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Francis Su, PhD
Benediktsson-Karwa 
Professor of Mathematics 
Harvey Mudd College

F rancis Su is the Benediktsson‑Karwa Professor of Mathematics at 
Harvey Mudd College. He earned his PhD from Harvard University, 

and he has held visiting professorships at Cornell University and the 
Mathematical Sciences Research Institute in Berkeley, California. In 
2015 and 2016, he served as president of the Mathematical Association 
of America (MAA). 

Professor Su’s research focuses on geometric and topological combinatorics 
and their applications to the social sciences. He uses ideas from pure 
mathematical areas such as topology—the study of stretching things—to 
applied questions involving how people make decisions. His work on the 
rental harmony problem, the question in mathematical economics of how 
to divide rent fairly among roommates, was featured in The New York 
Times, and he has published numerous scientific papers. He is also the 
author of Mathematics for Human Flourishing, which will be published 
in late fall 2019.
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Professor Su has a passion for teaching and popularizing mathematics. 
His speeches and writing have earned acclaim for describing the 
humanity of mathematics and for calling people to greater awareness 
of issues that contribute to inequitable mathematics education. Wired 
magazine called him “the mathematician who will make you fall in love 
with numbers.”

Professor Su has been nationally recognized for his teaching and 
mathematical exposition. From the MAA, he has received the Deborah 
and Franklin Tepper Haimo Award and the Henry L. Alder Award for 
exemplary teaching as well as the Paul R. Halmos‑Lester R. Ford Award 
and the Merten M. Hasse Prize for distinguished writing. Three of his 
articles have appeared in the Princeton University Press annual anthology 
The Best Writing on Mathematics. He is the author of the popular Math 
Fun Facts website, has a widely used YouTube course on real analysis, 
and is the creator of MathFeed, the math news app. ∎
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Mastering Linear Algebra
An Introduction with Applications

L inear algebra is both powerful and beautiful, with classical roots 
and modern applications. Many structures in the world are linear 

or approximately linear, so linear algebra is a necessary tool for every 
scientist. The 24 lectures in this course form an accessible introduction 
to the elegant ideas of linear algebra and their applications in economics, 
physics, biology, computer science, and engineering, in addition to 
mathematics and statistics. Beyond these areas, linear algebra is of 
growing importance in nonquantitative fields that are taking advantage 
of modern techniques in data science. Moreover, the underlying 
geometric ideas are beautiful, and they yield insights beyond algebraic 
understanding. This course will prepare you to move skillfully between 
the abstract and concrete, between geometry and algebra, between 
visualization and computation. 

The course begins with an overview lecture (lecture 1) that hits 4 themes 
that appear throughout the course: that linear algebra is a fundamental 
idea in mathematics that you’ll find everywhere, that linear things are 
used to approximate nonlinear things, that linear algebra reveals hidden 
structure, and that the power of linear algebra comes from its interplay 
between geometry and algebra.

Lectures 2 through 17 discuss core topics in linear algebra, beginning 
in lectures 2 through 5 with the basic algebraic objects—vectors and 
matrices—and their geometric intuition. Lecture 5 explains the intuition 
behind linear transformations; this is earlier than in most treatments of 
linear algebra, which often favor studying linear equations first.

Mastering Linear Algebra
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Lectures 6 and 7 discuss how to solve a system of linear equations and 
introduce the idea of simplifying a system to reduced row echelon form, 
which is particularly useful in unlocking the connection between various 
other concepts associated with matrices.

Lectures 8 through 10 develop the idea of a subspace by first explaining 
the concept of the span of a set of vectors—all the points that can be 
reached by using those vectors—and then defining linear independence 
of a set of vectors, which help you decide when you have a set of vectors 
that is minimally efficient in reaching all the points in its span. The span 
of the rows and columns of a matrix are special subspaces associated to 
a matrix, and the set of all vectors that a matrix sends to zero is another 
subspace, called the null‑space.

Lectures 11 and 12 discuss a central concept—invertibility—and all 
the different ways of understanding this concept. Lecture 13 describes 
the determinant, a single number associated to a matrix, that helps 
you understand invertibility as well as how the linear transformation 
associated to a matrix scales volumes. Then, lectures 14 through 
17 develop intuition for eigenvectors and eigenvalues, some of the 
most important ideas in linear algebra, in the context of an extended 
application to population biology: modeling predator‑prey relationships.

Lectures 18 through 23 showcase many extended applications of linear 
algebra. Lecture 18 discusses how linear algebra helps you solve systems 
of differential equations and how eigenvectors and eigenvalues show up 
in their solutions. Only very little calculus is assumed in that lecture. 
Lecture 19 develops the ideas of orthogonality and the QR‑factorization 
of a matrix. Lecture 20 discusses Markov chains, which are useful for 
modeling many systems of interest in the real world that evolve according 
to some probabilities. Lecture 21—which assumes you know some 
single‑variable calculus—shows how linear algebra provides a window to 
understanding calculus in many variables. In particular, linear functions 
help approximate the nonlinear functions encountered in multivariable 

Mastering Linear Algebra
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calculus. Lecture 22 explains how linear algebra is important in statistics 
by shedding light on what regression is and how it’s done. Lecture 23 
builds up the ideas behind the singular value decomposition, a powerful 
way to factor matrices, and discusses an application to recommender 
systems like ones that recommend movies for you to watch.

Lecture 24 concludes the course with a preview of how the powerful 
ideas of linear algebra for n‑dimensional vectors apply to more general 
vector spaces, where vectors could be things like functions and could be 
infinite‑dimensional. These concepts reveal that even simple ideas in 
linear algebra are actually profound ideas that show up in unexpected 
contexts once you see the hidden structure underneath. ∎
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NOTE

Each lecture has a few linear algebra problems 
associated with it that you can do to practice 
the concepts from the lecture, but these will 
not be sufficient to support your learning of 
linear algebra. You’ll want to follow a text and 
work on exercises to be sure you understand 
the concepts. This course will follow David 
Lay, Steven Lay, and Judi McDonald’s Linear 
Algebra and Its Applications and David Poole’s 
Linear Algebra: A Modern Introduction (both 
listed in the Bibliography), but almost any text in 
linear algebra will do if you look at the sections 
covering the topics indicated.
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Lecture 1

LINEAR ALGEBRA: POWERFUL 
TRANSFORMATIONS

L inear algebra is a foundational subject in mathematics 
that is both powerful and beautiful, with classical 

roots and modern applications. The goal of this lecture 
is to give you a sense of what linear algebra is, why it 
is important, and how it can help solve some interesting 
problems. Specifically, the lecture focuses on what a linear 
transformation is and how it arises in many contexts where 
you wouldn’t expect it.

Transformations
Transformation is really just another word for 
function, which is a rule for taking an input 
(such as a number, or a set of numbers) 
and assigning an output (another number, 
or set of numbers). In linear algebra, 
functions are called transformations 
because we think of them as changing 
one picture into another. The second 
picture is called the image of the first.

https://www.thegreatcourses.com/
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A transformation assigns every point or object in the old picture 
to an “image” in the new picture where it has moved. This kind of 
transformation might be important in computer graphics if you want 
to change perspective.

But there are many other kinds of transformations. Suppose you like 
to snack on nuts and chocolate, but you also care about eating healthy.

Suppose you do some measurements on a collection of x chocolates 
and y nuts and find that they have m grams of carbohydrates and n 
grams of fat. That is a transformation of 2 numbers (x and y) into their 
“image”—2 numbers (m and n).

We are now ready to define the term linear 
algebra:

Linear algebra is the study of certain kinds of 
spaces, called vector spaces, and of special 
kinds of transformations of vector spaces, 
called linear transformations.

 LECTURE 1
 Linear Algebra: Powerful Transformations
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Our view of the night sky is the perfect backdrop for understanding 
linearity.

We imagine our view of the night sky as being represented on a 
2‑dimensional plane.

Suppose you find the planet Saturn and mark its position on nights 
0 and 1.

On night 2, where should you look?

Without any knowledge of the motion of planets, there is really only 
one reasonable guess.

You naturally assume that Saturn’s motion from night 0 to night 1 will 
continue in the same direction and at the same speed as it moves on 
subsequent nights. This motion is linear.

So, on night 3, you would expect to find Saturn here:

 LECTURE 1
 Linear Algebra: Powerful Transformations
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One feature of this motion is that no matter which night you start 
observing, the planet will traverse the same distance along that line 
from night to night. With linear motion, the distance and direction 
traveled only depends on the time elapsed, not on the starting position.

That’s what’s happening geometrically. What’s going on algebraically?

Imagine that our view of the sky has coordinates, and suppose you find 
Saturn at (0, 0) on night 0 and at (p, q) on night 1.

Then, on night 2, you expect to find Saturn near (p, q)     +     (p, q), which 
is the point (2p, 2q).

 LECTURE 1
 Linear Algebra: Powerful Transformations
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More generally, at time t, Saturn should be at (0, 0)     +     t (p, q). As time 
varies, this expression traces out a line with constant speed. This is a 
function that takes a time t to its image, which is a position in the sky.

Of course, planets do not move in straight lines, neither in the sky nor 
in real life.

However, if the planet’s motion is relatively smooth, the formula would 
be actually quite good for small timescales. That’s because when a path 
isn’t linear, it is often approximately linear.

This idea is at the heart of calculus. When you encounter a crazy 
function, calculus suggests you try to approximate it by something you 
understand better. The graph of a function that is not linear can, if it’s 
simple enough, be approximated as a line.

That’s what’s going on in this example. Because you only had 2 data 
points, you assume that Saturn moves linearly as a function of one 
variable, which is time.

But this idea of linearity also makes sense for functions of several 
variables. For example, you might have a function T that takes a 
position in the plane to another position in the plane.

 LECTURE 1
 Linear Algebra: Powerful Transformations
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Suppose you wanted to take a square grid, in the left picture, and convert 
it to the picture on the right, which looks like the same square grid viewed 
from a different angle and distance. If you were doing computer graphics, 
you might want to have the ability to change perspective like this.

The function T that performs this conversion moves points in the plane 
around; the diagram suggests how the points get transformed and how 
lines and arrows on the diagram get transformed as well. This change 
of perspective is a linear transformation, and it demonstrates 2 good 
linearity properties.

Look at the pink arrow in view 1 
indicated by the letter v, which is 
based at the point (0, 0). The purple 
arrow, twice its size and pointing in 
the same direction, is labeled 2v. The 
transformation T has the property 
that the image of the pink and purple 
arrows is related in the same way in 
view 2 (twice the size and pointing in 
the same direction).

Vectors are often 
denoted by boldface 
letters (r) or by an 
arrow diacritic (r ). 
The styles have the 
same meaning, and 
both are used in 
this book.

 LECTURE 1
 Linear Algebra: Powerful Transformations
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You can think of the pink arrow as a small change in input. So, this 
property shows that if you double the input vector (pink arrow v 
changing to purple arrow 2v), the output should double as well—e.g., 
double its magnitude but retain its direction (the pink arrow T(v) 
changing to purple arrow 2T(v)).

So, here’s the first linearity property: For any real number k,

T(kv) = kT(v).

In other words, it doesn’t matter whether you scale first and then apply 
T or apply T first and then scale.

A second property of this transformation is if you’re anywhere else 
besides the origin and modify your input by v, then the output changes 
by T(v) no matter where you were to begin with. Compare the blue 
arrow marked v, starting at w, with the pink arrow at the origin marked 
v. They represent the same change in input. Under the transformation, 
the pink arrow gets transformed to T(v) at the origin and the blue 
arrow gets transformed to T(v) based at T(w), but the 2 arrows marked 
T(v) are the same and represent the same change in output.

 LECTURE 1
 Linear Algebra: Powerful Transformations
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This transformation has the same property as the Saturn example did: 
Equal changes in input (in that case, it was time) lead to equal changes 
in output.

This highlights the second linearity property: For any points v and w,

T(w     +     v) = T(w)     +     T(v).

In other words, the transformed sum is the sum of the transformed 
points—or, another way, it does matter whether you add first and apply 
T, or apply T first and then add.

So, change of perspective in computer graphics is also a linear 
transformation.

Returning to the nutrition example, suppose that x is the number of 
chocolates you have and y is the number of nuts.

Then, if a single chocolate has a grams of carbs and a single nut has b 
grams of carbs, then the total carbs in your snack is (ax     +     by) grams. 
Similarly, if c and d record the number of grams of fat in a chocolate 
and in a nut, respectively, then you’d have (cx     +     dy) grams of fat.

So, if A is the transformation that takes the number of chocolates and 
nuts to the numbers of grams of carbs and fat, then it is represented by

A(x, y) = (ax     +     by, cx     +     dy).

 LECTURE 1
 Linear Algebra: Powerful Transformations
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You can check that if you vary x by 1 unit, the output changes by (a, c) 
grams, no matter what x and y are. If you vary y by 1 unit, you get 
similar behavior. So, this transformation is linear, too.

What you see here is an example of a system of equations:

ax     +     by = carb grams 
cx     +     dy = fat grams.

Systems of equations (often with many more equations and variables) arise 
in so many applications that one of the most important questions you can 
ask mathematically is how to find solutions to such equations. And linear 
algebra helps you do that. One of the ways to do that is to represent the 
coefficients of a system in a matrix, which is an array of numbers.

Matrices have their own algebra—operations that you can do with 
them. And because it turns out that every linear transformation can 
be associated to a matrix, learning how matrices behave is a big part of 
doing linear algebra.

At the same time, systems of equations can be understood geometrically, 
too. Each linear equation has a solution set that is a linear object, such 
as a line or plane or hyperplane. So, to solve a system of equations 
simultaneously can be understood as intersecting a bunch of hyperplanes 
and asking what (if anything) is in the intersection.

There are many ways in which linear transformations arise, and this 
is the first of several important themes in this course—reasons you’ll 
want to learn linear algebra.

 LECTURE 1
 Linear Algebra: Powerful Transformations
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Because linear transformations describe the geometry of a change 
of perspective, if you know how to represent them by a matrix, you 
can compute them fairly easily. When producing computer graphics, 
rotating an object, or scaling up an object, or flattening a 3‑D object 
to a 2‑D object are all linear transformations. But there are many other 
linear relationships in life that may not be obvious at first glance.

For example, suppose you want to measure the importance of a 
webpage. One way to do that is to imagine a person surfing the web. 
He or she starts at one webpage and picks one link on the page at 
random and hops to that page. He or she repeats that process with the 
new webpage. Then, after many hops, you might expect that he or she 
is more likely to be at a popular page than at a less popular one, because 
a popular page will have many paths to get there. This gives you a way 
of ranking pages.

Imagine a very simple web with 
just 2 pages: page 1 and page 2. 
Suppose there are 4 links from 
page 1 to itself (which could 
happen if the page linked to 
another part of the same page), 
and suppose there is a single link 
from page 1 to page 2. And let’s 
say that page 2 has 3 self‑links and 
2 links to page 1.

THEME 1

Linearity is a fundamental idea in mathematics and in the 
world—you will encounter it everywhere.

 LECTURE 1
 Linear Algebra: Powerful Transformations
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If the probability of being at page 1 is x0, and the probability of being at 
page 2 is y0, then after one hop, what are the new probabilities of being 
at those pages?

You can get to page 1 either from page 1 or page 2. So, the probability 
of being at page 1 after one hop is the probability of going from page 1 
to page 1, which is 4 ∕5; times the probability of starting at page 1, called 
x; plus the probability of starting at page 2 and going to page 1, which 
is 2 ∕5; times the probability of starting at page 2, called y.

The probability of being at page 2 after one hop can be computed in a 
very similar way. By inspecting the link diagram, you get

So, the 2 probabilities of ending at page 1 and page 2 are given by 
linear equations and can be represented by this linear transformation:

 LECTURE 1
 Linear Algebra: Powerful Transformations
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To get the probability vector of being at page 1 and 2 at time (n     +     1), 
represented by (xn+1, yn+1), you can just apply T to the probability vector 
at time n, which is represented by (xn, yn).

.

So, if you had a way of computing repeated linear transformations 
quickly, you could then perform this linear transformation T 100 times 
to get the probability of being at pages 1 and 2 after 100 steps. Larger 
probabilities then correspond to popular pages, and you would have 
your version of page rank.

Things in the world that are not linear 
are often approximately linear.

In multivariable calculus, when 
we encounter graphs of nonlinear 
functions, we approximate them 
locally by tangent planes (if they 
are differentiable).

THEME 2

To understand nonlinear things, we approximate them by 
linear things.

 LECTURE 1
 Linear Algebra: Powerful Transformations
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In statistics, when we encounter a cloud 
of data points, we often assume linear 
relationships and use regression to try 
to fit the best line or hyperplane. Or 
maybe we try to reduce the dimensions 
of the data to something manageable by 
finding special directions in which there 
is a lot of variation.

Returning again to the nutrition example, suppose you were looking at 
your snack of chocolates and nuts as a producer, wondering about the 
cost and time of producing chocolates and nuts.

Cost and time are not linear functions of quantity. If they were linear, 
then the cost to produce one more nut would be the same no matter 
how many nuts you had produced already. But usually, there are 
efficiencies that you gain from mass production, so the cost to produce 
an additional nut or chocolate is cheaper after you’ve produced a lot of 
them, and the additional time it takes is much smaller, too.

So, whatever transformation T that takes quantities to (cost, time) is 
nonlinear. However, like many things in this world, it is locally linear. 
That means that if you know how much an additional nut adds to time 
and cost and how much an additional chocolate adds in time and cost, 
then that is enough to approximate how much additional time and cost 
it takes to produce any small numbers of nuts and chocolates.

THEME 3

Linear algebra reveals hidden structures that are beautiful 
and useful.

 LECTURE 1
 Linear Algebra: Powerful Transformations
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You’ve seen that if you know quantities (x, y) of snacks, you can figure 
out (fat, carbs). But what if you know (fat, carbs) and you want to 
solve for quantities x and y? This is the problem of solving a system of 
linear equations. It might be easy with functions of 2 variables using 
substitution, but if you have a large number of variables, this strategy 
won’t work. You’ll have to be more systematic.

Linear algebra can be useful here, because much of what linear algebra 
does is reveal hidden structure and then use those structures to give 
us insight into what is really going on. Such insights often allow us to 
solve problems in a simpler way.

For example, you may not be able to see if a system of equations has a 
solution just from inspection, but if you see the system of equations as 
arising from a linear transformation of some variables, you may be able 
to put those equations in a simpler form.

And matrix algebra, which underlies the algebra of linear 
transformations, seems strange at first and has a lot of hidden structure 
that turns out to be really useful. For example, let’s return to the 
simple 2‑page web. Recall that this linear transformation T converted 
the n‑step probabilities of being at pages 1 or 2 to the (n     +     1)‑step 
probabilities of being at pages 1 or 2.

So, if you start at page 1, to find the page probabilities after 100 hops, 
you just apply the linear transformation T 100 times to the initial 
starting configuration (1, 0).

 LECTURE 1
 Linear Algebra: Powerful Transformations
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This calculation can be done very efficiently, because the transformation 
T has special vectors, called eigenvectors, for which applying T is 
very easy.

.

Look at this vector: (2, 1). Notice when you apply T to (2, 1), you just 
get back (2, 1)! In other words, T doesn’t do anything to (2, 1). So, if 
you apply T to (2, 1) ninety‑nine more times, it’s still unchanged!

.

Look at this vector: (1, −1). If you compute A times (1, −1), you get (2 ∕5, −2 ∕5).

The key insight here is that (2 ∕5, −2 ∕5) is actually a multiple of (1, −1).

.

So, T(1, −1) is just 2 ∕5 times (1, −1). And if you multiply by A ninety‑
nine more times, it’s just (2 ∕5)100 times (1, −1)!

.

If you start in page 1, the beginning vector of page probabilities is (1, 0), 
because there’s no chance of being in page 2. This vector is not a special 
vector, and the matrix A does not act on (1, 0) in a very nice way.

 LECTURE 1
 Linear Algebra: Powerful Transformations
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THEME 4

Linear algebra’s power often comes from the interplay 
between geometry and algebra.

But notice that (1, 0) can be written as a combination of the special 
eigenvectors; in fact, it is 1 ∕3 of both eigenvectors summed.

.

Then, something amazing happens: The first and second linearity 
properties ensure that you can apply T first to (2, 1) and to (1, −1) 
before you scale or sum them! But those actions are very easy. T does 
nothing to (2, 1) and multiplies (1, −1) by 2 ∕5.

.

Each additional time you apply T, it just multiplies the second 
eigenvector by 2 ∕5. This means that T 100(1, 0) is just, by linearity 
properties, the sum

.

This is easy to compute. Notice how small the second term is. The first 
term is (2 ∕3, 1 ∕3), and it dominates! So, after many hops, the likelihood 
of being in pages 1 and 2 is (2 ∕3, 1 ∕3). This says that page 1 is more 
popular than page 2.

 LECTURE 1
 Linear Algebra: Powerful Transformations
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With every new concept in this course, you’ll learn how to think about 
it algebraically (in terms of algebraic expressions) and geometrically (in 
terms of things you can visualize).

For example, the set of solutions to a linear equation in 3 variables, 
such as x     +     2y     +     3z = 10, represents a plane in 3‑dimensional space.

If you know this, then you know that if you have 2 such linear equations 
involving x, y, and z, the set of solutions that satisfies both equations 
will be the intersection of 2 planes, which in most cases is just a line. 
If the 2 planes happen to be the same plane, then the set of solutions 
may also be a whole plane. But if the 2 planes happen to be parallel and 
disjoint, then the pair of equations may have no simultaneous solution.

Notice that this insight came very easily from the geometric view 
of these algebraic equations but may not have been obvious just by 
looking at the equations. This kind of interplay between algebra and 
geometry is indeed very powerful.

READINGS
Chartier, When Life Is Linear, chap. 1.

Lay, Lay, and McDonald, Linear Algebra and Its Applications. Read the 
Introductory Example of every chapter.

Poole, Linear Algebra. Skim the book and read various sections—Introductions, 
Applications, and Vignettes—that look interesting. For now, read for the 
big ideas without worrying about the mathematical details.

 LECTURE 1
 Linear Algebra: Powerful Transformations
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Lecture 2

VECTORS: DESCRIBING 
SPACE AND MOTION

O ne way to think of mathematics is that it is a study 
of objects with structure and of functions that can 

preserve that structure. In linear algebra, the basic objects of 
study are vectors, and mathematicians like to think of them as 
having a certain kind of structure—namely, you can perform 
certain vector operations, such as addition and scalar 
multiplication. The operations give a structure to the set of 
vectors by telling you how to do things with them. The goal of 
this lecture is to understand vectors and their structure.

Vectors
There are several different ways to define vectors.

The geometric way to define a vector is as an object living in some space. 
We need to be careful what space we are talking about. We live in a 
universe with 3 spatial dimensions that are evident to us, and a vector 
could live in this space. But we may also be interested in limiting 
ourselves to a 2‑dimensional space, such as points in a plane, like a 
sheet of paper. Or we may be interested in an n‑dimensional space, 
which can arise in ways that don’t represent physical space but are still 
useful to think about geometrically.
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When you fix the space you’re talking about, a vector is a line segment 
in space with a magnitude and a direction.

If you’ve learned any physics, you might think of 
vectors as arrows in space that specify a magnitude 
and—if the length isn’t zero—a direction. This is a 
geometric definition of a vector.

One end is called the head, and the other is the tail; 
the arrow points in the direction moving from tail 
to head. Any 2 arrows with the same magnitude 
and direction are considered the same vector, no 
matter where the arrow is placed.

This notion of a vector as an arrow or directed line segment shows 
why vectors are often used to represent things like motion, forces, and 
velocities in physics. Forces and velocities have an intrinsic magnitude 
and direction.

Geometric Definition of a Vector: a line segment with a 
magnitude and a direction.

Algebraic Definition of a Vector: an ordered collection of 
numbers.

 LECTURE 2
 Vectors: Describing Space and Motion

https://www.thegreatcourses.com/


24

Another way that some people think of vectors is as an ordered 
collection of numbers, such as (3, 1, 4) or (−1, 2.5) or (2, 3). This is an 
algebraic definition of a vector. The numbers are called components 
or coordinates, and for the most part, they will be considered real 
numbers.

The set of all vectors with n components is called ℝn.

The ℝ stands for the real numbers, and the superscript represents how 
many components the vectors have. Remember, this is just notation 
for a set of vectors. We are not raising numbers to a power; we are just 
looking at a set of vectors and giving it a name.

So, ℝ2 is the set of all ordered pairs of real numbers, such as (2, 3).

Depending on context, the components could be written as a row vector, 
in which the numbers are arranged in a row, or as a column vector, in 
which the numbers are arranged in a column.

This view of a vector as an ordered collection of 
numbers is often used when working with data.

 LECTURE 2
 Vectors: Describing Space and Motion
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There is a natural correspondence between the algebraic definition of 
a vector as an ordered collection of n real numbers and the geometric 
definition of a vector as an arrow in n‑dimensional space.

To see this, we must first fix some coordinate 
directions. In the plane, we usually choose the 
x and y axes, drawn with the positive y‑axis 
90° counterclockwise to the positive x‑axis. 
Then, a vector in ℝ2 specified by an ordered 
pair of numbers like (2, 3) corresponds to an 
arrow in the plane that moves 2 units in the x 
direction and 3 units in the y direction.

In 3‑dimensional space, we usually choose the 
x, y, and z axes as coordinate directions.

You are probably used to drawing the xy‑plane on a 
sheet of paper with the positive x‑axis pointing right 
and the positive y‑axis pointing up. In this case, the 
positive z‑axis will point up out of the page.

To avoid confusion, there is a standard way to orient the 
x, y, and z axes: The positive directions along these axes 
obey the right-hand rule.

If you curl the fingers of your right hand in the direction 
moving from the positive x-axis to the positive y-axis, then 
your thumb will point in the direction of the positive z-axis.

 LECTURE 2
 Vectors: Describing Space and Motion
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In ℝ3, a triple of numbers like (7, 2, 3) represents an arrow in 
3‑dimensional space that moves 7 units in the x direction, 2 units in 
the y direction, and 3 units in the z direction. Similarly, every vector in 
ℝn corresponds to an arrow that moves in the coordinate directions by 
amounts specified by its coordinates.

This correspondence also suggests another way to view an ordered 
collection of numbers—not as an arrow in space, but as a point in 
space at the end of the arrow when you place the arrow’s tail at a 
reference position called the origin. The numbers of the vector will 
then tell you how to get there in relation to the coordinate directions. 
Thus, the point called (7, 2, 3) is the point that is at the head of the 
vector [7 2 3] when you place its tail at the origin.

In this view, every point in 3‑dimensional space can be represented by 
a triple of numbers, the same one that represents the vector from the 
origin. The origin itself is represented by the vector of all zeros, called 
the zero vector, because the arrow from the origin to itself involves no 
motion along any of the axes.

 LECTURE 2
 Vectors: Describing Space and Motion
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In a similar way, you can choose to think of vectors in ℝn as points or 
as arrows, and the choice you make depends on context.

Linear Combinations
Two of the operations you can do with vectors are addition and 
scalar multiplication. And each of these operations will be presented 
geometrically (how you might visualize them) and algebraically (how 
you might compute them).

The first basic operation on vectors is addition.

To add 2 vectors u and v geometrically, place 
the tail of v at the head of u and look at the 
arrow formed by moving from the tail of u 
to the head of v. This is u     +     v. The order of u 
and v doesn’t matter; if you add v and u, you 
get the same result. 

So, vector addition is commutative, which means the order of addition 
doesn’t matter.

The geometric description of a vector is the picture 
of a vector you might have in your head, while the 
algebraic description is one that a computer might 
most easily work with.

 LECTURE 2
 Vectors: Describing Space and Motion
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Another way to view addition is to form the 
parallelogram with sides u and v with tails 
placed at the origin. Then, an arrow from 
the origin along the diagonal is the sum 
of u and v.

Algebraically, if you are given 2 vectors as ordered collections of 
numbers in ℝn, the sum is just given by adding the numbers coordinate‑
wise. For example, if the vector u is (1, 2) and the vector v is (3, −7), 
then the addition rule says (1, 2)     +     (3, −7) = (4, −5), because you add 
coordinates 1 plus 3 to get 4 and 2 minus 7 to get −5.

.

You could check by drawing this out that the addition matches what is 
going on in the geometric picture: The new vector (4, −5) says how far 
you have to walk in the x and y directions after walking according to 
the instructions given by the vectors u and v.

Another operation on vectors is scalar multiplication.

Because vectors have both direction and magnitude, they 
are often denoted by boldface letters (r) or by an arrow 
diacritic (r ) to distinguish them from scalars. The styles 
have the same meaning, and both are used in this book.

 LECTURE 2
 Vectors: Describing Space and Motion
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A scalar is just a real number, and it gets its name when it behaves as a 
scaling factor for a vector by an operation called scalar multiplication. 
Geometrically, to multiply a vector v by 2, you just double its length 
while keeping its direction the same—you’ve just 
scaled the vector by a factor of 2. To multiply v by 
1 ∕2, you halve its length. You can also multiply 
by a negative number, which scales the 
magnitude but reverses its direction. So, −v 
has the same length as v but points in the 
opposite direction.

To multiply a vector by a scalar c algebraically, you take every 
coordinate and multiply it by c. So, 2 times (3, 1, 4) = (6, 2, 8). Soon, 
when the length of a vector is defined in ℝn, you will be able to see 
that this operation matches the geometric understanding that it scales 
the magnitude by 2 but does not change its 
direction.

Subtraction of vectors can be defined 
by addition and scalar multiplication. 
So, if you want u minus v, you can 
add u and −v.

Because (u     −     v)     +     v should be u, you can also see pictorially that if you 
place the tails of u and v together, then the arrow formed by moving 
from the head of v to the head of u is also u minus v.

Scalar multiplication has the distributive property over addition:

c(u     +     v) = cu     +     cv.

So, it doesn’t matter if you add and then scale by c or scale by c first 
and then add.

 LECTURE 2
 Vectors: Describing Space and Motion
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Scalar multiplication also has an associative property:

If c and d are scalars and u is a vector,  
then c(du) is the same as (cd)u.

What happens when these 2 operations on vectors—addition and 
scalar multiplication—are combined? If you have vectors v1, v2, … , vk, 
then a linear combination of v1 through vk is any vector of the form 
c1v1     +     c2v2     +     …     +     ckvk, where c1 through ck are scalars.

.

So, for example:

.

This shows that (7, 2, 3) is a linear combination of the vectors (1, 0, 0), 
(0, 1, 0), and (0, 0, 1)—which are called the standard basis vectors in 
ℝ3 and are often written e1, e2, e3.

Linear combinations of the standard basis vectors will produce any 
vector in ℝ3. (This is one of the reasons each of these vectors is called a 
basis.) But if you had just 2 vectors, you wouldn’t be able to obtain any 

 LECTURE 2
 Vectors: Describing Space and Motion
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possible vector in ℝ3. For example, linear combinations of e1 and e2 can 
only produce vectors whose third coordinate is 0.

Often, it is not so obvious whether a 
given vector is a linear combination of 
a set of vectors. For example, suppose 
you’re piloting a spaceship that sits at 
the origin and you have 2 thrusters that 
can propel you in 2 directions: (5, 1, 1) 
and (3, 0, −1). Can you reach the point 
(7, 2, 3)? In other words, does a linear 
combination of (5, 1, 1) and (3, 0, −1) 
exist that will produce (7, 2, 3)?

Let’s think about this abstractly and call these 2 vectors u and v. A 
linear combination of vectors u and v is any vector that can be obtained 
from doing addition and scalar multiplication on the vectors u and v. 
So, it must be of this form: a scalar times u plus another scalar times 
v. For example, −2u     +     3v is a linear combination of u and v, and so is 
1 ∕2 u     +     3 ∕2 v. The zero vector is also a trivial linear combination of u and 
v—namely, the scalar 0 times u     +     0 times v.

If you look at the set of all possible 
linear combinations of u and v, you 
can see that it will form a plane as long 
as u and v do not point in the same 
direction. You may also be able to see 
that by fixing either the coefficient 
of u or v and letting the other 
coefficient vary, you will trace out 
natural coordinate lines along this 
plane. In the figure, you can see 
where 1 ∕2 u     +     3 ∕2 v is located.

 LECTURE 2
 Vectors: Describing Space and Motion

https://www.thegreatcourses.com/


32

This plane cannot fill out all of ℝ3; some points are clearly not linear 
combinations of u and v.

The set of all linear combinations of a collection of vectors is called the 
span of the vectors. So, the span of u and v here will be a plane. In the 
degenerate case where u and v point in the same direction, the span of 
u and v will be just a line.

Note that the problem of determining whether a linear combination 
will produce a given vector is the same as solving a system of linear 
equations for the coefficients of the linear combination. In the previous 
example, if the coefficient of (5, 1, 1) is x and the coefficient of (3, 0, −1) 
is y, then you want to determine if there exist x and y such that

x(5, 1, 1)     +     y(3, 0, −1) = (7, 2, 3).

Looking at the components of this vector equation, with x for the first 
unknown coefficient and y for the second unknown coefficient, this will 
be true if the following system of equations can be solved simultaneously:

5x     +     3y = 7 
x = 2 

x     −     y = 3.

Abstract Vector Spaces
In addition to thinking of vectors as arrows and as ordered collections 
of real numbers, which we can also think of as points in ℝn, a third way 
to think of vectors is in a more abstract way. Even though this course 
mainly discusses vectors in ℝn, vectors can be seen as more general 
objects that apply to a wide range of things that may not at first look 
like an arrow or an ordered collection of real numbers.

 LECTURE 2
 Vectors: Describing Space and Motion
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In mathematics, we often take concrete examples and look at what 
properties made those objects interesting. Then, we begin to define 
our objects by their properties, and when we do that, we realize that 
our methods for working with those objects were far more general and 
apply to other things.

We often do 2 basic things with vectors: 
We add them, and we scale them by 
making them bigger or smaller by some 
factor. We form linear combinations of 
those vectors.

So, a third way to define a vector is by an 
abstract definition, in which a vector is 
defined by its properties. In this definition, a vector space is, loosely, 
any collection of things that can be added and scaled together with 
some additional properties, called axioms (see PAGE 34), which 
ensure that addition and scalar multiplication play nicely by themselves 
and with each other.

The advantage of this definition is that we can now call other things 
vectors that weren’t before.

For example, consider the collection of all continuous functions 
on the real line. If you are an engineer, such functions might arise 
as waveforms if you are doing signal processing. When continuous 
functions are added, you get another continuous function. You can 
scale a continuous function by multiplying by 
a scalar, which changes its amplitude. 
The space of continuous functions 
satisfies all the axioms of a vector 
space, so it is another example of 
a vector space.

Abstract Definition 
of a Vector: an 
object that can be 
added and scaled 
(in certain ways).

 LECTURE 2
 Vectors: Describing Space and Motion
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AXIOMS

These axioms are the properties we end up using when we 
prove anything about ℝn.

A vector space is a set V (objects are “vectors,” e.g., u, v) 
with 2 operations:

addition (write: u     +     v)  
scalar multiplication (write: cu, for scalar c)

such that for all u, v, w in V and scalars c and d:

1 u     +     v is in V (V closed under addition)

2 u     +     v = v     +     u (addition is commutative)

3  (u     +     v)     +     w = u     +     (v     +     w) (addition is associative)

4 There’s a zero vector 0 such that u     +     0 = u

5  Every vector u has an additive inverse –u such that 
u     +     (–u) = 0

6 cu is in V (V closed under scalar multiplication)

7 c(u     +     v) = cu     +     cv

8 (c     +     d)u = cu     +     du 

9 c(du) = (cd)u

10 1u = u

 LECTURE 2
 Vectors: Describing Space and Motion
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READINGS
Chartier, When Life Is Linear, chap. 4.

Lay, Lay, and McDonald, Linear Algebra and Its Applications, section 1.3.

Poole, Linear Algebra, section 1.1.

 LECTURE 2
 Vectors: Describing Space and Motion
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Lecture 3

LINEAR GEOMETRY: 
DOTS AND CROSSES

Q uantum mechanics says some strange things about 
the nature of the universe. For example, it says that 

quantum objects like electrons can exist in a superposition 
of states. Deep ideas from linear algebra underlie this 
strangeness. For example, these states actually live in 
some vector space, and superposition is basically a linear 
combination of states. That is like saying that a quantum 
object exists physically in many states at the same time—a 
particle can be in 2 places at once! Even though quantum 
states live in an infinite dimensional space that isn’t ℝn, some 
of the results that can be proven for ℝn have analogues for 
quantum states. So the basic ideas of linear algebra are 
actually quite profound.

The Dot Product
Euclidean space ℝn has 2 operations—addition and scalar multiplication—
and these allow you to take linear combinations of vectors.

Another kind of product structure that ℝn has, called a dot product, 
plays an important role in determining when 2 vectors are perpendicular.
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The dot product can be described in 2 ways: one algebraic and one 
geometric.

Suppose you have u and v, 2 vectors in ℝn, with components that are 
real numbers u1 through un and v1 through vn. Then, the algebraic 
definition of the dot product of u and v, called u • v, is the sum of the 
pairwise products of the coordinates: 

There is a shorthand notation for a sum like this that uses the Greek letter 
sigma (Σ), which stands for sum. 

.

The i represents the index, and the i = 1 and n tell the reader what the 
starting and ending indices of the sum are.

Linear algebra has a theme of hidden structure. The dot 
product is an example of a structure that exists that is not 
obvious at first, but when you realize you have it, it can 
tell you all sorts of things!

 LECTURE 3
 Linear Geometry: Dots and Crosses
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For example, if u = (3, 1, 4) and v = (1, −5, 0), the dot product turns 
out to be −2.

Notice that the dot product takes in 2 vectors and spits out a number. 
What does this number mean?

