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Professor Su has a passion for teaching and popularizing mathematics.
His speeches and writing have earned acclaim for describing the
humanity of mathematics and for calling people to greater awareness
of issues that contribute to inequitable mathematics education. Wired
magazine called him “the mathematician who will make you fall in love
with numbers.”

Professor Su has been nationally recognized for his teaching and
mathematical exposition. From the MAA, he has received the Deborah
and Franklin Tepper Haimo Award and the Henry L. Alder Award for
exemplary teaching as well as the Paul R. Halmos-Lester R. Ford Award
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Mastering Linear Algebra
An Introduction with Applications

inear algebra is both powerful and beautiful, with classical roots

and modern applications. Many structures in the world are linear
or approximately linear, so linear algebra is a necessary tool for every
scientist. The 24 lectures in this course form an accessible introduction
to the elegant ideas of linear algebra and their applications in economics,
physics, biology, computer science, and engineering, in addition to
mathematics and statistics. Beyond these areas, linear algebra is of
growing importance in nonquantitative fields that are taking advantage
of modern techniques in data science. Moreover, the underlying
geometric ideas are beautiful, and they yield insights beyond algebraic
understanding. This course will prepare you to move skillfully between
the abstract and concrete, between geometry and algebra, between
visualization and computation.

The course begins with an overview lecture (lecture 1) that hits 4 themes
that appear throughout the course: that linear algebra is a fundamental
idea in mathematics that you’ll find everywhere, that linear things are
used to approximate nonlinear things, that linear algebra reveals hidden
structure, and that the power of linear algebra comes from its interplay
between geometry and algebra.

Lectures 2 through 17 discuss core topics in linear algebra, beginning
in lectures 2 through 5 with the basic algebraic objects—vectors and
matrices—and their geometric intuition. Lecture 5 explains the intuition
behind linear transformations; this is earlier than in most treatments of
linear algebra, which often favor studying linear equations first.
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Lectures 6 and 7 discuss how to solve a system of linear equations and
introduce the idea of simplifying a system to reduced row echelon form,
which is particularly useful in unlocking the connection between various
other concepts associated with matrices.

Lectures 8 through 10 develop the idea of a subspace by first explaining
the concept of the span of a set of vectors—all the points that can be
reached by using those vectors—and then defining linear independence
of a set of vectors, which help you decide when you have a set of vectors
that is minimally efficient in reaching all the points in its span. The span
of the rows and columns of a matrix are special subspaces associated to
a matrix, and the set of all vectors that a matrix sends to zero is another
subspace, called the null-space.

Lectures 11 and 12 discuss a central concept—invertibility—and all
the different ways of understanding this concept. Lecture 13 describes
the determinant, a single number associated to a matrix, that helps
you understand invertibility as well as how the linear transformation
associated to a matrix scales volumes. Then, lectures 14 through
17 develop intuition for eigenvectors and eigenvalues, some of the
most important ideas in linear algebra, in the context of an extended
application to population biology: modeling predator-prey relationships.

Lectures 18 through 23 showcase many extended applications of linear
algebra. Lecture 18 discusses how linear algebra helps you solve systems
of differential equations and how eigenvectors and eigenvalues show up
in their solutions. Only very little calculus is assumed in that lecture.
Lecture 19 develops the ideas of orthogonality and the QR-factorization
of a matrix. Lecture 20 discusses Markov chains, which are useful for
modeling many systems of interest in the real world that evolve according
to some probabilities. Lecture 21—which assumes you know some
single-variable calculus—shows how linear algebra provides a window to
understanding calculus in many variables. In particular, linear functions
help approximate the nonlinear functions encountered in multivariable
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calculus. Lecture 22 explains how linear algebra is important in statistics
by shedding light on what regression is and how it’s done. Lecture 23
builds up the ideas behind the singular value decomposition, a powerful
way to factor matrices, and discusses an application to recommender
systems like ones that recommend movies for you to watch.

Lecture 24 concludes the course with a preview of how the powerful
ideas of linear algebra for n-dimensional vectors apply to more general
vector spaces, where vectors could be things like functions and could be
infinite-dimensional. These concepts reveal that even simple ideas in
linear algebra are actually profound ideas that show up in unexpected
contexts once you see the hidden structure underneath.
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4

NOTE

Each lecture has a few linear algebra problems
associated with it that you can do to practice
the concepts from the lecture, but these will

not be sufficient to support your learning of
linear algebra. You’ll want to follow a text and
work on exercises to be sure you understand
the concepts. This course will follow David

Lay, Steven Lay, and Judi McDonald’s Linear
Algebra and Its Applications and David Poole’s
Linear Algebra: A Modern Introduction (both
listed in the Bibliography), but almost any text in
linear algebra will do if you look at the sections
covering the topics indicated.

A
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LINEAR ALGEBRA: POWERFUL
TRANSFORMATIONS

Linecr algebra is a foundational subject in mathematics
that is both powerful and beautiful, with classical

roots and modern applications. The goal of this lecture

is to give you a sense of what linear algebra is, why it

is important, and how it can help solve some interesting
problems. Specifically, the lecture focuses on what a linear
transformation is and how it arises in many contexts where
you wouldn't expect it.

____Transformations

Transformation is really just another word for
function, which is a rule for taking an input

(such as a number, or a set of numbers) Transformation
and assigning an output (another number,

i input —neton s output
or set of numbers). In linear algebra,
functions are called transformations 00 00
because we think of them as changing S S
one picture into another. The second “image”

picture is called the image of the first.


https://www.thegreatcourses.com/

THE LECTURE 1
('GREAT COURSES

Linear Algebra: Powerful Transformations

A transformation assigns every point or object in the old picture
to an “image” in the new picture where it has moved. This kind of
transformation might be important in computer graphics if you want
to change perspective.

But there are many other kinds of transformations. Suppose you like
to snack on nuts and chocolate, but you also care about eating healthy.

Another Transformation

m n

X )4
chocolates,nuts |——| carbs,fat |.

“image”

Suppose you do some measurements on a collection of x chocolates
and y nuts and find that they have m grams of carbohydrates and »
grams of fat. That is a transformation of 2 numbers (x and y) into their
“image”—2 numbers (m and n).

Vv

We are now ready to define the term linear
algebra:

Linear algebra is the study of certain kinds of
spaces, called vector spaces, and of special
kinds of transformations of vector spaces,
called linear transformations.
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Our view of the night sky is the perfect backdrop for understanding
linearity.

We imagine our view of the night sky as being represented on a
2-dimensional plane.

Suppose you find the planet Saturn and mark its position on nights
0and 1.

On night 2, where should you look?

Without any knowledge of the motion of planets, there is really only
one reasonable guess.

night 2
-

You naturally assume that Saturn’s motion from night 0 to night 1 will
continue in the same direction and at the same speed as it moves on
subsequent nights. This motion is linear.

So, on night 3, you would expect to find Saturn here:
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One feature of this motion is that no matter which night you start
observing, the planet will traverse the same distance along that line
from night to night. With linear motion, the distance and direction
traveled only depends on the time elapsed, not on the starting position.

That’s what’s happening geometrically. What’s going on algebraically?

Imagine that our view of the sky has coordinates, and suppose you find
Saturn at (0, 0) on night 0 and at (p, ) on night 1.

Then, on night 2, you expect to find Saturn near (p, g) + (p, q), which
is the point (2p, 2¢).

(3 p,3q

line (0,0)+t(p,q)
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More generally, at time ¢, Saturn should be at (0, 0) + £(p, q). As time
varies, this expression traces out a line with constant speed. This is a
function that takes a time # to its image, which is a position in the sky.

Of course, planets do not move in straight lines, neither in the sky nor
in real life.

(2n.2) el

Actual path
A

However, if the planet’s motion is relatively smooth, the formula would
be actually quite good for small timescales. That’s because when a path
isn’t linear, it is often approximately linear.

This idea is at the heart of calculus. When you encounter a crazy
function, calculus suggests you try to approximate it by something you
understand better. The graph of a function that is not linear can, if it’s
simple enough, be approximated as a line.

That’s what’s going on in this example. Because you only had 2 data
points, you assume that Saturn moves linearly as a function of one
variable, which is time.

But this idea of linearity also makes sense for functions of several
variables. For example, you might have a function T that takes a
position in the plane to another position in the plane.

9
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Suppose you wanted to take a square grid, in the left picture, and convert
it to the picture on the right, which looks like the same square grid viewed
from a different angle and distance. If you were doing computer graphics,
you might want to have the ability to change perspective like this.

VIEW 1 VIEW 2

2T(V)

N
5]

(0,0) (0,0)

The function T that performs this conversion moves points in the plane
around; the diagram suggests how the points get transformed and how
lines and arrows on the diagram get transformed as well. This change
of perspective is a linear transformation, and it demonstrates 2 good
linearity properties.

Look at the pink arrow in view 1
VIEE I G indicated by the letter », which is
denoted by boldface based at the point (0, 0). The purple
letters (r) or by an arrow, twice its size and pointing in
arrow diacritic (7). the same direction, is labeled 2v. The
The styles have the transformation 7" has the property
same meaning, and that the image of the pink and purple
both are used in arrows is related in the same way in
this book. view 2 (twice the size and pointing in

A the same direction).
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You can think of the pink arrow as a small change in input. So, this
property shows that if you double the input vector (pink arrow v
changing to purple arrow 2v), the output should double as well—e.g.,
double its magnitude but retain its direction (the pink arrow 7(v)
changing to purple arrow 27(v)).

So, here’s the first linearity property: For any real number &,
T(kv) = kT (v).

In other words, it doesn’t matter whether you scale first and then apply
T or apply T first and then scale.

A second property of this transformation is if youre anywhere else
besides the origin and modify your input by v, then the output changes
by T(v) no matter where you were to begin with. Compare the blue
arrow marked v, starting at w, with the pink arrow at the origin marked
v. They represent the same change in input. Under the transformation,
the pink arrow gets transformed to 7(v) at the origin and the blue
arrow gets transformed to 7(v) based at T(w), but the 2 arrows marked
T(v) are the same and represent the same change in output.

VIEW 1 VIEW 2 .
(V)
T T(w)

7
w,

(0,0) (0,0)
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This transformation has the same property as the Saturn example did:
Equal changes in input (in that case, it was time) lead to equal changes
in output.

This highlights the second linearity property: For any points v and w,
Taw+v)=Tw) + Tw).

In other words, the transformed sum is the sum of the transformed
points—or, another way, it does matter whether you add first and apply

T, or apply T first and then add.

So, change of perspective in computer graphics is also a linear
transformation.

Returning to the nutrition example, suppose that x is the number of
chocolates you have and y is the number of nuts.

X,y)—2>lax +by, cx +dy).
| ) . .

nuts carbs fat
chocolates grams

Then, if a single chocolate has 2 grams of carbs and a single nut has &
grams of carbs, then the total carbs in your snack is (ax + by) grams.
Similarly, if ¢ and d record the number of grams of fat in a chocolate
and in a nut, respectively, then you'd have (cx + dy) grams of fat.

So, if A is the transformation that takes the number of chocolates and
nuts to the numbers of grams of carbs and fat, then it is represented by

Alx, y) = (ax + by, cx + dy).
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You can check that if you vary x by 1 unit, the output changes by (4, c)
grams, no matter what x and y are. If you vary y by 1 unit, you get
similar behavior. So, this transformation is linear, too.

What you see here is an example of a system of equations:

ax + by = carb grams
cx + dy = fat grams.

Systems of equations (often with many more equations and variables) arise
in so many applications that one of the most important questions you can
ask mathematically is how to find solutions to such equations. And linear
algebra helps you do that. One of the ways to do that is to represent the
coefficients of a system in a matrix, which is an array of numbers.

a b
c d

A=

Matrices have their own algebra—operations that you can do with
them. And because it turns out that every linear transformation can
be associated to a matrix, learning how matrices behave is a big part of
doing linear algebra.

At the same time, systems of equations can be understood geometrically,
too. Each linear equation has a solution set that is a linear object, such
as a line or plane or hyperplane. So, to solve a system of equations
simultaneously can be understood as intersecting a bunch of hyperplanes
and asking what (if anything) is in the intersection.

There are many ways in which linear transformations arise, and this
is the first of several important themes in this course—reasons you’ll
want to learn linear algebra.
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THEME 1

Linearity is a fundamental idea in mathematics and in the
world—you will encounter it everywhere.

Because linear transformations describe the geometry of a change
of perspective, if you know how to represent them by a matrix, you
can compute them fairly easily. When producing computer graphics,
rotating an object, or scaling up an object, or flattening a 3-D object
to a 2-D object are all linear transformations. But there are many other
linear relationships in life that may not be obvious at first glance.

For example, suppose you want to measure the importance of a
webpage. One way to do that is to imagine a person surfing the web.
He or she starts at one webpage and picks one link on the page at
random and hops to that page. He or she repeats that process with the
new webpage. Then, after many hops, you might expect that he or she
is more likely to be at a popular page than at a less popular one, because
a popular page will have many paths to get there. This gives you a way
of ranking pages.

Imagine a very simple web with

just 2 pages: page 1 and page 2. A Simple Web
Suppose there are 4 links from

page 1 to itself (which could

happen if the page linked to

another part of the same page), bage | page 2
and suppose there is a single link probability x probability y
from page 1 to page 2. And let’s

say that page 2 has 3 self-links and

2 links to page 1.
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If the probability of being at page 1 is x,, and the probability of being at
page 2 is yo, then after one hop, what are the new probabilities of being
at those pages?

You can get to page 1 either from page 1 or page 2. So, the probability
of being at page 1 after one hop is the probability of going from page 1
to page 1, which is 44; times the probability of starting at page 1, called
x; plus the probability of starting at page 2 and going to page 1, which
is %/; times the probability of starting at page 2, called y.

P(end 1)= P(1—1) P(start 1)+ P(2— 1) P(start 2)

X +

- -
4 2
5 5 Y

The probability of being at page 2 after one hop can be computed in a
very similar way. By inspecting the link diagram, you get

P(end 2)= P(1— 2)P(start 1)+ P(2 - 2) P(start 2)

- -
= 1 X + §
5 5 Y

So, the 2 probabilities of ending at page 1 and page 2 are given by
linear equations and can be represented by this linear transformation:

T(X,y)=(%x+%y, %X+%y].
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To get the probability vector of being at page 1 and 2 at time (n + 1),
represented by (x,.1, y,.1), you can just apply T to the probability vector
at time n, which is represented by (x,, ,).

(X11+1’ y"+1): T(X", Y,,)-

So, if you had a way of computing repeated linear transformations
quickly, you could then perform this linear transformation 7°100 times
to get the probability of being at pages 1 and 2 after 100 steps. Larger
probabilities then correspond to popular pages, and you would have
your version of page rank.

THEME 2

To understand nonlinear things, we approximate them by
linear things.

Things in the world that are not linear
are often approximately linear.

In multivariable calculus, when Tangent Plane

we encounter graphs of nonlinear
functions, we approximate them
locally by tangent planes (if they
are differentiable).
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In statistics, when we encounter a cloud
of data points, we often assume linear
relationships and use regression to try
to fit the best line or hyperplane. Or
maybe we try to reduce the dimensions
of the data to something manageable by
finding special directions in which there

Data

is a lot of variation.

Returning again to the nutrition example, suppose you were looking at
your snack of chocolates and nuts as a producer, wondering about the
cost and time of producing chocolates and nuts.

Cost and time are not linear functions of quantity. If they were linear,
then the cost to produce one more nut would be the same no matter
how many nuts you had produced already. But usually, there are
efficiencies that you gain from mass production, so the cost to produce
an additional nut or chocolate is cheaper after you've produced a lot of
them, and the additional time it takes is much smaller, too.

So, whatever transformation T that takes quantities to (cost, time) is
nonlinear. However, like many things in this world, it is locally linear.
That means that if you know how much an additional nut adds to time
and cost and how much an additional chocolate adds in time and cost,
then that is enough to approximate how much additional time and cost
it takes to produce any small numbers of nuts and chocolates.

THEME 3

Linear algebra reveals hidden structures that are beautiful
and useful.
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You've seen that if you know quantities (x, y) of snacks, you can figure
out (fat, carbs). But what if you know (fat, carbs) and you want to
solve for quantities x and y? This is the problem of solving a system of
linear equations. It might be easy with functions of 2 variables using
substitution, but if you have a large number of variables, this strategy
won’t work. You’ll have to be more systematic.

