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Preface

Preface to the Instructor

This book is intended for a first linear algebra course. There are many great
books that cover this topic very well, and I have used many of them in my
classes. I wrote this book due to the desire to have a concise source of all
the material I can cover in this course. In addition, I always hope to get
my students used to complex numbers towards the end of the course, and
thus I include complex vectors in the last chapter. If I can achieve that my
students understand this material in a one term course, I am very happy. I
have found that teaching a class partially by using slides (the more theoretical
parts and/or longer examples) and lecturing on the board (emphasizing the
highlights and going through examples) works very well. Making the slides
available beforehand is especially appreciated. In this way I can cover all the
material (skipping some of the proofs, though).

I also made an effort to include some information regarding applications.
These include:

• Balancing chemical equations (see Exercise 1.6.20).

• Linear equations appearing in analyzing electrical circuits (see Exercise
1.6.21).

• Minimal rank completion and the Netflix challenge (see Exercise 2.6.21).

• Matrices and graph theory (see Exercises 2.6.22 and 3.7.28).

• The Leontief input-output economic model (see Exercise 3.7.27).

• Determinants and volumes (see Section 4.4).

• Interpolation and the discrete cosine transform (see Exercise 5.5.22).

• Finite impulse response (FIR) filtering (see Exercise 6.5.34).

• Error detecting codes (see Exercise 6.5.35).

xi
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• Systems of differential equations (see Section 7.4).

• Markov chains and Google’s PageRank (see Exercise 7.5.25).

• Linear recurrence relations (see Exercises 7.5.26, 7.5.27, and 7.5.28).

• Curve fitting/regression line (see Section 8.5).

• Quadratic forms (see Exercise 8.8.43).

• Image compression (see Exercise 8.8.56).

• Principal component analysis (see Exercise 8.8.57).

• Robust principal component analysis (see Exercise 8.8.58).

There are of course many more applications, and one way to get students
to explore them is to have them write a paper or make a video about their
favorite application (one of those listed above or one they find on their own∗).

Regarding computational software there are some pointers in the ‘Preface
for the students’ followed up by specific suggestions in the exercises of the
first few chapters. Several suggestions of different software are made. While
MATLAB R© is still my personal favorite choice, it seems that Sage (especially
among algebraists) and the Python libraries are increasingly popular (and
quite easy to try out online).

In my view, the core material in this book is the following and takes about
28 academic hours† of lectures:

• Chapter 1: Row reduction, the vector space Rn, linear combinations and
span, the equation Ax = b. (4 hours)

• Chapter 2: Subspaces in Rn, column, row and null spaces, linear inde-
pendence, basis, dimension, coordinate systems. (5 hours)

• Chapter 3, Sections 3.1–3.4 + part of Section 3.6: Matrix mul-
tiplication, transpose, inverses, elementary matrices, introduce triangular
matrices. (4 hours)

∗For instance, how Linear Algebra is used in streamlining kidney donor/recipient
matches (see Hamouda E, El-Metwally S, Tarek M (2018) Ant Lion Optimization algorithm
for kidney exchanges. PLoS ONE 13(5): e0196707. doi.org/10.1371/journal.pone.0196707),
or in community detection (see Newman, M. E. J. (2006) Finding community struc-
ture in networks using the eigenvectors of matrices, Phys. Rev. E 74(3): 036104.
link.aps.org/doi/10.1103/PhysRevE.74.036104), or in risk management (see Georgescu Dan
I., Higham Nicholas J. and Peters Gareth W. (2018) Explicit solutions to correlation matrix
completion problems, with an application to risk management and insurance, R. Soc. open
sci. 5172348 doi.org/10.1098/rsos.172348).
†Academic hour = 50 minutes.

https://doi.org/10.1371/journal.pone.0196707
https://doi.org/10.1098/rsos.172348
https://link.aps.org/doi/10.1103/PhysRevE.74.036104
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• Chapter 4, Section 4.1: Definition of determinants and how to compute
them. (1 hour)

• Chapter 5: Definition of a vector space, examples of vector spaces over R,
repeat of linear independence, basis, dimension, coordinate systems, but
now for general vector spaces over R. (4 hours)

• Chapter 6, Sections 6.1–6.4: Linear maps, range and kernel, matrix
representations, change of basis. (4 hours)

• Chapter 7, Sections 7.1–7.3: Eigenvalues, diagonalizability, complex
eigenvalues. (3 hours)

• Chapter 8, Sections 8.1–8.3: Dot product, norm, orthogonality, Gram–
Schmidt. (3 hours)

The remaining sections are more optional.

• Chapter 3, Sections 3.5–3.6: Block matrices and LU factorization.
(2 hours)

• Chapter 4, Sections 4.2: In this section the properties of the determi-
nants are proven. Depending on the audience this section can be covered
(1 hour), or only briefly mentioned.

• Chapter 4, Sections 4.3–4.4: Cramer’s rule is not very important, but
my experience is that students like it. Mentioning the connection with
volumes is useful but also not essential. (1 hour)

• Chapter 7, Section 7.4: The solution of systems of differential equations
using eigenvalues and eigenvectors can be discussed fairly quickly. (less
than 1 hour)

• Chapter 8, Sections 8.4: Interpreting Gram–Schmidt as QR factoriza-
tion and unitary matrices should ideally be covered in the course. (1 hour)

• Chapter 8, Sections 8.5–8.7: These sections on least squares (with
curve fitting), symmetric matrices and the singular value decomposition
can be covered or left out at the end of the course. Section 8.5 can be
skipped, as Sections 8.6 and 8.7 do not rely on it. (1 hour each)

I hope that you find this to be a useful text. If you have a chance to give me
feedback on it, I would be very appreciative.
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Preface to the Student

With the world becoming increasingly digital, Linear Algebra is gaining im-
portance. When we send texts, share video, do internet searches, there are
Linear Algebra algorithms in the background that make it work. But there
are so many more instances where Linear Algebra is used and where it could
be used, ranging from traditional applications such as analyzing physical sys-
tems, electrical networks, filtering signals, modeling economies to very recent
applications such as guessing consumer preferences, facial recognition, extract-
ing information from surveillance video, etc. In fact, any time we organize data
in sequences or arrays, there is an opportunity for Linear Algebra to be used.
Some applications are introduced in exercises (see the ‘Preface to the Instruc-
tor for a list), and a search such as ‘Image Processing and Linear Algebra’ will
provide you with many more resources on them. Aside from its wide appli-
cability, Linear Algebra also has the appeal of a strong mathematical theory.
It is my hope that this text will help you master this theory, so that one day
you will be able to apply it in your area of interest.

There are many computational software programs that can help you do the
Linear Algebra calculations. These include‡ great commercial products such
as MATLAB R©, MapleTM or Mathematica R©, and great open source products,
such as Sage (sagemath.org), R (www.r-project.org), and the Python libraries
NumPy (numpy.org), SciPy (scipy.org) and SymPy (sympy.org). It is definitely
worthwhile to get used to one of these products, so that the threshold to
use them in the future will be low. They are easy to search for, and some
products have online calculators. Here are some to try (without having to
download anything or sign in):

• www.wolframalpha.com/examples/mathematics/linear-algebra/. You will see
a box ‘Multiply matrices’; if you click on the = sign with the content
{{2,−1}, {1, 3}}.{{1, 2}, {3, 4}}, you get the product of these two matrices.
In addition, if you scroll down you see other capabilities. For instance, you
can type ‘Are (2, -1) and (4, 2) linearly independent?’ and hit ‘return’ or
click on the = sign.

• sagecell.sagemath.org. To enter a matrix A and multiply it by itself, you
can enter for instance

A = matrix([ [0,1,2], [3,4,5], [6,7,9] ])
A*A

and hit ‘Evaluate’. To compute its inverse, you add
A.inverse()

‡The Wikipedia pages ‘List of computer algebra systems’ and ‘List of numerical-analysis
software’ have more complete lists.

http://www.r-project.org
http://www.wolframalpha.com
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and hit ‘Evaluate’. For more information, see doc.sagemath.org/html/en/
prep/Quickstarts/Linear-Algebra.html.

• live.sympy.org. To enter matrices A and B and multiply them, do
A=Matrix(2, 3, [1, 2, 3, 4, 5, 6])
B=Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])
A*B

For more, see docs.sympy.org/latest/modules/matrices/matrices.html.

For the purpose of this course, you can use these programs to check answers
(in the first few chapters we give some specific suggestions to get you started)
and use it in those exercises where computation by hand would be too in-
volved. In addition, you can generate your own exercises in case you would
like more practice. At the level of this course you will not see major differ-
ences between these programs other than logistical ones, such as formatting
conventions. Once you get to more specialized use, one program may perform
better than the other depending on the specifics. Regardless, though, if you
have experience with one of the programs it will be easier to learn another.

Finally, let me mention that Linear Algebra is an active area of research.
The International Linear Algebra Society (ILAS; ilasic.org) and the Society
for Industrial and Applied Mathematics (SIAM; siam.org) are societies of re-
searchers that organize Linear Algebra conferences, publish Linear Algebra
scientific journals, publish newsletters and that maintain active websites that
also advertise research opportunities for students. Both societies offer free
membership for students, so please check them out.

MATLAB R© is a registered trademark of The MathWorks, Inc. For prod-
uct information, please contact: The MathWorks, Inc. 3 Apple Hill Drive
Natick, MA 01760-2098 USA Tel: 508-647-7000 Fax: 508-647-7001 Email:
info@mathworks.com Web: www.mathworks.com

http://www.mathworks.com
mailto:info@mathworks.com
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Notation

Here are some often-used notations:

• N = {1, 2, 3, . . .}

• R = the field of real numbers

• C = the field of complex numbers

• aj = the jth column of the matrix A

• A = (aij)
m n
i=1,j=1 = is the m× n matrix with entries aij

• colj(A) = the jth column of the matrix A (alternative notation)

• rowi(A) = the ith row of the matrix A

• Col A = the column space of a matrix A

• Nul A = the null space of a matrix A

• Row A = the row space of a matrix A

• det(A) = the determinant of the matrix A

• tr(A) = the trace of a matrix A (= the sum of its diagonal entries)

• adj(A) = the adjugate of the matrix A

• rank(A) = the rank of a matrix A

• x = (xi)
n
i=1 = the column vector x ∈ Rn with entries x1, . . . , xn.

• E(1), E(2), E(3) are elementary matrices of type I, II, and III, respectively.

• rref(A) = the reduced row echelon form of A.

• Rn = the vector space of column vectors with n real entries

• R[t] = the vector space of polynomials in t with coefficients in R

• Rn[t] = the vector space of polynomials of degree ≤ n in t with coefficients
in R

xix



xx Notation

• Rm×n = the vector space of m× n matrices with entries in R

• Cn = the vector space of column vectors with n complex entries

• Cm×n = the vector space of m× n matrices with entries in C

• 0 = the zero vector

• dimV = the dimension of the vector space V

• Span {v1, . . . ,vn} = the span of the vectors v1, . . . ,vn

• {e1, . . . , en} = the standard basis in Rn (or Cn)

• [v]B = the vector of coordinates of v relative to the basis B

• Ker T = the kernel (or nullspace) of a linear map (or matrix) T

• Ran T = the range of a linear map (or matrix) T

• id = the identity map

• [T ]C←B = matrix representation of T with respect to the bases B and C

• In = the n× n identity matrix

• +̇ = direct sum

• pA(t) = the characteristic polynomial of the matrix A

• deg p(t) = the degree of the polynomial p(t)

• ≡ emphasizes that the equality holds for all t (for example, 0(t) ≡ 0).

• AT = the transpose of the matrix A

• A∗ = the conjugate transpose of the matrix A

• 〈·, ·〉 = the dot product

• ‖x‖ = the Euclidean norm of the vector x

• Re z = real part of z

• Im z = imaginary part of z

• z̄ = complex conjugate of z

• |z| = absolute value (modulus) of z

• eit = cos t+ i sin t, which is Euler’s notation

• σj(A) = the jth singular value of the matrix A, where σ1(A) = ‖A‖ is the
largest singular value

• F = a generic field
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1
Matrices and Vectors

CONTENTS

1.1 Matrices and Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Row Reduction: Three Elementary Row Operations . . . . . . . . . . . . 4
1.3 Vectors in Rn, linear combinations and span . . . . . . . . . . . . . . . . . . . . 11
1.4 Matrix Vector Product and the Equation Ax = b . . . . . . . . . . . . . . 17
1.5 How to Check Your Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

In this chapter we will introduce matrices and vectors in the context of systems
of linear equations. Let us start with a system of two linear equations with
two unknowns, such as {

2x+ 3y = 4,
4x− y = −6.

To solve this system, one would take a combination of the two equations and
eliminate one of the variables. We can take the second equation and subtract
two times the first, giving us

(4x− y)− 2(2x+ 3y) = −6− 2 · 4 which simplifies to −7y = −14,

yielding the equivalent system{
2x+ 3y = 4,
−7y = −14.

Now we can solve for y (giving y = 2) and substitute this in the first equation
and obtain {

2x = 4− 6,
y = 2,

and we find x = −1 and y = 2.

We will develop a systematic way to do this for any number of equations with
any number of unknowns (often denoted as x1, x2, x3, . . .) through the use of
matrices and vectors. We will start by introducing matrices.

1



2 Linear Algebra: What You Need to Know

1.1 Matrices and Linear Systems

A real matrix is a rectangular array of real numbers. Here is an example:

A =


2 −2 −1 7 1 1
1 −1 −1 6 −5 4
0 0 1 −1 3 −3
1 −1 0 3 1 0

 (1.1)

The size of this matrix is 4× 6. It has 4 rows and 6 columns. The 4th row of
this matrix is [

1 −1 0 3 1 0
]
,

and its 2nd column is 
−2
−1
0
−1

 .
The numbers in the matrix are its entries. We indicate the location of an
entry by a pair of integers (k, l), where k denotes the row the entry is in,
and l denotes the column the entry is in. For instance, the (2, 4)th entry of
the above matrix is the number 6. We denote the (i, j)th entry of a matrix
A by aij . Thus a24 = 6. The set of all m × n matrices with real entries will
be denoted as Rm×n. Thus the matrix A above belongs to R4×6; we write
A ∈ R4×6.

As we will see, a matrix can represent many different things. However, in
this section we will focus on how matrices can be used to represent systems
of linear equations. But even in the context of linear systems of equations,
the same matrix can represent different situations. Here are a few different
interpretations of matrix (1.1):

• Interpretation 1: It could stand for the system of equations
2x1 − 2x2 − x3 + 7x4 + x5 = 1,
x1 − x2 − x3 + 6x4 − 5x5 = 4,

x3 − x4 + 3x5 = −3,
x1 − x2 + 3x4 + x5 = 0,

If so, we write 
2 −2 −1 7 1 1
1 −1 −1 6 −5 4
0 0 1 −1 3 −3
1 −1 0 3 1 0

 ,
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and we refer to this matrix as an augmented matrix. The part on the left
of the vertical line is referred to as the coefficient matrix, and the part
on the right of the vertical line is considered the augmented part. Thus
an augmented matrix represents a system of equations with unknowns,
which are typically named x1, x2, . . . (or y1, y2, . . ., if we have already used
the x’s). There are as many unknowns as there columns in the coefficient
matrix.

• Interpretation 2: Matrix (1.1) could stand for the two systems of equa-
tions

2x1 − 2x2 − x3 + 7x4 = 1,
x1 − x2 − x3 + 6x4 = −5,

x3 − x4 = 3,
x1 − x2 + 3x4 = 1,

&


2y1 − 2y2 − y3 + 7y4 = 1,
y1 − y2 − y3 + 6y4 = 4,

y3 − y4 = −3,
y1 − y2 + 3y4 = 0.

If so, we write: 
2 −2 −1 7 1 1
1 −1 −1 6 −5 4
0 0 1 −1 3 −3
1 −1 0 3 1 0

 .
Here it is critical that the systems have the same coefficient matrix.

• Interpretation 3: Matrix (1.1) could stand for the system of equations
2x1 − 2x2 − x3 + 7x4 + x5 + x6 = 0,
x1 − x2 − x3 + 6x4 − 5x5 + 4x6 = 0,

x3 − x4 + 3x5 − 3x6 = 0,
x1 − x2 + 3x4 + x5 = 0.

If so, we should write:
2 −2 −1 7 1 1 0
1 −1 −1 6 −5 4 0
0 0 1 −1 3 −3 0
1 −1 0 3 1 0 0

 .
We don’t always write the zeros, though! A system of linear equations
where the right hand sides are all zeros is called a homogeneous system
of linear equations.

• Interpretation 4: Matrix (1.1) could stand for the system of equations
2x1 − 2x2 − x3 + 7x4 + x5 + x6 = a,
x1 − x2 − x3 + 6x4 − 5x5 + 4x6 = b,

x3 − x4 + 3x5 − 3x6 = c,
x1 − x2 + 3x4 + x5 = d.
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where a, b, c, d are arbitrary real numbers. If so, we should write:
2 −2 −1 7 1 1 a
1 −1 −1 6 −5 4 b
0 0 1 −1 3 −3 c
1 −1 0 3 1 0 d

 .
Similar as before, we may not always write the arbitrary a, b, c, d; rather,
we keep them in the back of our mind that they are there.

A question you may have is: why do we allow the same object to represent
different situations? The answer to this question is: we will develop techniques
to manipulate matrices which will provide useful insights in these and other
interpretations of the matrices. In fact, a typical scenario is the following:

• We start with a problem.

• We represent the essential features of the problem as a matrix.

• We manipulate the matrix by techniques we will develop.

• Finally, we use the results of the manipulations to draw conclusions that
are relevant to the problem we started with.

This type of process will appear many times in Linear Algebra!

1.2 Row Reduction: Three Elementary Row Operations

The following three systems of linear equations (1.2)–(1.4) have the same set
of solutions. Which system gives a clearer vision of what the set of solutions
may be?


2x1 − 2x2 − x3 + 7x4 + x5 = 1,
x1 − x2 − x3 + 6x4 − 5x5 = 4,

x3 − x4 + 3x5 = −3,
x1 − x2 + 3x4 + x5 = 0,

(1.2)

or
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
x1 − x2 + 3x4 + x5 = 0,

−x3 + 3x4 − 6x5 = 4,
2x4 − 3x5 = 1,

2x5 = −2,

(1.3)

or 
x1 − x2 = 4,

x3 = −1,
x4 = −1,
x5 = −1.

(1.4)

We hope you find (1.3) clearer than (1.2), and that (1.4) is the most clear. In
fact from (1.4) you can immediately read off that x3 = −1, x4 = −1, x5 = −1,
and that x2 can be any real number as long as we then set x1 = 4 + x2. It
is now easy to check that this solution also works for (1.2) and (1.3). In the
future we will write this set of solutions as

x1
x2
x3
x4
x5

 =


4
0
−1
−1
−1

+ x2


1
1
0
0
0

 , with x2 ∈ R free. (1.5)

To be a free variable in a system of linear equations means that we can choose
its value to be any real number. The other variables (in this example x1, x3, x4
and x5) are called basic variables. Once values for the free variables have been
chosen, the basic variables are fixed.

In this process we are making several conventions. The unknowns are num-
bered (typically, x1, x2, . . .), and the coefficients of xj appear in the jth column
of the coefficient matrix. Also, in deciding which variables are free we will have
a convention. In the above system x1 and x2 depend on one another (choosing
one will fix the other). Our convention will be that if we have a choice, we
view the variables with the higher index as the free variable(s). Thus, due
to our convention, in the above example x2 is a free variable and x1 a basic
variable. In the process that we will explain next this convention is built in,
so it is important to stick to it.

The process of converting system (1.2) to (1.3) and subsequently to (1.4) is
referred to as row reduction (or Gaussian elimination). The following
three elementary row operations to its augmented matrix will be allowed:

Operation 1: Switch two rows.
Operation 2: Replace row(i) by row(i) + α row(k), i 6= k, where α ∈ R.
Operation 3: Multiply a row by a non-zero number β 6= 0.
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Notice that each operation can be undone by applying the same operation.
When we undo the action of Operation 2, we should apply Operation 2 again
with α replaced by −α. When we undo the action of Operation 3, we should
apply Operation 3 again with β replaced by 1

β . Consequently, the set of solu-
tions of a system of linear equations does not change when performing these
operations. Indeed, a solution to the original system will also be a solution to
the converted system, and vice versa.

Let us perform these manipulations to the matrix (1.1):
2 −2 −1 7 1 1
1 −1 −1 6 −5 4
0 0 1 −1 3 −3
1 −1 0 3 1 0

 .
Switching rows 1 and 4, we get

1 −1 0 3 1 0
1 −1 −1 6 −5 4
0 0 1 −1 3 −3
2 −2 −1 7 1 1

 . (1.6)

We put a box around the (1,1) entry, as our next objective is to make all
entries below it equal to 0. In terms of the system of equations, this means
that we are eliminating the variable x1 from all equations except the top one.
To create a 0 in the (2,1) position, we replace row(2) by row(2) −row(1). In
other words, we apply Operation 2 with i = 2, k = 1, and α = −1, giving the
following result. 

1 −1 0 3 1 0
0 0 −1 3 −6 4
0 0 1 −1 3 −3
2 −2 −1 7 1 1

 . (1.7)

Next, we would like to make a 0 in the (4,1) entry (thus eliminating the
variable x1 from the fourth equation). To do this, we apply again Operation 2
(with i = 4, k = 1 and α = −2) and replace row(4) by row(4)−2 row(1):

1 −1 0 3 1 0

0 0 −1 3 −6 4

0 0 1 −1 3 −3
0 0 −1 1 −1 1

 . (1.8)

Notice that we next boxed entry (2,3). The reason is that at this point we have
achieved our goal in column 1, and as it happens, the corresponding rows in
column 2 already have zeros. Thus we are going to focus on column 3, and use
the (2,3) entry to make zeros below it. We do this by applying Operation 2
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(now with i = 3, k = 2 and α = 1), first replacing row(3) by row(3) + row(2),
which gives: 

1 −1 0 3 1 0

0 0 −1 3 −6 4

0 0 0 2 −3 1
0 0 −1 1 −1 1

 . (1.9)

Next, we replace row(4) by row(4)− row(2):
1 −1 0 3 1 0

0 0 −1 3 −6 4

0 0 0 2 −3 1
0 0 0 −2 5 −3

 . (1.10)

We boxed the (3, 4) entry and make a zero below it by replacing row(4) by
row(4) + row(3): 

1 −1 0 3 1 0

0 0 −1 3 −6 4

0 0 0 2 −3 1

0 0 0 0 2 −2

 . (1.11)

We boxed entry (4, 5). We are going to call the boxed entries pivots. Going
from left to right, each pivot is the first nonzero entry in its row. Moreover,
each pivot is strictly to the right of the pivot in the row above it. The matrix
(1.11) is in row echelon form, defined below.

Definition 1.2.1. We say that a matrix is in row echelon form if

1. all nonzero rows (rows with at least one nonzero element) are above
any rows of all zeroes, and

2. the leading coefficient (the first nonzero number from the left, also
called the pivot) of a nonzero row is always strictly to the right of the
leading coefficient of the row above it.

The columns that contain a pivot, will be called a pivot column. In the
above example, columns 1, 3, 4, and 5 are the pivot columns. The variables
corresponding to the pivot columns are the basic variables. In the system
above x1, x3, x4 and x5 are the basic variables. The remaining variables, which
are the ones that correspond to non-pivot columns, are the free variables.
In the example above, x2 is the free variable.

Notice that the matrix (1.11) corresponds to the linear system (1.3). Next, we
would like to further reduce it to arrive at system (1.4). To do this, we first
make all pivots equal to 1 by applying Operation 3. We multiply row 2 by −1,
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row 3 by 1
2 and row 4 by 1

2 , to obtain:
1 −1 0 3 1 0

0 0 1 −3 6 −4

0 0 0 1 − 3
2

1
2

0 0 0 0 1 −1

 . (1.12)

Our final objective is make zeros above every pivot, starting with the most
right pivot. To do this, we apply Operation 2 and (i) replace row(3) by row(3)+
3
2 row(4), (ii) replace row(2) by row(2) − 6 row(4), (iii) replace row(1) by
row(1)− row(4): 

1 −1 0 3 0 1

0 0 1 −3 0 2

0 0 0 1 0 −1

0 0 0 0 1 −1

 . (1.13)

Next, we (i) replace row(2) by row(2)+3 row(3), (ii) replace row(1) by row(1)−
3 row(3): 

1 −1 0 0 0 4

0 0 1 0 0 −1

0 0 0 1 0 −1

0 0 0 0 1 −1

 . (1.14)

Now the matrix is in reduced row echelon form, defined below. Notice
that (1.14) corresponds to system (1.4).

Definition 1.2.2. We say that a matrix is in reduced row echelon form
if

1. it is in row echelon form.

2. every leading coefficient (=pivot) is 1 and is the only nonzero entry in
its column.

Let us do another example.

Example 1.2.3. Put the matrix A below in reduced row echelon form.

A =


2 −4 3 0
1 −1 −1 2
3 −5 2 2
1 −1 0 3

→


2 −4 3 0
0 1 − 5

2 2
0 1 − 5

2 2
0 1 − 3

2 3

→


2 −4 3 0

0 1 − 5
2 2

0 0 0 0
0 0 1 1

→


2 −4 3 0

0 1 − 5
2 2

0 0 1 1
0 0 0 0

 .
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Notice that we have achieved row echelon form. To bring it to reduced row
echelon form, we continue

→


1 −2 3

2 0

0 1 − 5
2 2

0 0 1 1
0 0 0 0

→


1 −2 0 − 3
2

0 1 0 9
2

0 0 1 1
0 0 0 0

→


1 0 0 15
2

0 1 0 9
2

0 0 1 1
0 0 0 0

 .
If we interpret the matrix A as the augmented matrix of a linear system, then
we obtain the solution x1 = 15

2 , x2 = 9
2 , x3 = 1. The first row of A would

correspond to the equation 2x1 − 4x2 + 3x3 = 0, and indeed x1 = 15
2 , x2 = 9

2 ,
x3 = 1 satisfies this equation. It works for the other rows as well.

�

In the Gaussian elimination process one can view the effect of an operation
on the matrix as a whole, or one can view it as an effect on each column. For
instance, if we switch rows 1 and 2 in the matrix, it means that we switch
rows 1 and 2 in each column. This leads to the following observation, which
will turn out to be useful.

Proposition 1.2.4. Let A be an m×n matrix, and let B be obtained from
A by removing columns j1, . . . , jr. Perform elementary row operations on A
and obtain the matrix C, and perform the same elementary row operations
on B to get the matrix D. Then D can be obtained from C by removing
columns j1, . . . , jr.

Proof. Performing an elementary row operation on a matrix can be viewed as
performing the same elementary row operation on each column individually.
Thus removing a column before an operation or afterwards does not affect the
other columns. �

Let us end this section by providing the Gaussian elimination process in pseudo
code. First, we need to explain the notation we will use:

• by (arj)
n
r=i 6= 0 we mean that at least one of aij , ai+1,j , . . . , anj is nonzero.

• by x← y we mean that the outcome y gets stored in the variable x.

• by E(1)
r↔iA we mean that we switch rows r and i in A.

• by E(2)
(s,i,c)A we mean that row(s) in A gets replaced by row(s) + c row(i).

• by E(3)
(i,β)A we mean that row(i) in A gets multiplied by β.

• the quantity rank keeps track of how many pivots have been identified.
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• in the array pivot we store the pivot locations.

• rref(A) is shorthand for the ‘reduced row echelon form’∗ of A.

Algorithm 1 Gaussian elimination: part 1

1: procedure Gauss1(A) . Finds row echelon form of m× n matrix A
2: i← 1, j ← 1, rank← 0, pivot ← empty array
3: while j ≤ n do . We have the answer if j = n+ 1
4: if (arj)

n
r=i 6= 0 then

5: choose i ≤ r ≤ n with arj 6= 0

6: A← E
(1)
r↔iA

7: rank← rank + 1
8: pivot(rank)← (i, j)

9: for s = i+ 1, . . . , n do A← E
(2)
(s,i,−asj/aij)A

10: i← i+ 1, j ← j + 1
11: else
12: j ← j + 1

13: return A, pivot, rank . A is in echelon form, pivot positions, rank

Algorithm 2 Gaussian elimination: part 2

1: procedure Gauss2(A, pivot, rank) . Continues to find rref(A)
2: r ←rank
3: while r > 0 do . We have the answer if r = 0
4: (i, j)← pivot(r)

5: A← E
(3)
(i,1/aij)

A

6: for s = 1, . . . , i− 1 do A← E
(2)
(s,i,−asj)A

7: r ← r − 1

8: return A . A is in its reduced echelon form

In Algorithm 1 above we have in line 5 a choice when we choose the next
pivot. In the method of partial pivoting we choose among arj , i ≤ r ≤ n,
the entry with the largest absolute value. The advantage of this choice is that
it reduces the effect of round-off errors.

∗It is also the command in MATLABR© and MapleTM and other software to find the
reduced row echelon form.
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1.3 Vectors in Rn, Linear Combinations and Span

A real vector is a convenient way to group together a set of real numbers in
a particular order. There are many contexts where this concept is useful. A
vector can represent a point in space, a digital sound signal, measurements
(from a science experiment, value of a stock at different times, temperatures at
different locations, etc.), a text message, a code, sampled values of a function,
etc. Mathematically, it is a matrix with just one column, and thus defined as
follows.

A vector in Rn has the form

u =


u1
u2
...
un

 ∈ Rn, with u1, . . . , un ∈ R.

Sometimes it is convenient to write u = (ui)
n
i=1 for the vector above. To be

more precise, the vector u is in fact a column vector. We occasionally use row
vectors (in R1×n), which are of the form[

u1 u2 · · · un
]
, with u1, . . . , un ∈ R.

In this section, however, we focus on column vectors and refer to them as just
‘vectors’. The theory for row and column vectors is the same, so it suffices to
just present it for column vectors.

We denote a vector by a boldface lower case letter, and for its entries we use the
corresponding letter in italics with indices corresponding to their location. For
instance, x ∈ Rn has entries x1, . . . , xn. We define two operations on vectors,
addition and scalar multiplication, as follows:

(i) u + v =


u1
u2
...
un

+


v1
v2
...
vn

 :=


u1 + v1
u2 + v2

...
un + vn

 ∈ Rn.

(ii) αu = α


u1
u2
...
un

 :=


αu1
αu2
...

αun

 ∈ Rn for α ∈ R.
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The number α is referred to as a scalar. For example,

 5
−1
1

+

 2
6
−10

 =

 7
5
−9

 ∈ R3, 3


2
1
0
1

 =


6
3
0
3

 ∈ R4, 2

[
4
1

]
−
[
5
4

]
=

[
3
−2

]
∈ R2.

These operations satisfy the following rules:

1. Commutativity of addition: for all u,v ∈ Rn we have that u + v =
v + u.

2. Associativity of addition: for all u,v,w ∈ Rn we have that (u + v) +
w = u + (v + w).

3. Existence of a neutral element for addition: there exists a 0 ∈ Rn
so that u + 0 = u = 0 + u for all u ∈ Rn.

4. Existence of an additive inverse: for every u ∈ Rn there exists a
−u ∈ Rn so that u + (−u) = 0 = (−u) + u.

5. First distributive law: for all c ∈ R and u,v ∈ Rn we have that c(u +
v) = cu + cv.

6. Second distributive law: for all c, d ∈ R and u ∈ Rn we have that
(c+ d)u = cu + du.

7. Associativity for scalar multiplication: for all c, d ∈ R and u ∈ Rn
we have that c(du) = (cd)u.

8. Unit multiplication rule: for every u ∈ Rn we have that 1u = u.

Here

0 =


0
0
...
0


is the zero vector. You will see these rules again (with Rn and R replaced
by more general sets V and F) when we give the definition of a vector space.
For now we can just say that since these rules hold, Rn is a vector space over
R.

The following notion typically takes some getting used to. We say that a vector
y ∈ Rn is a linear combination of vectors u1, . . . ,up ∈ Rn if there exist
scalars x1, . . . , xp ∈ R so that

y = x1u1 + · · ·+ xpup.
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For instance,
[
−7
5

]
is a linear combination of

[
4
1

]
,

[
5
−1

]
because

2

[
4
1

]
− 3

[
5
−1

]
=

[
−7
5

]
.

Here are some typical problems.

Example 1.3.1. Is

 −1
13
−21

 a linear combination of

 5
−1
1

 ,
 2

6
−10

?

We need find out whether there exist scalars x1, x2 so that

x1

 5
−1
1

+ x2

 2
6
−10

 =

 −1
13
−21

 .
In other words, we would like to solve the system5x1 + 2x2 = −1,

−x1 + 6x2 = 13,
x1 − 10x2 = −21.

(1.15)

Setting up the augmented matrix and doing row reduction, we get 5 2 −1
−1 6 13
1 −10 −21

→
 1 −10 −21

0 −4 −8
0 52 104

→
 1 0 −1

0 1 2
0 0 0

 .
This has a solution x1 = −1 and x2 = 2. Thus, the answer is yes, because

−

 5
−1
1

+ 2

 2
6
−10

 =

 −1
13
−21

 .
�

Example 1.3.2. Is

 2
9
−5

 in a linear combination of

1
1
1

 and

3
4
5

?

We need find out whether there exist scalars x1, x2 so that

x1

1
1
1

+ x2

3
4
5

 =

 2
9
−5

 .
In other words, we would like to solve the systemx1 + 3x2 = 2,

x1 + 4x2 = 9,
x1 + 5x2 = −5.

(1.16)
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Setting up the augmented matrix and doing row reduction, we get 1 3 2
1 4 9
1 5 −5

→
 1 3 2

0 1 7
0 2 −7

→
 1 3 2

0 1 7

0 0 −21

 .
This corresponds to the systemx1 + 3x2 = 2,

x2 = 7,
0 = −21,

which does not have a solution. Thus the answer is no. �

Definition 1.3.3. Given vectors u1, . . . ,up ∈ Rn we define

Span {u1, . . . ,up} := {x1u1 + · · ·+ xpup : x1, . . . , xp ∈ R} ⊆ Rn.

Thus, Span {u1, . . . ,up} consists of all linear combinations of the vectors
u1, . . . ,up.

In this terminology, the examples above can be summarized as −1
13
−21

 ∈ Span


 5
−1
1

 ,
 2

6
−10

 ,

 2
9
−5

 6∈ Span


1

1
1

 ,
3

4
5

 .

Here are some typical problems.

Example 1.3.4. Is Span

{[
2
5

]
,

[
4
10

]
,

[
1
−1

]}
= R2?

Thus, we need to check whether an arbitrary vector
[
a
b

]
belongs to

Span

{[
2
5

]
,

[
4
10

] [
1
−1

]}
. In other words, does the system with the augmented

matrix [
2 4 1 a
5 10 −1 b

]
have a solution regardless of the values of a and b? Row reducing we get 2 4 1 a

0 0 −7

2
b− 5

2a

 .
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Consequently, we arrive at the system{
2x1 + 4x2 + x3 = a,

− 7
2x3 = b− 5

2a.

We can now see that this system has a solution, regardless of the values of a
and b. Indeed, from the second equation we can solve for x3(= − 2

7 (b− 5
2a)) and

then we can choose x2 freely and subsequently solve for x1(= 1
2 (a−4x2−x3)).

Thus the answer is yes:

Span

{[
2
5

]
,

[
4
10

] [
1
−1

]}
= R2.

When we did the row reduction, there was not a real need to keep track of the
augmented part: all we cared about was ‘can we solve the system regardless of
the value on the right hand side of the equations?’ The answer was yes in this
case, because in the coefficient matrix every row had a pivot. This allowed us
to solve for the unknowns x1, x2, x3 starting with the one of the highest index
first (x3), then address x2 next and finally x1.

�

Example 1.3.5. Is Span


1

1
2

 ,
 2

3
10

 3
4
12

 = R3?

We need to check whether an arbitrary vector

ab
c

 belongs to Span


1

1
2

 , 2
3
10

 3
4
12

. In other words, does the system with the augmented matrix

1 2 3 a
1 3 4 b
2 10 12 c


have a solution regardless of the values of a, b and c? Row reducing we get 1 2 3 a

0 1 1 b− a
0 6 6 c− 2a

→
 1 2 3 a

0 1 1 b− a
0 0 0 c− 6b+ 4a

 . (1.17)

We arrive at the systemx1 + 2x2 + 3x3 = a,
x2 + x3 = b− a,

0 = c− 6b+ 4a.
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We can now see that if c−6b+4a 6= 0, then there is no solution. Consequently,
the answer here is no:

Span


1

1
2

 ,
 2

3
10

 3
4
12

 6= R3.

For instance, if we choose a = b = 0 and c = 1, we find that the system is not
solvable and thus 0

0
1

 6∈ Span


1

1
2

 ,
 2

3
10

 3
4
12

 .

There are plenty of other vectors that do not belong to this span. The reason
why the answer turned out to be no is that in (1.17) the coefficient matrix
does not have a pivot in every row. Because of this we can choose a right hand
side that gives us an equation with 0 on the left hand side and a nonzero on
the right hand side (here 0 = c− 6b+ 4a(6= 0)), which is an impossibility.
�

Let us summarize the type of problems presented above.

Problem 1. Check whether y ∈ Span {u1, . . . ,up}.
Solution. Row reduce the augmented matrix

[
u1 · · · up y

]
. If in the

echelon form all the pivots are in the coefficient matrix, then the answer is
yes. If in the echelon form there is a pivot in the augmented part, then the
answer is no.

Problem 2. Check whether Span {u1, . . . ,up} = Rn.
Solution. Row reduce the coefficient matrix

[
u1 · · · up

]
. If in the echelon

form of the coefficient matrix every row has a pivot, then the answer is yes.
If in the echelon form of the coefficient matrix there is row without a pivot,
then the answer is no.

Note that in Problem 2 we only need to worry about the coefficient matrix.
There is no need to include the augmented part in the calculations (remem-
ber Interpretation 4 in Section 1.1!). Another useful observation is that if in
Problem 2 we have that p < n (thus the coefficient matrix has fewer columns
than rows), then there can never be a pivot in every row and thus the answer
is automatically no. As an example, without doing any computations, we can
conclude that

Span




1
5
1
2

 ,


0
1
3
−7




7
−3
4
17


 6= R4,

because the row reduced coefficient matrix will never have a pivot in row 4.
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Finally, let us use the above to characterize the pivot columns of a matrix A.

Proposition 1.3.6. Let A =
[
a1 · · · an

]
be an m×n matrix. Then the

kth column of A is a pivot column if and only if ak 6∈ Span{a1, . . . ,ak−1}.

Proof. Suppose that ak 6∈ Span{a1, . . . ,ak−1}. This means that when we row
reduce the matrix

[
a1 · · · ak−1 ak

]
there will be a pivot in the last

column. But when we use the same row operations on A, it gives that the kth
column of A is a pivot column.

Conversely, suppose that the kth column of A is a pivot column. By Propo-
sition 1.2.4 this means that row reducing the matrix

[
a1 · · · ak−1 ak

]
will yield a pivot in the last column. But then ak 6∈ Span{a1, . . . ,ak−1}. �

1.4 Matrix Vector Product and the Equation Ax = b

We define the product of a matrix and a vector as follows. Given are A =

[
a1 · · · an

]
and x =

x1...
xn

. Thus aj denotes the jth column of A. We

define
Ax := x1a1 + · · ·+ xnan. (1.18)

Alternatively, if we write

A =

a11 · · · a1n
...

...
am1 · · · amn

 ,
then

Ax := x1

a11...
am1

+ x2

a12...
am2

+ · · ·+ xn

a1n...
amn

 =


∑n
j=1 a1jxj

...∑n
j=1 amjxj

 .
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For example,

 1 9
−2 −5
−1 4

[ 2
−3

]
=

−25
11
−14

 ,


2 −2 −1 7 1 1
1 −1 −1 6 −5 4
0 0 1 −1 3 −3
1 −1 0 3 1 0




1
−2
0
3
0
0

 =


27
21
−3
12

 .

It is clear from (1.18) that Ax is a linear combination of the columns a1, . . . ,an
of A. In other words, Ax ∈ Span {a1, . . . ,an}. An important equation in
Linear Algebra is the equation Ax = b, where we are looking for a solution
vector x. We observe that this equation has a solution if and only if b is a
linear combination of the columns a1, . . . ,an of A. The equation Ax = 0,
where the right hand side is the zero vector, is called a homogeneous linear
equation. A homogeneous equation always has at least one solution (namely,
x = 0).

It is easy to check that the matrix vector product satisfies the following rules.

Proposition 1.4.1. Let A be an m × n matrix, u,v ∈ Rn, and c ∈ R.
Then

(i) A(u + v) = Au +Av.

(ii) A(cu) = c(Au).

Proof. We have

A(u + v) = (u1 + v1)a1 + · · ·+ (un + vn)an.

Using the second distributive law and subsequently the commutativity of ad-
dition, we can rewrite this as

u1a1 + v1a1 + · · ·+ unan + vnan = u1a1 + · · ·+ unan + v1a1 + · · ·+ vnan.

The latter is equal to Au+Av, proving (i). It should be noted that we also used
the associative law since we added several vectors together without specifying
in which order to add them. Due to the associative law, any order in which
you add several vectors gives the same result.

We will leave the proof of (ii) as an exercise. �

Let us put this new concept to good use in what we have done before.
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Example 1.4.2. Consider the system
2x1 − 2x2 − x3 + 7x4 = 1,
x1 − x2 − x3 + 6x4 = 0,

x3 − x4 = 1,
x1 − x2 + 3x4 = 1.

(1.19)

If we let

A =


2 −2 −1 7
1 −1 −1 6
0 0 1 −1
1 −1 0 3

 ,x =


x1
x2
x3
x4

 ,b =


1
0
1
1

 ,
Then (1.19) is the equation Ax = b. How does one find all solutions x?

Put the corresponding augmented matrix in reduced row echelon form:

[
A b

]
=


2 −2 −1 7 1
1 −1 −1 6 0
0 0 1 −1 1
1 −1 0 3 1

→ · · · →


1 −1 0 0 1

0 0 1 0 1

0 0 0 1 0
0 0 0 0 0

 .
This gives that x2 is a free variable, and we find

x1 = 1 + x2
x2 = x2 (free variable)
x3 = 1
x4 = 0

or


x1
x2
x3
x4

 =


1
0
1
0

+ x2


1
1
0
0

 .
Thus the set of solutions is given byx =


1
0
1
0

+ x2


1
1
0
0

 : x2 ∈ R

 .

�

If we let p =


1
0
1
0

 and v = x2


1
1
0
0

, then one easily checks that Ap = b and

Av = 0. We refer to p as a particular solution of the equation Ax = b, and
to v as a solution to the homogeneous equation Ax = 0. We see that any
solution to Ax = b is of the form x = p+ v. This is a general principle as we
now state in the next proposition.
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Proposition 1.4.3. Let A be an m× n matrix and b ∈ Rm. Consider the
equation Ax = b, where x ∈ Rn is unknown.

(i) If p is a particular solution of Ax = b and v is a solution of the
homogeneous equation Ax = 0, then p + v is a solution of Ax = b.

(ii) If p1 and p2 are particular solutions of Ax = b, then p1 − p2 is a
solution to the homogeneous equation Ax = 0.

Proof. (i) If Ap = b and Av = 0, then

A(p + v) = Ap +Av = b + 0 = b.

(ii) If Ap1 = b and Ap2 = b, then A(p1 − p2) = Ap1 −Ap2 = b− b = 0. �

The matrix vector equation Ax = b (or, equivalently, the system of linear
equations) is called consistent if a solution exists. If no solution exists, the
system is called inconsistent. For a consistent system there are two options:
there is exactly one solution, or there are infinitely many solutions. The result
is the following.

Theorem 1.4.4. Let A be an m × n matrix and b ∈ Rm. Consider the
equation Ax = b, where x ∈ Rn is unknown. There are three possibilities:

• The system is inconsistent. This happens when b is not a linear com-
bination of the columns of A.

• The system is consistent and there is a unique solution. This happens
when b is a linear combination of the columns of A, and Ax = 0 has
only 0 as its solution.

• The system is consistent and there are infinitely many solutions. This
happens when b is a linear combination of the columns of A, and Ax =
0 has a nonzero solution.

Proof. It is clear that consistency of the system corresponds exactly to b being
a linear combination of the columns of A. If there is a solution to Ax = b, then
there are two options: (i) Ax = 0 has only the solution x = 0. (ii) Ax = 0
has a solution x0 6= 0.

Assume (i), and let p1 and p2 be solutions to Ax = b. Then by Proposition
1.4.3(ii) we have that p1 − p2 is a solution to the homogeneous equation
Ax = 0. Since the only solution to the homogeneous equation is 0, we obtain
p1 − p2 = 0. Thus p1 = p2, yielding uniqueness of the solution to Ax = b.
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Next, assume (ii). Then for a particular solution p to Ax = b, we get that for
any c ∈ R, the vector p+ c x0 is also a solution to Ax = b. Thus Ax = b has
infinitely many solutions. �

Let us also summarize what we have seen previously regarding the span using
the new notation.

Theorem 1.4.5. Let A =
[
a1 · · · an

]
be a m×n matrix. The following

are equivalent.

1. For each b ∈ Rm the equation Ax = b has a solution.

2. Each b ∈ Rm is a linear combination of the columns of A.

3. Rm = Span {a1, . . . ,an} . (i.e., the columns of A span Rm.)

4. The echelon form of the coefficient matrix A has a pivot in every row.

Finally, let us introduce the identity matrix, which plays a special role in
multiplication. The n× n identity matrix is defined as

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
The entries in positions (i, i), i = 1, . . . , n, are all equal to 1, while the other
entries are all 0. We refer to the entries (i, i), i = 1, . . . , n, as the main
diagonal of the matrix. The identity matrix is the unique matrix with the
property that Inx = x for all x ∈ Rn. Note that indeed,

Inx = x1


1
0
...
0

+ x2


0
1
...
0

+ · · ·+ xn


0
0
...
1

 =


x1
x2
...
xn

 = x.

We will use the columns of the identity matrix often, so it is worthwhile to
introduce the notation

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 .
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1.5 How to Check Your Work

In Linear Algebra you are going to do a lot of matrix manipulations, and you
are likely to make some calculation errors. One fortunate thing about Linear
Algebra is that, in general, it is not a lot of work to check your work. Let us
start by describing how this can be done with row reduction.

Suppose we start with

A =


4 4 4 4 4 10
13 7 −5 −2 13 10
13 6 −8 1 24 15
3 2 0 1 4 5
7 6 4 5 8 15

 =
[
a1 · · · a6

]

and we work hard to compute its reduced row echelon form

B =


1 0 −2 0 4 0

0 1 3 0 −5 0

0 0 0 1 2 0

0 0 0 0 0 1
0 0 0 0 0 0

 =
[
b1 · · · b6

]
.

How can we get some confidence that we did it correctly? Well, it is easy to
see that the columns of B satisfy

b3 = −2b1 + 3b2 and b5 = 4b1 − 5b2 + 2b4.

The row operations do not change these linear relations between the columns,
so we must also have that

a3 = −2a1 + 3a2 and a5 = 4a1 − 5a2 + 2a4.

And, indeed
4
−5
−8
0
4

 = −2


4
13
13
3
7

+ 3


4
7
6
2
6

 ,


4
13
24
4
8

 = 4


4
13
13
3
7

− 5


4
7
6
2
6

+ 2


4
−2
1
1
5

 .

Next, suppose you are given

A =


8 9 −6 −1
4 7 2 −3
−3 0 9 −3
3 6 3 −3

 and b =


28
24
3
21

 .
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And you solve the equation Ax = b by finding the reduced row echelon form
of the augmented matrix

[
A b

]
=


8 9 −6 −1 28
4 7 2 −3 24
−3 0 9 −3 3
3 6 3 −3 21

→


1 0 −3 1 −1

0 1 2 −1 4
0 0 0 0 0
0 0 0 0 0

 .
And you find the solutions

x =


−1
4
0
0

+ x3


3
−2
1
0

+ x4


−1
1
0
1

 , where x3, x4 ∈ R are free.

How can you check your solution? Well, we need to have that

A


−1
4
0
0

 = b, A


3
−2
1
0

 = 0, A


−1
1
0
1

 = 0.

And, indeed 
8 9 −6 −1
4 7 2 −3
−3 0 9 −3
3 6 3 −3



−1
4
0
0

 =


28
24
3
21

 ,


8 9 −6 −1
4 7 2 −3
−3 0 9 −3
3 6 3 −3




3
−2
1
0

 = 0,


8 9 −6 −1
4 7 2 −3
−3 0 9 −3
3 6 3 −3



−1
1
0
1

 = 0.

In future problems there will also be ways to check your answers. It will be
useful to figure out these ways and use them.

1.6 Exercises

Exercise 1.6.1. Are the following matrices in row echelon form? In reduced
row echelon form?



24 Linear Algebra: What You Need to Know

(a)

1 0 3
0 1 4
0 0 0

.†

(b)

−2 −4 0 4 2
0 5 6 3 14
0 0 2 −6 6

.
(c)

1 0 0 5 2
0 1 0 −16 14
1 0 1 0 6

.

(d)


1 0 0 10 2
0 0 0 0 0
0 1 0 −3 5
0 0 1 2 1

.

(e)


0 1 0 −4 2
0 0 1 0 0
0 0 0 0 5
0 0 0 0 0

.
Exercise 1.6.2. Put the following matrices in reduced row echelon form.

(a)

1 1 3
2 1 4
2 2 6

.
(b)

−2 −4 0 −6 2
1 5 6 −6 14
−1 −1 2 −6 6

 .
(c) Explain how you can check your computations by hand‡.

Exercise 1.6.3. Determine whether the following systems of linear equations
are consistent, and if so find the set of all solutions.

(a)
{

2x1 + x2 = 1,
2x1 + 2x2 + x3 = 0.

(b)

x1 − x2 = 5,
x2 − x3 = 7,

x1 − x3 = 13.

†To check your answer using computer software, go for instance to live.sympy.org and
enter ‘A=Matrix(3, 3, [1, 0, 3, 0, 1, 4, 0, 0, 0])’ and next enter ‘A.is_echelon’.
‡To check your answer using computer software, go for instance to www.wolframalpha.

com and enter ‘row reduce {{2,−4, 0,−6, 2}, {1, 5, 6,−6, 14}, {−1,−1, 2,−6, 6}}’.

http://www.wolframalpha.com
http://www.wolframalpha.com
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(c)
{

2x1 − 2x2 − x3 = 2,
x1 − x2 − x3 = −1.

(d)

 x1 + x2 + x3 = 0,
3x1 + 2x2 + x3 = 0,
4x1 + 3x2 + 2x3 = 0.

(e)


2x1 − 2x2 − x3 + 11x4 = 1,
x1 − x2 − x3 + 6x4 = 4,

x3 − x4 = −7,
x1 − x2 + 5x4 = −3.

Exercise 1.6.4. Consider the system{
x1 + 2x2 = 5,
ax1 + bx2 = c.

(a) Draw the line x1 + 2x2 = 5 in R2.

(b) For which values of a, b, and c, does ax1 + bx2 = c give the same line as
x1 + 2x2 = 5?

(c) For which values of a, b, and c, does ax1 + bx2 = c give a line parallel to
x1 + 2x2 = 5, but not the same line?

(d) For which values of a, b, and c, does ax1+bx2 = c give a line that intersects
x1 + 2x2 = 5 at a point?

(e) For which values of a, b, and c, does the system have no solution, infinitely
many solutions, or a unique solution. How does this compare to the an-
swers under (b), (c) and (d)?

Exercise 1.6.5. Find all solutions to

 2 −1 2
−1 0 1
1 1 4

x1x2
x3

 =

 4
−1
6

.
Exercise 1.6.6. Find all solutions to the system whose augmented matrix is
given by  2 4 0 6

1 2 4 7
−1 −1 4 5

 .
Exercise 1.6.7. Prove the following rules for u,v ∈ Rn, and c, d ∈ R.

(a) u + v = v + u.

(b) c(u + v) = cu + cv.

(c) cu + du = (c+ d)u.
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Exercise 1.6.8. For the following write, if possible, b as a linear combination
of a1,a2, a3.

(a) a1 =


1
1
2
1

 ,a2 =


0
3
−1
−3

 ,a3 =


−1
2
−3
3

 ,b =


0
0
0
1

 .

