, C has no inverse. 

Multiplying A by A- I and setting the nine entries equal to the nine entries of the identity matrix I yields 
the following three systems of three equations in three of the unknowns: 

XI + YI + ZI = 1 
YI + 2z1 = 0 

XI + 2YI + 4z1 = 0 

X2 + Y2 + z2 = 0  
Y + 2z2 = 1  

X2 + 2Y2 + 4z2 = 0 
Solving the three systems for the nine unknowns yields 

XI = O, YI = 2, zl = - l ; 

Thus 

x2 = -2, Y2 = 3 , z2 = - 1 ; 

A-I = [ � -� -� l 
- 1 - 1 1 

X3 + Y3 + z3 = 0 
Y3 + 2z3 = 0 

x3 + 2Y3 + 4z3 = 1 

X3 = 1 , Y3 = -2, z3 = 1 

(Remark: The next chapter gives an efficient way for solving the three systems.) 

2.20. Let A and B be invertible matrices (with the same size) . Show that AB is also invertible and 
(AB)- i = B- iA- i . [Thus, by induction, (A iA2 " . Am)- i = A;;; i . . .  Al iA;- i . ]  

Using the associativity of matrix multiplication, we get 

(AB)(B- IA- I ) = A(BB- I )A- I = AlA- I = AA-I = 1 
(B- IA- I )(AB) = B-I (A- IA)B = A-lIB = B-IB = I 

Thus (AB)- I = B-IA- I . 
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DIAGONAL AND TRIANGULAR MATRICES 

2.21 .  Write out the diagonal matrices A = diag(4 , -3 , 7), B = diag(2 , -6), C = diag(3 , - 8 , 0 , 5) , 
Put the given scalars on the diagonal and O's elsewhere: [ 4 0 0 ] 

A = 0 -3 0 , 
o 0 7 

2.22. Let A = diag(2 , 3 ,  5) and B = diag(7 , 0, -4) . Find: 

(a) AB, A2 , B2 , (b) f(A), where f(x) = x2 + 3x - 2, 

(a) The product matrix AB is a diagonal matrix obtained by multiplying corresponding diagonal entries; 
hence 

AB = diag(2(7), 3(0) , 5(-4)) = diag( 14 , 0, -20) 
Thus the squares A2 and B2 are obtained by squaring each diagonal entry; hence 

and B2 = diag(49 , 0, 1 6) 
(b) f(A) is a diagonal matrix obtained by evaluatingf(x) at each diagonal entry. We have 

f(2) = 4 + 6 - 2 = 8 , 
Thusf(A) = diag(8 , 16 , 3 8) . 

f(3) = 9 + 9 - 2 = 1 6 , f(5) = 25 + 1 5 - 2 = 38 

(c) The inverse of a diagonal matrix is a diagonal matrix obtained by taking the inverse (reciprocal) of each 
diagonal entry. Thus A- I = diag(! , t , !), but B has no inverse since there is a 0 on the diagonal. 

2.23. Find a 2 x 2 matrix A such that A2 is diagonal but not A .  

Let A = [ � _ n. Then A2 = [ � � l which i s diagonal. 
2.24. Find an upper triangular matrix A such that A3 = [ � -;� ] . 

Set A = [ � � ] . Then � = 8, so x = 2; and ? = 27, so z = 3 . Next calculate A3 using x = 2 and 
Y =  3 : 

and 

[ 2 -3 ] Thus 19y = -57, or y = -3. Accordingly, A = 0 3 ' 

2.25. Let A = [aij] and B = [bij] be upper triangular matrices. Prove that AB is upper triangular with 
diagonal a l 1 b l 1 ' a22b22 ' . . .  , annbnn . 

Let AB = [cij] ' Then cij = L�=I aikbkj and Cii = L�=I aikbld ' Suppose i > j. Then, for any k, either i > k 
or k > j, so that either aik = 0 or bkj = O. Thus cij = 0, and AB is upper triangular. Suppose i = j. Then, for 
k < i, we have aik = 0; and, for k > i, we have bid = O. Hence Cii = aiibii ' as claimed. [This proves one part of Theorem 2.5(i); the statements for A + B and kA are left as exercises.] 
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SPECIAL REAL MATRICES: SYMMETRIC AND ORTHOGONAL 

2.26. Determine whether or not each of the following matrices is symmetric, that is, AT = A, or 
skew-symmetric, i .e . ,  AT = -A :  

A � H -7 � } B
� H 4 -3 ] 

c =  [ � 0 � ] (a) 8 (b) 0 5 , (c) 0 2 -4 -5 0 

(a) By inspection, the symmetric elements (mirror images in the diagonal) are -7 and -7, I and 1 ,  2 and 2 . 
Thus A is symmetric, since symmetric elements are equal. 

(b) By inspection, the diagonal elements are all 0, and the symmetric elements, 4 and -4, -3 and 3, and 5 
and -5, are negatives of each other. Hence B is skew-symmetric. 

(c) Since C is not square, C is neither symmetric nor skew-symmetric. 

2.27. Find x and B, if B = [ 2x � 3 � !  � ] is symmetric .  

Set the symmetric elements x + 2 and 2x - 3 equal to each other, obtaining 2x - 3 = x + 2 or x = 5. 

Hence B = [ ;  � l 
2.28. Let A be an arbitrary 2 x 2 (real) orthogonal matrix. 

(a) Prove: If (a , b) is the first row of A, then a2 + b2 = 1 and 

A = [ a b ] -b a or 

(b) Prove Theorem 2 .7 :  For some real number e, 

A = [ c�s e  
- sm e 

Sin e ] 
cas e or A = [ c�s e  

sm e 
sin e ] 

- cas e 

(a) Suppose (x, y) is the second row of A . Since the rows of A form an orthonormal set, we get 

� + I = 1 ,  ax + by = O  

Similarly, the columns form an orthogonal set, so 

Therefore, :x? = I - a2 = b2 , whence x = ±b. 
Case (i): x = b.  Then b(a + y) = 0, so y = -a. 
Case (ii): x = -b. Then b(y - a) = 0, so y = a. 

This means, as claimed, 

A = [ a b J -b a or 

ab + xy = O  

A = [ a b J b -a 

(b) Since a2 + b2 = 1 ,  we have - 1  � a � 1 . Let a = cos 8. Then b2 = 1 - cos2 8, so b = sin 8. This proves 
the theorem. 
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2.29. Find a 2 x 2 orthogonal matrix A whose first row is a (positive) multiple of (3 , 4), 
Normalize (3 , 4) to get (� , �). Then, by Problem 2.28, 

or 

5 1  

2.30. Find a 3 x 3 orthogonal matrix P whose first two rows are multiples of ul = ( 1 , 1 , 1 )  and 
U2 = (0, - 1 ,  1 ), respectively. (Note that, as required, ul and U2 are orthogonal.) 

First find a nonzero vector U3 orthogonal to UI and U2 ; say (cross product) U3 = UI X U2 = (2 , - 1 , - 1) . Let A be the matrix whose rows are UI , U2 , u3 ; and let P be the matrix obtained from A by normalizing the 
rows of A. Thus [ 1 1 1 ] 

A = 0 - 1 1 
2 - 1 - 1 

and 
[ 1 /.J3 1/.J3 1/.J3 ] 

P =  0 - l /v"i l/v"i 
2/../6 - 1/../6 - 1/../6 

COMPLEX MATRICES:  HERMITIAN AND UNITARY MATRICES 

. H . _ [ 3 - 5i 2 + 4i ] 
2.31 .  Fmd A where. (a) A - 6 + 7i 1 + 8i ' 

[ 2 - 3i  
(b) A = -4 

-6 - i 
Recall that AH = ;F,  the conjugate tranpose of A. Thus 

(a) AH = [ 3 + 5i 6 - 7i ] (b) AH = [ 2 + 3i -4 
2 - 4i 1 - 8i ' 5 - 8i 3 + 7i 

2.32. Show that A = [ ��l/ 2 . ] - l  
_ 1

3 
_ 6 i 

is unitary. 
3 3 

The rows of A form an orthonormal set: 

Thus A is unitary. 

-6 + i ] 
-5i 

5 + 8i ] 
3 - 7i 

5i 

2.32. Prove the complex analogue of Theorem 2.6 : Let A be a complex matrix. Then the following are 
equivalent. (i) A is unitary. (ii) The rows of A form an orthonormal set. (iii) The colunms of A form 
an orthonormal set. 

(The proof is almost identical to the proof on page 38 for the case when A is a 3 x 3 real 
matrix.) 

First recall that the vectors Ul , U2 , . • .  , un in Cn form an orthonormal set if they are unit vectors 
and are orthogonal to each other, where the dot product in Cn is defined by 

(ai ' a2 , . . • , an) . (bl , b2 , . . .  , bn) = al bl + a2b2 + . . .  + anbn 
Suppose A is unitary, and R I ' R2 , • • •  , Rn are its rows. Then Rf , RJ , . . .  , R� are the columns of AH. Let 
AAH = [cij] '  By matrix multiplication, cij = RjR! = Rj . Rj • Since A is unitary, we have AAH = I. Multiplying 
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A by AH and setting each entry cij equal to the corresponding entry in I yields the following n2 equations: 
RI · RI = l , R2 · R2 = 1 , Rn · Rn = l , and Ri · Rj = O, for i =/=i 

Thus the rows of A are unit vectors and are orthogonal to each other; hence they form an orthonormal set of 
vectors. The condition AT A = I similarly shows that the columns of A also form an orthonormal set of 
vectors. Furthermore, since each step is reversible, the converse is true. This proves the theorem. 

BLOCK MATRICES 

2.33. Consider the following block matrices (which are partitions of the same matrix) : 

(a) I ;  _ _  -l � � _;� __ � l ,  (b) �t =-3= �H= =-� l t 3 l 1 4 5 1 9 j t 3 1 4 1 5 9  
Find the size of each block matrix and also the size of each block. 

(a) The block matrix has two rows of matrices and three colunms of matrices; hence its size is 2 x 3 . The 
block sizes are 2 x 2, 2 x 2, and 2 x 1 for the first row; and 1 x 2, 1 x 2, and 1 x 1 for the second row. 

(b) The size of the block matrix is 3 x 2; and the block sizes are 1 x 3 and 1 x 2 for each of the three rows. 

2.34. Compute AB using block multiplication, where 

2.35. 

f l 2 1 l l 
A = t �  -} i -�-J and 

f l 2 3 : l l 
B = 

t � -�- -�- : -�j [ E F ] [ R S ] . Here A = 0 G and B = 0 T ' where E, F, G, R, S, T are the glVen blocks, and 0l x2 and I x2 I x 3 
0 1 x3 are zero matrices of the indicated sites. Hence 

_ [ ER ES + FT ] _ 
[[ 9 1 2  1 5 ] AB - 0 GT - 1 9  26 33 I x3 

[ 0  0 0] 

Let M = diag(A , B, C), where A = [ � � l B = [5], C = [ ! 

so 

Since M is block diagonal, square each block: 
A2 = [ l � ;� l B2 = [25] , C2 = [ 1 6  24 ] 40 64 ' 

MISCELLANEOUS PROBLEM 

2.36. Let f(x) and g(x) be polynomials and let A be a square matrix. Prove: 

(a) (f + g)(A) = f(A) + g(A), 
(b) (f . g)(A) = f(A)g(A), 
(c) f(A)g(A) = g(A)f(A). 
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(a) We can assume r = s = n by adding powers of x with 0 as their coefficients. Then 
n f(x) + g(x) = L(ai + b;)Xi i= 1  n n Hence (f + g)(A) = L(ai + b;)Ai = L biAi = f(A) + g(A) ;=1 i=1 

(b) We havef(x)g(x) = L a;hfxi+j. Then iJ 

f(A)g(A) = ( � aiA) ( y bjAi) = tr aibjAi+j = (fg)(A) 

(c) Usingf(x)g(x) = g(x)f(x), we have 
f(A)g(A) = (fg)(A) = (gf )(A) = g(A)f(A) 

Supplementary Problems 
ALGEBRA OF MATRICES 

Problems 2.37-2.40 refer to the following matrices: 

2.37. Find: (a) 5A - 2B, (b) 2A + 32B, (c) 2C - 3D. 
2.38. Find: (a) AB and (AB)C, (b) BC and A(BC). [Note that (AB)C = A(BC) . ] 

2.39. Find: (a) AZ and A3, (b) AD and BD, (c) CD. 
2.40. Find: (a) AT, (b) BT, (c) (ABl, (d) ATBT . [Note that ATBT i= (ABl . ] 

Problems 2.41 and 2.42 refer to the following matrices: 

[ 1 -1 2 J A =  0 3 4 ' [ 4 0 -3 J B = - 1 -2 3 ' 

2.41.  Find: (a) 3A - 4B, (b) AC, (c) BC, (d) AD, (e) BD, (f) CD. 

2.42. Find: (a) AT, (b) ATB, (c) ATC. 

© The McGraw-Hili 
Companies, 2004 

2.43. Let A = [ � � J .  Find a 2 x 3 matrix B with distinct nonzero entries such that AB = O. 

2.44 Let e1 = [ 1 , 0 , 0], ez = [0, 1 , 0] , e3 = [0, 0 , 1 ] , and A = [ �: �� �� �: ] . Find e1A, ezA, e3A . 
c1 Cz c3 c4 

2.45. Let ei = [0, . . .  , 0, 1 ,  0, . . .  , 0], where 1 is the ith entry. Show: 
(a) eiA = Ai ' ith row of A . 
(b) BeJ = J3i, }th colunm of B. 

(c) If eiA = eiB, for each i, then A = B. 
(d) If AeJ = BeJ, for each ), then A = B. 

2.46. Prove Theorem 2.2(iii) and (iv): (iii) (B + C)A = BA + CA, (iv) k(AB) = (kA)B = A(kB) . 

2.47. Prove Theorem 2.3 : (i) (A + B)T = AT + BT, (ii) (AT)T, (iii) (kA) = kAT. 

53 

2.48. Show: (a) If A has a zero row, then AB has a zero row. (b) If B has a zero column, then AB has a zero 
column. 
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SQUARE MATRICES, INVERSES 

2.49. Find the diagonal and trace of each of the following matrices: 

(a) A = [ ;  =� -� ] ,  (b) B = [ �  � -� ] ,  (c) C = [ � �5 -� ] 
4 0 - 1  2 - 5  - 1  

[ 2 -5 ] [ 4 Problems 2.50-2.52 refer to A = 3 l ' B = 1 
-2 ] [ 6 -4 ] -6 ' M =  3 -2 . 

2.50. Find: (a) A2 and A3 , (b) f(A) and g(A), where 

f(x) = x3 - aZ - 5 ,  g(x) = �  - 3x +  1 7 .  

2.51. Find: (a) B2 and B3 , (b) f(B) and g(B), where 

f(x) = � + 2x - 22, 

2.52. Find a nonzero colunm vector u such that Mu = 4u. 

g(x) = � - 3x - 6 . 

2.53. Find the inverse of each of the following matrices (if it exists) : 

© The McGraw-Hili 
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A = [ � ; l B = [ � � l C = [ -� -n , D =  [ 5 -2 ] 6 -3 

Find the inverses of A = [ �  ; ; ] and B = [ �  
- 1  

- � ] .  
1 3 7 1 3 -2 

2.54. 

2.55. Suppose A is invertible. Show that if AB = AC, then B = C. Give an example of a nonzero matrix A such that 
AB = AC but B i- C. 

2.56. 

2.57. 

Find 2 x 2 invertible matrices A and B such that A + B i- 0 and A + B is not invertible. 

Show: (a) A is invertible if and only if AT is invertible. (b) The operations of inversion and transpose 
commute, that is, (AT)- I = (A- I )T . (c) If A has a zero row or zero colunm, then A is not invertible. 

DIAGONAL AND TRIANGULAR MATRICES 

2.58. Let A = diag(1 , 2 , -3) and B = diag(2 , -5, 0) . Find: 

(a) AB, A2 , B2 , (b) f(A), where f(x) = � + 4x - 3 , (c) A- I and B- 1 • 

2.59. Let A � [ : ; J  <md B � [ �  i n (aJ Find A" . (bJ Find B" . 

2.60. Find all real triangular matrices A such that A2 = B, where: (a) B = [ � ;; l (b) B = [ � -� 1 
2.61. Let A = [ � ; ] . Find all numbers k for which A is a root of the polynomial: 

(a) f(x) = � - 7x + l O, (b) g(x) = � - 25, (c) hex) = � - 4. 

2.62. Let B = [ 2� 2� ] . Find a matrix A such that A3 = B. 
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2.64. Using only the elements 0 and 1, find the number of 3 x 3 matrices that are: (a) diagonal, 
(b) upper triangular, (c) non-singular and upper triangular. Generalize to n x n matrices. 

2.65. Let Dk = kI, the scalar matrix belonging to the scalar k. Show: 

(b) BDk = kB, 

2.66. Suppose AB = C, where A and C are upper triangular. 

(a) Find 2 x 2 nonzero matrices A , B, C, where B is not upper triangular. 
(b) Suppose A is also invertible. Show that B must also be upper triangular. 

SPECIAL TYPES OF REAL MATRICES 

2.67. Find x, y, z such that A is symmetric, where: [ 2 x 3 ] [ 7 -6 (a) A = 4 5 y ,  (b) A = y z 
z 1 7 x -2 

2.68. Suppose A is a square matrix. Show: (a) A + AT is symmetric, (b) A - AT is skew-symmetric, 
(c) A = B + C, where B is symmetric and C is skew-symmetric. 

. [ 4 5 J h f . .  d k . .  2.69. Wnte A = 1 3 as t e sum 0 a symmetnc matnx B an a s ew-symmetnc matnx C. 

2.70. Suppose A and B are symmetric. Show that the following are also symmetric: 

(a) A + B, (b) kA, for any scalar k, (c) A2 , 
(d) An , for n > 0, (e) f(A), for any polynomial f(x). 

2.71. Find a 2 x 2 orthogonal matrix P whose first row is a multiple of: 

(a) (3 , -4), (b) ( 1 , 2). 

2.72. Find a 3 x 3 orthogonal matrix P whose first two rows are multiples of: 

(a) ( 1 , 2 , 3) and (0, -2, 3), (b) ( 1 , 3 , 1 )  and ( 1 , 0 , - 1 ) .  

2.73. Suppose A and B are orthogonal matrices. Show that AT, A - \ , AB are also orthogonal. 

COMPLEX MATRICES [ 3 x + 2i 
2.75. Find real numbers x, y, z such that A is Hermitian, where A = 3 - 2i 0 

yi I - xi 

2.76. Suppose A is a complex matrix. Show that AAH and AHA are Hennitian. 

yi ] 
1 + zi . 
- I  

55 

2.77. Let A be a square matrix. Show that: (a) A + AH is Hermitian, (b) A _ AH is skew-Hermitian, (c) A = B + C, where B is Hermitian and C is skew-Hennitian. 
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2.78. Determine which of the following matrices are unitary: 

A = [ i/2 -,.[3/2 ] ,.[3/2 -i/2 ' B = � [ 1 + i 1 - i ] 2 1 - i 1 + i ' 

2.79. Suppose A and B are unitary. Show that AH, A- I , AB are unitary. 

© The McGraw-Hili 
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- 1  + i ] 
1 + i 
o 

2.80. Determine which of the following matrices are normal: A = [ 3 � 4i 
2 � 3i ] and B = [ 1 � i � ] . 

BLOCK MATRICES 

2.81. 

r l 2 1 0 0 O J [ 3 -2 1 0 0] 1 2 4 1 0 0 3 4 0 0 0 - - - - 1 - - - -
Let U = _ _  ...l _ _ _ _ _  and V = 0 0 1 1 2 .  o 0 1 5 1 2 0 0 1 2 -3 o 0 :  3 4 1 0 0 1 -4 1 1 

(a) Find UV using block multiplication. (b) Are U and V block diagonal matrices? 
(c) Is UV block diagonal? 

2.82. Partition each of the following matrices so that it becomes a square block matrix with as many diagonal blocks 
as possible: 

2.83. 

2.84. 

2.85. 

[ 1 2 0 0 0 ] 
3 0 0 0  0 

B =  0 0 4 0 0 , 
0 0 5 0 0  
o 0 0 0 6  

For each matrix M in Problem 2 .83 ,  find f(M) where f(x) = :>? + 4x - 5 . 

Suppose UY = [Uik] and V = [Vkj] are block matrices for which UV is defined and the number of columns of 
each block Uik is equal to the number of rows of each block Vkj ' Show that UV = [Wij] ' where 
W;j = Lk Uik Vkj ' 

2.86. Suppose M and N are block diagonal matrices where corresponding blocks have the same size, say 
M = diag(A) and N = diag(BJ Show: 

(i) M + N = diag(Ai + B), (iii) MN = diag(AiB), 
(ii) kM = diag(kA), (iv) f(M) = diag(f(A)) for any polynomial f(x). 
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2.37. (a) [-5 , 1 0 ; 27, -34], (b) [ 1 7 , 4 ; - 1 2 , 1 3] , (c) [-7 , -27, 1 1 ; -8 , 36 , -37] 

2.38. (a) [-7 , 14 ; 39 , -28], [2 1 , 1 05 , -98 ; - 1 7 , -285, 296] ; 
(b) [5 ,  - 1 5 , 20 ; 8 , 60, -59], [2 1 , 1 05 ,  -98; - 1 7, -285, 296] 

2.39. (a) [7 , -6 ; -9, 22] , [- 1 1 , 3 8 ; 57 , - 1 06] , 
(b) [ 1 1 , -9 ,  1 7 ; -7, 53 , -39] , [ 1 5 , 3 5 ,  -5 ; 10 ,  -98 ,  69] ; (c) not defined 

2.40. (a) [ 1 , 3 ; 2, -4] , [5 ,  -6 ; 0 , 7] , [5 ,  -5 ; 1 0 ,  -40] 

2.41.  (a) [- 1 3 , -3 , 1 8 ; 4 , 1 7 , 0] ,  (b) [-5 , -22, 4 , 5 ; 1 1 , -3 , - 12 , 1 8] , (c) [ 1 1 , - 12 , 0 , -5 ; - 1 5 , 5 , 8 , 4] , (d) [9 ; 9] , (e) [ 1 1 ; 9], (f) not defined 

2.42. (a) [ 1 , 0 ; - 1 , 3 ; 2 , 4] , 

2.43. [2 , 4 , 6 ; - 1 , -2, -3] 

(b) [4 , 0 ,  -3 ; -7, -6 , 1 2 ; 4, -8 ,  6] , (c) not defined 

2.49. (a) 2 ,  -6 , - 1 , tr(A) = -5, (b) 1 , 1 , - I , tr(B) = 1 ,  (c) not defined 

2.50. (a) [- 1 1 , - 1 5 ;  9 , - 1 4] , [-67, 40; -24, -59] , (b) [-50, 70; -42 , -46], g(A) = 0  

2.51. (a) [ 14 , 4 ; -2, 34] , [60, -52 ; 26 , -2000], (b) feB) = 0, [-4, 1 0 ; -5 , 46] 

2.52. u = [2a, af 

2.53. [3 , -4; -5 ,  7], [- � , �; 2, - 1 ] , not defined, [ 1 , - �; 2, - �] 

2.54. [ 1 , 1 , - 1 ; 2 ,  -5 , 3 ; - 1 , 2 , - 1 ] ,  [ 1 , 1 , 0 ; - 1 , -3 , 1 ; - 1 , -4, 1] 

2.55. A = [ 1 , 2 ; 1 , 2] , B = [0, 0 ; 1 , 1 ] , C = [2 , 2 ; 0 , 0] 

2.56. A = [ 1 , 2 ; 0 , 3] ; B = [4, 3 ; 3 , 0] 

2.57. (c) Hint: Use Problem 2.48 

2.58. (a) AB = diag(2 , - 1 0, 0), A2 = diag(1 , 4 , 9), B2 = diag(4, 25, 0) ; , 
(b) f(A) = diag(2 , 9 , 1 8), (c) A-I = diag( 1 , � , - t), c-I does not exist 

2.59. (a) [ 1 , 2n ; 0 , 1 ] ,  (b) [ 1 , n ,  � n(n - 1) ; 0 , 1 , n ;  0, 0 , 1 ]  

2.60. (a) [2 , 3 ; 0 , 5] , [-2, -3 ; 0 , -5] , [2 ,  -7 ; 0 , 5], [-2, 7 ; 0 , 5] , (b) none 

2.61. (a) k = 2, (b) k = -5, (c) none 

2.62. [ 1 , 0 ; 2 , 3] 

2.63. [ 1 , 2 , 1 ; 0 , 3 , 1 ; 0 , 0 , 2] 

57 
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2.64. All entries below the diagonal must be 0 to be upper triangular, and all diagonal entries must be 1 to be non-
singular. (a) 8 (2n), (b) 26 (2n(n+l )/2), (c) 23 (2n(n- l)/2) .  

2.66. (a) A = [ 1 , 1 ; 0 , 0] , B = [ 1 , 2 ; 3 , 4] , C = [4 , 6 ; 0 , 0] 

2.67. (a) x = 4, Y = 1, z = 3 ,  (b) x = 0, y = -6 ,  z any real number 

2.68. (c) Hint: Let B = � (A + AT) and C = � (A _ AT) 

2.69. B = [4 , 3 ; 3 , 3] ,  C = [0 , 2 ; -2, 0] 

(b) [ 1 /0, 2/0; 2/0, - 1 /0] 

2.72. (a) [ 1 /.JI4, 2/.JI4, 3/.JI4; 0 ,  -2/.Jf3, 3/.Jf3; 12/,JT57, -3/,JT57, -2/,JT57] 
(b) [ 1 /.JIT, 3/.JIT, 1 /.JIT; 1 /"fi, 0, - 1 /"fi; 3/"fii, -2/"fii, 3/"fii] 

2.74. A , C 

2.75. x = 3 , y = 0, z = 3  

2.77. (c) Hint: Let B = � (A + AH) and C = � (A _ AH) 

2.78. A , B, C 

2.80. A 

2.81. (a) UV = diag([7 , 6 ; 1 7 , 1 0] , [- 1 , 9 ; 7 , -5]) 

2.82. A: line between first and second rows (columns); 

(b) no, (c) yes 

B: line between second and third rows (co1unms) and between fourth and fifth rows (columns); 
C: C itself - no further partitioning of C is possible. 

2.83. (a) M2 = diag([4], [9 ,  8 ; 4 , 9] , [9]), 
M3 = diag([8] , [25 , 44 ; 22, 25] , [27]) 

(b) M2 = diag([3 , 4 ; 8, 1 1 ] ,  [9 ,  1 2 ; 24, 33]) 
M3 = diag([ l l , 1 5 ; 30 , 4 1 ] ,  [57 , 78 ; 1 56 , 2 1 3]) 

2.84. (a) diag([7] , [8 , 24; 12 , 8] , [ 1 6]), (b) diag([2 , 8 ; 1 6 , 1 8 1 ] , [8 , 20; 40, 48 1 ]) 
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Systems of Linear 
Equations 

of linear equations play an important and motivating role in the subject of linear algebra. In 
in linear algebra reduce to finding the solution of a system of linear equations. Thus 

introduced in this chapter will be applicable to abstract ideas introduced later. On the other 
abstract results will give us nevI insights into the structure and properties of systems of 

of linear equations involve scalars as both coefficients and constants, and such scalars 
any number field K. There is almost no loss in generality if the reader assumes that all our 
numbers, that is, that they come from the real field R. 

'o.:mIlTlONS. SOLUTIONS 

gives basic definitions connected with the solutions of systems of linear equations. The 
" ,:ori"hl�, for finding such solutions will be treated later. 

'q" .. ;.� and Solutions 

'"1"'/;0" in unknowns Xl'  X2_ . . .  _ Xn is an equation that can be put in the standard form 

(3.1) 

fm"·/,,,,, lerm 
A solution 

an' and b are constants. The constant ak is called the coefficient ofxb and b is called the 
equation. 
linear equation (3.1) is a list of values for the unknowns or, equivalently, a vector 1/ in 

"Y 
01 

that the fol',6";,,g statement (obtained by substituting ki for Xi in the equation) is true: 

ulkl + u2k2 + . . . + a"k" = b 

� "'''' ''-' ''''''','" say that II :suli�fie:s the equation. 

59 
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Remark: Equation (3 , I )  implicitly assumes there is an ordering of the unknowns, In order to avoid 
subscripts, we will usually use x, y for two unknowns, x, y, z for three unknowns, and x, y, z, t for four 
unknowns, and they will be ordered as shown. 

Example 3.1. Consider the following linear equation in three unknowns x, y, z: 

x + 2y - 3z = 6 

We note that x = 5 ,  y = 2, z = 1 ,  or, equivalently, the vector u = (5 , 2 ,  1) is a solution of the equation. That is, 

5 + 2(2) - 3( 1 )  = 6 or 5 + 4 - 3 = 6  or 6 = 6 

On the other hand, w = ( 1 , 2, 3) is not a solution, since, on substitution, we do not get a true statement: 

1 + 2(2) - 3 (3) = 6 or 1 + 4 - 9 = 6  or - 4 = 6  

System of Linear Equations 

A system of linear equations is a list of linear equations with the same unknowns. In particular, a 
system of m linear equations LI , L2 , . . .  , Lm in n unknowns xI ' x2 , . . .  , xn can be put in the standard form 

a l lxl + a 12x2 + . . .  + a lnxn = bl 

(3 .2) 

where the aij and bi are constants. The number aij is the coefficient of the unknown Xj in the equation Li , 
and the number bi is the constant of the equation Li . 

The system (3 .2) is called an m x n (read: m by n) system. It is called a square system if m = n, that is, 
if the number m of equations is equal to the number n of unknowns. 

The system (3 .2) is said to be homogeneous if all the constant terms are zero, that is, if bl = 0, 
b2 = 0 ,  . . .  , bm = O .  Otherwise the system is said to be nonhomogeneous. 

A solution (or a particular solution) of the system (3 .2) is a list of values for the unknowns or, 
equivalently, a vector u in Kn, that is a solution of each of the equations in the system. The set of all 
solutions of the system is called the solution set or the general solution of the system. 

Example 3.2. Consider the following system of linear equations: 

Xl + Xl + 4X3 + 3X4 = 5 
2xl + 3xl + x3 - 2x4 = 1 
Xl + 2Xl - 5x3 + 4X4 = 3 

It is a 3 x 4 system since it has 3 equations in 4 unknowns. Determine whether (a) u = (-8 , 6 , 1 , 1 )  and 
(b) v = (- 10 , 5 ,  1 , 2) are solutions of the system. 

(a) Substitute the values of u in each equation, obtaining 
-8 + 6 + 4( 1 )  + 3( 1 )  = 5 

2(-8) + 3(6) + 1 - 2( 1 )  = 1 
-8 + 2(6) - 5( 1 )  + 4( 1 )  = 3 

or 
or 
or 

-8 + 6 + 4 + 3  = 5 
- 1 6  + 1 8  + 1 - 2 = 1 
-8 + 1 2  - 5 + 4  = 3 

or 
or 
or 

Yes, u is a solution of the system since it is a solution of each equation. 

(b) Substitute the values of v into each successive equation, obtaining 
- 1 0  + 5 + 4( 1 )  + 3(2) = 5 

2( - 1 0) + 3(5) + 1 - 2(2) = 1 
or 
or 

- 1 0 + 5 + 4 + 6 = 5  or 
-20 + 1 5  + 1 - 4 = 1 or 

5 = 5  
1 = 1 
3 = 3  

5 = 5  
-8 = 1 

No, v is not a solution of the system, since it is not a solution of the second equation. (We do not need to 
substitute v into the third equation.) 
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The system (3 .2) o f  linear equations i s  said to b e  consistent i f  it has one or more solutions, and it is 
said to be inconsistent if it has no solution. If the field K of scalars is infinite, such as when K is the real 
field R or the complex field C, then we have the following important result. 

Theorem 3 .1 :  Suppose the field K i s  infinite. Then any system !£ of linear equations has either: 
(i) a unique solution, (ii) no solution, or (iii) an infinite number of solutions. 

This situation is pictured in Fig. 3- 1 .  The three cases have a geometrical description when the system 
!£ consists of two equations in two unknowns (Section 3 .4). 

System ,of linear equations 

No 
solution 

Augmented and Coefficient Matrices of a System 

Unique 
solution 

Fig. 3-1 

Consider again the general system (3 .2) of m equations in n unknowns. Such a system has associated 
with it the following two matrices: 

M = [.��� . . . . . ��� . . . . ... : . .. . . . .  �.�� . . . . .  ��. ]  
ami am2 . • .  amn bn 

and A = [ ��.: . . . . . ��� . . . . . : ... : . . . . ���. ] ami am2 . • .  amn 

The first matrix M is called the augmented matrix of the system, and the second matrix A is called the 
coefficient matrix. 

The coefficient matrix A is simply the matrix of coefficients, which is the augmented matrix M without 
the last column of constants. Some texts write M = [A , B] to emphasize the two parts of M, where B 
denotes the column vector of constants. The augmented matrix M and the coefficient matrix A of the 
system in Example 3 .2 are as follows : 

1 
3 
2 

4 
1 

-5 

3 
-2 

4 
and 

1 
3 
2 

4 
1 

-5 -n 
As expected, A consists of all the columns of M except the last, which is the column of constants. 

Clearly, a system of linear equations is completely determined by its augmented matrix M, and vice 
versa. Specifically, each row of M corresponds to an equation of the system, and each column of M 
corresponds to the coefficients of an unknown, except for the last column, which corresponds to the 
constants of the system. 
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Degenerate Linear Equations 

A linear equation is said to be degenerate if all the coefficients are zero, that is, if it has the form 

OX1 + OX2 + ' . .  + OXn = b 

The solution of such an equation only depends on the value of the constant b. Specifically: 

(i) If b -I- 0, then the equation has no solution. 

(ii) If b = 0, then every vector u = (k] , k2 , . • .  , kn) in Kn is a solution. 

The following theorem applies. 

(3 .3 )  

Theorem 3.2 :  Let !£ be a system of linear equations that contains a degenerate equation L, say with 
constant b. 
(i) If b -I- 0, then the system !£ has no solution. 

(ii) If b = 0, then L may be deleted from the system without changing the solution set of 
the system. 

Part (i) comes from the fact that the degenerate equation has no solution, so the system has no solution. 
Part (ii) comes from the fact that every element in Kn is a solution of the degenerate equation. 

Leading Unknown in a Nondegenerate Linear Equation 

Now let L be a nondegenerate linear equation. This means one or more of the coefficients of L are not 
zero . By the leading unknown of L, we mean the first unknown in L with a nonzero coefficient. For 
example, X3 and y are the leading unknowns, respectively, in the equations 

and Ox + 2y - 4z = 5 

We frequently omit terms with zero coefficients, so the above equations would be written as 

and 2y - 4z = 5 

In such a case, the leading unknown appears first. 

3.3 EQUIVALENT SYSTEMS, ELEMENTARY OPERATIONS 

Consider the system (3 .2) of m linear equations in n unknowns. Let L be the linear equation obtained 
by multiplying the m equations by constants C1 , C2 , . . .  , Cm ' respectively, and then adding the resulting 
equations. Specifically, let L be the following linear equation: 

Then L is called a linear combination of the equations in the system. One can easily show (Problem 3 .43) 
that any solution of the system (3 .2) is also a solution of the linear combination L. 
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Example 3,3, Let L" L2 , L3 denote, respectively, the three equations in Example 3 .2 . Let L be the equation obtained by 
multiplying L" L2 , L3 by 3 ,  -2, 4, respectively and then adding. Namely, 

3L, : 
-2L2 : 

4L, :  

(Sum) L: 

3x, + 3x2 + 1 2x3 + 9x4 = 1 5  
-4xj - 6X2 - 2X3 + 4X4 = -2 

4xj + 8x2 - 20x3 + 1 6x4 = 1 2  

Then L i s  a linear combination of  Lj , L2 , L3 . As  expected, the solution u = (-8 , 6 ,  I ,  I )  of  the system i s  also a 
solution of L. That is, substituting u in L, we obtain a true statement: 

3( -8) + 5(6) - 1 0( 1 )  + 29( 1 )  = 25 or -24 + 30 - 10 + 29 = 25 or 9 = 9  

The following theorem holds. 

Theorem 3.3 :  Two systems o f  linear equations have the same solutions i f  and only i f  each equation in 
each system is a linear combination of the equations in the other system. 

Two systems of linear equations are said to be equivalent if they have the same solutions. The next 
subsection shows one way to obtain equivalent systems of linear equations. 

Elementary Operations 

The following operations on a system of linear equations LJ , L2 , . . .  , Lm are called elementary 
operations. 
[Ed Interchange two of the equations. We indicate that the equations Li and Lj are interchanged by 

writing: 

"Interchange Li and L/ or 

[E2] Replace an equation by a nonzero multiple of itself We indicate that equation Li is replaced by kLi 
(where k i- 0) by writing 

"Replace Li by kLi " or 

[E3 ] Replace an equation by the sum of a multiple of another equation and itself. We indicate that 
equation Lj is replaced by the sum of kLi and Lj by writing: 

"Replace Lj by kLi + L/ or "kLi + Lj --+ L/ 

The arrow --+ in [E2] and [E3 ] may be read as "replaces" .  

The main property of  the above elementary operations i s  contained in the following theorem (proved in 
Problem 3 .45). 

Theorem 3.4: Suppose a system of .,I{ of linear equations is obtained from a system se of linear 
equations by a finite sequence of elementary operations. Then .,I{ and se have the same 
solutions. 

Remark: Sometimes (say to avoid fractions when all the given scalars are integers) we may apply 
[E2] and [E3 ] in one step, that is, we may apply the following operation: 

[E] Replace equation Lj by the sum of kLi and k'Lj (where k' i- 0), written 

"Replace Lj by kLi + k' Lj" or 

We emphasize that in operations [E3 ] and [E], only equation Lj is changed. 
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Gaussian elimination, our main method for finding the solution of a given system of linear 
equations, consists of using the above operations to transform a given system into an equivalent 
system whose solution can be easily obtained, 

The details of Gaussian elimination are discussed in subsequent sections. 

3.4 SMALL SQUARE SYSTEMS OF LINEAR EQUATIONS 

This section considers the special case of one equation in one unknown, and two equations in two 
unknowns. These simple systems are treated separately since their solution sets can be described 
geometrically, and their properties motivate the general case. 

Linear Equation in One Unknown 

The following simple basic result is proved in Problem 3 .5 .  

Theorem 3.4: Consider the linear equation ax = b. 
(i) If a i- 0, then x = b/a is a unique solution of ax = b. 

(ii) If a = 0, but b i- 0, then ax = b has no solution. 

(iii) If a = ° and b = 0, then every scalar k is a solution of ax = b. 

Example 3.4. Solve: 

(a) 4x - 1 = x + 6, (b) 2x - 5 - x = x + 3, (c) 4 + x - 3 = 2x + 1 - x. 

(a) Rewrite the equation in standard form obtaining 3x = 7. Then x = 1 is the unique solution [Theorem 3 .4(i)] . 

(b) Rewrite the equation in standard form, obtaining Ox = 8. The equation has no solution [Theorem 3 .4(ii)] . 

(c) Rewrite the equation in standard form, obtaining Ox = O. Then every scalar k is a solution [Theorem 3 .4(iii)] . 

System of Two Linear Equations in Two Unknowns (2 x 2 System) 

Consider a system of two nondegenerate linear equations in two unknowns x and y, which can be put 
in the standard form 

A lx + Bly = CI 

A2x + BlY = C2 
(3 .4) 

Since the equations are nondegenerate, A l and BI are not both zero, and A2 and B2 are not both zero . 
The general solution of the system (3 .4) belongs to one of three types as indicated in Fig. 3 - 1 . If R is 

the field of scalars, then the graph of each equation is a line in the plane R
2 

and the three types may be 
described geometrically as pictured in Fig. 3-2 . Specifically: 

( 1 )  The system has exactly one solution. 
Here the two lines intersect in one point [Fig. 3-2(a)] . This occurs when the lines have distinct slopes 
or, equivalently, when the coefficients of x and y are not proportional: 

A l BI 
- i- - or, equivalently, 
A2 B2 

For example, in Fig. 3-2(a), 1 /3  i- - 1 /2 .  
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Lj : x - y � -1 
L2: 3x + 2y � 12  

(2) The system has no solution. 
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Lj : x + 3y � 3 
L2: 2x + 6y � -8 

(b) 

Fig. 3-2 

y 

6 

-3 
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Lj : x + 2y � 4 
L2: 2x + 4y � 8 

(c) 
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x 

Here the two lines are parallel [Fig. 3-2(b)] . This occurs when the lines have the same slopes but 
different y intercepts, or when 

For example, in Fig. 3-2(b), 1 /2 = 3/6 -I- -3/8 .  
(3) The system has an infinite number of solutions . 

Here the two lines coincide [Fig. 3-2(c)] . This occurs when the lines have the same slopes and same y 
intercepts, or when the coefficients and constants are proportional, 

For example, in Fig. 3-2(c), 1 /2 = 2/4 = 4/8 .  

Remark: The following expression and its value is called a determinant of order two : 

Determinants will be studied in Chapter 9. Thus the system (3 .4) has a unique solution if and only if the 
determinant of its coefficients is not zero . (yVe show later that this statement is true for any square system 
of linear equations.) 

Elimination Algorithm 

The solution to system (3 .4) can be obtained by the process of elimination, whereby we reduce the 
system to a single equation in only one unknown. Assuming the system has a unique solution, this 
elimination algorithm has two parts. 
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Algorithm 3 .1 :  The input consists of two nondegenerate linear equations LJ and L2 in two unknowns 
with a unique solution. 

Part A. (Forward Elimination) Multiply each equation by a constant so that the resulting coefficients of 
one unknown are negatives of each other, and then add the two equations to obtain a new 
equation L that has only one unknown. 

Part B. (Back-substitution) Solve for the unknown in the new equation L (which contains only one 
unknown), substitute this value of the unknown into one of the original equations, and then 
solve to obtain the value of the other unknown. 

Part A of Algorithm 3 . 1  can be applied to any system even if the system does not have a unique 
solution. In such a case, the new equation L will be degenerate and Part B will not apply. 

Example 3.5 (Unique Case) . Solve the system 

Lj : 2x - 3y = -8 
L2 : 3x + 4y = 5 

The unknown x is eliminated from the equations by forming the new equation L = -3Lj + 2L2 • That is, we 
multiply Lj by -3 and L2 by 2 and add the resulting equations as follows: 

Addition : 

-6x + 9y = 24 
6x + 8y = 1 0  

l 7y = 34 

We now solve the new equation for y, obtaining y = 2. We substitute y = 2 into one of the original equations, say Lj ,  
and solve for the other unknown x, obtaining 

2x - 3(2) = -8 or 2x - 6 = 8  or 2x = -2 or x = - 1  

Thus x = - 1 ,  Y = 2 ,  or the pair u = (- 1 , 2) i s  the unique solution o f  the system. The unique solution i s  expected, 
since 2/3 i- -3/4. [Geometrically, the lines corresponding to the equations intersect at the point (- 1 , 2) . ] 

Example 3.6. (Nonunique Cases) 

(a) Solve the system 
Lj : x - 3y = 4 
L2 : -2x + 6y = 5  

We eliminated x from the equations by multiplying Lj by 2 and adding it to Lz , that is, by forming the new 
equation L = 2Lj + L2 . This yields the degenerate equation 

Ox + Oy = 1 3  

which has a nonzero constant b = 1 3 .  Thus this equation and the system has no solution. This i s  expected, since 
1 /( -2) = -3/6 i- 4/5 . (Geometrically, the lines corresponding to the equations are parallel .) 

(b) Solve the system 

Lj : x - 3y = 4 
L2 : -2x + 6y = -8 

We eliminated x from the equations by multiplying Lj by 2 and adding it to Lz , that is, by forming the new 
equation L = 2Lj + L2 . This yields the degenerate equation 

Ox + Oy = O  

where the constant term is also zero. Thus the system has an infinite number of solutions, which correspond to the 
solutions of either equation. This is expected, since 1 /(-2) = -3/6 = 4/(-8). (Geometrically, the lines 
corresponding to the equations coincide.) 
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To find the general solution, let y = a, and substitute into Ll to obtain 

x - 3a = 4 or X = 3a + 4 
Thus the general solution of the system is 

x = 3a + 4 ,y = a  or u = (3a + 4, a) 
where a (called a parameter) is any scalar. 

3.5 SYSTEMS IN TRIANGULAR AND ECHELON FORM 
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The main method for solving systems of linear equations, Gaussian elimination, is treated in Section 
3 .6 .  Here we consider two simple types of systems of linear equations : systems in triangular form and the 
more general systems in echelon form. 

Triangular Form 

Consider the following system of linear equations, which is in triangular form : 

2Xl + 3x2 + 5x3 - 2x4 = 9 
5x2 - x3 + 3x4 = 1 

7x3 - X4 = 3 
2x4 = 8 

That is, the first unknown Xl is the leading unknown in the first equation, the second unknown X2 is the 
leading unknown in the second equation, and so on. Thus, in particular, the system is square and each 
leading unknown is directly to the right of the leading unknown in the preceding equation. 

Such a triangular system always has a unique solution, which may be obtained by back-substitution .  
That is :  

( 1 )  First solve the last equation for the last unknown to get X4 = 4 .  
(2) Then substitute this value x4 = 4 in the next-to-last equation, and solve for the next-to-last unknown 

X3 as follows: 

7X3 - 4 = 3 or or 

(3) Now substitute X3 = 1 and X4 = 4 in the second equation, and solve for the second unknown X2 as 
follows: 

5X2 - 1 + 12 = 1 or 5X2 + 1 1  = 1 or or 

(4) Finally, substitute X2 = -2, x3 = 1 ,  X4 = 4 in the first equation, and solve for the first unknown Xl as 
follows: 

2x1 + 6 + 5 - 8 = 9 or or or 

Thus xl = 3 ,  x2 = -2, x3 = 1 ,  X4 = 4, or, equivalently, the vector u = (3 , -2 , 1 , 4) is the unique solution 
of the system. 

Remark. There is an alternative form for back-substitution (which will be used when solving a 
system using the matrix format) . Namely, after first finding the value of the last unknown, we substitute this 
value for the last unknown in all the preceding equations before solving for the next-to-last unknown. This 
yields a triangular system with one less equation and one less unknown. For example, in the above 
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triangular system, we substitute X4 = 4 in all the preceding equations to obtain the triangular system 

2x1 - 3x2 + 5x3 = 1 7  

5x2 - X3 = - 1  

7x3 = 7 

We then repeat the process using the new last equation. And so on. 

Echelon Form, Pivot and Free Variables 

The following system of linear equations is said to be in echelon form: 

2x1 + 6x2 - X3 + 4x4 - 2xs = 7 

X3 + 2x4 + 2xs = 5 
3x4 - 9xs = 6 

That is, no equation is degenerate and the leading unknown in each equation other than the first is to the 
right of the leading unknown in the preceding equation. The leading unknowns in the system, XI , x3 ' X4 , are 
called pivot variables and the other unknowns, X2 and xs, are called free variables. 

Generally speaking, an echelon system or a system in echelon form has the following form: 

a l lxl + a 12x2 + a 13x3 + a l4x4 + . . .  + a lnxn = hi 
a2hxh + a2J2+lxh+1 + . . .  + a2nXn = h2 (3 .4) 

where 1 < h  < . . .  < jr and a l l , a2h ' . . .  , arj, are not zero . The pivot variables are Xl > xh ' . . .  , Xj, Note 
that r � n .  

The solution set of any echelon system i s  described in the following theorem (proved in  Problem 3 . 1 0) .  

Theorem 3.5 :  Consider a system of linear equations in echelon form, say with r equations in n 
unknowns. There are two cases .  

(i) r = n. That is, there are as many equations as unknowns (triangular form). Then the 
system has a unique solution. 

(ii) r < n. That is, there are more unknowns than equations. Then we can arbitrarily 
assign values to the n - r free variables and solve uniquely for the r pivot variables, 
obtaining a solution of the system. 

Suppose an echelon system does contain more unknowns than equations. Assuming the field K is 
infinite, the system has an infinite number of solutions, since each of the n - r free variables may be 
assigned any scalar. 

The general solution of a system with free variables may be described in either of two equivalent ways, 
which we illustrate using the above echelon system where there are r = 3 equations and n = 5 unknowns. 
One description is called the "Parametric Form" of the solution, and the other description is called the 
"Free-Variable Form" . 

Parametric Form 

Assign arbitrary values, called parameters, to the free variables X2 and xs, say X2 = a and Xs = h, and 
then use back-substitution to obtain values for the pivot variables Xl > X3 , Xs in terms of the parameters a and 
h. Specifically: 



Lipschulz-Lipson:Schaum's I 3, Systems of Linear 

Outline ofTheory and Equations 

Problems of Linear 

Algebra,3/e 

I Text 

CHAP. 3] SYSTEMS OF LINEAR EQUATIONS 

( 1 )  Substitute X5 = b in the last equation, and solve for X4 : 

3X4 - 9b = 6 or 3X4 = 6 + 9b or X4 = 2 + 3b 

(2) Substitute X4 = 2 + 3b and X5 = b into the second equation, and solve for x3 : 

© The McGraw-Hili 
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X3 + 2(2 + 3b) + 2b = 5 or X3 + 4 + 8b = 5 or X3 = 1 - 8b 

(3) Substitute X2 = a, X3 = 1 - 8b, X4 = 2 + 3b, X5 = b into the first equation, and solve for Xl : 

2x1 + 6a - ( 1  - 8b) + 4(2 + 3b) - 2b = 7 or Xl = 4 - 3a - 9b 

Accordingly, the general solution in parametric form is 

Xl = 4 - 3a - 9b, X3 = 1 - 8b, X4 = 2 + 3b , X5 = b 

or, equivalently, 

v = (4 - 3a - 9b, a ,  1 - 8b, 2 + 3b ,  b) 

where a and b are arbitrary numbers . 

Free-Variable Form 

69 

Use back-substitution to solve for the pivot variables Xl > x3 , X4 directly in terms of the free variables X2 
and X5 ' That is, the last equation gives x4 = 2 + 3X5 ' Substitution in the second equation yields 
x3 = 1 - 8x5 '  and then substitution in the first equation yields Xl = 4 - 3X2 - 9x5 ' Accordingly, 

Xl = 4 - 3X2 - 9x5 , X2 = free variable, X3 = 1 - 8x5 , 

or, equivalently, 

v = (4 - 3x2 - 9x5 ' X2 , 1 - 8x5 ' 2 + 3x5 ' x5 ) 

is the free-variable form for the general solution of the system. 

X5 = free variable 

We emphasize that there is no difference between the above two forms of the general solution, and the 
use of one or the other to represent the general solution is simply a matter of taste . 

Remark: A particular solution of the above system can be found by assigning any values to the free 
variables and then solving for the pivot variables by back-substitution. For example, setting X2 = 1 and 
X5 = 1 ,  we obtain 

X4 = 2 + 3 = 5 ,  x3 = 1 - 8 = -7 ,  Xl = 4 - 3 - 9 = -8 

Thus u = (-8 , - 1 ,  7 ,  5 , 1 )  is the particular solution corresponding to X2 = 1 and x5 = 1 .  

3.6 GAUSSIAN ELIMINATION 

The main method for solving the general system (3 .2) of linear equations is called Gaussian 
elimination . It essentially consists of two parts: 

Part A. (Forward Elimination) Step-by-step reduction of the system yielding either a degenerate equation 
with no solution (which indicates the system has no solution) or an equivalent simpler system in 
triangular or echelon form. 

Part B. (Backward Elimination) Step-by-step back-substitution to find the solution of the simpler 
system. 
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Part B has already been investigated in Section 3 .4 .  Accordingly, we need only give the algorithm for 
Part A, which is as follows. 

Algorithm 3.2 for (part A) : 

Input: The m x n system (3 .2) of linear equations. 

Elimination Step : Find the first unknown in the system with a nonzero coefficient (which now must be 
XI ) '  

(a) Arrange so that a l l  i= O. That is, if necessary, interchange equations so that the first unknown XI 
appears with a nonzero coefficient in the first equation. 

(b) Use a I I  as a pivot to eliminate X I from all equations except the first equation. That is, for i > 1 :  

(2) Replace Li by mLI + Li 

The system now has the following form: 

a l lxl + a 12x2 + a 13x3 + . . .  + a lnXn = bl 
a2hxh + . . .  + a2nXn = b2 

where XI does not appear in any equation except the first, a l l  i= 0, and xh denotes the first unknown 
with a nonzero coefficient in any equation other than the first. 

(c) Examine each new equation L. 
( 1 )  If L has the form OXI + OX2 + . . .  + OXn = b with b i= 0, then 

STOP 

The system is inconsistent and has no solution. 

(2) If L has the form OXI + OX2 + . . .  + OXn = 0 or if L is a multiple of another equation, then delete 
L from the system. 

Recursion Step : Repeat the Elimination Step with each new " smaller" subsystem formed by all the 
equations excluding the first equation. 

Output: Finally, the system is reduced to triangular or echelon form, or a degenerate equation with no 
solution is obtained indicating an inconsistent system. 

The next remarks refer to the Elimination Step in Algorithm 3 .2 .  

( 1 )  The following number m in (b) i s  called the multiplier: 

ail coefficient to be deleted m = - - = - ----,---------
a l l  pivot 

(2) One could alternatively apply the following operation in (b) : 

This would avoid fractions if all the scalars were originally integers. 
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Here we illustrate in detail Gaussian elimination using the following system of linear equations : 

Lj : x - 3y - 2z = 6 
L2 : 2x - 4y - 3z = 8 
L3 : -3x + 6y + 8z = -5 

7 1  

Part A .  We use the coefficient 1 o f  x in the first equation L j  as the pivot in order to eliminate x from the 
second equation L2 and from the third equation L3 . This is accomplished as follows: 

( 1 )  Multiply Lj by the multiplier m = -2 and add it to L2 ; that is, "Replace L2 by -2Lj + L2 " . 
(2) Multiply Lj by the multiplier m = 3 and add it to L3 ; that is, "Replace L3 by 3Lj + L3 " . 
These steps yield 

-2x + 6y + 4z = - 12  
2x - 4y - 3z  = 8 

2y + z = -4 

3Lj : 
L3 : 

New L3 : 

Thus the original system is replaced by the following system: 

Lj : x - 3y - 2z = 6 
L2 : 2y + z = -4 
L3 : -3y + 2z = 1 3  

3x - 9y - 6z =  1 8  
-3x + 6y + 8z = -5 

2y + z = -4 

(Note that the equations L2 and L3 form a subsystem with one less equation and one less unknown than the 
original system.) 

Next we use the coefficient 2 of y in the (new) second equation L2 as the pivot in order to eliminate y 
from the (new) third equation L3 . This is accomplished as follows : 

(3) Multiply L2 by the multiplier m = � and adding it to L3 ; that is, "Replace L3 by �L2 + L3 " 
(alternately, "Replace L3 by 3L2 + 2L/' , which will avoid fractions). 

This step yields 

3y + �z = -6 
-3y + 2z = 1 3  

�z = 7 

or 

3L2 : 
2L3 : 

New L3 : 

Thus our system is replaced by the following system: 

Lj : x - 3y - 2z = 6 
L2 : 2y + z = -4 

6y + 3z = - 12  
-6y + 4z = 26 

7z = 14 

L3 : 7z = 14  (or �z  = 7) 

The system is now in triangular form, so Part A is completed. 

Part B. The values for the unknowns are obtained in reverse order, z, y, x, by back-substitution. 
Specifically: 

( 1 )  Solve for z in L3 to get z = 2 .  
(2) Substitute z = 2 in L2 , and solve for y to get y = -3 .  
(3 ) Substitute y = -3 and z = 2 in Lj , and solve for x to get x = 1 .  
Thus the solution of the triangular system and hence the original system is as follows: 

x = l , y = -3 ,  z = 2  or, equivalently, u = ( 1 ,  -3 , 2) . 
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Condensed Format 

The Gaussian elimination algorithm involves rewriting systems of linear equations. Sometimes we can 
avoid excessive recopying of some of the equations by adopting a "condensed format" .  This format for the 
solution of the above system follows: 

Number Equation 

( 1 ) x - 3y - 2z = 6 
(2) 2x - 4y - 3z = 8 
(3) -3x + 6y + 8z = -5 
(2') 2y + z = -4 
(3 ') - 3y + 2z = 1 3  
(3 /1) 7z = 14  

Operation 

Replace L2 by -2Ll + L2 
Replace L3 by 3L1 + L3 
Replace L3 by 3L2 + 2L3 

That is, first we write down the number of each of the original equations. As we apply the Gaussian 
elimination algorithm to the system, we only write down the new equations, and we label each new 
equation using the same number as the original corresponding equation, but with an added prime. (After 
each new equation, we will indicate, for instructional purposes, the elementary operation that yielded the 
new equation.) 

The system in triangular form consists of equations ( 1 ), (2') , and (3 /1), the numbers with the largest 
number of primes. Applying back-substitution to these equations again yields x = 1 ,  y = -3 ,  z = 2 .  

Remark: If  two equations need to  be interchanged, say to  obtain a nonzero coefficient as  a pivot, 
then this is easily accomplished in the format by simply renumbering the two equations rather than 
changing their positions. 

Example 3.7. Solve the following system: x + 2y - 3z = I 
2x + 5y - 8z = 4 

3x + 8y - 1 3z = 7 

We solve the system by Gaussian elimination. 

Part A. (Forward Elimination) We use the coefficient I of x in the first equation LJ as the pivot in order to 
eliminate x from the second equation Lz and from the third equation L3 • This is accomplished as follows: 

( I ) Multiply LJ by the multiplier m = -2 and add it to Lz : that is, "Replace Lz by -2LJ + Lz " . 
(2) Multiply LJ by the multiplier m = -3 and add it to L3 : that is, "Replace L3 by -3LJ + L/' . 

The two steps yield 

x + 2y - 3z = I 
y - 2z = 2  

2y - 4z = 4  
or x + 2y - 3z = I 

y - 2z = 2  

(The third equation is deleted, since it is a multiple of the second equation.) The system is now in echelon form with 
free variable z. 

Part B. (Backward Elimination) To obtain the general solution, let the free variable z = a, and solve for x and y by 
back-substitution. Substitute z = a in the second equation to obtain y = 2 + 2a. Then substitute z = a and y = 2 + 2a 
into the first equation to obtain 

x + 2(2 + 2a) - 3a = I or x + 4 + 4a - 3a = I or x = -3 - a 
Thus the following is the general solution where a is a parameter: 

x = -3 - a, y = 2 + 2a, z = a or u = (-3 - a, 2 + 2a, a) 
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Example 3,8, Solve the following system: 

We use Gaussian elimination. 

Xl + 3x2 - 2x3 + 5x4 = 4 
2Xl + 8X2 - X3 + 9X4 = 9 
3xl + 5x2 - 1 2x3 + 1 7x4 = 7 
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Part A. (Forward Elimination) We use the coefficient I of xl in the first equation Ll as the pivot in order to 
eliminate Xl from the second equation L2 and from the third equation L3 . This is accomplished by the following 
operations : 

( I ) "Replace L2 by -2LI + L2 "  and (2) "Replace L3 by -3LI + L3 "  

These yield: 

Xl + 3X2 - 2X3 + 5x4 = 4 
2x2 + 3x3 - X4 = I 

- 4X2 - 6X3 + 2X4 = -5 

We now use the coefficient 2 of X2 in the second equation L2 as the pivot and the multiplier m = 2 in order to 
eliminate X2 from the third equation L3 . This is accomplished by the operation "Replace L3 by 2L2 + L3 " ,  which then 
yields the degenerate equation 

This equation and, hence, the original system have no solution: 

DO NOT CONTINUE 

Remark 1 :  As in the above examples, Part A of Gaussian elimination tells us whether or not the 
system has a solution, that is, whether or not the system is consistent. Accordingly, Part B need never be 
applied when a system has no solution. 

Remark 2: If a system of linear equations has more than four unknowns and four equations, then it 
may be more convenient to use the matrix format for solving the system. This matrix format is discussed 
later. 

3.7 ECHELON MATRICES, ROW CANONICAL FORM, ROW EQUIVALENCE 

One way to solve a system of linear equations is by working with its augmented matrix M rather than 
the system itself This section introduces the necessary matrix concepts for such a discussion. These 
concepts, such as echelon matrices and elementary row operations, are also of independent interest. 

Echelon Matrices 

A matrix A is called an echelon matrix, or is said to be in echelon form, if the following two conditions 
hold (where a leading nonzero element of a row of A is the first nonzero element in the row): 

( I )  All zero rows, i f  any, are at the bottom o f  the matrix. 

(2) Each leading nonzero entry in a row is to the right of the leading nonzero entry in the preceding row. 
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That is, A = [aij] is an echelon matrix if there exist nonzero entries 

with the property that 

aij = O  for 

where jl < h  < ' , , < jr 

{ (i) i S r, 
(ii) i > r 

[CHAP. 3 

The entries a l}I ' a2}z ' . . .  , ar}, ' which are the leading nonzero elements in their respective rows, are called 
the pivots of the echelon matrix. 

Example 3.9. The following is an echelon matrix whose pivots have been circled: 

[ 0 @ 3 4 5 9 0 7 ] 
0 0 0 (1) 4 1 2 5 

A =  0 0 0 0 0 (3) 7 2 
0 0 0 0 0 0 ® 6  
0 0 0 0 0 0 0  0 

Observe that the pivots are in columns Cz , C4 , C6 , C7 , and each is to the right of the one above. Using the above 
notation, the pivots are 

a4j, = 8 

where j1 = 2, iz = 4, 13 = 6, j4 = 7. Here r = 4. 

Row Canonical Form 

A matrix A is said to be in row canonical form if it is an echelon matrix, that is, if it satisfies the above 
properties ( 1 )  and (2), and if it satisfies the following additional two properties: 

(3) Each pivot (leading nonzero entry) is equal to 1 .  
(4) Each pivot is the only nonzero entry in its column. 

The major difference between an echelon matrix and a matrix in row canonical form is that in an 
echelon matrix there must be zeros below the pivots [Properties ( 1 )  and (2)] ,  but in a matrix in row 
canonical form, each pivot must also equal I [Property (3 )] and there must also be zeros above the pivots 
[Property (4) ] .  

The zero matrix 0 of any size and the identity matrix I of any size are important special examples of 
matrices in row canonical form. 

Example 3.10. The following are echelon matrices whose pivots have been circled: [(1) 3 2 0 4 5 -6 ] 
o 0 CD 1 -3 2 0 
0 0 0 0  O ®  2 ' 
o 0 0 0 0 0 0 

[CD 2 3J o 0 CD , 
0 0 0  

[ 0 CD 3 0 0 4 ] 
o 0 0 CD 0 -3 
o o o o CD 2 

The third matrix is also an example of a matrix in row canonical form. The second matrix is not in row canonical 
form, since it does not satisfy property (4), that is, there is a nonzero entry above the second pivot in the third column. 
The first matrix is not in row canonical form, since it satisfies neither property (3) nor property (4), that is, some pivots 
are not equal to I and there are nonzero entries above the pivots. 
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Suppose A is a matrix with rows R l '  R2 , ' • .  , Rm ' The following operations on A are called elementary 
row operations. 
[Ed (Row Interchange) : Interchange rows R; and Rj . This may be written as 

"Interchange R; and R/' or "R; +--+ R/' 
[E2] (Row Scaling) : Replace row R; by a nonzero multiple kR; of itself. This may be written as 

"Replace R; by kR; (k i- 0)" or "kR; ---+ Rt 
[E3 ] (Row Addition) : Replace row Rj by the sum of a multiple kR; of a row R; and itself. This may be 

written as 

"Replace Rj by kR; + Rj" 
The arrow ---+ in E2 and E3 may be read as "replaces" .  

or 

Sometimes (say to avoid fractions when all the given scalars are integers) we may apply [E2] and [E3 ] 
in one step, that is, we may apply the following operation: 

[E] Replace Rj by the sum of a multiple kR; of a row R; and a nonzero multiple k'Rj of itself. This may be 
written as 

"Replace Rj by kR; + k'Rj (k' i- 0)" or 

We emphasize that in operations [E3 ] and [E] only row Rj is changed. 

Row Equivalence, Rank of a Matrix 

A matrix A is said to be row equivalent to a matrix B, written 

A � B 

if B can be obtained from A by a sequence of elementary row operations. In the case that B is also an 
echelon matrix, B is called an echelon form of A . 

The following are two basic results on row equivalence. 

Theorem 3.6: Suppose A = [aij] and B = [hij] are row equivalent echelon matrices with respective pivot 
entries 

and 

Then A and B have the same number of nonzero rows, that is, r = s, and the pivot entries 
are in the same positions, that is, j1 = kb h = � , . . .  ,jr = kr . 

Theorem 3.7: Every matrix A is row equivalent to a unique matrix in row canonical form. 

The proofs of the above theorems will be postponed to Chapter 4. The unique matrix in Theorem 3 . 7  is 
called the row canonical form of A . 

Using the above theorems, we can now give our first definition of the rank of a matrix. 

Definition:  The rank of a matrix A , written rank(A), is equal to the number of pivots in an echelon form 
of A . 

The rank is a very important property of a matrix and, depending on the context in which the 
matrix is used, it will be defined in many different ways. Of course, all the definitions lead to the 
same number. 
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The next section gives the matrix format of Gaussian elimination, which finds an echelon form of any 
matrix A (and hence the rank of A), and also finds the row canonical form of A . 

One can show that row equivalence is an equivalence relation. That is: 

( 1 )  A � A for any matrix A . 
(2) If A � B, then B � A . 
(3) If A � B and B � C, then A � C. 

Property (2) comes from the fact that each elementary row operation has an inverse operation of the same 
type. Namely: 

(i) "Interchange Ri and Rj" is its own inverse. 

(ii) "Replace Ri by kR/, and "Replace Ri by ( l jk)R/' are inverses. 

(iii) "Replace Rj by kRi + Rj" and "Replace Rj by -kRi + Rj" are inverses .  

There is a similar result for operation [E] (Problem 3 .73) . 

3.8 GAUSSIAN ELIMINATION, MATRIX FORMULATION 

The section gives two matrix algorithms that accomplish the following: 

( l )  Algorithm 3 .3 transforms any matrix A into an echelon form. 

(2) Algorithm 3 .4 transforms the echelon matrix into its row canonical form. 

These algorithms, which use the elementary row operations, are simply restatements of Gaussian 
elimination as applied to matrices rather than to linear equations. (The term "row reduce"  or simply 
"reduce" will mean to transform a matrix by the elementary row operations.) 

Algorithm 3.3 (Forward Elimination) : The input is any matrix A . (The algorithm puts O 's below each 
pivot, working from the "top-down" . )  The output is an echelon 
form of A . 

Step 1 .  Find the first column with a nonzero entry. Let }1 denote this column. 

(a) Arrange so that a ljl -I- O. That is, if necessary, interchange rows so that a nonzero entry 
appears in the first row in column } I ' 

(b) Use a liI as a pivot to obtain O 's below a liI ' 
Specifically, for i > 1 :  

( l )  Set m = -aijJ a ljl ; (2) Replace Ri by mR I + Ri 

[That is, apply the operation -(aijJalj)RI + Ri � Rd 
Step 2. Repeat Step 1 with the submatrix formed by all the rows excluding the first row. Here we let h 

denote the first column in the subsystem with a nonzero entry. Hence, at the end of Step 2, we 
have a2iz -I- O.  

Steps 3 to r .  Continue the above process until a submatrix has only zero rows. 

We emphasize that at the end of the algorithm, the pivots will be 

where r denotes the number of nonzero rows in the final echelon matrix. 
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Algorithm 3.4 (Backward Elimination) : The input is a matrix A = [aij] in echelon form with pivot 
entries 

The output is the row canonical form of A . 
Step 1 .  (a) (Use row scaling so  the last pivot equals 1 . ) Multiply the last nonzero row Rr by l iar}, 

(b) (Use ar), = I to obtain D 's above the pivot.)  For i = r - I ,  r - 2 ,  . . .  , 2 , I :  
( I )  Set m = -aij, ; (2) Replace Ri by mRr + Ri 

(That is, apply the operations -aij,Rr + Ri � Ri .) 
Steps 2 to r-1. Repeat Step I for rows Rr- j ,  Rr-2 , • . • , R2 • 
Step r. (Use row scaling so the first pivot equals 1 . ) Multiply Rj by I la jiJ ' 

There is an alternative form of Algorithm 3 .4, which we describe here in words. The formal 
description of this algorithm is left to the reader as a supplementary problem. 

Alternative Algorithm 3.4 Puts D 's above the pivots row by row from the bottom up (rather than column 
by column from right to left) . 

The alternative algorithm, when applied to an augmented matrix M of a system of linear equations, is 
essentially the same as solving for the pivot unknowns one after the other from the bottom up. 

Remark: We emphasize that Gaussian elimination is a two-stage process. Specifically: 

Stage A (Algorithm 3.3). Puts D 's below each pivot, working from the top row Rj down. 

Stage B (Algorithm 3.4). Puts D 's above each pivot, working from the bottom row Rr up . 

There is another algorithm, called Gauss-Jordan, that also row reduces a matrix to its row canonical form. 
The difference is that Gauss-Jordan puts D 's both below and above each pivot as it works its way from the 
top row Rj down. Although Gauss-Jordan may be easier to state and understand, it is much less efficient 
than the two-stage Gaussian elimination algorithm. 

Example 3.11. Consider the matrix A = [ ; � =! � 1� ] . 
3 6 -6 9 1 3  

(a) Use Algorithm 3 . 3  to reduce A to an echelon form. 

(b) Use Algorithm 3 .4 to further reduce A to its row canonical form. 
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(a) First use al 1 = 1 as a pivot to obtain O 's below al 1 ' that is, apply the operations "Replace Rl by -2Rj + Rl " and 
"Replace R3 by -3Rj + R3 " ;  and then use a23 = 2 as a pivot to obtain 0 below al3' that is, apply the operation 
"Replace R3 by - � Rl + R3 " .  This yields 

The matrix is now in echelon form. 

(b) Multiply R3 by - !  so the pivot entry a35 = 1, and then use a35 = 1 as a pivot to obtain O 's above it by the 
operations "Replace Rl by -5R3 + Rl " and then "Replace Rj by -2R3 + Rj " .  This yields [ 1 2 -3 1 2] [ 1 2 -3 1 0 ] A �  0 0 2 4 6 � 0 0 2 4 0 . 

0 0 0 0 1  0 0 0 0 1  

Multiply Rl by ! so the pivot entry a23 = 1 ,  and then use a23 = 1 as a pivot to obtain O 's above it by the operation 
"Replace R j by 3Rl + R j " .  This yields 

A � [� � -� ; �] � [� � � � �] . 0 0 0 0 1  0 0 0 0 1 

The last matrix is the row canonical form of A. 
Application to  Systems of  Linear Equations 

One way to solve a system of linear equations is by working with its augmented matrix M rather than 
the equations themselves .  Specifically, we reduce M to echelon form (which tells us whether the system 
has a solution), and then further reduce M to its row canonical form (which essentially gives the solution of 
the original system of linear equations) . The justification for this process comes from the following facts : 

( 1 )  Any elementary row operation on the augmented matrix M of the system i s  equivalent to applying the 
corresponding operation on the system itself. 

(2) The system has a solution if and only if the echelon form of the augmented matrix M does not have a 
row of the form (0 , 0 ,  . . .  , 0 , b) with b i= 0 .  

(3) In the row canonical form of the augmented matrix M (excluding zero rows), the coefficient of each 
basic variable is a pivot entry equal to 1 and it is the only nonzero entry in its respective column; 
hence the free-variable form of the solution of the system of linear equations is obtained by simply 
transferring the free variables to the other side. 

This process is illustrated below. 

Example 3.12. Solve each of the following systems: 

Xj + Xl - 2X3 + 4X4 = 5 
2xj + 2xl - 3x3 + X4 = 3 
3xj + 3xl - 4x3 - 2x4 = 1 

(a) 

Xj + Xl - 2X3 + 3X4 = 4 
2xj + 3xl + 3x3 - X4 = 3 
5xj + txl + 4x3 + X4 = 5 

(b) 

x + 2y + z = 3 
2x + 5y - z = -4 
3x - 2y - z  = 5 

(c) 
(a) Reduce its augmented matrix M to echelon form and then to row canonical form as follows: 

M = [; ;  =; 4 ;] � [� � -2 
_� _;] � [� � � -2� =;] 3 3 -4 -2 1 0 0 2 - 1 4  - 1 4  0 0 0 0 0 
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Rewrite the row canonical form in terms of a system of linear equations to obtain the free variable form of the 
solution. That is, 

XI + X2 - l Ox4 = -9 
x3 - 7x4 = -7 

or XI = -9 - X2 + l Ox4 
X3 = -7 + 7x4 

(The zero row is omitted in the solution.) Observe that X I and X3 are the pivot variables, and X2 and X4 are the free 
variables. 

(b) First reduce its augmented matrix M to echelon form as follows: 

(c) 

[ 1 1 
M =  2 3 

5 7 

-2 3 4 ] [ 1 1 
3 - 1  3 � 0 1 
4 1 5 0 2 

-2 -� -: ] � [� 1 
14 - 1 4  1 5  0 0 
7 

-2 3 
7 -7 
o 0 

There is no need to continue to find the row canonical form of M, since the echelon form already tells us that the 
system has no solution. Specifically, the third row of the echelon matrix corresponds to the degenerate equation 

OXI + OX2 + OX3 + OX4 = -5 

which has no solution. Thus the system has no solution. 

Reduce its augmented matrix M to echelon form and then to row canonical form as follows: 

M � [ i 2 -J [i 2 

5 - 1  
-2 - 1  -8 

- [ i 2 1 - in - [ i 2 

-3 
0 0 

0 

0 

1 
-3 
-4 

3 ] [ ' 2 

- l O  � 0 1 
-4 0 0 

-J [i 0 0 

0 

0 1 

1 - I : ] -3 
-28 -84 -: ] 

Thus the system has the unique solution X = 2, Y = - 1 ,  Z = 3, or, equivalently, the vector u = (2 , - 1 , 3). We 
note that the echelon form of M already indicated that the solution was unique, since it corresponded to a 
triangular system. 

Application to Existence and Uniqueness Theorems 

This subsection gives theoretical conditions for the existence and uniqueness of a solution of a system 
of linear equations using the notion of the rank of a matrix. 

Theorem 3.8:  Consider a system of linear equations in n unknowns with augmented matrix M = [A , B] . 
Then: 

(a) The system has a solution if and only if rank(A) = rank(M) . 

(b) The solution is unique if and only if rank(A) = rank(M) = n .  

Proof of (a) . The system has a solution if  and only if  an echelon form of M = [A , B]  does not have a 
row of the form 

(0 , 0 ,  . . .  , 0 ,  b) , with b i= 0 
If an echelon form of M does have a row, then b is a pivot of M but not of A, and hence 
rank(M) > rank(A) .  Otherwise, the echelon forms of A and M have the same pivots, and hence 
rank(A) = rank(M) . This proves (a) . 

Proof of (b). The system has a unique solution if and only if an echelon form has no free variable. This 
means there is a pivot for each unknown. Accordingly, n = rank(A) = rank(M) . This proves (b) . 

The above proof uses the fact (Problem 3 . 74) that an echelon form of the augmented matrix 
M = [A , B] also automatically yields an echelon form of A .  
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The general system (3 ,2) of m linear equations in n unknowns is equivalent to the matrix equation 

or 

where A = [aij] is the coefficient matrix, X = [Xj] is the column vector of unknowns, and B = [b;] is the 
column vector of constants. (Some texts write Ax = b rather than AX = B, in order to emphasize that x and 
b are simply column vectors.)  

The statement that the system of linear equations and the matrix equation are equivalent means that 
any vector solution of the system is a solution of the matrix equation, and vice versa. 

Example 3.13. The following system of linear equations and matrix equation are equivalent: 

Xl + 2x2 - 4X3 + 7x4 = 4 3Xl - 5X2 + 6x3 - 8X4 = 8 4Xl - 3X2 - 2x3 + 6X4 = I I  
and 

[ I  2 -4 7 ] [ Xl ] [ 4 ] 
3 -5 6 -8 

X2 - 8 4 -3 -2 6 �: I I  

We note that Xl = 3 ,  X2 = I , x3 = 2, X4 = I , or, in other words, the vector u = [3 , I ,  2 ,  I ]  is a solution of the system. 
Thus the (column) vector u is also a solution of the matrix equation. 

The matrix form AX = B of a system of linear equations is notationally very convenient when 
discussing and proving properties of systems of linear equations. This is illustrated with our first theorem 
(described in Fig. 3 - 1 ), which we restate for easy reference. 

Theorem 3 .1 :  Suppose the field K i s  infinite. Then the system AX = B has : (a) a unique solution, (b) no 
solution, or (c) an infinite number of solutions. 

Proof It suffices to show that if AX = B has more than one solution, then it has infinitely many. 
Suppose u and v are distinct solutions of AX = B; that is, Au = B and Av = B. Then, for any k E K, 

A[u + k(u - v)] = Au + k(Au - Av) = B + k(B - B) = B 

Thus, for each k E K, the vector u + k(u - v) is a solution of AX = B. Since all such solutions are distinct 
(Problem 3 .47), AX = B has an infinite number of solutions. 

Observe that the above theorem is true when K is the real field R (or the complex field C). Section 3 .3 
shows that the theorem has a geometrical description when the system consists of two equations in two 
unknowns, where each equation represents a line in R

2 . The theorem also has a geometrical description 
when the system consists of three nondegenerate equations in three unknowns, where the three equations 
correspond to planes HI > H2 , H3 in R

3 . That is: 

(a) Unique solution: Here the three planes intersect in exactly one point. 

(b) No solution: Here the planes may intersect pairwise but with no common point of intersection, or two 
of the planes may be parallel . 

(c) Infinite number of solutions: Here the three planes may intersect in a line (one free variable), or they 
may coincide (two free variables) . 

These three cases are pictured in Fig. 3-3 .  
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(c) Infinite number of solutions 

(ii) 

(b) No solutions 

Fig. 3-3 

(iii) 

\ H3 \ 
\ Hl and H2 \ 

(iv) 

Matrix Equation of a Square System of Linear Equations 

8 1  

A system AX = B of linear equations is square if and only if the matrix A of coefficients is square. In 
such a case, we have the following important result. 

Theorem 3.9: A square system AX = B of linear equations has a unique solution if and only if the 
matrix A is invertible. In such a case, A- IB is the unique solution of the system. 

We only prove here that if A is invertible, then A - I B is a unique solution. If A is invertible, then 

A(A- IB) = (AA- I )B = IB = B 

and hence A- IB is a solution. Now suppose v is any solution, so Av = B. Then 

v = Iv = (A-
I
A)v = A- I

(Av) = A- I
B 

Thus the solution A- IB is unique. 

Example 3.14. Consider the following system of linear equations, whose coefficient matrix A and inverse A-I are also 
given: 

x + 2y +  3z = I 
x + 3y +  6z = 3 ,  

2x + 6y + 1 3z = 5 

By Theorem 3 .9 ,  the unique solution of the system is 

That is, x = -6, y = 5, z = - 1 .  

[ 3 -8 
A- IB =  -1 7 

o -2 

� ] , 
1 3  

-8 3 ] 
7 -3 

-2 1 
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Remark. We emphasize that Theorem 3 , 9  does not usually help us to find the solution of a square 
system. That is, finding the inverse of a coefficient matrix A is not usually any easier than solving the 
system directly, Thus, unless we are given the inverse of a coefficient matrix A, as in Example 3 , 14 ,  we 
usually solve a square system by Gaussian elimination (or some iterative method whose discussion lies 
beyond the scope of this text), 

3.10 SYSTEMS OF LINEAR EQUATIONS AND LINEAR COMBINATIONS OF VECTORS 

The general system (3 ,2) of linear equations may be rewritten as the following vector equation: 

Recall that a vector v in Kn is said to be a linear combination of vectors U\ , U2 , , , . , um in Kn if there exist 
scalars a \ , a2 , . . .  , am in K such that 

Accordingly, the genereal system (3 .2) of linear equations and the above equivalent vector equation have a 
solution if and only if the column vector of constants is a linear combination of the columns of the 
coefficient matrix. We state this observation formally. 

Theorem 3.10 :  A system AX = B of linear equations has a solution if  and only if  B is  a linear 
combination of the colunms of the coefficient matrix A .  

Thus the answer to  the problem of  expressing a given vector v in Kn as  a linear combination of vectors 
u\ , u2 , . . .  , um in Kn reduces to solving a system of linear equations. 

Linear Combination Example 

Suppose we want to write the vector v = ( 1 ,  -2 ,  5) as a linear combination of the vectors 

U\ = ( 1 ,  1 ,  1 ) ,  U2 = ( 1 , 2 , 3) ,  U3 = (2 ,  - 1 , 1 ) 

First we write v = XU\ + YU2 + zU3 with unknowns x, y, z, and then we find the equivalent system of linear 
equations which we solve. Specifically, we first write 

Then [ 1 ] [X ] [ Y ] [ 2Z ] [X + Y + 2Z ] 
-2 = X + 2y + -z = x + 2y - Z 

5 x 3y Z x + 3y + Z 

Setting corresponding entries equal to each other yields the following equivalent system: 

x + y + 2z =  

x + 2y - z = -2 

x + 3y +  Z =  5 

(*) 

(* *) 
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For notational convenience, we have written the vectors in Rn as columns, since it is then easier to find the 
equivalent system of linear equations. In fact, one can easily go from the vector equation (*) directly to the 
system (* *) . 

Now we solve the equivalent system of linear equations by reducing the system to echelon form. This 
yields 

x +  y + 2z =  
y - 3z = -3 

2y - Z =  4 
and then 

x + y + 2z =  
y - 3z = -3 

5z = 1 0  

Back-substitution yields the solution x = -6, y = 3 ,  z = 2 .  Thus v = -6u l + 3u2 + 2u3 ' 

Example 3.15 
(a) Write the vector v = (4, 9 ,  1 9) as a linear combination of 

u! = ( 1 ,  -2, 3) ,  U2 = (3 , -7 ,  1 0) ,  U3 = (2 , 1 , 9). 

Find the equivalent system of linear equations by writing v = xu! + YU2 + ZU3 , and reduce the system to an 
echelon form. We have 

x +  3y + 2z = 4 
-2x - 7y + Z =  9 

3x + l Oy + 9z = 1 9  
or 

x + 3y + 2z =  4 
-y + Z =  1 7  

y + 3z =  7 
or 

x + 3y + 2z =  4 
-y + Z =  1 7  

8z = 24 

Back-substitution yields the solution x = 4, Y = -2, z = 3. Thus v IS a linear combination of U! , U2 , u3 ' 
Specifically, v = 4u! - 2u2 + 3u3 ' 

(b) Write the vector v = (2, 3 ,  -5) as a linear combination of 

u! = ( 1 ,  2, -3) ,  U2 = (2 , 3 ,  -4) , U3 = ( 1 ,  3 ,  -5) 

Find the equivalent system of linear equations by writing v = xu! + YU2 + ZU3 , and reduce the system to an 
echelon form. We have 

x + 2y +  Z =  2 
2x + 3y +  3z = 3 

-3x - 4y - 5z = -5 
or 

x + 2y +  Z =  2 
-y + z = - 1 
2y - 2z = 1 

or 
x + 2y +  Z =  2 

- 5y + 5z = - 1 
0 =  3 

The system has no solution. Thus it is impossible to write v as a linear combination of u! , U2 , u3 ' 

Linear Combinations of Orthogonall Vectors, Fourier Coefficients 

Recall first (Section 1 .4) that the dot (inner) product U · v of vectors u = (a l " ' " an) and 
v = (b! ,  . . .  , bn) in Rn is defined by 

Furthermore, vectors u and v are said to be orthogonal if their dot product u . v = O . 
Suppose that u! , U2 , . . .  , un in Rn are n nonzero pairwise orthogonal vectors . This means 

(i) Ui ' Uj = 0 for i -I- j and (ii) Ui ' Ui -I- 0 for each i 

Then, for any vector v in Rn, there is an easy way to write v as a linear combination of Ul , U2 , . . .  , Un ' 
which is illustrated in the next example. 
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Example 3,16, Consider the following three vectors in R3 : 

U\ = ( 1 , 1 , 1 ) ,  Uz = ( 1 ,  -3 , 2) ,  
These vectors are pairwise orthogonal; that is, 

U\ . Uz = 1 - 3 + 2 = 0, U\ • u3 = 5 - 1 - 4 = 0,  

U3 = (5 , - 1 ,  -4) 

Uz • u3 = 5 + 3 - 8 = 0 

Suppose we want to write v = (4, 14 ,  -9) as a linear combination of u\ , uz , u3 ' 

Method 1. Find the equivalent system of linear equations as in Example 3 - 14  and then solve, 
obtaining v = 3ul - 4u2 + u3 ' 

Method 2. (This method uses the fact that the vectors ul , u2 , u3 are mutually orthogonal, and hence 
the arithmetic is much simpler.) Set v as a linear combination of Ul , U2 , U3 using unknown scalars x, y, z as 
follows: 

(4 , 14 ,  -9) = x( l ,  1 ,  1 )  + y( l ,  -3 , 2) + z(5 , - 1 ,  -4) (*) 
Take the dot product of (* ) with respect to U\ to get 

(4 , 14 ,  -9) · ( 1 , 1 , 1 )  = x( l ,  1 ,  1 ) · ( 1 , 1 , 1 )  or 9 = 3x or x = 3  

(The last two terms drop out, since U\ is orthogonal to Uz and to U3 ') Next take the dot product of (* ) with respect to Uz 
to obtain 

(4, 14 ,  -9) · ( 1 ,  -3 , 2) = y( l ,  -3 , 2) · ( 1 ,  -3 , 2) or - 56 = 1 4y or y = -4 

Finally, take the dot product of (* ) with respect to u3 to get 

(4, 14 ,  -9) · (5 , - 1 ,  -4) = z(5 ,  - 1 ,  -4) . (5 ,  - 1 ,  -4) or 42 - 42z or z = 1 

Thus v = 3u\ - 4uz + u3 ' 

The procedure in Method 2 in Example 3 . 1 6  is valid in general. Namely: 

Theorem 3.10 :  Suppose u\ '  U2 " ' "  un are nonzero mutually orthogonal vectors in Rn . Then, for any 
vector v in Rn, 

We emphasize that there must be n such orthogonal vectors Ui in Rn for the formula to be used. Note 
also that each Ui . Ui i- 0, since each Ui is a nonzero vector. 

Remark: The following scalar ki (appearing in Theorem 3 . 1 0) is called the Fourier coefficient of v 
with respect to Ui : 

v · u ·  v ' u ·  k = --' = --� , Ui '  Ui II ui I I  
I t  is analogous to  a coefficient in the celebrated Fourier series of a function. 

3 .11  HOMOGENEOUS SYSTEMS OF LINEAR EQUATIONS 

A system of linear equations is said to be homogeneous if all the constant terms are zero . Thus a 
homogeneous system has the form AX = O. Clearly, such a system always has the zero vector 
o = (0 ,  0, . . .  , 0) as a solution, called the zero or trivial solution. Accordingly, we are usually interested 
in whether or not the system has a nonzero solution. 
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Since a homogeneous system AX = 0 does have at least the zero solution, i t  can always be put in an 
echelon form; say 

a l 1xl + a l2x2 + a 13x3 + a l4x4 + ' , , + alnxn = 0 
a2hxh + a2J2+ 1xh+l + ' , , + a2nxn = 0 

arj, Xj, + . . .  + arnxn = 0 

Here r denotes the number of equations in echelon form and n denotes the number of unknowns. Thus the 
echelon system has n - r free variables. 

The question of nonzero solutions reduces to the following two cases: 

(i) r = n. The system has only the zero solution. 

(ii) r < n. The system has a nonzero solution. 

Accordingly, if we begin with fewer equations than unknowns, then, in echelon form, r < n, and the 
system has a nonzero solution. This proves the following important result. 

Theorem 3.1 1 :  A homogeneous system AX = 0 with more unknowns than equations has a nonzero 
solution. 

Example 3.17. Determine whether or not each of the following homogeneous systems has a nonzero solution: 

X +  y - x = O  
2x - 3y +  z =  0 
x - 4y + 2z =  0 

(a) 

X +  y - z = O  
2x + 4y - z =  0 
3x + 2y + 2x = 0 

(b) 

(a) Reduce the system to echelon form as follows: 

x +  y - z = O  
-5y + 3z =  0 and then 
-5y + 3z =  0 

Xl + 2x2 - 3X3 + 4X4 = 0 
2Xl - 3X2 + 5x3 - 7X4 = 0 
5xl + 6X2 - 9X3 + 8X4 = 0 

(c) 

X +  y - z = O  
-5y + 3z = O  

The system has a nonzero solution, since there are only two equations in the three unknowns in echelon form. 
Here z is a free variable. Let us, say, set z = 5. Then, by back-substitution, y = 3 and X = 2. Thus the vector 
u = (2 , 3 ,  5) is a particular nonzero solution. 

(b) Reduce the system to echelon form as follows: 

X + y - z = O  
2y + z =  0 
-y + 5z =  0 

and then 
X + y - z = O  

2y + z = 0 
l iz = 0 

In echelon form, there are three equations in three unknowns. Thus the system has only the zero solution. 

( c) The system must have a nonzero solution (Theorem 3 . 1 1 ) , since there are four unknowns but only three 
equations. (Here we do not need to reduce the system to echelon form.) 

Basis for the General Solution of a Homogeneous System 

Let W denote the general solution of a homogeneous system AX = O. A list of nonzero solution 
vectors ul ' u2 ' . . .  , us of the system is said to be a basis for W if each solution vector W E W can be 
expressed uniquely as a linear combination of the vectors Ul ' U2 ' . . .  , Us , that is, there exist unique scalars 
a i ' a2 , . . .  , as such that 

W = al Ul + a2u2 + . . .  + asus 
The number s of such basis vectors is equal to the number of free variables. This number s is called the 
dimension of W, written dim W = s. In case W = {O}, that is, the system has only the zero solution, we 
define dim W = o .  
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The following theorem, proved in Chapter 5 ,  tells us how to find such a basis, 

Theorem 3.12 :  Let W be the general solution of a homogeneous system AX = 0, and suppose that the 
echelon form of the homogeneous system has s free variables, Let ul ' u2 ' ' . .  , Us be the 
solutions obtained by setting one of the free variables equal to 1 (or any nonzero 
constant) and the remaining free variables equal to O. Then dim W = s, and the vectors 
U l ' U2 " ' "  Us form a basis of W. 

We emphasize that the general solution W may have many bases, and that Theorem 3 . 1 2  only gives us 
one such basis. 

Example 3.18. Find the dimension and a basis for the general solution W of the homogeneous system 

Xl + 2xl - 3x3 + 2x4 - 4xs = 0 

2Xl + 4Xl - 5x3 + X4 - 6xs = 0 

5xl + 1 0xl - 1 3x3 + 4X4 - 1 6xs = 0 

First reduce the system to echelon form. Apply the following operations: 

"Replace Ll by -2Ll + Ll "  and "Replace L3 by - 5Ll + L3 " ,  and then "Replace L3 b y  -2Ll + L3 " 

These operations yield 

Xl + 2xl - 3X3 + 2x4 - 4xs = 0 
x3 - 3X4 + 2xs = 0 

2x3 - 6X4 + 4xs = 0 
and 

Xl + 2Xl - 3X3 + 2x4 - 4xs = 0 
x3 - 3x4 + 2xs = 0 

The system in echelon form has three free variables, Xl ' X4 ' xs ; hence dim W = 3 .  Three solution vectors that form a 
basis for W are obtained as follows: 

( I ) Set Xl = I ,  x4 = 0, Xs = O. Back-substitution yields the solution Ul = (-2, 1 , 0 , 0 , 0). 

(2) Set Xl = 0, X4 = I, Xs = O. Back-substitution yields the solution Ul = (7 , 0 , 3 ,  1 , 0) . 

(3 ) Set Xl = 0, x4 = 0, Xs = 1 .  Back-substitution yields the solution U3 = (-2, 0 ,  -2, 0 ,  I ) .  
The vectors ul = (-2 ,  1 , 0 , 0 , 0) ,  ul  = (7 ,  0 ,  3 ,  1 , 0), u3 = (-2 ,  0 ,  -2, 0 ,  I )  form a basis for W. 

or 

Remark: Any solution of the system in Example 3 . 1 8  can be written in the form 

aUI + bU2 + eU3 = a( -2 , 1 , 0 , 0 , 0) + b(7 ,  0 ,  3 , 1 , 0) + e(-2 ,  0 ,  -2, 0 , 1 ) 

= (-2a + 7b - 2e, a, 3b - 2e, b, e) 

Xl = -2a + 7b - 2e, X2 = a, X3 = 3b - 2e, Xs = e 

where a, b, e are arbitrary constants. Observe that this representation is nothing more than the parametric 
form of the general solution under the choice of parameters X2 = a, X4 = b, Xs = e. 

Nonhomogeneous and Associated Homogeneous Systems 

Let AX = B be a nonhomogeneous system of linear equations. Then AX = 0 is called the associated 
homogeneous system . For example, 

x + 2y - 4z =  7 
3x - 5y + 6z =  8 

and 
x + 2y - 4z =  0 

3x - 5y + 6z =  0 

show a nonhomogeneous system and its associated homogeneous system. 
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The relationship between the solution U of a nonhomogeneous system AX = B and the solution W of 
its associated homogeneous system AX = 0 is contained in the following theorem. 

Theorem 3.13 :  Let Vo be a particular solution of AX = B and let W be the general solution of AX = O .  
Then the following is the general solution of AX = B: 

U = Vo + W = {vo + w : W E W} 

That is ,  U = Vo + W is obtained by adding Vo to each element in W. We note that this theorem has a 
geometrical interpretation in R

3
. Specifically, suppose W is a line through the origin O. Then, as pictured 

in Fig. 3-4, U = Vo + W is the line parallel to W obtained by adding Vo to each element of W. Similarly, 
whenever W is a plane through the origin 0, then U = Vo + W is a plane parallel to W. 

w 

�------------- y 

x 

Fig. 3-4 

3.12 ELEMENTARY MATRICES 

Let e denote an elementary row operation and let e(A) denote the results of applying the operation e to 
a matrix A . Now let E be the matrix obtained by applying e to the identity matrix l, that is, 

E = eel) 

Then E is called the elementary matrix corresponding to the elementary row operation e. Note that E is 
always a square matrix. 

Example 3.19. Consider the following three elementary row operations : 

( 1 )  Interchange R2 and R3 . (2) Replace R2 by -6R2 . (3) Replace R3 by - 4R 1 + R3 . 

The 3 x 3 elementary matrices corresponding to the above elementary row operations are as follows: [ I 0 0 ] 
E1 = 0 0 1 , 

0 1 0  

[ I 0 0 ] 
E2 = 0 -6 0 , 

o 0 I 
The following theorem, proved in Problem 3 .34, holds. 

[ 1 0 0 ] 
E3 = 0 1 0 

-4 0 1 

Theorem 3.13 :  Let e be an elementary row operation and let E be the corresponding m x m elementary 
matrix. Then 

e(A) = EA 

where A is any m x n matrix. 
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In other words, the result of applying an elementary row operation e to a matrix A can be obtained by 
premultiplying A by the corresponding elementary matrix E. 

Now suppose e' is the inverse of an elementary row operation e, and let E' and E be the corresponding 
matrices. We note (Problem 3 .33 ) that E is invertible and E' is its inverse.  This means, in particular, that 
any product 

of elementary matrices is invertible. 

Applications of Elementary Matrices 

Using Theorem 3 . 1 3 ,  we are able to prove (problem 3 .3 5) the following important properties of 
matrices. 

Theorem 3.14:  Let A be a square matrix. Then the following are equivalent: 

(a) A is invertible (nonsingular) . 

(b) A is row equivalent to the identity matrix I. 

(c) A is a product of elementary matrices. 

Recall that square matrices A and B are inverses if AB = BA = I. The next theorem (proved in 
Problem 3 . 36) shows that we need only show that one of the products is true, say AB = I, to prove that 
matrices are inverses .  

Theorem 3.15: Suppose AB = I. Then BA = I, and hence B = A- I . 

Row equivalence can also be defined in terms of matrix multiplication. Specifically, we will prove 
(Problem 3 .37) the following. 

Theorem 3.16:  B is row equivalent to A if and only if there exists a nonsingular matrix P such that 
B = PA .  

Application t o  Finding the Inverse o f  a n  n x n Matrix 

The following algorithm finds the inverse of a matrix. 

Algorithm 3.5:  The input is a square matrix A .  The output is the inverse of A or that the inverse does not 
exist. 

Step 1 .  Form the n x 2n (block) matrix M = [A , I] , where A is  the left half of M and the identity matrix I 
is the right half of M. 

Step 2. Row reduce M to echelon form. If the process generates a zero row in the A half of M, then 

STOP 

A has no inverse. (Otherwise A is in triangular form.) 

Step 3. Further row reduce M to its row canonical form 

M �  [I, B] 

where the identity matrix I has replaced A in the left half of M. 

Step 4. Set A- I = B, the matrix that is now in the right half of M. 
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The justification for the above algorithm is as follows, Suppose A is invertible and, say, the sequence of 
elementary row operations el ' e2 ' ' . .  , eq applied to M = [A , 1] reduces the left half of M, which is A, to the 
identity matrix I. Let Ei be the elementary matrix corresponding to the operation ei . Then, by applying 
Theorem 3 . 1 3 ,  we get 

or so 

That is, A- I can be obtained by applying the elementary row operations el ' e2 ' . . .  , eq to the identity matrix 
I, which appears in the right half of M. Thus B = A- I , as claimed. [ 1 0 2 ] 
Example 3.20. Find the inverse of the matrix A = 2 - 1  3 . 

4 1 8 

First form the (block) matrix M = [A , 1] and row reduce M to an echelon form: 

M = 2 - 1  3 :  0 1 0 � 0 - 1  - 1 : -2 1 0 � 0 - 1  - 1  1 _2 1 0 
[ 1 0 2 I 1 0 0 ] [ 1 0 2 I 1 0 0 ] [ 1 0 2 I 1 0 0 ] 

4 1 8 I 0 0 1 0 1 0 I -4 0 1 0 0 - 1 : -6 1 1 

In echelon form, the left half of M is in triangular form; hence A has an inverse. Next we further row reduce M to its 
row canonical form: [ 1 0 0 1 - 1 1  M� � - �  � : : 2 2 ] [ I 0 0 : - 1 1  

o - I  � 0 I 0 I -4 
- 1  - 1  0 0 1 I 6 

I 
The identity matrix is now in the left half of the final matrix; hence the right half is A- I . In other words, 

Elementary Column Operations 

Now let A be a matrix with columns CI , C2 , . . .  , Cn . The following operations on A, analogous to the 
elementary row operations, are called elementary column operations : 
[Fd (Column Interchange) : Interchange columns Ci and Cj . 
[F21 (Column Scaling) : Replace Ci by kCi (where k -I- 0). 
[F3 1 (Column Addition) : Replace C1 by kCi + Cj' 

We may indicate each of the column operations by writing, respectively, 

(3) (kCi + C) -+ Cj 

Moreover, each column operation has an inverse operation of the same type, just like the corresponding 
row operation. 

Now letf denote an elementary column operation, and let F be the matrix obtained by applyingf to 
the identity matrix I, that is, 

F = f(I) 

Then F is called the elementary matrix corresponding to the elementary column operationf. Note that F is 
always a square matrix. 
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( I )  Interchange C1 and C3 ; (3) Replace C3 by -3C2 + C3 

The corresponding three 3 x 3 elementary matrices are as follows: [ 0 0 I ] 
Fl = 0 I 0 , 

1 0 0 

[ I 0 0 ] 
F2 = 0 I 0 ,  

o 0 -2 

[ I 0 0 ] 
F3 = 0 I -3 

o 0 I 

The following theorem is analogous to Theorem 3 , 1 3  for the elementary row operations. 

Theorem 3.17:  For any matrix A ,  I(A) = AF. 

That is, the result of applying an elementary column operation I on a matrix A can be obtained by 
postmultiplying A by the corresponding elementary matrix F. 

Matrix Equivalence 

A matrix B is equivalent to a matrix A if B can be obtained from A by a sequence of row and column 
operations. Alternatively, B is equivalent to A,  if there exist nonsingular matrices P and Q such that 
B = PAQ. Just like row equivalence, equivalence of matrices is an equivalence relation. 

The main result of this subsection (proved in Problem 3 . 3 8) is as follows. 

Theorem 3.18 :  Every m x n matrix A is equivalent to a unique block matrix of the form 

where Ir is the r-square identity matrix. 

The following definition applies. 

Definition: The nonnegative integer r in Theorem 3 . 1 8  is called the rank of A,  written rank(A) .  

Note that this definition agrees with the previous definition of the rank of a matrix. 

3.13 LU DECOMPOSITION 

Suppose A is a nonsingular matrix that can be brought into (upper) triangular form U using only row­
addition operations, that is, suppose A can be triangularized by the following algorithm, which we write 
using computer notation. 

Algorithm 3.6:  The input is a matrix A and the output is a triangular matrix U. 
Step 1 .  Repeat for i = 1 , 2 , . . .  , n - 1 :  

Step 2. Repeat for j = i + 1, i + 2 ,  . . .  , n 
(a) Set mij : = aij/aii ' 
(b) Set Rj : = mijRi + Rj 

[End of Step 2 inner loop . ]  

[End of Step 1 outer loop . ]  
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The numbers my are called multipliers. Sometimes we keep track of these multipliers by means o f  the 
following lower triangular matrix L: 

[ I 0 0 0 

� ] 

-m21 1 0 0 
L = -m3 1 -m32 1 0 

-mnl -mn2 -mn3 -mn,n- l 

That is, L has l 's on the diagonal, O 's above the diagonal, and the negative of the multiplier my as its 
ij-entry below the diagonal. 

The above matrix L and the triangular matrix U obtained in Algorithm 3 . 6  gives us the classical LU 
factorization o f  such a matrix A .  Namely: 

Theorem 3.19 :  Let A be a nonsingular matrix that can be brought into triangular form U using only row­
addition operations. Then A = L U, where L is the above lower triangular matrix with l 's 
on the diagonal, and U is an upper triangular matrix with no O 's on the diagonal. 

Example 3.22. Suppose A = [ -; -� �; ] .  We note that A may be reduced to triangular form by the operations 
2 1 -5 

"Replace R2 by 3Rj + R2 " ; "Replace R3 by - 2Rj + R3 " ; and then "Replace R3 by � R2 + R3 " 

That is, 

This gives us the classical factorization A = LU, where 

and 

We emphasize: 

( 1 )  The entries -3 , 2, - � in L are the negatives of the multipliers in the above elementary row operations. 

(2) U is the triangular form of A . 

Application to Systems of Linear Equations 

Consider a computer algorithm M. Let C(n) denote the running time of the algorithm as a function of 
the size n of the input data. [The function C(n) is sometimes called the time complexity or simply the 
complexity of the algorithm M.] Frequently, C(n) simply counts the number of multiplications and 
divisions executed by M, but does not count the number of additions and subtractions since they take much 
less time to execute. 
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and suppose A has an LU factorization. Then the system can be brought into triangular form (in order to 
apply back-substitution) by applying Algorithm 3 .6 to the augmented matrix M = [A , B] of the system. 
The time complexity of Algorithm 3 . 6  and back-substitution are, respectively, 

and 

where n is the number of equations. 
On the other hand, suppose we already have the factorization A = LU. Then, to triangularize the 

system, we need only apply the row operations in the algorithm (retained by the matrix L) to the column 
vector B. In this case, the time complexity is 

C(n) � ! n2 

Of course, to obtain the factorization A = LU requires the original algorithm where C(n) � ! n3 . Thus 
nothing may be gained by first finding the LU factorization when a single system is involved. However, 
there are situations, illustrated below, where the LU factorization is useful. 

Suppose, for a given matrix A, we need to solve the system 

AX = B  

repeatedly for a sequence of different constant vectors, say B l '  B2 , • . •  , B k' Also, suppose some of the B; 
depend upon the solution of the system obtained while using preceding vectors Bj . In such a case, it is 
more efficient to first find the LU factorization of A,  and then to use this factorization to solve the system 
for each new B. 

Example 3.23. Consider the following system of linear equations: 

x +  2y + z = k1 
2x + 3y + 3z = k2 

-3x + l Oy + 2z = k3 
or AX = B, where A = [ ; ; ; ]  

-3 1 0  2 
and 

Suppose we want to solve the system three times where B is equal, say, to B 1 , B2 , B3 • Furthermore, suppose 
Bl = [ I ,  I ,  If,  and suppose 

(forj = 1 , 2) 

where 10 is the solution of AX = Bj • Here it is more efficient to first obtain the LU factorization of A and then use the 
LU factorization to solve the system for each of the B's. (This is done in Problem 3 .42.) 

Solved Problems 
LINEAR EQUATIONS, SOLUTIONS, 2 x 2  SYSTEMS 

3.1 .  Determine whether each of the following equations is linear: 

(a) 5x + 7y - 8yz = 1 6, (b) x + ny + ez = log 5 , 

(a) No, since the product yz of two unknowns is of second degree. 

(b) Yes, since Jr, e, and log 5 are constants. 

(c) 3x + ky - 8z = 1 6  

(c) As it stands, there are four unknowns:  x, y, z, k. Because of the term ky it is not a linear equation. 
However, assuming k is a constant, the equation is linear in the unknowns x, y, z. 
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3.2. Determine whether the following vectors are solutions of Xl + 2x2 - 4X3 + 3X4 = 1 5 :  
(a) u = (3 , 2 , 1 , 4) and (b) v = ( 1 , 2 , 4 , 5) , 
(a) Substitute to obtain 3 + 2(2) - 4( 1 )  + 3(4) = 1 5 ,  or 1 5  = 1 5 ;  yes, it is a solution. 

(b) Substitute to obtain 1 + 2(2) - 4(4) + 3(5) = 1 5 ,  or 4 = 1 5 ;  no, it is not a solution. 

3.3. Solve : (a) ex = n, (b) 3x - 4 - x = 2x + 3 , (c) 7 + 2x - 4 = 3x + 3 - X 

(a) Since e #- 0, multiply by l /e to obtain x = n/e. 

(b) Rewrite in standard form, obtaining Ox = 7. The equation has no solution. 

(c) Rewrite in standard form, obtaining Ox = O. Every scalar k is a solution. 

3.4. Prove Theorem 3 .4 :  Consider the equation ax = b. 

(i) If a #- 0, then X = b/a is a unique solution of ax = b. 
(ii) If a = 0 but b #- 0, then ax = b has no solution. 

(iii) If a = 0 and b = 0, then every scalar k is a solution of ax = b. 

Suppose a #- O. Then the scalar b/a exists. Substituting b/a in ax = b yields a(b/a) = b, or b = b; hence 
b/a is a solution. On the other hand, suppose Xo is a solution to ax = b, so that axo = b. Multiplying both 
sides by l /a yields Xo = b/a. Hence b/a is the unique solution of ax = b. Thus (i) is proved. 

On the other hand, suppose a = O. Then, for any scalar k, we have ak = Ok = O. If b #- 0, then ak #- b. 
Accordingly, k is not a solution ofax = b, and so (ii) is proved. If b = 0, then ak = b. That is, any scalar k is a 
solution of ax = b, and so (iii) is proved. 

3.5. Solve each of the following systems: 

(a) 
2x - 5y = 1 1  
3x + 4y = 5 (b) 

2x - 3y = 8 
-6x + 9y =  6 

(c) 2x - 3y = 8 
-4x + 6y = - 1 6  

(a) Eliminate x from the equations by forming the new equation L = -3Lj + 2L2 • This yields the equation 

23y = -23,  and so y = - 1 

Substitute y = - 1  in one of the original equations, say Lj ,  to get 

2x - 5(- 1 )  = 1 1  or 2x + 5 = 1 1 or 2x = 6 or x = 3  

Thus x = 3 ,  y = - l or the pair u = (3 , - 1 )  is the unique solution of the system. 

(b) Eliminate x from the equations by forming the new equation L = 3Lj + L2 . This yields the equation 

Ox + Oy = 30  

This is a degenerate equation with a nonzero constant; hence this equation and the system have no 
solution. (Geometrically, the lines corresponding to the equations are parallel.) 

(c) Eliminate x from the equations by forming the new equation L = 2Lj + L2 . This yields the equation 

Ox + Oy = O  

This is a degenerate equation where the constant term is also zero. Thus the system has an infinite 
number of solutions, which correspond to the solution of either equation. (Geometrically, the lines 
corresponding to the equations coincide.) 

To find the general solution, set y = a and substitute in Ll to obtain 

2x - 3a = 8 or 2x = 3a + 8 or x = � a + 4 

Thus the general solution is 

or u = G a + 4, a) 
where a is any scalar. 
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3.6. Consider the system 

x + ay = 4  

ax + 9y = b 

(a) For which values of a does the system have a unique solution? 

(b) Find those pairs of values (a ,  b) for which the system has more than one solution, 

(a) Eliminate x from the equations by forming the new equation L = -aLl + L2 . This yields the equation 

( 1 )  

The system has a unique solution i f  and only i f  the coefficient ofy in ( 1 )  is not zero, that is, if 9 - a2 i- 0 
or if a i- ±3.  

(b) The system has more than one solution if both sides of ( 1 )  are zero. The left-hand side is zero when 
a = ±3.  When a = 3 ,  the right-hand side is zero when b - 12  = 0 or b = 12. When a = -3 ,  the right­
hand side is zero when b + 12  - 0 or b = - 1 2. Thus (3 , 1 2) and (-3 , - 1 2) are the pairs for which the 
system has more than one solution. 

SYSTEMS IN TRIANGULAR AND ECHELON FORM 

3.7. Determine the pivot and free variables in each of the following systems: 

2x] + 3X2 - 6x3 - 5X4 + 2x5 = 7 
x3 + 3X4 - 7x5 = 6 

X4 - 2x5 = I 
(a) 

2x - 6y + 7z =  I 
4y + 3z = 8 

2z = 4  
(b) 

X +  2y - 3z = 2 
2x + 3y +  Z =  4 
3x + 4y +  5z = 8 

(c) 
(a) In echelon form, the leading unknowns are the pivot variables, and the others are the free variables. Here 

Xl , X3 , X4 are the pivot variables, and X2 and Xs are the free variable. 

(b) The leading unknowns are x, y, z, so they are the pivot variables. There are no free variables (as in any 
triangular system). 

(c) The notion of pivot and free variables applies only to a system in echelon form. 

3.8. Solve the triangular system in Problem 3 . 7(b) . 

Since it is a triangular system, solve by back-substitution. 

(i) The last equation gives z = 2 .  

(ii) Substitute z = 2 in the second equation to get 4y + 6 = 8 or y = !. 
(iii) Substitute z = 2 and y = ! in the first equation to get 

2x - 6G) + 7(2) = 1 or 2x + l l = l  or 

Thus X = 5, Y = !, z = 2 or u = (5 , ! , 2) is the unique solution to the system. 

3.9. Solve the echelon system in Problem 3 . 7(a) . 

x = 5  

Assign parameters to the free variables, say X2 = a and Xs = b, and solve for the pivot variables by back­
substitution. 

(i) Substitute Xs = b in the last equation to get X4 - 2b = 1 or X4 = 2b + 1 .  

(ii) Substitute Xs = b and X4 = 2b + 1 in the second equation to get 

X3 + 3(2b + 1) - 7b = 6 or or 
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(iii) Substitute Xs = b, X4 = 2b + 1 ,  x3 = b + 3, xl = a in the first equation to get 

2Xl + 3a - 6(b + 3) - 5(2b + 1) + 2b = 7 or 2Xl + 3a - l4b - 23 = 7 

Thus 

3 
xl = 2 a + 7b + 1 5 ,  xl = a, x3 = b + 3 , x4 = 2b + l , xs = b  

or u = G a + 7b + 1 5 ,  a ,  b + 3 , 2b + l , b) 
is the parametric form of the general solution. 

Alternatively, solving for the pivot variable Xl ' X3 , X4 in terms of the free variables Xl and Xs yields the 
following free-variable form of the general solution: 

3 
Xl = 2Xl + txs + 1 5 ,  

3.10.  Prove Theorem 3 . 5 .  Consider the system (3 .4) of linear equations in echelon form with r equations 
and n unknowns. 

(i) If r = n, then the system has a unique solution. 

(ii) If r < n, then we can arbitrarily assign values to the n - r free variable and solve uniquely for 
the r pivot variables, obtaining a solution of the system. 

(i) Suppose r = n. Then we have a square system AX = B where the matrix A of coefficients is (upper) 
triangular with nonzero diagonal elements. Thus A is invertible. By Theorem 3 .9 ,  the system has a 
unique solution. 

(ii) Assigning values to the n - r free variables yields a triangular system in the pivot variables, which, by 
(i), has a unique solution. 

GAUSSIAN ELIMINATION 

3 .11 .  Solve each of the following systems: 

x + 2y - 4z =  -4 
2x + 5y - 9z = - 1 0  
3x - 2y + 3z = 1 1  

(a) 

x + 2y - 3z = - 1 
-3x + y - 2z = -7 

5x + 3y - 4z = 2 
(b) 

x + 2y - 3z = 1 
2x + 5y - 8z = 4 
3x + 8y - 1 3z = 7 

(c) 
Reduce each system to triangular or echelon form using Gaussian elimination: 

(a) Apply "Replace Ll by -2LI + Ll "  and "Replace L3 by -3LI + L3 " to eliminate X from the second and 
third equations, and then apply "Replace L3 by 8Ll + L3 " to eliminate y from the third equation. These 
operations yield 

x + 2y - 4z = -4 
y - z = -2 

-8y + l 5z = 23 
and then 

x + 2y - 4z =  -4 
y - z = -2 

7z = 23 

The system is in triangular form. Solve by back-substitution to obtain the unique solution u = (2, - 1 ,  1 ) .  

(b) Eliminate X from the second and third equations by the operations "Replace Ll by 3Ll + Ll " and 
"Replace L3 by -5LI + L3 " .  This gives the equivalent system 

x + 2y - 3z = - 1  
7y - l Iz = - 1 0  

-7y + l Iz = 7 
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The operation "Replace L3 by L2 + L3 " yields the following degenerate equation with a nonzero 
constant: 

OX + Oy + Oz =  -3 

This equation and hence the system have no solution. 

(c) Eliminate x from the second and third equations by the operations "Replace L2 by -2LI + L2 " and 
"Replace L3 by -3LI + L3 " .  This yields the new system 

x + 2y - 3z = I 
y - 2z = 2  

2y - 4z =  4 
or 

x + 2y - 3z = I 
y - 2z = 2  

(The third equation is deleted, since it is a multiple of the second equation.) The system is in echelon 
form with pivot variables x and y and free variable z. 

To find the parametric form of the general solution, set z = a and solve for x and y by back­
substitution. Substitute z = a in the second equation to get y = 2 + 2a. Then substitute z = a and 
y = 2 + 2a in the first equation to get 

x + 2(2 + 2a) - 3a = 1 or x + 4 + a = 1  or x = -3 - a  

Thus the general solution is 

x = -3 - a, y = 2 + 2a, z = a or u = (-3 - a, 2 + 2a, a) 
where a is a parameter. 

3.12.  Solve each of the following systems: 

Xl - 3x2 + 2x3 - x4 + 2x5 = 2 
3Xl - 9X2 + 7x3 - X4 + 3x5 = 7 
2x1 - 6X2 + 7x3 + 4X4 - 5x5 = 7 

(a) 

Xl + 2x2 - 3x3 + 4x4 = 2 
2x1 + 5X2 - 2x3 + X4 = 1 
5Xl + 1 2x2 - 7x3 + 6X4 = 3 

(b) 

Reduce each system to echelon form using Gaussian elimination: 

(a) Apply "Replace L2 by -3LI + L2 " and "Replace L3 by -2LI + L3 " to eliminate x from the second and 
third equations. This yields 

Xl - 3X2 + 2X3 - X4 + 2xs = 2 
x3 + 2X4 - 3xs = I 

3X3 + 6X4 - 9xs = 3 
or 

Xl - 3X2 + 2x3 - X4 + 2xs = 2 
x3 + 2x4 - 3xs = I 

(We delete L3 , since it is a multiple of L2 ') The system is in echelon form with pivot variables Xl and x3 
and free variables X2 , X4 , xs . 

To find the parametric form of the general solution, set x2 = a, x4 = b, Xs = c, where a, b, c are 
parameters. Back-substitution yields X3 = I - 2b + 3c and Xl = 3a + 5b - 8c. The general solution is 

Xl = 3a + 5b - 8c, X2 = a,  x3 = I - 2b + 3c, X4 = b, Xs = c 

or, equivalently, u = (3a + 5b - 8c, a, I - 2b + 3c, b, c) . 

(b) Eliminate Xl from the second and third equations by the operations "Replace L2 by -2LI + L2 " and 
"Replace L3 by -5LI + L3 " .  This yields the system 

Xl + 2X2 - 3x3 + 4X4 = 2 
X2 + 4X3 - 7X4 = -3 

2x2 + 8x3 - 14x4 = -7 

The operation "Replace L3 by -2L2 + L3 " yields the degenerate equation 0 = 3 .  Thus the system has no 
solution (even though the system has more unknowns than equations). 
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3.13.  Solve using the condensed format: 

The condensed format follows: 

(2) 
( 1 )  

Number 

( I) 
C;Z) 
(3) 
(3') 
(3") 

2y + 3z = 3 
x +  y +  Z =  4 

4x + 8y - 3z = 35  

Operation 
Lj ** L2 
Lj ** L2 

Equation 
2y + 3z = 3 

x +  y +  z = 4 
4x + 8y - 3z = 35 

4y - 7z = 1 9 
- 1 3z = 1 3  

Replace L3 by - 4Lj + L3 
Replace L3 by - 2L2 + L3 

Here ( 1 ), (2), and (3") form a triangular system. (yVe emphasize that the interchange of Lj and L2 is 
accomplished by simply renumbering Lj and L2 as above.) 

Using back-substitution with the triangular system yields z = - I  from L3 , y = 3 from L2 , and x = 2 
from Lj • Thus the unique solution of the system is x = 2, Y = 3, z = - l or the triple u = (2, 3 ,  - I) . 

3.14. Consider the system 

x + 2y +  Z =  3 
ay + 5z =  1 0  

2x + 7y + az =  b 

(a) Find those values of a for which the system has a unique solution. 

(b) Find those pairs of values (a , b) for which the system has more than one solution. 

Reduce the system to echelon form. That is, eliminate x from the third equation by the operation 
"Replace L3 by -2Lj + L3 " and then eliminate y from the third equation by the operation 
"Replace L3 by -3L2 + aL3 '" This yields 

x + 2y + Z =  3 
ay + 5z = 1 0  
y + (a - 2)z = b - 6 

and then 
x + 2y +  Z =  3 

ay + 5z = 1 0  
(a2 - 2a - 1 5)z = a b  - 6 a  - 3 0  

Examine the last equation (a2 - 2a - 1 5)z = a b  - 6 a  - 30.  

(a) The system has a unique solution if and only if the coefficient of z is not zero, that is, if 

a2 - 2a - 15 = (a - 5)(a + 3) i= 0 or a i= 5 and a i= -3 .  

(b) The system has more than one solution if both sides are zero. The left-hand side is zero when a = 5 or 
a = -3 .  When a = 5, the right-hand side is zero when 5b - 60 = 0, or b = 1 2. When a = -3 ,  the right­
hand side is zero when -3b + 1 2  = 0, or b = 4. Thus (5 , 1 2) and (-3 , 4) are the pairs for which the 
system has more than one solution. 

ECHELON MATRICES, ROW EQUIVALENCE, ROW CANONICAL FORM 

3.15.  Row reduce each of the following matrices to echelon form: 

-3 0 ] 
-2 2 , 
-4 3 
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(a) Use al l  = I as a pivot to obtain O 's below al l ' that is, apply the row operations "Replace R2 by 
-2R1 + R2 " and "Replace R3 by -3R1 + R3 " ;  and then use a23 = 4 as a pivot to obtain a 0 below a23' 
that is, apply the row operation "Replace R3 by -5R2 + 4R3 " . These operations yield [ I 2 

A � 0 0 
o 0 

The matrix is now in echelon form. 

-3 0 ] 
4 2 
o 2 

(b) Hand calculations are usually simpler if the pivot element equals 1 . Therefore, first interchange R1 and 
R2 . Next apply the operations "Replace R2 by 4R1 + R2 " and "Replace R3 by -6R1 + R3 " ;  and then 
apply the operation "Replace R3 by R2 + R3 " . These operations yield [ I 2 -5 ] [ I 

B � -4 I -6 � 0 
6 3 -4 0 

2 -5 ] [ I 2 -5 ] 
9 -26 � 0 9 -26 

-9 26 0 0 0 

The matrix is now in echelon form. 

3.16. Describe the pivoting row-reduction algorithm. Also describe the advantages, if any, of using this 
pivoting algorithm. 

The row-reduction algorithm becomes a pivoting algorithm if the entry in colunmj of greatest absolute 
value is chosen as the pivot a1h and if one uses the row operation 

(-aijJalj)R1 + Ri -+ Ri 

The main advantage of the pivoting algorithm is that the above row operation involves division by the 
(current) pivot a1h ' and, on the computer, roundoff errors may be substantially reduced when one divides by a 
number as large in absolute value as possible. 

3.17. let A � [ -1 -2 
6 

-7 

2 
o 

1 0  
-i ] . R,duce A ", oohelon funn wing "" p;voting " gorithm. 

First interchange R1 and R2 so that -3 can be used as the pivot, and then apply the operations "Replace 
R2 by �R1 + R2 " and "Replace R3 by tR1 + R3 " . These operations yield [ -3 6 

A � 2 -2 
I -7 

o - I ] [ -3 6 0 - I ] 
2 I �  0 2 2 t 

1 0  2 0 -5 1 0  i 
Now interchange R2 and R3 so that -5 can be used as the pivot, and then apply the operation "Replace R3 by 
�R2 + R3 " . We obtain [ -3 6 

A � 0 -5 
o 2 

o - I ] [ -3 6 
1 0  2. � 0 -5 
2 i 0 0 3 

The matrix has been brought to echelon form using partial pivoting. 

3.18.  Reduce each of the following matrices to row canonical form: 

2 
4 
8 

- 1  

- 1  

6 
1 0  
26 

1� ] , 
1 9  
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(a) First reduce A to echelon form by applying the operations "Replace Rz by -2Rj + Rz " and "Replace R3 
by -4Rj + R3 " ,  and then applying the operation "Replace R3 by -Rz + R3 " . These operations yield [ 2 2 - 1  

A � 0 0 3 
o 0 3 

6 4 ] [ 2 2 - 1  6 4 ] 
-2 6 � 0 0 3 -2 6 
2 7 0 0 0 4 2 

Now use back-substitution on the echelon matrix to obtain the row canonical form of A . Specifically, first 
multiply R3 by ! to obtain the pivot a34 = 1 ,  and then apply the operations "Replace Rz by 2R3 + Rz " 
and "Replace R j by -6R3 + R j " .  These operations yield [ 2 2 - 1  6 4 ] [ 2 2 - 1  0 1 ] 

A � 0 0 3 -2 5 � 0 0 3 0 6 
0 0  0 l � 0 0  O l � 

Now multiply Rz by t, making the pivot aZ3 = 1 ,  and then apply "Replace Rj by Rz + Rj " ,  yielding [ 2 2 - 1  0 1 ] [ 2 2 0 0 3 ] 
A �  0 0 1 0 2 � 0 0 1 0 2 

0 0  O l � 0 0 0 1 � 

Finally, multiply Rj by � , so the pivot al l  = 1 .  Thus we obtain the following row canonical form of A :  [ 1 1 0 0 � ] 
A �  0 0 1 0 2 

0 0 0  1 ! 
(b) Since B is in echelon form, use back-substitution to obtain 

The last matrix, which is the identity matrix I, is the row canonical form of B. (This is expected, since B 
is invertible, and so its row canonical form must be I.) 

3.19. Describe the Gauss-Jordan elimination algorithm, which also row reduces an arbitrary matrix A to 
its row canonical form. 

The Gauss-Jordan algorithm is similar in some ways to the Gaussian elimination algorithm, except that 
here each pivot is used to place O 's both below and above the pivot, not just below the pivot, before working 
with the next pivot. Also, one variation of the algorithm first normalizes each row, that is, obtains a unit pivot, 
before it is used to produce O 's in the other rows, rather than normalizing the rows at the end of the algorithm. 

3.20. Let A � U -! : :: � i 1 u"" Ga",.-Jonlan In find the row oanonioal fonn of A 

Use al l  = 1 as a pivot to obtain O 's below a j j  by applying the operations "Replace Rz by -Rj + Rz " and 
"Replace R3 by -2Rj + R3 " . This yields [ 1 -2 3 

A � 0 3 1 
o 9 3 

-2 
-4 

Multiply Rz by ! to make the pivot azz = 1, and then produce O 's below and above azz by applying the 
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operations "Replace R3 by -9Rz + R3 " and "Replace Rj by 2Rz + Rj " . These operations yield 

[CHAP. 3 

Finally, multiply R3 by t to make the pivot a34 = I ,  and then produce O 's above a34 by applying the operations 
"Replace Rz by � R3 + Rz " and "Replace R j by t R3 + R j " .  These operations yield 

A - [ : 0 1 1  j ' ] [
1 0 1 1  0 

1] 
T - 3' 

: - : 
T 

I j z I j 
0 3' - 3' 3' 

0 0 0 0 

which is the row canonical form of A.  

SYSTEMS OF LINEAR EQUATION IN MATRIX FORM 

3.21 .  Find the augmented matrix M and the coefficient matrix A of the following system: 

x + 2y - 3z =  4 
3y - 4z + 7x = 5 
6z + 8x - 9y =  1 

First align the unknowns in the system, and then use the aligned system to obtain M and A. We have 

then M = 7 3 -4 5 and 3 -4 
x + 2y - 3z = 4 

7x + 3y - 4z = 5 ; 
8x - 9y + 6z =  I 

[ I 2 -3 4 ] 
8 -9 6 I 

2 -3 ] 
-9 6 

3.22. Solve each of the following systems using its augmented matrix M: 

x + 2y - z = 3 x - 2y + 4z = 2 x + y + 3z = 1 
x + 3y + z = 5 2x - 3y + 5z = 3 2x + 3y - z = 3 

3x + 8y + 4z = 1 7  3x - 4y + 6z = 7 5x + 7y + z = 7 

(a) (b) (c) 

(a) Reduce the augmented matrix M to echelon form as follows: [ 1 2 -I 3 ] [ I 2 - 1  
M =  1 3 I 5 � 0 1 2 

3 8 4 1 7  0 2 7 

Now write down the corresponding triangular system 

x + 2y - z =  3 
y + 2z = 2  

3z = 4  

and solve by back-substitution to obtain the unique solution 

x = ¥ ,  y = - � ,  z = 1 or u = (¥ ' - � ,  1) 
Alternately, reduce the echelon form of M to row canonical form, obtaining 

M � [ � � -� : ] � [ � 
o 0 1 1 0 

This also corresponds to the above solution. 
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(b) First reduce the augmented matrix M to echelon form as follows: [ I -2 4 2 ] [ I -2 4 2 ] [ I 
M = 2 -3 5 3 � 0 I -3 - I  � 0 

3 -4 6 7 0 2 -6 I 0 

-2 4 2 ] 
I -3 - I  
o 0 3 

The third row corresponds to the degenerate equation Ox + Oy + Oz = 3 ,  which has no solution, Thus 
"DO NOT CONTINUE" .  The original system also has no solution. (Note that the echelon form indicates 
whether or not the system has a solution.) 