Linear algebra can be useful here, because much of what linear algebra
does is reveal hidden structure and then use those structures to give
us insight into what is really going on. Such insights often allow us to
solve problems in a simpler way.

For example, you may not be able to see if a system of equations has a
solution just from inspection, but if you see the system of equations as
arising from a linear transformation of some variables, you may be able
to put those equations in a simpler form.

And matrix algebra, which underlies the algebra of linear
transformations, seems strange at first and has a lot of hidden structure
that turns out to be really useful. For example, let’s return to the
simple 2-page web. Recall that this linear transformation T converted
the n-step probabilities of being at pages 1 or 2 to the (n + 1)-step
probabilities of being at pages 1 or 2.

T(X,y):(%x+§y, %X+%yj.

So, if you start at page 1, to find the page probabilities after 100 hops,
you just apply the linear transformation 7" 100 times to the initial
starting configuration (1, 0).
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This calculation can be done very efficiently, because the transformation
T has special vectors, called eigenvectors, for which applying T is
very easy.

T(2.1)=(2.1).

Look at this vector: (2, 1). Notice when you apply T to (2, 1), you just
get back (2, 1)! In other words, T doesn’t do anything to (2, 1). So, if
you apply 7 to (2, 1) ninety-nine more times, it’s still unchanged!

T'%(2.1)=(2.1).

Look at this vector: (1, -1). If you compute A times (1, -1), you get (35, -%5).
The key insight here is that (%%, -%4) is actually a multiple of (1, -1).

T(1,-1)= (%-%) _ %(1,—1).

So, T(1, -1) is just % times (1, -1). And if you multiply by A ninety-
nine more times, it’s just (¥5)'°° times (1, -1)!

T'°(1,-1)= (%)m (1.-1).

If you start in page 1, the beginning vector of page probabilities is (1, 0),
because there’s no chance of being in page 2. This vector is not a special
vector, and the matrix A does not act on (1, 0) in a very nice way.
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But notice that (1, 0) can be written as a combination of the special
eigenvectors; in fact, it is /5 of both eigenvectors summed.

(10)=3(20)+3(1-1)

Then, something amazing happens: The first and second linearity
properties ensure that you can apply T first to (2, 1) and to (1, -1)
before you scale or sum them! But those actions are very easy. T does

nothing to (2, 1) and multiplies (1, -1) by %5.

7(10)=3(21)+3 Z(1-1)

Each additional time you apply 7, it just multiplies the second
eigenvector by %4. This means that 7'°°(1, 0) is just, by linearity
properties, the sum

T'(1,0)= %(2,1)+ %(%jwo (1-1).

This is easy to compute. Notice how small the second term is. The first
term is (%5, 1/3), and it dominates! So, after many hops, the likelihood
of being in pages 1 and 2 is (¥4, V). This says that page 1 is more
popular than page 2.

THEME 4

Linear algebra’s power often comes from the interplay
between geometry and algebra.

20
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With every new concept in this course, you’ll learn how to think about
it algebraically (in terms of algebraic expressions) and geometrically (in
terms of things you can visualize).

For example, the set of solutions to a linear equation in 3 variables,
such as x + 2y + 3z = 10, represents a plane in 3-dimensional space.

If you know this, then you know that if you have 2 such linear equations
involving x, y, and z, the set of solutions that satisfies both equations
will be the intersection of 2 planes, which in most cases is just a line.
If the 2 planes happen to be the same plane, then the set of solutions
may also be a whole plane. But if the 2 planes happen to be parallel and
disjoint, then the pair of equations may have no simultaneous solution.

Notice that this insight came very easily from the geometric view
of these algebraic equations but may not have been obvious just by
looking at the equations. This kind of interplay between algebra and
geometry is indeed very powerful.

Chartier, When Life Is Linear, chap. 1.

Lay, Lay, and McDonald, Linear Algebra and Its Applications. Read the
Introductory Example of every chapter.

Poole, Linear Algebra. Skim the book and read various sections—Introductions,
Applications, and Vignettes—that look interesting. For now, read for the
big ideas without worrying about the mathematical details.

21
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VECTORS: DESCRIBING
SPACE AND MOTION

o ne way to think of mathematics is that it is a study

of objects with structure and of functions that can
preserve that structure. In linear algebra, the basic objects of
study are vectors, and mathematicians like to think of them as
having a certain kind of structure—namely, you can perform
certain vector operations, such as addition and scalar
multiplication. The operations give a structure to the set of
vectors by telling you how to do things with them. The goal of
this lecture is to understand vectors and their structure.

_ Vectors
There are several different ways to define vectors.

The geometric way to define a vector is as an object living in some space.
We need to be careful what space we are talking about. We live in a
universe with 3 spatial dimensions that are evident to us, and a vector
could live in this space. But we may also be interested in limiting
ourselves to a 2-dimensional space, such as points in a plane, like a
sheet of paper. Or we may be interested in an n-dimensional space,
which can arise in ways that don’t represent physical space but are still
useful to think about geometrically.
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When you fix the space you're talking about, a vector is a line segment
in space with a magnitude and a direction.

Geometric Definition of a Vector: a line segment with a
magnitude and a direction.

If you've learned any physics, you might think of head
vectors as arrows in space that specify a magnitude
and—if the length isn’t zero—a direction. This is a
geometric definition of a vector.

One end is called the head, and the other is the tail; /
the arrow points in the direction moving from tail
to head. Any 2 arrows with the same magnitude
and direction are considered the same vector, no

: same vector
matter where the arrow is placed.

tail

This notion of a vector as an arrow or directed line segment shows
why vectors are often used to represent things like motion, forces, and
velocities in physics. Forces and velocities have an intrinsic magnitude
and direction.

Algebraic Definition of a Vector: an ordered collection of
numbers.
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Another way that some people think of vectors is as an ordered
collection of numbers, such as (3, 1, 4) or (-1, 2.5) or (2, 3). This is an
algebraic definition of a vector. The numbers are called components
or coordinates, and for the most part, they will be considered real
numbers.

The set of all vectors with #n components is called R”.

The R stands for the real numbers, and the superscript represents how
many components the vectors have. Remember, this is just notation
for a set of vectors. We are not raising numbers to a power; we are just
looking at a set of vectors and giving it a name.

So, R? is the set of all ordered pairs of real numbers, such as (2, 3).

Depending on context, the components could be written as a row vector,
in which the numbers are arranged in a row, or as a column vector, in
which the numbers are arranged in a column.

7=[23]

2]
3

o

This view of a vector as an ordered collection of
numbers is often used when working with data.
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There is a natural correspondence between the algebraic definition of
a vector as an ordered collection of 7 real numbers and the geometric
definition of a vector as an arrow in z-dimensional space.

To see this, we must first fix some coordinate AN
directions. In the plane, we usually choose the

x and y axes, drawn with the positive y-axis

90° counterclockwise to the positive x-axis.
Then, a vector in R? specified by an ordered 3
pair of numbers like (2, 3) corresponds to an
arrow in the plane that moves 2 units in the x
direction and 3 units in the y direction.

In 3-dimensional space, we usually choose the
x, ¥, and z axes as coordinate directions. 2

Vv

To avoid confusion, there is a standard way to orient the
x, y, and z axes: The positive directions along these axes
obey the right-hand rule.

A 4

If you curl the fingers of your right hand in the direction
moving from the positive x-axis to the positive y-axis, then
your thumb will point in the direction of the positive z-axis.

You are probably used to drawing the xy-plane on a z
sheet of paper with the positive x-axis pointing right

and the positive y-axis pointing up. In this case, the
positive z-axis will point up out of the page.
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In R? a triple of numbers like (7, 2, 3) represents an arrow in
3-dimensional space that moves 7 units in the x direction, 2 units in
the y direction, and 3 units in the z direction. Similarly, every vector in
R” corresponds to an arrow that moves in the coordinate directions by
amounts specified by its coordinates.

This correspondence also suggests another way to view an ordered
collection of numbers—not as an arrow in space, but as a point in
space at the end of the arrow when you place the arrow’s tail at a
reference position called the origin. The numbers of the vector will
then tell you how to get there in relation to the coordinate directions.
Thus, the point called (7, 2, 3) is the point that is at the head of the
vector [7 2 3] when you place its tail at the origin.

zZ

(7 2 3) point in space corresponds to a vector
s s

— ¥
3 origin

7
V=12 tailatorigin
7
3

In this view, every point in 3-dimensional space can be represented by
a triple of numbers, the same one that represents the vector from the
origin. The origin itself is represented by the vector of all zeros, called
the zero vector, because the arrow from the origin to itself involves no
motion along any of the axes.

26


https://www.thegreatcourses.com/

THE LECTURE 2
('GREAT COURSES

Vectors: Describing Space and Motion

In a similar way, you can choose to think of vectors in R” as points or
as arrows, and the choice you make depends on context.

v

The geometric description of a vector is the picture
of a vector you might have in your head, while the
algebraic description is one that a computer might
most easily work with. A

Linear Combinations

Two of the operations you can do with vectors are addition and
scalar multiplication. And each of these operations will be presented
geometrically (how you might visualize them) and algebraically (how
you might compute them).

The first basic operation on vectors is addition.

To add 2 vectors # and v geometrically, place
the tail of » at the head of # and look at the
arrow formed by moving from the tail of »
to the head of ». This is # + v. The order of u
and v doesn’t matter; if you add » and #, you
get the same result.

So, vector addition is commutative, which means the order of addition
doesn’t matter.
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Because vectors have both direction and magnitude, they
are often denoted by boldface letters (r) or by an arrow
diacritic (r) to distinguish them from scalars. The styles
have the same meaning, and both are used in this book.

Another way to view addition is to form the
parallelogram with sides # and » with tails
placed at the origin. Then, an arrow from
the origin along the diagonal is the sum

of u and v.

Algebraically, if you are given 2 vectors as ordered collections of
numbers in R”, the sum is just given by adding the numbers coordinate-
wise. For example, if the vector u is (1, 2) and the vector v is (3, -7),
then the addition rule says (1, 2) + (3, -7) = (4, -5), because you add
coordinates 1 plus 3 to get 4 and 2 minus 7 to get -5.

217

You could check by drawing this out that the addition matches what is
going on in the geometric picture: The new vector (4, -5) says how far
you have to walk in the x and y directions after walking according to
the instructions given by the vectors # and v.

Another operation on vectors is scalar multiplication.
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A scalar is just a real number, and it gets its name when it behaves as a
scaling factor for a vector by an operation called scalar multiplication.
Geometrically, to multiply a vector » by 2, you just double its length
while keeping its direction the same—you've just
scaled the vector by a factor of 2. To multiply » by
/2, you halve its length. You can also multiply

by a negative number, which scales the
magnitude but reverses its direction. So, -v

has the same length as » but points in the

opposite direction.

To multiply a vector by a scalar ¢ algebraically, you take every
coordinate and multiply it by ¢. So, 2 times (3, 1, 4) = (6, 2, 8). Soon,
when the length of a vector is defined in R”, you will be able to see
that this operation matches the geometric understanding that it scales
the magnitude by 2 but does not change its

direction. u+ (—‘7) ii

Subtraction of vectors can be defined //\ / \
/
/
/

by addition and scalar multiplication.
So, if you want # minus v, you can

add # and -».

Because (u - v) + v should be #, you can also see pictorially that if you
place the tails of # and v together, then the arrow formed by moving
from the head of » to the head of # is also # minus v.

Scalar multiplication has the distributive property over addition:
clw+v)=cu+cv.

So, it doesn’t matter if you add and then scale by ¢ or scale by ¢ first

and then add.
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Scalar multiplication also has an associative property:

If ¢ and 4 are scalars and # is a vector,
then c(du) is the same as (cd)u.

What happens when these 2 operations on vectors—addition and
scalar multiplication—are combined? If you have vectors vy, v,, ... , v,

then a linear combination of v, through v, is any vector of the form
€U + 60y + ... + oy, where ¢, through ¢, are scalars.

v, '|‘C2V2 +...+Cka.

So, for example:

1] [o] f[o] [7
7|10 (+2[1 |+3|0|=|2|.
o] [o] [1] |3
61 52 A3
i ]k

This shows that (7, 2, 3) is a linear combination of the vectors (1, 0, 0),
(0, 1, 0), and (0, 0, 1)—which are called the standard basis vectors in
R3 and are often written e, e,, e;.

Linear combinations of the standard basis vectors will produce any
vector in R3. (This is one of the reasons each of these vectors is called a
basis.) But if you had just 2 vectors, you wouldn’t be able to obtain any
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possible vector in R?. For example, linear combinations of e, and e, can
only produce vectors whose third coordinate is 0.

Often, it is not so obvious whether a

given vector is a linear combination of e

a set of vectors. For example, suppose

youre piloting a spaceship that sits at SUS
the origin and you have 2 thrusters that W

can propel you in 2 directions: (5, 1, 1) 5 3

7
and (3, 0, -1). Can you reach the point

(7, 2, 3)? In other words, does a linear ?201(+?] 0 |=|2
combination of (5, 1, 1) and (3, 0, -1) 1 1 3
exist that will produce (7, 2, 3)?

Let’s think about this abstractly and call these 2 vectors # and ». A
linear combination of vectors # and v is any vector that can be obtained
from doing addition and scalar multiplication on the vectors # and v.
So, it must be of this form: a scalar times # plus another scalar times
v. For example, ~2u + 3v is a linear combination of # and v, and so is
Vhu + 34v. The zero vector is also a trivial linear combination of # and
v—namely, the scalar 0 times # + 0 times .

If you look at the set of all possible
linear combinations of # and », you
can see that it will form a plane as long
as # and v do not point in the same
direction. You may also be able to see
that by fixing either the coefficient
of u or v and letting the other

coefficient vary, you will trace out
. . . set of all linear combinations
natural coordinate lines along this here, a plane

plane. In the figure, you can see

where Vsu + 34w is located.
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This plane cannot fill out all of R? some points are clearly not linear
combinations of # and v.

The set of all linear combinations of a collection of vectors is called the
span of the vectors. So, the span of # and » here will be a plane. In the
degenerate case where # and v point in the same direction, the span of
u and v will be just a line.

Note that the problem of determining whether a linear combination
will produce a given vector is the same as solving a system of linear
equations for the coefficients of the linear combination. In the previous
example, if the coefficient of (5, 1, 1) is x and the coefficient of (3, 0, -1)
is y, then you want to determine if there exist x and y such that

x(5,1,1) +y(3,0,-1) = (72, 3).

Looking at the components of this vector equation, with x for the first
unknown coefficient and y for the second unknown coefficient, this will
be true if the following system of equations can be solved simultaneously:

_Abstract Vector Spaces

In addition to thinking of vectors as arrows and as ordered collections
of real numbers, which we can also think of as points in R”, a third way
to think of vectors is in a more abstract way. Even though this course
mainly discusses vectors in R”, vectors can be seen as more general
objects that apply to a wide range of things that may not at first look
like an arrow or an ordered collection of real numbers.
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In mathematics, we often take concrete examples and look at what
properties made those objects interesting. Then, we begin to define
our objects by their properties, and when we do that, we realize that
our methods for working with those objects were far more general and

apply to other things.

We often do 2 basic things with vectors: Abstract Definition
We add them, and we scale them by
making them bigger or smaller by some
factor. We form linear combinations of

of a Vector: an
object that can be
added and scaled
(in certain ways).
So, a third way to define a vector is by an A
abstract definition, in which a vector is

defined by its properties. In this definition, a vector space is, loosely,
any collection of things that can be added and scaled together with
some additional properties, called axioms (see PAGE 34), which
ensure that addition and scalar multiplication play nicely by themselves
and with each other.

those vectors.

The advantage of this definition is that we can now call other things
vectors that weren’t before.

For example, consider the collection of all continuous functions
on the real line. If you are an engineer, such functions might arise
as waveforms if you are doing signal processing. When continuous
functions are added, you get another continuous function. You can
scale a continuous function by multiplying by

a scalar, which changes its amplitude.

