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Preface to Third Edition: 
Part 1 

Algebra is used by virtually all mathematicians, be they analysts, combinatorists, 
computer scientists, geometers, logicians, number theorists, or topologists. Nowa
days, everyone agrees that some knowledge of linear algebra, group theory, and 
commutative algebra is necessary, and these topics are introduced in undergrad
uate courses. Since there are many versions of undergraduate algebra courses, I 
will often review definitions, examples, and theorems, sometimes sketching proofs 
and sometimes giving more details. 1 Part 1 of this third edition can be used as a 
text for the first year of graduate algebra, but it is much more than that. It and 
the forthcoming Part 2 can also serve more advanced graduate students wishing to 
learn topics on their own. While not reaching the frontiers, the books provide a 
sense of the successes and methods arising in an area. In addition, they comprise 
a reference containing many of the standard theorems and definitions that users of 
algebra need to know. Thus, these books are not merely an appetizer, they are a 
hearty meal as well. 

When I was a student, Birkhoff-Mac Lane, A Survey of Modern Algebra [8], was 
the text for my first algebra course, and van der Waerden, Modern Algebra [118], 
was the text for my second course. Both are excellent books (I have called this 
book Advanced Modern Algebra in homage to them), but times have changed since 
their first publication: Birkhoff and Mac Lane's book appeared in 1941; van der 
Waerden's book appeared in 1930. There are today major directions that either 
did not exist 75 years ago, or were not then recognized as being so important, or 
were not so well developed. These new areas involve algebraic geometry, category 

1 It is most convenient for me, when reviewing earlier material, to refer to my own text FCAA: 
A First Course in Abstract Algebra, 3rd ed. [94], as well as to LMA, the book of A. Cuoco and 
myself [23], Learning Modern Algebra from Early Attempts to Prove Fermat's Last Theorem. 

-xi 
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theory,2 computer science, homological algebra, and representation theory. Each 
generation should survey algebra to make it serve the present time. 

The passage from the second edition to this one involves some significant 
changes, the major change being organizational. This can be seen at once, for 
the elephantine 1000 page edition is now divided into two volumes. This change 
is not merely a result of the previous book being too large; instead, it reflects the 
structure of beginning graduate level algebra courses at the University of Illinois 
at Urbana-Champaign. This first volume consists of two basic courses: Course I 
(Galois theory) followed by Course II (module theory). These two courses serve as 
joint prerequisites for the forthcoming Part 2, which will present more advanced 
topics in ring theory, group theory, algebraic number theory, homological algebra, 
representation theory, and algebraic geometry. 

In addition to the change in format, I have also rewritten much of the text. 
For example, noncommutative rings are treated earlier. Also, the section on alge
braic geometry introduces regular functions and rational functions. Two proofs of 
the Nullstellensatz (which describes the maximal ideals in k(x1, ... , xn] when k is 
an algebraically closed field) are given. The first proof, for k = <C (which easily 
generalizes to uncountable k), is the same proof as in the previous edition. But the 
second proof I had written, which applies to countable algebraically closed fields 
as well, was my version of Kaplansky's account [55] of proofs of Goldman and of 
Krull. I should have known better! Kaplansky was a master of exposition, and 
this edition follows his proof more closely. The reader should look at Kaplansky's 
book, Selected Papers and Writings [58], to see wonderful mathematics beautifully 
expounded. 

I have given up my attempted spelling reform, and I now denote the ring of 
integers mod m by Zm instead of by Ilm. A star * before an exercise indicates that 
it will be cited elsewhere in the book, possibly in a proof. 

The first part of this volume is called Course I; it follows a syllabus for an 
actual course of lectures. If I were king, this course would be a transcript of my 
lectures. But I am not king and, while users of this text may agree with my global 
organization, they may not agree with my local choices. Hence, there is too much 
material in the Galois theory course (and also in the module theory course), because 
there are many different ways an instructor may choose to present this material. 

Having lured students into beautiful algebra, we present Course II: module 
theory; it not only answers some interesting questions (canonical forms of matrices, 
for example) but it also introduces important tools. The content of a sequel algebra 
course is not as standard as that for Galois theory. As a consequence, there is much 
more material here than in Course I, for there are many more reasonable choices of 
material to be presented in class. 

To facilitate various choices, I have tried to make the text clear enough so that 
students can read many sections independently. 

Here is a more detailed description of the two courses making up this volume. 

2 A Survey of Modern Algebra was rewritten in 1967, introducing categories, as Mac Lane
Birkhoff, Algebra [73]. 



Preface to Third Edition: Part 1 xiii 

Course I 

After presenting the cubic and quartic formulas, we review some undergraduate 
number theory: division algorithm; Euclidian algorithms (finding d = gcd(a, b) 
and expressing it as a linear combination), and congruences. Chapter 3 begins 
with a review of commutative rings, but continues with maximal and prime ideals, 
finite fields, irreducibility criteria, and euclidean rings, PIDs, and UFD's. The next 
chapter, on groups, also begins with a review, but it continues with quotient groups 
and simple groups. Chapter 5 treats Galois theory. After introducing Galois groups 
of extension fields, we discuss solvability, proving the Jordan-Holder Theorem and 
the Schreier Refinement Theorem, and we show that the general quintic is not 
solvable by radicals. The Fundamental Theorem of Galois Theory is proved, and 
applications of it are given; in particular, we prove the Fundamental Theorem of 
Algebra (C is algebraically closed). The chapter ends with computations of Galois 
groups of polynomials of small degree. 

There are also two appendices: one on set theory and equivalence relations; 
the other on linear algebra, reviewing vector spaces, linear transformations, and 
matrices. 

Course II 

As I said earlier, there is no commonly accepted syllabus for a sequel course, 
and the text itself is a syllabus that is impossible to cover in one semester. However, 
much of what is here is standard, and I hope instructors can design a course from 
it that they think includes the most important topics needed for further study. Of 
course, students (and others) can also read chapters independently. 

Chapter 1 (more precisely, Chapter B-1, for the chapters in Course I are labeled 
A-1, A-2, etc.) introduces modules over noncommutative rings. Chain conditions 
are treated, both for rings and for modules; in particular, the Hilbert Basis The
orem is proved. Also, exact sequences and commutative diagrams are discussed. 
Chapter 2 covers Zorn's Lemma and many applications of it: maximal ideals; bases 
of vector spaces; subgroups of free abelian groups; semisimple modules; existence 
and uniqueness of algebraic closures; transcendence degree (along with a proof of 
Liiroth's Theorem). The next chapter applies modules to linear algebra, proving 
the Fundamental Theorem of Finite Abelian Groups as well as discussing canonical 
forms for matrices (including the Smith normal form which enables computation 
of invariant factors and elementary divisors). Since we are investigating linear al
gebra, this chapter continues with bilinear forms and inner product spaces, along 
with the appropriate transformation groups: orthogonal, symplectic, and unitary. 
Chapter 4 introduces categories and functors, concentrating on module categories. 
We study projective and injective modules (paying attention to projective abelian 
groups, namely free abelian groups, and injective abelian groups, namely divisible 
abelian groups), tensor products of modules, adjoint isomorphisms, and flat mod
ules (paying attention to flat abelian groups, namely torsion-free abelian groups). 
Chapter 5 discusses multilinear algebra, including algebras and graded algebras, 
tensor algebra, exterior algebra, Grassmann algebra, and determinants. The last 
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chapter, Commutative Algebra II, has two main parts. The first part discusses 
"old-fashioned algebraic geometry,'' describing the relation between zero sets of 
polynomials (of several variables) and ideals (in contrast to modern algebraic ge
ometry, which extends this discussion using sheaves and schemes). We prove the 
Nullstellensatz (twice!), and introduce the category of affine varieties. The second 
part discusses algorithms arising from the division algorithm for polynomials of 
several variables, and this leads to Grabner bases of ideals. 

There are again two appendices. One discusses categorical limits (inverse limits 
and direct limits), again concentrating on these constructions for modules. We also 
mention adjoint functors. The second appendix gives the elements of topological 
groups. These appendices are used earlier, in Chapter B-4, to extend the Funda
mental Theorem of Galois Theory from finite separable field extensions to infinite 
separable algebraic extensions. 

I hope that this new edition presents mathematics in a more natural way, 
making it simpler to digest and to use. 

I have often been asked whether solutions to exercises are available. I believe 
it is a good idea to have some solutions available for undergraduate students, for 
they are learning new ways of thinking as well as new material. Not only do 
solutions illustrate new techniques, but comparing them to one's own solution also 
builds confidence. But I also believe that graduate students are already sufficiently 
confident as a result of their previous studies. As Charlie Brown in the comic strip 
Peanuts says, 

"In the book of life, the answers are not in the back." 

Acknowledgments 

The following mathematicians made comments and suggestions that greatly im
proved the first two editions: Vincenzo Acciaro, Robin Chapman, Daniel R. Grayson, 
Ilya Kapovich, T.-Y. Lam, David Leep, Nick Loehr, Randy McCarthy, Patrick 
Szuta, and Stephen Ullom. I thank them again for their help. 

For the present edition, I thank T.-Y. Lam, Bruce Reznick, and Stephen Ullom, 
who educated me about several fine points, and who supplied me with needed 
references. 

I give special thanks to Vincenzo Acciaro for his many comments, both mathe
matical and pedagogical, which are incorporated throughout the text. He carefully 
read the original manuscript of this text, apprising me of the gamut of my errors, 
from detecting mistakes, unclear passages, and gaps in proofs, to mere typos. I 
rewrote many pages in light of his expert advice. I am grateful for his invaluable 
help, and this book has benefited much from him. 

Joseph Rotman 

Urbana, IL, 2015 
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Chapter A-1 

Classical Formulas 

As Europe emerged from the Dark Ages, a major open problem in mathematics 
was finding roots of polynomials. The Babylonians, four thousand years ago, knew 
how to find the roots of a quadratic polynomial. For example, a tablet dating from 
1700 BCE poses the problem: 

I have subtracted the side of the square from its area, and it is 870. What is 
the side of my square? 

In modern notation, the text asks for a root of x 2 - x = 870, and the tablet 
then gives a series of steps computing the answer. It would be inaccurate to say 
that the Babylonians knew the quadratic formula (the roots of ax2 +bx+ c are 

2~ (-b±../b2 - 4ac), however, for modern notation and, in particular, formulas, were 
unknown to them. 1 The discriminant b2 - 4ac here is 1 - 4( -870) = 3481 = 592 , 

which is a perfect square. Even though finding square roots was not so simple in 
those days, this problem was easy to solve; Babylonians wrote numbers in base 60, 
so that 59 = 60-1 was probably one reason for the choice of 870. The ancients also 
considered cubics. Another tablet from about the same time posed the problem of 
solving 12x3 = 3630. Their solution, most likely, used a table of approximations to 
cube roots. 

1 We must mention that modern notation was not introduced until the late 1500s, but it 
was generally agreed upon only after the influential book of Descartes appeared in 1637. To 
appreciate the importance of decent notation, consider Roman numerals. Not only are they 
clumsy for arithmetic, they are also complicated to write-is 95 denoted by VC or by XCV? 

The symbols+ and - were introduced by Widman in 1486, the equality sign= was invented 
by Recorde in 1557, exponents were invented by Hume in 1585, and letters for variables were 
invented by Viete in 1591 (he denoted variables by vowels and constants by consonants). Stevin 
introduced decimal notation in Europe in 1585 (it had been used earlier by the Arabs and the 
Chinese). In 1637, Descartes used letters at the beginning of the alphabet to denote constants, 
and letters at the end of the alphabet to denote variables, so we can say that Descartes invented 
"x the unknown." Not all of Descartes' notation was adopted. For example, he used oo to denote 
equality and = for ±; Recorde's symbol = did not appear in print until 1618 (see Cajori [16]). 

- 3 
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Here is a corollary of the quadratic formula. 

Lemma A-1.1. Given any pair of numbers Mand N, there are (possibly complex) 
numbers g and h with g + h = M and gh = N; moreover, g and h are the roots of 
x 2 -Mx+N. 

Proof. The quadratic formula provides roots g and h of x2 - Mx + N. Now 

x 2 - Mx + N = (x - g)(x - h) = x 2 - (g + h)x + gh, 

and so g + h = M and gh = N. • 

The Golden Age of ancient mathematics was in Greece from about 600 BCE 
to 100 BCE. The first person we know who thought that proofs are necessary was 
Thales ofMiletus (624 BCE-546 BCE)2 . The statement of the Pythagorean Theorem 
(a right triangle with legs of lengths a, band hypotenuse of length c satisfies a2 +b2 = 
c2) was known to the Babylonians; legend has it that Thales' student Pythagorus 
(580 BCE-520 BCE) was the first to prove it. Some other important mathematicians 
of this time are: Eudoxus (408 BCE-355 BCE), who found the area of a circle; 
Euclid (325 BCE-265 BCE), whose great work The Elements consists of six books 
on plane geometry, four books on number theory, and three books on solid geometry; 
Theatetus ( 417 BCE-369 BCE), whose study of irrationals is described in Euclid's 
Book X, and who is featured in two Platonic dialogues; Eratosthenes (276 BCE-
194 BCE), who found the circumference of a circle and also studied prime numbers; 
the geometer Apollonius (262 BCE-190 BCE); Hipparchus (190 BCE-120 BCE), who 
introduced trigonometry; Archimedes (287 BCE-212 BCE), who anticipated much of 
modern calculus, and is considered one of the greatest mathematicians of all time. 

The Romans displaced the Greeks around 100 BCE. They were not at all 
theoretical, and mathematics moved away from Europe, first to Alexandria, Egypt, 
where the number theorist Diophantus (200 CE-284 CE) and the geometer Pappus 
(290 CE-350 CE) lived, then to India around 400 CE, then to the Moslem world 
around 800. Mathematics began its return to Europe with translations into Latin, 
from Greek, Sanskrit, and Arabic texts, by Adelard of Bath (1075-1160), Gerard 
of Cremona (1114-1187), and Leonardo da Pisa (Fibonacci) (1170-1250). 

For centuries, the Western World believed that the high point of civilization 
occurred during the Greek and Roman eras and the beginnning of Christianity. But 
this world view changed dramatically in the Renaissance about five hundred years 
ago. The printing press was invented by Gutenberg around 1450, Columbus landed 
in North America in 1492, Luther began the Reformation in 1517, and Copernicus 
published De Revolutionibus in 1530. 

Cubics 

Arising from a tradition of public mathematics contests in Venice and Pisa, methods 
for finding the roots of cubics and quartics were found in the early 1500s by Scipio 
del Ferro (1465-1526), Niccolo Fontana (1500-1554), also called Tartaglia, Lodovici 

2 Most of these very early dates are approximate. 
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Ferrari (1522-1565), and Giralamo Cardano (1501-1576) (see Tignol [115) for an 
excellent account of this early history). 

We now derive the cubic formula. The change of variable X = x-lb transforms 
the cubic F(X) = X 3 + bX2 + cX + d into the simpler polynomial F(x - lb) = 
f(x) = x3 + qx + r whose roots give the roots of F(X): If u is a root of f(x), then 
u - lb is a root of F(X), for 

0 = f(u) = F(u - lb). 

Theorem A-1.2 (Cubic Formula). The roots of f(x) = x3 + qx + r are 

g+h, wg+w2h, and w2g+wh, 

where g3 = H-r + ../R), h = -q/3g, R = r 2 + 2~q3 , and w = -~ + i1 is a 
primitive cube root of unity. 

Proof. Write a root u of f(x) = x3 + qx + r as 

u = g+ h, 

where g and h are to be chosen, and substitute: 

0 = f(u) = f(g + h) 

= (g + h)3 + q(g + h) + r 

= g3 + 3g2h + 3gh2 + h3 + q(g + h) + r 

= g3 + h3 + 3gh(g + h) + q(g + h) + r 

= g3 + h3 + (3gh + q)u + r. 

If 3gh + q = 0, then gh = -h· Lemma A-1.1 says that there exist numbers g, h 
with g + h = u and gh = -lq; this choice forces 3gh + q = 0, so that g3 + h3 = -r. 
After cubing both sides of gh = -lq, we obtain the pair of equations 

g3 + h3 = -r, 

g3h3 - _....!..q3 
- 27 . 

By Lemma A-1.1, there is a quadratic equation in g3 : 

g6 +rg3 - 2\q3 = 0. 

The quadratic formula gives 

g3 = ~ ( -r + J r2 + 2~ q3) = ~ ( -r + ../R) 

(note that h3 is also a root of this quadratic, so that h3 = ~ (-r - ../R), and so 
g3 - h3 = ../R). There are three cube roots of g3, namely, g, wg, and w2g. Because 
of the constraint gh = -q/3, each of these has a "mate:" g and h = -q/(3g); wg 
and w2h = -q/(3wg); w2g and wh = -q/(3w2g) (for w3 = 1). • 
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Example A-1.3. If f(x) = x3 - 15x - 126, then q = -15, r = -126, R = 15376, 
and VR = 124. Hence, g3 = 125, so that g = 5. Thus, h = -q/(3g) = 1. Therefore, 
the roots of f ( x) are 

6, 5w + w2 = -3 + 2i.J3, 5w2 + w = -3 - 2i.J3. 

Alternatively, having found one root to be 6, the other two roots can be found as 
the roots of the quadratic f(x)/(x - 6) = x2 + 6x + 21. .,.. 

Example A-1.4. The cubic formula is not very useful because it often gives roots 
in unrecognizable form. For example, let 

f(x) = (x - l)(x - 2)(x + 3) = x3 - 7x + 6; 

the roots of f(x) are, obviously, 1, 2, and -3, and the cubic formula gives 

g + h = \} ~ ( -6 + Fifi) + \} ~ ( -6 - Fifi). 
It is not at all obvious that g + h is a real number, let alone an integer. 

Another cubic formula, due to Viete, gives the roots in terms of trigonometric 
functions instead of radicals (FCAA [94] pp. 360-362). .,.. 

Before the cubic formula, mathematicians had no difficulty in ignoring negative 
numbers or square roots of negative numbers when dealing with quadratic equa
tions. For example, consider the problem of finding the sides x and y of a rectangle 
having area A and perimeter p. The equations xy = A and 2x + 2y = p give the 
quadratic 2x2 - px + 2A. The quadratic formula gives 

x = :l(P± ..)p2 -16A) 

and y = A/x. If p2 - 16A 2'. 0, the problem is solved. If p2 - 16A < 0, they didn't 
invent fantastic rectangles whose sides involve square roots of negative numbers; 
they merely said that there is no rectangle whose area and perimeter are so related. 
But the cubic formula does not allow us to discard "imaginary" roots, for we have 
just seen, in Example A-1.4, that an "honest" real and positive root can appear 

in terms of such radicals: \} ~ ( -6 + ffl + \} ~ ( -6 - ffl is an integer!3 

Thus, the cubic formula was revolutionary. For the next 100 years, mathematicians 
reconsidered the meaning of number, for understanding the cubic formula raises the 
questions whether negative numbers and complex numbers are legitimate entities. 

Quartics 

Consider the quartic F(X) = X 4 + bX3 + cX2 + dX + e. The change of variable 
X = x - lb yields a simpler polynomial f(x) = x4 + qx2 + rx + s whose roots give 
the roots of F(X): if u is a root of f(x), then u-!b is a root of F(X). The quartic 

3Every cubic with real coefficients has a real root, and mathematicians tried various substi
tutions to rewrite the cubic formula solely in terms of real numbers. Later we will prove the Casus 
lrreducibilis which states that it is impossible to always do so. 
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formula was found by Lodovici Ferrari in the 1540s, but we present the version 
given by Descartes in 1637. Factor f(x), 

f(x) = x4 + qx2 + rx + s = (x2 + jx + f)(x 2 - jx + m), 

and determine j, .e and m (note that the coefficients of the linear terms in the 
quadratic factors are j and -j because f(x) has no cubic term). Expanding and 
equating like coefficients gives the equations 

The first two equations give 

.e+m-j2 = q, 

j(m - .e) = r, 
.em= s. 

2m = j2 + q + r / j, 

2f = j2 + q-r/j. 

Substituting these values for m and .e into the third equation yields a cubic in j 2 , 

called the resolvent cubic: 

(j2)3 + 2q(j2)2 + (q2 _ 4s)j2 _ r2. 

The cubic formula gives j 2 , from which we can determine m and .e, and hence the 
roots of the quartic. The quartic formula has the same disadvantage as the cubic 
formula: even though it gives a correct answer, the values of the roots are usually 
unrecognizable. 

Note that the quadratic formula can be derived in a way similar to the deriva
tion of the cubic and quartic formulas. The change of variable X = x - !b re
places the quadratic polynomial F(X) = X 2 + bX + c with the simpler polynomial 
f(x) = x2 + q whose roots give the roots of F(X): if u is a root of f(x), then u- !b 
is a root of F(X). An explicit formula for q is c - tb2 , so that the roots of f(x) 
are, obviously, u = ±!v'b2 - 4c; thus, the roots of F(X) are!( - b ± v'b2 - 4c). 

It is now very tempting, as it was for our ancestors, to seek the roots of a quintic 
F(X) = X 5 + bX4 + cX3 + dX2 + eX + f (of course, they wanted to find roots of 
polynomials of any degree). Begin by changing variable X = x - -! b to eliminate the 
X 4 term. It was natural to expect that some further ingenious substitution together 
with the formulas for roots of polynomials of lower degree, analogous to the resolvent 
cubic, would yield the roots of F(X). For almost 300 years, no such formula was 
found. In 1770, Lagrange showed that reasonable substitutions lead to a polynomial 
of degree six, not to a polynomial of degree less than 5. Informally, let us say that 
a polynomial f(x) is solvable by radicals if there is a formula for its roots which 
has the same form as the quadratic, cubic, and quartic formulas; that is, it uses only 
arithmetic operations and roots of numbers involving the coefficients of f(x). In 
1799, Ruffini claimed that the general quintic formula is not solvable by radicals, but 
his contemporaries did not accept his proof; his ideas were, in fact, correct, but his 
proof had gaps. In 1815, Cauchy introduced the multiplication of permutations, and 
he proved. basic properties of the symmetric group Sn; for example, he introduced 
the cycle notation and proved unique factorization of permutations into disjoint 
cycles. In 1824, Abel gave an acceptable proof that there is no quintic formula; in 
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his proof, Abel constructed permutations of the roots of a quintic, using certain 
rational functions introduced by Lagrange. In 1830, Galois, the young wizard who 
was killed before his 21st birthday, modified Lagrange's rational functions but, more 
important, he saw that the key to understanding which polynomials of any degree 
are solvable by radicals involves what he called groups: subsets of the symmetric 
group Sn that are closed under composition-in our language, subgroups of Sn. 
To each polynomial f(x), he associated such a group, nowadays called the Galois 
group of f(x). He recognized conjugation, normal subgroups, quotient groups, and 
simple groups, and he proved, in our language, that a polynomial (over a field of 
characteristic 0) is solvable by radicals if and only if its Galois group is a solvable 
group (solvability being a property generalizing commutativity). A good case can 
be made that Galois was one of the most important founders of modern algebra. 
We recommend the book of Tignol [115) for an authoritative account of this history. 

Exercises 

* A-1.1. The following problem, from an old Chinese text, was solved by Qin Jiushao4 in 
1247. There is a circular castle, whose diameter is unknown; it is provided with four gates, 
and two li out of the north gate there is a large tree, which is visible from a point six li 
east of the south gate (see Figure A-1.1). What is the length of the diameter? 

T 

E 

Figure A-1.1. Castle Problem. 

Hint. The answer is a root of a cubic polynomial. 

A-1.2. (i) Find the complex roots of f(x) = x3 - 3x + 1. 

(ii) Find the complex roots of f(x) = x4 - 2x2 + 8x - 3. 

A-1.3. Show that the quadratic formula does not hold for f(x) = ax2 +bx+ c if we view 
the coefficients a, b, c as lying in Z2 , the integers mod 2. 

4 This standard transliteration into English was adopted in 1982; earlier spelling is Ch'in 
Chiu-shao. 



Chapter A-2 

Classical Number Theory 

Since there is a wide variation in what is taught in undergraduate algebra courses, 
we now review definitions and theorems, usually merely sketching proofs and ex
amples. Even though much of this material is familiar, you should look at it to see 
that your notation agrees with mine. For more details, we may cite specific results, 
either in my book FCAA [94), A First Course in Abstract Algebra, or in LMA [23), 
the book of A. Cuoco and myself, Learning Modern Algebra from Early Attempts 
to Prove Fermat's Last Theorem. Of course, these results can be found in many 
other introductory abstract algebra texts as well. 

Divisibility 

Notation. The natural numbers N is the set of all nonnegative integers 

N = {O, 1,2,3, ... }. 

The set Z of all integers, positive, negative, and zero, is 

Z = {±n: n EN}. 

(This notation arises from Z being the initial letter of Zahlen, the German word for 
numbers.) 

We assume that N satisfies the Least Integer Axiom (also called the Well
Ordering Principle): Every nonempty subset C ~ N contains a smallest element; 
that is, there is c0 EC with co :::; c for all c E C. 

Definition. If a, b E Z, then a divides b, denoted by 

a I b, 

if there is an integer c with b = ac. We also say that a is a divisor of b or that b 
is a multiple of a. 

Note that every integer a divides 0, but 0 I a if and only if a= 0. 

-9 
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Lemma A-2.1. If a and b are positive integers and a I b, then a~ b. 

Proof. Suppose that b = ac. Since 1 is the smallest positive integer, 1 ~ c and 
a~ ac = b. • 

Theorem A-2.2 (Division Algorithm). If a and bare integers with a~ 0, then 
there are unique integers q and r, called the quotient and remainder, with 

b = qa +rand 0 ~ r < jaj. 

Proof. This is just familiar long division. First establish the special case in which 
a > 0: r is the smallest natural number of the form b - na with n E Z (see [23] 
Theorem 1.15), and then adjust the result for negative a. • 

Thus, a I b if and only if the remainder after dividing b by a is 0. 

Definition. A common divisor of integers a and b is an integer c with c I a and 
c I b. The greatest common divisor of a and b, denoted by gcd( a, b), is defined 
by 

cd(a b) = {O if a= 0 = b, 
g ' the largest common divisor of a and b otherwise. 

This definition extends in the obvious way to give the gcd of integers ai, ... , an. 

We saw, in Lemma A-2.1, that if a and m are positive integers with a I m, 
then a~ m. It follows that gcd's always exist: there are always positive common 
divisors (1 is always a common divisor), and there are only finitely many positive 
common divisors~ min{a,b}. 

Definition. A linear combination of integers a and b is an integer of the form 

sa + tb, 

where s, t E z. 

The next result is one of the most useful properties of gcd's. 

Theorem A-2.3. If a and b are integers, then gcd(a, b) is a linear combination of 
a and b. 

Proof. We may assume that at least one of a and b is not zero. Consider the set I 
of all the linear combinations of a and b: 

I= {sa + tb: s, t E Z}. 

Both a and b are in I, and the set C of all those positive integers lying in I is 
nonempty. By the Least Integer Axiom, C contains a smallest positive integer, 
say d, and it turns out that dis the gcd ([23] Theorem 1.19). • 

If d = gcd(a, b) and if c is a common divisor of a and b, then c ~ d, by 
Lemma A-2.1. The next corollary shows that more is true: c is a divisor of d; that 
is, c I d for every common divisor c. 
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Corollary A-2.4. Let a and b be integers. A nonnegative common divisor d is 
their gcd if and only if c Id for every common divisor c of a and b. 

Proof. [23], Corollary 1.20. • 

Definition. An integer p is prime if p :2: 2 and its only divisors are ±1 and ±p. 
If an integer a :2: 2 is not prime, then it is called composite. 

One reason we don't consider 1 to be prime is that some theorems would become 
more complicated to state. For example, if we allow 1 to be prime, then the 
Fundamental Theorem of Arithmetic (Theorem A-2.13 below: unique factorization 
into primes) would be false: we could insert 500 factors equal to 1. 

Proposition A-2.5. Every integer a :2: 2 has a factorization 

a= P1 ···Pt, 

where P1 s; · · · s; Pt and all Pi are prime. 

Proof. The proof is by induction on a :2: 2. The base step holds because a = 2 
is prime. If a > 2 is prime, we are done; if a is composite, then a = uv with 
2 s; u, v < a, and the inductive hypothesis says each of u, v is a product of primes . 

• 

We allow products to have only one factor. In particular, we can say that 3 is 
a product of primes. Collecting terms gives prime factorizations (it is convenient 
to allow exponents in prime factorizations to be 0). 

Definition. If a :2: 2 is an integer, then a prime factorization of a is 

where the Pi are distinct primes and ei :2: 0 for all i. 

Corollary A-2.6. There are infinitely many primes. 

Proof. If there are only finitely many primes, say, P1, ... , Pt, then N = 1 +Pl · · ·Pt 
is not a product of primes, for the Division Algorithm says that the remainder after 
dividing N by any prime Pi is 1, not 0. This contradicts Proposition A-2.5. • 

Lemma A-2.7. If pis a prime and bis any integer, then 

gcd(p, b) = {P if PI b'. 
1 otherwise. 

Proof. A common divisor c of p and bis, in particular, a divisor of p. But the only 
positive divisors of p are 1 and p. • 

The next theorem gives one of the most important characterizations of prime 
numbers. 
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Theorem A-2.8 (Euclid's Lemma). If p is a prime and p I ab, for integers a 
and b, then p I a or p I b. More generally, if p I ai ···at, then p I ai for some i. 

Conversely, if m ~ 2 is an integer such that m I ab always implies m I a or 
m I b, then m is a prime. 

Proof. Suppose that p f a. Since gcd(p, a) = 1 (by Lemma A-2.7), there are 
integers sand t with 1 = sp +ta (by Theorem A-2.3). Hence, 

b = spb+ tab. 

Now p divides both expressions on the right, and so p I b. 

Conversely, if m = ab is composite (with a, b < m), then ab is a product 
divisible by m with neither factor divisible by m. • 

To illustrate: 6 I 12 and 12 = 4 x 3, but 6 f 4 and 6 f 3. Of course, 6 is not 
prime. On the other hand, 2 I 12, 2 f 3, and 2 I 4. 

Definition. Call integers a and b relatively prime if their gcd is 1. 

Thus, a and b are relatively prime if their only common divisors are ±1. For 
example, 2 and 3 are relatively prime, as are 8 and 15. 

Here is a generalization of Euclid's Lemma having the same proof. 

Corollary A-2.9. Let a, b, and c be integers. If c and a are relatively prime and 
if c I ab, then c I b. 

Proof. There are integers s and t with 1 = sc + ta, and so b = scb + tab. • 

Lemma A-2.10. Let a and b be integers. 

(i) Then gcd(a, b) = 1 (that is, a and b are relatively prime) if and only if 1 
is a linear combination of a and b. 

(ii) If d = gcd(a, b), then the integers a/d and b/d are relatively prime. 

Proof. The first statement follows from Theorem A-2.3; the second is LMA Propo
sition 1.23 • 

Definition. An expression a/b for a rational number (where a and bare integers) 
is in lowest terms if a and b are relatively prime. 

Proposition A-2.11. Every nonzero rational number a/b has an expression in 
lowest terms. 

a a'd a' a 
Proof. If d = gcd(a, b), then a= a'd, b = b'd, and b = b'd = b'. But a'= d and 

b 
b' = d' so gcd(a', b') = 1 by Lemma A-2.10. • 

Proposition A-2.12. There is no rational number a/b whose square is 2. 
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Proof. Suppose, on the contrary, that (a/b) 2 = 2. We may assume that a/bis in 
lowest terms; that is, gcd(a,b) = 1. Since a2 = 2b2 , Euclid's Lemma gives 2 I a, 
and so 2m = a. Hence, 4m2 = a2 = 2b2 , and 2m2 = b2 . Euclid's Lemma now gives 
2 I b, contradicting gcd(a, b) = 1. • 

This last result is significant in the history of mathematics. The ancient Greeks 
defined number to mean "positive integer,'' while rationals were not viewed as 
numbers but, rather, as ways of comparing two lengths. They called two segments 
of lengths a and b commensurable if there is a third segment of length c with 
a = me and b = nc for positive integers m and n. That v'2 is irrational was a 
shock to the Pythagoreans; given a square with sides of length 1, its diagonal and 
side are not commensurable; that is, v'2 cannot be defined in terms of numbers 
(positive integers) alone. Thus, there is no numerical solution to the equation 
x2 = 2, but there is a geometric solution. By the time of Euclid, this problem 
had been resolved by splitting mathematics into two different disciplines: number 
theory and geometry. 

In ancient Greece, algebra as we know it did not really exist; Greek mathemati
cians did geometric algebra. For simple ideas, geometry clarifies algebraic formulas. 
For example, (a+ b) 2 = a 2 + 2ab + b2 or completing the square (x + ~b) 2 = 
(~b) 2 +bx+ x2 (adjoining the white square to the shaded area gives a square). 

········· ~-----~ 

a a2 ab 

b ab x 

a b x 

For more difficult ideas, say, equations of higher degree, the geometric figures in
volved are very complicated, and geometry is no longer clarifying. 

Theorem A-2.13 (Fundamental Theorem of Arithmetic). Every integer 
a ~ 2 has a unique factorization 

a= p~1 ... p~', 

where P1 < · · · < Pt, all Pi are prime, and all ei > 0. 

Proof. Suppose a = p~1 • • • p~' and a = q{1 • • • q{• are prime factorizations. Now 
Pt I q{1 • • • q{•, so that Euclid's Lemma gives Pt I qi for some j. Since qi is prime, 
however, Pt = qi. Cancel Pt and qj, and the proof is completed by induction on 
max{t,s}. • 

The next corollary makes use of our convention that exponents in prime fac
torizations are allowed to be 0. 
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Corollary A-2.14. If a = p~1 • • • p~' and b = p{1 • • • p{' are prime factorizations, 
then a I b if and only if ei :::; Ii for all i. 

If g and h are divisors of a, then their product gh need not be a divisor of a. 
For example, 6 and 15 are divisors of 60, but 6 x 15 = 90 is not a divisor of 60. 

Proposition A-2.15. Let g and h be divisors of a. If gcd(g, h) = 1, then gh I a. 

Proof. If a = p~1 p~2 • • • p~' is a prime factorization, then g = p~1 • • • p~' and h = 
pf1 ···pf', where O:::; ki :::; ei and 0 :::; ei :::; ei for all i. Since gcd(g, h) = 1, however, 
no prime Pi is a common divisor of them, and so ki > 0 implies ei = 0 and ei > 0 
implies kj = 0. Hence, 0 :::; ki + fi :::; ei for all i, and so 

gh - pkt +£1 pk,+l!, I Pei Pe' - a • -1 """t l"""t-· 

Definition. If a, b are integers, then a common multiple is an integer m with 
a I m and b I m. Their least common multiple, denoted by 

lcm(a,b), 

is their smallest common multiple. This definition extends in the obvious way to 
give the lcm of integers ai, ... , an. 

Proposition A-2.16. If a = p~1 • • • p~' and b = p{1 • • • p{• are prime factorizations, 
then 

gcd( a, b) = pr1 • • • p"("' and lcm( a, b) = pf11 • • • pf-1', 

where mi = min{ ei, Ji} and Mi = max{ ei, fi} for all i. 

Proof. First, pr1 • • • p"("' is a common divisor, by Corollary A-2.14. If d=p~1 • • • p~' 
is any common divisor of a and b, then ki :::; ei and ki :::; fi; hence, ki :::; min { ei, fi} = 
mi, and d I a and d I b. Thus, pr1 • • • p"("' = gcd(a, b), by Corollary A-2.4. 

The statement about lcm's is proved similarly. • 

Corollary A-2.17. If a and b are integers, then 

ab= gcd(a, b) lcm(a, b). 

Proof. If a = p~ 1 • • • p~' and b = p{1 • • • p{', then 

min{ ei, fi} +max{ ei, fi} = mi +Mi = ei + k • 

Exercises 

A-2.1. Prove or disprove and salvage if possible. ("Disprove" here means "give a concrete 
counterexample." "Salvage" means "add a hypothesis to make it true.") 

(i) gcd(O, b) = b, 

(ii) gcd(a2 ,b2 ) = (gcd(a,b)) 2 , 

(iii) gcd(a, b) = gcd(a, b + ka) (k E Z), 

(iv) gcd(a, a) =a, 
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(v) gcd(a, b) = gcd(b, a), 

(vi) gcd(a, 1) = 1, 

(vii) gcd(a,b) = -gcd(-a,b). 

15 

* A-2.2. If x is a real number, let LxJ denote the largest integer n with n :::; x. (For 
example, 3 = L 7r J and 5 = L 5 J.) Show that the quotient q in the Division Algorithm is 
Lb/aJ. 

A-2.3. Let p1,p2,p3, ... be the list of the primes in ascending order: p1 = 2, p2 = 3, 
p3 = 5, . . . Define f k = p1p2 · · ·Pk + 1 for k 2: 1. Find the smallest k for which f k is not a 
prime. 

Hint. 19 I /7, but 7 is not the smallest k. 

* A-2.4. If d and d' are nonzero integers, each of which divides the other, prove that 
d' =±d. 

* A-2.5. If gcd(r, a)= 1 = gcd(r', a), prove that gcd(rr', a)= 1. 

* A-2.6. (i) Prove that if a positive integer n is squarefree (i.e., n is not divisible by the 
square of any prime), then fo is irrational. 

(ii) Prove that an integer m 2: 2 is a perfect square if and only if each of its prime 
factors occurs an even number of times. 

* A-2.7. Prove that ?'12 is irrational. 

Hint. Assume that ?'12 can be written as a fraction in lowest terms. 

A-2.8. If a > 0, prove that agcd(b, c) = gcd(ab, ac). (We must assume that a > 0 lest 
agcd(b, c) be negative.) 

Hint. Show that if k is a common divisor of ab and ac, then k I agcd(b, c). 

* A-2.9. (i) Show that if d is the greatest common divisor of ai, a2, ... , an, then d = 
2:: tiai, where ti is in Z for 1 :::; i :::; n. 

(ii) Prove that if c is a common divisor of ai, a2, ... , an, then c Id. 

* A-2.10. A Pythagorean triple is an ordered triple (a, b, c) of positive integers for which 

a2 + b2 = c2; 

it is called primitive if there is no d > 1 which divides a, b and c. 

(i) If q > p are positive integers, prove that 

(q2-p2, 2qp, q2+p2) 

is a Pythagorean triple (every primitive Pythagorean triple (a, b, c) is of this type). 

(ii) Show that the Pythagorean triple (9, 12, 15) is not of the type given in part (i). 

(iii) Using a calculator that can find square roots but which displays only 8 digits, prove 
that 

(19597501,28397460,34503301) 

is a Pythagorean triple by finding q and p. 

A-2.11. Prove that an integer M 2: 0 is the smallest common multiple of ai, a2, ... , an 
if and only if it is a common multiple of ai, a2, ... , an that divides every other common 
multiple. 
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* A-2.12. Let aifb1, ... , an/bn be rational numbers in lowest terms. If M =lcm{b1, ... , bn}, 
prove that the gcd of M aifb1, ... , M an/bn is 1. 

A-2.13. If a and bare positive integers with gcd(a,b) = 1, and if ab is a square, prove 
that both a and b are squares. 

* A-2.14. Let I be a subset of Z such that 

(i) 0 EI; 

(ii) if a, b E I, then a - b E I; 

(iii) if a E I and q E Z, then qa E I. 

Prove that there is a nonnegative integer d E I with I consisting precisely of all the 
multiples of d. 

A-2.15. Let 2 = p1 < p2 < ... < Pn < ... be the list of all the primes. Primes Pi,Pi+I are 
called twin primes if PHI - Pi = 2. It is conjectured that there are infinitely many twin 
primes, but this is still an open problem. In contrast, this exercise shows that consecutive 
primes can be far apart. 

(i) Find 99 consecutive composite numbers. 

(ii) Prove that there exists i so that PHI - p; > 99. 

Euclidean Algorithms 

Our discussion of gcd's is incomplete. What is gcd(12327, 2409)? To ask the ques
tion another way, is the expression 2409/12327 in lowest terms? The Euclidean 
Algorithm below enables us to compute gcd's efficiently; we begin with another 
lemma from Greek times. 

Lemma A-2.18. 

(i) If b = qa + r, then gcd(a, b) = gcd(r, a). 

(ii) If b 2: a are integers, then gcd(a, b) = gcd(b - a, a). 

Proof. [23] Lemma 1.27. • 

We will abbreviate gcd(a, b) to (a, b) in the next three paragraphs. If b 2: a, 
then Lemma A-2.18 allows us to consider (b- a, a) instead; indeed, we can continue 
reducing the numbers, (b - 2a, a), (b - 3a, a), ... , (b - qa, a) as long as b - qa > 0. 
Since the natural numbers b - a, b - 2a, ... , b - qa are strictly decreasing, the Least 
Integer Axiom says that we must reach a smallest such integer: r = b - qa; that is, 
r < a. Now (b, a) = (r, a). (Of course, we see the proof of the Division Algorithm 
in this discussion.) Remember that the Greeks did not recognize negative numbers. 
Since (r, a)= (a, r) and a> r, they could continue shrinking the numbers: (a, r) = 
(a - r, r) = (a - 2r, r) = · · · . That this process eventually ends yields the Greek 
method for computing gcd's, called the Euclidean Algorithm. The Greek term 
for this method is antanairesis, a free translation of which is "back and forth 
subtraction." 
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Let's use antanairesis to compute gcd(326, 78). 

(326, 78) = (248, 78) = (170, 78) = (92, 78) = (14, 78). 

So far, we have been subtracting 78 from the other larger numbers. At this point, 
we now start subtracting 14 (this is the reciprocal, direction-changing, aspect of 
antanairesis), for 78 > 14: 

(78, 14) = (64, 14) = (50, 14) = (36, 14) = (22, 14) = (8, 14). 

Again we change direction: 
(14, 8) = (6, 8). 

Change direction once again to get (8, 6) = (2, 6), and change direction one last 
time to get 

(6,2) = (4,2) = (2,2) = (0,2) = 2. 

Thus, gcd (326, 78) = 2. 

The Division Algorithm and Lemma A-2.18 give a more efficient way of per
forming antanairesis. There are four subtractions in the passage from (326, 78) to 
(14, 78); the Division Algorithm expresses this as 

326 = 4 . 78 + 14. 

There are then five subtractions in the passage from (78, 14) to (8, 14); the Division 
Algorithm expresses this as 

78 = 5 · 14 + 8. 

There is one subtraction in the passage from (14, 8) to (6, 8): 

14 = 1·8 + 6. 

There is one subtraction in the passage from (8, 6) to (2, 6): 

8 = 1·6+ 2, 

and there are three subtractions from (6, 2) to (0, 2) = 2: 

6 = 3. 2. 

Theorem A-2.19 (Euclidean Algorithm I). If a and b are positive integers, 
there is an algorithm for finding gcd( a, b). 

Proof. Let us set b = r 0 and a = r 1, so that the equation b = qa + r reads 
ro = qla + r2. Now move a and r2, then r2 and r3, etc., southwest. There are 
integers qi and positive integers ri such that 

b = ro = qla + r2, 

a= r1 = q2r2 +r3, 

r2 = q3r3 + r4, 

Tn-3 = qn-2Tn-2 + Tn-1> 

Tn-2 = qn-lTn-1 + Tn, 

r2 <a, 

T3 < T2, 

T4 < T3, 

Tn-1 < Tn-2, 

Tn < Tn-1, 
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(remember that all qj and rj are explicitly known from the Division Algorithm). 
There is a last remainder rn: the procedure stops because the remainders form a 
strictly decreasing sequence of nonnegative integers (indeed, the number of steps 
needed is less than a), and rn is the gcd (LMA [23] Theorem 1.29). • 

We rewrite the previous example in the notation of the proof of Theorem A-2.19; 
we see that gcd(326, 78) = 2. 

(1) 

(2) 

(3) 

(4) 

(5) 

326 = 4 . 78 + 14, 

78=5·14+ 8, 

14 = 1·8 + 6, 

8=1·6 + 2, 

6 = 3·2. 

Euclidean Algorithm I combined with Corollary A-2.17 allows us to compute 
lcm's, for 

ab 
lcm(a,b) = gcd(a,b)" 

The Euclidean Algorithm also allows us to compute a pair of integers s and t 
expressing the gcd as a linear combination. 

Theorem A-2.20 (Euclidean Algorithm II). If a and b are positive integers, 
there is an algorithm finding a pair of integers s and t with gcd(a, b) = sa + tb. 

Proof. It suffices to show, given equations 

b = qa+r, 

a=q'r+r', 

r = q" r' + r", 

how to write r" as a linear combination of b and a. Start at the bottom, and write 

r" = r - q"r'. 

Now rewrite the middle equation: r' =a - q'r, and substitute: 

r" = r - q"r' = r - q"(a - q'r) = (1 - q"q')r - q"a. 

Now rewrite the top equation: r = b - qa, and substitute: 

r" = (1 - q" q')r - q" a= (1 - q" q')(b - qa) - q" a. 

Thus, r" is a linear combination of b and a. • 

By Exercise A-2.17 below, there are many pairs s, t with gcd(a, b) = sa + tb, 
but two people using Euclidean Algorithm II will obtain the same pair. 
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We use the equations above to find coefficients s and t expressing 2 as a linear 
combination of 326 and 78; work from the bottom up. 

2=8-1·6 

= 8 - 1 . (14 - 1 . 8) 

= 2. 8-1·14 

= 2. (78 - 5 . 14) - 1 . 14 

= 2 . 78 - 11 . 14 

= 2 . 78 - 11 . (326 - 4. 78) 

= 46 . 78 - 11 . 326. 

Thus, s = 46 and t = -11. 

by Eq. (4) 

by Eq. (3) 

by Eq. (2) 

by Eq. (1) 

Exercises 

A-2.16. (i) Find d = gcd(12327, 2409), find integers s and t with d = 12327s + 2409t, 
and put the expression 2409/12327 in lowest terms. 

(ii) Find d = gcd(7563, 526), and express d as a linear combination of 7563 and 526. 

(iii) Find d = gcd(73122, 7404621) and express d as a linear combination of 73122 and 
7404621. 

* A-2.17. Assume that d = sa + tb is a linear combination of integers a and b. Find 
infinitely many pairs of integers (sk, tk) with 

d =Ska+ tkb. 

Hint. If 2s + 3t = 1, then 2(s + 3) + 3(t - 2) = 1. 

A-2.18. (i) Find gcd(210, 48) using prime factorizations. 

(ii) Find gcd(1234, 5678) and lcm(1234, 5678). 

* A-2.19. (i) Prove that every positive integer a has a factorization a= 2km, where k 2 0 
and mis odd. 

(ii) Prove that .J2 is irrational using (i) instead of Euclid's Lemma. 

Congruence 

Two integers a and b have the same parity if both are even or both are odd. It 
is easy to see that a and b have the same parity if and only if 2 I (a - b); that is, 
they have the same remainder after dividing by 2. Around 1750, Euler generalized 
parity to congruence. 

Definition. Let m ;::: 0 be fixed. Then integers a and b are congruent modulo m, 
denoted by 

a= bmodm, 

ifm I (a-b). 



20 Chapter A-2. Classical Number Theory 

If d is the last digit of a number a, then a = d mod 10; for example, 526 = 
6mod10. 

Proposition A-2.21. If m ~ 0 is a fixed integer, then for all integers a, b, c: 

(i) a = a mod m; 

(ii) if a = b mod m, then b = a mod m; 

(iii) if a= b mod m and b = c mod m, then a= c mod m. 

Proof. (23] Proposition 4.3. • 

Remark. Congruence mod mis an equivalence relation: (i) says that congruence 
is reflexive; (ii) says it is symmetric; and (iii) says it is transitive. "'ill 

Here are some elementary properties of congruence. 

Proposition A-2.22. Let m ~ 0 be a fixed integer. 

(i) If a = qm + r, then a = r mod m. 

(ii) IfO ~ r' < r < m, then r "¢ r' mod m; that is, r and r' are not congruent 
modm. 

(iii) a= b mod m if and only if a and b leave the same remainder after divid
ing by m. 

(iv) Ifm~2, eachaEZiscongruent mod mtoexactlyoneofO,I, .. .,m-1. 

Proof. (23] Corollary 4.4. • 

Every integer a is congruent to 0 or 1 mod 2; it is even if a = 0 mod 2 and odd 
if a= 1mod2. 

The next result shows that congruence is compatible with addition and multi
plication. 

Proposition A-2.23. Let m ~ 0 be a fixed integer. 

(i) If a= a' mod m and b = b' mod m, then 

a + b = a' + b' mod m. 

(ii) If a= a' mod m and b = b' mod m, then 

ab= a'b' mod m. 

(iii) If a= b mod m, then an= bn mod m for all n ~ 1. 

Proof. (23] Proposition 4.5. • 

The next example shows how one can use congruences. In each case, the key 
idea is to solve a problem by replacing numbers by their remainders. 
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Example A-2.24. 

(i) If a is in Z, then a2 = 0, 1, or 4 mod 8. 

If a is an integer, then a= r mod 8, where 0:::; r:::; 7; moreover, by 
Proposition A-2.23(iii), a2 = r2 mod 8, and so it suffices to look at the 
squares of the remainders. 

r 0 1 2 3 4 5 6 7 
r2 0 1 4 9 16 25 36 49 

r2 mod 8 0 1 4 1 0 1 4 1 

Table 1.1. Squares mod 8. 

We see in Table 1.1 that only 0, 1, or 4 can be a remainder after dividing 
a perfect square by 8. 

(ii) n = 1003456789 is not a perfect square. 

Since 1000 = 8 · 125, we have 1000 = 0 mod 8, and so 

n = 1003456789 = 1003456 · 1000 + 789 = 789 mod 8. 

Dividing 789 by 8 leaves remainder 5; that is, n = 5 mod 8. Were n a 
perfect square, then n = 0, 1, or 4 mod 8. 

(iii) If m and n are positive integers, are there any perfect squares of the form 
3m+3n+ 1? 

Again, let us look at remainders mod 8. Now 32 = 9 = 1 mod 8, and 
so we can evaluate 3m mod 8 as follows: If m = 2k, then 3m = 32k = 
9k = 1mod8; if m = 2k + 1, then 3m = 32k+l = 9k · 3 = 3 mod 8. Thus, 

3m = {1mod8 if mis even, 
3 mod 8 if m is odd. 

Replacing numbers by their remainders after dividing by 8, we have the 
following possibilities for the remainder of 3m + 3n + 1, depending on the 
parities of m and n: 

3 + 1 + 1 = 5 mod 8, 

3 + 3 + 1 = 7 mod 8, 

1 + 1 + 1 = 3 mod 8, 

1 + 3 + 1 = 5 mod 8. 

In no case is the remainder 0, 1, or 4, and so no number of the form 
3m + 3n + 1 can be a perfect square, by part (i). <Ill 

Proposition A-2.25. 

(i) If p is prime, then p I (~) for all r with 0 < r < p, where (~) is the 
binomial coefficient. 

(ii) For integers a and b, 

(a + b )P = aP + bP mod p. 
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Proof. Part (i) follows from applying Euclid's Lemma to (~) = pl/rl(p - r)!, and 
part (ii) follows from applying (i) to the Binomial Theorem. • 

Theorem A-2.26 (Fermat). If pis a prime, then 

aP = amodp 

for every a in Z. More generally, for every integer k 2: 1, 
k 

aP =a modp. 

Proof. If a = 0 mod p, the result is obvious. If a "¢ 0 mod p and a > 0, use induc
tion on a to show that aP-l = 1 mod p; the inductive step uses Proposition A-2.25 
(see LMA [23], Theorem 4.9). Then show that aP-l = 1 mod p for a"¢ 0 mod p 
and a< 0. 

The second statement follows by induction on k 2: 1. • 

The next corollary will be used later to construct codes that are extremely 
difficult for spies to decode. 

Corollary A-2.27. If p is a prime and m = 1 mod (p - 1), then am= a mod p 
for all a E Z. 

Proof. If a = 0 mod p, then am = 0 mod p, and so am = a mod p. Assume now 
that a "¢ 0 mod p; that is, pf a. By hypothesis, m -1 = k(p- l) for some integer k, 
and so m = 1 + (p - l)k. Therefore, 

am= a1+(p-l)k = aa(p-l)k = a(ap-l )k =a mod p, 

for aP- 1 = 1 mod p, by the proof of Fermat's Theorem. • 

We can now explain a well-known divisibility test. The usual decimal notation 
for the integer 5754 is an abbreviation of 

5 . 103 + 7 . 102 + 5 . 10 + 4. 

Proposition A-2.28. A positive integer a is divisible by 3 (or by 9) if and only if 
the sum of its (decimal) digits is divisible by 3 (or by 9). 

Proof. 10 = 1 mod 3 and 10 = 1 mod 9. • 

There is nothing special about decimal expansions and the number 10. 

Example A-2.29. Let's write 12345 in terms of powers of 7. Repeated use of the 
Division Algorithm gives 

12345 = 1763. 7 + 4, 

1763 = 251 . 7 + 6, 

251 = 35 . 7 + 6, 

35 = 5. 7 +o, 
5 = 0. 7 + 5. 



Congruence 

Back substituting (i.e., working from the bottom up), 

0. 7 + 5 = 5, 

5. 7+0 = 35, 

(0 . 7 + 5) . 7 + 0 = 35, 

35 . 7 + 6 = 251, 

((0. 7 + 5). 7 + 0). 7 + 6 = 251, 

251 . 7 + 6 = 1763, 

(((0. 7 + 5). 7 + 0). 7 + 6). 7 + 6 = 1763, 

1763 . 7 + 4 = 12345, 

((((0. 7 + 5). 7 + 0). 7 + 6). 7 + 6). 7 + 4 = 12345. 

Expanding and collecting terms gives 

5 . 74 + 0 . 73 + 6 . 72 + 6 . 7 + 4 = 12005 + 0 + 294 + 42 + 4 

= 12345. 

We have written 12345 in "base 7:" it is 50664. ~ 

This idea works for any integer b 2 2. 
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Proposition A-2.30. If b 2 2 is an integer, then every positive integer h has an 
expression in base b: there are unique integers di with 0 :::; di < b such that 

h = dkbk + dk-1bk-I +···+do. 

Proof. We first prove the existence of such an expression, by induction on h. By 
the Division Algorithm, h = qb + r, where 0 :::; r < b. Since b 2 2, we have 
h = qb + r 2 qb 2 2q. It follows that q < h; otherwise, q 2 h, giving the 
contradiction h 2 2q 2 2h. By the inductive hypothesis, 

h = qb + r = (d~bk + · · · + d~)b + r = d~bk+I + · · · + d~b + r. 

We prove uniqueness by induction on h. Suppose that 

h = dkbk + · · · + dib +do= embm + · · · + eib + eo, 

where 0 S ej < b for all j; that is, h = (dkbk-I + · · · + d1)b + do and h = 
(embm-I + · · · + e1)b + eo. By the uniqueness of quotient and remainder in the 
Division Algorithm, we have 

dkbk-l +···+di = embm-I + · · · + ei and do= eo. 

The inductive hypothesis gives k = m and di = ei for all i > 0. • 

Definition. If h = dkbk + dk_ 1bk-I + · · · + d0 , where 0:::; di < b for all i, then the 
numbers dk, ... , do are called the b-adic digits of h. 

Example A-2.29 shows that the 7-adic expansion of 12345 is 50664. 
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That every positive integer h has a unique expansion in base 2 says that there 
is exactly one way to write h as a sum of distinct powers of 2 (for the only binary 
digits are 0 and 1). 

Example A-2.31. Let's calculate the 13-adic expansion of 441. The only com
plication here is that we need 13 digits d (for 0 s d < 13), and so we augment 0 
through 9 with three new symbols: 

t = 10, 

Now 

e = 11, and w = 12. 

441 = 33 . 13 + 12, 

33 = 2. 13 + 7, 

2=0·13+ 2. 

So, 441 = 2 · 132 + 7 · 13 + 12, and the 13-adic expansion for 441 is 

27w. 

Note that the expansion for 33 is just 27. <1111 

The most popular bases are b = 10 (giving everyday decimal digits), b = 2 
(giving binary digits, useful because a computer can interpret 1 as "on" and 0 as 
"off"), and b = 16 (hexadecimal, also for computers). The Babylonians preferred 
base 60 (giving sexagesimal digits). 

Fermat's Theorem enables us to compute nPk mod p for every prime p and 
exponent pk; it says that nPk = n mod p. We now generalize this result to compute 
nh mod p for any exponent h. 

Lemma A-2.32. Let p be a prime and let n be a positive integer. If h ~ 0, then 

nh = nE(h) mod p, 

where E(h) is the sum of the p-adic digits of h. 

Proof. Let h = dkpk + · · · + d1p +do be the expression of h in base p. By Fermat's 
Theorem, nP; = n mod p for all i; thus, nd;p; = (nd;)P; = nd; mod p. Therefore, 

nh = ndkPk+··+d1p+do 

= (nPk)dk (nPk-l)dk-1 ... (nP)d1ndo 

= ndkndk-1 ... nd1ndo mod p 

= ndk+··+d1+do mod p 

= nE(h) mod p. • 

Lemma A-2.32 does generalize Fermat's Theorem, for if h =pk, then E(h) = 1. 
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Example A-2.33. 

(i) Compute the remainder after dividing 10100 by 7. First, 10100 = 
3100 mod 7. Second, since 100 = 2 · 72 + 2, the corollary gives 3100 = 34 = 
81 mod 7. Since 81=11 x 7 + 4, we conclude that the remainder is 4. 

(ii) What is the remainder after dividing 312345 by 7? By Example A-2.29, the 
7-adic digits of 12345 are 50664. Therefore, 312345 = 321 mod 7 (because 
5+0+6+6+4 = 21). The 7-adic digits of21are30 (because 21 = 3·7+0), 
and so 321 = 33 mod 7 (because 2 + 1 = 3). Hence, 312345 = 33 = 27 = 
6 mod 7. ~ 

Theorem A-2.34. If gcd(a, m) = 1, then, for every integer b, the congruence 

ax= bmodm 

can be solved for x; in fact, x = sb, where sa = 1 mod m is one solution. Moreover, 
any two solutions are congruent mod m. 

Proof. If 1 = sa + tm, then b = sab + tmb. Hence, b = a( sb) mod m. If, also, b = 
ax mod m, then 0 = a(x - sb) mod m, so that m I a(x - sb). Since gcd(m, a)= 1, 
we have m I (x - sb); hence, x = sb mod m, by Corollary A-2.9. • 

Theorem A-2.35 (Chinese Remainder Theorem). If m and m' are relatively 
prime, then the two congruences 

x = bmodm 

x = b' modm' 

have a common solution, and any two solutions are congruent mod mm'. 

Proof. By Theorem A-2.34, any solution x to the first congruence has the form 
x = sb + km for some k E Z. Substitute this into the second congruence and solve 
for k. Alternatively, there are integers s and s' with 1 = sm + s' m', and a common 
solution is 

x = b'ms + bm's'. 

To prove uniqueness, assume that y = b mod m and y = b' mod m'. Then 
x -y = 0 mod m and x -y = 0 mod m'; that is, both m and m' divide x -y. The 
result now follows from Proposition A-2.15. • 

We now generalize the Chinese Remainder Theorem to several congruences. 

Notation. Given numbers mi, m2, ... , mri define 

that is, Mi is the product of all m1 other than mi. 
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Theorem A-2.36 (Chinese Remainder Theorem Redux). If mi, m2, ... , mr 
are pairwise relatively prime integers, then the simultaneous congruences 

x =bi mod mi, 

x = b2 mod m2, 

x = br mod mr, 

have an explicit solution, namely, 

x =bi (siMi) + b2 (s2M2) + · · · + br (srMr), 

where 

Mi = mi m2 ... mi ... fir and Si Mi = 1 mod mi for 1 :::; i :::; r. 

Furthermore, any solution to this system is congruent to x mod mi m2 · · · mr. 

Proof. We know that Mi = 0 mod mi for all j ~ i. Hence, for all i, 

x =bi (s1M1) + b2 (s2M2) + · · · + br (srMr) 

=bi (siMi) mod mi 

=bi mod mi, 

because siMi = 1 mod mi. 

Proposition A-2.15 shows that all solutions are congruent mod m1 · · · mr. • 

Exercises 

* A-2.20. Let n = prm, where pis a prime not dividing an integer m :'.'.'. 1. Prove that 

Hint. Assume otherwise, cross multiply, and use Euclid's Lemma. 

A-2.21. Let m be a positive integer, and let m' be an integer obtained from m by rear
ranging its (decimal) digits (e.g., take m = 314159 and m' = 539114). Prove that m - m' 
is a multiple of 9. 

A-2.22. Prove that a positive integer n is divisible by 11 if and only if the alternating sum 
of its digits is divisible by 11 (if the digits of a are dk ... d2d1do, then their alternating 
sum is do - di + d2 - · · · ). 

Hint. 10 = -1mod11. 

* A-2.23. (i) Prove that lOq + r is divisible by 7 if and only if q - 2r is divisible by 7. 

(ii) Given an integer a with decimal expansion dkdk-l ... do, define 

a' = dkdk-1 · · · di - 2do. 

Show that a is divisible by 7 if and only if some one of a', a", a111 , • •• is divisible by 
7. (For example, if a = 65464, then a' = 6546 - 8 = 6538, a" = 653 - 16 = 637, 
and a"' = 63 - 14 = 49; we conclude that 65464 is divisible by 7.) 
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* A-2.24. (i) Show that 1000 = -1 mod 7. 

(ii) Show that if a = ro + 1000r1 + 10002r 2 + · · · , then a is divisible by 7 if and only if 
ro - r1 + r2 - · · · is divisible by 7. 

Remark. Exercises A-2.23 and A-2.24 combine to give an efficient way to determine 
whether large numbers are divisible by 7. If a = 33456789123987, for example, then 
a= 0 mod 7 if and only if 987-123+ 789~456+33 = 1230 = 0 mod 7. By Exercise A-2.23, 
1230 = 123 = 6 mod 7, and so a is not divisible by 7. ~ 

A-2.25. Prove that there are no integers x, y, and z such that x2 + y2 + z2 = 999. 

Hint. See Example A-2.24. 

A-2.26. Prove that there is no perfect square a2 whose last two digits are 35. 

Hint. If the last digit of a2 is 5, then a2 = 5 mod 10; if the last two digits of a2 are 35, 
then a2 = 35 mod 100. 

A-2.27. If xis an odd number not divisible by 3, prove that x2 = 1mod4. 

* A-2.28. Prove that if p is a prime and if a2 = 1 mod p, then a = ±1 mod p. 

Hint. Use Euclid's Lemma. 

* A-2.29. If gcd(a, m) = d, prove that ax = b mod m has a solution if and only if d I b. 

A-2.30. Solve the congruence x2 = 1 mod 21. 

Hint. Use Euclid's Lemma with 21 I (a+ l)(a - 1). 

