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Preface

This book is based on a one-semester course on linear algebra I have taught
numerous times at Brigham Young University. With so many books on the
subject already out there, it is legitimate to ask why one more is necessary.

No textbook on the subject served all my needs while teaching the course.
For example, most texts do not provide satisfactory introductions to some im-
portant definitions. Their definitions seem to appear suddenly out of nowhere.
So, for my lectures I prepared my own notes, and hence this book. Whenever
possible, I have tried to motivate by taking the reader along paths which lead
naturally to our definitions. The other salient features of the book are:

1. It gives a brief but adequate presentation of the fundamentals of
the subject in as few pages as possible so that it can be covered in
a semester without missing anything significant in textbooks with
500 to 700 pages.

2. Although most students taking the course were non math majors,
the rigor has not been compromised. To help them cope with it, the
prerequisite material has been assembled in Chapter 1.

3. Rather than present linear algebra as a hodgepodge collection of
seemingly unrelated topics, I have tried to present it as a single
theme – the study of linear maps – with matrices as a convenient
tool to capture and keep track of them but only when their domains
and co-domains are finite dimensional. Conversely, by treating ma-
trices as linear maps, some of the properties of matrices themselves,
such as the associativity of matrix multiplication, become obvious.
This reduces the number of pages required for the subject.

4. Contrary to the usual practice of doing linear algebra over the reals,
or at most over the complex numbers, I have put no restriction on
the field of scalars. This widens the scope for applications of lin-
ear algebra without increasing the level of difficulty or abstraction.
Ironically, when the applications were not the order of the day, the
books on linear algebra of the last generation (e.g., [4], [9], [10] and
[16]) used to begin with an introduction to fields, not only as a first
step towards the abstraction needed for the course but also for its
applications.

ix



x Preface

5. For the sake of those who have no interest in fields of scalars other
than the reals or complex numbers, I have marked the few items
in the main body of the book that pertain to other fields with
asterisks so that they may be omitted. On the other hand, those
not interested in non theoretical applications may skip the items
marked with daggers.

6. The conceptual part of linear algebra is as important, if not more,
as acquiring computation skills the students often think math is all
about. To convince them of this, I have included a special chapter
with selected applications in their own respective majors (computer
science, engineering, math and physics) which require more than the
ability to handle problems involving only concrete numbers.

The only prerequisite for this book is mathematical maturity. It may be
used for an advanced undergraduate or a beginning graduate course on linear
algebra.

I would like to thank Lonette Stoddard for preparing the LaTeX file of the
manuscript. I also thank my colleagues, Sum Chow for his help with com-
piling the answers to numerical problems and Jeff Humpherys for preparing
Figure 9.1. I would also like to thank Wolfgang Herfort, Vienna Technical Uni-
versity, Vienna (Austria), Jörg Thuswaldner, University of Leoben (Austria),
Dipendra Prasad, Tata Institute of Fundamental Research, Mumbai (India)
and Michael Schein, Bar-Ilan University, Ramat-Gan (Israel) for sending de-
tailed lists of typos and suggestions. However, I take full responsibility for
the errors that still escaped scrutiny. I would appreciate having any errors or
suggestions sent to me at chahal@mathematics.byu.edu.

J. S. Chahal
30 May 2018
Provo, Utah, USA

mailto:chahal@mathematics.byu.edu


Advice to the Reader

Even if you are a non-math major, learning a hodgepodge of recipes is not
the way to learn mathematics. If you have learned a subject properly, you can
come up with your own recipes. To learn linear algebra properly, you should
not only memorize the recipes but also try to grasp the concepts, for which
you need to learn how to read and write proofs and occasionally come up
with your own. Students who have never seen a proof in a math course and
even those who have, are strongly advised to read the section on proofs in
Chapter 1.

Some students also found it very useful to go through Book 1 of Euclid’s
Elements to learn how to compose proofs. In this book the structure of math-
ematical proofs was laid out almost two and a half millennia ago, and has
served, to a great extent, as a model for every math book written since then.

Every discipline has its own vocabulary and so does mathematics. The lan-
guage of higher mathematics is set theory. For example, a vector space will
be a nonempty set, which may have apples and oranges in it, to be called
vectors. Yes, an apple can be a vector! (See Example 2*, Section 3.1.) Sim-
ilarly, a linear map will be an abstract function, with prescribed properties.
We review this language briefly in Chapter 1. You may also learn set theory
from the lively, little and easy to read book [8] by P. R. Halmos, Naive Set
Theory, UTM, Springer (1974).

Some preconceived notions about vectors and functions from previous
courses may actually hinder, more than help you in this course. They may
make it difficult for you to accept the extended meanings of some technical
terms. For example, you may get lost if we refer to a differentiable function
as a vector, because it does not have length and direction, like an arrow. So
it is advisable that you forget about the previous notions and start with a
clean slate. It is not hard to learn a concept without actively grappling with it
many times in different settings and connecting it with previously understood
concepts. A systematic development of the subject, with sufficiently many ex-
amples and exercises, can provide another and perhaps better approach for
learning it.

The technology is indispensable when the amount of data is huge. But for
learning this course, it is better if you depend more on paper and pencil than
on technology. Overdependence on technology can be like using a GPS to reach

xi



xii Advice to the Reader

a destination. Not only are you likely to pay no attention to the landmarks
on the way, but if the GPS stops working, without a map and knowing how
to read it, you will not know where you are.

The purpose of the theory is not to prepare the students for homework
assignments and tests. On the contrary, the purpose of examples and exercises
is to explain, enlarge and ingrain in the learner’s mind the ideas involved
therein. You are encouraged to attempt all the problems, not just odd or
even, as is customary with most textbooks. Each exercise has been chosen to
help you understand a concept. We have refrained from providing redundant
numerical exercises for repeated drills, a practice which often obscures their
real purpose.
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Preliminaries

1.1 What Is Linear Algebra?

Manipulating matrices is not what linear algebra is all about. The matrices
are only a convenient tool to represent and keep track of linear maps. And
that too when the domain (and hence the range also) of such a function is
finite dimensional. In its full generality, linear algebra is the study of functions
in the most general context, which behave like the real valued function

f(x) = mx (1.1)

of real variable x. The graph of (1.1) is a straight line through the origin with
fixed slope m. Hence the name linear algebra.

The function y = f(x) = mx has a defining property: For constants c1, c2,

f(c1x1 + c2x2) = c1f(x1) + c2f(x2), (1.2)

which is equivalent to the following two conditions:

1) f(x1 + x2) = f(x1) + f(x2)

2) f(cx) = cf(x).

This is to say that any real valued function f(x) of a real variable with the
property (1.2) has to be as in (1.1). In fact if f(1) = m, then by condition 2),
f(x) = f(x1) = xf(1) = mx.

The notation y = f(x) for a function is not adequate, unless one says
y = f(x) is a real valued function of a real variable x. A better and informative
way to write it is f : R → R. In (1.1), the domain, which is the real line R,
is a 1-dimensional space. The values are also in the 1-dimensional space R. If
R2 is the plane consisting of points (x, y) and R3 is the 3-dimensional space
consisting of points P = (x, y, z), we can add and scale points in Rn (n = 2
or 3), considered as vectors. Thus we can also consider functions F : R3 → R2

and call them linear if they have the property

F (c1P1 + c2P2) = c1F (P1) + c2F (P2) (1.3)

1



2 Preliminaries

similar to property (1.2) of the function f(x) = mx. In general, one needs
to study functions F : V → W , where V , W are spaces in the most general
sense and the property (1.3) still makes sense. The spaces V , W that arise
in various contexts will be defined in a unified way and will be called vector
spaces or more appropriately, linear spaces. The functions F : V →W having
the property (1.3) are linear maps, linear transformations, or simply linear.
In this book, we study such spaces V , W and the linear maps F : V →W .

After making it precise what is meant by the dimension of a vector space,
we shall show that if a vector space is finite dimensional, its elements are
column vectors in a frame of reference to be called a basis. Moreover, if V and
W are both finite dimensional and F : V →W is linear, then

F (x) = Mx (1.4)

where M is a matrix. The matrix M is obtained in a way similar to the 1× 1
matrix M = (m) in the 1-dimensional case above that was determined by the
value m = f(1) of the basis vector v = (1) of V = R1. This is a generalization
of (1.1). In this (finite dimensional) case F can be identified with its matrix
M .

Linear maps can be added, scaled and composed. The matrices can also be
added, scaled and multiplied. We shall show that the algebra of linear maps
F : V → W is the same as matrix algebra, provided V and W are finite
dimensional.

The solution space of a homogeneous matrix equation corresponds to the
kernel of the corresponding linear map. However, the concept of kernel is
more general. For example, the domain of a linear differential operator D is
an infinite dimensional vector space and the kernel of D is the solution space
of the differential equation Dy = 0. There is no matrix theoretic analog in
this situation. Thus for wider applications, some concepts like eigenvalues and
eigenspaces should not be restricted to matrices.

As a final remark, it cannot be overemphasized that the language of linear
algebra is set theory, which we now recall briefly.

1.2 Rudimentary Set Theory

A set is a collection of objects. The symbol x ∈ X or X 3 x means that x is
an element of the set X. If x is not in X we write it as x 6∈ X. The notation
{x | P (X)} stands for the set of all x which have the prescribed property P (x).
For example, {x | x ∈ R, a ≤ x ≤ b} is the closed interval [a, b] from a to b



Cartesian Products 3

on the real line R. The set [a, b] may also be written as {x ∈ R | a ≤ x ≤ b}
which one reads as “the set of all real numbers x such that a ≤ x ≤ b.”

If A is a subset of a set B, that is, if every element of A is also an element
of B, we write it as A ⊆ B. Many books write A ⊂ B but do not exclude the
possibility A = B, which is confusing. If A ⊆ B, but A 6= B we write it as
A ( B and call A a proper subset of B. The empty set is denoted by φ. The
set φ is a proper subset of every non-empty set A. To show that A is a proper
subset of B, one often proves i) a ∈ A implies a ∈ B, and ii) there is a b in B
such that b 6∈ A. For two sets A and B, A−B = {x ∈ A | x 6∈ B}. The union
A ∪ B = {x | x ∈ A or x ∈ B}, whereas the intersection A ∩ B = {x | x ∈ A
and x ∈ B}. The union and the intersection of more than two sets are defined
in a similar manner. A set X is the disjoint union of its subsets A and B if i)
X = A ∪B, and ii) A ∩B = ∅.

1.3 Cartesian Products

If A,B are two non-empty sets, their Cartesian product is the set A × B =
{(a, b) | a ∈ A, b ∈ B} of all ordered pairs (a, b) with a in A and b in B.
More generally, for non-empty sets A1, . . . , An, their Cartesian product, A1 ×
· · · × An = {(a1, . . . , an) | aj ∈ Aj} is the set of all n-tuples (a1, . . . , an) such
that the jth coordinate aj is taken from the set Aj . If A1 = · · · = An = A,
say, then we write An for A1 × · · · × An. Thus R× R = R2 is the Euclidean-
plane and R×R×R = R3 is the Euclidean 3-space. In general, for an integer
n ≥ 1,Rn={(x1, . . . , xn) | xj ∈ R} is the Euclidean n-space. Its elements,
x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn), etc. are called points or
vectors in Rn. Clearly, x = y if and only if x1 = y1, . . . , xn = yn.

The set V = Rn is more than just a set. Its elements can be added and
scaled by elements of R, coordinate-wise, that is,

x + y = (x1 + y1, . . . , xn + yn) and

cx = (cx1, . . . , cxn).
(1.5)

When n = 2 or 3, it can be seen that the first equation in (1.5) amounts to
the parallelogram law of addition. Of course, for n = 1, it is just the addition
of real numbers.
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1.4 Relations

A relation between two nonempty sets A and B is a subset R of the Cartesian
product A×B. An element a of A is related to an element b of B if (a, b) ∈ R.
In this section, it suffices to suppose that A = B. A partial order on A is a
relation R on A×A which is

1. Reflexive: R ⊇ ∆ = {(a, a) | a ∈ A}, the diagonal of A×A, i.e. every
a in A is related to itself,

2. Asymmetric: If (a, b) ∈ R and (b, a) ∈ R, then a = b,

3. Transitive: If (a, b) ∈ R, (b, c) ∈ R, then (a, c) ∈ R.

From now on we will write (a, b) as a ≤ b and a partially ordered set, i.e. a
set A with partial order ≤ as (A,≤). “Partial” means given a and b in A, it is
not required that either a ≤ b or b ≤ a. If for any two a, b in A, either a ≤ b
or b ≤ a, then ≤ is a total order.

Examples.

1. Ancestry is a relation on the set of people, which is only transi-
tive.

2. Let P(X) be the set of all subsets of a set X, called the power
set of X. The inclusion ⊆ is a partial order on the set A = P(X).

3. The relation ≤ on R is a total order.

Definition. A chain in a partially ordered set (A,≤) is a totally ordered
subset C of A under ≤. An element a of a partially ordered set (A,≤) is a
maximal element of A if there is no b 6= a in A with a ≤ b. The following is a
postulate in set theory that we will need later on.

Zorn’s Lemma. If, in a partially ordered set (A,≤), every chain C has an
upper bound (an element b of A with a ≤ b for all a in C), then A has a
maximal element.

1.5 Concept of a Function

Suppose A and B are non-empty sets. A function from A to B is a subset S
of the Cartesian product A × B such that for each a in A, there is a unique
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(one and only one) b in B with (a, b) in S. We may rephrase it as follows: A
function or a map consists of

1) a non-empty set A, called the domain,

2) a set B called the codomain, and

3) a rule f which assigns to each element a of A, a unique (one and
only one) element b = f(a) of B. We write it as f : A → B which
is read as “f is a function from A to B.”

It is a misconception that the rule f(a) is a “formula.”

Example. Let A be the set of humans and B the set of women. Then m : A→
B given by the rule m(a)= “the mother of a” is a function. [We are thinking of
real people, not legendary figures born out of sun, rain, or wind, etc.] This rule
for m(a) would defy all attempts to describe it by a mathematical formula.
In the same context, s(a)= sister of a is not a function. This is obvious, not
every a in A has a sister, and whenever it does, it may not be unique.

Two major issues when we study functions f : A → B are injectivity and
surjectivity. Before defining these terms, let us emphasize that a given function
is not just the rule f(a), but has three components as indicated in the notation
f : A→ B. Two functions f : A→ B and g : X → Y are equal if and only if
X = A, Y = B and f(a) = g(a) for all a in A = X. The function 1A : A→ A
given by 1A(a) = a for all a in A is called the identity function on A. If
f : X → Y and A ⊂ X, the restriction of f to A is the function f|A : A→ Y
given by f|A(a) = f(a) for a in A.

Definition. A function f : A→ B is injective or one-to-one if f(a1) = f(a2)
implies a1 = a2, that is, no two a in A have the same values f(a) in B. It is
surjective or onto if for each b in B, there is an a in A with f(a) = b. It is
bijective if it is both injective and surjective.

Examples.

1. Consider the following four functions, all given by the same rule
f(x) = x2.

#1 f : R→ R

#2 f : R+ → R

#3 f : R→ R+

#4 f : R+ → R+

Here R+ is the set of strictly positive real numbers. The function
#1 is neither injective nor surjective, because whereas f(−1) = f(1)
and −1 is not the square of any real number x. The function #2
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is injective but not surjective, whereas #3 is surjective but not
injective. Finally, the function #4 is bijective.

2. Our earlier example, m : A→ B given by m(a) = “the mother
of a” is neither injective nor surjective. (Why?)

3. A bijective map σ : X → X = {1, . . . , n} is called a permutation
on n symbols 1, . . . , n. For example, If X = {1, 2, 3}, then σ(1) = 2,
σ(2) = 3, σ(3) = 1 is a cycle on three symbols 1, 2, 3 whereas µ(1) =
2, µ(2) = 1, and µ(3) = 3 is a permutation that switches 1 and 2,
but leaves 3 fixed.

Definition. If A and B are two sets, we say that A and B have the same
number of elements, or have the same cardinality, if there is a bijection
f : A→ B.

It is easy to see that N and Q have the same cardinality but Q and R don’t.

Definition. Suppose f : A→ B is a function. Its image or range is the subset
f(A) = {f(a) | a ∈ A} of B. Thus f is surjective if f(A) = B.

Now suppose a given function f : A → B is bijective, so that for each b
in B there is one and only one a in A with f(a) = b. We define a function
g : B → A by g(b) = a if and only if b = f(a), called the inverse of f : A→ B.
We write g = f−1.

Examples.

1. For the function #4 only (in the example above), which is bi-
jective, f−1(y) =

√
y.

2. The exponential function exp : R → R+ given by exp(x) = ex

is bijective. Its inverse exp−1 = ln : R+ → R is called the (natural)
logarithm.

3. For sin : [−π2 , π2 ]→ [−1, 1], sin−1 is often denoted by arcsin.

4. It is easy to check that f : R → R given by y = f(x) = 2x + 3
is bijective. Its inverse is obtained by solving for x in terms of y, so
x = f−1(y) = 1

2 (y − 3).

5. The linear map T : R2 → R2 given by (u, v) = T (x, y) = (x +
y, x− y) is bijective and (x, y) = T−1(u, v) =

(
u+v

2 , u−v2

)
.



Composite Functions 7

1.6 Composite Functions

If f : A → B and g : C → D with f(A) ⊆ C, their composition is the
composite map g ◦ f : A→ D given by (g ◦ f)(a) = g(f(a)). It is the so-called
“function of a function.” It is easy to check that the composition of maps is
associative: h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Examples.

1. If f : R → R is given by f(x) = x2 and g : R → R is given by
g(y) = 2y + 5, then (g ◦ f)(x) = 2x2 + 5.

2. If f : A → B is bijective and g = f−1, then g ◦ f = 1A and
f ◦ g = 1B .

3. It is easy to check that the functions like T : R2 → R2 given by

T (x, y) = (3x+ 5y, 2x+ 3y) (1.6)

satisfy the condition (1.3) for linearity. If T (x, y) = (u, v), we can
write (1.6) as

u = 3x+ 5y

v = 2x+ 3y

}
. (1.7)

Let us take another linear map S : R2 → R2 given by S(u, v) =
(u+ v, u− v). Now if S(u, v) = (w, z), then

w = u+ v

z = u− v

}
. (1.8)

The composite map S ◦ T : R2 → R2 is obtained by substituting (1.7) in
(1.8), i.e.

w = 5x+ 8y

z = x+ 2y

}
.

Therefore,
S ◦ T (x, y) = (5x+ 8y, x+ 2y). (1.9)

Note that S ◦ T also satisfies the condition (1.3) for linearity. It is true that
in general, the composite of linear maps is again linear.
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1.7 Fields of Scalars

In contemporary textbooks on linear algebra, the term “scalar” means a real
number. However, this is not only unnecessarily restrictive, but is also in-
adequate for some interesting applications of linear algebra such as to the
currently popular subject of cryptography. We shall also vary the fields of
scalars to prove the impossibility of the ancient Greek problems of trisecting
an angle and duplicating cubes (using straightedge and compass only). It is
often convenient to write a function f : A → B which takes an element a of
A to b = f(a) of B by A 3 a 7→ b = f(a) ∈ B.

Definition. A field is a set K with at least two elements, denoted by 0 and 1,
together with two functions namely an addition K×K 3 (x, y) 7→ x+ y ∈ K,
and a multiplication K ×K 3 (x, y) 7→ x · y ∈ K satisfying the following rules
for arithmetic. [We shall write x · y simply as xy.]

1) 0 + x = x for all x in K.

2) 1x = x for all x in K.

3) Existence of an additive inverse: given x in K, there is y in K
with x+ y = 0. [We write y as −x.]

4) Existence of a multiplicative inverse: given x 6= 0 in K, there is
y in K with xy = 1. [We write y as x−1 or 1

x .]

5) Commutativity for addition: x+ y = y + x for all x, y in K.

6) Associativity for addition: x+(y+z) = (x+y)+z for all x, y, z
in K.

7) Commutativity for multiplication: xy = yx for all x, y in K.

8) Associativity for multiplication: x(yz) = (xy)z for all x, y, z in
K.

9) Distributive Law : x(y + z) = xy + xz for all x, y, z in K.

Examples. It is expected that the reader is already familiar with the following
three fields:

1. The field Q of rationals, that is, fractions of the form m
n where

m,n are integers and n > 0.

2. The field R of real numbers.

3. The field C = {x+ iy | x, y ∈ R} of complex numbers.



Fields of Scalars 9

The set N = {1, 2, 3, . . .} of natural numbers is not a field for a variety of
reasons. The set Z = {0,±1,±2, . . .} of integers (or whole numbers) is not a
field because of the lack of multiplicative inverses.

Note. Before giving further examples, a historical remark is in order. It was
the German school of number theorists who pioneered the study of fields.
Hence, it is traditional to use the letter K or k (after the German word
Körper for field).

Example. If k is a field, we denote by k[x] the set of polynomials

f(x) = c0 + c1x+ . . .+ cnx
n, (1.10)

over k, that is, the expressions (1.10) with coefficients cj in k. The polynomials
are added and multiplied in the usual way. If cn 6= 0, we call it the leading
coefficient of f(x) and n the degree of f(x). We denote the degree of f(x) by
deg(f). We call f(x) monic if an = 1.

Certainly, k[x] is not a field, because if deg(f) ≥ 1, f(x)g(x) = 1 cannot

hold for any g(x) in k[x]. However, the set K = k(x) =
{
f(x)
g(x) | f(x), g(x) ∈

k[x], g(x) 6= 0} of rational functions over k is a field.

Definition. Suppose k is a subset of a field K, such that 0, 1 ∈ k. We call k
a subfield of K if for all x, y in K, x − y and xy−1 are also in k. [Whenever
we write y−1 or 1

y , it is understood that y 6= 0.]

Examples.

1. R is a subfield of C, Q is a subfield of both R and C. Both Q
and R are subfields of C.

2. Suppose d = 2, 3, 5, 6, 7, 10, . . . is a positive integer with no
square factor larger than 1. Then k = Q(

√
d) = {r+s

√
d | r, s ∈ Q}

is a subfield of R.

Finite Fields

A finite field is a field with only finitely many elements. These fields are becom-
ing increasingly popular for their use in cryptography. Finite fields are based
on modular arithmetic. Suppose p = 2, 3, 5, 7, . . . is a given prime number. Let
Fp = {0, 1, . . . , p − 1} denote the set of all possible remainders r (0 ≤ r < p)
under division by p. The following rules for addition and multiplication turn
the set Fp into a field. For r, s in Fp,

• r ⊕ s = the remainder of r + s under division by p and
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• r � s = the remainder of rs under division by p.

Examples.

1. Suppose p = 5. Then F5 = {0, 1, 2, 3, 4}. In F5,

• 3⊕ 4 = 2 (the remainder of 3 + 4 = 7 under division by 5) and

• 3� 4 = 2 (being the remainder of 3 · 4 = 12 under division by
5).

2. Integers and polynomials have striking similarities. Both have
the division algorithm: Given a, d in A = Z or k[x] with d 6= 0, there
are unique q and r in A such that

a = qd+ r (r ≺ d). (1.11)

[The symbol r ≺ d means 0 ≤ r < | d | if A = Z and deg(r) <
deg(d) if A = k[x].]

One says that a is divisible by d 6= 0 if it leaves no remainder under division
by d, that is, if in (1.11) the remainder r = 0. If a is divisible by d, we say
that d is a factor of a and a is a multiple of d. An element p of A = Z or k[x]
is prime (in the case of A = k[x] also called irreducible over k) if it has no
nontrivial factors. This is to say that the only factors of p are c and cp, where
c = ±1 for A = Z and c ∈ k× = {α ∈ k | α 6= 0} if A = k[x].

Now suppose that P (x) is an irreducible polynomial of degree > 1 over k,
and let K = {r(x) ∈ k[x] | deg(r) < deg(P )}. In other words, K consists of
all possible remainders under (long) division by P (x). Just like Fp, the set K
also becomes a field if we define ⊕ and � in the same manner, namely: for
r(x), s(x) in K,

• r(x)⊕ s(x) = the remainder of r(x) + s(x) under division by P (x), and

• r(x)� s(x) = the remainder of r(x)s(x) under division by P (x).

We denote this field by k[x]/(P (x)).

In particular, if k = Fp, K has q = pn elements, where n = deg(P ). This
is so because, each of the n coefficients of a remainder r(x) = c0 + c1x +
· · · + cn−1x

n−1 has p choices. We denote this finite field by Fq or Fpn . Any
finite field (i.e., a field with finite number of elements) is Fq for a prime power
q = pn. Sometimes we shall write a finite field simply as F.
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1.8 Techniques for Proving Theorems

A theorem is a mathematical statement which is true. But no mathematical
statement is a theorem unless proved to be true. A theorem cannot be proved
by examples. There are different ways to prove theorems. We illustrate them
below with some theorems that are easy to prove.

1. Direct Proof.

Most of the proofs in this book are direct. They are mostly trivial
consequences of definitions. Here is an example of such a proof.

Definition. An integer n is even if it is twice another integer r,
i.e. n = 2r. Similarly, an integer m is odd if it is not even, i.e. if
m = 2s+ 1 for an integer s.

Theorem. The sum of two odd integers is even.

Proof. Let the two odd integers be m = 2r + 1, n = 2s + 1. Their
sum is (2r + 1) + (2s + 1) = 2(r + s + 1), which is twice another
integer r + s+ 1. Hence, by our definition m+ n is even.

2. Proof by Contradiction.

To prove a theorem by contradiction, one assumes it is false. Fol-
lowing a sequence of logical arguments, one arrives at a conclusion,
which is a contradiction. Most mathematical facts are stated as
theorems, propositions, corollaries, etc., like

Theorem. “Given this”, “then that” or “If this”, “then that”.

“Given this” is called the hypothesis, “then that” is the conclusion
of the theorem.

Theorem. If m and n are both even, then m+ n is also even.

Proof. By contradiction. Suppose m = 2r, n = 2s are even, but
m + n is not even. Then m + n is odd. Let m + n = 2t + 1. Also,
m+n = 2r+2s = 2(r+s). Hence 2(r+s) = 2t+1, or 1 = 2(r+s−t),
i.e. 1 is even, which is a contradiction.
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3. Proof by Induction.

If S(n) is a statement about natural numbers n = 1, 2, 3, . . . , it may
or may not be true. For example

S(n) : 1 + 2 + 3 + · · ·+ n = n2 + 1

is not true for most n. In fact, it is false for all n ≥ 1. However,

S(n) : 1 + 2 + · · ·+ n =
n(n+ 1)

2
(∗)

is a true statement for all n.

To prove (∗) by induction one first proves it for a base case n = 1,
2 or the smallest n0 for which it makes sense and is true. Then one
assumes S(n) is true for any given n ≥ n0 and shows that it leads
to S(n+ 1) is also true.

Theorem. For all integers n ≥ 2, 1 + 2 + · · ·+ n = n(n+1)
2 .

Proof. Let S(n) : 1+2+· · ·+n = n(n+1)
2 . Then S(2) : 1+2 = 2(2+1)

2
is true. Now suppose S(n) is true for any given n ≥ n0 = 2. Then

1+2+ · · ·+n+(n+1) = (1+2+ · · ·+n)+(n+1) = n(n+1)
2 +n+1 =

(n+ 1)
(
n
2 + 1

)
= (n+1)[(n+1)+1]

2 , which shows that S(n+ 1) is also
true. Hence it is true for all n ≥ n0 = 2.

4. Original Proof.

Sometimes the original proof, which led to the discovery, is the
most illuminating proof. Folklore attributes the following proof of
the above theorem to C. F. Gauss. He discovered it when he was
still a little boy. He was challenged to add all the numbers up to n,
with higher and higher n. This is how he discovered it.

If we add n terms of the sum

N = 1 + 2 + · · ·+ n

to itself in reverse order, we get 2N equal to

1 + 2 + · · ·+ (n− 1) + n

n+ n− 1 + · · ·+ 2 + 1

(n+ 1) + (n+ 1) + · · ·+ (n+ 1)

which is (n+ 1) taken n times. Hence

2N = n(n+ 1),
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i.e.

N =
n(n+ 1)

2
.

5. Constructive Proof

In mathematics it is often claimed that such and such objects exist.
Examples are the determinant det(A) of a square matrix A, an
antiderivative of a continuous function. One shows the existence by
exhibiting or constructing it. The antiderivative of a function f(x)
is a function F (x), such that its derivative F ′(x) = f(x).

Fundamental Theorem of Calculus. If f(x) is a real valued
continuous function defined on a closed interval [a, b], then its an-
tiderivative F (x) exists, and the area under the graph of y = f(x)
from x = a to x = b, i.e.∫ b

a

f(x)dx = F (b)− F (a).

Proof. For x in [a, b], to construct F (x), put

F (x) =

∫ x

a

f(t)dt.

Clearly, ∫ b

a

f(x)dx = F (b)− F (a),

since F (a) = 0.

We now show that F ′(x) = f(x). For x in the open interval (a, b),
the ratio rise/run for F (x), i.e.,

F (x+ h)− F (x)

h
=

area of the shaded strip

h

=
h f(x)

h
+ ε(h) = f(x) + ε(h),

where the error ε(h) → 0 as h → 0 (see Figure 1.1). Taking the
limit,

F ′(x) = lim
h→0

F (x+ h)− F (x)

h
= lim
h→0

(f(x) + ε(h)) = f(x).
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y

y = f(x)

f(x)

a x x+ h b
x

FIGURE 1.1: Fundamental Theorem of Calculus

EXERCISES

1. Find the flaw in the proof by induction that everybody is poor, by
proving the following statement: S(n): A person with n pennies is
poor.

Proof. We prove that S(n) is true for all n ≥ 0.

S(0) is clearly true, since a penniless person is poor. So suppose
S(n) is true, i.e. a person with n pennies (n ≥ 0) is poor. One more
penny is not going to turn a poor person into a rich person. So
S(n+ 1) is also true. Thus by induction, S(n) is true for all n.

2. Show that the composition of injective (resp. surjective, bijective)
maps is again injective (resp. surjective, bijective).

3. (a) Suppose X is a finite set. Show that a function f : X → X is
injective if and only if f is surjective.

(b) Show that (a) is always false if X is not finite.

[Thus, one way to define a finite set is if (a) holds.]

4. Suppose A and S are finite sets with cardinalities a and s, respec-
tively. Let AS denote the set of all functions f : S → A. Show that
the cardinality of AS is as.

[This explains the notation AS .]

5. Show that N and Q have the same cardinality but Q and R don’t.

6. Show that Q is a subfield of every subfield k of R.

7. Prove the uniqueness of the additive and the multiplicative inverses
of field elements.
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8. Prove that in a field K, the cancellation is valid, that is, if a is a
nonzero element of K, then ax = ay implies x = y. [This is not true
if a = 0.]

9. Show that Q(
√
d) = {r + s

√
d | r, s,∈ Q} is a subfield of R.

10. Show that Fp is a field. [For multiplicative inverse, if 0 < a < p,
then the only common factor of a and p is 1. So computing the
remainder by the Euclidean algorithm, and solving backward for it,
one gets 1 = ax+ by for some integers x and y . Then a−1 = x, the
remainder of x under division by p (see [4, p. 7]. If p were not prime,
1 = ax+py is possible if and only if a and p have no common factor
> 1.]

11. Modular Arithmetic.

This exercise will be used in the application of linear algebra to
cryptography.

Finite fields are examples of a more general and the so-called mod-
ular arithmetic. Given any integer m > 1 (or a polynomial of
degree > 1) we perform addition and multiplication on the set
{0, 1, . . . ,m− 1} of remainders under division by m as follows. Add
or multiply, as the case may be, but keep only the remainders of
sums and products. For example, if m = 10, 7 + 5 = 12 ≡ 2 mod 10
(this symbol means when 12 is divided by 10, it leaves the remain-
der 2). Similarly, 7 · 4 = 28 ≡ 8 mod 10, whereas 4 · 5 = 20 ≡ 0
mod 10. Thus if m is not prime, the product of remainder r, s with
neither r nor s zero can be zero. Therefore a nonzero remainder a
may not have a multiplicative inverse b in the sense ab ≡ 1 modm.
However, prove that the following is true.

(a) Suppose a with 0 < a < m has no common factor > 1 with
m. Then it has a multiplicative inverse b in the set Z/mZ =
{0, 1, . . . ,m− 1}.

Hint: Again use the Euclidean algorithm.

(b) Let m = 26 and identify the letters A–Z of the alphabet with
the remainders 0–25 with A = 0, B = 1, . . ., Z = 25. Find the
letter A–Z which is the multiplicative inverse of the letter H
mod 26.

12. Show that for a polynomial p(x) of degree n, and irreducible over k
with modular arithmetic modulo p(x), K = k[x]/(p(x)) = {f(x) |
deg f(x) < n} is a field. [Hint: Ditto Exercise 10].

Note. “p(x) irreducible over k” means it does not factor non-
trivially in k[x]. For example, x2 + 1 is irreducible over R, but not
over C as x2 + 1 = (x+ i)(x− i).
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13. Let K = F7 = {0, 1, . . . , 6}. What is 1−42

53+3 in K?

14. Suppose a is an element of a field K. We say that a is a square in
K if a = b2 for some b in K. It is obvious that 0 and 1 are both
squares in any given field. If we do not count 0, precisely “half”
of the real numbers (the positive reals) are squares. The other half
(the negative reals) are non-squares.

Experiment with all primes p in the range 2 < p < 20 if the same
is true for squares in K = Fp. [Note that for K = F2 and C, every
a in K is a square in K.]

15. Prove or disprove your observation in Exercise 14 above.

16. Let k be a subfield of K, f(x) = c0 + c1x + · · · + cnx
n ∈ k[x]. We

say that an element α of K is a root of f(x) if f(α) = c0 + c1α +
· · ·+ cnα

n = 0.

Suppose f(x) ∈ k[x] and deg(f) ≤ 3. Show that f(x) is prime (that
is, irreducible over k) if and only if f(x) has no root in k.

17. By Exercise 16 above, p(x) = x2 + 1 is prime in R[x], therefore by
Exercise 12 above, K = R[x]/(x2 + 1) is a field.

(a) Can you identify K with a field which is already familiar to
you? In that field, what does the remainder x in K correspond
to?

(b) In K, find the multiplicative inverse of 1− x.

[Hint: Note that 1 + x2 is zero in K and 1
1−x = 1

1−x ×
1+x
1+x =

1+x
2−(1+x2) .]

18. Use Exercise 16 to show that p(x) = x2 + x+ 2 is a prime element
of F5[x], hence K = F5/(x

2 + x+ 2) is a field. Compute 1
2+3x in K.

Remark. Let A = Z or k[x]. Suppose p is a prime element of A
and a 6= 0 with a ≺ p. By the Euclidean algorithm, one can write
the g.c.d. (the greatest common divisor) of a and p, which is 1 as
1 = λa + µp, with λ, µ in A. Since µp is zero in K = Fp (resp.
k[x]/(p)), we have a−1 = λ in K. Thus Euclidean algorithm also
provides an algorithm to compute the multiplicative inverses of a
in such a field K.

19. Suppose k is a subfield of a field K (e.g. k = Q, K = R) and
f(x) ∈ k[x]. Show that

(a) α in K is a root of f(x) if and only if x − α divides f(x) in
K[x].

(b) f(x) has at most n = deg(f) roots in K.
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Matrix Algebra

Linear algebra is the study of linear maps, the vector-valued functions u =
L(x) of a vector variable x, having the linearity property: L(ax + by) =
aL(x)+bL(y), where a, b are scalars. Such functions can be scaled and added,
provided their domains and codomains are the same. We can even multiply
or compose two such functions, provided the range of the first is a subset of
the domain of the second. We shall see in Chapter 4 that when the domains
and codomains are “finite dimensional vector spaces,” the algebra of such
functions is basically the matrix algebra which we study in this chapter.

2.1 Matrix Operations

Let K be a given field, for example, the field R of real numbers. If m,n ≥ 1
are integers, an m× n matrix over the field K of scalars is an m× n array

A = (aij) =

a11 . . . a1n

...
am1 . . . amn


with aij in K. The scalar aij is called the ij-th or (i, j)-th entry of A. We call
m×n the size of the matrix A. Note that m×n is not the same size as n×m,
unless m = n. A square matrix of size n is an n × n matrix. Two matrices
A = (aij), B = (bij) over K are equal if and only if i) they are of the same
size, and ii) aij = bij for all i, j.

The square matrix A = (aij) of size n with

aij =

{
1 if i = j

0 otherwise
(2.1)

is called the identity matrix of size n and is denoted by In or simply I if its
size is clear from the context. The m×n matrix, not necessarily a square one,
with every entry equal to zero is denoted by 0, and is called the zero matrix. A

17
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square matrix D = (dij) with dij = 0 if i 6= j is called the diagonal matrix. A
square matrix A = (aij) is upper triangular if every entry below the diagonal
is zero, i.e. aij = 0 if i > j. It is lower triangular aij = 0 for i < j.

Suppose A = aij is an m × n matrix. Its j-th column is the m × 1 matrixa1j

...
amj

 and its i-th row is the 1× n matrix (ai1 . . . ain). Thus A has m rows

and n columns.

For given m,n ≥ 1, we will let M(m × n,K) denote the set of all m × n
matrices over K. We shall write M(n,K) for M(n× n,K).

2.1.1 Addition and Scaling of Matrices:

The matrices in the set V = M(m×n,K) can be added and scaled by elements
c of K entry-wise: if A = (aij), B = (bij) are in V , then

A+B = (aij + bij) and

cA = (caij).
(2.2)

Examples.

1.

(
a b
c d

)
=

(
1 2
3 4

)
if and only if a = 1, b = 2, c = 3, and d = 4.

2. If A =

(
1 2
−2 3

)
, B =

(
3 −2
2 1

)
then A+B = 4I.

Many properties of matrix addition and scalar multiplication are almost
immediate. We shall prove a couple of them and leave others as exercises.

1) A+0 = A, because if A = (aij), then A+0 = (aij +0) = (aij) = A.

2) A + B = B + A. Let A = (aij) and B = (bij). Then A + B =
(aij) + (bij) = (aij + bij) = (bij + aij) = (bij) + (aij) = B +A.

EXERCISES

1. Compute aA+ bB for a = −2, b = 3 and

A =

10 0 −6
−4 2 1
5 −7 11

 , B =

−4 1 6
5 7 3
1 11 9

 .
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2. Prove the following properties of the matrix addition and the scalar
multiplication.

(a) (A+B) + C = A+ (B + C), A+ (−1)A = 0,

(b) For scalars c, d; (c+ d)A = cA+ dA, c(A+B) = cA+ cB,

(c) (cd)A = c(dA), 1A = A.

Note. The Euclidean n-space Rn may be regarded either as M(n × 1,R)
or M(1 × n,R). In either case, the vector addition and the multiplication
of a vector by a scalar are the same as the matrix addition and the scalar
multiplication of matrices. More generally, the Cartesian product V × · · · × V︸ ︷︷ ︸

m times

,

where V = Kn may be viewed as M(m × n,K), where the i-th component
of an element of V × . . . × V is the i-th row of the corresponding matrix in
M(m× n,K).

Prelude. The above properties of the addition and scalar multiplication make
V = M(m×n,K) into a mathematical object we shall call a vector (or a linear)
space. Thus a vector may be a matrix, not just an arrow as some students
habitually tend to think.

2.1.2 Matrix Multiplication

Motivation

As remarked at the beginning of Chapter 1, linear algebra is the study of
linear maps. The matrices provide a convenient way to keep track of some
(but not all of them). Some examples of linear maps are linear substitutions
like

S : w = u+ v, z = u− v

and
T : u = 2x+ 3y, v = 3x+ 5y.

To recall a classical application of linear substitutions, suppose we want to
know which conic section is represented by the equation

6x2 + 15y2 + 19xy = 1.

The substitution T above clears the mixed term 19xy from the quadratic form
6x2 + 15y2 + 19xy and we get

uv = 1.

Clearing mixed terms from quadratic forms is one of the goals of the chapter
on diagonalization. Making further the linear substitution S, we transform
the last equation to

w2 − z2 = 4
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which as we know represents a hyperbola.

In the language recalled briefly in Chapter 1, the linear substitutions above
are nothing but the linear maps S, T : R2 → R2 given by

S(u, v) = (u+ v, u− v)

and
T (x, y) = (2x+ 3y, 3x+ 5y).

The reduction of the quadratic form 6x2 + 15y2 + 19xy to w2 − z2 involves
computing the composite map S ◦ T : R2 → R2, which again is linear, as can
be checked by verifying the requirement (1.3) for it to be so.

In Chapter 4, we will associate to each linear substitution its matrix. Now
recall we also asserted at the beginning of Chapter 1 that the algebra of
linear maps, say T : Rn → Rn can be identified with (cf. Theorem 4.14) the
algebra of n × n matrices over R, where the composition of linear maps S,
T : Rn → Rn corresponds to the multiplication of their respective matrices, if
defined properly.

To guess the right multiplication, we compute the composite map S ◦ T .

(w, z) = S ◦ T (x, y) = S(T (x, y))

= S(2x+ 3y, 3x+ 5y)

= ((2x+ 3y) + (3x+ 5y), (2x+ 3y)− (3x+ 5y))

= ((1 · 2 + 1 · 3)x+ (1 · 3 + 1 · 5)y, (1 · 2− 1 · 3)x+ (1 · 3− 1 · 5)y).

The (standard) matrix of T (see Example 1, Section 4.3) is

A =

(
a11 a12

a21 a22

)
=

(
2 3
3 5

)
and, similarly, that of S is

B =

(
b11 b12

b21 b22

)
=

(
1 1
1 −1

)
.

If the matrix product BA is to correspond to the linear map S◦T we computed
above, then (

1 1
1 −1

)(
2 3
3 5

)
must be equal to (

1 · 2 + 1 · 3 1 · 3 + 1 · 5
1 · 2− 1 · 3 1 · 3− 1 · 5

)
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i.e. (
b11 b12

b21 b22

)(
a11 a12

a21 a22

)
=

(
b11a11 + b12a21 b11a12 + b12a22

b21a11 + b22a21 b21a12 + b22a22

)
.

In other words, the (i, j)-th entry of BA is
2∑
s=1

bisasj . Changing the role of A

and B, we could also put it as: if C = (cij) = AB, then cij =
2∑
s=1

aisbsj .

Thus, if we want the multiplication of matrices to correspond to the com-
position of linear maps they have been associated to, there is no other way
but to have the following

Definition. Suppose A = (aij) is an m× r matrix and B = (bij) is an r × n
matrix. The product AB is the m× n matrix C = (cij) whose ij-th entry

cij =

r∑
s=1

aisbsj . (2.3)

Before working out some numerical examples, we emphasize that in order
for AB to be defined, the number of columns of A must be equal to the number
of rows of B for (2.3) to make sense. The product AB has as many rows (resp.
columns) as the matrix A (resp. B) does. [In the numerical examples, unless
stated otherwise, the field of scalars K = R.] It is convenient to look at the
equation (2.3) as follows. Suppose x = (x1 . . . xn) ∈ M(1 × n,K) and y =y1

...
yn

 ∈M(n×1,K). Define the twisted dot product x ·y = x1y1 + · · ·+xnyn.

Note that x ·y is a scalar. Now let a1, . . . ,am be the rows of A and b1, . . . , bn
be the columns of B. For every i, j the quantity ai ·bj is a well defined scalar.
The rule (2.3) says that the product AB = (ai · bj). In other words, the ij-th
entry of the m× n matrix AB is ai · bj .

Examples.

1. A =

(
1 2
3 4

)
, B =

(
3 −1
−2 5

)
(a) AB =

(
1 2
3 4

)(
3 −1
−2 5

)
=

(
1 · 3 + 2 · (−2) 1 · (−1) + 2 · 5
3 · 3 + 4 · (−2) 3 · (−1) + 4 · 5

)
=(

−1 9
1 17

)
.
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(b) BA =

(
3 −1
−2 5

)(
1 2
3 4

)
=

(
3 · 1 + (−1) · 3 3 · 2 + (−1) · 4
(−2) · 1 + 5 · 3 (−2) · 2 + 5 · 4

)
=

(
0 2
13 16

)
.

We see that AB 6= BA. In other words, the commutative law does
not hold for matrix multiplication.

2. A =

(
1 0
2 0

)
, B =

(
0 0
3 4

)
AB =

(
1 0
2 0

)(
0 0
3 4

)
=

(
0 0
0 0

)
.

This example shows that, unlike scalars, AB = 0 does not imply
that either A = 0 or B = 0.