(c) Reduce the augmented matrix M to echelon form and then to row canonical form: 

M =
[ ; ;  -� ; ] � [ � � -� � J � [ I 0 1 0 O J 5 7 I 7 +le---'i2'--.....f-,14�9c-2 0 I -7 I 

(The third row of the second matrix is deleted, since it is a multiple of the second row and will result in a 
zero row.) Write down the system corresponding to the row canonical form of M and then transfer the 
free variables to the other side to obtain the free-variable form of the solution: 

X +  I Oz = O  
y - 7z = I 

and 
x = - l Oz 

y = I + 7z 

Here z is the only free variable. The parametric solution, using z = a, is as follows: 

x = - l Oa, y = 1 +  7a ,  z = a or u = (- l Oa, 1 +  7a, a) 

3.23. Solve the following system using its augmented matrix M: 

Xl + 2.x2 - 3X3 - 2.x4 + 4X5 = 1 
2.x1 + 5x2 - 8x3 - x4 + 6X5 = 4 
Xl + 4x2 - 7x3 + 5x4 + 2.x5 = 8 

Reduce the augmented matrix M to echelon form and then to row canonical form: 

M � [ i 2 -3 

5 -8 

4 7 � [ : 2 -3 

I -2 

0 0 

-2 4 

- I  6 
5 2 

0 8 

0 -8 

2 

1 ] [ 1 2 

4 � 0 1 

8 0 2 �J [: 
-3 -2 4 � ] � [ : 2 -3 

-2 3 -2 I -2 

-4 7 -2 0 0 

0 0 24 2 1 ] 
1 -2 0 -8 -7 

0 0 2 3 

-2 4 n 3 -2 

2 

Write down the system corresponding to the row canonical form of M and then transfer the free variables to 
the other side to obtain the free-variable form of the solution: 

24x5 = 2 1  
8X5 = -7 

X4 + 2x5 = 3 
and 

Xl = 2 1  - x3 - 24x5 
x2 = -7 + 2x3 + 8X5 
X4 = 3 - 2x5 

Here xl ,  X2 , X4 are the pivot variables and X3 and X5 are the free variables. Recall that the parametric form of 
the solution can be obtained from the free-variable form of the solution by simply setting the free variables 
equal to parameters, say X3 = a, X5 = b. This process yields 

Xl = 2 1  - a - 24b, x2 = -7 + 2a + 8b, x3 = a, x4 = 3 - 2b, x5 = b 

or u = (2 1 - a - 24b, -7 + 2a + 8b, a, 3 - 2b, b) 

which is another form of the solution. 
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LINEAR COMBINATIONS, HOMOGENEOUS SYSTEMS 

3.24. Write v as a linear combination of Uj , u2 , U3 ' where 

(a) v = (3 , 1 0 , 7) and Ul = ( 1 , 3 , -2),  U2 = ( 1 , 4 , 2) ,  U3 = (2 , 8 , 1 ) ;  

(b) v = (2 , 7, 8) and Ul = ( 1 , 2 , 3), U2 = ( 1 , 3 , 5), u3 = ( 1 ,  5 ,  9); 

(c) v = ( 1 , 5 , 4) and Ul = ( 1 , 3 , -2), U2 = (2 , 7 ,  - 1 ) ,  u3 = ( 1 , 6 , 7) ,  

Find the equivalent system of linear equations by writing v = XUj + YU2 + zU3 ' Alternatively, use the 
augmented matrix M of the equivalent system, where M = [U j , U2 , U3 ,  vJ . (Here Uj , U2 , U3 ,  v are the colunms 
of M.) 

(a) The vector equation v = XUj + YU2 + zU3 for the given vectors is as follows: 

[ I � ] = x [ � ] + y [ � ] + z [ � ] = [ 3X
X/�! �; ] 

7 -2 2 I -2x + 2y + z  

Form the equivalent system of linear equations by setting corresponding entries equal to each other, and 
then reduce the system to echelon form: 

X +  y + 2z =  3 
3x + 4y + 8z = 1 0  

-2x + 2y +  Z =  7 
or 

X +  y + 2z =  3 
y + 2z =  I 

4y + 5z = 1 3  
or 

x + y + 2z = 3  
y + 2z = 1 

-3z = 9 

The system is in triangular form. Back-substitution yields the unique solution x = 2, y = 7, z = -3 .  
Thus v = 2u j  + 7u2 - 3u3 ' 

Alternatively, form the augmented matrix M = [Uj , U2 , U3 , vJ of the equivalent system, and reduce 
M to echelon form: [ I 1 2 

M =  3 4 8 
-2 2 1 

3
] [

1 1 2 
1 0  � 0 1 2 
7 0 4 5 

3
] [

1 1 2 3 ] I � 0 I 2 I 
1 3  0 0 -3 9 

The last matrix corresponds to a triangular system that has a unique solution. Back-substitution yields the 
solution x = 2, y = 7, z = -3 .  Thus v = 2uj + 7U2 - 3u3 ' 

(b) Form the augmented matrix M = [Uj , U2 , U3 ,  vJ of the equivalent system, and reduce M to the echelon 
form: 

[
I 1 I 2

] [
I 1 1 2

] [
1 I 1 2 ] M =  2 3 5 7 � 0 1 3 3 � 0 1 3 3 

3 5 9 8 0 2 6 4 0 0 0 -2 

The third row corresponds to the degenerate equation Ox + Oy + Oz = -2, which has no solution. Thus 
the system also has no solution, and v cannot be written as a linear combination of Uj , U2 , u3 ' 

(c) Form the augmented matrix M = [Uj , u2 , u3 ,  vJ of the equivalent system, and reduce M to echelon form: 

[
1 2  

M =  3 7 
-2 - 1  

The last matrix corresponds to the following system with free variable z: 

x + 2y +  Z =  1 
y + 3z =  2 

Thus v can be written as a linear combination of Uj , u2 , u3 in many ways. For example, let the free 
variable z = 1 ,  and, by back-substitution, we get y = -2 and x = 2. Thus v = 2uj - 2U2 + U3 ' 
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3.25. Let Uj = ( 1 , 2 , 4) , U2 = (2 ,  -3 , 1 ) ,  u3 = (2 , 1 ,  - 1 )  in R
3
. Show that U j , U2 , u3 are orthogonal, and 

write v as a linear combination of Uj , U2 ' u3 ' where: (a) v = (7 ,  1 6 , 6), (b) v = (3 ,  5 ,  2) .  

Take the dot product of pairs of vectors to get 

Uj . U2 = 2 - 6 + 4 = 0, Uj ' U3 = 2 + 2 - 4 = 0 , U2 ' U3 = 4 - 3 - 1 = ° 
Thus the three vectors in R3 are orthogonal, and hence Fourier coefficients can be used. That is, 
v = XUj + YU2 + zU3 , where 

(a) We have 

7 + 32 + 24 63 

v· Uj 
X = -­Uj • Uj ' 

x - - - - 3 - 1 + 4 + 1 6  - 2 1  -
, 

Thus v = 3uj  - 2U2 + 4U3 ' 
(b) We have 

v ·  U2 
Y = -- , u2 • u2 

14 + 1 6  - 6 _ 24 _ 4 Z = 
4 + 1 + 1  - 6 -

3 + 1 0  + 8 2 1  
x - - - - 1 

6 - 1 5 + 2  -7 6 + 5 - 2  9 3 
- 1 + 4 + 1 6  - 2 1  -

, Y = 
4 + 9 + 1 14  2 ' z = --,----------:-

4 + 1 + 1  6 2 

Thus v = Uj - ! U2 + � U3 ' 

3.26. Find the dimension and a basis for the general solution W of each of the following homogeneous 
systems: 

2x1 + 4x2 - 5x3 + 3x4 = 0 
3xl + 6x2 - 7x3 + 4x4 = 0 
5xj + l Ox2 - l lx3 + 6x4 = 0 

(a) 

x - 2y - 3z = 0 
2x + y - z = o  
3x - 4y - 8z = 0 

(b) 

(a) Reduce the system to echelon form using the operations "Replace L2 by -3Lj + 2L2 " , "Replace L3 by 
-5Lj + 2L3 " , and then "Replace L3 by -2L2 + L3 " . These operations yield: 

2xj + 4X2 - 5x3 + 3X4 = ° 
x3 - x4 = ° 

3X3 - 3X4 = ° 
and 

2Xj + 4X2 - 5x3 + 3X4 = ° 
x3 - x4 = ° 

The system in echelon form has two free variables, X2 and X4, so dim W = 2. A basis [U j ,  U2] for W may 
be obtained as follows: 
( 1 )  Set X2 = 1 ,  x4 = 0. Back-substitution yields X3 = 0, and then X j  = -2 .  Thus Uj = (-2 , 1 , 0 , 0) .  
(2) Set X2 = 0, X4 = 1 .  Back-substitution yields x3 = 1 ,  and then Xj = 1 .  Thus U2 = (1 , 0, 1 , 1 ) .  

(b) Reduce the system to echelon form, obtaining 

x - 2y - 3z = ° 
5y + 9z = ° 
2y + 7z =  ° 

and 
x - 2y - 3z = ° 

5y + 9z = ° 
l 7z = ° 

There are no free variables (the system is in triangular form). Hence dim W = 0, and W has no basis. 
Specifically, W consists only of the zero solution, that is, W = {a} . 

3.27. Find the dimension and a basis for the general solution W of the following homogeneous system 
using matrix notation: 

Xl + 2x2 + 3x3 - 2x4 + 4X5 = 0 
2xl + 4x2 + 8x3 + X4 + 9x5 = 0 
3xl + 6x2 + 1 3x3 + 4x4 + 14x5 = 0 

Show how the basis gives the parametric form of the general solution of the system. 



Lipschulz-Lipson:Schaum's I 3, Systems of Linear I Text © The McGraw-Hili 
Companies, 2004 Outline ofTheory and Equations 

Problems of Linear 

Algebra,3/e 

1 04 SYSTEMS OF LINEAR EQUATIONS [CHAP. 3 

When a system is homogeneous, we represent the system by its coefficient matrix A rather than by its 
augmented matrix M, since the last colunm of the augmented matrix M is a zero colunm, and it will remain a 
zero colunm during any row-reduction process. 

Reduce the coefficient matrix A to echelon form, obtaining [ 1 2 
A = 2 4 

3 6 

3 
8 

1 3  

-2 

4 
9 � 0 0 2  5 1 � 
4 ] [ 1 2 3 -2 4 ] 

I 

14 ° ° 4 1 0  2 
[ 0 2 3 

° 2 
-2 4 J 5 1 

(The third row of the second matrix is deleted, since it is a multiple of the second row and will result in a zero 
row.) We can now proceed in one of two ways. 
(a) Write down the corresponding homogeneous system in echelon form: 

Xl + 2X2 + 3x3 - 2x4 + 4xs = ° 
2X3 + 5X4 + Xs = ° 

The system in echelon form has three free variables, X2 , X4 , xs , so dim W = 3 .  A basis [Ul ' U2 , u3 ] for W 
may be obtained as follows: 

( I ) Set X2 = I, X4 = 0, Xs = 0, Back-substitution yields x3 = 0, and then Xl = -2 . Thus 
Ul = (-2 , 1 , 0 , 0 , 0). 

(2) Set x2 = 0, x4 = 1 ,  Xs = 0. Back-substitution yields X3 = - �, and then Xl = 1 2 . Thus 
ul = ( 1 2 , 0 , - � , 1 , 0). 

(3) Set X2 = 0, X4 = 0, Xs = I .  Back-substitution yields x3 = - !, and then Xl = - � . Thus 
Ul = (- �, 0, - ! , 0 , I ) .  

[One could avoid fractions in the basis by choosing X4 = 2 in  (2) and Xs = 2 in  (3), which yields 
multiples ofu2 and u3 ' ]  The parametric form of the general solution is obtained from the following linear 
combination of the basis vectors using parameters a, b, c: 

aUI + bu2 + Cu3 = (-2a + 1 2b - � c, a, - � b - ! c, b ,  c) 

(b) Reduce the echelon form of A to row canonical form: [ I 2 3 
A � 0 0 1 

-2 4 ] 
� [ I 

� ! ° 

Write down the corresponding free-variable solution: 

2 3 

° 

1 9  5 Xl = -2x2 + '2X4 - '2xs 

5 I x3 = - '2 x4 - '2 Xs 

Using these equations for the pivot variables Xl and x3, repeat the above process to obtain a basis [U l ' U2 , u3 ] 
for W. That is, set X2 = 1 ,  X4 = 0, Xs = ° to get Ul ; set X2 = 0, X4 = 1 ,  Xs = ° to geet U2 ; and set X2 = 0, 
X4 = 0, Xs = 1 to get U3 ' 

3.28. Prove Theorem 3 . 1 3 .  Let Vo be a particular solution of AX = E, and let W be the general solution of 
AX = O. Then U = Vo + W = {vo + w :  W E  W} is the general solution of AX = E. 

Let W be a solution of AX = 0. Then 

A(vo + w) = Avo + Aw = B + O = B  

Thus the sum Vo + w is a solution of AX = B. On the other hand, suppose v is also a solution of AX = B. 
Then 

A( v - vo) = Av - Avo = B - B = ° 

Therefore v - Vo belongs to W. Since v = Vo + (v - vo), we find that any solution of AX = B can be obtained 
by adding a solution of AX = ° to a solution of AX = B. Thus the theorem is proved. 
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3.29. Let ej ,  e2 ' e3 denote, respectively, the elementary row operations 
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"Interchange rows R1 and R2 " , "Replace R3 by 7R3 " , "Replace R2 by -3R1 + R2 " 
Find the corresponding 3-square elementary matrices E1 , E2 , E3 • 

Apply each operation to the 3 x 3 identity matrix 13 to obtain [ 0 1 0 ] EI = 1 0 0 , 
0 0 1 

[ 1 0 0 ] E2 = 0 1 0 , 
0 0 7  

3.30. Consider the elementary row operations in Problem 3 .29.  

(a) Describe the inverse operations e1 1 , el 1 , e3 1 . 
(b) Find the corresponding 3 -square elementary matrices Ei , E� , E� . 
(c) What is the relationship between the matrices Ei , E� , E� and the matrices E1 , E2 , E3 ? 

(a) The inverses of el , e2 , e3 are, respectively, 

"Interchange rows R 1 and R2 " , 

(b) Apply each inverse operation to the 3 x 3 identity matrix 13 to obtain 

Ei =
[ � � � ] , E� =

[ � � � ] , E� =
[ ; 

0 0 1 O O �  0 

o 0 ] 1 0 
o 1 

(c) The matrices Ei , Ei , E� are, respectively, the inverses of the matrices E1 , E2 , E3 • 

3.31 .  Write each of the following matrices as a product of elementary matrices: 

[ 1 -3 ] (a) A = 
-2 4 '  (b) B � [ � 2 

1 o (c) 

The following three steps write a matrix M as a product of elementary matrices: 

Step 1.  Row reduce M to the identity matrix I, keeping track of the elementary row operations. 

Step 2. Write down the inverse row operations. 

Step 3. Write M as the product of the elementary matrices corresponding to the inverse operations. This 
gives the desired result. 

If a zero row appears in Step 1 ,  then M is not row equivalent to the identity matrix I, and M cannot be written 
as a product of elementary matrices. 

(a) ( 1 ) We have 

where the row operations are, respectively, 

"Replace R2 by 2RI + R2 " , 
(2) Inverse operations : 

"Replace R2 by -2RI + R2 " , 

"Replace R2 by - ! R2 " , 

"Replace RI by 3R2 + R 1 " 
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(b) ( 1 ) We have 

(c) 

[ 1 2 3 ] [ 1 2 
B =  0 1 4 � 0 1 

o 0 1 0 0 

where the row operations are, respectively, 

"Replace R2 by - 4R3 + Rz " , "Replace R1 by - 3R3 + R1 " , "Replace R1 by -2R2 + R1 " 

(2) Inverse operations: 

(3) 

( 1 ) 

"Replace R2 by 4R3 + R2 " , [ ' 0 0 ] [ ' 
B =  0 1 4 0 

o 0 1 0 

0 

0 m! 2 n 0 
First row reduce C to echelon form, We have [ ' 1 2 ] [ ' 

C =  2 3 8 � 0 
-3 - 1  2 0 

"Replace R1 by 2R2 + R1 " 

' 2 ] [" 2 ] 
1 4 � 0 1 4  
2 8 0 0 0 

In echelon form, C has a zero row. " STOP" .  The matrix C cannot be row reduced to the identity 
matrix I, and C cannot be written as a product of elementary matrices. (We note, in particular, that 
C has no inverse.) 

3.32. Fffid !h, Uw=' of: Ca) A � [ -1 2 
- 1  

7 

-; ] , (b) B =  [ �  ; =� ] . 
-3 3 1 3  -6 

(a) Form the matrix M = [A, I] and row reduce M to echelon form: [ ' 2 -4 "  0 : ] - u 2 _4 1 

M =  - 1  - 1 5 : 0 1 
1 1 

2 7 -3 : 0 0 3 
1 

5 1 -2 [ ' 2 -4 ' , 0 � l � 0 1 1 : 1 1 
o 0 2 : -5 -3 

0 � l 0 

In echelon form, the left half of M is in triangular form; hence A has an inverse. Further reduce M to row 
canonical form: 

M � 
[ � � � : -� -: 

_
� ] 

� 
[ � � � : - 1� - l �  

_
� ] 

1 2 2 2  1 2 2 2 

o 0 1 1 _ .2. _ 1 1 0 0 1 1 _ .2. _ 1 1 
1 2 2 2  1 2 2 2 

The final matrix has the form [I , A - 1 ] ;  that is, A - 1 is the right half of the last matrix. Thus 
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(b) Form the matrix M = [B, /l and row reduce M to echelon form: 

M � U 3 -4 1 1 0 n - [: 3 -4 I 0 n - [: 3 -4 I 1 0 n I I I 5 - 1 1 0 1 2 3 1 - 1  1 2 3 1 - 1  1 
1 3  -6 1 0 0 4 6 1 -3 0 0 0 1 - 1 -2 I 

In echelon form, M has a zero row in its left half; that is, B is not row reducible to triangular form, 
Accordingly, B has no inverse. 

3.33. Show that every elementary matrix E is invertible, and its inverse is an elementary matrix. 

Let E be the elementary matrix corresponding to the elementary operation e, that is, e(l) = E. Let e' be 
the inverse operation of e and let E' be the corresponding elementary matrix, that is, e' (/) = E' . Then 

/ = e'(e(l)) = e'(E) = E'E and / = e(e'(l)) = e(E') = EE' 

Therefore E' is the inverse of E. 

3.34. Prove Theorem 3 . 1 3 :  Let e be an elementary row operation and let E be the corresponding m-square 
elementary matrix, that is, E = eel) . Then e(A) = EA,  where A is any m x n matrix. 

Let Ri be the row i of A; we denote this by writing A = [RI , . . .  , Rml .  If B is a matrix for which AB is 
defined then AB = [RIB . . .  , RmBl .  We also let 

ei = (O , . . .  , o , i , o , . . .  , O) , A= i 

Here A = i means 1 is the ith entry. One can show (Problem 2 .45) that eiA = Ri . We also note that 
/ = [el , ez , . . .  , eml is the identity matrix. 

(i) Let e be the elementary row operation "Interchange rows Ri and Rj" . Then, for A = i and � = j, 
E = eel) = [el , . . .  , e;, . . .  , �, . . .  , eml 

and 

e(A) = [RI , · · ·  , � , . . .  , R;, . . .  , Rml 

Thus 

EA = [eIA , . . .  , ejA , . . .  , eiA , . . .  , emAl = [RI , . . .  , � , . . .  , R; , . . .  , Rml = e(A) 

(ii) Let e be the elementary row operation "Replace Ri by kRi (k i= 0)" . Then, for A =  i, 

E = eel) = [el , " " kei , . . .  , eml 

and 

e(A) = [RI , . . .  , fRi , . . .  , Rml 

Thus 

EA = [eIA , . . .  , keiA , . . .  , emAl = [RI , . . .  , fRi , . . .  , Rml = e(A) 

(iii) Let e be the elementary row operation "Replace Ri by kRj + R/' . Then, for A = i, 

E = e(l) = [el , . . .  , kej + ei , . . .  , eml 

and 
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3.35. Prove Theorem 3 . 14 :  Let A be a square matrix. Then the following are equivalent: 

(a) A is invertible (nonsingular). 

(b) A is row equivalent to the identity matrix I. 
(c) A is a product of elementary matrices . 

Suppose A is invertible and suppose A is row equivalent to matrix B in row canonical form. Then there 
exist elementary matrices E] , E2 , . . .  , Es such that Es ' "  E2E]A = B. Since A is invertible and each 
elementary matrix is invertible, B is also invertible. But if B oF I, then B has a zero row; whence B is not 
invertible. Thus B = I, and (a) implies (b). 

If (b) holds, then there exist elementary matrices E] , E2 , . . .  , Es such that Es . . .  E2E]A = I. Hence 
A = (Es . . .  E2E] )- ] = E-]E2 ] . . .  , E; ] . But the Ei ] 

are also elementary matrices. Thus (b) implies (c) . 
If (c) holds, then A = E]E2 . . .  Es ' The Ej are invertible matrices; hence their product A is also invertible. 

Thus (c) implies (a). Accordingly, the theorem is proved. 

3.36. Prove Theorem 3 . 1 5 :  If AB = I, then BA = I, and hence B = A- i . 

Suppose A is not invertible. Then A is not row equivalent to the identity matrix I, and so A is row 
equivalent to a matrix with a zero row. In other words, there exist elementary matrices E] , . . .  , Es such that 
Es . . .  E2E]A has a zero row. Hence Es . . .  E2E]AB = Es . . .  E2Ej o an invertible matrix, also has a zero row. But 
invertible matrices cannot have zero rows; hence A is invertible, with inverse A- ] . Then also, 

3.37. Prove Theorem 3 . 1 6 :  B is row equivalent to A (written B � A) if and only if there exists a 
nonsingular matrix P such that B = P A .  

I f  B � A,  then B = es(' " (e2 (e] (A))) . . .  ) = Es " . E2E]A = PA where P = Es " . E2E] i s  nonsingular. 
Conversely, suppose B = PA, where P is nonsingular. By Theorem 3 . 14 , P is a product of elementary 
matrices, and so B can be obtained from A by a sequence of elementary row operations, that is, B � A. Thus 
the theorem is proved. 

3.38. Prove Theorem 3 . 1 8 : Every m x n matrix A is equivalent to a unique block matrix of the form [� � ] , where Ir is the r x r identity matrix. 

The proof is constructive, in the form of an algorithm. 

Step 1.  Row reduce A to row canonical form, with leading nonzero entries a1jj ' a2}z ' . . .  , arj, ' 
Step 2. Interchange C] and C]iI ' interchange C2 and C2}z , • . .  , and interchange Cr and 0r ' This gives a 

. . h " f Ir I B 1 . h i d' . matnx m t e lorm [0-: -01 ' WIt ea mg nonzero entnes al l ,  a22 , " " arr · 

Step 3. Use colunm operations, with the au as pivots, to replace each entry in B with a zero, i .e . ,  for 
i = 1 , 2 , . . .  , r and j = r + 1 ,  r + 2 , . . .  , n ,  apply the operation -bijCj + Cj ---+ Cj • 

The final matrix has the desired form t�� -� j . 
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LV FACTORIZATION 

3.39. Find the LV decomposition of: (a) A = [ � 
- 1  

-3 
-4 
-2 

(a) Reduce A to triangular form by the following operations: 

B = [ � : -i ] , 
-5 -9 7 

"Replace R2 by - 2R 1 + R2 " , "Replace R3 by R 1 + R3 " , and then 

"Replace R3 by � R2 + R3 " 

These operations yield the following, where the triangular form is U: [ I -3 5 ] [ I -3 5 ] 
A � 0 2 -3 � 0 2 -3 = U 

o -5 6 0 O - � 
and L = [ ; 

- I  

o 0 ] - � � 
The entries 2 , - I , - � in L are the negatives of the multipliers -2 , I , � in the above row operations, (As a 
check, multiply L and U to verify A = LU.) 

(b) Reduce B to triangular form by first applying the operations "Replace R2 by -2Rl + R2 " and "Replace 
R3 by 5R 1 + R/' . These operations yield 

4 -3 ] 
o 7 . 

I I  -8 

Observe that the second diagonal entry is O. Thus B cannot be brought into triangular form without row 
interchange operations. Accordingly, B is not LU-factorable. (There does exist a PLU factorization of 
such a matrix B, where P is a permutation matrix, but such a factorization lies beyond the scope of this 
text.) 

3.40. Find the LDU factorization of the matrix A in Problem 3 .39 .  

The A = LDU factorization refers to the situation where L i s  a lower triangular matrix with 1 's on  the 
diagonal (as in the LU factorization of A), D is a diagonal matrix, and U is an upper triangular matrix with 1 's 
on the diagonal. Thus simply factor out the diagonal entries in the matrix U in the above L U factorization of A 
to obtain D and L. That is 

[ 
I 0 0 ] 

L =  2 1 0 , 
- I  - �  I 

[ I 0 0 ] 
D =  0 2 0 , 

o 0 - � 

3.41 .  Find the LU factorization of the matrix A = [ � 
-3 

2 
3 

- 1 0  

Reduce A to triangular form by the following operations :  

( 1 )  "Replace R2 by -2Rl + R2 " , (2) "Replace R3 by 3R1 + R3 " , 

-3 5 ] I -3 
o 1 

(3) "Replace R3 by -4R2 + R3 " 

These operations yield the following, where the triangular form is U: [ I 2 
A � 0 - I  

o -4 

2 I ] 
- I  I = U 

o 1 
and L =  [ ; 

-3 

o 0 ] 
I 0 
4 1 

The entries 2 , -3 , 4 in L are the negatives of the multipliers -2 , 3 , -4 in the above row operations. (As a 
check, multiply L and U to verify A = LU.) 
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3.42. Let A be the matrix in Problem 3 ,4 1 .  Find Xl , X2 , X3, where: � is the solution of AX = Bi for: 
(a) Bl = ( 1 ,  1 ,  1), (b) B2 = Bl + Xl ' (c) B3 = B2 + X2 . 
(a) Find L- IBI by applying the row operations ( 1 ), (2), and then (3) in Problem 3 .4 1  to BI : 

0) , [ -l ] 
Solve UX = B for B = ( 1 , - 1 , 8) by back-substitution to obtain Xl = (-25 , 9 , 8). 

(b) First find B2 = BI +XI = ( 1 , 1 , 1 ) + (-25 , 9 , 8) = (-24, 1 0 , 9). Then as above 

B = [-24 1 0  9]T (I ) 
and (2)) [-24 58 _63]T 2 " , , (3) ) [-24, 58 , -295f 

Solve UX = B for B = (-24 , 58 , -295) by back-substitution to obtain X2 = (943 , -353 , -295). 
(c) First find B3 = B2 + X2 = (-24, 1 0 , 9) + (943 , -353 , -295) = (9 1 9 , -343 , -286). Then, as above 

B3 = [943 , -353 , -295f 
(I) 

and (2)) [9 1 9 , -2 1 8 1 ,  267 1f (3) ) [9 1 9 , -2 1 8 1 ,  1 1 395f 
Solve UX = B for B = (9 1 9 , -2 1 8 1 , 1 1 395) by back-substitution to obtain 

X3 = (-37 628 , 1 3  576 , 1 1  395). 

MISCELLANEOUS PROBLEMS 

3.43 . Let L be a linear combination of the m equations in n unknowns in the system (3 .2) .  Say L is the 
equation 

Show that any solution of the system (3 .2) is also a solution of L. 
Let u = (kl , • • •  , kn) be a solution of (3 .2). Then 

(i = 1 , 2 , . . .  , m) 
Substituting u in the left-hand side of ( 1 ) and using (2), we get 

(CI al l  + . . .  + cmaml )kl + . . .  + (CI aln + . . .  + cmamn)kn 
= Cl (al l  kl + . . .  + alnkn) + . . .  + Cm (am I kl + . . .  + amnkn) 
= CI b l + . . .  + cmbm 

This is the right-hand side of ( 1 ); hence u is a solution of ( 1 ) . 

(2) 

3.44. Suppose a system A of linear equations is obtained from a system se by applying an elementary 
operation (page 64) . Show that A and se have the same solutions. 

Each equation L in .A is a linear combination of equations in 2. Hence, by Problem 3 .43 , any solution 
of 2 will also be a solution of .A. On the other hand, each elementary operation has an inverse elementary 
operation, so 2 can be obtained from .A by an elementary operation. This means that any solution of .A is a 
solution of 2. Thus 2 and .A have the same solutions. 

3.45. Prove Theorem 3 ,4 :  Suppose a system A of linear equations is obtained from a system se by a 
sequence of elementary operations. Then A and se have the same solutions. 

Each step of the sequence does not change the solution set (Problem 3 .44). Thus the original system 2 
and the final system .A (and any system in between) have the same solutions. 
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3.46. A system !£ of linear equations is said to be consistent if no linear combination of its equations is a 
degenerate equation L with a nonzero constant. Show that !£ is consistent if and only if !£ is 
reducible to echelon form, 

Suppose 2 is reducible to echelon form. Then 2 has a solution, which must also be a solution of every 
linear combination of its equations. Thus L, which has no solution, cannot be a linear combination of the 
equations in 2. Thus 2 is consistent. 

On the other hand, suppose 2 is not reducible to echelon form. Then, in the reduction process, it must 
yield a degenerate equation L with a nonzero constant, which is a linear combination of the equations in 2. 
Therefore, 2 is not consistent, that is ,  2 is inconsistent. 

3.47. Suppose u and v are distinct vectors . Show that, for distinct scalars k, the vectors u + k(u - v) are 
distinct. 

Suppose u + kl (u - v) = u + k2(U - v) . We need only show that kl = k2 . We have 

kl (u - v) = kz(u - v), and so (kl - k2)(U - v) = 0 

Since u and v are distinct, u - v i= O. Hence kl - kz = 0, and so kl = k2 . 

3.48. Suppose AB is defined. Prove: 

(a) Suppose A has a zero row. Then AB has a zero row. 

(b) Suppose B has a zero column. Then AB has a zero column. 

(a) Let Ri be the zero row of A, and Cl , . . .  , Cn the colunms of B. Then the ith row of AB is 

(RiCI , RiC2 , • . .  , RiCn) = (0, 0 , 0 , . . .  , 0) 

(b) BT has a zero row, and so BT AT = (AB)T has a zero row. Hence AB has a zero colunm. 

Supplementary Problems 
LINEAR EQUATIONS, 2 x 2  SYSTEMS 

3.49. Determine whether each of the following systems is linear: 

(a) 3x - 4y + 2yz = 8, (b) ex + 3y = n, (c) 2x - 3y + liz = 4 

3.50. Solve : (a) nx = 2, (b) 3x + 2 = 5x + 7 - 2x, (c) 6x + 2 - 4x = 5 + 2x - 3 

3.51. Solve each of the following systems: 

(a) 2x + 3y = I 
5x + 7y = 3 

(b) 4x - 2y = 5  
-6x + 3y = I 

(c) 2x - 4 = 3y 
5y - x =  5 

3.52. Consider each of the following systems in unknowns x and y: 

(d) 2x - 4y =  1 0  
3x - 6y = 1 5  

(a) x - ay =  I 
ax - 4y = b 

(b) ax + 3y = 2  
1 2x + ay = b 

(c) x + ay = 3  
2x + 5y =  b 

For which values of a does each system have a unique solution, and for which pairs of values (a, b) does each 
system have more than one solution? 
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3.53. Solve : 

3.54. Solve : 

3.55. Solve: 

(a) x + y + 2z = 4 
2x + 3y + 6z = 1 0  
3x + 6y + I Oz = 14 

(a) x - 2y = 5 
2x + 3y = 3 
3x + 2y =  7 

(b) x - 2y + 3z = 2 
2x - 3y + 8z = 7 
3x - 4y + 1 3z = 8 

(b) x + 2y - 3z + 2t = 2  
2x + 5y - 8z + 6t = 5 
3x + 4y - 5z + 2t = 4 

© The McGraw-Hili 
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(c) x + 2y +  3z = 3 
2x + 3y +  8z = 4 
5x + 8y + 1 9z = I I  

(c) x + 2y + 4z - 5t = 3 
3x - Y + 5z + 2t = 4 
5x - 4y - 6z + 9t = 2 

(a) 2x - y - 4z = 2 
4x - 2y - 6z =  5 
6x - 3y - 8z = 8 

(b) x + 2y - z + 3t = 3 
2x + 4y + 4z + 3t = 9 
3x + 6y - z + 8t = 1 0  

3.56. Consider each of the following systems in unknowns x and y: 

(a) x - 2y = I 
x - y + az = 2  

ay + 4z = b 

(b) x +  2y + 2z =  I 
x +  ay + 3z = 3 
x + l ly + az = b  

(c) x +  y + az =  I 
x + ay +  z = 4  

ax +  y +  z = b  

For which values of a does the system have a unique solution, and for which pairs of values (a , b) does the 
system have more than one solution? The value of b does not have any effect on whether the system has a 
unique solution. Why? 

LINEAR COMBINATIONS, HOMOGENEOUS SYSTEMS 

3.57. Write v as a linear combination of UI , U2 , u3 , where: 

(a) v = (4, -9 , 2), UI = ( 1 , 2 , - 1), U2 = ( 1 , 4, 2), u3 = ( 1 , -3 , 2) ; 
(b) v = ( I , 3 , 2), ul = ( 1 , 2 , I ) ,  u2 = (2 , 6 , 5), u3 = ( 1 , 7 , 8) ; 
(c) v = ( 1 , 4 , 6), UI = ( 1 , 1 , 2), U2 = (2 , 3 , 5), u3 = (3 , 5 , 8). 

3.58. Let ul = ( I , 1 , 2), U2 = ( 1 , 3 , -2), u3 = (4, -2 , - 1 ) in R
3
. Show that ul ,  U2 , u3 are orthogonal, and write v as 

a linear combination of ul , U2 , u3 , where: (a) v = (5 , -5 , 9), (b) v = ( 1 , -3 , 3), (c) v = ( 1 , 1 , 1 ) .  
(Hint: Use Fourier coefficients.) 

3.59. Find the dimension and a basis of the general solution W of each of the following homogeneous systems: 

(a) x - y + 2z = 0 
2x +y + z = O  
5x +y + 4z =  0 

(b) x + 2y - 3z = 0  (c) x + 2y + 3z + t = 0 
2x + 5y + 2z =  0 
3x - y - 4z =  0 

2x + 4y + 7z + 4t = 0 
3x + 6y + 1 0z + 5t = 0 

3.60. Find the dimension and a basis of the general solution W of each of the following systems: 

(a) xI + 3X2 + 2X3 - X4 - X5 = 0  
2xI + 6X2 + 5x3 + X4 - x5 = 0 
5xI + 1 5x2 + 1 2x3 + X4 - 3X5 = 0 

(b) 2x1 - 4X2 + 3X3 - X4 + 2X5 = 0 
3xI - 6X2 + 5x3 - 2x4 + 4x5 = 0 
5xI - I Ox2 + 7x3 - 3X4 + 4X5 = 0 
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ECHELON MATRICES, ROW CANONICAL FORM 

3.61. Reduce each of the following matrices to echelon form and then to row canonical form: 

(a) [ I 1 
2 4 
1 5 

� ] , 
1 2  

(b) [ 1 2 - 1  
2 4 I 
3 6 3 

2 1 ] -2 3 , 
-7 7 

(c) [ 2 4 2 -2 5 
3 6 2 2 0 
4 8 2 6 -5 

3.62. Reduce each of the following matrices to echelon form and then to row canonical form: 

© The McGraw-Hili 
Companies, 2004 

(a) [ ; ; ; ; 5 ; ] 
3 6 4 9 1 0  1

9
1 ' 

I 2 4 3  6 
(b) [

0 1 2 
0 3 8  
0 0 4  
0 2 7  

I� ] 
6 ' 

1 0  
(c) [ 1 

3 
8 5 
7 7 

I I  7 

I � ] 
I I  
1 5  

3.63. Using only O 's and 1 's, list all possible 2 x 2 matrices in row canonical form. 

3.64. Using only O 's and 1 's, find the number n of possible 3 x 3 matrices in row canonical form. 

ELEMENTARY MATRICES, APPLICATIONS 

3.65. Let el , e2 , e3 denote, respectively, the following elementary row operations: 

" Interchange R2 and R3 '" "Replace R2 by 3R2 " , 

(a) Find the corresponding elementary matrices EI , E2 , E3 • 

1 1 3 

(b) Find the inverse operations el l , ez l , e:J I ; their corresponding elementary matrices E; , E'z , E� ; and the 
relationship between them and E I , E2 , E3 • 

(c) Describe the corresponding elementary column operations .li ,h , ./3 .  
(d) Find elementary matrices FI , F2 , F3 corresponding to .li ,h , ./3 ,  and the relationship between them and 

EI , E2 , E3 • 

3.66. Express each of the following matrices as a product of elementary matrices: 

[ 3 -6 J B = -2 4 ' 

3.67. Find the inverse of each of the following matrices (if it exists): 

A � [ l -2 -1 ] B � U 2 i } C � [ i 3 -2 ] 
-3 1 , 6 8 -3 , 
-4 4 1 0  - 1  7 1 

3.68. Find the inverse of each of the following n x n matrices: 

D �  [ l I - 1 ] 2 -3 
2 1 

(a) A has 1 's on the diagonal and superdiagonal (entries directly above the diagonal) and O 's elsewhere. 

(b) B has I 's on and above the diagonal, and O 's elsewhere. 

LV FACTORIZATION 

3.69. Find the LU factorization of each of the following matrices: 

(a) [ ; =! =; ] , (b) [ ; � - � ] , (c) [ ; � � ] , (d) [ ; ; � ] 
2 -3 -2 3 4 2 3 5 4 3 7 1 0  
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3.70. Let A be the matrix in Problem 3 .69(a). Find XI , X2 , X3 , X4 where: 

(a) Xl is the solution of AX = Bl > where Bl = ( 1 , 1 , l )T . 
(b) For k > 1, Xk is the solution of AX = Bk, where Bk = Bk- l + Xk

- l . 

3.71. Let B be the matrix in Problem 3 .69(b). Find the LDU factorization of B. 

MISCELLANEOUS PROBLEMS 

3.72. Consider the following systems in unknowns x and y: 

(a) ax + by =  1 
cx + dy = O  (b) ax + by = O  

cx + dy = l 
Suppose D = ad - be # O. Show that each system has the unique solution: 

(a) x = diD, Y = -cID, (b) x = -biD, Y = aiD. 

3.73. Find the inverse of the row operation "Replace Ri by kRj + k'Ri (k' # 0)" . 

© The McGraw-Hili 
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3.74. Prove that deleting the last column of an echelon form (respectively, the row canonical form) of an augmented 
matrix M = [A , B] yields an echelon form (respectively, the row canonical form) of A. 

3.75. Let e be an elementary row operation and E its elementary matrix, and let f be the corresponding elementary 
column operation and F its elementary matrix. Prove: 

(a) f(A) = (e(AT))T , (b) F = ET, (c) f(A) = AF. 

3.76. Matrix A is equivalent to matrix B, written A R:j B, if there exist nonsingular matrices P and Q such that 
B = PAQ. Prove that R:j is an equivalence relation, that is : 

(a) A R:j A, (b) If A R:j B, then B R:j A, (c) If A R:j B and B R:j C, then A R:j C. 

Answers to Supplementary Problems 
Notation: A = [R l ; R2 ; • • •  ] denotes the matrix A with rows Rl , R2 , • • • • The elements in each row are separated 
by commas (which may be omitted with single digits), the rows are separated by semicolons, and 0 denotes a zero row. 
For example, 

A = [ 1 , 2 , 3 , 4 ;  5 , -6 , 7 , -8 ;  
[ 1 2 

0] = 5 -6 
o 0 

3.49. (a) no, (b) yes, (c) linear in x, y, z, not linear in x, y, z, k 

3.50. (a) x = 21n, (b) no solution, 

3.51. (a) (2 , - 1 ), (b) no solution, 

(c) every scalar k is a solution 

(c) (5 , 2), (d) (5 - 2a, a) 

3 4 ] 
7 -8 
o 0 

3.52. (a) a # ±2 , (2 , 2) , (-2 , -2), (b) a # ±6 , (6 , 4), (-6, -4), (c) a # � , G , 6) 

3.53. (a) (2 , 1 , �), (b) no solution, (c) u = (-7a + 7 , 2a - 2, a). 

3.54. (a) (3 , - 1 ), (b) u = (-a + 2b, 1 + 2a , a, b), (c) no solution 
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3.55. (a) U = (! a ,  a, !), 

SYSTEMS OF LINEAR EQUATIONS 

(b) U = (! (7 - 5b - 4a) , a, !O + b) , b) 

3.56. (a) a =I- ±3 , (3 , 3), (-3 , -3), (b) a =I- 5 and a =I- - 1 , (5 , 7), (- 1 , -5), 

3.57. 

3.58. 

3.59. 

(c) a =I- 1 and a =I- -2, ( 1 , -2), (-2 , 5) 

(a) 2 , - 1 , 3 , (b) -5 , � ,  1 ,  (c) 
(a) 3 , -2 , I ,  (b) � , - q, (c) 
(a) dim W = I , U I = (- I , I , I ) ,  (b) 

not possible 

z I I 
'3 '  7 '  2f 

dim W = 0, no basis, (c) dim W = 2 , UI = (-2 , 1 , 0 , 0) , Uz = (5 , 0, -2 , I )  

3.60. (a) dim W = 3 , u l = (-3 , 1 , 0 , 0 , 0), Uz = (7 , 0 , -3 , 1 , 0), u3 = (3 , 0 , - 1 , 0 , 1 ) ,  
(b) dim W = 2, u l = (2 , 1 , 0 , 0 , 0), Uz = (5 , 0 , -5 , -3 , I )  

© The McGraw-Hili 
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3.61. (a) [ 1 , 0 , - ! ; o , q ; 0], (b) [ 1 , 2 , 0 , 0 , 1 ; 0 , 0 , 1 , 0 , ¥ ; 0 , 0 , 0 , 1 , 2], 
(c) [ 1 , 2 , 0 , 4 , 5 , 3 ;  0 , 0 , 1 , -5 , ¥ , - � ; 0] 

0 , 0 , 0 , 1 , 2 , 1 ;  0] , 3.62. (a) [ 1 , 2 , 0 , 0 , -4, -2; 0 , 0 , 1 , 0 , 1 , 2 ;  
(b) [0 , 1 , 0 , 0 ; 0 , 0 , 1 , 0 ; 0 , 0 , 0 , 1 ;  0], (c) [ 1 , 0 , 0 , 4 ; 0 , 1 , 0 , - 1 ;  

3.63. 5 : [ 1 , 0 ; 0 , 1 ] , [ 1 , 1 ;  0 , 0], [ 1 , 0 ; 0 , 0], [0 , 1 ;  0 , 0] , 0 

3.64. 1 5  

3.65. (a) [ 1 , 0 , 0 ;  0 , 0 , I ;  0 , 1 , 0] , [ 1 , 0 , 0 ;  0 , 3 , 0 ; 
(b) Rz ** R3 ; tRz -+ Rz ;  -2R3 + RI -+ RI ; (c) Cz ** C3 , 3Cz -+ Cz ,  2C3 + CI -+ CI , (d) 

0, 0 , I I ] ,  [ 1 , 0 , 2 ;  
each E; = Eil , 
each Fi = ET, 

0, I ] ,  B is not invertible, 
0, 1 ] [2 , 0 ; 0 , I ] , 

0, 1 , 0 ; 

0 , 0 , 1 , 2 ;  0] 

0 , 0 , I ] , 

3.66. A = [ 1 , 0 ; 
C =  [ 1 , 0 ;  
D = [ 1 00; 

3 , 0] [ 1 , 0 ;  0 , -2] [ 1 , 2 ;  
- � , 1 ] [ 1 , 0 ; 0 , 1 ] [ 1 , 6 ;  
0 1 0 ; 30 1 ] [ 1 00; 0 1 0 ;  02 1 ] [ 1 00; 0 1 3 ;  00 1 ] [ 1 20; 0 1 0 ; 00 1 ]  

3.67. A- I = [-8 , 1 2 , -5 ;  
C- I = F! , - ¥ , � ;  

-5 , 7 , -3 ;  
5 3 I • - 2 ' 2 '  - 2 '  

1 , -2 , 1 ] ,  
3 , -2 , 1 ] , 

B has no inverse, 
D- I = [8 , -3 , - 1 ;  -5 , 2 , 1 ;  

3.68. A- I = [ 1 , - 1 , 1 , - 1 , . . .  ; 0 , 1 , - 1 , 1 , - 1 , . . .  ; 0 , 0 , 1 , - 1 , 1 , - 1 , 1 , . . .  ; 
B- 1 has l 's on diagonal, - 1 's on superdiagonal, and O 's elsewhere. 

3.69. (a) [ 1 00; 3 1 0 ;  2 1 1 ] [ 1 , - 1 , - 1 ; 0, - 1 , 1 ;  0 , 0 , - 1 ] , 
(b) [ 1 00 ;  2 1 0 ;  35 1 ] [ 1 , 3 , - 1 ; 0, - 1 , -3 ;  0 , 0 , - 1 0] ,  (c) [ 1 00; 2 1 0 ; � , ! , 1 ] [2 , � , 3 ;  0 , 1 , - 3 ;  0 , 0 , - �] , 
(d) There is no LU decomposition. 

1 0 , -4, - 1 ]  

0 , . . .  0 , 1 ]  

1 1 5 

3.70. XI = [ I , I , - If , Bz = [2 , 2 , of , Xz = [6 , 4 , of , B3 = [8 , 6 , of , X3 = [22 , 1 6 , -2f, B4 = [30, 22 , _2]T , 
X4 = [86 , 62, -6f 

3.71. B = [ 1 00; 2 1 0 ; 3 5 1 ]  diag( l , - 1 , - 1 0) [ 1 , 3 , - 1 ; 0, 1 , -3 ; 0 , 0 , 1 ]  

3.73. Replace Ri by -kRj + ( l jk')Ri 

3.75. (c) f(A) = (e(AT)l = (EATl = (AT)TET = AF 

3.76. (a) A = IAI. (b) If A = PBQ, then B = p-IAQ- I . (c) If A = PBQ and B = p'cg, then A = (PP')C(Q 'Q) 
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Vector Spaces 

,h,ml." introduces the underlying structure of linear algebra, that of a finite-dimensional vector 
of a vector space V, whose elements are called vectors, involves an arbitrary field K, 

are called sca/aI'S. The following notation will be used (unless otherwise stated or 

v 
II. V. IV 

K 

a. b. c or k 

the given vector space 
vectors in V 

the given number field 
scalars in K 

essential is lost if the reader assumes that K is the real field R or the complex field C. 

might suspect that the real line R has "dimension" one, the cartesian plane R2 has r�::�::1�;,:�0�; and the space RJ has "dimension" three. This chapler formalizes the notion of 
this definition will agree with the reader's intuition. 

this text, we will use the following set notation: 

a U  Element a belongs to set A 

a. b E A Elements a and b belong to A 

Vx E A For every x in A 

3x E A There exists an x in A 

A � B  A is a subset of B 

A n B  Intersection of A and B 

A U B  Union of A and B 

0 Empty set 

VECTOR �PA'CES 

The I defines the notion of a vector space V where K is the field of scalars. 

V be a nonempty set with two operations: 

Vector Addition: This assigns to any II. v E V a slim 1/ + v in V 
ScutaI' M"ltipticatiOlf: This assigns (0 any 1/ E V, k E K a product ku E V 

1 1 6  
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Then V is called a vector space (over the field K) if the following axioms hold for any 
vectors u, v ,  W E V: 

[AI ]  (u  + v) + W = u + (v + w) 
[A2] There is a vector in V, denoted by 0 and called the zero vector, such that, for any 

u E V, 
u + O = O + u = O  

[A3 ] For each u E V, there is a vector in V, denoted by -u, and called the negative of u, 
such that 

u + (-u) = (-u) + u = O . 
[�] u + v = v + u. 
[MI ]  k(u + v) = ku + kv, for any scalar k E K. 
[M2] (a + b)u = au + bu, for any scalars a, b E K. 
[M3 ] (ab)u = a(bu) , for any scalars a, b E  K. 
[�] I u = u, for the unit scalar I E K. 

The above axioms naturally split into two sets (as indicated by the labeling of the axioms). The first 
four are only concerned with the additive structure of V, and can be summarized by saying V is a 
commutative group under addition. This means: 

(a) Any sum VI + V2 + . . .  + vm of vectors requires no parentheses and does not depend on the order of 
the summands. 

(b) The zero vector 0 is unique, and the negative -u of a vector u is unique. 

(c) (Cancellation Law) If u + w = v + w, then u = v. 
Also, subtraction in V is defined by u - v = u + (-v), where -v is the unique negative of v. 

On the other hand, the remaining four axioms are concerned with the "action" of the field K of scalars 
on the vector space V. Using these additional axioms we prove (Problem 4.2) the following simple 
properties of a vector space. 

Theorem 4.1 : Let V be a vector space over a field K. 

(i) For any scalar k E K and 0 E V, kO = O . 
(ii) For 0 E K and any vector u E V, Ou = O. 

(iii) If ku = 0, where k E K and u E V, then k = 0 or u = O. 
(iv) For any k E K and any u E V, (-k)u = k( -u) = -ku. 

4.3 EXAMPLES OF VECTOR SPACES 

This section lists important examples of vector spaces that will be used throughout the text. 

Space Kn 

Let K be an arbitrary field. The notation Kn is frequently used to denote the set of all n-tuples of 
elements in K. Here Kn is a vector space over K using the following operations : 

(i) Vector Addition: (a I ' a2 ' . . .  , an) + (bl , b2 , . . .  , bn) = (a l + bl , a2 + b2 , . . .  , an + bn) 
(ii) Scalar Multiplication: k(a l ' a2 ' . . .  , an) = (ka l , ka2 ' . . .  , kan) 
The zero vector in Kn is the n-tuple of zeros, 

o = (0, 0 ,  . . .  , 0) 

and the negative of a vector is defined by 

-(a I ' a2 , . . .  , an) = (-aI ' -a2 , . . .  , -an) 
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Observe that these are the same as the operations defined for Rn in Chapter 1 .  The proof that Kn is a vector 
space is identical to the proof of Theorem 1 . 1 ,  which we now regard as stating that Rn with the operations 
defined there is a vector space over R. 

Polynomial Space pet) 

Let pet) denote the set of all real polynomials of the form 

(s = 1 , 2 , o o . )  

where the coefficients ai belong to a field K. Then pet) is a vector space over K using the following 
operations : 

(i) Vector Addition: Here pet) + q(t) in pet) is the usual operation of addition of polynomials . 

(ii) Scalar Multiplication: Here kp(t) in pet) is the usual operation of the product of a scalar k and a 
polynomial pet) . 

The zero polynomial 0 is the zero vector in pet) . 

Polynomial Space P n (t) 

Let P n et) denote the set of all polynomials pet) over a field K, where the degree of pet) is less than or 
equal to n, that is, 

where s :::: n . Then Pn(t) is a vector space over K with respect to the usual operations of addition of 
polynomials and of multiplication of a polynomial by a constant (just like the vector space pet) above) .  We 
include the zero polynomial 0 as an element of P net), even though its degree is undefined. 

Matrix Space Mm•n 

The notation Mm n ' or simply M, will be used to denote the set of all rn x n matrices with entries in a 
field K. Then Mm n is a vector space over K with respect to the usual operations of matrix addition and 
scalar multiplication of matrices, as indicated by Theorem 2 . 1 .  

Function Space F(X) 

Let X be a nonempty set and let K be an arbitrary field. Let F(X) denote the set of all functions of X 
into K. [Note that F(X) is nonempty, since X is nonempty. ] Then F(X) is a vector space over K with 
respect to the following operations : 

(i) Vector Addition: The sum of two functions f and g in F(X) is the function f + g in F(X) defined by 

(f + g) (x) = f(x) + g(x) "Ix E X  

(ii) Scalar Multiplication: The product of a scalar k E K and a functionf in F(X) is the function !if in 
F(X) defined by 

(kf)(x) = !if(x) "Ix E X  
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The zero vector in F(X) is the zero function 0, which maps every x E X into the zero element 0 E K, 
that is, 

O(X) = 0 "Ix E X  
Also, for any function f in F(X), the function -f in F(X) defined by 

(-f)(x) = -f(x) "Ix E X  
is the negative of the function ! 

Fields and Subfields 

Suppose a field E is an extension of a field K, that is, suppose E is a field that contains K as a subfield, 
Then E may be viewed as a vector space over K using the following operations : 

(i) Vector Addition: Here U + v in E is the usual addition in E. 
(ii) Scalar Multiplication: Here ku in E, where k E K and U E E, is the usual product of k and U as 

elements of E. 
That is, the eight axioms of a vector space are satisfied by E and its subfield K with respect to the above 
two operations. 

4.4 LINEAR COMBINATIONS, SPANNING SETS 

Let V be a vector space over a field K. A vector v in V is a linear combination of vectors UI , U2 , . . .  , urn 
in V if there exist scalars a I , a2 , . . .  , am in K such that 

v = a l u l + a2u2 + . . .  + amUm 

Alternatively, v is a linear combination of UI , U2 , . . .  , Um if there is a solution to the vector equation 

v = XI UI + x2u2 + . . .  + xmum 

where XI , X2 , . . .  , xm are unknown scalars . 

Example 4.1. (Linear Combinations in Rn) Suppose we want to express v = (3 , 7, -4) in R3 as a linear combination of 
the vectors 

UI = ( 1 , 2 , 3) , U2 = (2 , 3 , 7) , 
We seek scalars x, y, z such that v = XUI + YU2 + ZU3 ; that is, 

or 

U3 = (3 , 5 , 6) 

x + 2y + 3z =  3 
2x + 3y + 5z = 7 
3x + 7y + 6z = -4 

(For notational convenience, we have written the vectors in R3 as columns, since it is then easier to find the equivalent 
system of linear equations.) Reducing the system to echelon form yields 

x + 2y + 3z = 3 
-y - Z =  
Y - 3z = - 1 3  

and then 
x + 2y + 3z = 3 

-y - Z =  
- 4z = - 1 2  

Back-substitution yields the solution x = 2 ,  Y = -4, z = 3 . Thus v = 2uI - 4U2 + 3U3 ' 

Remark: Generally speaking, the question of expressing a given vector v in Kn as a linear 
combination of vectors uI , u2 , . . .  , Urn in Kn is equivalent to solving a system AX = B of linear equations, 
where v is the column B of constants, and the u 's are the columns of the coefficient matrix A .  Such a system 
may have a unique solution (as above), many solutions, or no solution. The last case - no solution - means 
that v cannot be written as a linear combination of the u 's . 
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Example 4,2, (Linear combinations in pet)) Suppose we want to express the polynomial v = 3P + 5t - 5 as a linear 
combination of the polynomials 

PI = t2 + 2t + I ,  P2 = 2t2 + 5t + 4, 

We seek scalars x, y, z such that v = XPI + YP2 + zP3 ; that is ,  

3t2 + 5t - 5 = x(t2 + 2t + I )  + y(2t2 + 5t + 4) + z(t2 + 3 t  + 6) 

There are two ways to proceed from here. 

( 1 ) Expand the right-hand side of (* ) obtaining: 

3 t2 + 5t - 5 = xt2 + 2xt + x + 2yt2 + 5yt + 4y + zt2 + 3zt + 6z 

= (x + 2y + z)t2 + (2x + 5y + 3z)t + (x + 4y + 6z) 

Set coefficients of the same powers of t equal to each other, and reduce the system to echelon form: 

x + 2y +  z = 3 
2x + 5y + 3z = 5 
x + 4y + 6z = -5 

or 
x + 2y +  Z =  3 

y +  z = - I 
2y + 5z =  -8 

or 
x + 2y +  Z =  3 

y +  z = - I 
3z = -6 

(*) 

The system is in triangular form and has a solution. Back-substitution yields the solution x = 3, y = I ,  z = -2 . 
Thus 

(2) The equation (* ) is actually an identity in the variable t; that is, the equation holds for any value of t. We can 
obtain three equations in the unknowns x, y, z by setting t equal to any three values. For example : 

Set t = 0 in ( 1 )  to obtain: 

Set t = I in ( 1 )  to obtain: 

Set t = - I  in ( i ) to obtain: 

x +  4y + 6z = -5 
4x + l ly + I Oz = 3  
y +  4z = -7 

Reducing this system to echelon form and solving by back-substitution again yields the solution x = 3, Y = I ,  
z = -2. Thus (again) v = 3PI + P2 - 2P3 ' 

Spanning Sets 

Let V be a vector space over K. Vectors uI , u2 , . . .  , Urn in V are said to span V or to form a spanning 
set of V if every v in V is a linear combination of the vectors uI , u2 , . . .  , Urn ' that is, if there exist scalars 
a i ' a2 , . . .  , arn in K such that 

The following remarks follow directly from the definition. 

Remark 1 :  Suppose U! , U2 , " " Urn span V. Then, for any vector w, the set w ,  U! , U2 , " " Urn also 
spans V. 

Remark 2 :  Suppose U! , U2 , . . .  , urn span V and suppose Uk is a linear combination of some of the 
other u 's .  Then the u 's without Uk also span V. 

Remark 3 :  Suppose U! , U2 , " " Urn span Vand suppose one of the u 's is the zero vector. Then the u 's 
without the zero vector also span V. 
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Example 4,3, Consider the vector space V = R3. 

(a) We claim that the following vectors form a spanning set of R
3 : 

el = ( 1 ,  0, 0) , e2 = (0, 1 , 0) , 

Specifically, if v = (a,  b, c) is any vector in R3 , then 

v = ael + be2 + ce3 

For example, v = (5 , -6, 2) = -5el - 6e2 + 2e3 ' 

(b) We claim that the following vectors also form a spanning set of R3 : 

WI = ( I , I ,  I ) ,  W2 = ( I , 1 , 0) ,  

Specifically, i f  v = (a,  b, c) i s  any vector in  R3 , then (problem 4.62) 

e3 = (0, 0 ,  1 )  

W3 = ( 1 , 0 , 0) 

v = (a,  b, c) = CWI + (b - C)W2 + (a - b)w3 

For example, v = (5 , -6, 2) = 2Wl - 8W2 + l lw3 ' 

© The McGraw-Hili 
Companies, 2004 

(c) One can show (Problem 3 .24) that v = (2 , 7, 8) cannot be written as a linear combination of the vectors 

Ul = ( 1 , 2 , 3) , U2 = ( I , 3 , 5) , u3 = ( 1 , 5 , 9) 

Accordingly, Ul , U2 '  u3 do not span R
3
. 

Example 4.4. Consider the vector space V = PnCt) consisting of all polynomials of degree � n . 
(a) Clearly every polynomial in Pn(t) can be expressed as a linear combination of the n + 1 polynomials 

Thus these powers of t (where I = to) form a spanning set for Pn(t). 
(b) One can also show that, for any scalar c, the following n + 1 powers of t - c, 

1 ,  t - c, (t - c? ,  (t - c)3 , 

(where (t - c)o = 1 ), also form a spanning set for Pn(t). 

(t - c)" 

1 2 1  

Example 4.5. Consider the vector space M = M2,2 consisting of all 2 x 2 matrices, and consider the following four 
matrices in M: 

Then clearly any matrix A in M can be written as a linear combination of the four matrices. For example, 

A = [ � - � J = 5El l  - 6E12 + 7E21 + 8E22 

Accordingly, the four matrices El 1 , E12 , E21 , E22 span M. 

4.5 SUBSPACES 

This section introduces the important notion of a subspace. 

Definition: Let V be a vector space over a field K and let W be a subset of V. Then W is a subspace of V 
if W is itself a vector space over K with respect to the operations of vector addition and 
scalar multiplication on V. 

The way in which one shows that any set W is a vector space is to show that W satisfies the eight 
axioms of a vector space. However, if W is a subset of a vector space V, then some of the axioms 
automatically hold in W, since they already hold in V. Simple criteria for identifying subspaces follow. 



Lipschulz-Lipson:Schaum's I 4, Vector Spaces 

Outline ofTheory and 

Problems of Linear 

Algebra,3/e 

1 22 

I Text 

VECTOR SPACES 

© The McGraw-Hili 
Companies, 2004 

[CHAP. 4 

Theorem 4.2 : Suppose W is a subset of a vector space V. Then W is a subspace of Vifthe following two 
conditions hold: 

(a) The zero vector 0 belongs to W. 

(b) For every u, v E W; k E K: (i) The sum u + V E W. (ii) The multiple ku E W. 

Property (i) in (b) states that W is closed under vector addition, and property (ii) in (b) states that W is 
closed under scalar multiplication , Both properties may be combined into the following equivalent single 
statement: 

(b') For every u, v E W, a, b E K, the linear combination au + bv E W. 

Now let V be any vector space. Then V automatically contains two subspaces, the set { O }  consisting of 
the zero vector alone and the whole space V itself. These are sometimes called the trivial subspaces of V. 
Examples of nontrivial subspaces follow. 

Example 4.6. Consider the vector space V = R3. 

(a) Let U consist of all vectors in R3 whose entries are equal; that is, 

U = {(a ,  b, c) : a = b = c} 

For example, ( 1 ,  1, 1 ), ( - 3, - 3, - 3), (7, 7 , 7), ( - 2, - 2, - 2) are vectors in U. Geometrically, U is the line 
through the origin 0 and the point ( 1 ,  1 ,  1 ) as shown in Fig. 4- l (a). Clearly 0 = (0, 0, 0) belongs to U, since all 
entries in 0 are equal. Further, suppose u and v are arbitrary vectors in U, say, u = (a ,  a, a) and v = (b, b, b). 
Then, for any scalar k E R, the following are also vectors in U: 

u + v = (a + b, a + b, a + b) and ku = (ka, ka, ka) 

Thus U is a subspace of R3 . 

(b) Let W be any plane in R3 passing through the origin, as pictured in Fig. 4-l (b). Then 0 = (0, 0, 0) belongs to W, 
since we assumed W passes through the origin O. Further, suppose u and v are vectors in W. Then u and v may be 
viewed as arrows in the plane W erninating from the origin 0, as in Fig. 4-l (b). The sum u + v and any multiple 
ku of u also lie in the plane W. Thus W is a subspace of R3 . 

z 

y 

x 

(a) 

Fig. 4-1 

Example 4.7 

\- - -, , , , 
\ , 

x 

, , , , , , 
'- -

z 

, , , 

- - - - - - .J 
(b) 

y 

(a) Let V = Mn n' the vector space of n x n matrices. Let WI be the subset of all (upper) triangular matrices and let 
Wz be the subset of all symmetric matrices. Then WI is a subspace of V, since WI contains the zero matrix 0 and 
WI is closed under matrix addition and scalar multiplication, that is, the sum and scalar multiple of such 
triangular matrices are also triangular. Similarly, Wz is a subspace of V. 
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(b) Let V = pet), the vector space pet) of polynomials. Then the space P n (t) of polynomials of degree at most n may 
be viewed as a subspace of pet) . Let Q(t) be the collection of polynomials with only even powers of t. For 
example, the following are polynomials in Q(t) : 

and 

ewe assume that any constant k = kt° is an even power of t.) Then Q(t) is a subspace of pet) . 

(c) Let V be the vector space of real-valued functions. Then the collection WI of continuous functions and the 
collection W2 of differentiable functions are subspaces of V. 

Intersection of Subspaces 

Let U and W be subspaces of a vector space V. We show that the intersection U n W is also a subspace 
of V. Clearly, 0 E U and 0 E W, since U and W are subspaces; whence 0 E u n  w. Now suppose U and v 
belong to the intersection u n  w. Then u, v E U and u, v E W. Further, since U and W are subspaces, for 
any scalars a, b E  K, 

au + bv E U and au + bv E W 

Thus au + bv E U n w. Therefore U n W is a subspace of V. 
The above result generalizes as follows. 

Theorem 4.3 : The intersection of any number of subspaces of a vector space V is a subspace of V. 

Solution Space of a Homogeneous System 

Consider a system AX = B of linear equations in n unknowns. Then every solution u may be viewed 
as a vector in Kn . Thus the solution set of such a system is a subset of Kn . Now suppose the system is 
homogeneous, that is, suppose the system has the form AX = O. Let W be its solution set. Since AO = 0, 
the zero vector 0 E W. Moreover, suppose u and v belong to W. Then u and v are solutions of AX = 0, or, in 
other words, Au = 0 and Av = O. Therefore, for any scalars a and b, we have 

A(au + bv) = aAu + bAv = aO + bO = 0 + 0 = 0 

Thus au + bv belongs to W, since it is a solution of AX = O. Accordingly, W is a subspace of Kn . 
We state the above result formally. 

Theorem 4.4 : The solution set W of a homogeneous system AX = 0 in n unknowns is a subspace of Kn . 
We emphasize that the solution set of a nonhomogeneous system AX = B is not a subspace of Kn . In 

fact, the zero vector 0 does not belong to its solution set. 

4.6 LINEAR SPANS, ROW SPACE OF A MATRIX 

Suppose Uj , U2 ' . . .  , urn are any vectors in a vector space V. Recall (Section 4.4) that any vector of the 
form a j Uj + a2u2 + . . .  + arnurn, where the ai are scalars, is called a linear combination of Ul ' U2 ' . . .  , Urn ' 
The collection of all such linear combinations, denoted by 

span(Uj , U2 ' . . .  , urn) 

is called the linear span of Ul , U2 , . . .  , Urn ' 

Clearly the zero vector 0 belongs to span(ui) ,  since 

or span(ui) 

o = OUI + OU2 + . . .  + OUrn 



lipschu��Lipson:S�haum's I 
Outline afTheary and 

p.ablem$ af Linea. 

Algebra. 3/. 

124 

4. Vector Spacn Text 

VECTOR SPACES 

Furthennore, suppose V and v' belong to span(II;), say, 

II = (11"1  + (/2112 + . . .  + (lml/", 
Then, for any scalar k E K, we have 

,nd 

II + v' = «(II + bt )1I1 + «(12 + b2)112 + . . .  + (am + bm}lIm 

,nd 

kll = kal"l + ka2112 + . . .  + k£lmUffl 
Thus V + v' and kv also belong to span(u;). Accordingly, span(lIj) is a subspace of V. 

¢I The McGraw-lUI 
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More generally, for any subset 5 of V, span(5) consists of all linear combinations of vectors in 5 or, 
when 5 = ¢, span(S) = {Ol. Thus, in particular, 5 is a spanning set (Section 4.4) of span(5). 

The following theorem, which was partially proved above, holds. 

Theorem 4.5: Let 5 be a subset of a vector space V. 
(i) Then span(S) is a subspace of V that contains S. 

(ii) If IV is a subspace of V containing 5, then span(5) � IV, 
Condition (ii) in Theorem 4.5 may be interpreted as saying that span(S) is the "smallest" subspace of 

V containing S. 

Example 4.8. Consider the vector space V = Rl. 
(a) Let /I be any nonzero .-eetor in Rl. Then span(lI) consists of all scalar multiples of II. Geometrically. span(lI) is 

Ihe line through Ihe origin 0 and Ihe endpoint of 1/, as shown in Fig. 4·2(0). 

o 

(" 

Fig. 4-2 

, , , 
... 

--,--,-, --,- - ., -

(b) 

(b) Let 1/ and II be vC{:lors in R
) 

that arc not multiples oreach olher. Then span(,I. II) is the plane through the origin 0 
and the endpoints of 1/ and II as shown in Fig. 4.2(b). 

(c) Consider Ihe vC{:lors el = (1.  O. 0), 1:2 = (0. 1 . 0). eJ = (0. O. 1) in RJ. Recall [Example 4.1 (0)] lhal every veclor 
in Rl is a lincar combinalion of el' el' el' That is. el' e2' I:J fonn a spanning sct of Ie. Accordingly. 
span(eI 'C2,Cl)= Rl. 

Row Spacc of a Matrix 

Let A = {aij] be an arbitmry III x II matrix over a field K. The rows of A, 
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may be viewed as vectors in Kn ; hence they span a subspace of Kn called the row space of A and denoted 
by rowsp(A) ,  That is, 

rowsp(A) = span(R! , R2 , ' . .  , Rm) 

Analagously, the columns of A may be viewed as vectors in Km called the column space of A and denoted 
by colsp(A).  Observe that colsp(A) = rowsp(AT) .  

Recall that matrices A and B are row equivalent, written A � B, if B can be obtained from A by a 
sequence of elementary row operations. Now suppose M is the matrix obtained by applying one the 
following elementary row operations on a matrix A :  

( 1 )  Interchange R ;  and Rj . (2) Replace R; by kR; , (3) Replace Rj by kR; + Rj 

Then each row of M is a row of A or a linear combination of rows of A .  Hence the row space of M is 
contained in the row space of A .  On the other hand, we can apply the inverse elementary row operation on 
M to obtain A; hence the row space of A is contained in the row space of M. Accordingly, A and M have 
the same row space. This will be true each time we apply an elementary row operation. Thus we have 
proved the following theorem. 

Theorem 4.6: Row equivalent matrices have the same row space. 

We are now able to prove (Problems 4.45--4 .47) basic results on row equivalence (which first 
appeared as Theorems 3 . 6  and 3 . 7  in Chapter 3) .  

Theorem 4.7: Suppose A = [aij] and B = [bij] are row equivalent echelon matrices with respective pivot 
entries 

and 

Then A and B have the same number of nonzero rows, that is, r = s, and their pivot entries 
are in the same positions, that is, }! = k! ,jz = k2 , · · ·  , }r = kr . 

Theorem 4.8: Suppose A and B are row canonical matrices. Then A and B have the same row space if 
and only if they have the same nonzero rows. 

Corollary 4.9: Every matrix A is row equivalent to a unique matrix in row canonical form. 

We apply the above results in the next example. 

Example 4.9. Consider the following two sets of vectors in R4 : 
U j = ( 1 , 2, - 1 , 3) , Uz = (2 , 4 , 1 ,  -2) , U3 = (3 , 6 , 3 ,  -7) 

WI = ( 1 , 2 ,  -4, 1 1 ) ,  Wz = (2 , 4 ,  -5 ,  14) 
Let U = span(u) and W = span(wJ There are two ways to show that U = W 

(a) Show that each uj is a linear combination of WI and wz, and show that each Wi is a linear combination of U I , Uz , 
u3 ' Observe that we have to show that six systems of linear equations are consistent. 

(b) Form the matrix A whose rows are Uj , UZ , u3 and row reduce A to row canonical form, and form the matrix B 
whose rows are Wj and Wz and row reduce B to row canonical form: 

A � [ i 2 
4 
6 

B =  [ � 2 
4 

- 1  

3 

-4 
-5 

-: ] � [ : 
-7 0 

1 1 ] � [ 1 
14 0 

2 - 1  
0 3 
0 6 

2 -4 
0 3 

-: ] � [ : 
- 1 6  0 

1 1 ] � [ 1 
-8 0 

2 
0 

2 0 -!] 0 1 
0 0 

0 - i J 
Since the nonzero rows of the matrices in row canonical form are identical, the row spaces of A and B are equal. 
Therefore, U = W 

Clearly, the method in (b) is more efficient than the method in (a). 
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4.7 LINEAR DEPENDENCE AND INDEPENDENCE 

Let V be a vector space over a field K. The following defines the notion of linear dependence and 
independence of vectors over K. (One usually suppresses mentioning K when the field is understood.) This 
concept plays an essential role in the theory of linear algebra and in mathematics in general. 

Definition: We say that the vectors vI ' v2 ' . . .  , vm in V are linearly dependent if there exist scalars 
a I ' a2 " ' "  am in K, not all of them 0, such that 

Otherwise, we say that the vectors are linearly independent. 
The above definition may be restated as follows. Consider the vector equation 

(*) 

where the x's are unknown scalars. This equation always has the zero solution xI = 0, x2 = 0, . . .  , xm = O .  
Suppose this is the only solution, that is ,  suppose we can show: 

implies XI = 0 , x2 = 0, . . .  ' Xm = 0 

Then the vectors v I ' v2 ' . . .  , vm are linearly independent, On the other hand, suppose the equation (*) has a 
nonzero solution; then the vectors are linearly dependent. 

A set S = {VI ' V2 " ' "  vm } of vectors in V is linearly dependent or independent according as the 
vectors V I ' V2 ' . . .  , vm are linearly dependent or independent. 

An infinite set S of vectors is linearly dependent or independent according as there do or do not exist 
vectors V I ' V2 ' . . .  , vk in S that are linearly dependent. 

Warning: The set S = {vI ' v2 ' . . .  , vm } above represents a list or, in other words, a finite sequence of 
vectors where the vectors are ordered and repetition is permitted. 

The following remarks follow directly from the above definition. 

Remark 1 :  Suppose 0 is one of the vectors VI ' V2 ' . . .  , Vm , say VI = O. Then the vectors must be 
linearly dependent, since we have the following linear combination where the coefficient of V I -I- 0 :  

1 VI + OV2 + . . .  + OVm = 1 . 0 + 0 + . . .  + 0 = 0 

Remark 2 :  Suppose V i s  a nonzero vector. Then v ,  by itself, i s  linearly independent, since 

kv = 0 ,  implies k = O  

Remark 3 :  Suppose two of the vectors VI ' V2 ' . . .  , vm are equal or one is a scalar multiple of the 
other, say V I = kV2' Then the vectors must be linearly dependent, since we have the following linear 
combination where the coefficient of VI -I- 0 :  

Remark 4 :  Two vectors VI and V2 are linearly dependent if  and only if  one of them is  a multiple of  
the other. 

Remark 5: If the set {V I ' . . .  , vm } is linearly independent, then any rearrangement of the vectors 
{Vi! ' Vi2 ' . . .  , Vim } is also linearly independent. 

Remark 6: If a set S of vectors is linearly independent, then any subset of S is linearly independent. 
Alternatively, if S contains a linearly dependent subset, then S is linearly dependent. 
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(a) Let II = (I. I .  0), Ii = ( I .  3. 2), II' = (4. 9. 5). Then II, Ii, II' are linearly dependent, since 

311 + 5v- 211' = 3(1. 1 . 0) +5(1.3.  2) - 2(4. 9. 5) = (0.0.0) = 0 
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(b) We show that the vectors II = ( 1 . 2 ,  3), v = (2, 5, 7), II' = ( I ,  3, 5) are linearly independent. We fonn the vector 
equation XII + yv +:11' = 0, whcre x, y, : are unknown scalars. This yields 

.c 
x + 2y +  : = 0  

2t +5y+3: = 0  
3.t+7y + 5: = 0  

Back-substitution yields x = 0, y = 0, : = O. We have shown that 

.c 

XII+YV+:W = O  

Accordingly, II, Ii, II' are linearly independent. 

implies X = O. y = O. : = 0  

x + 2y +  : = 0  
y +  : = 0  

2: = 0 

(c) lei V be the vector space offunctions from R into R. We show that the functionsj(l) = sin I, g(l) = (/, h(l) = 12 
are linearly independent. We fonn the vector (function) equation .if + yg +:h = 0, where x, y, : are unknown 
scalars. This function equation means Ihal, for every value of I, 

xsinl +yt/ +:12 = 0  

Thus, in this equation, we choose appropriate values of { to easily get X = 0, y = 0, : = O. For example: 
(i) Substitute I = 0 
(ii) Substitute { = 11' 

(iii) Substitute ( =  11'/2 

We have shown: 

to obtain x(O) + y(l) + :(0) = 0 
to obtain x(O) = O(e") + :(1l1) = 0 
to obtain x(l) + 0(e"/2) + 0(11'2/4) = 0 

.if+yg + :j = O  implies x = O. y = O. : = 0 

Accordingly, II, Ii, II' are linearly independent. 

linear Dependence in RJ 

.c y = O  

.c : = 0  

., x = O  

Linear dependence in the vector space V = RJ can be described geometrically as follows: 

(a) Any two vectors /I and v in R3 are linearly dependent if and only if they lie on the same line through 
the origin 0, as shown in Fig. 4-3(a). 

(b) Any three vectors II, v, w in RJ are linearly dependent if and only if they lie on the same plane 
through the origin 0, as shown in Fig. 4-3(b). 

Later, we will be able to show that any four or more vectors in R3 are automatically linearly dependent. 

" 

" 

o 

(a) u and V 11K linearly dependent (b) u, Ii, and '" are tinearly dependent 

Fig, 4-3 
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The notions of linear dependence and linear combinations are closely related, Specifically, for more 
than one vector, we show that the vectors VI ' V2 , . . .  , Vm are linearly dependent if and only if one of them is 
a linear combination of the others. 

Suppose, say, Vi is a linear combination of the others, 

Then by adding -Vi to both sides, we obtain 

where the coefficient of Vi is not O. Hence the vectors are linearly dependent. Conversely, suppose the 
vectors are linearly dependent, say, 

where 

Then we can solve for Vj obtaining 

Vj = bT l bl v l - . . .  - bT l bj_ l vj_ 1 - bT lbj+l vj+1 - . . .  - bT l bmvm 

and so Vj is a linear combination of the other vectors . 
We now state a slightly stronger statement than the one above. This result has many important 

consequences. 

Lemma 4.10: Suppose two or more nonzero vectors vI ' v2 , . . .  , vm are linearly dependent. Then one of 
the vectors is a linear combination of the preceding vectors, that is ,  there exists k > 1 such 
that 

Linear Dependence and Echelon Matrices 

Consider the following echelon matrix A, whose pivots have been circled: 

[ 0 Cbl 3 4 5 6 7 ] o 0 � 3 2 3 4  
A =  0 0 0 0 (J) 8 9 o 0 0 0 0 � 7 o 0 0 0 0 0 0 

Observe that the rows R2 , R3 , R4 have O 's in the second column below the nonzero pivot in RI , and hence 
any linear combination of R2 , R3 , R4 must have 0 as its second entry. Thus RI cannot be a linear 
combination of the rows below it. Similarly, the rows R3 and R4 have O 's in the third column below the 
nonzero pivot in R2 , and hence R2 cannot be a linear combination of the rows below it. Finally, R3 cannot 
be a multiple of R4 , since R4 has a 0 in the fifth column below the nonzero pivot in R3 . Viewing the 
nonzero rows from the bottom up, R4 , R3 , R2 , R J , no row is a linear combination of the preceding rows. 
Thus the rows are linearly independent by Lemma 4 . 1 0 . 

The argument used with the above echelon matrix A can be used for the nonzero rows of any echelon 
matrix. Thus we have the following very useful result. 

Theorem 4.1 1 :  The nonzero rows of a matrix in echelon form are linearly independent. 
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First we state two equivalent ways to define a basis of a vector space V. (The equivalence is proved in 
Problem 4 .28 . )  

Definition A: A set S = {U I ' u2 ' . . .  , un } of vectors is a basis of V if it has the following two properties: 
( 1 )  S is linearly independent. (2) S spans V. 

Definition B:  A set S = {U I ' u2 ' . . .  , un } of vectors is a basis of V if  every v E V can be written uniquely 
as a linear combination of the basis vectors . 

The following is a fundamental result in linear algebra. 

Theorem 4.12:  Let V be a vector space such that one basis has m elements and another basis has n 
elements. Then m = n .  

A vector space V i s  said to  be  of  finite dimension n or  n-dimensional, written 

dim V = n  

if V has a basis with n elements. Theorem 4 . 1 2  tells us that all bases of V have the same number of 
elements, so this definition is well-defined. 

The vector space {O }  is defined to have dimension 0 . 
Suppose a vector space V does not have a finite basis. Then V is said to be of infinite dimension or to 

be infinite-dimensional. 
The above fundamental Theorem 4 . 1 2  is a consequence of the following "replacement lemma" 

(proved in Problem 4 .35) .  

Lemma 4.13 : Suppose {V I ' V2 , " " Vn } spans V, and suppose {WI ' W2 , " " Wm } is linearly independent. 
Then m :::: n, and V is spanned by a set of the form 

Thus, in particular, n + 1 or more vectors in V are linearly dependent. 

Observe in the above lemma that we have replaced m of the vectors in the spanning set of V by the m 
independent vectors and still retained a spanning set. 

Examples of Bases 

This subsection presents important examples of bases of some of the main vector spaces appearing in 
this text. 

(a) Vector space Kn : Consider the following n vectors in Kn : 

el = ( 1 , 0 , 0 , 0 ,  . . .  , 0 , 0) ,  e2 = (0, 1 , 0 , 0 , . . .  , 0 , 0), . . .  , en = (0, 0 , 0 , 0 ,  . . .  , 0 , 1 )  

These vectors are linearly independent. (For example, they form a matrix in echelon form.) 
Furthermore, any vector U = (a i ' a2 ' . . .  , an) in Kn can be written as a linear combination of the 
above vectors . Specifically, 

Accordingly, the vectors form a basis of Kn called the usual or standard basis of Kn . Thus (as one 
might expect) Kn has dimension n. In particular, any other basis of Kn has n elements. 
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(b) Vector space M = Mr s of all r x s matrices: The following six matrices form a basis of the vector 
space M2 3  of all 2 x :3 matrices over K: [ 1 0 0 ] [ 0 1 0 ] [ 0 0 1 ] [ 0 0 0 ] [ 0 0 0 ] [ 0 0 0 ] 

0 0 0 ' 0 0 0 ' 0 0 0 ' 1 0 0 ' 0 1 0 ' 0 0 1 

More generally, in the vector space M = Mr,s of all r x s matrices, let Eij be the matrix with ij-entry 1 
and O 's elsewhere. Then all such matrices form a basis of Mr s called the usual or standard basis of 
Mr,s '  Accordingly, dim Mr,s = rs. 

' 

(c) Vector space Pn(t) of all polynomials of degree :::: n :  The set S = { I ,  t, P ,  P ,  . . .  , rn } of n + 1 
polynomials is a basis of Pn(t) . Specifically, any polynomial J(t) of degree :::: n can be expessed as a 
linear combination of these powers of t, and one can show that these polynomials are linearly 
independent. Therefore, dim Pn(t) = n + 1 .  

(d) Vector space pet) of all polynomials : Consider any finite set S = {Ii (t) ,h.(t) , . . .  ,fm(t)} of 
polynomials in pet) , and let m denote the largest of the degrees of the polynomials .  Then any 
polynomial get) of degree exceeding m cannot be expressed as a linear combination of the elements of 
S. Thus S cannot be a basis of P(t) . This means that the dimension of P(t) is infinite. We note that the 
infinite set S' = { I ,  t, t2 , t3 , . • .  }, consisting of all the powers of t, spans pet) and is linearly 
independent. Accordingly, S' is an infinite basis of pet) . 

Theorems on Bases 

The following three theorems (proved in Problems 4 .37 ,  4 . 38 ,  and 4 .39) will be used frequently. 

Theorem 4.14:  Let V be a vector space of finite dimension n .  Then: 

(i) Any n + 1 or more vectors in V are linearly dependent. 

(ii) Any linearly independent set S = {U I , U2 , . . .  , un } with n elements is a basis of V. 
(iii) Any spanning set T = {v I ' V2 , . . .  , vn } of V with n elements is a basis of V. 

Theorem 4.15:  Suppose S spans a vector space V. Then: 

(i) Any maximum number of linearly independent vectors in S form a basis of V. 
(ii) Suppose one deletes from S every vector that is a linear combination of preceding 

vectors in S. Then the remaining vectors form a basis of V. 
Theorem 4.16:  Let V be a vector space of finite dimension and let S = {U I , U2 , " " ur } be a set of 

linearly independent vectors in V. Then S is part of a basis of V; that is ,  S may be 
extended to a basis of V. 

Example 4.11 
(a) The following four vectors in R4 form a matrix in echelon form: 

( 1 , 1 , 1 , 1 ) ,  (0, 1 , 1 , 1 ) ,  (0, 0 , 1 , 1 ) ,  (0, 0 , 0 , 1 )  

Thus the vectors are linearly independent, and, since dim R4 = 4 ,  the vector form a basis o f  R4 . 

(b) The following n + 1 polynomials in Pn(t) are of increasing degree: 

1 ,  t - l , (t - li , . . .  , (t - l )" 

Therefore no polynomial is a linear combination of preceding polynomials; hence the polynomials are linear 
independent. Furthermore, they form a basis of Pn(t), since dim Pn(t) = n + l .  
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(257 ,  - 1 32 , 58) , (43 , 0 , - 1 7) ,  (52 1 ,  -3 1 7 ,  94) , 
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By Theorem 4. 1 4(a), the four vectors must be linearly dependent, since they come from the 3 -dimensiona1 
vector space R3 . 

Dimension and Subspaces 

The following theorem (proved in Problem 4.40) gives the basic relationship between the dimension of 
a vector space and the dimension of a subspace. 

Theorem 4.17: Let W be a subspace of an n-dimensional vector space V. Then dim W :::: n .  In particular, 
if dim W = n, then W = v. 

Example 4.12. Let W be a subspace of the real space R3. Note that dim R3 = 3. Theorem 4. 1 7  tells us that the dimension 
of W can only be 0, 1 ,  2, or 3. The following cases apply: 

(a) dim W = 0, then W = {OJ , a point. 
(b) dim W = 1 ,  then W is a line through the origin O . 
(c) dim W = 2, then W is a plane through the origin O. 
(d) dim W = 3 ,  then W is the entire space R3 . 

4.9 APPLICATION TO MATRICES, RANK OF A MATRIX 

Let A be any rn x n matrix over a field K. Recall that the rows of A may be viewed as vectors in Kn and 
that the row space of A, written rowsp(A), is the subspace of Km spanned by the rows of A .  The following 
definition applies. 

Definition: The rank of a matrix A,  written rank(A), is equal to the maximum number of linearly 
independent rows of A or, equivalently, the dimension of the row space of A .  

Recall, on the other hand, that the columns o f  an rn x n matrix A may b e  viewed as vectors in Km and 
that the column space of A ,  written colsp(A), is the subspace of Km spanned by the columns of A .  Although 
rn may not be equal to n, that is, the rows and columns of A may belong to different vector spaces, we do 
have the following fundamental result. 

Theorem 4.18: The maximum number of linearly independent rows of any matrix A is equal to the 
maximum number of linearly independent columns of A .  Thus the dimension of the row 
space of A is equal to the dimension of the column space of A .  

Accordingly, one could restate the above definition of  the rank of  A using column instead of  row. 

Basis-Finding Problems 

This subsection shows how an echelon form of any matrix A gives us the solution to certain problems 
about A itself. Specifically, let A and B be the following matrices, where the echelon matrix B (whose 
pivots are circled) is an echelon form of A :  

A = [ � � 
1 5 
2 6 

1 
5 
6 

1 0  
8 

3 
6 4 

1 1  6 
8 9 

1 1  9 j ] 

and [
CD 2 o CD 3 

B =  0 0 0 
0 0 0  
0 0 0  

i 2 � ] CD 1 2 
0 0 0  
0 0 0  
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We solve the following four problems about the matrix A, where CI , C2 , ' • .  , C6 denote its columns: 

(a) Find a basis of the row space of A .  

(b) Find each column Ck of A that is a linear combination of preceding columns of A .  

(c) Find a basis of the column space of A .  

(d) Find the rank of A .  

(a) We are given that A and B are row equivalent, so they have the same row space. Moreover, B is in 
echelon form, so its nonzero rows are linearly independent and hence form a basis of the row space of 
B. Thus they also form a basis of the row space of A .  That is, 

basis of rowsp(A) :  ( 1 , 2 , 1 , 3 , 1 , 2) ,  (0 , 1 , 3 , 1 , 2 , 1 ) ,  (0 , 0 , 0 , 1 , 1 , 2) 

(b) Let Mk = [CI , C2 , . . .  , Ck] ,  the submatrix of A consisting of the first k columns of A .  Then Mk_ 1 and 
Mk are, respectively, the coefficient matrix and augmented matrix of the vector equation 

Theorem 3 . 8  tells us that the system has a solution, or, equivalently, Ck is a linear combination of the 
preceding columns of A if and only if rank(Mk) = rank(Mk_ I ) ,  where rank(Mk) means the number of 
pivots in an echelon form of Mk • Now the first k colunms of the echelon matrix B is also an echelon 
form of Mk• Accordingly, 

and 

Thus C3 , C5 , C6 are each a linear combination of the preceding columns of A .  

(c) The fact that the remaining columns CJ , C2 , C4 are not linear combinations of their respective 
preceding columns also tells us that they are linearly independent. Thus they form a basis of the 
colunm space of A. That is 

basis of colsp(A) :  [ 1 , 2 , 3 , 1 , 2f ,  [2 , 5 , 7 , 5 , 6f ,  [3 , 6 , 1 1 , 8 , l 1f 

Observe that CI , C2 , C4 may also be characterized as those colunms of A that contain the pivots in 
any echelon form of A .  

(d) Here we see that three possible definitions of the rank of A yield the same value. 

(i) There are three pivots in B, which is an echelon form of A .  

(ii) The three pivots in B correspond to the nonzero rows of B, which form a basis of the row space 
of A .  

(iii) The three pivots in B correspond to the columns of A, which form a basis of the column space 
of A .  

Thus rank(A) = 3 .  

Application to Finding a Basis for W = span(uI '  uz , . . .  , ur) 

Frequently, we are given a list S = {U I ' U2 , • • •  , ur } of vectors in Kn and we want to find a basis for the 
subspace W of Kn spanned by the given vectors, that is, a basis of 

W = span(S) = span(uI ' U2 ' . • .  , ur) 

The following two algorithms, which are essentially described in the above subsection, find such a basis 
(and hence the dimension) of W. 
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Step 1. Form the matrix M whose rows are the given vectors . 

Step 2. Row reduce M to echelon form. 

Step 3. Output the nonzero rows of the echelon matrix. 
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Sometimes we want to find a basis that only comes from the original given vectors. The next algorithm 
accomplishes this task. 

Algorithm 4.2 (Casting-out algorithm) 

Step 1 .  

Step 2. 

Step 3. 

Step 4. 

Form the matrix M whose columns are the given vectors. 

Row reduce M to echelon form. 

For each column Ck in the echelon matrix without a pivot, delete (cast out) the vector Uk from the 
list S of given vectors. 

Output the remaining vectors in S (which correspond to columns with pivots) . 

We emphasize that in the first algorithm we form a matrix whose rows are the given vectors, whereas 
in the second algorithm we form a matrix whose columns are the given vectors . 

Example 4.13. Let W be the subspace of R5 spanned by the following vectors: 

Uj = ( 1 ,  2 , 1 , 3 , 2), U2 = ( 1 ,  3, 3, 5, 3), U3 = (3 , 8 , 7 ,  1 3 , 8) 
U4 = ( 1 , 4 , 6 , 9 , 7) ,  Us = (5 , 13 ,  1 3 , 25 , 1 9) 

Find a basis of W consisting of the original given vectors, and find dim W. 
Form the matrix M whose co1unms are the given vectors, and reduce M to echelon form: 

[ 1 1 
2 3 

M =  1 3 
3 5 
2 3 

3 
8 4 
7 6 

1 3  9 
8 7 

5 ] [ 1 1 3 1 5 ] 
1 3  0 1 2 2 3 
1 3  � 0 0 0 1 2 
25 0 0 0 0 0 
1 9  0 0 0 0 0 

The pivots in the echelon matrix appear in colunms Cj , C2 , C4 . Accordingly, we "cast out" the vectors U3 and Us from 
the original five vectors. The remaining vectors Uj , U2 , U4 , which correspond to the colunms in the echelon matrix with 
pivots, form a basis of W. Thus, in particular, dim W = 3 . 

Remark: The justification of the Casting-out algorithm is essentially described above, but we repeat 
it again here for emphasis .  The fact that column C3 in the echelon matrix in Example 4. 1 3  does not have a 
pivot means that the vector equation 

XUj + YU2 = U3 
has a solution, and hence U3 is a linear combination of Uj and U2 ' Similarly, the fact that C5 does not have a 
pivot means that U5 is a linear combination of the preceding vectors . We have deleted each vector in the 
original spanning set that is a linear combination of preceding vectors . Thus the remaining vectors are 
linearly independent and form a basis of W. 

Application to Homogeneous Systems of Linear Equations 

Consider again a homogeneous system AX = 0 of linear equations over K with n unknowns. By 
Theorem 4.4, the solution set W of such a system is a subspace of Kn, and hence W has a dimension. The 
following theorem, whose proof is postponed until Chapter 5, holds . 
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Theorem 4.19:  The dimension of the solution space W of a homogeneous system AX = 0 is n - r, 
where n is the number of unknowns and r is the rank of the coefficient matrix A , 

In the case where the system AX = 0 is in echelon form, it has precisely n - r free variables, say 
Xi ' Xi ' . . .  ' Xi . Let v). be the solution obtained by setting Xi = 1 (or any nonzero constant) and the 1 2 n-r J 
remaining free variables equal to O. We show (Problem 4.50) that the solutions VI ' V2 ' . . .  , vn-r are linearly 
independent; hence they form a basis of the solution space W. 

We have already used the above process to find a basis of the solution space W of a homogeneous 
system AX = 0 in Section 3 . 1 1 .  Problem 4.48 gives three other examples. 

4.10 SUMS AND DIRECT SUMS 

Let U and W be subsets of a vector space V. The sum of U and W, written U + W, consists of all sums 
u + w where u E U and w E W. That is, 

U + W = {v : v = u + w, where U E U and W E  W} 

Now suppose U and W are subspaces of V. Then one can easily show (Problem 4.53) that U + W is a 
subspace of V. Recall that u n  W is also a subspace of V. The following theorem (proved in Problem 4.58) 
relates the dimensions of these subspaces. 

Theorem 4.20: Suppose U and W are finite-dimensional subspaces of a vector space V. Then U + W 
has finite dimension and 

dim(U + W) = dim U + dim W - dim(U n W) 

Example 4.14. Let V = M2,2 , the vector space of 2 x 2 matrices .  Let U consist of those matrices whose second row is 
zero, and let W consist of those matrices whose second column is zero. Then 

U =  { [ �  � ] } ,  W =  { [ �  � ] } and U + W = { [ �  � ] } ,  u n w = { [ � � ] } 
That is, U + W consists of those matrices whose lower right entry is 0, and u n  W consists of those matrices whose 
second row and second column are zero. Note that dim U = 2, dim W = 2, dim(U n W) = 1 . Also, 
dim(U + W) = 3, which is expected from Theorem 4.20. That is, 

dim(U + W) = dim U + dim V - dim(U n W) = 2 + 2 - I = 3 

Direct Sums 

The vector space V is said to be the direct sum of its subspaces U and W, denoted by 

V = U EB W  

if every v E V can be written in one and only one way as v = u + W where U E U and W E W. 
The following theorem (proved in Problem 4.59) characterizes such a decomposition. 

Theorem 4.2 1 :  The vector space V i s  the direct sum o f  its subspaces U and W i f  and only if: 
(i) V = U + W, (ii) u n  W = {O} .  

Example 4.15. Consider the vector space V = R3 

(a) Let U be the xy-plane and let W be the yz-plane; that is, 
U = {(a , b , 0) : a, b E R} and W = {CO, b, c) : b, c E R} 

Then R3 = U + If', since every vector in R3 is the sum of a vector in U and a vector in W. However, R3 is not the 
direct sum of U and W, since such sums are not unique. For example, 

(3 , 5 , 7) = (3 , 1 , 0) + (0, 4, 7) and also (3 , 5 , 7) = (3 , -4, 0) + (0, 9, 7) 
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(b) Let U be the xy-plane and let W be the z-axis, that is, 
U = {(a , b ,  0) : a , b E R} and W = {CO, 0, c) : c E R} 
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Now any vector (a ,  b ,  c) E R3 can be written as the sum o f  a vector in U and a vector in V in one and only one 
way: 

(a, b, c) = (a , b, 0) + (0, 0, c) 
Accordingly, R3 is the direct sum of U and W; that is, R3 = U EEl W. 

General Direct Sums 

The notion of a direct sum is extended to more than one factor in the obvious way, That is, V is the 
direct sum of subspaces WI ' W2 , , , . , Wr, written 

V = WI EB W2 EB . . .  EB Wr 
if every vector v E V can be written in one and only one way as 

v = WI + W2 + . . .  + Wr 

where WI E WI ' W2 E W2 , · · · , Wr E �. 
The following theorems hold. 

Theorem 4.22 : Suppose V = WI EB W2 EB . . .  EB Wr . Also, for each k, suppose Sk is a linearly indepen­
dent subset of Wk ' Then: 

(a) The union S = Uk Sk is linearly independent in V. 
(b) If each Sk is a basis of Wk > then Uk Sk is a basis of V. 
(c) dim V = dim WI + dim W2 + . . .  + dim Wr . 

Theorem 4.23 : Suppose V = WI + W2 + . . .  + Wr and dim V = Lk dim Wk ' Then 

V = WI EB W2 EB . . .  EB Wr • 

4.11  COORDINATES 

Let V be an n-dimensional vector space over K with basis S = {UI , U2 , . . .  , un } .  Then any vector v E V 
can be expressed uniquely as a linear combination of the basis vectors in S, say 

These n scalars a i ' a2 , . . .  , an are called the coordinates of v relative to the basis S, and they form a vector 
[a i ' a2 " ' "  an ] in Kn called the coordinate vector of v relative to S. We denote this vector by [v]s, or 
simply [v] , when S is understood. Thus 

[v]s = [a i ' a2 " ' "  an] 

For notational convenience, brackets [ . . .  ], rather than parentheses ( . . .  ) , are used to denote the coordinate 
vector. 

Remark: The above n scalars a i ' a2 , . . .  , an also form the coordinate column vector 
[a i ' a2 , . . .  , anf of v relative to S. The choice of the column vector rather than the row vector to represent 
v depends on the context in which it is used. The use of such column vectors will become clear later in 
Chapter 6 .  



Lipschulz-Lipson:Schaum's I 4, Vector Spaces 

Outline ofTheory and 

Problems of Linear 

Algebra,3/e 

1 3 6  

I Text 

VECTOR SPACES 

Example 4,16, Consider the vector space P2 (t) of polynomials of degree :'S 2. The polynomials 

PI = t +  I ,  P2 = t - 1 ,  P3 = (t - 1 )2 = t2 - 2t + 1 
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form a basis S of P2(t) . The coordinate vector [v] of v = 2P - 5t + 9 relative to S is obtained as follows. 
Set v = xPI + YP2 + zP3 using unknown scalars x, y, z, and simplifY: 

2P - 5t + 9 = x(t + 1) + yet - 1) + z(t2 - 2t + 1 )  
= xt + x +yt - y + zt2 - 2zt + z  
= zt2 + (x + y - 2z)t + (x - y + z) 

Then set the coefficients of the same powers of t equal to each other to obtain the system 
z = 2 , x +y - 2z =  -5 ,  x - y + z = 9  

The solution of the system is x = 3 ,  y = -4, z = 2. Thus 
v = 3PI - 4P2 + 2P3 , and hence [v] = [3 , -4, 2] 

Example 4.17. Consider real space R3 . The following vectors form a basis S of R3 : 
U I = ( 1 ,  - 1 , 0) , U2 = ( 1 , 1 , 0), u3 = (0 , 1 , 1 )  

The coordinates of v = (5 , 3 ,  4 )  relative to the basis S i s  obtained as  follows. 
Set v = XVI + yV2 + zV3 , that is, set v as a linear combination of the basis vectors using unknown scalars x, y, z. 

This yields: 

The equivalent system of linear equations is as follows: 
x +y = 5 ,  -x +y + z = 3 , 

The solution of the system is x = 3, y = 2, z = 4. Thus 
v = 3uI + 2U2 + 4u3 , and so 

z = 4  

[v]s = [3 , 2 , 4] 

Remark 1 :  There is a geometrical interpretation of the coordinates of a vector v relative to a basis S 
for the real space Rn, which we illustrate using the basis S of R

3 
in Example 4 . 1 7 . First consider the space 

R
3 

with the usual x, y, z axes. Then the basis vectors determine a new coordinate system ofR
3
, say with x,  

y' , z' axes, as  shown in Fig. 4-4. That is: 

( 1 )  The x-axis i s  in the direction o f  UI with unit length l I u I I I . 
(2) The y' -axis is in the direction of U2 with unit length l I u2 1 1 . 
(3) The z' -axis is in the direction of U3 with unit length l I u3 1 1 . 

Then each vector v = (a , b, c) or, equivalently, the point Pea , b, c) in R
3 

will have new coordinates with 
respect to the new x', y', z' axes.  These new coordinates are precisely [v ]s, the coordinates of v with respect 
to the basis S. Thus, as shown in Example 4. 1 7, the coordinates of the point P(5 , 3 , 4) with the new axes 
form the vector [3 , 2, 4] .  

Remark 2 :  Consider the usual basis E = { e  I , e2 , . . .  , en } o f  Kn defined by 

el = ( 1 ,  0, 0, . . .  , 0, 0) , e2 = (0, 1 , 0 , . . .  , 0 , 0) ,  . . .  , n = (0, 0 , 0 ,  . . .  , 0 , 1 )  
Let v = (a I ' a2 , . . .  , an) b e  any vector in Kn . Then one can easily show that 

and so 

That is, the coordinate vector [V]E of any vector v relative to the usual basis E of Kn is identical to the 
original vector v. 
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Let V b e  a vector space o f  dimension n over K, and suppose S = {u I ' U2 ' ' . .  , un } i s  a basis o f  V. Then 
each vector v E V corresponds to a unique n-tuple [vls in Kn . On the other hand, each n-tuple 
[cI ' C2 " ' "  cn l in Kn corresponds to a unique vector CI U I + C2U2 + . . .  + CnUn in V. Thus the basis S 
induces a one-to-one correspondence between V and Kn . Furthermore, suppose 

and 

Then 

v + w = (a l + bl )u I + (a2 + b2)U2 + . . .  + (an + bn)un 
kv = (ka l )u I + (ka2)U2 + . . .  + (kan)un 

where k is a scalar. Accordingly, 

Thus the above one-to-one correspondence between V and Kn preserves the vector space operations of 
vector addition and scalar multiplication. We then say that V and Kn are isomorphic, written 

V � Kn 

We state this result formally. 

Theorem 4.24: Let V be an n-dimensional vector space over a field K. Then V and Kn are isomorphic. 
The next example gives a practical application of the above result. 
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Example 4,18, Suppose we want to determine whether or not the following matrices in V = M2,3 are linearly dependent: 

A = [ I 2 
4 0 

- 3 J I ' B = [ I 3 
6 5 

-4 J 4 ' 

The coordinate vectors of the matrices in the usual basis of M2,3 are as follows: 
[A] = [ 1 , 2 ,  -3 , 4 , 0 , 1 ] ,  [B] = [ 1 , 3 ,  -4 ,  6 ,  5 ,  4] , [C] = [3 , 8, - 1 1 ,  1 6 ,  10 , 9] 

Form the matrix M whose rows are the above coordinate vectors and reduce M to an echelon form: 

[
1 2 

M =  1 3 
3 8 

- 3  
-4 

- 1 1  
: � ! ] � [ �  � 

1 6  1 0  9 0 2 
=� � � ; ]  � [ �  � 
-2 4 1 0  6 0 0 

- 3  4 0 �1 ] - 1  2 5 
0 0 0  

Since the echelon matrix has only two nonzero rows, the coordinate vectors [A] ,  [B] ,  [C] span a subspace of dimension 
2 and so are linearly dependent. Accordingly, the original matrices A, B, C are linearly dependent. 

Solved Problems 
VECTOR SPACES, LINEAR COMBINATIONS 

4.1.  Suppose u and v belong to a vector space V. Simplify each of the following expressions : 

(a) E1 = 3 (2u - 4v) + 5u + 7v, (c) E3 = 2uv + 3 (2u + 4v) 
3 

(b) E2 = 3u - 6(3u - 5v) + 7u, (d) E4 = 5u - - + 5u 
v 

Multiply out and collect terms: 
(a) El = 6u - 12v + 5u + 7v = 1 1 u - 5v 
(b) E2 = 3u - 1 8u + 30v + 7u = -8u + 30v 
(c) E3 is not defined since the product uv of vectors is not defined, 
(d) E4 is not defined since division by a vector is not defined. 

4.2. Prove Theorem 4, 1 :  Let V be a vector space over a field K, 
(i) kO = O . (ii) Ou = O . (iii) If ku = 0, then k = 0 or u = O. (iv) (-k)u = k( -u) = -ku. 
(i) By Axiom [A2] with u = 0, we have 0 + 0 = O. Hence, by Axiom [MI ] ,  we have 

kO = k(O + 0) = kO + kO 
Adding -kO to both sides gives the desired result. 

(ii) For scalars, 0 + 0 = O. Hence, by Axiom [M2], we have 
Ou = (0 + O)u = Ou + Ou 

Adding -Ou to both sides gives the desired result. 
(iii) Suppose ku = 0 and k #- o. Then there exists a scalar k- 1 such that k- 1 k = 1 . Thus 

u = lu = (rl k)u = k- I (ku) = k- I O = 0 

(iv) Using u + (-u) = 0 and k + (-k) = 0 yields 
o = kO = k[u + (-u)] = ku + k( -u) and 0 =  Ou = [k + (-k)]u = ku + (-k)u 

Adding -ku to both sides of the first equation gives -ku = k( -u) , and adding -ku to both sides of the 
second equation gives -ku = (-k)u. Thus (-k)u = k( -u) = -ku. 
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4.3. Show that: (a) k(u - v) = ku - kv, (b) u + u = 2u, 
(a) Using the definition of subtraction, that u - v = u + (-v), and Theorem 4, 1 (iv), that k( -v) = -kv, we 

have 

k(u - v) = k[u + (-v)] = ku + k(-v) = ku + (-kv) = ku - kv 

(b) Using Axiom [M4] and then Axiom [M2] ' we have 

u + u = 1u  + 1u  = ( 1  + 1 )u = 2u 

4.4. Express v = ( 1 ,  -2 ,  5) in R
3 

as a linear combination of the vectors 

u\ = ( 1 , 1 , 1 ) ,  U2 = ( 1 , 2 , 3 ) ,  U3 = (2 , - 1 , 1 )  
We seek scalars x ,  y ,  z, a s  yet unknown, such that v = XUj + YU2 + zU3 ' Thus we require 

or 
X +  y + 2z = 
x + 2y - z = -2 
x + 3y +  Z =  5 

(For notational convenience, we write the vectors in R3 as columns, since it is then easier to find the equivalent 
system of linear equations.) Reducing the system to echelon form yields the triangular system 

x +y + 2z = 1 ,  y - 3z =  -3 ,  5z = 1 0  

The system i s  consistent and has a solution. Solving by back-substitution yields the solution x = -6, y = 3 ,  
z = 2 . Thus v = -6u\ + 3u2 + 2u3 ' 

Alternatively, write down the augmented matrix M of the equivalent system of linear equations, where Ul > 
U2 , U3 are the first three columns of M and v is the last column, and then reduce M to echelon form: [ 1 1 2 1 ] [ 1 1 2 1 ] [ 1 1 2 1 ] 

M = 1 2 - 1  -2 � 0 1 -3 -3 � 0 1 -3 -3 
1 3 1 5 0 2 -1 4 0 0 5 1 0  

The last matrix corresponds to a triangular system, which has a solution. Solving the triangular system by 
back-substitution yields the solution x = -6, y = 3, z = 2. Thus v = -6u\ + 3U2 + 2U3 ' 

4.5. Express v = (2 , -5 , 3) in R
3 

as a linear combination of the vectors 

u\ = ( 1 ,  -3 , 2) , U2 = (2 , -4 ,  - 1 ) ,  u3 = ( 1 , -5 , 7) 
We seek scalars x, y, z, as yet unknown, such that v = xu\ + YU2 + ZU3 ' Thus we require 

or 

Reducing the system to echelon form yields the system 

x + 2y + z =  2 ,  2y - 2z = 1 , 

x + 2y +  Z =  2 
-3x - 4y - 5z =  -5 

2x - y + 7z = 3 

The system is inconsistent and so has no solution. Thus v cannot be written as a linear combination of 
U l > U2 , U3 ' 
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4.6. Express the polynomial v = t2 + 4t - 3 in pet) as a linear combination of the polynomials 

PI = P - 2t + 5 ,  P2 = 2P - 3t , P3 = t + 1 
Set v as a linear conbination of PI ' P2 ' P3 using unknowns x, y, z to obtain 

? + 4t - 3 = x(? - 2t + 5) + y(2? - 3t) + z(t + 1 )  
We can proceed in two ways, 

Method 1.  Expand the right side of (* ) and express it in terms of powers of t as follows: 

? + 4t - 3 = x? - 2xt + 5x + 2yt2 - 3yt + zt + z 
= (x + 2y)? + (-2x - 3y + z)t + (5x + 3z) 

(*) 

Set coefficients of the same powers of t equal to each other, and reduce the system to echelon form. This 
yields 

x + 2y =  
-2x - 3y +  z =  4 

5x + 3z =  -3 
or 

x + 2y = I 
y +  z =  6 

- l Oy + 3z =  -8 
or 

x + 2y = I 
y +  z =  6 

1 3z = 52 

The system is consistent and has a solution. Solving by back-substitution yields the solution x = -3 , y = 2, 
z = 4. Thus v = -3PI + 2P2 + 4P2 ' 
Method 2. The equation (* ) is an identity in t; that is, the equation holds for any value of t. Thus we can set t 
equal to any numbers to obtain equations in the unknowns. 

(a) Set t = 0 in (* ) to obtain the equation -3 = 5x + z. 
(b) Set t = I in (* ) to obtain the equation 2 = 4x - y + 2z. 
(c) Set t = - 1  in (* ) to obtain the equation -6 = 8x + 5y. 

Solve the system of the three equations to again obtain the solution x = -3 , y = 2, z = 4. Thus 
v = -3Pl + 2P2 + 4P3 ' 

4.7. Express M as a linear combination of the matrices A,  E, C, where 

M = [ � � l and 

Set M as a linear combination of A, B, C using unknown scalars x, y, z, that is, set M = xA + yB + zC. 
This yields 

Form the equivalent system of equations by setting corresponding entries equal to each other: 
x + y + z  = 4, x + 2y + z = 7 ,  x + 3y + 4z = 7 ,  x + 4y + 5z = 9 

Reducing the system to echelon form yields 
x +y + z  = 4, y =  3 ,  3z = -3 ,  4z = -4 

The last equation drops out. Solving the system by back-substitution yields z = - 1 ,  y = 3 ,  x = 2 . Thus 
M = 2A + 3B - C. 

SUBSPACES 

4.8. Prove Theorem 4 .2 :  W is a subspace of V if the following two conditions hold: 

(a) 0 E W. (b) If u, v E W, then u + v, ku E W. 
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By (a), W i s  nonempty, and, by (b), the operations o f  vector addition and scalar multiplication are well 
defined for W. Axioms [Ad, [�l , [Md, [M2l , [M3 l , [�l hold in W since the vectors in W belong to V. Thus 
we need only show that [A2l and [A3 l  also hold in W. Now [A2l holds since the zero vector in V belongs to W 
by (a). Finally, if v E W, then (- l )v = -v E W, and v + (-v) = O. Thus [A3 l  holds. 

4.9. Let V = R3 . Show that W is not a subspace of V, where : 

(a) W = {(a ,  b, c) : a :::: O}, (b) W = {(a, b, c) : a2 + b2 + c2 :::: I } . 
In each case, show that Theorem 4.2 does not hold. 

(a) W consists of those vectors whose first entry is nonnegative. Thus v = ( 1 ,  2, 3) belongs to W. Let 
k = -3 . Then kv = (-3 , -6 , -9) does not belong to W, since -3 is negative. Thus W is not a subspace 
of V. 

(b) W consists of vectors whose length does not exceed l . Hence u = ( 1 ,  0, 0) and v = (0, 1 , 0) belong to W, 
but u + v = ( 1 ,  1 ,  0) does not belong to W, since 1 2 + 1 2 + 02 = 2 > l . Thus W is not a subspace of V. 

4.10. Let V = pet) , the vector space of real polynomials. Determine whether or not W is a subspace of V, 
where: 

(a) W consists of all polynomials with integral coefficients. 

(b) W consists of all polynomials with degree :::: 6 and the zero polynomial. 

(c) W consists of all polynomials with only even powers of t. 

(a) No, since scalar multiples of polynomials in W do not always belong to W. For example, 

f(t) = 3 + 6t + 7r E W but 

(b) and (c). Yes. Since, in each case, W contains the zero polynomial, and sums and scalar multiples of 
polynomials in W belong to W. 

4.1 1 .  Let V be the vector space of functions J : R -+ R. Show that W is a subspace of V, where: 

(a) W = {f(x) : J( 1 )  = O} , all functions whose value at 1 is O . 
(b) W = {f(x) : J(3) = J( l) } ,  all functions assigning the same value to 3 and 1 .  
(c) W = {f(t) : J(-x) = -J(x)}, all odd Junctions. 

Let 0 denote the zero polynomial, so O(x) = 0 for every value of x. 
(a) 0 E W, since 0(1) = O. Suppose f, g E W. Thenf( l )  = 0 and g( 1 )  = O. Also, for scalars a and b, we 

have 

(af + bg)( l )  = af( l )  + bg( l )  = aO + bO = 0 

Thus af + bg E W, and hence W is a subspace. 
(b) 0 E W, since 0(3) = 0 = 0(1) . Suppose f, g E W. Then f(3) = f( 1 )  and g(3) = g( 1 ) .  Thus, for any 

scalars a and b, we have 

(af + bg)(3) = af(3) + bg(3) = af( 1 )  + bg( l )  = (af + bg)(1) 

Thus af + bg E W, and hence W is a subspace. 
(c) 0 E W, since O( -x) = 0 = -0 = -O(x) . Suppose f, g E W. Then f( -x) = -f(x) and g( -x) = -g(x) . 

Also, for scalars a and b, 

(af + bg)( -x) = af( -x) + bg( -x) = -af(x) - bg(x) = -(af + bg)(x) 

Thus ab + gf E W, and hence W is a subspace of V. 



Lipschulz-Lipson:Schaum's I 4, Vector Spaces 

Outline ofTheory and 

I Text © The McGraw-Hili 
Companies, 2004 

Problems of Linear 

Algebra,3/e 

142 VECTOR SPACES [CHAP. 4 

4.12. Prove Theorem 4,3 :  The intersection of any number of subspaces of V is a subspace of V. 
Let {W;  : i E I} be a collection of subspaces of V and let W = new; : i E 1) . Since each W; is a subspace 

of V, we have 0 E Wi' for every i E I. Hence 0 E W. Suppose u, v E W. Then u, v E Wi' for every i E I. Since 
each W; is a subspace, au + bv E W; ,  for every i E I. Hence au + bv E W. Thus W is a subspace of V. 

LINEAR SPANS 

4.13. Show that the vectors u\ = ( 1 ,  1 ,  1 ) ,  U2 = ( 1 , 2 , 3), u3 = ( 1 ,  5 ,  8) span R
3
. 

We need to show that an arbitrary vector v = (a, b, c) in R3 is a linear combination of Uj , U2 , u3 ' Set 
v = XU\ + YU2 + zU3 , that is, set 

(a, b, c) = x( 1 ,  I ,  I) + y( 1 ,  2, 3) + z( 1 ,  5 ,  8) = (x + y + z, x + 2y + 5z, x +  3y + 8z) 

Form the equivalent system and reduce it to echelon form: 

x +  y +  z = a 
x + 2y + 5z = b 
x + 3y +  8z = c 

or 
x +y +  z = a 

y + 4z = b - a 
2y + 7c = c - a 

or 
x +y +  z = a 

y + 4z = b - a 
-Z = c - 2b + a  

The above system is in echelon form and is consistent; in fact, 

x = -a + 5b - 3c, y = 3a - 7b + 4c, z = a + 2b - c 

is a solution. Thus Uj o U2 0 u3 span R3 . 

4.14. Find conditions on a, b, c so that v = (a ,  b, c) in R
3 

belongs to W = span(u\ ,  U2 ' u3 ) ' where 

u\ = ( 1 , 2 , 0) ,  U2 = (- 1 , 1 , 2) ,  U3 = (3 , 0 , -4) 
Set v as a linear combination of U\ ' U2 , u3 using unknowns x, y, z; that is, set v = XU\ + YU2 + zU3 ' This 

yields 
(a, b, c) = x( 1 ,  2, 0) + y(- I ,  1 , 2) + z(3 , 0, -4) = (x - y + 3z, 2x + y, 2y - 4z) 

Form the equivalent system of linear equations and reduce it to echelon form: 

x - y + 3z =  a 
2x +y  = b  

2y - 4z =  c 
or 

x - y + 3z = a 
3y - 6z = b - 2a 
2y - 4z =  c 

x - y + 3z = a 
or 3y - 6z = b - 2a 

0 =  4a - 2b + 3c 
The vector v = (a, b , c) belongs to W if and only if the system is consistent, and it is consistent if and only if 
4a - 2b + 3c = O. Note, in particular, that Uj , U2 , u3 do not span the whole space R3 . 

4.15. Show that the vector space V = pet) of real polynomials cannot be spanned by a finite number of 
polynomials .  

Any finite set S of polynomials contains a polynomial of maximum degree, say m. Then the linear span 
span(S) of S cannot contain a polynomial of degree greater than m. Thus span(S) i- V, for any finite set S. 

4.16. Prove Theorem 4 .5 :  Let S be a subset of V. (i) Then span(S) is a subspace of V containing S. 
(ii) If W is a subspace of V containing S, then span(S) � W. 
(i) Suppose S is empty. By definition, span(S) = {O} . Hence span(S) = {O} is a subspace of V and 

S � span(S) . Suppose S is not empty and v E S. Then v = I v  E span(S) ; hence S � span(S) . Also 
o = Ov E span(S) . Now suppose u, W E span(S), say 

and W = b\w\ + . . .  + bsws = L bjwj j 
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U + v = L ajuj + L bj Wj . j 
and 

belong to span(S) since each is a linear combination of vectors in S. Thus span(S) is a subspace of V. 

(ii) Suppose Uj , U2 , . . .  , Ur E S. Then all the Uj belong to W Thus all multiples aj Uj , a2u2 , . . .  , arUr E W, 
and so the sum aj Uj + a2u2 + . . .  + arUr E W That is, W contains all linear combinations of elements in 
S, or, in other words, span(S) S; W, as claimed. 

LINEAR DEPENDENCE 

4.17. Determine whether or not u and v are linearly dependent, where: 

(a) u = ( 1 , 2), v = (3 , -5), 

(b) u = ( 1 , -3), v = (-2 , 6), 
(e) u = ( 1 ,  2, -3), v = (4 , 5, -6) 
(d) u = (2 , 4 ,  -8), v = (3 , 6 , - 1 2) 

Two vectors U and v are linearly dependent if and only if one is a multiple of the other. 
(a) No. (b) Yes; for v = -2u. (e) No. (d) Yes, for v = � u. 

4.18. Determine whether or not u and v are linearly dependent where: 

(a) u = 2t2 + 4t - 3 ,  v = 4P + 8t - 6, (b) u = 2P - 3t + 4, v = 4t2 - 3t + 2, 

(e) u = [ ; 3 -4 ] [ -4 - 12  1 6  ] (d) u = [ ; ; l v = [ ; 2 ; ] 0 - 1 , V = -20 0 4 ' 2 3 
Two vectors U and v are linearly dependent if and only if one is a multiple of the other. 
(a) Yes; for v = 2u. (b) No. (e) Yes, for v = -4u. (d) No. 

4.19. Determine whether or not the vectors u = ( 1 , 1 , 2), v = (2 , 3 , 1 ) ,  w = (4 , 5 , 5) in R3 are linearly 
dependent. 

Method 1. Set a linear combination of u, v, W equal to the zero vector using unknowns x, y, z to obtain the 
equivalent homogeneous system of linear equations and then reduce the system to echelon form. This yields 

or 
x + 2y + 4z = 0 
x + 3y + 5z = 0 

2x + y + 5z = 0 
or x + 2y + 4z = 0 

y +  z = O  

The echelon system has only two nonzero equations in three unknowns; hence it has a free variable and a 
nonzero solution. Thus u, v, w are linearly dependent. 
Method 2. Form the matrix A whose colunms are u, v, W and reduce to echelon form: 

i � ] � [ �  � � ] � [ �  � � ] 
1 5 0 -3 - 3  0 0 0 

The third colunm does not have a pivot; hence the third vector w is a linear combination of the first two 
vectors U and v. Thus the vectors are linearly dependent. (Observe that the matrix A is also the coefficient 
matrix in Method 1 . In other words, this method is essentially the same as the first method.) 
Method 3. Form the matrix B whose rows are u, v, w, and reduce to echelon form: 

[
I 1 

B =  2 3 
4 5 

� ]  � [ � -i ]  � [ �  1 -i ] 
5 0 -3 0 0 0 
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Since the echelon matrix has only two nonzero rows, the three vectors are linearly dependent. (The three given 
vectors span a space of dimension 2.) 

4.20. Determine whether or not each of the following lists of vectors in R3 
is linearly dependent: 

(a) u\ = ( 1 , 2 , 5), U2 = ( 1 , 3 , 1 ) ,  u3 = (2 , 5 , 7), u4 = (3 , 1 , 4), 

(b) u = ( 1 , 2 , 5), v = (2 , 5 , 1 ) ,  w = ( 1 , 5 , 2), 
(c) u = ( 1 , 2 , 3) , v = (0 , 0, 0), w = ( 1 ,  5 ,  6) . 
(a) Yes, since any four vectors in R3 are linearly dependent. 
(b) Use Method 2 above; that is, form the matrix A whose columns are the given vectors, and reduce the 

matrix to echelon form: [ 1  2 1 ]  [ 1  2 1 ]  [ 1  2 
A =  2 5 5 � ° 1 3 � ° 1 

5 1 2 ° -9 -3 ° ° 

Every column has a pivot entry; hence no vector is a linear combination of the previous vectors. Thus the 
vectors are linearly independent. 

(c) Since ° = (0, 0, 0) is one of the vectors, the vectors are linearly dependent. 

4.21 .  Show that the functions J(t) = sin t ,  get) cos t ,  h(t) = t from R into R are linearly independent. 

Set a linear combination of the functions equal to the zero function 0 using unknown scalars x, y, z, that 
is, set xf + yg + zh = 0; and then show x = 0, y = 0, z = 0. We emphasize that xf + yg + zh = 0 means that, 
for every value of t, we have xf(t) + yg(t) + zh(t) = 0. 

Thus, in the equation x sin t + Y cos t + zt = 0 :  

(i) Set t = ° 
(ii) Set t = nl2 
(iii) Set t = n 

to obtain 
to obtain 
to obtain 

xeD) + y( l )  + z(O) = ° 
x( l )  + yeO) + znl2 = ° 

x(O) +y(- l )  + z(n) = ° 

or 
or 
or 

y = o. 
x +  nzl2 = 0. 
-y + nz = 0. 

The three equations have only the zero solution, that is, x = 0, y = 0, z = 0. Thus f, g, h are linearly 
independent. 

4.22. Suppose the vectors u, v, w are linearly independent. Show that the vectors u + v, u - v, u - 2v + w 
are also linearly independent. 

Suppose x(u + v) + y(u - v) + z(u - 2v + w) = 0. Then 

xu + xv + yu - yv + zu - 2zv + zw = ° 
or 

(x + y + z)u + (x - y - 2z)v + zw = ° 

Since u, v, w are linearly independent, the coefficients in the above equation are each 0; hence 

x +y + z =  0, x - y - 2z = 0 , z = o  

The only solution to the above homogeneous system is x = 0, y = 0, z = 0. Thus u + v, u - v, u - 2v + w are 
linearly independent. 
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4.23. Show that the vectors u = ( 1  + i, 2i) and w = ( 1 , 1 + i) in C
2 

are linearly dependent over the 
complex field C but linearly independent over the real field R. 

Recall that two vectors are linearly dependent (over a field K) if and only if one of them is a multiple of 
the other (by an element in K), Since 

(1 + i)w = (1 + i)( 1 ,  1 + i) = (1 + i, 2i) = u 

u and w are linearly dependent over C. On the other hand, u and w are linearly independent over R, since no 
real multiple of w can equal u. Specifically, when k is real, the first component of kw = (k, k + ki) must be 
real, and it can never equal the first component 1 + i of u, which is complex. 

BASIS AND DIMENSION 

4.24. Determine whether or not each of the following form a basis of R
3
: 

(a) ( 1 , 1 , 1 ), ( 1 , 0, 1 ) ;  

(b) ( 1 , 2, 3) ,  ( 1 , 3 , 5), ( 1 , 0, 1 ), (2, 3 , 0); 

(c) ( 1 , 1 , 1 ), ( 1 , 2, 3) ,  (2 , - 1 ,  1 ) :  

(d) ( 1 , 1 , 2), ( 1 , 2, 5), (5, 3 , 4). 

(a and b) No, since a basis of R3 must contain exactly 3 elements because dimR3 = 3 . 
(c) The three vectors form a basis if and only if they are linearly independent. Thus form the matrix whose 

rows are the given vectors, and row reduce the matrix to echelon form: 

[ �  2 ; ] � [ � ; ] � [ � ; ] 
2 - 1  1 0 -3 - 1  0 0 5 

The echelon matrix has no zero rows; hence the three vectors are linearly independent, and so they do 
form a basis of R3 . 

(d) Form the matrix whose rows are the given vectors, and row reduce the matrix to echelon form: 

[
1 1 2

] [
1 1 2 ] 

[
1 1 2

] 1 2 5 � O 1 3 � 0 1 3  
5 3 4 0 -2 -6 0 0 0 

The echelon matrix has a zero row; hence the three vectors are linearly dependent, and so they do not 
form a basis of R3 . 

4.25. Determine whether ( 1 ,  1 ,  1 ,  1 ), ( 1 , 2 ,  3 ,  2), (2, 5, 6, 4), (2 , 6 , 8, 5) form a basis of R
4

. If not, find 
the dimension of the subspace they span. 

Form the matrix whose rows are the given vectors, and row reduce to echelon form: 

The echelon matrix has a zero row. Hence the four vectors are linearly dependent and do not form a basis of 
R4 . Since the echelon matrix has three nonzero rows, the four vectors span a subspace of dimension 3 . 

4.26. Extend {u \ = ( 1 , 1 , 1 , 1 ) ,  U2 = (2 , 2 , 3 ,  4)} to a basis of R
4
. 
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First form the matrix with rows U I and U2' and reduce to echelon form: 

[ 1 1 1 I J � [ 1 1 1 I J 
2 2 3 4  0 0 1 2  

[CHAP. 4 

Then wI = ( I ,  I ,  I ,  I) and W2 = (0, 0 , 1 , 2) span the same set of vectors as spanned by UI and U2 ' Let 
u3 = (0, 1 , 0 , 0) and U4 = (0, 0, 0, I ) , Then WI , U3 , W2 , u4 form a matrix in echelon form, Thus they are 
linearly independent, and they form a basis of R4 , Hence uI , u2 , u3 , u4 also form a basis of R4 . 

4.27. Consider the complex field C, which contains the real field R, which contains the rational field Q,  
(Thus C is a vector space over R,  and R is a vector space over Q,) 

(a) Show that { I ,  i} is a basis of C over R; hence C is a vector space of dimension 2 over R 

(b) Show that R is a vector space of infinite dimension over Q. 

(a) For any v E C, we have v = a + bi = a( l )  + b(i), where a, b E R. Hence { I ,  i} spans C over R 
Furthermore, if x( l )  + y(i) = 0 or x + yi = 0, where x, y E R, then x = 0 and y = O. Hence { I ,  i} is 
linearly independent over R Thus { I ,  i} is a basis for C over R 

(b) It can be shown that n is a transendental number, that is, n is not a root of any polynomial over Q. Thus, 
for any n, the n + 1 real numbers 1 ,  n , n2 , • • •  , nn are linearly independent over Q. Thus R cannot be of 
dimension n over Q. Accordingly, R is of infinite dimension over Q. 

4.28. Suppose S = {U I ' U2 , " " un } is a subset of V. Show that the following Definitions A and B of a 
basis of V are equivalent: 

(A) S is linearly independent and spans V. 
(B) Every v E V is a unique linear combination of vectors in S. 

Suppose (A) holds. Since S spans V, the vector v is a linear combination of the Ui ' say 
U = a jU j  + a2u2 + . . .  + anun 

Subtracting, we get 
and 

0 =  v - v = (al - bj )uj + (a2 - b2)U2 + . . .  + (an - bn)un 
But the ui are linearly independent. Hence the coefficients in the above relation are each 0: 

aj - bj = 0, a2 - b2 = 0, an - bn = 0 
Therefore aj = bj , a2 = b2 , . . .  , an = b . . Hence the representation of v as a linear combination of the Ui is 
unique. Thus (A) implies (B). 

Suppose (B) holds. Then S spans V. Suppose 
o = Cj ul + c2u2 + . . .  + cnun 

However, we do have o = OUj + OU2 + . . .  + OUn 
By hypothesis, the representation of 0 as a linear combination of the Ui is unique. Hence each Ci = 0 and the Ui 
are linearly independent. Thus (B) implies (A). 

DIMENSION AND SUBSPACES 

4.29. Find a basis and dimension of the subspace W of R
3 

where: 
(a) W = {(a, b, e) : a + b + e = O}, (b) W = {(a, b, e) : (a = b = e)}  
(a) Note that W "" R3 , since, e.g. , ( 1 , 2 , 3) Ii W. Thus dim W < 3 . Note that Uj = ( I ,  0 , -I )  and 

U2 = (0, I ,  - I )  are two independent vectors in W. Thus dim W = 2, and so Uj and U2 form a basis of W. 

(b) The vector U = ( 1 , 1 , 1 ) E W. Any vector W E W has the form W = (k, k, k) . Hence W = ku. Thus U 
spans W and dim W = 1 . 
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4.30. Let W be the subspace of R4 
spanned by the vectors 

Uj = ( 1 ,  -2 ,  5 ,  -3) ,  U2 = (2 , 3 , 1 ,  -4), u3 = (3 , 8 ,  -3, -5) 

(a) Find a basis and dimension of W. (b) Extend the basis of W to a basis of R4 . 
(a) Apply Algorithm 4. 1 ,  the row space algorithm. Fonn the matrix whose rows are the given vectors, and 

reduce it to echelon fonn: [ 1 -2 5 -3 ] [ 1 -2 5 -3 ] [ 1 -2 5 -3 ] 
A = 2 3 1 -4 � 0 7 -9 2 � 0 7 -9 2 

3 8 -3 -5 0 1 4  - 1 8  4 0 0 0 0 

The nonzero rows ( 1 ,  -2, 5 ,  -3) and (0, 7, -9, 2) of the echelon matrix fonn a basis of the row space of 
A and hence of W Thus, in particular, dim W = 2. 