The dot product measures how aligned 2 vectors are. If the dot product 
is positive, the vectors are pointing generally in the same direction; 
if the dot product is negative, they are pointing generally in opposite 
directions; and if the dot product is zero, they are perpendicular.

Here’s an example in ℝ2 that you can visualize. If u is the vector (2, 1) 
and v is the vector (−1, 2), then you can see by drawing the vectors 
on the plane that they are perpendicular—or, in linear algebra terms, 
orthogonal. And if you compute the dot product of these 2 orthogonal 
vectors, you see that, indeed, 2     ×     −1     +     1     ×     2 = 0.

You can see why the dot product has this curious property by deriving a 
geometric definition of the dot product, which comes later in this lecture.

 LECTURE 3
 Linear Geometry: Dots and Crosses
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Properties of the Dot Product
Some properties of the dot product are evident from its algebraic 
definition.

The dot product is commutative, meaning that the order of u and v 
doesn’t matter. You can see this by looking at the definition.

.

Notice that if you switch the roles of u and v, you get exactly the same 
formula, because the ui and vi trade places as well, but the pairwise 
products stay the same, because multiplication of real numbers is 
commutative.

The dot product is distributive: u • (v     +     w) expressed in terms of components 
of u and v is the same expression you get from (u • v)     +     (u • w).

If you scale one of the vectors, the dot product scales the same way:  
(cu) • v is the same as c(u • v).

Note that if you dot a vector with itself, you get a sum of squares, which 
is never negative and is only zero for the zero vector.

.

 LECTURE 3
 Linear Geometry: Dots and Crosses
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The magnitude, or length, of a vector is defined by taking the square 
root of u • u. The notation for magnitude is double bars around the 
vector.

.

What is the length of a scalar multiple of a vector? In general, the length 
of c times vector v is the absolute magnitude of c times the length of v.

.

What about the length of a sum? In general, it is not the sum of their 
lengths, because the vectors may not be pointing in the same direction. 
But by drawing the triangle formed by v, w, and (v     +     w), you can see 
that the length of (v     +     w) must be less than or equal to the sum of the 
lengths of v and of w.

This inequality is called the triangle inequality.

 LECTURE 3
 Linear Geometry: Dots and Crosses

https://www.thegreatcourses.com/


41

A Geometric Formula for the Dot Product
Let’s derive a geometric formula for the dot 
product. Given 2 vectors v and w, put their 
tails together and let θ be the angle 
between v and w. Notice that the third 
side of this triangle is (v     −     w).

In geometry, the law of cosines says that if a, b, and c are sides of a triangle 
and θ is the angle between sides a and b, then c2 = a2 + b2     −     2ab cos θ.

Here, the length of (v     −     w)2 is the length of a2 plus the length of b2 
minus twice the length of a times the length of b times the cosine of θ.

.

But by definition, the length of a vector squared is just the vector 
dotted with itself. So, using the properties of dot products, you get the 
geometric definition of the dot product of v and w: It’s the product of 
the lengths of v and w multiplied by the cosine of the angle between.

.

 LECTURE 3
 Linear Geometry: Dots and Crosses
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This is a geometric definition because it does not involve coordinates, 
and it only involves things that can easily be discerned from a picture 
of v and w.

Some things can be gleaned from this interpretation of the dot product. 
For example, if you notice that the cosine of an angle in absolute value is 
always less than or equal to 1, you get the Cauchy‑Schwarz inequality: 
The magnitude of the dot product of 2 vectors is always less than or 
equal to the product of their lengths.

.

And as θ varies, you see the interpretation of the dot product as a 
measure of alignment of v and w. If you keep the vector lengths fixed 
but change the angle θ, the dot product will change depending only 
on the cosine of θ. So, if θ is less than 90°, the cosine will be positive, 
and if it is greater than 90°, the cosine will be negative. And when θ 
is 90°, the most important property of the dot product applies: For 
nonzero vectors, the dot product is zero if and only if the 2 vectors are 
perpendicular.

.

The if and only if here means the 2 statements are equivalent—each one 
implies the other.

 LECTURE 3
 Linear Geometry: Dots and Crosses
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QUANTUM MECHANICS

It turns out that something like the dot product 
does not exist in every vector space, but if it does, 
it is called an inner product, and the space is 
called an inner product space.

The kinds of vector spaces that are used to 
represent quantum states in quantum mechanics 
are inner product spaces. And the inner product 
has many analogous properties of the dot 
product. For example, the Cauchy-Schwarz 
inequality holds.

The Cauchy-Schwarz inequality turns out to 
be the fundamental mathematical idea behind 
Heisenberg’s uncertainty principle in quantum 
mechanics, which says that the position and the 
momentum of a particle cannot both be specified 
exactly. So, this strange property of quantum 
particles is a direct consequence of the underlying 
mathematics of inner product spaces.

 LECTURE 3
 Linear Geometry: Dots and Crosses

To learn more about quantum mechanics, watch the Great Course Understanding the Quantum 
World, taught by Professor Erica W. Carlson. You can find it online at www.thegreatcourses.com or 
www.thegreatcoursesplus.com.
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The Cross Product
One kind of product of vectors in ℝn is defined only in 3 dimensions. 
It is called the cross product. And it can be defined algebraically and 
geometrically.

If you’re given vectors u and v with 
components u1, u2, and u3 and v1, 
v2, and v3, the algebraic definition is 
given by some crazy formulas for the 
components.

There is an easy way to remember this formula: Write u1, u2, and u3 
twice in a column and write v1, v2, and v3 twice in a column next to it.

If these are shoelace holes, form shoelace crossings in the middle 3 
positions. The strings that go down to the right represent positive 
products, and the ones that go up to the right 
represent negative products. If you do this, 
you’ll see how these crosses correspond to the 
terms in the cross‑product expression.

What’s the geometric interpretation of the cross 
product? Unlike the dot product, the cross 
product of 2 vectors is a vector, not a scalar. 
So, you need to know both its magnitude and 
direction.

 LECTURE 3
 Linear Geometry: Dots and Crosses

https://www.thegreatcourses.com/


45

The magnitude of (u     ×     v) is the length of u times the length of v times 
the sine of the angle θ in between them. So, the magnitude is largest 
when u and v are perpendicular, and it is zero when θ is zero or 180°—in 
other words, when u and v are multiples of one another. The magnitude 
is never negative, because the angle θ is always measured going from u 
to v, which is positive.

The direction of (u     ×     v) is always orthogonal to both vectors u and v. 
There are 2 possible directions that could be orthogonal to u and v, but 
the one that is used is the one given by the right-hand rule: If your 
first finger (your index finger) is pointing in the direction of the first 
vector and your second finger is pointing in the direction of the second 
vector, then your thumb will be pointing in the general direction of the 
cross product. Alternatively, if you curl the fingers of your right hand 
in the direction from the first vector to the second finger, your thumb 
will be pointing in the direction of the cross product.

Note that the order matters in both the algebraic and geometric 
definitions. If you look at (v     ×     u) instead of (u     ×     v), you see the signs of 
all the components get reversed, and your thumb will be pointing in 
the opposite direction. So, (u     ×     v) is the negative of (v     ×     u).

Note how the cross product differs from the dot 
product: The cosine in the dot product gets replaced 
by a sine in the cross product, and the dot product 
is a scalar while the cross product is a vector.

 LECTURE 3
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Describing Lines
Linear combinations along with the dot product and the cross product 
can be used to describe lines and planes and hyperplanes.

To specify a line L in ℝ3, you can use a point p on the line L and a 
direction vector d that moves along L. Fixing the point p and adding 
scalar multiples of the vector d will move along this line, and every 
point on L arises in this way. So, every point (x, y, z) on L must be of 
the form p     +     td, where t is a freely chosen scalar parameter. Once you 
choose t, the point (x, y, z) is determined.

.

Think of the parameter t as time and the vector p     +     td as telling you 
the position of a bug at time t. At time t = 0, you are at the point p. If 
you set down tick marks at equally spaced time intervals—such as time 
t = 0, t = 1, t = 2, etc.—you will see that the tick marks are evenly spaced 
along the line at p, p     +     d, p     +     2d, etc. If you plug in t = −1, you move in 
the other direction.

This description of a line 
offers a way of describing 
what is happening with 
the components (x, y, z) 
of a point on the line.
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Describing Planes
You can also use a similar idea to describe a plane 
in ℝn. Now you need a point p and 2 direction 
vectors, u and v. Then, you start at that point 
p and add linear combinations of u and v 
to generate a plane through p.

You can see in this image how linear combinations 
of u and v will generate a grid on this plane. The coefficients 
of u and v will be scalar parameters that can be chosen freely—
called s and t, for example. Then, any point on this plane must be of 
the form p     +     su     +     tv, where s and t are real numbers.

This gives you the vector form of the equation of a plane; all you need 
is a point and 2 directions.

If you write out the equation in components, you will get the parametric 
form of the equation of the plane. For example, suppose you want to 
describe the plane through (1, 0, 0) and in the directions (4, 5, 0) and 
(7, 0, 9).

 LECTURE 3
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If vector x has components (x, y, z), then looking at the components of 
the vector form (1, 0, 0)     +     s(4, 5, 0)     +     t(7, 0, 9), you see that x must be 
1     +     4s     +     7t, y = 5s, and z = 9t, where s and t can be chosen freely as any 
real number.

Notice that this description of a plane shows intuitively why this 
plane has 2 dimensions: because it has 2 degrees of freedom in the free 
parameters s and t. Also, a plane, like a line, may have many different 
parametrizations.

In ℝ3, you can use the dot product to describe a 
plane in a slightly different way. If you know 
a point in the plane and a direction vector 
perpendicular to the plane (called a 
normal vector), that is enough to 
specify the plane.

Suppose p is a point in the plane and 
n is a normal vector to the plane. If vector x is 
any other point in the plane, then (x     −     p) is a vector that 
must be perpendicular to n. So, the dot product of (x     −     p) with n must 
be zero.

If you distribute (x     −     p) • n as (x • n)     −     (p • n) and move (p • n) to the 
other side of the equation, you get that (x • n) must equal (p • n). This 
relationship is sometimes called the normal form of the equation of a 
plane. So, any point x on the plane must satisfy this relationship.
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READINGS
Lay, Lay, and McDonald, Linear Algebra and Its Applications, section 1.1.

Poole, Linear Algebra, sections 1.2 and 1.3.
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Lecture 4

MATRIX OPERATIONS

T his lecture introduces the matrix, which is an array of 
numbers. Specifically, the lecture defines matrices and 

their algebra and offers several applications of the idea of 
matrix multiplication.

What Is a Matrix?
An m     ×     n matrix A is an array of numbers with m rows and n columns.

A = (aij), where aij is the entry in row i and column j.

For example, if A is the following 2     ×     3, then a21 = 4.

To say that 2 matrices are equal means they have the same dimensions 
and their entries are identical. 
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To add 2 matrices, you add their corresponding entries. For example, 
look at the following matrices and note that, in the bottom right corner, 
4     +     1 = 5.

.

To multiply a matrix by a scalar, you multiply every 
entry by that scalar.

Matrix Multiplication
Suppose you have some variables y1 and 
y2 written as linear combinations of 3 
variables x1, x2, and x3. 

Suppose also that you have the x 
variables written as linear combinations 
of the variables w1 and w2. 

Simply substituting the second set 
of equations into the first results in 
expressions for the y variables as linear 
combinations of the w variables.

Now suppose you write matrices that 
represent the coefficients in these 
changes of variables. 

 LECTURE 4
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There is a relationship between the entries of the matrices.

 w The dimensions of the y‑in‑terms‑
of‑x matrix are 2     ×     3, because there 
are 2 y variables and 3 x variables. 

 w The dimensions of the x‑in‑terms‑
of‑w matrix are 3     ×     2, because there 
are 3 x variables and 2 w variables. 

 w So, the dimensions of the y‑in‑terms‑of‑w matrix are 2     ×     2, reflecting 
that there are 2 y variables and 2 w variables.

 w The fact that there is a 15 in the bottom left corner of the 2     ×     2 matrix 
refers to the number of times w1 appears in y2. This comes from 
multiplying the number of times a particular x variable appears in y2 by 
the number of times w1 appears in that particular x variable, summed 
over all x variables. This computation is just the dot product of the 
second row of the first matrix with the first column of the second matrix.

The pattern in these changes of variables suggests a natural notion of 
multiplication of matrices.

 w If you want to multiply 2 matrices A and B, there have to be conditions 
on the dimensions: The number of columns of A must be the number of 
rows of B. Then, you can form the product AB, which can be called C.

 w If A is m     ×     p and B is p     ×     n, the matrix C will be m     ×     n.

.

To get the i th entry of C, take the dot product of the i th row 
of A with the th column of B.

 LECTURE 4
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Note that the order of multiplication matters greatly. Even if AB is 
defined, the product BA may not be. And when they are both defined, 
it is not true in general that AB = BA, so matrix multiplication is not 
commutative.

Aside from representing compositions of linear functions, matrix 
multiplication can be used to express a system of linear equations, 
which you can think of as a linear combination of variables that is set 
equal to a constant.

For example, the following system of equations on the left is a system 
of linear equations because both equations are linear combinations of 
variables set equal to constants.

.

The system of equations on the left can be expressed as a matrix 
equation on the right. Notice that a column vector (x1, x2, x3) is just a 
3     ×     1 matrix, so the usual rules for matrix multiplication applies.

What’s great about a matrix equation is that you can express a large 
system of linear equations, such as the one shown at right, in the very 
compact form Ax = b, where x and b are column vectors.

It can be helpful to have this 
point of view: The matrix A 
is acting on the vector x to 
produce the vector b.

 LECTURE 4
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The Identity Matrix
What you may notice after doing several examples of multiplication is 
the following fact: If the columns of B are called bi, then the columns 
of the product AB are just the column vectors you get by doing A times 
bi in the corresponding columns.

.

Moreover, if you take a matrix A and multiply 
it by the jth standard basis vector ej, then you 
just get the jth column of A.

For each row of A, the 1 in the jth position 
of ej just picks off a single entry in the jth 
column of A.

This means that if you fill a matrix with the standard basis vectors in 
order, you get a matrix that when you multiply another matrix by this 
one on the right, it stays unchanged!

.

Here, the highlighted matrix is called the identity matrix. It is always 
a square matrix with 1s along the diagonal and 0s everywhere else. The 
letter I is often used to denote it; sometimes In is used to remind the 
reader of its dimension.
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Similarly, if you want to pick off a row of the matrix A, you can 
multiply it on the left by the row vector ei

T. That will produce the ith 
row of the matrix A. So, multiplication by the identity matrix on the 
left of an appropriate dimension will leave its rows unchanged.

To summarize, if you take an m     ×     n matrix A, you can multiply it on 
the left by Im or on the right by In and it will stay unchanged.

.

This identity matrix is a multiplicative identity. There is also an additive 
identity, which you can add to any matrix and leave it unchanged. It 
is just the zero matrix: the matrix of all zeros. Every matrix also has 
an additive inverse—that is, a matrix you can add to it to get the zero 
matrix. The additive inverse of A just puts a negative sign on every 
entry of A, and it is labeled −A.

Other Matrix Properties
First, remember that multiplication is not commutative; in general, 
the order of multiplication matters. So, whenever you write a matrix 
product, you must pay attention to the order of multiplication so that 
you don’t accidently switch things around.

 LECTURE 4
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A very important property of matrix multiplication is the way that it 
distributes over addition. Thus, A times (B     +     C) is AB     +     AC. This is 
called the distributive property.

Distributive property: A(B     +     C) = AB     +     AC.

This can be shown by writing 
out the expression for the ijth 
entry of both sides, using the 
row‑column formula.

If you do this, you see that the distributive 
property follows from the distributive property 
of real numbers.

Even though matrix multiplication is not commutative, it does have 
an associative property, which may be surprising because it is not 
obvious at first glance.

Associative property: A(BC) = (AB)C.

If you look at the product A(BC) 
and write out the expression for 
the ijth entry, you will get a sum 
over some index k. 

Now write out the expression for the kjth entry of 
BC, and you will get another sum over an index l. 

If you manipulate this by switching the order of 
the sums, you can see it will give the expression 
for the product (AB)C, using the row‑column 
formula.

 LECTURE 4
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There is a natural operation on a matrix that switches its rows and 
columns called the transpose. To denote the transpose of A, you write 
AT, and if the entries of A are aij, then the entries of AT are aji.

Transpose: If A = (aij), then AT = (aij).

As an example, the matrix with rows 123, 456 has as its transpose a 
matrix whose columns are 123, 456.

A matrix that stays unchanged when performing the 
transpose must be square and have a symmetry about the 
diagonal that goes down and to the right. Such a matrix 
is called symmetric.

Here are some properties of the transpose:

a The transpose of the transpose of A is itself.

b  The transpose of a sum is the sum of the 
transposes.

c  The transpose of a scalar multiple of A is 
the scalar multiple of the transpose of A.

Less obvious is how to take the transpose of a 
product. If you examine the dimensions of AB, 
you’ll see that for the transpose, you have to reverse the 
order of the product for the dimensions to work out correctly.
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READINGS
Chartier, When Life Is Linear, chaps. 2, 3, and 4.

Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 1.4 
and 2.1.

Poole, Linear Algebra, sections 3.7, 8.1, and 8.2.
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Lecture 5

LINEAR TRANSFORMATIONS

In many instances, linear transformations represent many 
of the kinds of transformations you would use if you were 

coding a video game that needs to move around a virtual 
room and change perspective. In advanced computer 
graphics, you can represent rotations and translations and 
deal with perspective using linear transformations on ℝ4 and 
represented by 4-dimensional matrices. In other words, doing 
these kinds of 3-dimensional transformations amounts to linear 
algebra in 4 dimensions. The mathematical ideas behind 
perspective geometry come from linear algebra, and if you 
understand it, you can produce realistic computer graphics.

Multivariable Functions
A function is any machine for turning an input into an output. 
Consider the case where the inputs and outputs are sets of numbers, 
which can be thought of as vectors.

Perhaps the inputs are a vector of quantities like grams of nuts and 
chocolates and the outputs are numbers like calories of carbohydrates, 
fats, and protein. That would be a “nutrition” function from ℝ2 to ℝ3.

(nut, chocolate) grams → (carb, fat, protein) calories
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You could also have a function going from ℝ2 to ℝ2; an example would 
be a function that moved points around a plane. And you could have a 
function from ℝ3 to ℝ1, such as a temperature function whose input is 
a position in a room and output is a temperature.

T: ℝn → ℝm is written in this way to signify that T is a function taking 
an n‑dimensional vector to an m‑dimensional vector.

A function is also called a mapping or a transformation. A function T 
sends a point x to the point T(x), called the image of x.

This terminology also applies to whole sets. The image of a smiley face 
is where the function T sends the entire smiley face. If the function is 
continuous, the image will look like a warped version of the original set.

The set of potential inputs to a function is the domain of the function, 
and the set of potential outputs is the codomain of the function. In 
this case, the domain is ℝn and the codomain is ℝm.

 LECTURE 5
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If T is a function, then the range of T is all the points of the codomain 
that are actually images of points in the domain. The range may or 
may not be all of the codomain, but if it is, the function T is said to 
be onto.

If a function T is one-to-one, it means you can’t have 2 distinct points 
in the domain getting mapped by T to the same point in the codomain. 
In other words, if T(x) = T(y) for some points x and y in the domain, 
then x must equal y.

Definition of a Linear Transformation
Not all functions are linear transformations, and there are additional 
properties that a linear transformation must satisfy.

Often, 2 basic things are done with vectors: adding them and scaling 
them by making them bigger or smaller by some factor. Linear 
combinations of those vectors are formed. A linear transformation is a 
function that plays nicely with respect to linear combinations.

Think of a function from living people to their last names. 
The domain is the set of all people. The codomain is the 
set of all possible last names. The range is the set of last 
names in use by living people.

This function is not onto if there are some last names that 
are no longer in use. This function is not one-to-one, 
because there are many people with the same last name.

 LECTURE 5
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A function T from ℝn to ℝm is a linear transformation if it satisfies 2 
properties.

a  T(u     +     v) = T(u)     +     T(v) for all vectors u and v in ℝn. This means that 
if you add 2 vectors and then transform the result, you get the same 
thing as if you transform the vectors first and then add them. In 
other words, a linear transformation preserves the additive structure 
of vectors.

b  It also preserves scalar multiplication: T(cu) = cT(u) for all scalars c 
and for all vectors u. For example, if you transform a vector scaled by 
a factor of 5, you get 5 times the transformed vector.

Taken together, these 2 properties mean that linear transformations 
preserve the structure of linear combinations. If you take a linear 
combination of vectors and transform it, that will be the same result as 
if you transform it and then take the same linear combination of the 
transformed vectors.

Look at this example, which applies both properties:

T(3u     −     7v) = T(3u)     +     T(−7v) = 3T(u)     −     7T(v).

This is where a linear transformation gets its 
name: It’s a transformation that preserves linear 
combinations.

 LECTURE 5
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Properties of Linear Transformations
What properties follow from the definition of a linear transformation?

The first thing to notice is that if you take the scalar to be zero, then 
property (b) implies that T(0) = 0.

The first zero vector is the n‑dimensional zero vector, and the second is 
the m‑dimensional zero vector. 

So, if a function doesn’t take the zero vector to the zero vector, it can’t 
be a linear transformation!

Another thing to notice is that a linear transformation must take lines 
to lines. To see this, recall that a line through a point p extending along 
the direction vector d can be expressed as p     +     td, where t runs through 
all real numbers. If you think of t as time and p     +     td as the position of a 
bug, then the bug starts at some basepoint p at time 0, and as time runs 
forward, the bug moves in the direction d.

When you apply the transformation T to this line, you get T( p     +     td )  
= T( p)     +     t T(d ), where t runs through all real numbers. But this is just 
a point T( p) plus t times a direction T(d). In other words, you get a 
line—one that passes through T( p) and extends along the direction 
T(d ). So, the transformation T takes a straight line L in ℝn to a straight 
line L′ in ℝm.

.
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If you take the line p     +     td and then change the basepoint p to basepoint 
q, the direction of the line is still d (it doesn’t change). So, the 2 lines 
p     +     td and q     +     td are parallel. Then, their images, T( p)     +     t T(d) and 
T(q)+ t T(d ), are also parallel, because they have direction vector T(d). 
So, a linear transformation takes parallel lines to parallel lines!

p     +     td → T( p)     +     t T(d) 
q     +     td → T(q)     +     t T(d).

If you change the basepoint again, by the same amount as from p to q, 
then the image basepoint changes by the same amount as it did from 
T( p) to T(q). So, a linear transformation must take equally spaced 
parallel lines to equally spaced parallel lines.

This property means that linear transformations must take squares to 
parallelograms, because the sides must remain parallel but the angles 
might change. It also means that equally spaced inputs must lead to 
equally spaced outputs.

So, linear transformations must take a grid of squares to a grid of 
parallelograms, and zero must go to zero.

Linear transformations are the nicest type of multivariable function, 
because the outputs will depend on the inputs in a very nice way. 
Linearity says that if your input changes from v to v     +     w, then the output 
changes from T(v) to T(v)     +     T(w). In other words, if the input changes 
by a vector w, then the output will change by a vector T(w), no matter 
what v is! Equal changes in input lead to equal changes in output.

Think back to the nutrition function that takes grams of nuts and 
chocolates to calories of various kinds.

(nut, chocolate) grams → (carb, fat, protein) calories.
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You may not know the actual function that does this, but if you think 
about how such a function should behave, there are good reasons to 
believe it must be linear.

 w Adding an additional gram of chocolate will change the calorie vector 
the same amount, no matter how many nuts and how much chocolate 
have been consumed. So, equally spaced inputs (such as adding a gram 
of chocolate incrementally) lead to equally spaced changes in calories, 
the way linear functions behave.

 w The nutrition function sends the zero vector to the zero vector—
another sign of linearity.

And if a multivariable function is not linear, it is often approximately 
linear. This is the whole message of multivariable calculus—to 
approximate multivariable functions by linear transformations.

For example, look again at this function from ℝ2 to ℝ2. It does not 
send the square smiley face to a parallelogram.

However, if the function is approximately linear—or, in calculus terms, 
differentiable—then small‑enough squares will get sent to things that 
are approximately parallelograms, like the nose on this face!
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Matrix Multiplication Is a Linear Transformation
An example of a linear transformation is multiplication by a matrix.

Suppose A is an m     ×     n matrix, with m rows and n columns. Then, 
multiplication by A will take an n‑dimensional vector to an 
m‑dimensional vector. So,

T(x) = Ax

is a function from ℝn to ℝm. Moreover, it is linear! You know from 
thinking about what it means to multiply matrices that for any scalar 
factor c and n‑dimensional vector v,

A(cv) = c(Av).

Also, from the distributive property of matrix multiplication, you know 
that for n‑dimensional vectors x and y,

A(x     +     y) = Ax     +     Ay.

So, multiplication by a matrix is a linear transformation!

In multivariable calculus, you learn that the 
derivative of a function is a linear transformation, 
because that’s the best linear approximation to a 
function at a single point!

 LECTURE 5
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So, understanding linear transformations is the same as understanding 
matrices.

This amazing fact is true because every vector can 
be written in terms of the standard basis vectors. 
Recall that the ith standard basis vector ei is the 
vector of all 0s except for a 1 in the ith position.

Any other vector can be written as a linear 
combination of the standard basis vectors. If you have 
a vector (x1, x2, … , xn), it equals x1 times the first 
basis vector plus x2 times the second basis vector, etc.

If you apply a linear transformation T to this linear combination and 
use the linearity properties—which preserve linear combinations—you 
will see that

.

Amazingly, there really are no other examples 
of linear transformations. Matrix multiplication 
is the only kind of linear transformation there is 
for functions between finite-dimensional vector 
spaces, because every linear transformation from 
ℝn to ℝm can be represented as multiplication by 
some m     ×     n matrix A.

 LECTURE 5
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The right side of this expression can be represented as matrix 
multiplication by a matrix whose columns are the transformed basis 
vectors. You can check this simply by thinking about what matrix 
multiplication means.

This matrix multiplication performs 
the dot product of each of the rows of 
the matrix with the vector (x1, … , xn) 
in succession. This is just taking a 
linear combination of the columns of 
this highlighted matrix.

“The matrix representing T” is sometimes notated by putting brackets 
around T: [T]. 

To find the matrix that represents T, all you have to do is create a 
matrix whose columns are the transformed basis vectors. In other 
words, the matrix records what it does to the standard basis vectors 
in its columns! Looking at the columns shows you what the matrix is 
doing to the standard basis vectors.

Examples of Linear Transformations
The idea that you can find a matrix that represents a linear 
transformation is really powerful! It means you can tell a computer 
how to perform a linear transformation, even if all you have in your 
head is a geometric picture.

A linear transformation T is determined by where T sends 
the standard basis vectors.

 LECTURE 5
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You can see how powerful this idea is by doing some examples.

In the plane, a reflection across the x-axis is 
a linear transformation, because the linearity 
properties hold. If you scale a vector and then 
reflect, that is the same as reflecting then 
scaling. And if you add 2 vectors and then 
reflect, that’s the same as reflecting and then 
adding the 2 vectors.

If you want to represent this reflection by matrix multiplication, you 
just need to figure out where (1, 0) and (0, 1) go. You can see that (1, 0) 
is not changed by this reflection, so it 
goes to (1, 0). However, (0, 1) goes to 
(0, −1). So, form a matrix with first 
column (1, 0) and second column 
(0, −1).

This matrix A will actually perform 
reflection across the x‑axis. You can 
check that A(x, y) = (x, −y).

Another example is a shear transformation, which keeps one side of a 
square the same but pushes the other side in the direction of the first. 
So, (0, 1) stays fixed, but (1, 0) gets pushed up by (0, k) to the point 
(1, k).
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Thus, its matrix has (1, k) in the first column and 
(0, 1) in the second column.

Multiplying a vector by this matrix will perform 
this shear.

A final example is a rotation of the plane by angle θ. This is a 
linear transformation. Again, you can check this by checking the 
linearity properties: Taking a linear combination of vectors first and 
then rotating is the same as rotating vectors and then taking linear 
combinations.

So, there must be a matrix representing rotation. Which one?

Look at where the basis vectors go and form a matrix with those vectors 
as columns.

Using trigonometry, e1, the vector 
(1, 0), goes to the vector (cos θ, 
sin θ), and e2, the vector (0, 1), goes 
to (−sin θ, cos θ).
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Then, you form a matrix with the image of e1 as the first column and 
the image of e2 as the second column. The order matters here. And 
if you take a vector x and multiply it by the matrix on the left, it will 
perform rotation by θ!

If you perform this rotation twice in a row, you get rotation by 2θ.

.

But this must mean that when multiplied twice in a row (in other 
words, squared), the matrix representing rotation by θ must be equal to 
the matrix representing rotation by 2θ.

The matrix representing rotation by 2θ is this matrix:

.

But if you square the matrix representing rotation by θ, you can check 
that you get this matrix:

.

These matrices must be the same, so if you set the corresponding 
entries equal, you get the double‑angle formulas from trigonometry!
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READINGS
Lamb, “How to Look at Art,” https://blogs.scientificamerican.com/roots‑of‑

unity/how‑to‑look‑at‑art‑a‑mathematician‑s‑perspective/. 

Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 1.8 
and 1.9.

Poole, Linear Algebra, section 3.6 and the Vignette that follows.

When you perform 2 linear transformations 
one after the other—called a composition of 
functions—it is the same as multiplying 2 matrices.
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Lecture 6

SYSTEMS OF LINEAR 
EQUATIONS

O ne of the main applications of linear algebra is 
solving systems of linear equations. This lecture 

focuses on how to think about solutions to systems of linear 
equations, both geometrically and algebraically.

Linear Equations
A linear equation in the variables x1 through xn is an equation of 
the form

a1x1     +     a2x2     +     …     +     anxn = b,

where the ai’s are real coefficients and b is a constant.

In other words, it’s an equation where some linear combination of 
variables is set equal to a constant.

For example, the equation 3x     +     2y     −     7z = 5 is a linear equation in the 
variables x, y, and z because you have a linear combination of x, y, and 
z set equal to a constant.
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Linear equations have the property that each of the variables appears 
only to the first power and is multiplied by a constant.

Nonlinear equations, on the other hand, have a strange dependence on 
at least one of the variables. 

For example, 3x     −     2yz = 4 is not linear, because the y and z are multiplied 
together. Also, x2     +     y2     +     z2 = 25 is not a linear equation, because the left 
side depends on the squares of the variables.

Linear equations can, because of their form, always be represented by 
setting a dot product of some vector (a1 through an) with a vector of 
variables (x1 through xn) equal to a constant.

.

You can also represent it as a matrix product of 
a single row of constants times a single column 
of variables.

The set of vectors (x, y, z) that satisfies the 
linear equation shown at right is a plane in ℝ3.

Also, 3x     +     2y = 5 has a solution set that looks 
like a line in ℝ2.

This is a general feature of a linear equation in n variables: The set 
of all points in ℝn that satisfies the linear equation will be a linear 
object called an (n     −     1)‑dimensional hyperplane. A hyperplane is a 
fancy name for the generalization of a plane. A point is a 0‑dimensional 
hyperplane, a line is a 1‑dimensional hyperplane, and a plane is a 
2‑dimensional hyperplane. The point is that linear equations have very 
nice solution sets that are also very linear, flat objects.

3x     +     2y     −     7z = 5.
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Contrast that with the nonlinear equation x2     +     y2     +     z2 = 25.

This is the equation of a sphere, which means that the set of all points 
that satisfies this equation will form a surface in ℝ3 that looks like a 
sphere. This solution set is not a hyperplane.

Systems of Linear Equations
A system of linear equations is just a collection of more than one linear 
equation. For example, this is a system of linear equations.

A system of linear equations naturally arises in domains 
such as economics, chemistry, and physics.

 w In economics, a linear equation might arise from a 
budget constraint.

 w In chemistry, a system of linear equations naturally arises 
when you are trying to balance a chemical equation.

 w In physics, linear equations often arise from the study of 
electrical networks.
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Linear equations arise naturally in problems where you are demanding 
that some linear combination of things satisfies some constraint. For 
example, if you want to know how many quarters and nickels you need 
to make $1, you get a linear equation. If q is the number of quarters 
and n is the number of nickels, then by counting cents, you get this 
relationship:

q25     +     n5 = 100 cents.

That’s a linear equation in the variables q and n.

Solving Systems of Linear Equations
Suppose you have the following system of equations.

.

To solve this system means to find all sets of numbers for (x1, x2, x3) 
that satisfy all 3 equations simultaneously. In other words, find a point 
(x1, x2, x3) in ℝ3 that makes all equations true simultaneously. In other 
words, find a vector (x1, x2, x3) that satisfies this matrix equation.

For example, x1 = 3, x2 = 1, and x3 = 0 will work. Are there any other 
solutions?

 LECTURE 6
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Before answering this question algebraically, let’s see how geometric 
insights can offer some perspective. The set of all solutions that satisfies 
each single equation is a plane. So, the set of all solutions that satisfies 
all equations simultaneously must be the intersection of all the planes 
represented by each equation.

What can the intersection of 3 planes 
look like? The intersection of 2 planes 
is usually a line.

And if you intersect that with another 
plane, you will usually get a point. 
So, you expect to get a single solution 
vector to this set of equations.

However, there are degenerate cases. 
If you have all 3 planes identical, then 
the intersection will be that entire 
plane; in other words, you get a plane 
of solutions—infinitely many! Every 
point in that plane will satisfy all 3 
equations.

If 2 of the planes from these 3 equations are identical, the third plane 
may cut this plane in a line, so you get a whole line of solutions.

But if 2 of the planes are parallel 
and not identical, there will not be a 
point that is simultaneously on both 
planes, so even when you intersect 
these planes with another plane, the 
set of solutions to all 3 equations will 
be empty.

 LECTURE 6
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So, without doing any algebra, you already see that a system of solutions 
will be either empty, a single solution, or infinitely many solutions. In 
fact, by reasoning about hyperplanes in a similar fashion, you will find 
that this is a general feature of any system of linear equations: It will 
either have one solution, no solution, or infinitely many solutions. And 
you can determine this from thinking about the geometry!

How are solutions actually found algebraically?

When you solve a system of equations like the one in this example by 
hand, it is tempting to just make some arbitrary choices for substitutions 
until you get an answer.

But how can you solve a system of equations like this one in a systematic 
way? The problem with doing this on a case‑by‑case basis is that you get 
no insight into what is going on. In addition, you want something that 
will work for a system of 3 equations or 300 equations—something you 
could program a computer to do.

Gaussian Elimination
One method of solving systems of 
linear equations is called Gaussian 
elimination. The idea is simple: 
Convert the system of equations into 
an equivalent system of equations, 
meaning a new system of equations 
that has exactly the same solutions as 
the original.

Although Gaussian 
elimination is named 
after the 19th-century 
mathematician Carl 
Friedrich Gauss, it dates 
back to the Chinese 
in the 3rd century BC 
and probably has been 
rediscovered many 
times over the centuries.
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If you take one equation and multiply it by a nonzero constant, 
that will not change the set of solutions to the system.

.

So, if you changed the first equation to 2x1     +     2x2     +     2x3 = 8, the set of 
solutions to all 3 equations would stay the same. Any solution that 
worked for the original system will still work for the new system; any 
solution that works for the new system will still work for the original.

However, if you multiplied one equation by zero, then that equation 
becomes 0 = 0, which is true, but now you’ve lost a constraint that the 
variables must satisfy, and you’ve possibly enlarged the set of solutions. 
So, multiplying by zero is prohibited if you want to be sure your 
solution set is unchanged.

Recall a few basic facts about equations:

 wYou can add one equation to another equation to 
get a third true statement. So, if A = B and C = D, then 
A     +     C = B     +     D.

 w If you do the same things to both sides of the equation, 
the statement is still true. So, if A = B, then AC = BC, no 
matter what C is.

 LECTURE 6
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Another operation you’re allowed to do is to add a multiple of one 
equation to another. The multiple could be positive or negative. 
That won’t change the set of solutions, either. 

So, for example, if you take the second equation and add −2 times the 
first equation, that will have the effect of canceling the x1 term, and it 
produces a second term of 5x2     −     2x2, which is 3x2. 

Similarly, you get a third term of −x3     −     2x3 = −3x3, and for the constant 
on the right side, you get 11     −     2     ×     4 = 3. 

So, the second equation becomes 3x2     −     3x3 = 3.

This system has the same set of solutions as the original. The way to 
see that is anything that satisfied the original system now still satisfies 
this one. But you know you didn’t enlarge the set of solutions because 
this step is reversible: If you want to get back the original system, all 
you need to do is add twice the first equation to the second (because 
you subtracted twice the first equation previously). So, anything that 
satisfies the new system still satisfies the old.

Notice how unwieldy it is to keep rewriting 
all these variables. You can use shorthand 
to represent the original linear system of 
equations as an augmented matrix.

The augmented part is the rightmost column, 
which is separated by a vertical line to help 
you remember that these numbers come from 
the constants in the linear equation.
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Remember, this augmented matrix is just shorthand for a system of 
linear equations; it just shows you the coefficients rather than having 
you write out all the variables! If an equation doesn’t have a variable, 
you can think of the variable as having the coefficient 0. For example, 
the third equation had no x2, so you have a 0 in the third row in the 
x2 position.

Performing operations that don’t change the solutions can be 
represented by row operations on the augmented matrix. For example, 
if you want to subtract 2 times the first row from the second row, you 
can represent it this way:

.

The notation R2     −     2R1 just tells you what you did.

You’re going to keep doing things that won’t change the set of solutions. 
For example, you could next try to make the −1 in the bottom left 
corner into a zero. This would correspond to eliminating the x1 term 
in that equation. You could do that by adding the first row to the third 
row. So, −1     +     1 = 0, 0     +     1 = 1, 2     +     1 = 3, and −3     +     4 = 1. You’ll get this:

.
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You could just keep going, playing this game, always getting an 
equivalent system with the same solutions, but where are you headed?