The space of continuous functions

satisfies all the axioms of a vector

space, so it is another example of g

a vector space.

f
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4

AXIOMS

These axioms are the properties we end up using when we
prove anything about R".

A vector space is a set V (objects are “vectors,” e.g., u, V)
with 2 operations:

addition (write: u + v)
scalar multiplication (write: cu, for scalar )

such that for all u, v, win V and scalars c and d:

1 u+visin V(Vclosed under addition)

u + v=v+ u (addition is commutative)
(u+v)+w=u+(v+ w) (addition is associative)

There’s a zero vector 0 such that u+ 0=u

O b OD

Every vector u has an additive inverse —u such that
u+(-u)=0

6 cuisin V (V closed under scalar multiplication)

7 clu+v)=cu+cv

8 (c+dju=cu+du distributive properties

9 c(du)=(cd)u
1

0 lu=u
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Chartier, When Life Is Linear, chap. 4.
Lay, Lay, and McDonald, Linear Algebra and Its Applications, section 1.3.

Poole, Linear Algebra, section 1.1.
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Quontum mechanics says some strange things about
the nature of the universe. For example, it says that
quantum obijects like electrons can exist in a superposition
of states. Deep ideas from linear algebra underlie this
strangeness. For example, these states actually live in
some vector space, and superposition is basically a linear
combination of states. That is like saying that a quantum
object exists physically in many states at the same time—a
particle can be in 2 places at once! Even though quantum
states live in an infinite dimensional space that isn't R", some
of the results that can be proven for R" have analogues for
quantum states. So the basic ideas of linear algebra are
actually quite profound.

____The Dot Product

Euclidean space R” has 2 operations—addition and scalar multiplication—
and these allow you to take linear combinations of vectors.

Another kind of product structure that R” has, called a dot product,
plays an important role in determining when 2 vectors are perpendicular.
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Linear algebra has a theme of hidden structure. The dot
product is an example of a structure that exists that is not
obvious at first, but when you realize you have it, it can
tell you all sorts of things!

The dot product can be described in 2 ways: one algebraic and one
geometric.

Suppose you have # and v, 2 vectors in R”, with components that are
real numbers #, through u, and v, through v,. Then, the algebraic
definition of the dot product of # and v, called u * v, is the sum of the
pairwise products of the coordinates:

uov=u1V1+u2V2+...+unvn.

There is a shorthand notation for a sum like this that uses the Greek letter
sigma (2), which stands for sum.

n
.Uy,
1 1

i=1

The i represents the index, and the i=1 and 7 tell the reader what the
starting and ending indices of the sum are.
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For example, if u=(3, 1, 4) and v= (1, -5, 0), the dot product turns
out to be -2.

Gev=3e1+1(-5)+4e0
=-2.

Notice that the dot product takes in 2 vectors and spits out a number.
What does this number mean?

The dot product measures how aligned 2 vectors are. If the dot product
is positive, the vectors are pointing generally in the same direction;
if the dot product is negative, they are pointing generally in opposite
directions; and if the dot product is zero, they are perpendicular.

Here’s an example in R? that you can visualize. If # is the vector (2, 1)
and v is the vector (-1, 2), then you can see by drawing the vectors
on the plane that they are perpendicular—or, in linear algebra terms,
orthogonal. And if you compute the dot product of these 2 orthogonal
vectors, you see that, indeed, 2x -1 +1x2 = 0.

orthogoncjl ﬁ_ 2 - 1
v L2

You can see why the dot product has this curious property by deriving a
y P property Dy )
geometric definition of the dot product, which comes later in this lecture.
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___ Properties of the Dot Product

Some properties of the dot product are evident from its algebraic
definition.

The dot product is commutative, meaning that the order of # and »
doesn’t matter. You can see this by looking at the definition.

V.U=V1U1+V2L12+...+V u.

n n

Notice that if you switch the roles of # and v, you get exactly the same
formula, because the #; and v, trade places as well, but the pairwise
products stay the same, because multiplication of real numbers is
commutative.

The dot product is distributive: % * (v + w) expressed in terms of components
of wand v is the same expression you get from (u * v) + (u * w).

If you scale one of the vectors, the dot product scales the same way:
(cu) * v is the same as c(u * v).

Note that if you dot a vector with itself, you get a sum of squares, which
is never negative and is only zero for the zero vector.

2

uei=u, +...+un2 >0.
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The magnitude, or length, of a vector is defined by taking the square
root of # * u. The notation for magnitude is double bars around the
vector.

lll=ies.

What is the length of a scalar multiple of a vector? In general, the length
of ¢ times vector v is the absolute magnitude of ¢ times the length of ».

lle7ll=lel [¥1]

What about the length of a sum? In general, it is not the sum of their
lengths, because the vectors may not be pointing in the same direction.
But by drawing the triangle formed by », w, and (v + w), you can see
that the length of (v + w) must be less than or equal to the sum of the
lengths of » and of w.

This inequality is called the triangle inequality.

it | IS | Rl |
V4w
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A Geometric Formula for the Dot Product

Lets derive a geometric formula for the dot
product. Given 2 vectors v and w, put their V—W
tails together and let 6 be the angle

between v and w. Notice that the third ) 0

side of this triangle is (v - w).

In geometry, the law of cosines says that if 4, b, and ¢ are sides of a triangle
and 6 is the angle between sides @ and b, then ¢* =a* + b* - 2abcos6.

Here, the length of (v - w)? is the length of 4? plus the length of &

minus twice the length of @ times the length of b times the cosine of 6.

2 2 2
||V—W|| = |[7I[ + ][ = 2][7]| ||w]|cose.
(7—w)e(v-w) \‘_ _\‘
Ve

(2%

L %%

+

wew

<l
[ ]
<l
|
<l
°
%1
St

|
N
<i
[ ]
3

But by definition, the length of a vector squared is just the vector
dotted with itself. So, using the properties of dot products, you get the
geometric definition of the dot product of » and w: It’s the product of
the lengths of v and w multiplied by the cosine of the angle between.

VOW:”V” ||W|| coso.
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This is a geometric definition because it does not involve coordinates,
and it only involves things that can easily be discerned from a picture
of v and w.

Some things can be gleaned from this interpretation of the dot product.
For example, if you notice that the cosine of an angle in absolute value is
always less than or equal to 1, you get the Cauchy-Schwarz inequality:
The magnitude of the dot product of 2 vectors is always less than or
equal to the product of their lengths.

|170W| < ||‘7|| ||vT/|| because |cos€| <1

And as 6 varies, you see the interpretation of the dot product as a
measure of alignment of » and w. If you keep the vector lengths fixed
but change the angle 6, the dot product will change depending only
on the cosine of 6. So, if 6 is less than 90°, the cosine will be positive,
and if it is greater than 90°, the cosine will be negative. And when 6
is 90°, the most important property of the dot product applies: For
nonzero vectors, the dot product is zero if and only if the 2 vectors are
perpendicular.

Ifi,v=0, dev=0 < alv.

if and only if

The if and only if here means the 2 statements are equivalent—each one
implies the other.

42


https://www.thegreatcourses.com/

' THE LECTURE 3
( GREAT COURSES' Linear Geometry: Dots and Crosses

Vv

QUANTUM MECHANICS

It turns out that something like the dot product
does not exist in every vector space, but if it does,
it is called an inner product, and the space is
called an inner product space.

The kinds of vector spaces that are used to
represent quantum states in quantum mechanics
are inner product spaces. And the inner product
has many analogous properties of the dot
product. For example, the Cauchy-Schwarz
inequality holds.

The Cauchy-Schwarz inequality turns out to

be the fundamental mathematical idea behind
Heisenberg’s uncertainty principle in quantum
mechanics, which says that the position and the
momentum of a particle cannot both be specified
exactly. So, this strange property of quantum
particles is a direct consequence of the underlying
mathematics of inner product spaces. A

To learn more about quantum mechanics, watch the Great Course Understanding the Quantum
World, taught by Professor Erica W. Carlson. You can find it online at www.thegreatcourses.com or
www.thegreatcoursesplus.com.
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The Cross Product

One kind of product of vectors in R” is defined only in 3 dimensions.
It is called the cross product. And it can be defined algebraically and
geometrically.

If you're given vectors # and v with uv
components #,, #,, and u; and v,

v,, and v;, the algebraic definition is UXV=UV,—UV, |
given by some crazy formulas for the
components. 1z T2

There is an easy way to remember this formula: Write u,, u,, and u;
twice in a column and write v;, v,, and v; twice in a column next to it.

If these are shoelace holes, form shoelace crossings in the middle 3
positions. The strings that go down to the right represent positive
products, and the ones that go up to the right

represent negative products. If you do this, u] V]
you'll see how these crosses correspond to the u 5 VvV 5
terms in the cross-product expression.

What's the geometric interpretation of the cross 74
product? Unlike the dot product, the cross 1 1
product of 2 vectors is a vector, not a scalar. UZC D V2
So, you need to know both its magnitude and U3 V3

direction.

i x v is vector with magnitude |[g|| ||7|| sin6

and direction L to i and .
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The magnitude of (# x v) is the length of # times the length of v times
the sine of the angle 8 in between them. So, the magnitude is largest
when # and v are perpendicular, and it is zero when 0 is zero or 180°—in
other words, when # and v are multiples of one another. The magnitude
is never negative, because the angle 6 is always measured going from u
to v, which is positive.

Note how the cross product differs from the dot
product: The cosine in the dot product gets replaced
by a sine in the cross product, and the dot product
is a scalar while the cross product is a vector.

A

The direction of (u x v) is always orthogonal to both vectors # and .
There are 2 possible directions that could be orthogonal to # and », but
the one that is used is the one given by the right-hand rule: If your
first finger (your index finger) is pointing in the direction of the first
vector and your second finger is pointing in the direction of the second
vector, then your thumb will be pointing in the general direction of the
cross product. Alternatively, if you curl the fingers of your right hand
in the direction from the first vector to the second finger, your thumb
will be pointing in the direction of the cross product.

Note that the order matters in both the algebraic and geometric
definitions. If you look at (v x #) instead of (u x v), you see the signs of
all the components get reversed, and your thumb will be pointing in
the opposite direction. So, (u x v) is the negative of (v x ).
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Describing Lines

Linear combinations along with the dot product and the cross product
can be used to describe lines and planes and hyperplanes.

To specify a line L in R3, you can use a point p on the line L and a
direction vector d that moves along L. Fixing the point p and adding
scalar multiples of the vector d will move along this line, and every
point on L arises in this way. So, every point (x, y, z) on L must be of
the form p + td, where ¢ is a freely chosen scalar parameter. Once you
choose t, the point (x, y, z) is determined.

| ={p+td: teR}.

Think of the parameter ¢ as time and the vector p + td as telling you
the position of a bug at time #. At time #= 0, you are at the point p. If
you set down tick marks at equally spaced time intervals—such as time
t=0, =1, t=2, etc.—you will see that the tick marks are evenly spaced
along the line at p, p + d, p + 2d, etc. If you plug in £= -1, you move in
the other direction.

This description of a line 0 t=1 t=2

offers a way of describing =1 = d P N

what is happening with _\ \. et .

the components (x, y, 2) I S b

of a point on the line. line -~ )4
L z
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Describing Planes

You can also use a similar idea to describe a plane 74

in R”. Now you need a point p and 2 direction

vectors, # and . Then, you start at that point

p and add linear combinations of # and » a
to generate a plane through p.

You can see in this image how linear combinations

of u and v will generate a grid on this plane. The coefficients

of u and v will be scalar parameters that can be chosen freely—
called s and #, for example. Then, any point on this plane must be of
the form p + su + tv, where s and ¢ are real numbers.

X=p+si+tv
N\
parameters

vector form s,t € R

This gives you the vector form of the equation of a plane; all you need
is a point and 2 directions.

If you write out the equation in components, you will get the parametric
form of the equation of the plane. For example, suppose you want to
describe the plane through (1, 0, 0) and in the directions (4, 5, 0) and
(7,0,9).

1 4 7 x=1+4s+7t
X=|0|+s|5|+£]0|, s,teR y="5s
0 0 9 z=9¢
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If vector x has components (x, y, 2), then looking at the components of
the vector form (1, 0, 0) +s5(4, 5, 0) + £(7, 0, 9), you see that x must be
1 + 4s+ 7t, y=5s, and z=9¢, where s and  can be chosen freely as any
real number.

Notice that this description of a plane shows intuitively why this
plane has 2 dimensions: because it has 2 degrees of freedom in the free
parameters s and z. Also, a plane, like a line, may have many different
parametrizations.

In R?, you can use the dot product to describe a 11

plane in a slightly different way. If you know 1

a point in the plane and a direction vector °X
. ®

perpendicular to the plane (called a ]3

normal vector), that is enough to

specify the plane.

Suppose p is a point in the plane and

n is a normal vector to the plane. If vector x is

any other point in the plane, then (x - p) is a vector that

must be perpendicular to n. So, the dot product of (x - p) with #» must
be zero.

Xen=pen normal form

If you distribute (x - p) ® mas (x * 1) - (p * n) and move (p * n) to the
other side of the equation, you get that (x ® #) must equal (p * n). This
relationship is sometimes called the normal form of the equation of a
plane. So, any point x on the plane must satisfy this relationship.
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Lay, Lay, and McDonald, Linear Algebra and Its Applications, section 1.1.

Poole, Linear Algebra, sections 1.2 and 1.3.
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I his lecture introduces the matrix, which is an array of

numbers. Specifically, the lecture defines matrices and
their algebra and offers several applications of the idea of
matrix multiplication.

— Whatls a Matrix®@

An m x n matrix A is an array of numbers with 7 rows and 7 columns.
A= (a;), where a; is the entry in row i and column .

For example, if A is the following 2 x 3, then a,, = 4.

Ao 12 3
45 6
a, =4.
row” column

To say that 2 matrices are equal means they have the same dimensions
and their entries are identical.
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To add 2 matrices, you add their corresponding entries. For example,
look at the following matrices and note that, in the bottom right corner,

4+1=5.
_|12 _|1 -1 _12 1
IfD—[3 4}, E—[O 1 } then D+E—[3 5 }
To multiply a matrix by a scalar, you multiply every 1 1
1 2
entry by that scalar. —D=
2 % 2

_ Matrix Multiplication

Suppose you have some variables y, and
9, written as linear combinations of 3

V= 3X1 +X, +4X3
Y, = X, +9Xx, +6X3

variables x;, x,, and x;.

X =W
Suppose also that you have the x X, = 2W1
variables written as linear combinations X, = w,+w,

of the variables w, and w,.

Simply substituting the second set
of equations into the first results in
expressions for the y variables as linear v, = 15w, +6w,
combinations of the w variables.

y, = 3w, +4w,

Now suppose you write matrices that
h fFici in th -10
represent the coetficients in these 314 3 4
changes of variables. L 5 6} 2{15 6}.
11
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There is a relationship between the entries of the matrices.

+ The dimensions of the y-in-terms-

of-x matrix are 2 x 3, because there 314 -10 3 4
are 2 y variables and 3 x variables. = .
156 15 6
+ The dimensions of the x-in-terms- 11

of-w matrix are 3 x 2, because there
are 3 x variables and 2 w variables.

*

So, the dimensions of the y-in-terms-of-w matrix are 2 x 2, reflecting
that there are 2 y variables and 2 w variables.

+ The fact that there is a 15 in the bottom left corner of the 2 x 2 matrix
refers to the number of times w, appears in y,. This comes from
multiplying the number of times a particular x variable appears in y, by
the number of times w, appears in that particular x variable, summed
over all x variables. This computation is just the dot product of the
second row of the first matrix with the first column of the second matrix.

The pattern in these changes of variables suggests a natural notion of
multiplication of matrices.

+ If you want to multiply 2 matrices A and B, there have to be conditions
on the dimensions: The number of columns of A must be the number of
rows of B. Then, you can form the product AB, which can be called C.

+ If Aism x p and B is p x n, the matrix C will be m x n.

P
G = Zaikbki'
k=1

To get the ij* entry of C, take the dot product of the i* row
of A with the j" column of B.
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Note that the order of multiplication matters greatly. Even if AB is
defined, the product BA may not be. And when they are both defined,
it is not true in general that AB = BA, so matrix multiplication is not
commutative.