3. Let A be any of the six 2×2 matrices, one for each possible choice

of sign.

(
±1 0
0 ±1

)
, ±
(

0 1
1 0

)
. Then A2 = I. One may want to call

any six of these A, a square root of I. [Are there other square roots
of I?] Note that a real number a has at most two square roots.

4. A =

(
1 a
0 1

)
, B =

(
1 b
0 1

)
,

AB =

(
1 a+ b
0 1

)
.

5. If S =

(
1 α
0 1

)
, T =

(
0 1
1 0

)
, and A =

(
a b
c d

)
then SA =

(
a+ αc b+ αd
c d

)
, TA =

(
c d
a b

)
, AS =(

a b+ αa
c d+ αc

)
, AT =

(
b a
d c

)
Note that the effect of multiplying A on the left by S is to add
α-times its second row to the first, and multiplying A on the left by
T interchanges its rows. Multiplying by S and T on the right has a
similar effect on the columns of A.

6. Let D =

(
p 0
0 q

)
, A =

(
a b
c d

)
.

Then DA =

(
pa pb
qc qd

)
, and AD =

(
pa qb
pc qd

)
.

Note that the multiplication on the left by a diagonal matrix scales
its rows. The columns are scaled by multiplying A on the right by
D.
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We now prove one of the expected properties of matrix multiplication and
leave the rest as exercises.

Theorem 2.1. The distributive law A(B + C) = AB + AC holds for matrix
multiplication.

Proof. Let A = (aij), B = (bij), and C = (cij). Then

A(B + C) = (aij)(bij + cij)

=

(
r∑
s=1

ais(bsj + csj)

)

=

(
r∑
s=1

aisbsj

)
+

(
r∑
s=1

aiscsj

)
= AB +AC.

EXERCISES

1. Compute AB if

(a) A =

(
7 2
1 3

)
, B =

(
−2 4
5 −1

)
,

(b) A =

 5 −2
−1 4
4 3

 , B =

(
8 11 −5
9 −1 2

)
,

(c) A =

(
2 −5 4
3 1 10

)
, B = X =

xy
z

 .

2.∗ Let the scalars be {0, 1, . . . , 9} = Z/10Z in the modular arithmetic
mod 10. Multiply

A =

(
6 7
5 9

)
and B =

(
3 5
4 1

)

and write your answer as

(
a b
c d

)
with 0 ≤ a, b, c, d ≤ 9.

3. If A =

(
2 −5 4
3 1 0

)
and C =

(
1
4

)
, for which of the following X is

AX = C?

(a) X =

 2
−1
3

,
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(b) X =

1
1
1

.

4.∗ Let K = F11, A =

(
3 2
4 7

)
, X =

(
5

8

)
, B =

(
6

9

)
. Compute AX+B.

5. Let Eij be the n × n matrix with 1 at the (i, j)-th place and zero
elsewhere. For a scalar c in K, put S = I + cEij , i 6= j. And let T
be the n × n matrix obtained from the identity matrix as follows.
In I replace 1 at the (i, i)-th and (j, j)-th entries by zero. Replace
zeros at the (i, j)-th and (j, i)-th entry by 1. Suppose A is an n×n
matrix. Compute SA, AS, TA, and AT to conclude what does the
multiplication on the left or right by S or T do to the rows or
columns of A.

Definition. The matrices S, T and their products are called ele-
mentary matrices.

6. Prove the following. Here I is the identity matrix

I =

1 0
. . .

0 1

 .

(a) IA = AI = A,

(b) (A+B)C = AC +BC,

(c) For a scalar c, c(AB) = (cA)B = A(cB),

(d) (AB)C = A(BC).

7. By 6 (d), the symbol An = A · . . . ·A︸ ︷︷ ︸
n times

makes sense. Suppose A =(
1 a
0 1

)
. Prove by induction on n that An =

(
1 na
0 1

)
.

8. Define the transpose A∗ of a matrix A = (aij) by A∗ = (aji), i.e.
the i-th column of A∗ is the i-th row of A. (See the example below.)
If A,B are matrices of compatible sizes for the matrix operations
and c is a scalar, show that

(a) (A+B)∗ = A∗ +B∗

(b) (cA)∗ = cA∗

(c) (AB)∗ = B∗A∗

9. The trace tr(A) of a square matrix A = (aij) is the sum a11 + · · ·+
ann of its diagonal entries. Show that
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(a) tr(A+B) = tr(A) + tr(B).

(b) tr(cA) = c tr(A) for any scalar c.

(c) tr(AB) = tr(BA).

Notes.

1. Another notation for transpose is AT , but for an elementary matrix
T , TT looks nonsensical.

2. Parts (a) and (b) of Exercises 8 and 9 say that these operations are
“linear transformations” to be defined later.

Example. The transpose of

(
1 2 3
4 5 6

)
is

1 4
2 5
3 6

.

2.2 Geometric Meaning of a Matrix Equation

One learns in analytic geometry that two simultaneous equations

ax+ by = d1

cx+ dy = d2

(2.4)

represent points common to the two straight lines in the plane defined by
these two equations. There are three possibilities:

1) The two lines overlap. This happens if there is a nonzero scalar λ,
such that a = cλ, b = dλ, and d1 = d2λ.

2) However, if a = cλ, b = dλ, and d1 6= d2λ, the lines are parallel
at a positive distance and have no point in common. We also say
that the system (2.4) of two linear equations in two variables x, y
is inconsistent, if there is no solution.

3) The lines intersect at exactly one point. This happens if ad−bc 6= 0.

In matrix notation, (2.4) is the same as a single matrix equation AX = C,

where A =

(
a b
c d

)
, X =

(
x
y

)
, and C =

(
d1

d2

)
.

The three cases now can be restated as follows:
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1) The first row of the augmented matrix

(
a b d1

c d d2

)
is a scalar mul-

tiple of the second.

2) Only the first row of A is a scalar multiple of the second row of A.

3) The rows of A are not scalar multiples of each other.

Next, if A =

(
a1 b1 c1
a2 b2 c2

)
, X =

xy
z

, and C =

(
d1

d2

)
, the matrix equa-

tion AX = C represents the intersection of two planes

a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2.
(2.5)

In analytic geometry, one learns that these planes overlap, have no points in
common (inconsistent) or intersect in a line depending on the relationship

between the rows of the augmented matrix

(
a1 b1 c1 d1

a2 b2 c2 d2

)
.

Finally, the system of three equations

a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2

a3x+ b3y + c3z = d3

(2.6)

represents the intersection of three planes in R3.

EXERCISES

1. Describe geometrically the various possibilities in terms of the rows
of A and of the augmented matrix (A : C) by writing (2.6) as a
single matrix equation AX = C.

2. Write each of the following systems of linear equations as a single
matrix equation AX = C.

(a) 4x− y = 6
3x+ y = 1

(b) 3x+ 2y − z = −1
− 3x− y + z = 1

(c) x+ y = −1
x− y = −2
2y = 3
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(d) x+ y − z = 1
− x− y + z = 2
x+ y + z = 3

3. Which of the systems of linear equations in Exercise 2 above have
a common solution and which don’t?

2.3 Systems of Linear Equations

The above discussion may be extended as follows. Without loss of generality,
we may assume that m ≤ n. By solving the system

a11x1 + · · ·+ a1nxn = c1

...

am1x1 + · · ·+ amnxn = cm

(2.7)

of m equations in n variables x1, . . . , xn we mean finding all points (x1, . . . , xn)
with coordinates xj in the given field K of scalars satisfying (2.7). Each equa-
tion in (2.6) represents a plane in K3, if n = 3. If n is generic, we call it a
hyperplane (for the lack of a better name). For n = 2, the hyperplanes are
straight lines. The system (2.7) represents the intersection of m hyperplanes
in Kn = {(x1, . . . , xn) | xj ∈ K}.

For another perspective, recall the definition of a function f : X → Y . It is
convenient to define another term.

Definition. For x in X, y = f(x) is called the image of x. For a given y in
Y , the set {x ∈ X | y = f(x)} is called the preimage of y and is denoted by
f−1(y). If the function f : X → Y is not surjective, the preimage f−1(y) is
empty for at least one y.

Now let us denote the elements of Kn as column vectors X =

x1

...
xn

.

Suppose A = (aij) is an m× n matrix over K. Consider the function
L : Kn → Km given by L(X) = AX. Solving the system (2.7) is to determine

the preimage L−1(C) of C =

 c1
...
cm

 in Kn. If L−1(C) is empty, the system

is, by definition, inconsistent. We shall assume that, unless stated otherwise,
the system is consistent. If c1 = . . . = cn = 0, the system is said to be
homogeneous. A homogeneous system is always consistent.
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Gaussian Elimination

In a course on analytic geometry, one learns the Gaussian Elimination to
find the intersection of two lines. We illustrate it by solving

3x+ 4y = 2

2x+ 3y = 1.
(2.8)

Example. To solve (2.8), we multiply the first equation by 2, second by 3,
and subtract to get y = −1. Now plugging this value of y in either of the
equations in (2.8), we find that x = 2. Thus x = 2, y = −1 is a solution to
(2.8) as can be checked.

Example.∗ Now let us consider the equations (2.8) as equations over the field
F7 = {0, 1, . . . , 6} of seven elements. To solve, we multiply the first equation
in (2.8) by 2 · 3−1 = 2 · 5 = 3 and get

2x+ 5y = 6
2x+ 3y = 5

}
.

Subtracting, we get 2y = 1 or y = 2−1 · 1 = 4 · 1 = 4. Plugging y = 4 in one
of the two equations of (2.8) we get x = 0. Thus x = 0, y = 4 is a solution to
(2.7) in F7. It is easy to check that again, it is the only solution to (2.8).

When there are a large number of variables, it is convenient to write (2.7)
in the matrix notation AX = C and use the following row reduction method.
We work with the so-called augmented matrix

(A : C) =

 a11 . . . a1n c1
...

...
am1 . . . amn cm


of this system. Multiplying an equation in (2.7) by c is equivalent to scal-
ing the corresponding row of (A : C) by c. A similar statement holds for
adding a scalar multiple of an equation in (2.7) to another one as well as
for interchanging two equations in (2.7). The advantage of working with the
augmented matrix is that we do not have to keep writing the variables. The
j-th column of (A : C) keeps track of the j-th variable xj . If a column of A
consists of zeros only, the corresponding variable is missing from the system.
Hence we may assume that no column of A is zero.

By interchanging rows of (A : C), if necessary, we assume that a11 6= 0.
Further, on dividing the first row by a11, we can actually take a11 = 1. Then
on subtracting suitable multiples of the first row from the subsequent ones,
we reduce (A : C) to 

1 b12 . . . b1n b1
0 b22 . . . b2n b2
...

...
0 bm2 . . . bmn bn

 .
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Now in the first column of B =

 b22 . . . b2n
...

bm2 . . . bmn

 all entries can be zero (in

which case b12 6= 0). We go to the first nonzero column

 b2r
...

bmr

 of B and apply

the previous process to the augmented submatrix

 b2r . . . b2n b2
...

bmr . . . bmn bn

.

If we continue this row reduction, we arrive at the so-called row echelon
form of the matrix (A : C), in which

1) (1,1) entry is 1,

2) Every entry below (1,1) is zero,

3) The first nonzero entry (if there is any) in each subsequent row is
1, and

4) The number of zeros before 1 appearing in a row is more than that
in a previous row. [The position where the first nonzero entry 1
appears in a row is called a pivot .]

5) If m > n, all except possibly top n rows of the echelon form of A
consist of zeros only.

Remark. The system (2.7) is inconsistent if and only if the row echelon form
of the augmented matrix (A : C) has a row with nonzero entry only in the
last column.

Example. By the above procedure, the matrix
0 −3 −6 4 9
−2 −3 0 3 −1
−1 −2 −1 3 1
1 4 5 −9 −7


row reduces to an echelon form

1 4 5 −9 −7
0 1 2 −3 −3
0 0 0 1 0
0 0 0 0 0

 .

We have circled the pivots.



30 Matrix Algebra

The row reduction reduces a consistent system (2.7) to one of the form

x1 + c12x2 + · · ·+ c1nxn = d1

xr + c2(r+1)xr+1 + · · ·+ c2nxn = d2

xs + c3(s+1)xs+1 + · · ·+ c3nxn = d3

...
xt + ck(t+1)xt+1 + · · ·+ ckxn = dt


(2.9)

and 5) above says that (2.9) has no more than n independent equations.
Substituting the value of the first variable xt appearing in the last equation
of (2.9) and continuing in this way, we can solve system (2.7). All variables
not in a pivot column are parameters.

Examples.

1.∗ Let us solve again

3x+ 4y = 2

2x+ 3y = 5

over the field F = {0, 1, . . . , 6} of seven elements. The augmented

matrix (A : C) =

(
3 4 2
2 3 5

)
. Our steps in the Gaussian

elimination correspond to the following steps in the row reduc-

tion of the augmented matrix.

(
3 4 2
2 3 5

)
→
(

1 6 3
2 3 5

)
→(

1 6 3
0 5 6

)
→
(

1 6 3
0 1 4

)
.

The last matrix is the echelon form of (A : C), which corresponds
to

x+ 6y = 3

y = 4.

Hence x = 3− 6y = 3− 6 · 4 = 0.

2. We take K = Q, m = 2, n = 3.

x+ y − 2z = 1

2x+ y + 2z = 3
(2.10)

The augmented matrix (A : C) =

(
1 1 −2 1
2 1 2 3

)
.

Subtracting two times the first row from the second, which we ab-
breviate as R2 − 2R1, and continuing
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(
1 1 −2 1
2 1 2 1

)
R2 − 2R1−−−−−−→

(
1 1 −2 1
0 −1 6 −1

)

(−1)R2−−−−−→

(
1 1 −2 1
0 1 −6 1

)
,

which is in the echelon form and our system is equivalent to

x+ y − 2z = 1

y − 6z = 1.

Let z = t. Then y = 6t+ 1 and

x = 2z − y + 1

= 2t− (6t+ 1) + 1

= −4t.

Hence, x = −4t and y = 6t + 1, z = t is a one parameter solution
of (2.10). It represents, as expected, a straight line in the so called
parametric form.

3. Again K = Q, but m = 3, n = 3.

x+ y − 2z = 1

2x+ y + 2z = 3

3x+ 2y = 4

(2.11)

First, we row reduce the augmented matrix of the system to the
echelon form. 1 1 −2 1

2 1 2 3
3 2 0 4

R3 − (R1 +R2)
−−−−−−−−−−−→

 1 1 −2 1
2 1 2 3
0 0 0 0

R2 − 2R1−−−−−−→

 1 1 −2 1
0 −1 6 1
0 0 0 0

 (−1)R2−−−−−→

 1 1 −2 1
0 1 −6 −1
0 0 0 0

 .

It is now obvious that (2.11) is similar to (2.10), which we have
already solved.

4.∗ We solve the system of equations

2x+ y = 3 (1)

x+ 3y = 4 (2)
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over Z/6Z = {0, 1, . . . , 5}.

Multiply equation (2) by 2 and subtract from (1) to get

−5y = −5

so y = 1. (Why? Cancellation holds only in fields.) Now putting
y = 1 in equation (2), x = 1.

Note. Because 1 + 5 = 6 ≡ 0 mod 6, 5 is the “negative” of 1.

EXERCISES

1. Solve the following systems over the field Q of rational numbers.

(a) 4x1 + 3x2 = 1

2
3 x1 + 2x2 = −1

(b) x+ 2y − z = 3
2x− y + z = 1
−x+ 2y + 3z = 5

2. Solve

(1 + i)x+
3

2
iy =

1 +
√

3i

2

(1− i)x+ iy =
1−
√

3i

2

over C.

3.∗ Use the Gaussian elimination to solve the following systems over
the given field of scalars.

(a) 3x+ 4y = 2

2x+ 3y = 1

over the field {0, 1, . . . , 4} of five elements.

(b) x+ y + 5z = 1

2x+ y + 2z = 3

over the field {0, 1, . . . , 6} of seven elements.

(c) What is the total number of solutions in parts (a) and (b)?
Explain your answer.
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4. True or False? The system

a1x+ b1y = c1

a2x+ b2y = c2

is consistent if and only if a1 : a2 = b1 : b2 = c1 : c2, i.e. if and only
if the respective aj , bj , cj are proportional.

5.∗ Solve the system

5x+ 4y = 2

3x+ 7y = 7

over Z/10Z.

6. For what a, b, c, d is the system

ax+ by = m

cx+ dy = n

consistent for all m and n?

7. Find a row echelon form of the following matrices:

(a)

(
1 2 4
2 4 6

)

(b)

1 2 2 1
2 4 5 3
1 1 1 1



(c)


0 −3 −6 4 9
−1 −2 −1 3 1
−2 −3 0 3 −1
0 −3 −6 4 9



2.4 Inverse of a Matrix

Recall that a scalar equation
ax = c (2.12)

has the solution x = a−1c, provided a 6= 0. The system (2.7) of linear equations
is the same as the single matrix equation

AX = C (2.13)
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with

A = (aij), X =

x1

...
xn

 and C =

 c1
...
cm

 .

It would be nice if we could imitate solving (2.12) to solve (2.13), as X =
A−1C. However, the condition A 6= 0 is not sufficient to do so.

If m = n, the system AX = C can also be solved, by inverting the matrix
A, provided it is invertible.

Definition. Suppose A is a square matrix over a field K. We say that A is
invertible, if AB = BA = I for a matrix B over K. The matrix B is uniquely
determined by A, we call it the inverse of A and write it as A−1.

Suppose A is invertible and AX = C is the given system of n equations in
n variables x1, . . . , xn. Multiplying on the left by A−1, we get A−1(AX) =
A−1C. But A−1(AX) = (A−1A)X = IX = X. Hence X = A−1C is the
solution, which is unique for if X1 and X2 are two solutions then AX1 = AX2

implies that A−1(AX1) = A−1(AX2) which shows that X1 = X2.

Inverse of a 2 × 2 Matrix

A 2× 2 matrix A =

(
a b
c d

)
is invertible, if and only if, ad− bc 6= 0, in which

case, A−1 = 1
ad−bc

(
d −b
−c a

)
.

[The quantity ad − bc is called the determinant of A, and is denoted by
det(A).]

To verify this, we only need to multiply the two matrices.

1

ad− bc

(
d −b
−c a

)(
a b
c d

)

=
1

ad− bc

(
ad− bc 0

0 ad− bc

)

=

(
1 0
0 1

)
= I.

Example. To solve

3x+ 2y = −1

10x+ 7y = 5,



Inverse of a Matrix 35

first we invert A =

(
3 2
10 7

)
. Here ad − bc = 3 · 7 − 2 · 10 = 1. Hence

A−1 =

(
7 −2
−10 3

)
.

So,

(
x
y

)
= X = A−1C =

(
7 −2
−10 3

) (
−1
5

)
=

(
−17
25

)
.

Hence x = −17 and y = 25 is the solution.

Example.∗ Consider

3x+ 4y = 2

2x+ 3y = 1

as an equation over the field F5 of five elements. It can be checked that

ad− bc = 1

so that

A−1 =

(
d −b
−c a

)
=

(
3 −4
−2 3

)
=

(
3 1
3 3

)
.

Therefore, (
x
y

)
=

(
3 1
3 3

)(
2
1

)
=

(
2
4

)
.

It can be checked (using the field operations in F5) that x = 2 and y = 4 is
indeed a solution.

Computing Inverse by Row Reduction

In general, the inverse of an n× n invertible matrix may be computed by the
following algorithm, called the inverse by row reduction.

By row operations, bring the augmented matrix (A : I) to the form (I : B).
[This is possible, because A is invertible.] Then B = A−1. To see this, recall
that to carry out row operations, one multiplies on the left by elementary
matrices S, T and diagonal matrices D. Let B be their product so that BA =
I. But then I is transformed to BI = B.

Example. To compute A−1 for

A =

 1 4 3
−1 −2 0
2 2 3

 ,

 1 4 3 1 0 0
−1 −2 0 0 1 0
2 2 3 0 0 1
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R2 +R1, R3 − 2R1−−−−−−−−−−−−−→

 1 4 3 1 0 0
0 2 3 1 1 0
0 −6 −3 −2 0 1



R3 + 3R2−−−−−−→

 1 4 3 1 0 0
0 2 3 1 1 0
0 0 6 1 3 1



(1/2)R3−−−−−→

 1 4 3 1 0 0
0 2 3 1 1 0
0 0 3 1

2
3
2

1
2



R1 −R3, R2 −R3−−−−−−−−−−−−−→


1 4 0 1

2
−3
2

−1
2

0 2 0 1
2

−1
2

−1
2

0 0 3 1
2

3
2

1
2



R1 − 2R2−−−−−−→


1 0 0 −1

2
−1
2

1
2

0 2 0 1
2

−1
2

−1
2

0 0 3 1
2

3
2

1
2



(1/2)R2, (1/3)R3−−−−−−−−−−−−→


1 0 0 −1

2
−1
2

1
2

0 1 0 1
4

−1
4

−1
4

0 0 1 1
6

1
2

1
6



Hence A−1 =


−1
2

−1
2

1
2

1
4

−1
4

−1
4

1
6

1
2

1
6

.

Permutation Matrices

A class of invertible matrices are the permutation matrices. A permutation
on the set X of n symbols 1, 2, . . . , n is a bijection f : X → X. Such an f can
be represented by its permutation matrix , an n×n matrix P (f) with only one
nonzero entry 1 in any given row or column. We define it by P (f) = (δf(i)j),
where

δik =

{
1 if i = k

0 otherwise

are the Kronecker’s deltas.



Inverse of a Matrix 37

Example. Let f be the cycle: f(1) = 2, f(2) = 3, f(3) = 1 on three symbols.
Then P (f) =

δf(1)1 δf(1)2 δf(1)3

δf(2)1 δf(2)2 δf(2)3

δf(3)1 δf(3)2 δf(3)3

 =


δ21 δ22 δ23

δ31 δ32 δ33

δ11 δ12 δ13

 =


0 1 0

0 0 1

1 0 0

 .

If symbols are represented by the column vector X =

1
2
3

, then P (f)X =


0 1 0

0 0 1

1 0 0




1

2

3

 =


2

3

1



Thus P (f) sends the vector X to


f(1)

f(2)

f(3)

. It is easy to verify that P (f)−1 =

P (f)∗, the transpose of P (f).

EXERCISES

1. If for an integer m ≥ 1, (I −A)m = 0, show that A is invertible.

2. Suppose A, B are n × n matrices. Show that if any two of A, B,
AB and BA are invertible, then they are all invertible.

3. Suppose A, B, and X are n × n matrices with X and A − AX
invertible. If (A−AX)−1 = X−1B, show that B is invertible.

4. If A is an n×n matrix and Ax = b has a solution for each b in Rn,
show that A is invertible.

5. Suppose P (f) is an n × n permutation matrix. Show that i)
P (f)−1 = P (f−1) and ii) P (f)−1 = P (f)∗.

6. Compute the permutation matrix P (f) and its inverse P (f)−1 for
the cycle f : X → X = {1, 2, 3, 4} given by f(i) = i+1, for i = 1, 2, 3
and f(4) = 1.

Compute the inverse of A, and use A−1 to solve AX = C.
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7. A =

(
2 −1
5 3

)
, C =

(
1
1

)
8. A =

(
3 2
2 −3

)
, C =

(
1
−1

)

9. A =

1 4 5
0 2 6
0 0 3

, C =

7
8
9


10. A =

−1 −3 3
2 6 1
3 8 3

, C =

1
2
3

.

11. A =


2 2 2 1
3 4 4 2
2 3 3 1
2 2 3 2

, C =


1
−4
3
−5



12. A =


3 5 3 4
2 2 1 1
4 9 6 10
4 14 10 20

, C =


2
3
5
7



2.5 The Equation Ax = b

As a prelude to the theory of vector spaces, we call the n×1 matrix X a column
vector and denote it by the lower case bold face letter x. Thus we write the
matrix equivalent AX = B of a system of linear equations as Ax = b, where

x =

x1

...
xn

 , b =

 b1
...
bm

 .

It can be checked that Ax = b is the same as

b = x1a1 + · · ·+ xnan, (2.14)

where the vectors a1, . . . ,an are the columns of the matrix A.

The sum on the right of (2.14) of scalar multiples of a1, . . . ,an is called
a linear combination of a1, . . . ,an. Therefore, the system of linear equations
Ax = b is consistent if and only if b is a linear combination of the columns
of A. If this is the case, we also say that b is in the span of the columns
of A. By definition the span of a1, . . . ,an is the set of linear combinations
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x1a1 + · · ·xnan with all possible choices of the scalars x1, . . . , xn. We write it
as span{a1, . . . ,an}.

Example. The system of linear equations

x1 + 3x2 = 2

2x1 + 5x2 = 3

can be written as (
1 3
2 5

)(
x1

x2

)
=

(
2
3

)
or

x1

(
1
2

)
+ x2

(
3
5

)
=

(
2
3

)
.

This holds for x1 = −1, x2 = 1, which thus is a solution of the above system
of linear equations.

EXERCISES

Solve the system of equations Ax = b and express b as a linear combination
of the columns c1, c2, . . . of A if

1. A =

(
1 3
2 5

)
, b =

(
2
3

)
,

2. A =

2 4 3
3 −1 2
1 4 1

 , b =

 1
7
−2

.

2.6† Basic Applications

In this section we discuss some of the most down-to-earth applications of linear
algebra.

2.6.1 Traffic Flow

In a downtown, a certain block is bordered by one-way streets going around it
in clockwise direction. During rush hours, the number of vehicles entering and
leaving the intersections at the four corners of the block is shown in Figure 2.1.



40 Matrix Algebra

We want to determine the traffic flow on each street around the block. Let the
number of vehicles entering the four streets be x1, x2, x3, x4 (cf. Figure 2.1).

610

520

480 x2 450

x1

x3

390 x4 310

600

640

FIGURE 2.1: Traffic flow

At each intersection, the number of vehicles entering and leaving is the
same. Hence we have four linear equations in four unknowns x1, x2, x3, x4.

x1 + 450 = x2 + 610

or

x1 − x2 = 160

similarly x2 − x3 = −40

x3 − x4 = 210

x1 − x4 = 330


This is a consistent system of four linear equations in four variables. It has
one free variable. For example, if it has been observed that x4 = 150, then
x1 = 480, x2 = 320, and x3 = 360.

2.6.2 Barter Systems

There are villages in many Third World countries which are independent eco-
nomic units and use no cash. The people belonging to different professions use
barter systems to exchange among themselves the goods they produce. The
system is governed by an economic model formalized by Wassily Wassilyovich
Leontief.
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Example. In a certain village there are three communities: 1) farmers, 2)
blacksmiths and carpenters who make furniture, tools, and utensils, and 3)
artisans consisting of weavers, tailors, and shoemakers. Each community keeps
a portion of its produce (and/or labor) to itself and gives the rest to the
other two in a traditionally set ratio. The blacksmiths and carpenters divide
their produce evenly among the three groups, the farmers keep half of their
produce and then give a fourth to the blacksmiths and carpenters, and the
remaining fourth to the artisans. The artisans give half of their produce to
the farmers, and divide the remaining half equally between themselves and
the group consisting of blacksmiths and carpenters. We show it pictorially in
Figure 2.2.

Farmers

Blacksmiths &
Carpenters Artisans

1
4

1
3

1
4

1
2

1
3

1
4

FIGURE 2.2: A barter system

Any barter system is based on the quality of the goods produced by each
community. Suppose the value assigned to the goods produced by the farmers,
the blacksmiths-carpenters, and the artisans is x1, x2, x3 respectively. Accord-
ing to the barter system used in this village, the value of the farm produce
given by the farmers to the other two groups is the same as the value of the
goods received by the farmers from those two communities. Thus

1

3
x2 +

1

2
x3 =

1

2
x1.

Similarly,
1

4
x1 +

1

4
x3 =

2

3
x2

and
1

4
x1 +

1

3
x2 =

3

4
x3.
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This is a homogeneous system of three linear equations in three variables:

1

2
x1 −

1

3
x2 −

1

2
x3 = 0

1

4
x1 −

2

3
x2 +

1

4
x3 = 0

1

4
x1 +

1

3
x2 −

3

4
x3 = 0


.

Its solution set is a 1-dimensional subspace of R3 spanned by, say (x1, x2, x3) =
(5, 3, 3). This means the goods produced by the three groups have the propor-
tional values

x1 : x2 : x3 = 5 : 3 : 3.

2.6.3 Electric Circuits

The amount of electric current i (measured in amperes or amps) between two
points of an electric circuit is determined by the resistance R (in ohms) and
the voltage difference E (in volts) between these points by the following laws.

Ohm’s Law: The voltage drop E = iR.

At any node (a point into and out of which currents are flowing) the electric
flow is governed by

Kirchhoff’s Laws:

1. At any node, the amount of electric current flowing into it is the
same as flowing out of it.

2. At any part of a closed electric circuit, the voltage drop between two
points is the algebraic sum of the voltage drops between them.

Example. Let us find the amount of electric currents i1, i2, i3 in each circuit
between nodes A and B of the following electric network (Figure 2.3).

In electric circuitry,
∣∣| or +/− is usually a battery of given voltage. The

current flows away from + and toward − sign. By Kirchhoff’s first law, we
have at A, as well as at B,

i1 − i2 + i3 = 0. (2.15)
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7 ohms

12 volts

i1 2.5 ohms i1

A
i2i3 i2

B

i3

4 ohms
3 ohms

12 volts

FIGURE 2.3: An Electric circuit

By Kirchhoff’s second law and the Ohm’s Law,

7i1 +
5

2
i2 = 12

5

2
i2 + 7i3 = 12

 (2.16)

It is easily seen that i1 = 1, i2 = 2 and i3 = 1 satisfy both (2.15) and (2.16).

2.6.4 Chemical Reactions

Trees and plants use sunlight to convert carbon dioxide CO2 and water H2O
into glucose C6H12O6 and oxygen O2. This chemical reaction is denoted by
an equation of the form

x1CO2 + x2H2O
→
= x3O2 + x4C6H12O6. (2.17)

To balance the equation one must choose x1, x2, x3 and x4 so that the numbers
of carbon, hydrogen, and oxygen atoms on each side of the equation are the
same. The carbon dioxide contains one carbon atom, whereas glucose contains
six, so we must have

x1 = 6x4.

Similarly, looking at the hydrogen and oxygen atoms, we get

2x2 = 12x4

2x1 + x2 = 2x3 + 6x4,
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respectively. Thus we have a homogeneous system of three linear equations in
four variables:

x1 − 6x4 = 0
2x2 − 12x4 = 0

2x1 + x2 − 2x3 − 6x4 = 0


The set of its solution is a 1-dimensional subspace of R4 spanned by (6, 6, 6, 1).
Hence (2.17) becomes

6 CO2 + 6 H2O
→
= 6 O2 + C6H12O6.

2.6.5 Economics

A barter system discussed in Section 2.6 is an example of a closed (or self-
sustaining) economy, where each group or sector produces something and
barters a part of its produce for goods produced by other groups. In a larger
economy such that as of a country, apart from the production sectors like
agriculture, manufacturing and utilities, there is another sector, namely the
consumers, which does not produce anything, but consumes what other sec-
tors produce. This is an example of an open economy, a mathematical model
of which was developed by Wassily Leontief (see [14]). For his contribution,
which we explain below, Leontief was awarded the Nobel Prize for economics
in 1973.

In order to produce its goods, each sector consumes some of its own produce
as well as produce of other sectors. For example, to produce 1 unit (in dollar
amount) of farm goods, the agriculture sector may use 50¢ of its own produce
to feed its workforce and cattle. In addition to this, it may need 10¢ of farm
equipment produced by the manufacturing sector and 30¢ of utilities such
as diesel and electricity. If we order these three sectors alphabetically, the
consumption vector for the agricultural sector is defined to be

c1 =

.50
.10
.30

 .

Similarly, let the consumption vectors for manufacturing and utilities sectors
be

c2 =

.20
.50
.10

 , c3 =

.30
.10
.40

 ,

respectively. This means, for example, to produce 1 unit of manufactured
goods, the manufacturing sector uses 20¢ of agricultural goods, 50¢ of its own
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produce and spends 10¢ on utilities. The matrix

C =

.5 .3 .3
.1 .5 .1
.3 .1 .4


whose columns are c1, c2, c3 is called the consumption matrix .

Now suppose that the outside demands (by consumers) is d1 units of agri-
cultural goods, d2 units of manufactured goods and d3 units of utilities. To
satisfy everybody’s demand, if the number of units produced by the three
sectors (listed alphabetically) is x1, x2, x3 respectively, then we must have

x1 = .5x1 + .3x2 + .3x3 + d1

x2 = .1x1 + .5x2 + .1x3 + d2

x3 = .3x1 + .1x2 + .4x3 + d3

If we let

x =

x1

x2

x3

 , d =

d1

d2

d3

 ,

we can write this system of linear equations as a single matrix equation x =
Cx + d. Thus the number of units x1, x2, x3 of goods that the three sectors
have to produce to meet everybody’s demand is a solution of the system of
linear equations

(I − C)x = d.

In general, in an open economy, there are several, say n production sectors.
The production sectors are arranged in an arbitrary but fixed order. To pro-
duce 1 unit of its goods, the i-th production sector uses cij units of goods
produced by the j-th production sector and di is the external demand (by
consumers) for the goods produced by the i-th sector. In order to meet the
demand of every sector (including the consumers) if the i-th production sector
has to produce xi units of its goods, then by the same argument as above

x = Cx + d

with

x =

x1

...
xn

 , d =

d1

...
dn

 and C = (cij).

The obvious assumption on the consumption matrix C for the economy to
be viable is for the column sums of C to be less than 1. The matrix I − C,
called the Leontief matrix , is invertible. (See the theorem below.) Therefore,
the production vector x is given by

x = (I − C)−1d (2.18)
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if the demand vector d is known.

Theorem 2.2. Suppose C is a square matrix over R with all entries non-
negative. If all the column sums (a column sum is the sum of column entries)
are less than one, then I − C is invertible.

Proof. (cf. Chapter 6 for the definition of eigenvalues.) The spectral
radius ρ(A) of a matrix A is defined by ρ(A) = max{|λ| | λ ∈
C is an eigenvalue of A}. By Theorem 8.1.22 of [7], all the eigenvalues of C
are in the open unit disk

{z ∈ C | |z| < 1}.

Consequently, no eigenvalue of I − C is zero, hence it is invertible.

EXERCISES

In the following, the consumption matrix C and the demand vector d are
given. Compute the production vector x.

1. C =

(
.5 .2
.4 .1

)
, d =

(
700

400

)
.

2. C =

.5 .3 .3
.1 .5 .1
.3 .1 .4

 , d =

3950
7900
1975

.
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Vector Spaces

The vector spaces are the domains and codomains of linear maps that unify
different and seemingly unrelated branches of mathematics. We strongly rec-
ommend that the reader be familiar with the contents of Chapter 1 before
reading this chapter.

3.1 The Concept of a Vector Space

Consider the following sets V :

1. V = Rn (n ≥ 1), the Euclidean n-space whose elements are called
vectors.

2. V = M(m × n,K), the set of m × n matrices with entries from a
given field K.

3. V = K[x], the set of polynomials with coefficients in a field K.

4. V = the set of all solutions of the differential equation d2y
dt2 +µy = 0

for a fixed µ > 0, and

5. V = the set of all continuous functions f : R→ R.

All these sets share some common properties, the properties that make them
what we shall call vector spaces. In all these sets, there is a way to “add” two
elements of V and to “scale” an element of V by a scalar (an element of the
given field K = R, Q, C, etc.). Although adding two matrices is not the same
as adding two differentiable functions, adding and scaling the elements of V ,
irrespective of what V we take, have similar properties. A minimal set of basic
properties of these two operations, from which other properties common to
all these V follow, will be our defining axioms of a vector space.

Definition. A vector space (or more appropriately a linear space) over a field
K is a non-empty set V , of objects called vectors, together with two maps

47
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1) V × V 3 (u,v)→ u + v ∈ V , called an addition, and

2) K × V 3 (c, v) → cv ∈ V , called a scalar multiplication, or
scaling . Moreover, for all u, v, w in V and all scalars a, b in K, we
must have

3) u + v = v + u (commutative law),

4) (u + v) + w = u + (v + w) (associative law),

5) there is a vector Θ, called a zero vector in V such that v+Θ = v,

6) given v in V , there is u in V called a negative of v such that
u + v = Θ,

7) (a+ b)v = av + bv,

8) a(u + v) = au + av,

9) (ab)v = a(bv), and finally,

10) 1v = v.

If the vector Θ in 5 and u in 6 exist, we shall show that they are unique
and denote them by 0 and −v, respectively.

Examples. The five sets V = Rn, M(m × n,K), . . . above, under the usual
operations of addition and scalar multiplication are vector spaces. In some of
the next examples, we shall equip familiar sets with unusual “additions” and
“scalar multiplications” which may or may not make them into vector spaces.
To avoid the confusion with the usual operations, we shall denote the unusual
addition and scalar multiplication by ⊕ and ∗, respectively, so that u ⊕ v is
the sum of u and v, and c ∗ v is the scaling of v by a scalar c.

1. Identify a field K with the vector space V = M(1,K) over K.
Thus K may be considered as a vector space over itself.

2∗ Identify the set V = {a, b, c} of the three fruits, a for apple, b for
banana, and c for cranberry, with the three elements a = 0, b = 1,
and c = 2 of the field F3 of three elements. By Example 1, V is a
vector space over the field K = F3.

3. On V = M(n,K), the set of n×n matrices over a field K, define
A⊕ B = AB − BA, whereas c ∗ A = cA, the usual scaling of A by
c. This is not a vector space because the commutative law fails.

4. On V = K = R, define x⊕y = min{x, y} whereas the scaling of
x by c is the usual multiplication in R. Now there is no zero vector
Θ. In fact, for Θ to be a zero vector, x ⊕ Θ = min{x,Θ} = x for
all x, meaning Θ ≥ x for all x. But there is no real number Θ for
which this is true, so this is not a vector space.
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5. For this example, take K = R and denote by [a] the largest
integer ≤ a for a in R. For example [π] = 3 whereas [−π] = −4. Take
now V = Z = {0,±1,±2, . . .}, the set of all integers. Define m⊕n to
be the usual sum of m and n, but a∗m = [a]m. Clearly a∗m is in V .
However, if we take a = b = 1/2 and m = 1, (a+b)∗m = a∗m+b∗m
doesn’t hold. Hence it is not a vector space.

6. On V = R2, we keep the usual addition rule for vectors in V ,
but define a∗ (x, y) = 0. It can be checked that all (except the last)
axioms hold. So this is not a vector space either.

7. Now on V = R2, keep the usual scalar multiplication but define
a new addition by

(x1, y1)⊕ (x2, y2) = (x1 + x2, 0).

It is easy to see that there are infinitely many zero vectors Θ =
(0, y), contradicting the uniqueness of the zero vector (to be proved
shortly).

8. On V = R+, the set of positive reals, define x ⊕ y = x/y and
c ∗x = xc. This is not a vector space. (Which axioms break down?)

9. Let V = R2, u⊕v = u+v (the usual vector sum) but a∗(x, y) =
(2ax, 2ay). (Which axioms fail?)

10. On V = K = R, take x⊕ y = [x+ y] and a ∗x = ax. Now which
axioms do not hold?

11. This is perhaps the most illuminating example. Let V = R+,
K = R and define x⊕ y = xy and a∗x = xa. It can, and should, be
checked that all the axioms hold. Note that the zero vector Θ = 1
and the negative of x is 1

x . Therefore it is a vector space. We shall
show that as a vector space, it is the same as the 1-dimensional
Euclidean space V = R1.

12. In 11 above, define the scaling by a as a ∗ x = x|a|. Is R+ again
a vector space over R?

13. Both R and C are vector spaces over Q. In general, if k is a
subfield of a field K, then K is a vector space over k.

If you have studied Book 1 of Euclid’s Elements, you know that in the
Euclidean geometry, facts about geometric figures (such as the sum of three
angles of a triangle is 180◦) can be derived, step by step, from the five postu-
lates laid down by Euclid more than two millennia ago. The same is true for
vector spaces, which we do now.

Proposition 3.1. The zero vector 0 is unique.
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Proof. Let 01 and 02 be two zero vectors.

Then 01 + 02 = 01 (using 02 as zero)

and 01 + 02 = 02 (using 01 as zero).

Hence 01 = 02.

Proposition 3.2. Suppose c is any scalar and v is any vector. Then

1) c0 = 0, and

2) 0v = 0.

Proof.

1) The vector c0 = c(0 + 0) = c0 + c0 by the distributive law. Adding
the negative −c0 of c0 to both sides, we have

c0 + (−c0) = (c0 + c0) + (−c0)

= c0 + (c0 + (−c0)) (assoc. law)

= c0 + 0 (axiom 8)

= c0.

This shows that c0 = c0 + (−c0) = 0.

2) Now, 0v = (0 + 0)v = 0v + 0v. On adding the negative of 0v to
both sides, by similar arguments, we obtain 0v = 0.

Proposition 3.3. For any vector v, (−1)v = −v

Proof. Once we understand what the proposition says, the proof is trivial:

(−1)v + v = (−1)v + 1v

= (−1 + 1)v

= 0v

= 0,

by Proposition 3.2. Thus (−1)v is the negative of v.

Definition. By a linear combination of the vectors v1, . . . ,vn (n ≥ 1) we
mean the vector

v = c1v1 + · · ·+ cnvn (3.1)

with scalars cj in K. The span of v1, . . . ,vn is the set

span{v1, . . . ,vn} = {c1v1 + · · ·+ cnvn | cj ∈ K}
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of all linear combinations of v1, . . . ,vn. If S is an infinite set of vectors in V ,
by the linear span of S we mean the set

span(S) = {c1v1 + · · ·+ cnvn | vj ∈ S, cj ∈ K,n ∈ N}

of all linear combinations of finite sets {v1, . . . ,vn} of vectors in S.

Examples.

1. Let V = Rn,

e1 =


1
0
...
0

 , . . . , en =


0
...
0
1

 .

It is easy to see that span{e1, . . . , en} = Rn. In particular, R3 is
the span of i, j, k, the span of i is the x-axis, the span of i, j is
the xy-plane, and so on.

2. Let V = M(2,R) and

E11 =

(
1 0
0 0

)
, E12 =

(
0 1
0 0

)
, E21 =

(
0 0
1 0

)
, E22 =

(
0 0
0 1

)
.

The span{E11, E12, E22} is the set of upper triangular matrices,
whereas span{E11, E22} is the set of diagonal matrices. Finally,
M(2,R) = span{Eij | 1 ≤ i, j ≤ 2}.

3. Let V = R[x], the vector space of polynomials over R and S =
{xn | n = 0, 1, 2, 3, . . .}. Then span(S) = R[x].

4. Considered as a vector space over R, C is spanned by 1 and i,
i.e. C = span{1, i}.

5. One learns in a course on differential equations that every solu-
tion x = x(t) of the homogeneous linear differential equation

d2x

dt2
+ µ2x = 0 (µ > 0)

is in span{cosµt, sinµt}.
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EXERCISES

1. On the set V = {O}, where O stands for an orange, define O+O =
O and for any scalar c in R, define cO = O. Show that V is a vector
space over R. This represents the smallest vector space, the zero
vector space V = {0}.

2. Suppose K is any field. Show that for an integer n ≥ 1, the set Kn

= {(x1, . . . , xn) | xj ∈ K} is a vector space, if the addition and the
scalar multiplication are defined componentwise.

3.∗ Let K = Fp, the finite field of p elements. How many vectors does
the vector space V = Kn have?

4. Show that if cv = 0, then either the scalar c = 0 or v is the zero
vector.

5. Show that the negative −v of every vector v is unique and −0 = 0.

6. What is the span of the vectors 1 + x and 1− x in R[x]?

7. Prove or disprove that span{u + v,u − v} = span{u,v} for u, v
in a vector space V . [It is given that the field of scalars does not
contain F2 as a subfield.]

3.2 Subspaces

A vector space V contains certain subsets, which are vector spaces in their
own right with the operations inherited from V . Not every subset of V has
this property. In fact, if a subset of V is taken at random, most likely, it will
not be a vector space. Since all the vector space axioms except 1, 2, 5, and
6 do not depend whether or not the vectors u, v, and w are in a subset W
of V , in order for W to be a vector space, all it needs is to be closed under
addition and scalar multiplication.

Definition. A non-empty subset W of a vector space V over a field K is a
(vector) subspace of V if for all u,v ∈W and all scalars a, b in K, au+bv ∈W .
We say W is a proper subspace of V if {0} $W $ V .