Where you’re trying to go is to 
an augmented matrix like the 
following one, which has just 
a single 1 in each row and each 
column.

The corresponding system of equations has a very obvious solution: 
If the right side is a bunch of constants a, b, c, then this augmented 
matrix would be saying x1 = a, x2 = b, and x3 = c. In other words, it 
would be telling you the solution to the system of equations. You can 
recognize this pattern because you will see all 0s on the left side, except 
for a diagonal of 1s.

You’ve seen this pattern before—it’s called the identity matrix! And the 
diagonal is called the main diagonal of that square. 

You may not be able to get to this pattern, but you can try.

So, in your original augmented matrix, 
your strategy is to try to make zeros in all 
these places, and you’ll do it in the order 
shown at right. 

You try to zero out the entries below the 
main diagonal first, working column by 
column from left to right. Then, you 
work above the main diagonal to turn all those entries into zeros, and 
generally it will be easier at that point to work from right to left.
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In this example, you zero out the first column except for the 1 at 
the top.

In the second column, you want to 
have a 1 in the main diagonal, and 
you can do another thing that 
won’t change the set of solutions: 
swap the rows.

Why is that allowed? It won’t change the set of solutions, because it 
is just expressing the same equations but in a different order. And the 
order of the rows has nothing to do with the order of the variables 
corresponding to the columns; swapping rows does not change 
anything about which variables are related to the columns.

Swapping rows is just a move you 
want to use to help you get 1s on 
the main diagonal. Swapping rows 
2 and 3 gives you the matrix shown 
at right.

Now you can get a zero on the bottom of the second column by 
subtracting 3 times the second row. Notice that this doesn’t mess up 
the work you did to zero out the first column, because both row 2 and 
row 3 had zeros there! 

So, you get the matrix shown here.
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Next, you can multiply the third 
row by –1 ∕12 to get the matrix shown 
at right.

Because you have 001 in the last 
row, it will be easy to zero out the 
entries in the third column by subtracting multiples of the last row. 
Doing this won’t affect the other columns, because 001 has zeros in 
those columns.

Finally, you do a last step, as shown here.

This shows you that the solution to this 
system, as well as to the original system of 
equations, is x1 = 3, x2 = 1, x3 = 0. 

So, (3, 1, 0) is a solution, and, in fact, you showed that it is the only 
solution to the original system of equations. By plugging these into the 
original system (below), you can check that it works.

.
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Getting Infinitely Many or No Solutions
What if you can’t for some reason get the method to produce the 
identity matrix on the left side of the augmented matrix? Under what 
conditions will the method fail?

You’ve already seen that a system always has either no solution, one 
solution, or infinitely many solutions. Producing an identity matrix on 
the left side is equivalent to finding a unique solution to the problem. 
There must be other situations that will lead you to find no solution or 
infinitely many solutions.

You used 3 operations on the rows of the augmented 
matrix:

 wswapping rows;

 wmultiplying rows by a nonzero constant; and

 wadding a multiple of one row ( ) to another row (i), 
replacing row (i).

These operations are called elementary row operations, 
and they do not change the solutions to a system of linear 
equations. The process of getting there is called row 
reduction or Gaussian elimination.
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Here’s one bad thing that could happen when you try to do row 
reduction. You might end up with a row that looks something like this:

[ 0 0 0 | 8 ].

If you get a row like this, it stands for the equation 

0x1     +     0x2     +     0x3 = 8,

which is a nonsensical equation because zero can’t equal 8.

So, this will be a system of equations that has no solution.

If you get a row of all zeros, including the augmented part, like this:

[ 0 0 0 | 0 ],

that just means you had an equation that was redundant. It was 
already a linear combination of the other equations, and row reduction 
eliminated that equation.

So, something like this

1 0 3 | 1  
0 1 1 | 2  
0 0 0 | 0

would represent the following system of equations:

x1     +     3x3 = 1 
x2     +     x3 = 2.
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You can choose x3 to be anything you want. Once you do that, x1 and 
x2 are determined. You then say you can choose x3 “freely,” or you say 
x3 is a “free variable.” If you have a free variable, then there will be 
infinitely many solutions!

READINGS
Chartier, When Life Is Linear, chap. 7. 

Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 1.1 
and 1.2.

Poole, Linear Algebra, sections 2.1 and 2.4.
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QUIZ FOR LECTURES 1–6
1 What are the 4 themes that you’ll encounter repeatedly throughout this 

course? [LECTURE 1]

2 In the 2‑dimensional plane, is reflection about the x‑axis a linear 
transformation? You’ll want to check that it satisfies the 2 linearity 
properties:

 w If you scale a vector and then reflect it, do you get the same thing as 
if you reflect the vector and then scale it?

 w If you add 2 vectors and then reflect them, is that the same as 
reflecting the 2 vectors and then adding them? [LECTURE 1]

3 On graph paper:

a draw the set of all scalar multiples of the vector u = (1, −1) as points 
in ℝ2 and indicate points that are integer multiples of the vector u.

b draw the set of all scalar multiples of the vector v = (1, 2) and indicate 
points that are integer multiples of the vector v. [LECTURE 2]

4 Consider the graph you drew in the previous problem. Now mark points 
on your graph that are linear combinations (au     +     bv), where a and b are 
integers. From your picture, can you estimate what linear combination 
of u and v would produce the point (4, 0)? Does the set of all linear 
combinations of the vectors u and v cover the entire plane? [LECTURE 2]

5 Let u = (1, 0, 2) and v = (−2, 3, 1). What is the dot product u • v and cross 
product u     ×     v of these 2 vectors? Based on your answers, what can you say 
about the angles between u, v, and u     ×     v? [LECTURE 3]

6 Given 3 points in ℝ3, describe a procedure you would use to derive an 
equation for the plane that passes through those 3 points. Also describe 
any instances where the procedure might fail, and explain why. [LECTURE 3]

Mastering Linear Algebra
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7 Find the matrix product: [LECTURE 4]

0 1 1
1 1 0

1 6
2 5
3 4

.

8 Find the matrix product of the transposes of the above matrices in the 
reverse order: [LECTURE 4]

1 2 3
6 5 4

0 1
1 1
1 0

.

9 Let T(x) be the function that takes a point x in ℝ2 and translates it 1 unit 
to the right. Why is T not a linear transformation? [LECTURE 5]

10 Find a matrix representing R, the linear transformation of the plane that 
reflects the plane about the diagonal line y = x. [LECTURE 5]

11 Consider this system of equations:

x     +     y     −     z = 1 
3x     +     2y = 2.

 First think about why the solution set of each equation alone is a plane 
in ℝ3. Then use row operations to show that this system has the same 
solution set as the following system:

 x     +     2z = 0 
 y     −     3z = 1.

 Use this system to find a solution (x, y, z) and verify that it is a solution of 
the original system. [LECTURE 6]

12 Can you have 3 linear equations in x, y, z such 
that any pair of them have solutions but the 3 of 
them cannot be simultaneously satisfied? Think 
geometrically to answer this question. [LECTURE 6]

Solutions can 
be found on 
page 296.
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Lecture 7

REDUCED ROW 
ECHELON FORM

T his lecture focuses on how to systematically solve any 
system of linear equations by using row operations 

to put the matrix in a special form called reduced row 
echelon form.

Reduced Row Echelon Form
Recall from the previous lecture that given an augmented matrix 
representing a system of equations, there are 3 elementary row 
operations that can be performed on it that do not change the solution 
set of that system of equations. You can

 w swap 2 rows;

 wmultiply a row by a nonzero constant; and

 w add a multiple of one row to another row, replacing that row.

The idea of Gaussian elimination is to use these operations to simplify 
the system. This could mean eliminating as many variables from the 
equations as possible. This corresponds to increasing the number of 
zeros on the left side of the augmented matrix, because they represent 
coefficients of variables.
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Notice that the third row operation is the one that will enable you to take 
a particular nonzero entry of an augmented matrix and make it zero; 
you’ll do this by adding a multiple of another row to it. The important 
point here is to do this in such a way that you don’t unintentionally 
make some entries nonzero that you already zeroed earlier.

Let’s try to be systematic about it. The first thing you might try is 
to mimic the example from the previous lecture, in which you used 
row operations to convert the left side of the 
augmented matrix to an identity matrix. This 
won’t always be possible for many reasons; here is 
one example, where the left side of an augmented 
matrix is not square.

And here is another augmented matrix, where 
the left side is square but no row operations will 
produce a 1 in the second column because all 
entries in the second column are 0.

So, instead of an identity matrix, you’ll 
aim for something more general called 
row echelon form (REF).

For example, suppose you have a system 
of equations Ax = b, where A is a 3     ×     5 
matrix. Your goal is to use elementary row 
operations (EROs) to reduce it to a form 
that has a steplike appearance.

The word echelon 
means steplike.

1 0 −1 1
0 0 2 2
0 0 0 0

1 0 −1 1
0 1 2 2

 LECTURE 7
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Here’s what makes a form an REF. On the left side of the augmented 
matrix, the first zero entry in any row is called a leading entry. To be 
in REF, the augmented matrix must satisfy 2 properties:

 w The leading entry of any row must always be to the right of a leading 
entry of a previous row.

 w Rows consisting only of zeros are at the bottom.

Matrices satisfying these properties will have a steplike appearance such 
that leading entries sit on the steps and all entries below the steps are 
zero. (Above the steps, apart from the leading entries, the other entries 
may or may not be zero.)

Look at the first column. If there is any nonzero entry in that column, 
use a swap (if needed) to make the first entry of the column nonzero. 
That is the leading entry of the first row. Then, add appropriate 
multiples of this row to other rows to zero out the rest of the entries 
under this leading entry. Now imagine you freeze the first row so 
that you no longer modify it. Then, consider the second row the 
“current” row.

Now look at the second column. If all unfrozen entries are zero, move 
to the next column and repeat the process. If some unfrozen entries are 
nonzero, swap rows (if needed) to move a nonzero entry to the current 
row. This becomes a leading entry of the current row, and the current 
row can now be used on the unfrozen rows to zero out all the unfrozen 
entries of the second column. These operations will not disturb the 
zeros that already exist in the first column, because the second row had 
a zero in the first column. Now freeze the current row and move on to 
the next row as the current row.

If you keep doing this in this fashion, you will produce a matrix in REF.

 LECTURE 7
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You can glean some interesting things from REF. It reveals some hidden 
structure of the original matrix A. For example, if the REF has a row 
of zeros, then one of the original rows of the matrix A must be a linear 
combination of the other rows. Also, the number of leading entries says 
something about the number of rows of A that is sufficient to span any 
linear combinations of the rows of A. The number of leading entries is 
called the rank of a matrix.

A matrix in REF is easy to solve by back substitution, starting with the 
last nonzero row. That is one reason why people often stop Gaussian 
elimination at the REF, because you can often figure out what you need 
from there.

Unfortunately, though, REF is not unique. If you tell 2 people to take 
a matrix and row‑reduce it to put it in REF, they may come up with 
different forms. The set of solutions will be the same, because that’s 
what row operations preserve, but the description of the set of solutions 
expressed by the REF may be very different.

This is where reduced row echelon form (RREF) is helpful, because 
it is unique for any given augmented matrix. If you give an augmented 
matrix to 2 different people and tell them to put it in RREF, they will 
give you back the same answers.

RREF takes REF a few steps further. Namely, it has 2 additional properties:

 w Every leading entry is a 1.

 w A column with a leading entry has zeros in all other entries of that 
column.
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This is possible because you can take REF and multiply rows by 
nonzero constants to turn the leading entry into a 1. Then, you can use 
a row with a leading 1 to zero out all the other entries in the column 
with that 1.

For example, consider the following system of equations.

x1     +     2x2     +     3x3 = 4 
5x1     +     6x2     +     7x3 = 8.

This has the augmented matrix shown at right.

In the first column, there is already a 1 in the first row. So, focus on 
changing the 5 in the bottom left corner to a 0.

From row 2, you can subtract 5 times row 1. So, 

5     −     5     ×     1 = 0, 
6     −     5     ×     2 = −4, 
7     −     5     ×     3 = −8, 

and 8     −     5     ×     4 = −12.

So, you have the matrix shown here. You 
should recognize it as REF because the leading 
entry in the second row (−4) is to the right of 
the leading entry in the first row.

Next, you try to turn this into RREF.

You can change the −4 entry into a 1 by 
multiplying row 2 by the constant (−1 ∕4). If you 
do this, you obtain the matrix shown at right.

1 2 3 4
0 −4 −8 −12

1 2 3 4
0 1 2 3

1 2 3 4
5 6 7 8
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Finally, you need to zero out the entry in row 1, column 2, because 
it is in the same column as row 2’s leading entry. You can do this by 
subtracting twice the second row from the first row.

This is now in RREF, because all leading entries 
are 1 and all other entries in columns with leading 
entries are 0.

Note that you had many choices you could have made to row‑reduce 
this augmented matrix, but there is an important theorem that says no 
matter what choices of row operations you made, you must always get 
the same result for the RREF.

Using the RREF to Find the Set of Solutions
If you have an augmented matrix in RREF, there’s an easy way to 
figure out the set of solutions. First of all, check if there are any 
inconsistencies—remember you can see if there are any by looking 
for a row of zeros on the left side of the augmented matrix equaling 
something nonzero on the right. 

1 0 −1 −2
0 1 2 3

THEOREM

For a given matrix, the reduced row echelon form is 
unique.

Note that this theorem holds whether or not the matrix is 
augmented.
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If there are none, then we identify what are called free variables. 
Remember that every column on the left side of an augmented matrix 
corresponds to a variable. Look at all the columns with leading 1s in 
them. The associated variables are called leading variables; all the 
other variables are free variables.

These variables are called free because they can be chosen freely—to 
be any real number. If there are no free variables, then the leading 
variables will be completely determined, so the solution is unique.  
Otherwise, the basic idea is to use the RREF to express leading 
variables in terms of free variables.  Since free variables are easy to 
express in terms of themselves, this will give us a way to express ALL 
variables in terms of the free variables, which will lead to a parametric 
description of the solutions using free variables as parameters, as 
long as solutions exist.

To understand why, let’s return to the earlier example in which the 
RREF for the following system was analyzed.

x1     +     2x2     +     3x3 = 4 
5x1     +     6x2     +     7x3 = 8.

The RREF was

1 0 −1 −2
0 1 2 3

.

The leading 1s in the first and second column are coefficients of x1 and 
x2, so x1 and x2 are the leading variables. The remaining variable, x3, is 
thus the free variable.
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You can see the importance of the free variable if you examine the 
system of equations that comes from the augmented matrix, which 
must have the same solutions as the original system.

x1     −     x3 = −2 
x2     +     2x3 = 3.

The RREF guarantees that leading variables appear in exactly one 
equation, but the free variable x3 can appear in many equations.

You can choose x3 to be any number you want, and once you do, x1 and 
x2 are now determined.

So, to find the set of solutions, your goal is to express all variables in 
terms of the free variables, which in this case is just x3, and use that to 
determine a vector equation.

The first equation, x1 = −2     +     x3, allows you to solve for x1 in terms of x3.

The second equation shows you x2 = 3     −     2x3.

What about x3? How do you express x3 in terms of x3?

Although there is no given equation that expresses x3 in terms of x3 
alone, that’s OK, because you don’t need one. It is obvious that x3 = x3.

So, then you get a set of 3 equations expressing the set of solutions in 
terms of x3, the one free variable.

x1 = −2     +     x3 
x2 = 3     −     2x3 

x3 = x3.

 LECTURE 7
 Reduced Row Echelon Form
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This can be rewritten as a vector equation if you 
factor out the free variable.

Because x3 can be chosen to be any real number, 
it can be thought of as a parameter. So, you 
might recognize this vector expression as a parametric description of a 
line, because it is a point (−2, 3, 0) plus some parameter times a vector 
direction (1, −2, 1). So, the set of solutions to the original system is a line!

If x3 = 0, you see that a solution to the original system is (−2, 3, 0), 
and if x3 = 1, you get the solution (−1, 1, 1). By plugging these into the 
original system (below), you can check that they are both solutions.

x1     +     2x2     +     3x3 = 4 
5x1     +     6x2     +     7x3 = 8.

Row-Equivalent Matrices
In addition to being useful for expressing the set of solutions to a linear 
system, RREF can also be used to tell which matrices are related by 
row operations.

Let’s call 2 matrices row-equivalent if there is a series of elementary 
row operations that take you from one matrix to the other. Then, the 
following theorem is true.

THEOREM

Matrices A and B are row-equivalent if and only if A and 
B have the same RREF.

 LECTURE 7
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Let’s prove this fact. First, if A and B are row‑equivalent, then there 
is a sequence of row operations taking A to B. But there is a series 
of row operations that takes you from B to B’s RREF. Putting these 
sequences together gives you a sequence from A to B’s RREF. But this 
must then be A’s RREF, because RREFs are unique. So, A and B have 
the same RREF.

A → B → RREF. 

Next, let’s suppose that A and B have the same RREF. Then, there 
is a sequence of row operations taking you from A to the RREF. If 
you could find a sequence taking the RREF to B, you would be done, 
because there would be a sequence of row operations going from A 
to B. But you know there are row operations taking B to the RREF. 
Because every row operation is reversible, you can reverse this sequence 
to obtain a sequence from the RREF to B, as desired.

This is a helpful criterion to tell when 2 matrices are 
row‑equivalent.

READINGS
Chartier, When Life Is Linear, chap. 6. 

Kalman, “An Underdetermined Linear System for GPS,” https://www.maa.
org/sites/default/files/pdf/upload_library/22/Polya/Kalman.pdf.

Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 1.2, 
1.5, and 1.6.

Poole, Linear Algebra, section 2.2 and the Vignette that follows section 2.4.

Yuster, “The Reduced Row Echelon Form Is Unique,” https://www.maa.org/
sites/default/files/Yuster19807.pdf. 
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Lecture 8

SPAN AND LINEAR 
DEPENDENCE

I n some instances, the solution set of a system of linear 
equations is naturally a geometric object, such as a line or 

a plane, because it is a linear combination of various vectors. 
This lecture focuses on the geometry of linear combinations.

The Span of a Set of Vectors
Recall from lecture 2 that the span of a set of vectors is the set of all 
linear combinations of those vectors.

If you have just one vector in ℝn, the set of all 
linear combinations of one vector in ℝn is just 
multiples of that vector. This forms a set that 
is just a line in ℝn. So, for example, the 
vector (2, 1) lives in the plane. Then, the 
span of the vector (2, 1) is anything of 
the form given by some constant k times (2, 1). So, anything of the 
form (2k, k) is in the span of (2, 1). Note that k could be negative. So, 
this forms a line in the plane, because you can go both forward and 
backward in the direction (2, 1).
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The span of 2 vectors—for example, v1 and v2—is the set of all linear 
combinations of v1 and v2. This means it could be any multiple of v1 
plus any multiple of v2. In other words, the span of a set of vectors is 
the set of all points you could reach from the origin if you were limited 
to adding multiples of those vectors.

Consider 2 vectors v1 and v2 sitting in 
3‑dimensional space, as in the picture 
shown here, where v1 and v2 are based at a 
blue dot that represents the origin.

If you just draw integer multiples of v1 
plus integer multiples of v2, you will 
get the set of points of a grid, as in the 
picture. To get to the point representing 
v1     +     v2, you march first in the direction v1 and then in the direction v2. 
And to get to the point v1     −     v2, you first move in direction v1 and then 
in the direction of −v2, which is the opposite of the direction v2.

How do you get from the blue point to the point b using v1 and v2?

You can use 2 multiples of v2 plus 1 ∕2 of v1.

If you have 2 vectors v1 and v2, any linear combination of v1 and v2 
will produce a point on a plane containing v1 and v2. And those are, 
intuitively, the only points you could reach. So, you can see that with 
just 2 vectors, you won’t be able to reach every point in ℝ3. So, the span 
of 2 vectors is a plane.

The span of any 2 vectors is generally a plane, but if v1 and v2 are 
parallel (pointing in the same direction or opposite directions), their 
span would be a line.

 LECTURE 8
 Span and Linear Dependence
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And if v1 and v2 are the zero vector, then the span of v1 and v2 will be 
a single point—the zero vector—because that’s all you can get when 
taking linear combinations of the zero vector!

Similarly, the span of 3 vectors can be something that is at most 
3‑dimensional, and the span of k vectors can be at most k‑dimensional 
in some high‑dimensional space, but it can be smaller.

Suppose you are asked to find the span of the vectors (1, 0) and (0, 1). 
The first thing you might do is think about this intuitively:

(1, 0) and (0, 1) are 2‑dimensional vectors, so they live in ℝ2. And 
there are 2 of them, which means they span at most a plane, but maybe 
something smaller. If they span a plane, there is only one plane they 
could span—namely, all of ℝ2.

Can you get any vector (A, B) as a linear combination of (1, 0) and 
(0, 1)?

Yes. This is just what you do with the usual coordinate system. You 
march over A units in the x direction and B in the y direction. This is 
just doing the combination A(1, 0)     +     B(0, 1). So, the span of these 2 
vectors is all ℝ2.

On the other hand, the span of the vectors (1, 0) and (2, 0) is a line 
consisting of all points of the form (x, 0) for a real number x. In this 
case, taking linear combinations of (1, 0) and (2, 0) will only produce 
vectors whose second coordinate is 0.

 LECTURE 8
 Span and Linear Dependence
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What about the span of the vectors (1, 3) and (3, 1)?

Again, the vectors are in the plane ℝ2, and they should span at most a 
plane. You expect that as long as they don’t point in the same direction, 
they should span the whole plane. It may not be as obvious how to 
construct an arbitrary vector (A, B) as a combination of (1, 3) and 
(3, 1), so let’s figure out how to do that.

When Is a Vector in the 
Span of a Set of Vectors?
In general, when is a vector b in the span of a set of vectors v1 through 
vk? In other words, when is b a linear combination of given vectors, and 
if it is, what linear combination is it?

For example, is (1, 2, 3) in the span of the 2 vectors (4, 5, 6) and 
(7, 8, 9)?

 LECTURE 8
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This is the same as finding coefficients 
x1 and x2 to make x1(4, 5, 6)     +     x2(7, 8, 9) 
equal to (1, 2, 3).

But notice that this is just a linear 
system of equations! For example, the 
first row is 4x1     +     7x2 = 1, and the other 
rows are similarly linear equations. So, 
finding coefficients x1 and x2 is the same 
as taking the augmented matrix and 
reducing it by row operations.

When you put it in RREF, you see that there is no inconsistency, 
because there is no row that is all zeros on the left while being nonzero 
on the augmented side. This RREF shows that a solution exists—
namely, x1 = 2 and x2 = −1. 

So, the answer to the question posed previously is yes: (1, 2, 3) is in the 
span of the 2 vectors. And you just solved for the coefficients! So, you 
know that

.

In fact, you know this is the only combination that would produce 
(1, 2, 3) because it was the only solution to the system of linear 
equations you had.

Now look at the RREF of the augmented matrix.

 LECTURE 8
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The last row is a row of zeros. You could have foreseen that there would 
be a row of zeros on the left side because there are more rows than 
columns on the left side (which comes from the fact that the dimension 
of the vectors, 3, is greater than the number of vectors you are taking 
the span of, 2 in this case). 

However, on the right, the last row may not have had a zero if you had 
row‑reduced a different vector besides (1, 2, 3). So, you could have had 
an inconsistency, which suggests that not all vectors in ℝ3 are in the 
span of (4, 5 ,6) and (7, 8, 9). This makes sense, because the span of 2 
vectors is at most a plane in ℝ3.

THEOREM

A system of equations Ax = b has a solution if and 
only if b is a linear combination of the columns 
of A. In other words, Ax = b has a solution if and 
only if b is in the span of the columns of A.

This is an answer to the question of how to tell 
when a vector is in the span of a set of vectors: 
Just solve a certain matrix equation.

 LECTURE 8
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Linear Dependence of a Set of Vectors
If you have fewer vectors than dimensions, you might not span the 
entire space. But what if you have more vectors than dimensions?

Suppose you have 3 vectors in ℝ2: u = (1, 0), v = (0, 1), and w = (2, 3). 
What do they span?

You have already seen that (1, 0) and (0, 1) span all ℝ2, so you expect 
that if you throw in another vector, the span should only get bigger. But 
it can’t get bigger because you’ve already spanned the entire space of ℝ2.

The theorem suggests that finding the span of 
these 3 vectors is the same as seeing if a certain 
system of equations—the one represented by 
the augmented matrix at right—has a solution.

Notice how the columns on the left are vectors u, v, and w that you were 
given and the right side is a generic point b with coordinates (b1, b2). 
By using generic letters for b1 and b2, you are asking this question: For 
which b1 and b2 is a solution possible? In other words, which vectors b 
are in the span of these 3 vectors?

Solving this particular augmented matrix is easy because it is already in 
RREF. So, it represents the system x1     +     2x3 = b1 and x2     +     3x3 = b2.

Recall that the variables x1, x2, and x3 will tell you the linear combination 
of the columns that produce (b1, b2). Also, you see from the RREF that 
x1 and x2 are leading variables (associated with the leading 1s), and x3 is 
a free variable because the column for x3 has no leading 1 in it. 

 LECTURE 8
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So, to solve this system, you should try to express all variables in terms 
of free variables. When you do that, you get

x1 = b1     −     2x3 
x2 = b2     −     3x3.

And x3 is free, so it’s easily expressed in terms of x3 by saying x3 = x3.

. 

So, you get (x1, x2, x3) = (b1, b2, 0)     +     x3(−2, −3, 1).

These are the coefficient combinations that will produce the vector 
(b1, b2) from the 3 vectors u, v, and w.

This solution should not surprise you, because if x3 is zero, you get the 
result you got before: that every vector (b1, b2) can be produced as a 
linear combination of (1, 0) and (0, 1), with coefficients that are just 
the coordinates b1 and b2. So, if you want to get the point (5, 7), you 
just use 5 times (1, 0) and 7 times (0, 1).

.

But notice from this analysis that there are multiple solutions—in fact, 
a line of solutions—and that each solution is given by a different choice 
of free variable x3. So, if you want to get (5, 7) using 1 as the coefficient 
for the vector w, then you’ll need x3 = 1. 

 LECTURE 8
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So, then, 

(x1, x2, x3) = (5, 7, 0)     +     1(−2, −3, 1) = (3, 4, 1).

Going back to the vectors u, v, and w, this means

.

Thus, the linear combination you get to produce a particular vector in 
this case is not unique. This is because you had the presence of a free 
variable—in this case, x3. And you had that free variable because you 
had more vectors than dimensions.

It’s possible in a case like this that the RREF could reveal an 
inconsistency; for example, a set of 3 vectors might still span a line 
in ℝ2, and not every point in ℝ2 is a linear combination of 3 given 
vectors. But if there is no inconsistency and you have more vectors than 
dimensions, then linear combinations that produce a specific vector are 
not unique.

In other words, when you have more vectors than dimensions, you 
don’t need all the vectors to produce the span of those vectors. Some of 
the vectors are redundant for that purpose. In this example, you didn’t 
need the vector (2, 3). You could have thrown it out and the other 2 
vectors would still produce all R2.

In fact, w = (2, 3) is a linear combination of the other 2 vectors. It is 
just 2u     +     3v. So, anything you could form using (2, 3) could be formed 
using (1, 0) and (0, 1). That’s one sense in which (2, 3) is redundant.

This leads to an important concept that describes when a set of vectors 
is redundant in that sense. It’s called linear dependence.

 LECTURE 8
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Linear Independence of a Set of Vectors
A set of vectors is linearly dependent if there are coefficients (called 
weights) not all zero, such that a linear combination of those vectors equals 
the zero vector. Otherwise, the set of vectors is linearly independent.

.

Notice that this definition does not require all coefficients to be 
nonzero, just some of them. This situation, when some of the 
coefficients are nonzero, is called a nontrivial linear combination. (If 
all were zero, it would be called a trivial linear combination.)

In the example with u, v, and w, you’ve seen that 
w is already a linear combination of u and v—
namely, w = 2u     +     3v.

This is the same as saying that 2u     +     3v     −     w is 
equal to the zero vector. In other words, if one 
vector can be written in terms of the others, then 
there is a nontrivial linear combination that produces the zero vector. 
And if there is a nontrivial linear combination, by solving for one of 
the vectors in terms of the others, you’d see that one of the vectors is a 
linear combination of the others. You have just proved a theorem. 

THEOREM

A set of vectors is linearly dependent if and only if at least 
one vector is a linear combination of the others.

 LECTURE 8
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So, the vector that is a linear combination of the others could be 
removed from the set of vectors and you would not change its span. 
You would have just removed a redundant vector.

Note that when you have a linearly dependent set, you are not saying 
that every vector is a linear combination of the others, just that one of 
the vectors is a linear combination of the others. For example, if you 
have vectors a, b, and c and vectors a and c are multiples of one another 
while b points in a different direction, then you wouldn’t be able to 
remove b without changing the span, and b is not a linear combination 
of vectors a and c.

And that’s because the nontrivial combination of a, b, and c that 
produces the zero vector here is (a     −     2c) = 0. The coefficient of b in this 
nontrivial combination is zero, so this linear dependency relationship 
does not involve b.

Notice the language that is used: Linear dependence (or 
independence) is a property of a set of vectors—not a 
property of a single vector.

A common mistake people make is to talk about a single 
vector as dependent or independent, but that has no 
meaning apart from a set you are speaking about.
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THE FUNDAMENTAL CORRESPONDENCE

A matrix equation, a system of equations, and a vector 
equation may appear to be 3 different things, but they are 
really saying the same thing.

At one corner of this triangle is a matrix equation of the 
form Ax = b. If you write out what it is saying, you will 
get the system of linear equations that’s in the bottom 
left corner. But if you look at this system of equations and 
pull out the dependence on x1, x2, and x3 as coefficients 
of vectors that are the columns of A, then you get the 
vector equation in the bottom right corner, which asks 
this question: What linear combination of these columns 
equals b?

 LECTURE 8
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Now let’s connect the discussion of linear independence of a set of 
vectors to the uniqueness of a linear combination of those vectors.

If a set of vectors is linearly independent, it means that the only way to 
get the zero vector as a linear combination is if the coefficients are all 
zero. This is equivalent to saying that the zero vector is in the span of a 
set of vectors in exactly one way.

By the fundamental correspondence (see PAGE 111) between vector 
equations and linear equations, this is just a statement about a system 
of linear equations: If you put a set of vectors in the columns of a matrix 
A, then to say the columns of A are linearly independent means the 
only way to get the zero vector as a linear combination of the columns 
is if all coefficients are zero. In other words, Ax = 0 has only the trivial 
solution where all coefficients are zero.

And you can see from the RREF of A that you have linear independence 
of the columns if there are no free variables in the RREF.

Notice that a system of equations of the form Ax = 0—called a 
homogeneous system of equations—can always be solved, because A 
times the zero vector gives the zero vector. So, the zero vector is always 
a solution, called the trivial solution. So, a homogeneous system of 
equations can never have an inconsistency.

The only question for a homogeneous system is whether the trivial 
solution is the unique solution. Otherwise, Ax = 0 has more than one 
solution, which happens when there are free variables in the reduced 
row echelon form.

READINGS
Lay, Lay, and McDonald, Linear Algebra and Its Applications, section 1.7. 

Poole, Linear Algebra, section 2.3.
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Lecture 9

SUBSPACES: SPECIAL 
SUBSETS TO LOOK FOR

T he row space, column space, and null-space are 3 
special objects associated to an m     ×     n matrix. They 

are subspaces of either ℝn or ℝm. These subspaces are 
often important objects precisely because they highlight the 
underlying geometry of the linear transformation associated 
with a matrix.

The Null-Space of a Matrix
Recall that a homogeneous system of linear equations is one of the form

Ax = 0,

where A is a matrix, 0 is the zero vector, and x is an unknown vector. 
Homogeneous systems always have at least one solution—namely, the 
trivial one, in which x = 0. But there may be other solutions.
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For example, consider the following simple linear equation:

.

It has (−2, 1, 0) and (3, 0, −1) as solutions. And 
if you add those 2 solutions together, you get 
(1, 1, −1), which is another solution! This is not 
a coincidence.

The solution set to an equation of the form 
Ax     +     By     +     Cz = D is a plane, and if D = 0, the 
solution set passes through the origin. So, if 
you add 2 vectors in this plane, it remains 
in the plane.

This is a general phenomenon for the solution set of any homogeneous 
system of linear equations. The set of all solutions to Ax = 0 is called the 
null-space of a matrix A, and it is denoted by Null(A).

.

The claim is that if 2 vectors x and 
y are in Null(A), then x     +     y is also in 
Null(A). Let’s see.

For x and y to be in Null(A) means that 
Ax = 0 and Ay = 0.

Null-space gets its 
name because null 
means zero, and the 
null-space of A is 
the set of all vectors 
that multiplication 
by A sends to the 
zero vector.

 LECTURE 9
 Subspaces: Special Subsets to Look For
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Can you see why A(x     +     y) = 0?

Ax     +     Ay is equal to the zero vector because both terms are the zero 
vector. And because Ax     +     Ay = A(x     +     y) using the linearity of matrix 
multiplication, A(x     +     y) = 0, which means x     +     y is in Null(A). So, the 
set Null(A) has this curious property: Adding 2 things in Null(A) stays 
in Null(A), so the set is closed under addition. In other words, you can’t 
get anything new by adding things in Null(A).

In fact, it is also closed under scalar multiplication—meaning it has the 
property that if x is in Null(A) and c is a scalar, then cx is in Null(A), 
because A(cx) = cAx = c0 = 0.

Together, these 2 properties mean that linear combinations of things in 
the null‑space remain in the null‑space. Such a set is called a subspace 
if it is closed under taking linear combinations. The null‑space is one 
example of a subspace.

One way linear systems arise naturally in economics is 
in setting budget constraints. For example, you may be 
trying to build some set of objects using some parts, and if 
you know the cost of those parts, then the total cost of the 
objects will vary linearly with the parts because each part 
has a particular cost. The total costs for the objects cannot 
exceed the budget constraints you are given.

 LECTURE 9
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Subspaces
The idea of a subspace is a generalization of a line or plane through the 
origin. Formally, a subspace can be defined as follows.

Whenever you refer to a subspace, you are always implicitly referring 
to a set that sits inside some bigger space. So, a given set is a subspace 
of something else. But the whole idea of a subspace is that when you 
take things in the set and perform operations like addition and scalar 
multiplication, you will not leave the set. You can’t leave it by taking 
linear combinations. So, a subspace interacts with itself and is mostly 
oblivious to the things outside it.

DEFINITION

A collection H of vectors in ℝn is called a subspace of ℝn 
if it satisfies 3 properties:

1 H contains the zero vector. (This property is here just 
to ensure that the subspace is nonempty.)

2 H is closed under addition. (If x and y are in H, then 
x     +     y is in H.)

3 H is closed under scalar multiplication. (If x is in H and 
c is a real number, then cx is in H.)

 LECTURE 9
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Let’s look at some simple examples.

{0} in ℝn is subspace of ℝn.

The zero vector all by itself is a set that is a subspace of ℝn. Clearly, it 
contains zero, and if you add 2 things in it (both zero), then their sum 
is zero, so it stays in the set, and multiplying zero by a constant keeps 
you at zero, in the set.

ℝn is subspace of ℝn.

The entire space ℝn is a subspace of ℝn, because it contains the zero 
vector and is clearly closed under addition and scalar multiplication.

Is a line L passing through the origin in ℝ2 
a subspace? Any point on L is a multiple of 
some vector v. So, if you take 2 points on L 
and add them, you are adding 2 multiples of 
v, so you’ll get another multiple of v. And 
if you multiply a multiple of v by a scalar, 
you’ll get another multiple of v. So, this line 
L satisfies all 3 properties of subspaces, so it 
is a subspace of ℝ2.

The same arguments show in general that a line through the origin in 
ℝn is a subspace of ℝn.

Can a line L′ not passing through the origin 
be a subspace?

No, because it does not satisfy the first 
property: It does not contain the zero vector.

 LECTURE 9
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But is that the only obstacle to being a subspace? For example, suppose 
you include the zero vector in L′. Is that a subspace?

It’s still not a subspace, because if you take a vector x on L′ and double 
it, you will get a vector 2x that is not on L′. So, it is still not a subspace.

If you have 2 parallel lines in the plane, one that passes through the 
origin, is that a subspace?

No, because it’s not closed under linear combinations.

Consider this set: the first quadrant in ℝ2. 
Is that a subspace?

It contains zero and is closed under addition, 
but if you take a vector in the first quadrant 
and multiply it by −1, it is no longer in the first quadrant. So, the set is 
not closed under scalar multiplication, so it is not a subspace, because it 
does not satisfy all 3 conditions.

A line through the origin is a subspace, and a plane through the origin 
is also a subspace. In fact, the span of a set of vectors in ℝn is always a 
subspace, because it passes through the origin, and if you add 2 vectors 
in the set, you generate something in the set. If you multiply a vector in 
the set by some scalar, the result stays in the set.

THEOREM

If H is the span of a set of vectors v1 through vk in 
ℝn, then H is a subspace of ℝn.
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To prove this theorem, you have to check 3 conditions for a subspace 
that all concern membership in H. In other words, is the vector 
expressible as a linear combination of v1 through vk? Let’s check.
1 Is the zero vector in H? Yes, because zero is the trivial linear combination 

of the vectors v1 through vk, where all coefficients are zero.

2 Suppose x and y are in H, meaning that they are linear combinations of v1 
through vk. Then x     +     y is too. To show this, write x as a1v1     +     …     +     akvk and 
y as b1v1     +     …     +     bkvk. Their sum x     +     y is (a1     +     b1)v1     +     …     +     (ak     +     bk)vk. This is 
clearly a linear combination of v1 through vk, so x     +     y is also in H.