A-2.31. Solve the simultaneous congruences: (i) x = 2 mod 5 and 3x = 1 mod 8; 

(ii) 3x = 2 mod 5 and 2x = 1 mod 3. 

A-2.32. (i) Show that (a+ br =an+ bn mod 2 for all a and band for all n 2:: 1. 

Hint. Consider the parity of a and of b. 

(ii) Show that (a+ b)2 1= a2 + b2 mod 3. 

A-2.33. On a desert island, five men and a monkey gather coconuts all day, then sleep. 
The first man awakens and decides to take his share. He divides the coconuts into five 
equal shares, with one coconut left over. He gives the extra one to the monkey, hides 
his share, and goes to sleep. Later, the second man awakens and takes his fifth from the 
remaining pile; he, too, finds one extra and gives it to the monkey. Each of the remaining 
three men does likewise in turn. Find the minimum number of coconuts originally present. 

Hint. Try -4 coconuts. 
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Commutative Rings 

We now discuss commutative rings. As in the previous chapter, we begin by re
viewing mostly familiar material. 

Recall that a binary operation on a set R is a function * : R x R ---+ R, 
denoted by (r, r') Hr* r'. Since * is a function, it is single-valued; that is, the law 
of substitution holds: if r = r' and s = s', then r * s = r' * s'. 

Definition. A ring1 R is a set with two binary operations R x R ---+ R: addition 
(a, b) H a + b and multiplication (a, b) H ab, such that 

(i) R is an abelian group under addition; that is, 
(a) a+ (b + c) =(a+ b) + c for all a, b, c ER; 
(b) there is an element 0 E R with 0 + a = a for all a E R; 
(c) for each a ER, there is a' ER with a'+ a= O; 
(d) a+b=b+a. 

(ii) Associativity2 : a(bc) = (ab)c for every a, b, c E R; 

(iii) there is 1 E R with la = a = al for every a E R; 

(iv) Distributivity: a(b + c) = ab+ ac and (b + c)a = ba +ca for every a, b, 
cER. 

Read from left to right, distributivity says we may "multiply through by a;" 
read from right to left, it says we may "factor out a." 

1This term was probably coined by Hilbert, in 1897, when he wrote Zahlring. One of the 
meanings of the word ring, in German as in English, is collection, as in the phrase "a ring of 
thieves." (It has also been suggested that Hilbert used this term because, for a ring of algebraic 
integers, an appropriate power of each element "cycles back" to being a linear combination of 
lower powers.) 

2 Not all binary operations are associative. For example, subtraction is not associative: if 
c =I 0, then a-(b-c) =I (a-b)-c, and so the notation a-b-c is ambiguous. The cross product 
of two vectors in ~3 is another example of a nonassociative operation. 

-29 
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The element 1 in a ring R has several names; it is called one, the unit of R, 
or the identity in R. We do not assume that 1 =f. 0, but see Proposition A-3.2(ii). 
Given a ER, the element a' ER in (i)(c) is usually denoted by -a. 

Here is a picture of associativity: 

RxR--*--R. 

The function* x 1: Rx Rx R-+ Rx R is defined by (a, b, c) H (a* b, c), while 
1 x *: Rx Rx R -+ Rx R is defined by (a, b, c) H (a, b * c). Associativity says 
that the two composite functions R x R x R -+ R are equal. 

Notation. We denote the set of all rational numbers by Q: 

Q = { a/b : a, b E Z and b =f. O}. 

The set of all real numbers is denoted by JR, and the set of all complex numbers is 
denoted by <C. 

Remark. Some authors do not demand, as part of the definition, that rings have 1; 
they point to natural examples, such as the even integers or the integrable functions, 
where a function f: [O, oo) -+ JR is integrable if it is bounded and 

f 00 lf(x)I dx = lim t lf(x)I dx < oo. 
Jo t--+oo}o 

It is not difficult to see that if f and g are integrable, then so are their pointwise 
sum f + g and pointwise product Jg. The only candidate for a unit is the constant 
function E with E(x) = 1 for all x E [O, oo) but, obviously, E is not integrable. 
We do not recognize either of these systems as a ring (but see Exercise A-3.2 on 
page 39). 

The absence of a unit makes many constructions more complicated. For exam
ple, if R is a "ring without unit,'' then polynomial rings become strange, for x may 
not be a polynomial (see our construction of polynomial rings in the next section). 
There are other (more important) reasons for wanting a unit (for example, the 
discussion of tensor products would become more complicated), but this example 
should suffice to show that not assuming a unit can lead to some awkwardness; 
therefore, we insist that rings do have units. ,.. 

Example A-3.1. 

(i) Denote the set of all n x n matrices [ai3] with entries in JR by 

Matn(JR). 

Then R = Matn(JR) is a ring with binary operations matrix addition 
and matrix multiplication. The unit in Matn(JR) is the identity matrix 
I= [8i3], where 

8i3 

is the Kronecker delta: Dij = 0 if i =f. j, and 8ii = 1 for all i. 
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(ii) Let V be a (possibly infinite-dimensional) vector space over a field k. 
Then 

R = End(V) = {all linear transformations T: V --+ V} 

is a ring if we define addition by T + S: v H T(v) + S(v) for all v EV 
and multiplication to be composite: TS: v H T(S(v)). When Vis n
dimensional, choosing a basis of V assigns an n x n matrix to each linear 
transformation, and the rings Matn(k) and End(V) are essentially the 
same (they are isomorphic). 

(iii) If m ~ 0, the congruence class of an integer a is 

[a]= {k E Z: k =a mod m}. 

The set of all congruence classes mod m is called the integers mod m, 
and we denote it by 

Zm 

(in the previous editions of this book, we denoted Zm by llm, but our 
attempt at spelling reform was not accepted). If we define addition and 
multiplication by 

[a]+ [b] =[a+ b], 

[a][b] = [ab], 

then Zm is a ring, with unit [1] ([94], p. 225). If m ~ 2, then IZml = m. 
It is not unusual to abuse notation and write a instead of [a]. ... 

Here are some elementary results. 

Proposition A-3.2. Let R be a ring. 

(i) 0 · a= 0 = a· 0 for every a E R. 

(ii) If 1 = 0, then R consists of the single element 0. In this case, R is called 
the zero ring.3 

(iii) If-a is the additive inverse ofa, then (-1)(-a) =a= (-a)(-1). In 
particular, ( -1 )( -1) = 1. 

(iv) (-l)a =-a= a(-1) for every a ER. 

(v) If n EN and nl = 0, then na = 0 for all a ER; recall that if a ER and 
n EN, then na =a+ a+···+ a (n summands).4 

Proof. 

(i) 0 ·a= (0 + O)a = (0 ·a)+ (0 ·a). Now subtract 0 ·a from both sides. 

(ii) If 1 = 0, then a = 1 · a = 0 · a = 0 for all a E R. 

(iii) 0 = 0(-a) = (-1+1)(-a) = (-1)(-a) +(-a). Now add a to both sides. 

(iv) Multiply both sides of (-1)(-a) =a by -1, and use part (iii). 

(v) na =a+···+ a= (1 + · · · + l)a = (nl)a = 0 ·a= 0. • 

3The zero ring is not a very interesting ring, but it does arise occasionally. 
4 Thus, na is the additive version of the multiplicative notation an. 
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Informally, a subring S of a ring R is a ring contained in R such that S and R 
have the same addition, multiplication, and unit. 

Definition. A subset S of a ring R is a subring of R if 

(i) 1 E S,5 

(ii) if a, b E S, then a - b E S, 

(iii) if a, b E S, then ab E S. 

We shall write S s;; R to denote S being a proper subring; that is, S ~ R is a 
subring and S ":f R. 

Proposition A-3.3. A subring S of a ring R is itself a ring. 

Proof. Parts (i) and (ii) in the definition of subring say that addition and multi
plication are binary operations when restricted to S. The other statements in the 
definition of ring are identities that hold for all elements in R and, hence, hold in 
particular for the elements in S. For example, associativity a(bc) = (ab)c holds for 
all a, b, c E R, and so it holds for all a, b, c E S ~ R. • 

Of course, one advantage of the notion of subring is that fewer ring axioms 
need to be checked to determine whether a subset of a ring is itself a ring. 

Example A-3.4. Let n 2: 3 be an integer; if (n = e2n:i/n = cos(27l' /n) +i sin(27l' /n) 
is a primitive nth root of unity, define 

Z[(n] = {ao + al(n + a2(; + · · · + an-1(;:- 1 EC: ai E Z}. 

(We assume that n 2: 3, for (2 = -1 and Z((2] = Z.) When n = 4, then Z((4] = Z(i] 
is called the ring of Gaussian integers. When n = 3, we write (3 = w = 
H-1 + iv'3)), and Z((3] = Z[w] is called the ring of Eisenstein integers. It 
is easy to check that Z[(n] is a subring of C (to prove that Z[(n] is closed under 
multiplication, note that if m 2: n, then m = qn + r, where 0 ~ r < n, and 
<:: = (~). • 

Definition. A ring R is commutative if ab = ba for all a, b E R. 

The sets Z, Q, R, and C are commutative rings with the usual addition and 
multiplication (the ring axioms are verified in courses in the foundations of math
ematics). Also, Zm, the integers mod m, is a commutative ring. 

Proposition A-3.5 (B!nomial Theorem). Let R be a commutative ring. If 
a,b ER, then 

Proof. The usual inductive proof is valid in this generality if we define a0 = 1 for 
every element a ER (in particular, o0 = 1). • 

5Example A-3.7 below gives a natural example of a subset Sofa ring R which is not a subring 
even though S and R have the same addition and the same multiplication; they have different 
units. 
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Example A-3.1 can be generalized. If k is a commutative ring, then Matn(k), 
the set of all n x n matrices with entries in k, is a ring. 

Corollary A-3.6. If NE Matn(Zp), then (I+ N)P =I+ NP. 

Proof. The subring R of Matn(Zp) generated by N (see Exercise A-3.3 on page 39) 
is a commutative ring, and so the Binomial Theorem applies: 

(I+ N)P = ~ (~)Np-r. 
Now p I (~) if 0 < r < p, by Proposition A-2.25, so that (~)Np-r = 0 in R. • 

Unless we say otherwise, 

all rings in the rest of this chapter are commutative. 

We will return to noncommutative rings in Course II in this book. 

Example A-3.7. 

(i) Here is an example of a commutative ring arising from set theory. If A 
and B are subsets of a set X, then their symmetric difference is 

A+B = (AUB)-(AnB) 

(see Figure A-3.1). Recall that if U and V are subsets of a set X, then 

U - V = {x EX: x EU and x ~ V}. 

Figure A-3.1. Symmetric Difference. 

Let X be a set, let 2X denote the set of all the subsets of X, define 
addition on 2X to be symmetric difference, and define multiplication on 
2x to be intersection. It is not difficult to show that 2X is a commutative 
ring. The empty set 0 is the zero element, for A + 0 = A, while each 
subset A is its own negative, for A + A = 0. Associativity of addition 
is Exercise A-3.20 on page 41. Finally, X itself is the identity element, 
for X n A = A for every subset A. We call 2x a Boolean ring (see 
Exercise A-3.21 on page 41 for the usual definition of a Boolean ring). 

Suppose now that Y £; X is a proper subset of X; is 2Y a subring 
of 2X? If A and B are subsets of Y, then A + B and A n B are also 
subsets of Y; that is, 2Y is closed under the addition and multiplication 
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on 2x. However, the identity element in 2Y is Y, not X, and so 2Y is 
not a subring of 2x. 

(ii) Boolean rings 2x are quite useful. Proving the de Morgan law 

(Au B)c =Ac n BC 

(where Ac is the complement of A) by set-theoretic methods (show each 
side is a subset of the other) is not at all satisfying, for it depends too 
much on the meaning of the words and, or, and not. The algebraic proof 
defines AU B =A+ B +AB and Ac= 1 +A, and then proves 

1 +A+ B +AB= (1 + A)(l + B). .... 

Definition. A domain (often called an integral domain6 ) is a commutative ring 
R that satisfies two extra axioms: 

(i) 1 # O; 

(ii) Cancellation Law: For all a, b, c E R, if ca = cb and c # 0, then a = b. 

The familiar examples of commutative rings, Z, Q, ~, and C, are domains; the 
zero ring is not a domain. The Gaussian integers Z[iJ and the Eisenstein integers 
Z[wJ are commutative rings, and Exercise A-3.8 on page 40 shows that they are 
domains. 

Proposition A-3.8. A nonzero commutative ring R is a domain if and only if the 
product of any two nonzero elements of R is nonzero. 

Proof. ab = ac if and only if a(b - c) = 0. • 

It follows easily that a Boolean ring 2X is not a domain if X has at least two 
elements. 

Elements a, b E R are called zero divisors if ab = 0 and a # 0, b # 0. Thus, 
domains have no zero divisors. 

Proposition A-3.9. The commutative ring Zm is a domain if and only if m is 
prime. 

Proof. If m is not prime, then m = ab, where 1 < a, b < m; hence, both [aJ 
and [bJ are not zero in Zm, yet [a][bJ = [mJ = [OJ. Conversely, if m is prime and 
[a][bJ = [ab] = [OJ, where [a], [bJ # [OJ, then m I ab. Now Euclid's Lemma gives m I a 
or m J b; if, say, m I a, then a~ md and [aJ = [m][dJ =[OJ, a contradiction. • 

Example A-3.10. 

(i) We denote the set of all functions X ---+ ~, where X s;;; ~, by 

F(X); 

6The word domain abbreviates the usual English translation integral domain of the German 
word Integreti:itsbereich, a collection of integers. 
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it is equipped with the operations of pointwise addition and pointwise 
multiplication: given J,g E F(X), define J + g, Jg E F(X) by 

J + g: a 1-t J(a) + g(a) and Jg: a 1-t J(a)g(a) 

(notice that Jg is not their composite). Pointwise operations are the 
usual addition and multiplication of functions in calculus. 

We claim that F(X) with these operations is a commutative ring. 
Verification of the axioms is left to the reader with the following hint: 
the zero element in F(X) is the constant function z with value 0 (that 
is, z(a) = 0 for all a E X) and the unit is the constant function c: with 
c:(a) = 1 for all a E X. We now show that F(X) is not a domain if X 
has at least two elements. Define J and gas drawn in Figure A-3.2: 

J(a) = {a if a ~ 0, 
0 if a 2: O; 

g(a) = {O ~fa~ o, 
a if a 2: 0. 

Clearly, neither J nor g is zero (i.e., J f= z and g f= z). On the other 
hand, for each a EX, Jg: a 1-t J(a)g(a) = 0, because at least one of the 
factors J(a) or g(a) is the number zero. Therefore, Jg= z, and F(X) is 
not a domain. 

(ii) If X ~JR. (more generally, if X is any topological space), then 

C(X) 

consists of all continuous functions X -+ JR.. Now C(X) is a subring of 
F(X), for constant functions are continuous (in particular, the constant 
function identically equal to 1) and the sum and product of continuous 
functions are also continuous. 

(iii) Recall that a function J: X -t JR., where X ~ JR., is a C00 -function if it 
has an nth derivative J<n) for all n 2: 0. The set of all C00-functions on 
X, denoted by 

C00 (X), 

is a subring of F(X). The identity c: is a constant function, hence is C00 , 

while the sum and product of C00-functions are also C00 • This is proved 
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with the Leibniz formula: 7 

(fg)(n)(x) = ~ (~) f(k)(x)g(n-k)(x). 

Hence, the C 00-functions form a commutative ring. ~ 

As we saw in Propositions A-3.231 and A-3.5, some properties of ordinary 
arithmetic, that is, properties of the commutative ring Z, hold in more generality. 
We now generalize some familiar definitions from Z to arbitrary commutative rings. 

Definition. Let a and b be elements of a commutative ring R. Then a divides b 
in R (or a is a divisor of b or b is a multiple of a), denoted by 

a I b, 

if there exists an element c E R with b = ca. 

As an extreme example, if 0 I a, then a = 0 · b for some b E R. Since 0 · b = 0, 
however, we must have a= 0. Thus, 0 I a if and only if a= 0. 

Notice that whether a divides b depends not only on the elements a and b but 
also on the ambient ring R. For example, 3 does divide 2 in Q, for 2 = 3 x ~ and 
~ E Q; on the other hand, 3 does not divide 2 in Z, because there is no integer c 
with 3c = 2. 

Definition. An element u in a commutative ring R is called a unit if u I 1 in R, 
that is, ifthere exists v ER with uv = 1; the element vis called the (multiplicative) 
inverse of u and v is usually denoted by u-1. 

Units are of interest because we can always divide by them: if a E R and u is 
a unit in R (so there is v ER with uv = 1), then 

a= u(va) 

is a factorization of a in R, for va E R; thus, it is reasonable to define the quotient 
a/u as va = u-1a. Whether an element u E R is a unit depends on the ambient 
ring R (for being a unit means that u I 1 in R, and divisibility depends on R). For 
example, the number 2 is a unit in Q, for ~ lies in Q and 2 x ~ = 1, but 2 is not a 
unit in Z, because there is no integer v with 2v = 1. In fact, the only units in Z 
are 1 and -1. 

What are the units in Zm? 

Proposition A-3.11. If a is an integer, then [a] is a unit in Zm if and only if a 
and m are relatively prime. In fact,. if sa + tm = 1, then [aJ-1 = (s]. 

Proof. This follows from Theorem A-2.34. • 

Corollary A-3.12. If p is prime, then every nonzero [a] in Zp is a unit. 

Proof. If 1 ~a< p, then gcd(a,p) = 1. • 

7 It is easy to prove the Leibniz formula by induction on n, but it is not a special case of the 
Binomial Theorem. 
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Definition. If R is a nonzero commutative ring, then the group of units8 of R 
is 

U(R) = {all units in R}. 

It is easy to check that U(R) is a multiplicative group. (It follows that a unit u 
in R has exactly one inverse in R, for each element in a group has a unique inverse.) 

There is an obvious difference between Q and Z: every nonzero element of Q 
is a unit. 

Definition. A field 9 F is a commutative ring in which 1 # 0 and every nonzero 
element a is a unit; that is, there is a- 1 E F with a-1a = 1. 

The first examples of fields are Q, JR, and C. 

The definition of field can be restated in terms of the group of units; a com
mutative ring R is a field if and only if U(R) =Rx, the nonzero elements of R. To 
say this another way, R is a field if and only if Rx is a multiplicative group. 

Proposition A-3.13. The commutative ring Zm is a field if and only if m is 
prime. 

Proof. Corollary A-3.12. • 

When p is prime, we usually denote the field Zp by 

1Fp. 

In Exercise A-3.7 on page 39, we will construct a field lF4 with four elements. Given 
a prime p and n ;::: 1, we shall see later that there exist (essentially unique) finite 
fields having exactly q = pn elements; we will denote such fields by lFq. 

Proposition A-3.14. Every field F is a domain. 

Proof. If ab= ae and a# 0, then b = a-1(ab) = a-1(ae) = e. • 

The converse of this proposition is false, for Z is a domain that is not a field. 
Every subring of a domain is itself a domain. Since fields are domains, it follows 
that every subring of a field is a domain. The converse is also true, and it is much 
more interesting: every domain is a subring of a field. 

Given four elements a, b, e, and din a field F with b # 0 and d # 0, assume 
that ab- 1 = ed-1 . Multiply both sides by bd to obtain ad = be. In other words, 
were ab- 1 written as a/b, then we have just shown that a/b = e/d implies ad= be; 
that is, "cross multiplication" is valid. Conversely, if ad = be and both b and d are 
nonzero, then multiplication by b- 1d- 1 gives ab-1 = ed-1 , that is, a/b = e/d. 

8Since an undergraduate algebra course is a prerequisite for this book, we may assume that 
the reader knows the definition of group as well as examples and elementary properties. 

9The derivation of the mathematical usage of the English term field (first used by Moore in 
1893 in his article classifying the finite fields) as well as the German term Karper and the French 
term corps is probably similar to the derivation of the words group and ring: each word denotes 
a "realm" or a "collection of things." 
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The proof of the next theorem is a straightforward generalization of the usual 
construction of the field of rational numbers Q from the domain of integers Z. 

Theorem A-3.15. If R is a domain, then there is a field containing R as a subring. 

Moreover, such a field F can be chosen so that, for each f E F, there are a, 
b ER with b =fa 0 and f = ab-1 . 

Proof. Define a relation= on Rx Rx, where Rx is the set of all nonzero elements 
in R, by (a, b) = ( c, d) if ad = be. We claim that = is an equivalence relation. 
Verifications of reflexivity and symmetry are straightforward; here is the proof of 
transitivity. If (a, b) = ( c, d) and ( c, d) = ( e, f), then ad = be and cf = de. But 
ad= be gives adj= b(cf) = bde. Canceling d, which is nonzero, gives af =be; that 
is, (a,b) = (e,f). 

Denote the equivalence class of (a, b) by [a, bl, define Fas the set of all equiv
alence classes, and equip F with the following addition and multiplication (if we 
pretend that [a, bl is the fraction a/b, then these are just the familiar formulas): 

[a, bl + [c, dl = [ad+ be, bd] and [a, b][c, dl = [ac, bdl 

(since b =fa 0 and d =fa 0, we have bd =fa 0 because Risa domain, and so the formulas 
make sense). Let us show that addition is well-defined. If [a, bl = [a', b'l (that 
is, ab' = a'b) and [c,d] = [c',d'l (that is, cd' = c'd), then we must show that 
[ad+ be, bdl = [a'd' + b'c', b'd'l· But this is true: 

(ad+ bc)b' d' =ab' dd' + bb' cd' = a'bdd' + bb' c' d = (a' d' + b' c')bd. 

A similar argument shows that multiplication is well-defined. 

The verification that F is a commutative ring is now routine: the zero element 
is [O, ll, the unit is [1, ll, and the additive inverse of [a, bl is [-a, bl. It is easy to see 
that the family R' = {[a, ll : a ER} is a subring of F, and we identify a ER with 
[a, ll E R'. To see that Fis a field, observe that if [a, bl =fa [O, 1], then a =fa 0, and 
the inverse of [a,bl is [b,al. 

Finally, if b =fa 0, then [1, bl = [b, 11-1, and so [a, bl = [a, l][b, 11-1. • 

Definition. The field F constructed from R in Theorem A-3.15 is called the frac
tion field of R; we denote it by 

Frac(R), 

and we denote [a, bl E Frac(R) by a/b; in particular, the elements [a, ll of F are 
denoted by a/l or, more simply, by a. 

The fraction field of Z is Q; that is, ~ac(Z) = Q. 

Definition. A subfield of a field K is a subring k of K that is also a field. 

It is easy to see that a subset k of a field K is a subfield if and only if k is a 
subring that is closed under inverses; that is, if a E k and a =fa 0, then a-1 E k. It 
is also routine to see that any intersection of subfields of K is itself a subfield of K 
(note that the intersection is not equal to {O} because 1 lies in every subfield and 
all subfields have the same unit). 
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Exercises 

* A-3.1. Prove that a ring R has a unique 1. 

* A-3.2. A ring without unit is a set R equipped with two binary operations which satisfy 
all the parts of the definition of ring except (iii): we do not assume that R contains 1. 

(i) Prove that every additive abelian group G is a ring without unit if we define ab = 0 
for all a,b E G. 

(ii) Let R be a ring without unit. As both Z and R are additive abelian groups, so is 
their direct product R* = Z x R. Define a multiplication on R* by 

(m,r)(n,s) = (mn,ms+nr+rs), 

where ms = 0 if m = 0, ms is the sum of s E R with itself m times if m > 0, and 
ms is the sum of -s with itself lml times if m < 0. Prove that R* is a ring (its 
unit is (1, 0)). We say that R* arises from R by adjoining a unit. The subset 
R' = { (0, r) : r E R} ~ R* is a subring that may be identified with R (more 
precisely, after introducing the term, we will say that R' is isomorphic to R). 

* A-3.3. Let R be a (not necessarily commutative) ring. 

(i) If (Si)iEI is a family of subrings of R, prove that niEI Si is also a subring of R. 

(ii) If X ~Risa subset of R, define the subring generated by X, denoted by (X), 
to be the intersection of all the subrings of R that contain X. Prove that (X) is 
the smallest subring containing X in the following sense: if S is a subring of R and 
X ~ S, then (X) ~ S. 

A-3.4. (i) Prove that subtraction in Z is not an associative operation. 

(ii) Give an example of a commutative ring R in which subtraction is associative. 

* A-3.5. (i) If Risa domain and a ER satisfies a2 =a, prove that either a= 0 or a= 1. 

(ii) Show that the commutative ring F(X) in Example A-3.10 contains infinitely many 
elements f with j2 = f when X ~ R is infinite. 

(iii) If f E F(X) is a unit, prove that f(a) =I- 0 for all a EX. 

(iv) Find all the units in F(X). 

* A-3.6. Generalize the construction of F(R): if k is a nonzero commutative ring, let F(k) 
be the set of all functions from k to k with pointwise addition f + g: r i-+ f(r) + g(r) and 
pointwise multiplication jg: r i-+ f(r)g(r) for r Ek. 

(i) Show that F(k) is a commutative ring. 

(ii) Show that F(k) is not a domain. 

(iii) Show that F(IF2) has exactly four elements, and that f + f = 0 for every f E F(IF2). 

* A-3.7. (Dean) Define IF4 to be all 2 x 2 matrices of the form 

where a,b E IF2. 
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(i) Prove that IF4 is a commutative ring under the usual matrix operations of addition 
and multiplication. 

(ii) Prove that IF4 is a field with exactly four elements. 

* A-3.8. (i) Prove that the ring of complex numbers C is a field. 

(ii) Prove that the rings of Gaussian integers and of Eisenstein integers are domains. 

A-3.9. Prove that the only subring of Z is Z itself. 

A-3.10. (i) Prove that R = {a+ b,/2. : a, b E Z} is a domain. 

(ii) Prove that R = H(a + b,/2.) : a, b E Z} is not a domain (it's not even a ring). 

(iii) Prove that R ={a+ bo:: a, b E Z} is a domain, where o: = ~(1 + .;=19). 
Hint. Use the fact that o: is a root of x 2 - x + 5. 

A-3.11. Show that F ={a+ b,/2.: a, b E Q} is a field. 

A-3.12. (i) Show that F = {a+ bi : a, b E Q} is a field. 

(ii) Show that F is the fraction field of the Gaussian integers. 

A-3.13. Find the units in Zn and compute their multiplicative inverses. 

A-3.14. Prove that Q has no proper subfields. 

A-3.15. Prove that every domain R with a finite number of elements must be a field. 
(Using Proposition A-3.9, this gives a new proof of sufficiency in Proposition A-3.13.) 

Hint. If Rx denotes the set of nonzero elements of Rand r E Rx, apply the Pigeonhole 
Principle (If X is a finite set, then the following are equivalent for f: X -t X: f is an 
injection; f is a bijection; f is a surjection) after proving that multiplication by r is an 
injection Rx -t Rx. 

A-3.16. It may seem more natural to define addition in the Boolean ring 2X as union 
rather than symmetric difference. Is 2X a commutative ring if addition A E0 B is defined 
as A U B and AB is defined as A n B? 

A-3.17. (i) If Xis a finite set with exactly n elements, how many elements are in 2x? 

(ii) If A and Bare subsets of a set X, prove that A~ B if and only if A= An B. 

(iii) Recall that if A is a subset of a set X, then its complement is 

Ac= {x EX: x ¢A}. 

Prove, in the commutath'.e ring 2x, that Ac= X +A. 

(iv) Let A be a subset of a set X. If S ~ X, prove that Ac= S if and only if AUS= X 
and AnS = 0. 

(v) If A and B are subsets of a set X, then A - B = {x E A : x ¢ B}. Prove that 
A - B = A n BC. In particular' x - B = BC' the complement of B. 

A-3.18. Let A, B, C be subsets of a set X. 

(i) Prove that Au (B n C) = (Au B) n (Au C). 

(ii) Prove that An (BU C) = (An B) U (An C). 
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* A-3.19. Let A and B be subsets of a set X. Prove the De Morgan laws: 

(AuBt=AcnBc and (AnBt=AcUBc, 

where Ac denotes the complement of A. 
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* A-3.20. Prove associativity in 2x by showing that each of A+ (B + C) and (A+ B) + C 
is described by Figure A-3.3. 

A B 

Figure A-3.3. Associativity. 

* A-3.21. The usual definition of a Boolean ring R is a ring in which 1 =f. 0 and a2 = a 
for all a ER. 

(i) Prove that every Boolean ring (as just defined) is commutative. 

(ii) Prove that the ring 2x in Example A-3.7 is a Boolean ring (as just defined). 

(iii) Let X be an infinite set. A subset A ~ X is cofinite if its complement Ac = X -A 
is finite. Prove that the family R of all finite subsets and cofinite subsets of 2x is 
a Boolean ring ( R is a proper subring of 2X). 

Polynomials 

Even though the reader is familiar with polynomials, we now introduce them care
fully. The key observation is that one should pay attention to where the coefficients 
of polynomials live. 

Definition. If R is a commutative ring, then a formal power series over R is a 
sequence of elements Si E R for all i 2': 0, called the coefficients of a: 

To determine when two formal power series are equal, let us use the fact that 
a formal power series a is a sequence; that is, a is a function a: N --+ R, where 
N is the set of natural numbers, with a( i) = Si for all i 2': 0. Thus, if T = 
(to, t 1 , t 2 , .•• , ti, ... ) is a formal power series over R, then a= T if and only if their 
coefficients match: a( i) = r( i) for all i 2': O; that is, a = T if and only if Si = ti for 
all i 2': 0. 
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Definition. A polynomial over a commutative ring R is a formal power series 
17 =(so, s1, ... , Si, ... ) over R for which there exists some integer n;:::: 0 with Si= 0 
for all i > n; that is, 

17 = (so,s1, ... ,sn,O,O, ... ). 

A polynomial has only finitely many nonzero coefficients. The zero polyno
mial, denoted by O' = 0, is the sequence 17 = (0, 0, 0, ... ). 

Definition. If O' = (so, s1, ... , sn, 0, 0, ... ) is a nonzero polynomial, then there is 
n ;:::: 0 with Sn ;/; 0 and Si = 0 for all i > n. We call Sn the leading coefficient 
of 17, we call n the degree of 17, and we denote the degree by 

n = deg(<7). 

If the leading coefficient Sn = 1, then 17 is called monic. 

The zero polynomial 0 does not have a degree because it has no nonzero coef
ficients. 10 

Notation. If Risa commutative ring, then 

R[[x]] 

denotes the set of all formal power series over R, and 

R[x] ~ R[[x]] 

denotes the set of all polynomials over R. 

Proposition A-3.16. If R is a commutative11 ring, then R[[x]] is a commutative 
ring that contains R[x] and R' as subrings, 12 where R' = {(r,0,0, ... ) : r ER}~ 
R[x]. 

Proof. Let O' = (s0 , s 1 , ... ) and r = (to, ti, ... ) be formal power series over R. 
Define addition and multiplication by 

17 + T =(so+ to, S1 +ti,. .. , Sn+ tn, ••. ) 

and 
O'T =(co, c1, c2, ... ), 

where Ck = Li+j=k sitj = L~=O sitk-i· Verification of the axioms in the definition 
of commutative ring is routine, as is checking that R' and R[x] are subrings of 
R[[x]]. (We usually identify R with the subring R' via r H (r, 0, 0, ... ).) • 

10Some authors define deg(O) = -oo, where -oo < n for every integer n (this is sometimes 
convenient). We choose not to assign a degree to the zero polynomial 0 because it often must be 
treated differently than other polynomials. 

11 We can define formal power series over noncommutative rings R, but we must be careful 
about defining xa and ax for a E R, because these may not be the same. If R is any ring, we 
usually write R[x] to denote all polynomials over R in which x commutes with every a E R. 

Given a possibly noncommutative ring Rand a homomorphism h: R-+ R; that is, for all 
a,b ER, we have h(l) = I,h(a+b) = h(a)+h(b), and h(ab) = h(a)h(b), then the polynomial ring 
in which we define ax= xh(a) is a noncommutative ring, called a skew polynomial ring, usually 
denoted by R[x, h]. 

12 R is not a subring of R([x]]; it is not even a subset of R[[x]]. 
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Lemma A-3.17. Let R be a commutative ring and let a, T E R[x] be nonzero 
polynomials. 

(i) Either ar = 0 or deg(ar) :::; deg( a)+ deg(r). 

(ii) If R is a domain, then ar # 0 and 

deg(ar) =deg( a)+ deg(r). 

(iii) If Risa domain, a,r # 0, and r I a in R[x], then deg(r):::; deg(a). 

(iv) If R is a domain, then R[x] is a domain. 

Proof. Let a= (s0 , si, ... ) and r = (t0 , ti, ... ) have degrees m and n, respectively. 

(i) If k > m + n, then each term in Ei sitk-i is 0 (for either Si = 0 or 
tk-i = 0). 

(ii) Each term in Ei Sitm+n-i is 0, with the possible exception of smtn. Since 
Risa domain, Sm"# 0 and tn "# 0 imply Smtn "# 0. 

(iii) Immediate from part (ii). 

(iv) This follows from part (ii), because the product of two nonzero polyno
mials is now nonzero. • 

Here is the link between this discussion and the usual notation. 

Definition. The indeterminate x E R[x] is 

x = (0, 1, 0, 0, ... ). 

One reason for our insisting that rings have units is that it enables us to define 
indeterminates. 

Lemma A-3.18. The indeterminate x in R[x] has the following properties. 

(i) If a= (so, si, ... ), then 

xa = (0, so, si, ... ); 

that is, multiplying by x shifts each coefficient one step to the right. 

(ii) If n ~ 0, then xn is the polynomial having 0 everywhere except for 1 in 
the nth coordinate. 

(iii) If r E R, then 

(r, 0, 0, ... )(so, si, ... , Sj, ... ) = (rso, rsi, ... , rsj, ... ). 

Proof. Each is a routine computation using the definition of polynomial multipli
cation. • 

If we identify (r, 0, 0, ... ) with r, then Lemma A-3.18(iii) reads 

r(so, si, ... , si, ... ) = (rso, rsi, ... , rsi, ... ). 

We can now recapture the usual notation. 

Proposition A-3.19. If a= (so, si, ... , Sn, 0, 0, ... ) E R[x] has degree n, then 

a = so +six+ s2x2 + · · · + SnXn. 
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Proof. 

a= (so,si, ... ,sn,0,0, ... ) 

= (so; 0, 0, ... ) + (0, si, 0, ... ) + · · · + (0, 0, ... , Sn, 0, ... ) 

= so(l,0,0, ... ) + si(O, 1,0, ... ) + · · · + sn(O,O, ... , 1,0, ... ) 

= So + SiX + S2X2 + · · · + SnXn. e 

We shall use this familiar (and standard) notation from now on. As is custom
ary, we shall write 

f(x) =so+ six+ s2x2 + · · · + SnXn 

instead of a = (so, si, ... , sn, 0, 0, ... ); in fact, we often write f instead of f(x). 
We will denote formal power series by so+ six+ s2x2 + · · · or by l::'=o SnXn. 

Here is some standard vocabulary associated with polynomials. If f(x) = 
so + six + s2x2 + · · · + Snxn, then so is called its constant term. A constant 
polynomial is either the zero polynomial or a polynomial of degree 0. Polynomials 
of degree 1, namely, a+ bx with bf:. 0, are called linear, polynomials of degree 2 
are quadratic,i3 degree 3's are cubic, then quartics, quintics, sextics and so 
on. 

Corollary A-3.20. Formal power series (hence polynomials) s0 +six+ s2x2 + · · · 
and to+ tix + t2x2 + · · · in R[[x]] are equal if and only if si =ti for all i. 

Proof. This is merely a restatement of the definition of equality of sequences, 
rephrased in the usual notation for formal power series. • 

We can now describe the usual role of x in f(x) as a variable. If R is a 
commutative ring, each polynomial f(x) = so+ six+ s2x2 + · · · + SnXn E R[x] 
defines a polynomial function 

l:R-tR 

by evaluation: If a E R, define l (a) = so+ si a+ s2a2 + · · · + snan E R. The reader 
should realize that polynomials and polynomial functions are distinct objects. For 
example, if R is a finite ring (e.g., R = Zm), then there are only finitely many 
functions from R to itself, and so there are only finitely many polynomial functions. 
On the other hand, there are infinitely many polynomials; for example, all the 
powers 1, x, x2, ... , xn, ... are distinct, by Corollary A-3.20. 

Definition. Let k be a field. The fraction field Frac(k[x]) of k[x], denoted by 

k(x), 

is called the field of rational functions over k. 

Proposition A-3.21. If k is a field, then the elements of k(x) have the form 
f(x)/g(x), where f(x), g(x) E k[x] and g(x) f:. 0. 

13Quadratic polynomials are so called because the particular quadratic x2 gives the area 
of a square (quadratic comes from the Latin word meaning "four,'' which is to remind us of the 
four-sided figure); similarly, cubic polynomials are so called because x3 gives the volume of a cube. 
Linear polynomials are so called because the graph of a linear polynomial in ~[x) is a line. 
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Proof. Theorem A-3.15. • 

Proposition A-3.22. If p is prime, then the field of rational functions 1Fp(x) is 
an infinite field containing IF P as a subfield. 

Proof. By Lemma A-3.17(iv), 1Fp[x) is an infinite domain, because the powers xn, 
for n EN, are distinct. Thus, its fraction field, 1Fp(x), is an infinite field containing 
1Fp[x) as a subring. But 1Fp[x) contains 1Fp as a subring, by Proposition A-3.16. • 

In spite of the difference between polynomials and polynomial functions (we 
shall see, in Corollary A-3.56, that these objects essentially coincide when the coef
ficient ring R is an infinite field), R[x] is usually called the ring of all polynomials 
over R in one variable. 

If we write A = R[x], then the polynomial ring A[y) is called the ring of all 
polynomials over R in two variables x and y, and it is denoted by R[x, y]. For 
example, the quadratic polynomial ax2 + bxy + cy2 + dx + ey + f can be written 
cy2 +(bx+ e)y + (ax2 + dx + !), a polynomial in y with coefficients in R[x]. By 
induction, we can form the commutative ring R[x1, x2, ... , xn] of all polynomials 
in n variables over R, 

R[x1, X2, ... , Xn+1] = (R[x1, X2, ... , Xnl) [xn+1). 

Lemma A-3.17(iv) can now be generalized, by induction on n 2: 1, to say that if 
R is a domain, then so is R[xi, x2, ... , Xn]· Moreover, when k is a field, we can 
describe Frac(k[x1, x2, ... , Xn]) as all rational functions inn variables 

its elements have the form f(x1, x2, ... , Xn)/g(x1, x2, ... , Xn), where f and g lie in 
k[x1, x2, ... , Xn] and g is not the zero polynomial. 

Each polynomial f (x1, ... , Xn) E R[x1, ... , Xn] in several variables gives rise to 
a function fb : Rn -+ R, namely, evaluation 

l: (a1,. .. , an) H f(a1, ... , an)· 

Exercises 

A-3.22. Prove that if Risa commutative ring, then R[x] is never a field. 

Hint. If x- 1 exists, what is its degree? 

* A-3.23. (i) Let R be a domain. Prove that if a polynomial in R[x] is a unit, then it is 
a nonzero constant (the converse is true if R is a field). 

(ii) Show that (2x + 1)2 = 1 in Z4[x]. Conclude that 2x + 1 is a unit in Z4[x], and that 
the hypothesis in part (i) that R be a domain is necessary. 

* A-3.24. Show that the polynomial function J" defined by the polynomial f(x) = xP -x E 
IFp[x] is identically zero. 
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* A-3.25. If Risa commutative ring and f(x) = L:~=O SiXi E R[x] has degree n? 1, define 
its derivative J'(x) E R[x] by 

J'(x) = s1 + 2s2x + 3s3x2 + · · · + nsnxn-li 

if f(x) is a constant polynomial, define its derivative to be the zero polynomial. 

Prove that the usual rules of calculus hold: 

(f+g)' = J' +g', 

(r !)' = r(f') if r ER, 

(Jg)'= Jg'+ J'g, 

(Jn)' = nr-1 J' for all n ? 1. 

* A-3.26. Let R be a commutative ring and let f(x) E R[x]. 

(i) Prove that if (x - a)2 J f(x), then (x - a) J J'(x) in R[x]. 

(ii) Prove that if (x - a) J f(x) and (x - a) J J'(x), then (x - a)2 J f(x). 

A-3.27. (i) Prove that the derivative D: R[x] -+ R[x], given by D: f 1--t J', satisfies 
D(f + g) = D(f) + D(g). 

(ii) If f(x) = ax2P + bxP + c E lFv[x], prove that J'(x) = 0. 

(iii) Prove that a polynomial f(x) E lFp[x] has J'(x) = 0 if and only if there is a 
polynomial g(x) = L:anxn with f(x) = g(xP); that is, f(x) = L:anxnp E lFv[xP]. 

(iv) If f(x) = ao + aix + · · · + anxn E Ql[x], define 

I f= aox + -21 aix2 + · · · + - 1-anxn+l E Ql[x]. 
n+l 

Prove that J: Ql[x] -+ Ql[x] satisfies J f + g = J f +Jg. 

(v) Prove that DJ= llfl![:z:J but that JD# llfl![:z:J· 

* A-3.28. Prove that if R is a domain, then R[[x]] is a domain. 

Hint. If a = (so, s1 , ... ) E R[[x]] is nonzero, define the order of a, denoted by ord(a), 
to be the smallest n ? 0 for which Sn # 0. If R is a domain and a, r E R[[x]] are nonzero, 
prove that ar :f. 0 and ord(ar) = ord(a) + ord(r). 

* A-3.29. (i) If R is a domain and a = L:~=O xn E R[[x]], prove that a = 1/(1 - x) in 
R[[x]]; that is, (1- x)a = 1. 

Hint. A solution of this exercise can use equality of formal power series and 
the definition of multiplication, but it cannot use limits (which are not defined in 
arbitrary commutative rings). 

(ii) Let k be a field. Prove that a formal power series a E k[[x]] is a unit if and only if 
its constant term is nonzero; that is, ord(a) = 0. 
Hint. Construct the coefficients of the inverse u of a by induction. 

(iii) Prove that if a E k[[x]] and ord(a) = n, then a= xnu, where u is a unit in k[[x]]. 

A-3.30. Let R be a commutative ring. Call a sequence Un(x))n~o = (L; aniXi)n~o of 
formal power series in R[[x]] summable if, for each i, there are only finitely many ani :f. 0. 

(i) If Un(X))n~o is summable, prove that Li (Ln ani)xi is a formal power series in 
R[[x]]. 
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(ii) If h(x) = L,:i CiXi E R[[x]] and co = 0, prove that (hn(x))n;~o is summable. Con
clude that if g(x) = L:i bixi E R[(x]], then the composite function 

(go h)(x) = bo + bih + b2h2 + · · · 
is a power series. 

(iii) Define log(l + z) = L,:i> 1 (-l)izi/i E C[[x]] and exp(z) = L:nzn/n!. Prove that 
the composite expo log ;:; 1. 

(iv) Prove the chain rule for summable formal power series g and h: 

(g 0 h)' = (g' 0 h). h'. 

Homomorphisms 

Homomorphisms allow us to compare rings. 14 

Definition. If A and Rare (not necessarily commutative) rings, a (ring) homo
morphism is a function cp: A --+ R such that 

(i) cp(l) = 1, 

(ii) cp( a+ a') = cp( a) + cp( a') for all a, a' E A, 

(iii) cp(aa') = cp(a)cp(a') for all a, a' EA. 

A ring homomorphism that is also a bijection is called an isomorphism. Rings A 
and R are called isomorphic, denoted by 

A~R, 

if there is an isomorphism cp : A --+ R. 

We continue to focus on commutative rings. 

Example A-3.23. 

(i) Let R be a domain and let F = Frac(R) denote its fraction field. In 
Theorem A-3.15 we said that Risa subring of F, but that is not the truth; 
R is not even a subset of F. We did find a subring R' of F, however, that 
has a very strong resemblance to R, namely, R' = {[a, 1] : a E R} ~ F. 
The function cp: R--+ R', given by cp(a) =[a, 1] = a/l, is an isomorphism. 

(ii) In the proof of Proposition A-3.16, we "identified" an element r in a 
commutative ring R with the constant polynomial (r, 0, 0, ... ). We saw 
that R' = { (r, 0, 0, ... ) : r E R} is a subring of R[x], but that R is not a 
subring because it is not even a subset of R[x]. The function cp: R--+ R', 
defined by cp(r) = (r, 0, 0, ... ), is an isomorphism. 

14The word homomorphism comes from the Greek homo meaning "same" and morph mean
ing "shape" or "form." Thus, a homomorphism carries a ring to another ring (its image) of similar 
form. The word isomorphism involves the Greek iso meaning "equal,'' and isomorphic rings have 
identical form. 
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(iii) If S is a subring of a commutative ring R, then the inclusion i: S --+ R 
is a homomorphism because we have insisted that the identity 1 of R 
lies in S. We have seen (in Example A-3.7) that the unit in the Boolean 
ring 2X is X. Thus, if Y is a proper subset of X, then the inclusion 
i: 2Y --+ 2x is not a homomorphism even though it preserves addition 
and multiplication, for i(Y) = Y-:/:- X. ,... 

Example A-3.24. 

(i) Complex conjugation z = a+ib Hz= a-ibis a homomorphism C--+ C, 
because I= 1, z + w = z + w, and zw = z w; it is a bijection because 
z = z (so that it is its own inverse), and so it is an isomorphism. 

(ii) Here is an example of a homomorphism of rings that is not an isomor
phism. Choose m 2 2 and define cp: Z--+ Zm by cp(n) = [n]. Notice that 
cp is surjective (but not injective). More generally, if R is a commutative 
ring with its unit denoted by e, then the function x: Z --+ R, defined by 
x(n) = ne, is a homomorphism. .... 

The next theorem is of fundamental importance, and so we give full details 
of its proof. In language to be introduced later, it says that the polynomial ring 
R[x1, ... , xn] is the free commutative R-algebra generated by the indeterminates. 

Theorem A-3.25. Let R and S be commutative rings, and let cp: R --+ S be a 
homomorphism. If s1, ... , Sn E S, then there exists a unique homomorphism 

cl>: R[x1, ... , Xn] --+ S 

with cl>(xi) =Si for all i and ci>(r) = cp(r) for all r E R. 

Proof. The proof is by induction on n 2 1. If n = 1, denote x1 by x and s1 bys. 
Define cl>: R[x] --+Sas follows: if f(x) = l:::i rixi, then 

cl>: ro + rix + · · · + rnXn H cp(ro) + cp(r1)s + · · · + cp(rn)sn =cl>{!) 

(cl> is well-defined because of Corollary A-3.20, uniqueness of coefficients.) This 
formula shows that cl>(x) =sand ci>(r) = cp(r) for all r ER. 

Let us prove that cl> is a homomorphism. First, cl>(l) = cp(l) = 1, because cp is 
a homomorphism. Second, if g(x) = ao + a1x + · · · + amxm, then 

cl>{!+ g) = ci>(~)ri + ai)xi) = L cp(ri + ai)si 
i i 

= L(cp(ri) + cp(ai))si = L cp(ri)si + L cp(ai)i 
i i i 

=cl>{!)+ ci>(g). 

Third, let f (x )g(x) = L:::k ckxk, where Ck = l:::i+j=k riaj. Then 

cl>(f g) = ci>(L ckxk) = L cp(ck)sk 
k k 

= L cp( L riaj)sk = L( L cp(ri)cp(aj))sk. 
k i+j=k k i+j=k 
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On the other hand, 

<JJ(f)<JJ(g) = (L <p(ri)si) (L <p(aj)si) = L( L <p(ri)<p(ai))sk. 
i j k i+j=k 

Uniqueness of <fl is obvious: if B: R[x]---+ Sis a homomorphism with B(x) =sand 
B(r) = <p(r) for all r ER, then B(ro+r1x+· · +rdxd) = <p(ro)+<p(r1)s+ · +<p(rd)sd. 

We have completed the proof of the base step. For the inductive step, define 
A = R[x1 , ••• , xn]; the inductive hypothesis gives a homomorphism 'ljJ: A ---+ S with 
'l/;(xi) = Si for all i :::; n and 'l/;(r) = <p(r) for all r E R. The base step gives a 
homomorphism W: A[Xn+il -7 s with W(Xn+i) = Sn+i and w(a) = 'l/;(a) for all 
a EA. The result follows because R[x1, ... , Xn+d = A[xn+i], w(xi) = 'l/;(xi) =Si 
for all i:::; n, W(Xn+i) = 'l/;(Xn+i) = Sn+l> and w(r) = 'l/;(r) = <p(r) for all r ER. • 

Definition. If R is a commutative ring and a E R, then evaluation at a is the 
function ea: R(x] -7 R, defined by ea(f(x)) = f(a); that is, ea(Li rixi) =Li riai. 

Recall, given a polynomial f ( x) E R( x], that its polynomial function /" : R ---+ R 
is defined by f~: b 1-t f(b). Hence, ea(!) = f~(a). 

Corollary A-3.26. If R is a commutative ring, then evaluation ea: R(x] ---+ R is 
a homomorphism for every a E R. 

Proof. Setting R = S, <p = lR, and <JJ(x) =a in Theorem A-3.25 gives <fl= ea. • 

For example, if Risa commutative ring and a E R, then f (x) = q(x )g(x) +r(x) 
in R[x] implies, for all a E R, that f(a) = q(a)g(a) + r(a) in R. 

Corollary A-3.27. If R and S are commutative rings and <p: R ---+ S is a homo
morphism, then there is a homomorphism <p*: R(x]---+ S[x] given by 

<p*: ro + r1x + r2x2 + · · · 1-t <p(ro) + <p(r1)x + <p(r2)x2 + · · · . 

Moreover, <p* is an isomorphism if <p is. 

Proof. That <p* is a homomorphism is a special case of Theorem A-3.25. If <p is 
an isomorphism, then (<p- 1)* is the inverse of <p*. • 

For example, the homomorphism rm: Z -7 Zm, reduction mod m, gives the 
homomorphism rm*: Z(x]---+ Zm[x] which reduces all coefficients mod m. 

Certain properties of a homomorphism <p: A ---+ R follow from its being a 
homomorphism between the additive groups A and R. For example, <p(O) = 0, 
<p(-a) = -<p(a), and <p(na) = n<p(a) for all n E Z. 

Proposition A-3.28. Let <p: A ---+ R be a homomorphism. 

(i) <p(an) = <p(a)n for all n ~ 0 for all a E A. 

(ii) If a E A is a unit, then <p(a) is a unit and <p(a- 1) = <p(a)- 1 , and so 
<p(U(A)) ~ U(R), where U(A) is the group of units of A. Moreover, if <p 
is an isomorphism, then U(A) ~ U(R) (as groups). 
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Proof. 

(i) Induction on n 2: 0. 

(ii) If ab= 1, then 1 = <p(ab) = <p(a)<p(b). • 

Definition. If <p: A -+ R is a homomorphism, then its kernel 15 is 

ker<p ={a EA with <p(a) = O} 

and its image is 

im<p = {r ER: r = <p(a) for some a ER}. 

Notice that if we forget their multiplications, then the rings A and R are addi
tive abelian groups and these definitions coincide with the group-theoretic ones. 

Let k be a commutative ring, let a E k, and let ea: k[x] -+ k be the evaluation 
homomorphism f(x) f-t f(a). Now ea is always surjective, for if b E k, then 
b =ea(!), where f(x) = x - a+ b (indeed, b = ea(g), where g is the constant b). 
By definition, kerea consists of all those polynomials g(x) for which g(a) = 0. 

The kernel of a group homomorphism is not merely a subgroup; it is a normal 
subgroup; that is, it is also closed under conjugation by any element in the ambient 
group. Similarly, if R is not the zero ring, the kernel of a ring homomorphism 
<p: A -+ R is never a subring because ker<p does not contain 1: <p(l) = 1 =f. 0. 
However, we shall see that ker <p is not only closed under multiplication, it is closed 
under multiplication by every element in the ambient ring. 

Definition. An ideal in a commutative ring R is a subset I of R such that 

(i) 0 E J, 

(ii) if a, b E J, then a+ b E J, 16 

(iii) if a E I and r E R, then ra E J. 

This is the same notion that arose in the proof that gcd(a, b) is a linear com
bination of a and b (see Exercise A-2.14 on page 16). 

The ring R itself and (0), the subset consisting of 0 alone, are always ideals in 
a commutative ring R. An ideal I =f. R is called a proper ideal. 

Proposition A-3.29. If <p: A -+ R is a homomorphism, then ker <p is an ideal 
in A and im<p is a subring of R. Moreover, if A and R are not zero rings, then 
ker <p is a proper ideal. 

Proof. ker <p is an additive subgroup of A; moreover, if u E ker <p and a E A, then 
<p(au) = <p(a)<p(u) = <p(a) · 0 = 0. Hence, ker<p is an ideal. If R is not the zero 
ring, then 1 =I- O; hence, ker <p is a proper ideal in A (the identity 1 tt ker <p because 
<p(l) = 1=I-0). It is routine to check that im<p is a subring of R. • 

15 Kernel comes from the German word meaning "grain" or "seed" (corn comes from the 
same word). Its usage here indicates an important ingredient of a homomorphism. 

16In contrast to the definition of subring, it suffices to assume that a + b E I instead of 
a-b EI. If I is an ideal and b EI, then (-l)b EI, and so a-b= a+ (-l)b EI. 



Homomorphisms 51 

Proposition A-3.30. A homomorphism cp: A --+ R is an injection if and only if 
kercp = (0). 

Proof. If cp is an injection, then a of. 0 implies cp(a) of. cp(O) = 0, and so a tj. kercp; 
hence kercp = (0). Conversely, if cp(a) = cp(b), then cp(a - b) = 0 and a - b E kercp; 
since ker cp = (0), we have a = b and so cp is an injection. • 

Example A-3.31. 

(i) If an ideal I in a commutative ring R contains 1, then I = R, for now 
I contains r = rl for every r E R. Indeed, if I contains a unit u, then 
I= R, for then I contains u-1u = 1. 

(ii) It follows from (i) that if R is a field, then the only ideals I in R are 
(0) and R itself: if I of. (0), it contains some nonzero element, and every 
nonzero element in a field is a unit. 

Conversely, assume that R is a nonzero commutative ring whose only 
ideals are R itself and (0). If a E Rand a of. 0, then (a) = {ra : r E R} 
is a nonzero ideal, and so (a) = R; hence, 1 E R = (a). Thus, there is 
r E R with 1 = ra; that is, a has an inverse in R, and so R is a field. .,,.. 

Corollary A-3.32. If k is a field and cp: k --+ R is a homomorphism, where R is 
not the zero ring, then cp is an injection. 

Proof. The only proper ideal in k is (0), by Example A-3.31, so that ker cp = (0) 
and cp is an injection. • 

Definition. If bi, b2, ... , bn lie in R, then the set of all linear combinations 

I= {r1b1 +r2b2 + · ·· +rnbn: ri ER for all i} 

is an ideal in R. We write I= (bi, b2, ... , bn) in this case, and we call I the ideal 
generated by b1 , b2, ... , bn. In particular, if n = 1, then 

I= (b) = {rb: r E R} 

is an ideal in R. The ideal (b) (often denoted by Rb), consisting of all the multiples 
of b, is called the principal ideal generated by b. 

Both Rand (0) are principal ideals (note that R = (1)). In Z, the even integers 
comprise the principal ideal (2). 

Theorem A-3.33. Every ideal I in Z is a principal ideal; that is, there is d E Z 
with I= (d). 

Proof. By Exercise A-2.14 on page 16. we have I= (d) for some d EI. • 

When are principal ideals equal? Here is the answer for arbitrary commutative 
rings R; a better answer can be given when R is a domain. 

Proposition A-3.34. Let R be a commutative ring and let a, b E R. If a I b and 
b I a, then (a)= (b). 
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() 2 

·I -I 

Figure A-3.4. a(t). Figure A-3.5. b(t). 

Proof. There are v, w E R with b = va and a= wb. If x E (a), then x = ra for 
some r E R, and x = ra = rwb E (b); that is, (a) ~ (b). The reverse inclusion is 
proved in the same way, and so (a)= (b). • 

Definition. Elements a and b in a commutative ring R are associates if there 
exists a unit u E R with b = ua. 

For example, in Z, the only units are ±1, and so the associates of an integer 
m are ±m. If k is a field, the only units in k(x] are the nonzero constants, and so 
the associates of a polynomial f(x) E k(x] are the polynomials uf(x), where u Ek 
and u f. 0. The only units in Z(x] are ±1, and the only associates of a polynomial 
f(x) E Z(x] are ±f(x). 

Proposition A-3.35. Let R be a domain and let a, b E R. 

(i) a I b and b I a if and only if a and b are associates. 

(ii) The principal ideals (a) and (b) are equal if and only if a and b are 
associates. 

Proof. 

(i) If a I b and b I a, there are r, s E R with b = ra and a = sb, and so 
b = ra = rsb. If b = 0, then a= 0 (because b I a); if bf. 0, then we may 
cancel it (Risa domain) to obtain 1 =rs. Hence, r ands are units, and 
a and bare associates. The converse is obvious. 

(ii) If (a) = (b), then a E (b); hence, a = rb for some r E R, and so b I a. 
Similarly, b E (a) implies a I b, and so (i) shows that a and bare associates. 
The converse follows from (i) and Proposition A-3.34. • 

Example A-3.36 (Kaplansky). We now show the hypothesis in Proposition 
A-3.35 that R be a domain is needed. Let X be the interval (0, 3]. We claim that 
there are elements a, b E C(X) (see Example A-3.10 (ii)) each of which divides the 



Homomorphisms 

other yet they are not associates. Define 

a(t) = 1 - t = b(t) 

a(t) = 0 = b(t) 

for all t E [O, 1], 

for all t E [1, 2], 

a(t) = t- 2 for all t E [2,3], 

b(t) = -t + 2 for all t E [2, 3). 

53 

If v E C(X) satisfies v(t) = 1 for all t E [O, 1) and v(t) = -1 for all t E [2, 3], 
then it is easy to see that b =av and a= bv (same v); hence, a and b divide each 
other. 

Suppose a and bare associates: there is a unit u E C(X) with b =au. As for 
v above, u(t) = 1 for all t E [O, 1) and u(t) = -1 for all t E [2, 3); in particular, 
u(l) = 1 and u(2) = -1. Since u is continuous, the Intermediate Value Theorem of 
calculus says that u(t) = 0 for some t E [1, 2). But this contradicts Exercise A-3.5 
on page 39 which says that units in C(X) are never 0. 

The ideals (a) and (b) in C(X) are equal, by Proposition A-3.34, but a and b 
are not associates. .,,.. 

Exercises 

A-3.31. (i) Let A and R be rings, let t.p: A -+ R be an isomorphism, and let 1/J: R -+ A 
be its inverse function. 

(ii) Show that 1/J is an isomorphism. 

(iii) Show that the composite of two homomorphisms (isomorphisms) is again a homo
morphism (isomorphism). 

(iv) Show that A~ R defines an equivalence relation on any set of commutative rings. 

* A-3.32. (i) If Risa nonzero commutative ring, show that R[x, y] "I- R[y, x]. 

Hint. In R[x, y] = (R[x])(y], the indeterminate y = (0, 1*,0, 0, ... ), where 1 * is 
the unit in R[x]; that is, 1 * = (1, 0, 0, ... ), where 1 is the unit in R. In R(y, x] = 
(R(y])(x], we have y = (0, 1,0,0, ... ). 

(ii) Prove there is an isomorphism cl>: R[x, y] -+ R(y, x] with cl>(x) = y, cl>(y) = x, and 
cl>(a) =a for all a E R. 

* A-3.33. (i) If (I; );EJ is a family of ideals in a commutative ring R, prove that n;EJ I; 
is an ideal in R. 

(ii) If Xis a subset of Rand (I;);EJ is the family of all those ideals in R containing X, 
then n;EJ I; is called the ideal generated by X. 

Prove that if X = {b1, ... , bn}, then n;EJ I; = (b1, ... , bn)· 

* A-3.34. If Risa commutative ring and c ER, prove that the function ip: R[x] -+ R(x], 
defined by f(x) 1--7 f(x+c), is an isomorphism. In more detail, ip(L:i Sixi) = L:i si(x+c)i. 

A-3.35. (i) Prove that any two fields having exactly four elements are isomorphic. 

Hint. If F is a field with exactly four elements, first prove that 1 + 1 = 0, and 
then show there is a nonzero element a E F with F = { 1, a, a2 , a3 }. 
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(ii) Prove that the commutative rings Z4 and lF4 (the field with four elements in Exer
cise A-3. 7 on page 39) are not isomorphic. 

* A-3.36. (i) Let k be a field that contains lFp as a subfield (e.g., k = lFp(x)). For every 
positive integer n, show that the function cpn: k --t k, given by cp(a) = aPn, is a 
homomorphism. 

(ii) Prove that every element a E lFp has a pth root (i.e., there is b E lFp with a= bP). 

A-3.37. If Risa field, show that R ~ Frac(R). More precisely, show that the homomor
phism cp: R --t Frac(R), given by cp: r 1-t [r, 1], is an isomorphism. 

* A-3.38. (i) If A and Rare domains and cp: A --t R is an isomorphism, prove that 

[a, b] 1-t [cp(a), cp(b)] 

is an isomorphism Frac(A) --t Frac(R). 

(ii) Prove that if a field k contains an isomorphic copy of Z as a subring, then k must 
contain an isomorphic copy of Q. 

(iii) Let R be a domain and let cp: R --t k be an injective homomorphism, where k is a 
field. Prove that there exists a unique homomorphism .P: Frac(R) --t k extendi~g 
cp; that is, .PIR = cp. 

* A-3.39. If Risa domain with F = Frac(R), prove that Frac(R[x]) ~ F(x). 

A-3.40. Given integers ai, ... , an, prove that their gcd is a linear combination of a1 , ... , an. 

* A-3.41. (i) If R and S are commutative rings, show that their direct product R x S 
is also a commutative ring, where addition and multiplication in R x S are defined 
coordinatewise: 

(r, s) + (r', s') = (r + r', s + s') and (r, s)(r', s') = (rr', ss'). 

(ii) Show that if m and n are relatively prime, then Zmn ~ Zm x Zn as rings. 
Hint. See Theorem A-4.84. 

(iii) If neither R nor S is the zero ring, show that R x S is not a domain. 

(iv) Show that Rx (0) is an ideal in R x S. 

(v) Show that Rx (0) is a ring isomorphic to R, but it is not a subring of Rx S. 

* A-3.42. (i) Give an example of a commutative ring R with nonzero ideals I and J such 
that In J = (0). 

(ii) If I and J are nonzero ideals in a domain R, prove that In J =/= (0). 

* A-3.43. If R and S are nonzero commutative rings, prove that 

U(R x S) = U(R) x U(S), 

where U(R) is the group of units of R. 