It is easily seen that this single condition is equivalent to the following two:

1) u + v ∈W whenever u, v ∈W

2) cu ∈W for all c in K and u in W .
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Examples.

1. If S is a non-empty subset of a vector space V , then span(S),
the linear span of S is a subspace of V .

2. Let V = M(n,K). If W is the subset of V consisting of the
upper triangular matrices

a11 a12 . . . a1n

0 a22 . . . a2n

...
. . .

...
0 . . . ann


with aij = 0 if i > j, then W is a subspace of V .

Definition. A square matrix A = (aij) is symmetric if A = A∗,
i.e. aij = aji for every pair i, j of indices.

3. Let V = M(n,K), but now W is the set of all symmetric ma-
trices in V . Then W is a subspace of V .

4. Suppose V = R3 and W is any plane through the origin or any
straight line, also through the origin. Then W is a subspace of V .

5. Let V = K[x], the vector space of polynomials over a field K.
For a given integer n ≥ 1, let Pn(K) or simply Pn denote the subset
of V of all polynomials

f(x) = c0 + c1x+ · · ·+ cn−1x
n−1.

Then Pn is a subspace of V .

By varying K, this example will be used to prove the impossibility
of the ancient Greek problems of trisecting angles and duplicating
cubes.

6. The set W of differentiable functions f : R → R is a subspace
of the vector space V of continuous functions g : R→ R.

7. R is a subspace of the vector space C over Q.

8. A plane or a straight line which does not pass through the origin
is not a subspace of R3.

Definition. A function f : K → K is called an even function if
f(−x) = f(x) for all x in the field K, and it is an odd function if
f(−x) = −f(x), for all x in K.
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9. Let V be the vector space of functions f : K → K. [The func-
tions are added and scaled in the usual manner.] The set of all
even functions in V is a subspace of V . What about the set of odd
functions?

10. Every intersection
⋂
i∈I

Wi of subspaces Wi of V is a subspace of

V .

Proposition 3.4. Suppose W is a subspace of a vector space V . Then

i) For every u in W , −u ∈W .

ii) The zero vector 0 ∈W .

Proof.

i) This is a part of the definition, with c = −1.

ii) Since W is a non-empty, choose u in W . First, by i),

−u ∈W.

Then, by 1) of the definition,

0 = u− u ∈W.

EXERCISES

In 1–3, is the subset W of a given vector space V a subspace of V ? Explain!

1. V is any vector space, W is the union W1 ∪W2 of two subspaces
W1 and W2 of V .

2. V is the vector space of continuous functions f : [a, b] → R and
W = {f ∈ V | f(a) = f(b)}. What about W = {f ∈ V | f(a) 6=
f(b)}?

3. Suppose M is an m× n matrix over K. Show that W =
{x ∈ Kn |Mx = 0} is a subspace of Kn. Here

x =

x1

...
xn


is a column vector.

4. Suppose v1, . . . ,vn (n ≥ 1) are in a vector space V over K. Show
that span{v1, . . . ,vn} = {c1v1 + · · ·+ cnvn | cj ∈ K} is a subspace
of V .
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5. Let S be a subset of a vector space V over K, S not necessarily
nonempty. Show that the intersection W of all subspaces of V that
contain S is the smallest subspace of V containing S. We may define
W to be the span of S. Thus the span of the empty set is {0}.

6. If W1, W2 are subspaces of a vector space V over K, put W =
W1 + W2 = {w1 + w2 | wj ∈ Wj}. Show that W is a subspace of
V .

7. Suppose W1, W2 are two subspaces of a vector space V . Show that
W1 ∪W2 is a subspace of V if and only if W1 ⊆W2 or W2 ⊆W1.

8. Definition A complex number α is algebraic, if α is a root of a
polynomial in Q[x]. A number is transcendental , if it is not alge-
braic.

Consider V = C as a vector space over Q. Is the subset W of
transcendental numbers a subspace of V ?

9. Let W be the set of algebraic numbers. [W is usually denoted by Q
and called the algebraic closure of Q.] Prove that W is a subspace
of V = C over Q.

10. Quotient Spaces

Let W be the subspace of a vector space V . For v in V , let v+W =
{v+w | w ∈W}. The set V/W of cosets {v+W | v ∈ V } is called
the quotient of V by W . The vector v is called a coset representative
of the coset v + W . We take 0 to be the natural representative of
the coset W .

i) Prove that v1 and v2 represent the same coset if and only if
v1 − v2 ∈W .

ii) Show that the addition

(v1 +W )⊕ (v2 +W ) = (v1 + v2) +W

and the scaling
c� (v +W ) = cv +W

are well defined, i.e. do not depend on the choice of coset rep-
resentatives.

iii) Show that the set V/W of cosets is a vector space under the
operations defined in ii).

Definition. The vector space V/W in iii) is called the quotient (space) of V
by W .
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3.3 The Dimension of a Vector Space
To motivate the definition of the dimension of a vector space V , consider
V = R3. If v1 6= 0 is in R3, the set V1 of all scalar multiples of v1 is a
subspace of R3. In fact, it is a line – a 1-dimensional object sitting inside R3.
If a vector v2 is in R3 but not in V1, the set V2 = span{v1,v2} consisting of
all linear combinations c1v1 + c2v2 (cj in R) is a subspace of R3. This one is
a plane, a 2-dimensional object sitting inside R3. Finally, if we pick any v3 in
R3, which is not in V2, then V3 = span{v1,v2,v3} is R3 itself. We cannot find
an ascending chain

{0} $ V1 $ V2 $ · · · $ Vn

of subspaces of R3 with n > 3. Since the dimension of R3 is to be 3, intu-
itively, the dimension of a vector space V is the maximum number of distinct
subspaces one can squeeze between {0} and V in the following sense.

Definition. The dimension dimK V of a vector space V over K is the largest
n ≥ 0, which could be infinite, such that there is an ascending chain

{0} = V0 $ V1 $ · · · $ Vn

of subspaces of V .

A vector space is finite-dimensional or infinite-dimensional according as n
is finite or infinite. If n is finite, then V = Vn.

The dimension dimK V is well-defined. We often write it simply as dimV
when the field of scalars K is clear from the context. Clearly, dim{0} = 0.
If dimV is positive but finite, every minimal spanning set contains exactly
n = dimV vectors. Such a minimal set B = {v1, . . . ,vn} may be obtained by
choosing vi in Vi − Vi−1, i = 1, . . . , n.

Definition. A minimal spanning set B = {v1, . . . ,vn} of a finite dimensional
vector space V 6= {0} is called a basis of V over K, or simply a basis of V if
K is clear from the context.

In the next section we will define the concept of a basis in general and show
that every vector space has a basis.

Remarks. According to our definition,

1. A basis B does not contain the zero vector.

2. A basis is not unique, but any two bases of a finite dimensional
vector space have the same number of vectors, namely n = dimV .

3. Every vector v in V is a linear combination

v =
∑
α∈ I

cαvα
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with I a finite indexing set, cα in K and vα in B.

4. If W is a subspace of V , then dimW ≤ dimV . The equality
holds if and only if W = V .

5. In many settings, one can define the dimension of a geometric
object X as the maximum number n of (irreducible) subobjects Xj

with
X0 $ X1 $ · · · $ Xn.

[Note that every subspace of a vector space is automatically ir-
reducible – not a union of two proper subspaces (cf. Exercise 7,
Section 3.2).]

For example, if the geometric object is a surface X, intuitively its
dimension is two. To apply our definition, choose X0 = {x0} with
x0 any point on X, an irreducible curve X1 on X passing through
x0 and X2 = X itself.

Examples.

1. The dimension dimR3 = 3 and {i, j,k} is a basis of R3.

2. {1, x, x2} is a basis of P3, the vector space of polynomials of
degree < 3, whose dimension is 3.

{1 + x, 1− x, 1 + x+ x2} is another basis of P3.

3. Let Kn = {(x1, . . . , xn) | xj ∈ K}. Then dimKn = n. The
so-called standard basis of Kn consists of

e1 = (1, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

...

en = (0, . . . , 0, 1).

4. dimM(m × n,R) = mn. The standard basis for M(m × n,K)
consists of mn matrices Eij having 1 at the (ij)-th place and zero
elsewhere.

5. Recall from Chapter 1 the field

K = Q(
√
d) = {r + s

√
d | r, s ∈ Q}.

When considered as a vector space over Q, dimQ Q(
√
d) = 2, and

{1,
√
d} is a basis of K over Q.

6. dimR C = 2 and {1,
√
−1}is a basis of C over R.
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7. It is a non-trivial fact that the set {cosµx, sinµx} is a basis of
the solution space of the linear differential equation

d2y

dx2
+ µ2y = 0 (for a fixed µ > 0),

which is 2-dimensional.

3.4 Linear Independence

Often it is convenient to have an equivalent description of bases using the
concept of linear independence. Roughly speaking, a non-empty subset S of a
vector space V , over the field of scalars K, is linearly dependent , if there is a
vector v in S such that v is a linear combination

v = c1v1 + · · ·+ cnvn

of some other vectors vj( 6= v) in S, equivalently

1v − c1v1 − · · · − cnvn = 0

which suggests the most general description of linear dependence.

Definition. A non-empty set S of a vector space V is linearly independent if
the equation

c1v1 + · · ·+ cnvn = 0 (vj ∈ S)

is possible only with c1 = · · · = cn = 0.

The set S is linearly dependent if it is not linearly independent.

Clearly, any set containing the zero vector is linearly dependent because
10 = 0.

Theorem. (Criterion for Linear Independence) A non-empty set S, not con-
taining 0, is linearly independent if and only if no vector v in S is a linear
combination

v = c1v1 + · · ·+ cnvn (3.2)

with all vj in S − {v}.

Proof. We show that S is linearly dependent if and only if a vector v in S
is a linear combination as in (3.2).

But this is obvious, because there is a non-trivial relation

c1v1 + · · ·+ cnvn = 0
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with vj in S and say c1 6= 0 (which may be assumed to be −1) if and only if

v1 = c2v2 + · · ·+ cnvn.

Examples.

1. We show that the three polynomials 1 +x, 1−x and 1 +x+x2

are linearly independent. Start with

c1(1 + x) + c2(1− x) + c3(1 + x+ x2) = 0

which is

(c1 + c2 + c3) + (c1 − c2 + c3)x+ c3x
2 = 0.

But a polynomial is zero, only if all its coefficients are zero. So

c1 + c2 + c3 = 0

c1 − c2 + c3 = 0

c3 = 0

We solve these three equations in three unknowns c1, c2, and c3. If
we do that, we find that c1 = c2 = c3 = 0. Hence 1 + x, 1 − x and
1 + x+ x2 are linearly independent.

On the other hand, it is trivial that the infinite set {xn | n =
0, 1, 2, . . .} is linearly independent, because again, a polynomial is
zero only if all its coefficients are zero.

2. In R3, the three vectors i, j, and k are linearly independent,
because xi+yj+zk = 0 implies that the vector (x, y, z) = 0 which
means that x = y = z = 0.

The following theorem allows us to give an alternative definition of a basis.

Theorem 3.5. Suppose V 6= {0} is a vector space over K and B is a non-
empty subset of V . The following two statements are equivalent:

1) B is a minimal spanning set.

2) B is a maximal linearly independent set.

Proof. If B is a minimal spanning set, but not a maximal linearly indepen-
dent set, there is a vector v in V such that B∪{v} is also linearly independent.
But then v is not in the span of B. Conversely, if B is a maximal linearly inde-
pendent set, but does not span V , take a vector v not in the span of B. Then
B ∪ {v} is linearly independent, contradicting the maximality of B.

Definition. A basis of a vector space V 6= {0} is a minimal spanning set, or
equivalently, a maximal linearly independent set of vectors in V .



60 Vector Spaces

Corollary. A subset of V is a basis of V if it i) spans V and ii) is linearly
independent.

Example. dimK[x] = ∞ and {xn | n = 0, 1, 2, . . .} is a basis of K[x]. We
call it the standard basis of K[x]. Another basis of K[x] is {1, 1 + x, 1 + x +
x2, . . . , 1 + x+ · · ·+ xn, . . .}.

Theorem. (Existence of a basis) Every vector space V 6= {0} has a basis
over K.

The proof is an easy consequence of the so-called Zorn’s Lemma (cf. Chap-
ter 1).

Proof. We show that V has a maximal linearly independent set. Let S be the
set of all linearly independent sets in V . It is partially ordered by the inclusion
⊆. We claim that S has a maximal linearly independent set. We invoke Zorn’s
Lemma. Let C be any chain in S. We claim that T =

⋃
S∈C

S is in S and is an

upper bound for C. Since for every S in C, S ⊆ T , all we need to show is that
T ∈ S. For that, let v1, . . . ,vn ∈ T . Then each vj is in some Sj ∈ C. Since C
is totally ordered, we can relabel vj , if necessary, so that S1 ⊆ S2 ⊆ · · · ⊆ Sn.
Thus all vj are in Sn, hence linearly independent. By Zorn’s Lemma, S has a
maximal element.

Remarks.

1. Suppose dimV = n <∞ and S is a non-empty subset of V .

(a) If S has more than n vectors, it is linearly dependent.

(b) If S has less than n vectors, then S cannot span V.

(c) Any set of n linearly independent vectors is a basis of V .

2. Suppose S ⊆ V is linearly independent. If span(S) 6= V , there
is a basis B of V such that S $ B. We say that S can be extended
to a basis B of V .

For the next theorem, recall that if W1,W2 are subspaces of V , then so are
W1 +W2 and W1 ∩W2.

Theorem 3.6. Suppose W1,W2 are subspaces of a vector space V . Then

dimW1 + dimW2 = dim(W1 +W2) + dim(W1 ∩W2).

Proof. Assume that dimWj < ∞ (j = 1, 2), otherwise there is nothing to
prove. Let dimW1 = m, dimW2 = n, and dim(W1∩W2) = r. There is nothing
to prove if m = n = r. So assume that at least one of m, n, say n > r. Choose
a basis {u1, . . . ,um} of W1 and {v1, . . . ,vn} that of W2 with first r vectors
of each in W1 ∩W2.
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Clearly, the set {u1, . . . ,um,vr+1, . . . ,vn} spans W1+W2. It is also linearly
independent because for it to be linearly dependent, some vj(j > r) has to be
a linear combination of u1, . . . ,um, which would imply that vj is in W1∩W2,
contradicting the choice of vj . Hence

dim(W1 +W2) = m+ n− r

= dimW1 + dimW2 − dim(W1 ∩W2).

EXERCISES

In Problems 1–6, determine whether the set S of the given vector space is
linearly dependent or linearly independent.

1. The subset S =


1

2
3

 ,

4
5
7

 ,

2
1
1

 of R3.

2. The subset S =


 1

3
−2

 ,

−3
−5
6

 ,

 0
5
−6

 of R3.

3. The subset S = {1 + 2x+ 3x2, 4 + 5x+ 7x2, 2 + x+ x2} of K[x].

4. The subset S = {1 + 3x− 2x2,−3− 5x+ 6x2, 5x− 6x2} of K[x].

5. The set S =

{(
1 2
0 3

)
,

(
4 5
0 7

)
,

(
2 1
0 1

)}
of M(2,K).

6. The set S =

{(
1 3
0 −2

)
,

(
−3 −5
0 6

)
,

(
0 5
0 −6

)}
of M(2,K).

7. While doing problems 1-6, did you realize you were doing the same
two problems all over again? You were working in the so-called
isomorphic vector spaces.

8. Find three vectors in R3, which are linearly dependent, but any two
of them are linearly independent.

9. If α is transcendental, show that

S = {αn | n = 0, 1, 2, . . .}

is a linearly independent subset of the vector space C over Q.
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10. Suppose A,B are subsets of a vector space V such that A ⊆ B.
Prove that

(a) If A is linearly dependent, then so is B.

(b) If B is linearly independent, then so is A.

11. If u, v are linearly dependent, show that one of them is a scalar
multiple of the other.

12. Use Problem 11 to show that cosx and sinx are linearly indepen-
dent.

13. Compute dimK V , if

(a) V = {A ∈ M(n,K) | A is upper triangular}. [Recall that a
matrix A = (aij) is upper triangular if aij = 0 whenever i > j.]

(b) V = {A ∈M(n,K) | A is symmetric}.

(c) V = {A = (aij) ∈M(n,K) | tr(A) = a11 + · · ·+ ann = 0}.

Hint: Use one of the following: i) tr(A) = 0 is one linear equa-
tion in n2 variable, ii) exhibit explicitly a basis of V over K,
and iii) use Theorem 4.5.

(d) V = M(m× n,C) as a vector space over K = R.

14. Let V = C, as a vector space over Q. Let W = {α ∈ C | α is
algebraic}. What is dimQW?

15. Suppose k is a subfield of K and K is a subfield of L (so that k is
a subfield of L). Show that, as a vector space,

dimk L = dimkK · dimK L.

Hint : If any of the three dimensions appearing in the equality is∞,
there is nothing to prove. So suppose {α1, . . . , αm} is a basis of K
over k and {β1, . . . , βn} is a basis of L over K. Put S = {αiβj | i =
1, . . . ,m; j = 1, . . . , n}. Show that

(a) S spans L over k, and

(b) S is linearly independent over k.

16. Let V be the vector space over R of continuous functions
f : [0, 1] → R and B is a basis of V over R. Can we write B =
{v1,v2, . . . ,v3, . . .}? In other words, do B and N have the same
cardinality? Explain.
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3.5† Application of Knowing dim(V )

Mechanical movements obey the laws of physics and are described in general
by differential equations. Linear algebra plays a crucial role in seeking their
solutions. The motion (called a simple harmonic motion) of a piston in an
engine or the vibration of a weight W hung from a spring, pulled down and
let go (Figure 3.1) is governed by a differential equation

d2y

dt2
+ µ2y = 0, (µ > 0) (3.3)

Here y = y(t) denotes the vertical displacement of W with respect to time
t from the equilibrium position y = 0 at time t = 0. The constant µ > 0
depends on the specification of the engine or the strength of the spring, as
the case may be. By a solution of (3.3) we mean a rule that describes the
displacement y = y(t) as a function of t satisfying equation (3.3).

We remarked earlier that the solutions of the second order linear differential
equation (3.3) form a two-dimensional vector space over R. The two obvious
solutions of (3.3) are y1 = cosµx and y2 = sinµx. Clearly y1 and y2 are
linearly independent, because otherwise sinx = c · cosx would imply that
tanx = c is a constant function. Thus y1, y2 span this two-dimensional vector
space over R.

W y = 0

FIGURE 3.1: A suspended weight in equilibrium
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In general, we consider an ordinary homogeneous linear differential equation

dny

dxn
+ an−1

dn−1y

dxn−1
+ · · ·+ a1

dy

dx
+ a0y = 0 (3.4)

with real coefficients cj . The integer n ≥ 1 is called the order of the differential
equation (3.4). The solutions of (3.4) again form a vector space V over R. In
a course on differential equations, one learns which we take for granted that
the dimension of V is equal to the order n.

Theorem 3.7. The solution space of the differential equation (3.4) is n-
dimensional.

Since the order of the linear differential equation (3.3) is two, by this theo-
rem, any solution of (3.3) is a linear combination

y = c1y1 + c2y2

of the basis vectors y1, y2.

When n > 2 there is an algorithm to find enough solutions of (3.4). The
issue that concerns us here is the following.

Suppose we are given n solutions y1, . . . , yn of (3.4). How can we determine
if they form a basis of V ? Since we know that dimV = n, all we need to check
is whether or not these n functions are linearly independent. A very simple
procedure which does exactly that is as follows.

Given n functions y1, . . . , yn of a real variable x, each having derivative
of order up to n − 1, we define their Wronskian to be the determinant (see
Chapter 5)

W (y1, . . . , yn) =

∣∣∣∣∣∣∣∣∣
y1 . . . yn
y′1 . . . y′n
...

y
(n−1)
1 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣∣ .
Theorem 3.8. The functions y1, . . . , yn are linearly independent if the Wron-
skian function W (y1, . . . , yn) or simply W (x) is not identically the zero func-
tion.

Proof. If there are constants cj , such that

c1y1 + · · ·+ cnyn = 0,

the identically zero function, then

c1y
′
1 + . . . + cny

′
n = 0

...

c1y
(n−1)
1 + . . . + cny

(n−1)
n = 0.
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Since W (x) is not identically a zero function, choose x = a so that W (a) 6= 0.
Then the matrix equation

y1(a) . . . yn(a)
y′1(a) . . . y′n(a)

...

y
(n−1)
1 (a) . . . y

(n−1)
n (a)



c1

...
cn

 = 0

in c1, . . . , cn can have only the trivial solution c1 = · · · = cn = 0. This proves
that y1, . . . , yn are linearly independent.

Examples.

1. Let µ > 0 and y1 = cosµx, y2 = sinµx. Their Wronskian

W =

∣∣∣∣ cosµx sinµx
−µ sinµx µ cosµx

∣∣∣∣ = µ > 0.

Hence y1, y2 are linearly independent. This shows that a general
solution of (3.3) is y = c1y1 + c2y2 with c1, c2 constants.

2. Let y1 = x, y2 = ex, y3 = sinx. If W (x) is the Wronskian of
these functions, an easy calculation shows that W (π) = eππ 6= 0.
Hence x, ex, sinx are linearly independent.

EXERCISES

1. Show that eax cos bx and eax sin bx span the solution space of

d2y

dx2
− 2a

dy

dx
+ (a2 + b2)y = 0.

2. Show that eax and xeax span the solution space of

d2y

dx2
− 2a

dy

dx
+ a2y = 0.

3.6 Coordinates

Suppose V is a finite dimensional vector space of dimension n and B =
{v1, . . . ,vn} is an ordered basis of V . It is easy to verify that each vector
v in V has a unique representation

v = x1v1 + · · ·+ xnvn
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as a linear combination of v1, . . . ,vn. The coefficients x1, . . . , xn are called
the coordinates (or weights) of v with respect to B. We then denote v byx1

...
xn


B

or vB = x =

x1

...
xn

 .

We call x the coordinate-vector of v (with respect to B).

Examples.

1. If V = Rn, B = {e1, . . . , en} its standard basis, we write v
simply as x1

...
xn

 .

2. Suppose V = Pn, the vector space of polynomials of degree less
than n and call B = {1, x, . . . , xn−1} the standard basis of Pn. If

f(x) = c0 + c1x+ · · ·+ cn−1x
n−1, then f(x)B =

 c0
...

cn−1

.

3. If V = P3 we take B′ = {1, 1 + x, 1 + x + 2x2}. Let f(x) =
3 + x+ 8x2. Since 3 + x+ 8x2 = 2 · 1− 3(1 + x) + 4(1 + x+ 2x2),

f(x)B′ =

 2
−3
4

.

Transition Matrix

Suppose

x1

...
xn

 is the coordinate-vector of v in a given ordered basis B =

{v1, . . . ,vn} of V . If we are given a new basis B′ = {v′1, . . . ,v′n} of V , how is

the coordinate vector x′ =

x
′
1
...
x′n

 = vB′ related to x =

x1

...
xn

 = vB?

The answer is: there is an n× n invertible matrix P such that x′ = Px or
x = Qx′ with Q = P−1. We call P the transition matrix from B to B′.
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To compute Q, let v′1 = q11v1 + · · ·+ qn1vn, . . . ,v
′
n = qn1v1 + · · ·+ qnnvn.

Then

v = x′1v
′
1 + · · ·+ x′nv

′
n

= x′1(q11v1 + · · ·+ qn1vn) + · · ·+ x′n(qn1v1 + · · ·+ qnnvn)

= (q11x
′
1 + · · ·+ qn1x

′
1)v1 + · · ·+ (qn1x

′
1 + · · ·+ qnnx

′
n)vn

= x1v1 + · · ·+ xnvn.

The last equality shows thatx1

...
xn

 =

q11 · · · q1n

qn1 qnn


x
′
1
...
x′n


or x = Qx′. Clearly Q is invertible because its columns are the coordinate-
vectors of v′1, . . . ,v

′
n (with respect to B) which are linearly independent.

Remark. If P is the transition matrix from B to B′, then P−1 is the transition
matrix from B′ to B.

Examples.

1. Let V = R3, B = {e1, e2, e3} its standard basis. We take

B′ =


 2
−1
2

 ,

 5
−1
4

 ,

5
0
3

 .

Since  2
−1
2

 = 2e1 − e2 + 2e3

 5
−1
4

 = 5e1 − e2 + 4e3

5
0
3

 = 5e1 + 0e2 + 3e3,

Q =

 2 5 5
−1 −1 0
2 4 3

 .
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Therefore, the transition matrix from B to B′ is

P = Q−1 =

 3 −5 −5
−3 4 5
2 −2 −3

 .

2. Let V = P2, B = {1, x} its standard basis. We take B′ =

{v′1,v′2} with v′1 = 1 + x, v′2 = 1 − x. Then v′1B =

(
1

1

)
, v′2B =(

1

−1

)
. So Q =

(
1 1
1 −1

)
and the transition matrix from B to B′ is

P =

(
1
2

1
2

1
2 − 1

2

)
.

EXERCISES

1. Let B be the standard basis of R3. If B′ =


 1
−3
2

 ,

 0
1
−3

 ,

−2
4
4


compute the transition matrix P from B to B′.

2. Let B = {1, x, x2} be the standard basis of P3. If B′ = {1 + 2x +
x2, 2 + 5x, 3 + 3x+ 8x2}, compute the transition matrix P from B
to B′.

3.7 Rank of a Matrix

Suppose A is an m×n matrix over a field K. The rows of A may be regarded
as vectors in Kn = {(x1, . . . , xn) | xj ∈ K}.

Definition. The row space of A is the subspace of Kn spanned by the rows
of A. The row rank of A is the dimension of the row space of A.

Clearly, the row rank r of A is no more than n = dimKn. Hence, there is
no loss of generality in assuming that m ≤ n. A matrix A is row equivalent
to B if A can be row reduced to B. To row reduce A to its row echelon form
is to find a basis for the row space of A. In particular, the number of nonzero
rows (or equivalently pivots) in the row echelon form of A is the row rank of
A. The column space and column rank of A is defined analogously. We show
in a later chapter (Theorem 7.5) that row rank of A is the same as its column
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rank. We call the common value simply the rank of A. The dimension of the
solution space Null(A) of Ax = 0 is called the nullity of A. We will also show
that rank (A) + nullity (A) = n.

EXERCISES

1. Determine the ranks of the following matrices:

(a)

(
1 2
2 4

)

(b)

1 2 3
2 3 1
3 1 2



(c)


2 −8 6
3 −9 5
−3 0 1
1 −4 0



(d)

 2 −8 6 8
3 −9 5 16
−3 0 1 −2



(e)


2 −8 6 8
3 −9 5 10
−3 0 1 −2
1 −4 0 6


2. Construct 3 × 3 matrices, each with nonzero and distinct entries

everywhere, and of rank 1, rank 2, and rank 3, respectively.
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4

Linear Maps

Now we come to the main topic of our study, namely, the functions in the
most general context, which behave like the real valued function y = mx of
real variable x. Recall the defining property of this function f(x) = mx. For
c1, c2 in R, f(c1x1 +c2x2) = c1f(x1)+c2f(x2). The probability of a randomly
chosen function T : V → W to have this property is zero (see Exercise 1,
Section 4.1).

4.1 Linear Maps

Suppose that V and W are vector spaces over the same field K. Recall the
definition of a function from Chapter 1.

Definition. A linear map or a linear transformation is a function T : V →W
such that for c1, c2 in K and v1,v2 in V , we have

T (c1v1 + c2v2) = c1T (v1) + c2T (v2). (4.1)

It is easy to see that, again, (4.1) is equivalent to the following two condi-
tions: For u and v in V and c in K,

1) T (u + v) = T (u) + T (v)

2) T (cu) = cT (u)

To be precise, we should write conditions 1) and 2) above as

1) T (u⊕V v) = T (u)⊕W T (v)

2) T (c�V u) = c�W T (u),

where ⊕V denotes the addition in the vector space V . The other symbols have
similar meaning. Thus, the conditions 1) and 2) may be described by saying
that T preserves the vector space structure, or that T is compatible with the
vector space operations.

71
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Examples.

1. Our first example is our starting point. We take V = W = R,
the 1-dimensional space over R. The map f : R → R given by
f(x) = mx is linear.

2. Fix 0 ≤ θ < 2π. The rotation T : R2 → R2 through angle
θ, given by T (x, y) = (x cos θ − y sin θ, x sin θ + y cos θ), is a linear
transformation. In matrix notation,

T (x, y) =

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
.

The matrix

(
cos θ − sin θ
sin θ cos θ

)
is called the matrix of rotation.

3. In general, let M be an m× n matrix over R. Suppose V = Rn
and W = Rm. The map TM : V → W given by TM (x) = Mx is a
linear map. Here x is the column vector

x =

x1

...
xn


(the same for vectors in Rm) and Mx is the product of the matrices
M and x.

In particular, if r > 0 and M = rI, I being the n × n identity
matrix, then TM : Rn → Rn is a contraction or dilation according
as r < 1 or r > 1.

Another interesting example is a horizontal shear TM : R2 → R2 of
the plane given by the matrix

M =

(
1 s
0 1

)
,

the scalar s is called the shear factor (see Figure 4.1). A vertical
shear is defined similarly.

The reflection of the points of R2 in the x-axis and y-axis are given
by

M =

(
1 0
0 −1

)
and

(
−1 0
0 1

)
respectively.

We shall see in due course that if V and W are finite dimensional,
every linear map is TM for some M .
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y y

(0, 1) (1, 1) (s, 1) (1 + s, 1)

x x
0 (1, 0) 0 (1, 0)

TM -

FIGURE 4.1: A horizontal shear

4. For any pair of vector spaces V and W , the map T : V → W
given by T (v) = 0 for all v in V , is a linear transformation. It is
called the zero transformation and is often denoted by 0.

5. Let V = Pn, the vector space of polynomials of degree < n
over K. If W = Kn = {(x1, . . . , xn) | xj ∈ K}, then the function
T : V →W given by T (c0+c1x+· · ·+cn−1x

n−1) = (c0, c1, . . . , cn−1)
is a linear map.

6. Consider C as a vector space over R. The conjugation κ : C→ C,
that is, κ(a+ ib) = a− ib is a linear map.

7. We shall denote throughout by C∞(I) the vector space, over R,
of real valued functions on an open interval I (of finite or infinite
length) which have derivatives of all orders.

Let V = W = C∞(I). One learns in the first course on calculus
that the map D = d

dx : V → W given by D(f) = df
dx is a linear

transformation: For f, g in C∞(I) and c in R,

(a) d
dx (f + g) = d

dx (f) + d
dx (g), and

(b) d
dx (cf) = c d

dx (f).

More generally, let

D =
dn

dxn
+ an−1

dn−1

dxn−1
+ · · ·+ a1

d

dx
+ a0

be a linear operator , so that

D(y) =
dny

dxn
+ an−1

dn−1y

dxn−1
+ · · ·+ a1

dy

dx
+ a0y.
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Then D is a linear map from the vector space Cn(R) of func-
tions f : R→ R having the n-th order derivatives to the vector
space C0(R) of continuous functions g : R→ R.

8. Let V = C[a, b] be the vector space of continuous functions
f : [a, b] → R and W = R. Both V and W are vector spaces over
R. The map I : V →W given by

I(f) =

b∫
a

f(x)dx

is linear.

9. Let K be any field and V = M(m×n,K). Suppose W = Kmn =
{(x11, . . . , xmn) | xij ∈ K}. For A = (aij) in V , we put

T (A) = (a11, . . . , a1n, . . . , am1, . . . , amn).

Then T : V →W is a linear map.

10. Let V = Rn. Recall the standard basis e1 = (1, 0, . . . , 0), . . . , en =
(0, . . . , 0, 1) of Rn. We call the subspace Rej = {cej | c ∈ R} the
j-th axis of Rn. The j-th projection pj : Rn → Rn on the j-th axis
is the linear map pj(x1, . . . , xn) = xjej .

11. Again, let V = Kn, but with K being any field. The standard
j-th hyperplane Hj = {(x1, . . . , xn) ∈ V | xj = 0}. The set Hj is a
subspace of V . The j-th projection from V on W = Hj is the linear
map Pj : V →W given by Pj(x1, . . . , xn) = (x1, . . . , xn)− xjej .

EXERCISES

1. Which of the following functions are linear maps from R2 to R2?
Hint: Consult the definition of a linear map.

(a) T (x, y) = (x2, y3)

(b) T (x, y) = (x+ y, x− y)

(c) T (x, y) = (cosx, sin y)

(d) T (x, y) = (ex, y)

2. Show that the translation S : R2 → R2 by a fixed vector (a, b), that
is, S(x, y) = (x+ a, y + b), is a linear transformation if and only if
(a, b) = (0, 0).

3. Show that T (x, y, z) = (y + z, z + x, x+ y) is a linear map from R3

to R3.
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4. i) A (straight) line L through two distinct points a and b in the
Euclidean space Rn is the set

L = {a + t(b− a) | t ∈ R}.

Show that any linear map T : Rn → Rn takes lines to lines, i.e.
T (L) is a line for any line L in Rn, unless T (a) = T (b) in which
case it is a point.

ii) The line segment joining two distinct points a and b in Rn is the
set

[a, b] = {a + t(b− a) | 0 ≤ t ≤ 1}.

Show that the image T ([a, b]) of a line segment under a linear map
T : Rn → Rn is a line segment.

5. Suppose V = M(n,K) and A ∈ V . Show that the function T (X) =
AX −XA is a linear map from V to itself.

6. Show that transposing i.e. A → A∗ is a linear map from M(m ×
n,K) to M(n×m,K).

7. Suppose V = W = Q[x]. Which of the following maps F : V → W
are linear? F (f(x)) =

(a) xf(x)

(b) x2 + f(x)

(c) f(0)f(x)

(d) f(x) + 2f ′(x) + 3f ′′(x).

8. Which of the following functions F are linear maps from V to W?

(a) V = C[a, b], W = R, F (f) = F (b)− F (a)

(b) V = M(2,K), W = K, F (A) = det(A)

(c) V = M(n,K), W = K, F (A) = tr(A)

(d) V = C[a, b], W = R, F (f) =

[
a∫
b

(f(x))2dx

]1/2

.

9. When is the function F (x, y, z) = (x+ a, y + b, z + c) linear?

10. Consider V = M(2,C) as a vector space over K = R. Suppose
T (aij) = (aij), where a denotes the conjugate of a. Show that T is
a linear transformation from V to itself.

11. Extension by Linearity.

Suppose V , W are vector spaces over K and B = {v1, . . . ,vn} is
a basis of V . Let {w1, . . . ,wn} ⊆ W . Show that there is a unique
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linear map T : V → W , such that T (vj) = wj . We say that T is
the extension of T (vj) = wj by linearity.

(Hint : Write v in V as v = c1v1 + · · · + cnvn and put T (v) =
c1w1 + · · ·+ cnwn.)

4.2 Properties of Linear Maps

The axioms we chose to define a vector space is a minimal set of properties,
such that the other properties we desire can be derived from them. In fact,
so many interesting facts about the vectors follow almost immediately from
the defining ten properties listed in the definition of a vector space. The same
is true for linear transformations. Unless stated otherwise, T : V → W is a
generic linear map.

Proposition 4.1.

1) T (0) = 0, and

2) T (−v) = −T (v) for all v in V .

The proposition says that 1) a linear map takes the zero vector of V to the
zero vector of W . [A clearer way to write 1) may be T (0V ) = 0W ], whereas
2) says that it takes the negative of v to the negative of T (v).

Proof.

1) Since 0 = 0 + 0 and T is linear, T (0) = T (0) + T (0) which gives
T (0) = 0.

2) We know that (−1)v = −v. Hence,

T (−v) = T ((−1)v)

= (−1)T (v)

= −T (v).

Theorem 4.2. The image T (V ) = {T (v) | v ∈ V } is a subspace of W .

Proof. Recall the definition of a subspace. Suppose w1,w2 ∈ T (V ) and
c1, c2 ∈ K. Then wj = T (vj) for some vj ∈ V . Since c1v1 + c2v2 ∈ V ,

c1w1 + c2w2 = c1T (v1) + c2T (v2)

= T (c1v1 + c2v2) ∈ T (V ).
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Theorem 4.3. The preimage T−1(0) = {v ∈ V | T (v) = 0} is a subspace of
V .

Proof. If v1,v2 ∈ T−1(0) and c1, c2 ∈ K, then T (c1v1 + c2v2) = c1T (v1) +
c2T (v2) = c10 + c20 = 0.

Hence c1v1 + c2v2 ∈ T−1(0).

Definition. The subspace T−1(0) = {v ∈ V | T (v) = 0} of V is called the
kernel of T and is denoted by Ker(T ).

Theorem 4.4. A linear transformation T : V → W is injective, if and only
if Ker(T ) = {0}.

Proof. We will use the abbreviation (a) ⇒ (b) for (a) implies (b). If T
is injective, only one vector can go to zero of W , which clearly is the zero
vector of V . Conversely, suppose Ker(T ) = {0}. If T (v1) = T (v2), then
T (v1) − T (v2) = 0 ⇒ T (v1 − v2) = 0 ⇒ v1 − v2 ∈ Ker(T ) = {0}. Hence
v1 − v2 = 0⇒ v1 = v2. This shows that T is injective.

Theorem 4.5. Suppose V , W are vector spaces over a field K and V is
finite dimensional. If T : V →W is a linear transformation, then dimT (V )+
dim Ker(T ) = dimV .

Proof. Let dimV = n, and dim Ker(T ) = m ≤ n. Suppose {v1, . . . ,vm}
is a basis of Ker(T ). If m = n, there is nothing to prove. Otherwise, ex-
tend it to a basis {v1, . . . ,vm,vm+1, . . . ,vn} of V . Clearly, the set S =
{T (vm+1), . . . , T (vn} spans T (V ). Therefore, to prove the theorem, it is
enough to show that S is linearly independent.

Suppose cm+1T (vm+1) + · · · + cnT (vn) = 0. Then T (cm+1vm+1 + · · · +
cnvn) = 0, which shows that cm+1vm+1+· · ·+cnvn ∈ Ker(T )⇒ cm+1vm+1+
· · ·+ cnvn = a1v1 + · · ·+ amvm, or a1v1 + · · ·+ amvm − cm+1vm+1 − . . .−
+cnvn = 0. The linear independence of v1, . . . ,vn now implies that cm+1 =
. . . = cn = 0. This completes the proof.

This theorem involves only the subspace T (V ) of W . Hence our statements
will appear somewhat simpler, if we assume that T : V →W is surjective. In
that case, we write W instead of T (V ).

Corollary 4.6. Suppose T : V →W is a surjective linear map and V is finite
dimensional. Then dimW ≤ dimV . Moreover, the equality dimW = dimV
holds, if and only if, T is injective.

Proof. The first statement is trivial, because

dimV = dimW + dim Ker(T )
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The second statement is also trivial, because dimW = dimV ⇔ dim KerT =
0⇔ T is injective.

Corollary 4.7. If W = {A ∈M(n,R) | tr(A) = 0}, then dimW = n2 − 1.

Proof. Apply Theorem 4.5 to the linear map T : M(n,R) → R given by
T (A) = tr(A).

Theorem 4.8. Suppose a linear map T : V → W is bijective. The inverse
T−1 : W → V is also a linear map.

Proof. Suppose c1, c2 ∈ K and u1 = T (v1),u2 = T (v2) are in W = T (V )
with vj in V . Then

T (c1v1 + c2v2) = c1T (v1) + c2T (v2)

= c1u1 + c2u2

Applying T−1 to both sides, in reverse order,

T−1(c1u1 + c2u2) = T−1(T (c1v1 + c2v2))

= c1v1 + c2v2

= c1T
−1(u1) + c2T

−1(u2).

This proves that T−1 is a linear transformation.

Definition. Two vector spaces V and W over the same field K are isomor-
phic, written as V ∼= W , if there is a bijective linear map T : V → W . The
bijective linear map T is called an isomorphism.

Theorem 4.9. Suppose V and W are finite dimensional vector spaces over
the same field K of scalars. Then V and W are isomorphic, if and only if
dimV = dimW , equivalently if and only if there is a linear map T : V → W
which takes the bases of V to that of W .

Proof. One implication is obvious. For the other, let dimV = dimW = n.
Suppose {v1, . . . ,vn} is a basis of V and {w1, . . . ,wn} is that of W . Define
a map T : V → W as follows. If v = c1v1 + . . . + cnvn is in V , put T (v) =
c1w1 + . . . + cnwn. It is easy to show that T is a bijective linear map. We
leave the proof of the equivalence as an easy exercise.
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Remarks

1. If dimV = dimW = ∞, it is not necessary that V ∼= W . For
example, if V = Q[x], W = R, then dimQ V = dimQW = ∞, but
V 6∼= W . (Why?)

2. A finite dimensional vector space cannot be isomorphic to an infinite
dimensional vector space.

3. The theorem says that given a field K and an integer n ≥ 0, up to
isomorphism, there is only one vector space over K of dimension n,
and it is Kn = {(x1, . . . , xn) | xj ∈ K}.

Examples.

1. The vector space Pn of polynomials over K of degree < n is
isomorphic to Kn. An isomorphism T : Pn → Kn is given by T (c0 +
c1x+· · ·+cn−1x

n−1) = (c0, c1, . . . , cn−1). The basis {1, x, . . . , xn−1}
of Pn is taken by T to the standard basis e1 = (1, 0, . . . , 0), . . . , en =
(0, . . . , 0, 1) of Kn.

2. M(m × n,K) ∼= Kmn. The isomorphism T : M(m × n,K) →
Kmn, given by T (aij) = (a11, . . . , a1n, . . . , am1, . . . , amn), takes the
standard basis {Eij} of M(m×n,K) to the standard basis of Kmn.

3. As a vector space over R, C ∼= R2. The map C 3 a + ib 7→
(a, b) ∈ R2 is an isomorphism. It takes the basis {1, i} of C over R,
to the standard basis {e1, e2} of R2. We call C the complex plane
when identified with R2.

4. Consider the vector space V = R+ over R in Example 11, Sec-
tion 3.1. Let W = R and let T : V → W be the map. T (x) = lnx.
One learns in high school that T is a bijective linear map. Hence
V ∼= W .

EXERCISES

1. Construct linear transformations T, T1, T2 : R2 → R2, such that

(a) T1 ◦ T2 = 0, and T2 ◦ T1 6= 0,

(b) T 2 = 0. but T 6= 0

2. If T2 : R3 → R2 and T1 : R2 → R3, show that T1 ◦ T2 cannot be
invertible.
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3. Construct a linear map T from an n-dimensional vector space to
itself, such that T j 6= 0 if 1 ≤ j < n, but Tn = 0. [Here T j =
T ◦ · · · ◦ T︸ ︷︷ ︸
j times

.]

4. If V is the vector space of n × n upper triangular matrices over
K and W the vector space of n × n symmetric matrices over K,
by Exercise 13, Section 3.4, dimV = dimW , and hence V ∼= W .
Construct an isomorphism T : V →W .

5. Suppose V1 is a subspace of a vector space V , W1 that of W , and
T : V → W is a linear map such that T (V1) ⊆ W1. Prove that
T : V/V1 → W/W1 defined by T (v + V1) = T (v) + W1 is a well-
defined linear map.

6. If T : V →W is a linear map, prove that T (V ) ∼= V/Ker(T ).

Hint: In Exercise 5, take V1 = Ker(T ) and W1 = {0}.

4.3 Matrix of a Linear Map

In this section we show that any linear map T : V → W , V and W finite
dimensional, is given by a matrix. To begin with, let it be T : Rn → Rn. We
take {e1, . . . , en} to be the standard bases of Rn. Thus if x = x1e1+· · ·+xnen,
we write it as a column vector

x =

x1

...
xn


Then

T (x) = T (x1e1 + · · ·+ xnen)

= x1Te1 + · · ·+ xnTen

= x1c1 + · · ·+ xncn

= Ax,

c1, . . . , cn being the columns of A. The matrix A is called the standard matrix
of the linear map of T .
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Examples.

1. Let T : R2 → R2 be given by

T

(
x

y

)
=

(
2x+ 3y

3x+ 5y

)
.

The columns of A are Te1 = T
(

1
0

)
=
(

2
3

)
and Te2 = T

(
0
1

)
=
(

3
5

)
.

Hence the standard matrix of T is

A =

(
2 3
3 5

)
.