(b) a1 =


1
1
2
1

 ,a2 =


0
3
3
−3

 ,a3 =


0
2
2
3

 ,b =


0
0
0
1

 .

(c) a1 =

 1
−2
0

 ,a2 =

−3
0
9

 ,a3 =

−1
−4
3

 ,b =

 0
−6
10

 .
Exercise 1.6.9. For the following, determine for which value(s) of h is b a
linear combination of a1 and a2?

(a) a1 =

 2
1
−1

 ,a2 =

 4
−3
−1

 ,b =

1
h
0

.
(b) a1 =

2
1
0

 ,a2 =

−4
3
2

 ,b =

2
6
h

 .
Exercise 1.6.10. For which h, k and m are there two free variables in the
general solution to the equation whose augmented matrix is given by1 4 1 5

2 k 2 10
h 8 2 m

 .
Exercise 1.6.11. For which h and k does the system described by the fol-
lowing augmented matrix have 0,1 and ∞ number of solutions?

A =

2 4 0 2
1 −2 h −1
0 −8 4 k

 .
Exercise 1.6.12. Compute the following products.

(a)
[
2 2
2 −10

] [
6
1

]
.
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(b)

 2 1 −1
−2 3 −2
7 5 −1

 1
2
−1

.§

(c)
[
1 1 0 −1
2 1 1 5

]
1
0
2
1

 .
Exercise 1.6.13. Prove that

A(cu) = cAu,

where A ∈ Rm×n, u ∈ Rn, and c ∈ R.

Exercise 1.6.14. Prove that

A(cu + dv) = cAu + dAv,

where A ∈ Rm×n, u,v ∈ Rn, and c, d ∈ R.

Exercise 1.6.15. Let −1 2 −3
2 −5 2
1 −4 −5

 .
Do the columns of A span R3?

Exercise 1.6.16. Do the following vectors span R3?1
2
0

 ,
−1
−1
1

 ,
0

1
1

 ,
−1

2
1

 .
Exercise 1.6.17. Let

a1 =

[
2
h

]
,a2 =

[
−4
10

]
.

For which value(s) of h do a1,a2 span R2?

Exercise 1.6.18.

For the following sets of vectors in R4, determine whether they span R4.

(a)


1
0
1
0

 ,


1
1
0
0

 ,


1
0
1
2

 ,


1
1
0
0

 ,


1
3
−2
0

 .
§You can check your answer using for instance sagecell.sagemath.org and enter ‘A =

matrix([ [2,1,-1], [-2,3,-2], [7,5,-1] ])’ and ‘v=vector([1,2,-1])’ and ‘A*v’, and hit Evaluate.
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(b)


5
−1
1
2

 ,


1
7
3
−4

 ,


10
0
2
2

 ,


1
0
1
0

 .

(c)


4
−1
1
2

 ,


1
8
−3
−5

 ,


9
−3
0
2

 .
Exercise 1.6.19. True or False? Justify each answer.

(i) A homogeneous system of 4 linear equations with 5 unknowns always
has infinitely many solutions.

(ii) If x̂, x̃ are two solutions to the equation Ax = b, then x̂− x̃ is a solution
to the homogeneous equation Ax = 0.

(iii) A system with fewer linear equations than variables has always a solu-
tion.

(iv) If both vectors x1 and x2 are solutions to the equation Ax = b, then
1
2 (x1 + x2) is also a solution to Ax = b.

(v) The system Ax = 0 always has a solution.

(vi) A system with more linear equations than variables does not have a
solution.

(vii) A consistent system of 4 equations with 3 unknowns can have infinitely
many solutions.

(viii) If A =
[
a1 · · · a4

]
, has reduced row echelon form

1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

 ,
then a1 = a2 and a3 = a4.

(ix) If the columns of them×n matrix A span Rm, then the equation Ax = b
with b ∈ Rm always has a solution.

(x) A system of 3 linear equations with 4 unknowns always has infinitely
many solutions.
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Exercise 1.6.20. In chemical equations the number of atoms of the reac-
tants and the products need to be balanced. Balancing chemical equations
comes down to solving a homogeneous system of linear equations. Consider
the reaction

C3H8 +O2 → H2O + CO2.

Let x1, x2, x3 and x4 be the coefficients (= the number of molecules) of C3H8,
O2, H2O, and CO2, respectively. The number of carbon (C), hydrogen (H),
and oxygen (O) atoms does not change in the chemical reaction. This leads
to the system 3x1 = x4,

8x1 = 2x3,
2x2 = x3 + 2x4.

Thus we find the equation Ax = 0, where x = (xi)
4
i=1 and

A =

3 0 0 −1
8 0 −2 0
0 2 −1 −2

 .
Solving the system we find solutions

x1
x2
x3
x4

 = x4


1/3
5/3
4/3
1

 .
Choosing x4 = 3 (to avoid fractions) we obtain x1 = 1, x2 = 5, x3 = 4, and
thus the balanced equation is

C3H8 + 5O2 → 4H2O + 3CO2.

Balance the following equations.

(a) KMnO4 +HCl→ KCl +MnCl2 +H2O + Cl2.

(b) C6H5COOH +O2 → CO2 +H2O.

Exercise 1.6.21. Systems of linear equations appear in analyzing electrical
circuits. We illustrate this using the electrical circuit in Figure 1.1, which
has resisters and voltage sources. We will set up equations for the currents
(indicated by Ij) that flow through the system. We need the following physics
laws.

• Kirchoff’s first law: at each node the incoming and outgoing current is the
same. For instance, at node C we have incoming current I1 + (I2− I1) and
outgoing current I2, which are indeed equal.
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Figure 1.1: An electrical circuit with three loops.

• Kirchhoff’s second law: in any closed loop network, the sum of all the
voltage drops around a loop equals zero.

• Ohm’s law: the current (I in Ampere) through an electrical conductor is
directly proportional to the voltage drop (V in Volt). This proportionality
is indicated by the resistance R in Ohm. In other words, V = IR.

If we apply this to the loop ABCD in Figure 1.1, we obtain that

−4 + 2I1 + 2(−I2 + I1) + 4I1 = 0.

Indeed, going from A to B, the voltage increases by 4, and thus the voltage
drop is −4. Going from B to C the voltage drop is 2I1 as current I1 flows
through the resister with resistance 2 Ohm. From C to D we have that the
current −(I2 − I1) flows through a resister of 2 Ohm. Finally from D to A we
have the current I1 flows through a resister of 4 Ohm. The loop CEFD gives

3I2 + 2(I2 − I3) + I2 + 2(I2 − I1) = 0,

and finally the loop EGHF gives

5I3 − 5 + 2I3 + 2(I3 − I2) = 0.

Thus we arrive at the system 8 −2 0
−2 8 −2
0 −2 9

I1I2
I3

 =

4
0
5

 .
Using our favorite electronic computational software, we find I1 = 73

127 , I2 =
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Figure 1.2: An electrical circuit with four loops.

38
127 , and I3 = 79

127 . With A as the reference node, we find the voltages (relative
to the voltage at A; thus VA = 0),

VB = 4, VC =
362

127
, VE =

248

127
, VG =

−147

127
, VH =

488

127
, VF =

330

127
, VD =

292

127
.

(a) Set up the equations for the circuit in Figure 1.2.

(b) For Figure 1.2 compute the currents Ij , j = 1, . . . , 4, and the voltages at
the nodes.
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2.1 Subspaces in Rn

We introduced addition and scalar multiplication as operations on vectors.
Nonempty subsets of Rn that are closed under these operations are called
subspaces. Here is the definition.

Definition 2.1.1. A set S ⊆ Rn is called a subspace of Rn if

(i) S 6= ∅,

(ii) u,v ∈ S and c, d ∈ R imply cu + dv ∈ S.

It is easy to see that any subspace must contain the zero vector. Indeed, since
S is not empty it contains an element u. But then by (ii), we must have
that 0 = 0u + 0u ∈ S. Also, one can check condition (ii) in two steps, by
checking closure for addition and closure for scalar multiplication separately.
We summarize these observations in the following proposition.

Proposition 2.1.2. A subset S of Rn is a subspace of Rn if and only if

1. 0 ∈ S,

2. if u,v ∈ S, then u + v ∈ S (closure under addition),

33
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3. if c ∈ R and u ∈ S, then cu ∈ S (closure under scalar multiplication).

Let us look at a few examples.

Example 2.1.3. Let S =

{[
x1
x2

]
: x1 = 2x2

}
. Is S a subspace of R2?

Clearly
[
0
0

]
∈ S, since 0 = 2 · 0. Next, suppose that x =

[
x1
x2

]
∈ S and

y =

[
y1
y2

]
∈ S. Then x1 = 2x2 and y1 = 2y2. If we let c, d ∈ R, then

cx + dy =

[
cx1 + dy1
cx2 + dy2

]
.

Since 2(cx2 + dy2) = c(2x2) + d(2y2) = cx1 + dy1, we get that cx + dy ∈ S.
Thus S satisfies (i) and (ii) in the definition, giving that S is a subspace of
R2. �

Example 2.1.4. Let S =

{[
x1
x2

]
: x1 = x22

}
. Is S a subspace of R2?

Clearly
[
0
0

]
∈ S, since 0 = 02. Next, suppose that x =

[
x1
x2

]
∈ S and y =[

y1
y2

]
∈ S. Then x1 = x22 and y1 = y22 . If we let c, d ∈ R, then

cx + dy =

[
cx1 + dy1
cx2 + dy2

]
.

Now (cx2 + dy2)2 = c2x22 + 2cdx2y2 + d2y22 = c2x1 + 2cdx2y2 + d2y1, but
does this necessarily equal cx1 + dy1? The answer is no. So let us look for
vectors x,y ∈ S and c, d ∈ R where rule (ii) fails. We can take for instance

x =

[
1
1

]
= y ∈ S and c = 2, d = 0. Then

cx + dy =

[
2
2

]
6∈ S,

because 2 6= 22. Thus rule (ii) fails. Consequently, S is not a subspace. �

It is important that if a general rule (a ‘for all’ statement) fails to give a
specific example where it goes wrong, as was done in the last example. We
call this a counter example.

Example 2.1.5. Let S =
{
x ∈ R3 : x1 + 2x2 − 4x3 = 0

}
. Is S a subspace of

R3?
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Clearly 0 ∈ S, since 0 + 2 · 0 − 4 · 0 = 0. Next, suppose that x,y ∈ S. Then
x1 + 2x2 − 4x3 = 0 and y1 + 2y2 − 4y3 = 0. If we let c, d ∈ R, then

cx + dy =

cx1 + dy1
cx2 + dy2
cx3 + dy3

 .
To check whether cx + dy ∈ S we calculate

cx1 + dy1 + 2(cx2 + dy2)− 4(cx3 + dy3) =

c(x1 + 2x2 − 4x3) + d(y1 + 2y2 − 4y3) = c · 0 + d · 0 = 0.

Thus cx + dy ∈ S, and we can conclude that S is a subspace of R3. �

It is not hard to see that the subspace in Example 2.1.3 is Span

{[
2
1

]}
, and

that the subspace in Example 2.1.5 is Span


−2

1
0

 ,
4

0
1

. In fact, as the

next result shows, any span is a subspace.

Theorem 2.1.6. For v1, . . . ,vp ∈ Rn, we have that S = Span {v1, . . . ,vp}
is a subspace of Rn.

Proof. (i) Clearly 0 ∈ S as c1 = · · · = cp = 0 gives
∑p
i=1 civi = 0; thus

S 6= ∅. (ii) For u = c1v1 + · · ·+ cpvp,v = d1v1 + · · ·+ dpvp ∈ S,

αu + βv = α(c1v1 + · · ·+ cpvp) + β(d1v1 + · · ·+ dpvp) =

(αc1 + βd1)v1 + · · ·+ (αcp + βdp)vp,

and thus u,v ∈ S and α, β ∈ R imply αu + βv ∈ S. �

Given two subspaces U and W of Rn, we introduce

U +W := {v ∈ Rn : there exist u ∈ U and w ∈W so that v = u + w} ,

U ∩W := {v ∈ Rn : v ∈ U and v ∈W} .

Proposition 2.1.7. Given two subspaces U and W of Rn, then U + W
and U ∩W are also subspaces of Rn.

Proof. Clearly 0 = 0 + 0 ∈ U +W as 0 ∈ U and 0 ∈ W . Let v, v̂ ∈ U +W
and c ∈ R. Then there exist u, û ∈ U and w, ŵ ∈ W so that v = u + w and
v̂ = û + ŵ. Then v + v̂ = (u + w) + (û + ŵ) = (u + û) + (w + ŵ) ∈ U +W ,
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since u+ û ∈ U and w + ŵ ∈W . Also cv = c(u+w) = cu+ cw ∈ U +W as
cu ∈ U and cw ∈W . This proves that U +W is a subspace.

As 0 ∈ U and 0 ∈ W , we have that 0 ∈ U ∩ W . Next, let v, v̂ ∈ U ∩ W
and c ∈ R. Then v, v̂ ∈ U , and since U is a subspace, we have v + v̂ ∈ U .
Similarly, v + v̂ ∈ W . Thus v + v̂ ∈ U ∩W . Finally, since v ∈ U and U is a
subspace, cv ∈ U . Similarly, cv ∈W . Thus cv ∈ U ∩W . �

When U ∩W = {0}, then we refer to U +W as a direct sum of U and W ,
and write U+̇W .

2.2 Column Space, Row Space and Null Space of a Ma-
trix

We define the column space of a matrix A to be the span of the columns of
A. We use the notation Col A. For example,

Col

 1 3
4 −2
−3 6

 = Span


 1

4
−3

 ,
 3
−2
6

 ⊆ R3.

As the span of vectors form a subspace, we obtain the following result.

Corollary 2.2.1. If A is m× n, then Col A is a subspace of Rm.

We define the row space of a matrix A to be the span of the rows of A. We
use the notation Row A. For example,

Row

 1 3
4 −2
−3 6

 = Span
{[

1 3
]
,
[
4 −2

]
,
[
−3 6

]}
⊆ R1×2.

In the same way the span of column vectors form a subspace, the span of row
vectors form a subspace. We thus obtain:

Corollary 2.2.2. If A is m× n, then Row A is a subspace of R1×n.

We define the null space of a m× n matrix A by

Nul A = {x ∈ Rn : Ax = 0} .

Let us do an example.
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Example 2.2.3. Let us determine the null space of A =

[
1 3 4 7
3 9 7 6

]
. We

start with row reduction of the augmented matrix:[
1 3 4 7 0
3 9 7 6 0

]
→ · · · →

[
1 3 0 −5 0

0 0 1 3 0

]
.

Thus we find
x1 = −3x2 + 5x4
x2 = x2 (free variable)
x3 = −3x4
x4 = x4 (free variable)

or


x1
x2
x3
x4

 = x2


−3
1
0
0

+ x4


5
0
−3
1

 .
Thus

Nul A = Span



−3
1
0
0

 ,


5
0
−3
1


 .

�

Notice that in the row reduction, the augmented part will always stay all
zeros. Thus we often do not write the augmented part (and just remember in
our head that it is there). That is what we were referring to in Interpretation
3 of Section 1.1.

As another example, Nul

1 1
1 1
1 1

 =

{
x2

[
−1
1

]
: x2 ∈ R

}
= Span

{[
−1
1

]}
.

In the above examples the null space of an m×n matrix is the span of vectors
in Rn, and thus a subspace of Rn. This is true in general.

Theorem 2.2.4. If A is m× n, then Nul A is a subspace of Rn.

Proof. (i) First note that 0 ∈ Nul A, since A0 = 0. In particular, Nul A 6= ∅.

(ii) Let x,y ∈ Nul A and α, β ∈ R be arbitrary. Then Ax = 0 and Ay = 0.
But then

A(αx + βy) = αAx + βAy = α0 + β0 = 0,

and thus αx + βy ∈ Nul A. �

It can happen that the null space of a matrix only consists of the zero vector
0. Let us look at such an example.
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Example 2.2.5. Let us determine the null space of A =


1 0 1
2 1 1
3 0 −2
1 2 3

.
We start with row reduction of A:

1 0 1
2 1 1
3 0 −2
1 2 3

→


1 0 1

0 1 −1
0 0 −5
0 2 2

→


1 0 1

0 1 −1

0 0 −5

0 0 4

 .
We can continue the row reduction, but we do not have to: we can already see
what is happening. The third row gives that −5x3 = 0 (remember that the
augmented part is 0), thus x3 = 0. The second row states x2 − x3 = 0, and
thus x2 = x3 = 0. The first row gives x1 + x3 = 0, thus x1 = −x3 = 0. So the
only solution of Ax = 0 is

x =

x1x2
x3

 =

0
0
0

 = 0 ∈ R3.

Thus Nul A = {0}. �

Why does it work out this way? Because there is a pivot in every column of
the echelon form of A. As we will see in the next section, we will say in case
when Nul A = {0} that the columns of A are linearly independent.

The column space, the row space and the null space are important subspaces
associated with a matrix. Let us see how the process of row reduction affects
these spaces.

Theorem 2.2.6. Let A be a m× n matrix, and let B be obtained from A
by elementary row operations. Then

(i) Row A = Row B,

(ii) Nul A = Nul B,

but

(iii) Col A 6= Col B, in general.

Proof. (i) When we do elementary row operations, we either switch rows,
replace row(i) by row(i) + α row(k), i 6= k, or multiply a row by a nonzero
scalar. None of these operations change the row space.

(ii) In Chapter 1 we have seen that elementary row reductions do not change
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the set of solutions of the system. For the null space we solve the system
Ax = 0, which has the same solution set as Bx = 0.

(iii) Here it suffices to come up with an example. Let us take A =

[
1
1

]
. Then

Col A = Span

{[
1
1

]}
. Row reducing the matrix A, we get the matrix B =

[
1
0

]
.

Then Col B = Span

{[
1
0

]}
. Clearly , Col A 6= Col B. �

While row reducing changes the column space, there is still some use in doing
the row reductions when we are interested in the column space. Let us consider
the following matrix and its reduced row echelon form

A =
[
a1 · · · a4

]
=

1 3 4 7
3 9 7 6
1 3 4 7

→ · · · →
 1 3 0 −5

0 0 1 3
0 0 0 0

 .
From the reduced row echelon form we can see that a2 = 3a1 and a4 =
−5a1 + 3a3. Thus Col A equals

Span {a1,a2,a3,a4} = Span {a1, 3a1,a3,−5a1 + 3a3} = Span {a1,a3} ,

since a2 = 3a1 and a4 = −5a1 + 3a3 are in Span {a1,a3}. We now find that

Col A = Span


1

3
1

 ,
4

7
4

 .

So, if we are interested in finding the fewest number of vectors that span the
column space, the reduced row echelon form is helpful. We will be using this
when we are talking about finding a basis for the column space.

2.3 Linear Independence

Definition 2.3.1. A set of vectors {v1, . . . ,vk} in Rn is said to be linearly
independent if the vector equation

x1v1 + · · ·+ xkvk = 0

only has the solution x1 = x2 = · · · = xk = 0 (the trivial solution). If a
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set of vectors is not linearly independent, then the set of vectors is called
linearly dependent.

Let us do some examples.

Example 2.3.2. Is 


1
−5
3
1

 ,


1
4
−3
0

 ,


1
−2
0
3




linearly independent or dependent?
Let us row reduce the matrix

A =


1 1 1
−5 4 −2
3 −3 0
1 0 3

→


1 1 1
0 9 3
0 −6 −3
0 −1 2

→


1 1 1

0 1 −2

0 0 −15

0 0 21

 .
We are interested in solving Ax = 0. The third row gives that −15x3 = 0,
thus x3 = 0. The second row states x2− 2x3 = 0, and thus x2 = 2x3 = 0. The
first row gives x1 + x2 + x3 = 0, thus x1 = −x2− x3 = 0. So the only solution
of Ax = 0 is x = 0. Thus the columns of A are linearly independent. �

Example 2.3.3. Is 
0

2
2

 ,
 1
−2
0

 ,
 3
−4
2


linearly independent or dependent?
Let us row reduce the matrix

A =

0 1 3
2 −2 −4
2 0 2

→
 2 0 2

0 −2 −6
0 1 3

→
 1 0 1

0 1 3
0 0 0

 .
We see that a3 = a1 + 3a2. Thus the columns of A are linearly dependent.
Indeed,

x1

0
2
2

+ x2

 1
−2
0

+ x3

 3
−4
2

 = 0

when x1 = 1, x2 = 3, and x3 = −1. Thus the vector equation has a non-trivial
solution, and the vectors are linearly dependent. �

The difference in the above examples is that in Example 2.3.2 all the columns
in the matrix A are pivot columns, while in Example 2.3.3 not all columns in
A are pivot columns. This is a general principle. We have the following result.
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Theorem 2.3.4. Let {a1, . . . ,ak} be vectors in Rn. Put A =[
a1 · · · ak

]
. The following are equivalent.

(i) The set {a1, . . . ,ak} is linearly independent.

(ii) The homogeneous equation Ax = 0 only has the solution x = 0.

(iii) Nul A = {0}.

(iv) Every column of A is a pivot column. That is, in the row (reduced)
echelon form of A every column has a pivot.

Proof. (i)↔(ii)↔(iii). The equation Ax = 0 is the same as the equation

x1a1 + · · ·+ xkak = 0. (2.1)

Thus (2.1) having the only solution x1 = · · · = xk = 0 is the same as Ax = 0
only having the solution x = 0. Next, Nul A consists of all solution of Ax = 0,
and thus Nul A = {0} is exactly the statement that Ax = 0 only has the
solution x = 0.

(ii)→(iv). If Ax = 0 only has the solution x = 0, then there can not be any
free variables, and thus all the columns of A are pivot columns.

(iv)→(ii). If all the columns of A are pivot columns, then there are no free
variables and thus Ax = 0 has the unique solution x = 0. �

Corollary 2.3.5. Consider a set of vectors {v1, . . . ,vk} in Rn. If k > n,
then {v1, . . . ,vk} is necessarily linearly dependent.

Proof. If k > n, the matrix
[
v1 · · · vk

]
has more columns than rows, so

not all columns are pivot columns. �

We can refine the statement of Theorem 2.3.4 as follows.

Theorem 2.3.6. Any set of pivot columns of a matrix is linearly indepen-
dent.

Proof. Let B be a matrix consisting columns i1, . . . , ik of A, which are pivot
columns of A. Let us perform a row operations on A and get the matrix C, and
perform the same row operations onB and get the matrixD. Then Proposition
1.2.4 yields that D is obtained from C by taking columns i1, . . . , ik from C.
But then it follows that the reduced row echelon form of B has a pivot in every
column. Thus by Theorem 2.3.4 the columns of B are linearly independent. �
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2.4 Basis

We have already seen that the span of a set of vectors is a subspace. In this
section we are interested in finding a minimal number of vectors that span a
given subspace. The key to this is to add the condition of linear independence.
This leads to the notion of a basis.

Definition 2.4.1. A set of vectors {v1, . . . ,vp} is a basis for a subspace
H if

1. the vectors span H, i.e., H = Span {v1, . . . ,vp}, and

2. the set {v1, . . . ,vp} is linearly independent.

Let us revisit an earlier example.

Example 2.4.2. Let

A =
[
a1 · · · a4

]
=

1 3 4 7
3 9 7 6
1 3 4 7

 .
The reduced row echelon form of A is 1 3 0 −5

0 0 1 3
0 0 0 0

 .
From the reduced row echelon form we can see that a2 = 3a1 and a4 =
−5a1 + 3a3. Thus Col A equals

Span {a1,a2,a3,a4} = Span {a1, 3a1,a3,−5a1 + 3a3} = Span {a1,a3} ,

since a2 = 3a1 and a4 = −5a1 + 3a3 are in Span {a1,a3}. We now find that

Col A = Span


1

3
1

 ,
4

7
4

 .

These two vectors are linearly independent due to Theorem 2.3.6, as they are
pivot columns of A. Thus 

1
3
1

 ,
4

7
4


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is a basis for Col A.

Next, solving Ax = 0 we obtain

Nul A = Span



−3
1
0
0

 ,


5
0
−3
1


 .

These two vectors are linearly independent, as

c1


−3
1
0
0

+ c2


5
0
−3
1

 = 0 ⇒


· · ·

c1 = 0,
· · ·

c2 = 0.

Thus 

−3
1
0
0

 ,


5
0
−3
1




is a basis for Nul A.

Finally, from the reduced row echelon form we can immediately see that{[
1 3 0 −5

]
,
[
0 0 1 3

]}
is a basis for Row A. Indeed by Theorem 2.2.6(i) they span the rowspace of
A, and the equation

c1
[
1 3 0 −5

]
+ c2

[
0 0 1 3

]
=
[
0 0 0 0

]
yields in the first and third component that c1 = 0 and c2 = 0. Thus these
two row vectors are linearly independent. �

A subspace W has in general many different bases. However, each basis of W
always has the same number of vectors. We will prove this soon. First we need
the following result.

Proposition 2.4.3. Let B = {v1, . . . ,vn} be a basis for the subspace W ,
and let C = {w1, . . . ,wm} be a set of vectors in W with m > n. Then C is
linearly dependent.

Proof. As B is a basis, we can express each wj as a linear combination of
elements of B:

wj = a1jv1 + · · ·+ anjvn, j = 1, . . . ,m.
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The matrix A = (aij)
n m
i=1,j=1 has more columns than rows (and thus a non-

pivot column), so the equation Ac = 0 has a nontrivial solution c =

 c1...
cm

 6=
0. But then it follows that

m∑
j=1

cjwj =

m∑
j=1

[cj

n∑
i=1

aijvi)] =

n∑
i=1

(

m∑
j=1

aijcj)vi =

n∑
i=1

0vi = 0.

Thus a nontrivial linear combination of elements of C equals 0, and thus C is
linearly dependent. �

Theorem 2.4.4. Let B = {v1, . . . ,vn} and C = {w1, . . . ,wm} be bases
for the subspace W . Then n = m.

Proof. Suppose that n 6= m. If m > n it follows by Proposition 2.4.3 that C
is linearly dependent. But then C is not a basis. Contradiction. Similarly, if
n > m we obtain a contradiction. Thus m = n. �

Definition 2.4.5. For a subspace W , we define its dimension (notation:
dim W ) to be the number of elements in a basis for W . The ‘trivial’ sub-
space H = {0} has, by definition, dimension 0.

Corollary 2.4.6. Suppose that Ŵ ⊆W for subspaces Ŵ and W both with
dimension n. Then W = Ŵ .

Proof. If Ŵ 6= W , then there exists a w ∈ W with w 6∈ Ŵ . Let B =
{v1, . . . ,vn} be a basis for Ŵ . But now {w,v1, . . . ,vn} ⊂ W is linearly
independent (see Exercise 2.6.8). But since, dimW = n, due to Proposition
2.4.3 there can not be n+1 linearly independent vectors in W . Contradiction.
Thus Ŵ = W . �

Example 2.4.7. The vectors

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 ,
form a basis for Rn. Thus dim Rn = n. We call this the standard basis for
Rn. �
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Example 2.4.2 is representative of what is true in general regarding the di-
mension and bases of the column, null, and row space of a matrix. The result
is as follows.

Theorem 2.4.8. Let A be an m× n matrix. Then

(i) The pivot columns of A form a basis for Col A.

(ii) dim Col A is equal to the number of pivot columns of A.

(iii) The dimension of the null space of A equals the number of free vari-
ables in the equation Ax = 0; that is, dim Nul A is equal to the
number of non-pivot columns of A.

(iv) dim Col A+ dim Nul A = n = the number of columns of A.

(v) The nonzero columns in the reduced row echelon form of A form a
basis for Row A.

(vi) dim Row A = dim Col A.

Proof. (i) The non-pivot columns of A are linear combinations of the pivot
columns, so the span of the columns of A is not changed by removing the
non-pivot columns. By Theorem 2.3.6 the pivot columns of A are linearly
independent, showing that they form a basis for Col A.

(ii) follows directly from (i).

(iii) In solving the equation Ax = 0, the free variables correspond to the non-
pivot columns, which are columns j1, . . . , jr, say. Then the general solution is
given by x =

∑r
s=1 xjsfs for certain vectors f1, . . . fr. The vector fs has a 1 in

position js and zeros in the positions jl for l 6= s. Thus it is easy to see that
{f1, . . . fr} is linearly independent. But then {f1, . . . fr} is a basis for Nul A.
Thus dim Nul A = r = the number of non-pivot columns of A.

(iv) follows as every column of A is either a pivot column or a non-pivot
column.

(v) By Theorem 2.2.6(i) the nonzero rows of the reduced row echelon form of
A span Row A. These rows are easily seen to be linearly independent since
in the pivot columns exactly one of them has a 1 and the others have a zero.
Thus they form a basis for Row A.

(vi) Since the number of pivots equals both dim Col A and dim Row A,
equality follows. �
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We define the rank of a matrix A as the dimension of the column space of A:

rank A := dim Col A.

Theorem 2.4.8(iv) gives the following.

Corollary 2.4.9. (The rank theorem)

rank A+ dim Nul A = the number of columns of A.

The dimension of the null space is sometimes also called the nullity; that is

nullity (A) := dim Nul A.

Thus one may restate the rank theorem as

rank A+ nullity A = the number of columns of A.

Let us next do an example involving the sum and intersection of two subspaces.

Example 2.4.10. Consider the following subspaces of Rn:

U = Span




1
0
2
1

 ,


1
1
1
1


 ,W = Span




4
2
2
0

 ,


2
0
2
0


 .

Find bases for U ∩W and U +W .

Vectors in U ∩W are of the form

x1


1
0
2
1

+ x2


1
1
1
1

 = x3


4
2
2
0

+ x4


2
0
2
0

 . (2.2)

Setting up the homogeneous system of linear equations, and subsequently row
reducing, we get

1 1 −4 −2
0 1 −2 0
2 1 −2 −2
1 1 0 0

→


1 1 −4 −2
0 1 −2 0
0 −1 6 2
0 0 4 2

→


1 1 −4 −2
0 1 −2 0
0 0 4 2
0 0 0 0

 .
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This gives that x4 is free and x3 = −x4

2 . Plugging this into the right-hand
side of (2.2) gives

−x4
2


4
2
2
0

+ x4


2
0
2
0

 = x4


0
−1
1
0


as a typical element of U ∩W . So


0
−1
1
0




is a basis for U ∩W .

Notice that

U +W = Span




1
0
2
1

 ,


1
1
1
1

 ,


4
2
2
0

 ,


2
0
2
0


 .

From the row reductions above, we see that the fourth vector is a linear
combination of the first three, while the first three are linearly independent.
Thus a basis for U +W is 


1
0
2
1

 ,


1
1
1
1

 ,


4
2
2
0


 .

Notice that

dim(U +W ) = 3 = 2 + 2− 1 = dimU + dimW − dim(U ∩W ).

In Theorem 5.3.14 we will see that this holds in general.

�

2.5 Coordinate Systems

If you have a subspace H of Rm with dim H = n, then you can actually view
H as a copy of Rn. For example a plane in R3 can be viewed as a copy of R2.
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The process requires settling on a basis B for the subspace H. The statement
is as follows.

Theorem 2.5.1. Let B = {v1, . . . ,vn} be a basis for the subspace H. Then
for each v ∈ H there exists unique c1, . . . , cn ∈ R so that

v = c1v1 + · · ·+ cnvn. (2.3)

Proof. Let v ∈ H. As Span B = H, we have that v = c1v1 + · · · + cnvn for
some c1, . . . , cn ∈ R. Suppose that we also have v = d1v1 + · · · + dnvn for
some d1, . . . , dn ∈ R. Then

0 = v − v =

n∑
j=1

cjvj −
n∑
j=1

djvj = (c1 − d1)v1 + · · ·+ (cn − dn)vn.

As {v1, . . . ,vn} is linearly independent, we must have c1 − d1 = 0, . . . , cn −
dn = 0. This yields c1 = d1, . . . , cn = dn, giving uniqueness. �

When (2.3) holds, we say that c1, . . . , cn are the coordinates of v relative
to the basis B, and we write

[v]B =

c1...
cn

 .
Thus, when B = {v1, . . . ,vn} we have

v = c1v1 + · · ·+ cnvn ⇔ [v]B =

c1...
cn

 . (2.4)

Example 2.5.2. The vectors v1 =

[
1
1

]
,v2 =

[
1
−1

]
form a basis B of R2. Let

v =

[
7
1

]
. Find [v]B =

[
c1
c2

]
.

Thus we need to solve the system

c1

[
1
1

]
+ c2

[
1
−1

]
=

[
7
1

]
.

We do this by row reducing the augmented matrix[
1 1 7
1 −1 1

]
→
[
1 1 7
0 −2 −6

]
→
[
1 1 7
0 1 3

]
→
[
1 0 4
0 1 3

]
,
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which gives that [v]B =

[
4
3

]
. You can see below that to get to v one makes 4

steps in the direction of v1 and then 3 steps in the direction of v2.

0

v1

v2

v = 4v1 + 3v2

Figure 2.1: Illustration of a basis in R2.

�

Example 2.5.3. Let H = Span B and v be given by

B =




1
1
1
0

 ,


1
2
3
0

 ,


1
3
6
1


 ,v =


3
5
8
1

 . Find [v]B =

c1c2
c3

 =?

We need to solve for c1, c2, c3 in

c1


1
1
1
0

+ c2


1
2
3
0

+ c3


1
3
6
1

 =


3
5
8
1

 .
Setting up the augmented matrix and row reducing gives

1 1 1 3
1 2 3 5
1 3 6 8
0 0 1 1

→


1 1 1 3
0 1 2 2
0 2 5 5
0 0 1 1

→
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1 1 1 3
0 1 2 2
0 0 1 1
0 0 1 1

→


1 0 0 2
0 1 0 0
0 0 1 1
0 0 0 0

 . Thus [v]B =

2
0
1

 .
�

Clearly, when v = c1v1 + · · · + cnvn, w = d1v1 + · · · + dnvn, then v + w =∑n
j=1(cj + dj)vj , and thus

[v + w]B =

c1 + d1
...

cn + dn

 = [v]B + [w]B.

Similarly,

[αv]B =

αc1...
αcn

 = α[v]B.

We conclude that adding two vectors in the n dimensional subspace H cor-
responds to adding their corresponding coordinate vectors (which are both
with respect to the basis B), and that multiplying a vector in H by a scalar
corresponds to multiplying the corresponding coordinate vector by the scalar.
Thus, if we represent every element in H by its coordinate vector with respect
to the basis B, we can treat the subspace H as a copy of Rn.

2.6 Exercises

Exercise 2.6.1. Draw the following subsets of R2 and explain why they are
not subspaces of R2.

(a)
{[
x1
x2

]
: x1x2 ≥ 0

}
.

(b)
{[
x1
x2

]
: x1 + 2x2 ≤ 0

}
.

(c)
{[
x1
x2

]
: |x1 + x2| ≤ 1

}
.

Exercise 2.6.2. For the following sets H prove or disprove that it is a sub-
space. When H is a subspace, find a basis for it.
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(a) H =


x1x2
x3

 : 2x1 − 3x2 + 5x3 = 0

 ⊂ R3.

(b) H =

{[
x1
x2

]
: x1 + x22 = 0

}
⊂ R2.

(c) H =


a− bb− c
c− a

 : a, b, c ∈ R

 ⊂ R3.

(d) H =


x1x2
x3

 : x1 + x2 = 0 = x2 + x3

 ⊂ R3.

(e) H =


x1x2
x3

 : x1 + x2 + x3 = 5

 ⊂ R3.

Exercise 2.6.3. Let U and W be subspaces of Rn.

(a) Give an example of subspaces U and W so that their union U ∪W is not
a subspace.

(b) Show that U ∪W is a subspace if and only if U ⊆W or W ⊆ U .

Exercise 2.6.4. For the following sets of vectors in R4, determine whether
they are linearly independent.

(a)


2
2
0
−1

 ,


3
0
2
1

 ,

−2
4
0
1

 ,

−1
2
1
0

 .

(b)


5
−1
1
2

 ,


1
7
3
−4

 ,


3
−15
−5
10

 .∗

(c)


1
0
1
0

 ,


1
1
−1
0

 ,


1
0
1
2

 ,


1
1
0
0

 ,


1
3
−2
0

 .
∗You can check www.wolframalpha.com for the answer by entering ‘Are (5, -1, 1, 2), (1,

7, 3, -4), and (3, -15, -5, 10) linearly independent?’ and hit ‘return’.

http://www.wolframalpha.com
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(d)


1
0
3
1

 ,


0
5
2
3

 ,


0
0
1
0

 ,


2
5
0
5

 .

(e)


1
−1
2
0

 ,

−2
−4
3
2

 ,


3
3
−1
−2

 .
Exercise 2.6.5. For which values of b is

{[
1
b

]
,

[
b+ 3
3b+ 4

]}
linearly indepen-

dent?

Exercise 2.6.6. If possible, provide a 4×6 matrix whose columns are linearly
independent. If this is not possible, explain why not.

Exercise 2.6.7. Suppose that {v1,v2,v3,v4} is linearly independent. For
the following sets, determine whether they are linearly independent or not.

(a) {v1,v2 + v3,v3,v4}.

(b) {v1 + v2,v2 + v3,v3 + v4,v4 + v1}.

(c) {v1 + v2,v2 − v3,v3 + v4,v4 − v1,v3 − v1}.

(d) {2v1 + v2,v1 + 2v3,v4 + 2v1}.

Exercise 2.6.8. Suppose that {v1, . . . ,vk} is linearly independent. Show
that {v1, . . . ,vk,vk+1} is linearly independent if and only if vk+1 6∈
Span{v1, . . . ,vk}.

Exercise 2.6.9. Is


1

2
0

 ,
3

5
3

 ,
0

1
2

 a basis for R3?

Exercise 2.6.10. For which value of c is the following set of vectors a basis
for R3? 

1
1
1

 ,
1

2
c

 ,
0

4
6

 .

Exercise 2.6.11. Find bases for the column space, row space and null space
of the following matrices. Provide also the rank of these matrices. For some
matrices the reduced row echelon form is given.

(a)

1 1 2
1 0 3
1 2 1

 .
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(b)

 0 0 3 −6 6
3 1 −7 8 −5
3 1 −9 12 −9

 .

(c)


1 1 0 1 0
2 2 0 2 0
0 0 1 2 0
0 0 2 4 5

→ · · · →


1 1 0 1 0
0 0 1 2 0
0 0 0 0 1
0 0 0 0 0

.

(d)


1 −1 1 1
−1 1 1 −1
1 −1 −1 1
−1 1 −1 −1

.

(e)

1 4 1 5
2 8 3 11
2 8 4 12

.

(f)


1 −1 −3 −12
0 4 5 19
1 3 2 7
−1 1 3 12
3 8 9 29

→ · · · →


1 0 0 −2
0 1 0 1
0 0 1 3
0 0 0 0
0 0 0 0

 .

(g)

 2 4 0 6
1 2 0 3
−1 −2 0 −4

 .†

(h)

1 0 6
3 4 9
1 4 −3

 .
(i)

 1 6 −3
0 1 2
0 0 0

 .‡
Exercise 2.6.12. For Exercise 2.6.11 determine the dimensions of the column,
null and row spaces, and check that the rank theorem is satisfied in all cases.

Exercise 2.6.13. Show that for a 5× 7 matrix A we have that Col A = R5

if and only if dim Nul A = 2.

Exercise 2.6.14. Construct a 2 × 3 rank 1 matrix A so that e2 ∈ Nul A.
What is the dimension of Nul A?

†You can check the row space basis by going to sagecell.sagemath.org and entering
‘A=matrix(RR, [ [2,4,0,6], [1,2,0,3], [-1,-2,0,4] ])’ and ‘A.row_space()’ and hit ‘Evaluate’. It
may give you a different basis than you have found.
‡You can check the null space basis by going to live.sympy.org and entering ‘A=Matrix(3,

3, [1, 6, -3, 0, 1, 2, 0, 0, 0])’ and ‘A.nullspace()’.
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Exercise 2.6.15. In this exercise we want to establish the uniqueness of
the reduced row echelon form, and observe that the row echelon form is not
unique. Let A be an m× n matrix.

(a) Observe that column k will be a pivot column if and only if ak 6∈
Span {a1, . . . ,ak−1} (use Proposition 1.3.6).

(b) Show that in the reduced row echelon form of A the jth column with a
pivot (counting from the left) will be equal to ej .

(c) Show that if al is not a pivot column of A, then it can be uniquely written
as al =

∑s
r=1 crajr , where aj1 , . . . ,ajs , j1 < · · · < js, are the pivot

columns to the left of al.

(d) Using the notation of part (c), show that in the reduced row echelon form
of A the lth column equals

∑s
r=1 crer.

(e) Conclude that the reduced row echelon form of A is uniquely determined
by A.

(f) Explain why the row echelon form of a nonzero matrix A is not unique
(Hint: One can multiply a nonzero row by 2 and still maintain the echelon
form).

Exercise 2.6.16. For the following bases B and vectors v, find the coordinate
vector [v]B.

(a) B =


1

1
1

 ,
1

2
3

 ,
1

3
6

, and v =

6
5
4

.
(b) B =

{[
1
3

]
,

[
2
5

]}
, and v =

[
0
3

]
.

Exercise 2.6.17. Let H ⊂ R4 be a subspace with basis

B =




1
0
2
0

 ,


0
1
2
3

 ,


1
0
−2
4


 .

(a) Determine dim H.

(b) If v ∈ H has the coordinate vector [v]B =

 1
−1
2

, then v is which vector

in R4?
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(c) Let w =


1
−1
0
−3

. Check whether w ∈ H, and if so, determine [w]B.

Exercise 2.6.18. Let the subspace H have a basis B = {v1,v2,v3,v4}. For
w = 3v1 + 10v3, determine [w]B.

Exercise 2.6.19. For the following subspaces U and W , determine dimU ,
dimW , dim(U +W ), and dim(U ∩W ).

(a) U = Span


 1
−1
2

 ,W = Span


0

3
2

 ⊆ R3.

(b) U = Span


 1
−1
2

 ,W = Span


 2
−2
4

 ⊆ R3.

(c) U = Span




1
0
3
2

 ,


0
2
−1
2


 ,W = Span




2
0
−3
0

 ,


1
2
2
2


 ⊆ R4.

(d) U = Span




1
0
3
2

 ,


0
2
−1
2


 ,W = Span




2
0
−3
0

 ,


1
2
2
4


 ⊆ R4.

Exercise 2.6.20. True or False? Justify each answer.

(i) If {v1,v2,v3} is linearly independent, then {v1,v2} is also linearly in-
dependent.

(ii) If the set {v1,v2} is linearly independent and the set {u1,u2} is linearly
independent, then the set {v1,v2,u1,u2} is linearly independent.

(iii) Let B =

{[
1
2

]
,

[
2
−1

]}
, which is a basis for R2, and let x =

[
−5
5

]
. Is

[x]B =

[
1
−3

]
?

(iv) For a matrix A we have dim Row A = dim Col A.

(v) The system Ax = 0 always has infinitely many solutions.

(vi) If A =

[
1 1 3
1 2 3

]
, then a basis for Col A is

{[
1
1

]}
.
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(vii) If A =

[
1 2 3
1 2 3

]
, then a basis for Col A is

{[
1
0

]}
.

(viii) If A is an 2×3 matrix, then there could be a vector that is both in Col A
and in Nul A.

(ix) If A is an 3×3 matrix, then there could be a vector that is both in Col A
and in Nul A.

(x) If the null space of a m × n matrix A has dimension n, then the zero
vector is the only vector in the column space of A.

Exercise 2.6.21. Minimal rank completion is a technique used by compa-
nies to try to guess their customers’ preferences for the companies’ products.
In this case we have a matrix with some unknowns in it (indicated by a ?);
we call this a partial matrix. An example of a partial matrix is

A =

[
−1 ? 0 ? 2
? 0 ? 1 −1

]
.

As an example, let us use Netflix where the company tries to guess your movie
preferences based on movies you have watched and possibly rated. The matrix
above could represent two customers (represented by rows) and five movies
(represented by columns). The numbers indicate how the customers rated the
movies compared to an average rating. Thus customer 1 rated movie 1 below
average (1 below average) and movie 5 above average (2 above average), etc.
Customer 1 did not watch movie 2 and movie 4. Customer 2 did not watch
movie 1 and movie 3. How to guess whether they will like the movies they
have not watched yet?

Netflix put out a challenge in 2006 to win one million dollars for those who
could improve on Netflix’s algorithm by 10% (for details, look for ‘Netflix
challenge’ or ‘Netflix prize’). Part of the prize winning idea was to use minimal
rank completions. Given a partial matrix A, we call A a completion of A
if A coincides with A on the known entries. We call A a minimal rank
completion of A if among all completions of A, the matrix A has the lowest
possible rank. For the above partial matrix A any completion will have rank
≥ 1, and we can actually make a rank 1 completion A by taking

A =

m1 m2 m3 m4 m5[
−1 0 0 −2 2
1
2 0 0 1 −1

]
customer1
customer2

.

The matrix A is a minimal rank completion of A. Based on this completion
we would suggest to customer 2 to watch movie 1, and customer 1 may like
movie 2 better than movie 4 (but maybe not strong enough to bother with a
recommendation). In this example, we had of course very little to go on. In
practice there are millions of customers and a huge number of movies, and also
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we may have other data on customers (how long/short they watched movies,
what type of movies they mostly watch, their approximate geographical loca-
tion (relevant?; number crunching may tell), etc.). The simple idea presented
here is of course just part of the story. If you would like more details, look for
svd++. In Chapter 8 we will explain the singular value decomposition (svd),
which is one of the ingredients of the algorithms used.

(a) Find a minimal rank completion for
[
1 ?
1 1

]
.

(b) Show that any minimal rank completion of
[
1 ?
0 1

]
will have rank 2.

(c) Find a minimal rank completion for
−1 ? 2 ? 0 −1
? 2 0 ? 1 1
0 ? 2 1 ? −2
? 3 2 −1 ? −1

 .
(Hint: Try to make all columns linear combinations of columns 3 and 6.)

(d) If the partial matrix in (c) represents four customers partially rating 6
movies, which movie (if any) would you recommend to each of the cus-
tomers?

Exercise 2.6.22. Matrices can be used to represent graphs. In this exer-
cise, we introduce the incidence matrix of a graph. A graph has vertices
v1, . . . , vm and edges (x, y), where x, y ∈ {v1, . . . , vm}. Here we do not allow
edges of the form (x, x). We depict a graph by representing the vertices as
small circles, and edges as lines between the vertices. Figure 2.2 is an example
of a directed graph. The graph is directed as the edges are arrows.

The graph in Figure 2.2 can be summarized as G = (V,E), where

V = {set of vertices} = {1, 2, 3, 4},

E = {set of edges} = {(1, 3), (1, 4), (2, 1), (3, 1), (3, 2), (3, 4), (4, 2), (4, 3)}.

Notice that we numbered the edges e1, e2, . . . , e8. For each edge (x, y), the
starting point is x and the endpoint is y. As an example, edge e2 corresponds
to (1, 4).

The incidence matrix A of a graph G = (V,E) is an m× n matrix, where

m = the number of vertices, n = the number of edges,
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1

2 3

4

e2

e1

e3 e4

e5

e6e7

e8

Figure 2.2: A directed graph with 4 vertices and 8 edges.

and if (x, y) is the jth edge, then we put −1 in position (x, j) and 1 in position
(y, j). For the above example, we obtain

A =

e1 e2 e3 e4 e5 e6 e7 e8
−1 −1 1 1 0 0 0 0
0 0 −1 0 1 0 1 0
1 0 0 −1 −1 −1 0 1
0 1 0 0 0 1 −1 −1


v1
v2
v3
v4

. (2.5)

(a) Find the incidence matrix of the graph in Figure 2.3.

(b) Show that the sum of the rows in an incidence matrix is always 0. Use
this to prove that the rank of an m×n incidence matrix is at most m−1.

The interesting thing about the incidence matrix is that the linear dependance
between the columns gives us information about the loops in the graph. We
first need some more terminology.

A walk of length k in a graph is a subset of k edges of the form
(x1, x2), (x2, x3), . . . , (xk, xk+1). We call x1 the starting point of the walk,
and xk+1 the endpoint. A loop is a walk where the starting point and the
endpoint are the same.

Notice that in the incidence matrix A in (2.5) we have that a3−a4+a5 = 0. In
the corresponding graph this means that e3, −e4, e5 form a loop (where −e4
means that we take edge 4 in the reverse direction). Similarly, a6 + a8 = 0.
This means that e6, e8 form a loop. It is not too hard to figure out why it
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e7

Figure 2.3: A directed graph with 4 vertices and 7 edges.

works out this way; indeed, if we look at a6 +a8 = 0, it means that for vertex
1 (which corresponds to the first row) there are as many −1’s as there are 1’s
among edges e6, e8, and thus vertex 1 is as many times a starting point as it
is an endpoint in the walk. The same goes for the other vertices.

(c) Illustrate this phenomena in the incidence matrix you have found in part
(a). (For instance, use the loop e1, e4, e7, −e2.)

If we now find a basis for the columns space of A, it means that we are identi-
fying a maximal subset of the columns so that they are linearly independent.
For the graph that means that we are trying to find a maximal subset of the
edges, so that there are no loops. This is called a spanning forest for the
graph. For instance, for A in (2.5) we find that

{a1,a2,a3} =



−1
0
1
0

 ,

−1
0
0
1

 ,


1
−1
0
0




is a basis for ColA, and thus e1, e2, e3 form a spanning forest for the corre-
sponding graph.

(d) Find a spanning forest for the graph in part (a).
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By the way, we call a graph connected if between any two vertices there is a
walk (where we allow going in the reverse direction of an edge). In that case,
a spanning forest will also be connected, and be called a spanning tree. A
tree is a connected graph without loops.
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3.1 Matrix Addition and Multiplication

We denote the set of m × n matrices with real entries as Rm×n. An m × n
matrix A is typically denoted as

A = (aij)
m n
i=1,j=1 =

a11 · · · a1n
...

...
am1 · · · amn

 =
[
a1 · · · an

]
.

Thus aij is the entry in the ith row and the jth column. Also, as before we
denote the jth column of A as aj . Occasionally, we will use the ith row of A,
which we denote as rowi(A). Thus

rowi(A) =
[
ai1 · · · ai,n

]
∈ R1×n.

Sometimes we will also use the notation colj(A) for the jth column of A. This
is convenient when the matrix is not denoted by a single capital letter.

We define addition of two matrices of the same size by

A+B = (aij)
m n
i=1,j=1 + (bij)

m n
i=1,j=1 = (aij + bij)

m n
i=1,j=1.

We define scalar multiplication of a matrix by

cA = c(aij)
m n
i=1,j=1 = (caij)

m n
i=1,j=1.

61
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For example,1 −1
2 0
3 −4

+

10 3
7 −3
0 5

 =

11 2
9 −3
3 1

 , 3

[
6 −1
2 0

]
=

[
18 −3
6 0

]
.

The above operations are similar to those on vectors. In fact, we can view a
vector in Rm as an m× 1 matrix. In fact, we identify Rm×1 with Rm.

We let 0m×n be the m × n matrix of all zeros. Sometimes we just write 0
for a matrix of all zeros, in which case the size of the matrix should be clear
from the context. Thus, if we write A+ 0, then A and 0 are understood to be
matrices of the same size.

The rules we had for addition and scalar multiplication of vectors carry over
to matrices, as the next result states.

Proposition 3.1.1. Let A,B,C ∈ Rm×n and c, d ∈ R. Then

A+B = B +A,A+ (B + C) = (A+B) + C, 0 +A = A,A+ (−A) = 0,

c(A+B) = cA+ cB, (c+ d)A = cA+ dA, c(dA) = (cd)A, 1A = A.

Due to these rules Rm×n is a vector space over R, as we will see in Chapter 5.

We have already seen that we can multiply an m× n matrix A with a vector
x ∈ Rn to obtain the product vector Ax ∈ Rm. We will extend this operation
to allow for a matrix product AB as follows.

Definition 3.1.2. We define matrix multiplication as follows: if A is
an m × n matrix and B =

[
b1 · · · bk

]
an n× k matrix, we define AB

via
AB :=

[
Ab1 · · · Abk

]
∈ Rm×k.

Thus, for a matrix product AB to make sense, we need that

number of columns of A = number of rows of B.

