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EXERCISE SET 1.1

11.

(b) Not linear because of the term x ..
(d) Not linear because of the term xﬁ.

(e) Not linear because of the term 2%°.

Since each of the three given points must satisfy the equation of the curve, we have the
system of equations

2 _
ax; +bx +c =y,
2 _
axs + bx, + ¢ =y,

2 —
ax; + bxy + ¢ =Y,

If we consider this to be a system of equations in the three unknowns a, b, and c, the
augmented matrix is clearly the one given in the exercise.

The solutions of x, + kx, = ¢ are x; = ¢ — kt, x, = t where ¢ is any real number. If these
satisfy x, + €x, = d, then ¢ — kt + €t = d, or (£ — k)t = d — ¢ for all real numbers ¢. In
particular, if £ = 0, then d = ¢, and if ¢ = 1, then € = k.

If x —y = 3, then 2x — 2y = 6. Therefore, the equations are consistent if and only if k = 6;
that is, there are no solutions if k¥ # 6. If k¥ = 6, then the equations represent the same line,
in which case, there are infinitely many solutions. Since this covers all of the possibilities,
there is never a unique solution.






EXERCISE SET 1.2

(e) Not in reduced row-echelon form because Property 2 is not satisfied.
(f) Not in reduced row-echelon form because Property 3 is not satisfied.

(g) Not in reduced row-echelon form because Property 4 is not satisfied.

(a) The solution is
Xy =05

7, =223, =8

x1:7—4x3+8x2:—37

(b) Let x, =t. Then x, = 2 — t. Therefore
Zy=3+9-4x,;=3+9-4@2~-1)=-5+ 131
2, =6+50-8r,=6+5-82-1)=-10+ 13t

(a) In Problem 6(a), we reduced the augmented matrix to the following row-echelon
matrix:

By Row 3, &, = 2. Thus by Row 2, x, = 5z, — 9 = 1. Finally, Row 1 implies that x, = -
x, — 2 x4 + 8 = 3. Hence the solution is

x, =3
x2=1
Xy =2
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(¢) According to the solution to Problem 6(c), one row-echelon form of the augmented
matrix is

1 -1 2 -1 -1
0 1 -2 0 0
0 0O o0 0 0
0 0O o0 0 0

Row 2 implies that y = 2z. Thus if we let 2 = s, we have y = 2s. Row 1 implies that «x
=-1+y-22+w. Thusifweletw =t, thenx =-1 +2s-2s +t orx = -1 + t. Hence
the solution is

x=-1+t
Yy =2S
2=3s
w=1

(a) In Problem 8(a), we reduced the augmented matrix of this system to row-echelon
form, obtaining the matrix

1 3/72 -1
0 1 3/4
0 0 1

Row 3 again yields the equation 0 = 1 and hence the system is inconsistent.

(¢) In Problem 8(c), we found that one row-echelon form of the augmented matrix is

1 -2 3
0 0
0O 0 O

Again if we let x, = ¢, then x|, = 3 + 2x, = 3 + 2.
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11. (a) From Problem 10(a), a row-echelon form of the augmented matrix is

[1 -2/5 6/5 0}

0 1 27 5

If we let x, = ¢, then Row 2 implies that x, = 5 — 27f. Row 1 then implies that x, =
(=6/5)xy + (2/5)x, = 2 — 121. Hence the solution is

x1=2—12t
2, =5-2T1

=1

(e¢) From Problem 10(c), a row-echelon form of the augmented matrix is

/2 7/2 0 7/2
1 2 -1 4
0o 1 -1 3
0 0 0 0

oS O O
S O O o

If we let y = t, then Row 3 implies that x = 3 + . Row 2 then implies that

w=4-2x+t=-2-1.

Now let v =s. By Row 1, w = 7/2 — 2s — (1/2)w — (7/2)x = -6 — 2s — 3t. Thus we have
the same solution which we obtained in Problem 10(c).

13. (b) The augmented matrix of the homogeneous system is



If we let &, = 4s and x, = t, then Row 2 implies that

4x2:—4t—4s or x,=-t-s

Now Row 1 implies that

3.951:—x2—45—t:t+s—4s—t:—3$ or x,=-S

Therefore the solution is

15. (a) The augmented matrix of this system is

2 -1 3 4 9
1 o -2 7 11
3 -3 1 5 8
2 1 4 4 10
Its reduced row-echelon form is
1 0 0 0 -1
0O 1 0 0 0
0O O 1 0 1
0O 0 0 1 2
Hence the solution is

I =-1

I,=0

I,=1

Exercise Set 1.2
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(b) The reduced row-echelon form of the augmented matrix is

1 1.0 0 1 O
00 1 0 1 0
00 0 1 0 O
0 00 0 0 O

If we let Z, = s and Z, = t, then we obtain the solution

=-s—1
=S

{

0

l

Z
Zy
Zy
Z,
Zs

17. The Gauss-Jordan process will reduce this system to the equations

x+2y—-32=4
y -2z =10/7

(a>-16)z=a -4

If a = 4, then the last equation becomes 0 = 0, and hence there will be infinitely many
solutions—for instance, 2 = ¢,y =2t + %, x=-2 (2t + %) + 3t + 4. If a = — 4, then the last
equation becomes 0 = -8, and so the system will have no solutions. Any other value of a will
yield a unique solution for z and hence also for ¥ and x.

19. One possibility is



21.

23.

Exercise Set 1.2

Another possibility is

If we treat the given system as linear in the variables sin o, cos B, and tan v, then the
augmented matrix is

1 3 0
2 5 3 0
-1 -5 5 0

This reduces to

so that the solution (for o, B, Y between 0 and 2 ) is
simou=0=0a=0,mx 2n
cosB=0=PB=mn/2, 302

tany=0=v=0,m 2n

That is, there are 3e2e3 = 18 possible triples a, B, Y which satisfy the system of equations.

If A = 2, the system becomes

=0
20, = 3%, + 5= 0

—2y + 20, —x,=0

Thus x, = 0 and the third equation becomes ~1 times the second. If we let x, = {, then x,
= -2L.
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25. Using the given points, we obtain the equations
d=10
a+b+c+d="7

270 + 9b + 3c + d = -11

64a + 16b + 4c + d = -14

If we solve this system, we find that a = 1, b = -6, ¢ = 2, and d = 10.

27. (a) If a =0, then the reduction can be accomplished as follows:

b
a b - 15 p L 1 0
al” @\ = ad—b o I
¢ ¢ d 0 ¢ 0 1
a

0 b ¢ d p ¢ 4 1 0
d 0 b |7 1710 1
¢ 0 b 0 1

Where did you use the fact that ad — bc # 0? (This proof uses it twice.)
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10

There are eight possibilities. They are

29.

0

, where p, g, are any real numbers,
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31.

(a)

(b)

(c)

(d)

False. The reduced row-echelon form of a matrix is unique, as stated in the remark in
this section.

True. The row-echelon form of a matrix is not unique, as shown in the following

example:
1 2 1 2
_)
1 3 0 1

I I R R P

but

False. If the reduced row-echelon form of the augmented matrix for a system of 3
equations in 2 unknowns is

S O
o = O
oS o Q

then the system has a unique solution. If the augmented matrix of a system of 3
equations in 3 unknowns reduces to

S O =
S O
S O
oS = O

then the system has no solutions.

False. The system can have a solution only if the 3 lines meet in at least one point
which is common to all 3.
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(¢) The matrix AE is 4 x 4. Since B is 4 X 5, AE + B is not defined.
(e) The matrix A + Bis 4 x 5. Since E'is 5 x4, E (A + B)is b x 5.

(h) Since ATis 5 x 4 and E is 5 x 4, their sum is also 5 x 4. Thus (AT + E)D is 5 x 2.

(e) Since 2B is a 2 x 2 matrix and C is a 2 x 3 matrix, 2B — C is not defined.

(g) We have

|

[V

~

o

+

[\

&

-

Il

|

W

|
O =
[\ I eI
N\

+

| =
[0 <IN \CI\V]
\] \}
(o) (op)

13 8 -39 21 24
=33 2 5bH|=| 9 6 -15
11 4 10 33 -12 30

() We have tr(D —3E) = (1 - 3(6)) + (0 - 3(1)) + (4 - 3(3)) = -25.

(b) Since Bis a 2 x 2 matrix and A is a 3 x 2 matrix, BA is not defined (although AB is).

(d) We have
12 -3
AB =| -4 5
4 1

13



14

Hence
(e) We have
A(BC) =
(f) We have
ccl =

3 45 9
(AB)C = |11 -11 17
7 17 13
3 0 3
1 15 3
1 2 = 11
6 2 10
11 7
1 3
1 4 2 21
4 1 |=
3 1 5 17
2 5

45
-11
17

17
35

|

17
13

Exercise Set 1.3

() We have tr(4E” — D) = tr(4E — D) = (4(6) — 1) + (4(1) — 0) + (4(3) — 4) = 35.

(a) The first row of A is

Thus, the first row of AB is

AB

(¢) The second column of B is

=[3-27 |6 -2 4
0 1 3
7T 7 5
= [67 41 41]
-2
By =| 1
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Thus, the second column of AB is

3 -2 7 —2 41
AB, = | 6 5 4 1 |=| 21
0 9 7 67

(e) The third row of A is

Thus, the third row of AA is

3 =2 7
AA=[0 4 9] |6 5 4
0 4 9
=[24 56 97]
9. (a) The product yA is the matrix
(Y1 + Yoy + - + Y, 0, YOy + Yglgg + - + Y Qg

yla’ln +y2a2n teety,0 ]

m-omn

We can rewrite this matrix in the form

yylaygay ay ) +yylay ag - ay )+ +y, la,, a,.,--a

m 'rrm]

15

which is, indeed, a linear combination of the row matrices of A with the scalar

coefficients of y.
(b) Lety =1[y,, ¥y, -+, ¥,,]
and A =| A, | bethe m rows of A.
Ay
,

Yy A

A
by 9a, yA = yz. 2

YU A
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Taking transposes of both sides, we have

Y
(WA =ATY" = (A | A, |-~ |A,)
ym
u o4 !
| A
: = WA YAl 1y,A,
YU A

11. Let fij denote the entry in the ™" row and j' column of C(DE). We are asked to find Sy In
order to compute f,,, we must calculate the elements in the second row of C' and the third
column of DE. According to Equation (3), we can find the elements in the third column of
DE by computing DE, where E| is the third column of £. That is,

1 5 273
fog =1B15] | |-1 0 1]]|2
2 4|3

3
19
=[3158]| 0|=182
25
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15.

17.

21.

(a)

(a)

(b)

(d)

By block multiplication,

e e e e ij

The partitioning of A and B makes them each effectively 2 x 2 matrices, so block
multiplication might be possible. However, if

Az{An Alz} and Bz{Bn 312}
Ay Ay By By

then the products A, B ,, A,,B,,, A, By, A 5Bos, Ay By, AyBsy, Ay B, and A,,B,, are

1112 21710
all undefined. If even one of these is undefined, block multiplication is impossible.

If 7 > 5, then the entry @y has row number larger than column number; that is, it lies
below the matrix diagonal. Thus [%'] has all zero elements below the diagonal.

If |2 —j] > 1, then either 2 —j > 1 or 2 —j < —1; that is, either 2 >7 + 1 orj > ¢ + 1. The
first of these inequalities says that the entry a, . lies below the diagonal and also below
the “subdiagonal“ consisting of all entries immediately below the diagonal ones. The
second inequality says that the entry a,; lies above the diagonal and also above the
entries immediately above the diagonal ones. Thus we have

fa; ay O 0 0 0 ]
Qg1 Qgy  Ggg 0 0 0
0 Qgy Qg3 Qgq O 0
@) = 0 0 ay ay ay O
0 0 0 Qsy Qg5 Ogg
| 0 0 0 0 Ags g |
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23.
x S @
J@) = 2
1
@ - 2
@ = 0 >
S@ =z
X
) = !
J@) = 4
(a)
0
oo=(2)
(b)

f@Y

f[xl)_(xl+xzj
, x,
()

27.

(d)

The only solution to this system of equations is, by inspection,

Exercise Set 1.3

J @)
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a b
29. (a) LetB = { c d } Then B? = A implies that

a?+bc=2 ab +bd =2

()
ac +cd =2 bc+d?=2

One might notethata =b=c=d =1anda = b = ¢ = d = -1 satisfy (*). Solving the
first and last of the above equations simultaneously yields a® = d?. Thus a = =d. Solving
the remaining 2 equations yields c(a + d) = b(a + d) = 2. Therefore a # —d and a and
d cannot both be zero. Hence we have a = d # 0, so that ac = ab =1, or b = ¢ = 1/a.
The first equation in (*) then becomes a® + 1/a? = 2 or a* — 2a? + 1 = 0. Thus a = +1.
That is,

are the only square roots of A.

(b) Using the reasoning and the notation of Part (a), show that either a = —d or b =
If @ = —d, then a® + bc = 5 and bc + a® = 9. This is impossible, so we have b =
This implies that a? = 5 and d? = 9. Thus

R R R I

are the 4 square roots of A.

c=0.
c=0.

5 0 v
Note that if A were [ 0 5" say, then B = [ } would be a square root of A for

1
4/r -1
every nonzero real number 7 and there would be infinitely many other square roots as well.

(¢) By an argument similar to the above, show that if, for instance,

-1 0 a b
A= and B =
0 1 c d
where BB = A, then either a = —d or b = ¢ = 0. Each of these alternatives leads to a
contradiction. Why?
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31. (a) True.If A is an m x n matrix, then AT is 7 x m. Thus AAT is m x m and AT A is n X n.

Since the trace is defined for every square matrix, the result follows.

(b) True. Partition A into its row matrices, so that

n
2 T T
_| . T _
A=|: |andA _[Vl 7 Vm}
Vm
Then
[ T 7]
nn nr, N
T T
aqT = | R "o"m
T T T
LN "m'e M

Since each of the rows 7, is a 1 X » matrix, each riT is an 7 x 1 matrix, and therefore
each matrix r, 7"?18 a 1 x 1 matrix. Hence

™ — T T T
tr(AAY) =r vy +ryry+ -+, 1,

Note that since 7, Vfis just the sum of the squares of the entries in the 7" row of A, 7,
T+ ryrl+ o+ 7, " is the sum of the squares of all of the entries of A.

A similar argument works for A”A, and since the sum of the squares of the entries of AT
is the same as the sum of the squares of the entries of A, the result follows.

0 1 11
31. (c¢) False. For instance, let A = [ 0 J and B = { L1 } .

(d) True. Every entry in the first row of AB is the matrix product of the first row of A with
a column of B. If the first row of A has all zeros, then this product is zero.
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1. (a) We have

10 —4 -2
A+B=| 0 5 7
2 -6 10

Hence,

10 -4 -2 0 -2 3

(A+B)+C=| 0 5 7|+[1 7
2 -6 10 3 5 9
10 -6 1
= 1 12 11
5 -1 19
On the other hand,
8 -5 -2
B+C=|1 8 6
7T -2 15

Hence,

8§ -5 =2 10 -6 1

2 -1 3
A+(B+O)=| 0 4 5l+|1 8 6l=| 1 12 11
) 4 7 -2 15 5 -1 19

21



22

1. (c¢) Sincea + b = -3, we have

0 -2 3 0
(a+b)C=(=3)|1 7 4|=|-3
3 5 9 -9
Also
0 -8 12 0 14 =21
aC+bC=| 4 28 16 |+| -7 -49 -28
12 20 36 21 -35 -63
3. (b) Since
100 -4 =271 T10
(A+B)Y=| 0 5 7| =|-4
2 -6 10 -2
and
2 0 =2 8 0 4
AT +BT= -1 4 1]|+]|-83 1 -7
3 5 —4 -5 2 6

the two matrices are equal.

Exercise Set 1.4
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3. (d) Since
28 28 6]" 28
(AB)Y'=]20 -31 38| =|-28
0 —-21 36 6
and
8 0 4 2 0 =2
B'aAT=| 8 1 —7||-1 4 1=
-5 2 6 3 5 4

the two matrices are equal.

5. (b)

-1

rv-1_ | 2 4| _ 114 4

=[5 sl

(B—I)T:i 4 3 T:i 4 37"
20|-4 2 20| -4 2

7. (b) We are given that (TA)! = [ _1 ;

TA=(TAH = {

Thus,

7
}. Therefore

Tl

AZ[Z; 3}7}

28
—28

2 7
1 3

|

20
—31
38

21
36

23
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7. (d) If(7+24)! = {_

5 2
13 13 1
IA = 13 13 |
4 1 0
13 13
9. (b) We have
p(A) =2

11. Call the matrix A. By Theorem 1.4.5,

Al =

1

since cos? @ + sin? 0 = 1.

]

cosO

sin@

2
5}then[+2A:{

18

13
4

13

c0s?0 + sin’6

—sinf

cos@

cos@

sin@

Exercise Set 1.4

) 5 2
-1 2| 132 13
= 1313 . Hence

45 41

13 13
2 29 1
13 sothat A = 13 13
12 2 6
13 13 13

—sinf
cos0
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13. Ifaja,, - a, #0, thena, # 0, and hence 1/a,, is defined for 2 = 1,2, . . ., n. It is now easy
to verify that

Ya, 0 - 0
A7l = 0 VYagp - 0
0 0 - 1a,,

15. Let A denote a matrix which has an entire row or an entire column of zeros. Then if B is any
matrix, either AB has an entire row of zeros or BA has an entire column of zeros,
respectively. (See Exercise 18, Section 1. 3.) Hence, neither AB nor BA can be the identity
matrix; therefore, A cannot have an inverse.

17. Suppose that AB = 0 and A is invertible. Then A~*(AB) = A™'0 or IB = 0. Hence, B = 0.

19. (a) Using the notation of Exercise 18, let

Then

so that
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Thus the inverse of the given matrix is

.
2 2
L1y
2 2
o o = -1
2 2
4 o 1
i 2 2]

21. We use Theorem 1.4.9.

(a) If A = BBT, then

AT = (BB™)T = (B")"B" = BBT = A

Thus A is symmetric. On the other hand, if A = B + B, then

AT=B+B") =B"+ (B") =B"+B=B+B"=A

Thus A is symmetric.
(b) If A =B - BT, then
AT =B -B"" =B+ (-1)B"]" =B + [(-1)B"|"

=B"+ (DB =B"+ (1)B=B"-B=-A

Thus A is skew-symmetric.

23. Let
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Then

Ly T2 X3

Log

|
—
1l
[ S S —
s )
[ e
&
)
—
&
)
]

L3y L3g X33

Xyt X3 Xgt 39 gt Agg
= | Xt Xgt Aoy Xzt g

| Xo1 T X317 Lgg T35 Xz + Xgg

Since AA™! = I, we equate corresponding entries to obtain the system of equations

Xy +2g; =1
212 T30 =

23 +253 =0

Xy +2q; =0
212 T9 =
213 T3 =
Zoy T3 =

oo +259 =0

ZLoq +Xqq =1

The solution to this system of equations gives

12 1/2 -1/2
A= -1/2  1/2  1/2
12 -1/2  1/2

25. We wish to show that A(B - C ) = AB — AC. By Part (d) of Theorem 1.4.1, we have
AB-C) =AB + (-0)) = AB + A(-C). Finally by Part (m), we have A(-C) = -AC and
the desired result can be obtained by substituting this result in the above equation.
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27. (a) We have

AT A = (AA---A) (AA -+ A)
\ 2 Sl

r s
factors factors
=AA---A=A"TS
[ —
r+s
factors

On the other hand,

(A" = (AA---A) (AA---A) - (AA---A)
—_—— ——

r 7 r
factors factors factors
S
factors

=AA---A

———

rs
factors

(b) Suppose that » < 0 and s < 0; let p = —r and o = —s, so that
AT AS = AP A

=(AHP A D (by the definition)

= (AhHpre (by Part (a))
= A-(p+o) (by the definition)
= A_P_G

- AV+S

Exercise Set 1.4
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Also
(A7 = APy
— [(A)Po (by the definition)
= (1can)e (by the definition)
_ ([(A,l),l)]p) o (by Theorem 1.4.8b)

= ([A]P)° (by Theorem 1.4.8a)
— APo (by Part (a))
- A »Eo

:ATS

29. (a) If AB = AC, then
A(AB) = A1(AC)

or

(ATAB=A1TAC

or

B=C

(b) The matrix A in Example 3 is not invertible.

31. (a) Any pair of matrices that do not commute will work. For example, if we let

then
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whereas

9 9 1 3
A° + 2AB + B° =
0 1

(b) In general,
A+B)?=A+B)(A+B)=A>+AB + BA + B®

33. If

2
a, 0 0 a0 0
A=| 0 ay 0 [then A=| 0 a3 O
0 0 ag 0 0 ai

2 _ 71 e 2 _ 2 _ 2 _ _ _ _
Thus, A® = I'if and only if aj, = a5, = a5, = 1,0ora,, = +1, a,, = 1, and a4, = +1. There are

exactly eight possibilities:

1 0 0 0O ojj1r O Off1 O O

0 1 0110 0j{o -1 0|0 -1 O

0 0 1 0 0 =110 0 1 0 0 -1
-1 0 O -1 0 O -1 0 0 -1 0 0
0 1 O 0O 1 O 0 -1 O 0 -1 0
0 0 1 0 0 -1 0O 0 1 0 0 -1

35. (b) The statement is true, since (A — B)? = (-(B - A))? = (B - A)~

(¢) The statement is true only if A! and B! exist, in which case

(ABY(BA) =AB'BA = AL A =AAT =1,
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5.

(a)

(c)

(e)
€))

(a)

(©)

(a)
(b)

(c)

The matrix may be obtained from 7, by adding -5 times Row 1 to Row 2. Thus, it is
elementary.

The matrix may be obtained from /, by multiplying Row 2 of 1, by \/é Thus it is
elementary.

This is not an elementary matrix because it is not invertible.

The matrix may be obtained from 7, only by performing two elementary row operations
such as replacing Row 1 of I, by Row 1 plus Row 4, and then multiplying Row 1 by 2.
Thus it is not an elementary matrix.

If we interchange Rows 1 and 3 of A, then we obtain B. Therefore, £, must be the
matrix obtained from /, by interchanging Rows 1 and 3 of /,, i.e.,

E, =

= o O
S = O
S O~

If we multiply Row 1 of A by -2 and add it to Row 3, then we obtain C. Therefore, £
must be the matrix obtained from 7, by replacing its third row by -2 times Row 1 plus
Row 3, i.e.,

1 0 0
-2 0 1

R, < Rz, Row 1 and Row 2 are swapped
R, — 2R,
R, — 3R,

R, — 2R, +R,

31
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(a)

3 4 -1 0
1 0 3|0 1
12 5 4]0 0
1 0 3|0 1
3 4 -1]1 0
2 5 4]0 0
1 0 310
0 -10 | 1
0 5 -101]0

0 4 10| 1
01 0]
1 0 3|0
01 0]-1
0 0 10| 5
10 3
2
0 1 0]-1
0 0 L
2

Thus, the desired inverse is

Interchange Rows
1 and 2.

Add -3 times Row 1
to Row 2 and -2 times
Row 1 to 3.

Add -1 times Row 2
to Row 3.

Add —4 times Row 3
to Row 2 and inter-
change Rows 2 and 3.

Multiply Row 3 by
—1/10. Then add -3
times Row 3 to Row 1.

N = o>

Exercise Set 1.5
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7.

(c)

Thus

—
o O

N[—= O

o
|

—_ O

Lo

DN D= Do+

[ )

S = O

— o O

S = O
— o O

NO[—= = O

DN D+ Do

O =

D= DN~ DN~

DO DO DO

Subtract Row 1
from Row 3.

Subtract Row 2 from
Row 3 and multiply
Row 3 by —1/2.

Subtract Row 3
from Rows 1 and 2.

DO DO +— Do

DO = D~ D

33
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9.

(e)

Thus

(b) Multiplying Row 7 of

o= O

o
D= O DN

o= O O

ND|—= O Do

o O O

Add Row 1 to Row 2
and subtract the new
Row 2 from Row 3.

Add Row 3 to Row 2
and then multiply
Row 3 by -1/2.

Subtract Row 3

from Row 1.
1 1]
2 2
0 1
1 1
2 2
0 0 0
1 0 0
0 1 0
0 0 1

Exercise Set 1.5
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by 1/k, for 7 = 1, 2, 3, 4 and then reversing the order of the rows yields /, on the left
and the desired inverse

0o 0 0 1k

0 0 kg O

0 1k, 0 0
Ve 0O 0 0

on the right.

(¢) To reduce

k 0 0 0|1 0 O O
1 £ 0 00 1 0 O
01 kx 00 O 1 O
0 01 K]0 O O 1

we multiply Row ¢ by 1/k and then subtract Row ¢ from Row (¢ + 1) for 7 = 1, 2, 3.
Then multiply Row 4 by 1/k. This produces /, on the left and the inverse,

1/k 0 0 0
“1/K* Yk 0 0

VK -1/k* Yk 0

Ukt K -1k* 1k

on the right.

13. (a) E,E,EA =

1 0 Off1r O O0jJj1 0 2|1 0 =2
0 1/4 0|0 1 =3{|0 1 Ofl0 4 3|=1
o o0 10 O 1{{0 O 1{{0 O 1
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15.

17.

19.

21.

Exercise Set 1.5

(b) A = (B,E,E)" = E{'E;'E;!

1 0 -2 1 0 0 1 0 O
=0 1 0 1 3 0 4 0
0 0 1 0 0 1 0 0 1

If A is an elementary matrix, then it can be obtained from the identity matrix 7 by a single
elementary row operation. If we start with / and multiply Row 3 by a nonzero constant, then
a = b = 0. If we interchange Row 1 or Row 2 with Row 3, then ¢ = 0. If we add a nonzero
multiple of Row 1 or Row 2 to Row 3, then either b = 0 or a = 0. Finally, if we operate only
on the first two rows, then a = b = 0. Thus at least one entry in Row 3 must equal zero.

Every m x n matrix A can be transformed into reduced row-echelon form B by a sequence
of row operations. From Theorem 1.5.1,
B=EE , ---EA

1

where E\, E,, ---, E, are the elementary matrices corresponding to the row operations. If we
take C = E E, | --- £, then C is invertible by Theorem 1.5.2 and the rule following Theorem
1.4.6.

(a) First suppose that A and B are row equivalent. Then there are elementary matrices

E, -, Ep such that A = | --- EpB. There are also elementary matrices Epﬂ, e Epw
such that Ep+1 Eer qA is in reduced row-echelon form. Therefore, the matrix Ep+1
Ep+ qu - K pB is also in (the same) reduced row-echelon form. Hence we have found,
via elementary matrices, a sequence of elementary row operations which will put B in

the same reduced row-echelon form as A.

Now suppose that A and B have the same reduced row-echelon form. Then
there are elementary matrices £, ---, Ep and Ep+1, e Ep+q such that £, --- EpA = EW1
Ep+ B. Since elementary matrices are invertible, this equation implies that
A = E’f EIIE’p+1 Ep+qB' Since the inverse of an elementary matrix is also an

elementary matrix, we have that A and B are row equivalent.

The matrix A, by hypothesis, can be reduced to the identity matrix via a sequence of
elementary row operations. We can therefore find elementary matrices £, E,, --- E, such
that

Ek...E’Z.E’l.Azfn

Since every elementary matrix is invertible, it follows that

A=E'E} - E
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23. (a) True. Suppose we reduce A to its reduced row-echelon form via a sequence of
elementary row operations. The resulting matrix must have at least one row of zeros,
since otherwise we would obtain the identity matrix and A would be invertible. Thus
at least one of the variables in x must be arbitrary and the system of equations will
have infinitely many solutions.

(b) See Part (a).

(d) False. If B = FA for any elementary matrix E, then A = E-'B. Thus, if B were
invertible, then A would also be invertible, contrary to hypothesis.
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This system of equations is of the form Ax = b, where

By Theorem 1.4.5,

Thus
6 -1 2 3
X = A_lb = =
) 1 9 -1
That is,
x, =3 and Zy =—1
This system is of the form Ax = b, where
1 3 1 x 4
A=l 2 2 1 X=| Xy and b =| -1
2 3 1 Zg 3

By direct computation we obtain

39
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-1 0 1
A= 0 -1 1
2 3 -4
so that
-1
x=Ab=| 4
-7
That is,

x,=-1,2,=4,and x, = -7

1

The system is of the form Ax = b, where

1 1 1 7
A= 1 1 -4 X=| X and b =
-4 1 1 T3

' 1 0 -1
A—1=(—} 3 1 1
5
1 -1 0
Thus,

1

x=A"b=| 5

-1

That is, x, = 1, x, = 5, and &, = 1.

10

Exercise Set 1.6
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7. The system is of the form Ax = b where

Thus

x=A_1b={

That is,
x, =2b, - 5b, and

9. The system is of the form Ax = b, where

1 2 1
A=|l1 -1 1 X =
1 1 0
We compute
-1/3
A= 1/3
2/3

so that

Zy, =-b, + 3b,
2
Xy and b =
3
/3 1
-1/3 0
1/3 -1

~(1/3)by + (1/3)b, + by
x =A"b| (1/3)b - (1/3)b,
(2/3)by + (1/3)by — b

41
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9.

(a) In this case, we let

Then

x = A7

16/3
—4/3
-11/3

That is, x, = 16/3, x, = —4/3, and 2, = —11/3.

(¢) In this case, we let

Then

x = A7'b

That is, #, = 3, x, = 0, and x, = 4.

3
0
—4

Exercise Set 1.6
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11. The coefficient matrix, augmented by the two b matrices, yields

1 5|12
3 24| 5

This reduces to

I 5 |1]-=2 Add -3 times Row 1
0 171111 to Row 2.
or
1 0]22/17 | 21/17 Divide Row 2 by 17 and add
0 1] 117 | 11/17 5 times Row 2 to Row 1.

Thus the solution to Part (a) is x, = 22/17, x, = 1/17, and to Part (b) is x, = 21/17,
x, = 11/17.

15. As above, we set up the matrix

This reduces to

Add appropriate
0O -1 -1| 5| =3 multiples of Row 1
0 -1 -=11| 51| =3 to Rows 2 and 3.

or

Add -1 times Row 2 to
0 1 1|51 3 Row 3 and multiply
0 0 O] 0] o0 Row 2 by —1.
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or
1 0 3|-12 |7
0 1 1| 5|3 ?dg twié:e Row 2

Thus if we let x, = ¢, we have for Part (a) x; = -12 - 3t and x, = -5 — ¢, while for

Part (b) x, =7 -3t and x, = 3 — L.

17. The augmented matrix for this system of equations is

1 -2 5 b
3 3 -3 by

If we reduce this matrix to row-echelon form, we obtain

1 -2 5 b
0 1 —4 %(bz—szl)

The third row implies that b, = b, — b,. Thus, Ax = b is consistent if and only if b has the
form

bl - b2

23. Since Ax = has only x = 0 as a solution, Theorem 1.6.4 guarantees that A is invertible. By
Theorem 1.4.8 (b), A is also invertible. In fact,

(Ak)—l — (A—l)lc
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25.

27.

Since the proof of Theorem 1.4.8 (b) was omitted, we note that

At At Al AA- A=
_
k k
factors factors

Because AF is invertible, Theorem 1.6.4 allows us to conclude that A*x = 0 has only the
trivial solution.

Suppose that x, is a fixed matrix which satisfies the equation Ax, = b. Further, let x be any
matrix whatsoever which satisfies the equation Ax = b. We must then show that there is a
matrix x, which satisfies both of the equations x = x, + x, and Ax, = 0.

Clearly, the first equation implies that

This candidate for x,, will satisfy the second equation because

Ax,=AX-x) =Ax-Ax, =b-b =0

We must also show that if both Ax, = b and Ax, = 0, then A(x, + x) = b. But

AX +X) =Ax; +AX,=b+0=Db

(a) xz0andx 2y
(b) x#0andy #0

(¢) x#yand x # -y

Gaussian elimination has to be performed on (A | I to find A'. Then the product
A~'B is performed, to find x. Instead, use Gaussian elimination on (4 | B) to find x. There
are fewer steps in the Gaussian elimination, since (A | B) is am x (n+1) matrix in general,
or n X (n+1) where A is square (n X n). Compare this with (4 | I) which is n X (2n) in the
inversion approach. Also, the inversion approach only works for A 7 X 7 and invertible.
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29.

31.

Exercise Set 1.6

No. The system of equations Ax = x is equivalent to the system (A — I)x = 0. For this
system to have a unique solution, A — I must be invertible. If, for instance, A = I, then
any vector x will be a solution to the system of equations Ax = x.

Note that if x # 0 is a solution to the equation Ax = x, then so is kx for any real number k.
A unique solution can only exist if A — [ is invertible, in which case, x = 0.

Let A and B be square matrices of the same size. If either A or B is singular, then AB is
singular.
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11.

The matrix A fails to be invertible if and only if @ + b — 1 = 0 and the matrix B fails to be
invertible if and only if 2a — 3b — 7 = 0. For both of these conditions to hold, we must have
a=2andb =-1.

We know that A and B will commute if and only if
2 1({|la b 2a+b 2b+d
AB = =
1 -5||b d a—-5b b-5d
is symmetric. So 2b + d = a — bb, from which it follows that a — d = 7b.

(b) Clearly

kay, kay, kayg || 3/k 0 0
kag,  kagy kagg 0 0 7k

for any real number k£ = 0.

47
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13.

15.

17.

We verify the result for the matrix A by finding its inverse.

1 0 0]-1 2 1/4]

Multiply Row 1 by -1
and Row 3 by —-1/4.

Exercise Set 1.7

0 1 3| 0 1 0
0 0 1] 0 0 -1/4
1 0 1 2 0]

0 0 1] 0 0 -1/4

Add 2 times Row 2 to
Row 1 and -3 times
Row 3 to Row 2.

Add -1 times Row
3 to Row 1.

Thus A~! is indeed upper triangular.

(a) If A is symmetric, then A7 = A. Then (A%)T = (AA)T = ATAT = A . A = A2, so A?

is symmetric.

(b) We have from part (a) that

(242 -3A + DT = 2(A2)T — 3AT + [T = 2A2 _3A + I

From Theorem 1.7.1(b), we have if A is an 7# X n upper triangular matrix, so is A2%. By
induction, if A is an 7 X 7 upper triangular matrix, so is A* k =1, 2, 3, . . . We note that the
identity matrix [, = A? is also upper triangular. Next, if A is 7 X » upper triangular, and K
is any (real) scalar, then KA is upper triangular. Also, if A and B are 7 X 7 upper triangular
matrices, then so is A+B. These facts allow us to conclude if p(x) is any (real) polynomial,
and A is n X n upper triangular, then P(A) is an n X n upper triangular matrix.
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19.

23.

Let
x 0 0
A=]10 y O
0 0 =z
Then if A2 — 34 — 4] = O, we have
2
20 0 x 0 1 0 0
0 v 0 |-30 —4/0 1 0|=0
0 0 2° 0 0 =z 0 0 1
This leads to the system of equations
22 -3x-4=0
y>-3y-4=0
22-32-4=0

which has the solutions x = 4, -1, y = 4, -1, 2 = 4, —1. Hence, there are 8 possible choices
for x, y, and 2, respectively, namely (4, 4, 4), (4, 4, -1), (4, -1, 4), (4, -1, -1), (-1, 4, 4),
(_17 4) _l)a (_1) _la 4)7 and (_17 _17 _1)

The matrix

is skew-symmetric but

PP
0 -1

is not skew-symmetric. Therefore, the result does not hold.

In general, suppose that A and B are commuting skew-symmetric matrices. Then
(AB)T = (BA)T = AT BT = (-A)(-B) = AB, so that AB is symmetric rather than skew-
symmetric. [We note that if A and B are skew-symmetric and their product is symmetric,
then AB = (AB)T = BT AT = (-B)(-A) = BA, so the matrices commute and thus skew-
symmetric matrices, too, commute if and only if their product is symmetric.]
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25.

27.

29.

Exercise Set 1.7

Let

o]

Then

e x° y(x +xz+22) {(1) fg}

Hence, 2 = 1 which implies that # = 1, and 2% = -8 which implies that 2 = —2. Therefore,
3y = 30 and thus y = 10.

To multiply two diagonal matrices, multiply their corresponding diagonal elements to obtain
a new diagonal matrix. Thus, if D, and D, are diagonal matrices with diagonal elements
dy,...,d ande,, ... e respectively, then D D, is a diagonal matrix with diagonal elements

d.e,, ..., d,.e, . The proof follows directly from the definition of matrix multiplication.

In general, let A = [%']n «, denote a lower triangular matrix with no zeros on or below the
diagonal and let Ax = b denote the system of equations where b = [b,, b,, . . ., b, ]". Since A

is lower triangular, the first row of A yields the equation a2, = b,. Since a,, # 0, we can

solve for x,. Next, the second row of A yields the equation a,,x, + a,,x, = b,. Since we

know x, and since a,, # 0, we can solve for x,. Continuing in this way, we can solve for

successive values of x; by back substituting all of the previously found values x|, x,, . . ., %, ;.
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3 4
- —= x
5 5
4 3
5 5 7
1 2 §x
3 3
4 3 Multiply Row 1 by 5/3.
5 5 Y
i 4 5
1 —— —x
3 3 Add —4/5 times Row 1
5 4 to Row 2.
0 = —-——=x+y
L 3 3
1 2 Ex
3 3
4 Multiply Row 2 by 3/5.
0 1 ——x+-y
L 5 5
I 3
1 0 —x+=-y
5 5 Add —4/3 times Row 2
4 to Row 1.
0 1 —-—=xz+-y
L 5 5

51
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Thus,

x §95+%y
5 b
Y =—2x4+3y
5 b

We denote the system of equations by
Xy + gy + Qs + Ay, =0

(o By + Qgolly + Ugoly + Qo) L, = 0

If we substitute both sets of values for x,, x,, x,, and x, into the first equation, we obtain
A= Qg+ Qg+ 20, =0
20,1, +3a,,—2a,, =0

where a,,, a,,, a5, and a,, are variables. If we substitute both sets of values for x,, x,, ,,
and x, into the second equation, we obtain

(o) = Ogy + Qgg + 204, =0
=0

2%1 + 3@23 — Gy,

where a,,,, @,,, @y, and a,, are again variables. The two systems above both yield the matrix

which reduces to

1 0 32 -1/2 0
[o 1 1/2 -5/2 0}

This implies that
ay, =—32)a,, + (1/2)ay,
a,, =—112)a,, + (5/2)ay,
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and similarly,
Gy = (=3/2)ay, + (1/2)a,,

Uy = (~1/2)ayy + (5/2)ay,

As long as our choice of values for the numbers a,. is consistent with the above, then
the system will have a solution. For simplicity, and to insure that neither equation is a
multiple of the other, we let a,, = a,, = -1 and a,, = 0, a,, = 2. This means that
a,=1,a,=-2 a, =1, and a,, = 5, so that the system becomes

x —23&2 - Xy — X, =0

X, +5x, + 2x, =0

Of course, this is just one of infinitely many possibilities.