3 If c is a scalar real number and x is in H as a linear combination of v1 
through vk, then cx is the linear combination of v1 through vk with all 
the coefficients multiplied by c.

So, the span of a set of vectors in ℝn is always a subspace of ℝn. And 
because the span of a set of vectors is always a subspace, a subspace is 
always the span of a set of vectors.

But which set of vectors?

The entire set H would work. If you just take the span of all vectors of 
H, you still get H because H is closed under linear combinations. But 
maybe you can be more economical and choose a smaller set of vectors.

THEOREM

If H is a subspace of ℝn, then H is the span of 
some set of vectors.
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The point of this theorem is that spans of vectors are really the only 
kinds of things that can be subspaces. This gives us a clue, geometrically, 
of what subspaces must be: As sets of all linear combinations of a set of 
vectors, they have to be either a point (the origin), a line through the 
origin, a plane through the origin, or some k‑dimensional flat space 
through the origin.

The Row Space and 
Column Space of a Matrix
There are 3 special subspaces that come associated with every matrix: 
the null‑space, the row space, and the column space. These subspaces 
tell us something about the hidden structure of the matrix.

For example, because an m     ×     n matrix represents a linear transformation 
from ℝn to ℝm, the row space and null‑space are subspaces of ℝn and 
the column space is a subspace of ℝm, and that tells us something about 
the geometry of this linear transformation.

Recall the fundamental correspondence between a matrix equation, a 
system of equations, and a vector equation.
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In the displayed example, one way to view this matrix equation is as a 
system of equations: 2 equations in 3 unknowns. Another way to view 
this matrix equation is as a linear combination of the columns—in 
this case, the 3 unknowns are the coefficients of the columns of the 
matrix A.

These 2 points of view are essentially a row view and a column view. 
For systems of equations, the rows are of interest because they represent 
equations. The column view pays attention to the column vectors: 
How do they combine to form the vector b? Switching back and forth 
between these 2 viewpoints will be continually handy.

For an m     ×     n matrix A, the row space of matrix A is defined to be the 
span of the rows of A. It’s denoted by Row(A). Because it is the span of 
vectors in ℝn, it is a subspace of ℝn.

The column space of A is defined to be the span of the columns of 
A. It’s denoted by Col(A). It is the span of vectors in ℝm, so it is a 
subspace of ℝm.

READINGS
Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 2.8 

and 2.9. 

Poole, Linear Algebra, section 3.5.
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Lecture 10

BASES: BASIC 
BUILDING BLOCKS

A good set of vectors, called a basis, should span the 
space in question and be linearly independent so there 

isn’t redundancy in how the vectors are expressed—in other 
words, there’s only one way to write any vector as a linear 
combination of these vectors. It is also useful to have some of 
the vectors span the subspace so that coefficients of the other 
basis vectors are small.

Geometric Interpretation of 
Row, Column, and Null-Spaces
Recall that every m     ×     n matrix A represents a linear transformation in 
the following way: Let the function T(x) be defined to be Ax. Then, T 
is a linear transformation from ℝn to ℝm. In effect, T is the function 
that performs matrix multiplication by A.

T(x) = Ax.

https://www.thegreatcourses.com/
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But Ax can also be viewed as a linear combination of the columns of 
A. But this means that the range of T, which is the set of all possible 
vectors that result from multiplying A by some x, is the same as the 
set of all linear combinations of the columns of A, which is called the 
column space of A.

Range T = Col(A).

So, the column space of A has a natural geometric interpretation as 
the range of the linear transformation arising from multiplication by 
A. This column space could be all of ℝm, but it could also be a smaller 
subspace of ℝm.

Kernel T = Null(A).

Besides the range, another important object associated with a linear 
transformation T(x) = Ax is its kernel. The kernel of T is the set of all 
vectors in the domain of T that map to zero, so the kernel of T is just 
the null‑space of the matrix A, because it is the set of all x for which Ax 
is zero. The null‑space of A is a subspace of ℝn, the domain of T.

Both the kernel and the range of a linear transformation are important, 
because many subspaces arise as kernels or ranges of some linear 
transformation. For example, the solution set to a homogeneous system 
of equations Ax = 0 is the kernel of a linear transformation T(x) = Ax. 
The span of any set of vectors is the range of the linear transformation 
T(x) = Ax, where the vectors are the columns of the matrix A.

 LECTURE 10
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Let’s display a picture that might suggest what is going on. A linear 
transformation represented by the m     ×     n matrix A takes ℝn to ℝm.

The null‑space, indicated in orange in the left picture, lives in ℝn and is 
the kernel of the linear transformation T(x) = Ax. Multiplication by A 
takes everything in the orange line on the left and maps it to the origin, 
the orange dot on the right picture. Also, the entire picture on the left, 
representing all of ℝn, gets mapped to the blue line on the right, which 
is Col(A), the range of the linear transformation T.

What about Row(A)? Any vector in Row(A) is orthogonal to any vector 
of Null(A). So, in the picture, the row space of A, in green on the left, is 
the set of vectors perpendicular to Null(A) in orange.

You can see why vectors in Row(A) are perpendicular to vectors in 
Null(A) by using the observation that a 1     ×     m row vector q times an m     ×     n 
matrix A is a row vector that is a linear combination of the rows of A.

If x is a vector in Null(A), then (qA)x is, by associativity of matrix 
multiplication, the same as q(Ax), but because x is in Null(A), you 
have Ax = 0. So, q(Ax) is the 1     ×     1 matrix consisting of the number 0. 
This means that qA, which can represent any vector in Row(A), must 
be orthogonal to any vector x in Null(A).

 LECTURE 10
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If you had enough pictures like this, you would notice some interesting 
geometric relationships between these subspaces. For example, the 
dimension of the row space and column space are the same, even 
though they live in completely different spaces: The row space lives 
in the domain, and the column space lives in the codomain of the 
transformation T(x) = Ax.

The Basis of a Subspace
Every subspace is the span of a set of vectors. Recall that one way to 
think of the span of a set of vectors in ℝn is to think of a spaceship at 
the origin and the vectors as the set of thrusters that you can fire to 
move in various directions. Then, the span of those vectors is all the 
places you can go using those thrusters. This will be a subspace of ℝn, 
but it may or may not be all of ℝn.

If you were designing this spaceship, you might try to be economical 
and use as few thrusters as possible. So, if you don’t need all the vector 
thrusters, you might get rid of some of them. Intuitively, a basis of 
vectors is a minimal set of thrusters that you might need.

Formally, a basis B for a subspace H is a set of vectors such that 2 
properties hold:
1 The vectors must span H.

2 The set B must be a linearly independent set.

The first condition ensures that your thrusters can reach all of the 
subspace H.

The second condition says that you have no redundancies. Recall that 
to be linearly independent means that there is no nontrivial linear 
combination of the vectors in B that will produce the zero vector. And 
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this is equivalent to saying that no vector in B can be written in terms 
of the other vectors. So, removing any thruster from your set means 
you won’t be able to reach all of H.

Let’s look at some examples. The first example is ℝ3, which is a 
subspace of itself. There is a natural basis called the standard basis 
for ℝ3. This basis is the set of 3 vectors that point along the coordinate 
axes and are unit length: (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Using the standard basis, writing any other vector as a linear 
combination of these vectors is, in some sense, what you already 
do when you specify coordinates: the vector (3, −1, 4) really means 
3(1, 0, 0)     +     −1(0, 1, 0)     +     4(0, 0, 1), or 3i     −     j     +     4k.

From this example, it is easy to convince 
yourself that any vector in ℝ3 is a linear 
combination of basis vectors, so they span all of 
ℝ3. And the vectors are linearly independent, 
because if you remove any one of them, you 
will not be able to get all the vectors in ℝ3. For 
example, if you remove e2, you will not be able 
to get any vector whose second component is 
nonzero.

In math, the standard basis is often denoted using e with a 
subscript—in this case, e1, e2, and e3.

The physics community often uses the symbols i,  , and k 
for these 3 vectors.
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But ℝ3 has other bases. For example, consider (1, 0, 0), (1, 1, 0), and 
(1, 1, 1). For simplicity, label them v1, v2, and v3. You can check that 
these vectors form a basis for ℝ3 by noting that the matrix A with these 
vectors as columns is already in row echelon form. Because there is 
no row of zeros, the linear system Ax = b can always be solved, which 
means the column vectors span ℝ3.

Also, the linear system Ax = 0 has 
no free variables, so it has a unique 
solution, which must be the trivial 
solution. So, the columns of A must 
be linearly independent.

The column vector (3, −1, 4) can be 
written in terms of these vectors v1, 
v2, v3 by solving Ax = (3, −1, 4). You 
will find (3, −1, 4) = 4v1     −     5v2     +     4v3.

Aside from giving you a basic set that you can use to build all other 
vectors in your subspace, bases are important because there is only one 
way to build a vector as a linear combination of given basis vectors.

So, vectors that look different must be different! This would not 
necessarily be true if the basis vectors were not linearly independent.

THEOREM

Every vector v in H can be expressed as a linear 
combination of given basis vectors, and it can be 
done in only one way.
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A basis B for a subspace allows any vector in the subspace to be expressed 
uniquely as a linear combination of vectors in B. The coefficients of 
this combination are called weights or coordinates with respect to B.

So, for example, the coordinates of (3, −1, 4) with respect to v1, v2, v3 
are (4, −5, 4). The coordinates are basically telling you how much to 
fire your rocket thrusters in particular directions. Any other basis will 
produce coordinates with respect to a different set of thrusters.

So, a subspace can have many bases. But it is a fact (that we won’t prove 
here) that any 2 bases for a subspace H must have the same number 
of vectors. Because the number is independent of the basis chosen, that 
number can be called the dimension of the subspace H, denoted by dim 
H. This tells you how many degrees of freedom the subspace H has.

So, if the subspace H has one degree of freedom (for example, choice of 
coordinate), it is called a line. If it has 2 degrees of freedom (choices for 
coordinates), it is called a plane—etc.

How to Find a Basis for a Column Space
If you want to find a basis for a subspace that is a span of a set of 
vectors, then by putting those vectors in the column of a matrix, you 
are changing the problem to finding a basis for the column space of 
a matrix.

There is an easy way to find a basis for any 
column space by using the reduced row 
echelon form of the matrix. For example, 
suppose matrix A is a 4     ×     5 matrix with 
entries 1 through 19 and a stray 21 as the 
final entry.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 21
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Call the columns c1 through c5. Now 
do row operations to get to the RREF, 
and after you’ve done that, call those 
columns c1′ through c5′. Look at all 
the RREF columns with a leading 
1, the so‑called pivot columns—in 
this case, the first, second, and fifth 
columns (c1′, c2′, and c5′).

This tells you which of the original 
columns will form a basis for the 
column space of A. In this case, c1, 
c2, and c5 are a basis; that is, the 
vectors (1, 6, 11, 16), (2, 7, 12, 17), 
and (5, 10, 15, 21) are a basis for the 
span of all 5 columns. The span must 
be a 3‑dimensional subspace of ℝ4.

Why does this curious method work?

The key idea is that doing row 
operations does not change the linear dependencies among the 
columns. So, if some linear combination of the ci’s equals zero, then 
the same linear combination of the ci ′ will equal zero, too!

For example, you can check that c1     −     2c2     +     c3 = 0. So, c1′     −     2c2′     +     c3′ = 0 
as well.

This also means that if in the RREF the first, second, and fifth 
columns are linearly independent, then in the original matrix, the first, 
second, and fifth columns are linearly independent as well. This is 
because whatever coefficients worked for c1′, c2′, and c5′ to get the zero 
vector (namely, only zero coefficients), those same coefficients are the 
only ones that work for c1, c2, and c5.

c1 c2 c3 c4 c5

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 21

Basis for Col(A) = {c1, c2, c5}.

c1′ c2′ c3′ c4′ c5′

1 0 −1 −2 0
0 1 2 3 0
0 0 0 0 1
0 0 0 0 0

RREF
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Thus, you see how to find a basis for a column space of a matrix. It 
is this method that produces a basis consisting of vectors from the 
original spanning set; it just potentially throws away some columns 
that weren’t necessary. In this case, c3 and c4 could be thrown away.

How to Find a Basis for a Row Space
How do you find a basis for the 
row space of a matrix A? You can 
use the RREF of the matrix A to 
find this as well. Just look at the 
nonzero rows of the RREF. That’s 
a basis for the row space of A!

In the example, you can see that 
the first 3 rows of the RREF 
are nonzero vectors. These are a 
basis for the subspace spanned 
by the rows of A. Unlike the column space method, the row space 
basis produced by this method doesn’t use the original vectors of the 
spanning set of rows. It finds some new vectors. So, in the example, a 
row space basis is (1, 0, −1, −2, 0), (0, 1, 2, 3, 0), and (0, 0, 0, 0, 1). It is 
a 3‑dimensional subspace of ℝ5.

This method works for a different reason than the column space 
method: Doing elementary row operations, by their very nature, does 
not change the row space of a matrix. This is because a row operation 
produces a new row that is a linear combination of old rows, and 
because elementary row operations are reversible, the reverse is true, 
too. In the RREF, the 3 nonzero rows clearly span the row space, and 
they are linearly independent because of the echelon form.

c1′ c2′ c3′ c4′ c5′

1 0 −1 −2 0 r1′
0 1 2 3 0 r2′
0 0 0 0 1 r3′
0 0 0 0 0

RREF

Basis for Row(A) = {r1′, r2′, r3′}.
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How to Find a Basis for a Null-Space
What about finding a basis for a null‑space? This means finding 
solutions to Ax = 0, and you’ve actually done this before. Recall that 
you form the augmented matrix A with a column of 0s and then row‑
reduce to reduced row echelon form. This enables you to figure out 
which are the free variables, by looking at columns without leading 1s. 
Then, you express all other variables in terms of the free variables, using 
the RREF, just as you learned to do previously.

In the example, the free variables are x3 
and x4, because they do not have leading 
1s in them. You then get (x1, x2, x3, x4, 
x5) in terms of x3 and x4, as x3 times the 
vector (1, −2, 1, 0, 0) plus x4 times the 
vector (2, −3, 0, 1, 0). This shows that 
the set of solutions is spanned by vectors 
(1, −2, 1, 0, 0) and (2, −3, 0, 1, 0).

It turns out that the vectors you obtain in this way must also be linearly 
independent—because if you look at the third and fourth entries 
of the vectors, there is no way to produce the zero vector unless the 
coefficients of these 2 vectors are zero.

The point is that you already know how to find null‑spaces because you 
know how to solve linear equations using the RREF to find the null‑
space as the span of some vectors. The vectors you obtain in this way 
also turn out to be a basis.
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The Rank-Nullity Theorem
Let’s call the dimension of the row space of A the row rank of A and 
the dimension of the column space of A the column rank of A.

In the example, both these numbers turned out to be the same number. 
This was no accident. Both of them are equal to the size of their 
bases, and both bases were derived by looking at the leading 1s in the 
RREF. The column space basis consisted of columns of the original 
matrix corresponding to leading 1s in the RREF. The row space basis 
consisted of rows of the RREF corresponding to leading 1s. So, the 
dimensions of the row space and column space will always be the same, 
even though those objects live in different spaces (ℝn versus ℝm)!

This number is called the rank of a matrix A, and it is the dimension 
of either its row space or its column space.

Let’s call the dimension of the null‑space of a matrix the nullity of A. 
This is equal to the number of free variables in the system of equations 
Ax = 0, which is the number of columns of the RREF that do not have 
a leading 1. So, this means that if you add the nullity to the number of 
columns with leading 1s, you get the total number of columns. For an 
m     ×     n matrix, the number of columns is n.

THEOREM

The row rank and column rank of a matrix are 
the same.
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You can see these relationships in the picture.

Here you see that the dimension of the row space of A plus the 
dimension of the null‑space of A must equal the dimension of the entire 
domain on the left, which is n.

Also, the dimension of the row space of A is the same as the dimension 
of the column space of A, even though they are subspaces of different 
spaces.

THEOREM

The rank of A plus the nullity of A is the total 
number of columns of A.
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READINGS
Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 4.3, 

4.4, and 4.5.

McAnlis, “How JPG Works,” https://medium.freecodecamp.org/how‑jpg‑
works‑a4dbd2316f35. 

Poole, Linear Algebra, section 3.5.
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Lecture 11

INVERTIBLE MATRICES: 
UNDOING WHAT YOU DID

S olving a system of linear equations using Gaussian 
elimination involves row reductions to change the 

system to an equivalent, simpler system in reduced row 
echelon form (RREF). Such a system has exactly the same 
solutions as the original. This lecture will analyze a system of 
linear equations from a different point of view, by looking at 
the system of equations as a matrix equation: Ax = b.

The Inverse of a Matrix
While Gaussian elimination remains the best way of solving a system 
of linear equations, looking at them as a matrix equation is useful for 
many theoretical reasons. It will help illuminate the general nature of 
the set of solutions, rather than solving a particular problem. You can 
also take advantage of the matrix structure of A in a way that row 
reductions don’t.
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Recall that if A is an m     ×     n matrix, x is a vector of unknown quantities 
x1 through xn, and b is an m‑dimensional vector, then Ax = b is a system 
of m linear equations in n unknowns. Notice that the left side of the 
previous equation is matrix multiplication, and the function

T(x) = Ax

that performs matrix multiplication is a linear transformation that takes 
x, a vector in ℝn, to T(x), a vector in ℝm. It is a linear transformation 
because A(x     +     y) = Ax     +     Ay and A(cx) = c(Ax).

By viewing the left side of Ax = b as a linear transformation acting 
on the vector x, you can see that solving the matrix equation Ax = b 
basically amounts to trying to find a vector x that gets sent to the vector 
b under multiplication by A.

For example, let’s look at this system of equations:

2x1     +     7x2 = 5 
x1     +     4x2 = 3.

This system can be rewritten as a matrix 
equation Ax = b, where A is the 2     ×     2 matrix 
as shown.

The advantage of viewing it as a matrix equation is that it puts attention 
on the linear transformation that takes the unknown vector x to the 
known vector b. What is this transformation doing to the vector x?

Before pondering that, imagine a simpler equation that you are more 
familiar with, such as 5x = 3.
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What is the 5 doing to the unknown quantity x?

It is multiplying it by 5. So, if you wanted to isolate the x to solve for 
it, you would need to undo what 5 is doing to x. You could think 
of dividing by 5 as undoing multiplication by 5, but if you were to 
apply this idea to matrices, you would be in trouble because you 
don’t have a notion of division there. Is there another way to undo 
multiplication by 5?

You can undo multiplication by 5 by multiplying by 1 ∕5 on both sides, 
which gives you x = 3 ∕5.

You can try the same idea with matrix equations like Ax = b. Can you 
multiply both sides of Ax = b by the same matrix to get something of 
the form x = some vector?

In the numerical example, you could multiply 5x = 3 by 1 ∕5 on both 
sides, and because 1 ∕5 times 5 equals 1 and because multiplication is 
associative, the left side is

which is x.

So, the key to solving the numerical equation is to multiply both sides 
by the multiplicative inverse of 5—which means the number that when 
multiplied by 5 produces the number 1. The multiplicative inverse of 
5 is 1 ∕5.

Similarly, for the matrix equation, you need a multiplicative inverse—
something that when multiplied by A gives the equivalent of 1 for 
matrices, which would be a matrix for which multiplication by it leaves 
other matrices unchanged.
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Recall that the identity matrix has that property: When you multiply 
the identity by any matrix, it leaves the matrix unchanged. 

The identity matrix consists of 1s along the 
main diagonal and 0s everywhere else and is 
usually notated by I. You are thinking of the 
matrix being an n     ×     n matrix A, so the identity 
matrix is the n     ×     n identity matrix.

The multiplicative inverse of A is called A‑inverse and is written as A−1. 
This notation mimics how the multiplicative inverse of real numbers is 
sometimes written.

A−1 has the property that A−1 times A as well as A times A−1 equals the 
identity matrix I.

A−1A = AA−1 = I.

If you had such an inverse for A, then you could take the matrix 
equation Ax = b and multiply both sides (on the left) by A−1.

Note that when working with matrix equations in this way, 
you must be sure you are doing the same thing to both 
sides, and because order matters for matrix multiplication, 
you have to be sure when multiplying things on both sides 
that you are doing the multiplication either both on the left 
or both on the right.
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When you multiply Ax = b by A−1 on the left, because 
matrix multiplication is associative, the A−1 times A 
becomes the identity matrix I. But I times x is just 
x. So, x equals A−1 times b, which gives the desired 
solution. You have thus solved for the unknown vector 
x, as long as A−1 exists!

Let’s look at an example. 

Consider the 2     ×     2 matrix with 
entries 2, 7, 1, 4. It has an inverse, 
a 2     ×     2 matrix, with entries 4, 
−7, −1, 2.

You can check that if you multiply these 2 matrices together in any 
order, you will get the identity matrix.

Notice if you know that A−1 exists, earlier arguments show that the 
solution to Ax = b must be x = A−1b.

Let’s see what this means for the system of 
linear equations you started with: the matrix 
equation Ax = b, where the 2     ×     2 matrix A has 
entries 2, 7, 1, 4 and the vector b is (5, 3).

DEFINITION

Call a square matrix invertible (or nonsingular) if there 
exists a matrix A−1 such that A−1 times A and A times A−1 
equals the identity matrix.

A−1Ax = A−1b 
Ix = A−1b 
x = A−1b.
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The solution is obtained by multiplying both sides (on the left) by A−1, 
which yields

.

You’ve solved for x! Now check that x1 = −1 and x2 = 1 solves the original 
system:

2x1     +     7x2 = 5 
x1     +     4x2 = 3.

So, if a matrix has an inverse, you can solve it! But 
unfortunately, not every matrix is invertible. For example, 
the 2     ×     2 matrix 1, 1, 1, 1 has no inverse. 

You will not find a 2     ×     2 matrix that you can multiply by this matrix 
and get the identity matrix.

One way to see this is to realize if it had an inverse, then by the previous 
reasoning, the system of equations

x1     +     x2 = a 
x1     +     x2 = b

would have to have a solution, no matter what a and b are. But if a 
and b are different numbers, then this system cannot have a solution, 
because the quantity x1     +     x2 cannot add to 2 different numbers.

From this example, you learn 2 things.
1 There are some matrices that are not invertible. So, whenever you see 

a statement involving A−1, you must be careful to remember that the 
statement only holds when A has an inverse.
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2 The invertibility of a matrix A implies that the matrix equation Ax = b 
always has a solution for any vector b, and it is unique (there is no other 
solution). This is because x must be A−1b. In particular, if b is the zero 
vector, the equation Ax = 0 has only the solution x = A−10, which is 0. 
This second observation can be stated in a theorem.

THEOREM

If an n     ×     n matrix A is invertible, then the matrix equation 
Ax = b has a unique solution for any b in ℝn. In particular, 
Ax = 0 has only the trivial solution x = 0.

Finding the Inverse of a 2 × 2 Matrix
Recall that the n     ×     n identity matrix is a matrix with 1s on the main 
diagonal and 0s everywhere else. To find an inverse for an n     ×     n matrix 
A, you seek another matrix (called A−1) that when multiplied on the left 
or right by A produces the identity matrix.

The simplest case is finding inverses for 1     ×     1 matrices. Matrix 
multiplication for 1     ×     1 matrices corresponds to multiplication of real 
numbers, and to find an inverse is just reciprocation, 
because the 1     ×     1 identity matrix is just the matrix 
with single entry [1], and the product of a number 
and its reciprocal is 1.

So, the inverse of the matrix with single entry [a] is the matrix with 
single entry 1 ∕a (the reciprocal of a) as long as a is nonzero.

If a is 8, then the inverse of [a] is [1 ∕8], and you can check that 8     ×     1 ∕8 = 1.

 LECTURE 11
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If a is 0, the matrix is not invertible, because no number when multiplied 
by 0 will produce a 1. 

For 2     ×     2 matrices, the identity is the 2     ×     2 matrix 
shown at right.

You can check that the inverse of a 2     ×     2 matrix is given by the following 
formula.

Notice that the 2     ×     2 inverse formula is not valid in the case ad – bc = 0 
because you can’t take the reciprocal of zero. And there is no formula 
that will give an inverse in that case. When ad – bc = 0, the matrix has 
no inverse.

The quantity (ad     −     bc) is called the determinant of the 2     ×     2 matrix 
with entries a, b, c, d, and it plays a special role in determining whether 
a matrix is invertible.

A matrix inverse, if it exists, must be unique! This is true in 
general for any n     ×     n matrix.

THEOREM

If A is invertible, then there is only one matrix A−1 with the 
property that A−1 times A equals A times A−1, which equals 
the identity matrix I.

 LECTURE 11
 Invertible Matrices: Undoing What You Did

https://www.thegreatcourses.com/


143

Properties of Inverses
If you take the inverse of an inverse of a matrix A, you should get back 
the original matrix.

How does the operation of taking inverses mesh with other matrix 
operations, such as addition or multiplication?

For multiplication, you might think that the inverse of the product is 
the product of the inverses, but you have to be careful. 

Is the n     ×     n identity matrix unique? How do 
you know that the matrix shown here is the 
only matrix that behaves like an identity 
matrix for 3     ×     3 matrices?

THEOREM

If for all n     ×     n matrices A you have A times K equals K 
times A equals A, then K must be the n     ×     n identity matrix.

THEOREM

If A is invertible, then A−1 is invertible, and A−1−1 equals A.

 LECTURE 11
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First, remember that not every 2 matrices can be multiplied (the 
dimensions may not work out), but because invertible matrices are 
square, the product makes sense for matrices of the same dimensions. 
Second, the order of matrix multiplication matters.

Note that the order of B−1 and A−1 is backward from what you might 
first expect.

You have to be even more careful in the case of addition. The statement 
that the inverse of a sum is the sum of the inverses is not true.

(A     +     B)−1 ≠ A−1     +     B−1.

It’s not even true for 1     ×     1 matrices, which are just real numbers. The 
reciprocal of a sum is not the sum of the reciprocals. For example,

2     +     4 = 6, but 1 ∕2     +     1 ∕4 ≠ 1 ∕6.

READINGS
Lay, Lay, and McDonald, Linear Algebra and Its Applications, section 2.2.

Poole, Linear Algebra, section 3.3.

THEOREM

If 2 n     ×     n matrices A and B are invertible, then AB is 
invertible and its inverse is B−1 times A−1.

 LECTURE 11
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Lecture 12

THE INVERTIBLE 
MATRIX THEOREM

T he previous lecture introduced the concept of the inverse 
of a matrix. You learned that for a system of solutions 

Ax = b, if the matrix A has an inverse, then the system can 
be solved by multiplying both sides by A−1 on the left. Then, 
x = A−1b. In practice, solving a system in this way is not the 
preferred method, because you must first find the inverse of 
A, and doing that involves row reduction. This lecture will 
discuss how to do that, but it’s not faster than doing Gaussian 
elimination on the system of equations.

The Importance of Invertible Matrices
So why is the inverse of a matrix so important?

Understanding the inverse of a matrix A offers insights into the nature 
of the linear transformation represented by matrix multiplication by 
A (in which the vector x maps to Ax). It also offers insights into the 
nature of solutions to a linear system Ax = b.
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For example, a linear system like Ax = b either has no solutions, one 
solution, or infinitely many solutions. However, if A has an inverse, 
then Ax = b must have a single unique solution because, in that case, 
x = A−1b, and A−1 is unique and b is specified in the problem.

Also, if Ax = b has a single unique solution for every b, then A must 
be an invertible matrix. So, this property of Ax = b having a unique 
solution for every b is actually equivalent to A being invertible. In 
fact, there are many more examples of criteria that are equivalent to 
A being invertible.

Finding the Inverse of an n × n Matrix
How do you find an arbitrary n     ×     n matrix inverse?

You’ve already seen a formula for 1     ×     1 and 2     ×     2 matrices. But instead of 
having a formula for any n     ×     n matrix, because no one really remembers 
the formula for matrices larger than 2     ×     2, there is a procedure for 
finding any n     ×     n matrix. The procedure rests on the interesting fact 
that any elementary row operation on a matrix can be represented as 
left multiplication by some matrix, called an elementary matrix.

Let’s say you have a 2     ×     2 matrix A and you want to swap rows, but 
all you have is a machine that can multiply the matrix A by another 
matrix. Then, if you left‑multiply A by the elementary 2     ×     2 matrix 
E with entries 0, 1, 1, 0, you will see that this does indeed swap the 2 
rows of A!

 LECTURE 12
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For example, carry out this multiplication and notice that the rows of the 
original matrix get swapped.

.

Similarly, the row operation of adding twice the second row to the first 
row also has a matrix that represents it. 

How do you find the elementary matrix that accomplishes a given row 
operation by left multiplication? You just perform that row operation 
on the identity matrix and you will have the matrix E.

This theorem follows from the fact that row operations can be undone 
by another row operation. So, if you have an elementary matrix E 
corresponding to a row operation R and the row operation R′ is the one 
that undoes R, then look at the elementary matrix E′ corresponding to 
R′. The product of E′ and E must be the identity matrix, because doing 
both row operations R and R′ leaves the original matrix unchanged. So, 
E′ is the inverse of E, and therefore E is invertible.

THEOREM

Elementary matrices are invertible.

 LECTURE 12
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Here’s how to find the inverse of an n     ×     n matrix A. First, recall a 
theorem from the previous lecture: If A is invertible, then Ax = 0 has 
only the trivial solution. This means that there are no free variables 
among the coordinates of the unknown vector x. So, when you try to 
put A in reduced row echelon form, because A is square, you must get 
the identity matrix! Thus, an invertible matrix must be row‑reducible 
to the identity.

If the matrix A can be row‑reduced to the identity, then there is a 
sequence of row operations that will get you there. This is the same as 
successively multiplying the matrix A on the left by some elementary 
matrices E1, E2, … Ek to get the identity matrix. Thus, the product Ek 
through E1 inverts A. Because inverses are unique if they exist, this 
product must be A−1.

.

This discussion points to a way to find the inverse of an n     ×     n matrix 
A. You just form an augmented matrix by putting the matrix A on 
the left side and the n     ×     n identity matrix on the right side of the 
augmented matrix. Then, you perform elementary row operations on 
the augmented matrix. This is, in effect, performing multiplication of 
elementary matrices on the augmented matrix. The goal is to put the 
left side in reduced row echelon form—and if A is invertible, then this 
will be the identity matrix. If you can do that, then the right side will 
be the product of those elementary matrices, because they must be the 
product of the elementary matrices with the identity. So, the right side 
has to be the inverse of A. This is how to find the inverse of a matrix.

 LECTURE 12
 The Invertible Matrix Theorem
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Let’s do an example. Suppose you want to use 
this method to invert the matrix A with entries 
2, 7, 1, 4 (figure a). 

(Yes, you already have a formula for 2     ×     2 
matrices, but let’s see how this method works.)

First, you augment the matrix with the identity 
on the right side (figure b).

Next, try to row‑reduce the left side to make 
the identity matrix. If you can do this, A will 
be invertible. Swapping rows, you get the 
matrix shown in figure c.

Then, subtracting twice the first row from the 
second, you get the matrix shown in figure d.

Then, multiply the second row by −1 (figure e).

Then, subtract 4 times the second row from 
the first (figure f).

1 4 0 1
0 –1 1 –2

1 4 0 1
0 1 –1 2

1 4 0 1
2 7 1 0

2 7
1 4

2 7 1 0
1 4 0 1

1 0 4 –7
0 1 –1 2

You’ve gotten the left side to the identity. Therefore, the right side must 
be A−1. And indeed, the 2     ×     2 formula for inverses gives exactly this 
matrix.

Inverting a 3     ×     3 or an n     ×     n with this method may be tedious, but 
the point is that if you have already programmed a computer to do 
Gaussian elimination, then computing inverses is easy.

What if you can’t row‑reduce the matrix to the identity matrix? Does 
that necessarily mean that the matrix is not invertible? The answer 
is yes.

 LECTURE 12
 The Invertible Matrix Theorem
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Criteria for Telling If a Matrix Is Invertible
If a matrix is invertible, it has several consequences:

 w Ax = b must have a unique solution for any b.

 w Ax = 0 must have only the trivial solution.

 w The reduced row echelon form of A must be the identity.

Each of these criteria actually implies that the matrix A must be 
invertible. In other words, an invertible matrix is characterized by these 
criteria. In fact, there are a whole host of criteria that are equivalent to 
a matrix being invertible that tie together many of the concepts you’ve 
been exposed to so far!

THE FUNDAMENTAL THEOREM OF 
INVERTIBLE MATRICES

If A is an n     ×     n square matrix, then the following are equivalent—
meaning that any of them must imply any of the others.

1 A is invertible.

2 Ax = b has at least one solution for each b.

3 Ax = 0 has only the trivial solution x = 0.

4 RREF(A) is the identity matrix.

5 A is the product of elementary matrices.

6 The columns of A span ℝn.

7 The columns of A are linearly independent.

8 The columns of A form a basis for ℝn.

 LECTURE 12
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The invertible matrix theorem shows that the 
concept of invertibility is an important one, 
because there are so many different ways to 
characterize it. For example, if you look at this 
matrix, call it A, you might ask if it is invertible.

There are many ways to decide. Perhaps if you visualized the column 
vectors in 3 dimensions, you could see that they span ℝ3. Then, you would 
know that the matrix is invertible. Immediately, you would also know 
many other things: that the row vectors must span ℝ3 and be linearly 
independent, that the RREF of this matrix is the identity, that Ax = 0 only 
has one solution, that Ax = b always has at least one solution, etc.

READINGS
Anderson and Feil, “Turning Lights Out with Linear Algebra.”

Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 2.3 
and 2.7.

Poole, Linear Algebra. Read the Fundamental Theorem of Invertible 
Matrices in section 3.5.

Stock, “Merlin’s Magic Square Revisited.”

9 The rank of A is n.

10 The nullity of A is 0.

11 AT is invertible.

12 The rows of A span ℝn.

13 The rows of A are linearly independent.

14 The rows of A form a basis for ℝn.
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QUIZ FOR LECTURES 7–12
1 Consider a system of equations Ax = b, where b is the zero vector. Can this 

system of equations ever be inconsistent? [LECTURE 7]

2 Consider a 4     ×     3 matrix A. What must RREF(A) look like for Ax = b to 
have a unique solution? [LECTURE 7]

3 Determine whether the vectors (1, 2, 3), (1, 1, 2), and (1, 3, 4) are linearly 
independent. [LECTURE 8]

4 Suppose 3 vectors in ℝ3 are not linearly independent. Can the span of 
those vectors ever be all of ℝ3? [LECTURE 8]

5 Let S be a set of all points in ℝ3 whose second coordinate is zero. Is S a 
subspace of ℝ3? Appeal to the 3 properties of a subspace. [LECTURE 9]

6 Consider a basket of some number of croissants and some number of 
donuts. The ingredient demands of (flour, eggs, sugar) for this basket is 
a vector in ℝ3. Because the numbers of croissants and donuts vary (over 
both positive and negative numbers), explain why the set D of possible 
ingredient demands is a subspace of ℝ3 by appealing to the properties of a 
subspace. [LECTURE 9]

7 Let A be the matrix  
1 1 2 1
1 2 3 4
1 3 4 5

.

 

 The RREF of this matrix is  
1 0 1 0
0 1 1 0
0 0 0 1

. 

 Use the RREF to assist you in finding a basis for the row space and a basis 
for the column space of this matrix. [LECTURE 10]

Mastering Linear Algebra
QUIz FOR LECTURES 7–12
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8 Let A be the same as in the previous problem. Use the RREF to assist you 
in finding a basis for the null‑space of this matrix. [LECTURE 10]

9 Find the inverse of the 2     ×     2 matrix 0 1
2 3  if it exists. [LECTURE 11]

10 Show that the 2     ×     2 matrix 
1 1
1 1  

 has no inverse in a different way than in the lecture by showing that if you 
multiply it on the right by a generic 2     ×     2 matrix, then the result must be a 
matrix with identical rows, and therefore the result cannot be an identity 
matrix. [LECTURE 11]

11 Let E be the elementary matrix 1 0
3 1 . 

a Verify that E times a 2     ×     2 matrix A performs the elementary row 
operation that adds 3 times the first row to the second row of A. 

b Find the inverse of E and verify that E−1A is the matrix you get 
after subtracting 3 times the first row from the second row of A. 
[LECTURE 12]

12 If a matrix B has the property that Bx = 0 for a nonzero vector x, then 
explain why B is not invertible. [LECTURE 12]

Solutions can 
be found on 
page 298.

Mastering Linear Algebra
QUIz FOR LECTURES 7–12
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Lecture 13

DETERMINANTS: NUMBERS 
THAT SAY A LOT

T he previous lecture showed the importance of invertibility 
and offered at least a dozen different criteria that 

help you determine if a matrix is invertible. Many of them 
were conceptual criteria, such as that the rows are linearly 
independent, which in practice are not obvious from just 
looking at a matrix. The idea of a determinant is to find a 
single number that can be computed from the entries of a 
matrix that will tell you if a matrix is invertible. The formulas 
for inverses of 1     ×     1 and 2     ×     2 matrices give you a clue for 
how to find such a criterion.

The 1 × 1 and 2 × 2 Determinants
For 1     ×     1 matrices, there is only a single entry, call it a, and the inverse 
is just the reciprocal, 1 ∕a.

So, the matrix has an inverse if and only if the number 
a is not zero.
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Let’s define the determinant of the matrix [a] to be a.

For 2     ×     2 matrices, recall that the inverse of the matrix a, b, c, d is

.

The only instance where this formula fails to make sense is when 
ad     −     bc = 0. And when that happens, the ratio of c to a equals the ratio 
of d to b, assuming a and b aren’t 0. 