Here is an example:
1 −1
2 0
3 −4
0 1

[6 1
2 0

]
=

6


1
2
3
0

+ 2


−1
0
−4
1

 1


1
2
3
0

+ 0


−1
0
−4
1


 =


4 1
12 2
10 3
2 0

 .
If we look at what happens at the entry level when we take a matrix product,
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we get the following.

C = AB ⇔ crs =

n∑
j=1

arjbjs, 1 ≤ r ≤ m, 1 ≤ s ≤ k.

In other words,

crs = rowr(A) cols(B) =
[
ar1 · · · arn

] b1s...
bns

 .
Here are some more examples:[

3 −2 0
−1 5 1

]−2 3 0
1 −4 1
7 0 0

 =

[
−8 17 −2
14 −23 5

]
,

−2 3 0
1 −4 1
7 0 0

[ 3 −2 0
−1 5 1

]
is undefined,


1
2
3
4

 [1 −1 2 −2
]

=


1 −1 2 −2
2 −2 4 −4
3 −3 6 −6
4 −4 8 −8

 ,
[
1 −1 2 −2

] 
1
2
3
4

 =
[
−3
]

= −3.

In the last example we arrive at a 1 × 1 matrix, which we just identify with
its single entry. In other words, for a 1× 1 matrix we sometimes do not write
the square brackets around the single number.

It should be noticed that in general matrix multiplication is not commutative:

AB 6= BA.

Indeed, if we take A =

[
1 0
0 0

]
and B =

[
0 1
0 0

]
, then

AB =

[
0 1
0 0

]
6=
[
0 0
0 0

]
= BA.

It can also happen that AB is defined but that BA is undefined, as you can
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see above. Finally, let us give another example to show that it is possible that
AB = 0 while A 6= 0 and B 6= 0:[

1 0
7 0

] [
0 0 0
1 2 5

]
=

[
0 0 0
0 0 0

]
.

We have the following rules.

Proposition 3.1.3. Let A,D ∈ Rm×n, B,E ∈ Rn×k, C ∈ Rk×l, F,G ∈
Rr×n and c ∈ R. Then

A(BC) = (AB)C,A(B + E) = AB +AE, (F +G)A = FA+GA,

c(AB) = (cA)B = A(cB), ImA = A = AIn.

Partial proof. Let us prove the associativity rule A(BC) = (AB)C, where
A is m× n, B is n× k and C is k × l. When M is some product of matrices,
we write [M ]ij for the (i, j) entry of the matrix M . We have

[A(BC)]ij =

n∑
r=1

air[BC]rj =

n∑
r=1

air

(
k∑
s=1

brscsj

)
=

n∑
r=1

k∑
s=1

airbrscsj

=

k∑
s=1

n∑
r=1

airbrscsj =

k∑
s=1

(
n∑
r=1

airbrs

)
csj =

k∑
s=1

[AB]iscsj = [(AB)C]ij .

Let us also prove that ImA = A. This follows as Imaj = aj , j = 1, . . . ,m.

To show AIn = A, we write (as we did before), In =
[
e1 · · · en

]
. Next

notice that

Aej = 0 a1 + · · ·+ 0 aj−1 + 1 aj + 0 aj+1 + · · ·+ 0 an = aj .

But then
AIn =

[
Ae1 · · · Aen

]
=
[
a1 · · · an

]
= A

follows. The remaining items we leave to the reader to prove. �

When we defined the matrix product AB, we viewed B in terms of its columns
and defined the jth column of the product as Abj . There is also a point of
view via the rows. For this you need the following observation:

rowi(AB) = rowi(A)B. (3.1)

Thus, if we had started out by defining the product of a row vector with a
matrix (with the matrix appearing on the right of the row vector), we could
have defined the matrix product via (3.1). Either way, the resulting definition
of the matrix product is the same. It is useful to observe that
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• the rows of AB are linear combinations of the rows of B,

• the columns of AB are linear combinations of the columns of A.

In the next section, we introduce the transpose of a matrix, which gives a way
to transition between these different viewpoints.

3.2 Transpose

Definition 3.2.1. If A = (aij)
m n
i=1,j=1, then the transpose AT is the n×m

matrix defined by [AT ]ij = aji.

For example, 1 −1
2 0
3 −4

T =

[
1 2 3
−1 0 −4

]
.

Notice that the jth column in AT comes from the jth row of A, and that the
ith row of AT comes from the ith column of A. To be more precise,

rowj(A
T ) = (colj(A))T , coli(A

T ) = (rowi(A))T .

Proposition 3.2.2. Let A,B ∈ Rm×n and c ∈ R. Then

(AT )T = A, (A+B)T = AT +BT , (cA)T = cAT , ITn = In, (AB)T = BTAT .

Partial proof. We only prove the last statement, as it is the most involved
one. We have

[BTAT ]ij =
n∑
r=1

[BT ]ir[A
T ]rj =

n∑
i=1

briajr =
n∑
i=1

ajrbri = [AB]ji = [(AB)T ]ij .

�

It is important to remember that when you take the transpose of a product,
such as (AB)T , and want to write it as a product of transposes, you have to
reverse the order of the matrices (BT first and then AT ) .

We will see the importance of the transpose when we introduce the dot product
(in Chapter 8).
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3.3 Inverse

Definition 3.3.1. We say that an n × n matrix A is invertible if there
exists a n× n matrix B so that AB = In = BA.

The following result shows that if such a matrix B exists, it is unique.

Lemma 3.3.2. Let A ∈ Rn×n. Suppose that B,C ∈ Rn exist so that
AB = In = BA and AC = In = CA. Then B = C.

Proof. We have B = BIn = B(AC) = (BA)C = InC = C. �

If AB = In = BA, then we say that B is the inverse of A and we write
B = A−1. Thus

AA−1 = In = A−1A.

If we let ei be the ith column of the identity matrix, then solving AB = In
means we are trying to find B =

[
b1 · · · bn

]
so that

Ab1 = e1, Ab2 = e2, . . . , Abn = en.

Let us try this out on an example.

Example 3.3.3. Find the inverse of A =

[
1 2
3 4

]
.

To compute the first column of the inverse, we solve the system represented
by the augmented matrix[

1 2 1
3 4 0

]
→
[
1 2 1
0 −2 −3

]
→
[
1 2 1
0 1 3

2

]
→
[
1 0 −2
0 1 3

2

]
.

To compute the second column of the inverse, we do[
1 2 0
3 4 1

]
→
[
1 2 0
0 −2 1

]
→
[
1 2 0
0 1 − 1

2

]
→
[
1 0 1
0 1 − 1

2

]
.

Thus we find
A−1 =

[
−2 1
3
2 − 1

2

]
.

Let us check our answer:[
1 2
3 4

] [
−2 1
3
2 − 1

2

]
=

[
1 0
0 1

]
=

[
−2 1
3
2 − 1

2

] [
1 2
3 4

]
.

It works!
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Note that there was redundancy in what we did: we row reduced the same
coefficient matrix twice. We can do better by combining the two systems
(remember Interpretation 2 in Section 1.1!), as follows:[

1 2 1 0
3 4 0 1

]
→
[
1 2 1 0
0 −2 −3 1

]
→
[
1 0 −2 1
0 1 3

2 − 1
2

]
.

�

This observation leads to the general algorithm for finding the inverse of an
n× n matrix:

Algorithm :
[
A In

]
→ · · · →

[
In A−1

]
.

This works when Col A = Rn. Indeed, in that case Ax = ej can always be
solved. Col A = Rn implies that the reduced row echelon form of A has a pivot
in every row, which combined with A being square gives that its reduced row
echelon form is In. It is also true that when A is invertible, we necessarily
need to have that Col A = Rn, as we will see. First let us do another example.

Example 3.3.4. Find the inverse of A =

0 −1 1
2 0 2
3 4 1

 . We row reduce

0 −1 1 1 0 0
2 0 2 0 1 0
3 4 1 0 0 1

→
1 0 1 0 1

2 0
0 −1 1 1 0 0
0 4 −2 0 − 3

2 1

→
1 0 1 0 1

2 0
0 1 −1 −1 0 0
0 0 2 4 − 3

2 1

→
1 0 0 −2 5

4 − 1
2

0 1 0 1 − 3
4

1
2

0 0 1 2 − 3
4

1
2

 .
We indeed find that

A−1 =

−2 5
4 − 1

2
1 − 3

4
1
2

2 − 3
4

1
2

 .
�

The rules for inverses include the following.

Theorem 3.3.5. Let A and B be n× n invertible matrices. Then

(i) The solution to Ax = b is x = A−1b.

(ii) (A−1)−1 = A.

(iii) (AB)−1 = B−1A−1.

(iv) (AT )−1 = (A−1)T .
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Proof. For (i) observe that Ax = b implies A−1(Ax) = A−1b. Using associa-
tivity, we get A−1(Ax) = (A−1A)x = Inx = x. Thus x = A−1b follows.

(ii) follows immediately from the equations AA−1 = In = A−1A.

(iii) Observe that ABB−1A−1 = A(BB−1)A−1 = AInA
−1 = AA−1 = I.

Similarly, B−1A−1AB = B−1InB = In. Thus (AB)−1 = B−1A−1 follows.

(iv) We have (A−1)TAT = (AA−1)T = ITn = In and AT (A−1)T = (A−1A)T =
ITn = In. This yields (AT )−1 = (A−1)T . �

Similar to our remark regarding transposes, it is important to remember when
you take the inverse of a product, such as (AB)−1, and want to write it as a
product of inverses, you have to reverse the order of the matrices (B−1 first
and then A−1) .

When we get to determinants in the next chapter, we will derive formulas for
the inverse of an n × n matrix. The one that is easiest to remember is when
n = 2, which we now present.

Theorem 3.3.6. Let A =

[
a b
c d

]
. Then A is invertible if and only if

ad− bc 6= 0, and in that case

A−1 =
1

ad− bc

[
d −b
−c a

]
. (3.2)

Proof. Notice that[
a b
c d

] [
d −b
−c a

]
= (ad− bc)I2 =

[
d −b
−c a

] [
a b
c d

]
. (3.3)

If ad− bc 6= 0, we can divide equation (3.3) by ad− bc and obtain (3.2).

Next, suppose ad− bc = 0. Then

A

[
d −b
−c a

]
= 0.

If A has an inverse, we get that[
d −b
−c a

]
= A−1A

[
d −b
−c a

]
= A−10 = 0.

This gives that a = b = c = d = 0, which in turn yields A = 0. But then for
every matrix B we have BA = 0, and thus A can not be invertible. Conse-
quently, ad− bc = 0 implies that A is not invertible. �
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3.4 Elementary Matrices

In line with the three elementary row operations, we introduce three types
of elementary matrices. In a square matrix we refer to the entries (i, i) as
the diagonal entries, and to the entries (i, j), i 6= j, as the off-diagonal
entries.

• Type I: E ∈ Rn×n is of type I if for some choice of i, j ∈ {1, . . . , n}, i < j,
we have that [E]kk = 1, k 6= i, j, [E]ij = [E]ji = 1, and all other entries in
E are 0. For example,

E1 = E
(1)
1↔2 =

0 1 0
1 0 0
0 0 1


is of type I (here i = 1, j = 2).

• Type II: E ∈ Rn×n is of type II if all its diagonal entries equal 1, and
exactly one off-diagonal entry is nonzero. For example,

E2 = E
(2)
(1,3,c) =

1 0 c
0 1 0
0 0 1


is a type II elementary matrix.

• Type III: E ∈ Rn×n is of type III if for some choice of i ∈ {1, . . . , n}, we
have that [E]kk = 1, k 6= i, [E]ii = c(6= 0), and all other entries in E are
0. For example,

E3 = E
(3)
(3,c) =

1 0 0
0 1 0
0 0 c

 , c 6= 0,

is of type III.

We used the notation from Section 1.2. It is not hard to convince yourself that
each of these three types of matrices are invertible, and that the inverses are
of the same type. For the three examples above, we find

E−11 =

0 1 0
1 0 0
0 0 1

 = E
(1)
1↔2, E

−1
2 =

1 0 −c
0 1 0
0 0 1

 = E
(2)
(1,3,−c),

E−13 =

1 0 0
0 1 0
0 0 1

c

 = E
(3)
(3,1/c).
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The next proposition shows that the elementary row operations correspond
exactly with multiplying a matrix on the left with an elementary matrix.

Proposition 3.4.1. Let A ∈ Rm×n. If E ∈ Rm×m is an elementary matrix
then EA is obtained from A by performing an elementary row operation.
More specifically,

• If E is type I and 1’s appear in off-diagonal entries (i, j) and (j, i), then
EA is obtained from A by switching rows i and j.

• If E is type II and the nonzero off-diagonal entry (k, l) has value c, then
EA is obtained from A by replacing rowk(A) by rowk(A) + c · rowl(A).

• If E is type III and the diagonal entry (k, k) has value c 6= 0, then EA
is obtained from A by multiplying rowk(A) by c.

Proof. This is easily done by inspection. �

Theorem 3.4.2. Let A be n×n. The following statements are equivalent.

(i) A is invertible.

(ii) A is a product of elementary matrices.

(iii) A is row equivalent to the n× n identity matrix.

(iv) A has n pivot positions.

(v) The equation Ax = 0 has only the solution x = 0; that is, Nul A =
{0}.

(vi) The columns of A form a linearly independent set.

(vii) The equation Ax = b has at least one solution for every b ∈ Rn.

(viii) The columns of A span Rn; that is, Col A = Rn.

(ix) There is a n× n matrix C so that CA = In.

(x) There is a n× n matrix D so that AD = In.

(xi) AT is invertible.

Proof. (i)→(ix): Since A is invertible, we have A−1A = I. So we can chose
C = A−1.

(ix)→(v): Suppose Ax = 0. Multiplying both sides on the left with C gives
CAx = C0. Since CA = In, we thus get Inx = x = 0.
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(v)↔(vi): This is due to the definition of linear independence.

(vi)→(iv): Since the columns of A form a linearly independent set, there is a
pivot in each column of the echelon form of A. Thus A has n pivot positions.

(iv)→(iii): Since A has n pivot positions, and A is n × n, the reduced row
echelon form of A is In.

(iii)→(ii): Since the reduced row echelon form of A is In, there exist elementary
matrices E1, . . . , Ek so that EkEk−1 · · ·E1A = I. Multiplying on both sides
with E−11 E−12 · · ·E

−1
k , gives A = E−11 E−12 · · ·E

−1
k . Since the inverse of an

elementary matrix is an elementary matrix, we obtain (ii).

(ii)→(i): If A = E1 · · ·Ek, then since each Ej is invertible, we get by repeated
use of Theorem 3.3.5(iii) that A−1 = E−1k · · ·E

−1
1 . Thus A is invertible.

(i)↔(xi): This follows from Theorem 3.3.5(iv).

(i)→(x): Since A is invertible AA−1 = In. So we can chose D = A−1.

(x)→(viii): Let b ∈ Rn. Then ADb = Inb. Thus with x = Db, we have
Ax = b. Thus b ∈ Col A. This holds for every b ∈ Rn, and thus Col A = Rn.

(viii)↔(vii): This follows directly.

(vii)→(iv): Since Col A = Rn, every row in the row echelon form has a pivot.
Since A has n rows, this gives that A has n pivot positions. �

Note that C and D in Theorem 3.4.2(ix) and (x) are the same as C = CIn =
C(AD) = (CA)D = InD = D and equal A−1 (by definition of the inverse).
Thus, indeed, to find the inverse of A it suffices to solve the system AB = In
as indicated in the algorithm in the previous section.

3.5 Block Matrices

Definition 3.5.1. A block matrix (also called partitioned matrix) has
the form

A =

A11 · · · A1n

...
...

Am1 · · · Amn

 , (3.4)

where Aij are matrices themselves, of size µi × νj , say.
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For example, the 3× 6 matrix

A =

 1 2 3 −1 7 8
−3 6 5 −4 2 9

3 8 9 −10 −5 −2


can be viewed as a 2× 3 block matrix

A =

[
A11 A12 A13

A21 A22 A23

]
,

where A11 =

[
1 2 3
−3 6 5

]
, A12 =

[
−1 7
−4 2

]
, A13 =

[
8
9

]
,

A21 =
[

3 8 9
]
, A22 =

[
−10 −5

]
, A23 =

[
−2

]
.

If we have A as in (3.4) and

B =

B11 · · · B1k

...
...

Bn1 · · · Bnk

 ,
where Bij are matrices of size νi×κj , then the product AB can be computed
as

AB =


∑n
r=1A1rBr1 · · ·

∑n
r=1A1rBrk

...
...∑n

r=1AmrBr1 · · ·
∑n
r=1AmrBrk

 .
Notice that the order in the multiplication is important: in the products
AirBrj , the A’s are always on the left and the B’s on the right. As an example,

if A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
, then

AB =

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
.

We can also add block matrices provided the sizes of the blocks match. If A
is as in (3.4) and

C =

C11 · · · C1n

...
...

Cm1 · · · Cmn

 ,
where Cij is of size µi × νj , then A+ C can be computed as

A+ C =

 A11 + C11 · · · A1n + C1n

...
...

Am1 + Cm1 · · · Amn + Cmn

 .
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Note that when we write B =
[
b1 · · · bk

]
, we in effect view B as a block

matrix. Then AB =
[
Ab1 · · · Abk

]
is a block matrix product.

The block matrix point of view is at times useful. Let us give some examples.
We start with a formula for an invertible 2× 2 block lower triangular matrix.

Theorem 3.5.2. If A11 is k × k invertible, and A22 is m ×m invertible,
then [

A11 0
A21 A22

]−1
=

[
A−111 0

−A−122 A21A
−1
11 A−122

]
. (3.5)

As a special case, [
A11 0
0 A22

]−1
=

[
A−111 0

0 A−122

]
. (3.6)

Proof. [
A11 0
A21 A22

] [
A−111 0

−A−122 A21A
−1
11 A−122

]
=[

A11A
−1
11 0

A21A
−1
11 −A22A

−1
22 A21A

−1
11 A22A

−1
22

]
=

[
Ik 0
0 Im

]
.

Similarly, [
A−111 0

−A−122 A21A
−1
11 A−122

] [
A11 0
A21 A22

]
=

[
Ik 0
0 Im

]
.

This proves (3.5).

Equation (3.6) follows directly from (3.5) by letting A21 = 0. �

Let us do a block matrix sample problem.

Example 3.5.3. Let A, B, C and D be matrices of the same square size, and
assume that A is invertible. Solve for matrices X, Y , Z, W (in terms of A, B,
C and D) so that [

A B
C D

] [
Z I
I 0

]
=

[
0 X
Y W

]
.

Answer. Let us multiply out the block matrix product[
AZ +B A
CZ +D C

]
=

[
0 X
Y W

]
.

From the (1, 1) block entry we get AZ +B = 0, thus AZ = −B. Multiplying
with A−1 on the left on both sides, we get A−1AZ = −A−1B, and thus
Z = −A−1B. From the (2, 1) entry we get A = X, and from the (2, 2) entry we
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find C = W . The (1, 2) entry yields Y = CZ +D. Substituting Z = −A−1B,
we obtain Y = −CA−1B +D. Thus the solution is

W = C,X = A, Y = −CA−1B +D,Z = −A−1B.

�

Notice in the above example, when we solve for Z, we do

AZ = −B ⇒ A−1(AZ) = A−1(−B)⇒ (A−1A)Z = −A−1B ⇒ Z = −A−1B.

If we would have multiplied with A−1 on the right we would have obtained
AZA−1 = −BA−1, which we can not further simplify to extract Z. It is
thus important that when manipulating these types of equations you should
carefully keep track of the multiplication order.

In the above example we could simply manipulate matrix equations as it was
given to us that A was invertible. In the example below we do not have that
luxury, and we will have to go back to solving systems of linear equations.

Example 3.5.4. Find all solutions X to the matrix equation AX = B, where

A =

[
1 −1 2
3 0 8

]
, B =

[
1 −4
2 3

]
.

Answer. Writing X =
[
x y

]
and B =

[
b1 b2

]
, we obtain the equations

Ax = b1 and Ay = b2. As these equations have the same coefficient matrix
we combine these systems of linear equations in one augmented matrix:[

1 −1 2 1 −4
3 0 8 2 3

]
→
[
1 −1 2 1 −4
0 3 2 −1 15

]
→

[
1 −1 2 1 −4
0 1 2

3 − 1
3 5

]
→
[
1 0 8

3
2
3 1

0 1 2
3 − 1

3 5

]
.

Thus in the system Ax = b1 we have a free variable x3 and in the system
Ay = b2 we have a free variable y3. We findx1x2

x3

 =

 2
3
− 1

3
0

+ x3

− 8
3
− 2

3
1

 ,
y1y2
y3

 =

1
5
0

+ y3

− 8
3
− 2

3
1

 .
The final solution is now

X =

 2
3 1
− 1

3 5
0 0

+

− 8
3
− 2

3
1

 [x3 y3
]
, with x3 and y3 free.

�
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3.6 Lower and Upper Triangular Matrices and LU Fac-
torization

A matrix L = (lij)
n
i,j=1 is lower triangular if lij = 0 when i < j. If, in

addition, lii = 1 for i = 1, . . . n, then L is called a unit lower triangular
matrix. For instance

L1 =

 1 0 0
−8 1 0
2 −5 1

 , L2 =

 0 0 0
−10 9 0

3 4 11

 ,
are lower triangular matrices, with L1 a unit one. A matrix U = (uij)

n
i,j=1

is upper triangular if uij = 0 when i > j. If, in addition, uii = 1 for
i = 1, . . . n, then U is called a unit upper triangular matrix. It is easy to
see that when L is (unit) lower triangular, then LT is (unit) upper triangular.
Similarly, if U is (unit) upper triangular, then UT is (unit) lower triangular.
We say thatD = (dij)

n
i,j=1 is a diagonal matrix if dij = 0 for i 6= j. A matrix

is a diagonal matrix if and only if it is both lower and upper triangular.

Lemma 3.6.1. If L1 and L2 are n× n lower triangular matrices, then so
is their product L1L2.
If U1 and U2 are n× n upper triangular matrices, then so is their product
U1U2.

Proof. Write L1 = (lij)
n
i,j=1 and L2 = (λij)

n
i,j=1. Then for i < j

[L1L2]ij =

n∑
r=1

lirλrj =

j−1∑
r=1

lirλrj +

n∑
r=j

lirλrj =

j−1∑
r=1

lir · 0 +

n∑
r=j

0 · λrj = 0.

The proof for the product of upper triangular matrices is similar, or one can
use that (U1U2)T = UT2 U

T
1 is the product of two lower triangular matrices. �

If we compute the inverse of L1 above, we obtain 1 0 0
−8 1 0
2 −5 1

−1 =

 1 0 0
8 1 0
38 5 1

 ,
which is also unit lower triangular. This is true in general as we state now.
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Lemma 3.6.2. Let L = (lij)
n
i,j=1 be lower triangular. Then L is invertible

if and only lii 6= 0, i = 1, . . . , n. In that case, L−1 is lower triangular as
well, and has diagonal entries 1

lii
, i = 1, . . . , n. In particular, if L is unit

lower triangular, then so is L−1.
Similarly, an upper triangular U = (uij)

n
i,j=1 is invertible if and only if

uii 6= 0 for i = 1, . . . n. In that case, U−1 is upper triangular as well, and
has diagonal entries 1

uii
, i = 1, . . . , n. In particular, if U is unit lower

triangular, then so is U−1.

Proof. First let us assume that L is lower triangular with lii 6= 0, i = 1, . . . n.
When one does row reduction[

L In
]
→ · · · →

[
In L−1

]
,

one can choose lii, i = 1, . . . n, as the pivots and only use Operation 2 (replac-
ing rowi by rowi +α rowk) with i > k, until the coefficient matrix is diagonal
(with diagonal entries lii, i = 1, . . . n). After this one performs Operation 3
(multiply rowi with 1

lii
), to make the coefficient part equal to In. One then

finds that L−1 is lower triangular with diagonal entries 1
lii
, i = 1, . . . , n.

If lii = 0 for some i, choose i to be the lowest index where this hap-
pens. Then it is easy to see that rowi(L) is a linear combinations of rows
row1(L), . . . , rowi−1(L), and one obtains a row of all zeroes when one per-
forms row reduction. This yields that L is not invertible.

For the statement on upper triangular matrices, one can apply the transpose
and make use of the results on lower triangular matrices. �

A matrix A is said to allow an LU factorization if we can write A = LU ,
with L lower triangular and U upper triangular. We shall focus on the case
when L is a unit lower triangular matrix. Recall that doing elementary row
operations corresponds to multiplying on the left with elementary matrices.
If we choose these to be lower triangular unit matrices L1, . . . , Lk we obtain

A→ L1A→ L2L1A→ · · · → Lk · · ·L1A.

We hope to achieve that Lk · · ·L1A = U is upper triangular. Then A =
(L−11 · · ·L

−1
k )U gives an LU factorization. To compute L = L−11 · · ·L

−1
k easily,

we use the following technical result.

Proposition 3.6.3. Let Lr = (l
(r)
ij )ni,j=1, r = 1, . . . , n − 1, be unit lower

triangular matrices so that l(r)ij = 0 when i > j 6= r. Then L = L−11 · · ·L
−1
n−1

is the unit lower triangular matrix where the entries below the diagonal are
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given by
L = (lij)

n
i,j=1, lir = −l(r)ir , i > r. (3.7)

As an example, Proposition 3.6.3 yields for instance that 1 0 0
−8 1 0
2 0 1

−1 1 0 0
0 1 0
0 −5 1

−1 =

 1 0 0
8 1 0
−2 5 1

 .
It is easy to check, since 1 0 0

−8 1 0
2 0 1

 1 0 0
8 1 0
−2 5 1

 =

1 0 0
0 1 0
0 5 1


and 1 0 0

0 1 0
0 −5 1

1 0 0
0 1 0
0 5 1

 =

1 0 0
0 1 0
0 0 1

 .
The proof of Proposition 3.6.3 follows essentially the observations illustrated
in this example.

Proof. Let Lr be as in the statement of the Proposition, and introduce the
unit lower triangular matrix L via (3.7). Then L1L is easily seen to be the
matrix obtained from L by making the off diagonal entries in column 1 equal
to 0. Next L2L1L is easily seen to be the matrix obtained from L1L by mak-
ing the off diagonal entries in column 2 equal to 0. Continuing this way,
LkLk−1 · · ·L1L is obtained from Lk−1 · · ·L1L by making the off-diagonal en-
tries in column k equal to 0. But then it follows that Ln−1 · · ·L1L is the
identity matrix. �

Let us use these ideas to find an LU factorization of 4 3 −5
−4 −5 7
8 0 −2

 .
First we will use the (1, 1) entry as a pivot and make zeros below it. We will
keep track of the operations, so that we can easily make the L. We (i) replace
row2 by row2 + 1 row1, and (ii) row3 by row3 -2 row1: 4 3 −5

−4 −5 7
8 0 −2

→
4 3 −5

0 −2 2
0 −6 8

 , L =

 1 0 0

-1 1 0

2 ∗ 1

 .
Notice that the negative of the circled numbers end up in the matrix L. Next,
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we make the (2, 2) entry the pivot and make zeros below it by replacing row3

by row3 -3 row2. This gives 4 3 −5

0 −2 2

0 −6 8

→
4 3 −5

0 −2 2
0 0 2

 = U, L =

 1 0 0
−1 1 0

2 3 1

 .
We find that A has been row reduced to the upper triangular matrix U , which
yields that we have found an LU factorization of A:

A =

 4 3 −5
−4 −5 7
8 0 −2

 =

 1 0 0
−1 1 0
2 3 1

4 3 −5
0 −2 2
0 0 2

 = LU. (3.8)

This process works as long as we can keep picking diagonal entries as the next
pivot. For instance, for the matrices0 1 −4

1 2 6
5 1 −1

 and

2 4 −5
1 2 −3
5 −2 1


the process will break down. In the next chapter (see Proposition 4.2.6), we
will use determinants to give necessary and sufficient conditions for a matrix
A to have an LU factorization A = LU , with L and U invertible.

Below is the pseudo code for LU factorization.

Algorithm 3 LU factorization

1: procedure LU(A) . LU factorization of n× n matrix A, if possible
2: L← In, U ← A, i← 1
3: while i ≤ n do . We have L, U invertible if i > n
4: if uii 6= 0 then
5: for s = i+ 1, . . . , n do U ← E

(2)
(s,i,−usi/uii)U and lsi ← usi/uii

6: i← i+ 1
7: else
8: TERMINATE . No invertible LU factorization exists
9: return L, U . A = LU ; if i > n, L unit lower, U invertible upper

If A = LU , with L and U invertible, then the equation Ax = b can be solved
in two steps:

Ax = b ⇔
{
Ly = b,
Ux = y.

Indeed, b = Ly = L(Ux) = (LU)x = Ax.
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The advantage is that solving systems of linear equations with triangular
matrices is easier than general systems. Let us illustrate this using the factor-
ization (3.8). Consider the equation 4 3 −5

−4 −5 7
8 0 −2

x1x2
x3

 =

 2
−2
6

 = b.

We first solve Ly = b:  1 0 0
−1 1 0
2 3 1

y1y2
y3

 =

 2
−2
6

 ,
which gives y1 = 2, −y1 + y2 = −2 and 2y1 + 3y2 + y3 = 6. And thus y1 = 2,
y2 = −2 + y1 = 0, and y3 = 6− 2y1 − 3y2 = 2. Next we solve Ux = y:4 3 −5

0 −2 2
0 0 2

x1x2
x3

 =

2
0
2

 .
This gives 2x3 = 2, −2x2 + 2x3 = 0, and 4x1 + 3x2 − 5x3 = 2. Thus we
find x3 = 1, x2 = − 1

2 (−2x3) = 1, x1 = 1
4 (2 − 3x2 + 5x3) = 1. And indeed

x1 = x2 = x3 = 1 is the solution as 4 3 −5
−4 −5 7
8 0 −2

1
1
1

 =

 2
−2
6

 .

3.7 Exercises

Exercise 3.7.1. Compute the following products.

(a)

1 −1
3 −2
5 −1

[0 1
2 −1

]
.

(b)
[
1 1 0
2 1 1

]1 0 2
1 2 1
2 0 1

 .∗
∗In live.sympy.org you can enter ‘A=Matrix(2, 3, [1, 1, 0, 2, 1, 1])’ and ‘B=Matrix(3, 3,

[1, 0, 2, 1, 2, 1, 2, 0, 1])’ and ‘A*B’ to get the answer.
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(c)
[
2 2
2 −10

] [
5 6
1 2

]
.

Exercise 3.7.2. Let A =

 1 2 4
3 −1 7
−6 2 −3

.

(a) Let e1 =

1
0
0

. Compute Ae1 and eT1 A. How would you describe the result

of these multiplications?

(b) Let ek be the kth standard basis vector of Rn, and A a n×n matrix. How
would you describe the result of the multiplications Aek and eTkA?

(c) How would you describe the result of the multiplication eTkAel?

Exercise 3.7.3. Give an example that shows that matrix multiplication for
3× 3 matrices is not commutative (in other words: give 3× 3 matrices A and
B such that AB 6= BA).

Exercise 3.7.4. Prove the rule A(B+C) = AB+AC, where A ∈ Rm×n and
B,C ∈ Rn×k.

Exercise 3.7.5. Let A be anm×k matrix and B a k×nmatrix. Let C = AB.

(a) To compute the (i, j)th entry of C, we need to compute

cij = ai1b1j + · · ·+ aikbkj .

How many multiplications are needed to compute cij?

(b) How many multiplications are needed to compute the matrix C?

Let D be a n× l matrix. One can compute the product in two ways, namely
using the order given via (AB)D or given via A(BD).

(c) How many multiplications are needed to compute the matrix (AB)D?
(Thus, first compute how many multiplications are needed to compute
C = AB and then add the number of multiplications needed to compute
CD.)

(d) How many multiplications are needed to compute the matrix A(BD)?

When m = 15, k = 40, n = 6 and l = 70, then the answer under (c) is 9900,
while the answer under (d) is 58800. Thus, when multiplying matrices, the
order in which you multiply affects the efficiency. To find the most efficient
way is the so-called ‘Matrix Chain Ordering Problem’.
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Exercise 3.7.6. The trace of a square matrix is defined to be the sum of its
diagonal entries. Thus tr[(aij)

n
i,j=1] = a11 + · · ·+ ann =

∑n
j=1 ajj .

(a) Show that if A ∈ Rn×n, then tr(AT ) = tr(A).

(b) Show that if A ∈ Rm×n and B ∈ Rn×m, then tr(AB) = tr(BA).

(c) Show that if A ∈ Rm×n, B ∈ Rn×k, and C ∈ Rk×m, then tr(ABC) =
tr(CAB) = tr(BCA).

(d) Give an example of matrices A,B,C ∈ Rn×n so that tr(ABC) 6=
tr(BAC).

Exercise 3.7.7. Let A =

[
0 1 −1
1 2 2

]
, B =

[
−2 4
−2 6

]
. Compute the following

matrices. If the expression is not well-defined, explain why this is the case.

(a) AB.

(b) BTB +AAT .

(c) B−1.

(d) (BT )−1.

Exercise 3.7.8. Let A =

[
1 −1
2 2

]
, B =

[
1 −2 4
3 −2 6

]
. Compute the following

matrices. If the expression is not well-defined, explain why this is the case.

(a) AB.

(b) BBT +A.

(c) A−1.

(d) B−1.

Exercise 3.7.9. Find the inverses of the following matrices, if possible.

(a)

1 2 −5
0 1 3
0 2 7

.
(b)

1 −1 0
2 −1 0
1 1 2

 .†
†To check in sagecell.sagemath.org, enter ‘A = matrix([ [1,-1,0], [2,-1,0], [1,1,2] ])’ and

‘A.inverse()’.
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(c)

2 3 1
1 4 3
1 1 0

 .
Exercise 3.7.10. Find the inverse of

1 3 0 0 0
2 5 0 0 0
0 0 1 2 0
0 0 1 1 0
0 0 0 0 3


by viewing it as a partitioned matrix.

Exercise 3.7.11. Show the following for matrices A ∈ Rm×n, B ∈ Rn×k, and
C ∈ Rk×m.

(a) Col(AB) ⊆ ColA.

(b) NulA ⊆ Nul(CA).

(c) AB = 0 if and only if ColB ⊆ NulA.

Exercise 3.7.12. Let A, B and C be invertible nxn matrices. Solve for X in
the matrix equation

A−1
(
XT + C

)
B = I.

Exercise 3.7.13. Let A, B, C and D be invertible matrices of the same size.
Solve for matrices X, Y , Z, W (in terms of A, B, C and D) so that[

A B
C D

] [
Z I
I 0

]
=

[
0 X
Y W

]
.

Exercise 3.7.14. Given is the equality[
A B
C D

] [
X Y
I 0

]
=

[
E F
Z W

]
.

Express X,Y, Z,W in terms of A,B,C,D,E, F . You may assume that all
matrices are square and invertible.

Exercise 3.7.15. Let
T =

[
A B
C D

]
(3.9)

be a block matrix, and suppose that D is invertible. Define the Schur com-
plement S of D in T by S = A−BD−1C. Show that

rank T = rank(A−BD−1C) + rank D.

Hint: Multiply (3.9) on the left with P and on the right with Q, where

P =

[
I −BD−1
0 I

]
, Q =

[
I 0

−D−1C I

]
.
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Exercise 3.7.16. Let A ∈ Rm×n and B ∈ Rn×m.

(a) Suppose that Im −AB is invertible, and put C = In +B(Im −AB)−1A.
Show that (In −BA)C = In and C(In −BA) = In.

(b) Prove that Im −AB is invertible if and only if In −BA is invertible.

Exercise 3.7.17. Let A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×m, and suppose
that A and C are invertible. Show that[

A B
0 C

]−1
=

[
A−1 −A−1BC−1

0 C−1

]
.

(Hint: Simply multiply the two block matrices in both ways, and determine
that the products equal In+m.)

Exercise 3.7.18. Let A ∈ Rm×n, B ∈ Rm×k, and C ∈ Rn×k. Show thatIm A B
0 In C
0 0 Ik

−1 =

Im −A AC −B
0 In −C
0 0 Ik

 .
(Hint: Simply multiply the two block matrices in both ways, and determine
that the products equal Im+n+k.)

Exercise 3.7.19. Let A =
[
B C

]
, where B ∈ Rm×n and C ∈ Rm×k. Show

that
rankB ≤ rankA, rankC ≤ rankA.

Exercise 3.7.20. Let A =

[
B
C

]
, where B ∈ Rm×n and C ∈ Rk×n. Show that

rankB ≤ rankA, rankC ≤ rankA.

(Hint: Take transposes and use Exercise 3.7.19.)

Exercise 3.7.21. In this exercise we use notions introduced in Exercise 2.6.21.
Let

A =

[
B ?
C D

]
be a partial block matrix, where the (1, 2) block is unknown. Show that the
rank of a minimal rank completion of A is equal to

rank

[
B
C

]
+ rank

[
C D

]
− rank C.

(Hint: Consider the pivot columns of
[
C D

]
, and notice that those appearing

in D will remain linearly independent of the columns
[
B
C

]
regardless of how

these columns are completed. Once these pivot columns appearing in D are
completed, all other columns can be completed to be linear combinations of
the other columns.)



84 Linear Algebra: What You Need to Know

Exercise 3.7.22. Let A ∈ Rm×n and B ∈ Rn×m. If AB = Im, we say that
B is a right inverse of A. We also say that A is a left inverse of B.

(a) Show that if A has a right inverse, then ColA = Rm.

(b) Show that if B has a left inverse, then NulB = {0}.

Exercise 3.7.23. Find all solutions X to the matrix equation AX = B,
where

A =

[
1 −1 2
2 0 8

]
, B =

[
1 −4
2 3

]
.

Exercise 3.7.24. Let A =

[
1 −1
−1 2

]
, B =

[
−2 4 0
−2 6 −4

]
and C =[

1 3 −1
1 −5 −2

]
. Solve for the matrix X in the equation AX + C = B.

Exercise 3.7.25. Find an LU factorization of the following matrices.

(a)
[
1 −2
4 −3

]
.‡

(b)
[
1 4
2 9

]
.

(c)

1 −1 0
2 −3 1
0 1 2

.
(d)

 −2 2 −2
3 −1 5
1
2

3
2

1
2

 .
Exercise 3.7.26. We call a n× n matrix N nilpotent if there exists k ∈ N
so that Nk = 0.

(a) Show that

0 2 −3
0 0 −4
0 0 0

 is nilpotent.

(b) Show that if Nk = 0, then (I −N)−1 = I +N +N2 + · · ·+Nk−1.
(Hint: Compute the products (I − N)(I + N + N2 + · · · + Nk−1) and
(I +N +N2 + · · ·+Nk−1)(I −N).)

‡In www.wolframalpha.com you can enter ‘LU factorization of [[1,-2], [4,-3]]’ to get the
answer. Sometimes this command will find you the PLU factorization, where P is a permu-
tation.

http://www.wolframalpha.com
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(c) Use (a) and (b) to compute

1 −2 3
0 1 4
0 0 1

−1 .
Exercise 3.7.27. The Leontief input-output model§ describes how dif-
ferent industries affect each other. It makes effective use of matrices. Let us
explain this on a small example, using the interaction between just two indus-
tries: the electric company (E) and the water company (W). Both companies
need to make use of their own product as well as the other’s product to meet
their production for the community.

Let us measure everything in dollars. Suppose that creating one dollar’s worth
of electricity requires 0.2$ worth of electricity and 0.1$ worth of water, and
that creating one dollar’s worth of water requires 0.3$ worth of electricity
and 0.4$ worth of water. Ultimately, we want to create $10 million worth of
electricity and $12 million worth of water for the community (we call this
the ‘outside demand’). To meet this outside demand, we need to make more
electricity and water as part of it gets used in the production (the part that
gets used in the production is called the ‘inside demand’). This leads to the
equation

Total production = Internal demand + Outside demand.

Let us denote by e the total amount of electricity and by w the total amount
of water we need to produce. We obtain the following equations (measured in
millions of dollars). {

e = 0.2e+ 0.1w + 10,
w = 0.3e+ 0.4w + 12.

Letting x =

[
e
w

]
be the vector of unknows, d =

[
10
12

]
the vector of outside

demand, and C the internal cost matrix

C =

[
0.2 0.1
0.3 0.4

]
,

we obtain the equation
x = Cx + d.

To solve this equation, we bring all the terms involving x to the left side,
giving

(I − C)x = x− Cx = d.

If I − C is invertible, we obtain

x = (I − C)−1d.

In this case, we find e = 16 million dollars, and w = 28 million dollars.

§The Russian-American economist Wassily Leontief won the Nobel Prize in Economics
in 1973 for his model.
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(a) The following economy is based on three sectors, agriculture (A), energy
(E) and manufacturing (M). To produce one dollar worth of agriculture
requires an input of $0.25 from the agriculture sector and $0.35 from the
energy sector. To produce one dollar worth of energy requires an input
of $0.15 from the energy sector and $0.3 from the manufacturing sector.
To produce one dollar worth of manufacturing requires an input of $0.15
from the agriculture sector, $0.2 from the energy sector, and $0.25 from
the manufacturing sector. The community’s demand is $20 million for
agriculture, $10 million for energy, and $30 million for manufacturing. Set
up the equation to find the total production of agriculture, energy and
manufacturing to meet the community’s demand.

(b) Compute the total production agriculture, energy and manufacturing to
meet the community’s demand. (Use your favorite computational soft-
ware.)

Exercise 3.7.28. In Exercise 2.6.22 we described the incidence matrix of a
directed graph. In this exercise we will introduce the adjacency matrix A
of a graph G = (V,E) with n vertices V = {1, . . . n} by letting

aij = 1 if and only if (i, j) is an edge

and aij = 0 otherwise. Thus for the graph

1

2 3

4

Figure 3.1: A graph and its adjacency matrix.

we obtain

A =


0 0 1 1
1 0 0 0
1 1 0 1
0 1 1 0

 .
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Squaring A, we get

A2 =


1 2 1 1
0 0 1 1
1 1 2 1
2 1 0 1

 .
What does A2 tell us about the graph? Let us denote Ak = (a

(k)
ij )ni,j=1. So, for

instance, a(2)12 = 2; that is, the (1,2) entry of A2 equals 2. Using how matrices
multiply, we know that

a
(2)
12 =

n∑
r=1

a1rar2.

Thus a(2)12 counts how many times both a1r and ar2 equal one when r =
1, . . . , n. This counts exactly how many walks of length 2 there are in the
graph to go from 1 to 2. Indeed, we can go 1 → 3 → 2 or 1 → 4 → 2. In
general we have the rule

a
(k)
ij = the number of walks of length k in the graph from vertex i to vertex j.

(3.10)

(a) For the graph above, find the number of walks of length 4 from vertex 1
to 3 (by using matrix multiplication).

(b) Find the adjacency matrix of the following graph

1

2 3

4

Figure 3.2: An example graph.

(c) In the graph from part (b), find the number of walks of length 3 from
vertex 2 to 3.
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(d) Prove rule (3.10). (Hint: Use induction on k. Note that for a walk of length
k+ 1 from vertex i to vertex j, you need a vertex r so that there is a walk
of length k from i to r, and then an edge from r to j.)

Exercise 3.7.29. True or False? Justify each answer.

(i) For matrices A and B, if A+B is well-defined, then so is ABT .

(ii) If A has two identical columns, and the product AB is well-defined, then
AB also has (at least) two identical columns.

(iii) If rows 1 and 2 of the matrix B are the same, and A is a matrix, then
rows 1 and 2 of the matrix AB are also the same.

(iv) If A is not an invertible matrix, then the equation Ax = b does not have
a solution.

(v) For matrices A and B, if AB is well-defined, then so is ATBT .
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4.1 Definition of the Determinant and Properties

The determinant function assigns a scalar (denoted detA) to a square matrix
A. We build up the definition according to the size of the matrix.

• For a 1× 1 matrix A = [a11], we define detA = a11.

• For a 2× 2 matrix A =

[
a11 a12
a21 a22

]
we define

detA = a11a22 − a12a21.

For example,

det

[
1 2
3 4

]
= 4− 6 = −2.

• For a 3× 3 matrix A = (aij)
3
i,j=1, we define

detA = a11 det

[
a22 a23
a32 a33

]
− a12 det

[
a21 a23
a31 a33

]
+ a13 det

[
a21 a22
a31 a32

]
= (−1)1+1a11 detA11 + (−1)1+2a12 detA12 + (−1)1+3a13 detA13,

where

Ars = the matrix A without row r and column s.

89
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For example,

det

4 2 −3
1 −1 0
5 −2 8

 = 4 det

[
−1 0
−2 8

]
− 2 det

[
1 0
5 8

]
+ (−3) det

[
1 −1
5 −2

]

= 4(−8− 0)− 2(8− 0)− 3(−2 + 5) = −57.

• For an n× n matrix A = (aij)
n
i,j=1, we define

detA = (−1)1+1a11 detA11 + (−1)1+2a12 detA12 + · · ·+ (−1)1+na1nA1n.

We introduce the (i, j)th cofactor of the matrix A by Cij = (−1)i+j detAij .
With that notation we find that

detA = a11C11 + a12C12 + · · ·+ a1nC1n =

n∑
j=1

a1jC1j . (4.1)

For example,

det


1 4 2 −3
0 1 −1 0
5 0 −2 8
6 9 −5 7

 = 1 det

1 −1 0
0 −2 8
9 −5 7

− 4 det

0 −1 0
5 −2 8
6 −5 7

+

2 det

0 1 0
5 0 8
6 9 7

− (−3) det

0 1 −1
5 0 −2
6 9 −5

 = ((−14 + 40)− (−1)(0− 72))−

4(−(−1)(35− 48)) + 2(−1(35− 48)) + 3(−1(−25 + 12) + (−1)45) = −64.

The sign pattern (−1)i+j can be remembered easily by having the following
checkered pattern in mind:

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...

 .

We next provide some useful properties, which we prove in the next section.
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Theorem 4.1.1. Let A be an n×n matrix. The elementary row operations
have the following effect on the determinant:

(i) If B is obtained from the n × n matrix A by switching two rows of
A, then detB = −detA.

(ii) If B is obtained from the n×n matrix A by adding a multiple of one
row to another row of A, then detB = detA.

(iii) If B is obtained from the n× n matrix A by multiplying a row of A
by c, then detB = cdetA.

If we combine Theorem 4.1.1(i) with (4.1), we obtain the alternative formula
(‘expand along ith row’):

detA =

n∑
j=1

aijCij =

n∑
j=1

(−1)i+jaij detAij

= (−1)i+1ai1 detAi1 + (−1)i+2ai2 detAi2 + · · ·+ (−1)i+nainAin.

For example, if we expand the 3 × 3 matrix above and expand it along the
second row (thus we choose i = 2), we get

det

4 2 −3
1 −1 0
5 −2 8

 = −1 det

[
2 −3
−2 8

]
+ (−1) det

[
4 −3
5 8

]
− 0 det

[
4 2
5 −2

]

= −(16− 6)− (32 + 15)− 0(−8− 10) = −57.

The determinant of a lower or upper triangular matrix is easy to compute, as
in that case the determinant is the product of the diagonal entries.

Theorem 4.1.2.
If L = (lij)

n
i,j=1 is lower triangular, then detL =

∏n
i=1 lii = l11 · · · lnn.

If U = (uij)
n
i,j=1 is upper triangular, then detU =

∏n
i=1 uii = u11 · · ·unn.

In particular, det In = 1.

If we combine Theorem 4.1.1 with Theorem 4.1.2, we obtain another way to
compute the determinant: row reduce the matrix, while carefully keeping track
how the determinant changes in each step, until the matrix is triangular (at
which point the determinant can be easily calculated). For instance,

4 2 −3
1 −1 0
5 −2 8

→
 1 −1 0

4 2 −3
5 −2 8

→
 1 −1 0

0 6 −3
0 3 8

→


1 −1 0

0 6 −3

0 0 9
1

2

 .
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In the first step we switched two rows, so the determinant changes sign, and
in the other steps we added a multiple of one row to another, which does not
change the determinant. We thus find that

det

4 2 −3
1 −1 0
5 −2 8

 = −det


1 −1 0

0 6 −3

0 0 9
1

2

 = −1 · 6 · 91

2
= −57.

The next result states some more useful properties.

Theorem 4.1.3. For n× n matrices A and B, we have

(i) detAT = detA.

(ii) det(BA) = (detB)(detA).

(iii) A is invertible if and only if detA 6= 0, and in that case

det(A−1) =
1

detA
.

Using the transpose rule (Theorem 4.1.3(i)), we now also obtain formulas
where we expand along the jth column:

detA = (−1)1+ja1j detA1j + (−1)2+ja2j detA2j + · · ·+ (−1)n+janjAnj .

For example, expanding along the third column (thus j = 3), we get

det

4 2 −3
1 −1 0
5 −2 8

 = −3 det

[
1 −1
5 −2

]
− 0 det

[
4 2
5 −2

]
+ 8 det

[
4 2
1 −1

]
=

−3(−2 + 5)− 0(−8− 10) + 8(−4− 2) = −57.

Theorem 4.1.3(iii) shows that invertibility of a matrix can be captured by
its determinant being nonzero. It is this property that inspired the name
‘determinant’.

4.2 Alternative Definition and Proofs of Properties

To prove the results in the previous section, it is more convenient to define
the determinant in another way. Before we come to this alternative definition
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of the determinant, we first have to discuss permutations. A permutation
on the set n = {1, . . . , n} is a bijective function on n. For example, σ : 7→ 7
given by

i 1 2 3 4 5 6 7

σ(i) 5 3 1 4 6 2 7
(4.2)

is a permutation (here σ(1) = 5, σ(2) = 3, etc.). The set of all permutations
on n is denoted as Sn. The composition σ ◦ τ of two permutations σ, τ ∈ Sn is
again a permutation on n. (As an aside, we mention that Sn with the operation
◦ is the so-called ‘Symmetric group’; a favorite example in an Abstract Algebra
course). To any permutation we can assign a sign whose value is +1 or −1.
One way to define the sign function is by using the polynomial in variables
x1, . . . , xn defined by

P (x1, . . . , xn) =
∏

1≤i<j≤n

(xi − xj).

For example, P (x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3). We now define

sign : Sn → {−1, 1} , sign(σ) =
P (xσ(1), . . . , xσ(n))

P (x1, . . . , xn)
.

For instance, the permutation

i 1 2 3 4

σ(i) 1 4 3 2
(4.3)

has sign

sign(σ) =
(x1 − x4)(x1 − x3)(x1 − x2)(x4 − x3)(x4 − x2)(x3 − x2)

(x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)
= −1.

A transposition is a permutation which interchanges two numbers and leaves
the others fixed. An example is σ in (4.3) as it interchanges 2 and 4, and leaves
the others (1 and 3 in this case) alone.

Lemma 4.2.1. The sign function has the following properties.

(i) sign(σ ◦ τ) = sign(σ)sign(τ).

(ii) sign(id) = 1, where id is the identity on n.

(iii) sign(σ) = sign(σ−1).

(iv) If σ is a transposition, then sign(σ) = −1.

Proof. (i) follows from

sign(σ ◦ τ) =
P (xσ(τ((1)), . . . , xσ(τ(n)))

P (x1, . . . , xn)
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=
P (xσ(τ((1)), . . . , xσ(τ(n)))

P (xτ(1), . . . , xτ(n))

P (xτ(1), . . . , xτ(n))

P (x1, . . . , xn)
= sign(σ)sign(τ).

(ii) is immediate.

(iii) follows from (i) and (ii) since σ ◦ σ−1 = id.

(iv) If we let σ denote the transposition that switches i and j, with i < j,
then its sign equals

sign(σ) =
(xj − xi)

∏
i<r<j(xj − xr)(xr − xi)

(xi − xj)
∏
i<r<j(xi − xr)(xr − xj)

,

where we omitted the factors that are the same in numerator and
denominator. Thus there are 2(j − i − 1) + 1 factors that switch sign,
which is an odd number. Thus sign(σ) = −1. �

It will be convenient to introduce the shorthand

(−1)σ := sign(σ).

Then we have that (−1)σ◦τ = (−1)σ(−1)τ and (−1)id = 1. A permutation σ
with (−1)σ = −1 is usually referred to as an odd permutation, as it is the
composition of an odd number of transpositions. Similarly, a permutation σ
with (−1)σ = 1 is referred to as an even permutation, as it is the compo-
sition of an even number of transpositions. There is a lot more to say about
permutations∗, but we need to get back to determinants.