5. Asin Exercise 4, we reduce the system to the equations

1+56z
X =
4
~ 35-9z
vy

Since x, i, and £ must all be positive integers, we have 2 > 0 and 35 - 92 > 0 or 4 > z. Thus
we need only check the three values z = 1, 2, 3 to see whether or not they produce integer
solutions for & and y. This yields the unique solution x = 4, y = 2, 2 = 3.

9. Note that K must be a 2 x 2 matrix. Let

Then

1 4 8§ 6 -6

o 3 a b 2 0 0 | 6 4 )
c d 0 1 -1
1 2 —4 0 0
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or
1 4
2a b
2 s
1 2 |L*
or
2a+ 8¢ b+4d
—4a+6¢c -2b+3d
2a—4c b-2d
Thus
2a
—4a
- 2b
2a

Supplementary Exercises 1

8 6 -6
-b
}: 6 -1 1
—d
—4 0 0
-b-4d 8 6 -6
2b—-3d | = 6 -1 1
-b+2d —4 0 0
+ 8¢ =
+4d =6
+ 6¢ =
+3d =-1
—4c =4
—-2d =0

Note that we have omitted the 3 equations obtained by equating elements of the last
columns of these matrices because the information so obtained would be just a repeat of
that gained by equating elements of the second columns. The augmented matrix of the

above system is

8 0 8
0 4 6
6 0 6
0 3 -1

4 0 —4
0 =2 0
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The reduced row-echelon form of this matrix is

o O = O O O

o O O o o =
o O O o = O
o O o = O O
o O = = o O

Thusa=0,b=2,¢c=1,and d = 1.

11. The matrix X in Part (a) must be 2 x 3 for the operations to make sense. The matrices in
Parts (b) and (c¢) must be 2 x 2.

x Yy
(b) Let X = o w . Then

Xl -1 2| |2+3y —-x 2x+y
3 0 1| | 243w -2 224w

If we equate matrix entries, this gives us the equations

X+ 3y =-b x+3w= 6
—x=-1 -z2=-3
2e+y= 0 2e+w= 17

Thus «x = 1 and 2 = 3, so that the top two equations give y = -2 and w = 1. Since
these values are consistent with the bottom two equations, we have that

X Yy
11. (c¢) As above, let X = [ 5w ] so that the matrix equation becomes

3x+2 3y+w x+2y Ax 2 =2
—x+2z2 —y+2w 2+2w 4z | |5 4
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This yields the system of equations

20 -2y +=2 = 2
—4x + 3y +w= -2
—x +2 -2w= 5

-y -4z +2w= 4

with matrix

which reduces to

1 0 0 0 -113/37
0 1 0 0 -160/37
0 0 1 0 -20/37
0 0 0 1 —46/37

Hence, x = -113/37, y = —-160/37, 2z = -20/37, and w = —46/37.

15. Since the coordinates of the given points must satisfy the polynomial, we have
plH)y=2 = a+ b+c=2
p-H)=6 = a—- b+c=6

p@2)=3 = da +2b + ¢ =3

The reduced row-echelon form of the augmented matrix of this system of equations is

0 0 1
o 1 0 =2
o o0 1 3

Thus,a =1,b=-2,and ¢ = 3.
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17.  We must show that { —=J ) (/ -—~J ) =Iorthat (I -—J ) (I -J ) =1 (By virtue of

n-1 n-1

Theorem 1.6.3, we need only demonstrate one of these equalities.) We have

1 5 1 1
(I—Jn)(f—mJnjzf — =+,

mn 1 2
=I/- J, + J
n-1" n-1"

But J f = ndJ, (think about actually squaring J ), so that the right-hand side of the above
equation is just /, as desired.

19. First suppose that AB! = B! A. Note that all matrices must be square and of the same
size. Therefore

(ABYB = (B! A)B

or

A =B"'AB

so that

BA = B(B' AB) = (BBY)(AB) = AB

It remains to show that if AB = BA then AB~! = B! A. An argument similar to the one given
above will serve, and we leave the details to you.

21. (b) Let the % entry of A be Q. Then tr(A) = a,, + ag, + --- + a,,, SO that

nn’
tr(kA) = ka, + kay, + --- + ka,,,
=k (a, +ay+--+a,)

= ktr(4)

(d) Let the 77" entries of A and B be a,; and bij, respectively. Then
tr(AB) = a,,b,, + a;,by + - +ay, b,
+ Qg byy + Agpboy + - + 0y, 0,

+ ...

+ anlbln + an2b2n ot annbnn
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and

tr(BA) = bua11 + blza21 + -+ bman1

+ by 0y + Dgyoy + -+ + by,

+ ...

+ bnla“ln + bn2a2n Tt bnna’nn

If we rewrite each of the terms b. i in the above expression as a b and list the terms
in the order indicated by the arrows below,

then we have tr(AB) = tr(BA).

Suppose that A is a square matrix whose entries are differentiable functions of x. Suppose
also that A has an inverse, A-l. Then we shall show that A-! also has entries which are
differentiable functions of x and that

dA™! :—A—ldAAl
dx dx

Since we can find A~! by the method used in Chapter 1, its entries are functions of 2 which
are obtained from the entries of A by using only addition together with multiplication and
division by constants or entries of A. Since sums, products, and quotients of differentiable
functions are differentiable wherever they are defined, the resulting entries in the inverse
will be differentiable functions except, perhaps, for values of x where their denominators
are zero. (Note that we never have to divide by a function which is identically zero.) That
is, the entries of A™! are differentiable wherever they are defined. But since we are assuming
that A-! is defined, its entries must be differentiable. Moreover,

Ly -
(AA )_dx([) 0

or

dA™L
dx

%A_l + A
dx

=0
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Therefore
-1
dA dA _
A—— =— 4"
dx dx
so that
dA” _ 1Ay
dx dx

27. (b) Let H be a Householder matrix, so that H = I — 2PPT where P is an n X 1 matrix. Then
using Theorem 1.4.9,

HT = (I - 2PP™)T

— [T~ (2PPT)T
— [—2(PT)T Pr
=1-2PPT
=H
and (using Theorem 1.4.1)
HTH = H? (by the above result)

— (I - 2PPT)?

= [2— 2PPT _ 2PPT 4+ (-2PPT)?

=1 - 4PPT + 4PPT PPT

=1-4PPT + 4PPT (because PT P = 1)

=7

29. (b) A bit of experimenting and an application of Part (a) indicates that
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where

n n

ifa#c

d=a"1+a"2¢c+ - +ac™? + " =
a-c

If a = ¢, then d = na’™'. We prove this by induction. Observe that the result holds
when n = 1. Suppose that it holds when n = N. Then

a0 0 alV ! 0 0
AN a4 =410 WY 0 |=|0 bV
d 0 N a¥ +cd 0 N
Here
N aV N gNH g Nep o No N+ N+ N+1
N a’ +c = = ifa#c
a” + cd = a-c a-c a—c
a,N+a(Na,N_l):(N+1)a,N ifa=c

Thus the result holds when 7 = N + 1 and so must hold for all values of 7.
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1. (a) M, =T7e4-(-1) ®1=29, M, =21, M, =27, M, =11, M,, = 13, M, = -5, M, = -19,
M,, = -19, M, = 19

(b) C,, =29, C,, =-21,C,, =27, C,, = 11, G,y = 13, G,y = 5, Cy = —19, Cy, = 19, Cyy = 19
3. (a)

7 -1

l|Al=1-
1 4

6 -1 6 7
+2- +3-

=29 + 42 + 81 = 152
3 4 -3 1|

(b) |Al =1 M, —6eM, —3eM,=152
() A=6eM, +7eM,+1eM, =152
(d) Al =20 M, +TeM,+1eM, =152
(e) Al=—-3eM, —1eM,+4eM,=152
(F) JAl=3eM +1eM,+4eM, =152

5. Second column:

61
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7. First column:

koK koK koK
lAl=1" -1- +1- =0
kK kK kK
al= -1 2 Hlees [P D T
B 5 7 2 4
9. Third column:
3 3 5 3 3 5
lAl==3.12 2 —2[-3.]12 2 —2|=-240
2 10 2 4 1 0
11.
3 5 5 3 5 -5
adj(A)=| 3 4 -5 A=-14'=| -3 4 5
2 2 3 2 -2 -3
13.
2 6 4 1/2 3/2 1
adi(A)=| 0 4 6 [:lAl=44T1=]| 0 1 3/2
0 0 2 0 0 1/2
15. (a)
4 3 0 -1
JE 2 -1 0 0

(b) Same as (a).

(¢) Gaussian elimination is significantly more efficient for finding inverses.
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17.
4 5 0 2
A=|11 1 2 | b=| 3 [;|Al=-132
1 5 2 1
A, = =36, [4,] = -24, |A4,] = 12
x, = -36/-132 = 3/11, x, = -24/-132 = 2/11, x, = 12/-132 = -1/11
19.
1 -3 1 4
A=| 2 -1 0 |,b=| =2 |;|Al=-11
4 0 -3 0
|A,l =30, |A,] = 38, |A,] = —40
x, = 30/-11 = =30/11, x, = 38/-11 = -38/11, x, = 40/-11 = -40/11
21.
3 -1 1 4
A= -1 7 2 |,b=|1[l4al=0
2 6 -1 5
The method is not applicable to this problem because the determinant of the coefficient
matrix is zero.
23.
4 1 1 1 6
3 7 -1 1 1
A= ,b= Al = —424
7T 3 -5 8 -3
1 1 1 2 3
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25.

27.

29.

31.

33.

35.

Exercise Set 2.1

4 6 1 1
PR I 14| =0
2717 3 5 g 2"
1 3 1 2
Y =0/-424 = 0

This follows from Theorem 2.1.2 and the fact that the cofactors of A are integers if A has
only integer entries.

Let A be an upper (not lower) triangular matrix. Consider AX = I; the solution X of this
equation is the inverse of A. To solve for column 1 of X, we could use Cramer’s Rule. Note
that if we do so then A,, ..., A are each upper triangular matrices with a zero on the main
diagonal; hence their determinants are all zero, and so x,,,, . . ., x,, are all zero. In a similar
way, when solving for column 2 of X we find that Xggy - - X, 5 ATC all zero, and so on. Hence,
X is upper triangular; the inverse of an invertible upper triangular matrix is itself upper
triangular. Now apply Theorem 1.4.10 to obtain the corresponding result for lower triangular
matrices.

Expanding the determinant gives x(b, - b,) —y(a, — a,) + a;b, —ab, =0

2(by — by) — ylay —ay) + a;by — agb; =0
b —b by — asb

y = 2 4 D% 7 A0
4 = Gy a4 = Gy

which is the slope-intercept form of the line through these two points, assuming that a, # a,,.
(a) Al =A | ® Ayl =23 -4e-1)e (1e2-3e-10+-28)=-1080
(b.) Expand along the first column; |A| = —1080.

From I, we see that such a matrix can have at least 12 zero entries (i.e., 4 nonzero entries).
If a 4 x 4 matrix has only 3 nonzero entries, some row has only zero entries. Expanding
along that row shows that its determinant is necessarily zero.

(a) True (see the proof of Theorem 2.1.2).
(b) False (requires an invertible, and hence in particular square, coefficient matrix).
(¢) True (Theorem 2.1.2).

(d) True (a row of all zeroes will appear in every minor’s submatrix).
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1.

3.

(b) We have

det(A)=|1 2

2 -1 3| |o -5
4|1=l1 2
5 -3 6| |0 -13
1 2 4
=D 0 1 1
0 -13 -14
1 2 4
--DEH0 11
0 0 -1

==DEED=-5

2 1 5 0
det(AT)y=|-1 2 -=3|=|-1
3 6 0

-1 2 -3

=(-D| 0 5 -1

0 0 -1

(b) Since this matrix is just 7, with Row 2 and Row 3 interchanged, its determinant is —1.

=DEDGED=-56

65

-5
4
-14

-3

Add -2 times Row 2 to
Row 1 and -5 times
Row 2 to Row 3.

Factor -5 from Row 1
and interchange
Row 1 and Row 2.

Add 13 times
Row 2 to Row 3.

By Theorem 2.2.2.

Add 2 times Row 2
to Row 1 and 3 times
Row 2 to Row 3.

Add -2 times Row 1 to
Row 3, and interchange
Row 1 and Row 2.

By Theorem 2.2.2.
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5.
0 3 1 11 2 Interchange
det(A)=1 1 2|=(-1)j0 3 1 Row 1 and
3 2 4 3 2 4 Row 2.
! ! 2 Add -3 Row 1
-3 times Row
=D 8 "i ; to Row 3.
1 1 2 Factor 3
actor
=D 0 1 13 from Row 2.
0o -1 =2
1 1 2
0 0 -5/3 to Row 3.
If we factor —5/3 from Row 3 and apply Theorem 2.2.2 we fInd that
det(4) = -3(-5/3)(1) =5
7.
3 -6 9 1 -2 3 Factor 3 from
det(A)=|-2 7 —21|=3]0 3 4 Row lRfmd fdd
twice Row
0 1 g 0 1 g to Row 2.
1 =2 3 Factor 3 from
Row 2 and
=3B 0 1 4/3
SUC) / subtract Row 2
0 0 11/ 3 from Row 3.
1 -2 3
ol Xllo 1 4 Factor 11/3
3 0 1 from Row 3.

=9(11/3)(1)=33
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11.

det(A)=

S O~ DN
—_ N O
Do = =W

= (-1

o O O =
= DN = O
DO — =

[U O —

= (=D

o O O =
oS o = O
I
—

=D

o O O =
oS O = O
|
—

=(-D(DE)D)=6

det(A)=| 0O

Il
o O O o

Il
oS O O O =

Hence, det(4) = D) (2)(1) = -2.

W O = =
Il
—_—
|
—
~—

S O = DN - SO N = O =

S O = DN

= DN = O

—

= = O Oy Ot

S = O O Ot

N UV

W O = =

— = = DO O

o W

|
— =

Interchange
Row 1 and
Row 2.

Add -2 times Row 1
to Row 2.

Add -2 times Row 2
to Row 3; subtract
Row 2 from Row 4.

Add Row 3 to Row 4.

Add 2 times Row 1 to
Row 2; add -2 times
Row 3 to Row 4.

Add -1 times
Row 4 to Row b.

67
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68
13.
1
det(A)=| a b c
a® b? c?
1 1 1 Add —a times Row 1 to
=0 b-a c—a Row 2; add —a? times
0 b2-a2 2_g2 Row 1 to Row 3.

Since b? —a? = (b —a)(b + a), we add —(b + a) times Row 2 to Row 3 to obtain

1 1 1
det(A)=|0 b—a c—a
0 0 (02—a2 )—( c—a)(b+a)

= (b-)[(*-a*) - (c-a)® +a)]
=-a)(c-a)(c+a)-(b+a)]
=(Mb-a)(c-a)(c->b)

15. In each case, d will denote the determinant on the left and, as usual, det(4) =
Z *ly; Qg O where Z denotes the sum of all such elementary products.

(a) d = 2 + (/lcaljl)azjzagj3 _k Z L Oy, Qo Oy = k det(A)

= + = +
(b) d Z £ Ggj Oy, Ay, z * Ay, Qgp) Ay
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apy +Kagy Qg thagy a3t kag

Qa1 Qoo Qo3

31 3o, 33
= (ay; + kay ) (@gy)(agy) + (@, + Kay,) (ay3)(as)
+ (a5 + Kayy) (ag)(ag,) — (a5 + Kayy) (agy)(ag)
= (ayy + kagy) (ay)) (ag3) — (@, + kay)(ay,)(as,)
= Ay Qg Qgg + Ay Qog Agy + Q3 gy Qg = g Agy Ay
T Ay gy Ugg = Uy Qg A3y
+ Ky oy Ggg + Koy Qgg Qg + KOy Gy gy
=Ky gy Qg) = Kagy Ay Ggg = KOy Gog gy

4y Gz i3

=| Qop Qoo Qog
gy OQgg  Ugg

17. (8)
1 2 3 1 1 2 3 1
5 9 6 3| |3 -5 0 1
1 2 6 2| |1 -2 0 0
2 8 6 1 0 12 0 -1
R, >R, 2R,
R3—>R3+2R1
R, >R, 2R,
3 5 1 3 -5 1
1 -2
=31 -2 0]|=3]1 -2 0]|=3 =39
3 7

69
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70

(€))

1 0 1 1

0 2 1 0

0

0 1 2 3

R, — R, + 3R,
0
1

(10)

R, >R, + 3R,

-1
6

—1[2 1)
__+ —
6\3 3
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(11)
1 3 1 5 3 1 3 1 5 3
-1 2 6 8
2 -7 0 -4 2| |0 -1 2 6 8
01 0 1
0O 0 1 0 1f(=[{0 0 1 0 1]|=
0 2 1 1
o 0 2 1 1 0 0 2 1 1
00 1 1
0o 0 0 1 1 0 0 0 1 1
R, —> R, +2R,
1 0 1 1 0 1 01
=(-1){2 1 1|=(-1)[2 0 0 =(—1)(—2)‘1 1‘:-2
0 1 1 0 1 1
R,—>R,-R,

19. Since the given matrix is upper triangular, its determinant is the product of the diagonal
elements. That is, the determinant is x(x + 1)(2x — 1). This product is zero if and only if
x=0,x=-1orx =1/2.
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(a) We have

2

-1
det(A) :‘ Y

‘:-4— =-10

and

det(24) = | _z : | = (=2)(8)—(4)(6) = —40 = 22(-10)

(a) By Equation (1),
det(34) = 3% det(4) = (27)(-7) = -189

(¢) Again, by Equation (1), det(241) = 23 det(41). By Theorem 2.3.5, we have

det(24™) = gotiry = -8

(d) Again, by Equation (1), det(24) = 23 det(4) = -56. By Theorem 2.3.5, we have

det[(24)] = detl(ZA) =755

73
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13.

15.

Exercise Set 2.3

(e)
a g d a d g
b h el==lb e n Interchange Columns
2 and 3.
c v f c f 1 an
a b c
=—|d e f| Take the transpose of
the matrix.
g h 1

If we replace Row 1 by Row 1 plus Row 2, we obtain

b+c c+a b+a a+b+c b+c+a c+b+a
a b c = a b c =0
1 1 f 1 1 f

because the first and third rows are proportional.

By adding Row 1 to Row 2 and using the identity sin? x + cos® x = 1, we see that the
determinant of the given matrix can be written as

sinar sin?B sin?y
1 1 1
1 1 1

But this is zero because two of its rows are identical. Therefore the matrix is not invertible.

We work with the system from Part (b).
(i) Here

det(Al - A) = [ 4

-2 3
A 3}:(&—2)(/1—8)—12:/12—51—6

so the characteristic equation is A2 — 5A — 6 = 0.
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(ii) The eigenvalues are just the solutions to this equation, or A = 6 and A = —1.

X
(ii7)If A = 6, then the corresponding eigenvectors are the nonzero solutions X=|: 1 }
to the equation Xy

Rt E R R

3/4 )t
The solution to this system is x; = (3/4)t, x, = 1, so X=|:( / ) }is an eigenvector
whenever ¢ # 0. t

If A = -1, then the corresponding eigenvectors are the nonzero solutions

[xl} !

X = to the equation

Xy
-3 -3 2| |0
4 4 ||z | |0

A
If we let x; = {, then x, = ~, so X :{ ; }is an eigenvector whenever ¢ # 0.

It is easy to check that these eigenvalues and their corresponding eigenvectors satisfy
the original system of equations by substituting for x,, x,, and A. The solution is valid for all
values of ¢.

17. (a) We have, for instance,

a+b ¢ +d, ap+b, ¢ +d; a,+b ¢ +d

Qg +by  Cytdy Qs Cy b, ds,
_| % 4 b4 L@ a b g
Ay Cy Ay Cy by dy by dy

The answer is clearly not unique.
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19.

21.

23.

Exercise Set 2.3

Let B be an n X n matrix and E be an n X n elementary matrix.

Case 2: Let E' be obtained by interchanging two rows of / . Then det(£) = -1 and EA is
just A with (the same) two rows interchanged. By Theorem 2.2.3, det(FA) = —det(A) =
det(£) det(A).

Case 3: Let K be obtained by adding a multiple of one row of / to another. Then det (&)
=1 and det(FA) = det(A). Hence det(FA) = det(A) = det(¥) det(A4).

If either A or B is singular, then either det(A) or det(B) is zero. Hence, det(AB) = det(A)
det(B) = 0. Thus AB is also singular.

(a) False. If det(4) = 0, then A cannot be expressed as the product of elementary
matrices. If it could, then it would be invertible as the product of invertible matrices.

(b) True. The reduced row echelon form of A is the product of A and elementary matrices,
all of which are invertible. Thus for the reduced row echelon form to have a row of
zeros and hence zero determinant, we must also have det(A) = 0.

(c¢) False. Consider the 2 x 2 identity matrix. In general, reversing the order of the
columns may change the sign of the determinant.

(d) True. Since det(4AAT) = det(A4) det(AT) = [det(4)]?, det(AAT) cannot be negative.
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(a) The number of inversions in (4,1,3,6,2)is3+0+ 1+ 1=5.
(d) The number of inversions in (5,4,3,2,1)is4 + 3 + 2 + 1 = 10.

305 =12-(-10)=22
2 4| -
5 6
‘ o ‘= (=5)(=2)-(=7)(6)=52
a=3 5 ‘:(a—3)(a—2)—(—3)(5)=a2—5a+21
-3 a—2
2 1 4

3 5 -7 |=(=20-T+72)—(20+84+6) = —65

2 -1 5 |=02+0+0)—(0+135+0) = —123

77



78

13.

15.

17.

19.

21.

23.

Exercise Set 2.4

(a)

A—-2

det (A)Z‘ 5 A+4

‘ =(A-2)(A+4)+5

=A2+20-3=QA-DA+3)

Hence, det(4) = 0ifand only if A = 1 or A = -3.

If A is a 4 X 4 matrix, then
det(4) = Z(_l)p A1, Loy A3 Da,y

where p = 1if (¢, 1,, 7,, 7,) is an odd permutation of {1,2,3,4} and p = 2 otherwise. There
are 24 terms in this sum.

(a) The only nonzero product in the expansion of the determinant is

1509403304951 = EEEDHE)BG) =-120

Since (5,4,3,2,1) is even, det(A4) = -120.
(b) The only nonzero product in the expansion of the determinant is

QO lgsy O, = (5) (=4) (3) (1) (=2) = 120

Since (1,5,3,4,2) is odd, det(4) = -120.
The value of the determinant is
sin? 0 — (—cos® 0) = sin®? O + cos® 0 =1

The identity sin® 8 + cos® 6 = 1 holds for all values of 6.

Since the product of integers is always an integer, each elementary product is an integer.
The result then follows from the fact that the sum of integers is always an integer.

(a) Since each elementary product in the expansion of the determinant contains a factor
from each row, each elementary product must contain a factor from the row of zeros.
Thus, each signed elementary product is zero and det(A) = 0.



Exercise Set 2.4 79

25.

Let U = [a ] be an 7 by n upper triangular matrix. That is, suppose that @y, = 0 whenever
2 > j. Now COHSldel“ any elementary product a 1,y " Ay f k> jk for any factor a, i in this
product, then the product will be zero. But if k¥ <7, for all k = 1,2,...,m,then k = j, for all
k because j,, J,, ..., J,, i just a permutation of the integers 1, 2, ..., n. Hence OyyQyy - @,
is the only elementary product which is not guaranteed to be zero. Since the column indices
in this product are in natural order, the product appears with a plus sign. Thus, the
determinant of U is the product of its diagonal elements. A similar argument works for
lower triangular matrices.
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4
x —_—
5
Yy § x+4
x' = 5 :5 5y:§ +—=-y

3 4|0 9,16 55

5 5 256 25

4 3

5 5

3

- x

5

COR . T

’ 5 5 5
= = =——x+—
Y § _é 1 5 5y

5 5

4 3

5 5

The determinant of the coefficient matrix is
1 1 o 1 1 o {1
1 1 B|=/0 0 B-al=-(B-a) ‘=—(ﬂ—a)(ﬁ—a)
a p

a B 1 a B 1

The system of equations has a nontrivial solution if and only if this determinant is zero;
that is, if and only if a = . (See Theorem 2.3.6.)
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5. (a) If the perpendicular from the vertex of angle o to side a meets side a between angles
B and 7, then we have the following picture:

4 )
Thus cos B=— and cos y = > and hence
c

a=a,+a,=ccosfB+bcosy

This is the first equation which you are asked to derive. If the perpendicular intersects
side a outside of the triangle, the argument must be modified slightly, but the same
result holds. Since there is nothing sacred about starting at angle ¢, the same
argument starting at angles 8 and y will yield the second and third equations.
Cramer’s Rule applied to this system of equations yields the following results:

b.
(b a ¢ b
b 0 a
c a 0 a(-a® +b% +c%) b2+ —a?
cos o0 = = =
0O ¢ b 2abc 2bc
c 0 a
b a 0
0 a b
b a
b ¢ a ba®-b%>+c%) a’+c®-b®
2abc 2abc 2ac
0 ¢
0 b
b a ¢ c(a®+b%=c®) aP+b?-c?
COS 7/ = = =

2abc 2abc 2ab
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_ 1
7. If A is invertible, then A 1= det () adj(A), or adj(A) = [det(A)]AL. Thus

adj(4) =

=]
det (4)

That is, adj(A) is invertible and

a1
[adj (A)] _det(A)A

It remains only to prove that A = det(4)adj(A™). This follows from Theorem 2.4.2 and
Theorem 2.3.5 as shown:

1

adj (A7) = det (A)adj (47
det@a™

A=[A1! =

9. We simply expand W. That is,

aw _ d.
dx dx

H(x)  folw)
91 (x) gg(x)

=L (1, ()g,@) —f,@)g, @)
= f1(2)g,(@) +f,(2)g5 (@) — f(2)g,(@) - f,(2)g](x)

= [f{()g, () = f3(0)g, ()] + [, (0)g5 () —f,(2)g; ()]

Si@) fy(2)

J@)  f5(x) N
91(x)  g5(x)

g(x)  gy(x)
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11. Let A be an n X n matrix for which the entries in each row add up to zero and let x be the
7 X 1 matrix each of whose entries is one. Then all of the entries in the 7 x 1 matrix
Ax are zero since each of its entries is the sum of the entries of one of the rows of A.
That is, the homogeneous system of linear equations

0

=

has a nontrivial solution. Hence det(A) = 0. (See Theorem 2.3.6.)

13. (a) If we interchange the 7 and 5 rows of A, then we claim that we must interchange the
7" and j columns of A-1. To see this, let

Row 1

Row 2
A= "% and A™'=[ Col.1,Col. 2, -+, Col. n]

Row n

where AA-! = I. Thus, the sum of the products of corresponding entries from Row s in
A and from Column # in A~! must be 0 unless s = r, in which case it is 1. That is, if
Rows ¢ and 7 are interchanged in A, then Columns ¢ and 7 must be interchanged in A~!
in order to insure that only 1’s will appear on the diagonal of the product AA™!.

(b) If we multiply the " row of A by a nonzero scalar ¢, then we must divide the 7
column of A! by ¢. This will insure that the sum of the products of corresponding
entries from the i”* row of A and the ¢ column of A~ will remain equal to 1.

(¢) Suppose we add ¢ times the 7 row of A to the 77 row of A. Call that matrix B. Now
suppose that we add —c times the j column of A~! to the 7"* column of A-'. Call that
matrix C. We claim that C = B 1. To see that this is so, consider what happens when

Rowj — Row j + ¢ Row % [in A]

Column 7 — Column 7 — ¢ Columnj [in A7

The sum of the products of corresponding entries from the 5 row of B and any k"
column of C will clearly be 0 unless k = ¢ or k = j. If k = ¢, then the result will be ¢ -
¢ = 0. If £k = j, then the result will be 1. The sum of the products of corresponding
entries from any other row of B—say the " row—and any column of C—say the k"
column—will be 1 if » = k and 0 otherwise. This follows because there have been no
changes unless k = 7. In case k = 7, the result is easily checked.
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15. (a) We have

A=ay —Qy9 —O3
—Qgy —Qgo A—agy

If we calculate this determinant by any method, we find that
det(Ml —A) = -a; DA —ay) (A —ayy) — agaq, A—ay))
5051 (A = Q) = Aoy, (A = )

— QoA A 606,

13%21%32 — “12%23%31

A3 L 2
=LA+ (—ay; = Qyy — Ag) X
+ (@ gy + Q) gy + Cgyllgg — QpoQy) — G50 — Gggllgy) A
+ (0 Aoy + Qg gy + A 3oQg,

—0) QgoOlgy = QU ollogQly) — Qo Ugy)

(b) From Part (a) we see that b = —tr(A) and d = —det(A). (It is less obvious that c is the
trace of the matrix of minors of the entries of A; that is, the sum of the minors of the
diagonal entries of A.)

17. If we multiply Column 1 by 10% Column 2 by 10°, Column 3 by 102, Column 4 by 10, and
add the results to Column 5, we obtain a new Column 5 whose entries are just the 5
numbers listed in the problem. Since each is divisible by 19, so is the resulting determinant.






TECHNOLOGY EXERCISES 2

T3. Lety = ax® + bx® + cx + d be the polynomial of degree three to pass through the four
given points. Substitution of the x and y coordinates of these points into the equation of the
polynomial yields the system

T=27a +9b +3c +d
-1=8a+4b +2c +d
-l=a+b+c+d

1=0a+0b+0c+d

Using Cramer’s Rule,

7 9 3 1 27 7 3 1
14 0201 8 -1 2 1
101011 11 11

oo e o1 o e
27 9 3 1| 12 7 12 12

8 4 2 1
11 1 1
0 0 0 1
27 9 7T 1 27 9 3 7
8 4 -1 1 8 4 2 -1
11 -1 1 11 -1
0 0 1 1| -12 0 0 0 1| 12

°= 12 ST h 4= 12 12

Plot.y =2 - 222 -2 + 1
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0, 1)

G.7)

(1, —1)\/@ -1
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EXERCISE SET 3.1

() ' ©

® (3,4,5) (3,-4,5)e |

®  (=3,-4,5) o - 0)) Az
A

| 3,0,3)

T
V\<
\

(a) PR, =(3-4,7-8)= (L, -D)
() PP =(2-35+7-4-2) = (5,12, -6)

(a) Let P = (x, y, 2) be the initial point of the desired vector and assume that this vector
—
has the same length as v. Since PQ has the same direction as v = (4, -2, —1), we have
the equation

—
PQ: (S_x: O_y7 _5_'8) = (47 _2: _1)
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Exercise Set 3.1

If we equate components in the above equation, we obtain

x=-1, y=2, and 2=-4

—

Thus, we have found a vector P which satisfies the given conditions. Any positive
—

multiple k¥ PQ will also work provided the terminal point remains fixed at . Thus, P

could be any point (3 — 4k, 2k, k — 5) where k > 0.

(b) Let P = (&, y, 2) be the initial point of the desired vector and assume that this vector

—

has the same length as v. Since P is oppositely directed to v = (4, -2, 1), we

have the equation

—
PQ :(S_x)o_y)_5_z):(_4a2) 1)

If we equate components in the above equation, we obtain

x=T,y=-2,andz = -6

—

Thus, we have found a vector P which satisfies the given conditions. Any positive
—

multiple ¥ PQ will also work, provided the terminal point remains fixed at €. Thus,

P could be any point (3 + 4k, -2k, -k — 5) where k£ > 0.

Let x = (&, x,, 2;). Then
2u-v+x=(-6,24)-4,0-8) + (x, 2, x,)
=10+ 2, 2 + 2, 12 + 2)
On the other hand,
7x +w="T(x,x,x) +(6,-1,-4)
=(Tx, +6, 70, -1, 7Tx,-4)
If we equate the components of these two vectors, we obtain
Tx, +6=x -10
Ty —1=2,+2

oy —4 =, + 12

3=

Hence, x = (=8/3, 1/2, 8/3).
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9. Suppose there are scalars c¢,, ¢,, and ¢, which satisfy the given equation. If we equate
components on both sides, we obtain the following system of equations:

—201—302+03:O
901+202+703:5
661+62+503:4

The augmented matrix of this system of equations can be reduced to

2 3 -1 0
0 2 -2 -1
0O 0 0 -1

The third row of the above matrix implies that Oc, + Oc, + Oc, = —1. Clearly, there do not
exist scalars ¢,, ¢,, and ¢, which satisfy the above equation, and hence the system is
inconsistent.

11. We work in the plane determined by the three points O = (0,0, 0), P = (2, 3, -2), and =
(7,4, 1). Let X be a point on the line through P and ¢ and let ¢ TQ (where ¢ is a positive,
real number) be the vector with initial point P and terminal point X. Note that the length
of t ?75 is ¢ times the length of ?’6 . Referring to the figure below, we see that

OP +t PQ = OX

and

OP + PQ) = 0OQ
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Therefore,

OX = OP +t(0Q - OP)

—(1-1) OP +1 0Q

(a) To obtain the midpoint of the line segment connecting P and ¢, we set t =1/2. This
gives

0):¢ _1 0 +l OoQ
2 2

1 1
= 2(2,3,-2)+=(7,—4,1
2( ) 2( )

(911
2’ 2" 2
(b) Now set ¢t = 3/4.This gives

23
4 )

o

— 1 3 1
OX ==(2,3,-2)+—(7,-4,1) = ,—

4( ) 4( ) [ 4J
13. @ =(7,-3,-19)

17. The vector u has terminal point @ which is the midpoint of the line segment connecting P,
and P,,.
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19. Geometrically, given 4 nonzero vectors attach the “tail” of one to the “head” of another and
continue until all 4 have been strung together.The vector from the “tail” of the first vector
to the “head” of the last one will be their sum.

X+ty+z+w






EXERCISE SET 3.2

@ Ml = 4+ 39" =5
() |vl=[¢5)2+02]"=5
(@) vl = [(-D?+ 22+ (-1)?]"* = /54

(a) Sinceu +v=(3,-5,7), then
o+ vl = [32 + (=5)2 + 72]"* = /83

(¢) Since
|- 2ul| = [(-4)? + 42 + (-6)2]"* =217
and
ol =2 [22 + (-2)2 + 32" =217
then

| -2u] + 2] = 4 /17

(e) Since |w] = [3% + 62 + (—4)%]"* = J61, then
Lw@ii]
[wl ™ (o1 V61 Vor

(a) k=1,1=3

(b) no possible solution

Since kv = (-k, 2k, bk), then
[kev]| = [K% + 4k2 + 25k2]" = ||~/ 30
If [|kv]| = 4, it follows that |k|/ 30 = 4 or k = +4/+/ 30.
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11.

13.

15.

17.

Exercise Set 3.2

(b) From Part (a), we know that the norm of v/||v|| is 1. But if v = (3, 4), then |v| = 5.
Hence u = v/|[v|| = (3/5, 4/5) has norm 1 and has the same direction as v.

Note that [[p — p,|| = 1 if and only if |p — p,|? = 1. Thus
@-2)*+ W-y)+@-2)"=1

The points («x, y, 2) which satisfy these equations are just the points on the sphere of radius
1 with center (x,, y,, ?,); that is, they are all the points whose distance from (x,, ¥, 2,)
is 1.

These proofs are for vectors in 3-space. To obtain proofs in 2-space, just delete the 3rd
component. Let w = (u,, u,, uy) and v = (v, v,, v,). Then

(@) u+v = (U +v;, Uy + Vy, Ug + V)

= (U + Uy, Vy + Uy, Vg + U) =V + U

(€ u+0 = +0,u, +0,u, +0)
= (0+ uy, 0+ uy, 0+ uy)

= (U, Uy U) =0+u=u
v %

(e) k() = k(u,, luy, luy) = (klu,, klu,, kluy) = (kl)ua

See Exercise 9. Equality occurs only when u and v have the same direction or when one is
the zero vector.

(a) If|x| < 1, then the point x lies inside the circle or sphere of radius one with center at
the origin.

(b) Such points x must satisfy the inequality |x — x| > 1.

o
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13.

17.

(@) u.v=2)®) + AEND =-11
() u-v=DB + (BB + DB =0

(a) u.v=>06)2)+ (1HO)+ (4)(-3) =0. Thus the vectors are orthogonal.
(b) u.v=-1<0.Thus 6 is obtuse.
(a) From Problem 4(a), we have

w,=u-w, =u=(6,2)

(¢) From Problem 4(c), we have

w, = (3, 1,-7) - (-16/13, 0, -80/13) = (55/13, 1, -11/13)

Let w = (&, ¥, 2) be orthogonal to both u and v. Then u « w = 0 implies that x + 2 = 0 and
v .w = 0 implies that ¥ + 2 = 0. That is w = (x, &, —x). To transform into a unit vector, we
divide each component by ||w]| = J 322 Thus either (1/+/3, 1/+/3, —1//3) or (-1/4/3,
~1/+/3, 1/+/3) will work.

The minus sign in the above equation is extraneous because it yields an angle of 2r/3.

(b) Here

D_|4(2)+1(—5)—2|: 1

C Jwre?r T
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19.

21.

23.

25.

27.

Exercise Set 3.3

If we subtract Equation (%) from Equation (*) in the solution to Problem 18, we obtain
o+ v~ o~ viP = 4(a - v)

If we then divide both sides by 4, we obtain the desired result.

(a) Leti=(1,0,0),j=(0,1,0), and k = (0, 0, 1) denote the unit vectors along the x, ¥,
and 2z axes, respectively. If v is the arbitrary vector (a, b, ¢), then we can write v = ai + bj
+ ck. Hence, the angle o between v and i is given by

Vel a a

cos o = — = =
IVl oz ez ez (¥l

since il =landi+j=i-k=0.

By the results of Exercise 21, we have that if v, = (a,, b,, ¢,) for ¢ = 1 and 2, then cos o, =

i cos B. = L~ and cos Y. = % . Now
[vol” 7 vl C vl
vy and v, are orthogonal < v, «v, =0
& 4,04 +biby +ci0H =0
)y bby %
= =0
el Tes ™ Bval Ivell vl v
& cos @ Cos Oy +cos B cos B, +cosy; cosyy =0
Note that

Ve (kw, +kw,) =k (Vvew) +ky,(vew,)=0

because, by hypothesis, v « w, = v « w, = 0. Therefore v is orthogonal to k,w, + k,w, for any
scalars k, and k..

(a) The inner product x . y is defined only if both x and y are vectors, but here v.wis a
scalar.

(b) We can add two vectors or two scalars, but not one of each.
(¢) The norm of x is defined only for x a vector, but u « v is a scalar.

(d) Again, the dot product of a scalar and a vector is undefined.
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29. If, for instance,u = (1,0,0),v=(0,1,0) andw= (0,0,1), we haveu.v=u+.w =0, but
V#W.

31. This is just the Pythagorean Theorem.

utv
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2 3| |0 -3|]0 2

= (32, -6, 4
6 7 2726|J(”)

(¢) Since

2 -1 -
u XxXv= ,_3 1, 3 2 =(_4a9)6)
0 -3 0 2

we have
9 6 -4 6 —4
(uXxXv)xw= , — , ? = (27, 40, —42)
6 7 2 7 2 6
(e) Since
v-2w= (0,2, -3)-(4, 12, 14) = (-4, -10,-17)
we have
2 -1 3 -1 3 2
uXx (v-2w) = , — , = (—44, b5, -22)
-10 -17 -4 17 -4  -10

(a) Since u xv = (-7, -1, 3), the area of the parallelogram is |u x v|| = / 59.