Hint. Show that (r, s) is a unit in Rx S if and only if r is a unit in R and s is a unit 
in S. 
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Quotient Rings 

We are now going to mimic the construction of the commutative rings Zm. 

Definition. Let I be an ideal in a commutative ring R. If a E R, then the coset 
a + I is the subset 

a+ I = {a+ i : i E I}. 

The coset a+ I is often called a mod I. The family of all cosets is denoted by R/ I: 

R/I={a+I:aER}. 

If I is an ideal in a commutative ring Rand a ER, then a Ea+ I, for 0 EI 
and a= a+ 0. 

Example A-3.37. If R = Z, I= (m), and a E Z, we show that the coset 

a+ I= a+ (m) ={a+ km: k E Z} 

is the congruence class [a] = {n E Z : n = a mod m}. If u E a+ (m), then 
u = a+ km for some k E Z. Hence, u - a= km, m I (u - a), u =a mod m, 
and u E [a]. For the reverse inclusion, if v E [a], then v = a mod m, m I (v - a), 
v - a= fm for some f, E Z, and v =a+ fm Ea+ (m). Therefore, a+ (m) =[a]. 

According to the notation introduced in the definition above, the family of 
all congruence classes mod m should be denoted by Z/(m); indeed, many authors 
denote the ideal (m) in Z by mZ and write Z/mZ. However, we shall continue to 
denote the family of all congruence classes mod m by Zm. <Ill 

Given an ideal I in a commutative ring R, the relation = on R, defined by 

a= b if a - b EI, 

is called congruence mod I; it is an equivalence relation on R, and its equivalence 
classes are the cosets (Exercise A-3.44 on page 61). It follows that the family of 
all cosets is a partition of R; that is, cosets are nonempty, R is the union of the 
cosets, and distinct cosets are disjoint: if a+ I"!- b +I, then (a+ I) n (b +I) = 0. 

Proposition A-3.38. Let I be an ideal in a commutative ring R. If a, b E R, then 
a + I = b + I if and only if a - b E I. In particular, a + I = I if and only if a E I. 

Proof. If a+ I= b +I, then a E b +I; hence, a= b + i for some i E I, and so 
a - b = i EI. 

Conversely, assume that a - b E I; say, a - b = i. To see whether a+ I ~ b +I, 
we must show that if a+ i' E a+ I, where i' E I, then a+ i' E b +I. But 
a + i' = ( b + i) + i' = b + ( i + i') E b + I (for ideals are closed under addition). The 
reverse inclusion, b +I~ a+ I, is proved similarly. Therefore, a+ I= b +I. • 

We know that Zm, the family of all congruence classes, is a commutative ring. 
We now show that R/ I is a commutative ring for every commutative ring R and 
ideal I in R. 
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Definition. Let R be a commutative ring and I be an ideal in R. Define addition 
a: R/I x R/I--+ R/I by 

a: (a + I, b + I) t-+ a + b + I, 

and multiplication µ: R/ I x R/ I --+ R/ I by 

µ: (a+ I, b +I) t-+ ab+ I. 

Lemma A-3.39. Addition and multiplication R/ I x R/ I --+ R/ I are well-defined 
functions. 

Proof. Assume that a+ I= a'+ I and b +I= b' +I; that is, a - a' E I and 
b- b' E J. 

To see that addition is well-defined, we must show that a' + b' +I = a+ b +I. 
But 

(a'+ b') - (a+ b) = (a' - a) + (b' - b) E I, 

as desired. 

To see that multiplication R/ I x R/ I --+ R/ I is well-defined, we must show 
that (a'+ I)(b' +I) = a'b' +I= ab+ I; that is, ab - a'b' E J. But this is true: 

ab - a'b' =ab - a'b + a'b - a'b' =(a - a')b + a'(b - b') E J. • 

Theorem A-3.40. If I is an ideal in a commutative ring R, then R/ I is a com
mutative ring. 

Proof. Each of the axioms in the definition of commutative ring must be verified; 
all are routine, for they are inherited from the corresponding property in R. 

(i) (a+ I)+ (b +I)= a+ b +I= b +a+ I= (b +I)+ (a+ I). 

(ii) The zero element is I= 0 +I, for I+ (a+ I)= 0 +a+ I= a+ I. 

(iii) The negative of a+ I is -a+ I, for (a+ I)+ (-a+ I) = 0 +I= I. 

(iv) Associativity of addition: 

[(a+ I)+ (b +I)]+ (c +I)= (a+ b +I)+ (c +I) 

=[(a+ b) + c] +I= [a+ (b + c)] +I 

=(a+ I)+ (b + c +I)= (a+ I)+ [(b +I)+ (c +I)]. 

(v) (a+ I)(b +I)= ab+ I= ba +I= (b + I)(a +I). 

(vi) The unit is 1 +I for (1 + I)(a +I) = la+ I= a+ I. 

(vii) Associativity of multiplication: 

[(a+ I)(b + J)](c +I)= (ab+ I)(c +I) 

= [(ab)c] +I= [a(bc)] +I 

=(a+ I)(bc +I)= (a+ I)[(b + I)(c + J)]. 
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(viii) Distributivity: 

(a + I) [ ( b + I) + ( c + I) J = (a + I) ( b + c + I) 

= [a(b + c)] +I= (ab+ ac) +I 

= (ab + I) + ( ac + I) 

=(a+ I)(b +I)+ (a+ I)(c +I). • 
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Definition. The commutative ring Rf I just constructed is called the quotient 
ring of R modulo I; it is usually pronounced R mod I. 

We claim that the commutative rings Zf(m) and Zm are not merely isomorphic; 
they are identical. We have already seen, in Example A-3.37, that they have the 
same elements: For every a E Z, both the coset a+ (m) and the congruence class (a] 
are subsets of Z, and they are equal. These rings have the same unit, for if 1 is the 
number one, then 

1 + (m) = (1], 

and the operations coincide as well. The additions in each are the same: 

(a+ (m)) + (b + (m)) =a+ b + (m) =[a+ b] =(a]+ (b]; 

they have the same multiplication: 

(a+ (m))(b + (m)) =ab+ (m) =[ab]= (a](b]. 

Thus, quotient rings truly generalize the integers mod m. 

If I = R, then Rf I consists of only one coset, and so Rf I is the zero ring in this 
case. Since the zero ring is not very interesting, we usually assume, when forming 
quotient rings, that ideals are proper ideals. 

Definition. Let I be an ideal in a commutative ring R. The natural map is the 
function 7r: R-+ Rf I given by a t--t a+ I; that is, 7r(a) =a+ I. 

Proposition A-3.41. If I is an ideal in a commutative ring R, then the natural 
map 7r: R -+ Rf I is a surjective homomorphism and ker 7r = I. 

Proof. We know that ?r(l) = 1 +I, the unit in Rf I. To see that ?r(a + b) 
7r( a)+ ?r(b), rewrite the definition of addition ( (a+ I)+ (b +I) = a+ b +I) and use 
the definition of ?rj since a+ I= 7r(a), we have ?r(a) + 7r(b) = 7r(a + b). Similarly, 
rewrite (a+I)(b+l) =ab+! to see 7r(a)7r(b) = ?r(ab). Thus, 7r is a homomorphism. 

Now 7r is surjective: If a+ IE Rf I, then a+ I= 7r(a). 

Finally, if a E J, then 7r(a) = a+l =I, by Proposition A-3.38; thus, If; ker?r. 
For the reverse inclusion, if a E ker?r, then ?r(a) = 0 +I= I. But 7r(a) =a+ I; 
hence, I = a+ I and a E J, by Proposition A-3.38. Therefore, ker?r f; I, and so 
ker?r =I. • 

Here is the converse of Proposition A-3.29: Every ideal is the kernel of some 
homomorphism. 



58 Chapter A-3. Commutative Rings 

Corollary A-3.42. Given an ideal I in a commutative ring R, there exists a 
commutative ring A and a (surjective) homomorphism cp: R-+ A with I= kercp. 

Proof. If we set A = R/ I, then the natural map 7r: R -+ R/ I is a homomorphism 
with I= ker7r. • 

We know that isomorphic commutative rings are essentially the same, being 
"translations" of each other; that is, if cp: R -+ S is an isomorphism, we may think 
of r ER as being in English while cp(r) ES is in French. The next theorem shows 
that quotient rings are essentially images of homomorphisms. It also shows how to 
modify any homomorphism to make it an isomorphism. 

Theorem A-3.43 (First17 Isomorphism Theorem). Let Rand A be commu
tative rings. If cp: R -+ A is a homomorphism, then ker cp is an ideal in R, im cp is 
a subring of A, and 

R/kercp ~ imcp. 

In the diagram below, 7r: R -+ R/ I is the natural map, i: im cp -+ A is the 
inclusion, and the composite icp7r = cp: 

R/I~imcp. 
'P 

Proof. Let I = ker cp. We have already seen, in Proposition A-3.29, that I is an 
ideal in R and im cp is a subring of A. 

Define cp: R/ I -+ im cp by 

cp(r +I)= cp(r). 

We claim that cp is an isomorphism. First, cp is well-defined: If r +I= s +I, then 
r - s EI= kercp, cp(r - s) = 0, and cp(r) = cp(s). Hence 

Now 

cp(r +I)= cp(r) = cp(s) = cp(s +I). 

'P((r +I)+ (s +I))= cp(r + s +I) 

= cp(r + s) = cp(r) + cp(s) 

= cp(r +I)+ cp(s +I). 

Similarly, 'P((r + I)(s +I)) = cp(r + I)cp(s +I). As cp(l +I) = cp(l) = 1, we see 
that cp a homomorphism. 

17There is an analogous result for homomorphisms of groups, as well as second and third 
isomorphism theorems. There are also second and third isomorphism theorems for rings, but they 
are not as useful as those for groups (see Exercise A-3.53 on page 62). 
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We show that cp is surjective. If a E imrp, then there is r ER with a= rp(r); 
plainly, a= rp(r) = cp(r +I). 

Finally, we show that cp is injective. If cp(r +I) = 0, then rp(r) = 0, and 
r E ker rp = I. Hence, r + I = I; that is, ker cp = {I} and cp is injective, by 
Proposition A-3.30. Therefore, cp is an isomorphism. • 

Here's a trivial example. If R is a commutative ring, then (0) is an ideal. 
The identity lR: R-+ Risa surjective homomorphism with ker lR = (0), so that 
the First Isomorphism Theorem gives the isomorphism IR: R/(O) -+ R; that is, 
R/(O) ~ R. 

Example A-3.44. Here is a more interesting example. The usual construction of 
the complex numbers (['. regards the euclidean plane JR2 as a vector space over JR, 
views points (a, b) as a + ib, and defines multiplication 

(a, b)(c, d) = (ac - bd, ad+ be). 

Quotient rings give a second construction of C. 

By Theorem A-3.25, there is a homomorphism rp: JR[x]-+ (['.with rp(x) = i and 
rp( a) = a for all a E JR; that is, 

rp: f(x) = ao + aix + a2x2 + · · · r-+ f(i) = ao + aii + a2i2 + · · · 

( rp is almost evaluation at i; in fact, rp is the restriction to JR[x] of evaluation 
ei: C[x] -+ C). Now rp is surjective, for a+ ib = rp(a +bx), and so the First 
Isomorphism Theorem gives an isomorphism cp: JR[x]/kerrp-+ C, namely, f(x) + 
ker rp r-+ f ( i). We claim that ker rp = ( x2 +1), the principal ideal generated by x2 +1. 
Since rp(x2 +1) = i 2 +1=0, we have x 2 +1 E kerrp and hence (x2 +1) ~ kerrp. 
For the reverse inclusion, if g(x) E JR[x] lies in ker rp, then g( i) = O; that is, i is a 
root of g(x). We will see in Example A-3.85 that the reverse inclusion does hold, 
so that JR[x]/(x2 +1) ~(['.as commutative rings, and so quotient rings give another 
proof of the existence of C. .,.. 

Consider the homomorphism x: Z -+ k, defined by x(n) = nf, where k is a 
commutative ring and f denotes the unit in k (if n > 0, then nf is the sum of n 
copies off; if n < 0, then nf is the sum of lnl copies of-£). We are now going to 
examine im x when k is a field, for it is intimately related to prime fields. 

Definition. If k is a field, the intersection of all the subfields of k is called the 
prime field of k. 

If X is a subset of a field, define (X), the subfield generated by X, to be 
the intersection of all the subfields containing X (recall that every intersection of 
subfields is a subfield); (X) is the smallest such subfield in the sense that any 
subfield F containing X must contain (X). In particular, the prime field is the 
subfield generated by 1. For example, the prime field of C is Q, because every 
subfield of C contains Q: in fact, every subring contains Z, and so every subfield 
contains 1/n for every nonzero n E Z. 
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Proposition A-3.45. Let k be a field with unite, and let x: Z--+ k be the homo
morphism x: n 1-t ne. 

(i) Either imx ~ Z or imx ~ 1Fp for some prime p. 

(ii) The prime field of k is isomorphic to Q or to 1Fp for some prime p. 

Proof. 

(i) Since every ideal in Z is principal, ker x = (m) for some integer m;::: 0. 
If m = 0, then x is an injection, and im x ~ z. If m =I 0, the First 
Isomorphism Theorem gives Zm = Z/(m) ~ imx ~ k. Since k is a field, 
im x is a domain, and so m is prime (otherwise Zm has zero divisors). 
Writing p instead of m, we have imx ~ Zp = 1Fp· 

(ii) Suppose that im x ~ Z. By Exercise A-3.38 on page 54, there is a field 
Q ~ Frac(Z) = Q with imx ~ Q ~ k. Now Q is the prime field of k, for 
it is the subfield generated by e. 

In case imx ~ 1Fp, then imx must be the prime field of k, for it is a 
field which is obviously the subfield generated by e. • 

This last result is the first step in classifying different types of fields. 

Definition. A field k has characteristic 0 if its prime field is isomorphic to Q; it 
has characteristic p if its prime field is isomorphic to IF P for some prime p. 

The fields Q, ~. C, and C(x) have characteristic 0, as does any subfield of them. 
Every finite field has characteristic p for some prime p (after all, Q is infinite); IF P ( x), 
the field of all rational functions over 1Fp, is an infinite field of characteristic p. 

We have seen finite fields 1Fp with p elements, for every prime p, and in Exer
cise A-3.7 on page 39, we saw a field IF4 with exactly four elements. The next result 
shows that the number of elements in a finite field must be a prime power; there is 
no field having exactly 15 elements. 

It's easy to see that if a commutative ring R contains a subring k which is a 
field, then R is a vector space over k: vectors are elements r E R, while scalar 
multiplication by a E k is the given multiplication ar of elements in R. 

Recall that if K is a vector space over k, its dimension is denoted by dimk(K) 
or, more briefly, by dim(K). 

Proposition A-3.46. If K is a finite field, then IKI = pn for some prime p and 
some n;::: 1. 

Proof. The prime field of K is isomorphic to IF P for some prime p, by Proposi
tion A-3.45. As we remarked above, K is a vector space over 1Fp; as K is finite, it 
is obviously finite-dimensional. If dimIFp(K) = n, then IKI = pn. • 

We will prove later that, for every prime p and integer n ~ 1, there exists a 
field K having exactly pn elements. Moreover, such fields are essentially unique: 
any two fields having exactly pn elements are isomorphic. 
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Exercises 

* A-3.44. Let I be an ideal in a commutative ring R. 

(i) Show that congruence mod I is an equivalence relation on R. 

(ii) Show that the equivalence classes in part (i) are the cosets mod I. 

* A-3.45. (i) If R is a domain, prove that the relation "' on R, defined by a "' b if a and 
b are associates, is an equivalence relation. 

(ii) Prove that there is a bijection between the equivalence classes of"' and the family 
of principal ideals in R (assume that Risa domain). 

* A-3.46. Prove that if k is a field of characteristic p > 0, then pa = 0 for all a E k. 

* A-3.47. For every commutative ring R, prove that R[xJ/(x) ~ R. 

A-3.48. Let R be a commutative ring and let F(R) be the commutative ring of all 
functions f: R -+ R with pointwise operations. 

(i) Show that R is isomorphic to the subring of F(R) consisting of all the constant 
functions. 

(ii) If f(x) E R[x], let l: R-+ R be the polynomial function associated to f; that is, 
l: r 1-t f(r). Show that the function r.p: R[xJ-+ F(R), defined by r.p(f) = l, is a 
ring homomorphism. 

A-3.49. Let I be an ideal in a commutative ring R. If Sis a subring of Rand I~ S, 
prove that S/ I= {r +I: r E S} is a subring of R/ I. 

* A-3.50. Let R and R' be commutative rings, and let I ~ R and I' ~ R' be ideals. If 
f: R -+ R' is a homomorphism with f(I) ~ I', prove that f.: r +I 1-t f(r) +I' is a 
well-defined homomorphism f. : R/ I -+ R' /I', which is an isomorphism if f is. 

Definition. If r.p: X-+ Y is a function and S ~ Y, then the inverse image r.p- 1 (8) is 
the subset of X, 

r.p- 1 (8) = {x EX: r.p(x) ES}. 

* A-3.51. (i) If r.p: A-+ Risa ring homomorphism, prove that ker r.p = r.p- 1 ( {O} ). 

(ii) If J is an ideal in R, prove that r.p- 1 (J) is an ideal in A. 

* A-3.52. Let I be an ideal in a commutative ring R. If J is an ideal in R containing I, 
define the subset J /I of R/ I by 

J /I = {a + I : a E J}. 

(i) Prove that 7r- 1(J/I) = J, where 7r: R-+ R/I is the natural map. 

(ii) Prove that if J /I is an ideal in R/ I. 

(iii) If I~ J ~ J' are ideals in R, prove that J/I ~ J'/I. Moreover, if J =I= J', then 
JI I =I= J' I I. 

(iv) Let L* and M* be ideals in R/I. Prove that there exist ideals Land Min R 
containing I such that L/I = L*, M/I = M*, and (L n M)/I = L* n M*. 

(v) Prove that J 1-t J /I is a bijection from the family of all those ideals in R which 
contain I to the family of all ideals in R/ I. 
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* A-3.53. Prove the Third Isomorphism Theorem: If R is a commutative ring having 
ideals I ~ J, then J /I is an ideal in R/ I and there is an isomorphism ( R/ I)/ ( J /I) ~ R/ J. 

Hint. Show that the function cp: R/I--+ R/J given by a+I t--t a+J, called enlargement 
of coset, is a homomorphism, and apply the First Isomorphism Theorem. 

From Arithmetic to Polynomials 

We are now going to see, when k is a field, that virtually all the familiar theorems 
in Z, as well as their proofs, have polynomial analogs in k[x]. 

The Division Algorithm for polynomials with coefficients in a field says that 
long division is possible. 

Theorem A-3.47 (Division Algorithm). If k is a field and f(x),g(x) E k[x] 
with f # 0, then there are unique polynomials q(x),r(x) E k[x] with 

g = qf +r, 

where either r = 0 or deg( r) < deg(!). 

Proof. We prove the existence of such q and r, but let's first dispose of some easy 
cases. If g = 0, define q = 0 and r = O; if f is a nonzero constant so, then it is a 
unit (since k is a field and s0 # 0, the inverse s01 exists), and we can set q = s01g 
and r = 0. Thus, we may assume that deg(g) is defined and that deg(!) > 0. Let 

f(x) = SnXn +···+so and g(x) = tmxn +···+to. 

The last normalizing condition: we may assume that deg(g) 2 deg(!); that is, 
m 2 n; otherwise, we may set q = 0 and r = g. 

We prove that q and r exist by induction on m = deg(g) 2 0. For the base 
step m = 0, we have g =to; set q = 0 and r = g. Note that deg(r) = deg(g) = 0 < 
deg(!), for f is not constant. For the inductive step, define 

h(x) = g(x) - tms;;, 1xm-n J(x). 

Notice that either h = 0 or deg(h) < deg(g). Now 

g = tms;;, 1xm-n f + h. 

If h = 0, we are done. If h # 0, then deg(h) < deg(g), and the inductive hypothesis 
gives q' and r with h = q' f + r, where either r = 0 or deg(r) < deg(!). In the 
latter case, 

g = (q' + tms;;,lxm-n)f + r. 

To prove uniqueness of q and r, assume that g = q' f + r', where deg(r') < 
deg(!). Then 

(q - q')f = r' - r. 

If r' # r, then each side has a degree. Since k[x] is a domain, deg((q - q')J) = 
deg(q-q') +deg(!) 2 deg(!), while deg(r' -r) :::; max{ deg(r'), deg(r)} <deg(!), a 
contradiction. Hence, r' =rand (q- q')f = 0. As f # 0, it follows that q - q' = 0 
and q = q'. • 
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Definition. If f(x) and g(x) are polynomials in k(x], where k is a field, then 
the polynomials q(x) and r(x) occurring in the Division Algorithm are called the 
quotient and the remainder after dividing g by f. 

The hypothesis that k is a field is much too strong; the existence of quotient 
and remainder holds in R(x] for any commutative ring R as long as the leading 
coefficient of f(x) is a unit in R. However, uniqueness of quotient and remainder 
may not hold if R is not a domain. 

Corollary A-3.48. Let R be a commutative ring, and let f(x) E R(x] be a monic 
polynomial. If g(x) E R[x], then there exist q(x),r(x) E R[x] with 

g(x) = q(x)f(x) + r(x), 

where either r(x) = 0 or deg(r) <deg(!). 

Proof. The proof of the Division Algorithm can be repeated here once we observe 
that c = tms~ 1 = tm ER (for Sn= 1 because f is monic). • 

The importance of the Division Algorithm arises from viewing the remainder 
as the obstruction to whether f(x) I g(x); that is, whether g E (f). To see if f I g, 
first write g = qf +rand then try to show that r = 0. 

The ideals in k[x] are quite simple when k is a field. 

Theorem A-3.49. If k is a field, then every ideal I in k[x] is a principal ideal; 
that is, there is d EI with I= (d). Moreover, if I of. (0), then d can be chosen to 
be a monic polynomial. 

Proof. If I = (0), then I is a principal ideal with generator 0. Otherwise, let d 
be a polynomial in I of least degree. We may assume that d is monic (if an is the 
leading coefficient of d, then an of. 0, and a~ 1 E k because k is a field; hence, a~1d 
is a monic polynomial in I of the same degree as d). 

Clearly, (d) s::;; I. For the reverse inclusion, let f E I. By the Division Algo
rithm, f = qd + r, where either r = 0 or deg(r) < deg(d). But r = f - qd E I; 
if r of. 0, then we contradict d being a polynomial in I of minimal degree. Hence, 
r = 0, f E (d), and I= (d). • 

It is not true that ideals in arbitrary commutative rings are always principal. 

Example A-3.50. Let R = Z[x], the commutative ring of all polynomials over Z. 
It is easy to see that the set I of all polynomials with even constant term is an ideal 
in Z[x]. We show that I is not a principal ideal. 

Suppose there is d(x) E Z[x] with I= (d). The constant 2 E I, so that there 
is f(x) E Z[x] with 2 = df. Since the degree of a product is the sum of the degrees 
of the factors, 0 = deg(2) = deg(d) +deg(!). Since degrees are nonnegative, it 
follows that deg(d) = 0 (i.e., d(x) is a nonzero constant). As constants here are 
integers, the candidates ford are ±1 and ±2. Supposed= ±2; since x EI, there 
is g(x) E Z[x] with x = dg = ±2g. But every coefficient on the right side is even, 
while the coefficient of x on the left side is 1. This contradiction gives d = ±1. By 
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Example A-3.31, I= Z[x], another contradiction. Therefore, no such d(x) exists; 
that is, I is not a principal ideal. <1111 

We now turn our attention to roots of polynomials. 

Definition. If f(x) E k[x], where k is a field, then a root off in k is an element 
a E k with f(a) = 0. 

Remark. The polynomial f(x) = x2 - 2 has its coefficients in Q, but we usually 
say that v'2 is a root of f even though v'2 is irrational; that is, v'2 ~ Q. We shall 
see later, in Theorem A-3.90, that for every polynomial f(x) E k[x], where k is any 
field, there is a larger field E that contains k as a subfield and that contains all the 
roots off. For example, x2 - 2 E lFa[x] has no root in lF3 , but we shall see that a 
version of v'2 does exist in some (finite) field containing JF3 . <1111 

Lemma A-3.51. Let f(x) E k[x], where k is a field, and let u Ek. Then there is 
q(x) E k[x] with 

f(x) = q(x)(x - u) + f(u). 

Proof. The Division Algorithm gives 

f(x) = q(x)(x - u) + r; 
the remainder r is a constant because x - u has degree 1. By Corollary A-3.26, 
evaluation at u is a ring homomorphism; hence, f(u) = q(u)(u - u) + r, and so 
f(u) = r. • 

There is a connection between roots and factoring. 

Proposition A-3.52. If f(x) E k[x], where k is a field, then a is a root off ink 
if and only if x - a divides f in k[x]. 

Proof. If a is a root off in k, then f(a) = 0 and Lemma A-3.51 gives f(x) = 
q(x)(x - a). Conversely, if f(x) = q(x)(x - a), then evaluating at a gives f(a) = 
q(a)(a - a) = 0. • 

Theorem A-3.53. Let k be a field and let f(x) E k[x). If f has degree n, then f 
has at most n roots in k. 

Proof. We prove the statement by induction on n ;::=: 0. If n = 0, then f is a 
nonzero constant, and so the number of its roots ink is zero. Now let n > 0. If f 
has no roots in k, we are done, for 0 :::; n. Otherwise, we may assume that f has a 
root a E k. By Proposition A-3.52, 

f(x) = q(x)(x - a); 

moreover, q(x) E k[x) has degree n-1. If there is another root off ink, say b =Fa, 
then applying the evaluation homomorphism eb gives 

0 = f(b) = q(b)(b - a). 

Since b - a =F 0, we have q(b) = 0 (fork is a field, hence a domain), so that bis a 
root of q. Now deg(q) = n - 1, so that the inductive hypothesis says that q has at 
most n - 1 roots in k. Therefore, f has at most n roots in k. • 
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Example A-3.54. Theorem A-3.53 is not true for polynomials with coefficients 
in an arbitrary commutative ring R. For example, if R =Zs, then the quadratic 
polynomial x2 - 1 E Z8 (x] has four roots in R, namely, (1], (3], (5], and (7]. On the 
other hand, Exercise A-3.60 on page 73 says that Theorem A-3.53 remains true if 
we assume that the coefficient ring R is a domain. • 

Corollary A-3.55. Every nth root of unity in C is equal to 

e21rik/n = cos(27rk/n) + isin(27rk/n), 

where k = 0, 1, 2, ... , n - 1. 

Proof. Each of the n different complex numbers e21rik/n is an nth root of unity; 
that is, each is a root of xn -1. By Theorem A-3.53, there can be no other complex 
roots. • 

Recall that every polynomial f(x) E k[x] determines the polynomial function 
f~: k --+ k that sends a into f(a) for all a E k. In Exercise A-3.24 on page 45, 
however, we saw that the nonzero polynomial xP-x E 1Fp[x] determines the constant 
function zero. This pathology vanishes when the field k is infinite. 

Corollary A-3.56. Let k be an infinite field and let f(x) and g(x) be polynomials 
in k[x]. If f and g determine the same polynomial function (that is, f(a) = g(a) 
for all a Ek), then f = g. 

Proof. If f =f. g, then the polynomial h(x) = f(x) - g(x) is nonzero, so that it has 
some degree, say, n. Now every element of k is a root of h; since k is infinite, h has 
more than n roots, and this contradicts the theorem. • 

This proof yields a more general result. 

Corollary A-3.57. Let k be a (possibly finite) field, let f (x ), g(x) E k[x], and let 
deg(!) :::; deg(g) = n. If f(a) = g(a) for n + 1 elements a Ek, then f = g. 

Proof. If f =f. g, then deg(! - g) is defined, deg(! - g) :::; n, and f - g has too 
many roots. • 

We now generalize Corollary A-3.56 to polynomials in several variables. Denote 
then-tuple (xi, ... , Xn) by X. 

Proposition A-3.58. Let f(X),g(X) E k(X] = k[x1, ... ,xn], where k is an infi
nite field. 

(i) If f(X) is nonzero, then there are ai, ... , an Ek with f(a1, ... , an) =f. 0. 

(ii) If f(a1, ... , an)= g(a1, ... , an) for all (a1, ... , an) E kn, then f = g. 

Proof. 

(i) The proof is by induction on n 2: 1. If n = 1, then the result is Corol
lary A-3.56, for if f(a) = 0 for all a E k, then f = 0. For the inductive 
step, assume that 

f (x1, ... , Xn+i) = Bo + B1Xn+1 + B2x~+l + · · · + BrX~+l • 
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where Bi E k[xi, ... , Xn] and Br = Br(Xi, ... , Xn) =/:- 0. By induc-
tion, there are ai, ... , an E k with Br(ai, ... , an) =f. 0. Therefore, 
f(a1, ... , an, Xn+1) = Bo(ai, ... , an)+···+ Br(ai, ... , an)X~+l =/:- 0 in 
k[Xn+il· By the base step, there is a Ek with f(a1, ... , an, a) =f. 0. 

(ii) The proof is by induction on n :'.:: 1; the base step is Corollary A-3.56. 
For the inductive step, write 

f(X,y) = LPi(X)yi and g(X,y) = Lqi(X)yi, 

where X denotes ( x1, ... , Xn). Suppose that f (a, (3) = g( a, (3) for every 
a E kn and every (3 Ek. For fixed a E kn, define Fa(Y) = LiPi(a)yi and 
Ga(Y) = Li qi(a)yi. Since both Fa(Y) and Ga(Y) are in k[y], the base 
step gives Pi(a) = qi(a) for all i and for all a E kn. By the inductive 
hypothesis, Pi(X) = qi(X) for all i, and hence 

f(X, y) = LPi(X)yi = L qi(X)yi = g(X, y). • 

Here is a nice application of Theorem A-3.53 to groups. 

Theorem A-3.59. Let k be a field. If G is a finite subgroup of the multiplicative 

group kX, then G is cyclic. In particular, if k itself is finite (e.g., k = 1Fp), then kX 
is cyclic. 

Proof. Let d be a divisor of IGI. If there are two subgroups of G of order d, say, 
S and T, then IS U Tl > d. But each a E SU T satisfies ad = 1, by Lagrange's 
Theorem, and hence it is a root of xd-1. This contradicts Theorem A-3.53, for this 
polynomial now has too many roots ink. Thus, G is cyclic, by Theorem A-4.90 (a 
group G of order n is cyclic if and only if, for each divisor d of n, there is at most 
one cyclic subgroup of order d). • 

Definition. If k is a finite field, a generator of the cyclic group kX is called a 
primitive element of k. 

Although the multiplicative groups IF; are cyclic, no explicit formula giving a 
primitive element of 1Fp for all p, say, [a(p)], is known. 

Corollary A-3.60. If p is prime, then the group of units U(Zp) is cyclic. 

Proof. We have been writing 1Fp instead of Zp, and so this follows at once from 
Theorem A-3.59. • 

The definition of a greatest common divisor of polynomials is essentially the 
same as the corresponding definition for integers. 

Definition. If f(x) and g(x) are polynomials in k[x], where k is a field, then a 
common divisor is a polynomial c(x) E k[x] with c I f and c I g. If f and gin k[x] 
are not both 0, define their greatest common divisor, abbreviated gcd, to be the 
monic common divisor having largest degree. If f = 0 = g, define gcd(!, g) = 0. 

We will prove the uniqueness of the gcd in Corollary A-3.62 below. 
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Theorem A-3.61. If k is a field and f(x), g(x) E k[x], then their gcdd(x) is a 
linear combination off and g; that is, there are s(x), t(x) E k[x] with 

d= sf +tg. 

Proof. The set (f,g) of all linear combinations off and g is an ideal in k[x]. The 
theorem is true if both f and g are 0, and so we may assume that there is a monic 
polynomial d(x) with (f,g) = (d), by Theorem A-3.49. Of course, d lying in (f,g) 
must be a linear combination: d =sf+ tg. We claim that dis a gcd. Now dis a 
common divisor, for f,g E (f,g) = (d). If his a common divisor off and g, then 
f = fih and g = g1h. Hence, d = sf+ tg = (sfi + tg1)h and h I d. Therefore, 
deg( h) :=:; deg( d), and so d is a monic common divisor of largest degree. • 

The end of the last proof gives a characterization of gcd's in k[x]. 

Corollary A-3.62. Let k be a field and let f(x), g(x) E k[x]. 

(i) A manic common divisor d(x) is the gcd if and only if d is divisible by 
every common divisor; that is, if h(x) is a common divisor, then h I d. 

(ii) f and g have a unique gcd. 

Proof. 

(i) The end of the proof of Theorem A-3.61 shows that if h is a common 
divisor, then h I d. Conversely, if h I d, then deg(h) :::; deg(d), and sod is 
a common divisor of largest degree. 

(ii) If d and d' are gcd's off and g, then d I d' and d' I d, by part (i). Since 
k[x] is a domain, d and d' are associates; since both d and d' are monic, 
we must have d = d'. • 

If u is a unit, then every polynomial f(x) is divisible by u and by uf(x). The 
analog of a prime number is a polynomial having only divisors of these trivial sorts. 

Definition. An element p in a domain R is irreducible if p is neither 0 nor a unit 
and, in every factorization p = uv in R, either u or v is a unit. 

For example, a prime p E Z is an irreducible element, as is -p (recall that 
p =f. 1). We now describe irreducible polynomials p(x) E k[x], when k is a field. 

Proposition A-3.63. If k is a field, then a polynomial p(x) E k[x] is irreducible 
if and only if deg(p) = n ~ 1 and there is no factorization in k[x] of the form 
p(x) = g(x)h(x) in which both factors have degree smaller than n. 

Proof. We show first that a polynomial h(x) E k[x] is a unit if and only if 
deg(h) = 0. If h(x)u(x) = 1, then deg(h) + deg(u) = deg(l) = O; since degrees are 
nonnegative, we have deg(h) = 0. Conversely, if deg(h) = 0, then h(x) is a nonzero 
constant; that is, h E k; since k is a field, h has a multiplicative inverse. 

If p(x) is irreducible, then its only factorizations are of the form p(x) = 
g(x)h(x), where g or his a unit; that is, where either deg(g) = 0 or deg(h) = 0. 
Hence, p has no factorization in which both factors have smaller degree. 
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Conversely, if p is not irreducible, it has a factorization p(x) = g(x)h(x) in 
which neither g nor h is a unit; that is, since k is a field, neither g nor h has 
degree 0. Therefore, p is a product of polynomials of smaller degree. • 

As the definition of divisibility depends on the ambient ring, so irreducibility 
of a polynomial p(x) E k[x] also depends on the field k. For example, p(x) = x2 +1 
is irreducible in R[x], but it factors as (x + i)(x - i) in C[x]. On the other hand, a 
linear polynomial f(x) E k[x] must be irreducible. 

If k is not a field, however, then this characterization of irreducible polynomials 
no longer holds. For example, 2x + 2 = 2(x + 1) is not irreducible in Z[x], but, in 
any factorization, one factor must have degree 0 and the other degree 1; but 2 is 
not a unit in Z[x]. 

When k is a field, the units are the nonzero constants, but this is no longer true 
for more general rings of coefficients (for example, Exercise A-3.23(ii) on page 45 
says that [2]x + [1] is a unit in Z4[x]). 

Corollary A-3.64. Let k be a field and let f(x) E k[x] be a quadratic or cubic 
polynomial. Then f is irreducible in k[x] if and only if f has no roots ink. 

Proof. An irreducible polynomial of degree > 1 has no roots in k, by Propo
sition A-3.52. Conversely, if f is not irreducible, then f(x) = g(x)h(x), where 
neither g nor h is constant; thus, neither g nor h has degree 0. Since deg(!) = 
deg(g) + deg(h), at least one of the factors has degree 1 and, hence, f has a root . 

• 
It is easy to see that Corollary A-3.64 can be false if deg(!) ;::: 4. For example, 

f(x) = x4 + 2x2 + 1 = (x2 + 1)2 factors in R[x], yet it has no real roots. 

Let us now consider polynomials f ( x) E Q [ x] . If the coefficients of f ( x) happen 
to be integers, there is a useful lemma of Gauss comparing its factorizations in Z[x] 
and in Q[x]. 

Theorem A-3.65 (Gauss's Lemma).18 Let f(x) E Z[x]. If f(x) = G(x)H(x) 
in Q[x], where deg(G),deg(H) < deg(!), then f(x) = g(x)h(x) in Z[x], where 
deg(g) = deg(G) and deg(h) = deg(H). 

Proof. Clearing denominators, there are positive integers n', n" such that g( x) = 
n'G(x) and h(x) = n"H(x). Setting n = n'n", we have 

nf(x) = n'G(x)n"H(x) = g(x)h(x) in Z[x]. 

If p is a prime divisor of n, consider the map Z[x] --+ 1Fp[x], denoted by g H g, 
which reduces all coefficients mod p. The equation becomes 

0 = g(x)h(x). 

But 1Fp[x] is a domain, because 1Fp is a field, and so at least one of these factors, say 
g(x), is O; that is, all the coefficients of g(x) are multiples of p. Therefore, we may 

18There is a deeper version of Gauss's Lemma for polynomials in several variables. 
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write g(x) = pg'(x), where all the coefficients of g'(x) lie in z. If n =pm, then 

pmf(x) = pg'(x)h(x) in Z(x]. 

Cancel p, and continue canceling primes until we reach a factorization f(x) 
g*(x)h*(x) in Z(x] (note that deg(g*) = deg(g) and deg(h*) = deg(h)). • 
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The contrapositive version of Gauss's Lemma is more convenient to use. If 
f(x) E Z[x] has no factorization in Z(x] as a product of two polynomials, each 
having degree smaller than deg(!), then f is irreducible in Q[x]. 

It is easy to see that if p(x) and q(x) are irreducible polynomials, then p I q if 
and only if they are associates: there is a unit u with q(x) = up(x). If, in addition, 
both p and q are monic, then p I q implies p = q. 

Lemma A-3.66. Let k be a field, let p(x), f(x) E k[x], and let d(x) = gcd(p, !). 
If p is a manic irreducible polynomial, then 

d(x) = {pl(x) if pf f, 
ifp If. 

Proof. Since d I p, we have d = 1 or d = p. • 

Theorem A-3.67 {Euclid's Lemma). Let k be a field and let f(x), g(x) E k[x]. 
If p(x) is an irreducible polynomial in k[x], and p I f g, then either 

p If or p I g. 

More generally, if p I fi(x) · · · fn(x), then p I Ii for some i. 

Proof. Assume that p I f g but that pf f. Since pis irreducible, gcd(p, f) = 1, 
and so 1 = sp + tf for some polynomials sand t. Therefore, 

g = spg + tfg. 

But p If g, by hypothesis, and sop I g. • 

Definition. Two polynomials f(x),g(x) E k[x], where k is a field, are called rel
atively prime if their gcd is 1. 

Corollary A-3.68. Let f(x),g(x),h(x) E k(x], where k is afield, and let hand f 
be relatively prime. If h I f g, then h I g. 

Proof. The proof of Theorem A-3.67 works here: since gcd(h, !) = 1, we have 
1 = sh+tf, and so g = shg+tf g. But f g = hh1 for some hi, and so g = h(sg+th1) . 

• 
Definition. If k is a field, then a rational function f(x)/g(x) E k(x) is in lowest 
terms if f(x) and g(x) are relatively prime. 

Proposition A-3.69. If k is a field, every nonzero f(x)/g(x) E k(x) can be put 
in lowest terms. 

Proof. If f = df' and g = dg', where d = gcd(f,g), then f' and g' are relatively 
prime, and so f 1 / g' is in lowest terms. • 
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The next result allows us to compute gcd's. 

Theorem A-3. 70 (Euclidean Algorithms). If k is afield and f(x),g(x) E k[x], 
then there are algorithms for computing gcd(f, g), as well as for finding a pair of 
polynomials s(x) and t(x) with 

gcd(f, g) = sf+ tg. 

Proof. The proof is essentially a repetition of the proof of the Euclidean Algorithm 
in Z; just iterate the Division Algorithm: 

g = qif +ri, 

f = q2r1 + r2, 

r1 = q3r2 + r3, 

rn-3 = qn-lrn-2 + rn-1, 

Tn-2 = qnrn-1 + rn, 

Tn-1 = qn+1rn. 

Since the degrees of the remainders are strictly decreasing, this procedure must 
stop after a finite number of steps. The claim is that d = rn is the gcd, once it is 
made monic. We see that d is a common divisor of f and g by back substitution: 
work from the bottom up. To see that d is the gcd, work from the top down to 
show that if c is any common divisor off and g, then c I ri for every i. Finally, to 
finds and t with d =sf+ tg, again work from the bottom up: 

rn = rn-2 - qnrn-1 

= rn-2 - qn(rn-3 - qn-1rn-2) 

= (1 + qnqn-1)rn-2 - qnrn-3 

=sf+ tg • 

Here is an unexpected bonus from the Euclidean Algorithm. We are going to 
see that, even though there are more divisors with complex coefficients, the gcd of 
x3 -2x2 +x- 2 and x 4 -1 computed in IR.[x] is equal to their gcd computed in C[x]. 

Corollary A-3. 71. Let k be a subfield of a field K, so that k[x] is a subring of 
K[x]. If f(x),g(x) E k[x], then their gcd in k[x] is equal to their gcd in K[x]. 

Proof. The Division Algorithm in K[x] gives 

g(x) = Q(x)f(x) + R(x), 

where Q(x), R(x) E K[x]; since f, g E k[x], the Division Algorithm in k[x] gives 

g(x) = q(x)f(x) + r(x), 

where q(x), r(x) E k[x]. But the equation g(x) = q(x)f(x) + r(x) also holds in 
K[x] because k[x] ~ K[x], so that the uniqueness of quotient and remainder in 
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the Division Algorithm in K(x] gives Q(x) = q(x) E k(x] and R(x) = r(x) E k(x]. 
Therefore, the list of equations occurring in the Euclidean Algorithm in K(x] is 
exactly the same list occurring in the Euclidean Algorithm in the smaller ring k[x], 
and so the last r, which is the gcd, is the same in both polynomial rings. • 

Corollary A-3.72. If f(x),g(x) E JR.(x] have no common root in C, then f,g are 
relatively prime in JR.(x]. 

Proof. Assume that d(x) = gcd(f,g) =f. 1, where d E JR.(x]. By the Fundamental 
Theorem of Algebra, d has a complex root a. By Corollary A-3.71, d = gcd(f,g) 
in C(x]. Since (x - a) I d(x) in C(x], we have (x - a) I f and (x - a) I g; that is, a 
is a common root of f and g. • 

We shall see that Corollary A-3. 72 is true more generally. A theorem of Kro
necker says that we may replace JR. by any field k: For every field k and every 
f(x) E k[x], there exists a field K containing k and all the roots off; that is, there 
are a, ai EK with f(x) =a fl(x - ai) in K[x]. 

The next result, an analog for polynomials of the Fundamental Theorem of 
Arithmetic, shows that irreducible polynomials are "building blocks" of arbitrary 
polynomials in the same sense that primes are building blocks of arbitrary integers. 
To avoid long sentences, we continue to allow "products" having only one factor. 

Theorem A-3. 73 (Unique Factorization). If k is a field, then every polynomial 
f(x) E k(x] of degree~ 1 is a product of a nonzero constant and manic irreducibles. 
Moreover, if f(x) has two such factorizations, 

f(x) = ap1(x) .. ·Pm(x) and f(x) = bq1(x) .. ·qn(x), 

that is, a and b are nonzero constants and the p's and q's are manic irreducibles, 
then a= b, m = n, and the q's may be reindexed so that Qi= Pi for all i. 

Proof. We prove the existence of a factorization for a polynomial f by induction 
on deg(!) ~ 1. If deg(!) = 1, then f(x) = ax+ c, where a =I- 0, and f(x) = 
a(x + a-1c). As any linear polynomial, x + a-1c is irreducible, and so it is a 
product of irreducibles (in our present usage of "product"). Assume now that 
deg(!) ~ 1. If the leading coefficient off is a, write f(x) = a(a-1 f(x)). If f is 
irreducible, we are done, for a- 1 f is monic. If f is not irreducible, then f = gh, 
where deg(g) <deg(!) and deg(h) <deg(!). By the inductive hypothesis, there are 
factorizations g(x) = bpi (x) .. · Pm(x) and h(x) = cq1 (x) .. · qn(x ), where b, c E k 
and the p's and q's are monic irreducibles. It follows that 

f(x) = (bc)p1(x) · · ·Pm(x)q1(x) · · ·qn(x). 

To prove uniqueness, suppose that there is an equation 

in which a and b are nonzero constants and the p's and q's are monic irreducibles. 
We prove, by induction on M = max{ m, n} ~ 1, that a= b, m = n, and the q's may 
be reindexed so that Qi = Pi for all i. For the base step M = 1, we have ap1 ( x) = 
bq1(x). Now a is the leading coefficient because p 1 is monic, while bis the leading 
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coefficient because Qi is monic. Therefore, a = b, and canceling gives Pl = Qi. For 
the inductive step, the given equation shows that Pm I Qi··· Qn· By Euclid's Lemma 
for polynomials, there is some i with Pm I Qi· But Qi, being monic irreducible, 
has no monic divisors other than 1 and itself, so that Qi = Pm. Reindexing, we 
may assume that Qn =Pm· Canceling this factor, we have ap1(x) · · ·Pm-1(x) = 
bQ1 ( x) · · · Qn-l ( x). By the inductive hypothesis, a = b, m - 1 = n - 1 (hence 
m = n) and, after reindexing, Qi =Pi for all i. • 

Unique factorization may not hold when the coefficient ring is not a domain. 
For example, in Z8 [x], we have 7 = -1, 

x2 - 1 = (x + l)(x + 7), and x2 - 1=(x+3)(x + 5). 

The reader may check that the linear factors are irreducible. 

We now collect like factors; as in Z, we allow exponents to be zero. 

Definition. Let f(x) E k[x], where k is a fi~ld. A prime factorization of f(x) 
is 

f(x) = ap1(xr · · · Pm(x)e"', 

where a is a nonzero constant, the Pi are distinct monic irreducible polynomials, 
and ei 2:: 0 for all i. 

Theorem A-3.73 shows that if deg(!) 2:: 1, then f has prime factorizations; 
moreover, if all the exponents ei > 0, then the factors in this prime factorization 
are unique. The statement of Proposition A-3.74 below illustrates the convenience 
of allowing some ei = 0. 

Let k be a field, and assume that there are a, r 1 , ... , rn Ek with 
n 

f(x) =a IT(x - ri)i 
i=l 

we say that f splits over k. If ri, ... , r8 , where s 5 n, are the distinct roots of 
f ( x), then a prime factorization of f ( x) is 

f (x) = a(x - r1)e1 (x - r2)e2 • • • (x - r 8 )e•. 

We call ej the multiplicity of the root rj. As linear polynomials in k[x] are 
irreducible, unique factorization shows that multiplicities of roots are well-defined. 

Let f(x),g(x) E k[x], where k is a field. As with integers, using zero expo
nents allows us to assume that the same irreducible factors occur in both prime 
factorizations: 

f = p~1 .. • p~"' and g = p~1 .. • p':;. 

Definition. If f and g are elements in a commutative ring R, then a common 
multiple is an element m E R with f I m and g I m. If f and g in R are 
not both 0, define their least common multiple, abbreviated lcm(f,g), to be a 
common multiple c of them with c I m for every common multiple m. If f = 0 = g, 
define their lcm = 0. If R = k[x], we require lcm's to be monic. 

Proposition A-3. 74. If k is afield and f(x), g(x) E k[x] have prime factorizations 
f(x) = p~1 • • • p~n and g(x) = p~1 • • • p~n in k[x], then 
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(i) f I g if and only if ai ::::; bi for all i. 

(ii) If mi= min{ai,bi} and Mi= max{ai,bi}, then 

gcd(f, g) = p1{'1 • • • P':n and lcm(f, g) = pf11 • • • p';!n. 

Proof. 

(i) If f I g, then g = fh, where h = p~1 • • • p~n and Ci 2: 0 for all i. Hence, 

g(x) =p~l "'P~n = (p~l "'P~m)(p~l .. ,p~n) =p~1+~1 "'P~n+cn. 

By uniqueness, ai+ci =bi; hence, ai ::::; ai+ci =bi. Conversely, if ai ::::; bi, 
then there is Ci 2: 0 with bi = ai +Ci· It follows that h = p~1 • • • p~n E k[x] 
and g = fh. 

(ii) Let d(x) = p1{'1 .. • P':n. Now d is a common divisor, for mi ::::; ai, bi. 
If D(x) = p~1 • • • p~n is any other common divisor, then 0 ::::; ei ::::; 
min{ ai, bi} =mi, and so D I d. Therefore, deg(D) ::::; deg(d), and d(x) is 
the gcd (for it is monic). The argument for lcm is similar. • 

Corollary A-3.75. If k is a field and f(x),g(x) E k[x] are manic polynomials, 
then 

gcd(f, g) lcm(f, g) = f g. 

Proof. The result follows from Proposition A-3.74, for mi+ Mi= ai +bi. • 

Since the Euclidean Algorithm computes the gcd in k[x] when k is a field, 
Corollary A-3. 75 computes the lcm. 

Exercises 

A-3.54. Let f(x), g(x) E Q[x] with f monic. Write a pseudocode implementing the 
Division Algorithm with input f,g and output q(x),r(x), the quotient and remainder. 

A-3.55. Prove that cp: k[x]---+ F(k), given by ft-+ l (where l: k---+ k is the polynomial 
function arising from f), is injective if k is an infinite field. 

A-3.56. A student claims that x - 1 is not irreducible because x - 1 = ( Fx + 1)( Fx - 1) 
is a factorization. Explain the error of his ways. 

A-3.57. Let f(x) = x2 + x + 1 E lF2(x]. Prove that f is irreducible and that f has a root 
a: E lF4. Use the construction of lF4 in Exercise A-3.7 on page 39 to display a: explicitly. 

A-3.58. Find the gcd of x2 - x - 2 and x3 - 7x + 6 in JF5 (x], and express it as a linear 
combination of them. 

Hint. The answer is x - 2. 

A-3.59. Prove the converse of Euclid's Lemma in k(x], where k is a field: If f(x) E k(x] 
is a polynomial of degree 2: 1 and, whenever f divides a product of two polynomials, it 
necessarily divides one of the factors, then f is irreducible. 

* A-3.60. Let R be a domain. If f(x) E R(x] has degree n, prove that f has at most n 
roots in R. 

Hint. Use Frac(R). 



74 Chapter A-3. Commutative Rings 

* A-3.61. (i) Let f(x),g(x) E R(x], where Risa domain. If the leading coefficient off 
is a unit in R, then the Division Algorithm gives a quotient q(x) and a remainder 
r(x) after dividing g by f. Prove that q and rare uniquely determined by g and f. 

(ii) Give an example of a commutative ring Rand f(x),g(x) E R[x] with f monic such 
that the remainder after dividing g by f is not unique. 

A-3.62. If k is a field in which 1 + 1 # 0, prove that v'l - x 2 is not a rational function 
over k. 

Hint. Mimic the classical proof that v'2 is irrational. 

* A-3.63. Let I and J be ideals in a commutative ring R. 

(i) Prove that I + J = {a + b : a E I and b E J} is the smallest ideal containing I 
and J; that is, I~ I+ J, J ~I+ J, and if Mis an ideal containing both I and J, 
then I +J ~ M. 

(ii) Let R = k(x], where k is a field, and let d = gcd(f,g), where f(x),g(x) E k(x]. 
Prove that (!) + (g) = ( d). 

(iii) Prove that In J is an ideal. If R = k[x], where K is a field, and h = lcm(f,g), 
where f(x),g(x) E k[x], prove that(/) n (g) = (h). 

* A-3.64. (i) Let f(x) = (x - ai) · · · (x - an) E k[x], where k is a field. Show that f 
has no repeated roots (i.e., all the ai are distinct elements of k) if and only if 
gcd(f, J') = 1, where J' is the derivative off. 

Hint. Use Exercise A-3.26 on page 46. 

(ii) Prove that if p(x) E Q[x] is an irreducible polynomial, then p has no repeated roots 
in C. 
Hint. Corollary A-3.71. 

(iii) Let k = JF2 (x). Prove that f(t) = t 2 - x E k[t] is an irreducible polynomial. (There 
is a field K containing k and a= ,./X, and f(t) = (t - a) 2 in K(t].) 

A-3.65. Prove that f(x) = xP - x - 1 E 1Fp(x] is irreducible. 

A-3.66. If p is prime, prove that there are exactly Hp3 - p) monic irreducible cubic 
polynomials in lFp[x]. (A formula for the number of monic irreducible polynomials of 
degree n in 1Fp(x] is given on page 86.) 

Maximal Ideals and Prime Ideals 

For certain types of ideals I in a commutative ring R, namely maximal ideals and 
prime ideals, the quotient rings R/ I are more tractable. 

Definition. An ideal I in a commutative ring R is called a maximal ideal if I is 
a proper ideal for which there is no proper ideal J with I£;; J. 

It is true that maximal ideals in arbitrary commutative rings always exist, but 
the proof of this requires Zorn's Lemma. We will discuss this is in Course II, Part B 
of this book. 

By Example A-3.31, the ideal (0) is a maximal ideal in any field. 
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Proposition A-3. 76. A proper ideal I in a commutative ring R is a maximal ideal 
if and only if R/ I is a field. 

Proof. If I is a maximal ideal and a tt I, then Exercise A-3.52 on page 61 says that 
I/ I= (0) is a maximal ideal in R/ I. Therefore, R/ I is a field, by Example A-3.31. 

Conversely, if R/ I is a field, then I/ I = ( 0) is a maximal ideal in R/ I, by 
Example A-3.31, and Exercise A-3.52 says that I is a maximal ideal in R. • 

Example A-3. 77. 

(i) If pis a prime number, then (p) is a maximal ideal in Z, for Zp is a field. 

(ii) If k is a field, then (x) is a maximal ideal in k[x), for k[x]/(x) 9:! k. 

(iii) (x2 + 1) is a maximal ideal in JR[x), for we shall see, in Example A-3.85, 
that JR[x)/(x2 + 1) 9:! C. ~ 

Proposition A-3. 78. If k is a field, then I = (x1 - a1 , ... , Xn - an) is a maximal 
ideal in k[x1, ... , Xn] whenever ai, ... , an Ek. 

Proof. By Theorem A-3.25, there is a homomomorphism 

<p: k[x1, ... ,xn]--+k[x1, ... ,xn] 

with <p(c) = c for all c E k and with <p(xi) = Xi + ai for all i. It is easy to see 
that <p is an isomorphism, for its inverse carries Xi to xi - ai for all i. Now I is a 
maximal ideal in k[x1 , ... , Xn] if and only if <p(I) is. But <p(I) = (xi, ... , Xn), for 
<p(xi - ai) = <p(xi) - <p(ai) =xi+ ai - ai =Xi· Therefore, <p(I) is a maximal ideal, 
because 

k[x1, ... ,xnJ/<p(I) = k[x1, ... ,xn]/(x1, ... ,xn) 9:! k, 
and k is a field. • 

Hilbert's Nullstellensatz, Theorem B-6.14, says that the converse of Proposi
tion A-3.78 is true when k is algebraically closed. 

Prime ideals are related to Euclid's Lemma. 

Definition. An ideal I in a commutative ring R is called a prime ideal if I is a 
proper ideal such that ab EI implies a E I or b E I. 

If pis a prime number, Euclid's Lemma says that (p) is a prime ideal in Z. 

If R is a domain, then (0) is a prime ideal, for if a, b E R and ab E (0), then 
ab = 0 and either a = 0 or b = 0. 

Proposition A-3. 79. If I is a proper ideal in a commutative ring R, then I is a 
prime ideal if and only if R/ I is a domain. 

Proof. If I is a prime ideal, then I is a proper ideal; hence, R/ I is not the zero 
ring, and so 1 +I=/:- 0 +I. If (a+ I)(b +I) = 0 +I, then ab EI. Hence, a EI or 
b E I; that is, a+ I = 0 +I or b +I = 0 +I, which says that R/ I is a domain. 

Conversely, if R/ I is a domain, then R/ I is not the zero ring, so that I is a 
proper ideal. Moreover, (a + I) ( b + I) = 0 + I in R/ I implies that a + I = 0 + I or 
b +I= 0 +I; that is, a EI orb EI. Hence, I is a prime ideal. • 
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Corollary A-3.80. Every maximal ideal is a prime ideal. 

Proof. Every field is a domain. • 

Note that the ideal (6) in Z is neither prime nor maximal. 

Example A-3.81. 

(i) (x) is a prime ideal in Z[x], for Z[x]/(x) ~ Z. It follows that (x) is not a 
maximal ideal in Z[x], for Z[x]/(x) is not a field. 

(ii) The ideal (x, 2) is a maximal ideal in Z[x], for Z[x]/(x, 2) ~ IF2. 

(iii) If k is a field and R = k[x1 , ... , xn], then (xi, ... , xi) is a prime ideal for 
all i :::; n, and there is a tower of n prime ideals only the last of which is 
maximal: 

Definition. If I and J are ideals in a commutative ring R, then 

I J = {all finite sums L aebe: ae E I and be E J}. 
e 

It is easy to see that I J is an ideal in R, and Exercise A-3.72 on page 82 
says that I J ~ In J. The next result looks like the definition of prime ideal, but 
elements are replaced by ideals. 

Proposition A-3.82. Let P be a prime ideal in a commutative ring R. If I and 
J are ideals with I J ~ P, then I ~ P or J ~ P. 

Proof. If, on the contrary, I~ P and J ~ P, then there are a EI and b E J with 
a, b ~ P. But ab EI J ~ P, contradicting P being prime. • 

Proposition A-3.83. If k is a field and I=(!), where f(x) is a nonzero polyno
mial in k[x], then the following are equivalent: 

(i) f is irreducible; 

(ii) k[x]/ I is a field; 

(iii) k[x]/ I is a domain. 

Proof. 

(i) ::::} (ii) Assume that f is irreducible. Since I = (!) is a proper ideal, 
the unit in k[x]/I, namely, 1 +I, is not zero. If g(x) +I E k[x]/I is 
nonzero, then g ~ I: that is, g is not a multiple off or, to say it another 
way, ff g. By Lemma A-3.66, f and g are relatively prime, and there 
are polynomials s and t with sg + tf = 1. Thus, sg - 1 E I, so that 
1 +I = sg +I = (s + I)(g +I). Therefore, every nonzero element of 
k[x]/ I has an inverse, and k[x]/ I is a field. 

(ii) ::::} (iii) Every field is a domain. 
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(iii) =? (i) Assume that k[x]/ I is a domain. If f is not irreducible, then 
f(x) = g(x)h(x) in k[x], where deg(g) < deg(!) and deg(h) < deg(!). 
Recall that the zero in k[x]/I is 0 +I = I. Thus, if g +I = I, then 
g EI=(!) and f I g, contradicting deg(g) <deg(!). Similarly, h+I f:. I. 
However, the product (g+I)(h+I) = f+I =I is zero in the quotient ring, 
which contradicts k[x]/ I being a domain. Therefore, f is irreducible. • 

The structure of general quotient rings Rf I can be complicated, but we can 
give a complete description of k[x]/(p) when k is a field and p(x) is an irreducible 
polynomial in k[x]. 

Proposition A-3.84. Let k be a field, let p(x) be a manic irreducible polynomial 
in k[x] of degreed, let K = k[x]/ I, where I= (p), and let f3 = x +IE K. Then: 

(i) K is a field and k' = {a+ I : a E k} is a subfield of K isomorphic to k. 
(Hence, if k' is identified with k via a 1-7 a+I, then k is a subfield of K.) 

(ii) f3isarootofpinK. 

(iii) If g(x) E k[x] and f3 is a root of g in K, then p I g in k[x]. 

(iv) p is the unique manic irreducible polynomial in k[x] having f3 as a root. 

( v) The list l, f3, (3 2 , ... , f3d- l is a basis of K as a vector space19 over k, and 
so dimk(K) = d. 

Proof. 

(i) The quotient ring K = k[x]/ I is a field, by Proposition A-3.83 (since pis 
irreducible), and Corollary A-3.32 says that the restriction of the natural 
map a i-+ a + I is an isomorphism k -+ k'. 

(ii) Let p(x) = ao + aix + · · · + ad-1xd-l + xd, where ai E k for all i. In 
K = k[x]/ I, we have 

p(f3) = (ao +I)+ (a1 + I)/3 + · · · + (1 + I)f3d 

= (ao +I)+ (a1 + I)(x +I)+···+ (1 + I)(x + I)d 

= (ao +I)+ (a1x +I)+ .. ·+ (lxd +I) 

= ao + aix + · · · + xd +I 

= p(x) +I= I, 

because I= (p). But I= 0 +I is the zero element of K = k[x]/I, and 
so f3 is a root of p. 

(iii) If pf gin k[x], then their gcd is 1 because pis irreducible. Therefore, there 
are s(x), t(x) E k[x] with 1 = sp + tg. Since k[x] ~ K[x], we may regard 
this as an equation in K[x]. Evaluating at f3 gives the contradiction 
1=0. 

(iv) Let h(x) E k[x] be a monic irreducible polynomial having f3 as a root. 
By part (iii), we have p I h. Since h is irreducible, we have h = cp for 
some constant c; since h and p are monic, we have c = 1 and h = p. 

19There is an appendix on linear algebra at the end of this course. 
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(v) Every element of K has the form f+I, where f(x) E k[x]. By the Division 
Algorithm, there are polynomials q(x), r(x) E k[x] with f = qp + r and 
either r = 0 or deg(r) < d = deg(p). Since f-r = qp EI, it follows that 
f+I = r+I. Ifr(x) = bo+b1x+· · ·+bd-1xd-1, where bi Ek for all i, then 
we see, as in the proof of part (ii), that r +I= b0 + b1/3 + · · · + bd_113d-1. 
Therefore, 1, /3, /32 , .•• , /3d-l spans K. 

By Proposition A-7.9, it suffices to prove uniqueness of the expression 
as a linear combination of powers of /3. Suppose that 

bo + bi/3 + · · · + bd-1/3n-l = co + c1/3 + · · · + Cd-1/3d-l. 

Define g E k[x] by g(x) = E:,:-~(bi-ci)xi; if g = 0, we are done. If g f:. 0, 
then deg(g) is defined, and deg(g) < d = deg(p). On the other hand, /3 
is a root of g, and so part (iii) gives p I g; hence, deg(p) s; deg(g), and 
this is a contradiction. It follows that 1, /3, /32 , •• . , 13d-l is a basis of K 
as a vector space over k, and this gives dimk(K) = d. • 

Definition. If K is a field containing k as a subfield, then K is called an extension 
field of k, and we denote20 an extension field by 

K/k. 

An extension field K / k is a finite extension if K is a finite-dimensional vector 
space over k. The dimension of K, denoted by 

[K: k], 

is called the degree of K/k. 