Definition 4.2.2. We now define for A = (aij)
n
i,j=1 its determinant to

be

detA =
∑
σ∈Sn

(−1)σa1,σ(1)a2,σ(2) · · · an,σ(n) =
∑
σ∈Sn

(
(−1)σ

n∏
i=1

ai,σ(i)

)
.

(4.4)

When n = 2 there are 2 permutations (id and the one that switches 1 and 2),
and we get

detA = a11a22 − a12a21.

When n = 3 there are 3! = 6 permutations (id, 1 ↔ 2, 1 ↔ 3, 2 ↔ 3,
1→ 2→ 3→ 1, 1→ 3→ 2→ 1), and we get

detA = a11a22a33−a12a21a33−a13a22a31−a11a23a32 +a12a23a31 +a13a21a32.

∗For example, the permutation (4.2) in cycle notation is (1 5 6 2 3) and is an even one.
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We can now start proving the results in the previous section.

Proof of Theorem 4.1.1(i). Let τ be the permutation that switches i and j
and leaves the other numbers alone. Then br,s = aτ(r),s for every r ∈ n. Thus

detB =
∑
σ∈Sn

(
(−1)σ

n∏
r=1

br,σ(r)

)
=
∑
σ∈Sn

(
(−1)σ

n∏
r=1

aτ(r),σ(r)

)
.

Letting s = τ(r) and σ̃ = σ ◦ τ−1 and using (−1)σ̃ = (−1)τ (−1)σ = −(−1)σ,
we get that detB equals

∑
σ∈Sn

(
(−1)σ

n∏
s=1

as,σ(τ−1(s))

)
= −

∑
σ̃∈Sn

(
(−1)σ̃

n∏
s=1

as,σ̃(s)

)
= −detA.

�

Corollary 4.2.3. If A has two identical rows, then detA = 0.

Proof. If B is obtained by switching the identical rows, we get detB =
−detA. But B = A, and thus detA = −detA, which yields detA = 0. �

Proof of Theorem 4.1.1(ii). Suppose we have that bis = ais + cajs and
brs = ars, r 6= i, for s = 1, . . . , n. Then

detB =
∑
σ∈Sn

(
(−1)σ

n∏
r=1

br,σ(r)

)
=
∑
σ∈Sn

(−1)σ(ai,σ(i) + caj,σ(i))
∏
r 6=i

ar,σ(r)



=
∑
σ∈Sn

(
(−1)σ

n∏
r=1

ar,σ(r)

)
+ c

∑
σ∈Sn

(−1)σaj,σ(i)

n∏
r 6=i

ar,σ(r)

 .

The first sum equals detA, while the second sum is the determinant of a
matrix where rows i and j are the same. Thus, by Corollary 4.2.3, the second
term equals 0, and we find that detB = detA. �

Proof of Theorem 4.1.1(iii). Let us say that B is obtained from A by
multiplying row i by c. Thus bij = caij , and brj = arj , r 6= i, for j = 1, . . . , n.
But then

∏n
r=1 br,σ(r) = c

∏n
r=1 ar,σ(r) for all σ ∈ Sn. Thus

detB =
∑
σ∈Sn

(
(−1)σ

n∏
r=1

br,σ(r)

)
=
∑
σ∈Sn

(
(−1)σc

n∏
r=1

ar,σ(r)

)
= cdetA.

�
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Proof of Theorem 4.1.2. Let L = (lij)
n
i,j=1 be lower triangular. If σ 6= id,

then there is an r ∈ {1, . . . , n} so that r < σ(r), which gives that lr,σ(r) = 0.
But then

∏n
i=1 li,σ(i) = 0. Thus

detL =
∑
σ∈Sn

(
(−1)σ

n∏
i=1

li,σ(i)

)
=
∑
σ=id

(
(−1)σ

n∏
i=1

li,σ(i)

)
=

n∏
i=1

lii.

The upper triangular case works similarly. �

Corollary 4.2.4. Let E and A be n × n matrices. If E is an elementary
matrix then

det(EA) = (detE)(detA).

Proof. It is not hard to see that if E is an elementary matrix of

• type I then detE = −1.

• type II then detE = 1.

• type III then detE = c.

Now the corollary follows from Theorem 4.1.1. �

Proof of Theorem 4.1.3(ii). If B is invertible, then B is a product of
elementary matrices B = E1E2 · · ·Ep. Now use Corollary 4.2.4 repeatedly to
conclude that det(BA) = detB detA.

If B is not invertible, then B has a row that is a linear combination of other
rows. But then BA also has a row that is a linear combination of other rows.
But then detB = 0 and detBA = 0, and so the equality follows. �

Proof of Theorem 4.1.3(iii). If A is invertible, then AA−1 = In. But then,
by Theorem 4.1.3(ii) we have detAdetA−1 = det In = 1. Thus detA 6= 0 and
detA−1 = 1

detA follows.

If A is not invertible, then there exist elementary matrices E1, E2, . . . , Ep so
that E1E2 · · ·EpA has a zero row. Then

0 = det(E1E2 · · ·EpA) =

 p∏
j=1

det(Ej)

detA.

Since detEj 6= 0, j = 1 . . . , p, we obtain that detA = 0. �
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Proof of Theorem 4.1.3(i). Let A = (aij)
n
i,j=1. Then [AT ]ij = aji, and thus

detAT =
∑
σ∈Sn

(
(−1)σ

n∏
i=1

aσ(i),i

)
=
∑
σ∈Sn

(
(−1)σ

n∏
i=1

ai,σ−1(i)

)

=
∑

σ−1∈Sn

(
(−1)σ

−1
n∏
i=1

ai,σ−1(i)

)
= detA,

where we used that (−1)σ
−1

= (−1)σ. �

Let us also check that the definition of the determinant in this section matches
with the one from the previous one. We do this by proving the expansion
formula along the last row.

Proposition 4.2.5. For an n× n matrix A, we have

detA =

n∑
i=1

(−1)i+nani detAni.

Proof. Let Bi be the matrix that coincides with A in the first n − 1 rows,
and has in the nth row only one nonzero entry in the (n, i)th spot equal to
ani. First observe that

detA =
∑
σ∈Sn

(−1)σ
n∏
r=1

ar,σ(r)

=

n∑
i=1

∑
σ ∈ Sn
σ(n) = i

(−1)σain

n−1∏
r=1

ar,σ(r) =

n∑
i=1

detBi.

In the matrix Bi we can move the ith column step by step to the right, taking
n−i steps to move it to the last column. In each step the determinant switches
sign. We now get that

detBi = (−1)n−i det

[
Ani ∗
0 ani

]
,

where * indicates entries whose values are not important. For a matrix of the
form

C = (cij)
n
i,j=1 =

[
C̃ ∗
0 cnn

]
one finds that

detC =
∑
σ∈Sn

(−1)σ
n∏
r=1

cr,σ(r) =
∑
σ ∈ Sn
σ(n) = n

(−1)σcnn

n−1∏
r=1

cr,σ(r) = cnn det C̃.
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Thus detBi = (−1)n−iani detAni, and using (−1)n−i = (−1)i+n we find that

detA =
n∑
i=1

(−1)n−iani detAni =
n∑
i=1

(−1)i+nani detAni.

�

We can use the results in this section to give a characterization when A has an
LU factorization with invertible factors L and U . For a matrix A = (aij)

n
i,j=1

the determinants
det(aij)

k
i,j=1, k = 1, . . . , n,

are called the leading principal minors of the matrix A.

Theorem 4.2.6. The matrix A has an LU factorization A = LU with L
and U invertible if and only if its leading principal minors are nonzero.

Proof. First suppose that A = LU with L and U invertible. Let k ∈
{1, . . . , n}. Write L and U as block matrices

L =

[
L11 0
L21 L22

]
, U =

[
U11 U12

0 U22

]
,

where L11 and U11 are of size k × k. Notice that L11 is lower triangular with
nonzero diagonal entries. Thus detL11 6= 0. Similarly, detU11 6= 0. Since

A = LU =

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
=

[
L11U11 L11U12

L21U11 L21U12 + L22U22

]
,

we get that
(aij)

k
i,j=1 = L11U11,

and thus det(aij)
k
i,j=1 = detL11 detU11 6= 0.

Conversely, suppose that A has nonzero leading principal minors. When one
performs the row reduction procedure as outlined in Section 3.6, one finds
that the first pivot is a11 6= 0, and that the pivot in the (k, k), k > 1, entry is

ukk =
det(aij)

k
i,j=1

det(aij)
k−1
i,j=1

6= 0.

Thus the row reduction can continue until one reaches the upper triangular
U which has nonzero diagonal entries. The matrix L is a unit lower triangular
matrix. Thus A has an LU factorization with invertible factors L and U . �
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4.3 Cramer’s Rule

Let ai denote the ith column of A. Now we define

Ai(b) :=
[
a1 · · · ai−1 b ai+1 · · · an

]
, i = 1, . . . , n.

Thus Ai(b) is the matrix obtained from A by replacing its ith column by b.

Theorem 4.3.1. (Cramer’s rule) Let A be an invertible n×n matrix. For
any b ∈ Rn, the unique solution x = (xi)

n
i=1 to the equation Ax = b has

entries given by

xi =
detAi(b)

detA
, i = 1, . . . , n. (4.5)

Proof. We denote the columns of the n × n identity matrix I by e1, . . . , en.
Let us compute

A Ii(x) = A
[
e1 · · · ei−1 x ei+1 · · · en

]
=[

Ae1 · · · Aei−1 Ax Aei+1 · · · Aen
]

= Ai(b).

But then, using the multiplicativity of the determinant, we get detAdet Ii(x) =
detAi(b). It is easy to see that det Ii(x) = xi, and (4.5) follows. �

Example 4.3.2. Find the solution to the system of linear equations{
x1 + 2x2 = 0
x1 + x2 = 1

.

Applying Cramer’s rule, we get

x1 = det

[
0 2
1 1

]
/ det

[
1 2
1 1

]
=
−2

−1
= 2,

x2 = det

[
1 0
1 1

]
/ det

[
1 2
1 1

]
=

1

−1
= −1.

Checking the answer (2+2(−1) = 0, 2+(−1) = 1), confirms that the answer
is correct. �

Given A = (aij)
n
i,j=1 ∈ Rn×n. As before, we let Aij ∈ R(n−1)×(n−1) be the

matrix obtained from A by removing the ith row and the jth column, and we
put

Cij = (−1)i+j detAij , i, j = 1, . . . , n,
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which is the (i, j)th cofactor of A. Given

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 ,
the adjugate of A is defined by

adj(A) =


C11 C21 · · · Cn1
C12 C22 · · · Cn2
...

...
...

C1n C2n · · · Cnn

 . (4.6)

Thus the (i, j)th entry of adj(A) is Cji (notice the switch in the indices!).

Example 4.3.3. Compute the adjugate of

A =

1 0 2
2 3 1
1 4 0

 .
We get

adj(A) =

 3 · 0− 1 · 4 −0 · 0 + 2 · 4 0 · 1− 2 · 3
−2 · 0 + 1 · 1 1 · 0− 2 · 1 −1 · 1 + 2 · 2
2 · 4− 3 · 1 −1 · 4 + 0 · 1 1 · 3− 0 · 2

 =

−4 8 −6
1 −2 3
5 −4 3

 .
�

The usefulness of the adjugate matrix is given by the following result.

Theorem 4.3.4. Let A be an n× n matrix. Then

A adj(A) = (detA)In = adj(A) A. (4.7)

In particular, if detA 6= 0, then

A−1 =
1

detA
adj(A). (4.8)

Proof. As before, we let ai denote the ith column of A. Consider Ai(aj),
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which is the matrix A with the ith column replaced by aj . Thus, when i 6= j
we have that Ai(aj) has two identical columns (namely the ith and the jth)
and thus detAi(aj) = 0, i 6= j. When i = j, then Ai(aj) = A, and thus
detAi(aj) = detA. Computing the (i, j)th entry of the product adj(A) A, we
get

(adj(A) A)ij =
n∑
k=1

Ckiakj = detAi(aj) =

{
detA if i = j

0 if i 6= j
,

where we expanded detAi(aj) along the ith column. This proves the second
equality in (4.7). The proof of the first equality in (4.7) is similar.

Equation (4.8) follows directly from (4.7). �

Notice that if we apply (4.8) to a 2×2 matrix, we obtain the familiar formula[
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
.

Applying (4.8) to the matrix A in Example 4.3.3, we get1 0 2
2 3 1
1 4 0

−1 =
1

detA
adj(A) =

1

6

−4 8 −6
1 −2 3
5 −4 3

 .

4.4 Determinants and Volumes

With a matrix A =
[
a1 · · · an

]
we can associate the region

PA = {x1a1 + · · ·+ xnan : 0 ≤ xi ≤ 1, i = 1, . . . , n} ⊂ Rn. (4.9)

For n = 2 it is the parallelogram depicted in Figure 4.1. In higher dimensions
the region is called a parallelepiped.

The main result in this section is that the absolute value of the determinant
of A corresponds to the volume of the parallelepiped.

Theorem 4.4.1. For A =
[
a1 · · · an

]
we have

|detA| = Volume(PA),

where PA is the parallelepiped defined in (4.9).
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0

a2

a1 + a2

a1

Figure 4.1: The area of this parallelogram equals |detA|, where A = [a1 a2].

In two dimensions ‘Volume’ should be interpreted as the area. In general, an
n-dimensional cube with sides of length h1, . . . , hn has volume h1h2 · · ·hn. We
rely on intuition for the volume of other n-dimensional regions. The following
‘proof’ therefore is actually an intuitive explanation.

Idea of proof. If detA = 0 it means that the columns of A span a subspace of
dimension ≤ n−1. Thus the parallelepiped PA lies inside a lower dimensional
space, and thus the volume is 0.

If detA 6= 0, then A is invertible and thus the product of elementary matrices,
say A = E1E2 · · ·Ek. We start with PIn which is the unit cube which has
volume 1 = det In.

Next we look at E1 = InE1. If E1 is a type I elementary matrix, it means we
are just permuting two columns of the identity matrix, which does not change
the parallelepiped (PIn = PE1

), and thus Volume(PE1
) = 1 = |det(E1)|.

If E1 is a type II elementary matrix, it means that one of the unit vectors ei
is replaced by ei+ cej , and the other columns are left alone. This corresponds
to a ‘shear’ action, as depicted in Figure 4.2. This does not change the vol-
ume. Thus 1 = Volume(PIn) = Volume(PE1) and thus Volume(PE1) = 1 =
|detE1|.

If E1 is a type III elementary matrix, it means that one of the unit vectors
ei is multiplied by c 6= 0. Thus the length of one of the sides of the unit
cube gets multiplied by |c| and the other lengths stay the same. Consequently,
Volume(PE1

) = |c| = |detE1|. Note that if c is a negative number, the paral-
lelepiped gets reflected as well, but the reflection does not change the volume.

The same arguments can also be applied if we start with PB and take an
elementary matrix E, and compare Volume(PB) with Volume(PBE). In the
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0

e2 e1 + e2

e1 0

e2 + c e1 e1 + (e2 + c e1)

e1

Figure 4.2: Shear action does not change the area/volume.

same manner we get

Volume(PBE) = |detE|Volume(PB).

If we use this rule repeatedly on A = InE1E2 · · ·Ek, we obtain

Volume(PA) = |detE1| · · · |detEk|Volume(PIn) = |det(E1 · · ·Ek)| = |detA|.

�

The sign of detA can be used to assign an orientation to a collection of vectors.
We do not pursue this here. It would fit well in a geometry course.

4.5 Exercises

Exercise 4.5.1. Find the determinant of following matrices.

(a)
[
3 −2
4 2

]
.

(b)
[
2 6
1 3

]
.

(c)


2 4 1 6
0 2 0 0
−1 −2 4 5
0 6 −3 1

 .
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(d)

 2 3 1
2 1 0
−1 −4 5

 .†

(e)


2 5 3 0
1 4 −7 2
1 28 1

2 0
0 3 0 0

 .

(f)

a b c
a b+ x c+ x
a b+ y c+ y + 1

.
Exercise 4.5.2. Suppose that det

a b c
d e f
g h j

 = 7. Find the following.

(a) det

g − 4a h− 4b j − 4c
3a 3b 3c
d e f

 .
(b) det

g + 6a h+ 6b j + 6c
2d+ a 2e+ b 2f + c
−a −b −c

 .
Exercise 4.5.3. For what values of a, b, x and y is the matrix1 1 1

a a 2a+ x
b b+ y b


invertible?

Exercise 4.5.4. Let a, b, c, x, y, z ∈ R. Find the determinants of the following
matrices.

(a)

 a− x a− y a− z
b− x b− y b− z
c− x c− y c− z

 .
(b)

 1 + ax 1 + ay 1 + az
1 + bx 1 + by 1 + bz
1 + cx 1 + cy 1 + cz

 .
†In sagecell.sagemath.org you can enter ‘A = matrix([ [2,3,1], [2,1,0], [-1,-4,5] ])’ and

‘A.det()’ to check your answer.
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(c)

 a b c
x y 0
z 0 0

 .‡
Exercise 4.5.5. For x1, . . . , xn ∈ R define

V (x1, . . . , xn) =


1 x1 · · · xn−11

1 x2 · · · xn−12
...

...
...

1 xn · · · xn−1n

 . (4.10)

The matrix V (x1, . . . , xn) is called the Vandermonde matrix.

The Vandermonde matrix V (x1, . . . , xn) satisfies

detV (x1, . . . , xn) =
∏

1≤j<i≤n

(xi − xj). (4.11)

In particular, V (x1, . . . , xn) is invertible as soon as xi 6= xj when i 6= j.

(a) Prove (4.11) for n = 2.

(b) Prove (4.11) for n = 3.

(c) Use induction to prove (4.11) for all n.
Hint: Take V (x1, . . . , xn) and subtract row 1 from all the other rows,
leaving the determinant unchanged and arriving at the matrix

1 x1 · · · xn−11

0 x2 − x1 · · · xn−12 − xn−11
...

...
...

0 xn − x1 · · · xn−1n − xn−11

 .
Next, subtract, in order, x1 times column n− 1 from column n, x1 times
column n − 2 from column n − 1, and so on, until we subtract x1 times
column 1 from column 2. This again leaves the determinant unchanged,
and leads to the matrix

1 0 0 · · · 0 0
0 x2 − x1 (x2 − x1)x2 · · · (x2 − x1)xn−32 (x2 − x1)xn−22
...

...
...

...
...

0 xn − x1 (xn − x1)xn · · · (xn − x1)xn−3n (xn − x1)xn−2n

 .
‡In www.wolframalpha.com you can enter ‘det {{a, b, c}, {x, y, 0}, {z, 0, 0}}’ to check your

answer.

http://www.wolframalpha.com
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This matrix equals
1 0 · · · 0
0 x2 − x1 · · · 0
...

...
. . .

...
0 0 · · · xn − x1




1 0 0 · · · 0
0 1 x2 · · · xn−22
...

...
...

...
0 1 xn · · · xn−2n

 .
Now use the induction hypothesis.

Exercise 4.5.6. Suppose that we would like to find a polynomial p(x) =
p0 + p1x+ p2x

2 so that p(x1) = y1, p(x2) = y2 and p(x3) = y3.

(a) Show that to find the coefficients p0, p1, p2 one needs to solve the equation

V (x1, x2, x3)

p0p1
p2

 =

y1y2
y3

 ,
where V (x1, . . . , xn) is defined in (4.10).

(b) Find a polynomial p(x) of degree ≤ 2 so that p(1) = 3, p(2) = 7, and
p(3) = 13.

(c) Show that finding a polynomial p(x) =
∑n−1
i=0 pix

i with p(xj) = yj , j =
1, . . . , n, leads to the equation

V (x1, . . . , xn)

 p0
...

pn−1

 =

y1...
yn

 .
(d) Use (4.11) to conclude that if x1, . . . , xn in part (c) are all different, then

the interpolation problem in (c) has a unique solution.

Exercise 4.5.7. Use Cramer’s rule to find the solution to the following sys-
tems of linear equations

(a)
{

2x1 + 2x2 = 1
x1 + 2x2 = 1

.

(b)
{

2x1 + 2x2 = 1
x1 + 2x2 = 1

.

Exercise 4.5.8. Use Cramer’s rule to solve for x3 in the system3x1 − x2 + x3 = 1
2x1 − x2 = 5
x1 + x2 − x3 = 0

.
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Exercise 4.5.9. Use Cramer’s rule to solve for x2 in the system 2x1 − 2x2 − x3 = 2
x1 − x2 − x3 = 4

x2 − x3 = −6
.

Exercise 4.5.10. Consider the matrix vector equation Ax = b given by1 1 2
1 α 0
1 1 3

x1x2
x3

 =

2
0
5

 .
Determine α ∈ R so that A is invertible and x1 = x2.
(Hint: Use Cramer’s rule.)

Exercise 4.5.11. Let A ∈ Rn×n, B ∈ Rm×n, and C ∈ Rm×m. Show that

det

[
A 0
B C

]
= (detA)(detC).

Exercise 4.5.12. Give an example of matrices A,B,C,D ∈ Rn×n so that

det

[
A B
C D

]
6= (detA)(detD)− (detB)(detC).

Exercise 4.5.13. Let
T =

[
A B
C D

]
(4.12)

be a block matrix, and suppose that A is a square matrix and that D is
invertible. Show that

det T = det(A−BD−1C) detD.

Hint: Use the same hint as in Exercise 3.7.15.

Exercise 4.5.14. Compute the adjugate§ of

A =

 1
2 2 2
2 3 1
1 4 0

 .
Next, find A−1.

Exercise 4.5.15. True or False? Justify each answer.

(i) If A is a 2× 2 matrix, then det(−A) = det(A).

§In live.sympy.org you can enter ‘A=Matrix(3, 3, [1/2, 2, 2, 2, 3, 1, 1, 4, 0])’ and
‘A.adjugate()’ to check your answer.
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(ii) If for the square matrix A we have that A2 = A, then detA = 1.

(iii) For n×n matrices A and B, it holds that det(A+B) = det(A)+det(B).

(iv) For a n× n matrix A, it holds that det(A−A) = det(A)− det(A).

(v) If for the square matrix A we have that A−1 = A, then detA = 1.

(vi) A square matrix has a nonzero determinant if and only if its columns
are linearly independent.

(vii) If all diagonal entries of an n× n-matrix A are 0, then detA = 0.

Exercise 4.5.16. For a n× n matrix A show that

det(adj(A)) = (detA)n−1.

Exercise 4.5.17. Let 1n×n be the n × n matrix with all entries equal to 1.
Show that

det(In + a1n×n) = 1 + an.

Exercise 4.5.18. Let

A =



1 1 1 · · · 1 1
1 2 2 · · · 2 2
1 2 3 · · · 3 3
...

...
...

...
...

1 2 3 · · · n− 1 n− 1
1 2 3 · · · n− 1 n


, B =



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
. . . . . . . . .

...
0 0 · · · −1 2 −1
0 0 · · · 0 −1 1


.

(a) Show that detA = 1. (Hint: Start by subtracting row n− 1 from row n.)

(b) Show that A−1 = B.

(c) What is detB?

Exercise 4.5.19. Let

An =



1 1
2!

1
3! · · · 1

(n−1)!
1
n!

1 1 1
2! · · · 1

(n−2)!
1

(n−1)!

0 1 1
. . . 1

(n−3)!
1

(n−3)!
...

...
. . . . . . . . .

...

0 0 0
. . . 1 1

2!
0 0 0 · · · 1 1


.

(a) Compute detA2.
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(b) Compute detA3.

(c) Compute detA4.

(d) Can you guess a formula for detAn? Can you prove it?

Exercise 4.5.20. Let

a1 =

 2
−1
0

 ,a2 =

1
0
1

 ,a3 =

0
3
2

 .
Find the volume of the parallelepiped with corners

0,a1,a2,a3,a1 + a2,a1 + a3,a2 + a3,a1 + a2 + a3.

Exercise 4.5.21. Let A =
[
a1 a2 a3

]
∈ R3×3. Explain using a geometric

argument (using Theorem 4.4.1) why detA = 0 if and only if {a1,a2,a3} is
linearly dependent.



http://taylorandfrancis.com
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5.1 Definition of a Vector Space

So far we have seen Rn and Rm×n as examples of vector spaces over R. Next we
introduce the general definition of a vector space. The important feature of a
vector space is that we have two operations, addition and scalar multiplication,
that satisfy several rules. This abstract definition allows one to develop a single
theory that captures many different situations. The scalars come in general
from a field F. For now one can think of F as being the real numbers R. In the
later chapters we allow F to be the complex numbers C. The general definition
of a field is given in Appendix A.3.

Definition 5.1.1. A vector space over F is a set V along with two
operations + : V ×V → V, · : F×V → V satisfying the following axioms:

1. Closure of addition: for all u,v ∈ V we have that u + v ∈ V .

2. Associativity of addition: for all u,v,w ∈ V we have that (u+v)+
w = u + (v + w).

3. Commutativity of addition: for all u,v ∈ V we have that u + v =
v + u.

4. Existence of a neutral element for addition: there exists a 0 ∈ V
so that u + 0 = u = 0 + u for all u ∈ V .

111
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5. Existence of an additive inverse: for every u ∈ V there exists a
−u ∈ V so that u + (−u) = 0 = (−u) + u.

6. Closure of scalar multiplication: for all c ∈ F and u ∈ V we have
that cu ∈ V .

7. First distributive law: for all c ∈ F and u,v ∈ V we have that
c(u + v) = cu + cv.

8. Second distributive law: for all c, d ∈ F and u ∈ V we have that
(c+ d)u = cu + du.

9. Associativity for scalar multiplication: for all c, d ∈ F and u ∈ V
we have that c(du) = (cd)u.

10. Unit multiplication rule: for every u ∈ V we have that 1u = u.

Technically the closure rules are already stated when we say that addition
and scalar multiplication map back into V , but it does not hurt to emphasize
the point. These axioms imply several rules that seem ‘obvious,’ but as all
properties in vector spaces have to be traced back to the axioms, we need to
reprove these obvious rules. Here are two such examples.

Lemma 5.1.2. Let V be a vector space over F. Then for all u ∈ V we
have that

(i) 0u = 0.

(ii) (−1)u = −u.

Proof. (i) We have

0u + u = 0u + 1u = (0 + 1)u = 1u = u.

Adding −u on both sides (and using associativity) now gives 0u = 0.

For (ii) we observe

(−1)u + u = (−1)u + 1u = (−1 + 1)u = 0u = 0.

Adding −u on both sides yields (ii). �

We shall also develop several shorthands. For instance we shall write u − v
for u + (−v). Also, when we add several vectors together such as u + v + w
or u1 + · · ·+un =

∑n
i=1 ui we typically will not write any parentheses as due

to the associativity it does not matter in which order we add them. Indeed,
u + v + w can be interpreted as either (u + v) + w or u + (v + w).
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5.2 Main Examples

Important examples of vector spaces over R are the following.

1. Rn with addition and scalar multiplication of vectors: we have seen in
Section 1.3 that these operations satisfy all the vector space axioms.

2. Subspaces of Rn: when you take a subspace S of Rn it is closed under
addition and scalar multiplication of vectors. In addition, we have that
0 ∈ S, and due to closure of scalar multiplication we also have that u ∈ S
implies −u = (−1)u ∈ S. All the other axioms (associativity, commuta-
tivity, etc.) follow because the operations are the same as in Rn, and thus
S ‘inherits’ these properties.

3. R[t] := {p(t) : p is a polynomial in the variable t} with the usual addition
and scalar multiplication of polynomials. For instance,

(2t+3t2)+(5+6t2+7t3) = 5+2t+9t2+7t3, (−3)(2−t+t4) = −6+3t−3t4.

Of course, you have also learned how to multiply two polynomials, but
that operation is not part of the vector space structure.

4. Rn[t] := {p(t) ∈ R[t] : deg p(t) ≤ n} , with the addition and scalar multi-
plication of polynomials.

The degree of a polynomial p(t) (notation: deg p(t)) is the highest power
of t that appears in the polynomial. For instance, if p(t) = 1+5t−7t3, then
deg p(t) = 3. If p(t) is a constant nonzero polynomial, such as p(t) ≡ −2,
then its degree is 0. (We use the notation ≡ to emphasize that the equality
holds for all t.) The constant zero polynomial, p(t) ≡ 0 (also denoted by
0(t)), has, by convention, degree −∞∗.

5. Rm×n with the usual addition and scalar multiplication of matrices. We
have seen in Proposition 3.1.1 that Rm×n satisfies all the vector space
axioms.

6. Uppern = {U ∈ Rn×n : U is upper triangular} with the addition and
scalar multiplication of matrices. It is clear that Uppern is closed under ad-
dition and scalar multiplication, and that 0 ∈ Uppern. Also, ifA ∈ Uppern,
then −A ∈ Uppern. The other vector space axioms follow as the axioms
are the same as in Rn×n, and thus Uppern ‘inherits’ these properties.

∗While we are not multiplying polynomials in the vector space context, this convention
is useful for the rule deg p(t)q(t) = deg p(t) + deg q(t).
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We actually have that Rn[t] is a subspace of R[t], and that Uppern is a subspace
of Rn×n. The general definition is as follows.

Given a vector space V over F, and W ⊆ V . If W with the operations as
defined on V , is itself a vector space, we call W a subspace of V .

Theorem 5.2.1. Given a vector space V over F, and W ⊆ V , then W is
a subspace of V if and only if

(i) 0 ∈W .

(ii) W is closed under addition: for all w,y ∈W , we have w + y ∈W .

(iii) W is closed under scalar multiplication: for all c ∈ F and w ∈W , we
have that cw ∈W .

Equivalently, W is a subspace of V if and only if

(i’) W 6= ∅.

(ii’) W is closed under addition and scalar multiplication: for all c, d ∈ F
and w,y ∈W , we have that cw + dy ∈W .

Proof. If W is a vector space, then (i), (ii) and (iii) are clearly satisfied.

For the converse, we need to check that when W satisfies (i), (ii) and (iii), it
satisfies all ten axioms in the definition of a vector space. Clearly properties
(i), (ii) and (iii) above take care of axioms 1, 4 and 6 in the definition of a
vector space. Axiom 5 follows from (iii) in combination with Lemma 5.1.2(ii).
The other properties (associativity, commutativity, distributivity, unit multi-
plication) are satisfied as they hold for all elements of V , and thus also for
elements of W .

The arguments showing the equivalence of (i), (ii) and (iii) with (i’) and (ii’)
are the same as in Section 2.1. �

Similar as in Section 2.1 we have the intersection and sum of subspaces. Given
two subspaces U and W of a vector space V , we let

U +W := {v ∈ V : there exist u ∈ U and w ∈W so that v = u + w} ,

U ∩W := {v ∈ V : v ∈ U and v ∈W} .

Proposition 5.2.2. Given two subspaces U and W of a vector space V
over F, then U +W and U ∩W are also subspaces of V .

The proof is the same as the proof of Proposition 2.1.7.
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As before, when U ∩W = {0}, then we refer to U + W as a direct sum of
U and W , and write U+̇W .

5.3 Linear Independence, Span, and Basis

Let V be a vector space over F. A set of vectors {v1, . . . ,vp} in V is said to
be linearly independent if the vector equation

c1v1 + c2v2 + · · ·+ cpvp = 0, (5.1)

with c1, . . . , cp ∈ F, only has the solution c1 = 0, . . . , cp = 0 (the trivial
solution). The set {v1, . . . ,vp} is said to be linearly dependent if (5.1)
has a solution where not all of c1, . . . , cp are zero (a nontrivial solution).
In such a case, (5.1) with at least one ci nonzero gives a linear dependence
relation among {v1, . . . ,vp}. An arbitrary set S ⊆ V is said to be linearly
independent if every finite subset of S is linearly independent. The set S is
linearly dependent, if it is not linearly independent.

Example 5.3.1. Let V = R2×2. Let us check whether

S =

{[
1 0
2 1

]
,

[
1 1
1 1

]
,

[
0 2
1 1

]}
is linearly independent or not. Consider the equation

c1

[
1 0
2 1

]
+ c2

[
1 1
1 1

]
+ c3

[
0 2
1 1

]
=

[
0 0
0 0

]
.

Rewriting, we get 
1 1 0
0 1 2
2 1 1
1 1 1


c1c2
c3

 =


0
0
0
0

 . (5.2)

Bringing this 4× 3 matrix in row echelon form gives
1 1 0
0 1 2
2 1 1
1 1 1

→


1 1 0

0 1 2
0 −1 1
0 0 1

→


1 1 0

0 1 2

0 0 3
0 0 1

→


1 1 0

0 1 2

0 0 3
0 0 0

 .
As there are pivots in all columns, the system (5.2) only has the trivial solution
c1 = c2 = c3 = 0. Thus S is linearly independent.
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Next, consider

Ŝ =

{[
1 0
2 1

]
,

[
1 1
1 1

]
,

[
2 1
3 2

]}
.

Following the same reasoning as above we arrive at the system
1 1 2
0 1 1
2 1 3
1 1 2


c1c2
c3

 =


0
0
0
0

 , (5.3)

which after row reduction leads to
1 0 1

0 1 1
0 0 0
0 0 0


c1c2
c3

 =


0
0
0
0

 . (5.4)

So, c3 is a free variable. Letting c3 = 1, we get c1 = −c3 = −1 and c2 = −c3 =
−1, so we find the linear dependence relation

−
[
1 0
2 1

]
−
[
1 1
1 1

]
+

[
2 1
3 2

]
=

[
0 0
0 0

]
,

and thus Ŝ is linearly dependent. �

Example 5.3.2. Let V = R[t] (which has the neutral element 0(t)).
We claim that

{
1, t, t2, t3

}
is linearly independent.

(Here ‘1’ stands for the constant polynomial p(t) ≡ 1. Of course, 1 could also
stand for the real number 1. If there might be confusion which one we are
talking about, we could write the constant polynomial 1 as 1(t). The above
statement only makes sense if 1 ∈ V , thus we must be referring to the constant
polynomial.)

Let c0, c1, c2, c3 ∈ R be so that

c01 + c1t+ c2t
2 + c3t

3 = 0(t).

Let us take particular values of t, so that we get a traditional system of linear
equations. We take t = 0, 1,−1 and 2. Then we get

c0 = 0,
c0 + c1 + c2 + c3 = 0,
c0 − c1 + c2 − c3 = 0,

c0 + 2c1 + 4c2 + 8c3 = 0.

Solving this system, we find that the only solution is c0 = c1 = c2 = c3 = 0,
and thus linear independence follows.
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In fact, for any n ∈ N we have that {1, t, . . . , tn} is linearly independent.
To prove this, one can use Vandermonde matrices and their connection to
interpolation as explained in Exercise 4.5.6. You can also rely on knowledge
from Calculus: if you have a polynomial of degree ≤ n with n + 1 (or more)
roots, all its coefficients must be 0. �

Given a set ∅ 6= S ⊆ V we define

Span S := {c1v1 + · · ·+ cpvp : p ∈ N, c1, . . . , cp ∈ F,v1, . . . ,vp ∈ S} .

Thus, Span S consists of all linear combinations of a finite set of vectors in
S. As before, it is straightforward to check that Span S is a subspace of V .
Indeed, 0 ∈ Span S as one can choose p = 1, c1 = 0, and any v1 ∈ S, to get
that 0 = 0v1 ∈ Span S. Next, the sum of two linear combinations of vectors
in S is again a linear combination of vectors of S. Finally, for c ∈ F we have
that c

∑p
j=1 cjvj =

∑p
j=1(ccj)vj is again a linear combination of elements in

S. Thus by Theorem 5.2.1 we have that Span S is a subspace of V .

Example 5.3.3. Let V = R[t], the vector space of polynomials in t. We claim
that

Span
{

1, t, t2, t3
}

= R3[t].

We have that 1, t, t2, t3 ∈ R3[t], thus Span
{

1, t, t2, t3
}
⊆ R3[t] (since R3[t] is

closed under addition and scalar multiplication). Conversely, if p(t) ∈ R3[t],
then it has the form p(t) = c01 + c1t + c2t

2 + c3t
3, and thus p(t) ∈

Span
{

1, t, t2, t3
}
. This gives that R3[t] ⊆ Span

{
1, t, t2, t3

}
. Combined, we

thus find Span
{

1, t, t2, t3
}

= R3[t].† �

Often the same subspace can be represented in different ways. In the following
example we describe W via a condition (polynomials with a root at 1) and as
a span.

Example 5.3.4. Let V = R3[t] and W = {p(t) ∈ V : p(1) = 0}. We claim
that

Span
{
t− 1, t2 − 1, t3 − 1

}
= W. (5.5)

Let us first make sure that W is a subspace. Clearly 0 ∈W . Also, if p(t) and
q(t) are of degree ≤ 3 with p(1) = 0 = q(1) and c, d ∈ R, then the polynomial
cp(t) + dq(t) also has degree ≤ 3 and the property that its value at t = 1
equals 0. Consequently, cp(t) + dq(t) ∈W .

Notice that each polynomial t− 1, t2− 1, and t3− 1 has a root at 1, and that
they are of degree ≤ 3. Thus ⊆ in (5.5) holds.

†It is a common technique to prove the equality of sets X = Y by showing that they
are subsets of one another; that is, X ⊆ Y and Y ⊆ X.
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To prove the converse inclusion ⊇ in (5.5), let p(t) = p0+p1t+p2t
2+p3t

3 be an
arbitrary element ofW . The condition p(1) = 0 gives that p0+p1+p2+p3 = 0.
This system of a single equation has p1, p2, p3 as free variables, and p0 =
−p1 − p2 − p3. Consequently,

p(t) = −p1 − p2 − p3 + p1t+ p2t
2 + p3t

3 = p1(t− 1) + p2(t2 − 1) + p3(t3 − 1).

This shows that p(t) ∈ Span
{
t− 1, t2 − 1, t3 − 1

}
, and we are done. �

Definition 5.3.5. LetW be a vector space. We say that S ⊂W is a basis
for W if the following two conditions are both satisfied:

(i) Span S = W .

(ii) S is linearly independent.

As we have seen before, if S has a finite number of elements, then for any
other basis of W it will have the same number of elements.

Theorem 5.3.6. Let B = {v1, . . . ,vn} and C = {w1, . . . ,wm} be bases
for the vector space W . Then n = m.

The proof is the same as in Theorem 2.4.4. The dimension of a vector space
is the number of elements in a basis of W . When no finite number of elements
of W span W , we say dim W =∞.

Example 5.3.7. Combining Examples 5.3.3 and 5.3.2, we see that{
1, t, t2, t3

}
is a basis for R3[t], which yields that dim R3[t] = 4.

More general, {1, t, . . . , tn} is a basis for Rn[t] (which we call the standard
basis for Rn[t]). Thus dim Rn[t] = n+ 1. �

Example 5.3.8. Let V = R2×2 and

S =

{
E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]}
.

Then S is a basis for V .

To check linear independence, suppose that

c1E11 + c2E12 + c3E21 + c4E22 =

[
0 0
0 0

]
.

Thus [
c1 c2
c3 c4

]
=

[
0 0
0 0

]
,
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which yields c1 = c2 = c3 = c4 = 0. This gives linear independence.

Next, if we take an arbitrary element A ∈ V . Then

A =

[
a b
c d

]
= aE11 + bE12 + cE21 + dE22 ∈ SpanS.

Because both the linear independence and the spanning properties are satis-
fied, S is a basis for V . In particular, dim R2×2 = 4. �

More general, if we let Eij denote the m×n matrix which has a 1 in position
(i, j) and zeros everywhere else, then

{Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

is a basis for Rm×n (the standard basis for Rm×n). This implies that
dim Rm×n = mn.

Example 5.3.9. Let W =
{
p(t) ∈ R2[t] :

∫ 1

−1 p(t)dt = 0
}
. Show that W is

a subspace of R2[t] and find a basis for W .

Clearly, the zero polynomial 0(t) belongs to W as
∫ 1

−1 0(t)dt =
∫ 1

−1 0dt = 0.
Next, when p(t), q(t) ∈W and c, d ∈ R, then∫ 1

−1
(cp(t) + dq(t))dt = c

∫ 1

−1
p(t)dt+ d

∫ 1

−1
q(t)dt = c 0 + d 0 = 0,

so cp(t) + dq(t) ∈W . Thus by Theorem 5.2.1, W is a subspace of R2[t].

To find a basis, let us take an arbitrary element p(t) = p0 + p1t + p2t
2 ∈ W ,

which means that ∫ 1

−1
p(t)dt = 2p0 +

2

3
p2 = 0.

This yields the linear system

[
2 0 2

3

] p0p1
p2

 = 0.

The coefficient matrix only has a pivot in column 1, so we let p1 and p2 be
the free variables (as they correspond to the variables corresponding to the
2nd and 3rd column) and observe that p0 = − 1

3p2. Expressing p(t) in the free
variables we get

p(t) = −1

3
p2 + p1t+ p2t

2 = p1t+ p2(t2 − 1

3
).

Thus p(t) ∈ Span
{
t, t2 − 1

3

}
. As we started with an arbitrary p(t) ∈ W , we
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now proved thatW ⊆ Span
{
t, t2 − 1

3

}
. Next, observe that t ∈W and t2− 1

3 ∈
W . Since W is a subspace of R2[t], we consequently have Span

{
t, t2 − 1

3

}
⊆

W . Due to both inclusions, we now obtain the equality Span
{
t, t2 − 1

3

}
= W .

Next, to check that
{
t, t2 − 1

3

}
is linearly independent, let c1, c2 ∈ R be so

that
c1t+ c2(t2 − 1

3
) = 0(t).

Taking t = 0 and t = 1, we find that{
− 1

3c2 = 0,
c1 + 2

3c2 = 0.

Thus c1 = c2 = 0, and linear independence follows.

Consequently,
{
t, t2 − 1

3

}
is a basis for W . In particular, dim W = 2. �

Example 5.3.10. Let W = {p(t) ∈ R[t] : p(1) = 0}. We claim that W has
as a basis

S =
{
t− 1, t2 − 1, t3 − 1

}
. (5.6)

In Example 5.3.4 we showed that Span S = W , so it remains to show that S
is linearly independent. For this, assume that c1, c2, c3 ∈ R are such that

c1(t− 1) + c2(t2 − 1) + c3(t3 − 1) = 0(t).

Letting t = 0,−1 and 2, we find −c1 − c2 − c3 = 0,
−2c1 − 2c3 = 0,
c1 + 3c2 + 7c3 = 0.

This yields c1 = c2 = c3 = 0, showing linear independence.

Thus S is a basis for W , and dim W = 3 follows. �

Example 5.3.11. Let W = Upper3. It is not hard to see that W has as a
basis
1 0 0

0 0 0
0 0 0

 ,
0 1 0

0 0 0
0 0 0

 ,
0 0 1

0 0 0
0 0 0

 ,
0 0 0

0 1 0
0 0 0

 ,
0 0 0

0 0 1
0 0 0

 ,
0 0 0

0 0 0
0 0 1

 .

Thus dim Upper3 = 6.

In general {Eij : 1 ≤ i ≤ j ≤ n} is a basis for Uppern, yielding that

dim Uppern =

n∑
i=1

i =
n(n+ 1)

2
.

�
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Example 5.3.12. Let W =


a b c
b a b
c b a

 : a, b, c ∈ R

. Here

S =


1 0 0

0 1 0
0 0 1

 ,
0 1 0

1 0 1
0 1 0

 ,
0 0 1

0 0 0
1 0 0


is a basis. Indeed, if A ∈W , then

A = a

1 0 0
0 1 0
0 0 1

+ b

0 1 0
1 0 1
0 1 0

+ c

0 0 1
0 0 0
1 0 0

 ∈ Span S.

In addition, if

a

1 0 0
0 1 0
0 0 1

+ b

0 1 0
1 0 1
0 1 0

+ c

0 0 1
0 0 0
1 0 0

 =

0 0 0
0 0 0
0 0 0

 ,
then a = b = c = 0. Thus S is linearly independent.

This proves that S is a basis for W , and consequently dim W = 3. �

Example 5.3.13. Let W =

{[
a b
c d

]
: a+ b+ c+ d = 0

}
.

Notice that a = −b− c− d, and thus an element in W is of the form[
−b− c− d b

c d

]
= b

[
−1 1
0 0

]
+ c

[
−1 0
1 0

]
+ d

[
−1 0
0 1

]
.

It is not hard to see that{[
−1 1
0 0

]
,

[
−1 0
1 0

]
,

[
−1 0
0 1

]}
is a basis for W . Thus dim W = 3. �

For the dimension of a sum of subspaces we have the following general rule.

Theorem 5.3.14. For finite-dimensional subspaces U and W of V we
have that

dim(U +W ) = dimU + dimW − dim(U ∩W ).

In particular, for a direct sum we have dim(U+̇W ) = dimU + dimW .

We will make use of the following results.
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Proposition 5.3.15. Let B = {v1, . . . ,vn} be a basis for the vector space
V , and let C = {w1, . . . ,wm} be a set of vectors in V with m > n. Then C
is linearly dependent.

Proof. The proof is the same as the proof of Proposition 2.4.3. �

Proposition 5.3.16. Let V be a vector space of dimension n, and
let {v1, . . . ,vk} ⊂ V be linearly independent. Then there exist vectors
vk+1, . . .vn ∈ V so that {v1, . . . ,vn} is a basis for V .

Proof. By Proposition 5.3.15 we must have that k ≤ n. If k < n, then
{v1, . . . ,vk} is not a basis (as dim V = n), and thus there must exists a vector
vk+1 ∈ V so that vk+1 6∈ Span {v1, . . . ,vk}. But then {v1, . . . ,vk,vk+1} is lin-
early independent (see Exercise 5.5.17(a)). If k+1 < n, we can repeat the rea-
soning in the last two lines, and find a vector vk+2 so that {v1, . . . ,vk+1,vk+2}
is linearly independent. We can repeat this process until we have found a lin-
early independent set B = {v1, . . . ,vn}. We now claim that B is a basis. Since
B is linearly independent, it suffices to show that B spans V . If not, then
we can find a vector vn+1 ∈ V so that vn+1 6∈ SpanB. As before, this gives
us a linearly independent set {v1, . . . ,vn,vn+1} in V . But this contradicts
dim V = n. Thus we have that B spans V . �

Proof of Theorem 5.3.14. Let {v1, . . . ,vp} be a basis for U ∩ W . Next
apply Proposition 5.3.16 and find u1, . . . ,uk so that {v1, . . . ,vp,u1, . . . ,uk}
is a basis for U . Similarly, find w1, . . . ,wl so that {v1, . . . ,vp,w1, . . . ,wl} is a
basis for W . We next show that {v1, . . . ,vp,u1, . . . ,uk,w1, . . . ,wl} is a basis
for U +W .

First to show the spanning property, let v be in U +W . Due to the definition
of U +W , there exists a u ∈ U and a w ∈ W so that v = u + w. As u ∈ U ,
there exists ai and bi so that

u =

p∑
i=1

aivi +

k∑
i=1

biui.

As w ∈W , there exists ci and di so that

w =

p∑
i=1

civi +

l∑
i=1

diwi.

Then v = u + w =
∑p
i=1(ai + ci)vi +

∑k
i=1 biui +

∑l
i=1 diwi, and thus

{v1, . . . ,vp,u1, . . . ,uk,w1, . . . ,wl} spans U +W .
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Next, to show linear independence, suppose that

p∑
i=1

aivi +
k∑
i=1

biui +
l∑
i=1

ciwi = 0.

Then
p∑
i=1

aivi +
k∑
i=1

biui = −
l∑
i=1

ciwi ∈ U ∩W.

As {v1, . . . ,vp} is a basis for U ∩W , there exist di so that

−
l∑
i=1

ciwi =

p∑
i=1

divi.

Then
∑p
i=1 divi +

∑l
i=1 ciwi = 0. As {v1, . . . ,vp,w1, . . . ,wl} is linearly in-

dependent, we get that d1 = · · · = dp = c1 = · · · = cl = 0. But then we get
that

∑p
i=1 aivi +

∑k
i=1 biui = 0. Using now that {v1, . . . ,vp,u1, . . . ,uk} is

linearly independent, we get a1 = · · · = ap = b1 = · · · = bk = 0. This shows
that {v1, . . . ,vp,u1, . . . ,uk,w1, . . . ,wl} is linearly independent, proving that
it is a basis for U +W .

Thus dimU + W = p + k + l = (p + k) + (p + l) − p = dimU + dimW−
dim(U ∩W ).

When it is a direct sum dim(U ∩W ) = 0, so dim(U+̇W ) = dimU + dimW
immediately follows. �

5.4 Coordinate Systems

Coordinate systems allow one to view an n dimensional vector space over R as
a copy of the vector space Rn. It requires choosing a basis and representing all
vectors in the vector space relative to this chosen basis. The principles and the
proofs are the same as we have seen in Section 2.5, and therefore we focus in
this section on new examples. The following result summarizes the coordinate
system concept.

Theorem 5.4.1. Let B = {v1, . . . ,vn} be a basis for a vector space V over
F. Then for each v ∈ V there exists unique c1, . . . , cn ∈ F so that

v = c1v1 + · · ·+ cnvn. (5.7)
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In this case, we write

[v]B =

c1...
cn

 ∈ Fn,

and refer to c1, . . . , cn as the coordinates of v relative to the basis B. The
coordinate vectors satisfy

[αv + βw]B = α[v]B + β[w]B, where v,w ∈ V, α, β ∈ F.

Example 5.4.2. Let V = R3[t] and B =
{

1, t− 1, t2 − 2t+ 1, t3 − 3t2 + 3t− 1
}
.

Find [t3 + t2 + t+ 1]B.

We need to find c1, c2, c3, c4 ∈ R so that

c11 + c2(t− 1) + c3(t2 − 2t+ 1) + c4(t3 − 3t2 + 3t− 1) = t3 + t2 + t+ 1.

Equating the coefficients of 1, t, t2, t3, setting up the augmented matrix, and
row reducing gives

1 −1 1 −1 1
0 1 −2 3 1
0 0 1 −3 1
0 0 0 1 1

→


1 −1 1 0 2
0 1 −2 0 −2
0 0 1 0 4
0 0 0 1 1

→


1 −1 0 0 −2
0 1 0 0 6
0 0 1 0 4
0 0 0 1 1

→


1 0 0 0 4
0 1 0 0 6
0 0 1 0 4
0 0 0 1 1

 .

Thus we find [t3 + t2 + t+ 1]B =


4
6
4
1

 . �

Example 5.4.3. As in Example 5.3.12, let W =


a b c
b a b
c b a

 : a, b, c ∈ R


with basis

B =


1 0 0

0 1 0
0 0 1

 ,
0 1 0

1 0 1
0 1 0

 ,
0 0 1

0 0 0
1 0 0

 .

Since a b c
b a b
c b a

 = a

1 0 0
0 1 0
0 0 1

+ b

0 1 0
1 0 1
0 1 0

+ c

0 0 1
0 0 0
1 0 0

 ,
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we find

[

a b c
b a b
c b a

]B =

ab
c

 .
�

Example 5.4.4. As in Example 5.3.10 letW = {p(t) ∈ R[t] : p(1) = 0} with
basis

B =
{
t− 1, t2 − 1, t3 − 1

}
. (5.8)

Find [t3 − 3t2 + 3t− 1]B.

First observe that t3 − 3t2 + 3t− 1 ∈W since its degree is ≤ 3 and has 1 as a
root. Thus the question makes sense.

We need to find c1, c2, c3 so that

t3 − 3t2 + 3t− 1 = c1(t− 1) + c2(t2 − 1) + c3(t3 − 1).

Equating the coefficients of 1, t, t2, t3, setting up the augmented matrix, and
row reducing gives

−1 −1 −1 −1
1 0 0 3
0 1 0 −3
0 0 1 1

→


1 0 0 3
0 1 0 −3
0 0 1 1
0 0 0 0

 .

Thus we find [t3 − 3t2 + 3t− 1]B =

 3
−3
1

 . �

Example 5.4.5. Let W = R2×2 with basis

B =

{[
2 1
1 1

]
,

[
1 2
1 1

]
,

[
1 1
2 1

]
,

[
1 1
1 2

]}
.