(¢) Since u and v are proportional, they lie on the same line and hence the area of the
parallelogram they determine is zero, which is, of course, |ju x v||.

101
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7. Choose any nonzero vector w which is not parallel to uw. For instance, let w = (1, 0, 0) or
(0, 1, 0). Then v = u X w will be orthogonal to u. Note that if u and w were parallel, then
v = u X w would be the zero vector.

Alternatively, let w = (&, ¥, 2). Then w orthogonal to u implies 2x — 3y + 5z = 0. Now
assign nonzero values to any two of the variables x, ¥, and 2z and solve for the remaining
variable.

9. (e) Since (uxw).v=ve(uxw)isadeterminant whose rows are the components of v,
u, and w, respectively, we interchange Rows 1 and 2 to obtain the determinant which
represents u - (v X w). Since the value of this determinant is 3, we have (u X
W) v =-3.

11. (a) Since the determinant

-1 -2 1
3 0 -2|=16=0
5 4 0

the vectors do not lie in the same plane.

15. By Theorem 3.4.2, we have
W+V)x@-v) =ux@-v)+vx@-v)
=(uxw + @x(—v) + (vXu) + (VX (-v))
=0-(uxv)-(@xV) - (V-v)

=-2(uxv)

—
17. (a) The area of the triangle with sides AB and TC is the same as the area of the triangle
with sides (-1, 2, 2) and (1, 1, —-1) where we have “moved” A to the origin and
translated B and C accordingly. This area is %H(—l, 2,2)x (1, 1,-D)| = l2”(—4, 1,-3)| =

\ 26/2.

_ _

19. (a) Letu= AP =(4,0,2)andv = AB = (-3, 2, -4). Then the distance we want is
[(4,0,2) x (-3, 2, D3, 2, -l = I-4, -22, -l V/29. = 2 141/ /29
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21. (b) One vector n which is perpendicular to the plane containing v and w is given by

n=wxv=(1,33)x(,1,2)=(,1,-2)

Therefore the angle ¢ between u and n is given by

_ -1 u.en _ 1 g
o (—nuunn] (14]

~(.8726 radians (or 49.99°)

Hence the angle 6 between u and the plane is given by

0= % — ¢ = .6982 radians (or 40°19")

If we had interchanged the roles of v and w in the formula for m so that
n=vxw-= (-3, -1, 2), then we would have obtained ¢ = cos! (_g)z 2.269
14

radians or 130.0052°. In this case, 6 = ¢ = — %

In either case, note that 6 may be computed using the formula

rim)

cos | — = |l
[ufln]

25. (a) By Theorem 3.4.1, we know that the vector v X w is perpendicular to both v and w.
Hence v x w is perpendicular to every vector in the plane determined by v and w;
moreover the only vectors perpendicular to v X w which share its initial point must be
in this plane. But also by Theorem 3.4.1, u X (v X w) is perpendicular to v X w for any
vector u # 0 and hence must lie in the plane determined by v and w.

9 =

(b) The argument is completely similar to Part (a), above.

29. Ifa, b, ¢, and d lie in the same plane, then (a x b) and (e x d) are both perpendicular to
this plane, and are therefore parallel. Hence, their cross-product is zero.
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31. (a) The required volume is

é( |(-1-8,2+2,0-3)+ ((2-3,1+2,-3-3) x (1-3,0+2,1-3))] )

zé (]¢-4,4,-3) (6,10,4)] )

=2/3

33. Letu= (u,u, u),v= (00,0, and w = (w, w,, w,).
For Part (c), we have
UXW = (UgWy — Uglly, Uy — Uy W, UgWy — Ugll )
and
VXW = (VW05 = VgWy, Vgl — V1 Wa, VyWy — VW, )
Thus
(uxw) + (VXw)
= ([uy, + vylw, — [ug + volw,, [y + vJw, — [w, + v Jw,, [u, +v,]w, — [, + Vy]w,)
But, by definition, this is just (u + v) X w.
For Part (d), we have
k(axv) = (klu,v, —ugv,], klugv, —wv,l, klu,v, —u,0,])

and
(kw) x v = (ku,w, — kugv,, kuv, — kuw, kuw, — kuw, )

Thus, k(u X v) = (ku) X v. The identity £(u X v) = u X (kv) may be proved in an analogous
way.

35. (a) Observe that u X v is perpendicular to both w and v, and hence to all vectors in the
plane which they determine. Similarly, w = v X (u X v) is perpendicular to both v and
to u X v. Hence, it must lie on the line through the origin perpendicular to v and in the
plane determined by u and v.
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(b) From the above, v« w = 0. Applying Part (d) of Theorem 3.7.1, we have

w=vX(uxv)=(veviu—(v.u)v

so that

uew=(vV.viu-un)-(veuw)(mw-.v)

= [Vl - (u - v)?

37. The expression u « (v X w) is clearly well-defined.

Since the cross product is not associative, the expression u X v X w is not well-defined
because the result is dependent upon the order in which we compute the cross products,
i.e., upon the way in which we insert the parentheses. For example, i xj) Xj=kXxj=-i
butix (jxj =ix0=0.

The expression u - v X w may be deemed to be acceptable because there is only one
meaningful way to insert parenthesis, namely, u « (v X w). The alternative, (u - v) X w,
does not make sense because it is the cross product of a scalar with a vector.
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11.

13.

17.

19.

(a)

(b)

(a)

(a)

(a)
(b)

Normal vectors for the planes are (4, -1, 2) and (7, -3, 4). Since these vectors are not
multiples of one another, the planes are not parallel.

Normal vectors are (1, -4, -3) and (3, —12, -9). Since one vector is three times the
other, the planes are parallel.

Normal vectors for the planes are (3, -1, 1) and (1, 0, 2). Since the inner product of
these two vectors is not zero, the planes are not perpendicular.

As in Example 6, we solve the two equations simultaneously. If we eliminate y, we
have x + 7z + 12 = 0. Let, say, 2 = ¢, so that x = —12 — 7¢, and substitute these values
into the equation for either plane to get y = —41 — 23t.

Alternatively, recall that a direction vector for the line is just the cross-product of
the normal vectors for the two planes, i.e.,

(7,-2,3)x (-3,1,2) = (-7,-23, 1)

Thus if we can find a point which lies on the line (that is, any point whose coordinates
satisfy the equations for both planes), we are done. If we set £ = 0 and solve the two
equations simultaneously, we get x = —12 and y = -41, so that x = -12 - 7¢t, y = —41 —
23t, 2 = 0 + t is one set of equations for the line (see above).

Since the normal vectors (-1, 2, 4) and (2, -4, —-8) are parallel, so are the planes.

Since the normal vectors (3, 0, —1) and (-1, 0, 3) are not parallel, neither are the
planes.

Since the plane is perpendicular to a line with direction (2, 3, -5), we can use that vector
as a normal to the plane. The point-normal form then yields the equation 2(x + 2) + 3(y —-1)
-b5(-7)=0,0or2x + 3y —bz + 36 = 0.

(a)

Since the vector (0, 0, 1) is perpendicular to the xy-plane, we can use this as the
normal for the plane. The point-normal form then yields the equation 2 — 2, = 0. This
equation could just as well have been derived by inspection, since it represents the set
of all points with fixed 2 and x and y arbitrary.
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21.

25.

27.

31.

33.

Exercise Set 3.5

A normal to the plane is n = (5, -2, 1) and the point (3, -6, 7) is in the desired plane.
Hence, an equation for the plane is 5(x - 3) - 2(y +6) + (¢ -7) =0orbx -2y + 2 —-34 = 0.

Call the points A, B, C, and D, respectively. Since the vectors E =(-1,2,4) and ﬁ =
(=2, -1, -2) are not parallel, then the pomts A, B, and C do determine a plane (and not just
a line). A normal to this plane is AB X BC = (0, -10, ). Therefore an equation for the
plane is

2y—-2+1=0

Since the coordinates of the point D satisfy this equation, all four points must lie in the
same plane.

Alternatively, it would suffice to show that (for instance) AB X BC and AD X DC
are parallel, so that the planes determined by A, B, and C and A, D, and C are parallel.
Since they have points in common, they must coincide.

Normals to the two planes are (4, -2, 2) and (3, 3, —6) or, simplifying, n, = (2, -1, 1) and
= (1, 1, -2). A normal n to a plane which is perpendicular to both of the given planes
must be perpendlcular to both m; and n,,. That is, n = n; X m, = (1, 5, 3). The plane with this
normal which passes through the point (-2, 1, ) has the equation
x+2)+b5-1)+3(-5)=0

or

x+5y+32-18=0

If, for instance, we set ¢ = 0 and ¢ = -1 in the line equation, we obtain the points (0, 1, -3)
and (-1, 0, -5). These, together with the given point and the methods of Example 2, will
yield an equation for the desired plane.

The plane we are looking for is just the set of all points P = («, ¥, 2) such that the distances
from P to the two fixed points are equal. If we equate the squares of these distances, we
have

@+1)2+W+4)*+(@+2P=@-02+ Wy +2)?2+ (2-2)?
or
20 +1+8y+16+4z2+4=4y+4-4z+14
or

20+4y +82+13=0
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35.

37.

39.

41.

45.

We change the parameter in the equations for the second line from ¢ to s. The two lines will
then intersect if we can find values of s and ¢ such that the «x, ¥, and 2z coordinates for the
two lines are equal; that is, if there are values for s and ¢ such that

4t +3=12s -1
t+4= 6s+7
1= 3s+5

This system of equations has the solution ¢ = -5 and s = —4/3. If we then substitute t = -5
into the equations for the first line or s = —4/3 into the equations for the second line, we find
that x = -17, ¥y = -1, and 2 = 1 is the point of intersection.

(a) If we set 2 =t and solve for x and y in terms of 2, then we find that

11 7 41 1

r=—+—t, Y l,
23 23 23 23

(b) By Theorem 3.5.2, the distance is

[2(-1)+3(2)-4(1)-1] _ 1

\/22+32+(—4)2 V29

D=

30
d=]>
(2) 11
382
b) d=,2
(b) T
(¢) d=0 since point is on the line

(a) Normals to the two planes are (1, 0, 0) and (2, -1, 1). The angle between them is
given by

s (1,0,0) « (2,-1,1) _2

JVa+1+1 J6

Thus 0 = cos™! (2/+/6) = 35°1552"".
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47.

49.

Exercise Set 3.5

If we substitute any value of the parameter—say ¢ —into r = r, + {v and —, into r = r, - tv,
we clearly obtain the same point. Hence, the two lines coincide. They both pass through the
point r, and both are parallel to v.

The equation r = (1 - £)r, + tr, can be rewritten as r = r, + t(r, — r,). This represents a line
through the point P, with direction r, —r,. If t = 0, we have the point P|. If # = 1, we have
the point P,. If 0 < < 1, we have a point on the line segment connecting P, and P,. Hence
the given equation represents this line segment.
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We must find numbers ¢,, ¢,, ¢,, and ¢, such that

c,(-1,3,2,0) +¢,(2,0,4,-1) +¢,(7,1,1,4) +¢,(6, 3, 1,2) = (0,5, 6, -3)

If we equate vector components, we obtain the following system of equations:

-, + 202+ ’703+6c4 =0

301 + 03+304:5
2¢, + 4c, + Cy + c, =6

—Cy + 403+204 =3

The augmented matrix of this system is

-1 2 7 6 0
3 0 1 3 5
2 4 1 1 6
0 -1 4 2 -3

The reduced row-echelon form of this matrix is

1 0 0 O 1
0O 1 0 O 1
O 0 1 0 -1
0O 0 0 1 1

Thusc, =1,¢,=1,¢,=~-1,and ¢, = 1.
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11.

15.

17.

23.

25.

(©) v =[32+4%+ 02+ (-12)3]"* = V169 = 13

(@) @5 (HD=LFH+BB) =7
(©) (3,1,4,-5)+(2,2,-4,-3)=6+2-16+15=7

(a) d(uv) = [(1-2)*+ (2 - 12" = J10
(©) du,v) =[(0+3)2+(2-22+ (-1-4)2%+ (- 4)2]1/2 _ \/@

(a) We look for values of k£ such that

uev=2+7+3k=0
Clearly &k = -3 is the only possiblity.

(a) We have [u « v| =|3(4) + 2(-1)| = 10, while
ull vl = 3% + 221142 + (=14 = 221

(d) Herejluev|=0+2+2+1=5, while

full o = 107 + (237 + 2% & T(C-1)% + 1 4 12 4 191 = 6

We must see if the system

3+4t=s
24+6t=3-3s
3+ 4t =5-4s

-1-2t=4-12s

Exercise Set 4.1

is consistent. Solving the first two equations yield ¢ = — 4/9, s = 11/9. Substituting into the
3rd equation yields 5/3 = 1/9. Thus the system is ¢nconsistent, so the lines are skew.

This is just the Cauchy-Schwarz inequality applied to the vectors v’ AT and u” AT with both

sides of the inequality squared. Why?
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27.

35.

37.

Letu = (uy, ..., u,), v=(v,...,v ), and w = (w,, ..., w,).

N
@) we (kv) = (uy, ..., u,) » (kv, ..., kv,)
=u, kv, + - +u, kv,
=k(uo, + - +u,w,)

=k(aev)

M) ue(v+w) =W, ..,u) @ +w,..,v, +w,)
=u,(, +w)+ - +u, (v, +w,)
=, + - +u,w,) + (Uw, + - +u,w,)

n - n

=UeeV+tUew

(a) By theorem 4.1.7, we have d(u, V) = |lu—vl|l = Vial? + v = V2.

(a) True. In general, we know that

e+ v = [l + VI + 2Ca < v)

So in this case u « v = 0 and the vectors are orthogonal.

(b) True. We are giventhatuev=uew=0. Butsinceue (Vv+w)=uev+uew,it
follows that u is orthogonal to v + w.

(¢) False. To obtain a counterexample, let u = (1, 0,0), v= (1, 1, 0), and w = (-1, 1, 0).
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1.

3.

5.

(b) Since the transformation maps (z,, x,) to (w,, w,, w,), the domain is R? and the
codomain is R3. The transformation is not linear because of the terms 22,2, and 3x,2,.

The standard matrix is A, where

so that

r(-1,2,4=

(a) The standard matrix is

5 -1 -1 3
-1 1 2|=|-2
2 -1 4 -3
0 1
-1 0
1 3
1 -1

Note that T(1, 0) = (0, -1, 1, 1) and 7(0, 1) = (1, 0, 3, —1).
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7. (b) Here
2 -1 1 2 0
T2,1-3)= 0 1 1 1 |=|-2
0 O 0 -3 0
9. (a) In this case,
1 0 0 2 2
T(2,-53)=|0 1 0||-b|=|-b
0 0 -1 3 -3

so the reflection of (2, -5, 3) is (2, -5, -3).

13. (b) The image of (-2, 1, 2) is (0, 1, 2 v/ 2), since

1 1
cos(45°) 0 sin(45°) | [ -2 NE) 0 J2 -2 0
0 1 0 1= 0o 1 0| 1]=|1
—sin(45°) 0 cos(45°) || 2] | _L o L[ 2] [22
L V2 V2

15. (b) The image of (-2, 1, 2) is (0, 1, 2/ 2), since

cos( —45° ) 0 - sin( —45° ) -9
0 1 0 1
sin( —45° ) 0 Cos( —45° ) 2

1

o
&= = &=

—
&l o -

—

Il

—
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17. (a) The standard matrix is

LBy o
0 11 Of] 2 2 |
100031_l_§
= = 2 2
2 2

(¢) The standard matrix for a counterclockwise rotation of 15° + 105° + 60° = 180° is

{COS(ISOO) —s'm(180°)}:[—1 o}

sin(180°)  cos(180°) 0 -1

19. (c¢) The standard matrix is

cos(180°) —sin(180°) O | cos(90°) 0 sin(90°)| |1 0 0
sin(180°)  cos(180°) 0 0 1 0 0 cos(270°) —sin(270°)
0 0 1| |-sin(90°) 0 cos(90°)]| |0 sin(270°)  cos(270°)
-1 0 0 00 1][1 0 o0
=l 0 -1 0 01 00 0 1
0 0 1][-1 0 00 -1 0
0 1 0
=l 0 0 -1
-1 0 0

21. (a) Geometrically, it doesn’t make any difference whether we rotate and then dilate or
whether we dilate and then rotate. In matrix terms, a dilation or contraction is
represented by a scalar multiple of the identity matrix. Since such a matrix commutes
with any square matrix of the appropriate size, the transformations commute.
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23. Set (a, b, ¢) equal to (1, 0, 0), (0, 1, 0), and (0, O, 1) in turn.

25. (a) Since T,(T, (v, x,)) = B, +x,), 2(x, + x,) + 4(x, —x,)) = (32, + 3x,, 62, — 22,),

[T][T]_SO 1 1] [3 3
2V 9 401 -1 |6 -2

27. Compute the trace of the matrix given in Formula (17) and use the fact that (a, b, ¢) is a
unit vector.

We also have

29. (a) This is an orthogonal projection on the x-axis and a dilation by a factor of 2.

(b) This is a reflection about the x-axis and a dilation by a factor of 2.

31. Since cos(20) = cos? 0 — sin? 0 and sin(20) = 2 sin @ cos 6, this represents a rotation
through an angle of 26.
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(a) Projections are not one-to-one since two distinct vectors can have the same image
vector.

(b) Since a reflection is its own inverse, it is a one-to-one mapping of R? or R? onto itself.

If we reduce the system of equations to row-echelon form, we find that w, = 2w,, so that any
vector in the range must be of the form (2w, w). Thus (3, 1), for example, is not in the range.

(a) Since the determinant of the matrix

R
Ti=1_4 4

is 3, the transformation 7' is one-to-one with

=

I

—

Il
Wl W+

1 2 1 1
Thus T_l(wl,w2)=(§wl —— Wy, — Wy + Wy )

(b) Since the determinant of the matrix
7= 4 -6
12 3

is zero, T is not one-to-one.
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9. (a) T is linear since

T((ry, y) + @, ¥y) ) = @y +25) + Wy +Yy), (0 +2,) = (W, +Y,))
= (le + Y, - yl) + (ng + Yoy Xy — yg)

= T(xl, yl) + T(xga yg)

and

T(k(x,y)) = Ckx + ky, kax — ky)

=kCx+y,x—-y) =kT(x, y)

(b) Since

T((xl, yl) + (xg’ yg))z (xl + X, + 17 Yy, + yg)
= ('%‘1 +1, yl) + (xga yg)

#T(wy, y) + T2y, yy)

and T'(k(x, y)) = (kx + 1, ky) # kT (x, y) unless k = 1, T is nonlinear.

13. (a) The projection sends e, to itself and the reflection sends e, to —e,, while the projection

sends e, to the zero vector, which remains fixed under the reflection. Therefore

T(e) = (-1,0) and T(e,) = (0, 0), so that [T]:[ _10 8}

(b) We have e, = (1, 0) - (0, 1) > (0, -1) = Oe, — e, while e, = (0, 1) — (1, 0) = (1, 0)

0 1
= e, + Oe,. Hence [T]=[ ) 0}

(c) Heree, =(1,0) - (3,0) - (0,3) = (0, 3) = Oe, + 3e,and e, = (0, 1) — (0, 3) —

0 0
(3,0) = (0, 0) = Oe, + Oe,. Therefore [T]:[ 5 O}
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17. (a) By the result of Example 5,
_ S2) (NR) () |
() (1/(;)(%) : (1%)22) 2 e

or T(-1, 2) = (1/2, 1/2)

-1 0 O
19. (a) A= 0 1 O
0 0 1
1
Eigenvalue A, = -1, eigenvector &, =|0
0
0 0
Eigenvalue A, = 1, eigenvector &, =|1 |, &, =0
0 1
1 0 0
(b) A={0 0 0
0 0 1
0
A=0, § =1
0
1 0 S
A=1, & =|0], Exy=|0 | oringeneral | 0
0 1 t

(¢) This transformation doubles the length of each vector while leaving its direction
unchanged. Therefore A = 2 is the only eigenvalue and every nonzero vector in R? is a
corresponding eigenvector. To verify this, observe that the characteristic equation is
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or (A —2)3 = 0. Thus the only eigenvalue is A = 2. If (x, vy, 2) is a corresponding
eigenvector, then

oS O O

o O O

o O O

(OIS
Il

o O O

Since the above equation holds for every vector (x, y, &), every nonzero vector is an
eigenvector.

(d) Since the transformation leaves all vectors on the z-axis unchanged and alters (but
does not reverse) the direction of all other vectors, its only eigenvalue is A = 1 with
corresponding eigenvectors (0, 0, 2) with & # 0. To verify this, observe that the
characteristic equation is

r-1/N2 0 1N2 0
~1/N2 a-1/N2 0 |=o0

0 0 A-1

or

r-1/42 12 2 2
(A-1) B B =(/1—1)[(,1—1/\/§) +(1/\/§) }=0

Since the quadratic (A — 1/ \/5)2 + 1/2 = 0 has no real roots, A = 1 is the only real
eigenvalue. If («, ¥, 2) is a corresponding eigenvector, then

N2 2 o ]fa | (R (2
N2 1=z o ||y (=] (12 )x+(1—1/ﬁ )y -
0 z

0 0 0

o O O

You should verify that the above equation is valid if and only if x = ¥ = 0. Therefore the
corresponding eigenvectors are all of the form (0, 0, 2) with & # 0.

0 0
21. Since T'(x, y) = (0, 0) has the standard matrix{ 0 O}’ it is linear. If T'(x, ) = (1, 1) were

linear, then we would have
1, H=T0,0)=TO0+0,0+0)=TO,0)+TO,0O=(1, DL+, 1D =(2)

Since this is a contradiction, 7" cannot be linear.
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23.

25.

27.

From Figure 1, we see that T'(e,) = (cos 26, sin 26) and from Figure 2, that T'(e,) =

[cos{%r+29),sin[3§+26])= (sin 26,—cos20)

AY
(cos 26, sin 20) 3
) l
0 \
0
\(1 0) - 3 3
’ (cos(—ﬂ + 26), sin(—7r + 29))
2 2
Figure 1 Figure 2

This, of course, should be checked for all possible diagrams, and in particular for the case
% < 0 < 1. The resulting standard matrix is

cos 260 sin 26
sin260 —cos?20

(a) False. The transformation T'(x,, x,) = x? from R? to R! is not linear, but 7'(0) = 0.
(b) True. If not, T(w) = T(v) where u and v are distinct. Why?
(¢) False. One must also demand that x # 0.

(d) True. If ¢, = ¢, = 1, we obtain equation (a) of Theorem 4.3.2 and if ¢, = 0, we obtain
equation (b).

(a) The range of T cannot be all of ", since otherwise 7" would be invertible and det(A)
1 0
# 0. For instance, the matrix {O O} sends the entire xy-plane to the x-axis.

(b) Since det(4) = 0, the equation T(x) = Ax = 0 will have a non-trivial solution and
hence, T will map infinitely many vectors to 0.
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(a) @@ +2xr-1)-2B82x?+2)=-bx*+2x-5
(b) 5/42% + 3x) + 6(2% + 22 + 2) =262 + 272 + 6
() @+23+22-20+1)-QCax*-2x) =a*+22+1

(d) n(d2x® -32% +Tx + 1) =4nx® - 3 + Tnwr +

(a) Note that the mapping f:E, — R given by f(a, b, ¢) = |a| has f(1, 0, 0) = 1, (0, 1, 0) =
0, and f(0, 0, 1) = 0. So If f were a linear mapping, the matrix would be A = (1, 0, 0).

-1
Thus, f(-1, 0, 0) would be found as (1, 0, O) 0|=-1.Yet, f(-1,0,0) = -1l = 1 #-1.

Thus fis not linear.

(b) Yes, and here A = (1, 0, 0) by reasoning as in (a).

(a) 3 0 0 4 0 0 0 O
0 3 0 0 O
A=|0 0
0 10 0 0 2 0 O
0 0 01 0
5 0 0 0 0 O
0 4 0 0 0 O
0 0 3 0 0 O
0 0 0 2 0 O
0 0 0 0 1 O
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7. (@) Tax +b)=(a+b)x + (a->b)
T :P1 - P1

(b) T (ax +b) =ax®+ (a + b)x + (2a - b)

T: P, — P,

() Tlar? +bx> +cx +d) =(a +2c—d)x + Ca +b + ¢ + 3d)

T:P, - P,

(d) T(ax?+bx +¢) =bx

T:P, - P,

(e) T(ax®> +bx +¢)=b

T:P, > P,

9. (a) 3¢ + 3e?

(b) Yes, since cosh t = %e’f + %e‘”, cosh ¢ corresponds to the vector (0, 0, %, %).
0 1 0 0

(c) A= 8 8 (1) (a,b,c,d)—(b,0,c,—d)
0 0 0 -1

11. IfS(w) =T) +f,f#0, then S(0) = T(0) + f =f# 0. Thus S is not linear.
13. (a) The Vandermonde system is

1 2 40[aq ] J1
1 0 0f|aq |=]1
1 1 1]|a,| |4

Solving: a,=1,a, =2,a, =1

p@) =2 +2x+1=(+1)?
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(b) The system is:

1 0 0\(0b 1
1 2 0|b |=]1
1 3 3)(b, 4

Solving: b, =1,b, =0, b, = 1.
Thus,p(@) =1e (@ +2) (@) +0e(x+2)+1=(x+2)ex+1
=(@+2)ex+1

=22+ 27 + 1

15. (a) The Vandermonde system is

1 2 4 -8|-10) Sobving, ay= 2
1 -1 1 -1| 2 ay =2
11 1 1| 2 ay= 0
1 2 4 8| 14 ag= 2

Thus, p(x) = 22° - 22 + 2

(b) The system is

1 0 0 0]-10) Solving, b,=-10
1 1 0 0| 2 b= 12
1 3 6 0| 2 b= —4
1 4 12 12| 14 by= 2

Qg 1 2 2 -=2)(-10 2

oy 0o 1 3 -1 12 -2

(e¢) We have ay = 0 0 1 9 4 = 0
0 0 O 1 2 2
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1 -2 4 -8)( 2 -10
d) We h | Rl Y
(d) We have “lo o0 1 - 0] | —4
0 0 0 1 2 2
17. () Lo )b
0 1 b
g 1 —x XXy by
() | o 0 1  —(xy+a) || b
ay 0 0 1 by
() |
g 1 -, 2oy ERRIRS Fo¥1%2 3 %
a 0 1 —( o+ 2 ) X)Xy + XLy + XXy 4 b
ag [=]0 0 1 (gt +ay) *, b
as | [0 0 1 (mra) || b
» _ 0 0 0 1 ) by
where
& = (BT + TXTy + XV Ty + T4 7,)

02 = xoxl + x0x2 + x0x3 + xlxz + xle + .%’2273
19. (a) D,=(200)

GOOOJ

(b) DZ:[O 2 0 0

(¢) No. For example, the matrix for first differentiation from P, — P, is

D2:

oS O W
S o O
— o O
o O O

D% cannot be formed.
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21.

23.

(a)

(b)

(c)

@ Iri- MJ% N

We first note P = y,. Hence the Vandermonde system has a unique solution that are the
coefficients of the polynomial of nth degree through the % + 1 data points. So, there
is exactly one polynomial of the nth degree through » + 1 data points with the x,
unique. Thus, the Lagrange expression must be algebraically equivalent to the
Vandermonde form.

Since ¢, =y;,1 =0, 1, ..., n, then the linear systems for the Vandermonde and Newtons
method remain the same.

Newton’s form allows for the easy addition of another point (x, ., ,.,) that does not
have to be in any order with respect to the other x, values. This is done by adding a
next term to p(7), p,.

p'n-v—l(x) = b'n+1(x - xO) (Qf - xl) (x - xZ) e (x - xn)
+b@-x)@-x)@~-2,) ... @~-2,,)

+--+b(@-2) + b,

where P (x) = b (v —2 )@ -x)@ -2x,) ... @ -2, ) + ... +b;(x —x)) + b, is the
interpolant to the points (x,, ) ... (x,, ¥,). The coefficients for p__,(x) are found as
in (4), giving an # + 1 degree polynomial. The extra point (%, ,,, ¥,.,) may be the
desired interpolating value.

We may assume in all cases that |jz|| = 1, since

[7(22)] _l2r(=)] _[7(=)]

[2=]— l2=] ]

Let (v}, x,) = (cos 6, sin ) = & since ||| = 1.

(a) ||T||zmaxx/4(:os2 0 +sin® 0 = maxy1 + 3 cos®0 =2

2

(b) ||T||=max X +x§ =1

(¢) |T|=max\42]+925 =maxV4+5 sin®6 =3

2

= max x12+x§:1
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11. This is a vector space. We shall check only four of the axioms because the others follow
easily from various properties of the real numbers.

ey

(4
)
(6)

If fand g are real-valued functions defined everywhere, then so is f + g. We must
also check that if f(1) = g(1) =0, then (f+ g)(1) = 0. But (f + ¢) (1) =f(1) + g(1)
=0+0=0.

The zero vector is the function 2 which is zero everywhere on the real line. In
particular, (1) = 0.

If fis a function in the set, then —f is also in the set since it is defined for all real
numbers and —f(1) = -0 = 0. Moreover, f + (-f) = (-f) +f=z.

If fis in the set and k is any real number, then kf is a real valued function defined
everywhere. Moreover, kf(1) = k0 = 0.

13. This is a vector space with 0 = (1, 0) and —x = (1, —x). The details are easily checked.

15. We must check all ten properties:

D
(2
©))
(4)

)

(6)
(M
)
®
(10)

If x and y are positive reals, so is ¥ + ¥y = xy.
X+Y=2Yy=Yr=y +

2+ W+2)=0xW) =(y)z=w@+y) +2

There is an object 0, the positive real number 1, which is such that

l+x=1lex=ax=x.1=x+1
for all positive real numbers x.
For each positive real x, the positive real 1/x acts as the negative:
x+ (Ux)=2(l/x)=1=0=1=1/v)x = (1/x) +x
If k is a real and x is a positive real, then kx = 2* is again a positive real.
k(x + 1) = (xy)k = 2" = kx + ky
(k + Ox = 2 = 2Fat = ko + €x

k(€x) = (£x)F = (€x)F = 2% = 2% = (k)
lx =o' =x
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17. (a) Only Axiom 8 fails to hold in this case. Let k and m be scalars. Then

k+m)(x,y,2) = ((k+m)*x, (k+m)%y, (k+m)%) = (k2 K%y, k%) + (Qkmx, 2kmy,
2kmz) + (m2x, m?y, m?z)
=k(x,y,2) +mx,y, 2) + Ckmx, 2kmy, 2kmz)
zk(x,y,2) + mx,y, 2),

and Axiom 8 fails to hold.

(b) Only Axioms 3 & 4 fail for this set.
Axiom 3: Using the obvious notation, we have

u+ (V+W) = (U, Uy, Ug) + (Vg + Wy, Vy + Wy, V) + W)
= (Ug + V) + Wy, Uy + Vy + Wy, Uy + Vg + W)

whereas
W+ V) + W= (Uy + Vg, Uy + Vy, Uy + ) + (W, Wy, W)
= (Uy + V) + Wy, Uy + Vy + Wy, Ug + Vg + W)

Thus,u + (v+w) #(u+w) +w.

Axiom 4: There is no zero vector in this set. If we assume that there is, and let 0
= (2, ®,, &3), then for any vector (a, b, ¢), we have (a, b, ¢) + (2, 2y, 23)
=(c+2,b+2,a+2) = (a,b, c). Solving for the 2’s, we have 2, = a
- ¢, 2, =0 and 2, = ¢ — a. Thus, there is no one zero vector that will
work for every vector (a, b, ¢) in R>.

(¢) Let Vbe the set of all 2 x 2 invertible matrices and let A be a matrix in V. Since we are
using standard matrix addition and scalar multiplication, the majority of axioms hold.
However, the following axioms fail for this set V:

Axiom 1: Clearly if A is invertible, then so is —A. However, the matrix A + (-A4) =
0 is not invertible, and thus A + (-A) is not in V, meaning V is not closed
under addition.

Axiom 4: We've shown that the zero matrix is not in V, so this axiom fails.

Axiom 6: For any 2 x 2 invertible matrix A, det(kA) = k? det(A), so for k # 0, the
matrix kA is also invertible. However, if £k = 0, then kA is not invertible,
so this axiom fails.

Thus, V is not a vector space.

19. (a) Let V be the set of all ordered pairs (x, y) that satisfy the equation ax + by = c, for
fixed constants a, b and c. Since we are using the standard operations of addition and
scalar multiplication, Axioms 2, 3, 5, 7, 8, 9, 10 will hold automatically. However, for
Axiom 4 to hold, we need the zero vector (0, 0) to be in V. Thus a0 + b0 = ¢, which
forces ¢ = 0. In this case, Axioms 1 and 6 are also satisfied. Thus, the set of all points
in R? lying on a line is a vector space exactly in the case when the line passes through
the origin.
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25.

27.

33.

(b) Let V be the set of all ordered triples (%, ¥, 2) that satisfy the equation ax + by + cz
= d, for fixed constants a, b, ¢ and d. Since we are using the standard operations of
addition and scalar multiplication, Axioms 2, 3, 5, 7, 8, 9, 10 will hold automatically.
However, for Axiom 4 to hold, we need the zero vector (0, 0, 0) to be in V. Thus a0 +
b0 + c0 = d, which forces d = 0. In this case, Axioms 1 and 6 are also satisfied. Thus,
the set of all points in R? lying on a plane is a vector space exactly in the case when
the plane passes through the origin.

No. Planes which do not pass through the origin do not contain the zero vector.

Since this space has only one element, it would have to be the zero vector. In fact, this is
just the zero vector space.

Suppose that u has two negatives, (—u), and (—u),. Then

(W, =(w, +0=(uw, + (u+ (w, = (), +w) + (-u), =0 + (-w), = (-w),

Axiom 5 guarantees that u must have at least one negative. We have proved that it has at
most one.
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1. (a) The set is closed under vector addition because

(a,0,0) + (b,0,0) = (a +b,0,0)

It is closed under scalar multiplication because

k(a, 0,0) = (ka, 0, 0)

Therefore it is a subspace of R3.

(b) This set is not closed under either vector addition or scalar multiplication. For
example, (a, 1, 1) + (b, 1,1) = (a + b, 2, 2) and (a + b, 2, 2) does not belong to the
set. Thus it is not a subspace.

(¢) This set is closed under vector addition because

(ay, by, 0) + (ay, by, 0) = (a; + ay, by + by, 0).

It is also closed under scalar multiplication because

k(a, b, 0) = (ka, kb, 0).

Therefore, it is a subspace of R3.

3. (a) This is the set of all polynominals with degree < 3 and with a constant term which is
equal to zero. Certainly, the sum of any two such polynomials is a polynomial with
degree < 3 and with a constant term which is equal to zero. The same is true of a
constant multiple of such a polynomial. Hence, this set is a subspace of P,.

(c¢) The sum of two polynomials, each with degree < 3 and each with integral coefficients,
is again a polynomial with degree < 3 and with integral coefficients. Hence, the subset
is closed under vector addition. However, a constant multiple of such a polynomial
will not necessarily have integral coefficients since the constant need not be an integer.
Thus, the subset is not closed under scalar multiplication and is therefore not a
subspace.
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(b)

(c)

(a)

(o)

(a)

Exercise Set 5.2

If A and B are in the set, then Ay =~y and bij = —bﬂ. for all 7 and j. Thus a; + bz.j =
—(aﬁ + bﬂ) so that A + B is also in the set. Also @, =—a,; implies that k%j = —(kaﬂ), SO
that kA is in the set for all real k. Thus the set is a subspace.

For A and B to be in the set it is necessary and sufficient for both to be invertible, but
the sum of 2 invertible matrices need not be invertible. (For instance, let B = —-A.)
Thus A + B need not be in the set, so the set is not a subspace.

We look for constants a and b such that au + bv = (2, 2, 2), or

a’(oa _27 2) + b(la 37 _1) = (27 27 2)

Equating corresponding vector components gives the following system of equations:

b=2
—2a+ 3b =2
20 —b =2

From the first equation, we see that b = 2. Substituting this value into the remaining
equations yields a = 2. Thus (2, 2, 2) is a linear combination of u and v.

We look for constants a and b such that au + bv = (0, 4, 5), or

Q(O, _27 2) + b(17 3: _1) = (O: 47 5)

Equating corresponding components gives the following system of equations:

b=0
—2a +3b =4
20 —b =5

From the first equation, we see that b = 0. If we substitute this value into the
remaining equations, we find that a = -2 and a = 5/2. Thus, the system of equations is
inconsistent and therefore (0, 4, 5) is not a linear combination of u and v.

We look for constants a, b, and ¢ such that

ap, + bp, + cpy = -9 — Tw — 1522
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11.

(c)

(a)

(c)

If we substitute the expressions for p,, p,, and p, into the above equation and equate
corresponding coefficients, we find that we have exactly the same system of equations
that we had in Problem 8(a), above. Thus, we know that a« = -2, b = 1, and ¢ = -2 and
thus -2p, + 1p, — 2p, = -9 — 7w — 1522

Just as Problem 9(a) was Problem 8(a) in disguise, Problem 9(c) is Problem 8(c) in
different dress. The constants are the same, so that 0 = Op, + Op, + Op,.

Given any vector (x, y, 2) in R?, we must determine whether or not there are
constants a, b, and ¢ such that

(@, y,2) =av, +bv, + cv,
=a(2,2,2) +b(0,0,3) +¢(0,1, 1)
= (2a, 2a +c,2a + 3b + ¢)

or

x =2a
Yy =2a +cC

2=2a+3b+c

This is a system of equations for a, b, and c. Since the determinant of the system is
nonzero, the system of equations must have a solution for any values of x, ¥, and z,
whatsoever. Therefore, v, v,, and v, do indeed span R3.

Note that we can also show that the system of equations has a solution by solving
for a, b, and ¢ explicitly.

We follow the same procedure that we used in Part (a). This time we obtain the
system of equations

3a+2b +b5c +d = x
a—-3b -2c +4d = y
40 +5b +9¢ -d = z

The augmented matrix of this system is
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13.

Exercise Set 5.2

which reduces to

1 -3 =2 4 Y
0 1 1 -1 L3y
11
0 0 0 0 z—_4y_x—_3y
17 11

Thus the system is inconsistent unless the last entry in the last row of the above
matrix is zero. Since this is not the case for all values of x, y, and 2z, the given vectors

do not span R3.

Given an arbitrary polynomial a,, + a,x + azxz in P,, we ask whether there are numbers a,
b, ¢ and d such that

2 _
Qy + QX + a2 = ap, + bp, + cp, + dp,

If we equate coefficients, we obtain the system of equations:

a, = a+3b +5c -2d

a,=—-a +b - c —2d

a2:2a +4c + 2d

A row-echelon form of the augmented matrix of this system is

0 1 1 -1 Y+
4

Thus the system is inconsistent whenever —a, + 3a, + 2a,, # 0 (for example, when a, = 0,
a, =0, and a, = 1). Hence the given polynomials do not span P,.
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15.

17.

19.