Proposition A-3.84(v) shows why [K: k] is called the degree of K/k. 

Example A-3.85. The polynomial x 2 + 1 E JR[x] is irreducible, and so K 
JR[x]/(x2 + 1) is an extension field K/IR of degree 2. If f3 is a root of x 2 + 1 
in K, then /32 = -1; moreover, every element of K has a unique expression of the 
form a + b/3, where a, b E R Clearly, this is another construction of C (which we 
have been viewing as the points in the plane equipped with a certain addition and 
multi plication). 

There is a homomorphism r.p: JR[x] -* C with x H i and c H c for all c E JR, 
and the First Isomorphism Theorem gives an isomorphism cp: JR[x]/ ker r.p -* C. In 
Example A-3.44, we showed that (x2 + 1) ~ kerr.p = {f(x) E JR[x] : f(i) = O}, 
and we can now prove the reverse inclusion. If g ( x) E ker r.p, then i is a root of 
g and g E (x2 + 1), by Proposition A-3.84(iii). Therefore, kerr.p = (x2 + 1), and 
JR[x]/(x2 + 1) ~ C. 

Viewing C as a quotient ring allows us to view its multiplication in a new light: 
first treat i as a variable and then impose the condition i 2 = -1; that is, first 
multiply in JR[x] and then reduce mod (x2 + 1). Thus, to compute (a+ bi)(c +di), 

20This notation should not be confused with the notation for a quotient ring, for a field K 
has no interesting ideals; in particular, if k <;; K, then k is not an ideal in K. 
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first write ac +(ad+ bc)i + bdi2 , and then observe that i 2 = -1. More generally, if 
/3 is a root of an irreducible p(x) E k[x], then the easiest way to multiply 

(bo + bi/3 + · · · + bn-1/3n-l)(co + c1/3 + · · · + Cn-1/3n-l) 

in the quotient ring k[x]/(p) is to regard the factors as polynomials in an indeter
minate /3, multiply them, and then impose the condition that p(/3) = 0. .,.. 

The first step in classifying fields involves their characteristic. Here is the 
second step. 

Definition. Let K / k be an extension field. An element o: E K is algebraic over k 
if there is some nonzero polynomial f(x) E k[x] having o: as a root; otherwise, o: 
is transcendental over k. An extension field K/k is algebraic if every o: E K is 
algebraic over k. 

When a real or complex number is called transcendental, it usually means that 
it is transcendental over <Q. For example, tr and e are transcendental numbers. 

Proposition A-3.86. If K/k is a finite extension field, then K/k is an algebraic 
extension. 

Proof. By definition, K/k finite means that [K : k] = n < oo; that is, K has 
dimension n as a vector space over k. By Corollary A-7.22, every list of n + 1 
vectors 1,o:,o:2 , ... ,o:n is dependent: there are c0 ,c1 , ... ,cn Ek, not all 0, with 
L::Cio:i = 0. Thus, the polynomial f(x) = L::cixi is not the zero polynomial, and 
o: is a root of f. Therefore, o: is algebraic over k. • 

The converse of this last proposition is not true. We shall see that the set A of 
all complex numbers that are algebraic over tQ is an algebraic extension of tQ which 
is not a finite extension field. 

Definition. If K / k is an extension field and o: E K, then 

k(o:) 

is the intersection of all those subfields of K containing k and o:; we call k(o:) 
the subfield of K obtained by adjoining o: to k (instead of calling it the subfield 
generated by k and o:). 

More generally, if A is a (possibly infinite) subset of K, define k(A) to be the 
intersection of all the subfields of K containing k U A; we call k(A) the subfield 
of K obtained by adjoining A to k. In particular, if A= {z1, ... , Zn} is a finite 
subset, then we may denote k(A) by k(z1, ... , Zn)· 

It is clear that k(A) is the smallest subfield of K containing k and A; that is, 
if Bis any subfield of K containing k and A, then k(A) ~ B. 

We now show that the field k[x]/(p), where p(x) E k[x] is irreducible, is inti
mately related to adjunction. 
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Theorem A-3.87. 

(i) If K/k is an extension field and a E K is algebraic over k, then there 
is a unique manic irreducible polynomial p(x) E k[x] having a as a root. 
Moreover, if I = (p), then k [ x ]/I 3:! k (a); indeed, there exists an isomor
phism 

cp: k[x]/ I---+ k(a) 

with cp(x +I)= a and cp(c +I)= c for all c Ek. 

(ii) If a' EK is another root of p(x), then there is an isomorphism 

() : k(a) ---+ k(a') 

with B(a) =a' and B(c) = c for all c Ek. 

Proof. 

(i) Consider the evaluation map cp = e0 : k[x] ---+ K, namely cp: f H f(a). 
Now im cp is the subring of K consisting of all polynomials in a (that 
is, all elements of the form f(a) with f E k[x]), while kercp is the ideal 
in k[x] consisting of all those f E k[x] having a as a root. Since every 
ideal in k[x] is a principal ideal, we have ker cp = (p) for some monic 
polynomial p(x) E k[x]. But k[x]/(p) 3:! imcp, which is a domain, and 
so p is irreducible, by Proposition A-3.83. This same proposition says 
that k[x]/(p) is a field, and so the First Isomorphism Theorem gives 
k[x]/(p) 3:! imcp; that is, imcp is a subfield of K containing k and a. 
Since every such subfield of K must contain imcp, we have imcp = k(a). 
We have proved everything in the statement except the uniqueness of p; 
but this follows from Proposition A-3.84(iv). 

(ii) By part (i), there are isomorphisms cp: k[x]/ I ---+ k(a) and 1/J: k[x]/ I ---+ 
k(a') with cp(c +I) = c and 1/J(c +I) = c for all c E k; moreover, 
cp: x +I H a and 1/J: x +I H a'. The composite () = 1/Jcp-1 is the desired 
isomorphism. • 

Definition. If K / k is an extension field and a E K is algebraic over k, then the 
unique monic irreducible polynomial p(x) E k[x] having a as a root is called the 
minimal polynomial of a over k; it is denoted by 

irr(a, k) = p(x). 

The minimal polynomial irr(a,k) does depend on k. For example, irr(i,JR) = 
x2 + 1, while irr(i, q = x - i. 

The following formula is quite useful, especially when proving a theorem by 
induction on degrees. 

Theorem A-3.88. Let k ~ E ~ K be fields, with E a finite extension field of k 
and K a finite extension field of E. Then K is a finite extension field of k and 

[K: k] = [K: E][E: k]. 
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Proof. If A= ai, ... , an is a basis of E over k and B = b1 , ... , bm is a basis of K 
over E, then it suffices to prove that a list X of all aibj is a basis of K over k. 

To see that X spans K, take u EK. Since Bis a basis of Kover E, there are 
scalars Aj E E with u = Ei Ajbj. Since A is a basis of E over k, there are scalars 
µii Ek with Aj = Ei µjiai. Therefore, u = Eij µjiaibj, and so X spans Kover k. 

To prove that X is linearly independent over k, assume that there are scalars 
µii E k with Eij µjiaibj = 0. If we define Aj = Ei µjiai, then Aj E E and 
Ei Ajbj = 0. Since B is linearly independent over E, it follows that 

0 = >.i = Lµiiai 
i 

for all j. Since A is linearly independent over k, it follows that µii = 0 for all j 
and i, as desired. • 

There are several classical problems in euclidean geometry: trisecting an angle; 
duplicating the cube (given a cube with side length 1, construct a cube whose 
volume is 2); squaring the circle (given a circle of radius 1, construct a square 
whose area is equal to the area of the circle); constructing regular n-gons. In 
short, the problems ask whether geometric constructions can be made using only a 
straightedge (ruler) and compass according to certain rules. Theorem A-3.88 has a 
beautiful application in proving the unsolvability of these classical problems. See a 
sketch of the proofs in Kaplansky, (56], pp. 8-9, or see a more detailed account in 
(94], pp. 332-344. 

Example A-3.89. Let f(x) = x4 - 10x2 + 1 E Ql(x]. If f3 is a root off, then the 

quadratic formula gives (32 = 5 ± 2\i'6. But the identity a+ 2Vab + b = (fa+ Vb) 2 

gives f3 = ±( V2 + J3). Similarly, 5 - 2y'6 = ( V'i- J3) 2 , so that the roots of f are 

v'2 + v'3, -v'2 - v'3, v'2 - v'3, -v'2 + v'3. 
(By Theorem A-3.101 below, the only possible rational roots off are ±1, and so 
we have just proved that these roots are irrational.) 

We claim that f is irreducible in Ql[x]. If g is a quadratic factor off in Ql[x], 
then 

g(x) = (x - av'2- bv'3) (x - cv'2- dv'3), 

where a, b, c, d E {1, -1}. Multiplying, 

g(x) = x2 - ((a+ c)v'2 + (b + d)v'3)x + 2ac + 3bd +(ad+ bc)V6. 

We check easily that (a+ c)v'2 + (b + d)J3 is rational if and only if a+ c = 0 = 
b + d; but these equations force ad+ be -=f. 0, and so the constant term of g is not 
rational. Therefore, g fj. Ql[x], and so f is irreducible in Ql[x]. If f3 = V2 + J3, then 
f(x) = irr(f3,Ql). 

Consider the field E = Ql(f3) = Ql ( V2 + v'3). There is a tower of fields Ql ~ 
E ~ F, where F = Ql( V'i, J3), and so 

[F : Ql] = [F: E][E: Ql], 
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by Theorem A-3.88. Since E = Q(,B) and ,B is a root of an irreducible polynomial 
of degree 4, namely, f, we have [E : Q] = 4. On the other hand, 

[F: Q] = [F: Q(/2)][Q(/2): Q]. 

Now [Q( v'2) : Q] = 2, because J2 is a root of the irreducible quadratic x2 - 2 
in Q[x]. We claim that (F: Q(J2)] :::; 2. The field F arises by adjoining v'3 to 
Q(J2); either v'3 E Q(/2), in which case the degree is 1, or x2 - 3 is irreducible 
in Q( J2) [x], in which case the degree is 2 (in fact, the degree is 2). It follows that 
[F: Q]:::; 4, and so the equation [F: Q] = [F: E][E: Q] gives [F: E] = 1; that is, 
F=E. 

Let us note that F arises from Q by adjoining all the roots off, but it also arises 
from Q by adjoining all the roots of the reducible polynomial g(x) = (x2 -2)(x2 -3) . 

.... 

Exercises 

* A-3.67. Let k be a subring of a commutative ring R. 

(i) If p is a prime ideal in R, prove that p n k is a prime ideal in k. In particular, if m 
is a maximal ideal in R, then m n k is a prime ideal ink. 

(ii) If mis a maximal ideal in R, prove that m n kneed not be a maximal ideal ink. 

* A-3.68. (i) Give an example of a homomorphism <p: R ~ A of commutative rings with 
P a prime ideal in R and ip(P) not a prime ideal in A. 

(ii) Let 'P: R ~ A be a homomorphism of commutative rings. If Q is a prime ideal in 
A, prove that 'P-i(P) is a prime ideal in R. 

(iii) Prove that if I ~ J are ideals in R, prove that J is a maximal ideal in R if and 
only if J /I is a maximal ideal in Rf I. 

A-3.69. Let R be a commutative ring, and let p, q be distinct primes. 

(i) Prove that R cannot have two subfields A and B with A~ Q> and B ~ lFp. 

(ii) Prove that R cannot have two subfields A and B with A~ lFp and B ~ lFq. 

(iii) Why doesn't the existence of R = lFp x lFq contradict part (ii)? (Exercise A-3.41 
on page 54 defines the direct product of rings.) 

A-3.70. Prove that if an ideal (m) in Z is a prime ideal, then m = 0 or lml is a prime 
number. 

* A-3.71. Prove that if k is a field and p(x) E k[x] is irreducible, then (p) is a maximal 
ideal in k[x]. 

* A-3. 72. Let I and J be ideals in a commutative ring R. 

(i) Prove that I J ~ In J, and give an example in which the inclusion is strict. 

(ii) If I= (2) = J is the ideal of even integers in Z, prove that / 2 = I J ~ In J =I. 

(iii) Let P, Qi, ... , Qr be ideals in R with P a prime ideaL Prove that if Qin· · · n Qr ~ 
P, then Q; ~ P for some i. 
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* A-3. 73. Prove that I is a prime ideal in a nonzero commutative ring R if and only if 
a¢ I and b ¢ I implies ab ¢ I; that is, the complement JC = R - I is multiplicatively 
closed. 

Finite Fields 

The Fundamental Theorem of Algebra states that every nonconstant polynomial 
in <C[x] is a product of linear polynomials in <C[x]; that is, <C contains all the roots 
of every polynomial in <C[x]. We are going to prove Kronecker's Theorem, a local 
analog of the Fundamental Theorem of Algebra: Given a polynomial f(x) E k(x], 
where k is any field, there is some field E containing k that also contains all the 
roots of f (we call this a local analog, for even though the larger field E contains 
all the roots of the polynomial f, it may not contain roots of other polynomials 
in k[x]). We will use Kronecker's Theorem to construct and classify all the finite 
fields. 

Theorem A-3.90 (Kronecker). If k is a field and f(x) E k[x], there exists an 
extension field K/k with f a product of linear polynomials in K[x]. 

Proof. The proof is by induction on deg(!). If deg(!) = 1, then f is linear and 
we can choose K = k. If deg(!) > 1, write f =pg, where p(x), g(x) E k(x] and pis 
irreducible. Now Proposition A-3.84(i) provides a field F containing k and a root 
z of p. Hence, in F(x], there is h(x) with p = (x - z)h, and so f = (x - z)hg. By 
induction, there is a field K containing F (and hence k) so that hg, and hence f, 
is a product of linear factors in K(x]. • 

For the familiar fields Q, ~. and <C, Kronecker's Theorem offers nothing new. 
The Fundamental Theorem of Algebra, first proved by Gauss in 1799 (completing 
earlier attempts of Euler and of Lagrange), says that every nonconstant f(x) E <C[x] 
has a root in <C; it follows, by induction on deg(!), that all the roots off lie in <C; 
that is, f(x) = a(x -r1) .. • (x -rn), where a E <C and rj E <C for all j. On the other 
hand, if k = lFp or k = <C(x) = Frac(<C[x]), the Fundamental Theorem does not 
apply. But Kronecker's Theorem does apply to tell us, for any given polynomial 
in k(x], that there is always an extension field E/k containing all of its roots. For 
example, there is some field containing <C(x) and J'X. We will prove a general 
version of the Fundamental Theorem in Course II, part B of this book: Every field 
k is a subfield of an algebraically closed field K, that is, there is an extension 
field K/k such that every polynomial in K[x] is a product of linear polynomials. 
In contrast, Kronecker's Theorem gives roots of only one polynomial at a time. 

When we defined the field k(A) obtained from a field k by adjoining a set 
A, we assumed there was some extension field K / k containing A; for example, if 
f(x) E k(x] and A is the set of roots off. But what if we don't have K at the 
outset? Kronecker's Theorem shows that such a field K exists, and so we may now 
speak of the field k(A) obtained by adjoining all the roots A= {z1, ... , Zn} of some 
f(x) E k(x] without having to assume, a priori, that there is some extension field 
K/k containing A. Does k(A) depend on a choice of K/k? 
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Definition. If K/k is an extension field and f(x) E k[x] is nonconstant, then f 
splits over Kif f(x) = a(x- z1) · · · (x - Zn), where z1, ... , Zn are in Kand a Ek. 
An extension field E/k is called a splitting field off over k if f splits over E, 
but f does not split over any proper subfield of E. 

Consider f(x) = x 2 + 1 E Q[x]. The roots off are ±i, and so f splits over <C; 
that is, f(x) = (x-i)(x +i) is a product of linear polynomials in <C[x]. However, <C 
is not a splitting field of f over Q; there are proper subfields of <C containing Q and 
all the roots of f. For example, Q( i) is such a subfield; in fact, Q( i) is the splitting 
field off over Q. Note that a splitting field of a polynomial g(x) E k[x] depends 
on k as well as on g. The splitting field of x 2 + 1 over Q is Q(i), while the splitting 
field of x 2 + 1 over R is R( i) = <C. 

In Example A-3.89, we proved that E = Q( V2 + J3) is a splitting field of 
f(x) = x 4 - 10x2 + 1, as well as a splitting field of g(x) = (x2 - 2)(x2 - 3). 

The existence of splitting fields is an easy consequence of Kronecker's Theorem. 

Corollary A-3.91. If k is a field and f(x) E k[x], then a splitting field off over 
k exists. 

Proof. By Kronecker's Theorem, there is an extension field K / k such that f splits 
in K[x]; say, f(x) = a(x - 0:1) · · · (x - o:n)· The subfield E = k(o:i, ... , O:n) of K is 
a splitting field off over k (a proper subfield of E omits some o:i)· • 

A splitting field of f(x) E k[x] is a smallest extension field E/k containing all 
the roots of f. We say "a" splitting field instead of "the" splitting field because it is 
not obvious whether any two splitting fields of f over k are isomorphic (they are). 
Analysis of this technical point will not only prove uniqueness of splitting fields, it 
will enable us to prove that any two finite fields with the same number of elements 
are isomorphic. 

Example A-3.92. Let k be a field and let E = k(y1 , ••• , Yn) be the rational 
function field in n variables Y1, ... , Yn over k; that is, E = Frac(k[y1, ... , Yn]), the 
fraction field of the ring of polynomials in n variables. The general polynomial 
of degree n over k is defined to be 

f(x) = IJ (x - Yi) E E[x]. 
i 

The coefficients ai = ai(Yi. ... , Yn) E E of 

f(x) = (x - Y1)(x - Y2) · · · (x - Yn) = Xn + an-1Xn-l + · · · + ao 

are called elementary symmetric functions. For example, the general polyno
mial of degree 2 is 
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Here are the elementary symmetric functions ai = ai (Y1, ... , Yn). 

an-1 = - LYi, 
i 

an-2 = L YiYj, 
i<j 

an-3 = - L YiYjYk, 
i<j<k 

ao = (-l)nY1Y2 · .. Yn· 
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Observe, in particular, that if f(x) E k(x], then the sum and product of all the 
roots of f lie in k (as do all the expressions on the right). 

Notice that E is a splitting field off over the field K = k(ao, ... , an-1 ), for it 
arises from K by adjoining all the roots off, namely, all the Yi· <1111 

Example A-3.93. Let f(x) = xn - 1 E k(x] for some field k, and let E/k be a 
splitting field. In Theorem A-3.59, we saw that the set of all nth roots of unity in 
E is a cyclic group; that is, it consists of all the powers of a generator w, called a 
primitive element. It follows that k(w) = E is a splitting field off. <1111 

Here is another application of Kronecker's Theorem. 

Proposition A-3.94. Let p be prime, and let k be a field. If f(x) = xP - c E k(x] 
and a is a pth root of c (in some splitting field), then either f is irreducible in k[x] 
or c has a pth root in k. In either case, if k contains the pth roots of unity, then 
k(a) is a splitting field off. 

Proof. By Kronecker's Theorem, there exists an extension field K/k that contains 
all the roots of f; that is, K contains all the pth roots of c. If aP = c, then every 
such root has the form (a, where (is a pth root of unity. 

If f is not irreducible in k[x], then there is a factorization f = gh in k[x], where 
g(x), h(x) are nonconstant polynomials with d = deg(g) < deg(!) = p. Now the 
constant term b of g is, up to sign, the product of some of the roots of f: 

±b =ad(, 

where (, which is a product of d pth roots of unity, is itself a pth root of unity. It 
follows that 

(±b)P = (ad()P = adp =ed. 

But p being prime and d < p force gcd(d,p) = 1; hence, there are integers sand t 
with 1 = sd + tp. Therefore, 

c = csd+tp = csdctp = (±b)Psctp = [(±b)sct]P, 

and c has a pth root ink. 

We now assume that k contains the set n of all the pth roots of unity. If a E K 
is a pth root of c, then f(x) = TiwEn(x - wa) shows that f splits over Kand that 
k(a) is a splitting field off over k. • 
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We are now going to construct the finite fields. My guess is that Galois knew 
that C can be constructed by adjoining a root of the polynomial x 2 + 1 to JR, and 
so it was natural for him to adjoin a root of a polynomial to 1Fp· Note, however, 
that Kronecker's Theorem was not proved until a half century after Galois's death. 

Theorem A-3.95 (Galois). If p is prime and n is a positive integer, then there 
exists a field having exactly pn elements. 

Proof. Write q = pn, and consider the polynomial 

g(x) = xq - x E 1Fp[x]. 

By Kronecker's Theorem, there is an extension field K/IFp with g a product of linear 
factors in K[x]. Define 

E ={a EK: g(a) = O}; 

that is, Eis the set of all the roots of g. Since the derivative g'(x) = qxq-l - 1 = 
pnxq-l - 1 = -1, we have gcd(g,g') = 1. By Exercise A-3.64 on page 74, all the 
roots of g are distinct; that is, E has exactly q = pn elements. 

The theorem will follow if E is a subfield of K. Of course, 1 E E. If a, 
b E E, then aq = a and bq = b. Therefore, (ab)q = a%q = ab, and ab E E. By 
Exercise A-3.36 on page 54, (a - b)q = aq - bq = a - b, so that a - b E E. Finally, 
if a "I 0, then the cancellation law applied to aq = a gives aq-l = 1, and so the 
inverse of a is aq-2 (which lies in E because Eis closed under multiplication). • 

Corollary A-3.96. For every prime p and every integer n ~ 1, there exists an 
irreducible polynomial g(x) E 1Fp[x] of degree n. In fact, if a is a primitive element 
of1Fpn 1 then its minimal polynomial g(x) = irr(a,IFp) has degree n. 

Proof. Let E/IFp be an extension field with pn elements, and let a E E be a 
primitive element. Clearly, 1Fp(a) = E, for it contains every power of a, hence 
every nonzero element of E. By Theorem A-3.87(i), g(x) = irr(a,IFp) E 1Fp[x] is an 
irreducible polynomial having a as a root. If deg(g) = d, then Proposition A-3.84( v) 
gives [1Fp[x]/(g) : 1Fp] = d; but 1Fp[x]/(g) ~ 1Fp(a) = E, by Theorem A-3.87(i), so 
that [E: 1Fp] = n. Hence, n = d, and so g is an irreducible polynomial of degree n . 

• 
This corollary can also be proved by counting. If m = p~1 • • • p~n, define the 

Mobius function µ(m) by 

µ(m) = { ~ 
(-l)n 

if m = 1, 

if any ei > 1, 

if 1 =el = e2 =···=en. 

If Nn is the number of irreducible polynomials in 1Fp[x] of degree n, then 

1 
Nn = - Lµ(d)pn/d. 

n 
din 

(An elementary proof can be found in Simmons [110].) 
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Example A-3.97. 

(i) In Exercise A-3.7 on page 39, we constructed a field with four elements: 

IF 4 = { ( i a!b] : a, b E IF 2} . 
On the other hand, we may construct a field of order 4 as the quotient 
F = IF2 [x]/(q), where q(x) E IF2 [x] is the irreducible polynomial x 2 +x+l. 
By Proposition A-3.84(v), F is a field consisting of all a+ b(3, where 
(3 = x + (q) is a root of q in F and a, b E IF2 . Since (32 + f3 + 1 = 0, we 
have /32 = -(3-1 = f3+1; moreover, (33 = (3(32 = (3((3+1) = (32 + f3 = 1. 
It is now easy to see that there is a ring isomorphism cp : IF 4 --+ F with 
cp ( [Lib]) = a + b/3. 

(ii) According to the table in Example A-3.105 on page 91, there are three 
monic irreducible quadratics in IF3[x], namely, 

p(x)=x2 +1, q(x)=x2 +x-1, and r(x)=x2 -x-1; 

each gives rise to a field with 9 = 32 elements. Let us look at the first two 
in more detail. Proposition A-3.84(v) says that E = IF3 [x]/(p) is given 
by 

E={a+ba: wherea2 +1=0}. 

Similarly, if F = IF3[x]/(q), then 

F={a+b(3: where(32 +(3-1=0}. 

These two fields are isomorphic. The map cp: E--+ F (found by trial and 
error), defined by cp(a + ba) =a+ b(l - (3), is an isomorphism. 

Now IF3 [x]/(x2 - x - 1) is also a field with nine elements, and we 
shall soon see that it is isomorphic to both of the two fields E and F just 
given (Corollary A-3.100). 

(iii) In Example A-3.105, we exhibited eight monic irreducible cubics p(x) E 
IF3[x]; each of them gives rise to a field IF3[x]/(p) having 27 = 33 elements. 

~ 

We are going to solve the isomorphism problem for finite fields. 

Lemma A-3.98. Let cp: k --+ k' be an isomorphism of fields, and let cp*: k[x] --+ 
k'[x] be the ring isomorphism of Corollary A-3.27: 

cp*: g(x) = ao + aix + · · · + anxn 1-t g'(x) = cp(ao) + cp(a1)x + · · · + cp(an)Xn. 

Let f(x) E k[x] and f'(x) = cp*(J) E k'[x]. If E is a splitting field off over k 
and E' is a splitting field of f' over k', then there is an isomorphism <I> : E --+ E' 
extending cp: 

E- ~,...E' 

I I 
k ------ k'. 'P 
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Proof. The proof is by induction on d = [E: k]. If d = 1, then f is a product of 
linear polynomials in k[x], and it follows easily that f' is also a product of linear 
polynomials in k'[x]. Therefore, E' = k', and we may set cf?= cp. 

For the inductive step, choose a root z of f in E that is not in k, and let 
p(x) = irr(z, k) be the minimal polynomial of z over k. Now deg(p) > 1, because 
z <t k; moreover, [k(z) : k] = deg(p), by Proposition A-3.84(v). Let z' be a root 
of p'(x) in E', and let p'(x) = irr(z',k') be the corresponding monic irreducible 
polynomial in k'[x]. 

The rest of the proof is a straightforward generalization of the proof of Propo
sition A-3.87(ii). There is an isomorphism cp: k(z) -+ k'(z') extending cp with 
cp: z f-t z'. We may regard fas a polynomial with coefficients in k(z), fork~ k(z) 
implies k[x] ~ k(z)[x]. We claim that E is a splitting field off over k(z); that is, 

E = k(z)(zi, ... , Zn), 

where zi, ... , Zn are the roots of f(x)/(x - z). After all, 

E = k(z, z1, ... , Zn) = k(z)(z1, ... , Zn)· 

Similarly, E' is a splitting field off' over k'(z'). But [E : k(z)] < [E : k], by 
Theorem A-3.88, so that the inductive hypothesis gives an isomorphism cf?: E -+ E' 
that extends cp and, hence, cp. • 

Theorem A-3.99. If k is a field and f(x) E k[x], then any two splitting fields of 
f over k are isomorphic via an isomorphism that fixes k pointwise. 

Proof. Let E and E' be splitting fields of f over k. If cp is the identity, then 
Lemma A-3.98 applies at once. • 

It is remarkable that the next theorem was not proved until the 1890s, 60 years 
after Galois discovered finite fields. 

Corollary A-3.100 (Moore). Any two finite fields having exactly pn elements 
are isomorphic. 

Proof. If E is a field with q = pn elements, then Lagrange's Theorem applied to 
the multiplicative group Ex shows that aq-l = 1 for every a E Ex. It follows that 
every element of Eis a root of f(x) = xq - x E lFp[x], and so Eis a splitting field 
off over lFv- • 

Finite fields are often called Galois fields in honor of their discoverer. In light 
of Corollary A-3.100, we may speak of the field with q elements, where q = pn is a 
power of a prime p, and we denote it by 
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Exercises 

A-3.74. Prove that lF3[x]/(x3 - x2 + 1) ~ lF3[x]/(x3 - x2 + x + 1) without using Corol
lary A-3.100. 

A-3.75. Let h(x),p(x) E k[x] be monic polynomials, where k is a field. If pis irreducible 
and every root of h (in an appropriate splitting field) is also a root of p, prove that 
h(x) = p(x)m for some integer m;:::: 1. 

Hint. Use induction on deg(h). 

A-3.76. (Chinese Remainder Theorem) (i) Prove that if k is a field and f(x), J'(x) E 
k[x] are relatively prime, then given b(x),b'(x) E k[x], there exists c(x) E k[x] with 

c - b E (f) and c - b' E (!'); 

moreover, if d(x) is another common solution, then c - d E (f J'). 

(ii) Prove that if k is a field and f(x), g(x) E k[x] are relatively prime, then 

k[x]/(f g) ~ k[x]/(f) x k[x]/(g). 

A-3. 77. Write addition and multiplication tables for the field lF 8 with eight elements using 
the irreducible cubic g(x) = x3 + x + 1 E 1F2. 

A-3. 78. Let k ~ K ~ E be fields. Prove that if E is a finite extension field of k, then E 
is a finite extension field of K and K is a finite extension field of k. 

A-3. 79. Let k ~ F ~ K be a tower of fields, and let z E K. Prove that if k(z)/k is finite, 
then [F(z) : F] S [k(z) : k]. In particular, [F(z) : F] is finite. 

Hint. Use Proposition A-3.84 to obtain an irreducible polynomial p(x) E k[x]; the poly
nomial p may factor in K[x]. 

A-3.80. (i) Is lF4 a subfield oflFs? 

(ii) For any prime p, prove that if lFpn is a subfield of lFpm, then n Im (the converse is 
also true, as we shall see later). 
Hint. View lFpm as a vector space over lFpn. 

A-3.81. Let K/k be an extension field. If A ~ K and u E k(A), prove that there are 
ai,. .. , an EA with u E k(a1, ... , an)· 

A-3.82. Let E/k be an extension field. If v E E is algebraic over k, prove that v-1 is 
algebraic over k. 

Irreducibility 

Although there are some techniques to help decide whether an integer is prime, 
the general problem is open and is very difficult. Similarly, it is very difficult to 
determine whether a polynomial is irreducible, but there are some useful techniques 
that frequently work. 

Let k be a field. Proposition A-3.52 shows that if f(x) E k[x] and r is a root 
off ink, then f is not irreducible; there is a factorization f = (x - r)g for some 
g(x) E k[x]. We saw, in Corollary A-3.64, that this decides the matter for quadratic 
and cubic polynomials in k[x]: such polynomials are irreducible in k[x] if and only 
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if they have no roots in k. This is no longer true for polynomials of degree ;::: 4, as 
f(x) = (x2 + l)(x2 + 1) in IR[x] shows. The next theorem tests for rational roots. 

Theorem A-3.101. If f(x) = ao + alx + · · · + anxn E Z[x] ~ <Ql[x), then every 
rational root off has the form b/c, where b I ao and c I an. In particular, if f is 
manic, then every rational root of f is an integer. 

Proof. We may assume that a root b/c is in lowest terms; that is, gcd(b, c) = 1. 
Evaluating gives 0 = f(b/c) = a0 + a1b/c+ · .. + anbn /en, and multiplying through 
by en gives 

0 = aocn + albcn-l + · · · + anbn. 

Hence, aocn = b(-a1cn-l - · · · - anbn-1), so that b I aocn. Since band care 
relatively prime, it follows that band en are relatively prime, and so Euclid's Lemma 
in Z gives b I ao. Similarly, anbn = c(-an-1bn-l - · · · - aocn-l ), c I anbn, and 
c I an. • 

It follows from the second statement that if an integer a is not the nth power of 
an integer, then xn - a has no rational roots; that is, \lli is irrational. For example, 
/2 is irrational. 

The next criterion for irreducibility uses the integers mod p. 

Theorem A-3.102. Let f(x) = ao + alx + · · · + an-1Xn-l + xn E Z[x] be manic, 
and let p be a prime. Iff(x) = [ao) + [a1]x + · · · + [an-iJxn-l + xn is irreducible in 
1Fp[x], then f is irreducible in <Ql[x]. 

Proof. Reducing coefficients mod p is a special case of Corollary A-3.27, for the 
natural map cp: Z -+ 1Fp gives a ring homomorphism cp*: Z[x] -+ 1Fp[x], namely, 
cp* : f H f. Suppose that f factors in Z[x]; say, f = gh, where deg(g) < deg(!) 
and deg(h) <deg(!). Now, deg(g) ~ deg(g) and deg(h) ~ deg(h)), so that 7 = gh 
(for cp* is a ring homomorphism), and so deg(!) = deg(g) + deg(h). Now 7 is 
monic, because f is, and so deg(!) = deg(!). 21 Thus, both g and h have degrees 
less than deg(!), contradicting the irreducibility off in 1Fp[x]. Therefore, f is not a 
product of polynomials in Z[x] of smaller degree, and so Gauss's Lemma says that 
f is irreducible in <Ql[x). • 

Theorem A-3.102 says that if one can find a prime p with 7 irreducible in 1Fp[x], 
then f is irreducible in <Ql[x]. Until now, the finite fields 1Fp have been oddities; 1Fp 
has appeared only as a curious artificial construct. Now the finiteness of 1Fp is a 
genuine advantage, for there are only a finite number of polynomials in 1Fp[x] of any 
given degree. In principle, then, one can test whether a polynomial of degree n in 
1Fp[x] is irreducible by just looking at all the possible factorizations of it. 

The converse of Theorem A-3.102 is false: x2 - 2 is irreducible in <Ql[x], but 
it factors mod 2. A more spectacular example is x4 + 1, which is an irreducible 
polynomial in <Ql[x] that factors in 1Fp[x] for every prime p (see Proposition A-5.10). 

21 The hypothesis that f(x) be monic can be relaxed; we could assume instead that p does 
not divide its leading coefficient. 
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Example A-3.103. The polynomial f(x) = x 4 + 1 is irreducible22 in Q[x]. 

By Gauss's Lemma, it suffices to show that x4 +1 does not factor in Z[x]. Now 
f has no real roots a, for if a 4 + 1 = 0, then the positive real number a 4 equals 
-1. Therefore, if f factors, it must be a product of quadratics in Z(x]: 

x4 + 1 = (x 2 +ax+ b)(x2 - ax+ e) 

(the coefficients of x are a and -a because x4 + 1 has no cubic term). Thus, 

(x 2 +ax+ b)(x2 - ax+ e) = x4 + (b + e - a2 )x2 + a(e - b)x +be. 

We equate coefficients of like powers of x. Now be= 1; since e - b = 0, we have 
b = e = ±1, because b, e E z. Hence, 0 = b + e - a2 = ±2 - a2 , so that -2 = a2 

or 2 = a2 . But -2 = a2 cannot occur because a2 ~ 0, while 2 = a2 contradicts the 
irrationality of ./2. ..,.. 
Example A-3.104. We determine the irreducible polynomials in IF2[x] of small 
degree. 

As always, the linear polynomials x and x + 1 are irreducible. 

There are four quadratics: x 2 , x 2 + x, x 2 + 1, x 2 + x + 1 (more generally, there 
are pn monic polynomials of degree n in 1Fp[x], for there are p choices for each of 
then coefficients a0, ... , an-1). Since each of the first three has a root in IF2 , there 
is only one irreducible quadratic, namely, x 2 + x + 1. 

There are eight cubics, of which four are reducible because their constant term 
is 0. The remaining polynomials are 

x3 +1, x3 +x+l, x3 +x2 +1, x 3 +x2 +x+l. 

Now 1 is a root of the first and fourth, and the middle two are the only irreducible 
cubics (for they have no roots in IF2). 

There are 16 quartics, of which eight are reducible because their constant term 
is 0. Of the eight with nonzero constant term, those having an even number of 
nonzero coefficients have 1 as a root. There are now only four surviving polynomials 
f(x), and each of them has no roots in IF2 ; i.e., they have no linear factors. If 
f(x) = g(x)h(x), then both g(x) and h(x) must be irreducible quadratics. But there 
is only one irreducible quadratic, namely, x 2 +x+l, and so (x2 +x+1)2 = x4 +x2 +1 
factors while the other three quartics are irreducible. 

degree 2: 
degree 3: 
degree 4: 

Irreducible Polynomials of Low Degree over IF2 

x2 +x+1. 
x 3 + x + 1; x 3 + x2 + 1. 
x4 + x 3 + 1; x 4 + x + 1; x 4 + x 3 + x 2 + x + 1. ..,.. 

Example A-3.105. Here is a list of the monic irreducible quadratics and cubics 
in IF3[x]. The reader can verify that the list is correct by first enumerating all such 
polynomials; there are 6 monic quadratics having nonzero constant term, and there 
are 18 monic cubics having nonzero constant term. It must then be checked which 
of these have 1 or -1 as a root (it is more convenient to write -1 instead of 2). 

22 Another proof of irreducibility off is in Exercise A-3.87 on page 97. 



92 Chapter A-3. Commutative Rings 

Monie Irreducible Quadratics and Cubics over lF3 

degree 2: x2 + l; x2 + x - l; x2 -x -1. 

degree 3: x3 - x + l; x3 +x2 -x + l; x3 - x2 + l; 
x3 -x2 +x+ l; x3 - x - l; x3 +x2 -l; 
x3 +x2 +x- l; x3 - x2 - x -1. .... 

Example A-3.106. 

(i) We show that f(x) = x4 - 5x3 + 2x + 3 is an irreducible polynomial in 
Q[x]. By Corollary A-3.101, the only candidates for rational roots off 
are ±1 and ±3, and none of these is a root. Since f is a quartic, we 
cannot yet conclude that f is irreducible, for it might be a product of 
(irreducible) quadratics. 

The criterion of Theorem A-3.102 does work. Since f = x4 +x3 +1 in 
JF2 [x] is irreducible, by Example A-3.104, it follows that f is irreducible 
in Q[x]. It was not necessary to check that f has no rational roots; 
irreducibility off is enough to conclude irreducibility of f. However, 
checking first for rational roots is a good habit. 

(ii) Let q,5 (x) = x4 +x3 +x2 +x+l E Q[x]. In Example A-3.104, we saw that 
~5 = x4 + x3 + x2 + x + 1 is irreducible in lF 2 [x], and so q,5 is irreducible 
in Q[x] . .,.. 

Definition. If n ~ 1 is a positive integer, then an nth root of unity in a field k 
is an element ( E k with (n = 1. 

Corollary A-3.55 shows that the numbers e2n:ik/n = cos(27rk/n) + isin(27rk/n) 
for some k with 0 :S k :Sn - l are all the complex nth roots of unity. Just as there 
are two square roots of a number a, namely, Va and -fa, there are n different nth 
roots of a, namely, e2n:ik/n \fO, for k = 0, 1, ... , n - 1. 

Every nth root of unity is, of course, a root of the polynomial xn - l. Therefore, 

xn - 1 = IT (x - (). 
(n=l 

If ( is an nth root of unity and n is the smallest positive integer for which (n = 1, 
we say that ( is a primitive nth root of unity. For example, i is an 8th root of 
unity (for i 8 = 1), but not a primitive 8th root of unity; i is a primitive 4th root of 
unity. The nth roots of unity form a multiplicative group, and each primitive nth 
roots of unity is a generator, by Theorem A-4.36 in the next chapter. It follows 
from Proposition A-4.23 that if ( is a primitive dth root of unity and (n = 1, then 
d In. 
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Definition. If d is a positive integer, then the dth cyclotomic polynomial23 is 
defined by 

q,d(x) = IJ(x - (), 

where ( ranges over all the primitive dth roots of unity. 

For example, since 5 is prime, ( = e2"i/5, ( 2 , ( 3 , ( 4 are all primitive 5th roots 
of unity, and 

x5 -1 
x-1 

(for x5 - 1 = (x - 1)q,5(x)) 

= x 4 + x3 + x2 + x + 1. 

Proposition A-3.107. Let n be a positive integer and regard xn - 1 E Z[x]. Then 

(i) 

xn - 1 = IJ q,d(x), 
din 

where d ranges over all the positive divisors d of n (in particular, q,1 (x) = 
x - 1 and q,n(x) occur). 

(ii) q,n(x) is a manic polynomial in Z[x] and deg(q,n) = ¢(n), the Euler 
¢-function. 

(iii) For every integer n 2: 1, we have 

n = L:<P(d). 
din 

Proof. 

(i) For each divisor d of n, collect all terms in the equation xn-1 = fl(x-() 
with ( a primitive dth root of unity. 

(ii) We prove that q,n(x) E Z[x] by induction on n 2: 1. The base step 
is true, for q, 1 (x) = x - 1 E Z[x]. For the inductive step, let f(x) = 
ndln,d<n q,d(x), so that 

xn -1 = f(x)q,n(x). 

By induction, each q,d(x) is a monic polynomial in Z[x], and so f is a 
monic polynomial in Z(x]. Since f is monic, Corollary A-3.48 says that 
the quotient (xn -1)/ f(x) is a monic polynomial in Z(x]. Exercise A-3.61 
on page 74 says that quotients are unique; hence, (xn-1)/ f(x) = q,n(x), 
and so q,n(x) E Z(x]. 

23 Since jzwl = lzl lwl for any complex numbers z and w, it follows that if ( is an nth root 
of unity, then 1 = j(nl = j(jn, so that j(j = 1 and ( lies on the unit circle. The roots of xn - 1 
are the nth roots of unity which divide the unit circle into n equal arcs. This explains the term 
cyclotomic, for its Greek origin means "circle splitting." 
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(iii) Immediate from parts (i) and (ii): 

n = deg(xn - 1) = deg(IT «Pd) = L deg(«Pd) = L ¢(d). • 
d d d 

It follows from Proposition A-3.107(i) that if pis prime, then xP-l = «1> 1 (x)«Pp(x). 
Since «1> 1 (x) = x - l, we have 

«Pp(x) = xP-l + xP- 2 + · · · + x + 1. 

The next corollary is used to prove a theorem of Wedderburn that finite division 
rings are commutative. 

Corollary A-3.108. If q is a positive integer and d is a divisor of an integer n 
with d < n, then «Pn(q) is a divisor of both qn - 1 and (qn - l)/(qd - 1). 

Proof. We have just seen that xn - l = «Pn(x)f(x), where f is a monic polynomial 
with integer coefficients. Setting x = q gives an equation in integers: qn - 1 = 
«Pn(q)f(q) E Z; that is, «Pn(q) is a divisor of qn - 1. 

If d is a divisor of n and d < n, consider the equation xd - 1 = IJ(x - (), 
where ( ranges over the dth roots of unity. Notice that each such ( is an nth root 
of unity, because d is a divisor of n. Since d < n, collecting terms in the equation 
xn - 1 = IJ(x - () gives 

xn - 1 = «Pn(x)(xd - l)g, 

where g(x) is the product of all the cyclotomic polynomials cl>,;(x) for all divisors o 
of n with o < n and with o not a divisor of d. It follows from Proposition A-3.107 
that g is a monic polynomial with integer coefficients. Therefore, g(q) E Z and 

qn - l 
qd - l = «Pn(q)g(q) E Z. • 

If we regard complex numbers as points in the plane, then we may define the 
dot product of z = a + ib and w = c + id to be 

z · w = ac+ bd. 

The next result is used in representation theory to investigate character tables. 

Proposition A-3.109. If c- 1 , ... , en are complex roots of unity, where n :::: 2, then 

1t€jl ~ ticjl =n. 
j=l j=l 

Moreover, there is equality if and only if all the c j are equal. 

Proof. If u, v are nonzero complex numbers, the Triangle Inequality says that 
lu +vi ~ lul + lvl, with equality if and only if u/v is a positive real. The Ex
tended Triangle Inequality says, for nonzero complex numbers u1 , ... , Un, that 
lu1 + · · · + Un I ~ lu1 I+· · · + lun I, with equality if and only if there is z and positive 
real numbers Tj with Uj = rjz for all j. Thus, if there is equality and j =j:. k, then 
uj/Uk = rjz/rkz = rj/rk; that is, Uj = (rj/rk)uk. When the Uj = €j are roots of 
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unity, then lcil = 1 = lckl, ri/rk = 1, and rj = rk; that is, €j =ck and all €j are 
equal. • 

As any linear polynomial over a field, the cyclotomic polynomial <I>2 (x) = x + 1 
is irreducible in Q[x]; <I>3 (x) = x 2 + x + 1 is irreducible in Q[x] because it has no 
rational roots; we saw, in Example A-3.106, that <I>5 (x) is irreducible in Q[x]. Let us 
introduce another irreducibility criterion in order to prove that <I>p(x) is irreducible 
in Q[x] for all primes p. (In fact, for every (not necessarily prime) d :'.'.'. 1, the 
cyclotomic polynomial <I>d(x) is irreducible in Q[x]; see Tignol [115], p. 198.) 

Lemma A-3.110. Let g(x) E Z[x]. If there is c E Z with g(x + c) irreducible in 
Z[x], then g is irreducible in Q[x]. 

Proof. By Theorem A-3.25, the function cp: Z[x] -+ Z[x], given by 

cp: f H f(x + c), 

is an isomorphism (its inverse is f H f(x - c)). If g factors, say g = st, where 
s(x),t(x) E Z[x], then cp(g) = cp(s)cp(t); that is, g(x+c) = s(x+c)t(x+c), which is 
is a forbidden factorization of g(x+c). Therefore, Gauss's Lemma, Theorem A-3.65, 
says that g is irreducible in Q[x]. • 

Theorem A-3.111 (Eisenstein Criterion). Let f(x) = ao + aix + · · · + anxn E 

Z[x]. If there is a prime p dividing ai for all i < n but with pf an and p2 f ao, then 
f is irreducible in Q[x]. 

Proof. Assume, on the contrary, that 

f(x) = (bo + bix + · · · + bmxm)(co + C1X + · · · + ckxk), 

where m < n and k < n; by Gauss's Lemma, we may assume that both factors lie 
in Z[x]. Now p I ao = boco, so that Euclid's Lemma in Z gives p I bo or p I co; since 
p2 f ao, only one of them is divisible by p, say, p I co but pf bo. By hypothesis, 
the leading coefficient an = bmck is not divisible by p, so that p does not divide 
Ck (or bm)· Let Cr be the first coefficient not divisible by p (so that p does divide 
co, ... , Cr-1). If r < n, then p I ari and so bocr = ar - (b1Cr-1 + · · · + brco) is also 
divisible by p. This contradicts Euclid's Lemma, for p I bocr, but p divides neither 
factor. It follows that r = n; hence n :'.'.'. k :'.'.'. r = n, and so k = n, contradicting 
k < n. Therefore, f is irreducible in Q[x]. • 

R. Singer ([79], p. 78) found the elegant proof of Eisenstein's Criterion below. 

Proof. Let rp*: Z[x] -+ 1Fp[x] be the ring homomorphism that reduces coefficients 
modp, and let 7 denote rp*(f). If f is not irreducible in Q[x], then Gauss's Theorem 
gives polynomials g(x), h(x) E Z[x] with f = gh, where g(x) = bo+b1x+· · ·+bmxm, 
h(x) =co+ c1x + · · · + ckxk, and m, k > 0. There is thus an equation 7 = gh in 
1Fp[x]. 

Since pf an, we have f =f=. O; in fact, f = uxn for some unit u E 1Fp, because all 
of its coefficients aside from its leading coefficient are 0. By unique factorization in 
1Fp[x], we must have g = vxm and h = wxk (for units v, w in 1Fp), so that each of 
g and h has constant term 0. Thus, [bo] = 0 = [co] in 1Fp; equivalently, p I bo and 
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p I co. But ao = boco, and so p2 I ao, a contradiction. Therefore, f is irreducible in 
Q[x]. • 

Theorem A-3.112 (Gauss). For every prime p, the pth cyclotomic polynomial 
<I>p(x) is irreducible in Q[x]. 

Proof. Since <I>p(x) = (xP - l)/(x - 1), we have 

<I>p(x + 1) = [(x + l)P - 1]/x = xP-l + (i)xP-2 + (~)xP-3 + · ·. + p. 

Since pis prime, we have p I m for all i with 0 < i < p (FCAA, p. 42); hence, Eisen
stein's Criterion applies, and <I>p(x + 1) is irreducible in Q[x]. By Lemma A-3.110, 
<I>p(x) is irreducible in Q[x]. • 

Remark. 

(i) We do not say that xn-l + xn-2 + · · · + x + 1 is irreducible when n is not 
prime. For example, when n = 4, x3+x2+x+1 = (x + l)(x2 + 1). 

(ii) Gauss needed Theorem A-3.112 in order to prove that every regular 17-
gon can be constructed with ruler and compass. In fact, he proved that 
if pis a prime of the form p = 22m + 1, where m ~ 0, then every regular 
p-gon can be so constructed (such primes pare called Fermat primes; 
the only known such are 3, 5, 17, 257, and 65537). See Tignol [115], 
pp. 200-206 or LMA [23], p. 325. "ill 

Exercises 

* A-3.83. Let ( = e2"i/n be a primitive nth root of unity. 

(i) Prove that xn - 1 = (x - l)(x - ()(x - ( 2 ) · · · (x - (n- 1 ) and, if n is odd, that 
xn + 1 = (x + l)(x + ()(x + (2 ) .. · (x + (n- 1 ). 

(ii) For numbers a and b, prove that an - bn =(a - b)(a - (b)(a - ( 2 b) ... (a - (n-1 b) 
and, if n is odd, that an+ bn = (a+ b)(a + (b)(a + ( 2 b) ···(a+ (n- 1 b). 
Hint. Set x = a/b if b "I- 0. 

* A-3.84. Determine whether the following polynomials are irreducible in Q[x]. 

(i) f(x) = 3x2 - 7x - 5. 

(ii) f(x) = 2x3 - x - 6. 

(iii) f(x) = 8x3 - 6x - 1. 

(iv) f(x) = x3 + 6x2 + 5x + 25. 

(v) J(x) = x4 +Bx+ 12. 
Hint. In lFs[x], f(x) = (x + l)g(x), where g is irreducible. 

(vi) J(x) = x5 - 4x + 2. 

(vii) f(x) = x4 + x2 + x + 1. 
Hint. Show that f(x) has no roots in lF3 and that a factorization off as a product 
of quadratics would force impossible restrictions on the coefficients. 
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(viii) f(x) = x4 - 10x2 + 1. 
Hint. Show that f has no rational roots and that a factorization off as a product 
of quadratics would force impossible restrictions on the coefficients. 

A-3.85. Is x 5 + x + 1 irreducible in F2 [x]? 

Hint. Use Example A-3.104. 

A-3.86. Let f(x) = (xP - 1)/(x - 1), where pis prime. Using the identity 

f(x + 1) = xp-l + pq(x), 

where q(x) E Z[x] has constant term 1, prove that <Pp(xPn) = xPn(p-l) + · · · + xPn + 1 is 
irreducible in Q[x] for all n 2'. 0. 

* A-3.87. Use the Eisenstein Criterion to prove that if a is a squarefree integer, then xn-a 
is irreducible in Q[x] for every n 2'. 1. Conclude that there are irreducible polynomials in 
Q[x] of every degree n 2'. 1. In particular, this gives another proof that x4 + 1 E Q[x] is 
irreducible (see Example A-3.103. 

A-3.88. Let k be a field, and let f(x) = ao + alx + · · · + anxn E k[x] have degree n and 
nonzero constant term ao. Prove that if f(x) is irreducible, then so is an+ an-1X + · · · + 
aoxn. 

Euclidean Rings and Principal Ideal Domains 

Consider the parallel discussions of divisibility in Zand in k[x], where k is a field. A 
glance at proofs of the existence of gcd's, Euclid's Lemma, and unique factorization 
suggests that the Division Algorithm is the key property of these rings which yield 
these results. We begin by defining a generalization of gcd that makes sense in any 
commutative ring. 

Definition. If a, b lie in a commutative ring R, then a greatest common divisor 
(gcd) of a, bis a common divisor d E R which is divisible by every common divisor; 
that is, if c I a and c I b, then c I d. 

By Corollary A-3.62, greatest common divisors in k[x], where k is a field, are 
still gcd's under this new definition. However, gcd's (when they exist) need not be 
unique; for example, it is easy to see that if c is a gcd off and g, then so is uc for 
any unit u E R. In the special case R = Z, we forced uniqueness by requiring the 
gcd to be positive; in the case R = k[x], where k is a field, we forced uniqueness 
by further requiring the gcd to be monic. Similarly, least common multiples (when 
they exist) need not be unique; if c is an lcm off and g, then so is uc for any unit 
uE R. 

For an example of a domain in which a pair of elements does not have a gcd, 
see Exercise A-3.94 on page 103. 

Example A-3.113. Let R be a domain. If p, a E R with p irreducible, we claim 
that a gcd d of p and a exists. If p I a, then p is a gcd; if p f a, then 1 is a gcd. ~ 

Example A-3.114. Even if a gcd of a pair of elements a, b in a domain R exists, 
it need not be an R-linear combination of a and b. For example, let R = k[x, y], 
where k is a field. It is easy to see that 1 is a gcd of x and y; if there exist 
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s = s(x, y), t = t(x, y) E k[x, y] with 1 = xs + yt, then the ideal (x, y) generated by 
x and y would not be proper. However, Theorem A-3.25 gives a ring homomorphism 
cp: k[x,y]-+ k with cp(x) = 0 = cp(y), so that (x,y) c; kercp. But kercp is a proper 
ideal, by Proposition A-3.29, a contradiction. <Ill 

Informally, a euclidean ring is a domain having a division algorithm. 

Definition. A euclidean ring is a domain R that is equipped with a function 

a : R - {O} -+ N, 

called a degree function, such that 

(i)24 o(f) ::; o(f g) for all f, g E R with f, g =/. O; 

(ii) Division Algorithm: for all f, g ER with f =f. 0, there exist q, r ER 
with 

g = qf +r, 

where either r = 0 or a( r) < o(f). 

Example A-3.115. 

(i) Let R have a degree function{) that is identically 0. If f E Rand f =f. 0, 
condition (ii) gives an equation 1 = qf + r with r = 0 or o(r) < o(f). 
This forces r = 0, for o(r) < o(f) = 0 is not possible. Therefore, q = f- 1 

and R is a field. 

(ii) The set of integers Z is a euclidean ring with degree function o(m) = lml. 
Note that {) is multiplicative: 

o(mn) = lmnl = lmllnl = o(m)o(n). 

(iii) When k is a field, the domain k[x] is a euclidean ring with degree function 
o(f) = deg(!), the usual degree of a nonzero polynomial f. Note that 
deg is additive: 

o(f g) = deg(fg) =deg(!)+ deg(g) = o(f) + o(g). .... 

Since o(mn) = o(m)o(n) in Zand o(fg) = o(f) + o(g) in k[x], the behavior 
of the degree of a product is not determined by the axioms in the definition of a 
degree function. 

Definition. If a degree function a is multiplicative, that is, if o(fg) = o(f)o(g), 
then{) is called a norm. 

Theorem A-3.116. Let R be a euclidean ring. 

(i) Every ideal I in R is a principal ideal. 

(ii) Every pair a, b E R has a gcd, say d, that is a linear combination of a 
and b; that is, there ares, t E R with 

d = sa+ tb. 

(iii) Euclid's Lemma: If an irreducible element p ER divides a product ab, 
then either p I a or p I b. 

24This axiom is, in a certain sense, redundant (see Exercise A-3.97 on page 104). 



Euclidean Rings and Principal Ideal Domains 99 

(iv) Unique Factorization: If a ER and a= Pi·· ·Pm, where the Pi are 
irreducible elements, then this factorization is unique in the following 
sense: if a= qi··· qk, where the qJ are irreducible elements, then k = m 
and the q's can be reindexed so that Pi and qi are associates for all i. 

Proof. 

(i) If I= (0), then I is the principal ideal generated by O; therefore, we may 
assume that I =f. (0). By the Least Integer Axiom, the set of all degrees 
of nonzero elements in I has a smallest element, say, n; choose d E I 
with a(d) = n. Clearly, (d) ~ I, and so it suffices to prove the reverse 
inclusion. If a EI, then there are q, r ER with a= qd + r, where either 
r = 0 or a(r) < a(d). But r =a - qd E I, and sod having least degree 
implies that r = 0. Hence, a= qd E (d), and I= (d). 

(ii) This proof is essentially the same as that of Theorem A-3.61. We may 
assume that at least one of a and b is not zero (otherwise, the gcd is 0 and 
the result is obvious). Consider the ideal I of all the linear combinations: 

I= {sa + tb: s, tin R}. 

Now I is an ideal containing a and b. By part (i), there is d E I with 
I = (d). Since a, b E (d), we see that d is a common divisor. Finally, if 
c is a common divisor, then a = ca' and b = cb'; hence, c I d, because 
d = sa + tb =sea'+ tcb' = c(sa' + tb'). Thus, dis a gcd of a and b. 

(iii) If p I a, we are done. If pf a, then Example A-3.113 says that 1 is a gcd 
of p and a. Part (ii) gives s, t E R with 1 = sp +ta, and multiplying by 
b, 

b = spb+ tab. 

Since p I ab, it follows that p I b, as desired. 

(iv) This proof is essentially that of Theorem A-3.73. We prove, by induction 
on M = max{m, k}, that if Pl··· Pm= ap =qi··· qk, where the p's and 
q's are irreducible, then m = k and, after reindexing, Pi and qi are asso
ciates for all i. If M = 1, then p1 =a= qi. For the inductive step, the 
given equation shows that Pm I q1 · · · qk. By part (iii), Euclid's Lemma, 
there is some i with Pm I qi. But qi is irreducible, so there is a unit u 
with qi = UPmi that is, qi and Pm are associates. Reindexing, we may 
assume that qk = upm; canceling, we have P1 · · · Pm-1 = qi··· (qk-1u). 
Since qk_ 1u is irreducible, the inductive hypothesis gives m - 1 = k - 1 
(hence, m = k) and, after reindexing, Pi and qi are associates for all i. • 

Example A-3.117. The Gaussian integers Z[i] form a euclidean ring whose degree 
function 

8(a+bi)=a2 +b2 

is a norm. To see that 8 is multiplicative, note first that if a = a + bi, then 

a(a) = aa, 
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where Ci= a - bi is the complex conjugate of a. It follows that 8(a/3) = 8(a)8(/3) 
for all a, /3 E Z[i], because 

8(a/3) = af3a/3 = af3a73 = aa/373 = 8(a)8(/3); 

indeed, this is even true for all a, /3 E Q[i] = {x + yi: x, y E Q}. 

We now show that 8 satisfies the first property of a degree function. If /3 = 
c +id E Z[i] and /3 =I= 0, then 

1 :::; 8(/3), 
for 8(/3) = c2 + d2 is a positive integer; it follows that if a, /3 E Z[i] and /3 =I= 0, then 

8(a):::; 8(a)8(/3) = 8(af3). 

Let us show that 8 also satisfies the Division Algorithm. Given a, /3 E Z[i] with 
/3 =I= 0, regard a//3 as an element of C. Rationalizing the denominator gives a//3 = 
a/3//373 = a/3/8(/3), so that 

a//3 = x +yi, 
where x, y E Q. Write x = a+ u and y = b + v, where a, b E Z are integers closest 
to x and y, respectively; thus, lul, lvl :::; !· (If x or y has the form m+ !, where mis 
an integer, then there is a choice of nearest integer: x = m + ! or x = ( m + 1) - ! ; 
a similar choice arises if x or y has the form m - ! . ) It follows that 

a= f3(a +bi)+ f3(u +vi). 

Notice that f3(u +vi) E Z[i], for it is equal to a - f3(a +bi). Finally, we have 

8(/3(u +vi))= 8(/3)8(u +vi), 

and so 8 will be a degree function if 8(u +vi) < 1; this is so, for the inequalities 
lul :::; ! and lvl :::; ! give u2 :::; t and v2 :::; i, and hence 8( u + vi) = u2 + v2 :::; 

t + t = ! < 1. Therefore, 8(/3(u +vi)) < 8(/3), and so Z[i] is a euclidean ring 
whose degree function is a norm. ~ 

We now show that quotients and remainders in Z[i] may not be unique. For 
example, let a = 3 + 5i and /3 = 2. Then a//3 = ~ + ~i; the possible choices are 

a = 1 and u = ! or 

b = 2 and v = ! or 

a = 2 and u = -! , 
b = 3 and v = -!· 

Hence, there are four quotients and remainders after dividing 3 + 5i by 2 in Z[i], 
for each of the remainders (e.g., 1 + i) has degree 2 < 4 = 8(2): 

3 + 5i = 2(1 + 2i) + (1 + i), 

= 2(1+3i) + (1 - i), 

= 2(2 + 2i) + (-1 + i), 

= 2(2 + 3i) + (-1 - i). 

Until the middle of the twentieth century, it was believed that the reason for 
the parallel behavior of the rings Z and k[x], for k a field, was that they are both 
euclidean rings. Nowadays, however, we regard the fact that every ideal in them is 
a principal ideal as more significant. 
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Definition. A principal ideal domain is a domain R in which every ideal is a 
principal ideal. This term is usually abbreviated to PID. 

Example A-3.118. 

(i) Every field is a PID (Example A-3.31). 

(ii) Theorem A-3.116(i) shows that every euclidean ring is a PID. In particu
lar, if k is a field, then k[x] is a PID, a result we proved in Theorem A-3.49. 

(iii) If k is a field, then the ring of formal power series, k[[x]], is a PID (Ex
ercise A-3.90 on page 103). .,.. 

Theorem A-3.119. The ring Z[i] of Gaussian integers is a principal ideal domain. 

Proof. Example A-3.117 says that Z[i] is a euclidean ring, and Theorem A-3.116(i) 
says that it is a PID. • 

The hypothesis of Theorem A-3.116 can be weakened from R euclidean to Ra 
PID. 

Theorem A-3.120. Let R be a PID. 

(i) Every a, b E R has a gcd, say d, that is a linear combination of a and b: 

d = sa + tb, 

where s, t E R. 

(ii) Euclid's Lemma: If an irreducible element p ER divides a product ab, 
then either p I a or p I b. 

(iii) Unique Factorization: If a ER and a= P1 ···Pm, where the Pi are 
irreducible elements, then this factorization is unique in the following 
sense: if a= qi··· qk, where the qi are irreducible elements, then k = m 
and the q's can be reindexed so that Pi and qi are associates for all i. 

Proof. The proof of Theorem A-3.116 is valid here. • 

Remark. Prime factorizations in PIDs always exist, but we do not need this fact 
now; it is more convenient for us to prove it later. .,.. 

The converse of Example A-3.118(ii) is false: there are PIDs that are not 
euclidean rings, as we see in the next example. 

Example A-3.121. If a = !(1 + J=I§), then it is shown in algebraic number 
theory that the ring 

Z(a)={a+ba:a,bEZ} 

is a PID (Z(a) is the ring of algebraic integers in the quadratic number field 
Q( J=I§)). In 1949, Motzkin proved that Z( a) is not a euclidean ring by showing 
that it does not have a certain property enjoyed by all euclidean rings. 

Definition. An element u in a domain R is a universal side divisor if u is not 
a unit and, for every x ER, either u Ix or there is a unit z ER with u I (x + z). 
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Proposition A-3.122. If R is a euclidean ring but not a field, then R has a 
universal side divisor. 

Proof. Let {) be the degree function on R, and define 

S = {a(v): v =!= 0 and vis not a unit}. 