Aside from representing compositions of linear functions, matrix
multiplication can be used to express a system of linear equations,
which you can think of as a linear combination of variables that is set
equal to a constant.

For example, the following system of equations on the left is a system
of linear equations because both equations are linear combinations of
variables set equal to constants.

3x, +x, +4x, =1 [3 1 4} ? :H_
X, +5x,+6x,=5 x2 5

The system of equations on the left can be expressed as a matrix
equation on the right. Notice that a column vector (x;, x,, x3) is just a
3 x 1 matrix, so the usual rules for matrix multiplication applies.

Whats great about a matrix equation is that you can express a large
system of linear equations, such as the one shown at right, in the very
compact form Ax = b, where x and b are column vectors.

a,x,+..+a, x =b
a,x,+..+a, x =b, It can be helpful to have this
point of view: The matrix A

x =b is acting on the vector x to
produce the vector b.

Ax =b. A

53
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The Identity Matrix

What you may notice after doing several examples of multiplication is
the following fact: If the columns of B are called b,, then the columns
of the product AB are just the column vectors you get by doing A times
b; in the corresponding columns.

IfB=|b-b, |then AB=| AbAb_ |

0
Moreover, if you take a matrix A and multiply 0
it by the j* standard basis vector e;, then you ~ "
; th E=[1|;"
just get the j" column of A. 7 0
For each row of A, the 1 in the j* position 0

of e; just picks off a single entry in the j*

column of A. Ag = j* column of 4.

This means that if you fill a matrix with the standard basis vectors in
order, you get a matrix that when you multiply another matrix by this
one on the right, it stays unchanged!

1231 °%% 23
[456}010 ={456}'
00 1

Here, the highlighted matrix is called the identity matrix. It is always
a square matrix with 1s along the diagonal and Os everywhere else. The
letter I is often used to denote it; sometimes I, is used to remind the
reader of its dimension.
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Similarly, if you want to pick off a row of the matrix 4, you can
multiply it on the left by the row vector e;". That will produce the i*
row of the matrix A. So, multiplication by the identity matrix on the
left of an appropriate dimension will leave its rows unchanged.

To summarize, if you take an m x #n matrix A, you can multiply it on
the left by I,, or on the right by I, and it will stay unchanged.

1 . O Amxnln = A
O ' I A =4
1 m mxn

This identity matrix is a multiplicative identity. There is also an additive
identity, which you can add to any matrix and leave it unchanged. It
is just the zero matrix: the matrix of all zeros. Every matrix also has
an additive inverse—that is, a matrix you can add to it to get the zero

matrix. The additive inverse of A just puts a negative sign on every
entry of A, and it is labeled -A.

Additive identity: A+ I:O:| =
Inverse additive identity: A+( ) I:Oil

__Other Matrix Properties

First, remember that multiplication is not commutative; in general,
the order of multiplication matters. So, whenever you write a matrix
product, you must pay attention to the order of multiplication so that
you don’t accidently switch things around.
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A very important property of matrix multiplication is the way that it
distributes over addition. Thus, A times (B + C) is AB + AC. This is
called the distributive property.

Distributive property: A(B + C) = AB + AC.

This can be shown by writing L

out the expression for the ij" |:A(B+C)i|y':;31k (bkj+cld)

entry of both sides, using the P P

row-column formula. = Zaﬂ(bkj +Zaikckj
k=1 k=1

If you do this, you see that the distributive

property follows from the distributive property :[AB l] +[AC],,

of real numbers.

Even though matrix multiplication is not commutative, it does have
an associative property, which may be surprising because it is not
obvious at first glance.

Associative property: A(BC) = (AB)C.

If you look at the product A(BC) I:A(BC)] B ia [ib . J
i ik 1
k=1 ’

and write out the expression for i
the i entry, you will get a sum

over some index k. SR
- z 2 aybycy
i j
Now write out the expression for the &/ entry of k=1 1=1
BC, and you will get another sum over an index /. 4 ( &
, , _ - z Zaikbk] Sy
If you manipulate this by switching the order of 1\_k=1

1=
the sums, you can see it will give the expression ~ _
for the product (AB)C, using the row-column [(AB)CL
formula.
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There is a natural operation on a matrix that switches its rows and
columns called the transpose. To denote the transpose of A, you write
A", and if the entries of A are a;;, then the entries of A" are a;,.

Transpose: If A = (a;), then A” = (a;).

As an example, the matrix with rows 123, 456 has as its transpose a
matrix whose columns are 123, 456.

123 14
IfA =|:4 5 6} then A"=|2 5|
36
A matrix that stays unchanged when performing the 15
transpose must be square and have a symmetry about the
diagonal that goes down and to the right. Such a matrix 52
is called symmetric. .
. A=A".
Here are some properties of the transpose:
a The transpose of the transpose of A is itself. (AT)T - A.

b The transpose of a sum is the sum of the (A . B)T AT, BT

transposes.

¢ The transpose of a scalar multiple of A is (cA)T = cA".
the scalar multiple of the transpose of A.

Less obvious is how to take the transpose of a (AB)" = B'A".
product. If you examine the dimensions of AB,

you’ll see that for the transpose, you have to reverse the

order of the product for the dimensions to work out correctly.
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Chartier, When Life Is Linear, chaps. 2, 3, and 4.

Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 1.4
and 2.1.

Poole, Linear Algebra, sections 3.7, 8.1, and 8.2.
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I n many instances, linear transformations represent many
of the kinds of transformations you would use if you were
coding a video game that needs to move around a virtual
room and change perspective. In advanced computer
graphics, you can represent rotations and translations and
deal with perspective using linear transformations on R* and
represented by 4-dimensional matrices. In other words, doing
these kinds of 3-dimensional transformations amounts to linear
algebra in 4 dimensions. The mathematical ideas behind
perspective geometry come from linear algebra, and if you
understand it, you can produce realistic computer graphics.

_____Multivariable Functions

A function is any machine for turning an input into an output.
Consider the case where the inputs and outputs are sets of numbers,
which can be thought of as vectors.

Perhaps the inputs are a vector of quantities like grams of nuts and
chocolates and the outputs are numbers like calories of carbohydrates,
fats, and protein. That would be a “nutrition” function from R? to R?.

(nut, chocolate) grams — (carb, fat, protein) calories
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You could also have a function going from R? to R? an example would
be a function that moved points around a plane. And you could have a
function from R’ to R, such as a temperature function whose input is
a position in a room and output is a temperature.

T: R" - R™ is written in this way to signify that T is a function taking
an n-dimensional vector to an m-dimensional vector.

A function is also called a mapping or a transformation. A function T’
sends a point x to the point 7(x), called the image of x.

T

—

This terminology also applies to whole sets. The image of a smiley face
is where the function T sends the entire smiley face. If the function is
continuous, the image will look like a warped version of the original set.

T

o o —

The set of potential inputs to a function is the domain of the function,
and the set of potential outputs is the codomain of the function. In
this case, the domain is R” and the codomain is R™.
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If T'is a function, then the range of T is all the points of the codomain
that are actually images of points in the domain. The range may or
may not be all of the codomain, but if it is, the function T is said to
be onto.

If a function T is one-to-one, it means you can’t have 2 distinct points
in the domain getting mapped by T to the same point in the codomain.
In other words, if T(x) = T(y) for some points x and y in the domain,
then x must equal y.

Vv

Think of a function from living people to their last names.
The domain is the set of all people. The codomain is the
set of all possible last names. The range is the set of last
names in use by living people.

This function is not onto if there are some last names that
are no longer in use. This function is not one-to-one,
because there are many people with the same last name.

_____Definition of a Linear Transformation

Not all functions are linear transformations, and there are additional
properties that a linear transformation must satisfy.

Often, 2 basic things are done with vectors: adding them and scaling
them by making them bigger or smaller by some factor. Linear
combinations of those vectors are formed. A linear transformation is a
function that plays nicely with respect to linear combinations.
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A function T from R” to R” is a linear transformation if it satisfies 2
properties.

a T@+v)=T(u) + T(w) for all vectors # and v in R”. This means that
if you add 2 vectors and then transform the result, you get the same
thing as if you transform the vectors first and then add them. In
other words, a linear transformation preserves the additive structure
of vectors.

b It also preserves scalar multiplication: T(ca) = ¢T'(a) for all scalars ¢
and for all vectors u. For example, if you transform a vector scaled by
a factor of 5, you get 5 times the transformed vector.

Taken together, these 2 properties mean that linear transformations
preserve the structure of linear combinations. If you take a linear
combination of vectors and transform it, that will be the same result as
if you transform it and then take the same linear combination of the
transformed vectors.

This is where a linear transformation gets its
name: It's a transformation that preserves linear
combinations.

Look at this example, which applies both properties:

TGBu-7v)=TBu) + T(-7v) =3T(u) - 7T(v).
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___Properties of Linear Transformations

What properties follow from the definition of a linear transformation?

The first thing to notice is that if you take the scalar to be zero, then
property (b) implies that 7(0) = 0.

The first zero vector is the #-dimensional zero vector, and the second is
the m-dimensional zero vector.

So, if a function doesn’t take the zero vector to the zero vector, it can’t
be a linear transformation!

Another thing to notice is that a linear transformation must take lines
to lines. To see this, recall that a line through a point p extending along
the direction vector d can be expressed as p + #d, where ¢ runs through
all real numbers. If you think of 7 as time and p + #d as the position of a
bug, then the bug starts at some basepoint p at time 0, and as time runs
forward, the bug moves in the direction d.

When you apply the transformation 7 to this line, you get T(p + td)
= T(p) +t T(d), where t runs through all real numbers. But this is just
a point T(p) plus ¢ times a direction 7(d). In other words, you get a
line—one that passes through T(p) and extends along the direction
T(d). So, the transformation T takes a straight line L in R" to a straight
line L' in R™.
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If you take the line p + td and then change the basepoint p to basepoint
q, the direction of the line is still d (it doesn’t change). So, the 2 lines
p +td and q + td are parallel. Then, their images, T(p) + t T(d) and
T(q)+ t T(d), are also parallel, because they have direction vector T(d).

So, a linear transformation takes parallel lines to parallel lines!

p+td— T(p) +tT(d)
q+td— T(q) +tT(d).

If you change the basepoint again, by the same amount as from p to g,
then the image basepoint changes by the same amount as it did from
T(p) to T(q). So, a linear transformation must take equally spaced
parallel lines to equally spaced parallel lines.

This property means that linear transformations must take squares to
parallelograms, because the sides must remain parallel but the angles
might change. It also means that equally spaced inputs must lead to
equally spaced outputs.

So, linear transformations must take a grid of squares to a grid of
parallelograms, and zero must go to zero.

Linear transformations are the nicest type of multivariable function,
because the outputs will depend on the inputs in a very nice way.
Linearity says that if your input changes from v to v + w, then the output
changes from T(v) to T(v) + T(w). In other words, if the input changes
by a vector w, then the output will change by a vector T(w), no matter
what v is! Equal changes in input lead to equal changes in output.

Think back to the nutrition function that takes grams of nuts and
chocolates to calories of various kinds.

(nut, chocolate) grams — (carb, fat, protein) calories.
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You may not know the actual function that does this, but if you think
about how such a function should behave, there are good reasons to
believe it must be linear.

+ Adding an additional gram of chocolate will change the calorie vector
the same amount, no matter how many nuts and how much chocolate
have been consumed. So, equally spaced inputs (such as adding a gram
of chocolate incrementally) lead to equally spaced changes in calories,
the way linear functions behave.

¢ The nutrition function sends the zero vector to the zero vector—
another sign of linearity.

And if a multivariable function is not linear, it is often approximately
linear. This is the whole message of multivariable calculus—to
approximate multivariable functions by linear transformations.

For example, look again at this function from R* to R?. It does not
send the square smiley face to a parallelogram.

1

However, if the function is approximately linear—or, in calculus terms,
differentiable—then small-enough squares will get sent to things that
are approximately parallelograms, like the nose on this face!
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In multivariable calculus, you learn that the
derivative of a function is a linear transformation,
because that's the best linear approximation to a
function at a single point!

A

— Matrix Multiplication Is a Linear Transformation

An example of a linear transformation is multiplication by a matrix.

Suppose A is an m x n matrix, with m rows and n columns. Then,
multiplication by A will take an #n-dimensional vector to an
m-dimensional vector. So,

T(x) = Ax

is a function from R” to R”. Moreover, it is linear! You know from
thinking about what it means to multiply matrices that for any scalar
factor ¢ and n-dimensional vector v,

Alew) = c(Av).

Also, from the distributive property of matrix multiplication, you know
that for n-dimensional vectors x and y,

Alx +y) =Ax + Ay.

So, multiplication by a matrix is a linear transformation!
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4

Amazingly, there really are no other examples

of linear transformations. Matrix multiplication

is the only kind of linear transformation there is
for functions between finite-dimensional vector
spaces, because every linear transformation from
R"to R™ can be represented as multiplication by
some m X n matrix A.

A

So, understanding linear transformations is the same as understanding
matrices.

0

This amazing fact is true because every vector can
be written in terms of the standard basis vectors.
Recall that the i standard basis vector e; is the 0
vector of all Os except for a 1 in the i position.

—_ .th
e=(1|«1
. . 1
Any other vector can be written as a linear 0
combination of the standard basis vectors. If you have
a vector (x, X, ... , x,), it equals x, times the first
basis vector plus x;, times the second basis vector, etc. 0

X:X1€1+X2€2+ .. tXx e.

n n

If you apply a linear transformation T to this linear combination and
use the linearity properties—which preserve linear combinations—you
will see that

T(%)=xT(&)+x,T(,)+..+x,T(¢,).
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The right side of this expression can be represented as matrix
multiplication by a matrix whose columns are the transformed basis
vectors. You can check this simply by thinking about what matrix
multiplication means.

This matrix multiplication performs | ‘

X
the dot product of each of the rows of !
the matrix with the vector (x,, ..., x,) T(Ci) e T(C‘H)
in succession. This is just taking a | ‘ x

linear combination of the columns of

this highlighted matrix.

“The matrix representing 7~ is sometimes notated by putting brackets

around T¢ [T7].

A linear transformation Tis determined by where T sends
the standard basis vectors.

To find the matrix that represents 7, all you have to do is create a
matrix whose columns are the transformed basis vectors. In other
words, the matrix records what it does to the standard basis vectors
in its columns! Looking at the columns shows you what the matrix is
doing to the standard basis vectors.

_ Examples of linear Transformations

The idea that you can find a matrix that represents a linear
transformation is really powerful! It means you can tell a computer
how to perform a linear transformation, even if all you have in your
head is a geometric picture.
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You can see how powerful this idea is by doing some examples.

In the plane, a reflection across the x-axis is
. . . (0.1)
a linear transformation, because the linearity
properties hold. If you scale a vector and then

reflect, that is the same as reflecting then X i
scaling. And if you add 2 vectors and then (1,0),"
reflect, that’s the same as reflecting and then o
adding the 2 vectors. (0’_1)

If you want to represent this reflection by matrix multiplication, you
just need to figure out where (1, 0) and (0, 1) go. You can see that (1, 0)
is not changed by this reflection, so it

goes to (1, 0). However, (0, 1) goes to [1] (O]
(0, -1). So, form a matrix with first ? 1
column (1, 0) and second column [1] [ o] so A= |:1 0i|
(0, -1). 0) -1 01/

This matrix A will actually perform
. . 10(x X

reflection across the x-axis. You can [0 1]{ }:[ ]

check that A(x, y) = (x, -y). — Ly

Another example is a shear transformation, which keeps one side of a
square the same but pushes the other side in the direction of the first.
So, (0, 1) stays fixed, but (1, 0) gets pushed up by (0, &) to the point
(1, k).

(14
T T
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Thus, its matrix has (1, ) in the first column and 1.0

(0, 1) in the second column. k1
Multiplying a vector by this matrix will perform where standard
this shear. basis goes

A final example is a rotation of the plane by angle 6. This is a
linear transformation. Again, you can check this by checking the
linearity properties: Taking a linear combination of vectors first and
then rotating is the same as rotating vectors and then taking linear
combinations.

So, there must be a matrix representing rotation. Which one?