(b) We seek four linearly independent vectors, which include the above two vectors. The four vectors 
( 1 , -2, 5, -3), (0, 7 ,  -9, 2), (0, 0, 1 , 0), and (0, 0, 0, 1 ) are linearly independent (since they fonn an 
echelon matrix), and so they fonn a basis of R4 , which is an extension of the basis of W 

4.31 .  Let W be the subspace of RS spanned by Uj = ( 1 , 2 ,  - 1 , 3 , 4), U2 = (2 , 4 ,  -2 ,  6, 8), 
u3 = ( 1 ,  3 ,  2 ,  2 ,  6), u4 = ( 1 , 4 , 5 , 1 , 8), Us = (2 , 7 ,  3 ,  3 ,  9) . Find a subset of the vectors that 
form a basis of W. 

Here we use Algorithm 4.2 , the Casting-out algorithm. Fonn the matrix M whose columns (not rows) are 
the given vectors, and reduce it to echelon fonn: 

[ 

1 2 1 1 2

1 
[

1 2 1 
2 4 3 4 7  0 0 1 

M = - 1  -2 2 5 3 � 0 0 3 
3 6 2 1 3 0 0 - 1  
4 8 6 8 9  0 0 2 

2 
6 

-2 
4 � 1 

� [
� � 

� � j1 -3 0 0 0 0 0 
1 0 0 0 0 0 

The pivot positions are in columns Cb C3 , Cs • Hence the corresponding vectors UJ , u3 ' Us fonn a basis of If', 
and dim W = 3 . 

4.32. Let V be the vector space of 2 x 2 matrices over K. Let W be the subspace of symmetric matrices. 
Show that dim W = 3, by finding a basis of W. 

Recall that a matrix A = [aij] is symmetric if AT = A, or, equivalently, each aij = aji ' Thus A = [ � � ] 
denotes an arbitrary 2 x 2 symmetric matrix. Setting (i) a = 1 ,  b = 0, d = 0, (ii) a = 0, b = 1 ,  d = 0, 
(iii) a = 0, b = 0, d = 1 ,  we obtain the respective matrices: 

We claim that S = {EJ , E2 , E3 } is a basis of W; that is, (a) S spans W and (b) S is linearly independent. 

(a) The above matrix A = [ � � ] = aEj + bE2 + dE3 . Thus S spans W 

(b) Suppose xEJ + yE2 + zE3 = 0, where x, y, z are unknown scalars. That is, suppose 

or [; � ] = [ � � ] 

Setting corresponding entries equal to each other yields x = 0, y = 0, z = O. Thus S is linearly independent. 
Therefore, S is a basis of If', as claimed. 



Lipschulz-Lipson:Schaum's I 4, Vector Spaces 

Outline ofTheory and 

I Text © The McGraw-Hili 
Companies, 2004 

Problems of Linear 

Algebra,3/e 

148  VECTOR SPACES [CHAP. 4 

THEOREMS ON LINEAR DEPENDENCE, BASIS, AND DIMENSION 

4.33. Prove Lemma 4 . 1 0 :  Suppose two or more nonzero vectors VI ' V2 ' . . .  , Vm are linearly dependent. 
Then one of them is a linear combination of the preceding vectors . 

Since the Vi are linearly dependent, there exist scalars al , " " am ' not all 0, such that 
a l VI + . . .  + amVm = O. Let k be the largest integer such that ak oF O. Then 

or 

Suppose k = 1 ;  then al vl = 0, al oF 0, and so VI = O. But the Vi are nonzero vectors. Hence k > 1 and 
vk = -a;;l al vl - . . .  - a;;l ak_ I vk_ 1 

That is, vk is a linear combination of the preceding vectors. 

4.34. Suppose S = {v I ' v2 , . . .  , vm } spans a vector space V. 
(a) If W E V, then {w, V I ' . . .  , vm } is linearly dependent and spans V. 
(b) If Vi is a linear combination of V I , . . .  , Vi- I > then S without Vi spans V. 
(a) The vector W is a linear combination of the Vi ' since {V;} spans V. Accordingly, {w, VI , . . .  , vm } is linearly 

dependent. Clearly, W with the Vi span V, since the Vi by themselves span V, that is, {w, VI , . . .  , vm } spans 
V. 

(b) Suppose Vi = kl VI + . . .  + ki_ 1 Vi- I ' Let U E V. Since {v;} spans V, u is a linear combination of the v/s, 
say u = al VI + . . .  + amvm . Substituting for Vi' we obtain 

u = al VI + . . .  + ai- I Vi- I + ai(kl VI + . . .  + ki_ 1 Vi- I ) + ai+1 Vi+1 + . . .  + amVm 
= (al + aikl )VI + . . .  + (ai- I + aiki_ I )Vi_ 1 + ai+1 Vi+1 + . . .  + amVm 

Thus {VI " ' "  Vi- I ' Vi+I , " " vm } spans V. In other words, we can delete Vi from the spanning set and still 
retain a spanning set. 

4.35. Prove Lemma 4 . 1 3 :  Suppose {V I ' V2 " ' "  vn } spans V, and suppose {WI ' w2 , " " wm } is linearly 
independent. Then m :::: n, and V is spanned by a set of the form 

Thus any n + 1 or more vectors in V are linearly dependent. 

It suffices to prove the lemma in the case that the Vi are all not O. (prove ! )  Since {v;l spans V, we have by 
Problem 4.34 that 

( 1 )  

is linearly dependent and also spans V. By Lemma 4. 1 0, one of the vectors in ( 1 ) is a linear combination of the 
preceding vectors. This vector cannot be WI , so it must be one of the v 's, say Vj ' Thus by Problem 4.34, we can 
delete Vj from the spanning set ( 1 ) and obtain the spanning set 

(2) 

Now we repeat the argument with the vector W2' That is, since (2) spans V, the set 
(3) 

is linearly dependent and also spans V. Again by Lennna 4. l  0, one of the vectors in (3) is a linear combination 
of the preceding vectors. We emphasize that this vector cannot be WI or w2, since {WI " ' "  wm} is 
independent; hence it must be one of the v's, say Vk' Thus, by Problem 4.34, we can delete Vk from the 
spanning set (3) and obtain the spanning set 

We repeat the argument with W3 , and so forth. At each step, we are able to add one of the w's and delete 
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one of the v 's in the spanning set. If m � n, then we finally obtain a spanning set of the required form: 

Finally, we show that m > n is not possible. Otherwise, after n of the above steps, we obtain the spanning 
set {WI " ' "  wn } . This implies that wn+1 is a linear combination of wI " ' "  wn '  which contradicts the 
hypothesis that {w;} is linearly independent. 

4.36. Prove Theorem 4 . 1 2 :  Every basis of a vector space V has the same number of elements. 

Suppose {UI , U2 , . . .  , un } is a basis of V, and suppose {VI '  V2 , . . .  } is another basis of V. Since {u;} spans V, 
the basis {vI , v2 , " ' }  must contain n or less vectors, or else it is linearly dependent by Problem 4.35 ,  that is, 
Lemma 4. 1 3 . On the other hand, if the basis {VI '  V2 , . . .  } contains less than n elements, then {UI , U2 , . . .  , un } is 
linearly dependent by Problem 4.35 . Thus the basis {VI '  V2 , . . .  } contains exactly n vectors, and so the theorem 
is true. 

4.37. Prove Theorem 4 . 14 :  Let V be a vector space of finite dimension n. Then: 

(i) Any n + 1 or more vectors must be linearly dependent. 

(ii) Any linearly independent set S = {U I , U2 , . . .  un } with n elements is a basis of V. 
(iii) Any spanning set T = {V I ' V2 " ' "  vn } of V with n elements is a basis of V. 

Suppose B = {WI '  W2 , • . .  , wn } is a basis of V. 

(i) Since B spans V, any n + 1 or more vectors are linearly dependent by Lemma 4. l 3 . 
(ii) By Lemma 4. 1 3 ,  elements from B can be adjoined to S to form a spanning set of V with n elements. 

Since S already has n elements, S itself is a spanning set of V. Thus S is a basis of V. 

(iii) Suppose T is linearly dependent. Then some Vi is a linear combination of the preceding vectors. By 
Problem 4.34, V is spanned by the vectors in T without Vi and there are n - 1 of them. By Lemma 4. l 3 ,  
the independent set B cannot have more than n - 1 elements. This contradicts the fact that B has n 
elements. Thus T is linearly independent, and hence T is a basis of V. 

4.38. Prove Theorem 4 . 1 5 :  Suppose S spans a vector space V. Then: 

(i) Any maximum number of linearly independent vectors in S form a basis of V. 
(ii) Suppose one deletes from S every vector that is a linear combination of preceding vectors in 

S. Then the remaining vectors form a basis of V. 
(i) Suppose {VI " ' "  vm } is a maximum linearly independent subset of S, and suppose W E S. Accordingly 

{vI , . . .  , vrn , w} is linearly dependent. No vk can be a linear combination of preceding vectors. Hence W is 
a linear combination of the Vi ' Thus W E span( vJ, and hence S � span( vJ This leads to 

V = span(S) � span(vi) � V 

Thus {vJ spans V, and, since it is linearly independent, it is a basis of V. 

(ii) The remaining vectors form a maximum linearly independent subset of S; hence, by (i), it is a basis of V. 

4.39. Prove Theorem 4 . 1 6 :  Let V be a vector space of finite dimension and let S = {u I ' U2 , " " ur } be a 
set of linearly independent vectors in V. Then S is part of a basis of V; that is, S may be extended to 
a basis of V. 

Suppose B = {WI '  W2 , " " wn } is a basis of V. Then B spans V, and hence V is spanned by 
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By Theorem 4. 1 5 ,  we can delete from S U B  each vector that is a linear combination of preceding vectors to 
obtain a basis B' for V. Since S is linearly independent, no Uk is a linear combination of preceding vectors. 
Thus B' contains every vector in S, and S is part of the basis B' for V. 

4.40. Prove Theorem 4 . 1 7 :  Let W be a subspace of an n-dimensional vector space V. Then dim W :::: n. In 
particular, if dim W = n, then W = v. 

Since V is of dimension n, any n + 1 or more vectors are linearly dependent. Furthermore, since a basis 
of W consists of linearly independent vectors, it cannot contain more than n elements. Accordingly, 
dim W� n .  

In particular, if {WI '  . . .  , wn } is a basis of W, then, since i t is an independent set with n elements, i t  is also 
a basis of V. Thus W = V when dim W = n.  

RANK OF A MATRIX, ROW AND COLUMN SPACES 

4.41 .  Find the rank and basis of the row space of each of the following matrices: 

(a) A = [ 2
3

1 � -� =� ] , (b) B = [ i � _! =! =� ] . 
1 0  -6 -5 

3 8 1 -7 -8 

(a) Row reduce A to echelon form: 

2 0 - 1 ] [ 1 2 0 - 1 ] 
2 -3 - 1  � 0 2 -3 - 1  
4 - 6  - 2  0 0 0 0 

The two nonzero rows ( 1 , 2 , 0 , - 1 )  and (0, 2 ,  -3 , - 1 )  of the echelon form of A form a basis for 
rowsp(A). In particular, rank(A) = 2 . 

(b) Row reduce B to echelon form: [ 1 3 
B � 0 1 

o -3 
o - 1  

2 
-6 
-2 

-2 -3 ] [ 1 3 
1 - 1  0 1 

-3 3 � 0 0 
- 1  1 0 0 

2 -� =� ] 
o 0 0 
o 0 0 

The two nonzero rows ( 1 , 3 , 1 ,  -2, -3) and (0, 1 , 2 , 1 ,  - 1 )  of the echelon form of B form a basis for 
rowsp(B). In particular, rank(B) = 2 . 

4.42. Show that U = W, where U and W are the following subspaces of R3 : 

U = span(uI ' U2 ' u3 ) = span( 1 ,  1 ,  - 1 ) ,  (2 , 3 ,  - 1 ) ,  (3 , 1 ,  -5)}  

W = span(w] , W2 ' w3 ) = span( 1 ,  - 1 ,  -3) ,  (3 , -2 ,  -8) ,  (2 , 1 ,  -3)}  

Form the matrix A whose rows are the Ui' and row reduce A to row canonical form: 

= � ] � 
[ � - � ] � 

[ � � -� ] 
-5 0 -2 -2 0 0 0 
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Next form the matrix B whose rows are the wi' and row reduce B to row canonical form: 

=� ] � 
[ � - � -� ] � 

[ � � -� l -3 0 3 3 0 0 0 

Since A and B have the same row canonical form, the row spaces of A and B are equal, and so U = W. 

2 
4 
2 
6 

1 
3 
2 
6 

2 
7 
5 

1 5  

3 
7 
5 

14  : ] .  1 5  

(a) Find rank(Mk), for k = 1 , 2 , . . .  , 6, where Mk is the submatrix of A consisting of the first k 
columns CI , C2 , . . .  , Ck of A . 

(b) Which columns CHI are linear combinations of preceding columns CI , · · · , Ck? 
(c) Find columns of A that form a basis for the column space of A . 
(d) Express column C4 as a linear combination of the columns in part (c) . 
(a) Row reduce A to echelon form: 

A � [ � 2 0 0 1 
0 3 

2 3 
3 
3 2 
9 5 

1 ] [ 1 2 1 2 3 1 ] 
2 0 0 1 3 1 2  
5 � 0 0 0 0 1 3  

1 2  0 0 0 0 0 0 

Observe that this simultaneously reduces all the matrices Mk to echelon form; for example, the first four 
columns of the echelon form of A are an echelon form of M4 . We know that rank(Mk) is equal to the 
number of pivots or, equivalently, the number of nonzero rows in an echelon form of Mk. Thus 

rank(MI ) = rank(M2) = 1 ,  rank(M3) = rank(M4) = 2 
rank(Ms) = rank(M6) = 3 

(b) The vector equation XI CI + x2C2 + . . .  + xkCk = CHI yields the system with coefficient matrix Mk and 
augmented MHI . Thus CHI is a linear combination of CI , . . .  , Ck if and only ifrank(Mk) = rank(MHI ) 
or, equivalently, if CHI does not contain a pivot. Thus each of C2 , C4 , C6 is a linear combination of 
preceding columns. 

(c) In the echelon form of A, the pivots are in the first, third, and fifth colunms. Thus columns Cb C3 , Cs of 
A form a basis for the columns space of A . Alternatively, deleting colunms Cb C4 , C6 from the spanning 
set of colunms (they are linear combinations of other colunms), we obtain, again, Cb C3 , Cs . 

(d) The echelon matrix tells us that C4 is a linear combination of columns CI and C3 . The augmented matrix 
M of the vector equation C4 = XCI + yC2 consists of the columns CI , C3 , C4 of A which, when reduced 
to echelon form, yields the matrix (omitting zero rows) 

or x +y = 2  
y = 3  or x = - l ,  y = 3  

4.44. Suppose u = (a i ' a2 ' . . .  , an) is a linear combination of the rows R I ' R2 , . . .  , Rm of a matrix 
B = [by] ,  say u = klRI + k2R2 + . . .  + kmRm . Prove that 

i = 1 , 2 , . . .  , n 

where bl i , b2i , . . .  , bmi are the entries in the ith column of B. 
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We are given that u = kjRj + kzRz + . . .  + kmRm . Hence 
(aj , az , . . .  , an) = kj (b l l , · · · , b jn) + . . .  + km(bmj , · · · , bmn) 

= (kj b l l  + . . .  + kmbmj , · · · , kj bjn + . . .  + kmbmn) 

Setting corresponding components equal to each other, we obtain the desired result. 

4.45. Prove Theorem 4 .7 :  Suppose A = [ay] and B = [by] are row equivalent echelon matrices with 
respective pivot entries 

and 

(pictured in Fig. 4-5). Then A and B have the same number of nonzero rows, that is, r = s, and their 
pivot entries are in the same positions, that is, i] = k] , i2 = k2 , . . .  , ir = kr . 

A = [ . . . . . �.1�.1 
. . .  
���; . . . � . . . .  � . . . .  

� 
. . .  

� ] , b = [ . . . . �:�.1 . . .  ��.�; 
. . .  
� 
. . . .  
� 
. . . .  

� 
. . .  

� ] 
arj, * * bsk, * * 

Fig. 4-5 

Clearly A = 0 if and only if B = 0, and so we need only prove the theorem when r ::: 1 and s ::: 1 . We 
first show thatij = kj . Supposeij < kj . Then theij th colunm of B is zero. Since the first row R* of A is in the 
row space of B, we have R* = CjRj + cjRZ + . . .  + cmRm , where the Ri are the rows of B. Since the ij th 
colunm of B is zero, we have 

ajiI = Cj 0 + czO + . . .  + cmO = 0 

But this contradicts the fact that the pivot entry a1j, i= O. Henceij ::: kj and, similarly, kj ::: ij '  Thusij = kj . 
Now let A' be the submatrix of A obtained by deleting the first row of A, and let B' be the submatrix of B 

obtained by deleting the first row of B. We prove that A' and B' have the same row space. The theorem will 
then follow by induction, since A' and B' are also echelon matrices. 

Let R = (aj , aZ ' . . .  , an) be any row ofA' and let Rj ,  . . .  , Rm be the rows ofB. Since R is in the row space 
of B, there exist scalars dj , . . .  , dm such that R = djRj + dzRz + . . .  + dmRm ' Since A is in echelon form and 
R is not the first row of A, the ij th entry of R is zero: ai = 0 for i = ij = kj . Furthermore, since B is in echelon 
form, all the entries in the kj th colunm of B are 0 except the first: b1k, i= 0, but bZk, = 0, . . .  , bmk, = O. Thus 

0 =  ak, = dj bjk, + dzO + . . .  + dmO = dj b1k, 
Now b1k, i= 0 and so dj = O. Thus R is a linear combination of Rz , . . .  , Rm and so is in the row space of B' . 
Since R was any row of A', the row space of A' is contained in the row space of B' .  Similarly, the row space of 
B' is contained in the row space of A' . Thus A' and B' have the same row space, and so the theorem is proved. 

4.46. Prove Theorem 4 . 8 :  Suppose A and B are row canonical matrices. Then A and B have the same row 
space if and only if they have the same nonzero rows. 

Obviously, if A and B have the same nonzero rows, then they have the same row space. Thus we only 
have to prove the converse. 

Suppose A and B have the same row space, and suppose R i= 0 is the ith row of A . Then there exist scalars 
Cj , . . .  , Cs such that 

( 1 )  
where the Ri are the nonzero rows of B. The theorem is proved if  we show that R = Ri, that is, that C i  = 1 but 
Ck = 0 for k i= i. 
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Let aij ' be the pivot entry in R, i.e. , the first nonzero entry of R. By ( 1 )  and Problem 4.44, 

(2) 

But, by Problem 4.45, bij, is a pivot entry of B, and, since B is row reduced, it is the only nonzero entry in the 
jth column of B. Thus, from (2), we obtain aij, = Cibij, ' However, aij, = 1 and bij, = 1, since A and B are row 
reduced; hence Ci = 1 . 

Now suppose k =1= i, and bkik is the pivot entry in Rk . By ( 1 )  and Problem 4.44, 

(3) 

Since B is row reduced, bl;ik is the only nonzero entry in the jth column of B. Hence, by (3), aijk = Ckbkjk ' 
Furthermore, by Problem 4.45, akjk is a pivot entry of A, and since A is row reduced, aijk = O. Thus Ckbkjk = 0, 
and since bkjk = 1 , ck = O. Accordingly R = Ri , and the theorem is proved. 

4.47. Prove Corollary 4 .9 :  Every matrix A is row equivalent to a unique matrix in row canonical form. 

Suppose A is row equivalent to matrices A l and A2, where A l and A2 are in row canonical form. Then 
rowsp(A) = rowsp(A I ) and rowsp(A) = roWSp(A2) ' Hence rowsp(A I ) = roWSp(A2) ' Since A l and A2 are in 
row canonical form, A l = A2 by Theorem 4.8 . Thus the corollary is proved. 

4.48. Suppose RB and AB are defined, where R is a row vector and A and B are matrices. Prove: 

(a) RB is a linear combination of the rows of B. 

(b) The row space of AB is contained in the row space of B. 

(c) The column space of AB is contained in the column space of A .  

(d) rank(AB) :::: rank(B) and rank(AB) :::: rank(A) .  

(a) Suppose R = (aI ' a2 , . . .  , am) and B = [bij] '  Let BI , . . .  , Bm denote the rows of B and BI , . . .  , Bn its 
columns. Then 

RB = (RBI , RB2 , . . .  , RB") 
= (al b l l  + a2b2 1 + . . .  + ambml , al bIn + a2b2n + . . .  + ambmn) 
= al (b l l , b!2 ' . . .  , bIn) + a2(b2 1 , b22 , . . .  , b2n) + . . .  + am(bml , bm2 , . . .  , bmn) 
= alBI + a2B2 + . . .  + amBm 

Thus RB is a linear combination of the rows of B, as claimed. 
(b) The rows of AB are RiB, where Ri is the ith row of A . Thus, by part (a), each row of AB is in the row 

space of B. Thus rowsp(AB) � rowsp(B), as claimed. 
(c) Using part (b), we have 

colsp(AB) = rowsp(ABl = rowSp(BT AT) � rowsp(AT) = colsp(A) 

(d) The row space of AB is contained in the row space of B; hence rank(AB) :'S rank(B) . Furthermore, the 
column space of AB is contained in the column space of A ;  hence rank(AB) :'S rank(A) . 

4.49. Let A be an n-square matrix. Show that A is invertible if and only if rank(A) = n .  

Note that the rows of the n-square identity matrix In are linearly independent, since In is in echelon form; 
hence rank(In) = n . Now if A is invertible, then A is row equivalent to In ; hence rank(A) = n. But if A is not 
invertible, then A is row equivalent to a matrix with a zero row; hence rank(A) < n, that is, A is invertible if 
and only if rank(A) = n. 
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APPLICATIONS TO LINEAR EQUATIONS 

4.50. Find the dimension and a basis of the solution space W of each homogeneous system: 

x + 2y + 2z - s + 3t = 0 
x + 2y + 3z + s + t = 0 ,  

3x  + 6y + 8z  + s + 5t = 0 

(a) 

(a) Reduce the system to echelon form: 

x + 2y + z - 2t = 0 
2x + 4y + 4z - 3t = 0 
3x + 6y + 7z - 4t = 0 

(b) 

x +  y + 2z = 0  
2x + 3y +  3z = 0 
x + 3y + 5z =  0 

(c) 

x + 2y + 2z - s + 3t = 0 
z + 2s - 2t = 0 

2z + 4s - 4t = 0  
or 

x + 2y + 2z - s + 3t = 0 
z + 2s - 2t = 0  

The system in echelon form has two (nonzero) equations in five unknowns, Hence the system has 
5 - 2 = 3 free variables, which are y, s, t. Thus dim W = 3 . We obtain a basis for W: 

( 1 )  Set y = l , s = O , t = O  
(2) Set y = O, s = 1 , t = 0  
(3) Set y = 0 , s = 0, t = 1 

to obtain the solution 
to obtain the solution 
to obtain the solution 

The set {Vj , V2 , V3 } is a basis of the solution space W. 

Vj = (-2, 1 , 0 , 0 , 0) .  
v2 = (5 , 0 , -2, 1 , 0) . 
v3 = (-7, 0, 2, 0, 1 ) .  

(b) (Here we use the matrix format of our homogeneous system.) Reduce the coefficient matrix A to echelon 
form: 

This corresponds to the system 

x + 2y + 2z - 2t = 0 
2z + t = 0 

The free variables are y and t, and dim W = 2 . 
(i) Set y = 1 ,  z = 0 to obtain the solution Uj = (-2, 1 ,  0 , 0). 
(ii) Set y = 0, z = 2 to obtain the solution U2 = (6, 0 ,  - 1 , 2) . 

Then {Uj , U2 } is a basis of W. 
(e) Reduce the coefficient matrix A to echelon form: 

A = [ ; ;  ; ] � [ � - ; l � [ � 1 - ; ]  
1 3 5 0 2 3 0 0 5 

This corresponds to a triangular system with no free variables. Thus 0 is the only solution, that is, 
W = {O} . Hence dim W = O. 

4.51 .  Find a homogeneous system whose solution set W is sparmed by 

{U ! , U2 , u3 } = {( 1 ,  -2,  0 ,  3) , ( 1 , - I ,  - 1 , 4) ,  ( 1 , 0 ,  -2 ,  5) } 

Let v = (x, y, z, t) . Then v E W if and only if v is a linear combination of the vectors Uj , U2 , U3 that span 
W. Thus form the matrix M whose first columns are Uj o U2 , U3 and whose last column is v, and then row reduce 
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M to echelon form. This yields 

M =  [ 
1 1 1 

-2 - I  0 
o - I  -2 
3 4 5 l [! -1 2 

o 0 
o 0 

x 1 
2x +y  

2x +y + z  
-5x - y + t  

Then v is a linear combination of UI , Uz , u3 if rank(M) = rank(A), where A is the submatrix without colunm v. 
Thus set the last two entries in the fourth colunm on the right equal to zero to obtain the required 
homogeneous system: 

2x +y + z  = 0 

5x +y  - t = 0 

4.52. Let XiI ' Xi2 , . • .  , Xik be the free variables of a homogeneous system of linear equations with n 
unknowns. Let Vj be the solution for which xij = 1 ,  and all other free variables equal O. Show that 
the solutions VI ' V2 ' . . .  , vk are linearly independent. 

Let A be the matrix whose rows are the Vi ' We interchange colunm I and colunm ii ' then colunm 2 and 
colunm iz , . . .  , then colunm k and colunm ik , and we obtain the k x n matrix 

B = [I, C] = � . . . .  � . . . .  � . . .  ". : . : . . . .  � . . . .  � . . . .  ��:��.� . . . .  : ". :  . . . .  ���. [
1 0 0 . . .  0 0 cI ,k+1 . . .  cln 1 
o 0 0 . . . 0 I Ck,k+1 . . . ckn 

The above matrix B is in echelon form, and so its rows are independent; hence rank(B) = k. Since A and B are 
colunm equivalent, they have the same rank, i .e . ,  rank(A) = k. But A has k rows; hence these rows, i .e . ,  the Vi' 
are linearly independent, as claimed. 

SUMS, DIRECT SUMS, INTERSECTIONS 

4.53. Let U and W be subspaces of a vector space V. Show that: 

(a) U + V is a subspace of V. 
(b) U and W are contained in U + W. 

(e) U + W is the smallest subspace containing U and W, that is, U + W = span(U, W) . 

(d) W + W =  W. 

(a) Since U and W are subspaces, 0 E U and 0 E W Hence 0 = 0 + 0 belongs to U + W Now suppose 
v, v' E U + W Then V = U + w and v' = u' + v', where u, u' E U and w, w' E W Then 

av + bv' = (au + bu') + (aw + bw') E U + W 

Thus U + W is a subspace of V. 

(b) Let u E U. Since W is a subspace, 0 E W Hence u = u + 0 belongs to U + W Thus U � U + W 
Similarly, W � U + W 

(c) Since U + W is a subspace of V containing U and W, it must also contain the linear span of U and W 
That is, span(U, W) � U + W 

On the other hand, if v E U + W, then v = u + w = I u + I w, where u E U and w E W Thus v is a 
linear combination of elements in U U W, and so v E span(U, W). Hence U + W � span(U, W) . 

The two inclusion relations give the desired result. 

(d) Since W is a subspace of V, we have that W is closed under vector addition; hence W + W � W By 
part (a), W � W + W Hence W + W = W 
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4.54. Consider the following subspaces of RS : 

U = span(u! ,  U2 , U3 ) = span{(1 , 3 ,  -2 , 2 , 3 ) ,  ( 1 , 4 ,  -3 , 4 , 2) ,  (2 , 3 ,  - 1 ,  -2 ,  9)}  

W = span(w! , W2 , W3 ) = span{(1 , 3 ,  0 ,  2 , 1 ) ,  ( 1 , 5 , -6 , 6 , 3 ) ,  (2 , 5 , 3 , 2 , I ) }  

Find a basis and the dimension of: (a) U + W, (b) u n  w. 
(a) U + W is the space spanned by all six vectors, Hence form the matrix whose rows are the given six 

vectors, and then row reduce to echelon form: 

3 -2 2 3 3 -2 2 3 3 -2 2 3 
4 -3 4 2 0 1 - 1  2 - 1  0 1 - 1  2 - 1  

2 3 - 1  -2 9 0 -3 3 -6 3 0 0 0 - 1  
3 0 2 1 0 0 2 0 -2 0 0 0 0 0 
5 -6 6 3 0 2 -4 4 0 0 0 0 0 0 

2 5 3 2 0 - 1  7 -2 -5 0 0 0 0 0 

The following three nonzero rows of the echelon matrix form a basis of u n  W: 

( 1 , 3 , -2, 2 , 2 , 3) , (0 , 1 ,  - 1 ,  2 ,  - 1 ) ,  (0, 0 , 1 , 0 , - 1 )  

Thus dim(U + W) = 3 . 
(b) Let v = (x, y, z, s, t) denote an arbitrary element in R5 . First find, say as in Problem 4.49, homogeneous 

systems whose solution sets are U and W, respectively. 
Let M be the matrix whose columns are the ui and v, and reduce M to echelon form: 

2 
-3 

o -x +y + z  
-3X:Y 1 

o 4x - 2y + s  
o -6x +y + t  

Set the last three entries in the last colunm equal to zero to obtain the following homogeneous system whose 
solution set is U: 

-x +y + z = O, 4x - 2y + s  = 0, -6x +y + t = 0 
Now let M' be the matrix whose colunms are the Wi and v, and reduce M' to echelon form: 

r 1 1 
3 5 

M' = 0 -6 
2 6 
1 3 

x 

1 

-3x +y  
-9x + 3y + z  
4x - 2y + s 
2x - y + t  

Again set the last three entries in the last column equal to zero to obtain the following homogeneous system 
whose solution set is W: 

-9 + 3 + z =  0, 4x - 2y + s  = 0, 2x - y + t = 0  
Combine both of the above systems to obtain a homogeneous system, whose solution space is U n W, and 
reduce the system to echelon form, yielding 

-x +y + z =  0 
2y + 4z +  s = 0 

8z + 5s + 2t = 0 
s - 2t = 0 

There is one free variable, which is t; hence dim(U n W) = 1 . Setting t = 2, we obtain the solution 
u = ( 1 , 4 , -3 , 4 , 2), which forms our required basis of U n W. 
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4.55. Suppose U and W are distinct four-dimensional subspaces of a vector space V, where dim V = 6. 
Find the possible dimensions of U n w. 

Since U and W are distinct, U + W properly contains U and W; consequently dim(U + W) > 4. But 
dim(U + W) cannot be greater than 6, since dim V = 6. Hence we have two possibilities :  (a) 
dim(U + W) = 5 or (b) dim(U + W) = 6. By Theorem 4.20, 

dim(U n W) = dim U + dim W - dim(U + W) = 8 - dim(U + W) 

Thus (a) dim(U n W) = 3 or (b) dim(U n W) = 2.  

4.56. Let U and W be the following subspaces of R3 : 
U = {(a ,  b, c) : a = b = c} and W = {CO, b, c) } 

(Note that W is the yz-plane.) Show that R3 = U EB W. 
First we show that u n  W = {O} . Suppose v = (a ,  b, c) E u n  W. Then a = b = c and a = O. Hence 

a = 0, b = 0, c = O. Thus v = 0 = (0, 0 ,  0). 
Next we show that R3 = U + W. For, if v = (a,  b, c) E R3 , then 

v = (a,  a, a) + (0, b - a, c - a) where (a ,  a, a) E U and (0, b - a, C - a) E W 

Both conditions u n  W = {O} and U + W = R3 imply that R3 = U EB W. 

4.57. Suppose that U and W are subspaces of a vector space V and that S = {u;} spans U and S' = {w) 
spans W. Show that S U S' spans U + W. (Accordingly, by induction, if Si spans Wi, for 
i = 1 , 2 ,  . . .  , n ,  then SI U . . .  U Sn spans WI + . . .  + Wn .) 

Let v E U + W. Then v = U + w, where U E U and W E W. Since S spans U, U is a linear combination of 
Ui, and since S' spans W, W is a linear combination of Wj; say 

and 

where ai ' bj E K. Then 

v = U + W  = aj uij + a2ui2 + . . .  + arui, + bjwiI + b2wjz + . . .  + bswj, 
Accordingly, S U S' = {Ui '  Wj} spans U + W. 

4.58. Prove Theorem 4.20 :  Suppose U and V are finite-dimensional subspaces of a vector space V. Then 
U + W has finite dimension and 

dim(U + W) = dim U + dim W - dim(U n W) 

Observe that u n  W is a subspacc of both U and W. Suppose dim U = m, dim W = n, dim(U n W) = r. 
Suppose {V j , . . .  , vr } is a basis of U n w. By Theorem 4. 1 6, we can extend {vJ to a basis of U and to a basis 
of W; say, 

and 

are bases of U and W, respectively. Let 

Note that B has exactly m + n - r elements. Thus the theorem is proved if we can show that B is a basis 
of U + W. Since {Vi '  Uj } spans U and {Vi '  Wk} spans W, the union B = {Vi '  uj , wk} spans U + W. Thus it 
suffices to show that B is independent. 

Suppose 

a j Vj + . . .  + arVr + b ju j  + . . .  + bm-rum-r + CjWj + . . .  + Cn-rWn-r = 0 

where ai ' bj , Ck are scalars. Let 

v = aj Vj + . . .  + arVr + bj Uj + . . .  + bm-rum-r 

( 1 )  

(2) 



Lipschulz-Lipson:Schaum's I 4, Vector Spaces 

Outline ofTheory and 

I Text © The McGraw-Hili 
Companies, 2004 

Problems of Linear 

Algebra,3/e 

1 5 8  VECTOR SPACES [CHAP. 4 

By ( 1 ), we also have 

(3) 
Since {Vi ' Uj} � U, V E U by (2); and since {Wk} � W, V E W by (3). Accordingly, V E u n  W. Now {v; l is a 
basis of U n W, and so there exist scalars dl , . . .  , dr for which V = dl VI + . . .  + drvr .  Thus, by (3), we have 

But {Vi '  Wk} is a basis of W, and so is independent. Hence the above equation forces el = 0, . . .  , en-r = O. 
Substituting this into ( I ), we obtain 

But {Vi ' Uj} is a basis of U, and so is independent. Hence the above equation forces 
al = 0, . . .  , ar = 0, bl = 0, . . .  , brn-r = O. 

Since ( 1 )  implies that the ai ' bj , ek are all 0, B = {Vi '  Uj , Wk} is independent, and the theorem is proved. 

4.59. Prove Theorem 4 .2 1 :  V = U EB W if and only if (i) V = U + W, (ii) u n  W = {O} .  
Suppose V = U EI1 W. Then any V E V can be uniquely written in the form V = U + W, where U E U and 

W E W. Thus, in particular, V = U + W. Now suppose V E U n W. Then 

( 1 )  V = V + 0, where V E U, 0 E W, (2) V = 0 + v, where 0 E U, V E W. 

Thus V = 0 + 0 = 0 and u n  W = {O} . 
On the other hand, suppose V = U + W and u n  W = {O} . Let V E V. Since V = U + W, there exist 

U E U and W E W such that v = U + w. We need to show that such a sum is unique. Suppose also that 
v = u' + w' , where u' E U and w' E W. Then 

U + W  = u' + w' , and so 

But U - U' E U and w' - W E W; hence, by u n  W = {O}, 

U - u' = 0, w' - W = 0 ,  and so 

Thus such a sum for v E V is unique, and V = U EI1 W. 

U - U' = w' - W 

u = u' , w = w' 

4.60. Prove Theorem 4.22 (for two factors) : Suppose V = U EB w. Also, suppose S = {uI , . . .  , urn } and 
S' = {wI ' . . .  , wn } are linearly independent subsets of U and W, respectively. Then: 

(a) The union S U S' is linearly independent in V. 
(b) If S and S' are bases of U and W, respectively, then S U S' is a basis of V. 
(e) dim V = dim U + dim W. 
(a) Suppose al u l + . . .  + arnUrn + biwi + . . .  + bnwn = 0, where ai' bj are scalars. Then 

(al U I + . . .  + amurn) + (bl WI + . . .  + bn wn) = 0 = 0 + 0 

where 0, al U I + . . .  + arnum E U and 0, bl WI + . . .  + bn wn E W. Since such a sum for 0 is unique, this 
leads to 

and 

Since SI is linearly independent, each ai = 0, and since S2 is linearly independent, each bj = O. Thus 
S = SI U S2 is linearly independent. 

(b) By part (a), S = SI U S2 is linearly independent, and, by Problem 4.55 ,  S = SI U S2 spans V = U + W. 
Thus S = SI U S2 is a basis of V. 

(e) This follows directly from part (b). 
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4.61. Relative to the basis S = {ul ' u2 } = {( 1 ,  1 ) ,  (2 , 3)}  of R
2
, find the coordinate vector of v, where: 

(a) v = (4 , -3),  (b) v = (a ,  b) . 
In each case, set 

v = XUl + YU2 = x( l ,  1) + y(2 , 3) = (x + 2y, x + 3y) 

and then solve for x and y. 
(a) We have 

(4, -3) = (x + 2y, x + 3y) 

The solution is x = 1 8 ,  y = -7. Hence [v] = [ 1 8 ,  -7] . 
(b) We have 

(a , b) = (x + 2y, x + 3y) 

or 

or 

x + 2y = 4 
x + 3y = -3 

x + 2y = a 
x + 3y =  b 

The solution is x = 3a - 2b, y = -a + b. Hence [v] = [3a - 2b, a + b] . 

4.62. Find the coordinate vector of v = (a ,  b, c) in R
3 

relative to : 

(a) the usual basis E = {( I ,  0, 0) , (0, 1 , 0) , (0 , 0 ,  I ) } ,  

(b) the basis S = {ul ' U2 ' u3 } = {( 1 , 1 ,  1 ) ,  ( 1 , 1 , 0) , ( 1 , 0 ,  O)} .  

(a) Relative to the usual basis E, the coordinates of [V]E are the same as v itself. That is, [V]E = [a, b, c] , 
(b) Set v as a linear combination of ul ' u2 '  U3 using unknown scalars x, y, z. This yields 

or 
x +y + z = a 
x +y = b  
x = c  

Solving the system yields x = c, y = b - c, z = a - b. Thus [v]s = [c, b - c, a - b] . 

4.63. Consider the vector space P 3 (t) of polynomials of degree S 3 .  

(a) Show that S = {(t - I )
3
, (t - li , t - I , I }  i s  a basis of P3 (t) . 

(b) Find the coordinate vector [v] of v = 3t3 - 4P + 2t - 5 relative to S. 

(a) The degree of (t - l)k is k; writing the polynomials of S in reverse order, we see that no polynomial is a 
linear combination of preceding polynomials. Thus the polynomials are linearly independent, and, since 
dim P3 (t) = 4, they form a basis of P3 (t) . 

(b) Set v as a linear combination of the basis vectors using unknown scalars x, y, z, s . We have 

v = 3t3 + 4t2 + 2t - 5 = x(t - 1 )3 + yet - 1 )2 + z(t - 1 )  + s( 1 )  
= x(t3 - 3r + 3t - 1 )  + y(r - 2t + 1 )  + z(t - 1 )  + s( 1 )  
= xt

3 - 3xr + 3xt - x + yt2 - 2yt + y + zt - z + s 
= xt

3 + (-3x + y)r + (3x - 2y + z)t + (-x + Y - z + s) 

Then set coefficients of the same powers of t equal to each other to obtain 

x =  3 ,  -3x +y  = 4, 3x - 2y + z = 2 , -x +y - z + s = -5 

Solving the system yields x = 3 ,  y = 13 , z = 19 ,  s = 4. Thus [v] = [3 , 13 , 1 9 , 4] . 
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4.64. Find the coordinate vector of A = [ ; _ ; ] in the real vector space M = M2,2 relative to : 

(a) the basis s = { [ � � l [ � -� l [ � -� l [ � � ] } , 
(b) the usual basis E = { [ � � l [ � � l [ � � l [ � n } 
(a) Set A as a linear combination of the basis vectors using unknown scalars x, y, z, t as follows: 

- I ] [ I 
o + Z  0 

Set corresponding entries equal to each other to obtain the system 

x + Z + t  = 2 , x - y - z = 3 , x +y = 4, x =  -7 

Solving the system yields x = -7, y =  I I , z =  -2 1 ,  t = 30. Thus [A]s = [-7, 1 1 ,  -2 1 , 30] . (Note that 
the coordinate vector of A is a vector in R4 , since dim M = 4.) 

(b) Expressing A as a linear combination of the basis matrices yields 

Thus x = 2, y = 3, Z = 4, t = -7 . Hence [A] = [2, 3 , 4 ,  -7], whose components are the elements of A 
written row by row. 

Remark: This result is true in general, that is, if A is any m x n matrix in M = Mm,m then the 
coordinates of A relative to the usual basis of M are the elements of A written row by row. 

4.65. In the space M = M2,3 , detennine whether or not the following matrices are linearly dependent: 

A _ [ 1 - 4 
2 
o [ 2 4 B = 1 0  1 c _ [ 1 - 8 

2 
2 

If the matrices are linearly dependent, find the dimension and a basis of the subspace W of M 
spanned by the matrices . 

The coordinate vectors of the above matrices relative to the usual basis of M are as follows: 

[A] = [ 1 , 2 , 3 , 4 , 0 , 5] ,  [B] = [2 , 4 , 7 , 1 0 ,  I ,  1 3 ] ,  [C] = [ 1 , 2 , 5 , 8 , 2 , 1 1 ] 

Form the matrix M whose rows are the above coordinate vectors, and reduce M to echelon form: [ I 2 3 
M =  2 4 7 

1 2 5 

4 0 5 ] [ I 2 3 4 0 5 ] 
1 0 1 1 3 � 0 0 1 2 1 3  
8 2 I I  0 0 0 0 0 0 

Since the echelon matrix has only two nonzero rows, the coordinate vectors [A] ,  [B], [C] span a space of 
dimension two, and so they are linearly dependent. Thus A, B, C are linearly dependent. Furthermore, 
dim W = 2, and the matrices 

[ I 2 3 ] WI = 4 0 5 and [ 0 0 I ] W2 = 2 I 3 

corresponding to the nonzero rows of the echelon matrix form a basis of W. 
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MISCELLANEOUS PROBLEMS 

4.66. Consider a finite sequence of vectors S = {V I ' V2 ' ' , . , vn } .  Let T be the sequence of vectors 
obtained from S by one of the following "elementary operations" :  (i) interchange two vectors, 
(ii) multiply a vector by a nonzero scalar, (iii) add a multiple of one vector to another. Show that S 
and T span the same space W. Also show that T is independent if and only if S is independent. 

Observe that, for each operation, the vectors in T are linear combinations of vectors in S. On the other 
hand, each operation has an inverse of the same type (Prove !) ;  hence the vectors in S are linear combinations 
of vectors in T. Thus S and T span the same space W. Also, T is independent if and only if dim W = n, and 
this is true if and only if S is also independent. 

4.67. Let A = [ay] and B = [by] be row equivalent m x n matrices over a field K, and let VI ' . . .  , vn be any 
vectors in a vector space V over K. Let 

UI = a l l  V I + a 12 v2 + . . .  + a ln vn WI = bl l v i + b12 V2 + . . .  + blnvn 
U2 = a2 1 V I + a22 v2 + . . .  + a2n vn W2 = b2 1 v I + b22 V2 + . . .  + b2nvn 

Show that {ui } and {wi } span the same space. 

Applying an "elementary operation" of Problem 4.66 to {uJ is equivalent to applying an elementary row 
operation to the matrix A. Since A and B are row equivalent, B can be obtained from A by a sequence of 
elementary row operations; hence {wJ can be obtained from {uJ by the corresponding sequence of operations. 
Accordingly, {uJ and {wJ span the same space. 

4.68. Let V I , . . .  , vn belong to a vector space V over K, and let P = [ay] be an n-square matrix over K. Let 

(a) Suppose P is invertible . Show that {Wi} and {vJ span the same space; hence {Wi} IS 
independent if and only if {Vi } is independent. 

(b) Suppose P is not invertible . Show that {Wi} is dependent. 

(c) Suppose {Wi} is independent. Show that P is invertible . 

(a) Since P is invertible, it is row equivalent to the identity matrix I. Hence, by the Problem 4.67, {wJ and 
{vJ span the same space. Thus one is independent if and only if the other is. 

(b) Since P is not invertible, it is row equivalent to a matrix with a zero row. This means that {wJ spans a 
space which has a spanning set of less than n elements. Thus {wJ is dependent. 

(c) This is the contrapositive of the statement of (b), and so it follows from (b). 

4.69. Suppose that A I , A2 , . . .  are linearly independent sets of vectors, and that A l � A2 � . . . . Show that 
the union A = A I U A2 U . . .  is also linearly independent. 

Suppose A is linearly dependent. Then there exist vectors VI , . . .  , Vn E A and scalars ai ' . . .  , an E K, not 
all of them 0, such that 

al VI + a2v2 + . . .  + anvn = ° 
Since A = UAi and the Vi E A, there exist sets Ail ' . . .  , Ai. such that 

V2 E Aiz ' 

( I )  

Let k be  the maximum index of the sets Ai : k = max(il ' . . .  , in) ' I t  follows then, since A l S; A2 S; . . .  , that 
each Ai is contained in Ak . Hence vI , v; , . . .  , vn E Ak> and so, by ( I ), Ak is linearly dependent, which J 
contradicts our hypothesis. Thus A is linearly independent. 
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4.70. Let K be a subfield of a field L, and let L be a subfield of a field E. (Thus K � L � E, and K is a 
subfield of E,) Suppose E is of dimension n over L, and L is of dimension m over K. Show that E is 
of dimension mn over K. 

Suppose {VI '  . . .  , Vn } is a basis of E over L and {ai ' . . .  , am } is a basis of L over K. We claim that 
{aivj : i = 1 ,  . . .  , m ,j = 1 ,  . . .  , n} is a basis of E over K. Note that {aivj} contains mn elements. 

Let w be any arbitrary element in E. Since {v I , . . .  , vn } spans E over L, w is a linear combination of the Vi 
with coefficients in L:  

Since {ai ' . . .  , am } spans L over K, each bi E L is a linear combination of the aj with coefficients in K: 

bl = kl l  al + kl2a2 + . . .  + klmam 
b2 = k21 al + k22a2 + . . .  + k2mam 

bn = knl al + kn2a2 + . . .  + kmnam 
where kij E K. Substituting in ( 1 ), we obtain 

w = (kl l al + . . .  + klmam)vl + (k2l a l + . . .  + k2mam)v2 + . . .  + (knl a l + . . .  + knmam)vn 
= kl l ai vi + . . .  + klmamvi + kzlal v2 + . . .  + kzmamV2 + . . .  + knl a l vn + . . .  + knmamvn 
= L '9;(aiv) iJ 

( 1 )  

where '9i E K. Thus w i s  a linear combination of  the aivj with coefficients in  K ;  hence {aiVj} spans E over K. 
The proof is complete if we show that {aiVj } is linearly independent over K. Suppose, for scalars 

Xji E K, we have LiJ Xji(aiv) = 0; that is, 

(Xl l  al VI + XI2a2vI + . . .  + XlmamVI ) + . . .  + (Xn l al vn + xn2a2vn + . . .  + xnmamvm) = 0 
or 

(Xl l  al + X12a2 + . . .  + Xlmam)VI + . . .  + (Xnl a l + xn2a2 + . . .  + xnmam)vn = 0 
Since {V I " ' "  Vn } is linearly independent over L and since the above coefficients of the Vi belong to L, each 
coefficient must be 0: 

But {ai ' . . .  , am } is linearly independent over K; hence, since the xji E K, 

Xl l  = 0, XI2 = 0 , . . .  , xlm = 0, . . .  , xnl = 0, xn2 = 0, 
Accordingly, {aiVj} is linearly independent over K, and the theorem is proved. 

Supplementary Problems 
VECTOR SPACES 

4.71. Suppose u and V belong to a vector space V. Simplify each of the following expressions: 

(a) EI = 4(5u - 6v) + 2(3u + v), 
(b) E2 = 5(2u - 3v) + 4(7v + 8), 

(c) E3 = 6(3u + 2v) + 5u - 7v, 
(d) E4 = 3(5u + 21v) 

4.72. Let V be the set of ordered pairs (a , b) of real numbers with addition in V and scalar multiplication on V 
defined by 

(a , b) + (c, d) = (a + c, b + d) and k(a , b) = (ka, 0) 
Show that V satisfies all the axioms of a vector space except [M4l, that is, except 1u = u. Hence [M4l is not a 
consequence of the other axioms. 
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4.73. Show that Axiom [A4] of a vector space V, that is, that u + v = v + u, can be derived from the other axioms 
for V. 

4.74. Let V be the set of ordered pairs (a , b) of real numbers. Show that V is not a vector space over R with addition 
and scalar multiplication defined by: 

(i) (a , b) + (c, d) = (a + d, b + c) and k(a , b) = (ka, kb), 
(ii) (a , b) + (c, d) = (a + c, b + d) and k(a , b) = (a , b), 

(iii) (a , b) + (c, d) = (0, 0) and k(a, b) = (ka, kb), 
(iv) (a , b) + (c, d) = (ac, bd) and k(a , b) = (ka, kb). 

4.75. Let V be the set of infinite sequences (ai ' a2 , . . .  ) in a field K. Show that V is a vector space over K with 
addition and scalar multiplication defined by 

(ai ' a2 , . . .  ) + (bl , b2 , . . .  ) = (a l + bl , a2 + b2 , . . .  ) and k(al , a2 , . . .  ) = (kal , ka2 , . . .  ) 

4.76. Let U and W be vector spaces over a field K. Let V be the set of ordered pairs (u , w) where u E U and W E W. 
Show that V is a vector space over K with addition in V and scalar multiplication on V defined by 

(u, w) + (u' , w') = (u + u' , w + w') and k(u, w) = (ku, kw) 

(This space V is called the external direct product of U and w.) 

SUBSPACES 

4.77. Determine whether or not W is a subspace of R3 where W consists of all vectors (a , b , c) in R3 such that: 
(a) a = 3b, (b) a :::: b :::: c, (c) ab = 0, (d) a + b + c = 0, (e) b = a2 , (f) a = 2b = 3c. 

4.78. Let V be the vector space of n-square matrices over a field K. Show that W is a subspace of V if W consists of 
all matrices A = [aij] that are: 

(a) symmetric (AT = A or aij = aj;), (b) (upper) triangular, (c) diagonal, (d) scalar. 

4.79. Let AX = B be a nonhomogeneous system of linear equations in n unknowns, that is, B =1= 0. Show that the 
solution set is not a subspace of Kn . 

4.80. Suppose U and W are subspaces of V for which U U W is a subspace. Show that U � W or W � U. 

4.81. Let V be the vector space of all functions from the real field R into R. Show that W is a subspace of V where 
W consists of all: (a) bounded functions, (b) even functions. [Recall that J: R -+ R is bounded if 3M E R 
such that 'Ix E R, we have I J(x) I :::: M; andJ(x) is even ifJ(-x) =J(x) , 'Ix E R. ]  

4.82. Let V be the vector space (problem 4.75) of infinite sequences (a i ' a2 , . . .  ) in a field K. Show that W is a 
subspace of V if W consists of all sequences with: (a) ° as the first element, (b) only a finite number of 
nonzero elements. 

LINEAR COMBINATIONS, LINEAR SPANS 

4.83. Consider the vectors u = ( 1 , 2 , 3) and v = (2 , 3, 1) in R3 . 
(a) Write w = ( 1 , 3 , 8) as a linear combination of u and v. 
(b) Write w = (2 , 4 , 5) as a linear combination of u and v. 
(c) Find k so that w = ( 1 ,  k, -2) is a linear combination of u and v. 
(d) Find conditions on a, b, c so that w = (a , b, c) is a linear combination of u and v. 
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4.84. Write the polynomial J(t) = at2 + bt + c as a linear combination of the polynomials PI = (t - Ii ,  
P2 = t - 1 ,  P3 = 1 . [Thus PI > P2 ' P3 span the space P2(t) of  polynomials of  degree :::: 2 . ]  

4.85. Find one vector in R
3 

that spans the intersection of U and W where U is the xy-plane, i .e . U = {(a ,  b , O)} ,  and 
W is the space spanned by the vectors ( 1 , 1 , 1 ) and ( 1 , 2 , 3). 

4.86. Prove that span(S) is the intersection of all subspaces of V containing S. 

4.87. Show that span(S) = span(S U {On. That is, by joining or deleting the zero vector from a set, we do not 
change the space spanned by the set. 

4.88. Show that: (a) If S S; T, then span(S) S; span(T). (b) span[span(S)] = span(S). 

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE 

4.89. Determine whether the following vectors in R4 are linearly dependent or independent: 

(a) ( 1 , 2 , -3 ,  1 ), (3 , 7 , 1 ,  -2), ( 1 , 3 , 7 , -4), (b) ( 1 , 3 , 1 ,  -2), (2 , 5 ,  - 1 ,  3), ( 1 , 3 , 7 , -2). 

4.90. Determine whether the following polynomials u, v, w in pet) are linearly dependent or independent: 

(a) u = t3 - 4F + 3t + 3 ,  v = t3 + 2F + 4t - l , w = 2t3 - F - 3t + 5 ,  
(b) U = t3 - 5t2 - 2t + 3 ,  v = t3 - 4t2 - 3t + 4, W = 2t3 - 7t2 - 7t + 9. 

4.91. Show that the following functions J, g, h are linearly independent: 

(a) J(t) = el, get) = sin t, h(t) = t2 , (b) J(t) = el, get) = ell , h(t) = t. 

4.92. Show that U = (a, b) and v = (c, d) in K2 are linearly dependent if and only if ad - be = O. 

4.93. Suppose u, v, w are linearly independent vectors. Prove that S is linearly independent where: 

(a) S = {u + v - 2w, u - v - w, u + w}, (b) S = {u + v - 3w, u + 3v - w, v + w} . 

4.94. Suppose {UI , " " Ur ,  WI " " ,  ws } is a linearly independent subset of V. Show that span(u) n span(w) = {OJ .  

4.95. Suppose VI , V2 , . . .  , vn are linearly independent. Prove that S is linearly independent where 

(a) S = {al VI , a2v2 , . . .  , an vn } and each aj oF O. 

(b) S = {VI " ' "  Vk_ l , W, Vk+I " ' "  vn } and w = Lj bjvj and bk oF O. 

4.96. Suppose (a l l " ' "  a ln) ,  (a21 , " " a2n) ,  . . .  , (am i " ' "  amn) are linearly independent vectors in Kn , and 
suppose VI , V2 , . . .  , vn are linearly independent vectors in a vector space V over K. Show that the following 
vectors are also linearly independent: 

BASIS AND DIMENSION 

4.97. Find a subset Of UI , U2 , u3 , U4 that gives a basis for W = span(u) of R5 where: 

(a) uI = ( 1 , 1 , 1 , 2 , 3) , u2 = ( 1 , 2 , - 1 , -2, 1 ) ,  u3 = (3 , 5 , - 1 , -2, 5), u4 = ( 1 , 2 , 1 , - 1 , 4) 
(b) uI = ( 1 , -2, 1 , 3 , - 1 ), u2 = (-2, 4 , -2, -6, 2), u3 = ( 1 , -3 , 1 , 2 , 1 ) ,  u4 = (3 , -7, 3 , 8 , - 1 )  
(c) UI = ( 1 ,  0 , 1 , 0 , 1 ) ,  U2 = ( 1 , 1 , 2 , 1 , 0), u3 = ( 1 ,  2, 3 , 1 , 1 ) ,  U4 = ( 1 ,  2 , 1 , 1 , 1 )  
(d) UI = ( 1 ,  0 , 1 , 1 , 1 ) ,  u2 = (2 , 1 , 2 , 0 , 1 ) ,  u3 = ( 1 , 1 , 2 , 3 , 4), u4 = (4, 2 ,  5 ,  4 ,  6) 
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4.98. Consider the subspaces U = {(a, b , c, d) : b - 2c + d = O} and W = {(a , b , c, d) : a = d, b = 2c} of R4 . 
Find a basis and the dimension of: (a) U, (b) W, (c) u n  W. 

4.99. Find a basis and the dimension of the solution space W of each of the following homogeneous systems: 

(a) x + 2y - 2z + 2s - t = 0 
x + 2y - z + 3s - 2t = 0 

2x + 4y - 7z + s + t = 0 
(b) x + 2y - z + 3s - 4t = 0 

2x + 4y - 2z - s + 5t = 0 
2x + 4y - 2z + 4s - 2t = 0 

4.100. Find a homogeneous system whose solution space is spanned by the following sets of three vectors: 

(a) ( 1 ,  -2, 0 , 3 ,  - 1 ), (2 ,  -3 , 2 , 5 ,  -3), ( 1 ,  -2, 1 , 2 , -2), 
(b) ( 1 , 1 , 2, 1 , 1 ), ( 1 , 2 , 1 , 4, 3), (3 , 5 , 4, 9, 7). 

4.101. Determine whether each of the following is a basis of the vector space P n et) : 
(a) { l ,  l + t, l + t + F , 1 + t + t2 + t3 , 1 + t + t2 + " . + r- 1 + tn } ,  
(b) { l + t, t + t2 , F + P , r-2 + tn- 1 , tn- 1 + tn } . 

4.102. Find a basis and the dimension of the subspace W of pet) spanned by: 

(a) u = t3 + 2F - 2t + 1 ,  v = t3 + 3Ft + 4, W = 2t3 + F - 7t - 7, 
(b) u = t3 + F - 3t + 2, v = 2t3 + F + t - 4, W = 4t3 + 3F - 5t + 2. 

4.103. Find a basis and the dimension of the subspace W of V = M2.2 spanned by 

[ 1 -5 J A =  -4 2 ' D = [ 1 -7 J -5 1 

RANK OF A MATRIX, ROW AND COLUMN SPACES 

4.104. Find the rank of each of the following matrices :  

(a) [ � ! -i ; 
1 4 2 4 
2 7 -3 6 

1 ] , 
1 3  

(b) [ 1 2 -3 
1 3 -2 
3 8 -7 
2 1 -9 

(c) [ � � � ] . 
- 1  -2 2 

-2 ] 
o 
2 ' 

- 1 0  

4.105. For k = 1 ,  2 ,  . . .  , 5 ,  find the number nk o f  linearly independent subsets consisting o f  k columns for each o f  the 
following matrices: 

4.106. 

(a) A = [ � ; 
1 3 

(b) B �  [ t ; l : n 
3 
8 3 
5 3 Let (a) A = [ 2

4
� � � 

8 6 1 6  7 
l � ] , 
26 

(b) B �  [ 1 
For each matrix (where c1 , . . •  , C6 denote its columns): 

(i) Find its row canonical form M. 

2 2 2 
4 5 4 5 
2 3 4 4 
6 7 7 9 � ] . 1 0  

(ii) Find the columns that are linear combinations of preceding columns. 

(iii) Find columns (excluding C6) that form a basis for the colunm space. 

(iv) Express C6 as a linear combination of the basis vectors obtained in (iii). 
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4.107. Determine which of the following matrices have the same row space: 

= [ 1 -2 - 1  ] A 3 -4 5 ' 

4.108. Determine which of the following subspaces of R3 are identical: 

Uj = span[( I , 1 ,  - 1 ) ,  (2 , 3 ,  - 1 ) ,  (3 , 1 ,  -5)] , U2 = span[( I , - 1 ,  -3) , (3 ,  -2, -8) , (2 ,  I , -3)] 
U3 = span[( I , 1 ,  I ) ,  ( 1 ,  - 1 , 3) ,  (3 ,  - 1 , 7)] 

4.109. Determine which of the following subspaces of R4 are identical: 

Uj = span[( I , 2, 1 , 4) ,  (2 , 4 ,  1 , 5) , (3 , 6 , 2 , 9)] , U2 = span[( I , 2, 1 , 2), (2 , 4 , 1 , 3)] ,  
U3 = span[( I , 2 , 3 , 1 0) ,  (2 , 4 , 3 , 1 1 )] 

4.1 10. Find a basis for (i) the row space and (ii) the column space of each matrix M: [ 0 0 3 1 4 ] 
1 3 1 2 1 (a) M = 3 9 4 5 2 ' 
4 1 2  8 8 7 

(b) M =
[ i � i ! i ] . 
2 4 1 - 1  0 

4.111 .  Show that if any row is deleted from a matrix in echelon (respectively, row canonical) form, then the resulting 
matrix is still in echelon (respectively, row canonical) form. 

4.1 12. Let A and B be arbitrary m x n matrices. Show that rank(A + B) :::: rank(A) + rank(B). 

4.1 13. Let r = rank(A + B) . Find 2 x 2 matrices A and B such that: 

(a) r < rank(A), rank(B); (b) r = rank(A) = rank(B); (c) r > rank(A), rank(B). 

SUMS, DIRECT SUMS, INTERSECTIONS 

4.1 14. Suppose U and W are two-dimensional subspaces of K3 . Show that u n  W =1= {O} . 

4.115. Suppose U and W are subspaces of V such that dim U = 4, dim W = 5, and dim V = 7. Find the possible 
dimensions of U n W. 

4.1 16. Let U and W be subspaces of R3 for which dim U = 1 ,  dim W = 2, and U Sf W. Show that R3 = U EEl W. 
4.1 17. Consider the following subspaces of R5 : 

U = span[( I , - 1 ,  - 1 ,  -2, 0) , ( 1 ,  -2, -2, 0 ,  -3) , 
W = span[( I , -2, -3, 0 , -2) , ( 1 ,  - 1 ,  -3 , 2 ,  -4) , 

( I , - 1 ,  -2, -2, 1 )] 
( I , - 1 ,  -2, 2 ,  -5)] 

(a) Find two homogeneous systems whose solution spaces are U and W, respectively. 

(b) Find a basis and the dimension of u n  w. 
4.1 18. Let Uj , U2 > U3 be the following subspaces of R3 : 

Uj = {(a, b, c) : a = c} , U2 = {(a ,  b, c) : a + b + c = O} , U3 = {CO , 0 , c)} 

Show that: (a) R3 = Uj + U2 , (b) R3 = U2 + U3 , (c) R3 = Uj + U3 • When is the sum direct? 
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4.1 19. Suppose U, WI > W2 are subspaces of a vector space V. Show that 

Find subspaces of R2 for which equality does not hold. 

4.120. Suppose WI '  W2 , • • •  , Wr are subspaces of a vector space V. Show that: 
(a) span(WI , W2 , • • •  , Wr) = WI + W2 + . . .  + Wr • 
(b) If Si spans W; for i = I ,  . . .  , r, then SI U S2 U . . .  U Sr spans WI + W2 + . . .  + Wr . 

4.121 .  Suppose V = U EI1 W. Show that dim V = dim U + dim W. 
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4.122. Let S and T be arbitrary nonempty subsets (not necessarily subspaces) of a vector space V and let k be a 
scalar. The sum S + T and the scalar product kS are defined by: 

S + T = (u + v : U E S, v E T}, 

[We also write w + S for {w} + S. ]  Let 

kS = {ku : U E S} 

S = {( 1 , 2), (2 , 3)} ,  T = {(1 , 4), ( 1 , 5) , (2 , 5)} , w = ( I , I ) ,  

Find: (a) S + T, (b) w + S ,  (c) kS, (d) kT, (e) kS + kT, (f) k(S + T) . 

4.123. Show that the above operations of S + T and kS satisfy: 
(a) Commutative law: S + T = T + S. 
(b) Associative law: (SI + S2) + S3 = SI + (S2 + S3) ' 
(c) Distributive law: k(S + T) = kS + kT. 
(d) S + {OJ = {OJ + S = S and S + V = V + S = v. 

k = 3  

4.124. Let V be the vector space of n-square matrices. Let U be the subspace of upper triangular matrices, and let W 
be the subspace of lower triangular matrices. Find: (a) u n  W, (b) U + W. 

4.125. Let V be the external direct sum of vector spaces U and W over a field K. (See Problem 4.76). Let 

[; = {(u, 0) : U E U} and W = {CO , w) : w E W} 

Show that: (a) [; and W are subspaces of V, (b) V = [; EI1 W. 
4.126. Suppose V = U + w. Let V be the external direct sum of U and W. Show that V is isomorphic to V under 

the correspondence v = U + w *+ (u , w) . 

4.127. Use induction to prove: (a) Theorem 4.22, (b) Theorem 4.23 . 

COORDINATES 

4.128. The vectors UI = ( 1 ,  -2) and U2 = (4, -7) form a basis S ofR2 . Find the coordinate vector [v] of v relative to 
S where: (a) v = (5 , 3), (b) v = (a,  b) . 

4.129. The vectors UI = ( 1 ,  2, 0), U2 = ( 1 , 3 , 2), u3 = (0, 1 , 3) form a basis S ofR3 . Find the coordinate vector [v] of 
v relative to S where: (a) v = (2 , 7 ,  -4), (b) v = (a ,  b, c) . 

4.130. S = {t3 + t2 , F + t, t + I ,  I }  is a basis of P 3 (t) . Find the coordinate vector [v] of v relative to S where: (a) v = 2t3 + F  - 4t + 2, (b) v = at3 + bt2 + ct + d. 
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4.131. Let V = Mz,z .  Find the coordinate vector [A] of A relative to S where: 

[ � - I ] 
I ' and (a) A = [ �  -; ] , 

4.132. Find the dimension and a basis of the subspace W of P3 (t) spanned by 

U = t3 + 2tZ - 3t + 4, v = 2t3 + 5tZ - 4t + 7 , 

4.133. Find the dimension and a basis of the subspace W of M = MZ,3 spanned by 

[ 2 4 3 ] B = 7 5 6 ' 

MISCELLANEOUS PROBLEMS 

4.134. Answer true or false. If false, prove it with a counterexample. 

(a) If U I , uz , u3 span V, then dim V = 3 . 
(b) If A is a 4 x 8 matrix, then any six colmnns are linearly dependent. 

(c) If uI , uz , u3 are linearly independent, then U I , uz , u3 , w are linearly dependent. 

(d) If UJ o uz , u3 , u4 are linearly independent, then dim V � 4. 
(e) If UJ o uz , u3 span V, then w, UJ o uz , u3 span V. 

© The McGraw-Hili 
Companies, 2004 

[CHAP. 4 

(b) A = [ � ! l 

(/) If u I , uz , u3 , U4 are linearly independent, then UI , uz , u3 are linearly independent. 

4.135. Answer true or false. If false, prove it with a counterexample. 

(a) If any colmnn is deleted from a matrix in echelon form, then the resulting matrix is still in echelon form. 

(b) If any colunm is deleted from a matrix in row canonical form, then the resulting matrix is still in row 
canonical form. 

(c) If any colmnn without a pivot is deleted from a matrix in row canonical form, then the resulting matrix is 
in row canonical form. 

4.136. Determine the dimension of the vector space W of the following n-square matrices: 

(a) symmetric matrices, (b) anti symmetric matrices, 

(d) diagonal matrices, (c) scalar matrices. 

4.137. Let tl , tz ,  . . .  , tn be symbols, and let K be any field. Let V be the following set of expressions where aj E K: 

Define addition in V and scalar multiplication on V by 

(al tl + . . .  + antn) + (bl tl + . . .  + bn tn) = (al + bl )tl + . . .  + (anbnm)tn 
k(a l tl + aztz + . . .  + antn) = kal tl + kaztz + . . .  + kantn 

Show that V is a vector space over K with the above operations. Also, show that { tl , . . .  , tn } is a basis of V, 
where 

tj = Otl + . . .  + O�_ I  + I � + O�+I + . . .  + Otn 
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Answers to Supplementary Problems 
4.71. (a) Ej = 26u - 22v. (e) E3 = 23u + 5v. 

(b) The sum 7v + 8 is not defined, so E2 is not defined. 
(d) Division by v is not defined, so E4 is not defined 

4.77. (a) Yes. (b) No; e.g. ( 1 , 2 , 3) E W but -2( 1 , 2 , 3) fj. W. (e) No; e.g. ( 1 , 0 , 0) , (0, 1 , 0) E W, but not their sum. (d) Yes. (e) No; e.g. ( 1 , 1 , 1 )  E W, but 2( 1 , 1 , 1 )  fj. W. (I) Yes 

4.79. The zero vector 0 is not a solution 

4.83. (a) w = 3uj - U2 ' (b) Impossible. (e) k = lJ-. (d) 7a - 5b + e = 0 

4.84. Using ! = Xpj + YP2 + zP3 , we get x = a, Y = 2a + b, z = a + b + e 

4.85. v = (2 , 5 , 0) 

4.89. (a) Dependent. (b) Independent 

4.90. (a) Independent. (b) Dependent 

4.98. (a) dim U = 3 ,  (b) dim W = 2, (e) dim(U n W) = 1 

4.99. (a) Basis: {(2 ,  - 1 ,  0 , 0 ,  0) , 
(b) Basis: {(2 ,  - 1 ,  0, 0, 0) , 

(4 , 0 , 1 ,  - 1 , 0) , (3 , 0 , 1 , 0 , I ) } ;  dim W = 3 . 
( 1 , 0 , 1 , 0 , O)} ;  dim W = 2 

4.100. (a) 5x + Y - z - s = 0, x + Y - z - t = 0; 
(b) 2x - z = 0, 2x - 3y + s = 0, x - 2y + t = 0 

4.101. (a) Yes. (b) No, since dim Pn(t) = n + 1 , but the set contains only n elements 

4.102. (a) dim W = 2, 

4.103. dim W = 2 

4.104. (a) 3 ,  (b) 2 ,  

(b) dim W = 3  

(e) 3 

4.105. (a) n j = 4, n2 = 5, n3 = n4 = ns = 0; 

4.106. (a) (i) M = [ 1 , 2 , 0 , 1 , 0 , 3 ;  0 ,  0 ,  1 ,  2 ,  0 , 1 ; 0 , 0 , 0 , 0 , 1 , 2 ; 0]; 
(ii) C2 , C4 , C6 ; (iii) Cj , C3 , Cs ; (iv) C6 = 3Cj + C3 + 2C6 • 

(b) (i) M = [ 1 , 2 , 0 , 0 , 3 , 1 ;  0 , 0 , 1 , 0 , - 1 ,  - 1 ;  0 , 0 , 0 , 1 , 1 , 2 ; 0]; 
(ii) C2 , Cs , C6 ; (iii) Cj , C3 , C4 ; (iv) C6 = Cj - C3 + 2C4 

4.107. A and C are row equivalent to [ b  � � J but not B 

4.108. Uj and U2 are row equivalent to [ b  0 -7 J but not U3 

4.109. Uj , U2 , U3 are row equivalent to [ b  � � ; ] 
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4.1 10. (a) (i) ( 1 , 3 , 1 , 2 , 1 ) ,  (0, 0 , 1 ,  - 1 ,  - 1 ), (0, 0 , 0 , 4 , 7) ; (ii) Cj , C2 , Cs · 
(b) (i) ( 1 , 2 , 1 , 0 , 1 ), (0 , 0 , 1 , 1 , 2) ; (ii) Cj , C3 

4.1 13. (a) A = [ � 1 ] [ - 1  
o ' B =  0 

- I } 
o ' (b) A = [ � � l B = [ � 

(c) A = [ � � l B = [ � n 
4.115. dim(U n W) = 2, 3, or 4 

4.1 17. (a) (i) 
3x + 4y - z - t = 0  

(ii) 
4x + 2y - s = 0  

4x + 2y + s = 0 9x + 2y + z + t = 0 
(b) Basis: {( 1 ,  -2, -5 , 0 , 0) , (0, 0 , 1 , 0 , - I )} ;  dim(U n W) = 2 

4.1 18. The sum is direct in (b) and (c) 

4.1 19. In R2 , let U, V, W be, respectively, the line y = x, the x-axis, the y-axis. 

� l 

4.122. (a) {(2 , 6), (2 , 7) , (3 , 7) , (3 , 8), (4 , 8)} ; (b) {(2 , 3) , (3 , 4)} ;  
(c) {(3 ,  6), (6 , 9)}; (d) {(3 , 1 2) ,  (3 ,  1 5) ,  (6 ,  1 5)} ; (e andf) {(6 ,  1 8) ,  (6 , 2 1 ) ,  (9, 2 1 ) ,  (9, 24) , ( 1 2 ,  24)} 

4.124. (a) Diagonal matrices, (b) V 

4.128. (a) [-4 1 ,  I I ] ,  (b) [-7a - 4b, 2a + b] 

4.129. (a) [- 1 1 , 1 3 ,  - 1 0] ,  (b) [c - 3b + 7a , -c + 3b - 6a , c - 2b + 4a] 

4.130. (a) [2 , - 1 , -2, 2] ;  (b) [a , b - c, c - b + a, d - c + b - a] 

4.131. (a) [7 , - 1 ,  - 1 3 ,  1 0] ;  (b) [d, c - d, b + c - d, a - b - 2c + 2d] 

4.132. dim W = 2; basis :  {t3 + 2P - 3t + 4, P + 2t - I }  

4.133. dim W = 2; basis :  { [ I ,  2 ,  1 , 3 ,  1 , 2] , [0, 0 , I ,  1 , 3 ,  2]} 

4.134. (a) False; ( 1 ,  I ), ( 1 , 2), (2, I ) span R2 . (b) True. 
(c) False; ( 1 , 0, 0, 0), (0, 1 , 0, 0), (0, 0, 1 , 0), w = (0, 0, 0, I ) .  
(d) True. (e) True. (I) True 

4.135. (a) True. (b) False; e.g. delete C2 from [ � 0 ; ] (c) 1 
4.136. (a) � n(n + I) ,  (b) � n(n - I) ,  (c) n, (d) 

True. 
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I subject matter of linear algebra is the study of linear mappings and their representation by 
of.m";,,,. This chapter introduces us to these linear maps and the next chapter shows how they 
re"I""",,,d by matrices. First, however, we begin with a study of mappings in general. 

MA'P1:'N'�S, FUNCTIONS 

Let A 8 be arbitrary nonempty sets. Suppose to each element in A there is assigned a unique 
F�::�;� Of Ihe collectionf of such assignments is called a mapping (or map) from A into 8, and is 
p by 

f : A --+ 8 

the domaill of the mapping, and 8 is called the larget set. We writef(a), read ''f of a", 
element of 8 that f assigns (0 a E A. 

-� .. '- ' .� view a mappingf :  A --+ 8 as a computer thaI, for each input value a E A, produces a 
output!r(a) E B. 

The tenn /tinction is used synonymously with the word mapping, although some texts 
"function" for a real-valued or complex-valued mapping. 

,1,n,pp;"g f :  A --+ 8. If A' is any subset of A ,  thenf(A') denotes the set of images of 
is any subset of 8, thenf-

I
(8') denotes the set of elements of A, each of whose 

and f-
I 
(8') = {a E A :f(a) E 8'1 

) tlh'iim"g". :of A' and f-I (8') the illrerse image or preilll(lge of 8'. In particular, the set of all 
tm'��"

'
�;h ;

,
;;':

I;
�

g
� the image or rallge off. 

� 
: A --+ 8 there corresponds the subset of A x 8 given by {(a./(a» : a E AI. We call 

off. Two mappings f :  A --+ 8 and g : A --+ 8 are defined to be eq1lal, written f = g, if 
a E A, that is, if they have the same graph. Thus we do not distinguish between a 

"O."'"P''' The negation off = g is writtenf '" g and is the statement: 

I There exists an a E A for whichf(a) '" g(a). 

171 
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Sometimes the "barred" arrow 1---+ is used to denote the image of an arbitrary element x E A under a 
mapping f : A ---+ B by writing 

X 1---+ f(x) 

This is illustrated in the following example, 

Example 5,1 
(a) Let f : R ---* R be the function that assigns to each real number x its square ::? We can denote this function by 

writing 

f(x) = ::? or X 1---* ::? 
Here the image of -3 is 9, so we may write f(-3) = 9 . However, f-1 (9) = { 3 ,  -3} . Also, 
feR) = [0, (0) = {x : x :::: O} is the image off 

(b) Let A = {a , b , c, d} and B = {x, y, z, t}. Then the following defines a mapping f :  A ---* B: 
f(a) = y, feb) = x, f(c) = z, fed) = y or f = {(a, y) , (b, x) , (c, z) , (d, y)} 

The first defines the mapping explicitly, and the second defines the mapping by its graph. Here, 

f({a, b, d}) = {f(a) ,f(b) ,f(d)} = {y, x, y} = {x, y} 

Furthermore, f(A) = {x, y, z} is the image off 

Example 5.2. Let V be the vector space of polynomials over R, and let pet) = 3t2 - 5t + 2 .  

(a) The derivative defines a mapping D :  V ---* V where, for any polynomials f(t), we have D(f) = dfldt. Thus 

D(P) = D(3? - 5t + 2) = 6t - 5 

(b) The integral, say from 0 to I ,  defines a mapping J :  V ---* R. That is, for any polynomial f(t), 

J(f) = J>(t) dt, and so 

Observe that the mapping in (b) is from the vector space V into the scalar field R, whereas the mapping in (a) is from 
the vector space V into itself. 

Matrix Mappings 

Let A be any m x n matrix over K. Then A determines a mapping FA : Kn ---+ Km by 

FA(U) = Au 

where the vectors in Kn and Km are written as columns. For example, suppose 

A = [ � 
then 

-4 
3 

-4 
3 

and 

Remark: For notational convenience, we shall frequently denote the mapping FA by the letter A, the 
same symbol as used for the matrix. 
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LINEAR MAPPINGS 

Consider two mappings f : A -+ B and g : B -+ C, illustrated below: 

A � B � C  
The composition off and g, denoted by g of, is the mapping g of : A -+ C defined by 

(g of)(a) == g(f(a)) 
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That is, first we apply f to a E A, and then we apply g to f(a) E B to get g(f(a)) E C, Viewingf and g as 
"computers" ,  the composition means we first input a E A to get the outputf(a) E B usingf, and then we 
input f(a) to get the output g(f(a)) E C using g, 

Our first theorem tells us that the composition of mappings satisfies the associative law. 

Theorem 5.1 : Let f : A -+ B, g :  B -+ C, h :  C -+ D. Then 

h o (g of) = (h o g) of 

We prove this theorem here. Let a E A . Then 

(h 0 (g 0 f))(a) = h((g of)(a)) = h(g(f(a))) 
((h 0 g) 0 f)(a) = (h 0 g)(f(a)) = h(g(f(a))) 

Thus (h 0 (g of))(a) = ((h 0 g) of)(a) for every a E A, and so h 0 (g of) = (h 0 g) of 

One-to-One and Onto Mappings 

We formally introduce some special types of mappings. 

Definition: A mappingf :  A -+ B is said to be one-to-one (or I - l or injective) if different elements of A 
have distinct images; that is: 

Equivalently, 

( 1 )  I f  a -I- ai , thenf(a) -I- f(a') .  

(2) Iff(a) = f(a') ,  then a = a' . 

Definition: A mappingf : A -+ B is said to be onto (or f maps A onto B or surjective) if every b E B is  
the image of at least one a E A . 

Definition: A mapping f : A -+ B is said to be a one-to-one correspondance between A and B (or 
bijective) iff is both one-to-one and onto . 

Example 5.3. Let J :  R ---+ R, g :  R ---+ R, h :  R ---+ R be defined by 

J(x) = 2x , g(x) = � - x, hex) = r-

The graphs of these functions are shown in Fig. 5- 1 .  The functionJ is one-to-one. Geometrically, this means that each 
horizontal line does not contain more than one point off The function g is onto. Geometrically, this means that each 
horizontal line contains at least one point of g. The function h is neither one-to-one nor onto. For example, both 2 and 
-2 have the same image 4, and - 1 6  has no preimage. 

Identity and Inverse Mappings 

Let A be any nonempty set. The mapping f :  A -+ A defined by f(a) = a, that is, the function that 
assigns to each element in A itself, is called the identity mapping. It is usually denoted by 1A or 1 or I. 
Thus, for any a E A, we have 1A (a) = a .  
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f(x) ;:0; 2" g (x) ;:0; x'� - x h (x) 
Fig. 5-1 

Now let f : A -+ B. We call g :  B -+ A the inverse off, written f-I , if 

f o g  = IB and 

We emphasize that f has an inverse if and only iff is a one-to-one correspondence between A and B, that 
is, ! is one-to-one and onto (Problem 5 .7) .  Also, if b E B, thenf-l (b) = a, where a is the unique element 
of A for which f(a) = b. 

5.3 LINEAR MAPPINGS (LINEAR TRANSFORMATIONS) 

We begin with a definition. 

Definition: Let V and U be vector spaces over the same field K. A mapping F :  V -+ U is called a linear 
mapping or linear transformation if it satisfies the following two conditions: 

( 1 )  For any vectors v ,  w E V ,  F(v + w) = F(v) + F(w) . 
(2) For any scalar k and vector v E V, F(kv) = kF(v) . 

Namely, F :  V -+ U is linear if it "preserves" the two basic operations of a vector space, that of vector 
addition and that of scalar multiplication. 

Substituting k = 0 into condition (2), we obtain F(O) = O . Thus, every linear mapping takes the zero 
vector into the zero vector. 

Now for any scalars a, b E K and any vector v, w E V, we obtain 

F(av + bw) = F(av) + F(bw) = aF(v) + bF(w) 

More generally, for any scalars ai E K and any vector Vi E V, we obtain the following basic property of 
linear mappings: 

Remark 1 :  A linear mapping F :  V -+ U i s  completely characterized by the condition 

F(av + bw) = aF(v) + bF(w) 

and so this condition is sometimes used as its defintion. 

(*) 

Remark 2 :  The term linear transformation rather than linear mapping is frequently used for linear 
mappings of the form F :  Rn -+ Rm . 
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(a) Let F :  R3 ---* R3 
be the "projection" mapping into the xy-plane, that is, F is the mapping defined by 

F(x, y, z) = (x, y, 0). We show that F is linear. Let v = (a, b, c) and w = (ai , b' , c') . Then 

F(v + w) = F(a + a' , b + b' , c + c') = (a + a' , b + b' , 0) 
= (a , b, 0) + (a' , b' , 0) = F(v) + F(w) 

and, for any scalar k, 
F(kv) = F« ka, kb, kc) = (ka, kb, 0) = k(a, b, 0) = kF(v) 

Thus F is linear. 

(b) Let G : R2 ---* R2 be the "translation" mapping defined by G(x, y) = (x + 1 ,  y + 2). [That is, G adds the vector 
( 1 , 2) to any vector v = (x, y) in R2 . ] Note that 

G(O) = G(O, 0) = ( 1 , 2) i= 0 
Thus the zero vector is not mapped into the zero vector. Hence G is not linear. 

Example 5.5. (Derivative and Integral Mappings) Consider the vector space V = pet) of polynomials over the real field 
R. Let u(t) and vet) be any polynomials in V and let k be any scalar. 

(a) Let D :  V ---* V be the derivative mapping. One proves in calculus that 

d(u + v) du dv --- = - + -
dt dt dt and 

d(ku) = k du 
dt dt 

That is, D(u + v) = D(u) + D(v) and D(ku) = kD(u) . Thus the derivative mapping is linear. 

(b) Let J :  V ---* R be an integral mapping, say 

J(f(t» = J>(t) dt 

One also proves in calculus that, f [(u(t) + v(t)]dt = f u(t) dt + f vet) dt 

and J� ku(t) dt = k J� u(t) dt 

That is, J(u + v) = J(u) + J(v) and J(ku) = kJ(u) . Thus the integral mapping is linear. 

Example 5.6. (Zero and Identity Mappings.) 

(a) Let F :  V ---* U be the mapping that assigns the zero vector 0 E U to every vector v E V. Then, for any vectors 
v, W E V and any scalar k E K, we have 

F(v + w) = 0 = 0 + 0 = F(v) + F(w) and F(kv) = 0 = kO = kF(v) 
Thus F is linear. We call F the zero mapping, and we shall usually denote it by O. 

(b) Consider the identity mapping / :  V ---* V, which maps each v E V into itself. Then, for any vectors v, W E V and 
any scalars a, b E K, we have 

/(av + bw) = av + bw = a/(v) + blew) 
Thus / is linear. 

Our next theorem (proved in Problem 5 . 1 3) gives us an abundance of examples of linear mappings. In 
particular, it tells us that a linear mapping is completely determined by its values on the elements of a basis. 

Theorem 5.2 : Let V and U be vector spaces over a field K. Let {v ! , v2 , . . .  , vn } be a basis of V and let 
u! , U2 ' • • •  , Un be any vectors in U. Then there exists a unique linear mapping F :  V -+ U 
such that F(v! ) = u! , F(V2) = U2 , . . .  , F(vn) = un ' 
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We emphasize that the vectors U j , U2 , " " un in Theorem 5 .2  are completely arbitrary; they may be 
linearly dependent or they may even be equal to each other. 

Matrices as Linear Mappings 

Let A be any real m x n matrix. Recall that A determines a mapping FA : Kn -+ Km by FA(U) = Au 
(where the vectors in Kn and Km are written as columns) . We show FA is linear. By matrix multiplication, 

FA(v + w) = A(v + w) = Av + Aw = FA (v) + FA (W) 
FA (kv) = A(kv) = k(Av) = kFA (V) 

In other words, using A to represent the mapping, we have 

A(v + w) = Av + Aw and A(kv) = k(Av) 

Thus the matrix mapping A is linear. 

Vector Space Isomorphism 

The notion of two vector spaces being isomorphic was defined in Chapter 4 when we investigated the 
coordinates of a vector relative to a basis. We now redefine this concept. 

Definition: Two vector spaces V and U over K are isomorphic, written V � U, if there exists a bijective 
(one-to-one and onto) linear mapping F :  V -+ U. The mapping F is then called an 
isomorphism between V and U. 

Consider any vector space V of dimension n and let S be any basis of V. Then the mapping 

v 1-+ [vls 

which maps each vector v E V into its coordinate vector [v Js, is an isomorphism between V and Kn . 

5.4 KERNEL AND IMAGE OF A LINEAR MAPPING 

We begin by defining two concepts. 

Definition:  Let F :  V -+ U be a linear mapping. The kernel ofF, written Ker F, is the set of elements in 
V that map into the zero vector 0 in U; that is, 

Ker F = {v E V :  F(v) = O} 
The image (or range) of F, written 1m F, is the set of image points in U; that is ,  

1m F = {u E U :  there exists v E V for which F(v) = u} 
The following theorem is easily proved (Problem 5 .22). 

Theorem 5.3 : Let F :  V -+ U be a linear mapping. Then the kernel of F is a subspace of V and the 
image of F is a subspace of U. 

Now suppose that V j , V2 ' . . .  , vm span a vector space V and that F :  V -+ U is linear. We show that 
F(v j ) ,  F(V2) " ' " F(vm) span 1m F. Let U E 1m F. Then there exists v E V such that F(v) = u. Since the v 's 
span V and since v E V, there exist scalars a j , a2 , . . .  , am for which 

v = aj v j + a2v2 + . . .  + amvm 
Therefore, 

U = F(v) = F(a j v j + a2v2 + . . .  + amvm) = a jF(v j )  + a2F(v2) + . . .  + amF(vm) 

Thus the vectors F(v j ) , F(V2 ) " "  , F(vm) span Im F. 
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Proposition 5.4: Suppose V I '  v2' . , . .  vm span a vector space V, and suppose F :  V ---+ U is linear. Then 
F(vt). F(v2)' . ,  . .  F(vm) span 1m F. 

Example 5.7 
(a) Let F :  1�

3 
---+ RJ be the projection ofa vector II into the X)'+plane [as pictured in Fig. 5.2(u)]; that is 

F(x.y. z) = (x.y. 0) 

Clearly the image of F is the entire X)'-plane, i.e., points of the fonn (x.y. 0). Moreover. the kernel of F is the 
z-axis, i.e .• points of the fonn (0. O. c). That is, 

1m F = I(a. b. c): c = OJ = xy-planc Ker F = ( a. b. c): a = O. b = OJ = z-axis 

(b) Let G :  R
3 

---+ R3 be the linear mapping that rotates a vector v about the z-axis through an angle 0 [as pictured in 
Fig. 5-2(b)l: that is, 

G(x.y. z) = (xcosO-ysinO. xsin O +ycosO. z) 

Observe that the distance of a vector II from the origin 0 does not change under the rotation, and so only the zero 
vector 0 is mapped into the zcro vector O. Thus Kcr G = (OJ. On the other hand, every vcetor 1/ in R

) 
is the 

image of a vector II in R
3 

that can be obtained by rotating /I back by an angle of O. Thus 1m G = R
l

, the entire 
space. 

Example 5.S. Consider the vector space V = pet) of polynomials over the real field R. and let H :  V -+ V be the third­
derivative operator. that is. fI(f(t)] = dJf/d�. [Sometimes the notation DJ is used for fl. where D is the derivative 
operator.] We claim that 

Ker H = IflOlynomials of degree ::: 2J = P2(t) ImH = V  

The first comes from the fact that H(u/2 + bl +c) = 0 but H(!,,) t- 0 for /I :: 3. Thc second comes from that fact that 
every polynomial get) in V is the third derivative of some polynomialf(t) (which can be obtained by taking the anti­
derivative of get) three times). 

, 

V "  (u. b. c) 

o 
F(lt) � (u. b, 0) 

, 

'oj 

y 

Fig. 5-2 

h.'--' G(V) 
Q ' 

(b) 

y 
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Consider, say, a 3 x 4 matrix A and the usual basis {e\ , e2 , e3 ' e4 } of K4 (written as columns) : 

Recall that A may be viewed as a linear mapping A : K4 --+ K3 , where the vectors in K4 and K3 are viewed 
as column vectors, Now the usual basis vectors span K4 , so their images Ae\ , Ae2 ' Ae3 ' Ae4 span the image 
of A. But the vectors Ael > Ae2 ' Ae3 ' Ae4 are precisely the columns of A :  

Thus the image o f  A i s  precisely the column space o f  A .  

On  the other hand, the kernel of  A consists of  all vectors v for which Av = 0 . This means that the 
kernel of A is the solution space of the homogeneous system AX = 0, called the null space of A .  

We state the above results formally. 

Proposition 5.5 : Let A be any rn x n matrix over a field K viewed as a linear map A : Kn --+ Km . Then 

Ker A = nullsp(A) and 1m A = colsp(A) 

Here colsp(A) denotes the column space of A,  and nullsp(A) denotes the null space of A .  

Rank and Nullity o f  a Linear Mapping 

Let F :  V --+ U be a linear mapping. The rank of F is defined to be the dimension of its image, and the 
nullity of F is defined to be the dimension of its kernel; namely, 

rank(F) = dim(1m F) and nullity(F) = dim(Ker F) 

The following important theorem (proved in Problem 5 .23) holds. 

Theorem 5.6: Let V be of finite dimension, and let F :  V --+ U be linear. Then 

dim V = dim(Ker F) + dim(1m F) = nullity(F) + rank(F) 

Recall that the rank of a matrix A was also defined to be the dimension of its column space and row 
space. If we now view A as a linear mapping, then both definitions correspond, since the image of A is 
precisely its column space. 

Example 5.9. Let F : R4 -+ R3 be the linear mapping defined by 

F(x, y, z, t) = (x - y + z + t, 2x - 2y + 3z + 4t, 3x - 3y + 4z + 5t) 

(a) Find a basis and the dimension of the image of F. 
First find the image of the usual basis vectors of R4 , 

F( I ,  0, 0, 0) = ( 1 ,  2, 3) , 
F(O ,  1 , 0 , 0) = (- 1 ,  -2, -3) , 

F(O, 0 , 1 , 0) = ( 1 ,  3 ,  4) 
F(O ,  0, 0, 1 )  = ( 1 , 4 , 5) 

By Proposition 5 .4, the image vectors span Im F. Hence form the matrix M whose rows are these image vectors 
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� l 3 4  0 1  0 0 0  
4 5  0 2 2  0 0 0  

Thus ( 1 , 2 , 3) and (0, 1 ,  1 ) form a basis of Im F. Hence dim(Im F) = 2 and rank(F) = 2 . 
(b) Find a basis and the dimension of the kernel of the map F. 

Set F(v) = 0, where v = (x, y, z, f), 
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Set corresponding components equal to each other to form the following homogeneous system whose solution 
space is Ker F: 

x - y +  z +  f = O  
2x - 2y + 3z + 4f = ° 
3x - 3y + 4z + 5f = ° 

or 
x - y + z + f = O  

z + 2f = ° 
z + 2f = ° 

or 

The free variables are y and f. Hence dim(Ker F) = 2 or nUllity(F) = 2. 
(i) Set y = 1 ,  f = ° to obtain the solution (- 1 ,  1 ,  0, 0), 
(ii) Set y = 0, f = 1 to obtain the solution ( 1 ,  0, -2, 1 ) .  

Thus (- 1 ,  1 , 0 , 0) and ( 1 ,  0 , -2, 1 ) form a basis for Ker F. 
As expected from Theorem 5 .6 , dim(Im F) + dim(Ker F) = 4 = dim R4 . 

Application to Systems of Linear Equations 

x - y + z + f = O  
z + 2f = ° 

Let AX = B denote the matrix form of a system of m linear equations in n unknowns. Now the matrix 
A may be viewed as a linear mapping 

Thus the solution of the equation AX = B may be viewed as the preimage of the vector B E Km under the 
linear mapping A . Furthermore, the solution of the associated homogeneous system 

may be viewed as the kernel of the linear mapping A . Applying Theorem 5 .6  to this homogeneous system 
yields 

dim(Ker A) = dimKn - dim(Im A) = n - rank A 

But n is exactly the number of unknowns in the homogeneous system AX = O. Thus we have proved the 
following theorem of Chapter 4 .  

Theorem 4.19:  The dimension of the solution space W of a homogenous system AX = 0 of linear 
equations is s = n - r, where n is the number of unknowns and r is the rank of the 
coefficient matrix A . 

Observe that r is also the number of pivot variables in an echelon form of AX = 0, so s = n - r is also 
the number of free variables. Furthermore, the s solution vectors of AX = 0 described in Theorem 3 . 1 2  are 
linearly independent (Problem 4 .52). Accordingly, since dim W = s, they form a basis for the solution 
space W. Thus we have also proved Theorem 3 . 1 2 .  
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5.5 SINGULAR AND NONSINGULAR LINEAR MAPPINGS, ISOMORPHISMS 

Let F :  V ---+ U be a linear mapping. Recall that F(O) = O. F is said to be singular if the image of 
some nonzero vector v is 0, that is, if there exists v -I- 0 such that F(v) = O. Thus F :  V ---+ U is 
nonsingular if the zero vector 0 is the only vector whose image under F is 0 or, in other words, if 
Ker F = {O} .  

Example 5.10. Consider the projection map F: R3 --+ R3 and the rotation map G :  R3 --+ R3 appearing in Fig. 5 -2 .  (See 
Example 5 .7 . )  Since the kernel of F is the z-axis, F is singular. On the other hand, the kernel of G consists only of the zero 
vector O. Thus G is nonsingular. 

Nonsingular linear mappings may also be characterized as those mappings that carry independent sets 
into independent sets. Specifically, we prove (Problem 5 .28) the following theorem. 

Theorem 5.7: Let F :  V ---+ U be a nonsingular linear mapping. Then the image of any linearly 
independent set is linearly independent. 

Isomorphisms 

Suppose a linear mapping F :  V ---+ U is one-to-one. Then only 0 E V can map into 0 E U, and so F is 
nonsingular. The converse is also true. For suppose F is nonsingular and F(v) = F(w), then 
F(v - w) = F(v) - F(w) = 0, and hence v - w = 0 or v = w. Thus F(v) = F(w) implies v = w, that is, 
F is one-to-one. Thus we have proved the following proposition. 

Proposition 5.8: A linear mapping F :  V ---+ U is one-to-one if and only if F is nonsingular. 

Recall that a mapping F :  V ---+ U is called an isomorphism if F is linear and if F is bijective, i .e . ,  if F 
is one-to-one and onto . Also, recall that a vector space V is said to be isomorphic to a vector space U, 
written V � U, if there is an isomorphism F :  V ---+ U. 

The following theorem (proved in Problem 5 .29) applies. 

Theorem 5.9: Suppose V has finite dimension and dim V = dim U. Suppose F :  V ---+ U is linear. Then 
F is an isomorphism if and only if F is nonsingular. 

5.6 OPERATIONS WITH LINEAR MAPPINGS 

We are able to combine linear mappings in various ways to obtain new linear mappings. These 
operations are very important and will be used throughout the text. 

Let F :  V ---+ U and G :  V ---+ U be linear mappings over a field K. The sum F + G and the scalar 
product kF, where k E K, are defined to be the following mappings from V into U: 

(F + G)(v) == F(v) + G(v) and (kF)(v) == kF(v) 
We now show that if F and G are linear, then F + G and kF are also linear. Specifically, for any vectors 
v, w E V and any scalars a, b E K, 

and 

(F + G)(av + bw) = F(av + bw) + G(av + bw) 
= aF(v) + bF(w) + aG(v) + bG(w) 
= a[F(v) + G(v)] + b[F(w) + G(w)] 
= a(F + G)(v) + b(F + G)(w) 

(kF)(av + bw) = kF(av + bw) = k[aF(v) + bF(w)] 
= akF(v) + bkF(w) = a(kF)(v) + b(kF)(w) 

Thus F + G and kF are linear. 
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Theorem 5.10:  Let V and U be vector spaces over a field K. Then the collection of all linear mappings 
from V into U with the above operations of addition and scalar multiplication forms a 
vector space over K. 

The vector space of linear mappings in the above Theorem 5 . 1 0  is usually denoted by 

Hom(V, U) 

Here Hom comes from the word "homomorphism" . We emphasize that the proof of Theorem 5 . 1 0  reduces 
to showing that Hom( V, U) does satisfy the eight axioms of a vector space. The zero element of 
Hom(V, U) is the zero mapping from V into U, denoted by 0 and defined by 

O(v) = 0 
for every vector v E V. 

Suppose V and U are of finite dimension. Then we have the following theorem. 

Theorem 5.1 1 :  Suppose dim V = m and dim U = n. Then dim[Hom( V, U)] = mn. 

Composition of Linear Mappings 

Now suppose V, U, and W are vector spaces over the same field K, and suppose F :  V -+ U and 
G :  U -+ W are linear mappings. We picture these mappings as follows : 

F G 
V ----+ U ----+ W 

Recall that the composition function G o F  is the mapping from V into W defined by (G o F)(v) = G(F(v» .  
We show that G o  F is linear whenever F and G are linear. Specifically, for any vectors v ,  w E V and any 
scalars a ,  b E K, we have 

(G o F)(av + bw) = G(F(av + bw» = G(aF(v) + bF(w» 
= aG(F(v» + bG(F(w» = a(G o F)(v) + b(G o F)(w) 

Thus G 0 F is linear. 
The composition of linear mappings and the operations of addition and scalar multiplication are 

related as follows. 

Theorem 5.12:  Let V, U, W be vector spaces over K. Suppose the following mappings are linear: 

F :  V -+ U, F' : V -+ U and G :  U -+ W, G' : U -+ W 

Then, for any scalar k E K: 
(i) G o  (F + F') = G o F  + G o F' . 
(ii) (G + G') o F = G o F + G' o F. 

(iii) k(G o F) = (kG) o f  = G o  (kF) . 

5.7 ALGEBRA A(V) OF LINEAR OPERATORS 

Let V be a vector space over a field K. This section considers the special case of linear mappings from 
the vector space V into itself, that is, linear mappings of the form F :  V -+ V. They are also called linear 
operators or linear transformations on V. We will write A(V),  instead of Hom(V, V), for the space of all 
such mappings. 

Now A(V) is a vector space over K (Theorem 5 . 8), and, if dim V = n, then dimA(V) = n2 • Moreover, 
for any mappings F, G E A(V),  the composition G o  F exists and also belongs to A(V) .  Thus we have a 
"multiplication" defined in A(V) .  [We sometimes write FG instead of G o  F in the space A(V) . ]  
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Remark: An algebra A over a field K is a vector space over K in which an operation of 
multiplication is defined satisfying, for every F, G, H E  A and every k E K: 

(i) F(G + H) = FG + FH, 
(ii) (G + H)F = GF + HF, 
(iii) k(GF) = (kG)F = G(kF) , 

The algebra is said to be associative if, in addition, (FG)H = F(GH) , 

The above definition of an algebra and previous theorems give us the following result. 

Theorem 5.13 : Let V be a vector space over K. Then A(V) is an associative algebra over K with respect 
to composition of mappings, If dim V = n, then dimA(V) = n2 , 

This is why A(V) is called the algebra of linear operators on v, 

Polynomials and Linear Operators 

Observe that the identity mapping I :  V -+ V belongs to A(V) .  Also, for any linear operator F in A(V),  
we have FI = IF = F. We can also form "powers" of F. Namely, we define 

F3 = F2 0 F = F 0 F 0 F, 

Furthermore, for any polynomial pet) over K, say, 

pet) = ao + a] t + a2r + . . .  + asr 

we can form the linear operator p(F) defined by 

p(F) = aoI + a ]F + a2F2 + . . .  + asF' 

(For any scalar k, the operator kI is sometimes denoted simply by k.) In particular, we say F is a zero of the 
polynomial pet) if p(F) = O . 

Example 5.11. Let F: K3 --+ K3 be defined by F(x, y, z) = (O , x, y). For any (a ,  b ,  c) E K3, 

(F + I)(a , b, c) = (0, a, b) + (a , b, c) = (a , a + b, b + c) 
F3 (a, b, c) = F2(0 , a , b) = F(O, 0, a) = (0, 0 , 0) 

Thus F3 = 0, the zero mapping in A(V) .  This means F is a zero of the polynomial pet) = P . 

Square Matrices as Linear Operators 

Let M = Mn,n be the vector space of all square n x n matrices over K. Then any matrix A in M defines 
a linear mapping FA : Kn -+ Kn by FA (U) = Au (where the vectors in Kn are written as columns) . Since the 
mapping is from Kn into itself, the square matrix A is a linear operator, not simply a linear mapping. 

Suppose A and B are matrices in M. Then the matrix product AB is defined. Furthermore, for any 
(column) vector u in Kn, 

In other words, the matrix product AB corresponds to the composition of A and B as linear mappings. 
Similarly, the matrix sum A + B corresponds to the sum of A and B as linear mappings, and the scalar 
product leA corresponds to the scalar product of A as a linear mapping. 
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Let F :  V -+ V be a linear operator. F is said to be invertible if it has an inverse, that is, if there exists 
F- 1 in A (V) such that FF- 1 = F-1 F = I. On the other hand, F is invertible as a mapping ifF is both one­
to-one and onto . In such a case, F- 1 is also linear and F- 1 is the inverse ofF as a linear operator (proved in 
Problem 5 . 1 5) .  

Suppose F is invertible. Then only 0 E V can map into itself, and so F is nonsingular. The converse is  
not true, as seen by the following example. 

Example 5.12. Let V = pet), the vector space of polynomials over K. Let F be the mapping on V that increases by I the 
exponent of t in each term of a polynomial, that is 

Then F is a linear mapping and F is nonsingular. However, F is not onto, and so F is not invertible. 

The vector space V = pet) in the above example has infinite dimension. The situation changes 
significantly when V has finite dimension. Namely, the following theorem applies. 

Theorem 5.14:  Let F be a linear operator on a finite-dimensional vector space V. Then the following 
four conditions are equivalent. 

(i) F is nonsingular: Ker F = {O} .  
(ii) F is one-to-one. 

(iii) F is an onto mapping. 
(iv) F is invertible. 

The proof of the above theorem mainly follows from Theorem 5 .6, which tells us that 

dim V = dim(Ker F) + dim(1nI F) 

By Proposition 5 . 8 ,  (i) and (ii) are equivalent. Note that (iv) is equivalent to (ii) and (iii) . Thus, to prove the 
theorem, we need only show that (i) and (iii) are equivalent. This we do below. 

(a) Suppose (i) holds. Then dim(Ker F) = 0, and so the above equation tells us that dim V = dim(Im F) . 
This means V = InI F or, in other words, F is an onto mapping. Thus (i) implies (iii) . 

(b) Suppose (iii) holds. Then V = InI F, and so dim V = dim(InI F) . Therefore the above equation tells 
us that dim(Ker F) = 0, and so F is nonsingular. Therefore (iii) implies (i) . 

Accordingly, all four conditions are equivalent. 

Remark: Suppose A is a square n x n matrix over K. Then A may be viewed as a linear operator on 
Kn . Since Kn has finite dimension, Theorem 5 . 1 4  holds for the square matrix A .  This is why the terms 
"nonsingular" and "invertible" are used interchangeably when applied to square matrices. 

Example 5.13. Let F be the linear operator on R2 defined by F(x, y) = (2.x + y, 3x + 2y). 

(a) To show that F is invertible, we need only show that F is nonsingular. Set F(x, y) = (0, 0) to obtain the 
homogeneous system 

2x +y = 0  and 3x + 2y = ° 
Solve for x and y to get x = 0, y = 0. Hence F is nonsingular and so invertible. 

(b) To find a formula for F-1 , we set F(x, y) = (s , t) and so F-1 (s , t) = (x, y) . We have 

(2x + y, 3x + 2y) = (s , t) or 
2x + y = s  
3x + 2y = t 

Solve for x and y in terms of s and t to obtain x = 2s - t, Y = -3s + 2t. Thus 

F-\s, t) = (2s - t, -3s + 2t) or F-\x, y) = (2x - y, -3x + 2y) 

where we rewrite the formula for F-1 using x and y instead of s and t. 
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5.1.  State whether each diagram in Fig, 5-3 defines a mapping from A = {a, b ,  c} into B = {x, y, z} . 

(a) No. There is nothing assigned to the element b E A . 
(b) No. Two elements, x and z, are assigned to c E A . 
(c) Yes. 

(a) (b) 
Fig. 5-3 

5.2. Let f : A � B and g : B � C be defined by Fig. 5-4. 

(a) Find the composition mapping (g of) : A � C. 
(b) Find the images of the mappings f, g, g of. 

A f B 

Fig. 5-4 

(a) Use the definition of the composition mapping to compute 

(e) 

g c 

(g of) (a) = g(f(a» = g(y) = t , (g of) (b) = g(f(b» = g(x) = s 

(g o!) (c) = g(f(c» = g(y) = t 

Observe that we arrive at the same answer if we "follow the arrows" in Fig. 5-4 : 

a -+ y -+ t , b -+ x -+ s ,  c -+ y -+ t 

(b) By Fig. 5-4, the image values under the mappingf are x and y, and the image values under g are r, s, t. 
Hence 

Imf = {x, y} and 1m g = {r, s, t} 

Also, by part (a), the image values under the composition mapping g o  f are t and s; accordingly, 
Im g of = {s, t} .  Note that the images of g and g of are different. 
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5.3. Consider the mapping F : R3 ---+ R2 defined by F(x, y, z) = (yz, x2). Find: 

5.4. 

(a) F(2 , 3, 4); (b) F(5 , -2 , 7); (c) F-l (O, 0), that is, all v E R3 such that F(v) = O. 
(a) Substitute in the formula for F to get F(2 , 3 ,  4) = (3 . 4 , 22) = ( 12 , 4). 
(b) F(5 , -2, 7) = (-2 . 7 , 52) = (- 14 , 25). 
(c) Set F(v) = 0, where v = (x, y, z) , and then solve for x, y, z: 

F(x, y, z) = (yz, �) = (0, 0) or YZ =  O, � = 0  

Thus x = 0 and either y = 0 or z = O. In other words, x = 0, y = 0 or z = O. That is, the z-axis and the 
y-axis. 

Consider the mapping F :  R2 ---+ R2 defined by F(x, y) = (3y, 2x). Let S be the unit circle in R2 , 
that is, the solution set of x2 + I = 1 .  (a) Describe F(S) .  (b) Find F- l (S) . 
(a) Let (a , b) be an element of F(S). Then there exists (x, y) E S such that F(x, y) = (a, b). Hence 

(3y, 2x) = (a, b) or 3y = a, 2x = b 

Since (x, y) E S, that is, � + y = 1 ,  we have 

or 

Thus F(S) is an ellipse. 

or 
a b y = 3 ' x = 2' 

(b) Let F(x, y) = (a ,  b), where (a ,  b) E S. Then (3y, 2x) = (a, b) or 3y = a, 2x = b. Since (a , b) E S, we 
have a2 + b2 = 1 . Thus (3y)2 + (2x)2 = 1 . Accordingly, F-1 (S) is the ellipse 4x2 + 9y = 1 . 

5.5. Let the mappingsf : A ---+ B, g :  B ---+ C, h :  C ---+ D be defined by Fig. 5-5. Determine whether or 
not each function is : (a) one-to-one; (b) onto; (c) invertible, i.e. has an inverse.  

(a) The mapping f :  A -+ B is one-to-one, since each element of A has a different image. The mapping 
g : B -+ C is not one-to one, since x and z both have the same image 4. The mapping h :  C -+ D is one­
to-one. 

(b) The mapping f :  A -+ B is not onto, since z E B is not the image of any element of A. The mapping 
g : B -+ C is onto, since each element of C is the image of some element of B. The mapping h :  C -+ D 
is also onto. 

(c) A mapping has an inverse if and only if it is one-to-one and onto. Hence only h has an inverse. 

A f B g C h D 

� =®  

2 y 5 < b 
3 z 6 c 

w 

Fig. 5-5 

5.6. Suppose f : A ---+ B and g :  B ---+ C. Hence (g a f) : A ---+ C exists . Prove: 

(a) Iff and g are one-to-one, then g of is one-to-one. 

(b) Iff and g are onto mappings, then g of is an onto mapping. 

(c) If g of is one-to-one, then f is one-to-one. 

(d) If g of is an onto mapping, then g is an onto mapping. 
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(a) Suppose (g of)(x) = (g of)(y). Then g(f(x)) = g(f(y)). Since g is one-to-one, f(x) = f(y). Since f is 
one-to-one, x = y. We have proven that (g 0 f) (x) = (g 0 f)(y) implies x = y; hence g o  f is one-to-one. 

(b) Suppose c E C. Since g is onto, there exists b E B for which g( b) = c. Since f is onto, there exists a E A 
for whichf(a) = b. Thus (g of)(a) = g(f(a)) = g(b) = c. Hence g of is onto. 

(c) Suppose f is not one-to-one. Then there exist distinct elements x, y E A  for which f(x) = f(y). Thus 
(g of)(x) = g(f(x)) = g(f(y)) = (g of)(y). Hence g of is not one-to-one. Therefore if g of is one-to­
one, then f must be one-to-one. 

(d) If a E A, then (g 0 f)(a) = g(f(a)) E g(B). Hence (g 0 f)(A) � g(B). Suppose g is not onto. Then g(B) is 
properly contained in C and so (g 0 f)(A) is properly contained in C; thus g of is not onto. Accordingly if 
g of is onto, then g must be onto. 

5.7. Prove that / : A --+ B has an inverse if and only if/ is one-to-one and onto . 

Suppose f has an inverse, i .e . ,  there exists a function f- I : B ---* A for which f- I of = lA and 
f of- I = lB ' Since lA is one-to-one, f is one-to-one by Problem 5 .6(c), and since lB is onto, f is onto by 
Problem 5 .6(d), that is, ! is both one-to-one and onto. 

Now suppose f is both one-to-one and onto. Then each b E B is the image of a unique element in A, say 
b* . Thus iff(a) = b, then a = b* ;  hence f(b*) = b. Now let g denote the mapping from B to A defined by 
b 1---* b* . We have: 

(i) (g of)(a) = g(f(a)) = g(b) = b* = a for every a E A; hence g of = lA ' 
(ii) (f 0 g)(b) = f(g(b)) = f(b*) = b for every b E B; hence f o g  = lB ' 

Accordingly, f has an inverse. Its inverse is the mapping g. 

5.8. Let/ : R --+ R be defined by lex) = 2x - 3. Now/ is one-to-one and onto; hence / has an inverse 
mapping /- I . Find a formula for/- I . 

Let y be the image of x under the mappingf; that is, y = f(x) = 2x - 3 . Hence x will be the image of y 
under the inverse mappingf- I . Thus solve for x in terms of y in the above equation to obtain x = � (y + 3). 
Then the formula defining the inverse function is f- I (y) = � (y + 3), or, using x instead of y, 

f-I (x) = � (x + 3). 

LINEAR MAPPINGS 

5.9. Suppose the mapping F :  R2 --+ R2 is defined by F(x, y) = (x + y, x). Show that F is linear. 

We need to show that F(v + w) = F(v) + F(w) and F(kv) = kF(v), where u and v are any elements ofR2 

and k is any scalar. Let v = (a, b) and w = (d , b'). Then 

v + w = (a + a' , b + b') and kv = (ka, kb) 

We have F(v) = (a + b, a) and F(w) = (a' + b' , d). Thus 

and 

F(v + w) = F(a + d, b + b') = (a + d  + b + b' , a + d) 
= (a + b, a) + (a' + b' , a') = F(v) + F(w) 

F(kv) = F(ka, kb) = (ka + kb, ka) = (a + b, a) = kF(v) 

Since v, w, k were arbitrary, F is linear. 
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5.10. Suppose F :  R3 --+ R2 is defined by F(x, y, z) = (x + y + z, 2x - 3y + 4z). Show that F is linear. 

We argue via matrices. Writing vectors as columns, the mapping F may be written in the form F( v) = Av, 
where v = [x, y, zf and 

A = [ 1 1 I J 2 -3 4 

Then, using properties of matrices, we have 

and 

Thus F is linear. 

F(v + w) = A(v + w) = Av + Aw = F(v) + F(w) 
F(kv) = A(kv) = k(Av) = kF(v) 

5.1 1 .  Show that the following mappings are not linear: 

(a) F :  R2 --+ R2 defined by F(x, y) = (xy, x) 

(b) F : R2 --+ R3 defined by F(x, y) = (x + 3 ,  2y, x + y) 

(c) F :  R3 --+ R2 defined by F(x, y, z) = ( lx i ,  y + z) 

(a) Let v = ( 1 , 2) and w = (3 , 4); then v + w = (4, 6) . Also, 

F(v) = ( 1 (3) , 1) = (3 , 1) and F(w) = (3 (4), 3) = ( 12 , 3) 
Hence 

F(v + w) = (4(6) , 4) = (24 , 6) i- F(v) + F(w) 

(b) Since F(O, 0) = (3 , 0, 0) i- (0, 0, 0), F cannot be linear. 

(c) Let v = ( 1 ,  2, 3) and k = -3 . Then kv = (-3 , -6, -9). We have 

F(v) = ( 1 , 5) and kF(v) = -3( 1 , 5) = (-3 , - 1 5) .  
Thus 

F(kv) = F( -3 ,  -6, -9) = (3 , - 1 5) i- kF(v) 
Accordingly, F is not linear. 

5.12. Let V be the vector space of n-square real matrices. Let M be an arbitrary but fixed matrix in V. Let 
F :  V --+ V be defined by F(A) = AM + MA, where A is any matrix in V. Show that F is linear. 

For any matrices A and B in V and any scalar k, we have 

and 

Thus F is linear. 

F(A + B) = (A + B)M + M(A + B) = AM + BM + MA + MB 
= (AM + MA) = (BM + MB) = F(A) + F(B) 

F(kA) = (kA)M + M(kA) = k(AM) + k(MA) = k(AM + MA) = kF(A) 

5.13. Prove Theorem 5 .2 :  Let V and U be vector spaces over a field K. Let {V I ' V2 ' . . .  , vn } be a basis of V 
and let U I , U2 , . . .  , un be any vectors in U. Then there exists a unique linear mapping F :  V --+ U 
such that F(vI ) = UI , F(V2) = U2 , . . .  , F(vn) = un ' 

There are three steps to the proof of the theorem: ( 1 )  Define the mapping F :  V --+ U such that 
F( v) = u; , i = 1 ,  . . .  , n. (2) Show that F is linear. (3) Show that F is unique. 

Step 1 .  Let v E V. Since {VI '  . . .  , vn } is a basis of V, there exist unique scalars ai ' . . .  , an E K for which 
v = ai vi + a2v2 + . . .  + anvn - We define F :  V --+ U by 

F(v) = al ul + a2u2 + . . .  + anUn 
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(Since the aj are unique, the mapping F is well-defined.) Now, for i = 1 ,  . . .  , n, 
Vj = OVI + . . .  + 1 vj + . . .  + OVn 

Hence F(vj) = OUI + . . .  + 1 uj + . . .  + OUn = Uj 
Thus the first step of the proof is complete. 

Step 2, Suppose v = al vI + a2v2 + . . .  + anVn and w = bl VI + b2V2 + . . .  + bnvn - Then 

v + w = (al + bl )vI + (a2 + b2)V2 + . . .  + (an + bn)vn 
and, for any k E K, kv = kal VI + ka2v2 + . . .  + kanvn - By definition of the mapping F, 

[CHAP. 5 

F(v) = al UI + a2u2 + . . .  + anvn and F(w) = bl VI + b2V2 + . . .  + bnvn 
Hence 

and 

F(v + w) = (al + bl )uI + (a2 + b2)U2 + . . .  + (an + bn)un 
= (al U I + a2u2 + . . .  + anun) + (bl UI + b2U2 + . . .  + bnun) 
= F(v) + F(w) 

Thus F is linear. 

Step 3, Suppose G : V --+ U is linear and G(VI ) = Uj , i = 1, . . .  , n .  Let 

V = al vl + a2v2 + . . .  + anvn 
Then 

G(V) = G(al VI + a2v2 + . . .  + anvn) = al G(VI ) + a2G(v2) + . . .  + anG(vn) 
= al u l + a2u2 + . . .  + anun = F(v) 

Since G(v) = F(v) for every V E V, G = F. Thus F is unique and the theorem is proved. 

5.14. Let F : R2 --+- R2 be the linear mapping for which F( 1 ,  2) = (2 , 3) and F(O , 1 )  = ( 1 ,  4). [Note that 
{( 1 ,  2) , (0, I ) }  is a basis of R2 , so such a linear map F exists and is unique by Theorem 5 .2 . ]  Find a 
formula for F; that is, find F(a , b) . 

Write (a , b) as a linear combination of ( 1 ,  2) and (0, 1 )  using unknowns x and y, 
(a, b) = x( 1 ,  2) + yeO, 1 )  = (x, 2x + y) , so a = x, b = 2x +y  

Solve for x and y in terms o f  a and b to get x = a, y = -2a + b .  Then 

F(a, b) = xF( 1 ,  2) + yF(O, 1) = a(2 , 3) + (-2a + b)( 1 ,  4) = (b , -5a + 4b) 

5.15. Suppose a linear mapping F :  V --+- U is one-to-one and onto . Show that the inverse mapping 
F-i : U --+- V is also linear. 

Suppose u , U' E U. Since F is one-to-one and onto, there exist unique vectors v, v' E V for which 
F(v) = U and F(v') = u' . Since F is linear, we also have 

F(v + v') = F(v) + F(v') = U + u' and F(kv) = kF(v) = ku 
By definition of the inverse mapping, 

F-I (u) = v, F- I (u') = v' , F- I (u + u') = v + v' , F- I (ku) = kv. 
Then 

F-I (u + u') = v + v' = F- I (u) + F- I (u') 
Thus F-I is linear. 

and 
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5.16. Let F : R4 � R3 be the linear mapping defined by 

F(x, y, z, t) = (x - y + s + t, x + 2s - t, x + y + 3s - 3t) 
Find a basis and the dimension of: (a) the image of F, (b) the kernel of F. 
(a) Find the images of the usual basis of R4 : 

F( 1 ,  0, 0, 0) = ( 1 , 1 , 1 ) ,  
F(O, 1 , 0 , 0) = (- 1 ,  0 , 1 ) ,  

F(O, 0 , 1 , 0) = ( 1 , 2 , 3) 
F(O, 0 ,  0 , 1 )  = ( 1 ,  - 1 ,  -3) 
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By Proposition 5 .4, the image vectors span 1m F. Hence form the matrix whose rows are these image 
vectors, and row reduce to echelon form: 

Thus ( 1 , 1 , 1 )  and (0, 1 , 2) form a basis for 1m F; hence dim(Im F) = 2 . 
(b) Set F(v) = 0, where v = (x, y, z, t) ; that is, set 

F(x, y, z, t) = (x - y + z + t, x + 2z - t, x + y + 3z - 3t) = (0, 0 , 0) 
Set corresponding entries equal to each other to form the following homogeneous system whose solution 
space is Ker F: 

x -y +  z + t = O  
x + 2z - t = O  
x + y + 3z - 3t = ° 

or 
x - y +  z + t = O  

y +  z - 2t = 0  
2y + 2z - 4t = ° 

The free variables are z and t. Hence dim(Ker F) = 2 . 
(i) Set z = - 1 ,  t = ° to obtain the solution (2 , 1 ,  - 1 ,  0). 

(ii) Set z = 0, t = 1 to obtain the solution ( 1 , 2 , 0, 1 ) . 
Thus (2 , 1 ,  - 1 , 0) and ( 1 , 2, 0, 1 )  form a basis of Ker F. 

or 
x -y + z +  t = O  

y + z - 2t = ° 

[As expected, dim(Im F) + dim(Ker F) = 2 + 2 = 4 = dim R\ the domain of F.] 

5.17. Let G :  R3 � R3 be the linear mapping defined by 

G(x, y, z) = (x + 2y - z, y + z, x + y - 2z) 
Find a basis and the dimension of: (a) the image of G, (b) the kernel of G. 
(a) Find the images of the usual basis of R

3
: 

G( 1 ,  0, 0) = ( 1 ,  0 , 1 ) ,  G(O, 1 , 0) = (2 , 1 , 1 ) ,  G(O, 0 , 1 )  = (- 1 , 1 ,  -2) 
By Proposition 5 .4, the image vectors span 1m G. Hence form the matrix M whose rows are these image 
vectors, and row reduce to echelon form: 

M = [ � ° � ] � [ � ° - � ] � [ � ° - � ] - 1  -2 ° - 1  ° ° ° 
Thus ( 1 , 0, 1 )  and (0, 1 ,  - 1 )  form a basis for Im G; hence dim(Im G) = 2. 

(b) Set G(v) = 0, where v = (x, y, z); that is, 

G(x, y, z) = (x + 2y - z, y + z, x +y - 2z) = (0, 0 , 0) 
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Set corresponding entries equal to each other to form the following homogeneous system whose solution 
space is Ker G: 

x + 2y - Z =  0 
y +  z = o  

x +  y - 2z = 0  
or 

x + 2y - z  = 0 
y + z = O  

-y - z  = 0 
or x + 2y - z =  0 

y + z = O  

The only free variable is z; hence dim(Ker G) = 1 . Set z = I ;  then y = - I  and x = 3 . Thus (3 , - 1 ,  1 )  
forms a basis o f  Ker G .  [As expected, dim(Im G) + dim(Ker G) = 2 + 1 = 3 = dim R

3 , the domain 
of G.] 

5.18. Conmdcr tho matrix mapp"g A : R' � R' , whore A � [ J 
dimension of: (a) the image of A, (b) the kernel of A . 

2 
3 
8 

3 
5 

1 3  
-; ] . Find a basis and the 
-3 

(a) The column space of A is equal to 1m A. Now reduce AT to echelon form: 

AT = [ ; ; � l � [ � � l � [ � I � l 3 5 1 3  0 2 4 0 0 0 
I -2 -3 0 -3 -6 0 0 0 

Thus { ( 1 , 1 ,  3) , (0, 1 ,  2)} is a basis of Im A, and dim(Im A) = 2. 
(b) Here Ker A is the solution space of the homogeneous system AX = 0, where X = {x, y, z, tl. Thus 

reduce the matrix A of coefficients to echelon form: [ 1 2 3 1 ] [ 1 2 3 1 ] 
o 1 2 -3 � 0 1 2 -3 
o 2 4 -6 0 0 0 0 

The free variables are z and t. Thus dim(Ker A) = 2. 
(i) Set z = I ,  t = 0 to get the solution ( 1 , -2, 1 , 0) . 
(ii) Set z = 0, t = 1 to get the solution (-7, 3 ,  0, 1 ) . 

Thus ( 1 , -2, 1 , 0) and (-7, 3 , 0 , 1 )  form a basis for Ker A. 

or 
x + 2y + 3z + t = 0 

y + 2z - 3t = 0 

5.19. Find a linear map F :  R3 -+ R4 whose image is spanned by ( 1 , 2 , 0 ,  -4) and (2 , 0, - 1 ,  -3) .  
Form a 4 x 3 matrix whose columns consist only of the given vectors, say 

A = [ ; � � l o - I  - I  
-4  - 3  -3 

Recall that A determines a linear map A : R3 
---* R4 whose image is spanned by the columns of A. Thus A 

satisfies the required condition. 

5.20. Suppose I :  V -+ U is linear with kernel W, and that I(v) = u. Show that the "coset" 
v + W = {v + w : w E W} is the preimage of u; that is, j- l (u) = v + W. 

We must prove that (i) f-l (u) s; v + W and (ii) v + W S;f-l (u) . 
We first prove (i). Suppose v' Ef- l (u) . Thenf(v') = u, and so 

f(v' - v) = f(v') -f(v) = u - u = 0 
that is v' - V E W. Thus v' = v + (v' - v) E V + W, and hence f- I (U) S; v + W. 
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Now we prove (ii). Suppose v' E v + W .  Then v' = v + w, where W E W. Since W i s  the kernel off, we 
have few) = O. Accordingly, 

f(v') = f(v + w) + f(v) + few) = f(v) + 0 = f(v) = U 

Thus v' E f- I (u), and so v + W (;;J- I (u) . 
Both inclusions imply f- I (u) = v + W 

5.21 .  Suppose F :  V -+ U and G :  U -+ W are linear. Prove: 
(a) rank(G o F) :::: rank(G), (b) rank(G o F) :::: rank(F). 

(a) Since F(V) S; U, we also have G(F(V)) S; G(U), and so dim[G(F(V))] :::: dim[G(U)]. Then 
rank(G o F) = dim[(G o F)(V)] = dim[G(F(V))] :::: dim[G(U)] = rank(G) . 

(b) We have dim[G(F(V))] :::: dim[F(V)]. Hence 

rank(G o F) = dim[(G o F)(V)] = dim[G(F(V))] :::: dim[F(V)] = rank(F) 

5.22. Prove Theorem 5 . 3 :  Let F :  V -+ U be linear. Then: 
(a) Im F is a subspace of U, (b) Ker F is a subspace of V. 

(i) Since F(O) = 0, we have 0 E 1m F. Now suppose u, u' E 1m F and a, b E K. Since u and u' belong to 
the image of F, there exist vectors v, v' E V such that F(v) = u and F(v') = u' . Then 

F(av + bv') = aF(v) + bF(v') + au + bu' E Im F 

Thus the image of F is a subspace of U. 

(ii) Since F(O) = 0, we have 0 E Ker F. Now suppose v, w E Ker F and a, b E K. Since v and w belong to 
the kernel of F, F(v) = 0 and F(w) = O. Thus 

F(av + bw) = aF(v) + bF(w) = aO + bO = 0 + 0 = 0, and so av + bw E Ker F 

Thus the kernel of F is a subspace of V. 

5.23. Prove Theorem 5 .6 :  Suppose V has finite dimension and F :  V -+ U is linear. Then 

dim V = dim(Ker F) + dim(Im F) = nullity(F) + rank(F) 

Suppose dim(Ker F) = r and {WI " ' " wr } is a basis of Ker F, and suppose dim(Im F) = s and 
{UI , . . .  , us } is a basis of 1m F. (By Proposition 5 .4, 1m F has finite dimension.) Since Uj E lm F, there 
exist vectors VI , • . •  , Vs in V such that F(vI ) = UI , . . .  , F(vs) = us ' We claim that the set 

is a basis of V, that is, (i) B spans V, and (ii) B is linearly independent. Once we prove (i) and (ii), then 
dim V = r + s = dim(Ker F) + dim(Im F). 

(i) B spans V. Let v E V. Then F(v) E 1m F. Since the uj span 1m F, there exist scalars ai '  . . .  , as such that 
F(v) = al u l + . . .  + asus '  Set v = al vi + . . .  + asvs - v. Then 

F(v) = F(al V I + . . .  + asvs - v) = aIF(vI ) + . . .  + asF(vs) - F(v) 

= a l ul + . . .  + asus - F(v) = 0 

Thus v E Ker F. Since the Wi span Ker F, there exist scalars bl , • • .  , br , such that 

v = biwi + . . .  + brwr = a i vi + . . .  + asvs - v 

Accordingly 

Thus B spans V. 
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(ii) B is linearly independent. Suppose 

( 1 )  

where xi ' Yj E K. Then 

0 =  F(O) = F(xlwl + . . .  + XrWr + YI VI + . . .  + Ysvs) 
= xIF(wI ) + . . .  + xrF(wr) + YIF(vI ) + . . .  + YsF(vs) (2) 

But F(wJ = 0, since Wi E Ker F, and F(vj) = Uj ' Substituting into (2), we will obtain 
YI UI + . . .  + YsUs = O. Since the Uj are linearly independent, each Yj = O. Substitution into ( 1 )  gives 
xlwl + . . .  + xrwr = O. Since the Wi are linearly independent, each Xi = O. Thus B is linearly 
independent. 

SINGULAR AND NONSINGULAR LINEAR MAPS, ISOMORPHISMS 

5.24. Determine whether or not each of the following linear maps is nonsingular. If not, find a nonzero 
vector v whose image is O . 
(a) F :  R2 ---+ R2 defined by F(x, y) = (x - y, x - 2y). 
(b) G : R2 ---+ R2 defined by G(x, y) = (2x - 4y, 3x - 6y). 