Find [

[
1 1
1 1

]
]B, [

[
2 1
1 1

]
]B, [

[
1 0
0 0

]
]B.

We need to find c1, c2, c3, c4 so that[
1 1
1 1

]
= c1

[
2 1
1 1

]
+ c2

[
1 2
1 1

]
+ c3

[
1 1
2 1

]
+ c4

[
1 1
1 2

]

=

[
2c1 + c2 + c3 + c4 c1 + 2c2 + c3 + c4
c1 + c2 + 2c3 + c4 c1 + c2 + c3 + 2c4

]
.
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Thus we get the system 
2c1 + c2 + c3 + c4 = 1,
c1 + 2c2 + c3 + c4 = 1,
c1 + c2 + 2c3 + c4 = 1,
c1 + c2 + c3 + 2c4 = 1.

Solving the system, we get c1 = c2 = c3 = c4 = 1
5 . Thus

[

[
1 1
1 1

]
]B =


1
5
1
5
1
5
1
5

 .
Since

[
2 1
1 1

]
is the first basis element, we simply get

[

[
2 1
1 1

]
]B =


1
0
0
0

 .
Finally, since

[
1 0
0 0

]
=

[
2 1
1 1

]
−
[
1 1
1 1

]
, we get

[

[
1 0
0 0

]
]B = [

[
2 1
1 1

]
]B − [

[
1 1
1 1

]
]B =


1
0
0
0

−


1
5
1
5
1
5
1
5

 =


4
5
− 1

5
− 1

5
− 1

5

 .
Of course we also could have set up a system of equations to compute the

coordinates of
[
1 0
0 0

]
, but we were able to make use of previous calculations

here. �

It is important to remember that the number of entries in the coordinate
vector is exactly the number of elements in the basis.

5.5 Exercises

Exercise 5.5.1. Use the vector space axioms to prove that in a vector space
it holds that

u + w = v + w implies u = v.
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Exercise 5.5.2. Use the vector space axioms to prove that in a vector space
it holds that

u + u = u implies u = 0.

Exercise 5.5.3. Use the vector space axioms to prove that in a vector space
it holds that

u + u = 2u.

Exercise 5.5.4. Let V be a vector space over R. Let v ∈ V and c ∈ R. Show
that cv = 0 if and only if c = 0 or v = 0.

Exercise 5.5.5. Let V = R and define the following ‘addition’

x⊕ y = max{x, y}, x, y ∈ V,

and ‘scalar multiplication’

c� x = cx, x ∈ V, c ∈ R.

Determine which of the vector space axioms are satisfied and which ones fail,
for this definition of ‘addition’ and ‘scalar multiplication’.

Exercise 5.5.6. Let V = {(x, y) : x, y ∈ R} and define the following
‘addition’

(x, y)⊕ (v, w) = (0, y + w), (x, y), (v, w) ∈ V,

and ‘scalar multiplication’

c� (x, y) = (cx, cy), (x, y) ∈ V, c ∈ R.

Determine which of the vector space axioms are satisfied and which ones fail,
for this definition of ‘addition’ and ‘scalar multiplication’.

Exercise 5.5.7. Let V = R+ = {x ∈ R : x > 0}, and define the following
‘addition’

x⊕ y = xy, x, y ∈ V,
and ‘scalar multiplication’

c� x = xc, x ∈ V, c ∈ R.

Show that V with these two operations forms a vector space over R. (Note
that the neutral element of ‘addition’ is 1.)

Exercise 5.5.8. Let V = C = {a + bi : a, b ∈ R}, and define the usual
addition

(a+ bi) + (α+ βi) = (a+ α) + (b+ β)i, a+ bi, α+ βi ∈ V,

and scalar multiplication

c(a+ bi) = (ca) + (cb)i, a+ bi ∈ V, c ∈ R.

Show that V with these two operations forms a vector space over R.
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Exercise 5.5.9. Let V = {f | f : (0,∞)→ R is a continuous function}, and
define addition and scalar multiplication by

(f + g)(t) = f(t) + g(t), (cf)(t) = cf(t), f, g ∈ V, c ∈ R.

Show that V is a vector space over R.

Exercise 5.5.10. For the following choices of V and W , determine whether
W is a subspace of V .

(a) V = R2[t] and

W = {p(t) ∈ V : p(1) + p(2) + p(3) = 0} .

(b) V = R2×2 and

W =

{[
a b
c d

]
∈ R2×2 : a = d

}
.

(c) V = R2[t] and
W = {p(t) ∈ V : p(1) = p(2)p(3)} .

(d) V = R2[t] and

W = {p(t) ∈ V : p(1) = p(2) and p(3) = 0} .

(e) Let V = R3,

W =


x1x2
x3

 : x1, x2, x3 ∈ R, x1 − 2x2 + x23 = 0

 .

(f) V = R3×3,

W =


a b c

0 a b
0 0 a

 : a, b, c ∈ R

 .

(g) V = R2[t] and
W = {p(t) ∈ V : p(2) = 0} .

(h) V = R1[t] and

W =

{
p(t) ∈ V :

∫ 1

0

p(t)etdt = 0

}
.

(Remember that tet − et is an anti-derivative of tet.)
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Exercise 5.5.11. For the following vector spaces V over R and vectors, de-
termine whether the vectors are linearly independent or linearly dependent.
In the latter case, please provide a linear dependence relation between the
vectors.

(a) Let V = R3[t] and consider the vectors

1 + t , 1− t+ t3, 2− 2t3.

(b) Let V = R1×4, and consider the vectors[
1 1 1 2

]
,
[
1 2 4 1

]
,
[
0 1 3 4

]
.

(c) Let V = R2[t], and consider the vectors

1 + 2t− t2, 2− t− t2, −1 + 8t− t2.

(d) Let V = R4 and consider the vectors
4
0
2
3

 ,


2
1
0
3

 ,


1
2
1
0

 .
(e) Let V = R2×2, and consider the vectors[

0 1
−1 0

]
,

[
1 1
1 0

]
,

[
−1 1
−1 0

]
.

(f) Let V = R3×2, and consider the vectors3 4
1 0
1 0

 ,
1 1

4 2
1 2

 ,
1 2

3 1
1 2

 .
(g) Let V = R2[t], and consider the vectors

2t+ 5, 3t2 + 1.

(h) Let V = {f | f : (0,∞)→ R is a continuous function}, and consider the
vectors

t, t2,
1

t
.
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Exercise 5.5.12. Do the following sets of vectors form a basis for R2[t]?

(a)
{

3 + 2t, 1 + 3t2,−4t+ 8t2
}
.

(b)
{

1 + 2t, t− t2, t+ t2
}
.

Exercise 5.5.13. Determine a basis for the subspaces W in Exercise 5.5.10.

Exercise 5.5.14. This exercise generalizes Example 5.3.4. Let a ∈ R, V =
R3[t] and W = {p(t) ∈ V : p(a) = 0}. Show that W is a subspace, and that{
t− a, t2 − a2, t3 − a3

}
is a basis for W .

Exercise 5.5.15. For V as in Exercise 5.5.7 show that for 1 6= x ∈ R+ we
have that {x} is a basis for V .

Exercise 5.5.16. For V as in Exercise 5.5.8 find a basis for V . Conclude that
dimR V = 2. (We write dimR to emphasize that V is defined as a vector space
over R.)

Exercise 5.5.17.

(a) Show that if the set {v1, . . . ,vk} is linearly independent, and vk+1 is not in
Span{v1, . . . ,vk}, then the set {v1, . . . ,vk,vk+1} is linearly independent.

(b) Let W be a subspace of an n-dimensional vector space V , and let
{v1, . . . ,vp} be a basis forW . Show that there exist vectors vp+1, . . . ,vn ∈
V so that {v1, . . . ,vp,vp+1, . . . ,vn} is a basis for V .

(Hint: Once v1, . . . ,vk are found and k < n, observe that one can choose
vk+1 ∈ V \(Span {v1, . . . ,vk}). Argue that this process stops when k = n,
and that at that point a basis for V is found.)

Exercise 5.5.18. For the following choices of subspaces U and W in V , find
bases for U +W and U ∩W .

(a) V = R5[t], U = Span
{
t+ 1, t2 − 1

}
, W = {p(t) : p(2) = 0}.

(b) V = R4,

U = Span




3
0
2
1

 ,


2
1
0
0


 , W = Span




1
2
1
0

 ,


4
4
1
1


 .

Exercise 5.5.19. Let {v1,v2,v3,v4,v5} be linearly independent vectors in a
vector space V . Determine whether the following sets are linearly dependent
or linearly independent.
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(a) {v1 + v2 + v3 + v4,v1 − v2 + v3 − v4,v1 − v2 − v3 − v4} .

(b) {v1 + v2,v2 + v3,v3 + v4,v4 + v5,v5 + v2} .

(c) {v1 + v3,v4 − v2,v5 + v1,v4 − v2,v5 + v3,v1 + v2}.

Exercise 5.5.20. For the following choices of vector spaces V over R, bases
B and vectors v, determine [v]B.

(a) V = R4,

B =




3
0
2
1

 ,


2
1
0
0

 ,


1
2
1
0

 ,


0
2
1
0


 , v =


1
3
2
2

 .
(b) V = R2×2,

B =

{[
0 1
−1 −1

]
,

[
1 1
1 −1

]
,

[
1 0
−1 −1

] [
1 1
−1 −1

]}
,v =

[
−2 3
−5 10

]
.

(c) V = R2×2,

B = {E11, E12, E21, E22} ,v =

[
−1 5
−7 1

]
.

(d) V = SpanB,

B =


3 4

1 0
1 0

 ,
1 1

4 2
1 2

 ,
1 2

3 3
3 0

 ,v =

5 7
8 5
5 2

 .
(e) V = R3[t], B =

{
1 + t, t+ t2, 2− 3t2, t3

}
, v = 2− t− t3.

(f) V = SpanB,

B =

{[
1 0
0 0

]
,

[
1 0
0 1

]
,

[
1 1
0 0

]
,

[
1 0
1 0

]}
,v =

[
1 1
1 1

]
.

(g) V = R2[t], B =
{

1− t2, t− 3t2, 3 + 2t2
}
, v = −9 + 4t− 18t2.

(h) V = SpanB, B =
{
t, t2, 1t

}
, v = t3+3t2+5

t .

Exercise 5.5.21. True or False? Justify each answer.

(i) The set H =
{
A ∈ R3×3 : A = −AT

}
is a subspace of R3×3.

(ii) If dimV = p, then the vectors {v1, . . . ,vp−1} do not span V .
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(iii) The set H =

{[
x1
x2

]
: x1 + x2 = 0

}
is a subspace of R2.

(iv) The set H = {p ∈ R2[t] : p(0) = 5p(1)} is a subspace of R2[t].

(v) The set H =
{
p ∈ R2[t] : p(0) = p(1)2

}
is a subspace of R2[t].

Exercise 5.5.22. When looking for a function that interpolates measured
data, one can use Linear Algebra if one has some of idea of the types of
functions one is looking for. For instance, if one expects there to be exponential
growth but does not know at what rate(s), one can look at the vector space

W = Span{et, e2t, . . . , eNt}.

If one expects the data to come from an oscillating source, one can look at
the vector space

W = Span{cos(t), cos(2t), . . . , cos(Nt)}.

This is a very useful vector space when one wants to analyze sound signals;
the number k in cos(kx) is referred to as the frequency.

Let us do a simple example. Suppose we have following data.

t 1 2 3 4 5 6 7

f(t) 2.0481 −0.1427 −2.0855 −2.5789 −1.5237 0.1602 1.3551

Let us assume that the function we are trying to find is an element of

W = Span{cos(t), cos(2t), . . . , cos(7t)}.

Then we have that f(t) =
∑7
k=1 ck cos(kt). To determine f(t), we just need

to solve for the coefficients c1, . . . , c7. Plugging in t = 1, . . . , 7, we obtain the
following system of equations:

cos(1) cos(2) · · · cos(7)
cos(2) cos(4) · · · cos(14)

...
...

...
cos(7) cos(14) · · · cos(49)



c1
c2
...
c7

 =


2.0481
−0.1427

...
1.3551

 .
Solving this system, we find c1 = 1, c7 = 2, and c2 = · · · = c6 = 0, giving the
solution

f(t) = cos(t) + 2 cos(7t).

Thus this signal is comprised of a low frequency signal (cos(t)) and a high fre-
quency signal of double the strength (2 cos(7t)). It could be the combination
of two voices, for instance. This technique is also used to analyze chemical
compounds (using spectroscopy), where the different frequencies indicate the
presence of certain components within the compound. The matrix above is
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closely related to the discrete cosine transform. Indeed, with a change of vari-
ables, one obtains the matrix of the (second) discrete cosine transform
(DCT) whose (k, j)th entry is cos(

(k− 1
2 )(j−1)π
N ). The DCT is used in many

applications as a search will quickly reveal.

• Suppose we have data

t π
4

π
2

3π
4

f(t) − 1
2

√
2 −1 1

2

√
2

Find f(t) ∈ Span{cos(t), cos(2t), cos(3t)} fitting the given data.
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6.1 Definition of a Linear Transformation

Linear transformations (or linear maps) are those functions between vector
spaces that respect the vector space structure of addition and scalar multipli-
cation. The definition is as follows.

Definition 6.1.1. Let V and W be vector spaces over F. A function T :
V →W is called linear if

(i) T (u + v) = T (u) + T (v) for all u,v ∈ V , and

(ii) T (cu) = cT (u) for all c ∈ F and all u ∈ V .

In this case, we say that T is a linear transformation or a linear map.

When T is linear, we must have that T (0) = 0. Indeed, by using (ii) we have
T (0) = T (0 · 0) = 0T (0) = 0, where in the first and last step we used Lemma
5.1.2.

We can also combine (i) and (ii) in one statement as the next lemma shows.
The proof is straightforward and left out.

Lemma 6.1.2. The map T : V →W is linear if and only if

T (cu + dv) = cT (u) + dT (v) for all u,v ∈ V and all c, d ∈ F.

135
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Example 6.1.3. Let T : R2 → R3 be defined by

T

[
x1
x2

]
=

2x1 + x2
x1 + x2
x2

 .
Then

T (

[
x1
x2

]
+

[
y1
y2

]
) = T

[
x1 + y1
x2 + y2

]
=

2(x1 + y1) + x2 + y2
x1 + y1 + x2 + y2

x2 + y2

 =

2x1 + x2
x1 + x2
x2

+

2y1 + y2
y1 + y2
y2

 = T

[
x1
x2

]
+ T

[
y1
y2

]
,

and

T (c

[
x1
x2

]
) = T

[
cx1
cx2

]
=

2cx1 + cx2
cx1 + cx2

cx2

 = c

2x1 + x2
x1 + x2
x2

 = cT

[
x1
x2

]
.

Thus T is linear. �

Example 6.1.4. Let T : R3 → R2 be defined by

T

x1x2
x3

 =

[
x1x2

x1 + x2 + x3

]
.

Let us start by checking condition (i):

T

x1x2
x3

+ T

y1y2
y3

 =

[
x1x2 + y1y2

x1 + x2 + x3 + y1 + y2 + y3

]
(6.1)

and

T (

x1x2
x3

+

y1y2
y3

) =

[
(x1 + y1)(x2 + y2)

x1 + x2 + x3 + y1 + y2 + y3

]
. (6.2)

Notice that the first components in the right hand sides of (6.1) and (6.2)
differ (by a term x1y2 + y1x2), so T does not seem to be linear. Let us find a
counterexample (and make sure x1y2 + y1x2 6= 0). Take for instance

x = y =

1
1
1

 .
Then

T (x + y) = T

2
2
2

 =

[
4
6

]
6=
[
1
3

]
+

[
1
3

]
= T (x) + T (y).

Thus T is not linear. �
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Notice that in order to show that a function is not linear, one only needs to
provide one example where the above rule (i) or (ii) is not satisfied.

Here are some more examples and non-examples:

• T : R2 → R3 defined via T (

[
x1
x2

]
) =

 sin(x1)
5x1 − x2

x1

 is not linear. For instance,

2T (

[
π
2
0

]
) 6= T (2

[
π
2
0

]
).

• T : R→ R2 defined via T (
[
x1
]
) =

[
2x1

3x1 + 6

]
is not linear. Indeed, observe

that T (0) 6= 0.

• T : R3 → R2 defined via T (

x1x2
x3

) =

[
2x1 + 3x2

x1 + 5x2 − 7x3

]
is linear, as we

show below.

The last linear map can be written as

T (

x1x2
x3

) =

[
2 3 0
1 5 −7

]x1x2
x3

 .
Also the linear map in Example 6.1.3 can be written similarly in the form

T (

[
x1
x2

]
) =

2 1
1 1
0 1

[x1
x2

]
.

In general linear maps from Rn to Rm are described by multiplication by a
matrix.

Proposition 6.1.5. Let T : Rn → Rm. Then T is linear if and only if
there exists a matrix A ∈ Rm×n so that T (x) = Ax for all x ∈ Rn. This
matrix is given by

A =
[
T (e1) T (e2) · · · T (en)

]
, (6.3)

where {e1, . . . , en} is the standard basis of Rn.
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Proof. If T (x) = Ax, then linearity of T follows directly from the rules on
matrix vector multiplication: A(x + y) = Ax +Ay and A(cx) = cAx.

Conversely, suppose that T is linear. If we let x = (xi)
n
i=1 then x =

∑n
i=1 xiei.

Since T is linear we then get that

T (x) = T (

n∑
i=1

xiei) =

n∑
i=1

xiT (ei) =
[
T (e1) · · · T (en)

] x1...
xn

 = Ax,

where A is given in (6.3). �

We call the matrix A in (6.3) the standard matrix of the linear map T .

Example 6.1.6. Let T : R2 → R2 be the linear map that rotates a vector
counter clockwise by an angle α. Determine the standard matrix of T .

0

α

T (e1) =

[
cosα
sinα

]
T (e2) =

[
− sinα
cosα

]

Figure 6.1: Rotation over an angle α.

From the figure we see that

T (x) =
[
T (e1) T (e2)

] [x1
x2

]
=

[
cosα − sinα
sinα cosα

] [
x1
x2

]
.

�

Example 6.1.7. Let T : R3 → R3 be the linear map that reflects a vector in
the xy plane. Determine the standard matrix of T .

We have that T (e1) = e1, T (e2) = e2 and T (e3) = −e3. Thus we find

T (x) =
[
T (e1) T (e2) T (e3)

] x1x2
x3

 =

1 0 0
0 1 0
0 0 −1

x1x2
x3

 .
�
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Let us also give some examples on other vector spaces.

Example 6.1.8. Let T : R2[t]→ R2 be given by

T (p(t)) =

[
p(5)∫ 2

0
p(t)dt

]
.

For instance, T (t2) =

[
25
8
3

]
. Is T linear?

We notice that if we take a sum of two polynomials, say of p(t) and q(t) and
then plug in t = 5, the answer is simply p(5) + q(5). Also

∫ 2

0
p(t) + q(t)dt =∫ 2

0
p(t)dt +

∫ 2

0
q(t)dt. Both actions also work well with scalar multiplication,

so it seems that T is linear. To prove this, we compute

T (c p(t) + d q(t)) =

[
c p(5) + d q(5)∫ 2

0
c p(t) + d q(t)dt

]
=

[
c p(5)

c
∫ 2

0
p(t)dt

]
+

[
d q(5)

d
∫ 2

0
q(t)dt

]
=

cT (p(t)) + dT (q(t)), and thus T is linear. �

Example 6.1.9. Let T : R2×2 → R1×2 be given by

T (A) = T (

[
a11 a12
a21 a22

]
) =

[
a11 − a12 a21 − a22

]
.

Is T linear?

Let us compare T (cA+ dB) with cT (A) + d T (B):

T (cA+ dB) = T

[
ca11 + db11 ca12 + db12
ca21 + db21 ca22 + db22

]
=

[
ca11 + db11 − (ca12 + db12) ca21 + db21 − (ca22 + db22)

]
=

c
[
a11 − a12 a21 − a22

]
+ d

[
b11 − b12 b21 − b22

]
= cT (A) + d T (B),

so T is linear. �

Example 6.1.10. Let T : R2[t]→ R2 be given by

T (p(t)) =

[
p(1)p(2)∫ 3

1
p(t)dt

]
.

Is T linear?

Looking at the first component we have to compare (p(1) + q(1))(p(2) + q(2))
with p(1)p(2) + q(1)q(2), which are in general not equal. So we suspect that
T is not linear. Let us take p(t) = t = q(t). Then we get that

T (p(t) + q(t)) = T (2t) =

[
(2)(4)∫ 3

1
2tdt

]
=

[
8
8

]
,
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while

T (p(t)) + T (q(t)) =

[
(1)(2)∫ 3

1
tdt

]
+

[
(1)(2)∫ 3

1
tdt

]
=

[
4
8

]
.

Thus for this choice of p(t) and q(t) we have that T (p(t) + q(t)) 6= T (p(t)) +
T (q(t)), and thus T is not linear. �

Given two linear transformations T : V → W and S : W → X, then the
composition S ◦ T : V → X of S and T is defined by

S ◦ T (v) = S(T (v)).

The composition of two linear transformations is again a linear transformation.
We leave this as an exercise (see Exercise 6.5.4).

6.2 Range and Kernel of Linear Transformations

There are two subspaces associated with a linear transformation: (i) the range
(which lies in the co-domain) and (ii) the kernel (which lies in the domain).
These subspaces provide us with crucial information about the linear trans-
formation. We start by discussing the range.

Definition 6.2.1. Let T : V →W be a linear map. The range of T is

Ran T := {w ∈W : there exists a v ∈ V so that T (v) = w} .

Example 6.2.2. If T : Rn → Rm is given by T (x) = Ax with A ∈ Rm×n,
then

Ran T = Col A.

Indeed, T (x) = b if and only if Ax = b. Consequently, b ∈ RanT if and only
if b ∈ Col A. �

Definition 6.2.3. We say that T : V → W is onto (or surjective) if
Ran T = W . Equivalently, T is onto if and only if for every w ∈ W there
exists a v ∈ V so that T (v) = w.

Note that in Example 6.2.2 the linear map T , given by T (x) = Ax, is onto if
and only if every row of A has a pivot.

We know already that the column space of a matrix A ∈ Rm×n is a subspace
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of Rm, and a basis can be found by taking the pivot columns of the n columns
of A. The following statement is a generalization of this.

Proposition 6.2.4. Let T : V → W be a linear map. Then Ran T is a
subspace of W . Moreover, if {v1, . . . ,vp} is a basis for V , then Ran T =
Span {T (v1), . . . , T (vp)}. In particular dim Ran T ≤ dimV .

Proof. First observe that T (0) = 0 gives that 0 ∈ Ran T . Next, let w,
ŵ ∈ Ran T and c ∈ F. Then there exist v, v̂ ∈ V so that T (v) = w and
T (v̂) = ŵ. Then w+ŵ = T (v+ v̂) ∈ Ran T and cw = T (cv) ∈ Ran T . Thus,
by Theorem 5.2.1, Ran T is a subspace of W .

Clearly, T (v1), . . . , T (vp) ∈ Ran T , and since Ran T is a subspace we have that
Span {T (v1), . . . , T (vp)} ⊆ Ran T . For the converse inclusion, let w ∈ Ran T .
Then there exists a v ∈ V so that T (v) = w. As {v1, . . . ,vp} is a basis for
V , there exist c1, . . . , cp ∈ R so that v = c1v1 + · · ·+ cpvp. Then

w = T (v) = T (

p∑
j=1

cjvj) =

p∑
j=1

cjT (vj) ∈ Span {T (v1), . . . , T (vp)} .

Thus Ran T ⊆ Span {T (v1), . . . , T (vp)}. We have shown both inclusions, and
consequently Ran T = Span {T (v1), . . . , T (vp)} follows. �

Definition 6.2.5. The kernel of T is

Ker T := {v ∈ V : T (v) = 0} .

Example 6.2.6. If T : Rn → Rm is given by T (x) = Ax with A ∈ Rm×n,
then

Ker T = Nul A.

Indeed, T (x) = 0 if and only if Ax = 0, which happens if and only if x ∈
Nul A. �

We know already that the null space of a matrix A ∈ Rm×n is a subspace of
Rn. The following statement is a generalization of this.

Proposition 6.2.7. Let T : V → W be a linear map. Then Ker T is
subspace of V .

Proof. First observe that T (0) = 0 gives that 0 ∈ Ker T . Next, let v, v̂ ∈
Ker T and c ∈ F. Then T (v + v̂) = T (v) + T (v̂) = 0 + 0 = 0 and T (cv) =
cT (v) = c0 = 0, so v + v̂, cv ∈ Ker T . Thus, by Theorem 5.2.1, Ker T is a
subspace of V . �
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Definition 6.2.8. We say that T : V →W is one-to-one (or injective)
if T (v) = T (w) only holds when v = w. Equivalently, T is one-to-one if
u 6= v implies T (u) 6= T (v).

Note that in Example 6.2.6 the linear map T , given by T (x) = Ax, is one-to-
one if and only if all columns of A are pivot columns.

We have the following way to check wether a linear map is injective.

Lemma 6.2.9. The linear map T is one-to-one if and only if Ker T = {0}.

Proof. Suppose that T is one-to-one, and v ∈ Ker T . Then T (v) = 0 = T (0),
where in the last step we used that T is linear. Since T is one-to-one, T (v) =
T (0) implies that v = 0. Thus Ker T = {0}.

Next, suppose that Ker T = {0}, and let T (v) = T (w). Then, using linearity
we get 0 = T (v) − T (w) = T (v −w), implying that v −w ∈ Ker T = {0},
and thus v−w = 0. Thus v = w, and we can conclude that T is one-to-one.

�

Example 6.2.10. Let V = R3[t], W = R2, and

T (p(t)) =

[
p(1)∫ 2

0
p(t)dt

]
.

Determine bases for Ker T and Ran T .

We start with the kernel. Let p(t) = a+ bt+ ct2 + dt3 ∈ Ker T , then

0 = T (p(t)) =

[
a+ b+ c+ d

2a+ 2b+ 8
3c+ 4d

]
=

[
1 1 1 1
2 2 8

3 4

]
a
b
c
d

 .
Row reducing[

1 1 1 1 0
2 2 8

3 4 0

]
→
[
1 1 1 1 0
0 0 2

3 2 0

]
→
[
1 1 0 −2 0
0 0 1 3 0

]
, (6.4)

gives that b and d are free variables and a = −b+ 2d, c = −3d. Thus

p(t) = (−b+ 2d) + bt+ (−3d)t2 + dt3 = b(−1 + t) + d(2− 3t2 + t3).

We get that Ker T = Span
{
−1 + t, 2− 3t2 + t3

}
. In fact, since these two

polynomials are linearly independent, they form a basis for Ker T .
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As
{

1, t, t2, t3
}
is a basis for R3[t], we get that

Ran T = Span
{
T (1), T (t), T (t2), T (t3)

}
= Span

{[
1
2

]
,

[
1
2

]
,

[
1
8
3

]
,

[
1
4

]}
= Span

{[
1
2

]
,

[
1
8
3

]}
.

In the last step, we reduced the set of vectors to a basis for Ran T by just
keeping the columns corresponding to pivot columns in (6.4).

Notice that

dim Ker T + dim Ran T = 2 + 2 = 4 = dimR3[t].

As the next result shows, this is not a coincidence. �

Theorem 6.2.11. Let T : V →W be linear, and suppose that dimV <∞.
Then

dim Ker T + dim Ran T = dimV. (6.5)

Notice that this theorem generalizes the rule that for A ∈ Rm×n:

dim Nul A+ dim Col A = n.

Proof. Let {v1, . . . ,vp} be a basis for Ker T (⊆ V ), and {w1, . . . ,wq} a
basis for Ran T (notice that by Proposition 6.2.4 it follows that Ran T is
finite dimensional as V is finite dimensional). Let x1, . . . ,xq ∈ V be so that
T (xj) = wj , j = 1, . . . , q. We claim that B = {v1, . . . ,vp,x1, . . . ,xq} is a
basis for V , which then yields that dimV = p+ q = dim Ker T + dim Ran T .

Let v ∈ V . Then T (v) ∈ Ran T , and thus there exist b1, . . . , bq so that
T (v) =

∑q
j=1 bjwj . Then

T (v −
q∑
j=1

bjxj) = T (v)−
q∑
j=1

bjwj = 0.

Thus v −
∑q
j=1 bjxj ∈ Ker T . Therefore, there exist a1, . . . , ap ∈ R so that

v −
∑q
j=1 bjxj =

∑p
j=1 ajvj . Consequently, v =

∑p
j=1 ajvj +

∑q
j=1 bjxj ∈

Span B. This proves that V = Span B.

It remains to show that B is linearly independent, so assume
∑p
j=1 ajvj +∑q

j=1 bjxj = 0. Then

0 = T (

p∑
j=1

ajvj +

q∑
j=1

bjxj) =

p∑
j=1

ajT (vj) +

q∑
j=1

bjT (xj) =

q∑
j=1

bjwj ,
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where we use that vj ∈ Ker T , j = 1, . . . , p. As {w1, . . . ,wq} is linearly
independent, we now get that b1 = · · · = bq = 0. But then we obtain that∑p
j=1 ajvj = 0, and as {v1, . . . ,vp} is linearly independent, we get a1 = · · · =

ap = 0. Thus
∑p
j=1 ajvj +

∑q
j=1 bjxj = 0 implies a1 = · · · = ap = b1 = · · · =

bq = 0, showing the linear independence of B. �

Definition 6.2.12. We say that T is invertible (or bijective) if T is
both onto and one-to-one.

We let idV : V → V denote the identity mapping; that is idV (v) = v,
v ∈ V . When we do not need to emphasize the underlying space V , we just
write id for idV .

Proposition 6.2.13. Let T : V →W be bijective. Then T has an inverse
T−1. That is, T−1 : W → V exists so that T ◦ T−1 = idW and T−1 ◦ T =
idV . Moreover, T−1 is linear. Conversely, if T has an inverse, then T is
bijective.

Proof. Let w ∈W . As T is onto, there exists a v ∈ V so that T (v) = w, and
as T is one-to-one, this v is unique. Define T−1(w) := v, making T−1 : W → V
well-defined. It is straightforward to check that T (T−1(w)) = w for allw ∈W ,
and T−1(T (v)) = v for all v ∈ V .

Next suppose T−1(w) = v and T−1(ŵ) = v̂. This means that T (v) = w and
T (v̂) = ŵ. Thus T (v + v̂) = w + ŵ. But then, by definition, T−1(w + ŵ) =
v + v̂ and, consequently, T−1(w + ŵ) = T−1(w) + T−1(ŵ). Similarly, one
proves T−1(cw) = cT−1(w). Thus T−1 is linear.

Next, suppose that T has an inverse T−1. Let w ∈W . Put v = T−1(w). Then
T (v) = w, and thus w ∈ Ran T . This shows that T is onto. Finally, suppose
that T (v) = T (v̂). Applying T−1 on both sides, gives v = T−1(T (v)) =
T−1(T (v̂)) = v̂, showing that T is one-to-one. �

Definition 6.2.14. A bijective linear map T is also called an isomor-
phism. We call two vector spaces V and W isomorphic if there exists an
isomorphism T : V →W .

The following example shows that Rn−1[t] and Rn are isomorphic.

Example 6.2.15. Let T : Rn−1[t]→ Rn be defined by

T (a0 + a1t+ · · ·+ an−1t
n−1) :=


a0
a1
...

an−1

 .
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It is easy to see that T is an isomorphism. Indeed, T−1 is given by

T−1


a0
a1
...

an−1

 = a0 + a1t+ · · ·+ an−1t
n−1.

Thus Rn−1[t] and Rn are isomorphic. �

6.3 Matrix Representations of Linear Transformations

We have seen that any linear map from Rn to Rm can be represented by its
standard matrix. This principle holds for a general linear map as well. What
is needed is a choice of bases for the underlying spaces.

Theorem 6.3.1. Given vector spaces V and W over F, with bases B =
{v1, . . . ,vn} and C = {w1, . . . ,wm}, respectively. Let T : V → W . Repre-
sent T (vj) with respect to the basis C:

T (vj) = a1jw1 + · · ·+ amjwm ⇔ [T (vj)]C =

a1j...
amj

 , j = 1, . . . , n. (6.6)

Introduce the matrix [T ]C←B = (aij)
m n
i=1,j=1. Then we have that

T (v) = w ⇔ [w]C = [T ]C←B[v]B. (6.7)

Conversely, if A = (aij)
m n
i=1,j=1 ∈ Fm×n is given, then defining T : V →W

via (6.6) and extending by linearity via T (
∑n
j=1 cjvj) :=

∑n
j=1 cjT (vj),

yields a linear map T : V →W with matrix representation [T ]C←B = A.

We can rewrite (6.6) as

[T ]C←B =
[

[T (v1)]C · · · [T (vn)]C
]
. (6.8)

Proof. The proof follows directly from the following observation. If

v = c1v1 + · · ·+ cnvn ⇔ [v]B =

c1...
cn

 ,
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then

w = T (v) =

n∑
j=1

cjT (vj) =

n∑
j=1

cj(

m∑
k=1

akjwk) ⇔ [w]C =


∑n
j=1 a1jcj

...∑n
j=1 amjcj

 = (aij)
m n
i=1,j=1

c1...
cn

 .
�

Example 6.3.2. Let V = R2×2 and B be the standard basis
{E11, E12, E21, E22}. Define T : V → V via

T (A) =

[
1 2
3 4

]
A

[
1 3
5 7

]
.

Find the matrix representation [T ]B←B.

Compute

T (E11) =

[
1 3
3 9

]
= E11 + 3E12 + 3E21 + 9E22,

T (E12) =

[
5 7
15 21

]
= 5E11 + 7E12 + 15E21 + 21E22,

T (E21) =

[
2 6
4 12

]
= 2E11 + 6E12 + 4E21 + 12E22,

T (E22) =

[
10 14
20 28

]
= 10E11 + 14E12 + 20E21 + 28E22.

This gives that

[T ]B←B =


1 5 2 10
3 7 6 14
3 15 4 20
9 21 12 28

 .
�

When T (x) = Ax and S(y) = By are represented by standard matrices A
and B respectively, then we get that

(S ◦ T )(x) = S(T (x)) = S(Ax) = BAx.

Thus, in this case BA is the standard matrix for S ◦T . The next result shows
that such a rule holds for general linear maps, namely that the composition
of linear maps corresponds to matrix multiplication of the matrix representa-
tions, when the bases match.
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Theorem 6.3.3. Let T : V →W and S : W → X be linear maps between
finite-dimensional vector spaces over F, and let B, C, and D be bases for
V,W , and X, respectively. Then

[S ◦ T ]D←B = [S]D←C [T ]C←B. (6.9)

Proof. Denoting

B = {v1, . . . ,vn} , C = {w1, . . . ,wm} ,D = {x1, . . . ,xp} ,

[S ◦ T ]D←B = (cij)
p n
i=1,j=1, [S]D←C = (bij)

p m
i=1,j=1, [T ]C←B = (aij)

m n
i=1,j=1.

We thus have that

T (vj) =

m∑
i=1

aijwi, j = 1, . . . , n, S(wk) =

p∑
l=1

blkxl, k = 1, . . . ,m.

Then

(S ◦ T )(vj) = S(T (vj)) = S(

m∑
i=1

aijwi) =

m∑
i=1

aijS(wi) =

m∑
i=1

[aij

p∑
l=1

blixl] =

p∑
l=1

(

m∑
i=1

bliaij)xl, j = 1, . . . , n.

Thus we get that clj =
∑m
i=1 bliaij , l = 1, . . . , p, j = 1, . . . , n, which corre-

sponds exactly to (6.9). �

6.4 Change of Basis

A vector space V has many bases. Let B = {b1, . . . ,bn} and C = {c1, . . . , cn}
be two bases for V . For v ∈ V we have

v = α1b1 + · · ·+ αnbn ↔ [v]B =

α1

...
αn

 ,
and

v = β1c1 + · · ·+ βncn ↔ [v]C =

β1...
βn

 .
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There is a linear relationship between [v]B and [v]C , which therefore corre-
sponds to matrix multiplication. The matrix that connect them is in fact
[id]C←B:

[v]C = [id]C←B[v]B.

This follows from (6.7). The inverse is given via

[v]B = [id]B←C [v]C .

Thus ([id]B←C)
−1 = [id]C←B. It follows from (6.8) that

[id]C←B =
[

[b1]C · · · [bn]C
]
,

since id(bj) = bj .

Let us do an example.

Example 6.4.1. Let B =

{[
1
2

]
,

[
1
3

]}
and C =

{[
−2
1

]
,

[
4
−3

]}
be two bases

for R2. Compute [id]C←B.

We need [b1]C and [b2]C . In other words, we need to find x1, x2, y1, y2 so that

b1 = x1c1 + x2c2,b2 = y1c1 + y2c2.

Thus [
c1 c2

] [x1
x2

]
= b1,

[
c1 c2

] [y1
y2

]
= b2.

We can combine these systems into one augmented matrix

[
c1 c2 b1 b2

]
=

[
−2 4 1 1
1 −3 2 3

]
.

Row reducing gives[
1 0 −5 1

2 −7 1
2

0 1 −2 1
2 −3 1

2

]
=
[
I2 [id]C←B

]
.

Thus
[id]C←B =

[
−5 1

2 −7 1
2

−2 1
2 −3 1

2

]
.

�

Example 6.4.2. Let V = R3 and

B =


 3

5
11

 ,
2

3
4

 ,
 1

4
11

 , C =


0

2
4

 ,
1

0
3

 ,
2

1
0

 .
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Find the matrix representation [id]C←B.

We set up the augmented matrix
[
c1 c2 c3 b1 b2 b3

]
and row

reduce: 0 1 2 3 2 1
2 0 1 5 3 4
4 3 0 11 4 11

→ · · · →
1 0 0 2 1 2

0 1 0 1 0 1
0 0 1 1 1 0

 .
Thus we find

[idV ]C←B =

2 1 2
1 0 1
1 1 0

 .
�

In the next corollary, we present an important special case where we change
bases in a vector space, and express a linear map with respect to the new basis.
Two n × n matrices A and B are called similar if there exists an invertible
n× n matrix P so that

A = PBP−1.

We have the following corollary.

Corollary 6.4.3. Let T : V → V and let B and C be two bases in the
n-dimensional vector space V . Then

[T ]B←B = [id]B←C [T ]C←C [id]C←B = [id]−1C←B[T ]C←C [id]C←B. (6.10)

In particular, [T ]B←B and [T ]C←C are similar.

In the next chapter we will try to find a basis C so that [T ]C←C is a diagonal
matrix. This leads to the notion of eigenvectors.

6.5 Exercises

Exercise 6.5.1. For the following transformations T from Rn to Rm, either
prove that it is linear or prove that it is not.

(a) T : R2 → R3 defined via T (

[
x1
x2

]
) =

 x1 + 5
5x1 − x2

x1

.
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(b) T : R3 → R2 defined via T (

x1x2
x3

) =

[
2x1 + 3x2

x1 + 5x2 − 7x3

]
.

(c) T : R3 → R3 defined via T (

x1x2
x3

) =

x3x1
x2

.
(d) T : R3 → R2 defined via T (

x1x2
x3

) =

[
3x1 + 2x22

x1 + 5x2 − 7x3

]
.

(e) T : R2 → R3 defined via T (

[
x1
x2

]
) =

 2x1 + 4
3x1 − x2

x2

.
(f) T : R3 → R3 defined via T (

x1x2
x3

) =

 x2
x3 − x1
x1

.
Exercise 6.5.2. For the following maps T , determine whether T is linear or
not. Explain your answer.

(a) T : R2[t]→ R2, T (p0 + p1t+ p2t
2) =

[
p0 + 3p2

2p1

]
.

(b) T : R2[t]→ R2[t], T (a0 + a1t+ a2t
2) = a2 + a1t+ a0t

2.

(c) T : R2×2 → R3, T (

[
a b
c d

]
) =

 3a− 2b
a+ c− d
b− d

.
(d) T : R3 → R4,

T

x1x2
x3

 =


x1 − 5x3
7x2 + 5

3x1 − 6x2
8x3

 .
(e) T : R3 → R2,

T

x1x2
x3

 =

[
x1 − 2x3

3x2x3

]
.

(f) T : R2×2 → R2×2, T (A) = A−AT .

(g) T : {f : R→ R : f is differentiable} → {f : R→ R : f is a function},

(T (f))(x) = f ′(x)(x2 + 5).
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(h) T : {f : R→ R : f is continuous} → R,

T (f) =

∫ 10

−5
f(x)dx.

(i) T : {f : R→ R : f is differentiable} → R,

T (f) = f(5)f ′(2).

Exercise 6.5.3.

(a) Show that T is a linear transformation by finding a matrix that imple-
ments the mapping, when T is given by

T

x1x2
x3

 =


x1 − 5x3

7x2
3x1 − 6x2

8x3

 .
(b) Determine if the linear transformation T is one-to-one.

(c) For which h is the vector 
0
7
9
h


in the range of T?

Exercise 6.5.4. Let T : V →W and S : W → X be linear maps. Show that
the composition S ◦ T : V → X is also linear.

Exercise 6.5.5. Let L : R2×2 → R2×2 by L(A) = 2A− 5AT .

(a) Show that L is a linear transformation.

(b) Compute L(

[
2 1
1 2

]
).

(c) Provide a nonzero element in the range of L.

(d) Is L one-to-one? Explain.

Exercise 6.5.6. Consider the linear map T : R2[t]→ R2 given by T (p(t)) =[
p(1)
p(3)

]
.

(a) Find a basis for the kernel of T .
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(b) Find a basis for the range of T .

Exercise 6.5.7. Define T : R2×2 → R via T
[
a b
c d

]
= a+b+c+d. Determine

a basis for the kernel of T .

Exercise 6.5.8. Define L : R2×2 → R2×2 via L(A) = A − AT . Determine a
basis for the range of L.

Exercise 6.5.9. Let T : V →W with V = R4 and W = R2×2 be defined by

T (


a
b
c
d

) =

[
a+ b b+ c
c+ d d+ a

]
.

(a) Find a basis for the kernel of T .

(b) Find a basis for the range of T .

Exercise 6.5.10. Is the linear map T : R3 −→ R2 described by

T =

 x1
x2
x3

 =

[
x1 − 2x2 + x3

2x1 − 4x2 + 2x3

]

onto? Describe all vectors u =

 u1
u2
u3

 ∈ R3 with T (u) =

[
3
6

]
.

Exercise 6.5.11. Show that if T : V → W is linear and the set
{T (v1), . . . , T (vk)} is linearly independent, then the set {v1, . . . ,vk} is lin-
early independent.

Exercise 6.5.12. Show that if T : V → W is linear and onto, and
{v1 . . . ,vk} is a basis for V , then the set {T (v1), . . . , T (vk)} spans W . When
is {T (v1), . . . , T (vk)} a basis for W?

Exercise 6.5.13. Let V and W be vector spaces, and let B = {b1, ...,bn}
be a basis for V . Suppose that T : V → W is a linear one-to-one map. Show
that dimW ≥ n.

Exercise 6.5.14. Let V be a vector space over R of dimension n and B a
basis for V . Define T : V → Rn by T (v) = [v]B.

(a) Show that T is an isomorphism.

(b) Conclude that V and Rn are isomorphic.
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(c) Show that two finite dimensional vector spaces over R are isomorphic if
and only if they have the same dimension.

Exercise 6.5.15. Let T : V →W be linear, and let U ⊆ V be a subspace of
V . Define

T [U ] := {w ∈W ; there exists u ∈ U so that w = T (u)} .

Observe that T [V ] = Ran T .

(a) Show that T [U ] is a subspace of W .

(b) Assuming dim U <∞, show that dim T [U ] ≤ dim U .

(c) If Û is another subspace of V , is it always true that T [U + Û ] = T [U ] +
T [Û ]? If so, provide a proof. If not, provide a counterexample.

(d) If Û is another subspace of V , is it always true that T [U∩Û ] = T [U ]∩T [Û ]?
If so, provide a proof. If not, provide a counterexample.

Exercise 6.5.16. Define the linear map T : R2×2 → R3[t] via

T

[
a b
c d

]
= (a+ b) + (c− b)t+ (d− a)t2 + (a+ c)t3.

Let
B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
and C =

{
1, t, t2, t3

}
. Find the matrix for T relative to B and C.

Exercise 6.5.17. Let {v1,v2,v3,v4} be a basis for a vector space V .

(a) Let T : V → V be given by T (vi) = vi+1, i = 1, 2, 3, and T (v4) =
v1. Determine the matrix representation of T with respect to the basis
{v1,v2,v3,v4}.

(b) If the matrix representation of a linear map S : V → V with respect to
the basis {v1,v2,v3,v4} is given by

1 0 1 1
0 2 0 2
1 2 1 3
−1 0 −1 −1

 ,
determine S(v1 − v4).

(c) Determine bases for Ran S and Ker S.
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Exercise 6.5.18. Let B = {b1,b2,b3} and C = {c1, c2, c3} be bases for
vector spaces V and W , respectively. Let T : V →W have the property that

T (b1) = 2c1 + 3c3, T (b2) = 4c1 − c2 + 7c3, T (b3) = 5c2 + 10c3.

Find the matrix for T relative to B and C.

Exercise 6.5.19. Let T : R2 → R2[t] be defined by

T (

[
x1
x2

]
) = x1t

2 + (x1 + x2)t+ x2.

(a) Compute T (

[
1
−1

]
).

(b) Show that T is linear.

(c) Let B =

{[
1
0

]
,

[
0
1

]}
and E =

{
1, t, t2

}
. Find the matrix representation

of T with respect to B and E .

(d) Find a basis for Ran T .

Exercise 6.5.20. Define T : R2[t] → R2 by T (p(t)) =

[
p(0) + p(5)

p(3)

]
. Find

the matrix for T relative to the basis
{

1, t, t2
}
for R2[t] and the standard basis

for R2.

Exercise 6.5.21. Let V = R3[t]. Define T : V → V via

T [p(t)] = (3t+ 4)p′(t),

where p′ is the derivative of p.

(a) Find a basis for the kernel of T .

(b) Find a basis for the range of T .

(c) Let B =
{

1, t, t2, t3
}
. Find the matrix representation of T with respect to

the basis B.

Exercise 6.5.22. Let T : R2×2 → R3[t] be defined by

T

[
a b
c d

]
= a+ bt+ ct2 + dt3.

Put

B =

{[
1 0
0 1

]
,

[
1 0
0 −1

]
,

[
0 1
1 0

]
,

[
0 1
−1 0

]}
, C =

{
1, 1 + t, t2, t2 + t3

}
.

Determine the matrix representation [T ]C←B of T with respect to the bases B
and C.
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Exercise 6.5.23. Define L : R2×2 → R2[t] via

L(

[
a b
c d

]
) = (a+ b+ c) + (b+ c+ d)t+ (a− d)t2.

(a) Determine a basis for the kernel of L.

(b) Determine a basis for the range of L.

(c) Let B =

{[
1 0
0 1

]
,

[
1 0
0 −1

]
,

[
0 1
1 0

]
,

[
0 1
−1 0

]}
and C =

{
1, t, t2

}
. De-

termine the matrix representation [L]C←B of L with respect to the bases
B and C.

Exercise 6.5.24. Let T : V → W with V = R4 and W = R2×2 be defined
by

T (


a
b
c
d

) =

[
a+ b b+ c
c+ d d+ a

]
.

(a) Find a basis for the kernel of T .

(b) Find a basis for the range of T .

Exercise 6.5.25. For the following T : V → W with bases B and C, respec-
tively, determine the matrix representation for T with respect to the bases B
and C. In addition, find bases for the range and kernel of T .

(a) B = C = {sin t, cos t, sin 2t, cos 2t}, V = W = Span B, and T = d2

dt2 + d
dt .

(b) B =
{

1, t, t2, t3
}
, C =

{[
1
0

]
,

[
1
−1

]}
, V = R3[t], andW = R2, and T (p) =[

p(3)
p(5)

]
.

(c) B = C =
{
et cos t, et sin t, e3t, te3t

}
, V = W = Span B, and T = d

dt .

(d) B =
{

1, t, t2
}
, C =

{[
1
1

]
,

[
1
0

]}
, V = R2[t], and W = R2, and T (p) =[∫ 1

0
p(t)dt
p(1)

]
.

Exercise 6.5.26. Let V = Rn×n. Define L : V → V via L(A) = 1
2 (A+AT ).
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(a) Let

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

Determine the matrix representation of L with respect to the basis B.

(b) Determine the dimensions of the subspaces

W = {A ∈ V : L(A) = A} , and

Ker L = {A ∈ V : L(A) = 0} .

Exercise 6.5.27. Let B = {1, t, . . . , tn}, C =
{

1, t, . . . , tn+1
}
, V = Span B

and W = Span C. Define A : V →W via

Af(t) := (2t2 − 3t+ 4)f ′(t),

where f ′ is the derivative of f .

(a) Find the matrix representation of A with respect to the bases B and C.

(b) Find bases for Ran A and Ker A.

Exercise 6.5.28. Let T : R2[t]→ R3 be defined by

T (p) =

p(0)
p(2)
p′(1)

 .
(a) Compute T (t2 + 5).

(b) Let B =


1

0
0

 ,
0

1
0

 ,
0

0
1

 and E =
{

1, t, t2
}
. Find the matrix

representation of T with respect to E and B.

Exercise 6.5.29. Let T : R2[t] → R2[t] be the transformation T (p(t)) =
p′(t) − p(t). Find the matrix representation [T ]E←E of T with respect to the
basis E =

{
1, t, t2

}
.

Exercise 6.5.30. Let B =

{[
2
−1

]
,

[
1
3

]}
and C =

{[
1
1

]
,

[
1
−1

]}
.

(a) Find the change of basis matrix [id]C←B.

(b) Show how you would check your answer under (a).
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Exercise 6.5.31. Let F = {f1, f2, f3} and D = {d1,d2,d3} be two bases
of a vector space V . Moreover, it is given that f1 = 2d1 − d2 + 3d3, f2 =

d1 − 5d3, f3 = d2 − d3. If [x]F =

1
2
3

, find [x]D.

Exercise 6.5.32. Let B =

{[
−2
1

]
,

[
3
2

]}
and C =

{[
1
2

]
,

[
2
3

]}
be two bases

in R2. Find the change of coordinates matrix from B to C.

Exercise 6.5.33. True or False? Justify each answer.

(i) The map T : R2 → R2 defined by T
[
x1
x2

]
=

[
x1 + x2
x1x2

]
is linear.

(ii) The map T : R2 → R2 defined by T
[
x1
x2

]
=

[
x1 + x2
x2 + 3

]
is linear.

(iii) If T is the map given by T (x) = Ax, then T is one-to-one if and only if
the columns of A form a linearly independent set.

Exercise 6.5.34. Suppose we have a sound signal

0 5 10 15 20 25 30

−1

0

1

2

and that it gets corrupted with noise, resulting in the following.
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0 5 10 15 20 25 30

−1

0

1

2

When we receive the corrupted signal, we would like to ‘filter out the noise’.
The signal that we receive is a digital signal, so it is really a vector of numbers
(xk)Nk=1. Here it will be convenient to write the signal as a row vector. Standard
for phone calls is a sampling rate of 8000 Hz, which means that the sound is
sampled 8000 times per second. Thus a sound signal that is one minute long
corresponds to a vector of length N = 60× 8, 000 = 480, 000.

The type of filter that we discuss here are Finite Impulse Response (FIR)
filters, which have the following form

yn = b0xn + b1xn−1 + · · ·+ bkxn−k, n = k + 1, k + 2, . . . .

The number k is referred to as the length of the filter. For instance, if we have
k = 1 and b0 = b1 = 1

2 , then we get the filter

yn =
xn + xn−1

2
, n = 2, 3, . . . . (6.11)

The filter (6.11) is simply a moving average. For instance, if x =
(1, 3, 4, 7, 9, . . .), we obtain y = (2, 3 1

2 , 5
1
2 , 8, . . .). We can depict the filter as

follows.

input (xn)n=1,2,... digital filter output (yn)n=k+1,k+2,...

Note that the filter causes some delay. Indeed, we need x1, . . . , xk+1 to be
able to compute yk+1. So, for instance, if k = 10 there will be a delay of 10
samples, which at the sampling rate of 8000 Hz is 1

800 of a second. With the
right choice of the filter (thus the right choice of the numbers b0, . . . , bk), it is
possible to recover the original signal above from the corrupted signal. Filter
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design is all about finding the right filter for your purposes (filtering out noise,
separating voices, ...).