Look at where the basis vectors go and form a matrix with those vectors
as columns.

e - (Oj (— sin@, cos 9) <c050, sin0)
0

Using trigonometry, e, the vector | |

(1, 0), goes to the vector (cos o, cos@ —sinf
sin6), and e,, the vector (0, 1), goes I:T:| =

to (-sin 6, cos 6). sin@ cos@

where standard
basis goes

70


https://www.thegreatcourses.com/

THE LECTURE 5
('GREAT COURSESf Linear Transformations

Then, you form a matrix with the image of e, as the first column and
the image of e, as the second column. The order matters here. And
if you take a vector x and multiply it by the matrix on the left, it will
perform rotation by 6!

If you perform this rotation twice in a row, you get rotation by 26.
[ )x=[1,][1, ]

But this must mean that when multiplied twice in a row (in other
words, squared), the matrix representing rotation by 6 must be equal to
the matrix representing rotation by 26.

The matrix representing rotation by 26 is this matrix:

c0s20 —sin26
sin20 cos20 |

But if you square the matrix representing rotation by 6, you can check
that you get this matrix:

cos?0 —sin’0 —2sinfcosO

2sinf cos®  cos20—sin6 |

These matrices must be the same, so if you set the corresponding
entries equal, you get the double-angle formulas from trigonometry!
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When you perform 2 linear transformations
one after the other—called a composition of
functions—it is the same as multiplying 2 matrices.

Lamb, “How to Look at Art,” https://blogs.scientificamerican.com/roots-of-
unity/how-to-look-at-art-a-mathematician-s-perspective/.

Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 1.8
and 1.9.

Poole, Linear Algebra, section 3.6 and the Vignette that follows.
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SYSTEMS OF LINEAR
EQUATIONS

o ne of the main applications of linear algebra is
solving systems of linear equations. This lecture
focuses on how to think about solutions to systems of linear
equations, both geometrically and algebraically.

—linear Equations

A linear equation in the variables x; through x, is an equation of
the form

A1X] + AaXy ¥ oo + A%, = b,

where the 4,’s are real coefficients and b is a constant.

In other words, it’s an equation where some linear combination of
variables is set equal to a constant.

For example, the equation 3x + 2y - 7z=5 is a linear equation in the
variables x, y, and z because you have a linear combination of x, y, and
z set equal to a constant.

73


https://www.thegreatcourses.com/

(' THE LECTURE 6
GREAT COURSESf Systems of Linear Equations

Linear equations have the property that each of the variables appears
only to the first power and is multiplied by a constant.

Nonlinear equations, on the other hand, have a strange dependence on
at least one of the variables.

For example, 3x - 2yz =4 is not linear, because the y and z are multiplied
together. Also, x* + y* + 22 =25 is not a linear equation, because the left
side depends on the squares of the variables.

Linear equations can, because of their form, always be represented by
setting a dot product of some vector (2, through a,) with a vector of
variables (x, through x,) equal to a constant.

(a1...an)0(x1...xn)=b.

X4
You can also represent it as a matrix product of I:a1 e a,,:l i |=b.
a single row of constants times a single column X

of variables. "

The set of vectors (x, y, z) that satisfies the
linear equation shown at right is a plane in R?. 3x+2y-72=5.

Also, 3x + 2y=5 has a solution set that looks
like a line in R2.

This is a general feature of a linear equation in 7 variables: The set
of all points in R” that satisfies the linear equation will be a linear
object called an (n - 1)-dimensional hyperplane. A hyperplane is a
fancy name for the generalization of a plane. A point is a 0-dimensional
hyperplane, a line is a 1-dimensional hyperplane, and a plane is a
2-dimensional hyperplane. The point is that linear equations have very
nice solution sets that are also very linear, flat objects.
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Contrast that with the nonlinear equation x* + y* + 2% = 25.

This is the equation of a sphere, which means that the set of all points
that satisfies this equation will form a surface in R? that looks like a
sphere. This solution set is not a hyperplane.

__ Systems of Linear Equations

A system of linear equations is just a collection of more than one linear
equation. For example, this is a system of linear equations.

x+x,+x, =4
2x,+5x,— x, =11

-X, + 2x3 =3

A system of linear equations naturally arises in domains
such as economics, chemistry, and physics.

+In economics, a linear equation might arise from a
budget constraint.

+ In chemistry, a system of linear equations naturally arises
when you are trying to balance a chemical equation.

+ In physics, linear equations often arise from the study of
electrical networks.

A
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Linear equations arise naturally in problems where you are demanding
that some linear combination of things satisfies some constraint. For
example, if you want to know how many quarters and nickels you need
to make $1, you get a linear equation. If ¢ is the number of quarters
and 7 is the number of nickels, then by counting cents, you get this
relationship:

q25 + n5 =100 cents.

That’s a linear equation in the variables g and 7.

__Solving Systems of Linear Equations

Suppose you have the following system of equations.

x+x,+x, =4
2x,+5x,— x, =11

—X, + 2)(3 =-3.

To solve this system means to find all sets of numbers for (x, x,, x3)
that satisfy all 3 equations simultaneously. In other words, find a point
(x1, x5, x3) in R? that makes all equations true simultaneously. In other
words, find a vector (x;, x,, x3) that satisfies this matrix equation.

For example, x, =3, x,=1, and x;=0 will work. Are there any other
solutions?
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Before answering this question algebraically, let’s see how geometric
insights can offer some perspective. The set of all solutions that satisfies
each single equation is a plane. So, the set of all solutions that satisfies
all equations simultaneously must be the intersection of all the planes

represented by each equation.
line of intersection

What can the intersection of 3 planes
look like? The intersection of 2 planes
is usually a line.

And if you intersect that with another
plane, you will usually get a point.
So, you expect to get a single solution
vector to this set of equations.

-

However, there are degenerate cases.
If you have all 3 planes identical, then
the intersection will be that entire
plane; in other words, you get a plane
of solutions—infinitely many! Every
point in that plane will satisfy all 3

point of

equations.

If 2 of the planes from these 3 equations are identical, the third plane
may cut this plane in a line, so you get a whole line of solutions.

But if 2 of the planes are parallel
and not identical, there will not be a
point that is simultaneously on both
planes, so even when you intersect
these planes with another plane, the
set of solutions to all 3 equations will
be empty.

planes
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So, without doing any algebra, you already see that a system of solutions
will be either empty, a single solution, or infinitely many solutions. In
fact, by reasoning about hyperplanes in a similar fashion, you will find
that this is a general feature of any system of linear equations: It will
either have one solution, no solution, or infinitely many solutions. And
you can determine this from thinking about the geometry!

How are solutions actually found algebraically?

When you solve a system of equations like the one in this example by
hand, it is tempting to just make some arbitrary choices for substitutions
until you get an answer.

But how can you solve a system of equations like this one in a systematic
way? The problem with doing this on a case-by-case basis is that you get
no insight into what is going on. In addition, you want something that
will work for a system of 3 equations or 300 equations—something you
could program a computer to do.

Gaussian Elimination

Although Gaussian
One method of solving systems of elimination is named
linear equations is called Gaussian after the 19th-century
elimination. The idea is simple: mathematician Carl
Convert the system of equations into Friedrich Gauss, it dates
an equivalent system of equations, back to the Chinese
meaning a new system of equations in the 3rd century BC
that has exactly the same solutions as and probably has been
the original. rediscovered many

times over the centuries.
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Recall a few basic facts about equations:

+You can add one equation to another equation to
get a third true statement. So, if A=B and C=D, then
A+C=B+D.

+If you do the same things to both sides of the equation,
the statement is still true. So, if A=B, then AC=BC, no
matter what Cis.

A

If you take one equation and multiply it by a nonzero constant,
that will not change the set of solutions to the system.

X+ x, + x, =4
2x1+5x2— X, = 11

-X, + 2x3 =-3.

So, if you changed the first equation to 2x, + 2x, + 2x; = 8, the set of
solutions to all 3 equations would stay the same. Any solution that
worked for the original system will still work for the new system; any
solution that works for the new system will still work for the original.

However, if you multiplied one equation by zero, then that equation
becomes 0 =0, which is true, but now you've lost a constraint that the
variables must satisty, and you've possibly enlarged the set of solutions.
So, multiplying by zero is prohibited if you want to be sure your
solution set is unchanged.

79


https://www.thegreatcourses.com/

(' THE LECTURE 6
GREAT COURSES' Systems of Linear Equations

Another operation you're allowed to do is to add a multiple of one
equation to another. The multiple could be positive or negative.
That won’t change the set of solutions, either.

So, for example, if you take the second equation and add -2 times the
first equation, that will have the effect of canceling the x, term, and it
produces a second term of 5x, - 2x,, which is 3x,.

Similarly, you get a third term of —x; - 2x; = -3x;, and for the constant
on the right side, you get 11 -2 x 4=3.

So, the second equation becomes 3x, - 3x; = 3.

This system has the same set of solutions as the original. The way to
see that is anything that satisfied the original system now still satisfies
this one. But you know you didn’t enlarge the set of solutions because
this step is reversible: If you want to get back the original system, all
you need to do is add twice the first equation to the second (because
you subtracted twice the first equation previously). So, anything that
satisfies the new system still satisfies the old.

Notice how unwieldy it is to keep rewriting

all these variables. You can use shorthand X+ x,+x, =4
to represent the original linear system of 2x,+5x,— x, =11
equations as an augmented matrix. —X, +2x,=-3

The augmented part is the rightmost column,
which is separated by a vertical line to help
you remember that these numbers come from

the constants in the linear equation. 1 14
2 5 1|11
-1 0 2|3

augmented matrix

80


https://www.thegreatcourses.com/

(' THE LECTURE 6
GREAT COURSESf Systems of Linear Equations

Remember, this augmented matrix is just shorthand for a system of
linear equations; it just shows you the coefficients rather than having
you write out all the variables! If an equation doesn’t have a variable,
you can think of the variable as having the coefficient 0. For example,
the third equation had no x,, so you have a 0 in the third row in the
X, position.

Performing operations that don’t change the solutions can be
represented by row operations on the augmented matrix. For example,
if you want to subtract 2 times the first row from the second row, you
can represent it this way:

11 14
R,-2R|[0 3 33
10 2|3

The notation R, - 2R, just tells you what you did.

You're going to keep doing things that won’t change the set of solutions.
For example, you could next try to make the -1 in the bottom left
corner into a zero. This would correspond to eliminating the x; term
in that equation. You could do that by adding the first row to the third
row. So,-1+1=0,0+1=1,2+1=3,and -3 +4=1. You'll get this:

1 1 1 4
0 3 313
R+R|[|0 1 3 1
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You could just keep going, playing this game, always getting an
equivalent system with the same solutions, but where are you headed?

Where you're trying to go is to

an augmented matrix like the 1 0 O]a X, =
following one, which has just 0 1 O|b| means X, = b
asingle 1 in each row and each 0O 0 1lc X. =C

3
column.

The corresponding system of equations has a very obvious solution:
If the right side is a bunch of constants 4, b, ¢, then this augmented
matrix would be saying x,=a, x,=b, and x;=c. In other words, it
would be telling you the solution to the system of equations. You can
recognize this pattern because you will see all Os on the left side, except
for a diagonal of Is.

You've seen this pattern before—it’s called the identity matrix! And the
diagonal is called the main diagonal of that square.

You may not be able to get to this pattern, but you can try.

So, in your original augmented matrix,

your strategy is to try to make zeros in all 1 1 1 4
these place.s, and you'll do it in the order » 5 '—1/]11
shown at right.

You try to zero out the entries below the

main diagonal first, working column by

column from left to right. Then, you

work above the main diagonal to turn all those entries into zeros, and
generally it will be easier at that point to work from right to left.
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In this example, you zero out the first column except for the 1 at
the top.

In the second column, you want to

1 1 1
have a 1 in the main diagonal, and 03 -3 3
you can do another thing that B
01 3 1

won’t change the set of solutions:
swap the rows.

Why is that allowed? It won’t change the set of solutions, because it
is just expressing the same equations but in a different order. And the
order of the rows has nothing to do with the order of the variables
corresponding to the columns; swapping rows does not change
anything about which variables are related to the columns.

Swapping rows is just a move you " 11 1 4
want to use to help you get 1s on

the main diagonal. Swapping rows | 0 1 3 1
2 and 3 gives you the matrix shown |_ 0 3 313
at right.

Now you can get a zero on the bottom of the second column by
subtracting 3 times the second row. Notice that this doesn’t mess up
the work you did to zero out the first column, because both row 2 and
row 3 had zeros there!

So, you get the matrix shown here.
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Next, you can multiply the third

row by /1 to get the matrix shown R
at right. 1 0 13 1

—5R (10 0 1 |0
Because you have 001 in the last 12

row, it will be easy to zero out the

entries in the third column by subtracting multiples of the last row.
Doing this won'’t affect the other columns, because 001 has zeros in
those columns.

1 114 R—-Ri|1 1 0|4

R—=3R0 1 0]1 0 1 0]1

0 01]0 0 0 1]0
Finally, you do a last step, as shown here. R-R,1 0 0|3
This shows you that the solution to this 8 (1) (1) (1)

system, as well as to the original system of
equations, is x; =3, x, =1, x;=0.

So, (3, 1, 0) is a solution, and, in fact, you showed that it is the only
solution to the original system of equations. By plugging these into the
original system (below), you can check that it works.

x+x,+x, =4
2x,+5x,— x, =11

—X, + 2x3 =-3.
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You used 3 operations on the rows of the augmented
matrix:

+ swapping rows;
+ multiplying rows by a nonzero constant; and

+adding a multiple of one row (j) to another row (i),
replacing row (i).

These operations are called elementary row operations,
and they do not change the solutions to a system of linear
equations. The process of getting there is called row
reduction or Gaussian elimination.

A

___ Getting Infinitely Many or No Solutions

What if you can’t for some reason get the method to produce the
identity matrix on the left side of the augmented matrix? Under what
conditions will the method fail?

You've already seen that a system always has either no solution, one
solution, or infinitely many solutions. Producing an identity matrix on
the left side is equivalent to finding a unique solution to the problem.
There must be other situations that will lead you to find no solution or
infinitely many solutions.
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Here’s one bad thing that could happen when you try to do row
reduction. You might end up with a row that looks something like this:

[000]8].
If you get a row like this, it stands for the equation
Ox; + Ox, + Ox3=8,

which is a nonsensical equation because zero can’t equal 8.
So, this will be a system of equations that has no solution.

If you get a row of all zeros, including the augmented part, like this:
[000]0],
that just means you had an equation that was redundant. It was

already a linear combination of the other equations, and row reduction
eliminated that equation.

So, something like this

1031
0112
000]0

would represent the following system of equations:

X1+ 3x3=1
Xy +x3=2.
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You can choose x; to be anything you want. Once you do that, x; and
x, are determined. You then say you can choose x5 “freely,” or you say
x3 is a “free variable.” If you have a free variable, then there will be

infinitely many solutions!

Chartier, When Life Is Linear, chap. 7.

Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 1.1
and 1.2.

Poole, Linear Algebra, sections 2.1 and 2.4.
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QUIZ FOR LECTURES 1-6

1 What are the 4 themes that you’ll encounter repeatedly throughout this
course? [LECTURE 1]

2 In the 2-dimensional plane, is reflection about the x-axis a linear
transformation? Youll want to check that it satisfies the 2 linearity
properties:

+ Ifyou scale a vector and then reflect it, do you get the same thing as
if you reflect the vector and then scale it?

+ If you add 2 vectors and then reflect them, is that the same as
reflecting the 2 vectors and then adding them? [LECTURE 1]

3 On graph paper:

a draw the set of all scalar multiples of the vector #= (1, -1) as points
in R? and indicate points that are integer multiples of the vector .

b draw the set of all scalar multiples of the vector » = (1, 2) and indicate
points that are integer multiples of the vector v. [LECTURE 2]

4 Consider the graph you drew in the previous problem. Now mark points
on your graph that are linear combinations (au + bv), where a and b are
integers. From your picture, can you estimate what linear combination
of u and v would produce the point (4, 0)? Does the set of all linear
combinations of the vectors # and v cover the entire plane? [LECTURE 2]

5 Letu=(1,0,2)and v=(-2, 3, 1). What is the dot product # * v and cross
product # x v of these 2 vectors? Based on your answers, what can you say
about the angles between u, v, and u x v? [LECTURE 3]

6 Given 3 points in R?, describe a procedure you would use to derive an
equation for the plane that passes through those 3 points. Also describe
any instances where the procedure might fail, and explain why. [LECTURE 3]
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7 Find the matrix product: [LECTURE 4]
1 6 0 1
2 5 1 1
3 4

8  Find the matrix product of the transposes of the above matrices in the
reverse order: [LECTURE 4]

B PR

9 Let T(x) be the function that takes a point x in R? and translates it 1 unit
to the right. Why is T not a linear transformation? [LECTURE 5]

O —
—

—— O
O -

10 Find a matrix representing R, the linear transformation of the plane that
reflects the plane about the diagonal line y = x. [LECTURE 5]

11 Consider this system of equations:

x+y-z=1
3x+2y=2.