2. Let T : R2 → R2 be the reflection in the line y = x. Since
c1 = Te1 = T

(
1
0

)
=
(

0
1

)
and c2 = T

(
0
1

)
=
(

1
0

)
, so A =

(
0 1
1 0

)
. This

gives

T

(
x

y

)
=

(
0 1
1 0

)(
x

y

)
=

(
y

x

)
.

General Case.

To prepare for the general case, let {f1, . . . ,fm} be the standard basis of
Rm. The standard matrix A of T : Rn → Rm should multiply the coordinate
vectors of points in Rn relative to the standard basis of Rn. In particular,

T (ej) = cj =

a1j

...
amj

 = a1jf1 + · · ·+ αmjfm.

Suppose now that V and W are vector spaces of dimensions n and m, with
ordered bases BV = {v1, . . . ,vn}, BW = {w1, . . . ,wm}, respectively. Thus we
can write vectors v in V and w in W with respect to BV and BW as column
vectors

v =

x1

...
xn

 and w =

 y1

...
ym

 .

For a linear map T : V →W , let

T (vj) = a1jw1 + · · ·+ amjwm. (4.2)

Then w = T (v) = A

x1

...
xn

, with A = (aij) given by (4.2)

Examples. Below, the bases are ordered the way their elements are written.
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1. Let V = P4,W = P3. [Recall that Pn is the vector space of
polynomials of degree less than n.] Let BV = {1, x, x2, x3},BW =
{1, x, x2} be the respective standard bases. Now let T = d

dx : V →
W be the differential operator which is linear. To compute its ma-
trix, we write

T (1) = 0 = 01 + 0x+ 0x2,

T (x) = 1 = 11 + 0x+ 0x2,

T (x2) = 2x = 01 + 2x+ 0x2,

T (x3) = 3x2 = 01 + 0x+ 3x2.

Hence the matrix of T relative to BV and BW is0 1 0 0
0 0 2 0
0 0 0 3

 .

2. Now suppose T : V → W is as in Example 1, but BV = {1 +
x, 1− x, x2 + x3, x2 − x3} and BW = {1, x, x2}. Applying T to the
basis vector in B, we get

T (1 + x) = 1 = 1 · 1 + 0x+ 0x2

T (1− x) = −1 = (−1)1 + 0x+ 0x2

T (x2 + x3) = 2x+ 3x2 = 0 · 1 + 2x+ 3x2

T (x2 − x3) = 2x− 3x2 = 0 · 1 + 2x− 3x2.

Hence the matrix of T relative to the new bases BV and BW is1 −1 0 0
0 0 2 2
0 0 3 −3

 .

3. Let V = W = Rn and pj : V → W be the projection onto the
j-th coordinate axis, i.e. pj(x1, . . . , xn) = (0, . . . , xj , . . . 0). Again
we take BV = BW to be the standard basis. The standard matrix
of the linear transformation pj is the n × n matrix Ejj with 1 at
the (j, j)-th place and zero elsewhere.

4. Regard V = W = C as a vector space over R with bases BV =
BW = {1, i}. Let κ : V → W be the conjugation map κ(a + ib) =
a− ib. The matrix of κ relative to BV and BW is(

1 0
0 −1

)
.
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EXERCISES

All the bases below are ordered in the way their elements are written.

In problems 1–4 find the standard matrix of a given linear transformation T .

1. T : R2 → R2 is a vertical shear that maps e1 to e1− 2e2 but leaves
e2 unchanged.

2. T : R2 → R2 is a horizontal shear that leaves e1 unchanged but
maps e2 to e2 + 2e1.

3. T : R2 → R2 rotates points about the origin through θ radians,
counterclockwise.

4. T : R2 → R2 reflects points first in x-axis and then in the line y = x.

5. What is the angle of rotation if T : R2 → R2 that reflects points first
through x-axis and then through y-axis? Write its matrix relative
to the standard bases of R2.

6. Let B1 =
{(

2
1

)
,
(

1
2

)}
and B2 =

{(
1
1

)
,
(

1
−1

)}
be two bases of V =

W = R2. Suppose T : V → W be the linear transformation given
by T (x, y) = (3x + 4y, 4x + 5y). Find the matrix of T relative to
BV = Bi,BW = Bj for all choices of i, j = 1, 2, i.e. relative to i)
B1,B1, ii) B1,B2, iii) B2,B1, iv) B2,B2.

7. Let V = W = M(2,R). Recall that

B =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
is the standard basis of M(2,R). Find the standard matrix of the
linear map T : V →W given by T (A) = A∗ (the transpose of A).

8. Let V = W be the subspace of C∞(R) spanned by cosx and sinx.
Let D : V →W be the linear operator D = d

dx . Find the matrix of
D relative to BV = BW = {cosx, sinx}.

9. Compute the matrix of the linear map T : P3 → R3, given

by T (f(x)) =

 1∫
0

f(x)dx, f(0), f(1)

, relative to their standard

bases.
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4.4 Matrix Algebra and Algebra of Linear Maps

Suppose K is a field and V , W are vector spaces over K of dimensions at least
one. A linear transformation T : V →W is also called a homomorphism from
V to W over K. The set of all homomorphisms T : V →W over K is denoted
by HomK(V,W ), or simply by Hom(V,W ) if K is clear from the context. If
T, T1, T2 ∈ Hom(V,W ) and c ∈ K, we define the maps T1 + T2, cT : V → W
by (T1 + T2)(v) = T1(v) + T2(v) and (cT )(v) = cT (v).

Theorem 4.10. With the addition and scalar multiplication, defined above,
the set Hom(V,W ) is a vector space over K.

Proof. All one needs to do is to verify the axioms in the definition of the
vector space. We will verify three of them (#1, #2, and #5) and leave the
rest as an exercise.

1. Let T1, T2 ∈ Hom(V,W ). For v1, v2 in V ,

(T1 + T2)(v1 + v2) = T1(v1 + v2) + T2(v1 + v2)

= T1(v1) + T1(v2) + T2(v1) + T2(v2)

= (T1(v1) + T2(v1)) + (T1(v2) + T2(v2))

= (T1 + T2)(v1) + (T1 + T2)(v2).

Hence T1 + T2 is also in Hom(V,W ).

2. If T ∈ Hom(V,W ) and a, c ∈ K, then for u in V ,

(aT )(cv) = aT (cv) = acT (v) = c(aT (v)).

Hence aT is in Hom(V,W ).

5. The linear map 0 : V →W defined by 0(v) = 0 for all v in V is the
Θ vector of Hom(V,W ).

Theorem 4.11. Suppose V and W are finite dimensional vector spaces
over K of dimensions n and m, respectively. As a vector space over K,
Hom(V,W ) ∼= M(m× n,K).

Proof. Choose ordered bases BV = {v1, . . . ,vn} of V and BW =
{w1, . . . ,wm} of W . Now Suppose that T : V → W is linear. Write the
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vector

T (vj) =

m∑
i=1

aijwi, (4.3)

as a unique linear combination of the basis vectors in BW . Denote the m× n
matrix (aij) by τ(T ). This defines a map τ : Hom(V,W )→M(m×n,K). We
show that τ is a bijective linear map. It is trivial to check that τ is a linear
transformation. It is also obvious that Ker(τ) = {0}, where 0 is the linear
transformation from V to W which is identically zero. Hence τ is injective. In
particular,

dim Hom(V,W ) ≤ mn = dimM(m× n,K). (4.4)

Now define mn linear transformations Tij : V → W (i = 1, . . . ,m; j =
1, . . . , n) by Tij(vr) = δrjwi, where δrj are the Kronecker deltas

δrj =

{
1 if r = j

0 if r 6= j

and extend them to V by linearity. We leave it as an exercise to check that
Tij are linearly independent. Hence,

dim Hom(V,W ) ≥ mn. (4.5)

From (4.4) and (4.5), dim Hom(V,W ) = dimM(m × n,K). Hence, by Theo-
rem 4.9, τ is also bijective.

Theorem 4.12. Suppose U , V , W are vector spaces over K and T1 : U → V ,
T2 : V → W are linear maps. Then the composite map T2 ◦ T1 : U → W is a
linear transformation.

Proof. If c1, c2 ∈ K and u1,u2 ∈ U , then

(T2 ◦ T1)(c1u1 + c2u2) = T2(T1(c1u1 + c2u2))

= T2(c1T1(u1) + c2T1(u2))

= c1T2(T1(u1)) + c2T2(T1(u2))

= c1(T2 ◦ T1)(u1) + c2(T2 ◦ T1)(u2).

The linear map τ : Hom(V,W ) → M(m × n,K), in the proof of Theo-
rem 4.11, depends obviously on the ordered bases BV and BW . Therefore, a
better notation, especially for stating the theorem below, is τ = τBV ,BW

Theorem 4.13. Suppose V , W , and X are finite dimensional vector spaces
over a field K, with given ordered bases BV , BW and BX , respectively. Suppose
T1 ∈ Hom(V,W ) and T2 ∈ Hom(W,X). Then

τBV ,BX
(T2 ◦ T1) = τBW ,BX

(T2)τBV ,BW
(T1).
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Remark. The theorem says that under the identification of linear maps with
matrices, the composition of linear transformations corresponds to matrix
multiplication. Since the composition of maps is associative, so is the matrix
multiplication.

Proof. Suppose dimV = n, dimW = r, dimX = m and BV = {v1, . . . ,vn},
BW = {w1, . . . ,wr}, BX = {x1, . . . ,xm}. Let τ(T1) = A = (aij) in
M(r × n,K), τ(T2) = B = (bij) in M(m× r,K). To find the (ij)-th entry of
the m× n matrix τ(T2 ◦ T1), we express (T2 ◦ T1)(vj) as a linear combination
of the vectors in the ordered basis BX .

(T2 ◦ T1)(vj) = T2(T1(vj)) = T2

(
r∑

k=1

akjwk

)

=

r∑
k=1

akjT2(wk)

=

r∑
k=1

akj

m∑
i=1

bikxi

=

m∑
i=1

r∑
k=1

bikakjxi.

Hence τ(T2 ◦ T1) =

(
r∑

k=1

bikakj

)
= BA.

Remark. It is not possible, in general, to multiply vectors. However, some-
times, it is. Suppose A is a vector space over a field k, which also comes with
multiplication, that is, a map µ : A × A → A, called the multiplication. We
denote the product µ(A,B) of A and B simply by AB. We say that A is an
(associative) algebra over k if the multiplication is compatible with the vector
space operations, that is, if for all A,B,C in A and a, b in k,

1. A(B + C) = AB + AC, (A + B)C = AC + BC (distributive
law),

2. (AB)C = A(BC) (associative law),

3. a(AB) = (aA)B = A(aB).

We also require A to have an element I called the identity, such that for all A
in A, AI = IA = A and identify the scalars with elements of A via a→ aI.

An algebra A over k is commutative if AB = BA for all A,B in A.

Some examples of algebras are:
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1. k[x] is a commutative algebra over k,

2. if k is a subfield of K, then K is also a commutative algebra
over k,

3. M(n,K) is a non-commutative algebra over K,

4. if V is a vector space over K, dimK(V ) ≥ 2 then HomK(V, V ),
with µ(T1, T2) = T1 ◦ T2, is an algebra over K, which is also non-
commutative.

If A and B are algebras over K, we say that, as an algebra, A is isomorphic
to B if there is a bijective linear map τ : A → B such that for all A,B in
A, τ(AB) = τ(A)τ(B) and τ(I) = I. In this section, we have proved the
following fact.

Theorem 4.14. If V is a finite dimensional vector space over K with
dimK(V ) = n, then as an algebra, HomK(V, V ) is isomorphic to M(n,K).

EXERCISE

Show that the linear maps Tij , defined in the proof of Theorem 4.11, are
linearly independent.

4.5 Linear Functionals and Duality

If V and W are vector spaces of dimension n and m respectively, over a field K,
then HomK(V,W ) ∼= M(m× n,K). In particular, when K is considered as a
vector space over itself, then HomK(V,K) ∼= M(1×n,K) ∼= Kn. The elements
of HomK(V,K) are called linear functionals. The vector space HomK(V,K)
is usually denoted by V ∗, and is called the dual of V . The dual V ∗ ∼= Kn ∼= V.

Suppose B = {v1, . . . ,vn} is a basis of V . A linear transformation T : V →
W is uniquely determined by its values T (vj), j = 1, . . . , n of the basis vectors.
The n linear functionals T1, . . . , Tn : V → K defined by

Ti(vj) =

{
1 if i = j

0 if i 6= j.

form a basis of V ∗, called the dual of the basis B.
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4.6 Equivalence and Similarity

The matrix of a linear transformation T : V →W , where V and W are finite
dimensional vector spaces, is always relative to a pair of ordered bases BV and
BW . In this section, we shall see what happens to this matrix when BV and
BW are replaced by another pair of ordered bases of V and W , respectively.

Suppose V ∼= Kn and W ∼= Km (m,n ≥ 1) are finite dimensional
vector spaces over K with ordered bases BV = {v1, . . . ,vn} and BW =
{w1, . . . ,wm}, respectively. Thus vectors in V and W are to be considered
as column vectors. Let T : V → W be a linear map and A = τBV ,BW

(T ) be
the matrix of T relative to BV and BW (see Section 4.4). Now suppose we are
given another pair B′V = {v′1, . . . ,v′n} and B′W = {w′1, . . . ,w′m} of ordered
bases of V and W . How are the matrices A = τBV ,BW

(T ) and B = τB′V ,B′W (T )
related?

To answer this question, write

v′j =
n∑
i=1

pijvi, w
′
j =

m∑
i=1

qijwi.

Then P = (pij) and Q = (qij) are invertible matrices of order n and m,
respectively. The matrices P and Q are called the transition matrices. Suppose
LP : V → V is the linear map corresponding to the multiplication by P on
the left, when V is identified with vector space Kn of column vectors, whose
coordinates are the components of vectors in V along vj . Similarly LQ. Then
by Theorem 4.13,

B = τB′V ,B′W (T ) = τBW ,B′W (LQ) · τBV ,BW
(T ) · τB′V ,BV

(LP ) = QAP−1.

To summarize, it is convenient to introduce the following terminology.

Definition. Suppose A,B ∈M(m×n,K). We say that A is equivalent to B
(over K), if there are invertible matrices P in M(n,K) and Q in M(m,K),
such that B = QAP−1. In particular, A and B are similar if m = n and
P = Q.

Now the effect of change of bases can be summarized as follows.

Theorem 4.15. Suppose A is the matrix of a linear map T relative to a pair
of ordered bases of V and W and B is the matrix of T relative to another pair
of ordered bases of V and W . Then A and B are equivalent. In particular, if
A and B are the matrices of T : V → V with respect to different bases of V ,
then A and B are similar.

Remark. First note that P , Q are nothing but transition matrices from BV
to B′V and BW to B′W , respectively (Section 3.6).
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Examples.

1. Suppose V = W = R2,BV = BW = {e1, e2},B′V =
{(

1
2

)
,
(

2
1

)}
and B′W = BW . To find the transition matrix P , we write

v′1 =

(
1

2

)
= 1e1 + 2e2

v′2 =

(
2

1

)
= 2e1 + 1e2.

Hence, P =

(
1 2
2 1

)
. Thus B = IAP−1 = AP−1.

2. Suppose V = P3, W = P2. Let the linear map be the derivation
D = d

dx : V → W . We take the first pair of ordered bases to be
the standard ones, BV = {1, x, x2}, BW = {1, x}. Let the new pair
be B′V = {1, x + x2, x − x2} and B′W = {1 + x, 1 − x}. Then it is

easy to see that P =

1 0 0
0 1 1
0 1 −1

 and Q =

(
1 1
1 −1

)
. If we put

τBV ,BW
(D) =

(
0 1 0
0 0 2

)
= A, then B = τB′V ,B′W (D) = QAP−1 =

(
1 1
1 −1

)(
0 1 0
0 0 2

)1 0 0
0 1

2
1
2

0 1
2 − 1

2

 =

(
0 3

2 − 1
2

0 − 1
2

3
2

)
.

EXERCISES

1. For V = R2, find the transition matrix P if

(a) BV =
{(

1
2

) (
2
1

)}
,BV ′ =

{(
1
1

)
,
(

1
−1

)}
,

(b) BV =
{(

3
−4

)
,
(

1
−1

)}
,BV ′ =

{(
5
7

)
,
(

3
2

)}
.

2. For V = P3, find the transition matrix P , if BV = {1 + x, 1 −
x, x2},BV ′ = {1, x+ x2, x− x2}.

3. (a) Find the matrix A of the derivation D = d
dx : P4 → P3 relative

to the standard bases {1, x, x2, x3} and {1, x, x2} of P4 and P3

respectively.

(b) Find the matrix B of D in (a) relative to the pair B′V = {1 +
x, 1− x, x2 + x3, x2 − x3} and B′W = {1, 1 + x, 1 + x2} of bases
of V = P4 and W = P3, respectively.
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(c) Find the matrices P and Q relative to the old and new bases
of V and W , as in (a) and (b) respectively.

(d) Check that the matrices B, A, and P , Q obtained in (a), (b),
and (c) satisfy B = QAP−1.

4.7† Application to Higher Order Differential Equations

To solve the higher order differential equation (3.4), equivalently to find a
basis of the kernel of the linear map L below, we first explain our notation. If

we put D = d
dx , then D2 = d

dx

(
d
dx

)
= d2

dx2 , so Dj = D(Dj−1) = dj

dxj . Thus we
can write the linear operator

L =
dn

dxn
+ an−1

dn−1

dxn−1
+ · · ·+ a1

d

dx
+ a0

= Dn + an−1D
n−1 + · · ·+ a1D + a0

= f(D)

as a polynomial of degree n in D. The polynomial f(D) is the characteristic
polynomial of the differential equation (3.4), which now can be written as

L(y) = 0.

Clearly the solution set of (3.4) is Ker(L), which is a vector space. Its di-
mension is equal to the order of (3.4) (for proof see a book on differential
equations) which is the same as deg f(D).

Theorem 4.16. If L is the operator f(D) = Dn+an−1D
n−1 + · · ·+a1D+a0,

dim Ker(L) = n.

By this theorem, a general solution of (3.4) is y = c1y1 + · · · + cnyn if we
can find a basis {y1, . . . , yn} for Ker(L).

We know that a polynomial of degree n has precisely n roots, counted with
multiplicity. The following algorithm provides a basis y1, . . . , yn for Ker(L).

Theorem 4.17. If α is a root of multiplicity r of the characteristic polynomial
f(D) of L(y) = 0, it contributes r linearly independent solutions eαx, xeαx, . . .,
xr−1eαx. The solutions contributed by distinct roots of f(D), taken together,
form a basis of Ker(L).

Proof. The proof can be found in most books on differential equations.
Assuming dim Ker(L) = n, we sketch it when all the roots α = α1, . . . , αn are
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real and distinct. If y = eαx, then

dny

dxn
+ an−1

dn−1y

dxn−1
+ · · ·+ a1

dy

dx
+ a0y = f(D)y.

But Djy = dj

dxj e
αx = αjeαx, so f(D)y = f(α)eαx = 0, since α is a root

of f(D). It can be checked by Theorem 3.8 that eα1x, . . . , eαnx are linearly
independent.

Remarks.

1. A basis for Ker(L) is called a set of fundamental solutions of Ly = 0.

2. The imaginary roots of a polynomial with real coefficients occur in pairs
of complex conjugates α = a+ ib, ᾱ = a− ib. By “Euler’s identity,” which in
fact is the definition of complex exponentiation,

eαx = eax+ibx = eax(cos bx+ i sin bx)

eᾱx = eax−ibx = eax(cos bx− i sin bx).

This shows that span{eαx, eᾱx} = span{eax cos bx, eax sin bx}. Therefore in
the set of fundamental solutions of Ly = 0 given by Theorem 4.17, the pair
{eαx, xᾱx} may be replaced by {eax cos bx, eax sin bx}.

Examples.

1. For a general solution of

y′′ − 5y′ + 6y = 0,

its characteristic polynomial f(D) = D2 − 5D + 6 = (D − 2)(D − 3) with
two real and distinct roots α = 2, 3. Hence a general solution of this linear
differential equation of order two is y = c1e

2x + c2e
3x.

2. y′′ − 4y′ + 4y = 0.

Now f(D) = D2−4D+4 = (D−2)2, with one real root D = 2 of multiplicity
two. Hence a general solution of this differential equation is y = c1e

2x+c2xe
2x.

3. y′′′ − y = 0.

Now f(D) = D3 − 1 = (D − 1)(D2 + D + 1) has one real root D = 1

and a pair of imaginary roots α, ᾱ = − 1
2 ±

√
3

2 i. Hence a general solution

y = c1e
x + c2e

−x/2 cos
√

3
2 x+ c3e

−x/2 sin
√

3
2 x.
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EXERCISES

Find a general solution of the following linear differential equations:

1. y′′ − 3y′ + 2y = 0

2. y′′ − 6y′ + 9y = 0

3. y′′′′ − y = 0
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Determinants

5.1 Motivation

Given a linear map T : V → V , how can one check if it is invertible? When
dim(V ) < ∞, we can, and from now on will, identify T with its matrix. To
each square matrix A, we associate a scalar det(A) or |A| and show that T is
invertible if and only if det(A) 6= 0, A being its matrix.

There are many ways to compute det(A). But before computing it we have
to say what it is. The most familiar definition leaves one wondering from where
it came. For example, when the determinant det(A) of a 2× 2 matrix

A =

(
a b
c d

)
is defined by det(A) = ad − bc, one should ask: why not = a + b + c + d
or = ab + cd? The following discussion is supposed to answer this question.
Those willing to accept the computational definition of det(A) may skip the
first three sections and proceed directly to Section 5.4. But then proving some
of the properties of det(A) are rather messy and will be left as exercises.

The area of the parallelogram formed by the vectors u = (a, b), v = (c, d)
in the Euclidean plane R2 is the absolute value of ad − bc. [See Exercise 9,
Section 7.1.] Thus u, v form a basis of R2 (See Figure 5.1) if and only if
this area is nonzero, i.e. det(A) 6= 0. Similarly (see Exercises 10 and 11 in
Section 7.1) three vectors, u,v and w in R3 form its basis if and only if the
volume of the parallelepiped they form is nonzero. We cannot make these
statements for the vector space Kn (n = 2, 3) if K is not a subfield of R. For
example, the terms “parallelogram” and “area” are meaningless for vectors
in V = K2, if K is a finite field. Therefore, we should look for an equivalent
formulation of these statements about the bases, which makes sense for any
field K of scalars.

We begin with some defining properties of areas of parallelograms in R2

and of volumes of parallelepipeds in R3, which do not use the special nature
of R, but depend only on the axioms which make R into a field.

93
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We discuss only the areas of parallelograms. The corresponding facts about
the volumes of parallelepipeds in R3 are similar. After fixing an orientation, let
f(u,v) denote the area, with appropriate sign, of the oriented parallelogram
formed by the ordered set {u,v} in V = R2.

u

v
v

u

n
eg
at
iv
e

positive

FIGURE 5.1: Orientation of a parallelogram

By this we mean, as Figure 5.1 suggests, that f(u,v) = −f(v,u). This
function f : V ×V → R has the following obvious properties (only part (a) of
1) is a little exercise in geometry);

1) It is multilinear , that is, it is linear in each variable. For example,
the linearity in the first variable means that

(a) f(u1 + u2,v) = f(u1,v) + f(u2,v),

(b) f(cu,v) = cf(u,v) for c in R.

2) It is alternating , that is f(u,v) = −f(v,u).

3) If e1 = (1, 0), e2 = (0, 1), then f(e1, e2) = 1.

It will follow that if g : V × V → R is another function with these three
properties, then g = f .

This suggests that in the general case of V = Kn, where n > 1 is any
integer and K is a field, we should look for a function δ : V n → K, such that
it has these properties, and a set {v1, . . . ,vn} is a basis of Kn if and only if
δ(v1, . . . ,vn) 6= 0. The following definition of determinant does this. Moreover,
most of its properties follow at once from this definition, both algebraically
and whenever applicable also geometrically. The discussion of permutations
follows right after the definition and remarks.

Definition. Suppose n ≥ 1, K is a field and V = Kn. A function δ : V n → K
is called a determinant function on V n if it has the following three properties:

(D-1) δ is multilinear , that is, it is linear in each variable.
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(D-2) δ is alternating , that is, δ(vσ(1), . . . ,vσ(n)) = −δ(v1, . . . ,vn), if σ is a
permutation of indices, which switches two indices i, j(i 6= j) and leaves all
other fixed.

(D-3) If {e1, . . . , en} is the standard basis of Kn, then δ(e1, . . . , en) = 1.

We shall show that such a function exists, and is unique. More importantly, a
set {v1, . . . ,vn} of n vectors in V is a basis of V , if and only if δ(v1, . . . ,vn) 6=
0. Furthermore, if we identify V n with M(n,K), where the i-th coordinate of
a point in V n is the i-th row (or column) of the corresponding n × n matrix
in M(n,K), then δ is the well-known determinant function on matrices.

Remarks.

1. If n = 1, then as a vector space over K, V n ∼= K. In this case,
by D-1 and D-3, the determinant of a 1× 1 matrix (a) is clearly a.

2. In (D-2), we assume that K does not contain the field of two
elements as a subfield. If that is the case, see the remark after
Theorem 5.2.

Permutations

It is assumed that the reader is familiar with the basic properties of permu-
tations. However, for his or her convenience we recall them briefly.

For n ≥ 1, let X denote the set of n symbols, or indices 1, . . . , n. We shall
denote the set of all maps µ : X → X by XX . An element σ of XX is called
a permutation on X, if it is bijective. A permutation τ is a transposition or
a switch if there are two indices i, j in X with i 6= j, such that τ(i) = j and
τ(j) = i, but τ(k) = k for all other k in X. The set of all permutations is
denoted by Sn. Whereas, XX has nn elements, its subset Sn has n! elements.

It is well known that:

1) Every permutation σ is composed of transpositions, that is,

σ = τ1 ◦ · · · ◦ τr.

2) The number r of transpositions σ is composed of is not unique,
but whether it is odd or even is uniquely determined by σ. The
permutation σ is odd or even, according as this number r is odd or
even. The sign of a permutation σ is defined by sgn(σ) = (−1)r.
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A practical way to describe a permutation σ : X → X on the set X =
{1, . . . , n} of n indices is to write it as

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

The first row of σ lists the elements 1, . . . , n of X in the ascending order. The
second row shows the reordering of these indices carried out by σ. Since σ is
bijective, every index has to appear in the second row also. For example, if
n = 3,

τ =

(
1 2 3
3 2 1

)
is the transposition switching 1 and 3. For n = 5,

σ =

(
1 2 3 4 5
2 5 3 4 1

)
is a so-called cycle of order or length three. It moves each index of the cycle,

abbreviated as

(
1 2 5
2 5 1

)
, of σ to the next one and brings the last one to

the first. A transposition is a cycle of length two. Two cycles of σ are disjoint
cycles if their top rows have no index in common. Clearly, every permutation
is composed of disjoint cycles. It is easy to see that every cycle is composed
of transpositions. For example,(

1 2 3
3 1 2

)
=

(
2 3
3 2

)
◦
(

1 2
2 1

)
.

This proves that every permutation is composed of transpositions. Note that
the indices in the top row of a transposition, cycle or permutation are always
in the ascending order, and that we compose maps from right to left.

5.2 Properties of Determinants

We shall identify V n with M(n,K) via rows and feel free to switch back and
forth, whenever convenient. Often, we shall state the theorems for matrices,
and give proofs considering determinants as functions from V n to K. We could
have identified the j-th coordinates of points of V n with the j-th columns of
matrices in M(n,K). Hence, whatever we say about the rows is valid, word
for word, for columns also. The determinant function (which we shall prove
shortly exists and is unique) will be denoted by δ or det, according as it is
regarded as a function on V n or on M(n,K). In this section we prove some
of the properties of det(A). If your field K contains F2 as a subfield, see the
remark below.
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Theorem 5.1. If a row of an n × n matrix A consists of zeros only, then
det(A) = 0.

Proof. Suppose for example, v1 = 0. By multilinearity of δ in the first
variable, δ(0,v2, . . . ,vn) = δ(00,v2, . . . ,vn) = 0 δ(0,v2, . . . ,vn) = 0.

Theorem 5.2. If two rows of an n×n matrix A are identical, then det(A) = 0.

Proof. We need to show that if for two distinct indices i and j, vi = vj ,
then δ(v1, . . . ,vn) = 0. Let τ be the transposition which switches i and j,
i 6= j. By (D-2), δ(v1, . . . ,vn) = δ(vτ(1), . . . ,vτ(n)) = −δ(v1, . . . ,vn). This
gives 2δ(v1, . . . ,vn) = 0 or δ(v1, . . . ,vn) = 0.

Remark. If the field K contains the field of two elements as a subfield, we
may not conclude from 2δ(v1, . . . ,vn) = 0 that δ(v1, . . . ,vn) = 0. In this case,
one needs to replace (D-2) with the conclusion of Theorem 5.2.

Theorem 5.3. If a row (or column) of a matrix is multiplied by a scalar c,
its determinant gets multiplied by c.

Proof. This is just a part of the multilinearity of δ.

Theorem 5.4. If a multiple of a row of an n×n matrix A is added to another
row of A, the determinant is unchanged.

Proof. If we add, for example, cv2 to v1,we need to show that δ(cv2 +
v1,v2, . . . ,vn) = δ(v1, . . . ,vn). By linearity in the first variable,

δ(cv2 + v1,v2, . . . ,vn) = δ(v1, . . . ,vn) + cδ(v2,v2,v3, . . . ,vn)

= δ(v1, . . . ,vn),

by Theorem 5.2.

Theorem 5.5. If two rows of an n × n matrix A over K are interchanged,
the determinant changes sign.

Proof. This is nothing but the defining property (D-2) of the determinant
function.

5.3 Existence and Uniqueness of Determinant

Recall that {e1, . . . , en} is the standard basis of V = Kn and X is the set of
n symbols or indices i = 1, . . . , n.
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Theorem 5.6. If δ exists and a function µ : X → X is not injective, then
δ(eµ(1), . . . , eµ(n)) = 0.

Proof. Suppose µ(i) = µ(j) for i 6= j. Then eµ(i) = eµ(j). Now use Theo-
rem 5.2.

Theorem 5.7. If δ1, δ2 : V n → K are two determinant functions, then
δ1(eµ(1), . . . , eµ(n)) = δ2(eµ(1), . . . , eµ(n)) for every map µ : X → X.

Proof. If µ is not injective, both are zero by Theorem 5.6. So suppose µ
is a permutation. Write µ = τ1 ◦ . . . ◦ τr as a product of r transpositions so
that sgn(µ) = (−1)r. By the defining properties (D-2) and (D-3), we have for
δ = δ1 and δ2,

δ(eµ(1), . . . , eµ(n)) = (−1)rδ(e1, . . . , er)

= (−1)r.

Theorem 5.8. The determinant function δ : V n → K exists, and is unique.

Proof. Uniqueness: Suppose δ1, δ2 : V n → K are two determinant functions,
we show that δ1(v1, . . . ,vn) = δ2(v1, . . . ,vn) for every (v1, . . . ,vn) in V n.

Write each vector

vi =

n∑
j=1

aijej

as a linear combination of the vectors in the standard basis of V = Kn. If
δ = δ1 or δ2, it is an easy consequence of mutlilinearity that

δ(v1, . . . ,vn) = δ

(
n∑
j=1

a1jej , . . . ,

n∑
j=1

anjej

)
=
∑
µ∈XX

a1µ(1) . . . anµ(n) · δ(eµ(1), . . . , eµ(n)).

If µ is not injective, by Theorem 5.2, δ(eµ(1), . . . , eµ(n)) = 0. Hence, if you
recall the definition of sgn(σ),

δ(v1, . . . ,vn) =
∑
σ∈Sn

a1σ(1) . . . anσ(n)δ(eσ(1), . . . , eσ(n))

=
∑
σ∈Sn

a1σ(1) . . . anσ(n) sgn(σ)δ(e1, . . . , en)

=
∑
σ∈Sn

sgn(σ)a1σ(1) . . . anσ(n),
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by (D-3). Hence,

δ(v1, . . . ,vn) =
∑
σ∈Sn

sgn(σ)a1σ(1) . . . anσ(n). (5.1)

This is independent of δ. Hence δ1 = δ2.

Existence: The equation (5.1) explicitly defines the determinant function
δ(v1, . . . ,vn), or det(A), where vj ’s are the rows of A, having the desired
properties.

Example. Suppose n = 2. There are two permutations on the set X of two
indices 1 and 2. These are the identity 1X and the switch σ(1) = 2, σ(2) = 1.

Moreover, sgn(1X)=1 and sgn(σ) = −1. If A =

(
a11 a12

a21 a22

)
is a 2× 2 matrix

over K, formula (5.1) becomes

det(A) = a11a22 − a12a21.

This justifies our earlier definition of the determinant of a 2× 2 matrix

A =

(
a b
c d

)
as det(A) = ad− bc.

Corollary 5.9. If A ∈M(2,R), the absolute value |det(A)| is the area of the
parallelogram formed by the rows of A, considered as vectors in R2.

Proof. The signed area f(u,v) satisfies the defining properties (D-1), (D-2),
and (D-3) of the determinant function. Hence, by uniqueness f = det.

Similarly, we have the following fact, which was first proved by Cauchy.

Corollary 5.10. If A ∈ M(3,R), then |det(A)| is the volume of the paral-
lelepiped formed by the rows of A, considered as vectors in R3.

In general, for n ≥ 1, the n-dimensional volume Rn, taken with proper ori-
entation, has properties (D-1), (D-2), and (D-3). Hence, we have the following
result.

Theorem 5.11. For v1, . . . ,vn in Rn, the absolute value of the determinant
whose rows are v1, . . . ,vn is the n-dimensional volume of the parallepiped
{a1v1 + · · ·+ anvn | 0 ≤ aj ≤ 1}.

Note. The n-dimensional volume of a cube aj ≤ xj ≤ bj in Rn is (b1 −
a1) . . . (bn − an). If n = 1, it is the length, if n = 2, it is the area, for n = 3 it
is the volume, and so on.

We now prove a fundamental fact about the determinants.
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Theorem 5.12. det(AB) = det(A) det(B).

Proof. The i-th row of the n× n matrix B is eiB. Hence,

det(B) = δ(e1B, . . . , enB). (5.2)

Since the i-th row of A is ai1e1 + · · ·+ ainen, the i-th row of AB is

(ai1e1 + · · ·+ ainen)B =

n∑
j=1

aijejB.

Hence,

det(AB) = δ

(
n∑
j=1

a1jejB, . . . ,

n∑
j=1

anjejB

)
.

If µ is not injective, δ(eµ(1)B, . . . , eµ(n)B) = 0. Therefore, by the multilinear-
ity of δ, this is

=
∑
µ∈XX

a1µ(1) . . . anµ(n)δ(eµ(1)B, . . . , eµ(n)B)

=
∑
σ∈Sn

sgn(σ)a1σ(1) . . . anσ(n) · δ(e1B, . . . , enB)

= det(A) det(B),

by equation (5.1).

Corollary 5.13. If an n × n matrix A is invertible, then det(A) 6= 0 and
det(A−1) = 1/det(A).

Proof. If A is invertible, then A−1A = I. By (D-3), det(I) = 1. Hence
det(A−1A) = det(A−1) det(A) = 1, which implies that det(A) 6= 0 and
det(A−1) = 1/ det(A).

Finally, we return to our starting point and record our discussion as follows:

Theorem 5.14. Suppose K is a field, n ≥ 1 and V = Kn. A set of n vectors
{v1, . . . ,vn} in V is a basis of V if and only if the determinant δ(v1, . . . ,vn) 6=
0.

Proof. If v1, . . . ,vn are linearly dependent, then one of them, say

v1 = c2v2 + · · ·+ cnvn
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is a linear combination of others. Therefore,

δ(v1, . . . ,vn) = δ

 n∑
j=2

cjvj ,v2, . . . ,vn


=

n∑
j=2

cjδ(vj ,v2, . . . ,vn) = 0,

because δ(vj ,v2, . . . ,vn) = 0 for all j = 2, . . . , n. Conversely, suppose
v1, . . . ,vn are linearly independent. We can write

ei =

n∑
j=1

aijvj .

Hence,

1 = δ(e1, . . . , en)

= δ

 n∑
j=1

a1jvj , . . . ,

n∑
j=1

anjvj


=

(∑
σ∈Sn

sgn(σ)a1σ(1) . . . anσ(n)

)
δ(v1, . . . ,vn),

which shows that δ(v1, . . . ,vn) 6= 0.

Corollary 5.15. A matrix is invertible, if and only if, its rows (columns) are
linearly independent.

Theorem 5.16. For the transpose A∗ of a matrix A = (aij), det(A∗) =
det(A).

Proof. The (i, j)-th entry of A∗ is the (j, i)-th entry of A. Hence

det(A∗) =
∑
σ∈Sn

sgn(σ)aσ(1)1 . . . aσ(n)n.

If i = σ−1(j), then in the summation above, aσ(i)i = ajσ−1(j), so that

det(A∗) =
∑
σ

sgn(σ)a1σ−1(1) . . . anσ−1(n).

Now sgn(σ) = sgn(σ−1), because if σ = τ1 ◦ · · · ◦ τr, then σ−1 = τ−1
r ◦ · · · ◦ τ−1

1

(recall the definition of sgn(σ)). Therefore,

det(A∗) =
∑
σ

sgn(σ−1)a1σ−1(1) . . . anσ−1(n).
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But up to a rearrangement of terms, the sum on the right is the same as∑
σ

sgn(σ)a1σ(1) . . . anσ(n) = det(A).

The following theorem allows one to compute the determinant of a matrix
recursively as follows: For an n×n matrix A = (aij), let Aij denote the matrix
obtained from A by deleting its i-th row and j-th column. The determinant
det(Aij) is called the (i, j)-th minor and (−1)i+j det(Aij) is called the cofactor
of aij . A systematic way to get hold on the n! terms of (5.1), in n steps, is
by the so-called expansion of det(A) by i-th row or j-th column. This is the
essence of the following easy to prove theorem.

Theorem 5.17. Let A = (aij) be an n× n matrix. Fix i (1 ≤ i ≤ n) put

δi(A) =

n∑
j=1

(−1)i+jaij det(Aij). (5.3)

Similarly, fix j (1 ≤ j ≤ n) and put

δj(A) =

n∑
i=1

(−1)i+jaij det(Aij). (5.4)

Then δi, δ
j both satisfy (D-1), (D-2), and (D-3). Hence (by the uniqueness),

det(A) = δi(A) = δj(A). (5.5)

Remark. Equation (5.3) (resp. (5.4)) is the so-called expansion of det(A) by
i-th row (resp. j-th column).

5.4 Computational Definition of Determinant

To summarize the discussion of the previous sections, we now give a computa-
tional definition of the determinant of an n× n matrix A (cf. Theorem 5.17).

Definition. For n = 1, A = (a), det(A) = a.

For n = 2, A =

(
a b
c d

)
and we define det(A) = ad− bc.

For n > 2, we define det(A) of an n × n matrix A = (aij) recursively as
follows:
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Let Aij be the (n− 1)× (n− 1) matrix obtained from A by deleting its i-th
row and j-th column. Then

det(A) =
n∑
j=1

(−1)i+jaij det(Aij), (5.6)

the expansion of det(A) by its i-th row, or

det(A) =
n∑
i=1

(−1)i+jaij det(Aij), (5.7)

the expansion of det(A) by its j-th column. Both are independent of the chosen
row or column. We leave the proof of this fact as an exercise.

Example. Let

A =

a1 a2 a3

b1 b2 b3
c1 c2 c3

 .

We expand det(A) by the first row of A.

det(A) =

a1 det

(
b2 b3
c2 c3

)
− a2 det

(
b1 b3
c1 c3

)
+ a3 det

(
b1 b2
c1 c2

)
= a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1).

Properties of det(A)

We now recall the important properties of the determinant function estab-
lished in the previous sections. The computational proofs of these properties
will be left as exercises, which could be messy if you skipped Section 5.1
through 5.3. Whatever we say about the rows is true for the columns as well.

1. If a row of A consists only of zeros, det(A) = 0 (expand it by that
row).

2. If a row of A is multiplied by a constant c, det(A) gets multiplied
by c. (Again expand it by that row.)

3. If two rows of A are interchanged, det(A) changes sign.

4. If two rows of A are identical, det(A) = 0.

5. If a multiple of a row of A is added to another row of A, det(A)
remains unchanged.
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6. The expansion of det(A) is independent of the choice of a row (or
column).

7. If A =

a11 ∗
. . .

0 ann

 ,det(A) = a11 . . . ann.

Hint. Expand by the first column and use induction.

8. If B is row equivalent to an upper triangular matrix in 7 above,
det(B) = a11 . . . ann.

9. If det(A) 6= 0, then A is invertible.

Hint. If detA 6= 0, each column of A must have a nonzero entry.
Starting with the first column, use this fact first to inductively row
reduce A to an upper triangular matrix with all diagonal entries
nonzero. Then computing the inverse by row reduction (Section 2.4)
shows that A−1 exists. For another proof, see Section 5.6.

10. det(AB) = det(A) det(B).

11. If A is invertible, then det(A) 6= 0 and det(A−1) = 1/det(A).

12. det(A) is the same as that of its transpose A∗.

13. The determinant of an n×n matrix over R is nonzero if and only if
the volume of the n-dimensional parallelepiped formed by its rows
is nonzero. [The easiest proof is by using Theorem 5.8.]

The following theorem illustrates the importance of the determinant func-
tion. We leave its proof as an exercise.

Theorem 5.18. Suppose A is an n × n matrix over K, V = Kn and TA :
V → V is the corresponding linear transformation given by TA(x) = Ax. The
following are equivalent.

1) det(A) 6= 0.

2) A is invertible.

3) The rows of A are linearly independent.

4) The columns of A are linearly independent.

5) Ker(TA) = {0}.

6) TA is injective.

7) TA is surjective.

8) TA is bijective.
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Definition. A matrix satisfying any, and hence all, of the eight conditions of
the theorem is called non-singular .

EXERCISES

1. For vectors x = (x1, . . . , xn), y = (y1, . . . , yn) in Rn, the dot product
x · y is the scalar

x · y = x1y1 + · · ·+ xnyn.

For two vectors x = (x1, x2, x3), y = (y1, y2, y3) in R3 (and R3

only), their cross product x× y is a vector again in R3 defined by

x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

If a = (a1, a2, a3), b = (b1, b2, b3) and c = (c1, c2, c3), show that
|a · (b × c)| is independent of the order in which a, b, c are taken
by showing that for

A =

a1 a2 a3

b1 b2 b3
c1 c2 c3

 ,

det(A) = a · (b× c).

2. Use the computational definition of det(A) to prove its properties
3–13 in this section.

5.5 Evaluation of Determinants

The determinant det(A) of an n× n matrix A = (aij) is also denoted by∣∣∣∣∣∣∣
a11 . . . a1n

...
an1 . . . ann

∣∣∣∣∣∣∣ .
The properties 1–12 of det(A), listed above, make it easy to compute it. Often,
no calculation is necessary. For example, if a row of A consists of zeros, or a
row is a multiple of another row, det(A) = 0. (The same is true for columns.)
If n = 2, one can use the definition itself: det(A) = a11a22−a12a21. For n = 3,
using a row or a column to expand det(A) is not unmanageable.

For n ≥ 3, if a row or a column has a large number of zeros, we may use
it to expand det(A), and then work on n determinants of smaller size. In
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general, we may row reduce A to an upper triangular form, from which we
can determine its determinant.

Examples.

1.

∣∣∣∣∣∣
1 2 3
2 3 4
3 5 7

∣∣∣∣∣∣ = 0, because the rows are linearly dependent – the

third row is the sum of the first two.

2. We expand the following determinant using the first row.∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = 1 ·
∣∣∣∣ 5 6

8 9

∣∣∣∣− 2 ·
∣∣∣∣ 4 6

7 9

∣∣∣∣+ 3 ·
∣∣∣∣ 4 5

7 8

∣∣∣∣
= 1(5 · 9− 8 · 6)− 2(4 · 9− 7 · 6) + 3(4 · 8− 7 · 5) = 0

Let us now compute the same using the second column.∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = −2 ·
∣∣∣∣ 4 6

7 9

∣∣∣∣+ 5 ·
∣∣∣∣ 1 3

7 9

∣∣∣∣− 8 ·
∣∣∣∣ 1 3

4 6

∣∣∣∣
= −2 · (4 · 9− 7 · 6) + 5(1 · 9− 7 · 3)− 8(1 · 6− 4 · 3) = 0.