21.

The plane has the vector u x v = (0, 7, -7) as a normal and passes through the point
(0,0,0). Thus its equation is ¥y — 2 = 0.

Alternatively, we look for conditions on a vector (x, ¥, 2) which will insure that it lies
in span {u, v}. That is, we look for numbers a and b such that

(x,y,2) =au+ bv

—a(-1,1,1) +b(3, 4, 4)

If we expand and equate components, we obtain a system whose augmented matrix is

-1 3 x
1 4 y
1 4 =z
This reduces to the matrix
1 -3 —x ]
0 1 x+y
7
0 0 —y+z
L 7T

Thus the system is consistent if and only if c Oory ==z.

The set of solution vectors of such a system does not contain the zero vector. Hence it
cannot be a subspace of R".

Note that if we solve the system v, = aw, + bw,, we find that v, = w,
2W, + W, Vo = -w, + 0w,, w, = Ov, + Ov, —v,, and w, = v, + Ov, + V..

+ w,. Similarly, v, =

(a) We simply note that the sum of two continuous functions is a continuous function and
that a constant times a continuous function is a continuous function.

(b) We recall that the sum of two differentiable functions is a differentiable function and
that a constant times a differentiable function is a differentiable function.
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23.

25.

27.

(a)

(b)

(d)

(e)

Exercise Set 5.2

False. The system has the form Ax = b where b has at least one nonzero entry.
Suppose that x, and x, are two solutions of this system; that is, Ax, = b and Ax, = b.
Then

AX, +Xx,) =Ax, +AX, =b+b#b

Thus the solution set is not closed under vector addition and so cannot form a subspace
of R, . Alternatively, we could show that it is not closed under scalar multiplication.

True. Let uw and v be vectors in W. Then we are given that ku + v is in W for all scalars
k. If k = 1, this shows that W is closed under addition. If ¥ = —1 and u = v, then the
zero vector of ¥V must be in W. Thus, we can let v = 0 to show that W is closed under
scalar multiplication.

True. Let W, and W, be subspaces of V. Then if w and v are in W, n W,,, we know that
u + v must be in both W, and W,, as must ku for every scalar k. This follows from the
closure of both W, and W, under vector addition and scalar multiplication.

False. Span{v} = span{2v}, but v # 2 v in general.

No. For instance, (1, 1) is in W, and (1, -1) is in W,, but (1, 1) + (1, -1) = (2, 0) is in
neither W, nor W,

They cannot all lie in the same plane.
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(a) Following the technique used in Example 4, we obtain the system of equations
3k, +ky+ 2k, +k, =0
8k, + b5k, —ky+ 4k, =0
Tk, + 3ky+ 2k, =0

-3k

. —l~c2+6k3+8k4:0

Since the determinant of the coefficient matrix is nonzero, the system has only the
trivial solution. Hence, the four vectors are linearly independent.

(b) Again following the technique of Example 4, we obtain the system of equations

3k, +ky=0
3ky +ky=0
2k, =0
2k, ~ky=0

The third equation, above, implies that k£, = 0. This implies that k, and hence k, must
also equal zero. Thus the three vectors are linearly independent.

(a) The vectors lie in the same plane through the origin if and only if they are linearly
dependent. Since the determinant of the matrix

2 6 2
-2 1 0
0 4 4

is not zero, the matrix is invertible and the vectors are linearly independent. Thus
they do not lie in the same plane.

14
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(a) Note that 7v, - 2v, + 3v, = 0.

If there are constants a, b, and ¢ such that

a(h, -1/2,-1/2) + b(-1/2, A, -1/2) + c(-1/2,-1/2, 1) = (0, 0, 0)

then
A =12 12 )] a 0
—1/ 2 A —1/ 2 b|l=10
—1/ 2 —1/ 2 A c 0

The determinant of the coefficient matrix is

2
Bo-ioaoy (,ulJ
PR 5

This equals zero if and only if A = 1 or A = —1/2. Thus the vectors are linearly dependent for
these two values of A and linearly independent for all other values.

Suppose that S has a linearly dependent subset 7. Denote its vectors by w,,..., w,_. Then
there exist constants &, not all zero, such that

kw +-+k w = 0

But if we let u, ..., u_ _  denote the vectors which are in S but not in 7', then

kw, +-+k w_+ Ou1 + - 4 Ounfm =0

Thus we have a linear combination of the vectors v,, ..., v, which equals 0. Since not all of
the constants are zero, it follows that S is not a linearly independent set of vectors, contrary
to the hypothesis. That is, if S is a linearly independent set, then so is every non-empty
subset T.
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13.

15.

21.

This is similar to Problem 10. Since {v,, v,, ..., v,} is a linearly dependent set of vectors,
there exist constants ¢, ¢,, ..., ¢, not all zero such that

CVy+CVy + - +C V, = 0

But then

C V| +CyVy+ - +CV, + OV“l + .+ Ovnz 0

The above equation implies that the vectors v,, ..., v are linearly dependent.

Suppose that {v,, v,, v} is linearly dependent. Then there exist constants a, b, and ¢ not all
zero such that

()

av, + bv, + cv, = 0

Case 1: ¢ = 0. Then (*) becomes

av, + bv, = 0

where not both a and b are zero. But then {v, v,} is linearly dependent, contrary to
hypothesis.

Case 2: ¢ # 0. Then solving (*) for v, yields

__ay _b
Vi= = Vim0V

This equation implies that v, is in span{v,, v,}, contrary to hypothesis. Thus, {v,, v,, v.}
is linearly independent.

(a) The Wronskian is

Thus the vectors are linearly independent.
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(b) The Wronskian is

sinx cosx xsinx sinx cosx xsinx
cosx -—sinx sinx+xcosx |=|cosx —sinx Sinax+xcosx

—sine —cosx 2cosx—xsinx 0 0 2cosx

2

=2cosx (—sin 2 — cos? x)=-2cosx =0

Thus the vectors are linearly independent.

23. Use Theorem 5.3.1, Part (a).
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3. (a) This set has the correct number of vectors and they are linearly independent because

=6=0

[ e
S DO Do
W W W

Hence, the set is a basis.

(¢) The vectors in this set are linearly dependent because

2 4 0
3 1 1| =0
1 1 1

Hence, the set is not a basis.

5. The set has the correct number of vectors. To show that they are linearly independent, we
consider the equation

(T Y I I I E

145
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15.
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If we add matrices and equate corresponding entries, we obtain the following system of
equations:

3a +d =0
6a -b —8c =0
3¢ —-b-12¢c -d =0
—6a —-4c+2d =0

Since the determinant of the coefficient matrix is nonzero, the system of equations has
only the trivial solution; hence, the vectors are linearly independent.

(a) Clearly w = 3u, — 7u,, so the coordinate vector relative to {u;, w,} is (3, -7).

(b) If w = au, + bu,, then equating coordinates yields the system of equations

2a +3b=1
40 +8b =1

This system has the solution a = 5/28, b = 3/14. Thus the desired coordinate vector is
(6/28, 3/14).

(a) If v =av, + bv, + cv,, then

a+2b+3c=2
2b + 3¢ =-1
3c=3

From the third equation, ¢ = 1. Plugging this value into the second equation yields b
= -2, and finally, the first equation yields a = 3. Thus the desired coordinate vector is
(3, -2, 1).

If we reduce the augmented matrix to row-echelon form, we obtain
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19.

21.

Thus x, = 3r - s, x, = 7, and &, = s, and the solution vector is

x 3r—s 3 -1
Zq s 0 1

Since (3, 1, 0) and (-1, 0, 1) are linearly independent, they form a basis for the solution
space and the dimension of the solution space is 2.

(a) Any two linearly independent vectors in the plane form a basis. For instance, (1, -1,
-1) and (0, 5, 2) are a basis because they satisfy the plane equation and neither is a
multiple of the other.

(¢) Any nonzero vector which lies on the line forms a basis. For instance, (2, -1, 4) will
work, as will any nonzero multiple of this vector.

(d) The vectors (1, 1, 0) and (0, 1, 1) form a basis because they are linearly independent
and

a(1,1,0) +¢(0,1,1) = (a,a + ¢, c)

(a) We consider the three linear systems

ok ~2k, = 0 1 0

which give rise to the matrix

A row-echelon form of the matrix is

-1 -1 0 0
0 1 3 0 1
0 0 1 1/2 0
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23.

25.

27.
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from which we conclude that e, is in the span of {v, v,}, but e, and e, are not. Thus
v, v,, e} and {v, v,, e} are both bases for R3.

Since {u, w,, w;} has the correct number of vectors, we need only show that they are
linearly independent. Let

au, + bua, + cu, = 0

Thus

av, +b(v, +v,) +c(v; + v, +v,) =0

or

@+b+c)vy+ (b +c)v,+cvy=0

Since {v,, v,, v,} is a linearly independent set, the above equation implies that a + b + ¢ =
b+c=c=0.Thus,a=b=c=0and {u, u,, u,} is also linearly independent.

First notice that if v.and w are vectors in V and a and b are scalars, then (av + bw) =
a(v)g + b(w)g. This follows from the definition of coordinate vectors. Clearly, this result
applies to any finite sum of vectors. Also notice that if (v), = (0)y, then v = 0. Why?

Now suppose that kv, + --- + k v_= 0. Then
kv, + - +kv)o=k )+ - +k (V)

= (0)

Conversely, if k,(v))q + - + k(V,), = (0)g, then

kv, + - +kv),=(0), or kv, +-+kv =0
Thus the vectors v, ..., v _are linearly independent in V' if and only if the coordinate vectors
v)g, -, (v,) are linearly independent in R".

(a) Let v, v, and v, denote the vectors. Since S = {1, x, 22} is the standard basis for P,
we have (v)), = (-1, 1, -2), (v,)g = (3, 3, 6), and (vy)¢ = (9, 0, 0). Since {(-1, 1, -2),
(3, 3, 6), (9,0, 0)) is a linearly independent set of three vectors in R?, then it spans R5.
Thus, by Exercises 24 and 25, {v,, v,, v,} is linearly independent and spans P,. Hence
it is a basis for P,.
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31.

33.

There is. Consider, for instance, the set of matrices

Each of these matrices is clearly invertible. To show that they are linearly independent,
consider the equation

aA +bB +cC+dD = 00
0 0

This implies that

0 1 1 1 a 0
1 01 1||b|_|oO
1 1 0 1]|e] |oO
1 11 0]]|d 0

The above 4 x 4 matrix is invertible, and hence a = b = ¢ = d = 0 is the only solution. And
since the set {4, B, C, and D} consists of 4 linearly independent vectors, it forms a basis for

M,,.

(a) The set has 10 elements in a 9 dimensional space.
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35. (b) The equation x, + x, + --- + x, = 0 can be written as x, = —x, —x, — --- —x, where x,,

Zg, ..., x, can all be assigned arbitrary values. Thus, its solution space should have
dimension 7 — 1. To see this, we can write

x| [ wy gy,
Lo Lo

_x%_ L xn n

[ -1 ] [ -1 [ 1]
1 0 0
0 1 0

| 0 | 0] | 1]

The n — 1 vectors in the above equation are linearly independent, so the vectors do
form a basis for the solution space.
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(b) Since the equation Ax = b has no solution, b is not in the column space of A.

1
(¢) Since A| -3 | =b, we have b = ¢, - 3¢, + ¢,
|1
!
(d) Since A| t—1 | = b, we have b = ¢, + (¢t — D¢, + tc, for all real numbers ¢.
4

(a) The general solution is x, = 1 + 3t, x, = t. Its vector form is

o]

Thus the vector form of the general solution to Ax = 0 is

i

(¢) The general solutionis x; = -1+ 2r -s -2, x, = r, x, = s, x, = . Its vector form is
-1 2 -1 -2
0 1 0 0
+7r +S +1
0 0 1 0
0 0 0 1

151
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Thus the vector form of the general solution to Ax = 0 is

2 -1 -2
1 0 0
a + S +1
0 1 0
0 1 1
9. (a) One row-echelon form of AT is

1 5 7

0 1 1

0 0 0

Thus a basis for the column space of A is

1 0
5| and | 1
7 1

(¢) One row-echelon form of A" is

1 2 -1
0 1 -1
0 0 O
0 0 O

Thus a basis for the column space of A is

1 0
2 | and 1
-1 -1

11. (a) The space spanned by these vectors is the row space of the matrix

Exercise Set 5.5
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13.

15.

One row-echelon form of the above matrix is

1 1 4 -3

0 1 -5 -2

0 0 1 —1/ 2
and the reduced row-echelon form is

1 0 O —1/ 2

0 1 O —9/ 2

0 0 1 —1/ 2

Thus {(1, 1, -4, -3), (0, 1, -5, -2), (0, 0, 1, -1/2)} is one basis. Another basis is {(1, 0,
0,-1/2), (0, 1, 0, -9/2), (0, 0, 1, -1/2)}.

Let A be an n x n invertible matrix. Since A7 is also invertible, it is row equivalent to I,.1t
is clear that the column vectors of / are linearly independent. Hence, by virtue of Theorem
5.5.5, the column vectors of AT, which are just the row vectors of A, are also linearly
independent. Therefore the rows of A form a set of » linearly independent vectors in E”,
and consequently form a basis for R".

(a)

(b)

We are looking for a matrix so that the only solution to the equation Ax = 0 is x = 0.

Any invertible matrix will satisfy this condition. For example, the nullspace of the

1 0 0
matrix A= 0 1 0 | is the single point (0, 0, 0).
0 0 1

In this case, we are looking for a matrix so that the solution of Ax = 0 is

one-dimensional. Thus, the reduced row-echelon form of A has one column without

1 0 -1
a leading one. As an example, the nullspace of the matrix A ={ 0 1 -1 is
1 0 0 O

span J | 1 |\, aline in R®.
1
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(¢) In this case, we are looking for a matrix so that the solution space of Ax = 0 is

two-dimensional. Thus, the reduced row-echelon form of A has two columns without

1 1 -1
leading ones. As an example, the nullspace of the matrix A =| 0 0 0| is
-1 1 0 0 0
span 11,1 0]}, aplane in R
0 1

35s-5 3 -b 0 0
17. (a) The matrices will all have the form[ 578 } = s[ } + t[ } where s and
¢t are any real numbers. 3t -5t 0 0 3 -5

(b) Since A and B are invertible, their nullspaces are the origin. The nullspace of C is the
line 3x + ¥ = 0. The nullspace of D is the entire xy-plane.

19. Theorem: If A and B are n X n matrices and A is invertible, then the row space of AB is the
row space of B.

Proof: If A is invertible, then there exist elementary matrices £, E,, ..., E, such that

A=EE,. . EI

or

AB=EE,..EB

Thus, Theorem 5.5.4 guarantees that AB and B will have the same row spaces.
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11.

Use Theorems 5.6.5 and 5.6.7.

(a) The system is consistent because the two ranks are equal. Sincen =r =3, n-7r =0
and therefore the number of parameters is 0.

(b) The system is inconsistent because the two ranks are not equal.

(d) The system is consistent because the two ranks are equal. Here » = 9 and » = 2, so
that n — » = 7 parameters will appear in the solution.

(f) Since the ranks are equal, the system is consistent. However A must be the zero
matrix, so the system gives no information at all about its solution. This is reflected in
the fact that n —» = 4 — 0 = 4, so that there will be 4 parameters in the solution for the
4 variables.

The system is of the form Ax = b where rank(A4) = 2. Therefore it will be consistent if and
only if rank([Alb]) = 2. Since [Alb] reduces to

1 -3 b
0 1 by~ b,
0 0 by—4b,+3b
0 0 b+b—2p
(0 0 b-8by+Th |

the system will be consistent if and only if b, = 4b, - 3b,, b, = -b, + 2b, and b, = 8b, — 7b,,
where b, and b, can assume any values.

If the nullspace of A is a line through the origin, then it has the form x = at, y = bt, 2 = ct
where t is the only parameter. Thus nullity(4) = 3 — rank(4) = 1. That is, the row and
column spaces of A have dimension 2, so neither space can be a line. Why?

155
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13. Call the matrix A. If » = 2 and s = 1, then clearly rank(A) = 2. Otherwise, either » — 2 or s
—1#0 and rank(A4) = 3. Rank(A) can never be 1.

17. (a) False. Let A = o0
0 1 0

(¢) True. If A were an m X n matrix where, say, m > n, then it would have m rows, each
of which would be a vector in R, . Thus, by Theorem 5.4.2, they would form a linearly
dependent set.
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(b) The augmented matrix of this system reduces to

S O Do
OO(L’)
=
o o O

Therefore, the solution space is a plane with equation 2x -3y + 2 =0

(¢) The solution is x = 2t, y = t, 2 = 0, which is a line.

(a) We look for constants a, b, and ¢ such that v = av, + bv, + cv,, or

a+3b+2c=1
- +c=1
This system has the solution
a=1-1 b=%—t c=1

where ¢ is arbitrary. If we set £ = 0 and ¢ = 1, we obtain v = (-1)v, + (2/3)v, and v =
(=1/3)v, + v, respectively. There are infinitely many other possibilities.

(b) Since v,, v,, and v, all belong to R? and dim(R?) = 2, it follows from Theorem 5.4.2 that
these three vectors do not form a basis for B2 Hence, Theorem 5.4.1 does not apply.

Consider the polynomials «# and x + 1 in P,. Verify that these polynomials form a basis for

P,

157
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13.

15.

(a)
(b)
(o)

(d)

(b)

Supplementary Exercises 5

Since =— 1# 0, the rank is 2.

O |

Since all three 2 x 2 subdeterminants are zero, the rank is 1.

1 0
2 -1

Since the determinant of the matrix is zero, its rank is less than 3. Since
# 0, the rank is 2.

‘ =_1

Since the determinant of the 3 X 3 submatrix obtained by deleting the last column is
30 # 0, the rank of the matrix is 3.

Let S ={v,...,v }andletu = u,v, + --- +w v . Thus (w); = (4, ..., u,). We have

ku = /’mlv1 + -+ kunvn

so that (kw)g = (ku,, ..., ku,) = k(a, ..., u ). Therefore (ku)q = k(w)
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1. (c¢) Sincev+w=(3,11), we have

(u,v+w)=33)+ (-2)(11) =-13

On the other hand,

(u,v)=3(4) + (-2)(5) =2

and

(u, w) =3(-1) + (-2)(6) =-15

(d) Since ku = (-12, 8) and kv = (-16, -20) , we have
(ku, v) = (-12)(4) + (8)(5) =-8

and

(u, kv) = 3(-16) + (-2)(-20) = -8

Since (u,v) = 2, k(u, v) = -8.

3. (a) (W, v)=3(-1)-2(3) +4(1) + 8(1) =3

159
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5. (a) By Formula (4).

()=l ],

3

~[n, @2]{3

90, 4U2][“1}

Exercise Set 6.1

Uy,

(b) We have (u, v} = 9(-3)(1) + 4(2)(7) = 29.

7. (a) By Formula (4), we have (u, v) = vI' AT Au where

A=

30
0 5

|

9. (b) Axioms 1 and 4 are easily checked. However, if w = (w,, w,, w,), then

(m+v,w) = (u, +v)*wi + (U, + V)W + (Uy + V)W

= (u, W) + (V, W) + 20 0, 0% + 2u,0,W35 + 2U 0,05

If, for instance, u = v=w = (1, 0, 0), then Axiom 2 fails.

To check Axiom 3, we note that (ku, v) = k*(u, v). Thus (ku, v) # k(u, v) unless k
=0or k =1, so Axiom 3 fails.

(e¢) (1) Axiom 1 follows from the commutativity of multiplication in E.

@ Ifw=(w,, w,, w,), then

(u+v,w) =2, + v w, + (U, + v Iw, + 4(uy + V)W,

= 2ulw1 + U W,y + 4u3w3 + ZUlwl + VW, + 47)37,03

={(u, w) + (v, W)

(3) <k, v) = 2(ku v, + (kuyv, + 4(kuy)v, = k{u, v)

D, vy =208+ 05+ 40320

=0ifand only if v, = v, =v,=0,0orv=20

Thus this is an inner product for R®.
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11. We haveu-v = (-3, -3).
(b) d(u,v) = (-3, -3 = [39) + 2(N"* = V45 =35

(¢) From Problem 10(c), we have

[du, W[ =[ -3 —3]{_? I;Hj}m

Thus
du,v) = V117 =313
13. (a) JAl = [(-2)%+ B)2 + (3% + (6)°]"® = V74

6 -1

15. a) Since A-B=
w s acn [}

} , we have

d(A,B) =(A -B,A-B)"2 = [62 + (-1)% + 8% + (-2)4]"* = J105

12
1/2 3! 1/2
17. (a) For instance, ||| = ( J_llxzdxj = {%] ] = (%)
-1

(b) We have

d(p, @)=[p - q

=1 -]

1 1/2
:( j_l(l-x)zdx)

1 1/2
z(j_la—zxmz)dx)
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21.

23.

27.

29.

Exercise Set 6.1

If, in the solution to Exercise 20, we subtract (**) from (*) and divide by 4, we obtain the
desired result.

Axioms 1 and 3 are easily verified. So is Axiom 2, as shown: Let r = () be a polynomial
in P,. Then

P+q,1)=[@+ OO +[(@+W/D]rA2) + [+ D)D)
=p(O)r0) + p(1/2)r(1/2) + p(L)r(1) + g(0)r(0) + q(1/2)r(1/2) + q(1)r(1)

=(p, 1) +({q, 1)

It remains to verify Axiom 4:

P, p) = POF + [pA/2)P + [p(DF 20

and

(p,p)=0 ifand only if p0) =p(1/2) =p(1) =0

But a quadratic polynomial can have at most two zeros unless it is identically zero. Thus
{p, p) = 0 if and only if p is identically zero, or p = 0.

®) @)= [ -5 @+ 8D dr= [ Cr-207 - 40 do
1
1

=22 —xY2 - 20x6/3] =0

We have (U, V) = u, v, + uy, + U0, + u,w, and

tr(UTV)=tr A I
Uy Uy | |V3 Uy

UV + UyUg  UgVy + Uy

which does, indeed, equal (U, V).
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31. Calling the matrix A, we have

(u,v) =vI AT Au =v' An =wup, +- +wuv,

33. To prove Part (a) of Theorem 6.1.1 first observe that (0, v) = (v, 0) by the symmetry axiom.

Moreover,
(0, v) = (00, v) by Theorem 5.1.1
= (0, v) by the homogeneity axiom
=0
Alternatively,

0,v) +{(0,v)=(0 + 0, v) by additivity

=0, wv) by definition of the zero vector

But (0, v) = 2(0, v) only if (0, v) = 0.

To prove Part (d), observe that, by Theorem 5.1.1, —v (the inverse of v) and (-1)v are
the same vector. Thus,

(u-v,w) =(u+(-v), w)
=(u, w) + (-v, w) by additivity

=(u, w) — (v, W) by homogeneity
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(e) Sinceu.v=0+6+2+ 0 =8, the vectors are not orthogonal.

We have ku + v=(k + 6, k + 7, -k — 15), so
lkew + v = ((ku + v), (ku + v))"”
= [k +6)2 + (k + D%+ (—k — 15)2]"*
= (3K* + 56k + 310)""”

Since [[ku + v|| = 13 exactly when |[ku + v|* = 169, we need to solve the quadratic equation
3k* + 56k + 310 = 169 to find k. Thus, values of k that give |[ku + v|| = 13 are k = -3 or k =
—47/3.

(a) cos@= (a,-3),24) . 2-12 1

[a-3]eo] Viovzo =

<(_1,5)2)5 (2a47_9)> —-2+20-18 _

9 - = =
(¢) cos (15,2 |24-9] ~ 30 Jio1
(e) cos O = <(1’0’1’0)7(_87_3,_3,—3)> -3-3 1

[0, L0 [-3-3-3-3)] V2436 2

P o=M0O)+EEDE + @M =0

(b) <“ ;Hé ”>:(2)(1)+(1)(1)+(‘1)(O)+(3)(—1)=0

Thus the matrices are orthogonal.

165
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(D <[ 2 1}[2 1}>:4+1—6+6:6¢0
-1 3|5 2

Thus the matrices are not orthogonal.

11.  We must find two vectors x = (%, Z,, 25, ,) such that (x, x) = 1 and (x, u) = (x, V) = (X,
w) = 0. Thus x,, x,, x,, and o, must satisfy the equations

2 2 2 2 _
x{ x5 + x5+ =1
2901 +x2—4x3 =0
X, =Xyt 20+ 22, =0

3x+ 224+ Sxy+dx, = 0

The solution to the three linear equations is x, = -34t, x, = 44t, x, = —6t, and x, = 11¢. If we
substitute these values into the quadratic equation, we get

[((-34)% + (44)* + (-6)* + (1D =1

or

-
Il
-+

&‘»—‘
ﬂ

Therefore, the two vectors are

v (34 44 611

57

13. (a) Here (u, v)* = (3(-2)(1) + 2(1)(0))? = 36, while, on the other hand, {(u, uXv, v) =
(B(=2)2 + 2(1)?) (B(1)2 + 2(0)>) = 42.

15. (a) Here W"is the line which is normal to the plane and which passes through the origin.
By inspection, a normal vector to the plane is (1, -2, —-3). Hence this line has
parametric equations x = ¢, y = -2t, & = -3t.
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17. (a) The subspace of R? spanned by the given vectors is the row space of the matrix

1 -1 3 1 -1 3
5 4 -4 which reduces to 0 1 -19
7 -6 2 0 0 0

The space we are looking for is the nullspace of this matrix. From the reduced form,
we see that the nullspace consists of all vectors of the form (16, 19, 1)¢, so that the
vector (16, 19, 1) is a basis for this space.

Alternatively the vectors w, = (1, -1, 3) and w, = (0, 1, -19) form a basis for the
row space of the matrix. They also span a plane, and the orthogonal complement of
this plane is the line spanned by the normal vector w, X w, = (16, 19, 1).

19. If u and v are orthogonal vectors with norm 1, then

[u-v| =(u-v, u-wv)"?
= [(u, w) — 2(u, v) + (v, v)]~2

[1-200) + 1]

V2

21. By definition, wis in span {u, w,, ..., u } if and only if there exist constants ¢, c,, ..., ¢, such
that
u=cu +cu,+- - +cu
But if (w, u;) =(w, u,) = --- =(w, u) = 0, then (w, u) = 0.

23. We have that W = span{w,, w,, ..., W, }
Suppose that w is in W*. Then, by definition, (w, w,) = 0 for each basis vector w, of W.

Conversely, if a vector w of V' is orthogonal to each basis vector of W, then, by Problem
20, it is orthogonal to every vector in W.

25. (c¢) By Property (3) in the definition of inner product, we have

el = (eu, ku) = k*u, w) = &?ful?

Therefore [[kul| = k| |Ju].
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27.

31.

33.
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This is just the Cauchy-Schwarz inequality using the inner product on E” generated by A
(see Formula (4) of Section 6.1).

We wish to show that ZABC is a right angle, or that ABand BC are orthogonal. Observe
that AB=u — (—v) and BC = v — u where u and v are radii of the circle, as shown in the

figure. Thus |jul| = [[v||. Hence
(E, B—C): (u+v,v-u)
=(u, v) + (v, v) + (u, —u) + (v, —u)
=(v,u) + (v, v) — (u, u) — (v, w)
= [v[}* = [[ul?
=0
(a) As noted in Example 9 of Section 6.1, folf(x)g(x)dx is an inner product on C[0, 1].

Thus the Cauchy-Schwarz Inequality must hold, and that is exactly what we're asked
to prove.

(b) In the inner product notation, we must show that

f+g, £+ g2 <(f H”+ (g "

or, squaring both sides, that

(f+g f+g <(ff)+2f H"(g 8" +(g 8

For any inner product, we know that

f+g f+g)=E15H+2f g+ 8

By the Cauchy-Schwarz Inequality

(f, 8 <(f £)(g, g

or

(f, g) <(f, £ (g, &)'”
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35.

37.

If we substitute the above inequality into the equation for (f + g, £ + g), we obtain

(f+g f+g <(ff)+2f H"(g 8" +(g 8

as required.

(a) W' is the line y = —.

(b) W is the xz-plane.

(¢) W' is the z-axis.

(b) False. Let n = 3, let V be the xy-plane, and let W be the x-axis. Then V" is the z-axis
and W" is the yz-plane. In fact V" is a subspace of W"

(¢) True. The two spaces are orthogonal complements and the only vector orthogonal to
itself is the zero vector.

(d) False. For instance, if A is invertible, then both its row space and its column space are
all of R™.
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5. See Exercise 3, Parts (b) and (c).

7. (b) Call the vectors u, u, and u,. Then (u, w,) =2 -2 = 0 and (u, uy) = (u,, uy) = 0. The
set is therefore orthogonal. Moreover, |ju || = \/E, [[w,|| = Jg=2 \E, and [ju,| = V25

=b. Thus{iul, Lu2, lug} is an orthonormal set.
2v2 ° 5

J2

9. It is easy to verify that v, « v, = v, » v, = v, » v, = 0 and that |jv;| = 1. Moreover, |v||? =
(-3/5)? + (4/5)? = 1 and |v,|| = (4/5)% + (3/6)* = 1. Thus {v,, v,, v,} is an orthonormal set in
R3. It will be an orthonormal basis provided that the three vectors are linearly independent,
which is guaranteed by Theorem 6.3.3.

(b) By Theorem 6.3.1, we have

-4 10
11. (a) We have (w), = ((w, u)), (W, u,)) :(Tz, %) = (_2\/57 5\/5)

17. (a) Let

17
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Since (u,, v,) = 0, we have
u, 11 ]
Vy = =TT s T/ 0
© [ ( 2’ V2
4

Since (ug, v,) = — and (u,, v,) = — , we have
3 2

—_

u; —(u, V)V, — (U, V)v,

This vector has norm l, l, —l
6 6 3

and {v,, v,, v,} is the desired orthonormal basis.

19. Since the third vector is the sum of the first two, we ignore it. Let u; = (0, 1, 2) and u, =
(-1, 0, 1). Then

ouy 1 2 )
Vi=y7~ Oa = T
ol ( 5 V5

Since (u,, v,) , then

_ 2
5
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where

by

— = —— . Hence
5 b 5

V_(_5 -2 1]
> 1 V307 V307 V30

Thus {v,, v,} is an orthonormal basis.

21. Note that u, and u, are orthonormal. Thus we apply Theorem 6.3.5 to obtain

W1:<W’“1>“1+<W’“2>“2

= —(é,o,—gj +2(0,1,0)

5

= _év 2a§
5 5

W2 :W_Wl

(2,02
5 5

W =a,v, +a,V, + A3Vy

and

25. By Theorem 6.3.1, we know that

where a, = (w, v,). Thus

3
= 2‘%’2 <V¢’Vz’>+zai%‘ <Vz7"j>

i=1 i#1
But (v, vj) = 0if 7 #j and (v, v,) = 1 because the set {v, v,, v.} is orthonormal. Hence
2_ 120 42 4 42
Il = a2 + a3 + a3

= (W, V))* + (W, v,)* + (W, V,)?
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27.

29.
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Suppose the contrary; that is, suppose that

() u, — (u,, v)v, - (u, v,)v, = 0

Then (*) implies that u, is a linear combination of v, and v,. But v, is a multiple of u,
while v, is a linear combination of uw, and w,. Hence, (*) implies that u, is a linear
combination of u, and w, and therefore that {u, u,, u,} is linearly dependent, contrary to
the hypothesis that {u,, ..., u,} is linearly independent. Thus, the assumption that (+) holds
leads to a contradiction.

We have u, = 1, u, = x, and u, = 2%, Since

| = (u,, u1>=j_111 do =2

we let

Then

and thus v, = u,/|u,|| where

1 2
fugff = [ =
Hence
S
27 V2

In order to compute v,, we note that

N5

S T -4
<u3,v1>—\/§.|._lx dx = 3
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31.

and
<u3’V2>=\/§ _llx?’dx:()
Thus
9 1
Ug <u3’vl>v1_<u3,V2>V2=x —g
and
2 2
2oy =[5 e
3 -1 3 45
Hence,

8

45[ ) 1) J5

175

This is similar to Exercise 29 except that the lower limit of integration is changed from -1

to 0. If we again set u, = 1, w, = 2, and u, = 22, then [ju || = 1 and thus

v, =1

1

1
Then (u,, v,) = -[0 xdx = % and thus

_x-1/2 _
vz_—”x_l/zn—@(x 1/2)
or
v2:\/§(2x—1)
Finally,

<u3, v1>: J.;xzdx:%
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33.
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and
1 3
<u3, v2>= \/5_[ (2953 —xz)dx=£
0 6
Thus
01 L(gy )
Vg = i13 ? =6 5(33 —x+gj
T
or
v, = V5 (622 - 62 + 1)
Let W be a finite dimensional subspace of the inner product space V and let {v,, v,, ..., v }

be an orthonormal basis for W. Then if u is any vector in V, we know from Theorem 6.3.4
that w = w, + w, where w, is in W and w, is in W*. Moreover, this decomposition of u is
unique. Theorem 6.3.5 gives us a candidate for w,. To prove the theorem, we must show
that if w, = (u, v))v, + --- + (u, v,)v_and, therefore, that w, = u — w, then

(1) w isin W

and

(i) W, is orthogonal to W.

That is, we must show that this candidate “works.” Then, since w, is unique, it will be
proj,, u.

Part (i) follows immediately because w, is, by definition, a linear combination of the
vectors v,, v, ..., V.

e V.
(W, v) = (@ —-w,, V)
= (u,v,)— (W, V)
= (u, v,y — (u, V.V, V,)
= (0, v)—(u, v)

=0
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. P 1
Thus, w, is orthogonal to each of the vectors v, v,, ..., v, and hence w, is in ™.

If the vectors v, form an orthogonal set, not necessarily orthonormal, then we must
normalize them to obtain Part (b) of the theorem.

35. The vectors x = (1/ \/5, 0) and y = (0, 1/ \/5) are orthonormal with respect to the given
inner product. However, although they are orthogonal with respect to the Euclidean
inner product, they are not orthonormal.

The vectors x = (2/ \/50, 3/ \/50) andy = (1/ \/g, -1/ \/g) are orthonormal with respect
to the given inner product. However, they are neither orthogonal nor of unit length with

respect to the Euclidean inner product.

37. (a) True. Suppose that v,, v,, ..., v, is an orthonormal set of vectors. If they were linearly
dependent, then there would be a linear combination

C iV, +CVy + - +CV, = 0

where at least one of the numbers ¢, # 0. But

C; =V, C,V, + CVy + -+ +C V )=(v;,0)=0

forz = 1, ..., n. Thus, the orthonormal set of vectors cannot be linearly dependent.
(b) False. The zero vector space has no basis 0. This vector cannot be linearly independent.
(c¢) True, since proj,u is in W and proj,,, u is in Wt

(d) True. If A is a (necessarily square) matrix with a nonzero determinant, then A has
linearly independent column vectors. Thus, by Theorem 6.3.7, A has a QR
decomposition.
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1. (a) If we call the system Ax = b, then the associated normal system is A” Ax = Ab, or

which simplifies to

E4MEH

3. (a) The associated normal system is A” Ax = A", or

or

= ]

This system has solution x, = 5, x, = 1/2, which is the least squares solution of
Ax = b.

The orthogonal projection of b on the column space of A is Ax, or

11 - 11/2
-1 1 =] -9/2
1/2
-1 2 —4

179
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3. (c¢) The associated normal system is

or

4
—6

1 0 -1
2 1 1 x
2 1 -2
1 1 Xy
S 1 E T
1 1 -1|L™s
6
2 1 1
0
Lo,
2 0 -1
3

This system has solution x, = 12, x, = =3, x; = 9, which is the least squares solution of

Ax = b.

The orthogonal projection of b on the column space of A is Ax, or

1 0 -1 3
12
2 1 =2 3
-3 |=
1 1 0 9
9
1 1 -1 0

which can be written as (3, 3, 9, 0).

5. (a)

normal system is

2
1
-2

First we find a least squares solution of Ax = u where A = [v]|v]|vl]. The associated

2 1 =2
1 1 1 x

1 0 -1
0 1 1 Ty

Lo 1 1 0
- - X
1 1 -1 3
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6
2 1 1 1
3
= 1 0 1 1
9
-2 -1 0 -1
6
or
7 4 -6 o 30
4 3 -3 zy |=] 21
-6 -3 6 Zq 21

This system has solution #, = 6, x, = 3, £, = 4, which is the least squares solution. The
desired orthogonal projection is Ax, or

2 1 —2 7

1 0 1 0 2
3| =

1 1 0 9
4

1 1 -1 5

or (7,2,9, 5).

1
7. (&) If we use the vector (1, 0) as a basis for the x-axis and let A =[ 0 }, then we have

[Pl = AAT A) L AT = [1} o= 0
0 0 0
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11. (a) The vector v = (2, -1, 4) forms a basis for the line W.

(b) If we let A = [v7], then the standard matrix for the orthogonal projection on W is

_ -1

2 2
[Pl=AA" Y TAT =] -1 | [[2 -1 4] -1 [2 -1 4]
4 4

- 1
= _i [5} [2 -1 4]
4 -2 8
R
21
8 -4 16

(¢) By Part (b), the point (x,, ¥,, 2,) projects to the point on the line W given by

(d) By the result in Part (c), the point (2, 1, —=3) projects to the point (-6/7, 3/7, -12/7).
The distance between these two points is v 497/7.

13. (a) Using horizontal vector notation, we have b = (7, 0, -7) and Ax = (11/2, -9/2, -4).
Therefore Ax — b = (-3/2, -9/2, 3), which is orthogonal to both of the vectors (1, -1,
-1) and (1, 1, 2) which span the column space of A. Hence the error vector is
orthogonal to the column space of A.

(¢) In horizontal vector notation, b = (6, 0, 9, 3) and Ax = (3, 3, 9, 0). Hence Ax-b =
(=3, 3, 0, =3), which is orthogonal to the three vectors (1, 2, 1, 1), (0, 1, 1, 1), and (-1,
-2, 0, —=1) which span the column space of A. Therefore Ax — b is orthogonal to the
column space of A.

15. Recall that if b is orthogonal to the column space of A, then proj, b = 0.

17. If A is an m x n matrix with linearly independent row vectors, then AT is an n X m matrix
with linearly independent column vectors which span the row space of A. Therefore, by
Formula (6) and the fact that (AT)T = A, the standard matrix for the orthogonal projection,
S, of R™ on the row space of A is [S] = AT(AAT) 1 A.
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19. If we assume a relationship V = IR + ¢, we have the linear system
1=01R+c
21=02R+c
29=03R+c

42=04R+c

51=06R +c¢

This system can be written as Ax = b, where

(01 1 1
02 1 2.1
A=03 1 and  b=| 29
04 1 42
|05 1| | 5.1

Then, we have the least squares solution

—1
055 155 [5.62 10.3
x=ATA) 1 ATp= = .
15 5| [153] |-0.03

Thus, we have the relationship V' = 10.3 R — 0.03.
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(b) We have (w)g = (a, b) where w = au, + bu,. Thus
2a+3b=1

—4a +8b =1

S 3 ) ad
28 14

ora = 5 and b = 3 Hence (w),
28 14

k)
[wl, =| %
14
(b) Let p = ap, + bp, + cp,. Then
a+b = 2
a +c=-1
b +c=1

ora=0,b=2 and ¢ = -1. Thus (v)g = (0, 2, 1) and

0

[V]S = 2
-1

185
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5. (a) We have w = 6v, —v, + 4v, = (16, 10, 12).