.

In that case, the second row of the matrix a, b, c, d will be a multiple 
of the first row.

.

So, the rows of the matrix are not linearly independent, and by the 
invertible matrix theorem, the matrix cannot be invertible. Other cases, 
when a is 0 or b is 0, can be handled similarly.

So, the number ad     −     bc is nonzero if and only if the 2     ×     2 matrix is 
invertible.

 LECTURE 13
 Determinants: Numbers That Say a Lot
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For example, let’s compute the determinant of the following matrix.

.

Because −2 is nonzero, the matrix is invertible.

The 3 × 3 Determinant
Recall that a matrix A is invertible if and only if its determinant is 
not zero.

Let’s define the determinant of the 
2     ×     2 matrix at right to be ad     −     bc.

The determinant of the matrix A is usually written as 
det(A), but sometimes you’ll see the determinant notated 
by writing the matrix entries with brackets replaced by 
absolute value signs.

But don’t let the absolute value 
notation fool you; the determinant of 
a matrix can be a negative number.

 LECTURE 13
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To find such a number, recall that if a matrix is invertible, it will row‑
reduce to the identity. So, if it’s not invertible, you should run into 
problems.

Suppose you have a matrix with entries abc, def, ghi 
and you try to row‑reduce it.

You won’t deal with all the cases; you will just see 
what happens in a particular case.

If you make a few assumptions—that a isn’t zero and that ae     −     db is 
also not zero—then the row reduction looks something like this:

This means that if the number ∆, in the bottom right corner, is zero, 
then you have a row of zeros, and the matrix will not row‑reduce to the 
identity, so the matrix is not invertible. And if ∆ is nonzero, it will row‑
reduce to the identity!

So, let ∆ be the quantity called the determinant of a 3     ×     3 matrix.

Taking a look at ∆, you’ll find

 LECTURE 13
 Determinants: Numbers That Say a Lot
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This is a crazy formula. Instead of memorizing it, consider the following 
device for remembering it.

Write the columns of the matrix as shown 
here. Draw 3 diagonals that go down and to 
the right and 3 diagonals that go up and to 
the right. If you multiply the entries along the 
diagonals and use a plus sign if it goes down 
and to the right and a minus sign if it goes up 
and to the right, you will get

For example, if you look at the first diagonal down and to the right, 
you see a, e, and i. These correspond to the aei term in the formula for 
the determinant.

For example, suppose you want the determinant shown 
at right.

Then you form the diagram shown below.

Compute the products along the 
diagonals, and then add the diagonal 
products down and to the right and 
subtract the diagonal products up and 
to the right. You get −3. 

Notice that there were lots of zeros, because there were lots of zeros in the 
first row. So, sometimes computing the determinant can be really easy.

This way of remembering how to find a 3     ×     3 determinant does not 
generalize to computing determinants of larger matrices. But there is 
another way to remember the 3     ×     3 formula that does generalize.

a b c a b
d e f d e
g h i g h

1 0 0
4 5 6
7 8 9

1 0 0 1 0
4 5 6 4 5
7 8 9 7 8

 LECTURE 13
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Look at the last computation. There were lots of zeros, and the only 
terms that remained were associated to the single 1 in the first row, and 
they reduced to 5     ×     9     −     8     ×     6. This looks just like a 2     ×     2 determinant, 
the one you get when you ignore the first row and first column!

The formula for a 3     ×     3 determinant builds on this idea. The expression  
for ∆,

,

can be rewritten like this:

.

Notice that the 3     ×     3 determinant depends on computing 2     ×     2 
determinants! In that sense, this definition is a recursive definition. 
And the 2     ×     2 determinants have coefficients that come from the first 
row. The terms are alternating in sign, starting with plus. And the 2     ×     2 
matrices come from taking the coefficient, looking at its position in the 
3     ×     3 matrix, and then crossing out the row and column that it is in.

If you try this with the example, you’ll get this computation:

 LECTURE 13
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Note the terms alternate in sign. The coefficients 1, 0, 
and 0 come from the first row of the matrix. And if you 
want the submatrix associated with the second term, 
you cross out the first row and the second column of 
the matrix. This leaves the 2     ×     2 matrix 4, 6, 7, 9.

And when you do this computation for the determinant, you get −3, 
as before.

Note that the formula expands around terms in the first row, but you 
can actually compute the determinant by expanding around any row—
you just have to take care to ensure that you have the correct signs on 
the terms.

For example, if you want to compute the 3     ×     3 determinant by 
expanding around the second row, the signs still alternate, but now you 
start with a minus sign on the first term. So, in this example, if you 
chose the second row—4, 5, 6—then you could expand like this:

The 4, 5, and 6 form the coefficients, but now there is a minus sign on 
the 4, a plus sign on the 5, and a minus sign on the 6. The submatrices 
are derived the same way as before—by deleting the corresponding 
row and column of the row entries. So, for example, the submatrix 
associated with 5 is what you get by deleting row 2 and column 2 
from the matrix, because that’s where the entry 5 is: in the second 
row and second column. So, you get the submatrix 1, 0, 7, 9. And the 
computation, perhaps surprisingly, turns out the same: −3!

 LECTURE 13
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If you want to expand around the third row, the alternating signs 
would start with a plus. There is a chessboard pattern that helps you 
remember which signs go where. If the coefficient comes from row i, 
column j, the term should have sign (−1)i+j.

You can see from this figure that the second 
row starts with a minus.

So, this number, the determinant, can be 
obtained in a recursively defined fashion, by 
expanding around any row. 

Even more amazingly, you can get the determinant by doing a similar 
computation, by expanding around any column, too!

For example, if you choose the third column, 0, 6, 9, then you get 3 
terms here:

The alternation pattern starts with a plus, because it starts in row 1, 
column 3, and the sign there is (−1)1+3, which is 1. And the submatrices 
are found, as before, by crossing out rows and columns of the 
corresponding entries. And, again, you get −3.

 LECTURE 13
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The n × n Determinant
Let’s try to write down a general formula for the determinant of an 
n     ×     n matrix.

If you want to expand around row i, then you are looking at the entries 
ai1 through ain. Those are the entries of row i. For each of these entries 
aij, there is a term in the sum that looks like this:

,

where the Cij is called the ij‑cofactor.

.

And the ij‑cofactor contains the same chessboard 
sign pattern as before, such that the term with 
coefficient aij has sign (−1)i+j.

Notice that for a 4     ×     4 matrix, the first row would end with a minus 
and the second row would also begin with a minus, and that is not a 
problem. The key thing is that vertically or horizontally neighboring 
entries differ by a sign.

The determinant formula contains 
the determinant of this submatrix, 
the one you get by crossing out row 
i and column j, as shown at right.

 LECTURE 13
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The determinant formula that expands around columns is similar and 
looks like this:

For each column, you have a different way to compute the determinant. 
This definition of the determinant, where you pick a row or column 
to expand around, is called expansion by cofactors. And you get the 
same answer no matter which row or column you use!

Calculating Determinants Quickly
The general determinant has been defined in a complicated recursive 
formula. In practice, computing the determinant this way is rather 
slow, because of the recursion.

The key to finding a faster way is to appeal to elementary row 
operations—some of which may change the determinant, but you 
can just keep track of what changes occur. If you row‑reduce a matrix 
(which is square) to row echelon form, then you will be able to easily 
compute the determinant, because it will be the product of the diagonal 
entries (by looking at recursive expansion by cofactors around the first 
column of each determinant needed).

Here are 3 ways in which doing row operations may change the 
determinant.
1 If you swap 2 rows of a matrix, all that happens is that the determinant 

changes sign. You can see this most easily in the case when you swap 
2 adjacent rows i and i     +     1 and then compute the determinant by 
expanding around row i before the swap and row i     +     1 after the swap. 
The terms will be the same, except for a sign change in each one. When 
you swap nonadjacent rows, the determinant flips sign also.
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2 The second row operation is multiplying a single row by a factor k. 
If you compute the determinant by expanding around that row, you 
see that multiplication by k just multiplies each term by k. So, the 
determinant changes by the factor k as well.

3 The third row operation is adding a multiple of one row to another. 
This actually does not change the determinant at all!

So, you know exactly how row operations change the determinant. In 
fact, to get to row echelon form, you only ever need operations 1 and 
3, which at most flip the sign! This is a much faster method than using 
the recursive formula.

Notice that if the determinant of a matrix is nonzero, row 
operations will not make it zero, and if the determinant is 
zero, row operations won’t make it nonzero. This is a key 
to understanding why a matrix A is invertible if and only if 
the determinant of A is nonzero.

The invertible matrix theorem says that a matrix is 
invertible if and only if it can be row-reduced to the 
identity matrix. But because the identity matrix has a 
determinant of 1, row-reducibility to the identity means 
that the original matrix must have had a nonzero 
determinant.

THEOREM

A matrix is invertible if and only if its determinant 
is nonzero.
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The Geometric Meaning of 
the n × n Determinant
If you have n vectors in ℝn, those 
vectors span a parallelepiped—an 
object formed by pairs of parallel 
sides—in a natural way: Just form all 
possible sums of those vectors, including the 
zero vector, and you will have the corners of a 
parallelepiped. So, a 2‑dimensional parallelepiped 
is a parallelogram. A 3‑dimensional parallelepiped 
is shown at right.

If you have a square matrix with columns v1, v2, v3, then the 
determinant tells you the signed volume of a parallelepiped spanned 
by those 3 vectors.

That means the number you get is the volume of the parallelepiped, 
but its sign may be positive or negative. Which sign it is depends on the 
order of the vectors.

 w For a parallelogram, if v2 is counterclockwise from v1, the sign of the 
volume is positive; otherwise, it is negative.

 w In 3 dimensions, you use the right‑hand rule on v1 and v2 and compare 
that to the direction of v3: If they are in the same general direction 
(positive dot product), then the sign of the volume is positive; otherwise, 
it’s negative.

 w In higher dimensions, the sign will be positive if the vectors v1 through 
vn are oriented in the same way as the standard basis vectors and 
negative if the orientation is mirror‑reversed.
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Because the determinant of AT is the same as the determinant of A, the 
determinant is also the signed volume of the parallelepiped formed by 
the rows of A.

It may be helpful to think about another interpretation of the 
determinant. Look at the linear transformation that takes the standard 
basis vectors e1 through en to the column vectors v1 through vn in 
the order given. This is given by T(x) = Ax, where A has columns v1 
through vn.

Then, if you take a smiley face and watch where it goes under the 
transformation, it may get deformed and stretched, and it may also get 
mirror‑reversed.

The determinant tells you the factor by which the volume of that smiley 
face got stretched. And the sign tells you whether the smiley face got 
mirror‑reversed (if so, the sign is negative).
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Consequences
Geometric interpretations of the determinant are useful. For example, 
to find the surface area of a strange shape, you can cut up the shape by 
coordinates and get small shapes that have known formulas for surface 
area, and you can use the determinant to help compute those areas.

Another property of determinants is that they behave well under 
multiplication. It may be a surprise that the determinant of a product is 
the product of the determinants!

For example, if you have 2 matrices, A and B, and their product, AB, 
when you compute their determinants, you get 3, −2, and their product 
has a determinant of −6. It’s rather surprising that these things should 
be related at all. 

But if you think of determinants as scaling factors, this property 
becomes obvious, because the product AB corresponds to the linear 
transformation T(x) = ABx, which first performs B, scaling the face by 
a factor of −2, and then A, which scales the face by a factor of 3.  So the 
total factor in scaling is clearly 
3 times −2, which is −6.

Also, determinants are not 
additive. It is not the case that 
the determinant of a sum is 
the sum of the determinants.

.
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Another thing you might be able to see from the geometric 
interpretation is that a matrix A is invertible if and only if its scaling 
factor of T(x) = Ax is nonzero. If it is zero, then linear transformation 
is basically collapsing a region with nonzero volume to zero volume. As 
such, there will be points that get mapped to the same point, so it is not 
possible to find an inverse transformation.

Moreover, you can see some of the equivalences in the invertible matrix 
theorem. For example, if the columns of a matrix are not linearly 
independent, then one vector is a linear combination of the others, so 
the corresponding parallelepiped 
will be flat and have zero 
volume! So, it is clear that 
the determinant is zero.

READINGS
Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 3.1, 

3.2, and 3.3.

Poole, Linear Algebra, section 4.2.
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Lecture 14

EIGENSTUFF: REVEALING 
HIDDEN STRUCTURE

O ne of the big themes of this course is how linear 
algebra enables you to see hidden structure. And 

the next several lectures will unpack one of the big ideas in 
linear algebra: the notion of eigenvectors and eigenvalues. 
Unpacking the concepts of eigenvectors and eigenvalues will 
illuminate how important they are and how useful they are to 
real applications.

Population Dynamics Application
All around you, there are examples of systems: groups of things that 
interact in interesting ways. For example, the solar system is a collection 
of planets related by the laws of gravity. Often in a system, there are 
things that are in motion, and such things are referred to as dynamical 
systems. The motion described doesn’t have to be physical; it could also 
be relational, as in numbers of various things, such as amounts of a 
chemical in a chemical reaction.

Let’s consider an example of a dynamical system involving the 
populations of foxes and rabbits. Let Fn denote the population of foxes 
at time n, which is measured in number of breeding cycles. Let Rn 
denote the population of rabbits at time n.
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When people study population dynamics, they are often interested in 
knowing the long‑term behavior of the populations. In other words, 
what happens to Fn and Rn as n goes to infinity?

In order to answer this question, you need to develop a model that 
describes how the populations of foxes and rabbits relate to each other.

In the example of foxes and rabbits, a very basic model might begin by 
assuming that the relationship between the populations of foxes and 
rabbits from time n to n     +     1 changes linearly. So, (Fn+1, Rn+1) depends in 
a linear way on both Fn and Rn. You might also assume that foxes eat 
rabbits, so if there are no rabbits, the total number of foxes decreases 
from breeding cycle n to breeding cycle n     +     1, say, by 40% each cycle.

Mathematical modeling is a process that uses mathematics 
to represent and analyze a situation or problem you want 
to understand. You may begin with a very simple model, 
but often there’s a lot you can learn even from a simple 
model. That’s because you make choices about what 
features belong in your model and incorporate only the 
most important ones. Then, your results show how those 
features influence the answer. So, the situation informs the 
model, and the model in turn informs what you can learn 
about the situation. And that, in turn, can inform a revision 
to the model if you wish to study further.
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Similarly, if there are no foxes, you can expect the total number of 
rabbits to grow—say by 20% each breeding cycle. Then, your model 
might look like this:

Fn+1 = 0.6Fn     +     0.5Rn 
Rn+1 = −pFn     +     1.2Rn.

Notice in the first equation that the coefficient of Fn is 0.6, which 
means that in the absence of rabbits, when Rn = 0, 40% of foxes are 
dying in each cycle so that Fn+1, the population of foxes at time n     +     1, 
is 60% of Fn, the population at time n. The coefficient 0.5 for Rn 
shows how rabbits contribute to the fox population: Every 2 rabbits 
contributes an additional fox to the population in the next cycle (or, in 
other words, prevents one from dying).

In the second equation, if Fn = 0, the number of rabbits at time n     +     1 
is 1.2 times the number of rabbits at time n. That’s the 20% growth 
in each breeding cycle. And the coefficient of Fn here is −p; the fact 
that it is negative means that foxes contribute negatively to the rabbit 
population. In the second equation, p has been left as an unspecified 
parameter, called the predation parameter because this is the term 
that shows how quickly foxes eat rabbits. The larger this term, the more 
rabbits are eaten by foxes.

Fn+1 = 0.6Fn     +     0.5Rn 
Rn+1 = −pFn     +     1.2Rn.

This is a simple linear model. It is surely not an exact description of 
what is going on, in many ways. First, the coefficients have been made 
up for this toy model, but if you were determined, you could try to use 
data to estimate the coefficients. Also, rabbit and fox populations are 
always whole numbers, but that’s not true of this model. And even if 
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you ignore that, the actual real‑life fox/rabbit population dynamic is 
almost surely not linear. However, it is probably approximately linear, 
so if you explore this model, you will likely get some insight that will 
be valuable nonetheless.

Let’s rewrite the linear model as a matrix equation, in which the 
population vector is xn and has components Fn and Rn. The model tells 
you that the vector xn+1 is some matrix A times the vector xn. 

Given the initial populations at time 0, what is the long‑term behavior 
of the populations of foxes and rabbits at time n as n goes to infinity? In 
particular, do the populations grow forever or die out? And what will 
happen as the predation parameter varies?

Notice that xn+1 is written recursively in 
terms of xn. So if x1 = Ax0, then x2 = A x1, 
but that is just AAx0, or A2x1. So, if you 
repeatedly use the recursive formula on xn, 
you can inductively see that xn will be Anx0.

But how can An be computed? Can it be 
done quickly?

You’ll return to this example once you’ve 
developed the necessary machinery. But notice now that answering the 
question about fox and rabbit populations has led, in a very simple 
model, to the problem of how to compute powers of a matrix. You will 
soon see how eigenvectors and eigenvalues can help.
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Understanding Matrix Powers
Taking a matrix A to a very large power could involve a lot of 
calculations. But there may be some situations where the calculations 
simplify greatly.

The best way to see this is to think about the associated function that 
takes a vector x to Ax. Recall that this is a linear transformation that 
sends zero to zero but generally just moves vectors around. So, x and 
y go to Ax and Ay, and these may be pointing in different directions 
than x and y.

But what if some vector, call it w1, had the special property that Aw1 
points in the same direction as w1? That would mean Aw1 is a scalar 
multiple of w1.

In this case, let’s suppose that multiple is 2. If so, then such a special 
vector is called an eigenvector of A, which has the property that when 
you apply the linear transformation that multiplies the vector by A, 
then you get a scalar multiple of the eigenvector. The multiple you 
get is called the eigenvalue—in this case, 2. And for eigenvectors, the 
action A is very simple. For example, if A times w1 is 2w1, then w1 is 
an eigenvector for A and 2 is its eigenvalue. Then, Anw1 will be 2nw1.

Computing An times a vector 
would normally be hard but 
is now very easy thanks to 
eigenvectors, because in that 
case, An times the eigenvector 
can be computed as an 
eigenvalue to the nth power 
times that eigenvector.
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Now you know the answer to the question posed previously: What if 
there were such a vector? Of course, you’ll need to explore—and you 
will, in future lectures—when you can say that such vectors exist. This 
is a good situation.

Even better, what if there were a second vector w2 that behaved like an 
eigenvector—say Aw2 = 7w2?

And still better, what if the eigenvectors w1 and w2 formed a basis for 
ℝ2? That would be a dream scenario—because then for any vector v, 
computing Anv would be easy.

If w1 and w2 formed a basis, then given any vector v, you could write it 
as a linear combination of w1 and w2, say aw1     +     bw2.

Then, Av would be A(aw1     +     bw2). But by the eigenvalue property, this 
is just a2w1     +     b7w2. Notice that if you were to multiply this result by 
A again several more times, the eigenvector property would pop out 
another factor 2 and another factor 7 for each multiplication by A.

Then, Anv = a2nw1     +     b7nw2. This is much easier to compute than 
multiplying matrices! And the application of looking at the long‑term 
behavior of foxes and rabbits depends on this kind of calculation—a 
matrix to the nth power times a vector.
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Eigenvectors and Eigenvalues
Let’s carefully define an eigenvalue and an eigenvector.

Let’s call the equation Av = λv the eigenvector equation.

Note a few things. First, it is traditional to notate an eigenvector using 
the variable λ, which is just a number. It could be zero or negative or 
positive. However, an eigenvector is prohibited to be the zero vector, 
because then the eigenvector property would hold for any matrix and 
any eigenvalue, which would be kind of silly.

DEFINITION

Given an n     ×     n matrix A, a number λ is an eigenvalue 
for A if

Av = λv

for some nonzero vector v.

If such a vector exists, it is called an eigenvector of A 
corresponding to λ.

In the coming lectures, you will discover how eigenvectors 
and eigenvalues can help you compute matrix powers quickly, 
provide yet another way to test if a matrix is invertible, and 
help you understand the linear transformation x goes to Ax.
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Solving the Eigenvector Equation
How do you find some vector that satisfies some equation Av = λv? It 
may seem that you do not have enough information, especially when 
you realize you also don’t know what λ is. Another obstacle is that the 
left side of the equation is a matrix times the vector v and the right side 
is a number times the vector v, so it would seem hard to manipulate 
this equation to isolate and solve for λ and v.

The first thing you can do is to make both sides of the eigenvector 
equation a matrix times v by simply introducing the identity matrix on 
the right side. You can insert it without affecting anything, because λv 
equals λ times the identity matrix I times v.

By grouping λI, you see that this is just a diagonal matrix with λs on 
the diagonal and zeros everywhere else. The strategy now is to move 
everything to the left side and factor out the vector v.

Doing that, you see that [A     −     λI]
v = 0. In other words, because 
[A     −     λI] sends v to the zero 
vector, then the vector v is in the 
null‑space of the matrix [A     −     λI].

Because v was an eigenvector and eigenvectors were assumed to be 
nonzero, then there is a nontrivial element in the null‑space of [A     −     λI]. 
So, the nullity of [A     −     λI] is at least 1 and cannot be 0. In other words, 
[A     −     λI]v = 0 has more than just a trivial solution v = 0. By the invertible 
matrix theorem, this means that the matrix [A     −     λI] is not invertible 
and that the determinant of [A     −     λI] is 0. So, you can solve for λ by 
setting the determinant of [A     −     λI] equal to 0.

det [A     −     λI] = 0.
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Notice that now you have isolated the unknown eigenvalue λ from the 
unknown vector v. There is no vector v in this equation!

But if you take the determinant of [A     −     λI], you will find that it is 
a polynomial in λ, so its roots will give you the eigenvalues of A. 
There will be n of them, and sometimes they may be repeated roots or 
complex roots.

Once you’ve done that, then for each λ you find, you must find 
nonzero vectors in the null‑space of [A     −     λI]. These will be eigenvectors 
corresponding to the eigenvalue λ.

Return to Population Dynamics Application
Let’s return to foxes and rabbits. You don’t have enough tools to answer 
the question about the long‑term behavior of foxes and rabbits; those 
tools will be built over the next few lectures. But you can at least think 
through the meaning of an eigenvector and an eigenvalue.

Recall that vectors for foxes and rabbits consist of the 2 population 
totals. If you have a special v for which Av = λv, then v is an eigenvector, 
and its components represent fox/rabbit populations, which, after each 
successive time step, remain in the same relative proportion to each 
other. 

All that happens is both populations get multiplied by the same factor 
λ. And if λ is greater than 1, then the populations are growing; if λ 
is less than 1, then the populations are shrinking; and if λ equals 1, 
then the populations are remaining constant. Thus, eigenvalues can 
tell you about the contraction or expansion of the eigenvector that it is 
associated with.
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Indeed, the eigenvectors and eigenvalues of a matrix are hidden 
structures that are now revealing themselves, and they can convey a lot 
of information about a matrix and its behavior.

READINGS
Chartier, When Life Is Linear, chap. 8. 

Lay, Lay, and McDonald, Linear Algebra and Its Applications. Read the 
Introductory Example and section 5.1.

Poole, Linear Algebra, sections 4.0 and 4.1.
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Lecture 15

EIGENVECTORS AND 
EIGENVALUES: GEOMETRY

E very matrix, which represents a linear transformation, 
has associated with it eigenvectors and eigenvalues, 

and these represent important geometric features of 
the transformation. It is important to think about matrix 
multiplication as a linear transformation on a vector space 
rather than some random calculation that you have to do, 
because if you understand the transformation, you can 
comprehend all at once what the transformation does.

The German prefix eigen- can be translated as 
characteristic, and it suggests that eigenvectors 
and eigenvalues characterize the matrix in 
some way.
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The Geometry of 
Eigenvectors and Eigenvalues
Recall that if you have a square n     ×     n matrix, call it A, and you can find 
a nonzero vector v such that Av is just a multiple of v—say, λv—then 
λ is an eigenvalue of A and v is an eigenvector of A corresponding to 
the eigenvalue λ.

Here, the matrix A times the vector v can be 
thought of as taking a vector and seeing how 
it behaves under the linear transformation 
T(x) = Ax.

This takes the entire plane and transforms it by multiplying by A. How 
does it change the plane?

First, the origin goes to the origin. And the basis vectors (in red in the 
diagram) go to vectors that represent the columns of A.

And lines get sent to lines. So, that means that a grid of squares gets 
deformed to a grid of parallelograms. And the winking face gets 
deformed to a different winking face. If the winking face is backward, 
it suggests that the matrix A has a negative determinant. The absolute 
value of the determinant is the ratio of the area of a parallelogram to 
the area of the original square.
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Comprehending this geometrically, you can now discern where any 
other point should go—just figure out where it is on the grid of squares 
and look for the corresponding point on the grid of parallelograms.

But this grid of squares is based on the standard basis vectors, which 
was a rather arbitrary choice and not the most natural vectors to look at 
when trying to understand this transformation.

Perhaps better ones to look at would focus on the ones that don’t 
change direction—the eigenvectors. If you could find such vectors, 
then the grid based on these eigenvectors wouldn’t change much under 
the transformation; it would change scale along these directions, but 
the grid orientation would stay the same.

For example, vector v1 gets sent to T(v1), which is a multiple of itself. 
So, it is an eigenvector, and the scaling factor is the eigenvalue. The 
eigenvector nearly doubled in size under the transformation, so the 
eigenvalue is about 2.

And vector v2 gets sent to T(v2), pointing in the same direction, so it’s 
an eigenvector. In this case, the eigenvalue is smaller than 1, because 
the vector shrank.

The nice thing here is that you can see what the transformation is doing 
to other vectors simply by looking at their components in the eigenvector 
directions. So, the red point on the left grid, which is the sum of 
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v1 and v2, goes to the red point on the right grid, which is the sum 
T(v1)     +     T(v2). You can easily follow a point by looking at its location 
on the grid and looking for the corresponding point on the image grid.

Because you are fortunate that v1 and v2 form a basis for ℝ2, any vector 
can be found on this grid; in other words, any vector can be written 
in terms of v1 and v2. And once you know where the basis vectors go 
under a linear transformation, you know where every other vector goes 
just by looking at the image grid.

So, knowing the eigenvectors and eigenvalues can give you a more natural 
structure by which to describe the action of a linear transformation.

Verifying That a Vector Is an Eigenvector
Is the vector (2, 5) an eigenvector of the 2     ×     2 matrix A, with entries 
1, 2, 5, 4?

If you take the matrix A and multiply it by (2, 5), you get (12, 30). 
That is a multiple of (2, 5); in fact, it is 6 times (2, 5). This means that 
6 is an eigenvalue of A and (2, 5) is an eigenvector of A corresponding 
to the eigenvalue 6.

One way to think of this is that the matrix A represents a linear 
transformation, which may expand, shrink, or rotate vectors, but for 
at least this one vector, multiplication by A scales the vector by the 
factor 6.
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There are many other vectors that are eigenvectors corresponding to 
the eigenvalue 6. For example, any nonzero multiple of (2, 5) is also an 
eigenvector with eigenvalue 6 because A times k (2, 5) is just k times A 
times (2, 5), which is k times 6 (2, 5), which is 6 times k (2, 5).

Moreover, in this example, the set of all eigenvectors corresponding 
to 6 (together with the zero vector) forms a subspace of ℝ2 called the 
eigenspace of A corresponding to 6. You can check that the eigenspace 
satisfies the properties of subspaces. For example, if 2 eigenvectors v 
and w, with eigenvalue 6, are added together, their sum also has the 
eigenvalue property. You can see this by checking A(v     +     w) = Av     +     Aw, 
which is (6v     +     6w), which is 6(v     +     w).

Finding Eigenvectors and Eigenvalues
To find eigenvalues and eigenvectors, you must look to solve the eigenvector 
equation, Av = λv, for both λ and v. If you move everything to one side, 
you get (Av     −     λv) equals the zero vector. It is tempting to factor out the v, 
but you can’t do that because A is a matrix and λ is a real number, so they 
do not operate on v in the same way. The key idea here is to introduce the 
identity matrix I as a factor. If you do that, then λI is a square matrix, just 
like A is a square matrix. Then, you can factor out the v.

Then, the matrix (A     −     λI) times the vector v equals the zero vector. λI is 
just a matrix with λs down the main diagonal and zeros everywhere else.

Remember that you want to find a nonzero vector v for the eigenvector, 
but this equation says that v is in the null‑space of (A     −     λI). The only 
way this can happen is if the null‑space of (A     −     λI) is nontrivial. By 
the invertible matrix theorem, that is only true when (A     −     λI) is not 
invertible. But that means that the determinant of (A     −     λI) is zero. You 
must find λ for which this determinant is zero.
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You now have a way to isolate the process of finding λ from the process 
of finding v!

The first part of the method finds eigenvalues by taking the 
determinant of (A     −     λI) to find an expression in λ that is a 
polynomial in λ. In fact, if you think about the definition of 
the determinant, you can see this determinant will be an nth-
degree polynomial for an n     ×     n matrix A. Because you are 
setting this expression to zero, the eigenvalues will be the roots 
of this polynomial.

You can solve it by factoring the polynomial, or by using 
any number of other methods. These are going to be the 
eigenvalues of the matrix A. By a standard fact about roots of 
polynomials known as the fundamental theorem of algebra, 
there will be at most n of them that are real or complex 
numbers, and sometimes they will be repeated with multiplicity.

Once you have found the eigenvalues, the next step in 
the method is to find the eigenvectors associated to each 
eigenvalue. You do this for each eigenvalue λ by finding the 
null-space of (A     −     λI); this is called the eigenspace associated 
to λ and is denoted (Eλ). The eigenvectors are the nonzero 
vectors in Eλ. To see why, recall that an eigenvector v had to be 
a nonzero vector that solved this equation:

(A     −     λI)v = 0.

In other words, for a given eigenvalue λ, an eigenvector v is 
any nonzero vector in the null-space of (A     −     λI).
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Suppose you want to find the eigenvectors and eigenvalues of the 
matrix A.

.

The first thing you do is subtract λI from A. This yields the matrix A 
with λ subtracted off the diagonal entries.

.

Now if you take the determinant of this matrix, you will get (1     −     λ)
(4     −     λ)     −     10, which factors as (λ     +     1)(λ     −     6). If you set this to zero, you 
will see that λ is either −1 or 6. These are the 2 eigenvalues of the 
matrix 1, 2, 5, 4.
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Find the eigenspace associated to 6. This is found by finding the null‑
space of (A     −     6I). That means solving (A     −     6I) times a vector v equals 
the zero vector. The eigenvectors are the nonzero vectors in the null‑
space of (A     −     6I).

.

You know how to find a null‑space: You can just form an augmented 
matrix with (A     −     6I) on the left and the column vector (0, 0) on the 
right and solve. (A     −     6I) just looks like the matrix A with 6s subtracted 
off the diagonal.

.

When you simplify this, you see the augmented matrix with rows (−5, 2, 
augmented with 0) and (5, −2, augmented with zero) and notice that 
the second row is a multiple of the first. So, row reduction simplifies 
this to just one nonzero row. If the vector v consists of the variables 
(x, y), then this nonzero row represents the equation (−5x     +     2y) = 0 and 
y is the free variable.

Now you express x and y in terms of the free variable y. Clearly, y = y, 
and x can be put in terms of y using the equation −5x     +     2y = 0, and you 
find x = (2 ∕5)y. So, the vector (x, y) = y(2 ∕5, 1), where y is freely chosen. 

.
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Thus, any multiple of (2 ∕5, 1) is an eigenvector of A with eigenvalue 6. 
In particular, (2, 5) is an eigenvector of the matrix A.

.

What about the eigenspace associated to the eigenvalue −1? In this case, 
the matrix (A     −     λI) becomes (A     −     (−1)I). You want the null‑space of 
this matrix.

.

Once again, you can solve this by augmenting (A     −     (−1)I) with a 
column of zeros. This gives the augmented matrix with rows (2, 2) and 
(5, 5) on the left and zeros on the right. The second row turns out to be 
a multiple of the first, so it can be row‑reduced to a row of zeros.

.

This shouldn’t surprise you, because if the matrix (A     −     (−1)I) is going 
to have a nontrivial null‑space, it better not be invertible, so its rank 
should be less than n, so it better have a row of zeros when it is reduced.

At this point, the matrix is in row echelon form, and you see that 
2x     +     2y = 0 is a relationship between x and y. Or, in other words, x = −y. 
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When you try to write all variables in terms of the free variable y, 
you see that x = −y and y = y. So then, (x, y) = y(−1, 1), where y is freely 
chosen. The −1 eigenspace is all nonzero multiples of (−1, 1).

.

So, (−1, 1) is an eigenvector of A, as is any multiple. You can check 
your work.

.

Now, if you take A times (−1, 1), you get (1, −1). This is indeed −1 
times the vector (−1, 1).

You can also check that any multiple of (−1, 1), such as (−2, 2), is also 
an eigenvector. Just try taking A times (−2, 2) and you get −1(−2, 2).

Matrix Powers
In the previous lecture, you saw an example in which it was useful to 
raise a matrix to a very high power and apply it to a given vector—
in the population dynamics of foxes and rabbits. Notice that if you 
wanted to take the matrix A in the example and compute its effect on 
the eigenvectors you found, it would be very easy.
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For example, what if you want to find A50 times the vector (2, 5)? 
Because (2, 5) is an eigenvector with eigenvalue 6, the matrix A acts 
just like multiplication by the number 6. So, the answer is just 650 times 
the vector (2, 5).

.

What if you wanted A50 times the vector (0, 7)? Unfortunately, (0, 7) is 
not an eigenvector of the matrix A, so at first there doesn’t appear to be 
a shortcut for computation.

However, notice that (0, 7) is a linear combination of 2 eigenvectors: 
(2, 5) and (−2, 2). In fact, it’s just the sum of them! So, A50 can be 
applied very easily to both parts in the sum.

Thus, A50 times (0, 7) is A50 times ((2, 5)     +     (−2, 2)), which, by linearity, 
is just the matrix A50 acting on each piece in the sum. The first part 
is 650 times (2, 5), which you saw before, and the second part is 
(−1)50 times (−2, 2). This shows, in fact, the sum is a vector with first 
component 2     ×     650     −     2, and the second component is 5     ×     650     +     2.
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Notice that the same kind of computation can be carried out with any 
other vector besides (0, 7). That’s because the eigenvectors (−2, 2) and 
(2, 5) form a basis of ℝ2. So, any other vector can be written as a linear 
combination. Then, linearity can be used to perform A50 on both pieces 
separately.

You’ve just made your understanding of the linear transformation 
easier by changing the description of (0, 7) in the standard basis to a 
description in another basis—a basis of eigenvectors. In this case, (0, 
7) is 1 times the eigenvector (2, 5) plus 1 times the eigenvector (−2, 2).

This change of basis to something more convenient basically helped 
you see the action of A more easily, as just stretching and/or flipping 
along the new basis vectors. 

The basis of eigenvectors is hidden structure that is now revealed, 
and it turns out to be a better basis than the standard basis to try to 
understand what is going on with the matrix A.

READINGS
Fowler, “Linear Algebra for Quantum Mechanics,” http://galileo.phys.

virginia.edu/classes/751.mf1i.fall02/751LinearAlgebra.pdf. 

Lay, Lay, and McDonald, Linear Algebra and Its Applications, section 5.2.

Poole, Linear Algebra, section 4.3. 

Once you determine how the basis vectors behave, you 
know where everything else goes as well.
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Lecture 16

DIAGONALIZABILITY

W hen there is a basis of eigenvectors, then it becomes 
relatively straightforward to compute the action of 

the matrix or a matrix power on an arbitrary vector. That’s 
because when there is a basis of eigenvectors, the arbitrary 
vector can be written in terms of eigenvectors and the action 
of a matrix on an eigenvector is easy to compute. This 
lecture examines under what conditions you have a basis of 
eigenvectors, because this is a good situation to be in.

Change of Basis
Remember that a basis for ℝn is a set of vectors that is linearly 
independent and spans all of ℝn. And remember the key thing about a 
basis is that if you are given any vector in ℝn, you can write it as a linear 
combination of basis vectors in exactly one way. So, if there is only 
one way, then the coefficients of that linear combination are called the 
coordinates of the vector with respect to a basis.

Coordinates are just a way to tell you how much of each basis vector to 
use to describe a given vector as a linear combination.
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For example, the standard basis is usually 
used to express a vector. In the plane, the 
standard basis vectors are e1 and e2. The 
vector e1 points right 1 unit and e2 points 
up 1 unit. The standard basis produces a 
set of horizontal and vertical grid lines. 
You can read the coordinates of a point 
from this grid.

For example, the red star point is at the 
point (1, −2) on the grid, which means 
you march to the right 1 unit and down 2 units. The grid is also telling 
you the coefficients of e1 and e2 that you need to produce a given point 
on the grid. So, the star point is 1e1     −     2e2.

The standard basis is not always the best basis to use. For example, 
if you have a rocket ship with 2 thrusters that move in particular 
directions w1 and w2, then it may be easier to express a vector in terms 
of w1 and w2. How can you find the linear combination of w1 and w2 
that would produce a given point, such as (1, −2)? In other words, how 
can you find the coordinates of (1, −2) with respect to the new basis 
w1 and w2?

You can view this question geometrically 
by drawing a new grid corresponding 
to w1 and w2. The grid will fill out the 
entire space if w1 and w2 span all of ℝ2. 
And, if you want, you can read off the 
coordinates of any point in the new grid, 
and that will be the coefficients of w1 and 
w2 you are looking for.
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For example, look at the star point again. You saw in the standard basis 
that its coordinates are (1, −2). In the grid from the new basis, you can 
get to the star point from the origin by moving in the direction (−w1) 
by 1 unit and then moving in the direction (−w2) by 1 ∕2 of a unit. This 
means the coordinates in the new basis are (−1, −1 ∕2).