3. Let

A =

 2 4 6
12 15 18
28 32 36

 .

Taking out the multiples 2, 3 and 4 from the first, second and the
third row, respectively,

det(A) = 2 · 3 · 4 ·

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = 2 · 3 · 4 · 0 = 0,

by Example 2.

EXERCISES

1. Evaluate the following determinants.

(a) by inspection∣∣∣∣∣∣∣∣
1 2 3 0
4 5 6 0
7 8 9 0
3 2 1 0

∣∣∣∣∣∣∣∣ ,

∣∣∣∣∣∣∣∣
1 2 3 4
5 6 7 8
9 10 11 12
1 2 3 4

∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣
1 2 3 4
5 6 7 8
2 4 6 8
4 3 2 1

∣∣∣∣∣∣∣∣ .
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(b)

∣∣∣∣1 2
3 4

∣∣∣∣ ,

∣∣∣∣4 3
2 1

∣∣∣∣ .

(c)

∣∣∣∣ 1 i
−i 1

∣∣∣∣ .

(d)

∣∣∣∣ cos θ sin θ
− sin θ cos θ

∣∣∣∣ ,

∣∣∣∣∣−1+
√
−3

2 e

π −1−
√
−3

2

∣∣∣∣∣ .

(e)

∣∣∣∣∣∣
2 −1 2
1 3 2
5 1 4

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
1 4 6
5 2 8
9 7 3

∣∣∣∣∣∣ .

(f)

∣∣∣∣∣∣∣∣
1 0 1 1
0 1 1 0
1 1 0 1
1 0 1 1

∣∣∣∣∣∣∣∣ ,

∣∣∣∣∣∣∣∣
1 2 8 9
3 4 0 1
7 0 8 2
10 −1 −5 0

∣∣∣∣∣∣∣∣ ,

∣∣∣∣∣∣∣∣
3 1 2 1
2 0 1 2
−1 2 0 3
4 5 6 4

∣∣∣∣∣∣∣∣ .
2. Prove or disprove the following statements:

(a) det(A+B) = det(A) + det(B).

(b) If det(A) = 0, then A = 0.

(c) If A is an n × n matrix and I is the n × n identity matrix,
then det(xI − A) is a monic polynomial in x of degree n. [A
polynomial is monic if its leading coefficient is 1.]

3. Suppose A =

A11 . . . A1r

...
0 . . . 0 Arr

 is a partition of A with square

blocks on the diagonal. Show that i) det(A) = det(A11) . . . det(Arr),
and ii) A is invertible if and only if each Aj is invertible.

4. Compute the van der Monde (or Vandermonde) determinant,∣∣∣∣∣∣
1 α α2

1 β β2

1 γ γ2

∣∣∣∣∣∣.
5. Use induction on n to show that the Vandermonde determinant∣∣∣∣∣∣∣∣∣

1 α1 . . . αn−1
1

1 α2 . . . αn−1
2

...
1 αn . . . αn−1

n

∣∣∣∣∣∣∣∣∣ = Πi<j(αi − αj).
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6. Show that if A is the r × r matrix



0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...
0 0 . . . 0 −cr−2

0 0 . . . 1 −cr−1


, then

the det(λI −A) = (−1)r(c0 + c1λ+ · · ·+ cr−1λ
r−1 + λr).

5.6 Adjoint and Cramer’s Rule

There are two important and immediate consequences of (5.6) and (5.7) for
expanding determinants using a row or column. The first one is the following
theorem on computing A−1 by the so-called cofactor method . The second
is Cramer’s rule for solving independent systems of n linear equations in n
variables. However, it must be pointed out that these are more of a theoretical
significance. The row reduction may handle both these tasks more efficiently.

Recall that we have denoted by Aij the (n− 1)× (n− 1) matrix obtained
from an n× n matrix A by deleting its i-th row and j-th column.

Theorem 5.19. Suppose A = (aij) is an n× n matrix. Let B = (bij) be the
n× n matrix with

bji = (−1)i+j det(Aij). (5.8)

Then BA = det(A) I.

Proof. Suppose BA = D = (dij). By (5.7) and (5.8),

djj =

n∑
i=1

bji aij =

n∑
i=1

aij(−1)i+j det(Aij) = det(A). (5.9)

We now show that for j 6= k, djk = 0. Replace the j-th column of A by
its k-th column, so that the matrix C so obtained has two identical columns.
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Since for all i, Cij = Aij , on expanding det(C) by j-th column, we get

0 = det(C)

=

n∑
i=1

(−1)i+jaik det(Cij)

=

n∑
i=1

aik(−1)i+j det(Aij)

=

n∑
i=1

bjiaik

= djk.

This shows that for j 6= k,
djk = 0. (5.10)

From (5.9) and (5.10), it follows that BA = D = det(A) I.

Corollary 5.20. (Inverse by Cofactor Method). If det(A) 6= 0, then

A−1 =
1

det(A)
((−1)i+j det(Aij))

∗.

In particular, A is invertible if and only if det(A) 6= 0.

Definition. The transpose ((−1)i+j det(Aji)) of the n × n matrix
((−1)i+j det(Aij)) is called the classical adjoint of A, and is denoted by
adj(A). Thus, we can write

A−1 =
1

det(A)
adj(A).

Cramer’s Rule

Consider a system of n linear equations AX = C in n variables with
det(A) 6= 0. Multiplying each side of AX = C on the left by adj(A), we
get (adjA)AX = adj(A)C. But (adjA)AX = ((adjA)A)X = (det(A)I)X =
det(A)X. Hence det(A)X = adj(A)C, that is

xj =
1

det(A)

n∑
i=1

(−1)i+jci det(Aij). (5.11)

Equation (5.11) is called Cramer’s rule. It says that

xj =
det(Aj)

det(A)
, (5.12)

where Aj is the matrix obtained from A on replacing its j-th column by C.
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Examples.

1. We compute the inverse A−1 of the 3× 3 matrix

A =

1 4 5
0 2 6
0 0 3


by the cofactor method.

First note that det(A) = 1 ·2 ·3 = 6 6= 0. Hence A−1 exists. We find
the nine minors (that is, the cofactors without the sign (−1)i+j of
det(Aij)). They are

|A11| =
∣∣∣∣ 2 6

0 3

∣∣∣∣ = 6, |A12| =
∣∣∣∣ 0 6

0 3

∣∣∣∣ = 0, |A13| =
∣∣∣∣ 0 2

0 0

∣∣∣∣ = 0,

|A21| =
∣∣∣∣ 4 5

0 3

∣∣∣∣ = 12, |A22| =
∣∣∣∣ 1 5

0 3

∣∣∣∣ = 3, |A23| =
∣∣∣∣ 1 4

0 0

∣∣∣∣ = 0,

|A31| =
∣∣∣∣ 4 5

2 6

∣∣∣∣ = 14, |A32| =
∣∣∣∣ 1 5

0 6

∣∣∣∣ = 6, |A33| =
∣∣∣∣ 1 4

0 2

∣∣∣∣ = 2.

Hence,

adj(A) = ((−1)i+j det(Aij))
∗ =

6 −12 14
0 3 −6
0 0 2


and

A−1 =
1

det(A)
adj A =

1 −2 7
3

0 1
2 −1

0 0 1
3

 .

2. We solve, by Cramer’s rule, the system

3x1 + x2 = 4

2x1 + 4x2 = 5
(5.13)

of two linear equations in two variables. We write equation (5.13)

in the matrix form AX = C, with A =

(
3 1
2 4

)
, X =

(
x1

x2

)
and

C =

(
4
5

)
. The matrices A1, A2 appearing in equation (5.12) are

A1 =

(
4 1
5 4

)
, A2 =

(
3 4
2 5

)
. Therefore, det(A1) = 16 − 5 = 11,

det(A2) = 15 − 8 = 7, whereas det(A) = 12 − 2 = 10 6= 0. By
Cramer’s rule, the solution of equation (5.13) is

x1 =
det(A1)

det(A)
=

11

10
, x2 =

det(A2)

det(A)
=

7

10
.
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EXERCISES

1. Compute |A|, adjA, and A−1, if A is

(a)

(
1 2
3 5

)
(b)

(
a b
c d

)

(c)

2 5 1
0 3 7
0 0 4


(d)

1 3 2
4 5 7
6 8 9

.

2. Use Cramer’s Rule to solve

(a) 2x1 + x2 + x3 = 2
x1 + 3x2 + x3 = 3

−2x1 + 2x2 − x3 = 5

(b) x+ y + z = 1
2x− 6y − z = −1
3x+ 4y + 2z = 1

3. Compute the inverse by cofactor method of the matrix A, if A is

(a)

 2 1 1
1 3 1
−2 2 −1

,

(b)

1 1 1
2 −6 −1
3 4 2

.

4. Use A−1 from Problem 3 to solve Problem 2 as X = A−1C.

5. If A is an n × n invertible matrix, show that det(adj(A)) =
(det(A))n−1.
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6

Diagonalization

6.1 Motivation

A linear differential equation
y′ = ay

with solution
y = y(t) = eat

can be generalized to a system of n linear differential equations

Y ′ = AY

with A an n × n matrix over R (cf. Chapter 10). Its solutions can again be
written formally as

Y = Y (t) = eAt

which requires computing every power Am of A in the following definition of
the exponential function of a matrix:

eA = I +A+
1

2!
A2 +

1

3!
A3 + · · · (6.1)

From the right side of equation (6.1), we mean the entry-wise limit,

lim
m→∞

(
I +A+

1

2!
A2 +

1

3!
A3 + · · ·+ 1

m!
Am
)
.

How can we show that this limit exists and compute the matrix eA?

The answer lies in the diagonalization. Suppose we can find a non-singular
matrix P such that P−1AP is diagonal, say

P−1AP = D =

λ1 0
. . .

0 λn

 . (6.2)

113
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Then λ
m
1 0

. . .

0 λmn


= Dm = (P−1AP )m = (P−1AP )(P−1AP ) . . . (P−1AP ) = P−1AmP,

which gives Am = PDmP−1. Therefore, if we write Ao = I,

eA =

∞∑
m=0

1

m!
Am =

∞∑
m=0

1

m!
PDmP−1 = P

( ∞∑
m=0

1

m!
Dm

)
P−1 =

P

e
λ1 0

. . .

0 eλn

P−1.

Thus, if we have equation (6.2), the computation of eA involves multiplying
only three, in fact essentially two matrices.

6.2 Eigenvalues and Eigenvectors

How can we find the non-singular matrix P appearing in (6.2)? To answer
this question, we recall from earlier chapters some fundamental facts about
matrices and linear transformations.

1) The n×n matrices correspond to linear transformations T : V → V
from an n-dimensional vector space V to itself.

2) This correspondence depends on the choice of ordered basis of V .
A change of bases changes the matrix A of T to a similar matrix
B = P−1AP . Moreover, the matrix P can be computed from the
two bases involved.

3) If {e1, . . . , en} is the standard basis of Kn (K being the field of

scalars) and D =

λ1 0
. . .

0 λn

 is diagonal, then Dej = λjej .

These properties suggest that in order to diagonalize A, i.e., to find P with
P−1AP diagonal, we need to find a basis of V consisting of vectors v, such
that T (v) = λv. Note that a basis vector v cannot be zero. This leads to the
following terminology.
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Definition. Suppose V is a vector space over a field K, not necessarily finite
dimensional. A scalar λ in K (or in a larger field containing K as a subfield)
is called an eigenvalue or a characteristic root of the linear transformation
T : V → V if T (v) = λv for a nonzero vector v, called an eigenvector (or a
characteristic vector) belonging to the eigenvalue λ.

An n × n matrix over K represents a linear transformation from V = Kn

to itself and the above definition may be reformulated as follows.

Definition. If A is an n× n matrix over K, a scalar λ is an eigenvalue of A,
if Av = λv for a nonzero column vector v in Kn. We call v an eigenvector
for or belonging to λ.

Examples.

1. Let A =

(
1 6
5 2

)
. Since for x =

(
1
1

)
, Ax = 7x, therefore λ = 7

is an eigenvalue of A and x =
(

1
1

)
is an eigenvector belonging to the

eigenvalue λ = 7 of A.

2. Suppose T : R2 → R2 is the rotation through π/3. Then T has
no real eigenvalue. (Why?)

3. If I : V → V is the identity map (or I is the identity matrix),
then λ = 1 is the only eigenvalue of I, but every v 6= 0 is an
eigenvector of I.

4. Let A be an n×n diagonal matrix

λ1 0
. . .

0 λn

. Then Aej =

λjej , where e1, . . . , en is the standard basis of Kn. Hence ej is an
eigenvector for the eigenvalue λj .

5. Let V = C∞(0, 1), the vector space of functions f : (0, 1) → R
having derivatives of all orders. Let T = d

dx : V → V . Every real
number α is an eigenvalue of T . An eigenvector for α is f(x) = eαx,
because T (f) = αf . This linear transformation has infinitely many
eigenvalues. The linearly independent set {eαx | α ∈ R} has the
same cardinality as R.

Characteristic Polynomial

Suppose A is an n× n matrix. How many eigenvalues can A have and how
do we find these eigenvalues and eigenvectors belonging to them? To answer
this question, suppose v 6= 0 is an eigenvector for an eigenvalue λ of A. By
definition,

Av = λv, (6.3)
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for a nonzero column vector

v =

x1

...
xn

 .

We rewrite equation (6.3) as

(λI −A)v = 0, (6.4)

where I is the n×n identity matrix. Since v 6= 0, λI−A cannot be invertible.
Hence

det(λI −A) = 0. (6.5)

The equation (6.5) is a polynomial equation

λn + · · · = 0 (6.6)

in λ of degree n. Hence the eigenvalues of A are the roots of the so-called
characteristic polynomial

χA(λ) = det(λI −A) (6.7)

of A, which is of degree n. Although χA(λ) has real coefficients some of its
roots, counted with multiplicity, may be imaginary. One then replaces (see
Chapter 9) the field K = R of scalars by C. We will prove in Chapter 9 that
when A is symmetric, all its eigenvalues are real.

Remark. We can write (6.4) also as (A − λI) v = 0 and define the charac-
teristic polynomial as det(A − λI). But then for n odd, χA(λ) = −λn + · · · ,
which is not monic, i.e., the leading coefficient is −1 and not 1.

Theorem 6.1. If λ1, . . . , λn are the eigenvalues of an n × n matrix A, then
their

i) product λ1, . . . , λn = det(A), and

ii) sum λ1 + · · ·+ λn = tr(A).

Moreover,
χA(λ) = λn − tr(A)λn−1 + · · ·+ det(A).

Proof. Putting λ = 0 in

χA(λ) = det(λI −A) = (λ− λ1) · · · (λ− λn)

proves i).
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To prove ii), first observe that

χA(λ) = (λ− λ1) · · · (λ− λn)

= λn − (λ1 + · · ·+ λn)λn−1 + · · ·+ λ1 · · ·λn.

Then use its first row to expand |λI−A|. Denoting the (n−1)×(n−1) matrix
obtained by deleting the i-th row and j-th column of λI −A by Mij ,

|λI −A| = (λ− a11) detM11 + a12 det(M12)− · · · .

Note that to obtain M1j (j > 1), we delete from λI−A its first row with entry
λ− a11 and j-th column with entry λ− ajj , so deg(Mij) is less than n− 1 (if
j > 1). Thus the leading two terms of χA(λ) come from (λ − a11) det(M11).
Applying the same argument to M11 and continuing, we see that the leading
two terms of χA(λ) come from

(λ− a11) · · · (λ− ann) = λn − (a11 + · · ·+ ann)λn−1 + · · ·+ λ1 . . . λn.

Comparing the coefficients of λn−1 in the above two calculations for χA(λ),
proves ii). The last assertion is now obvious.

Corollary 6.2. If A =

(
a b
c d

)
, then χA(λ) = λ2 − (a+ d)λ+ (ad− bc).

Definition. Given A and an eigenvalues λ of A, the eigenspace Vλ of λ is the
solution space of the homogeneous system in equation (6.4). By construction,
Vλ is a subspace of Rn and contains a nonzero vector, hence dimVλ > 0.

Examples.

1. Let us first look at a trivial example. Suppose A = I, the identity
matrix of size n. Its characteristic polynomial

χA(λ) = det(λI −A) =

∣∣∣∣∣∣∣
λ− 1 0

. . .

0 0 λ− 1

∣∣∣∣∣∣∣ = (λ− 1)n.

So A has only one eigenvalue, λ = 1 (of multiplicity n) and clearly,
its eigenspace is all of V = Kn.

2. Now, suppose A is a diagonal matrixλ1 0
. . .

0 λn


with distinct λ1, . . . , λn. Then χA(λ) = (λ− λ1) . . . (λ− λn) and A
has n eigenvalues λ1, . . . , λn. It is easy to show that each eigenspace
is one-dimensional.
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Diagonalization.

Recall that two n × n matrices A and B are similar if B = P−1AP for an
invertible matrix P .

Definition. We say that an n × n matrix A is diagonalizable if A is similar
to a diagonal matrix.

By diagonalizing a diagonalizable matrix A, we mean finding P such that
PAP−1 is diagonal.

Remarks.

1. To be precise, one should say similar over K and diagonalizable
over K to mean P has entries in K. There are examples of matrices
in M(n,R) that are diagonalizable over C but not over R. However,
this will not concern us in this chapter.

2. We shall see later that not all n × n matrices A are diagonal-
izable. In fact, A is diagonalizable if and only if Kn has a basis
consisting of eigenvectors of A.

The following fact is obvious from the above discussion. (See Section 4.6)

Theorem 6.3. Suppose the vector space Kn has a basis consisting of eigen-
vectors v1, . . . ,vn of A belonging to its eigenvalues λ1, . . . , λn and P is the
transition matrix from the standard basis of Kn to the basis {v1, . . . ,vn}.
Then

PAP−1 = D =

λ1 0
. . .

0 λn

 .

Moreover, the columns of P are the eigenvectors v1, . . . ,vn.

Examples.

1. To diagonalize the 2× 2 matrix

A =

(
5 3
−4 −2

)
,

we find the roots of its characteristic polynomial

χA(λ) =

∣∣∣∣λ− 5 −3
4 λ+ 2

∣∣∣∣ = λ2 − 3λ+ 2 = (λ− 1)(λ− 2).

Hence, the two eigenvalues are λ = 1, 2. We now find eigenvectors
for these eigenvalues.
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For λ = 1, the defining equation Av = λv, that is, (λI − A)v = 0
is (

−4 −3
4 3

)(
x1

x2

)
=

(
0
0

)
,

which is equivalent to the single linear equation

4x1 + 3x2 = 0.

We take x1 = −3, x2 = 4. So an eigenvector for λ = 1 is the nonzero
vector v1 =

(−3
4

)
.

For λ = 2, (λI −A)v = 0 becomes(
−3 −3
4 4

) (
x1

x2

)
=

(
0
0

)
or x1 + x2 = 0.

We take v2 =
(

1
−1

)
for an eigenvector for λ = 2.

The transition matrix P is the one that takes the standard basis
{e1, e2} to the basis consisting of the eigenvectors v1 and v2. So P
is the matrix whose two columns are v1 and v2, that is,

P =

(
−3 1
4 −1

)
.

We compute

P−1 =

(
1 1
4 3

)
.

Finally, we see that P−1AP =(
1 1
4 3

)(
5 3
−4 −2

)(
−3 1
4 −1

)
=

(
1 0
0 2

)
is indeed a diagonal matrix with the eigenvalues λ = 1, 2 of A on
its diagonal.

2. Let us diagonalize now the 3× 3 matrix

A =

 5 −6 −6
−1 4 2
3 −6 −4

 .

The characteristic polynomial

χA(λ) =

∣∣∣∣∣∣
λ− 5 6 6

1 λ− 4 −2
−3 6 λ+ 4

∣∣∣∣∣∣
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= x3 − 5x2 + 8x − 4 = (x − 1)(x − 2)2. The eigenvalues of A are
λ = 1, 2, 2. For x = 1 the eigenspace is the solution space of (1I −
A)v = 0, which is

−2x+ 3y + 3z = 0

x− 3y − 2z = 0

−3x+ 6y + 5z = 0.

The last equation is the difference of the first two. Hence, we need
only to find a basis for the solution space of

−2x+ 3y + 3z = 0

x− 3y − 2z = 0,

which, being the intersection of two planes, is a line. Taking z = 1,
these two equations become

−2x+ 3y = −3

x− 3y = 2.

Solving these, we find that x = 1 and y = −1
3 . So, an eigenvector

for λ = 1 is

 1
−1
3
1

 which can be scaled to v1 =

 3
−1
3

.

For the eigenvalues λ = 2, (λI −A)v = 0 is

−3x+ 6y + 6z = 0

x− 2y − 2z = 0

−3x+ 6y + 6z = 0,

which is equivalent to the single equation

x− 2y − 2z = 0.

This equation represents a plane, which is a two dimensional space.
We pick a basis

v2 =

2
1
0

 ,v3 =

2
0
1


for the eigenspace for λ = 2. The matrix P consisting of v1,v2,v3

is  3 2 2
−1 1 0
3 0 1

 .
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It may be checked that

P−1AP =

1 0 0
0 2 0
0 0 2

 ,

a diagonal matrix with the eigenvalues 1, 2, 2 on the diagonal.

Remark. As we shall see later, it is no coincidence that the dimension of
each eigenspace belonging to an eigenvalue is equal to its multiplicity.

EXERCISES

1. (a) If A, B are similar, show that det(A) = det(B) and tr(A) =
tr(B).

(b) Show that similar matrices have the same eigenvalues.

2. (a) If λ is an eigenvalue of a linear map T : V → V , show that λr

is an eigenvalue of T r for all r = 1, 2, 3, . . .. [In particular, if λ
is an eigenvalue of a matrix A, then λr is an eigenvalue of Ar

for all r ≥ 1.]

(b) Show that if f(x) is a polynomial and λ is an eigenvalue of
T : V → V , then f(λ) is an eigenvalue of f(T ).

(c) Show that if an n× n matrix A is diagonalizable, then f(A) is
diagonalizable.

(d) If A, B are diagonalizable and AB = BA, show that AB is also
diagonalizable.

3. Suppose λ is an eigenvalue of an n× n matrix A.

(a) Show that the eigenspace Vλ = {v ∈ Kn|Av = λv} belonging
to the eigenvalue λ of A is indeed a subspace of V = Kn.

(b) Suppose r = the row rank of λI−A. Show that dimVλ = n−r.

4. (a) If v1, v2 are eigenvectors belonging to distinct eigenvalues λ1,
λ2 of A, show that v1, v2 are linearly independent. Generalize
it to more than two vectors. [Thus if all the eigenvalues of A
are distinct, it is diagonalizable.]

(b) If all the eigenvalues of A are distinct and λ is one of them,
show that dimVλ = 1.

5. If λ is a root of multiplicity m of the characteristic polynomial of
a matrix A, we call m the algebraic multiplicity of the eigenvalue λ
of A, whereas, dimVλ is called the geometric multiplicity of λ.
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(a) Show that for every eigenvalue, the algebraic multiplicity ≥
geometric multiplicity ≥ 1.

(b) Give examples to show that both equality and inequality can
occur.

(c) A matrix is simple if its eigenvalues are all distinct. It is
semisimple if the geometric multiplicity of its every eigenvalue
is equal to the algebraic multiplicity. A simple matrix is auto-
matically semisimple. Show that A is diagonalizable if and only
if it is semisimple.

6. Use Exercise 5 above to show that A =

(
0 1
0 0

)
is not diagonaliz-

able.

7. Show that 2× 2 symmetric matrices over R are diagonalizable.

8. If A is a real matrix, show that (see Section 8.2)

(a) the imaginary eigenvalues occur in pairs λ, λ.

(b) If v =

z1

...
zn

 is an eigenvector in Cn belonging to an imaginary

eigenvalue λ, then v =

z1

...
zn

 is an eigenvector belonging to λ.

9. Show that A =

(
cos θ sin θ
− sin θ cos θ

)
, 0 ≤ θ < 2π, has no real eigenval-

ues except for θ = 0 and π. Interpret this geometrically.

10. It is a non-trivial task to find the three roots of a cubic polynomial.
Suppose an eigenvector of a 3×3 matrix is known somehow. Explain
how we can find all the eigenvalues and the eigenvectors belonging
to them.

11. For the following matrices, find eigenvalues, eigenvectors and a ma-
trix P such that PAP−1 is diagonal. Check that PAP−1 has the
eigenvalues of A on the diagonal of PAP−1. Finally compute eA.
The field K of scalars in these problems is C.

(a)

(
3 2
4 1

)
,

(
−2 3
2 3

)
,

(
5 −18
1 −1

)
,

(
1 2

−2 1

)
;

(b)

3 −1 −1
2 0 −2
2 −1 −1

 ,

1 −3 3
3 −5 3
6 −6 4

 ,

2 4 2
1 −1 −1
1 1 3

.
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6.3 Cayley-Hamilton Theorem

We remarked earlier that not every matrix is diagonalizable. (See Exercise 6,
Section 6.2.) In this section, we characterize diagonalizable matrices.

The vector space V = M(n,K) of n × n matrices over a field K has di-
mension dimK(V ) = n2. Hence, for any matrix A in V , the n2 + 1 matrices

I, A,A2, . . . , An
2

, viewed as vectors in V , are linearly dependent, that is, there
are constants c0, c1, . . . , cn2 , not all zero, such that

c0I + c1A+ c2A
2 + · · ·+ cn2An

2

= 0.

Thus every n× n matrix A in M(n,K) satisfies a nonzero polynomial

f(x) = c0 + c1x+ c2x
2 + · · ·+ cn2xn

2

of degree at most n2.

Later in this section, we shall prove the Cayley-Hamilton Theorem, which
strengthens this statement and asserts that an n × n matrix satisfies a poly-
nomial equation of degree at most n.

A nonzero polynomial of the smallest degree satisfied by an n × n matrix
A in M(n,K) is called its minimal polynomial . We now show that up to a
constant, it is unique. If f(x) and g(x) are two minimal polynomials of A, then
g(x) = cf(x) for a constant c. To see this, we write by the division algorithm
g(x) = q(x)f(x) + r(x), where deg r(x) < deg f(x). Since f(A) = g(A) = 0,
r(A) = 0. By minimality of the degree of f(x), r(x) = 0. This shows that f(x)
is a factor of g(x). Similarly, g(x) is a factor of f(x). Hence g(x) = cf(x).
If the leading coefficient of f(x) is taken to be 1, then f(x) is unique and is
called the minimal polynomial of the matrix A.

We now state without proof the following characterization of diagonalizable
matrices.

Theorem 6.4. An n× n matrix A is diagonalizable over K if and only if its
minimal polynomial

m(x) = (x− λ1) . . . (x− λr)
has distinct roots λ1, . . . , λr (r ≤ n) in K.

The interested reader can find the proof in [4, p. 200]. Instead, we give some
applications of this theorem.

Suppose W is a subspace of a finite dimensional vector space V , invariant
under T , that is, T (W ) ⊂ W . Let T|W : W → W be the restriction of T to
W . Clearly, T|W is also a linear map. The following proposition relates the
characteristic polynomial of T|W to that of T .
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Theorem 6.5. The characteristic polynomial χT|W (λ) is a factor of χT (λ).

Proof. Suppose T : V → V is a linear map and dim(W ) = r ≤ n. If r = n,
there is nothing to prove. So, let r < n. Complete a basis BW = {w1, . . . ,wr}
of W to a basis BV = {w1, . . . ,wr,wr+1, . . . ,wn} of V . The r × r matrix
A = (aij) of T|W relative to BW is given by the r equations

T (wj) =

r∑
i=1

aijwi

and hence,
χT|W (λ) = det(λI −A). (6.8)

The n×n matrix of T : V → V relative to the basis BV is of the form

(
A B
0 C

)
which shows that

χT (λ) = det(λI −A) det(λI − C). (6.9)

The theorem follows from (6.8) and (6.9).

Now we state and prove a well-known property of the characteristic poly-
nomials.

Theorem 6.6. (Cayley-Hamilton) Every n×n matrix A satisfies its charac-
teristic polynomial χA(λ).

Proof. We need to show that the n×n matrix B = χA(A) is the zero matrix.
For this it is enough to show that Bv = 0 for every column vector v 6= 0 in
V = Kn.

Let T : V → V be the linear map T (v) = Av, associated with the matrix
A. We denote by W the linear span of the set {T j(v) | j = 0, 1, 2, . . .} =
{v, T (v), T 2(v), . . .}. Clearly, W is invariant under T . The dimension dim(W )
is the largest integer r ≥ 1 such that v, T (v), T 2(v), . . . , T r−1(v) are linearly
independent, because then every subsequent vector T j(v), j ≥ r, can be ex-
pressed as a linear combination of previous ones. In particular,

c0v + c1T (v) + c2T
2(v) + · · ·+ cr−1T

r−1(v) + T r(v) = 0,

with not all cj = 0, which shows that the matrix of T|W : W →W relative to
the basis BW = {v, T (v), T 2(v), . . . , T r−1(v)} is

0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...
0 0 . . . 0 −cr−2

0 0 . . . 1 −cr−1


.
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By Exercise 6, Section 5.5, the characteristic polynomial of this matrix, and
hence that of T|W , is

(−1)r(c0 + c1λ+ · · ·+ cr−1λ
r−1 + λr).

On the other hand, the choice of r shows that the minimal polynomial of
T|W is c0 + c1λ+ · · ·+ crλ

r. Therefore, up to sign, the characteristic polyno-
mial of T|W is also its minimal polynomial, and hence, χT|W (T )(v) = 0. By
Theorem 6.5, χT (λ) = f(λ)χT|W (λ) for some f(λ), which depends of course
on the vector v, and we have

χT (T )(v) = f(T )χT|W (T )(v) = f(T )0 = 0.

This proves the Cayley-Hamilton Theorem.

Example. For the 2× 2 matrix

A =

(
1 2
0 1

)
,

its characteristic polynomial χA(λ) = (λ − 1)2. Therefore, its minimal poly-
nomial, which is a factor of χA(λ), is either λ− 1 or (λ− 1)2. But A does not
satisfy λ−1. Hence the minimal polynomial of A is (λ−1)2. By Theorem 6.4,
A is not diagonalizable.

Example. If U is a nonzero n × n upper triangular matrix, with zeros on
the diagonal, its characteristic polynomial χU (λ) = λn. Hence, the minimal
polynomial m(λ) of U is λr for some r ≥ 1. For r = 1, m(U) = U 6= 0.
Hence r > 1. But then m(λ) = λr does not have distinct roots. Hence U
is not diagonalizable. As a particular case, let V = Pn, the vector space of
polynomials over R of degree smaller than n. Relative to the standard basis
{1, x, . . . , xn−1} of Pn, the matrix of the linear map D = d

dx : Pn → Pn is
upper diagonal. Hence D is not diagonalizable.

EXERCISES

1. Determine which of the following matrices are diagonalizable.

(a)

(
2 −3
2 −5

)
, (b)

(
3 −2
2 −1

)
, (c)

(
2 1
0 1

)
.

2. Show that the following matrices are diagonalizable over C but not
over R.

(a)

(
1 −2
1 −1

)
, (b)

(
0 1
−1 0

)
.

3. Verify the Cayley-Hamilton Theorem for the following matrices.

(a)

(
3 −2
2 1

)
, (b)

(
2 3
5 7

)
, (c)

1 2 3
4 5 6
7 8 9

 .
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Inner Product Spaces

7.1 Inner Product

Although some notions like distance, angles, parallelism, and perpendicularity
make sense only in the Euclidean n-spaces Rn (n = 2, 3), they can be general-
ized to more general vector spaces over K = R or C. Throughout this chapter,
unless stated otherwise, we shall have our field of scalars K = R.

Since the concepts like length and angle in V = Rn(n = 2, 3) can be defined
purely in terms of the dot product on V , an immediate generalization would
be to V = Rn. For x = (x1, . . . , xn), y = (y1, . . . , yn) in Rn, their dot product
x · y is the scalar

x · y = x1y1 + · · ·+ xnyn.

It is easy to verify that the dot product has the following basic or defining
properties. For all x, y, z in Rn and all scalars a,

1) x · y = y · x,

2) (x + y) · z = x · z + y · z,

3) (ax) · y = a(x · y), and

4) x · x ≥ 0 and = 0 if and only if x = 0.

To begin with, we restrict ourselves to the case n = 2 or 3. Clearly, the
length ‖x‖ of x is

√
x · x. If x and y are two nonzero vectors in R2, the angle

θ between them is determined by their dot product as follows.

y
x− y

θ x

FIGURE 7.1: For the Law of Cosines

127
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By the Law of Cosines (see Figure 7.1),

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖ ‖y‖ cos θ. (7.1)

But also it follows from the basic properties of the dot product that

‖x− y‖2 = (x− y) · (x− y)

= x · x− 2x · y + y · y
= ‖x‖2 − 2x · y + ‖y‖2

i.e.,

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2x · y. (7.2)

Comparing (7.1) and (7.2), we get

x · y = ‖x‖ ‖y‖ cos θ. (7.3)

If x, y 6= 0, we have

θ = cos−1

(
x · y
‖x‖ ‖y‖

)
.

In particular, x is perpendicular (or orthogonal) to y if and only if x · y = 0.

For any n > 1 and x = (x1, . . . , xn) in Rn, we can certainly define its length
as

‖x‖ =
√
x2

1 + · · ·+ x2
n =
√
x · x.

We can even say that given y = (y1, . . . , yn) in Rn, x is orthogonal to y,
written x ⊥ y, if x · y = 0. However, this will not be meaningful unless we
first define the angle θ between x and y, say by (7.3). But in order to do that,
we must have

−1 ≤ x · y
‖x‖ ‖y‖

≤ 1.

or
|x · y| ≤ ‖x‖ ‖y‖. (7.4)

We shall show that (7.4), called the Cauchy-Schwarz Inequality, follows from
the basic properties 1)–4) of the dot products. That is suggested by the fact
that in deriving (7.2), we only used the basic properties 1)–4) of the dot
product on Rn.

Remark. There is a distinction between “orthogonal” and “perpendicular.”
The zero vector doesn’t make an angle with any other vector x. So we say
that x is orthogonal to y if x · y = 0, and x is perpendicular to y if x · y = 0
with x, y 6= 0.

Definition. Let V be a vector space over R. An inner product on V is a map

V × V 3 (x, y)→ 〈x, y〉 ∈ R

satisfying the following (defining) properties of the dot product. For all x, y,
z in V and all c in R,
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1) 〈x,y〉 = 〈y,x〉,

2) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉,

3) 〈cx,y〉 = c〈x,y〉, and

4) 〈x,x〉 ≥ 0 and = 0 if and only if x = 0.

Definition. An inner product space is a vector space V over R with an inner
product 〈 , 〉 on it.

Examples.

1. V = Rn with the usual dot product

x · y = x1y1 + · · ·+ xnyn. (1)

We shall call Rn with (1) as the Euclidean n-space.

2. Again V = Rn, and choose positive reals wj(i ≤ j ≤ n) called
the weights. Then

〈x,y〉 = w1x1y1 + · · ·+ wnxnyn

defines an inner product on V , called the weighted inner product .

3. Let V = C[0, 1], the vector space of (real valued) continuous
functions f : [0, 1] → R. The following defines an inner product on
V .

〈f, g〉 =

∫ 1

0

f(x)g(x)dx.

Definition. Two inner products 〈, 〉1, 〈, 〉2 on a vector space V over R are
equivalent if 〈, 〉1 = c〈, 〉2 for some c > 0. Otherwise, they are inequivalent .

Example. The inner product 〈x,y〉 = x1y1 + 2x2y2 + · · · + nxnyn on Rn is
not equivalent to the dot product in Example 1.

Proposition 7.1. In an inner product space V , for any x in V , 〈0,x〉 = 0.

Proof. For every scalar c,

c〈0,x〉 = 〈c0,x〉 = 〈0,x〉,

which can be true only if 〈0,x〉 = 0.

Definition. The length ‖x‖ of a vector x in an inner product space is the
non-negative real number

‖x‖ =
√
〈x,x〉.

Note that i) ‖x‖, is well defined and is zero only for the zero vector 0, ii)
‖cx‖ = |c| ‖x‖.
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Definition. A vector of unit length is called a unit vector . Replacing a
nonzero vector x by the unit vector 1

‖x‖ x is called its normalization.

Definition. The distance dist(x,y) between x and y is the non-negative real
number dist(x,y) = ‖x− y‖.

Examples.

1. Take R3 with the usual dot product. Let x = (3, 0, 4) and y =
(3, 3, 0). Then ‖x‖ = 5 and since x− y = (0,−3, 4), dist(x,y) = 5.

2. Let V = C[0, 1] with the inner product

〈f, g〉 =

∫ 1

0

f(x)g(x)dx.

If f(x) = cos 2πx, its length

‖f‖ = 〈f, f〉1/2 =

(∫ 1

0

cos2 2πx dx

)1/2

=

(
1

2π

∫ 2π

0

cos2 u du

)1/2

=

(
1

2π

∫ 2π

0

cos 2u+ 1

2
du

)1/2

=
1√
2
.

The following inequality is a fundamental result.

Theorem. (Cauchy-Schwarz Inequality) If x, y are in an inner product space,
then

|〈x,y〉| ≤ ‖x‖ ‖y‖. (7.5)

Proof. If x = 0, there is nothing to prove, as both sides of (7.5) are equal
to zero.

So let x 6= 0. Consider the parabola s = f(t) where f(t) = ‖tx + y‖2 =
〈tx+y, tx+y〉 = ‖x‖2t2 + 2〈x,y〉t+‖y‖2. Since ‖tx+y‖2 ≥ 0, the parabola
s = f(t) lies above the t-axis, hence the discriminant d(f) of f(t) satisfies

d(f) = 4(〈x,y〉2 − 4‖x‖ ‖y‖) ≤ 0

which gives (7.5).

The Cauchy-Schwarz Inequality allows us to define the angle between two
nonzero vectors of an inner product space by

〈x,y〉 = ‖x‖ ‖y‖ cos θ (7.6)
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Definition. The angle θ between two nonzero vectors x, y in an inner product
space is the number θ in the interval [0, π] given by

θ = cos−1

(
〈x,y〉
‖x‖ ‖y‖

)
. (7.7)

Definition. Two vectors x, y of an inner product space are orthogonal , writ-
ten x ⊥ y, if 〈x,y〉 = 0. Moreover, if x, y are both nonzero, we call them
perpendicular .

Examples.

1. Let V = R4 with the usual dot product. The vectors x =
(1,−1, 1,−1) and y = (1, 1, 1, 1) are orthogonal, because x · y = 0.
If we take x = (1,−1, 1, 1) and again y = (1, 1, 1, 1), 〈x · y〉 = 2,
‖x‖ = ‖y‖ = 2, so θ = cos−1

(
1
2

)
= π

3 .

2. Let V = C[0, 1] with

〈f, g〉 =

∫ 1

0

f(x)g(x)dx.

To compute the angle θ between two functions f(x) = 1, g(x) = x,
we have

‖f‖2 =

∫ 1

0

f(x)f(x)dx = 1,

so ‖f‖ = 1, whereas

‖g‖2 =

∫ 1

0

x2dx =
1

3

gives ‖g‖ = 1√
3
.

On the other hand,

〈f, g〉 =

∫ 1

0

xdx =
1

2
.

Therefore,

θ = cos−1

(√
3

2

)
=
π

6
.

EXERCISES

1. Does 〈A,B〉 = tr(A∗B) define an inner product on the vector space
V = M(n,R)? Justify your answer.
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2. Does 〈f, g〉 =

∫ 1

0

(f(x) + g(x))dx define an inner product on the

vector space of continuous functions f : [0, 1]→ R? Explain!

3. If 〈 , 〉 is an inner product and c > 0, show that c〈 , 〉 is also an
inner product.

4. Show that two weighted dot products on Rn with weight vec-
tors (w1, . . . , wn) and (w′1, . . . , w

′
n) are equivalent if and only if

(w′1, . . . , w
′
n) = c(w1, . . . , wn) for some c > 0.

5. Show that the angle between two vectors is the same under equiv-
alent inner products on a given vector space.

6. Define on the vector space of continuous functions f : R→ R

〈f, g〉j =

∫ aj

0

f(x)g(x)dx, j = (1, 2).

Are they inner products? If they are, are they equivalent?

7. Suppose V = R4 with the usual dot product. Let x = (1, 2, 3, 4).
Find a vector y in R4 with integer coordinates such that the angle
between x and y is π/6.

8. In R3, define the cross product x × y of x = (x1, x2, x3) and y =
(y1, y2, y3) by x×y = (x2y3−x3y2, x3y1−x1y3, x1y2−x2y1). Show
that the length

‖x× y‖ = ‖x‖ ‖y‖ sin θ,

θ is the angle between x and y.

Hint : Use the identity

(x2y3 − x3y2)2 + (x3y1 − x1y3)2 + (x1y2 − x2y1)2 =

(x2
1 + x2

2 + x2
3)(y2

1 + y2
2 + y2

3)− (x1y1 + x2y2 + x3y3)2

and equation (7.3).

9. Use 8 to show that ‖x× y‖ is the area of the parallelogram formed
by x and y, in particular, the area of the parallelogram formed by
the vectors x = (a, b) and y = (c, d) in R2 is the absolute value of
ad− bc.

10. Show that for the three vectors x, y, z in R3, the volume of the
parallelepiped formed by them is |x · (y × z)|.

11. Show that the scalar x · (y × z) is the determinant of the 3 × 3
matrix with rows x, y, and z.
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7.2 Fourier Series

If a real valued function f(x) is periodic, of period say 2π (which can always
be assumed by rescaling and the shift in the variable x), it is completely deter-
mined by its values on [−π, π]. Such periodic functions, if continuous, can be
expressed in terms of trigonometric functions sine and cosine. A given periodic
f(x) of period 2π is not a (finite) linear combination of these functions, but
is an infinite series. This is one of the most important tools in mathematics.

To begin with, let V be the vector space over R of all continuous functions
f : [−π, π]→ R with the inner product

< f, g >=

∫ π

−π
f(x)g(x)dx.

The trigonometric functions alluded to above are

1, cosx, sinx, cos 2x, sin 2x, . . .

The norm ‖1‖ =
√

2π and
√
π for all other functions (in this inner product).

Let f ∈ V . The infinite series

a0 +

∞∑
m=1

(am cosmx+ bm sinmx) (7.8)

whose terms are mutually orthogonal (see the Exercises in this section) is
called the Fourier series or Fourier expansion of f(x). By the theory of inner
product spaces, the Fourier coefficients am, bm are given by (see Section 7.3)

a0 =
1

2π

∫ π

−π
f(x)dx

and for m > 0,

am =
1

π

∫ π

−π
f(x) cosmxdx,

bm =
1

π

∫ π

−π
f(x) sinmxdx.

 (7.9)

The issue of the convergence of infinite series is beyond the scope of this book,
so we shall not say anything more on this topic.
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EXERCISES

Suppose m, n are integers and the inner product is as in this section. In 1–3
below, show that

1. cosmx ⊥ sinnx for all m, n,

2. cosmx ⊥ cosnx for m 6= n,

3. sinmx ⊥ sinnx for m 6= n.

4. Compute ‖ cosmx‖ for all m 6= 0.

5. Compute ‖ sinnx‖ for all n 6= 0.

7.3 Orthogonal and Orthonormal Sets

For the sake of simplicity and motivation, consider the Euclidean plane V =
R2. Any set B = {v1,v2} of two linearly independent vectors in V is a basis
of V , so that a vector v in V has a unique representation

v = x1v1 + x2v2,

which is abbreviated as v = (x1, x2)B. But why do we prefer v1 = i = (1, 0)
and v2 = j = (0, 1)? It is because {i, j} is an “orthonormal” basis (basis
vectors are unit and perpendicular to each other). So what? The answer is
that in the representation

v = xi + yj,

for v = (x, y), x = v · i, y = v · j. In other words, the coordinates of v along
i and j are just the dot products of v with i and j, respectively. This brings
us to an important concept in the study of inner product spaces.

Definition. A set of nonzero vectors {v1, . . . ,vr} in an inner product space
V is an orthogonal set if vi ⊥ vj for i 6= j.

Definition. An orthogonal set is an orthonormal set if each vector in it is a
unit vector.

Examples.

1. The set {(1, 1, 1, 1), (1,−1, 1,−1)} is an orthogonal set in R4 but
it is not orthonormal.

2. If e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1), then {e1, . . . , en} is
an orthonormal set in Rn with the usual dot product on it.
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3. For any real number θ, {(cos θ, sin θ), (− sin θ, cos θ)} is an or-
thonormal set in R2.