15 -1
(c¢) We have B = -8A, + TA, + 6A, + 3A, = [ }

6 3
7. (a) Sincev, = %ul - %“2 and v, = — %‘11 + Ou,, the transition matrix is
1B _1
Q= 1(2) 2
- 0
5
(b) Since u, = Ov, - 2v, and u, = - %Vl - %VZ, the transition matrix is
5
0o -2
P= 12
9 22
2
Note that P = Q1.
- _ 17 8. . :
(¢) We find that w = oW+ E% that is
_17
10
[W]B §
5
and hence
o 2|17
[wly = O
B 13 8 -7
9 = 2
2 5

(d) Verify that w = (-D)v, + (=7)v,,.

Exercise Set 6.5
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11. (a) By hypothesis, f; and £, span V. Since neither is a multiple of the other, then {f}, £,} is

a linearly independent set and hence is a basis for V. Now by inspection,
1
2
because it is a spanning set which contains the correct number of vectors.

1 1
f[=-g + (—EJ gy and £, = §g2’ Therefore, {g,, g,)] must also be a basis for V

(b) The transition matrix is

S o=
o
Il
1
— DO
w o
| I |

LW

(¢) From the observations in Part (a), we have

| = DN

(d) Since h = 2f, + (-5)f,, we have [h], =[ 2

=
S¥]
|
o= Do
e}
—
|
ot Do
[
Il
—
|
o
(I

L=
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11.

13.

(b) Since the row vectors form an orthonormal set, the matrix is orthogonal. Therefore its
inverse is its transpose,

{1/\6 1/&]
-2 12

(¢) Since the Euclidean inner product of Column 2 and Column 3 is not zero, the column
vectors do not form an orthonormal set and the matrix is not orthogonal.

(f) Since the norm of Column 3 is not 1, the matrix is not orthogonal.

The general transition matrix will be

cos@ 0 -—sinf
0 1 0

sin@ 0 cos@

In particular, if we rotate through 6 = 7—35, then the transition matrix is

1, B
2 2
o 1 0
3o,
L 2 2

(a) See Exercise 19, above.

Since the row vectors (and the column vectors) of the given matrix are orthogonal, the
matrix will be orthogonal provided these vectors have norm 1. A necessary and sufficient
condition for this is that a? + b? = 1/2. Why?

189
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15.

19.

21.
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Multiplication by the first matrix A in Exercise 24 represents a rotation and det(A) = 1. The
second matrix has determinant —1 and can be written as

cosf —sin@| |1 0] cos® —sin6
—sin@ -cos@| |0 —1]|sin® cos6
Thus it represents a rotation followed by a reflection about the x-axis.

Note that A is orthogonal if and only if A7 is orthogonal. Since the rows of AT are the
columns of A, we need only apply the equivalence of Parts (a) and (b) to A” to obtain the
equivalence of Parts (a) and (c).

If A is the standard matrix associated with a rigid transformation, then Theorem 6.5.3
guarantees that A must be orthogonal. But if A is orthogonal, then Theorem 6.5.2
guarantees that det(4) = +1.



SUPPLEMENTARY EXERCISES 6

1. (a) We must find a vector x = (x,, x,, 25, x,) such that

x-u=0 x-u,=0, and =
S [l azl| ] s

The first two conditions guarantee that x, = &, = 0. The third condition implies that x,
= x,. Thus any vector of the form (0, a, a, 0) will satisfy the given conditions provided
a#0.

(b) We must find a vector x = (x, &,, Z3, 2,) such that x + u, = x « u, = 0. This implies
that 2, = 2, = 0. Moreover, since |[x|| = [lu,| = [Juy| = 1, the cosine of the angle between
x and w, is X * u, and the cosine of the angle between x and u, is x « u,. Thus we are
looking for a vector x such that x * u, = 2x » u,, or 4, = 22,. Since |x|| = 1, we have x
= (0, 274, 45, 0) where 423 + 22 = 1 or 2, = =1/ 5. Therefore

2 1
x=%|0,—,—,0
( NGENG ]
7. Let

(%) (@, V) =W, U0, + WUyl + -+ + W, UV,

be the weighted Euclidean inner product. Since (v,, vj) = 0 whenever 7 # j, the vectors {v,,

v,, ..., v, } form an orthogonal set with respect to (*) for any choice of the constants w, w,,
..., w,. We must now choose the positive constants w,, w,, ..., w,, so that |v,| = 1 for all k.
But |Iv,[]* = kw,. If we let w, = 1/k for k = 1, 2, ..., n, the given vectors will then form an

orthonormal set with respect to (*).
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9. Let@ = [a,] be orthogonal. Then R@!'=Q"and det(Q) = +1. If C,, is the cofactor of a,, then

b

T
T _
IIRKL ) = det(@)(C;)

RQ=[(a1=@ " =(

so that a,;; = det(@)C,;.

11. (a) The length of each “side” of this “cube” is |k|. The length of the “diagonal” is \/;lel.
The inner product of any “side” with the “diagonal” is k2. Therefore,

2 1

ke 1
[l n

cosf =

(b) Asn — + o, cos 8 — 0, so that 0 — w/2.

13. Recall that u can be expressed as the linear combination

ll=CL1V1 + - +CLnVn

where a, = (u, v,) for 2 = 1, ..., n. Thus

2
cos® o = {—<u, v;) J

(i) i

a?

- L (Why?)

) 2
ay +ay t+a

n

Therefore

2 5 aZ+as+--+a’?
cos”ay +---+cos” o, = =1
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15. Recall that A is orthogonal provided A-! = A”. Hence
(u,v) =vI' AT Au

=vIA1Au=vTu

which is the Euclidean inner product.
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1. (a) Since

- 0
det(/’t[—A)zde‘{ 5 sz (A-3)(A+1)

the characteristic equation is A2 — 20 — 3 = 0.
(e) Since

0
det(Al— A) = det A =22
0 A

the characteristic equation is A% = 0.

3. (a) The equation (M — A)x = 0 becomes

EPNIEEH

The eigenvalues are A = 3 and A = —1. Substituting A = 3 into (Al — A)x = 0 yields
0 0][z] [0
8 4||xy| |0

—le +4x, = 0

or

195
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3. (e)
5. (o)

Exercise Set 7.1

Thus x| = %5 and x, = s where s is arbitrary, so that a basis for the eigenspace

1/2 1 i
corresponding to A = 3 is [ /1 } . Of course, [2} and [211:} are also bases.

Substituting A = -1 into (Al — A)x = 0 yields
-4 0|2 | |0
8 0w | |0

~4x, =0

or

—8x, =0

Hence, x, = 0 and &, = s where s is arbitrary. In particular, if s = 1, then a basis for the

0
eigenspace corresponding to A = -1 is { 1 } .

The equation (Al — A)x = 0 becomes

EH[EIH

Clearly, A = 0 is the only eigenvalue. Substituting A = 0 into the above equation yields
x, = s and x, = t where s and ¢ are arbitrary. In particular, if s = ¢ = 1, then we find

1 0
that [ 0 } and [ ) } form a basis for the eigenspace associated with A = 0.

From the solution to 4(c), we have

M+82+A+8=A+8A+ 1)

Since A? + 1 = 0 has no real solutions, then A = -8 is the only (real) eigenvalue.
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7. (a) Since

det(AI —A) = det

=M+ M-3R -+ 2
=(A-D2A+2)(A+ 1)

the characteristic equation is

A-1D2A+2)A+1)=0

9. (a) The eigenvalues are A = 1, A = -2, and A = -1. If we set A = 1, then (Al - A)x =0
becomes

1 0 -2 0 x 0
-1 1 -1 0 Zy | |0
0 -1 3 0l|lag| |O
0 0 0 0 2, 0
The augmented matrix can be reduced to
1 0 =2 0 0
o 1 -3 0 0
o 0 0 0 O
o 0 0 0 O

Thus, x| = 2s, x, = 3s, £, = s, and x, = ¢ is a solution for all s and ¢. In particular, if we
let s =t =1, we see that

and

S = W o
— o O O

form a basis for the eigenspace associated with A = 1.
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If we set A = -2, then (A/ — A)x = 0 becomes

|

—

|

DO

|

—
e}
&
[\

o O O O

The augmented matrix can be reduced to

S O O =
S O = O
S O O
S = O O
S O O O

This implies that x, = —s, x, = x, = 0, and &, = s. Therefore the vector

S = O

forms a basis for the eigenspace associated with A = —2.

Finally, if we set A = -1, then (M — A)x = 0 becomes

o
|
—_
—_
o
K
w
o O O O

The augmented matrix can be reduced to

o o o =
o o~ o
= L
o~ o o
o o o o
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11.

13.

15.

Thus, x, = -2s, x, = s, x5 = s, and 2, = 0 is a solution. Therefore the vector

forms a basis for the eigenspace associated with A = —1.

By Theorem 7.1.1, the eigenvalues of A are 1, 1/2, 0, and 2. Thus by Theorem 7.1.3, the
eigenvalues of A? are 1° = 1, (1/2)? = 1/512, 0° = 0, and 2° = 512.

The vectors Ax and x will lie on the same line through the origin if and only if there exists
a real number A such that Ax = Ax, that is, if and only if A is a real eigenvalue for A and x
is the associated eigenvector.

(a) In this case, the eigenvalues are A = 3 and A = 2, while associated eigenvectors are

HEas

respectively. Hence the lines y = & and y = 2x are the only lines which are invariant
under A.

(b) In this case, the characteristic equation for A is A> + 1 = 0. Since A has no real
eigenvalues, there are no lines which are invariant under A.

Let a,; denote the 4jth entry of A. Then the characteristic polynomial of A is det(Al —A) or

A—ay, g —yy,

-a, A—-a e —a
det .21 .22 om
— Ay Qo /l_amz

This determinant is a sum each of whose terms is the product of 7 entries from the given
matrix. Each of these entries is either a constant or is of the form A — @y The only term
with a A in each factor of the product is

A -a)-ay) - A-a,)

Therefore, this term must produce the highest power of A in the characteristic polynomial.
This power is clearly » and the coefficient of A" is 1.
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17.

19.

Exercise Set 7.1

The characteristic equation of A is

M-—(a+dA+ad-bc=0

This is a quadratic equation whose discriminant is

(a + d)? —4ad + 4bc = a® — 2ad + d? + 4bc

= (a - d)? + 4bc

The roots are

A= %[(aﬂi) + \/(a—b)2+4bc}

If the discriminant is positive, then the equation has two distinct real roots; if it is zero, then
the equation has one real root (repeated); if it is negative, then the equation has no real
roots. Since the eigenvalues are assumed to be real numbers, the result follows.

As in Exercise 17, we have

1= a+d=x \/(a—d)g + 4bc

2

+/ N2
=a+d_ (62 b)” + 4be because a—d=c—b
_a+di\/(c+b)2

2
a+d+c+d a-b-—c+d

= or

2 2

=a+b or a-c

Alternate Solution: Recall that if », and 7, are roots of the quadratic equation
22 +Bx +C =0, thenB = —-(r, + 7, and C = rr,. The converse of this result is also true.
Thus the result will follow if we can show that the system of equations

AM+A=a+d

MA, = ad - be

is satisfied by A, = a + b and A, = a— c. This is a straightforward computation and we leave
it to you.
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21.

23.

25.

Suppose that Ax = Ax. Then
(A-sDx=Ax-slx =Ax-sx = (A-95)x

That is, A — s is an eigenvalue of A — s/ and x is a corresponding eigenvector.

(a) For any square matrix B, we know that det(B) = det(B7). Thus
det(M — A) = det(M —A)T
= det(M" - AT)
= det(Al — A7)

from which it follows that A and AT have the same eigenvalues because they have the
same characteristic equation.

1
(b) Consider, for instance, the matrix { 0} which has A = 1 as a (repeated) eigen-

value. Its eigenspace is spanned by the vector [ 1}, while the eigenspace of its

1
transpose is spanned by the vector [ 1 }

(a) Since p(A) has degree 6, A is 6 x 6.
(b) Yes, A is invertible because A = 0 is not an eigenvalue.

(¢) A will have 3 eigenspaces corresponding to the 3 eigenvalues.
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13.

The eigenspace corresponding to A = 0 can have dimension 1 or 2. The eigenspace
corresponding to A = 1 must have dimension 1. The eigenspace corresponding to A = 2 can
have dimension 1, 2, or 3.

Call the matrix A. Since A is triangular, the eigenvalues are A = 3 and A = 2. The matrices
3] — A and 2] — A both have rank 2 and hence nullity 1. Thus A has only 2 linearly
independent eigenvectors, so it is not diagonalizable.

The characteristic equation is A> — 6A% + 11A — 6 = 0, the eigenvalues are A = 1, A = 2, and
A = 3, and the eigenspaces are spanned by the vectors

1 2/3 1/4
1 1 3/4
1 1 1
Thus, one possibility is
1 2 1
P=|1 3 3
1 3 4
and
1 0 0
PAP={0 2 0
0O 0 3

203
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15.

21.

Exercise Set 7.2

The characteristic equation is A>(A — 1) = 0; thus A = 0 and A = 1 are the only eigenvalues.

1 0
The eigenspace associated with A = 0 is spanned by the vectors O] and | 1| ;the
-3 0
0
eigenspace associated with A = 1 is spanned by | O | . Thus, one possibility is
1
1 0 0
P= 0 1 0
-3 0 1
and hence
0 0 0
Plap={0 0 0

The characteristic equation of A is (A — 1)(A — 3)(A — 4) = 0 so that the eigenvalues are
A =1, 3, and 4. Corresponding eigenvectors are [1 2 1]7, [1 0 -1]7, and [1 -1 1]7,
respectively, so we let

1 1 1
P=|2 0 -1
1 -1 1

Hence

1/6 1/3  1/6
Pl=11/2 0 -1/2
1/3 -1/3 1/3

and therefore

1 171" o0 0 1/6 1/3  1/6
1/2 0 -1/2
-1 1|lo o av|l|1/3 -1/3 1/3

A" =

— DN =
(@]
|
—
(@]
(V]
N
(@]
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25. (a) False. For instance the matrix l:

27.

(b)

(©)
(d)

(a)

} , Which has linearly independent column

vectors, has characteristic polynomial (A — 1)2. Thus A = 1 is the only eigenvalue.
1

The corresponding eigenvectors all have the form ¢ l:l :I . Thus this 2 x 2 matrix has

only 1 linearly independent eigenvector, and hence is not diagonalizable.

False. Any matrix ¢ which is obtained from P by multiplying each entry by a nonzero
number k£ will also work. Why?

True by Theorem 7.2.2.

True. Suppose that A is invertible and diagonalizable. Then there is an invertible
matrix P such that Pt AP = D where D is diagonal. Since D is the product of invertible
matrices, it is invertible, which means that each of its diagonal elements d, is nonzero
and D! is the diagonal matrix with diagonal elements 1/d,. Thus we have

(P AP)! = D!
or
PlATP =D

That is, the same matrix P will diagonalize both A and AL,

Since A is diagonalizable, there exists an invertible matrix P such that P* AP = D
where D is a diagonal matrix containing the eigenvalues of A along its diagonal.
Moreover, it easily follows that P! A¥P = D¥ for k a positive integer. In addition,
Theorem 7.1.3 guarantees that if A is an eigenvalue for A, then A¥ is an eigenvalue for
A In other words, D* displays the eigenvalues of A* along its diagonal.

Therefore, the sequence

P'AP=D
P1A2P =D?
P1AFP =D*
will converge if and only if the sequence A, A2, ..., A¥, ... converges. Moreover, this
will occur if and only if the sequences A, A%, ..., A¥, ... converges for each of the »

eigenvalues A, of A.
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29.
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(b) In general, a given sequence of real numbers a, a2, a?, . . . will converge to 0 if and only

if -1 <a <1andto 1l if a = 1. The sequence diverges for all other values of a.

Recall that P! A¥ P = D* where D” is a diagonal matrix containing the eigenvalues
AF, AE .. AFon its diagonal. If A | < 1 for all 4 = 1, 2,..., n, then lim DF =0

k—>eo

and hence lim A% = 0.
k—>o0

If A, = 1 is an eigenvalue of A for one or more values of ¢ and if all of the other

eigenvalues satisfy the inequality |Xj| < 1, then klim A¥ exists and equals PD, P! where
—So0
D, is a diagonal matrix with only 1's and 0’s on the diagonal.

If A possesses one or more eigenvalues A which do not satisfy the inequality

-1 <A <1, then %im A* does not exist.
—>00

The Jordan block matrix is

11 0 0 0
0 1 1 0 0
J, = R
0 0 1 10
0 0 0 1 1

Since this is an upper triangular matrix, we can see that the only eigenvalue is A = 1, with
algebraic multiplicity 7. Solving for the eigenvectors leads to the system

01 0 0
0 1 0 0

AI-J)x=|: &+ " " i ilx
0 0 0 1 0
0 0 0 0 1]
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13.

15.

(a) The characteristic equation is A(A — 5) = 0. Thus each eigenvalue is repeated once
and hence each eigenspace is 1-dimensional.

(¢) The characteristic equation is A2(A — 3) = 0. Thus the eigenspace corresponding to A
= 0 is 2-dimensional and that corresponding to A = 3 is 1-dimensional.

(e) The characteristic equation is A?(A — 8) = 0. Thus the eigenspace corresponding to A
= 0 is 3-dimensional and that corresponding to A = 8 is 1-dimensional.

By the result of Exercise 17, Section 7.1, the eigenvalues of the symmetric 2 x 2 matrix

a b 1 2 9 . ;
bl Are A= 5 (a+d) £ (a—d) +4b Since (a — d)? + 4b? cannot be negative,

the eigenvalues are real.

Yes. Notice that the given vectors are pairwise orthogonal, so we consider the equation

P1AP=D

or

A = PDP!

where the columns of P consist of the given vectors each divided by its norm and where D
is the diagonal matrix with the eigenvalues of A along its diagonal. That is,

0 1 0 )
P=|1/2 0 1/N2| and D=
“1/N2 0 142

o O
oS W O
N O O

207
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From this, it follows that

A=PDP =

S O W
=~ W O
W B~ O

Alternatively, we could just substitute the appropriate values for A and x in the equation
Ax = Ax and solve for the matrix A.
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(a) The characteristic equation of A is A2 — 2 cos @ + 1 = 0. The discriminant of this
equation is 4 (cos? @ — 1), which is negative unless cos? @ = 1. Thus A can have no real
eigenvalues or eigenvectors in case 0 < 0 < T.

(a) If
a; 0 0
Do 0 ay 0
0 O a

then D = S%, where

_\/a 0O - 0
g 0 \/@ o

o 0 .. @

Of course, this makes sense only if a, 20,...,a, 20.

(b) If A is diagonalizable, then there are matrices P and D such that D is diagonal and D
= P AP. Moreover, if A has nonnegative eigenvalues, then the diagonal entries of D
are nonnegative since they are all eigenvalues. Thus there is a matrix 7T, by virtue of
Part (a), such that D = T%. Therefore,

A = PDP! = PT? P! = PTP! PTP™' = (PTP)?

That is, if we let S = PTP!, then A = S2.

209
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3.

Supplementary Exercises 7

(¢) The eigenvalues of A are A = 9, A = 1, and A = 4. The eigenspaces are spanned by the
vectors

1 1 1
2 0 1
2 0 0
Thus, we have
1 1 1 0 0 1/2
P=(2 0 1| ad Pl={1 -1 1/2
2 0 0 0 1 -1
while
9 0 0 3 0 0
D=0 1 0| and T=|0 1 0
0 0 4 0o 0 2
Therefore
1 1 0
S=PTP'={0 2 1
0O 0 3

Since det(M —A) is a sum of signed elementary products, we ask which terms involve A1,
Obviously the signed elementary product

q= (7"_@11)0\'_@22) (2’_ a‘nn)

_\n _ n-1
=N = (ay + Gy, + +a, I\

+ terms involving A" where » < n — 1

has a term — (trace of A)A*!. Any elementary product containing fewer than 7 — 1 factors
of the form A — a,, cannot have a term which contains A"~ 1. But there is no elementary
product which contams exactly n — 1 of these factors (Why?). Thus the coefficient of A™!
is the negative of the trace of A.
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7. (b) The characteristic equation is

pA) =-1+3A-3A2+A=0

Moreover,
0 0 1
A*=11 -3
3 -8 6
and

h
w
Il
S W
|
o
(@)

-15 10

It then follows that

p(A) = T + 34 —3A% + A3 = 0

a0 - 0 A 0 0 azlf 0 0
2
I R
0 0 o aO 0 O o alln L O O te G/ZA(EZ_
a, A0 0
. 0 an/lg 0 P_l
0 0 anlz_
ay+a A+ +a, A 0 0
— P O a0+a1).«2 +"'+6Ln/1;1 e 0 P,l
i 0 0 e agtagh, +oeta, A |
_p(,ll) 0 0
| TR e
0 0 p(4,,)
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However, each A, is a root of the characteristic polynomial, so p(A) =0fori=1,..., n.
Then,
0 0 0
0
p(A)=P : p
0 0 0
=0.

Thus, a diagonalizable matrix satisfies its characteristic polynomial.

Since ¢, = 0 and ¢, = -5, we have A% = BA, and, in general, A" = 51 A.

Call the matrix A and show that A% = (¢, + ¢y +--- +c¢)A = [tr(A)]A. Thus Ak =
[tr(A)]F ' A for k =2, 3,.... Now if A is an eigenvalue of A, then A¥ is an eigenvalue of A*,
so that in case tr(A) # 0, we have that A [tr(A)]*! = [Mtr(A)]*! A is an eigenvalue of A
for k =2, 3,.... Why? We know that A has at most 7 eigenvalues, so that this expression
can take on only finitely many values. This means that either A = 0 or A = tr(4). Why?
In case tr(A) = 0, then all of the eigenvalues of A are 0. Why? Thus the only possible
eigenvalues of A are zero and tr(A). It is easy to check that each of these is, in fact, an
eigenvalue of A.

Alternatively, we could evaluate det(JA — A) by brute force. If we add Column 1 to
Column 2, the new Column 2 to Column 3, the new Column 3 to Column 4, and so on, we
obtain the equation

—¢,  A-c—Cy A-c—Cy—C3 - A—Cj—Cy—-—C,
det(JA-A) =det| —¢ —C=Cy A—=C=Cy—C3 -+ A—C—Cy—-—C,

- —C| —Cy —C|—Cy—Cq =+ A=C—=Cy—:—C
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If we subtract Row 1 from each of the other rows and then expand by cofactors along the
n'” column, we have

_l—cl A=cj—Cy A—c—cCy—cCg - A—tr(A)]
-2 0 0 0
det(I—A) = det| —A W 0 0
| - -2 -2 0 |
-4 0 0 0 ]
-A -2 0

= (D)"Y A-tr(A) det] -4 -1 -4

[ R R |

= (1" (- @) (W

because the above matrix is triangular
= ¥ (A~ tr(A)A!
=N (A - tr(4A))

Thus A = tr(4) and A = 0 are the eigenvalues, with A = 0 repeated » — 1 times.

17. Since every odd power of A is again A, we have that every odd power of an eigenvalue of

A is again an eigenvalue of A. Thus the only possible eigenvalues of A are A = 0, =1.
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3.

17.

Since T (-u) = ||~ul| = |ju|| = T(w) # -T(w) unless u = 0, the function is not linear.

We observe that

T(A, +A) = (A, +ADB=AB +AB =T + T(A,)

and

T(cA) = (cA)B =c(AB) =cT(A)
Hence, T is linear.

(a) Since T is defined on all of R?, the domain of T,oT, is R?. We have T,oT (x,y) =
T,(T\(x, y)) = T,(2x, 3y) = (2x - 3y, 2x + 3y). Since the system of equations

202 —-3y =a

22 +3y=>b

can be solved for all values of @ and b, the codomain is also all of k2.

(d) Since T is defined on all of R?, the domain of 7, © T, is R%. We have

Ty(T\ (@, y) =Ty -y, y +2,2-2) = (0, 22)

Thus the codomain of T, © T, is the y-axis.

215
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19.

25.

31.

33.

Exercise Set 8.1

(a) We have

T a ¢
(T e To)(A)=1tr(A" )=tr =a+d
b d
(b) Since the range of 7', is not contained in the domain of 7', T\, © T, is not well defined.

Since (1, 0, 0) and (0, 1, 0) form an orthonormal basis for the xy-plane, we have T'(«x, y, 2)
=(x,0,0) +(0,y,0) = (x, y, 0), which can also be arrived at by inspection. Then 7'(T'(x,
y,2) =T(x,y,0) = (x,y, 0) = T(x, y, 2). This says that T leaves every point in the x-y
plane unchanged.

(b) We have
(JoD)(sinx) = I: (sint)’dt = sin(x) —sin(0) = sin(x)
(e¢) We have

(JoD)(e” +3)= jox(e“ +3)di=e” —1
(a) True. Let ¢, = ¢, = 1 to establish Part (a) of the definition and let ¢, = 0 to establish
Part (b).

(b) False. All linear transformations have this property, and, for instance there is more
than one linear transformation from R? to R2.

(c¢) True. If we let u = 0, then we have T (v) = T(—v) = —-T(v). That is, T(v) = 0 for all
vectors v in V. But there is only one linear transformation which maps every vector to
the zero vector.

(d) False. For this operator T, we have

T(v+v)=T@v) =v,+2V

But

TW) +T(v) =2T(v) =2v, + 2v

Since v, # 0, these two expressions cannot be equal.
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35.

Yes. Let T : P* — P™ be the given transformation, and let 7, : R™! — R™! be the
corresponding linear transformation in the sense of Section 4.4. Let ¢, : P, — R™! be the
function that maps a polynomial in P, to its coordinate vector in R™1 and let ¢, P,
R™1 be the function that maps a polynomial in P, to its coordinate vector in Rm+1,

By Example 7, both ¢ and ¢, are linear transformations. Theorem 5.4.1 implies that a
coordinate map is invertible, so cp;,} is also a linear transformation.

We have T=¢ ! oT,0, , so T is a composition of linear transformations. Refer to the
diagram below:

Rn+l Tk . Rm+1

Thus, by Theorem 8.1.2., T is itself a linear transformation.
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(a)

(b)

(b)

(a)

(a)

(©)

If (1, -4) is in R(T), then there must be a vector («, ) such that T'(x, y) = (2x — y,
-8x + 4y) = (1, —4). If we equate components, we find that 2xr —y =l ory =t and x
= (1 + ¢t)/2. Thus T maps infinitely many vectors into (1, —4).

Proceeding as above, we obtain the system of equations

20—y =5

8xr +4y =0

Since 2x — y = b implies that —-8x + 4y = —20, this system has no solution. Hence
(5, 0) is not in R(T).

The vector (1, 3, 0) is in R(T) if and only if the following system of equations has a
solution:

dx+y—-22-3w=1
20 +y+ z2—-4w =3

6x 92+ 9% =0

This system has infinitely many solutions x = (3/2)(t - 1),y = 10 - 4t,z2 =t, w = 1
where ¢ is arbitrary. Thus (1, 3, 0) is in R(T).

Since T'(x%) = 2% # 0, the polynomial 22 is not in ker(7).

We look for conditions on « and y such that 2x — y = and -8x + 4y = 0. Since these
equations are satisfied if and only if ¥ = 2«, the kernel will be spanned by the vector
(1, 2), which is then a basis.

Since the only vector which is mapped to zero is the zero vector, the kernel is {0} and
has dimension zero so the basis is the empty set.

219
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9. (a) Here n = dim(R?) = 2, rank(7) = 1 by the result of Exercise 8(a), and nullity(7) = 1
by Exercise 7(a). Recall that 1 + 1 = 2.

(¢) Here n = dim(P,) = 3, rank(7T) = 3 by virtue of Exercise 8(c), and nullity(7) = 0 by
Exercise 7(c). Thus we have 3 = 3 + 0.

19. By Theorem 8.2.1, the kernel of 7 is a subspace of R®. Since the only subspaces of R? are
the origin, a line through the origin, a plane through the origin, or R? itself, the result
follows. It is clear that all of these possibilities can actually occur.

21. (a) If
1 3 X 0
3 4 7 y|=1]0
-2 2 0 2 0

then x = -, y = -, 2 = . These are parametric equations for a line through the origin.

(b) Using elementary column operations, we reduce the given matrix to

1 0 O
3 -5 0
-2 8 0

Thus, (1, 3, -2)" and (0, -5, 8)7 form a basis for the range. That range, which we can
interpret as a subspace of R?, is a plane through the origin. To find a normal to that
plane, we compute

(1, 3,-2) x (0, -5, 8) = (14, -8, -5)

Therefore, an equation for the plane is

14x -8y -5z =0

Alternatively, but more painfully, we can use elementary row operations to reduce
the matrix
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23.

27.

29.

to the matrix

0 1 (-4z+3y)/5
1 1 (3x-y)/5
0 0 0 14x-8y-bz

Thus the vector (x, ¥, 2) is in the range of T if and only if 14x — 8y — bz = 0.

The rank of T is at most 1, since dimR = 1 and the image of T is a subspace of R. So, we
know that either rank(7") = 0 or rank(7) = 1. If rank(7") = 0, then every matrix A is in the
kernel of T, so every n X n matrix A has diagonal entries that sum to zero. This is clearly
false, so we must have that rank(7) = 1. Thus, by the Dimension Theorem (Theorem 8.2.3),
dim (ker(7T)) = n® - 1.

If f(x) is in the kernel of D o D, then f”(x) = 0 or f(x) = ax + b. Since these are the only
eligible functions f(x) for which f”(x) = 0 (Why?), the kernel of D o D is the set of all
functions f(«) = ax + b, or all straight lines in the plane. Similarly, the kernel of D o D
o D is the set of all functions f(x) = ax® + bx + ¢, or all straight lines except the y-axis
and certain parabolas in the plane.

(a) Since the range of T has dimension 3 minus the nullity of 7, then the range of 7" has
dimension 2. Therefore it is a plane through the origin.

(b) Asin Part (a), if the range of 7' has dimension 2, then the kernel must have dimension
1. Hence, it is a line through the origin.
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(a)
(c)

(e)

(a)

(c)

Clearly ker(T) = {(0, 0)}, so T is one-to-one.

Since T'(x, y) = (0, 0) if and only if x = y and & = —y, the kernel is {0, 0} and T is one-
to-one.

Here T'(x, y) = (0, 0, 0) if and only if « and y satisfy the equations x —y = 0, -x + ¥y
=0, and 2x — 2y = 0. That is, (%, v) is in ker(T) if and only if x = y, so the kernel of
T is this line and T is not one-to-one.

Since det(A4) = 0, or equivalently, rank(A) < 3, T has no inverse.

Since A is invertible, we have

L 1 1]
Ly Ly ? ? ? Ly
T =AY 2y |=| —= - — ||
2 2 D) B D) 2
) L3 1 1 1 Z3
| 2 2 2 |
F 1 _
1
1

223
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11.

13.

17.

19.

(a)

(b)

(b)
(c)

(a)

(a)

(a)

(c)

Exercise Set 8.3

The kernel of T is the line y = —x since all points on this line (and only those points)
map to the origin.

Since the kernel is not {0, 0}, the transformation is not one-to-one.

Since nullity(7) = n — rank(T) = 1, T is not one-to-one.

Here T cannot be one-to-one since rank(7) <% < m, so nullity(7) > 1.

We know that 7" will have an inverse if and only if its kernel is the zero vector, which
means if and only if none of the numbers a, = 0.

By inspection, Tﬁ%p(x)) = p(x)/x, where p(x) must, of course, be in the range of T
and hence have constant term zero. Similarly T;l(p(x)) = p(x — 1), where, again, p(x)
must be in the range of T,. Therefore (T, © T)(p(x)) = p(x — 1)/x for appropriate
polynomials p(x).

Since T sends the nonzero matrix [ } to the zero matrix, it is not one-to-one.

0 O

Since T sends only the zero matrix to the zero matrix, it is one-to-one. By inspection,
T-14) = T(A).

Alternative Solution: 7' can be represented by the matrix

o 0 0 1
A T
B0 0 -1 0

1 0 0 0

By direct calculation, 7, = (T),))}, so T = T"..

Suppose that w, and w, are in (7). We must show that

T (w, +w,) =T (w) + T"'(w,)
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21.

25.

27.

and
T (kw) = kT (w)

Because T is one-to-one, the above equalities will hold if and only if the results of applying
T to both sides are indeed valid equalities. This follows immediately from the linearity of the
transformation 7.

It is easy to show that T is linear. However, T is not one-to-one, since, for instance, it sends
the function f(x) = x — 5 to the zero vector.

Yes. The transformation is linear and only (0, 0, 0) maps to the zero polynomial. Clearly
distinct triples in R? map to distinct polynomials in P,

No. T'is a linear operator by Theorem 3.4.2. However, it is not one-to-one since 7'(a) = a
xa =0 =T(0). That is, T maps a to the zero vector, so if T is one-to-one, a must be the
zero vector. But then T would be the zero transformation, which is certainly not one-to-one.
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(a) Since A is the matrix of 7 with respect to B, then we know that the first and second
columns of A must be [T'(v,)], and [T'(v,)],, respectively. That is

[T(Vl)]g{_ﬂ
[T(Vz)]gz{ﬂ

Alternatively, since v, = 1v, + Ov, and v, = Ov, + 1v,, we have

e {1

and
0 3
o[
(b) From Part (a),
3
T(v),=v,—-2vy,= { 5 }

and

-2

227
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(¢) Since we already know 7'(v,) and T'(v,), all we have to do is express [x, ,]" in terms

of v, and v, If
=av; +bvy =a +b
Xy 3 4

then
x,=a-b
Zz, = 3a + 4b
or
a = (4, + 2)/7
b=(38x, +x,)/7
Thus

2y || Azt | 3 +—3x1+x2 -2
zy | )T -5 7 29

182, + 2y
7
-1072, + 24,

7

(L)) - L]

11. (a) The columns of A, by definition, are [T'(v,)],, [T'(v,)];, and [T(v,)],, respectively.

(d) By the above formula,

(b) From Part (a),
T(v) =V, +2v, + 6v, =16+ 5lx + 192*
T(v,) =3v, -2V, =6 — bx + ba®

T(v,) =—v, + bv, + 4v, = 7 + 402 + 152°
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(¢) Leta,+ax + am®=byv, + bV, + b,v,. Then
a, = - b, + 3b,

a, = Sbo +3b, + Tb,

Qy = Sbo +2b, + 2b,

This system of equations has the solution
b, = (a,—a, +2a,)/3
b, = (-ba, + 3a, - 3a,)/8

b, = (a, +a, —a,)/8

Thus

T(a, + ax + ax®) =b,T(v) + b,T(v,) + b,T(v,)

3 239a, —161a, +247a,
B 24
201a, —111a, +247a
n 0 . 1 2 .

6la, —31la, +107a
+ 0 1 2 2

12
(d) By the above formula,

T(1 +22) =2 + 56x + 1422

13. (a) Since
T/ (1)=2 and T (x)=-32*
T,(1) =3z T,(x) =32 and T,(x,) =32°

T,oT (1) =6x and T,oT (x)=-9x,

we have

229
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0 0 0
2 0
3 0 0
[Tl]B",B =0 0 [T2]B',B” = 0 3 0
0 -3
0 0 3
and
0 0
6 0
I:T2 ° 771 :lB’,B = O O
0 -9

(b) We observe that here

[Tz ° TI]B',B = [TZ]B',B" [TI]B",B

15. If T'is a contraction or a dilation of V, then 7" maps any basis B = {v, ..., v } of V' to

{kv,, ..., kv } where k is a nonzero constant. Therefore the matrix of 7" with respect to B is

k 0 0 0
0 k 0 0
0 0 %k 0

0 0 0 k |

17. The standard matrix for T is just the m X % matrix whose columns are the transforms of the
standard basis vectors. But since B is indeed the standard basis for R”, the matrices are the
same. Moreover, since B’ is the standard basis for R™, the resulting transformation will yield
vector components relative to the standard basis, rather than to some other basis.

19. (e) Since D(f) = 2f, D(f,) = £, + 2f,, and D(f)) = 2f, + 2f,, we have the matrix
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First, we find the matrix of 7" with respect to B. Since

1
o]

and

-2
o3

then

asfr),~y 2]

In order to find P, we note that v, = 2u, + u, and v, = -3u, + 4u,. Hence the transition
matrix from B’ to B is

Thus

4
N TR

1 2

0on

231
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and therefore

&= (7] = P s[4 3] 2]z 3
e B 711l =1 20lo 1|1 4

3 56
TR
|2 3

11 11

Since T(u,) = (1/4/2, 1/4/2) and T(u) = (-1/+/2, 1/4/2), then the matrix of T with
respect to B is

e B
A‘[”B‘L/ﬁ M]

From Exercise 1, we know that

Thus

, 1., 1 [13 -2
A'=[T], =P AP_—H\E[ - 9}

Since T'(e,) = (1, 0, 0), T(e,) = (0, 1, 0), and T'(e,) = (0, 0, 0), we have

1 0 0
A=[T],=[0 1 0
0 0 0

In order to compute P, we note that v, = e,, v, = e, + e,, and v, = e, + e, + e,. Hence,

]

Il
o O
[ N S —
— =
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and
Thus
1
[T ], =0
0
7. Since
and
we have

We note that 4; =

233

1 -1 0
P1t=]0 1 -1
0 0 1

-1 0 1 0 O 1 1 1 1 0 0
1 -1](0 1 0 11=]0 1
0 1110 0 0|0 O 1 0O 0 O

2 1
T =9+3xr=—=p, +—
(pp) x 3p1 sz

2 4
T(py) =12 +2x = —§p1 + §p2

Wk ol

[7]5=

3

2 1 7 1
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9.
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[\CHIEN]

—

Therefore

Wk oo

[NCHIEN]
W~ ol

(7], -

—
DN~ Wl

DO | w
| = O
Il
1
O =
— =
1

(a) If A and C are similar » X n matrices, then there exists an invertible 7 x % matrix P

such that A = P1CP. We can interpret P as being the transition matrix from a basis B’
for R" to a basis B. Moreover, C induces a linear transformation 7' : B* — R" where C
= [T],. Hence A = [T],. Thus A and C are matrices for the same transformation with
respect to different bases. But from Theorem 8.2.2, we know that the rank of 7' is
equal to the rank of C and hence to the rank of A.

Alternate Solution: We observe that if P is an invertible % X % matrix, then P
represents a linear transformation of R onto R™. Thus the rank of the transformation
represented by the matrix CP is the same as that of C. Since P! is also invertible, its
null space contains only the zero vector, and hence the rank of the transformation
represented by the matrix P! CP is also the same as that of C. Thus the ranks of A
and C are equal. Again we use the result of Theorem 8.2.2 to equate the rank of a
linear transformation with the rank of a matrix which represents it.