(a) Find Ker F by setting F(v) = 0, where v = (x, y), 

(x - y, x - 2y) = (0, 0) or 
x - y = O  
x - 2y = 0 

The only solution is x = 0, Y = O. Hence F is nonsingular. 

(b) Set G(x, y) = (0, 0) to find Ker G: 

(2x - 4y, 3x - 6y) = (0, 0) or 
2x - 4y =  0 
3x - 6y = 0 

or 

or 

x - y = O  
-y = O  

x - 2y =  0 

The system has nonzero solutions, since y is a free variable. Hence G is nonsinguiar. Let y = 1 to obtain 
the solution v = (2 , 1 ) ,  which is a nonzero vector, such that G(v) = O. 

5.25. The linear map F :  R2 -+ R2 defined by F(x, y) = (x - y, x - 2y) is nonsingular by the previous 
Problem 5 .24. Find a formula for F-1 . 

Set F(x, y) = (a ,  b), so that F-I (a, b) = (x, y) . We have 

(x - y, x - 2y) = (a ,  b) or 
x - y = a 
x - 2y =  b or 

Solve for x and y in terms of a and b to get x = 2a - b, y = a - b. Thus 

x - y = a 
y = a - b  

p- I (a, b) = (2a - b, a - b) or F-I (x, y) = (2x - y, x - y) 

(The second equation is obtained by replacing a and b by x and y, respectively.) 

5.26. Let G :  R2 -+ R3 be defined by G(x, y) = (x + y, x - 2y, 3x + y). 
(a) Show that G is nonsingular. (b) Find a formula for G- i .  

(a) Set G(x, y) = (0, 0, 0) to find Ker G. We have 

(x + y, x - 2y, 3x + y) = (0, 0 , 0) or x + y = 0, x - 2y = 0, 3x + y = 0 

The only solution is x = 0, y = 0; hence G is nonsingular. 

(b) Although G is nonsingular, it is not invertible, since R2 and R3 have different dimensions. (Thus 
Theorem 5 .9 does not apply.) Accordingly, G-I does not exist. 
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5.27. Suppose that F :  V --+ U is linear and that V is of finite dimension, Show that V and the image ofF 
have the same dimension if and only if F is nonsingular. Determine all nonsingular linear mappings 
T :  R4 --+ R3 . 

By Theorem 5 .6, dim V = dim(Im F) + dim(Ker F). Hence V and 1m F have the same dimension if and 
only if dim(Ker F) = 0 or Ker F = {OJ, i .e . ,  if and only if F is nonsingular. 

Since dim R3 is less than dim R4, we have that dim(Im T) is less than the dimension of the domain R4 of 
T. Accordingly no linear mapping T :  R4 --+ R

3 
can be nonsingular. 

5.28. Prove Theorem 5 .7 :  Let F :  V --+ U be a nonsingular linear mapping. Then the image of any 
linearly independent set is linearly independent. 

Suppose VI '  V2 , . . .  , Vn are linearly independent vectors in V. We claim that F(VI ) ' F(V2) ' . . .  , F(vn) are 
also linearly independent. Suppose aIF(vI ) + a2F(v2) + . . .  + anF(vn) = 0, where ai E K. Since F is linear, 
F(al VI + a2 v2 + . . .  + an vn) = O. Hence 

ai vi + a2v2 + . . .  + anvn E Ker F 
But F is nonsingular, i .e . ,  Ker F = {OJ .  Hence al VI + a2v2 + . . .  + anvn = O. Since the Vi are linearly 
independent, all the ai are O. Accordingly, the F(v;) are linearly independent. Thus the theorem is proved. 

5.29. Prove Theorem 5 .9 :  Suppose V has finite dimension and dim V = dim U. Suppose F :  V --+ U is 
linear. Then F is an isomorphism if and only if F is nonsingular. 

If F is an isomorphism, then only 0 maps to 0; hence F is nonsingular. Conversely, suppose F is 
nonsingular. Then dim(Ker F) = O. By Theorem 5 .6, dim V = dim(Ker F) + dim(Im F). Thus 

dim U = dim V = dim(1m F) 
Since U has finite dimension, 1m F = U. This means F maps V onto U Thus F is one-to-one and onto; that 
is, F is an isomorphism. 

OPERATIONS WITH LINEAR MAPS 

5.30. Define F :  R3 --+ R2 and G :  R3 --+ R2 by F(x, y, z) = (2x, y + z) and G(x, y, z) = (x - z, y) . 
Find formulas defining the maps: (a) F + G, (b) 3F, (c) 2F - 5G. 

(a) (F + G)(x, y, z) = F(x, y, z) + G(x, y, z) = (2x, y + z) + (x - z, y) = (3x - z, 2y + z) 
(b) (3F)(x, y, z) = 3F(x, y, z) = 3(2x, y + z) = (6x, 3y + 3z) 
(c) (2F - 5G)(x, y, z) = 2F(x, y, z) - 5G(x, y, z) = 2(2x, y + z) - 5(x - z, y) 

= (4x, 2y + 2z) + (-5x + 5z, -5y) = (-x + 5z, -3y + 2z) 

5.31 .  Let F :  R3 --+ R2 and G :  R2 --+ R2 be defined by F(x, y, z) = (2x, y + z) and G(x, y) = (y, x) .  
Derive formulas defining the mappings :  (a) G o F, (b) F o G. 

(a) (G oF)(x, y, z) = G(F(x, y, z)) = G(2x, y + z) = (y + z, 2x) 
(b) The mapping F o G  is not defined, since the image of G is not contained in the domain of F. 

5.32. Prove: (a) The zero mapping 0, defined by O(v) = 0 E U for every v E V, is the zero element of 
Hom( V, U) . (b) The negative of F E  Hom( V, U) is the mapping (- I )F, i .e . ,  -F = (- I )F. 

Let F E Hom(V, U) . Then, for every V E V: 

(a) (F + O)(v) = F(v) + O(V) = F(v) + 0 = F(v) 
Since (F + O)(v) = F(v) for every V E V, we have F + 0 = F. Similarly, 0 + F = F. 
(b) (F + (- l )F)(v) = F(v) + (- I )F(v) = F(v) - F(v) = 0 = O(v) 
Thus F + (- l )F = O. Similarly (- l )F + F = O. Hence, -F = (- I )F. 
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5.33 . Suppose Fl , F2 , , . .  , Fn are linear maps from V into U. Show that, for any scalars a I , a2 , . . .  , an ' 
and for any v E V, 

(a lFl + a2F2 + . . .  + anFn)(v) = a IFl (v) + a2Fz (v) + . . .  + anFn(v) 

The mapping alFl is defined by (aIFl )(v) = aIF(v). Hence the theorem holds for n = 1 . Accordingly, by 
induction, 

(alFl + a2F2 + . . .  + anFn)(v) = (aIFl )(v) + (a2F2 + . . .  + anFn)(v) 
= alFl (v) + a2F2(v) + . . .  + anFn(v) 

5.34. Consider linear mappings F :  R3 � R2 , G :  R3 � R2 , H :  R3 � R2 defined by 

F(x, y, z) = (x + y + z, x + y) , G(x, y, z) = (2.x + z, x + t) , H(x, y, z) = (2y, x) 

Show that F, G, H are linearly independent [as elements of Hom(R3 , R2)] .  

Suppose, for scalars a , b, c E K, 
aF + bG + cH = 0 

(Here 0 is the zero mapping.) For el = ( 1 ,  0, 0) E R3
, we have O(el ) = (0, 0) and 

(aF + bG + cH)(e2) = aF( I ,  0, 0) + bG(O, 1 , 0) + cH(O, 0, I )  
= a( l ,  I ) + b(2 , I )  + c(O, 1 )  = (a + 2b ,  a + b + c) 

Thus by ( 1 ), (a + 2b, a + b + c) = (0, 0) and so 

a + 2b = 0 and a + b + c = 0 
Similarly for e2 = (0 , 1 , 0) E R3

, we have O(e2) = (0, 0) and 

(aF + bG + cH)(e2) = aF(O, 1 , 0) + bG(O, 1 , 0) + cH(O, 1 , 0) 
= a( l ,  I) + b(O, 1) + c(2 , 0) = (a + 2c, a + b) 

Thus a + 2c = 0  and 

Using (2) and (3), we obtain 

a = 0, b = 0, c = O  
Since ( 1 )  implies (4), the mappings F, G, H are linearly independent. 

( I )  

(2) 

(3) 

(4) 

5.35. Let k be a nonzero scalar. Show that a linear map T is singular if and only if kT is singular. Hence T 
is singular if and only if -T is singular. 

Suppose T is singular. Then T(v) = 0 for some vector v oF O. Hence 

(kT)(v) = kT(v) = kO = 0 
and so kT is singular. 

Now suppose kT is singular. Then (kT)(w) = 0 for some vector w oF O. Hence 

T(kw) = kT(w) = (kT)(w) = 0 
But k oF 0 and w oF 0 implies kw oF O. Thus T is also singular. 

5.36. Find the dimension d of: 
(a) Hom(R

3
, R4), (b) Hom(R

s
, R

3
), (c) Hom(Pit) , R2), (d) Hom(M2. 3 , R4) .  

Use dim[Hom(V, U)] = mn, where dim V = m and dim U = n .  
(a) d = 3(4) = 1 2 . 
(b) d = 5(3) = 1 5 . 

(c) Since dim P3 (t) = 4, d = 4(2) = 8 . 
(d) Since dim M2, 3 = 6, d = 6(4) = 24. 
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5.37. Prove Theorem 5 , 1 1 .  Suppose dim V = rn and dim U = n. Then dim[Hom( V, U)] = rn n .  

Suppose {VI ' . . .  , vm } is a basis of V and {u I , . . .  , un } is a basis of U By Theorem 5.2 ,  a linear mapping 
in Hom(V, U) is uniquely determined by arbitrarily assigning elements of U to the basis elements Vi of V. We 
define 

Fij E Hom(V, U) , i = l , . . .  , m , } = l , . . .  , n 

to be the linear mapping for which Fij(vJ = Uj , and Fij(Vk) = 0 for k i= i. That is, Fij maps Vi into Uj and the 
other v 's into O. Observe that {Fij} contains exactly mn elements; hence the theorem is proved if we show that 
it is a basis of Hom(V, U). 

Proof that {Fij} generates Hom(V, U). Consider an arbitrary function F E  Hom(V, U). Suppose 
F(vI ) = wI , F(V2) = W2 , ' "  , F(vm) = wm • Since wk E U, it is a linear combination of the u 's; say, 

k = 1 ,  . . .  , m ,  aij E K ( 1 )  

Consider the linear mapping G = L::I L;=I aijFij ' Since G i s  a linear combination of  the Fij' the proof that 
{Fij} generates Hom(V, U) is complete if we show that F = G. 

We now compute G(Vk) ' k = 1 ,  . . .  , m. Since Fij(Vk) = 0 for k i= i and F/d(Vk) = Ui '  
m n n n 

G( Vk) = L L aijF ij( Vk) = L akjFki Vk) = L akjUj 
i= l j= 1 j=1 j= 1 

= akl UI + ak2u2 + . . .  + aknUn 

Thus, by ( 1 ), G(Vk) = wk for each k. But F(vk) = wk for each k. Accordingly, by Theorem 5 .2 ,  F = G; hence 
{Fij} generates Hom(V, U). 

Proof that {Fij} is linearly independent. Suppose, for scalars cij E K, 

For vk ' k = 1 ,  . . .  , m, 
m n n n 

o = O( Vk) = L L cijF ij( Vk) = L ckjF kj( Vk) = L CkjUj 
i= l j=1 j=1 j=1 

= Ckl UI + Ck2U2 + . . .  + CknUn 

But the Ui are linearly independent; hence, for k = 1 ,  . . .  , m, we have ckl = 0, ck2 = 0, . . .  , ckn = O. In other 
words, all the cij = 0, and so {Fij} is linearly independent. 

5.38. Prove Theorem 5 . 1 2 :  (i) G o (F + F') = G o F + G o F' .  (ii) (G + G') o F = G o F + G' o F. 
(iii) k(G o F) = (kG) o f  = G o  (kF) . 

(i) For every V E V, 

(G o  (F + F'))(v) = G((F + F')(v)) = G(F(v) + F'(v)) 
= G(F(v)) + G(F'(v)) = (G oF)(v) + (G oF')(v) = (G oF + G oF')(v) 

Thus G o (F + F') = G oF + G oF' .  
(ii) For every V E V, 

((G +  G') oF(v) = (G +  G')(F(v)) = G(F(v)) + G'(F(v)) 
= (G oF)(v) + (G' of)(v) = (G oF + G' of)(v) 

Thus (G +  G') oF = G oF + G' of. 
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(iii) For every v E V, 

LINEAR MAPPINGS 

(k(G oF))(v) = k(G oF)(v) = k(G(F(v))) = (kG)(F(v)) = (kG oF)(v) 

[CHAP. 5 

and (k(G oF))(v) = k(G oF)(v) = k(G(F(v))) = G(kF(v)) = G((kF)(v)) = (G o kF)(v) 

Accordingly, k( G a F) = (kG) o f  = G o  (kF). fYVe emphasize that two mappings are shown to be equal 
by showing that each of them assigns the same image to each point in the domain.) 

ALGEBRA OF LINEAR MAPS 

5.39. Let F and G be the linear operators on R2 defined by F(x, y) = (y, x) and G(x, y) = (0 , x) .  Find 
formulas defining the following operators: (a) F + G, (b) 2F - 3 G, (c) FG, (d) GF, (e) F2 , (f) G2 . 
(a) (F + G)(x, y) = F(x, y) + G(x, y) = (y, x) + (0, x) = (y, 2x). 
(b) (2F - 3G)(x, y) = 2F(x, y) - 3G(x, y) = 2(y, x) - 3(0, x) = (2y, -x) . 
(c) (FG)(x, y) = F(G(x, y)) = F(O , x) = (x, 0). 
(d) (GF)(x, y) = G(F(x, y)) = G(y, x) = (O, y) . 
(e) F2(x, y) = F(F(x, y)) = F(y, x) = (x, y) . (Note that F2 = I, the identity mapping.) 

(f) G2(x, y) = G(G(x, y)) = G(O, x) = (0, 0). (Note that G2 = 0, the zero mapping.) 

5.40. Consider the linear operator T on R3 defined by T(x, y, z) = (2x, 4x - y, 2x + 3y - z). 
(a) Show that T is invertible. Find formulas for: (b) T- 1 , (b) T2 , (c) T-2 . 
(a) Let W = Ker T. We need only show that T is nonsingular, i .e . ,  that W = {OJ .  Set T(x, y, z) = (0, 0 , 0), 

which yields 

T(x, y, z) = (2x, 4x - y, 2x + 3y - z) = (0, 0 , 0) 

Thus W is the solution space of the homogeneous system 

2x = 0, 4x - y = 0 , 2x + 3y - z =  0 

which has only the trivial solution (0, 0, 0) . Thus W = {OJ .  Hence T is nonsingular, and so T is 
invertible. 

(b) Set T(x, y, z) = (r, s, t) [and so T- 1 (r, s, t) = (x, y, z)] .  We have 

(2x, 4x - y, 2x + 3y - z) = (r, s, t) or 2x = r, 4x - y = s, 2x + 3y - z = t  

Solve for x, y, z in terms of r, s, t to get x = � r, y = 2r - s, z = 7r - 3s - t. Thus 

r- l (r, s, t) = (� r, 2r - s, 7r - 3s - t) or r- l (X, y, Z) = (�X, 2x - y, 7x - 3y - z) 

(c) Apply T twice to get 

T2(x, y, z) = T(2x, 4x - y, 2x + 3y - z) 

(d) Apply T twice to get 

= [4x, 4(2x) - (4x - y) , 2(2x) + 3 (4x - y) - (2x + 3y - z)] 
= (4x, 4x +y, 14x - 6y + z) 

r-2 (x, y, z) = r-2(�x, 2x - y, 7x - 3y - z) 
= [�x, 2(�x) - (2x - y) , 7(�x) - 3(2x - y) - (7x - 3y - z)] 
= Gx, -x +y, - ¥x + 6y + z) 
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5.41 .  Let V be of finite dimension and let T be a linear operator on V for which TR = I, for some 
operator R on V. (yVe call R a right inverse of T,) 
(a) Show that T is invertible. (b) Show that R = T- I . 

(c) Give an example showing that the above need not hold if V is of infinite dimension. 

(a) Let dim V = n. By Theorem 5 . 14 , T is invertible if and only if T is onto; hence T is invertible if and only 
if rank(T) = n. We have n = rank(I) = rank(TR) :::: rank(T) :::: n. Hence rank(T) = n and T is invertible. 

(b) IT-I = T- I T = I. Then R = IR = (T- I T)R = T- I (TR) = T- II = T- I . 

(c) Let V be the space of polynomials in t over K; say, pet) = aD + al t + a2P + . . .  + ast' . Let T and R be 
the operators on V defined by 

T(p(t)) = ° + al + a2 t + . . .  + asf- I 

We have 

and R(p(t)) = aot + al t2 + . . .  + asf+1 

(TR)(p(t)) = T(R(p(t))) = T(aot + al P + . . .  + asf+l ) = aD + al t + . . .  + asf = pet) 

and so TR = I, the identity mapping. On the other hand, if k E K and k i- 0, then 

(RT)(k) = R(T(k)) = R(O) = ° i- k 

Accordingly, RT i- I. 

5.42. Let F and G be linear operators on R2 defined by F(x, y) = (0, x) and G(x, y) = (x, 0) . Show that: 
(a) GF = 0, the zero mapping, but FG -I- O. (b) G2 = G. 
(a) (GF)(x, y) = G(F(x, y)) = G(O, x) = (0, 0) . Since GF assigns 0 =  (0, 0) to every vector (x, y) in R2 , it is 

the zero mapping, that is, GF = O. 
On the other hand, (FG)(x, y) = F(G(x, y) = F(x, 0) = (0, x) . For example, (FG)(2, 3) = (0, 2). 

Thus FG i- 0, since it does not assign ° = (0, 0) to every vector in R2 . 

(b) For any vector (x, y) in R2 , we have a
z
(x, y) = G(G(x, y)) = G(x, 0) = (x, 0) = G(x, y) .  Hence a

z = G. 

5.43 . Find the dimension of: (a) A(R4), (b) A(P2 (t)), (c) A(M2,3 ) '  
Use dim[A(V)] = n2 where dim V = n .  Hence: (a) dim[A(R

4)] = 42 = 1 6, (b) dim[A(P)2(t)] = 32 = 9, 
(c) dim[A(M2,3 )] = 62 = 36. 

5.44. Let E be a linear operator on V for which E2 = E. (Such an operator is called a projection . )  Let U 
be the image of E, and let W be the kernel. Prove: 

(a) If U E U, then E(u) = u, i .e . ,  E is the identity mapping on U. 

(b) If E -I- I, then E is singular, i .e . ,  E(v) = 0 for some v -I- O. 
(c) V = U EB W. 

(a) If U E U, the image of E, then E(v) = u for some v E V. Hence, using E2 = E, we have 

u = E(v) = E2(v) = E(E(v)) = E(u) 

(b) If E i- I, then for some v E V, E(v) = u, where v i- u. By (i), E(u) = u. Thus 

E(v - u) = E(v) - E(u) = u - u = 0, where v - u i- ° 

(c) We first show that V = U + W Let v E V. Set u = E(v) and w = v - E(v) .  Then 

v = E(v) + v - E(v) = u + w  
By definition, u = E(v) E U, the image of E. We now show that w E W, the kernel of E, 

E(w) = E(v - E(v)) = E(v) - E2 (V) = E(v) - E(v) = ° 
and thus w E W Hence V = U + W 

We next show that u n  W = {O} .  Let v E u n  W Since v E U, E(v) = v by part (a). Since v E W, 
E(v) = 0. Thus v = E(v) = ° and so u n  W = {O} .  

The above two properties imply that V = U EEl W 
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Supplementary Problems 
MAPPINGS 

5.45. Determine the number of different mappings from {a ,  b} into { I ,  2 , 3 } . 

[CHAP. 5 

5.46. Letf : R ---* R and g : R ---* R be defined by f(x) = :? + 3x + I and g(x) = 2x - 3 . Find formulas defining 
the composition mappings : (a)f o g; (b) g of; (c) g o g; (d) f of 

5.47. For each mappingsf : R ---* R find a formula for its inverse: (a) f(x) = 3x - 7, (b) f(x) = x3 + 2. 

5.48. For any mappingf : A ---* B, show that IE of = f = f 0 IA -

LINEAR MAPPINGS 

5.49. Show that the following mappings are linear: 
(a) F :  R3 

---* R2 defined by F(x, y, z) = (x + 2y - 3z, 4x - 5y + 6z). 
(b) F :  R2 ---* R2 defined by F(x, y) = (ax + by, ex + dy), where a, b, c, d belong to R. 

5.50. Show that the following mappings are not linear: 

(a) F :  R2 ---* R2 defined by F(x, y) = (x2 ,y). 
(b) F :  R3 

---* R2 defined by F(x, y, z) = (x + I ,  Y + z). 
(c) F :  R2 ---* R2 defined by F(x, y) = (xy, y). 
(d) F :  R3 

---* R2 defined by F(x, y, z) = ( lx i , y + z). 

5.51. Find F(a, b), where the linear map F :  R2 ---* R2 is defined by F( 1 ,  2) = (3 , - I )  and F(O , 1 )  = (2 , 1 ) .  

5.52. Find a 2 x 2 matrix A that maps: 
(a) ( I , 3)T and ( I ,  4)T into (-2, 5)T and (3 , _ I )T, respectively. 
(b) (2 , _4)T and (- I ,  2)T into ( 1 ,  I )T and ( 1 ,  3)T, respectively. 

5.53. Find a 2 x 2 singular matrix B that maps ( 1 ,  l )T into ( 1 ,  3)T . 

5.54. Let V be the vector space of real n-square matrices, and let M be a fixed nonzero matrix in V. Show that the 
first two of the following mappings T :  V ---* V are linear, but the third is not: 
(a) T(A) = MA , (b) T(A) = AM + MA , (c) T(A) = M + A . 

5.55. Give an example of a nonlinear map F :  R2 ---* R2 such that F- 1 (O) = {O} but F is not one-to-one. 

5.56. Let F :  R2 ---* R2 be defined by F(x, y) = (3x + 5y, 2x + 3y), and let S be the unit circle in R2 . (S consists of 
all points satisfying :? + I = 1 . ) Find: (a) the image F(S), (b) the preimage F- 1 (S) .  

5.57. Consider the linear map G : R3 ---* R3 defined by G(x, y, z) = (x + y + z, Y - 2z, Y - 3z) and the unit 
sphere S2 in R3 , which consists of the points satisfying :? + 1 + z2 = 1 . Find: (a) G(Ss), (b) G- 1 (S2) ' 

5.58. Let H be the plane x + 2y - 3z = 4 in R3 and let G be the linear map in Problem 5 .57 . Find: 
(a) G(H) , (b) G- 1 (H). 

5.59. Let W be a subspace of V. The inclusion map, denoted by i :  W "-+ V, is defined by i(w) = w for every w E W. 
Show that the inclusion map is linear. 

5.60. Suppose F :  V ---* U is linear. Show that F( -v) = -F(v) . 
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KERNEL AND IMAGE OF LINEAR MAPPINGS 

5.61. For each linear map F find a basis and the dimension of the kernel and the image of F: 
(a) F :  R3 -+ R3 defined by F(x, y, z) = (x + 2y - 3z, 2x + 5y - 4z, x + 4y + z), 

© The McGraw-Hili 
Companies, 2004 

(b) F :  R4 -+ R3 defined by F(x, y, z, t) = (x + 2y + 3z + 2t, 2x + 4y + 7z + 5t, x + 2y + 6z + 5t). 

5.62. For each linear map G, find a basis and the dimension of the kernel and the image of G: 

(a) G : R3 -+ R2 defined by G(x, y, z) = (x + y + z, 2x + 2y + 2z), 
(b) G : R3 -+ R2 defined by G(x, y, z) = (x +  y, y + z), 
(c) G : R5 -+ R3 defined by 

G(x, y, z, s , t) = (x + 2y + 2z + s + t, x + 2y + 3z + 2s - t, 3x + 6y + 8z + 5s - t) . 

5.63. Each of the following matrices determines a linear map from R4 into R3 : [ I 2 ° I ] [ I ° 2 - I ] 
(a) A = 2 - I  2 - I  , (b) B = 2 3 - I  1 .  

I -3 2 -2 -2 ° -5 3 
Find a basis as well as the dimension of the kernel and the image of each linear map. 

5.64. Find a linear mapping F :  R3 -+ R3 whose image is spanned by ( 1 , 2, 3 )  and (4, 5 , 6). 

5.65. Find a linear mapping G : R4 -+ R3 whose kernel is spanned by ( 1 , 2, 3 , 4) and (0, 1 , 1 , 1 ) .  

1 99 

5.66. Let V = PlO(t), the vector space of polynomials of degree ::0 1 0. Consider the linear map D4 : V -+ V, where 
D4 denotes the fourth derivative of d4 / dt4 . Find a basis and the dimension of: (a) the image of D4 ; (b) the kernel of D4 . 

5.67. Suppose F :  V -+ U is linear. Show that: (a) the image of any subspace of V is a subspace of U; 
(b) the preimage of any subspace of U is a subspace of V. 

5.68. Show that if F :  V -+ U is onto, then dim U ::0 dim V. Determine all linear maps F : R3 -+ R4 that are onto. 

5.69. Consider the zero mapping 0 :  V -+ U defined by O(v) = 0, Y V E V. Find the kernel and the image of O. 

OPERATIONS WITH LINEAR MAPPINGS 

5.70. Let F :  R3 -+ R2 and G : R3 -+ R2 be defined by F(x, y, z) = (y, x + z) and G(x, y, z) = (2z, x + y) . Find 
formulas defining the mappings F + G and 3F - 2G. 

5.71. Let H : R2 -+ R2 be defined by H(x, y) = (y, 2x). Using the maps F and G in Problem 5 .70, find formulas 
defining the mappings: (a) H o F  and H o  G, (b) F o H  and G o H, (c) H o (F + G) and H o F  + H o G. 

5.72. Show that the following mappings F, G, H are linearly independent: 

(a) F, G, H E Hom(R2 , R2) defined by F(x, y) = (x, 2y), G(x, y) = (y, x + y), H(x, y) = (0, x) ,  
(b) F, G, H E Hom(R3 , R) defined by F(x, y, z) = x + y + z, G(x, y, z) = y + z, H(x, y, z) = x - z. 

5.73. For F, G E Hom(V, U), show that rank(F + G) ::0 rank(F) + rank(G) . (Here V has finite dimension.) 

5.74. Let F :  V -+ U and G : U -+ V be linear. Show that if F and G are nonsingular, then G o  F is nonsingular. 
Give an example where G o  F is nonsingular but G is not. 
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5.75. Find the dimension d of: (a) Hom(Rz , R8), (b) Hom(P4(t) , R3), (c) Hom(MZ,4 '  Pz(t» . 

[CHAP. 5 

5.76. Determine whether or not each of the following linear maps is nonsingular. If not, find a nonzero vector v 
whose image is 0; otherwise find a formula for the inverse map: 

(a) F :  R3 -+ R3 defined by F(x, y, z) = (x + y + z, 2x + 3y + 5z, x + 3y + 7z), 
(b) G : R3 -+ Pz(t) defined by G(x, y, z) = (x + y)P + (x + 2y + 2z)t + Y + z, 
(c) H : RZ -+ Pz(t) defined by H(x, y) = (x + 2y)tZ + (x - y)t + x + y. 

5.77. When can dim [Hom(V, U)] = dim V? 

ALGEBRA OF LINEAR OPERATORS 

5.78. Let F and G be the linear operators on RZ defined by F(x, y) = (x + y, 0) and G(x, y) = (-y, x) . Find 
formulas defining the linear operators: (a) F + G, (b) 5F - 3G, (c) FG, (d) GF, (e) FZ , (f) OZ . 

5.79. Show that each linear operator T on RZ is nonsingular and find a formula for T- ] , where: (a) T(x, y) = (x + 2y, 2x + 3y), (b) T(x, y) = (2x - 3y, 3x - 4y) . 

5.80. Show that each of the following linear operators T on R3 is nonsingular and find a formula for T- ] , where: (a) T(x, y, z) = (x - 3y - 2z, y - 4z, z) ; (b) T(x, y, z) = (x + z, x - y, y) .  

5.81. Find the dimension of A(V), where: (a) V = R7 , (b) V = P5 (t), (c) V = M3,4 ' 

5.82. Which of the following integers can be the dimension of an algebra A(V) of linear maps: 
5 ,  9, 1 2, 25, 28, 36 ,  45, 64, 88 , 1 00? 

5.83. Let T be the linear operator on RZ defined by T(x, y) = (x + 2y, 3x + 4y). Find a formula forf(T), where: (a) 
f(t) = tZ + 2t - 3, (b) f(t) = tZ - 5t - 2. 

MISCELLANEOUS PROBLEMS 

5.84. Suppose F :  V -+ U is linear and k is a nonzero scalar. Prove that the maps F and kF have the same kernel 
and the same image. 

5.85. Suppose F and G are linear operators on V and that F is nonsingular. Assume that V has finite dimension. 
Show that rank(FG) = rank(GF) = rank(G). 

5.86. Let F :  V -+ U be linear and let W be a subspace of V. The restriction of F to W is the map FI W :  W -+ U 
defined by FI W(v) = F(v) for every v in W. Prove the following: (a) FI W is linear; (b) Ker(F I  W) = (Ker F) n W; (c) Im(F I  W) = F(W). 

5.87. Suppose V has finite dimension. Suppose T is a linear operator on V such that rank(TZ) = rank(T) . Show that 
Ker T n  1m T = {OJ .  

5.88. Suppose V = U EEl W. Let E] and Ez be the linear operators on V defined by E] (v) = U, Ez(v) = W, where 
v = u + W, U E U, W E W. Show that: (a) Ei = E] and Ei = Ez, i .e . , that E] and Ez are projections; 
(b) E] + Ez = I, the identity mapping; (c) E]EZ = 0 and EZE] = O. 

5.89. Let E] and Ez be linear operators on V satisfying parts (a) , (b), (c) of Problem 5 .88 .  Prove: 
V = lm E] EEl lm Ez .  
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5.90. Let v and w be elements of a real vector space V. The line segment L from v to v + w is defined to be the set of 
vectors v + tw for 0 :::: t :::: l. (See Fig. 5 .6 .) 

I 
I 

I 
I 

I _ -I _ - -
0 · - - - -

v +  w 

Fig. 5-6 

(a) Show that the line segment L between vectors v and u consists of the points: 
(i) (1 - t)v + tu for 0 :::: t :::: 1, (ii) tl v + t2u for tl + t2 = 1, tl :::: 0, t2 :::: O. 

(b) Let F : V -+ U be linear. Show that the image F(L) of a line segment L in V is a line segment in U. 

5.91. A subset X of a vector space V is said to be convex if the line segment L between any two points (vectors) 
P, Q E X is contained in X. (a) Show that the intersection of convex sets is convex; (b) suppose F : V -+ U is 
linear and X is convex. Show that F(X) is convex. 

Answers to Supplementary Problems 
5.45. Nine 

5.46. (a) (f o g)(x) = 4x2 - 6x + 1, (b) (g of)(x) = 2x2 + 6x - 1 , (c) (g o g)(x) = 4x - 9, 
(d) (f a f) (x) = X4 + 6il + 14x2 + 1 5x + 5 

5.47. (a) f- I (X) = t (x + 7), (b) f- I (x) = ';;x - 2 

5.49. F(X' Y' Z) = A(X, y, z)T ' Where: (a) A = [ � _; -�l (b) A = [ : � ] 

5.50. (a) u = (2 , 2), k = 3; then F(ku) = (36 , 36) but kF(u) = ( 12 ,  1 2) .  (b) F(O) i- o. 
(c) u = ( 1 , 2), v = (3 , 4) ; then F(u + v) = (24, 6) but F(u) + F(v) = ( 14 , 6). 
(d) u = ( 1 , 2 , 3) , k = -2; then F(ku) = (2 , - l O) but kF(u) = (-2 , - l O). 

5.51. F(a, b) = (-a + 2b, -3a + b) 

5.52. (a) A = [ -;�7 -� l (b) None. (2 , -4) and (- 1 , 2) are linearly dependent but not ( 1 ,  1 )  and ( 1 , 3) . 

5.53. B = [ ;  � ] [Hint: Send (0, l )T into (0, O)T . ] 

5.55. F(x, y) = (x2 , y) 

5.56. (a) 1 3x2 - 42xy + 34y = 1, (b) 1 3x2 + 42xy + 24y = 1 

5.57. (a) x2 - 8xy + 26y + 6xz - 38yz + 14z2 = 1, (b) x2 + 2xy + 3y + 2xz - 8yz + 14z2 = 1 
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5.58. (a) x - y + 2z = 4, (b) x - 1 2z = 4 

LINEAR MAPPINGS 

5.61. (a) dim(Ker F) = I , {(7, -2, I ) } ;  dim(Im F) = 2, { ( 1 , 2, I ) ,  (0, I ,  2)} 
(b) 

5.62. (a) 
(b) 
(e) 

5.63. (a) 
(b) 

dim(Ker F) = 2, {( -2, 1 , 0 , 0) , ( 1 , 0 ,  - I ,  I ) } ;  dim(Im F) = 2, { ( 1 , 2, I ) , (0, I ,  3)} 

dim(Ker G) = 2, { ( I , 0 ,  - I ) , ( 1 , - I ,  O)} ;  dim(Im G) = I , { ( I , 2)} 
dim(Ker G) = I , { ( 1 , - I ,  I )} ;  1m G = R2 , { ( I , 0) , (0, I)} 
dim(Ker G) = 3 ,  {( -2, 1 , 0 , 0 , 0) , ( 1 , 0 ,  - I ,  1 , 0) , (-5 , 0 , 2 , 0 ,  I ) } ;  dim(Im G) = 2, 
{ ( 1 , 1 , 3) , (0, I , 2)} 

dim(Ker A) = 2, {(4, -2, -5, 0) , ( 1 , -3 , 0 , 5)} ; dim(Im A) = 2, { ( I , 2 ,  I ) , (0, I ,  I )} 
dim(Ker B) = I , {(- q , I , I ) } ;  1m B = R3 

5.64. F(x, y, z) = (x + 4y, 2x + 5y, 3x + 6y) 

5.65. F(x, y, z, t) = (x + y - z, 2x + y - t, O) 

5.66. (a) { I ,  t , P, . . .  , t6 } ,  (b) { I ,  t , P, t3 } 

5.68. None, since dim R4 > dim R3 . 

5.69. Ker 0 = V, 1m 0 = {O} 

5.70. (F + G)(x, y, z) = (y + 2z, 2x - y + z), (3F - 2G)(x, y, z) = (3y - 4z, x + 2y + 3z) 

5.71. (a) (H o F)(x, y, z) = (x + y, 2y), (H 0 G)(x, y, z) = (x - y, 4z) ; (b) not defined; 
(e) (H o (F + G))(x, y, z) = (H o f + H  0 G)(x, y, z) = (2x - y + z, 2y + 4z) 

5.74. F(x, y) = (x, y, y) , G(x, y, z) = (x, y) 

5.75. (a) 1 6, (b) 1 5 ,  (e) 24 

5.76. (a) v = (2 , -3 , I); (b) G-\aP + bt + e) = (b - 2e, a - b + 2e, -a + b - e) ; 
(e) H is nonsingular, but not invertible, since dim P2(t) > dim R2 . 

5.77. dim U = 1; that is, U = K. 

[CHAP. 5 

5.78. (a) (F + G)(x, y) = (x, x) ; (b) (5F - 3G)(x, y) = (5x + 8y, -3x) ; (e) (FG)(x, y) = (x - y, 0); 
(d) (GF)(x, y) = (0, x + y); (e) F2(x, y) = (x + y, 0) (note that F2 = F); (I) G2(x, y) = (-x, -y) . 
[Note that az + 1 = 0; hence G is a zero off(t) = t2 + 1 ] 

5.79. (a) T- 1 (x, y) = (-3x + 2y, 2x - y), (b) T-\x, y) = (-4x + 3y, -3x + 2y) 

5.80. (a) T- 1 (x, y, z) = (x + 3y + 14t, y - 4t, t), (b) T-\x, y, z) = (y + z, y, x - y - z) 

5.81. (a) 49, (b) 36, (e) 1 44 

5.82. Squares : 9 , 25, 36, 64, 1 00 

5.83. (a) T(x, y) = (6x + 14y, 2 1x + 27y); (b) T(x, y) = (0 , 0), i .e .J(T) = 0 



Lipschulz-Lipson:Schaum's I 
Outline ofTheorv and 

P.oblems of Linea. 

Algebr •. 3/. 

6. Linn. Mappings and 

Mat.ices 

I Text ¢I The McGraw-H111 
Compames. 2004 

Linear Mappings 
and Matrices 

Co,n,;dJ" basis S = lUI' U2 ' . . . •  un} ofa vector space V over a field K. For any vector v E V, suppose 
v = alul + G2u2 + · · · + anu" 

�
t
�
�
:�:�

,
:
, 

<
,
�:

,
�n::�'

; 
vector of v relative to the basis S, which we assume to be a column vector (unless 

b or implied), is denoted and defined by 
[vls = (aJ. a2' . . . .  a,,( 

(S'''';�n 4.1 1 )  that the mapping L'--,l-[vls, detennined by the basis S, is an isomorphism between V �:��i:��;f.�:;th:�at there is also an isomorphism, detemtined by the basis S, between the algebra 
on V and the algebra At of n-square matrices over K. Thus every linear mapping 

to an II-square matrix [F]s detennined by the basis S. We will also show how 
changes when we choose another basis. 

MA,TH:"' REPRESENTATION OF A LINEAR OPERATOR 

be linear operator (transfonnation) from a vector space V into itself, and suppose 
un} is a basis of V. Now T(ul), T(U2) . . . . .  T(lIn) are vectors in V, and so each is a 

<omb,;m,,;\," of the vectors in the basis S; say, 

T(III ) = {l111I1 + {l12112 + . . . + (llnlln 
T(1I2) = {l21111 + (122//2 + . . . + (l2nlln 

following d'Jin;t;on applies. 

transpose of Ihe above matrix of coefficients, denoted by "'s(T) or [Tls, is called the 
. represent{ltioll of T relative to the basis S, or simply the matrix of T in the basis S. 

sUbscript S may be omitted if the basis S is understood.) 

203 
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Using the coordinate (column) vector notation, the matrix representation of T may be written in the 
form 

ms(T) = [1']s = [[T(U l )ls , [T(U2)ls , , . .  , [T(Ul )ls] 
That is, the columns of meT) are the coordinate vectors of T(Ul ), T(U2) ,  . . .  , T(un), respectively. 

Example 6.1. Let F: R2 ---+ R2 be the linear operator defined by F(x, y) = (2.x + 3y, 4x - 5y). 
(a) Find the matrix representation of F relative to the basis S = {Uj , U2 } = { ( 1 , 2) , (2 , 5)} .  

(1) First find F(u j ), and then write it as a linear combination of the basis vectors U j  and u2 ' (For notational 
convenience, we use column vectors.) We have 

and x + 2y = 8 
2x + 5y = -6 

Solve the system to obtain x = 52, Y = -22. Hence F(u j )  = 52uj - 22u2 ' 
(2) Next find F(u2), and then write it as a linear combination of Uj and U2 : 

and x + 2y = 1 9  
2x + 5y = - 1 7  

Solve the system to get x = 1 29, Y = -55 . Thus F(u2) = 1 29uj - 55u2 ' 
Now write the coordinates of F(u j )  and F(u2) as columns to obtain the matrix 

[F]s = [ 52 129 J -22 -55 

(b) Find the matrix representation of F relative to the (usual) basis E = {ej , e2 } = {( I , 0) , (0, I ) } .  
Find F(ej )  and write i t  as a linear combination of the usual basis vectors ej and e2, and then find F(e2) and 

write it as a linear combination of ej and e2 ' We have 

F(e j )  = F( 1 , 0) = (2 , 2) = 2ej + 4e2 
F(e2) = F(O, 1) = (3 , -5) = 3ej - 5e2 

and so 

Note that the coordinates of F(e j )  and F(e2) form the columns, not the rows, of [F]E ' Also, note that the 
arithmetic is much simpler using the usual basis of R2 . 

Example 6.2. Let V be the vector space of functions with basis S = {sin t, cos t, e3t } ,  and let D: V ---+ V be the differential 
operator defined by DU(t)) = dU, t))/dt. We compute the matrix representing D in the basis S: 

D(sin t) = cos t = O(sin t) + l (cos t) + 0(e3 t) 
D(cos t) = - sin t = - l (sin t) + O(cos t) + 0(e3t) 

D(e3t) =  3e3t = O(sin t) + O(cos t) + 3 (e3t) 

and so [D] = [ � -� � ] 
o 0 3 

[Note that the coordinates of D(sin t), D(cos t), D(e3t) form the columns, not the rows, of [D] . ] 

Matrix Mappings and Their Matrix Representation 

Consider the following matrix A, which may be viewed as a linear operator on R2 , and basis S of R2 : 

A _ [ 3 - 4 
-2 ] 
-5 and 
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rwe write vectors as columns, since our map is a matrix.) We find the matrix representation of A relative to 
the basis S. 
( 1 )  First we write A(U1 ) as a linear combination of U1 and U2 ' We have 

and so 

Solving the system yields x = 7, y = -4. Thus A(U1 ) = 7u1 - 4u2 ' 
(2) Next we write A(U2) as a linear combination of Uj and U2 ' We have 

and so 

x + 2y = - 1 
2x +  5y = -6 

x + 2y = -4 
2x +  5y = -7 

Solving the system yields x = -6, y = 1 . Thus A(U2) = -6u1 + U2 ' Writing the coordinates of A(U1 ) 
and A(U2) as columns gives us the following matrix representation of A :  

[ 7 -6 ] [Als = -4 I 

Remark: Suppose we want to find the matrix representation of A relative to the usual basis 
E = {ej ,  e2 } = H I ,  of , [0 , If} of R2 . We have 

A(e1 ) = [ ! =; ] [ � ] = [ ! ] = 3e1 + 4e2 

A(e2) = [ ! =; ] [n = [ =; ] = -2e1 - 5e2 
and so 

Note that [AlE is the original matrix A . This result is true in general: 

[ 3 -2 ] [AlE = 4 -5 

The matrix representation of any n x n square matrix A over a field K relative to  the 
usual basis E of Kn is the matrix A itself; that is , 

[AlE = A  

Algorithm for Finding Matrix Representations 

Next follows an algorithm for finding matrix representations. The first Step 0 is optional. It may be 
useful to use it in Step l (b) , which is repeated for each basis vector. 

Algorithm 6.1 :  The input i s  a linear operator T on a vector space V and a basis S = {U1 ' U2 ' . . .  , un } of 
V. The output is the matrix representation [T]s . 

Step O. Find a formula for the coordinates of an arbitrary vector v relative to the basis S. 
Step 1 .  Repeat for each basis vector Uk in  S:  

(a) Find T(Uk) '  
(b) Write T(Uk) as a linear combination of the basis vectors U 1 ' U2 " ' "  Un ' 

Step 2. Form the matrix [T]s whose columns are the coordinate vectors in Step l (b). 
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Example 6,3, Let F: R2 -+ R2 be defined by F(x, y) = (2x + 3y , 4x - 5y). Find the matrix representation [F]s of F 
relative to the basis S = {u" U2 } = {(I , -2), (2 , -5)} . 
(Step 0) First find the coordinates of (a, b) E R

2 relative to the basis S. We have 

or x + 2y = a  
-2x - 5y = b or x + 2y = a  

-y = 2a + b  

Solving for x and y in terms of a and b yields x = 5a + 2b, y = -2a - b. Thus 
(a, b) = (5a + 2b)uj + (-2a - b)U2 

(Step 1 )  Now we find F(uj )  and write it as a linear combination of Uj and U2 using the above formula for (a, b), and 
then we repeat the process for F(U2)' We have 

F(u j )  = F( 1 , -2) = (-4, 14) = 8uj - 6U2 
F(U2) = F(2 , -5) = (- 1 1 , 33) = l l uj - I l u2 

(Step 2) Finally, we write the coordinates of F(u, )  and F(U2) as columns to obtain the required matrix 

[ 8 1 1  ] [F]s = -6 - 1 1  

Properties of Matrix Representations 

This subsection gives the main properties of the matrix representations of linear operators T on a 
vector space V. We emphasize that we are always given a particular basis S of V. 

Our first theorem, proved in Problem 6.9,  tells us that the "action" of a linear operator T on a vector v 
is preserved by its matrix representation. 

Theorem 6.1 :  Let T :  V � V b e  a linear operator, and let S b e  a (finite) basis o f  V .  Then, for any vector v 
in V, [Tls [v]s = [T(v)Js . 

Example 6.4. Consider the linear operator F on R2 and the basis S of Example 6 .3 ,  that is, 

F(x, y) = (2x + 3y, 4x - 5y) and S = {Uj , U2 } = {( I ,  -2) , (2 , -5)} 
Let 

v = (5 , -7) , and so F(v) = (- 1 1 , 55) 

Using the formula from Example 6.3, we get 

[v] = [ 1 1 , -3f and [F(v)] = [55 ,  -33f 

We verify Theorem 6.1 for this vector v (where [F] is obtained from Example 6 .3) :  

[ 8 1 1  ] [ 1 1  ] [ 55 ] [F][v] = -6 - 1 1  -3 = -33 = [F(v)] 

Given a basis S of a vector space V, we have associated a matrix [T] to each linear operator T in the 
algebra A(V) of linear operators on V. Theorem 6 . 1 tells us that the "action" of an individual linear 
operator T is preserved by this representation. The next two theorems (proved in Problems 6 . 1 0  and 6 . 1 1 ) 
tell us that the three basic operations in A(V) with these operators, namely (i) addition, (ii) scalar 
multiplication, and (iii) composition, are also preserved. 

Theorem 6.2 : Let V be an n-dimensional vector space over K, let S be a basis of V, and let M be the 
algebra of n x n matrices over K. Then the mapping: 

m : A(V) � M defined by m(T) = [T]s 

is a vector space isomorphism. That is, for any F, G E A (V) and any k E K, 

(i) m(F + G) = m(F) + meG) or [F + G] = [F] + [G] 
(ii) m(kF) = km(F) or [kF] = k[F] 
(iii) m is bijective (one-to-one and onto) .  
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Let V be an n-dimensional vector space over a field K. We have shown that, once we have selected a 
basis S of V, every vector v E V can be represented by means of an n-tuple [vls in Kn , and every linear 
operator T in A(V) can be represented by an n x n matrix over K. We ask the following natural question: 

How do our representations change if we select another basis? 

In order to answer this question, we first need a definition, 

Definition:  Let S = {u I , U2 , " " un } be a basis of a vector space V, and let S' = {V I ' V2 " ' "  vn } be 
another basis. (For reference, we will call S the "old" basis and S' the "new" basis.) Since S 
is a basis, each vector in the "new" basis S' can be written uniquely as a linear combination 
of the vectors in S; say, 

VI = a l l  U I + a 12u2 + . . .  + a lnun 
V2 = a2 1 U I + a22u2 + . . .  + a2nun 

Let P be the transpose of the above matrix of coefficients; that is, let P = [Pijl , where 
Pij = aji '  Then P is called the change-of-basis matrix (or transition matrix) from the "old" 
basis S to the "new" basis S' . 

The following remarks are in order. 

Remark 1 :  The above change-of-basis matrix P may also be viewed as the matrix whose columns 
are, respectively, the coordinate column vectors of the "new" basis vectors Vi relative to the "old" basis S; 
namely, 

Remark 2 :  Analogously, there is a change-of-basis matrix Q from the "new" basis S' to the "old" 
basis S. Similarly, Q may be viewed as the matrix whose columns are, respectively, the coordinate column 
vectors of the "old" basis vectors ui relative to the "new" basis S' ; namely, 

Q = [[uds' , [u2ls' , · · · , [unls, ]  

Remark 3 :  Since the vectors vI ' v2 , . . .  , Vn in the new basis S' are linearly independent, the matrix P 
is invertible (Problem 6 . 1 8) .  Similarly, Q is invertible. In fact, we have the following proposition (proved in 
Problem 6 . 1 8) .  

Proposition 6.4 : Let P and Q be the above change-of-basis matrices. Then Q = p-I . 
Now suppose S = {u I , U2 , " " un } is a basis of a vector space V, and suppose P = [Pijl is any 

nonsingular matrix. Then the n vectors 

i = 1 , 2 , . . .  , n 
corresponding to the columns of P, are linearly independent [Problem 6 .2 1 (a)] . Thus they form another 
basis S' of V. Moreover, P will be the change-of-basis matrix from S to the new basis S' . 
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Example 6,5, Consider the following two bases of R2 : 

and S' = {v I , v2 } = { ( 1 , - 1 ) , ( 1 , -2)} 

(a) Find the change-of-basis matrix P from S to the "new" basis S' , 

[CHAP. 6 

Write each of the new basis vectors of S' as a linear combination of the original basis vectors UI and U2 of S, 
We have 

[ - � ] = x[ ; ] +y[n  or x + 3y = 1 yielding x =  -8 ,  y = 3  2x + 5y = - 1 

[ - � ] = x[ ; ] +y[n  or x + 3y = 1 yielding x = - l l , y = 4  2x + 5y = - 1 

Thus 

VI = -8uI + 3U2 [ 
-8 - 1

! ] . and hence P =  
V2 = - l l uI + 4U2 3 

Note that the coordinates of VI and V2 are the colunms, not rows, of the change-of-basis matrix p, 
(b) Find the change-of-basis matrix Q from the "new" basis S' back to the "old" basis S. 

Here we write each of the "old" basis vectors U I and u2 of S' as a linear combination of the "new" basis 
vectors VI and V2 of S' .  This yields 

U I = 4vI - 3V2 
U2 = l I vl - 8V2 

and hence Q = [ 4 1 1 ] -3 -8 

As expected from Proposition 6 .4, Q = p- I . (In fact, we could have obtained Q by simply finding p-I .) 

Example 6.6. Consider the following two bases of R3 : 

and 

E = {el , e2 , e3 } = { ( 1 , 0, 0) , (0, 1 , 0) , (0, 0 ,  I ) }  

S = {U I , U2 , U3 } = { ( 1 , 0 , 1 ) , (2 , 1 , 2), ( 1 , 2 , 2)} 

(a) Find the change-of-basis matrix P from the basis E to the basis S. 
Since E is the usual basis, we can immediately write each basis element of S as a linear combination of the 

basis elements of E. Specifically, 

uI = ( l , O , l ) = el + e3 
U2 = (2 , 1 , 2) = 2el + e2 + 2e3 
u3 = ( 1 , 2 , 2) = el + 2e2 + 2e3 

and hence 

Again, the coordinates of uI , u2 , u3 appear as the colunms in P. Observe that P is simply the matrix whose 
colunms are the basis vectors of S. This is true only because the original basis was the usual basis E. 

(b) Find the change-of-basis matrix Q from the basis S to the basis E. 
The definition of the change-of-basis matrix Q tells us to write each of the (usual) basis vectors in E as a 

linear combination of the basis elements of S. This yields 

el = ( 1 , 0 , 0) = -2uI + 2U2 - u3 
e2 = (0, 1 , 0) = -2uI + U2 
e3 = (0, 0 , 1 )  = 3uI - 2U2 + U3 

and hence Q = [ -� -� -� l - 1  0 1 

We emphasize that to find Q, we need to solve three 3 x 3 systems of linear equations - one 3 x 3 system for 
each of el , e2 , e3 ' 
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Alternatively, we can find Q = p- I by forming the matrix M = [P, 1] and row reducing M to row canonical 
form: 

thus 

[ 1 2 
M =  0 1 1 2 

(Here we have used the fact that Q is the inverse of P,) 

The result in Example 6.6(a) is true in general. We state this result formally, since it occurs often. 

Proposition 6.5: The change-of-basis matrix from the usual basis E of Kn to any basis S of Kn is the 
matrix P whose columns are, respectively, the basis vectors of S. 

Applications of Change-of-Basis Matrix 

First we show how a change of basis affects the coordinates of a vector in a vector space V. The 
following theorem is proved in Problem 6 .2 .2 .  

Theorem 6.6: Let P be the change-of-basis matrix from a basis S to a basis S' in a vector space V. Then, 
for any vector v E V, we have: 

P[V]s' = [v]s and hence 

Namely, if we multiply the coordinates of v in the original basis S by P- l, we get the coordinates of v 
in the new basis S' . 

Remark 1 :  Although P is called the change-of-basis matrix from the old basis S to the new basis S' , 
we emphasize that it is p-I that transforms the coordinates of v in the original basis S into the coordinates 
of v in the new basis S' . 

Remark 2 :  Because of the above theorem, many texts call Q = p-I , not P, the transition matrix 
from the old basis S to the new basis S' . Some texts also refer to Q as the change-aI-coordinates matrix. 

We now give the proof of the above theorem for the special case that dim V = 3 .  Suppose P is the 
change-of-basis matrix from the basis S = {u I ' U2 ' u3 } to the basis S' = {V I ' V2 ' v3 } ;  say, 

V I = a l UI + a2u2 + a3a3 
V2 = bl UI + b2U2 + b3 u3 
V3 = CI UI + C2U2 + C3 U3 

and hence 

Now suppose v E V and, say, v = kl V I + k2V2 + k3 V3 ' Then, substituting for VI , V2 , V3 from above, we 
obtain 

v = kl (a l U I + a2u2 + a3u3 ) + k2 (bl U I + b2U2 + b3U3 ) + k3 (CI U I + C2U2 + C3 U3 ) 
= (a l kl + bl kz + cI k3 )u I + (a2kl + b2k2 + C2k3 )U2 + (a3kl + b3kz + C3k3 )U3 
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Thus 

Accordingly, 

LINEAR MAPPINGS AND MATRICES 

and 

Finally, multiplying the equation [vls = P[vls , by P-I, we get 

p-! [vls = p-!P[vlS' = I[vls' = [vlS' 

© The McGraw-Hili 
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The next theorem (proved in Problem 6 ,26) shows how a change of basis affects the matrix 
representation of a linear operator. 

Theorem 6.7: Let P be the change-of-basis matrix from a basis S to a basis S' in a vector space V. Then, 
for any linear operator T on V, 

That is, if A and B are the matrix representations of T relative, respectively, to S and S', 
then 

Example 6.7. Consider the following two bases of R3 : 

and 
E = {e! , e2 , e3 } = {( I , 0, 0) , (0, 1 , 0) ,  
S = {u! , U2 , U3 } = { ( I , 0 , 1 ) , (2 , 1 , 2), 

(0, 0 ,  I )} 
( 1 , 2 ,  2)} 

The change-of-basis matrix P from E to S and its inverse p-l were obtained in Example 6 .6 .  

(a) Write v = ( 1 , 3 , 5) as a linear combination of u! , u2 , u3 , or, equivalently, find [vls .  
One way to do this i s  to directly solve the vector equation v = xu! + YU2 + zU3 , that is, 

or 
x + 2y +  Z =  1 

y + 2z = 3  
x + 2y + 2z = 5 

The solution is x = 7, Y = -5, Z = 4, so v = 7u! - 5u2 + 4U3 ' 
On the other hand, we know that [vlE = [ 1 , 3 , 5f , since E is the usual basis, and we already know p-l . 

Therefore, by Theorem 6.6 , 

Thus, again, v = 7u! - 5u2 + 4u3 ' 

(b) Let A = [ ; -! -7 ] ,  which may be viewed as a linear operator on R3 . Find the matrix B that represents A 
3 - 1  2 

relative to the basis S. 
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The definition of the matrix representation of A relative to the basis S tells us to write each of A(Ul ), A(uz), 
A(U3 ) as a linear combination of the basis vectors ul ' uz , u3 of S. This yields 

A(Ul ) = (- 1 , 3 , 5) = l l U I - 5uz + 6U3 
A(uz) = ( 1 , 2 , 9) = 2 l u l - l4uz + 8U3 
A(U3) = (3 , -4 , 5) = l 7u l - 8ez + 2U3 

We emphasize that to find B, we need to solve three 3 x 3 systems of linear equations - one 3 x 3 system for 
each of A(U l )' A(uz), A(U3) '  

On the other hand, since we know P and P- l , we can use Theorem 6.7 .  That is ,  

This, as expected, gives the same result. 

6.4 SIMILARITY 

Suppose A and B are square matrices for which there exists an invertible matrix P such that 
B = P-1AP; then B is said to be similar to A, or B is said to be obtained from A by a similarity 
transformation . We show (Problem 6 .29) that similarity of matrices is an equivalence relation. 

By Theorem 6 .7 and the above remark, we have the following basic result. 

Theorem 6.8: Two matrices represent the same linear operator if and only if the matrices are similar. 

That is, all the matrix representations of a linear operator T form an equivalence class of similar 
matrices. 

A linear operator T is said to be diagonalizable if there exists a basis S of V such that T is represented 
by a diagonal matrix; the basis S is then said to diagonalize T. The preceding theorem gives us the 
following result. 

Theorem 6.9: Let A be the matrix representation of a linear operator T. Then T is diagonalizable if and 
only if there exists an invertible matrix P such that P- 1AP is a diagonal matrix. 

That is, T is diagonalizable if and only if its matrix representation can be diagonalized by a similarity 
transformation. 

We emphasize that not every operator is diagonalizable. However, we will show (Chapter 1 0) that 
every linear operator can be represented by certain "standard" matrices called its normal or canonical 
forms. Such a discussion will require some theory of fields, polynomials, and determinants .  

Functions and Similar Matrices 

Suppose f is a function on square matrices that assigns the same value to similar matrices; that is 
f(A) = f(B) whenever A is similar to B. Thenf induces a function, also denoted by f, on linear operators T 
in the following natural way. We define 

where S is any basis. By Theorem 6 .8 ,  the function is well defined. 
The determinant (Chapter 8) is perhaps the most important example of such a function. The trace 

(Section 2 .7) is another important example of such a function. 



Lipschulz-Lipson:Schaum's I 6, Linear Mappings and 

Outline of Theory and Matrices 

I Text © The McGraw-Hili 
Companies, 2004 

Problems of Linear 

Algebra,3/e 

2 1 2  LINEAR MAPPINGS AND MATRICES 

Example 6,8, Consider the following linear operator F and bases E and S of R2 : 

F(x, y) = (2x + 3y, 4x - 5y) , E = {(I , 0) , (0, I ) } ,  S = {( I , 2) , (2 , 5)} 

By Example 6 . 1 ,  the matrix representations of F relative to the bases E and S are, respectively, 

A = [ 2 3 J 4 -5 and 

Using matrix A, we have: 

(i) Determinant of F = det(A) = - 1 0  - 1 2  = -22; 

On the other hand, using matrix B, we have: 

(i) Determinant of F = det(B) = -2860 + 2838 = -22; 

As expected, both matrices yield the same result. 

B =  [ 52 1 29 J -22 -55 

(ii) Trace of F = tr(A) = 2 - 5 = -3 .  

(ii) Trace of F = tr(B) = 52 - 55 = -3 .  

6.5 MATRICES AND GENERAL LINEAR MAPPINGS 

[CHAP. 6 

Lastly, we consider the general case of linear mappings from one vector space into another. Suppose V 
and U are vector spaces over the same field K and, say, dim V = m and dim U = n . Furthermore, suppose 

and 

are arbitrary but fixed bases, respectively, of V and U. 
Suppose F: V -+ U is a linear mapping. Then the vectors F(VI ), F(V2) ' . . .  , F(vm) belong to U, 

and so each is a linear combination of the basis vectors in S'; say, 

F(VI ) = a l l  U l + a 12u2 + . . .  + a lnun 
F(V2) = a2 l U l + a22u2 + . . .  + a2nun 

Definition: The transpose of the above matrix of coefficients, denoted by ms s, (F) or [F]s s' ,  is called the 
matrix representation of F relative to the bases S and S' . [We �ll use the �imple notation 
m(F) and [F] when the bases are understood.] 

The following theorem is analogous to Theorem 6 . 1 for linear operators (Problem 6 .67). 

Theorem 6.10:  For any vector v E V, [F]s.s' [v]s = [F(v)]s' .  

That is, multiplying the coordinates o f  v in the basis S o f  V by [F1 we obtain the coordinates o f  F (  v) in 
the basis S' of U. 

Recall that for any vector spaces V and U, the collection of all linear mappings from V into U is a 
vector space and is denoted by Hom(V, U). The following theorem is analogous to Theorem 6.2 for linear 
operators, where now we let M = Mm ,n denote the vector space of all m x n matrices (Problem 6 .67). 

Theorem 6.1 1 :  The mapping m :  Hom( V, U) -+ M defined by m(F) = [F] i s  a vector space isomorph-
ism. That is, for any F, G E Hom(V, U) and any scalar k, 

(i) m(F + G) = m(F) + meG) or [F + G] = [F] + [G] 
(ii) m(kF) = km(F) or [kF] = k[F] 
(iii) m is bijective (one-to-one and onto) .  
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Theorem 6.12:  Let S, S' , S" be bases of vector spaces V, U, W, respectively. Let F: V � U and 
G 0 U � W be linear mappings. Then 

[G 0 F]s,s" = [G]s' ,s,, [F]s,s' 
That is, relative to the appropriate bases, the matrix representation of the composition of two mappings 

is the matrix product of the matrix representations of the individual mappings. 
Next we show how the matrix representation of a linear mapping F: V � U is affected when new 

bases are selected (Problem 6 .67). 

Theorem 6.13 Let P be the change-of-basis matrix from a basis e to a basis e' in V, and let Q be the 
change-of-basis matrix from a basis f to a basis f' in U. Then, for any linear map 
F : V � U, 

[F]e' ,f' = Q- l [F]e' ,!,P 

In other words, if A is the matrix representation of a linear mapping F relative to the bases e and f, and 
B is the matrix representation of F relative to the bases e' and f', then 

B = Q- 1AP 
Our last theorem, proved in Problem 6 .36 ,  shows that any linear mapping from one vector space V into 

another vector space U can be represented by a very simple matrix. We note that this theorem is analogous 
to Theorem 3 . 1 8  for m x n matrices. 

Theorem 6.14:  Let F: V � U be linear and, say, rank(F) = r. Then there exist bases of V and U such 
that the matrix representation of F has the form 

A = [6 � ] 
where Ir is the r-square identity matrix. 

The above matrix A is called the normal or canonical form of the linear map F. 

Solved Problems 
MATRIX REPRESENTATION OF LINEAR OPERATORS 

6.1.  Consider the linear mapping F: R2 � R2 defined by F(x, y) = (3x + 4y, 2x - 5y) and the 
following bases of R2 : 

E = {el ' e2 } = {( l ,  0) , (0 , I ) }  and S = {ul ' u2 } = {( l ,  2) ,  (2 , 3)} 

(a) Find the matrix A representing F relative to the basis E. 
(b) Find the matrix B representing F relative to the basis S. 
(a) Since E is the usual basis, the rows of A are simply the coefficients in the components of F(x, y), that is, 

using (a , b) = ael + bez , we have 

F(el ) = F(1 , 0) = (3 , 2) = 3el + 2e2 
F(e2) = F(O, 1 )  = (4 , -5) = 4el - 5e2 

and so A = [ 3 4 ] 2 -5 

Note that the coefficients of the basis vectors are written as columns in the matrix representation. 



Lipschulz-Lipson:Schaum's I 6, Linear Mappings and 

Outline of Theory and Matrices 

I Text © The McGraw-Hili 
Companies, 2004 

Problems of Linear 

Algebra,3/e 

2 1 4  LINEAR MAPPINGS AND MATRICES 

(b) First find F(u ! )  and write it as a linear combination of the basis vectors u! and Uz . We have 

F(u! )  = F( I ,  2) = ( I I ,  -8) = x( l , 2) + y(2 , 3) , and so x + 2y = I I  
2x + 3y = -8 

Solve the system to obtain x = -49 ,  Y = 30 .  Therefore 

F(u ! )  = -49u! + 30uz 

Next find F( uz) and write it as a linear combination of the basis vectors u! and Uz . We have 

F(uz) = F(2 , 3) = ( 1 8 ,  - I I ) = x( l , 2) + y(2 , 3) , and so 

Solve for x and y to obtain x = -76, Y = 47. Hence 

F(uz) = -76u! + 47uz 

. h ffi . f d l b ' [ -49 -76 ] Wnte t e coe Clents 0 u! an Uz as co unms to 0 tam B = 30 47 

x + 2y = 1 8  
2x + 3y = - 1 1  

[CHAP. 6 

(b') Alternatively, one can first find the coordinates of an arbitrary vector (a, b) in RZ relative to the basis S. 
We have 

(a, b) = x( l , 2) + y(2 , 3) = (x + 2y, 2x + 3y) , and so x + 2y = a  
2x + 3y = b 

Solve for x and y in tenns of a and b to get x = -3a + 2b, Y = 2a - b. Thus 

(a, b) = (-3a + 2b)u! + (2a - b)uz 

Then use the fonnula for (a, b) to find the coordinates of F(u ! )  and F(uz) relative to S: 
F(u! )  = F( I ,  2) = ( I I ,  -8) = -49u! + 30uz 
F(uz) = F(2 , 3) = ( 1 8 ,  - I I )  = -76u! + 47uz and so = [ -49 -76 ] B 30 47 

6.2. Consider the following linear operator G on R2 and basis S: 
G(x, y) = (2z - 7y, 4x + 3y) and S = {u ! , U2 } = {( I ,  3 ) ,  (2 , 5)} 

(a) Find the matrix representation [Gls of G relative to S. 
(b) VerifY [Gls[vls = [G(v)ls for the vector v = (4 , -3) in R2 . 

First find the coordinates of an arbitrary vector v = (a, b) in RZ relative to the basis S. We have 

and so x + 2y = a  
3x + 5y = b 

Solve for x and y in tenns of a and b to get x = -5a + 2b, y = 3a - b. Thus 

(a , b) = (-5a + 2b)u! + (3a - b)uz , and so [vl = [-5a + 2b, 3a - bf 

(a) Using the fonnula for (a, b) and G(x, y) = (2x - 7y, 4x + 3y), we have 

G(u ! )  = G( I ,  3) = (- 19 ,  1 3) = 1 2 1 u! - 70uz 
G(uz) = G(2 , 5) = (-3 1 , 23) = 20 1u !  - 1 1 6uz and so 

(We emphasize that the coefficients of u! and Uz are written as colunms, not rows, in the matrix 
representation. ) 
(b) Use the fonnula (a, b) = (-5a + 2b)u! + (3a - b)uz to get 

v = (4, -3) = -26u! + 1 5uz 
G(v) = G(4, -3) = (20, 7) = - 1 3 Iu !  + 80uz 

Then [vls = [-26 , 1 5f and [G(v)ls = [- 1 3 1 ,  80f 
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[G]s [V]s = [ �;� _��� J [ -�� J = [ - l �� J = [G(v)]s 

(This is expected from Theorem 6 . 1 .) 

6.3. Consider the following 2 x 2 matrix A and basis S of R2 : 

A = U : ] and S = {U l ' U2 } = { [ -; l [ _; ] } 

2 1 5  

The matrix A defines a linear operator on R2 . Find the matrix B that represents the mapping A 
relative to the basis S. 

First find the coordinates of an arbitrary vector (a, b)T with respect to the basis S. We have 

or x + 3y = a 
-2x - 7y = b 

Solve for x and y in terms of a and b to obtain x = 7a + 3b, y = -2a - b. Thus 

(a, bl = (7a + 3b)uI + (-2a - b)U2 

Then use the formula for (a, b)T to find the coordinates of AUI and AU2 relative to the basis S: 

AUI = [ �  : J [  -� J = [ =� J  = -63uI + 1 9u2 

AU2 = [ �  : J [  -� J = [ =�� J = -235uI + 7 lu2 

Writing the coordinates as colunms yields 

_ [ -63 -235 J B - 1 9  7 1  

6.4. Find the matrix representation of each of the following linear operators F on R3 relative to the usual 
basis E = {el , e2 , e3 } of R3 ; that is, find [F] = [F]E : 

(a) F defined by F(x , y, z) = (x + 2y - 3z, 4x - 5y - 6z, 7x + 8y + 9z). 

(b) F defined by the 3 x 3 matrix A = [ ; � ! ] .  
5 5 5  

(c) F defined by F(el ) = ( 1 , 3 , 5) ,  F(e2) = (2 , 4 , 6), F(e3 ) = (7 , 7 , 7) .  (Theorem 5 .2 states that a 
linear map is completely defined by its action on the vectors in a basis.) 

(a) Since E is the usual basis, simply write the coefficients of the components of F(x, y, z) as rows: 

[F] = [ ; -; =� l 7 8 9 
(b) Since E is the usual basis, [F] = A, the matrix A itself. 
(c) Here 

F(el ) = ( 1 , 3 , 5) = el + 3e2 + 5e3 
F(e2) = (2 , 4 , 6) = 2el + 4e2 + 6e3 
F(e3 ) = (7, 7, 7) = 7el + 7e2 + 7e3 

and so 

That is, the colunms of [F] are the images of the usual basis vectors. 
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6.5. Let G be the linear operator on R3 defined by G(x , y, z) = (2y + z, x - 4y, 3x). 

(a) Find the matrix representation of G relative to the basis 

S = {wI ' W2 ' w3 } = { ( l , 1 ,  1 ) ,  ( 1 , 1 , 0), ( 1 , 0 ,  O)} 

(b) Verify that [G][v] = [G(v)] for any vector v in R3 . 

[CHAP. 6 

First find the coordinates of an arbitrary vector (a , b, c) E R3 with respect to the basis S. Write (a , b, c) as 
a linear combination of WI , W2 , w3 using unknown scalars x, y, and z: 

(a , b , c) = x( l , 1 ,  l ) +y( l , 1 , 0) + z( 1 , 0 , 0) = (x +y + z, x +y, x) 
Set corresponding components equal to each other to obtain the system of equations 

x +y + z = a, x +y = b, x = c  
Solve the system for x, y, z in terms of a , b, c to find x = c, y = b - c, z = a - b. Thus 

(a , b, c) = CWI + (b - C)W2 + (a - b)W3 ' or, equivalently, [(a , b, c)] = [c, b - c, a - bf 

(a) Since G(x, y, z) = (2y + z, x - 4y, 3x), 

G(WI ) = G( l ,  1 ,  1 )  = (3 ,  -3 , 3) = 3wI - 6X2 + 6X3 
G(W2) = G( l ,  1 , 0) = (2 ,  -3 , 3) = 3wI - 6W2 + 5w3 
G(W3) = G( l ,  0, 0) = (0, 1 , 3) = 3wI - 2W2 - w3 

Write the coordinates G(WI ) , G(W2)' G(w3 ) as colunms to get 

[ 3 3 3 ] 
[G] = -6 -6 -2 

6 5 - 1 

(b) Write G(v) as a linear combination of wI '  w2 ' W3 ' where v = (a, b, c) is an arbitrary vector in R3 , 

G(v) = G(a, b, c) = (2b + c, a - 4b, 3a) = 3awl + (-2a - 4b)W2 + (-a + 6b + C)W3 
or, equivalently, 

[G(v)] = [3a, -2a - 4b, -a + 6b + cf 
Accordingly, 

[G][v] = [ -� -� -; ] [ b � c ] = [ -2;� 4b ] = [G(v)] 
6 5 - 1  a - b -a + 6b + c 

6.6. Consider the following 3 x 3 matrix A and basis S of R3 : 

and 

The matrix A defines a linear operator on R3 . Find the matrix B that represents the mapping A 
relative to the basis S. (Recall that A represents itself relative to the usual basis of R3). 

First find the coordinates of an arbitrary vector (a , b , c) in R3 with respect to the basis S. We have 

or 
x +  z = a 
x +y + 2z = b 
x +y + 3z =  c 
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Solve for x, y, z in terms o f  a ,  b ,  c to get 

x = a + b - c, y = -a + 2b - c, z = c - b 
thus (a , b, c)T = (a + b - c)Uj + (-a + 2b - C)U2 + (c - b)U3 

Then use the formula for (a, b, C)T to find the coordinates of AUj , AU2 , AU3 relative to the basis S: 

A(U j )  = A(I , I , ll = (0, 2 ,  3)T = -Uj + u2 + u3 
A(U2) = A(I , I ,  O)T = (- 1 , - 1 , 2)T = -4uj - 3u2 + 3u3 
A(U3) = A(I , 2, 3l = (0, 1 , 3)T = -2uj - U2 + 2U3 

so 
[ - 1  -4 -2 ] 

B = 1 -3 - 1  
1 3 2 

6.7. For each of the following linear transfonnations (operators) L on R2 , find the matrix A that 
represents L (relative to the usual basis of R2): 
(a) L is defined by L( I , 0) = (2 , 4) and L(O, 1 )  = (5 , 8) .  
(b) L is the rotation in R2 counterclockwise by 90°. 
(c) L is the reflection in R2 about the line y = -x. 

(a) Since {( I ,  0) , (0, I ) }  is the usual basis of R2 , write their images under L as columns to get 

A =  [ � n 
(b) Under the rotation L, we have L( I ,  0) = (0, 1 )  and L(O, 1) = (- 1 , 0). Thus 

A = [ � -b ] 
(c) Under the reflection L, we have L( I ,  0) = (0, - 1 )  and L(O, 1) = (- 1 , 0). Thus 

A = [ _� -b ] 

6.8. The set S = {e3t , te3t , t2e3t } is a basis of a vector space V of functions f: R --+ R. Let D be the 
differential operator on V, that is, D(f) = df / dt. Find the matrix representation of D relative to the 
basis S. 

Find the image of each basis function: 

D(�t) = 3e3t = 3(e3t) + 0(te3t) + 0(Pe3t) 
D(te3t) = e3t + 3te3t = I (e3t) + 3 (te3t) + 0(Pe3t) 
D(Pe3t) = 2te3t + 3t2e3t = 0(e3t) + 2(te3t) + 3(Pe3t) 

and thus 

6.9. Prove Theorem 6 . 1 :  Let T: V --+ V be a linear operator, and let S be a (finite) basis of V. Then, for 
any vector v in V, [Tls [vls = [T(v)ls . 

Suppose S = {Uj , U2 , " "  un } , and suppose, for i = 1 , . . .  , n, 
n 

T(uJ = ail Uj + ai2u2 + . . .  + ainun = L aijuj j=j 

Then [T]s is the n-square matrix whose jth row is 

( I )  
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Now suppose 

LINEAR MAPPINGS AND MATRICES 

n 
V = k1 u I + k2U2 + . . .  + knun = L k;u; ;=1 

Writing a column vector as the transpose of a row vector, we have 

Furthermore, using the linearity of T, 

T(v) = T(E k;U;) = E k;T(U;) = E k; C� aijUj) 

Thus [T(v)ls is the column vector whose jth entry is 

a1jkl + a2i2 + . . .  + anjkn 

[CHAP. 6 

(2) 

(3) 

On the other hand, the jth entry of [TJs [vls is obtained by multiplying the jth row of [Tls by [vls , that is 
( 1 )  by (2). But the product of ( 1 )  and (2) is (3). Hence [Tls [vls and [T(v)ls have the same entries. Thus 
[Tls [vls = [T(v)ls · 

6.10. Prove Theorem 6 .2 :  Let S = {u ! , U2 , " " un } be a basis for V over K, and let M be the algebra of 
n-square matrices over K. Then the mapping m: A(V) � M defined by meT) = [T]s is a vector 
space isomorphism. That is, for any F, G E A(V) and any k E K, we have: 

(i) [F + G] = [F] + [G] ,  (ii) [kF] = k[F], (iii) m is one-to-one and onto . 

(i) Suppose, for i = 1 ,  . . .  , n, 
n 

F(u;) = L aijuj j=1 and 
n 

G(u;) = L bijuj j=1 
Consider the matrices A = [aijl and B = [bijl . Then [F] = AT and [G] = BT . We have, for i = 1 , . . .  , n ,  

n 
(F + G)(u;) = F(u;) + G(u;) = L(aij + bij)uj j=1 

Since A + B is the matrix (aij + bij)' we have 

(ii) Also, for i = 1 ,  . . .  , n , 

[F + Gl = (A + Bl = AT + BT = [Fl + [G] 

n n 
(kF)(u;) = kF(u;) = k L aijuj = L(kaij)Uj 

Since kA is the matrix (kaij), we have 

j=! j=! 

[kF] = (kA)T = kAT = k[F] 

(iii) Finally, m is one-to-one, since a linear mapping is completely determined by its values on a 
basis. Also, m is onto, since matrix A = [aij] in M is the image of the linear operator, 

Thus the theorem is proved. 

n 
F(u;) = L aijuj , j=1 i = I , . . .  , n  
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6.1 1 .  Prove Theorem 6 ,3 : For any linear operators G, F E A(V), [G 0 F] = [G] [F] , 

Using the notation in Problem 6. 1 0, we have 

(G 0 F)(Ui) = G(F(Ui» = Get aijUj) = jt aijG(uj) 
= t a/ t bjkUk) = t (t aijbjk)uk j=l V=l k=l j=l 

Recall that AB is the matrix AB = [Cik] , where Cik = I:J=1 aijbjk • Accordingly, 

[G 0 F] = (ABl = BT AT = [G] [F] 

Thus the theorem is proved. 

© The McGraw-Hili 
Companies, 2004 

2 1 9  

6.12. Let A b e  the matrix representation o f  a linear operator T. Prove that, for any polynomial f(t), we 
have that f(A) is the matrix representation off(T) . [Thus f(T) = 0 if and only iff(A) = 0 . ]  

Let </> be the mapping that sends an operator T into its matrix representation A. We need to prove that 
</>(f(T» = J(A). Suppose J(t) = an t' + . . .  + al t + ao . The proof is by induction on n, the degree of J(t) . 

Suppose n = O. Recall that </>(1') = I, where I' is the identity mapping and I is the identity matrix. Thus 

</>(f(T» = </>(aoI') = ao</>(I') = aol = J(A) 
and so the theorem holds for n = O. 

Now assume the theorem holds for polynomials of degree less than n. Then, since </> is an algebra 
isomorphism, 

</>(f(T» = </>(anTn + an- l r-l + . . .  + al T + ao!') 
= an</>(T)</>(r-l ) + </>(an_ lr-l + . . .  + al T + aoI') 
= anAAn- 1 + (an_ IAn- 1 + . . .  + alA + ao!) = J(A) 

and the theorem is proved. 

CHANGE OF BASIS 

The coordinate vector [v]s in this section will always denote a column vector, that is, 

[v]s = [a ] , a2 " ' "  anf 

6.13. Consider the following basis of R2 : 
E = {el ' e2 } = { ( I , 0) , (0 , I ) }  and S = {U l ' U2 } = { ( I , 3) ,  ( I , 4)} 

(a) Find the change-of-basis matrix P from the usual basis E to S. 
(b) Find the change-of-basis matrix Q from S back to E. 
(c) Find the coordinate vector [v] of v = (5 , -3) relative to S. 

(a) Since E is the usual basis, simply write the basis vectors in S as columns: P = [ � ! ] 
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(b) Method 1 .  Use the definition of the change-of-basis matrix. That is, express each vector in E as a 
linear combination of the vectors in S. We do this by first finding the coordinates of an arbitrary vector 
v = (a, b) relative to S. We have 

(a , b) = x( l , 3) + y( 1 ,  4) = (x + y, 3x + 4y) or x + y = a 
3x + 4y = b 

Solve for x and y to obtain x = 4a - b, y = -3a + b. Thus 

v = (4a - b)uI + (-3a + b)U2 and [vls = [(a, b)ls = [4a - b, -3a + bf 
Using the above formula for [v ls and writing the coordinates of the ej as columns yields 

Method 2.  
Thus 

el = ( 1 ,  0) = 4uI - 3U2 
e2 = (0, 1) = -ul + u2 and Q = [ 4 - 1  ] 

-3 1 

Since Q = p-I , find p-I , say by using the formula for the inverse of a 2 x 2 matrix. 

p_1 = [ 4 - 1 ] 
-3 1 

(c) Method 1 .  Write v as a linear combination of the vectors in S, say by using the above formula for 
v = (a, b). We have v = (5 , -3) = 23uI - l 8u2 , and so [vls = [23 , - 1 8lT • 
Method 2. Use, from Theorem 6.6, the fact that [vls = P-I [vlE and the fact that [VlE = [5 , -3f: 

- I [ 4 - 1 ] [ 5 ] [ 23 ] [vls = p  [VlE = -3 1 -3 = - 1 8  

6.14. The vectors ul = ( 1 , 2 , 0) ,  U2 = ( 1 , 3 , 2), U3 = (0 , 1 , 3) form a basis S o f  R3 . Find: 

(a) 
(b) 

The change-of-basis matrix P form the usual basis E = {e l ' e2 ' e3 } to S. 
The change-of-basis matrix Q from S back to E. [ 1 0;] 

(a) Since E is the usual basis, simply write the basis vectors of S as columns: P = � � 
(b) Method 1 .  Express each basis vector of E as a linear combination of the basis vectors of S by first 

finding the coordinates of an arbitrary vector v = (a , b, c) relative to the basis S. We have 

or 
x + y = a 
2x + 3y +  Z =  b 

2y + 3z = c 

Solve for x, y, z to get x = 7a - 3b + c, y = -6a + 3b - c, z = 4a - 2b + c. Thus 

v = (a, b, c) = (7a - 3b + C)U I + (-6a + 3b - C)U2 + (4a - 2b + C)U3 
or [vls = [(a, b, c)ls = [7a - 3b + c, -6a + 3b - c, 4a - 2b + cf 
Using the above formula for [v ls and then writing the coordinates of the ej as columns yields 

el = ( 1 , 0 , 0) =  7UI - 6u2 + 4u3 
e2 = (0, 1 , 0) = -3uI + 3U2 - 2u3 
e3 = (0, 0, 1 ) = ul - u2 + u3 

and Q � [ -i -3 1 ] 
3 - 1  

-2 1 
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Method 2.  Find p-i by row reducing M = [P, I] to the form [I, p- i ] : 

M � [ i 3 
2 

� [ i I 
0 

Thu. Q � r'  � [ -i 

O i l 0 
I 1 1 0 I 

3 � 0 0 
0 1 I 

I 
1 -2 

I � 4 

0 ] [ 1 1 
o � 0 I 
I 0 2 
0 : J � [ i -2 

-3 -G 3 
-2 

0 1 0 : ] I I 1 -2 I 
3 �  0 0 
0 0 1 7 -3 : ] � [I, P- ' l I I 0 1 -6 3 
0 I I 4 -2 

6.15. Suppose the x- and y-axes in the plane R2 are rotated counterclockwise 45° so that the new x'- and 
y' -axes are along the line y = x and the line y = -x, respectively, 

(a) Find the change-of-basis matrix P, 
(b) Find the coordinates of the point A(5 ,  6) under the given rotation, 

(a) The unit vectors in the direction of the new x- and y' -axes are 

and 

(The unit vectors in the direction of the original x and y axes are the usual basis of R2 .) Thus write the 
coordinates of Ui and U2 as columns to obtain 

p =  2 [ !.J2 - -2i.J2] !.J2 !.J2 
(b) Multiply the coordinates of the point by p-i : [ !.J2 !.J2] [ 5 ]  = [¥.J2] - !.J2 !.J2 6 !.J2 

(Since P is orthogonal, p-i is simply the transpose of P.) 

6.16. The vectors ui = ( 1 , I ,  0), U2 = (0 , I ,  1), u3 = ( I , 2 , 2) form a basis S of R3 . Find the coordinates 
of an arbitrary vector v = (a ,  b, c) relative to the basis S. 
Method 1 .  Express v as a linear combination of ui , u2 , u3 using unknowns x, y, z. We have 

(a , b, c) = x( l ,  I ,  0) +y(O, I ,  1 ) + z( I , 2 , 2) = (x + z, x +y + 2z, y + 2z) 

this yields the system 

x + z = a 
x +y + 2z = b  

y + 2z = c  
or 

x + z = a 
y +  z =  -a + b  
y + 2z = c  

or 
x + z = a 

y + z =  -a + b  
z = a - b + c  

Solving by back-substitution yields x = b - c, y = -2a + 2b - c, z = a - b + c. Thus, 

[v]s = [b - c, -2a + 2b - c, a - b + cf 

Method 2. Find p-i by row reducing M = [P, 1] to the form [I, p- i ] , where P is the change-of-basis 
matrix from the usual basis E to S or, in other words, the matrix whose columns are the basis vectors of S. 
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We have 

M � [ : 0 1 1 1 0 n � [ i 0 1 1 0 n 1 1 
2 1 0 1 1 1 - 1  1 1 2 , 0 0 1 2 '  0 0 

� [ i 0 1 1 0 n � [ i 0 0 1 0 - ' ] 1 1 
1 1 - 1  1 0 1 -2 2 - � = [l, p- I ] 1 1 0 1 ' - 1  0 1 ' - 1  

r' � H -' ] 
Thus 2 - 1  

- 1  1 
I"], � r' I"IE � [ -; and 2 

- 1  

- ' ] n  [ b - c ] 
- 1  b = -2a + 2b - c  
1 c a - b + c  

Consider the following bases of R2 : 

S = {U l , U2 } = {( l ,  -2) ,  (3 , -4)} and S' = {V I ' V2 } = {( l , 3) ,  (3 , 8)} 

(a) Find the coordinates of V = (a ,  b) relative to the basis S. 
(b) Find the change-of-basis matrix P from S to S' . 
(c) Find the coordinates of V = (a ,  b) relative to the basis S' . 
(d) Find the change-of-basis matrix Q from S' back to S. 
(e) Verify Q = p-l . 
(f) Show that, for any vector v = (a ,  b) in R2 , p- l [V]S = [v]s" (See Theorem 6.6 . )  

(a) Let v = XUI + YU2 for unknowns x and y; that is, 

or x + 3y = a 
-2x - 4y = b or x + 3y = a 

2y = 2a + b  
Solve for x and y in terms of a and b to get x = -2a = � b  and y = a + ! b. Thus 

or 

(b) Use part (a) to write each of the basis vectors VI and V2 of S' as a linear combination of the basis vectors 
UI and U2 of S; that is, 

VI = ( 1 ,  3) = (-2 - �)UI + ( 1 + �)U2 = -¥UI + � U2 
V2 = (3 , 8) = (-6 - 1 2)uI + (3 + 4)U2 = - 1 8uI + 7U2 

Then P is the matrix whose columns are the coordinates of VI and V2 relative to the basis S; that is, 

(c) Let V = XVI + YV2 for unknown scalars x and y: 

or x + 3y = a 
3x + 8y = b or 

Solving for x and y to get x = -8a + 3b and y = 3a - b. Thus 

x + 3y = a 
-y = b - 3a 

(a, b) = (-8a + 3b)vI + (3a - b)V2 or [(a , b)]s' = [-8a + 3b, 3a - bf 
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(d) Use part (c) to express each of the basis vectors UI and U2 of S as a linear combination of the basis 
vectors VI and V2 of S' : 

UI = ( 1 , -2) = (-8 - 6)vI + (3 + 2)V2 = - 14vI + 5V2 
U2 = (3 , -4) = (-24 - l 2)vl + (9 + 4)V2 = -36vI + 1 3 v2 

Write the coordinates of UI and U2 relative to S' as columns to obtain Q = [ - 1  � 
(e) QP = [ - l� -�� J [ -1 - l � ] = [ � n = I 

-36 J 1 3  ' 

(j) Use parts (a), (c), and (d) to obtain 

P-I [vls = Q[vls = [ - l� -�n [ -2: � : : ] = [ -:: � �b J = [vls' 
6.18. Suppose P is the change-of-basis matrix from a basis {ui} to a basis {Wi } , and suppose Q is the 

change-of-basis matrix from the basis {Wi} back to {ui } '  Prove that P is invertible and that Q = p-! , 
Suppose, for i = 1 ,  2, . . .  , n, that 

and, for)  = 1 , 2 , . . .  , n, 

n 
Wi = ail UI + ai2u2 + . . .  + ainUn = L aijUj j=! 

n 
� = �� +�� + " ' + �� = L �� k=! 

Let A = [aijl and B = [bjkl . Then P = AT and Q = BT. Substituting (2) into ( 1 ) yields 

Wi = t aij ( t bjkWk) = t (t aijbjk)Wk j=1 k=! k=! j=1 

(1) 

(2) 

Since {w;} is a basis, L aijbjk = i5ik , where i5ik is the Kronecker delta, that is, i5ik = 1 if i = k but i5ik = 0 if 
i =1= k. Suppose AB = [Cikl . Then Cik = i5ik . Accordingly, AB = I, and so 

Thus Q = p-I . 

6.19. Consider a finite sequence of vectors S = {u ! , U2 , " " un } '  Let S' be the sequence of vectors 
obtained from S by one of the following "elementary operations" :  

( 1 )  Interchange two vectors . 
(2) Multiply a vector by a nonzero scalar. 
(3) Add a multiple of one vector to another vector. 

Show that S and S' span the same subspace W. Also, show that S' is linearly independent if and 
only if S is linearly independent. 

Observe that, for each operation, the vectors S' are linear combinations of vectors in S. Also, since each 
operation has an inverse of the same type, each vector in S is a linear combination of vectors in S' . Thus S and 
S' span the same subspace W. Moreover, S' is linearly independent if and only if dim W = n, and this is true if 
and only if S is linearly independent. 
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6.20. Let A = [ayl and B = [byl be row equivalent rn x n matrices over a field K, and let V I , V2 , . . .  , vn be 
any vectors in a vector space V over K. For i = 1 ,  2 , . . .  , rn, let Ui and Wi be defined by 

and 

Show that {ui } and {wi } span the same subspace of V. 

Applying an "elementary operation" of Problem 6. 1 9  to {uJ is equivalent to applying an elementary row 
operation to the matrix A . Since A and B are row equivalent, B can be obtained from A by a sequence of 
elementary row operations. Hence {w;} can be obtained from {u;} by the corresponding sequence of 
operations. Accordingly, {uJ and {w;} span the same space. 

6.21 .  Suppose uI ' U2 " ' "  un belong to  a vector space V over a field K, and suppose P = [ayl i s  an 
n-square matrix over K. For i = 1 , 2 , . . .  , n, let Vi = ail u l + ai2u2 + . . .  + ainUn ' 

(a) Suppose P is invertible. Show that {ui } and {Vi} span the same subspace of V. Hence {ui} is 
linearly independent if and only if {vJ is linearly independent. 

(b) Suppose P is singular (not invertible) . Show that {Vi} is linearly dependent. 

(c) Suppose {Vi } is linearly independent. Show that P is invertible . 

(a) Since P is invertible, it is row equivalent to the identity matrix I. Hence, by Problem 6 . 1 9, {v;} and {u;} 
span the same subspace of V. Thus one is linearly independent if and only if the other is linearly 
independent. 

(b) Since P is not invertible, it is row equivalent to a matrix with a zero row. This means {v;} spans a 
substance that has a spanning set with less than n elements. Thus {vJ is linearly dependent. 

(c) This is the contrapositive of the statement of part (b), and so it follows from part (b). 

6.22. Prove Theorem 6 .6 :  Let P be the change-of-basis matrix from a basis S to a basis S' in a vector 
space V. Then, for any vector V E V, we have P[vls' = [vls and hence P-I [vls = [vls' . 

Suppose S = {Uj , " "  un } and S' = {Wj , " "  wn}, and suppose, for i = 1 ,  . . .  , n, 
n 

Wi = ail UI + ailul + . . .  + ainUn = L aijUj j=j 

Then P is the n-square matrix whose jth row is 

Also suppose v = ki W I + k1Wl + . . .  + knwn = L7=1 kiWi ' Then 

[vls' = [kl ' kl ' . . .  , knf 

Substituting for Wi in the equation for v, we obtain 

n 
= L(aljkl + aljk1 + . . .  + anjkn)uj j=1 

Accordingly, [vls is the column vector whose jth entry is 

a1jkj + alil + . . .  + anjkn 

( 1 )  

(2) 

(3) 
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On the other hand, thejth entry of P[vls' is obtained by multiplying thejth row of P by [vls', that is, ( 1 )  by (2). 
However, the product of ( 1 )  and (2) is (3). Hence P[vls' and [vls have the same entries. Thus P[vls' = [vls' , as 
claimed. 

Furthermore, multiplying the above by p-I gives P- I [vls = P-Ip[vls' = [vls" 

LINEAR OPERATORS AND CHANGE OF BASIS 

6.23. Consider the linear transformation F on R2 defined by F(x, y) = (5x - y, 2x + y) and the 
following bases of R2 : 

E = {ej , e2 } = {( I ,  0) , (0 , I ) }  and S = {Uj , U2 } = {( I ,  4) , (2 , 7)} 

(a) Find the change-of-basis matrix P from E to S and the change-of-basis matrix Q from S back 
to E. 

(b) Find the matrix A that represents F in the basis E. 
(c) Find the matrix B that represents F in the basis S. 

(a) Since E is the usual basis, simply write the vectors in S as columns to obtain the change-of-basis matrix 
P. Recall, also, that Q = p-I . Thus 

and Q = p_j = [ -7 2 ] 4 - 1  

(b) Write the coefficients of x and y in F(x, y) = (5x - y, 2x + y) as rows to get 

A = [ ; - � ] 
(c) Method 1 .  Find the coordinates of F(uI ) and F(u2) relative to the basis S. This may be done by first 

finding the coordinates of an arbitrary vector (a, b) in R2 relative to the basis S. We have 

x + 2y = a 
4x + 7y = b (a, b) = x( 1 , 4) + y(2 , 7) = (x + 2y, 4x + 7y) , and so 

Solve for x and y in terms of a and b to get x = -7a + 2b, y = 4a - b. Then 

(a, b) = (-7a + 2b)uj + (4a - b)U2 

Now use the formula for (a , b) to obtain 

Method 2.  

F(uI ) = F(1 , 4) = ( 1 , 6) = 5uI - 2U2 
F(u2) = F(2 , 7) = (3 , 1 1 ) = U j + u2 

By Theorem 6.7 , B = P-jAP. Thus 

and so B = [ 5 1 ] -2 1 

B = P-jAP = [ -7 2 ] [ 5 - 1 ] [ 1 2 ] = [ 5 1 ] 4 - 1  2 1 4 7 -2 1 

6.24. Let A = [ � _ i ] Find the matrix B that represents the linear operator A relative to the basis 

S = {Uj , u2 } = H I ,  3f , [2 , 5f} .  [Recall A defines a linear operator A: R2 � R2 relative to the 
usual basis E of R2 ] .  

Method 1 .  Find the coordinates o f  A(uI ) and A(U2) relative to the basis S by first finding the coordinates 
of an arbitrary vector [a , bf in R2 relative to the basis S. By Problem 6.2, 

[a , bf = (-5a + 2b)uI + (3a - b)U2 
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Using the formula for [a, bf , we obtain 

and 

Thus 

A(uI ) = [ �  _ � J [ � J = [ I � J = -53uI + 32u2 

A(U2) = [ �  _� J [ � J = [ I � J = -S9uI + 54u2 

B = [ -53 -S9 J 32 54 

[CHAP. 6 

Method 2. Use B = P-IAP, where P is the change-of-basis matrix from the usual basis E to S. Thus 
simply write the vectors in S (as columns) to obtain the change-of-basis matrix P and then use the formula for 
p-I . This gives 

Then 

P =  [ I 2 J and p-I = [ -5 2 J 3 5 3 - I 
B = P-IAP = [ I 2 J [ 2 3 J [ -5 2 J = [ -53 3 5 4 -1 3 -1 32 

-S9 J 54 

6.25. Let A = [ � 
. 1 

basIs 

3 
5 

-2 
-� ] Fffid lh' matrix B that repre"",," lh' lin'" opomto, A reI""",, to th' 

S = {u I , U2 , u3 } = H I ,  1 ,  of , [0, 1 ,  If ,  [ 1 , 2 ,  2f} 

[Recall A which defines a linear operator A: R3 --+ R3 relative to the usual basis E of R3 ] .  

Method 1 .  Find the coordinates o f  A(UI )' A(U2) ' A(u3 ) relative to the basis S by first finding the 
coordinates of an arbitrary vector v = (a , b, c) in R3 relative to the basis S. By Problem 6 . 1 6, 

[vls = (b - C)UI + (-2a + 2b - C)U2 + (a - b + c)u3 
Using this formula for [a , b, cf , we obtain 

A(uI ) = [4, 7 , - If = SUI + 7u2 - 5u3 , A(U2) = [4 , 1 ,  of = ul - 6U2 - 3U3 
A(U3 ) = [9, 4, If = 3uI - I I u2 + 6u3 

Writing the coefficients of UI , U2 , U3 as columns yields 

Method 2. Use B = P-IAP, where P is the change-of-basis matrix from the usual basis E to S. The 
matrix P (whose columns are simply the vectors in S) and p- I appear in Problem 6. 1 6 . Thus 

[ 
0 1 - 1 ] [ 1 3 1 ] [ 1 0 1 ] [

S I 3 ] B = p-IAP = -2 2 - I  2 5 -4 1 I 2 = 7 -6 - 1 1  
I - 1  I 1 -2 2 0 I 2 - 5  3 6 

6.26. Prove Theorem 6 .7 :  Let P be the change-of-basis matrix from a basis S to a basis S' in a vector 
space V. Then, for any linear operator T on V, [Tls' = P-I [TlsP' 

Let v be a vector in V. Then, by Theorem 6 .6, P[vls' = [vls . Therefore, 

p-1 [TJsP[vls' = P-1 [TJs [vls = P-1 [T(v)ls = [T(v)ls' 
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Since the mapping v 1---* [v]s' is onto Kn , we have P-I [TlsPX = [Tls,x for every X E Kn. Thus 
P-I [TlsP = [Tls' ,  as claimed. 

SIMILARITY OF MATRICES 

6.27. Let A = [ �  -� ]  and P = [ � � l 
(a) Find B = P-IAP. (b) Verify tr(B) = tr(A) .  (c) Verify det(B) = det(A) .  

(a) First find p- I using the formula for the inverse of a 2 x 2 matrix. We have 

[ -2 1 ] p-I = � _ � 
Then 

B = P-IAP = [ -1 _ ! ] [ � -� ] [ ; � ] = [ _2¥ _�� ] 
(b) tr(A) = 4 + 6 = 1 0  and tr(B) = 25 - 1 5  = 1 0. Hence tr(B) = tr(A) . 
(c) det(A) = 24 + 6 = 30 and det(B) = -375 + 405 = 30 . Hence det(B) = det(A). 

6.28. Find the trace of each of the linear transformations F on R3 in Problem 6.4. 

Find the trace (sum of the diagonal elements) of any matrix representation of F such as the matrix 
representation [F] = [F]E of F relative to the usual basis E given in Problem 6.4 . 
(a) tr(F) = tr([F]) = 1 - 5 + 9 = 5 . 
(b) tr(F) = tr([F]) = 1 + 3 + 5 = 9. 
(c) tr(F) = tr([F]) = 1 + 4 + 7 = 12. 

6.29. Write A � B if A is similar to B, that is ,  if there exists an invertible matrix P such that A = p-i BP. 
Prove that � is an equivalence relation (on square matrices); that is, 

(a) A � A, for every A. (b) If A � B, then B � A .  
(c) If A � B and B � C, then A � C. 
(a) The identity matrix I is invertible, and I- I = I. Since A = I- IAI, we have A � A. 
(b) Since A � B, there exists an invertible matrix P such that A = P- IBP. Hence B = PAP- I = (p- I )- IAP 

and p-I is also invertible. Thus B � A. 
(c) Since A � B, there exists an invertible matrix P such that A = P-IBP, and since B � C, there exists an 

invertible matrix Q such that B = Q-I CQ. Thus 

A = P-IBP = p-I (Q- I CQ)P = (p- IQ- I )C(QP) = (QP)- I C(QP) 
and QP is also invertible. Thus A � C. 

6.30. Suppose B is similar to A,  say B = P-IAP. Prove: 

(a) Bn = p-IAnp, and so Bn is similar to An . 
(b) feB) = P-If(A)P, for any polynomial f(x), and so feB) is similar to f(A) .  
(c) B is a root of a polynomial g(x) if and only if A is a root of g(x) .  
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(a) The proof is by induction on n. The result holds for n = 1 by hypothesis. Suppose n > 1 and the result 
holds for n - l. Then 

(b) Suppose f(x) = anx" + . . .  + alx + ao . Using the left and right distributive laws and part (a), we have 

P-lf(A)P = p-l (anAn + . . .  + alA + aol)P 
= P-\anAn)P + . . .  + p-l (aIA)P + P-\aoI)P 
= an(p- l An P) + . . .  + al (P- l AP) + ao(p- IIP) 
= anBn + . . .  + alB + aoI =f(B) 

(c) By part (b), g(B) = 0 if and only if P-lg(A)P = 0 if and only if g(A) = pop-l = O. 

MATRIX REPRESENTATIONS OF GENERAL LINEAR MAPPINGS 

6.31 .  Let F: R3 --+ R2 be the linear map defined by F(x, y, z) = (3x + 2y - 4z, x - 5y + 3z). 
(a) Find the matrix of F in the following bases of R3 and R2 : 

and s' = {u 1 , u2 } = {( 1 , 3) ,  (2 , 5)} 

(b) VerifY Theorem 6 . 1 0 :  The action ofF is preserved by its matrix representation; that is, for any 
v in R3 , we have [F]s,s' [v]s = [F(v)]s" 

(a) From Problem 6.2, (a, b) = (-5a + 2b)ul + (3a - b)U2 ' Thus 

F(WI ) = F( 1 ,  1 ,  1) = ( 1 ,  - 1 ) - 7ul + 4U2 
F(W2) = F( 1 ,  1 , 0) = (5 , -4) = -33ul + 1 9u2 
F(W3) = F( 1 ,  0, 0) = (3 , 1 ) = - 1 3ul + 8U2 

Write the coordinates of F(WI ), F(W2) ' F(w3) as columns to get 

[ -7 -33 l 3 J [F]s,s' = 4 1 9 8 
(b) If v = (x, y, z), then, by Problem 6 .5 , v = ZWI + (y - Z)W2 + (x - y)w3 ' Also, 

F(v) = (3x + 2y - 4z, x - 5y + 3z) = (- 1 3x - 20y + 26z)UI + (8x + l ly - l 5z)u2 
Hence [ - l 3x - 20y + 26z J [vls = (z, y - Z, x - y)T and [F(v)ls' = 8x + l ly _ l 5z 
Thus 

[ -7 -33 - 1 3 J 
[ Z ] [ - 1 3X - 20Y + 26z J [F]s,s, [vls = 4 1 9 8 � =: ;  = 8x + l ly _ l 5z = [F(v)ls' 

6.32. Let F: Rn --+ Rm be the linear mapping defined as follows : 

F(X1 , X2 , . . .  , xn) = (a l 1x1 + . . .  + a1nXn , a2 1x1 + . . .  + a2nXn ' . . .  , am1X1 + . . .  + amnxn) 
(a) Show that the rows of the matrix [F] representing F relative to the usual bases of Rn and Rm 

are the coefficients of the Xi in the components of F(x] , . . .  , xn) .  
(b) Find the matrix representation of each of the following linear mappings relative to the usual 

basis of Rn : 
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(i) F: R2 --+ R3 defined by F(x, y) = (3x - y, 2x + 4y, 5x - 6y), 
(ii) F: R4 

--+ R2 defined by F(x, y, s, t) = (3x - 4y + 2s - 5t, 5x + 7y - s - 2t). 
(iii) F: R3 --+ R4 defined by F(x, y, z) = (2x + 3y - 8z, x + y + z, 4x - 5z, 6y). 

(a) We have 

F(l ,  0, . . .  , 0) = (al l , a21 , . . .  , amI ) 
F(O, 1 ,  . . .  , 0) = (aI2 , a22 , . . .  , am2) and thus 

F(O, 0, . . .  , 1 ) = (aln , a2n ' . . .  , amn) 

(b) By part (a), we need only look at the coefficients of the unknown x, y, . . .  in F(x, y, . . .  ) . Thus [ 3 - 1 ] 
(i) [F] = 2 4 ,  

5 -6 

. .  [ 3 -4 2 -5 ] (n) [F] = 5 7 - 1  -2 ' (iii) 

[ 2 3 -8 ] 
[F] = 1 1 1 

4 0 -5 
0 6 0 

229 

6.33. Let A = [ i  _� -� l Recall that A determines a mapping F: R3 --+ R2 defined by F(v) = Av, 
where vectors are written as columns. Find the matrix [F] that represents the mapping relative to the 
following bases of R3 and R2 : 

(a) The usual bases of R3 and of R2 . 
(b) S = {Wj , W2 , w3 } = {( 1 ,  1 ,  1 ) ,  ( 1 , 1 , 0) , ( 1 , 0 ,  O)} and S' = {Uj , u2 } = {( 1 ,  3 ) ,  (2 , 5)} . 
(a) Relative to the usual bases, [F] is the matrix A itself. 
(b) From Problem 9.2, (a, b) = (-5a + 2b)uI + (3a - b)U2 ' Thus 

F(wI ) = [ � 5 -: ] [ : ] � [ : ] � - 1 2', + 8" -4 

F(W2) = [ � 5 -: ] m � [
-
: ] � -41 " + 24u, -4 

F(w3) = [ � 5 -: ] [ � ] � [ � ] � -8" + 5" -4 

Writing the coefficients of F(WI ) ' F(w2)' F(w3 ) as columns yields [F] = [ - 1 � -�! -� l 
6.34. Consider the linear transformation T on R2 defined by T(x, y) = (2x - 3y, x + 4y) and the 

following bases of R2 : 

E = {ej , e2 } = {( 1 ,  0) , (0 , I ) }  and S = {Uj , u2 } = {( 1 ,  3 ) ,  (2 , 5)} 

(a) Find the matrix A representing T relative to the bases E and S. 
(b) Find the matrix B representing T relative to the bases S and E. 
(We can view T as a linear mapping from one space into another, each having its own basis.) 
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(a) From Problem 6.2, (a, b) = (-5a + 2b)uI + (3a - b)U2 ' Hence 

(b) We have 

T(el ) = T( l ,  0) = (2, I )  = -SUI + 5u2 
T(e2) = T(O, I) = (-3 , 4) = 23uI - 1 3u2 

T(uI ) = T( l , 3) = (-7, 1 3) = -7el + 1 3e2 
T(u2) = T(2 , 5) = (- 1 1 , 22) = - I l el + 22e2 

and so 

and so 

[CHAP. 6 

A = [ -S 23 ] 5 - 1 3 

6.35. How are the matrices A and B in Problem 6 .34 related? 

By Theorem 6. 1 2 , the matrices A and B are equivalent to each other; that is, there exist nonsingular 
matrices P and Q such that B = Q- IAP, where P is the change-of-basis matrix from S to E, and Q is the 
change-of-basis matrix from E to S. Thus 

P = [ � � l [ -5 2 ] Q =  3 - I  ' 

and Q-IAP = [ � 2 ] [ -S -23 ] [ 1 2 ] = [ -7 - I I ] = B  5 5 - 1 3  3 5 1 3  22 

6.36. Prove Theorem 6 . 1 4 :  Let F: V ---+ U be linear and, say, rank(F) = r. Then there exist bases V and 
of U such that the matrix representation of F has the following form, where Ir is the r-square 
identity matrix: 

Suppose dim V = m and dim U = n. Let W be the kernel of F and U' the image of F. We are given that 
rank (F) = r. Hence the dimension of the kernel of F is m - r. Let {wI , . . .  ' wm-r}  be a basis of the kernel of 
F and extend this to a basis of V: 

Set 

Then {UI ' . . .  , ur} is a basis of U', the image of F. Extend this to a basis of U, say 

Observe that 

F(vI ) = UI = l UI + OU2 + . . .  + OUr + OUr+1 + . . .  + OUn 
F(V2) = U2 = OUI + I U2 + . . .  + OUr + OUr+1 + . . .  + OUn 

F(vr) = Ur = OUI + OU2 + . . .  + IUr + OUr+1 + . . .  + OUn 
F(wI ) = 0 = OUI + OU2 + . . .  + OUr + OUr+1 + . . .  + OUn 

Thus the matrix of F in the above bases has the required form. 
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6.37. Let F: R2 --+ R2 be defined by F(x, y) = (4x + 5y , 2x - y). 
(a) Find the matrix A representing F in the usual basis E. 
(b) Find the matrix B representing F in the basis S = {U j , U2 } = { ( I , 4) , (2, 9)} .  
(c) Find P such that B = P- jAP . 
(d) For v = (a,  b), find [vls and [F(v)ls . Verify that [FJs [vls = [F(v)ls . 

6.38. Let A: R2 --+ R2 be defined by the matrix A = [ ;  -; ] . 

© The McGraw-Hili 
Companies, 2004 

23 1 

(a) Find the matrix B representing A relative to the basis S = {Uj , U2 } = { ( I , 3) , (2, 8)} . (Recall that A 
represents the mapping A relative to the usual basis E.) 

(b) For v = (a,  b), find [vls and [A(v)ls . 

6.39. For each linear transformation L on R2 , find the matrix A representing L (relative to the usual basis of R2): 

(a) L is the rotation in R2 counterclockwise by 45°. 
(b) L is the reflection in R2 about the line y = x. 
(c) L is defined by L( I ,  0) = (3 , 5) and L(O, 1) = (7, -2). 
(d) L is defined by L( I ,  1 )  = (3 , 7) and L( 1 , 2) = (5 , -4) . 

6.40. Find the matrix representing each linear transformation T on R3 relative to the usual basis of R3 : 

(a) T(x, y, z) = (x, y, 0). (b) T(x, y, z) = (z, y + z, x +y + z). 
(c) T(x, y, z) = (2x - 7y - 4z, 3x + y + 4z, 6x - 8y + z). 

6.41. Repeat Problem 6.40 using the basis S = {Uj , U2 , U3 } = { ( I , 1 , 0) , ( 1 , 2 , 3) , ( 1 , 3 , 5)} .  

6.42. Let L be the linear transformation on R3 defined by 

L( 1 , 0, 0) = ( 1 , I ,  I ) , L(O , 1 , 0) = ( 1 , 3 , 5) , 

(a) Find the matrix A representing L relative to the usual basis of R3 . 

L(O, 0, 1) = (2 , 2 , 2) 

(b) Find the matrix B representing L relative to the basis S in Problem 6.4 1 .  

6.43. Let D denote the differential operator; that is, D(f(t)) = dfldt. Each of the following sets is a basis of a 
vector space V of functions. Find the matrix representing D in each basis :  

(b) { I ,  t , sin 3 t, cos 3t} .  

6.44. Let D denote the differential operator on the vector space V of functions with basis S = { sin /1, cos /1} .  

(a) Find the matrix A = [Dls . (b) Use A to show that D is a zero ofI(t) = t2 + 1 .  
6.45. Let V be the vector space of 2 x 2 matrices. Consider the following matrix M and usual basis E of V: 

and 

Find the matrix representing each of the following linear operators T on V relative to E: 

(a) T(A) = MA. (b) T(A) = AM. (c) T(A) = MA - AM. 

6.46. Let lv and Ov denote the identity and zero operators, respectively, on a vector space V. Show that, for any 
basis S of V: (a) [l vls = I, the identity matrix. (b) [Ovls = 0, the zero matrix. 
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6.47. Find the change-of-basis matrix P from the usual basis E of R2 to a basis S, the change-of-basis matrix Q 
from S back to E, and the coordinates of v = (a, b) relative to S, for the following bases S: 
(a) S = {( 1 ,  2), (3 , 5)} . 
(b) S = {( 1 ,  -3) , (3 , -8)} . 

(c) S = {(2 , 5), (3 , 7)} . 
(d) S = {(2, 3) , (4, 5)} . 

6.48. Consider the bases S = {( I , 2), (2 , 3)} and S' = {( I , 3), ( 1 , 4)} of R2 . Find the change-of-basis matrix: 

(a) P from S to S' . (b) Q from S' back to S. 

6.49. Suppose that the x- and y-axes in the plane R2 are rotated counterclockwise 30° to yield new x- and y' -axes 
for the plane. Find: 

(a) The unit vectors in the direction of the new x - and y' -axes. 
(b) The change-of-basis matrix P for the new coordinate system. 
(c) The new coordinates of the points A(l , 3), B(2 , -5), C(a , b) . 

6.50. Find the change-of-basis matrix P from the usual basis E of R3 to a basis S, the change-of-basis matrix Q 
from S back to E, and the coordinates of v = (a, b, c) relative to S, where S consists of the vectors: 

(a) UI = ( 1 , 1 , 0) , U2 = (0, 1 , 2) , u3 = (0, 1 , 1 ) . 
(b) UI = (1 , 0, 1 ) , u2 = ( 1 , 1 , 2) , u3 = ( 1 , 2 , 4) . 
(c) UI = ( 1 ,  2 , 1 ) , U2 = ( 1 , 3 , 4) , U3 = (2 , 5 , 6). 

6.51. Suppose SI ' S2 ' S3 are bases of V. Let P and Q be the change-of-basis matrices, respectively, from SI to S2 and 
from S2 to S3 ' Prove that PQ is the change-of-basis matrix from SI to S3 ' 

LINEAR OPERATORS AND CHANGE OF BASIS 

6.52. Consider the linear operator F on R2 defined by F(x, y) = (5x + y, 3x - 2y) and the following bases of R2 : 

S = {( 1 , 2) , (2 , 3)} and S' = {( I ,  3) , ( 1 , 4)} 
(a) Find the matrix A representing F relative to the basis S. 
(b) Find the matrix B representing F relative to the basis S' . 
(c) Find the change-of-basis matrix P from S to S' . 
(d) How are A and B related? 

6.53. Let A: R2 ---+ R2 be defined by the matrix A = [ ;  -; J . Find the matrix B that represents the linear operator 

A relative to each of the following bases: (a) S = {( 1 ,  3)T , (2 , 5)T} . (b) S = {( I ,  3)T , (2 , 4)T} . 

6.54. Let F: R2 ---+ R2 be defined by F(x, y) = (x - 3y, 2x - 4y). Find the matrix A that represents F relative to 
each of the following bases :  (a) S = {(2 , 5), (3 , 7)} . (b) S = {(2 , 3) , (4, 5)} . 

6.55. Let A: R3 ---+ R3 be defined by the matrix A = [ ; � ; ] . Find the matrix B that represents the linear 
1 4 3  

operator A relative to the basis S = {( I ,  1 ,  l )T , (0, 1 ,  ll , ( 1 , 2 , 3)T} . 
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6.56. Let A = [ ; _; ] and P =  [ ;  =; ] . 
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(a) Find B = P- IAP . (b) Verify that tr(B) = tr(A). (e) Verify that det(B) = det(A). 

6.57. Find the trace and determinant of each of the following linear maps on R2 : 
(a) F(x, y) = (2x - 3y, 5x + 4y) . (b) G(x, y) = (ax + by, ex + dy) . 

6.58. Find the trace of each of the following linear maps on R3 : 
(a) F(x, y, z) = (x + 3y, 3x - 2z, x - 4y - 3z) . 
(b) G(x, y, z) = (y + 3z, 2x - 4z, 5x + 7y) . 

6.59. Suppose S = {UI , U2 } is a basis of V, and T: V -+ V is defined by T(u I ) = 3u I - 2U2 and T(U2) = UI + 4U2 ' 
Suppose S' = {WI ' W2 } is a basis of V for which WI = UI + U2 and W2 = 2uI + 3U2 ' 
(a) Find the matrices A and B representing T relative to the bases S and S', respectively. 
(b) Find the matrix P such that B = P-IAP. 

6.60. Let A be a 2 x 2 matrix such that only A is similar to itself. Show that A is a scalar matrix, that is, that 

A = [ � � ] . 
6.61. Show that all matrices similar to an invertible matrix are invertible. More generally, show that similar matrices 

have the same rank. 

MATRIX REPRESENTATION OF GENERAL LINEAR MAPPINGS 

6.62. Find the matrix representation of each of the following linear maps relative to the usual basis for Rn : 
(a) F: R3 -+ R2 defined by F(x, y, z) = (2x - 4y + 9z, 5x + 3y - 2z). 
(b) F: R2 -+ R4 defined by F(x, y) = (3x + 4y, 5x - 2y, x + 7y, 4x). 
(e) F: R4 -+ R defined by F(XI , X2 , x3 , X4) = 2xI + X2 - 7x3 - X4' 

6.63. Let G: R3 -+ R2 be defined by G(x, y, z) = (2x + 3y - z, 4x -y + 2z). 

(a) Find the matrix A representing G relative to the bases 

S = {( 1 , l , O) , ( 1 , 2 , 3) , ( 1 , 3 , 5)} 

(b) For any v = (a,  b, e) in R3 , find [vls and [G(v)ls" 

and S' = {( I , 2), (2, 3)} 

(e) Verify that A[vls = [G(v)ls" 

6.64. Let H: R2 -+ R2 be defined by H(x, y) = (2x + 7y, x - 3y) and consider the following bases of R2 : 
S = {( l , l ) , ( 1 , 2)} and S' = {( 1 , 4) , ( 1 , 5)} 

(a) Find the matrix A representing H relative to the bases S and S' . 
(b) Find the matrix B representing H relative to the bases S' and S. 

6.65. Let F: R3 -+ R2 be defined by F(x, y, z) = (2x + y - z, 3x - 2y + 4z). 

(a) Find the matrix A representing G relative to the bases 

S = {( 1 , l , l ) , ( 1 , 1 , 0) ,  ( 1 , 0 , 0)} and S' = ( 1 , 3) , ( 1 , 4)} 

(b) Verify that, for any v = (a ,  b, e) in R3 , A[vls = [F(v)ls" 
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6.66. Let S and S' be bases of V, and let lv be the identity mapping on V. Show that the matrix A representing lv  
relative to the bases S and S' i s  the inverse o f  the change-of-basis matrix P from S to S' , that is, A = p-I . 

6.67. Prove: (a) Theorem 6 . 1 0, (b) Theorem 6. 1 1 , (c) Theorem 6. 1 2, (d) Theorem 6. 1 3 .  [Hint: See the proofs of the 
analogous Theorems 6 . 1 (problem 6 .9), 6 .2 (Problem 6. 1 0), 6.3 (Problem 6. 1 1 ) , and 6 .7 (Problem 6.26). ] 

MISCELLANEOUS PROBLEMS 

6.68. Suppose F: V ---+ V is linear. A subspace W of V is said to be invariant under F if F(W) � W. Suppose W is 

invariant .under F and dim � = r. Show that F has a block triangular matrix representation M = [ � � ] where A IS an r x r submatnx. 

6.69. Suppose V = U + W, and suppose U and V are each invariant under a linear operator F: V ---+ V. Also, 

suppose dim U = r and dim W = S. Show that F has a block diagonal matrix representation M = [� � ] where A and B are r x r and s x s submatrices. 

6.70. Two linear operators F and G on V are said to be similar if there exists an invertible linear operator T on V 
such that G = T-I o f  0 T. Prove: 

(a) F and G are similar if and only if, for any basis S of V, [F]s and [G]s are similar matrices. 
(b) If F is diagonalizable (similar to a diagonal matrix), then any similar matrix G is also diagonalizable. 

Answers to Supplementary Problems 
Notation: M = [R 1 ; R2 ; • . •  ] represents a matrix M with rows R 1 , R2 , • . • .  

6.37. (a) A = [4, 5 ; 2 , - I ]  (b) B = [220, 478; -98, -2 1 7] (c) P = [ 1 , 2 ; 
(d) [v]s = [9a - 2b, -4a + bf and [F(v)] = [32a + 47b, - 1 4a - 2 1 bf 

6.38. (a) B = [-6, -28; 4, 1 5] 
(b) [v] = [4a - b, - � a + ! bf and [A(v)]s = [ 1 8a - 8b, ! (- 1 3a + 7b)] 

6.39. (a) [viz, -viz; viz, viz] (b) [0, 1 ;  1 , 0] (c) [3 , 7 ; 5 , -2] 
(d) [ 1 , 2 ; 18 , - I I ] 

6.40. (a) [ 1 , 0 , 0 ; 0, 1 , 0 ; 0, 0 , 0] (b) [0, 0 , 1 ;  0, 1 , 1 ;  1 , 1 , 1 ] 
(c) [2 , -7 , -4; 3 , 1 , 4 ; 6 , -8 , 1 ] 

6.41. (a) [ 1 , 3 , 5 ; 0, -5 , - 1 0; 0, 3 , 6] (b) [0, 1 , 2 ; - 1 , 2 , 3 ;  1 , 0 , 0] 
(c) [ 1 5 , 5 1 ,  1 04; -49, - 1 9 1 , 35 1 ;  29, 1 1 6 , 208] 

6.42. (a) [ I ,  1 , 2 ; 1 , 3 , 2 ; 1 , 5 , 2] (b) [6, 17 , 26; -4, -3, -4; 0 , -5, -8] 

6.43. (a) [ 1 , 0, 0 ; 0, 2 , 1 ;  0, 0, 2] (b) [0, 1 , 0 , 0 ; 0; 0, 0 , 0 , -3; 0 , 0 , 3 , 0] 
(c) [5 , 1 , 0 ; 0, 5 , 2 ; 0, 0 , 5] 

6.44. (a) A = [0, - 1 ;  1 , 0] (b) A2 + 1  = 0 

4, 9] 
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6.45. (a) [a, 0, b, 0; O , a , 0, b; c, O, d, 0; 0, c, 0, d] 
(b) [a, c, 0, 0; b, d, O , O ; O, O , a , c; O , O , b , d] 
(c) [0, -c, b , 0; -b, a - d, 0, b; c, 0, d - a, -c; 0 , c, -b, 0] 

6.47. (a) [ 1 , 3 ;  2 , 5 ] , [-5 , 3 ;  2 , - 1 ] , [v] = [-5a + b , 2a - bf 
(b) [ 1 , 3 ;  -3 , -8] , [-8 , -3 ; 3 , 1 ] , [v] = [-8a - 3b, 3a - bf 
(c) [2 , 3 ; 5 , 7] , [-7, 3 ;  5 , -2], [v] = [-7a + 3b, 5a - 2bf 
(d) [2, 4; 3, 5] , [- � , 2 ; � ,  - 1 ] , [v] = [- � a + 2b, � a - bf 

6.48. (a) p =  [3 , 5 ; - 1 ,  - 1 ]  (b) Q = [2 , 5 ; - 1 , -3] 

6.49. (a) (�v'3, �) , (- � , � v'3) (b) p =  Hv'3, - � ; � , �v'3] 
(c) [A] = pT[ 1 ,  3f, [B] = pT[2 , -5f, [C] = pT[a, bf 
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6.50. P is the matrix whose columns are UI , U2 , u3 , Q = p-I , [v] = Q[a , b , cf , (a) Q = [ I , O , O ; 1 , - 1 , 1 ;  -2, 2 , - I ] , [v] = [a, a - b + c, -2a + 2b - cf (b) -
Q = [0, -2, 1 ;  2 , 3 , -2; - 1 , - 1 ,  1 ] , [v] = [-2b + c, 2a + 3b - 2c, -a - b + cf (c) -
Q = [-2, 2 , - 1 ;  -7, 4, - 1 ;  5 , -3 , 1 ] , [v] = [-2a + 2b - c, -7a + 4b - c ,  5a - 3 b  + cf 

6.52. (a) [-23 , -39 ; 1 3 , 26] 

6.53. (a) [28 , 42; - 1 5 , -25] 

6.54. (a) [43 , 60; -33, -46] 

6.55. [ 1 0 , 8 , 20; 1 3 , 1 1 , 28 ; 

(b) 

(b) 

(b) 

[35 , 4 1 ;  -27, -32] 

[ 1 3 , 1 8 ;  - ¥- ,  - 1 0] 
[_ .[l _ 1 43 . 

2 ' 2 '  � , ¥] 

-5 , -4, 1 0] 

(c) [3 , 5 ; - 1 , -2] 

6.56. (a) [-34, 57 ; - 1 9 , 32] (b) tr(B) = tr(A) = -2 (c) det(B) = det(A) = -5 

6.57. (a) tr(F) = 6, det(F) = 23 (b) tr(G) = a + d, det(G) = ad - be 

6.58. (a) tr(F) = -2 (b) tr(G) = 0 

6.59. (a) A = [3 , 1 ;  -2, 4] , B = [8 , 1 1 ;  -2, - 1 ]  (b) P = [ 1 , 2 ; 1 , 3] 
6.62. (a) [2, -4, 9 ; 5 , 3 ,  -2] (b) [3 , 5 , 1 , 4 ; 4, -2, 7 , 0] (c) [2 , 3 , -7 , - 1 1 ] 

6.63. (a) [-9, 1 , 4 ; 7 , 2 , 1 ] (b) [v]s = [-a + 2b - c, 5a - 5b + 2c, -3a + 3b - C]T , and 
[G(v)]s' = [2a - l I b + 7c, 7b - 4C]T 

6.64. (a) A = [47 , 85 ; -38 , -69] 

6.65. A = [3 , 1 1 , 5 ; - 1 , -8 , -3] 

(b) B = [7 1 ,  88; -4 1 ,  -5 1 ] 
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de�";;,;o," of a vector space V involves an arbitrary field K. Here we first restrict K to be the real 
case V is called a real rector space; in Ihe last sections of this chapter, we extend our 

'�:\��
e
�

:'
W
:
:h:

:
e,re K is the complex field C. in which case V is called a complex vee/or space. Also, 

tl notation Ihal 

II, V. II' 

a, b, c. k  

are vectors in V 

are scalars in K 

furth"m.o", d" '",,"oc spaces V in this chapter have finite dimension unless otherwise stated or implied. 
Recall the concepts of "length" and "orthogonality" did not appear in the investigation of 

",,"oi spoo,,, V (although they did appear in Chapter I on the spaces Rn and C"). �Iere we place 
iln"",,, on a vector space V to obtain an inner product space, and in this context these 

INNER "�'}ul)L' SPACES 

We begin a definition. 

be a real vector space. Suppose to each pair of vectors II. v E V there is assigned a real 

"�,����:�,����, :Y (II, v). This function is called a (rea£) ililier prodllct on V if it satisfies the 
f( axioms: 

[Id (Lilleur Property): (alii + b1l2. v) = a{III' v} + b(1I2' v). 

[121 (Symmetri(' Property): (II. v) = {v, II}, 

[13) (Posiril'e Defillite Property): (II, 11) � 0.; and (II, II) = 0 if and only if II = 0, 

'-____ J '" vector space V with an inner product is called a (rea£) inner prodllct �pace. 

236 
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Axiom [Id states that an inner product function is linear in the first position. Using [Id and the 
symmetry axiom [12] ' we obtain 

(u , CV I + dV2 ) = (CV I + dV2 , u) = C{V I , u) + d{v2 , u) = c {u ,  V I ) + d{u ,  V2 ) 

That is, the inner product function is also linear in its second position. Combining these two properties and 
using induction yields the following general formula: 

( L aiui , L biVi) = L L aibi {ui , v) 
I ] I ] 

That is, an inner product of linear combinations of vectors is equal to a linear combination of the inner 
products of the vectors . 

Example 7.1. Let V be a real inner product space. Then, by linearity, 

(3uI - 4U2 '  2vI - 5V2 + 6V3 ) = 6 (U I ' VI ) - 1 5 (UI ' V2 ) + 1 8 (UI , V3 ) 
- 8 (U2 ' VI ) + 20 (U2 ' V2 ) - 24 (U2 , V3 ) 

(2u - 5v ,  4u + 6v) = 8 {u ,  u) + 1 2 {u ,  v) - 20 {v ,  u) - 30 {v , v) 
= 8 {u ,  u) - 8 {v , u) - 30 {v ,  v) 

Observe that in the last equation we have used the symmetry property that (u , v) = (v , u) . 

Remark: Axiom [Id by itself implies (O ,  0) = (Ov, 0) = O {v , 0) = O .  Thus [Id , [12] ,  [13 ] are 
equivalent to [Id , [12] ,  and the following axiom: 

[I; ] If u -I- 0, then (u, u) is positive. 

That is, a function satisfYing [Id , [12] , [I; ] is an inner product. 

Norm of a Vector 

By the third axiom [13 ] of an inner product, (u ,  u) is nonnegative for any vector u. Thus its positive 
square root exists. We use the notation 

l I u l l = � 
This nonnegative number is called the norm or length of u. The relation l I u l 1 2 = (u, u) will be used 
frequently. 

Remark: If l I u l l  = 1 or, equivalently, if (u ,  u) = 1 ,  then u is called a unit vector and is said to be 
normalized. Every nonzero vector v in V can be multiplied by the reciprocal of its length to obtain the unit 
vector 

A 1 v = - v 
I I v l l  

which is a positive multiple of v. This process is called normalizing v .  

7.3 EXAMPLES OF INNER PRODUCT SPACES 

This section lists the main examples of inner product spaces used in this text. 