Theorem. (Linear Independence of Orthogonal Vectors) A set of mutually
perpendicular vectors is a linearly independent set.

Proof. Suppose v1, . . . ,vr are mutually perpendicular and

c1v1 + · · ·+ crvr = 0.

Then for each j = 1, . . . , n,

0 = 〈0,vj〉 = 〈c1v1 + · · ·+ crvr,vj〉

= c1〈v1,vj〉+ · · ·+ cj〈vj ,vj〉+ · · ·+ cr〈vr,vj〉

= cj〈vj ,vj〉,

because for i 6= j, 〈vi,vj〉 = 0. Since 〈vj ,vj〉 6= 0, cj = 0.

Corollary. An orthogonal set of n = dimV nonzero vectors in an inner
product space V forms a basis of V .

Definition. A basis consisting of orthogonal (resp. orthonormal) vectors is
an orthogonal basis (resp. orthonormal basis).

Theorem 7.2. The j-th coordinate of a vector v relative to an orthogonal

basis {v1, . . . ,vn} is
〈v,vj〉
〈vj ,vj〉 . In particular, if {v1, . . . ,vn} is orthonormal,

then it is 〈v,vj〉.

Proof. If v = c1v1 + · · · + cnvn, then 〈v,vj〉 = 〈c1v1 + · · · + cnvn,vj〉 =
cj〈vj ,vj〉, which proves the theorem.

Now we show that any subspace of a finite dimensional inner product space
possesses an orthonormal basis. It is enough to prove that it has an orthogonal
basis, because then each basis vector can be normalized. The main idea is the
following definition suggested by the fact that in R2, xi is the orthogonal
projection of v = (x, y) on i, and that v − xi = yj is orthogonal to xi.

Definition. Let v be a nonzero vector in an inner product space V and x ∈ V .
The orthogonal projection of x on v is the vector

projv(x) =
〈x,v〉
〈v,v〉

v.

In particular for u unit,
proju(x) = 〈x,u〉u.
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Definition. The scalar 〈x,u〉 is called the component or coordinate of x along
u and we write it as compu(x).

Examples.

1. In R3, (v · i) i = xi for v = (x, y, z) is the orthogonal projection
of v on i.

2. Let V = Rn with the usual dot product, x = (1, 2, . . . , n), v =
(1, . . . , 1). It is easy to check that

projv(x) =
n+ 1

2
(1, . . . , 1).

Theorem 7.3. If x is not a linear multiple of v 6= 0, then x − projv(x) is
perpendicular to v.

Proof. 〈(x− projv(x)),v〉 = 〈x,v〉 − 〈x,v〉
〈v,v〉

〈v,v〉 = 0.

Theorem 7.3 leads to an algorithm to produce an orthogonal basis, called
the Gram-Schmidt Process.

7.4 Gram-Schmidt Process

The Gram-Schmidt Process is an algorithm to obtain an orthonormal basis
from a given one.

Let B = {x1, . . . ,xn} be a given basis of a finite dimensional subspace W
of an inner product space V , V not necessarily finite dimensional. Put

v1 = x1

v2 = x2 −
〈x2,v1〉
〈v1,v1〉

v1,

v3 = x3 −
〈x3,v1〉
〈v1,v1〉

v1 −
〈x3,v2〉
〈v2,v2〉

v2,

...

vn = xn −
〈xn,v1〉
〈v1,v1〉

v1 − · · · −
〈xn,vn−1〉
〈vn−1,vn−1〉

vn−1.

It is clear that each vj is orthogonal to v1, . . . ,vj−1. Hence {v1, . . . ,vn} is
an orthogonal basis of W . Now normalize each v1 to obtain an orthonormal
basis of W .
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Examples.

1. V = R3 with the usual dot product. Let

x1 =

1
1
0

 ,x2 =

−1
2
0

 ,x3 =

1
2
3

 .

Then an orthogonal basis of V is

v1 = x1 =

1
1
0


v2 = x2 −

x2 · v1

v1 · v1
v1

=

−1
2
0

− 1

2
·

1
1
0

 =
3

2

−1
+1
0



v3 = x3 −
x3 · v1

v1 · v1
v1 −

x3 · v2

v2 · v2
v2

=

1
2
3

− 3

2

1
1
0

− 1

2

−1
1
0



=

0
0
3

 .

By normalizing this orthogonal basis, we obtain the following or-
thonormal basis of V .

u1 =
1

‖v1‖
· v1 =


1√
2

1√
2

0

 , similarly u2 =


− 1√

2

+ 1√
2

0

 , u3 =

0
0
1

 .

2. Let V = C[0, 1] with the inner product

〈f, g〉 =

∫ 1

0

f(x)g(x)dx.

Let W be the span of f1(x) = 1, f2(x) = x. We put g1(x) = f1(x) =
1.

g2(x) = f2 −
〈f2, g1〉
〈g1, g1〉

g1.
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Now

〈f2, g1〉 =

∫ 1

0

x dx =
1

2
, 〈g1, g1〉 =

∫ 1

0

1 dx = 1.

So g2(x) = x − 1
2 , and we have an orthogonal basis

{
1, x− 1

2

}
of W . Again ‖g1‖2 = 〈g1, g1〉 = 1, so ‖g1‖ = 1, and ‖g2‖2 =∫ 1

0

(
x− 1

2

)2
dx = 1

12 , so ‖g2‖ =
√

1
12 . An orthonormal basis of W

is {u1(x), u2(x)}, where u1(x) = 1, u2(x) = 2
√

3
(
x− 1

2

)
.

QR Factorization

An immediate consequence of a slight variation of the Gram-Schmidt process is
the so-called QR factorization of an m×n matrix A with linearly independent
columns (hence m ≥ n). One obtains from the linearly independent columns
x1, . . . ,xn of A, an orthonormal basis {u1, . . . ,un} of the column space of A.
Since xj is in span{u1, . . . ,uj},

xj = r1ju1 + · · ·+ rjjuj , j = 1, . . . ,m.

If necessary, replacing uj by −uj , we may assume rjj ≥ 0. If we put

rj =



r1j

...
rjj
0
...
0


,

then xj = Qrj where Q is the matrix with columns uj . This gives

A = QR (7.10)

with R the m×m upper diagonal matrix (rij). The equation (7.10) is a QR-
factorization (or decomposition) of A.

Example. Take A =

(
3 2
4 1

)
so that x1 =

(
3
4

)
and x2 =

(
2
1

)
. By the

Gram-Schmidt Process we obtain orthonormal basis vectors

u1 =

(
3
5

4
5

)
and u2 =

(
4
5

− 3
5

)
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Now

x1 = 5u1 + 0u2,

x2 = 2u1 + 1u2.

Therefore, R =

(
5 2
0 1

)
. It can be checked that A = QR where Q =(

3
5

4
5

4
5 − 3

5

)
.

EXERCISES

1. Let V = R4 with the usual dot product. Find an orthogonal set of
four vectors in V , each vector with at least three nonzero compo-
nents. Check your answer.

2. Let V be the (infinite dimensional) vector space of polynomials with
real coefficients. Find two non-constant perpendicular polynomials
in V , if V is equipped with the inner product

〈f, g〉 =

∫ 1

0

f(x)g(x) dx.

3. Use the Gram-Schmidt Process to obtain an orthonormal basis of
R2 from

(
1
1

)
,
(

1
2

)
.

4. Give an example of an inner product space having an infinite or-
thogonal set.

5. Use the Gram-Schmit Process to find an orthonormal basis of the
row space of the matrix

A =

1 1 1
2 3 4
3 4 4

 .

6. Use the Gram-Schmidt Process to construct an orthonormal basis
of the subspace W of R4 spanned by

4
−1
3
1

 ,


1
2
5
1

 .

7. Let V be as in Exercise 2 above. Use the Gram-Schmidt to construct
an orthonormal basis of the subspace W of V spanned by f1(x) = x,
f2(x) = x3.

8. Find the QR-decomposition of the matrix A in Exercise 5.
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7.5 Orthogonal Projections on Subspaces

We begin with the following:

Definition. Let W be a subspace of an inner product space V . The orthogonal
complement of W in V is the set

W⊥ = {v ∈ V | 〈v,w〉 = 0 for all w in W}.

Examples. Let L be a line and W a plane in R3 both through the origin O.
Then L⊥ is the plane through O with normal L and W⊥ is a line through O
perpendicular to W .

Theorem 7.4. Let V be a finite dimensional inner product space and W a
subspace of V . Then

1) W⊥ is a subspace of V ,

2) W ∩W⊥ = {0}, and

3) V = W ⊕W⊥.

Remark. Part 3) above is another way of saying that each v in V is a unique
sum v = w + z with w in W and z in W⊥. We say that V is a direct sum of
W and W⊥.

Proof.

1) is obvious.

2) If v ∈W ∩W⊥, then 〈v,v〉 = 0 implies that v = 0.

3) Let {w1, . . . ,wr} be an orthonormal basis of W . Enlarge it to an or-
thonormal basis {w1, . . . ,wn} of V . Given v in V , let v = c1w1 + · · ·+ cnwn.
Take w = c1w1 + · · ·+ crwr and z = cr+1wr+1 + · · ·+ cnwn.

To prove uniqueness, suppose v = w1 + z1 = w2 + z2 with w1, w2 in W
and z1, z2 in W⊥. Then w1−w2 = z2− z1 is in both W and W⊥. Hence by
2), w1 −w2 = z2 − z1 = 0, i.e. w1 = w2 and z1 = z2.

Corollary. If W is a subspace of an inner product space V , then dimV =
dimW + dimW⊥.

Theorem 7.5. The row rank and the column rank of an m×n matrix A are
equal.

Proof. If necessary, by adding enough number of rows or columns of zeros
at the end, we may assume that m = n. Consider Rn with dot product. We
write vectors in Rn as column vectors. Let W be the row space of A. Then
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W⊥ is the solution space of Ax = 0, also called the null-space of A. By the
corollary, n = row rank of A+ dimW⊥. On the other hand, the image of the
linear map x → Ax = x1c1 + · · · + xncn, cj being the j-th column of A, is
the column space of A. Therefore, since W⊥ is also the kernel of this map,
by Theorem 4.4, n = column rank of A+ dimW⊥. This proves that the row
rank of A = the column rank of A.

Remark. The corollary above may now be rephrased as follows:

If A is an m× n matrix, its row rank plus nullity is equal to n, the number
of its columns. Recall that the nullity of A is the dimension of its null space
Null(A), i.e. the solution space of Ax = 0.

Definition. Let W be a subspace of an inner product space V and v in V .
Write v uniquely as v = w + z with w in W and z in W⊥. Then w is called
the projection of v on W , denoted by projW (v).

The following is now obvious

Theorem. If {w1, . . . ,wr} is an orthogonal basis of W and v ∈ V , then

projW (v) =
〈v,w1〉
〈w1,w1〉

w1 + · · ·+ 〈v,wr〉
〈wr,wr〉

wr.

We now state and prove some facts from high school geometry.

Theorem. (Pythagoras) Suppose x, y are two orthogonal vectors in an inner
product space V . Then

‖x + y‖2 = ‖x‖2 + ‖y‖2.

x + y
y

x

FIGURE 7.2: For Pythagoras’ Theorem

Proof. Since x ⊥ y (cf. Figure 7.2), 〈x,y〉 = 0. Hence

‖x + y‖2 = 〈x + y,x + y〉

= 〈x,x〉+ 2〈x,y〉+ 〈y,y〉

= ‖x‖2 + ‖y‖2.
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Triangle Inequality

Theorem (Triangle Inequality). For x, y in an inner product space,

‖x + y‖ ≤ ‖x‖+ ‖y‖.

Proof. Considering x, y, and x + y as the three sides of a triangle (cf.
Figure 7.3, we have

‖x + y‖2 = 〈x + y,x + y〉

= ‖x‖2 + 2〈x,y〉+ ‖y‖2

≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2(Cauchy-Schwarz Inequality)

= (‖x‖+ ‖y‖)2.

x + y

y

x

FIGURE 7.3: Cauchy-Schwarz Inequality

Theorem 7.6. Let p = projW (v) and w ∈W . Then ‖v − p‖ ≤ ‖w − p‖.

Remark. The theorem says that v is closer to p than to any other vector w
in W .

Proof. The vector p−w is inW , whereas v−p is orthogonal toW . Therefore,
by Pythagoras’ theorem,

‖v −w‖2 = ‖(v − p) + (p−w)‖2

= ‖v − p‖2 + ‖p−w‖2,

which shows that
‖v − p‖ ≤ ‖v −w‖.

Inconsistent Systems of Linear Equations

For an application of the above discussion, we take V = Rn with the usual
dot product. Consider a system

Ax = b (7.11)
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of m linear equations in n variables. For randomly chosen A and b, (7.11) is
usually inconsistent, in which case the next best thing is to find a vector x̂
in Rn such that Ax̂ is as close to b as possible. In other words, ‖b − Ax̂‖ is

as small as possible. If c1, . . . , cn are the columns of A, and x =

x1

...
xn

, then

(7.11) can be rewritten as

b = x1c1 + · · ·+ xncn. (7.12)

If W = span{c1, . . . , cn}, then (7.11) is consistent if and only if b is in W .
Otherwise, the best approximation to b in W is the projW (b), called the least
squares approximation (as it involves taking the least sum of squares), for
which we need to find a vector x̂ in Rn, such that

Ax̂ = projW (b). (7.13)

But (7.13) holds ⇔ b−Ax̂ is orthogonal to every column of A, i.e.

A∗(b−Ax̂) = 0,

or
A∗Ax̂ = A∗b. (7.14)

Hence x̂ is a solution of (7.14) which, by construction always exists.

In many applications, the columns of A are linearly independent, in which
case the following result is relevant.

Theorem 7.7. Suppose A is an m×n matrix. The columns of A are linearly
independent if and only if A∗A is invertible.

Proof. It is enough to show that

A∗Ax = 0 (7.15)

has a non-trivial solution if and only if

Ax = x1c1 + · · ·+ xncn = 0, (7.16)

has a non-trivial solution.

If x is a non-trivial solution of Ax = 0, then obviously it is also a non-trivial
solution of A∗Ax = 0.

Conversely, a non-trivial solution of A∗Ax = 0 gives

x∗A∗Ax = 0

or

(Ax)∗(Ax) = 0,

i.e. ‖Ax‖ = 0. So Ax = 0, and (7.16) has a non-trivial solution.
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Projection Matrix

Suppose W is a subspace of Rm with dimW = n. We write the vectors in Rm
as columns. Let {a1, . . . ,an} be a basis of W . If A is the m× n matrix with
aj as its columns, then the n× n matrix A∗A is invertible. For any b in Rm,
the projection projW (b) of b on W is given by projW (b) = Ax̂, where x̂ is a
solution of

A∗Ax̂ = A∗b

i.e.
x̂ = (A∗A)−1A∗b. (7.17)

Therefore,

projW (b) = Ax̂

= A(A∗A)−1A∗b.

Definition. The m ×m matrix P = A(A∗A)−1A∗ is the projection matrix
of Rm on W .

Example. Let W be the subspace of R3 spanned by1
1
1

 ,

0
1
2

 .

Then one can easily compute that the projection matrix

P = A(A∗A)−1A∗ =
1

6

 5 2 −1
2 2 2
−1 2 5

 .

Check that P 2 = P , because the projection of the projection is projection
itself.

Example. To find the least squares solution to

x+ y = 3

−2x+ 3y = 1

2x− y = 2

we have A =

 1 1
−2 3
2 −1

, b =

3
1
2

. So A∗A =

(
9 −7
−7 11

)
, A∗b =

(
5
4

)
.

Solving A∗Ax̂ = A∗b, i.e.(
9 −7
−7 11

)(
x1

x2

)
=

(
5
4

)
,

we get x̂ =

(
83/50
71/50

)
.



Orthogonal Projections on Subspaces 145

Least Squares Fit

Given a data (record of an experiment–say, the highest temperatures on dif-
ferent days of a year) of a given quantity against another:

x x1 x2 x3 · · · xm
y y1 y2 y3 · · · ym

we would like to find a polynomial function y = f(x) = c0 + c1x+ · · ·+ cnx
n,

called the least square fit , whose graph approximates the data as close as
possible. For that we have a system of linear equations

c0 + c1x1 + · · ·+ cnx
n
1 = y1

c0 + c1x2 + · · ·+ cnx
n
2 = y2

...
c0 + c1xm + · · ·+ cnx

n
m = ym

 (7.18)

or 
1 x1 x2

1 · · · xn1

1 x2 x2
2 · · · xn2

...
1 xm x2

m · · · xnm



c0
c1
...
cn

 =


y1

y2

...
ym


which we need to solve for c0, c1, . . . , cn to find f(x). This is just solving the
matrix equation

Ax̂ = b.

If we assume that n = deg f(x) < m, A has linearly independent columns.
This is so because in an experiment, x1, . . . , xm are all distinct, so the first n
columns of A are the first n columns of the m×m van der Monde determinant
det(xji ), which is nonzero by our assumption on xj .

Example. Let the given data be

x 0 1 2 3
y 3 2 4 4

Then for n = 2 (quadratic fit) (7.18) is
1 0 0
1 1 1
1 2 4
1 3 9


c0c1
c2

 =


3
2
4
4

 .

If we write it as Ax̂ = b, then A∗Ax̂ = A∗b becomes 4 6 14
6 14 36
14 36 98

c0c1
c2

 =

13
22
54

 .
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Solving this for c0, c1, c2 we get

f(x) = c0 + c1x+ c2x
2 =

11

4
− 1

4
x+

1

4
x2.

EXERCISES

1. Find the least squares solution to Ax = b if

A =

 1 2
2 4
−1 2

 , b =

3
2
1

 .

2. Find a least squares fit by a linear function to the data

x −1 0 1 2
y 0 0 3 9

3. Find a parabolic (or quadratic) least squares fit to the data

x −3 −2 0 1
y 9 6 2 1

4. Find a parabolic least squares fit to the data

x 2 3 5 6
y 0 −10 −48 −70

5. Find a cubic least squares fit to the data

x −1 0 1 2 3
y −14 −5 −4 1 22

6. Show that rank A∗A = rankA.



8

Linear Algebra over the Field of Complex
Numbers

Linear algebra over the field of real numbers is not always adequate. For
example, we already had to deal with complex numbers while looking for the
eigenvalues of the matrix

A =

(
−1 2
−1 1

)
,

which are the roots of its characteristic polynomial χ
A

(λ) = λ2 + 1. These
are clearly a pair of imaginary numbers i and −i. In general, when A is real,
its characteristic polynomial has real coefficients. Since the imaginary roots
of polynomials with real coefficients occur in pairs, so do the eigenvectors be-
longing to imaginary eigenvalues. The extra effort involved in working with
complex numbers is compensated somewhat by the fact that one needs to find
only one member of a pair of complex eigenvectors. The other is given by its
complex conjugate. For this chapter it is necessary to have a functional knowl-
edge of complex numbers which, for the reader’s convenience, we summarize
here.

8.1 Algebra of Complex Numbers

A complex number is a number z = a + ib, where a, b are real and i =
√
−1

or equivalently, i2 = −1. We call a the real part of z, b the imaginary part of
z, and write a = Re(z), b = Im(z). The field C of complex numbers may be
viewed as a vector space over R with dimR(C) = 2. As such, it is identified with
the Euclidean plane R2 and is called the complex plane. A complex number
z = a+ib is then identified with the point (a, b) in R2. The sum of two complex
numbers a1 + ib1 and a2 + ib2 is what corresponds to their vector sum in R2,
i.e.

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2).

The Euclidean plane R2 has no multiplicative structure, whereas C does. The
product of a1 + ib1 and a2 + ib2 is defined by multiplying them formally and

147
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using the fact that i2 = −1, i.e.

(a1 + ib1) · (a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + a2b1).

The absolute value (length, modulus or norm) of a complex number z = a+ib,
is its length as a vector in R2, i.e.

|z| = r =
√
a2 + b2,

whereas for z 6= 0, its argument arg(z) is the angle θ it makes with the x-axis
(see Figure 8.1).

z = a+ ib

r

θ

z̄ = a− ib

FIGURE 8.1: Complex conjugates

In other words, θ = tan−1
(
b
a

)
, assuming a 6= 0, but we always have z =

r(cos θ + i sin θ).

The complex conjugate z̄ of z = a+ ib is defined by (see Figure 8.1)

z̄ = a− ib.

Note that ā = a for real a. It is also easy to see that

z1 + z2 = z1 + z2 (8.1)

and

z1 · z2 = z1 · z2 . (8.2)

Since |z|2 = zz̄, it follows that |z1z2| = |z1| |z2|. Clearly, z · z̄ = a2 + b2 ≥ 0
and = 0 if and only if z = 0, i.e. Re(z) = Im(z) = 0. In particular, if z 6= 0,

1

z
=

z̄

z · z̄
=

a

a2 + b2
− b

a2 + b2
i.

To shorten calculations, it may be convenient to record and remember it as a
useful formula: For z = a+ ib 6= 0,

1

z
=

a

a2 + b2
− b

a2 + b2
i. (8.3)
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Roots of Unity

What makes the identification of complex numbers with points of the Eu-
clidean plane indispensable is how the complex numbers z1, z2 behave under
multiplication. To see this, write

z1 = r1(cos θ1 + i sin θ1),

z2 = r2(cos θ2 + i sin θ2).

Then

z1z2 = r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + cos θ2 sin θ1)]

or
z1z2 = r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)). (8.4)

This shows that

|z1z2| = |z1| |z2| (8.5)

arg(z1z2) = arg(z1) + arg(z2). (8.6)

Note that the last equation is true only modulo a multiple of 2π.

As a special case of (8.5), if |z1| = |z2| = 1, then |z1z2| = 1 and
∣∣ 1
z

∣∣ = |1|, if
|z| = 1.

Thus, in the language of group theory,

G = {z ∈ C | |z| = 1}

forms an Abelian group under multiplication of complex numbers.

A special case of (8.4) is the so-called De Moivre’s Theorem. We leave the
easy proof (by induction) as an exercise.

Definition. Given an integer n ≥ 1, a complex number ω is an n-th root of
unity if ωn = 1.

Theorem. (De Moivre). For any integer n,

(cos θ + i sin θ)n = cosnθ + i sinnθ. (8.7)

Corollary. If n ≥ 1 is an integer and

ω = cos
2π

n
+ i sin

2π

n
,

then
1, ω, ω2, . . . , ωn−1

are all distinct and satisfy the equation

zn = 1,

hence are all the n n-th roots of unity.



150 Linear Algebra over the Field of Complex Numbers

Note. The n n-th roots of unity are evenly spaced on the unit circle |z| = 1
(see Figure 8.2 for n = 8).

ω2

ω

1

FIGURE 8.2: Roots of unity

8.2 Diagonalization of Matrices with Complex
Eigenvalues

We now return to the diagonalization and continue with the example

A =

(
−1 2
−1 1

)
.

Its eigenvalues are λ = i, −i.

For λ = i, an eigenvector is a nonzero solution of

(iI −A)

(
x
y

)
= 0, (8.8)

or

(i+ 1)x− 2y = 0. (8.9)

Note that the second equation in (8.8), i.e.

x+ (i− 1)y = 0 (8.10)

is just (i− 1) multiple of equation (8.9).

So for an eigenvector x1 belonging to λ = i we put y = 1 in (8.10) to get

x1 =

(
1− i

1

)
=

(
1

1

)
− i
(

1

0

)
.

The eigenvector belonging to λ = −i is then its complex conjugate (see Exer-
cise 8, Section 6.2)

x2 = x̄1 =

(
1

1

)
+ i

(
1

0

)
=

(
1 + i

1

)
.
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We now take

P =

(
1− i 1 + i

1 1

)
. (8.11)

It can be checked that P is invertible and

P−1AP =

(
i 0
0 −i

)
. (8.12)

EXERCISE

Compute the inverse of P in (8.11) and verify (8.12).

8.3 Matrices over Complex Numbers

For an m× n matrix X = (xij) with complex entries xij , we write the m× n
matrix (x̄ij) as X. Then given matrices X and Y of appropriate size,

X + Y = X + Y ,

XY = X Y

and for a complex number λ,

λX = λ̄ X.

Note that A is a real matrix if and only if

Ā = A,

and a complex matrix X can be written as

X = A+ iB

with A, B real. In particular, a complex eigenvector belonging to a complex
eigenvalue λ may be written as

x = a + ib.

Now
Ax = λx

for A real implies that
Ax̄ = λ̄x̄,

which shows that x̄ is an eigenvector of A belonging to λ̄.

We show that the eigenvalues of a real symmetric matrix A are all real.
Moreover, the eigenvectors belonging to distinct eigenvalues of A are not only
linearly independent, but also orthogonal. We will actually prove it for Her-
mitian matrices, of which the symmetric matrices are a special case.
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Hermitian Matrices

The concept of Hermitian matrices (after C. Hermite (1822–1901)) is a gen-
eralization of (real) symmetric matrices to the matrices over the field C of
complex numbers. We first generalize the notion of the transpose of a real
matrix to that of adjoint of a complex one. To show the two steps (transpos-
ing and conjugation) it may be better to temporarily denote the transpose of
Z as ZT .

Definition. The adjoint Z∗ of a matrix Z over C is the conjugate of its

transpose, i.e. Z∗ = ZT = Z
T

.

Clearly, (XY )∗ = Y ∗X∗, (λZ)∗ = λ̄Z∗ and (Z∗)∗ = Z.

Definition. A matrix A over C is Hermitian (or self-adjoint) if A∗ = A.

Remarks.

1. If A is real, the adjoint of A is its transpose.

2. For A to be Hermitian, it has to be square.

3. A∗A is always Hermitian for every A. So is AA∗, although A∗A
and AA∗ may be of different sizes.

4. A real matrix A is Hermitian if and only if it is symmetric.

5. The diagonal entries of a Hermitian matrix are real.

Example. The matrix (
2 3 + 3i

3− 3i 5

)
is Hermitian. However, (

2 3 + 3i
3 + 3i 5

)
is not Hermitian, although it is (complex) symmetric. At first thought, com-
plex symmetric may seem to be a natural generalization of real symmetric,
but it is not. It is the concept of a Hermitian matrix that leads to the correct
definitions of the dot product, length, and orthogonality in the vector space
V = Cn over the field C.

Definition. The dot product of complex vectors x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Cn is the complex number

x · y = x1ȳ1 + · · ·+ xnȳn. (8.13)

If the vectors in Cn are written as columns, then the dot product is the matrix
product

x · y = y∗x.

This dot product has the following defining properties:
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1) (x + y) · z = x · z + y · z,

2) For c in C, (cx) · y = c(x · y),

3) x · y = y · x

4) x · x is real and ≥ 0, and = 0 if and only if x = 0.

Remark. Analogous to the real inner product spaces, one can also define a
complex inner product space, now requiring the complex number 〈x,y) to
satisfy axioms 1)–4) above.

Property 4) leads to the definition of the length of a vector in Cn.

Definition. Let x be in Cn. Its length ‖x‖ =
√
x · x, the non-negative square

root of x · x.

A unit vector in Cn is a vector of length one. The normalization of a nonzero
vector x is its replacement by the unit vector u = 1

‖x‖ · x. Note that we can

always do this, because only the zero vector has length zero.

Example. Let x = (x1, . . . , xn) ∈ Cn. Then

x · x = x1x̄1 + · · ·+ xnx̄n

= |x1|2 + · · ·+ |xn|2.

So we can write ‖x‖ =
√
|x1|2 + · · ·+ |xn|2, which coincides with the defini-

tion of the length in Rn. As a concrete example, let x = (1,−1, i,−i), a vector
in C4. Its length ‖x‖ =

√
|1|2 + | − 1|2 + |i|2 + | − i|2 = 2. The normalization

of x is u =
(

1
2 ,−

1
2 ,

i
2 ,−

i
2

)
.

Definition. The vectors x and y in Cn are orthogonal if x · y = 0. A set
{x1, . . . ,xr} ⊆ Cn is an orthogonal set if xi · xj = 0 for every pair i, j with
i 6= j. An orthogonal set of vectors in Cn is orthonormal if each vector in the
set is a unit vector. The definition of an orthonormal basis of Cn is obvious.

Definition. An n×n matrix U over C is a unitary matrix if U∗U = UU∗ = I,
in other words, if U−1 = U∗.

It is clear that U is unitary if and only if its columns (equivalently rows)
form an orthonormal basis of Cn with vectors in Cn written as columns (equiv-
alently rows).

Examples.

1. Any real matrix P with P−1 = P ∗ is automatically unitary (see
Section 9.3).

2. The 2× 2 matrix

U =
1√
2

(
1 i
1 −i

)
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is unitary.

3. The 3× 3 matrix

U =

0 i 0
i 0 0
0 0 1


is unitary.

Theorem 8.1. Suppose U is unitary. The map x→ Ux is length preserving.

Proof. ‖Ux‖2 = (Ux)∗(Ux) = x∗(U∗U)x = x∗x = ‖x‖2.

Theorem 8.2. The eigenvalues of a Hermitian (in particular, a real symmet-
ric) matrix A are all real and the eigenvectors belonging to distinct eigenvalues
of A are orthogonal.

Proof. By an eigenvalue of a complex matrix A we mean a complex number
λ such that

Ax = λx

holds for a nonzero (column) vector x in Cn, called an eigenvector belonging
to λ.

First we show that the complex number x∗Ax is in fact a real number, if
A is Hermitian. For this, since xT Āx̄ is a 1× 1 matrix,

x∗Ax = xT Āx̄ = (xT Āx̄)T = x∗A∗x = x∗Ax,

which shows that x∗Ax is its own conjugate, hence a real number. Next

Ax = λx (x 6= 0)

implies that
x∗Ax = x∗λx = λx∗x = λ‖x‖2.

Hence

λ =
x∗Ax

‖x‖2

is real.

To prove the last statement, suppose λ1, λ2 are two distinct eigenvalues of
A and that x1, x2 are eigenvectors belonging to λ1, λ2 respectively. Since λ1,
λ2 are real,

λ1x
∗
1x2 = (λ1x1)∗x2 = (Ax1)∗x2

= x∗1A
∗x2 = x∗1Ax2 = x∗1λ2x2

= λ2x
∗
1x2,
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which gives
(λ1 − λ2)x∗1x2 = 0.

Since λ1 − λ2 6= 0, x∗1x2 = 0.

Without delving much into complex inner product spaces, we just recall the
definition and some examples.

Definition. A complex inner product space is a vector space V over C together
with a map V × V 3 (x,y)→ 〈x,y〉 ∈ C, called an inner product on V such
that for all x, y, z in V , and all c in C,

1) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉,

2) For a scalar c, 〈cx,y〉 = c〈x,y〉,

3) 〈x,y〉 = 〈y,x〉, and

4) 〈x,x〉 ≥ 0 and = 0 if and only if x = 0.

Examples.

1. We already have the standard inner product x ·y on Cn defined
by (8.13).

2. Choose any real diagonal n× n matrix D with diagonal entries
all positive. On V = Cn,

〈x,y〉 = y∗Dx

defines an inner product.

3. Let V be the vector space of all complex valued continuous
functions on the unit interval I = [0, 1]. Then

〈f, g〉 =

∫ 1

0

f(t) g(t) dt

is an inner product on V . The vectors f(t) = e2πit and g(t) = e−2πit

are orthogonal in V , meaning 〈f, g〉 = 0.

Finally, we remark that everything like orthogonal complements, orthogonal
projections, the Gram-Schmidt Process, as well as most of what we shall do in
the next chapter (symmetric matrices and real quadratic forms) carries over
to the matrices and vector spaces over the field C. We leave the details and
verification for the reader to check.

EXERCISES

1. Find the length of the vector (i, 2 + i, 3− i).
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2. If possible, diagonalize the matrices

i)

(
0 1− i

1 + i 1

)
,

ii)

(
0 −1 + i

1 + i i

)
,

iii)

(
1 1− i

1 + i −1

)
, and

iv)

(
cos θ − sin θ
sin θ cos θ

)
.

3. Show that the products and inverses of unitary matrices are unitary.
[In other words, the set of unitary matrices of a given size forms a
group.]

4. Show that the inverse of a Hermitian matrix is Hermitian.

5. Show that the determinant of a Hermitian matrix is real.

6. What is the relation between the spectrum of A (the set of eigen-
values of A) and that of A∗?

7. Let u be a (column) vector in Cn. If u∗u = 1, show that I − 2uu∗

is Hermitian and unitary.

8. Prove or disprove the following:

(a) If A is an n× n real matrix, then iI +A is invertible.

(b) If A is Hermitian, then iI +A is invertible.

(c) If U is unitary, then iI + U is invertible.

9. Show that 〈A,B〉 = the trace tr(A∗B) defines an inner product on
the vector space M(n,C) of n× n matrices over C.
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Orthonormal Diagonalization

9.1 Motivational Introduction

If we write at random a degree two equation

ax2 + by2 + cxy + dx+ · · · = 0

we know it represents a conic section, but to know exactly which one requires
some work. By completing the squares, equivalently by shifting the origin, we
can reduce the above equation to one of the form

a1x
2 + b1y

2 + c1xy = const.

(We omit the easy cases, e.g. when only one variable appears in the degree
two terms.) We still need to work on the quadratic form a1x

2 + b1y
2 + c1xy, if

c1 6= 0 to determine the nature of the conic section. To be precise, making a
linear substitution, equivalently, using an appropriate linear map we need to
get rid of the mixed term c1xy to reduce it further to the form a2x

2 +b2y
2. We

can then infer the nature of our conic section by looking at the signs of a2, b2.
In order to preserve the distinction between a circle and an ellipse, the linear
map has to be length preserving, equivalently, its matrix to be orthonormal.

Another application of the above discussion is in the multivariable calculus.
The quadratic term in the Taylor expansion of a multivariable function at
a critical point (which may be, by shifting the origin, assumed to be the
origin) determines the nature of the critical point. If we can reduce it to
λ1x

2
1 + · · ·+ λnx

2
n, we can infer the nature of the critical point by looking at

the signs of λ1, . . . , λn.

Quadratic Forms

A quadratic form is a homogeneous polynomial q(x1, . . . , xn) of degree two
in n variables x1, . . . , xn. If n = 2, it is called a binary quadratic form, for
n = 3, it is a ternary quadratic form, and so on. Recall that a polynomial

157
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q(x1, . . . , xn) is a homogeneous polynomial of degree d ≥ 1 if for a parameter
t,

q(tx1, . . . , txn) = tdq(x1, . . . , xn).

The polynomial
q(x, y) = 3x2 + 2xy + 3y2

is a binary quadratic form, whereas

q(x, y, z) = x2 + 2y2 + 3z2 + 4xy + 6yz + 8xz

is a ternary quadratic form.

Although, as remarked at the end of Chapter 8, we could have done ev-
erything in more generality by taking our field of scalars to be C, we restrict
ourselves to R. This is because for applications, R is the most interesting case.
One particular example is the study of real valued multivariable functions
f(x1, . . . , xn) or just f(x) which are analytic, i.e. have partial derivatives of
every order. Such a function can be represented by its Taylor expansion at a
given point x = a. By moving the origin to a, we may take a = 0, so that
the Taylor expansions of f(x) at a = 0 is

f(x) = f(0) + `(x) + q(x) + higher degree terms. (9.1)

The linear term `(x) is a homogeneous polynomial of degree one, q(x) is a
quadratic form and so on. If n = 1, we have the usual Taylor expansion

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · · . (9.2)

If x = a = 0 is a critical point, f ′(a) = 0 (by definition), so `(x) = 0. The
behavior of the critical point (whether it is a local maximum or minimum) is

determined by quadratic term f ′′(a)
2! x2. If f ′′(a) < 0, f(a) is a local maximum

and for f ′′(a) > 0, f(a) is a local minimum. This is so because near a, the
contribution of the higher terms is negligible compared to that of the quadratic
term. This is not the case when f ′′(a) = 0, so in this case the second derivative
test fails.

For n > 1, one replaces f ′(x) = 0 by ∂f
∂x1

(x) = · · · = ∂f
∂xn

(x) = 0 for
the critical point a so that in (9.1), `(x) = 0. If a = 0, the quadratic form

q(x) = 1
2

n∑
i,j=1

∂2f
∂xi∂xj

(0)xixj . Thus i) if q(x) > 0 for all x, f(a) is a local

minimum, ii) if q(x) < 0 for all x, f(a) is a local maximum, and iii) if
q(x) > 0 for some x and < 0 for other values of x, f(a) is a saddle point .
Finally, if q(x) is identically equal to zero, the second derivative test fails. The
cases i), ii), and iii) are referred to as positive definite, negative definite, and
indefinite, respectively. Now we show how to find out which case it is.
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9.2 Matrix Representation of a Quadratic Form

Let
q(x) =

∑
i≤j

bijxixj

be a quadratic form. Then
q(x) = x∗Ax

where A = (aij) is symmetric with aij =

{
bij
2 if i 6= j

bii if i = j.

What we have done is to split the mixed terms xixj (i < j) half and half
to be put symmetrically off the diagonal in A, whereas the coefficients ajj of
x2
j appear on the diagonal.

Examples.

1. If q(x, y) = 3x2 + 2xy + 3y2, then for

A =

(
3 1
1 3

)
it is easy to verify that

q(x, y) =
(
x y

)
A

(
x
y

)
.

2. If q(x, y, z) = x2 + 2y2 + 3z2 + 4xy + 6yz + 8xz, then

q(x, y, z) =
(
x y z

)
A

xy
z


with

A =

1 2 4
2 2 3
4 3 3

 .

Our goal is to determine if a given quadratic form q(x) over R is positive
definite, negative definite or indefinite. This is obvious if q(x) has no mixed
terms. In fact, then q(x) is positive definite if all ajj > 0, negative definite if
all ajj < 0 and indefinite when some ajj > 0 and some other ajj < 0. This
suggests we diagonalize symmetric matrices, in order to get rid of the mixed
terms. We begin with an example.
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Example. Let
q(x1, x2) = 3x2

1 + 2x1x2 + 3x2.

Its (symmetric) matrix

A =

(
3 1
1 3

)
,

whose characteristic polynomial χ
A

(λ) = (λ−2)(λ−4). The eigenvalues λ = 2,
4 of A are real. This is no surprise – the eigenvalues of symmetric matrices
are all real. By solving

(λI −A)v = 0

we find eigenvectors, v1 =
(

1
−1

)
and v2 =

(
1
1

)
belonging to λ1 = 2 and λ2 = 4.

It can be checked that if u1, u2 are the normalizations of v1, v2 respectively,
the matrix P whose columns are u1, u2 orthonormally diagonalizes A. In
other words,

P ∗AP =

(
2 0
0 4

)
.

Now let x = Py. Then q(x1, x2) = x∗Ax = y∗(P ∗AP )y

(y1y2)

(
2 0
0 4

)(
y1

y2

)
= 2y2

1 + 4y2
2 .

This will be called an orthonormal diagonalization of A. By getting rid of the
mixed term by linear substitution x = Py we can say that q(x1, x2) is positive
definite. [Recall that y → Py is a bijection from R2 to itself.]

EXERCISES

Find the matrices of the following quadratic forms:

1. q(x) = 2x2
1 + 3x2

2 + 4x1x2.

2. q(x) = 2x2
1 + 3x2

2 + 5x2
3 + 4x1x2 + 6x2x3 + 8x1x3.

3. (a) Write the quadratic form q(x1, x2) = x2
1−8x1x2−5x2

2 as x∗Ax
with A symmetric.

(b) Orthonormally diagonalize A in (a).

(c) Write the transformed quadratic form without mixed terms.

4. Repeat 3 above for 5x2
1 − 4x1x2 + 5x2

2.
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9.3 Spectral Decomposition

Definition. A real matrix P is orthonormal if P ∗P = PP ∗ = I, in other
words, if P−1 = P ∗.

Remark. An orthonormal matrix A is unitary, hence by Theorem 8.1, the
map x → Ax is length preserving, hence a shape preserving rigid motion of
axes.

Definition. A square matrix A over R is orthonormally diagonalizable if
P ∗AP = D, with D diagonal, for an orthonormal matrix P . One says that P
orthonormally diagonalizes A.

Remark. It is more accurate to use the terms orthonormal matrix and or-
thonormally diagonalizable matrix rather than the traditional “orthogonal”
and “orthogonally diagonalizable.”

Example. The matrix

A =

(
3 1
1 3

)
is orthonormally diagonalizable. In fact,

P =

( 1√
2

1√
2

− 1√
2

1√
2

)

orthonormally diagonalizes A. Note that our A is symmetric.

Recall that (Theorem 8.2) if A is a real symmetric matrix, then

i) the eigenvalues of A are real,

ii) the eigenspaces Vλ = {x ∈ Rn | Ax = λx} belonging to distinct
eigenvalues are mutually orthogonal.

We now use these results to prove the following fact:

Theorem (Criterion for Diagonalizability). An n × n real matrix A is or-
thonormally diagonalizable if and only if A is symmetric.

Proof. Suppose A is orthonormally diagonalizable. Then P ∗AP = D for
some diagonal D and orthonormal P . Taking the transpose of each side of this
equation, we get P ∗A∗P = D. These two equations now imply that A∗ = A.

Conversely, suppose A is symmetric. We show that A is diagonalizable.

The proof is by induction on n. If n = 1, there is nothing to prove. For
n > 1, let λ1, . . . , λn be the eigenvalues of A and let u1 be a unit eigenvector
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belonging to λ1. Obtain by the Gram-Schmidt Process an orthonormal basis
of Rn with u1 as its first vector. Take P1 to be the matrix whose j-th column
is the j-th vector of this orthonormal basis. Then

P ∗1AP1 =

(
λ1 0

0 B

)
.

Since B is also symmetric, by the induction hypothesis, Q∗BQ is diagonal for
an orthonormal matrix Q. If P = P1Q1, where

Q1 =

(
1 0

0 Q

)
,

then P orthonormally diagonalizes A.

Remark. By similar arguments, we can prove the following variant of the
above theorem, called Schur’s Lemma.

Theorem (Schur). If A is an n× n matrix over C, there is a unitary matrix
U such that U∗AU is upper triangular with the eigenvalues of A appearing on
the diagonal.

Corollary. The rank of an n×n matrix is equal to the number of its non-zero
eigenvalues.

Spectral Decomposition of Symmetric Matrices

The spectrum of an n × n matrix is the set of its n eigenvalues. Let P be
an orthonormnal matrix with columns u1, . . . ,un that diagonalizes a given
symmetric matrix A, i.e.

P ∗AP = D =

λ1 0
. . .

0 λn

 ,

or
A = PDP ∗, (9.3)

λj being the eigenvalues of A. Then

A = PDP ∗ = (u1 · · ·un)

λ1 0
. . .

0 λn


u∗1

...
u∗n


or

A = λ1u1u
∗
1 + · · ·+ λnunu

∗
n (9.4)

Equation (9.4) is called the spectral decomposition of A, because it involves
only the spectrum of A and the corresponding unit eigenvectors of A.
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Example. Let

A =

(
3 1
1 3

)
.

Its eigenvalues are λ = 2, 4 and the corresponding unit vectors are

u1 =


1√
2

− 1√
2

 and u2 =


1√
2

1√
2

 .

Therefore,

u1u
∗
1 =


1√
2

− 1√
2

( 1√
2
− 1√

2

)
=


1

2
−1

2

−1

2

1

2


and

u2u
∗
2 =


1√
2

1√
2

( 1√
2

1√
2

)
=

1

2

1

2
1

2

1

2

 .

So (
3 1
1 3

)
= 2


1

2
−1

2

−1

2

1

2

+ 4


1

2

1

2

1

2

1

2


is the spectral decomposition of A.

Remark. The criterion for diagonalizability is also called the Principal Axes
Theorem for the following reason: Suppose q(x1, x2) is a quadratic form, e.g.

q(x1, x2) = 3x2
1 + 2x1x2 + 3x2

2 = x∗Ax

with

A =

(
3 1
1 3

)
.

Unless q(x) is negative definite, the equation q(x) = c (c > 0 a constant)
defines a conic section. The orthogonal substitution x = Py with

P =


1√
2

1√
2

− 1√
2

1√
2
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transforms the equation

3x2
1 + 2x1x2 + 3x2

2 = 1

to
2y2

1 + 4y2
2 = 1.