Since R is not a field, Example A-3.115(i) shows that Sis a nonempty subset of the 
natural numbers and, hence, S has a smallest element, say, 8(u). We claim that u 
is a universal side divisor. If x E R, there are elements q and r with x = qu + r, 
where either r = 0 or 8(r) < 8(u). If r = 0, then u I x; if r =/= 0, then r must 
be a unit, otherwise its existence contradicts 8(u) being the smallest number in S. 
Thus, u divides x - r. We have shown that u is a universal side divisor. • 

The proof of Proposition A-3.122 shows that +2 (and -2) are universal side 
divisors in Z. Note that 3 (and -3) are universal side divisors as well. 

Motzkin showed that Z(a) ={a+ ba: a, b E Z} has no universal side divisors, 
proving that this PID is not a euclidean ring (see Williams, [121], pp. 176-177) . 

.... 

What are the units in the Gaussian integers? 

Proposition A-3.123. Let R be a euclidean ring, not a field, whose degree function 
{)is a norm. 

(i) An element a E R is a unit if and only if a(a) = 1. 

(ii) If a E R and a(a) = p, where p is a prime number, then a is irreducible. 

(iii) The only units in the ring Z[i] of Gaussian integers are ±1 and ±i. 

Proof. 

(i) Since 12 = 1, we have a(1) 2 = a(l), so that 8(1) = 0 or a(l) = 1. 
If a(l) = 0, then a(a) = a(la) = a(l)a(a) = 0 for all a E R; by 
Example A-3.115(i), Risa field, contrary to our hypothesis. We conclude 
that a(l) = 1. 

If a E R is a unit, then there is f3 E R with a.(3 = 1. Therefore, 
a( a )a(f3) = 1. Since the values of {) are nonnegative integers, 8( a) = 1. 

For the converse, we begin by showing that there is no nonzero el
ement f3 E R with 8((3) = 0. If such an element existed, the Division 
Algorithm would give 1 = qf3 + r, where q, r E R and either r = 0 or 
a(r) < a(f3) = 0. The inequality cannot occur, and so r = O; that is, (3 
is a unit. But if f3 is a unit, then a(f3) = 1, as we have just proved, and 
this contradicts a(f3) = 0. 

Assume now that a(a) = 1. The Division Algorithm gives q, r E R 
with 

a= qa2 +r, 

where r = 0 or a(r) < a(a2 ). As a(a2) = a(a)2 = 1, either r = 0 or 
a(r) = 0. But we have just seen that a(r) = 0 cannot occur, so that 
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r = 0 and a= qa2 • It follows that 1 = qa, for Risa domain, and so a 
is a unit. 

(ii) If, on the contrary, a = /3"!, where neither /3 nor 'Y is a unit, then p = 
8(a) = 8(/3)8("!). Asp is prime, either 8(/3) = 1or8("!) = 1. By part (i), 
either /3 or 'Y is a unit; that is, a is irreducible. 

(iii) If a= a+ bi E Z[i] is a unit, then 1=8(a) = a2 + b2 • This can happen 
if and only if a2 = 1 and b2 = 0 or a2 = 0 and b2 = 1; that is, a = ±1 or 
a= ±i. • 

If n is an odd number, then either n = 1 mod 4 or n = 3 mod 4; consequently, 
the odd prime numbers are divided into two classes. For example, 5, 13, 17 are 
congruent to 1 mod 4, while 3, 7, 11 are congruent to 3 mod 4. The Gaussian 
integers, viewed as a euclidean ring, can be used to prove the Two Squares Theorem: 
An odd prime p is a sum of two squares, 

p = a2 + b2, 

where a and b are integers, if and only if p = 1mod4 (LMA [23], p. 342). By 
Exercise A-3.96 on page 104, the Eisenstein integers is a euclidean ring, and it is 
used to prove the case n = 3 of Fermat's Last Theorem: There do not exist positive 
integers a, b, c with a3 + b3 = c3 (LMA [23], Section 8.3). 

Exercises 

A-3.89. Let R be a PID; if a, b E R, prove that their lcm exists. 

* A-3.90. (i) Prove that every nonzero ideal in k[[x)] is equal to (xn) for some n ~ 0. 

(ii) If k is a field, prove that the ring of formal power series k[[x]] is a PID. 
Hint. Use Exercise A-3.29 on page 46. 

* A-3.91. If k is a field, prove that the ideal (x, y) in k[x, y] is not a principal ideal. 

A-3.92. For every m ~ 1, prove that every ideal in Zm is a principal ideal. (If m is 
composite, then Zm is not a PID because it is not a domain.) 

Definition. Let k be a field. A common divisor of ai(x), a2(x), ... , an(x) in k[x] is 
a polynomial c(x) E k(x] with c(x) I ai(x) for all i; the greatest common divisor is 
the monic common divisor of largest degree. We write c( x) = ( ai, a2, ... , an). A least 
common multiple of several elements is defined similarly. 

A-3.93. Let k be a field, and let polynomials ai(x), a2(x), ... , an(x) in k(x] be given. 

(i) Show that the greatest common divisor d(x) of these polynomials has the form 
2.:ti(x)ai(x), where ti(x) E k(x] for 1 :Si :Sn. 

(ii) Prove that c Id for every monic common divisor c(x) of the ai(x). 

* A-3.94. Prove that there are domains R containing a pair of elements having no gcd 
(according to the definition of gcd on page 97). 
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Hint. Let k be a field and let R be the subring of k[x] consisting of all polynomials having 
no linear term; that is, f(x) ER if and only if 

f(x) =SQ+ S2X2 + S3X3 + · · · . 

Show that x 5 and x 6 have no gcd in R. 

A-3.95. Prove that R = Z[v'2] = {a+ bv'2: a, b E Z} is a euclidean ring if we define 

8(a + bv'2) = la2 - 2b2 I. 

* A-3.96. (i) Prove that the ring Z[w] of Eisenstein integers (see Example A-3.4), where 
w = H-1 + iv'3), is a euclidean ring if we define 

8(a + bw) = a2 - ab+ b2 . 

Hint. This formula arises from the equation w2 + w + 1 = 0. 

(ii) Prove that the degree function 8 is a norm. 

* A-3.97. (i) Let 8 be the degree function of a euclidean ring R. If m, n EN and m ~ 1, 
prove that 8' is also a degree function on R, where 

8'(x) = m8(x) + n 

for all x E R. Conclude that a euclidean ring may have no elements of degree 0 or 
degree 1. 

(ii) If R is a domain having a function A: R - {O} --+ N satisfying axiom (ii) in the 
definition of euclidean ring, the Division Algorithm, prove that the function 8, 
defined by 

8(a) = min Ll(xa) 
o:ER,o:;CO 

equips R with the structure of a euclidean ring. 

A-3.98. Let R be a euclidean ring with degree function 8. 

(i) Prove that 8(1) :::; 8(a) for all nonzero a E R. 

(ii) Prove that a nonzero u ER is a unit if and only if 8(u) = 8(1). 

A-3.99. Let R be a euclidean ring, and assume that b E R is neither zero nor a unit. 
Prove, for every i ~ 0, that 8(bi) < 8(bi+1 ). 

Hint. There are q, r ER with bi= qbi+1 + r. 

Unique Factorization Domains 

In the last section, we proved unique factorization theorems for PIDs; in this section, 
we prove another theorem of Gauss: If R has a unique factorization theorem, then 
so does R[x]. A corollary is that there is a unique factorization theorem in the ring 
k[x1, ... , Xn] of all polynomials in several variables over a field k, and an immediate 
consequence is that any two polynomials in several variables have a gcd. 

Recall that an element p in a domain R is irreducible if it is neither 0 nor a 
unit and its only factors are units or associates of p. 

Definition. A domain R is a UFD (unique factorization domain or factorial 
ring) if 
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(i) every r E R, neither 0 nor a unit, is a product of irreducibles; 

(ii) if Pl··· Pm = qi··· qn, where all Pi and qj are irreducible, then m = n 
and there is a permutation a E Sn with Pi and qu(i) associates for all i. 

We now characterize UFDs. 

Proposition A-3.124. Let R be a domain in which every r ER, neither 0 nor a 
unit, is a product of irreducibles. Then R is a UFD if and only if (p) is a prime 
ideal in R for every irreducible element p E R. 25 

Proof. Assume that Risa UFD. If a, b ER and ab E (p), then there is r ER with 

ab= rp. 

Factor each of a, b, and r into irreducibles; by unique factorization, the left side of 
the equation must involve an associate of p. This associate arose as a factor of a or 
b, and hence a E (p) or b E (p). Therefore, (p) is a prime ideal. 

The proof of the converse is merely an adaptation of the proof of the Funda
mental Theorem of Arithmetic. Assume that 

Pl · ··Pm = qi · · · qn, 

where Pi and qi are irreducible elements. We prove, by induction on max{ m, n} 2: 1, 
that n = m and the q's can be reindexed so that qi and Pi are associates for all i. If 
max{ m, n} = 1, then p1 = q1 , and the base step is obviously true. For the inductive 
step, the given equation shows that P1 I qi··· qn. By hypothesis, (p1) is a prime 
ideal (this is the analog of Euclid's Lemma), and so there is some qi with P1 I qi. 
But qj, being irreducible, has no divisors other than units and associates, so that 
qj and P1 are associates: qi = up1 for some unit u. Canceling Pl from both sides, 
we have P2 ···Pm = uq1 · · · ijj · · · qn. By the inductive hypothesis, m -1 = n -1 (so 
that m = n) and, after possible reindexing, qi and Pi are associates for all i. • 

We have been considering uniqueness of prime factorizations; considering exis
tence involves a new idea: chains of ideals. 

Lemma A-3.125. 

(i) If R is a commutative ring and 

Ji ~ h ~ · · · ~ In ~ In+l ~ · · · 

is an ascending chain of ideals in R, then J = Un~l In is an ideal in R. 

(ii) If R is a PID, then it has no in.finite strictly ascending chain of ideals 

Ji £; I2 £; · · · £; In £; In+l £; · · · · 

(iii) If R is a PID and r E R is neither 0 nor a unit, then r is a product of 
irreducibles. 

25 An element p for which (p) is a nonzero prime ideal is often called a prime element. Such 
elements have the property that p I ab implies p I a or p I b; that is, this proposition is a vast 
generalization of Euclid's Lemma in Z. Indeed, Corollary A-3.136 below implies that Euclid's 
Lemma holds in k[xi, ... , Xn] for every field k. 
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Proof. 

(i) We claim that J is an ideal. If a E J, then a E In for some n; if r E R, 
then ra E In, because In is an ideal; hence, ra E J. If a, b E J, then 
there are ideals In and Im with a E In and b E Im; since the chain is 
ascending, we may assume that In ~ Im, and so a, b E Im. As Im is an 
ideal, a+ b E Im and, hence, a+ b E J. Therefore, J is an ideal. 

(ii) If, on the contrary, an infinite strictly ascending chain exists, then define 
J = Un>l In. By (i), J is an ideal; since Risa PID, we have J = (d) for 
some d E J. Now d got into J by being in In for some n. Hence 

and this is a contradiction. 

(iii) A divisor r of an element a E R is called a proper divisor of a if r is neither 
a unit nor an associate of a. If r is a divisor of a, then (a) ~ (r); if r is 
a proper divisor, then (a) s;; (r), for if the inequality is not strict, then 
(a)= (r), and this forces a and r to be associates, by Proposition A-3.35. 

Call a nonzero non-unit a E R good if it is a product of irreducibles 
(recall our convention: we allow products to have only one factor); call it 
bad otherwise. We must show that there are no bad elements. If a is bad, 
it is not irreducible, and so a= rs, where both rands are proper divisors. 
But the product of good elements is good, and so at least one of the 
factors, say r, is bad. The first paragraph shows that (a) s;; (r). It follows, 
by induction, that there exists a sequence ai = a, a2 = r, a3, ... , an, ... 
of bad elements with each an+l a proper divisor of an, and this sequence 
yields a strictly ascending chain 

contradicting part (i) of this lemma. • 

Theorem A-3.126. Every PID is a UFD. 

Proof. We proved uniqueness of prime factorizations in Theoerem A-3.116(iii), 
and existence of prime factorizations is proved in Lemma A-3.125. • 

Recall, given a finite number of elements ai, ... , an in a domain R, that a 
common divisor is an element c E R with c I ai for all i; a greatest common divisor 
or gcd is a common divisor d with c I d for every common divisor c. Even in the 
familiar examples of Z and k[x], gcd's are not unique unless an extra condition is 
imposed. For example, in k[x], where k is a field, we imposed the condition that 
nonzero gcd's are monic polynomials. In a general PID, elements may not have 
favorite associates. However, there is some uniqueness. If R is a domain, then it is 
easy to see that if d and d' are gcd's of elements ai, ... , an, then d I d' and d' I d. 
It follows from Proposition A-3.35 that d and d' are associates and, hence, that 
(d) = (d'). Thus, gcd's are not unique, but they all generate the same principal 
ideal. Nevertheless, we will abuse notation and write gcd(a, b). 
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Proposition A-3.127. If Risa UFD, then a gcd(a1, ... ,an) of any finite set of 
elements a 1 , ... , an in R exists. 

Proof. We prove first that a gcd of two elements a and b exists. There are distinct 
irreducibles p1, ... ,Pt with 

a= p~1p~2 ... p:• and b = p{1Pt2 ... p{'' 

where ei ~ 0 and fi ~ 0 for all i. It is easy to see that if c I a, then the factorization 
of c into irreducibles is c = wpf1 p~2 • • ·pf', where 0 S 9i S ei for all i and w is a 
unit. Thus, c is a common divisor of a and b if and only if 9i S mi for all i, where 

mi= min{ei, fi}. 

It is now clear that p"I' 1p~2 ···pf'' is a gcd of a and b. 

M .11 "f e·i e· 2 e·, h > 0 d · 1 d ore genera y, i ai = UiPi' p2' ···Pt' , w ere eij _ an i = , ... , nan Ui 
are units, then 

d = Pi1P~2 ···pf' 
is a gcd of a1, ... , an, where µj =min{ e1j, e2j, ... , enj }. • 

We caution the reader that we have not proved that a gcd of elements a1, ... , an 
is a linear combination of them; indeed, this may not be true (see Exercise A-3.105 
on page 113). 

Recall that if a1, ... , an are elements in a commutative ring R, not all zero, 
then their least common multiple is a common multiple c with c I m for every 
common multiple m. Least common multiples exist in UFDs. Note, as with gcd's, 
that lcm 's of a1, ... , an are not unique; however, any two such are associates, and 
so they generate the same principal ideal. 

Proposition A-3.128. Let R be a UFD, and let a1, ... , an in R. An lcm of 
a1, ... , an exists, and 

Proof. We may assume that all ai =f. 0. If a, b E R, there are distinct irreducibles 
Pi, ... ,Pt with 

a= p~1p~2 ... p:• and b = p{1Pt2 ... p{'' 

where ei ~ 0 and fi ~ 0 for all i. The reader may adapt the proof of Proposi
tion A-3.74 to prove that pr-1p~12 ···pf!' is an lcm of a and b if Mi= max{ei,fi} . 

• 
Example A-3.129. Let k be a field and let R be the subring of k[x] consisting of all 
polynomials f(x) E k[x] having no linear term; that is, f(x) = ao+a2x2+· · +anxn. 
In Exercise A-3.94 on page 103, we showed that x5 and x6 have no gcd in R. It 
now follows from Proposition A-3.127 that R is not a UFD. """ 

Definition. Elements a1, ... , an in a UFD R are called relatively prime if their 
gcd is a unit; that is, if every common divisor of a1, ... , an is a unit. 
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We are now going to prove that if R is a UFD, then so is R[x]. Recall Ex
ercise A-3.23 on page 45: if R is a domain, then the units in R[x] are the units 
in R. 

Definition. A polynomial f(x) = anxn+. · ·+a1x+ao E R[x), where Risa UFD, 
is called primitive if its coefficients are relatively prime; that is, the only common 
divisors of an, ... , a1, ao are units. 

Of course, every monic polynomial is primitive. Observe that if f(x) is not 
primitive, then there exists an irreducible q E R that divides each of its coefficients: 
if the gcd is a non-unit d, then take for q any irreducible factor of d. 

Example A-3.130. We claim that if R is a UFD, then every irreducible p(x) E 
R[x] of positive degree is primitive. Otherwise, there is an irreducible q E R with 
p(x) = qg(x); note that deg(q) = 0 because q E R. Since pis irreducible, its only 
factors are units and associates; since q is not a unit, it must be an associate of 
p. But every unit in R[x] has degree 0 (i.e., is a constant), for uv = 1 implies 
deg(u) + deg(v) = deg(l) = O; hence, associates in R[x] have the same degree. 
Therefore, q is not an associate of p, for the latter has positive degree, and so p 
is primitive. Note that we have shown that 2x + 2 is not irreducible in Z[x), even 
though it is linear. .,.. 

We begin with a technical lemma. 

Lemma A-3.131 {Gauss). If Risa UFD and f(x), g(x) E R[x) are both primi
tive, then their product f g is also primitive. 

Proof. If f g is not primitive, there is an irreducible p E R which divides all its 
of coefficients. Let P = (p) and let 7r: R -+ R/ P be the natural map a i-+ a + P. 
Proposition A-3.27 shows that the function 7f: R[x) -+ (R/ P) [x], which replaces 
each coefficient c of a polynomial by 7r(c), is a homomorphism. Now 1f(fg) = 0 in 
(R/P) [x). Since Pis a prime ideal, both R/P and (R/P) [x) are domains. But 
neither 7f(f) nor 1f(g) is 0 in (R/ P) [x], because f and g are primitive, and this 
contradicts (R/ P) [x] being a domain. • 

Lemma A-3.132. Let R be a UFD, let Q = Frac(R), and let f(x) E Q[x] be 
nonzero. 

(i) There is a factorization 

f(x) = c(f)f*(x), 

where c(f) E Q and f* E R[x) is primitive. This factorization is unique 
in the sense that if f(x) = qg*(x), where q E Q and g* E R[x) is primi
tive, then there is a unit w E R with q = we(!) and f* = wg*. 

(ii) If f(x),g(x) E R[x), then c(fg) and c(f)c(g) are associates in R and 
(Jg)* and f*g* are associates in R[x]. 

(iii) Let f(x) E Q[x) have a factorization f = qg*, where q E Q and g*(x) E 
R[x] is primitive. Then f E R[x) if and only if q ER. 
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(iv) Let g*,f E R[x]. If g* is primitive and g* I bf, where b ER and b =/:- 0, 
then g* I f. 

Proof. 

(i) Clearing denominators, there is b E R with bf E R[x]. If dis the gcd of 
the coefficients of bf, then f*(x) = (b/d)f E R[x] is a primitive polyno
mial. If we define c(f) = d/b, then f = c(f)J*. 

To prove uniqueness, suppose that c(f) f* = f = qg*, where c(f), q E 
Q and J*(x),g*(x) E R[x] are primitive. Exercise A-3.100 on page 113 
allows us to write q/c(f) in lowest terms: q/c(f) = u/v, where u and v are 
relatively prime elements of R. The equation vf*(x) = ug*(x) holds in 
R[x]; equating like coefficients, we see that v is a common divisor of all the 
coefficients of ug*. Since u and v are relatively prime, Exercise A-3.101 
on page 113 says that v is a common divisor of all the coefficients of g*. 
But g* is primitive, and so v is a unit. A similar argument shows that 
u is a unit. Therefore, q/c(f) = u/v is a unit in R, call it w; we have 
q = we(!) and f* = wg*. 

(ii) There are two factorizations of f(x)g(x) in R[x]: 

Jg= c(f g)(fg)*' 

Jg= c(f)f*c(g)g* = c(f)c(g)f*g*. 

Since the product of primitive polynomials is primitive, each of these is a 
factorization as in part (i); the uniqueness assertion there says that c(f g) 
is an associate of c(f)c(g) and (Jg)* is an associate of f*g*. 

(iii) If q E R, then it is obvious that f = qg* E R[x]. Conversely, if f(x) E 
R[x], then there is no need to clear denominators, and so c(f) = d E 
R, where dis the gcd of the coefficients of f(x). Thus, f = df*. By 
uniqueness, there is a unit w E R with q = wd E R. 

(iv) Since bf= hg*, we have bc(f)f* = c(h)h*g* = c(h)(hg)*. By uniqueness, 
f*, ( hg) *, and h * g* are associates, and so g* I f*. But f = c(f) f*, and 
so g* I J. • 

Definition. Let R be a UFD with Q = Frac(R). If f(x) E Q[x], there is a 
factorization f = c(f)f*, where c(f) E Q and f* E R[x] is primitive. We call c(f) 
the content of f and f* the associated primitive polynomial. 

In light of Lemma A-3.132(i), both c(f) and f* are essentially unique. 

We now consider a special case of Lemma A-3.132 which will be used in proving 
Liiroth's Theorem. 

Corollary A-3.133. Let k be a field, and let 

!( ) n gn-1(x) n-1 go(x) k( )[ ] 
x,y =y + hn-1(x)y +···+ ho(x) E x y, 
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where each gifhi is in lowest terms. If J*(x, y) E k[x][y] is the associated primitive 
polynomial off, then 

max{ deg(gi), deg( hi)} ~deg.,(!*) and n = degy(J*), 
• 

where deg.,(!*) (or degy (!*)) is the highest power of x (or y) occurring in J* . 

Proof. As in Lemma A-3.132(i), the content off is given by c(J) = d/b, where 
d = gcd(hn-1, ... , ho) and b = hn-1 ···ho. By Proposition A-3.128, 

c(J) = lcm(hn-1, ... , ho) E k[x]. 

We abbreviate c(J) to c. The associated primitive polynomial is 

f*(x, y) = cf(x, y) = cyn + chgn-1 yn-1 + ... + chgo E k[x, y]. 
n-1 0 

Since c is the lcm, there are ui E k[x] with c = uihi for all i. Hence, each coefficient 
c(gifhi) = uigi E k[x]. If m =deg.,(!*), then 

m =max{ deg(c), deg(c(gifhi))} =max{ deg(c), deg(uigi))}, 

for c is a coefficient of J*. Now hi I c for all i, so that deg(hi) ~ deg(c) ~ m. 
Also, deg(gi) ~ deg(uigi) ~ m. We conclude that maxi{deg(gi),deg(hi)} ~ m = 
deg.,(!*). • 

Theorem A-3.134 (Gauss). If Risa UFD, then R[x] is also a UFD. 

Proof. We show, by induction on deg(!), that every f(x) E R[x], neither zero nor 
a unit, is a product of irreducibles. The base step deg(!) = 0 is true, because j is 
a constant, hence lies in R, and hence is a product of irreducibles (for Risa UFD). 
For the inductive step deg(!)> 0, we have f = c(J)J*, where c(J) ER and f*(x) 
is primitive. Now c(f) is either a unit or a product of irreducibles, by the base 
step. If f* is irreducible, we are done. Otherwise, f* = gh, where neither g nor h 
is a unit. Since f* is primitive, however, neither g nor h is a constant; therefore, 
each of these has degree less than deg(!*) = deg(!), and so each is a product of 
irreducibles, by the inductive hypothesis. 

Proposition A-3.124 now applies: it suffices to show that if p(x) E R[x] is 
irreducible, then (p) is a prime ideal in R[x]; that is, if p I f g, then p I for p I g. 
Let us assume that p 1 f. 

(i) Suppose that deg(p) = 0. Now f = c(f)J*(x) and g = c(g)g*(x), where 
f*, g* are primitive and c(J), c(g) E R, by Lemma A-3.132(iii). Since 
p I Jg, we have 

p I c(f)c(g)f*g*. 

Write f* g* = l:i aixi, where ai E R, so that p I c(f)c(g )ai in R for all i. 
Now f*g* is primitive, so there is some i with p 1 ai in R. Since Risa 
UFD, Proposition A-3.124 says that p generates a prime ideal in R; that 
is, ifs, t E Rand p I st in R, then p I s or p I t. In particular, p I c(J)c(g) 
in R; in fact, p I c(f) or p I c(g). If p I c(f), then p divides c(f)f* = f, a 
contradiction. Therefore, p I c(g) and, hence, p I g; we have shown that 
p generates a prime ideal in R[x]. 
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(ii) Suppose that deg(p) > 0. Let 

(p, f) = { s(x)p(x) + t(x)f(x): s(x), t(x) E R[xl}; 

of course, (p, !) is an ideal in R[x] containing p and f. Choose m(x) E 
(p, !) of minimal degree. If Q = Frac(R) is the fraction field of R, then 
the division algorithm in Q[x] gives polynomials q'(x), r'(x) E Q[x] with 

f = mq' +r', 

where either r' = 0 or deg(r') < deg(m). Clearing denominators, there 
is a constant b ER and polynomials q(x), r(x) E R[x] with 

bf =qm+r, 

where r = 0 or deg(r) < deg(m). Since m E (p, !), there are polynomials 
s(x), t(x) E R[x] with m = sp + tf; hence r = bf - qm E (p, !). Since 
m has minimal degree in (p, !), we must haver = O; that is, bf = mq, 
and so bf= c(m)m*q. But m* is primitive, and m* I bf, so that m* I f, 
by Lemma A-3.132(iv). A similar argument, replacing f by p (that is, 
beginning with an equation b"p = q"m + r" for some constant b"), gives 
m* I p. Since p is irreducible, its only factors are units and associates. 
If m* were an associate of p, then p I f (because p I m* and m* I f), 
contrary to our assumption that pf f. Hence, m* must be a unit; that is, 
m = c(m) E R, and so (p, !) contains the nonzero constant c(m). Now 
c(m) = sp+tf, and so c(m)g = spg+tf g. Since p If g, we have p I c(m)g. 
But pis primitive, because it is irreducible, by Example A-3.130, and so 
Lemma A-3.132(iv) gives p I g. • 

Corollary A-3.135. If k is a field, then k[x1, ... , Xn] is a UFD. 

Proof. The proof is by induction on n ~ 1. We proved, in Theorem A-3. 73, that 
the polynomial ring k[x1] in one variable is a UFD. For the inductive step, recall 
that k[x1, ... , Xn, Xn+i] = R[xn+1J, where R = k[x1, ... , Xn]· By induction, Risa 
UFD and, by Theorem A-3.134, so is R[xn+1]. • 

Corollary A-3.136. If k is a field, then p = p(xi, ... , Xn) E k[x1, ... , Xn] is 
irreducible if and only if p generates a prime ideal in k[x1, ... , xn]. 

Proof. Proposition A-3.124 applies because k[x1, ... ,xn] is a UFD. • 

Proposition A-3.127 shows that if k is a field, then gcd's exist in k[x1, ... , Xn]· 

Corollary A-3.137 (Gauss's Lemma). Let R be a UFD, let Q = Frac(R), and 
let f(x) E R[x]. If f = GH in Q[x], then there is a factorization 

f = gh in R[x], 

where deg(g) = deg(G) and deg(h) = deg(H); in fact, G is a constant multiple of g 
and H is a constant multiple of h. Therefore, if f does not factor into polynomials 
of smaller degree in R[x], then f is irreducible in Q[x]. 
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Proof. By Lemma A-3.132(i), the factorization f = GH in Q[x] gives q, q' E Q 
with 

f = qG*q'H* in Q[x], 

where G*, H* E R[x] are primitive. But G* H* is primitive, by Gauss's Lemma 
A-3.131. Since f E R[x], Lemma A-3.132(iii) applies to say that the equation 
f = qq'(G* H*) forces qq' ER. Therefore, qq'G* E R[x], and a factorization off in 
R[x] is f = (qq'G*)H*. • 

The special case R =Zand Q = <Ql was proved in Theorem A-3.65. 

Here is a second proof of Gauss's Lemma, in the style of the proof of Lemma 
A-3.131, showing that the product of primitive polynomials is primitive. 

Proof. Clearing denominators, we may assume there is r E R with 

rf = gh in R[x] 

(in more detail, there are r', r" E R with g = r' G and h = r" H; set r = r' r"]. If 
pis an irreducible divisor of rand P = (p), consider the map R[x] ---+ (R/P)[x] 
which reduces all coefficients mod P. The equation becomes 

O=gh. 
But (R/P)[x] is a domain because R/P is (Proposition A-3.124), and so at least 
one of these factors, say, g, is O; that is, all the coefficients of g are multiples of p. 
Therefore, we may write g =pg', where all the coefficients of g' lie in R. If r = ps, 
then 

psf = pg'h in R[x]. 

Cancel p, and continue canceling irreducibles until we reach a factorization f = g* h* 
in R[x] (note that deg(g*) = deg(g) and deg(h*) = deg(h)). • 

Example A-3.138. We claim that f(x, y) = x2 + y2 - 1 E k[x, y] is irreducible, 
where k is a field. Write Q = k(y) = Frac(k[y]), and view f(x, y) E Q[x]. Now 
the quadratic g(x) = x 2 + (y2 - 1) is irreducible in Q[x] if and only if it has 
no roots in Q = k(y), and this is so, by Exercise A-3.62 on page 74. Moreover, 
Proposition A-3.124 shows that (x2 +y2 -1) is a prime ideal, for it is generated by 
an irreducible polynomial in Q[x] = k[x, y]. ollll 

Irreducibility of a polynomial in several variables is more difficult to determine 
than irreducibility of a polynomial of one variable, but here is one criterion. 

Proposition A-3.139. Let k be a field, and view f (x1, ... , Xn) E k[x1, ... , Xn] as 
a polynomial in R[xn], where R = k[x1, ... ,xn_iJ: 

f(xn) = ao(X1, · · · ,Xn-1) + al(X1, · · · ,Xn-1)Xn + · · · + am(Xi, · · · ,Xn-1)X~. 

If f(xn) is primitive and cannot be factored into two polynomials of lower degree in 
R[xnJ, then f(x1, ... ,xn) is irreducible in k[xi, ... ,xn]· 

Proof. Suppose that f(xn) = g(xn)h(xn) in R[xn]i by hypothesis, the degrees 
of g and h in Xn cannot both be less than deg(!); say, deg(g) = 0. It follows, 
because f is primitive, that g is a unit in k[x1, ... , Xn-1]. Therefore, f(xi, ... , Xn) 
is irreducible in R[xn] = k[xi, ... , Xn]· • 
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Of course, the proposition applies to any variable Xi, not just to Xn· 

Corollary A-3.140. If k is a field and g(x1, ... , Xn), h(xi, ... , Xn) E k[xi, ... , Xn] 
are relatively prime, then f(x1, ... ,xn,Y) = yg(x1, ... ,xn) + h(x1, ... ,xn) is irre
ducible in k[x1, ... , Xn, y]. 

Proof. Let R = k[x1, · · · , Xn]· Note that f is primitive in R[y], because (g, h) = 1 
forces any divisor of its coefficients g, h to be a unit. Since f is linear in y, it is 
not the product of two polynomials in R[y] of smaller degree, and hence Proposi
tion A-3.139 shows that f is irreducible in R[y] = k[x1 , ... , Xn, y]. • 

For example, xy2 + z is an irreducible polynomial in k[x, y, z] because it is a 
primitive polynomial that is linear in x. 

Example A-3.141. The polynomials x and y 2 + z2 - 1 are relatively prime in 
IR.[x, y, z], so that f(x, y, z) = x 2 + y2 + z2 - 1 is irreducible, by Corollary A-3.140. 
Since IR.[x, y, z] is a UFD, Corollary A-3.136 gives (!) a prime ideal, hence 

IR.[x, y, z]/(x2 + y 2 + z2 - 1) 

is a domain. <Ill 

Exercises 

* A-3.100. Let R be a UFD and let Q = Frac(R) be its fraction field. Prove that each 
nonzero a/b E Q has an expression in lowest terms; that is, a and b are relatively prime. 

* A-3.101. Let R be a UFD. If a, b, c E R and a and b are relatively prime, prove that 
a I be implies a I c. 

* A-3.102. If a, c1, ... , Cn ER and Ci I a for alli, prove that c I a, where c = lcm(c1, ... , cn). 

A-3.103. If R is a domain, prove that the only units in R[x1, ... , xn] are units in R. On 
the other hand, prove that 2x + 1 is a unit in Z4[x]. 

A-3.104. Prove that a UFD R is a PID if and only if every nonzero prime ideal is a 
maximal ideal. 

* A-3.105. (i) Prove that x and y are relatively prime in k[x, y], where k is a field. 

(ii) Prove that 1 is not a linear combination of x and yin k[x, y]. 

A-3.106. (i) Prove that Z[x1, ... , xn] is a UFD for all n 2:). 

(ii) If R is a field, prove that the ring of polynomials in infinitely many variables, 
R = k[x1, x2, ... , Xn, ... ], is also a UFD. 
Hint. For the purposes of this exercise, regard R as the union of the ascending 
chain of subrings k[x1] £; k[x1, x2] £; · · · £; k[x1, x2, ... , xn] £; · · · . 

A-3.107. Let k be a field and let J(x1, ... , Xn) E k[xi, ... , Xn] be a primitive polynomial 
in R[xn], where R = k[xi, ... ,Xn-1]. If J is either quadratic or cubic in Xn, prove that J 
is irreducible in k[x1, ... , Xn] if and only if f has no roots in k( X1, ... , Xn-1). 

* A-3.108. Let a E C be a root of f(x) E Z[x]. If f is monic, prove that the minimal 
polynomial p(x) = irr(a, Q) lies in Z[x]. 
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Hint. Use Lemma A-3.132. 

A-3.109. Let R be a UFD with Q = Frac(R). If f(x) E R[x], prove that f is irreducible 
in R[x] if and only if f is primitive and f is irreducible in Q[x]. 

* A-3.110. Let k be a field and let j(x, y) E k[x, y] be irreducible. if F(y) is j(x, y) viewed 
as a polynomial in k(x)(y], Prove that F(y) is irreducible in k(x)[y] 2 k[x, y], where F(y) 
is f(x, y) viewed as a polynomial in the larger ring. 

A-3.111. Prove that f(x, y) = xy3 + x2y2 - x5y + x2 + 1 is an irreducible polynomial in 
R[x,y]. 

* A-3.112. Let D = det ([~ !]), so that D lies in the polynomial ring Z(x,y,z,w]. 

(i) Prove that (D) is a prime ideal in Z(x, y, z, w]. 
Hint. Prove first that Dis an irreducible element. 

(ii) Prove that Z[x, y, z, w]/(D) is not a UFD. (This is another example of a domain 
that is not a UFD. In Example A-3.129, we saw that if k is a field, then the subring 
R ~ k[x] consisting of all polynomials having no linear term is not a UFD.) 
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Groups 

We are seeking formulas for roots of polynomials that generalize the quadratic, cu
bic, and quartic formulas. 1 Naturally, we have been studying polynomial rings k[x]. 
But, simultaneously, we have also been considering commutative rings, even though 
it is anachronistic (rings were not explicitly mentioned until the late 1800s). One 
reason for our studying rings, aside from the obvious one that results hold in more 
generality, is that they allow us to focus on important issues without distractions. 
For example, consider the statement that if f(x), g(x) E k[x] have degrees m and n, 
respectively, then deg(! g) = m + n. This is true if k is a field, (even when k is a 
domain), but there are examples of commutative rings k for which this is false. 

Why should we now study permutations? What have they got to do with 
formulas for roots? The key idea is that formulas involving radicals are necessarily 
ambiguous. After all, if s is an nth root of a number r, that is, if sn = r, then ws is 
also an nth root of r, where w is any nth root of unity, for (ws)n = wnsn = sn = r. 
There are two square roots of a number r, namely, ±Jr, and both appear in the 
quadratic formula: the roots of ax2 + bx + c are 

-b± Jb2 -4ac 
X= 

2a 
Both square roots and cube roots appear in the cubic formula, and we had to choose 
cube roots carefully, so each occurs with its "mate." It was well-known that the 
coefficients ai of the general polynomial of degree n: 

IJ(x -yi) = xn + an-1Xn-l + · · · + a1x + ao 
i 

(see Example A-3.92) are symmetric; that is, they are unchanged by permuting the 
roots Yi· For example, an-1 = -(y1 + · · · + Yn) is invariant. In 1770, Lagrange 
(and also Vandermonde) recognized the importance of ambiguity of radicals and 

1 Aside from intellectual curiosity, a more practical reason arose from calculus. Indefinite 
integrals are needed for applications. In particular, Leibniz integrated rational functions using 
partial fractions which, in turn, requires us to factor polynomials. 
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saw connections to permutations; we will give more details later in this chapter. 
Lagrange's work inspired Ruffini, who published his proof in 1799 (in a 500 page 
book!) that there is no analog of the classical formulas for quintic polynomials. 
Alas, Ruffini's proof, while basically correct, had a gap and was not accepted by 
his contemporaries. In 1815, Cauchy proved the (nowadays) standard results below 
about permutations, leading to Abel's proof, in 1824, of the unsolvability of the 
general quintic. In 1830, Galois invented groups and used them to describe precisely 
those polynomials of any degree whose roots can be given in terms of radicals. Since 
Galois's time, groups have arisen in many areas of mathematics other than the 
study of roots of polynomials, for they are the precise way to describe the notion 
of symmetry, as we shall see. 

Permutations 

As in our previous chapters on number theory and commutative rings, we now 
review familiar results, here about groups, often merely stating them and giving 
references to their proofs. 

Definition. A permutation of a set X is a bijection from X to itself. 

A permutation of a finite set X can be viewed as a rearrangement; that is, 
as a list with no repetitions of all the elements of X. For example, there are six 
rearrangements of X = {1, 2, 3}: 

123; 132; 213; 231; 312; 321. 

Now let X = { 1, 2, ... , n}. All we can do with such lists is count the number of 
them; there are exactly n! rearrangements of the n-element set X. 

A rearrangement i1, i2, ... , in of X determines a function a: X ---+ X, namely, 
a(l) = i1, a(2) = i2, ... , a(n) = in. For example, the rearrangement 213 deter
mines the function a with a(l) = 2, a(2) = 1, and a(3) = 3. We use a two-rowed 
notation to denote the function corresponding to a rearrangement; if a(j) is the 
jth item on the list, then 

2 
a(2) 

j 
a(j) 

That a list contains all the elements of X says that the corresponding function a 
is surjective, for the bottom row is im a; that there are no repetitions on the list 
says that distinct points have distinct values; that is, a is injective. Thus, each list 
determines a bijection a: X ---+ X; that is, each rearrangement determines a permu
tation. Conversely, every permutation a determines a rearrangement, namely, the 
list a(l), a(2), ... , a(n) displayed as the bottom row. Therefore, rearrangement and 
permutation are simply different ways of describing the same thing. The advantage 
of viewing permutations as functions, however, is that they can be composed. 

Notation. We denote the family of all the permutations of a set X by 

Sx, 
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but when X = {I, 2, ... , n }, we denote Sx by 

Sn. 

The identity permutation Ix is usually denoted by (I). 

117 

Composition is a binary operation on S x, for the composite of two permutations 
is itself a permutation. Notice that composition in S3 is not commutative; it is easy 
to find permutations a, (3 of {I, 2, 3} with 0:(3 f:. (30:. It follows that composition is 
not commutative in Sn for any n ~ 3. 

We now introduce some special permutations. Let f: X ---+ X be a function. If 
x EX, then f fixes x if f(x) = x, and f moves x if f(x) f:. x. 

Definition. Let ii, i2, ... , ir be distinct integers in X = {I, 2, ... , n}. If a E Sn 
fixes the other integers in X (if any) and if 

a(ii)=i2, a(i2)=i3, ... , a(ir-i)=ir, a(ir)=ii, 

then a is called an r-cycle. We also say that a is a cycle of length r, and we 
denote it by 

The term cycle comes from the Greek word for circle. The cycle a= (ii i2 ... ir) 
can be pictured as a clockwise rotation of the circle, as in Figure A-4.1. 

Figure A-4.1. Cycle a= (i1 i2 ... ir ). 

The 2-cycle (ii i2) interchanges ii and i2 and fixes everything else; 2-cycles are 
also called transpositions. A I-cycle is the identity, for it fixes every i; thus, all 
I-cycles are equal. We extend the cycle notation to I-cycles, writing (i) = (I) for 
all i (after all, ( i) sends i into i and fixes everything else). 

There are r different cycle notations for any r-cycle a, since any ij can be taken 
as its "starting point": 

a=(iii2 ... ir)=(i2i3 ... irii)= .. ·=(iriii2 ... ir-i). 

Definition. Two permutations a, (3 E Sn are disjoint if every i moved by one is 
fixed by the other: if a( i) f:. i, then (3( i) = i, and if (3(j) f:. j, then a(j) = j. A 
family f3i, ... , f3t of permutations is disjoint if each pair of them is disjoint. 
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For example, two cycles (ii ... ir) and (j1 ... j 8 ) are disjoint if and only if 
{i1, ... ,ir} n {ji, ... ,js} = 0. 

Proposition A-4.1. Disjoint permutations a, (3 E Sn commute. 

Proof. It suffices to prove that if 1 :::; i :::; n, then a(3( i) = f3a( i). If f3 moves i, 
say, f3(i) = j =f. i, then f3 also moves j (otherwise, (3(j) = j and f3(i) = j contradict 
(3's being an injection); since a and f3 are disjoint, a(i) = i and a(j) = j. Hence 
f3a(i) = j = af3(i). The same conclusion holds if a moves i. Finally, it is clear that 
a(3(i) = i = f3a(i) if both a and f3 fix i. • 

Aside from being cumbersome, there is a major problem with the two-rowed 
notation for permutations: it hides the answers to elementary questions such as: Is 
a permutation a cycle? or, Is the square of a permutation the identity? We now 
introduce an algorithm which remedies this problem by factoring a permutation 
into a product of disjoint cycles. Let 

( 1 2 3 4 5 6 7 8 9) 
a= 6 4 7 2 5 1 8 9 3 · 

Begin by writing "(l." Now a: 1 H 6; write "(1 6." Next, a: 6 H 1, and the 
parentheses close: a begins "(1 6)." The first number not having appeared is 2, 
and we write "(1 6)(2." Now a: 2 H 4; write "(1 6)(2 4." Since a: 4 H 2, the 
parentheses close once again, and we write "(1 6)(2 4)." The smallest remaining 
number is 3; now 3 H 7, 7 H 8, 8 H 9, and 9 H 3; this gives the 4-cycle (3 7 8 9). 
Finally, a(5) = 5; we claim that 

a= (1 6)(2 4)(3 7 8 9)(5). 

Since multiplication in Sn is composition of functions, our claim is that both a and 
(1 6)(2 4)(3 7 8 9)(5) assign the same value to each i between 1 and 9 (after all, 
two functions f and g are equal if and only if they have the same domain, the 
same target, and f(i) = g(i) for every i in their domain). The right side is the 
value of the composite f318, where f3 = (1 6), "I= (2 4), and 8 = (3 7 8 9) (we may 
ignore the 1-cycle (5) when we are evaluating, for it is the identity function). Now 
a(l) = 6; let us evaluate the composite on the right when i = 1: 

/318(1) = (3("!(8(1))) 

= (3("!(1)) 

= /3(1) 

=6 

because 8 = (3 7 8 9) fixes 1 

because "I = (2 4) fixes 1 

because (3 = (1 6). 

Similarly, we can show that a(i) = f318(i) for every i, proving the claim. 

We multiply permutations from right to left, because multiplication here is 
composition of functions; that is, to evaluate a/3(1), we compute a(/3(1)). 

Here is another example: let us write a= (1 2)(1 3 4 2 5)(2 5 1 3) as a product 
of disjoint cycles in S5 . To find the two-rowed notation for a, evaluate, starting 
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with the cycle on the right: 

Thus, 

a: 1 1--7 3 1--7 4 1--7 4; 

a: 4 1--7 4 1--7 2 1--7 1; 

a: 2 1--7 5 1--7 1 1--7 2; 

a: 3 1--7 2 1--7 5 1--7 5; 

a: 5 1--7 1 1--7 3 1--7 3. 

a= (1 4)(2)(3 5). 
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Proposition A-4.2. Every permutation a E Sn is either a cycle or a product of 
disjoint cycles. 

Proof. The proof is by induction on the number k of points moved by a. The base 
step k = 0 is true, for now a is the identity, which is a 1-cycle. 

If k > 0, let ii be a point moved by a. Define i2 = a(ii), ig = a(i2), ... , 
ir+i = a ( ir), where r is the smallest integer for which ir+ i E {ii , i2, ... , ir} (since 
there are only n possible values, the list ii, i 2, i 3, ... , ik, ... must eventually have a 
repetition). We claim that a(ir) =ii. Otherwise, a(ir) =ii for some j ~ 2. But 
a(ij-i) =ii; since r > j -1, this contradicts the hypothesis that a is an injection. 
Let a be the r-cycle (ii i2 ig ... ir)· If r = n, then a= a. If r < n, then a fixes 
each point in Y, where Y consists of the remaining n - r points, while a(Y) = Y. 
Define a' to be the permutation with a'(i) = a(i) for i E Y that fixes all i rt Y. 
Note that a and a' are disjoint, and 

a=aa'. 

The inductive hypothesis gives a' = f3i · · · f3t, where f3i, ... , f3t are disjoint cycles. 
Since a and a' are disjoint, a= af3i · · · f3t is a product of disjoint cycles. • 

The inverse of a function f: X --+ Y is a function g: Y --+ X with gf = lx 
and Jg = ly. Recall that f has an inverse if and only if it is a bijection (FCAA 
[94], p. 95), and that inverses are unique when they exist. Every permutation is a 
bijection; how do we find its inverse? In the pictorial representation on page 117 of a 
cycle a as a clockwise rotation of a circle, its inverse a-i is just the counterclockwise 
rotation. 

Proposition A-4.3. 

(i) The inverse of the cycle 

a= (ii i2 ... ir-i ir) 

is the cycle (ir ir-i ... i2 ii): 

a-1 = (i1 i2 ... q-l = (ir ir-i ... ii). 

(ii) If"( E Sn and"( = f31 · · · f3k, then 

'Y-i = f3;1 ... f31i. 

Proof. FCAA [94], p. 115. • 
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Usually we suppress the 1-cycles in the factorization of a permutation in Propo
sition A-4.2 (for 1-cycles equal the identity function). However, a factorization of o: 
in which we display one 1-cycle for each i fixed by o:, if any, will arise several times. 

Definition. A complete factorization of a permutation o: is a factorization of 
o: into disjoint cycles that contains exactly one 1-cycle (i) for every i fixed by o:. 

For example, a complete factorization of the 3-cycle o: = (1 3 5) in S5 is 
0: = (135)(2)(4). 

There is a relation between the notation for an r-cycle f3 = (ii i2 ... ir) and 
its powers f3k, where f3k denotes the composite of f3 with itself k times. Note that 
i2 = f3(ii), i3 = f3(i2) = f3(f3(ii)) = f32(ii), i4 = f3(i3) = f3((32(ii)) = (33(ii), and, 
more generally, 

for all positive k < r. 

Theorem A-4.4. Let o: E Sn and let o: = f3i · · · f3t be a complete factorization into 
disjoint cycles. This factorization is unique except for the order in which the cycles 
occur. 

Proof. Since every complete factorization of o: has exactly one 1-cycle for each i 
fixed by o:, it suffices to consider (not complete) factorizations into disjoint cycles 
of lengths :'.'.:: 2. Let o: = ')'i · · · 'Ys be a second factorization of o: into disjoint cycles 
of lengths :'.'.:: 2. 

The theorem is proved by induction on£, the larger oft and s. The inductive 
step begins by noting that if f3t moves ii, then f3f (ii)= o:k(ii) for all k :'.'.:: 1. Some 
'Yi must also move ii and, since disjoint cycles commute, we may assume that 'Ys 
moves ii. It follows that f3t = 'Ys (Exercise A-4.6 on page 123); right multiplying 
by f3"ti gives f3i · · · f3t-i = ')'i · · · 'Ys-i, and the inductive hypothesis applies. • 

Definition. Two permutations o:, f3 E Sn have the same cycle structure if, for 
each r :'.'.:: 1, their complete factorizations have the same number of r-cycles. 

According to Exercise A-4.3 on page 122, there are 

~ ( n(n - 1) · · · (n - r + 1)) 

r-cycles in Sn. This formula can be used to count the number of permutations 
having any given cycle structure if we are careful about factorizations having several 
cycles of the same length. For example, the number of permutations in S4 of the 

form (a b)(c d) is ! ( !(4 x 3)) x ( !(2 x 1)) = 3, the "extra" factor ! occurring so 

that we do not count (a b)(c d) = (c d)(a b) twice. 

The types of permutations in S4 and in S5 are counted in Tables 1 and 2 below. 

Here is a computational aid. 

Lemma A-4.5. If")', o: E Sn, then O:')'O:-i has the same cycle structure as 'Y· In 
more detail, if the complete factorization of")' is 

")' = f3if32 ... (ii i2 ... ) ... f3t, 
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Cycle Structure Number 
(1) 1 

Cycle Structure Number (1 2) 10 
(1) 1 (1 2 3) 20 
(1 2) 6 (1 2 3 4) 30 
(1 2 3) 8 (1 2 3 4 5) 24 
(1 2 3 4) 6 (1 2)(3 4 5) 20 
(1 2)(3 4) 3 (1 2)(3 4) 15 

24 120 

Table 1. Permutations in 84. Table 2. Permutations in Ss. 

then a-ya-1 is the permutation obtained from')' by applying a to the symbols in the 
cycles of -y. 

Remark. For example, if')'= (1 3)(2 4 7)(5)(6) and a= (2 5 6)(1 4 3), then 

a-ya-1 =(al a3)(a2 a4 a7)(a5)(a6) = (41)(5 3 7)(6)(2). ~ 

Proof. Observe that 

(6) 

Let er denote the permutation defined in the statement. 

If')' fixes i, then er fixes a(i), for the definition of er says that a(i) lives in a 
1-cycle in the factorization of er. Assume that')' moves a symbol i; say, -y(i) = j, so 
that one of the cycles in the complete factorization of ')' is 

(ij ... ). 

By definition, one of the cycles in the complete factorization of er is 

(a(i) a(j) ... ); 

that is, er: a(i) H a(j). Now Eq. (6) says that a-ya-1 : a(i) H a(j), so that er and 
a-ya- 1 agree on all numbers of the form a(i). But every k EX= {l, ... ,n} lies in 
im a, because the permutation a is surjective, and so er = a-ya- 1. • 

Example A-4.6. We illustrate the converse of Lemma A-4.5; the next theorem will 
prove that this converse holds in general. In S5 , place the complete factorization 
of a 3-cycle f3 over that of a 3-cycle ')', and define a to be the downward function. 
For example, if 

then 

f3 = (1 2 3)(4)(5), 

')' = (5 2 4)(1)(3), 

( 1 2 3 4 5) 
a= 5 2 4 1 3 ' 

and the algorithm gives a= (1534). Now a E Ss and 

')' = (al a2 a3), 
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so that 'Y = af3a- 1 , by Lemma A-4.5. Note that rewriting the cycles of /3, for 
example, as /3 = (1 2 3)(5)(4), gives another choice for a. <Ill 

Theorem A-4.7. Permutations 'Y and u in Sn have the same cycle structure if 
and only if there exists a E Sn with u = a'Ya-1. 

Proof. Sufficiency was proved in Lemma A-4.5. For the converse, place one com
plete factorization over the other so that each cycle below lies under a cycle of the 
same length: 

'Y = 8182 .. · (i1 i2 ... ) .. ·8t, 

U=1]11}2 00 ·(k f ... )" 0 1/t· 

Now define a to be the "downward" function, as in the example; hence, a(i1) = k, 
a(i2) = e, and so forth. Note that a is a permutation, for there are no repetitions 
of symbols in the factorization of 'Y (the cycles 1J are disjoint). It now follows from 
Lemma A-4.5 that u = a'Ya-1. • 

Exercises 

* A-4.1. (Pigeonhole Principle) Let f: X -7 X be a function, where Xis a finite set. 

(i) Prove equivalence of the following statements: f is an injection; f is a bijection; f 
is a surjection. 

(ii) Prove that no two of the statements in (i) are equivalent when X is an infinite set. 

(iii) Suppose there are 501 pigeons, each sitting in some pigeonhole. If there are only 
500 pigeonholes, prove that there is a hole containing more than one pigeon. 

* A-4.2. Let Y be a subset of a finite set X, and let f: Y -7 X be an injection. Prove that 
there is a permutation a: E Sx with o:jY = J. 

* A-4.3. If 1 :S r :S n, show that there are exactly 

~(n(n-l) 00 ·(n-r+1)) 
r-cycles in Sn. 

Hint. There are exactly r cycle notations for any r-cycle. 

* A-4.4. (i) If a: is an r-cycle, show that o:r = (1). 

Hint. If a:= (io ... ir-1), show that o:k(io) = ij, where k =qr+ j and 0 :S j < r. 

(ii) If a: is an r-cycle, show that r is the smallest positive integer k such that o:k = (1). 

* A-4.5. Define J: {O, 1, 2, ... , 10} -7 {O, 1, 2, ... , 10} by 

f(n) =the remainder after dividing 4n2 - 3n7 by 11. 

Show that f is a permutation. (If k is a finite field, then a polynomial f ( x) with coefficients 
in k is called a permutation polynomial if the evaluation function f: k -7 k, defined by 
a f-+ f(a), is a permutation of k. A theorem of Hermite-Dickson characterizes permutation 
polynomials (see [111], p. 40).) 
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* A-4.6. (i) Let a = (38 be a factorization of a permutation a into disjoint permutations. 
If (3 moves i, prove that ak(i) = (3k(i) for all k;:::::: 1. 

(ii) Let (3 and 'Y be cycles both of which move i. If (3k(i) = 'Yk(i) for all k ;:::::: 1, prove 
that (3 = 'Y· 

A-4.7. If a is an r-cycle and 1 < k < r, is ak an r-cycle? 

* A-4.8. (i) Prove that if a and (3 are (not necessarily disjoint) permutations that com
mute, then ( af3) k = ak (3k for all k ;:::::: 1. 

Hint. First show that (3ak = ak (3 by induction on k. 

(ii) Give an example of two permutations a and (3 for which ( af3)2 =/= a 2 (32. 

* A-4.9. (i) Prove, for all i, that a E Sn moves i if and only if a- 1 moves i. 

(ii) Prove that if a, (3 E Sn are disjoint and if af3 = (1), then a= (1) and (3 = (1). 

A-4.10. Give an example of a,(3, 'YE S5 , with a=/= (1), such that af3 = (3a, a'Y ='Ya, 
and f3'Y =/= 'Yf3· 

* A-4.11. If n;:::::: 3, prove that if a E Sn commutes with every (3 E Sn, then a= (1). 

A-4.12. If a= f31 · · · f3m is a product of disjoint cycles and 8 is disjoint from a, show that 
(3~ 1 • • • (3':r,m8 commutes with a, where ej ;:::::: 0 for all j. 

Even and Odd 

Here is another useful factorization of a permutation. 

Proposition A-4.8. If n ;::: 2, then every a E Sn is a transposition or a product 
of transpositions. 

Proof. In light of Proposition A-4.2, it suffices to factor an r-cycle f3 into a product 
of transpositions, and this is done as follows: 

f3 = (1 2 ... r) = (1 r)(l r - 1) · · · (13)(1 2). • 

Every permutation can thus be realized as a sequence of interchanges, but such 
a factorization is not as nice as the factorization into disjoint cycles. First, the trans
positions occurring need not commute: (1 2 3) = (1 3)(1 2) -:/= (1 2)(1 3); second, 
neither the factors themselves nor the number of factors are uniquely determined. 
For example, here are some factorizations of (1 2 3) in 84 : 

(1 2 3) = (1 3)(1 2) 

= (1 2)(2 3) 

= (2 3)(1 3) 

= (1 3)(4 2)(1 2)(1 4) 

= (13)(42)(12)(14)(23)(2 3). 

Is there any uniqueness at all in such a factorization? We will prove that the parity 
of the number of factors is the same for all factorizations of a permutation a; that 
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is, the number of transpositions is always even or always odd (as suggested by the 
factorizations of a= (1 2 3) displayed above). 

Example A-4.9. The 15-puzzle has a starting position that is a 4 x 4 array 
of the numbers between 1 and 15 and a symbol D, which we interpret as "blank." 
For example, consider the following starting position: 

12 15 14 8 
10 11 1 4 
9 5 13 3 
6 7 2 

A move interchanges the blank with a symbol adjacent to it; for example, there 
are two beginning moves for this starting position: either interchange D and 2 or 
interchange D and 3. We win the game if, after a sequence of moves, the starting 
position is transformed into the standard array 1, 2, 3, ... , 15, D. 

To analyze this game, note that the given array is really a permutation a E 815 
(if we now call the blank 16 instead of D). More precisely, if the spaces are labeled 
1 through 16, then a( i) is the symbol occupying the ith square. For example, the 
given starting position is 

2 
15 

3 4 5 
14 8 10 

6 
11 

7 8 9 
1 4 9 

10 11 12 
5 13 3 

13 
6 

14 
7 

15 
2 

16) 16 . 

Each move is a special kind of transposition, namely, one that moves 16 (remember 
that the blank D = 16). Moreover, performing a move (corresponding to a special 
transposition r) from a given position (corresponding to a permutation (3) yields a 
new position corresponding to the permutation r/3. For example, if a is the position 
above and r is the transposition interchanging 2 and D, then ra(D) = r(D) = 2 
and ra(15) = r(2) = D, while ra(i) = a(i) for all other i. That is, the new 
configuration has all the numbers in their original positions except for 2 and D 
being interchanged. To win the game, we need special transpositions r 1 , r 2 , ... , Tm 

such that 

'Tm··· T2T1a = (1). 

There are some starting positions a for which the game can be won, but there are 
others for which it cannot be won, as we shall see in Example A-4.13. <Ill 

Definition. A permutation a E Sn is even if it is a product of an even number of 
transpositions; a is odd if it is not even. The parity of a permutation is whether 
it is even or odd. 

It is easy to see that (1 2 3) and (1) are even permutations, for there are factor
izations (1 2 3) = (1 3)(1 2) and (1) = (1 2)(1 2) as products of two transpositions. 
On the other hand, we do not yet have any examples of odd permutations! It is 
clear that if a is odd, then it is a product of an odd number of transpositions. 
The converse is not so obvious: if a permutation is a product of an odd number of 
transpositions, it might have another factorization as a product of an even number 
of transpositions. After all, the definition of an odd permutation says that there 
does not exist a factorization of it as a product of an even number of transpositions. 
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Proposition A-4.10. Let a, /3 E Sn. If a and f3 have the same parity, then af3 is 
even, while if a and f3 have distinct parity, then af3 is odd. 

Proof. Let a= Ti··· Tm and f3 = ui ···Un, where the T and u are transpositions, 
so that a/3 =Ti··· Tmui ···Un has m + n factors. If a is even, then mis even; if a 
is odd, then m is odd. Hence, m + n is even when m, n have the same parity and a/3 
is even. Suppose that a is even and f3 is odd. If a/3 were even, then f3 = a-i(a/3) 
is even, being a product of evenly many transpositions, and this is a contradiction. 
Therefore, a/3 is odd. Similarly, a/3 is odd when a is odd and f3 is even. • 

Definition. If a E Sn and a = /3i · · · f3t is a complete factorization into disjoint 
cycles, then signum a is defined by 

sgn(a) = (-l)n-t. 

Theorem A-4.4 shows that sgn is well-defined, for the number t is uniquely 
determined by a. Notice that sgn(e) = 1 for every I-cycle e because t = n. If T 

is a transposition, then it moves two numbers, and it fixes each of the n - 2 other 
numbers; therefore, t = (n - 2) + 1 = n - 1, and so sgn(T) = (-1r-<n-i) = -1. 

Theorem A-4.11. For all a, /3 E Sn, 

sgn(a/3) = sgn(a) sgn(/3). 

Proof. We may assume that a is a product of transpositions, say, a =Ti··· Tm. 
We prove, by induction on m 2: 1 that sgn(a/3) = sgn(a) sgn(/3) for all f3 E Sn. 

For the base step m = 1, let a = (a b) and let f3 = /3i · · · f3t be a complete 
factorization of (3. Suppose that both a and b occur in the same cycle /3i; since 
disjoint cycles commute, we may assume they occur in /3i. Now 

(7) af3i = (a b)(a ci ... ck b di ... de) = (a ci ... ck)(b di ... de), 

where k, e 2: 0 and the letters a, b, ci, dj are all distinct (see FCAA [94], p. 120). 
It follows that the complete factorization of af3 is 

'Yi '1'2/32 ... f3t, 

where 'Yi = (a ci ... ck) and 'Y2 = (b di ... de). Thus, a/3 has one more cycle in 
its complete factorization than does f3, so that 

sgn( a/3) = - sgn(/3) = sgn( a) sgn(/3). 

Suppose now that a and b occur in different cycles; say, /3i = (a ci ... ck) and 
/32 = (b di ... de). Multiplying Eq. (7) on the left by (ab) gives 

(a b)(a ci ... ck)(b di ... de)= (a ci ... ck b di ... de). 

It follows that a/3 now has one fewer cycle in its complete factorization than does 
/3, so that sgn(a/3) = sgn(a)sgn(/3) in this case as well. 

For the inductive step, note that 
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But sgn(T2 · · · Tm/3) = sgn(T2 ···Tm) sgn(/3), by the inductive hypothesis, and so 

sgn(a/3) = sgn(T1) sgn(T2 ···Tm) sgn(,B) 

= sgn(T1T2 ···Tm) sgn(/3) 

= sgn(a) sgn(/3). • 

Theorem A-4.12. 

(i) Let a E Sn; if sgn(a) = 1, then a is even, and if sgn(a) = -1, then a is 
odd. 

(ii) A permutation a is odd if and only if it is a product of an odd number of 
transpositions. 

Proof. 

(i) If a = T1 · · · Tq is a factorization of a into transpositions, then Theo
rem A-4.11 gives sgn(a) = sgn(T1) · · · sgn(Tq) = (-l)q. Thus, if sgn(a) = 
1, then q must be even, and if sgn(a) = -1, then q must be odd. 

(ii) If a is odd, then it is a product of an odd number of transpositions (for it 
is not a product of an even number of such). Conversely, if a= T1 · · · Tq, 
where the Ti are transpositions and q is odd, then sgn(a) = (-l)q = -1; 
hence, q is odd. Therefore, a is not even, by part (i), and so it is odd. • 

Example A-4.13. An analysis of the 15-puzzle, as in Example A-4.9, shows that 
a game with starting position a E 816 can be won if and only if a is an even 
permutation that fixes D = 16. For a proof of this, we refer the reader to [76], 
pp. 229-234 (see Exercise A-4.17 below). The proof in one direction is fairly clear, 
however. Now D starts in position 16, and each move takes D up, down, left, or 
right. Thus, the total number m of moves is u + d + l + r, where u is the number 
of up moves, and so on. If D is to return home, each one of these must be undone: 
there must be the same number of up moves as down moves (i.e., u = d) and the 
same number of left moves as right moves (i.e., r = l). Thus, the total number of 
moves is even: m = 2u + 2r. That is, if Tm · · · T1 a = ( 1), then m is even; hence, 
a = T1 ···Tm (because T-1 = T for every transposition T), and so a is an even 
permutation. Armed with this theorem, we see that if the starting position a is 
odd, the game starting with a cannot be won. In Example A-4.9, 

a= (112 3 14 7)(2 15)(4 8)(5 10)(6 1113)(9)(0). 