First think about why the solution set of each equation alone is a plane
in R® Then use row operations to show that this system has the same
solution set as the following system:

x+2z=0
y-3z=1

Use this system to find a solution (x, 9 z) and verify that it is a solution of
the original system. [LECTURE ¢]

12 Can you have 3 linear equations in x, y, z such
that any pair of them have solutions but the 3 of
them cannot be simultaneously satisfied? Think be found on
geometrically to answer this question. [LECTURE ¢] page 296.

Solutions can
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his lecture focuses on how to systematically solve any

system of linear equations by using row operations
to put the matrix in a special form called reduced row
echelon form.

_ Reduced Row Echelon Form

Recall from the previous lecture that given an augmented matrix
representing a system of equations, there are 3 elementary row
operations that can be performed on it that do not change the solution
set of that system of equations. You can

¢ swap 2 rows;
+ multiply a row by a nonzero constant; and

+ add a multiple of one row to another row, replacing that row.

The idea of Gaussian elimination is to use these operations to simplify
the system. This could mean eliminating as many variables from the
equations as possible. This corresponds to increasing the number of
zeros on the left side of the augmented matrix, because they represent
coefficients of variables.
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Notice that the third row operation is the one that will enable you to take
a particular nonzero entry of an augmented matrix and make it zero;
you’ll do this by adding a multiple of another row to it. The important
point here is to do this in such a way that you don’t unintentionally
make some entries nonzero that you already zeroed earlier.

Let’s try to be systematic about it. The first thing you might try is
to mimic the example from the previous lecture, in which you used
row operations to convert the left side of the
augmented matrix to an identity matrix. This 10 -1l1
won’t always be possible for many reasons; here is
one example, where the left side of an augmented 0 1 22

matrix is not square.

And here is another augmented matrix, where

1 0 -1|1

the left side is square but no row operations will
0 0 22 .
o o olo produce a 1 in the second column because all

entries in the second column are 0.

So, instead of an identity matrix, you’ll

aim for something more general called
row echelon form (REF). The word echelon

For example, suppose you have a system means steplike.

of equations Ax=b, where A is a 3x5

matrix. Your goal is to use elementary row
operations (EROs) to reduce it to a form
that has a steplike appearance.
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Here’s what makes a form an REF. On the left side of the augmented
matrix, the first zero entry in any row is called a leading entry. To be
in REF, the augmented matrix must satisfy 2 properties:

¢ The leading entry of any row must always be to the right of a leading
entry of a previous row.

+ Rows consisting only of zeros are at the bottom.

Matrices satisfying these properties will have a steplike appearance such
that leading entries sit on the steps and all entries below the steps are
zero. (Above the steps, apart from the leading entries, the other entries
may or may not be zero.)

Look at the first column. If there is any nonzero entry in that column,
use a swap (if needed) to make the first entry of the column nonzero.
That is the leading entry of the first row. Then, add appropriate
multiples of this row to other rows to zero out the rest of the entries
under this leading entry. Now imagine you freeze the first row so
that you no longer modify it. Then, consider the second row the
“current” row.

Now look at the second column. If all unfrozen entries are zero, move
to the next column and repeat the process. If some unfrozen entries are
nonzero, swap rows (if needed) to move a nonzero entry to the current
row. This becomes a leading entry of the current row, and the current
row can now be used on the unfrozen rows to zero out all the unfrozen
entries of the second column. These operations will not disturb the
zeros that already exist in the first column, because the second row had
a zero in the first column. Now freeze the current row and move on to
the next row as the current row.

If you keep doing this in this fashion, you will produce a matrix in REF.
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You can glean some interesting things from REF. It reveals some hidden
structure of the original matrix A. For example, if the REF has a row
of zeros, then one of the original rows of the matrix A must be a linear
combination of the other rows. Also, the number of leading entries says
something about the number of rows of A that is sufficient to span any
linear combinations of the rows of A. The number of leading entries is
called the rank of a matrix.

A matrix in REF is easy to solve by back substitution, starting with the
last nonzero row. That is one reason why people often stop Gaussian
elimination at the REF, because you can often figure out what you need
from there.

Unfortunately, though, REF is not unique. If you tell 2 people to take
a matrix and row-reduce it to put it in REF, they may come up with
different forms. The set of solutions will be the same, because that’s
what row operations preserve, but the description of the set of solutions
expressed by the REF may be very different.

This is where reduced row echelon form (RREF) is helpful, because
it is unique for any given augmented matrix. If you give an augmented
matrix to 2 different people and tell them to put it in RREF, they will
give you back the same answers.

RREEF takes REF a few steps further. Namely, it has 2 additional properties:
+ Every leading entry is a 1.

+ A column with a leading entry has zeros in all other entries of that
column.
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This is possible because you can take REF and multiply rows by
nonzero constants to turn the leading entry into a 1. Then, you can use
a row with a leading 1 to zero out all the other entries in the column
with that 1.

For example, consider the following system of equations.

X1+ 2%, + 3x3=4

5x1 + 6x, + 7x3 = 8. [ 4

8

1 2 3
56 7

This has the augmented matrix shown at right.

In the first column, there is already a 1 in the first row. So, focus on
changing the 5 in the bottom left corner to a 0.

From row 2, you can subtract 5 times row 1. So,

5_5X1=O)
6-5x%x2=-4,
7-5x3=-8,

and 8 -5 x4=-12.

So, you have the matrix shown here. You L2 34
should recognize it as REF because the leading
entry in the second row (-4) is to the right of 0 -4 -8|-12
the leading entry in the first row.
Next, you try to turn this into RREF.
You can change the -4 entry into a 1 by

s 1 2 3|4
multiplying row 2 by the constant (-1%). If you
do this, you obtain the matrix shown at right. 0 1 23
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Finally, you need to zero out the entry in row 1, column 2, because
it is in the same column as row 2’s leading entry. You can do this by
subtracting twice the second row from the first row.

This is now in RREF, because all leading entries 1 0 -1l
are 1 and all other entries in columns with leading
entries are 0.

0 1/2|3

Note that you had many choices you could have made to row-reduce
this augmented matrix, but there is an important theorem that says no
matter what choices of row operations you made, you must always get
the same result for the RREF.

4

THEOREM

For a given matrix, the reduced row echelon form is
unique.

Note that this theorem holds whether or not the matrix is
augmented.

A

__Using the RREF to Find the Set of Solutions

If you have an augmented matrix in RREF, there’s an easy way to
figure out the set of solutions. First of all, check if there are any
inconsistencies—remember you can see if there are any by looking
for a row of zeros on the left side of the augmented matrix equaling
something nonzero on the right.
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If there are none, then we identify what are called free variables.
Remember that every column on the left side of an augmented matrix
corresponds to a variable. Look at all the columns with leading 1s in
them. The associated variables are called leading variables; all the
other variables are free variables.

These variables are called free because they can be chosen freely—to
be any real number. If there are no free variables, then the leading
variables will be completely determined, so the solution is unique.
Otherwise, the basic idea is to use the RREF to express leading
variables in terms of free variables. Since free variables are easy to
express in terms of themselves, this will give us a way to express ALL
variables in terms of the free variables, which will lead to a parametric
description of the solutions using free variables as parameters, as
long as solutions exist.

To understand why, let’s return to the earlier example in which the
RREF for the following system was analyzed.

X+ 2%, + 3x;=4
5x; + 6x, + 7x; = 8.

The RREF was

1 0 -1(-2
01 2|3

The leading 1s in the first and second column are coefficients of x; and
X,, s0 x; and x, are the leading variables. The remaining variable, x;, is
thus the free variable.
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You can see the importance of the free variable if you examine the
system of equations that comes from the augmented matrix, which
must have the same solutions as the original system.

xl—X3=—2
X2+2X3:3.

The RREF guarantees that leading variables appear in exactly one
equation, but the free variable x; can appear in many equations.

You can choose x; to be any number you want, and once you do, x; and
x, are now determined.

So, to find the set of solutions, your goal is to express all variables in
terms of the free variables, which in this case is just x5, and use that to
determine a vector equation.

The first equation, x; = -2 + x3, allows you to solve for x, in terms of x;.
The second equation shows you x, =3 - 2x;.
What about x;? How do you express x; in terms of x;?

Although there is no given equation that expresses x; in terms of x;
alone, that’s OK, because you don’t need one. It is obvious that x; =x;.

So, then you get a set of 3 equations expressing the set of solutions in
terms of x;, the one free variable.

X1 =-2+x3
Xy =3 - 2x;
X3 =X3.
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This can be rewritten as a vector equation if you Xl |2 1
factor out the free variable. X, [=| 3 [+x5-2].
X 0 1

Because x; can be chosen to be any real number,
it can be thought of as a parameter. So, you
might recognize this vector expression as a parametric description of a
line, because it is a point (-2, 3, 0) plus some parameter times a vector
direction (1, -2, 1). So, the set of solutions to the original system is a line!

If x; =0, you see that a solution to the original system is (-2, 3, 0),
and if x; = 1, you get the solution (-1, 1, 1). By plugging these into the
original system (below), you can check that they are both solutions.

X+ 2%, + 3x;=4
5x; + 6x, + 7x; = 8.

_ Row-Equivalent Matrices

In addition to being useful for expressing the set of solutions to a linear
system, RREF can also be used to tell which matrices are related by
row operations.

Let’s call 2 matrices row-equivalent if there is a series of elementary
row operations that take you from one matrix to the other. Then, the
following theorem is true.

THEOREM

Matrices A and B are row-equivalent if and only if A and
B have the same RREF.
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Let’s prove this fact. First, if A and B are row-equivalent, then there
is a sequence of row operations taking A to B. But there is a series
of row operations that takes you from B to B’s RREF. Putting these
sequences together gives you a sequence from A to B’s RREF. But this
must then be A’s RREF, because RREFs are unique. So, A and B have
the same RREF.

EROs

A— B - RREF.

Next, let’s suppose that A and B have the same RREF. Then, there
is a sequence of row operations taking you from A to the RREF. If
you could find a sequence taking the RREF to B, you would be done,
because there would be a sequence of row operations going from A
to B. But you know there are row operations taking B to the RREF.
Because every row operation is reversible, you can reverse this sequence
to obtain a sequence from the RREF to B, as desired.

This is a helpful criterion to tell when 2 matrices are Eké\, /B
row-equivalent. RREF

Chartier, When Life Is Linear, chap. 6.

Kalman, “An Underdetermined Linear System for GPS,” https://www.maa.
org/sites/default/files/pdf/upload_library/22/Polya/Kalman.pdf.

Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 1.2,
1.5, and 1.6.

Poole, Linear Algebra, section 2.2 and the Vignette that follows section 2.4.

Yuster, “The Reduced Row Echelon Form Is Unique,” https://www.maa.org/
sites/default/files/Yuster19807.pdf.
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I n some instances, the solution set of a system of linear
equations is naturally a geometric object, such as a line or
a plane, because it is a linear combination of various vectors.
This lecture focuses on the geometry of linear combinations.

_ The Span of a Set of Vectors

Recall from lecture 2 that the span of a set of vectors is the set of all
linear combinations of those vectors.

If you have just one vector in R”, the set of all

linear combinations of one vector in R” is just

multiples of that vector. This forms a set that et

is just a line in R". So, for example, the (2 1)

vector (2, 1) lives in the plane. Then, the ’

span of the vector (2, 1) is anything of

the form given by some constant k times (2, 1). So, anything of the
form (2k, k) is in the span of (2, 1). Note that £ could be negative. So,
this forms a line in the plane, because you can go both forward and
backward in the direction (2, 1).
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The span of 2 vectors—for example, v, and v,—is the set of all linear
combinations of »; and »,. This means it could be any multiple of v,
plus any multiple of »,. In other words, the span of a set of vectors is
the set of all points you could reach from the origin if you were limited
to adding multiples of those vectors.

Consider 2 vectors v, and v, sitting in
3-dimensional space, as in the picture
shown here, where v, and v, are based at a —
blue dot that represents the origin. *b

If you just draw integer multiples of v,

plus integer multiples of v,, you will

get the set of points of a grid, as in the

picture. To get to the point representing

v, + v,, you march first in the direction v, and then in the direction v,.
And to get to the point v, - v,, you first move in direction », and then
in the direction of -v,, which is the opposite of the direction v,.

How do you get from the blue point to the point b using v, and v,?
You can use 2 multiples of v, plus /5 of v,.

If you have 2 vectors v, and v,, any linear combination of v, and v,
will produce a point on a plane containing », and »,. And those are,
intuitively, the only points you could reach. So, you can see that with
just 2 vectors, you won’t be able to reach every point in R®. So, the span
of 2 vectors is a plane.

The span of any 2 vectors is generally a plane, but if », and v, are
parallel (pointing in the same direction or opposite directions), their
span would be a line.
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And if v, and v, are the zero vector, then the span of v, and v, will be
a single point—the zero vector—because that’s all you can get when
taking linear combinations of the zero vector!

Similarly, the span of 3 vectors can be something that is at most
3-dimensional, and the span of & vectors can be at most k-dimensional
in some high-dimensional space, but it can be smaller.

Suppose you are asked to find the span of the vectors (1, 0) and (0, 1).
The first thing you might do is think about this intuitively:

(1, 0) and (0, 1) are 2-dimensional vectors, so they live in R?. And
there are 2 of them, which means they span at most a plane, but maybe
something smaller. If they span a plane, there is only one plane they
could span—namely, all of R*.

Can you get any vector (4, B) as a linear combination of (1, 0) and
0, 1)?

Yes. This is just what you do with the usual coordinate system. You
march over A units in the x direction and B in the y direction. This is
just doing the combination A(1, 0) + B(0, 1). So, the span of these 2
vectors is all R2.

o] [tz

On the other hand, the span of the vectors (1, 0) and (2, 0) is a line
consisting of all points of the form (x, 0) for a real number x. In this
case, taking linear combinations of (1, 0) and (2, 0) will only produce
vectors whose second coordinate is 0.
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What about the span of the vectors (1, 3) and (3, 1)?

Again, the vectors are in the plane R?, and they should span at most a
plane. You expect that as long as they don’t point in the same direction,
they should span the whole plane. It may not be as obvious how to
construct an arbitrary vector (4, B) as a combination of (1, 3) and
(3, 1), so let’s figure out how to do that.

When Is a Vector in the

__Span of a Set of Vectors?

In general, when is a vector b in the span of a set of vectors v, through
v,? In other words, when is b a linear combination of given vectors, and
if it is, what linear combination is it?

be span{vl, ,Vk}?

For example, is (1, 2, 3) in the span of the 2 vectors (4, 5, 6) and
(7, 8,9)?

1 4
Is| 2 |e spans| 5
3 6

O 0
~
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This is the same as finding coefficients

x, and x, to make x,(4, 5, 6) + x,(7, 8, 9) 7 I
equal to (1, 2, 3). x| 5|+x,| 8 |=]2
6 9 3

But notice that this is just a linear .
system of equations! For example, the
first row is 4x, + 7x, =1, and the other
rows are similarly linear equations. So, N
.1 . . 4 7|1 10]2
finding coefficients x, and x; is the same EROs

; . 58|12 —=|01]|-1].
as taking the augmented matrix and 6 93 00lo

reducing it by row operations.

When you put it in RREF, you see that there is no inconsistency,
because there is no row that is all zeros on the left while being nonzero
on the augmented side. This RREF shows that a solution exists—
namely, x; =2 and x, =-1.