Consider the signals

a = (. . . , 1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, . . .),n = (. . . , 1,−1, 1,−1, 1,−1, 1,

−1, . . .).

For a filter F , with input x, let us denote the output by F(x).

(a) Compute the output when we let a be the input of filter (6.11). Do the
same with input n. What do you observe?

(b) We would like to make a filter so that it does not change the signal a
(thus F(a) = a) and so that n will have constant zero as the output
(thus F(n) = 0). The signal a represents a ‘good’ signal that we want to
keep, and the signal n represents a ‘bad’ signal that we want to remove.
Explain why for such a filter we have that F(a + cn) = a for all c ∈ R.
What property of F are you using?

(c) Show that the choice b0 = 1
6 , b1 = − 1

3 , b2 = 1
3 , b3 = 5

6 gives a filter
satisfying the properties under (b).

(d) Show that no FIR filter of length ≤ 2 exists satisfying the properties under
(b).
(Hint: Write out the equations that b0, b1, b2 need to satisfy.)

Exercise 6.5.35. In transmitting information signals errors can occur. In
some situations this may lead to significant problems (for instance, with fi-
nancial or medical information), and thus it is important to make sure to have
a way to detect errors. A simple rule may be that all the numbers in a signal
have to add up to 0. For instance, 

1
−3
5
−7
4


is then a valid signal, and 

2
−3
5
−7
4


is not. This simple rule provides some protection, but it is limited. Indeed, a



160 Linear Algebra: What You Need to Know

common human mistake is that two consecutive entries get transposed. The
above rule does not detect that mistake.

A large number of error detecting and error correcting codes are built
on the idea that the only valid signals belong to the kernel of a linear map T .
Thus,

v is a valid signal⇔ T (v) = 0.

Often, these linear maps act on Fn where F is a field∗ other than R or C, but
let us not worry about that here. In our case, let us take T : R6 → R2.

(a) If T is onto, what is the dimension of Ker T? The dimension of Ker T is
the dimension of the subspace containing all valid signals.

(b) Explain how a single entry mistake is always detected if and only if ej 6∈
Ker T , j = 1, . . . , 6.

(c) Explain how a single transposition of two consecutive entries is always
detected if and only if ej − ej+1 6∈ Ker T , j = 1, . . . , 5.

(d) Show that if the standard matrix of T is given by A below, then a sin-
gle entry mistake and a single transposition of two consecutive entries is
always detected.

A =

[
1 2 −1 3 1 −1
0 1 −2 1 0 1

]
.

(e) If a person transposes two non-consecutive entries, will it always be de-
tected using the linear map T from (d)?

In this exercise we focused on some ideas involving error detection. To make
error correcting codes (one that corrects a single entry error or a single trans-
position, for instance), one has to see to it that the type of errors one wants
to correct for result in signals that are ‘closer’ to Ker T than signals that
are the result of any other type of errors. One way to do this is by using the
‘Hamming distance’ (defined on Zn2 ). For more information, please search for
error correcting codes.

∗For instance, F = Zp; see Appendix A.3 for a definition of Zp.
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7.1 Eigenvectors and Eigenvalues

Let A be a square matrix. For certain vectors x the effect of the multiplication
Ax is very simple: the outcome is λx, where λ is a scalar. These special vectors
along with the scalars λ expose important features of the matrix, and therefore
have a special name.

Definition 7.1.1. The scalar λ is called an eigenvalue of A, if there exists
x 6= 0 so that

Ax = λx.

In this case, the nonzero vector x is called an eigenvector of A corre-
sponding to the eigenvalue λ.

If we rewrite the above equation as

(A− λI)x = 0, x 6= 0,

it gives us a way to find eigenvalues. Indeed, if Nul(A−λI) 6= {0} then A−λI
is not invertible. Consequently,

det(A− λI) = 0,

which gives a polynomial equation for λ. We call this the characteristic
equation of A.

161
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Definition 7.1.2. The polynomial pA(λ) = det(A−λI) is called the char-
acteristic polynomial of A. Note that the roots of pA(λ) are exactly the
eigenvalues of A; in other words, λ is called an eigenvalue of A if and only
if pA(λ) = 0.

The subspace Nul(A− λIn) is called the eigenspace of A at λ, and consists
of all the eigenvectors of A at λ and the zero vector.

Example 7.1.3. Let A =

[
3 3
4 2

]
. Then

det(A− λI) = det

[
3− λ 3

4 2− λ

]
= λ2 − 5λ− 6 = (λ+ 1)(λ− 6).

Thus A has eigenvalues 6 and −1. Next we determine the eigenspaces.

At λ = 6, determine the null space of A− 6I:[
3− 6 3 0

4 2− 6 0

]
→
[
−3 3 0
4 −4 0

]
→
[
1 −1 0
0 0 0

]
.

So Nul(A− 6I) = Span

{[
1
1

]}
. Next, at λ = −1,[

3− (−1) 3 0
4 2− (−1) 0

]
→
[
4 3 0
4 3 0

]
→
[
1 3

4 0
0 0 0

]
.

So Nul(A+ I) = Span

{[
− 3

4
1

]}
= Span

{[
−3
4

]}
.

Let us check the answers:

[
3 3
4 2

] [
1
1

]
=

[
6
6

]
= 6

[
1
1

]
,

[
3 3
4 2

] [
−3
4

]
=

[
3
−4

]
= −

[
−3
4

]
.

Put P =

[
1 −3
1 4

]
and D =

[
6 0
0 −1

]
. Then P is invertible, and

AP =

[
3 3
4 2

] [
1 −3
1 4

]
=

[
6 3
6 −4

]
=

[
1 −3
1 4

] [
6 0
0 −1

]
= PD.

Thus
A = PDP−1,

where D is a diagonal matrix with the eigenvalues on its main diagonal and
P has the corresponding eigenvectors as its columns. �
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The determinant of a lower or upper triangular matrix is easy to compute, as in
that case the determinant is the product of the diagonal entries. Consequently,
we easily find that for triangular matrices the eigenvalues correspond to the
diagonal entries.

Theorem 7.1.4.
If L = (lij)

n
i,j=1 is lower triangular, then its eigenvalues are l11, . . . , lnn.

If U = (uij)
n
i,j=1 is upper triangular, then its eigenvalues are u11, . . . , unn.

Proof. By Theorem 4.1.2 we have that det(L− λI) = (l11 − λ) · · · (lnn − λ),
which has the roots l11, . . . , lnn. The argument is similar for upper triangular
matrices. �

The notion of eigenvalues and eigenvectors also apply to linear maps T : V →
V . We call 0 6= x ∈ V an eigenvector with eigenvalue λ if T (x) = λx. When
we have a matrix representation A = [T ]B←B for T relative to the basis B,
one can find the eigenvectors of T by finding the eigenvectors of A. Indeed,
we have that

T (x) = λx ⇔ A[x]B = λ[x]B.

Thus it is important to keep in mind that the eigenvectors of A should be
interpreted as the coordinate vectors of the eigenvectors of T with respect to
the basis B.

We provide an example.

Example 7.1.5. Find the eigenvectors of T : R2×2 → R2×2 defined by
T (A) = A+AT .

Let B = {E11, E12, E21, E22}. Then

A = [T ]B←B =


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 .
We find that 2 and 0 are the eigenvalues of A with eigenspaces

Nul(A− 2I) = Span




1
0
0
0

 ,


0
1
1
0

 ,


0
0
0
1


 ,Nul(A− 0I) = Span




0
1
−1
0


 .

Thus T has eigenvalues 2 and 0, with eigenvectors at λ = 2[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,
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and at λ = 0 [
0 1
−1 0

]
.

Notice that indeed

T (

[
1 0
0 0

]
) = 2

[
1 0
0 0

]
, T (

[
0 1
1 0

]
) = 2

[
0 1
1 0

]
,

T (

[
0 0
0 1

]
) = 2

[
0 0
0 1

]
, T (

[
0 1
−1 0

]
) =

[
0 0
0 0

]
= 0

[
0 1
−1 0

]
.

�

7.2 Similarity and Diagonalizability

Square matrices A and B of the same size are called similar if there exists
an invertible matrix P so that A = PBP−1. The matrix P is called the
similarity matrix.

Theorem 7.2.1. The n × n matrix A is similar to a diagonal matrix D
if and only if A has n linearly independent eigenvectors v1, . . . ,vn with
eigenvalues λ1, . . . , λn, respectively. If we put P =

[
v1 · · · vn

]
and D =λ1 . . .

λn

. Then A = PDP−1.

In this case, we say that A is diagonalizable.

Note that A in Example 7.1.3 is diagonalizable. In the following example the
matrix is not diagonalizable.

Example 7.2.2. Let A =

[
1 1
0 1

]
. Then det(A− λI) = (1− λ)2. Thus λ = 1

is the only eigenvalue. For Nul(A− I), reduce[
1− 1 1 0

0 1− 1 0

]
→
[
0 1 0
0 0 0

]
.

So Nul(A− I) = Span

{[
1
0

]}
. There are not 2 linearly independent eigenvec-

tors for A. Thus A is not diagonalizable. �
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Theorem 7.2.3. Eigenvectors at different eigenvalues are linearly inde-
pendent. Thus, if the n × n matrix A has n different eigenvalues, then A
is diagonalizable.

For instance A =

1 2 3
0 4 5
0 0 6

 is diagonalizable.

Proof. Let λ1, . . . , λn be the eigenvalues of A with corresponding eigenvectors
v1, . . . ,vn. Suppose that there is a p so that {v1, . . . ,vp} is linearly indepen-
dent, but {v1, . . . ,vp,vp+1} is not. Then we must have that vp+1 is a linear
combination of v1, . . . ,vp. Thus there exists scalars c1, . . . , cp with

vp+1 = c1v1 + · · ·+ cpvp. (7.1)

Multiplying with A on the left gives

Avp+1 = A(c1v1 + · · ·+ cpvp) = c1Av1 + · · ·+ cpAvp.

Using that they are eigenvectors with (different) λj gives

λp+1vp+1 = c1λ1v1 + · · ·+ cpλpvp. (7.2)

Multiplying (7.1) with λp+1 and substracting it from (7.2) gives

0 = c1(λ1 − λp+1)v1 + · · ·+ cp(λp − λp+1)vp.

Since {v1, . . . ,vp} is linearly independent, we obtain that c1(λ1 − λp+1) =
0, . . . , cp(λp − λp+1) = 0. Since λ1 − λp+1 6= 0, . . . , λp − λp+1 6= 0, we now get
that c1 = 0, . . . , cp = 0. This now gives that vp+1 = 0, which is a contradiction
as vp+1 is an eigenvector (and thus 6= 0). �

When we have written a diagonalizable matrix in the form A = PDP−1, it is
easy to compute powers Ak of A.

Lemma 7.2.4. When A = PDP−1 is diagonalizable, then Ak = PDkP−1.

Proof.We haveAk = PDP−1PDP−1PDP−1 · · ·PDP−1 = PDD · · ·DP−1 =
PDkP−1. �

Example 7.2.5. Let A =

[
3 4
−2 −3

]
. Then diagonalizing A we find A =

PDP−1, where

P =

[
−1 −2
1 1

]
, D =

[
−1 0
0 1

]
.

Then

A100 = PD100P−1 = P

[
(−1)100 0

0 1100

]
P−1 = PIP−1 = I.

�
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7.3 Complex Eigenvalues

Let A =

[
0 −1
1 0

]
and x =

[
x1
x2

]
. Then Ax =

[
−x2
x1

]
is obtained from x by

rotating it 90o counterclockwise around the origin, as depicted below.

0

x

Ax

Figure 7.1: Rotation of 90o.

So what eigenvalues and eigenvectors could A possibly have? No vector Ax
ends up in the same or opposite direction as x (nor is Ax = 0 for any nonzero
x). Indeed, the matrix A does not have any real eigenvalues. However, if we
allow complex numbers, then A does have eigenvalues. This section is about
that situation. For those who need an introduction or a refresher on complex
numbers, please review Appendix A.2, where we cover some basic properties.

Example 7.3.1. Find the eigenvalues and eigenvectors of A =

[
0 −1
1 0

]
.

We find that the characteristic equation is det(λI2 − A) = λ2 + 1 = 0. So
λ2 = −1, and thus λ = ±i. For Nul(A− iI), reduce

[
−i −1 0
1 −i 0

]
→
[

1 −i 0
−i −1 0

] replace row2 by

row2 + i row1

→

[
1 −i 0
0 0 0

]
.

So x2 is free, and x1 = ix2. Consequently, Nul(A− iI) = Span

{[
i
1

]}
. Simi-

larly, Nul(A+ iI) = Span

{[
−i
1

]}
. Thus the eigenvalues and eigenvectors are

λ1 = i, λ2 = −i and

v1 =

[
i
1

]
,v2 =

[
−i
1

]
.
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Also, A is diagonalizable:[
0 −1
1 0

]
=

[
i −i
1 1

] [
i 0
0 −i

] [
i −i
1 1

]−1
.

�

Example 7.3.2. Find the eigenvalues and eigenvectors of A =

[
5 −2
1 3

]
.

We find that the characteristic equation is

det(A− λI2) = (λ− 5)(λ− 3) + 2 = λ2 − 8λ+ 17 = (λ− 4)2 + 1 = 0.

So λ− 4 = ±i, yielding λ = 4± i. For Nul(A− (4 + i)I), reduce

[
1− i −2

1 −1− i

]
→
[

1 −1− i
1− i −2

] replace row2 by

row2 − (1 − i) row1

→

[
1 −1− i
0 0

]
.

(Notice that we left off the augmented zero part.) So x2 is free, and x1 = (1 +

i)x2. Consequently, Nul(A−(4+i)I) = Span

{[
1 + i

1

]}
. Similarly, Nul(A−(4−

i)I) = Span

{[
1− i

1

]}
. Thus the eigenvalues and eigenvectors are λ1 = 4 + i,

λ2 = 4− i and
v1 =

[
1 + i

1

]
,v2 =

[
1− i

1

]
.

Also, A is diagonalizable:[
5 −2
1 3

]
=

[
1 + i 1− i

1 1

] [
4 + i 0

0 4− i

] [
1 + i 1− i

1 1

]−1
.

�

For a matrix A = (aij)
n
i,j=1 and a vector v = (vi)

n
i=1 we define

A = (aij)
n
i,j=1, v =

v1...
vn

 ,
where z̄ denotes the complex conjugate of z. It follows easily that Av = A v.

Notice that in both examples above we have

λ2 = λ1, v2 = v1.

This is not by chance. This is due to the following general rule.
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Theorem 7.3.3. If A is a real n×n matrix with eigenvalue λ = a+bi, then
λ = a − bi is also an eigenvalue of A. In addition, if v1 is an eigenvector
of A at λ, then v2 = v1 is an eigenvector of A at λ.

Proof. Let us write

p(t) = det(tI −A) = tn + pn−1t
n−1 + · · ·+ p1t+ p0.

Since A has real entries, the coefficients pj of p(t) are all real. Thus pj = pj ,
j = 0, . . . , n− 1. Now suppose that p(λ) = 0. Then

0 = p(λ) = λn + pn−1λn−1 + · · ·+ p1λ+ p0 = λ
n

+ pn−1λ
n−1

+ · · ·+ p1λ+ p0

= λ
n

+ pn−1λ
n−1

+ · · ·+ p1λ+ p0 = p(λ).

Thus p(λ) = 0, yielding that λ is also an eigenvalue.

Next, let v1 be an eigenvector of A at λ. Thus Av1 = λv1. Then A v1 = λv1.
Since A is real, we have A = A, and thus Av1 = λv1, giving that v1 is an
eigenvector of A at λ. �

7.4 Systems of Differential Equations: the Diagonaliz-
able Case

A system of linear differential equations with initial conditions has the form
x′1(t) = a11x1(t) + · · ·+ a1nxn(t), x1(0) = c1,

...
...

x′n(t) = an1x1(t) + · · ·+ annxn(t), xn(0) = cn,

which in shorthand we can write as{
x′(t) = Ax(t),
x(0) = c,

(7.3)

where A = (aij)
n
i,j=1, and

x(t) =

x1(t)
...

xn(t)

 , c =

c1...
cn

 .
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Here x′j(t) is the derivative of xj(t). The objective is to find differentiable
functions x1(t), . . . , xn(t), satisfying the above equations. When n = 1, we
simply have the scalar valued equation

x′(t) = λx(t), x(0) = c.

The solution in this case is x(t) = ceλt. Indeed, recalling that d
dte

λt = λeλt,
we get that x′(t) = cλeλt = λx(t) and x(0) = ce0 = c.

When the coefficient matrix A is diagonalizable, the solution to the system is
easily expressed using the eigenvalues and eigenvalues of A. Here is the result.

Theorem 7.4.1. Consider the system (7.3) with A diagonalizable. Let
λ1, . . . , λn be the eigenvalues of A and let B = {v1, . . . ,vn} be a basis of
corresponding eigenvectors. Then

x(t) = d1e
λ1tv1 + · · ·+ dne

λntvn,

where d = [c]B, is the solution to (7.3).

Proof. With x(t) as above we find that

x′(t) = d1λ1e
λ1tv1 + · · ·+ dnλne

λntvn.

Also,

Ax(t) =

n∑
j=1

dje
λjtAvj =

n∑
j=1

dje
λjtλjvj ,

where we used that Avj = λjvj . Thus x′(t) = Ax(t). Finally, observe that
x(0) =

∑n
j=1 djvj = c, so indeed x(t) is the solution. �

Example 7.4.2. Consider the system{
x′1(t) = 3x1(t) + 3x2(t), x1(0) = −11,
x′2(t) = 4x1(t) + 2x2(t), x2(0) = 10.

In Example 7.1.3 we computed the eigenvalues λ = 6, λ2 = −1, and the
corresponding eigenvectors

v1 =

[
1
1

]
,v2 =

[
−3
4

]
.

It remains to write the vector c of initial values as a linear combination of v1

and v2:

c =

[
−11
10

]
= −2

[
1
1

]
+ 3

[
−3
4

]
, thus d = [c]{v1,v2} =

[
−2
3

]
.
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Apply now Theorem 7.4.1 to get the solution[
x1(t)
x2(t)

]
= −2e6t

[
1
1

]
+ 3e−t

[
−3
4

]
=

[
−2e6t − 9e−t

−2e6t + 12e−t

]
.

�

We know that d
dt cos t = − sin(t) and d

dt sin t = cos(t). Thus, if we let
x1(t) = α cos t + β sin t and x2(t) = −β cos t + α sin t, they satisfy the sys-
tem of differential equations[

x′1(t)
x′2(t)

]
=

[
0 −1
1 0

] [
x1(t)
x2(t)

]
.

So what happens when we apply Theorem 7.4.1 to a system with this coeffi-
cient matrix?

Example 7.4.3. Consider{
x′1(t) = −x2(t), x1(0) = 2,
x′2(t) = x1(t) , x2(0) = 3.

By Example 7.3.1 we find λ1 = i, λ2 = −i, and the corresponding eigenvectors

v1 =

[
i
1

]
,v2 =

[
−i
1

]
.

Next, write the vector c of initial values as a linear combination of v1 and v2:

c =

[
2
3

]
= (

3

2
− i)

[
i
1

]
+ (

3

2
+ i)

[
−i
1

]
, thus d = [c]{v1,v2} =

[
3
2 − i
3
2 + i

]
.

Apply now Theorem 7.4.1 to get the solution[
x1(t)
x2(t)

]
= (

3

2
− i)eit

[
i
1

]
+ (

3

2
+ i)e−it

[
−i
1

]
.

If we now use that e±it = cos t± i sin t, then we obtain the solution[
x1(t)
x2(t)

]
=

[
2 cos t− 3 sin t
3 cos t+ 2 sin t

]
.

�

More general, when you start with a real system of differential equations with
real initial conditions, and find eigenvalues λ = a± bi, a, b ∈ R, the functions
eat cos(bt) and eat sin(bt) appear in the solution. Indeed, we have

e(a±bi)t = eate±ibt = eat(cos(bt)± i sin(bt)).
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7.5 Exercises

Exercise 7.5.1. Find the eigenvalues and eigenvectors of the following ma-
trices.

(a)
[

4 −2
−2 4

]
.

(b)

3 0 −3
1 2 5
3 0 3

.
(c)

2 1 0
0 −3 1
0 9 −3

.
Exercise 7.5.2. Find the eigenspace of the matrix

2 0 −3
1 1 5
3 0 −4

 at the eigen-

value λ = −1.

Exercise 7.5.3. Is λ = 5 an eigenvalue of A =

4 0 −2
2 5 4
0 0 5

? If so, find the

eigenspace of A at λ = 5.

Exercise 7.5.4. Is λ = −3 an eigenvalue of A =

0 0 −1
1 −4 0
4 −13 0

? If so, find

the eigenspace of A at λ = −3.

Exercise 7.5.5. Find a basis for the eigenspace of A =

3 5 0
4 6 5
2 2 4

 corre-

sponding to the eigenvalue λ = 1.

Exercise 7.5.6. Let B =

−1 1 −2
2 −5 1
−3 4 −3

. Find the eigenspace of B at the

eigenvalue λ = −2.

Exercise 7.5.7. Find the eigenvalues and eigenvectors of
[

2 i
−i 2

]
.

Exercise 7.5.8. Which of the following matrices are diagonalizable? If diag-
onalizable, give P and D such that A = PDP−1.
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(a)

 1 2 −1
−2 −4 2
3 6 −3

 .
(b)

[
2 1
0 2

]
.

Exercise 7.5.9. Let A be n× n.

(a) Use Exercise 3.7.6 to show that if A = PDP−1 is diagonalizable, then
tr A = tr D = sum of the eigenvalues of A.

(b) Write the characteristic polynomial pA(t) = det(A − tI) as (−1)n(tn +
pn−1t

n−1 + · · ·+ p0). Show that tr A = −pn−1.

(c) Write also pA(t) = (−1)n
∏n
j=1(t − λj). Use (b) to conclude that tr A =∑n

j=1 λj = sum of the eigenvalues of A, even when A is not diagonalizable.

Exercise 7.5.10. Suppose that a 3×3 matrix C has the following eigenvalues
and eigenvectors:

2,

1
5
0

 ,
4

1
0

 and 3,

0
0
2

 .
What is detC? And tr C?

Exercise 7.5.11. Let A be a square matrix so that A2 = A. Show that A
only has eigenvalues 0 or 1.

Hint: Suppose Ax = λx,x 6= 0. Compute A2x in terms of λ and x, and use
A2 = A to get an equality for λ. A square matrix A so that A2 = A is called
a projection.

Exercise 7.5.12. Let A be a square matrix.

(a) Show that det(A− λI) = det(AT − λI).

(b) Conclude that A and AT have the same eigenvalues.

Exercise 7.5.13. Let A be an invertible matrix. Show that λ is an eigen-
value of A with eigenvector x if and only if λ−1 is an eigenvalue of A−1 with
eigenvector x.
(Hint: Start with Ax = λx and multiply on both sides with A−1 on the left.)

Exercise 7.5.14. Let A be a square matrix satisfying A2 = −A. Determine
the possible eigenvalues of A.

Exercise 7.5.15. Let A = PDP−1, where P =

[
1 2
3 4

]
and D =

[
2 0
0 −2

]
.

Compute A4.
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Exercise 7.5.16. Compute A24 for

A =

 0 1 0
−1 0 0
1 1 1

 .
Exercise 7.5.17. Given that A = PDP−1, with P =

−2 0 −1
0 1 2
1 0 0

 and

D =

1 0 0
0 −1 0
0 0 0

, compute A100.

Exercise 7.5.18.

(a) Find the eigenvectors and eigenvalues of A =

 3
4

1
4

1
4

3
4

.
(Hint: One of the eigenvalues is 1.)
(b) Compute Ak.

(c) Show that Ak approaches

 1
2

1
2

1
2

1
2

 as k →∞.

Exercise 7.5.19.

(a) Find the eigenvectors and eigenvalues of A =

 1
2

1
2

1
4

3
4

. (Hint: One of the

eigenvalues is 1.)
(b) Compute Ak.

(c) Show that Ak approaches

 1
3

2
3

1
3

2
3

 as k →∞.

Exercise 7.5.20. Let V = R2×2. Define L : V → V via L(A) = A−AT .

(a) Let

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

Determine the matrix representation of L with respect to the basis B.

(b) Determine the eigenvalues and eigenvectors of L.

Exercise 7.5.21. Let the linear map L : R2×2 → R2×2 be given by L(A) =

2A+3AT . Show that
[
1 2
2 1

]
is an eigenvector for L. What is the corresponding

eigenvalue?
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Exercise 7.5.22. Let C be a square matrix.

(a) Show that for k ≥ 1,

(I−C)(I+C+C2+· · ·+Ck−1) = I−Ck = (I+C+C2+· · ·+Ck−1)(I−C).

For the remainder of this exercise, we assume that C is diagonalizable
and all its eigenvalues λ satisfy |λ| < 1.

(b) Show that limk→∞ Ck = 0.

(c) Using (a) and (b) show that for a matrix C as in (b) we have that
(I − C)−1 =

∑∞
k=0 C

k.

(d) If, in addition, all the entries of C are nonnegative, show that (I − C)−1

has all nonnegative entries.

The observation under (d) is useful when C represents a cost matrix in a
Leontief input-output model (see Exercise 3.7.27).

Exercise 7.5.23. Determine the (complex!) eigenvalues and eigenvectors of
the following matrices.

(a)
[
−2 −2
2 −2

]
.

(b)
[
6 −5
5 0

]
.

Exercise 7.5.24. Solve the following systems of linear differential equations.

(a)
{
x′1(t) = x2(t),
x′2(t) = 6x1(t)− x2(t),

x1(0) = 1,
x2(0) = 2.

(b)
{
x′1(t) = 2x1(t) + 3x2(t),
x′2(t) = 4x1(t) + 3x2(t),

x1(0) = 1,
x2(0) = −1.

(c)
{
x′1(t) = 3x1(t)− 2x2(t),
x′2(t) = −2x1(t) + 3x2(t),

x1(0) = 1,
x2(0) = 2.

(d)
{
x′1(t) = −x2(t),
x′2(t) = x1(t),

x1(0) = 1,
x2(0) = 2.

Exercise 7.5.25. In a Markov chain one transitions from state to state
where the probability of each transition depends only on the previous state.
Here is an example with four states. The transitions are depicted as arrows
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1
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Figure 7.2: A transition graph.

with their probabilities next to them. For instance, to transition from state 1
to state 1 has a 0.6 probability. Also, to transition from state 4 to state 3 has
probability 0.4.

When we put the probabilities in a matrix we obtain

A =


0.6 0.3 0.1 0
0.8 0.2 0 0
0.1 0.2 0.5 0.2
0 0.4 0.4 0.2

 ,
where aij is the probability of transitioning from state i to j. This matrix is
row stochastic as it is a square matrix in which each entry is nonnegative,
and the entries in each row add up to 1.

(a) Show that a row stochastic matrix A has 1 as an eigenvalue.
(Hint: Compute Ae, where e is the vector in which each entry equals 1.)

(b) Show that AT also has 1 as an eigenvalue.

(c) For the remainder, suppose that the other eigenvalues λ of A satisfy |λ| <
1∗, and that A is diagonalizable. Diagonalize A as A = SDS−1, where

∗When all the entries are positive this holds, due to the Perron-Frobenius Theorem.
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D = diag(λi)
n
i=1 and λ1 = 1, and e the first column of S. Show that

lim
k→∞

Dk =


1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 .
(d) Show that

lim
k→∞

Ak = eyT ,

where y is an eigenvector of AT at the eigenvalue 1.
(Hint: Use that AT = (S−1)TDST , and thus the first column of (S−1)T

is an eigenvector of AT at 1.)

(e) Show that Ake = e for all k ∈ N, and conclude that eyTe = e and thus
yTe = 1.

(f) Show that y has nonnegative entries that sum up to 1.
(Hint: The matrices Ak all have nonnegative entries.)

The vector y is the so-called steady state of the Markov chain. If we start
with some population distributed over the different states, the vector y repre-
sents how the population will eventually be distributed among the states. In
the example above

y =


0.5614
0.2632
0.1404
0.0351

 .
If the above picture represents an internet with 4 webpages and the transition
matrix describes the probabilities how people move from page to page, then
eventually 56% will end up on webpage 1, 26% on webpage 2, 14% on webpage
3, and 4% on webpage 4. This makes webpage 1 ‘more important’ than the
others. This is a crucial idea in Google’s PageRank algorithm.

Exercise 7.5.26. Diagonalization of matrices can be useful in determining
formulas for sequences given by linear recurrence relations. A famous recur-
rence relation is Fn = Fn−1 + Fn−2, n ≥ 2, which together with the initial
conditions F0 = 0, F1 = 1, defines the Fibonacci sequence. The sequence
starts off as

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . .

How can we use matrices to determine a direct formula for Fn?

(a) Show that we have [
Fn
Fn−1

]
=

[
1 1
1 0

] [
Fn−1
Fn−2

]
, n ≥ 2.
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(b) Show that [
Fn
Fn−1

]
=

[
1 1
1 0

]n−1 [
F1

F0

]
=

[
1 1
1 0

]n−1 [
1
0

]
.

(c) Show that by diagonalization we obtain

[
1 1
1 0

]
=

[
1 1−

√
5

2√
5−1
2 1

][
1+
√
5

2 0

0 1−
√
5

2

][
1 1−

√
5

2√
5−1
2 1

]−1
.

(d) Use (b) and (c) to obtain the formula Fn = 1√
5

(
( 1+
√
5

2 )n − ( 1−
√
5

2 )n
)
.

Exercise 7.5.27. Consider the recurrence relation an = 7an−1 − 10an−2,
n ≥ 2, with initial conditions a0 = 2, a1 = 3.

(a) Show that [
an
an−1

]
=

[
7 −10
1 0

] [
an−1
an−2

]
, n ≥ 2.

(b) Show that [
an
an−1

]
=

[
7 −10
1 0

]n−1 [
3
2

]
.

(c) Diagonalize the matrix
[
7 −10
1 0

]
.

(d) Use (b) and (c) to find a formula for an.

Exercise 7.5.28. Given a monic polynomial p(t) = tk + pk−1t
k−1 + · · · +

p2t
2 + p1t+ p0, we introduce the matrix

Cp =



−pk−1 −pk−2 −pk−3 · · · −p1 −p0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
. . . . . .

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


.

The matrix Cp is called the companion matrix of the polynomial p(t). For
instance, if p(t) = t3 + 2t2 + 3t+ 4, then

Cp =

−2 −3 −4
1 0 0
0 1 0

 .
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(a) Show that the characteristic polynomial of Cp is (−1)np(t); equivalently,
show that det(tI − Cp) = p(t).

(b) Given a recurrence relation xn = −2xn−1 − 3xn−2 − 4xn−3, n ≥ 3, show
that  xn

xn−1
xn−2

 =

−2 −3 −4
1 0 0
0 1 0

xn−1xn−2
xn−3

 , n ≥ 3.

(c) For a general linear recurrence relation of the form xn +∑k
i=1 pk−ixn−i = 0, show that

xn
xn−1
...

xn−k+1

 = Cp


xn−1
nn−2
...

xn−k

 .

Thus analyzing the matrix Cp provides information about the sequence
(xn)∞n=0 defined via the corresponding recurrence relation.

Exercise 7.5.29. True or False? Justify each answer.

(i)

1
1
1

 is an eigenvector of

1 2 3
6 0 0
1 5 1

.
(ii) The sum of two eigenvectors of A both at eigenvalue λ, is again an

eigenvector of A at eigenvalue λ.

(iii) The difference of two different eigenvectors of A both at eigenvalue λ, is
again an eigenvector of A at eigenvalue λ.

(iv) If A is an n× n matrix with eigenvalue 0, then rankA < n.

(v) A diagonalizable matrix is necessarily invertible.

(vi) If A is diagonalizable, then so is A4.

(vii) If A ∈ Rn×n has fewer than n different eigenvalues, then A is not diag-
onalizable.

(viii) The standard basis vector e1 ∈ Rn is an eigenvector of every upper-
triangular n× n-matrix.

(ix) The standard basis vector en ∈ Rn is an eigenvector of every upper-
triangular n× n-matrix.

(x) If λ is an eigenvalue of two n×n-matricesA andB, then λ is an eigenvalue
of A+B as well.
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(xi) If v is an eigenvector of two n × n-matrices A and B, then v is an
eigenvector of A+B as well.

(xii) If two n×n-matrices A and B have the same characteristic polynomial,
then detA = detB.
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8.1 Dot Product and the Euclidean Norm

Definition 8.1.1. We define the dot product of u and v in Rn by

〈u,v〉 = vTu = u1v1 + · · ·+ unvn.

For instance

〈

 1
3
−2

 ,
 5

2
−1

〉 = 5 + 6 + 2 = 13.

Proposition 8.1.2. The dot product on Rn satisfies

(i) Linearity in the first component: 〈a u + b v,w〉 = a〈u,w〉+ b〈v,w〉.

(ii) Symmetry: 〈u,v〉 = 〈v,u〉.

(iii) Definiteness: 〈u,u〉 ≥ 0 and [〈u,u〉 = 0 ⇔ u = 0].

Proof. (i) follows since wT (a u+ b v) = a wTu+ b wTv. (ii) is clear. Finally,
for (iii) observe that 〈u,u〉 = u21 + · · ·+ u2n ≥ 0, since squares of real numbers

181
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are nonnegative. Furthermore, if u21 + · · ·+ u2n = 0, then each term has to be
0, and thus u1 = · · · = un = 0, yielding u = 0. Also, 〈0,0〉 = 0. �

Note that if we combine (i) and (ii) we also get linearity in the second com-
ponent:

〈u, a v + b w〉 = a〈u,v〉+ b〈u,w〉.

Due to Proposition 8.1.2(iii), we can introduce the following.

Definition 8.1.3. We define the norm (or length) of u ∈ Rn by

‖u‖ :=
√
〈u,u〉 =

√
u21 + · · ·+ u2n.

For instance

‖

 1
3
−2

 ‖ =
√

1 + 9 + 4 =
√

14.

Geometrically, ‖u‖ represents the Euclidean distance from u to the origin.

Proposition 8.1.4. The norm on Rn satisfies

(i) ‖u‖ ≥ 0 and [ ‖u‖ = 0 ⇔ u = 0 ],

(ii) ‖a u‖ = |a| ‖u‖, a ∈ R,

(iii) ‖u + v‖ ≤ ‖u‖+ ‖v‖. (triangle inequality)

The proofs of (i) and (ii) are direct. To prove the triangle inequality, we first
need to derive the Cauchy–Schwarz inequality. The geometric interpretation
of the triangle inequality is depicted in Figure 8.1.

In this chapter, we also allow vectors with complex entries. A vector in Cn
has the form

u =


u1
u2
...
un

 , with u1, . . . , un ∈ C.

We define addition and scalar multiplication in the same way as we did in Rn,
with the only difference that the scalars are now complex numbers:
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‖u + v‖
‖v‖

‖u‖

u + v

u

v

0

Figure 8.1: The triangle inequality.

(i) u + v =


u1
u2
...
un

+


v1
v2
...
vn

 :=


u1 + v1
u2 + v2

...
un + vn

 ∈ Cn.

(ii) αu = α


u1
u2
...
un

 :=


αu1
αu2
...

αun

 ∈ Cn. Here α ∈ C.

With these operations Cn is a vector space over C. When we use concepts like
linear independence, span, basis, coordinate system, etc., in Cn we have to
remember that the scalars are now complex.

For vectors u ∈ Cn we define the conjugate transpose as

u∗ := (u)T =
[
u1 · · · un

]
.

It is easy to that (αu+βv)∗ = αu∗+βv∗. Let us also introduce the operation
on matrices: A∗ = (A)T , which is the conjugate transpose of A. In other
words, if A = (ajk)m n

j=1,k=1 ∈ Cm×n, then A∗ = (akj)
n m
j=1,k=1 ∈ Cn×m. For

instance, [
1 + 2i 3− 4i 5 + 6i
7− 8i 9 + 10i 11− 12i

]∗
=

1− 2i 7 + 8i
3 + 4i 9− 10i
5− 6i 11 + 12i

 .
We have the following rules

(A∗)∗ = A, (A+B)∗ = A∗ +B∗, (cA)∗ = cA∗, (AB)∗ = B∗A∗.
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Definition 8.1.5. We define the dot product of u and v in Cn by

〈u,v〉 = v∗u = u1v1 + · · ·+ unvn.

For instance

〈

 1− i
3 + 2i
2− 3i

 ,
 −4i

2− 6i
−1− 7i

〉 = (1− i)(4i) + (3 + 2i)(2 + 6i) + (2− 3i)(−1 + 7i)

= 4i+ 4 + 6 + 4i+ 18i− 12− 2 + 3i+ 14i+ 21 = 17 + 43i.

Proposition 8.1.6. The dot product on Cn satisfies

(i) Linearity in the first component: 〈a u + b v,w〉 = a〈u,w〉+ b〈v,w〉.

(ii) Conjugate symmetry: 〈u,v〉 = 〈v,u〉.

(iii) Definiteness: 〈u,u〉 ≥ 0 and [〈u,u〉 = 0 ⇔ u = 0].

Proof. (i) follows since w∗(a u+ b v) = a w∗u+ b w∗v. (ii) is clear. Finally,
for (iii) observe that 〈u,u〉 = |u1|2 + · · ·+ |un|2 ≥ 0, since squares of absolute
values are nonnegative. Furthermore, if |u1|2 + · · ·+ |un|2 = 0, then each term
has to be 0, and thus u1 = · · · = un = 0, yielding u = 0. Also, 〈0,0〉 = 0. �

Note that if we combine (i) and (ii) we also get ‘skew-linearity’ in the second
component:

〈u, a v + b w〉 = a〈u,v〉+ b〈u,w〉.
So the main difference of the dot product on Cn with the one on Rn is that we
perform complex conjugation on the entries in the second component. We use
the same notation for the dot product on Cn and Rn, as when all the entries
are real the two definitions actually coincide (since complex conjugation does
not do anything to a real number). So there should be no confusion. We just
have to remember that whenever there are complex numbers involved, we
have to take the complex conjugates of the entries appearing in the second
component.

Definition 8.1.7. We define the norm (or length) of u ∈ Cn by

‖u‖ :=
√
〈u,u〉 =

√
|u1|2 + · · ·+ |un|2.

For instance

‖

 1 + i
3 + 2i

4i

 ‖ =
√

(1 + i)(1− i) + (3 + 2i)(3− 2i) + (4i)(−4i) =
√

31.
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Proposition 8.1.8. The norm on Cn satisfies

(i) ‖u‖ ≥ 0 and [ ‖u‖ = 0 ⇔ u = 0 ],

(ii) ‖a u‖ = |a| ‖u‖, a ∈ C,

(iii) ‖u + v‖ ≤ ‖u‖+ ‖v‖. (triangle inequality)

As you see above, Propositions 8.1.4 and 8.1.8 are almost the same. The only
way they differ is that the vectors and scalars are real or complex. Similarly,
Propositions 8.1.2 and 8.1.6 are almost the same (although, one needs to be
careful with the (conjugate) symmetry rule). Going forward, it often makes
sense to combine the statements, whether the vectors are real or complex.
The way we do this is by saying that u ∈ Fn and a ∈ F, where F = R or C.
Hopefully this new notation does not distract from the main points.

The first main result is the Cauchy–Schwarz inequality.

Theorem 8.1.9. (Cauchy–Schwarz inequality) Let F = R or C. For x,y ∈
Fn we have

|〈x,y〉| ≤ ‖x‖‖y‖. (8.1)

Moreover, equality in (8.1) holds if and only if {x,y} is linearly dependent.

Proof. When x = 0, inequality (8.1) clearly holds since both sides equal
0. Next, suppose that x 6= 0. Then 〈x,x〉 > 0 and we let α = 〈y,x〉

〈x,x〉 and
z = y − αx. We have 〈z, z〉 ≥ 0. This gives that

0 ≤ 〈y − αx,y − αx〉 = 〈y,y〉 − α〈x,y〉 − α〈y,x〉+ |α|2〈x,x〉. (8.2)

Now

α〈x,y〉 =
〈y,x〉〈x,y〉
〈x,x〉

=
|〈x,y〉|2

〈x,x〉
= α〈y,x〉 = |α|2〈x,x〉.

Thus (8.2) simplifies to

0 ≤ 〈z, z〉 = 〈y,y〉 − |〈x,y〉|
2

〈x,x〉
, which gives |〈x,y〉|2 ≤ 〈x,x〉〈y,y〉.

Taking square roots on both sides, yields (8.1).

If {x,y} is linearly dependent, it is easy to check that equality in (8.1) holds
(as x = 0 or y is a multiple of x). Conversely, suppose that equality holds in
(8.1). If x = 0, then clearly {x,y} is linearly dependent. Next, let us suppose
that x 6= 0. As before, put z = y − 〈y,x〉〈x,x〉x. Equality in (8.1) yields that
〈z, z〉 = 0. Thus z = 0, showing that {x,y} is linearly dependent. �
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Proof of Propositions 8.1.4 and 8.1.8. Condition (i) follows directly from
Proposition 8.1.6(iii) (or Proposition 8.1.2(iii)).

For (ii) compute that ‖ax‖2 = 〈ax, ax〉 = aa〈x,x〉 = |a|2‖x‖2. Now take
square roots on both sides.

For (iii) we observe that

‖x + y‖2 = 〈x + y,x + y〉 = 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉

≤ 〈x,x〉+2|〈x,y〉|+ 〈y,y〉 ≤ 〈x,x〉+2‖x‖‖y‖+ 〈y,y〉 = (‖x‖+‖y‖)2, (8.3)

where we used the Cauchy–Schwarz inequality (8.1) in the last inequality.
Taking square roots on both sides proves (iii). �

The norm also satisfies the following variation of the triangle inequality.

Lemma 8.1.10. Let F = R or C. For x,y ∈ Fn we have

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖. (8.4)

Proof. Note that the triangle inequality implies

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖,

and thus
‖x‖ − ‖y‖ ≤ ‖x− y‖. (8.5)

Reversing the roles of x and y, we also obtain that

‖y‖ − ‖x‖ ≤ ‖y − x‖ = ‖x− y‖. (8.6)

Combining (8.5) and (8.6) yields (8.4). �

8.2 Orthogonality and Distance to Subspaces

Definition 8.2.1. We say that v and w are orthogonal if 〈v,w〉 = 0,
and we will denote this as v ⊥ w. Notice that 0 is orthogonal to any vector,
and it is the only vector that is orthogonal to itself.

The Pythagoras rule is the following.
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Proposition 8.2.2. If v ⊥ w then ‖v + w‖2 = ‖v‖2 + ‖w‖2.

Proof. ‖v + w‖2 = 〈v + w,v + w〉 = 〈v,v〉 + 〈w,v〉 + 〈v,w〉 + 〈w,w〉 =
〈v,v〉+ 0 + 0 + 〈w,w〉 = ‖v‖2 + ‖w‖2. �

For ∅ 6= W ⊆ Fn we define

W⊥ = {v ∈ Fn : 〈v,w〉 = 0 for all w ∈W} = {v : v ⊥ w for all w ∈W} .

Notice that in this definition we do not require that W is a subspace; W can
be any set of vectors of Fn.

Lemma 8.2.3. For ∅ 6= W ⊆ V we have that W⊥ is a subspace of Fn.

Proof. Clearly 0 ∈ W⊥ as 0 is orthogonal to any vector, in particular to
those in W . Next, let x,y ∈W⊥ and c, d ∈ F. Then for every w ∈W we have
that 〈cx + dy,w〉 = c〈x,w〉+ d〈y,w〉 = c 0 + d 0 = 0. Thus cx + dy ∈ W⊥,
showing that W⊥ is a subspace. �

Example 8.2.4. Let W = Span




1
1
1
2

 ,


0
−1
1
0


 ⊂ R4. Find a basis for W⊥.

Let x = (xi)
4
i=1 ∈ W⊥. This holds if and only if x1 + x2 + x3 + 2x4 = 0,

−x2 +x3 = 0. In other words, x is in the null space of
[
1 1 1 2
0 −1 1 0

]
, which

in row-reduced echelon form is the matrix
[
1 0 2 2
0 1 −1 0

]
. This leads to the

basis 

−2
1
1
0

 ,

−2
0
0
1




for W⊥. �

Example 8.2.5. Let W = Span


 2

i
1 + i

 ,
1

0
i

 ⊂ C3. Find a basis for

W⊥.

Let z = (zj)
3
j=1 ∈ W⊥. This holds if and only if 2z1 − iz2 + (1 − i)z3 = 0,

z1 − iz3 = 0. In other words, z is in the null space of
[
2 −i 1− i
1 0 −i

]
. Row
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reducing, switching rows first, we get[
1 0 −i
2 −i 1− i

]
→
[
1 0 −i
0 −i 1 + i

]
→
[
1 0 −i
0 1 −1 + i

]
.

We find that z3 is the free variable, andz1z2
z3

 = z3

 i
1− i

1

 .
This leads to the basis 

 i
1− i

1


for W⊥. �

Definition 8.2.6. The distance between two vectors is given by the norm
of the difference vector; that is

distance(u,v) = ‖u− v‖.

v

u

‖u− v‖

•

•

• u− v

0

Figure 8.2: Distance between two vectors.

Example 8.2.7. Find the distance between

1
2
3

 and

 0
4
−3

.
The distance equals

‖

1
2
3

−
 0

4
−3

 ‖ = ‖

 1
−2
6

 ‖ =
√

12 + (−2)2 + 62 =
√

41.

�
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Example 8.2.8. Find the distance between
[
1 + i
2 + 3i

]
and

[
4− 2i
−1 + i

]
.

The distance equals

‖
[
1 + i
2 + 3i

]
−
[
4− 2i
−1 + i

]
‖ = ‖

[
−3 + 3i
3 + 2i

]
‖ =

√
| − 3 + 3i|2 + |3 + 2i|2 =

√
(−3)2 + 32 + 32 + 22 =

√
31.

�

When W is a subspace and u is a vector, then the distance between u and W
defined as the minimum over all numbers ‖u−w‖, where w ∈ W :

distance(u,W ) = min
w∈W

‖u−w‖.

u

W

•

Figure 8.3: Distance between a vector u and a subspace W .

Orthogonality appears in a natural way when computing the distance from a
vector u to a subspace W , as it is the distance from u to a point w ∈ W so
that u−w is orthogonal to W . The statement is as follows.

Theorem 8.2.9. Let F = R or C. Let u ∈ Fn and W ⊆ Fn a subspace.
Then there exists a unique element w0 ∈ W so that

distance(u,W ) = ‖u−w0‖.

This element w0 is the unique element of W with the property that u−w0 ∈
W⊥.

In order to prove Theorem 8.2.9 we need the following auxiliary result.

Lemma 8.2.10. Let F = R or C. Let {w1, . . . ,wk} be linearly indepen-
dent. Then the matrix G = (〈wj ,wi〉)ki,j=1 is invertible.

The matrix G is called the Gram matrix of the vectors {w1, . . . ,wk}.
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Proof. Since the matrix G is square, it suffices to prove that Nul G = {0}. Let
c = (ci)

k
i=1 ∈ Nul G. Then Gc = 0. Thus also c∗Gc = 0. A straightforward

computation show that

0 = c∗Gc = 〈
k∑
i=1

ciwi,

k∑
i=1

ciwi〉 = ‖
k∑
i=1

ciwi‖2.

Thus we get that
∑k
i=1 ciwi = 0. As {w1, . . . ,wk} is linearly independent,

this implies that c1 = · · · = ck = 0. Consequently c = 0. �

Proof of Theorem 8.2.9. First let us find w0 ∈ W so that u −w0 ∈ W⊥.
Letting {w1, . . . ,wk} be a basis of W , we have that w0 ∈ W implies that
w0 =

∑k
j=1 cjwj for some c1, . . . , ck ∈ F. The equations 〈u − w0,wi〉 = 0,

i = 1, . . . , k, lead to the matrix equation Gc = (〈u,wi〉)ni=1, where G is the
Gram matrix of the vectors {w1, . . . ,wk}. By Lemma 8.2.10 the matrix G
is invertible, so this equation has a unique solution. Thus there is a unique
w0 ∈W so that u−w0 ∈W⊥.

Next notice that for any w ∈W , we have that

‖u−w‖2 = ‖u−w0 + w0 −w‖2 = ‖u−w0‖2 + ‖w0 −w‖2,

due to the Pythagoras rule and u − w0 ⊥ w0 − w. Thus if w 6= w0, we
have ‖u − w‖ > ‖u − w0‖. Thus w0 is the unique element in W so that
distance(u,W ) = ‖u−w0‖. �

The proof gives a way to compute the distance from a vector u and a subspace
W with basis {w1, . . . ,wk}, as follows.

1. Compute G = (〈wj ,wi〉)ki,j=1.

2. Compute c = (cj)
k
j=1 = G−1(〈u,wi〉)ni=1.

3. Put w0 =
∑k
j=1 cjwj .

4. Compute distance(u,W ) = ‖u−w0‖.

The vector w0 is also referred to as the orthonogonal projection of u onto
W .

Example 8.2.11. Find the distance of u =

[
6
−2

]
to the line 2x1 + x2 = 0.

Note that the line is the same as W = Span {w1}, where w1 =

[
1
−2

]
. To find

w0, we need to find the scalar c so that u−w0 = u− cw1 ⊥ w1. This gives



Orthogonality 191

c = 〈u,w1〉
〈w1,w1〉 = 10

5 = 2. Thus w0 = 2w1 =

[
2
−4

]
. And therefore the distance of

u to the line is

distance(u,W ) = ‖u−w0‖ = ‖
[
4
2

]
‖ =

√
42 + 22 = 2

√
5.

−

−

−

−

| | | | | |

•u

w0

W

Figure 8.4: Distance from u to W .
�

Example 8.2.12. Find the distance of u to the subspaceW = Span {w1,w2},
where

u =


3
−1
2
2

 ,w1 =


1
1
1
1

 ,w2 =


−1
3
0
0

 .
We have

c =

[
〈w1,w1〉 〈w2,w1〉
〈w1,w2〉 〈w2,w2〉

]−1 [〈u,w1〉
〈u,w2〉

]
=

[
4 2
2 10

]−1 [
6
−6

]
=

[
2
−1

]
.

Thus

w0 = 2w1 −w2 =


3
−1
2
2

 ,
and consequently distance(u,W ) = ‖u−w0‖ = ‖0‖ = 0. In this case, u is an
element of W . �
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Example 8.2.13. Find the distance of u to the subspace W = Span {w1},
where

u =

[
1 + i
−1

]
,w1 =

[
2− i
i

]
.

We have

c =
〈u,w1〉
〈w1,w1〉

=
(2 + i)(1 + i) + (−i)(−1)

|2− i|2 + |i|2
=

1 + 4i

6
.

Thus

w0 =
1 + 4i

6
w1 =

1

6

[
(1 + 4i)(2− i)

(1 + 4i)i

]
=

1

6

[
6 + 7i
−4 + i

]
=

[
1 + 7

6 i
− 2

3 + 1
6 i

]
and consequently

distance(u,W ) = ‖u−w0‖ = ‖
[
− 1

6 i
− 1

3 −
1
6 i

]
‖ =

1

6
‖
[
−i
−2− i

]
‖ =

√
6

6
.

�

It is easy to determine the dimension of W⊥, as the following result shows.

Proposition 8.2.14. For a subspace W ⊆ Fn we have

W +W⊥ = Fn, W ∩W⊥ = {0} .

Also (W⊥)⊥ = W and

dimW + dimW⊥ = n.

Proof. Let u ∈ Fn. Let w0 be the orthogonal projection of u onto W . Then
u−w0 ∈W⊥. Thus u = w0+(u−w0) ∈W+W⊥. This shows Fn ⊆W+W⊥.
The other inclusion is trivial (since both W and W⊥ are subspaces of Fn),
and thus equality holds.

Next let x ∈W ∩W⊥. But then x ⊥ x, and thus x = 0. Thus W +̇W⊥ = Fn
is a direct sum, and dimW + dimW⊥ = n follows from Theorem 5.3.14.