Second Alternative: Since the assertion that similar matrices have the same rank deals
only with matrices and not with transformations, we outline a proof which involves
only matrices. If A = P! CP, then P! and P can be expressed as products of
elementary matrices. But multiplication of the matrix C by an elementary matrix is
equivalent to performing an elementary row or column operation on C. From Section
5.5, we know that such operations do not change the rank of C. Thus A and C must
have the same rank.
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11.

13.

(a)

(a)

The matrix for 7T relative to the standard basis B is

]y ]

The eigenvalues of [T, are A = 2 and A = 3, while corresponding eigenvectors are
(1, -1) and (1, —2), respectively. If we let

and

P YT, P= 2.0
B 0 3

is diagonal. Since P represents the transition matrix from the basis B” to the standard

basis B, we have
1 1
B’ = ,

as a basis which produces a diagonal matrix for [77,..

The matrix of 7" with respect to the standard basis for P, is

5 6 2
A=|0 -1 -8
1 0 -2

The characteristic equation of A is
A —202 - 160 +36=(A-3)2A+4) =0

and the eigenvalues are therefore A = —4 and A = 3.
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15.

17.

19.

Exercise Set 8.5

(b) If we set A = -4, then (A — A)x = 0 becomes

The augmented matrix reduces to

1 0 2 0
0 1 -8/3 0
0 0 0 0

o = %s, and x, = s. Therefore the vector

and hence x, = -2s, x
-2

8/3

1

is a basis for the eigenspace associated with A = —4. In P?, this vector represents the
polynomial -2 + gx + 22
If we set A = 3 and carry out the above procedure, we find that x,=58,x,=-2s,

and x, = s. Thus the polynomial 5 — 2z + 2% is a basis for the eigenspace associated
with A = 3.

If v is an eigenvector of 7' corresponding to A, then v is a nonzero vector which satisfies
the equation T (v) = Av or (M — T)v = 0. Thus A/ — T'maps v to 0, or v is in the kernel of
AM-T.

Since C[x], = D[x], for all x in V, we can, in particular, let x = v, for each of the basis
vectors vy, ..., v of V. Since [v], = e, for each ¢ where {e , ... , e } is the standard basis for
R", this yields Ce, = De; fori = 1, ... , n. But Ce, and De, are just the " columns of C and
D, respectively. Since corresponding columns of C and D are all equal, we have C = D.

(a) False. Every matrix is similar to itself, since A = ' Al

(b) True. Suppose that A = P BP and B = @' CQ. Then
A=P1Q'CQP = PR HCQP) = (@P)'C(QP)

Therefore A and C are similar.
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(¢) True. By Table 1, A is invertible if and only if B is invertible, which guarantees that A
is singular if and only if B is singular.
Alternatively, if A = P! BP, then B = PAP'. Thus, if B is singular, then so is A.
Otherwise, B would be the product of 3 invertible matrices.

(d) True. If A = P! BP, then A”'=(P' BP)! = P 1 B (P ) = P1B1P,s0 A and B! are
similar.

25. First, we need to prove that for any square matrices A and B, the trace satisfies tr(4) =

tr(B). Let
Q1 A o Ay by by by,
A=| 21 Y22 Yn | and B= by Doy bon,
Qp1 Apg 0 Ay bnl bn2 bnn
Then,
n
[AB]); = ay10y1 +ay9bg + ay3bgy +---+ 0,0, = 2 a b
j=1
n
[ABlyy = g byy + ggbyy +Gogbay +++-+ G, by = D'y )
J=1
n
[AB]nn = nlbln + an2b2n + an3b3n teet awmbvm = zanjbjn'
J=1
Thus,

tr(AB) = [AB],, + [AB],, + --- + [AB]

22

M=

n n
ay b + Ziazjbjz +o4 Zi%fbf”
J= J=

n
2 iy
J=1

=1

<
I

[
M=

k

l
—_
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Reversing the order of summation and the order of multiplication, we have

tr(AB)=) Y bya

o |
n n n
=D byl + D by ++ D by,
prs i1 i1
= [BA]H + [BA]22 +--4 [BA]WL
— tr(BA).

Now, we show that the trace is a similarity invariant. Let B = P! AP. Then
tr(B) = tr(P! AP)
=tr((P1A)P)
=tr(P(P! A))
= tr(PPHA)
=tr({ A)

=tr(4).
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(a)
(b)

(©)
(d)

(e)

(€9

(a)

(b)
(c)
(d)

(a)

(b)
(o)

This transformation is onto because for any ordered pair (a, b) in B%, T'(b, a) = (a, b).
We use a counterexample to show that this transformation is not onto. Since there is
no pair (x, ¥) that satisfies T'(x, y) = (1, 0), T is not onto.

This transformation is onto. For any ordered pair (a, b) in B2, T (a_er a_—bj = (a, b).

2 7 2
This is not an onto transformation. For example, there is no
pair (x, y) that satisfies T'(x, y) = (1, 1, 0).
The image of this transformation is all vectors in E? of the form (a, —a, 2a). Thus, the
image of T is a one-dimensional subspace of R? and cannot be all of R3. In particular,
there is no vector (x, ) that satisfies T'(x, y) = (1, 1, 0), and this transformation is not
onto.

This is an onto transformation. For any point (a, b) in K2, there are an infinite number

of points that map to it. One such example is T [aTer, CLT_b, 0] = (a, b).

We find that rank(A) = 2, so the image of 7' is a two-dimensional subspace of R3. Thus,
T is not onto.

We find that rank(A) = 3, so the image of T is all of R%. Thus, T is not onto.

We find that rank(4) = 3, so the image of T is all of R3. Thus, 7T is onto.

We find that rank(A4) = 3, so the image of T is all of R. Thus, T is onto.

The transformation 7' is not a bijection because it is not onto. There is no p(x) in
P,(x) so that xp(x) = 1.

The transformation 7'(A) = AT is one-to-one, onto, and linear, so it is a bijection.

By Theorem 8.6.1, there is no bijection between R* and R?, so T cannot be a bijection. In
particular, it fails being one-to-one. As an example, 7'(1, 1, 2,2) = 7(1, 1,0, 0) = (1, 1, 0).

239
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11.

[0] [0] [ 0] [0] [ 0]
0 0 -1 0 0
(D] =|0| [D6Snx)]z=[1| [D(cosx)lz=| 0| [D(sin2x)]z=|0| [D(cos2x)lz=| 0].
0 0 0 0 -2
10 ] 10 | O] 1 | O]

Exercise Set 8.6

(d) Because dim P, = 4 and dim R? = 3, Theorem 8.6.1 states that there is no bijection
between P, and R3, so T cannot be a bijection. In particular, it fails being one-to-one.
As an example, T(x + 2° + 2°) = T(1 +x + 2° + 2°) = (1, 1, 1).

Assume there exists a surjective (onto) linear transformation 7' : V — W, where dim W >
dim V. Let m = dim V and n = dim W, with m < n. Then, the matrix A, of the
transformation is an n X m matrix, with m < n. The maximal rank of A, is m, so the
dimension of the image of 7" is at most m. Since the dimension of the image of 7' is smaller
than the dimension of the codomain R", T is not onto. Thus, there cannot be a surjective
transformation from V onto W if dim V < dim W.

If n = dim W< dim V = m, then the matrix A, of the transformation is an » X m matrix
with maximim possible rank 7. If rank(A,) = n, then T'is a surjective transformation.

Thus, it is only possible for T : V — W to be a surjective linear transformation if dim W
<dim V.

Let T : V — R" be defined by T'(v) = (v),, where S = {u;, u,, ..., u } is a basis of V. We
know from Example 7 in Section 8.1 that the coordinate map is a linear transformation.
Let (a,, as, ..., a,) be any point in R”. Then, for the vector v=a,u, + a,u, + --- + a, u, , we
have

T(w) =T(au, +au, + - +aw) = (a, dy, ..., Q)

n-n

so T is onto.

Also, let v) = au, + a,u, + --- + a,u and v, = bu, + bu, + --- + b u . If T'(v) =
T(v,), then (v)¢ = (v,),, and thus (a,, a,, ... ,a,) = (by, b, ..., b ). It follows that a, = b,,
a, =b,,...,a, =0b , and thus

v, =au +au, + - +a u =V,

So, T is one-to-one and is thus an isomorphism.

Let V = Span{l, sin x, cos x, sin 2x, cos 2x}. Differentiation is a linear transformation (see
Example 11, Section 8.1). In this case, D maps functions in V into other functions in V. To
construct the matrix of the linear transformation with respect to the basis B = {1, sin x,
cos x, sin 2x, cos 2x}, we look at coordinate vectors of the derivatives of the basis vectors:

D(1)=0 D(sinx)=cosx D(cosx)=-sinx D(sin 2x) = 2 cos 2x
D(cos 2x) = 2 sin 2x

The coordinate matrices are:
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Thus, the matrix of the transformation is

0 0 0 0 O]

0 0 -1 0 0
Ap=l0 1 0 0 0
0 0 0 0 -2

0 0 0 2 0]

Then, differentiation of a function in V' can be accomplished by matrix multiplication by the

formula
[D(f)]B :AD[f]B-
The final vector, once transformed back to V from coordinates in R®, will be the desired
derivative.
For example,
3] o o o o ol 3] [ o]
-4 0 0 -1 0 0|4 0
[D(3 — 4sinx +sin2x + 5 cos2x)]g = Ap| 0(=] 0 1 0 0 0 0|l=| 4
1 0 0 0 0 -2 1 -10
L 5] L O 0 0 2 O] 5] | 2]

Thus, D(3 -4 sinx + sin 2x + 5 cos 2x) = -4 cos x — 10 sin 2x + 2 cos 2x.
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3. By the properties of an inner product, we have
T(v+w) =(V+W, V)V,
= (v, vy) + (W, V)V,
=(V, V)V, + (W, V)V,

=T(v) + T(w)

and

T(kv) = kv, vp)v, = kv, v )V, = kKT (V)

Thus T is a linear operator on V.

5. (a) The matrix for 7" with respect to the standard basis is

1 0 1 1
A=l2 1 3 1
1 0 0 1

We first look for a basis for the range of T, that is, for the space of vectors B such that
Ax = b. If we solve the system of equations

x +2’+w=b1
2x +Y +3x +w =b,
x +w =by

we find that = 2 = b, — b, and that any one of &, y, or w will determine the other two.
Thus, T'(e,) and any two of the remaining three columns of A is a basis for R(7).
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Alternate Solution :We can use the method of Section 5.5 to find a basis for the
column space of A by reducing A” to row-echelon form. This yields

1 2 1

0O 1 0

0O 0 1

0O 0 O

so that the three vectors

1 0 0
2 1 0
1 0 1

form a basis for the column space of 7" and hence for its range.

Second Alternative: Note that since rank(A) = 3, then R(7T) is a 3-dimensional
subspace of R? and hence is all of R?. Thus the standard basis for R? is also a basis for

R(T).

To find a basis for the kernel of T, we consider the solution space of Ax = 0. If we set
b, = b, = b, = 0 in the above system of equations, we find that z = 0, x = —w, and y =
w. Thus the vector (-1, 1, 0, 1) forms a basis for the kernel.

7. (a) We know that T can be thought of as multiplication by the matrix

1 1 2 -2
m, =t L8
1 2 5 -6
3 2 3 -2

where reduction to row-echelon form easily shows that rank([T],) = 2. Therefore the
rank of 7" is 2 and the nullity of Tis 4 — 2 = 2.

(b) Since [T1, is not invertible, 7" is not one-to-one.
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9. (a) IfA=P!BP,then
AT = (P! BP)T
_ pT BT (P17
= (@) BT @
= (@HNTB PHT
Therefore AT and B” are similar. You should verify that if P is invertible, then so is P?

and that (P! = (P HT.

11.  If we let X:[a

b
, then we have
c d

4 IR
{a+b+c 2b+d}

o a

The matrix X is in the kernel of 7' if and only if 7(X) = 0, i.e., if and only if

a+b+c =0
2b +d=0
d=0

Hence

0
The space of all such matrices X is spanned by the matrix { O}’ and therefore has

dimension 1. Thus the nullity is 1. Since the dimension of M,, is 4, the rank of 7" must
therefore be 3.
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Alternate Solution. Using the computations done above, we have that the matrix for this
transformation with respect to the standard basis in M,, is

o o o =
=RV
o o o =
e )

Since this matrix has rank 3, the rank of 7' is 3, and therefore the nullity must be 1.

13. The standard basis for M22 is the set of matrices

1 0 0 1 0 0 0 0
o oo o1 o0 1
If we think of the above matrices as the vectors
m o o o7 [© 1 0 07 [0 0 1 07 [0 0 0 17
then L takes these vectors to

1 0 0 07 [0 0 1 07 [0 1 0 07 [0 0 0 1"

Therefore the desired matrix for L is

1 0 0 O

0 0 1 0

01 0 O

0 0 0 1

15. The transition matrix P from B’ to B is

1 1 1

P={0 1 1

0 0 1

Therefore, by Theorem 8.5.2, we have
-4 0 9

[Ty = PTI,P=| 1 0 -2
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17.

19.

Alternate Solution: We compute the above result more directly. It is easy to show that u,
=V, u,=-v, +V, and u; = -v, + V,. SO

T(v) =T) =-3u, +u, =-4v, +V,

T(v,) =T, +u,) =T) + T(u,)
=u, +u, +u, =V,

Ty =T, +u,+uy) =T(a) + T(w) + T(uy)
=8u, —u, +u,

= 9v1 —2v2 + Vv,

Since
1 1 0 -1 0 1
T 0 =0, T 1 = 1 ,and T 0 = 0
0 1 0 0 1 -1
we have
1 -1 1
(Tl =10 1 0
1 0 -1

In fact, this result can be read directly from [7'(X)],.

(a) Recallthat D(f+ g) = (f(w) + g@))” =f"(x) + g”"(x) and D(cf) = (¢f(x))” =c¢f”(x).

(b) Recall that D(f) = 0 if and only if /() = a for some constant « if and only if f(x) = ax
+ b for constants a and b. Since the functions f(x) = x and g(x) = 1 are linearly
independent, they form a basis for the kernel of D.

(¢) Since D(F) = f(x) if and only if f ”(x) = f(x) if and only if f(x) = ae® + be™ for a and
b arbitrary constants, the functions f(x) = e” and g(x) = e span the set of all such
functions. This is clearly a subspace of C? (—eo, ) (Why?), and to show that it has
dimension 2, we need only check that ¢* and e® are linearly independent functions.
To this end, suppose that there exist constants ¢, and ¢, such that ¢ .e” + c,e™ = 0. If
we let x = 0 and x = 1, we obtain the equations ¢, + ¢, = 0 and ¢,e + 028*1 = 0. These
imply that ¢, = ¢, = 0, so ¢ and e~ are linearly independent.
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21. (a) We have

p(x) + q(x)) p(x) q(x))
T(p(x) + q(x)) = | p(xy) + q(x5) | = | P(25) | +| () | = T(p(x)) + T(q(x))
p(x3) + q(a3) p(x3) q(x3)

and

kp(xp) p(x)
T(kp(x)) = | kp(xy) | = k| p(xy) | = kT (p(x))
kp(xq) p(x3)

(b) Since T'is defined for quadratic polynomials only, and the numbers x, x,, and x, are
distinct, we can have p(x)) = p(x,) = p(x,) = 0 if and only if p is the zero polynomial.
(Why?) Thus ker(T) = {0}, so T is one-to-one.

(e¢) We have

T(a,P(x) + a,P,(x) + a,Py(x)) = a,T(P,(x)) + a,T(Py(x)) + a,T(P,(x))

1 0 0
=a;| 0 |+ay| 1 |+agl0
0 0 1
a
=| a,
a3

(d) From the above calculations, we see that the points must lie on the curve.
23. Since

0 ifk=0

D(z") =
S {kxk_l iftk=12..n
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then

Dt ,....0) if k=0
B, k... 0)iftk=12..7
T

K component

where the above vectors all have n + 1 components. Thus the matrix of D with respect to
Bis

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0

0 0 0 0

25. Let B, and B, ,, denote the bases for P, and P respectively. Since

n+1’
k+1
J(x) :ZTl fork=0,...,m

we have

[J(gck)]BnJrl = (O,...,k—,...,O) (n + 2 components)

(k + Z)M component
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where [xk]B =[0,...,1,...,0]" with the entry 1 as the (k + 1) component out of a total
of 7 + 1 components. Thus the matrix of J with respect to B

1S

n+1

0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/ 0

0 0 0 (n+1) |

with 7 + 2 rows and 7 + 1 columns.
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(a) The system is of the form y’ = Ay where

<. 3]

The eigenvalues of A are A = 5 and A = -1 and the corresponding eigenspaces are
spanned by the vectors

respectively. Thus if we let

we have

D=P! AP = > 0
B 1o -1

Let y = Pu and hence y' = Pu’. Then

or
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Therefore
_ 5x
u, =ce

U, = Co€7°

Thus the equation y = Pu is
{yl } _ [1 —2} c,e”” _ 0" —2c,07"
Y L 1| ce™ 0”7 +c,e”"

— Bar_ —x
Y, = ce’r—2c,e

or

_ b —x
y2 = 018 + 626

1. (b) Ify,(0) =y,(0) =0, then

so that ¢, = ¢, = 0. Thus y, = 0 and y, = 0.

3. (a) The system is of the form y’ = Ay where

4 0 1
A=|-2 1 0
-2 0 1

The eigenvalues of A are A = 1, A = 2, and A = 3 and the corresponding eigenspaces are
spanned by the vectors

respectively. Thus, if we let

0 -1/2 -1
P=]1 1 1
0 1 1
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then
0 0
D=P'AP| 0 2 0
0 0 3

Let y = Pu and hence y’ = Pu’. Then

1 0 O
=0 2 u
0 0
so that
uw=u,
w', = 2u,
u'y = 3u,
Therefore
u, = cle"’
Uy, = C,0%°
Uy = C 8%
Thus the equation y = Pu is
Y, 0 -1/2 -17| a€”
Yy | =11 1 1 0262x
Ys 0 1 1 0363‘7”
or
— _ l 20 _ 3x
Yy =505 Cqe

_ X 20 3x
y2 = cle + 628 + 636

— 2 3x
y3 = (326 + 036



254

(b)
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Note: If we use

0 -1 1
1 2 -1
0 2 -1

as basis vectors for the eigenspaces, then

0 -1 1
P=|1 2 -1
0 2 -1

and
_ 20 3x
Y, = —C,e7° + Che
Yy = C,8" + 20,0%" — c 27"
_ 20 _ 3x
Yy = 20 Cqe
There are, of course, infinitely many other ways of writing the answer, depending upon

what bases you choose for the eigenspaces. Since the numbers ¢, ¢,, and c, are
arbitrary, the “different” answers do, in fact, represent the same functions.

If we set x = 0, then the initial conditions imply that
1 _
— 50y = C3 = -1
C,+Cy+cy= 1

+c,= 0

2 3

or, equivalently, that ¢, = 1, ¢, = -2, and ¢, = 2. If we had used the “different” solution
we found in Part (a), then we would have found that ¢, = 1, ¢, = -1, and ¢, = -2. In
either case, when we substitute these values into the appropriate equations, we find
that

3/1 - 6290 _ 263.76
v, = e — 28*" + 2™

Y, = -2 + 2%
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5.

Following the hint, let y = f(«x) be a solution to ¥’ = ay, so that f’(x) = af(x). Now consider
the function g(x) = f(x)e**. Observe that

g'@) =f'@)e ™ - af(x)e

= af(x)e™ — af(x)e™*
=0

Thus g(x) must be a constant; say g(x) = c. Therefore,

f()ye™ =¢

or

@) = cen
That is, every solution of ¥’ = ay has the form y = ce®.

Ify, =y and y, = ¥', then y} =y, and y;, = y” =y’ + 6y = y, + 6y,. That is,

’

yl = yg
Yy =6y, + ¥,

ory’ = Ay where

S

The eigenvalues of A are A = -2 and A = 3 and the corresponding eigenspaces are spanned

by the vectors
-1 1
and

respectively. Thus, if we let
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then

-2
plap = 0
0 3

Let y = Pu and hence y’ = Pu’. Then

(= o0
u = u
0 3

or
Y, =—C,e% + c,e™
Yy = 20,675 + 3c,e¥
Therefore
u, =ce?”
Uy = C,07"

Thus the equation y = Pu is

or
_ —20 3
yl = cle + C2€

— —22 3x
Y, = 2C,€7" + 3c,e

Note that y] = y,, as required, and, since y, = y, then

— —22 3x
Y = cle + (328

Exercise Set 9.1

Since ¢, and c,, are arbitrary, any answer of the form y = ae?* + be” is correct.



Exercise Set 9.1 257

9. Ifwelety, =y,¥y, =y, and y, = y”, then we obtain the system
Y=Y,
Yy =Yg

Y, = 6y, —11y, + 6y,

The associated matrix is therefore

0 1 0
A=|0 0 1
6 -11 6

The eigenvalues of A are A = 1, A = 2, and A = 3 and the corresponding eigenvectors are

171 1
1,|2] and |3
1| |4 9

The solution is, after some computation,
_ X 2x 3x
Y =ce” +ce” +cye

a;, a
11. Consider ¢y’ = Ay, where A = [ 1 12}, with a,; real. Solving the system
Qg gy

A _
det(Al — A) =‘ “1 “2_

—ag  A—ay

yields the quadratic equation
M= (ay, + Gy) A+ a0y, —ay a, =0, 0r

A2 — (TrA)A + det A = 0.

Let A, A, be the solutions of the characteristic equation. Using the quadratic formula yields

Tr A+\Tr’A—4det A

/11,)“2 = B
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Now the solutions y,(¢) and y,(#) to the system y” = Ay will approach zero as t — o if
and only if Re(A;, A,) < 0. (Both are < 0)

Case I Tr*A — 4 det A < 0.

In this case B, (A) = R, (A, TFA . Thus y,(@®), y,(@) — 0 if and only if TrA < 0.

Case II: Tr*A — 4 det A = 0. Then A, = A,, and Re(A,, A,) = TrA , 50 Y, Y, — 0 if and only
if TrA < 0.

Case III: Tr*A — 4 det A > 0. Then A,, A, are both real.

Subcase 1: det A > 0.

Then|Tr A|> VTr?A-4detA >0

If YA > 0, then both (A, A,) > 0,50 ¥, %, A4 0.

If TrA < 0, then both (A, A,) <0, soy,, y, = 0. TrA = 0 is not possible in this case.
Subcase 2: det A < 0

Then VTr*A—4det A > |Tr A|20

If TrA > 0, then one root (say A,) is positive, the other is negative, so y,, ¥, 74 0.

If TrA = 0, then again A, > 0, A, < 0, s0 4, y, 4 0.

Subcase 3: det A = 0. Then A, =0 or A, =0, s0 y,, ¥, 40.
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’

13. The system
Y=Y +2y2 + 2t

can be put into the form

IR b P R R

The eigenvalues and eigenvectors of A are:

1 1
M =1x Z(_J Ay =3, Xg = [J

Solving:

Lﬂ: H+ mﬂ[_&)}m ‘

259
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1.

3.

(a) Since T(x, y) = (—y, —x), the standard matrix is

(b)

(d)

0 -1 0
I 00 @« 52 ® * (x ) 2)
0

\ A=

(x,=,0) o / ®(x,0)
X

261
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5. (a) This transformation leaves the z-coordinate of every point fixed. However it sends (1,
0,0) to (0, 1, 0) and (0, 1, 0) to (-1, 0, 0). The standard matrix is therefore

This transformation leaves the y-coordinate of every point fixed. However it sends (1,
0, 0) to (0, 0, -1) and (0, 0, 1) to (1, 0, 0). The standard matrix is therefore

(o)

13.

(a)

-1

0

1 of[1/2 0] [1/2 0
0 5]l 0 1] [0 5

(c)

:0 —?Hl 0::{—(1) ﬂ

15. The[ n Ts which represent compressions along the x- and y- axes are

k 0
o

and , respectively, where 0 < k < 1. But
-1

k 0l (1/k O

0 1] |0 1

1 o] [1 o

0 k| |0 1/k

Since 0 < k < 1 implies that 1/k > 1, the result follows.

and

(c)

1 0
The matrices which represent reflections about the x- and y- axes are [0 } and

-1
-1
0

result follows.

] respectively. Since these matrices are their own inverses, the
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. . N R N . |1 -3
17. (a) The matrix which represents this shear 13{0 1} its inverse is {0 J. Thus,

points(a’, ¥”) on the image line must satisfy the

equations

(c)

(e)

x=x"-3y

Y= Y

where y = 2x. Hence 3y’ = 22" — 6y, or 22" — 7y’ = 0. That is, the equation of the image
line is 2x — Ty = 0.

Alternatively, we could note that the transformation leaves (0, 0) fixed and sends
(1, 2) to (7, 2). Thus (0, 0) and (7, 2) determine the image line which has the
equation 2x — Ty = 0.

0 1
The reflection and its inverse are both represented by the matrix [1 O}' Thus the
point (x’, ¥”) on the image line must satisfy the equations

’

x=y

4

y=x

where y = 2x. Hence 2" = 2y, so the image line has the equation x — 2y = 0.

1/2 —J/3/2
V3/2 1/2

origin to itself and the point (1, 2) to the point ((1 -2 \/g )2, (2 + \/5)/2). Since both
(0, 0) and (1, 2) lie on the line y = 2x, their images determine the image of the line

The rotation can be represented by the matrix [ ] This sends the

under the required rotation. Thus, the image line is represented by the equation (2 +

J3)z + @3- 1y = 0.
Alternatively, we could find the inverse of the matrix,[

172 3/2 and
—3/2 1/2

proceed as we did in Parts (a) and (c).
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21.

23.
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We use the notation and the calculations of Exercise 20. If the line Ax + By + C = 0 passes
through the origin, then C = 0, and the equation of the image line reduces to (dA — cB)x +
(=bA + aB)y = 0. Thus it also must pass through the origin.

The two lines Ajx + By + C; = 0 and A,x + Byy + C, = 0 are parallel if and only
if A\B, = A,B,. Their image lines are parallel if and only if

(dA, - cB))(~bA, + aB,) = (dA, — cB,)(~bA, + aB,)

or
bcA231 + adAle = bcAlB2 + adA231
or
(ad —bc)(AB,-A,B) =0
or

AB,-AB =0
Thus the image lines are parallel if and only if the given lines are parallel.

(a) The matrix which transforms (x, y, 2) to (x + k2, y + kz, 2) is
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3.

We have

__'—1/2}

| 7/2

Thus the desired line is y = -1/2 + (7/2)x.

Here

25
36

— =
Sy Ot W o
©

265
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and

0
10
b | = MM mT
48
C
76
(4 16 74 7' -134
|16 74 376 726
|74 376 2018 —4026
2162 3
0 5 2 1%
_ |62 649 8 _796
> 09 —4026
s 8 1
2 9 9 |
[ 9
-| 5
-3

Thus the desired quadratic is y = 2 + bx — 322,

5. The two column vectors of M are linearly independent if and only if neither is a nonzero
multiple of the other. Since all of the entries in the first column are equal, the columns are
linearly independent if and only if the second column has at least two different entries, or
if and only if at least two of the numbers x, are distinct.
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1. (a) Since f(x) = 1 + x, we have

3. (a)

= L ) = 242
0’0_7;-'.0 (1+x)dx = 2+2r1
Using Example 1 and some simple integration, we obtain

1 corm
o = — jo (1+2)cos(kx)dx = 0

k=1,2,...

1 (2n 2
b, =— 1+x)sin(kx)dx = ——
e = — ]y (a)singier) p

Thus, the least squares approximation to 1 + x on [0, 2r] by a trigonometric polynomial
of order < 2 is

l+oxr=(1+m)-2sinx —sin 2x

The space W of continuous functions of the form a + be”* over [0, 1] is spanned by the
functions w; = 1 and w, = e*. First we use the Gram-Schmidt process to find an
orthonormal basis {v,, v,} for W.

Since (f, g) = j; f(@)g(@)dx, then [u,[| = 1 and hence
=1

Thus
e’ —(e", D1 e -e+l

e’ —(e”, 11 o

267
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where o is the constant

. T ,
a=lem —oy1= Io(e e+1) dx

_[@G-a)e-DT"
- 2

Therefore the orthogonal projection of x on W is

e’ —e+1\ e’ —-e+l
roj,, & = (2, 1)1 + { x,
projyx = (x, 1) < . > .

dx

e —e+1 J'l x(e” —e+1)
o 0 o

1 e'—e+1 [3—@}
=— +

2 o 20

l —— (" —e+1

2 e—1

I S S
2 e—1

(b) The mean square error is

2
1
(- L[ L] g3, Lre 1, 3-e
0 2 |e-1 12 2(1-e) 2 2(1-¢)

The answer above is deceptively short since a great many calculations are involved.

To shortcut some of the work, we derive a different expression for the mean square
error (m.s.e.). By definition,

ms.e. = _[b (@) - g(@))? do
= |f - gl
=({f-g f-g
=({ff-g-(gf-8
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Recall that g = proj,f, so that g and f — g are orthogonal. Therefore,
m.s.e. ={f, f—g)
=(f, f) - (fg)

But g = (f, v))v, + (£, v,)v,, so that

(%) m.s.e. = (£, £) — (£, v )* — (£, v,)*

Now back to the problem at hand. We know (f, v,) and (f, v,) from Part (a). Thus,
in this case,

2 2
1 —

ms.e. = Jo 22dx — (%) — [%j
o

Lo 37 o
12 2(e-1)
Clearly the formula (*) above can be generalized. If W is an n-dimensional space with
orthonormal basis {v,, v,, ..., v, }, then
() ms.e. = [ — (£, v — - — (£, v,)*

5. (a) The space W of polynomials of the form a, + a,x + a,® over [-1, 1] has the basis {1,
1
x, 2,}. Using the inner product (u, v) = J_l u(x)v(x)dx and the Gram-Schmidt

process, we obtain the orthonormal basis

- \/gx l\/E(sz -1
NEEA AP
(See Exercise 29, Section 6.3.) Thus

<sin X, v, > = % '[_llsin(ﬂx)dx =0

- B vsincrea 2P
<sm X, Vy > = \/;j_lxsm(ﬂx)dx = \/;

, 15 41 9 . 3
<sm7tx, v3>—§\/;‘|._1(3x —D)sin(rx)dx =0
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Therefore,

, 3
sinmx =—x

(b) From Part (a) and (*) in the solution to 3(b), we have

1
m.s.e.zj sin2(7rx)dx—£:1—£z.39
-1 7[2 7[2

1, 0<x<nm
0, t<x<L2rn

9. Let f(x)= {

(note a slight correction to definition of f(«x) as stated on pg. 479.)
Then

1 o 1¢x
%:;.[o f(x)dxz;‘[odle

1 rorm 1¢x
ak:;J.O f(x)coskxdx:;_[o coskx dx =0
k=12, ---

1 r2n . 1¢m .
bk=;I0 Sf(x)sin kx dx=;fo sin kx dx

1 [1—(—1)"”/]

km

oo

So the Fourier Series is —+ [1—(—1)k }sinkx

1
k=1 K7
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1. (d) Since one of the terms in this expression is the product of 3 rather than 2 variables,
the expression is not a quadratic form.

5. (b) The quadratic form can be written as

7 1/2 x| p
o “”’“’2][1/2 4Hx}“‘*"”

The characteristic equation of Ais (A —7)(A—4) - 1/4 =0 or
402 — 440 + 111 =0

which gives us

If we solve for the eigenvectors, we find that for A =

11++10
P
z, =B+ V10)x,
11-10

2

and A =

2, = 3- V10,

Therefore the normalized eigenvectors are

3+\/E 3—@
20+ 6410 o 20— 6+/10

1 1

20+ 6410 20— 6+/10

271
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7. (b)

9. (b)

11. (a)
(o)
(e)

or, if we simplify,

1 -1

20— 610 o 20+6+/10

1 1

20+ 6410 20— 6410

Thus the maximum value of the given form with its constraint is

11++10 i o 1 o = 1
11+v10 -1 S S
2 V206410 20+ 6+/10

The minimum value is

11-10 -1 1
— at ¥ =—F—x= and xy=

20+ 6410 20— 6410

Exercise Set 9.5

The eigenvalues of this matrix are the roots of the equation A2 — 10A + 24 = 0. They
are A = 6 and A = 4 which are both positive. Therefore the matrix is positive definite.

The characteristic equation of this matrix is A% = 34 + 2 = (A + 1)2(A — 2). Since two

of the eigenvalues are negative, the matrix is not positive definite.

Since 4% + 22 > 0 unless x, = @, = 0, the form is positive definite.

Since (&, — xz)z > 0, the form is positive semidefinite. It is not positive definite because

it can equal zero whenever x, = x, even when x, = x, # 0.

If |x,| > |x,|, then the form has a positive value, but if |x | < |z
negative value. Thus it is indefinite.

ol

then the form has a
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13.

15.

(a) By definition,

Tx+y)=x+y" A +y)
=x"+yDAX +Y)
=x"Ax + xTAy + yTAx +yT Ay
=Tx) + x"Ay + XTATTY)T + T(y)
=T(x) + 2T Ay + xT ATy + T(y)

(The transpose of a 1 X 1 matrix is itself.)

=T(x) + 2x" Ay + T(y)

(Assuming that A is symmetric, AT = A.)

(b) We have
T(kx) = (kx)T A(kx)
= k?xT Ax  (Every term has a factor of k2.)

- k2T(x)

(¢) The transformation is not linear because T'(kx) # kT'(x) unless k = 0 or 1 by Part (b).

If we expand the quadratic form, it becomes

272 272 2702
CIX] + C3H5 + -+ + Cow + 2C,Cy 2y + 20103x1x3 +

et zclcnxlxn + 20203%'2953 +oee t zcn—lcn‘%‘n—lxn
Thus we have
S _
G CCy  Gl3 - Gy
2
€1Co Ca 1 T 7%
A= 2
CiC3  CoC3 (3 C3Cy
CiC CaC 2
L “1¥n CZCn 3¥n Cn i
and the quadratic form is given by x” Ax where x = [, 2, - xn]T.
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17. To show that A < x” Ax if |x|| = 1, we use the equation from the proof dealing with A, and
the fact that A, is the smallest eigenvalue. This gives

xTAx = (X, Ax) =X (X, V)* + L, (X, V,)* + .- + & (X, V,)?
2N, (X, V)2 + A (X, V)P + e+ A (X, V)
=L, (X, V) + - + (X, V)9
= 7\%
Now suppose that x is an eigenvector of A corresponding to A . As in the proof dealing
with A, we have

xTAx = (X, Ax) = (X, AL X) =LA (X, x) = [x[F =4,
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1.

7.

(a) The quadratic form x” Ax can be written as

S EE

The characteristic equation of A is A — 4k + 3 = 0. The eigenvalues are A = 3 and A =
1. The corresponding eigenspaces are spanned by the vectors

1 1
and
-1 1
respectively. These vectors are orthogonal. If we normalize them, we can use the result
to obtain a matrix P such that the substitution x = Py or

BRI

will eliminate the cross-product term. This yields the new quadratic form

1o ][]

(a) If we complete the squares, then the equation 922 + 4y — 36x — 24y + 36 = 0 becomes

9@? —4dr +4) +4(W2 -6y +9) =-36 + 9(4) + 4(9)

275
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(c)

(e)

or

9(x - 2)% + 4(y — 3)% = 36

or

This is an ellipse.

If we complete the square, then y? — 8x — 14y + 49 = 0 becomes

y>— 14y + 49 = 8x

or

(y —7)?%=8x

This is the parabola (y")? = 8x’.

If we complete the squares, then 222 — 3y? + 62 + 2y = —41 becomes

2 x2+3x+g -3 y2—@y+@ :—41+g— 100
4 3 9 2

or

or

12(2)?% - 18(y)?% = —419

This is a hyperbola.

9. The matrix form for the conic 92% — 4xy + 6y* — 10x — 20y = 5 is

xTAx + Kx =5

Exercise Set 9.6
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where

a=| 2 7 dK=[-10 —20
T2 e nd K=1210 -0
The eigenvalues of A are A, =5 and A, = 1 and the eigenspaces are spanned by the vectors

o) ]

Thus we can let

Sl & -
&= &l

Note that det(P) = 1. If we let x = Px’, then

x)T (PTAP)X’' + KPx' =5

where

PTAP:B 1(())} and KP:[—lOJE 0}

Thus we have the equation

5(x)? + 10(y)% - 10N52" = 5

If we complete the square, we obtain the equation

5(@5’)2 —2+/ba + 5) +10(¥)2=5+25

or

(@) +2@y")*=6
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where 2" = x" - \/E and y” = y’. This is the ellipse

Of course we could also rotate to obtain the same ellipse in the form 2(x")? + (y”)? = 6,
which is just the other standard position.

The matrix form for the conic 222 — 4xy — y? — 4x — 8y = 14 is

xTAx + Kx = -14

where

Thus we can let

Sl
Sl & -

-1

J5
Note that det(P) = 1. If we let x = Px’, then

xHT (PT AP)X’ + KPx' = -14

where
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15.

Thus we have the equation

32 - 2(y)% - 4[5y = 14

If we complete the square, then we obtain

3% - 2((W)? + 255 +5)= -14 - 10

or

3(x")* - 2(y")* = 24

where 7 = 2" and y” = ¥y’ + \/g This is the hyperbola

We could also rotate to obtain the same hyperbola in the form 2(x”)? — 3(y”)? = 24.

(a) The equation 2% — * = 0 can be written as (x — y)(x + y) = 0. Thus it represents the
two intersecting lines x + y = 0.

(b) The equation 2% + 3y? + 7 = 0 can be written as 2% + 3y = —7. Since the left side of
this equation cannot be negative, then there are no points (¥, y) which satisfy the
equation.

(¢) If 8% + 7Ty? = 0, then & = y = 0. Thus the graph consists ofthe single point (0, 0).

(d) This equation can be rewritten as (x — )2 = 0. Thus it represents the single line y =
x.

(e) The equation 922 + 12xy + 4y® — 52 = 0 can be written as (3x + 2y)? = 52 or 3x + 2y
= = +/ b2. Thus its graph is the two parallel lines 8x + 2y + 2/ 13 = 0.

(f) The equation 22 + y? — 20 — 4y = -5 can be written as 2> - 2x + 1 + 2 -4y + 4 =0 or
(x — 1)? + (y — 2)% = 0. Thus it represents the point (1, 2).
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5.

(a)
)
(c)
(d)
(e)
®
(8

(a)

(c)

ellipse 3622 + 9y2 = 32
ellipse 222 + 6y = 21
hyperbola 622 — 3y = 8
ellipse 922 + 4y2 =1
ellipse 1622 + y* = 16
hyperbola 3y? — 7a% = 1

circle 2% + y? = 24

If we complete the squares, the quadratic becomes
9% -2x +1) +36(y> -4y + 4) +4(2*-62+9)

=-1563+9 + 144 + 36

or

Ix-1)2+36(y-2)2+4(2-3)2=36
or

(@), W) @) _
4 1 9

1

This is an ellipsoid.

If we complete the square, the quadratic becomes

3(x? + 142 + 49) — 3y? — 22 = 144 + 147

281
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or

3 +7)2-3y% —22=3
or

(=) W) @)
1 1 3

This is a hyperboloid of two sheets.