So, the answer to the question posed previously is yes: (1, 2, 3) is in the
span of the 2 vectors. And you just solved for the coefficients! So, you
know that

In fact, you know this is the only combination that would produce
(1, 2, 3) because it was the only solution to the system of linear
equations you had.

Now look at the RREF of the augmented matrix. 1 02
0 1]|-1
000
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The last row is a row of zeros. You could have foreseen that there would
be a row of zeros on the left side because there are more rows than
columns on the left side (which comes from the fact that the dimension
of the vectors, 3, is greater than the number of vectors you are taking
the span of, 2 in this case).

However, on the right, the last row may not have had a zero if you had
row-reduced a different vector besides (1, 2, 3). So, you could have had
an inconsistency, which suggests that not all vectors in R? are in the
span of (4, 5 ,6) and (7, 8, 9). This makes sense, because the span of 2

vectors is at most a plane in R°.

Vv

THEOREM

A system of equations Ax=b has a solution if and
only if b is a linear combination of the columns

of A. In other words, Ax=b has a solution if and
only if b is in the span of the columns of A.

This is an answer to the question of how to tell
when a vector is in the span of a set of vectors:
Just solve a certain matrix equation.

A

105


https://www.thegreatcourses.com/

(' THE LECTURE 8
GREAT COURSES' Span and Linear Dependence

__linear Dependence of a Set of Vectors

If you have fewer vectors than dimensions, you might not span the
entire space. But what if you have more vectors than dimensions?

Suppose you have 3 vectors in R*: #=(1, 0), v=(0, 1), and w= (2, 3).
What do they span?

ua v w
What's span{[ I }{O}[ 2 }}in R*?
O 1] 3

You have already seen that (1, 0) and (0, 1) span all R?, so you expect
that if you throw in another vector, the span should only get bigger. But
it can’t get bigger because you've already spanned the entire space of R*.

The theorem suggests that finding the span of

these 3 vectors is the same as seeing if a certain 102 b]
system of equations—the one represented by 0131|b
the augmented matrix at right—has a solution. 2

Notice how the columns on the left are vectors #, v, and w that you were
given and the right side is a generic point b with coordinates (6,, b,).
By using generic letters for b, and b,, you are asking this question: For
which &, and b, is a solution possible? In other words, which vectors b
are in the span of these 3 vectors?

Solving this particular augmented matrix is easy because it is already in
RREF. So, it represents the system x, + 2x; = b, and x, + 3x; = b,.

Recall that the variables x,, x,, and x; will tell you the linear combination
of the columns that produce (b;, b,). Also, you see from the RREF that
x; and x; are leading variables (associated with the leading 1s), and x; is
a free variable because the column for x; has no leading 1 in it.
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So, to solve this system, you should try to express all variables in terms
of free variables. When you do that, you get

X1 = bl - ZX3
Xy = bz - 3X3.

And x; is free, so it’s easily expressed in terms of x; by saying x; = x;.

X, =b- 2x, X, b, -2
X,= b2 —3X3 so | x,|= b2 +x, 3|
X, = X, X, 0 1

So, you get (xi, x5, x3) = (b1, by, 0) +x5(=2, -3, 1).

These are the coefficient combinations that will produce the vector
(b, b,) from the 3 vectors u, v, and w.

This solution should not surprise you, because if x; is zero, you get the
result you got before: that every vector (b, b,) can be produced as a
linear combination of (1, 0) and (0, 1), with coefficients that are just
the coordinates b, and b,. So, if you want to get the point (5, 7), you
just use 5 times (1, 0) and 7 times (0, 1).

Yoo

But notice from this analysis that there are multiple solutions—in fact,
a line of solutions—and that each solution is given by a different choice
of free variable x;. So, if you want to get (5,7) using 1 as the coefficient
for the vector w, then you’ll need x; = 1.
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So, then,
(x1, %, %3) = (5,7, 0) + 1(=2, -3, 1) = (3, 4, 1).

Going back to the vectors #, v, and w, this means

IR BN

Thus, the linear combination you get to produce a particular vector in
this case is not unique. This is because you had the presence of a free
variable—in this case, x;. And you had that free variable because you
had more vectors than dimensions.

Is possible in a case like this that the RREF could reveal an
inconsistency; for example, a set of 3 vectors might still span a line
in R?, and not every point in R? is a linear combination of 3 given
vectors. But if there is no inconsistency and you have more vectors than
dimensions, then linear combinations that produce a specific vector are
not unique.

In other words, when you have more vectors than dimensions, you
don’t need all the vectors to produce the span of those vectors. Some of
the vectors are redundant for that purpose. In this example, you didn’t
need the vector (2, 3). You could have thrown it out and the other 2
vectors would still produce all R%.

In fact, w= (2, 3) is a linear combination of the other 2 vectors. It is
just 2u + 3v. So, anything you could form using (2, 3) could be formed
using (1, 0) and (0, 1). That’s one sense in which (2, 3) is redundant.

This leads to an important concept that describes when a set of vectors
is redundant in that sense. It’s called linear dependence.
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__linear Independence of a Set of Vectors

A set of vectors is linearly dependent if there are coefficients (called
Weights) not all zero, such that a linear combination of those vectors equals
the zero vector. Otherwise, the set of vectors is linearly independent.

v, te,v,+...+c v, = 0.

Notice that this definition does not require all coefficients to be
nonzero, just some of them. This situation, when some of the
coefficients are nonzero, is called a nontrivial linear combination. (If
all were zero, it would be called a trivial linear combination.)

In the example with #, v, and w, you've seen that w=2i+37
w is already a linear combination of # and v—
namely, w=2u + 3v. 20+3v—-w =0.

This is the same as saying that 2u+ 3v-w is

equal to the zero vector. In other words, if one

vector can be written in terms of the others, then

there is a nontrivial linear combination that produces the zero vector.
And if there is a nontrivial linear combination, by solving for one of
the vectors in terms of the others, you'd see that one of the vectors is a
linear combination of the others. You have just proved a theorem.

THEOREM

A set of vectors is linearly dependent if and only if at least
one vector is a linear combination of the others.
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So, the vector that is a linear combination of the others could be
removed from the set of vectors and you would not change its span.
You would have just removed a redundant vector.

Note that when you have a linearly dependent set, you are not saying
that every vector is a linear combination of the others, just that one of
the vectors is a linear combination of the others. For example, if you
have vectors a, b, and ¢ and vectors @ and ¢ are multiples of one another
while b points in a different direction, then you wouldn’t be able to
remove b without changing the span, and b is not a linear combination
of vectors a and .

a {Zz,b’f} is linearly dependent because
e/ 13+ 0h—2¢ =0,
b nontrivial weights

And that’s because the nontrivial combination of a, b, and ¢ that
produces the zero vector here is (@ - 2¢) = 0. The coefficient of b in this
nontrivial combination is zero, so this linear dependency relationship
does not involve b.

Notice the language that is used: Linear dependence (or
independence) is a property of a set of vectors—not a
property of a single vector.

A common mistake people make is to talk about a single
vector as dependent or independent, but that has no
meaning apart from a set you are speaking about.

A
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SYSTEM

equals b?

| B

OF EQUATIONS
X, +2x, +3X3 =

4X1 +95x, +6X3 =b

THE FUNDAMENTAL CORRESPONDENCE

A matrix equation, a system of equations, and a vector
equation may appear to be 3 different things, but they are
really saying the same thing.

MATRIX EQUATION

EQUATION
3] [
%67 b
2

At one corner of this triangle is a matrix equation of the
form Ax=b. If you write out what it is saying, you will
get the system of linear equations that’s in the bottom
left corner. But if you look at this system of equations and
pull out the dependence on x;, x,, and x; as coefficients
of vectors that are the columns of A, then you get the
vector equation in the bottom right corner, which asks
this question: What linear combination of these columns

VECTOR

b

A
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Now let’s connect the discussion of linear independence of a set of
vectors to the uniqueness of a linear combination of those vectors.

If a set of vectors is linearly independent, it means that the only way to
get the zero vector as a linear combination is if the coefficients are all
zero. This is equivalent to saying that the zero vector is in the span of a
set of vectors in exactly one way.

By the fundamental correspondence (see PAGE 111) between vector
equations and linear equations, this is just a statement about a system
of linear equations: If you put a set of vectors in the columns of a matrix
A, then to say the columns of A are linearly independent means the
only way to get the zero vector as a linear combination of the columns
is if all coefficients are zero. In other words, Ax = 0 has only the trivial
solution where all coefficients are zero.

And you can see from the RREF of A that you have linear independence
of the columns if there are no free variables in the RREF.

Notice that a system of equations of the form Ax=0—called a
homogeneous system of equations—can always be solved, because A
times the zero vector gives the zero vector. So, the zero vector is always
a solution, called the trivial solution. So, a homogeneous system of
equations can never have an inconsistency.

The only question for a homogeneous system is whether the trivial
solution is the unique solution. Otherwise, Ax =0 has more than one
solution, which happens when there are free variables in the reduced
row echelon form.

Lay, Lay, and McDonald, Linear Algebra and Its Applications, section 1.7.

Poole, Linear Algebra, section 2.3.
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SUBSETS TO LOOK FOR

The row space, column space, and null-space are 3
special objects associated to an m x n matrix. They

are subspaces of either R" or R™. These subspaces are
often important objects precisely because they highlight the
underlying geometry of the linear transformation associated
with a matrix.

The Null-Space of a Matrix

Recall that a homogeneous system of linear equations is one of the form

Ax=0,

where A is a matrix, 0 is the zero vector, and x is an unknown vector.
Homogeneous systems always have at least one solution—namely, the
trivial one, in which x = 0. But there may be other solutions.
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For example, consider the following simple linear equation:

[1 23] ; =[0].

It has (-2, 1, 0) and (3, 0, -1) as solutions. And
if you add those 2 solutions together, you get ... oo
(1, 1, 1), which is another solution! This is not ! ]

a coincidence. VP
A [

The solution set to an equation of the form L'VZ

Ax + By + Cz=D is a plane, and if D=0, the 6

solution set passes through the origin. So, if
you add 2 vectors in this plane, it remains
in the plane.

This is a general phenomenon for the solution set of any homogeneous
system of linear equations. The set of all solutions to Ax = 0 is called the
null-space of a matrix A4, and it is denoted by Null(4).

Null(A) = {)? eR" : AX = 6}
Null-space gets its
name because null

The claim is that if 2 vectors x and
means zero, and the

- y are in Null(4), then x +y is also in
null-space of A'is Null(A). Let’s see.
the set of all vectors

that multiplication
by A sends to the

zero vector.

For x and y to be in Null(4) means that
Ax=0and Ay=0.

A
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Can you see why A(x +y) = 0?

{AX:G} Ax+ Ay =0
=
Ay=0] "A(x+y)=0

Ax + Ay is equal to the zero vector because both terms are the zero
vector. And because Ax + Ay=A(x +y) using the linearity of matrix
multiplication, A(x +y) = 0, which means x +y is in Null(4). So, the
set Null(A4) has this curious property: Adding 2 things in Null(4) stays
in Null(4), so the set is closed under addition. In other words, you can’t
get anything new by adding things in Null(A).

In fact, it is also closed under scalar multiplication—meaning it has the
property that if x is in Null(4) and c is a scalar, then cx is in Null(4),
because A(cx) = cAx=c0=0.

Together, these 2 properties mean that linear combinations of things in
the null-space remain in the null-space. Such a set is called a subspace
if it is closed under taking linear combinations. The null-space is one
example of a subspace.

Vv

One way linear systems arise naturally in economics is

in setting budget constraints. For example, you may be
trying to build some set of objects using some parts, and if
you know the cost of those parts, then the total cost of the
objects will vary linearly with the parts because each part
has a particular cost. The total costs for the objects cannot
exceed the budget constraints you are given.
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__Subspaces

The idea of a subspace is a generalization of a line or plane through the
origin. Formally, a subspace can be defined as follows.

Vv

DEFINITION

A collection H of vectors in R" is called a subspace of R"
if it satisfies 3 properties:

1 H contains the zero vector. (This property is here just
to ensure that the subspace is nonempty.)

2 His closed under addition. (If x and y are in H, then
x+yisinH.)

3 His closed under scalar multiplication. (If x is in H and
cis a real number, then cx is in H.)

A

Whenever you refer to a subspace, you are always implicitly referring
to a set that sits inside some bigger space. So, a given set is a subspace
of something else. But the whole idea of a subspace is that when you
take things in the set and perform operations like addition and scalar
multiplication, you will not leave the set. You can’t leave it by taking
linear combinations. So, a subspace interacts with itself and is mostly
oblivious to the things outside it.
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Let’s look at some simple examples.

{0} in R" is subspace of R".
The zero vector all by itself is a set that is a subspace of R”. Clearly, it
contains zero, and if you add 2 things in it (both zero), then their sum

is zero, so it stays in the set, and multiplying zero by a constant keeps
you at zero, in the set.

R" is subspace of R”.

The entire space R” is a subspace of R”, because it contains the zero
vector and is clearly closed under addition and scalar multiplication.

Is a line L passing through the origin in R? L A
a subspace? Any point on L is a multiple of o
some vector v. So, if you take 2 points on L f
and add them, you are adding 2 multiples of .."

v, so you'll get another multiple of ». And

if you multiply a multiple of » by a scalar,
you'll get another multiple of v. So, this line
L satisfies all 3 properties of subspaces, so it .
is a subspace of R?. »

The same arguments show in general that a line through the origin in
R" is a subspace of R”.

Can a line L' not passing through the origin
be a subspace?

No, because it does not satisfy the first
property: It does not contain the zero vector.
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But is that the only obstacle to being a subspace? For example, suppose
you include the zero vector in L'. Is that a subspace?

It’s still not a subspace, because if you take a vector x on L’ and double
it, you will get a vector 2x that is not on L'. So, it is still not a subspace.

If you have 2 parallel lines in the plane, one that passes through the
origin, is that a subspace?

No, because it’s not closed under linear combinations.

Consider this set: the first quadrant in R?. oV
Is that a subspace?

It contains zero and is closed under addition, ~ —y; *

but if you take a vector in the first quadrant

and multiply it by -1, it is no longer in the first quadrant. So, the set is
not closed under scalar multiplication, so it is not a subspace, because it
does not satisfy all 3 conditions.

A line through the origin is a subspace, and a plane through the origin
is also a subspace. In fact, the span of a set of vectors in R” is always a
subspace, because it passes through the origin, and if you add 2 vectors
in the set, you generate something in the set. If you multiply a vector in
the set by some scalar, the result stays in the set.

4

THEOREM

If His the span of a set of vectors v, through v, in
R", then H is a subspace of R".

A
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To prove this theorem, you have to check 3 conditions for a subspace
that all concern membership in H. In other words, is the vector
expressible as a linear combination of v, through »,? Let’s check.

1 Isthezero vector in H? Yes, because zero is the trivial linear combination
of the vectors v, through v;, where all coefficients are zero.

2 Suppose x and y are in H, meaning that they are linear combinations of »,
through ;. Then x +y is too. To show this, write x as a,v; + ... + 44w, and
yasbw, +...+ b, Their sum x + yis (a1 + b)v, + ... + (@ + b)v,. This is
clearly a linear combination of v, through v,, so x +y is also in H.

3 Ifcis ascalar real number and x is in H as a linear combination of v,

through v;, then cx is the linear combination of », through v, with all
the coefficients multiplied by c.

So, the span of a set of vectors in R” is always a subspace of R”. And
because the span of a set of vectors is always a subspace, a subspace is
always the span of a set of vectors.

4

THEOREM

If His a subspace of R", then H is the span of
some set of vectors.

A

But which set of vectors?

The entire set H would work. If you just take the span of all vectors of
H, you still get H because H is closed under linear combinations. But
maybe you can be more economical and choose a smaller set of vectors.
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The point of this theorem is that spans of vectors are really the only
kinds of things that can be subspaces. This gives us a clue, geometrically,
of what subspaces must be: As sets of all linear combinations of a set of
vectors, they have to be either a point (the origin), a line through the
origin, a plane through the origin, or some k-dimensional flat space

through the origin.

The Row Space and
—Column Space of a Matrix

There are 3 special subspaces that come associated with every matrix:
the null-space, the row space, and the column space. These subspaces
tell us something about the hidden structure of the matrix.