Finally, it is clear that any vector in W is orthogonal to vectors in W⊥. Thus
W ⊆ (W⊥)⊥. Since dim(W⊥)⊥ = n− dimW⊥ = n− (n− dimW ) = dimW ,
we obtain (W⊥)⊥ = W . �

When W = ColA we have a way of describing W⊥.

Proposition 8.2.15. Let A ∈ Fm×n. Then

(i) (Col A)⊥ = Nul A∗.
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(ii) (Nul A)⊥ = Col A∗.

(iii) dim Nul A+ rank A = n.

(iv) dim Nul A∗ + rank A = m.

Proof. Let x ∈ (Col A)⊥. Then for any y we have that x ⊥ Ay. Thus
0 = (Ay)∗x = y∗(A∗x). Thus A∗x ⊥ y for every y. The only vector that
is orthogonal to all y is the zero vector. Thus A∗x = 0, or equivalently x ∈
Nul A∗. This shows (Col A)⊥ ⊆ Nul A∗.

For the other inclusion, let x ∈ Nul A∗. Then A∗x = 0. Thus for every y we
have 0 = y∗(A∗x) = (Ay)∗x. Thus x ⊥ Ay for every y. Thus x ∈ (Col A)⊥.
This finishes (i).

For (ii) apply (i) to the matrix A∗ instead of A, giving (Col A∗)⊥ = Nul A.
Next use the rule (W⊥)⊥ to obtain from this that Col A∗ = ((Col A∗)⊥)⊥ =
(Nul A)⊥.

Using Proposition 8.2.14, (iii) and (iv) follow. �

In Example 8.2.4 we had that W = Col A, where

A =


1 0
1 −1
1 1
2 0

 .
We indeed discovered there that a basis for Nul A∗ gave a basis for W⊥. We
found the basis 


−2
1
1
0

 ,

−2
0
0
1




for W⊥ = Nul A∗.

8.3 Orthonormal Bases and Gram–Schmidt

Definition 8.3.1. We say that a set {w1, . . . ,wm} is an orthogonal set
if wk ⊥ wj when k 6= j. If, in addition, ‖w`‖ = 1, ` = 1, . . . ,m, then it
is an orthonormal set. Given a subspace W , we call B = {w1, . . . ,wm}
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an orthogonal/orthonormal basis of W , if B is a basis and an orthog-
onal/orthonormal set.

Notice that the Gram matrix of an orthogonal set is diagonal. Moreover, the
Gram matrix of an orthonormal set is the identity matrix. This indicates
that computations with orthogonal and orthonormal sets are much easier.
This raises the question whether any subspace has an orthogonal and/or an
orthonormal basis. The answer to this question is ‘yes’, and its proof relies on
the Gram–Schmidt process, which we now introduce.

Theorem 8.3.2 (Gram–Schmidt process). Let {v1, . . . ,vp} ⊂ Fn be lin-
early independent. Construct {z1, . . . , zp} as follows:

z1 = v1

zk = vk −
〈vk, zk−1〉
〈zk−1, zk−1〉

zk−1 − · · · −
〈vk, z1〉
〈z1, z1〉

z1, k = 2, . . . , p.

(8.7)

Then for k = 1, . . . , p, we have that {z1, . . . , zp} is an orthogonal linearly
independent set satisfying

Span {v1, . . . ,vk} = Span {z1, . . . , zk} = Span

{
z1
‖z1‖

, . . . ,
zk
‖zk‖

}
. (8.8)

The set
{

z1

‖z1‖ , . . . ,
zp
‖zp‖

}
is an orthonormal set.

Proof. We prove this by induction. Clearly when p = 1, then z1 = v1, and
the statements are trivial.

Now suppose that the theorem has been proven for sets with up to p − 1
vectors. Next, we are given {v1, . . . ,vp} and we construct {z1, . . . , zp}. No-
tice that {z1, . . . , zp−1} are obtained by applying the Gram–Schmidt process
to {v1, . . . ,vp−1}, and thus by the induction assumption {z1, . . . , zp−1} is a
linearly independent set and (8.8) holds for k = 1, . . . , p−1. Let zp be defined
via (8.7). Observe that for k ≤ p− 1,

〈zp, zk〉 = 〈vp, zk〉 − 〈
p−1∑
j=1

〈vp, zj〉
〈zj , zj〉

zj , zk〉 = 〈vp, zk〉 −
〈vp, zk〉
〈zk, zk〉

〈zk, zk〉 = 0,

where we used that 〈zj , zk〉 = 0 for j 6= k, 1 ≤ j, k ≤ p − 1. This proves the
orthogonality. Also, we see that

zp ∈ Span {vp}+ Span {z1, . . . , zp−1} =
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Span {vp}+ Span {v1, . . . ,vp−1} = Span {v1, . . . ,vp} .

Next, since vp = zp +
∑p−1
j=1

〈vp,zj〉
〈zj ,zj〉 zj , we have that

vp ∈ Span {z1, . . . , zp} .

Combining these observations with the induction assumption yields

Span {v1, . . . ,vp} = Span {z1, . . . , zp} .

Since {v1, . . . ,vp} is linearly independent, they span a p dimensional space.
Then {z1, . . . , zp} also span a p dimensional space (the same one), and thus
this set of vectors is also linearly independent. Finally, dividing each zi by its
length does not change the span, and makes the vectors orthonormal. �

Corollary 8.3.3. Let W be a subspace of Fn. Then W has an orthonormal
basis.

Proof. Start with a basis {v1, . . . ,vp} for W . Perform the Gram–Schmidt
process on this set of vectors. We then obtain that

{
z1

‖z1‖ , . . . ,
zp
‖zp‖

}
is an

orthonormal basis for W . �

Example 8.3.4. Let W = Span


 2

0
−2

 ,
1

2
3

 . Find an orthonormal basis

for W . Applying the Gram–Schmidt process we obtain,

z1 =

 2
0
−2

 ,
z2 =

1
2
3

− −4

8

 2
0
−2

 =

2
2
2

 . (8.9)

Dividing these vectors by their lengths ‖z1‖ =
√

22 + (−2)2 = 2
√

2 and
‖z2‖ =

√
22 + 22 + 22 = 2

√
3, we find that 1√

2

 1
0
−1

 , 1√
3

1
1
1


is an orthonormal basis for W . �

In Theorem 8.3.2 we required {v1, . . . ,vp} to be linearly independent. One can
also perform the Gram–Schmidt process to a set that is not necessarily linearly
independent. In that case one may reach a point where zk = 0. This happens
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exactly when vk ∈ Span {v1, . . . ,vk−1}. At this point one would continue the
process pretending vk was not part of the original set; or equivalently, leaving
zk = 0 out of the subsequent calculations. In the end one would still end
up with an orthogonal set spanning the same space. To state this formally is
somewhat cumbersome, but let us see how it works out in an example.

Example 8.3.5. Let v1 =


1
1
1
1

 ,v2 =


0
−2
0
−2

 ,v3 =


1
0
1
0

 ,v4 =


2
−2
0
0

 . Apply-
ing the Gram–Schmidt process we obtain,

z1 =


1
1
1
1

 ,

z2 =


0
−2
0
−2

− −4

4


1
1
1
1

 =


1
−1
1
−1

 ,

z3 =


1
0
1
0

− 2

4


1
1
1
1

− 2

4


1
−1
1
−1

 =


0
0
0
0

 . (8.10)

Thus v3 ∈ Span {z1, z2} = Span {v1,v2}, and thus the original set of vectors
was not linearly independent. Let us just continue the process pretending v3

was never there. We then get

z4 =


2
−2
0
0

− 0


1
1
1
1

− 4

4


1
−1
1
−1

 =


1
−1
−1
1

 .
Thus we find

Span {v1,v2,v3,v4} = Span {v1,v2,v4} = Span {z1, z2, z4} ,

and {z1, z2, z4} is an orthogonal linearly independent set. When we divide
z1, z2, z4 by their lengths we obtain the orthonormal basis

1
2
1
2
1
2
1
2

 ,


1
2
− 1

2
1
2
− 1

2

 ,


1
2
− 1

2
− 1

2
1
2


for Span {v1,v2,v3,v4} = Span {v1,v2,v4}. �
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When we have an orthonormal basis forW it is easy to compute the orthogonal
projection of a vector u onto W .

Proposition 8.3.6. Let W have orthogonal basis {w1, . . . ,wk}. Introduce
the matrix

PW =

k∑
i=1

1

w∗iwi
wiw

∗
i .

Then the orthogonal projection w0 of u onto W is given by

w0 = PWu =
〈u,w1〉
〈w1,w1〉

w1 + · · ·+ 〈u,wk〉
〈wk,wk〉

wk.

Proof. We have that the Gram matrix is a diagonal matrix with diagonal
entries 〈wj ,wj〉, so applying the algorithm from the previous section we find
c = ( 〈u,wi〉〈wi,wi〉 )

k
i=1. Thus w0 =

∑k
i=j cjwj = 〈u,w1〉

〈w1,w1〉w1 + · · ·+ 〈u,wk〉
〈wk,wk〉wk. �

Using this notation, the iteration in the Gram–Schmidt process can be sum-
marized as

zk = vk − PSpan{z1,...,zk−1}vk.

Example 8.3.7. Find the distance of u to the subspace W = Span {v1,v2},
where

u =

−1
2
2

 ,v1 =

 2
0
−2

 ,v2 =

1
2
3

 .
In Example 8.3.4 we found

 2
0
−2

 ,
2

2
2

 =: {w1,w2}

to be an orthogonal basis for W . Thus

w0 = PWu =
〈u,w1〉
〈w1,w1〉

w1 +
〈u,w2〉
〈w2,w2〉

w2 =
−6

8

 2
0
−2

+
6

12

2
2
2

 =

− 1
2

1
5
2

 ,
and we find

distance(u,W ) = ‖u−w0‖ = ‖

− 1
2

1
− 1

2

 ‖ =

√
6

2
.

�
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Another reason why it is easy to work with an orthonormal basis, is that it is
easy to find the coordinates of a vector with respect to an orthonormal basis.

Lemma 8.3.8. Let B = {v1, . . . ,vn} be an orthonormal basis of a subspace
W . Let x ∈W . Then

[x]B =

〈x,v1〉
...

〈x,vn〉

 .

Proof. Let x =
∑n
i=1 civi. Then 〈x,vj〉 =

∑n
i=1 ci〈vi,vj〉 = cj , proving the

lemma. �

8.4 Isometries, Unitary Matrices and QR Factorization

When {w1, . . . ,wk} is an orthonormal set in Fn, then its Gram matrix equals
the identity:

G =

w
∗
1w1 · · · w∗1wk

...
...

w∗1wk · · · w∗kw1

 =

w
∗
1
...

w∗k

 [w1 · · · wk

]
= Ik.

When k = n this orthonormal set is in fact a basis of Fn, and A =[
w1 · · · wk

]
is invertible with inverse equal to A∗. This leads to the fol-

lowing definition.

Definition 8.4.1. We call a matrix A ∈ Fn×k an isometry if A∗A = Ik.
We call a matrix A ∈ Fn×n unitary if both A and A∗ are isometries. That
is, A is unitary if and only if A∗A = In = AA∗.

The above observation gives the following.

Lemma 8.4.2. A matrix A ∈ Fn×k is an isometry if and only its columns
form an orthonormal set. A matrix A ∈ Fn×n is unitary if and only its
columns form an orthonormal basis of Fn.

It is easy to check the following.
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Lemma 8.4.3. If matrices A ∈ Fn×k and B ∈ Fk×m are isometries, then
so is AB. Also, if A ∈ Fn×n and B ∈ Fn×n are unitary, then so are A∗
and AB.

Proof. For the first statement we observe that if A and B are isometries,
then (AB)∗AB = B∗A∗AB = B∗IkB = B∗B = Im. This shows that AB is
an isometry.

If A and B are unitaries, then A∗ and B∗ are unitary as well. But then
(AB)∗AB = In = AB(AB)∗ follows easily, and thus AB is unitary. �

Proposition 8.4.4. If A is an isometry, then 〈Au, Av〉 = 〈u,v〉 for all
vectors u,v. In particular, ‖Au‖ = ‖u‖ for all vectors u.

Thus multiplying a vector with an isometry does not change the length. It is
this property that gave isometries their name.

Proof. 〈Au, Av〉 = (Av)∗Au = v∗A∗Au = v∗Iku = 〈u,v〉. �

It is easy to check that

1√
2

[
1 1
i −i

]
,

1√
3

1 1 1

1 e
2iπ
3 e

4iπ
3

1 e
4iπ
3 e

8iπ
3

 , 1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ,
are examples of unitary matrices. When we take a unitary matrix and remove
some of its columns, then we obtain an isometry. For instance,

1√
2

[
1
−i

]
,

1√
3

1 1

1 e
4iπ
3

1 e
8iπ
3

 , 1

2


1 1
1 −1
−1 −1
−1 1

 ,
are examples of isometries.

From the Gram–Schmidt process we can deduce the following.

Theorem 8.4.5. (QR factorization) Let A ∈ Fm×n with m ≥ n. Then
there exists an isometry Q ∈ Fm×n and an upper triangular matrix R ∈
Fn×n with nonnegative entries on the diagonal, so that

A = QR.

If A has rank equal to n, then the diagonal entries of R are positive, and
R is invertible. If m = n, then Q is unitary.
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Proof. First we consider the case when rankA = n. Let v1, . . . ,vn denote the
columns of A, and let z1, . . . , zn denote the resulting vectors when we apply
the Gram–Schmidt process to v1, . . . ,vn as in Theorem 8.3.2. Let now Q be
the matrix with columns z1

‖z1‖ , . . . ,
zn
‖zn‖ . Then Q

∗Q = In as the columns of Q
are orthonormal. Moreover, we have that

vk = ‖zk‖
zk
‖zk‖

+

k−1∑
j=1

rkjzj ,

for some rkj ∈ F, k > j. Putting rkk = ‖zk‖, and rkj = 0, k < j, and
letting R = (rkj)

n
k,j=1, we get the desired upper triangular matrix R yielding

A = QR.

When rank < n, apply the Gram–Schmidt process with those columns of A
that do not lie in the span of the preceding columns. Place the vectors z

‖z‖
that are found in this way in the corresponding columns of Q. Next, one
can fill up the remaining columns of Q with any vectors making the matrix
an isometry. The upper triangular entries in R are obtained from writing
the columns of A as linear combinations of the z

‖z‖ ’s found in the process
above. �

Example 8.4.6. Find a QR factorization of

1 1 0
1 0 1
0 1 1

 .
Applying the Gram–Schmidt process to the columns of A we obtain,

z1 =

1
1
0

 ,
z2 =

1
0
1

− 1

2

1
1
0

 =

 1
2
− 1

2
1

 ,
z3 =

0
1
1

− 1

2

1
1
0

− 1
2
6
4

 1
2
− 1

2
1

 =

− 2
3

2
3
2
3

 . (8.11)

Dividing by their lengths we obtain the columns of Q and thus

Q =


√
2
2

1√
6
− 1√

3√
2
2 − 1√

6
1√
3

0
√
6
3

1√
3

 .
To compute R, we multiply the equation A = QR with Q∗ on the left, and
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obtain Q∗A = Q∗QR = IkR, and thus

R = Q∗A =


√

2
√
2
2

√
2
2

0
√
6
2

1√
6

0 0 2
√
3

3

 .
�

Let us illustrate the QR factorization on an example where the columns of A
are linearly dependent.

Example 8.4.7. Let A =


1 0 1 2
1 −2 0 −2
1 0 1 0
1 −2 0 0

 . Applying the Gram–Schmidt

process we obtain,

z1 =


1
1
1
1

 ,

z2 =


0
−2
0
−2

− −4

4


1
1
1
1

 =


1
−1
1
−1

 ,

z3 =


1
0
1
0

− 2

4


1
1
1
1

− 2

4


1
−1
1
−1

 =


0
0
0
0

 . (8.12)

We thus notice that the third column of A is a linear combination of the first
two columns of A, so we continue to compute z4 without using z3:

z4 =


2
−2
0
0

− 0


1
1
1
1

− 4

4


1
−1
1
−1

 =


1
−1
−1
1

 .
Dividing z1, z2, z4 by their respective lengths, and putting them in the matrix
Q, we get

Q =


1
2

1
2 ? 1

2
1
2 − 1

2 ? − 1
2

1
2

1
2 ? − 1

2
1
2 − 1

2 ? 1
2

 ,
where it remains to fill in the third column of Q. To make the columns of
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Q orthonormal, we choose the third column to be a unit vector in {z1, z2, z4}⊥.
Here we choose

[
1
2

1
2 − 1

2 − 1
2

]∗, so we get

Q =


1
2

1
2

1
2

1
2

1
2 − 1

2
1
2 − 1

2
1
2

1
2 − 1

2 − 1
2

1
2 − 1

2 − 1
2

1
2

 .
To compute R, we multiply the equation A = QR with Q∗ on the left, and
obtain Q∗A = Q∗QR = IkR, and thus

R = Q∗A =


−2 2 −1 0
0 2 1 2
0 0 0 0
0 0 0 2

 .
�

Let us give a pseudo code for QR factorization.

Algorithm 4 QR factorization

1: procedure QR(A) . Finds QR factorization of m× n matrix A
2: k ← 1, Q← 0m×n, R← 0n×n
3: while k ≤ n do
4: qk ← ak −

∑j−1
s=1 〈ak,qs〉qs

5: if qk 6= 0 then qk ← qk/‖qk‖
6: k ← k + 1

7: end
8: R← Q∗A
9: Replace zero columns of Q to make its columns an orthonormal set

10: return Q, R . A = QR is a QR factorization

To end this section, we will do an example with a complex matrix.

Example 8.4.8. Find a QR factorization of


1 2 i
i −1 + i 1
i 1 + i −1
1 0 −i

 .
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Applying the Gram–Schmidt process to the columns of A we obtain,

z1 =


1
i
i
1

 ,

z2 =


2

−1 + i
1 + i

0

− 2 + (−1 + i)(−i) + (1 + i)(−i) + 0 · 1
4


1
i
i
1

 =


1
−1
1
−1

 ,

z3 =


i
1
−1
−i

− 0

4


1
i
i
1

− −2 + 2i

4


1
−1
1
−1

 =


1
2 + 1

2 i
1
2 + 1

2 i
− 1

2 −
1
2 i

− 1
2 −

1
2 i

 . (8.13)

Dividing by their lengths we obtain the columns of Q and thus

Q =


1
2

1
2

1+i√
8

1
2 i −

1
2

1+i√
8

1
2 i

1
2

−1−i√
8

1
2 − 1

2
−1−i√

8

 .
Finally, R = Q∗A and thus

R =


1
2 − 1

2 i − 1
2 i

1
2

1
2 − 1

2
1
2 − 1

2
1−i√

8
1−i√

8
−1+i√

8
−1+i√

8




1 2 i
i −1 + i 1
i 1 + i −1
1 0 −i

 =

2 2 0
0 2 −1 + i

0 0
√

2

 .
�

8.5 Least Squares Solution and Curve Fitting

When the equation Ax = b does not have a solution, one may be interested in
finding an x so that ‖Ax−b‖ is minimal. Such an x is called a least squares
solution to Ax = b.

To find a least squares solution, we need to find a vector Ax ∈ Col A that is
closest to b. In other words, we would like x so that Ax corresponds to the
orthogonal projection of b onto Col A. In other words, Ax − b needs to be
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orthogonal to ColA. The vector space that is orthogonal to ColA is exactly
Nul A∗. Thus we want Ax− b ∈ NulA∗. Thus we need

A∗(Ax− b) = 0 ⇔ x = (A∗A)−1A∗b,

where we assumed that A has linearly independent columns (implying that
A∗A is invertible by Lemma 8.2.10).

Theorem 8.5.1. Let A ∈ Fm×n with rank A = n. Then the least squares
solution to the equation Ax = b is given by

x = (A∗A)−1A∗b.

When A = QR with Q an isometry, then the least squares solution is given
by x = R−1Q∗b.

Example 8.5.2. Find the least squares solution to 1 2
−1 4
1 2

x =

 3
−1
5

 .
We find

x =

[
3 0
0 24

]−1 [
1 −1 1
2 4 2

] 3
−1
5

 =

[
3
1
2

]
.

�

One important application where we use least squares solutions is when we do
curve fitting. For instance, fitting a (regression) line between several points.

Example 8.5.3. Fit a line y = mx+ b through the points (1, 3), (2, 1), (3, 4)
and (4, 3).

We set up the equations

3 = m+ b, 1 = 2m+ b, 4 = 3m+ b, 3 = 4m+ b.

Clearly it is impossible to solve this system as no line fits exactly through these
points. Thus we will use the least squares solution. Writing the equations in
matrix form, we get 

1 1
2 1
3 1
4 1

[mb
]

=


3
1
4
3

 .
The least squares solution to this equation is

[
m
b

]
=

[
3
10
2

]
. So the least squares
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•

•

•

•

−

−

−

−

| | | | |

Figure 8.5: Least squares fit.

fit is y = 3
10x + 2. This line minimizes the sum of the squares of the lengths

of the vertical lines between the points and the line. �

This curve fitting can be applied to any equation of the form

y = c1f1(x) + · · ·+ ckfk(x),

where f1(x), . . . , fk(x) are some functions. In the above example, we used
f1(x) = x, f2(x) ≡ 1, so that we get the equation of a line. If we want to fit a
parabola through a set of points, we will use f1(x) = x2, f2(x) = x, f3(x) ≡ 1.
Here is such an example.

Example 8.5.4. Fit a parabola through the points (1, 3), (2, 0), (3, 4) and
(4, 2).

The general form of a parabola is y = ax2 + bx+ c. Set up the equations:

3 = a+ b+ c, 0 = 4a+ 2b+ c, 4 = 9a+ 3b+ c, 2 = 16a+ 4b+ c.

Writing this in matrix form, we get
1 1 1
4 2 1
9 3 1
16 4 1


ab
c

 =


3
0
4
2

 .

The least squares solution is

ab
c

 =

 0.25
−1.15
3.25

 . So the least squares parabola

fit is y = 0.25x2−1.15x+3.25. This parabola minimizes the sum of the squares
of the lengths of the vertical lines between the points and the parabola.

�
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•

•

•
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−

−
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Figure 8.6: Parabola least squares fit.

8.6 Real Symmetric and Hermitian Matrices

Let F = R or C. We call a matrix A ∈ Fn×n Hermitian if A∗ = A. For
instance, [

2 1− 3i
1 + 3i 5

]
and

1 3 7
3 −10 9
7 9 −2


are Hermitian. If A is real and Hermitian then A satisfies A = AT and is also
referred to as a symmetric matrix.

Proposition 8.6.1. Let A be Hermitian. Then A has only real eigenvalues.
Moreover, eigenvectors belonging to different eigenvalues are orthogonal.

Proof. Suppose that Av1 = λ1v1, v1 6= 0. Then v∗1Av1 = v∗1λ1v1 = λ1v
∗
1v1.

Also (v∗1Av1)∗ = v∗1A
∗v∗∗1 = v∗1Av1. Thus this scalar is real. But then λ1 =

v∗1Av1

v∗1v1
is real as well.

Next, suppose that in addition Av2 = λ2v2, v2 6= 0, with λ1 6= λ2. Then

v∗2(λ1v1) = v∗2(Av1) = v∗2A
∗v1 = (Av2)∗v1 = (λ2v2)∗v1

and thus (λ1 − λ2)(v∗2v1) = 0. Since λ1 − λ2 6= 0, we get v∗2v1 = 0. Thus
v1 ⊥ v2. �

In fact we have the following stronger result.
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Theorem 8.6.2. A square matrix A is Hermitian if and only if A = UDU∗

where D is a real diagonal matrix and U is unitary.
In other words, A = A∗ if and only if A has real eigenvalues and corre-
sponding eigenvectors which form an orthonormal basis of Fn.

Proof. We prove this by induction on the size n. When n = 1, then A = [a]
is Hermitian if and only if a = a. Thus a is real, and the result follows (with
D = [a], U = [1]).

Next, suppose that the theorem holds for matrices of size (n − 1) × (n − 1),
and let A be n × n. Let u1 be an eigenvector of A, which we can take to
be of length 1 (otherwise, replace u1 by u1/‖u1‖), with eigenvalue λ. Let U
be a unitary matrix with first column u1 (one can make U by taking a basis
{v1, . . . ,vn} of Fn with v1 = u1, and performing Gram-Schmidt on this basis
to get an orthonormal basis that will be the columns of U). Now we get that
Au1 = λu1 and thus u∗iAu1 = λu∗iu1, which equals λ when i = 1 and 0
otherwise. Then

U∗AU =

u
∗
1
...
u∗n

 [Au1 Au2 · · · Aun
]

=


λ ∗ · · · ∗
0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗

 .
Since (U∗AU)∗ = U∗A∗U∗∗ = U∗AU is Hermitian, we must have 0’s in the
entries (1, 2), . . . , (1, n) as well. In fact,

U∗AU =

[
λ 0
0 B

]
,

with λ = λ and B = B∗. In particular λ ∈ R. By the induction assumption
B = V D̂V ∗ for some unitary V and real diagonal D̂. Then

A = U

[
λ 0

0 V D̂V ∗

]
U∗ = U

[
1 0
0 V

] [
λ 0

0 D̂

] [
1 0
0 V ∗

]
U∗.

SinceW := U

[
1 0
0 V

]
is a product of unitaries, we get thatW is unitary. Also

D =

[
λ 0

0 D̂

]
is a real diagonal matrix. Thus A has the required factorization

A = WDW ∗. �

Example 8.6.3. Write A =

[
2 −5
−5 2

]
= UDU∗, with D diagonal and U

unitary.

We find pA(t) = det(A − tI) = (t − 2)2 − 25 = 0 if and only if t − 2 = ±5.
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Thus A has eigenvalues −3, 7. Next

A− (−3)I =

[
5 −5
−5 5

]
→
[
1 −1
0 0

]
,

and thus
[
1 1

]T is an eigenvector at −3. At eigenvalue 7 we get

A− 7I =

[
−5 −5
−5 −5

]
→
[
1 1
0 0

]
,

and thus
[
−1 1

]T is an eigenvector at 7. Dividing the eigenvectors by their
length, we obtain

U =

[
1√
2

−1√
2

1√
2

1√
2

]
, D =

[
−3 0
0 7

]
.

�

Example 8.6.4. Write A =

 3 −2 −1
−2 3 −1
−1 −1 2

 = UDU∗, with D diagonal and

U unitary.

We compute

−pA(t) = det(tI −A) = t3 − 8t2 + 15t = t(t− 3)(t− 5).

Thus A has eigenvalues 0, 3 and 5. Next

A− 0I →

−1 −1 2
0 −5 5
0 5 −5

→
−1 0 1

0 1 −1
0 0 0

 ,
and thus

[
1 1 1

]T is an eigenvector at 0. For A− 3I we get 0 −2 −1
−2 0 −1
−1 −1 −1

→
−1 −1 −1

0 −2 −1
0 2 1

→
1 0 1

2
0 1 1

2
0 0 0

 ,
and thus

[
− 1

2 − 1
2 1

]T is an eigenvector at 3. For A− 5I we get−2 −2 −1
−2 −2 −1
−1 −1 −3

→
−1 −1 −3

0 0 5
0 0 0

→
1 1 0

0 0 1
0 0 0

 ,
and thus

[
−1 1 0

]T is an eigenvector at 5. Dividing the eigenvectors by
their length, we find

U =


1√
3
− 1√

6
− 1√

2
1√
3
− 1√

6
1√
2

1√
3

2√
6

0

 , D =

0 0 0
0 3 0
0 0 5

 .
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Definition 8.6.5. A n×n Hermitian matrix A is called positive semidef-
inite if 〈Ax,x〉 ≥ 0 for all vectors x ∈ Cn. If in addition, 〈Ax,x〉 > 0 for
all vectors 0 6= x ∈ Cn, then A is called positive definite.

Theorem 8.6.6. A Hermitian n × n matrix A is positive semidefinite if
and only if A has all nonnegative eigenvalues.
A Hermitian n × n matrix A is positive definite if and only if A has all
positive eigenvalues.

Proof. Since A is Hermitian, it follows from Theorem 8.6.2 that A = UDU∗

withD a real diagonal matrix and U is unitary. The diagonal entries λ1, . . . , λn
ofD are the eigenvalues of A. Suppose that A only has positive eigenvalues. Let
x ∈ Cn. Let u1, . . . , un be the entries of the vector U∗x; that is, U∗x = (ui)

n
i=1.

Then

〈Ax,x〉 = x∗Ax = x∗UDU∗x = (U∗x)∗D(U∗x) =

n∑
i=1

λi|ui|2 ≥ 0,

and thus A is positive semidefinite.

Conversely, assume that A is positive semidefinite. If λ is an eigenvalue of
A with eigenvector u, then we have that 〈Au,u〉 ≥ 0, since A is positive
semidefinite. Now 0 ≤ 〈Au,u〉 = 〈λu,u〉 = λ‖u‖2, implies that λ ≥ 0 (since
‖u‖2 > 0).

The proof of the second statement is similar. One just needs to observe that if
λ1, . . . , λn are all positive and u1, . . . , un are not all zero, then

∑n
i=1 λi|ui|2 >

0. �

Notice that the matrix in Example 8.6.4 is positive semidefinite, but not pos-
itive definite.

8.7 Singular Value Decomposition

The singular value decomposition gives a way to write a general (typically,
non-square) matrix A as the product A = V ΣW ∗, where V andW are unitary
and Σ is a matrix of the same size as A with nonnegative entries in positions
(i, i) and zeros elsewhere. As before, we let F be R or C.
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Theorem 8.7.1. Let A ∈ Fm×n have rank k. Then there exist unitary
matrices V ∈ Fm×m, W ∈ Fn×n, and a matrix Σ ∈ Fm×n of the form

Σ =



σ1 0 · · · 0 · · · 0
0 σ2 · · · 0 · · · 0
...

...
. . .

...
...

0 0 · · · σk · · · 0
...

...
... .0.

...
0 0 · · · 0 · · · 0


, σ1 ≥ σ2 ≥ . . . ≥ σk > 0, (8.14)

so that A = V ΣW ∗.

One of the main applications of the singular value decomposition is that it
gives an easy way to approximate a matrix with a low rank one. The advantage
of a low rank matrix is that it requires less memory to store it (see Exercise
8.8.56 for details). Let us illustrate this on the digital black and white image
in Figure 8.7, which is stored as a matrix containing grayscale pixel values.
When we apply the singular value decomposition to this matrix and do an
approximation with a low rank matrix, we get Figure 8.8 as the result.

Figure 8.7: The original image (of size 768× 1024).

In Figures 8.9 and 8.10 we depict the singular value decomposition of an
m × n matrix for the cases when the matrix is tall (when m ≥ n) and when
the matrix is wide (when m ≤ n), respectively.

Proof. From Exercise 8.8.12(a) it follows that k = rankA∗A. We observe that
A∗A is positive semidefinite. Indeed,

〈A∗Ax,x〉 = x∗A∗Ax = (Ax)∗(Ax) = ‖Ax‖2 ≥ 0.
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Figure 8.8: The image after approximation using svd at about 23% of storage.

m A

n

=

m V

m

m Σ

n

n

W ∗

n

,

Figure 8.9: Depiction of the singular value decomposition of a tall matrix.

m A

n

=

m V

m

m Σ

n

n

W ∗

n

.

Figure 8.10: Depiction of the singular value decomposition of a wide matrix.
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Thus there exists a n × n unitary W and a diagonal matrix Λ = (λi)
n
i=1,

with λ1 ≥ · · · ≥ λk > 0 = λk+1 = · · · = λn, so that A∗A = WΛW ∗.
Put σj =

√
λj , j = 1, . . . , k, and write W =

[
w1 · · · wn

]
. Next, put

vj = 1
σj
Awj , j = 1, . . . , k, and let {vk+1, . . . ,vm} be an orthonormal basis

for KerA∗. Put V =
[
v1 · · · vm

]
. First, let us show that V is unitary. When

i, j ∈ {1, . . . , k}, then

v∗jvi =
1

σiσj
w∗jA

∗Awi =
1

σiσj
w∗jWΛW ∗wi =

1

σiσj
e∗jΛei =

{
0 when i 6= j,
λj
σ2
j

= 1 when i = j.

Next, when j ∈ {1, . . . , k} and i ∈ {k + 1, . . . ,m}, we get that v∗jvi =
1
σj
wjA

∗vi = 0 as vi ∈ Ker A∗. Similarly, v∗jvi = 0 when i ∈ {1, . . . , k} and
j ∈ {k + 1, . . . ,m}. Finally, we use that {vk+1, . . . ,vm} is an orthonormal
set, to conclude that V ∗V = Im.

It remains to show that A = V ΣW ∗, or equivalently, AW = V Σ. The equality
in the first k columns follows from the definition of vj , j = 1, . . . , k. In columns
k + 1, . . . , n we have 0 on both sides, and thus AW = V Σ follows. �

The values σj are called the singular values of A, and they are uniquely
determined by A. We also denote them by σj(A). It is important to observe
that

σj(A) =
√
λj(A∗A) =

√
λj(AA∗), j = 1, . . . , k(= rankA).

The first equality follows from the proof. For the second equality one can
use that AA∗ = V (ΣΣ∗)V ∗ and that ΣΣ∗ is a m ×m diagonal matrix with
diagonal entries σ1(A)2, . . . , σk(A)2, 0, . . . , 0.

Proposition 8.7.2. Let A ∈ Fm×n, and let ‖ · ‖ be the Euclidean norm.
Then

σ1(A) = max
‖x‖=1

‖Ax‖. (8.15)

In addition,

σ1(A+B) ≤ σ1(A) + σ1(B), σ1(cA) = |c| σ1(A). (8.16)

Proof. Write A = V ΣW ∗ in its singular value decomposition. For U uni-
tary we have that ‖Uv‖ = ‖v‖ for all vectors v. Thus ‖Ax‖ = ‖V ΣW ∗x‖ =
‖ΣW ∗x‖. Let u = W ∗x. Then ‖x‖ = ‖Wu‖ = ‖u‖. Combining these obser-
vations, we have that

max
‖x‖=1

‖Ax‖ = max
‖u‖=1

‖Σu‖ = max
‖u‖=1

√
σ2
1 |u1|2 + · · ·+ σ2

k|uk|2,
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which is clearly bounded above by
√
σ2
1 |u1|2 + · · ·+ σ2

1 |uk|2 ≤ σ1‖u‖ = σ1.
When u = e1, then we get that ‖Σu‖ = σ1. Thus max‖u‖=1 ‖Σu‖ = σ1
follows.

Next, we have

σ1(A+B) = max
‖x‖=1

‖(A+B)x‖ ≤ max
‖x‖=1

‖Ax‖+ max
‖x‖=1

‖Bx‖ = σ1(A) + σ1(B),

and
σ1(cA) = max

‖x‖=1
‖(cA)x‖ = max

‖x‖=1
(|c|‖Ax‖) = |c| σ1(A).

�

As mentioned before, an important application of the singular value decom-
position is low rank approximation of matrices.

Proposition 8.7.3. Let A ∈ Fm×n have singular value decomposition A =
V ΣW ∗ with Σ as in (8.14). Let l ≤ k. Put Â = V Σ̂W ∗ with

Σ̂ =



σ1 0 · · · 0 · · · 0
0 σ2 · · · 0 · · · 0
...

...
. . .

...
...

0 0 · · · σl · · · 0
...

...
... .0.

...
0 0 · · · 0 · · · 0


. (8.17)

Then rank Â = l, σ1(A− Â) = σl+1, and for any matrix B with rankB ≤ l
we have σ1(A−B) ≥ σ1(A− Â).

Proof. Clearly rank Â = l, σ1(A−Â) = σl+1. Next, let B with rankB ≤ l. Put
C = V ∗BW . Then rankC = rankB ≤ l, and σ1(A− B) = σ1(Σ− C). Notice
that dim Ker C ≥ n− l, and thus Ker C ∩ Span {e1, . . . , el+1} has dimension
≥ 1. Thus we can find a v ∈ Ker C ∩ Span {e1, . . . , el+1} with ‖v‖ = 1. Then

σ1(Σ− C) ≥ ‖(Σ− C)v‖ = ‖Σv‖ ≥ σl+1,

where in the last step we used that v ∈ Span {e1, . . . , el+1}. This proves the
statement. �

As mentioned, a low rank matrix requires less storage than a full rank matrix,
so that could be one reason to approximate with a low rank matrix. Another
reason is if you are trying to discern the major trends in your matrix. In other
words, you might want to change your matrix to extract the important parts
(achieved above by making some of the smaller singular values equal to 0). An
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example of where this general idea is used is in principal component analysis
(PCA); see Exercise 8.8.57 for more details.

We end this section with an example where we compute the singular value
decomposition of a matrix. For this it is useful to notice that if A = V ΣW ∗,
then AA∗ = V ΣΣ∗V ∗ and A∗A = WΣ∗ΣW ∗. Thus the columns of V are
eigenvectors of AA∗, and the diagonal elements σ2

j of the diagonal matrix
ΣΣ∗ are the eigenvalues of AA∗. Thus the singular values can be found by
computing the square roots of the nonzero eigenvalues of AA∗. Similarly, the
columns of W are eigenvectors of A∗A, and the diagonal elements σ2

j of the
diagonal matrix Σ∗Σ are the nonzero eigenvalues of A∗A, as we have seen in
the proof of Theorem 8.7.1.

Example 8.7.4. Let A =

[
6 4 4
4 6 −4

]
. Find the singular value decomposition

of A.

Compute

AA∗ =

[
68 32
32 68

]
,

which has eigenvalues 36 and 100. So the singular values of A are 6 and 10,
and we get

Σ =

[
10 0 0
0 6 0

]
.

To find V , we find unit eigenvectors of AA∗, giving

V =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]
.

For W , observe that V ∗A = ΣW ∗. Writing W =
[
w1 w2 w3

]
, we get[

10/
√

2 10/
√

2 0

2/
√

2 −2/
√

2 8/
√

2

]
=

[
10w∗1
6w∗2

]
.

This yields w1 and w2. To find w3, we need to make sure that W is unitary,
and thus w3 needs to be a unit vector orthogonal to w1 and w2. We find

W =

1/
√

2 1/3
√

2 2/3

1/
√

2 −1/3
√

2 −2/3

0 4/3
√

2 −1/3

 .
�

If the matrix A ∈ Fm×n has rank k, then the last n − k columns in the
matrix Σ are zero, as well as the last m− k rows of Σ ∈ Fm×n. If we remove
these zero rows and columns, and also remove the last m − k columns of V
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and the last n − k rows of W ∗, we obtain the so-called compact singular
value decomposition. Equivalently, we say that A = V̂ Σ̂Ŵ ∗ is the compact
singular value decomposition if V̂ ∈ Fm×k, Ŵ ∈ Fn×k are isometries and
Σ̂ = diag(σi(A))ki=1 is a positive definite diagonal matrix. For instance, for
the matrix A in Example 8.7.5 we have that

A =

[
6 4 4
4 6 −4

]
=

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [
10 0
0 6

]1/
√

2 1/3
√

2

1/
√

2 −1/3
√

2

0 4/3
√

2

∗

is the compact singular value decomposition of A.

Example 8.7.5. Let A =


−1 5 −1 5i
5 −1 5 −i
−1 5 −1 5i
5 −1 5 −i

. Find the compact singular

value decomposition of A.

Compute

AA∗ =


52 −20 52 −20
−20 52 −20 52
52 −20 52 −20
−20 52 −20 52

 .
It will be a challenge to compute the characteristic polynomial, so let us see
if we can guess some eigenvectors. First of all, we see that columns 1 and 3
are identical and so are columns 2 and 4. This gives that

1
0
−1
0

 ,


0
1
0
−1


are eigenvectors at the eigenvalue 0. We also see that each row has the same
numbers in it, and thus the sum of the entries in each row is the same. But
this means that 

1
1
1
1


must be an eigenvector. Indeed,

52 −20 52 −20
−20 52 −20 52
52 −20 52 −20
−20 52 −20 52




1
1
1
1

 =


64
64
64
64

 = 64


1
1
1
1

 .
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Thus we have found three of the eigenvalues (64, 0, and 0), and since the trace
of a matrix equals the sum of the eigenvalues we can deduce that

trAA∗ − (64 + 0 + 0) = 208− 64 = 144

is the remaining eigenvalue of AA∗. The corresponding eigenvector must be
orthogonal to the other eigenvectors we have found (since AA∗ is Hermitian),
and using this we find the eigenvector

1
−1
1
−1


at eigenvalue 144. For singular values of A, we now get σ1(A) =

√
144 = 12

and σ2(A) =
√

64 = 8, and thus Σ̂ =

[
12 0
0 8

]
. For the vectors v1 and v2 in

V̂ =
[
v1 v2

]
, we divide the eigenvectors of AA∗ corresponding to 144 and

64 by their length, giving

v1 =


1
2
− 1

2
1
2
− 1

2

 ,v2 =


1
2
1
2
1
2
1
2

 .
Finally, to determine Ŵ =

[
w1 w2

]
, we use V̂ ∗A = Σ̂Ŵ ∗, which gives[

−6 6 −6 6i
4 4 4 4i

]
=

[
12w∗1
8w∗2

]
and, consequently

Ŵ =


− 1

2
1
2

1
2

1
2

− 1
2

1
2

− i
2 − i

2

 .
In conclusion, we have

A =


−1 5 −1 5i
5 −1 5 −i
−1 5 −1 5i
5 −1 5 −i

 =


1
2

1
2

− 1
2

1
2

1
2

1
2

− 1
2

1
2

[12 0
0 8

] [
− 1

2
1
2 − 1

2
i
2

1
2

1
2

1
2

i
2

]
.

�
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8.8 Exercises

Exercise 8.8.1. For u =

 1
−4
3

 and v =

 2
−2
2

, find 〈u,v〉 and ‖u‖.
Exercise 8.8.2. Given are u =

 2
3
−1

 ,v =

4
1
2
3

 . Compute the following:

(a) 〈u,v〉.

(b) ‖v‖.

(c) 1
〈u,u〉u.

(d) v∗u.

(e) uv∗.

Exercise 8.8.3. Prove the Cauchy-Schwarz inequality on Rn by observing
that the inequality 〈x + ty,x + ty〉 ≥ 0, leads to a quadratic polynomial that
is nonnegative for all t ∈ R. Thus its discriminant has to be ≤ 0.

Exercise 8.8.4. Let x 6= 0. Show that ‖x‖ + ‖y‖ = ‖x + y‖ if and only if
x = αy for some α ≥ 0.

Exercise 8.8.5. Prove the following for u,v ∈ Fn.

(a) ‖u + v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2 (parallellogram law).

(b) ‖u + v‖2 − ‖u− v‖2 = 4Re〈u,v〉.

Exercise 8.8.6. The cosine rule states that for a triangle with sides of
lengths a, b and c, we have that

c2 = a2 + b2 − 2ab cos θ,

where θ is the angle between the sides of lengths a and b.

(a) Use the cosine rule to prove that the angle θ between two nonzero vectors
u and v in Rn is given via

cos θ =
〈u,v〉
‖u‖ ‖v‖

. (8.18)
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‖v‖ ‖v − u‖

‖u‖

v

u

0

θ

Figure 8.11: The cosine rule gives ‖v − u‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ.

(b) Use part (a) to justify that orthogonality between two vectors u and v is
defined as 〈u,v〉 = 0.

(c) Provide an alternative proof of (8.18) by projecting the vector u onto
Span{v}.

Exercise 8.8.7. Find the distance between the vectors

0
1
2

 and

2
0
5

.
Exercise 8.8.8. Find the distance between

−2
0
4

 and

−1
3
−5

.
Exercise 8.8.9. Find the distance between

[
−1 + 2i
4− 3i

]
and

[
1− i
i

]
.

Exercise 8.8.10. Let A ∈ Cn×n. Show that detA∗ = detA.

Exercise 8.8.11. Let A ∈ Fn×n. We call A skew-Hermitian if A∗ = −A.

(a) Show that
[

2i 3 + 4i
−3 + 4i 5i

]
is skew-Hermitian.

(b) Show that A is skew-Hermitian if and only if iA is Hermitian.

(c) Use (b) to show that eigenvalues of a skew-Hermitian matrix are purely
imaginary.

(d) Let B ∈ Fn×n. Show that 1
2 (B + B∗) is Hermitian and 1

2 (B − B∗) is
skew-Hermitian.

Since B = 1
2 (B +B∗) + 1

2 (B −B∗), it follows that any square matrix can be
written as the sum of a Hermitian matrix and a skew-Hermitian matrix.
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Exercise 8.8.12. Let A ∈ Fm×n. Show the following.

(a) NulA∗A = NulA.
(Hint: Observe that if A∗Ax = 0, then ‖Ax‖2 = x∗A∗Ax = 0.)

(b) Col(A∗A) = ColA∗.
(Hint: Use (a) and a dimension argument.)

Exercise 8.8.13. Determine if the following set is orthogonal, orthonormal,
or neither. 

0
1
0

 ,
 1√

2

0
− 1√

2

 ,


1√
3
1√
3
1√
3


 .

Exercise 8.8.14. Let W = Span




0
−3
3
1

 ,


1
2
4
0


. Find a basis for W⊥.

Exercise 8.8.15. Let W = Span


3

3
1

 ,
6

6
2

. Find a basis for W⊥.

Exercise 8.8.16. Let W = Span


 1
−i

1− i

 ,
 2
−3i

1

 ⊂ C3. Find a basis for

W⊥.

Exercise 8.8.17.

(a) Let u =

 1
−4
−5

 and v =

 2
−2
2

. Are u and v orthogonal?

(b) Let y =

 1
−5
0

. Compute ŷ, the orthogonal projection of y onto W =

Span {u,v}.

(c) Show that y − ŷ ∈W⊥.

Exercise 8.8.18. Find the distance of u =

[
2
−4

]
to the line 3x1 + 2x2 = 0.

Exercise 8.8.19. Find the distance of u to the subspaceW = Span {w1,w2},
where

u =


1
−2
0
1

 ,w1 =


1
0
1
0

 ,w2 =


−1
2
−1
2

 .
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Exercise 8.8.20. Find the distance of u to the subspace W = Span {w1},
where

u =

[
i
−2

]
,w1 =

[
3 + i
1− i

]
.

Exercise 8.8.21. Find the orthogonal projection of u onto Span{v} if u =[
2
3

]
and v =

[
−1
5

]
.

Exercise 8.8.22. Compute the orthogonal projection of
[
1
3

]
onto the line

through
[

2
−1

]
and the origin.

Exercise 8.8.23. Let W = span




1
2
2
4

 ,

−2
1
−4
2


.

(a) Find the orthogonal projection of


−3
4
4
3

 onto W .

(b) Find the distance from


−2
6
6
7

 to W .

Exercise 8.8.24. Let v1, . . . ,vn be nonzero orthogonal vectors in Rn. Show
that {v1, . . . ,vn} is linearly independent.

Exercise 8.8.25. Let W =




1
i

1 + i
2

 ,


0
−i

1 + 2i
0


 ⊆ C4. Find a basis for

W⊥.

Exercise 8.8.26. Find the orthogonal projection of u onto Span{v} if

u =

[
4
6

]
and v =

[
−1
5

]
.

Exercise 8.8.27. Let

W = span




1
2
0
1

 ,


1
0
2
1


 ⊂ R4.
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(a) Find an orthonormal basis for W .
(Hint: Use the Gram–Schmidt process).

(b) Find a basis for W⊥.

Exercise 8.8.28. Find an orthonormal basis for the subspace in R4 spanned
by 

1
1
1
1

 ,


1
2
1
2

 ,


3
1
3
1

 .

Exercise 8.8.29. Let A =

 1
2

3
2 a

3
2

1
2 b

c d e

. Can a, b, c, d, e be chosen to make A

unitary?

Exercise 8.8.30. Show that the product of two unitary matrices is unitary.
How about the sum?

Exercise 8.8.31. Show that the following matrices are unitary.

(a) 1√
2

[
1 1
1 −1

]
.

(b) 1√
3

1 1 1

1 e
2iπ
3 e

4iπ
3

1 e
4iπ
3 e

8iπ
3

.

(c) 1
2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

.
(d) The above are Fourier matrices of sizes 2, 3 and 4. Can you guess the form

of the n× n Fourier matrix?

Exercise 8.8.32. Find the QR factorization of the following matrices.

(a)

2 1
1 1
2 1

.
(b)

1 2i 0
2 1 1
0 1 1 + i

.
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(c)

1 1 3
i −i −i
2 1 4

.

(d)


5 9
1 7
−3 −5
1 5

.
(e)

[
1 2 3
1 0 5

]
.

Exercise 8.8.33. Let W ⊆ Fn be a subspace. Show that (W⊥)⊥ = W .
(Hint: Show first that W ⊆ (W⊥)⊥ and then show that both sides have the
same dimension.)

Exercise 8.8.34. We defined the dot product on Rn, which satisfies the
properties (i)-(iii) in Proposition 8.1.2. On other vector spaces one can define
similar operations that also satisfy these properties (which is then called an in-
ner product). As an example, consider the vector space C[−1, 1] of continuous
functions with domain [−1, 1] and co-domain R; that is,

C[−1, 1] = {f : [−1, 1]→ R : f is continuous}.

Addition and scalar multiplication is defined as usual for functions:

(f + g)(x) = f(x) + g(x), (cf)(x) = cf(x).

We can now introduce

〈f ,g〉 =

∫ 1

−1
f(x)g(x)dx.

Show the following for all f ,g,h ∈ C[−1, 1] and a, b ∈ R:

(a) 〈a f + b g,h〉 = a〈f ,h〉+ b〈g,h〉.

(b) 〈f ,g〉 = 〈g, f〉.

(c) 〈f , f〉 ≥ 0 and [〈f , f〉 = 0 ⇔ f = 0].

This shows that 〈f ,g〉 =
∫ 1

−1 f(x)g(x)dx is an inner product on C[−1, 1].

Exercise 8.8.35. For the following, find the least squares solution to the
equation Ax = b.

(a) A =

 1 2
3 −4
−1 2

 ,b =

1
1
1

 .
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(b) A =


2 1
3 1
−1 1
−2 1

, b =


3
−1
−3
2

.

(c) A =

−2 3
−4 6
1 2

, b =

1
0
0

 .
(d) A =

1 1
2 1
3 1

, b =

3
5
4

.
Exercise 8.8.36. Find the equation of the least squares line that best fits
the data points (−1,−2), (0, 1), (1, 1), (2, 1), and (3, 4).

Exercise 8.8.37. Find the equation of the least squares line that best fits
the data points (1, 3), (2, 5), and (3, 4). Plot the three points and the line
y = cx+ d.

Exercise 8.8.38. Given points (−1,−1), (0,−4), (1, 6), (2, 0). Find the least
squares fit of these points by a parabola y = ax2 + bx+ c.

Exercise 8.8.39. Show that the sum of two Hermitian matrices is Hermitian.
How about the product?

Exercise 8.8.40. Let

B =


0 0

√
2 0

0 0 1
√

2√
2 1 0 0

0
√

2 0 0

 .

(a) Show that the eigenvalues and of B are 2, 1,−2,−1 with eigenvectors
1√
2√
2

1

 ,

−
√

2
1
−1√

2

 ,


1√
2

−
√

2
−1

 ,

−
√

2
1
1

−
√

2

 ,
respectively

(b) Write B as B = UDU∗ with U unitary and D diagonal.

Exercise 8.8.41. For the following matrices, find the spectral decomposition;
that is, for each matrix A find a unitary U and a diagonal D so that A =
UDU∗.

(a)
[
6 2
2 9

]
.



224 Linear Algebra: What You Need to Know

(b)
[

2 i
−i 2

]
.

(c)
[

2
√

3√
3 4

]
.

(d)

3 1 1
1 3 1
1 1 3

.
(e)

0 1 0
0 0 1
1 0 0

.
(f)

2 1 0
1 0 1
0 1 2

 .
(g)

−1 1 −1
1 −1 −1
−1 −1 −1

. (Hint: −2 is an eigenvalue)

(h)

 4 −6 4
−6 5 −2
4 −2 0

 .
(i)

4 2 2
2 4 2
2 2 4

.
Exercise 8.8.42. Let A =

[
3 2i
−2i 3

]
.

(a) Show that A is positive semidefinite.