Now sgn(a) = (-1) 16- 7 = -1, so that a is an odd permutation. Therefore, it is 
impossible to win this game. (The converse, which is proved in McCoy-Janusz [76], 
shows that the game can be won if a is even.) .,.. 

* A-4.13. Find sgn(a) and a- 1 , where 

( 1 2 3 
a= 9 8 7 

Exercises 

4 5 6 7 8 
6 5 4 3 2 
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A-4.14. If a E Sn, prove that sgn(a- 1 ) = sgn(a). 

A-4.15. Show that an r-cycle is an even permutation if and only if r is odd. 

* A-4.16. Given X = {1, 2, ... ,n}, call a permutation r of X an adjacency if it is a 
transposition of the form ( i i + 1) for i < n. 

(i) Prove that every permutation in Sn, for n 2: 2, is a product of adjacencies. 

(ii) If i < j, prove that (i j) is a product of an odd number of adjacencies. 
Hint. Use induction on j - i. 

* A-4.17. (i) Prove, for n 2: 2, that every a E Sn is a product of transpositions each of 
whose factors moves n. 

Hint. If i < j < n, then (j n)(i j)(j n) = (i n), by Lemma A-4.5, so that 
(i j) = (j n)(i n)(j n). 

(ii) Why doesn't part (i) prove that a 15-puzzle with even starting position a which 
fixes D can be solved? 

A-4.18. 

(i) Compute the parity of f in Exercise A-4.5. 

(ii) Compute the inverse off. 

* A-4.19. Prove that the number of even permutations in Sn is ~n!. 

Hint. Let r = (1 2). Show that/: An-+ On, defined by f: a 1-t ra, where An<;:;; Sn 
is the set of all even permutations and On <;:;; Sn is the set of all odd permutations, is a 
bijection. 

* A-4.20. (i) How many permutations in S5 commute with a = (1 2 3), and how many 
even permutations in Ss commute with a? 

Hint. Of the six permutations in S5 commuting with a, only three are even. 

(ii) Same questions for (1 2)(3 4). 
Hint. Of the eight permutations in S4 commuting with (1 2)(3 4), only four are 
even. 

* A-4.21. If n 2: 5, prove that if a E An commutes with every (even) (3 E An, then a= (1). 

A-4.22. Prove that if a E Sn, then sgn(a) does not change when a is viewed in Sn+l by 
letting it fix n + 1. 

Hint. If the complete factorization of a in Sn is a = (31 · · · f3t, then its complete factor
ization in Sn+1 has one more factor, namely, the 1-cycle (n + 1). 

Groups 

We remind the reader that the essence of a "product" is that two things are com
bined to form a third thing of the same kind. More precisely, a binary operation is 
a function * : G x G-+ G which assigns an element *(X, y) in G to each ordered 
pair (x, y) of elements in G; it is more natural to write x * y instead of *(x, y). The 
examples of the binary operations of composition of permutations and subtraction 
of numbers show why we want ordered pairs, for x * y and y * x may be distinct. 
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In constructing a binary operation on a set G, we must check, of course, that if 
x, y E G, then x * y E G; we say that G is closed under * when this is so. 

As any function, a binary operation is well-defined; when stated explicitly, this 
is usually called the Law of Substitution: 

If x = x' and y = y', then x * y = x' * y'. 

Definition. A group is a set G equipped with a binary operation * such that 

(i) the associative law holds: for every x, y, z E G, 

x * (y * z) = (x * y) * z; 

(ii) there is an element e E G, called the identity, withe* x = x = x * e for 
all x E G; 

(iii) every x E G has an inverse: there is x' E G with x * x' = e = x' * x. 

Some of the equations in the definition of group are redundant. When veri
fying that a set with a binary operation is actually a group, it is obviously more 
economical to check fewer equations. Exercise A-4.27 on page 138 (or see FCAA 
[94], p. 127) says that a set G containing an element e and having an associative 
binary operation * is a group if and only if e * x = x for all x E G and, for every 
x E G, there is x' E G with x' * x = e. 

Definition. A group G is called abelian2 if it satisfies the commutative law: 

X*Y=Y*X 

for every x, y E G. 

Here are some examples of groups. 

Example A-4.14. 

(i) The set Bx of all permutations of a set X, with composition as binary 
operation and lx = (1) as the identity, is a group, called the symmetric 
group on X. This group is denoted by Sn when X = {1, 2, ... , n }. The 
groups Sn, for n 2: 3, are not abelian because (1 2) and (1 3) are elements 
of Sn that do not commute: (1 2)(1 3) = (1 3 2) and (1 3)(1 2) = (1 2 3). 

(ii) An n x n matrix A with entries in a field k is called nonsingular if it 
has an inverse; that is, there is a matrix B with AB= I= BA, where 
I is then x n identity matrix. Since (AB)- 1 = B-1 A-1, the product of 
nonsingular matrices is itself nonsingular. The set 

GL(n,k) 

of all n x n nonsingular matrices over k, with binary operation matrix 
multiplication, is a (nonabelian) group, called the general linear group. 
The proof of associativity is routine, though tedious; a "clean" proof of 
associativity is given in our appendix on linear algebra. ~ 

2Commutative groups are called abelian because Abel proved (in modern language) that if 
the Galois group of a polynomial f(x) is commutative, then f is solvable by radicals. 
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Example A-4.15. 

(i) The set Qx of all nonzero rationals is an abelian group, where * is or
dinary multiplication: the number 1 is the identity, and the inverse of 
r E Qx is l/r. More generally, if k is a field, then its nonzero elements 
kx form an abelian multiplicative group. 

Note that the set zx of all nonzero integers is not a multiplicative 
group, for none of its elements (aside from ±1) has a multiplicative inverse 
in zx. 

(ii) The set Z of all integers is an additive abelian group with a*b = a+b, with 
identity 0, and with the inverse of an integer n being -n. Similarly, every 
ring R is an abelian group under addition (just forget the multiplication 
in R). In particular, the integers mod m, Zm, is an abelian group under 
addition. 

(iii) Let X be a set. The Boolean group B(X) (named after the logician 
Boole) is the additive group of the Boolean ring 2x (see Example A-3.7). 
It is the family of all the subsets of X equipped with addition given by 
symmetric difference A+ B, where 

A+ B = (A - B) U (B - A). 

Recall that the identity is 0, the empty set, and the inverse of A is A 
itself, for A+ A = 0. 

(iv) The circle group, 

81 = {z EC: lzl = 1}, 

is the group of all complex numbers of modulus 1 (the modulus of z = 
a+ ib E C is lzl = Ja2 + b2) with binary operation multiplication of 
complex numbers. The set 8 1 is closed, for if lzl = 1 = lwl, then lzwl = 1 
(because lz1z2I = lz1llz2I for any complex numbers z1 and z2). Complex 
multiplication is associative, the identity is 1 (which has modulus 1), and 
the inverse of any complex number z = a+ib of modulus 1 is its complex 
conjugate z =a - ib (which also has modulus 1). Thus, 8 1 is a group. 

( v) For any positive integer n, let 

r n = { Z E C : Zn = 1} 

be the set of all the nth roots of unity with binary operation multipli
cation of complex numbers. Now r n is an abelian group: the set r n is 
closed (if zn = 1 = wn, then (zw)n = znwn = 1); 1n = 1; multiplication 
is associative and commutative; the inverse of any nth root of unity is its 
complex conjugate, which is also an nth root of unity. 

(vi) The plane IR.2 is a group with operation vector addition; that is, if o: = 
(x, y) and o:' = (x', y'), then o: + o:' = (x + x', y + y'). The identity is the 
origin 0 = (0, 0), and the inverse of (x, y) is (-x, -y). More generally, 
any vector space is an abelian group under addition (just forget scalar 
multiplication). ""' 
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Lemma A-4.16. Let G be a group. 

(i) Cancellation Law: If either x *a= x * b or a* x = b * x, then a= b. 3 

(ii) The element e is the unique element in G withe* x = x = x * e for all 
xEG. 

(iii) Each x E G has a unique inverse: there is only one element x' E G with 
x * x' = e = x' * x (henceforth, this element will be denoted by x-1 ). 

(iv) (x-1)-1 = x for all x E G. 

Proof. 

(i) Choose x' with x' * x = e = x * x'. Then 

a= e *a= (x' * x) *a= x' * (x *a) 

= x' * (x * b) = (x' * x) * b = e * b = b. 

A similar proof works when xis on the right. 

(ii) Let e0 E G satisfy eo * x = x = x * eo for all x E G. In particular, setting 
x = e in the second equation gives e = e * e0 ; on the other hand, the 
defining property of e gives e * eo = eo, so that e = eo. 

(iii) Assume that x" E G satisfies x * x" = e = x" * x. Multiply the equation 
e = x * x' on the left by x" to obtain 

x" = x" * e = x" * (x * x') = (x" * x) * x' = e * x' = x'. 

(iv) By definition, (x- 1 )-1 * x-1 = e = x- 1 * (x- 1 )-1 . But x * x- 1 = e = 
x- 1 * x, so that (x- 1 )-1 = x, by (iii). • 

From now on, we will usually denote the product x *yin a group by xy, and 
we will denote the identity by 1 instead of bye. When a group is abelian, however, 
we usually use the additive notation x + y; in this case, the identity is denoted 
by 0, and the inverse of an element xis denoted by -x instead of by x- 1 . 

Definition. If G is a group and a E G, define the powers4 ak, for k ~ 0, induc
tively: 

a0 = 1 and an+l = aan. 

If k is a positive integer, define 

3We cannot cancel x if x *a= b * x. For example, we have (1 2)(1 2 3) = (2 1 3)(1 2) in 83, 
but (1 2 3) =I (2 1 3). Of course, if x *a= b * x, then b = x *a* x- 1 . 

4The terminology x square and x cube for x2 and x3 is, of course, geometric in origin. Usage 
of the word power in this context arises from a mistranslation of the Greek dunamis (from which 
dynamo derives) used by Euclid. Power was the standard European rendition of dunamis; for 
example, the first English translation of Euclid, in 1570, by H. Billingsley, renders a sentence of 
Euclid as, "The power of a line is the square of the same line." However, contemporaries of Euclid 
(e.g., Aristotle and Plato) often used dunamis to mean amplification, and this seems to be a 
more appropriate translation, for Euclid was probably thinking of a one-dimensional line segment 
sweeping out a two-dimensional square. (I thank Donna Shalev for informing me of the classical 
usage of dunamis.) 
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A binary operation on a set G allows us to multiply two elements of G, but 
it is often necessary to multiply more than two elements. Since we are told only 
how to multiply two elements, there is a choice when confronted with three factors 
a* b * e: first multiply b and e, obtaining b * e, and then multiply this new element 
with a to get a* (b* e), or first get a* band then multiply it withe to get (a* b) * e. 
Associativity says that either choice yields the same element of G. Thus, there is no 
confusion in writing a*b*e without parentheses. Suppose we want to multiply more 
than three elements; must we assume more complicated identities? In particular, 
consider powers; is it obvious that a3a2 = (a[aa2l) a? The remarkable fact is that 
if parentheses are not needed for 3 factors, then they are not needed for n ~ 3 
factors. 

Definition. Let G be a set with a binary operation; an expression in G is an 
n-tuple (a1, a2, ... , an) E G x · · · x G which is rewritten as aia2 ···an; the a/s are 
called the factors of the expression. 

An expression yields many elements of G by the following procedure. Choose 
two adjacent a's, multiply them, and obtain an expression with n - 1 factors: the 
new product just formed and n - 2 original factors. In this shorter new expression, 
choose two adjacent factors (either an original pair or an original one together with 
the new product from the first step) and multiply them. Repeat this procedure 
until there is a penultimate expression having only two factors; multiply them and 
obtain an element of G which we call an ultimate product. For example, consider 
the expression abed. We may first multiply ab, obtaining (ab)cd, an expression with 
three factors, namely, ab, c, d. We may now choose either the pair c, d or the 
pair ab, e; in either case, multiply these to obtain expressions having two factors: 
ab, ed, or (ab)e, d. The two factors in either of these last expressions can now be 
multiplied to give two ultimate products from abed, namely (ab)(ed) and ((ab)c)d. 
Other ultimate products derived from the expression abed arise from multiplying 
be or ed as the first step. It is not obvious whether the ultimate products from a 
given expression are all equal. 

Definition. Let G be a set with a binary operation. An expression aia2 ···an in G 
needs no parentheses if all of its ultimate products are equal elements of G. 

Theorem A-4.17 (Generalized Associativity I). If G is a group, then every 
expression ai a2 · · · an in G needs no parentheses. 

Proof. The proof is by induction on n ~ 3. The base step holds because the 
operation is associative. For the inductive step, consider two ultimate products U 
and V obtained from a given expression a1 a2 · · · an after two series of choices: 

U = (a1 · · ·ai)(ai+1 '··an) and V = (a1 · · ·aj)(aj+l '··an); 

the parentheses indicate the penultimate products displaying the last two factors 
that multiply to give U and V, respectively; there are many parentheses inside each 
of these shorter expressions. We may assume that i :::; j. Since each of the four 
expressions in parentheses has fewer than n factors, the inductive hypothesis says 
that each of them needs no parentheses. It follows that U = V if i = j. If i < j, 
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then the inductive hypothesis allows the first expression to be rewritten as 

U = (a1 · · · ai) ([ai+l · · · ai][ai+l ···an]) 

and the second to be rewritten as 

where each of the expressions ai · · · ai, ai+l · · · ai, and ai+l ···an needs no parenthe
ses. Thus, these three expressions yield unique elements A, B, and C in G, respec
tively. The first expression gives U = A(BC) in G, the second gives V = (AB)C 
in G, and so U = V in G, by associativity. • 

Corollary A-4.18. If G is a group, a E G, and m, n 2:: 1, then 

Proof. In the first case, both elements arise from the expression having m + n 
factors each equal to a; in the second case, both elements arise from the expression 
having mn factors each equal to a. • 

It follows that any two powers of an element a in a group commute: 

Corollary A-4.19. 

(i) If ai, a2, ... , ak-1, ak are elements in a group G, then 

Proof. 

( )-1 -1 -1 -1 -1 
aia2 · · · ak-1ak = ak ak-l · · · a2 a1 . 

(i) The proof is by induction on k 2:: 2. Using generalized associativity, 

(ab)(b- 1a- 1 ) = [a(bb-1)]a-1 = (al)a-1 = aa-1 = 1; 

a similar argument shows that (b- 1a- 1 )(ab)= 1. The base step (ab)- 1 = 
b- 1a-1 now follows from the uniqueness of inverses. The proof of the 
inductive step is left to the reader. 

(ii) Let every factor in part (i) be equal to a. Note that we have defined 
a-k = (a- 1)k, and we now see that it coincides with the other worthy 
candidate for a-k, namely, (ak)- 1. • 

Proposition A-4.20 (Laws of Exponents). Let G be a group, let a, b E G, and 
let m and n be (not necessarily positive) integers. 

(i) If a and b commute, then (abt = anbn. 

(ii) (am)n = amn. 

(iii) a man = am+n. 

Proof. The proofs, while routine, are lengthy double inductions. • 
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The notation an is the natural way to denote a* a*···* a, where a appears n 
times. However, using additive notation when the operation is+, it is more natural 
to denote a+ a+· · ·+a by na. If G is a group written additively, if a, b E G, and if 
m and n are (not necessarily positive) integers, then Proposition A-4.20 is usually 
rewritten as 

(i) n(a+b)=na+nb. 

(ii) m(na) = (mn)a. 

(iii) ma+ na = (m + n)a. 

Theorem A-4.17 and its corollaries hold in much greater generality. 

Definition. A semigroup is a set having an associative operation; a monoid is 
a semigroup Shaving a (two-sided) identity element 1; that is, ls = s = sl for all 
s E 8. 

Of course, every group is a monoid. 

Example A-4.21. 

(i) The set of natural numbers N is a commutative monoid under addition 
(it is also a commutative monoid under multiplication). The set of all 
even integers under addition is a monoid; it is a semigroup under multi
plication, but it is not a monoid. 

(ii) A direct product of semigroups (or monoids) with coordinatewise oper
ation is again a semigroup (or monoid). In particular, the set Nn of all 
n-tuples of natural numbers is a commutative additive monoid. 

(iii) The set of integers Z is a monoid under multiplication, as are all com
mutative rings (if we forget their addition). 

(iv) There are noncommutative monoids; for example, the ring Matn(k) of all 
n x n matrices with entries in a commutative ring k, is a multiplicative 
monoid. More generally, every noncommutative ring is a monoid (if we 
forget its addition). <Ill 

Corollary A-4.22 (Generalized Associativity II). If S is a semigroup and 
ai, a2 , .•. , an E S, then the expression a 1a2 ···an needs no parentheses. 

Proof. The proof of Theorem A-4.17 assumes neither the existence of an identity 
element nor the existence of inverses. • 

Can two powers of an element a in a group coincide? Can am= an form# n? 
If so, then ama-n = am-n = l. 

Definition. Let G be a group and let a E G. If ak = 1 for some k ~ 1, then the 
smallest such exponent k ~ 1 is called the order of a; if no such power exists, then 
we say that a has infinite order. 

In any group G, the identity has order 1, and it is the only element of order 1. 
An element has order 2 if and only if it is equal to its own inverse; for example, 
(1 2) has order 2 in Sn. In the additive group of integers Z, the number 3 is an 
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element having infinite order (because 3 + 3 + · · · + 3 = 3n i 0 if n > 0). In fact, 
every nonzero number in Z has infinite order. 

The definition of order says that if x has order n and xm = 1 for some positive 
integer m, then n ::::; m. The next theorem says that n must be a divisor of m. 

Proposition A-4.23. If a E G is an element of order n, then am= 1 if and only 
ifn Im. 

Proof. If m = nk, then am = ank = (an)k = lk = 1. Conversely, assume that 
am= 1. The Division Algorithm provides integers q and r with m = nq + r, where 
0::::; r < n. It follows that ar = am-nq = ama-nq = 1. If r > 0, then we contradict 
n being the smallest positive integer with an = 1. Hence, r = 0 and n I m. • 

What is the order of a permutation in Sn? 

Proposition A-4.24. Let a E Sn· 

(i) If a is an r-cycle, then a has order r. 

(ii) If a = /31 · · · f3t is a product of disjoint ri-cycles /3i, then the order of a 
is lcm(r1, ... ,rt)· 

(iii) If p is prime, then a has order p if and only if it is a p-cycle or a product 
of disjoint p-cycles. 

Proof. 

(i) This is Exercise A-4.4 on page 122. 

(ii) Each /3i has order ri, by (i). Suppose that aM = (1). Since the /3i 
commute, (1) = aM = (/31 · · · f3t)M = f3f! · · · /3f1. By Exercise A-4.9 on 
page 123, disjointness of the /3's implies that f3/'1 = (1) for each i, so that 
Proposition A-4.23 gives ri IM for all i; that is, Mis a common multiple 
of r 1, ... , rt. On the other hand, if m = lcm(ri, ... , rt), then it is easy to 
see that am= (1). Therefore, a has order m. 

(iii) Write a as a product of disjoint cycles and use (ii). • 

For example, a permutation in Sn has order 2 if and only if it is a product of 
disjoint transpositions. 

Computing the order of a nonsingular matrix A E GL(n, k) is more interesting. 
One uses canonical forms, for A and PAP- 1 have the same order (we shall do this 
later in the book, in Course II). 

Example A-4.25. Suppose a deck of cards is shuffled, so that the order of the cards 
has changed from 1, 2, 3, 4, ... , 52 to 2, 1, 4, 3, ... , 52, 51. If we shuffle again in the 
same way, then the cards return to their original order. But a similar thing happens 
for any permutation a of the 52 cards: if one repeats a sufficiently often, the deck 
is eventually restored to its original order. One way to see this uses our knowledge 
of permutations. Write a as a product of disjoint cycles, say, a = /31/32 • • • f3t, where 
/3i is an ri-cycle (our original shuffle is a product of disjoint transpositions). By 



Groups 135 

Proposition A-4.24, a has order k, where k is the least common multiple of the ri. 
Therefore, ak = (1). 

Here is a more general result with a simpler proof: we show that if G is a finite 
group and a E G, then ak = 1 for some k ;::: 1. Consider the list 1, a, a2 , ••• , an, . ... 
Since G is finite, there must be a repetition occurring on this infinite list: there are 
integers m > n with am= an, and hence 1 = ama-n = am-n. We have shown that 
there is some positive power of a equal to 1. (Our original argument that ak = (1) 
for a permutation a of 52 cards is still worthwhile, because it gives an algorithm 
computing k.) <1111 

Let us state formally what was just proved in Example A-4.25. 

Proposition A-4.26. If G is a finite group, then every x E G has finite order. 

Table 3 for S5 augments Table 2 on page 121. 

Cycle Structure Number Order Parity 
(1) 1 1 Even 
(1 2) 10 2 Odd 
(1 2 3) 20 3 Even 
(1 2 3 4) 30 4 Odd 
(1 2 3 4 5) 24 5 Even 
(1 2)(3 4 5) 20 6 Odd 
(1 2)(3 4) 15 2 Even 

120 

Table 3. Permutations in Ss. 

Definition. If G is a finite group, then the number of elements in G, denoted by 
IGI, is called the order of G. 

The word order in group theory has two meanings: the order of an element 
a E G; the order IGI of a group G. Proposition A-4.35 in the next section will 
explain this by relating the order of a group element a with the order of a group 
determined by it. 

But first, here are some geometric examples of groups arising from symmetry. 

Definition. An isometry is a distance preserving bijection5 <p: .IR2 ---+ .IR2 ; that 
is, if llv - ull is the distance from v to u, then llcp(v) - cp(u)ll = llv - ull. If 7f is a 
polygon in the plane, then its symmetry group E( 7f) consists of all the isometries 
<p for which cp(7r) = 7f. The elements of E(7r) are called symmetries of 7f. 

Example A-4.27. Let 7f4 be a square having vertices {v1 ,v2,v3,V4} and sides of 
length 1; draw 7r4 in the plane so that its center is at the origin 0 and its sides 
are parallel to the axes. It can be shown that every <p E E(7r4) permutes the 

5It can be shown that cp is a linear transformation if cp(O) = 0 (FCAA [94], Proposition 2.59). 
A distance preserving function f: IR.2 ~ IR.2 is easily seen to be an injection. It is not so obvious 
(though it is true) that f must also be a surjection (FCAA, Corollary 2.60). 
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Figure A-4.2. Square. 

vertices (Exercise A-4.65 on page 159); indeed, a symmetry cp of 11"4 is determined 
by {cp(vi): 1:::; i:::; 4}, and so there are at most 24 = 4! possible symmetries. Not 
every permutation in 84 arises from a symmetry of rr4, however. If vi and v3 are 
adjacent, then llvi -v3 II = 1, but llv1 -v3ll = v'2 = llv2 -v4ll; it follows that cp must 
preserve adjacency (for isometries preserve distance). The reader may now check 
that there are only eight symmetries of 11"4. Aside from the identity and the three 
rotations about 0 by 90°, 180°, and 270°, there are four reflections, respectively, in 
the lines v1v3, v2v4, the x-axis, and the y-axis (for a generalization to come, note 
that the y-axis is Omi, where m1 is the midpoint of v1 v2, and the x-axis is Om2 , 

where m2 is the midpoint of v2v3). The group E(rr4) is called the dihedral group6 

of order 8, and it is denoted by Ds. °"" 

Example A-4.28. The symmetry group E(rr5) of a regular pentagon rr5 with 
vertices v1 , ... , v5 and center 0 (Figure A-4.3) has 10 elements: the rotations 
about the origin by (72j) 0 , where 0 :::; j :::; 4, as well as the reflections in the lines 
Ovk for 1 :::; k :::; 5. The symmetry group E(rr5) is called the dihedral group of 
order 10, and it is denoted by D10. °"" 

Figure A-4.3. Pentagon. Figure A-4.4. Hexagon. 

6 Klein was investigating those finite groups occurring as subgroups of the group of isometries 
of JR3 . Some of these occur as symmetry groups of regular polyhedra (from the Greek poly meaning 
"many" and hedron meaning "two-dimensional side"). He invented a degenerate polyhedron that 
he called a dihedron, from the Greek di meaning "two" and hedron, which consists of two congruent 
regular polygons of zero thickness pasted together. The symmetry group of a dihedron is thus 
called a dihedral group. It is more natural for us to describe these groups as in the text. 
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Definition. If 1f n is a regular polygon with n :'.:'.: 3 vertices v1, v2, ... , Vn and center 
0, then the symmetry group E(7rn) is called the dihedral group of order 2n, and 
it is denoted7 by 

D2n· 

We define the dihedral group D4 = V, the four-group, to be the group of order 4 

v = { (1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ~ 84 

(see Example A-4.30(i) on page 140). 

Remark. Some authors define the dihedral group D2n as a group of order 2n 
generated by elements a, b such that an= 1, b2 = 1, and bab = a- 1. Of course, one 
is obliged to prove existence of such a group, and we will do this in Part II. <Ill 

0 3 2 0 3 2 

I [SJ 2 ,[21 Jil .El 
Figure A-4.5. Dihedral Group Ds. 

Figure A-4.5 pictures the elements in D8 . The top four squares display the 
rotations, while the bottom four squares display the reflections. The vertex labels 
describe these as elements of 84; that is, as permutations of {O, 1, 2, 3}. 

More generally, the dihedral group D2n of order 2n contains then rotations pi 
about the center by (360j/n) 0 , where 0::; j::; n - 1. The description of the other 
n elements depends on the parity of n. If n is odd (as in the case of the pentagon; 
see Figure A-4.3), then the other n symmetries are reflections in the distinct lines 
Ovi, for i = 1, 2, ... , n. If n = 2q is even (the square in Figure A-4.2 or the regular 
hexagon in Figure A-4.4), then each line Ovi coincides with the line Ovq+i> giving 
only q such reflections; the remaining q symmetries are reflections in the lines Omi 
for i = 1, 2, ... , q, where mi is the midpoint of the edge ViVi+l· For example, the 
six lines of symmetry of 1f6 are Ovi, Ov2, and Ov3, and Om1, Om2, and Om3. 

Exercises 

A-4.23. Let G be a semigroup. Prove directly, without using generalized associativity, 
that (ab)(cd) = a((bc)d] in G. 

7Some authors denote D2n by Dn. 
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A-4.24. (i) Compute the order, inverse, and parity of 

a= (1 2)(4 3)(1 3 5 4 2)(1 5)(1 3)(2 3). 

(ii) What are the respective orders of the permutations in Exercises A-4.13 and A-4.5 
on page 122? 

A-4.25. (i) How many elements of order 2 are there in 85 and in 86? 

(ii) Make a table for 86 (as the Table 3 on page 135). 

(iii) How many elements of order 2 are there in Sn? 
Hint. You may express your answer as a sum. 

* A-4.26. If G is a group, prove that the only element g E G with g2 = g is 1. 

* A-4.27. This exercise gives a shorter list of axioms defining a group. Let H be a 
semigroup containing an element e such that e * x = x for all x E H and, for every x E H, 
there is x' E H with x' * x = e. 

(i) Prove that if h E H satisfies h * h = h, then h = e. 
Hint. If h' * h = e, evaluate h' * h * h in two ways. 

(ii) For all x E H, prove that x * x' = e. 
Hint. Consider (x * x') 2 • 

(iii) For all x E H, prove that x * e = x. 
Hint. Evaluate x * x' * x in two ways. 

(iv) Prove that if e' EH satisfies e' * x = x for all x EH, then e' = e. 
Hint. Show that (e') 2 = e'. 

(v) Let x EH. Prove that if x" EH satisfies x" * x = e, then x" = x'. 
Hint. Evaluate x' * x * x" in two ways. 

(vi) Prove that H is a group. 

* A-4.28. Let y be a group element of order n; if n = mt for some divisor m, prove that 
yt has order m. 

Hint. Clearly, (ytr = 1. Use Proposition A-4.23 to show that no smaller power of yt is 
equal to 1. 

* A-4.29. Let G be a group and let a E G have order k. If p is a prime divisor of k and 
there is x E G with xP = a, prove that x has order pk. 

* A-4.30. Let G = GL(2, Q), let A= [~ -01 ], and let B = [ _01 }]. 

A= [~ -0
1] and B = [ _0

1 ~] . 

Show that A4 =I= B 6 , but that (ABr f:. I for all n > 0, where I= [An Conclude 
that AB can have infinite order even though both factors A and B have finite order (of 
course, this cannot happen in a finite group). 

* A-4.31. If G is a group in which x 2 = 1 for every x E G, prove that G must be abelian. 
(The Boolean groups B(X) in Example A-4.15 are such groups.) 

A-4.32. Prove that the dihedral group D2n contains elements a, b such that an = 1, 
b2 = 1, and bab = a- 1 . 

* A-4.33. If G is a group of even order, prove that the number of elements in G of order 2 
is odd. In particular, G must contain an element of order 2. 

Hint. Pair each element with its inverse. 
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* A-4.34. (i) Use Exercise A-4.11 on page 123 to prove that Sn is centerless for all n?: 3. 

(ii) Use Exercise A-4.21 on page 127 to prove that An is centerless for all n ?: 4. 

A-4.35. Let L(n) denote the largest order of an element in Sn. Find L(n) for n = 
1,2, ... , 10. 

The function L(n) is called Landau's function. No general formula for L(n) is 
known, although Landau, in 1903, found its asymptotic behavior: 

lim log L(n) = 1. 
n--+oo Jn log n 

See Miller (77], pp. 315-322. 

* A-4.36. (i) For any field k, prove that the stochastic group :E(2, k), the set of all 
nonsingular 2 x 2 matrices with entries in k whose column sums are 1, is a group 
under matrix multiplication. 

(ii) Define the affine group Aff ( 1, k) to be the set of a.ll f : k -+ k of the form f ( x) = 
ax+b, where a, b Ek and a =I 0. Prove that :E(2, k) 9! Aff(l, k) (see Exercise A-4.53 
on page 157). 

(iii) If k is a finite field with q elements, prove that j:E(2,k)I = q(q- 1). 

(iv) Prove that :E(2, IF3) 9! S3. 

Lagrange's Theorem 

A subgroup H of a group G is a group contained in G such that h, h' E H implies 
that the product hh' in H is the same as the p1'oduct hh' in G. Note that the 
multiplicative group H = { ±1} is not a subgroup of the additive group Z, for the 
product of 1 and -1 in H is -1 while the "product" in Z is their sum, 0. The 
formal definition of subgroup is more convenient to use. 

Definition. A subset H of a group G is a subgroup if 

(i) 1 E H, 

(ii) H is closed; that is, if x, y E H, then xy E H, 

(iii) if x E H, then x-1 E H. 

Observe that G and {1} are always subgroups of a group G, where {1} denotes 
the subset consisting of the single element 1. A subgroup H £; G is called a proper 
subgroup; a subgroup H =F {l} is called a nontrivial subgroup. 

Proposition A-4.29. Every subgroup H of a group G is itself a group. 

Proof. Property (ii) shows that H is closed, for x, y E H implies xy E H. Asso
ciativity (xy)z = x(yz) holds for all x, y, z E G, and it holds, in particular, for all 
x, y, z E H. Finally, (i) gives the identity, and (iii) gives inverses. • 
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For Galois, groups were subgroups of symmetric groups. Cayley, in 1854, was 
the first to define an "abstract" group, mentioning associativity, inverses, and iden
tity explicitly. He then proved that every abstract group with n elements is iso
morphic to a subgroup of Sn. 

It is easier to check that a subset H of a group G is a subgroup (and hence that 
it is a group in its own right) than to verify the group axioms for H: associativity 
is inherited from G, and so it need not be verified again. 

Example A-4.30. 

(i) The set of four permutations, 

v = { (1), (1 2)(3 4), (13)(24), (1 4)(2 3) }, 

is a subgroup of 84 : (1) EV; a 2 = (1) for each a EV, and so a-1 =a E 
V; the product of any two distinct permutations in V - { ( 1)} is the third 
one. It follows from Proposition A-4.29 that V is a group, called the 
four-group (V abbreviates the original German term Vierergruppe). 

Consider what verifying associativity a(bc) = (ab)c would involve: 
there are four choices for each of a, b, and c, and so there are 43 = 64 
equations to be checked. 

(ii) If we view the plane IR.2 as an (additive) abelian group, then any line L 
through the origin is a subgroup. The easiest way to see this is to choose 
a point (a, b) -=f. (0, O) on Land then note that L consists of all the scalar 
multiples (ra, rb). The reader may now verify that the axioms in the 
definition of subgroup do hold for L. 

(iii) The circle group S1 is a subgroup of the multiplicative group ex of 
nonzero complex numbers, and the group r n of nth roots of unity (see 
Example A-4.15(v)) is a subgroup of S 1, but it is not a subgroup of the 
plane IR.2 • 

(iv) If k is a field, then the special linear group consists of all n x n matrices 
over k having determinant 1: 

SL(n,k) ={A E GL(n,k): det(A) = l}. 

That SL(n, k) is a subgroup of GL(n, k) follows from the fact that det(AB) = 
det(A) det(B). .,.. 

We can shorten the list of items needed to verify that a subset is, in fact, a 
subgroup. 

Proposition A-4.31. A subset H of a group G is a subgroup if and only if H is 
nonempty and xy-1 EH whenever x, y EH. 

Proof. Necessity is clear. For sufficiency, take x E H (which exists because 
H -=f. 0); by hypothesis, 1 = xx-1 E H. If y E H, then y-1 = ly-1 E H, and 
if x, y E H, then xy = x(y-1 )-1 E H. • 

Note that if the binary operation on G is addition, then the condition in the 
proposition is that H is a nonempty subset such that x, y E H implies x - y E H. 
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Of course, the simplest way to check that a candidate H for a subgroup is nonempty 
is to check whether 1 EH. 

Corollary A-4.32. A nonempty subset H of a finite group G is a subgroup if and 
only if H is closed; that is, x, y EH implies xy EH. 

Proof. Since G is finite, Proposition A-4.26 says that each x E G has finite order. 
Hence, if xn = 1, then 1 E H and x-1 = xn-l E H. • 

This corollary can be false when G is an infinite group. For example, let G be 
the additive group Z; the set N = {O, 1, 2, ... } of natural numbers is closed under 
addition, but N is not a subgroup of z. 
Example A-4.33. The subset An = {a E Sn : a is even} ~ Sn is a subgroup, by 
Proposition A-4.10, for it is closed under multiplication: even o even= even. The 
group 

An 

is called the alternating group8 on n letters. <II 

Definition. If G is a group and a E G, then the cyclic subgroup of G generated 
by a, denoted by (a), is 

(a)= {an: n E Z} ={all powers of a}. 

A group G is called cyclic if there exists a E G with G = (a), in which case a is 
called a generator of G. 

The Laws of Exponents show that (a) is, in fact, a subgroup: 1 = a0 E (a); 
anam = an+m E (a); a- 1 E (a). 

Example A-4.34. 

(i) The multiplicative group r n ~ ex of all nth roots of unity (Exam
ple A-4.15) is a cyclic group; a generator is the primitive nth root of 
unity ( = e2n:i/n, for De Moivre's Theorem gives 

e2n:ik/n = (e2n:fn)k = (k. 

(ii) The (additive) group Z is an infinite cyclic group with generator 1. <II 

It is easy to see that Zm is a group; it is a cyclic group, for [1] is a generator. 
Note that if m :'.'.'. 1, then Zm has exactly m elements, namely, [OJ, [1], ... , [m - 1]. 

Even though the definition of Zm makes sense for all m :'.'.'. 0, one usually assumes 
that m :'.'.'. 2 because the cases m = 0 and m = 1 are not very interesting. If m = 0, 
then Zm = Zo = Z, for a = b mod 0 means 0 I (a - b); that is, a = b. If m = 1, then 

8The alternating group first arose while studying polynomials. If 

~(x) = (x - u1)(x - u2) · · · (x - un), 

where u1' ... 'Un are distinct, then the number D = ni<j ( Ui -Uj) can change sign when the roots 
are permuted: if A-4.33 a is a permutation of { ui, u2, ... 'Un}, then ni<j [a(ui) - a(uj)] = ±D. 
Thus, the sign of the product alternates as various permutations a are applied to its factors. The 
sign does not change for those a in the alternating group. 
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Zm = Z1 = {[OJ}, for a = b mod 1 means 1 I (a - b); that is, a and bare always 
congruent. 

The next proposition relates the two usages of the word order in group theory. 

Proposition A-4.35. Let G be a group. If a E G, then the order of a is equal to 
J(a)J, the order of the cyclic subgroup generated by a. 

Proof. The result is obviously true when a has infinite order, and so we may 
assume that a has finite order n. We claim that A = {1, a, a2, ... , an-l} has 
exactly n elements; that is, the displayed elements are distinct. If ai = ai for 
0 ::; i < j ::; n - 1, then ai-i = 1; as 0 < j - i < n, this contradicts n being the 
smallest positive integer with an = 1. 

It suffices to show that A= (a). Clearly, A~ (a). For the reverse inclusion, 
take ak E (a). By the Division Algorithm, k = qn + r, where 0 ::; r < n; hence, 
ak = aqn+r = aqnar = (an)qar = ar. Thus, ak = ar EA, and (a)= A. • 

A cyclic group can have several different generators; for example, (a)= (a-1 ). 

Definition. If n;:::: 1, then the Euler ¢-function ¢(n) is defined by 

¢(n) = J{k E Z: 1::; k::; n and gcd(k,n) = l}J. 

Theorem A-4.36. 

(i) If G = (a) is a cyclic group of order n, then ak is a generator of G if 
and only if gcd( k, n) = 1. 

(ii) If G is a cyclic group of order n and gen(G) = {all generators of G}, 
then 

Proof. 

Jgen(G)J = ¢(n), 

where ¢(n) is the Euler ¢-function. 

(i) If ak generates G, then a E (ak), so that a= akt for some t E Z. Hence, 
akt-l = 1; by Proposition A-4.23, n J (kt - 1), so there is v E Z with 
nv = kt - 1. Therefore, 1 is a linear combination of k and n, and so 
gcd(k, n) = 1. 

Conversely, if gcd(k, n) = 1, then ns +kt= 1 for s, t E Z; hence 

a= ans+kt = ansakt = akt E (ak). 

Therefore, a, hence every power of a, also lies in (ak), and so G = (ak). 
(ii) Since G = {1, a, ... , an-l }, this result follows from Proposition A-4.35 . 

• 
Proposition A-4.37. 

(i) The intersection niEI Hi of any family of subgroups of a group G is again 
a subgroup of G. In particular, if Hand Kare subgroups of G, then HnK 
is a subgroup of G. 
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(ii) If Xis a subset of a group G, then there is a subgroup (X) of G containing 
X that is smallest in the sense that (X) ~ H for every subgroup H of 
G that contains X. 

Proof. 

(i) This follows easily from the definitions. 

(ii) There do exist subgroups of G that contain X; for example, G con
tains X. Define (X) = nxcH H, the intersection of all the subgroups 
Hof G containing X. By P~oposition A-4.37, (X) is a subgroup of G; 
of course, (X) contains X because every H contains X. Finally, if Ho 
is any subgroup containing X, then Ho is one of the subgroups whose 
intersection is (X); that is, (X) = n H ~Ho. • 

There is no restriction on the subset X in the last corollary; in particular, 
X = 0 is allowed. Since the empty set is a subset of every set, we have (0) ~ H 
for every subgroup Hof G. In particular, (0) ~ {1}, and so (0)= {l}. 

Definition. If X is a subset of a group G, then (X) is called the subgroup 
generated by X. 

Of course, G is cyclic if G = (X) and IXI = 1. 

If X is a nonempty subset of a group G, a word 9 on X is an element g E G 
of the form g = x~1 • • • x~n, where Xi E X and ei = ±1 for all i. The inverse of g is 
the word x;;en · · · x;_-ei 

Proposition A-4.38. If X is a nonempty subset of a group G, then (X) is the 
set of all the words on X. 

Proof. We claim that W(X), the set of all the words on X, is a subgroup. If x EX, 
then 1 = xx- 1 E W(X); the product of two words on Xis also a word on X; the 
inverse of a word on X is a word on X. It now follows that (X) ~ W(X), for 
W(X) is a subgroup containing X. The reverse inclusion is clear, for any subgroup 
of G containing X must contain every word on X. Therefore, (X) = W(X). • 

Definition. If Hand Kare subgroups of a group G, then 

HV K= (HuK) 

is the subgroup generated by H and K. 

It is easy to check that H V K is the smallest subgroup of G that contains both 
Hand K. 

Corollary A-4.39. If H and K are subgroups of an abelian group G, then 

H V K = H + K = {h + k: h EH, k EK}. 

Proof. The words x~1 • • • x~n E (HU K) are written eix1 + · · · + enXn in additive 
notation, and they can be written in the displayed form because G's being abelian 
allows us to collect terms. • 

9This term will be modified a bit when we discuss presentations in the next volume, Part 2. 
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Example A-4.40. 

(i) If G =(a) is a cyclic group with generator a, then G is generated by the 
subset X ={a}. 

(ii) Let a and b be integers, and let A = (a) and B = (b) be the cyclic 
subgroups of Z they generate. Then A n B = ( m), where m = lcm( a, b), 
and A+ B = (d), where d = gcd(a, b). 

(iii) The dihedral group D2n (the symmetry group of a regular n-gon, where 
n ;::: 3) is generated by p, a, where p is a rotation by (360/n) 0 and a 
is a reflection. Note that these generators satisfy the equations pn = 1, 
a2 = 1, and apa = p-1 . We defined the dihedral group D4 = V, the 
four-group, in Example A-4.30(i); note that V is generated by elements 
panda satisfying the equations p2 = 1, a 2 = 1, and apa = p-1 = p. ""' 

Perhaps the most fundamental fact about subgroups H of a finite group G is 
that their orders are constrained. Certainly, we have IHI :::; IGI, but it turns out 
that IHI must be a divisor of IGI. 

Definition. If His a subgroup of a group G and a E G, then the coset aH is the 
subset aH of G, where 

aH = {ah : h E H}. 

Each element of a coset aH (e.g., a) is called a representative of it. 

The cosets just defined are often called left cosets; there are also right cosets 
of H, namely, subsets of the form Ha = {ha : h E H}. In general, left cosets and 
right cosets may be different, as we shall soon see. 

If we use the* notation for the binary operation on a group G, then we denote 
the coset aH by a* H, where a* H = {a* h : h E H}. In particular, if the operation 
is addition, then this coset is denoted by 

a+H={a+h:hEH}. 

Of course, a = al E aH. Cosets are usually not subgroups. For example, 
if a ¢ H, then 1 ¢ aH (otherwise 1 = ah for some h E H, and this gives the 
contradiction a = h- 1 E H). 

Example A-4.41. 

(i) If [a] is the congruence class of a mod m, then [a] =a+ H, where H = 
( m) is the cyclic subgroup of Z generated by m. 

(ii) Consider the plane IR2 as an (additive) abelian group and let L be a line 
through the origin; as in Example A-4.30(ii), the line Lis a subgroup of 
JR2 . If f3 E JR2 , then the coset (3 + L is the line L' containing (3 that is 
parallel to L, for if ro: E L, then the parallelogram law gives (3 + ro: E L'. 

(iii) Let A be an m x n matrix with entries in a field k. If the linear system 
of equations Ax = b is consistent; that is, the solution set { x E kn : 
Ax = b} is nonempty, then there is a column vector s E kn with As = b. 
Define the solution space S of the homogeneous system Ax = 0 to be 
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Figure A-4.6. The coset f3 + L. 

{x E kn : Ax= O}; it is an additive subgroup of kn. The solution set of 
the original inhomogeneous system is the coset s + S. 

(iv) Let An be the alternating group, and let r E Sn be a transposition (so 
that r 2 = (1)). We claim that Sn = An U rAn. Let a E Sn. If a is 
even, then a E An; if a is odd, then a = r(ra) E rAn, for ra, being 
the product of two odd permutations, is even. Note that Ann r An = 0, 
for no permutation is simultaneously even and odd. (We have proved 
Exercise A-4.19 on page 127, IAnl = ~n!, in a way other than suggested 
by the hint there.) 

( v) If G = S3 and H = ( ( 1 2)), there are exactly three left cosets of H, 
namely 

H = {(1), (1 2)} = (1 2)H, 

(1 3)H = {(1 3), (1 2 3)} = (1 2 3)H, 

(2 3)H = {(2 3), (1 3 2)} = (1 3 2)H, 

each of which has size two. Note that these cosets are also "parallel"; 
that is, distinct cosets are disjoint. 

Consider the right cosets of H = ( (1 2)) in S3 : 

H = {(1), (1 2)} = H(l 2), 

H(l 3) = {(1 3), (1 3 2)} = H(l 3 2), 

H(2 3) = {(2 3), (1 2 3)} = H(l 2 3). 

Again, we see that there are exactly 3 (right) cosets, each of which has 
size two. Note that these cosets are "parallel"; that is, distinct (right) 
cosets are disjoint. 

Finally, observe that the left coset (1 3)H is not a right coset of H; 
in particular, (1 3)H '# H(l 3). "" 

Lemma A-4.42. Let H be a subgroup of a group G, and let a, b E G. 

(i) aH = bH if and only if b-1a EH. In particular, aH = H if and only if 
a EH. 

(ii) If aH n bH -=10, then aH = bH. 

(iii) laHI = IHI for all a E G. 

Remark. Exercise A-4.37 on page 149 has the version of (i) for right cosets: Ha = 
Hb if and only if ab- 1 EH, and hence Ha= H if and only if a EH. "" 
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Proof. The first statement follows from observing that the relation on G, defined 
by a= b if b-Ia E H, is an equivalence relation whose equivalence classes are the left 
cosets. Since the equivalence classes of an equivalence relation form a partition, the 
left cosets of H partition G (which is the second statement). The third statement 
is true because h H ah is a bijection H---* aH (its inverse is ah H a-I(ah)). • 

For example, if H = (m) ~ Z, then a+ H = b + H if and only if a - b E (m); 
that is, a = b mod m. 

The next theorem is named after Lagrange because he showed, in his 1770 
paper, that certain numbers (which we know are orders of subgroups of Sn) are 
divisors of n!. The notion of group was invented by Galois 60 years later, and it 
was probably Galois who first proved the theorem in full. 

Theorem A-4.43 (Lagrange's Theorem). If H is a subgroup of a finite group 
G, then IHI is a divisor of IGI. 

Proof. Let { aIH, ... , atH} be the family of all the distinct left cosets of H in G. 
We claim that 

G = aIH U a2H U · · · U atH. 

If g E G, then g = gl E gH; but gH = aiH for some i, because aIH, . .. , atH 
is a list of all the left cosets of H. Now Lemma A-4.42(ii) shows that the cosets 
partition G into pairwise disjoint subsets, and so 

IGI = laIHI + la2HI + · · · + latHI. 

But laiHI = IHI for all i, by Lemma A-4.42(iii); hence, IGI = tlHI, as desired. • 

Remark. In his 1770 paper, Lagrange defined an action of a permutation IY E Sn 
on a polynomial inn variables. Given g(yI, ... ,yn), the polynomial 1Yg is obtained 
from g by letting IY permute the variables: 

IYg(yI' · · · 'Yn) = g(YuI' · · · 'Yun)· 

For example, if g is a symmetric function, then 1Yg = g for all IY E Sn. On the 
other hand, g(yi, Y2) =YI -y2 is not symmetric; if IY is the transposition (12), then 
1Yg(yi, Y2) = Y2 - YI = -g. Lagrange called a polynomial g(yI, ... , Yn) r-valued, 
where 1 :Sr :Sn!, if there are exactly r different polynomials of the form 1Yg. Thus, 
symmetric polynomials g are I-valued. The reader may check that 

~(YI,···' Yn) =II (yj -yi) 
i<j 

is 2-valued, g(yi, Y2, y3) =YI is 3-valued, and YIY2 - Y2Y3 is 6-valued. 

Notation. Given g(yi, ... , Yn), let 

L(g) = {IY E Sn: IYg = g}. 

Lagrange claimed (though his proof is incomplete) that if g(yi, ... , Yn) is r
valued, then 

n! 
r = IL(g)I' 



Lagrange's Theorem 147 

In the language of group theory, L(g) is a subgroup of Sn and r = ISnl/IL(g)I. 
(When we discuss group actions in Part 2, we will see that the subgroup L(g) is 
the stabilizer of g and r is the size of its orbit.) <Ill 

Definition. The index of a subgroup Hin G, denoted by 

[G:H], 

is the number of left10 cosets of H in G. 

The index [G : H] is the number t in the formula IGI = tlHI in the proof of 
Lagrange's Theorem, so that 

IGI = [G: H]IHI; 

this formula shows that the index [G: HJ is also a divisor of IGI; moreover, 

[G: H] = IGl/IHI. 

Example A-4.44. 

(i) Here is a third solution of Exercise A-4.19 on page 127. In Exam
ple A-4.41(iv), we saw that Sn = An Ur An, where r is a transposition. 
Thus, there are exactly two cosets of An in Sn; that is, [Sn: An] = 2. It 
follows that IAnl = !n!. 

(ii) Recall that the dihedral group D2n = E(7rn), the symmetries of the 
regular n-gon 1fn, has order 2n, and it contains the cyclic subgroup (p) 
of order n generated by the clockwise rotation p by (360/n) 0 • Thus, 
(p) has index [D2n : (p)] = 2n/n = 2, and there are only two cosets: 
(p) and a-(p), where a- is any reflection outside of (p). It follows that 
D2n = (p) U a-(p); every element a E D2n has a unique factorization 
a = a-i pJ, where i = 0, 1 and 0 :::; j < n. <Ill 

Corollary A-4.45. If G is a finite group and a E G, then the order of a is a 
divisor of IGI. 

Proof. Immediate from Lagrange's Theorem, for the order of a is l(a)I. • 

Corollary A-4.46. If G is a finite group, then alGI = 1 for all a E G. 

Proof. If a has order d, then IGI = dm for some integer m, by the previous 
corollary, and so alGI = adm = (ad)m = 1. • 

Corollary A-4.47. If p is prime, then every group G of order p is cyclic. 

Proof. If a E G and a-:/=- 1, then a has order d > 1, and dis a divisor of p. Since p 
is prime, d = p, and so G =(a). • 

10Exercise A-4.43 on page 150 shows that the number of left cosets of a subgroup H is equal 
to the number of right cosets of H. 
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In Example A-4.41{iii), we saw that the additive group Zm is cyclic of order m. 
Now multiplication Zm x Zm---+ Zm, given by 

[a][bJ = [ab], 

is also a binary operation on Zm. However, Zm is not a group under this operation 
because inverses may not exist; for example, [OJ has no multiplicative inverse. 

Proposition A-4.48. The set11 U(Zm), defined by 

U(Zm) = {[rJ E Zm: gcd{r,m) = 1}, 

is a multiplicative group of order </>(m), where</> is the Euler </>-function. In partic
ular, if p is prime, then U(Zp) is a multiplicative group of order p - 1. 

Remark. Theorem A-3.59 says that U(Zp) is a cyclic group for every prime p. <illl 

Proof. If gcd{r, m) = 1 = gcd{r', m), then gcd(rr', m) = 1: if sr + tm = 1 and 
s'r' + t'm = 1, then 

(sr + tm)(s'r' + t'm) = 1 = (ss')rr' + (st'r + ts'r + tt'm)m; 

hence U(Zm) is closed under multiplication. We have already mentioned that multi
plication is associative and that [lJ is the identity. If gcd{a, m) = 1, then [a][xJ = [lJ 
can be solved for [x) in Zm. Now gcd{x, m) = 1, because rx + sm = 1 for some 
integer s, and so gcd{x, m) = 1. Hence, [x) E U(Zm), and so each [r) E U{Zm) 
has an inverse in U(Zm)· Therefore, U(Zm) is a group, and the definition of the 
Euler </>-function shows that IU{Zm)I = </>(m). The last statement follows because 
<f>(p) = p - 1 when p is prime. • 

Here is a group-theoretic proof of Fermat's Theorem {Theorem A-2.26). 

Corollary A-4.49 (Fermat). If pis prime and a E Z, then 

aP =a modp. 

Proof. It suffices to show that [aP) = [a) in Zp. If [a) = [OJ, then [aPJ = [aJP = 
[OJP = [OJ = [aJ. If [aJ =I- [OJ, then [aJ E z;, the multiplicative group of nonzero 
elements in Zp. By Corollary A-4.46 to Lagrange's Theorem, [aJP-1 = [lJ, because 
1.z; I= p-l. Multiplying by [aJ gives the desired result: [aPJ = [aJP = [aJ. Therefore, 
aP =a modp. • 

Theorem A-4.50 (Euler). If gcd(r, m) = 1, then 

r<l>(m) = 1 mod m. 

Proof. Since IU(Zm)I = </>(m), Corollary A-4.46 gives [rj<l>(m) = [lJ for all [rJ E 
U(Zm)· In congruence notation, if gcd{r, m) = 1, then r<l>(m) = 1 mod m. • 

11This notation is a special case of the notation, introduced on page 36, for the group of 
units U(R) of a commutative ring R. 
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Example A-4.51. It is easy to see that the square of each element in the group 

U(Zs) = {[1), [3), [5], [7]} 

is [1] (thus, U(Zs) resembles the four-group V), while 

U(Z10) = {[1], [3], [7], [9]} 

is a cyclic group of order 4 with generator [3] (were the term isomorphism available, 
we would say that U(Z8 ) is isomorphic to V and U(Z10) is isomorphic to Z4 ). See 
Example A-4.56. <Ill 

Theorem A-4.52 (Wilson's Theorem). An integer pis prime if and only if 

(p-1)! = -1 modp. 

Proof. Assume that p is prime. If ai, a2, ... , an is a list of all the elements of a 
finite abelian group G, then the product a 1a2 ···an is the same as the product of 
all elements a with a2 = 1, for any other element cancels against its inverse. Since 
p is prime, z; has only one element of order 2, namely, [-1] (if p is prime and 
x2 = 1 mod p, then x = [±1]). It follows that the product of all the elements in 
z;, namely, [ (p - 1) !], is equal to [-1]; therefore, (p - 1) ! = -1 mod p. 

Conversely, assume that m is composite: there are integers a and b with m = ab 
and 1 < a :S b < m. If a < b, then m = ab is a divisor of ( m - 1) ! , and so ( m - 1) ! = 
0 mod m. If a= b, then m = a2. If a= 2, then (a2 - 1)! = 3! = 6 = 2 mod 4 and, 
of course, 2 ¢ -1 mod 4. If 2 < a, then 2a < a2, and so a and 2a are factors of 
(a2 - 1)!; therefore, (a2 - 1)! = 0 mod a2. Thus, (a2 - 1)! ¢ -1 mod a2, and the 
proof is complete. • 

Remark. We can generalize Wilson's Theorem in the same way that Euler's The
orem generalizes Fermat's Theorem: replace U(Zp) by U(Zm)· For example, if 
m :'.'.: 3, we can prove that U(Z2m) has exactly 3 elements of order 2, namely, 
[-1), [1 + 2m-1], and [-(1 + 2m-1)] (Rotman [97], p. 121). It follows that the 
product of all the odd numbers r, where 1 :S r < 2m, is congruent to 1 mod 2m, 
because 

(-1)(1+2m- 1)(-l - 2m- 1) = (1+2m- 1) 2 = 1+2m + 22m-2 = 1mod2m. ... 

Exercises 

* A-4.37. Let H be a subgroup of a group G. 

(i) Prove that right cosets Ha and Hb are equal if and only if ab- 1 EH. 

(ii) Prove that the relation a = b if ab- 1 E H is an equivalence relation on G whose 
equivalence classes are the right cosets of H. 

A-4.38. Prove that GL(2, Q) is a subgroup of GL(2, R). 

* A-4.39. (i) Give an example of two subgroups Hand Kofa group G whose union HUK 
is not a subgroup of G. 

Hint. Let G be the four-group V. 
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(ii) Prove that the union HU K of two subgroups is itself a subgroup if and only if H 
is a subset of K or K is a subset of H. 

* A-4.40. Let G be a finite group with subgroups Hand K. If H ~ K ~ G, prove that 

(G: H) = (G: K)[K: H). 

A-4.41. If Hand Kare subgroups of a group G and IHI and IKI are relatively prime, 
prove that H n K = {l}. 
Hint. If x EH n K, then xlHI = 1 = xlKI. 

* A-4.42. Let G be a group of order 4. Prove that either G is cyclic or x 2 = 1 for every 
x E G. Conclude, using Exercise A-4.31 on page 138, that G must be abelian. 

* A-4.43. If His a subgroup of a group G, prove that the number of left cosets of Hin G 
is equal to the number of right cosets of H in G. 

Hint. The function <p: aH t-+ Ha- 1 is a bijection from the family of all left cosets of H 
to the family of all right cosets of H. 

A-4.44. If pis an odd prime and al, ... , ap-1 is a permutation of {1, 2, ... ,p-1}, prove 
that there exist i =I- j with iai = ja; mod p. 

Hint. Use Wilson's Theorem. 

* A-4.45. Let Hand K be subgroups of a group G. 

(i) Prove that the intersection xH n yK of two cosets is either empty or a coset of 
HnK. 

(ii) (Poincare) Prove that if H and K have finite index in G, then H n K also has 
finite index. 
Hint. By (i), every coset of H n K is an intersection of cosets of Hand of K, and 
so (G: HnK) S [G: H)[G: K). 

Homomorphisms 

Just as homomorphisms of rings are useful, so too are homomorphisms of groups. 
As an example, we have investigated S3, the group of all permutations of {1, 2, 3}. 
Now the group Sy of all the permutations of Y = {a, b, c} is different from S3 , 

because permutations of {1, 2, 3} are not permutations of {a, b, c}, but Sy and 
S3 are isomorphic to each other. A more interesting example is an isomorphism 
between S3 to D5, the symmetries of an equilateral triangle. 

Definition. Let (G,*) and (H,o) be groups (we have displayed the binary opera
tions on each). A homomorphism is a function satisfying 

f(x * y) = f(x) o f(y) 

for all x, y E G. If f is also a bijection, then f is called an isomorphism. Two 
groups G and H are called isomorphic, denoted by G ~ H, if there exists an 
isomorphism f: G--+ H between them. 

Definition. Let a1, a2, ... , an be a list with no repetitions of all the elements in a 
group G. A multiplication table for G is the n x n matrix whose ij entry is aiai. 
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G a1 a2 ... ai . .. an 
a1 a1a1 a1a2 . . . a1aj ... a1an 
a2 a2a1 a2a2 . . . a2ai ... a2an 

ai aia1 aia2 aiai aian 

an anal ana2 . . . anaj ... anan 

A multiplication table for a group G of order n depends on the listing of the 
elements of G, and so G has n! different multiplication tables. Thus, the task of 
determining whether a multiplication table for a group G is the same as a mul
tiplication table for another group H is a daunting one, involving n! comparisons 
(the number of pairs of multiplication tables), each of which involves comparing n2 

entries. If a1 , a2 , ... , an is a list of all the elements of G with no repetitions, and 
if f: G--+ H is a bijection, then f(a1), f(a2), ... , f(an) is a list of all the elements 
of H with no repetitions, and so this latter list determines a multiplication table 
for H. That f is an isomorphism says that if we superimpose the given multipli
cation table for G (determined by a1, a2, ... , an) upon the multiplication table for 
H (determined by f(ai), f(a2), ... , f(an)), then the tables match: if aiaj is the ij 
entry in the multiplication table of G, then f(aiaj) = f(ai)f(aj) is the ij entry 
of the multiplication table for H. In this sense, isomorphic groups have the same 
multiplication table. Thus, isomorphic groups are essentially the same, differing 
only in the notation for the elements and the binary operations. 

Example A-4.53. Let us show that G = S3 , the symmetric group permuting 
{1,2,3}, and H =Sy, the symmetric group permuting Y = {a,b,c}, are isomor
phic. First, list G: 

(1), (1 2), (1 3), (2 3), (1 2 3), (132). 

We define the obvious function f: S3 --+ Sy that replaces numbers by letters: 

(1), (ab), (a c), (b c), (ab c), (a c b). 

Compare the multiplication table for S3 arising from this list of its elements with 
the multiplication table for Sy arising from the corresponding list of its elements. 
The reader should write out the complete tables of each and superimpose one on 
the other to see that they do match. We will check only one entry. The 4, 5 position 
in the table for S3 is the product (2 3)(1 2 3) = (1 3), while the 4, 5 position in the 
table for Sy is the product (b c)(a b c) = (a c). 

The same idea shows that S3 9'! D6 , for symmetries of an equilateral trian
gle correspond to permutations of its vertices. This result is generalized in Exer
cise A-4.46 on page 157. <1111 

Lemma A-4.54. Let f: G --+ H be a homomorphism of groups. 

(i) f(l) = 1. 

(ii) f(x- 1) = f(x)- 1. 

(iii) f(xn) = f(x)n for all n E Z. 
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Proof. 

(i) 1·1 = 1 implies /(1)/(1) = /(1). Now use Exercise A-4.26 on page 138. 

(ii) 1 = x-1x implies 1 = /(1) = f(x- 1 )f(x). 

(iii) Use induction to show that f(xn) = f(x)n for all n 2 0. Then observe 
that x-n = (x- 1 )n, and use part (ii). • 

Example A-4.55. 

(i) If G and H are cyclic groups of the same order m, then G and H are iso
morphic. Although this is not difficult, it requires a little care. We have 
G = {1, a, a 2 , ••• , am-l} and H = {1, b, b2 , ••• , bm-l }, and the obvious 
choice for an isomorphism is the bijection f : G ---+ H given by f (a i) = bi. 
Checking that f is a homomorphism, that is, f(aiai) = bibi = bi+i, in
volves two cases: i+ j ~ m-1, so that aiai = ai+i, and i+ j 2 m, so that 
aiai = ai+i-m. We give a less computational proof in Example A-4.74. 

(ii) An action of a group G on a set Xis a function a: G x X ---+ X, denoted 
by a(g, x) = gx, such that 
(a) (gh)x = g(hx) for all g, h E G and x EX; 
(b) lx = x for all x EX, where 1 is the identity in G. 

For fixed g E G, define a9 : X ---+ X by a9 : x H gx. It is easy to 
check that every a9 is a permutation of X; that is, a9 E Bx, and that 
f: G---+ Bx given by g H a9 is a homomorphism. .,.. 

A property of a group G that is shared by all other groups isomorphic to it 
is called an invariant of G. For example, the order IGI is an invariant of G, for 
isomorphic groups have the same order. Being abelian is an invariant. In fact, if f 
is an isomorphism and a and b commute, then ab = ba and 

f(a)f(b) = f(ab) = f(ba) = f(b)f(a); 

that is, f(a) and f(b) commute. The groups Z6 and Sa have the same order, yet 
are not isomorphic (Z6 is abelian and Sa is not). See Exercise A-4.49 on page 157 
for more examples of invariants. 