That’s the geometric view. If you want to compute the coordinates in 
the new basis algebraically, then form a matrix P that contains the new 
basis as its columns. Then, as a linear combination of new basis vectors, 
the star point can be expressed as P times the new coordinates.

.

On the other hand, if you form a matrix with the old basis as its 
columns, that is just the identity matrix. Then, this star point, as a 
linear combination of old basis vectors, must be the identity matrix 
times (1, −2), which is just (1, −2). This shows that P times the new 
coordinates is just the standard coordinates!
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So, what you get from this discussion is the following useful way to 
understand the action of P, the matrix with the new basis as its columns.

So, one way to view an invertible matrix like P is that it acts as a 
change of basis!

Eigenvalues and the Determinant
Recall that the process for finding eigenvalues of a square matrix A 
begins by subtracting from it a variable λ times the identity matrix. 
This is equivalent to subtracting the variable λ from each of the 
diagonal entries of A.

You then take the determinant of this matrix. Because of the variable 
λ, this expression for the determinant will be a polynomial in λ. This 
polynomial is called the characteristic polynomial of the matrix A. You 
can see from the recursive determinant formula that one of the terms will 
involve (−λ) being multiplied n times, so the characteristic polynomial 
will have degree n, meaning n is the highest power of λ that appears.

The fundamental theorem of algebra says that an nth‑degree 
polynomial always has n roots. Some of these roots may be complex, or 
repeated, but if you count them all, you will get n of them.

If P is the matrix with the new basis as its columns, 
then multiplication by P (on the left) takes a vector of 
coordinates in the new basis to the standard coordinates. 
This means that multiplication by P −1 takes a vector of 
standard coordinates to coordinates in the new basis.
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Also, these roots appear in the factorization of the polynomial. If λ 
is the polynomial variable and λ1 through λn are the roots, then the 
polynomial factors as a product whose terms are λ     −     λi with a (−1)n in 
front to account for the sign of the largest power of λ.

You can find the eigenvalues of A by setting the characteristic polynomial 
of A equal to zero, and this is called the characteristic equation. 

This means that the eigenvalues are just the roots of the characteristic 
polynomial, so the λi in the factorization must be the eigenvalues of A.

On the other hand, if you look at the factored expression for the 
characteristic polynomial and set the variable λ equal to zero, you get 
the determinant of A on the left side and the product of the eigenvalues 
on the right side once you clear all the negative signs.

So, the determinant of a matrix is the product of its eigenvalues! 
This is an important fact that also makes intuitive sense if you recall 
that the eigenvalues are the expansion factors (under multiplication 
by A) in certain special directions, but the determinant is a kind of 
overall expansion factor—it’s how much the volume expands under 
multiplication by A.
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From this fact about the product of eigenvalues being the determinant, 
you see a new criterion for invertibility. Because a number is zero if 
and only if at least one of its factors is zero and a matrix having zero 
determinant is equivalent to the matrix being not invertible, this means 
that a matrix has a zero eigenvalue if and only if it is not invertible.

You can add this as yet another criterion to the invertible matrix 
theorem, which tells you when a matrix is invertible.

Algebraic Multiplicity 
and Geometric Multiplicity
When do you have a basis of eigenvectors? Because you want a basis 
in ℝn, you’re only interested in eigenvalues that are real numbers and 
eigenvectors that have real entries.

The eigenvectors of a matrix play a special role as special vectors—
directions that do not change under the transformation represented by 
that matrix. And when computing matrix powers, it is helpful to have 
a full basis of eigenvectors. But when is that possible?

It turns out that the answer is related to the number of repeated 
eigenvalues a matrix has.

Remember that the determinant of (A     −     λI) is a polynomial in λ called 
the characteristic polynomial of A. And eigenvalues of A are found by 
taking roots of the characteristic polynomial of A.

Let’s define the algebraic multiplicity of an eigenvalue to be the 
number of times it appears as a root of the characteristic polynomial. 
So, if an eigenvalue appears twice, then its algebraic multiplicity is 2. 
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Note that the sum of the algebraic multiplicities has to be less than or 
equal to n, because the number of real eigenvalues with multiplicity is 
at most n but could be fewer if there are complex eigenvalues.

If the matrix A is upper triangular, then the determinant of (A     −     λI) is 
easy to calculate, and the characteristic polynomial has as its roots just 
the diagonal entries. In other words, for upper-triangular matrices, 
the eigenvalues are just the diagonal entries!

Thus, the dimension of an eigenspace associated to an eigenvalue is 
always less than or equal to the number of times the eigenvalue is 
repeated.

If all eigenvalues are real, then the sum of the algebraic multiplicities 
is n. If the geometric multiplicity of λ equals the algebraic multiplicity 
for every eigenvalue, and if the sum of the algebraic multiplicities is n, 
then the sum of the geometric multiplicities has to be n. In that case, 
you will have a full basis of eigenvectors—namely, just take a basis for 
each eigenspace.

But if the geometric multiplicity is strictly less than the algebraic 
multiplicity for some eigenvalue, then you are in the undesirable 
situation where there won’t be a full basis of eigenvectors, because there 
won’t be enough dimensions in the eigenspaces to span all of ℝn.

The geometric multiplicity of an eigenvalue λ is the 
dimension of Eλ, the eigenspace corresponding to λ. Then, 
the following fact is true: The geometric multiplicity of λ is 
always less than the algebraic multiplicity of λ.
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There is an easy way to make this plausible. If there were a set of 
eigenvectors that were not linearly independent, all from different 
eigenspaces, then one eigenvector, call it w, would be a linear 
combination of the other eigenvectors. But because w is a linear 
combination of other vectors from different eigenspaces, 
multiplication by A would stretch each component 
of w from different eigenspaces by different 
factors. So, the vector Aw will have to 
get skewed in a different direction 
than w, so it cannot be a 
multiple of w.

Diagonalizability
When does an n     ×     n matrix A have a basis of eigenvectors that spans ℝn?

If you have a full basis of eigenvectors (call them 
v1 through vn), then let P be the matrix with the 
eigenvectors of A as its columns.

Eigenvectors from different eigenspaces must be linearly 
independent.

If v1 through vk are eigenvectors of some matrix 
corresponding to distinct eigenvalues λ1 through λk, then 
the eigenvectors are linearly independent.
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Let D be a diagonal matrix with eigenvalues 
down the diagonal and zeros everywhere else. The 
eigenvalues should appear on the diagonal in the 
same order as their corresponding eigenvectors 
appear in the columns of P.

Then, AP = PD.

The reason is that this is really just expressing the eigenvector equation 
Av = λv for each λ simultaneously.

Then, AP is just A times the matrix with vi’s as columns. If you think 
about how matrix multiplication operates, that is just the matrix with 
Avi in the ith column.

But then the eigenvector property shows that the ith column is λivi. But 
that can be verified to be P times the diagonal matrix D. So, indeed, 
AP = PD.

If you multiply both sides on the left by P −1, you get P −1AP = D. 

Conversely, if you have this, then AP = PD. This means that the 
eigenvector equation holds for each column of A. So, the columns of P 
then form a full basis of eigenvectors, because P is invertible, and the 
entries of D are the associated eigenvalues!
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One special case is that if you have a matrix with n distinct real 
eigenvalues (in other words, there are no repeated eigenvalues), then 
the matrix A is diagonalizable.

This follows by noting that the algebraic multiplicity is then less than 
or equal to 1, but this is always bigger than the geometric multiplicity, 
which is always at least 1, since eigenspaces have at least one nonzero 
vector in them. So, both geometric and algebraic multiplicities must be 
equal. So, the theorem shows that A is diagonalizable.

There’s another useful way to view diagonalizability: It means that 
there’s a change of basis that turns the action of a given matrix A into 
one that behaves just like a diagonal matrix with respect to the new basis. 
All a diagonal matrix does is scale the axes directions by various factors.

So, if you are expressing vectors with coordinates in the new basis, 
then the claim is that the action of D will look just like the action of 
first multiplying by P on the left (which changes the new basis to the 
standard basis), then performing A, and then changing standard basis 
back to new basis with P −1. That’s why P −1AP = D.

THEOREM

A matrix A is diagonalizable if there exists an invertible matrix 
P such that P −1AP = D, a diagonal matrix. If so, then the columns 
of P are the eigenvectors of A, and the diagonal matrix D 
contains the eigenvalues.

This theorem says that being diagonalizable is equivalent to 
having a basis of eigenvectors, and that’s equivalent to having 
the geometric and algebraic multiplicities being equal and all 
eigenvectors being real.
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Similar Matrices
There is a special name for matrices that are related by a relation like 
the one in the definition of diagonalizability. Two square matrices A 
and B are similar if there is an invertible matrix P such that B = P −1AP.

If you think of the invertible matrices P and P −1 as changes of bases, 
then one way to think of similar matrices is that they represent 
transformations that are doing exactly the same thing, just represented 
in different bases.

So, then, similar matrices share some characteristics.

 w Similar matrices have the same determinant.

 w They have the same characteristic polynomial; therefore, they have the 
same eigenvalues.

 w They do not have the same eigenvectors.

 w They have the same rank as well as the same state of invertibility, 
meaning that one is invertible if and only if the other is.

Computing Matrix Powers
Matrix powers are important to compute, and diagonalizable matrices 
have matrix powers that are very efficient to compute!

First notice how matrix powers of similar matrices are related: If B = P −1AP 
(which means A and B are similar), then when you take the kth matrix 
power of B, it’s very easy to see how it’s related to the kth power of A.
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If you take B and multiply it many times, the Ps and P −1s pair up and 
cancel. So, Bk is just P −1 times Ak times P.

For a matrix A to be diagonalizable means A is similar to a diagonal 
matrix D. P in this case is just the matrix whose columns are 
eigenvectors of A, and D consists of eigenvalues along the diagonal.

Then, the prior discussion shows that P −1AkP = Dk.

Dk is very easy to compute because you just raise the diagonal elements 
to the kth power.

Then, rewrite the expression as Ak = PDkP −1.

READINGS
Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 5.3 

and 5.4.

Poole, Linear Algebra, section 4.4.
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Lecture 17

POPULATION DYNAMICS: 
FOXES AND RABBITS

A fter building up a lot of machinery to understand the 
eigenvectors and eigenvalues of a matrix, it’s time 

to see some of the payoff by returning to the population 
model of foxes and rabbits that was introduced in lecture 
14. Remember that this is just a model, which means it is not 
going to perfectly represent what may happen in reality. You 
make some simplifying assumptions and obtain some results 
in the hope that the results will give you some insights, even 
though the model isn’t perfect.

Recalling the Population Dynamics Model
Let Fn represent the population of foxes at time n and Rn represent 
the population of rabbits at time n. Assume that the number of foxes 
and rabbits doesn’t have to be an integer. This is unlikely to affect the 
character of the results, especially when the number of foxes and rabbits 
is large and the fractional difference between integer and noninteger 
values is small.
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Furthermore, assume the population vector (Fn+1, Rn+1) at time n     +     1 
depends linearly on the population vector (Fn, Rn) at time n, according 
to the following model:

Fn+1 = 0.6Fn     +     0.5 Rn 
Rn+1 = −pFn     +     1.2Rn.

Recall that the coefficient 0.6 for Fn represents the fact that foxes die 
without rabbits—in particular, 40% die off at each time step if there 
are no rabbits. The −p coefficient for Fn shows that the number of 
rabbits is negatively influenced by the presence of foxes. In other words, 
foxes eat rabbits. You’ll explore what happens for various values of p, 
called the predation parameter. And the 1.2 coefficient indicates that 
without foxes, the number of rabbits multiplies by 1.2, which means it 
grows by 20% each time step.

This linear system can be expressed in matrix form. If you let xn be the 
population vector at time n, then the time‑(n     +     1) population vector is a 
matrix A times the time‑n population vector. So, repeated multiplication 
by A gives the successive population counts as time grows.

This means that if you are given the initial population vector x0, which 
is (F0, R0), then the time‑k population vector xk is given by Akx0.

What happens as the number of steps, k, goes to infinity? What is the 
long‑term behavior of the system? Do rabbits and foxes thrive, or do 
they die off? And what happens if the parameter p is varied?
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You’ll study the cases where p = 0.175, 0.16, and 0.10, and you’ll see 
exactly how the answers depend on the eigenvalues and eigenvectors in 
each instance!

To carry out the first calculation, for p = 0.175, you calculate the 
eigenvalues of A by taking A and subtracting λ off the diagonal to get 
(A     −     λI).

0.6     −     λ 0.5
−0.175 1.2     −     λ

By taking the determinant of this matrix, you’ll get the characteristic 
polynomial:

λ2     −     1.8λ     +     0.8075.

This polynomial has 2 roots, which can be found using the quadratic 
formula. These are λ = 0.95 and 0.85, and, remember, they are the 
eigenvalues of A. Then, you find eigenvectors 
associated with each eigenvalue in turn. For λ = 0.95, 
you plug in λ = 0.95 into the matrix (A     −     λI) to get 
the matrix shown at right.

You expect this matrix not to be invertible, because the eigenvalues 
occur precisely where the determinant of the matrix (A     −     λI) is zero. 
So, it should have nontrivial null‑space. And indeed it does! You could 
compute the null‑space by solving the homogeneous system where you 
multiply this matrix by a vector x and set it equal to zero and solve for x.

But for a 2     ×     2, you can often see a solution by inspection. In this 
case, notice that one column is a multiple of the other—a sure sign 
the matrix is not invertible. In fact, the ratio of the first column to the 
second column is −7 to 10, so if you multiply this matrix by the vector 

−0.35 0.5
−0.175 0.25
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(10, 7), you get the zero vector. So, one eigenvector for the eigenvalue 
0.95 is the vector (10, 7).

In a similar way, you can find an eigenvector for the eigenvalue 0.85—
by subtracting 0.85 off the diagonal of A and finding a vector in the 
null‑space. If you do this, you’ll find that an eigenvector is (2, 1).

So, you’ve found the eigenvectors and eigenvalues when the predation 
parameter p = 0.175. What about predation parameters p = 0.16 and 
0.10? You could do them by hand again, but you could also let software 
do it for you.

Here’s a summary of what you find.

So, the eigenvalues and eigenvectors vary as you change the predation 
parameter.

 LECTURE 17
 Population Dynamics: Foxes and Rabbits

https://www.thegreatcourses.com/


207

 wWhen p = 0.175, the eigenvalues are both less than 1, and the eigenvectors 
are as shown.

 wWhen you lower the predation parameter to 0.16 (so foxes eat fewer 
rabbits), the eigenvalues are 1 and less than 1, and the eigenvectors have 
changed a little, too.

 wWhen you lower the predation parameter from 0.16 to 0.10, one of the 
eigenvectors now exceeds 1, and the eigenvectors have also changed a little.

These computations begin to give you clues as to what is happening. 
Remember that when eigenvalues are bigger than 1, that indicates an 
eigenvector direction that is expanding, and when the eigenvalue is 
less than 1, that indicates an eigenvector direction that is contracting. 
If the predation parameter is high, then both eigenvalues are less than 
1, so this indicates that the population vector is contracting along with 
the special eigenvectors. This also means that the population vector is 
contracting everywhere else.

Let’s do a computation. Suppose that the initial population x0 = (F0, R0) 
can be written as some linear combination of eigenvectors: c1v1     +     c2v2.

Remember that this will be possible if the matrix is diagonalizable, so 
there is a basis of eigenvectors. The coefficients c1 and c2 of the linear 
combination can be solved from the initial populations F0 and R0, 
because this is just a system of equations in unknowns c1 and c2.

Then, A times x0 has the effect of multiplying the v1 and v2 by their 
corresponding eigenvalues.

And if you keep multiplying on the left by A, the eigenvectors produce 
a factor of a corresponding eigenvalue each time. Then, xk, the time‑k 
population vector, is
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This is a very simple formula! In general, computing Ak would be much 
harder, especially if the matrix were large.

If A is diagonalizable, then this formula is exactly what you’d get by 
multiplying x0 on the left by PDP −1, where P has eigenvectors of A as 
columns and D is a diagonal matrix with diagonal entries λ1 and λ2. 
This is because P −1x0 is exactly the calculation you would do to use the 
initial conditions to find c1 and c2.

With this formula in mind, let’s now consider 3 scenarios: high 
predation, low predation, and medium predation.

High Predation
For p = 0.175, the above formula for the population vector becomes:

.

Notice how the 0.95k and 0.85k go to 0 because both of these terms 
come from eigenvalues that are less than 1. This means that both terms 
in this expression eventually go to the zero vector.

In other words, you can interpret this as saying that as k goes to infinity, 
no matter what c1 and c2 are (remember, they come from the initial 
conditions), the 2 populations will approach the zero vector—meaning 
that both populations go extinct.

Graphically, the eigenspaces for 0.95 and 0.85 can be plotted on the 
fox‑rabbit plane.
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The 0.85 eigenspace, marked by E0.85 in the diagram, lies along the 
vector direction (2, 1), and any point along this eigenspace represents 
a population vector where the number of foxes is twice the number 
of rabbits. So, for a vector on this eigenspace, the population vectors 
will, after 1 time step, remain in that ratio of 2 to 1, but both will be 
multiplied by a factor of 0.85. Thus, both populations decrease by 15% 
in each time step.

Similarly, the 0.95 eigenspace, denoted by E0.95 in the diagram, lies 
along the vector direction (10, 7), so the fox‑to‑rabbit ratio is 10 to 7 
along this eigenspace. After a single time step, the population ratio will 
remain the same (because it is an eigenvector), but both populations 
will be multiplied by a factor of 0.95. So, both populations decrease by 
5% each time step.

If you start with a population vector at any other point, you can write 
the vector of populations as a linear combination of eigenvectors 
that live in the eigenspaces. The contraction will be faster along the 
eigenspace direction for 0.85, so the solid pink point on the 0.85 
eigenspace moves toward the origin faster than the solid pink point on 
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the 0.95 eigenspace. The net effect is that a point that is not on either 
eigenspace will, as time progresses, skew toward the 0.95 eigenspace, 
because the component in the 0.85 eigenspace will disappear quicker. 
The blue curves in the diagram indicate the shape of the path that a 
point follows.

No matter where you start on the diagram, the population vectors 
eventually go to zero. 

And you can see how quickly they go to zero. The eigenvalue closest to 
1, which is 0.95, is the limiting factor in how slowly the populations die 
off, because 0.95k goes to 0 slower than 0.85k does.

For the predation parameter set at 0.175, you get extinction for both 
foxes and rabbits. It should not surprise you that if you lower the 
predation parameter, you may see the populations survive.

Low Predation
If you lower the predation parameter to 0.1, the eigenvalues are 1.1 and 
0.7, and you calculated the eigenvectors already as (1, 1) and (5, 1), 
respectively.

Then, using the same formula as before but with different eigenvalues 
and eigenvectors, you see that the time‑k population vector is c1(1.1)k 
times the eigenvector (1, 1) plus c2(0.7)k times the eigenvector (5, 1).
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Notice that for large k, the first term dominates—it actually blows up. 
The second term goes to zero as k grows. This is now saying something 
more interesting than when the predation parameter was large.

Remember that c1 and c2 are determined by the initial conditions. So, 
if c2 is zero, then the initial population lies along the eigenspace for 
1.1, in which the fox‑to‑rabbit ratio is 1 to 1 because the eigenvector is 
(1, 1). So, if you start with a fox‑to‑rabbit ratio of 1 to 1, then at each 
time step, the population ratio stays the same, but both populations 
increase by 10% (as indicated by the factor 1.1). So, the fox and rabbit 
populations over time will grow and flourish.

But if you start with an initial condition where c1 is 0, then the initial 
population lies along the 0.7 eigenspace, which means the initial ratio 
of foxes to rabbits is 5 to 1, because the eigenvector is (5, 1). In that 
case, the populations after each time step will decrease by 30%, because 
the eigenvalue is 0.7, but the ratio will remain 5 to 1.
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In this diagram, the 1.1 eigenspace is denoted by E1.1 and the 0.7 
eigenspace is denoted by E0.7. For points in the 1.1 eigenspace, you 
get expansion by 10% at each time step, and for points in the 0.7 
eigenspace, you get contraction by 30% at each time step.

Things get interesting when your initial populations do not lie in the 
eigenspaces.

As before, you’ll need to take the initial vector of populations and write 
it as a linear combination of eigenvectors (1, 1) and (5, 1). Doing so 
produces vectors along the eigenspaces that sum to the initial vector, 
and the coefficients c1 and c2 just tell you how large these component 
vectors are in relation to the eigenvectors (1, 1) and (5, 1), shown by the 
black arrows along the eigenspaces.

If c1 > 0, then the first term is nonzero and yields a vector of populations 
that is positive in each coordinate. The first will quickly become larger 
than the second term, if it isn’t already, and when that happens, the 
populations will be growing by a factor of approximately 1.1 at each 
time step. In addition, the ratio of foxes to rabbits will be close to 1 to 1.

You can see this in the diagram, because when c1 = 0, you lie on the 0.7 
eigenspace, with eigenvector (5, 1). So, if c1 > 0, then that is all points 
on one side of the 0.7 eigenspace. It’s the side in the direction of (1, 1), 
so it must be the top side of the 0.7 eigenspace. This is just the set of 
points where the ratio of foxes to rabbits is strictly less than 5 to 1.

This kind of makes sense: If there are fewer than a certain ratio of 
foxes, then both populations survive and flourish!

To summarize, if c1 > 0 (which corresponds to fewer than a 5‑to‑1 ratio 
of foxes to rabbits), then the populations eventually flourish in a 1‑to‑1 
ratio of foxes to rabbits, and they grow by 10% in each time step.
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In the diagram, this happens in the region between the 1.1 and 0.7 
eigenspaces in the first quadrant. It also happens in the region to 
the left of the 1.1 eigenspace in the first quadrant. The blue curved 
paths show the path that the population vectors take in this region; no 
matter where you start, the points move toward the 1.1 eigenspace and 
eventually track along it.

If c1 < 0, the first term will be a vector that is negative in both 
components—both foxes and rabbits. This corresponds to the yellow 
shaded region in the diagram. The first term may be outweighed by 
the second term if the second term is quite positive at the start, but 
eventually the first term will grow in absolute value and dominate, 
leading to one of the populations going negative. The model breaks 
down here because you can’t have negative populations, but it suggests 
extinction for one of the populations.

You can see which one goes extinct first by looking at the diagram. If c1 
< 0, this happens when you are below the 0.7 eigenspace in the diagram 
(shaded yellow), which is where the ratio of foxes to rabbits is greater 
than 5 to 1. If you start at a point in the first quadrant but below the 
0.7 eigenspace, you will see that points there will move downward to 
the left, because they want to approach the 1.1 eigenspace and are on 
the negative side of the eigenspace. This leads to extinction for rabbits 
first, which makes sense, because in this region, there aren’t enough 
rabbits to feed all the foxes.

So, even though the model breaks down here with negative rabbits, 
you learn something: The critical ratio to pay attention to is 5 foxes 
per rabbit. Any more than that and you have extinction of rabbits (and 
therefore foxes, unless they eat something else), but any less than that 
and both populations flourish!
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Medium Predation
When the predation parameter p = 0.16, the eigenvalues are 1 and 0.8 
with eigenvectors (5, 4) and (5, 2).

If you were to draw a diagram of the fox‑rabbit plane, it would look 
a lot like the previous diagram, with eigenspaces E1 and E0.8 slightly 
shifted from the prior examples, lying along the (5, 4) and (5, 2) vector 
directions.
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The key insight is that the eigenvalue 1 is not expanding nor 
contracting. So, if you take any initial population vector and write it in 
terms of components in the eigenspace directions, then any component 
in the (5, 4) direction stays put, with no change at each time step. Any 
component in the (5, 2) direction will contract by a factor of 0.8 at 
each time step. So, that component eventually vanishes and everything 
moves toward the eigenspace corresponding to the eigenvalue 1.

This means that if the component of the initial population vector in 
the (5, 4) direction is positive, eventually the population vector will 
converge to a point on the E1 eigenspace. Look at all the blue paths above 
the E0.8 eigenspace. So, the long‑term behavior is that the populations 
neither grow nor go extinct but approach stable populations in a 5‑to‑4 
rabbit‑to‑fox ratio!

On the other hand, if the component of the initial population vector 
in the (5, 4) direction is negative, the population vector will converge 
to a point on the E1 eigenspace below the x‑axis. The model breaks 
down there because populations can’t be negative, but if you follow the 
blue path in the yellow shaded region below the E0.8 eigenspace, you 
will find that rabbits will go extinct first. That happens in the yellow 
shaded region. 

So, the crucial ratio here is the ratio of foxes to rabbits along the E0.8 
eigenspace, which is 5 to 2. If you have more than 5 foxes to 2 rabbits, 
then the rabbits go extinct; if you have less than 5 foxes to 2 rabbits, the 
populations converge to a 5‑to‑4 ratio and remain stable.

READINGS
Lay, Lay, and McDonald, Linear Algebra and Its Applications, section 5.6.

Poole, Linear Algebra, section 4.6.
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Lecture 18

DIFFERENTIAL EQUATIONS: 
NEW APPLICATIONS

C alculus helps explain rates of change of functions over 
time. If you have a function f(t) that depends on time 

t, the rate of change of the function with respect to time is 
a new function that also depends on time. It is called the 
derivative of f and is usually written as f ′(t). When you 
have a physical problem that involves a rate of change of a 
function, it places a condition on that function’s derivative. 
This is a differential equation. The solution to a differential 
equation is a function that satisfies the given condition.

Just for this lecture, it will be helpful if you know a little 
calculus. But even if you don’t know any calculus, you may 
be able to follow the general thread of this lecture.
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Solving a System of Differential Equations
If x(t) is a real‑valued function that satisfies x′ = ax for some constant a, 
then a solution is x(t) = Ceat, where C is some constant.

This exponential solution is the key to solving complicated systems of 
differential equations of the form x′ = Ax. To keep things simple, let’s 
assume that A is a 2     ×     2 matrix and x(t) is the vector (x1(t), x2(t)), but 
everything you’re going to learn will generalize readily to any square 
matrix, so you could study a system of n linear differential equations if 
you wanted to.

How can you solve the equation x′ = Ax? For what matrices would this 
system of equations be easy to solve? If you think about it, you may 
realize that if A is diagonal, then you can do it very easily.

In this example of a 2     ×     2 diagonal matrix with λ1 and λ2 on the 
diagonal, the 2 equations decouple. The function x1′ will have no 
relationship to x2, and x2′ will have 
no relation to x1. And each of them 
is a differential equation in which 
the rate of change of a function is 
proportional to the function itself, 
so the solution is an exponential.

If x1′ = λ1x1, then x1(t) = C1e λ1t. The 
exponent has the rate λ1 in it that 
comes from the proportionality 
constant in the differential equation.

Similarly, x2′ = λ2x2, then x2(t) = C2e λ2t.
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The constants C1 and C2 are arbitrary; they just express the idea that 
many functions will work.

You can rewrite these solutions as a vector equation.

.

That’s a very general solution to this system of differential equations 
when the matrix is diagonal. Diagonalization in this case corresponds 
to decoupling the equations from each other.

What if the matrix is not diagonal?

Recall that diagonalization offered a good basis of eigenvectors, and 
this basis was a more natural way to understand the action of the linear 
transformation that A represents. In other words, it was a good change 
of basis. In this case, you’ll also perform a helpful change of basis to 
turn the problem into the diagonal case that was just solved!

If A is diagonalizable, then you know A = PDP −1 for some diagonal 
matrix D and invertible matrix P. So, x′ = Ax becomes x′ = PDP −1x.

If you multiply both sides by P −1 on the left, you get P −1x′ = DP −1x.

Now a good substitution becomes apparent. If you 
set the vector w = P −1x, then that will be convenient. 
Because P is a matrix of constants, taking the 
derivative of w′ is just P −1x′. But this change of 
variable now turns the differential equation into 
one where the left side becomes w′ and the right 
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side becomes Dw. So, w′ is a diagonal matrix D times w. You know how 
to solve this!

The previous method shows that w equals the following expression, 
where λ1 and λ2 are eigenvalues of A and c1 and c2 are arbitrary 
constants.

So, you’ve solved for w! But you weren’t interested in w; you were 
interested in solving for the vector x.

But because w = P −1x, then x = Pw. Now notice that w is a vector written 
as a linear combination of vectors, so when you multiply on the left by 
P, you can just multiply P times each term. Also remember that P has 
the eigenvectors of A in its columns. So, when you multiply P times 
the vector (1, 0), you’ll get the first column of P. When you multiply 
P times the vector (0, 1), you’ll get the second column of P. These are 
just the eigenvectors of A.

So, the vector x is just a linear combination of eigenvectors times 
exponential functions related to the eigenvalues! This is a very general 
kind of solution when you have a diagonalizable matrix A. For larger 
square matrices, you would just have more terms and you’d use a basis 
of eigenvectors.
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Complex Eigenvalues
Let’s examine the behavior of matrices with complex eigenvalues. What 
kinds of linear transformations are they? For example, in a 2     ×     2 matrix 
with no real roots, that means the matrix has no special directions 
in the plane that stay the same under multiplication by the matrix A. 
What kind of linear transformation is that?

A rotation is such an example. Recall that a 2     ×     2 rotation matrix is 
always of this form:

If you let a = r cos θ and b = r sin θ, then you 
could recognize a rotation as being of the 
form at right, too.

Note that the action of this matrix is to 
send the standard basis vector (1, 0) 
to (a, b) and (0, 1) to (−b, a). So, 
you can see that it does rotate, 
and if you calculate the length 
of the vector (a, b), you 
get r, so it does send the 
unit vectors to vectors 
of length r. Thus, it 
scales by r.
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So, if you start at some point and apply the matrix over and over again, 
3 things can happen, depending on whether the scaling factor r is 1, 
less than 1, or greater than 1.

 w If r = 1, you get a series of dots that move along a circle. Each time, the 
angle from the origin changes the same amount.

 w If r < 1, you get a series of dots that spirals in toward the center. As 
before, the angle from the origin in each case changes the same amount.
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 w If r > 1, you get a series of dots that spirals away from the center. As 
before, the angle from the origin in each case changes the same amount.

Now let’s determine the eigenvalues of the matrix. If you subtract λ 
off the diagonal and take the determinant, you’ll get the characteristic 
polynomial:

(a     −     λ)2     +     b2.

The roots turn out to be (a ± bi). These are the 2 eigenvalues; they are 
both complex. It is a fact that complex roots of any polynomial always 
come in pairs. You can use the same methods you’ve learned to find 
their eigenvectors, which will also be complex and come in pairs; you 
can learn more about this in an advanced linear algebra course.

So, you’ve seen that scaled rotations are matrices with complex 
eigenvalues. Are there any others? It turns out, in some sense, that 
there aren’t. There’s a theorem that says all other 2     ×     2 matrices with 
complex eigenvalues are actually like scaled rotations if you change 
basis! In other words, if A is a 2     ×     2 matrix with complex eigenvalues, 
then there’s a basis with respect to which the action of A is just scaled 
rotation in that basis.
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This means that 2     ×     2 matrices with complex eigenvalues really 
correspond to scaled rotations in the plane, warped along certain axes. 
You now have a geometric picture of what complex eigenvalues mean.

READINGS
Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 5.5 

and 5.7.

Poole, Linear Algebra, section 4.6.
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QUIZ FOR LECTURES 13–18
1 Find the determinant of the matrix shown at right using 

any method discussed in this lecture. Are the rows 
linearly independent? [LECTURE 13]

2 In this problem, you’ll see why adding a multiple of one row to another 
does not change the determinant of a 2     ×     2 matrix A. [LECTURE 13]

a Verify that if the 2 rows of A are identical, the determinant of A 
is zero.

b Show that the determinant formula D, as a function of the 2 row 
vectors u and w, is linear in each argument—for example, verify that 
D(u     +     v, w) = D(u, w)     +     D(v, w) and D(cu, w) = cD(u, w).

c Confirm that D(u     +     cw, w) = D(u, w), as desired.

3 Let A be the diagonal matrix shown at right. The linear 
transformation T(x) = Ax scales the x coordinate by a 
factor of −2 and the y coordinate by a factor of 3, because 
it sends x = (x, y) to T(x) = (−2x, 3y). Thinking about the 
geometric description of this transformation, locate 2 
eigenvectors with different eigenvalues. [LECTURE 14]

4 Let B be the matrix shown at right. The linear 
transformation T(x) = Bx takes each vector and reflects 
it about the line y = x. Thinking about the geometric 
description of this transformation, locate 2 eigenvectors 
with different eigenvalues. [LECTURE 14]

5 Find all eigenvalues of A = 1 −1
−6 0 , as well as the corresponding eigenspaces. 

[LECTURE 15]

6 Find all eigenvalues of A = 3 −1
0 3 , as well as the corresponding eigenspaces. 

[LECTURE 15]

1 2 3
0 0 5
4 8 7

−2 0
0 3

0 1
1 0

Mastering Linear Algebra
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7 Is 1 −1
−6 0  diagonalizable? Is 3 −1

0 3  diagonalizable? [LECTURE 16]

8 If A and B are similar matrices, show that they have the same determinant. 
Then show that A     −     λI and B     −     λI are similar, which implies that A and B 
have the same characteristic polynomial. [LECTURE 16]

9 In the low predation example of the model explored in this lecture (when 
p = 0.10), give an intuitive explanation for why the trajectories that start 
close to the 0.7 eigenspace (but just above it) seem to first move left but 
then change direction and move right and upward. [LECTURE 17]

10 In each of the 3 scenarios of the model, which eigenvalue would you say 
was the most important eigenvalue for understanding the dynamics of the 
system: the smaller one or the larger one? [LECTURE 17]

11 Consider the system of differential equations given by

x′ = x     −     y 
y′ = −6x

 and solve the system for w(t) = (x(t), y(t)) using the methods of lecture 18. 
[LECTURE 18]

12 You’ve seen that the matrix representing a rotation has complex eigenvalues. 
Explain why you expect the eigenvectors to be complex as well (in other 
words, not all of its entries are real). [LECTURE 18]

Solutions can 
be found on 
page 301.

Mastering Linear Algebra
QUIz FOR LECTURES 13–18

https://www.thegreatcourses.com/


226

Lecture 19

ORTHOGONALITY: 
SQUARING THINGS UP

L inear transformations on the plane map parallelograms 
to parallelograms. While they preserve parallel lines, 

they might not preserve angles or distances between points, 
so they can warp space and change volumes. But there are 
linear transformations that do preserve angles and volumes 
and distances between points. Such linear transformations 
are called orthogonal.

Orthogonal Sets
Recall that the standard basis vectors are pairwise perpendicular and are 
of length 1. So, if the columns of a matrix tell you where the standard 
basis vectors get sent under the associated linear transformation, then 
if the transformation preserves lengths and angles, you should expect 
the columns of the matrix to remain pairwise perpendicular, and you 
expect those vectors to be length 1 as well.
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Orthogonal sets are often used as reference frames to measure other 
things by. In particular, it’s nice when a basis is orthogonal. And it’s 
even more convenient when the vectors have length 1. In that case, the 
set of vectors is called orthonormal. An orthogonal set can be turned 
into an orthonormal set by simply normalizing each vector.

An orthogonal set might look something 
like this set of vectors in ℝ3. Each vector is 
at right angles to all the others.

And if they were all length 1, they would be 
orthonormal.

Because all the vectors are pairwise perpendicular, it can be shown that 
an orthogonal set is linearly independent.

DEFINITION

A set of nonzero vectors is orthogonal if all pairs of 
vectors in the set are perpendicular. Or, in other words, 
if the vectors are v1 through vn, then for all pairs i and  
where i is not , the dot product of vi and v  equals zero. 
(Recall that the dot product of 2 nonzero vectors is zero if 
and only if the 2 vectors are perpendicular.)

THEOREM

An orthogonal set is linearly independent.
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Given a vector in a subspace S, how can it be expressed as a linear 
combination in a given basis for that subspace? Normally, you’d have to 
solve a system of equations to find the coefficients for the combination. 
But if the basis is orthogonal, then finding the coefficients is easy.

If the orthogonal basis is v1 through vk and you want w to equal a 
linear combination 

c1v1     +     …     +     ckvk,

you can just write

This is the coefficient for the component of w in the vi direction.

The intuition behind this is that if you project the vector w in the vi 
direction, you get a vector whose magnitude is the length of w times 
the cosine of the angle in between, which by the geometric definition of 
the dot product is just (w • vi) divided by the length of vi. This vector 
points in the direction of the unit vector vi divided by the length of vi.
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So, the vector is the product of this magnitude times the unit direction. 
That’s (w • vi) times the vector vi, divided by the square of the length vi. 

This is the vector vi times a coefficient .

The representation of w in terms of vi is unique, because if you take the 
dot product with vi, all the terms vanish by orthogonality except the ith 
term so that (w • vi) is indeed ci(vi • vi).

Division then shows  

And if the set of vectors is orthonormal, then the representation is even 
easier—the denominator of this fraction is just 1.

This is why having an orthonormal basis is great: You can figure out 
the coordinates in the basis just by doing dot products!

If you put the orthonormal basis as columns of a matrix Q, then QT 
times Q must be the n     ×     n identity matrix! This is because the ijth entry 
of (QT times Q ) is the ith row of QT dotted with the jth column of Q.

This dot product is 1 whenever i equals j and 0 otherwise.

THEOREM

If q1 through qk is an orthonormal basis for some 
subspace S and w is chosen from S, then w is a linear 
combination of the qi’s with each coefficient (w•qi), and 
this representation is unique.
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Orthogonal Matrices

For an orthogonal matrix, taking the inverse is very easy, because Q−1 
is just QT.

A good example of an orthogonal matrix is a rotation matrix. You can 
check that QT times Q is the identity matrix.