For example, because an 7 x n matrix represents a linear transformation
from R” to R”, the row space and null-space are subspaces of R” and
the column space is a subspace of R”, and that tells us something about
the geometry of this linear transformation.

Recall the fundamental correspondence between a matrix equation, a
system of equations, and a vector equation.

MATRIX EQUATION

{1 2 3] x, | [,
456] |x,| |b,
~ x|

= ~
SYSTEM £ > VECTOR
OF EQUATIONS EQUATION
x,+2x,+3x,=b, 1 2 3] | b
4 _ A ANRE SN =
x,+5x,+6x,=bh, 4 5 6] |b,
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In the displayed example, one way to view this matrix equation is as a
system of equations: 2 equations in 3 unknowns. Another way to view
this matrix equation is as a linear combination of the columns—in
this case, the 3 unknowns are the coefficients of the columns of the
matrix A.

These 2 points of view are essentially a row view and a column view.
For systems of equations, the rows are of interest because they represent
equations. The column view pays attention to the column vectors:
How do they combine to form the vector b? Switching back and forth
between these 2 viewpoints will be continually handy.

For an m x n matrix A, the row space of matrix A is defined to be the
span of the rows of A. It’s denoted by Row(A). Because it is the span of
vectors in R, it is a subspace of R”.

The column space of A is defined to be the span of the columns of
A. It’s denoted by Col(A). It is the span of vectors in R”, so it is a
subspace of R™.

Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 2.8
and 2.9.

Poole, Linear Algebra, section 3.5.
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BASES: BASIC
BUILDING BLOCKS

Agood set of vectors, called a basis, should span the

space in question and be linearly independent so there
isn't redundancy in how the vectors are expressed—in other
words, there's only one way to write any vector as a linear
combination of these vectors. It is also useful to have some of

the vectors span the subspace so that coefficients of the other
basis vectors are small.

Geometric Interpretation of

—_Row, Column, and Null-Spaces

Recall that every m x n matrix A represents a linear transformation in
the following way: Let the function T(x) be defined to be Ax. Then, T
is a linear transformation from R” to R”. In effect, T is the function
that performs matrix multiplication by A.

T(x) = Ax.
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But Ax can also be viewed as a linear combination of the columns of
A. But this means that the range of T, which is the set of all possible
vectors that result from multiplying A by some x, is the same as the
set of all linear combinations of the columns of A, which is called the
column space of A.

Range T'= Col(A).

So, the column space of A has a natural geometric interpretation as
the range of the linear transformation arising from multiplication by
A. This column space could be all of R™, but it could also be a smaller
subspace of R™.

Kernel T=Null(A4).

Besides the range, another important object associated with a linear
transformation T(x) = Ax is its kernel. The kernel of T is the set of all
vectors in the domain of T that map to zero, so the kernel of T is just
the null-space of the matrix A, because it is the set of all x for which Ax
is zero. The null-space of A is a subspace of R”, the domain of T.

Both the kernel and the range of a linear transformation are important,
because many subspaces arise as kernels or ranges of some linear
transformation. For example, the solution set to a homogeneous system
of equations Ax = 0 is the kernel of a linear transformation 7(x) = Ax.
The span of any set of vectors is the range of the linear transformation
T(x) = Ax, where the vectors are the columns of the matrix A.
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Lets display a picture that might suggest what is going on. A linear
transformation represented by the 7 x n matrix A takes R” to R”.

R" T(x)=Ax R™

l \
|

The null-space, indicated in orange in the left picture, lives in R” and is
the kernel of the linear transformation 7'(x) = Ax. Multiplication by A
takes everything in the orange line on the left and maps it to the origin,
the orange dot on the right picture. Also, the entire picture on the left,
representing all of R”, gets mapped to the blue line on the right, which
is Col(A), the range of the linear transformation 7.

Col(A)

What about Row(A)? Any vector in Row(A) is orthogonal to any vector
of Null(4). So, in the picture, the row space of 4, in green on the left, is
the set of vectors perpendicular to Null(4) in orange.

You can see why vectors in Row(A) are perpendicular to vectors in
Null(4) by using the observation that a 1 x m row vector ¢ times an m x n
matrix A is a row vector that is a linear combination of the rows of A.

If x is a vector in Null(4), then (gA)x is, by associativity of matrix
multiplication, the same as q(Ax), but because x is in Null(4), you
have Ax=0. So, q(Ax) is the 1 x 1 matrix consisting of the number 0.
This means that g4, which can represent any vector in Row(A4), must
be orthogonal to any vector x in Null(A).

(34)x =g(Ax)=40,,,=0.
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If you had enough pictures like this, you would notice some interesting
geometric relationships between these subspaces. For example, the
dimension of the row space and column space are the same, even
though they live in completely different spaces: The row space lives
in the domain, and the column space lives in the codomain of the
transformation T'(x) = Ax.

__The Basis of a Subspace

Every subspace is the span of a set of vectors. Recall that one way to
think of the span of a set of vectors in R” is to think of a spaceship at
the origin and the vectors as the set of thrusters that you can fire to
move in various directions. Then, the span of those vectors is all the
places you can go using those thrusters. This will be a subspace of R”,
but it may or may not be all of R”.

If you were designing this spaceship, you might try to be economical
and use as few thrusters as possible. So, if you don’t need all the vector
thrusters, you might get rid of some of them. Intuitively, a basis of
vectors is a minimal set of thrusters that you might need.

Formally, a basis B for a subspace H is a set of vectors such that 2

properties hold:
1 The vectors must span H.

2 The set B must be a linearly independent set.

The first condition ensures that your thrusters can reach all of the
subspace H.

The second condition says that you have no redundancies. Recall that
to be linearly independent means that there is no nontrivial linear
combination of the vectors in B that will produce the zero vector. And
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this is equivalent to saying that no vector in B can be written in terms
of the other vectors. So, removing any thruster from your set means
you won’t be able to reach all of H.

Let’s look at some examples. The first example is R?, which is a
subspace of itself. There is a natural basis called the standard basis
for R?. This basis is the set of 3 vectors that point along the coordinate
axes and are unit length: (1, 0, 0), (0, 1, 0), and (0, 0, 1).

4

In math, the standard basis is often denoted using e with a
subscript—in this case, e,, e,, and e;.

The physics community often uses the symbolsll': ]: and k
for these 3 vectors. A

Using the standard basis, writing any other vector as a linear
combination of these vectors is, in some sense, what you already
do when you specify coordinates: the vector (3, -1, 4) really means
3(1,0,0) +-1(0, 1, 0) + 4(0, 0, 1), or 3i - j + 4k.

From this example, it is easy to convince R® (as subspace
yourself that any vector in R? is a linear of itself) has basis:
combination of basis vectors, so they span all of 1][o][0
R3. And the vectors are linearly independent, 0|1|0
because if you remove any one of them, you 0][0][1
will not be able to get all the vectors in R?. For math: & & &,
example, if you remove e,, you will not be able physics: 1 | k
to get any vector whose second component is
nonzero. 3 T
So, | —1|=3i - j+4k.
4
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But R? has other bases. For example, consider (1, 0, 0), (1, 1, 0), and
(1, 1, 1). For simplicity, label them v, »,, and v;. You can check that
these vectors form a basis for R?* by noting that the matrix A with these
vectors as columns is already in row echelon form. Because there is
no row of zeros, the linear system Ax=b can always be solved, which
means the column vectors span R?.

3 .
Also, the linear system Ax=0 has R has other bases. Another:

no free variables, so it has a unique Vi V2 Vs
solution, which must be the trivial T 1] 1
solution. So, the columns of A must Of[1[|1
be linearly independent. 3 o|(O][1
The colgmn vector (3, -1, 4) can be So | -1|=47v. =57 +47.
written in terms of these vectors v, ' 4 1 2 3

v,, v; by solving Ax = (3, -1, 4). You
Wlll flnd (3, —1, 4) = 41}1 - 5'”2 + 4'”3.

Aside from giving you a basic set that you can use to build all other
vectors in your subspace, bases are important because there is only one
way to build a vector as a linear combination of given basis vectors.

V

THEOREM

Every vector vin H can be expressed as a linear
combination of given basis vectors, and it can be
done in only one way.

A

So, vectors that look different must be different! This would not
necessarily be true if the basis vectors were not linearly independent.
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A basis B for a subspace allows any vector in the subspace to be expressed
uniquely as a linear combination of vectors in B. The coefficients of
this combination are called weights or coordinates with respect to B.

So, for example, the coordinates of (3, -1, 4) with respect to v}, v,, v;
are (4, -5, 4). The coordinates are basically telling you how much to
fire your rocket thrusters in particular directions. Any other basis will
produce coordinates with respect to a different set of thrusters.

So, a subspace can have many bases. But it is a fact (that we won’t prove
here) that any 2 bases for a subspace H must have the same number
of vectors. Because the number is independent of the basis chosen, that
number can be called the dimension of the subspace H, denoted by dim
H. This tells you how many degrees of freedom the subspace H has.

So, if the subspace H has one degree of freedom (for example, choice of
coordinate), it is called a line. If it has 2 degrees of freedom (choices for
coordinates), it is called a plane—etc.

__How to Find a Basis for a Column Space

If you want to find a basis for a subspace that is a span of a set of
vectors, then by putting those vectors in the column of a matrix, you
are changing the problem to finding a basis for the column space of
a matrix.

There is an easy way to find a basis for any

column space by using the reduced row 123 45
echelon form of the matrix. For example, 6 7 8 9 10
suppose matrix A is a 4 x5 matrix with 11 12 13 14 15

entries 1 through 19 and a stray 21 as the 16 17 18 19
final entry.
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Call the columns ¢, through ¢s. Now € ¢ ¢ ¢ ¢
do row operations to get to the RREF,

and after you've done that, call those 11213 45
columns ¢, through ¢". Look at all 6/7/8 910

the RREF columns with a leading 11 12113 14 15

1, the so-called pivot columns—in 16 17118 19|21

this case, the first, second, and fifth

columns (¢’ ¢;', and ¢5'). Basis for Col(A) = {¢,, ¢,, ¢5}.

This tells you which of the original
columns will form a basis for the
column space of A. In this case, ¢,

¢, and ¢s are a basis; that is, the , L,
vectors (1, 6, 11, 16), (2, 7, 12, 17), € € € € Cs

RREF

and (5, 10, 15, 21) are a basis for the 1.0 -1 2 0
span of all 5 columns. The span must 0 1/2 3 0o
be a 3-dimensional subspace of R*.

0 0 0 01
Why does this curious method work? 00 0 0 0

The key idea is that doing row

operations does not change the linear dependencies among the
columns. So, if some linear combination of the ¢;’s equals zero, then
the same linear combination of the ¢," will equal zero, too!

For example, you can check that ¢; - 2¢, + €;=0. So, ¢, - 2¢," +¢,'=0
as well.

This also means that if in the RREF the first, second, and fifth
columns are linearly independent, then in the original matrix, the first,
second, and fifth columns are linearly independent as well. This is
because whatever coefficients worked for ¢,’, ¢, and ¢5' to get the zero
vector (namely, only zero coefficients), those same coefficients are the
only ones that work for ¢}, ¢,, and ¢s.
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Thus, you see how to find a basis for a column space of a matrix. It
is this method that produces a basis consisting of vectors from the
original spanning set; it just potentially throws away some columns
that weren’t necessary. In this case, ¢; and ¢4 could be thrown away.

__How to Find a Basis for a Row Space

How do you find a basis for the
row space of a matrix A? You can , L
use the RREF of the matrix 4 to f1L & 6 6 6

RREF

find this as well. Just look at the 1.0 -1 -2 0 |#
nonzero rows of the RREF. That’s 012 3 0 |
a basis for the row space of A!

000 01 |[r
In the example, you can see that 0000 0

the first 3 rows of the RREF

aI‘C.HOIlZCI‘O vectors. These are a Basis for ROW(A) _ {7'1,, 1_2/’ 7'3,}~
basis for the subspace spanned

by the rows of A. Unlike the column space method, the row space

basis produced by this method doesn’t use the original vectors of the

spanning set of rows. It finds some new vectors. So, in the example, a

row space basis is (1, 0, -1, -2, 0), (0, 1, 2, 3, 0), and (0, 0, 0, 0, 1). It is

a 3-dimensional subspace of R°.

This method works for a different reason than the column space
method: Doing elementary row operations, by their very nature, does
not change the row space of a matrix. This is because a row operation
produces a new row that is a linear combination of old rows, and
because elementary row operations are reversible, the reverse is true,
too. In the RREF, the 3 nonzero rows clearly span the row space, and
they are linearly independent because of the echelon form.
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—_How to Find a Basis for a Null-Space

What about finding a basis for a null-space? This means finding
solutions to Ax=0, and you've actually done this before. Recall that
you form the augmented matrix A4 with a column of 0s and then row-
reduce to reduced row echelon form. This enables you to figure out
which are the free variables, by looking at columns without leading 1s.
Then, you express all other variables in terms of the free variables, using
the RREF, just as you learned to do previously.

In the example, the free variables are x; - -

and x4, because they do not have leading X 1 2
Is in them. You then get (x;, x,, X3, x4, X, -2 -3
xs) in terms of x; and xy, as x; times the X, |=x,| 1 |+x,] 0
vector (1, -2, 1, 0, 0) plus x4 times the N
vector (2, -3, 0, 1, 0). This shows that X4 0 1
the set of solutions is spanned by vectors X, L 0 ] L 0 ]

(1,-2,1,0,0) and (2, -3, 0, 1, 0).

It turns out that the vectors you obtain in this way must also be linearly
independent—Dbecause if you look at the third and fourth entries
of the vectors, there is no way to produce the zero vector unless the
coefficients of these 2 vectors are zero.

The point is that you already know how to find null-spaces because you
know how to solve linear equations using the RREF to find the null-
space as the span of some vectors. The vectors you obtain in this way
also turn out to be a basis.
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_The Rank-Nullity Theorem

Let’s call the dimension of the row space of A the row rank of A and
the dimension of the column space of A the column rank of A.

In the example, both these numbers turned out to be the same number.
This was no accident. Both of them are equal to the size of their
bases, and both bases were derived by looking at the leading 1s in the
RREF. The column space basis consisted of columns of the original
matrix corresponding to leading 1s in the RREF. The row space basis
consisted of rows of the RREF corresponding to leading 1s. So, the
dimensions of the row space and column space will always be the same,
even though those objects live in different spaces (R” versus R")!

Vv

THEOREM

The row rank and column rank of a matrix are
the same.

A

This number is called the rank of a matrix A, and it is the dimension
of either its row space or its column space.

Lets call the dimension of the null-space of a matrix the nullity of A.
This is equal to the number of free variables in the system of equations
Ax =0, which is the number of columns of the RREF that do not have
aleading 1. So, this means that if you add the nullity to the number of
columns with leading 1s, you get the total number of columns. For an
m x n matrix, the number of columns is 7.
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4

THEOREM

The rank of A plus the nullity of A is the total
number of columns of A.

You can see these relationships in the picture.

R" T(x)=Ax R™

Col(A)

Here you see that the dimension of the row space of A plus the
dimension of the null-space of A must equal the dimension of the entire
domain on the left, which is 7.

Also, the dimension of the row space of A is the same as the dimension
of the column space of A, even though they are subspaces of different
spaces.
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Lay, Lay, and McDonald, Linear Algebra and Its Applications, sections 4.3,
4.4, and 4.5.

McAnlis, “How JPG Works,” https://medium.freecodecamp.org/how-jpg-
works-a4dbd2316£35.

Poole, Linear Algebra, section 3.5.
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INVERTIBLE MATRICES:
UNDOING WHAT YOU DID

s olving a system of linear equations using Gaussian
elimination involves row reductions to change the
system to an equivalent, simpler system in reduced row
echelon form (RREF). Such a system has exactly the same
solutions as the original. This lecture will analyze a system of
linear equations from a different point of view, by looking at
the system of equations as a matrix equation: Ax=b.

The Inverse of a Matrix

While Gaussian elimination remains the best way of solving a system
of linear equations, looking at them as a matrix equation is useful for
many theoretical reasons. It will help illuminate the general nature of
the set of solutions, rather than solving a particular problem. You can
also take advantage of the matrix 