7. (e) If we complete the squares, the quadric becomes

@+2x+1)+16(*-2y+1)-162=15+1+ 16

or

(@+1)2+16(y-1)2-16(z +2) =0

or

(@), W) @) _
4 1 9

1

This is an elliptic paraboloid.

(g) If we complete the squares, the quadric becomes

@-22+D)+@W+4y+4d) +(@*-62+9=11+1+4+9

or

-1+ W+22+(=-3)2=25

or

@, W) @)

This is a sphere.



Exercise Set 9.7 283

9. The matrix form for the quadric is x7 Ax + Kx = -9 where

01 1
A=[1 0 1| ad K=[-6 -6 —4]
1 1 0

The eigenvalues of A are A, = A, = -1 and A, = 2, and the vectors

-1 -1 1
u=| 0 u, = 1 and ug=|1
1 0 1

span the corresponding eigenspaces. Note that u, » u; = u, - u; = 0 but that u, « u, # 0.
Hence, we must apply the Gram-Schmidt process to {u;, u,}. We must also normalize u,.

This gives the orthonormal set

(1] [ 2] [ L
Np) J6 J3
0 5 1
J6 J3
1 -1 =
V2] V6] LB
Thus we can let
(1 1]
V2 6 B
2 1
P=| 0 — —
J6 3
e
V2 V6 B
Note that det(P) = 1,
-1 0 0
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Therefore the transformation x = Px’ reduces the quadric to

NN

If we complete the squares, this becomes

2 ;1 N, 2,1
[(x)+\@x+2}+{(y)+£y+6}

—2[ (z')2—iz'+§}=9+ _32

11
_+_
2 6 3

V3

1 1 4
Lettingx”=x'+—,y”=y'+—,and Z”IZ,—

—= yields
V2 16 J3

(xll)2 + (y,I)Z _ Z(z,I)Z — _1
This is the hyperboloid of two sheets

(z//)z B (x//)z _ (y//)Z :1
1/2 1 1

11. The matrix form for the quadric is x” Ax + Kx — 31 = where

and K=[-6 10 1]

2N

Il
=)
© o =
o o o

The eigenvalues of A are A, = 1, A, = -1, and A, = 0, and the corresponding eigenspaces are
spanned by the orthogonal vectors
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13.

Thus, we let x = Px” where

R O_
22
11
pP=|l — — 0
J2 2
0o 0 1
Note that det(P) = 1,
1 0 0
PlAP=|0 -1 0| and KP=[2x/§ 8v2 1}
0 0 0

Therefore, the equation of the quadric is reduced to

@2 - ()2 + 220 + 82 + 231 =0

If we complete the squares, this becomes

[@)?+ 220 + 2] - [W)2-82y +32] + & =31 +2-32

Letting x” = 2" + \/E, Yy =y —4~2, and 2”7 = 2’ — 1 yields
@ - @ +2 =0

This is a hyperbolic paraboloid.

We know that the equation of a general quadric @ can be put into the standard matrix form
xT" Ax + Kx + j = 0 where

a d e
A=ld b f and K=[g h 1]
e [ ¢

Since A is a symmetric matrix, then A is orthogonally diagonalizable by Theorem 7.3.1.
Thus, by Theorem 7.2.1, A has 3 linearly independent eigenvectors. Now let 7' be the matrix
whose column vectors are the 3 linearly independent eigenvectors of A. It follows from the
proof of Theorem 7.2.1 and the discussion immediately following that theorem, that 7! AT
will be a diagonal matrix whose diagonal entries are the eigenvalues A, A,, and A, of A.
Theorem 7.3.2 guarantees that these eigenvalues are real.
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As noted immediately after Theorem 7.3.2, we can, if necessary, transform the matrix 7'
to a matrix S whose column vectors form an orthonormal set. To do this, orthonormalize the
basis of each eigenspace before using its elements as column vectors of S.

Furthermore, by Theorem 6.5.1, we know that S is orthogonal. It follows from Theorem
6.5.2 that det(S) = =1.

In case det(S) = -1, we interchange two columns in S to obtain a matrix P such that
det(P) = 1. If det(S) = 1, we let P = S. Thus, P represents a rotation. Note that P is
orthogonal, so that P! = P”, and also, that P orthogonally diagonalizes A. In fact,

A 00
P'AP=| 0 4, O
0 0 A

Hence, if we let x = Px’, then the equation of the quadric ¢ becomes

xHT (PTAP)X’ + KPX' +j =0

or

M@+ MW+ M@+ + Y +77 +5=0

where

[g' W i'] = KP

Thus we have proved Theorem 9.7.1.
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If AB = C where Ais m Xn, Bisn X p, and C is m X p, then C has mp entries, each of the
form

Cy= anbu + aizsz + e+ ambnj

Thus we need 7 multiplications and » — 1 additions to compute each of the numbers Cyj
Therefore we need mmnp multiplications and m (7 — 1)p additions to compute C.

Following the hint, we have

S,=1+ 2 + 3 +-+m

S,=n+m-1)+Mm-2) +--+1

or

28, =m+DH+m+D+m+1D+--+m+1)

Thus

_ n(n+1)

(a) By direct computation,

k+1P -k =kK+3k>+3k+1-kK=3k>+3k + 1

(b) The sum “telescopes”. That is,
23 - 1P] + [3 -2 + [4° =3 + - + [(m + 1)® —n?]
=22 -1PP+3-22+482-3+...+ (m+ 13 -nd

=(n+1)3-1

287
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(¢) By Parts (a) and (b), we have
3(2+3M)+1+3@2)2+3@2)+1+3B3)2+3B)+1+ - +3n2+3n+1
=3(12+22+ 3+ - +n)+30+2+3+ - +n) +n

=(m+1)P-1

(d) Thus, by Part (c¢) and exercise 6, we have

12422 +3% . 47 zé[ (n+1)3—1—3—n(n+1)—n }

2
_ @+’ 1 am+D) n
-3 3 2 3
_2n+1)?-2-3n(n+1)-2n
B 6
_(n+D2(n+1)? -3n-2]
B 6
_(m+D(2n% +4n+2-3n-2)
B 6
_(n+D)(@n® +n)
B 6
_ n(n+1)(2n+1)

6

9. Since R is a row-echelon form of an invertible % X 7 matrix, it has ones down the main
diagonal and nothing but zeros below. If, as usual, we let x = [x, @, - ] and b = [b, b,
b ]T then we have x, = b, with no computations. However, since x, , = b, | — cx, for
some number c, it will requlre one multiplication and one addition to ﬁnd x, In general,

x; = b, — some linear combination of z; |, X

i+ P20 n

Therefore it will require two multiplications and two additions to find x, ,, three of each to
find x, ,, and finally, 7 , of each to find x,. That is, it will require

(n-Dn

1+243+-+(n-1)= 1

multiplications and the same number of additions to solve the system by back substitution.
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11.

To solve a linear system whose coefficient matrix is an invertible 7 X 7 matrix, A, we form
the n x (n + 1) matrix [A|b] and reduce A to I, . Thus we first divide Row 1 by a,, using »
multiplications (ignoring the multiplication whose result must be one and assuming that
a,, # 0 since no row interchanges are required). We then subtract a,, times Row 1 from
Row ¢ for ¢ = 2, ..., n to reduce the first column to that of / . This requires n(n — 1)
multiplications and the same number of additions (again ignoring the operations whose
results we already know). The total number of multiplications so far is 72 and the total
number of additions is n(7n — 1).

To reduce the second column to that of 7, , we repeat the procedure, starting with Row
2 and ignoring Column 1. Thus » — 1 multiplications assure us that there is a one on the
main diagonal, and (7 — 1) multiplications and additions will make all » — 1 of the
remaining column entries zero. This requires 7(n — 1) new multiplications and (n — 1)?
new additions.

In general, to reduce Column ¢ to the ¢th column of / , we require 7 + 1 — ¢
multiplications followed by (7 + 1 — 4)(n — 1) multiplications and additions, for a total of
n(n + 1 —7) multiplications and (n + 1 — %) (% — 1) additions.

If we add up all these numbers, we find that we need

n2+n(n—l)+n(n—2)+~~~+n(2)+n(1):n(n+(n—1)+---+2+1)

_ n2(n+1)

multiplications and

n(n-D+m-1%+nm-2)(n-D+-+2An-D+(n-1)
=(n-Dn+m-D+---+2+1)

_ (m-D(m)(n+1)

additions to compute the reduction.
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1.

The system in matrix form is

3 -6 2| | 3 0 1 -2 2| |0
2 Blla | |2 1]]0 1]|a| |1
This reduces to two matrix equations
0 1| | |y
and

BHIFEH

The second matrix equation yields the system
3y, =0
=2y, + Y, =1
which has y, = 0, y, = 1 as its solution. If we substitute these values into the first matrix
equation, we obtain the system
2, —2x, =0

=1

This yields the final solution x, = 2, x, = 1.

291
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To reduce the matrix of coefficients to a suitable upper triangular matrix, we carry out the
following operations:

g o e P A

These operations involve multipliers 1/2, 1, and 1/3. Thus the corresponding lower
triangular matrix is

We therefore have the two matrix equations

BIMEH

and

2 0 Y| | 2
-1 3|y | | -2
The second matrix equation yields the system
2y, =-2

~Y, + 3y, = -2

which has y, = -1, y, = —1 as its solution. If we substitute these values into the first matrix
equation, we obtain the system

X+ 4x2 =-1

-1

This yields the final solution &, = 3, x, = —1.
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5. To reduce the matrix of coefficients to a suitable upper triangular matrix, we carry out the
following operations:

2 -2 =2 1 -1 -1 1 -1 -1

0 -2 21> 0 =2 210 -2 2 |-
-1 5 2| -1 5 2| |0 4 1|
1 -1 1] [1 -1 1] [1 -1 -1]

0 1 -1 |-| 0 1 -1 |-|0 1 -1|=U
0 4 1] [0 0 51 |0 0 1

These operations involve multipliers of 1/2, 0 (for the 2 row), 1, -1/2, —4, and 1/5. Thus the
corresponding lower triangular matrix is

2 0 0
L=| 0 -2 0
-1 4 5

1 -1 -1 o Yy
0 0 1 Zq Ys
and
2 0 0 Y -4
0 -2 0 Yo |=| —2
-1 4 5 Ys 6

The second matrix equation yields the system
2y, =4
—2Y, =-2

Y+ 4y, + 5y,=6
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which has y, = -2, y, = 1 and y, = 0 as its solution. If we substitute these values into the
first matrix equation, we obtain the system

@ —xg—x3=—2
Ty — Xy = 1
X, = 0

3

This yields the final solution #; = -1, %, = 1, 2, = 0.

11. (a) To reduce A to row-echelon form, we carry out the following operations:

2 1 -1 112 -1/2 1 12 -1/2
2 -1 25|22 - 2/ >0 0 1
2 1 0 2 1 0 2 1 0
1 12 -1/2 1 12 -1/2
10 0 1 |>]0 o 1 |=U
0 0 1 0 0 0

This involves multipliers 1/2, 2, -2, 1 (for the 2 diagonal entry), and —1. Where no
multiplier is needed in the second entry of the last row, we use the multiplier 1, thus
obtaining the lower triangular matrix

2 0 0
L=|-2 1 0
2 1 1

In fact, if we compute LU, we see that it will equal A no matter what entry we choose
for the lower right-hand corner of L.

If we stop just before we reach row-echelon form, we obtain the matrices

112 -2 2 0 0
U={0 0 1 L=|-2 1 0
0 0 1 2 0 1

which will also serve.
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(b) We have that A = LU where

2 0 1
L=| -2 1 U=|0
2 1 0
If we let
1 0 O
L,=|-1 1 0 and
1 1 1

295

/2 -1/2
0 1
0 1
2 0 0
0 1 0
0 1 1

then A = L DU as desired. (See the matrices at the very end of Section 9.9.)

(¢) Let U, = DU and note that this matrix is upper triangular. Then A = L U, is of the

required form.

13. (a) If A has such an LU-decomposition, we can write it as

K

He

This yields the system of equations

x=aqa y=> wWx =C

Since a # 0, this has the unique solution

r=a y=> w = cla

X Y
WX yw+z
yw +2=d

2 = (ad - bc)la

The uniqueness of the solution guarantees the uniqueness of the LU-decomposition.

(b) By the above,
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15.

17.

19.
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We have that L = E{' E;! --- E;! where each of the matrices E, is an elementary matrix
which does not involve interchanging rows. By Exercise 27 of Section 2.1, we know that if
E is an invertible lower triangular matrix, then E-! is also lower triangular. Now the matrices
E are all lower triangular and invertible by their construction. Therefore for i = 1, ... , k we
have that ELZ.1 is lower triangular. Hence L, as the product of lower triangular matrices, must
also be lower triangular.

Let A be any n x n matrix. We know that A can be reduced to row-echelon form and that
this may require row interchanges. If we perform these interchanges (if any) first, we
reduce A to the matrix

E - EA=B

ko I

where E is the elementary matrix corresponding to the sth such interchange. Now we know
that B has an LU-decomposition, call it LU where U is a row-echelon form of A. That is,

E, - EA=LU

where each of the matrices £, is elementary and hence invertible. (In fact, ELY} = E, for all
E,. Why?) If we let

P=(E, -

BT =EL L EL itk >0

and P = [ if no row interchanges are required, then we have A = PLU as desired.

Assume A = PLU, where P is a permutation matrix. Then note P! = P. To solve AX = B,
where A = PLU, set C = P''B = PB and Y = UX.

First solve LY = C for Y.
Then solve UX = Y for X.

3 -1 0
fA=3 -1 1| thenA =PLU,
0 2 1
1 0 O 3 0 0 1 -1/3 0
with P=|0 0 1[,L={0 2 O0},U=|0 1 1/2
0 1 0 3 0 1 0 0 1
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To solve
3 -1 0
-1 1
0 2 1
1
set C=Pey, | 0
0

Solve LY =C, or

Solve UX =Y, or
2 -1/6
so | @y | =|-1/2

Xg 1

Y
Yo
Ys

1/2

0
0
1
0 "
=10 [toget| y,
| 1 Ys
X 0
x2 = 0
Zg 1

—_— o O

297
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(b) Since two complex numbers are equal if and only if both their real and imaginary parts
are equal, we have

x+y=3

and

Thusx =2 and y = 1.

(a) Since complex numbers obey all the usual rules of algebra, we have

2=3+2—(1-9)=2+3i

(¢) Since (7 -2) + (22 — 37) = -2 + Ti, we have

1+ (=+22)-31=-2+T1i

or

2==2+T-1+31=-2+N

299
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7. (b) 22=6+8i

(-2)z =6+ 8i

z=-3-4i

9. (o)

2122:é(2+4i)(1—5z’):%(1+2z’)(1—5@'):%(1—3i+10)=%—z’

312:%(1+2i)2:§(—3+4i)

72 =i(1—57;)2 =i(—24—10i)=—6—§z’

11.  Since (4 — 69)% = 222 — 31)% = 4(=5 — 120) = —4(5 + 124), then

(1 +20)(4 - 60)2 = -4(1 + 20)(5 + 120) = —4(-19 + 227) = 76 — 88¢

13. Since (1 —3¢)? = -8 - 6¢ = -2(4 + 37), then

(1-30)% = -2(1 - 30) (4 + 30) = -2(13 — 99)
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15.
1 1
Since (2+17) —+§i =—+ 21, then
2 4 4

2 2
P2+@(l+§i)}:(l+2{]:—§§+i
2 4 4 16

17. Since®=-land ¢® = —, then 1 + 7 + 4> + 2> = 0. Thus (1 + 7 + 2 + ¢%)190 = 0.

19. (a)
A43iB — 1 Z};{ 67 —3+6z}
|- 3 3+49i  12i
[ 146 —3+7z}
| 3480 3+12i
(d) [ 2 4 , [ 11+ 12460
A= ) and B” = ) .
47 10 18-67 23+1%
Hence

e [ 9+i  12+2i }
18—2¢ 13+14
21. (a) Letz =x + 2y. Then
Im(72) = Im[i(x + 1y)] = Im(~y + 1x) =x

= Re(x + 1) = Re(2)

301
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23. (a) We know that 7' = 4, i = -1, ¢® = —4, and 4* = 1. We also know that ¢ * " = ™"
and 7" = (v™)"™ where m and % are positive integers. The proof can be broken into

four cases:

1. n=1,5, 9,...or n =4k +1

2. n=2,6,10,...or n =4k + 2

3. n=3,7,11,...or n =4k + 3

4. n=4,8,12,...or n =4k + 4
where k = 0, 1, 2,.... In each case, 7" = ¢**¢ for some integer ¢ between 1 and 4.
Thus

= g4kt = (i4)k 16 =1Fkt =qf

This completes the proof.

(b) Since 2509 =4 . 627 + 1, Case 1 of Part (a) applies, and hence 2°% = 1.

25. Observe that 22, = 22, & 22, - 22, = 0 & 2(2;, - 2,) = 0. Since 2 # 0 by hypothesis, it
follows from Exercise 24 that 2, — 2, = 0, 7.e., that 2, = 2,.

27. (a) Letz, =2, + 1y, and 2, = x, + iy,. Then
2Ry= (x, + 1y (X, + 1Y,)
= (0,2, — Y Yy) + 1@y, + 2oY,)
= (o) =Yy + 1Y) + Y, 2,)
= (x, + 1) (X, + 1Y)

= %R
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3. (a) We have
2z2=(2-4)2+4) =20

On the other hand,
|2 = 22 + (4)? = 20

(b) We have
2Z2=(3+5)(-3-50) =34

On the other hand,

&2 = (-3) + 52 = 34

5. (a) Equation (5) with 2, = 1 and 2z, = 7 yields

1_ 19 _
i 1

(© 1oLy
2 -1 1

7. Equation (5) with 2, =7 and 2, = 1 + 7 gives

303
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9. Since (3 + 47)% = -7 + 244, we have

1 -T-24i -7 -245
(3 +49)?  (=1)% + (-24)° 625
11. Since
V3+i  (W3+D)P 24230 l+§i
Js—i 4 4 2 2
then
LBy (2B (1)
J3+i gt gt \2t e B 1—\/§+ 1++/3 i
(1-DWB-9) 1= 2 4 4
13. We have
L_z'(l+z')_ 1 1,
1-i 2
and
(1-20)(1 +2) =5
Thus
‘ = —%+éi = —i+iz’
(1-1)(1-20)(1+27) 5 10 10

15. (a) Ifiz =2 -7, then

2-i _ 2=DCD _ |,
i 1

2 =
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17. (a) The set of points satisfying the
equation |2| = 2 is the set of all points
representing vectors of length 2. Thus,

g
it is a circle of radius 2 and center at the
origin. X

2
Analytically, if 2 = x + 2y, then

)]=2 & J2?+y* =2

= x2+y2:4

which is the equation of the above circle.

(¢) The values of 2 which satisfy the equation |z — i| = |z + 4| are just those z whose
distance from the point 7 is equal to their distance from the point —i. Geometrically,
then, 2 can be any point on the real axis.

We now show this result analytically. Let 2 = x + 7y. Then

lz-i=lg+i & |[z-iff=[z+i]

& |lw+ily-DP =lr+i(y + DP
s P2rW-1D2=22+Ww+1)°
S -2y =2y

s y=0

19. (a) Re(wd) = Re(? 2) = Re[(—=1) (w — 1y)] = Re(—~y —ix) =~y

(¢) Re(i2) =Re[i(x —iy)] =Re(y +ix) =y
21. (a) Letz =x + 2y. Then

%(z+§) = %[(x+iy)+(x—z'y)] = %(2@ = z = Re(2)
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23. (a) Equation (b) gives

2 1 _
T T 5R1R

<2 |z2|2

1
= ﬁ(xl"‘@yl) (xz_@yg)
Lo+ Y

1

=3 3 [(xle +1Yp) + U2y, — xlyz)]
Zo +Ys

Thus

2

%fﬁJ:%%+%%
w5+

25. |z| = \/x2+y2 = \/x2+(—y)2 = |E|

27. (a) 2% =22 =32 = (3)°

(b) We use mathematical induction. In Part (a), we verified that the result holds when
n = 2. Now, assume that (2)” = 2”. Then

( §)n+1 —

~

2)'z

z

Il
N

— zn+1

and the result is proved.

35. (a)

It is easy to verify that AA1 =A1A =1
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39. (a) 1 144 0]1 0 0
0 1 4]0 1 0
i 1-2i 210 0 1

—
+

.
(@)
—
(@)
(e}

1
0 1 if0 10
.

0O 1 4|0 1 0 Ry — Ry +1R,

0 1 01 2 —i R, — R, — iR,

1 0 0]— —2-20 —1+i
o1 01 2 i Ry, — B - (1+ )R, |
00 1| 4 1
Thus
i 2-20 -1+

41. (a) We have |z - 2| = \/(al—a2)2+(b1—b2)2, which is just the distance between the two
numbers 2z, and 2, when they are considered as points in the complex plane.
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(b) Letz =12,2,=6 + 2¢, and 2, = 8 + 8i. Then
|2, — 2, = 6% + (-2)2 =40
|2, —24* = 4% + (-8)2 =80
2, — 24 = (-2)? + (-6)% = 40

Since the sum of the squares of the lengths of two sides is equal to the square of the
third side, the three points determine a right triangle.
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(a) If z =1, then arg ¢ = 2kn where k = 0, £1, £2,---. Thus, Arg(1) = 0.
(¢) Ifz =—i,thenarg 2 = S?E + 2km where k = 0, £1, £2 - ... Thus, Arg(—) = —/2.

2
(e) If 2=-1+ \/51', then arg 2 = — + 2kmw where k = 0, £1, £2,--.. Thus, Arg

3
(=1 + 30 = %"

(a) Since |2¢] = 2 and Arg(27) = n/2, we have

ietfon{ i

(c¢) Since |5 + 5@'| =50 =542 and Arg(5 + bi) = m/4, we have

5+ 5i = 5\/§[cos(§)+¢sm[%ﬂ

(e) Since |—3—3¢|=\/E=3\E and Arg(—3-37) = —%”, we have

_3_3@:3\@[008(—%”) + isjn(_%j}
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T T T
We have |¢,| = 1, Arg(z)) = > l2,| = 2, Arg(z,) = 3 l2y| = 2, and Arg(z,) = 5 So

<1%9

=|21||22|=1

|z3|

<3

and

Arg[Z;'ﬁJ:Arg(21)+Arg(22)_Arg(23):O
3

Therefore

5% cos(0) +2sin(0) =1
<3

We use Formula (10).

(a) Wehaver=1, 0= —g, and n = 2. Thus

(—1)1/2 :cos(—%+kn)+isin[—%+knj k=0,1

Thus, the two square roots of — are:

=

45°

Sil=
il =
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(e¢) Wehave r =27, 0 = r, and n = 3. Thus

(213 = 3[cos(£+%—”J+ism(z+%—”ﬂ
3 3 3 3

Therefore, the three cube roots of —27 are:

3[cos(g} + zsm[gﬂ = g + #z

3|:cos(7r)+z'sin(7t):| =-3
3lcos| — |+ ¢sin| —||==— - —1
3 3 2 2

AY
é+%\/§i

60° \
60°

7. (e) Herer=1,0=mn and n = 4. Thus

(-DY* = cos £+k—7E + isin E+k_n k=0,1,2, 83
4 92 4 2
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Therefore the four fourth roots of —1 are:

. 1 .
cos— + i1Sin— = —= + —1¢
2 2
.. 3 1 1
coOS— + 1SinN— = ——= + —1%
2 2
cos—+z'sin5———i—ii
2 2
cos7—n-+z'sin7—”—i—iz'
4 4 2 2
AY
__+_ll' _1+_ll
V2 A2 V2 2
45° 45° X
_L__1; B S
V2 2 V2 2

9. We observe that w = 1 is one
sixth root of 1. Since the
remaining 5 must be equally
spaced around the unit circle, any
two roots must be separated

from one another by an angle of

2w .
E = 5 = 60°. We show all six

sixth roots in the diagram.

11. We have 2* = 16 & 2 = 16Y4. The fourth roots of 16 are 2, 27, -2, and —21.
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15. (a) Since

2 = 3e™ = 3[cos(w) + ¢ sin(m)] = -3

then Re(2) = -3 and Im(2) = 0.

(e) Since
7 =+/2e""% = \/é[cos [g] +isin(%ﬂ =2i
then 2 = —\/Ei and hence Re(2) = 0 and Im(z) = —\/5.

17. Case 1. Suppose that n = 0. Then
(cos B+ 17 sin )" =1 = cos(0) + 7 sin(0)
So Formula (7) is valid if n = 0.

Case 2. In order to verify that Formula (7) holds if 7 is a negative integer, we first let
1 = — 1. Then

1

(cos@ + 2sin 9)_1 =
cosO+1sin@

=cosf—1sinf
=cos(—0) +1sin(-6)
Thus, Formula (7) is valid if » = —1.

Now suppose that 7 is a positive integer (and hence that —» is a negative integer).
Then

A
(cos@+isin@)™" =[(cos€+z'sin 0)_1}

=[cos(—6)+isin(-6)]"

= cos(—n0) + ¢ sin(—n0) [By Formula (7)]

This completes the proof.
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19. We have 2, = rlewl and 2, =Vzew?. But (see Exercise 17)

L = 1 = i 8_7;92

.6,
22 7'281 2 7"2

If we replace z, by 1/z, in Formula (3), we obtain

2 1
_ = zl _
<9 <9

SR,

n .
—g[cos(el —6,)+isin(6, -6, )]

which is Formula (5).

21. If

€9 = cos 0 + 7 sin 0

then replacing 6 with —0 yields

e = cos(-0) + 7 sin(—-0) = cos B -7 sin O
If we then compute e€'? + e79 and e’ — e7? the results will follow.

23. Let z = r(cos 0 + ¢ sin 0). Formula (5) guarantees that 1/z = ! (cos(=0) + 7 sin(-0))
since 2 # 0. Applying Formula (6) for n a positive integer to the above equation yields

" =(é)n =77"(cos(-n6)+isin(-no))

which is just Formula (6) for —» a negative integer.
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1. (@) u-v=(2-(4),0-4-1-(+4%),3- (1))
= (30, i, -2 — i, 4)

(¢c) wr+v=(C-U+2)-4, 2+, -(-1+20)+ A +12),0+ (-1))

= (-1-20,2i,2 -4, -1)

(e) -iv=(-1,1,1-14,7) and 2¢w = (-2 + 27, 2, -4 — 24, 0). Thus

-V + 20w = (=3 + 22, 3, -3 — 31, 1)

3. Consider the equation cyu, + c,u, + cjuy = (=3 + 7, 3 + 2¢, 3 — 4¢). The augmented matrix
for this system of equations is

1-1 21 0 —3+1
7 147 21 3421
0 1 2-1 3—41

The row-echelon form for the above matrix is

1 —1+2 0 —2-1
0 1 —+—1 —+=1
0 0 1 1-

3 1 1 1
Hence,03=2—7L,02=§+§i—(§+§i]03=0,andcl=—2—7L.

315
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5. @ vl +lif =2

© |v]|=y|2if +[0] +|2i+1[* +|-D* =AT0+5+1 =10

9. (a) u-v= (=930 + (3)(-2i) =3 +6=3.
() uev=>01-9DA-60)+ (1 +)(BD) + QD1 -19) + (3) (1)
= (-2 -100) + (-5 + 5i) + (2 - 20) + (-39)

=-5-107
11. Let V denote the set and let

u 0 v 0
u= _ and vV = _
{O u} [O v}

We check the axioms listed in the definition of a vector space (see Section 5.1).

u+v 0 u+v 0
) u+v:[ _ _}:
0 u+v 0 u+v

So u + v belongs to V.

(2) Sinceu+v=v+wuwand u+v = v+u, it follows thatu + v=v + u.

(3) Axiom (3) follows by a routine, if tedious, check.
_[o o
(4) The matrix 0 0 serves as the zero vector.

(5) Let —u = w0 }z{—u 0 }.Thenu+(—u)=0.

| 0 —u 0 -u
. w0 I =
(6) Since ku = 0 kil ku will be in V if and only if ku =ku , which is true if and
U

only if k is real or 2 = 0. Thus Axiom (6) fails.
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13.

(7M-(9) These axioms all hold by virtue of the properties of matrix addition and scalar
multiplication. However, as seen above, the closure property of scalar multiplication
may fail, so the vectors need not be in V.

(10) Clearly 1u = u.

Thus, this set is not a vector space because Axiom (6) fails.

Suppose that T'(x) = Ax = 0. It is easy to show that the reduced row echelon form for A is

Hence, x, = (-(1 + 37)/2)x, and x, = (-(1 + ©)/2)x, where x, is an arbitrary complex
number. That is,

—(1+34)/2
x=| —(1+4)/2
1

spans the kernel of 7" and hence 7T has nullity one.
Alternatively, the equation Ax = 0 yields the system
1

l—zx2—x3=0

2y =12, + (1 +9)xy; =0

O+ -Dxy+2,=0

The third equation implies that x, = —(1 — %)x,. If we substitute this expression for x,
into the first equation, we obtain x; = (2 + 7)x,. The second equation will then be valid
for all such x, and x,. That is, x, is arbitrary. Thus the kernel of 7" is also spanned by the
vector

Z 2+1
25 -1+7

If we multiply this vector by —(1 + 2)/2, then this answer agrees with the previous one.
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15. (a) Since
F+9)@)=f1) +g(1)=0+0=0

and

k(1) = k(0) = 0

for all functions f and g in the set and for all scalars k, this set forms a subspace.

(e) Since

(f+D) ()= f(~2)+g(~2) = f(2)+g(x)
= f(@)+g(@)=(f+ (@)

the set is closed under vector addition. It is closed under scalar multiplication by a real
scalar, but not by a complex scalar. For instance, if f(x) = &, then f(«) is in the set but
if(x) is not.
17. (a) Consider the equation ku + k,v + k,w = (1, 1, 1). Equating components yields
k,+ (1+2k, =1
ky + ik, =1
—tk, + (1 = 20)k, + 2k, =1

Solving the system yields k, = -3 — 24, k, = 3 — 4, and k, = 1 + 24.

(¢) Let A be the matrix whose first, second and third columns are the components of u, v,
and w, respectively. By Part (a), we know that det(A) # 0. Hence, k, = k, = k, = 0.

19. (a) Recall that e” = cos & + 7 sin x and that e = cos(—x) + % sin(—x) = cos x — 7 sin x.
Therefore,

e re™ 11
cosx=———=—f+—-g
2 2 2

and so cos x lies in the space spanned by f and g.



Exercise Set 10.4 319

21.

23.

25.

(b) If af + bg = sin x, then (see Part (a))

(a + b)cosx + (a —b)i sinx =sinx

Thus, since the sine and cosine functions are linearly independent, we have

a+b=0

and

a-b=—

This yields a = —i/2, b = /2, so again the vector lies in the space spanned by f and g.

(¢) Ifaf + bg = cos x + 37 sin &, then (see Part (a))

a+b=1

and
a-b=3

Hence a = 2 and b = -1 and thus the given vector does lie in the space spanned by
fand g.
Let A denote the matrix whose first, second, and third columns are the components of u,,

u,, and u,, respectively.

(a) Since the last row of A consists entirely of zeros, it follows that det(A) = 0 and hence
u,, u,, and u,, are linearly dependent.

(¢) Since det(A) = # 0, then u, u,, and u, are linearly independent.

Observe that f— 3g — 3h = 0.

Y
(a) Since S -4 # 0, the vectors are linearly independent and hence form a basis
L for C2.
2-31 3+21
(d) Since 1= 0, the vectors are linearly dependent and hence are not a

basis for C2.
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27.

29.

31.

33.

Exercise Set 10.4
The row-echelon form of the matrix of the system is
{1 1+¢}
0 0
So x, is arbitrary and x, = —(1 + 7)x,. Hence, the dimension of the solution space is one

—(1+i) . _
and ) is a basis for that space.

The reduced row-echelon form of the matrix of the system is

1 0 -3-672

0 1 317
0 0 0
So x, is arbitrary, x, = (-3¢)x,, and x; = (3 + 6¢)x,. Hence, the dimension of the solution
3+67
space is one and -3t | is a basis for that space.
1
Letu = (u, t,,...,u,)andv= (v, v,,...,0, ). From the defiition of the Euclidean inner

product in C", we have
u o (kv) = uy (ko) + g (ko) +. ..+, (kv,)
=y (kv + g (kUy) +. ..+ w,, (kv,,)
= k(w0 +k(ugy) +...+ k(u,0,)
= kw0 + Usly +...+ 1w, 0, |
=k(u « v)
Hint: Show that

[a + &v|P = [l + k(v ew) + k(a « V) + kk|v|]?

and apply this result to each term on the right-hand side of the identity.
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1. Letu= (u,u,,v=(,v,),and w = (w,, w,). We proceed to check the four axioms

(D <V, u> = 30Uy + 205U,

= Bu, T +2uyD, =(u, v)

() (w+v,w) =3, +v)w + 20U, + v,) Wy
= [Bu, Wy + 2u,wy] + [3v, Wy + 20, W,]

=(u, w) + (v, W)

3) (ku, v) = 3(ku)v; + 2(ku,) vy

= k[3u, vy + 2u,Uy] = k(u, v)

4 (u, w) = 3u, U + 2u,Uy
= 3lu,l* + 2lu,f* (Theorem 10.2.1)
>0
Indeed, (w,u) =0 <= u; =u, =0 <= u=0.

Hence, this is an inner product on C2.

3. Letu= (u,u,)andv=(v,v,). We check Axioms 1 and 4, leaving 2 and 3 to you.

) (v, u) = vyity + A+ Dyt + A=yl + 30510,

- (u)

321
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(4) Recall that |Re(2)| £ |2| by Problem 37 of Section 10.2. Now

(wu) = wyiy + U+ Dyt + A= Duyit, + uyiy
=|w[* + A+ ity + A+ gty +3Juy|
—[w[* + 2Re(Q+ D)y ity) + Bluy|”
> [y = 2|1+ iyt | + B[
=|w[* = 232y | ] + BJuss

2
:(|“1| - *@|“2|) + |“2|2
Moreover, (u, u) = 0 if and only if both |u,| and |u | — \/E ty] = 0, or w = 0.

5. (a) This is not an inner product on C?. Axioms 1-3 are easily checked. Moreover,

(u,w) =, u; =lu|=0

However, (u, u) = 0 <= u, = 0 <> u = 0. For example, (i, i) = 0 although ¢ # 0.
Hence, Axiom 4 fails.

(¢) This is not an inner product on C2. Axioms 1 and 4 are easily checked. However, for
w = (w,, w,), we have

w+v,w) =lu, +v, P+ lu, + vl w,
# (g + 10, D, + (gl + ),
=(u, w) + (v, w)
For instance, (1 + 1, 1) = 4, but (1, 1) + (1, 1) = 2. Moreover, (ku, v) = |k|*(u, v), so that

(kua, v) # k{u, v) for most values of k, u, and v. Thus both Axioms 2 and 3 fail.

(e) Axiom 1 holds since

<v,u> = 20Uy + Wyly — WUy + 205Uy

= 2Uy0; — WUV + WU Dy + 2UgD,

=(uv)
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A similar argument serves to verify Axiom 2 and Axiom 3 holds by inspection. Finally,
using the result of Problem 37 of Section 10.2, we have

(u, w) = 2w, %, + T, Uy~ U, + 2U,U,

2lu > + 2Re (1w, 4,) + 2w,

vV

2l I — 2w | + 2w,
= (| = TsD? + Jug* + oty

>0

Moreover, (u, u) = 0 <= u, = u, = 0, or u = 0. Thus all four axioms hold.

9. (a)|wl= B0 +23@)(=3)]"2 = V21
(©) |Iw] = [3(0)(0) + 2(2 - D)2 + )]*2 =10

11 () [w] =DM + A + DDA + A =DM + 3D = V2

(© |wl=[B-4)@3 + 4D =5

13. (a) Sinceu-v=(1-14,1+7),then

d(w, v) = [3(1 —)(1 +4) + 2(1 + (1 —)]*2 = 10

15. (a) Sinceu-v=(1-14,1+7),
da,v)=[1-9)A+)+ A+ -1 -17)
+ (A -DA+D)A +2) +3(0 +)(1 -]

NE

17. (a) Since u » v = (20)(=4) + (4)(=6i) + (3i)(k), thenu + v = 0 <> 8 + 33k = 0 or
k = —84/3.
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19. Sincex =Lei9(i,1,1), we have

J3

P ||(z',1,1)||=L(l)(1+1+1)1/2=1

NE

1
<l

Also
. 1 61/, .
X, (1,4,0))=—e"| (4,1,1)+(1,%,0
(3 1600)= o [(111):(160)]
1 .. .
=—e (i—1+0)
J3
and
. 1 ery. .
x, (0,4,—17) )=—¢"| (4,1,1)+(0,7,—%
(3 0=} = (4.0)- (03]
1 0 ..
=—e " (0-17+17)
J3
=0
21. (a) Call the vectors u,, u,, and wu,, respectively. Then || = [u) = [juy| = 1 and
u, -u, =u, - u, = 0. However, u, - u, = £+(_i)2 ——i;tO Hence the set is not
1 2 1 3 : » T2 3 \/8 \/6 \/8 .
orthonormal.

25. (a) We have
, _[L i Lj
SR CERNCANE
and since u, « v, = 0, then u, - (u, « v))v, = u,. Thus,
i1
Vo=| ——,—, 0
(5]

Also,ug « v| = 4/\/§ and ug « vy = 1/\/5 and hence

it
67 3

| .

ug — (g« vvy — (g« vy)vy = (
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Since the norm of the above vector is 1/ \/E , we have
( i —2@}
v3 =l Ty T/ T —
J6' 6" 6

Let u; = (0, ¢z, 1 =) and w, = (-2, 0, 1 + 7). We shall apply the Gram-Schmidt process
to {u, u,}. Since ||u1|| = \/5 , it follows that

27.

v _(o K I_J
1 7\/5: \/g
Since u,, « v; = 2i/\/§, then
uz—(uz-vl)vl=(—z’,0,1+i)—[0,—%,§+§@')

21 1.
=| -1, =, —+—1
( 3’3 3 j

and because the norm of the above vector is \/B /3, we have

v_(—Sz’ 2 1+i)
> \Vi5" V15" 15

N A N
2237237 2437 243

Therefore,
W, = (Wev)Vv, + (W «vy)V,
J6 237
5. 1.5, 9.
=|—-—1%,—-—1, -1, —1
4 4 4 4
and
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29. (a) By Axioms (2) and (3) for inner products,
(ua kv, u - kvy ={(u, u —kv) + (-kv, u — kv)

={u, u—kv) - k{v,u—kv)

If we use Properties (ii) and (iii) of inner products, then we obtain

(u-kv,u-kv)=(,u)-k(u, v) — k{(v, u) + kk{(v, v)

Finally, Axiom (1) yields
(u—kv,u-kv)=(,u)-k{u, v) -k <;V> + kk{v, V)
and the result is proved.

(b) This follows from Part (a) and Axiom (4) for inner products.