But intuitively, it should make sense that the matrix is orthogonal, 
because the motivation for orthogonal matrices was looking for linear 
transformations that preserve angles and volumes and distances 
between points, and rotations do that!

DEFINITION
If Q is square—meaning the number of elements of the orthonormal 
set is equal to n, the dimension of the vectors—then the orthonormal 
set spans all of ℝn and Q is called an orthogonal matrix.

(This is a strange name, because you might think such a matrix 
should be called orthonormal, but this is the convention that has 
historically been used. Just remember that an orthogonal matrix has 
orthonormal columns and is square.)

 LECTURE 19
 Orthogonality: Squaring Things Up

https://www.thegreatcourses.com/


231

Another example of an orthogonal matrix is the identity matrix, but 
because the order of the columns shouldn’t matter, then any permutation 
of the columns of the identity matrix should be orthogonal as well.

Such a matrix is called a permutation matrix, and its actions on ℝn 
just swap the roles of the axes of n‑dimensional space.

Properties of Orthogonal Matrices
Let Q be an n     ×     n orthogonal matrix.
1 Qx • Qy is x • y for any pair of vectors x and y in ℝn. This follows 

because Qx • Qy is, as matrices, (Qx)T times Qy, which is xT times QT 
times Q times y. Because QT times Q is the identity, this product is x • 
y. In other words, an orthogonal transformation preserves dot products 
(and therefore also angles).

2 The dot product preserves lengths so that the length of Qx equals the 
length of x for any vector x in ℝn. This follows from noticing that the 
length Qx is the square root of (Qx dotted with Qx), which is the square 
root of (x • x), using the first property. And that is just the length of x.

3 The rows of Q form an orthonormal set, like the columns do. This is 
because the rows of Q are columns of QT, and QT inverts Q. So, Q times 
QT is the identity matrix, which is the same as saying QTT times QT is 
the identity matrix. That shows that QT is orthogonal.

Each of these first 2 properties is, in fact, equivalent to Q 
being orthogonal. In other words, both properties imply 
that the matrix Q is orthogonal.
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4 Q−1 is an orthogonal matrix, because Q−1 is QT.

5 The determinant of an orthogonal matrix Q is ±1. This follows from 
noting that QT times Q equals the identity. So, the determinant of QT 
times the determinant of Q must be 1. But the determinant of QT is just 
the same as the determinant of Q. So, the determinant of Q, squared, is 
1. This means that the determinant of Q must be ±1. If the determinant 
of Q is −1, then the negative determinant is a clue that the action of Q 
does some kind of reflection without changing distances or angles.

6 If λ is an eigenvalue of Q, whether real or complex, the absolute value 
of λ is 1. You can see this from the eigenvalue property Qv = λv for 
some nonzero eigenvector v. Taking lengths, you see that the length 
of v equals the length of Qv (by property 2), and that is the length 
of λv, which is the length of λ times the length of v. Taken together, 
this means that the length of λ must be 1. So, the eigenvalues of an 
orthogonal matrix must lie on the unit circle in the complex plane.

7 If Q1 and Q2 are both orthogonal matrices, then their product, Q1Q2, 
is. That can be seen in a number of ways; you can do this as an exercise.

Taken together, these properties should give you a pretty good feel for 
how orthogonal matrices behave. Because they preserve dot products 
and lengths, they basically behave like rigid motions, possibly together 
with a reflection of n‑dimensional space. They will be reflections if the 
determinant is −1.

The Gram-Schmidt Process
Given v1 through vn as a basis for a subspace S, you will construct a 
new orthogonal basis by sequentially modifying each vi to form a new 
vector wi in such a way that the wi is length 1 and perpendicular to all 
the w vectors before it.
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The first step is to take w1 to be v1.

.

Then, take w2 to be v2, except that you will subtract off the component 
of v2 in the w1 direction. 

This means subtracting off the w1 vector times the fraction . 

.

You can check that w2 is perpendicular to w1.

You continue in this fashion with w3, starting by modifying v3 by 
subtracting off the components of v3 in the w1 and w2 directions. You 
will get an expression like the following one.

.

You can check that w3 is, in fact, perpendicular to both w1 and w2.

If you keep doing this process sequentially, you will get an orthogonal set. 
Then, you can normalize each vector wi by dividing by its length to get a 
unit vector qi. Then, you will have an orthonormal basis q1 through qk.

At every step, you’ve constructed the first k vectors of the orthonormal 
basis to have the same span as the first k vectors v1 through vk.

This fact helps you see the QR‑factorization of a matrix.
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QR-Factorization
It turns out that any m     ×     n matrix A with linearly independent columns 
has a special factorization into the product of Q and R, where Q is an 
m     ×     n matrix with orthonormal columns and R is an n     ×     n invertible 
upper‑triangular matrix.

To find Q, you can use the Gram‑Schmidt process on the columns of 
A. Because they are linearly independent, Gram‑Schmidt will work. 
And if you let R = QTA, then you will see that QR equals QQTA, which 
is just the identity times A, which is A. 

The matrix R obtained in this way must be 
upper triangular, because if you look at 
how Gram‑Schmidt works, then v1 can 
be expressed entirely in terms of q1; v2 
can be expressed entirely in terms of 
q1 and q2; and in general, vk can be 
expressed entirely in terms of the 
vectors q1 through qk.

The diagonal elements of R 
must all be nonzero, because 
you constructed qk as a 
normalized version of wk, 
and wk was defined in terms 
of vk and w1 through wk−1. 
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So, the coefficient rkk must be nonzero.

If you require the diagonal elements of R to be positive, then the QR‑
factorization is unique.

Factorizations tell you something about the structure of a matrix 
transformation. The matrix R here is basically playing the role of Gram‑
Schmidt in taking a set of linearly independent vectors and squaring it 
up and scaling each dimension to form vectors that are orthonormal.

Orthogonal Diagonalization
Recall that a square matrix A is diagonalizable if A = PDP −1, where P is 
invertible and D is diagonal. P ’s columns must then be eigenvectors of 
A, and the diagonal elements of D must be the associated eigenvalues in 
the same order. One way to think about the action of P is that it is like 
changing bases from the standard basis to some other basis.

But sometimes that change of basis can be done nicely—by an 
orthogonal matrix. Recall that for orthogonal matrices, the columns 
are an orthonormal set and the inverse is the transpose.

DEFINITION

A matrix A is orthogonally diagonalizable if in addition to 
being diagonalizable, P is required to be orthogonal so that 
A = PDPT. 
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A result known as the spectral theorem guarantees that orthogonally 
diagonalizable matrices are precisely the same as the symmetric 
matrices. Remember, a symmetric matrix means A = AT, or the entries 
are symmetric when reflected around the main diagonal.

READINGS
Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 6.4 

(and any necessary background from 6.1–6.3 to understand it), 7.1, 
and 7.2.

Poole, Linear Algebra, chap. 5, especially sections 5.0, 5.1, 5.3, and 5.4. 

THE SPECTRAL THEOREM

A matrix is orthogonally diagonalizable if and 
only if it is real and symmetric.
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Lecture 20

MARKOV CHAINS: 
HOPPING AROUND

P revious lectures have demonstrated how important it is 
to understand matrix powers. For example, in the model 

used in lectures 14 and 17 regarding the dynamics of foxes 
and rabbits, the population vector at time (n     +     1) was a linear 
transformation applied to the time-n population vector. The 
populations evolved by repeated application of a matrix. 
This lecture will show you another common scenario that 
involves repeated application of a matrix. In this case, the 
coefficients of the linear equations come from probabilities, 
and the matrix acts on the right rather than on the left.
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Markov Chains

Note that a consequence of the definition of a Markov chain is that 
each row of the transition matrix must sum to 1, because each row 
contains all the probabilities of transitioning out of some particular 
state in the system.

Let xi(n) be the probability of being in state i at time n. Then, let vector 
x(n) be a row vector that collects these probabilities together for time 
n. Then, the vector x at time n equals the vector x at time 0 times 
the matrix An. Note that the vector of probabilities evolves linearly 
according to multiplication by a matrix on the right.

DEFINITION

A Markov chain is a process with a finite number of 
states. It moves from state to state. At each step, the next 
state only depends on the current state—not on past 
states. The state of the process evolves according to some 
probabilities of transition.

If pi  is the probability of going from i to  at any step of 
the process, then the transition matrix A is a matrix whose 
entries are the transition probabilities pi .
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Economic Mobility
Suppose you want to model economic mobility. For the sake of the 
model, suppose there are 3 classes of people as measured by wealth: 
rich, middle‑class, and poor. The people in each category may move 
around, so you might look at the probabilities of shifting from one class 
to another and consider what is going to happen to the distribution of 
people in the long run.

If you know their current wealth, you might assume their future wealth 
only depends on how much money they have now, not on their status at 
any other moment in the past. So, this can be modeled by a Markov chain.

Let’s measure time in decades 
and let’s suppose the transition 
probabilities are given by the 
hypothetical transition matrix 
shown at right.

The rows represent the current 
state, and the columns represent 
the state being transitioned to.

 w The probabilities in the first row suggest that if you’re rich, the 
probability of staying rich in the next decade is quite high. The probably 
of becoming poor is zero.

 w The second class is the row where you start out in the middle class. 
Becoming rich is highly unlikely (2%), but the probability of 
staying in the middle class is very high, and there’s a 20% chance of 
becoming poor.

 w The third row shows that if you’re poor, the probability of remaining 
poor is high, and there’s a negligible chance of becoming rich in the 
next decade.
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What happens in the long term?

If the transition matrix is A, then the matrix power An gives the n‑step 
probabilities of going from one state to another. In particular, the ijth 
entry is the probability of going from state i to state j in exactly n steps.

A5 looks like this:

A10 looks like this:

And A100 looks like this:

After 100 steps, it’s clear that the rows are converging to the same 
distribution. In other words, no matter what the distribution of rich/
middle class/poor looks like when you start, the distribution of people 
is going to look the same in the long run: 44% rich, 27% middle class, 
and 29% poor.
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Theorems about Markov Chains
In the example, the Markov chain appears to converge to a limiting 
distribution, called a steady-state vector.

The property of a steady‑state vector is that when the transition matrix is 
applied, it remains the same. So, if w is a steady‑state vector, then w = wA.

Notice that this looks like an eigenvector property, except that the 
vector is on the left of the matrix A and it is a row vector. In fact, this is 
what’s called a left eigenvector of A.

The usual eigenvector is sometimes called a right eigenvector, but 
whenever you hear the word eigenvector without reference to left or 
right, then it refers to the usual (right) eigenvector.

In a similar fashion, left eigenspace and left eigenvalue can be defined.

THEOREM

w is a left eigenvector and λ is a left eigenvalue of A if and only 
if wT is a (right) eigenvector and λ is a right eigenvalue of AT.

DEFINITION 

A row vector w is a left eigenvector of A if wA = λw. 

Remember that the definition of a usual eigenvector is Av = λv. 
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Every Markov chain has a steady‑state vector.

What are the eigenvalues of A?

A has eigenvalue 1 because the rows of A must sum to 1, because they 
are a complete set of probabilities of transitioning out of some particular 
state. Multiplying A by the vector of all 1s will sum these rows. But that 
means A times the vector of all 1s must be the vector of all 1s. So, 1 is 
an eigenvalue of A.

This means that AT also has an eigenvalue of 1. So, there must be an 
eigenvector v such that ATv = v. You can scale v so that its entries sum 
to 1 and it will still be an eigenvector. Then, notice that the row vector 
vT satisfies

vTA = vT.

This means that w = vT is the desired steady‑state vector.

Some Markov chains have multiple steady‑state vectors.

For example, if a Markov chain has a transition matrix that is the 
identity matrix, then every vector is a steady‑state vector, because 
clearly w = wI for any row vector w.

With the identity as the transition matrix, this Markov chain stays put 
for all time: If you start in a state, you never move.

THEOREM

A and AT have the same eigenvalues.
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What if you require the process to move around more? Would there 
necessarily be a unique steady‑state vector w?

Let’s call a matrix positive if all its entries are positive. Let’s call a 
Markov chain regular if some power of the transition matrix is positive. 
This means that after some number of steps, it is possible to transition 
from any state to any other state with positive probability. Then, the 
Perron‑Frobenius theorem shows that the steady‑state vector is unique 
and every starting configuration will converge to it!

THE PERRON-FROBENIUS THEOREM

If A is the transition matrix of a regular Markov 
chain, then

1 1 is an eigenvalue of A.

2 The left eigenspace of A associated to the 
eigenvalue 1 is 1-dimensional.

3 There’s a left eigenvector in that eigenspace with 
all positive coordinates.

4 If λ is any other eigenvalue, then the absolute 
value of λ is strictly less than 1 (even for complex 
eigenvalues).
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What does this have to do with convergence of Markov chains?

Remember that the matrix A acts on left eigenspaces by multiplying 
on the right, just as the matrix AT acts on its right eigenspaces by 
multiplication on the left.

So, the action of A on a left eigenspace scales everything in that 
eigenspace by a factor, just as it does for right eigenspaces. The left 
eigenspace associated to 1 stays fixed under action by A. Because that 
eigenspace is a 1‑dimensional line, every eigenvector in that space 
is a multiple of the one with all positive coordinates. Then, there is 
exactly one of those multiples whose coordinates sum to 1. That must 
be the steady‑state vector of A, and it is unique. There is no other 
steady‑state vector!

The fact that all other eigenvalues are strictly less than 1 (even complex 
eigenvalues) suggests that any initial row vector will, through repeated 
multiplication by A, converge to the steady‑state vector. This is most 
obvious in the case where A is diagonalizable, because there’s a basis of 
eigenvectors and they’re all contracting except the steady‑state vector. 
So, any starting vector must contract toward the eigenspace for 1. But 
the theorem is true even if A is not diagonalizable.

This explains why as n goes to infinity, An will converge to a matrix 
whose rows are identical and equal to a steady‑state vector w—because 
the ith row of An is just what you get when you multiply the standard 
row basis vector (ei)T by An. If any starting vector converges to the 
steady state, then we expect each row of An to converge to the steady‑
state vector as well.
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READINGS
Note: Some texts define the transition matrix of a Markov chain to be the 
transpose of the way it is defined here, and if so, the theorems need to change 
in a corresponding way.

Chartier, When Life Is Linear, chaps. 10 and 11. 

Lay, Lay, and McDonald, Linear Algebra and Its Applications, chap. 10, 
especially sections 10.1 and 10.2.

Poole, Linear Algebra, sections 2.5 and 4.6.

Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications 
in Speech Recognition,” https://www.ece.ucsb.edu/Faculty/Rabiner/
ece259/Reprints/tutorial%20on%20hmm%20and%20applications.pdf. 

von Hilgers and Langville, “The Five Greatest Applications of Markov 
Chains,” http://langvillea.people.cofc.edu/MCapps7.pdf.

There are some interesting things you can try once you know about 
Markov chains. For example, think about the sequence of letters 
you encounter as you read. That’s a Markov chain on maybe 40 
characters (if you allow numbers, spaces, and punctuation).

Andrey Markov himself first discussed his chains in this context—
by looking at a poem by Aleksandr Pushkin and measuring the 
transition probabilities of Cyrillic letters.

Take a text from an author you like and train your Markov chain 
on that data by empirically measuring the transition probabilities 
that a certain letter will be followed by another letter. Then, if 
you run the Markov chain using those probabilities, you’ll end 
up with some fun sentences that are nonsensical but may look 
very much like English.
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Lecture 21

MULTIVARIABLE CALCULUS: 
DERIVATIVE MATRIX

L inear algebra is an important part of multivariable 
calculus, also sometimes called vector calculus. 

Multivariable functions highlight a big theme of linear 
algebra: approximating nonlinear things by linear things. 
That idea is the foundational idea behind all the applications 
of the derivative matrix.

Single-Variable Calculus
Single‑variable calculus studies functions of one variable; there’s one 
input and one output. 

This lecture assumes you’ve done single-variable 
calculus and are familiar with those ideas but 
does not assume you’ve had multivariable 
calculus.
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The first big idea of calculus is the idea 
of an instantaneous rate of change—
usually the rate of change of a function 
f near a point a. The derivative is often 
thought of as the slope of a graph near a 
point a. It may or may not exist, but if it 
does, this is called the derivative of f at 
a, written df ⁄dx.

The derivative df ⁄dx exists at a if the graph 
is locally linear, meaning if you magnify 
that region of the graph more and more, it looks more and more like a 
straight line. That should make sense intuitively, because then you have 
a well‑defined notion of the slope of the graph near that point. The 
derivative is a limit that basically expresses this idea.

So, a function is differentiable—meaning it has a derivative—if the 
graph near the point can be approximated by a tangent line. 

Another way to think of a derivative is that it is an expansion factor 
that results from a small change in x producing some change in f. The 
change in f, written ∆f, is approximately the derivative times the change 
in x, written ∆x.

.

This idea supplies you with a way to approximate a function f near a 
point a. Namely, if x is a point you want information about, you can 
replace ∆x with (x     −     a) and ∆f with ( f(x)     −     f (a)) to get 

.
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From this, you see that f(x) is approximately f(a)     +     df ⁄dx(x     −     a), 
an expression that shows you how to approximate the value of f(x) 
knowing the value of f(a) and the derivative df ⁄dx evaluated at a. The 
right side here is the equation of the tangent line to f at the point a.

.

 

You’ve just approximated a function by something that’s nice and easy 
to understand—a line. That’s one big moral of calculus: to approximate 
something crazy by something simpler.

This moral appears in multivariable calculus, too; you just have to 
decide what you mean by a nice function.

Multivariable Functions
In multivariable calculus, the functions you work with can have more 
than one input variable and more than one output variable. There 
could even be different numbers of input and output variables. 
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You might express such a function as a function f from ℝn to ℝm 
that takes n input variables (x1 through xn) to m output functions (g1 
through gm). Each of these gi’s are called component functions. Notice 
that the component functions are really functions of the input variables 
(see the green expressions), but to save space, they are usually omitted 
in writing.

Here’s an example of a multivariable function: Suppose you had, for 
each position (x, y) on a sheet of paper, 3 quantities of interest. That 
could be a function like this:

.

This function takes a 2‑dimensional vector to a 3‑dimensional vector, 
so f is a function from ℝ2 to ℝ3. You see that each component may 
depend on some or none of the input variables.

Another example of a multivariable function is 
one you’ve seen and studied in detail: a function 
that multiplies a vector by a matrix A.

Here, the function f(x) is Ax, where x is in ℝn and A is an m     ×     n matrix. 
Thus, Ax is a vector in ℝm. This function is a linear transformation 
from ℝn to ℝm. As you’ve seen throughout this course, all linear 
transformations can be expressed as matrix multiplication, and you can 
think of linear transformations as the “nicest” examples of multivariable 
functions. 

So, just like in calculus, when you try to approximate functions near 
a point by assuming they behave like lines, in multivariable calculus, 
you will assume that a function near a point behaves like a linear 
transformation! 
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Differentiability
Just like in single‑variable calculus, where a function is differentiable 
(meaning a derivative exists) when there is a good line that approximates 
it, for multivariable functions, a function will be differentiable when it 
has a good linear approximation. 

For example, if you are looking at a function 
f from ℝ2 to ℝ, then it takes in 2 real 
numbers x and y and spits out a single 
number f(x, y). That means the graph 
of this function can be represented by 
a surface over the xy‑plane. To say the 
function is differentiable at a point 
means that if you magnify the view 
of the graph near that point, it looks 
more and more like a plane—in 
other words, it is locally planar.

For functions from ℝn to ℝm, differentiability means the function is 
locally linear, like the following picture. Notice the function is not 
linear because it warps the face in a crazy fashion, but it would be 
locally linear if on a small scale it takes little parallelograms to little 
parallelograms. The square nose in this face seems to be doing this—it 
gets sent to a parallelogram.
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The Derivative
How should the derivative of a multivariable function from ℝn to ℝm 
be defined? What kind of object should it be?

Let’s take a cue from single‑variable calculus, where a little change in f 
is approximately the derivative df ⁄dx times a little change in x. 

.

Multivariable functions use a similar expression, except ∆f is going to 
be a change in the output, so it’s a vector in ℝm, and ∆x will be a small 
change in input, so it will be a vector in ℝn. So, you need the derivative, 
whatever it is, to turn the vector ∆x into the vector ∆f. 

The only thing that will take a vector in ℝn to a vector in ℝm in a linear 
way is a linear transformation. And it’s represented by a matrix—in this 
case, an m     ×     n matrix so that it acts on an n‑dimensional vector and 
produces an m‑dimensional vector. This matrix is playing the role that 
the derivative did in single‑variable calculus! 

So, the derivative is a matrix!

This matrix is called the derivative matrix of 
f, and it’s notated Df. 

So, if f goes from ℝn to ℝm, the derivative matrix must be an m     ×     n 
matrix, because the act of multiplying by Df needs to send ℝn to ℝm. 

So, both the original function and its derivative take ℝn to ℝm.
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If you replace ∆f with ( f(x)     −     f(a)) and ∆x with (x     −     a), then you can 
approximate f(x) knowing f(a) and the derivative matrix at a. 

Rewriting, you get this.

So, you see in this formula how a small change in moving from the 
point a to the point x produces a linear adjustment to the value f(a)—
just like in single‑variable calculus.

What are the entries of the derivative matrix? 

This turns out to be very 
simple: The entry in the ith 
row and jth column is just the 
partial derivative of fi with 
respect to xj. So, you know 
what the matrix is!

A partial derivative is just the usual derivative 
if you pretend all the other input variables are 
constant.
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Chain Rule
Once you realize the derivative of a multivariable function is a matrix, 
then many other things begin to fall into place as analogies of the 
single‑variable case. 

For example, the chain rule in calculus says that supposing f is a 
function of some variable x and x is a function of some variable t, 
how does f change if you change t? This is the rate of change of a 
composition of functions f(x(t)).

It turns out you just multiply the derivatives so that 
df ⁄dt is df ⁄dx times dx ⁄dt. 

For multivariable functions, something similar happens. Suppose you 
have a function f going from ℝn to ℝm and a function g going from ℝm 
to ℝk. Then, if x is a point in ℝn, how does g( f(x)) depend on x? 

The function g( f(x)) is the composition of g and f, and it’s notated 
(g ○ f ).
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Just like in the single‑variable case, you multiply the derivatives of g and 
f, which in this case are matrices. It should be plausible that you do this, 
because the determinants of these matrices describe the approximate 
scaling factor of these transformations and then the scaling factors 
should multiply if you first do f and then g. The dimensions of the 
multiplication make sense here, too, because the product of a k     ×     m 
matrix and an m     ×     n matrix is a k     ×     n matrix.

Notice how the language of matrices makes it very easy to describe the 
chain rule, and conceptually you have a much clearer picture about 
what’s going on, too!

READINGS
Colley, Vector Calculus. 

Lay, Lay, and McDonald, Linear Algebra and Its Applications, section 7.3.

Poole, Linear Algebra, section 5.5 (especially the sections on Quadratic 
Forms and Graphing Quadratic Equations). 
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Lecture 22

MULTILINEAR REGRESSION: 
LEAST SQUARES

G iven a bunch of data, an important thing you might want 
to do is figure out how the data are related. For example, 

suppose you have 2 variables X and Y and you want to know 
if there is some relationship between X and Y. Perhaps you 
think Y depends on X or that knowing X helps you predict Y. For 
example, do SAT scores depend on family income? To try to 
answer a question like this, you might gather some data.  
 
Suppose you have a collection of 100 
data points for X and Y, given by (xi, yi), 
i  = 1 to 100. If the data looks like the 
graph at right, you might infer that there 
is some kind of approximately linear 
relationship between X and Y, subject to 
a bit of error. 

 
But if you saw a picture like the one at left, 
you might be more inclined to think the 
relationship between Y and X is not linear—
maybe it’s quadratic.
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Linear Regression
If the relationship between X and Y 
appears to be linear, the next thing 
you might do is consider what the 
best‑fitting line is, because if you 
have such a line, then for any value 
of X, you can use the line to make 
a prediction about Y.

Given n data points (xi, yi), i going 
from 1 to n, what could be meant 
by the best-fitting line?

Suppose you have 4 data points and are interested in the best‑fitting 
line for these 4 points, sometimes called the regression line. The data 
are given in this table and plotted on the XY‑plane.

Now suppose the equation 
for the best‑fitting line is 
given by Y = mX     +     b. If the 
data fit the line perfectly, 
then you expect for each 
data point that yi = mxi     +     b.

But in reality, the points 
don’t lie perfectly on the 
line. Maybe they lie off the 
line a little. In that case, you 
expect yi = mxi     +     b     +     εi. 
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Here, εi represents the ith  error, 
also called the ith  residual. It 
says how far the data is from 
the line in the y direction. 

Each data point throws off a 
residual, and you therefore get 
a vector of residuals, one for 
every data point. 

How can the residuals be minimized? And what does that mean?

If you wrote the equations for all 4 data points simultaneously, you 
could put them in a matrix equation, as follows.

Notice this model assumes that the error, if any, 
lies only in the y direction, not in the x direction.
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Here, the vector Y consists of all the yi’s, and it is sometimes called the 
observation vector because it consists of the observed values of the y 
variable for given x values. 

The matrix X is the 4     ×     2 matrix whose rows 
are xi and 1. It is called the design matrix. 

The column vector (m, b) is called the 
parameter matrix and is written as 
β, which is what you will vary to try 
to minimize the residuals. Notice how 
changing β will change the best‑fitting line.

And then the vector of residuals is called the residual vector and is 
written as ε. This is the vector you want to minimize. 

There are many ways you could do this, but the most natural thing to 
do is to minimize its length as a vector. This is the same as minimizing 
the square of the vector’s length, which happens to be the dot product of 
the vector with itself, which in this case is the sum of the squares of all 
the individual residuals. It is for this reason that the best approximation 
is called the least squares approximation.

How can you minimize the length of the residual vector? 

First note from the equation Y = Xβ     +     ε that ε = Y     −     Xβ, so you want to 
minimize Y     −     Xβ.

One way to think about this minimization is that y is a point in ℝ4. 
The residual vector is the vector between y and the point Xβ. So, as β 
varies, you are trying to find β so that the point Xβ is closest to y. That 
particular β is , which is the estimate of the beta that accomplishes this 
minimization.

The design matrix 
may change 
depending on the 
model you choose.

 LECTURE 22
 Multilinear Regression: Least Squares

https://www.thegreatcourses.com/


259

The point X , as a matrix product, lies in the column space of X, in a 
2‑dimensional subspace of ℝ4 as long as there are at least 2 different 
x values. That’s a plane in ℝ4. So, you are searching for a point in 
that plane that is closest to the point y in ℝ4. It will give the linear 
combination of the columns that you seek, which will give you the 
estimated parameter vector .

You could use multivariable calculus 
to find this point, but there is an easier 
way. At such a point, the residual 
vector should be perpendicular to the 
subspace. And because the subspace is 
the column space of X, this means the 
residual vector should be perpendicular 
to all the columns of X.

One way to demand that the residual vector is perpendicular to all the 
columns of X is to demand that it be perpendicular to all the rows of X T. 
So, X T times the residual vector (Y     −     X ) should equal the zero vector.

Multiplying it out and moving one term to the other side, you get 

X TX  = X TY.

This system of equations is called the normal equations for β. This 
always has at least one solution for β, and you can see this geometrically 
because there is always a closest point on a subspace to a given point. 
The only question is whether there might be multiple solutions. 

It might depend on whether X T times X—sometimes called the Gram 
matrix—is invertible. If it is invertible, you can solve for β as follows.

 = (X TX )−1X TY.
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This is a nice theoretical solution, but in practice, it is usually easier to 
just solve the normal equations by Gaussian elimination rather than try 
to compute the inverse of X T times X when it exists. You would then 
use Gaussian elimination on the augmented matrix with the Gram 
matrix on one side and X TY on the other side, and this would enable 
you to solve for the vector .

Solving the normal equations can sometimes be unreliable because 
small errors in Gaussian elimination can lead to big errors in the 
solution. But if you have a QR‑factorization of X, you can compute β in 
a more numerically stable way.

Recall from lecture 19 that an m     ×     n matrix with linearly independent 
columns can be factored as Q times R, where Q is an m     ×     n matrix with 
orthonormal columns and R is an invertible upper‑triangular matrix.

Suppose X = QR. Then, take the normal equations and rewrite them, 
substituting QR for X. 

Eventually, you get Rβ = QTY, which 
can be solved for β using Gaussian 
elimination and is less likely to exhibit 
the kinds of problems the normal 
equations did. If you want, you can 
multiply by R−1 on the left to get

β = R−1QTY.
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This is a very simple formula to do least squares regression if you have a 
QR‑factorization of X (which exists when the columns of X are linearly 
independent). 

What does this mean for the example involving 4 points?

In this case, the observation vector 
Y is (2, 3, 5, 5).

The design matrix X is the 4     ×     2 
matrix with columns (1, 2, 3, 4) 
and (1, 1, 1, 1). You are searching 
for the parameter vector β with 
entries (m, b) that minimizes the 
length of the residual vector ε.

If you compute the Gram matrix X TX, you get the 2     ×     2 matrix whose 
entries are 30, 10, 10, and 4. And if you compute X TY, you get (43, 15).

 LECTURE 22
 Multilinear Regression: Least Squares

https://www.thegreatcourses.com/


262

If you take the inverse of X TX, you get a matrix whose entries are 0.2, 
−0.5, −0.5, 1.5. Multiply this by X TY, which is (43,15), to get , whose 
entries are m = 1.1 and b = 1. 

So, the best‑fitting line is Y = 1.1X     +     1. If 
you draw this picture, you see that indeed 
it seems to fit the data pretty well.

What would have happened to the matrix X TX if you had more data?

It would still be 2     ×     2, but the top left entry is just the dot product of 
the x values with itself, so it’s just the sum of the square of the x values. 
The bottom right corner would be the dot product of the all‑1s vector 
with itself, which is just n, the number of data points. The other 2 
entries are the dot product of the x values with the all‑1s vector, so you 
obtain the sum of the x values.
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Similarly, X TY is the dot product of the columns of the X matrix with 
the Y vector. So, you get as its entries the sum of xiyi and the sum of yi.

Thus, when trying to find best‑fitting lines, you only need to keep 
track of the following 5 quantities: n, Σxi, Σxi

2, Σyi, and Σxiyi.

This is an advantage because when you enter the data one point at a 
time, you actually don’t have to store all the data. You can just add to 
the running totals for each of these 5 quantities, and you have all the 
info you need to find the best‑fitting line. So, as new data comes in, 
you just keep track of these running totals.

Multiple Linear Regression
You can consider least square approximations for a collection of data 
for multiple variables where you think one variable depends on multiple 
other variables in a linear way. 

Suppose you have one variable, Y, the response variable, and multiple 
predictor variables: U, V, W. Suppose also that you make some large 
number of observations, n, and collect data (ui, vi, wi) and (yi) for 
i = 1 to n. 

Then, if there is something close to a linear relationship between yi and 
ui, vi, and wi, you expect that for some (as yet) unknown coefficients 
b, bu, bv, and bw, 
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And you expect similar equations for other data points, with error 
terms in each.

This can be rewritten as a matrix equation. 

You can appeal to the same normal equations to solve for β and solve 
the problem in a similar way as before to get normal equations and then 
find the following estimate for the beta vector.

 = (X TX )−1X TY.

Invertibility of the Gram Matrix
In the normal equations, if X is n     ×     p, note that the Gram matrix X TX is 
a square matrix of dimensions p     ×     p. Note that if X TX is not invertible, 
then β will not have a unique solution, which is a bad thing. So, it 
would be nice to know when the Gram matrix is invertible.

 LECTURE 22
 Multilinear Regression: Least Squares

https://www.thegreatcourses.com/


265

The columns of X come from various predictor variables in the data. 

So, for example, if it happened that the ui column and the vi column 
were identical, then you’d expect that bu and bv would have many 
possible solutions, so it makes sense that you couldn’t solve for β 
uniquely. 

THEOREM

X TX is invertible if and only if the columns of X are 
linearly independent.

Here’s a logically equivalent statement:

X TX is not invertible if and only if the columns of X 
are linearly dependent.
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How Good Is the Fit?
Are the observed values of Y close to the predicted values of Y ? 

To find the predicted values of Y means taking the estimated parameter 
vector  and applying it to the data. You believe now that the response 
variable Y equals X times some true β, but you only have an estimate for 
β called . So, your predicted values for the data is shown by X times . 

Let’s call this vector . If n is the number of observations, it lives in ℝn.

The vector  tells you for each data point what you should have gotten 
if your estimated parameter  were the true model. If you replace β by 
the solved normal equations, you find 

This equation is very interesting. You started off with your original data 
of observed predictor variables in the matrix X and the observed response 
vector Y. Based on minimizing the residuals, you got an estimate for β, 
called , and are now using that to return predicted values of Y in .

The expression P, the projection matrix, is a 
matrix that projects an observed vector Y to a 
point in the column space of X, where the 
predicted values occur if the model is 
really perfectly linear. So, it takes 
Y to , just as expected. You are 
using your original data X to turn 
your original response data, the vector 
Y, into their predicted values.
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The residual vector is now the difference between the observed values of 
Y and the predicted values of . This residual vector is usually called an 
estimated residual vector because you have only estimated parameters 
for the actual linear model, which is unknown. So, the residual vector 
becomes .

If the data were a perfect fit, you’d expect  to be zero. Otherwise, there 
might be some residuals, so  is a nonzero vector. You are looking for 
an estimate of how large the individual residuals could be, and the best 
guess you have for that are the observed data. If you treat components 
of the residual vector like it were a sample, then an estimate for the 
standard deviation of the residual is given by using the sample standard 
deviation formula on the components of the residual vector. 

That’s computed by taking s2 equals the dot product of  with itself 
divided by the number of degrees of freedom, which is (n     −     p). Then, 
s—called the standard error of the regression—is the estimator for 
the standard deviation of the residuals. 

Its units are the same units as the Y variable, so it’s a measure of how 
close you can expect the predicted values to be to the actual values. So, 
you expect that most of the observed values for Y lie within 2 standard 
errors of the predicted values.

This gives you a sense of how good the fit is!
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Polynomial Regression
What if the data is not linear? Suppose you want to fit data with a 
quadratic function or a cubic function. 

Surprisingly, you can still use linear algebra! The only thing that 
changes is the design matrix. 

Suppose you have variables X and Y, you think Y depends in a cubic 
way on X, and you want a best‑fitting cubic. Then, you assume 

and wish to solve for the coefficients a, b, c, and d. 

The key here is to realize that Y depends in a linear way on X3, X2, X, 
and 1. 

You can use multiple linear regression to do cubic regression if you take 
the data (xi, yi) and make the following substitutions.

Then, you are in exactly the case 
you were in before! You can use the 
normal equations to solve for the 
parameter vector , which in this 
case is [d, c, b, a].  

The order of these 
coefficients follows the 
order of the columns 
of the design matrix.

 LECTURE 22
 Multilinear Regression: Least Squares

https://www.thegreatcourses.com/


269

You can do polynomial regression of any type by using the appropriate 
number of variables in multiple linear regression!

READINGS
Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 6.5 

and 6.6.

Margalit and Rabinoff, Interactive Linear Algebra, section 7.5 (https://
textbooks.math.gatech.edu/ila/least‑squares.html).

Poole, Linear Algebra, sections 7.2 and 7.3 (and any necessary background 
from section 7.1).
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Lecture 23

SINGULAR VALUE 
DECOMPOSITION: SO COOL

O ne of the promises, but also the perils, of the digital 
age we live in is that so much data can be collected 

about our preferences based on the choices we make online. 
For example, each time you buy something from Amazon or 
choose a movie on Netflix, you are telling these companies 
something about your preferences. And these companies can 
use this information to suggest something else that you may 
want to buy or another movie that you may want to watch. 
These are called recommender systems. This is just one of the 
many important—and cool—applications that the singular 
value decomposition has in data analysis. 

The Singular Value Decomposition
Recall that if a square matrix is diagonalizable, that means it can 
be factored as A = PDP −1, where P is an invertible matrix and D is a 
diagonal matrix. You can think of multiplication by P as performing 
a change of basis that takes a linear combination of the standard basis 
into a linear combination of the columns of P. 
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So, if A factors as the product of P, D, and P −1, then the transformation 
of multiplication by A can be done in 3 steps. 
1 Multiply by P −1, which takes the basis of columns of P and transforms 

it into the standard bases along the axes. 

2 Multiply by D, which scales the standard basis vectors along the axes by 
the corresponding eigenvalues.

3 Multiply by P, which turns the standard basis vectors back into the 
basis given by the columns of P.

This sequence of 3 operations will do the same thing as taking the 
basis of columns of P and stretching them by factors that correspond 
to eigenvalues. 

So, to be diagonalizable means that the transformation just looks 
like scaling in certain special directions. The scaling factors are the 
eigenvalues and the special directions are the eigenvectors, and these 
form the columns of P.

A special case of this is when the matrix A is symmetric. Real symmetric 
matrices are diagonalizable, and, in fact, the special directions 
can be taken to be an orthonormal set. So, then the columns of P 
are orthonormal, and the matrix is orthogonal. Then, P −1 is just PT, 
revealing that any symmetric matrix A can be factored as A = PDPT, 
where P is an orthogonal matrix and D is a diagonal matrix. 

The singular value decomposition offers a way to 
compress data, such as a photo, without losing 
too much information.
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But not every matrix is symmetric, much less diagonalizable. So, it 
may be surprising to know that there is a standard factorization of any 
matrix A—even nonsquare ones—as a product of an orthogonal matrix, 
a diagonal matrix, and another orthogonal matrix. The catch is that the 
2 orthogonal matrices are not necessarily inverses of one another.