Example A-4.56. We present two nonisomorphic abelian groups of the same order. 
Let V = { (1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} be the four-group, and let 
r 4 = ( i) = {1, i, -1, -i} be the multiplicative cyclic group of fourth roots of unity, 
where i 2 = -1. If there were an isomorphism f: V ---+ r 4, then surjectivity of f 
would provide some x E V with i = f(x). But x2 = (1) for all x E V, so that 
i 2 = f(x) 2 = f(x 2 ) = /((1)) = 1, contradicting i 2 = -1. Therefore, V and I'4 are 
not isomorphic. 

There are other ways to prove this result. For example, r 4 is cyclic and V is 
not; r 4 has an element of order 4 and V does not; r 4 has a unique element of order 
2, but V has 3 elements of order 2. At this stage, you should really believe that r 4 

and V are not isomorphic! .,.. 

We continue giving the first properties of homomorphisms of groups. Note that 
this is essentially the same discussion we gave for homomorphisms of rings. 



Homomorphisms 153 

Definition. If f : G --+ H is a homomorphism, define 

kernel f = {x E G: f(x) = 1} 

and 
image f = {h EH: h = f(x) for some x E G}. 

We usually abbreviate kernel f to ker f and image f to im f. 

Example A-4.57. 

(i) If r2 is the multiplicative group r2 = {±1}, then sgn: Sn --+ r2 is a 
homomorphism, by Theorem A-4.11. The kernel of sgn is the alternating 
group An, the set of all even permutations, and its image is r2. 

(ii) For a field k, determinant is a surjective homomorphism <let: GL( n, k) --+ 
kx, the multiplicative group of nonzero elements of k, whose kernel is the 
special linear group SL(n, k) of all n x n matrices of determinant 1, and 
whose image is k x ( det is surjective: if a E k x , then det: [g ~] f-t a). 

(iii) Let H = (a) be a cyclic group of order n, and define f: Z --+ H by 
f(k) = ak. Then f is a homomorphism with ker f = (n). .,.. 

Proposition A-4.58. Let f: G --+ H be a homomorphism. 

(i) ker f is a subgroup of G and imf is a subgroup of H. 

(ii) If x E ker f and a E G, then axa- 1 E ker f. 

(iii) f is an injection if and only if ker f = { 1}. 

Proof. 

(i) Routine. 

(ii) f(axa- 1) = f(a)lf(a)- 1 = 1. 

(iii) f(a) = f(b) if and only if f(b- 1a) = 1. • 

Just as the kernel of a ring homomorphism has extra properties (it is an ideal), 
so too is the kernel of a group homomorphism a special kind of subgroup. 

Definition. A subgroup K of a group G is called a normal subgroup if k E K 
and g E G imply gkg- 1 E K. If K is a normal subgroup of G, we write 

K<JG. 

Proposition A-4.58(ii) says that the kernel of a homomorphism is always a 
normal subgroup (the converse is Corollary A-4.72). If G is an abelian group, then 
every subgroup K is normal, for if k EK and g E G, then gkg- 1 = kgg- 1 = k EK. 
The converse of this last statement is false: in Proposition A-4.66, we shall see that 
there is a nonabelian group of order 8 (the quaternions), each of whose subgroups 
is normal. 

The cyclic subgroup H = ((1 2)) of 83 , consisting of the two elements (1) and 
(1 2), is not a normal subgroup of 8 3 : if a= (1 2 3), then 

a(l 2)a-1 = (1 2 3)(1 2)(3 2 1) = (2 3) ~ H 
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(alternatively, Theorem A-4.7 gives a(l 2)a- 1 = (al a2) = (2 3)). On the other 
hand, the cyclic subgroup K = ( (1 2 3)) of S3 is a normal subgroup, as the reader 
should verify. 

It follows from Examples A-4.57(i) and (ii) that An is a normal subgroup of Sn 
and SL(n, k) is a normal subgroup of GL(n, k) (it is also easy to prove these facts 
directly). 

Definition. Let G be a group. A conjugate of a E G is an element in G of the 
form gag- 1 for some g E G. 

It is clear that a subgroup K ~ G is a normal subgroup if and only if K contains 
all the conjugates of its elements: if k EK, then gkg- 1 EK for all g E G. 

Example A-4.59. 

(i) Theorem A-4.7 states that two permutations in Sn are conjugate if and 
only if they have the same cycle structure. 

(ii) In linear algebra, two matrices A, B E GL(n, IR) are called similar if 
they are conjugate; that is, if there is a nonsingular matrix P with B = 
P AP-1• In the next course, we shall see that A and B are conjugate if 
and only if they have the same rational canonical form. <Olll 

Proposition A-4.60. Let f: G -t H be a homomorphism and let x E G. 

(i) If x has (finite) order k, then f(x) E H has order m, where m I k. 

(ii) If f is an isomorphism, then x and f(x) have the same order. 

Proof. 

(i) Since x has order k, we have f(x)k = f(xk) = f(l) = 1; hence, f(x) has 
finite order, say m. By Proposition A-4.23, we have m I k. 

(ii) If x has infinite order, then xn "I- 1 for all n > 1; since f is an isomor
phism, it is an injection, and so f(xr "I- 1 for all n > 1; hence, f(x) has 
infinite order. 

If k is the order of x and mis the order of f(x), then part (i) gives 
m I k. Since f is an isomorphism, so is f- 1, and f- 1(/(x)) = x. By (i), 
k I m, and so m = k. • 

Definition. If G is a group and g E G, then conjugation by g is the function 
'Y 9 : G -t G defined by 

for all a E G. 

Proposition A-4.61. 

(i) If G is a group and g E G, then conjugation 'Yg: G -t G is an isomor
phism. 

(ii) Conjugate elements have the same order. 
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Proof. 

(i) If g, h E G, then ('Y9'Yh)(a) = "/g(hah- 1 ) = g(hah- 1 )g- 1 = (gh)a(gh)- 1 = 
"/gh(a); that is, 

"/g'Yh = "/gh· 
It follows that each "/g is a bijection, for "/g"/g-1 = 'Yl = 1 = "/g-1"/g· We 
now show that "/g is an isomorphism: if a, b E G, 

"f9 (ab) = g(ab)g- 1 = ga(g- 1g)bg- 1 = "f9 (a)/'9 (b). 

(ii) If a and bare conjugate, there is g E G with b = gag-1; that is, b = 'Yg(a). 
But "/g is an isomorphism, and so Proposition A-4.60 shows that a and 
b = 'Yg(a) have the same order. • 

Example A-4.62. The center of a group G, denoted by Z(G), is 

Z(G) = {z E G: zg = gz for all g E G}. 

Thus, Z(G) consists of all elements commuting with everything in G. 

It is easy to see that Z(G) is a subgroup of G; it is a normal subgroup, for if 
z E Z(G) and g E G, then gzg- 1 = zgg- 1 = z E Z(G). 

A group G is abelian if and only if Z(G) = G. At the other extreme are 
groups G with Z(G) = {1}; such groups are called centerless. For example, 
Z(83) = {(1)}; indeed, all large symmetric groups are centerless, for Exercise A-4.11 
on page 123 shows that Z(8n) = {(1)} for all n ~ 3. <Ill 

Example A-4.63. If G is a group, then an automorphism 12 of G is an iso
morphism f: G ---+ G. For example, every conjugation "/g is an automorphism of 
G; it is called an inner automorphism (its inverse is conjugation by g-1 ). An 
automorphism is called outer if it is not inner. The set 

Aut(G) 

of all the automorphisms of G is itself a group under composition, called the 
automorphism group, and the set of all conjugations, 

Inn(G) = {"19 : g E G}, 

is a subgroup of Aut( G). Exercise A-4. 71 on page 159 shows that Inn( G) <J Aut( G) . 
.... 

Example A-4.64. The four-group V = { (1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} 
is a normal subgroup of 84 . By Theorem A-4.7, every conjugate of a product of 
two transpositions is another such; Table 1 on page 121 shows that only three 
permutations in 84 have this cycle structure, and so Vis a normal subgroup of 84 . 

Proposition A-4.65. Let H be a subgroup of index 2 in a group G. 

(i) g2 EH for every g E G. 

(ii) H is a normal subgroup of G. 

.... 

12The word automorphism is made up of two Greek roots: auto, meaning "self," and morph, 
meaning "shape" or "form." Just as an isomorphism carries one group onto a faithful replica, an 
automorphism carries a group onto itself. 
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Proof. 

(i) Since H has index 2, there are exactly two cosets, namely, H and aH, 
where a~ H. Thus, G is the disjoint union G =HU aH. Take g E G 
with g ~ H, so that g =ah for some h EH. If g2 ~ H, then g2 =ah', 
where h' E H. Hence, 

g = g-1g2 = h-1a-1ah' = h-1h' EH, 

and this is a contradiction. 

(ii) 13 It suffices to prove that if h E H, then the conjugate ghg-1 E H for 
every g E G. If g E H, then ghg- 1 E H, because H is a subgroup. If 
g ~ H, then g = ah0 , where ho EH (for G = HUaH). If ghg- 1 EH, we 
are done. Otherwise, ghg- 1 = ah1 for some h1 E H. But ah1 = ghg- 1 = 
ah0hh.(;1a-1. Cancel a to obtain h1 = hohh(;1a-1, contradicting a~ H . 

• 
Definition. The group of quaternions 14 is the group Q of order 8 consisting of 
the following matrices in GL(2, <C): 

Q = { I,A,A2 ,A3 ,B,BA,BA2 ,BA3 }, 

where I is the identity matrix, A = [ _01 6) , and B = [ ~ ~]. 

The element A E Q has order 4, so that (A) is a subgroup of order 4 and, hence, 
of index 2; the other coset is B(A) = {B, BA, BA2 , BA3 }. Note that B 2 = A2 

and BAB- 1 = A- 1 . 

Proposition A-4.66. The group Q of quaternions is not abelian, yet every sub
group of Q is normal. 

Proof. By Exercise A-4.67 on page 159, Q is a nonabelian group of order 8 hav
ing exactly one subgroup of order 2, namely, the center Z(Q) = (-!), which is 
normal. Lagrange's Theorem says that the only possible orders of subgroups are 1, 
2, 4, or 8. Clearly, the subgroups { J} and Q itself are normal subgroups and, by 
Proposition A-4.65(ii), any subgroup of order 4 is normal, for it has index 2. • 

A nonabelian finite group is called hamiltonian if every subgroup is normal. 
The group Q of quaternions is essentially the only hamiltonian group, for every 
hamiltonian group has the form Q x A x B, where A is a necessarily abelian group 
with a2 = 1 for all a E A, and B is an abelian group of odd order (see Robinson 
[92], p. 143). 

Lagrange's Theorem states that the order of a subgroup of a finite group G 
must be a divisor of IGI. This suggests the question, given a divisor d of IGI, 
whether G must contain a subgroup of order d. The next result shows that there 
need not be such a subgroup. 

13 Another proof of this is given in Exercise A-4.57 on page 158. 
14Hamilton invented an JR-algebra (a vector space over JR. which is also a ring) that he called 

quaternions, for it was four-dimensional. The group of quaternions consists of eight special ele
ments in that system; see Exercise A-4.68 on page 159. 
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Proposition A-4.67. The alternating group A4 is a group of order 12 having no 
subgroup of order 6. 

Proof. First, IA4I = 12, by Example A-4.44(i). If A4 contains a subgroup H 
of order 6, then H has index 2, and so a? E H for every a E A4, by Proposi
tion A-4.65(i). But if a is .a 3-cycle, then a has order 3, so that a= a 4 = (a2) 2 • 

Thus, H contains every 3-cycle. This is a contradiction, for there are eight 3-cycles 
in A4. • 

Exercises 

* A-4.46. Show that if there is a bijection f: X--+ Y (that is, if X and Y have the same 
number of elements), then there is an isomorphism cp: Sx--+ Sy. 

Hint. If a E Sx, define cp(a) = faf- 1 . In particular, show that if IXI = 3, then cp takes 
a cycle involving symbols 1, 2, 3 into a cycle involving a, b, c, as in Example A-4.53. 

A-4.47. (i) Show that the composite of homomorphisms is itself a homomorphism. 

(ii) Show that the inverse of an isomorphism is an isomorphism. 

(iii) Show that two groups that are isomorphic to a third group are isomorphic to each 
other. 

(iv) Prove that isomorphism is an equivalence relation on any set of groups. 

A-4.48. Prove that a group G is abelian if and only if the function f: G --+ G, given by 
f (a) = a- 1 , is a homomorphism. 

* A-4.49. This exercise gives some invariants of a group G. Let f: G --+ H be an isomor
phism. 

(i) Prove that if G has an element of some order n and H does not, then G ~ H. 

(ii) Prove that if G ~ H, then, for every divisor d of IGI, both G and H have the same 
number of elements of order d. 

(iii) If a E G, then its conjugacy class is {gag- 1 : g E G}. If G and Hare isomorphic 
groups, prove that they have the same number of conjugacy classes. Indeed, if G 
has exactly c conjugacy classes of sizes, then so does H. 

A-4.50. Prove that A4 and D12 are nonisomorphic groups of order 12. 

A-4.51. (i) Find a subgroup H of 84 with H =I= V and H ~ V. 

(ii) Prove that the subgroup H in part (i) is not a normal subgroup. 

A-4.52. Let G = {x1 , ... , Xn} be a monoid, and let A= [aii] be a multiplication table of 
G; that is, aii = aiai. Prove that G is a group if and only if A is a Latin square, that 
is, each row and column of A is a permutation of G. 

* A-4.53. Let G = {!: JR--+ IR: f(x) = ax+b, where a =I= O}. Prove that G is a group under 
composition that is isomorphic to the subgroup of GL(2, JR) consisting of all matrices of 
the form [g n 
A-4.54. If f: G--+ His a homomorphism and gcd(IGI, IHI)= 1, prove that f(x) = 1 for 
all x E G. 
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. [cos{} - sin {}] k = [cos kB 
A-4.55. (1) Prove that sinB cosB sin kB 

Hint. Use induction on k ~ 1. 

-sin kB] 
cos kB . 
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(ii) Prove that the special orthogonal group S0(2, JR), consisting of all 2 x 2 orthog
onal matrices of determinant 1, is isomorphic to the circle group S1. (Denote the 
transpose of a matrix A by AT; if AT = A - I, then A is orthogonal.) 

H' t C 'd [cosa -sina] ( . ) 1n. ons1 er <p: sina cosa t-t cosa,sma. 

A-4.56. Let G be the additive group of all polynomials in x with coefficients in Z, and 
let H be the multiplicative group of all positive rationals. Prove that G ~ H. 

Hint. List the prime numbers Po = 2, P1 = 3, p2 = 5, ... , and define 

t.p(eo + e1x + e2x2 + · · · + enxn) = p~0 · · · p~n. 

* A-4.57. (i) Show that if His a subgroup with bH = Hb = {hb: h EH} for every b E G, 
then H must be a normal subgroup. 

(ii) Use part (i) to give a second proof of Proposition A-4.65(ii): if H ~ G has index 
2, then H <I G. 

A-4.58. (i) Prove that if a E Sn, then a and a-1 are conjugate. 

(ii) Give an example of a group G containing an element x for which x and x-1 are 
not conjugate. 

* A-4.59. (i) Prove that the intersection of any family of normal subgroups of a group G 
is itself a normal subgroup of G. 

(ii) If Xis a subset of a group G, let N be the intersection of all the normal subgroups 
of G containing X. Prove that X ~ N <I G, and that if Sis any normal subgroup of 
G containing X, then N ~ S. We call N the normal subgroup of G generated 
byX. 

(iii) If Xis a subset of a group G and N is the normal subgroup generated by X, prove 
that N is the subgroup generated by all the conjugates of elements in X. 

* A-4.60. If K <I G and K ~ H ~ G, prove that K <I H. 

* A-4.61. Define W = ( (1 2) (3 4)), the cyclic subgroup of 84 generated by (1 2) (3 4). 
Show that W is a normal subgroup of V, but that Wis not a normal subgroup of 84 . 

Conclude that normality is not transitive: W <IV and V <I G do not imply W <I G. 

* A-4.62. Let G be a finite abelian group written multiplicatively. Prove that if IGI is odd, 
then every x E G has a unique square root; that is, there exists exactly one g E G with 
92 = x. 

Hint. Show that squaring is an injective function G -+ G. 

A-4.63. Give an example of a group G, a subgroup H ~ G, and an element 9 E G with 
[G: H] = 3 and 93 fj. H. Compare with Proposition A-4.65(i). 

Hint. Take G = 83 , H = ((1 2)), and g = (2 3). 

* A-4.64. Show that the center of GL(2, JR) is the set of all scalar matrices al with a I- 0. 

Hint. Show that if A is a matrix that is not a scalar matrix, then there is some nonsingular 
matrix that does not commute with A. (The generalization of this to n x n matrices is 
true; see Corollary A-7.41(ii)). 
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* A-4.65. Prove that every isometry in the symmetry group I:(7rn) permutes the vertices 
{v1, ... ,vn} of7rn. (See FCAA [94), Theorem 2.65.) 

* A-4.66. Define A= [ ~ <~1] and B = [~ n where ( = e21fi/n is a primitive nth root of 
unity. 

(i) Prove that A has order n and B has order 2. 

(ii) Prove that BAB= A- 1 . 

(iii) Prove that the matrices of the form Ai and BAi, for 0 :Si< n, form a multiplicative 
subgroup G ~ GL(2, <C). 
Hint. Consider cases AiA;, Ai BA;, BAiA;, and (BAi)(BA;). 

(iv) Prove that each matrix in G has a unique expression of the form Bi A;, where 
i = 0, 1 and 0 :S j < n. Conclude that IGI = 2n. 

(v) Prove that G ~ D2n· 

Hint. Define a function G --+ D2n using the unique expression of elements in G in 
the form Bi A;. 

* A-4.67. Let Q = { I,A,A2 ,A3 ,B,BA,BA2 ,BA3 }, where A= (~1 ~)and B = [~ 6). 

(i) Prove that Q is a nonabelian group with binary operation matrix multiplication. 

(ii) Prove that A4 = I,B2 = A2 , and BAB- 1 = A-1. 

(iii) Prove that -/ is the only element in Q of order 2, and that all other elements 
M -:f. I satisfy M 2 = -I. Conclude that Q has a unique subgroup of order 2, 
namely, (-!), and it is the center of Q. 

* A-4.68. Prove that the elements of Q can be relabeled as ±1, ±i, ±j, ±k, where 

i2=j2 =k2 =-1, ij=k, jk=i, ki=j, 

ij = -ji, ik = -ki, jk = -kj. 

* A-4.69. Prove that the quaternions Q and the dihedral group Ds are nonisomorphic 
groups of order 8. 

* A-4. 70. Prove that A4 is the only subgroup of 84 of order 12. 

* A-4.71. (i) For every group G, show that the function r: G--+ Aut(G), given by g H 19 

(where /x is conjugation by g), is a homomorphism. 

(ii) Prove that kerr = Z(G) and imr = Inn(G); conclude that Inn(G) is a subgroup 
of Aut(G). 

(iii) Prove that Inn(G) <I Aut(G). 

Quotient Groups 

The construction of the additive group of integers modulo m is the prototype of a 
more general way of building new groups, called quotient groups, from given groups. 
The homomorphism 7r: Z -t Zm, defined by 7r: a i---+ [a], is surjective, so that Zm is 
equal to im n. Thus, every element of Zm has the form n(a) for some a E Z, and 
n(a) + n(b) = n(a + b). This description of the additive group Zm in terms of the 
additive group Z can be generalized to arbitrary, not necessarily abelian, groups. 
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Suppose that f: G ---+ H is a surjective homomorphism between groups G and H. 
Since f is surjective, each element of H has the form f(a) for some a E G, and the 
operation in His given by f(a)f(b) = f(ab), where a, b E G. Now ker f is a normal 
subgroup of G, and the First Isomorphism Theorem will reconstruct H = im f and 
the surjective homomorphism f from G and ker f alone. 

We begin by introducing a binary operation on the set 

S(G) 

of all nonempty subsets of a group G. If X, YE S(G), define 

XY = {xy: x EX and y E Y}. 

This multiplication is associative: X (Y Z) is the set of all x(yz), where x E X, 
y E Y, and z E Z, (XY)Z is the set of all such (xy)z, and these are the same 
because (xy)z = x(yz) for all x, y, z E G. Thus, S(G) is a semigroup; in fact, S(G) 
is a monoid, for {l}Y = {1 · y: y E Y} = Y = Y{l}. 

An instance of this multiplication is the product of a one-point subset {a} and 
a subgroup K ~ G, which is the coset aK. 

As a second example, we show that if His any subgroup of G, then 

HH=H. 

If h, h' E H, then hh' E H, because subgroups are closed under multiplication, 
and so HH ~ H. For the reverse inclusion, if h E H, then h = hl E HH (because 
1 E H), and so H ~ HH. 

It is possible for two subsets X and Yin S(G) to commute even though their 
constituent elements do not commute. For example, if H is a nonabelian subgroup 
of G, then we have just seen that HH = H. Here is another example: let G = 83 , 

let X be the cyclic subgroup generated by (1 2 3), and let Y be the one-point subset 
{(1 2)}. Now (1 2) does not commute with (1 2 3) EX, but (1 2)X = X(l 2). In 
fact, here is the converse of Exercise A-4.57 on page 158. 

Lemma A-4.68. A subgroup K of a group G is a normal subgroup if and only if 

gK=Kg 

for every g E G. Thus, every right coset of a normal subgroup is also a left coset. 

Proof. Let gk E gK. Since K is normal, gkg-1 E K, say gkg- 1 = k' E K, so 
that gk = (gkg- 1 )g = k' g E Kg, and so gK ~ Kg. For the reverse inclusion, let 
kg E Kg. Since K is normal, (g- 1)k(g- 1)-1 = g- 1kg EK, say g- 1kg = k" EK. 
Hence, kg = g(g- 1kg) = gk" E gK and Kg ~ gK. Therefore, gK = Kg when 
K<JG. 

Conversely, if gK =Kg for every g E G, then for each k EK, there is k' EK 
with gk = k'g; that is, gkg- 1 EK for all g E G, and so K <l G. • 
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A natural question is whether HK is a subgroup when both H and K are 
subgroups. In general, HK need not be a subgroup. For example, let G = 83 , let 
H = ((1 2)), and let K = ((1 3)). Then 

HK= {(1), (1 2), (1 3), (1 3 2)} 

is not a subgroup because it is not closed: (1 3)(1 2) = (1 2 3) ~HK. Alternatively, 
HK cannot be a subgroup because IHKI = 4 is not a divisor of 6 = 1831· 
Proposition A-4.69. 

(i) If H and K are subgroups of a group G, at least one of which is normal, 
then HK is a subgroup of G; moreover, HK= KH in this case. 

(ii) If both H and K are normal subgroups, then HK is a normal subgroup. 

Remark. Exercise A-4.82 on page 172 shows that if H and K are subgroups of a 
group G, then HK is a subgroup if and only if HK= KH. .,.. 

Proof. 

(i) Assume first that K <l G. We claim that HK= KH. If hk E HK, then 
k' = hkh- 1 EK, because K <l G, and 

hk = hkh- 1h = k'h E KH. 

Hence, HK c; KH. For the reverse inclusion, write kh = hh-1kh = hk" E 
HK. (Note that the same argument shows that HK= KHif H <l G.) 

We now show that HK is a subgroup. Since 1 E H and 1 E K, we 
have 1=1·1 E HK; if hk E HK, then (hk)- 1 = k-1h-1 E KH =HK; if 
hk,h1k1 E HK, then hkh1k1 E HKHK = HHKK =HK. 

(ii) If g E G, then Lemma A-4.68 gives gHK = HgK = HKg, and the same 
lemma now gives HK <l G. • 

Here is a fundamental construction of a new group from a given group. 

Theorem A-4. 70. Let G / K denote the family of all the left cosets of a subgroup 
K of G. If K is a normal subgroup, then 

aKbK = abK 

for all a, b E G, and G / K is a group under this operation. 

Proof. Generalized associativity holds in S(G), by Corollary A-4.22, because it 
is a semigroup. Thus, we may view the product of two cosets (aK)(bK) as the 
product {a}K{b}K of four elements in S(G): 

(aK)(bK) = a(Kb)K = a(bK)K = abKK = abK; 

normality of K gives Kb = bK for all b E K (Lemma A-4.68), while KK = K 
(because K is a subgroup). Hence, the product of two cosets of K is again a coset 
of K, and so a binary operation on G / K has been defined. As multiplication in S ( G) 
is associative, so, in particular, is the 'multiplication of cosets in G/ K. The identity 
is the coset K = lK, for (lK)(bK) = lbK = bK = blK = (bK)(lK), and the 
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inverse of aK is a- 1 K, for (a-1 K)(aK) = a- 1aK = K = aa- 1 K = (aK)(a- 1 K). 
Therefore, G / K is a group. • 

It is important to remember what we have just proved: the product aKbK = 
abK in G / K does not depend on the particular representatives of the cosets. Thus, 
the law of substitution holds: if aK = a' K and bK = b' K, then 

abK = aKbK = a' Kb' K = a'b' K. 

Definition. The group 

G/K 

is called the quotient group G mod K. When G is finite, its order IG/KI is the 
index [G: K] = IGl/IKI (presumably, this is the reason why quotient groups are so 
called). 

Example A-4. 71. We show that the quotient group G / K is precisely Zm when 
G is the additive group Z and K = ( m), the (cyclic) subgroup of all the multiples 
of a positive integer m. Since Z is abelian, (m) is necessarily a normal subgroup. 
The sets Z/ ( m) and Zm coincide because they are comprised of the same elements; 
the coset a+ (m) is the congruence class [a]: 

a+ (m) = {a+km: k E Z} =[a]. 

The binary operations also coincide: addition in Z/(m) is given by 

(a+ (m)) + (b+ (m)) = (a+b) + (m); 

since a+ (m) = [a], this last equation is just [a]+ [b] = [a+ b], which is the sum 
in Zm. Therefore, Zm and the quotient group Z/(m) are equal (and not merely 
isomorphic). ~ 

There is another way to regard quotient groups. After all, we saw, in the 
proof of Lemma A-4.42, that the relation = on G, defined by a= b if b-1a E K, 
is an equivalence relation whose equivalence classes are the cosets of K. Thus, 
we can view the elements of G / K as equivalence classes, with the multiplication 
aKbK = abK being independent of the choices of representative. 

We remind the reader of Lemma A-4.42(i): two cosets aK and bK of a subgroup 
Kare equal if and only if b- 1a E K. In particular, when b = 1, then aK = Kif 
and only if a EK. 

We can now prove the converse of Proposition A-4.58(ii). 

Corollary A-4. 72. Every normal subgroup K <I G is the kernel of some homo
morphism. 

Proof. Define the natural map 7r: G --* G / K by rr( a) = aK. With this notation, 
the formula aKbK = abK can be rewritten as rr(a)rr(b) = rr(ab); thus, rr is a 
( surjective) homomorphism. Since K is the identity element in G / K, 

kerrr ={a E G: rr(a) = K} ={a E G: aK = K} = K, 

by Lemma A-4.42(i). • 
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The next theorem shows that every homomorphism gives rise to an isomorphism 
and that quotient groups are merely constructions of homomorphic images. Noether 
emphasized the fundamental importance of this fact, and this theorem is often 
named after her. 

Theorem A-4.73 (First Isomorphism Theorem). If f: G--+ His a homo
morphism, then 

ker f <l G and G / ker f £::! im f. 
In more detail, if ker f = K, then <p: G/K--+ imf ~ H, given by <p: aK H f(a), 
is an isomorphism. 

Remark. The following diagram describes the proof of the First Isomorphism The
orem, where 7r: G --+ G / K is the natural map a H aK and i : im f --+ H is the 
inclusion: 

G/K~imf. 

Proof. We have already seen that K = ker f is a normal subgroup of G. Now 
<p is a well-defined function: if aK = bK, then a = bk for some k E K, and so 
f(a) = f(bk) = f(b)f(k) = f(b), because f(k) = 1. 

Let us now see that <p is a homomorphism. Since f is a homomorphism and 
<p(aK) = f(a), 

<p(aKbK) = <p(abK) = f(ab) = f(a)f(b) = <p(aK)<p(bK). 

It is clear that im <p ~ im f. For the reverse inclusion, note that if y E im f, 
then y = f(a) for some a E G, and soy= f(a) = <p(aK). Thus, <pis surjective. 

Finally, we show that <p is injective. If <p(aK) = <p(bK), then f(a) = f(b). 
Hence, 1 = f(b)- 1 f(a) = f(b- 1a), so that b- 1a E ker f = K. Therefore, aK = bK 
by Lemma A-4.42(i), and so <pis injective. We have proved that <p: G/K--+ imf 
is an isomorphism. • 

Note that i<p7r = f, where 7r: G--+ G/K is the natural map and i: imf--+ H 
is the inclusion, so that f can be reconstructed from G and K = ker f. 

Given any homomorphism f: G --+ H, we should immediately ask for its ker
nel and image; the First Isomorphism Theorem will then provide an isomorphism 
G / ker f £::! imf. Since there is no significant difference between isomorphic groups, 
the First Isomorphism Theorem also says that there is no significant difference 
between quotient groups and homomorphic images. 

Example A-4. 7 4. Let us revisit Example A-4.55, which showed that any two 
cyclic groups of order m are isomorphic. If G = (a) is a cyclic group of order 
m, define a function f: Z --+ G by f(n) = an for all n E Z. Now f is easily 
seen to be a homomorphism; it is surjective (because a is a generator of G), while 
ker f = {n E Z: an= 1} = (m), by Proposition A-4.23. The First Isomorphism 
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Theorem gives an isomorphism Z/(m) ~ G. We have shown that every cyclic 
group of order mis isomorphic to Z/(m), and hence that any two cyclic groups 
of order m are isomorphic to each other. Of course, Example A-4.71 shows that 
Z/(m) = Zm, so that every finite cyclic group of order mis isomorphic to Zm. 

The reader should have no difficulty proving that any two infinite cyclic groups 
are isomorphic to Z. ""' 

Example A-4. 75. What is the quotient group 'JR/Z? Take the real line and identify 
integer points, which amounts to taking the unit interval [O, 1] and identifying its 
endpoints, yielding the circle. Define f: 'JR ---+ 8 1, where 8 1 is the circle group, by 

f : X t-+ e27riX • 

Now f is a homomorphism; that is, f(x + y) = f(x)f(y). The map f is surjective, 
and ker f consists of all x E 'JR for which e2"ix = cos 27fx + i sin 27fx = 1; that is, 
cos 27fx = 1 and sin 27rx = 0. But cos 27fx = 1 forces x to be an integer; since 
1 E ker f, we have ker f = Z. The First Isomorphism Theorem now gives 

'IR/Z ~ 8 1. ""' 

Here is a counting result. 

Proposition A-4. 76 (Product Formula). If H and K are subgroups of a finite 
group G, then 

IHKllHnKI = IHllKI. 

Remark. The subset HK = { hk : h E H and k E K} need not be a subgroup 
of G; but see Proposition A-4.69 and Exercise A-4.82 on page 172. ""' 

Proof. Define a function f: H x K---+ HK by f: (h,k) t-+ hk. Clearly, f is a 
surjection. It suffices to show, for every x E HK, that lf-1(x)I = IH n Kl, where 
f- 1(x) = {(h,k) E H x K : hk = x} (because H x K is the disjoint union 
UxEHKf- 1(x)). We claim that if x = hk, then 

f- 1(x) = {(hd, d- 1k) : d EH n K}. 

Each (hd, d- 1k) E f- 1(x), for f(hd, d- 1k) = hdd-1k = hk = x. For the reverse 
inclusion, let (h', k') E f- 1(x), so that h'k' = hk. Then h-1h' = kk'- 1 EH n K; 
call this element d. Then h' = hd and k' = d- 1k, and so (h', k') lies in the right side. 
Therefore, lf-1(x)I = l{(hd, d- 1k) : d E HnK}I = IHnKI, because d t-+ (hd, d- 1k) 
is a bijection for fixed h EH and k EK. • 

The next two results are consequences of the First Isomorphism Theorem. 

Theorem A-4.77 (Second Isomorphism Theorem). If Hand Kare subgroups 
of a group G with H <l G, then HK is a subgroup, H n K <l K, and 

K/(HnK) ~ HK/H. 

Proof. Since H <l G, Proposition A-4.69 shows that HK is a subgroup. Normality 
of H in HK follows from a more general fact: if H ~ 8 ~ G and H is normal 
in G, then H is normal in 8 (if ghg- 1 E H for every g E G, then, in particular, 
ghg- 1 EH for every g E 8); hence, H <l HK. 
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We now show that every coset xH E HK/ H has the form kH for some k E K. 
Since x E HK= KH (by Proposition A-4.69(ii)), we have x = hk, where h EH 
and k E K, so that xH = khH = kH. It follows that the function f: K-+ HK/ H, 
given by f : k H kH, is surjective. Moreover, f is a homomorphism, for it is the 
restriction of the natural map 7r: G -+ G/H. Since ker7r = H, it follows that 
ker f = H n K, and so H n K is a normal subgroup of K. The First Isomorphism 
Theorem now gives K/(HnK) ~ HK/H. • 

The Second Isomorphism Theorem gives the product formula in the special case 
when one of the subgroups is normal: if K/(HnK) ~HK/ H, then IK/(H n K)I = 
IHK/HI, and so IHKllH n Kl= IHllKI. The next result is an analog for groups 
of Exercise A-3.52 on page 61. 

Theorem A-4.78 (Third Isomorphism Theorem). If H and K are normal 
subgroups of a group G with K ~ H, then H / K <J G / K and 

(G/K)/(H/K) ~ G/H. 

Proof. Define f: G/K-+ G/H by f: aK H aH. Note that f is a (well-defined) 
function (called enlargement of cos et), for if a' E G and a' K = aK, then 
a- 1a1 E K ~ H, and so aH = a' H. It is easy to see that f is a surjective 
homomorphism. 

Now ker f = H/K, for aH = H if and only if a EH, and so H/K is a normal 
subgroup of G / K. Since f is surjective, the First Isomorphism Theorem gives 

(G/K)/(H/K) ~ G/H. • 

The Third Isomorphism Theorem is easy to remember: the Ks can be canceled 
in the fraction ( G / K) / ( H / K). We can better appreciate the First Isomorphism 
Theorem after having proved the third one. The quotient group ( G / K) / ( H / K) 
consists of cosets (of H / K) whose representatives are themselves cosets (of K). A 
direct proof of the Third Isomorphism Theorem could be nasty. 

The next result, which can be regarded as a fourth isomorphism theorem, de
scribes the subgroups of a quotient group G/ K. It says that every subgroup of G/ K 
is of the form S/K for a unique subgroup S ~ G containing K. The analogous 
result for rings is Exercise A-3.53 on page 62. 

Theorem A-4.79 (Correspondence Theorem). Let G be a group, let K <JG, 
and let 7r: G -+ G / K be the natural map. Then 

SH 7r(S) = S/K 

is a bijection between Sub(G; K), the family of all those subgroups S of G that 
contain K, and Sub(G/K), the family of all the subgroups of G/K. Moreover, 
T ~ S ~ G if and only if T/K ~ S/K, in which case [S: T] = [S/K: T/K], and 
T <IS if and only ifT/K <I S/K, in which case S/T ~ (S/K)/(T/K). 
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The following diagram is a way to remember this theorem: 

G 

~~G/K 
I -----_,._ I 

T -------- S/K I -----_,._ I 

K~T~K 
{1}. 

Proof. Define <P: Sub( G; K) ---+ Sub( G / K) by <P: S H S / K (it is routine to check 
that if S is a subgroup of G containing K, then S / K is a subgroup of G / K). 

To see that <P is injective, we begin by showing that if K ~ S ~ G, then 
7r-17r(S) = S. As always, S ~ 7r-17r(S). For the reverse inclusion, let a E 7r-17r(S), 
so that 7r(a) = 7r(s) for some s ES. It follows that as- 1 E ker?r = K, so that a= sk 
for some k E K. But K ~ S, and so a= sk E S. Assume now that 7r(S) = ?r(S'), 
where Sand S' are subgroups of G containing K. Then 7r-17r(S) = 7r-17r(S'), and 
so S = S' as we have just proved in the preceding paragraph; hence, <P is injective. 

To see that <Pis surjective, let Ube a subgroup of G/K. Now 7r-1 (U) is a 
subgroup of G containing K = ?r-1 ({1}), and 7r(7r-1 (U)) = U. 

Now T ~ S ~ G implies T/K = 7r(T) ~ 7r(S) = S/K. Conversely, assume that 
T/K ~ S/K. If t ET, then tK E T/K ~ S/K and so tK = sK for some s ES. 
Hence, t = sk for some k EK~ S, and sot ES. 

Let us denote S/K by S*. When G is finite, we prove that [S: T] = [S*: T*] 
as follows: 

[S*: T*] = IS*l/IT*I =IS/Kl/IT/Kl= (ISl/IKl)/(ITl/IKI) = ISl/ITI = [S: T]. 

To prove that [S : T] = [S* : T*J when G is not finite, it suffices to show that 
there is a bijection from the family of all cosets of the form sT, where s E S, 
and the family of all cosets of the form s*T*, where s* E S*, and the reader may 
check that sT H 7r( s )T* is such a bijection. If T <J S, then T / K <J S / K and 
(S/ K)/(T / K) ~ S/T, by the Third Isomorphism Theorem; that is, S* /T* ~ S/T. 
It remains to show that if T* <J S*, then T <J S; that is, if t E T and s E S, 
then sts-1 ET. Now ?r(sts-1) = ?r(s)?r(t)?r(s)-1 E ?r(s)T*?r(s)-1 = T*, so that 
sts-1 E 7r- 1(T*) = T. • 

Example A-4.80. Let G = (a) be a (multiplicative) cyclic group of order 30. If 
?r: Z ---+ G is defined by 7r(n) = an, then ker?r = (30). The subgroups (30) ~ 
(10) ~ (2) ~ Z correspond to the subgroups 

{1} = (a30 ) ~ (a10 ) ~ (a2) ~(a). 

Moreover, the quotient groups are 
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Here are some applications of the Isomorphism Theorems. 

Proposition A-4.81. If G is a finite abelian group and d is a divisor of IGI, then 
G contains a subgroup of order d. 

Remark. We have already seen, in Proposition A-4.67, that this proposition can 
be false for nonabelian groups. ~ 

Proof. We first prove the result, by induction on IGI, for prime divisors p of IGI. 
The base step IGI = 1 is true, for there are no prime divisors of 1. For the inductive 
step, choose a E G of order k > 1. If p I k, say k =pf, then Exercise A-4.28 on 
page 138 says that ae has order p. If pf k, consider the cyclic subgroup H = (a). 
Now H <JG, because G is abelian, and so the quotient group G/H exists. Note that 
IG/HI = IGl/k is divisible by p, and so the inductive hypothesis gives an element 
bH E G / H of order p. If b has order m, then Proposition A-4.60 gives p I m. We 
have returned to the first case. 

Next, let d be any divisor of IGI, and let p be a prime divisor of d. We have just 
seen that there is a subgroup S ~ G of order p. Now S <JG, because G is abelian, 
and G/S is a group of order n/p. By induction on IGI, G/S has a subgroup H* of 
order d/p. The Correspondence Theorem gives H* = H/S for some subgroup Hof 
G containing S, and IHI= IH*llSI = d. • 

We now construct a new group from two given groups. 

Definition. If H and K are groups, then their direct product, denoted by 

HxK, 

is the set of all ordered pairs (h, k), with h E H and k E K, equipped with the 
operation 

(h, k)(h', k') = (hh', kk'). 

It is easy to check that the direct product H x K is a group (the identity is 
(1,1) and (h,k)- 1 = (h-1,k-1)). 

We now apply the First Isomorphism Theorem to direct products. 

Proposition A-4.82. Let G and G' be groups, and let K <J G and K' <J G' be 
normal subgroups. Then (K x K') <J (G x G'), and there is an isomorphism 

(G x G')/(K x K') ~ (G/K) x (G'/K'). 

Proof. Let 7r: G -+ G / K and 11"1 : G' -+ G' / K' be the natural maps. It is easy to 
check that f: G x G'-+ (G/K) x (G'/K'), given by 

f: (g,g') f-t (7r(g),7r'(g')) = (gK,g'K'), 

is a surjective homomorphism with ker f = K x K'. The First Isomorphism Theo
rem now gives the desired isomorphism. • 

Proposition A-4.83. If G is a group containing normal subgroups H and K with 
HnK={l} andHK=G, thenG~HxK. 
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Proof. We show first that if g E G, then the factorization g = hk, where h E H 
and k EK, is unique. If hk = h'k', then h'- 1h = k'k- 1 E HnK = {1}. Therefore, 
h' =hand k' = k. We may now define a function cp: G--+ I-Ix K by cp(g) = (h, k), 
where g = hk, h E H, and k E K. To see whether cp is a homomorphism, let 
g' = h'k', so that gg' = hkh'k'. Hence, cp(gg') = cp(hkh'k'), which is not in the 
proper form for evaluation. If we knew that hk = kh for h E H and k E K, then 
we could continue: 

cp(hkh'k') = cp(hh'kk') = (hh', kk') = (h, k)(h', k') = cp(g)cp(g'). 

Let h E H and k E K. Since K is a normal subgroup, (hkh- 1 )k- 1 EK; since H 
is a normal subgroup, h(kh-1k- 1 ) EH. But I-InK = {1}, so that hkh-1k- 1 =1 
and hk = kh. Finally, we show that the homomorphism cp is an isomorphism. If 
(h, k) EH x K, then the element g E G, defined by g = hk, satisfies cp(g) = (h, k); 
hence cp is surjective. If cp(g) = (1, 1), then g = 1 (by uniqueness of factorization), 
so that ker cp = 1 and cp is injective. Therefore, cp is an isomorphism. • 

Remark. We must assume that both subgroups Hand K are normal. For example, 
83 has subgroups H = ((12 3)) and K = ((1 2)). Now H <J 83, Hn K = {1}, and 
HK= 83, but 83 1- H x K (because the direct product is abelian). Of course, K 
is not a normal subgroup of 83. .,. 

Theorem A-4.84. If m and n are relatively prime, then 

Proof. If a E Z, denote its congruence class in Zm by [a]m· The reader can show 
that the function f: Z--+ Zm x Zn, given by a H ([a]m, [a]n), is a homomorphism. 
We claim that ker f = (mn). Clearly, (mn) ~ ker f. For the reverse inclusion, if 
a E ker f, then [a]m = [O]m and [a]n = [O]n; that is, a= 0 mod m and a= 0 mod n; 
that is, m I a and n I a. Since m and n are relatively prime, mn I a (FCAA [94], 
Exercise 1.60), and so a E (mn), that is, ker f ~ (mn) and ker f = (mn). The First 
Isomorphism Theorem now gives Z/(mn) ~ imf ~ Zm x Zn. But Z/(mn) ~ Zmn 
has mn elements, as does Zm x Zn. We conclude that f is surjective. • 

For example, it follows that Z5 ~ Z2 x Z3. Note that there is no isomorphism 
if m and n are not relatively prime. For example, Z4 1- Z2 x Z2, for Z4 has an 
element of order 4 and the direct product (which is isomorphic to the four-group 
V) has no such element. 

Corollary A-4.85 (Chinese Remainder Theorem). Jfm, n are relatively prime, 
then there is a solution to the system 

x = bmodm, 

x = cmodn. 

Proof. In the proof of Theorem A-4.84, we showed that the map f: Z --+ Zm x Zn, 
given by a H ([a]m, [a]n), is surjective. But ([b]m, [c]n) = ([a]m, [a]n) says that 
(a]m = [b]m and [a]n = [c]n; that is, a = b mod m and a= c mod n. • 
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In light of Proposition A-4.35, we may say that an element a E G has order 
n if (a) ~Zn. Theorem A-4.84 can now be interpreted as saying that if a and b 
are commuting elements having relatively prime orders m and n, then ab has order 
mn. Let us give a direct proof of this result. 

Proposition A-4.86. Let G be a group, and let a, b E G be commuting elements 
of orders m and n, respectively. If gcd(m, n) = 1, then ab has order mn. 

Proof. Since a and b commute, we have (abt = arbr for all r, so that (ab)mn = 
amnbmn = 1. It suffices to prove that if (ab)k = 1, then mn I k. If 1 = (ab)k = akbk, 
then ak = b-k. Since a has order m, we have 1 = amk = b-mk. Since b has order n, 
Proposition A-4.23 gives n I mk. As gcd(m, n) = 1, however, we have n I k; 
a similar argument gives m I k. Finally, since gcd(m, n) = 1, we have mn I k. 
Therefore, mn S k, and mn is the order of ab. • 

Corollary A-4.87. If gcd(m,n) = 1, then <f>(mn) = <f>(m)<f>(n), where</> is the 
Euler </>-function. 

Proof. 15 We saw, in the proof of Theorem A-4.84, that f: Zmn -+ Zm x Zn, given 
by (a] 1--t ([a]m, [a]n), is an isomorphism of rings. This corollary will follow if we 
prove that f(U(Zmn)) = U(Zm X Zn) = U(Zm) X U(Zn), for then 

</>(mn) = IU(Zmn)I = lf(U(Zmn))I 

= jU(Zm) X U(Zn)I 

= IU(Zm)I · IU(Zn)I = </>(m)<f>(n). 

Now f(U(R)) ~ U(R') for every ring homomorphism f: R-+ R'; in particular, 
f(U(Zmn)) ~ U(Zm) x U(Zn)· 

For the reverse inclusion, if f((c]) = ((c]m, (c]n) E U(Zm) x U(Zn), then we must 
show that (c] E U(Zmn)· There is (d]m E Zm with (c]m[dJm = [l]m, and there is 
[e]n E Zn with [c]n[e]n = [l]n· Since f is surjective, there is b E Z with ([b]m, [b]n) = 
([dJm, [e]n), so that f([l]) = ([l]m, [l]n) = ([c]m[b]m, [c]n[b]n) = f([c][b]). Since f is 
an injection, [1] = [c][b] and [c] E U(Zmn)· • 

Corollary A-4.88. 

(i) If p is prime, then <f>(pe) = pe - pe-l = pe ( 1 - ~). 

(ii) If n = p~1 • • ·p~' is the prime factorization, where Pi, ... ,pt are distinct 
primes, then 

<f>(n) = n(l - ; 1 ) · · · (1- :t). 

Proof. Part (i) holds because (k,pe) = 1 if and only if pf k, while part (ii) follows 
from Corollary A-4.87. • 

Lemma A-4.89. Let G =(a) be a cyclic group. 

(i) Every subgroup S of G is cyclic. 

15See Exercise A-3.43 on page 54 for a less cluttered proof. 
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(ii) If IGI = n, then G has a unique subgroup of order d for each divisor d 
ofn. 

Proof. 

(i) We may assume that S =f. {1}. Each element s E S, as every element 
of G, is a power of a. If mis the smallest positive integer with am E S, we 
claim that S = (am). Clearly, (am) ~ S. For the reverse inclusion, let 
s = ak ES. By the Division Algorithm, k = qm + r, where 0 :::; r < m. 
Hence, s = ak = amqar = ar. If r > 0, we contradict the minimality 
of m. Thus, k = qm ands= ak = (am)q E (am). 

(ii) If n = cd, we show that ac has order d (whence (ac) is a subgroup 
of order d). Clearly (ac)d = acd = an = 1; we claim that d is the 
smallest such power. If (ac)m = 1, where m < d, then n I cm, by 
Proposition A-4.23; hence cm = ns = des for some integer s, and m = 
ds 2:: d, a contradiction. 

To prove uniqueness, assume that (x) is a subgroup of order d (every 
subgroup is cyclic, by part (i)). Now x =am and 1 = xd = amd; hence 
md = nk for some integer k. Therefore, x = am = (anfd)k = (ac)k, so 
that (x) ~ (ac). Since both subgroups have the same order d, it follows 
that (x) = (ac). • 

The next theorem was used to prove Theorem A-3.59: The multiplicative 
group z; is cyclic if p is prime. Proposition A-3.107(iii) will be used in the next 
proof; it says that n = l:dln ¢( d) for every integer n 2:: 1. 

Theorem A-4.90. A group G of order n is cyclic if and only if, for each divisor 
d of n, there is at most one cyclic subgroup of order d. 

Proof. If G is cyclic, then the result follows from Lemma A-4.89. 

Conversely, define an equivalence relation on a group G by x = y if (x) = (y); 
that is, x and y are equivalent if they generate the same cyclic subgroup. Denote 
the equivalence class containing an element x by gen(C), where C = (x); thus, 
gen(C) consists of all the generators of C. As usual, equivalence classes form a 
partition, and so G is the disjoint union 

G = LJ gen(C), 
c 

where C ranges over all cyclic subgroups of G. In Theorem A-4.36(ii), we proved 
that lgen(C)I = ¢(1CI), and so IGI = l:c <P(ICI). 

By hypothesis, for any divisor d of n, the group G has at most one cyclic 
subgroup of order d. Therefore, 

n = L lgen(C)I = L <P(ICI):::; L <P(d) = n, 
C C din 

the last equality being Proposition A-3.107(iii). Hence, for every divisor d of n, we 
must have ¢(d) arising as lgen(C)I for some cyclic subgroup C of G of order d. In 
particular, <P(n) arises; there is a cyclic subgroup of order n, and so G is cyclic. • 
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Here is a variation of Theorem A-4.90 (shown to me by D. Leep) which con
strains the number of cyclic subgroups of prime order in a finite abelian group G. 
We remark that we must assume that G is abelian, for the group Q of quaternions 
is a nonabelian group of order 8 having exactly one (cyclic) subgroup of order 2. 

Theorem A-4.91. If G is an abelian group of order n having at most one cyclic 
subgroup of order p for each prime divisor p of n, then G is cyclic. 

Proof. The proof is by induction on n = JGJ, with the base step n = 1 obviously 
true. For the inductive step, note that the hypothesis is inherited by subgroups of 
G. We claim that there is some element x in G whose order is a prime divisor p 
of JGJ. Choose y E G with y -:/:- 1; its order k is a divisor of JGJ, by Lagrange's 
Theorem, and so k =pm for some prime p. By Exercise A-4.28 on page 138, the 
element x = ym has order p. Define 0: G-+ G by 0: g H gP (0 is a homomorphism 
because G is abelian). Now x E kerO, so that J kerOJ ~ p. If J kerOJ > p, then 
there would be more than p elements g E G satisfying gP = 1, and this would force 
more than one subgroup of order p in G. Therefore, I kerOJ = p. By the First 
Isomorphism Theorem, G/kerO ~ imO ~ G. Thus, imO is a subgroup of G of 
order n/p satisfying the inductive hypothesis, so there is an element z E im 0 with 
imO = (z). Moreover, since z E imO, there is b E G with z = bP. There are now 
two cases. If pf n/p, then xz has order p · n/p = n, by Proposition A-4.86, and so 
G = (xz). If p I n/p, then Exercise A-4.29 on page 138 shows that b has order n, 
and G = (b). • 

Exercises 

* A-4.72. Recall that U(Zm) = {[r] E Zm: gcd(r, m) = 1} is a multiplicative group. Prove 
that U(Zg) ~ Za and U(Z1s) ~ l.4 x Z2. 

A-4. 73. (i) Let H and K be groups. Without using the First Isomorphism Theorem, 
prove that H* = {(h, 1): h EH} and K* = {(1, k): k EK} are normal subgroups 
of H x K with H ~ H* and K ~ K*, and that f: H--+ (H x K)/K*, defined by 
f (h) = (h, l)K*, is an isomorphism. 

(ii) Use Proposition A-4.82 to prove that K* <l (H x K) and (H x K)/K* ~ H. 
Hint. Consider the function f: H x K--+ H defined by f: (h,k) H h. 

* A-4. 7 4. Let G and G' be groups, and let H <l G and H' <l G' be normal subgroups. 
If f: G--+ G' is a homomorphism with f(H) ~ H', prove that f.: xH H f(x)H' is a 
well-defined homomorphism f. : G / H --+ G' / H'; if f is an isomorphism and J ( H) = H', 
prove that f. is also an isomorphism. 

Hint. Compare Exercise A-3.50 on page 61. 

A-4. 75. (i) Prove that every subgroup of Q x Z2 is normal (see the discussion on 
page 156). 

(ii) Prove that there exists a nonnormal subgroup of G = Q x l.4. Conclude that G is 
not hamiltonian. 
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* A-4.76. If x,y are elements in a group G, then their commutator is xyx- 1y- 1 . The 
subgroup of G generated by all the commutators is called the commutator subgroup, 
and it is denoted by G'. (There are examples of groups in which the product of two 
commutators is not a commutator (see Rotman [97], Exercise 2.43), and so the set of all 
commutators need not be a subgroup.) 

(i) Prove that G' is a normal subgroup of G and that G/G' is abelian. 

(ii) If H <I G, prove that G / H is abelian if and only if G' ~ H. 

A-4.77. (i) Prove that Aut(V) ~ 83 and that Aut(83) ~ 83. Conclude that nonisomor
phic groups can have isomorphic automorphism groups. 

(ii) Prove that Aut(Z) ~ Z2. Conclude that an infinite group can have a finite auto
morphism group. 

A-4.78. (i) If G is a group for which Aut(G) = {1}, prove that g2 = 1 for all g E G. 

(ii) If G is a group, prove that Aut(G) = {1} if and only if IGI ::; 2. 
Hint. By (i), G is abelian, and it can be viewed as a vector space over 1F2. You may 
use Corollary B-2.11, which states that GL(V) =f. {1} for every, possibly infinite
dimensional, vector space V. 

* A-4.79. Prove that if G is a group for which G/Z(G) is cyclic, where Z(G) denotes the 
center of G, then G is abelian; that is, G/Z(G) = {1}. 

Hint. If G/Z(G) is cyclic, prove that a generator gives an element outside of Z(G) which 
commutes with each element of G. 

* A-4.80. (i) Prove that Q/Z(Q) ~ V, where Q is the group of quaternions and Vis the 
four-group; conclude that the quotient of a group by its center can be abelian. 

(ii) Prove that Q has no subgroup isomorphic to V. Conclude that the quotient 
Q/Z(Q) is not isomorphic to a subgroup of Q. 

A-4.81. Let G be a finite group with K <I G. If gcd(IKI, [G : K]) = 1, prove that K is 
the unique subgroup of G having order IKI. 

Hint. If H ~ G and IHI= IKI, what happens to elements of Hin G/K? 

* A-4.82. If Hand Kare subgroups of a group G, prove that HK is a subgroup of G if 
and only if HK= KH. 

Hint. Use the fact that H ~ HK and K ~ HK. 

* A-4.83. Let G be a group and regard G x G as the direct product of G with itself. If the 
multiplication µ: G x G --+ G is a group homomorphism, prove that G must be abelian. 

* A-4.84. Generalize Theorem A-4.84 as follows. Let G be a finite (additive) abelian group 
of order mn, where gcd(m, n) = 1. Define 

Gm= {g E G: order (g) Im} and Gn = {h E G: order (h) In}. 

(i) Prove that Gm and Gn are subgroups with Gm n Gn = {O}. 

(ii) Prove that G =Gm+ Gn = {g + h: g E Gm and h E Gn}· 

(iii) Prove that G ~ Gm X Gn. 
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* A-4.85. Let G be a finite group, let p be prime, and let H be a normal subgroup of G. 
If both IHI and IG/HI are powers of p, prove that IGI is a power of p. 

A-4.86. If Hand Kare normal subgroups of a group G with HK= G, prove that 

G/(H n K) ~ (G/H) x (G/K). 

Hint. If cp: G--+ (G/H) x (G/K) is defined by xi-+ (xH,xK), then kercp = H n K; 
moreover, we have G = HK, so that 

LJaH =HK= LJbK. 
a b 

Definition. If Hi, ... , Hn are groups, then their direct product 

H1 x · ·· x Hn 

is the set of all n-tuples (h1, ... , hn), where hi E Hi for all i, with coordinatewise multi
plication: 

* A-4.87. Let the prime factorization of an integer m be m = p~ 1 • • • p';,n. 

(i) Generalize Theorem A-4.84 by proving that 

(ii) Generalize Corollary A-4.87 by proving that 

U(Zm) ~ U(Zp~l) x ... x U(Zp:-,n ). 

* A-4.88. Define A, B E GL(2, Q) by A = [ ~ -01 ] and B = [ _01 ~]. The quotient group 
M = (A,B)/N, where N =(±I), is called the modular group. 

(i) Show that a2 = 1 = b3 , where a= AN and b = BN in M, and prove that ab has 
infinite order. (See Exercise A-4.30 on page 138.) 

(ii) Prove that M ~ SL(2,Z)/N. 

Simple Groups 

Abelian groups (and the quaternions) have the property that every subgroup is 
normal. At the opposite pole are groups having no normal subgroups other than 
the two obvious ones: {1} and G. 

Definition. A group G is called simple if G =f. { 1} and G has no normal subgroups 
other than {1} and G itself. 

Proposition A-4.92. An abelian group G is simple if and only if it is finite and 
of prime order. 

Proof. If G is finite of prime order p, then G has no subgroups H other than 
{1} and G, otherwise Lagrange's theorem would show that IHI is a divisor of p. 
Therefore, G is simple. 
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Conversely, assume that G is simple. Since G is abelian, every subgroup is 
normal, and so G has no subgroups other than {1} and G. If G -:/:- {1}, choose 
x E G with x -:/:- 1. Since (x) is a subgroup, we have (x) = G. If x has infinite 
order, then all the powers of x are distinct, and so (x2) £; (x) is a forbidden 
subgroup of (x), a contradiction. Therefore, every x E G has finite order, say, m. 
If mis composite, then m = kf and (xk) is a proper nontrivial subgroup of (x), a 
contradiction. Therefore, G = (x) has prime order. • 

There do exist infinite nonabelian simple groups. 

We are now going to show that A5 is a nonabelian simple group. Indeed, A5 is 
the smallest such; there is no nonabelian simple group of order less than IA5I = 60. 
(Observe that A4 is not simple, for the four-group Vis a normal subgroup of A4.) 

The next lemma shows that we should focus on the 3-cycles in A5 • 

Lemma A-4.93. Every element in A5 is a 3-cycle or a product of 3-cycles. 

Proof. If a E A5 , then a is a product of an even number of transpositions: a = 
Tl T2 · · · T2k-1T2k· As the transpositions may be grouped in pairs T2i-1 T2i, it suffices 
to consider products TT1 , where T and T 1 are transpositions. If T and T 1 are not 
disjoint, then T = (i j), T 1 = (i k), and TT1 = (i k j); if T and T 1 are disjoint, then 
TT 1 = (i j)(k £) = (i j)(j k)(j k)(k £) = (i j k)(j k £). • 

It is easy to see that Lemma A-4.93 holds for all An with n 2'.: 5. 

Suppose that an element x E G has k conjugates; that is, define 

x 0 = {gxg- 1 : g E G}, 

so that lx0 1 = k. If there is a subgroup H ~ G with x E H ~ G, how many 
conjugates does x have in H? Since 

xH = {hxh- 1 : h EH}~ {gxg- 1 : g E G} = x 0 , 

we have lxHI ::; lx0 1. It is possible that there is strict inequality lxHI < lx0 1. For 
example, take G = 83, x = (1 2), and H = (x). We know that lx0 1=3 (because 
all transpositions are conjugate, by Theorem A-4. 7: Two permutations in Sn are 
conjugate if and only if they have the same cycle structure), whereas lxH I = 1 
(because His abelian). 

Consider conjugacy of 3-cycles: any two are conjugate in 8 5 ; are they still 
conjugate in the subgroup A5? 

Lemma A-4.94. Let H-:/:- {1} be a normal subgroup of A5. 

(i) H contains a 3-cycle. 

(ii) All 3-cycles are conjugate in A5. 

Proof. 

(i) As H-:/:- {(1)}, it contains some a-:/:- (1). We may assume, after a harmless 
relabeling, that either a= (1 2 3), a= (1 2)(3 4), or a= (1 2 3 4 5). 

If a= (1 2 3), there is nothing to prove. 
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If a= (1 2)(3 4) E H, use Lemma A-4.5: conjugate a by f3 = (3 4 5) 
to have (3a13- 1 =a'= (/31 /32)(/33 (34) = (12)(45) EH (because f3 E A 5 

and H <J 85). Hence, aa' = (3 4 5) E H. 
If a= (1 2 3 4 5) E H, use Lemma A-4.5: conjugate a by 'Y = (1 2 3) 

to have "f<7'Y-l = a" = ("fl "f2 "f3 "14 "!5) = (2 3 1 4 5) E H (because 
'YE A5 and H <J85 ). Hence, a" a-1 = (2 3 1 4 5)(5 4 3 2 1) = (1 2 4) E H. 

(ii) For notational convenience, assume that a= (1 2 3) E H. If f3 is another 
3-cycle in A5 , then they involve at most 5 symbols, and so they cannot 
be disjoint; we may assume that f3 = (1 ab). If 'Y = (1 b)(2 a), then 

'Ya'Y- 1 = ('Yl "12 "!3) = (b a c) E H, 

where c = "!(3). If now 8 = (c l)(a b), then 

8(b a c)8-1 = (8b 8a 8c) = (ab I) = (3. 

Thus, (8'Y)a(8"1)- 1 = f3 and, therefore, all 3-cycles are conjugate to a= 
(1 2 3) in A5. • 

Theorem A-4.95. A5 is a simple group. 

Proof. We must show that if His a normal subgroup of A 5 and H =I- {(1)}, then 
H = A5 • Since H contains a 3-cycle, normality forces H to contain all of its 
conjugates. By Lemma A-4.94, H contains every 3-cycle, and by Lemma A-4.93, 
H = A5. Therefore, H = A5 and A5 is simple. • 

We shall see that Theorem A-4.95 is the basic reason why quintic polynomials 
are not solvable by radicals. 

It turns out that the alternating groups An are simple for all n ~ 5. We first 
show that A6 is simple. 

Cycle Structure Number Order Parity 
(1) 1 1 Even 
(1 2) 15 2 Odd 
(1 2 3) 40 3 Even 
(1 2 3 4) 90 4 Odd 
(1 2 3 4 5) 144 5 Even 
(12345 6) 120 6 Odd 
(1 2)(3 4) 45 2 Even 
(1 2)(3 4 5) 120 6 Odd 
(12)(3456) 90 4 Even 
(1 2)(3 4)(5 6) 15 2 Odd 
(1 2 3)(4 5 6) 40 3 Even 

720 

Table 4. Permutations in Sa. 
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Theorem A-4.96. A6 is a simple group. 

Proof. We must show that if H is a nontrivial normal subgroup of A6 , then 
H = A6 . Since H =F {(1)}, it contains some a =F (1). If a(i) = i for some i 
with 1 ~ i ~ 6, define 

F = {O" E A5: O"(i) = i}. 