This is an ellipse with its principal axes determined by the eigenvectors of
A. We couldn’t say this if the substitution wasn’t orthonormal, i.e. didn’t
preserve lengths and angles. An ellipse could have become a circle. If for a
different A the two eigenvalues of A have opposite sign, then

x∗Ax = 1

will be a hyperbola.

In the definition below, we assume the quadratic form q(x) = x∗Ax is non-
singular , meaning the matrix A is non-singular (equivalently, the eigenvalues
of A are all nonzero).

Definition. (Classification of Quadratic Forms) A real quadratic form q(x) =
x∗Ax is

i) positive definite if q(x) > 0 for all x 6= 0,

ii) negative definite if q(x) < 0 for all x 6= 0.

iii) indefinite if q(x) takes both positive and negative values.

The following is obvious.

Theorem 9.1. A quadratic form q(x) = x∗Ax with A symmetric is

i) positive definite if and only if all the eigenvalues of A are posi-
tive,

ii) negative definite if and only if all the eigenvalues of A are neg-
ative, and

iii) indefinite if and only if neither i) nor ii) holds.

In multivariable calculus of two variables, the following is often referred to
as the second derivative test:

Theorem 9.2. Let A be a 2× 2 invertible real symmetric matrix

A =

(
a b
b c

)
.

Then
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i) A is indefinite if det(A) < 0.

ii) For det(A) > 0, A is positive/negative definite accordingly as a
is positive/negative.

Remark. In ii), a can be replaced by c.

Proof. Let λ1, λ2 be the two real eigenvalues of A. Then det(A) = λ1λ2 < 0
implies λ1, λ2 have opposite signs. This proves i).

ii) Suppose det(A) = ac − b2 > 0. Then a and c have the same sign.
Also det(A) = λ1λ2 > 0 implies that λ1 and λ2 have the same sign as well.
Therefore, since tr(A) = a + c = λ1 + λ2, A is positive definite ⇔ λ1, λ2 >
0⇔ a, or c (hence both) > 0. This proves ii).

Remark. The case det(A) = 0 corresponds to the case when the quadratic
term in the Taylor expansion fails to give complete information about the
nature of the function at its critical points (i.e. whether they are local maxima,
local minima, or saddle points).

EXERCISES

1. Classify (positive definite, negative definite, or indefinite, etc.) the
quadratic form q(x) = x∗Ax if A =

(
2 3
3 −6

)
(a)

(
9 −4
−4 3

)
(b)

(
−5 2
2 −2

)
(c)

3 2 0
2 2 2
0 2 1

(d)

2. Write the spectral decomposition A = PDP ∗ if

A =

 3 −2 4
−2 6 2
4 2 3

(a)

 6 −2 −1
−2 6 −1
−1 −1 5

(b)

3. If A is invertible, show that all eigenvalues of A∗A are positive.

4. If A and B are n× n symmetric matrices with all eigenvalues posi-
tive, show that all eigenvalues of A+B are also positive.

5. For a nonempty set X, let Pr(X) be the set of all subsets Y of X
with cardinality |Y | = r (r ≥ 0). A graph G consists of a finite
nonempty set V = V (G) of vertices of G and a set E = E(G) ⊆
P2(V ). If {u, v} ∈ E(G), we call {u, v} an edge of G and u, v
adjacent to each other. Note that no u is adjacent to itself. The
adjacency matrix A = A(G) of a graph G is defined as follows:
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Let V = V (G) = {v1, . . . , vn} and A = A(G) = (aij). Then

aij =

{
1 if {vi, vj} ∈ E(G)

0 otherwise.

Show that the sum of the eigenvalues of A(G) is zero.

Note. The study of the spectra of the adjacency matrices of graphs
is an important part of graph theory (cf. [17]).

6. Fix an order V (G) = {v1, . . . , vn} on the set of vertices of a graph
G. If P (f) is the permutation matrix of a permutation f : V (G)→
V (G) and B is the adjacency matrix of G relative to the reordering
{f(v1), . . . f(vn)} of V (G), show that B = P (f)∗AP (f).

7. The degree of a vertex v of a graph G is the cardinality

deg(v) = |{u ∈ V (G) | u is adjacent to v}|.

Put ∆(G) = max
v∈V (G)

deg(v). If λ is an eigenvalue of the adjacency

matrix A(G) of a graph G, show that |λ| ≤ ∆(G).

8. For k ≥ 0, a graph G is k-regular if deg(v) = k for all v in V (G).
Show that λ = k is an eigenvalue of the adjacency matrix A(G) of
a k-regular graph G.

9. Show that if A is an m×n matrix, then A∗A is positive semi-definite
(that is all its eigenvalues are non-negative).

10. If q1(x) = x∗Ax is positive definite, show that q2(x) = x∗A−1x is
also positive definite.

11. Prove or disprove:

(a) An invertible matrix is orthonormally diagonalizable.

(b) The inverse of a symmetric matrix is symmetric.

(c) If A is an n× n positive definite symmetric matrix, then there
is also such a matrix B with A = B∗B.

(d) An orthonormal matrix is orthonormally diagonalizable.

(e) If A, B are orthonormally diagonalizable and AB = BA, then
AB is orthonormally diagonalizable.
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9.4 Constrained Optimization – Extrema of Spectrum

The values of a quadratic form as a function from Rn to R are unbounded
unless its domain is restricted or constrained.

The eigenvalues of a real symmetric matrix are all real. Suppose M , m are
the largest and the smallest eigenvalues of A. We call the subset

S = {x ∈ Rn | ‖x‖ = 1}

the unit sphere (circle if n = 2). We now show that M and m have something
to do with the values of the quadratic form q(x) = x∗Ax for x in S.

Theorem 9.3. Suppose A is an n× n real symmetric matrix whose smallest
eigenvalue is m and the largest is M . Let q(x) = x∗Ax. Then

M ≥ q(x) ≥ m

for all x in S and with both bounds m and M attained for x in S.

Proof. Suppose M = λ1 ≥ · · · ≥ λn = m are the eigenvalues of A. If
A = PDP ∗ is a spectral decomposition of A, then P ∗AP = D, with say

D =

λ1 0
. . .

0 λn

 .

Under the orthonormal substitution x = Py, the quadratic form q(x) = x∗Ax
becomes f(y) = λ1y

2
1+· · ·+λny2

n. Since ‖x‖2 = ‖Py‖2 = y∗(P ∗P )y = y∗·y =
‖y‖2 and P is invertible,

{q(x) | x ∈ S} = {f(y) | y ∈ S}.

Therefore for y in S,

λ1 = λ1(y2
1 + · · ·+ ynn) ≥ λ1y

2
1 + · · ·+ λny

2
n

= f(y) ≥ λn(y2
1 + · · ·+ y2

n) = λn

and M = λ1 = f((1, 0, . . . , 0)) and m = λn = f((0, . . . , 0, 1)).

Remark. The Rayleigh quotient of a symmetric matrix A is the ratio

R(A,x) =
x∗Ax

x∗x

for x 6= 0. We may rephrase Theorem 9.3 as follows:

m ≤ R(A,x) ≤M.
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EXERCISES

1. Find the maximum and minimum values M and m, respectively of
q(x) = x∗Ax for x in S if A =

(
−5 2
2 −2

)
(a)

3 2 0
2 2 2
0 2 1

.(b)

2. Find unit vectors x at which M and m are attained by q(x) of (a)
and (b).

3. Suppose λ is an eigenvalue of a real symmetric matrix A and q(x) =
x∗Ax. Show that λ = q(x) for some x with ‖x‖ = 1.

9.5 Singular Value Decomposition (SVD)

We know that the eigenvalues λ1, . . . , λn of a real symmetric matrix A are all
real and that A can be orthonormally diagonalized, i.e.

V ∗AV = D =

λ1 0
. . .

0 λn

 , (9.5)

for V orthonormal. Equivalently we can write (9.5) as

A = V DV ∗ (9.6)

and call (9.6) a spectral (or eigenvalue) decomposition of A.

Now given a non-symmetric, or even a non-square m× n real matrix, how
close can we get to a decomposition of it like (9.6)? Of course, if m 6= n, (9.6)
makes no sense. The best we can expect on the left of (9.5) is U∗AV for U
an m×m orthonormal and V and n× n orthonormal. On the right of (9.5),
we should expect an m× n matrix of zeros except a block of diagonal matrix
D on its upper left corner. That this can always be done is the essence of the
singular value decomposition or just SVD of any real matrix.

An n× n matrix A is non-singular if and only if λj 6= 0 for all j = 1, . . . , n.
The more the number of λj = 0, the further the matrix A from being non-
singular. The signs of nonzero λj have no relevance in this context. Hence, we
may call the absolute values of the eigenvalues of A its singular values.

To extend this notion to an arbitrary m× n real matrix, first note that for
a real symmetric matrix A, the eigenvalues of A∗A = A2 are non-negative. So
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the singular values of A are the square roots of those of A∗A. Therefore, for
an arbitrary m× n real matrix, we should be able to obtain a singular value
decomposition of A in this manner from that of the real symmetric matrix
A∗A, provided the eigenvalues of A∗A are all non-negative.

Theorem 9.4. Given an m×n real matrix A, all the eigenvalues of A∗A are
non-negative.

Proof. Let v be a unit eigenvector of A∗A belonging to a given eigenvalue
λ of A∗A. Then

‖Av‖2 = (Av)∗Av = v∗A∗Av = λv∗v

= λ‖v‖2 = λ.

Therefore λ = ‖Av‖2 ≥ 0.

For a symmetric matrix, the number of its nonzero eigenvalues is its rank.
To obtain a similar result for the rank of an m× n matrix A, not necessarily
square, we arrange the eigenvalues of A∗A as

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

Theorem 9.5. Let r be the largest index such that λr > 0. Then r is the
rank of A. In fact, let v1, . . . ,vn be an orthonormal basis of Rn consisting of
eigenvectors of A∗A belonging to the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.
Then {Av1, . . . Avr} is an orthogonal basis for the column span of A.

Proof. Clearly Av1, . . . , Avr are in the column space of A. We show that
they form an orthogonal basis for the column space of A. Suppose v is a unit
eigenvector belonging to any eigenvalue λ of A∗A. Then

‖Av‖2 = λ, so Av = 0⇔ λ = 0.

For i 6= j, 1 ≤ i, j ≤ r,

(Avi) · (Avj) = v∗jA
∗Avi = λiv

∗
jvi = 0.

So Avi and Avj are orthogonal. All that remains to be proved now is that
Av1, . . . , Avr span the column space of A.

So let y = Ax be any vector in the column space of A. We can certainly
write

x = c1v1 + · · ·+ cnvn

as a linear combination of the (orthonormal) basis vectors v1, . . . ,vn of Rn.
Therefore,

y = Ax = c1Av1 + · · ·+ crAvr

as Avj = λjvj = 0 for j > r.

We can now complete the proof the following important facts:
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Theorem 9.6. Suppose A is an m× n real matrix. Then

i) The eigenvalues of the n×n symmetric matrix A∗A are all non-
negative. Let them be

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. (9.7)

If r is the largest index such that λr > 0, then r is the rank of A.

ii) Let σj =
√
λj, j = 1, . . . , r and D the diagonal matrix

D =

σ1 0
. . .

0 σr

 .

Let S be the m× n matrix with D as its upper left r × r block and
all other entries zeros. There are orthonormal matrices U and V ,
U in M(m,R), V in M(n,R) such that

U∗AV = S (9.8)

or equivalently
A = USV ∗. (9.9)

Proof. Let {v1, . . . ,vn} be an orthonormal basis of Rn consisting of eigen-
vectors of A∗A with vj belonging to λj , where λj is as in (9.7). Let V be the
orthonormal matrix with vj as its j-th column.

To construct U , put uj = 1
σj
Avj or

Avj = σjuj (9.10)

for j = 1, . . . , r. Then {u1, . . . ,ur} is an orthonormal set in Rm. Extend it
to an orthonormal basis {u1, . . . ,um} of Rm. Take U to be the orthonormal
matrix with uj as its j-th column. Then

AV = (Av1 . . . AvrAvr+1 . . . Avn)

= (σ1u1 . . . σrur0 . . .0).

On the other hand,

US = (u1 . . .um)


σ1 0

. . .

0 σr

 0

0 0


= (σ1u1 . . . σrur0 . . .0).
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So US = AV or

U∗AV = S, (9.11)

equivalently,

A = USV ∗. (9.12)

Definition. The singular values of a real m×n matrix A are the square roots
σ of the positive eigenvalues λ of A∗A.

Corollary (Singular Value Decomposition). The equation (9.12) can be writ-
ten as

A = σ1u1v
∗
1 + · · ·+ σrurv

∗
r , (9.13)

called the singular value decomposition (or SVD) of A.

The following summary of the proof also provides an algorithm to obtain
an SVD of an m × n real matrix A. Note that by construction U and V are
not unique, especially if an eigenvalue of A∗A repeats. However, the matrix S
is unique.

Step 1. Find the eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

of A∗A. Put σj =
√
λj for j = 1, . . . , r (r the largest index with λj > 0). Take

D =

σ1 0
. . .

0 σr


and extend D to an m×n matrix S with the block D at its upper left corner,
zeros elsewhere.

Step 2. Find an orthonormal basis v1, . . . ,vn of Rn consisting of unit eigen-
vectors vj belonging to λj . Take V to be the n×n (orthonormal) matrix with
vj as its j-th column.

Step 3. For j = 1, . . . , r, put uj = 1
σj
Avj . Then {u1, . . . ,ur} is an orthonor-

mal set in Rm. Extend it to an orthonormal basis {u1, . . .um} of Rm. Take
U to be the m×m orthogonal matrix with uj as its j-th column.

Step 4. Check that
USV ∗ = A.
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Examples.

1. The matrix

A =

(
2 −2
1 1

)
is square but not symmetric.

Step 1. A∗A =

(
5 −3
−3 5

)
. The eigenvalues of A∗A are 8 and 2,

so its singular values are 2
√

2 and
√

2 and

S =

(
2
√

2 0

0
√

2

)
.

Step 2. Unit vectors of A∗A belonging to the eigenvalues 8 and 2
are

v1 =
1√
2

(
−1

1

)
, v2 =

1√
2

(
1

1

)
.

So

V =
1√
2

(
−1 1
1 1

)
.

Step 3. u1 = 1
σ1
Av1 = 1

2
√

2

(
2 −2
1 1

)
1√
2

(
−1
1

)
=

(
−1
0

)
. Simi-

larly, u2 =

(
0
1

)
. Hence

U =

(
−1 0
0 1

)
.

Step 4. Check if we got the SVD of A:

USV ∗ =

(
−1 0
0 1

)(
2
√

2 0

0
√

2

)
1√
2

(
−1 1
1 1

)

=

(
2 −2
1 1

)
= A.

2. We now take a non-square matrix

A =

 1 −1
−2 2
2 −2

 .
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Step 1. A∗A = 9

(
1 −1
−1 1

)
and the eigenvalues of A∗A are 9 times

that of

(
1 −1
−1 1

)
which are 2 and 0. (Why?) So the singular values

of A are
√

18 = 3
√

2 and 0, and

S =

3
√

2 0
0 0
0 0

 .

Step 2. Unit eigenvectors belonging to the eigenvalues 18 and 0 of
A∗A are

v1 =
1√
2

(
1

−1

)
, v2 =

1√
2

(
1

1

)
.

So

V =
1√
2

(
1 1
−1 1

)
.

Step 3. The first column of U is

u1 =
1

σ1
Av1 =

1

3
√

2

 1 −1
−2 2
2 −2

 1√
2

(
1
−1

)

=
1

3

 1
−2
2

 .

To extend u1 to an orthonormal basis of R3, we pick any orthonor-
mal basis u2, u3 of the orthogonal complement of u1, i.e. the solu-
tion space of

u∗1 · x = 0

or
x− 2y + 2z = 0.

For that, start with any two linearly independent solutions, say

w2 =

2
1
0

 and w3 =

0
1
1

 so u2 = 1√
5

2
1
0

.

For u3 we normalize w3− (w3 ·u2)u2 =

0
1
1

− 1
5

2
1
0

 =


− 2

5

4
5

1

.
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So u3 = 5√
45


− 2

5

4
5

1

 = 1√
45

−2
4
5

, hence

U =



−1

3

2√
5
− 2√

45

−2

3

1√
5

4√
45

2

3
0

5√
45


.

Step 4. Check that USV ∗ = A. (Exercise!)

Application to Data Compression

It often becomes necessary to compress a large amount of data when the space
available for its storage or transmission is limited. The low-rank approximation
to an m × n matrix A provided by the singular value decomposition enables
one to do that.

A black and white photograph can be scanned and stored as an m × n
matrix A, giving each entry (pixel) a value, say a number between 0 (white)
and 9 (black), depending on the shade of gray of that pixel. This requires mn
numbers to be stored. However, using the singular value decomposition,

A = σ1u1v
∗
1 + · · ·+ σrurv

∗
r

of A, the matrix A can be recovered from its r singular values σ1, . . . , σr and
the 2r vectors u1, . . . ,ur in Rm and v1, . . . ,vr in Rn, needing only r(m+n+1)
entries to be stored. Moreover, if {σ1, . . . , σs} is a dominant set of singular
values of A (meaning the remaining are small enough to be ignored), A can
be approximated by its s-rank approximation

As = σ1u1v
∗
1 + · · ·+ σsusv

∗
s.

Recall that we follow the convention σ1 ≥ · · · ≥ σr > 0.
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(a) Original A is 300× 500 (b) As(s = 100)

(c) As(s = 25) (d) As(s = 15)

FIGURE 9.1: Often the image constructed using As is hardly distinguishable
from the original one, but the saving on the storage space is huge. For example,
suppose the rank of a 300×500 matrix A that represents a 3×5 photograph is
100, but only the first 10 of its singular values are significant. The space needed
to store 10(300 + 500 + 1) = 8010 entries for A10 is minuscule compared to
150000 of A. Figure 9.1 illustrates this phenomenon. Note that (a) and (b) are
indistinguishable, but (c) is not too bad either. Data compression comparison.
Author’s photographs of Delicate Arch, Moab, Utah.
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EXERCISES

1. If A is square, show that |detA| is the product of its singular values.

2. If A is invertible, what is the singular value decomposition of A−1?

3. Find the SVD of the following matrices and check your answer:

(
3 5
4 0

)
(a)

(
3 2 2
2 3 −2

)
(b)

7 1
0 0
5 5

(c)


2 5 4
6 3 0
6 3 0
2 5 4

(d)
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Selected Applications of Linear Algebra

Linear algebra appears almost everywhere in mathematics, so it will be a futile
task even to list all its applications. In this chapter, we discuss a few of its
standard and nonstandard, but non-trivial applications in computer science,
engineering, physics, as well as mathematics itself.

10.1 System of First Order Linear Differential Equations

In Section 4.7 we saw that solving the linear differential equation Ly = 0 is
the same as finding a basis of the vector space V = Ker(L), the kernel of the
linear map L.

A linear differential equation Ly = 0 of order n is a special case of a system
of first order linear differential equations

x′1(t) = a11x1(t) + · · ·+ a1nxn(t)
...
x′n(t) = an1x1(t) + · · ·+ annxn(t)

which has a matrix representation

X ′ = AX (10.1)

with

X =

x1(t)
...
xn(t)

 , X ′ =

x
′
1(t)

...
x′n(t)

 and A = (aij).

To write the order n linear differential equation

x(n) + an−1x
(n−1) + · · ·+ a1x

′ + a0x = 0

177
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we put x = x1 and

x′1 = x2

x′2 = x3

...
x′n−1 = xn

x′n = −a0x1 − a1x2 − · · · − an−1xn.

Note that the solution of (10.1) is the kernel of a linear map, and hence a
vector space. Thus to find a general solution is the same as finding a basis
for this vector space. The following theorem translates the formal solution
X(t) = eAt of (10.1) into the following algorithm. For the sake of simplicity
in stating the theorem, we assume that all the eigenvalues of the matrix A are
real and distinct. The case of repeated roots (real or imaginary) is analogous.
For details, see a book on differential equations.

Theorem 10.1. Let all the eigenvalues λ1, . . . , λn of the n×n real matrix A
be real and distinct and E1, . . . ,En are eigenvectors belonging to λ1, . . . , λn
respectively. Then a general solution of (10.1) is

X(t) = c1e
λ1tE1 + · · ·+ cne

λntEn,

c1, . . . , cn being arbitrary constants,

For a proof, see a book on differential equations.

Example. To solve

x′1 = x1 + 3x2

x′2 = x1 − x2,

we compute the eigenvalues λ1, λ2 of the matrix

A =

(
1 3
1 −1

)
,

which are λ1 = 2, λ2 = −2. Corresponding eigenvectors belonging to λ1 = 2,
λ2 = −2 are E1 =

(
3
1

)
, E2 =

(−1
1

)
. So a general solution of this system of first

order linear differential equations is

X(t) =

(
x1(t)

x2(t)

)
= c1e

2t

(
3

1

)
+ c2e

−2t

(
−1

1

)
which can be rewritten as

x1(t) = 3c1e
2t − c2e−2t

x2(t) = c1e
2t + c2e

−2t.
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EXERCISES

Solve the following systems of first order linear differential equations.

1) x′1 = x1 + 6x2

x′2 = 5x1 + 2x2,

2) x′1 = x1 − 2x2

x′2 = x1 − x2.

3) x′1 = x1 − x2 + 4x3

x′2 = 3x1 + 2x2 − x3

x′3 = 2x1 + x2 − x3

10.2 Multivariable Calculus

We now apply the theory of quadratic forms we have learned to determine the
nature of a critical point of a multivariable function f(x) = f(x1, . . . , xn) of
n variables x1, . . . , xn. For this we first explain how to write its Taylor series
at a point a = (a1, . . . , an) of the domain where f(x) is completely smooth,
i.e. all partial derivatives of every order exist. To do so in a neat and compact
way, we use the following notion.

For an n-tuple j = (j1, . . . , jn) of non-negative integers and x =
(x1, . . . , xn), we put

i) |j| = j1 + · · ·+ jn

ii) j! = j1! · · · jn!

iii) xj = xj11 . . . xjnn

vi) ∂|j|f
xj = ∂|j|f

∂x
j1
1 ...∂xjn

n

.

The Taylor expansion of f(x) centered at x = a is then the power series
(which looks similar to the one variable case)

f(x) = f(a) +
∑
|j|>0

1

j!

∂|j|f

∂xj
(a)(x− a)j . (10.2)
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In case a = 0, (10.2) is called the Maclaurin series of f(x) and has a simpler
form

f(x) = f(0) +
∑
|j|>0

1

j!

∂|j|f

∂xj
(0)xj . (10.3)

The linear term in (10.2) is

∂f

∂x1
(a)(x1 − a1) + · · ·+ ∂f

∂xn
(a)(xn − an).

If a = 0, twice the quadratic term in (10.3) is the quadratic form

Q(x) =

n∑
i,j=1

∂2f

∂xi∂xj
(0)xixj .

It (or its matrix) is called the Hessian of f (at x = 0) and denoted byH(f)(x),
or simply by H(f).

Since moving the origin to a does not change the nature of a critical point a
of f(x), there is no loss of generality in assuming that the given critical point
is indeed a = 0. Then by definition, there is no linear term in the Maclaurin
expansion (10.3) of f(x), so that

f(x) = f(0) +
1

2
H(f) + higher order terms. (10.4)

Near the origin, the contribution of higher order terms in (10.4) to f(x) is
negligible and the nature of the critical point a = 0 of f(x) is determined by
the Hessian H(f).

Unless a = 0, the quadratic terms in (10.2) are not a quadratic form.
To avoid moving a to 0, define the Hessian of f at x = a as the matrix

A =
(

∂2f
∂xi∂xj

)
|x=a

, which is invariant under x → x − a. Then in the next

theorem, we need not assume that the critical point a = 0. Just go to the
Hessian matrix of f at a.

Theorem. If a = 0 is a critical point of f(x), then it is a local minimum,
a local maximum, or a saddle point according as the quadratic form H(f) is
positive definite, negative definite, or indefinite.

Recall that a quadratic form is by definition

i) positive definite if Q(x) > 0 for all x 6= 0,

ii) negative definite if Q(x) < 0 for all x 6= 0, and

iii) indefinite if Q(x) > 0 for the same x and < 0 for the some other x.

If we write Q(x) = x∗Ax with A n× n symmetric matrix, then Q(x) is
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i) positive definite if all the eigenvalues of A are positive,

ii) negative definite if all the eigenvalues of A are negative,

iii) indefinite if A has positive as well as negative eigenvalues.

Example. Consider the function

f(x1, x2) = x2
1 − 5x2

2 − 8x1x2 − 14x1 − 28x2 − 35

It is easy to check that x1 = −1 and x2 = −2 is a critical point of f(x1, x2),
i.e. a solution of ∂f

∂x1
= ∂f

∂x2
= 0. The Hessian

H(f) =


∂2f

∂x2
1

∂2f

∂x1∂x2

∂2f

∂x2∂x1

∂2f

∂x2
2

∣∣∣
(−1,−2)

=

(
1 −4
−4 −5

)
.

The two eigenvalues of the matrixH(f) are 3 and−7. Hence x1 = −1, x2 = −2
is a saddle point of f(x1, x2).

Note. We may also use Theorem 9.2. However, Theorem 9.2 is applicable
only to functions of two variables, whereas going to the eigenvalues works for
the functions of any number of variables.

EXERCISES

1. Show that i) (0,0) is a critical point of f(x1, x2) = ex
2
1−2
√

3x1x2−x2
2 ,

and ii) find the nature of this critical point.

2. Check that i) (1,0) is a critical point of f(x1, x2) = ln(1 + 9x2
1 +

3x2
2−8x1x2−18x1 +8x2 +10), and ii) find the nature of this critical

point.

10.3 Special Theory of Relativity

In this section, we study a special linear map L : R4 → R4 to prove the
assertion of Einstein’s theory of relativity about the time contraction when
objects are moving at speeds commensurable with that of light.



182 Selected Applications of Linear Algebra

If you are driving at 40 miles/hour into wind blowing directly toward you
at 60 miles/hour, it will hit you at 100 miles/hour. On the other hand, if
you are driving away from it at the same speed, you will feel it coming at
a speed of 20 miles/hour. The speed of light is 186, 000 miles/second. So if
you are traveling with a speed of 100,000 miles/second toward an incoming
beam of light, you would expect it to be traveling toward you at 286,000
miles/second, and only at 86,000 miles/second if you are running away from
it with the same speed. During the late nineteenth century, it was established
by various experiments, most notably by the Michelson-Morley experiment
of 1887 that this is not so. The speed of light was measured to be the same
186,000 miles/second whether the measuring instrument was traveling toward
or away from an incoming beam of light.

Soon thereafter, in 1905 this led Albert Einstein to publish his special theory
of relativity (see [6]) using which he showed that this fact about the speed of
light has some astonishing consequences. For example, suppose a cosmonaut
blasts off from Earth in 2020 at 99% the speed of light to visit a star 49.5 light
years away (this is the distance traveled by light in 49.5 years). As soon as
she reaches the star, she turns around and heads back to Earth at the same
speed. After a 100-year journey, when she is back on Earth in 2120, her clock
shows that the journey took her only about 14 years. How is this possible?

Linear algebra can be used to capture the essence of Einstein’s special theory
of relativity, at least to prove this curious phenomenon. His revolutionary idea
is that time is not absolute. The time of an event depends on its location.

The special theory of relativity establishes a correspondence between events
as observed on two inertial (non-accelerating) coordinate systems which are in
motion relative to each other with a constant velocity, under the assumption
the speed of light measured on either system is the same.

An event (e.g. a flash of light) observed at a point (x, y, z) in space relative
to a given choice of coordinate axes at a time t, measured by a clock stationary
relative to these axes, can be represented by a vector (x, y, z, t) in R4, called
the space-time coordinates, of the event. So if (x, y, z, t) and (x′, y′, z′, t′) are
the space-time coordinates of the same event as observed in two coordinate
systems there is a map

(x′, y′, z′, t′) = L(x, y, z, t), (10.5)

called the Lorentz transformation, which describes this correspondence. One
of the postulates of the special theory of relativity is that the map L is a
length preserving bijective linear transformation from R4 to R4. Moreover, if
the coordinates axes in the two bases are aligned properly, L has no effect on
the x- and y-coordinates of the event (x, y, z, t). All the information about L
is contained in its action on the other two coordinates of the event.

Any linear map L : V → W of finite dimensional vector spaces is given
by a matrix P , once we have chosen our coordinate systems, i.e. a pair of
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ordered bases BV and BW of V and W , respectively. In particular, if V =
W = R4 and the chosen basis for R4 is the standard basis e1, . . . , e4 with
e1 = (1, 0, 0, 0), . . . , e4 = (0, 0, 0, 1), then the j-th column of P is Lej , j =
1, . . . , 4.

Let W1 be the subspace of R4 spanned by e1, e2 and W2 = span{e3, e4}.
We regard R4 as an inner product space under the dot product. Then W1 and
W2 are orthogonal complements of each other. Moreover R4 is a direct sum
R4 = W1 ⊕W2, in other words, every w in R4 is a unique sum w = w1 + w2

with wj in Wj , j = 1, 2. Each subspace Wj is invariant under L, i.e. L(wj)
is in Wj for all wj in Wj (j = 1, 2).

Now suppose we have two frames of reference, that is, two coordinate sys-
tems or bases B and B′ to represent the space-time coordinates (x, y, z, t) and
(x′, y′, z′, t′) of an event. By this we mean B (similarly B′) consists of coordi-
nate axes: x-axis, y-axis, and z-axis to locate the position (x, y, z) and a clock
C placed at a fixed point (x0, y0, z0) to register the time t of the event. It is
assumed that initially, i.e. at the time t = 0, both the clocks C and C ′ register
time t′ = t = 0, x′-axis coincides with x-axis, y′-axis coincides with y-axis,
and z′-axis coincides with z-axis. The system B′ is in motion relative to B
along the positive direction of z-axis at a constant speed v, while the other
two axes of the two systems stay parallel (see Figure 10.1).

z′

C ′

O′

x′

y′

z

C

x

y
O

FIGURE 10.1: Clocks in motion relative to each other

It is assumed there is a symmetry between B and B′. To be precise, B′ is
moving relative to B with velocity v in the positive direction of z-axis if and
only if B is moving relative to B′ with velocity v in the negative direction
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of z′-axis. Einstein made the following two postulates on which to base his
special theory of relativity.

Postulate 1 (The Principle of Relativity) The laws of physics are the same
in all inertial frames of reference.

Postulate 2 (The consistency of the speed of light.) The speed of light is the
same in all inertial systems.

Our unit of time is 1 second and the unit of length the distance traveled by
light in 1 second. Thus the speed of light is 1/second. Under this set up, we
rephrase for our purpose the postulates of the special theory of relativity as
follows:

Postulate 1 The correspondence in equation (10.5) is a length preserving
bijective linear map L : R4 → R4 such that

i) its restriction L|W1
, is the identity map on W1, and

ii) W2 is invariant under L.

Postulate 2 The speed of light is 1/sec. whether observed in the frame of
reference B or B′.

We show that those postulates determine L uniquely. The map L is called
the Lorentz transformation. In fact, the matrix P of L with respect to the
standard basis of R4 is

P =

(
I O

O B

)
,

where each block of P is a 2× 2 matrix and

B =

(
1/
√

1− v2 −v/
√

1− v2

−v/
√

1− v2 1/
√

1− v2

)
.

Computing the Matrix of the Lorentz Transformation

1. Basic Lemmas

In view of our set up and the postulates of the special theory of relativity, the
only thing that needs to be proved is the assertion about the block B in the
matrix P .
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Let E be the set of events whose space-time coordinates are (x, y, z, t) rel-
ative to B. Since the speed of light is 1/sec., the points at which an event is
observed at a time t (say t ≥ 0), are at a distance t · 1 = t from the origin O
of the coordinate axis of B (assuming the same event was observed initially
(meaning t = 0) at the origin when B and B′ overlapped). Therefore, their
space-time coordinates satisfy the equation

x2 + y2 + z2 − t2 = 0. (10.6)

By Postulate 2, the space-time coordinates (x′, y′, z′, t′) of the same event in
B′ satisfy

x′2 + y′2 + z′2 − t′2 = 0. (10.7)

Thus (10.6) will hold if and only if (10.7) holds.

For a real matrix P , we denote its transpose by P ∗. In our discussion, a
crucial role is played by the matrix

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

Lemma 10.2. For w in R4, written as a column vector, Aw is orthogonal to
w if and only if P ∗APw is orthogonal to w.

Proof. The vector

w =


x
y
z
t


in R4 is orthogonal to Aw if Aw ·w = 0 which is the same as equation (10.6).
By assumption, the map w → Pw is length preserving, equivalently P is
orthonormal (P ∗P = I). So P ∗APw is orthogonal to w ⇔ P ∗APw · w =
0⇔ PP ∗APw · Pw = 0⇔ APw · Pw = 0⇔ (10.7) holds since

Pw =


x′

y′

z′

t′

 .

Since (10.6) and (10.7) are equivalent, we are done.

The vectors

w1 =


0
0
1
1

 , w2 =


0
0
1
−1
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form an orthogonal basis of W2. They are special in the following way.

Lemma 10.3.

i) P ∗APw1 = aw2,

ii) P ∗APw2 = bw1

for nonzero scalars a and b.

Proof. Because Aw1 ·w1 = 0, we get by Lemma 10.2, P ∗APw1 ·w1 = 0.
Therefore by the invariance of W2 under P , if P ∗APw1 is orthogonal to w1

it must be a nonzero multiple of w2. This proves i). Part ii) follows at once
from Part i) on multiplying each side on the left by P ∗AP.

Lemma 10.4. P ∗AP = A.

Proof. We write P ∗AP block by block as

P ∗AP =

(
I O

O C

)
,

each block being a 2×2 matrix. By Lemma 10.3, the first and second columns
of C are

C

(
1

0

)
= C

1

2

((
1

1

)
+

(
1

−1

))
=

1

2

[
C

(
1

1

)
+ C

(
1

−1

)]

=
1

2

[(
a

−a

)
+

(
b

b

)]
=


a+ b

2

−a− b
2


and similarly,

C

(
0

1

)
=


a− b

2

−a+ b

2

 .

Since C is symmetric, it follows that a = b. Hence

C =

(
1 0
0 −1

)
,

which proves the lemma.
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Computing the matrix P

To compute P , consider the situation 1 second after the origins O and O′ of
B and B′ have coincided as measured by the clock C of B. Since O′ is moving
in the positive direction of z-axis with constant velocity v; its space-time
coordinates relative to B are (0, 0, v, 1), whereas, its space-time coordinates
relative to B′ are (0, 0, 0, t′) for some t′ > 0, measured by the clock C ′. By
Lemma 10.4,

P ∗AP


0
0
v
1

 ·


0
0
v
1

 = A


0
0
v
1

 ·


0
0
v
1

 = v2 − 1. (10.8)

On the other hand, since the matrix P ∗AP is orthonormal,

P ∗AP


0
0
v
1

 ·


0
0
v
1

 = AP


0
0
v
1

 · P


0
0
v
1

 = A


0
0
0
t′

 ·


0
0
0
t′

 = −t′2. (10.9)

From (10.8) and (10.9), we get the following fundamental relationship - the
dependence of t′ on v.

t′ =
√

1− v2 . (10.10)

This gives

P


0
0
v
1

 =


0
0
0√

1− v2

 . (10.11)

Next, by the symmetry between B and B′, 1 second (measured by the clock
C) after O and O′ have coincided, the space-time coordinates of O relative B′
are 

0
0
−vt′′
t′′


for some t′′ (measured by the clock C ′). Thus

0
0
−vt′′
t′′

 = P


0
0
0
1

 .

Now on one hand,
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P ∗AP


0
0
0
1

 ·


0
0
0
1

 = AP


0
0
0
1

 · P


0
0
0
1



= A


0
0
−vt′′
t′′

 ·


0
0
−vt′′
t′′

 = t′′2(v2 − 1). (10.12)

But on the other hand, by Lemma 10.4, we have

P ∗AP


0
0
0
1

 ·


0
0
0
1

 = A


0
0
0
1

 ·


0
0
0
1

 = −1. (10.13)

Therefore by (10.12) and (10.13),

t′′ = 1/
√

1− v2,

so that

P


0
0
0
1

 =


0
0

−v/
√

1− v2

1/
√

1− v2

 . (10.14)

We now return to

P =

(
I O

O B

)
. (10.15)

In the standard basis of R4, (10.14) is the last column of P . Therefore the last
column of B is 

−v√
1− v2

1√
1− v2

 .

Finally, by (10.11) and (10.14), the third column of P is Pe3 =
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P
1

v




0
0
v
1

−


0
0
0
1


 =

1

v

P


0
0
v
1

− P


0
0
0
1




=
1

v




0
0
0√

1− v2

−


0
0

−v/
√

1− v2

1/
√

1− v2




=


0
0

1/
√

1− v2

−v/
√

1− v2

 .

Therefore

B =


1√

1− v2

−v√
1− v2

− v√
1− v2

1√
1− v2

 . (10.16)

Theorem 10.5. The matrix P with respect to the standard basis of R4 of
the Lorentz transformation L : R4 → R4 is as in (10.15) where B is given by
(10.16).

2. Time Contraction

We now derive, as an easy consequence of Theorem 10.5, one of the main
conclusions of the special theory of relativity.

Suppose the origin O of B, is a cosmodrome somewhere on the globe and
O′ is the spaceship that blasts off the Earth from this cosmodrome carrying
the cosmonaut for a trip to a distant star with velocity v. As viewed from
the cosmodrome the space-time coordinates of the spaceship at a time t > 0
(registered by the clock in the cosmodrome) are (0, 0, vt, t) whereas as observed
by the cosmonaut, her space-time coordinates are (0, 0, 0, t′). Since the two are
the space-time coordinates of the same event relative to B and B′,

0
0
0
t′

 = P


0
0
vt
t

 . (10.17)
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Since P is given by Theorem 10.5, it follows from (10.17) that

t′ = t
√

1− v2 . (10.18)

The factor
√

1− v2 is called the time contraction.

Now, if the star is 49.5 light years away, and the velocity of the spaceship
is .99/sec, i.e. 99% of the speed of light, according to the calendar kept at the
cosmodrome, the round trip to the star by the spaceship will take 100 years.
So t = 100, whereas the time t′ measured by the clock C ′ on the spaceship,
is only t′ = 100

√
1− .992 = 14.14 years. So according to her own clock, only

14.14 years have passed since the cosmonaut left the cosmodrome.

Remarks.

1. In order to simplify our calculations, we have taken the unit
of length to be the distance traveled in 1 second by a beam of
light. Physicists however like to take it to be the traditional one,
for example, in the USA, it is c = 186, 000 miles/second. Then v is
also in miles/second. So v has to be replaced by v/c everywhere in
our discussion. For example, equation (10.18) becomes

t′ = t

√
1− v2

c2
. (10.19)

2. If v = c, t′ = 0, so the clock C ′ stops running.

3. According to the special theory of relativity, nothing can travel
faster than the speed of light, because we cannot take the square-

root of the negative quality 1− v2

c2 in equation (10.19).

4. Length contraction. The quantity γ(v) =
√

1− v2

c2 is called the

Lorentz factor. It is easy to see that if a rod of length ` is moving in
a straight line (with its two ends staying on the line of motion) on
which an observer is located, to him the rod will appear to be only
` ·γ(v) long. In other words, the lengths of moving rods contract by
the factor γ(v). If v = c, the rod disappears from sight.

10.4 Cryptography

In this section, we use the linear map x → Ax combined with a shift, over
(the rings of) finitely many scalars as an introduction to cryptography.
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Cryptography is the science of sending a message in disguise so that only the
intended recipient should be able to read it. The scrambling of the message
at the source is called encryption, the scrambled message is called the cipher-
text . The process of recovering the original message or the plaintext from the
ciphertext is called decryption. This is a very old science. Julius Caesar used
to move every letter in his message to third down in the alphabet in a circular
order so that A goes to D, B goes to E, . . . ,X goes to A, Y to B, and Z to
C. For example, he would send the message

ATTACKATMIDNIGHT

as

DWWDFNDWPLGQLJKW.

Only his generals had the key to recover the message.

We can formulate the basic idea of cryptography as follows. First, we have
an alphabet, which is a set ℵ consisting of letters A, B, C,...; the punctua-
tion signs, comma, period, etc.; the ten digits 0, 1, . . . , 9; arithmetic symbols
+,×, . . .; and so on. An encryption is a permutation on ℵ, whose elements
are called letters, symbols, or characters. A message is a string x1 . . . xr of
elements of ℵ. If the encryption is the permutation σ : ℵ → ℵ, the ciphertext
is the string y1 . . . yr, where yj = σ(xj). Since the recipient also knows which
σ is being used, he or she can recover the message as σ−1(y1) . . . σ−1(yr). The
whole set up is called a cryptosystem.

Breaking the code means figuring out which σ is being used by the sender
and hence σ−1 by the recipient. For example, to break a Caesar-like or Cae-
sarean encryption, with his three hops replaced by say, a shift to the fourth
place down the alphabet, one does the “frequency analysis.” The most fre-
quent letter in English is e. Hence in this ciphertext, the most frequent letter
will be i, from which one can figure out this code.

A slightly improved cryptosystem is the “Vigenère cipher” (named after
Blaise de Vigenère), which had been in use for several centuries. The mathe-
matical way to explain it (in fact, all cryptosystems) is to assign each letter of
the alphabet a numerical value, usually zero to A, one to B, . . ., twenty-five
to Z. The addition and multiplication are “modular” modulo 26. The sum (or
product) of two letters is the letter that corresponds to the remainder of the
sum (or product) of their numerical values under division by 26. For example,
X + Y = 23 + 24 = 47, which is 21 modulo 26. Hence X + Y = V. Similarly,
H · E = 7 · 4 = 28, which is 2 mod 26. So H · E = C. The same way, −Q =
K, because K + Q = 26 is zero mod 26, J−1 = D as J · D is one mod 26.

In the Vigenère cipher , one chooses a favorite word of desired length, say
BLUE of length four and groups the plaintext into blocks of four letters, e.g.
ATTA CKAT MIDN IGHT. The first letter in each block is moved to the right



192 Selected Applications of Linear Algebra

by one (the numerical value of B), the second letter by eleven (the numerical
value of L), and so on. Thus

ATTACKATMIDNIGHT

will be sent as

BENEDVUXNTXRJRBX.

To recover the original message one has to reverse the process.

It is not too hard to break the Vigenère cipher by doing the frequency
analysis on corresponding letters of blocks provided one can find out somehow
the length of the sender’s favorite word.

Affine Cryptosystems

Caesarean and Vigenère ciphers are special cases of more complex cryptosys-
tems, which are harder to break. These are called affine cryptosystems. In
these systems one first decides the dimension d ≥ 1 for the system and then
chooses a d × d matrix A, a column vector b with d components, the entries
of A, b taken from the numerical values given to the letters of the alphabet
ℵ. It is required that det(A) has no common factor larger than one with the
number of letters in ℵ. For example, if ℵ is the usual alphabet A–Z, det(A)
must be an odd number other than 13. This guarantees that A is invertible
with entries of A−1 also in ℵ.

The plaintext is grouped into blocks of d letters and each block is written
as a column vector x with d components. In case d = 2, x is called a digraph.
An affine cryptosystem is the map

y = Ax + b (10.20)

applied to each block x of the plaintext. It is a linear map if and only if b = 0.
Note that the inverse

x = A−1y −A−1b (10.21)

of (10.20) is also affine. An affine cryptosytem is harder to break even if the
dimension d = 1. Note that one has only to know one encryption key (A and
b) or decryption key (A−1 and A−1b) in order to know the other.

Example. Let us pretend to have only nine letters A–I in our alphabet ℵ, so
that ℵ = {0, 1, . . . , 8} with A as 0, . . . , I as 8. We choose the dimension d = 2
and

A =

(
3 4
1 2

)
.
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[Note the perversity of having to use the letter A also as a 2×2 matrix consist-
ing of letters from our alphabet A–Z.] Then det(A) = 2, which is invertible
mod 9. In fact, its inverse (det(A))−1 (mod 9) is 5, because 2 times 5 is 1
(mod 9). Hence, by modular arithmetic mod 9,

A−1 = 5

(
2 −4
−1 3

)
= 5

(
2 5
8 3

)

=

(
10 25
40 15

)
=

(
1 7
4 6

)
.

We check that (
1 7
4 6

)(
3 4
1 2

)
=

(
1 0
0 1

)
.

In the Affine cryptosystem (10.20) we also choose

b =

(
2

3

)
.