Lipschulz-Lipson:Schaum's I 7, Inner Product Spaces, I Text 

Outline ofTheory and Orthogonality 

© The McGraw-Hili 
Companies, 2004 

Problems of Linear 

Algebra,3/e 

238 INNER PRODUCT SPACES, ORTHOGONALITY 

Euclidean n-Space RH 

Consider the vector space Rn , The dot product or scalar product in Rn is defined by 

u ' v = a l b l + a2b2 + . . .  + anbn 

[CHAP. 7 

where u = (ai) and v = (bJ This function defines an inner product on Rn . The norm I l u l l  of the vector 
u = (ai) in this space is as follows: 

I l u l l  = ..;u-:-u = Jaj + a� + . . .  + a;; 

On the other hand, by the Pythagorean theorem, the distance from the origin a in R3 to a point P(a , b, c) is 
given by J a2 + b2 + c2. This is precisely the same as the above-defined norm of the vector v = (a , b, c) in 
R3 . Since the Pyghagorean theorem is a consequence of the axioms of Euclidean geometry, the vector 
space Rn with the above inner product and norm is called Euclidean n-space. Although there are many 
ways to define an inner product on Rn , we shall assume this inner product unless otherwise stated or 
implied. It is called the usual (or standard inner product) on Rn . 

Remark: Frequently the vectors in Rn will be represented by column vectors, that is, by n x 1 
column matrices. In such a case, the formula 

(u ,  v) = uT V 

defines the usual inner product on Rn . 

Example 7.2. Let u = ( 1 ,  3 ,  -4, 2), v = (4, -2, 2 , 1 ) ,  w = (5 , - 1 ,  -2, 6) in R4 . 

(a) By definition, 

(u , w) = 5 - 3 + 8 + 12 = 22 and (v , w) = 20 + 2 - 4 + 6 = 24 

Note that 3u - 2v = (-5 , 1 3 , - 1 6 , 4) . Thus 

(3u - 2v, w) = -25 - 1 3  + 32 + 24 = 1 8  

As expected, 3 (u ,  w) - 2 (v , w) = 3(22) - 2(24) = 1 8  = (3u - 2v, w) . 
(b) By definition, 

l I u l i  = .vI + 9 + 1 6  + 4 = .J3O and I I v l l  = .v1 6  + 4 + 4 + 1 = 5 
We normalize u and v to obtain the following unit vectors in the directions of u and v, respectively: 

and 

Function Space C[a, b] and Polynomial Space pet) 

The notation C[a , b] is used to denote the vector space of all continuous functions on the closed 
interval [a , b] , that is, where a :::: t :::: b . The following defines an inner product on C[a , b], wheref(t) and 
g(t) are functions in C[a , b] : 

(f ,  g) = J:f(t)g(t) dt 

It is called the usual inner product on C[a , b] . 
The vector space P(t) of all polynomials is a subspace of C[a , b] for any interval [a , b], and hence the 

above is also an inner product on P(t) . 
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Example 7,3, Consider f(t) = 3t - 5 and get) = p. in the polynomial space pet) with inner product 

(a) Find ( f, g) . 
We have f(t)g(t) = 3t3 - 5t2 . Hence 

(b) Find I I f l l and I lg l l . 

(f, g) = J>(t)g(t) dt. 

We have [f(t)f = f(t)f(t) = 9t2 - 30t + 25 and [g(t)f = t4 . Then 

II f l 1 2 = (f,f) = f (9t2 - 30t + 25) dt = 3t3 - 1 5? + 25{ = 1 3 
I Ig l 1 2 = (g, g) = f t4 dt = ! t{ = ! 

Therefore, II f l l = .JT3 and I lg l l = fs = ! 0. 

Matrix Space M = Mm,n 

Let M = Mm,n , the vector space of all real m x n matrices. An inner product is defined on M by 

where, as usual, tr( ) is the trace, i .e . ,  the sum of the diagonal elements. If A = [aij] and B = [bij]' then 
m n 

(A , B) = tr(BT A) = L L aijbij i= l j=1 
and 

m n 
I IA I I 2 = (A , A ) = L L a� i=l j= 1 

That is, (A , B) is the sum of the corresponding entries in A and B and, in particular, (A , A ) is the sum of the 
squares of the entries of A . 

Hilbert Space 

Let V be the vector space of all infinite sequences of real numbers (a i ' a2 ' a3 ' . . .  ) satisfying 
00 ,, 2 2 2 L.. ai = a l + a2 + . . .  < 00 i= 1 

that is, the sum converges. Addition and scalar multiplication are defined in V componentwise, that is, if 

then and ku = (ka l ' ka2 , • . •  ) 

An inner product is defined in v by 

The above sum converges absolutely for any pair of points in V. Hence the inner product is well defined. 
This inner product space is called 12 -space or Hilbert space. 



Lipschulz-Lipson:Schaum's I 7, Inner Product Spaces, I Text 

Outline ofTheory and Orthogonality 

© The McGraw-Hili 
Companies, 2004 

Problems of Linear 

Algebra,3/e 

240 INNER PRODUCT SPACES, ORTHOGONALITY [CHAP. 7 

7.4 CAUCHY-SCHWARZ INEQUALITY, APPLICATIONS 

The following formula (proved in Problem 7 . 8) is called the Cauchy-Schwarz inequality or Schwarz 
inequality. It is used in many branches of mathematics. 

Theorem 7.1 :  (Cauchy-Schwarz) For any vectors u and v in an inner product space V, 

(u ,  V) 2 :::: (u , u) (v ,  v) or l (u , v) l :::: l I u l l l l v l l  
Next we examine this inequality in specific cases .  

Example 7.4. 
(a) Consider any real numbers ai '  . . .  , am bl , . . .  , b . . Then, by the Cauchy-Schwarz inequality, 

(al bl + a2b2 + . . .  + anbn)2 ::::: (ai + . . .  + a�)(bi + . . .  + b�) 
That is, (u · V)2 ::::: l I u 1 l 2 1 1 v 1 1 2 , where u = (aJ and v = (bJ 

(b) Letf and g be continuous functions on the unit interval [0 , I ] . Then, by the Cauchy-Schwarz inequality, 

[ J>(t)g(t) dJ::::: J>2 (t) dt J� �(t) dt 

That is, « (f, g)? ::::: I I f 1 l 2 1 1 v 1 l 2 . Here V is the inner product space qo, I ] . 

The next theorem (proved in Problem 7 .9) gives the basic properties of a norm. The proof of the third 
property requires the Cauchy-Schwarz inequality. 

Theorem 7.2 : Let V be an inner product space. Then the norm in V satisfies the following properties: 

[NI l I l v l l  � 0; and I I v l l  = 0 if and only if v = o .  
[N2] I l kv l l  = I k l l l v l l · 
[N3] I l u + v i i :::: I l u l l  + I l v l l . 

The property [N3 ] is called the triangle inequality, because if we view u + v as the side of the triangle 
formed with sides u and v (as shown in Fig. 7- 1 ), then [N3 ] states that the length of one side of a triangle 
cannot be greater than the sum of the lengths of the other two sides. 

Tri�ngle I n equal i TY 
Fig. 7-1 

Angle Between Vectors 

For any nonzero vectors u and v in an inner product space V, the angle between u and v is defined to be 
the angle () such that 0 :::: () :::: n and 

(u ,  v) 
cos (} = MM 

By the Cauchy-Schwartz inequality, - 1  :::: cos () :::: 1 ,  and so the angle exists and is unique. 
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(u ,  v) = 2 - 1 2  + 1 5  = 5 ,  l I u l i  = .J4 + 9 + 25 = .J38, I l v l l  = .Jl + 1 6  + 9 = .J26 
Then the angle () between u and v is given by 

5 cos () = .J38.J26 
Note that () is an acute angle, since cos () is positive. 

(b) Let J(t) = 3t - 5 and get) = f2 in the polynomial space pet) with inner product (f, g) = f�J(t)g(t) dt. By 
Example 7 .3 ,  

( f, g) = - H ,  I I  J I I  = .JI3, 
Then the "angle" () betweenJ and g is given by 

1 1  
cos {) = - 12 = ( .JI3) (! .J5) 

Note that () is an obtuse angle, since cos () is negative. 

7.5 ORTHOGONALITY 

55 

Let V by an inner product space. The vectors u, v E V are said to be orthogonal and u is said to be 
orthogonal to v if 

{u ,  v} = 0 

The relation is clearly symmetric, that is, if u is orthogonal to v, then {v ,  u} = 0, and so v is orthogonal to u . 
We note that 0 E V is orthogonal to every v E V, since 

{O ,  v} = {Ov , v} = O {v , v} = 0 

Conversely, if u is orthogonal to every v E V, then {u ,  u} = 0 and hence u = 0 by [13 ] '  Observe that u and v 
are orthogonal if and only if cos e = 0, where e is the angle between u and v. Also, this is true if and only if 
u and v are "perpendicular", i .e . ,  e = nl2 (or e = 90°). 

Example 7.6. 
(a) Consider the vectors u = ( 1 , 1 , 1 ) ,  v = ( 1 ,  2 ,  -3), w = ( 1 ,  -4, 3) in R3 . Then 

(u , v) = 1 + 2 - 3 = 0, (u , w) = 1 - 4 + 3 = 0, (v , w) = 1 - 8 - 9 = - 1 6  

Thus u is orthogonal to v and w, but v and w are not orthogonal. 
(b) Consider the functions sin t and cos t in the vector space q-n, n] of continuous functions on the closed interval 

[-n, n] . Then 

(sin t, cos t) = f" sin t cos t dt = � sin2 t l ':." = 0 - 0 = 0 

Thus sin t and cos t are orthogonal functions in the vector space C[-n, n] . 

Remark: A vector w = (xl ' X2 , . . .  , xn ) is orthogonal to u = (a i ' a2 , . . .  , an) in Rn if 

{u ,  w} = a lxl + a2x2 + . . .  + anXn = 0 

That is, w is orthogonal to u if w satisfies a homogeneous equation whose coefficients are the elements 
of u. 
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Example 7,7, Find a nonzero vector w that is orthogonal to u, = ( 1 , 2 , 1 )  and U2 = (2 , 5, 4) in R3 . 
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Let w = (x, y, z) . Then we want (u" w) = 0 and (u2 , w) = O. This yields the homogeneous system 
x + 2y + z = 0 or x + 2y + z = 0 

� + � + � = O  y + � = O  

Here z is the only free variable in the echelon system. Set z = I to obtain y = -2 and x = 3 . Thus, w = (3 ,  -2, 1 )  is a 
desired nonzero vector orthogonal to Uj and U2 ' 

Any multiple of w will also be orthogonal to Uj and u2 ' Normalizing w, we obtain the following unit vector 
orthogonal to Uj and u2 : 

Orthogonal Complements 

Let S be a subset of an inner product space V. The orthogonal complement of S, denoted by S.l (read 
"S perp") consists of those vectors in V that are orthogonal to every vector U E S; that is, 

S.l = {v E V :  (v, u) = 0 for every U E S} 

In particular, for a given vector u in V, we have 

u.l = {v E V :  (v ,  u) = O} 

that is, u.l consists of all vectors in V that are orthogonal to the given vector u. 
We shown that S.l is a substance of V. Clearly 0 E S.l, since 0 is orthogonal to every vector in V. Now 

suppose v, W E S.l . Then, for any scalars a and b and any vector u E S, we have 

(av + bw, u) = a (v ,  u) + b (w, u) = a . 0 + b . 0 = 0 

Thus av + bw E S.l, and therefore S.l is a subspace of V. 
We state this result formally. 

Proposition 7.3 : Let S be a subset of a vector space V. Then S.l is a subspace of V. 
Remark 1 .  Suppose u is a nonzero vector in R3 . Then there is a geometrical description of u.l . 

Specifically, u.l is the plane in R3 through the origin 0 and perpendicular to the vector u. This is shown 
in Fig. 7-2. 

��--.,..""--- \" 

01thogonai Comp l ement ,,1. 

Fig. 7-2 

Remark 2: Let W be the solution space of an m x n homogeneous system AX = 0, where A = [aij] 
and X = [xJ Recall that W may be viewed as the kernel of the linear mapping A :  Rn --+ Rm . Now we can 
give another interpretation of W using the notion of orthogonality. Specifically, each solution vector 
w = (Xl ' X2 ' . • .  , xn) is orthogonal to each row of A; and hence W is the orthogonal complement of the row 
space of A .  
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Note that u-L consists of all vectors w = (x, y, z) such that (u , w) = 0, or x + 3y - 4z = O. The free variables 
are y and z. 

( 1 )  Set y = 1 ,  z = 0 to  obtain the solution wI = (-3 , 1 , 0). 
(2) Set y = 0, z = 1 to obtain the solution WI = (4 , 0, 1 ) .  

The vectors wI and Wz form a basis for the solution space of the equation, and hence a basis for u-L. 
Suppose W is a subspace of V. Then both W and W.l are subspaces of V. The next theorem, whose 

proof (Problem 7 .28) requires results of later sections, is a basic result in linear algebra. 

Theorem 7.4 : Let W be a subspace of V. Then V is the direct sum of W and W.l, that is, V = W EB  W.l . 

7.6 ORTHOGONAL SETS AND BASES 

Consider a set S = {u 1 , u2 ' . . .  , ur } of nonzero vectors in an inner product space V. S is called 
orthogonal if each pair of vectors in S are orthogonal, and S is called orthonormal if S is orthogonal and 
each vector in S has unit length. That is : 

(i) Orthogonal: (Ui , Uj ) = 0 for i i= j 
( o o )  0 h I' ( ) _ { O for i i= j 

11 rt onorma . Ui ' Uj - 1 fi . . or 1 = ] 

Normalizing an orthogonal set S refers to the process of multiplying each vector in S by the reciprocal of 
its length in order to transform S into an orthonormal set of vectors . 

The following theorems apply. 

Theorem 7.5: Suppose S is an orthogonal set of nonzero vectors. Then S is linearly independent. 

Theorem 7.6: (Pythagoras) Suppose {u ] , U2 " ' "  ur } is an orthogonal set of vectors . Then 

These theorems are proved in Problems 7 . 1 5  and 7 . 1 6, respectively. Here we prove the Pythagorean 
theorem in the special and familiar case for two vectors . Specifically, suppose (u , v) = O. Then 

I l u + V l l 2 = (u + v, U + v) = (u ,  u) + 2 (u ,  v) + (v ,  v) = (u , u) + (v ,  v) = I I u I I 2 + I I v l 1 2 

which gives our result. 

Example 7.9 
(a) Let E = {el , ez , e3 } = { ( 1 , 0, 0) , (0, 1 , 0) , (0, 0, l ) }  be the usual basis of Euclidean space R3 . It is clear that 

and 

Namely, E is an orthonormal basis of R3 . More generally, the usual basis of Rn is orthonormal for every n. 
(b) Let V = C[ - n ,  n] be the vector space of continuous functions on the interval -n ::::: t ::::: n with inner product 

defined by (j ,  g) = D,,/(t)g(t) dt. Then the following is a classical example of an orthogonal set in V: 

{ l , cos t, cos 2t, cos 3 t, . . .  , sin t, sin 2t, sin 3t, . . .  } 
This orthogonal set plays a fundamental role in the theory of Fourier series. 
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Orthogonal Basis and Linear Combinations, Fourier Coefficients 

Let S consist of the following three vectors in R3 : 

UI = ( 1 , 2 , 1 ) ,  U2 = (2 , 1 , -4) , U3 = (3 , -2 , 1 )  

© The McGraw-Hili 
Companies, 2004 

[CHAP. 7 

The reader can verify that the vectors are orthogonal; hence they are linearly independent. Thus S is an 
orthogonal basis of R3 , 

Suppose we want to write v = (7 , 1 ,  9) as a linear combination of UI ' U2 ' u3 ' First we set v as a linear 
combination of UI ' U2 ' U3 using unknowns XI ' X2 ' X3 as follows : 

or (7 , 1 , 9) = xI ( l ,  2 , 1 ) + x2(2 , 1 ,  -4) + x3 (3 , -2 , 1 )  (*) 
We can proceed in two ways. 

Method 1 :  Expand (*) (as in Chapter 3 )  to obtain the system 

Solve the system by Gaussian elimination to obtain XI = 3, X2 = - 1 ,  x3 = 2. Thus 
v = 3u I - U2 + 2u3 ' 

Method 2 :  (This method uses the fact that the basis vectors are orthogonal, and the arithmetic i s  much 
simpler.) If we take the inner product of each side of (*) with respect to Ui' we get 

or or 
(v ,  Ui) x · = --, (ui , ui ) 

Here two terms drop out, since U I , U2 ' U3 are orthogonal. Accordingly, 

Thus, again, we get v = 3uI - U2 + 2u3 ' 

The procedure in Method 2 is true in general. Namely, we have the following theorem (proved in 
Problem 7 . 1 7) .  

Theorem 7.7: Let {u I ' U2 " ' "  un } be an orthogonal basis of V. Then, for any v E V, 

Remark: The scalar ki == 
(v ,  ui )  

is  called the Fourier coefficient of v with respect to Ui '  since i t  is  
(ui , ui )  

analogous to  a coefficient in the Fourier series of a function. This scalar also has a geometric interpretation, 
which is discussed below. 
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Let V be an inner product space. Suppose W is a given nonzero vector in V, and suppose v is another 
vector. We seek the "projection of v along w",  which, as indicated in Fig. 7-3 (a), will be the multiple cw of 
W such that Vi = v - cw is orthogonal to w. This means 

(v - cw, w) = 0 or (v ,  w) - c(w, w) = 0 or 

v 

(v ,  w) c = --
(w, w) 

p 

v � proj (v, W) 

V- cw o�------------� 
proj (v. W) 

(til 
Fig. 7-3 

Accordingly, the projection of v along w is denoted and defined by 

. ( 
(v ,  w) 

pro] v, w) = cw = -- w 
(w, w) 

(IJ) 

w 

Such a scalar c is unique, and it is called the Fourier coefficient of v with respect to w or the component of v 
along w. 

The above notion is generalized as follows (see Problem 7 .2 .5) .  

Theorem 7.8: Suppose WI , W2 , . . .  , Wr form an orthogonal set of nonzero vectors in V. Let v be any 
vector in V. Define 

where 

Then Vi is orthogonal to WI , W2 , . . .  , W r ' 

Note that each Ci in the above theorem is the component (Fourier coefficient) of v along the given Wi ' 

Remark: The notion of the projection of a vector v E V along a subspace W of V is defined as 
follows. By Theorem 7 .4, V = W E9 W-L . Hence v may be expressed uniquely in the form 

v = w + Wi , where w E W and w' E W-L 

We define w to be the projection of v along W, and denote it by proj (v ,  W), as pictured in Fig. 7-2(b) .  In 
particular, if W = span(wI ' W2 , . . .  , wr), where the Wi form an orthogonal set, then 

proj (v ,  W) = CIWI + C2W2 + . . .  + crwr 
Here Ci is the component of v along Wi' as above. 
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Suppose {V I ' V2 , , . .  , Vn } is a basis of an inner product space V. One can use this basis to construct an 
orthogonal basis {wI ' W2 " ' "  wn } of V as follows. Set 

(V2 , WI ) W2 = v2 - WI (WI , WI ) 
(v3 ' wI ) (v3 ' w2 ) w3 = v3 - WI - W2 (wI ' wI ) (w2 ' w2 ) 

(Vn ' wI ) (vn ' w2 ) (vn ' Wn_ I ) wn = vn - 1 WI - W2 - . . .  - wn I (wI ' wI ) (w2 ' w2 ) (wn- I , wn- I ) -

In other words, for k = 2 , 3 ,  . . .  , n, we define 

where c/d = (Vk , Wi )  / (Wi ' Wi )  is the component of Vk along Wi ' By Theorem 7 .8 ,  each wk is orthogonal to 
the preceeding w's .  Thus WI , W2 , " " wn form an orthogonal basis for V as claimed. Normalizing each Wi 
will then yield an orthonormal basis for V. 

The above construction is known as the Gram-Schmidt orthogonalization process. The following 
remarks are in order. 

Remark 1 :  Each vector Wk is a linear combination of Vk and the preceding w's .  Hence one can easily 
show, by induction, that each Wk is a linear combination of vI ' v2 ' . . .  , vn . 

Remark 2 :  Since taking multiples of vectors does not affect orthgonality, it may be simpler in hand 
calculations to clear fractions in any new w'" by multiplying Wk by an appropriate scalar, before obtaining 
the next wk+I ' 

Remark 3 :  Suppose U I , U2 ' . . .  ' Ur are linearly independent, and so they form a basis for 
U = span(uJ Applying the Gram-Schmidt orthogonalization process to the u 's yields an orthogonal 
basis for U. 

The following theorem (proved in Problems 7 .26 and 7 .27) use the above algorithm and remarks. 

Theorem 7.9 : Let {V I ' V2 , . . .  , vn } by any basis of an inner product space V. Then there exists an 
orthonormal basis {U I ' U2 ' . . .  , un } of V such that the change-of-basis matrix from {vJ to 
{ui } is triangular, that is, for k = 1 ,  . . .  , n, 

Uk = akl VI + ak2 v2 + . . .  + akkvk 

Theorem 7.10:  Suppose S = {WI ' W2 ' . . .  , wr } is an orthogonal basis for a subspace W of a vector space 
V. Then one may extend S to an orthogonal basis for V, that is, one may find vectors 
wr+I " ' "  Wn such that {WI ' W2 " ' "  wn } is an orthogonal basis for V. 

Example 7.10. Apply the Gram-Schmidt orthogonalization process to find an orthogonal basis and then an orthonormal 
basis for the subspace U of R4 spanned by 

VI = ( 1 , 1 , 1 , 1 ) ,  V2 = ( 1 , 2 , 4 , 5) , V3 = ( I ,  -3, -4, -2) 
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( 1 )  First set wI = VI = ( 1 , 1 , 1 , 1 ) .  (2) Compute 

Set w2 = (-2 , - 1 , 1 , 2). 
(3) Compute 

Clear fractions to obtain W3 = (-6, - 1 7 ,  - 1 3 , 14) .  
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Thus WI ' W2 , w3 form an orthogonal basis for U. Normalize these vectors to obtain an orthonormal basis 
{UI ' U2 , U3 } of U. We have I IWI I 1 2 = 4, I I W2 1 1 2 = 1 0, I I w3 1 1 2 = 9 1 0, so 

1 1 UI = - ( I ,  I ,  I ,  I ) ,  U2 = fiI\(-2, - I ,  1 , 2) , 2 v l O 
1 u3 = t'ni"n (I6 ,  - 1 7 , - 1 3 , 14) 

v 9 1 0  

Example 7.11. Let V be the vector space o f  polynomials J(t) with inner product ( f, g )  = f� IJ(t)g(t) dt. Apply the 
Gram-Schmidt orthogonalization process to { I ,  P ,  p }  to find an orthogonal basis { fo ,fi ,fi ,h}  with integer coefficients for 
P3 (t) . 

Here we use the fact that, for r + s = n, 

( 1 )  First setfo = 1 .  

( t' , t') = J I (' dt = ('+1 
I
I 

= { 2/(n + I ) when n is even 

- I n + 1 - I 0 when n is odd 

(t , I ) (2) Compute t = -
1
-

1
- (1 )  = t - 0 = t. Setfi = t . ( , ) 

(3) Compute 

r _ (t2 , I ) ( I )  _ (t2 , t) (t) = r _ i ( I )  + OCt) = t2 _ ! ( 1 , 1 ) (t , t) 2 3 
Multiply by 3 to obtainJ2 = 3t2 = 1 .  

(4) Compute 

t3 _ (p , I ) ( 1 )  _ (t3 , t) (t) _ (t3 , 3P - I ) (3r _ I )  ( I , I ) ( t, t) (3 t2 - I , 3 t2 - I ) 2 
= t3 - 0( 1 )  - � (t) - 0(3r - 1) = t3 - � t  

3" 
Multiply by 5 to obtainJ3 = 5t3 - 3t. 

Thus { I ,  t, 3t2 - 1 , 5t3 - 3t} is the required orthogonal basis. 

Remark: Normalizing the polynomials in Example 7 . 1 1  so that p( l ) = 1 yields the polynomials 

1 ,  t, ! (3r - 1 ) ,  ! (5P - 3t) 

These are the first four Legendre polynomials, which appear in the study of differential equations. 

7.8 ORTHOGONAL AND POSITIVE DEFINITE MATRICES 

This section discusses two types of matrices that are closely related to real inner product spaces V. 
Here vectors in Rn will be represented by column vectors. Thus (u ,  v) = uT v denotes the inner product in 
Euclidean space Rn . 
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A real matrix P is orthogonal if P is non-singular and p-i = pT, or, in other words, if 
ppT = pT P = I. First we recall (Theorem 2 .6) an important characterization of such matrices. 

Theorem 7.1 1 :  Let P b e  a real matrix. Then the following are equivalent: (a) P i s  orthogonal; (b) the 
rows of P form an orthonormal set; (e) the columns of P form an orthonormal set. 

(This theorem is true only using the usual inner product on Rn . It is not true if Rn is given any other 
inner product.) 

Example 7.12. [ 1 /v'3 1 /v'3 1 /v'3 ] 
(a) Let P = 0 1 /.fi 1 /.fi . The rows of P are orthogonal to each other and are unit vectors. Thus P 

2/..(6 - 1 /..(6 - 1 /..(6 
is an orthogonal matrix. 

(b) Let P be a 2 x 2 orthogonal marix. Then, for some real number e, we have 

P = [ cos e sin e J - sin e cos e or P = [ c�s e sin e J sm e - cos e 

The following two theorems (proved in Problems 7 .37  and 7 . 38) show important relationships between 
orthogonal matrices and orthonormal bases of a real inner product space V. 
Theorem 7.12:  Suppose E = {e ;} and E' = {e; } are orthonormal bases of V. Let P be the change-of-basis 

matrix from the basis E to the basis E' . Then P is orthogonal. 

Theorem 7.13 : Let {el , . . .  , en } be an orthonormal basis of an inner product space V. Let P = [aij] be an 
orthogonal matrix. Then the following n vectors form an orthonormal basis for V: 

i = 1 , 2 , . . .  , n 

Positive Definite Matrices 

Let A be a real symmetric matrix, that is, AT = A .  Then A is said to be positive definite if, for every 
nonzero vector u in Rn, 

(u, Au) = uT Au > 0 

Algorithms to decide whether or not a matrix A is positive definite will be given in Chapter 1 2 .  However, 
for 2 x 2 matrices, we have simple criteria, which we state formally in the following theorem (proved in 
Problem 7.43) .  

Theorem 7.14:  A 2 x 2 real symmetric matrix A = [ � � ] = [ � � ] is positive definite if and only 

if the diagonal entries a and d are positive and the determinant IA I = ad - be = ad - b2 
is positive. 

Example 7.13. Consider the following symmetric matrices :  

[ 1 -2 J B = 
-2 -3 ' c = [ 1 -2 J 

-2 5 

Then A is not positive definite, since IA I = 4 - 9 = -5 is negative. B is not positive definite, since the diagonal entry 
-3 is negative. However, C is positive definite, since the diagonal entries 1 and 5 are positive, and the determinant 
I CI = 5 - 4 = 1 is also positive. 
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The following theorem (proved in Problem 7 .44) holds. 
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Theorem 7.15:  Let A be a real positive definite matrix. Then the function (u , v) = uT Av is an inner 
product on Rn . 

Matrix Representation of an Inner Product 

Theorem 7 . 1 5  says that every positive definite matrix A determines an inner product on Rn . This 
subsection may be viewed as giving the converse of this result. 

Let V be a real inner product space with basis S = {U l ' U2 ' . . .  , u
n
} .  The matrix 

where 

is called the matrix representation of the inner product on V relative to the basis S. 
Observe that A is symmetric, since the inner product is symmetric, that is, (Ui , u) = (uf ' Ui ) ' Also, A 

depends on both the inner product on V and the basis S for V. Moreover, if S is an orthogonal basis, then A 
is diagonal, and if S is an orthonormal basis, then A is the identity matrix. 

Example 7.14. The vectors u, = (1 , 1 , 0), u2 = ( 1 , 2 , 3), u3 = (1 , 3 , 5) form a basis S for Euclidean space R3 . Find the 
matrix A that represents the inner product in R3 relative to this basis S. 

First compute each (Ui , u) to obtain 

(u " u, ) = 1 + 1 + 0 = 2 , 
(u2 , u2 ) = 1 + 4 + 9 = 14 ,  

(u" U2 ) = 1 + 2 + 0 = 3 ,  
(u2 ' u3 ) = 1 + 6 + 1 5  = 22, [ 2 3 4 ] 

Then A = 3 1 4  22 . As expected, A is symmetric. 
4 22 35 

(u " u3 ) = 1 + 3 + 0 = 4 
(u3 , u3 ) = 1 + 9 + 25 = 35 

The following theorems (proved in Problems 7.45 and 7 .46, respectively) hold. 

Theorem 7.16: Let A be the matrix representation of an inner product relative to basis S for V. Then, for 
any vectors u, v E V, we have 

(U,  v) = [uf A[v] 

where [u] and [v] denote the (column) coordinate vectors relative to the basis S. 

Theorem 7.17: Let A be the matrix representation of any inner product on V. Then A is a positive definite 
matrix. 

7.9 COMPLEX INNER PRODUCT SPACES 

This section considers vector spaces over the complex field C. First we recall some properties of the 
complex numbers (Section 1 .7), especially the relations between a complex number Z = a + bi, where 
a, b E R, and its complex conjugate z = a - bi: 

Iz l = J a2 + b2 , Zl + Z2 = Zl + Z2 Z = Z 
Also, Z is real if and only if z = z. 

The following definition applies. 
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Definition: Let V be a vector space over C. Suppose to each pair of vectors, u, v E V there is assigned a 
complex number, denoted by (u , v) , This function is called a (complex) inner product on V if 
it satisfies the following axioms: 

[It] (Linear Property) (aul + bU2 ' v) = a (u I ' v) + b(U2 ' v) 
[Ii] (Conjugate Symmetric Property) (u ,  v) = (v ,  u) 
[Ir] (Positive Definite Property) (u , u) :::: 0; and (u ,  u) = 0 if and only if u = 0 ,  

The vector space V over C with an inner product is called a (complex) inner product space. 
Observe that a complex inner product differs from the real case only in the second aniom [I�] .  
Axiom [It] (Linear Property) is equivalent to the two conditions: 

(a) (u I + u2 , v) = (uI , v) + (u2 , v) ,  

On the other hand, applying [m and [I�], we obtain 

(b) (ku, v) = k(u , v) 

(u , kv) = (kv, u) = k(v ,  u) = k (v , u) = k (u, v) 

That is, we must take the conjugate of a complex number when it is taken out of the second position of a 
complex inner product. In fact (problem 7 .47), the inner product is conjugate linear in the second position, 
that is, 

(u , aV I + bV2 ) = a (u ,  V I ) + b (u ,  v2 ) 

Combining linear in the first position and conjugate linear in the second position, we obtain, by induction, 

/ L
,. 

aiui ' L bjVj) = L aJij(ui ' v) \ j ij 

The following remarks are in order. 

Remark 1 :  Axiom [It] by itself implies that (0 , 0) = (Ov, 0) = O (v , 0) = O. Accordingly, [It] ,  [Ii] ,  
and [Ir] are equivalent to [It] , [I�], and the following axiom: 

[Ir'] If u i= 0, then (u , u) > O .  

That is, a function satisfying [Id, [Ii], and [Ir'] i s  a (complex) inner product on  V. 
Remark 2 :  By [In (u, u) = (u, u) . Thus (u , u) must be real . By [In (u, u) must be nonnegative, 

and hence its positive real square root exists. As with real inner product spaces, we define I l u l l  = .J7:ii:U) to 
be the norm or length of u. 

Remark 3 :  Besides the norm, we define the notions of orthogonality, orthogonal complement, and 
orthogonal and orthonormal sets as before. In fact, the definitions of distance and Fourier coefficient and 
projections are the same as in the real case. 

Example 7.15. (Complex Euclidean Space en). Let V = en , and let U = (zi) and v = (Wi) be vectors in en . Then 

(u , v) = I>kWk = ZIWj + z2w2 + . . .  + znwn k 
is an inner product on V, called the usual or standard inner product on en . V with this inner product is called 
Complex Euclidean Space. We assume this inner product on en unless otherwise stated or implied. Assuming u and v 
are colunm vectors, the above inner product may be defined by 

(u , v) = uTv 
where, as with matrices, v means the conjugate of each element of v. If u and v are real, we have Wi = Wi' In this case, 
the inner product reduced to the analogous one on Rn . 
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(a) Let V be the vector space of complex continuous functions on the (real) interval a :::: t :::: b. Then the following is 
the usual inner product on V: 

( f, g) = 1: f(t)g(t) dt 
(b) Let U be the vector space ofm x n matrices over c' Suppose A = (zij) and B = (wij) are elements of U. Then the 

following is the usual inner product on U: 

(A , B) = tr(sHA) = f t WijZij 
i= l j=l 

As usual, BH = iF, that is, BH is the conjugate transpose of B. 

The following is a list of theorems for complex inner product spaces that are analogous to those for the 
real case. Here a Hermitian matrix A (i .e . ,  one where AH = AT = A) plays the same role that a symmetric 
matrix A (i .e . ,  one where AT = A) plays in the real case. (Theorem 7 . 1 8  is proved in Problem 7 .50 . )  

Theorem 7.18:  (Cauchy-Schwarz) Let V be a complex inner product space. Then 

l {u , v} 1 S l I u l l l l v l l  

Theorem 7.19: Let W be a subspace of a complex inner product space V. Then V = W EB  W-L . 

Theorem 7.20: Suppose {U l , u2 , " " un } is a basis for a complex inner product space V. Then, for any 
v E V, 

Theorem 7.2 1 :  Suppose {U l , U2 , . . .  , un } i s  a basis for a complex inner product space V. Let A = [aij] be 
the complex matrix defined by aij = {Ui , Uj } .  Then, for any u, v E V, 

{u ,  v} = [uf A[v] 
where [u] and [v] are the coordinate column vectors in the given basis {ui } .  (Remark: This 
matrix A is said to represent the inner product on V.) 

Theorem 7.22 : Let A be a Hermitian matrix (i .e . ,  AH = AT = A) such that XT AX is real and positive for 
every nonzero vector X E Cn. Then {u ,  v} = uT Ajj is an inner product on Cn • 

Theorem 7.23 : Let A be the matrix that represents an inner product on V. Then A is Hermitian, and 
XT AX is real and positive for any nonzero vector in Cn . 

7.10 NORMED VECTOR SPACES (OPTIONAL) 

We begin with a definition. 

Definition:  Let V be a real or complex vector space. Suppose to each v E V there is assigned a real 
number, denoted by I l v l l . This function II . I I  i s  called a norm on V if  i t  satisfies the following 
axioms: 

[NI l I I v l l  � 0; and I I v l l  = 0 if and only if v = o .  
[N2] I I kv l l  = I k l l l v i l . 
[N3 ] l I u + v I I  s I l u l l  + I l v l l . 

A vector space V with a norm is called a normed vector space. 
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Suppose V is a normed vector space, The distance between two vectors u and v in V is denoted and 
defined by 

d(u, v) = l I u - v i i  
The following theorem (proved in  Problem 7 .56) is the main reason why d(u, v )  i s  called the distance 
between u and v. 

Theorem 7.24 : Let V be a normed vector space. Then the function d(u , v) = I l u - v i i  satisfies the 
following three axioms of a matric space: 

[Md d(u , v) :::: 0; and d(u, v) = 0 if and only if u = v. 
[M2l d(u , v) = d(v, u) . 
[M3 l d(u , v) :::: d(u, w) + d(w, v) . 

Normed Vector Spaces and Inner Product Spaces 

Suppose V is an inner product space. Recall that the norm of a vector v in V is defined by 

I l v l l  = J(V,V} 
One can prove (Theorem 7.2) that this norm does satisfY [NI l [N2l , and [N3 l . Thus every inner product 
space V is a normed vector space. On the other hand, there may be norms on a vector space V that do not 
come from an inner product on V, as shown below. 

Norms on Rn and en 

The following define three important norms on Rn and en : 
I I (a l " ' "  an) l loo  = max( l ai l ) 
I I (a l " ' "  an) 1 1 1 = l a l l  + l a2 1  + . . .  + l an l 
I I (a l " ' "  an) 1 1 2  = j l a l 1 2 + l a2 1 2 + . . .  + l an l 2 

(Note that subscripts are used to distinguish between the three norms.) The norms II . II 00 '  II . I I I , and I I  . 1 1 2  
are called the infinity-norm, one-norm, and two-norm, respectively. Observe that I I  . 1 1 2  i s  the norm on  Rn 
(respectively, en) induced by the usual inner product on Rn (respectively, en) . We will let doo ' dJ o d2 
denote the corresponding distance functions. 

Example 7.17. Consider vectors u = ( 1 , - 5 , 3) and v = (4 , 2 ,  -3) in R3 . 

(a) The infinity norm chooses the maximum of the absolute values of the components. Hence 

l I u l ioo  = 5 and I I v l loo = 4 
(b) The one-norm adds the absolute values of the components. Thus 

l I u l l l = I + 5 + 3  = 9 and 

(c) The two-norm is equal to the square root of the sum of the squares of the components (i .e . ,  the norm induced by 
the usual inner product on R3 ). Thus 

I I u l 1 2 = .Jl + 25 + 9 = 55 and I I v l l l = .J16  + 4 + 9 = .J29 
(d) Since u - v = (1 - 4, -5 - 2, 3 + 3) = (-3 , -7 , 6), we have 

doo(u, v) = 7, dj (u, v) = 3 + 7 + 6 = 1 6 , d2(u , v) = .J9 + 49 + 36 = .J94 
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(a) Let D! be the set of points u = (x, y) in R2 such that I l u ib = 1 . Then D! consists of the points (x, y) such that 
I l u i l i = xl + r = 1 . Thus D! is the unit circle, as shown in Fig. 7-4. 

y 

--�----------�--------�--� x 

Fig. 7-4 

(b) Let D2 be the set of points u = (x, y) in R2 such that I l u l l ! = 1 . Then D! consists of the points (x, y) such that 
I l u l l ! = Ix l  + Iy l  = 1 . Thus D2 is the diamond inside the unit circle, as shown in Fig. 7-3 . 

(c) Let D3 be the set of points u = (x, y) in R2 such that I l u l loo = 1 . Then D3 consists of the points (x, y) such that 
l I u l ioo  = max( lx l ,  Iy l ) = 1 . Thus D3 is the square circumscribing the unit circle, as shown in Fig. 7-3 . 

Norms on era , b] 

Consider the vector space V = qa,  b] of real continuous functions on the interval a :::: t :::: b. Recall 
that the following defines an inner product on V: 

(f ,  g) = J>(t)g(t) dt 

Accordingly, the above inner product defines the following norm on V = qa,  b] (which is analogous to 
the II . 1 1 2  norm on  Rn) : 

I If l l 2 = r [f(t)f dt 

The following define the other norms on V = qa,  b] : 

I I f l l l = r I f(t) 1 dt and I I  f l loo  = max( 1 f(t) ! ) 

There are geometrical descriptions of these two norms and their corresponding distance functions, which 
are described below. 
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The first nonn is pictured in Fig. 7-5. Here 

, 

11/111 = area between the function III and the I-axis 

dl(f. g) = area between the functionsl and g 

b 

(a) II/Ii! is shaded 
(b) d,(J g) is shaded 

Fig. 7-5 

This nonn is analogous to the nonn II , I l i on Rn, 

The second nonn is pictured in Fig. 7-6, Here 

11/1100 = maximum distance betweenl and the t-axis 

doo(/. g) = maximum distance betweenl and g 

This nonn is analogous to the nonns II ' 1100 on R", 

, 

(a) In", 

lNNER PRODUCTS 

7.1. Expand: 

(a) (Sill + 8112' 6vI - 7v2), 
(b) (311 + Sv. 411 - 6v), 

(c) 11211 - 3vll2 

h 

Fig. 7.{} 

Solved Problems 

/(1) 

(b) d.,(f, g) 

Use linearity in both positions and. when possible. symmetry. (II. v) = (v. II), 

.,' 

¢I The McGraw-H111 

Compames, 2004 

[CHAP, 7 

b 

h 
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(5uI + 8U2 , 6vI - 7V2 ) = (5uI , 6vI ) + (5u I , -7V2 ) + (8U2 , 6vI ) + (8U2 , -7V2 ) 
= 30 (UI , VI ) - 35 (UI , V2 ) + 48 (U2 , VI ) - 56 (U2 , V2 ) 

[Remark: Observe the similarity between the above expansion and the expansion (5a-8b)(6c-7d) in 
ordinary algebra. ] 

(b (3u + 5v, 4u - 6v) = 1 2 (u , u) - 1 8 (u , v) + 20 (v , u) - 20 (v , v) 
= 12 (u , u) + 2 (u, v) - 30 (v , v) 

(c) 1 1 2u - 3v l l 2 = (2u - 3v, 2u - 3v) = 4 (u, u) - 6 (u, v) - 6 (v , u) + 9 (v , v) 
= 4 1 1 u l 1 2 - 12(u , v) + 9 1 1 v l l 2 

7.2. Consider vectors u = ( 1 , 2 , 5) ,  v = (2 , -3 , 5), w = (4 , 2 , -3) in R3 , Find: 

(a) U · v, (b) U · w, (c) V · w, (d) (u + v) · w, (e) l I u l l , ( f)  I I v l l , 
(a) Multiply corresponding components and add to get U · v = 2 - 6 + 20 = 16 . 
(b) U · W = 4 + 4 - 12 = -4. 
(c) v · w = 8 - 6 - 1 5 = - 1 3 . 
(d) First find u + v = (3 , - 1 , 9). Then (u + v) · w = 1 2 - 2 - 27 = - 1 7. Alternatively, using [Id, 

(u + v) · w = U · W + V · w = -4 - 13 = - 1 7 . 
(e) First find I I u l l 2 by squaring the components of u and adding: 

(f) I I v l 1 2 = 4 + 9 + 25 = 38 , and so I I v l l = -J38. 

7.3. VerifY that the following defines an inner product in R2 : 

where 

and so 

u = (XI , X2) , v = (YI , Y2) 
We argue via matrices. We can write (u , v) in matrix notation as follows: 

T [ 1 (u, v) = u Av = [XI , X2] - I  
Since A i s  real and symmetric, we need only show that A is positive definite. The diagonal elements I and 3 
are positive, and the determinant I IA I I = 3 - 1 = 2 is positive. Thus, by Theorem 7. 14 , A is positive definite. 
Accordingly, by Theorem 7 . 1 5 , (u, v) is an inner product. 

7.4. Consider the vectors u = ( 1 ,  5) and v = (3 , 4) in R2 . Find: 

(a) (u , v) with respect to the usual inner product in R2 . 
(b) (u, v) with respect to the inner product in R2 in Problem 7 . 3 .  
(c) I I v l l  using the usual inner product in R2 . 
(d) I l v l l  using the inner product in R2 in Problem 7 . 3 .  

(a) (u, v) = 3 + 20 = 23 . 
(b) (u, v) = 1 · 3 - 1 · 4 - 5 · 3  + 3 · 5 · 4 = 3 - 4 - 1 5 + 60 = 44. 
(c) I I v l 1 2 = (v, v) = ((3 , 4) , (3 , 4)) = 9 + 1 6 = 25 ; hence I v l l = 5 . 
(d) I I v l l 2 = (v, v) = ((3 , 4) , (3 , 4)) = 9 - 1 2 - 1 2 + 48 = 33 ; hence I l v l l = .JTI. 
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7.5. Consider the following polynomials in pet) with the inner product { j, g} = f� f(t)g(t) dt: 

f(t) = t + 2 ,  get) = 3t  - 2 ,  h(t) = ? - 2t - 3 

(a) Find { j, g} and { j, h} .  
(b) Find I l f l l  and I lg l l . 
(c) Normalize f and g. 

(a) Integrate as follows: 

( f, g) = f(t + 2)(3 t - 2) dt =  f(3r + 4t - 4) dt = (P + 2r - 4t) l � = - 1  

( f, h) = J I 
(t + 2)(t2 - 2 t  - 3 )  dt = (� _ 7t

2 
_ 6t) I

I 
= _ 3 7  o 4 2 0 4 

(b) (f,f) = f� (t + 2)(t + 2) dt = 1f; hence I I I I I = f# = t 47  

(g, g) = J� (3 t - 2)(3t - 2) = 1 ;  hence I Ig l l = ,JT = 1 

(c) Since II I I I = t 47 and g is already a unit vector, we have 
, I 3 I = VII I = 47 

(t + 2) 

7.6. Find cos 8 where 8 is the angle between: 

(a) u = ( 1 , 3 , - 5 , 4) and v = (2 , -43 , 4 , 1 )  in R4, 

and g = g = 3t - 2 

(b) A = [ � � � ] and B = [ ! � � ] where {A , B} = tr(BT A) .  

{u ,  v} 
Use cos 8 = MM 

(a) Compute: 

(u, v) = 2 - 9 - 20 + 4 = -23 , l I u l l 2 = 1 + 9 + 25 + 1 6 = 5 1 ,  I I v l l 2 = 4 + 9 + 1 6 + I = 30 

Thus -23 cos () = .J5T.J36 -23 
3.JT70 

(b) Use (A , B) = tr(BT A) = L::I L;=I aijbij , the sum of the products of corresponding entries. 

(A , B) = 9 + 16 + 2 1 + 24 + 25 + 24 = 1 1 9 
Use I IA 1 1 2 = (A , A) = L::I L;=I a� , the sum of the squares of all the elements of A. 

Thus 

I IA I I 2 = (A , A) = 92 + 82 + 72 + 62 + 52 + 42 = 27 1 ,  and so I IA I I = ,J27T 
and so I IB I I = .J9T 

1 1 9 cos () = -==--= ,J27T.J9T 
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7.7. Verify each of the following: 

(a) Parallelogram Law (Fig, 7-7): I l u + V l l 2 + I l u - v l 1 2 = 2 1 1 u l l 2 + 2 1 1 v 1 l 2 . 
(b) Polar form for (u , v) (which shows the inner product can be obtained from the norm function) : 

Expand as follows to obtain: 

l I u + v l l 2 = (u + v, u + v) = l I u l 1 2 + 2 (u , v) + I I v l l 2 

l I u - v l l 2 = (u - v, u - v) = l I u l 1 2 - 2 (u, v) + I I v l l 2 

Add ( 1 )  and (2) to get the Parallelogram Law (a) . Subtract (2) from ( 1 )  to obtain 

I l u + v l l 2 - I l u - v l 1 2 = 4 (u, v) 
Divide by 4 to obtain the (real) polar form (b). 

u 

Fig. 7-7 

7.8. Prove Theorem 7 . 1 (Cauchy-Schwarz) : For u and v in a real inner product space V, 

(u , u) 2 ::o (u, u) (v , v) or l (u , v) I ::o  l I u l l l l v l l . 
For any real number t, 

(tu + v, tu + v) = r (u, u) + 2t (u , v) + (v , v) = t2 1 1 u l 1 2 + 2t (u , v) + I I v l l 2 

Let a = l I u l l 2 , b = 2 (u ,  v), c = I I v 1 1 2 . Since I I tu + v l 1 2 ::: 0, we have 

ar + bt + c ::: 0 

( 1 ) 
(2) 

for every value of t. This means that the quadratic polynomial cannot have two real roots, which implies that 
b2 - 4ac ::0 0 or b2 ::0 4ac. Thus 

Dividing by 4 gives our result. 

7.9. Prove Theorem 7 .2 :  The norm in an inner product space V satisfies: 

(a) [NI l I l v l l  :::: 0; and I l v l l  = 0 if and only if v = o .  
(b) [NI l I l kv l l  = I k l l l v i l . 
(c) [N3] l I u + v I I  :::: l I u l l  + I l v l l · 

(a) If v i- 0, then (v, v) > 0 and hence I l v l l  = � > O. If v = 0, then (0 , 0) = O. Consequently 
1 1 0 1 1  = .JO = O. Thus [NI ] is true. 

(b) We have I I kv l l 2 = (kv, v) = k2 (v , v) = k2 1 1 v 1 1 2 . Taking the square root of both sides gives [N2] '  
(c) Using the Cauchy-Schwarz inequality, we obtain 

l I u + v l 1 2 = (u + v, u + v) = (u , u) + (u , v) + (u ,  v) + (v , v) 
::0 l I u l l 2 + 2 1 1 u l l l l v i l  + I I v l l 2 = ( I l u l l  + I I v l li 

Taking the square root of both sides yields [N3 ] '  
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ORTHOGONALITY, ORTHONORMAL COMPLEMENTS, ORTHOGONAL SETS 
7.10. Find k so that u = ( 1 , 2 ,  k, 3) and v = (3 , k, 7, -5) in R4 are orthogonal. 

First find 
(U , v) = ( 1 , 2 , k, 3) . (3 , k, 7, -5) = 3 + 2k + 7k - 1 5 = 9k - 12 

Then set (u , v )  = 9k - 12 = 0 to obtain k = 1-

7.1 1 .  Let W be the substance of R5 spanned by u = ( 1 , 2 , 3 , - 1 , 2) and v = (2 , 4 , 7 , 2 , - 1 ) .  Find a 
basis of the orthogonal complement W-L of W. 

We seek all vectors W = (x, y, z, s, t) such that 

(w, u) = x + 2y + 3z - s + 2t = 0 
(w, v) = 2x + 4y + 7z + 2s - t = 0 

Eliminating x from the second equation, we find the equivalent system 

x + 2y + 3z - s + 2t = 0 
z + 4s - 5t = 0 

The free variables are y, s, and t. Therefore 

( 1 ) Set y = -1 , s = 0 , t = 0 to obtain the solution W I  = (2 , - 1 , 0 , 0 , 0). 
(2) Set y = 0, s = 1, t = 0 to find the solution W2 = ( 1 3 ,  0 , -4, 1 , 0). 
(3) Set y = 0, s = 0, t = 1 to obtain the solution w3 = (- 17 , 0 , 5 , 0 , 1) . 

The set {WI , w2 , w3 } is a basis of W.l . 

7.12. Let w = ( 1 , 2 , 3 , 1 )  be a vector in R4 . Find an orthogonal basis for w-L. 
Find a nonzero solution of x + 2y + 3z + t = 0, say VI = (0, 0 , 1 , -3). Now find a nonzero solution of 

the system 

x + 2y + 3z + t = 0, z - 3t = 0 
say V2 = (0, -5 , 3 , 1 ). Lastly, find a nonzero solution of the system 

x + 2y + 3z + t = 0, -5y + 3z + t = 0, 
say V3 = (-14, 2 , 3 , 1 ). Thus VI , Vb V3 form an orthogonal basis for w.l. 

7.13. Let S consist of the following vectors in R4 : 

z - 3t = 0 

UI = ( 1 ,  1 , 0 ,  - 1 ) ,  U2 = ( 1 , 2 , 1 , 3 ) ,  u3 = ( 1 , 1 ,  -9 , 2) , U4 = ( 1 6 ,  - 1 3 , 1 , 3) 
(a) Show that S is orthogonal and a basis of R4 . 
(b) Find the coordinates of an arbitrary vector v = (a ,  b, c, d) in R4 relative to the basis S. 
(a) Compute 

U I • U2 = 1 + 2 + 0 - 3 = 0, 
U2 • U3 = 1 + 2 - 9 + 6 = 0, 

U I • U3 = 1 + 1 + 0 - 2 = 0 , 
U2 • U4 = 1 6 - 26 + 1 + 9 = 0, 

U I • U4 = 1 6 - 1 3 + 0 - 3 = 0 
U3 • U4 = 1 6 - 1 3 - 9 + 6 = 0 

Thus S is orthogonal, and hence S is linearly independent. Accordingly, S is a basis for R4 since any four 
linearly independent vectors form a basis of R4 . 
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(b) Since S is orthogonal, we need only find the Fourier coefficients of v with respect to the basis vectors, as 
in Theorem 7 .7 .  Thus 

kj = 
(v , Uj )  = a + b - d 
(U j , Uj )  3 

� = (v , u2 ) = a + 2 + c + 3d 
(U2 , U2 ) 1 5  ' 

k3 = (v , u3 ) = a + b  - 9c + 2d 
(u3 , u3 ) 87 

k4 = (v, U4) = l 6a - l 3b + c + 3d 
(U4 , U4 ) 435 

are the coordinates of v with respect to the basis S. 

7.14. Suppose S, SI , S2 are the subsets of V. Prove the following: 

(a) S � SH.  
(b) If SI � S2 , then Sf � Sr . 
(c) sJ.. = span (S)J.. . 

(a) Let W E S. Then (w, v) = 0 for every v E S.l.. ; hence W E SH. Accordingly, S � S.l...l.. . 
(b) Let W E Sf . Then (w, v) = 0 for every v E S2' Since Sj � S2 , (w, v) = 0 for every v = Sj . Thus 

w E St ,  and hence Sf � st . 
(c) Since S � span(S), part (b) gives us span(S).l.. � S. Suppose U E S.l.. and v E span(S) . Then there exist 

Wj , w2 , " " wk in S such that v = ajwj + a2w2 + . . .  + akwk ' Then, using U E S.l.. , we have 

(U , v) = (u , aj Wj + a2w2 + . . .  + akwk) = aj (u , Wj ) + a2 (u , w2 ) + . . .  ak (u , wk) 
= aj (0) + a2 (0) + . . .  ak(O) = 0 

Thus U E span(S).l.. . Accordingly, S.l.. � span(S).l.. . Both inclusions give S.l.. = span(S).l.. . 

7.15. Prove Theorem 7 . 5 :  Suppose S is an orthogonal set of nonzero vectors . Then S is linearly 
independent. 

Suppose S = {Uj , U2 , . . .  , ur } and suppose 

a jU j  + a2u2 + . . .  + arur = 0 

Taking the inner product of ( 1 )  with Uj , we get 

0 =  (0 , Uj )  = (aj uj + a2u2 + . . .  + arur , U j )  
= a j  (Uj , Uj )  + a2 (u2 , Uj )  + . . .  + ar (un Uj )  
= a j  (Uj , Uj ) + a2 . 0 + . . .  + ar . 0 = a j  (Uj , Uj ) 

( 1 )  

Since Uj =1= 0 ,  we have (U j , Uj )  =1= O. Thus aj = O. Similarly, for i = 2 , . . .  , r, taking the inner product o f  ( 1 )  
with Uj , 

o = (0 ,  u;) = (aj Uj + . . .  arun Uj) 
= aj (Uj , Uj ) + . . .  + aj (uj , Uj) + . . .  + ar (ur , Uj ) = aj (uj , Uj ) 

But (Uj , Uj) =1= 0, and hence aj = O. Thus S is linearly independent. 

7.16. Prove Theorem 7 .6  (Pythagoras) : Suppose {U I , u2 , " " ur } is an orthogonal set of vectors . Then 

l I u I + U2 + . . .  + ur l l 2 = l I ud l 2 + I I u2 1 1 2 + . . .  + l I ur l l 2 

Expanding the inner product, we have 

I l u j + U2 + . . .  + ur l l 2 = (U j + U2 + . . .  + un Uj + U2 + . . .  + Ur )  
= (U j , U j )  + (U2 , U2 ) + . . .  + (Ur , Ur) + L(Uj , u) j# 

The theorem follows from the fact that (Uj , Uj) = l I u; I I 2 and (Uj , u) = 0 for i =1= j. 
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7.17. Prove Theorem 7 ,7 :  Let {Uj , U2 , . . .  , un } be an orthogonal basis of V. Then for any v E V, 

(v , U j ) (v ,  U2 ) (v ,  un ) 
V = --- Uj + --- u2 + . . .  + --- un (Uj , U j ) (U2 , U2 ) (Un ' Un ) 

Suppose v = kj Uj + k2U2 + . . .  + knun ' Taking the inner product of both sides with Uj yields 

(v, Uj )  = (kj U2 + k2U2 + . . .  + knun , U j )  
= kj (Uj , U j )  + k2 (U2 , Uj ) + . . .  + kn (un , U j )  
= kj (Uj , U j )  + k2 . 0 + . . .  + kn . 0 = kj (Uj , Uj )  

h k (v , Uj ) S· '1 1 " . 2 T us j = --. Inn ar y, lor I = , . . .  , n, 
(U j , U j ) 

(v , Uj )  = (kj uj + k2U2 + . . .  + knun , Uj) 
= kj (Uj , uj) + k2 (U2 , uj) + . . .  + kn (un , uj) 
= kj · 0 +  . . .  + kj (uj , Uj ) + . . .  + kn . 0 = kj (uj , Uj ) 

Thus kj = (v , uj) . Substituting for kj in the equation U = kj u j + . . .  + knun , we obtain the desired result. 
(U j , Uj ) 

7.18. Suppose E = {ej , e2 , . . .  , en } is an orthonormal basis of V. Prove: 

(a) For any U E V, we have U = {u ,  e] ) e j + {u ,  e2 ) e2 + . . .  + {u ,  en ) ew 
(b) (a j e] + . . .  anen , b ] e j  + . . .  + bnen ) = a jb2 + a2b2 + . . .  + anbw 
(c) For any u, v E V, we have (u , v) = (u , e] ) {v , e] ) + . . .  + (u , en ) {v ,  en ) .  
(a) Suppose U = k] e] + k2e2 + . . .  + knew Taking the inner product of U with eJ o 

(U , el l  = (k] e] + k2e2 + . . .  + knen , el l 
= kj (ej , ej ) + k2 (e2 , ej ) + . . .  + kn (en , ej ) 
= k] ( 1 )  + k2(O) + . . .  + knCO) = k] 

Similarly, for i = 2, . . .  , n, 
(U , ej ) = (kj ej + . . .  + kjej + . . .  + knen , ej) 

= k] (e] , ej) + . . .  + kj (ej , ej) + . . .  + kn (en , ej ) 
= kj (O) + . . .  + k;( l )  + . . .  + kn(O) = kj 

Substituting (u , ej) for kj in the equation U = kj ej + . . .  + knen o we obtain the desired result. 
(b) We have 

But (ej , e) = 0 for i =1= j, and (ej , e) = I for i = j. Hence, as required, 

(� ajej , jt bjej) = � ajbj = aj bj + a2b2 + . . .  + anbn 

(c) By part (a), we have 

and 

Thus, by part (b), 
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7.19. Suppose w -I- 0, Let v be any vector in V. Show that 

(v ,  w) (v ,  w) c - -- - --- (w, w) - I Iw l 1 2 

is the unique scalar such that Vi = v - cw is orthogonal to w. 
In order for Vi to be orthogonal to W we must have 

(v - CW, w) = 0 or (v , w) - c(w, w) = 0 
�, W) �, w) Thus c --. Conversely, suppose c = --. Then 
(w, w) (w, w) 

or (v, w) = c(w, w) 

(v , w) 
(v - cw, w) = (v , w) - c(w, w) = (v , w) - -- (w, w) = 0 

(w, w) 
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7.20. Find the Fourier coefficient c and the projection of v = ( 1 , -2 ,  3 ,  -4) along w = ( 1 , 2 , 1 , 2) in R4 . 

Compute (v , w) = 1 - 4 + 3 - 8 = -8 and I Iw I 1 2 = 1 + 4 + 1 + 4 = 1 0 . Then 

c = - fo = - � and proj(v, w) = cw = (- � , - � ,  - � , - �) 

7.21 .  Consider the subspace U of R4 spanned by the vectors : 

VI = ( 1 , 1 , 1 , 1 ) ,  V2 = ( 1 , 1 , 2 , 4) ,  V3 = ( 1 , 2 , -4 ,  -3) 
Find (a) an orthogonal basis of U; (b) an orthonormal basis of U. 

(a) Use the Gram-Schmidt algorithm. Begin by setting WI = U = ( 1 , 1 , 1 , 1 ) . Next find 
(V2 , WI ) 8 

V2 - --2 WI = ( 1 ,  1 , 2 , 4) - - ( 1 , 1 , 1 , 1 ) = (- 1 ,  - 1 , 0 , 2) 
I I  wI II 4 

Set W2 = (- 1 ,  - 1 , 0 , 2) . Then find 

v _ (V3 , WI ) w _ (V3 , W2 ) w = (1 2  -4 _3) _ (-4) ( 1 1 1 1 ) _ (-9) (_ 1 - 1 0 2) 3 I IWI I 1 2 
I 

I IW2 1 1 2 
2 " , 4 ' , , 6 " , 

= (� , � , -3 , 1 )  

Clear fractions to  obtain W3 = ( 1 , 3 ,  -6, 2) . Then WI , W2 , W3 form an orthogonal basis of  U 
(b) Normalize the orthogonal basis consisting of wj , W2 , W3 ' Since I Iwj l 1 2 = 4, I I W2 1 1 2 = 6, and I IW3 1 1 2 = 50, 

the following vectors form an orthonormal basis of U: 

1 Uj = 2' ( 1 ,  I ,  I ,  I ) ,  
1 

U2 = 
,J6

(- 1 , - 1 , 0 , 2) , 1 
u3 = M ( I ,  3 ,  -6, 2) 5v 2 

7.22. Consider the vector space pet) with inner product (f ,  g) = f� f(t)g(t) dt. Apply the Gram-Schmidt 
algorithm to the set { I ,  t , t2 } to obtain an orthogonal set {fo ,Jj ,/z} with integer coefficients. 

First setfo = 1 .  Then find 

(t , 1 ) � 1 t - -- · l = t - - · l = t - -
( I ,  I ) I 2 

Clear fractions to obtain fi = 2t - 1 .  Then find 

t2 _ ( f
2 , I ) ( 1 ) _ (t2 , 2t - l ) (2t - l ) = P _ 1 ( 1 ) - � (2t - l ) = P - t + ! ( 1 , 1 ) (2t - l , 2t - l ) 1 t 6 

Clear fractions to obtain fi = 6r - 6t + 1 .  Thus { I ,  2t - 1 ,  6r - 6t + I }  is the required orthogonal set. 
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7.23 . Suppose v = ( 1 ,  3 ,  5 ,  7) , Find the projection of v onto W or, in other words, find W E  W that 
minimizes I I v - w l l , where W is the subspance of R4 spanned by: 

(a) UI = ( 1 , 1 , 1 , 1 )  and U2 = ( 1 ,  -3 , 4 ,  -2), 
(b) V I = ( 1 ,  1 ,  1 ,  1) and V2 = ( 1 , 2 , 3 , 2) 

(a) Since UI and U2 are orthogonal, we need only compute the Fourier coefficients: 
(V , UI ) 1 + 3 + 5 + 7 1 6 cI = --- = = - = 4  (uI , u I ) 1 + 1 + 1 + 1 4 
(v , u2 ) 1 - 9 + 20 - 14 -2 I C - - - -2 - (U2 , U2 ) - 1 + 9 +  1 6 + 4  - 30 - 15 

Then W = proj(v , W) = CI U I + C2U2 = 4( 1 , 1 , 1 , 1 ) - n ( l ,  -3 , 4 , -2) = (� , ¥ , � ,  H) . 
(b) Since VI and V2 are not orthogonal, first apply the Gram-Schmidt algorithm to find an orthogonal basis 

for W. Set WI = VI = ( 1 , 1 ,  1 ,  1) . Then find 
(V2 , WI ) 8 v2 - -- wI = ( 1 , 2 , 3 , 2) - -4 ( 1 , 1 ,  1 ,  1 ) = (- 1 ,  0, 1 , 0) (wI , wI ) 

Set w2 = (- 1 ,  0, 1 ,  0). Now compute 

CI = (V , wI ) = 1 + 3 + 5 + 7  = 1 6 = 4  (WI , WI ) 1 + 1 + 1 + 1 4 

C2 = (v , W2 ) _ - 1  + 0 + 5 + 0 = -6 = -3 
(w2 , w2 ) 1 + 0 + 1 + 0  2 

Then W = proj(v , W) = CIWI + C2W2 = 4( 1 , 1 , 1 , 1 ) - 3(- 1 ,  0, 1 , 0) = (7 , 4 , 1 , 4) . 

7.24. Suppose WI and W2 are nonzero orthogonal vectors . Let v be any vector in V. Find CI and C2 so that 
Vi is orthogonal to WI and Wb where Vi = v - CIWI - C2W2 ' 

If Vi is orthogonal to WI > then 

0 =  (v - CIWI - C2W2 , WI )  = (v, WI )  - CI (WI , WI )  - c2 (w2 , WI )  
= (v , WI ) - C I  (WI '  WI ) - C20 = (v , WI ) - C I  (WI '  WI ) 

Thus CI = (v , WI ) / (WI , WI ) ' (That is, CI is the component of v along WI ') Similarly, if Vi is orthogonal to Wb 
then 

0 =  (v - CIWI - C2W2 , W2 ) = (v , W2 ) - C2 (W2 , W2 ) 
Thus C2 = (v , W2 ) / (W2 ' W2 ) ' (That is, C2 is the component of v along W2 ') 

7.25. Prove Theorem 7 . 8 :  Suppose WI ,  w2 , " "  Wr form an orthogonal set of nonzero vectors in V. Let 
v E V. Define 

where 
(v ,  wi ) C · = ---

I (Wi , Wi ) 
Then Vi is orthogonal to WI ' W2 " ' "  wr . 

For i = 1 ,  2, . . .  , r and using (Wi ' w) = 0 for i i-j, we have 

(v - CIWI - C2X2 - . . .  - CrW" Wi) = (v , Wi) - CI (WI '  Wi) - . . .  - Ci (Wi , Wi) - . . .  - Cr (W" Wi) 
= (v , Wi) - CI . 0 - . . .  - Ci (Wi , Wi) - • • •  - Cr · 0  

Thus the theorem is proved. 

(v , Wi) = (v , Wi) - Ci (Wi , Wi) = (v , Wi) - --- (Wi '  Wi) = 0 (Wi '  Wi) 
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7.26. Prove Theorem 7 ,9 :  Let {VI ' V2 , , . .  , vn } be any basis of an inner product space V. Then there exists 
an orthonormal basis {uI , U2 ' . . .  , un } of V such that the change-of-basis matrix from {Vi } to {ui } is 
triangular, that is, for k = I ,  2 ,  . . .  , n, 

Uk = akl V I + ak2v2 + . . .  + akkvk 
The proof uses the Gram-Schmidt algorithm and Remarks 1 and 3 of Section 7 .7 .  That is, apply the 

algorithm to {vJ to obtain an orthogonal basis {Wi '  . . .  , wn } , and then normalize {wJ to obtain an orthonormal 
basis {uJ of V. The specific algorithm guarantees that each wk is a linear combination of VI '  . . .  , Vk , and hence 
each Uk is a linear combination of VI , . . .  , Vk ' 

7.27. Prove Theorem 7 . 1 0 : Suppose S = {WI ' W2 , " " Wr } is an orthogonal basis for a subspace W of V. 
Then one may extend S to an orthogonal basis for V, that is, one may find vectors Wr+l , . . .  , Wr such 
that {wI ' W2 ' . . .  , wn } is an orthogonal basis for V. 

Extend S to a basis S' = {WI " ' "  W" Vr+I , " " Vn } for V. Applying the Gram-Schmidt algorithm to S' , 
we first obtain WI , W2 , . . .  , W r since S is orthogonal, and then we obtain vectors W r+ I , . . .  , W n o where 
{WI '  W2 , " " wn } is an orthogonal basis for V. Thus the theorem is proved. 

7.28. Prove Theorem 7 .4 :  Let W be a subspace of V. Then V = W EB  W.l . 

By Theorem 7.9 , there exists an orthogonal basis {UI '  . . .  , ur} of W, and by Theorem 7. 1 0  we can extend 
it to an orthogonal basis {UI , U2 , " " un } of V. Hence Ur+I , " " un E W.l . If v E V, then 

V = al ul + . . .  + anun , where al ul + . . .  + arur E W and ar+l ur+1 + . . .  + anUn E W.l 

Accordingly, V = W + W.l . 

On the other hand, if w E W n W.l, then (w, w) = O. This yields W = O. Hence W n W.l = {O} . 
The two conditions V = W + W.l and W n W.l = {O} give the desired result V = W EEl W.l . 

Remark: Note that we have proved the theorem for the case that V has finite dimension. We remark that 
the theorem also holds for spaces of arbitrary dimension. 

7.29. Suppose W is a subspace of a finite-dimensional space V. Prove that W = W.l.l . 

By Theorem 7.4, V = W EEl W.l , and also V = W.l EEl W.l.l . Hence 

dim W = dim V - dim W.l and dim WH = dim V - dim W.l 

This yields dim W = dim WHo But W � WH (see Problem 7 . l 4). Hence W = WH, as required. 

7.30. Prove the following: Suppose WI ' w2 ' . . .  , wr form an orthogonal set of nonzero vectors in V. Let V 
be any vector in V and let Ci be the component of V along Wi ' Then, for any scalars a i ' . . .  , ar , we 
have 

That is, I >iwi is the closest approximation to V as a linear combination of WI ' . . .  , w" 
By Theorem 7 .8 ,  V - L ckwk is orthogonal to every Wi and hence orthogonal to any linear combination 

of WI , W2 , . . .  , wr .  Therefore, using the Pythagorean theorem and summing from k = 1 to r, 

I I V - L akwd
2 = I l v - L CkWk + L (Ck - ak)wd

2= I l v - L CkWd
2 + I I L(Ck - ak)wd

2 

:::: I l v - L Ckwk l 1
2 

The square root of both sides gives our theorem. 
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7.31 .  Suppose {el , e2 , . . .  , er } i s  an orthonormal set of  vectors in V. Let v be  any vector in V and let C i  be  
the Fourier coefficient of  v with respect to  Ui . Prove Bessel's inequality: 

get 

r 
L ci :::: I I v l l 2 k=l 

Note that cj = (v , ej ) , since l I ej l l = 1 . Then, using (ej , ej ) = 0 for i i-j and summing from k = 1 to r, we 

0 :::: (v - L Ckek >  v - L Ck , ek) = (v, v) - 2(v , L Ckek) + L ci = (v, v) - L 2ck (v , ek) + L ci 
= (v , v) - L 2ci + L ci = (v , v) - L ci 

This gives us our inequality. 

ORTHOGONAL MATRICES 

7.32. Find an orthogonal matrix P whose first row is U l = (� , � ,  �) . 
First find a nonzero vector Wz = (x, y, z) which is orthogonal to Ul , i .e . ,  for which 

or x + 2y + 2z = 0 

One such solution is Wz = (0, 1 ,  - 1 ) . Normalize Wz to obtain the second row of P, i .e . ,  

Uz = (0, 1 j"fi, -1 j "fi). 
Next find a nonzero vector w3 = (x, y, z) that is orthogonal to both Ul and Uz, i . e . ,  for which 

x 2y 2z o = (ul , w3 ) = '3 + '3 + '3 = 0 or x + 2y + 2z = 0 
Y Y 0 =  (uz , w3 ) = 
"fi 

-
"fi 

= 0 or y - z = 0 

Set z = - 1  and find the solution w3 = (4, - 1 ,  - 1 ) . Normalize w3 and obtain the third row of P, that is, 

u3 = (4j,J!8, - l j,J!8, - l j,J!8). 

P = [ ! I j� - 1 ;"fi 1 
4j3"fi - l j3"fi - l j3"fi 

Thus 

We emphasize that the above matrix P is not unique. 

7.33. Let A � U j -� 1 Do-mo whoth", 0' not(a) tho row, of A are orthogonal; 

(b) A is an orthogonal matrix; (c) the columns of A are orthogonal. 

(a) Yes, since ( 1 , 1 , - 1 ) · (( 1 , 3 , 4) = 1 + 3 - 4 = 0, ( 1 , 1 - 1 ) · (7 , -5 , 2) = 7 - 5 - 2 = 0, and 
( 1 , 3 , 4) . (7 ,  -5 , 2) = 7 - 1 5  + 8 = O. 

(b) No, since the rows of A are not unit vectors; e .g . ,  ( 1 ,  1 ,  _ 1 )z = 1 + 1 + 1 = 3 . 
(c) No; e.g. , ( 1 ,  1 , 7) . ( 1 ,  3 ,  -5) = 1 + 3 - 35 = -3 1 i- O. 

7.34. Let B be the matrix obtained by normalizing each row of A in Problem 7 . 33 .  
(a) Find B .  
(b) Is B an orthogonal matrix? 

(c) Are the columns of B orthogonal? 
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(a) We have 

Thus 

1 1 ( 1 , 1 , - 1 ) 1 1 2 = 1 + 1 + 1 = 3 , 1 1 ( 1 , 3 , 4) 1 1 2 = 1 + 9 +  1 6  = 26 
1 1 (7, -5 , 2) 1 1 2 = 49 + 25 + 4 = 78 [ 1 /v'3 1 /v'3 - 1 /v'3 ] 

B = 1 /  "fi6 3 / "fi6 4/ "fi6 
7/v'78 -5/v'78 2/v'78 

(b) Yes, since the rows of B are still orthogonal and are now unit vectors. 
(e) Yes, since the rows of B form an orthonormal set of vectors. Then, by Theorem 7. 1 1 ,  the columns of B 

must automatically form an orthonormal set. 

7.35. Prove each of the following: 

(a) P is orthogonal if and only if pT is orthogonal. 
(b) If P is orthogonal, then p- J is orthogonal. 

(c) If P and Q are orthogonal, then PQ is orthogonal. 

(a) We have (pT)T = P. Thus P is orthogonal if and only if ppT = 1 if and only if pTT pT = 1 if and only if 
pT is orthogonal. 

(b) We have pT = p- ! , since P is orthogonal. Thus, by part (a) , p-! is orthogonal. 
(e) We have pT = p- l and QT = Q- l . Thus (PQ)(PQ)T = PQQTpT = PQQ-lp- l = 1. Therefore 

(PQl = (PQ)- ! , and so PQ is orthogonal. 

7.36. Suppose P is an orthogonal matrix. Show that: 

(a) (Pu, Pv) = (u , v) for any u, v E V; 
(b) I IPu l 1  = I l u l l  for every u E V. 

Use pTp = I and (u ,  v) = uT v .  
(a) (Pu, Pv) = (Pul (Pv) = UTpTpV = uT V = (u, v) .  
(b) We have 

Taking the square root of both sides gives our result. 

7.37. Prove Theorem 7 . 1 2 :  Suppose E = {ei } and E' = {e;} are orthonormal bases of V. Let P be the 
change-of-basis matrix from E to E' . Then P is orthogonal. 

Suppose 

i = I , . . .  , n  ( 1 )  

Using Problem 7 . 1 8(b) and the fact that E' is orthonormal, we get 
bij = (e; , ej) = bi! bj! + b12bj2 + . . .  + binbjn (2) 

Let B = [bij] be the matrix of the coefficients in ( 1 ) .  (Then P = BT .) Suppose BBT = [eij] '  Then 

eij = bi! bj! + bi2bj2 + . . .  + binbjn (3) 

By (2) and (3), we have eij = bij ' Thus BBT = 1. Accordingly, B is orthogonal, and hence P = BT is 
orthogonal. 
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7.38. Prove Theorem 7 , 1 3 :  Let {el , " " en } be an orthonormal basis of an inner product space V. Let 
P = [aij] be an orthogonal matrix. Then the following n vectors form an orthonormal basis for V: 

e; = a l ie l + a2ie2 + . . .  + anien ' 
Since {eJ is orthonormal, we get, by Problem 7 . 1 8(b), 

i = 1 , 2 ,  . . .  , n 

(e; , ej) = aJ ja lj + a2ia2j + . . .  + anianj = (Ci , Cj) 
where Ci denotes the ith column of the orthogonal matrix P = [aij] ' Since P is orthogonal, its columns form an 
orthonormal set. This implies (e; , ej) = (Ci , C) = bij ' Thus {e;} is an orthonormal basis. 

INNER PRODUCTS AND POSITIVE DEFINITE MATRICES 

7.39. Which of the following symmetric matrices are positive definite? [ 3 4 ] [ 8 3 ] [ 2 _31 ] , (d) D = [ 35 95 ] (a) A = 4 5 ' (b) B = -3 -
2 ' (e) C = 1 

Use Theorem 7. 14  that a 2 x 2 real symmetric matrix is positive definite if its diagonal entries are 
positive and if its determinant is positive. 

(a) No, since IA I = 1 5  - 1 6  = - 1  is negative. 
(b) Yes. 
(e) No, since the diagonal entry -3 is negative. 
(d) Yes. 

7.40. Find the values of k that make each of the following matrices positive definite: 

(a) A = [ _; -: l (b) B = [ : � l (e) C = [ � _� ] 
(a) First, k must be positive. Also, IA I = 2k - 1 6  must be positive, that is, 2k - 1 6  > O. Hence k > 8 . 
(b) We need IB I  = 36 - k2 positive, that is, 36 - � > O. Hence � < 36 or -6 < k < 6. 
(c) C can never be positive definite, since C has a negative diagonal entry -2 

7.41 .  Find the matrix A that represents the usual inner product on R2 relative to each of the following 
bases of R2 : (a) {V I = ( 1 , 3 ) ,  V2 = (2 , 5) } , (b) {WI = ( 1 , 2) ,  W2 = (4 , -2)} 

(a) Compute (V I '  V I ) = 1 + 9  = 1 0, (V I '  V2 ) = 2 + 1 5  = 1 7, (V2 , V2 ) = 4 + 25 = 29 . Thus A = [ � � ;� l 
(b) Compute (WI '  WI ) = 1 + 4 = 5, (WI ' W2 ) = 4 - 4 = 0, (W2 , W2 ) = 1 6  + 4 = 20. Thus A = [ � 2� ] ' (Since the basis vectors are orthogonal, the matrix A is diagonal.) 

7.42. Consider the vector space P2 (t) with inner product (f, g) = f�J(t)g(t) dt. 
(a) Find ( f, g) , where J(t) = t + 2 and get) = t2 - 3t + 4. 
(b) Find the matrix A of the inner product with respect to the basis { I ,  t, t2 } of V. 
(e) Verify Theorem 7 . 1 6  by showing that (f ,  g) = [ff A[g] with respect to the basis { I ,  t, t2 } .  
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(a) (f, g) = ( (t + 2)(t2 - 3 t + 4) dt = fy3 - P - 2t + 8) dt = (� - � - p + 8t) I�
1 (b) Here we use the fact that, if r + s = n, 

(( , n = J I (' dt = ('+1 I I = { 2/(n + 1 ) 
- I n + 1 - I 0 

if n is even, 
if n is odd, 

Then ( 1 ,  1 ) = 2, ( 1 ,  t) = 0, ( 1 ,  t2 ) = �, ( t, t) = �, (t, p) = 0, (p , t2 ) = �. Thus 

_ 2 3 [ 2 0 � l 
A - 0 "3 0 

� 0 � 
(c) We have [fi = (2 ,  1 , 0) and [gf = (4, -3 ,  1) relative to the given basis. Then 

[Jl'A[g[ � (2 . 1 . 0{i i m -:] � (4. 1 . j) [ -: ] � Hf. gl 

46 
3 

7.43 . Prove Theorem 7 . 14 :  A = [ � � ] is positive definite if and only if a and d are positive and 
IA I = ad - b2 is positive. 

Let u = [x, yf. Then 

Suppose feu) > 0 for every u i- O. Then f( 1 ,  0) = a > 0 and f(O , 1) = d > O. Also, we have 
feb , -a) = a(ad - b2) > O. Since a > 0, we get ad - b2 > O. 

Conversely, suppose a > 0, b = 0, ad - b2 > O. Completing the square gives us 

( 2b b2 )  b2 ( by)2 ad - b2 f(u) = a � + -xY + -1 + dl - -I = a x + - +--1 a a2 a a a 

According1y, f(u) > 0 for every u i- o. 

7.44. Prove Theorem 7 . 1 5 :  Let A be a real positive definite matrix. Then the function (u , v) = uT A v is an 
inner product on Rn . 

For any vectors UI , U2 , and v, 

(V I + U2 , v) = (UI + U2)T Av = (ui + uDAv = ui Av + urAv = (uI , v) + (u2 , v) 
and, for any scalar k and vectors u, v, 

(ku, v) = (kul Av = kuT Av = k(u,  v) 

Thus [I l l is satisfied. 

Since uT Av is a scalar, (uT Avl = uT Av. Also, AT = A since A is symmetric. Therefore 

(u , v) = uT Av = (uT Av)T = vT AT uTT = vT au = (v, u) 
Thus [I2 l is satisfied. 

Lastly, since A is positive definite, XT AX > 0 for any nonzero X E Rn . Thus for any nonzero vector 
v, (v , v) = vT Av > O. Also, (0 , 0) = OT AO = O. Thus [I3 l is satisfied. Accordingly, the function (u ,  v) = Av is 
an inner product. 
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7.45. Prove Theorem 7 , 1 6 : Let A be the matrix representation of an inner product relative to a basis S of 
V. Then, for any vectors u, v E V, we have 

(u ,  v) = [uf A[v] 

Suppose S = {wI , Wl , " " wn } and A = [kijJ . Hence kij = (Wi ' w) . Suppose 

Then 

On the other hand, 

and 
n n 

(u , v) = L L aib/wi , Wj ) i=l j=1 

Equations ( 1 )  and (2) give us our result. 

( 1 )  

(2) 

7.46. Prove Theorem 7 . 1 7 :  Let A be the matrix representation of any inner product on V. Then A is a 
positive definite matrix. 

Since (Wi ' W) = (Wj ' Wi) for any basis vectors Wi and Wj, the matrix A is symmetric. Let X be any 
nonzero vector in Rn . Then [u 1 = X for some nonzero vector u E V. Theorem 7. 1 6  tells us that 
XT AX = [uf A[ul = (u , u) > O. Thus A is positive definite. 

COMPLEX INNER PRODUCT SPACES 

7.47. Let V be a complex inner product space. Verify the relation 

Using [Pz'], [J[], and then [I�l , we find 

(u , aVI + bVl ) = (avI + bVl , u) = a (vI , u) + b (Vl , u) = a (v I , u) + b (Vl ' u) = a (u, VI ) + b (u, Vl ) 

7.48. Suppose (u , v) = 3 + 2i in a complex inner product space V. Find: 

(a) ( (2 - 4i)u, v) (b) (u , (4 + 3 i)v) (c) ((3 - 6i)u, (5 - 2i)v) 
(a) ( (2 - 4i)u , v) = (2 - 4i) (u , v) = (2 - 4i)(3 + 2i) = 14 - 1 8i 
(b) (u , (4 + 3 i)v) = (4 + 3i) (u , v) = (4 - 3i)(3 + 2i) = 1 8  - i 
(c) ((3 - 6i)u , (5 - 2i)v) = (3 - 6i)(5 - 2i) (u , v) = (3 - 6i)(5 + 2i)(3 + 2i) = 1 3 7  - 30i 
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7.49. Find the Fourier coefficient (component) c and the projection cw of v = (3 + 4i, 2 - 3i) along 
w = (5 + i, 2i) in C2 , 

Recall that c = (v ,  w) / (w, w) , Compute 

(v ,  w) = (3 + 4i)(5 + i) + (2 - 3i)(2t) = (3 + 4i)(5 - i) + (2 - 3i)( -2i) 
= 1 9  + 1 7i - 6 - 4i = 1 3  + l 3i 

(w, w) = 25 + 1 + 4 = 30 

Thus c = ( 1 3  + l 3 i)/30 = � + � i. Accordingly, proj(v, w) = cw = (� + H i, - H + fs- i) 

7.50. Prove Theorem 7 . 1 8  (Cauchy-Schwarz): Let V be a complex inner product space. Then 
I {u ,  v} 1 s l I u l l l l v l l . 

If v = 0, the inequality reduces to 0 � 0 and hence is valid. Now suppose v i= O. Using zz = Iz l 2 (for any 
complex number z) and (v ,  u) = (u , v) , we expand I l u - (u ,  v) tv l 1 2 :::: 0, where t is any real value: 

o s l I u - {u ,  v} tv l 1 2 = {u - {u ,  v} tv , u - {u ,  v} tv} 
= {u ,  u} - {u ,  v} t {u ,  v} - {u ,  v)t {v ,  u} + {u ,  v} {u ,  v}? {v , v} 
= I I u l 1 2 - 2t l {u ,  v} 1 2 + I {u ,  v} 1 2 t2 1 1 v 1 1 2 

Set t = 1 / l l v l l 2 to find 0 < l I u l 1 2 _ I {u ,  V
2
} 1 2, from which I {u ,  v} 1 2 < I l v 1 1 2 1 1 v 1 1 2 . Taking the square - I I v l l  -

root of both sides, we obtain the required inequality. 

7.51 .  Find an orthogonal basis for u.l in C3 where u = ( 1 ,  i, 1 + i) . 
Here u.l consists of all vectors s = (x, y, z) such that 

(w, u) = x - iy + ( 1  - i)z = 0 

Find one solution, say WI = (0, 1 - i, i). Then find a solution of the system 

x - iy + (1 - i)z = 0 ,  ( 1  + i)y - iz = 0 

Here z is a free variable. Set z = 1 to obtain y = i/( l  + i) = (1 + i)/2 and x = (3i - 3)2. Multiplying by 2 
yields the solution W2 = (3i - 3, 1 + i, 2). The vectors WI and W2 form an orthogonal basis for u.l. 

7.52. Find an orthonormal basis of the subspace W of C3 spanned by 

vl = ( I , i, O) and v2 = ( I ,  2 ,  I - i) .  
Apply the Gram-Schmidt algorithm. Set WI = VI = ( 1 , i, 0). Compute 

(V2 , WI ) . 1 - 2i . I . 
V2 - --2 WI = ( 1 , 2 , 1 - 1) - -2

-( 1 , 1 , 0) = (2 + 1 , l - ! i, I - i) 
II wI I I  

Multiply by 2 to clear fractions, obtaining W2 = ( 1  + 2i, 2 - i, 2 - 2i) .  Next find I l wI I i = 
,.fi 

and then 
I I w2 1 1  = 

,JT8. Normalizing {WI '  W2 } ,  we obtain the following orthonormal basis of W: 

{ ( I i ) ( 1 + 2i 2 - i 2 - 2i) } 
UI = ,.fi '  ,.fi '  0 , U2 = ,JT8 '  ,JT8 '  ,JT8 
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7.53. Find the matrix P that represents the usual inner product on C3 relative to the basis { I ,  i, 1 - i} , 
Compute the following six inner products: 

( 1 , 1 ) = 1 ,  ( l , i) = t = -i, 
( i, i) = it = 1 ,  (i, 1 - i) = i( 1 - i) = - 1  + i, 

Then, using (u, v) = (v, u) , we obtain 

p = [ � �i - � ! � l 
l - i - l - i  2 

(As expected, P is Hermitian, that is, pH = P.) 

NORMED VECTOR SPACES 

( 1 , 1 - i) = 1 - i = 1 + i 
( 1 - i, 1 - i) = 2 

7.54. Consider vectors u = ( 1 ,  3 ,  -6 , 4) and v = (3 , -5 , 1 ,  -2) in R4 . Find: 

(a) I l u l l oa and I l v l oa, (b) l I u l l l and I l v l l l ' (c) l I u l 1 2  and I l v lb 
(d) doa(u, v) , dl (u, v), d2 (u, v). 

(a) The infinity norm chooses the maximum of the absolute values of the components. Hence 

I l u l l oo = 6 and I l v l l oo = 5 
(b) The one-norm adds the absolute values of the components. Thus 

l I u l l l = 1 + 3 + 6 + 4 =  14 and I l v l i ! = 3 + 5 + 1 + 2 = 1 1  
(c) The two-norm is equal to the square root of the sum of the squares of the components (i.e . ,  the norm 

induced by the usual inner product on R3 ). Thus 

I l u ib  = ,11 + 9 + 36 + 1 6  = "J62 
(d) First find u - v = (-2, 8 ,  -7, 6). Then 

and 

doo(u, v) = l I u  - v l l oo = 8 

I I v l l 2 = .J9 + 25 + 1 + 4 = .J39 

dl (u, v) = l I u - v l l l = 2 + 8 + 7 + 6 = 23 
d2 (u, v) = l I u  - v l l 2 = .J4 + 64 + 49 + 36 = ..Ji53 

7.55. Consider the function f(t) = t2 - 4t in qo, 3 ] .  

(a) Find I l l l l oa, (b) Plot f(t) in the plane R2 , (c) Find I l f l l l > (d) Find I I f 1 l 2 ' 
(a) We seek I I f l l oo = max( l f(t) I ) . Since f(t) is differentiable on [0, 3 ] , I f(t) I has a maximum at a critical 

point off(t) , i .e . ,  when the derivative f'(t) = 0, or at an endpoint of [0, 3] . Since f'(t) = 2t - 4, we set 
2t - 4 = 0 and obtain t = 2 as a critical point. Compute 

f(2) = 4 - 8 = -4, 
Thus I I f l l oo = I I f(2) 1 = I - 4 1  = 4. 

f(O) = 0 - 0 = 0, 

(b) Compute f(t) for various values of t in [0, 3] , e.g. ,  

2 3 t I 0 1 
f(t) 0 -3 -4 -3 

f(3) = 9 - 12  = -3 

Plot the points in R2 and then draw a continuous curve through the points, as shown in Fig. 7-8 . 
(c) We seek I l f l l l = sg I f(t) 1 dt. As indicated in Fig. 7-7, J(t) is negative in [0, 3 ] ;  hence 

I f(t) I = -(p - 4t) = 4t - P . 

Thus I l f l l l = J: (4t - P) dt =  (2P - f) l : = 1 8 - 9 = 9  
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(d) I I  f l l � = J3 [J(t)2 dt = J3 (t4 _ 8t3 + 1 6r) dt = (� _ 2t4 + 1 6t
3) 1 3 = �. 

o 0 5 3 0 5 
fill Thus II f ib = '1 5' 
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7.56. Prove Theorem 7 .24: Let V be a norrned vector space. Then the function d(u, v) = I l u - v I I  satisfies 
the following three axioms of a metric space: 
[Md d(u, v) :::: 0; and d(u, v) = 0 iff u = v. 
[M2] d(u, v) = d(v, u) . 
[M3 ] '  d(uv) :::: d(u, w) + dew, v) . 

If u #- v, then u - v #- 0, and hence d(u, v) = I l u - v I I  > O. Also, d(u , u) = I l u - u l l  = 11 0 11 = O. Thus 
[M I l is satisfied. We also have 

d(u, v) = l I u - v I I  = II - l (v - u) 1 I  = I - 1 1 1 1 v - u l l  - I I v - u l l  = d(v, u) 
and d(u , v) = l I u - v I I  = I I (u - w) + (w - v) 11 :s: I l u - w l l + I lw - v i i  = d(u , w) + dew, v) 
Thus [M2l and [M3 l are satisfied. 

Supplementary Problems 
INNER PRODUCTS 

7.57. Verify that the following is an inner product on R2 , where u = (XI '  X2) and v = (YI ' Y2) :  
feu , v) = XIYI - 2XIY2 - 2x2Y1 + 5x2Y2 

7.58. Find the values of k so that the following is an inner product on R2 , where u = (XI '  X2) and v = (YI , Y2) :  
feu, v) = XIYI - 3XIY2 - 3x2Y1 + kx2Y2 

7.59. Consider the vectors u = ( 1 ,  -3) and v = (2 ,  5) in R2 . Find: 

(a) (u , v) with respect to the usual inner product in R2 . 
(b) (u , v) with respect to the inner product in R2 in Problem 7.57 .  
(c) I l v l l  using the usual inner product in R2 . 
(d) I l v l l  using the inner product in R2 in Problem 7.57 .  

7.60. Show that each of the following is not an inner product on R3 , where u = (XI '  X2 , X3 ) and v = (Y1 , Y2 , Y3) :  

(a) (u , v) = XIYI + X2Y2 and (b) (u , v) = XIY2X3 + YIX2Y3 ' 
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7.61. Let V be the vector space of m x n matrices over R. Show that (A , B) = tr(BT A) defines an inner product in V. 

7.62. Suppose I (u ,  v) I = I l u l l l l v l l . (That is, the Cauchy-Schwarz inequality reduces to an equality.) Show that u and 
v are linearly dependent. 

7.63. Suppose f(u, v) and g(u, v) are inner products on a vector space V over R. Prove: 

(a) The sumf + g is an inner product on V, where (f + g)(u , v) = feu, v) + g(u, v) .  

(b) The scalar product kj, for k > 0, is an inner product on V, where (kf)(u, v) = kj(u, v) .  

ORTHOGONALITY, ORTHOGONAL COMPLEMENTS, ORTHGONAL SETS 

7.64. Let V be the vector space of polynomials over R of degree :'S 2  with inner product defined by 
( f, g) = f� f(t)g(t) dt. Find a basis of the subspace W orthogonal to h(t) = 2t + l .  

7.65. Find a basis of the subspace W of R4 orthogonal to u \  = ( 1 ,  -2, 3, 4) and Uz = (3 ,  -5 ,  7 ,  8). 

7.66. Find a basis for the subspace W of R5 orthogonal to the vectors u\  = ( 1 , 1 , 3 , 4 , 1 )  and Uz = ( 1 ,  2 , 1 , 2 , 1 ) .  

7.67. Let w = ( 1 ,  -2, - 1 ,  3) be a vector in R
4 . Find: 

(a) an orthogonal basis for w-L , (b) an orthnormal basis for w-L. 

7.68. Let W be the subspace of R4 orthogonal to u\ = ( 1 ,  1 , 2 , 2) and Uz = (0, 1 , 2 , - 1 ) . Find: 

(a) an orthogonal basis for W, (b) an orthonormal basis for W. (Compare with Problem 7.65 .) 

7.69. Let S consist of the following vectors in R4 : 

u\ = ( 1 ,  1 ,  1 ,  1 ) ,  Uz  = ( 1 , 1 ,  - 1 ,  - 1 ) , 
(a) Show that S is orthogonal and a basis of R4 . 

U3 = ( 1 ,  - 1 ,  1 ,  - 1 ) , 

(b) Write v = ( 1 , 3 ,  -5 , 6) as a linear combination of u\ , uz , u3 , U4 ' 

U4 = ( 1 ,  - 1 ,  - 1 , 1 ) 

(c) Find the coordinates of an arbitrary vector v = (a ,  b, c, d) in R
4 relative to the basis S. 

(d) Normalize S to obtain an orthonormal basis of R
4
. 

7.70. Let M = Mz,z with inner product (A , B) = tr(BT A). Show that the following is an orthonormal basis for M: 

7.71. Let M = Mz,z with inner product (A , B) = tr(BT A). Find an orthogonal basis for the orthogonal complement 
of: (a) diagonal matrices (b) synnnetric matrices. 

7.72. Suppose {u\ , Uz , . . .  , ur } is an orthogonal set of vectors. Show that {k\ u \ , kzuz , . . .  , krur } is an orthogonal set 
for any scalars k\ , kz , . . .  , kr . 

7.73. Let U and W be subspaces of a finite-dimensional inner product space V. Show that: 

(a) (U + W)-L = U-L n W-L , (b) (U n W)-L = U-L + W-L . 
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7.74. Find the Fourier coefficient c and projection cw of v along w, where: 

(a) v = (2 , 3 ,  -5) and w = ( 1 ,  -5 , 2) in R3 , 

(b) v = ( 1 ,  3 , 1 , 2) and w = ( 1 ,  -2, 7, 4) in R4 . 

(c) v = t2 and w = t + 3 in pet) , with inner product (j, g) = f� f(t)g(t) dt 

(d) v = [ ; � ] and w = [ ; ; ] in M = M2,2 , with inner product (A ,  B) = tr(BT A). 

7.75. Let U be the subspace of R4 spanned by 

VI = ( 1 ,  1 ,  1 ,  1 ) ,  V2 = ( 1 ,  - 1 ,  2 ,  2), V3 = ( 1 , 2 , -3, -4) 
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(a) Apply the Gram-Schmidt algorithm to find an orthogonal and an orthonormal basis for U. 
(b) Find the projection of v = ( 1 ,  2, -3 , 4) onto U. 

7.76. Suppose v = ( 1 , 2 , 3 , 4 , 6). Find the projection of v onto W, or, in other words, find w E W that minimizes 
I I v - wl l , where W is the subspace of R5 spanned by: 

(a) UI = ( 1 ,  2 , 1 , 2 , 1 )  and U2 = ( 1 ,  - 1 , 2 ,  - 1 , 1 ), (b) VI = ( 1 , 2 , 1 , 2 , 1 )  and V2 = ( 1 ,  0 , 1 , 5 ,  - 1 ) . 

7.77. Consider the subspace W = P2(t) of P(t) with inner product ( j, g) = f�f(t)g(t) dt. Find the projection of 
f(t) = t3 onto W. (Hint: Use the orthogonal polynomials 1 ,  2t - 1, 6P - 6t + 1 obtained in Problem 7.22 .) 

7.78. Consider pet) with inner product (j, g) = f� lf(t)g(t) dt and the subspace W = P3 (t) . 
(a) Find an orthogonal basis for W by applying the Gram-Schmidt algorithm to { l ,  t, t2 , P l . 
(b) Find the projection off(t) = f onto W. 

ORTHOGONAL MATRICES 

7.79. 

7.80. 

7.81. 

7.82. 

[ 1 x
z J . Find the number and exhibit all 2 x 2 orthogonal matrices of the form � 

Find a 3 x 3 orthogonal matrix P whose first two rows are multiples of u = ( 1 , 1 , 1 )  and v = ( 1 ,  -2, 3), 
respectively. 

Find a synnnetric orthogonal matrix P whose first row is (t , � ,  �) .  (Compare with Problem 7.32 .) 

Real matrices A and B are said to be orthogonally equivalent if there exists an orthogonal matrix P such that 
B = pT AP. Show that this relation is an equivalence relation. 

POSITIVE DEFINITE MATRICES AND INNER PRODUCTS 

7.83. Find the matrix A that represents the usual inner product on R2 relative to each of the following bases :  

(a) {VI = ( 1 , 4) , V2 = (2 ,  -3)} , (b) {WI = ( 1 ,  -3) , W2 = (6 ,  2)} . 

7.84. Consider the following inner product on R2 : 

feu, v) = XIYI - 2XIY2 - 2xzYI + 5XzY2 , where 

Find the matrix B that represents this inner product on R2 relative to each basis in Problem 7.83 . 

7.85. Find the matrix C that represents the usual basis on R3 relative to the basis S of R3 consisting of the vectors 
ul = ( 1 , 1 , 1 ) ,  u2 = ( 1 , 2 , 1 ) ,  u3 = ( 1 ,  - 1 ,  3) . 
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7.86. Let V = Pz(t) with inner product ( f, g) = f� f(t)g(t) dt. 
(a) Find (f , g) , where f(t) = t + 2 and get) = P - 3t + 4. 
(b) Find the matrix A of the inner product with respect to the basis { l ,  t, tZ } of V. 

(c) Verify Theorem 7 . 1 6  that ( f, g) = [fi A[g] with respect to the basis { l ,  t, Pl .  
7.87. Determine which of the following matrices are positive definite: 

[ 1 3 J [ 3 4 J [ 4 2 J [ 6 -7 J (a) 3 5 ' (b) 4 7 ' (c) 2 1 ' (d) -7 9 ' 

© The McGraw-Hili 
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7.88. Suppose A and B are positive definite matrices. Show that: (a) A + B is positive definite and (b) kA is positive 
definite for k > O. 

7.89. Suppose B is a real non-singular matrix. Show that: (a) BTB is symmetric and (b) BTB is positive definite. 

COMPLEX INNER PRODUCT SPACES 

7.90. Verify that - - - -
(aj Uj + azuz bj Vj + bzvz ) = aj bj (Uj , V j ) + aj bz (U j , Vz ) + azbj (uz , Vj ) + azbz (uz , vz ) 

More generally, prove that (L::j aiui ' LJ=j bjv) = LiJ a/J /Ui ' Vi ) ' 

7.91. Consider U = ( 1  + i, 3 ,  4 - i) and V = (3 - 4i, 1 + i, 2i) in C3 . Find: 

(a) (u , v) , (b) (v , u) , (c) I l u l l , (d) I I v l I , (e) d(u, v) . 

7.92. Find the Fourier coefficient e and the projection cw of 

(a) U = (3 + i, 5 - 2i) along W = (5 + i, 1 + i) in CZ , 

(b) u = ( 1 - i , 3 i , 1 + i) a10ng w = ( 1 , 2 - i, 3 + 2i) in C3 • 

7.93. Let U = (Zj , zz) and v = (Wj , wz) belong to CZ . Verify that the following is an inner product on CZ : 

feu, v) = Z(Wj + (1 + i)ZjWZ + (1 - i)zzwj + 3zzwz 

7.94. Find an orthogonal basis and an orthonormal basis for the subspace W of C3 spanned by Uj = ( 1 , i, 1 ) and 
Uz = ( 1 + i, 0, 2) . 

7.95. Let U = (Zj , zz) and v = (Wj , wz) belong to CZ . For what values of a, b, e,  d E C is the following an inner 
product on Cz

? 

7.96. Prove the following form for an inner product in a complex space V: 

(U , v) = i l I u + v l l z - i l I u - v l l z + i l I u + iv l l z - i I l u - iv l l z 

[Compare with Problem 7.7b) . ] 
7.97. Let V be a real inner product space. Show that: 

(i) I l u l l  = I l v l l  if and only if (u + v, U - v) = 0; 
(ii) I l u + v l l z = l I u l l z + I I v l l z if and only if (u , v) = O. 

Show by counterexamples that the above statements are not true for, say, CZ • 
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7.98. Find the matrix P that represents the usual inner product on e3 relative to the basis { I ,  1 + i, 1 - 2i} . 

7.99. A complex matrix A is unitary if it is invertible and A- I = AH. Alternatively, A is unitary if its rows (columns) 
form an orthonormal set of vectors (relative to the usual inner product of en). Find a unitary matrix whose first 
row is: (a) a multiple of ( 1 ,  1 - i) ; (b) a multiple of (t ,  t i, t - t i) . 

NORMED VECTOR SPACES 

7.100. Consider vectors u = ( 1 ,  -3, 4, 1 ,  -2) and v = (3 , 1 ,  -2, -3, 1 )  in R5 . Find: 

(a) I l u l loo  and I l v l loo ' (b) I l u lh and I I v l l l ' (c) l I u l 1 2 and I l v l l z , (d) doo(u, v)A(u, v), d2(u, v) 

7.101. Repeat Problem 7. 1 00 for u = ( 1 + i, 2 - 4i) and v = ( 1 - i, 2 + 3 i) in e2 • 

7.102. Consider the functions J(t) = 5t - t2 and get) = 3 t - P in C[O , 4] . Find: 

(a) doo(f, g), (b) dl (f, g), (c) d2 (f, g) 

7.102. Prove: (a) 1 1 · 1 1 1 is a norm on Rn . (b) 1 1 . 1 1 00 is a norm on Rn . 

7.103. Prove: (a) I I · I I I is a norm on C[a, b] . (b) I I · 1 100 is a norm on C[a, b] . 

Answers to Supplementary Problems 
Notation : M = [RI ; R2 ; . . .  ] denotes a matrix M with rows RI , R2 , . . .  

7.58. k > 9 

7.59. (a) - 1 3 , (b) -7 1 ,  (c) ,.fi9, (d ) v's9 
7.60. Let u = (0, 0 ,  1); then (u , u) = 0 in both cases 

7.64. {7t2 - 5t, 12t2 - 5} 

7.65. {( 1 , 2 , 1 , 0) ,  (4 , 4 , 0 , 1 ) } 

7.66. (- 1 , 0 ,  0 ,  0 ,  1), (-6, 2 , 0 ,  1 , 0) , (-5 , 2 ,  1 ,  0 ,  0) 

7.67. (a) (0, 0 , 3 ,  1 ) ,  (0, 3, -3 ,  1), (2 ,  1 0 ,  -9 , 3), 
(b) (0, 0 , 3 ,  l )/-JIO, (0, 3 ,  -3 ,  1 )/.JT9, (2, 1 0 , -9, 3)/.Ji94 

7.68. (a) (0 , 2 ,  - 1 , 0), (- 1 5 , 1 , 2 , 5) , (b) (0, 2 ,  - 1 ,  0)/0, (- 1 5 , 1 , 2 ,  5)/.J255 

7.69. (b) v = i (5uI + 3u2 - 1 3u3 + 9U4), (c) [v] = i ra + b + c + d, a + b - c - d, a - b + c - d, a - b - c + d] 

7.71. (a) [0, 1 ;  0 , 0] , [0, 0; 1 , 0] ,  

7.74. (a) c = - �, 
(b) [0, - 1 ; 1 , 0] 

(c) c = IVS' (d) c = * 
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7.75. (a) wI = ( 1 , 1 , 1 , 1 ) ,  w2 = (0, -2, 1 ,  1 ) ,  w3 = ( 1 2 ,  -4, - 1 ,  -7), 
(b) proj(v, U) = 10 (- 14, 1 5 8 , 47, 89) 

© The McGraw-Hili 
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7.76. (a) proj(v, W) = k (2 1 ,  27, 26, 27, 2 1 ), (b) First find an orthogonal basis for W; 
say, wI = ( 1 , 2 , 1 , 2 , 1 )  and W2 = (0, 2 , 0 ,  -3 , 2). Then proj(v, W) = -& (34, 76, 34, 56, 42) 

7.77. proj(f, W) = � p  - � t  + -10 

7.78. (a) { I ,  t, 3 t2 - 1 , 5 t3 - 3t}, 

7.79. Four: [a , b ; b , -a] ,  [a , b ; -b, -a] ,  [a , -b; b , a] , [a ,  -b; -b, -a] where a = t and b = t .J8  

7.80. P = [ l la, l la, l la; l ib, -2Ib, 31b; 51c, -2Ic, -3Ic] , where a = -./3, b = .JI4, c = .J38 
7.81. HI, 2 , 1 ;  2 ,  -2, 1 ;  2 , 1 ,  -2] 

7.83. (a) [ 1 7 ,  - 1 0; - 1 0, 1 3] ,  

7.84. (a) [65 , -68; -68, 25], 

(b) [ 1 0 , 0 ; 0 , 40] 

(b) [58 ,  1 6 ;  1 6 , 8] 

7.85. [3 , 4 , 3 ;  4 , 6 , 2 ;  3 , 2 ,  1 1 ] 

7.86. (a) H, (b) [ 1 ,  a, b; a, b , c; b , c, d] , where a = !, b = t, c = �, d = !  

7.87. (a) No. (b) Yes, 

7.91. (a) -4i, (b) 4i, 

7.92. (a) c = fs- ( 1 9  - 5i) , 

(c) No. (d) Yes 

(c) ,J28, (d) v'3I, 
(b) c = fg (3 + 6i) 

7.94. {VI = ( 1 ,  i, 1 )/-./3, V2 = (2i, 1 - 3i, 3 - i)1.J24} 

7.95. a and d real and positive, c = b and ad - be positive. 

7.97. u = ( 1 ,  2), V = (i, 2i) 

(e) ,.J59 

7.98. P = [I ,  l - i, 1 + 2i; l + i, 2, -2 + 3i; 1 - 2i, -2 - 3i, 5] 

7.99. (a) ( 1 /-./3)[ 1 ,  1 - i; 1 + i, - 1 ] ,  
(b) [a , ai, a - ai; bi ,  -b, 0 ; a ,  -ai, -a + ail , where a = ! and b = 1 /,.fi. 

7.100. (a) 4 and 3 ,  (b) 1 1  and 1 3 ,  (c) v'3I and .J24, 

7.101. (a) .J2O and .JT3, 

7.102. (a) 8 , (b) 1 6, 

(b) ,.fi + .J20 and ,.fi + .JT3, 

(c) 2�6 

(d) 6, 1 9 , 9 

(c) v'22 and .JT5, (d) 7 , 9 , .J53 
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",-;,,",re matrix A = [aij] is assigned a special scalar called the determinant of A, denoted by 

al l  al2 al� 
a21 a22 a2� 

,",ph,"i,'C that an 1/ x n array of scalars enclosed by straight lines, called a determinallt of order n, is 
denotes the detenninant of the enclosed array of scalars, i.e., the enclosed matrix. 

d�':!ti
�
�'�: function was first discovered during the investigation of systems of linear equations. 

the detenninant is an indispensable tool in investigating and obtaining propenies of 

����;�:\�,�" of the detenninant and most of its propenies also apply in the case where the entries ofa 
a commutative ring. 
a special case of detenninants of orders 1, 2, and 3. Then we define a detenninant of 
general definition is preceded by a discussion ofpemlUtations, which is necessary for 

d'�"i'i,'n of the detenninanl. 

D[TER'"�:":TS OF ORDER I AND 2 

D,,,nmi,,,"'\ of orders I and 2 are defined as follows: 

,nd 

�::�:��::,��':
,
,;,;:r�

�
: ofa I x I matrix A = [aid is the scaiarul l itself; that is, det(A) = lal l l  = (tI l '  The 

p two may easily be remembered by using the following diagram: 

+�-

277 
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That is, the determinant is equal to the product of the elements along the plus-labeled arrow minus the 
product of the elements along the minus-labeled arrow, (There is an analogous diagram for determinants of 
order 3, but not for higher-order determinants.) 

Example 8.1. 
(a) Since the determinant of order one is the scalar itself, we have: 

det(27) = 27,  det(-7) = -7 ,  det(t - 3) = t - 3  

(b) I � � I = 5(6) - 3(4) = 30 - 1 2  = 1 8 ,  1 _; ; I = 2 1  + 1 0  = 3 1  

Application to Linear Equations 

Consider two linear equations in two unknowns, say 

a lz + b1y = Cl 
a2x +  b2Y = c2 

Let D = a l b2 - a2bl ' the determinant of the matrix of coefficients. Then the system has a unique solution 
if and only if D -I- O. In such a case, the unique solution may be expressed completely in terms of 
determinants as follows: 

Here D appears in the denominator of both quotients. The numerators Nx and Ny of the quotients for x and 
y, respectively, can be obtained by substituting the column of constant terms in place of the column of 
coefficients of the given unknown in the matrix of coefficients. On the other hand, if D = 0, then the 
system may have no solution or more than one solution. . { 4X - 3Y = l 5 Example 8.2. Solve by determmants the system 2x + 5y = 1 

First find the determinant D of the matrix of coefficients: 

D = I � -; I = 4(5) - (-3)(2) = 20 + 6 = 26 

Since D # 0, the system has a unique solution. To obtain the numerators Nx and Ny, simply replace, in the matrix of 
coefficients, the coefficients of x and y, respectively, by the constant terms, and then take their determinants :  

N = 1 1 5 -3 1 = 75 + 3 = 78 N = 1 4 1 5 1 = 4 - 30 = -26 x 1 5 y 2 1 
Then the unique solution of the system is 

Nx 78 
x - - - - - 3  - D - 26 - , 

N -26 y - 2 - - - - 1 - D - 26 -

8.3 DETERMINANTS OF ORDER 3 
Consider an arbitrary 3 x 3 matrix A = [ay] .  The determinant of A is defined as follows: 

det(A) = a2 1 
a3 1 

a22 a23 = au a22a33 + a 12a23a3 1 + a 13a2 1 a32 - a 1 3a22a3 1 - a 12a2 1 a33 - au a23a32 
a32 a33 



Lipschulz-Lipson:Schaum's I 
Oulline ofTheorv and 

Problems of Linear 

Algebr •. 3/. 

CHAP. 81 

8. Delenninants I Text 

DETERMINANTS 

¢I The McGraw-H111 

Compames. 2004 

279 

Observe that there are six products, each product consisting of three elements of the original matrix. Three 
of the products are plus-labeled (keep their sign) and three of the products are minus·labeled (change their 
sign). 

The diagrnms in Fig. 8-1 may help to remember the above six products in det(A). That is, the 
determinant is equal to the sum of the products of the elements along Ihe three plus-labeled arrows in Fig. 
8-1 plus the sum of the negatives of the products oflhe elements along the three minus-labeled arrows. We 
emphasize Ihat there are no such diagrnmmatic devices to remember determinants of higher order. 

+ 

Example 8.3. lei A = [� 

Fig. 8-1 

� -�] and 8 = [-! ; 
-3 4 2 -3 

Use the diagrams in Fig. 8-1: 

-! ]. Find det(A) and det(8). 

det(A) = 2(5)(4) + 1 (-2)(1) + 1 (-3)(0) - 1(5)(1) - (-3)(-2)(2) -4( 1 )(0) 
= 40 - 2 + 0 - 5 - 12 - 0 = 21 

det(D) = 60 - 4  + 12 - 10 - 9 + 3 2  = 81 

A1ternati,'e Form for a Determinant of Order 3 

The determinant of the 3 x 3 matrix A = [ay] may be rewritten as follows: 

which is a linear combination of Ihree determinants of order 2 whose coefficients (with alternating signs) 
form the first row of the given matrix. This linear combination may be indicated in the form 

Note that each 2 x 2 matrix can be oblained by deleting, in the original matrix, the row and column 
containing its coefficient. 
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4 -2 3 = 1 4 -2 3 - 2 4 -2 3 + 3 4 -2 

3 
3 

o 5 -I o 5 -I o 5 -I  o 5 -I  

= 1 1 -� _� 1 -2
1 : _� 1 +3

1 : -� I 
= 1(2 - 15)-2(-4+0) +3(20+0) =  -13 +8+60 =  55 

8.4 PERMUTATIONS 

¢I The McGraw-lUI 
Compames. 2004 

{CHAP. 8 

A pennutalion (1 of the set I I .  2 . . . . . 11\ is a one-to-one mapping of the set onto itself or, equivalently, a 
rearmngement of the numbers 1 . 2  . . . . . II. Such a pennutation (F is denoted by 

" � ( .1 ? �I ) or u =iLh . . . j". wherejj = a(i) 
il 12 in 

The set of all such pennutations is denoted by S,,, and the number of such pennutations is II!. If (1 E SIP' 
then Ihe inverse mapping (F- I E Sn; and if (J, r E S,,, then the composition mapping (J 0 r E Sn. Also, the 
identity mapping r. = (1 0 (1-1 E SII' (In facl, r. = 123 . . . /I,) 

Example 8.5. 

(a) Thcre are 2! = 2 ·  I = 2 pcnnutations in 52; thcy are 12 and 21 . 
(b) There are 3! = 3 · 2 ·  1 = 6 pennlll<ltions in 53: Ihey are 123. 132. 2t3. 231, 312. 321. 

Sign (Parity) of a I'crmutation 

Consider an arbilmry pennutation u in SII' say (1 = jl.h . . . j", We say (J is an even or odd pennulalion 
according to whether there is an even or odd number of inversions in u. By an il/WfSiOIl in (1 we mean a 
pair of integers (1'. k) such that i > k, but i precedes k in (1. We then define the sign or parity of (1, written 
sgn (F, by 

Example 8.6, 

if (1 is even 
if (J is odd 

(a) Find the sign of (J = 35142 in S5' 
For each elemcnt k. wc count thc number of clcmcnts i such thaI i > k and i preccdcs k in G. There are: 

2 numbers (3 and 5) greater than and prt:ccding 1 .  
3 numbers (3. 5.  and 4) greater than and preceding 2. 
1 number (5) greater Ihan and preceding 4. 

(Thcre arc no numbers greater than and preccding cithcr 3 or 5.) Sinec there are, in alt. si)!. inversions, (J is cvcn 
and sgn G = I. 

(b) The identity pennulalion I: = 123 . . .  II is even because thcre arc no inversions in c. 

(c) In 52' the pcnnu\ation 12 is even and 21 is odd. In S3' the pcnnutations 123, 231, 3 12 arc cven and the 
pcnnutations 132, 213. 321 are odd. 

(If) Let r be the pcnnutalion thaI inlcrchlillges two numbers i andj and Icavcs thc other numbers fixed. That is, 
r(i) =j. r(j) = i. r(k) = k  where k t- i.j 

Wc call r a transposition. If i <j, then there are 2(j - i = J) + 1 invcrsions in r. and hence the trnnsposition r 
is odd. 
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Remark: One can show that, for any n, half o f  the permutations in Sn are even and half o f  them are 
odd, For example, 3 of the 6 permutations in s3 are even, and 3 are odd. 

8.5. DETERMINANTS OF ARBITRARY ORDER 

Let A = [aij] be a square matrix of order n over a field K. 
Consider a product of n elements of A such that one and only one element comes from each row and 

one and only one element comes from each column. Such a product can be written in the form 

that is, where the factors come from successive rows, and so the first subscripts are in the natural order 
1 ,  2 ,  . . .  , n .  Now since the factors come from different columns, the sequence of second subscripts forms a 
permutation (J = i] iz . . .  in in Sn - Conversely, each permutation in Sn determines a product of the above 
form. Thus the matrix A contains n! such products. 

Definition:  The determinant of A = [aij] ' denoted by det(A) or IA I ,  is the sum of all the above n !  products, 
where each such product is multiplied by sgn (J. That is, 

IA I = L (sgn (J)a ]iJ a2jz . . .  anin a 
or IA I = L (sgn (J)a] a( 1 )a2a(2) . . .  ana(n) 

(JESn 

The determinant of the n-square matrix A is said to be of order n. 

The next example shows that the above definition agrees with the previous definition of determinants 
of order 1 ,  2, and 3 . 

Example 8.7. 
(a) Let A = [a l l ] be a 1 x 1 matrix. Since S] has only one pennutation, which is even, det(A) = a l l , the number 

itself. 

(b) Let A = [aij] be a 2 x 2 matrix. In S2 , the pennutation 1 2  is even and the pennutation 2 1  is odd. Hence 

(c) Let A = [aij] be a 3 x 3 matrix. In S3 , the pennutations 1 23 , 23 1 , 3 1 2  are even, and the pennutations 32 1 ,  2 1 3 ,  
1 32 are odd. Hence 

I a l l  
det(A) = a2 ! 

a3 ! 

a12 a13 1 
a22 a23 = a l l  a22a33 + a12a23a3 ! + a13a2! a32 - a13a22a3 ! - a12a2 ! a33 - a l l  a23a32 
a32 a33 

Remark: As n increases, the number of terms in the determinant becomes astronomical .  Accord­
ingly, we use indirect methods to evaluate determinants rather than the definition of the determinant. In 
fact, we prove a number of properties about determinants that will permit us to shorten the computation 
considerably. In particular, we show that a determinant of order n is equal to a linear combination of 
determinants of order n - 1 ,  as in the case n = 3 above. 
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8.6 PROPERTIES OF DETERMINANTS 

We now list basic properties of the determinant. 

Theorem 8.1 : The determinant of a matrix A and its transpose AT are equal; that is, IA I = IAT I .  

By this theorem (proved in Problem 8 .22), any theorem about the determinant of a matrix A that 
concerns the rows of A will have an analogous theorem concerning the columns of A .  

The next theorem (proved in Problem 8 .24) gives certain cases for which the determinant can be 
obtained immediately. 

Theorem 8.2 : Let A be a square matrix. 

(i) If A has a row (column) of zeros, then IA I = O .  

(ii) If A has two identical rows (columns), then IA I = O .  

(iii) If A is triangular, i .e . ,  A has zeros above or below the diagonal, then IA I = product 
of diagonal elements. Thus in particular, II I  = 1 ,  where I is the identity matrix. 

The next theorem (proved in Problems 8 .23 and 8 .25) shows how the determinant of a matrix is 
affected by the elementary row and column operations. 

Theorem 8.3 : Suppose B is obtained from A by an elementary row (column) operation. 

(i) If two rows (columns) of A were interchanged, then IB I  = - IA I .  
(ii) If a row (column) of A were multiplied by a scalar k, then IB I  = k iA I .  
(iii) If a multiple of a row (column) of A were added to another row (column) of A, then 

IB I  = IA I .  

Major Properties of Determinants 

We now state two of the most important and useful theorems on determinants .  

Theorem 8.4: The determinant of a product of two matrices A and B is the product of their determinants; 
that is, 

det(AB) = det(A) det(B) 

The above theorem says that the determinant is a multiplicative function. 

Theorem 8.5: Let A be a square matrix. Then the following are equivalent: 

(i) A is invertible; that is, A has an inverse A- I . 
(ii) AX = 0 has only the zero solution. 

(iii) The determinant of A is not zero; that is, det(A) -I- O .  

Remark: Depending on the author and the text, a nonsingular matrix A is defined to be an invertible 
matrix A, or a matrix A for which IA I -I- 0, or a matrix A for which AX = 0 has only the zero solution. The 
above theorem shows that all such definitions are equivalent. 

We shall prove Theorems 8 .4 and 8 .5 (in Problems 8 .29 and 8 .28 ,  respectively) using the theory of 
elementary matrices and the following lemma (proved in Problem 8 .26), which is a special case of 
Theorem 8 .4 . 
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Recall that matrices A and B are similar if there exists a nonsingular matrix P such that B = P- 1AP. 
Using the multiplicative property of the determinant (Theorem 8.4). one can easily prove (Problem 8.31) 
the following theorem. 

Theorem 8.7: Suppose A and 8 are similar matrices. Then IAI = 181 . 

8.7 MlNORS AND CO FACTORS 

Consider an II-square matrix A = [aij]' Let Mij denote the (11 - I)-square submatrix of A obtained by 
deleting its ith row andjth column. The determinant lMijl is called the minor of the element aij of A, and we 
define the cofi1clor of aij' denoted by Av' to be the "signed" minor: 

i+j Ay, = (- l ) IMijl 

Note that the "signs" (-Il+j accompanying the minors form a chessboard pattern with +'s on the main 
diagonal: [� + : + J 
We emphasize that Mij denotes a matrix whereas Ail denotes a scalar, 

Remark: The sign (-Il+i of the cofactor Aij is frequently obtained using the checkerboard pattern. 
Specifically, beginning with + and alternating signs, i.e., 

+ , -, +. -. .  

count from the main diagonal to the appropriate square. 

[ I  2 
Example 8.S. lei A = 4 5 

7 8 
:] . Find the following minors and cofaclOrs: (u) IMlll and All' (b) IM,d and A,l' 

«(I) IM2)1 = I ; 
(b) IMll 1  = I ; � 
Laplace [;l:pansion 

; 1 = 8 - 1 4 = -6, and so A1J = (-ll+l IM2J I = -(-6) = 6  

3 1 2 3 1+3 : = 1 5 6 1 = 12 - 1 5 = -3, and SO A31 = (- I) IMlll = +(-3) = -3 

The following theorem (proved in Problem 8.32) holds. 

Theorem 8.8: (Laplace) The determinant ofa square matrix A = [aij] is equal to the sum of the products 
obtained by multiplying the elements of any row (column) by their respective cofactors: 

" 
IAI = ailAi1 + a,'2Aa + . , .  + ainAin = L: aijAij' 

j=1 
" 

IAI = aljA Ij + a2jA2j + . . .  + anjAnj = L: aijAij 
i=1 
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The above formulas for IAI are called the Lap/ace e:q)(lIIsions of the determinant of A by the ith row 
and the jth column. Together with the elementary row (column) operutions, they offer a method of 
simplifYing the computation of IAI, as described below. 

8.8 EVALUATION OF DETERI\HNANTS 

The following algorithm reduces the evaluation of a determinant of order n to the evaluation of a 
detenninant of order 11 - I .  

Algorithm 8.1: (Reduction of the order of a determinant) The input is a nonzero II-square malrix 
A = (uij] with 1/ > I .  

Step I .  Choose an element (lij = l or, if lacking, (Iii t- O. 

Step 2. Using ui} as a pivot, apply elementary row (column) operations to put O's in all the other positions 
in the column (row) containing (lij' 

Step 3. Expand the determinant by the column (row) containing ui}' 

The following remarks are in order. 

Remark I :  Algorithm 8.1 is usually used for determinants of order 4 or more. With determinants of 
order less than 4, one uses the specific formulas for the determinant. 

Remark 2: Gaussian elimination or, equivalently, repeated use of Algorithm 8.1 together with row 
interchanges can be used to transfoml a matrix A into an upper triangular matrix whose determinant is the 
product of its diagonal entries. I'lowever, one must keep truck of the number of row interchanges, since 
each row interchange changes the sign of the determinant. 

",mple 8.9. U" Algori<hm 8.1 " fi""ho d",='",", ,' A � [-1 =1 =; -n 
Use an = I as a pivot to put O's in the other positions of the third column, that is, apply the row operdtions 

"Replacc RI by -2Rl + R1", "Replacc RJ by 3Rl + R)", and "Replace R4 by Rl + R4" By Theorem 8.3(c). the 
value of the dctenninant does not change undcr thcse operations. Thus 

5 4 2 

IAI = 2 3 I 
-5 -7 -3 

-2 -I 

I 
-2 
9 
4 

� 

I -2 0 5 
2 3 I -2 

2 0 3 
3 0 2 

Now expand by the third column. Specifically, ncglcrt all tenns that contain 0 and usc the fact that the sign of the 
minor MlJ is (- ll

+) = -I. Thus 

I 
2 

IAI = - I 
3 

-; � 1 = -(4 - 18 + 5 - 30 - 3 + 4) = -(-38) = 38 
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Let A = [aij] be an n x n matrix over a field K and let Aij denote the cofactor of aij ' The classical 
adjoint of A, denoted by adj A, is the transpose of the matrix of cofactors of A .  Namely, 

adj A = [Aijf 

We say "classical adjoint" instead of simply "adjoint" because the term "adjoint" is currently used for an 
entirely different concept. 

3 
Let A = [ � -4 ] 

Example 8.10. -4 ; . The cofactors of the nine elements of A follow: 
- 1  

1 -4 
A l l = + _ 1 ; 1 = - 1 8 ,  A 12 = - I � ; 1 = 2 , A 13 = + 1 � 
A2J = - I _� -4 1 5 = - 1 1 ,  A22 = + 1 � -4 1 5 = 14 , A23 = - I � 
A3 1 = + I -! -4 1 2 = - 1 0, A32 = - I � -4 1 2 = -4, A33 = + 1 � 

The transpose of the above matrix of cofactors yields the classical adjoint of A, that is, [ - 1 8  - 1 1 - 1 0 ] 
adj A = 2 1 4  -4 

4 5 -8 

The following theorem (proved in Problem 8 .34) holds. 

Theorem 8.9: Let A be any square matrix. Then 

A(adj A) = (adj A)A = I 

where I is the identity matrix. Thus, if IA I i- 0, 

A- I = 
I
�

I 
(adj A) 

Example 8.11. Let A be the matrix in Example 8 . 1 0. We have 

det(A) = -40 + 6 + 0 - 1 6  + 4 + 0 = -46 

Thus A does have an inverse, and, by Theorem 8 .9 ,  [ - 1 8  

- I 1 . 1 
A = - (adJ A) = - - 2 

IA I 46 
4 

- 1 1  - 1 0 ] 
_ [ � 14 -4 - - 23" 5 -8 - ?J  

8.10 APPLICATIONS TO LINEAR EQUATIONS, CRAMER'S RULE 

-4 1 - 1  
= 4  

3 1 = 5 - 1  

3 1 = -8 
-4 

Consider a system AX = B of n linear equations in n unknowns. Here A = [aij] is the (square) matrix 
of coefficients and B = [bi] is the column vector of constants. Let A i be the matrix obtained from A by 
replacing the ith column of A by the column vector B. Furthermore, let 

D = det(A) ,  

The fundamental relationship between determinants and the solution of the system AX = B follows. 
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Theorem 8.10:  The (square) system AX = B has a solution if and only if D i- 0, In this case, the unique 
solution is given by 

N2 X2 = D ' Nn x = ­n D 

The above theorem (proved in Problem 8 , 1 0) is known as Cramer 's rule for solving systems of linear 
equations. We emphasize that the theorem only refers to a system with the same number of equations as 
unknowns, and that it only gives the solution when D i- O. In fact, if D = 0, the theorem does not tell us 
whether or not the system has a solution. However, in the case of a homogeneous system, we have the 
following useful result (to be proved in Problem 8 .54). 

Theorem 8.1 1 :  A square homogeneous system AX = 0 has a nonzero solution if and only if 
D = IA I = 0 . 

Example 8.12. Solve, using determinants the system x - 2y - 3z = - 1 
[ x +  y +  Z = 5 

2x + y - Z = 3 
First compute the determinant D of the matrix of coefficients: 1 1 1 1 I D = 1 -2 -3 = 2 - 6 + 1 + 4 + 3 + 1 = 5 

2 1 - 1 

Since D oF 0, the system has a unique solution. To compute Nx, Ny, NZ' we replace, respectively, the coefficients of 
x, y, z in the matrix of coefficients by the constant terms. This yields I 5 1 1 I Nx = - 1  -2 -3 = 20, 

3 1 - 1 
1 1 5 1 I Ny = 1 - 1  -3 = - 10 ,  
2 3 - 1 

1 1 1 5 1 Nz = 1 -2 - 1  = 1 5 
2 1 3 

Thus the unique solution of the system is x = Nx/D = 4, Y = Ny/D = -2, z = Nz/D = 3 ,  that is, the 
vector u = (2 , - 1 ,  0). 

8.11  SUBMATRICES, MINORS, PRINCIPAL MINORS 

Let A = [ay] be a square matrix of order n. Consider any r rows and r columns of A. That is, consider 
any set ! = (iI ' i2 , . . .  , ir) of r row indices and any set J = UI 'jz ,  . . .  , jr) of r column indices. Then ! and 
J define an r x r submatrix of A, denoted by A(I; J), obtained by deleting the rows and columns of A 
whose subscripts do not belong to ! or J, respectively. That is, 

A(I; J) = last : S E !, t E J] 

The determinant IA(!; J) I is called a minor of A of order r and 

(- 1 il +i2+ . .  ·+i,+}1 +h+ . .  ·+), IA(!; J) I 

is the corresponding signed minor. (Note that a minor of order n - 1 is a minor in the sense of Section 8 .7, 
and the corresponding signed minor is a cofactor.) Furthermore, if /' and J' denote, respectively, the 
remaining row and column indices, then 

IA(/' ; J') I 

denotes the complementary minor, and its sign (Problem 8 .74) is the same sign as the minor itself. 
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Example 8,13, Let A = [ag] be a 5-square matrix, and let I = { I ,  2 ,  4} and J = {2, 3 ,  5} .  Then I '  = { 3 ,  5} and 
J' = { I ,  4}, and the corresponding minor IMI and complementary minor IM' I are as follows: 

a12 a1 3 a 15 
IMI = IA(I; J) I = azz aZ3 aZ5 

a4Z a43 a45 
and 

Since 1 + 2 + 4 + 2 + 3 + 5 = 1 7  is odd, - IMI  is the signed minor, and - IM' I is the signed complementary minor. 