33. Hint: Let v be any nonzero vector, and consider the quantity (v, v) + (0, v).

35. (d) Observe that |[u + v|? = (u + v, u + v). As in Exercise 37,

(u+v,u+v)y=(, u)+2Re((u, v) + (v, V)

Since (see Exercise 37 of Section 10.2)

IRe((u, v))| < Ku, v)

this yields

u+v,u+v)y<(u w + 2w, v)| + (v, v)

By the Cauchy-Schwarz inequality and the definition of norm, this becomes

Jh <+ [P < + 2] v + [P = (] + [V

which yields the desired result.

(h) Replace u by u — w and v by w — v in Theorem 6.2.2, Part (d).

37. Observe that for any complex number £,

[a + kv|P= (u + kv, u + kv)
= (u, u) + k(v, u) + k(u, v) + kk{v, v)
= (u, u) + 2 Re(k(v, w)) + [k[Xv, V)
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Therefore,
o+ Vi — [la = v|P + 4l + vl — ifa - v
= (1-1+i-)(u,u)+2Re((v, w)) — 2 Re(~{v, w)) + 2i Re(i{v, u)
~2i Re(—i{v, u)) + (1 — 1 + 1 —5){v, V)
= 4 Re((v, u)) — 47 Im((v, u))
= 4(v, u)

=4 {(u, v)

39. We check Axioms 2 and 4. For Axiom 2, we have
b —
(f+gh)= ja(f+g)h dw
b,.— b =
= ["thdae+ [ ghdo

=(f,h)+(g h)

For Axiom 4, we have
b, = b
(£1)=]'11 dx:ja|f|2dx

J{ fz())}x

b
Since |f|> > 0 and a < b, then (f, £f) > 0. Also, since f is continuous, J. If> dor > 0 unless
a
f =0 on [a, b]. [That is, the integral of a nonnegative, real-valued, continuous function (which
represents the area under that curve and above the x-axis from a to b) is positive unless the

function is identically zero.]
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41. Letv, = e = cos(2nmx) + 7 sin(2nma). Then if m # n, we have

<vm, vn>=Jl[cos(2n7nx)+z'sin(Zﬂmx)][cos(an)—isin(an)]dx

Il
S =

[cos(Zﬂmx)cos(27rnx)+sin(27rm7c)sin(27mx)]dx
+i.[01[sin(2nmx)cos(2ﬂnx)— cos(27tmx)sin(27mx)] dx

=chos[Zn(m—n)x]dx+ijésm[2ﬂ(m—n)x]dx

:%sin[Zn(m—n)x]]l ‘ ;

Zn(m—n) O——2n<m_n)cos[2ﬂ(m—n)x]]

Thus the vectors are orthogonal.
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5. (b) The row vectors of the matrix are

1+ 1_)

1 1
IIZ[E,E] and r2=( 3

Since ||| = [jr,] = 1 and

(2

the matrix is unitary by Theorem 10.6.2. Hence,

1 —1+d

Ao aro AT | V22
RIS

5 2

(d) The row vectors of the matrix are

1+7 1 1
L R

S

and

S+i 4+3i b5i }

r: ’ )
’ (Nﬁ 215" 2415

329
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We have [r || = [r,|| = [Ir| = 1,

e (2)[2)

and

rr—[”ij(g_i]—i 4-30 1 -5i
EE 215 ) V2 o215 2 215

Hence, by Theorem 10.6.2, the matrix is unitary and thus

(1-4 —i 31|
2 3 215
- 1 1 4-3
Al=ax=AT=| - = —
2 Y3 215
L
L2 3 215

7. The characteristic polynomial of A is

A-4  -1+7
det|:_1_z' 1_5:|=(}’_4)(1_5)_2=(l—6)(l—3)

Exercise Set 10.6

=0

Therefore, the eigenvalues are A = 3 and A = 6. To find the eigenvectors of A corresponding

to A = 3, we let
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This yields x, = —(1 - 4)s and x, = s where s is arbitrary. If we put s = 1, we see that
-1+
[ } is a basis vector for the eigenspace corresponding to A = 3. We normalize this

vector to obtain

To find the eigenvectors corresponding to A = 6, we let
2 “l+d| |2 | |0
~1-i 1 2| |0
. 1-72 . .
This yields ZTS and x, = s where s is arbitrary. If we put s =1, we have that

1-17)/2
[< Z)/ } is a basis vector for the eigenspace corresponding to A = 6. We normalize this
1

vector to obtain

Thus
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diagonalizes A and

A I R N TR
+ 17
NN T NERENG

(3 0
o 6

9. The characteristic polynomial of A is

A-6  —2-27
det[_2+2i 1_4}:(1—6)(/1—4)—8:(1—8)(1—2)

Therefore the eigenvalues are A = 2 and A = 8. To find the eigenvectors of A corresponding

to A =2, we let
—4 2-2i| |2 | |0
2+2i -2 25| |0

1+2
This yields x; = —TZS and x, = s where s is arbitrary. If we put s = 1, we have that
—(1+17)/2
1

is a basis vector for the eigenspace corresponding to A = 2. We normalize this

vector to obtain

To find the eigenvectors corresponding to A = 8, we let

2t L
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This yields #; = (1 + 7)s and x, = s where s is arbitrary. If we set s = 1, we have that
I+ . . . . .
1 is a basis vector for the eigenspace corresponding to A = 8. We normalize this

vector to obtain

Thus

diagonalizes A and

-1+ i 6 249,17 1+7 147
piapo| B 6 NG

TR | I 21
B B A J6 3
2 0

1o 8

11. The characteristic polynomial of A is

A-5 0 0

det| O A+l 1-7|=(A-D(A-5)(1+2)
0 1+7 A

Therefore, the eigenvalues are A = 1, A = 5, and A = 2. To find the eigenvectors of A
corresponding to A = 1, we let
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This yields x, = 0, &, = —I_TZS, and x, = s where s is arbitrary. If we set s = 1, we have
0

that —(1 - z) / 2 | is a basis vector for the eigenspace corresponding to A = 1. We normalize
1

this vector to obtain

0 0 0 1«1 [o
0 6 1-i||wxy|=]0
0 1+i 5 ||ay| |0

This yields #, = s and &, = x; = 0 where s is arbitrary. If we let s = 1, we have that
1
0 | is a basis vector for the eigenspace corresponding to A = 5. Since this vector is already
0

normal, we let

To find the eigenvectors corresponding to A = — 2, we let
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This yields x; = 0, x, = (1 —4)s, and &, = s where s is arbitrary. If we let s = 1, we have that
0

1-14| is a basis vector for the eigenspace corresponding to A = —2. We normalize this
1

vector to obtain

0
1-14
P, =
N NG
1
L V3
Thus
0 1 0 |
1-1 1-1
P=|- 0
J6 J3
2 4 L
L V6 NEl
diagonalizes A and
o L7 2] 0 1 0]
V6 Vo | [o ! 0 1-12 1-12
PlaP =|1 0 0oll0 -1 -—1+4|l|- 0
0 1+ 1 []0 -1-4 0 26 13
3 3 — 0 —
L \/7 \/7_ I \/g \/g_
1 0 0
=0 5
0 0 -2

13. The eigenvalues of A are the roots of the equation

A-1  —di
det| " C 1222242 419=0
47 A-3
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15.

19.

21.

Exercise Set 10.6

4+./16-4(19)
2
eigenvalues of a symmetric matrix with nonreal entries need not be real. Theorem 10.6.6

The roots of this equation, which are A = , are not real. This shows that the

applies only to matrices with real entries.

We know that det(A4) is the sum of all the signed elementary products Za,; PACYRR

where @, is the entry from the ¢ row and j” column of A. Since the 4 element of

AlSCLij,

then det(zzl) is the sum of the signed elementary products *a; jﬁg jo g, OF

*a, j,%2j, - Oy . That is, det (4) is the sum of the conjugates of the terms in det(4). But

since the sum of the conjugates is the conjugate of the sum, we have
det (A) = det(A).

If A is invertible, then
ARCAD)* = (AT A)* (by Exercise 18(d))

=r=1T=1"=1
Thus we have (A™1)* = (A%)L.

Let r, denote the 7 row of A and let ¢, denote the 7" column of A*. Then, since

A*= AT =(AT), we have c = T; forj = 1,...,n. Finally, let

sy =0 £ 12

if 1=
Then A is unitary < A™! = A*. But
Al =A% o AA* =T

er, ¢ =4 forally j

er ;= (Sij forall 7, j

< {r,...,r } is an orthonormal set
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23.

(a)

(b)

We know that A = A*, that Ax = A/x, and that Ay = Wy. Therefore
x* Ay = x*(Wy) = u(x* Iy) = ux*y
and
x* Ay = [(x* Ay)*]* = [y* A*x]*
= [y* Ax]* = [y* (Mx)]*

= [Ay*x]* = Ax*y

The last step follows because A, being the eigenvalue of an Hermitian matrix, is real.

Subtracting the equations in Part (a) yields
AW (x*y) =0

Since A # u, the above equation implies that x*y is the 1 x 1 zero matrix. Let
X = (x,...,x,) and y = (¥,,...,9,). Then we have just shown that

Elyl + -0+ ei’nyn = O

so that
2+t

and hence x and y are orthogonal.
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The system of equations has solution x| = ~is + ¢, x, = s, x, = . Thus

X, -1 1
Zo|=11]s+|0]t
Zg 0 1

where s and ¢ are arbitrary. Hence

-1 1
1 and 0
0 1

form a basis for the solution space.

The eigenvalues are the solutions, A, of the equation

A0 -1
1
det|-1 A -w-1-— |=0
®
1
0 -1 A+o+l+—
L w-

or

339
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1 _
But — = @, so that w+1 + 1 = 2Re(w) + 1 = 0. Thus we have
W w

B-1=0

or

A-DA2+2+1)=0

Hence A = 1, w, or ®. Note that @ = @?.
7. (e¢) Following the hint, we let 2 = cos 8 + 7 sin 0 = ¢ in Part (a). This yields

0 20 0 1 — p(n+1)i6
I+e” +e” + -+ = ——r—
1_8’69

If we expand and equate real parts, we obtain

1 — gm+1id
1+cosO+cos20+ --- +cosnB = Re —

l1-e
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But

l1-e

e(n+1)i0

0

DO | —

Do | —

=Re

1
2
_L
2

DO | DO |

DO | —

1+

1+

(1—e(”“)i9)(1—e‘i9)

o)

1— e(n+1)i9 —i0 . 6

- 7 +e
2-2Re(e™)
1- cos[(n + 1) 9]— cos (—9) +cos 160
1—cosf
l—cos@ COS n@—cos((n+1)9)
+
1-cos@ 1-cos@
L4 cos n@—[cos 710 cos 6 —sin nfsin 9:|
2sin? g
2

cos n@(l—cos 0)+2 sin 170 singcosg

1+ 0
2sin® >~
2
2cos 720 sin® Q+ZSin 10 singcosg
1+ 2 2 2
2sin? Q
2

cos 10 sin Z +sin 16 cosg

sin —
2

.
sin —
2

Observe that because 0 < 8 < 2z, we have not divided by zero.

341
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9. (all the diagonal matrix D. Then
WD)x=WD) ="' =pU" = DU
We need only check that (UD)* = (UD)!. But

(UD)*(UD) = (DU Y (UD)= DD

and

E 0 |
po=|" |z?|2 L
|00 2|

Hence (UD)* = (UD)™! and so UD is unitary.
11. Show the eigenvalues of a unitary matrix have modulus one.

Proof: Let A be unitary. Then A~ = A",
Let A be an eigenvalue of A, with corresponding eigenvector x.

. 2
Then [Az|P = (A2)"(Ax) = @A) A) = 2" (A Az = 2"z = |2,
but also

|Az | = || Az ||* = (Ax)"(Ax) = (AW (2"x)

Since A and A4 are scalars (AL)(@*x) = | A 2|2 |2 So, | A2 = 1, and hence the eigenvalues
of A have modulus one.
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(a) Substituting the coordinates of the points into Eq. (4) yields

x y 1
1 -1 1 (=0
2 21

which, upon cofactor expansion along the first row, yields -3x + ¥ + 4 = 0; that is,
y =3x - 4.

(b) Asin (a),

x 1
0 1 1 (=0
1 -1 1

yvields 2z + y — 1 =0ory = 2x + 1.

Using Eq. (10) we obtain

X XY Yy o y 1
0 0 0 0 0 1
0 0 1 0 -1 1]_ 0
4 0 0 2 0 1
4 -10 26 2 -5 1
16 -4 1 4 -1 1

343
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which is the same as

x Xy Yy xr Y
0 0o 1 0 -1
4 0O 0 2 0(=0
4 =10 26 2 b
16 -4 1 4 -1

by expansion along the second row (taking advantage of the zeros there). Add column five
to column three and take advantage of another row of all but one zero to get

22wy Yty

4 0 0 2 | _ 0.
4 -10 20 2
16 -4 0 4

Now expand along the first row and get 160x? + 320xy + 160(y? + y) — 3202 = 0; that is,
2% + 2oy + y? — 22 + y = 0, which is the equation of a parabola.

Substituting each of the points (x,, y), (%, ¥,), (x5, ¥3), (x,, ¥,), and (x5, y,) into the
equation

2 2 _
CLT% + CyY + CY” + Cx + CY + C5 =0

yields

2 2 _
CL] +Co2y Yy +CaYy +Cy 2y +C5y; +C6 =0.

2 2 _
C1 %5 +CoXgls +Calfs +Cy X+ Cxlfs +Cg = 0.

These together with the original equation form a homogeneous linear system with a non-
trivial solution for ¢y, ¢,, ---, ¢,. Thus the determinant of the coefficient matrix is zero,

which is exactly Eq. (10).

Substituting the coordinates (x;, y,, 2,) of the four points into the equation c,(@® +y* + &%)
+ Cyx + CY + c,2 + ¢ = 0 of the sphere yields four equations, which together with the
above sphere equation form a homogeneous linear system for ¢, ---, ¢, with a nontrivial
solution. Thus the determinant of this system is zero, which is Eq. (12).
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10. Upon substitution of the coordinates of the three points (x,, ¥,), (x,, ¥,) and (x,, y,), we
obtain the equations:
cy +cxt+cy +c¢,=0
CYy + Cos +Ccow, + ¢, =0
ClYy + Cos + Coty +Cy =0
CYs + Co3 + Coy + ¢, = 0.

This is a homogeneous system with a nontrivial solution for ¢, ¢,, ¢,, ¢,, so the determinant
of the coefficient matrix is zero; that is,

Y 2 x 1
2
X X 1
% 12 1 —0
Yo x5 29 1
2
Ys w3 x5 1
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_h | s0 8V

AW |

( loop 1 )
node 4 ‘ MW
5 13Q

9 Q§ ( loop 2 ) ;5 Q
- F=
I 3

Applying Kirchhoff’s current law to node A in the figure yields
I =1, +1,
Applying Kirchhoff’s voltage law and Ohm’s law to Loops 1 and 2 yields
5, + 131, =8
and
91, - 131, + 5I, = 3.

In matrix form these three equations are

1 -1 -1][y
5 13 0||L|=
0 -13 14|14

w o O

255 97 158
s [2 = 5 [3 = .
317 317 317

with solution ; =

347
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3. node 4

Node A gives [, + I, = I,
Loop 1 gives —4I, — 61, = 1.
Loop 2 gives 41, - 2[, = 2.

In system form we have

1 -1 1| 0
-4 -6 0|y =|-1
4 0 2|1 -2
7 6
with solution [ ==5g" I, = oL I =1
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L+

= node A4 node B

After setting I, = 0 we have that:
node A gives I, = I,
node B gives [, = I,
loop 1 gives IR, = [,R,
loop 2 gives LR, = [,R,.

From these four equations it easily follows that R, = R,R./R,.
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A2 x| =2
N
(1/2, 1) (3/2, 1)
\ 2,2/3)
N‘l + 3x,=6
1 1 gl
(0,0) 2,0) N

In the figure, the feasible region is shown and the extreme points are labelled. The values
of the objective function are shown in the following table:

Extreme point Value of
(@, x,) & =3x, + 2,
0, 0) 0
(172, 1) 7/2
(3/2, 1) 13/2
(2, 2/3) 22/3
2, 0) 6

Thus the maximum, 22/3, is attained when x, = 2 and &, = 2/3.

351
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3. )
3x,—x,=-5
2x,+4x, =12
| —
The feasible region for this problem, shown in the figure, is unbounded. The value of
& = —-3x, + 2x, cannot be minimized in this region since it becomes arbitrarily negative
as we travel outward along the line —x, + x, = 1; i.e., the value of z is -3x, + 2%, =
-3z, + 2(x, + 1) = x| + 2 and x, can be arbitrarily large.
5. A%
J Y=32 5 2x =0
(312, 9/4)
5 —-2x,=0
32,3224\
- (40/21, 20/21)
1 1 1 1 1 ;xl
\ \ 1 1 1 g
4x,+2x,=9 sV TN T3

The feasible region and its extreme points are shown in the figure. Though the region is
unbounded, x, and x, are always positive, so the objective function & = 7.5z, + 5.0z,
is also. Thus, it has a minimum, which is attained at the point where x, = 14/9 and
2, = 25/18. The value of 2 there is 335/18. In the problem’s terms, if we use 7/9 cups of
milk and 25/18 ounces of corn flakes, a minimum cost of 18.6¢ is realized.
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353

Letting 2, be the number of Company A’s containers shipped and x, the number of

Company B’s, the problem is

subject to

Maximize 2z = 2.20901 + 3.00352

40, + 50z, < 37,000

2w, + 31, < 2,000

The feasible region is shown in the figure. The vertex at which the maximum is attained
is x; = 550 and x,, = 300, where 2 = 2110.

A
N
N

(0, 666

W |

n

L2

40x, + 50x, = 37,000

(550, 300)

2x, + 3x, = 2000

I pl

(0,0

9.

|
(925, 0)

Let x; be the number of pounds of ingredient A used and x, the number of pounds of

ingredient B. Then the problem is

subject to

Minimize z = 8951 + 9952

le + 5.962 >10
2x1 + sz > 8

6x, + 4z, 2 12
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/5, 12/5)

(572, 1)

(5,0)
\ I

6x,+ 4x, =12 2x,+3x,=8 2x,+5x,=10

Xy

1 »
!

Though the feasible region shown in the figure is unbounded, the objective function is
always positive there and hence must have a minimum. This minimum occurs at the vertex
where x, = 2/5 and x,, = 12/5. The minimum value of 2 is 124/5 or 24.8¢.

11. AY,  Zincreasing

i \

- z decreasing

The level curves of the objective function —-5x, + x, are shown in the figure, and it is readily
seen that the objective function remains bounded in the region.



EXERCISE SET 114

The number of oxen is 50 per herd, and there are 7 herds, so there are 350 oxen. Hence the
total number of oxen and sheep is 350 + 350 = 700.

Note that this is, effectively, Gaussian elimination applied to the augmented matrix
1 1 10
1 1/4 7
(a) From equations 2 through 7, X, =a;,-n (7 =2,..., n). Using these equations in
equation 1 gives
x, + (a,—x) + (@y—2) +...+(a,-2) =aq,
x,=(a,+a,+...+a,—a)/(n-2)

Given x in terms of the known quantities 7 and the a, Then we can use
Xp=a,=n (U =2,...,m) to find the other x,.

(b) Exercise 7.(b) may be solved using this technique.

(a) The system is x + y = 1000, (1/5)x — (1/4)y = 10, with solution « = 577 and 7/9 staters,
and y = 422 and 2/9 staters.

(b) The system is G + B = (2/3)60, G + T = (3/4)60, G + I = (3/5)60, G + B+ T + I = 60,
with solution (in minae) G = 30.5, B = 9.5, T = 145, and [ = 5.5.

(¢) The systemisA =B + (1/3)C,B =C + (1/3)A, C = (1/3)B + 10, with solution A = 45,
B =375 and C = 22.5.

355
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We have 2b, = M, 2b, = M,, --- ,2b, =M | from (14).

Inserting in (13) yields

6ah + M, =M,
6a2h + M2 = M3
6a, h+M, =M, ,,
from which we obtain
Mo—M
a4 =—2 "1
6h
Mo—M
ay = 3 2
6h
a, o= Mn—l _Mn—2
" 6h

Now S” (xn) =M, or from (14), 6a,_h +2b =M .

n
Also, 2b, , = M, from (14) and so

6a, \h+M, =M,

357
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or

M _—-M
an—l — n = n-1

Thus we have
M. —-M

fort=1,2,...,n-1. From (9) and (11) we have

alP+bh*+ch+d =y i=1,2,..., n-1

i+1

M. ,—M, M.
Substituting the expressions for a,, b,, and d, from (14) yields (M th +—Ln%+
ch+y,=vy,,,1t=12,..., n—1 Solving for ¢, gives 67 2

¢, = Y —Yi _ | My —2M; n
h 6

fore=1,2,...,n-1.

3. (a) Given that the points lie on a single cubic curve, the cubic runout spline will agree
exactly with the single cubic curve.

(b) Seth=1and

z,=0 , y =1
x,=1 , y,=7
xy=2 , Yy,=27
r,=3 , y,=179
r.=4 , y,=181.

Then
G(yl -2y, + yg)/h2 =84
6(y2 -2y, + y4)/h2 =192

6(y3 -2y, + y5)/h2 =300
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and the linear system (24) for the cubic runout spline becomes

6 0 O M, 84
1 4 1 My | =| 192
0 0 6 M, 300
Solving this system yields
M, =14
M, =32
M, =50

From (22) and (23) we have

M, = 2M, - M, = —4

M, =2M,-M, = 68.
Using (14) to solve for the a s, b’s, ¢,s, and d,’s we have

a,= (My~M,)/6h =3
a, = (My—My,)/6h =3
ay= (M,~M,)/6h =3

a,= (M;-M,)/6h =3

b, =M,/2=-2
b,=M,/2= T
b, = M,/2 = 16

b,=M,/2 =25
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¢, = (y2 —yl)/h - (M2 + ZMI)h/G =5
Cy = (Y= Yy)/h — (M + 2M; ) h/6 = 10
0= (Uy =Yy )/h— (M, +2M;) 16 = 33

¢, = (y5 —y4)/h - (M5 + 2M4)h/6 =74

For 0 £ x <1 we have

S(x) =S (v) = 32% - 22% + bw + 1.

For 1 £ x <2 we have
S) =8,(x) =3 - P+ 7 -1D2+10x-1) + 7

=323 - 222 + by + 1.

For 2 < x £ 3 we have
S) =8;) =3~ 2)2 +16(x —2)2 + 33(wx - 2) + 27

=323 - 222 + by + 1.

For 3 < x £ 4 we have
S) =85,) =3 - 33 +25(r -3+ 74(x-3)+ 79

=32% - 222 + By + 1.

Thus S, (%) = S,(x) = S,(x) = 5,(x),

or S(x) =32 -222+bx+1 for0<x<4.

Exercise Set 11.5



Exercise Set 11.5 361

5. The linear system (24) for the cubic runout spline becomes

M, ~.0001116
M | =] —0000816
M, —.0000636

S = Oy
S = O
S = O

Solving this system yields
M, =-.0000186

M, = —0000131
M, = —.0000106.

From (22) and (23) we have

M, = 2M, - M, = —.0000241
M, = 2M, — M, = —.0000081.

Solving for the a,s, b,’s, ¢,’s and d s from Eqgs. (14) we have

a, = (M, —M,)/6h = 00000009
a, = (M;—M,) /6 = 00000009
ay = (M, ~M,)/6h = .00000004

a, = (M; - M,)/6h = 00000004

b, = M, /2 = -0000121
b, = M, /2 = —.0000093
b, = M, /2 = —.0000066

b, = M, /2 = —.0000053
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¢, = (Wy—y,)/h— (M, +2M,)h/6 = 000282
Co = (Ys—¥y)/h — (My +2M,) /6 = .000070
0y = (Yy =Yy )/h— (M, +2M,)h/6 = .000087

¢y = (Ys—¥y)/h— (M +2M,)h/6 = 000207

d, =y, = .99815
d, =y, = 99987
dy =y, = 99973
d, =y, =.99823.

The resulting cubic runout spline is

.00000009(z +10)°> — .0000121(x+10)* +.000282(x +10) + .99815, —10< x <0
.00000009(%)°> - .0000093(x)> +.000070(x)  +.99987, 0<x<10
.00000004(2 —10)> — .0000066(z—10)? +.000087(x—10) + .99973, 10<x <20
.00000004(z —20)° — .0000053(x —20)% +.000207(x —20) + .99823, 20 <z < 30.

S(x) =

Assuming the maximum is attained in the interval [0, 10], we set S’(x) equal to zero in this
interval:

S’(x) =.00000027x% - .0000186x + .000070.

To three significant digits the root of this quadratic in the interval [0, 10] is 4.00 and

S(4.00) = 1.00001.

7. (a) Since S(xl) =y, and S(xn) = ¥,, then from S(xl) = S(xn) we have y, = ¥,.
By definition S”’ (xl) =M, and S” (xn) =M , and so from S” (xl) =S5 (xn) we have
M, =M,
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From (5) we have

S’(xl) =c,

S’ (xn) =3a, h*+2b, h+c, |

b c ., from Egs. (14) yields

Substituting for ¢, a 1> Cot

n-1’

S’(xl) = (yZ - yl)/h - (Mz + 2M1)h/6
S’ (xn) = (Mn - MTH)h/Z + M, h

+ (=Y )/n— (M, +2M, ) /6.
Using M, = M, and y, = y,, the last equation becomes
S'(w,) = Mh/3 + M, 116 + (y, -y, )/
From §(,) = () we obtain

(y2 - yl)/h - (yl - ynfl)/h =M n/3 + M, _ /6 + (M2 + ZMl)h/(S

or

AM, + My + M, = 6(y, -2y, +vy)/h"

(b) Egs. (15) together with the three equations in part (a) of the exercise statement give

oy, + M, +M,, = 6(y'n—l -2y, + yz) /h?
M, +4M, +M, = 6(y1 -2y, + yg)/h2
M, +4M;, +M, = 6(y2 —2y3+y4)/h2

Mn—S + 4Mn—2 + Mn—] = 6(yn—3 -2y no T Y n—l)/hz

M G(ynfz ~2y, |+ yl)/h2.

Lt Mnf2 + ALMW1
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This linear system for M,, M,, ... , M, | in matrix form is
(41 0 0 00 0 1 ][ M ] Dy 2y Hyy |
1 4 1 0 0 0 0 M, Y —2Ys +Y3
0 1 4 1 0 0 0 O M, B Yo, —2Y3 +Yy
R SRR ; T2 :
6 0 0 0 - ) - 01 4 1 Mn—Z Yn-3 _zyn—2 TYp-1
L1 0 0 O 0O 0 1 4 ]| M, | | Ypo —2Y,  ty;
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(a) xP=px® = [ ;1 } Cx® = pg® = [ 46 } '

454
Continuing in this manner yields x® :[ 546 } ,

4546 45454
xW = and x) = .
5454 54546

(b) P is regular because all of the entries of P are positive. Its steady-state vector q
solves (P — I)q = 0; that is,

5
This yields one independent equation, .6q, — .5q, = 0, or ¢, = ng. Solutions are thus

5/11} .

5/6
of the form q = s / . Sets = —=£toobtajnq=
1 11 6/11

1
§+1
6

(a) Solve (P-Dq=0,1i.e.,

el

2 3 9/8
The only independent equation is §q1=Zq2, yieldinng{ { }s. Setting s:%
old 3 9/17
yields q= 8/17
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(b) Asin (a), solve

RN

26/19
Le., .19q, = .26q,. Solutions have the form 4= 1 S
Set 19 . . 26/45
S=— = .
LT s 08 171 1945

(¢) Again, solve

—2/3 1/2 0] [q
/3 -1 0| |qy|=
/3 1/2 -1/4||qs

oS O O

by reducing the coefficient matrix to row-echelon form:

1 0 -1/4
0 1 -1/3
0 0 0
1/4
yielding solutions of the form q=|1/3 ] s.
1
3/19
12 /
Set S=1g toget @ = | 4/19
12/19

11 1] £ L T 1
5. letq=|==...= .Then(Pq)z.:szjquzzp@jzzzmjzz,smcetherowsumsof
j=1 j=1 j=1

P are 1. Thus (Pq), = g, for all <.
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7. Let x =[x xZ]T be the state vector, with x, = probability that John is happy and
x, = probability that John is sad. The transition matrix P will be

p __{4/5 2/3}

15 1/3

since the columns must sum to one. We find the steady state vector for P by solving

e el [a)-L)
1 2

) 10/3 3
ie., gq1=§q2,soq= ] s. Let SZE and get q =

10/13

3/13}, so 10/13 is the

probability that John will be happy on a given day.
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Note that the matrix has the same number of rows and columns as the graph has vertices,
and that ones in the matrix correspond to arrows in the graph. We obtain

_ 0 1 1 0 0
o 0 0 1
0O o0 0 0 1
@ ! o1 ! b |1 0O 0 1 0
a
1 1 0 1
0o 0 1 0 O
0O o0 0 O
- |0 0 1 0 0]
0 1 0 1 0 0]
1 0o 0 O 0 O
0 1 0 1 1 1
© O o0 o0 0 o0 1
O o0 o0 0 o0 1
|0 0 1 0 1 0
(a) As in problem 2, we obtain
Py

369
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(b)
(c)
5. (a)

(b)

(c)

Exercise Set 11.7

my, = 1, so there is one 1-step connection from P, to P,.

and M

e =
— = = Do
O =
= e
Il
— = = Do
DO DO DO W
Do o= = Do
= DN = Do

So m{? =2 and m{3) = 3 meaning there are two 2-step and three 3-step connections
from P, to P, by Theorem 1. These are:

1-step: P, — P,

2-step: P, —-P,—-P, and P, —P,— P,
3-step: P, —-P,—-P —P,P>P,>P, >P,
and P, —>P,—>P,—> P,

Since m,, = 1, m{? = 1 and m{} = 2, there are one 1-step, one 2-step and two 3-step
connections from P, to P,. These are:

1-step: P, - P,
2-step: P, —-P,—> P,

3-step: P —-P,—-P —-P, and P,—>P, —>P,—>P,

Note that to be contained in a clique, a vertex must have “two-way” connections with
at least two other vertices. Thus, P, could not be in a clique, so { P,, P,, P, } is the only
possible clique. Inspection shows that this is indeed a clique.

Not only must a clique vertex have two-way connections to at least two other vertices,
but the vertices to which it is connected must share a two-way connection. This
consideration eliminates P, and P,, leaving { P,, P,, P.} as the only possible clique.
Inspection shows that it is indeed a clique.

The above considerations eliminate P, P, and P, from being in a clique. Inspection
shows that each of the sets

{Py, P, Py}, {P,, Py, P}, { Py, Py, Pg L{ Py, Py, Py} and { P,, Py, P, } satisfy conditions
(1) and (ii) in the definition of a clique. But note that P, can be added to the first
set and we still satisfy the conditions. P, may not be added, so { P,, P, Py, Py} is a
clique, containing all the other possibilities except { P,, P, P, }, which is also a clique.
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0O 0 1 1
1 0 0 O
M =
0 1 0 1
0O 1 0 0
Then
0O 2 0 1 0o 2 1 2
5 |0 0 1 1 5 |1 0 1 1
M= = and M+ M*=

1 1 0 O 1 2 0 1
1 0 0 O 1 1 0 O

By summing the rows of M + M?, we get that the power of P is 2 + 1+ 2 =5, the power
of P, is 3, of P, is 4, and of P, is 2.
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1. (a) From Eq. (2), the expected payoff of the game is

pAq:[—O—} 5 -7 3 8

N N N e Y
|

T

1 1 1 1
(b) If player R uses strategy [p, p, D] against player C’s strategy [Z 11 ﬂ ,
his payoff will be pAq = (-1/4)p, + (9/4)p, — p,. Since p,, p, and p, are nonnegative

and add up to 1, this is a weighted average of the numbers —1/4, 9/4 and —-1. Clearly
this is the largest if p, = p, = 0 and p, = 1; thatis,p=[0 1 O0].

1 1
(¢) Asin (b),if player C uses [q, q, q, q,]" against [5 0 E} , we get pAq = —6q, +

3q, + q4 — 1q,. Clearly this is minimized over all strategies by setting ¢, = 1 and
,=q;=q,=0.Thatisq=[1 0 0 0]"

3. (a) Calling the matrix A, we see a,, is a saddle point, so the optimal strategies are pure,
namely: p=[0 1], q = [0 1]7; the value of the game is Uy = 3.

(b) As in (a), a,, is a saddle point, so optimal strategies are p = [0 1 0], q = [1 0]
the value of the game is a,, = 2.

(c¢) Here, ag, is a saddle point, so optimal strategies are p = [0 0 1], q =[0 1 0)”
and v = a,, = 2.

(d) Here, a,, is a saddle point,sop=[0 1 0 0],q=[1 0 0] and v = Qg = 2.
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Let a,, = payoff to R if the black ace and black two are played = 3.
a,, = payoff to R if the black ace and red three are played = —4.
a.,, = payoff to R if the red four and black two are played = —6.
a.,, = payoff to R if the red four and red three are played = 7.

3 -4
So, the payoff matrix for the game is A = { 6 7} )

13 7
A has no saddle points, so from Theorem 2, P = {% %},

T
11 9
q-= [% %} : that is, player R should play the black ace 65 percent of the time, and

player C should play the black two 55 percent of the time. The value of the game is —3,
that is, player C can expect to collect on the average 15 cents per game. 20
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(a) Calling the given matrix £, we need to solve

(I—Eh>=[

1 1
This yields §p1 = §p2, that is, p = s[1

(b) Asin (a), solve

1/2

1/2 0
(I-E)p=|-1/3 1
~1/6 -1

In row-echelon form, this reduces to

0
1
0

[

-1
_5/6
0

v ol ml=lo)

3/2]". Sets =2 and get p=[2 3]".

-1/2
-1/2

1

by
Dby
V2]

Solutions of this system have the form p =

6 5 6]
(¢) Asin (a), solve
.65

(I-E)p =|-25
—.40

-.50
.80
-.30

375

-.30
-.30
.60

b
Dy
by

0
0
0

s[1

by
Dby
by

5/6

0

0
0

oS O O

1]7. Set s = 6 and get p =
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which reduces to

1 34 =32 1[np 0
0 1 —54/79 || p, |=]| 0
0 0 0 ps | L0

Solutions are of the form p = s[78/79 54/79 1]7. Let s = 79 to obtain p =
(78 54 T79]T.

3. Theorem 2 says there will be one linearly independent price vector for the matrix £ if some
positive power of E is positive. Since E is not positive, try £

2 34 1
E’=|2 54 6|>0
6 .12 .3

5. Taking the CE, EE, and ME in that order, we form the consumption matrix C, where
Cy = the amount (per consulting dollar) of the i-th engineer’s services purchased by the
j-th engineer. Thus,

Q

1]
W o= O
[N e RN
S W

We want to solve (I - C)x = d, where d is the demand vector, i.e.
1 -2 -=-3||x 500

~1 1 —4||@y|=|700
-3 -4 1 ||axy| |600

In row-echelon form this reduces to

1 -2 -3 x| [ 500
0 1 —43877| |z, |=| 78531
0 0 1 zy | |1556.19

Back-substitution yields the solution x = [1256.48 1448.12 1556.19]7.
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n
7. The ¢-th column sum of £ is 2 e and the elements of the ¢-th column of I — E are
j=1
the negatives of the elements of E, except for the é¢i-th, which is 1 - e,. So, the i-th
i
column sum of [ — K is 1 — 2 e, = 1-1=0. Now, ({ — EDT has zero row sums, SO

j=1
the vector x = [1 1 - 1]7 solves (I — E)™x = 0. This implies det( — E)T = 0. But
det( - E)T = det(I - E), so (I - E)p = 0 must have nontrivial (i.e., nonzero) solutions.

9. (I) Let y be a strictly positive vector, and x = (/ — C)'y. Since C is productive
U-O)120,s0x=U-C)ly=>0.Butthen { -O)x =y >0,ie, x - Cx > 0,
ie, x> Cx.

(II) Step 1: Since both x* and C are > 0, so is Cx*. Thus x* > Cx* > 0.

Step 2: Since x* > Ox*, x* — Cx* > 0. Let € be the smallest element in x* Cx*, and
M the largest element in x*. Then x* — Cx* > ZLMX* > 0, i.e., xX* — Wx* > Ox*,
Setting A = 1 - 2M < 1, we get Cx* < AX*.

Step 3: First, we show that if x >y, then Cx > Cy. But this is clear since (Cx), =

7
2 Cyil; > 2 Cil; = (Cy),;. Now we prove Step 3 by induction on 7, the case n = 1
j=1
havmg been done in Step 2. Assuming the result for n — 1, then C"1x* < A" Ix*,
But then C"x* = C(C"'x*) < CA"x*) = AI(Cx*) < AI(Ax*) = A'x*,
proving Step 3.

Step 4: Clearly, C*x* > 0 for all . So we have

0< lim C"x*< lim A"x*=0, i.e., lim C"x*=0.
N—>00 N—>o0 N —>o0

Denote the elements of lim C” by c;;. Then we have 0= ZCZJ ; for all 7. But
n—>c0 j=1

EZ.]. > 0 and x* < 0 imply ¢ Cy = 0 for all 2 and 7, proving Step 4.



378

Exercise Set 11.9

Step 5: By induction on 72, the case n = 1 is trivial. Assume the result true for n — 1.
Then
I-C)A+C+C?+ .- +CH)=(U-0C)
U+C+-— + 0D+ U-C)C =T -C") + [ -C)C™!
=[-C"l 4 Ct - Cn
=[-C",

proving Step b.

Step 6: First we show (I — C)! exists. If not, then there would be a nonzero
vector & such that Cz = z. But then C"z = z for all n, so z = nhinw C"'z =0, a
contradiction, thus / — C is invertible. Thus, I + C + --- + C" = (I - C)7'(I - C"),
so S =M q7_o)lg-cy=0U-0)ty-m cn = - )Y proving
Step 6.

Step 7: Since S is the (infinite) sum of nonnegative matrices, S itself must be non-
negative.

Step 8: We have shown in Steps 6 and 7 that (/ — C)! exists and is nonnegative,
thus C is productive.
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1. Using Eq. (18), we calculate

Yld2=%:15s

_ B0s _ 100s

So all the trees in the second class should be harvested for an optimal yield (since
s = 1000) of $15,000.

S
(28)

3. Assume p, = 1, then Yid, = = .28s. Thus, for all the yields to be the same we

must have
pys/(2871 + 3171 = 28s
p,s/(2871 + 3171 + 2571) = 28s
pss/(2871 + 3171 + 257 + 2371 = 28s

Dgs/(2871 + 311+ 251+ 2371 4 27°1) = 28s

379



380 Exercise Set 11.10

Solving these sucessively yields p, = 1.90, p, = 3.02, p, = 4.24 and p; = 5.00. Thus the
ratio

Dy Dy D, Ds:Pe=1:190:302:424:5.00.

n
5. Since y is the harvest vector, N = Zyi is the number of trees removed from the forest.
i=1

Then Eq. (7) and the first of Egs. (8) yield N = g,x,, and from Eq. (17) we obtain

s s
1 1

ﬂ + PR +i - PR

[¢D) 91 % Ik-1

1+
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