Suppose in the plaintext, there is a word ACID. We write ACID as

x1 =

(
A

C

)
=

(
0

2

)
, x2 =

(
I

D

)
=

(
8

3

)
.

With A and b as above,

y1 = Ax1 + b =

(
1

7

)
=

(
B

H

)

y2 = Ax2 + b =

(
2

1

)
=

(
C

B

)
.

Therefore the plaintext ACID is encrypted as BHCD.

We leave it as an exercise to use (10.21) to recover the original message
ACID.

Breaking an Affine Cryptosystem

Suppose we know our enemy is using the affine encryption (10.20) on digraphs
(blocks of 2 letters from our usual alphabet A–Z of 26 letters). To break the
code, we must find out A and b in (10.20). To do that we need to know
somehow three digraph pairs, i.e. three digraphs x1,x2,x3 in the plaintext
and the corresponding y1,y2,y3 in the ciphertext. In other words

yj = Axj + b (j = 1, 2, 3).
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That will give
y3 − y1 = A(x3 − x1)

and

y3 − y2 = A(x3 − x2)

 . (10.22)

We can write (10.22) as a simple matrix equation

Z = AC

where C is the matrix with columns c1 = x3 − x1, c2 = x3 − x2 and Z with
columns z1 = y3 − y1, z2 = y3 − y2. Suppose C is invertible. Then

A = ZC−1

and
b = yj −Axj .

Example. Suppose we know that the last six letters NXJOUU in the cipher-
text stand for the signature ALBERT of our enemy. Thus we write ALBERT
as

x1 =

(
0

11

)
, x2 =

(
1

4

)
, x3 =

(
17

19

)
and NXJOUU as

y1 =

(
13

23

)
, y2 =

(
9

14

)
, y3 =

(
20

20

)
.

We are lucky that C =

(
17 16
8 15

)
is invertible (mod 26) and

A = ZC−1 =

(
7 11
23 6

)(
21 14
20 3

)

=

(
3 1
5 2

)

and

b = y2 −Ax2

=

(
9

14

)
−
(

7

13

)
=

(
2

1

)
.
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EXERCISES

1. In Example 1, we recover the plaintext.

2. Let the alphabet ℵ consists of p = 29 symbols: 26 letters, A, B, C,
. . . and three punctuation signs. Identify ℵ with the finite field Fp
by letting A, B, C, . . . be 0, 1, 2, . . ., blank space with 26, period
with 27, and the question mark ? with 28.

(a) Suppose you want to arrange a clandestine meeting: Use the
encryption

y = σ(x) = 5x+ 7 (10.23)

to send the following message to your accomplice.

WHERE IN PEEWAUKEE SHALL WE MEET?

(b) Break the code (10.23), i.e., find σ−1, using frequency analysis
of the ciphertext in (a).

(c) Suppose d = 3 and A the non-singular matrix1 1 1
1 2 3
2 3 5


over Fp (p = 29). Encrypt the message in (a) using blocks x of
three letters on the plaintext and y = Ax.

(d) How can one break the code in (c)?

3. Let ℵ be the alphabet A–Z with zero assigned to A, . . ., 25 to Z.
Let (mod 26)

A =

(
9 2
11 3

)
, b =

(
2

3

)
.

In arithmetic modulo 26,

(a) Compute A−1.

(b) Encrypt and decrypt the message

ATTACKATMIDNIGHT

in the affine cryptosystem y = Ax + b.

(c) Suppose the last 6 letters HEPLMI in the ciphertext stand for
the signature JOSEPH of our adversary. We know that he is
using the affine cryptosystem on digraphs on the 26-letter al-
phabet A-Z with the usual numerical values 0–25 given to these
letters. Compute A and b. Check your answer by encrypting
JOSEPH.
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10.5 Solving Famous Problems from Greek Geometry

In this section, we will use a special property of the vector spaces of polyno-
mials of bounded degrees to show that it is impossible, using a straightedge
and a compass only, to trisect angles and duplicate cubes.

It took two millennia to settle those problems (see [18]). It is beyond lin-
ear algebra alone to tackle the third famous problem from Greek geometry.
However, we shall go as far as possible to show what goes into proving the
impossibility of squaring a circle. We highly recommend the great classics by
Emil Artin [1] and Felix Klein [12] cited in the Bibliography. In this section,
all fields considered are subfields of the field C of complex numbers.

10.5.1 Vector Spaces of Polynomials

Besides high school algebra, all we need to prove the impossibility of these
geometric constructions is a special feature of the n-dimensional vector space
Pn(k) of polynomials of degree less than n over a field of k. If we think of these
polynomials as remainders under (long) divisions of polynomials when divided
by a fixed irreducible polynomial of degree n, the same kind of modular arith-
metic that we used in cryptography turns the vector space Pn(k) into a field
K. The same can be repeated with Pm(K), the vector space of polynomials
of degree less than m over K to obtain a field L. Clearly L is a vector space
over k. The crucial ingredient in our proofs is the following lemma.

Lemma 10.6. Suppose k is a subfield of K, and K a subfield of L. Then as
vector spaces,

dimk L = dimkK · dimK L.

The proof is straightforward. If {α1, . . . , αn} is a basis of L over K and
{β1, . . . , βm} that of K over k, then it can be checked easily that {αiβj | i =
1, . . . , n; j = 1, . . . ,m} is a basis of L over k. An immediate consequence of
the lemma is the following fact.

Theorem 10.7. If we have an ascending chain

K0 ⊆ K1 ⊆ · · · ⊆ Kr

of fields and as vector spaces dimKi−1
Ki = di, then dimK0

Kr = d1 . . . dr.

Our first task is to explain the modular arithmetic for polynomials.

The integers and the polynomials have strikingly similar arithmetic. Sup-
pose k is a subfield of C. Then Q ⊆ k ⊆ C. A polynomial over k is a formal
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expression
f(x) = a0 + a1x+ · · ·+ anx

n

with coefficients aj in k. The symbol f(x) ∈ k[x] means that f(x) is a poly-
nomial over k. If an 6= 0, we call n the degree of f(x). We write n = deg f(x).
If an = 1, we call f(x) monic.

We take it for granted that the reader knows how to add and multiply
polynomials. It is also assumed that he or she knows how to perform the
“long division” to get the quotient and the remainder. Note that if f(x),
g(x) ∈ k[x], then f(x)+g(x) and f(x)g(x) are also in k[x]. If f(x), g(x) ∈ k[x]
and deg f(x) > 0 we write under long division,

g(x) = q(x)f(x) + r(x) (10.24)

with deg r(x) < deg f(x). The quotient q(x) and the remainder r(x) are also
in k[x]. If the remainder r(x) in (10.24) is zero, we say that f(x) divides
g(x) or f(x) is a factor of g(x), or that g(x) is a multiple of f(x). We call
f(x) irreducible over k or prime (like prime numbers) if it has no non-trivial
factor, from which we mean a factor of positive degree less than that of f(x).
If the field k is clear from the context, we shall call f(x) irreducible. Clearly,
polynomials of degree 1 are irreducible.

Given nonzero f(x), g(x) in k[x], a common factor d(x) in k[x] of f(x) and
g(x) of the largest degree is called their greatest common divisor . If we require
d(x) to be monic, it is unique and is written as the g.c.d. (f(x), g(x)). We call
two nonzero polynomials in k[x] coprime if the g.c.d. (f(x), g(x)) = 1.

For integers, one learns in high school (otherwise, see [3, p. 7]) and it is the
same for polynomials, to compute d(x) = g.c.d. (f(x), g(x)) by the so-called
Euclidean algorithm. By this algorithm, one can also express

d(x) = a(x)f(x) + b(x)g(x)

as a linear combination of f(x) and g(x) with a(x), b(x) in k[x].

Example. Let k = Q and f(x) = x4 + x3 + x2 + x + 1, g(x) = x2 − 1.
Performing long divisions, we write

f(x) = (x2 + x+ 2)g(x) + 2x+ 3

g(x) =

(
1

2
x− 3

4

)
(2x+ 3) +

5

4
.

Hence to obtain the g.c.d.(f(x), g(x)) = 1 as a linear combination of f(x) and
g(x), we write
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5

4
= g(x)−

(
1

2
x− 3

4

)
(2x+ 3)

= g(x)−
(

1

2
x− 3

4

)
[f(x)− (x2 + x+ 2)g(x)]

= −
(

1

2
x− 3

4

)
f(x) +

((
1

2
x− 3

4

)
(x2 + x+ 2) + 1

)
g(x).

This gives

1 =

(
−2

5
x+

3

5

)
f(x) +

(
2

5
x3 − 1

5
x2 +

1

5
x− 2

5

)
g(x).

Thus (g(x))−1 in K = Q[x]/(f(x)) is 2
5 x

3 − 1
5 x

2 + 1
5 x−

2
5 .

EXERCISES

1. Write the g.c.d. (f(x), g(x)) = a(x)f(x)+b(x)g(x) for f(x) = 8x3−
6x − 1 and g(x) = x2 − 3 with a(x), b(x) in Q[x] to compute the
multiplicative inverse of g(x) in K = Q[x]/(f(x)).

2. Repeat 1 with f(x) = x4 +x3 +x2 +x+ 1 and g(x) = 8x3− 6x− 1.

10.5.2 Roots of Polynomials

We now assemble the tools necessary to prove the impossibility of the afore-
mentioned endeavors. We take k to be an arbitrary but fixed subfield of C.

Definition. A complex number α is a root of a polynomial

f(x) = a0 + a1x+ · · ·+ anx
n (aj in k)

of degree n, if f(α) = 0, that is if

f(α) = a0 + a1α+ · · ·+ anα
n = 0.

Every complex number is a root of the zero polynomial. Therefore from
now on, even if it is not explicitly stated, we shall consider only the roots of
nonzero polynomials. If α is a root of f(x), we also say that α satisfies f(x).

Definition. A complex number α is algebraic over k, if it is a root of a
nonzero polynomial with coefficients in k.
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Suppose α is algebraic over k. Among all the polynomials over k satisfied
by α, there is one, say f(x) of the smallest degree. We call deg f(x) the degree
of α over k and write it as degk(α). It is obvious that the elements of k are
precisely the complex numbers α with degk(α) = 1. They are the roots of the
polynomials x− α with α in k.

Definition. A complex number is an algebraic number , or simply algebraic, if
it is algebraic over the smallest subfield Q of C. Otherwise it is transcendental.

Example. The real numbers
√

3, 3
√

2 and the imaginary number i are alge-
braic numbers, being roots of x2 − 3, x3 − 2 and x2 + 1, respectively. So is

α = −1+
√
−3

2 . It is one of the complex roots of x3 − 1 = (x − 1)(x2 + x + 1).
Clearly, α satisfies x3−1, as well as x2 +x+1. If α satisfies a polynomial of de-
gree 1, then it has to be a rational number, which it is not. Hence degQ(α) = 2.

Suppose α is algebraic over k and f(x), g(x) are two polynomials over k of
minimal degree satisfied by α. Then they must divide each other. Otherwise,
writing

g(x) = q(x)f(x) + r(x) (10.25)

with deg r(x) < deg f(x) and putting x = α in (10.25), α would be a root of
r(x), a polynomial of degree less than that of f(x), contradicting the minimal-
ity of f(x). Hence, if we require f(x) to be monic, it is unique. We call it the
minimal polynomial of α over k. It is necessarily irreducible, because other-
wise α would be a root of one of its factor, again contradicting the minimality
of deg f(x).

Now suppose α is algebraic over k with the minimal polynomial

f(x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn

with its coefficients aj in k. The vector space

K = Pn(k) = {c0 + c1α+ · · ·+ cn−1α
n−1 | cj ∈ k}

is a subfield of C with k as its subfield. To see this, note that

αn = −an−1α
n−1 − . . .− a1α− a0

implies that for all j ≥ 0,

αn+j = −an−1α
n+j−1 − . . .− a0α

j .

Hence the powers of α higher than n− 1 can be replaced by lower ones, and
thus are linear combinations of 1, α, . . . , αn−1. This shows that the products
of elements of K are again in K. On the other hand, given c0 + c1α + · · · +
cn−1α

n−1 6= 0 in K, and f(x) being irreducible, the polynomial g(x) = c0 +
c1x+ . . .+cn−1x

n−1 is coprime with f(x). Hence by the Euclidean Algorithm,
for some r(x) and s(x) in k[x],

f(x)r(x) + g(x)s(x) = 1. (10.26)
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Putting x = α in (10.26), we get g(α)s(α) = 1. As said above, we may take
s(α) = b0 + b1α+ · · ·+ bn−1α

n−1. This proves that g(α) has a multiplicative
inverse s(α) in K.

The field K is the smallest subfield of C containing both k and α and is
denoted by k(α). We say that k(α) has been obtained by adjoining α to k. We
now summarize this discussion for our record.

Theorem 10.8. Suppose α is algebraic of degree n over k. Then the vector
space

K = k(α) = {c0 + c1α+ · · ·+ cn−1α
n−1 | cj ∈ k}

over k is the smallest subfield of C containing both α and k. As a vector space
over k, dimk(K) = degk(α).

Proof. The only thing that remains to be shown is that dimk(K) = n. It
is clear that dimk(K) ≤ n. On the other hand, 1, α, . . . , αn−1 are linearly
independent over k by the definition of degk(α). Thus dimk(K) ≥ n.

Theorem 10.9. Suppose k is a subfield of K with dimkK finite and α ∈ K.
Then α is algebraic over k and degk α is a factor of dimk(K).

Proof. Suppose dimk(K) = n. Then the n+1 vectors 1, α, . . . , αn are linearly
dependent over k, hence satisfy a non-trivial relation

a0 + a1α+ · · ·+ anα
n = 0.

This shows that α is algebraic over k with degk(α) ≤ n. Since k ⊆ k(α) ⊆ K,
the rest of our claim follows from dimk(K) = dimk(k(α)) · dimk(α)(K).

Examples. For proving the impossibility of trisecting angles and duplicating
cubes, we need to study two special polynomials over Q. These are

1. x3 − 2 and

2. 8x3 − 6x− 1.

What concerns us are the real roots α = 3
√

2 of x3 − 2 and β = cos 20◦ of
8x3−6x−1. To show that β is a root of 8x3−6x−1, recall the trigonometric
identity

cos 3θ = 4 cos3 θ − 3 cos θ. (10.27)

In (10.27), if we put θ = 20◦, we get 8β3 − 6β − 1 = 0.

In order to prove that it is impossible to duplicate cubes and trisect angles,
the phrases to be explained shortly, we show that α and β have wrong degree
for this to be possible. Since an irreducible polynomial is also a constant
multiple of the minimal polynomial of its roots, we show that degQ(α) =
degQ(β) = 3 by showing that x3 − 2 and 8x3 − 6x− 1 are irreducible over Q.
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For a polynomial of degree three to be reducible over Q, at least one of its
factors has to be of degree one. This factor, say ax − b, with a, b in Q has a
rational root b/a. Thus to show that x3 − 2 and 8x3 − 6x− 1 are irreducible
over Q, it suffices to show that they have no rational root. For this, we need
the following elementary fact from high school algebra.

Theorem 10.10. Suppose

f(x) = a0 + a1x+ · · ·+ anx
n (a0an 6= 0)

is a polynomial with integer coefficients and c/d is a rational root, in the
reduced form, of f(x). Then c is a factor of a0 and d is a factor of an.

Proof. The hypothesis means that

f
( c
d

)
= a0 + a1

( c
d

)
+ . . .+ an

( c
d

)n
= 0.

Clearing the denominators, this gives

a0d
n = −c(a1d

n−1 + · · ·+ anc
n−1).

Since c and d have no common factor > 1, c must be a factor of a0. Similarly,
d is a factor of an.

The theorem implies that the only possible rational roots of x3 − 2 are
±1 and ±2, but obviously, they are not. The only possible rational roots of
8x3− 6x− 1 are ±1,± 1

2 ,±
1
4 ,±

1
8 . We leave it as an easy exercise, by plugging

in, to show that none of these satisfies 8x3 − 6x − 1. We now record this
conclusion for a ready reference.

Theorem 10.11. degQ( 3
√

2) = degQ(cos 20◦) = 3.

EXERCISES

1. Prove that a rational number is an algebraic number. Moreover,
the rational numbers are precisely the algebraic numbers α with
degQ(α) = 1.

2. If α, β are algebraic, show that their sum α + β and product αβ
are also algebraic.

10.5.3 Straightedge and Compass

More than two millennia ago, the Greek mathematician, Euclid laid the ground
rules for what we now call pure mathematics. This can be found in Euclid’s
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Elements. First, one makes the mathematical terms precise by defining them.
Then, starting from a minimal set of axioms and postulates, one draws con-
clusions, called theorems.

The Greeks also considered various kinds of geometric constructions, de-
pending on the sets of tools that were permissible. The most famous are the
geometric constructions of plane geometry using straightedge and compass
only. This means that one is allowed to

1) join two points by a straightedge, and

2) using a compass, draw a circle of a given radius with a given center.

Of course, one can extend existing lines and choose points at random in the
plane and join them, by a straightedge, to points we already have.

We declare, once and for all, that we are only allowed to use a straightedge
and compass. In Book 1 of Euclid’s Elements, one finds procedures to bisect
a given line segment, and to draw a perpendicular from a given point to a
given line, on or off this given line. For example, to bisect a line segment AB
(see Figure 10.2), first using a compass, one draws circles of radius AB with A
and B as their centers. Then joining points C and D of their intersection by a
straightedge, one obtains the midpoint M of AB. In Book 1 of the Elements,
one also finds ways to bisect an angle and to draw a line through a given point
which is parallel to a given line.

Line segments can be added and subtracted in an obvious way. As a matter
of convenience, we define a new word.

C

A B

D

FIGURE 10.2: Bisecting lines

Definition. A real number α is constructible, if starting from a line segment of
unit length, one can construct in a finite number of steps, using a straightedge
and a compass only, a line segment of length α.

If α is constructible, so is −α, because if AB has length α then BA is of
length −α. Obviously, every integer m in Z is constructible. If n ≥ 1 is an
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integer, any line segment AB can be divided into n equal parts. [Draw a line
AC making, say an acute angle with AB. Choose a point P1, on AC and
with the help of a compass, mark n− 1 points P2, . . . , Pn on AC with lengths
|AP1| = |P1P2| = · · · = |Pn−1Pn|. Join Pn to B and through P1, . . . , Pn−1,
draw lines parallel to PnB.]

√
2

1

1

FIGURE 10.3: Constructing
√

2

α
x

1 β

FIGURE 10.4: Constructing α/β

Thus every rational number m/n is constructible. This is not all. Some
irrational numbers like

√
2 (see Figure 10.3) are also constructible. In fact,

it is not hard to see that if m ≥ 1 is an integer, then
√
m is constructible.

[Inductively, use 1 and
√
m− 1 and the Pythagorean theorem to construct√

m.]

EXERCISE

Show that the set of constructible numbers is a subfield of R.

[Hint: If α, β are constructible, use for example, Figure 10.4 to show that
x = x/1 = α/β is constructible.]

10.5.4 Intersecting Lines and Circles

Suppose k is a subfield of R. A point P = (x, y) in the Euclidean plane R2

is called a k-rational point, or simply a k-point if x, y ∈ k. A circle in R2 is
k-rational or simply a k-circle if its radius r ∈ k and its center is a k-point.
A straight line is a k-line if it has an equation

ax+ by + c = 0 (10.28)

with a, b, c in k.

It is easy to check that the intersection of k-lines is a k-point, and that
(after a change of coordinates) a k-circle has an equation

x2 + y2 = r2 (10.29)
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with r in k. To find the intersection of a k-line with a k-circle, one eliminates
a variable from (10.28) and (10.29) and solves a quadratic equation

f(x) = Ax2 +Bx+ C = 0.

Thus the coordinates of the points of intersection of (10.28) and (10.29) are
in k if and only if the square root of the discriminant d = B2 − 4AC of
f(x) is in k. Otherwise, they are in the quadratic extension K = k(

√
d) of

k. [By definition, K/k is a quadratic extension if k is a subfield of K and
dimk(K) = 2.] It is easy to see that two k-circles intersect in K-points with
K = k or a quadratic extension of k.

10.5.5 Degrees of Constructible Numbers

It is now clear that for α to be constructible, it must lie in a field K obtained
from Q by a finite sequence of quadratic extensions kj/kj−1 with

Q = k0 ⊆ k1 ⊆ . . . ⊆ kn = K.

By Theorem 10.7, dimQ(K) = 2r for some r ≥ 0. Since degQ(α) is a factor
of dimQ(K) = 2r, degQ(α) = 2m for some m ≤ r. We have now proved the
following fact.

Theorem 10.12. If α is constructible, then α is algebraic of degree 2m over
Q for some m ≥ 0.

10.5.6 Solutions of the Famous Problems

By trisection of an angle, we mean to divide it, using a straightedge and com-
pass only, into three equal parts. Duplicating a cube is to construct, starting
from the edge of a given cube, the edge of another one of twice the volume.
Algebraically, it means to construct the real root 3

√
2v of x3 − 2v, v being the

volume of the given cube.

It was only in 1836 that the French mathematician, M. L. Wantzel settled
two of the three famous problems from Greek geometry (see [18]). Someone
else might have done it too, but it is as an exercise for the reader to find out.

Corollary 10.13. It is impossible to duplicate cubes.

Proof. We show that a cube of volume v = 1 cannot be duplicated. If
possible, then by Theorems 10.11 and 10.12, degQ( 3

√
2) = 3 = 2m for an

integer m ≥ 0. This is impossible.

Corollary 10.14. It is impossible to trisect angles.
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Proof. We show that a 60◦ angle cannot be trisected. With θ = 60◦, α =
cos θ

3 is a root of 8x3−6x−1. So for a 20◦ angle to be constructible, degQ(α) =
3 has to be a power of 2, which is again impossible. This proves that 60◦ angle
cannot be trisected.

By squaring the circle we mean constructing the length of a side of the
square whose area equals to that of a unit circle, i.e. the circle of radius 1.
This amounts to constructing a line segment of length

√
π. Therefore

√
π

and hence π must be an algebraic number. Thus to show that squaring the
circle is impossible one needs to show that π is not an algebraic number,
i.e. π is transcendental. This was done by German mathematician Ferdinand
Lindemann in 1882.

Theorem 10.15. (Lindemann) π is transcendental.

For a proof, see [2], p. 5. For an easier proof, see New Testament, John
20:29.
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Answers to Selected Numerical
Problems

Chapter 2

Section 2.1.1

1.

−32 3 30
23 17 7
−7 47 5



Section 2.1.2

1. (a)

(
−4 26
13 1

)
(b)

(
22 57 −29
28 −15 −29

)
(c)

(
2x− 5y + 4z
3x+ y + 10z

)
2.

(
6 7
1 4

)
3. b)

4.

(
4
8

)

Section 2.2

2. (a)

(
4 −1
3 1

)(
x
y

)
=

(
6
1

)

207
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(b)

(
3 2 −1
−3 −1 1

)xy
z

 =

(
−1
1

)

(c)

1 1
1 −1
0 2

(x
y

)
=

−1
−2
3



(d)

 1 1 −1
−1 −1 1
1 1 1

xy
z

 =

1
2
3


3. (a) and (b) are consistent, (c) and (d) are not.

Section 2.3

1. (a) x1 =
5

6
, x2 = −7

9

(b) x =
9

11
, y =

17

11
, z =

10

11

2. x =
1

52
+

25
√

3

52
+ i

(
5

52
− 5
√

3

52

)
,

y = − 1

13
+

√
3

13
+ i

(
− 5

13
+

5
√

3

13

)

3. (a) x = 2, y = 4

(b) Some of the solutions are (x, y, z) = (1, 4, 2), (3, 1, 5).

(c) 5 and 7.

5. x = 2, y = 3.

7. (a)

(
1 2 4
0 0 1

)
.

(b)

1 1 1 1
0 1 1 0
0 0 1 1



(c)


1 2 1 −3 −1
0 1 1 −3 −3
0 0 0 1 0
0 0 0 0 0





Answers to Selected Numerical Problems 209

Section 2.4

7. A−1 =

(
3
11

1
11

− 5
11

2
11

)
, X =

(
4
11

− 3
11

)

8. A−1 =

(
3
13

2
13

2
13 − 3

13

)
, X =

(
1
13

5
13

)

9. A−1 =


1 −2 7

3

0 1
2 −1

0 0 1
3

 , X =

12
−5
3



10. A−1 =

−1 −3 3
2 6 1
3 8 3

 , X =


−13

7

6
7

4
7



11. A−1 =


2 −1 0 0
−1 2 −1 −1
0 −2 2 1
−1 2 −2 0

 , X =


6
−7
9
−15



12. A−1 =


−3 2 2 − 1

2
8 −2 −7 2
−10 0 11 − 7

2

0 1 −1 1
2

 , X =


13
2
−11

21
2

3
2



Section 2.5

1. x =

(
−1
1

)
, b = −c1 + c2

2. x =


25
17

− 18
17

13
17

, b =
25

17
c1 −

18

17
c2 +

13

17
c3

Section 2.6.5

1. x =

(
1919
1297

)
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2. x =

45, 142.9
31, 035.7
31, 035.7



Chapter 3

Section 3.4

2, 4, 6 linearly independent,

1, 3, 5 linearly dependent

Section 3.6

1. P =

 8 3 1
10 4 1
7
2

3
2

1
2



2. P =

40 16 9
13 −5 −3
5 −2 1



Section 3.7

1. (a) 1 (b) 3 (c) 3 (d) 3 (e) 4

Chapter 4

Section 4.1

1. (b)
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Section 4.3

6. i)

(
7
3

8
3

16
3

17
3

)
, ii)

(
5
3 − 1

3

11
3 − 1

3

)
, iii)

(
23
2

25
2

− 3
2 − 3

2

)
,

iv)

(
8 −1
−1 0

)

Section 4.6

1. (a) P =

(
1
3

1
3

−1 −1

)

(b) P =

(
23 16
5 3

)

2. P =


1
2

1
2 0

1
2 − 1

2 1

1
2 − 1

2 −1


3. (a)

0 1 0 0
0 0 2 0
0 0 0 3



(b)


1
2 − 1

2
5
2 − 1

2

0 0 1 1

0 0 3
2 − 3

2



(c) P =


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


Q =

1 1 1
0 1 0
0 0 1



Section 4.7

1. y = c1e
x + c2e

2x

2. y = c1e
3x + c2xe

3x

3. y = c1e
x + c2e

−x + c3 cosx+ c4 sinx
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Chapter 5

Section 5.5

1. (b) −2, −2

(c) 0

(d) 1, 1− eπ

(e) −14, 280

(f) 0, −3506, 34

Section 5.6

1. (a) |A| = −1, adjA =

(
5 −2
−3 1

)
A−1 −

(
−5 2
3 −1

)
.

(b) |A| = ad− bc, adjA =

(
d −b
−c a

)
A−1 − 1

ad− bc

(
d −b
−c a

)
.

(c) |A| = 24, adjA =

12 −20 32
0 8 −14
0 0 6

,A−1 =


1
2 − 5

6
4
3

0 1
3 − 7

12

0 0 1
4

.

(d) |A| = 11, adjA =

−11 −11 11
6 −3 1
2 10 −7

,A−1 =


1 −1 1

6
11 − 3

11
1
11

2
11

10
11

−7
11

.

2. (a) x1 =
11

3
, x2 =

7

3
, x3 =

−23

3

(b) x =
−5

11
, y =

−3

11
, z =

19

11

3. (a)


5
3 −1 2

3

1
3 − 1

3

− 8
3 2 − 5

3
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(b)


− 8

11
2
11

5
11

− 7
11 − 1

11
3
11

26
11 − 1

11 − 8
11



Chapter 6

Section 6.2

11. (a) λ = 5, −1; x =

(
1
1

)
,

(
−1
2

)
; P =

1

3

(
2 1
−1 1

)
,

λ = 4, −3; x =

(
1
2

)
,

(
−3
1

)
; P =

1

7

(
1 3
−2 1

)
,

λ = 2± 3i; x =

(
3± 3i

1

)
, P =

1

6

(
−i 3 + 3i
i 3− 3i

)
,

λ = 1± 2i; x =

(
∓ i
1

)
, P =

1

2

(
i 1
−i 1

)
.

(b) λ = 2, 1,−1; x =

2
1
1

,

1
2
0

,

1
2
2

,

P =
1

6

 4 −2 0
0 3 −3
−2 1 3

,

λ = 4,−2,−2; x =

1
1
2

,

−1
0
1

,

1
1
1

,

P =
1

6

 1 −1 1
−2 2 0
−1 3 −1

,

λ = 4, 2,−2; x =

1
0
1

,

−1
−1
2

,

−1
1
0

,
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P =
1

4

 2 2 2
−1 −1 −1
−1 3 1

,

Section 6.3

1. Diagonalizable: (a), (c).

2. (a) P =
1

2

(
i 1 + i
i 1− i

)
,

P

(
1 −2
1 −1

)
P−1 =

(
i 0
0 −i

)
,

(b) P =
1

2

(
i 1
−i 1

)
,

P

(
0 1
1 0

)
P−1 =

(
i 0
0 −i

)
.

3. (a) A2 − 4A+ 7I =

(
5 −8
8 −3

)
− 4

(
3 −2
2 1

)
+ 7I = 0,

(b) A2 − 9A− I =

(
19 27
45 65

)
− 9

(
2 3
5 7

)
− I = 0,

(c) −A2 + 15A2 + 18A =

 468 576 684
1062 1305 1548
1656 2034 2412



+15

 30 36 42
66 81 96
102 126 160

+ 18

1 2 3
4 5 6
7 8 9


= 0.
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Chapter 7

Section 7.4

3.

{( 1√
2

1√
2

)
,

(
− 1√

2

1√
2

)}
.

5.


1√
3

1√
3

1√
3

− 1√
2

0 1√
2

− 1√
6

2√
6
− 1√

6

.

6.




4

3
√

3

−1
3
√

3

1√
3

1
3
√

3

 ,


−5

3
√

19

8
3
√

19

3√
19

1
3
√

19




.

Section 7.5

1.

(
1
5

3
5

)

3. y = 2− 4

3
x+

1

3
x2

4. y =
1

11
(10 + 31x− 27x2)

5. y = −5 + 3x− 4x2 + 2x3.

Chapter 8

Section 8.3

1. 4
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2. i)

(
2 0
0 −1

)
, ii)

(
2i 0
0 −i

)
, iii)

(
−
√

3 0

0
√

3

)
,

iv)

(
cos θ + i sin θ 0

0 cos θ − i sin θ

)

Chapter 9

Section 9.2

1.

(
2 2

2 3

)

2.

2 2 4
2 3 3
4 3 5



3. (b)

( 1√
5

−2√
5

2√
5

1√
5

)

(c) 7y2
1 − 3y2

2 .

(d) 7y2
1 + 3y2

2 .

Section 9.3

1. (a) indefinite (b) positive definite (c) negative definite

(d) indefinite

2. (a) P =


1√
2

−1
3
√

2
− 2

3

0 2
√

2
3 − 1

3

1√
2

1
3
√

2
2
3



D =

7 0 0
0 7 0
0 0 −2
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(b) P =


− 1√

2
− 1√

6
1√
3

1√
2

−1√
6

1√
3

0
√

2
3

1√
3



D =

8 0 0
0 6 0
0 0 3



Section 9.4

1. (a) min −6, max −1

(b) min −1, max 5

Section 9.5

3. i) U =

( 2√
5

1√
5

1√
5

−2√
5

)
, S =

(
2
√

10 0

0
√

10

)
, V =

( 1√
2
− 1√

2

1√
2

1√
2

)

iv) U =
1

2


1 1 −1 1
1 −1 −1 −1
1 −1 1 1
1 1 1 −1

, S =


12 0 0
0 6 0
0 0 0
0 0 0

, V =

1

3

2 −2 1
2 1 −2
1 2 2



Chapter 10

Section 10.1

1. X = c1e
−4t

(
6
−5

)
+ c2e

7t

(
1
1

)
.

3. x1 = −c1et + c2e
−2t + c3e

3t

x2 = 4c1e
t − c2e−2t + 2c3e

3t

x3 = c1e
t − c2e−2t + c3e

3t
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Notation

N: the set of natural numbers 1, 2, 3, . . .

Z: the set of integers (i.e. whole numbers) 0,±1,±2, . . .

Q: the field of rational numbers a/b with a, b in Z, b 6= 0.

R: the field of real numbers.

R+: the set of positive reals.

C: the field of complex numbers.

es+it: the complex number es(cos t+ i sin t).

K, k: fields with k a subfield of K.

Fp: the field of prime p elements.

A ⊆ B: A is a subset of B, possibly with A = B.

A $ B: A is a proper subset of B.

A ∪B: the union of sets A and B.

A ∩B: the intersection of sets A and B.

f : A→ B: f is a function or map with domain A and codomain B.

f|A: the restriction of a function f to a subset A of its domain.

g ◦ f : the composition of maps g and f .

f−1: the inverse of a bijective map f .

AS : the set of functions from S to A.

M(m× n,K): the vector space of m× n matrices over K.

M(n,K): the algebra of n× n matrices over K.

Rn: the Euclidean n shape.

k[x]: the polynomials over a field k.

Pn(k): polynomials over k of degree < n.

dimk(V ): the dimension of a vector space V over k.
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220 Notation

span(S): the span of a set S of vectors.

Ker(T ): the kernel of a linear map T .

W1 ⊕W2: the direct sum of subspaces W1 and W2.

HomK(V,W ): the vector space of linear maps T : V →W over K.

τBV ,BW
(T ): the matrix of T relative to bases BV and BW of V and W .

|c|: the absolute value of c in R or length of c in C.

det(A): the determinant of A.

tr(A): the trace of A.

A∗: the transpose of a (real) matrix A.

Z∗: the adjoint of a complex matrix Z over C.

adj(A): the classical adjoint of a square matrix A.

χA(λ): the characteristic polynomial of a square matrix A.

|a|: length of a vector a.

projb(a): projection of a vector a on a nonzero vector b.

compb(a): component of a vector a along a nonzero vector b.

projW (a): the projection of a vector a on a subspace W 6= {0}.

W⊥: the orthogonal complement of a subspace W .

δij : the Kronecker’s deltas.

sgn(σ): the sign of a permutation σ.

deg(f): the degree of a polynomial f(x).

H(f): the Hessian of a multivariable function f(x1, . . . , xn).

⇒: implies

⇔: implies and is implied by, i.e. if and only if.
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Index

(i, j)-th entry, 17
j-th axis, 74
j-th column, 18
k-circle, 203
k-line, 203
k-point, 203
k-regular, 166
n-th root of unity, 149
n-th roots of unity, 149
s-rank approximation, 174
QR-factorization, 138

Abelian group, 149
absolute value, 148
addition, 8, 48
additive inverse, 8
adjacency matrix, 165
adjacent, 165
adjoint, 152
affine cryptosystems, 192
algebra over k, 86
algebraic, 55
algebraic multiplicity, 121
algebraic number, 199
algebraic over k, 198
alternating, 94, 95
amperes, 42
analytic geometry, 26
angle, 131
antiderivative, 13
arcsin, 6
argument, 148
arrow, 19
ascending chain, 56
associative, 7
associative law, 48, 86
associativity, 8

astonishing consequences, 182
asymmetric, 4
augmented matrix, 26, 28

barter system, 41
base case, 12
basis, 56
bijective, 5
binary quadratic form, 157
breaking the code, 191

Caesarean encryption, 191
cardinality, 6
Cartesian product, 3
Cauchy-Schwarz Inequality, 130
chain, 4
characteristic polynomial, 90, 116
characteristic root, 115
ciphertext, 191
classical adjoint, 109
classification of quadratic forms, 164
codomain, 5
coefficients, 9
cofactor, 102
cofactor method, 108
column rank, 68
column space, 68
column vector, 38
commutative, 86
commutative law, 48
commutativity, 8
completely smooth, 179
complex conjugate, 148
complex eigenvector, 151
complex inner product space, 155
complex number, 147
complex numbers, 8
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complex plane, 79, 147
component, 136
composite map, 7
composition, 7
conclusion, 11
conjugation, 73
consistency of the speed of light, 184
constructible, 202
consumption matrix, 45
consumption vector, 44
contraction, 72
coordinate-vector, 66
coordinates, 66
coset representative, 55
cosets, 55
Cramer’s rule, 108
criterion for diagonalizability, 161
criterion for linear independence, 58
critical point, 180
cross product, 105, 132
cryptography, 15, 191
cryptosystem, 191
cycle of order or length, 96
cycle on three symbols, 6

De Moivre’s Theorem, 149
decryption, 191
degree, 9
degree of α over k, 199
degree of a vertex, 166
demand vector, 46
determinant, 13, 34
determinant function, 94
diagonal, 4
diagonal matrix, 18
diagonalizable, 118
diagonalize, 114
diagonalizing, 118
dilation, 72
dimension, 56
dimension of a geometric object, 57
direct proof, 11
direct sum, 140
disjoint cycles, 96
disjoint union, 3

distributive law, 8, 86
divisible, 10
division algorithm, 10
domain, 5
dot product, 105, 152
dot product of complex vectors, 152
dual of the basis, 87
duplicating a cube, 204

edge, 165
eigenspace, 117
eigenvalue, 115, 154
eigenvector, 115, 154
eigenvector for or belonging to, 115
Einstein’s special theory of relativity,

182
Einstein’s theory of relativity, 181
electric circuitry, 42
electric current, 42
elementary matrices, 24
encryption, 191
equivalent, 88, 129
Euclid’s Elements, 202
Euclidean n-space, 3, 129
Euclidean 3-space, 3
Euclidean algorithm, 15, 197
Euclidean-plane, 3
even, 11
even function, 53
expansion of det(A) by i-th row, 102
exponential function, 6
exponential function of a matrix, 113
extension by linearity, 75

factor, 10
field, 8
finite field, 9
finite-dimensional, 56
first order linear differential
equations, 177
Fourier coefficients, 133
Fourier expansion, 133
Fourier series, 133
frame of reference, 2
function, 4
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function of a function, 7
fundamental solutions, 91

Gaussian Elimination, 28
geometric multiplicity, 121
Gram-Schmidt Process, 136
graph, 165
greatest common divisor, 197
group theory, 149

Hermitian, 152
Hessian, 180
higher order differential equation, 90
homogeneous, 27
homogeneous polynomial, 158
homomorphism, 84
horizontal shear, 72
hyperplane, 27
hypothesis, 11

identity, 86
identity function, 5
identity matrix, 17
image, 6, 27
impossibility of trisecting angles, 200
inconsistent, 25, 27
indefinite, 158, 164
inequivalent, 129
infinite-dimensional, 56
injective, 5
inner product, 128, 155
inner product space, 129
integers, 9
intersection, 3
inverse, 6, 34
inverse by cofactor method, 109
inverse by row reduction, 35
invertible, 34
irreducible, 57, 197
irreducible over k, 10, 15
isomorphic, 78, 87
isomorphic vector spaces, 61
isomorphism, 78

kernel, 77
Kirchhoff’s Laws, 42

Kronecker’s deltas, 36

leading coefficient, 9
least square fit, the, 145
least squares approximation, 143
length, 129, 148
length contraction, 190
Leontief matrix, 45
line, 75
line segment, 75
linear, 2
linear algebra, 1
linear combination, 38, 50
linear differential equation, 113, 177
linear functionals, 87
linear independence of orthogonal

vectors, 135
linear map, 2, 71
linear operator, 73, 90
linear space, 2, 47
linear span, 51
linear transformation, 2, 71
linearly dependent, 58
linearly independent, 58
local maximum, 180
local minimum, 180
logarithm, 6
Lorentz transformation, 184
low-rank approximation, 174
lower triangular, 18

Maclaurin series, 180
map, 5
matrix of rotation, 72
matrix operations, 17
matrix over the field, 17
maximal element, 4
Michelson-Morley experiment, 182
minimal polynomial, 123
minimal polynomial of α over k, 199
minimal polynomial of the matrix A,

123
minor, 102
modular arithmetic, 9
modulus, 148
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monic, 9, 197
multilinear, 94
multiple, 10
multiplication, 8, 86
multiplicative inverse, 8
multivariable calculus of two
variables, 164
multivariable function, 179

natural numbers, 9
negative, 48
negative definite, 158, 164
non-singular, 105, 164
norm, 148
normalization, 130, 153
null-space, 141
nullity, 69

odd, 11
odd function, 53
Ohm’s Law, 42
ohms, 42
one-to-one, 5
onto, 5
order of the differential equation, 64
ordinary homogeneous linear
differential equation, 64
original proof, 12
orthogonal, 128, 131, 134, 153
orthogonal basis, 135
orthogonal complement, 140
orthogonal projection, 135
orthogonal set, 153
orthonormal, 153, 161
orthonormal basis, 135, 153
orthonormally diagonalizable, 161

partial order, 4
partially ordered set, 4
permutation, 6, 95
permutation matrix, 36
perpendicular, 128, 131
pivot, 29
points, 3
polynomial, 9
positive definite, 158, 164

positive semi-definite, 166
power set, 4
preimage, 27
prime, 10
principal axes theorem, 163
principle of relativity, 184
product, 21, 86
projection, 74, 141
projection matrix, 144
proof by induction, 12
proof of contradiction, 11
proper subset, 3
proper subspace, 52
Pythagoras, 141

quadratic extension, 204
quadratic form, 157
quotient, 55

range, 6
rank, 69
rational functions, 9
Rayleigh quotient, 167
reflection, 72
reflexive, 4
related to, 4
relation, 4
resistance, 42
restriction, 5
root, 16
root of a polynomial, 198
row, 18
row echelon form, 29
row equivalent, 68
row rank, 68
row reduction, 28, 29
row space, 68

saddle point, 158, 180
scalar, 8
scalar multiplication, 48
scaling, 48
Schur’s Lemma, 162
second derivative test, 158
second order linear differential
equation, 63
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self-adjoint, 152
semisimple, 122
set, 2
shear factor, 72
sign of a permutation, 95
similar, 88
simple, 122
simple harmonic motion, 63
sin−1, 6
singular value decomposition, 171
singular values, 171
size of the matrix, 17
space-time coordinates, 182
span, 38, 50
spectral decomposition, 162
spectral radius, 46
spectrum, 162
square, 16
square matrix, 17
square root, 22
standard j-th hyperplane, 74
standard basis, 66
standard basis for M(m× n,K), 57
standard basis of K[x], 60
standard basis of Kn, 57
standard basis of Pn, 66
standard matrix of the linear map,

80
subfield, 9
subset, 3
subspace, 52
subspaces, 52
surjective, 5
switch, 95
symmetric, 53

Taylor expansion, 158, 179
ternary quadratic form, 157
theorem, 11
time contraction, 190
total order, 4
trace, 24
transcendental, 55
transition matrix, 66, 88
transitive, 4

transpose, 24
transposition, 95
triangle inequality, 142
trisection of an angle, 204
twisted dot product, 21

union, 3
unit sphere, 167
unit vector, 130, 153
unitary matrix, 153
upper bound, 4
upper trianglular, 18

van der Monde or Vandermonde, 107
Vandermonde determinant, 107
vector space, 47
vector space structure, 71
vector-valued functions, 17
vectors, 3, 47
vertical shear, 72
vertices, 165
Vigenère cipher, 191
voltage, 42
volts, 42

weighted inner product, 129
weights, 66
Wronskian, 64

zero matrix, 17
zero transformation, 73
zero vector, 48
Zorn’s Lemma, 4, 60



This book on linear algebra and its applications in economics, engineering,
physics, and in mathematics itself, is somewhat different from other books on
the subject. Rather than present linear algebra as a collection of seemingly
unrelated topics, it aims to combine them into a single theme - the study of
linear maps in full generality. The vector spaces are merely their domains and
codomains. The matrices are a convenient tool to represent and keep track of
them when their domains and codomains are finite dimensional.

Some unusual definitions have been adopted to either eliminates entirely
the need for some theorems or make their proofs very short. For example,
the dimension of a vector space is defined by borrowing ideas from algebraic
geometry and commutative algebra. Not only it is a more natural definition,
the replacement theorem is no longer needed. It is a trivial consequence of
this definition that any two bases of a finite dimensional vector space have the
same number of vectors. Moreover, being more general, this definition works
equally well when the geometric objects are nonlinear.

By following more conceptual and less computational approach the book
has, in less than 250 pages, achieved a more comprehensive coverage of the
subject and its applications than books with more than twice as many pages. A
wide range of applications discussed herein should convince students majoring
in various disciplines of the utility of linear algebra. The reader lacking the
knowledge of prerequisite material will find it in Chapter 1
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