PRINCIPAL MINORS 

A minor is principal if the row and column indices are the same, or equivalently, if the diagonal 
elements of the minor come from the diagonal of the matrix. We note that the sign of a principal minor is 
always + 1 ,  since the sum of the row and identical column subscripts must always be even. [ 1 2 - I ] 
Example 8.14. Let A = 3 5 4 .  Find the sums C" Cz , and C3 of the principal minors of A of orders one, two 
and three, respectively. -3 1 -2 

(a) There are three principal minors of order one. These are 

1 1 1 = 1 ,  1 5 1 = 5 ,  1 - 2 1 = -2, 

Note that C, is simply the trace of A. Namely, C, = tr(A) . 

and so C1 = 1 + 5 - 2  = 4 

(b) There are three ways to choose two of the three diagonal elements, and each choice gives a minor of order two. 
These are 

4 1 = -14  -2 

(Note that these minors of order two are the cofactors A33 , AZb and A" of A, respectively.) Thus 

Cz = - 1  + 1 - 14 = - 1 4  

( c) There is only one way to choose three of the three diagonal elements. Thus the only minor of order three is the 
determinant of A itself. Thus 

C3 = IA I = - 1 0  - 24 - 3 - 1 5  - 4 + 1 2  = -44 

8.12 BLOCK MATRICES AND DETERMINANTS 

The following theorem (proved in Problem 8 . 36) is the main result of this section. 

Theorem 8.12:  Suppose M is an upper (lower) triangular block matrix with the diagonal blocks 
A j , A2 , . • .  , An ' Then 

r 2 3 I 4 

7 8 1 - I  5 I 3 2 1 
Example 8.15. Find IMI where M = - 0 -0"1 "2 - -1- "5 

o 0 :  3 - 1  4 
o 0 I 5 2 6 
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Note that M is an upper triangular block matrix. Evaluate the determinant of each diagonal block: 

I _� � 1 = 1O + 3 = 1 3 , 3 - I  4 = - 12 + 20 + 30 + 25 - 1 6 - 1 8 = 29 1 2 I 5 1 
Then IMI = 1 3 (29) = 377. 

5 2 6 

Remark: Suppose M = [� � l where A , B, C, D are square matrices. Then it is not generally 

true that IMI = IA I ID I - IB I I C I .  (See Problem 8 .68 .) 

8.13 DETERMINANTS AND VOLUME 

Determinants are related to the notions of area and volume as follows. Let u\ , Uz , . . .  , un be vectors in 
Rn . Let S be the (solid) parallelipiped determined by the vectors, that is, 

S = {a \ u \ + azuz + . . .  + anun : 0 :::: ai :::: 1 for i = 1 ,  . . .  , n} 

(When n = 2, S is a parallelogram.) Let V(S) denote the volume of S (or area of S when n = 2). Then 

V(S) = absolute value of det (A) 

where A is the matrix with rows u\ , Uz , . . .  , Un ' In general, V(S) = 0 if and only if the vectors u\ , . . .  , Un do 
not form a coordinate system for Rn , i .e . ,  if and only if the vectors are linearly dependent. 

Example 8.16. Let u\ = (I , 1 , 0), U2 = (1 , I ,  I ) , U3 = (0, 2 , 3) .  Find the volume V(S) of the parallelopiped S in R3 
(Fig. 8-2) determine by the three vectors. 

z 

y 

x 

Fig. 8-2 

Evaluate the determinant of the matrix whose rows are u\ , uz , u3 : 

1 1 1 = 3 + 0 + 0 - 0 - 2 - 3 = -2 1 1 1 0 I 
0 2 3  

Hence V(S) = I - 2 1  = 2. 

8.14 DETERMINANT OF A LINEAR OPERATOR 

Let F be a linear operator on a vector space V with finite dimension. Let A be the matrix representation 
of F relative to some basis S of V. Then we define the determinant of F, written det(F), by 

det(F) = IA I 
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If B were another matrix representation of F relative to another basis S' of V, then A and B are similar 
matrices (Theorem 6 ,7) and hence IB I = IA I by Theorem 8 .7 . In other words, the above definition det(F) is 
independent of the particular basis S of V. (yVe say that the definition is well-defined.) 

The next theorem (to be proved in Problem 8 .62) follows from analogous theorems on matrices. 

Theorem 8.13 : Let F and G be linear operators on a vector space V. Then 

(i) det(F 0 G) = det(F) det( G) . 
(ii) F is invertible if and only if detCF) -I- O .  

Example 8.17. Let F be  the following linear operator on  R3 and let A be  the matrix that represents F relative t o  the usual 
basis of R3 : 

Then 

F(x, y, z) = (2x - 4y + z, x - 2y + 3z, 5x +y - z) and A = 1 -2 3 
[ 2 -4 1 ] 

det(F) = IA I = 4 - 60 + 1 + 1 0  - 6 - 4 = -55 

5 1 - 1 

8.15 MULTILINEARITY AND DETERMINANTS 

Let V be a vector space over a field K. Let d = Vn , that is, d consists of all the n-tuples 

A = CA j , A2 , • • •  , An) 

where the Ai are vectors in V. The following definitions apply. 

Definition: A function D: d -+ K is said to be multilinear if it is linear in each component, that is: 

(i) If Ai = B + C, then 

DCA) = DC . . .  , B + C, . . .  ) = DC . . .  , B, . . .  , ) + DC . . .  , C, . . .  ) 

Cii) If Ai = leB, where k E K, then 

DCA) = DC . . .  , leB, . . .  ) = kDC . . .  , B, . . .  ) 

We also say n-linear for multilinear if there are n components. 

Definition: A function D: d -+ K is said to be alternating if DCA) = 0 whenever A has two identical 
elements, that is, 

whenever 

Now let M denote the set of all n-square matrices A over a field K. We may view A as an n-tuple 
consisting of its row vectors A j , A2 , • . •  , An ; that is, we may view A in the form A = CA j , A2 , • . •  , An) .  

The following theorem (proved in Problem 8 .37) characterizes the determinant function. 

Theorem 8.14:  There exists a unique function D: M -+ K such that: 

Ci) D is multilinear, (ii) D is alternating, Ciii) DCI) = 1 . 
This function D is the determinant function; that is, DCA) = IA I , for any matrix A E M. 
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Solved Problems 
COMPUTATION OF DETERMINANTS 

8.1 .  Evaluate the determinant of each of the following matrices: 

(a) A = [ �  � l (b) B = [ � -� l (c) c =  [ _� =; ] ,  (d) D =  [ t � 5 
t ! 2 ] 

Use the formula I � b l = ad - bc d . 

(a) IA I = 6(3) - 5(2) = 1 8  - 1 0  = 8 
(b) IB I = 14  + 1 2  = 26 
(c) I C I = -8 - 5 = - 1 3  
(d) ID I  = (t - 5)(t + 2) - 1 8  = t2 - 3t - 1 0  - 1 8  = t2 - l Ot - 28 

8.2. Evaluate the determinant of each of the following matrices: 

8.3. 

[ 2 3 4 ] [ 1 -2 3 ] [ 1 
(a) A = 5 4 3 , (b) B = 2 4 - 1 , (c) C = 3 

1 2 1 1 5 -2 1 
Use the diagram in Fig. 8- 1  to obtain the six products :  

3 
- 1  
-2 

(a) IA I = 2(4)(1 ) + 3(3)( 1 )  + 4(2)(5) - 1 (4)(4) - 2(3)(2) - 1 (3)(5) = 8 + 9 + 40 - 1 6  - 1 2  - 1 5  = 14 
(b) IB I = -8 + 2 + 30 - 12  + 5 - 8 = 9 
(c) I C I = - 1 + 6 + 30 - 5 + 4 - 9 = 25 

[ ! - 1 - t ] 
C = � ! - 1 . 

1 -4 1 

(a) One can simplify the entries by first subtracting twice the first row from the second row, that is by 
applying the row operation "Replace R2 by -2\ + R2 " .  Then 

1 2 3 4 1 1 2 3 4 1 IA I = 5 6 7  = 1 0  - 1  = 0 - 24 + 36 - 0 + 1 8 - 3 = 27 
8 9 1 8 0 1 

(b) B is triangular, so IB I = product of the diagonal entries = - 1 20. 
(c) The arithmetic is simpler if fractions are first eliminated. Hence multiply the first row R\ by 6 and the 

second row R2 by 4. Then 

24C = 1 � -� =; 1 = 6 + 24 + 24 + 4 - 48 + 1 8  = 28 ,  so I C I  = 28 = � 
1 -4 1 24 
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8.4. Compute the detenninant of each of the following matrices: 

[ -; 5 -J -2] 6 2 0 -1] -J 2 -5 8 � [ ; 1 -2 
(a) A =  I J -2 ; , (b) 1 2 -2 

- I  -6 4 
0 2 J 

-I - I  -J 4 

(a) Use a)1 = I as a pivot to put O's in the first column, by applying the row operations "Replace RI by 
-2RJ + RI", "Replace R2 by 2R) + R2", and "Replace R4 by R) + R4 ", Then 

2 5 -3 -2 0 -I -6 -I 1 -6 -2 -J 2 -5 0 J -2 -I 
IAI = = = 3 -2 -I J -2 2 1 J -2 2 

-J 2 5 -I -6 4 3 0 -J 2 5 

= 10 + 3 - 36 + 36 - 2 - 15 = -4 

(b) First reduce 181 to a determinant of order 4, and then to a determinant of order 3, for which we can usc 
Fig, 8-1, First usc cn = I as a pivot to put O's in the second column, by applying the row operations 
"Replace RI by -2Rl + RI ", "Replace R3 by -Rl + R3 '" and "Replace Rs by Rl + Rs", Then 

2 0 -I 

2 1 
181 = -I 0 I 

3 0 2 
o -2 
4 -I 

4 3 
-2 

o 2 
3 -I 

2 6 

2 -I 4 3 
-I I 0 2 
3 2 3 -I 

-2 2 3 

1 
o 
5 

-I 

= 5 3 -5 =21 +20- 10- 3 + 10 - 140 = -102 
-1 2 7 

4 -I 

1 0 0 
2 3 -5 

-2 2 7 

COFACTORS, CLASSICAL ADJOINTS, j\'lINORS, PRINCIPAL MINORS 

8.5. 

-J 
-4 7 

o 6 
-2 5 

-�] -J . 
2 

(a) Find An, the cofactor (signed minor) of 7 in A, 

(b) Find the minor and the signed minor of the submatrix M = A(2. 4: 2, 3), 

(c) Find the principal minor detennined by the first and third diagonal entries, that is by 
M = A( 1 , 3: 1 , 3), 

(a) Take the determinant of the submatrix of A obtained by deleting row 2 and column 3 (those which 
contain the 7), and multiply the determinant by (_ll+

3
; 

2 4 
A23 = - 4 0 -3 = -(-61 ) = 61 

3 -2 2 

The exponent 2 + 3 comes from the subscripts of AB, that is, from the 1:1e\ that 7 appears in row 2 and 
column 3. 
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(b) The row subscripts are 2 and 4 and the column subscripts are 2 and 3 . Hence the minor is the determinant 

IMI = I a22 a23 1 = 1 -4 7 1 = -20 + 14 = -6 a42 a43 -2 5 

and the signed minor is (- I )2+4+2+3 IMI = - IMI = -(-6) = 6. 
(c) The principal minor is the determinant 

IMI = I al l  al3 1 = 1 2 -3 1 = 1 2  + 1 2  = 24 a3 1 a33 4 6 

Note that now the diagonal entries of the submatrix are diagonal entries of the original matrix. Also, the 
sign of the principal minor is positive. 

8.6. Let B = [ � � ! ] .  Find: (a) IB I ,  (b) adj B, (c) B- 1 using adj B. 
5 8 9  

(a) IB I  = 27 + 20 + 1 6  - 1 5  - 32 - 1 8  = -2 
(b) Take the transpose of the matrix of cofactors: 

adj B =  
[ -5 

= - I  
I 

� _� ] T  = [ -� -
! -� l 

-2 I I -3 1 

(c) Since IB I  =I- 0, B- 1 = � (adj B) = � [
-; -; 

IB I  -2 1 -3 

I ] [ � t - t l 
-2 = - I  -2 1 

I I 3 1 - 2: 2: - 2: 

8.7. Let A = [ ! � � ] , and let Sk denote the sum of its principal minors of order k. Find Sk for: 
0 7 8  

8.8. 

(a) k = 1 ,  (b) k = 2, (c) k = 3 . 
(a) The principal minors of order I are the diagonal elements. Thus SI is the trace of A; that is, 

SI = tr(A) = 1 + 5 + 8 = 14 

(b) The principal minors of order 2 are the cofactors of the diagonal elements. Thus 

S2 = A l l + A22 + A33 = 1 � : I + I � ! I + I ! � I 
(c) There is only one principal minor of order 3 ,  the determinant of A. Then 

S3 = IA I = 40 + 0 + 84 - 0 - 42 - 64 =  1 8  

[ 1 3 0 
-4 2 5 Let A = 1 0 3 

3 -2 1 

- 1 ] _� . Find the number Nk and sum Sk of principal minors of order: 

(a) k = 1 ,  (b) k = 2, (c) k = 3 ,  (d) k = 4 . 
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Each (nonempty) subset of the diagonal (or equivalently, each nonempty subset of { I ,  2 , 3 ,  4}) determines 

a principal minor of A, and Nk = ( k
n) = (

n !  
) of them are of order k. k! n - k ! 

Thus NI = ( � ) = 4, N2 = G) = 6, N3 = G) = 4, N4 = ( : ) = 1 

(a) SI = I I I + 1 2 1 + 1 3 1 + 14 1 = 1 + 2 + 3 + 4 = 1 0  

(b) S2 = I 1 
-4 � I + I � � I + I � -� I + I � � I + I -� � I + I � 

= 14 + 3 + 7 + 6 + 1 0  + 14 = 54 
3 0 3 - 1  0 - 1  2 

(c) S3 = -4 2 5 + -4 2 + 3 -2 + 0 
1 0 3 3 -2 4 3 4 -2 

= 57 + 65 + 22 + 54 = 198 
(d) S4 = det(A) = 378 

DETERMINANTS AND SYSTEMS OF LINEAR EQUATIONS 1 3Y + 2x = Z + 1 
8.9. Solve using determinants the system 3x + 2z = 8 - 5y 

3z - 1 = x - 2y 

5 
3 

-� I 
-2 

4 

First arrange the equation in standard form, then compute the determinant D of the matrix of coefficients: 

2x + 3y - Z =  
3x + 5y + 2z = 8 
x - 2y - 3z = - 1 

and D =  3 5 2 = -30 + 6 + 6 + 5 + 8 + 27 = 22 1 2 3 - 1 1 
1 -2 -3 

Since D # 0, the system has a unique solution. To compute Nx , Ny , NZ' we replace, respectively, the 
coefficients of x, y, z in the matrix of coefficients by the constant terms. Then 

Nx = I � 3 - 1 1 5 2 = 66 ,  
-1  -2 -1 

Thus 

Ny = I � 1 - 1 1 8 2 = -22, 
- 1  -3 

N -22 

Nz = I � 3 
5 

-2 

x = Nx = 66 = 3  D 22 ' y - 2 - - - - l  - D - 22 - , Nz 44 z - - - - - 2  - D - 22 -

1 k.x + Y + Z = l  
8.10. Consider the system x + ky + z = 1 

x + y + kz =  1 
Use determinants to find those values of k for which the system has: 

(a) a unique solution, (b) more than one solution, (c) no solution. 

� 1 = 44 
- 1  

(a) The system has a unique solution when D # 0, where D is the determinant of the matrix of coefficients. 
Compute 

I k I l l D = 1 k 1 = P + 1 + 1 - k - k - k = k3 - 3k + 2 = (k - liCk + 2) 
1 1 k 
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Thus the system has a unique solution when 

(k - 1 )2 (k + 2) i- 0, that is , when k i- 1 and k i- 2 

(b and c) Gaussian elimination shows that the system has more than one solution when k = 1 ,  and the 
system has no solution when k = -2. 

MISCELLANEOUS PROBLEMS 

8.1 1 .  Find the volume V(S) of the parallelepiped S in R3 determined by the vectors : 

(a) u! = ( 1 , 1 , 1 ) ,  U2 = ( 1 ,  3 ,  -4) , U3 = ( 1 , 2 ,  -5) .  
(b) u! = ( 1 , 2 , 4) ,  U2 = (2 , 1 ,  -3) ,  u3 = (5 , 7 , 9). 

V(S) is the absolute value of the determinant of the matrix M whose rows are the given vectors. Thus 

(a) IMI = I � � =: I = - 1 5 - 4 + 2 - 3 + 8 + 5 = -7. HenCe V(S) = 1 - 7 1 = 7 . 

(b) IMI = I � : -� 1 = 9 - 30 + 56 - 20 + 2 1  - 36 = O. Thus V(S) = 0, or, in other words, U! , U2 , u3 

lie in a plane and are linearly dependent. 

[ � � � � � ] [_� _ ; 1 � l � _ �] 8.12. Find det(M) where M = 0 9 2 0 0 = _0 _ 2 I � I Q. _ Q. 
o 5 0 6 7 0 5 � 0 � 6 7 
0 0 4 3 4  0 0 1 4 I 3 4 

M is a (lower) triangular block matrix; hence evaluate the determinant of each diagonal block: 

I � : I = 1 5  - 8 = 7 ,  

Thus IM I  = 7(2)(3) = 42. 

1 2 1  = 2 , 

8.13. Find the determinant of F: R3 -+ R3 defined by 

I � � I = 24 - 2 1  = 3 

F(x, y, z) = (x + 3y - 4z, 2y + 7z, x + 5y - 3z) 
The determinant of a linear operator F is equal to the determinant of any matrix that represents F. Thus 

first find the matrix A representing F in the usual basis (whose rows, respectively, consist of the coefficients 
x, y, z). Then [ 1 3 -4 ] 

A =  0 2 7 ,  
1 5 -3 

and so det(F) = IA I = -6 + 21 + 0 + 8 - 35  - 0 = -8 

8.14. Write out g = g(x! , X2 , x3 , X4) explicitly where 

g(X! , X2 , ' "  , xn) = fl(xi - x) . i<j 
The symbol n is used for a product of terms in the same way that the symbol L is used for a sum of 

terms. That is, ni<j (Xi - X) means the product of all terms (Xi - X) for which i < j. Hence 

g = g(XI , . . .  , X4) = (Xl - X2)(XI - X3)(XI - X4)(X2 - X3)(X2 - X4)(X3 - X4) 



Lipschulz-Lipson:Schaum's I 8, Determinants 

Outline ofTheory and 

I Text © The McGraw-Hili 
Companies, 2004 

Problems of Linear 

Algebra,3/e 

CHAP. 8] DETERMINANTS 295 

8.15. Let D be a 2-linear, alternating function. Show that D(A , B) = -D(B, A) . 
Since D is alternating, D(A , A) = 0, D(B, B) = O. Hence 

D(A + B, A + B) = D(A , A) + D(A , B) + D(B, A) + D(B, B) = D(A , B) + D(B, A) 

However, D(A + B, A + B) = O. Hence D(A , B) = -D(B, A) ,  as required. 

PERMUTATIONS 

8.16. Determine the parity (sign) of the permutation a = 364 1 52 .  

Count the number of  inversions. That is, for each element k ,  count the number of  elements i in (J such 
that i > k and i precedes k in (J. Namely, 

k = 1 :  3 numbers (3 , 6 , 4) 
k = 2 :  4 numbers (3 , 6 , 4 , 5) 
k = 3 :  0 numbers 

k = 4: 
k =  5 :  
k = 1 :  

1 number (6) 
1 number (6) 
o numbers 

Since 3 + 4 + 0 + 1 + 1 + 0 = 9 is odd, (J is an odd permutation, and sgn (J = - 1 .  

8.17. Let a = 245 1 3  and , = 4 1 352 be permutations in S5 ' Find: (a) , 0 a, (b) a- I . 
Recall that (J = 245 1 3  and , = 4 1 352 are short ways of writing 

(J
= 
G 

2 3 4 � ) or (J( I )  = 2 ,  (J(2) = 4, 
4 5 

' = c 2 3 4 � ) or ,( 1 )  = 4 ,  ,(2) = 1 , 
3 5 

(a) The effects of (J and then , on 1 , 2 , 3 , 4 , 5  are as follows: 
1 --+ 2 --+ 1 , 2 --+ 4 --+ 5 ,  3 --+ 5 --+ 2 ,  

(J(3) = 5 ,  (J(4) = 1 , 

,(3) = 3 , ,(4) = 5 ,  

4 --+ 1 --+ 4 ,  

[That is, for example, (, a (J)( I )  = ,((J( I )) = ,(2) = 1 .] Thus , a (J = 1 5243 . 
(b) By definition, (J- l (j) = k if and only if (J(k) = j. Hence 

_ 1 = ( 2 4 5 1 3 ) = ( 1 2 3 4 5 ) (J 1 2 3 4 5 4 1 5 2 3  or (J- 1 = 4 1 523 

(J(5) = 3 

,(5) = 2 

8.18. Let a = jJi2 . . .  jn be any permutation in Sn - Show that, for each inversion (i, k) where i > k but i 
precedes k in a, there is a pair (i* ,j*) such that 

i* < k* and a(i*) > a(j*) ( 1 )  
and vice versa. Thus a i s  even or odd according to whether there i s  an even or an odd number of 
pairs satisfying ( 1 ) .  

Choose i *  and k*  so  that (J(i*) = i and (J(k*) = k .  Then i > k i f  and only i f  (J(i*) > (J(k*) , and i precedes 
k in (J if and only if i* < k* . 

8.19. Consider the polynomials g = g(XI , . . .  , xn) and a(g), defined by 
g = g(XI , . . .  , xn) = TI (Xi - X) and a(g) = TI (X<T(i) - X<T(j») k} k} 

(See Problem 8 . 14 . )  Show that a(g) = g when a is an even permutation, and a(g) = -g when a is 
an odd permutation. That is, a(g) = (sgn a)g. 

Since (J is one-to-one and onto, 
(J(g) = nexo-(i) - xo-(j») = TI (Xi - Xj) i<j i<j or i>j 

Thus (J(g) or (J(g) = -g according to whether there is an even or an odd number of terms of the form Xi - Xj' 
where i > j. Note that for each pair (i,j) for which 

i < j and (J( i) > (J(j) 
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there is a term (xo-(i) - xo-(J» in o-(g) for which o-(i) > o-U). Since 0- is even if and only if there is an even 
number of pairs satisfying ( 1 ), we have o-(g) = g if and only if 0- is even. Hence o-(g) = -g if and only if 0-
is odd. 

8.20. Let (1, "C E Sn . Show that sgn("C 0 (1) = (sgn "C)(sgn (1) . Thus the product of two even or two odd 
permutations is even, and the product of an odd and an even permutation is odd. 

Using Problem 8 . 1 9, we have 
sgn("C 0 0-) g = ("C 0 o-)(g) = T(o-(g» = T((Sgn o-)g) = (sgn T)(sgn o-)g 

Accordingly sgn (T 0 0-) = (sgn T)(Sgn 0-). 

8.21 .  Consider the permutation (1 = jJi2 . . .  jn . Show that sgn (1- 1 = sgn (1 and, for scalars ai)' show that 
ail I a}z2 . . .  ainn = a lkl a2k, . . .  ani<" 

where (1- 1 = kl k2 . . .  kn -
We have 0-- 1 0 0- = e, the identity permutation. Since e is even, 0-- 1 and 0- are both even or both odd. 

Hence sgn 0-- 1 = sgn 0-. 
Since 0- =iJ2 " .in is a permutation, ah lahn " . ajnn = alkl a2k, " . ankn ' Then kl ' k2 , • • •  , kn have the 

property that 

o-(kz) = 2 ,  

Let T = kl k2 • • . kn - Then, for i = 1 ,  . . .  , n, 
(0- 0 T)(i) = o-(T(i» = o-(ki) = i 

Thus 0- a T = e, the identity permutation. Hence T = 0-- 1 . 

PROOFS OF THEOREMS 

8.22. Prove Theorem 8 . 1 :  IAT I = IA I . 
If A = [aij] ' then AT = [bij] ' with bij = aji ' Hence 

IAT I = L (sgn o-)b lo-(2)b2o-(2) • • . bno-(n) = L (sgn o-)ao-(l) , I ao-(2),2 • • •  ao-(n),n 
rJESn rJESn 

Let T = 0-- 1 . By Problem 8.2 1 sgn T = sgn 0-, and ao-(l) , l ao-(2), 2 ' "  ao-(n),n = ah(l )a2T(2) ' "  am(n) ' Hence 

IAT I = L (sgn T)al t( l )a2T(2) . • •  anT(n) 
(JESn 

However, as 0- runs through all the elements of Sn ' T = 0-- 1 also runs through all the elements of Sn - Thus 
WI = IA I · 

8.23. Prove Theorem 8 . 3 (i): If two rows (columns) of A are interchanged, then lE I = - IA I . 
We prove the theorem for the case that two columns are interchanged. Let T be the transposition that 

interchanges the two numbers corresponding to the two columns of A that are interchanged. If A = [aij] and 
B = [bij] ' then bij = aiT(j) ' Hence, for any permutation 0-, 

blo-(l)b2o-(2) " . bno-(n) = ah o o-(l)a2T O  0-(2) " . am o  o-(n) 
Thus 

IB I  = L (sgn o-)blo-(I)b2o-(2) ' "  bno-(n) = L (sgn o-)a lT O  o-(I )a2T O  0-(2) ' "  am o  o-(n) 
(JESn (JESn 

Since the transposition T is an odd permutation, Sgn(T O 0-) = (sgn T)(Sgn 0-) = -sgn 0-. Thus 
sgno- = -sgn (T a 0-) , and so 

IB I  = - L [Sgn(T O o-)]ah o o-(l )a2T O  0-(2) . . .  am o o-(n) 
(JESn 

But as 0- runs through all the elements of Sn ' T O O- also runs through all the elements of Sn - Hence IB I = - IA I .  
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8.24. Prove Theorem 8 ,2 :  (i) If A has a row (column) of zeros, then IA I = 0, 
(i) If A has two identical rows (columns), then IA I = O .  

(ii) If A is triangular, then IA I = product of diagonal elements. Thus II I  = 1 . 

(i) Each term in IA I contains a factor from every row, and so from the row of zeros. Thus each term of IA I is 
zero, and so IA I = O. 

(ii) Suppose 1 + 1 =1= 0 in K. If we interchange the two identical rows of A, we still obtain the matrix A .  
Hence, by Problem 8 .23 ,  IA I = - IA I ,  and so  IA I = o. 

Now suppose 1 + 1 = 0 in K. Then sgn IJ = 1 for every IJ E Sn . Since A has two identical rows, we 
can arrange the terms of A into pairs of equal terms. Since each pair is 0, the determinant of A is zero. 

(iii) Suppose A = [aij] is lower triangular, that is, the entries above the diagonal are all zero: aij = 0 
whenever i < j. Consider a term t of the determinant of A :  

where 

Suppose il =1= 1 .  Then 1 < il and so al i, = 0; hence t = O. That is, each term for which il =1= 1 is zero. 
Now suppose il = 1 but iz =1= 2. Then 2 < iz , and so aZi2 = 0; hence t = O. Thus each term for 

which il =1= 1 or iz =1= 2 is zero. 
Similarly, we obtain that each term for which il =1= 1 or iz =1= 2 or . . .  or in =1= n is zero. Accordingly, 

IA I = a I I  azz . . .  ann = product of diagonal elements. 

8.25. Prove Theorem 8 . 3 :  B is obtained from A by an elementary operation. 

(i) If two rows (columns) of A were interchanged, then IB I  = - IA I .  
(ii) If a row (column) of A were multiplied by a scalar k, then IB I  = k iA I .  
(iii) If a multiple of a row (column) of A were added to another row (column) of A , then IB I  = IA I .  

(i) This result was proved in Problem 8 .23 .  
(ii) If thejth row of A is multiplied by k, then every term in IA I is multiplied by k, and so IB I  = k iA I .  That is, 

IBI = L (sgn IJ)a1 i, aZi2 . . .  (kaj; ) . . .  ani" = k L (sgn IJ)a1 i, aZi2 . . .  ani" = k lA I  
� � 

(iii) Suppose c times the kth row is added to the jth row of A. Using the symbol ' to denote the jth position in 
a determinant term, we have 

IB I  = L (sgn IJ)al i, aZi2 . . .  (cakik + aj� ) . . .  ani" � 
= c L (sgn IJ)a1 i, aZi2 . . .  aki, ' "  ani" + L (sgn IJ)a1 i, aZi2 . . .  aj� . . .  ani" � � 

The first sum is the determinant of a matrix whose kth and jth rows are identical. Accordingly, by 
Theorem 2(ii), the sum is zero. The second sum is the determinant of A .  Thus IB I  = c · 0 + IA I = IA I .  

8.26. Prove Lemma 8 .6 :  Let E b e  an elementary matrix. Then lEA l = IE I IA I .  

Consider the elementary row operations : (i) Multiply a row by a constant k =1= 0, 

(ii) Interchange two rows, (iii) Add a multiple of one row to another. 

Let EI , Ez , E3 be the corresponding elementary matrices That is, EI , Ez , E3 are obtained by applying the 
above operations to the identity matrix I. By Problem 8.25, 

IEI I = k il l  = k, 

Recall (Theorem 3 . 1 1 )  that EiA is identical to the matrix obtained by applying the corresponding operation to 
A .  Thus, by Theorem 8 .3 ,  we obtain the following which proves our lemma: 
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8.27. Suppose B is row equivalent to a square matrix A. Prove that IB I = 0 if and only if IA I = o. 
By Theorem 8 .3 ,  the effect of an elementary row operation is to change the sign of the determinant or to 

multiply the determinant by a nonzero scalar. Hence IB I = 0 if and only if IA I = o. 

8.28. Prove Theorem 8 . 5 :  Let A be an n-square matrix. Then the following are equivalent: 

(i) A is invertible, (ii) AX = 0 has only the zero solution, (iii) det(A) -I- O .  

The proof is by the Gaussian algorithm. If A is invertible, i t  is row equivalent to I. But I I I  i- O. Hence, by 
Problem 8 .40, IA I i- O. If A is not invertible, it is row equivalent to a matrix with a zero row. Hence 
det(A) = O. Thus (i) and (iii) are equivalent. 

If AX = 0 has only the solution X = 0, then A is row equivalent to I and A is invertible. Conversely, if A 
is invertible with inverse A- I , then 

X = IX = (A- IA)X = A- I (AX) = A- I O = 0 

is the only solution of AX = O. Thus (i) and (ii) are equivalent. 

8.29. Prove Theorem 8 .4 :  IAB I = IA I IB I . 
If A is singular, then AB is also singular, and so IAB I = 0 = IA I IB I .  On the other hand, if A is non­

singular, then A = En . . .  E2El > a product of elementary matrices. Then, Lemma 8 .6 and induction, yields 

8.30. Suppose P is invertible. Prove that IF- I I = IFI - I . 

p- Ip = I. Hence 1 = II I = IF- ip i = IF- I I IF I , and so IF- I I = IFI - I . 

8.31 .  Prove Theorem 8 .7 :  Suppose A and B are similar matrices. Then IA I = IB I . 
Since A and B are similar, there exists an invertible matrix P such that B = P-IAP. Therefore, using 

Problem 8 .30, we get IB I  = IF- IAP I = IF- I I IA I IF I = IA l lp- I I IP = IA I .  
We remark that although the matrices p-I and A may not commute, their determinants IF- I I and IA I do 

commute, since they are scalars in the field K 

8.32. Prove Theorem 8 . 8 (Laplace) : Let A = [aij] ' and let Aij denote the cofactor of aij ' Then, for any i orj 

and 

Since IA I = IAT I ,  we need only prove one of the expansions, say, the first one in terms of rows of A .  Each 
term in IA I contains one and only one entry of the ith row (ail ' ai2 , . . .  , ain) of A. Hence we can write IA I in the 
form 

IA I  = aiiArl + ai2Ar2 + . . .  + ainArn 
(Note that A� is a sum of terms involving no entry of the ith row of A.) Thus the theorem is proved if we can 
show that 

A� = Aij = (- li+J IMij l 
where Mij is the matrix obtained by deleting the row and column containing the entry aij ' (Historically, the 
expression A� was defined as the cofactor of aij' and so the theorem reduces to showing that the two 
definitioins of the cofactor are equivalent.) 

First we consider the case that i = n, j = n .  Then the sum of terms in IA I containing ann is 
annA'::n = ann I:(sgn a)al<1(I)a2<1(2) . . .  an- I ,<1(n- l ) <1 

where we sum over all permutations a E Sn for which a(n) = n. However, this is equivalent (Prove ! ) to 
summing over all permutations of { I , . . .  , n - I } .  Thus A �n = IMnn I = (- I )"+n IMnn I .  
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Now we consider any i andi. We interchange the ith row with each succeeding row until it is last, and we 
interchange the ith column with each succeeding column until it is last. Note that the determinant IMij I is not 
affected, since the relative positions of the other rows and columns are not affected by these interchanges. 
However, the " sign" of IA I and of At is changed n - I and then n - i times. Accordingly, 

At = (_ l )n-i+n-j IMij l = (_ l )i+j IMij I 

8.33 . Let A = [aij] and let B be the matrix obtained from A by replacing the ith row of A by the row vector 
(biJ ' . . .  , bin) '  Show that 

IB I  = biJAiJ + bi2Ai2 + . . .  + binAin 
Furthermore, show that, for j -I- i, 

and 

Let B = [bij] '  By Theorem 8 .8 ,  

IB I  = biJBiJ + bi2Bi2 + . . .  + binBin 
Since Bij does not depend on the ith row of B, we get Bij = Aij for i = 1 ,  . . .  , n. Hence 

IB I  = biJAiJ + bi2Ai2 + . . .  + binAin 
Now let A' be obtained from A by replacing the ith row of A by the ith row of A. Since A' has two identical 

rows, IA' I = O. Thus, by the above result, 

IA' I = ajlAil + aj2Ai2 + . . .  + ajnAin = 0 

Using IAT I = IA I ,  we also obtain that aljA l i + a2jA2i + . . .  + anjAni = O. 

8.34. Prove Theorem 8 .9 :  A(adj A) = (adj A)A = IA II. 

Let A = [aij] and let A(adj A) = [bij] '  The ith row of A is 

( I )  

Since adj A is the transpose of  the matrix of  cofactors, the ith column of  adj A i s  the tranpose of  the cofactors 
of the ith row of A, that is, 

(Aj , Aj2 '  . . .  , Ajn)T 

Now bij , the ij entry in A(adj A), is obtained by multiplying expressions ( 1 )  and (2) : 

bij = aiJAjl + ai2Aj2 + . . .  + ainAjn 

By Theorem 8 .8  and Problem 8 .33 ,  

{ IA I i f  i = i bij = 0 if i =I-i 

(2) 

Accordingly, A(adj A) is the diagonal matrix with each diagonal element IA I .  In other words, A(adj A) = IA II. 
Similarly, (adj A)A = IA II. 

8.35. Prove Theorem 8 . 1 0  (Cramer's rule): The (square) system AX = B has a unique solution if and only 
if D -I- O. In this case, Xi = N;/D for each i. 

By previous results, AX = B has a unique solution if and only if A is invertible, and A is invertible if and 
only if D = IA I =I- O. 

Now suppose D =I- O. By Theorem 8 .9 ,  A- I = ( l jD)(adj A). Multiplying AX = B by A- I , we obtain 

x = A- lAX = ( l jD)(adj A)B ( I )  
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Note that the ith row of ( I /D)(adj A) is ( I /D)(A l i , A2i , . . .  , An;). If B = (bl , b2 , . . .  , bnl, then, by ( I ), 

Xi = ( 1 /D)(bIA l i + b2A2i + . . .  + bnAnJ 

However, as in Problem 8 .33 ,  blA l i  + b2A2i + . . .  + bnAni = Ni, the determinant of the matrix obtained by 
replacing the ith column of A by the column vector B. Thus Xi = ( I /D)Ni, as required. 

8.36. Prove Theorem 8 . 1 2 :  Suppose M is an upper (lower) triangular block matrix with diagonal blocks 
A j , A2 , . . .  , An . Then 

det(M) = det(A j )  det(A2) ' . .  det(An) 

We need only prove the theorem for n = 2, that is, when M is a square matrix of the form M = [ � i ] . 
The proof of the general theorem follows easily by induction. 

Suppose A = [ay] is r-square, B = [by] is s-square, and M = [my] is n-square, where n = r + s. By 
definition, 

det(M) = L (sgn o,)ml11(I )m211(2) . . .  mna(n) 
(JESn 

If i > r and j :::: r, then my = O. Thus we need only consider those permutations IJ such that 

IJ{r + I ,  r + 2 ,  . . .  , r + s} = {r + I ,  r + 2, . . .  , r + s} and IJ{ l , 2, . . .  , r} = { I ,  2, . . .  , r} 

Let IJI (k) = IJ(k) for k :::: r, and let IJ2(k) = IJ(r + k) - r for k :::: s. Then 
(sgn IJ)ml11(I)m211(2) " . mna(n) = (sgn IJI )al111 ( I )a2112(2) . . .  ar11k)(sgn IJ2)bl112 (I )b2112(2) ' . .  bS112(S) 

which implies det(M) = det(A) det(B). 

8.37. Prove Theorem 8 . 14 :  There exists a unique function D :  M -+ K such that: 

(i) D is multilinear, (ii) D is alternating, (iii) D(I) = 1 .  
This function D is the determinant function; that is, D(A) = IA I .  

Let D be the determinant function, D(A) = IA I .  We must show that D satisfies (i), (ii), and (iii), and that D 
is the only function satisfying (i), (ii), and (iii) . 

By Theorem 8.2 , D satisfies (ii) and (iii) . Hence we show that it is multilinear. Suppose the ith row of 
A = [ay] has the form (bi! + ci! , bi2 + ca , . . .  , bin + Cin) ' Then 

D(A) = D(A I , . . .  , Bi + Ci , . . .  , An) 
= L (sgn IJ)al11(I) . . .  ai- I , 11(i- l ) (bi11(i) + Ci11(i) . . .  ana(n) 

Sn 

= L (sgn IJ)al11(1) . . .  bi11(i) . . .  ana(n) + L (sgn IJ)al11(1) • . .  Ci11(i) . . .  an11(n) 
Sn Sn 

= D(A I , . .  · , Bi , . .  · , An) + D(AI " ' "  Ci , · · ·  , An) 

Also, by Theorem 8 .3(ii), 

D(AI , · · · , kAi , · · ·  , An) = kD(AI " " , Ai " " , An) 
Thus D is multilinear, i .e . ,  D satisfies (i). 

We next must prove the uniqueness of D. Suppose D satisfies (i), (ii), and (iii) . If {el , . . .  , en } is the usual 
basis of Kn , then, by (iii), D(el , e2 , . . .  , en) = D(l) = 1 .  Using (ii), we also have that 

where ( 1 )  

Now suppose A = [ay] '  Observe that the kth row Ak of A is 
Ak = (akl , ak2 , . . .  , akn) = akl el + ak2e2 + . . .  + aknen 

Thus 
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(2) 

where the sum is summed over all sequences i1 i2 . . .  in > where ik E { I , . . .  , n} .  If two of the indices are equal, 
say � = ik but j #- k, then, by (ii), 

Accordingly, the sum in (2) need only be summed over all permutations (J = i1 i2 . . .  in ' Using ( 1 ), we finally 
have that 

D(A) = L (al iI a2i2 . . .  ani)D(eil ' ei2 ' . . .  , e;) a 
= L (sgn (J)al il a2i2 . . .  ani" ' a 

where 

Hence D is the determinant function, and so the theorem is proved. 

Supplementary Problems 
COMPUTATION OF DETERMINANTS 

8.38. Evaluate: 

8.39. Find all t such that: (a) 1 t ; 4 t � 9 1 = 0, (b) 1 t � I t � 2 1 = 0 
8.40. Compute the determinant of each of the following matrices: 

(a) [ : -l -H (b) U -� �] , (e) n =: -H (� [ r J n 
8.41. Find the determinant of each of the following matrices: 

(a) [ � =1 -l -H (b) [ i -1 -; -! ] 
8.42. Evaluate: 

(a) 

2 - I  3 -4 
2 I -2 1 
3 3 -5 

4 ' (b) 5 
2 - I  4 

2 - 1  4 -3 
- I  0 2 

3 2 3 - 1 ' (c) 

-2 2 -3 

-2 
I 

2 0 3 - 1  
-2 0 

4 -5 
4 4 -6 



Lipschulz-Lipson:Schaum's I 8, Determinants 

Outline ofTheory and 

Problems of Linear 

Algebra,3/e 

I Text 

302 DETERMINANTS 

8.43. Evaluate each of the following determinants :  

2 - I  3 1 3 5 7 
2 - 1  -2 3 2 4 2 4 

(a) 3 0 2 - 1  , (b) 0 0 2 
5 2 -3 4 0 0 5 6 

-2 3 - 1  -2 0 0 2 3 

COFACTORS, CLASSICAL ADJOINTS, INVERSES 

8.44. Find det(A), adj A, and A- I , where: 

(a) A =  [ � � � ] ' (b) A =  [ ; � � ] 
0 2 1 1 1 1  

9 
2 
3 , (c) 
2 

8.45. Find the classical adjoint of each matrix in Problem 8 .4 1 .  

2 3 
5 4 3 
0 0 6 
0 0 0 
0 0 0 

4 5 
2 
5 
7 4 
2 3 

© The McGraw-Hili 
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8.46. Let A = [ :  � 1 (a) Find adj A, (b) Show that adj(adj A) = A,  (c) When does A = adj A? 

8.47. Show that if A is diagonal (triangular) then adj A is diagonal (triangular), 

8.48. Suppose A = [aij] is triangular. Show that: 

(a) A is invertible if and only if each diagonal element aii #- O. 
(b) The diagonal elements of A- I (if it exists) are ali i , the reciprocals of the diagonal elements of A .  

MINORS, PRINCIPAL MINORS 

8.49. Lm A � [ l 2 
0 

- 1  
-3 

3 
-2 

2 
0 
: ] � B � [ i 

- 1  3 

corresponding to the following submatrices: 

3 
-3 
-5 

0 

- 1  

2 
5 

� ] . Find the minor and the signed minor 

-2 

(a) A( 1 , 4 ; 3 , 4) , (b) B( 1 , 4 ; 3 , 4) , (c) A(2 , 3 ; 2 , 4) , (d) B(2 , 3 ; 2 , 4) . 

8.50. For k = 1 ,  2, 3 ,  find the sum Sk of all principal minors of order k for: 

8.51. 

(a) A = [ ; -! ; ] , (b) B = [ ; � -� ] , (c) c = [ ; -� � ]  
5 -2 1 3 -2 0 4 -7 1 1  

For k = 1 , 2 , 3 , 4, find the sum Sk of all principal minors of order k for: 

(aJ A � [ 1 2 3 - 1  ] B - [ : 2 1 

� ] -2 0 
; , (b) 

1 2 
-2 - 1 3 0 

0 - 1  -3 2 7 4 
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8.52. Solve the following systems by determinants :  

{ 3x + 5y = 8 { 2x - 3y = - 1  (a) 4x - 2y = I , (b) 4x + 7y = - I ' (c) 

8.53. Solve the following systems by determinants: 

{ ax - 2by = c 
3ax - 5by = 2c 

j 2X - 5y + 2z = 7 
(a) x + 2y - 4z = 3 ,  (b) 

3x - 4y - 6z = 5 

j 2Z + 3  = y +  3x 
x - 3z = 2y + 1 
3y + z = 2 - 2x 

(ab -=I- 0) 

© The McGraw-Hili 
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8.54. Prove Theorem 8 , 1 1 :  The system AX = 0 has a nonzero solution if and only if D = IA I = 0, 

PERMUTATIONS 

8.55. Find the parity of the permutations (J = 32 1 54, , = 1 3524, n = 4253 1 in S5 ' 

8.56. For the permutations in Problem 8 .55 , find: 

(a) , 0  (J, (b) n o  (J, (c) (J- I , (d) ,- I . 

8.57. Let , E Sn ' Show that , a (J runs through Sn as (J runs through Sn , that is, Sn = {, a (J : (J E Sn } '  

8.58. Let (J E Sn have the property that (J(n) = n. Let (J* E Sn_ 1 be defined by (J*(x) = (J(x). 

(a) Show that sgn (J* = sgn (J, 
(b) Show that as (J runs through Sm where (J(n) = n, (J* runs through Sn_ l , that is, 

Sn_ 1 = {(J* : (J E Sn , (J(n) = n} .  

8.59. Consider a permutation (J = il 12 . . .  in ' Let {ej } be the usual basis of Kn , and let A be the matrix whose ith row 
is ej, ' i .e . , A = (eh ' ej" . . .  , ej) . Show that IA I = sgn (J. 

DETERMINANT OF LINEAR OPERATORS 

8.60. Find the determinant of each of the following linear transformations : 

(a) T:R2 -+ R2 defined by T(x, y) = (2x - 9y, 3x - 5y), 
(b) T:R3 -+ R3 defined by T(x, y, z) = (3x - 2z, 5y + 7z, x + y + z), 
(c) T:R3 -+ R2 defined by T(x, y, z) = (2x + 7y - 4z, 4x - 6y + 2z). 

8.61. Let D: V -+ V be the differential operator, that is, D(f(t)) = dfldt. Find det(D) if V is the vector space of 
functions with the following bases :  (a) { I ,  t , . . .  , t5 } ,  (b) {el , e21 , e31 } ,  (c) { sin t, cos t} . 

8.62. Prove Theorem 8 . 1 3 :  Let F and G be linear operators on a vector space V. Then: 

(i) det(F a G) = det(F) det(G), (ii) F is invertible if and only if det(F) -=I- O. 

8.63. Prove: (a) det(l v) = 1, where Iv is the identity operator, (b) -det(T- I ) = det(T)- 1 when T is invertible. 

MISCELLANEOUS PROBLEMS 

8.64. Find the volume V(S) of the parallelepiped S in R3 determined by the following vectors: 

(a) UI = ( 1 ,  2, -3), U2 = (3 , 4 , - I ), u3 = (2 , - 1 , 5), 
(b) UI = ( 1 , 1 , 3), u2 = ( 1 ,  -2, -4), u3 = (4 , 1 , 2). 
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8.65. Find the volume V(S) of the parallelepiped S in R4 determined by the following vectors: 

Uj = ( 1 , -2, 5 ,  - I ) , ul = (2, I ,  -2, I ) , u3 = (3 , 0, I - 2) , u4 = ( 1 , - I ,  4, - 1 )  

[CHAP. 8 

8.66. Let V be the space of 2 x 2 matrices M = [ �  � ]  over R. Determine whether D: V ---+ R is 2-linear (with 
respect to the rows) where: 

(a) D(M) = a + d, 
(b) D(M) = ad, 

(c) D(M) = ac - bd, 
(d) D(M) = ab - cd , 

8.67. Let A be an n-square matrix, Prove IkA l = k" IA I .  

(e) D(M) = 0 
(f) D(M) = 1 

8.68. Let A , B, C, D be commuting n-square matrices. Consider the 2n-square block matrix M = [ � � ] .  Prove 

that IMI = IA I ID I  - IB I I C I .  Show that the result may not be true if the matrices do not commute. 

8.69. Suppose A is orthogonal, that is, AT A = I. Show that det(A) = ± l .  

8.70. Let V be the space of m-square matrices viewed as m-tuples of row vectors. Suppose D: V ---+ K is m-linear 
and alternating. Show that: 

(a) D( . . .  , A , . . .  , B, . . .  ) = -D( . . .  , B, . . .  , A , . . .  ); sign changed when two rows are interchanged. 
(b) If A j , Al , . . .  , Am are linearly dependent, then D(A j , Al , . . .  , Am) = O. 

8.71. Let V be the space of m-square matrices (as above), and suppose D: V ---+ K. Show that the following weaker 
statement is equivalent to D being alternating: 

whenever Ai = Ai+1 for some i 

Let V be the space of n-square matrices over K. Suppose B E V is invertible and so det(B) i= O. Define 
D: V ---+ K by D(A) = det(AB)/det(B), where A E V. Hence 

D(A I , Al , . . .  , An) = det(A IB, AlB, . . .  , AnB)/det(B) 

where Ai is the ith row of A, and so AiB is the ith row of AB. Show that D is multilinear and alternating, and 
that D(I) = I . (This method is used by some texts to prove that IAB I = IA I IB I .) 

8.73. Show that g = g(XI , . . .  , xn) = (_ I )n Vn_ 1 (x) where g = g(x;) is the difference product in Problem 8 . 1 9, 
x = xn , and Vn_ 1 is the Vandermonde determinant defined by 

Xl x 

� �_I xl 

Xi- I xz- I . . .  x;:= l  x"- I 

8.74. Let A be any matrix. Show that the signs of a minor A[I, J] and its complementary minor A[I' , J'] are equal. 

8.75. Let A be an n-square matrix. The determinantal rank of A is the order of the largest square submatrix of A 
(obtained by deleting rows and columns of A) whose determinant is not zero. Show that the determinantal rank 
of A is equal to its rank, i .e . ,  the maximum number of linearly independent rows (or columns). 
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Notation: M = [RI ; R2 ; . . .  ] denotes a matrix with rows RI , R2 , • . •  

8.38. (a) -22, (b) - 1 3 ,  (c) 46, (d) -2 1 ,  (e) a2 + ab + b2 

8.39. (a) 3 , 1 0, (b) 5 ,  -2 

8.40. (a) 2 1 ,  (b) - 1 1 ,  (c) 1 00, (d) 0 

8.41. (a) - 1 3 1 ,  (b) -55 

8.42. (a) 33 ,  (b) 0, (c) 45 

8.43. (a) - 12, (b) -42, (c) -468 

8.44. (a) IA I = - ! , adj A = [- 1 ,  - 1 ,  1 ;  - 1 , 1 ,  - 1 ;  2 ,  -2, 0] , 
(b) IA I = - 1 ,  adj A = [ 1 ,  0, -2; -3 , - 1 , 6 ;  2 , 1 ,  -5] . Also, A- I = (adj A)/ IA I 

8.45. (a) [- 1 6 ,  -29, -26, -2; -30 , -38 ,  - 1 6 , 29; -8 , 5 1 ,  - 1 3 ,  - 1 ;  - 1 3 ,  1 , 28 , - 1 8] ,  
(b) [2 1 ,  - 14, - 1 7 , - 1 9 ; -44, 1 1 , 3 3 , 1 1 ;  -29, 1 ,  1 3 , 2 1 ;  1 7 , 7 ,  - 1 9 ,  - 1 8] 

8.46. (a) adj A = [d, -b; -c, a] , 

8.49. (a) -3 ,  -3, (b) -23 , -23, 

(c) A = kI 

(c) 3 ,  -3, (d) 17 , - 1 7  

8.50. (a) -2, - 1 7 , 73 , (b) 7 , 10 ,  1 05 ,  (c) 1 3 , 54, 0 

8.51.  (a) 6, 1 3 , 62, -2 1 9 ;  (b) 7 , -39 , 29, 20 

(b) X = - n , y = n, (c) x = - � , y = - � 

© The McGraw-Hili 
Companies, 2004 

305 

8.53. (a) x = 5 , y = l , z = 1 ,  (b) since D = 0, the system cannot be solved by determinants 

8.55. (a) sgn (J = 1 ,  sgn , = - 1 ,  sgn n = - 1 

8.56. (a) , 0 (J = 53 1 42, (b) n o  (J = 524 1 3 ,  (c) (J- I = 32 1 54, 

8.60. (a) det(T) = 1 7, (b) det(T) = 4, 

(c) 1 

(c) not defined 

8.61. (a) 0, (b) 6, 

8.64. (a) 30, (b) 0 

8.65. 1 7  

8.66. (a) no, (b) yes, (c) yes, (d) no, (e) yes, 

(d) ,- I = 14253 

(f) no 
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Eigenvectors 

The i in Ihis chapler can be discussed from two points of view. 

Suppose is given. The matrix A is said to be diagonalizllble if there exists a 

Th,i,I" h,p"" discusses the diagonalization of a matrix A .  In particular, an algorithm is given to 
it exists. 

operator T: V -+ V is given. The linear operator T is said to be diagonalizable if 
S of V such that the matrix representation of T relative to the basis S is a diagonal 

","'''- � -Il>ijt <lh'I"" discusses conditions under which the linear operator T is diagonalizable. 
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The above two concepts are essentially the same. Specifically, a square matrix A may be viewed as a 
linear operator F defined by 

F(X) = AX 

where X is a column vector, and B = P- lAP represents F relative to a new coordinate system (basis) S 
whose elements are the columns of P. On the other hand, any linear operator T can be represented by a 
matrix A relative to one basis and, when a second basis is chosen, T is represented by the matrix 

B = P- lAP 
where P is the change-of-basis matrix. 

Most theorems will be stated in two ways: one in terms of matrices A and again in terms of linear 
mappings T. 

Role of Underlying Field K 

The underlying number field K did not play any special role in our previous discussions on vector 
spaces and linear mappings. However, the diagonalization of a matrix A or a linear operator T will depend 
on the roots of a polynomial �(t) over K, and these roots do depend on K. For example suppose 
�(t) = t2 + 1 .  Then �(t) has no roots if K = R, the real field; but �(t) has roots ±i if K = C, the complex 
field. Furthermore, finding the roots of a polynomial with degree greater than two is a subject unto itself 
(frequently discussed in courses in Numerical Analysis). Accordingly, our examples will usually lead to 
those polynomials �(t) whose roots can be easily determined. 

9.2 POLYNOMIALS OF MATRICES 

Consider a polynomialf(t) = aJ' + . . .  + al t + ao over a field K. Recall (Section 2 . 8) that if A is any 
square matrix, then we define 

f(A) = anA
n + . . .  + alA + ao! 

where ! is the identity matrix. In particular, we say that A is a root of f(t) if f(A) = 0, the zero matrix. 

Example 9.1. Let A = [ � �l Then A2 = [ I � �� l If 
J(t) = 2t2 - 3t + 5 and get) = r - 5t - 2 

then 

and 

g(A) = A2 - 5A - 2I = [ 1
7
5 

1 0 ] + [ -5 - 1 0 ] + [ -2 0 ] = [ 0 0 ] -20 - 1 5  -20 0 -2 0 0 
Thus A is a zero of get) . 

The following theorem (proved in Problem 9 .7) applies. 

Theorem 9.1 : Let f and g be polynomials .  For any square matrix A and scalar k, 
(i) (f + g)(A) = f(A) + g(A) 
(ii) (fg)(A) = f(A)g(A) 

(iii) (lif)(A) = kf(A) 
(iv) f(A)g(A) = g(A)f(A) .  

Observe that (iv) tells us that any two polynomials in A commute. 
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Now suppose that T: V -+ V is a linear operator on a vector space V, Powers of T are defined by the 
composition operation, that is, 

T2 = T o T, 

Also, for any polynomial J(t) = ant" + ' . .  + a l t + aQ ,  we define J(T) in the same way as we did for 
matrices; that is, 

where I is now the identity mapping. We also say that T is a zero or root of J(t) if J(T) = 0, the zero 
mapping. We note that the relations in Theorem 9 . 1 hold for linear operators as they do for matrices. 

Remark: Suppose A is a matrix representation of a linear operator T. Then J(A) is the matrix 
representation ofJ(T), and, in particular, f(T) = 0 if and only ifJ(A) = O .  

9 .3 CHARACTERISTIC POLYNOMIAL, CAYLEY-HAMILTON THEOREM 

Let A = [aij] be an n-square matrix. The matrix M = A - tIn o where In is the n-square identity matrix 
and t is an indeterminate, may be obtained by subtracting t down the diagonal of A .  The negative of M is 
the matrix tIn - A, and its determinant 

A(t) = det(tIn - A) = (- 1 r det(A - tIn) 

which is a polynomial in t of degree n, is called the characteristic polynomial of A .  

We state an important theorem in linear algebra (proved in Problem 9 . 8) .  

Theorem 9.2 : (Cayley-Hamilton) Every matrix A is a root of its characteristic polynomial. 

Remark: Suppose A = [aij] is a triangular matrix. Then tI - A is a triangular matrix with diagonal 
entries t - aii ; and hence 

A(t) = det(tI - A) = (t - al l  )(t - a22) . . .  (t - ann) 

Observe that the roots of A(t) are the diagonal elements of A .  

Example 9.2. Let A = [ !  ; J .  Its characteristic polynomial is 

I t - I -3 1 .2 i1(t) = l tI - A I =  -4 t - 5  = (t - I )(t - 5) - 12 = . - 6t - 7 

As expected from the Cayley-Hamilton Theorem, A is a root of i1(t) ; that is, 
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Now suppose A and B are similar matrices, say B = P- 1AP, where P is invertible, We show that A and 
B have the same characteristic polynomial. Using t! = p-1 tIP, we have 

AB(t) = det(t! - B) = det(t! - P-
l
AP) = det(p-

l
t!P - P-

l
AP) 

= det[p-
I 
(t! - A)Pl = det(p-

I
) det(t! - A) det(P) 

Using the fact that determinants are scalars and commute and that det(p- l ) det(P) = 1 ,  we finally obtain 

AB(t) = det(t! - A) = AA(t) 

Thus we have proved the following theorem, 

Theorem 9.3 : Similar matrices have the same characteristic polynomial. 

Characteristic Polynomials of Degree 2 and 3 

(a) 

There are simple formulas for the characteristic polynomials of matrices of orders 2 and 3 ,  

Suppose A = [ a l l  a l2 ] , Then 
a2 l a22 

A(t) = r - (a l l  + a22)t + det(A) = r - tr(A) t + det(A) 

Here tr(A) denotes the trace of A, that is, the sum of the diagonal elements of A ,  

(b) Suppose A = [ :� : 
a3 l 

:�� :�: ] ,  Then 

a32 a33 

A(t) = t3 - tr(A) r + (A l l  + A22 + A33 )t - det(A) 

(Here A l l ' A22 , A33 denote, respectively, the cofactors of al l , a22 , a33 ')  

Example 9.3. Find the characteristic polynomial of each of the following matrices :  

(a) A = [ ; 1 � ] , (b) B = [ � -; ] , (e) c = [ � =� l 
(a) We have tr(A) = 5 + 1 0  = 1 5  and IA I = 50 - 6 = 44; hence �(t) + P - 1 5t + 44. 

(b) We have tr(B) = 7 + 2 = 9 and IB I = 14 + 6 = 20; hence �(t) = P - 9t + 20. 

(e) We have tr(e) = 5 - 4 = I and I C I = -20 + 8 = - 12; hence �(t) = t2 - t - 12 . 

[ 1 1 2 ] 
Example 9.4. Find the characteristic polynomial of A = 0 3 2 . 

1 3 9  

We have tr(A) = I + 3 + 9 = 1 3 . The cofactors of the diagonal elements are as follows: 

Al l  = I � � I = 2 1 ,  A22 = I � � I = 7 , A33 = I � ; I = 3 

Thus A l l  + A22 + A33 = 3 1 . Also, IA I = 27 + 2 + 0 - 6 - 6 - 0 = 1 7. Accordingly, 

�(t) = t3 - 13P + 3 1 t  - 1 7  

Remark: The coefficients o f  the characteristic polynomial A(t) o f  the 3 -square matrix A are, with 
alternating signs, as follows : 

SI = tr(A) ,  S3 = det(A) 

We note that each Sk is the sum of all principal minors of A of order k. 
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The next theorem, whose proof lies beyond the scope of this text, tells us that this result is true in 
general. 

Theorem 9.4: Let A be an n-square matrix. Then its characteristic polynomial is 

A(t) = (' - SI (,- I + S2(,-2 + . . .  + (- l rSn 

where Sk is the sum of the principal minors of order k. 

Characteristic Polynomial of a Linear Operator 

Now suppose T: V -+ V is a linear operator on a vector space V of finite dimension. We define the 
characteristic polynomial A(t) of T to be the characteristic polynomial of any matrix representation of T. 
Recall that if A and B are matrix representations of T, then B = P-

lAP where P is a change-of-basis 
matrix. Thus A and B are similar, and, by Theorem 9 .3 ,  A and B have the same characteristic polynomial. 
Accordingly, the characteristic polynomial of T is independent of the particular basis in which the matrix 
representation of T is computed. 

Since f(T) = 0 if and only if f(A) = 0, where f(t) is any polynomial and A is any matrix 
representation of T, we have the following analogous theorem for linear operators. 

Theorem 9.2' : (Cayley-Hamilton) A linear operator T is a zero of its characteristic polynomial. 

9.4 DIAGONALIZATION, EIGENVALUES AND EIGENVECTORS 

Let A be any n-square matrix. Then A can be represented by (or is similar to) a diagonal matrix 
D = diag(kl , kz ,  . . .  , kn) if and only if there exists a basis S consisting of (column) vectors U l , U2 , . . .  , Un 
such that 

AUl = k1 uI 
AU2 = kzU2 

AUn = knun 

In such a case, A is said to be diagonizable. Furthermore, D = P- lAP, where P is the nonsingular matrix 
whose columns are, respectively, the basis vectors U I , U2 , . . .  , Un ' 

The above observation leads us to the following definition. 

Definition. Let A be any square matrix. A scalar A is called an eigenvalue of A if there exists a nonzero 
(column) vector v such that 

Av = AV 

Any vector satisfYing this relation is called an eigenvector of A belonging to the eigenvalue A .  

We note that each scalar multiple kv of an eigenvector v belonging to A is also such an eigenvector, 
since 

A(kv) = k(Av) = k(AV) = A(kv) 

The set EA of all such eigenvectors is a subspace of V (Problem 9 . 1 9), called the eigenspace of A.  (If 
dim EA = 1 ,  then EA is called an eigenline and A is called a scaling factor.) 

The terms characteristic value and characteristic vector (or proper value and proper vector) are 
sometimes used instead of eigenvalue and eigenvector. 
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Theorem 9.5. An n-square matrix A is similar to a diagonal matrix D if and only if A has n linearly 
independent eigenvectors. In this case, the diagonal elements of D are the corresponding 
eigenvalues and D = p-1 AP, where P is the matrix whose columns are the eigenvectors. 

Suppose a matrix A can be diagonalized as above, say p- 1 AP = D, where D is diagonal. Then A has 
the extremely useful diagonal factorization 

A = PDP-
l 

Using this factorization, the algebra of A reduces to the algebra of the diagonal matrix D, which can be 
easily calculated. Specifically, suppose D = diag(k1 , k2 , . • .  , kn) .  Then 

Am = (PDP- 1 )
m = pnmp- 1 = P diag(kf , . . .  , k';,')p-

l 

More generally, for any polynomial f(t) , 

f(A) = f(PDP- 1 ) = Pf(D)P- 1 = P diag(f(kl ) '  f(k2) ,  . . .  ,f(kn))P- 1 

Furthermore, if the diagonal entries of D are nonnegative, let 

B = P diag(jk; , jk;, . . .  , A) p-1 

Then B is a nonnegative square root of A; that is, B
2 = A and the eigenvalues of B are nonnegative. 

Example 9.5. Let A = [ �  � ] and let VI = [ _� ] and Vz = [ a  Then 

AVI = [ � ; ] [ _; ] = [ _; ] = VI and AV2 = [ � ; ] [ � ] = [ : ] = 4V2 

Thus VI and V2 are eigenvectors of A belonging, respectively, to the eigenvalues Al = I and A2 = 4. Observe that VI 
and V2 are linearly independent and hence form a basis of R2 . Accordingly, A is diagonalizable. Furthermore, let P be 
the matrix whose columns are the eigenvectors VI and V2 ' That is, let 

and so p-l = [ i -n 
Then A is similar to the diagonal matrix 

As expected, the diagonal elements I and 4 in D are the eigenvalues corresponding, respectively, to the eigenvectors VI 
and V2, which are the columns of P. In particular, A has the factorization 

Accordingly, 
[ I 1 ] [ 1 0 ] [ 1 _ 1 ] A = PDP- l = 3 3  

-2 I ° 4 £ 1 3 3 

A4 = [ _� � ] [ � 25� ] U -n = [ � �� :� ] 
Moreover, suppose J(t) = t3 - 5t2 + 3t + 6; hence J( i ) = 5 andJ(4) = 2. Then 

J(A) = PJ(D)p- 1 = � � = [ I 1 ] [ 5 0 ] [ 1 _ 1 ] [ 3 - I ] -2 I ° 2 :3 :3  -2 4 
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Lastly, we obtain a "positive square root" of A. Specifically, using .Jf = 1 and .J4 = 2, we obtain the matrix 

B = pv'np-I = � � = � ! [ 1 1 ] [ 1 0 ] [ 1 _ 1 ] [ 2. 1 ] 
-2 1 0 2 3' 3' 3' 3' 

where B2 = A and where B has positive eigenvalues 1 and 2.  

Remark: Throughout this chapter, we use the following fact: 

If P = [ a b ] , then p- i = [ dl lP I 
c d -cl lF l  

-b/ IP I ] .  
al lF l  

That is ,  p- i is obtained by interchanging the diagonal elements a and d of P, taking the negatives of the 
nondiagonal elements b and c, and dividing each element by the determinant IF I . 

Properties of Eigenvalues and Eigenvectors 

The above Example 9.4 indicates the advantages of a diagonal representation (factorization) of a 
square matrix. In the following theorem (proved in Problem 9 .20), we list properties that help us to find 
such a representation. 

Theorem 9.6: Let A be a square matrix. Then the following are equivalent. 

(i) A scalar A is an eigenvalue of A .  

(ii) The matrix M = A - AI is singular. 

(iii) The scalar A is a root of the characteristic polynomial A(t) of A .  

The eigenspace EA of an eigenvalue A i s  the solution space of the homogeneous system MX = 0 ,  
where M = A - AI, that is, M i s  obtained by subtracting A down the diagonal of  A .  

Some matrices have no  eigenvalues and hence no  eigenvectors. However, using Theorem 9 .6 and the 
Fundamental Theorem of Algebra (every polynomial over the complex field C has a root), we obtain the 
following result. 

Theorem 9.7: Let A be a square matrix over the complex field C.  Then A has at least one eigenvalue. 

The following theorems will be used subsequently. (The theorem equivalent to Theorem 9 .8  for linear 
operators is proved in Problem 9.2 1 ,  while Theorem 9 .9 is proved in Problem 9.22.) 

Theorem 9.8: Suppose V i ' V2 ' . . .  , Vn are nonzero eigenvectors of a matrix A belonging to distinct 
eigenvalues A I ' A2 ' . . .  , An ' Then V I ' v2 , . . .  , vn are linearly independent. 

Theorem 9.9: Suppose the characteristic polynomial A(t) of an n-square matrix A is a product of n 
distinct factors, say, A(t) = (t - a l )(t - a2) . . .  (t - an) .  Then A is similar to the diagonal 
matrix D = diag(a l ' a2 , . . .  , an) .  

If  A i s  an eigenvalue of a matrix A,  then the algebraic multiplicity of A i s  defined to  be the multiplicity 
of A as a root of the characteristic polynomial of A, while the geometric multiplicity of A is defined to be the 
dimension of its eigenspace, dim EA ' The following theorem (whose equivalent for linear operators is 
proved in Problem 9.23) holds. 

Theorem 9.10:  The geometric multiplicity of an eigenvalue A of a matrix A does not exceed its algebraic 
multiplicity. 
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Consider a linear operator T: V � V. Then T is said to be diagonalizable if it can be represented by a 
diagonal matrix D. Thus T is diagonalizable if and only if there exists a basis S = {uI , U2 , . . .  , un } of V for 
which 

T(u I ) = kl ul 
T(U2 ) = kzU2 

In such a case, T is represented by the diagonal matrix 

D = diag(kl , k2 , . . .  , kn) 

relative to the basis S. 
The above observation leads us to the following definitions and theorems, which are analogous to the 

definitions and theorems for matrices discussed above. 

Definition:  Let T be a linear operator. A scalar A is called an eigenvalue of T if there exists a nonzero 
vector v such that 

T(v) = AV 

Every vector satisfYing this relation is called an eigenvector of T belonging to the 
eigenvalue A.  

The set E). of all eigenvectors belonging to an eigenvalue A is a subspace of V, called the eigenspace of 
A.  (Alternatively, A is an eigenvalue of T if )J - T is singular, and, in this case, E). is the kernel of )J - T.) 
The algebraic and geometric multiplicities of an eigenvalue A of a linear operator T are defined in the same 
way as those of an eigenvalue of a matrix A .  

The following theorems apply to  a linear operator T on  a vector space V of  finite dimension. 

Theorem 9.5' : T can be represented by a diagonal matrix D if and only if there exists a basis S of V 
consisting of eigenvectors of T. In this case, the diagonal elements of D are the 
corresponding eigenvalues. 

Theorem 9.6' : Let T be a linear operator. Then the following are equivalent. 

(i) A scalar A is an eigenvalue of T. 

(ii) The linear operator AI - T is singular. 

(iii) The scalar A is a root of the characteristic polynomial A(t) of T. 

Theorem 9.7' : Suppose V is a complex vector space. Then T has at least one eigenvalue. 

Theorem 9.8' : Suppose VI , V2 , " " vn are nonzero eigenvectors of a linear operator T belonging to 
distinct eigenvalues A I , A2 , . . .  , An ' Then V I , V2 , . . .  , vn are linearly independent. 

Theorem 9.9' : Suppose the characteristic polynomial A(t) of T is a product of n distinct factors, say, 
A(t) = (t - a l )(t - a2) . . .  (t - an) '  Then T can be represented by the diagonal matrix 
D = diag(a l ' a2 " ' " an) .  

Theorem 9.10' : The geometric multiplicity of an eigenvalue A of T does not exceed its algebraic 
multiplicity. 
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Remark. The following theorem reduces the investigation of the diagonalization of a linear operator 
T to the diagonalization of a matrix A . 

Theorem 9.1 1 :  Suppose A i s  a matrix representation o f  T .  Then T i s  diagonalizable i f  and only if A is 
diagonalizable. 

9.5 COMPUTING EIGENVALUES AND EIGENVECTORS, DIAGONALIZING MATRICES 

This section gives an algorithm for computing eigenvalues and eigenvectors for a given square matrix 
A and for determining whether or not a nonsingular matrix P exists such that p-I AP is diagonal. 

Algorithm 9.7: (Diagonaiization Algorithm) The input is an n-square matrix A . 

Step 1 .  Find the characteristic polynomial A(t) of A . 

Step 2. Find the roots of A(t) to obtain the eigenvalues of A. 

Step 3.  Repeat (a) and (b) for each eigenvalue A of A . 
(a) Form the matrix M = A - AI by subtracting A down the diagonal of A . 
(b) Find a basis for the solution space of the homogeneous system MX = O. (These basis 

vectors are linearly independent eigenvectors of A belonging to A.) 

Step 4. Consider the collection S = {V I ' V2 , . . .  , vm } of all eigenvectors obtained in Step 3 .  
(a) If rn i= n, then A is not diagonalizable. 
(b) If rn = n, then A is diagonalizable. Specifically, let P be the matrix whose columns are the 

eigenvectors VI ' V2 , " " vn • Then 

D = P-IAP = diag(AI ' A2 " ' "  An) 

where Ai is the eigenvalue corresponding to the eigenvector Vi' 

Example 9.6. The diagonalizable algoritlnn is applied to A = [ �  _ i J .  
( I ) The characteristic polynomial i1(t) of A is computed. We have 

tr(A) = 4 - I = -3 , IA I = -4 - 6 = - 1 0 ; 

hence 

i1(t) = r - 3t - 1 0  = (t - 5)(t + 2) 

(2) Set i1(t) = (t - 5)(t + 2) = O. The roots Al = 5 and A2 = -2 are the eigenvalues of A . 

(3 ) (i) We find an eigenvector VI of A belonging to the eigenvalue Al = 5 . Subtract Al = 5 down the diagonal of A 

to obtain the matrix M = [ -; _� ] .  The eigenvectors belonging to Al = 5 fonn the solution of the 

homogeneous system MX = 0, that is, 

or -x + 2y =  0 
3x - 6y = 0 

or -x + 2y = 0 

The system has only one free variable. Thus a nonzero solution, for example, VI = (2 , I ) ,  is an eigenvector 
that spans the eigenspace of Al = 5 . 



Lipschulz-Lipson:Schaum's I 9, Oiagonalization: 

Outline ofTheory and Eigenvalues and 

Problems of Linear 

Algebra,3/e 

Eigenvectors 

I Text © The McGraw-Hili 
Companies, 2004 

CHAP. 9] DIAGONALIZATION: EIGENVALUES AND EIGENVECTORS 3 1 5  

(ii) We find an eigenvector V2 of A belonging to the eigenvalue .12 = -2 . Subtract -2 (or add 2) down the 
diagonal of A to obtain the matrix 

M = [ � � ] and the homogenous system 6x + 2y =  0 
3x + y = 0 or 3x +y = O. 

The system has only one independent solution. Thus a nonzero solution, say V2 = (- I ,  3) , IS an 
eigenvector that spans the eigenspace of .12 = -2 . 

(4) Let P be the matrix whose columns are the eigenvectors VI and V2 ' Then 

P = [ � -; 1 and so p-I = [ - : n 
Accordingly, D = p-I AP is the diagonal matrix whose diagonal entries are the corresponding eigenvalues; 
that is, 

2 ] [ 2 - 1 ] [ 5 0 ] 
- I  I 3 - 0 -2 

Example 9.7. Consider the matrix B = [i -; 1 We have 

tr(B) = 5 + 3 = 8 ,  I B I  = 1 5  + 1 = 16 ;  so �(t) = t2 - 8t + 1 6  = (t - 4i 
Accordingly, .1 = 4  is the only eigenvalue of B. 

Subtract A = 4 down the diagonal of B to obtain the matrix 

[ I I ] x - y = O  M = I = I and the homogeneous system x _ y = 0 or x - y = 0 

The system has only one independent solution; for example, x = 1 ,  y = 1 . Thus V = ( 1 ,  1) and its multiples are the 
only eigenvectors of B. Accordingly, B is not diagonalizable, since there does not exist a basis consisting of 
eigenvectors of B. 

Example 9.S. Consider the matrix A = [ ;  = �  1 Here tr(A) = 3 - 3 = 0 and IA I = -9 + 1 0  = 1 .  Thus �(t) = P + 1 

is the characteristic polynomial of A. We consider two cases :  

(a) A is a matrix over the real field R. Then �(t) has no (real) roots. Thus A has no eigenvalues and no eigenvectors, 
and so A is not diagonalizable. 

(b) A is a matrix over the complex field C. Then �(t) = (t - i)(t + i) has two roots, i and -i. Thus A has two distinct 
eigenvalues i and -i, and hence A has two independent eigenvectors. Accordingly there exists a nonsingular 
matrix P over the complex field C for which 

P- IAP = [ i � J o -I 
Therefore A is diagonalizable (over C).  

9.6 DIAGONALIZING REAL SYMMETRIC MATRICES 

There are many real matrices A that are not diagonalizable. In fact, some real matrices may not have 
any (real) eigenvalues. However, if A is a real symmetric matrix, then these problems do not exist. Namely, 
we have the following theorems. 

Theorem 9.12:  Let A be a real symmetric matrix. Then each root A of its characteristic polynomial is  
real . 

Theorem 9.13 : Let A be a real symmetric matrix. Suppose u and v are eigenvectors of A belonging to 
distinct eigenvalues A l and A2 ' Then u and v are orthogonal, that is, (u , v) = o .  
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The above two theorems give us the following fundamental result. 

[CHAP. 9 

Theorem 9.14:  Let A be a real symmetric matrix. Then there exists an orthogonal matrix P such that 
D = p-I AP is diagonal. 

The orthogonal matrix P is obtained by normalizing a basis of orthogonal eigenvectors of A as 
illustrated below. In such a case, we say that A is "orthogonally diagonalizable" .  

Example 9.9. Let A = [ _; -; J ,  a real symmetric matrix. Find an orthogonal matrix P such that p- I  AP i s  diagonal. 

First we find the characteristic polynomial i1(t) of A. We have 

tr(A) = 2 + 5 = 7 , IA I = 1 0  - 4 = 6 ; so i1(t) = f2 - 7t + 6 = (t - 6)(t - I )  

Accordingly, Al = 6 and Az = I are the eigenvalues o f  A. 
(a) Subtracting Al = 6 down the diagonal of A yields the matrix 

M = [ -4 -2 ] -2 - I  and the homogeneous system 

A nonzero solution is UI = ( I ,  -2). 
(b) Subtracting Az = I down the diagonal of A yields the matrix 

-4x - 2y =  0 
-2x - y = o  or 

M =  [ _; -� ]  and the homogeneous system x - 2y =  0 

2x +y = O  

(The second equation drops out, since it is a multiple of the first equation.) A nonzero solution is 
Uz = (2 , I ) .  

As expected from Theorem 9. 1 3 ,  ul and Uz are orthogonal. Normalizing UI and Uz yields the orthonormal vectors 

and Uz = (2/0, 1 /0) 

Finally, let P be the matrix whose columns are UI and uz, respectively. Then 

P = [ 1 /0 2/0 ] -2/0 1 /0 and 

As expected, the diagonal entries of P-IAP are the eigenvalues corresponding to the columns of P. 

The procedure in the above Example 9 .9  is formalized in the following algorithm, which finds an 
orthogonal matrix P such that p-I AP is diagonal. 

Algorithm 9.2 : (Orthogonal Diagonalization Algorithm) The input is a real symmetric matrix A . 

Step 1 .  Find the characteristic polynomial A(t) of A . 

Step 2. Find the eigenvalues of A, which are the roots of A(t) . 

Step 3.  For each eigenvalue A of A in Step 2, find an orthogonal basis of its eigenspace.  

Step 4. Normalize all eigenvectors in Step 3 ,  which then forms an orthonormal basis of Rn . 

Step 5. Let P be the matrix whose columns are the normalized eigenvectors in Step 4. 
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Let q be a real polynomial in variables Xl ' X2 ' . . .  ' Xn such that every term in q has degree two; that is 

q(Xi ' X2 ' . . .  , xn) = L Ci� + L dijXiXj ' where Ci ' dij E R i i<J 
Then q is called a quadratic form. If there are no cross-product terms xixj, that is, all dij = 0, then q is said 
to be diagonal. 

The above quadratic form q determines a real symmetric matrix A = [aij] '  where au = Ci and 
aij = aji = ! dij . Namely, q can be written in the matrix form 

q(X) = XTAX 

where X = [Xl ' X2 , . . .  , xnf is the column vector of the variables. Furthermore, suppose X = PY is a linear 
substitution of the variables. Then substitution in the quadratic form yields 

q(Y) = (Pyl A(PY) = yT(pT AP) Y 

Thus pT AP is the matrix representation of q in the new variables. 
We seek an orthogonal matrix P such that the orthogonal substitution X = PY yields a diagonal 

quadratic form, that is, for which pT AP is diagonal. Since P is orthogonal, pT = p- i , and hence 
pT AP = P- iAP. The above theory yields such an orthogonal matrix P. 

Example 9.10. Consider the quadratic form 

q(x, y) = a2 - 4xy + 51 = XT AX , 

By Example 9 .9, 

P-1AP = [ 6 O J = pT AP 
° 1 ' 

where 

where 

A = [ 2 -2 J -2 5 and 

[ 1 /0 2/0 ] 
P =  

-2/0 1 /0 

x =  [; J 

The matrix P corresponds to the following linear orthogonal substitution of the variables x and y in terms of the 
variables s and t : 

2 1 y =  --s + -t o 0 
This substitution in q(x, y) yields the diagonal quadratic form q(s , t) = 6s2 + t2 . 

9.7 MINIMAL POLYNOMIAL 

Let A be any square matrix. Let J(A) denote the collection of all polynomialsf(t) for which A is a root, 
i .e . ,  for whichf(A) = 0. The set J(A) is not empty, since the Cayley-Hamilton Theorem 9 . 1 tells us that 
the characteristic polynomial �A(t) of A belongs to J(A) .  Let met) denote the monic polynomial of lowest 
degree in J(A) .  (Such a polynomial met) exists and is unique.) We call met) the minimal polynomial of the 
matrix A .  

Remark: a polynomial f(t) -I- ° is monic if its leading coefficient equals one. 

The following theorem (proved in problem 9 .33) holds . 

Theorem 9.15:  The minimal polynomial met) of a matrix (linear operator) A divides every polynomial 
that has A as a zero . In particular, met) divides the characteristic polynomial �(t) of A .  

There i s  an even stronger relationship between met) and �(t) . 

Theorem 9.16:  The characteristic polynomial �(t) and the minimal polynomial met) of a matrix A have 
the same irreducible factors. 
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This theorem (proved in Problem 9 .35) does not say that met) = A(t), only that any irreducible factor 
of one must divide the other. In particular, since a linear factor is irreducible, met) and A(t) have the same 
linear factors . Hence they have the same roots . Thus we have the following theorem. 

Theorem 9.17:  A scalar A is an eigenvalue of the matrix A if and only if A is a root of the minimal 
polynomial of A .  

Example 9.11. Find the minimal polynomial met) o f  A = [ � � -�; ] . I 2 -4 
First find the characteristic polynomial i1(t) of A. We have 

tr(A) = 5 . A l l  + A22 + A33 = 2 - 3 + 8 = 7 

Hence 

and 

i1(t) = t3 - 5t2 + 7t - 3 = (t - 1 )2 (t - 3) 

IA I = 3  

The minimal polynomial met) must divide i1(t) . Also, each irreducible factor of i1(t) ,  that is, t - I and t - 3, must 
also be a factor of met) .  Thus met) is exactly one of the following: 

f(t) = (t - 3)(t - I )  or get) = (t - 3)(t - 1 )2 

We know, by the Cayley-Hamilton Theorem, that g(A) = i1(A) = O. Hence we need only testf(t) . We have 

f(A) = (A - I)(A - 3I) = [ ; � -�; l [ -; � -�; l = [ � � � l I 2 -5 I 2 -7 0 0 0 

Thus f(t) = met) = (t - I )(t - 3) = P - 4t + 3 is the minimal polynomial of A .  

Example 9.12. 
(a) Consider the following two r-square matrices, where a oF 0: 

J(A, r) = [ : . . .  ! . . .  � . . . . • .• • . . . .  � . . . .  : ] 

O O O  . . .  O A  

and 

[ A a 0 . . .  0 0 ] 
O A a . . .  O O  

A =  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
O O O  . . .  A a 
O O O  . . .  O A  

The first matrix, called a Jordan Block, has A 'S on the diagonal, I 's on the superdiagonal (consisting of the entries 
above the diagonal entries), and O 's elsewhere. The second matrix A has A 'S on the diagonal, a's on the 
superdiagonal, and O 's elsewhere. [Thus A is a generalization of J(A, r) . ]  One can show that 

f(t) = (t - A)' 
is both the characteristic and minimal polynomial of both J(A, r) and A .  

(b) Consider an arbitrary monic polynomial 

f(t) = f' + an_ 1 tn- I + . . .  + al t + ao 
Let C(f) be the n-square matrix with I 's on the subdiagonal (consisting of the entries below the diagonal 
entries), the negatives of the coefficients in the last column, and O 's elsewhere as follows: 

[ � � . . .  � =:� ] C(f) = .� . . . .  � . . . .  ". : " . . . . .  � . . . . . .  �.�� . 
o 0 . . .  I -an_ 1 

Then C(f) is called the companion matrix of the polynomialf(t) . Moreover, the minimal polynomial met) and 
the characteristic polynomial i1(t) of the companion matrix C(f) are both equal to the original polynomialf(t) . 
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The minimal polynomial met) of a linear operator T is defined to be the monic polynomial of lowest 
degree for which T is a root. However, for any polynomial J(t) , we have 

J(T) = 0 if and only if J(A) = 0 

where A is any matrix representation of T, Accordingly, T and A have the same minimal polynomials. Thus 
the above theorems on the minimal polynomial of a matrix also hold for the minimal polynomial of a linear 
operator. That is, we have the following. 

Theorem 9.15' : The minimal polynomial met) of a linear operator T divides every polynomial that has T 
as a root. In particular, met) divides the characteristic polynomial �(t) of T. 

Theorem 9.16' :  The characteristic and minimal polynomials o f  a linear operator T have the same 
irreducible factors . 

Theorem 9.17' :  A scalar A i s  an eigenvalue o f  a linear operator T i f  and only i f  A i s  a root of the minimal 
polynomial met) of T. 

9.8 CHARACTERISTIC AND MINIMAL POLYNOMIALS OF BLOCK MATRICES 

This section discusses the relationship of the characteristic polynomial and the minimal polynomial to 
certain ( square) block matrices. 

Characteristic Polynomial and Block Triangular Matrices 

Suppose M is a block triangular matrix, say M = [�I ! ] where A l and A2 are square matrices. 

Then tl - M is also a block triangular matrix, with diagonal blocks tl - Al and tl - A2. Thus 

I t I - MI = I tl �AI 
tl �BA2 1 = I t I - A l i i tl - A2 1 

That is, the characteristic polynomial of M is the product of the characteristic polynomials of the diagonal 
blocks A I and A2 • 

By induction, we obtain the following useful result. 

Theorem 9.18:  Suppose M is a block triangular matrix with diagonal blocks A I ' A2 , . . .  , Ar '  Then the 
characteristic polynomial of M is the product of the characteristic polynomials of the 
diagonal blocks Ai; that is, 

�M(t) = �Al (t)�A2 (t) . . .  �A, (t) 

Example 9.13. Consider the matrix M = [ � -j 1 - � --� 1 
o 0 I 3 6 ' 

o 0 I - 1  8 

Then M is a block triangular matrix with diagonal blocks A = [ � 
tr(A) = 9 + 3 = 1 2 ,  
tr(B) = 3 + 

8 = 1 1 ,  
det(A) = 27 + 

8 = 35 ,  
det(B) = 24 + 6 = 30 ,  

and so 
and so 

Accordingly, the characteristic polynomial of M is the product 

- 1  J [ 3 6 J 3 and B = - 1  8 . Here 

L1A(t) = t2 - 12t + 35 = (t - 5)(t - 7) 
L1B(t) = f2 - l I t + 30 = (t - 5)(t - 6) 

L1M(t) = L1A(t)L1B(t) = (t - 5i(t - 6)(t - 7) 
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Theorem 9.19. Suppose M is a block diagonal matrix with diagonal blocks A j , A2 , . • .  , Ar .  Then the 
minimal polynomial of M is equal to the least common multiple (LeM) of the minimal 
polynomials of the diagonal blocks Ai ' 

Remark: We emphasize that this theorem applies to block diagonal matrices, whereas the analogous 
Theorem 9 . 1 8  on characteristic polynomials applies to block triangular matrices. 

Example 9.14. Find the characteristic polynomal A(t) and the minimal polynomial met) of the block diagonal matrix 

[ 2 5 1 0 0 1 0 1 
o 2 1 0 0 1 0 - - - 1- - - -+ - . 2 5 4 2 M =  0 0 1 4 2 1 0 = dlag(A j , AZ , A3) , Where A I = [ 0 2 ] , Az = [ 3 5 ] , A3 = [7] 
o 0 1 3 5 1 0 - - - 1- - - " -
0 0 1 0 0 1 7 

Then A(t) is the product of the characterization polynomials Al (t), Az(t), A3 (t) of A I '  Az , A3 , respectively. 
One can show that 

Az(t) = (t - 2)(t - 7) , 

Thus A(t) = (t - 2)\t - 7i . [As expected, deg A(t) = 5 .] 
The minimal polynomials ml (t), mz (t), m3 (t) of the diagonal blocks A I , Az , A3 , respectively, are equal to the 

characteristic polynomials, that is, 

mz(t) = (t - 2)(t - 7) , 

But met) is equal to the least common multiple of ml (t) , mit) , m3 (t) . Thus met) = (t - 2i(t - 7). 

Solved Problems 
POLYNOMIALS OF MATRICES, CHARACTERISTIC POLYNOMIAL 

9.1 .  Let A = [ ! -; l Find J(A), where: 

(a) J(t) = r - 3t + 7 ,  (b) J(t) = t
2 - 6t + 1 3  

First find AZ = [ ! -; ] [ ! -; ] = [ ;� - � ; l Then: 

(a) /(A) = AZ - 3A + 7I = [ ;� - � ; ] + [ _�; - l � ] + [ b � ] = [ �; -� ] 
(b) /(A) = AZ - 6A + 1 3I = [ ;� - � ; ] + [ _;! _;� ] + [ 1� 1 � ] = [ � � ] 

[Thus A is a root of/(t) . ] 
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9.2. Find the characteristic polynomial A(t) of each of the following matrices: [ 2 5 ] [ 7 -3 ] [ 3 -2 ] (a) A = 
4 1 , (b) B = 5 -2 , (c) C = 9 -3 

Use the formula (t) = t2 - tr(M) t + IMI for a 2 x 2 matrix M: 

(a) tr(A) = 2 + 1 = 3 ,  
(b) tr(B) = 7 - 2 = 5 ,  
(c) tr(C) = 3 - 3 = 0, 

IA I = 2 - 20 = - 1 8, 
IB I  = - 14  + 1 5  = 1 ,  
I C I = - 9  + 1 8  = 9, 

so 
so 
so 

L1(t) = P - 3t - 1 8  
L1(t) = t2 - 5t + 1 
L1(t) = P + 9 

9.3. Find the characteristic polynomial A(t) of each of the following matrices: [ 1 2 3 ] [ 1 6 -2 ] 
(a) A = 3 0 4 , (b) B = -3 2 0 

6 4 5 0 3 -4 

© The McGraw-Hili 
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Use the formula L1(t) = t3 - tr(A) t2 + (A I I  + A22 + A33)t - I A  I ,  where Au i s  the cofactor o f  au in the 
3 x 3 matrix A = [ay] '  

(a) tr(A) = 1 + 0 + 5 = 6, 

and IA I = 48 + 36 - 1 6  - 30 = 38  

Thus L1(t) = f - 6t2 - 35t - 38  

(b) tr(B) = 1 + 2 - 4 = - 1 

Bl l  = I ; -� I = -8 ,  

and IB I  = -8 + 1 8  - 72 = -62 

Thus L1(t) = t3 + t2 - 8t + 62 

9.4. Find the characteristic polynomial A(t) of each of the following matrices: 

(a) A = � � � _; , (b) B = � [ 2 5 1 1 ] [ 1 
3�
1 �� �� ] 

o 0 2 3 0 

(a) A is block diagonal with diagonal blocks 

A l = [ � � ] and A2 = [ � -� ] 
Thus L1(t) = L1AJ (t)L1A2 (t) = (t2 - 6t + 3)(P - 6t + 3) 

(b) Since B is triangular, L1(t) = (t - l )(t - 3)(t - 5)(t - 6). 
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9.5. Find the characteristic polynomial A(t) of each of the following linear operators: 

(a) F: R2 
-+ R2 defined by F(x, y) = (3x + 5y, 2x - 7y). 

[CHAP. 9 

(b) D: V -+ V defined by D(f) = dfldt, where V is the space of functions with basis 
S = {sin t, cos t} .  

The characteristic polynomial A(t) of a linear operator is equal to the characteristic polynomial of any 
matrix A that represents the linear operator. 

(a) Find the matrix A that represents T relative to the usual basis of R2 . We have 

so A(t) = P - tr(A) t + IA I = t2 + 4t - 3 1  

(b) Find the matrix A representing the differential operator D relative to the basis S. We have 

D(sin t) = cos t = O(sin t) + l (cos t) 
D(cos t) = - sin t = - l (sin t) + O(cos t) and so 

Therefore A(t) = P - tr(A) t + IA I = t2 + I 

9.6. Show that a matrix A and its transpose AT have the same characteristic polynomial. 

By the transpose operation, (tI - A)T = tIT - AT = tI - AT . Since a matrix and its transpose have the 
same determinant, 

9.7. Prove Theorem 9 . 1 :  Let f and g be polynomials. For any square matrix A and scalar k, 
(iii) (kf)(A) = kf(A), (i) (f + g)(A) = f(A) + g(A), 

(ii) (fg)(A) = f(A)g(A), (iv) f(A)g(A) = g(A)f(A). 
Suppose f = ant!' + . . .  + al t + ao and g = bmtm + . . .  + bl t + bo o Then, by definition, 

(i) Suppose m :::: n and let bi = 0 if i > m . Then 

and 

f + g = (an + bn)tn + . . .  + (al + bl )t + (ao + bo) 
Hence 

(f + g)(A) = (an + bn)An + . . .  + (al + bl )A + (ao + bo)I 
= anAn + bnAn + . . .  + alA + blA + aoI + boI = f(A) + g(A) 

n+m 
(ii) By definition, fg = cn+mtn+m + . . .  + CI t + Co = L cktk , where 

k=O 
k 

ck = aObk + al bk_ 1 + . . .  + akbO = L aibk_i i=O 

(iii) By definition, !if = kant!' + . . .  + kal t + kao , and so 

(lif)(A) = kanAn + . . .  + kalA + kaoI = k(anAn + . . .  + alA + ao!) = !if(A) 

(iv) By (ii), g(A)f(A) = (gf)(A) = (fg)(A) = f(A)g(A) . 
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9.8. Prove the Cayley-Hamilton Theorem 9 ,2 :  Every matrix A is a root of its characterstic polynomial 
�(t) , 

Let A be an arbitrary n-square matrix and let i1(t) be its characteristic polynomial, say, 

i1(t) = I t  I - A I = tn + an_ I t"- 1 + . . .  + al t + ao 

Now let B(t) denote the classical adjoint of the matrix tJ - A. The elements of B(t) are co factors of the matrix tJ - A, and hence are polynomials in t of degree not exceeding n - 1 . Thus 

B(t) = Bn_ I tn- 1 + . . .  + Bl t + Bo 

where the Bj are n-square matrices over K which are independent of t. By the fundamental property of the 
classical adjoint (Theorem S .9), (tJ - A)B(t) = I t  I - A ll, or 

(tI - A)(Bn_ 1 tn- I + . . .  + BI t + Bo) = (t" + an- I t"- I + . . .  + al t + ao)I 

Removing the parentheses and equating corresponding powers of t yields 

Bn_ 1 = 1, 

Multiplying the above equations by An , An- I , . . .  , A ,  I, respectively, yields 

Adding the above matrix equations yields 0 on the left-hand side and i1(A) on the right-hand side, that is, 

0 =  An + an_ lAn- I + . . .  + alA + aoI 

Therefore, i1(A) = 0, which is the Cayley-Hamilton Theorem. 

EIGENVALUES AND EIGENVECTORS OF 2 x 2  MATRICES 

9.9. Let A = [ ; =: l 
(a) Find all eigenvalues and corresponding eigenvectors. 

(b) Find matrices P and D such that P is nonsingular and D = P-iAP is diagonal. 

(a) First find the characteristic polynomial i1(t) of A :  

i1(t) = t2 - tr(A) t + IA I = r + 3t - 1 0  = ( t  - 2)(t + 5) 

The roots .l. = 2 and .l. = -5 of i1(t) are the eigenvalues of A . We find corresponding eigenvectors. 

(i) Subtract .l. = 2 down the diagonal of A to obtain the matrix M = A - 21, where the corresponding 
homogeneous system MX = 0 yields the eigenvectors corresponding to .l. = 2. We have 

[ 1 -4 ] M =  2 -S ' corresponding to x - 4y = 0 
2x - Sy = 0 or x - 4y = 0 

The system has only one free variable, and VI = (4, I) is a nonzero solution. Thus VI = (4, I) is an 
eigenvector belonging to (and spanning the eigenspace of) .l. = 2. 

(ii) Subtract .l. = -5 (or, equivalently, add 5) down the diagonal of A to obtain 

[ s -4 ] M =  2 - I  ' corresponding to Sx - 4y = 0 
2x - y = 0  or 2x - y = O  

The system has only one free variable, and V2 = ( 1 ,  2) is a nonzero solution. Thus V2 = ( 1 ,  2) is an 
eigenvector belonging to .l. = 5 .  
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(b) Let P be the matrix whose columns are VI and V2 ' Then 

and 

[CHAP. 9 

Note that D is the diagonal matrix whose diagonal entries are the eigenvalues of A corresponding to the 
eigenvectors appearing in P. 

Remark: Here P is the change-of-basis matrix from the usual basis of R
2 

to the basis 
S = {V I ' V2 } ,  and D is the matrix that represents (the matrix function) A relative to the new basis S. 

9.10. Let A = [ �  � l 
(a) Find all eigenvalues and corresponding eigenvectors. 

(b) Find a nonsingular matrix P such that D = P-IAP is diagonal, and p- I . 

(c) Find A
6 

and f(A), where t4 - 3P - 6P + 7t + 3 .  
(d) Find a "positive square root" of A, that is, a matrix B such that B

2 
= A and B has positive 

eigenvalues. 

(a) First find the characteristic polynomial i1(t) of A : 
i1(t) = t2 - tr(A) t + IA I = P - 5t + 4 = ( t  - l)(t - 4) 

The roots A = 1 and A = 4 of i1(t) are the eigenvalues of A. We find corresponding eigenvectors. 

(i) Subtract A = 1 down the diagonal of A to obtain the matrix M = A - AI, where the corresponding 
homogeneous system MX = 0 yields the eigenvectors belonging to A = 1 . We have 

corresponding to x + 2y = 0 
x + 2y = 0 or x + 2y = 0 

The system has only one independent solution; for example, x = 2, y = - 1 . Thus VI = (2 , - 1 ) is 
an eigenvector belonging to (and spanning the eigenspace) of A = l .  

(ii) Subtract A = 4 down the diagonal of A to obtain 

[ -2 2 ] M = 1 - 1  ' corresponding to -2x + 2y = 0 
x - y = O or x - y = O 

The system has only one independent solution; for example, x = 1 ,  y = l .  Thus V2 = ( 1 , 1 ) is an 
eigenvector belonging to A = 4. 

(b) Let P be the matrix whose columns are VI and V2 ' Then 

and D = P-IAP = [ l 0 ] o 4 ' where p-I = U -t] 
(c) Using the diagonal factorization A = PDP-I , and 1 6 = 1 and 46 = 4096, we get 

A6 = PD6p- 1 = [ 2 - 1  

Also, f( l ) = 2 andf(4) = - l .  Hence 

1
1
] [

0
1 0 ] [ 1 _ 1 ] [ 1 366 2230 ] 

4096 ; i = 1 365 273 1 

f(A) = Pf(D)P- I = [ 2 1 ] [ 2 0 ] [ 1 _ 1 ] [ 1 2 ] 
- 1  1 0 - 1  ; i = - 1  0 
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[ ±1 (d) Here 0 :2 J are square roots of D, Hence the positive square root of A is 

9.1 1 .  Each of the following real matrices defines a linear transformation on R2 : 

(a) A = U - 1 ] 
- 1 , (c) c = [ i 

Find, for each matrix, all eigenvalues and a maximum set S of linearly independent eigenvectors, 
Which of these linear operators are diagonalizable, - that is, which can be represented by a 
diagonal matrix? 

(a) First find �(t) = t2 - 3t - 28 = (t - 7)(t + 4). The roots A = 7 and A = -4 are the eigenvalues of A. 
We find corresponding eigenvectors. 

(i) Subtract A = 7 down the diagonal of A to obtain 

[ -2 6 J M = 3 -9 ' corresponding to -2x + 6y = 0 
3x - 9y = 0 

Here VI = (3 , 1 ) is a nonzero solution. 
(ii) Subtract A = -4 (or add 4) down the diagonal of A to obtain 

M - corresponding to [ 9 6 J 9x + 6y = 0 
- 3 2 ' 3x + 2y = 0 

Here V2 = (2 , -3) is a nonzero solution. 

or 

or x - 3y = 0 

3x + 2y = 0 

Then S = {VI ' V2 } = {(3 , 1 ) , (2 , -3)} is a maximal set of linearly independent eigenvectors. Since S is a 
basis of R2 , A is diagonalizable. Using the basis S, A is represented by the diagonal matrix 
D = diag(7 , -4). 

(b) First find the characteristic polynomial �(t) = P + 1 . There are no real roots. Thus B, a real matrix 
representing a linear transformation on R2 , has no eigenvalues and no eigenvectors. Hence, in particular, 
B is not diagonalizable. 

(c) First find �(t) = t2 - 8t + 1 6 = (t - 4)2 . Thus A = 4 is the only eigenvalue of C. Subtract A = 4 down 
the diagonal of C to obtain 

M = [ � - 1  J - 1  ' corresponding to x - y = O 

The homogeneous system has only one independent solution; for example, x = 1 ,  Y = 1 . Thus V = ( 1 ,  1 ) 
is an eigenvector of  C. Furthermore, since there are no other eigenvalues, the singleton set 
S = {v} = {(1 , I)} is a maximal set of linearly independent eigenvectors of C. Furthermore, since S is 
not a basis of R2 , C is not diagonalizable. 

9.12. Suppose the matrix B in Problem 9 . 1 1  represents a linear operator on complex space C2 . Show that, 
in this case, B is diagonalizable by finding a basis S of C2 

consisting of eigenvectors of B. 

The characteristic polynomial of B is still �(t) = t2 + 1 . As a polynomial over C, �(t) does factor; 
specifically, �(t) = (t - i)(t + i) . Thus A = i and A = -i are the eigenvalues of B. 
(i) Subtract A = i down the diagonal of B to obtain the homogeneous system 

( 1 - i)x - y = O 
2x + (- I - i)y = O or ( 1 - i)x - y = O 

The system has only one independent solution; for example, x = I ,  Y = I - i. Thus VI = ( 1 ,  1 - i) is an 
eigenvector that spans the eigenspace of A = i. 
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(ii) Subtract A = -i (or add i) down the diagonal of B to obtain the homogeneous system 

( 1 + i)x - y = O 
2x + (- l + i)y = O or ( 1 + i)x - y = O 

[CHAP. 9 

The system has only one independent solution; for example, x = 1 ,  Y = 1 + i, Thus VI = ( 1 ,  1 + i) is an 
eigenvector that spans the eigenspace of A = -i, 

As a complex matrix, B is diagona1izab1e. Specifically, S = {VI ' V2 } = {(1 , 1 - i) , ( 1 , 1 + i)} is a basis of C2 
consisting of eigenvectors of B. Using this basis S, B is represented by the diagonal matrix D = diag(i, -i) . 

9.13. Let L be the linear transformation on R2 that reflects each point P across the line y = loc, where 
k > 0, (See Fig. 9- 1 . ) 

(a) Show that V I = (k , 1 )  and V2 = ( 1 , -k) are eigenvectors of L .  

(b) Show that L is diagonalizable, and find a diagonal representation D. 

y 

Fig. 9-1 

L(P) 

-\ 

x 

(a) The vector VI = (k, 1) lies on the 1ine y = 10:, and hence is left fixed by L, that is L(vI ) = VI ' Thus VI is an 
eigenvector of L belonging to the eigenvalue Al = 1 . 

The vector V2 = ( 1 ,  -k) is perpendicular to the line y = 10:, and hence L reflects V2 into its negative; 
that is, L( V2) = -V2 ' Thus V2 is an eigenvector of L belonging to the eigenvalue A2 = - 1 . 

(b) Here S = {vI , v2 } is a basis of R2 consisting of eigenvectors of L. Thus L is diagona1izab1e, with the 

diagonal representation D = [ b _ � ] (relative to the basis S) . 

EIGENVALUES AND EIGENVECTORS 

•• 14. Let A � [ � i ::n · (a) Fffid ill eigenvalu,," of A .  

(b) Find a maximum set S of linearly independent eigenvectors of A .  

(c) Is A diagonalizable? If yes, find P such that D = P- IAP is diagonal. 

(a) First find the characteristic polynomial i1(t) of A. We have 
tr(A) = 4 + 5 + 2 = 1 1  and IA I = 40 - 2 - 2 + 5 + 8 - 4 = 45 

Also, find each cofactor Au of au in A : 

Hence 

1 5 -2 1 A l l  = 1 2 = 12 , 
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Assuming I1t has a rational root, i t  must be among ±1 ,  ±3, ±5 ,  ±9, ± 1 5 , ±45 . Testing, by 
synthetic division, we get 

3 1 - 1 1  + 39 - 45 
3 - 24 + 45 

1 - 8 + 1 5  + 0 
Thus t = 3 is a root of l1(t), and t - 3 is a factor; hence 

l1(t) = (t - 3)(t2 - 8t + 1 5) = (t - 3)(t - 5)(t - 3) = (t - 3i (t - 5) 

Accordingly, .1 = 3  and A = 5 are eigenvalues of A . 
(b) Find linearly independent eigenvectors for each eigenvalue of A. 

(i) Subtract A = 3 down the diagonal of A to obtain the matrix 

M = [ ; ; =; ] , corresponding to x + y - Z = 0 
1 1 - 1  

Here u = ( I ,  - I ,  0) and v = (I , 0 ,  I ) are linearly independent solutions. 
(ii) Subtract A = 5 down the diagonal of A to obtain the matrix [ - 1  1 - 1

] 
-x +Y - Z = 0 

M = 2 0 -2 , corresponding to 2x - 2z = 0 
1 1 -3 x + Y - 3z = 0 

Only z is a free variable. Here w = (I , 2, I) is a solution. 

or x - Z = 0 
y - 2z = 0  

Thus S = {u, v , w} = {(I , - 1 , 0) , ( 1 , 0 , I ) , ( 1 , 2 , I) } is a maximal set of linearly independent eigen­
vectors of A. 

Remark: The vectors u and v were chosen so that they were independent solutions of the system 
x + y - z = O. On the other hand, w is automatically independent of u and v since w belongs to a different 
eigenvalue of A .  Thus the three vectors are linearly independent. 

(c) A is diagonalizable, since it has three linearly independent eigenvectors. Let P be the matrix with 
columns u, v, w. Then 

and 

9.15. Repoat Probl"", 9 14 fd, marnx B 
� U =� n 

(a) First find the characteristic polynomial l1(t) of B. We have 

tr(B) = 0, IB I  = - 1 6 , Bl l  = -4, B22 = 0, B33 = -8, so L Bu = - 1 2 

Therefore l1(t) = t3 - 12t + 1 6 = (t - 2i (t + 4). Thus A ]  = 2 and .12 = -4  are the eigenvalues o f  B. 
(b) Find a basis for the eigenspace of each eigenvalue of B. 

(i) Subtract A] = 2 down the diagonal of B to obtain [ 1 - 1  
M = 7 -7 

6 -6 
corresponding to 

x - y + z =  0 
7x - 7y + z =  0 
6x - 6y = 0 

or x - y + z = O 
z = O  

The system has only one independent solution; for example, x = 1 ,  Y = 1 ,  z = O. Thus u = (I , 1 , 0) 
forms a basis for the eigenspace of A] = 2. 
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(ii) Subtract .12 = -4 (or add 4) down the diagonal of B to obtain [ 7 - I  I ] 7x - y + z = 0 
M = 7 - I  I ,  corresponding to 7x - y +  z = O 

6 -6 6 6x - 6y + 6z = 0 
or 

[CHAP. 9 

x - y +  z = O 
6y - 6z = 0  

The system has only one independent solution; for example, x = 0, y = 1 ,  z = 1 .  Thus v = (0, 1 ,  1 )  
forms a basis for the eigenspace of  .12 = -4, 

Thus S = {u, v} is a maximal set of linearly independent eigenvectors of B. 
(c) Since B has at most two linearly independent eigenvectors, B is not similar to a diagonal matrix; that is, B 

is not diagonalizable. 

9.16. Find the algebraic and geometric multiplicities of the eigenvalue Al = 2 of the matrix B in Problem 
9 . 1 5 .  

The algebraic multiplicity o f  .11 = 2 i s  2 ,  since t - 2 appears with exponent 2 in i1(t) . However, the 
geometric multiplicity of .11 = 2 is 1 ,  since dim EAl = 1 (where EAl is the eigenspace of .11 ) , 

9.17. Let T: R3 --+ R3 
be defined by T(x, y, z) = (2x + y - 2z, 2x + 3y - 4z, x + y - z). Find all 

eigenvalues of T, and find a basis of each eigenspace.  Is T diagonalizable? If so, find the basis S of 
R3 

that diagonalizes T, and find its diagonal representation D. 
First find the matrix A that represents T relative to the usual basis ofR3 by writing down the coefficients 

of x, y, z as rows, and then find the characteristic polynomial of A (and T). We have 

A = [T] = [ ; � =; ] 
1 - 1  

and 

tr(A) = 4 ,  IA I = 2 
A l 1 = l , A22 = O , A33 = 4  

'L Aii = 5  i 
Therefore i1(t) = t3 - 4t2 + 5t - 2 = (t - li (t - 2), and so A = 1 and A = 2 are the eigenvalues of A (and 
T). We next find linearly independent eigenvectors for each eigenvalue of A . 

(i) Subtract A = I down the diagonal of A to obtain the matrix [ I I -2 ] 
M = 2 2 -4 , 

1 1 -2 
corresponding to x +y - 2z = 0  

Here y and z are free variables, and so there are two linearly independent eigenvectors belonging to 
A = 1 .  For example, u = ( 1 ,  - 1 ,  0) and v = (2 , 0, 1 )  are two such eigenvectors. 

(ii) Subtract A = 2 down the diagonal of A to obtain [ 0 1 
M = 2 I 

I I 

-2 ] -4 , 
-3 

corresponding to 
y - 2z = 0  

2x +y - 4z = 0  
x +y - 3z = 0 

Only z is a free variable. Here w = ( 1 , 2 , I) is a solution. 

or x +y - 3z = 0 
y - 2z = 0  

Thus T is diagonalizable, since it has three independent eigenvectors. Specifically, choosing 

S = {u, v, w} = {( i ,  - 1 , 0) , (2 , 0 , I ) ,  ( 1 , 2 , I ) } 
as a basis, T is represented by the diagonal matrix D = diag( l , I ,  2). 

9.18. Prove the following for a linear operator (matrix) T: 
(a) The scalar 0 is an eigenvalue of T if and only if T is singular. 

(b) If A is an eigenvalue of T, where T is invertible, then rl 
is an eigenvalue of T- I . 
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(a) We have that 0 is an eigenvalue of T if and only if there is a vector v =1= 0 such that T( v) = Ov, that is, if 
and only if T is singular, 

(b) Since T is invertible, it is nonsingular; hence, by (a), A =1= O. By definition of an eigenvalue, there exists 
v =1= 0 such that T(v) = AV. Applying T- I to both sides, we obtain 

v = T-\AV) = Ar- I (V) , and so r- I (V) = ;.-1 V 
Therefore ;.-1 is an eigenvalue of T- I . 

9.19. Let A be an eigenvalue of a linear operator T: V � V, and let E2 consists of all the eigenvectors 
belonging to A (called the eigenspace of A). Prove that E2 is a subspace of V. That is, prove: 

(a) If U E E2 , then ku E E2 for any scalar k. (b) If u, v, E E2 , then u + v E E2 . 
(a) Since U E EA, we have T(u) = AU. Then T(ku) = kT(u) = k(AU) = A(ku), and so ku E E}.o 

(We view the zero vector 0 E V as an "eigenvector" of A in order for EA to be a subspace of V.) 
(b) Since u, v E EA, we have T(u) = AU and T(v) = AV. Then 

T(u + v) = T(u) + T(v) = AU + AV = A(U + v) , and so U + V E EA 

9.20. Prove Theorem 9 .6 :  The following are equivalent: (i) The scalar A is an eigenvalue of A .  

(ii) The matrix )J - A is singular. 

(iii) The scalar A is a root of the characteristic polynomial �(t) of A .  

The scalar A i s  an eigenvalue o f  A i f  and only i f  there exists a nonzero vector v such that 

AV = AV or (ll)V - Av = 0 or (AI - A)v = 0 
or AI - A is singular. In such a case, A is a root of i1(t) = I t  I - A I .  Also, v is in the eigenspace EA of A if and 
only if the above relations hold. Hence v is a solution of (AI - A)X = O. 

9.21 .  Prove Theorem 9 .8' : Suppose VI , V2 , " " vn are nonzero eigenvectors of T belonging to distinct 
eigenvalues AI ' A2 " ' "  An ' Then V I ' V2 " ' "  vn are linearly independent. 

Suppose the theorem is not true. Let VI , V2 , . . .  , Vs be a minimal set of vectors for which the theorem is 
not true. We have s > 1 ,  since VI =1= O. Also, by the minimality condition, V2 , . . .  , Vs are linearly independent. 
Thus VI is a linear combination of V2 , . . .  , vs ' say, 

(where some ak =1= 0). Applying T to ( I )  and using the linearity of T yields 

T(vI ) = T(a2v2 + a3 v3 + . . .  + asvs) = a2T(v2) + a3 T(v3) + . . .  + asT(vJ 

Since Vj is an eigenvector of T belonging to �, we have T(v) = �Vj ' Substituting in (2) yields 
Al VI = a2A2v2 + a3A3 v3 + . . .  + asAsvs 

Multiplying ( I )  by Al yields 
Al VI = a2A I V2 + a3A I V3 + . . .  + asAI Vs 

Setting the right-hand sides of (3) and (4) equal to each other, or subtracting (3 ) from (4) yields 

az(AI - A2)V2 + a3 (AI - A3)V3 + . . .  + as(A I - As)Vs = 0 
Since V2 , v3 , . . .  , v s are linearly independent, the coefficients in (5) must all be zero. That is, 

( I )  

(2) 

(3) 

(4) 

(5) 

However, the Ai are distinct. Hence Al - � =1= 0 forj > 1. Hence a2 = 0, a3 = 0, . . .  , as = O. This contradicts 
the fact that some ak =1= O. Thus the theorem is proved. 
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9.22. Prove Theorem 9 ,9 ,  Suppose A(t) = (t - a l )(t - a2) '  . .  (t - an) is the characteristic polynomial of 
an n-square matrix A, and suppose the n roots ai are distinct. Then A is similar to the diagonal 
matrix D = diag(a l ' a2 ' . . .  , an) '  

Let Vj , V2 , . . .  , vn be  (nonzero) eigenvectors corresponding to  the eigenvalues ai . Then the n eigenvectors 
Vi are linearly independent (Theorem 9 .8), and hence form a basis of Kn . Accordingly, A is diagonalizable, that 
is, A is similar to a diagonal matrix D, and the diagonal elements of D are the eigenvalues ai ' 

9.23. Prove Theorem 9 . 1 0' :  The geometric multiplicity of an eigenvalue A of T does not exceed its 
algebraic multiplicity. 

Suppose the geometric multiplicity of .l. is r. Then its eigenspace EA contains r linearly independent 
eigenvectors VI " ' "  vr '  Extend the set {v;l to a basis of V, say, {Vi " ' "  Vr ' WI " ' "  Ws } . We have 

T(wI ) = al l  VI + . . .  + alrvr + bl l  WI + . . .  + bls WS 
T(W2) = a2 1 VI + . . .  + a2rvr + b21 WI + . . .  + b2s Ws 

T(wJ = asi v i + . . .  + asrvr + bslWI + . . .  + bssws 

Then M = [�r � ] is the matrix of T in the above basis, where A = [ail and B = [bil . 

Since M is block diagonal, the characteristic polynomial (t - .l.Y of the block )Jr must divide the 
characteristic polynomial of M and hence of T. Thus the algebraic multiplicity of .l. for T is at least r, as 
required. 

DIAGONALIZING REAL SYMMETRIC MATRICES 

9.24. Let A = [ � _ � l Find an orthogonal matrix P such that D = P- IAP is diagonal. 

First find the characteristic polynomial A(t) of A. We have 

A(t) = t2 + tr(A) t + IA I = P - 6t - 1 6  = (t - 8)(t + 2) 
Thus the eigenvalues of A are .l. = 8 and .l. = -2. We next find corresponding eigenvectors. 

Subtract .l. = 8 down the diagonal of A to obtain the matrix 

[ - 1  3 ] M = 3 -9 ' 

A nonzero solution is Uj = (3 , 1 ) .  

corresponding to -x + 3y = 0 
3x - 9y = 0 or 

Subtract .l. = -2 (or add 2) down the diagonal of A to obtain the matrix 

M = [ � i J . corresponding to 

A nonzero solution is U2 = ( 1 , -3). 

9x + 3y = 0 
3x + y = 0 or 

x - 3y = 0 

3x +y = O 

As expected, since A is symmetric, the eigenvectors Uj and U2 are orthogonal. Normalize Uj and U2 to 
obtain, respectively, the unit vectors 

and U2 = ( 1 /.JTO, -3/.JTO). 
Finally, let P be the matrix whose colunms are the unit vectors Uj and Ub respectively. Then 

P _ [ 3/.JTO l/.JTO ] - 1 /.JTO -3/.JTO 
and 

As expected, the diagonal entries in D are the eigenvalues of A .  
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9.25. 
[ 1 1  

Let B = -! -8 
- 1  
-2 

-� ] , (a) Find all eigenvalues of B, 
-4 (b) Find a maximal set S of nonzero orthogonal eigenvectors of B, 

(e) Find an orthogonal matrix P such that D = P- 1BP is diagonal. 

(a) First find the characteristic polynomial of B. We have 

tr(B) = 6, IB I  = 400, Bl l  = 0, B22 = -60, B33 = -75, so L Bu = -1 3 5  

Hence i1(t) = t3 - 6t2 - 1 3 5 t - 400. I f  i1(t) has an integer root it must divide 400. Testing t = -5 , by 
synthetic division, yields 

-5 

Thus t + 5 is a factor of i1(t), and 

1 - 1 1  - SO + 0 

i1(t) = (t + 5)(r - l I t - SO) = (t + 5i(t - 1 6) 

The eigenvalues of B are A = -5 (multiplicity 2), and A = 1 6  (multiplicity 1 ) . 
(b) Find an orthogonal basis for each eigenspace. Subtract A = -5 (or, add 5) down the diagonal of B to 

obtain the homogeneous system 

1 6x - Sy + 4z = 0, -Sx + 4y - 2z = 0, 4x - 2y + z =  0 
That is, 4x - 2y + z = O. The system has two independent solutions. One solution is VI = (0, 1 , 2). We 
seek a second solution V2 = (a , b, c) , which is orthogonal to VI , that is, such that 

4a - 2b + c  = 0, and also b - 2c = 0  
One such solution is V2 = (-5 , -S ,  4). 

Subtract A = 16 down the diagonal of B to obtain the homogeneous system 

-5x - Sy + 4z = 0, -Sx - 1 7y - 2z = 0, 4x - 2y - 20z = 0 
This system yields a nonzero solution V3 = (4, -2, 1 ) . (As expected from Theorem 9. 1 3 ,  the eigenvector 
V3 is orthogonal to VI and V2 ' ) 

Then VI , V2 , V3 form a maximal set of nonzero orthogonal eigenvectors of B. 
(c) Normalize VI , V2 , V3 to obtain the orthonormal basis 

Then P is the matrix whose columns are VI , V2 , V3 ' Thus 

P =  [ 1 /� 
2/,.j5 

-5/.Jf05 4/,J2T j 
-s.Jf05 -2/,J2T 
4/ .Jf05 1/ ,J2T 

and 

9.26. Let q(x, y) = ::? + 6xy - 7; . Find an orthogonal substitution that diagonalizes q.  

Find the symmetric matrix A that represents q and its characteristic polynomial i1(t) . We have 

A = [ 1 3 J 3 -7 and i1(t) = t2 + 6t - 1 6  = (t - 2)(t + S) 

The eigenvalues of A are A = 2 and A = -S . Thus, using s and t as new variables, a diagonal form of q is 

q(s, t) = 2S2 - St2 
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The corresponding orthogonal substitution is obtained by finding an orthogonal set of eigenvectors of A. 
(i) Subtract A = 2 down the diagonal of A to obtain the matrix 

[ - I  3 ] M = 3 -9 ' corresponding to 

A nonzero solution is Uj = (3 , I ) . 

-x + 3y = 0 
3x - 9y = 0  or 

(ii) Subtract A = -8 (or add 8) down the diagonal of A to obtain the matrix 

M = [ � i l corresponding to 

A nonzero solution is U2 = (- I ,  3) . 

9x + 3y = 0 
3x + y = 0 or 

As expected, since A is symmetric, the eigenvectors Uj and U2 are orthogonal. 
Now normalize Uj and U2 to obtain, respectively, the unit vectors 

- x + 3y = 0 

3x +y = 0  

and 112 = (- I /.JTO, 3/.JTO). 
Finalp" let P be the matrix whose columns are the unit vectors Ilj and 1l2, respectively, and then 
[x, y] = P[s , tf is the required orthogonal change of coordinates. That is, 

P = 1 3/.JTO - I.JTO ] I /.JTO 3/.JTO 
and 3s - t x =--

.JTO ' 
s + 3t y = 
.JTO 

One can also express s and t in terms of x and y by using p-j = P. That is, 

3x +y s = --
.JTO ' 

-x + 3t t = ---
.JTO 

MINIMAL POLYNOMIAL 

9.27. Let A = [ : =� ; ] and B = [ ! =; � ] . The characteristic polynomial of both matrices is 
3 -2 3 2 -3 5 

A(t) = (t - 2)(t - 1 )2 . Find the minimal polynomial m(t) of each matrix. 

The minimal polynomial met) must divide i1(t) . Also, each factor of i1(t), that is, t - 2 and t - I, must 
also be a factor of met) . Thus met) must be exactly one of the following: 

J(t) = (t - 2)(t - I ) or get) = (t - 2)(t - Ii 

(a) By the Cayley-Hamilton Theorem, g(A) = i1(A) = 0, so we need only testJ(t) . We have 

J(A) = (A - 2I)(A - I ) = [ � =; � ] [ � =� � ] = [ � � � l 3 -2 I 3 -2 2 0 0 0 
Thus met) = J(t) = (t - 2)(t - I) = P - 3t + 2 is the minimal polynomial of A . 

(b) Again g(B) = i1(B) = 0, so we need only testJ(t) . We get 

J(B) = (B - 2I)(B - I) = [ ; =� � l [ � =; � l = [ =� � =� l 1" O  2 -3 3 2 -3 4 -2 2 -2 
Thus met) # J(t) . Accordingly, met) = get) = (t - 2)(t - 1)2 is the minimal polynomial of B. [We emphasize 
that we do not need to compute g(B); we know g(B) = 0 from the Cayley-Hamilton theorem. ] 
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9.28. Find the minimal polynomial met) of  each of  the following matrices: 

(a) A � [ i ; j . (b) B � [ � � H (C) c � [ � -� l 
(a) The characteristic polynomial of A is i1(t) = t2 - l2t + 32 = (t - 4)(t - 8), Since i1(t) has distinct 

factors, the minimal polynomial met) = i1(t) = P - l2t + 32 ,  
(b) Since B is triangular, its eigenvalues are the diagonal elements 1 , 2 , 3 ; and so its characteristic 

polynomial is i1(t) = (t - 1 )(t - 2)(t - 3). Since i1(t) has distinct factors, met) = i1(t) . 
(c) The characteristic polynomial of C is i1(t) = t2 - 6t + 9 = (t - 3)2 . Hence the minimal polynomial of C 

is J(t) = t - 3 or get) = (t - 3f However, f(c) =1= 0, that is, C - 31 =1= O. Hence 

met) = get) = i1(t) = (t - 3i . 

9.29. Suppose S = {u 1 , u2 , . . .  , un } is a basis of V, and suppose F and G are linear operators on V such 
that [F] has O 's on and below the diagonal, and [G] has a oj:. 0 on the superdiagonal and O 's 
elsewhere. That is, 

[F] = [ � . . . .  ��: . . . .  ��� . . . . .  :. : . : . . . . . . . ��� . . .  ] , [G] = � . . . .  � . . . .  � . . .  " . .  '. : . . . .  � [
0 a 0 . . .  0 ] 

o 0 0 . . . an,n- I 
o 0 0 0 

o 0 0 . . .  a 
0 0 0  0 

Show that: (a) pn = 0, (b) on- I oj:. 0, but on = O. (These conditions also hold for [F] and [G] . )  

(a) We have F(uI ) = 0 and, for r > 1 ,  F(ur) is a linear combination of vectors preceding ur in S. That is, 

Hence F2(ur) = F(F(ur)) is a linear combination of vectors preceding Ur_I ' And so on. Hence 
Fr(ur) = 0 for each r. Thus, for each r, Fn(ur) = Fn-r(o) = 0, and so Fn = 0, as claimed. 

(b) We have G(UI ) = 0 and, for each k > 1 ,  G(Uk) = aUk_ I ' Hence Gr(Uk) = aruk_r for r < k. Since a =1= 0, 
so is an- I =1= O. Therefore, Gn- I (un) = an- l UI =1= 0, and so Gn- I =1= O. On the other hand, by (a), Gn = O. 

9.30. Let B be the matrix in Example 9 . 1 2(a) that has 1 's  on the diagonal, a's on the superdiagonal, where 
a oj:. 0, and O 's elsewhere. Show that f(t) = (t - Jer is both the characteristic polynomial A(t) and 
the minimum polynomial met) of A .  

Since A i s  triangular with A 's on the diagonal, i1(t) = J(t) = ( t  - Ar  i s  its characteristic polynomial. Thus 
met) is a power of t - A. By Problem 9.29, (A - AIy- 1 =1= O. Hence met) = i1(t) = (t - Ar . 

9.31 .  Find the characteristic polynomial A(t) and minimal polynomial met) of each matrix: 

(a) M = [ � � : � � ] , (b) M' = [ � � � � ] o 0 0 4 1 
0 0 -2 4 

o 0 0 0 4 
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(a) M is block diagonal with diagonal blocks 

[
4 1 0 ] 

A = 0 4 1 
0 0 4  

and B = [ � ! ] 
The characteristic and minimal polynomial of A is J(t) = (t - 4? and the characteristic and minimal 
polynomial of B is get) = (t - 4)2 . Then 

i1(t) = J(t)g(t) = (t - 4)5 but met) = LCM[J(t) , get)] = (t - 4? 
(where LCM means least common multiple) . We emphasize that the exponent in met) is the size of the 
largest block. 

(b) Here M' is block diagonal with diagonal blocks A' = [ � n and B' = [ _; ! ] The 

characteristic and minimal polynomial of A' is J(t) = (t - 2i . The characteristic polynomial of B' is 
get) = t2 - 5t + 6 = (t - 2)(t - 3), which has distinct factors. Hence get) is also the minimal poly­
nomial of B. Accordingly, 

i1(t) = J(t)g(t) = (t - 2)\t - 3) but met) = LCM[J(t) , get)] = (t - 2)2 (t - 3) 

9.32. Find a matrix A whose minimal polynomial is J(t) = t3 - 8t2 + 5t + 7. 

[
0 0 -7 ] 

Simply let A = 1 0 -5 , the companion matrix ofJ(t) [defined in Example 9 . l 2(b)] . 
o 1 8 

9.33 . Prove Theorem 9 . 1 5 :  The minimal polynomial met) of a matrix (linear operator) A divides every 
polynomial that has A as a zero . In particular (by the Cayley-Hamilton Theorem), met) divides the 
characteristic polynomial A(t) of A .  

Suppose J(t) i s  a polynomial for whichJ(A) = O. By the division algorithm, there exist polynomials q(t) 
and ret) for which J(t) = m(t)q(t) + ret) and ret) = 0 or deg ret) < deg met). Substituting t = A in this 
equation, and using thatJ(A) = 0 and meA) = 0, we obtain rCA) = O. If ret) =1= 0, then ret) is a polynomial of 
degree less than met) that has A as a zero. This contradicts the definition of the minimal polynomial. Thus 
ret) = 0, and so J(t) = m(t)q(t) , that is, met) divides J(t) . 

9.34. Let met) be the minimal polynomial of an n-square matrix A .  Prove that the characteristic 
polynomial A(t) of A divides [m(t)f . 

Suppose met) = (" + CI (,,- I + . . .  + Cr_ 1 t + Cr ' Define matrices Bj as follows: 

Then 

Set 
Then 

Bo = 1  so I = Bo 
BI = A + cII so cII = BI - A = BI - ABo 
B2 = A2 + cIA + c21 so c21 = B2 - A(A + cII) = B2 - ABI 

so 

-ABr_ 1 = c,J - (Ar + CIAr- 1 + . . .  + Cr_ IA + crI) = crI - meA) = crI 
B(t) = (- IBo + (-2BI + . . .  + tBr_2 + Br_ 1 

(t! - A)B(t) = ((Bo + (-IBI + . . .  + tBr_ l ) - ((- IABo + (-2ABI + . . .  + ABr_ l ) 
= (Bo + (-\BI - ABo) + (-2 (B2 - ABI ) + . . .  + t(Br_ 1 - ABr_2) - ABr_ 1 
= n + cI (- II + c2(-21 + . . .  + Cr_ I t! + crI = m(t)I 

Taking the determinant of both sides gives I t! - A I IB(t) 1 = Im(t)I I = [met)]" . Since IB(t) I is a polynomial, 
I t  I - A I  divides [met)]" ; that is, the characteristic polynomial of A divides [met)]" . 
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9.35. Prove Theorem 9 . 1 6 :  The characteristic polynomial A(t) and the minimal polynomial met) of  A have 
the same irreducible factors. 