(b) Find the positive square root of A; that is, find a positive semidefinite
B so that B2 = A.
(Hint: Use the spectral decomposition of A)

Exercise 8.8.43. A quadratic form in two variables is of the form

f(x, y) = ax2 + bxy + cy2.

Consider the associated level curve {(x, y) ∈ R2 : f(x, y) = 1}.

(a) Show that we can write f(x, y) =
[
x y

]
M

[
x
y

]
, where

M =

[
a b

2
b
2 c

]
.
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(b) Show that if a = 2, b = 0, and c = 3, the level curve is an ellipse.

(c) Show that if a = 2, b = 0, and c = −3, the level curve is a hyperbola.

(d) Show that ifM has positive eigenvalues, then the curve is an ellipse. (Hint:
WriteM = UDUT with U unitary and D diagonal, and perform a change

of variables
[
x′

y′

]
= UT

[
x
y

]
.)

(e) Show that if M has a positive and a negative eigenvalue, then the curve
is a hyperbola.

(f) What happens in the remaining cases?

(a) ellipse (b) hyperbola

Figure 8.12: An ellipse and a hyperbola.

Exercise 8.8.44. Letw ∈ Cn withw∗w = 1. Introduce the so-calledHouse-
holder matrix Hw defined by Hw = I − 2ww∗.

(a) Show that w is an eigenvector for Hw. What is the corresponding eigen-
value?

(b) Show that if v 6= 0 is orthogonal to w then v is an eigenvector of Hw

corresponding to eigenvalue 1.

(c) For w =

[
1√
2
−i√
2

]
compute Hw.

Exercise 8.8.45. True or False? Justify each answer.

(a) If for real vectors u and v we have ‖u + v‖2 = ‖u‖2 + ‖v‖2, then u and
v are orthogonal.
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(b) Every subspace of Rn has an orthonormal basis.

(c) If W ⊆ R7 has dimension 3, then dimW⊥ = 4.

Exercise 8.8.46. Define the cross product x×y for two vectors x,y ∈ R3

by x1x2
x3

×
y1y2
y3

 =

x2y3 − x3y2x3y1 − x1y3
x1y2 − x2y1

 . (8.19)

Show the following.

(a) 〈x,x× y〉 = 〈y,x× y〉 = 0.

(b) x× y = −y × x.

(c) x× y = 0 if and only if {x,y} is linearly dependent.

(d) ‖x× y‖2 = ‖x‖2‖y‖2 − (〈x,y〉)2.

Exercise 8.8.47. Consider the n× n tri-diagonal matrix

An =


2 −1 0 · · · 0
−1 2 −1 · · · 0
...

. . . . . . . . .
...

0 · · · −1 2 −1
0 · · · 0 −1 2

 .

This is an example of a Toeplitz matrix which by definition is a matrix A
where the entries satisfy aij = ai+1,j+1 for all possible i and j. Show that
λj = 2 − 2 cos(jθ), j = 1, . . . , n, where θ = π

n+1 , are the eigenvalues of A.
(Hint: Show that

vj =


sin(jθ)
sin(2jθ)

...
sin(njθ)


is an eigenvector associated with λj . You will need to use rules like sin(a+b) =
sin a cos b+ cos a sin b to rewrite sin(kjθ − jθ) + sin(kjθ + jθ), for instance.)

The matrix
[
v1 · · · vn

]
is called the (first) discrete sine transform. Note

that its columns are orthogonal. The discrete cosine transform (see Exercise
5.5.22) also has orthogonal columns, and the columns of the discrete cosine
transform are the eigenvectors of the real symmetric matrix obtained from An
by making the (1, 1) and (n, n) entries equal to 1.

Exercise 8.8.48. Determine the singular value decomposition of the following
matrices.
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(a) A =

 1 1 2
√

2i

−1 −1 2
√

2i√
2i −

√
2i 0

.

(b) A =


−2 4 5
6 0 −3
6 0 −3
−2 4 5

 .
(c) Find also the compact singular value decompositions of the above matri-

ces.

Exercise 8.8.49. Let U be a unitary 3× 3 matrix, and let

A = U

1 0 0
0 2 0
0 0 3

U∗, B = U

−5 0 0
0 −2 0
0 0 3

U∗.
How can one find the singular value decompositions of A and B without doing
much computation?

Exercise 8.8.50. Let U be a unitary n× n matrix. Show that |detU | = 1.

Exercise 8.8.51. Let A be a n×n matrix with singular value decomposition
A = V ΣW ∗. Notice that since A is square, we have that V,Σ and W are also
square matrices. Show that |detA| = det Σ = σ1(A) · · ·σn(A), where we allow
for σj(A) = 0 when j > rankA.

Exercise 8.8.52. Use (8.15) to prove

σ1(AB) ≤ σ1(A)σ1(B). (8.20)

Exercise 8.8.53. Let A =
[
P Q

]
∈ Ck×(m+n), where P is of size k×m and

Q of size k × n. Show that

σ1(P ) ≤ σ1(A).

Conclude that σ1(Q) ≤ σ1(A) as well.

Exercise 8.8.54. For Σ ∈ Fm×n as in (8.14) define Σ† ∈ Fn×m by

Σ† =



1
σ1

0 · · · 0 · · · 0

0 1
σ2
· · · 0 · · · 0

...
...

. . .
...

...
0 0 · · · 1

σk
· · · 0

...
...

... .0.
...

0 0 · · · 0 · · · 0


. (8.21)
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(a) Show that ΣΣ†Σ = Σ and Σ†ΣΣ† = Σ†.

For A ∈ Fm×n, we call B ∈ Fn×m a generalized inverse of A if ABA = A
and BAB = A.

(b) Show that if A is invertible (and thus m = n), then A−1 is the only
generalized inverse of A.

(c) For A ∈ Fm×n with singular value decomposition A = V ΣW ∗, define
A† = WΣ†V ∗. Show that A† is a generalized inverse of A.

(d) For A =

[
1
0

]
, show that for any b ∈ F the matrix B =

[
1 b

]
is a

generalized inverse. For which value of b do we have B = A†?

The matrix A† is called the Moore-Penrose inverse of A. Note that AA†
and A†A are Hermitian. This additional property characterizes the Moore-
Penrose inverse.

Exercise 8.8.55. Let A ∈ Fm×n have rank k, and singular value decomposi-
tion A = V ΣW ∗. Show that

(a) {v1, . . . ,vk} is a basis for RanA.

(b) {wk+1, . . . ,wn} is a basis for KerA.

(c) {w1, . . . ,wk} is a basis for RanA∗.

(d) {vk+1, . . . ,vm} is a basis for KerA∗.

Exercise 8.8.56. Consider a real matrix A of size m×n. To store this matrix
mn real numbers need to be stored.

(a) Suppose that using the singular value decomposition A is approximated
by Â of rank k. Factor Â = BC where B is m × k and C is k × n. How
many real numbers need to be stored to store B and C (and thus Â).

(b) How would one find factors B and C as in (a) using the singular value
decomposition of A?

(c) Suppose now that a black and white image (such as in Figure 8.7) is rep-
resented as a matrix of size 768 × 1024. If this matrix is approximated by
a rank 100 matrix, how much does one save in storing the approximation
instead of the original matrix?
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This represents a simple idea to do image compression. More sophisticated
ideas inspired by this simple idea lead to useful image compression algorithms.
One can easily search for these algorithms, as well as other image processing
algorithms (image enhancement, image restoration, etc.), which make good
use of Linear Algebra.

Exercise 8.8.57. Principal Component Analysis (PCA) is a way to
extract the main features of a set of data. It is for instance used in facial
recognition algorithms. In this exercise we will outline some of the Linear
Algebra that is used in PCA. To properly understand PCA one needs to cover
several statistical notions, but we will not treat those here. We will simply
illustrate some of the mechanics in an example.

Let us say we are studying different cells and try to group them in different
types. To do so, we use measurements obtained by sequencing the mRNA in
each cell. This identifies the level of activity of different genes in each cell.
These measurements are as follows.

c1 c2 c3 c4 c5 c6 c7 c8 c9

X =


0.4 1.6 0.3 0.3 1.5 1.5 0.3 1.3 0.9
1.3 0.2 1.5 1.1 0.3 0.2 1.6 0.1 1.6
1.1 1.8 0.9 1.2 2. 01.9 0.9 1.7 0.7
2.3 0.8 1.7 2.1 0.4 0.7 2.1 0.6 2.1


gene1
gene2
gene3
gene4

.

Thus in cell 1 we have that gene 4 is most active, while gene 1 is the least
active. First we compute the average activity of each gene, which corresponds
to the average of the values in each row. We can compute this as

average =
1

n
X


1
1
...
1

 =


0.9000
0.8778
1.3556
1.4222

 ,
where n = 9 is the number of columns of X. Next we subtract the appropriate
average from each entry so that the numbers in the matrix represent the
deviation form the average. We obtain

Y = X −


0.9000
0.8778
1.3556
1.4222

 [1 1 · · · 1
]

=


−.500 .700 −.600 −.600 .600 .600 −.600 .400 .000
.422 −.678 .622 .222 −.578 −.678 .722 −.778 .722
−.256 .444 −.456 −.156 .644 .544 −.456 .344 −.656
.878 −.622 .278 .678 −1.022 −.722 .678 −.822 .678

 .
In this case, as the set of data is relatively small you may notice that if gene 1
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activity is high in a cell then gene 3 activity also tends to be high. This means
that the gene 1 activity and the gene 3 activity are positively correlated. On
the other hand when the gene 1 activity is high, then gene 2 activity tends
to be low. Thus gene 1 and gene 2 are negatively correlated. When two rows
are orthogonal to one another, they represent uncorrelated activities. In PCA
we are going to replace the rows by linear combinations of them so that the
new rows become uncorrelated. In this process we do not want to change the
overall variation of the data. To do this, the singular value decomposition is
exactly the right tool. In this case, we write Y = V ΣW ∗ and create a new
data matrix C = V ∗Y = ΣW ∗. We now obtain

C =


1.08 −1.22 0.94 0.86 −1.45 −1.28 1.24 −1.23 1.05
0.18 −0.10 0.00 0.37 −0.03 0.01 0.01 0.10 −0.54
−0.24 −0.19 0.39 −0.13 0.17 −0.08 0.12 0.08 −0.12
−0.05 0.02 0.03 0.02 −0.17 −0.04 −0.05 0.20 0.04

 .
Then

CC∗ = ΣW ∗WΣ∗ =


12.1419 0 0 0

0 0.4808 0 0
0 0 0.3323 0
0 0 0 0.0784

 .
The off-diagonal entries in CC∗ being zero corresponds exactly to the orthog-
onality of the rows of C. In addition, the diagonal entries of CC∗ correspond
to the variations of the rows of C. These are also the squares of the lengths
of each row, and the squares of the singular values of Y . The total variation
is the sum of the diagonal entries of CC∗, and thus

total variation = tr CC∗ = 13.0333.

By the manner in which the singular values are ordered, the first one is the
largest, and the corresponding row in C represents the first principal compo-
nent of the data. The second is the next largest, and the second row in C
represents the second principal component, and so on. In this case, the first
principal component has variation 12.1419 out of a total of 13.0333, so the first
principal component represents 12.1419/13.0333 × 100% = 93% of the total
variation. Thus looking at the first row of C, which is a linear combination
of the activities of genes 1–4, we already capture a large part of the data. In
the first row of C, we see that cells 1,3,4,7,9, all have values in the interval
[0.86, 1.24] while cells 2,5,6,8 have values in the interval [−1.45,−1.22]. Since
these intervals are well separated, it will be safe to say that these two groups
of cells are of a different type.

Next we look at the first two principal components combined, and visualize
this by the scatter plot in Figure 8.13.

As we had already observed, it is clear that the first principal component
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Figure 8.13: Two components capture 96.8% of the total variation.

divides the cells in two different groups. Looking at the second critical com-
ponent, we see that perhaps cell 9 at coordinates (1.05,−0.54) is separated
from cells 1,3,4,7. It is important to realize, though, that the variation of the
second component accounts for only 0.4808/13.0333 × 100% = 3.6% of the
total variation so the apparent separation may not actually be significant.

Let us practice this now on another example. An event organizer has to seat 10
people at 2 different tables, and wants to do this based on common interests.
A questionnaire about different activities (how often do you watch sports?
how often do you go to the movies? etc.) leads to the following data.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

X =


7 11 6 5 10 4 2 8 1 6
2 4 4 3 4 2 1 2 1 2
5 8 4 3 7 3 2 6 1 4
6 9 3 2 9 2 1 8 0 6


activity1
activity2
activity3
activity4

.

(a) Determine the average of each activity, and determine the matrix Y rep-
resenting the deviation from the averages.

(b) Use your favorite software to compute the singular value decomposition
Y = V ΣW ∗.

(c) Compute the matrix V ∗Y = ΣW ∗.
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(d) Make a scatter plot based on the first two principal components.

(e) What percentage of the total variation do the first two principal compo-
nents account for?

(f) Separate the people in two groups based on the scatter plot found under
(d).

Exercise 8.8.58. Suppose that we have 10 hours of digital footage of a hall-
way that is supposed to be empty all the time, and we are looking for those 20
seconds where someone walks through it. How can we use the singular value
decomposition to find those 20 seconds? Let us assume that the footage is in
black and white, so that each frame corresponds to a matrix of gray scales.
For each frame, we will make a vector out of it by just stacking the columns.
We call this operation vec. For instance,

vec

[
1 2 3
4 5 6

]
=


1
4
2
5
3
6

 .

Now we build a matrix A of the complete footage, where each column corre-
sponds to the vec of a frame; thus

A =
[
vec(frame 1) vec(frame 2) · · · vec(frame N)

]
,

where N = 10× 3600× 59, if we have 59 frames per second.

(a) If every frame is the same (so nobody walking through the hallway and
no light fluctuations), what will be the rank of A?

We can now take the singular value decomposition of A, and look at the
first few singular values.
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(b) Based on the drop off after the third singular value, what may be the rank
of a good low rank approximation of A?

(c) If Â is obtained from A by applying Proposition 8.7.3 with l = 3, explain
how A− Â has most entries be of relatively low absolute value. How could
this be useful in finding the frames where the person walks through the
hallway?

The above represents an essential idea in a much more complicated algorithm.
For more details, search for Robust Principal Component Analysis.



http://taylorandfrancis.com


Answers to Selected Exercises

Chapter 1

Exercise 1.6.1. (a) row reduced echelon. (c) neither. (e) row echelon.

Exercise 1.6.2. (a)

1 0 1
0 1 2
0 0 0

.

Exercise 1.6.3. (a)

x1x2
x3

 =

 1
−1
0

+ x3

 1
2
−1
1

, with x3 free.

Exercise 1.6.3. (c)

x1x2
x3

 =

3
0
4

+ x2

1
1
0

, with x2 free.

Exercise 1.6.3. (e)


x1
x2
x3
x4

 =


−3
0
−7
0

+ x2


1
1
0
0

+ x4


−5
0
1
1

, with x2, x4 free.

Exercise 1.6.5.

x1x2
x3

 =

 16
9
10
9
7
9

.
Exercise 1.6.8. (a) b = 1

7a1 −
1
7a2 + 1

7a3.

Exercise 1.6.8. (c) b = 20
6 a1 + 7

6a2 −
1
6a3.

Exercise 1.6.9. (a) h = −2

Exercise 1.6.10. k = 8, h = 2, m = 10.

Exercise 1.6.12. (a)
[
14
2

]
.
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Exercise 1.6.12. (c)
[
0
9

]
.

Exercise 1.6.15. No.

Exercise 1.6.17. h 6= −5.

Exercise 1.6.18. (a) do not span. (c) do not span.

Exercise 1.6.20. (a) 2KMnO4 +16HCl→ 2KCl+2MnCl2 +8H2O+5Cl2.

Exercise 1.6.21. (a)
8I1 − 2I2 − 4I4 = 4
−2I1 + 7I2 − I3 = 0

−I2 + 7I3 = −3
−4I1 + 8I4 = 3

.

Chapter 2

Exercise 2.6.2. (a) Yes, a subspace;


 3

2
1
0

 ,
− 5

2
0
1

 is a basis for H.

Exercise 2.6.2. (c) Yes, a subspace;


 1

0
−1

 ,
−1

1
0

 is a basis for H.

Exercise 2.6.2. (e) Not a subspace.

Exercise 2.6.4. (a) independent; (c) dependent; (e) dependent.

Exercise 2.6.7. (a) independent; (c) dependent.

Exercise 2.6.9. Yes.

Exercise 2.6.11. (a) Basis for Col A:


1

1
0

 ,
1

0
2

; Basis for Nul A:
−3

1
1

. Basis for Row A:
{[

1 0 3
]
,
[
0 1 −1

]}
; rank = 2.
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Exercise 2.6.11. (c) Basis for Col A:




1
2
0
0

 ,


0
0
1
2

 ,


0
0
0
5


; rank = 3. Basis

for Nul A:




−1
1
0
0
0

 ,

−1
0
−2
1
0


. Basis for Row A:

{[
1 1 0 1 0

]
,
[
0 0 1 2 0

]
,
[
0 0 0 0 1

]}
.

Exercise 2.6.16. (a) [v]B =

 7
−1
0

.

Exercise 2.6.17. (a) 3. (c)

 1
−1
0

.
Exercise 2.6.19. (a) 1,1,2,0. (c) 2,2,4,0.

Chapter 3

Exercise 3.7.1. (a)

−2 2
−4 5
−2 6

. (c) [12 16
0 −8

]
.

Exercise 3.7.2. (a) Ae1 is the first column of A. eT1 A is the first row of A.
(c) eTkAel is the (k, l)th entry of A.

Exercise 3.7.5. (a) k. (c) mkn+mnl.

Exercise 3.7.7. (a) undefined as A has 3 columns and B has 2 rows, and

3 6= 2. (c)
[
− 3

2 1
− 1

2
1
2

]
.

Exercise 3.7.9. (a)

1 −24 11
0 7 −3
0 −2 1

. (c) No inverse exists.
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Exercise 3.7.12. X = (B−1)TAT − CT .

Exercise 3.7.23. X =

1 3
2

0 11
2

0 0

+

−4
−2
1

 [x3 y3
]
, with x3, y3 ∈ R free.

Exercise 3.7.25. (a) L =

[
1 0
4 1

]
, U =

[
1 −2
0 5

]
.

Exercise 3.7.25. (c) L =

1 0 0
2 1 0
0 −1 1

, U =

1 −1 0
0 −1 1
0 0 3

.

Exercise 3.7.26. (c)

1 2 −11
0 1 −4
0 0 1

.

Chapter 4

Exercise 4.5.1. (a) 14 (c) 114. (e) 12.

Exercise 4.5.7. (a) x1 = 0, x2 = 1
2 .

Exercise 4.5.9. −12.

Exercise 4.5.14. adj(A) =

−4 8 −4
1 −2 7

2
5 0 − 5

2

.
Exercise 4.5.19. (a) 1

2 . (c)
1
24 .

Exercise 4.5.20. 4.

Chapter 5

Exercise 5.5.10. (a) Yes, a subspace. (c) No, not a subspace. (e) No, not a
subspace. (g) Yes, a subspace.
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Exercise 5.5.11. (a) independent. (c) dependent. (e) independent. (g) inde-
pendent.

Exercise 5.5.12. (a) Yes.

Exercise 5.5.20. (a) [v]B =


2
7
−19
17

. (c) [v]B =


−1
5
−7
1

. (e) [v]B =


8
−9
−3
−1

.

Chapter 6

Exercise 6.5.1. (a) Not linear. (c) Linear. (e) Not linear.

Exercise 6.5.2. (a) Linear. (c) Linear. (e) Not linear. (g) Linear.

Exercise 6.5.3. (a) A =


1 0 −5
0 7 0
3 −6 0
0 0 8

. (c) h = 8.

Exercise 6.5.6. (a) {(1− t)(3− t)} = {3− 4t+ t2}.

Exercise 6.5.16.


1 1 0 0
0 −1 1 0
−1 0 0 1
1 0 1 0

.

Exercise 6.5.18.

2 4 0
0 −1 5
3 7 10

.

Chapter 7

Exercise 7.5.1. (a) 2,
[
1
1

]
and 6,

[
−1
1

]
.
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Exercise 7.5.1. (c) 2,

1
0
0

, 0,

− 1
6

1
3
1

 and −6,

 1
24
− 1

3
1

.

Exercise 7.5.3. Yes, Span


−2

0
1

 ,
0

1
0

.

Exercise 7.5.7. 1,
[
−i
1

]
and 3,

[
i
1

]
.

Exercise 7.5.10. 12, 7.

Exercise 7.5.16.

1 0 0
0 1 0
0 0 1

.
Exercise 7.5.18. We diagonalize A as A = PDP−1, with P =

[
1 −1
1 1

]
and

D =

[
1 0
0 1

2

]
. Then

Ak = P

[
1 0
0 ( 1

2 )k

]
P−1 =

[
1
2 + 1

2k+1
1
2 −

1
2k+1

1
2 −

1
2k+1

1
2 + 1

2k+1

]
.

Exercise 7.5.24. (a) x1(t) = e2t, x2(t) = 2e2t.

Chapter 8

Exercise 8.8.1. 16,
√

26.

Exercise 8.8.7.
√

14.

Exercise 8.8.13. Neither.

Exercise 8.8.16.


−2− 3i

2− i
1

.

Exercise 8.8.18. ‖
[
− 6

13
− 4

13

]
‖ =

√
52
13 = 2

13

√
13.
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Exercise 8.8.21.
[
− 1

2
5
2

]
.

Exercise 8.8.27. (a)

 1√
6


1
2
0
1

 , 1√
12


1
−1
3
1


.

Exercise 8.8.32. (a) Q =


2
3

1√
18

1
3

−4√
18

2
3

1√
18

, R =

[
3 5

3

0 −
√
2
3

]
.

Exercise 8.8.41. (a) D =

[
5 0
0 10

]
, U = 1√

5

[
−2 1
1 2

]
.

Exercise 8.8.48. (a) V =

−
1√
2
− 1

2
1
2

− 1√
2

1
2 − 1

2

0 − i√
2
− i√

2

, Σ =

4 0 0
0 2 0
0 0 2

 ,
W =

0 −1 0
0 0 1
i 0 0

.
Exercise 8.8.57. (f) Table 1 would have persons 1,2,5,8,10 and Table 2 per-
sons 3,4,6,7,9.
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Appendix

A.1 Some Thoughts on Writing Proofs

Mathematics is based on axioms and logical deductions, which we refer to as
proofs. In this course you may for the first time writing your own proofs. In this
section we hope to give some helpful tips, to get you started on this. We will
start ‘If P then Q’ statements. Most statements in this course can be phrased
in this way, and we do not want to overload you with too much information.
There are of course plenty of resources available where more information can
be found.

A.1.1 Non-Mathematical Examples

In this subsection we will try to make some main points without getting into
mathematical details.

Let us start with the following non-mathematical statement.
Statement 1: If it rains then the streets get wet.

A proof of this statement may be the following:
Proof 1: Suppose it rains. By definition this means that water is falling from
the sky. Due to gravity this water will fall on the streets. A surface being wet
means having liquid on it. Since the streets have water on them, and water is
a liquid, the streets are wet. This proves the statement.

This is an example of a direct proof. In a direct proof of an ‘If P then Q’
statement, you start with assuming P and then you use logical deductions
until you reach the statement Q. In this example we assumed that it rained,
and then we argued until we reached the conclusion that the streets are wet.
Along the way we used definitions of the terms used, and we used some prior
knowledge (gravity exists).

As you will find out, whenever you write a proof there will be a question
about what we can assume to be prior knowledge and which parts require

243
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explanation. In general, the purpose of a proof is to convince readers that the
statement is true. Thus, it depends on who the readers are where you would
draw the line between prior knowledge and what needs explanation. For the
purpose of this course, it is probably the best to consider the readers of your
proof to be your peers. Thus, you do not need to explain that real numbers x
and y satisfy xy = yx, for example.

An alternative way to prove an ‘If P then Q’ statement, is to prove the equiv-
alent statement ‘If (not Q) then (not P)’, which is called the contrapositive
statement. The contrapositive of Statement 1 is

Statement 1’: If the streets are not getting wet then it is not raining.

Statements 1 and 1’ are equivalent: they are saying the same thing. When we
discuss truth tables, we will formalize this more. Thus a proof of Statement 1
could be

Proof 2: Suppose the streets are not getting wet. This means that there is no
liquid falling on the streets. Thus no water could be falling down on the streets.
Thus it is not raining.

A proof of the contrapositive statement is sometimes referred to as an indirect
proof of the original statement. So Proof 2 is an indirect proof of Statement
1.

A third way to prove a ‘If P then Q’ statement is to prove it by contradiction.
This means that you are assuming that both P and (not Q) hold, and then
you argue until you get some obviously false statement. Thus a third proof of
Statement 1 may go as follows.

Proof 3: Suppose it rains and the streets are not getting wet. This means that
there is water falling from the sky but that the water does not reach the streets.
This means that above the streets there is a gravity free zone. But that is false,
and we have reached a contradiction.

In summary, Proofs 1, 2 and 3 are all proofs of Statement 1. In general, direct
proofs are the easiest to understand so there is some preference to do it that
way. However, in some cases direct proofs are not easy to construct and we
either have to do an indirect proof or a proof by contradiction. In the next
section we will give some mathematical examples of these.

Let us also look at a ‘for all’ statement. For instance,
All humans live on the same planet.

If you are proving a ‘for all’ statement it is important to have a reasoning
that applies to all. Thus it is not enough to say that ‘all my friends live on the
same planet, and therefore it is true’. You need some argument that applies
to all humans. So it could go something like this:
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A human needs oxygen in the atmosphere to live. There is only one planet that
has oxygen in the atmosphere, namely Earth. Thus for every human there is
only one planet where they can live, namely Earth. Thus every human lives
on Earth, and consequently every human lives on the same planet.

We will also encounter the situation that a ‘for all’ statement is false,
and we have to prove that it is false. For instance, consider the statement

All students love Linear Algebra.
To disprove such a ‘for all’ statement, you just have to come up with one
example that contradicts the statement. In this instance, you can, for exam-
ple, take a picture of a fellow student holding a sign that says ‘I do not like
Linear Algebra’. We call this a counterexample. With a counterexample, it
is important to be very specific. It is much more convincing than throwing
your hands up in the air and say ‘how could all students possibly love Linear
Algebra?’.

Let us now move on to some mathematical examples.

A.1.2 Mathematical Examples

Proposition A.1.1. The sum of two odd numbers is even.
In other words: If n and m are odd numbers then n+m is even.

Proof. Suppose that n and m are odd. Then there exist integers k and l so
that n = 2k + 1 and m = 2l + 1. This gives that n + m = 2k + 1 + 2l + 1 =
2(k+ l+ 1). Thus n+m is divisible by 2, which means that n+m is even. �

This is a direct proof, which makes the most sense in this case. Notice that
we rephrased the original statement as an ‘If P then Q’ statement, as it made
it clearer where to start and where to end.

Proposition A.1.2. Let n be an integer. If n2 is even, then n is even.

Proof. Suppose that the integer n is not even. Then n is odd, and thus there
exist an integer k so that n = 2k+1. Then n2 = 4k2+4k+1 = 2(2k2+2k)+1.
This shows that n2 − 1 = 2(2k2 + 2k) is even, and thus n2 is odd. �

In this proof we proved the contrapositive, which was easier. If we wanted to
prove it directly we probably would have had to rely on prime factorization.
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Proposition A.1.3.
√

2 is irrational.
In other words, if x is a positive real number so that x2 = 2 then x is
irrational.

Proof. Suppose that x is a positive real number so that x2 = 2 and suppose
that x is rational. Since x is positive and rational we can write x = p

q where p
and q are positive integers without common factors; otherwise we would just
divide out the common factors. Thus, the greatest common divisor of p and q
is 1. Then we obtain p2

q2 = x2 = 2, and thus p2 = 2q2 is even. Since p2 is even
we obtain by Proposition A.1.2 that p is even. Thus p = 2k for some integer
k. Now we obtain that 4k2 = (2k)2 = p2 = 2q2, and thus q2 = 2k2 is even.
Again by Proposition A.1.2 we then obtain that q is even. But if p and q are
even, then they do have a common factor (namely 2). This contradicts the
choice of p and q. �

This was a proof by contradiction, and seems to be the only way to prove this
statement.

We will also have ‘P if and only if Q’ statements. These are really two state-
ment in one, namely both ‘If P then Q’ and ‘If Q then P’. A proof of an ‘if and
only if’ statement therefore typically has two parts. Let us give an example.

Proposition A.1.4. Let n be an integer. Then n2 is even if and only if n
is even.

Proof. We first prove the ‘only if’ part, namely we prove ‘n2 is even only if n
is even’. In other words, we need to prove ‘If n2 is even, then n is even’. This
follows from Proposition A.1.2.

Next, we prove the ‘if’ part, which is ‘n2 is even if n is even’. In other words
we need to prove ‘if n is even, then n2 is even’. Thus assume that n is even.
Then there is an integer k so that n = 2k. Then n2 = (2k)2 = 4k2 = 2(2k2).
Thus n2 is divisible by 2, and thus n2 is even. �

As you notice it takes a bit of effort to break it down into the ‘If P then Q’
and ‘If Q then P’ format, but hopefully you will get used to doing this.

Remark. A common mistake is that instead of writing a proof for ‘If P then
Q’, a proof for ‘If Q then P’ is written. This is a mistake as ‘If Q then P’ is
a different statement. For instance ‘If the streets get wet then it is raining’ is
not a true statement. There could be flooding going on, for instance.

Let us look at the following statement: ‘If x2 > 9 then x > 3 or x < −3’.
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It could be tempting to start with x > 3, and conclude that x2 > 9, and do
the same for x < −3. This, however, would not be a valid proof of the above
statement. A correct proof would be

Proof 1. Suppose x2 > 9. Then x2 − 9 > 0. Thus (x− 3)(x+ 3) = x2 − 9 > 0.
The only way the product of two real numbers is positive is when they are both
positive or both negative. Thus we get (x− 3 > 0 and x+ 3 > 0) or (x− 3 < 0
and x + 3 < 0). In the first case we get that x > 3 and x > −3, which yields
x > 3. In the second case we get x < 3 and x < −3, which yields x < −3. In
conclusion, we obtain x > 3 or x < −3.

One may of course also prove the contrapositive, and get to the following
alternative proof.

Proof 2. Suppose that −3 ≤ x ≤ 3. Then 0 ≤ |x| ≤ 3. Thus x2 = |x|2 ≤ 9,
which finishes this indirect proof.

Finally, let us give an example of a counterexample.

Claim: all even integers are divisible by 4.

This claim is false. Take for instance the integer 2, which is an even integer,
but 2

4 = 1
2 is not an integer, and thus 2 is not divisble by 4.

A.1.3 Truth Tables

When you have a few statements (P,Q,R, etc.) you can make new statements,
such as ‘If P then (Q and R)’. In this sections we will give you the building
blocks for new statements, along with their truth tables. The truth tables tell
you whether the statement is true, based on the truth values of P,Q,R, etc.
The four basic operations are ‘not’, ‘and’, ‘or’, ‘implies’. Here are their truth
tables:

not P
P ¬P

True False

False True

If P then Q
P and Q P or Q P implies Q

P Q P ∧Q P ∨Q P ⇒ Q

True True True True True

True False False True False

False True False True True

False False False False True

On the left of the double lines you have all the possibilities of the variables
(P,Q) and on the right of the double line you have the corresponding value
for the new statement. So, for instance, the truth table for ‘and’ (which has
symbol ∧) shows that P ∧ Q is only true when both P and Q are true. As
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soon as one of P and Q is false, then P ∧ Q is false. One thing that could
take some getting used to is that P ⇒ Q is a true statement if P is false. For
instance, ‘If grass is blue then water is dry’ is a true statement (since grass is
not blue).

We can now make more involved statements and their truth tables. Below are,
for instance, the truth tables of the statements ‘P ∧ (Q∨R)’ and ‘(P ∧Q)⇒
(P ∧R)’. Note that we use T and F for True and False, respectively.

P Q R Q ∨R P ∧ (Q ∨R) P ∧Q P ∧R (P ∧Q)⇒ (P ∧R)

T T T T T T T T

T T F T T T F F

T F T T T F T T
T F F F F F F T

F T T T F F F T

F T F T F F F T

F F T T F F F T

F F F F F F F T

Recall that we also have the ‘P if and only if Q’ statement, which we denote
as P ⇔ Q, and which is short for (P ⇒ Q) ∧ (Q⇒ P ). Its truth table is

P ⇔ Q
P Q P ⇒ Q Q⇒ P (P ⇒ Q) ∧ (Q⇒ P )

T T T T T

T F F T F
F T T F F

F F T T T

We say that two statements are equivalent if they have the same truth tables.
For instance, P ⇒ Q and ¬Q⇒ ¬P are equivalent:

P Q P ⇒ Q ¬Q ¬P ¬Q⇒ ¬P
T T T F F T

T F F T F F

F T T F T T

F F T T T T

A.1.4 Quantifiers and Negation of Statements

Some statements have the form
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‘for all x ∈ S the statement P (x) is true’ in shorthand: ‘∀x ∈ S : P (x)’,

while others have the form
‘there exists an x ∈ S so that Q(x) is true’ in shorthand: ‘∃x ∈ S : Q(x)’.

We call ‘for all’ (∀) and ‘there exists’ (∃) quantifiers. Here are some examples

Proposition A.1.5. For every natural number n ∈ N we have that n2 +n
is even.

Proof. Let n ∈ N. Then either n is even or n+ 1 is even. But then n2 + n =
n(n+ 1) is even. �

Proposition A.1.6. For every integer n ∈ Z there exists an integer m ∈ Z
so that n+m = 0.

Proof. Let n ∈ Z. We can now put m = −n. Then m ∈ Z and n+m = 0. �

The last statement actually uses both quantifiers. Notice that to prove the
existence of m we were very specific how we should choose m. In general,
when you prove an existence statement you should try to be as specific as
possible.

Some statements P that you will encounter will be false statements. In that
case ¬P will be a true statement. We call ¬P the negation of P . So when
you prove that P is false, you actually are proving that ¬P is true. Thus, it
will be helpful to write ¬P in its most convenient form. Here are some rules

• ¬(∀x ∈ S : P (x)) is equivalent to ∃x ∈ S : ¬P (x).

• ¬(∃x ∈ S : Q(x)) is equivalent to ∀x ∈ S : ¬Q(x).

• ¬(¬P ) is equivalent to P .

• ¬(P ∧ Q) is equivalent to (¬P ) ∨ (¬Q).

• ¬(P ∨ Q) is equivalent to (¬P ) ∧ (¬Q).

• ¬(P ⇒ Q) is equivalent to P ∧ (¬Q).

To see the equivalence of the last item, for instance, you can write down the
truth tables for the statements and see that they are the same:
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P Q P ⇒ Q ¬(P ⇒ Q) ¬Q P ∧ (¬Q)

T T T F F F

T F F T T T

F T T F F F

F F T F T F

If you write down the truth table for (¬(P ⇒ Q))⇔ (P ∧ (¬Q)) you get

P Q (¬(P ⇒ Q))⇔ (P ∧ (¬Q))

T T T

T F T

F T T

F F T

A statement that is always true is called a tautology. Thus

(¬(P ⇒ Q))⇔ (P ∧ (¬Q))

is a tautology. Other examples of tautologies are

• P ∨ (¬P )

• (¬(P ∧ Q))⇔ ((¬P ) ∨ (¬Q)).

• (¬(P ∨ Q))⇔ ((¬P ) ∧ (¬Q)).

Consider the statement

There exists a vector u ∈ R2 that is orthogonal to every v ∈ R2.

This is a true statement.

Proof. Let u =

[
0
0

]
∈ R2. Then for every v =

[
v1
v2

]
∈ R2 we have 〈u,v〉 =

0 · v1 + 0 · v2 = 0, and thus u is orthogonal to v. �

If we change the statement slightly, it is no longer true:

There exists a nonzero vector u ∈ R2 that is orthogonal to every v ∈ R2.

This is a false statement. Thus its negation must be true. The negation of this
statement is:

For every nonzero vector u ∈ R2 there exists a v ∈ R2 so that u is not
orthogonal to v.

Proof. Let u =

[
u1
u2

]
∈ R2 be a nonzero vector (thus u1 6= 0 or u2 6= 0).

Choose v = u. Then 〈u,v〉 = u21 + u22 > 0. Thus u is not orthogonal to v.
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A.1.5 Proof by Induction

For statements of the form

For every n ∈ {n0, n0 + 1, n0 + 2, . . .} we have that P (n) is true

we have a proof technique called proof by induction that can be helpful.
The proof will have the following form

• Basis step: Show that P (n0) is true.

• Induction step: Show that the following statement is true: ‘If P (m) is
true for some m ≥ n0, then P (m+ 1) is true’.

The idea is that now we have that P (n0) is true, due to the basis step. And
then, if we apply the induction step with m = n0, we obtain that P (n0 + 1)
is true. Now we can apply the induction step with m = n0 + 1, and we obtain
that P (n0 + 2) is true. Now we can apply the induction step with m = n0 + 2,
and we obtain that P (n0 + 3) is true. Etc. Thus repeated use of the induction
step yields that P (n) is true for all n ∈ {n0, n0 + 1, n0 + 2, . . .}.

Let us look at an example.

Proposition A.1.7. For every n ∈ N = {1, 2, 3, . . .} we have that n3 − n
is divisible by 6.

Proof. We prove this by induction.

• Basis step: Let n = 1. Then n3 − n = 0 = 6 · 0, thus the statement is
true for n = 1.

• Induction step: Suppose that for some m ∈ N we have that m3 −m is
divisble by 6. Thusm3−m = 6k for some k ∈ Z. Then (m+1)3−(m+1) =
(m3 +3m2 +3m+1)− (m+1) = (m3−m)+3(m2 +m) = 6k+3(m2 +m).
By Proposition A.1.5 we have that m2 + m = m(m + 1) is even; thus
m2 + m = 2l, for some l ∈ Z. Now we find that (m + 1)3 − (m + 1) =
6k + 3(2l) = 6(k + l). And thus (m+ 1)3 − (m+ 1) is divisible by 6. This
takes care of the induction step.

�

There is also a ‘strong form’ of proof by induction, which is as follows:

• Basis step: Show that P (n0) is true.
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• Induction step: Show that the following statement is true: ‘If P (k),
k ∈ {n0, n0 + 1, . . . ,m} are true for some m ≥ n0, then P (m + 1) is
true’.

It is not very often (probably never in this course) that you need induction in
this strong form, but it is good to know that you have the option to use this
variation.

A.1.6 Some Final Thoughts

We hope that this appendix helps you starting off writing proofs. Writing
proofs is not an easy task and everyone struggles with it from time to time.
It takes a lot of practice. We hope that the proofs in the texts are helpful
in giving you more ideas. Now sometimes, especially with long proofs, one’s
mind starts to wander off and one gets lost. What may be helpful, when you
find yourself in that situation, is to think about parts of the proof. You can
ask ‘which parts of this proof are easy’ and ‘which parts are hard’. There
are certainly proofs in this course where you might think ‘I would have never
thought of that’. What we can tell you is that you are not alone in that.
Even the best mathematicians see proofs that they would have never thought
of. The point, though, of reading other people’s proofs is that it gives you
new ideas. When you think ‘I would have never thought of this myself’, you
should not despair. What you should do is to store the idea in your brain
somewhere, so that if you have to prove something similar, you have the idea
handy. So, when you read or listen to proofs, look for ideas to add to your
‘bag of mathematical tricks’.

A.2 Complex Numbers

The complex numbers are defined as

C = {a+ bi ; a, b ∈ R} ,

with addition and multiplication defined by

(a+ bi) + (c+ di) := (a+ c) + (b+ d)i,

(a+ bi)(c+ di) := (ac− bd) + (ad+ bc)i.
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Notice that with these rules, we have that (0 + 1i)(0 + 1i) = −1 + 0i, or in
shorthand i2 = −1. Indeed, this is how to remember the multiplication rule:

(a+ bi)(c+ di) = ac+ bdi2 + (ad+ bc)i = ac− bd+ (ad+ bc)i,

where in the last step we used that i2 = −1. It may be obvious, but we
should state it clearly anyway: two complex numbers a + bi and c + di, with
a, b, c, d ∈ R are equal if and only if a = c and b = d. A typical complex
number may be denoted by z or w. When

z = a+ bi with a, b ∈ R,

we say that the real part of z equals a and the imaginary part of z equals
b. The notations for these are,

Re z = a, Im z = b.

A complex number z is called purely imaginary if z = ib, where b ∈ R.
In other words, z is purely imaginary if and only if Re z = 0 (if and only if
z = −z, as we will see).

It is quite laborious, but in principle elementary, to prove that C satisfies all
the field axioms (see the next section for the axioms). In fact, in doing so one
needs to use that R satisfies the field axioms, as addition and multiplication in
C are defined via addition and multiplication in R. As always, it is important
to realize what the neutral elements are:

0 = 0 + 0i, 1 = 1 + 0i.

Another tricky part of this is the multiplicative inverse, for instance,

(1 + i)−1, (2− 3i)−1. (A.1)

Here it is useful to look at the multiplication

(a+ bi)(a− bi) = a2 + b2 + 0i = a2 + b2. (A.2)

This means that as soon as a or b is not zero, we have that (a+ bi)(a− bi) =
a2+b2 is a nonzero (actually, positive) real number. From this we can conclude
that

1

a+ bi
= (a+ bi)−1 =

a− bi
a2 + b2

=
a

a2 + b2
− b

a2 + b2
i.

So, getting back to (A.1),

1

1 + i
=

1

2
− i

2
,

1

2− 3i
=

2

13
+

3i

13
.

Now you should be fully equipped to check all the field axioms for C.



254 Appendix

As you notice, the complex number a − bi is a useful ‘counterpart’ of a + bi,
so that we are going to give it a special name. The complex conjugate of
z = a+ bi, a, b ∈ R, is the complex number z := a− bi. So, for example,

2 + 3i = 2− 3i,
1

2
+

6i

5
=

1

2
− 6i

5
.

Thus, we have
Re z = Re z, Im z = −Im z.

Finally, we introduce the absolute value or modulus of z, via

|a+ bi| :=
√
a2 + b2, a, b,∈ R.

For example,

|1 + 3i| =
√

10, |1
2
− i

2
| =

√
1

4
+

1

4
=

√
2

2
.

Note that we have the rule
zz = |z|2,

as observed in (A.2), and its consequence

1

z
=

z

|z|2

when z 6= 0.

We also have
z + w = z + w, zw = z w.

A complex number is often depicted as a point in R2, which we refer to as the
complex plane. The x-axis is the ‘real axis’ and the y-axis is the ‘imaginary
axis.’ Indeed, if z = x+ iy then we represent z as the point (x, y) as in Figure
A.1.

The distance from the point z to the origin corresponds to |z| =
√
x2 + y2.

The angle t the point z makes with the positive x-axis is referred to as the
argument of z. It can be found via

cos t =
Re z

|z|
, sin t =

Im z

|z|
.

Thus we can write
z = |z|(cos t+ i sin t).

The following notation, due to Euler, is convenient:

eit := cos t+ i sin t.
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t = arg z

0

y = Imz z = x+ yi = reit

x = Rez real axis

imaginary axis

r = |z|

Figure A.1: A complex number in the complex plane.

Using the rules for cos(t+ s) and sin(t+ s), one can easily check that

eiteis = ei(t+s).

In addition, note that
eit = e−it.

Thus for z = |z|eit 6= 0, we have that z−1 = 1
|z|e
−it.

We will be solving quadratic equations. It is often most convenient to complete
the square. Let us illustrate this with an example.

Example A.2.1. Solve z2 + 4z + 9 = 0. Completing the square, we get
(z + 2)2 − 4 + 9 = 0. Thus (z + 2)2 = −5. This yields z + 2 = ±i

√
5, and we

find z = −2± i
√

5 as the solutions. �

Next, let us solve zn = ρ.

Example A.2.2. Solve zn = ρ. Let us write ρ = reiθ with r ≥ 0 and θ ∈ R.
Then we have zn = rei(θ+2kπ), where k ∈ Z. Now we find z = n

√
re

i(θ+2kπ)
n ,

k ∈ Z. This leads to the solutions

z = n
√
re

i(θ+2kπ)
n , k = 0, . . . , n− 1.

�

Exercise A.2.3. In this exercise we are working in the field C. Make sure
you write the final answers in the form a+ bi, with a, b ∈ R. For instance, 1+i

2−i
should not be left as a final answer, but be reworked as

1 + i

2− i
=

(
1 + i

2− i

)(
2 + i

2 + i

)
=

2 + i+ 2i+ i2

22 + 12
=

1 + 3i

5
=

1

5
+

3i

5
.
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Notice that in order to get rid of i in the denominator, we decided to mul-
tiply both numerator and denominator with the complex conjugate of the
denominator.

(i) (1 + 2i)(3− 4i)− (7 + 8i) =

(ii) 1+i
3+4i =

(iii) Solve for x in (3 + i)x+ 6− 5i = −3 + 2i.

(iv) Find det

[
4 + i 2− 2i
1 + i −i

]
.

(v) Compute
[
−1 + i 2 + 2i
−3i −6 + i

] [
0 1− i

−5 + 4i 1− 2i

]
.

(vi) Find
[
2 + i 2− i

4 4

]−1
.

A.3 The Field Axioms

A field is a set F on which addition and multiplication

+ : F× F→ F, · : F× F→ F,

are defined satisfying the following rules:

1. Closure of addition: for all x, y ∈ F we have that x+ y ∈ F.

2. Associativity of addition: for all x, y, z ∈ F we have that (x+ y) + z =
x+ (y + z).

3. Commutativity of addition: for all x, y ∈ F we have that x+y = y+x.

4. Existence of a neutral element for addition: there exists a 0 ∈ F so
that x+ 0 = x = 0 + x for all x ∈ F.

5. Existence of an additive inverse: for every x ∈ F there exists a y ∈ F
so that x+ y = 0 = y + x.

6. Closure of multiplication: for all x, y ∈ F we have that x · y ∈ F.

7. Associativity of multiplication: for all x, y, z ∈ F we have that (x · y) ·
z = x · (y · z).
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8. Commutativity of multiplication: for all x, y ∈ F we have that x · y =
y · x.

9. Existence of a neutral element for multiplication: there exists a
1 ∈ F \ {0} so that x · 1 = x = 1 · x for all x ∈ F.

10. Existence of a multiplicative inverse for nonzeros: for every x ∈
F \ {0} there exists a y ∈ F so that x · y = 1 = y · x.

11. Distributive law: for all x, y, z ∈ F we have that x · (y+ z) = x · y+x · z.

We will denote the additive inverse of x by −x, and we will denote the mul-
tiplicative inverse of x by x−1.

Examples of fields are:

• The real numbers R.

• The complex numbers C.

• The rational numbers Q.

• The finite field Zp, with p prime. Here Zp = {0, 1, . . . , p− 1} and addition
and multiplication are defined via modular arithmetic.

As an example, let us take p = 3. Then Z3 = {0, 1, 2} and the addition
and multiplication table are:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

,

. 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

.

So, in other words, 1 + 1 = 2, 2 + 1 = 0, 2 · 2 = 1, 0 · 1 = 0, etc. In
fact, to take the sum of two elements we take the usual sum, and then
take the remainder after division by p = 3. For example, to compute 2 + 2
we take the remainder of 4 after division by p = 3, which is 1. Similarly
for multiplication. Regarding additive and multiplicative inverses, note for
instance that −1 = 2, 2−1 = 2.

The tables for Z2 are:

+ 0 1

0 0 1
1 1 0

,

. 0 1

0 0 0
1 0 1

.
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The tables for Z5 are:

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

,

. 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

.

In Z5, we have for instance −1 = 4, −2 = 3, 2−1 = 3, 4−1 = 4.
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addition of vectors, 11
additive inverse, field, 256
additive inverse, vector space, 112
adjacency matrix, 86
adjugate, 100
argument, 254
associativity for scalar multiplica-

tion, vector space, 112
associativity of addition, field, 256
associativity of addition, vector

space, 111
associativity of multiplication, field,

256
augmented matrix, 3

basic variables, 7
basis, 42, 118
bijective, 144
block matrix, 71

Cauchy–Schwarz inequality, 185
characteristic equation, 161
characteristic polynomial, 162
closure of addition, field, 256
closure of addition, vector space,

111
closure of multiplication, field, 256
closure of scalar multiplication,

vector space, 112
coefficient matrix, 3
cofactor, 90
column, 2
column space, 36
commutativity of addition, field,

256

commutativity of addition, vector
space, 111

commutativity of multiplication,
field, 257

compact singular value decomposi-
tion, 215

companion matrix, 177
completion, 56
complex conjugate, 254
complex plane, 254
composition, 140
conjugate transpose, 183
connected graph, 60
consistent, 20
coordinates, 124
coordinates (of a vector), 48
cosine rule, 217
counter example, 34
cross product, 226

degree of a polynomial, 113
determinant, 94
diagonal entries, 69
diagonal matrix, 75
diagonalizable, 164
dimension, 44, 118
direct sum, 36, 115
directed graph, 57
discrete cosine transform, 133
discrete sine transform, 226
distance between vectors, 188
distributive law (first), vector space,

112
distributive law (second), vector

space, 112
distributive law, field, 257

259
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dot product, 181

eigenspace, 162
eigenvalue, 161
eigenvector, 161
entry, 2
error detecting code, 160
even permutation, 94

Fibonacci sequence, 176
field, 256
finite impulse response filter, 158
free variable, 7
frequency, 132

Gaussian elimination, 5
generalized inverse, 228
Gram matrix, 189
Gram–Schmidt process, 194

Hermitian, 206
homogeneous, 3, 18
Householder matrix, 225

identity mapping, 144
identity matrix, 21
imaginary part, 253
incidence matrix of a graph, 57
inconsistent, 20
injective, 142
inverse, 66
invertible, 66, 144
isometry, 198
isomorphic, 144
isomorphism, 144

kernel, 141

leading principal minor, 98
least squares solution, 203
left inverse, 84
length, 182
Leontief input-output model, 85
linear combination of vectors, 12
linear dependence relation, 115
linear map, 135

linear transformation, 135
linearly dependent, 40, 115
linearly independent, 39, 115
loop, 58
lower triangular matrix, 75
LU factorization, 76

main diagonal, 21
Markov chain, 174
matrix multiplication, 62
minimal rank completion, 56
modulus, 254
Moore-Penrose inverse, 228
multiplicative inverse, field, 257

neutral element for addition, field,
256

neutral element for addition, vec-
tor space, 111

neutral element for multiplication,
field, 257

nilpotent, 84
nontrivial solution, 115
norm, 182
null space, 36
nullity, 46

odd permutation, 94
one-to-one, 142
onto, 140
orthogonal, 186
orthogonal basis, 194
orthogonal projection, 190
orthogonal set, 193
orthonormal basis, 194
orthonormal set, 193

parallelepiped, 101
partial matrix, 56
partial pivoting, 10
particular solution, 19
partitioned matrix, 71
permutation, 93
pivot, 7
pivot column, 7
positive definite, 209
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positive semidefinite, 209
principal component analysis, 229
projection, 172
purely imaginary, 253
Pythagoras rule, 186

QR factorization, 199
quadratic form, 224

range, 140
rank, 46
real part, 253
recurrence relation, linear, 178
reduced row echelon form, 8
right inverse, 84
row, 2
row echelon form, 7
row reduction, 5
row space, 36
row stochastic, 175

scalar, 12
scalar multiplication of vectors, 11
Schur complement, 82
similar, 149, 164
similarity matrix, 164
singular value decomposition, 209
singular values, 212
skew-Hermitian, 218
Span, 14, 117
spanning forest, 59
spanning tree, 60
square root of a matrix, 224
standard basis for Rn, 44
standard basis for Rm×n, 119
standard basis for Rn[t], 118
standard matrix, 138
subspace, 114
subspace of Rn, 33
surjective, 140
symmetric matrix, 206

Toeplitz matrix, 226
trace, 81
transpose, 65
transposition, 93

tree, 60
trivial solution, 39, 115

unit lower triangular matrix, 75
unit multiplication rule, vector

space, 112
unit upper triangular matrix, 75
unitary, 198
upper triangular matrix, 75

Vandermonde matrix, 105
vector in Rn, 11
vector space, 111

walk, 58

zero vector, 12
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