Such a factorization is called the singular value decomposition (SVD), 
and it says that any m     ×     n matrix A can be factored as UΣV T, where Σ 
is an m     ×     n diagonal matrix and U and V are orthogonal matrices of 
size m     ×     m and n     ×     n, respectively. The columns of U live in ℝm and 
are called the left singular vectors, and the columns of V live in ℝn 
and are called the right singular vectors. The diagonal entries of Σ are 
called the singular values of A and are ordered by size and denoted σ1, 
σ2, etc. The singular values are always nonnegative.

Remember that Σ has the same dimension as the original matrix A, 
so it’s not necessarily square. It is a diagonal matrix in that the only 
nonzero entries occur where the row and column numbers are the same. 
So, a diagonal matrix could look like any of the following matrices.
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The SVD also has some other properties 
that are quite cool. For example, if the 
matrix A has rank r, then the first r columns 
of U will be a basis for the column space 
of A. And the first r columns of V (which 
are rows of V T) will be a basis for the row 
space of A. And the last (n     −     r) columns of 
V (which are the last n     −     r rows of V T) will 
be a basis for the null‑space of A!

The Geometric Meaning of the SVD
The geometric meaning of the SVD can be seen by looking at how a 
unit sphere (a sphere of radius 1) in ℝn gets transformed by the matrix 
A. Amazingly, a unit sphere always gets sent to some kind of hollow or 
filled ellipsoid in ℝm. It will be a filled‑in or collapsed ellipsoid if the 
matrix rank r is strictly less than the dimension m. 

For any ellipsoid, the principal axes of the ellipsoid are a set of 
orthogonal axes along which the ellipsoid gets stretched. To find the 
principal axes, look at the largest diameter of the ellipsoid—called 
the major axis—and put that in the set. Then, look at all points in 
the ellipsoid perpendicular to this axis; it is another ellipsoid (of one 
lower dimension). Find its major 
axis, and put that in the set. 
Then, look at all vectors 
perpendicular to the first 
2 axes and find the next‑
largest axis. Continue in 
this fashion to obtain a 
collection of axes that are the 
principal axes. 

The rank of a 
matrix A is the 
dimension of the 
column space, 
the subspace 
that’s the image 
of the linear 
transformation.
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The so‑called singular values of A are 1 ⁄2 the lengths of the principal 
axes. You can also think of them as the length of the semiaxes of the 
ellipsoid, which are usually ordered from largest to smallest and labeled 
σ1, σ2, etc.

The matrix Σ in the SVD is an m     ×     n matrix that is all 
zeros except for r nonzero entries along the diagonal 
of the matrix, where r is the rank of the matrix A. You 
can think of it as an m     ×     n matrix with an r     ×     r diagonal 
block D and every other block filled with zeros. For 
this reason, Σ is called a diagonal matrix, even if it is not square. The 
diagonal elements of Σ are the singular values, and there will be r 
nonzero singular values if r is the rank of A.

The columns of the matrix U represent the directions of the principal 
axes in order from largest to smallest axes. And the columns of V are 
the unit vectors in ℝn that map to the directions of the principal axes 
of the ellipsoid.

Look at this pictorial example of a linear transformation from ℝ2 to ℝ2 
to get a feeling for what happens in general for linear transformations 
from ℝn to ℝm.
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Suppose that under multiplication by A, the unit circle gets transformed 
to some tilted ellipse. The vectors along the principal axes of this ellipse, 
scaled to length 1, are the left singular vectors. Their lengths are the 
singular values. For example, the vector along the semimajor axis of 
the ellipse will be σ1, the largest singular value, times u1, the first left 
singular vector. Similarly, the vector along the semiminor axis of this 
ellipse will be σ2 times the unit vector u2.

These vectors along the axes of the ellipse, colored in green, are images 
of certain unit vectors in the domain, colored in blue. Those are the 
corresponding right singular vectors, which form the columns of V.

In higher dimensions, the left singular vectors would align with the 
principal axes of the ellipsoid from largest to smallest. If the linear 
transformation is doing some collapsing or if its image doesn’t span all 
of ℝm, then some of the singular values will be zero. In such cases, there 
may not be unique choices for the singular vectors. But the singular 
values are uniquely defined.

Now, let’s see how the SVD factorization works. You can visualize 
the factorization by enlarging the previous diagram to include 2 more 
pictures below the first 2.

It’s funny that the left singular vectors appear in the right 
picture and the right singular vectors appear in the left picture. 
But that’s because the vectors are named after their location in 
the factorization, because in the SVD, U is on the left and V is 
on the right.
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To say that the m     ×     n matrix A factors into 3 parts means that, as a 
linear transformation acting on a vector in ℝn and producing a vector 
in ℝm, you can get exactly the same result by doing this 3‑step process: 
first multiplying the vector by V T on the left, then by Σ on the left, and 
then by U on the left.

This is indicated in the diagram by an alternate path that goes from 
the top left picture down to the bottom left picture, then across to the 
bottom right picture, and then up to the top right picture.

Look at the first map going down, which represents multiplication by V T.

Recall that the matrix V represents the orthogonal transformation you 
get by rotating the standard basis vectors to the blue vectors in the 
first picture, which are the columns of V. Then, V T (which is V−1 for 
orthogonal matrices) will rotate the blue vectors in the first picture into 
the standard basis in the bottom left picture.
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Then, multiplying by the diagonal matrix Σ scales each axis direction 
by the corresponding singular value, so that turns the unit circle in 
the bottom left picture into an axis‑aligned ellipse in the bottom 
right picture. 

Next, another rotation that takes the standard basis to lie along the 
principal axes of the ellipse is needed, and the matrix U does that. 
So, that’s the map going from the bottom right picture to the top 
right picture.

So, in the diagram, you see that performing the action of A on the top 
side of this diagram is the same as composing the 3 transformations 
along the sides and bottom. 

Computing the SVD
The key to computing the SVD is to look at ATA, because in the SVD, 
you are searching for an orthogonal, a diagonal, and an orthogonal 
matrix, kind of like what is done for symmetric matrices.

Though A is not symmetric, you can symmetrize it by multiplying it on 
the left by its transpose. 

Notice that ATA is symmetric, because its transpose is just itself. 
And it is a real matrix. So, you can expect that it has an orthogonal 
diagonalization.

So, let’s assume that A has an SVD and see what that would imply 
about the factors.
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If A = UΣV T, then you can compute 
ATA, which involves first taking 
the transpose of UΣV T and then 
multiplying by UΣV T.

You get VΣ TU TUΣV T. 

But U is orthogonal, so the middle terms (U TU) is just the identity. So, 
the product becomes VΣTΣV T.

You’ve just shown that ATA is equal to VΣ TΣV T. This is very interesting, 
because V T is supposed to be orthogonal.

And Σ TΣ is a diagonal matrix, because you can check that it is square, 
and it is filled with dot products of the columns of Σ, and the columns 
of Σ were orthogonal. 

So, V(Σ TΣ)V T is really an orthogonal diagonalization of ATA if an SVD 
exists!

This tells you what you should expect for an SVD. 

 w Eigenvalues of ATA are the diagonal elements of Σ TΣ, but those are the 
square of the singular values σi, so the singular values of A should be the 
square root of the eigenvalues of ATA.

 w V should be the matrix whose columns are the eigenvectors of ATA.

 w The image of the columns of V under the transformation A should be the 
columns of U scaled by the singular value so that they lie along the image 
ellipsoid, which means the columns of U should be (1 ⁄σi) times (Avi).

Σ is an m     ×     n matrix, the same dimensions as A, filled with zeros except 
possibly for diagonal elements, which are the singular values. 

The singular values are found by taking the square root of the 
eigenvalues of ATA. (There are n such eigenvalues, because ATA is an 
n     ×     n matrix.)
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The matrix V has columns vi, which will be eigenvectors of ATA 
normalized to make them length 1. (You know that the vi are 
orthogonal because they were the eigenvectors of an orthogonally 
diagonalizable matrix.)

The matrix U has columns ui, which are 1 ⁄σi times A times vi for the 
nonzero values of σi. The other columns can be completed to form an 
orthonormal set.

READINGS
Brand, “Fast Online SVD Revisions for Lightweight Recommender 

Systems.”

Chartier, When Life Is Linear, chap. 11. 

Kun, “Singular Value Decomposition Part 1,” https://jeremykun.
com/2016/04/18/singular‑value‑decomposition‑part‑1‑perspectives‑on‑
linear‑algebra/. 

Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 7.4 
and 7.5.

Poole, Linear Algebra, section 7.4 and the Vignette on Digital Image 
Compression.

Roughgarden and Valiant, “CS168,” http://theory.stanford.edu/~tim/s17/l/
l9.pdf.

THEOREMS

 wThe eigenvalues of ATA must be ≥ 0.

 wAvi•Avi  = 0 unless i  = .
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Lecture 24

GENERAL VECTOR SPACES: 
MORE TO EXPLORE

T his lecture focuses on the ways that the ideas of linear 
algebra can apply more generally than vectors in 

ℝn. It turns out that the ideas are very powerful for many 
other kinds of objects, as well as the transformations 
between them. 

Functions as Vectors
Let’s explore the space of functions from ℝ to ℝ and see in what ways 
functions in that space behave like vectors. 

Vectors can be added. And 
functions can be added in 
a natural way: If you want 
the sum of 2 functions f 
and g, you can define a new 
function (call it f     +     g) at a 
point x by just adding the 2 
functions point by point, as 
f(x)     +     g(x). 
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Just like the addition of real numbers or real vectors, the order of addition 
of functions doesn’t matter: f     +     g is the same function as g     +     f. And an 
associative property for functions holds as well: ( f     +     g)     +     h = f     +     (g     +     h).

Real vectors can be scaled by a 
real number. Similarly, scalar 
multiplication of functions 
makes sense also. And scalar 
multiplication of functions 
obeys the laws you expect: 3 
times 4 times a function f is 
12 times f, and 3 times ( f     +     g) 
is the sum of 3f and 3g.

For real vectors, there’s a special vector called the zero vector, which, 
if you add to any vector, leaves that vector unchanged. A function that 
behaves like that is the zero function, which is identically 0 everywhere: 
z(x) = 0 for all x. Then, f     +     z = f for any function f.

And real vectors have additive inverses, meaning for 
each vector v there’s a vector −v that you can add to 
v to get the zero vector. Functions also have additive 
inverses: For a given function f, you can define −f to be 
the function that at x takes the value −f(x). It is the same 
function you get by scalar multiplication of f(x) by −1.

So, the 2 operations that define a linear combination 
are also possible with functions. So, you can talk about 
a linear combination of functions. This is precisely the 
kind of thing that was important in vector spaces.
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General Vector Spaces
The general definition of a vector space collects together important 
properties. The idea is that many of the best features of looking at 
vectors in ℝn are captured in these properties, and many of the 
theorems for vectors in ℝn will carry over for general vector spaces if 
they just use these properties.

A general vector space will be a set with 2 operations: addition and 
scalar multiplication. Things in the set will be called vectors. The 
scalars will be real numbers—these are the things that will be used to 
scale the vectors in scalar multiplication. 

The operations of addition and scalar multiplication should satisfy 10 
axioms. The first 5 deal with addition while the last 5 deal with scalar 
multiplication and how it should play nicely with addition.

AXIOMS
1 u     +     v is in V (V closed under addition)
2 u     +     v = v     +     u (addition is commutative)
3  (u     +     v)     +     w = u     +     (v     +     w) (addition is associative)
4 There’s a zero vector 0 such that u     +     0 = u
5  Every vector u has an additive inverse –u such that 

u     +     (–u) = 0
6 cu is in V (V closed under scalar multiplication)
7 c(u     +     v) = cu     +     cv
8 (c     +     d)u = cu     +     du 
9 c(du) = (cd)u
10 1u = u
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Fibonacci-Type Sequences 
as a Vector Space
One example of a vector space is ℝn. Every point is a collection of 
n numbers. You’ve been studying this vector space throughout this 
course, and you’ve seen that it satisfies all these properties.

Another example of a vector space is Fibonacci‑type sequences. The 
Fibonacci sequence  is a sequence of numbers that begins with a zero and 
a 1 and thereafter every number is the sum of the 2 numbers before it. 

0, 1, 1, 2, 3, 5, 8, 13, …

There is a general formula for the nth term of the Fibonacci sequence 
without having to calculate all previous terms. If the Fibonacci sequence 
is fn and you let the initial term be f0, so that f0 = 0 and f1 = 1, then fn is 
given by the following formula, known as Binet’s formula.

This is a remarkable formula, because the expressions on the right side 
involve strange combinations of the square root of 5, so it is not obvious 
that this will always be an integer! This formula can be found using 
vector space ideas.

If you keep the same rule as the Fibonacci sequence but start with 
different numbers, you get a Fibonacci‑type sequence. 
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So, if you start with 1 and 0, you will get this sequence, called the 
co-Fibonacci sequence, which looks like the Fibonacci sequence with 
a 1 inserted in front.

1, 0, 1, 1, 2, 3, 5, 8, …

If you start with 2 and 1, you get a Fibonacci‑type sequence called a 
Lucas sequence.

2, 1, 3, 4, 7, 11, 18, 29 …

The sum of 2 Fibonacci‑type sequences—term by term—is still a 
Fibonacci‑type sequence. So, if you add the Fibonacci sequence to the 
Lucas sequence term by term, you get

2, 2, 4, 6, 10, 16, 26, 42, ... ,

which is also a Fibonacci‑type sequence. 

It’s also true that if you multiply every term of a Fibonacci‑type 
sequence by the same scalar, you still get a Fibonacci‑type sequence. All 
the other axioms of a vector space hold as well. So, the set of Fibonacci‑
type sequences forms a vector space!

The first thing to notice about this vector space is that a sequence is 
completely determined by its first 2 elements. So, every point (x, y) in 
ℝ2 corresponds with a sequence that begins x, y, x     +     y, … .

This means that Fibonacci‑type sequences have the same vector space 
structure as the 2‑dimensional plane. So, because (0, 1) and (1, 0) are 
basis elements for ℝ2, you can rewrite every Fibonacci‑type sequence 
as a linear combination of the Fibonacci sequence—which begins with 
0, 1—and the co‑Fibonacci sequence, which begins with 1, 0.
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So, the Fibonacci sequence and the co‑Fibonacci sequence form a basis 
for all Fibonacci‑type sequences. But that’s not the only basis. If you 
hunted for a basis where the nth terms of each basis sequence were easy 
to calculate, then the nth term of any linear combination would be easy 
to calculate as well. 

Suppose you had a sequence x0, x1, x2, x3, x4, x5, x6, x7, … .

One suggestion would be to hunt for sequences that are geometric, so 
every term is r times the previous term: 

1, r, r2, r3, r4, r5, r6, r7, … .

The nth term xn would be rn. This would be a Fibonacci‑type sequence 
as long as each term were the sum of the prior 2 terms. So, r2 = r     +     1.

This is easy to solve, and it has 2 solutions: 

Each of these corresponds to a sequence, and these 2 geometric 
sequences form a basis for the set of all Fibonacci‑type sequences. So, 
you can try to express the original Fibonacci sequence in terms of these 
2 geometric sequences by seeing what condition has to hold for the first 
2 terms of each sequence. So, you just need to solve how to write (0, 1) 
in terms of (1, r1) and (1, r2). Set (0, 1) equal to the following and solve.

(0, 1) = a(1, r1)     +     b(1, r2).
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If you do this, you will know that the nth Fibonacci term will be 
described by

.
 

If you solve for a and b, you find that

.

This yields Binet’s formula!

Space of Functions as Vector Spaces
You’ve already seen that functions behave like vectors so that the space 
ℱ of all functions from ℝ to ℝ is a vector space. You might check that 
it satisfies all 10 axioms for a vector space. But there are so many kinds 
of functions that you might want to restrict your attention to one, and 
each of these, in a very natural sense, forms a subspace of this vector 
space of all functions from ℝ to ℝ.

Recall that a subspace of ℝn is a set of vectors that remains closed 
under addition and scalar multiplication. A subspace of functions can 
be described in the same way—as a subset of functions that is a vector 
space. But as long as the subset is closed under addition and scalar 

 LECTURE 24
 General Vector Spaces: More to Explore

https://www.thegreatcourses.com/


287

multiplication, it will inherit all the other vector space properties from 
the larger vector space it is part of. So, a subspace is just a subset of a 
vector space that is closed under addition and scalar multiplication.

For example, there was nothing in the definition that said that 
functions from ℝ to ℝ have to be continuous. They don’t have to be. 
But if you restrict your attention to the set of continuous functions, 
called 𝒞, it is true that the sum of 2 continuous functions is continuous, 
and the scalar multiple of a continuous function is continuous. So, the 
set of continuous functions is a vector space.

𝒞 = {continuous functions ℝ → ℝ}.

Similarly, an even smaller subspace is the subspace 𝒟 of differentiable 
functions. Again, you can take a linear combination of differentiable 
functions, and it will still be differentiable. Moreover, there is a natural 
linear transformation on 𝒟: the differential operator. With operators, 
you might be interested in functions that behave like eigenvectors—
called eigenfunctions.

𝒟 = {differentiable functions ℝ → ℝ}.

One question you might ask about any vector space is this: Does it 
have a basis? This means what it did before: a linearly independent set 
that spans the whole space. If it does, you might want to know how to 
express any vector in the space in terms of a convenient basis. (You’ve 
already seen this lesson with the Fibonacci‑type sequences.) As it turns 
out, every vector space does, in fact, have a basis. And for a given vector 
space, every basis must have the same size, so you can talk about the 
dimension of the vector space.
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You could look at an even smaller subspace—the set of polynomials—
again noting the sum of polynomials is a polynomial and the scalar 
multiple of a polynomial is a polynomial. You can check that the 
monomials 1, x, x2, x3, … are linearly independent and span the set 
of all polynomials, so they are a basis! This means that the space of 
polynomials is infinite‑dimensional. 

𝒫 = {polynomial functions}.

Polynomials that have degree no more 
than n form a subspace of this 
space of polynomials with 
dimension (n     +     1).

Schematically, you might 
represent the relationship 
between all these subspaces 
as in the drawing shown at 
right, which is only meant to 
showcase inclusion, rather than 
the linear aspects of these spaces.

Solutions of Differential Equations
When solving differential equations, linear algebra can be very powerful. 

A differential equation is an equation that expresses a condition that 
the derivative of a function must satisfy. There is a special kind of 
differential equation called a linear differential equation, in which 
the space of solutions turns out to be a vector space! 

 LECTURE 24
 General Vector Spaces: More to Explore

https://www.thegreatcourses.com/


289

For example, think of a spring with a mass that is oscillating, but 
the oscillation is damped by friction. The function f(t) describes the 
position of the mass at time t. This is a damped harmonic oscillator, and 
the governing equation for this is the following second‑order differential 
equation (meaning it involves the second derivatives of a function).

The first thing to notice is that if f and g are solutions, then ( f     +     g) also 
satisfies the same differential equation. Similarly, a constant times f will 
also satisfy the same differential equation. So, the space of solutions is 
a subspace of the space of differentiable functions!

The theory of existence and uniqueness of second‑order differential 
equations says that this differential equation has a unique solution once 
the function value and its derivative are specified at time 0. 

So, if you have a set of functions where

f(0) = 1 g(0) = 0 h(0) = a 
f ′(0) = 1 g′(0) = 0 h′(0) = b,

consider the function af     +     bg. 

You can check that this function has the same initial conditions as h. 
So, by the existence and uniqueness theorem, that means it must be h. 
So, every solution to this differential equation can be expressed in terms 
of f and g. This also means the subspace of solutions is 2‑dimensional.

This doesn’t tell you what the solutions are, but if the subspace is 
2‑dimensional, this means if you can find 2 linearly independent 
solutions, you will have a different basis, and all solutions will be 
expressible in terms of that basis!
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So, the key idea is to look for a solution that will be of the form 

f(t) = eλt

because this fits with the intuition that an oscillator that is damped 
heavily will have a displacement that exponentially decays.

When you differentiate this function once, you get λet, and when you 
differentiate twice, you get λ2eλt. Plugging that into the differential 
equation, you get the following.

When factored, this shows that mλ2     +     cλ     +     k must be zero. This is a 
quadratic equation with 2 roots! So, as long as the roots λ1 and λ2 are 
distinct, you will get 2 linearly independent solutions to the differential 
equation: eλ1t and eλ2t. 

Because you know that the subspace of solutions is 2‑dimensional, this 
means that you now know all solutions to the differential equation: All 
solutions are linear combinations of these 2 solutions. In other words, 
all solutions are of the form 

The constants C1 and C2 can be found by using the initial conditions.
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Ideas of Fourier Analysis
The idea of a good basis is a motivation for the idea of Fourier analysis. 
In signal processing, we are interested in taking a signal, some function 
of time—call it f(t)—and breaking it down into its component 
frequencies. In effect, we are asking if an arbitrary function f(t) can be 
expressed as a sum of sines and cosines. 

In general, it turns out that any continuous function on a closed 
interval can be expressed as a sum of sine and cosines if you allow 
infinite sums! In other words, sines and cosines form a very nice kind 
of “basis” with which you can write other functions. (“Basis” here is not 
quite the same as the notion of basis that was defined for a vector space, 
because you are allowing infinite sums here, but in most other respects, 
the ideas are the same.)

Moreover, it turns out that if you are looking at spaces of continuous 
functions on an interval, you can define something like a dot product 
that makes sense, called the inner product. The inner product of 
functions f and g is the integral of f(x)g(x)dx, which is an integral of 
a product—so it looks just like the dot product, except the sum is 
replaced by an integral. 

This inner product has similar properties to the dot product. Once you 
have a dot product, then you know what it means for one function to 
be orthogonal to another function. And then you see that the sines and 
cosines form an orthonormal basis for this vector space.
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The ideas of Fourier analysis are powerful for many reasons. For 
example, it allows you to break a function into basis functions that are 
simpler. If you take advanced courses in differential equations, you’ll 
see that writing a function this way can help you solve certain partial 
differential equations, such as the heat equation, which is what Joseph 
Fourier is well known for.

And if you have a function expressed as an infinite sum, then if 
you ignore the low‑amplitude terms, you will have an efficient 
approximation to a function. In signal processing, low‑amplitude terms 
can arise from noise in the signal, or background noise. So, taking only 
the largest terms can make the sound clearer. In this case, the vectors 
are the functions, and an arbitrary infinite sum is being approximated 
by a finite linear combination of sines and cosines. Nevertheless, this 
powerful idea is in action once again.

The idea of linearity, and linear combinations, is such a powerful idea. 
You might not have expected to see it in the study of functions that 
themselves could be very wild and nonlinear. But the ways they are 
being combined are linear. 

READING
Poole, Linear Algebra, chaps. 4 (especially the Introductory Example) and 6 

(especially 6.0 and 6.1 and the Exploration after section 6.2).
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This course has only scratched the surface 
of many great ideas of linear algebra. If you 
want to learn more, you can take almost any 
further advanced courses in mathematics, 
because linear algebra shows up in some of 
the most unexpected places.
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QUIZ FOR LECTURES 19–24
1 Given an n     ×     n matrix Q, show that if (Qx) • (Qy) = x • y for all vectors x 

and y in ℝn (in other words, Q preserves dot products), then Q must be an 
orthogonal matrix. [LECTURE 19]

2 If Q1 and Q2 are both orthogonal matrices, then show that Q1Q2 is 
orthogonal, too. [LECTURE 19]

3 If the probability of going from state i to state j in a Markov chain is the 
same as the probability of going in the reverse direction, what must be true 
about the transition matrix of the Markov chain? [LECTURE 20]

4 Give an example of a 2     ×     2 transition matrix (whose rows sum to 1) that is 
not positive, but its square is positive. (Hint: Think about a Markov chain 
with 2 states where not every state is reachable in 1 step but is reachable in 
2 steps.) [LECTURE 20]

5 What is the derivative matrix of the function T from ℝ2 to ℝ2 that leaves 
all points fixed: T(x, y) = (x, y)? [LECTURE 21]

6 Let f(x, y) = (y, xy     +     y), g(x, y) = (y, x     +     y), and h(x, y) = (xy, y). Observe that 
f(x, y) = g(h(x, y)) and verify that their derivative matrices obey the chain 
rule: [Df  ] = [Dg][Dh]. [LECTURE 21]

7 Use software to compute the QR‑factorization of X; then, use this to 
calculate  using the method described in the lecture. Check this  
against the one found in the lecture. [LECTURE 22]

8 What meaning would it have for the lecture’s example of a 4‑data‑point 
linear regression if the columns of X were not linearly independent? 
[LECTURE 22]
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9 Find the singular values of the 2     ×     2 matrix A (at right) 
by computing the eigenvalues of the Gram matrix ATA. 
[LECTURE 23]

10 Find the SVD of the 2     ×     2 matrix A (at right). [LECTURE 23]

11 Check that the set of n     ×     n matrices form a vector space under matrix 
addition and scalar multiplication. [LECTURE 24]

12 The inner product of 2 continuous functions f and g over an interval 
[0, 2π] is defined as

<f, g> = ∫ f(x) g(x) dx,

 where the integration runs over x going from 0 to 2π. Verify that sin (x), 
sin (2x), and cos (x) are mutually orthogonal using this inner product. 
[LECTURE 24]

−4 6
3 8

Solutions can 
be found on 
page 303.
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SOLUTIONS

Lectures 1–6
1 The 4 themes are as follows:

a Linearity is a fundamental idea in mathematics—and in the 
world—and it appears everywhere.

b Nonlinear things are approximated by linear things.

c Linear algebra reveals hidden structures that are beautiful and 
useful.

d Linear algebra’s power comes from the interplay between geometry 
and algebra.

2 Reflection is a linear transformation because it does satisfy the 2 linear 
properties.

3 If you draw these on graph paper, you should be drawing 2 lines with a set 
of equally spaced tick marks on one line and another set of equally spaced 
tick marks on the other line.

4 The points that are integer linear combinations (au     +     bv) will form a grid 
of points in the plane. If you estimate the linear combination that produces 
(4, 0), you should see that it is 8 ⁄3u     +     4 ⁄3v. The set of all linear combinations 
does cover the entire plane.

5 The dot product u • v = 0. The cross product u     ×     v = (−6, −5, 3). Because 
the dot product is 0, the vectors u and v are perpendicular. Also, the cross 
product u     ×     v has the property that it is perpendicular to u and v. So, all 3 
vectors—u, v, and u     ×     v—are mutually orthogonal.

6 To find the equation of a plane through 3 points a, b, and c (as vectors in 
ℝ3) first find the vectors (b     −     a) and (c     −     a), which must lie parallel to the 
plane. You can use these vectors and the point a to express the plane in 
parametric form. 
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 Alternatively, you can take the cross product (b     −     a)     ×     (c     −     a), which will 
be normal to the plane and, together with the point a, can be used to find 
the equation of the plane in normal form. These procedures will fail if the 
3 points you start with are collinear.

7 The product is  
6 7 1
5 7 2
4 7 3

 . 

8 The product is  
6 5 4
7 7 7
1 2 3

 . 

9 There are many ways to see why the translation T is not linear. Perhaps the 
easiest is to note that T(0) does not equal the zero vector 0, which must 
be true for any linear transformation. But you can also check that T does 
satisfy either of the 2 linearity properties.

10 To find the matrix [R] representing to the linear transformation R, you just 
note where the standard basis vectors go and put those in the columns of 
the matrix in the same order. Because (1, 0) goes to (0, 1) under reflection, 
(0, 1) goes in the first column of [R]. And because (0, 1) goes to (1, 0), the 
second column of [R] is (1, 0). 

 So, [R] = 0 1
1 0  .

11 Each equation in the original system has a solution set that is a plane in 
ℝ3 because it is the equation of a plane in normal form. If you modify the 
second equation by subtracting from it 3 times the first equation, you’ll get 
this system, which has the same set of solutions:

x     +     y     −     z = 1 
−y     +     3z = −1.

 Then, if you modify the first equation by adding the second equation to it, 
you get:

x     +     2z = 0 
−y     +     3z = −1.
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 Now multiply the second equation by −1 to get: 

x     +     2z = 0 
y     −     3z = 1.

 To obtain a particular solution, fix z to be any number you want, and use 
the above equations to find x and y. If you set z = 1 in the above equations, 
you find x = −2 and y = 4, so (−2, 4, 1) is a solution of this system, and you 
can check that it is a solution of the original system, too.

12 Yes. Think of 3 vertical planes in ℝ3 where any 2 of them intersect in a 
line, but these lines of intersection are all parallel and distinct. Then there 
is no point in ℝ3 that satisfies all 3 equations simultaneously. For example, 
x = 0, y = 0, and x     +     y = 1 are all planes in ℝ3 that pairwise have solutions, 
but the 3 equations together have no solutions.

Lectures 7–12
1 No, the system must always be consistent, because x = 0 will always be a 

solution. Moreover, when row‑reducing the augmented matrix [A|0], the 
zeros on the right side will remain zero under any row operations, so you 
will never get an inconsistency.

2 Given a 4     ×     3 matrix A, in order for Ax = b to have a unique solution, 
RREF(A) must be a 4     ×     3 matrix where the first 3 rows look like the 3     ×     3 
identity matrix and the fourth row is a row of zeros.

Mastering Linear Algebra
SOLUTIONS

Click here to go back to the quiz.

https://www.thegreatcourses.com/


299

3 The given vectors are linearly dependent. This is because if you put those 
vectors as columns of a matrix A in the given order and solve Ax = 0, you 
will find x = (2, −1, −1). So, there is a nontrivial combination of the vectors 
that produces the zero vector: 

2(1, 2, 3)     −     1(1, 1, 2)     −     1(1, 3, 4) = (0, 0, 0).

4 If 3 given vectors are not linearly independent, then one of them is a linear 
combination of the other 2; thus, that vector lies in the span of the other 2. 
So, the span of all 3 vectors can be at most a plane (and might be smaller), 
so the 3 vectors cannot span all of ℝ3 in this instance.

5 The set S is a subspace because: It contains the zero vector (which has 
second coordinate zero); any 2 vectors with second coordinate zero, when 
summed, still has second coordinate zero; and if you multiply a vector with 
second coordinate zero, you still get second coordinate zero.

6 The set D of ingredient demands is a subspace because: The ingredient 
demands for an empty basket is the zero vector; if u is a vector of ingredient 
demands for one basket and v is a vector of ingredient demands for another 
basket, then u     +     v will be a vector of ingredient demands for the combined 
baskets; and if c is a scalar, then cu is the ingredient demand for the basket 
that has c times as many things as the basket that u represents.

7 Because the leading entries of RREF(A) are in columns 1, 2, and 4, this 
means that columns 1, 2, and 4 of the original matrix A will form a basis 
for the column space of A. A basis for the row space of A is the nonzero 
rows of RREF(A).

8 Solving Ax = 0 can be done by row‑reducing the matrix formed by 
augmenting A with the zero vector. Then, row‑reducing produces 
RREF(A) augmented with the zero vector. Using x, y, z, and w for the 
variables, this augmented matrix corresponds to these equations: 

x     +     z = 0 
y     +     z = 0 
w = 0.
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 Because z is a free variable, you can use these equations, plus the equation 
z = z, to express all variables in terms of the free variable z:

x = −z 
y = −z 
z = z 

w = 0.

 This shows that any solution (x, y, z, w) is a multiple of (−1, −1, 1, 0).  
Thus, the vector (−1, −1, 1, 0) is, by itself, a basis for the 1‑dimensional 
null‑space.

9 The inverse is −3 ∕2 1 ∕2
1 0  .

10 Multiplying  
1 1
1 1  

a b
c d   produces the matrix  a     +     c b     +     d

a     +     c b     +     d  , which cannot 

be the identity matrix.

11 Multiplying  1 0
3 1  a b

c d   produces the matrix  a b
c     +     3a d     +     3b  . 

 The inverse of  1 0
3 1   is  1 0

−3 1  . 

 Multiplying  1 0
−3 1  a b

c d   produces the matrix  a b
c     −     3a d     −     3b  .

12 This fact follows from the invertible matrix theorem (also called the 
fundamental theorem of invertible matrices).
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Lectures 13–18
1 The determinant is zero. (This may be easiest to check by expanding the 

determinant formula around the second row.) Therefore, the matrix is not 
invertible, so by the invertible matrix theorem, the rows are not linearly 
independent.

2 Check:

a For  a b
c d  , if a = c and b = d, the determinant ad     −     bc = 0.

b Express u, v, and w in coordinates and verify that the indicated 
equations hold.

c Use the results of parts (a) and (b) to see that 

D(u     +     cw, w) = D(u, w)     +     D(cw, w) 
= D(u, w)     +     c D(w, w)  

= D(u, w)     +     c 0 = D(u, w).

3 Any vector of the form (x, 0) is an eigenvector of A with eigenvalue −2 because 
it gets sent by the action of A to (−2x, 0). Any vector of the form (0, y) is an 
eigenvector with eigenvalue 3 because it gets sent by the action of A to (0, 3y).

4 Any vector of the form (x, x) is an eigenvector of B with eigenvalue 1 
because it gets sent by the action of B to (x, x). Any vector of the form 
(x, −x) is an eigenvector of B with eigenvalue −1, because it gets sent by the 
action of B to (−x, x).

5 The eigenvalues of A are 3 and −2, which are obtained as the roots of the 
characteristic polynomial λ2     −     λ     −     6. The eigenspace corresponding to 3 is 
the line that is the span of (−1, 2). The eigenspace corresponding to −2 is 
the line that is the span of (1, 3).

6 The eigenvalues of A are 3 and 3. The eigenspace corresponding to 3 is the 
line that is the span of the single vector (1, 0).
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7 The matrix  
1 −1

−6 0   is diagonalizable because it has a basis of eigenvalues. 

 However, the matrix  
3 −1
0 3   is not diagonalizable because it does not 

have a basis of eigenvalues. Also, the algebraic multiplicity of the eigenvalue 
3 is 2, but the geometric multiplicity is 1. 

8 If A and B are similar matrices, then A = PBP–1 for an invertible matrix P. 

a Taking determinants of both sides, you see det(A) = det(P)det(B)
det(P–1) = det(B)det(P)det(P–1) = det(B).

b Noting that A     −     λI = PBP–1     −     λPIP–1 = P(B     −     λI)P–1, you see that 
det(A     −     λI) = det(B     −     λI); thus, the characteristic polynomials of A 
and B are the same.

9 Under low predation, trajectories that start near the 0.7 eigenspace have 
barely enough rabbits to keep both populations from going extinct. The 
fox population initially decreases because there aren’t enough rabbits to 
sustain a large number of foxes, but there are enough rabbits to sustain a 
smaller population of foxes. Once the fox population reaches that point, 
both populations start growing again.

10 The largest eigenvalue (and, in general, the largest eigenvalue in absolute 
value) is the most important for understanding the dynamics of the system 
because it governs whether or not under many initial conditions both 
species will flourish.

11 This system can be viewed as w′(t) = 1 −1
−6 0  w(t), where w(t) = (x(t), y(t)). 

 The eigenvectors and eigenvalues of the matrix have been calculated in the 
problems for lecture 15, and these can be used to write the general solution:

w(t) = C1(−1, 2)e3t     +     C2(1, 3)e−2t.

Mastering Linear Algebra
SOLUTIONS

https://www.thegreatcourses.com/


303

12 If λ is complex, you expect any corresponding eigenvector v to be complex 
as well, because if v had only real entries, then Av would only have real 
entries, but λv would have at least one complex entry, contradicting the 
eigenvector equation Av = λv.

Lectures 19–24
1 Because Q preserves dot products, apply that fact to the standard basis 

vectors by setting x = ei and y = ej. Then, Qx is just the ith column of Q 
and Qy is the jth column of Q. Then, (Qx) • (Qy) = x • y implies that the 
pairwise dot product of the columns of Q are 0 unless i = j, in which case 
the dot product is 1. So Q must be an orthogonal matrix.

2 Because Q1 and Q2 are both orthogonal matrices, then Q1
TQ1 = I and 

Q2
TQ2 = I. But then Q2

TQ1
TQ1Q2 = Q2

TQ2 = I. From this, you see that 
(Q1Q2)T(Q1Q2) = I, which shows that Q1Q2 is orthogonal.

3 The transition matrix must be symmetric.

4 The transition matrix  
1 ∕2 1 ∕2
1 0   is not positive, but its square is 

3 ∕4 1 ∕4
1 ∕2 1 ∕2  , 

which is positive. 

5 The derivative of this function T is the 2     ×     2 identity matrix because the 
entries arise from the partial derivatives of x and y with respect to either 
x or y.

6 The derivative matrices are

[Df ] = 0 1
y x     +     1  , [Dg] = 0 1

1 1  , and [Dh] = y x
0 1  . 

 You can check that they indeed satisfy [Df ] = [Dg][Dh].
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7 You should get the same answer that was found in the lecture.

8 If the columns of X are not linearly independent, that would describe the 
situation where for every data point the x value is the same. Clearly, such a 
cloud of data points cannot have a best‑fitting line.

9 The Gram matrix ATA = 25 0
0 100  .

 Because this is upper triangular, the eigenvalues of ATA lie along the 
diagonal: They are 25 and 100. The singular values are square roots of 
these: 5 and 10.

10 If you arrange singular values from largest to smallest, then you set Σ =  10 0
0 5  . 

 Then, to find V, you must find normalized eigenvectors of ATA. These are 
(1, 0) corresponding to the eigenvalue 25 and (0, 1) corresponding to the 
eigenvalue 100. 

 Putting those in columns corresponding to 10 and 5, you get V = 0 1
1 0  . 

 You can compute the columns of U as A times the columns of V divided by 
the corresponding singular value. 

 Thus, U = −6 ∕10 4 ∕5
8 ∕10 3 ∕5

 .

11 Check all 10 axioms for a vector space.

12 Check that the integrals ∫ cos (x) sin (x) dx, ∫ cos (x) sin (2x) dx, and 
∫ sin (x) sin (2x) dx are each 0 when integrated over x = 0 to 2π.
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