Suppose J(t) is an irreducible polynomial. If J(t) divides met), then J(t) also divides A(t) [since met) 
divides A(t)] . On the other hand, ifJ(t) divides A(t) then, by Problem 9.34,f(t) also divides [m(t)f . ButJ(t) is 
irreducible; hence J(t) also divides met) . Thus met) and A(t) have the same irreducible factors. 

9.36. Prove Theorem 9 . 1 9 :  The minimal polynomial met) of a block diagonal matrix M with diagonal 
blocks Ai is equal to the least common multiple (LeM) of the minimal polynomials of the diagonal 
blocks Ai '  

We prove the theorem for the case r = 2. The general theorem follows easily by induction. Suppose 

M = [� � ] , where A and B are square matrices. We need to show that the minimal polynomial met) of M 

is the least common multiple of the minimal polynomials get) and h(t) of A and B, respectively. 

Since met) is the minimal polynomial of M, m(M) = [ m�A) 
m�B)

] = 0, and hence meA) = 0 and 

m(B) = O. Since get) is the minimal polynomial of A, get) divides met) . Similarly, h(t) divides met) . Thus met) 
is a multiple of get) and h(t). 

Now letJ(t) be another multiple of get) and h(t) . ThenJ(M) = [J�) 
J(�)

] = [ � � ] = O. But met) 

is the minimal polynomial of M; hence met) dividesJ(t) . Thus met) is the least common multiple of get) and 
h(t). 

9.37. Suppose met) = f + ar_ I tr- 1 + . . .  + a l t + ao is the minimal polynomial of an n-square matrix A . 
Prove the following: 

(a) A is nonsingular if and only if the constant term ao i- O . 
(b) If A is nonsingular, then A- I is a polynomial in A of degree r - 1 < n .  

(a) The following are equivalent: (i) A is nonsingular, (ii) 0 is not a root of met), (iii) aD i= O. Thus the 
statement is true. 

(b) Since A is nonsingular, aD i= 0 by (a). We have 

meA) = Ar + ar_ IAr- 1 + . . .  + alA + aoI = 0 
1 

Thus - -(Ar- I + ar_ IAr-2 + . . .  + aII)A = I aD 
1 Accordingly A-I = -_(Ar- I + ar_ IAr-2 + . . .  + all) aD 

Supplementary Problems 
POLYNOMIALS OF MATRICES 

9.38. [ 2 -3 ] Let A = 5 1 
and 

get) = t3 - 2P + t + 3 .  

B = [ b  ; ] . Find J(A), g(A), J(B), g(B), where J(t) = 2t2 - 5t + 6 and 

9.39. Let A = [ b  7 ] . Find A2, A3 , An , where n > 3, and A- I . 
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9.40. [ 8 1 2  
Let B =  0 8 

o 0 

9.41. For each matrix, find a polynomial having the following matrix as a root: 

(a) A � [ ; _n ib) B � [ ; ::!] . (c) c �
[
l � n 

© The McGraw-Hili 
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9.42. Let A be any square matrix and 1etf(t) be any polynomial. Prove: (a) (P- JAP)" = P- JAnp, (b) f(P- JAP) = P- Jf(A)P. (c) f(AT) = [f(A)f. (d) If A is symmetric, thenf(A) is symmetric. 

9.43. Let M = diag[A J , • • •  , Ar] be a block diagonal matrix, and 1etf(t) be any po1ynomia1f(t) . Show thatf(M) is 
block diagonal andf(M) = diag[f(A J ) , • • •  ,feAr)] ' 

9.44. Let M be a block triangular matrix with diagonal blocks A J , . . .  , An and letf(t) be any polynomialf(t) . Show 
thatf(M) is also a block triangular matrix, with diagonal blocks f(A J ) , • • •  ,feAr) ' 

EIGENVALUES AND EIGENVECTORS 

9.45. For each of the following matrices, find all eigenvalues and corresponding linearly independent eigenvectors: 

[ 2 -3 J [ 2 4 J [ 1 (a) A = 2 -5 ' (b) B = - 1  6 ' (c) C = 3 
-4 J 
-7 

When possible, find the nonsingular matrix P that diagonalizes the matrix. 

9.46. Let A = [ -; 
-; 1 

(a) Find eigenvalues and corresponding eigenvectors. (b) Find a nonsingular matrix P such that D = P- JAP is diagonal. 
(c) Find A6 andf(A) where f(t) = t4 - 5t3 + 7t2 - 2t + 5 .  
(d) Find a matrix B such that B2 = A.  

9.47. Repeat Problem 9.46 for A = [ -; -� l 
9.48. For each of the following matrices, find all eigenvalues and a maximum set S of linearly independent 

eigenvectors: 

-3 3 ] [ 3 -5 3 , (b) B = 7 
-6 4 6 

Which matrices can be diagonalized, and why? 

c = [ � 
- 1  

9.49. For each of the following linear operators T: R2 ---+ R2 , find all eigenvalues and a basis for each eigenspace: 

(a) T(x, y) = (3x + 3y, x + 5y) ,  (b) T(x, y) = (3x - l 3y, x - 3y) . 

9.50. Let A = [ � � J be a real matrix. Find necessary and sufficient conditions on a, b, c, d so that A is 

diagonalizable, that is, so that A has two (real) linearly independent eigenvectors. 
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9.51. Show that matrices A and AT have the same eigenvalues. Give an example of a 2 x 2 matrix A where A and AT 
have different eigenvectors. 

9.52. Suppose v is an eigenvector of linear operators F and G. Show that v is also an eigenvector of the linear 
operator kF + k' G, where k and k' are scalars. 

9.53. Suppose v is an eigenvector of a linear operator T belonging to the eigenvalue A. Prove: 

(a) For n > 0, v is an eigenvector of Tn belonging to An . 
(b) f(A) is an eigenvalue off(T) for any polynomial f(t) . 

9.54. Suppose A i= ° is an eigenvalue of the composition F o G of linear operators F and G. Show that A is also an 
eigenvalue of the composition G o F. [Hint: Show that G(v) is an eigenvector of G 0 F.] 

9.55. Let E: V -+ V be a projection mapping, that is, E2 = E. Show that E is diagonalizable and, in fact, can be 

represented by the diagonal matrix M = [� � J , where r is the rank of E. 

DIAGONALIZING REAL SYMMETRIC MATRICES 

9.56. For each of the following symmetric matrices A, find an orthogonal matrix P such that D = P-iAP is 
diagonal: 

[ 5 4 J [ 4 - I  J [ 7 3 J (a) A =  4 - I  , (b) A =  - I  4 , (c) A =  3 - I  

9.57. For each of the following symmetric matrices B, find its eigenvalues, a maximal orthogonal set S of 
eigenvectors, and an orthogonal matrix P such that D = p-i BP is diagonal: [ 0 I I ] [ 2 2 
(a) B = I ° I , (b) B = 4 5 

1 1 0 4 8 3] 
9.58. Find an orthogonal substitution that diagonalizes each of the following quadratic forms: 

(a) q(x, y) = 4.x2 + 8.xy - I lY, (b) q(x, y) = 2.x2 - 6xy + I OY 

9.59. For each of the following quadratic forms q(x, y, z), find an orthogonal substitution expressing x, y, z in terms 
of variables r, s, t, and find q(r, s, t) : 
(a) q(x, y, z) = 5.x2 + 3y + 1 2xz, (b) q(x, y, z) = 3.x2 - 4xy + 6y + 2xz - 4yz + 3z2 

9.60. Find a real 2 x 2 symmetric matrix A with eigenvalues : 

(a) A = 1 and A = 4 and eigenvector u = ( 1 , 1 )  belonging to A = 1 ;  
(b) A = 2 and A = 3 and eigenvector u = ( 1 , 2) belonging to A = 2. 

In each case, find a matrix B for which B2 = A. 

CHARACTERISTIC AND MINIMAL POLYNOMIALS 

9.61. Find the characteristic and minimal polynomials of each of the following matrices: [ 3 I 
(a) A = 2 4 

- I  - I  

- I ] [ 3 2 - I ] 
-2 , (b) B = 3 8 -3 

3 3 6 - I  
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9.62. Find the characteristic and minimal polynomials of each of the following matrices: 

5 0 
2 0 
o 4 
o 3 
o 0 

� � 1 ' (b) B = r � -i � � � 1 ' (c) c = r ! � � � � 1 
5 0  0 0 0 3 1 0 0  3 0  
0 7  0 0 0 0 3  0 0 0 0 4  

[CHAP. 9 

'.63. Let A � [ : � n md B � [ � � n Show IIut A """ B - dHf_ ,bam,""" ti, polynomW, 

(and so are not similar), but have the same minimal polynomial. Thus nonsimilar matrices may have the same 
minimal polynomial. 

9.64. Let A be an n-square matrix for which Ak = 0 for some k > n .  Show that An = O. 

9.65. Show that a matrix A and its transpose AT have the same minimal polynomial. 

9.66. Suppose J(t) is an irreducible monic polynomial for which J(A) = 0 for a matrix A . Show that J(t) is the 
minimal polynomial of A . 

9.67. Show that A is a scalar matrix kI if and only if the minimal polynomial of A is met) = t - k. 

9.68. Find a matrix A whose minimal polynomial is: (a) t3 - 5t2 + 6t + 8, (b) t4 - 5 t3 - 2t + 7t + 4. 

9.69. Let J(t) and get) be monic polynomials (leading coefficient one) of minimal degree for which A is a root. 
Show J(t) = get) . [Thus the minimal polynomial of A is unique. ] 

Answers to Supplementary Problems 
Notation: m = [RI ; R2 ; . . .  ] denotes a matrix with rows RI , R2 , . . . .  

9.38. J(A) = [-26, -3 ; 5 , -27], g(A) = [-40, 39 ; -65 , -27], 
J(B) = [3 , 6 ; 0 , 9], g(B) = [3 , 12; 0 , 1 5] 

9.39. A2 = [ 1 , 4 ; 0, 1 ] , A3 = [ 1 , 6 ; 0, 1 ] , An = [ 1 , 2n; 0 , 1 ] , A- I = [ 1 ,  -2; 0, 1 ] 

9.40. Let A = [2 , a, b; 0, 2 , c; 0 , 0 , 2] . Set B = A3 and then a = 1, b = - �, c = 1 

9.41. Find i1(t) : (a) t2 + t - I I , (b) P + 2t +  1 3 ,  (c) t3 - 7t2 + 6t - I 

9.45. (a) A = I , u = (3 , 1 ) ; 
(c) A = - I , u = (2 , 1 ) ; 

A = -4, v = ( 1 , 2), (b) A = 4, u = (2 , I) , 
A = -5 , v = (2 , 3) . Only A and C can be diagonalized; use P = [u , v] 

9.46. (a) A = 1 ,  u = ( 1 , 1 ) ; A = 4, v = (I , -2), (b) P = [u , v] , 
(c) J(A) = [ 1 9 , - 1 3 ;  -26, 32] , A6 = [2 1 846 , -21 845 ; -43 690, 43 69 1 ] , 
(d) B = [1 , - i ; - � , i] 
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9.47. (a) A = 1 ,  u = (3 , -2); A = 2, v = (2 , - 1 ), (b) P = [u, v] , 
(c) J(A) = [2 , -6; 2 , 9] , A6 = [ 1 02 1 , 1 530 ; -510 , -764], 
(d) B = [-3 + 4.J2, -6 + 6.J2; 2 - 2.J2, 4 - 3.J2] 

9.48. (a) A = -2, u = ( 1 , 1 , 0) , v = ( 1 , 0 , - 1 ) ; A = 4, w = (1 , 1 , 2), 
(b) A = 2 , u = ( 1 , 1 , 0) ; A = -4, v = (0 , 1 , 1 ) , 
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(c) A = 3 , u = ( 1 , 1 , 0) , v = ( 1 , 0 , 1 ) ; A = 1 , w = (2 , - 1 , 1 ) , Only A and C can be  diagona1ized; use 
P = [u, v, w] 

9.49. (a) A = 2, u = (3 , - 1 ) ; A = 6, v = (1 , 1) , (b) no real eigenvalues 

9.50. We need [-tr(A)f - 4[det(A)] :::: 0 or (a - d)2 + 4bc :::: 0 

9.51. A = [ 1 ,  1 ;  0 , 1 ] 
9.56. (a) P = [2 , - 1 ;  - 1 , 2]/0, (b) P = [ 1 , 1 ;  1 ,  - 1 ]/.J2, (c) P = [3 , - 1 ;  1 , 3]/-JIO, 

9.57. (a) A = - 1 ,  u = ( 1 ,  - 1 , 0), v = ( 1 , 1 ,  -2); A = 2, w = ( 1 , 1 , 1 ) , 
(b) A =  1 , u = (2 , 1 , - 1 ) , v = (2 , -3 , 1 ) ; A = 22 , w = ( 1 , 2 , 4) ; 

Normalize u , v, w, obtaining ii, V,  w, and set P = [ii, v, w] . (Remark: u and v are not unique.) 

9.58. (a) x = (4s + t)/,JU, y = (-s + 4t)/,JU, q(s, t) = 5s2 - 12P , 
(b) x = (3s - t)/-JIO, y = (s + 3t)/-JIO, q(s, t) = S2 + l IP 

9.59. (a) x = (3s + 2t)/,JT3, y = r, Z = (2s - 3t)/,JT3, q(r, s, t) = 3� + 9? - 4P, 
(b) x = 5Ks + Lt, y = Jr + 2Ks - 2Lt, z = 2Jr - Ks - Lt, where J = 1 /0, K = l /.J30, L = l /v'6; 
q(r, s, t) = 2� + 2s2 + 8t2 

9.60. (a) A = t [5 , -3 ; -3 , 5] , B = H3 , - 1 ;  - 1 , 3] , 
(b) A = 5 [ 14 , -2; -?r], B = (.J2 + 4.J3, 2.J2 + 2.J3; 2.J2 +.J3, 4.J2 +.J3) 

9.61. (a) i1(t) = met) = (t - 2)2(t - 6), (b) i1(t) = (t - 2)2(t - 6), met) = (t - 2)(t - 6) 

9.62. (a) i1(t) = (t - 2? (t - 7i , met) = (t - 2i(t - 7), 
(b) i1(t) = (t - 3)5 , met) = (t - 3?, 
(c) i1(t) = (t - 2i(t - 4)2(t - 5) , met) = (t - 2)(t - 4)(t - 5) 

9.68. Let A be the companion matrix [Example 9. 1 2(b)] with last column: (a) [-8 , -6, 5]T , (b) [-4, -7, 2, 5]T 

9.69. Hint: A is a root of h(t) = J(t) - get) where h(t) == 0 or the degree of h(t) is less than the degree ofJ(t) . 
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linear operator on a vector space of finite dimension. As seen in Chapter 6, T may not have 
representation. However, it is still possible to "simplify" the matrix representation of T 

of ways. This is the main topic of this chapter. In particular, we obtain the primary 
theorem, and the triangular, Jordan, and rational canonical forms. 

Ihatthe triangular and Jordan canonical forms exist for T if and only if Ihe characteristic 
of T has all its roots in the base field K. This is always true if K is the complex field C but 
if K is the real field R. 

":;\;,��:�,:�: the idea of a quolient space. This is a very powerful tool, and will be used in the 
• t of the triangular and rational canonical foons. 

I "'AI�"'UL.'" FORM 

Let T linear operator on an II-dimensional vector space V Suppose T can be represented by the 
I [al l 

A �  

a,. ] a,. 
" .. 

'h' ,h""'l"';"" polynomial .6(/) of T is a product of linear factors; that is, 

.6(1) = det(11 - A) = (t- (11 1)(/ - (122) ' . .  (t- (Inn) 

true and is an important theorem (proved in Problem 10.28). 

�l' .. , '''m 10.1: Let T:V -+ V be a linear operator whose characteristic polynomial factors into linear 
polynomials. Then there exists a basis of V in which T is represented by a triangular 
matrix. 

(Alternative Form) Let A be a square matrix whose characteristic polynomial factors 
into linear polynomials. Then A is similar to a triangular matrix, i.e., there exists an 
invertible matrix P such that p-1 A P is triangular. 

340 
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We say that an operator T can be brought into triangular fonn if it can be represented by a triangular 
matrix. Note that in this case, the eigenvalues of T are precisely those entries appearing on the Imlin 
diagonal. We give an application of this remark. 

Example 10.1. Let A be a square matrix over the complex field C. Suppose ). is an eigenvalue of AI. Show that JJ. or 
-JJ. is an eigenl'alue of A. 

By Theorem 10.1 .  A and Al are similar. respectively. to triangular matrices orthe fonn 

• • 

", 

Since similar matrices have the same eigenvalues. i. = II; for some i. Hence II{ = JJ. or IIi "" -JJ. is an eigenvalue 
of A. 

10.3 INVARIANCE 

Let T:V _ V be linear. A subspace If! of V is said 10 be il1lYlrialll U/uler Tor T-il1mrilll1/ ifT maps If! 
inlo itself, i.e., if v E If! implies T(v) E IV. [n this case, T r�stricted to IV defines a linear operntor on IV; 

that is, T induces a linear operntor T:IV _ IV defined by T(w) = T(w) for every II' E IV 
Example 10.2. 

(a) Lei T: RJ _ RJ be the following linear operator. which rotate� each vector v about the =-axis by an angle 0 
(shown in Fig. 10-1): 

T(.I'. )'.=) = (.I' cos O - ),sinO . .I'sin O + ),cosO. =) 

1'( ... ) 
o 

" 
'" 

Fig. 10-1 

Observe that each vector II' "" (a. b. 0) in the .\),.plane JII remains in JII under the mapping T; hence IV is 
T ·invariant. Observe also that the =-axis U is invariant under T. FurthemlOre, the restriction of T to IV rotates 
each vector about the origin O. and the restriction of T to U is the identity mapping of U. 

(b) Nonzero eigenvectors of a linear operator T:V -+ V may be characterized as generators of T·invariant 
l-dimensional subspaces. For suppose T(v) = i.v, II #- O. Then IV = lkv, k E K!, the I ·dimensional subspace 
generated by 1'. is invariant under T because 

T(kv) "" kT(v) = k(i.ll) "" ki.ll E II' 
Conversely, SllPpOse dim U = 1 and II #- 0 spans U. and U is invariant under T. Then T(II) E U and so T(II) is a 
multiple of II, i.e., T(II) = 1m. Hence II is an eigenvector of T. 

The next theorem (proved in Problem 10.3) gives us an important class of invariant subspaces. 

Theorem 10.2: Let T:V _ V be any linear operntor, and letf(t} be any polynomial. Then the kernel of 
f(T) is invariant under T. 
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The notion o f  invariance i s  related to matrix representations (Problem 1 1 . 5) as follows. 

Theorem 10.3 : Suppose W is an 

representation [AO 
to W. 

invariant subspace of T: V -+ V. Then T has a block matrix � ] , where A is a matrix representation of the restriction T of T 

10.4 INVARIANT DIRECT-SUM DECOMPOSITIONS 

A vector space V is termed the direct sum of subspaces WI ' . . .  , Wr, written 

V = Wj EB W2 EB . . .  EB Wr 
if every vector v E V can be written uniquely in the form 

v = wI + w2 + . . .  + wr ' 

The following theorem (proved in Problem 1 0 .7) holds. 

with 

Theorem 10.4: Suppose Wj , W2 , . . .  , Wr are subspaces of V, and suppose 

are bases of WI ' W2 , . . .  , W" respectively. Then V is the direct sum of the Wi if and only 
if the union B = Bj U . . .  U Br is a basis of V. 

Now suppose T: V -+ V is linear and V is the direct sum of (nonzero) T-invariant subspaces 
Wj , W2 , . . .  , Wr ; that is, 

and T( Wi) !:; Wi ,  i = I , . . .  , r 

Let 1'; denote the restriction of T to Wi. Then T is said to be decomposable into the operators Ti or T is said 
to be the direxct sum of the 1';,  written T = Tj EB . . .  EB Tr . Also, the subspaces Wj , . . .  , Wr are said to 
reduce T or to form a T-invariant direct-sum decomposition of V. 

Consider the special case where two subspaces U and W reduce an operator T: V -+ V; say dim U = 2 
and dim W = 3 and suppose {u I , u2 } and {wI ' W2 , w3 } are bases of U and W, respectively. If TI and T2 
denote the restrictions of T to U and W, respectively, then 

Tj (Uj ) = a l l  Uj + a 12u2 
Tj (U2) = a2 l Uj + a22u2 

T2(wj )  = b l lwj + b12W2 + b13w3 
T2(W2) = b2 lwj + b22W2 + b23w3 
T2(W3) = b3 jwj + b32W2 + b33W3 

Accordingly, the following matrices A , B, M are the matrix representations of TI , T2 , T, respectively: 

A = [ a l l  a2 1 ] , B = [ � :� ��� �:� ] , M = [� � ] a 12 a22 b1 3 b23 b33 
The block diagonal matrix M results from the fact that {Uj , U2 , Wj , W2 , W3 } is a basis of V (Theorem l OA), 
and that T(ui) = Tj (ui) and T(w) = T2 (w). 

A generalization of the above argument gives us the following theorem. 

Theorem 10.5: Suppose T: V -+ V is linear and suppose V is the direct sum of T-invariant subspaces, 
say, Wj , • • •  , Wr • If Ai is a matrix representation of the restriction of T to Wi, then T can 
be represented by the block diagonal matrix 

M = diag(A j , A2 , . . .  , Ar) 
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The following theorem shows that any operator T: V --+ V is decomposable into operators whose 
minimum polynomials are powers of irreducible polynomials .  This is the first step in obtaining a canonical 
form for T. 

Theorem 10.6: (Primary Decomposition Theorem) Let T: V --+ V be a linear operator with minimal 
polynomial 

where the fi(t) are distinct monic irreducible polynomials. Then V is the direct sum of 
T-invariant subspaces W] , . . .  , Wr where W; is the kernel offi(Tt' .  Moreover, fi(tt' is 
the minimal polynomial of the restriction of T to W;. 

The above polynomials fi(tt' are relatively prime. Therefore, the above fundamental theorem follows 
(Problem 1 0 . 1 1 ) from the next two theorems (proved in Problems 1 0 .9 and 1 0 . 1 0, respectively). 

Theorem 10.7: Suppose T: V --+ V is linear, and suppose J(t) = g(t)h(t) are polynomials such that 
J(T) = 0 and get) and h(t) are relatively prime. Then V is the direct sum of the 
T-invariant subspace U and W, where U = Ker geT) and W = Ker h(T) .  

Theorem 10.8: In Theorem 1 0 .7 , ifJ(t) is the minimal polynomial of T [and get) and h(t) are monic] , 
then get) and h(t) are the minimal polynomials of the restrictions of T to U and W, 
respectively. 

We will also use the primary decomposition theorem to prove the following usefual characterization of 
diagonalizable operators (see Problem 1 0 . 1 2  for the proof). 

Theorem 10.9: A linear operator T: V --+ V is diagonalizable if and only if its minimal polynomial met) 
is a product of distinct linear polynomials. 

Theorem 10.9: (Alternative Form) A matrix A is similar to a diagonal matrix if and only if its 
minimal polynomial is a product of distinct linear polynomials .  

Example 10.3. Suppose A f= I is a square matrix for which A3 = I. Determine whether or not A is similar to a diagonal 
matrix if A is a matrix over: (i) the real field R, (ii) the complex field C. 

Since A3 = I, A is a zero of the polynomialf(t) = t3 - I = (t - I)(P + t + I ) .  The minimal polynomial met) of A 
cannot be t - I ,  since A f= I. Hence 

or met) = t3 - I 

Since neither polynomial is a product of linear polynomials over R, A is not diagonalizable over R On the other hand, 
each of the polynomials is a product of distinct linear polynomials over C. Hence A is diagonalizable over C. 

10.6 NILPOTENT OPERATORS 

A linear operator T: V --+ V is termed nilpotent if rn = 0 for some positive integer n; we call k the 
index oJ nilpotency of T if Tk 

= 0 but Tk- ] -I- O. Analogously, a square matrix A is termed nilpotent if 
An = 0 for some positive integer n, and of index k if Ak 

= 0 but Ak- ] -I- O .  Clearly the minimum 
polynomial of a nilpotent operator (matrix) of index k is met) = tk ; hence 0 is its only eigenvalue. 
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Example 10,4, The following two r-square matrices will be used through the chapter: 

N = N(r) = r � " " �" " � " ":' : ' : " " �" " � l 
0 0 0  . . .  0 1  
0 0 0  . . .  0 0  

and r
A 1 0 . . .  0 0 1 

J(A) = � . . . .  � . . . .  � . . . .  ". : . : . . . .  � . . . .  � 
0 0 0  . . .  A 1 
O O O  . . .  O A 

The first matrix N, called a Jordan nilpotent block, consists of 1 's above the diagonal (called the superdiagonal), 
and O 's elsewhere. It is a nilpotent matrix of index r. (The matrix N of order 1 is just the 1 x 1 zero matrix [0] .) 

The second matrix J(A), called a Jordan block belonging to the eigenvalue A, consists of A 'S on the diagonal, l 's 
on the superdiagonal, and O 's elsewhere. Observe that 

J(A) = AI + N 

In fact, we will prove that any linear operator T can be decomposed into operators, each of which is the sum of a scalar 
operator and a nilpotent operator. 

The following (proved in Problem 1 0 . 1 6) is a fundamental result on nilpotent operators. 

Theorem 10.10:  Let T: V � V be a nilpotent operator of index k. Then T has a block diagonal matrix 
representation in which each diagonal entry is a Jordan nilpotent block N. There is at 
least one N of order k, and all other N are of orders S k. The number of N of each 
possible order is uniquely determined by T. The total number of N of all orders is equal 
to the nullity of T. 

The proof of Theorem 1 0 . 1 0  shows that the number of N of order i is equal to 2mi - mi+! - mi- l > 
where mi is the nullity of T

i
. 

10.7 JORDAN CANONICAL FORM 

An operator T can be put into Jordan canonical form if its characteristic and minimal polynomials 
factor into linear polynomials .  This is always true if K is the complex field C. In any case, we can always 
extend the base field K to a field in which the characteristic and minimal polynomials do factor into linear 
factors; thus, in a broad sense, every operator has a Jordan canonical form. Analogously, every matrix is 
similar to a matrix in Jordan canonical form. 

The following theorem (proved in Problem 1 0 . 1 8) describes the Jordan canonical form J of a linear 
operator T. 

Theorem 10.1 1 :  Let T: V � V b e  a linear operator whose characteristic and minimal polynomials are, 
respectively, 

and 

where the Ai are distinct scalars. Then T has a block diagonal matrix representation J in 
which each diagonal entry is a Jordan block Jij = J(Ai) '  For each Aij ' the corresponding 
�j have the following properties: 

(i) There is at least one Jij of order mi; all other �j are of order S mi' 
(ii) The sum of the orders of the Jij is ni '  

(iii) The number of �j equals the geometric multiplicity of Ai ' 
(iv) The number of Jij of each possible order is uniquely determined by T. 
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Example 10,5, Suppose the characteristic and minimal polynomials of an operator T are, respectively, 

and met) = (t - 2?(t - 5)3 

Then the Jordan canonical form of T is one of the following block diagonal matrices: 

or ( [ 5� � 0;] ) diag [ �  ; l [2] , [2] , 

345 

The first matrix occurs if T has two independent eigenvectors belonging to the eigenvalue 2; and the second matrix 
occurs if T has three independent eigenvectors belonging to 2, 

10.8 CYCLIC SUBSPACES 

Let T be a linear operator on a vector space V of finite dimension over K. Suppose v E V and v -I- O .  
The set of all vectors of the formf(T)(v), where f(t) ranges over all polynomials over K, is a T-invariant 
subspace of V called the T-cyclic subspace of V generated by v; we denote it by Z(v, T) and denote the 
restriction of T to Z(v, T) by Tv ' By Problem 1 0 .56, we could equivalently define Z(v , T) as the 
intersection of all T-invariant subspaces of V containing v .  

Now consider the sequence 

v, T(v) , T
2
(V) , T\v) , 

of powers of T acting on v. Let k be the least integer such that T
k
(v) is a linear combination of those vectors 

that precede it in the sequence; say, 

T
k
(V) = -ak_ I T

k
-
l
(v) - . . .  - aI T(v) - aov 

mv(t) = 1 + ak_ I I- 1 + . . .  a l t + ao 
Then 

is the unique monic polynomial of lowest degree for which mv(T)( v) = O. We call mv(t) the T-annihilator of 
v and Z(v, T) . 

The following theorem (proved in Problem 1 0 .29) holds . 

Theorem 10.12: Let Z(v ,  T) ,  Tv , mv (t) be defined as above. Then: 

(i) The set {v ,  T(v) , . . .  , T
k
- 1 (V)} is a basis of Z(v , T) ; hence dim Z(v, T) = k. 

(ii) The minimal polynomial of Tv is mvCt) . 

(iii) The matrix representation of Tv in the above basis is just the companion matrix 
CCmv) of mv(t) ; that is, 

0 0 0 0 -an 
I 0 0 0 -al 

CCmv) = 
0 0 0 -a2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 0 0 0 -ak-2 
0 0 0 I -ak- l 

10.9 RATIONAL CANONICAL FORM 

In this section, we present the rational canonical form for a linear operator T: V -+ V. We emphasize 
that this form exists even when the minimal polynomial cannot be factored into linear polynomials .  (Recall 
that this is not the case for the Jordan canonical form.) 
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Lemma 10.13 : Let T: V --+ V be a linear operator whose minimal polynomial is f(tr where f(t) is a 
monic irreducible polynomial. Then V is the direct sum 

V = Z(Vl ' T) EB . . .  EB Z(v" T) 

of T-cyclic subspaces Z(Vi ' T) with corresponding T-annihilators 

f(trl , f(trz , . . .  , f(tr" n = n l :::: n2 :::: . . .  :::: nr 
Any other decomposition of V into T -cyclic subspaces has the same number of 
components and the same set of T -annihilators. 

We emphasize that the above lemma (proved in Problem 1 0 .3 1 )  does not say that the vectors Vi or other 
T-cyclic subspaces Z(Vi '  T) are uniquely determined by T; but it does say that the set of T-annihilators is 
uniquely determined by T. Thus T has a unique block diagonal matrix representation 

M = diag(C1 , C2 , . . .  , Cr) 
where the Ci are companion matrices. In fact, the Ci are the companion matrices of the polynomials f(tr' . 

Using the Primary Decomposition Theorem and Lemma 1 0 . 1 3 ,  we obtain the following result. 

Theorem 10.14: Let T: V --+ V be a linear operator with minimal polynomial 

m(t) = fi (t)mlfi(t)m2 • •  ·fs(t)m, 

where the fi(t) are distinct monic irreducible polynomials. Then T has a unique block 
diagonal matrix representation 

M = diag(Cl l , Cl2 , . . .  , C1rl , · · · , Cs 1 ' Cs2 " ' "  Csr) 
where the Cij are companion matrices. In particular, the Cij are the companion matrices 
of the polynomials fi(tr" , where 

The above matrix representation of T is called its rational canonical form. The polynomials fi(tr" are 
called the elementary divisors of T. 

Example 10.6. Let V be a vector space of dimension 8 over the rational field Q, and let T be a linear operator on V whose 
minimal polynomial is 

met) = fi (t)fi(t)2 = (t4 - 4t3 + 6r - 4t - 7)(t - 3i 
Then the rational canonical form M of T must have one block the companion matrix of fi (t) and one block the 
companion matrix ofh.(ti .  There are two possibilities :  

(a) diag[C(t4 - 4t3 + 6r - 4t - 7), c((t - 3i), c((t - 3)2)] 
(b) diag[C(t4 - 4t3 + 6t2 - 4t - 7), c((t - 3i), C(t - 3) , C(t - 3)] 
That is, 

o 0 
o 0 
I 0 
o 

10.10 QUOTIENT SPACES 

o 0 
o 0 
I 0 
o -u [ : -

: ] . 

[3] . [3[) 
Let V be a vector space over a field K and let W be a subspace of V. If V is any vector in V, we write 

v + W for the set of sums v + w with w E W; that is, 

v + W = {v + w : w E W} 

These sets are called the cosets of W in V. We show (Problem 10 .22) that these cosets partition V into 
mutually disjoint subsets. 
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Example 10,7, Let W be the subspace of R2 defined by 

W = {(a , b) : a = b} , 

that is, W is the line given by the equation x - y = O. We can view 
v + W as a translation of the line obtained by adding the vector v to 
each point in W. As shown in Fig. 1 0-2, the coset v + W is also a 
line, and it is parallel to W. Thus the cosets of W in R2 are 
precisely all the lines parallel to W. 

In the following theorem, we use the cosets of a 
subspace W of a vector space V to define a new vector 
space; it is called the quotient space of V by W, and is 
denoted by V / w. 

347 

11 v -t  W 

Fig. 10-2 

Theorem 10.15:  Let W be a subspace of a vector space over a field K. Then the cosets of W in V form a 
vector space over K with the following operations of addition and scalar multiplication: 

(i) (u + w) + (v + W) = (u + v) + W, (ii) k(u + W) = ku + W, where k E K 

We note that, in the proof of Theorem 1 0 . 1 5  (Problem 1 0 .24), it is first necessary to show that the 
operations are well defined; that is, whenever u + W = u' + W and v + W = Vi + W, then 

(i) (u + v) + W = (u' + Vi) + W and (ii) ku + W = ku' + W for any k E K 

In the case of an invariant subspace, we have the following useful result (proved in Problem 1 0 .27). 

Theorem 10.16:  Suppose W is a subspace invariant under a linear operator T: V -+ V. Then T induces a 
linear operator T on V / W defined by T( v + W) = T( v) + W. Moreover, if T is a zero 
of any polynomial, then so is T. Thus the minimal polynomial of T divides the minimal 
polynomial of T. 

Solved Problems 
INVA�T SUBSPACES 

10.1 .  Suppose T: V -+ V is linear. Show that each of the following is invariant under T: 

(a) {O} , (b) V, (c) kernel of T, (d) image of T. 

(a) We have T(O) = 0 E {O} ; hence {O} is invariant under T. 

(b) For every v E V ,  T(v) E V; hence V is invariant under T. 

(c) Let U E Ker T. Then T(u) = 0 E Ker T since the kernel of T is a subspace of V. Thus Ker T is invariant 
under T. 

(d) Since T(v) E 1m T for every v E V, it is certainly true when v E 1m T. Hence the image of T is invariant 
under T. 

10.2. Suppose { Wi} is a collection of T-invariant subspaces of a vector space V. Show that the intersection 
W = n Wi is also T-invariant. 

Suppose v E W; then v E Wi for every i. Since W; is T-invariant, T(v) E Wi for every i. Thus T(v) E W 
and so W is T-invariant. 
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10.3. Prove Theorem 1 0 .2 :  Let T: V ---+ V b e  linear. For any polynomial J(t) , the kernel o f  J(T) is 
invariant under T. 

Suppose v E Kerf(T), i .e . , f(T)(v) = O. We need to show that T(v) also belongs to the kernel off(T), 
i .e . , f(T)(T(v)) = (J(T) 0 T)(v) = O. Since f(t)t = tf(t), we havef(T) 0 T = T o f(T) . Thus, as required, 

(J(T) 0 T)(v) = (T 0 f(T))(v) = T(J(T)(v)) = T(O) = 0 

10.4. Find all invariant subspaces of A = [ � =; ] viewed as an operator on R2 . 

By Problem 1 0. 1 ,  R2 and {OJ are invariant under A. Now if A has any other invariant subspace, it must be 
I -dimensional. However, the characteristic polynomial of A is 

!let) = r - tr(A) t + IA I = t2 + 1 
Hence A has no eigenvalues (in R) and so A has no eigenvectors. But the I -dimensional invariant subspaces 
correspond to the eigenvectors; thus R2 and {OJ are the only subspaces invariant under A. 

10.5. Prove Theorem 1 0 . 3 :  Suppose W is T-invariant. Then T has a triangular block representation 

[� � ] where A is the matrix representation of the restriction T of T to W. 

We choose a basis {WI ' . . .  , wr} of W and extend it to a basis {WI ' . . .  , W" VI , . . .  , vs } of V. We have 

T(wI ) = T(wI ) = al lwI + . . .  + alrWr 
T(w2) = T(W2) = a2 1wI + . . .  + a2rWr 

T(Wr) = T(wr) = arwI + . . .  + arrWr 
T(vI ) = bl lwI + . . .  + blrwr + Cl l V I + . . .  + CIsvs 
T(V2) = b2lwI + . . .  + b2rwr + C2l VI + . . .  + C2svs 

T(v,) = bslWI + . . .  + bsrwr + CsI VI + . . .  + cssvs 
But the matrix of T in this basis is the transpose of the matrix of coefficients in the above system of equations 

(Section 6.2). Therefore it has the form [ � � ] where A is the transpose of the matrix of coefficients for the 

obvious subsystem. By the same argument, A is the matrix of l' relative to the basis {wJ of W. 

10.6. Let T denote the restriction of an operator T to an invariant subspace W. Prove: 

(a) For any polynomiaI J(t), J(T)(w) = J(T)(w) . 
(b) The minimal polynomial of T divides the minimal polynomial of T. 

(a) Iff(t) = 0 or iff(t) is a constant, i .e . , of degree 1 ,  then the result clearly holds. 
Assume degf = n > 1 and that the result holds for polynomials of degree less than n. Suppose that 

f(t) = antn + an_ 1 ("- I + . . .  + al t + ao 
Then f(T)(w) = (anTn + an_ 1 Tn- I + . . .  + aoI)(w) 

= (a.Tn- 1 )(T(w)) + (an_ 1 Tn- I + . . .  + aoI)(w) 
= (anT"- I )(T(w)) + (an_ 1 Tn- I + . . .  + aoI)(w) = f(T)(w) 

(b) Let met) denote }he minimal polynomial of T. Then by (i), m(T)(w) = m(T)(w) = O(w) = 0 for every 
w E W; that is, T is a zero of the polynomial met) . Hence the minimal polynomial of T divides met) . 
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INVARIANT DIRECT-SUM DECOMPOSITIONS 

10.7. Prove Theorem 1 0 .4 :  Suppose WI ' W2 , • . •  , Wr are subspaces of V with respective bases 

Then V is the direct sum of the W; if and only if the union B = U B; is a basis of V. 
Suppose B is a basis of V. Then, for any v E V, 

where Wi = an wn + . . .  + ain, Win, E W;. We next show that such a sum is unique. Suppose 

v = wi + wi + . . .  + w� , where w; E W; 

Since {Wn , " "  Win) is a basis of W;, W; = bnwn + . . .  + bin,Win" and so 

v = bl l  Wl l  + . . .  + b1nj W1nj + . . .  + br1 Wr1 + . . .  + brn, wrn, 
Since B is a basis of V, aij = by, for each i and each j. Hence Wi = W;, and so the sum for v is unique. 
Accordingly, V is the direct sum of the W;. 

Conversely , suppose V is the direct sum of the W;. Then for any v E V, v = W1 + . . .  + w" where 
Wi E W;. Since {wij) is a basis of W;, each Wi is a linear combination of the wij, ' and so v is a linear 
combination of the elements of B. Thus B spans V. We now show that B is linearly independent. Suppose 

Note that ail Wil + . . .  + ain, Win, E W;. We also have that 0 = 0 + 0 . . .  0 E W;. Since such a sum for 0 is 
unique, 

ailwi1 + . . .  + ain, win, = 0 for i = 1 , . . .  , r 

The independence of the bases {wij) imply that all the a 's are O. Thus B is linearly independent, and hence is a 
basis of V. 

10.8. Suppose T: V -+ V is linear and suppose T = T] EB T2 with respect to a T-invariant direct-sum 
decomposition V = U EB W. Show that: 

(a) met) is the least common multiple of m] (t) and m2(t), where met), m ] (t) ,  m2 (t) are the 
minimum polynomials of T, T] , T2 , respectively. 

(b) A(t) = A] (t)A2 (t), where A(t) , A] (t) ,  A2 (t) are the characteristic polynomials of T, T] , T2 , 
respectively. 

(a) By Problem 1 0 .6, each of m1 (t) and m2(t) divides met). Now supposef(t) is a multiple of both m1 (t) and 
m2(t) ; thenf(T1 )(U) = 0 andf(T2)(W) = O. Let v E V; then v = u + W with U E U and W E W. Now 

f(T)v = f(T)u + f(T)w = f(T1 )u + f(T2)w = 0 + 0 = 0 

That is, T is a zero off(t). Hence met) dividesf(t) , and so met) is the least common multiple ofm1 (t) and 
m2(t). 

(b) By Theorem 1 0.5 ,  T has a matrix representation M = [� � J , where A and B are matrix representa­
tions of T1 and T20 respectively. Then, as required, 

10.9. Prove Theorem 1 0 . 7 :  Suppose T: V -+ V is linear, and supposef(t) = g(t)h(t) are polynomials such 
that f(T) = 0 and get) and h(t) are relatively prime. Then V is the direct sum of the T -invariant 
subspaces U and W where U = Ker geT) and W = Ker h(T) .  
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Note first that U and W are T-invariant by Theorem 1 0.2 .  Now, since get) and h(t) are relatively prime, 
there exist polynomials ret) and set) such that 

Hence, for the operator T, 

Let v E V; then, by (*) ,  

r(t)g(t) + s(t)h(t) = 1 

r(T)g(T) + s(T)h(T) = I 
v = r(T)g(T)v + s(T)h(T)v 

But the first term in this sum belongs to W = Ker h(T), since 

h(T)r(T)g(T)v = r(T)g(T)h(T)v = r(T)f(T)v = r(T)Ov = 0 

Similarly, the second term belongs to U. Hence V is the sum of U and W. 

(*) 

To prove that V = U EI1 W, we must show that a sum v = u + w with u E U, W E W, is uniquely 
determined by v. Applying the operator r(T)g(T) to v = u + w and using g(T)u = 0, we obtain 

r(T)g(T)v = r(T)g(T)u + r(T)g(T)w = r(T)g(T)w 

Also, applying (* ) to w alone and using h(T)w = 0, we obtain 

w = r(T)g(T)w + s(T)h(T)w = r(T)g(T)w 

Both of the above formulas give us w = r(T)g(T)v, and so w is uniquely determined by v. Similarly u is 
uniquely determined by v. Hence V = U EI1 W, as required. 

10.10. Prove Theorem 1 0 . 8 :  In Theorem 1 0 .7  (Problem 1 0 .9), iff(t) is the minimal polynomial of T (and 
get) and h(t) are monic), then get) is the minimal polynomial of the restriction TI of T to U and h(t) 
is the minimal polynomial of the restriction T2 of T to W. 

Let mj (t) and m2(t) be the minimal polynomials of Tj and T2, respectively. Note that g(Tj ) = 0 and 
h(T2) = 0 because U = Ker geT) and W = Ker h(T). Thus 

mj (t) divides get) and m2(t) divides h(t) ( 1 )  

By Problem 1 0.9, J(t) i s  the least common multiple of  mj (t) and m2(t). But mj (t) and m2(t) are relatively 
prime since get) and h(t) are relatively prime. Accordingly, J(t) = mj (t)m2 (t) . We also have that 
J(t) = g(t)h(t). These two equations together with ( 1 )  and the fact that all the polynomials are monic 
imply that g(t) = mj (t) and h(t) = m2 (t), as required. 

10. 1 1 .  Prove the Primary Decomposition Theorem 1 0 .6 :  Let T: V --+ V be a linear operator with minimal 
polynomial 

where the .fi(t) are distinct monic irreducible polynomials. Then V is the direct sum of T -invariant 
subspaces WI ' . . .  , Wr where W; is the kernel of.fi(Tt' . Moreover, .fi(tt' is the minimal polynomial 
of the restriction of T to W;.  

The proof is by induction on r. The case r = 1 i s  trivial. Suppose that the theorem has been proved for 
r - 1 .  By Theorem 1 0.7, we can write V as the direct sum of T-invariant subspaces Wj and Vj , where Wj is 
the kernel of fi (Trl and where Vj is the kernel of h.(Tr2 • • •  .f,.(Tr' . By Theorem 1 0.8 ,  the minimal 
polynomials of the restrictions of T to Wj and Vj are fi (trl andh.(trz . • •  .f,.(tr', respectively. 

Denote the restriction of T to Vj by 1'j . By the inductive hypothesis, Vj is the direct sum of subspaces 
W2 , . . .  , Wr such that Wi is the kernel of fi(Tjr' and such that fi(tr' is the minimal polynomial for the 
restriction of 1'j to W;. But the kernel of fi(Tr' , for i = 2, . . .  , r is necessarily contained in VI > since fi(tr' 
dividesh.(tr2 • • •  .f,.(tr' . Thus the kernel offi(Tr' is the same as the kernel offi(Tjr' ,  which is Wi '  Also, the 
restriction of T to W; is the same as the restriction of 1'j to Wi (for i = 2, . . .  , r); hence fi(tr' is also the 
minimal polynomial for the restriction of T to Wi '  Thus V = Wj EI1 W2 EI1 . . .  EI1 Wr is the desired decom-
position of T. 
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10.12. Prove Theorem 1 0 ,9 :  A linear operator T :  V ---+ V has a diagonal matrix representation if and only if 
its minimal polynomal met) is a product of distinct linear polynomials, 

Suppose met) is a product of distinct linear polynomials; say, 

where the Ai are distinct scalars. By the Primary Decomposition Theorem, V is the direct sum of subspaces 
WI '  . . .  , W" where W; = Ker(T - A/). Thus, if v E W;, then (T - A/)(v) = 0 or T(v) = AiV. In other words, 
every vector in W; is an eigenvector belonging to the eigenvalue Ai ' By Theorem 10 .4, the union of bases for 
WI '  . . .  , Wr is a basis of V. This basis consists of eigenvectors, and so T is diagonalizable. 

Conversely, suppose T is diagonalizable, i .e . , V has a basis consisting of eigenvectors of T. Let AI , . . .  , As 
be the distinct eigenvalues of T. Then the operator 

maps each basis vector into O. Thus f(T) = 0, and hence the minimal polynomial met) of T divides the 
polynomial 

Accordingly, met) is a product of distinct linear polynomials. 

NILPOTENT OPERATORS, JORDAN CANONICAL FORM 

10.13. Let T: V be linear. Suppose, for v E V, Tk(V) = 0 but Tk- 1 (V) i= O .  Prove: 

(a) The set S = {v ,  T(v) , . . .  , Tk- l (v)} is linearly independent. 
(b) The subspace W generated by S is T-invariant. 
(c) The restriction T of T to W is nilpotent of index k. 

(d) Relative to the basis {Tk- 1 (v) , . . .  , T(v) , v} of W, the matrix of T is the k-square Jordan 
nilpotent block Nk of index k (see Example 1 0 .5) .  

(a) Suppose 

(*) 
Applying Tk- I to (*) and using Tk(v) = 0, we obtain aTk- l (v) = 0; since Tk- I (v) #- 0, a = O. Now 
applying Tk-2 to (*) and using Tk(v) = 0 and a = 0, we fiind al Tk- I (v) = 0; hence al = O. Next 
applying Tk-3 to (*) and using Tk(v) = 0 and a = al = 0, we obtain a2Tk- l (v) = 0; hence a2 = O. 
Continuing this process, we find that all the a 's are 0; hence S is independent. 

(b) Let v E W. Then 

Using Tk(v) = 0, we have that 

Thus W is T-invariant. 
(c) By hypothesis Tk(v) = O. Hence, for i = 0, . . .  , k - 1 ,  

That is, applying rk to each �enerator o f  W, we obtain 0; hence, rk = 0 and so  r i s  nilpotent o f  index at 
most k. On the other hand, Tk- I (v) = Tk- I (v) #- 0; hence T is nilpotent of index exactly k. 
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(d) For the basis {Tk-\v), Tk-2(v) , . . .  , T(v) , v} of W, 

T(Tk- 1 (v)) 
T(Tk-2(V)) = 
T(Tk-3 (v)) = 

T(T(v)) 
T(v) 

Tk(V) = 0 
Tk- 1 (v) 

Tk-2(v) 

T(v) 

Hence, as required, the matrix of T in this basis is the k-square Jordan nilpotent block Nk• 

[CHAP. 1 0  

10.14. Let T: V -+ V b e  linear. Let U = Ker Ti and W = Ker Ti+ l . Show that: 

(a) U !:; W, (b) T(W) !:; U. 
(a) Suppose U E U = Ker Ti . Then Ti(U) = 0 and so Ti+\u) = T(Ti(U)) = T(O) = O. Thus 

u E Ker Ti+1 = W. But this is true for every u E U; hence U � W. 
(b) Similarly, if W E W = Ker Ti+l , then Ti+I (W) = O. Thus Ti+I (W) = Ti(T(w)) = Ti(O) = 0 and so 

T(W) � U. 

10.15. Let T: V be linear. Let X = Ker Ti-2 , Y = Ker Ti- l , Z = Ker Ti . Therefore (Problem 10 . 1 4), 
X !:; Y !:; Z. Suppose 

{U l " ' "  Ur , V I " ' "  Vs } ,  {U l " ' "  Ur , V I " ' "  Vs ' WI " ' "  Wt} 
are bases of X, Y, Z respectively. Show that 

S = {U l ' . . .  , Ur , T(Wl ) ,  . . .  , T(wt) }  
is contained in Y and is linearly independent. 

By Problem 1 0. 14 ,  T(Z) � Y, and hence S � Y. Now suppose S is linearly dependent. Then there exists 
a relation 

al u l + . . .  + arur + bl T(wI ) + . . .  + btT(wt) = 0 

where at least one coefficient is not zero. Furthermore, since {u;} is independent, at least one of the bk must be 
nonzero. Transposing, we find 

bl T(wI ) + . . .  + btT(wt) = -al UI - . . .  - arUr E X  = Ker Ti-2 

Hence Ti-2(bl T(wI ) + . . .  + btT(wt)) = 0 

Thus and so 
Since {ui '  vj } generates Y, we obtain a relation among the ui ' vj ' wk where one of the coefficients, i .e . , one of 
the bk, is not zero. This contradicts the fact that {ui '  vj ' wk} is independent. Hence S must also be independent. 

10.16. Prove Theorem 1 0 . 1 0 : Let T: V -+ V be a nilpotent operator of index k. Then T has a unique block 
diagonal matrix representation consisting of Jordan nilpotent blocks N. There is at least one N of 
order k, and all other N are of orders :::: k. The total number of N of all orders is equal to the nullity 
of T. 

Suppose dim V = n. Let WI = Ker T, W2 = Ker T2 , . . .  , Wk = Ker Tk . Let us set mi = dim Wi' for 
i = I ,  . . .  , k. Since T is of index k, Wk = V and Wk_ 1 =1= V and so mk_ 1 < mk = n .  By Problem 1 0. 14 ,  

WI � W2 � " , � Wk = V  
Thus, by induction, we can choose a basis {UI '  . . .  , un } of V such that {U I '  . . .  , Urn }  is a basis of Wi' 

We now choose a new basis for V with respect to which T has the desired fo�. It will be convenient to 
label the members of this new basis by pairs of indices. We begin by setting 
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and setting 

v( 1 , k - 1) = Tv( 1 , k) , v(2 , k - 1) = Tv(2 , k) , v(mk - mk_ l , k - 1) = Tv(mk - mk_ l , k) 

By the preceding problem, 

SI = {UI " "  Umk_2 , v( l , k - 1 ) , . . .  , v(mk - mk_ l , k - I)} 

is a linearly independent subset of Wk_ l • We extend SI to a basis of Wk_ 1 by adjoining new elements (if 
necessary), which we denote by 

v(mk - mk_ 1 + 1 , k - 1 ) , v(mk - mk_ 1 + 2, k - 1 ) , v(mk_ 1 - mk-2 , k - 1 )  

Next we set 

v(l , k - 2) = Tv( l , k - 1 ) , v(2 , k - 2) = Tv(2 , k - 1 ) , 
v(mk_ 1 - mk-2 , k - 2) = Tv(mk_ 1 - mk-2 , k - 1 )  

Again by the preceding problem, 

S2 = {uI , . . .  , umk_, ' v(l , k - 2) , . . .  , v(mk_ 1 - mk-2 , k - 2) } 

is a linearly independent subset of Wk-z ,  which we can extend to a basis of Wk-2 by adjoining elements 

v(mk_ 1 - mk-2 + I , k - 2) , v(mk_ 1 - mk-2 + 2, k - 2) , v(mk_2 - mk-3 , k - 2) 

Continuing in this manner, we get a new basis for V, which for convenient reference we arrange as follows: 

v( 1 , k) . . .  , v(mk - mk_ l , k) 
v( 1 , k - 1 ) , . . .  , v(mk - mk_ l , k - 1 )  . . .  , v(mk_ 1 - mk-2 , k - 1 )  

v( 1 , 2) , 
v( 1 , l ) , 

. . .  , v(mk - mk_ l , 2) , 

. . .  , v(mk - mk_ l , 1 ) , 
. . .  , v(mk_ 1 - mk-2 , 2) , 
. . .  , v(mk_ 1 - mk-2 , 1 ) , 

. . .  , v(m2 - ml , 2) 

. . .  , v(m2 - ml , 1 ) , . . .  , v(ml , 1 )  

The bottom row forms a basis of  WI ' the bottom two rows form a basis of W2 , etc. But what is important for us 
is that T maps each vector into the vector immediately below it in the table or into 0 if the vector is in the 
bottom row. That is, 

T ( . .  ) = { V(i,} - 1) for } > 1 v I , J  0 for } = 1 

Now it is clear [see Problem 1 0 . l 3 (d)] that T will have the desired form if the vU,}) are ordered 
lexicographically: beginning with v( l ,  1) and moving up the first column to v( l ,  k), then jumping to v(2 , I ) 
and moving up the second column as far as possible, etc. 

Moreover, there will be exactly mk - mk_ 1 diagonal entries of order k. Also, there will be: 

(mk_ 1 - mk-2) - (mk - mk_ l ) = 2mk_ 1 - mk - mk-2 diagonal entries of order k - I 

diagonal entries of order 2 
diagonal entries of order I 

as can be read off directly from the table. In particular, since the numbers ml , . . .  , mk are uniquely determined 
by T, the number of diagonal entries of each order is uniquely determined by T. Finally, the identity 

shows that the nullity ml of T is the total number of diagonal entries of T. 
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10.17. ut A � 
[ � 

1 1 0 

� ] 
�d B �  

[ � 

1 1 0 

� 1 Tho re,d", ,� vorify that A �d B '" 
0 1 1 0 1 1 
0 0 0 0 0 1 
0 0 0 0 0 0 
0 0 0 0 0 0 

both nilpotent of index 3 ;  that is, A3 = 0 but A2 i= 0, and E3 = 0 but E2 i= O. Find the nilpotent 
matrices MA and ME in canonical form that are similar to A and E, respectively. 

Since A and B are nilpotent of index 3, MA and MB must each contain a Jordan nilpotent block of order 3 ,  
and none greater then 3 .  Note that rank(A) = 2 and rank(B) = 3 ,  s o  nullity(A) = 5 - 2 = 3 and 
nullity(B) = 5 - 3 = 2. Thus MA must contain 3 diagonal blocks, which must be one of order 3 and two 
of order 1 ;  and MB must contain 2 diagonal blocks, which must be one of order 3 and one of order 2 .  Namely, 

[

0 
o 0 

MA = 0 0 
o 0 
o 0 � � � ] 

0 0 0  
0 0 0  
0 0 0  

and [

0 
o 0 

MB = 0 0 
o 0 
o 0 � � � ] 

0 0 0  
0 0 1 
0 0 0  

10.18. Prove Theorem 1 0 . 1 1  on the Jordan canonical form for an operator T. 
By the primary decomposition theorem, T is decomposable into operators TJ , • • •  , Tr ; that is, 

T = TJ EEl . . .  EEl Tn where (t - Aj)m, is the minimal polynomial of Tj . Thus, in particular, 

Set Nj = Tj - A/. Then, for i = 1 ,  . . .  , r, 

where NT/" = 0  

That is, Tj is the sum of the scalar operator A/ and a nilpotent operator Nj, which is of index mj since (t - Aj)� 
is the minimal polynomial of Tj • 

Now, by Theorem 1 0 . 1 0  on nilpotent operators, we can choose a basis so that Nj is in canonical form. In 
this basis, Tj = Nj + A/ is represented by a block diagonal matrix Mj whose diagonal entries are the matrices 
Jij ' The direct sum J of the matrices Mj is in Jordan canonical form and, by Theorem 1 0 .5 ,  is a matrix 
representation of T. 

Lastly, we must show that the blocks �j satisfy the required properties. Property (i) follows from the fact 
that Nj is of index mj ' Property (ii) is true since T and J have the same characteristic polynomial. Property (iii) 
is true since the nullity of Nj = Tj - A/ is equal to the geometric multiplicity of the eigenvalue Aj . Property 
(iv) follows from the fact that the Tj and hence the Nj are uniquely determined by T. 

10.19. Determine all possible Jordan canonical forms J for a linear operator T: V � V whose character­
istic polynomial A(t) = (t - 2)5 and whose minimal polynomial met) = (t - 2? 

J must be a 5 x 5 matrix, since i1(t) has degree 5, and all diagonal elements must be 2, since 2 is the only 
eigenvalue. Moreover, since the exponent of t - 2 in met) is 2, J must have one Jordan block of order 2, and 
the others must be of order 2 or 1 .  Thus there are only two possibilities: 

or 

10.20. Determine all possible Jordan canonical forms for a linear operator T: V � V whose characteristic 
polynomial A(t) = (t - 2)3 (t - 5)2 . In each case, find the minimal polynomial met) . 
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Since t - 2 has exponent 3 in �(t), 2 must appear three times on the diagonal. Similarly, 5 must appear 
twice. Thus there are six possibilities :  

(a) dmgW i ;} [ 5 i l ) . (b) dmoW 2 ; } [5] . [5]} 
(c) diag( [ 2 ; l [2] , [ 5 ; ] ) , (d) diag( [ 2 ; l [2] , [5] ,  [5]) , 

(e) diag([2] , [2] , [2] , [ 5 ; ] ) , (f) diag([2] , [2] , [2] , [5 ] ,  [5]) 

The exponent in the minimal polynomial met) is equal to the size of the largest block. Thus: 

(a) met) = (t - 2)3 (t - 5)2 , (b) met) = (t - 2)3 (t - 5), (c) met) = (t - 2)2(t - 5)2 , 
(d) met) = (t - 2?(t - 5), (e) met) = (t - 2)(t - 5? , (f) met) = (t - 2)(t - 5) 

QUOTIENT SPACE AND TRIANGULAR FORM 

10.21 .  Let W be a subspace of a vector space V. Show that the following are equivalent: 

(i) U E v + W, (ii) U - v E W, (iii) v E U + W. 
Suppose U E v + W. Then there exists Wo E W such that U = v + wo o Hence u - v = Wo E W. Conversely, 

suppose u - v E W. Then u - v = Wo where Wo E W. Hence u = v + Wo E V + W. Thus (i) and (ii) are 
equivalent. 

We also have u - v E W iff - (u - v) = v - U E W iffv E u + W. Thus (ii) and (iii) are also equivalent. 

10.22. Prove the following: The cosets of W in V partition V into mutually disjoint sets . That is : 

(a) Any two co sets U + W and v + W are either identical or disjoint. 
(b) Each v E V belongs to a coset; in fact, v E v + W. 

Furthermore, U + W = v + W if and only if U - v E W, and so (v + w) + W = v + W for any 
W E W. 

Let v E V. Since 0 E W, we have v = v + 0 E V + W, which proves (b). 
Now suppose the cosets u + W and v + W are not disjoint; say, the vector x belongs to both u + W and 

v + W. Then u - x E W and x - v E W. The proof of (a) is complete if we show that u + W = v + w. Let 
u + Wo be any element in the coset u + W. Since u - x, x - v, Wo belongs to W, 

(u + wo) - v = (u - x) + (x - v) + Wo E W 

Thus u + Wo E V + W, and hence the cost u + W is contained in the coset v + W. Similarly, v + W is 
contained in u + W, and so u + W = v + W. 

The last statement follows from the fact that u + W = v + W if and only if u E v + W, and, by Problem 
10 .2 1 ,  this is equivalent to u - V E W. 

10.23. Let W be the solution space of the homogeneous equation 2x + 3y + 4z = O. Describe the cosets of 
W in R3 . 

W is a plane through the origin 0 = (0, 0, 0), and the cosets of W are the planes parallel to W. 
Equivalently, the cosets of W are the solution sets of the family of equations 

2x + 3y + 4z = k, k E R 

In fact, the coset v + W, where v = (a , b, c) , is the solution set of the linear equation 

2x + 3y + 4z = 2a + 3b + 4c or 2(x - a) + 3(y - b) + 4(z - c) = 0 
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10.24. Suppose W i s  a subspace o f  a vector space V. Show that the operations in Theorem 10 , 1 5  are well 
defined; namely, show that if u + W = u' + W and v + W = v' + W, then: 

(a) (u + v) + W = (u' + v') + W and (b) ku + W = ku' + W for any k E K 

(a) Since u + W = u' + W and v + W = v' + W, both u - u' and v - v' belong to W. But then 
(u + v) - (u' + v') = (u - u') + (v - v') E W Hence (u + v) + W = (u' + v') + W 

(b) Also, since u - u' E W implies k(u - u') E W, then ku - ku' = k(u - u') E W; accordingly, 
ku + W = ku' + W 

10.25. Let V be a vector space and W a  subspace of V. Show that the natural map 1] :  V -+ V I W,  defined by 
1](v) = v + W, is linear. 

For any u, v E V and any k E K, we have 

and 

Accordingly, 11 is linear. 

n(u + v) = u + v + W = u + W + v + W = l1(u) + I1(V) 
l1(kv) = kv + W = k(v + W) = kl1(V) 

10.26. Let W be a subspace of a vector space V. Suppose {WI ' . . .  , wr} is a basis of W and the set of cosets 
{V I ' . . .  , vs } , where Vj = Vj + W, is a basis of the quotient space. Show that the set of vectors 
B = {V I " ' "  vs , WI " " ,  wr } is a basis of V. Thus dim V = dim W + dim( Vl w) . 

Suppose u E V. Since {vj } is a basis of V IW,  

u = u +  W = al v j + a2v2 + . . .  + asvs 

Hence u = aj Vj + . . .  + asvs + w, where W E W Since {w;} is a basis of W, 

u = aj Vj + . . .  + asvs + bjwj + . . .  + brwr 

Accordingly, B spans V. 
We now show that B is linearly independent. Suppose 

Cj Vj + . . .  + csvs + djwj + . . .  + drwr = 0 

Then 
( I )  

Since {Vj } is independent, the c's are all O. Substituting into ( I ), we find dj  Wj + . . .  + drwr = O. Since {w;} is 
independent, the d's are all O. Thus B is linearly independent and therefore a basis of V. 

10.27. Prove Theorem 10 . 1 6 : Suppose W is a subspace invariant under a linear operator T: V -+ V. Then T 
induces a linear operator T on VI W defined by T( v + W) = T( v) + W. Moreover, if T is a zero of 
any polynomial, then so is T. Thus the minimal polynomial of T divides the minimal polynomial 
of T. 

We first show that t is well defined; i .e . ,  if u + W = v + W, then t(u + W) = t(v + W). If 
u + W = v + W, then u - v E W, and, since W is T-invariant, T(u - v) = T(u) - T(v) E W Accordingly, 

t(u + W) = T(u) + W = T(v) + W = t(v + W) 

as required. 
We next show that t is linear. We have 

t((u + W) + (v + W)) = t(u + v + W) = T(u + v) + W = T(u) + T(v) + W 
= T(u) + W + T(v) + W = t(u + W) + t(v + W) 
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Furthermore 

T(k(u + W)) = T(ku + W) = T(ku) + W = kT(u) + W = k(T(u) + W) = kT(u + W) 

Thus l' is linear. 

Now, for any coset u + W in V I W,  

J'2(u + W) = Tl(u) + W = T(T(u)) + W = T(T(u) + W) = T(T(u + W)) = Tl(u + W) 

Hence Tl = 1'1 . Similarly, T" = Tn for any n. Thus, for any polynomial 

f(t) = antn + . . .  + ao = L a/ 

f(T)(u + W) = f(T)(u) + W = L aJ;(u) + W = L a;(T;(u) + W) 
= L a;T;(u + W) = L a;T' (u + W) = (L a;T')(u + W) = f(T)(u + W) 

and so f(T) = f(T). Accordingly, if T is a root off(t) thenf(T) = Ii = W = f(T); i .e . , T is also a root off(t). 
Thus the theorem is proved. 

10.28. Prove Theorem 1 0 . 1 :  Let T: V � V be a linear operator whose characteristic polynomial factors 
into linear polynomials. Then V has a basis in which T is represented by a triangular matrix. 

The proof is by induction on the dimension of V. If dim V = 1 ,  then every matrix representation of T is a 
1 x 1 matrix, which is triangular. 

Now suppose dim V = n > 1 and that the theorem holds for spaces of dimension less than n. Since the 
characteristic polynomial of T factors into linear polynomials, T has at least one eigenvalue and so at least one 
nonzero eigenvector v, say T( v) = al l  v. Let W be the I -dimensional subspace spanned by v. Set V = VI W 
Then (problem 1 0.26) dim V = dim V - dim W = n - 1 .  Note also that W is invariant under T. By Theorem 
1 0 . 1 6, T induces a linear operator l' on V whose minimal polynomial divides the minimal polynomial of T. 
Since the characteristic polynomial of T is a product of linear polynomials, so is its minimal polynomial; 
hence so are the minimal and characteristic polynomials of T. Thus V and l' satisfy the hypothesis of the 
theorem. Hence, by induction, there exists a basis {Vl , . . .  , vn } of V such that 

T(vl) = allvl 
T(v3 ) = a32vl + a33 v3 

Now let Vl , . . .  , vn be elements of V that belong to the co sets Vl , . . .  , vn , respectively. Then {v , Vl , . . .  , vn } is a 
basis of V (Problem 1 0 .26). Since T(vl) = allvl , we have 

and so 

But W is spanned by v; hence T(Vl) - allvl is a multiple of v, say, 

T(Vl) - allvl = all v , 

Similarly, for i = 3 , . . .  , n 

Thus 

T(v) = al l  v 

and so 

and so 

T(Vl) = all v + allvl 

and hence the matrix of T in this basis is triangular. 



Lipschulz-Lipson:Schaum's I 10, Canonical Forms 

Outline ofTheory and 

I Text © The McGraw-Hili 
Companies, 2004 

Problems of Linear 

Algebra,3/e 

358  CANONICAL FORMS [CHAP. 1 0  

CYCLIC SUBSPACES, RATIONAL CANONICAL FORM 

10.29. Prove Theorem 1 0 , 1 2 :  Let Z(v, T) be a T-cyclic subspace, Tv the restriction of T to Z(v, T), and 
rnv(t) = f< + ak_ 1 f<- 1 + ' "  + ao the T-annihilator of v, Then: 

(i) The set {v ,  T(v) , , , . , Tk- l (V)} is a basis of Z(v, T); hence dim Z(v, T) = k. 
(ii) The minimal polynomial of Tv is rnv(t) .  
(iii) The matrix of Tv in the above basis is the companion matrix C = C(rnv) of rnv(t) [which has 

l 's below the diagonal, the negative of the coefficients ao , a i ' . . .  , ak- l of rnv(t) in the last 
column, and O 's elsewhere] .  

(i) By definition of mv(t), Tk(v) is the first vector in the sequence v, T(v), TZ(v) , . . .  that is a linear 
combination of those vectors which precede it in the sequence; hence the set B = {v, T(v) , . . .  , Tk- 1 (v)} 
is linearly independent. We now only have to show that Z(v , T) = L(B) , the linear span of B. By the 
above, Tk(v) E L(B). We prove by induction that Tn (v) E L(B) for every n. Suppose n > k and 
Tn- I (v) E L(B), i .e . ,  rn- I (v) is a linear combination of v, . . .  , Tk- I (v) . Then Tn(v) = T(Tn- l (v)) is a 
linear combination of T(v) , . . .  , Tk(v) . But Tk(v) E L(B); hence Tn(v) E L(B) for every n. Consequently, 
J(T)(v) E L(B) for any polynomiaI J(t) . Thus Z(v , T) = L(B), and so B is a basis, as claimed. 

(ii) Suppose met) = f + bs- 1 f- I + . . .  + bo is the minimal polynomial of Tv ' Then, since v E Z(v, T) , 

0 =  m(Tv)(v) = m(T)(v) = rev) + bs_ 1 r- 1 (v) + . . .  + bov 

Thus P(v) is a linear combination of v, T(v) , . . .  , Ts- I (v), and therefore k :s: s. However, mv(T) = 0 
and so mvCTv) = O. Then met) divides mvCt) , and so s :s: k. Accordingly, k = s and hence mv(t) = met) . 

(iii) T(v) 

TvCTk-Z(v)) Tk- l (v) 
TvCTk- l (v)) = Tk(v) = -aov - al T(v) - azTz(v) . . .  - ak- l Tk- 1 (v) 

By definition, the matrix of Tv in this basis is the tranpose of the matrix of coefficients of the above 
system of equations; hence it is C, as required. 

10.30. Let T: V ---+ V be linear. Let W be a T-invariant subspace of V and T the induced operator on V j w.  
Prove: 

(a) The T-annihilator of v E V divides the minimal polynomial of T. 
(b) The T-annihilator of v E V j W  divides the minimal polynomial of T. 

(a) The T-annihilator of v E V is the minimal polynomial of the restriction of T to Z(v , T), and therefore, by 
Problem 1 0.6 , it divides the minimal polynomial of T. 

(b) The T-annihilator of v E V / W divides the minimal polynomial of T, which divides the minimal 
polynomial of T by Theorem 1 O . l 6 . 

Remark: In the case where the minimum polynomial of T is Jut , where J(t) is a monic irreducible 
polynomial, then the T -annihilator of v E V and the T -annihilator of v E V / W are of the form J(t)m , where 
m :S: n. 
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10.31 .  Prove Lemma 1 0 , 1 3 :  Let T: V ---+ V be a linear operator whose minimal polynomial isJ(tt, where 
J(t) is a monic irreducible polynomial. Then V is the direct sum of T-cyclic subspaces 
Zi = Z(vi , T), i = 1 ,  . . .  , r, with corresponding T-annihilators 

Any other decomposition of V into the direct sum of T-cyclic subspaces has the same number of 
components and the same set of T -annihilators. 

The proof is by induction on the dimension of V. If dim V = 1 ,  then V is itself T-cyclic and the lemma 
holds. Now suppose dim V > I and that the lemma holds for those vector spaces of dimension less than that 
of V. 

Since the minimal polynomial of T isf(tt , there exists V1 E V such thatf(Tt- 1 (V1 ) i= 0; hence the T­
annihilator of V1 is f(tt . Let Z1 = Z( V1 ' T) and recall that Z1 is T -invariant. Let V = V / Z1 and let T be the 
linear operator on V induced by T. By Theorem 1 0. 1 6, the minimal polynomial of T dividesf(tt ; hence the 
hypothesis holds for V and T. Consequently, by induction, V is the direct sum of T-cyclic subspaces; say, 

V = Z(V2 , T) EEl . . .  EEl Z(vr , T )  

where the corresponding T-annihilators are f(tt2 , • • •  ,f(tt' , n :::: n2 :::: . . .  :::: nr . 
We claim that there is a vector V2 in the coset V2 whose T -annihilator is f(tt2 , the T -annihilator of V2 ' Let 

w be any vector in v2 . Thenf(T)n2 (w) E Z1 ' Hence there exists a polynomial get) for which 

f(Tt2 (w) = g(T)(V1 ) 

Since f(tt is the minimal polynomial of T, w have, by ( 1 ), 

( 1 )  

But f(tt is the T -annihilator of  V1 ; hence f(tt divides f(tt-n2 get), and so  g(t) = f(tt2 h(t) for some 
polynomial h(t) . We set 

V2 = W - h(T)(v1 ) 

Since w - V2 = h(T)(v1 ) E Z1 , V2 also belongs to the coset V2 ' Thus the T-annihilator of v2 is a multiple of the 
T-annihilator of V2 ' On the other hand, by ( 1 ) . 

f(Tt2 (V2) = f(Tt' (w - h(T)(v1 )) = f(Tt2 (w) - g(T)(V1 ) = 0 

Consequently the T -annihilator of V2 is f(tt2 , as claimed. 
Similarly, there exist vectors V3 , . . .  , vr E V such that Vi E Vi and that the T -annihilator of Vi is f(tt' , the 

T -annihilator of Vi, We set 

Z2 = Z(V2 , T) , 

Let d denote the degree of f(t) , so that f(tt' has degree dni '  Then, since f(tt' is both the T -annihilator of Vi 
and the T-annihilator of Vi, we know that 

and 

are bases for Z(vi ,  T) and Z(Vi, n, respectively, for i = 2, . . .  , r. But V = Z(!J2, n EEl . . .  EEl Z(V;, T); hence 

{V2 , . . .  , Tdn2-\V2) ' . . .  , vr , . . .  , Tdn,-\vr)} 

is a basis for V. Therefore, by Problem 1 0 .26 and the relation Ti(V) = Ti(V) (see Problem 1 0.27), 

is a basis for V. Thus, by Theorem l OA, V = Z(V1 , T) EEl . . .  EEl Z(vr , T), as required. 
It remains to show that the exponents n 1 , . . .  , nr are uniquely determined by T. Since d = degree of f(t) , 

and dim Zi = dni ,  i =  I ,  . . .  , r 
Also, if s is any positive integer, then (problem 1 O.59)f(TY(Z;) is a cyclic subspace generated by f(TY(vi), 
and it has dimension d(ni - s) if ni > s and dimension 0 if ni :s: s. 
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Now any vector v E V can be written uniquely in the form v = wI + . . .  + wr' where Wj E Zj. Hence any 
vector inJ(TY{ V) can be written uniquely in the form 

where J(T)S(w) E J(T)S (ZJ Let t be the integer, dependent on s, for which 

Then 
and so 

J(TY{ V) = J(TY(ZI ) EEl • • •  EElJ(TY(Zt) 
dim[J(TY(V)] = d[(n l - s) + . . .  + (nt - s)] (2) 

The numbers on the left of (2) are uniquely determined by T. Set s = n - 1 ,  and (2) determines the number of 
nj equal to n. Next set s = n - 2, and (2) determines the number of nj (if any) equal to n - 1 .  We repeat the 
process until we set s = 0 and determine the number of nj equal to 1 .  Thus the nj are uniquely determined by 
T and V, and the lemma is proved. 

10.32. Let V be a 7 -dimensional vector space over R, and let T: V � V be a linear operator with minimal 
polynomial met) = (t2 - 2t + 5)(t - 3)3 . Find all possible rational canonical forms M of T. 

The sum of the orders of the companion matrices must add up to 7. Also, one companion matrix must be 
C(t2 - 2t + 5) and one must be C((t - 3)3) = C(P - 9t2 + 27t - 27). Thus M must be one of the following 
block diagonal matrices: 

(a) d;.g ( [ : -n [ 0 -5 J [ 0 0 27
] )  1 2 ' � � -2� , 

(b) ",g ( [ : -n [ 1 
(c) m.g[[ : -n [ 1 � -�n [3 1 , [31] 

PROJECTIONS 

10.33. Suppose V = WI EB . . .  EB Wr . The projection of V into its subspace Wk is the mapping E: V � V 
defined by E(v) = Wk where v = W I + . . .  + Wr , Wi E Wi. Show that: (a) E is linear, (b) E2 = E. 
(a) Since the sum v = WI + . . .  + Wr' Wj E W is uniquely determined by v, the mapping E is well defined. 

Suppose, for U E V, U = wi + . . .  + w;., W; E W;. Then 

v + U = (W I + wi ) + . . .  + (wr + w�) and kv = kwl + . . .  + kwr , kwj , Wj + W; E W; 

are the unique sums corresponding to v + U and kv. Hence 

and therefore E is linear. 
(b) We have that 

and E(kv) = kwk + kE(v) 

is the unique sum corresponding to wk E Wk; hence E(Wk) = Wk' Then, for any v E V, 

Thus E2 = E, as required. 
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10.34. Suppose E :  V ---+ V i s  linear and E2 = E ,  Show that: (a) E(u) = u for any u E 1m E, i ,e .  the 
restriction of E to its image is the identity mapping; (b) V is the direct sum of the image and kernel 
of E: V = 1m E EB Ker E; (c) E is the projection of V into 1m E, its image. Thus, by the preceding 
problem, a linear mapping T: V ---+ V is a projection if and only if T2 = T; this characterization of a 
projection is frequently used as its definition. 

(a) If u E 1m E, then there exists v E V for which E(v) = u; hence, as required, 
E(u) = E(E(v)) = E2(V) = E(v) = u 

(b) Let v E V. We can write v in the form v = E(v) + v - E(v) . Now E(v) E 1m E and, since 
E(v - E(v)) = E(v) - E2(V) = E(v) - E(v) = 0 

v - E(v) E Ker E. Accordingly, V = 1m E + Ker E. 
Now suppose W E 1m E n Ker E. By (i) , E(w) = w because W E 1m E. On the other hand, E(w) = 0 

because w E Ker E. Thus w = 0, and so 1m E n Ker E = {O} . These two conditions imply that V is the 
direct sum of the image and kernel of E. 

(c) Let v E V and suppose v = u + w, where u E 1m E and w E Ker E. Note that E(u) = u by (i), and 
E(w) = 0 because W E Ker E. Hence 

E(v) = E(u + w) = E(u) + E(w) = u + 0 = u 
That is, E is the projection of V into its image. 

10.35. Suppose V = U EB W and suppose T: V ---+ V is linear. Show that U and W are both T-invariant if 
and only if TE = ET, where E is the projection of V into U. 

Observe that E(v) E U for every v E V, and that (i) E(v) = v iff v E U, (ii) E(v) = 0 iff v E W 
Suppose ET = TE. Let u E U. Since E(u) = u, 

T(u) = T(E(u)) = (TE)(u) = (ET)(u) = E(T(u)) E U 

Hence U is T-invariant. Now let w E W Since E(w) = 0, 
E(T(w)) = (ET)(w) = (TE)(w) = T(E(w)) = T(O) = 0, and so T(w) E W 

Hence W is also T-invariant. 
Conversely, suppose U and W are both T-invariant. Let v E V and suppose v = u + w, where u E T and 

w E W Then T(u) E U and T(w) E W; hence E(T(u)) = T(u) and E(T(w)) = O. Thus 
(ET)(v) = (ET)(u + w) = (ET)(u) + (ET)(w) = E(T(u)) + E(T(w)) = T(u) 

and (TE)(v) = (TE)(u + w) = T(E(u + w)) = T(u) 
That is, (ET)(v) = (TE)(v) for every v E V; therefore ET = TE, as required. 

Supplementary Problems 
INVA�T SUBSPACES 

10.36. Suppose W is invariant under T: V ---+ V. Show that W is invariant underf(T) for any polynomial f(t) . 

10.37. Show that every subspace of V is invariant under I and 0, the identity and zero operators. 

10.38. Let W be invariant under Tj : V ---+ V and T2 : V ---+ V. Prove W is also invariant under Tj + T2 and Tj T2 . 

10.39. Let T:V ---+ V be linear. Prove that any eigenspace, EA is T-invariant. 

10.40. Let V be a vector space of odd dimension (greater than 1) over the real field R. Show that any linear operator 
on V has an invariant subspace other than V or {O}. 
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10.41. Determine the invariant subspace o f  A = [ ; =� ] viewed as a linear operator on (i) RZ , (ii) CZ • 

10.42. Suppose dim V = n. Show that T: V ---+ V has a triangular matrix representation if and only if there exist 
T-invariant subspaces WI C Wz C . . .  C Wn = V for which dim Wk = k, k = 1 , . . .  , n . 

INVARIANT DIRECT SUMS 

10.43. The subspaces WI " ' "  Wr are said to be independent if WI + . . .  + wr = 0, Wi E Wi' implies that each 
Wi = O. Show that span(Wi) = WI EI1 . . .  EI1 Wr if and only if the Wi are independent. [Here span(Wi) denotes 
the linear span of the Wi.] 

10.44. Show that V = WI EI1 . . .  EI1 Wr if and only if: (i) V = span(Wi) and (ii) for k = 1 , 2 , . . .  , r, 
Wk n span(WI , . . .  , Wk_ l , Wk+I , " " Wr) = {OJ .  

10.45. Show that span(Wi) = WI EI1 . . .  EI1 Wr if and only if dim [span(Wi)] = dim WI + . . .  + dim Wr .  

10.46. Suppose the characteristic polynomial of  T: V ---+ V i s  �(t) = fi (tt1h.(ttz • • •  fr(tt' , where the .fi(t) are distinct 
monic irreducible polynomials. Let V = WI EI1 . . .  EI1 Wr be the primary decomposition of V into T-invariant 
subspaces. Show that .fi(tt' is the characteristic polynomial of the restriction of T to Wi, 

NILPOTENT OPERATORS 

10.47. Suppose TI and Tz are nilpotent operators that commute, i.e. TI Tz = TzTI . Show that TI + Tz and TI Tz are 
also nilpotent. 

10.48. Suppose A is a supertriangular matrix, i .e . ,  all entries on and below the main diagonal are O. Show that A is 
nilpotent. 

10.49. Let V be the vector space of polynomials of degree :::o n . Show that the derivative operator on V is nilpotent of 
index n + l .  

10.50. Show that any Jordan nilpotent block matrix N is similar to its transpose NT (the matrix with 1 's below the 
diagonal and 0 's elsewhere] . 

10.51. Show that two nilpotent matrices of order 3 are similar if and only if they have the same index of nil potency. 
Show by example that the statement is not true for nilpotent matrices of order 4. 

JORDAN CANONICAL FORM 

10.52. Find all possible Jordan canonical forms for those matrices whose characteristic polynomial �(t) and minimal 
polynomial met) are as follows: 

(a) �(t) = (t - 2)4(t - 3)
z
, met) = (t - 2)\t - 2)(t - 3)

z
, 

(b) �(t) = (t _ 7)5 , met) = (t - 7i, (c) �(t) = (t - 2)7 , met) = (t - 2)3 

10.53. Show that every complex matrix is similar to its transpose. (Hint: Use its Jordan canonical form.) 

10.54. Show that all n x n complex matrices A for which An = I but Ak i= I for k < n are similar. 

10.55. Suppose A is a complex matrix with only real eigenvalues. Show that A is similar to a matrix with only real 
entries. 
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10,56, Suppose T :V ---+ V is linear. Prove that Z(v , T) is the intersection of all T-invariant subspaces containing v. 

10.57. Letf(t) and get) be the T-annihilators of U and v, respectively. Show that iff(t) and get) are relatively prime, 
thenf(t)g(t) is the T-annihilator of u + v. 

10.58. Prove that Z(u, T) = Z(v, T) if and only if g(T)(u) = v where get) is relatively prime to the T-annihilator of u. 

10.59. Let W = Z(v, T) , and suppose the T-annihilator of v isf(t)" , wheref(t) is a monic irreducible polynomial of 
degree d. Show thatf(T)S(W) is a cyclic subspace generated by f(T)S(v) and that it has dimension den - s) if 
n > s and dimension 0 if n � s. 

RATIONAL CANONICAL FORM 

10.60. Find all possible rational forms for a 6 x 6 matrix over R with minimal polynomial: 

(a) met) = (t2 - 2t + 3)(t + 1 )2 , (b) met) = (t - 2l 

10.61. Let A be a 4 x 4 matrix with minimal polynomial met) = (P + 1 )(t2 - 3) .  Find the rational canonical form for 
A if A is a matrix over (a) the rational field Q, (b) the real field R, (c) the complex field C. 

10.62. Find the rational canonical form for the 4-square Jordan block with A 's on the diagonal. 

10.63. Prove that the characteristic polynomial of an operator T :V ---+ V is a product of its elementary divisors. 

10.64. Prove that two 3 x 3 matrices with the same minimal and characteristic polynomials are similar. 

10.65. Let C(f(t)) denote the companion matrix to an arbitrary polynomialf(t) . Show thatf(t) is the characteristic 
polynomial of C(f(t)) . 

PROJECTIONS 

10.66. Suppose V = Wj EEl • • •  EEl Wr • Let Ej denote the projection of V into Wi, Prove: (i) EjEj = 0, i =1= j; 
(ii) 1 = Ej + . . .  + Er . 

10.67. Let Ej , • • •  , Er be linear operators on V such that: 

(i) Ef = Ej, i .e . ,  the Ej are projections; (ii) EjF1 = 0, i =1= j; (iii) 1 = Ej + . . .  + Er • 

Prove that V = 1m Ej EEl . . .  EEl 1m Er . 

10.68. Suppose E: V ---+ V is a projection, i .e . , E2 = E. Prove that E has a matrix representation of the form 

[ � � ] , where r is the rank of E and lr is the r-square identity matrix. 

10.69. Prove that any two projections of the same rank are similar. (Hint: Use the result of Problem 1 0.68 .) 

10.70. Suppose E: V ---+ V is a projection. Prove: 

(i) 1 - E is a projection and V = 1m E EEl 1m (1 - E), (ii) 1 + E is invertible (if 1 + 1 =1= 0). 

QUOTIENT SPACES 

10.71. Let W be a subspace of V. Suppose the set of cosets {Vj + W, V2 + W, . . .  , vn + W} in V / W is linearly 
independent. Show that the set of vectors {Vj , V2 , . . .  , vn } in V is also linearly independent. 

10.72. Let W be a substance of V. Suppose the set of vectors {Uj , u2 , " "  un } in V is linearly independent, and that 
L(uj) n W = {O} . Show that the set of cosets {Uj + W, . . .  , un + W} in V / W is also linearly independent. 
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10.73. Suppose V = U EEl W and that {u\ , . . .  , un } i s  a basis o f  U. Show that {u\ + W, . . .  , un + W} i s  a basis of 
the quotient spaces V / w. (Observe that no condition is placed on the dimensionality of V or w.) 

10.74. Let W be the solution space of the linear equation 

ai E K  
and let v = (b\ , b2 , . • •  , bn) E Kn . Prove that the coset v + W of W in Kn is the solution set of the linear 
equation 

where 

10.75. Let V be the vector space of polynomials over R and let Wbe the subspace of polynomials divisible by t4, i .e. 
of the form aot4 + a\ t5 + . . .  + an-4� ' Show that the quotient space V/ W has dimension 4. 

10.76. Let U and W be subspaces of V such that W c U e V. Note that any coset u + W of W in U may also be 
viewed as a coset of W in V, since u E U implies u E V; hence U / W is a subset of V / w. Prove that 
(i) U /W is a subspace of V / w, (ii) dim(V / W) - dim(U / W) = dim(V /U). 

10.77. Let U and W be subspaces of V. Show that the cosets of U n W in V can be obtained by intersecting each of 
the cosets of U in V by each of the cosets of W in V: 

V/(U n W) = {(v + U) n (v' + W) : v , v' E V} 

10.78. Let T :V ---+ V' be linear with kernel W and image U. Show that the quotient 
space V / W is isomorphic to U under the mapping e :  V / W ---+ U defined by 
e(v + W) = T(v) . Furthermore, show that T = i 0 e o 1'/ where 1'/ :  V ---+ V / W is 
the natural mapping of V into V / W, i .e. 1'/( v) = v + W, and i :  U <-+ V' is the 
inclusion mapping, i .e . ,  i(u) = u. (See diagram.) 

Answers to Supplementary Problems 
10.41. (a) R2 and {O}, (b) C2 , {O} , W\ = span(2 , 1 - 2i) , W2 = span(2 , 1 + 2i) 

10.52. (a) diag( [ 2 ; ] . [ 2 ; ] . [ 3 ; ] ) , diag( [ 2 ; ] . [2] . [2] , [ 3 ; ] ) . 
(b) diag( [ 7 ; ] . [ 7 ; ] . [7]) . diag( [ 7 ; ] . [7] , [7] , [7]) . 

(c) Let Mk denote a Jordan block with l = 2 and order k. Then: diag(M3 , M3 , M\ ) , diag(M3 , M2 , M2), 
diag(M3 , M2 , M\ , M\ ), diag(M3 , M\ , M\ , M\ , M\ ) 

10.60. �t A � [ :  -n B � [ :  =n c � [ l : - lnD � [ :  -:] 
(a) diag(A , A , B) , diag(A , B, B) ,  diag(A , B, - 1 , - 1 ), (b) diag(C, C) , diag(C, D, [2]) , diag(C, 2, 2, 2) 

10.61. Let A = [ � -b ] . B = [ � � 1 
(a) diag(A , B), (b) diag(A , ,.[3, -,.[3), (c) diag(i, -i, ,.[3, -,.[3) 

10.62. Companion matrix with the last column [_l4 , 4l3 , -6l2 , 4lf 
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Linear FunctionaLs 
and the DuaL Space 

ih"p"", we study linear mappings from a vector space V into its field K of scalars. (Unless 
or implied, we view K as a vector space over itself.) Naturally all the theorems and results 

mappings on V hold for this special case. Uowever, we treat these mappings separately 
fundamental importance and because the special relationship of V to K gives rise to new 

that do not apply in the general case. 

LI'IEAR fUNCTIONALS AND THE DUAL SPACE 

vector space over a field K. A mapping ¢: V -,) K is tenned a linear jilllclional (or linear 
II. v E V and every (I. b. E K, 

¢(all + bv) = (I¢(I/) + b¢(v) 

w"ros, :,a linear functional on V is a linear mapping from V into K. 

�"'np'e 11.1. 

Let TI;:Kn 
functional 
Let V be 
J(p(/» = 

be the ith projcction mapping, i.c .• TI;(aj• (Il' . . .  (In) = a/. Then TIl is linear and so it is a linear 

vector space of polynomials in I over R. Let J:V -+ R be Ihe integral operalor defined by 
dl. Reca!! that J is linear; and hence it is a linear functional on V. 

yo,""""" of Il-squarc malrice5 over K. Lei T: V -+ K be the trace mapping 

where 

That is, T to a malrix A Ihe sum of its diagonal clements. This map is linear (Problem 1 1.24), and so il is 
L_"- ,,,,,"C ,.,,,{";�,,,, on v. 
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By Theorem 5 , 1 0, the set of linear functionals on a vector space V over a field K is also a vector space 
over K, with addition and scalar multiplication defined by 

(¢ + a)(v) = ¢(v) + <T(v) and (k¢)(v) = k¢(v) 
where ¢ and <T are linear functionals on V and k E K. This space is called the dual space of V and is 
denoted by V*, 

Example 11,2, Let V = Kn, the vector space of n-tup1es, which we write as column vectors. Then the dual space V* can 
be identified with the space of row vectors. In particular, any linear functional <P = (a j ,  . . .  , an) in V* has the representation 

<p(Xj , x2 ' . . .  , xn) = [aj , a2 , . . .  , an] [x2 , x2 , . . .  , xnf = ajxj + a2x2 + . . .  + anxn 
Historically, the formal expression on the right was termed a linear form. 

11 .3 DUAL BASIS 

Suppose V is a vector space of dimension n over K By Theorem 5 . 1 1  the dimension of the dual space 
V* is also n (since K is of dimension l over itself). In fact, each basis of V determines a basis of V* as 
follows (see Problem 1 1 .3 for the proof). 

Theorem 11 . 1 :  Suppose {V j , . . .  , Vn } is a basis of V over K Let ¢j , " " ¢n E V* be the linear 
functionals as defined by 

¢i(V) = by = g !� � ;j 
Then ¢ l " ' "  ¢n } is a basis of V* . 

The above basis {¢J is termed the basis dual to {vJ or the dual basis . The above formula, which uses 
the Kronecker delta by, is a short way of writing 

¢1 (V l ) = 1 ,  ¢1 (V2) = 0 , ¢ 1 (V3 ) = 0 ,  . . .  , ¢ 1 (Vn) = 0 
¢2 (V l ) = 0, ¢2 (V2) = 1 ,  ¢2 (V3 ) = 0, . . .  , ¢2 (vn) = 0 

¢n(V l ) = 0, ¢n(V2) = 0, . . .  , ¢n (Vn- l ) = 0, ¢n(vn) = 1 

By Theorem 5 .2, these linear mappings ¢i are unique and well-defined. 

Example 11,3, Consider the basis {Vj = (2 , 1 ) ,  V2 = (3 , I ) }  of R2 . Find the dual basis {<p j , <P2 } ' 
We seek linear functiona1s <p j (x, y) = ax + by and <P2(X, y) = ex + dy such that 

<pj (Vj ) = 1 , <P j (V2) = 0, <PzCV2) = 0, <PzCV2) = 1 
These four conditions lead to the following two systems of linear equations : 

and <P2(Vj )  = <P2(2 , 1 )  = 2e + d = O } 
<P2(V2) = <pzC3 ,  1 )  = 3e + d = 1 

The solutions yield a = - 1 , b = 3 and e = 1, d = -2. Hence <p j (x, y) = -x + 3y and <P2(X, y) = x - 2y form the 
dual basis. 

The next two theorems (proved in Problems 1 1 .4 and 1 1 . 5 ,  respectively) give relationships between 
bases and their duals. 

Theorem 1 1 .2 : Let {V j , . . .  , vn } be a basis of V and let {¢ l " ' "  ¢n } be the dual basis in V* . Then: 

(i) For any vector u E V, u = ¢l (U)V l + ¢2 (u)V2 + . . .  + ¢n(u)vn " 
(ii) For any linear functional <T E V*, <T = <T(Vl )¢ 1 + <T(V2)¢2 + . . .  + <T(vn)¢n " 
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Theorem 1 1 .3 : Let {V I " ' "  vn } and {WI " ' "  wn } be bases of V and let {CP I , " " CPn } and {O'I " ' "  O'n } 
be the bases of V* dual to {v;} and {wi}' respectively. Suppose P is the change-of-basis 
matrix from {Vi } to {Wi} '  Then (p- Il is the change-of-basis matrix from {CPi } to {O'; } . 

1 1 .4 SECOND DUAL SPACE 

We repeat: Every vector space V has a dual space V*, which consists of all the linear functionals on V. 
Thus V* itself has a dual space V** ,  called the second dual of V, which consists of all the linear 
functionals on V* . 

We now show that each V E V determines a specific element v E V* * .  First of all, for any cP E V*, we 
define 

v(cp) = cp(V) 

It remains to be shown that this map v: V* � K is linear. For any scalars a, b E K and any linear 
functionals cP , 0' E V*, we have 

v(acp + bO') = (acp + bO')(v) = acp(v) + bO'(v) = av(cp) + bv(O') 

That is, v is linear and so v E V* * .  The following theorem (proved in Problem 12 . 7) holds. 

Theorem 1 1 .4 :  If  V has finite dimensions, then the mapping v I �  V is an isomorphism of V onto V* * .  

The above mapping v I �  V i s  called the natural mapping o f  V into V* * .  We emphasize that this 
mapping is never onto V* * if V is not finite-dimensional. However, it is always linear and moreover, it is 
always one-to-one. 

Now suppose V does have finite dimension. By Theorem 1 1 .4, the natural mapping determines an 
isomorphism between V and V* * .  Unless otherwise stated, we shall identify V with V* * by this mapping. 
Accordingly, we shall view V as the space of linear functionals on V* and shall write V = V* * .  We remark 
that if { CPi} is the basis of V* dual to a basis {Vi} of V, then {v;} is the basis of V* * = V that is dual to {cp;} .  

1 1 .5 ANNIHILATORS 

Let W be a subset (not necessarily a subspace) of a vector space V. A linear functional cP E V* is called 
an annihilator of W if cp(w) = 0 for every W E W, i .e . ,  if cp(W) = {O} .  We show that the set of all such 
mappings, denoted by WO and called the annihilator of W, is a subspace of V* . Clearly, 0 E WO . Now 
suppose cP , 0' E WO o Then, for any scalars a, b, E K and for any W E W, 

(acp + bO')(w) = acp(w) + bO'(w) = aO + bO = 0 

Thus acp + bO' E WO , and so WO is a subspace of V* .  
In the case that W i s  a subspace of V, we have the following relationship between W and its annihilator 

WO (see Problem 1 1 . 1 1  for the proof). 

Theorem 1 1 .5: Suppose V has finite dimension and W is a subspace of V. Then: 

(i) dim W + dim WO = dim V and (ii) Woo = W 

Here Woo = {v E V :cp(v) = 0 for every cp E Wo } or, equivalently, Woo = (Wo)o , where Woo is viewed 
as a subspace of V under the identification of V and V* * .  
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Let T:  V ---+ U be an arbitrary linear mapping from a vector space V into a vector space U. Now for 
any linear functional cP E U*, the composition cP a T is a linear mapping from V into K: 

T <1> 
V - U- K 
� 

That is, cP 0 T E V* . Thus the correspondence 

CP H  cp o T 
is a mapping from U* into V*; we denote it by Tt and call it the transpose of T. In other words, 
tt : U* ---+ V* is defined by 

Thus (Tt(cp))(v) = cp(T(v)) for every v E V. 

Theorem 11 .6 :  The transpose mapping Tt defined above is linear. 

Proof For any scalars a, b E K and any linear functionals cp ,  a E U*, 
Tt(acp + ba) = (acp + ba) a T = a(cp a T) + b(a a T) = aTt(cp) + bTt(a) 

That is, Tt is linear, as claimed. 
We emphasize that if T is a linear mapping from V into U, then Tt is a linear mapping from U* into 

V* . The same "transpose" for the mapping Tt no doubt derives from the following theorem (proved in 
Problem 1 1 . 1 6) .  

Theorem 11 .7 :  Let T :  V ---+ U be linear, and let A be the matrix representation of T relative to bases {vJ 
of V and {uJ of U. Then the transpose matrix AT is the matrix representation of 
Tt : U* ---+ V* relative to the bases dual to {uJ and {Vi} ' 

Solved Problems 
DUAL SPACES AND DUAL BASES 

11 . 1 .  Find the basis {CP I ' CP2 ' CP3 } that is dual to the following basis of R3 : 

{V I = ( 1 , - 1 , 3 ) , V2 = (0 , 1 , - 1 ) , v3 = (0 , 3 , -2)} 

The linear functionals may be expressed in the form 
<P I (x, y, z) = alx + a2Y + a3z, <P2 (x, y, z) = blx + b2Y + b3z, <P3 (x, y, z) = CIX + C2Y + c3z 

By definition of the dual basis, (/J;(Vj) = ° for i i= j, but (/J;(Vj) = 1 for i = j. 

We find <PI by setting <PI (VI ) = 1 ,  <P I (V2) = 0, <P I (V3 ) = 0. This yields 
<P I ( I ,  - 1 , 3) = al - a2 + 3a3 = 1 ,  <P I (O, 1 ,  - 1 )  = a2 - a3 = 0, <P I (O, 3 ,  -2) = 3a2 - 2a3 = ° 

Solving the system of equations yields al = 1 ,  a2 = 0, a3 = 0. Thus <PI (x, y, z) = x. 
We find <P2 by setting <P2(VI ) = 0, <P2 (V2) = 1 ,  <P2 (v3 ) = 0. This yields 

<P2( 1 , - 1 , 3) = bl - b2 + ba3 = 0, <P2(0, I , -I) = b2 - b3 = I , <piO, 3 ,  -2) = 3b2 - 2b3 = ° 

Solving the system of equations yields bl = 7, b2 = -2, a3 = -3 . Thus <P2(X, y, z) = 7x - 2y - 3z. 
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Solving the system of equations yields CI = -2, C2 = 1 ,  c3 = 1 .  Thus rP3 (x, y, z) = -2x + Y + z. 

1 1 .2 .  Let V = {a + bt : a, b E R}, the vector space of real polynomials of degree S 1 .  Find the basis 
{V I ' V2 } of V that is dual to the basis {4> I ' 4>2 } of V* defined by 

and 

Let VI = a + bt and V2 = C + dt. By definition of the dual basis, 

Thus 

rP I (vI ) = f� (a + bt) dt = a + ! b = l  } 
rP2(VI ) = f�(a + bt) dt = 2a + 2b = 0 

and 

and 
rPI (V2) = f� (c + dt) dt = c + !d = 0 } 
rPz{V2) = f�(c + dt) dt = 2c + 2d = 1 

Solving each system yields a = 2, b = -2 and c = - !, d = 1 .  Thus {V I = 2 - 2t, V2 = - ! + t} is the basis 
of V that is dual to {rP I '  rP2 } '  

1 1 .3 .  Prove Theorem 1 1 . 1 :  Suppose {V I ' . . .  , vn } is a basis of V over K Let 4> 1 ' . . .  , 4>n E V* be defined 
by 4>i(V) = 0 for i -I i, but 4>i(V) = I for i = j. Then {4> I " ' "  4>n } is a basis of V* . 

We first show that {rP I '  . . .  , rPn } spans V* .  Let rP be an arbitrary element of V*,  and suppose 

cr(VI ) = (kl rPl + . . .  + knrPn)(VI ) = kl rP l (VI ) + k2rPz{vI ) + . . .  + knrPn(VI ) 
= kl . 1 + kz . 0 + . . .  + kn . 0 = kl 

Similarly, for i = 2, . . .  , n, 

Thus rP(v;) = cr(v;) for i = 1 ,  . . .  , n. Since rP and cr agree on the basis vectors, rP = cr = kl rP l + . . .  + knrPn . 
Accordingly, {rP I ' " ' ' rPn } spans V* .  

I t  remains to  be shown that {rP I " ' "  rPn } is linearly independent. Suppose 

al rP l + a2rP2 + . . .  + anrPn = 0 

Applying both sides to VI , we obtain 

0 =  O(VI ) = (al rP l + . . .  + anrPn)(vI ) = al rP l (VI ) + a2rP2 (vI ) + . . .  + anrPn(vI ) 
= al . 1 + a2 . 0 + . . .  + an . 0 = al 

Similarly, for i = 2, . . .  , n, 

0 =  O(vi) = (al rP l + . . .  + anrPn)(vi) = al rP l (v;) + . . .  + airPi(vi) + . . .  + anrPn (vi) = ai 

That is, al = 0, . . .  , an = O. Hence {rP I '  . . .  , rPn } is linearly independent, and so it is a basis of V* .  
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1 1 .4. Prove Theorem 1 1 .2 :  Let {V I ' , . .  , vn } be a basis of V and let {4> I , . . .  , 4>n } be the dual basis in V* . 
For any U E V and any a E V*, (i) U = Li 4>i(u)Vi , (ii) a = Li 4>(Vi)4>i ' 

Suppose 

Then 
¢\ (U) = al ¢ \ (vI ) + a2¢ \ (v2) + . . .  + an¢ \ (vn ) = al . 1 + a2 ' 0 + . . .  + an · 0 = al 

Similarly, for i = 2, . . .  , n, 

¢i(U) = a\ ¢i(V\ ) + . . .  + ai¢i(v;) + . . .  + an¢;(vn) = ai 
That is, ¢I (u) = aI , ¢2 (u) = a2 , " " ¢n(u) = an ' Substituting these results into ( 1 ), we obtain (i). 

Next we prove (ii) . Applying the linear functional (j to both sides of (i), 

(j(u) = ¢\ (U)(j(VI ) + ¢2(U)(j(V2) + . . .  + ¢n(u)(j(vn) 
= (j(VI )¢ 1 (u) + (j(V2)¢2 (u) + . . .  + (j(vn)¢n(u) 
= ((j(v\ )¢ \  + (j(V2)¢2 + . . .  + (j(vn)¢n)(u) 

Since the above holds for every U E V, (j = (j(VI )¢2 + (j(V2)¢2 + . . .  + (j(vn)¢n , as claimed. 

( 1 )  

1 1 .5. Prove Theorem 1 1 .3 .  Let {Vi } and {Wi} be bases of V and let {4>i } and {a;} be the respective dual 
bases in V* . Let P be the change-of-basis matrix from {Vi} to {Wi } '  Then (p- Il is the change-of­
basis matrix from {4>i} to {ai l .  

Suppose, for i = 1 , . . .  , n ,  

Wi = ail VI + ai2v2 + . . .  + ainvn and (ji = bi! ¢ I  + bi2¢2 + . . .  + ainvn 
Then P = [ay] and Q = [by] . We seek to prove that Q = (p_ I )T . 

Let Ri denote the ith row of Q and let Cj denote the Jth column of pT . Then 

Ri = (bi! , bi2 , . . .  , bin) 

By definition of the dual basis, 

and 

(ji(W) = (bi! ¢ I  + bi2¢2 + . . .  + bin¢n)(aj\ VI + apv2 + . . .  + ajnvn) 
= bi! ajl + b12aj2 + . . .  + binajn = RiCj = by 

where bij is the Kronecker delta. Thus 

QpT = [RiCj] = [bij] = I 
Therefore, Q = (pT)- 1 = (p- Il, as claimed. 

1 1 .6. Suppose V E V, V -I- 0, and dim V = n .  Show that there exists 4> E V* such that 4>(v) -I- 0 .  

We extend {v } to a basis {v , V2 , . . .  , vn } of V. By Theorem 5 .2, there exists a unique linear mapping 
¢ : V --+ K such that ¢( v) = 1 and ¢( Vi) = 0, i = 2, . . .  , n. Hence ¢ has the desired property. 

1 1 .7. Prove Theorem 1 1 .4 :  Suppose dim V = n .  Then the natural mapping V 1---+ V is an isomorphism of 
V onto V* * .  

We first prove that the map v 1 --+  u i s  linear, i .e . ,  for any vectors v, W E V and any scalars a, b E K, 
av+bW = au + bw. For any linear functional ¢ E V*,  

a;+i;W(¢) = ¢(av + bw) = a¢(v) + b¢(w) = au(¢) + bw(¢) = (au + bw)(¢) 
� � 

Since av + bw(¢) = (au + bw)(¢) for every ¢ E V*, we have av + bw = au + bw. Thus the map v 1--+ u is 
linear. 
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Now suppose v E V, v i= O. Then, by Problem 1 1 .6, there exists rjJ E V *  for which rjJ(v) i= O. Hence 
v(rjJ) = rjJ(v) i= 0, and thus v i= O. Since v i= 0 implies v i= 0, the map v 1---+ V is nonsingular and hence an 
isomorphism (Theorem 5 .64). 

Now dim V = dim V* = dim V**, because V has finite dimension. Accordingly, the mapping v 1---+ V is 
an isomorphism of V onto V* * .  

ANNIHILATORS 

11 .8. Show that if ¢ E V* annihilates a subset S of V, then ¢ annihilates the linear span L(S) of S. Hence 
SO = [span(S)f 

Suppose v E span(S). Then there exists WI , . . .  , wr E S for which v = aiwi + a2w2 + . . .  + arwr .  

Since v was an arbitrary element of span(S) , rjJ annihilates span(S), a s  claimed. 

11 .9. Find a basis of the annihilator WO of the subspace W of R4 spanned by 

V I = ( 1 , 2 , -3 , 4) and V2 = (0 , 1 , 4 , - I )  

By Problem 1 1 . 8 ,  it suffices to find a basis o f  the set of linear functionals rjJ such that rjJ(VI ) = 0 and 
rjJ( V2) = 0, where rjJ(XI , X2 , X3 , X4) = axl + bX2 + eX3 + dX4 ' Thus 

rjJ( l ,  2, -3 ,  4) = a + 2b - 3e + 4d = 0 and rjJ(O, 1 , 4, - 1 )  = b + 4e - d = 0 

The system of two equations in the unknowns a, b, e, d is in echelon form with free variables e and d. 
( 1 )  Set e = 1 ,  d = 0 to obtain the solution a = 1 1 , b = -4,  e = I ,  d = O. 
(2) Set e = 0, d = 1 to obtain the solution a = 6, b = - 1 ,  e = 0, d = 1 .  

The linear functions rjJl (xJ = I lxl - 4x2 + X3 and rjJ2(XJ = 6xI - X2 + x4 form a basis of Wo o 

11 .10.  Show that: (a) For any subset S of V, S c:; SOD . (b) If SI c:; S2 ' then sg c:; Sr . 

(a) Let v E S. Then for every linear functional rjJ E So , v(rjJ) = rjJ(v) = O. Hence v E (Sot Therefore, under 
the identification of V and V* *, V E Soo . Accordingly, S S; Soo . 

(b) Let rjJ E sg . Then rjJ(v) = 0 for every v E S2' But SI S; S2 ; hence rjJ annihilates every element of SI , i .e . , 
rjJ E S? Therefore sg S; S? 

11 . 1 1 .  Prove Theorem 1 1 . 5 :  Suppose V has finite dimension and W is a subspace of V. Then: 

(i) dim W + dim WO = dim V, (ii) WOo = 
W. 

(i) Suppose dim V = n and dim W = r :s: n. We want to show that dim WO = n - r. We choose a basis 
{WI " ' "  wr } of W and extend it to a basis of V, say {WI " ' "  Wr ' VI " ' "  vn-r }. Consider the dual basis 

By definition of the dual basis, each of the above er 's annihilates each Wi ; hence er I '  . . .  , er n-r E WO . We 
claim that {er;} is a basis of Wo o Now {erj} is part of a basis of V*,  and so it is linearly independent. 
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We next show that {rjJj} spans WO . Let U E WO . By Theorem 1 1 .2 , 

U = u(Wj )rjJ j + . . .  + u(wr)rjJr + u(Vj )Uj + . . .  + u(vn_r)un_r 
= OrjJ j + . . .  + OrjJr + u(Vj )Uj + . . .  + u(vn-r)un-r = u(Vj )Uj + . . .  + u(vn_r)un_r 

Consequently {u j ,  . . .  , U n-r } spans WO and so it is a basis of WO . Accordingly, as required 

dim WO = n - r = dim V - dim W. 

[CHAP. 1 1  

(ii) Suppose dim V = n and dim W = r. Then dim V* = n and, by (i), dim WO = n - r. Thus, by (i), 
dim Woo = n - (n - r) = r; therefore dim W = dim Woo . By Problem 1 1 . 1 0, W � Woo . Accordingly, W =  Woo . 

1 1 .12. Let U and W be subspaces of V. Prove that (U + W)o = un n Wo . 

Let rjJ E (U + W)0 . Then rjJ annihilates U + W, and so, in particular, rjJ annihilates U and W That is, 
rjJ E UO and rjJ E WO ; hence rjJ E UO n Wo o Thus (U + W)0 � UO n Wo o 

On the other hand, suppose U E UO n WO . Then U annihilates U and also W If v E U + W, then 
v = u + w, where u E U and W E W Hence u(v) = u(u) + u(w) = 0 + 0 = O. Thus U annihilates U + W, i .e . , 
U E (U + W)0 . Accordingly, UO + WO � (U + W)o . 

The two inclusion relations together give us the desired equality. 

Remark: Observe that no dimension argument is employed in the proof; hence the result holds for 
spaces of finite or infinite dimension. 

TRANSPOSE OF A LINEAR MAPPING 

1 1 .13. Let ¢ be the linear functional on R2 defined by ¢(x, y) = x - 2y. For each of the following linear 
operators T on R2 , find (Tt(¢))(x, y) : 

(a) T(x, y) = (x, 0), (b) T(x, y) = (y, x + y), (c) T(x, y) = (2x - 3y, 5x + 2y) 

By definition, TI(rjJ) = rjJ o T, that is, (TI(rjJ))(V) = rjJ(T(v)) for every V. Hence: 

(a) (TI(rjJ))(X, y) = rjJ(T(x, y)) = rjJ(x, 0) = x, 
(b) (TI(rjJ))(X, y) = rjJ(T(x, y)) = rjJ(y, x + y) = Y - 2(x + y) = -2x - Y 
(c) (TI(rjJ))(X, y) = rjJ(T(x, y)) = rjJ(2x - 3y, 5x + 2y) = (2x - 3y) - 2(5x + 2y) = -8x - 7y 

1 1 .14. Let T : V � U be linear and let Tt : U* � V* be its transpose. Show that the kernel of Tt is the 
annihilator of the image of T, i .e . ,  Ker Tt = (1m T)o . 

Suppose rjJ E Ker TI ; that is, TI(rjJ) = rjJ 0 T = O. If u E lm T, then u = T(v) for some v E V; hence 

rjJ(u) = rjJ(T(v)) = (rjJ 0 T)(v) = O(v) = 0 

We have that rjJ(u) = 0 for every u E 1m T; hence rjJ E (lm T)0 . Thus Ker TI � (lm T)0 . 
On the other hand, suppose U E (lm T)0 ; that is, u(lm T) = {O} . Then, for every v E V, 

(TI(U))(V) = (u 0 T)(v) = u(T(v)) = 0 = O(v) 
We have (TI(U))(V) = O(v) for every v E V; hence TI(U) = O. Thus U E Ker TI, and so (lm T)o � Ker TI . 

The two inclusion relations together give us the required equality. 
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1 1 .15. Suppose V and U have finite dimension and T :  V --+ U is linear. Prove rank(T) = rank(Tt) .  

Suppose dim V = n and dim U = m, and suppose rank(T) = r. By Theorem 1 1 . 5 ,  
dim(Im T)o = dim U - dim(Im T) = m - rank(T) = m - r 

By Problem 1 1 . 1 4, Ker Tt = (1m T)0 .  Hence nullity (Tt) = m - r. It then follows that as claimed, 
rank(Tt) = dim U* - nullity(Tt) = m - (m - r) = r = rank(T) 

1 1 .16. Prove Theorem 1 l . 7 :  Let T: V --+ U be linear and let A be the matrix representation of T in the 
bases {vj} of V and {u;} of U. Then the transpose matrix AT is the matrix representation of 
Tt : U* --+ V* in the bases dual to {u;} and {v). 

Suppose, for}  = 1 ,  . . .  , m, 

T(v) = ajl UI + aj2U2 + . . .  + ajnUn 
We want to prove that, for i = 1 ,  . . .  , n, 

Tt(uJ = aJ jrP I + a2irP2 + . . .  + amivm 
where {u;} and {rPj} are the bases dual to {u;} and {Vj}' respectively. 

Let v E V and suppose v = kl VI + k2V2 + . . .  + kmvm . Then, by ( 1 ), 
T(v) = kl T(vI ) + k2T(V2) + . . .  + kmT(vm) 

= kl (al l  UI + . . .  + alnUn) + k2 (a21 U I + . . .  + a2nUn) + . . .  + km(aml U I + . . .  + amnun) 
= (kl al l  + k2a2 l + . . .  + kmaml )UI + . . .  + (kl a ln + k2a2n + . . .  + kmamn)un 

n 
= L(klaJ j + k2a2i + . . .  + kmamJui i=1 

Hence, for) = 1 , . . .  , n .  

(Tt(uj)(V)) = uiT(v» = Uj (�(kl a l i + k2a2i + . . .  + kmami)Ui) 
= kl alj + k2a2j + . . .  + kmamj 

On the other hand, for}  = 1 ,  . . .  , n, 

(a ljrP l + a2jrP2 + . . .  + amjrPm)(v) = (a ljrP l + a2jrP2 + . . .  + amjrPm)(kl VI + k2V2 + . . .  + kmvm) 
= kl alj + k2a2j + . . .  + kmamj 

Since v E V was arbitrary, (3) and (4) imply that 

Tt(uj) = aljrP l + a2jrP2 + . . .  + amjrPm ' 
which is (2). Thus the theorem is proved. 

} = l , o o . , n 

Supplementary Problems 
DUAL SPACES AND DUAL BASES 

11 .17. Find: (a) rP + u, (b) 3rP, (c) 2rP - 5u, where rP :R3 -+ R and u :R3 -+ R are defined by 

rP(x , y , z) = 2x - 3y + z  and u(x, y, z) = 4x - 2y + 3z 

11 .18. Find the dual basis of each of the following bases of R3 : (a) {( 1 ,  0, 0), (0 , 1 , 0) ,  (0, 0 ,  1 ) } ,  
(b) {( 1 , -2, 3) , ( 1 ,  - 1 , 1 ) ,  (2 , -4, 7)} . 

( 1 )  

(2) 

(3) 

(4) 
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11 ,19, Let V be the vector space of polynomials over R of degree � 2 .  Let <PI '  <P2 ' <P3 be the linear functiona1s on V 
defined by 

<P I (f(t)) = J>(t) dt, <P2(f(t)) =J'( 1 ) ,  <P3 (f(t)) = J(O) 

Here J(t) = a + bt + et2 E V and J' (t) denotes the derivative of J(t) . Find the basis {Ji (t) , .fi(t) , .f3 (t)} of V 
that is dual to {<P I '  <P2 ' <P3 } '  

11 .20. Suppose u , v E V and that <p(u) = 0 implies <p(v) = 0 for all <P E V* . Show that v = ku for some scalar k. 

11 .21. Suppose <P ,  (J E V* and that <p(v) = 0 implies (J(v) = 0 for all v E V. Show that (J = k<p for some scalar k. 

11 .22. Let V be the vector space of polynomials over K For a E K, define <Pa : V  -+ K by <pAJ(t)) =J(a). Show 
that: (a) <Pa is linear; (b) if a i- b, then <Pa i- <Pb ' 

11 .23. Let V be the vector space of polynomials of degree � 2. Let a, b, e E K be distinct scalars. Let <Pa , <Pb ' <Pc be 
the linear functionals defined by <Pa(f(t)) = J(a), <Pb(f(t)) = J(b), <Pc(f(t)) = J(e) . Show that {<Pa ' <Pb ' <Pel is 
linearly independent, and find the basis { Ji  (t) , .fi(t) , .f3 (t)} of V that is its dual. 

11 .24. Let V be the vector space of square matrices of order n. Let T: V -+ K be the trace mapping; that is, 
T(A) = al l  + a22 + . . .  + ann o where A = (aiJ Show that T is linear. 

11 .25. Let W be a subspace of V. For any linear functional <P on W, show that there is a linear functional (J on V such 
that (J(w) = <p(w) for any W E W; that is, <P is the restriction of (J to W. 

11 .26. Let {el , . . .  , en } be the usual basis of Kn . Show that the dual basis is {nl , . . .  , nn } where nj is the ith projection 
mapping; that is, ni(al , . . .  , an) = ai ' 

11 .27. Let V be a vector space over R. Let <P I '  <P2 E V* and suppose (J : V  -+ R, defined by (J(v) = <P I (V)<P2(V) , 
also belongs to V* . Show that either <PI = 0 or <P2 = O. 

ANNIHILATORS 

11 .28. Let W be the subspace of R4 spanned by ( 1 , 2 , -3 , 4), ( 1 , 3 , -2, 6), ( 1 , 4 , - 1 , 8) .  Find a basis of the 
annihilator of W. 

11 .29. Let W be the subspace of R3 spanned by ( 1 , 1 , 0) and (0, 1 , 1 ) .  Find a basis of the annihilator of W. 
11 .30. Show that, for any subset S of V, span(S) = SOO , where span(S) is the linear span of S. 

11 .31 .  Let U and W be subspaces of a vector space V of finite dimension. Prove that (U n W)o = UO + Wo . 

11 .32. Suppose V = U EEl W. Prove that VO = UO EEl Wo o 

TRANSPOSE OF A LINEAR MAPPING 

11 .33. Let <P be the linear functional on R2 defined by <p(x, y) = 3x - 2y. For each of the following linear mappings 
T :R3 -+ R2 , find (Tt(<p))(x, y, z) : 

(a) T(x, y, z) = (x + y, Y + z), (b) T(x, y, z) = (x + y + z, 2x -y) 

11 .34. Suppose TI : U  -+ V and T2 : V  -+ W are linear. Prove that (T2 a TIY = Ti a Ti . 
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11 .36. Suppose T : V  ---+ U is linear and u E U. Prove that u E 1m T or there exists rjJ E V* such that Tt(rjJ) = 0 and 
rjJ(u) = I . 

11 .37. Let V be of finite dimension. Show that the mapping T 1---+ Tt is an isomorphism from Hom(V, V) onto 
Hom(V* , V*). (Here T is any linear operator on v.) 

MISCELLANEOUS PROBLEMS 

11 .38. Let V be a vector space over R The line segment uv joining points u, v E V is defined by 
uv = {tu + (I - t)v : 0 � t � I } . A subset S of V is convex if u, v E S implies uv � S. Let rjJ E V*. Define 

w+ = {v E V :  rjJ(v) > a} , W = {v E V :  rjJ(v) = a} , W- = {v E V :  rjJ(v) < O} 
Prove that W+ , W, and W- are convex. 

11 .39. Let V be a vector space of finite dimension. A hyperplane H of V may be defined as the kernel of a nonzero 
linear functional rjJ on V. Show that every subspace of V is the intersection of a finite number of hyperplanes. 

Answers to Supplementary Problems 
11 .17. (a) 6x - 5y + 4z, (b) 6x - 9y + 3z, (c) - 1 6x + 4y - 1 3z 

(b) rjJ ] = -3x - 5y - 2z, rjJ2 = 2x +y, rjJ3 = x + 2y + z  

11 .22. (b) Letf(t) = t. Then rjJaCf(t)) = a -=I- b = rjJb(f(t)) ; and therefore rjJa -=I- rjJb 

11 .23. {fi (t) = t
2 - (b + c)t + be , fi(t) = t

2 - (a + c)t + ac , f3 (t) = t
2 - (a + b)t + ab } 

� - �� - 0 0 - �b - 0 0 - a� - �  

11 .28. {rjJ ] (x, y, z, t) = 5x - Y + z, rjJ2(X, y, z, t) = 2y - t} 

11 .29. {rjJ(x, y, z) = x - y + z} 

11 .33. (a) (Tt(rjJ))(x, y, z) = 3x + y - 2z, (b) (Tt(rjJ))(x, y, z) = -x + 5y + 3z 
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Bilinear, Quadratic, 
nd H ermitian Forms 

the notions of linear mappings and linear functionals. Specifically, we 
t of a bilinear fonn. These bilinear maps also give rise to quadratic and I-Iermitian 
quadratic forms were discussed previously, this chapter is treated independently of the 

'". ��;':���li:t.�h;'.�field K is arbitrary, we will later specialize to the cases K = R and K = C. Furthermore, 

f 
need to divide by 2. In such cases, we must assume that I + I =1= 0, which is true when 

= orK C. 

FORMS 
vector space of finite dimension over a field K. A bilinear form on V is a mapping 

that, for all a, b E K and all IIi' Vi E V: 
, v) = af(III '  v) + bf(1I2' V), 

f(lI. aVt bV2) = af(l1, V I)  + bf(lI, v2) 

::
;
:�;:;�n (i) by sayingf is linear in the first l'ariable, and condition (ii) by sayingf is linear in 

�"'m."e 12.1. 
Let[ be thc product on Rn; that is, for II = (0.) and v = (b;� 

[(II, v) = II '  V =olbl +02b2 + . . .  + anbn 

Then [ is a form on R". (In fact, any inner product on a real vector space V is a bilinear fonn on v.) 

Let _ >on 'Yb< "�itrndlly linear functionals on V. Lct[: V x V -+ K be defined by [(II, v) = !/>(II)a(v). Then[ is 
'1 , since and a are each linear. 

376 



Lipschulz-Lipson:Schaum's I 12, Bilinear, Quadratic, and I Text 

Outline ofTheory and Hermitian Forms 

Problems of Linear 

Algebra,3/e 

CHAP. 12] BILINEAR, QUADRATIC, AND HERMITIAN FORMS 

© The McGraw-Hili 
Companies, 2004 

377 

(c) Let A = [aij] be any n x n matrix over a field K. Then A may be identified with the following bilinear form F on 
Kn , where X = [Xi] and Y = [y;] are column vectors of variables: 

f(X, Y) = XT AY = L aijxiYi = al lxlYI + al2xlY2 + . . .  + annxnYn iJ 
The above formal expression in the variables Xi '  Yi is termed the bilinear polynomial corresponding to the matrix 
A .  Equation ( 12 . 1 )  below shows that, in a certain sense, every bilinear form is of this type. 

Space of Bilinear Forms 

Let B( V) denote the set of all bilinear forms on V. A vector space structure is placed on B( V), where 
for any f, g E B( V) and any k E K, we define f + g and kf as follows : 

(f + g)(u, v) = feu, v) + g(u , v) and (kf)(u, v) = kf(u, v) 

The following theorem (proved in Problem 12 .4) applies, 

Theorem 12. 1 :  Let V be  a vector space of  dimension n over K Let {¢ I , , , . , ¢n } be  any basis of the dual 
space V* . Then Uij :  i ,j = 1 ,  . . .  , n} is a basis of B( V), where Jij is defined by 
fij(u, v) = ¢i(U)¢/V) . Thus, in particular, dim B( V) = n2 . 

12.3 BILINEAR FORMS AND MATRICES 

Let f be a bilinear form on V and let S = {U I , " " un } be a basis of V. Suppose u, v E V and 

Then 

u = a l U I + . . .  + anun and v = bl U I + . . .  + bnun 

feu , v) = f(a l UI + . . .  + anun , b l U I + . . .  + bnun) = L aibj(ui , u) iJ 

Thus f is completely determined by the n2 values f(ui ' u). 
The matrix A = [aij] where aij = f(ui , u) is called the matrix representation off relative to the basis S 

or, simply, the "matrix off in S" . It "represents" f in the sense that, for all u, v E V, 

feu, v) = L aibjf(ui , u) = [u]IA[v]s iJ 

[As usual [u]s denotes the coordinate (column) vector of u in the basis S . ] 

Change of Basis, Congruent Matrices 

( 1 2 . 1 )  

We now ask, how does a matrix representing a bilinear form transform when a new basis i s  selected? 
The answer is given in the following theorem (proved in Problem 12 . 5) .  

Theorem 12.2 : Let P be a change-of-basis matrix from one basis S to another basis S' . If A is the matrix 
representing a bilinear form f in the original basis S, then B = pT AP is the matrix 
representing f in the new basis S' . 

The above theorem motivates the following definition. 

Definition: A matrix B is congruent to a matrix A, written B ::::: A, if there exists a non-singular matrix P 
such that B = pTAP. 
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Thus, by Theorem 1 2 ,2, matrices representing the same bilinear form are congruent. We remark that 
congruent matrices have the same rank, because P and pT are nonsingu1ar; hence the following definition 
is well-defined. 

Definition: The rank of a bilinear formf on V, written rank(f), is the rank of any matrix representation 
of f. We say f is degenerate or nondegenerate according as rank(!) < dim V or 
rank(!) = dim V. 

12.4 ALTERNATING BILINEAR FORMS 

Let f be a bilinear form on V. The f is called: 

(i) alternating iff(v, v) = 0 for every v E V; 
(ii) skew-symmetric iff(u , v) = -f(v, u) for every u, v E V. 

Now suppose (i) is true. Then (ii) is true, since, for any u, v, E V, 

0 =  feu + v, u + v) = feu, u) + feu, v) + f(v, u) + f(v, v) = feu , v) + f(v, u) 

On the other hand, suppose (ii) is true and also 1 + 1 -I- O. Then (i) is true, since, for every v E V, we have 
f(v , v) = -f(v, v). In other words, alternating and skew-symmetric are equivalent when 1 + 1 -I- O .  

The main structure theorem of alternating bilinear forms (proved in Problem 12 .23) is as follows. 

Theorem 12.3 : Letf be an alternating bilinear form on V. Then there exists a basis of V in whichf is 
represented by a block diagonal matrix M of the form 

M = diag( [ _� � l [ _� � l . . .  , [ _� � l [0] , [0] , . . .  [0]) 
Moreover, the number of nonzero blocks is uniquely determined by f [since it is equal to 
! rank(!)] . 

In particular, the above theorem shows that any alternating bilinear form must have even rank. 

12.5 SYMMETRIC BILINEAR FORMS, QUADRATIC FORMS 

This section investigates the important notions of symmetric bilinear forms and quadratic forms and 
their representation by means of symmetric matrices. The only restriction on the field K is that I + I -I- O .  
In Section 1 2 .6, we will restrict K to be the real field R, which yields important special results. 

Symmetric Bilinear Forms 

Let f be a linear form on V. Then f is said to be symmetric if, for every u, v E V, 

feu, v) = f(v, u) 

One can easily show that f is symmetric if and only if any matrix representation A off is a symmetric 
matrix. 

The main result for symmetric bilinear forms (proved in Problem 12 . 1 0) is as follows. (We emphasize 
that we are assuming that I + I -I- 0.) 

Theorem 12.4:  Letf be a symmetric bilinear form on V. Then V has a basis {vI ' . . .  , vn } in which it is 
represented by a diagonal matrix, that is ,  where f(Vi ' v) = 0 for i -I-j. 
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Theorem 12.4: (Alternative Form) Let A be a symmetric matrix over K Then A is congruent to a 
diagonal matrix; that is, there exists a non-singular matrix P such that pTAP is diagonal. 

Diagonalization Algorithm 

Recall that a nonsingular matrix P is a product of elementary matrices, Accordingly, one way of 
obtaining the diagonal form D = pTAP is by a sequence of elementary row operations and the same 
sequence of elementary column operations, This same sequence of elementary row operations on the 
identity matrix I will yield pT, This algorithm is formalized below, 

Algorithm 12. 1 :  (Congrnence Diagonalization o f  a Symmetric Matrix) The input i s  a symmetric 
matrix A = [aij] of order n, 

Step 1. Form the n x 2n (block) matrix M = [A 1 , I] , where A l = A is the left half of M and the identity 
matrix I is the right half of M. 

Step 2. Examine the entry a l 1 ' There are three cases. 

Case I: a l 1 i= O .  (Use al 1 as a pivot to put O 's below a l 1 in M and to the right of a l 1 in A I ') 
For i = 2 ,  . . .  , n :  

(a) Apply the row operation "Replace Ri by -ailR I + a l 1R/' . 
(b) Apply the corresponding column operation "Replace Ci by -ail CI + a l l  Ci " . 
These operations reduce the matrix M to the form 

Case II: a l 1 = 0 but akk i= 0, for some k > 1 .  

* 
* : ] 

(a) Apply the row operation "Interchange RI and Rk" . 
(b) Apply the corresponding column operation "Interchange CI and Ck" . 

(*) 

(These operations bring akk into the first diagonal position, which reduces the matrix 
to Case I.) 

Case III: All diagonal entries aii = 0 but some aij i= O .  
(a) Apply the row operation "Replace Ri by Rj + R/' . 
(b) Apply the corresponding column operation "Replace Ci by Cj + C/' . 
(These operations bring 2aij into the ith diagonal position, which reduces the matrix 
to Case II.) 

Thus M is finally reduced to the form (*), where A2 is a symmetric matrix of order less than A . 
Step 3. Repeat Step 2 with each new matrix Ak (by neglecting the first row and column of the preceding 

matrix) until A is diagonalized. Then M is transformed into the form M' = [D, Q] , where D is 
diagonal. 

Step 4. Set P = QT . Then D = pTAP. 

Remark 1: We emphasize that in Step 2, the row operations will change both sides of M, but the 
column operations will only change the left half of M. 

Remark 2 :  The condition 1 + 1 i= 0 i s  used in Case III, where we assume that 2aij i= 0 when 
aij i= O .  



Lipschulz-Lipson:Schaum's I 12, Bilinear, Quadratic, and I Text 

Outline ofTheory and Hermitian Forms 

Problems of Linear 

Algebra,3/e 

380 BILINEAR, QUADRATIC, AND HERMITIAN FORMS 

The justification for the above algorithm appears in Problem 12 .9 .  

© The McGraw-Hili 
Companies, 2004 

[CHAP. 1 2  

Example 12.2. Let A = [ ;  ; =! ] .  Apply Algorithm 9 . 1  to find a nonsingu1ar matrix P such that D = pTAp is 
diagonal. -3 -4 8 

First form the block matrix M = [A , I] ; that is, let [ 1 2 -3 1 1 0 0 ] M = [A , I] = 2 5 -4 : 0 1 0 
-3 -4 8 1  0 0 1 

Apply the row operations "Replace R2 by -2RI + R2 " and "Replace R3 by 3RI + R3 " to M, and then apply the 
corresponding column operations "Replace e2 by -2el + e2 " and "Replace e3 by 3el + e3 " to obtain [ 1 2 -3 1 1 0 0 ] o 1 2 : -2 1 0 

o 2 - 1  1 3 0 1 
and then 

[ I 0 0 1 1 0 0 ] o 1 2 : -2 1 0 
o 2 - 1  1 3 0 1 

Next apply the row operation "Replace R3 by -2R2 + R3 " and then the corresponding column operation "Replace e3 
by -2e2 + e3 " to obtain [ 1 0 0 1  1 

o I 2 : -2 
o 0 -5 1 7 

o 0 ] I 0 
-2 1 

and then 
[ 1 0 

o 1 
o 0 � : -2 � � ] -5 1 7 -2 1 

Now A has been diagonalized. Set 

p � 
[ � -: -H and then 

We emphasize that P is the transpose of the right half of the final matrix. 

Quadratic Forms 

We begin with a definition. 

Definition A: A mapping q: V ---+ K is a quadratic form if q(v) = f(v, v) for some symmetric bilinear 
form f on V. 

If I + I -I- 0 in K, then the bilinear formf can be obtained from the quadratic form q by the following 
polar form off: 

f(u , v) = ! [q(u + v) - q(u) - q(v)] 

Now supposef is represented by a symmetric matrix A = [aij] ' and 1 + 1 -I- O.  Letting X = [Xi] denote 
a column vector of variables, q can be represented in the form 

q(X) = f(X, X) = XT AX = L aijxixj = L aiiX; + 2 L aijxixj ij i kj 

The above formal expression in the variables Xi is also called a quadratic form. Namely, we have the 
following second definition. 

Definition B:  A quadratic form q in variables Xl ' X2 , . . .  , xn is a polynomial such that every term has 
degree two; that is, 

q(Xl , X2 , ' " , xn) = L CiX; + L dijxixj i i<j 
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Using 1 + 1 i- 0 ,  the quadratic form q in Definition B determines a symmetric matrix A = [aij] where 
aii = Ci and aij = aji = ! dij ' Thus Definitions A and B are essentially the same. 

If the matrix representation A of q is diagonal, then q has the diagonal representation 

That is, the quadratic polynomial representing q will contain no "cross product" terms. Moreover, by 
Theorem 12 .4, every quadratic form has such a representation (when 1 + 1 i- 0) . 

12.6 REAL SYMMETRIC BILINEAR FORMS, LAW OF INERTIA 

This section treats symmetric bilinear forms and quadratic forms on vector spaces V over the real field 
R. The special nature of R permits an independent theory. The main result (proved in Problem 12 . 1 4) is as 
follows. 

Theorem 12.5: Let f be a symmetric form on V over R. Then there exists a basis of V in which f is 
represented by a diagonal matrix. Every other diagonal matrix representation off has the 
same number p of positive entries and the same number n of negative entries. 

The above result is sometimes called the Law of Inertia or Sylvester s Theorem. The rank and signature 
of the symmetric bilinear form f are denoted and defined by 

rank(f) = p + n and sig(f) = p - n 

These are uniquely defined by Theorem 12 . 5 .  
A real symmetric bilinear form f i s  said to  be: 

(i) positive definite if q(v) = f(v , v) > 0 for every v i- 0, 
(ii) nonnegative semidefinite if q( v) = f( v, v) :::: 0 for every v. 

Example 12.3. Letf be the dot product on Rn . Recall thatf is a symmetric bilinear form on Rn . We note thatf is also 
positive definite. That is, for any u = (a;) f= 0 in Rn, 

feu ,  u) = ai + a� + . . .  + a� > 0 

Section 12 . 5  and Chapter 1 3  tell us how to diagonalize a real quadratic form q or, equivalently, a real 
symmetric matrix A by means of an orthogonal transition matrix P. If P is merely nonsingular, then q can 
be represented in diagonal form with only 1 's and - 1  's as nonzero coefficients. Namely, we have the 
following corollary. 

Corollary 12.6: Any real quadratic form q has a unique representation in the form 

where r = p + n is the rank of the form. 

Corollary 12.6: (Alternative Form) Any real symmetric matrix A is congruent to the unique diagonal 
matrix 

D = diag(Ip , -In ' 0) 

where r = p + n is the rank of A .  
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Let V b e  a vector space o f  finite dimension over the complex field C.  A Hermitian form on V i s  a 
mapping f: V x V � C such that, for all a, b E e  and all ui ' v E V, 

(i) f(au! + bU2 ' v) = af(u! , v) + bf(U2 ' v) , 
(ii) feu, v) = f(v, u) , 
(As usual, k denotes the complex conjugate of k E C,)  

Using (i) and (ii), we get 

feu, av ! + bV2) = f(av! + bV2 ' u) = af(v! , u) + bf(V2 ' u) 
= af(v! , u) + bf(V2 ' u) = af(u, v! ) + bf(u , V2) 

That is, 

(iii) f(u , av! + bV2) = af(u, v! ) + bf(u, V2) ' 

As before, we express condition (i) by sayingf is linear in the first variable. On the other hand, we express 
condition (iii) by sayingf is "conjugate linear" in the second variable. Moreover, condition (ii) tells us that 
f(v , v) = f(v, v) , and hence f(v, v) is real for every v E V. 

The results of Sections 12 . 5  and 12 .6  for symmetric forms have their analogues for Hermitian forms. 
Thus, the mapping q: V � R, defined by q(v) = f(v, v), is called the Hermitian quadratic form or complex 
quadratic form associated with the Hermitian form f. We can obtain f from q by the polar form 

feu, v) = � [q(u + v) - q(u - v)] + � [q(u + iv) - q(u - iv)] 

Now suppose S = {u ! , . . .  , un } is a basis of V. The matrix H = [hij] where hij = f(Ui ' Uj) is called the 
matrix representation of f in the basis S. By (ii), f(Ui ' Uj) = f(uj ' uJ; hence H is Hermitian and, in 
particular, the diagonal entries of H are real. Thus any diagonal representation of f contains only real 
entries. 

The next theorem (to be proved in Problem 1 2 .47) is the complex analog of Theorem 12 . 5  on real 
symmetric bilinear forms. 

Theorem 12.7: Let f be a Hermitian form on V over C. Then there exists a basis of V in which f is 
represented by a diagonal matrix. Every other diagonal matrix representation off has the 
same number p of positive entries and the same number n of negative entries. 

Again the rank and signature of the Hermitian form f are denoted and defined by 

rank(!) = p + n and sig(f) = P - n 

These are uniquely defined, by Theorem 12 .7 .  
Analogously, a Hermitian form f i s  said to  be: 

(i) positive definite if q(v) = f(v , v) > 0 for every v i= 0, 
(ii) nonnegative semidefinite if q(v) = f(v , v) :::: 0 for every v. 

Example 12.4. Let! be the dot product on en ; that is, for any u = (zi) and v = (Wi) in en , 

feu , v) = u · v = ZjWj + z2W2 + . . .  + znwn 

Then f is a Hermitian form on en . Moreover, f is also positive definite, since, for any u = (z;) oF 0 in en , 

feu, u) = ZjZj + Z2Z2 + . . .  + ZnZn = IZj l 2 + IZ2 1 2 + . . .  + IZn l 2 > 0 
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BILINEAR FORMS 

12.1 .  Let u = (XI ' x2 , X3) and v = (YI , Y2 , Y3 ) ' Express f in matrix notation, where 

feu, v) = 3xIYI - 2.xIY3 + 5X2YI + 7X2Y2 - 8X2Y3 + 4x3Y2 - 6x3Y3 

Let A = [ay] , where ay is the coefficient of x;Yj ' Then 

f(', 'l � X' AY  � Ix" x" , x,{ l o -2 ] [Yj ] 
7 -8 Y2 
4 -6 Y3 

3 83 

12.2. Let A be an n x n matrix over K Show that the mappingf defined by f(X, Y) = XTA Y  is a bilinear 
form on Kn . 

For any a, b E K and any Ai, Yi E Kn, 

f(aXj + bX2 , y) = (aXj + bX2)T AY  = (aX! + bXJ)AY 
= aX! AY  + bxl AY  = af(Xj , Y) + bf(X2 ' y) 

Hence f is linear in the first variable. Also, 

f(X, aYj + bY2) = XT A(aYj + bY2) = aXT AYj + bxT AY2 = af(X, Yj )  + bf(X, Y2) 
Hence f is linear in the second variable, and so f is a bilinear form on Kn . 

12.3. Let f be the bilinear form on R2 defined by 

f[(xI ' X2) , (YI ' Y2)] = 2.xIYI - 3xIY2 + 4x2Y2 

(a) Find the matrix A off in the basis {u l = ( 1 ,  0) , U2 = ( 1 ,  I ) } .  
(b) Find the matrix B off in the basis {V I = 2 , 1 ) , V2 = ( 1 ,  - I )} .  
(e) Find the change-of-basis matrix P from the basis {u;l to the basis {Vi } ,  and verify that 

B = pTAP. 
(a) Set A = [ay] ,  where ay = feu; , uj } . This yields 

al l  =f[( 1 , O) ,  ( 1 , 0)] = 2 - 0 - 0 = 2 , 
a12 =f[( 1 , O) ,  ( 1 , 1 )] = 2 - 3 - 0 = - 1 , 

Thus A = [ ;  -; ]  is the matrix off in the basis {Uj , U2 } '  

(b) Set B = [by] ,  where bij = f(Vi ' Vj) . This yields 

a21 =f[(1 , I ) ,  ( 1 , 0)] = 2  
a22 =f[( 1 , I ) ,  ( 1 , 1 )] = 3  

bl l  = f[(2 , I ) , (2 , I )] = 8 - 6 + 4 = 6 , 
bj2 =f[(2 , I ) ,  ( 1 , - 1 ) = 4 + 6 - 4 = 6, 

b2 1 =f[( 1 ,  - I ) ,  (2 , I )] = -3 
b22 =f[( 1 ,  - I ) ,  ( 1 ,  - I )] = 9 

Thus B = [ _� � ]  is the matrix off in the basis {V j , V2 } '  

(c) Writing Vj and V2 in terms of the u; yields Vj = Uj + U2 and V2 = 2uj - U2 ' Then 

pT = [ 1 I ] 2 - I  

and 
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12.4. Prove Theorem 1 2 , 1 :  Let V b e  an n-dimensional vector space over K Let {¢ ] , , . .  , ¢n } b e  any basis 
of the dual space V* . Then {hj : i,} = 1 ,  . . .  , n } is a basis of B( V), where hj is defined by 
hj(u, v) = ¢i(U)¢/V) , Thus dim B( V) = n2 . 

Let {U \ , . . .  , un } be the basis of V dual to {¢;l . We first show that U;j} spans B( V) .  Let f E B(V) and 
suppose f(ui , u) = aij ' We claim that f = LiJ aij fij ' It suffices to show that 

for s, t = I , . . .  , n  
We have 

as required. Hence {t;j} spans B(V). Next, suppose L a;jij = O. Then for s, t = 1 ,  . . .  , n, 
0 =  O(us ' ut) = (L aijfij)(us , ut) = ars 

The last step follows as above. Thus { fij} is independent, and hence is a basis of B(V). 

12.5. Prove Theorem 12 .2 .  Let P be the change-of-basis matrix from a basis S to a basis S' . Let A be the 
matrix representirIg a bilirIear form irI the basis S. Then B = pTAP is the matrix representing ! in 
the basis S' . 

Let u, v E V. Since P is the change-of-basis matrix from S to S' , we have P[uls' = [uls and also 
P[vls' = [vJs ; hence [ulJ = [ulf,pT . Thus 

feu, v) = [ulJA[vls = [ulJ,pT AP[vls' 

Since u and v are arbitrary elements of V, pIAp is the matrix off in the basis S' .  

SYMMETRIC BILINEAR FORMS, QUADRATIC FORMS 

12.6. Find the symmetric matrix that corresponds to each of the following quadratic forms: 

(a) q(x, y, z) = 3x2 + 4xy - I  + 8xz = 6yz + �, 
(b) q' (x, y, z) = 3x2 + xz - 2yz, (c) q"(x, y, z) = 2x2 - 5y2 - 7� 

The symmetric matrix A = [aijl that represents q(x] , . . .  , xn) has the diagonal entry au equal to the 
coefficient of the square term if and the nondiagonal entries aij and aji each equal to half of the coefficient of 
the cross product term XiXj ' Thus [ 3 2 4 ] [ 3 O � ] [ 2 0 0 ] 
(a) A =  2 - 1  -3 , (b) A' = 0 0  - 1  , (c) A" = 0 -5 0 

4 -3 1 � 0 0 0 0 -7 

The third matrix A" is diagonal, since the quadratic form q" is diagonal, that is, q" has no cross product terms. 

12.7. Find the quadratic form q(X) that corresponds to each of the following symmetric matrices: 

-3 ] [ 4 

8 ' (b) B = -� -5 
-6 

8 

4 
-7 
-6 

8 

- 1  5 ] 
-6 8 

3 0 
9 1 

The quadratic form q(X) that corresponds to a symmetric matrix M is defined by q(X) = XTMX, 
where X = [xil is the column vector of unknowns. 
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(a) Compute a s  follows: 

q(x, y) = XT AX = [X, y] [ _� -! ] [; ] = [5x - 3y, -3x + 8Y] [; ] 
= 5� - 3xy - 3xy + 81 = 5� - 6xy + 81 

As expected, the coefficient 5 of the square term � and the coefficient 8 of the square term 1 are the 
diagonal elements of A, and the coefficient -6 of the cross product term xy is the sum of the nondiagonal 
elements -3 and -3 of A (or: twice the nondiagonal element -3 ,  since A is symmetric). 

(b) Since B is a 3 -square matrix, there are three unknowns, say x, y, z or Xj , x2 , x3 ' Then 

or 

q(x, y, z) = 4� - l Oxy - 61 + 14xz + 1 6yz - 9� 

q(Xj , X2 , X3 ) = 4xi - l Oxjx2 - 6� + 14xjx3 + 1 6x2x3 - 9.xj 

Here we use the fact that the coefficients of the square terms xi, � , .xj  (or �, I , r) are the respective 
diagonal elements 4, -6, -9 of B, and the coefficient of the cross product term XiXj is the sum of the 
nondiagonal elements bij and bji (or twice bij , since bij = bj;) . 

(c) Since C is a 4-square matrix, there are four unknowns. Hence 

q(Xj , X2 , x3 , X4) = 2.xi - 7� + 3.xj + � + 8XjX2 - 2xjX3 
+ l Oxjx4 - 1 2x2x3 + 1 6x2x4 + 1 8x3x4 

12.8. Let A � [ -i � � -n ·  Apply Algorithm 12 . 1 to find a non-,ingu"" matrix P 'uch thot 

D = pTAP is diagonal, and find sig(A), the signature of A .  

First form the block matrix M = [A , I] : [ 1 -3 2 1 1 
M = [A , !] = -� 

_
� -� : � o 0 ] 1 0 

o 1 

Using al l  = 1 as a pivot, apply the row operations "Replace R2 by 3Rj + R2 " and "Replace R3 by 
-2Rj + R3 " to M and then apply the corresponding column operations "Replace C2 by 3Cj + C2 " and 
"Replace C3 by -2Cj + C3 " to A to obtain [ 1 -3 2 1 1 0 0 ] o -2 I : 3 1 0 

0 1 4 1 0 0 1 
and then 

[ 1 0 0 1 1 0 0 ] 
o -2 1 : 3 I 0 . 
o 1 4 1 0 0 1 

Next apply the row operation "Replace R3 by R2 + 2R3 " and then the corresponding column operation 
"Replace C3 by C2 + 2C3 " to obtain [ I 0 0 1 I 0 0 ] o -2 1 : 3 1 0 

o 0 9 1 - 1  1 2 
and then 

[ 1 0 
o -2 
o 0 

o 1 1 0 0 ] 
o 1 3 1 0 

1 8 : - 1  I 2 

Now A has been diagonalized and the transpose of P is in the right half of M. Thus set [ 1 3 - I ] 
P =  0 1 1 ,  

0 0 2 
and then 

[ I 0 
D = pTAP = 0 -2 

o 0 

� ] . 
1 8  

Note D has p = 2 positive and n = I negative diagonal elements. Thus the signature o f  A is 
sig(A) = P - n = 2 - 1 = 1 . 
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12.9. Justify Algorithm 12 . 1 ,  which diagonalizes (under congruence) a symmetric matrix A .  

Consider the block matrix M = [A , f] . The algorithm applies a sequence o f  elementary row operations 
and the corresponding column operations to the left side of M, which is the matrix A. This is equivalent to 
premultip1ying A by a sequence of elementary matrices, say, E\ , E2 , • • •  , E" and postmu1tiplying A by the 
transposes of the Ej • Thus when the algorithm ends, the diagonal matrix D on the left side of M is equal to 

where 

On the other hand, the algorithm only applies the elementary row operations to the identity matrix f on the 
right side of M. Thus when the algorithm ends, the matrix on the right side of M is equal to 

Setting P = QT, we get D = pIAp, which is a diagonalization of A under congruence. 

12.10. Prove Theorem 12 .4 :  Letf be a symmetric bilinear form on V over K (where 1 + 1 i- 0). Then V 
has a basis in which f is represented by a diagonal matrix. 

Algorithm 1 2 . 1 shows that every symmetric matrix over K is congruent to a diagonal matrix. This is 
equivalent to the statement that f has a diagonal representation. 

12. 1 1 .  Let q be the quadratic form associated with the symmetric bilinear formf. Verify the polar identity 
feu, v) = Hq(u + v) - q(u) - q(v)] . (Assume that I + I i- 0.) 

We have 

q(u + v) - q(u) - q(v) = feu + v, u + v) -feu, u) -f(v, v) 
= feu , u) + feu , v) + f(v, u) + f(v, v) -feu, u) -f(v, v) = 2f(u, v) 

If 1 + 1 =1= 0, we can divide by 2 to obtain the required identity. 

12.12. Consider the quadratic form q(x, y) = 3.x2 + 2.xy - I and the linear substitution 

x = s - 3t , y = 2s + t 

(a) Rewrite q(x, y) in matrix notation, and find the matrix A representing q(x, y) . 
(b) Rewrite the linear substitution using matrix notation, and find the matrix P corresponding to 

the substitution. 
(c) Find q(s ,  t) using direct substitution. 

(d) Find q(s ,  t) using matrix notation. 

(a) Here q(X' Y) = [X' Y] [ � _ � J [;l ThUS A = [ � _ � l and q(X) = X1Ax, where x = [x, Yf . 

(b) Here [; J = [ ; -� ] [ � l ThUS P = [ ; -n ; and x = [;l Y = [ � J and X = py. 

(c) Substitute for x and y in q to obtain 

q(s, t) = 3 (s - 3t)2 + 2(s - 3t)(2s + t) - (2s + t)2 

= 3 (s2 - 6st + 9r) + 2(2; - 5st - 3r) - (s2 + 4st + t2) = 3s2 - 32st + 20r 
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(d) Here q(X) = XTAX and X = PY. Thus XT = yTpT . Therefore 

q(s , t) = q(Y) = yTpTAPY = [s , tl [ I 2 J [ 3 I J [ I -3 J [ S J -3 I I - I  2 I t 

= [S , tl [ 3 - 1 6 J [ S J = 3s2 - 32St + 20t2 
- 1 6  20 t 

[As expected, the results in parts (c) and (d) are equa1. l  

12.13. Consider any diagonal matrix A = diag(a l , . . .  , an) over K Show that, for any nonzero scalars 
kl , . . .  , kn E K, A is congruent to a diagonal matrix D with diagonal entries a l kr , . . .  , ank� . 
Furthermore, show that: 

(a) If K = C, then we can choose D so that its diagonal entries are only 1 's and D 's. 
(b) If K = R, then we can choose D so that its diagonal entries are only l 's, - l 's, and D 's .  

Let P = diag(kl , . . .  , kn) .  Then, as required, 

D = pIAp = diag(ki) diag(ai) diag(ki) = diag(al kf , . . .  , anI?,;) 

(a) L P - d' (b ) h b _ { I /,,;a; if ai -=I- 0 
et - lag i , w ere i - I if ai = 0 

Then pIAp has the required form. 

(b) Let P = diag(b;), where bi = { 1 / M
l

lai l if ai -=I- 0 
if ai = 0 

Then pIAp has the required form. 

Remark: We emphasize that (b) is no longer true if "congruence" is replaced by "Hermitian 
congruence" . 

12.14. Prove Theorem 1 2 . 5 :  Letf be a symmetric bilinear form on V over R. Then there exists a basis of V 
in whichf is represented by a diagonal matrix. Every other diagonal matrix representation off has 
the same number p of positive entries and the same number n of negative entries. 

By Theorem 1 2 .4, there is a basis {U I , . . .  , un } of V in whichf is represented by a diagonal matrix with, 
say, p positive and n negative entries. Now suppose {WI ' . . .  , wn } is another basis of V, in which f is 
represented by a diagonal matrix with p' positive and n' negative entries. We can assume without loss of 
generality that the positive entries in each matrix appear first. Since rank(f) = p + n = p' + n' , it suffices to 
prove that p = p' . 

Let U be the linear span of ul , . . .  , up and let W be the linear span ofwp'+I , . . .  , Wn • Thenf(v,  v) > 0 for 
every nonzero v E U, and f(v,  v) :::: 0 for every nonzero v E W. Hence u n  W = {O} . Note that dim U = P 
and dim W = n - p' . Thus 

dim(U + W) = dim U + dimW - dim(U n W) = P + (n - p') - 0 = p - p' + n 

But dim(U + W) :::: dim V = n; hence p - p' + n :::: n or p :::: p'. Similarly, p' :::: p and therefore p = p' , as 
required. 

Remark: The above theorem and proof depend only on the concept of positivity. Thus the 
theorem is true for any subfield K of the real field R such as the rational field Q. 

POSITIVE DEFINITE REAL QUADRATIC FORMS 

12.15. Prove that the following definitions of a positive definite quadratic form q are equivalent: 

(a) The diagonal entries are all positive in any diagonal representation of q. 
(b) q(Y) > 0, for any nonzero vector Y in Rn . 
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Suppose q(Y) = alYI + alJ'i + . . .  + anY.. I f  all the coefficients are positive, then clearly q(Y) > 0 
whenever Y i= O. Thus (a) implies (b) . Conversely, suppose (a) is not true; that is, suppose some diagonal 
entry ak :::: O. Let ek = (0, . . .  , 1 ,  . . .  0) be the vector whose entries are all 0 except 1 in the kth position. Then 
q(ek) = ak is not positive, and so (b) is not true. That is, (b) implies (a). Accordingly (a) and (b) are 
equivalent. 

12.16. Determine whether each of the following quadratic forms q is positive definite: 

(a) q(x, y, z) = :X2 + 2y - 4xz - 4yz + 7:!-
(b) q(x, y, z) = x2 + y + 2xz + 4yz + 3:!-

Diagonalize (under congruence) the symmetric matrix A corresponding to q. 

(a) Apply the operations "Replace R3 by 2RI + R3 " and "Replace e3 by 2el + e3 " ,  and then "Replace R3 
by R2 + R3 " and "Replace e3 by e2 + e3 " .  These yield 

A = [ �  � =; ] c:::: [ �  � -� ] c:::: [ �  � � ] -2 -2 7 0 -2 3 0 0 1 

The diagonal representation of q only contains positive entries, 1 ,  2, 1 ,  on the diagonal. Thus q is positive 
definite. 

(b) We have 

A = [ �  � ; ] c:::: [ �  
0 
� ]  c:::: [ � � � ] 1 2 3 0 2 2 0 0 -2 

There is a negative entry -2 on the diagonal representation of q. Thus q is not positive definite. 

12.17. Show that q(x, y) = ail + bxy + cy is positive definite if and only if a > 0 and the discriminant 
D = b2 - 4ac < O .  

Suppose v = (x, y) i= O. Then either x i= 0 or y i= 0; say, y i= O. Let t = x/yo Then 

q(v) = I [a(x/y)2 + b(x/y) + c] = I(ar + bt + c) 
However, the following are equivalent: 

(i) s = at2 + bt + c is positive for every value of t. 

(ii) s = ar + bt + c lies above the t-axis. 

(iii) a > 0 and D = b2 - 4ac < O. 
Thus q is positive definite if and only if a > 0 and D < O. [Remark: D < 0 is the same as det(A) > 0, where A 
is the symmetric matrix corresponding to q. ]  

12.18. Determine whether or not each of the following quadratic forms q is positive definite: 

(a) q(x, y) = :X2 - 4xy + 7y, (b) q(x, y) = :X2 + 8xy + 5y, (c) q(x, y) = 3:X2 + 2xy + y 
Compute the discriminant D = b2 - 4ac, and then use Problem 1 2 . 1 7 . 

(a) D = 1 6  - 28 = - 12 .  Since a = 1 > 0 and D < 0, q is positive definite. 

(b) D = 64 - 20 = 44. Since D > 0, q is not positive definite. 

(c) D = 4 - 12 = -8 .  Since a = 3 > 0 and D < 0, q is positive definite. 
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HERMITIAN FORMS 

12.19. Determine whether the following matrices are Hermitian: 

(a) [ 2 2 + 3i  4 - 5i ] 
2 - 3i 5 6 + 2i , (b) 
4 + 5i 6 - 2i -7 

[ 3 2 - i 4 + i ] 
2 - i 6 i , (c) 
4 + i i 7 

A complex matrix A = [aijl is Hermitian if A*  = A, that is, if aij = Ctji . 
(a) Yes, since it is equal to its conjugate transpose. 

(b) No, even though it is symmetric. 

(c) Yes. In fact, a real matrix is Hermitian if and only if it is symmetric. 

[ -� -� i ]  
5 -6 

12.20. Let A be a Hermitian matrix. Show that I is a Hermitian form on en where I is defined by 
I(X, y) = XTAY. 

For all a, b E e  and all XI ' X2 ' Y E en , 

f(aXl + bX2 , Y) = (aXl + bX2)T AY  = (aXT + bxDAY 
= aXT AY  + bxI AY  = af(XI , Y) + bf(X2 ' Y) 

Hence f is linear in the first variable. Also, 

f(X, Y) = XTAY = (X1AhT = yT ATX = yT A*X = yT AX = f(Y, X) 

Hence f is a Hermitian form on en . (Remark: We use the fact that XT AY  is a scalar and so it is equal to its 
transpose. ) 

12.2 1 .  Let I be a Hermitian form on V. Let H be the matrix of I in a basis S = {u;} of V. Prove the 
following: 

(a) I(u, v) = [u]IH[vls for all u, v E V. 
(b) If P is the change-of-basis matrix from S to a new basis S' of V, then B = pTHP (or 

B = Q* HQ, where Q = P) is the matrix of I in the new basis S' . 
Note that (b) is the complex analog of Theorem 1 2 .2 .  

(a) Let u, v E V and suppose u = al ul + . . .  + anUn and v = bl UI + . . .  + bnun . Then, as required, 

feu, v) = f(al ul + . . .  + anun , b l UI + . . .  + bnun) 
- - - T T -= L ajbj(uj , v) = [a l , " " anlH[bl , · · · , bnl = [ulsH[vls iJ 

(b) Since P is the change-of-basis matrix from S to Sf , we have P[uls' = [uls and P[vls' = [vls ; hence 
[ulI = [Ul�pT and [vls = F[vls" Thus by (a) , 

feu, v) = [ulIH[vls = [ulI, pTHF[vls' 

But u and v are arbitrary elements of V; hence pTHF is the matrix off in the basis Sf . 

12.22. Let H = [ _
1
2i 

-2i 

1 + i 
4 

2 + 3i  

2i ] 2 � 3i , a  Hermitian matrix. 

Find a nonsingular matrix P such that D = pTHP is diagonal. Also, find the signature of H. 
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Use the modified Algorithm 12 . 1 that applies the same row operations but the corresponding conjugate 
column operations. Thus first form the block matrix M = [H, I] : [ 1 1 + i 2i I 1 0 0 ] 

M = 1 - i 4 2 - 3 i : 0 1 0 
-2i 2 + 3 i 7 I 0 0 1 

Apply the row operations "Replace Rz by (- 1  + OR! + Rz " and "Replace R3 by 2iR! + R3 " and then the 
corresponding conjugate column operations "Replace ez by (- 1 - i)e! + ez " and "Replace e3 by 
-2ie! + e3 " to obtain [ 1 1 + i 2i I 1 0 0 ] 

o 2 -5i : - 1  + i 1 0 
o 5i 3 I 2i 0 1 

and then 
[ 1 0 
o 2 
o 5i  

o I 1 
-5i I - 1  + i I 3 I 2i 

o 0 ] 
1 0 
o 1 

Next apply the row operation "Replace R3 by -5iRz + 2R3 " and the corresponding conjugate column 
operation "Replace e3 by 5iez + 2e3 " to obtain 

o 2 -5i I 
[ 1 0 0 I 

o 0 - 1 9 : - l + i  
5 + 9i 

o 0 ] 
1 0 

-5i 2 
and then o 2 0 I - 1  + i 

[ 1 0 0 I 1 

o 0 -38 : 5 + 9i 

Now H has been diagonalized, and the transpose of the right half of M is P. Thus set [ 1 - 1  + i 5 + 9i ] 
P = 0 1 -5i , 

o 0 2 
and then 

o 0 ] 
1 0 

-5i 2 

Note D has p = 2 positive elements and n = 1 negative elements. Thus the signature of H is 
sig(H) = 2 - 1 = 1 .  

MISCELLANEOUS PROBLEMS 

12.23. Prove Theorem 12 . 3 : Let! be an alternating form on V. Then there exists a basis of V in which! is 

represented by a block diagonal matrix M with blocks of the form [ _ � � ] or O. The number of 

nonzero blocks is uniquely determined by ! [since it is equal to ! rank(f)] .  

Iff = 0 ,  then the theorem i s  obviously true. Also, i f  dim V = 1 ,  thenf(k! u ,  kzu) = k! kzf(u, u )  = 0 and 
so f = O. Accordingly, we can assume that dim V > 1 andf i- O. 

Since f i- 0, there exist (nonzero) u! , Uz E V such that f(u! ,  uz) i- O. In fact, multiplying u! by an 
appropriate factor, we can assume that f(u ! ,  uz) = 1 and so f(uz , u! ) = - 1 .  Now u! and Uz are linearly 
independent; because if, say, Uz = ku! , then f(u! ,  uz) = f(u! ,  ku! ) = kf(u! ,  u! ) = O. Let U = span(u! ,  uz); 
then: 

(i) The matrix representation of the restriction off to U in the basis {u! , uz } is [ -� � J 
(ii) If u E U, say u = au! + buz, then 

and feu,  uz) = f(au! + buz , uz) = a 

Let W consists of those vectors w E V such thatf(w, u! ) = 0 and f(w, uz) = O. Equivalently, 

W = {w E V :  few, u) = 0 for every u E U} 

We claim that V = U EEl W It is clear that u n  W = {OJ, and so it remains to show that V = U + W Let 
v E V. Set 

and w = V - u  ( 1 )  

Since u is a linear combination of u! and Uz ,  u E U. 
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We show next that w E W. By ( 1 ) and (ii), J(u , UI ) = f(v,  UI ) ; hence 

few, UI ) = f(v - u, UI ) = f(v,  UI ) -feu, UI ) = 0 

Similarly, J(u, U2) = f(v, U2) and so 

few, U2) + f(v - u, U2) = f(v, U2) -feu ,  U2) = 0 
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Then W E  W and so, by ( 1 ), v = u + w ,  where U E W. This shows that V = U + W ;  and therefore 
V = U \B w.  

Now the restriction off to W is an alternating bilinear form on W. By induction, there exists a basis 
u3 , , , , , Un of W in which the matrix representing f restricted to W has the desired form. Accordingly, 
U I , U2 , U3 , . . .  , Un is a basis of V in which the matrix representing f has the desired form. 

Supplementary Problems 
BILINEAR FORMS 

12,24, Let U = (XI '  X2) and v = (YI , Y2) ' Determine which of the following are bilinear forms on R2 : 

(a) feu, v) = 2xIY2 - 3X2YI , 
(b) feu, v) = XI + Y2 , 

(c) feu ,  v) = 3X2Y2 , 
(d) feu, v) = XlX2 + YIY2 , 

12,25, Let f be the bilinear form on R2 defined by 

(e) feu, v) = 1 ,  

(f) feu, v) = 0 

f[(XI , X2) ,  (YI , Y2)] = 3xIYI - 2xIY2 + 4X2Y2 - X2Y2 

(a) Find the matrix A off in the basis {UI = ( 1 , 1 ) ,  U2 = ( 1 ,  2)}. 

(b) Find the matrix B off in the basis {V I = ( 1 , - 1 ) ,  V2 = (3 , I ) } .  

(c) Find the change-of-basis matrix P from {u;} to {v; } ,  and verify that B = pIAp. 

12.26. Let V be the vector space of 2-square matrices over R. Let M = [ � ; J , and letf(A , B) = treAT MB), where 

A ,  B E  V and "tr" denotes trace. (a) Show thatf is a bilinear form on V. (b) Find the matrix off in the basis 

12.27. Let B(V) be the set of bilinear forms on V over K Prove the following: 

(a) Iff, g E B(V), then f + g, kg E B(V) for any k E K 
(b) If 4J and (J are linear functions on V, thenf(u, v) = 4J(u)(J(v) belongs to B(V). 

12.28. Let [fl denote the matrix representation of a bilinear form f on V relative to a basis {u; } .  Show that the 
mapping f 1-+ [fl is an isomorphism of B(V) onto the vector space V of n-square matrices. 

12.29. Let f be a bilinear form on V. For any subset S of V, let 

SJ. = {v E V : f(u , v) = 0 for every u E S} and ST = {v E V : f(v ,  u) = 0 for every u E S} 

Show that: (a) ST and ST are subspaces of V; (b) SI � S2 implies Sf � Sf and SJ � s1 ; (c) {O}J. = {OJ T = V. 

12.30. Suppose f is a bilinear form on V. Prove that: rank(f) = dim V - dim VJ. = dim V - dim VT and hence 
dim VJ. = dim VT . 
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12,31 .  Letf b e  a bilinear form on V. For each u E V, let it :  V ---* K and u :V ---* K b e  defined by it(x) = f(x, u) and 
u(x) = feu, x) . Prove the following: 

(a) it and u are each linear, i .e. it, u E V*,  

(b) u 1---* it and u 1---* U are each linear mappings from V into V* ,  

(c) rank:(f) = rank(u H it) = rank(u 1---* u) . 

12.32. Show that congruence of matrices (denoted by c:::) is an equivalence relation; that is :  
(i) A c::: A. (ii) If A c::: B, then B c::: A . (iii) If A c::: B and B c::: C, then A c::: C. 

SYMMETRIC BILINEAR FORMS, QUADRATIC FORMS 

12.33. Find the symmetric matrix A belonging to each of the following quadratic forms: 

(a) q(x, y, z) - 2;2 - 8xy + .0 - 1 6xz + 14yz + 57, 
(b) q(x, y, z) = ;2 - xz +y, 

(c) q(x, y, z) = xy +y + 4XZ + 7 
(d) q(x, y, z) = xy + yz 

12.34. For each of the following symmetric matrices A, find a nonsingu1ar matrix P such that D = pTAP is diagonal: [ 1 0 2 ] [ 1 -2 
(a) A = 0 3 6 , (b) A = -2 5 

2 6 7 1 3 

12.35. Let q(x, y) = 2.x2 - 6xy - 3.0 and x = s + 2t, Y = 3s - t. 
(a) Rewrite q(x, y) in matrix notation, and find the matrix A representing the quadratic form. 

(b) Rewrite the linear substitution using matrix notation, and find the matrix P corresponding to the 
substitution. 

(c) Find q(s , t) using: (i) direct substitution, (ii) matrix notation. 

12.36. For each of the following quadratic forms q(x, y, z) , find a nonsingular linear substitution expressing the 
variables x, y, z in terms of variables r, s, t such that q(r, s, t) is diagonal: 

(a) q(x, y, z) = ;2 + 6xy + 8.0 - 4xz + 2yz - 97, 
(b) q(x, y, z) = 2;2 - 3xy + 8xz + 1 2yz + 257, 
(c) q(x, y, z) = ;2 + 2xy + 3y + 4xz + 8yz + 67 . 
In each case, find the rank and signature. 

12.37. Give an example of a quadratic form q(x, y) such that q(u) = 0 and q(v) = 0 but q(u + v) i- o. 

12.38. Let S(V) denote all symmetric bilinear forms on V. Show that: 

(a) S(V) is a subspace of B(V). (b) If dim V = n, then dim S(V) = ! n(n + 1 ) .  

12.39. Consider a real quadratic polynomial q(xJ , . . .  , xn) = L�J= J aijxixj , where aij = aji . 
(a) If al l  i- 0, show that the substitution 

X2 = Y2 , xn = yn 

yields the equation q(xJ , . . .  , xn) = al l  Yi + q'(Y2 , . . .  , Yn) , where q' is also a quadratic polynomial. 

(b) If al l  = 0 but, say, al2 i- 0, show that the substitution 

XJ = YJ +Y2 , X2 = YJ - Y2 , xn = yn 
yields the equation q(xJ , . . .  , xn) = L bij YiYj ' where bl l  i- 0, which reduces this case to case (a) . 
Remark. This method of diagonalizing q is known as completing the square. 
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12.40, Determine whether or not each of the following quadratic forms is positive definite: 

(a) q(x, y) = 4.xl + 5.xy + 71, 
(b) q(x, y) = 2.x2 - 3.xy - I , 

(c) q(x, y, z) = .xl + 4.xy + 51 + 6xz + 2yz + 4z2 

(d) q(x, y, z) = .xl + 2xy + 21 + 4xz + 6yz + 7z2 

12.41. Find those values of k such that the given quadratic form is positive definite: 

(a) q(x, y) = 2.x2 - 5.xy + kj2 , (b) q(x, y) = 3.xl - k.xy + 1 21 
(c) q(x, y, z) = .xl + 2.xy + 21 + 2xz + 6yz + kzl 
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12.42, Suppose A is a real symmetric positive definite matrix. Show that A = pTp for some nonsingular matrix P. 

HERMITIAN FORMS 

12.43, ModifY Algorithm 1 2 . 1 so that, for a given Hermitian matrix H, it finds a nonsingular matrix P for which 
D = pTAP is diagonal. 

12.44. For each Hermitian matrix H, find a nonsingular matrix P such that D = pTHP is diagonal: 

[ I i ] [ 1 2 + 3i ] [ 1 . (a) H = -i 2 ' (b) H = 2 _ 3i - 1  ' (c) H = 
2 � i 

Find the rank and signature in each case. 

i 2 + i ] 
2 l - i 

1 + i 2 

12.45. Let A be a complex nonsingular matrix. Show that H = A * A is Hermitian and positive definite. 

12.46. We say that B is Hermitian congruent to A if there exists a nonsingular matrix P such that B = pTAP or, 
equivalently, if there exists a nonsingular matrix Q such that B = Q* AQ. Show that Hermitian congruence is 
an equivalence relation. (Note: If P = Q, then PIAl> = Q*AQ.) 

12.47. Prove Theorem 1 2 .7 :  Letf be a Hermitian form on V. Then there is a basis S of V in whichf is represented by 
a diagonal matrix, and every such diagonal representation has the same number p of positive entries and the 
same number n of negative entries. 

MISCELLANEOUS PROBLEMS 

12.48. Let e denote an elementary row operati�n, and let f* denote the corresponding conjugate column operation 
(where each scalar k in e  is replaced by k inf*). Show that the elementary matrix corresponding to f* is the 
conjugate transpose of the elementary matrix corresponding to e. 

12.49. Let V and W be vector spaces over K A mapping f : V x W --+ K is called a bilinear form on V and W if: 

(i) f(avj + bVl , w) = af(vj , w) + bf(Vl ' w), 
(ii) f(v, aWj + bWl) = af(v, Wj ) + bf(v, Wl) 
for every a, b E K, Vi E V, Wj E W. Prove the following: 

(a) The set B(V, W) of bilinear forms on V and W is a subspace of the vector space of functions from 
V x  W into K 

(b) If {tPj , . . .  , tPm } is a basis of V* and {aj , . . .  , an } is a basis of W*,  then {Jij : i = 1 ,  . . .  , m ,} = 1 ,  . . .  , n} 
is a basis of B(V, W), whereJij is defined by Jiiv, w) = tPi(v)aiw). Thus dim B(V, W) = dim V dim W. 

[Note that if V = W, then we obtain the space B(V) investigated in this chapter.] 



Lipschulz-Lipson:Schaum's I 12, Bilinear, Quadratic, and I Text 

Outline ofTheory and Hermitian Forms 

© The McGraw-Hili 
Companies, 2004 

Problems of Linear 

Algebra,3/e 

394 BILINEAR, QUADRATIC, AND HERMITIAN FORMS [CHAP. 1 2  

m times ,.-"-., 
12,50, Let V be a vector space over K A mappingf : V  x V x . . .  x V ---* K is called a multilinear (or m-linear)form 

on V iff is linear in each variable, i .e . ,  for i = 1 ,  . . .  , m, 

f( . . .  , a;;+bv, . . .  ) = af(· . .  , ft, . . .  ) + bf( . . .  , D, . . .  ) 
where A denotes the ith element, and other elements are held fixed. An m-linear form f is said to be 
alternating if f( VI '  . • •  vm) = 0 whenever Vi = Vj for i =1= j. Prove the following: 

(a) The set Bm(V) of m-linear forms on V is a subspace of the vector space of functions from 
V x V x . . .  x V into K. 

(b) The set Am(V) of alternating m-1inear forms on V is a subspace of Bm(V) '  

Remark 1 :  If m = 2, then we obtain the space B(V) investigated in this chapter. 

Remark 2 :  I f  V = Km , then the determinant function is an alternating m-1inear form on V. 

Answers to Supplementary Problems 
Notation: M = [RI ; R2 ; . . •  ] denotes a matrix M with rows RI , R2 , . . . . 

12.24. (a) yes, (b) no, (c) yes, (d) no, (e) no, (I) yes 

12.25. (a) A = [4, 1 ;  7 , 3 ] ,  (b) B = [0, -4; 20, 32], (c) P = [3 , 5 ;  -2, 2] 

12.26. (b) [ 1 , 0 , 2 , 0 ; 0 , 1 , 0 , 2 ; 3 , 0 , 5 , 0 ; 0 , 3 , 0 , 5] 

12.33. (a) [2, -4, -8 ;  -4, 1 , 7 ;  -8 , 7 , 5] , 
(c) [0, ! , 2 ; ! , 1 , 0 ; 2 , 0 , 1 ] ,  (d) 

(b) [ 1 , 0 , - ! ; 0 , 1 , 0 ; - ! , O , O] , 
[O, ! , O ; ! , 0 , 1 ;  ! , O , ! ;  O , ! , O] 

12.34. (a) P = [ 1 , 0 , -2; 0 , 1 ,  -2; 0 , 0 , 1 ] ,  D = diag( 1 ,  3 ,  -9), 
(b) P = [ 1 , 2 ,  - 1 1 ;  0 , 1 ,  -5; 0 , 0 , 1 ] ,  D = diag( 1 ,  1 , -28), 
(c) P = [ 1 ,  1 ,  - 1 ,  -4; 0 , 1 ,  - 1 ,  -2; 0 , 0 , 1 , 0 ; 0 , 0 , 0 , 1 ] ,  D = diag( 1 ,  1 , 0 , -9) 

12.35. A = [2 , -3; -3, -3], P = [ 1 , 2 ;  3, - 1 ] ,  q(s, t) = -43s2 - 4st + 1 7t2 

12.36. (a) x = r - 3s - 1 9t, y = s + 7t, z = t; q(r, s, t) = ?  - S2 + 36P, 
(b) x = r - 2t, Y = s + 2t, z = 1 ; q(r, s , t) = 2? - 3s2 + 29t2 

12.37. q(x, y) = xl - I , u = ( 1 , 1 ) ,  V = ( 1 , - 1 )  

12.40. (a) yes, (b) no, (c) no, (d) yes 

12.41. (a) k > ¥, (b) k < - 1 2 or k > 1 2, (c) k > 5 

12.44. (a) P = [ I , i; 0 , 1 ] , D = I, s = 2, (b) P = [ 1 , -2 + 3i; 0 , 1 ] , D = diag( 1 , - 14), s = 0, 
(c) P = [ 1 ,  i, -3 + i; 0 , 1 ,  i; 0 , 0 , 1 ] ,  D = diag( l ,  1 ,  -4) , s = 1 
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investigates the space A(V) of linear operators r on an inner product space V. (See 

t::r�:�:;:i::i; the base field K is either the real number R or the complex numbers C. In fact, different 
will be used for the real case and the complex case. We also use the fact that the inner 

Euclidean space R" and complex Euclidean space C' may be defined, respectively, by 

\II. V} = IITV 

should review the material in Chapter 7 and be very familiar with the notions of norm �����" onh?go,,,',;,y, and orthonormal bases. We also note that Chapter 7 mainly dealt with real inner 

r. whereas here we assume Ihat V is a complex inner product space unless otherwise stated or 

wolno," that in Chapter 2, we used All to denote the conjugate transpose ofa complex matrix A, 
This notation is not standard. Many texts, expecially advanced texts, use A' to denote 

m" ri",:,ndwe will use this notation in this chapter. That is, now A' = AT. 

ADJO"�T OPERATORS 

We begin the following basic definition. 

operator r on an inner product space V is said to have an adjoint operator r' on V 
for every II. v E V. 

Th'�:��::�;:f example shows that the adjoint operator has a simple description within the context of 

�"'mp". 13, I ,  
1 /I-square matrix viewed as a linear operalor o n  R". Then, for every II.  v E Rn. 

IAII. v) = (Au)T V = /IT AT V = 1/1. AT v) 

L.";'[i><"-,,,,- """POOO AT of A is the adjoint of A. 

395 
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(b) Let B be a complex n-square matrix viewed as a linear operator on Cn • Then, for every u, v, E Cn, 

Thus the conjugate transpose B* of B is the adjoint of B. 

[CHAP. 1 3  

Remark: B* may mean either the adjoint o f  B as a linear operator or the conjugate transpose o f  B as 
a matrix. By Example 1 3 . 1 (b), the ambiguity makes no difference, since they denote the same object. 

The following theorem (proved in Problem 1 3 .4) is the main result in this section. 

Theorem 13. 1 :  Let T be  a linear operator on  a finite-dimensional inner product space V over K. Then: 

(i) There exists a unique linear operator T* on V such that (T(u) , v) = (u , T*(v» ) for 
every u, v E V. (That is, T has an adjoint T* .) 

(ii) If A is the matrix representation T with respect to any orthonormal basis S = {ui } 
of V, then the matrix representation of T* in the basis S is the conjugate transpose 
A* of A (or the transpose AT of A when K is real). 

We emphasize that no such simple relationship exists between the matrices representing T and T* if 
the basis is not orthonormal. Thus we see one useful property of orthonormal bases. We also emphasize 
that this theorem is not valid if V has infinite dimension (problem 1 3 .3 1 ) .  

The following theorem (proved in Problem 1 3 .5) summarizes some of  the properties of  the adjoint. 

Theorem 13.2 : Let T, TI , T2 be linear operators on V and let k E K. Then: 

(i) (TI + T2)*  = T! + 11, 
(ii) (kT)* = kT*, 

(iii) (TI T2)*  = 1111, 
(iv) (T*)* = T. 

Observe the similarity between the above theorem and Theorem 2 .3 on properties of the transpose 
operation on matrices. 

Linear Functionals and Inner Product Spaces 

Recall (Chapter 1 1 ) that a linear functional ¢ on a vector space V is a linear mapping ¢ :  V ---+ K. This 
subsection contains an important result (Theorem l 3 .3) ,  which is used in the proof of the above basic 
Theorem l 3 . l .  

Let V be an inner product space. Each u E V determines a mapping u :  V ---+ K defined by 

u(v) = (v ,  u) 

Now, for any a ,  b E K and any VI ' V2 E V, 

That is, u is a linear functional on V. The converse is also true for spaces of finite dimension, and is the 
following important theorem (proved in Problem 1 3 .3) .  

Theorem 13.3 : Let ¢ be a linear functional on a finite-dimensional inner product space V. Then there 
exists a unique vector u E V such that ¢(v) = (v ,  u) for every v E V. 

We remark that the above theorem is not valid for spaces of infinite dimension (Problem 1 3 .24). 
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Let A(V) denote the algebra of all linear operators on a finite-dimensional inner product space V. The 
adjoint mapping T I� T* on A(V) is quite analogous to the conjugation mapping z I� Z on the complex 
field C, To illustrate this analogy we identifY in Table 1 3 - 1  certain classes of operators T E A(V) whose 
behavior under the adjoint map imitates the behavior under conjugation of familiar classes of complex 
numbers, 

Table 13-1 

Class of complex Behavior under Behavior under the 
numbers conjugation Class of operators in A(V) adjoint map 

Unit circle ( Iz l = 1 )  z = l iz Orthogonal operators (real case) T* = T- 1 
Unitary operators (complex case) 

Self-adjoint operators 
Also called: 

Real axis z = z  symmetric (real case) T* = T  
Hermitian (complex case) 

Skew-adjoint operators 
Also called: 

Imaginary axis z =  -z skew-symmetric (real case) T* = -T 
skew-Hermitian (complex case) 

Positive real axis z = Ww, w =1= 0 Positive definite operators T = S*S 
(0, 00) with S nonsingular 

The analogy between these operators T and complex numbers z is reflected in the next theorem, 

Theorem 13.4: Let A be an eigenvalue of a linear operator T on V. 
(i) If T* = T- 1 (i.e . ,  T is orthogonal or unitary), then I A I = 1 .  

(ii) If T* = T (i .e . ,  T is self-adjoint), then A is real . 
(iii) If T* = - T (i.e . ,  T is skew-adjoint), then A is pure imaginary. 
(iv) If T = S*S with S non-singular (i.e . ,  T is positive definite), then A is real and 

positive. 

Proof In each case let v be a nonzero eigenvector of T belonging to A, that is, T( v) = AV with v i- 0; 
hence (v , v) is positive. 

Proof of (i) . We show that AA (V , v) = (v ,  v) : 

AA (V ,  v) = (AV, AV) = (T(v) , T(v») = (v ,  T*T(v») = (v , l(v» )  = (v ,  v) 

But (v ,  v) i- 0; hence AA = 1 and so I A I = 1 .  

Proof of (ii) . We show that A(V ,  v) = A(V ,  v) : 

A (V ,  v) = (AV, v) = (T(v) , v) = (v ,  T*(v» )  = (v ,  T(v» )  = (v ,  AV) = A(V ,  v) 

But (v ,  v) i- 0; hence A = A and so A is real. 
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A {V ,  v )  = (AV, v )  = (T(v) , v )  = ( v ,  T* (v) ) = (v ,  -T(v) ) = ( v ,  -AV) = -A{V , v) 
But (v ,  v) -I- 0; hence A = -A or A = -A, and so A is pure imaginary. 

Proof of (iv) . Note first that S(v) -I- 0 because S is nonsingular; hence (S(v) , S(v) ) is positive. We 
show that A {V ,  v) = (S(v) , S(v)) : 

A {V ,  v) = (AV, v) = (T(v) , v) = (S*S(v) , v) = (S(v) , S(v) ) 
But (v ,  v) and (S(v) , S(v)) are positive; hence A is positive. 

Remark: Each of the above operators T commutes with its adjoint; that is, TT* = T*T. Such 
operators are called normal operators. 

13.4 SELF -ADJOINT OPERATORS 

Let T be a self-adjoint operator on an inner product space V; that is, suppose 

T* = T 
(If T is defined by a matrix A, then A is symmetric or Hermitian according as A is real or complex.) By 
Theorem 1 3 .4, the eigenvalues of T are real . The following is another important property of T. 

Theorem 13.5: Let T be a self-adjoint operator on V. Suppose u and v are eigenvectors of T belonging to 
distinct eigenvalues. Then u and v are orthogonal, i .e . ,  (u , v) = o . 

Proof Suppose T(u) = AI U and T(v) = A2V, where Al -I- A2 ' We show that Al (u , v) = A2 {U , v) : 
A l (u , v) = (A I U ,  v) = (T(u) , v) = (u ,  T* (v) ) = (u ,  T(v)) 

= (u , A2 V) = A2 {U , v) = A2 {U , v) 

(The fourth equality uses the fact that T* = T, and the last equality uses the fact that the eigenvalue A2 is 
real .) Since Al -I- A2 , we get (u , v) = O .  Thus the theorem is proved. 

13.5 ORTHOGONAL AND UNITARY OPERATORS 

Let U be a linear operator on a finite-dimensional inner product space V. Suppose 

U* = U- I or equivalently UU* = U* U = I 
Recall that U is said to be orthogonal or unitary according as the underlying field is real or complex. The 
next theorem (proved in Problem 1 3 . 1 0) gives alternative characterizations of these operators. 

Theorem 13.6: The following conditions on an operator U are equivalent: 

Example 13.2. 

(i) U* = U- I ; i .e . ,  UU* = U* U = I. [U is unitary (orthogonal) . ]  
(ii) U preserves inner products; i .e . ,  for every v, W E  V, ( U(v), U(w)) = (v ,  w) . 

(iii) U preserves lengths; i .e . ,  for every v E V, II U(V) II = I I v l l . 

(a) Let T :R3 ---* R3 be the linear operator that rotates each vector v about the z-axis by a fixed angle (J as shown in 
Fig. 1 0- 1  (Section 1 0.3) .  That is, T is defined by 

T(x, y, z) = (x cos (J - y sin (J, x sin (J + y cos (J ,  z) 

We note that lengths (distances from the origin) are preserved under T. Thus T is an orthogonal operator. 
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(b) Let V be lz-space (Hilbert space), defined in Section 7.3 . Let T : V ---+ V be the linear operator defined by 

T(al '  a2 , a3 '  . . .  ) = (0, ai ' a2 , a3 '  . . .  ) 
Clearly, T preserves inner products and lengths. However, T is not subjective, since, for example, ( 1 , 0 , 0 , . . .  ) 
does not belong to the image of T; hence T is not invertible. Thus we see that Theorem 1 3 .6 is not valid for 
spaces of infinite dimension. 

An isomorphism from one inner product space into another is a bijective mapping that preserves the 
three basic operations of an inner product space: vector addition, scalar multiplication, and inner products. 
Thus the above mappings (orthogonal and unitary) may also be characterized as the isomorphisms of V 
into itself. Note that such a mapping U also preserves distances, since 

Hence U is called an isometry. 
I I U(v) - U(w) 1 I = I I U(v - w) 1 I = I l v - w l l  

13.6 ORTHOGONAL AND UNITARY MATRICES 

Let U be a linear operator on an inner product space V. By Theorem 1 3 . 1 ,  we obtain the following 
results. 

Theorem 13.7 A: A complex matrix A represents a unitary operator U (relative to an orthonormal basis) 
if and only if A* = A- I . 

Theorem 13.7B: A real matrix A represents an orthogonal operator U (relative to an orthonormal basis) 
if and only if AT = A- I . 

The above theorems motivate the following definitions (which appeared in Sections 2 . 1 0  and 2 . 1 1 ) .  

Definition: A complex matrix A for which A* = A- I is called a unitary matrix. 

Definition:  A real matrix A for which AT = A- I is called an orthogonal matrix. 

We repeat Theorem 2 .6 ,  which characterizes the above matrices. 

Theorem 13.8: The following conditions on a matrix A are equivalent: 

(i) A is unitary (orthogonal). 
(ii) The rows of A form an orthonormal set. 

(iii) The columns of A form an orthonormal set. 

13.7 CHANGE OF ORTHONORMAL BASIS 

Orthonormal bases play a special role in the theory of inner product spaces V. Thus we are naturally 
interested in the properties of the change-of-basis matrix form one such basis to another. The following 
theorem (proved in Problem 1 3 . 1 2) holds. 

Theorem 13.9: Let {u I ' . . .  , un } be an orthonormal basis of an inner product space V. Then the change­
of-basis matrix from {ui } into another orthonormal basis is unitary (orthogonal). 
Conversely, if P = [aij] is a unitary (orthogonal) matrix, then the following is an 
orthonormal basis: 
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Recall that matrices A and B representing the same linear operator T are similar; i .e . ,  B = P-iAP, 
where P is the (non-singular) change-of-basis matrix. On the other hand, if V is an inner product space, we 
are usually interested in the case when P is unitary (or orthogonal) as suggested by Theorem 1 3 .9 .  (Recall 
that P is unitary if the conjugate tranpose P* = p- i , and P is orthogonal if the transpose pT = p-i . )  This 
leads to the following definition. 

Definition:  Complex marices A and B are unitarily equivalent if there exists a unitary matrix P for which 
B = p* AP. Analogously, real matrices A and B are orthogonally equivalent if there exists an 
orthogonal matrix P for which B = pTAP. 

Note that orthogonally equivalent matrices are necessarily congruent. 

13.8 POSITIVE DEFINITE AND POSITIVE OPERATORS 

Let P be a linear operator on an inner product space V. Then: 

(i) P is said to be positive definite if P = S*S for some nonsingular operators S. 
(ii) P is said to be positive (or nonnegative or semi-definite) if P = S*S for some operator S. 

The following theorems give alternative characterizations of these operators. 

Theorem 13.10A: The following conditions on an operator P are equivalent: 

(i) P = T
2 for some nonsingular self-adjoint operator T. 

(ii) P is positive definite. 
(iii) P is self-adjoint and (P(u) , u) > 0 for every u -I- 0 in V. 

The corresponding theorem for positive operators (proved in Problem 1 3 .2 1 )  follows. 

Theorem 13.10B: The following conditions on an operator P are equivalent: 

(i) P = T
2 for some self-adjoint operator T. 

(ii) P is positive i .e .  P = S* S . 
(iii) P is self-adjoint and (P(u) , u) :::: 0 for every u E V. 

13.9 DIAGONALIZATION AND CANONICAL FORMS IN INNER PRODUCT SPACES 

Let T be a linear operator on a finite-dimensional inner product space V over K. Representing T by a 
diagonal matrix depends upon the eigenvectors and eigenvalues of T, and hence upon the roots of the 
characteristic polynomial A(t) of T. Now A(t) always factors into linear polynomials over the complex field 
C, but may not have any linear polynomials over the real field R. Thus the situation for real inner product 
spaces (sometimes called Euclidean spaces) is inherently different than the situation for complex inner 
product spaces (sometimes called unitary spaces) . Thus we treat them separately. 

Real Inner Product Spaces, Symmetric and Orthogonal Operators 

The following theorem (proved in Problem 1 3 . 1 4) holds. 

Theorem 13.1 1 :  Let T b e  a symmetric (self-adjoint) operator on a real finite-dimensional product space 
V. Then there exists an orthonormal basis of V consisting of eigenvectors of T; that is, 
T can be represented by a diagonal matrix relative to an orthonormal basis. 

We give the corresponding statement for matrices. 
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Theorem 13.1 1 :  (Alternative Form) Let A be a real symmetric matrix. Then there exists an 
orthogonal matrix P such that B = P- IAP = pTAP is diagonal. 

We can choose the columns of the above matrix P to be normalized orthogonal eigenvectors of A; then 
the diagonal entries of B are the corresponding eigenvalues. 

On the other hand, an orthogonal operator T need not be symmetric, and so it may not be represented 
by a diagonal matrix relative to an orthonormal matrix. However, such a matrix T does have a simple 
canonical representation, as described in the following theorem (proved in Problem 1 3 . 1 6) . 

Theorem 13.12. Let T be an orthonormal operator on a real inner product space V. Then there exists an 
orthonormal basis of V in which T is represented by a block diagonal matrix M of the 
form 

. ( [ cos el M = dmg Is , -1( ,  . e sm I 
- Sin el ] [ cos er 

cos el 
' . . .  , sin er 

- Sin er ] )  
cos er 

The reader may recognize that each of the 2 x 2 diagonal blocks represents a rotation in the 
corresponding two-dimensional subspace, and each diagonal entry - 1  represents a reflection in the 
corresponding one-dimensional subspace. 

Complex Inner Product Spaces, Normal and Triangular Operators 

A linear operator T is said to be normal if it commutes with its adjoint, that is, if TT* = T* T. We note 
that normal operators include both self-adjoint and unitary operators. 

Analogously, a complex matrix A is said to be normal if it commutes with its conjugate transpose, that 
is, if AA* = A*A . 

Example 13.3. Let A = [ ! 3 � 2i 1 Then A* = [ � 3 =i2i 1 
Also AA * = [ 3 � 3i 

3 �4
3 i J = A*A. Thus A is normal. 

The following theorem (proved in Problem 1 3 . 1 9) holds. 

Theorem 13.13 : Let T be a normal operator on a complex finite-dimensional inner product space V. 
Then there exists an orthonormal basis of V consisting of eigenvectors of T; that is, T 
can be represented by a diagonal matrix relative to an orthonormal basis. 

We give the corresponding statement for matrices. 

Theorem 13.13 : (Alternative Form) Let A be a normal matrix. Then there exists a unitary matrix P 
such that B = p- i AP = P* AP is diagonal. 

The following theorem (proved in Problem 1 3 .20) shows that even nonnormal operators on unitary 
spaces have a relatively simple form. 

Theorem 13.14:  Let T be an arbitrary operator on a complex finite-dimensional inner product space V. 
Then T can be represented by a triangular matrix relative to an orthonormal basis of V. 

Theorem 13.14 (Alternative Form) Let A be an arbitrary complex matrix. Then there exists a unitary 
matrix P such that B = p- I AP = p* AP is triangular. 
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The Spectral Theorem i s  a reformulation o f  the diagonalization Theorems 1 3 , 1 1  and 1 3 . 1 3 . 

Theorem 13.15:  (Spectral Theorem) Let T be a normal (symmetric) operator on a complex (real) 
finite-dimensional inner product space V. Then there exists linear operators EI , . . .  , Er 
on V and scalars AI ' . . .  , Ar such that: 

(i) T = AIEl + A2E2 + . . .  + ArE" 
(ii) EI + E2 + . . .  + Er = I, 

(iii) Ei = EI , E� = E2 , . . .  , E; = E" 
(iv) EiE) = 0 for i i= j. 

The above linear operators EI , . . .  , Er are projections in the sense that E� = Ei .  Moreover, they are 
said to be orthogonal projections since they have the additional property that EiE) = 0 for i i= j. 

The following example shows the relationship between a diagonal matrix representation and the 
corresponding orthogonal projections. 

Example 13.4. Consider the following diagonal matrices A, E) , E2 , E3 : 

The reader can verify that: 

(i) A = 2E) + 3E2 + 5E3 , (ii) E) + E2 + E3 = I, (iii) Er = Ej, (iv) EjE) = 0 for i i-j 

Solved Problems 
ADJOINTS 

13.1 .  Find the adjoint of F :R3 -+ R3 defined by 

F(x, y, z) = (3x + 4y - 5z, 2x - 6y + 7z, 5x - 9y + z) 
First find the matrix A that represents F in the usual basis of R3 , that is, the matrix A whose rows are the 

coefficients of x, y, z, and then form the transpose AT of A . This yields [ 3 4 -5 ] 
A = 2 -6 7 

5 -9 I 
and then 

The adjoint F* is represented by the transpose of A; hence 

[ 3 2 5 ] 
AT = 4 -6 -9 

-5 7 I 

F*(x, y, z) = (3x + 2y + 5z, 4x - 6y - 9z, -5x + 7y + z) 

13.2. Find the adjoint of G :C3 -+ C3 defined by 

G(x, y, z) = [2x + ( 1  - i)y, (3 + 2i)x - 4iz, 2ix + (4 - 3i)y - 3z] 
First find the matrix B that represents G in the usual basis of C3 , and then form the conjugate transpose 

B* of B. This yields [ 2 J - i 0 ] 
B = 3 + 2i 0 -4i 

2i 4 - 3i -3 
and then 

Then G*(x, y, z) = [2x + (3 - 2i)y - 2iz, ( 1 + i)x + (4 + 3 i)z, 4iy - 3z] . 
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13.3. Prove Theorem 1 3 .3 :  Let ¢ be a linear functional on an n-dimensional inner product space V. Then 
there exists a unique vector u E V such that ¢(v) = (v ,  u) for every v E V. 

Let {Wj , ' . .  , W n } be an orthonormal basis of V. Set 

u = </J(Wj )Wj + </J(W2)W2 + . . .  + </J(wn)wn 

Let ii be the linear functional on V defined by ii(v) = (v , u) for every v E V. Then, for i = 1 ,  . . .  , n, 
ii(Wi) = (Wi '  u) = (Wi '  </J(Wj )Wj + . . .  + </J(wn)wn ) = </J(Wi) 

Since ii and </J agree on each basis vector, ii = </J. 
Now suppose u' is another vector in V for which </J(v) = (v , u' ) for every v E V. Then (v , u) = (v , u') or 

(v, u - u') = O. In particular, this is true for v = u - u', and so (u - u' , u - u') = O. This yields u - u' = 0 
and u = u'. Thus such a vector u is unique, as claimed. 

13.4. Prove Theorem 1 3 . 1 :  Let T be a linear operator on an n-dimensional inner product space V. Then: 

(a) There exists a unique linear operator T* on V such that 

(T(u) , v) = (u , T*(v)) for all u, v E V. 

(b) Let A be the matrix that represents T relative to an orthonormal basis S = {uJ . Then the 
conjugate transpose A* of A represents T* in the basis S. 

(a) We first define the mapping T* . Let v be an arbitrary but fixed element of V. The map u 1--+ (T(u) , v) is a 
linear functional on V. Hence, by Theorem 1 3 .3 ,  there exists a unique element v' E V such that 
(T(u) , v) = (u ,  v' ) for every u E V. We define T* : V --+ V by T*(v) = v'. Then (T(u) , v) = (u ,  T*(v)) for 
every u , v E V. 

We next show that T* is linear. For any u, Vi E V, and any a, b E K, 

(u , T*(avj + bV2)) = (T(u) , aVj + bV2 ) = a (T(u) , Vj ) + b (T(u) , V2 ) 
= a (u, T* (vj ) )  + b (u ,  T*(V2)) = (u ,  aT*(vj )  + bT*(V2)) 

But this is true for every u E V; hence T*(avj + bV2) = aT*(vj )  + bT*(V2) ' Thus T* is linear. 

(b) The matrices A = [ay] and B = [by] that represents T and T*, respectively, relative to the orthonormal 
basis S are given by ay = (T(uj) ,  Ui) and bij = (T*(u) , Ui ) (Problem 1 3 .67). Hence 

Thus B = A * ,  as claimed. 

13.5. Prove Theorem 1 3 .2 :  
(i) (T] + T2)* = Tf + Tf , 
(ii) (kT)* = kT*, 
(i) For any u, v E V, 

(iii) (T] T2)* = TfTf , 
(iv) (T*)* = T. 

((Tj + T2)(U), v) = (Tj (u) + T2(u) , v) = (Tj (u) , v) + (T2(u) , v) 
= (u , Tt(v)) + (u , T!(v)) = (u ,  Tt(v) + T!(v)) 
= (u , (Tj + T!)(v)) 

The uniqueness of the adjoint implies (Tj + T2)* = Tt + T! . 
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(ii) For any u, v E V, 

((kT)(u) , v) = (kT(u) , v) = k(T(u) , v) = k(u, T*(v)) = (u , kT*(v)) = (u ,  (kT*)(v)) 
The uniqueness of the adjoint implies (kT)* = kT* . 

(iii) For any u, v E V, 

((Tl T2)(U) , v) = (Tl (T2(U)) , v) = (T2(U) , Tf (v)) 
= (u ,  T!(Tf (v)) ) = (u , (T!Tf)(v)) 

The uniqueness of the adjoint implies (Tl T2)* = T! Tj . 
(iv) For any u, v E V, 

(T*(u) , v) = (v, T*(u)) = (T(v) , u) = (u , T(v)) 
The uniqueness of the adjoint implies (T*) * = T. 

[CHAP. 1 3  

13.6. Show that: (a) 1 *  = I ,  and (b) 0* = O .  
(a) For every u, v E V, (/(u) , v) = (u , v) = (u ,  I(v)) ; hence 1* = I. 
(b) For every u, v E V, (O(u) , v) = (0 ,  v) = 0 = (u ,  0) = (u, O(v) ) ; hence 0* = O. 

13.7. Suppose T is invertible. Show that (T- 1 )*  = (T*)- l . 

1 = 1* = (Tr- l )* = (r- 1 )*T* ; hence (r- l )* = (T*)- l . 

13.8. Let T be a linear operator on V, and let W be a T-invariant subspace of V. Show that W-L is invariant 
under T*. 

Let u E W1- . If w E W, then T(w) E W and so (w, T*(u)) = (T(w) , u) = O. Thus T*(u) E W1- since it is 
orthogonal to every w E W. Hence W1- is invariant under T*. 

13.9. Let T be a linear operator on V. Show that each of the following conditions implies T = 0 :  

(i) (T(u) , v) = 0 for every u, v E V. 
(ii) V is a complex space, and (T(u) , u) = 0 for every u E V. 
(iii) T is self-adjoint and (T(u) , u) = 0 for every u E V. 

Give an example of an operator T on a real space V for which (T(u) , u) = 0 for every u E V but 
T i- O. [Thus (ii) need not hold for a real space V.] 
(i) Set v = T(u) . Then (T(u) , T(u)) = 0 and hence T(u) = 0, for every u E V. Accordingly, T = O. 
(ii) By hypothesis, (T(v + w) , v + w) = 0 for any v, W E V. Expanding and setting (T(v) , v) = 0 and 

(T(w) , w) = 0, we find 

(T(v) , w) + (T(w) , v) = 0 ( I )  

Note w i s  arbitrary in ( I ) . Substituting iw for w, and using (T(v) , iw) = i(T(v) , w) = -i (T(v) , w) and 
(T(iw) , v) = (iT(w) , v) = i(T(w) , v) , we find 

-i (T(v) , w) + i (T(w) , v) = 0 

Dividing through by i and adding to ( I ), we obtain (T(w) , v) = 0 for any v, w, E V. By (i), T = O. 
(iii) By (ii), the result holds for the complex case; hence we need only consider the real case. Expanding 

(T(v + w) , v + w) = 0, we again obtain ( 1 ) . Since T is self-adjoint and since it is a real space, we have 
(T(w) , v) = (w, T(v)) = (T(v) , w) . Substituting this into ( 1 ), we obtain (T(v) , w) = 0 for any v, W E V. 
By (i), T = O. 

For an example, consider the linear operator T on R2 defined by T(x, y) = (y, -x). Then 
(T(u) , u) = 0 for every u E V, but T =1= o.  
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ORTHOGONAL AND UNITARY OPERATORS AND MATRICES 

13.10. Prove Theorem 1 3 .6 :  The following conditions on an operator U are equivalent: 

(i) U* = U- J , that is, U is unitary. (ii) (U(v) , U(w)) = (u , w) . (iii) I I U(v) 1 1  = I l v l l . 
Suppose (i) holds. Then, for every v, w, E V, 

(U(v) , U(w)) = (v ,  U*U(w)) = (v , I(w) ) = (v ,  w) 

Thus (i) implies (ii). Now if (ii) holds, then 

I I U(v) 1 I = J(U(v) , U(v)) = J(V,V) = I l v l l  
Hence (ii) implies (iii). It  remains to show that (iii) implies (i) . 

Suppose (iii) holds. Then for every v E V, 

(U*U(v)) = (U(v) , U(v) ) = (v ,  v) = (/(v) , v) 
Hence ((U*U - 1)(v) , v) = 0 for every v E V. But U*U - I is self-adjoint (prove !) ;  then, by Problem 1 3 .9 ,  
we have U* U - I = 0 and so U* U = I. Thus U* = U- l , as claimed. 

13.1 1 .  Let U be a unitary (orthogonal) operator on V, and let W be a subspace invariant under U. Show 
that W 1- is also invariant under U. 

Since U is nonsingular, U(W) = W; that is, for any W E W, there exists w' E W such that U(w') = w. 
Now let v E W.l . Then, for any W E W, 

( U(v) , w) = (U(v) , U(w')) = (v ,  Wi) = 0 

Thus U(v) belongs to W.l . Therefore W.l is invariant under U. 

13.12. Prove Theorem 1 3 .9 :  The change-of-basis matrix from an orthonormal basis {u J ' . . .  , un } into 
another orthonormal basis is unitary (orthogonal). Conversely, if P = [aij] is a unitary (orthogonal) 
matrix, then the vectors Ui' = Lj ajiuj form an orthonormal basis. 

Suppose {vJ is another orthonormal basis and suppose 

( 1 )  

Since {v; } i s  orthonormal, 

(2) 

Let B = [by] be the matrix of coefficients in ( 1 ) .  (Then BT...E the change-of-basis matrix from {u;} to 
{v; } .) Then BB* = [cy] ,  where cy = ba b)l + bi2bj2 + . . .  + binb)n ' By (2), cy = by, and therefore BB* = I. 
Accordingly, B, and hence BT, is unitary. 

It remains to prove that {ui} is orthonormal. By Problem 1 3 .67, 

where Ci denotes the ith column of the unitary (orthogonal) matrix P = [aij] '  Since P is unitary (orthogonal), 
its columns are orthonormal; hence (u; , uj )  = (Ci , C) = bij ' Thus {u;} is an orthonormal basis. 
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SYMMETRIC OPERATORS AND CANONICAL FORMS IN EUCLIDEAN SPACES 

13.13. Let T be a symmetric operator. Show that: (a) The characteristic polynomial �(t) of T is a product 
of linear polynomials (over R). (b) T has a nonzero eigenvector. 

(a) Let A be a matrix representing T relative to an orthononnal basis of V; then A = AT. Let i1(t) be the 
characteristic polynomial of A. Viewing A as a complex self-adjoint operator, A has only real eigenvalues 
by Theorem 1 3 .4. Thus 

where the Aj are all real. In other words, i1(t) is a product of linear polynomials over R 
(b) By (a), T has at least one (real) eigenvalue. Hence T has a nonzero eigenvector. 

13.14. Prove Theorem 1 3 . 1 1 :  Let T be a symmetric operator on a real n-dimensional inner product space 
V. Then there exists an orthonormal basis of V consisting of eigenvectors of T. (Hence T can be 
represented by a diagonal matrix relative to an orthonormal basis.) 

The proof is by induction on the dimension of V. If dim V = I , the theorem trivially holds. Now suppose 
dim V = n > 1 . By Problem 1 3 . 1 3 ,  there exists a nonzero eigenvector VI of T. Let W be the space spanned by 
VI , and let UI be a unit vector in W, e.g. ,  let UI = vd l l v J l I . 

Since VI is an eigenvector of T, the subspace W of V is invariant under T. By Problem 1 3 .8 , W1- is 
invariant under T* = T. Thus the restriction T of T to W 1- is a synunetric operator. By Theorem 7.4, 
V = W EI1 W 1- . Hence dim W 1- = n - I, since dim W = 1 . By induction, there exists an orthononnal basis 
{U2 , • • .  , un } of W1- consisting of eigenvectors of T and hence of T. But (u I , Uj ) = 0 for i = 2, . . .  , n because 
Uj E W1- . Accordingly {UI , U2 , " " un } is an orthononnal set and consists of eigenvectors of T. Thus the 
theorem is proved. 

13.15. Let q(x, y) = 3� - 6xy + l lr .  Find an orthonormal change of coordinates (linear substitution) 
that diagonalizes the quadratic form q. 

Find the synunetric matrix A representing q and its characteristic polynomial i1(t) . We have 

A = [ 3 
-3 

-3 J 1 1  and i1(t) = r - tr(A) t + IA I = r - 14t + 24 = (t - 2)(t - 12) 

The eigenvalues are A = 2 and A = 1 2 . Hence a diagonal fonn of q is 

q(s , t) = 2s2 + 1 2t2 

(where we use s and t as new variables). The corresponding orthogonal change of coordinates is obtained by 
finding an orthogonal set of eigenvectors of A .  

Subtract A = 2 down the diagonal of  A to obtain the matrix 

corresponding to 
x - 3y = 0 

-3x + 9y =  0 
or x - 3y = 0 

A nonzero solution is UI = (3 ,  I ) .  Next subtract A = 1 2  down the diagonal of A to obtain the matrix 

M = [ -9 -3 J -3 - I  
corresponding to 

-9x - 3y = 0 
-3x - y = O  or - 3x - y = O  

A nonzero solution is U2 = (- 1 , 3) . Nonnalize UI and U2 to obtain the orthononnal basis 
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Now let P be the matrix whose columns are III and 1l2 ' Then 

P = [ 3/.JTO - l /.JTO ] 
l /.JTO 3/.JTO 

and 

Thus the required orthogonal change of coordinates is 

3s - t 
or x = --

.JTO 
' 

s + 3 t 
Y = 

.JTO 

One can also express s and t in terms of x and y by using p-I = pT ; that is, 

3x + y s = --
.JTO 

' 
-x + 3y t = ---

.JTO 

13.16. Prove Theorem 1 3 . 1 2 :  Let T be an orthogonal operator on a real inner product space V. Then 
there exists an orthonormal basis of V in which T is represented by a block diagonal matrix M of 
the form 

. ( [ cos el 
M = dtag 1 ,  . . .  , 1 , - 1 ,  . . .  , - 1 ,  . 

e sm I 
-sin el ] [ cos er 

cos el 
' . . .  , 

sin er 
-sin er ]) 

cos er 

Let S = T + T- I = T + T* .  Then S* = (T + T*)* = T* + T = S. Thus S is a symmetric operator on 
V. By Theorem 1 3 . 1 1 ,  there exists an orthonormal basis of V consisting of eigenvectors of S. If AI , . . .  , Am 
denote the distinct eigenvalues of S, then V can be decomposed into the direct sum V = VI EEl V2 EEl . . .  EEl Vm 
where the Vi consists of the eigenvectors of S belonging to Ai' We claim that each Vi is invariant under T. For 
suppose v E V; then S(v) = AiV and 

S(T(v)) = (T + T- 1 )T(v) = T(T + r- l
)(V) = TS(v) = T(AiV) = A;T(v) 

That is, T(v) E Vi ' Hence V; is invariant under T. Since the V; are orthogonal to each other, we can restrict our 
investigation to the way that T acts on each individual V;.  

On a given V;,  we have (T + T- 1 )v = S(v) = AiV. Multiplying by T, we get 

(T2 - AiT + I)(v) = ° 

We consider the cases Ai = ±2 and Ai i- ±2 separately. If Ai = ±2, then (T ± 1)
2
(v) = 0, which leads to 

(T ± I)(v) = ° or T(v) = ±v. Thus T restricted to this Vi is either l or -I. 
If Ai i- ±2, then T has no eigenvectors in V;, since, by Theorem 1 3 .4, the only eigenvalues of T are 1 or 

- l .  Accordingly, for v i- 0, the vectors v and T( v) are linearly independent. Let W be the subspace spanned 
by v and T( v). Then W is invariant under T, since 

T(T(v)) = T2(V) = A;T(v) - v 

By Theorem 7.4, V; = W EEl W1- . Furthermore, by Problem 1 3 .8 ,  W1- is also invariant under T. Thus we can 
decompose Vi into the direct sum of two-dimensional subspaces nJ where the nJ are orthogonal to each other 
and each nJ is invariant under T. Thus we can restrict our investigation to the way in which T acts on 
each individual nJ. 

Since T2 - A iT  + 1 = 0, the characteristic polynomial �(t) of T acting on  � is �(t) = P - Ait + l .  
Thus the determinant of T is 1 ,  the constant term in �(t) . By Theorem 2.7 ,  the matrix A representing T acting 
on nJ relative to any orthogonal basis of nJ must be of the form [ COS e - sin e ] sin e cos e 

The union of the bases of the nJ gives an orthonormal basis of V;, and the union of the bases of the V; gives an 
orthonormal basis of V in which the matrix representing T is of the desired form. 
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NORMAL OPERATORS AND CANONICAL FORMS IN UNITARY SPACES 

13.17. Determine which of the following matrices is normal : 

(a) 

(a) 

A = [ � 
AA* _ [ 1 

- 0 

� l (b) 
i ] [ 1 
1 -i 

B = [ � 2 � i ] 
n = [ -7 :l 

Since AA* # A*A, the matrix A is not normal. 

A*A = [ � -/ n [ � 
i ] [ 1 
1 - -i n 

(b) BB* [ � i ] [ 1 
2 + i  -i 2 � i ] = [ 2 � 2i 

2 + 2i ] = [ 1. 6 -/ 2 � i
] [ � i ] = B*B 

2 + i 

Since BB* = B* B, the matrix B is normal. 

13.1S. Let T be a normal operator, Prove the following: 

(a) T(v) = 0 if and only if T*(v) = 0 , (b) T - AI is normal. 

(c) If T(v) = AV, then T*(v) = AV; hence any eigenvector of T is also an eigenvector of T* . 
(d) If T(v) = AI V and T(w) = A2W where Al of. A2 ' then (v ,  w) = 0; that is, eigenvectors of T 

belonging to distinct eigenvalues are orthogonal. 

(a) We show that (T(v) , T(v)) = (T* (v) , T*(v)) : 

(T(v), T(v)) = (v , T*T(v)) = (v, TT*(v)) = (T*(v) , T*(v)) 

Hence, by [13 ] in the definition of the inner product in Section 7.2,  T(v) = 0 if and only if T*(v) = O. 
(b) We show that T - AI commutes with its adjoint: 

- - -
(T - AI)(T - AI)* = (T - AI)(T* - AI) = TT* - AT* - AT + AAI 

Thus T - AI is normal. 

- - -
= T*T - AT - AT* + AAI = (T* - AI)(T - AI) 
= (T - AI)* (T - AI) 

(c) If T(v) = AV, then (T - AI)(v) = O. Now 1:, - AI is normal by (b); therefore, by (a) , (T - AI)* (v) = O. 
That is, (T* - AI)(v) = 0; hence T*(v) = Av. 

(d) We show that A] (v , w) = A2 (v , w) : 

A ] (v, w) = (A] v, w) = (T(v) , w) = (v , T*(w)) = (v , 12w) = A2 (v , w) 

But A] # A2 ; hence (v , w) = O. 

13.19. Prove Theorem 1 3 . 1 3 :  Let T be a normal operator on a complex finite-dimensional inner product 
space V. Then there exists an orthonormal basis of V consisting of eigenvectors of T. (Thus T can 
be represented by a diagonal matrix relative to an orthonormal basis .) 

The proof is by induction on the dimension of V. If dim V = 1 ,  then the theorem trivially holds. Now 
suppose dim V = n > 1 . Since V is a complex vector space, T has at least one eigenvalue and hence a 
nonzero eigenvector v. Let W be the subspace of V spanned by v, and let u] be a unit vector in W. 

Since v is an eigenvector of T, the subspace W is invariant under T. However, v is also an eigenvector of 
T* by Problem 1 3 . 1 8 ;  hence W is also invariant under T*. By Problem 1 3 . 8 , Wl. is invariant under T** = T. 
The remainder of the proof is identical with the latter part of the proof of Theorem 1 3 . 1 1  (problem 1 3 . 1 4). 
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13.20. Prove Theorem 1 3 . 14 :  Let T be any operator on a complex finite-dimensional inner product space 
V. Then T can be represented by a triangular matrix relative to an orthonormal basis of V. 

The proof is by induction on the dimension of V. If dim V = 1 ,  then the theorem trivially holds. Now 
suppose dim V = n > 1 .  Since V is a complex vector space, T has at least one eigenvalue and hence at least 
one nonzero eigenvector v. Let W be the subspace of V spanned by v, and let Uj be a unit vector in W. Then Uj 
is an eigenvector of T and, say, T(uj ) = al l  Uj .  

By Theorem 7.4, V = W EEl W.l . Let E denote the orthogonal projection V into W.l . Clearly W.l is 
invariant under the operator ET. By induction, there exists an orthonormal basis {U2 , . . .  , un } of W.l such that, 
for i = 2, . . .  , n, 

ET(u) = a12u2 +j3 u3 + . . .  + ajjuj 
(Note that {Uj , U2 , . . .  , un } is an orthonormal basis of v.) But E is the orthogonal projection of V onto W.l ; 
hence we must have 

T(Uj) = ail Uj + aj2U2 + . . .  + ajjUj 
for i = 2, . . .  , n. This with T(uj )  = al l U j  gives us the desired result. 

MISCELLANEOUS PROBLEMS 

13.2 1 .  Prove Theorem 1 3 . 1 0B :  The following are equivalent: 

(i) P = T2 for some self-adjoint operator T. 
(ii) P = S*S for some operator S, that is, P is positive. 

(iii) P is self-adjoint and (P(u) , u) :::: 0 for every U E V. 

Suppose (i) holds; that is, P = T2 where T = T* . Then P = IT = T*T, and so (i) implies (ii) . Now 
suppose (ii) holds. Then P* = (S*S)* = S*S* * = S*S = P, and so P is self-adjoint. Furthermore, 

(P(u) , u) = (S*S(u) , u) = (S(u) , S(u)) :::: 0 

Thus (ii) implies (iii), and so it remains to prove that (iii) implies (i). 
Now suppose (iii) holds. Since P is self-adjoint, there exists an orthonormal basis {Uj , . . .  , un } of V 

consisting of eigenvectors of P; say, P(u) = AjUj . By Theorem 1 3 .4, the Aj are real. Using (iii), we show that 
the Aj are nonnegative. We have, for each i, 

o ::::: (P(u) , uj) = (AjUj , uj) = Aj (uj , uj) 
Thus (Uj , Uj ) :::: 0 forces Aj :::: 0 ,  as claimed. Accordingly, A is a real number. Let T be the linear operator 
defined by 

T(u) = AUj for i = 1 ,  . . .  , n 
Since T is represented by a real diagonal matrix relative to the orthonormal basis {u;} ,  T is self-adjoint. 
Moreover, for each i, 

T2(U;) = T(Auj) = AT(i;) = AAuj = AjUj = P(u;) 
Since T2 and P agree on a basis of V, P = T2 . Thus the theorem is proved. 

Remark: The above operator T is the unique positive operator such that P = T2 ; it is called the 
positive square root of P. 

13.22. Show that any operator T is the sum of a self-adjoint operator and a skew-adjoint operator. 

and 

Set S = ! (T + T*) and U = ! (T - T*) .  Then T = S + U, where 

S* = H (T + T*)] * = ! (T* + T**) = ! (T* + T) = S 
U* = H (T - T*)] * = ! (T* - T) = - ! (T - T*) = -U 

i .e . ,  S is self-adjoint and U is skew-adjoint. 
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13.23. Prove: Let T b e  an arbitrary linear operator on a finite-dimensional inner product space V. Then T is 
a product of a unitary (orthogonal) operator U and a unique positive operator P; that is, T = UP, 
Furthermore, if T is invertible, then U is also uniquely determined, 

By Theorem 1 3 . 1 0, T* T is a positive operator, and hence there exists a (unique) positive operator P such 
that pZ = T*T (problem 1 3 .43). Observe that 

I IP(vW = (P(v) ,  P(v)) = (p
z
(v) ,  v) = (T*T(v) ,  v) = (T(v) ,  T(v)) = I I T(v) l I

z ( 1 )  

We now consider separately the cases when T i s  invertible and non-invertible. 
If T is invertible, then we set [; = PT-1 . We show that [; is unitary: 

and 

Thus [; is unitary. We next set U = [;-1 . Then U is also unitary, and T = UP as required. 
To prove uniqueness, we assume T = UoPo , where Uo is unitary and Po is positive. Then 

But the positive square root of T*T is unique (Problem 1 3 .43); hence Po = P. (Note that the invertibility of T 
is not used to prove the uniqueness of P.) Now if T is invertible, then P is also invertible by ( 1 ). Multiplying 
UoP = UP on the right by p- I yields Uo = U. Thus U is also unique when T is invertible. 

Now suppose T is not invertible. Let W be the image of P, i .e . ,  W = 1m P. We define U1 : W -+ V by 

where P(v) = w (2) 

We must show that U1 is well defined; that is, that P(v) = P(v') implies T(v) = T(v'). This follows from the 
fact that P(v - v') = 0 is equivalent to I IP(v - v') 1 1  = 0, which forces I I T(v - v') II = 0 by ( 1 ) . Thus U1 is well 
defined. We next define Uz : W -+ V. Note that, by ( 1 ), P and T have the same kernels. Hence the images of P 
and T have the same dimension, i .e . ,  dim(lm P) = dim W = dim(lm T) . Consequently, Wl. and (lm T)l. also 
have the same dimension. We let Uz be any isomorphism between Wl. and (1m T)l. . 

We next set U = U1 EEl Uz . [Here U is defined as follows: If v E V and v = w + w', where W E  W, 
w' E Wl. , then U(v) = U1 (W) + Uz(w').] Now U is linear (Problem 1 3 .69), and, if v E V and P(v) = w, then, 
by (2), 

T(v) = U1 (w) = U(w) = UP(v) 

Thus T = UP, as required. 
It remains to show that U is unitary. Now every vector x E V can be written in the form x = P(v) + w' , 

where w' E Wl. . Then U(x) = UP(v) + Uz(w') = T(v) + Uz(w'), where (T(v) ,  Uz(w') ) = 0 by definition of 
Uz . Also, (T(v) ,  T(v)) = (P(v) ,  P(v)) by ( 1 ) . Thus 

( U(x), U(x)) = (T(v) + Uz(w') ,  T(v) + Uz(w')) = (T(v) ,  T(v)) + ( Uz(w') ,  Uz (w')) 

= (P(v) ,  P(v)) + (w' , w' ) = (P(v) + w' , P(v) + w') = (x, x) 

[We also used the fact that (P(v) ,  w' ) = 0.] Thus U is unitary, and the theorem is proved. 

13.24. Let V be the vector space of polynomials over R with inner product defined by 

( f, g) = J>(t)g(t) dt 

Give an example of a linear functional cp on V for which Theorem 1 3 .3 does not hold, i .e . , for 
which there is no polynomial h(t) such that cp(f) = (f, h ) for every f E V. 
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Let </> :  V ---+ R be defined by </>(f) = f(O) ; that is, </> evaluates f(t) at 0, and hence maps f(t) into its 
constant term. Suppose a polynomial h(t) exists for which 

</>(f) = f(O) = J� f(t)h(t) dt ( I )  

for every polynomial f(t) . Observe that </> maps the polynomial if(t) into 0; hence, by ( I ), 

J� if(t)h(t) dt = 0 (2) 

for every polynomial f(t) . In particular (2) must hold for f(t) = th(t) ; that is, 

f rh2(t) dt = 0 

This integral forces h(t) to be the zero polynomial; hence </>(f) = ( f, h) = (f , 0) = 0 for every polynomial 
f(t) . This contradicts the fact that </> is not the zero functional; hence the polynomial h(t) does not exist. 

ADJOINT 

13,25, Find the adjoint of: 

[ 5 - 2i 3 + 7i J (a) A = 
4 _ 6i 8 + 3i ' 

Supplementary Problems 

[ 3 5i J (b) B = i -2i ' 

13.26. Let T :R3 ---+ R3 be defined by T(x, y, z) = (x + 2y, 3x - 4z, y) . Find T*(x, y, z) . 

13.27. Let T :C3 ---+ C3 be defined by T(x, y, z) = fix + (2 + 3i)y, 3x + (3 - i)z, (2 - 5i)y + iz] . 
Find T*(x, y, z) . 

13.28. For each linear function </> on V, find U E V such that </>(v) = (v , u) for every v E V: 
(a) </> :R3 ---+ R defined by </>(x, y, z) = x + 2y - 3z. 
(b) </> :C3 ---+ C defined by </>(x, y, z) = ix + (2 + 3i)y + ( I - 2i)z. 

(c) </> : V  ---+ R defined by </>(f) =f(l ) ,  where V is the vector space of Problem 1 3 .24 . 

13.29. Suppose V has finite dimension. Prove that the image of T* is the orthogonal complement of the kernel of T, 
i .e . ,  1m T* = (Ker T)1- . Hence rank(T) = rank(T*). 

13.30. Show that T*T = 0 implies T = O.  

13.31 .  Let V be the vector space of polynomials over R with inner product defined by ( f, g) = f� f(t)g(t) dt. Let D 
be the derivative operator on V, i .e . ,  D(!) = df / dt. Show that there is no operator D* on V such that 
(D(f) ,  g) = (f, D*(g)) for every f, g E V. That is, D has no adjoint. 

UNITARY AND ORTHOGONAL OPERATORS AND MATRICES 

13.32. Find a unitary (orthogonal) matrix whose first row is: 

(a) (2/.JI3, 3lJTI) , (b) a multiple of ( I ,  l - i), (c) (� , � i, � - � i) 
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13,33, Prove that the products and inverses o f  orthogonal matrices are orthogonal. (Thus the orthogonal matrices 
form a group under multiplication, called the orthogonal group.) 

13.34. Prove that the products and inverses of unitary matrices are unitary. (Thus the unitary matrices form a group 
under multiplication, called the unitary group.) 

13.35. Show that if an orthogonal (unitary) matrix is triangular, then it is diagonal. 

13.36. Recall that the complex matrices A and B are unitarily equivalent if there exists a unitary matrix P such that 
B = P* AP. Show that this relation is an equivalence relation. 

13.37. Recall that the real matrices A and B are orthogonally equivalent if there exists an orthogonal matrix P such 
that B = pIAp. Show that this relation is an equivalence relation. 

13.38. Let W be a subspace of V. For any v E V, let v = W + w', where W E W, w' E W.1 . (Such a sum is unique 
because V = W EEl W.1 .) Let T: V --+ V be defined by T(v) = W - w'. Show that T is self-adjoint unitary 
operator on V. 

13.39. Let V be an inner product space, and suppose U: V --+ V (not assumed linear) is smjective (onto) and 
preserves inner products, i .e . ,  ( U(v) , U(w)) = (u ,  w) for every v, w E V. Prove that U is linear and hence 
unitary. 

POSITIVE AND POSITIVE DEFINITE OPERATORS 

13.40. Show that the sum of two positive (positive definite) operators is positive (positive definite). 

13.41. Let T be a linear operator on V and letf : V x V --+ K be defined by feu , v) = (T(u) , v) . Show thatf is itself 
an inner product on V if and only if T is positive definite. 

13.42. Suppose E is an orthogonal projection onto some subspace W of V. Prove that kI + E is positive (positive 
definite) if k :::: 0 (k > 0). 

13.43. Consider the operator T defined by T(uJ = ,[J:;uj , i = 1 ,  . . .  , n, in the proof of Theorem 1 3 .  l OA. Show that T 
is positive and that it is the only positive operator for which T2 = P. 

13.44. Suppose P is both positive and unitary. Prove that P = I. 

13.45. Determine which of the following matrices are positive (positive definite): 

(i) [ �  , (ii) . , (iii) , (iv) 
1 ] [ 0 i ] [ 0 1 ] [ 1 

1 -/ 0 - 1  0 0 

13.46. Prove tha� a 2 x 2 complex matrix A = [ :  ! ]  is positive if and only if (i) A = A* ,  and (ii) a, d, ad - be are 
nonnegative real numbers. 

13.47. Prove that a diagonal matrix A is positive (positive definite) if and only if every diagonal entry is a 
nonnegative (positive) real number. 
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SELF-ADJOINT AND SYMMETRIC MATRICES 

13.48, For any operator T, show that T + T* is self-adjoint and T - T* is skew-adjoint. 

13.49, Suppose T is self-adjoint. Show that TZ(v) = 0 implies T(v) = 0, Use this to prove that Tn(v) = 0 also implies 
that T(v) = 0 for n > O. 

13,50, Let V be a complex inner product space. Suppose (T(v) , v) is real for every v E V. Show that T is self-adjoint. 

13,51. Suppose Tj and Tz are self-adjoint. Show that Tj Tz is self-adjoint if and only if Tj and Tj commute, that is, 
Tj TZ = TZTj .  

13,52, For each of the following symmetric matrices A ,  find an orthogonal matrix P for which pIAp is diagonal: 

(a) A = [ ; _; ] . (b) A = [ � -�l (C) A = [ � -i J  
13,53, Find an orthogonal change of coordinates that diagonalizes each of the following quadratic forms: 

(a) q(x, y) = lxl - 6xy + l Oy, (b) q(x, y) = xl + 8xy - 5y 
(c) q(x, y, z) = az - 4xy + 5y + 2xz - 4yz + lzz 

NORMAL OPERATORS AND MATRICES 

13.54. Let A = [ ; � J . VerifY that A is normal. Find a unitary matrix P such that P*AP is diagonal. Find P*AP. 

13.55. Show that a triangular matrix is normal if and only if it is diagonal. 

13.56. Prove that if T is normal on V, then II T(v) II = I I T* (v) 1 I  for every v E V. Prove that the converse holds in 
complex inner product spaces. 

13.57. Show that self-adjoint, skew-adjoint, and unitary (orthogonal) operators are normal. 

13.58. Suppose T is normal. Prove that: 

(a) T is self-adjoint if and only if its eigenvalues are real. (b) T is unitary if and only if its eigenvalues have absolute value 1 .  

(c) T is positive if and only if its eigenvalues are nonnegative real numbers. 

13.59. Show that if T is normal, then T and T* have the same kernel and the same image. 

13.60. Suppose Tj and Tz are normal and commute. Show that Tj + Tz and Tj Tz are also normal. 

13.61. Suppose Tj is normal and commutes with Tz .  Show that Tj also commutes with Tr 

13.62. Prove the following: Let Tj and Tz be normal operators on a complex finite-dimensional vector space V. Then 
there exists an orthonormal basis of V consisting of eigenvectors of both Tj and Tz .  (That is, Tj and Tz can be 
simultaneously diagonalized.) 
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ISOMORPHISM PROBLEMS FOR INNER PRODUCT SPACES 

13,63, Let S = {Uj , . . .  , un } be an orthonormal basis of an inner product space V over K. Show that the mapping 
v 1---+ [v]s is an (inner product space) isomorphisms between V and Kn . (Here [v]s denotes the coordinate vector 
of v in the basis S.) 

13.64. Show that inner product spaces V and W over K are isomorphic if and only if V and W have the same 
dimension. 

13.65. Suppose {Uj , . . .  , un } and {u� , . . .  , u� }  are orthonormal basis of V and W, respectively. Let T: V ---+ W be the 
linear map defined by T(uJ = u; for each i. Show that T is an isomorphism. 

13.66. Let V be an inner product space. Recall that each U E V determines a linear functional u in the dual space V* 
by the definition u(v) = (v ,  u) for every v E V(See the text immediately preceding Theorem 1 3 .3 ). Show that 
the map U 1---+ u is linear and nonsingular, and hence an isomorphism from V onto V* .  

MISCELLANEOUS PROBLEMS 

13.67. Suppose {Uj , . . .  , un } is an orthonormal basis of V. Prove: 
- - -

(a) (aj Uj + a2u2 + . . .  + anun , bj Uj + b2U2 + . . .  + bnun ) = aj bj + a2b2 + . . .  iinbn 
(b) Let A = [aij] be the matrix representing T: V ---+ V in the basis {uJ . Then aij = (T(uj) , u) . 

13.68. Show that there exists an orthonormal basis {Uj , . . .  , un } of V consisting of eigenvectors of T if and only if 
there exist orthogonal projections Ej , • • •  , Er and scalars Aj , . . .  , Ar such that: 

(i) T = AjEj + . . .  + ArEr, (ii) Ej + . . .  + Er = I, (iii) EjEj = 0 for i =1= j 

13.69. Suppose V = U EEl W and suppose Tj : U ---+ V and T2 : W ---+ V are linear. Show that T = Tj EEl T2 is also 
linear. Here T is defined as follows: If v E V and v = U + w where U E U, W E W, then 

T(v) = Tj (u) + T2 (W) 

Answers to Supplementary Problems 

13.25. (a) [5 + 2i, 4 + 6i; 3 - 7i, 8 - 3i] , (b) [3 , - 1 ;  -5i, 2i] ,  (c) [ 1 , 2 ;  1 , 3] 

13.26. T*(x, y, z) = (x + 3y, 2x + z, -4y) 

13.27. T*(x, y, z) = [-ix + 3y, (2 - 3i)x + (2 + 5i)z, (3 + i)y - iz] 

13.28. (a) U = ( 1 , 2 , -3), (b) u = (-i, 2 - 3i, 1 + 2i), (c) U = fs ( l 8t2 - 8t + 1 3) 

13.32. (a) ( l /.JI3) [2, 3 ;  3 , -2], (b) ( l /v'3)[I , I - i; I + i, - I ] , 
(c) HI, i, I - i; v'2i, -v'2, 0; I , -i, - I + i] 

13.45. Only (i) and (v) are positive. Only (v) is positive definite. 

13.52. (a and b) P = ( I /.J3)[2, - I ;  - 1 , 2], (c) P = ( l /.JIO)[3 , - I ; - 1 , 3] 

13.53. (a) x = (3x' - y')/.JIO, y = (x' + 3y')/.JIO, (b) x = (2x' - y')/0, y = (x' + 2y')/0, 
(c) x = x' /v'3 + y' /v'2 + z' /v'6, y = x' /v'3 - 2z' /v'6, z = x' /v'3 - y' /v'2 + z' /v'6 

13.54. (a) P = ( l /v'2)[ I , - I ; 1 , 1 ] ,  P*AP = diag(2 + i, 2 - i) 
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Th, mi',,;,'1 in this appendix is much more abstract than that which has previously appeared. We 
[o<";v",, material wilh Ihe following observation. 

Another 

a basis ofa vector space V. Theorem 5.2 may be restated as follows. 

Let g : S -7 V be the inclusion map of S into V. Then for any vector space V and any 
mapping f : S -7 V there exists a unique linear mapping f* : V -7 V such that 
f =/* o g. 

to state that thatf = f* 0 g is that the diagram in Fig. A.l(a) commutes. 

, /,:V@\I' t.':I-'V 

l '  ,f" f '  f' l '  ,f" , 
, , , 

s "':0 Vxll' ':U ,. 1u f j f 
(�) ,'> (q 

Fig. A-I 

.,L",EAR MAPPINGS AND TENSOR PRODUCTS 

be vector spaces over K. A map 

f : V x IV -+ V  

each v E V, the map fv : IV -+ V defined by f.,(w) = f(v. 1\') is linear and, for each 
I"'''-''-'' ''''' �'P ,'. : V -+ V defined by fw(v) = f(v. 1\') is linear. 

415 
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That is,j is linear in each of its two variables. Note thatf is very similar to a bilinear form except that 
now the values of the map are in a vector space U rather than the field K. 

Definition: Let V and W be vector spaces over a field K. The tensor product T of V and W is a vector 
space over K together with a bilinear mapping g : V x W -+ T, denoted by g( v, w) = v I8i w, 
with the following property: 

(*) For any vector space U over K and any bilinear map f : V x W -+ U there exists a 
unique linear map f* : T -+ U such that f* 0 g = f. 

The tensor product T of V and W is denoted by V I8i W and the element u I8i W is called the tensor of u 
and w. The uniqueness in (*) implies that the image of g spans T, that is, that span ({v I8i w}) = T. 

Theorem A.1 :  The tensor product T = V I8i W o f  V and W exists and i s  unique (up to isomorphism). If 
{v I ' . . .  , vn } is a basis of V and {wI ' . . .  , wm } is a basis of W, then the vectors 

vi l8i Wj (i = l ,  . . .  , n and } = l ,  . . .  , m) 

form a basis of T. Thus dim T = (dimV)(dimW) . 

Another way to state condition (*) is that the diagram in Fig. A- l (b) commutes. The fact that such a linear 
map f* exists for any mappingf is called a "universal mapping principle" . [Observe that the basis S of a 
vector space V has this universal mapping property. ] Condition (*) also says that any bilinear mapping 

f : V x W -+ U "factors through" the tensor poroduct T = V I8i W 

Next we give a concrete example of a tensor product. 

Example A.1 
Let V be the vector space of polynomials Pr_ l (x), and let W be the vector space of polynomials P,- I (Y) ' Thus the 
following form bases of V and W, respectively, 

l , x, :? , . . .  , xr- l and l , y, y2 , . . .  , y,- l 

In particular, dim V = r and dim W = s. Let T be the vector space of polynomials in variable x and y with basis 

{Xiyj } where i = 0, . . .  , r - 1 ,  j = 0, . . .  , s - 1 

Then T is the tensor product V ® W under the mapping (.xi , yj) 1-+ xiyj . Note, dim T = rs = (dim V)( dim W) . 

The next theorem tells us that the tensor product is associative in a canonical way. 

Theorem A.2 : Let U, V, W be vector spaces over a field K. Then there is a unique isomorphism 

(U I8i V) I8i W -+ U I8i (V I8i W) 

such that, for every u E U, v E V, W E W, 

(u I8i v) I8i W 1-+ U I8i (v I8i w) 

A.3 ALTERNATING MULTILINEAR MAPS AND EXTERIOR PRODUCTS 

Letf : vr 
-+ U where V and U are vector spaces over K. [Recall vr = V x V x . . .  x V, r factors . ]  

( 1 )  The mappingf is said to  be multilinear or  r-linear iff(vI , . . .  , Vr) i s  linear as  a function of each 
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Vj when the other Vi 'S are held fixed. That is, 

f(· . .  , Vj + vj , . . .  ) = f( · . .  , vj , . . .  ) + f( . . .  , vj , . . .  ) 

f(· . .  , kVj , . . .  ) = life . . .  , Vj , . . .  ) 

where only the jth position changes. 
(2) The mapping f is said to be alternating if 

f(v] , . . .  , vr) = 0 whenever Vi = Vj with i i- j 

One can easily show (Prove ! )  that iff is an alternating multilinear mapping on Vr, then 

f(· . .  , Vi ' . . .  , Vj , . . .  ) = -f( · . .  , Vj , . . .  , Vi ' . . .  ) 

That is, if two of the vectors are interchanged, then the associated value changes sign. 

Example A.2 : Determinant Function 

4 1 7  

The determinant function D : M -+ K on the space M of n x n matrices may be viewed as an n-variable function 

D(A) = D(R] , R2 , • • •  , Rn) 
defined on the rows Ri o R2 , • • •  , Rn of A. Recall (Chapter 8) that, in this context, D is both n-linear and alternating. 

We now need some additional notation. Let K = [k] , k2 , . . .  , krl denote an r-list (r-tuple) of elements 
from In = { l ,  2, . . .  , n } .  We will then use the following notation where the vk 's denote vectors and the aik 's 
denote scalars: 

VK = (Vkl ' V� " " , Vk;.) and aK = a ]kl a2� · · · ark;. 
Note VK is a list of r vectors, and aK is a product of r scalars. 

Now suppose the elements in K = [k] , � , . . .  , krl are distinct. Then K is a permutation (JK of an r-list 
J = [iI ' i2 , . . .  , irl in standardfarm, that is, where i] < i2 < . . .  < ir . The number of such standard-form 
r-lists J from In is the binomial coefficient: 

( : )  - r!(n
n� r) ! 

[Recall sign((JK) = (_ l )mK where mK is the number of interchanges that transform K into J. l 
Now suppose A = [ayl is an r x n matrix. For a given ordered r-list J, we define 

DAA) = 

That is, D AA) is the determinant of the r x r submatrix of A whose column subscripts belong to J. 
Our main theorem below uses the following "shuffling" lemma. 

Lemma A.3 : Let V and U be vector spaces over K, and let f : vr 
-+ U be an alternating r-linear 

mapping. Let v] , V2 , " " Vn be vectors in V and let A = [ayl be an r x n matrix over K 
where r ::: n. For i = 1 ,  2 ,  . . .  , r, 

let 

Then 

f(u] , . . .  , ur) = 'L, DAA)f(vi , Vi " ' " Vi ) 
J 1 2 r 

where the sum is over all standard-form r-lists J = {iI ' i2 , . . .  , q .  
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The proof is technical but straightforward, The linearity off gives us the sum 

f(UI ' ' . .  , ur) = "'LaKf(vK) 
K 
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where the sum is over all r-lists K from { I ,  . . .  , n } .  The alternating property off tells us that f(vK) = 0 
when K does not contain distinct integers. The proof now mainly uses the fact that as we interchange the 
vj 's to transform 

f(VK) = f(Vk" vkz " ' " Vk) to f(vJ) = f(vi, , Viz " ' " Vi) 

so that il < . . .  < ir , the associated sign of aK will change in the same way as the sign of the 
corresponding permutation (J K changes when it is transformed to the identity permutation using 
transpositions. 

We illustrate the lemma below for r = 2 and n = 3 . 

Example A.3 
Suppose f : V2 ---* U is an alternating multilinear function. Let VI '  V2 ' V3 E V and let u, W E V. Suppose 

u = al vl + a2v2 + a3 v3 and W = bl vl + b2V2 + b3 V3 
Consider 

feu,  w) = f(al VI + a2v2 + a3 v3 , bl VI + b2V2 + b3 V3 ) 
Using multilinearity, we get nine terms: 

feu ,  w) = al bd(vl '  V I ) + al bd(vl '  V2) + al bd(vl '  V3 ) 

+ a2bd(V2 ' VI ) + a2bd(V2 ' V2) + a2bd(V2 ' V3 ) 

+ a3bd(V3 '  VI ) + a3bd(V3 '  V2) + a3bd(V3 '  V3 ) 
(Note that J = [ 1 , 2], J' = [ 1 , 3] and J" = [2 , 3] are the three standard-form 2-lists of I = { I ,  2, 3} . )  The alternating 
property off tells us that each f(Vi ' Vi) = 0; hence three of the above nine terms are equal to O. The alternating 
property also tells us thatf(vi , Vj) = -f(vj , v;) . Thus three of the terms can be transformed so their subscripts form a 
standard-form 2-list by a single interchange. Finally we obtain 

feu,  w) = (a l b2 - a2bl)f(VI , V2) + (al b3 - a3bl)f(VI , V3 ) + (a2b3 - a3b2)f(V2 , V3 ) 

= I al a2 I f(VI ' V2) + I al a3 If(VI ' V3 ) + I a2 a3 If(V2 ' V3 ) 
bl b2 bl b3 b2 b3 

which is the content of Lemma A.3 .  

Definition: Let V be an n-dimensional vector space over a field K, and let r be an integer such that 
1 :::::: r :::::: n .  The exterior product or (wedge product) E is a vector space over K together with 
an alternating r-linear mapping g : Vr � E, denoted by g(V I ' . . .  , Vr) = V I /\ . . .  /\ V,., with 
the following property: 

(*) For any vector space U over K and any alternating r-linear map f : Vr � U there 
exists a unique linear map f* : E � U such that f* 0 g = f. 

Such an exterior product is denoted by E = I\r v. Again, the uniqueness in (*) implies that the image 
of g spans E, that is, span ({V I /\ . . .  /\ Vr}) = E. 

Theorem A.4 : Let V be an n-dimensional vector space over K. Then the exterior product E = I\r V of 

V exists and is unique (up to isomorphism). If r > n then E = {O} .  If r :::::: n, then 

dim E = ( �  ) . Moreover, if {V I ' . . .  , Vn } is a basis of V, then the vectors 

Vi, /\ Viz /\ . . .  /\ Vi, ' 

where 1 :::::: il < i2 < . . .  < ir :::::: n, form a basis of E. 
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APPENDIX] MULTILINEAR PRODUCTS 4 1 9  

Again, condition (*) says that the diagram in Fig. A- l (c) commutes. Condition (*) also says that any 
alternating r-linear mapping ! : vr -+ U "factors through" the exterior product E = I\r V. 

We give a concrete example of an exterior product. 

Example A.4. Cross Product 
Consider V = R3 with the usual basis {i , j ,  k} . Let E = /\2 

V. Note dim V = 3 . Thus dimE = 3 with basis 
i /\ j, i /\ k, j /\ k. We identify E with R3 under the correspondence 

i = j /\ k, j = k /\ i = -i /\ k, k = i /\ j 
Let u and w be arbitrary vectors in V = R3 , say 

u = (ai ' a2 , a3 ) = al i + a2 j + a3k and w = (bl , b2 , b3 ) = bl i + b2i + b3k 

Then, as in Example A.3 ,  

u /\ w = (al b2 - a2bl )i /\ j + (al b3 - a3bl )i /\ k + (a2b3 - a3b2)j /\ k 
Using the above identification, we get 

u /\ w = (a2b3 - a3b2)i - (a l b3 - a3bl )j + (al b2 - a2bl )k 

= I :: :: I i - I :: :: Ij + I : : :: Ik 
The reader may recognize that the above exterior product is precisely the well-known cross product in R3 . 

Our last theorem tells us that we are actually able to "multiply" exterior products which allows us to 
form an "exterior algebra" which is illustrated below. 

Theorem A.S : Let V be a vector space over K. Let r and s be positive integers . Then there is a unique 
bilinear mapping 

Example A.S 

I\r V x I\s V -+ I\r+s V 
such that, for any vectors U;, Wj in V, 

(U I /\ . • . /\ ur) x (WI /\ . . .  /\ ws) 1-+ U I /\ . • . /\ Ur /\ WI /\ . . .  /\ Ws 

We form an exterior algebra A over a field K using noncommuting variables x, y, z. Since it is an exterior algebra, our 
variables satisfy: 

x /\ x = O, y /\ y = O, z /\ z = O, and y /\ x = -x /\ y, z /\ x = -x /\ z, z /\ y = -y /\ z  
Every element of A is a linear combination of the eight elements 

1 ,  x, y, z, X /\ y, X /\ z, Y /\ z, X /\ Y /\ z 
We multiply two "polynomials"  in A using the usual distributive law, but now we also use the above conditions. For 
example, 

[3 + 4y - 5x /\ y +  6x /\ z] /\  [5x - 2y] = l 5x - 6y - 20x /\ y +  l2x /\ y /\ z  
Observe we use the fact that: 

[4y] /\ [5x] = 20y /\ x = -20x /\ y and [6x /\ z] /\ [-2y] = - 1 2x /\ z /\ Y = l2x /\ z /\ Y 



Lipschulz-Lipson:Schaum's I Back Matter 

Outline ofTheory and 

Problems of Linear 

Algebra,3/e 

1: = [aij] '  matrix, 28 
A = [aij] '  conjugate matrix, 39 
IA I ,  determinant, 277 ,  28 1 
A* ,  adjoint, 395 
AH, conjugate transpose, 40 
AT, transpose, 34 
Aij' minor, 283 
A(I,  J), minor, 286 
A(V), linear operators, 1 8 1  
adj A ,  adjoint (classical), 285 
A � B, row equivalence, 785 
A ::::::, B, congruence, 377 
e, complex numbers, 12 
en, complex n-space, 14 
C[a , b] ,  continuous functions, 238 
C(f), companion matrix, 3 1 8  
colsp (A), column space, 125 
d(u, v), distance, 6, 252 
diag(a l l , , . .  , ann) ,  diagonal matrix, 37 
diag(A l l , . . .  , Ann) ,  block diagonal, 42 
det(A), determinant, 28 1 
dim V, dimension, 129 
{el , . . .  , en } ,  usual basis, 1 29 
Eb projections, 402 
f : A --+ B, mapping, 1 7 1  
F(X), function space, 1 1 8 
G 0 F, composition, 1 8 1  
HoM(V, U), homomorphisms, 1 8 1  
i, j ,  k, 1 0  
In ' identity matrix, 3 4  
ImF, image, 1 76 
J(A), Jordan block, 344 
K, field of scalars, 1 1 7 
Ker F, kema1, 1 76 
m(t), minimal polynomial, 3 1 8  
Mm,n ' m x n matrices, 1 1 8 
n-space, 5, 14 ,  238 ,  250 
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P(t), polynomials, 1 1 8 
Pit) , polynomials, 1 1 8 
proj(u, v), projection, 6, 245 
proj(u, V), projection, 245 
Q, rational numbers, 1 2  
R, real numbers, 1 
Rn, real n-space, 5 
rowsp (A), rowspace, 1 24 
S1., orthogonal complement, 242 
sgn (1, sign, parity, 280 
span(S), linear span, 1 23 
tr(A), trace, 34 
[1'ls , matrix representation, 203 
1'*, adjoint, 396 
1'-invariant, 342 
1'1, transpose, 368 
I l u l l ,  norm, 5, 14, 237, 25 1 ,  252 
[u]s , coordinate vector, 1 3 5  
u . v ,  dot product, 4 ,  14  
( u ,  v) , inner product, 236, 249 
u x v, cross product, 1 1  
u 0 v, tensor product, 4 1 6  
u /\ v ,  exterior product, 4 1 8  
u EB v ,  direct sum, 1 34, 342 
V � U, isomorphism, 1 37, 1 76 
V 0 W, tensor product, 4 1 6  
V*, dual space, 366 
V* * ,  second dual space, 367 
/\r 

V, exterior product, 4 1 8  
WO, annihilator, 367 

z,  complex conjugate, 1 3  
Z(v , 1') ,  1'-cyclic subspace, 345 
bij' Kronecker delta, 39 
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A(t), characteristic polynomial, 308 
A, eigenvalue, 3 1 0  
L , summation symbol, 30 
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Jordan, 344 
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Jordan, 344 
rational, 345 
row, 74 
triangular, 340 

�:�;:�;�:�;;��;;;,;',�
33
� 

� 
Ii 6, 239, 256 

matrix, 61 
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Column, 28 
operations, 89 
space, 125 
vector, 3 

Companion matrix, 318 
Complement, onhogonal, 242 
Complcmentary minor, 286 
Completing the square, 393 
Complex: 
conjugate, 13 
inner product, 249 
n·space, 14 
numbers, 12 
plane, 13 
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Composition of mappings, 173, 181 
Congruent matrices, 377 
diagonaliwtion, 379 

Conjugate; 
complex, 13 
linearity, 250 

Consistent systems, 61 
Convex set, 201 
Coordinate vector, 135 
Cramer's rule, 285 
Cross product, 1 1 , 419 
Curves, 9 
Cyclic subspaces, 345 

Decomposition: 
direct-sum, 342 
primary, 343 

Degenerate: 
bilincar fonn, 378 
lincar equations, 62 

Dependcncc, linear, 126 
Deternlinant, 278 

computation of, 284 
lincar operator, 289 

Diagonal (of a matrix), 35 
Diagonal matrix, 37 
Diagonali7.ation, 306, 310, 3 15 
algorithm, 313, 379 

Dimen5ion of 5OIution 5pace5, 86 
Dimension of vector spaces, 129 

subspaees, 13 1 
Direct sum, 134 
decomposition, 342 

Directed line segment, 7 
Distance, 6, 252 
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Domain, 1 7 1  
Dot product, 4 ,  1 4  
Dual: 

basis, 366 
space, 366 

Echelon: 
form, 68 
matrices, 73 

Eigenspace, 3 1 0, 3 1 3  
Eigenvalue, 3 1 0, 3 1 3  
Eigenvector, 3 1 0, 3 1 3  
Elementary divisors, 346 
Elementary matrix, 87, 89 
Elementary operations, 63 

column, 88 
row, 75 

Elimination, Gaussian, 64, 69, 7 1 ,  76 
Equal: 

functions, 1 7 1  
matrices, 29 

Equations, (See Linear equations) 
Equivalence: 

matrix, 90 
relation, 76 
row, 75 

Equivalent systems, 63 
Euclidean space, 5 ,  14 ,  238, 250 
Existence theorem, 79 
Exterior product, 4 1 7  

Field o f  scalars, 1 1 6 
Finite dimension, 129 
Fourier coefficient, 83 ,  244 
Free variable, 68 
Function, 1 7 1  
Functional, linear, 365 

Gauss-Jordan algorithm, 77 
Gaussian elimination, 64, 69, 7 1 ,  76 
General solution, 60 
Geometric multiplicity, 3 1 2  
Gram-Schmidt orthogonalization, 247 

Hermitian: 
form, 382 
matrix, 40 
quadratic form, 394 

Homogeneous system, 60, 84 
Hilbert space, 239 
Hyperplane, 8 1 ,  375 

ijk notation, 10 
Identity: 

mapping, 1 73 
matrix, 34 

Image, 1 7 1 ,  1 76 

I Index 

INDEX 

Inclusion mapping, 1 98 
Inconsistent systems, 6 1  
Independence, linear, 1 26 
Infinity-norm, 254 
Injective mapping, 1 73 
Inner product, 4, 236 

complex, 14 ,  249 
usual, 238 

Inner product spaces, 235 ,  249 
linear operators on, 395 

Invariance, 341 
Invariant subspaces, 341 

direct-sum, 342 
Inverse matrix, 36 

computing, 88 
Inverse mapping, 1 74 
Invertible: 

matrices, 35 
linear operators, 1 83 

Isometry, 399 
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Isomorphic vector spaces, 1 37, 1 76 
Isomorphism, 1 80 

Jordan: 
canonical form, 344 
block, 344 

Kernel, 1 76, 1 78 
Kronecker delta bij' 35 

Lagrange's identity, 2 1  
Laplace expansion, 283 
Law of inertia, 3 8 1  
Leading nonzero entry, 73 
Leading unknown, 62 
Length, 5, 237 
Line, 8 ,  201  
Linear: 

combination, 4, 30,  62, 82 
dependence, 1 26 
functional, 365 
independence, 1 26 
span, 123 

Linear equation, 59 
Linear equations (system), 60 

consistent, 6 1  
echelon form, 68 
triangular form, 67 

Linear mapping (function), 1 74 
image, 1 76 
kernel, 1 76 
matrix representation, 2 1 2  
nullity, 1 7 8  
rank, 1 78 
transpose, 368 
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adjoint, 395 
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characteristic polynomial, 3 1 0  
determinant, 289 
inner product spaces, 395 
invertible, 1 83 
matrix representation, 203 

Linear transformation (See linear mappings) 
Located vectors, 7 
LU decomposition, 90 
LDU decomposition, 1 09 

Mappings (maps), 1 7 1  
composition of, 1 73 
linear, 1 74 

Matrices: 
congruent, 377 
equivalent, 90 
similar, 2 1 1 

Matrix, 28 
augmented, 61 
change-of-basis, 207 
coefficient, 6 1  
companion, 3 1 8  
echelon, 73 
equivalence, 90 
Hermitian, 40, 382 
invertible, 35  
nonsingular, 35  
normal, 39  
orthogonal, 38 ,  248 
positive definite, 248 
rank, 75 

Matrix mapping, 1 72 
Matrix multiplication, 3 1  
Matrix representation: 

adjoint operator, 395 
bilinear form, 377 
change of basis, 207 
linear mapping, 2 1 2  
linear operator, 203 

Minkowski 's inequality, 1 8  
Minimal polynomial, 3 1 7, 3 1 9  
Minor, 283 ,  286 

principle, 287 
Multilinearity, 289, 4 1 6  
Multiplicity, 3 1 2  
Multiplier, 70, 76, 90 

n-space: 
complex, 14  
real, 2 

Natural mapping, 367 
Nilpotent, 343 
Nonnegative semidefinite, 3 8 1  
Nonsingular: 

linear maps, 1 80 
matrices, 35  

I Index 

INDEX 

Norm, 5 , 237, 257 
Normal: 

matrix, 39  
operator, 397, 40 1  

Normal vector, 8 
Normed vector space, 25 1 
Normalizing, 5 
Null space, 1 78 
Nullity, 1 78  

One-norm, 252 
One-to-one: 

correspondence, 1 73 
mapping, 1 73 

Onto mapping, 1 73 
Operators (See Linear operators) 
Orthogonal, 4, 24 1 

basis, 243 
complement, 242 
group, 4 1 2  
matrix, 38 ,  248 
operator, 398 
projection, 402 
sets, 243 
substitution, 3 1 7  
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Orthogonalization, Gram-Schmidt 247 
Orthogonally equivalent, 400 

' 

Orthonormal basis, 39  

Parameters, 69 
Permutations, 279 
Perpendicular, 4 
Pivot: 

entries, 70 
variables, 68 

Pivoting (row reduction), 98 
Polar form, 380 
Polynomial: 

characteristic, 309 
minimum, 3 1 8 , 320 

Positive definite: 3 8 1  
matrices, 248 
operators, 400 

Positive operators, 400 
Primary decomposition, 243 
Principle minor, 288 
Product: 

exterior, 4 1 7  
inner, 4 ,  236 
tensor, 4 1 5  

Projections, 6 ,  1 75 ,  1 97, 245, 360 
orthogonal, 402 

Pythagorian theorem, 243 

Quadratic form, 3 1 7, 380 
Quotient spaces, 346 
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Rank, 75, 90, 1 3 1 ,  1 78  
Rational canonical form, 345 
Real symmetric bilinear form, 3 8 1  
Restriction mapping, 200 
Rotation, 1 77 
Row, 28 

canonical form, 74 
equivalence, 75 
operations, 75 
rank, 1 32 
space, 1 24 

Scalar, 1 ,  1 1 6 
matrix, 34 
multiplication, 2, 3 
product, 4 

Schwarz inequality, 6 
(See Cauchy-Schwarz inequality) 

Second dual space, 367 
Self-adjoint operator, 398 
Sign of permutation, 280 
Signature, 3 8 1 ,  382 
Similarity, 2 1 1 ,  234 
Singular, 1 80 
Skew-adjoint operator, 397 
Skew-Hermitian, 40 
Skew-symmetric, 38 
Solution, general, 60 
Spatial vectors, 1 0  
Span, 120 
Spanning sets, 120 
Spectral theorem, 402 
Square matrix, 33 
Square root of a matrix, 3 1 1  
Standard: 

basis, 1 29, 1 3 0  
inner product, 238 

Subspace, 1 2 1  
Sum o f  vector spaces, 1 34 
Summation symbol, 30 
Surjective map, 1 73 
Sylvester's theorem, 3 8 1  
Symmetric: 

bilinear form, 378 ,  3 8 1  
matrices, 3 8  

I Index 

Systems of linear equations (See Linear equations) 

Tangent vector, 9 

INDEX 

Target set, 1 7 1  
Tensor product, 4 1 4  
Time complexity, 9 1  
Trace, 34 
Transpose: 

matrix, 3 3  
linear mapping, 368  

Transition matrix, 207 
Triangle inequality, 240 
Triangular form: 

linear equations, 67 
linear operators, 340 

Triangular matrix, 37 
Triple product, 1 1  
Two-norm, 252 

Uniqueness theorem, 79 
Unit vector, 5 ,  237 
Unitary: 

equivalence, 400 
group, 4 1 2  
matrix, 40 
operator, 398 

Usual: 
basis, 1 29, 1 30  
inner product, 238 

Variable, free, 68 
Vector, 1 ,  14 ,  1 1 6 

column, 3 
coordinate, 1 3 5  
located, 7 
spatial, 1 0  
unit, 5 

Vector space, 1 1 6 
basis, 1 29 
dimension, 1 29 
isomorphism, 1 76 
normed, 25 1 
sums, 1 3 5  

Volume, 1 1 , 288 

Wedge product, 4 1 8  

Zero: 
mapping, 1 8 1  
matrix, 29 
solution, 84 
vector, 3 
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