It is easy to check that Fis a subgroup of A6 , and that F ~ A5 ; hence, Fis simple. 
Since H <J A6 , the Second Isomorphism Theorem gives H n F <J F. But a E H n F, 
so that simplicity of F gives HnF = F; that is, F ~ H. It follows that H contains 
a 3-cycle. The argument in the proof of Theorem A-4.95 can now be repeated, 
showing that H = A5. 

We may now assume that a EH has no fixed points. Table 4 shows (without 
loss of generality) that either a = (1 2)(3 4 5 6) or a = (1 2 3)(4 5 6). In the 
first case, a 2 E His a nontrivial permutation which fixes 1, a contradiction. In the 
second case, take f3 = (2 3 4) E A6. Note that f3 does not commute with a, so that 
a(f3a-i13-i) =F (1). But a(f3a-i13-i) EH, because His normal, and f3 fixes 1, a 
contradiction. Therefore, H = A5, as we showed in the first paragraph, and so A6 

is simple. • 

Theorem A-4.97. An is a simple group for all n 2: 5. 

Proof. We must show that H =An if H <J An and H =I {(1)}, and the argument 
in Lemma A-4.94 essentially shows that it suffices to prove H contains a 3-cycle. If 
a E H is nontrivial, then there exists some i that a moves; say a( i) = j =F i. Choose 
a 3-cycle f3 which fixes i and moves j. The permutations a and f3 do not commute: 
af3(i) = a(i) = j, while f3a(i) = f3(j) =F j. It follows that "I= f3(af3-ia-i) is a 
nontrivial element of H. But af3-ia-i is a 3-cycle, by Proposition A-4.7, and so 
"I= f3(af3-ia-i) is a product of two 3-cycles. Hence, "I moves at most 6 symbols, 
say ii, ... , i6 (if "I moves fewer than 6 symbols, just adjoin others so we have a list 
of 6). Define 

F = {O" E An: O" fixes all i =I ii, ... , i5}. 

Since "IE H n F, we see that H n Fis a nontrivial subgroup of F. Now the Second 
Isomorphism Theorem says that H n F <J F; but F is simple, being isomorphic to 
A6, and so H n F = F; that is, F ~ H. Therefore, H contains a 3-cycle, and so 
H =An; the proof is complete. • 

In addition to the cyclic groups of prime order and the large alternating groups, 
there are several other infinite families of finite simple groups, called the simple 
groups of Lie type. The Classification Theorem says that every finite simple 
group either lies in one of these families or it is one of 26 sporadic simple groups, the 
largest of which is the Monster of order approximately 8 x 1053 . The classification 
theorem was a huge project at the end of the twentieth century, involving many 
mathematicians and many articles. The full proof can be found in a series of seven 
books, [41] published from 1994 through 2011 and totaling about 2500 pages, with 
authors Aschbacher, Gorenstein, Lyons, Smith, and Solomon. 
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Exercises 

A-4.89. Prove that As is a group of order 60 having no subgroup of order 30. 

A-4.90. (i) Prove that the only normal subgroups of S4 are { (1) }, V, A4, and S4. 
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(ii) If His a proper normal subgroup of Sn, where n 2:: 5, prove that H n An = {(1)}. 

(iii) If n 2:: 5, prove that the only normal subgroups of Sn are {(1)}, An, and Sn. 

A-4.91. Prove that if Bis a subgroup of Sn such that B n An= {(1)}, then IBI:::; 2. 





Chapter A-6 

Galois Theory 

This chapter discusses the interrelation between extension fields and certain groups 
associated to them, called Galois groups. This topic is called Galois theory today; 
it was originally called Theory of Equations. Informally, we say that a polynomial 
is solvable by radicals if there is a generalization of the quadratic formula that gives 
its roots. Galois theory will enable us to prove the theorem of Abel-Ruffini (there 
are polynomials of degree 5 that are not solvable by radicals) as well as Galois's 
theorem describing all those polynomials (over a field of characteristic 0) which are 
solvable by radicals. Another corollary of this theory is a proof of the. Fundamental 
Theorem of Algebra. 

Insolvability of the Quintic 

Kronecker's Theorem (Theorem A-3.90) says, for each monic f(x) E k[x] (where k 
is a field), that there is an extension field K / k and (not necessarily distinct) roots 
z1, ... , Zn E K with 

f(x) = xn + an-1Xn-l + · · · + alx + ao = (x - zi) · · · (x - Zn)· 

In Example A-3.92, we displayed the coefficients off in terms of its roots: 

(8) 

an-1 = -l:zi, 
i 

an-2 = L ZiZj, 
i<j 

an-3 = - L ZiZjZk, 
i<j<k 

-179 
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Recall that the elementary symmetric functions of n variables are the 
polynomials, for j = 1, ... , n, 

ej(y1, · · ·, Yn) = L Yi1 ···Yi;· 
ii <···<i; 

Eqs. (8) show that if z1, ... , Zn are the roots of f(x) = xn + an-1Xn-l + · · · + ao, 
then 

ej(Zi, ... , Zn)= (-l)ian-j· 

In particular, -an- l is the sum of the roots of f and ( -1) n ao is the product of the 
roots. 

Given the coefficients ao, ... ,an-1 off, can we find its roots? That is, can we 
solve the system (8) of n equations in n unknowns? If n = 2, the answer is yes: 
the quadratic formula works. If n = 3 or 4, the answer is still yes, for the cubic 
and quartic formulas work. But if n ;::=: 5, we shall see that no analogous solution 
exists. We do not say that no solution of system (8) exists if n ;::=: 5. Indeed, there 
are ways of finding the roots of a quintic polynomial if we do ·not limit ourselves 
to formulas involving only field operations and extraction of roots. We can find 
the roots by Newton's method: If r is a real root of a polynomial f(x) and x0 is a 
"good" approximation to r, then r = limn-too Xn, where Xn is defined recursively 
by Xn+i = Xn - f(xn)/f'(xn) for all n 2". 0. There is a method of Hermite finding 
roots of quintics using elliptic modular functions, and there are methods for finding 
the roots of many polynomials of higher degree using hypergeometric functions (see 
King [62]). 

Abel proved in 1824 that if n ;::=: 5, then there are polynomials of degree n that 
are not solvable by radicals (as we said earlier, Ruffini proved the same result in 
1799, but his proof was very long, it had a gap, and it was not accepted by his 
contemporaries). The key observation is that symmetry is present. 

Definition. Let E / k be an extension field. An automorphism of E is an iso
morphism a: E---+ E; an automorphism a of E fixes kif a(a) =a for every a Ek. 

Note that an extension field E/k is a vector space over k and, if a: E---+ E 
fixes k, then a is a k-linear transformation (a(ae) = a(a)a(e) = aa(e) for all a Ek 
and e EE). For example, a splitting field of f(x) = x2 +1 over Q is E = Q(i), and 
complex conjugation a: a i--+ a is an example of an automorphism of E fixing Q. 

Proposition A-5.1. Let k be a field, let 

f(x) = xn + an-1Xn-l + · · · + alx + ao E k[x], 

and let E = k(zi, ... , Zn) be a splitting field of f over k. If a: E ---+ E is an 
automorphism fixing k, then a permutes the set of roots {z1, ... , Zn} off. 

Proof. If z is a root of f, then 

0 = f(z) = zn + an-1Zn-l + · · · + alz + ao. 
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Applying a to this equation gives 

0 = a(z)n + a(an-1)a(z)n-l + · · · + a(a1)a(z) + a(ao) 

= a(z)n + an-1a(z)n-l + · · · + a1a(z) + ao 

= f(a(z)), 
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because a fixes k. Therefore, a(z) is a root off. Thus, if n is the set of all the 
roots, then air!: n ---+ n, where air! is the restriction. But air! is injective (because 
a is), so that air! is a permutation of n, by the Pigeonhole Principle. • 

We now associate a group to any polynomial f(x). 

Definition. The Galois group of an extension field E/k, denoted by 

Gal(E/k), 

is the set of all those automorphisms of E that fix k. 

If f(x) E k[x] and E = k(z1, ... ,zn) is a splitting field off over k, then the 
Galois group off over k is defined to be Gal(E/k). 

It is easy to check that Gal(E/k) is a group with operation composition of 
functions. Note that the Galois group Gal(E/k) of a polynomial f is independent of 
the choice of splitting field E, for any two splitting fields off over k are isomorphic. 

Given a polynomial f, Galois's definition of its Galois group was given in terms 
of certain permutations of its roots (see [115], pp. 295-302). The simpler definition 
above is due to E. Artin, around 1930. Both definitions yields isomorphic groups. 

Lemma A-5.2. Let a E Gal(E/k), where E = k(z1,. .. , Zn)· If a(zi) = Zi for 
all i, then a is the identity 1 E. 

Proof. We prove this lemma by induction on n 2:: 1. If n = 1, then each u E E 
has the form u = f(zi)/g(z1), where f(x), g(x) E k[x] and g(zi) f:. 0. But a fixes 
z1 as well as the coefficients of f and of g, so that a fixes all u E E. For the 
inductive step, write K = k(z1, ... , Zn-1), and note that E = K(zn) (for K(zn) is 
the smallest subfield containing k and zi, ... , Zn-l, Zn)· The inductive step is now 
just a repetition of the base step with k replaced by K. • 

Theorem A-5.3. If f(x) E k[x] has degree n, then its Galois group Gal(E/k) is 
isomorphic to a subgroup of Sn. 

Proof. Let X = {z1 , .. ., Zn} be the set of roots of f. If a E Gal(E/k), then 
Proposition A-5.l shows that its restriction alX is a permutation of X. Define 
cp: Gal(E/k) ---+ Bx by cp: a H alX. To see that cp is a homomorphism, note 
that both cp(ar) and cp(a)cp(r) are functions X ---+ X that agree on each Zi E X: 
cp(ar): Zi H (ar)(zi), while cp(a)cp(r): Zi H a(r(zi)), and these are the same. 

The image of cp is a subgroup of Bx 9:! Sn. The kernel of cp is the set of all 
a E Gal(E/k) with alX = lx; that is, a fixes each of the roots Zi· As a also fixes k, 
by the definition of Galois group, and Lemma A-5.2 gives kercp = {l}. Therefore, 
cp is injective. • 
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We illustrate this result. If f(x) = x2 + 1 E Q(x], then complex conjugation 
a is an automorphism of its splitting field Q(i) (for a interchanges the roots i and 
-i); since a fixes Q, we have a E G = Gal(Q(i)/Q). Now G is a subgroup of 
the symmetric group 82 , which has order 2; it follows that G = (a) 9:! Z2. The 
reader should regard the elements of any Galois group Gal(E/k) as generalizations 
of complex conjugation. 

In order to compute the order of the Galois group, we must first discuss sepa
rability. 

Lemma A-5.4. If k is a field of characteristic 0, then every irreducible polynomial 
p(x) E k(x] has no repeated roots. 

Proof. Let f(x) E k(x] be a (not necessarily irreducible) polynomial. In Ex
ercise A-3.64 on page 74, we saw that f has no repeated roots if and only if 
gcd(f, f') = 1, where f' is the derivative off. 

Now consider p(x); we may assume that pis monic of degreed~ 1. The highest 
coefficient dxd-l of the derivative p' is nonzero, because k has characteristic 0, and 
so p' =f 0. Since p is irreducible, its only divisors are constants and associates; as 
p' has smaller degree, it is not an associate of p, and so gcd(p,p') = 1. • 

Definition. An irreducible polynomial p(x) is separable if it has no repeated 
roots. An arbitrary polynomial f(x) is separable if each of its irreducible factors 
has no repeated roots; otherwise, it is inseparable. 

Recall Theorem A-3.87(i): If E/k is an extension field and a E Eis algebraic 
over k, then there is a unique monic irreducible polynomial irr(a, k) E k(x], called 
its minimal polynomial, having a as a root. 

Definition. Let E / k be an algebraic extension. An element a E E is separable if 
either a is transcendental over k or a is algebraic over k and its minimal polynomial 
irr(a, k) is separable; that is, irr(a, k) has no repeated roots. 

An extension field E / k is separable if each of its elements is separable; we say 
that E / k is inseparable if it is not separable. 

In Proposition A-5.47, we shall see that a splitting field of a separable polyno
mial is a separable extension. 

Lemma A-5.4 shows that every extension field E/k is separable if k has charac
teristic 0. If Eis a finite field with pn elements, then Lagrange's Theorem (for the 
multiplicative group Ex) shows that every element of Eis a root of g(x) = xPn -x. 
We saw, in the proof of Theorem A-3.95 (the existence of finite fields with pn 
elements), that g has no repeated roots. It follows that if k ~ E, then E/k is 
separable, for if a EE, then irr(a, k) is a divisor of g. 

Example A-5.5. Here is an example of an inseparable extension. Let k = 1Fp(t) = 
Frac(lFp[t]), and let E = k(a), where a is a root of f(x) = xP - t; that is, aP = t. 
In E(x], we have 

f(x) = xP - t = xP - aP = (x - a)P. 
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If we show that a ¢ k, then f is irreducible (by Proposition A-3.94), hence f = 
irr( a, k) is an inseparable polynomial, and so E / k is inseparable. If, on the contrary, 
a E k, then there are g(t), h(t) E 1Fp[t] with a = g/h. Hence, g = ah and gP = 
aP hP = thP, so that 

deg(gP) = deg( thP) = 1 + deg( hP). 

But p I deg(gP) and p I deg(hP), and this gives a contradiction. <11111 

Example A-5.6. We now examine roots of unity in fields of different characteris
tics. 

Let n be a positive integer. Theorem A-3.59 says that every finite subgroup of 
the multiplicative group of a field Eis cyclic; hence, the group r n(E) of all the nth 
roots of unity in Eis cyclic; any generator of this group, say, w, is called a primitive 
nth root of unity. Let f(x) = xn - 1 E k[x], where k is a field. What is the order 
of r n(E) if E/k is a splitting field off? If the characteristic of k is 0, we know that 
f has n distinct roots (by Exercise A-3.64 on page 74, for gcd(f, f') = 1). Thus, 
if n(E)I = n and a primitive nth root of unity w has order n. Since every extension 
field of characteristic 0 is separable, w is a separable element. 

Suppose the characteristic of k is a prime p. Write n = pem, where gcd(m,p) = 
1. If g(x) = xm - 1, then mxm-l "I 0 (because gcd(m,p) = 1) and gcd(g,g') = 1; 
hence, g has no repeated roots, and E contains m distinct mth roots of unity. We 
claim that if n(E)I = m; that is, there are no other nth roots of unity in E. If (3 
is an nth root of unity, then 1 = (3n = ((3m )P•; that is, (3m is a root of xP• - 1. 
But xP· - 1 = (x - l)P", because k has characteristic p, so that (3m = 1. If w is a 
primitive nth root of unity, then irr(w, k) I xm - 1. Hence, them roots of irr(w, k) 
are distinct, and sow is a separable element in this case as well. <11111 

Separability of E/k allows us to find the order of Gal(E/k). 

Theorem A-5. 7. Let cp: k --+ k' be an isomorphism of fields, and let cp*: k[x] --+ 
k'[x] be the ring isomorphism of Corollary A-3.27: 

cp*: g(x) = ao + · · · + anxn 1-t g*(x) = cp(ao) + · · · + cp(an)Xn. 

(i) Let f(x) E k[x] be separable. If f has splitting field E/k and f*(x) = 
cp*(f) E k'[x] has splitting field E* /k', then there are exactly [E : k] 
isomorphisms q> : E --+ E* that extend cp: 

E- .!' ~ E* 

I I 
k--k'. 

<p 

(ii) If E/k is a splitting field of a separable polynomial f, then 

I Gal(E/k)I = [E: k]. 
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Proof. 

(i) The proof, by induction on [E: k], modifies that of Lemma A-3.98. The 
base step [E : k] = 1 gives E = k, and there is only one extension qi of 
cp, namely, cp itself. If (E : k] > 1, let f(x) = p(x)g(x), where pis an 
irreducible factor of largest degree, say, d. We may assume that d > 1; 
otherwise f splits over k and (E: k] = 1. Choose a root a of p (note that 
a EE because Eis a splitting field off= pg). If <p: k(a) ---+ E* is any 
extension of cp, then cp(a) is a root a* of p*(x), by Proposition A-5.1; since 
f* is separable, p* has exactly d roots a* E E*. By Lemma A-5.2 and 
Theorem A-3.87(ii), there are exactly d isomorphisms ij5: k(a) ---+ k'(a*) 
extending cp, one for each a*. Now Eis also a splitting field off over k(a), 
because adjoining all the roots of f to k( a) still produces E; similarly, 
E* is a splitting field of f*(x) over k'(a*). Now [E : k(a)J < [E : k], 
because (E : k(a)J = [E : k]/d, so that induction shows that each of 
the d isomorphisms ij5 has exactly [ E : k ]/ d extensions qi : E ---+ E*. 
Thus, we have constructed (E: k] isomorphisms extending cp. But there 
are no others, because every T extending cp has Tlk(a) = ij5 for some 
ij5: k(a)---+ k'(a*). 

(ii) In part (i), take k = k', E = E*, and cp = lk. • 

Example A-5.8. The separability hypothesis in Theorem A-5.7(ii) is necessary. In 
Example A-5.5, we saw that if k = IB'p(t) and a is a root of xP-t, then E = k(a) is an 
inseparable extension. Moreover, xP - t = ( x - a )P, so that a is the only root of this 
polynomial. Hence, if a E Gal(E/k), then Proposition A-5.1 shows that a(a) =a. 
Therefore, Gal(E/k) = {1}, by Lemma A-5.2, and so I Gal(E/k)I = 1 < p = [E: k] 
in this case. .,. 

Corollary A-5.9. Let E/k be a splitting field of a separable polynomial f(x) E k[x] 
of degree n. If f is irreducible, then n 11 Gal(E/k)I. 

Proof. By Theorem A-5.7(ii), I Gal(E/k)I = [E : k]. Let a E E be a root off. 
Since f is irreducible, [k(a) : k] = n, by Proposition A-3.84(v), and 

[E: k] = [E: k(a)][k(a) : k] = n[E: k(a)]. • 

We can now give an example showing that the irreducibility criterion involving 
reducing the coefficients of a polynomial in Z[x] mod p may not work. 

Proposition A-5.10. The polynomial f(x) = x4 + 1 is irreducible in Q[x]. yet it 
factors in IB'p[x] for every prime p. 

Proof. We saw, in Example A-3.103 that f is irreducible in Q[x]. 

We show, for all primes p, that x4 + 1 factors in IB'p(x]. If p = 2, then x4 + 1 = 
(x + 1)4 , and so we may assume that pis an odd prime. It is easy to check that 
every square in Z is congruent to 0, 1, or 4 mod 8 (see Example A-2.24); since p 
is odd, we must have p2 = 1 mod 8, and so1 I (IF' P2) x I = p2 - 1 is divisible by 8. 
By Theorem A-3.59, (IF' P2) x is a cyclic group, and so it has a (cyclic) subgroup of 

1 Recall that if k is a field, then k x denotes the multiplicative group of its nonzero elements. 
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order 8, by Lemma A-4.89. It follows that IFP2 contains all the 8th roots of unity; in 
particular, IF P2 contains all the roots of x4 + 1, for x8 - 1 = ( x4 + 1) ( x4 - 1)). Hence, 
the splitting field Ep of x4 +1over1Fp is IFP2, because there is no intermediate field, 
and Gal(Ep/1Fp) = Gal(IFp2/1Fv)· But [1Fp2 : 1Fp] = 2, so that I Gal(Ev/!Fv)I = 2. 
Now x4 + 1 is a separable polynomial, by Example A-5.6. Were x4 + 1 irreducible 
in 1Fp[x], then Corollary A-5.9 would give 4 I I Gal(Ev/!Fv)I = 2, a contradiction. 
Therefore, x4 + 1 factors in 1Fp[x] for every prime p. • 

Here are some computations of Galois groups of specific polynomials in Q[x]. 

Example A-5.11. 

(i) Let f(x) = x3 - 1 E Q[x]. Now f(x) = (x - l)(x2 + x + 1), where 
x2 + x + 1 is irreducible (the quadratic formula shows that its roots w 
and w do not lie in Q). The splitting field off is Q(w), for w2 = w, and 
so [Q(w) : Q] = 2. Therefore, I Gal(Q(w)/Q)I = 2, by Theorem A-5.7(ii), 
and it is cyclic of order 2. Its nontrivial element is complex conjugation. 

(ii) Let f(x) = x2 - 2 E Q[x]. Now f is irreducible with roots ±J2, so that 
E = Q(J2) is a splitting field. By Theorem A-5.7(ii), I Gal(E/Q)I = 2. 
Now every element of E has a unique expression of the form a+ bJ2, 
where a,b E Q (Proposition A-3.84(v)); it is easily seen that a: E-+ E, 
defined by a: a + bJ2 f-t a - bJ2, is an automorphism of E fixing Q. 
Therefore, Gal(E/Q) =(a), where a interchanges J2 and -J2. 

(iii) Let g(x) = x 3 - 2 E Q[x]. The roots of g are /3, w/3, and w2(3, where 
/3 = ?'2, the real cube root of 2, and w is a primitive cube root of unity. 
It is easy to see that the splitting field of g is E = Q(f3, w). Note that 

[E : QJ = [E : Q(/3)][Q(f3) : Q] = 3[E : Q(/3)], 

for g is irreducible over Q (it is a cubic having no rational roots). Now 
E ':/; Q(/3), for every element in Q(f3) is real, while the complex number 
w is not real. Therefore, [E: Q] = I Gal(E/Q)I > 3. On the other hand, 
we know that Gal(E/Q) is isomorphic to a subgroup of 83, and so we 
must have Gal(E/Q) ~ 83. 

(iv) We examined f(x) = x4 - 10x2 +1 E Q[x] in Example A-3.89, when we 
saw that f is irreducible; in fact, f = irr(/3, Q), where (3 = J2 + J3. 
If E = Q((3), then [E : Q] = 4; moreover, E is a splitting field off, 
where the other roots off are -J2 - J3, -J2 + J3, and J2 - J3. 
It follows from Theorem A-5.7(ii) that if G = Gal(E/Q), then IGI = 4; 
hence, either G ~ Z4 or G ~ V. 

We also saw, in Example A-3.89, that E contains J2 and J3. If a 
is an automorphism of E fixing Q, then a( J2) = uJ2, where u = ±1, 
because a(J2)2 = 2. Therefore, a 2(J2) = a(uJ2) = ua(J2) = u2J2 = 
J2; similarly, a 2 ( J3) = J3. If a is a root of f, then a = uJ2 + vJ3, 
where u,v = ±1. Hence, 

a2(a) = ua2 (J2) + va2 ( J3) =uh+ vh =a. 

LemmaA-5.2 gives a 2 = lE for all a E Gal(E/Q), and so Gal(E/Q) ~ V. 
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Here is another way to compute G = Gal(E/Q). We saw in Exam
ple A-3.89 that E = Q( v'2 + J3) = Q( v'2, J3) is also a splitting field of 
g(x) = (x2 - 2)(x2 -3) over Q. By Proposition A-3.87(ii), there is an au
tomorphism cp: Q( v'2) ---+ Q( v'2) taking v'2 f-+ ±v'2. But J3 f/. Q( v'2), 
as we noted in Example A-3.89, so that x 2 - 3 is irreducible over Q( v'2). 
Lemma A-3.98 shows that cp extends to an automorphism <I>: E ---+ E; 
of course, <I> E Gal(E/Q). There are two possibilities: <I>(J3) = ±J3. 
Indeed, it is now easy to see that the elements of Gal(E /Q) correspond to 
the four-group, consisting of the identity and the permutations (in cycle 
notation) 

(v'2, -J2)(v'3, v'3), (h, -J2)(v'3, -v'3), (h, J2)(v'3, -v'3). .... 

Here is a pair of more general computations of Galois groups. 

Proposition A-5.12. If m is a positive integer, k is a field, and E is a splitting 
field of xm-1 over k, then Gal(E/k) is abelian. In fact, Gal(E/k) is isomorphic to a 
subgroup of the (multiplicative) group of units U(Zm) = {[i) E Zm: gcd(i,m) = 1}. 

Proof. By Example A-3.93, E = k(w), where w is a primitive mth root of unity, 
and so E = k(w). The group rm of all roots of xm - 1 in E is cyclic (with 
generator w) and, if a E Gal(E/k), then its restriction tor m is an automorphism 
of rm· Hence, a(w) = wi must also be a generator of r mi that is, gcd(i, m) = 1, 
by Theorem A-4.36(ii). It is easy to see that i is uniquely determined mod m, so 
that the function(): Gal(k(w)/k) ---+ U(Zm), given by B(a) = [i) if a(w) = wi, is 
well-defined. Now() is a homomorphism, for if r(w) = wJ, then 

ra(w) = r(wi) = (wi)j = wij. 

Therefore, Lemma A-5.2 shows that () is injective. • 

Remark. We cannot conclude more from the last proposition, for Theorem B-3.15 
on page 368 says that every finite abelian group is isomorphic to a subgroup of 
U(Zm) for some integer m. However, ifm =pis prime, then Gal(E/k) is isomorphic 
to a subgroup of U(Zp) which is a cyclic group of order p - 1; hence, Gal(E/k) is 
a cyclic group whose order divides p - 1. .,.. 

Theorem A-5.13. If p is prime, then 

Gal(!Fpn /JFp) ~ Zn, 

and a generator is the Frobenius automorphism 

Fr: U f-+ uP. 

Proof. Let q = pn, and let G = Gal(!Fq/!Fv)· Since !Fq has characteristic p, we have 
(a+ b)P = aP + bP, and so the Frobenius Fr is a homomorphism of fields. As any 
homomorphism of fields, Fr is injective; as IF q is finite, Fr must be an automorphism, 
by the Pigeonhole Principle; that is, Fr E G (Fr fixes !Fp, by Fermat's Theorem). 

If 7r E !Fq is a primitive element, then d(x) = irr(7r,1Fp) has degree n, by 
Corollary A-3.96, and so IGI = n, by Theorem A-5.7(ii). It suffices to prove that 
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the order j of Fr is not less than n. But if Frj = lJFq for j < n, then uP; = u for all 

of the q = pn elements u E IF q, giving too many roots of the polynomial xP; - x. • 

The Galois group gives an irreducibility criterion. 

Proposition A-5.14. Let k be a field, let f(x) E k[x], and let E/k be a splitting 
field of f(x). If f has no repeated roots, then f is irreducible if and only if Gal(E/k) 
acts transitively on the roots off; that is, given any two roots a, f3 off, there 
exists a E Gal(E/k) with a(a) = (3. 

Proof. Assume that f is irreducible, and let a, f3 E E be roots of f. By Theo
rem A-3.87(i), there is an isomorphism cp: k(a) --+ k(f3) with cp(a) = f3 and which 
fixes k. Lemma A-3.98 shows that cp extends to an automorphism cl> of E that fixes 
k; that is, cl> E Gal(E/k). Now cl>(a) = cp(a) = (3, and so Gal(E/k) acts transitively 
on the roots. 

Conversely, assume that Gal(E/k) acts transitively on the roots of f. Let 
f = p1 ···Pt be a factorization into irreducibles in k[x], where t 2 2. Choose a root 
a E E of P1 and a root f3 E E of P2; note that f3 is not a root of P1 , because f has 
no repeated roots. By hypothesis, there is a E Gal(E/k) with a(a) = (3. Now a 
permutes the roots of p1, by Proposition A-5.1, contradicting f3 not being a root of 
P1. Hence, t = 1 and f is irreducible. • 

Classical Formulas and Solvability by Radicals 

Here is our basic strategy. First, we will translate the classical formulas (giving the 
roots of polynomials of degree at most 4) into terms of subfields of a splitting field E 
over k. Second, this translation into the language of fields will further be translated 
into the language of groups: If there is a formula for the roots of a polynomial, then 
Gal(E/k) must be a solvable group (which we will soon define). Finally, polynomials 
of degree at least 5 can have Galois groups that are not solvable. The conclusion is 
that there are polynomials of degree 5 having no formula analogous to the classical 
formulas that gives their roots. Without further ado, here is the translation of 
the existence of a formula for the roots of a polynomial in terms of subfields of a 
splitting field. 

Definition. A pure extension of type m is an extension field k(u)/k, where 
um Ek for some m 2 1. 

An extension field K / k is a radical extension if there is a tower of interme
diate fields 

k = Ko ~ Ki ~ · · · ~ Kt = K 

in which each Ki+i/ Ki is a pure extension. 

If um = a E k, then k(u) arises from k by adjoining an mth root of a. If 
k ~ C, there are m different mth roots of a, namely, u, wu, w2u, .. . , wm- 1u, where 
w = e2"i/m is a primitive mth root of unity. More generally, if k contains the mth 
roots of unity, then a pure extension k(u) of type m (that is, um = a E k) is a 
splitting field of xm - a. Not every subfield k of C contains all the roots of unity; 
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for example, 1 and -1 are the only roots of unity in Q. Since we seek formulas 
involving extraction of roots, it will eventually be convenient to assume that k 
contains appropriate roots of unity. 

When we say that there is a formula for the roots of a polynomial f(x) 
analogous to the quadratic formula, we mean that there is an expression giving the 
roots of f in terms of its coefficients; this expression may involve field operations, 
constants, and extraction of roots, but it should not involve other operations such 
as cosine, definite integral, or limit, for example. We maintain that the intuitive 
idea of formula just described is captured by the following definition. 

Definition. Let f(x) E k[x] have a splitting field E. We say that f is solvable by 
radicals if there is a radical extension 

with E ~Kt. 

By Exercise A-5.1 on page 199, solvability by radicals does not depend on the 
choice of splitting field. 

Example A-5.15. 

(i) For every field k and every n 2: 1, we show that f(x) = xn - 1 E k[x) 
is solvable by radicals. By Example A-3.93, a splitting field of xn - 1 is 
E = k(w), where w is a primitive nth root of unity (if p I n, then a pth 
power of w does not equal 1). Thus, E/k is a pure extension and, hence, 
a radical extension. 

(ii) Let p be a prime and let k contain all pth roots of unity (if k has char
acteristic p, this is automatically true). If k(u)/k is a pure extension of 
type p, then we claim that k(u) is a splitting field of f(x) = xP -uP. If k 
has characteristic p, then xP -uP = ( x -u )P, and f splits over k( u); other
wise, k contains a primitive pth root of unity, w, and f(x) = Il(x-wiu). 
Note that f is separable if characteristic k i= p. <1111 

Let us further illustrate this definition by considering the classical formulas for 
polynomials of small degree. 

Quadratics 

If f(x) = x 2 +bx+ c, then the quadratic formula gives its roots as 

~(-b± Jb2 -4c). 

Let k = Q(b, c). Define Ki = k(u), where u = ./b2 - 4c. Then Ki is a radical 
extension of k (even a pure extension), for u2 Ek. Moreover, the quadratic formula 
implies that Ki is the splitting field off, and so f is solvable by radicals. 

Cubics 

Let f(X) = X 3 + bX2 + cX + d, and let k = Q(b, c, d). Recall that the change 
of variable X = x - kb yields a new polynomial f(x) = x 3 + qx + r E k[x] having 
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the same splitting field E (for if u is a root of f, then u - ~b is a root of !); it 

follows that [ is solvable by radicals if and only if f is. The cubic formula gives 
the roots of f as 

g + h, wg + w2h, and w2g + wh, 

where g3 = ! (-r + -/R), h = -q/3g, R = r 2 + 2~q3 , and w is a primitive cube root 
of unity. Because of the constraint gh = -~q, each of these has a "mate,'' namely, 
h = -q/(3g), -q/(3wg) = w2h, and -q/(3w2g) = wh. 

Let us show that f is solvable by radicals. Define Ki = k(-/R), where R = 
r 2 + 2~q3 , and define K2 = Ki(a), where a3 = !(-r + -/R). The cubic formula 
shows that K2 contains the root a+ f3 off, where f3 = -q/3a. Finally, define 
K3 = K2(w), where w3 = 1. The other roots off are wa + w2/3 and w2a + w/3, 
both of which lie in K 3 , and so E ~ K 3 . 

A splitting field E need not equal K 3 . If g(x) E Q[x] is an irreducible cubic 
all of whose roots are real, then E ~ R As any cubic, g is solvable by radicals, 
and so there is a radical extension Kt/Q with E ~ Kt. The so-called Casus 
Irreducibilis (Theorem A-5.73) says that any radical extension Kt/Q containing 
E is not contained in JR.. Therefore, E =I- Kt. In down-to-earth language, any 
formula for the roots of an irreducible cubic in Q[x] having all roots real requires 
the presence of complex numbers! 

Quartics 

Let f(X) = X 4 + bX3 + cX2 + dX + e, and let k = Q(b, c, d, e). The change 
of variable X = x - ~b yields a new polynomial f(x) = x4 + qx2 + :_x + s E k[x]; 

moreover, the splitttrig field E off is equal to the splitting field off, for if u is a 
root off, then u - ~bis a root off. Factor fin <C[x]: 

f(x) = x4 + qx2 + rx + s = (x2 + jx + t')(x2 - jx + m), 

and determine j, t', and m. Now j 2 is a root of the resolvent cubic defined on 
page 7: 

(j2)3 + 2q(j2)2 + (q2 _ 4s)j2 _ r2. 

The cubic formula gives j 2 , from which we can determine m and t', and hence the 
roots of the quartic. 

Define pure extensions 

k = Ko ~ Ki ~ K2 ~ K3, 

as in the cubic case, so that j 2 E K 3. Define K 4 = K3(j) (so that t', m E K 4 ). 

Finally, define K5 = K4( JP - 4£) and K6 = K5( JP - 4m) (giving roots of the 

quadratic factors x2 + jx + t' and x2 - jx + m of f(x)). The quartic formula gives 
E~K6. 

We have just seen that quadratics, cubics, and quartics in Q[x] are solvable by 
radicals. Conversely, let f(x) E k[x] have splitting field E/k. If f(x) is solvable by 
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radicals, we claim that there is a formula which expresses its roots in terms of its 
coefficients. Suppose that 

k = Ko ~ Ki ~ · · · ~ Kt 

is a tower of pure extensions with E ~ Kt. Let z be a root off. Now z E Kt = 
Kt-i(u), where u is an mth root of some element a:: E Kt-1; hence, z can be 
expressed in terms of u and Kt-1; that is, z can be expressed in terms of y'Q and 
Kt-1· But Kt-1 = Kt-2(v), where some power of v lies in Kt-2· Hence, z can 
be expressed in terms of u, v, and Kt-2· Ultimately, z is expressed by a formula 
analogous to the classical formulas. 

Translation into Group Theory 

The second stage of the strategy involves investigating the effect of f(x) being 
solvable by radicals on its Galois group. 

Suppose that k(u)/k is a pure extension of type 6; that is, u6 E k. Now k(u3 )/k 
is a pure extension of type 2, for (u3) 2 = u 6 E k, and k(u)/k(u3 ) is obviously a pure 
extension of type 3. Thus, k(u)/k can be replaced by a tower of pure extensions 
k ~ k(u3 ) ~ k(u) of types 2 and 3. More generally, we may assume, given a tower 
of pure extensions, that each field is of prime type over its predecessor: if k ~ k(u) 
is of type m, then factor m =Pi··· pq, where the p's are (not necessarily distinct) 
primes, and replace k ~ k(u) by 

k ~ k(umfpi) ~ k(umlP1P2 ) ~ • • • ~ k(u). 

Definition. An extension field E / k is called normal if it is the splitting field of 
a polynomial in k[x]. 

Example A-5.16. If E/Q is the splitting field of x3 - 2, then E contains a::,wa::, 
and w2 a::, where a::= ~and w = e2tri/3 , The extension field Q(w)/Q is normal 
(it is the splitting field of x3 - 1), but the extension fields Q(a::)/Q, Q(wa::)/Q and 
Q(w2a::)/Q are not normal. Notice that the subfields Q(a::), Q(wa::), and Q(w2a::) of 
E are isomorphic; in fact, the automorphism a E Gal(E/Q) with a(a::) = wa:: is an 
isomorphism Q(a::) --+ Q(wa::). <Ill 

Here is a key result allowing us to translate solvability by radicals into the 
language of Galois groups (it also shows why normal extension fields are so called). 

Theorem A-5.17. Let k ~ B ~ E be a tower of fields. If B/k and E/k are 
normal extensions, then a(B) = B for all a E Gal(E/k), Gal(E/B) <J Gal(E/k), 
and 

Gal(E/k)/ Gal(E/ B) s::! Gal(B/k). 

Proof. Since B/k is a normal extension, it is a splitting field of some f(x) in k[x]; 
that is, B = k(z1 , .•. , Zt) ~ E, where zi, ... , Zt are the roots off. If a E Gal(E/k), 
the restriction of a to B is an automorphism of B, and it thus permutes z1, ... , Zt, 

by Proposition A-5.l(i) (for a fixes k); hence, a(B) = B. Define p: Gal(E/k)--+ 
Gal(B/k) by a H alB. It is easy to see, as in the proof of Theorem A-5.3, that 
pis a homomorphism and kerp = Gal(E/B); thus, Gal(E/B) <J Gal(E/k). But p 
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is surjective: if T E Gal(B/k), then Lemma A-3.98 applies to show that there is 
a E Gal(E/k) extending T (i.e., p(a) = alB = r). The First Isomorphism Theorem 
completes the proof. • 

The next technical result will be needed when we apply Theorem A-5.17. 

Lemma A-5.18. 

(i) If B = k(u1, ... ,ut)/k is a finite extension field, then there is a normal 
extension E/k containing B; that is, Eis a splitting field of some f(x) E 
k[x]. If each ui is separable over k, then f is a separable polynomial and, 
if G = Gal(E/k), then 

E = k(a(u1), ... , a(ut) : a E G). 

(ii) If B / k is a radical extension, then the normal extension E / k is a radical 
extension. 

Proof. 

(i) By Theorem A-3.87(i), there are irreducible polynomials Pi= irr(ui, k) E 

k[x], for i = 1, ... , t, with Pi(ui) = 0. Define E to be a splitting field 
of f(x) = P1(x) .. ·Pt(x) over k. Since Ui E E for all i, we have B = 
k(u1, ... , Ut) ~ E. If each Ui is separable over k, then each Pi is a 
separable polynomial, and hence f is a separable polynomial. 

For each pair of roots u and u' of any Pi, Theorem A-3.87(ii) gives 
an isomorphism -y: k(u) ---+ k(u') which fixes k and which takes u Hu'. 
By Lemma A-3.98, each such"'( extends to an automorphism a E G = 
Gal(E/k). Thus, f splits over k(a(u1), ... , a(ut) : a E G). But E/k is a 
splitting field off over k and k(a(u1), ... ,a(ut): a E G) ~ E. Hence, 

E = k(a(u1), ... , a(ut) : a E G), 

because a splitting field is the smallest field over which f splits. 

(ii) Assume now that B/k is a radical extension; say, B = k(vi, ... ,vs), 
where 

k ~ k(vi) ~ k(v1, v2) ~ .. · ~ k(v1, ... , Vs)= B 

and each k(v1, ... ,vi+1)/k(vi, ... ,vi) is a pure extension; of course, 
a(B) = k(a(v1), ... ,a(vs)) is a radical extension of k for every a E G. 
We now show that E = k(a(v1), ... , a(vs) : a E G) is a radical extension 
of k. Define 

B1 = k(a(v1): a E G). 

Now if G = {1, a, r, ... }, then the tower 

k ~ k(v1) ~ k(v1,a(v1)) ~ k(vi,a(v1),r(v1)) ~ · · · ~ B1 

displays B1 as a radical extension of k. For example, v! lies in k, and 
so r(vi)m = r(v!) lies in r(k) = k; since k ~ k(vi, a(v1)), we have 
r(v1r E k(vi, a(v1)). Having defined Bi, define BH1 inductively: 

Bi+1 = Bi(a(vi+i) : a E G). 
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Assume, by induction, that Bif k is a radical extension and that a(Bi) ~ 
Bi for all a E G. Now Bi+i/ Bi is a radical extension, for vi+i E Bi, 
and so a(vi+i)n E a(Bi) ~ Bi for each a. Thus, every Bi is a radical 
extension of k and, therefore, E = Bs is a radical extension of k. • 

We can now give the heart of the translation we have been seeking: a radical 
extension E/k gives rise to a sequence of subgroups of Gal(E/k). 

Lemma A-5.19. Let 

k = Ko ~ Ki ~ Kz ~ · · · ~ Kt 

be a tower with each Ki/Ki-i a pure extension of prime type Pi· If Kt/k is a 
normal extension and k contains all the Pith roots of unity, for i = 1, ... , t, then 
there is a sequence of subgroups 

Gal(Kt/k) =Go 2 Gi 2 Gz 2 · · · 2 Gt= {1}, 

with each Gi+l <J Gi and Gi/Gi+l cyclic of prime order Pi+i or {l}. 

Proof. For each i, define Gi =Gal( Kt/ Ki)· It is clear that 

Gal(Kt/k) =Go 2 Gi 2 Gz 2 · · · 2 Gt= {1} 

is a sequence of subgroups. Now Ki = k(u), where uP1 E k; since k contains all 
the Pith roots of unity, Example A-5.15{ii) says that Kifk is a splitting field of 
the polynomial f(x) = xP1 - uP1 • Theorem A-5.17 now applies: Gi = Gal{ Kt/ Ki) 
is a normal subgroup of Go = Gal(Kt/k) and Go/Gi ~ Gal{Ki/k). Now Ex
ample A-5.15{ii) also says that if characteristic k -:/- pi, then f is separable. By 
Theorem A-5.7{ii), Go/Gi ~ Zp1 • If characteristic k =pi, then Example A-5.8 
shows that Go/Gi ~ Gal{Ki/k) = {l}. This argument can be repeated for each i . 

We have been led to the following definitions. 

Definition. A normal series2 of a group G is a sequence of subgroups 

G =Go 2 Gi 2 Gz 2 · · · 2 Gt= {1} 

• 

with each Gi+l a normal subgroup of Gi; the factor groups of this series are the 
quotient groups 

Go/Gi, Gif G2, ... , Gt-if Gt. 

The length of this series is the number of nontrivial factor groups. 

A group G is called solvable if it has a normal series each of whose factor 
groups is abelian. 

In this language, Lemma A-5.19 says that Gal(Kt/k) is a solvable group if Kt/k 
is a radical extension and k contains appropriate roots of unity. 

2This terminology is not quite standard. We know that normality is not transitive; that is, 
if H ~Kare subgroups of a group G, then H <J Kand K <JG do not force H <l G. A subgroup 
H ~ G is called a subnormal subgroup if there is a chain G = Go 2 Gi 2 · · · 2 Gt = H with 
Gi <l Gi-1 for all i 2 1. Normal series as defined in the text are called subnormal series by 
some authors; they reserve the name normal series for those series in which each Gi is a normal 
subgroup of the big group G. 
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Example A-5.20. 

(i) Every abelian group is solvable. 

(ii) Let us see that 84 is a solvable group. Consider the chain of subgroups 

84 2 A4 2 V 2 W 2 {1}, 

where Vis the four-group and Wis any subgroup of V of order 2. Note, 
since Vis abelian, that Wis a normal subgroup of V. Now l84/A4I = 

l84l/IA4I = 24/12 = 2, IA4/VI = IA4l/IVI = 12/4 = 3, IV /WI = 
IVl/IWI = 4/2 = 2, and IW/{l}I = IWI = 2. Since each factor group 
is a cyclic group (of prime order), hence is abelian, 84 is solvable. In 
Example A-5.24, we shall see that 85 is not a solvable group. 

(iii) A nonabelian simple group G, for example, G =As, is not solvable, for 
its only proper normal subgroup is {1}, and G/{1} ~ G is not abelian . 

.... 

The awkward hypothesis about roots of unity in the next lemma will soon be 
removed. 

Lemma A-5.21. Let k be a field, let f(x) E k[x] be solvable by radicals, and let 
k = Ko ~ Ki ~ · · · ~ Kt be a tower with Kif Ki-1 a pure extension of prime type 
Pi for all i. If Kt contains a splitting field E off and k contains all the Pith roots 
of unity, then the Galois group Gal(E/k) is a quotient of a solvable group. 

Proof. By Lemma A-5.18, we may assume that Kt is a normal extension of k. 
The hypothesis on k allows us to apply Lemma A-5.19 to see that Gal(Kt/k) is a 
solvable group. Since E and Kt are splitting fields over k, Theorem A-5.17 shows 
that Gal( Kt/ E) <l Gal(Kt/k) and Gal(Kt/k)/ Gal( Kt/ E) ~ Gal(E/k), as desired . 

• 
Proposition A-5.22. Every quotient of a solvable group G is itself a solvable 
group. 

Proof. Let G = Go 2 Gi 2 G2 2 · · · 2 Gt = {1} be a sequence of subgroups as 
in the definition of solvable group. If N <l G, we must show that G/N is solvable. 
Now GiN is a subgroup of G for all i, and so there is a sequence of subgroups 

G = GoN 2 G1N 2 .. · 2 GtN = N 2 {l}. 

To see that this is a normal series, we claim, with obvious notation, that 

(gin)GH1N(gin)- 1 ~ giGi+1Ngi 1 = giGi+19i 1 N ~ GH1N. 

The first inclusion holds because n(Gi+iN)n-1 ~ NGH1N ~ (GH1N)(Gi+iN) = 
Gi+lN (for Gi+lN is a subgroup). The equality holds because N gi1 = gi1 N (for 
N <l G, and so its right cosets coincide with its left cosets). The last inclusion 
holds because GH1 <l Gi. 

The Second Isomorphism Theorem gives 

Gi ,...., Gi(GH1N) GiN = =---, 
Gin (GH1N) GH1N Gi+lN 
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the last equation holding because GiGi+l = Gi. Since Gi+i <J Gin Gi+iN, the 
Third Isomorphism Theorem gives a surjection GifGHi -+ Gif[Gi n Gi+iN], and 
so the composite is a surjection GifGHi -+ GiN/Gi+iN. As GifGHi is abelian, 
its image is also abelian. Therefore, G / N is a solvable group. • 

Proposition A-5.23. Every subgroup H of a solvable group G is solvable. 

Proof. Since G is solvable, there is a sequence of subgroups 

G =Go 2 Gi 2 · · · 2 Gt= {1} 

with Gi normal in Gi-i and Gi-i/Gi abelian for all i. Consider the sequence of 
subgroups 

H = H n Go 2 H n Gi 2 ... 2 H n Gt = {1 }. 

This is a normal series: if hi+i E H n Gi+l and Yi E H n Gi, then 9ihi+i9ii E H, 
for 9i, hi+l E H; also, gihi+i9ii E Gi+i because Gi+i is normal in Gi. Therefore, 
9ihi+i9ii E HnGi+i, and so HnGi+l <JHnGi. Finally, the Second Isomorphism 
Theorem gives 

(H n Gi)/(H n Gi+l) = (H n Gi)/[(H n Gi) n Gi+il 

~ Gi+i(H n Gi)/Gi+l· 

But the last quotient group is a subgroup of GifGi+l· Since every subgroup of an 
abelian group C is abelian, it follows that the factor groups (H n Gi)/(H n GHi) 
are also abelian. Therefore, H is a solvable group. • 

Example A-5.24. In Example A-5.20(ii), we showed that S4 is a solvable group. 
On the other hand, if n ;::: 5, then the symmetric group Sn is not solvable. Oth
erwise, each of its subgroups would also be solvable. But A5 ~ S5 ~ Sn, and the 
simple group A5 is not solvable, by Example A-5.20(iii). '4 

Proposition A-5.25. If H <J G and both H and G / H are solvable groups, then G 
is solvable. 

Proof. Since G / H is solvable, there is a normal series, 

G/H 2 K; 2 K2 2 · · · 2 K~ = {1}, 

having abelian factor groups. By the Correspondence Theorem for Groups, there 
are subgroups Ki of G, 

G 2 Ki 2 K2 2 · · · 2 Km = H, 

with Kif H = Kt and Ki+i <J Ki for all i. By the Third Isomorphism Theorem, 

Kt I Kt+l ~ Kif Ki+i 

for all i, and so Kif Ki+i is abelian for all i. 

Since H is solvable, there is a normal series 

H =Ho 2 Hi 2 · · · 2 Hq = {1} 

having abelian factor groups. Splice these two series together, 

G 2 Ki 2 · · · 2 Km= Ho 2 Hi 2 · · · 2 Hq = {1}, 
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to obtain a normal series of G having abelian factor groups (note that H <JG implies 
Ho= H= Km)· • 

Corollary A-5.26. If H and K are solvable groups, then H x K is solvable. 

Proof. The result follows from Proposition A-5.25 because (H x K)/ H ~ K. • 

There is a subtle point; when is a group G not solvable? By definition, G is 
solvable if it has a normal series with abelian factor groups; hence, G is not solvable 
if it has no such normal series. It is not enough to display one normal series having 
a nonabelian factor group; perhaps another normal series does have all its factor 
groups abelian. But we have to be a bit more careful. After all, 83 is a solvable 
group, for the factor groups of the normal series 

83 2 A3 2 {1} 

are Z2, Z3. On the other hand, 8 3 2 { 1} is another normal series whose factor 
group(s) is not abelian. This suggests that we look at the longest normal series. 

Definition. A composition series of a group is a normal series all of whose non
trivial factor groups are simple. The list of nontrivial factor groups of a composition 
series is called the list of composition factors of G. The length of a composition 
series is the number of nontrivial factor groups. 

A finite group G is solvable if it has a normal series with abelian factor groups 
(many define a finite group to be solvable if it has a normal series with all factor 
groups cyclic). Exercise A-5.9 on page 200 says that G is solvable if and only if it 
has a normal series all of whose factor groups are cyclic of prime order. As groups 
of prime order are simple groups, this normal series is a composition series and the 
cyclic groups are its composition factors. 

A group need not have a composition series; for example, the abelian group Z 
has no composition series. 

Proposition A-5.27. Every finite group G has a composition series. 

Proof. Let G be a least criminal; that is, assume that G is a finite group of smallest 
order that does not have a composition series. Now G is not simple, otherwise 
G 2 {1} is a composition series. Hence, G has a proper normal subgroup H. 
Since G is finite, we may assume that H is a maximal normal subgroup, so that 
G/H is a simple group. But IHI < IGI, so that H has a composition series: say, 
H =Ho 2 H1 2 · · · 2 {l}. Hence, G 2 Ho 2 H1 2 · · · 2 {1} is a composition 
series for G, a contradiction. • 

We begin with a technical result that generalizes the Second Isomorphism The
orem; it is useful when comparing different normal series of a group. 

Lemma A-5.28 (Zassenhaus Lemma). Given four subgroups A<JA* and B<JB* 
of a group G, then A(A* n B) <J A(A* n B*), B(B* n A) <J B(B* n A*), and there 
is an isomorphism 

A(A* n B*) ""' B(B* n A*) 
A(A* nB) = B(B* nA). 
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Remark. The isomorphism is symmetric in the sense that the right side is obtained 
from the left by interchanging the symbols A and B. 

The Zassenhaus Lemma is sometimes called the Butterfly Lemma because of 
the following picture. I confess that I have never liked this picture; it doesn't remind 
me of a butterfly, and it doesn't help me understand or remember the proof: 

A(A* n B*) B(A* n B*) 

I -----A*nB*------

A(A* n B) I B(A n B*) 

I ---- ---- I A D=(A*nB)(AnB*) B 

I ------- ---- I AnB* A* nB. ... 

Proof. We claim that (AnB*) <l (A* nB*): that is, if c E AnB* and x EA* nB*, 
then xcx- 1 E An B*. Now xcx- 1 E A because c E A, x E A*, and A <l A*; 
but also xcx- 1 EB*, because c,x EB*. Hence, (An B*) <l (A* n B*); similarly, 
(A* n B) <l (A* n B*). Therefore, the subset D, defined by D = (An B*)(A* n B), 
is a normal subgroup of A* n B*, because it is generated by two normal subgroups. 

Using the symmetry in the remark, it suffices to show that there is an isomor
phism 

A(A* n B*) A* n B* 
A(A*nB)--? D 

Define cp : A(A* n B*) --? (A* n B*)/D by cp : ax H xD, where a E A and 
x EA* n B*. Now cp is well-defined: if ax= a'x', where a' EA and x' EA* n B*, 
then (a1)-1a = x'x- 1 E An(A*nB*) = AnB* ~ D; hence, xD = x'D. Also, cp is a 
homomorphism: axa'x' = a"xx', where a"= a(xa'x- 1) EA (because A<JA*), and 
so cp(axa'x') = cp(a"xx') =xx' D = cp(ax)cp(a'x'). It is routine to check that <pis 
surjective and that ker<p = A(A* nB). The First Isomorphism Theorem completes 
the proof. • 

The Zassenhaus Lemma implies the Second Isomorphism Theorem: if S and 
Tare subgroups of a group G with T <l G, then TS/T ~ S/(S n T); set A*= G, 
A= T, B* = S, and B =Sn T. 

Here are two composition series of G = (a), a cyclic group of order 30 (note 
that normality of subgroups is automatic because G is abelian). The first is 

G =(a) 2 (a2) 2 (a10 ) 2 {1}; 

the factor groups of this series are (a) /(a2) ~Z2 , (a2 ) /(a10) ~Z5 , and (a10 ) / {1} ~ 
(a10 ) ~ Z3 (see Example A-4.80 on page 166). Another normal series is 

G =(a) 2 (a5 ) 2 (a15 ) 2 {1}; 

the factor groups of this series are (a) /(a5 ) ~Z5 , (a5 ) /(a15 ) ~Z3 , and (a15 ) /{1} ~ 
(a15 ) ~ Z2. Notice that the same factor groups arise, although the order in which 
they arise is different. We will see that this phenomenon always occurs: different 
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composition series of the same group have the same factor groups. This is the 
Jordan-Holder Theorem, and the next definition makes its statement more precise. 

Definition. Two normal series of a group G are equivalent if there is a bijection 
between the lists of nontrivial factor groups of each so that corresponding factor 
groups are isomorphic. 

The Jordan-Holder Theorem says that any two composition series of a group 
are equivalent. It is more efficient to prove a more general theorem, due to Schreier. 

Definition. A refinement of a normal series of a group G is a normal series 
G = No 2 · · · 2 Nk = {1} having the original series as a subseries. 

In other words, a refinement of a normal series is a normal series obtained from 
the original one by inserting more subgroups. 

Notice that a composition series admits only insignificant refinements; one can 
merely repeat terms (if Gi/Gi+1 is simple, then it has no proper nontrivial normal 
subgroups and, hence, there is no intermediate subgroup L with Gi ~ L ~ Gi+l 
and L <l Gi)· Therefore, any refinement of a composition series is equivalent to the 
original composition series. 

Theorem A-5.29 {Schreier Refinement Theorem). Any two normal series 

G =Go 2 G1 2 .. · 2 Gn = {1} 

and 
G =No 2 Ni 2 .. · 2 Nk = {1} 

of a group G have equivalent refinements. 

Proof. We insert a copy of the second series between each pair of adjacent terms 
in the first series. In more detail, for each i 2: 0, define 

Gii = Gi+i(Gi n Ni) 

(this is a subgroup, by Proposition A-4.69(i), because Gi+1 <l Gi)· Since No = G, 
we have 

GiO = Gi+1(Gi n No)= Gi+lGi = Gi, 

and since Nk = {1}, we have 

Gik = Gi+i(Gi n Nk) = Gi+l· 

Therefore, the series of Gi is a subsequence of the series of Gij: 

· · · 2 Gi = GiO 2 Gil 2 Gi2 2 · · · 2 Gik = Gi+l 2 · · · . 

Similarly, the second series of Nj is a subsequence of the series 

Nii= Ni+i(Ni n Gi)· 

Both doubly indexed sequences have nk terms. For each i, j, the Zassenhaus 
Lemma, for the four subgroups Gi+1 <l Gi and Nj+l <l Nj, says both subsequences 
are normal series, hence are refinements, and there is an isomorphism 

Gi+1(Gi n Nj) !:::,! Nj+1(Nj n Gi) . 
Gi+1(Gi n Nj+l) - Nj+1(Nj n Gi+1)' 
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that is, 

Gi,J/Gi,i+l ~ NJ,i/NJ,i+l· 

The association Gi,j/Gi,j+l i-+ NJ,i/NJ,i+l is a bijection showing that the two 
refinements are equivalent. • 

Theorem A-5.30 (Jordan-HOider Theorem3 ). Any two composition series of 
a group G are equivalent. In particular, the length of a composition series, if one 
exists, is an invariant of G. 

Proof. As we remarked earlier, any refinement of a composition series is equivalent 
to the original composition series. It now follows from Schreier's Theorem that any 
two composition series are equivalent. • 

We have resolved the subtle point: if a finite group G has one composition series 
with a factor group not of prime order, then G is not solvable, for the Jordan-Holder 
Theorem say that every composition series of G has such a factor group. 

The importance of the Jordan-Holder Theorem, for group theory as well as for 
other branches of mathematics, is that it shows that valuable information about 
a group (or a topological space or a ring, for example) can be retrieved from an 
analog of a normal series. In light of the next proof, the theorem can be viewed 
as a kind of unique factorization result; here is a new proof of the Fundamental 
Theorem of Arithmetic. 

Corollary A-5.31. Every integer n ?: 2 has a factorization into primes, and the 
prime factors and their multiplicities are uniquely determined by n. 

Proof. Since the group Zn is finite, it has a composition series; let 81, ... , St be 
the factor groups. Now an abelian group is simple if and only if it is of prime order, 
by Proposition A-4.92; since n = JZnl is the product of the orders of the factor 
groups (Exercise A-5.7 on page 199), we have proved that n is a product of primes. 
Moreover, the Jordan-Holder Theorem gives the uniqueness of the (prime) orders 
of the factor groups and their multiplicities. • 

Example A-5.32. 

(i) Nonisomorphic groups can have the same composition factors. For ex
ample, both Z4 and V have composition series whose factor groups are 
Z2, Z2. 

(ii) Let G = GL(2, IF 4) be the general linear group of all 2 x 2 nonsingular 
matrices with entries in the field IF 4 with four elements. Now det: G -t 
(IF 4) x, where (IF 4) x ~ Z3 is the multiplicative group of nonzero elements 
of IF4. Since kerdet = SL(2,IF4), the special linear group consisting of 
those matrices of determinant 1, there is a normal series 

G = GL(2,IF4) 2 SL(2,IF4) 2 {1}. 

3In 1868, Jordan proved that the orders of the factor groups of a composition series depend 
only on G and not on the composition series; in 1889, Holder proved that the factor groups 
themselves, up to isomorphism, do not depend on the composition series. 
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The factor groups of this normal series are Z3 and SL(2,IF4). It is true 
that SL(2, IF 4) is a nonabelian simple group (in fact, SL(2, IF 4 ) ~ A5), and 
so this series is a composition series. We cannot yet conclude that G is 
not solvable, for the definition of solvability requires that there be some 
composition series, not necessarily this one, having factor groups of prime 
order. However, the Jordan-Holder Theorem says that if one composition 
series of G has all its factor groups of prime order, then so does every 
other composition series. We may now conclude that GL(2, IF 4 ) is not a 
solvable group. <Ill 

Exercises 

* A-5.1. Prove that solvability by radicals does not depend on the choice of splitting field: 
if E/k and E' /k are splitting fields of f(x) E k[x] and there is a radical extension Kt/k 
with E ~Kt, prove that there is a radical extension K;/k with E' ~ K;. 

* A-5.2. Let f ( x) E E[x] be manic, where E is a field, and let u: E --+ E be an auto
morphism. If f splits and u fixes every root of f(x), prove that u fixes every coefficient 
off. 

* A-5.3. (Accessory Irrationalities) Let E/k be a splitting field of f(x) E k[x] with 
Galois group G = Gal(E/k). Prove that if k* /k is an extension field and E* is a splitting 
field off over k*, then u t-4 ulE is an injective homomorphism Gal(E* /k*)--+ Gal(E/k). 

Hint. If u E Gal(E* /k*), then u permutes the roots off, so that ulE E Gal(E/k). 

A-5.4. (i) Let K/k be an extension field, and let f(x) E k[x] be a separable polynomial. 
Prove that f is a separable polynomial when viewed as a polynomial in K[x]. 

(ii) Let k be a field, and let f(x),g(x) E k[x]. Prove that if both f and g are separable 
polynomials, then their product f g is also a separable polynomial. 

A-5.5. Let k be a field and let f(x) E k[x] be a separable polynomial. If E/k is a splitting 
field off, prove that every root off in Eis a separable element over k. 

A-5.6. (i) Let K/k be an extension field that is a splitting field of a polynomial f(x) E 
k[x]. If p(x) E k[x] is a manic irreducible polynomial with no repeated roots and 

p(x) = g1(x) · · · 9r(x) in K[x], 

where the 9i are manic irreducible polynomials in K[x], prove that all the 9i have 
the same degree. Conclude that deg(p) = rdeg(gi)· 

Hint. In some splitting field E / K of pf, let a be a root of 9i and /3 be a root of 
gj, where i =I- j. There is an isomorphism cp: k(a)--+ k(/3) with cp(a) = /3, which 
fixes k and which admits an extension to <I>: E --+ E. Show that <I>IK induces an 
automorphism of K[x] taking 9i to Bi· 

(ii) Let E/k be a finite extension field. Prove that E/k is a normal extension if and 
only if every irreducible p(x) E k[x] having a root in E splits in E[x]. (Compare 
with Theorem A-5.42 which uses a separability hypothesis.) 
Hint. Use part (i). 

* A-5.7. Let G be a finite group with normal series 

G =Go 2 G1 2 · · · 2 Gn = {1}. 
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Prove that JGJ = I1i JGi-1J/JGiJ; that is, the order of G is the product of the orders of 
the factor groups. 

A-5.8. (i) Give an example of a group G having a subnormal subgroup that is not a 
normal subgroup. 

(ii) Give an example of a group G having a subgroup that is not a subnormal subgroup. 

* A-5.9. (i) Prove that a finite solvable group G f= {1} has a normal subgroup of index p 
for some prime p. 

(ii) Prove that a finite group is solvable if and only if it has a normal series all of whose 
factor groups are cyclic of prime order. 

A-5.10. Prove that the following statements are equivalent for f(x) = ax2 +bx+c E Q[x). 

(i) f is irreducible in Q[x). 

(ii) Jb2 - 4ac is not rational. 

(iii) Gal(Q(vb2 - 4ac)/Q) has order 2. 

* A-5.11. Let k be a field, let J(x) E k(x) be a polynomial of degree p, where pis prime, 
and let E / k be a splitting field of f. Prove that if Gal( E / k) ~ Zp, then f is irreducible. 

Hint. Show that f has no repeated roots, and use Proposition A-5.14. 

* A-5.12. Generalize Theorem A-5.13: prove that if E is a finite field and k ~ E is a 
subfield, then Gal(E/k) is cyclic. 

Fundamental Theorem of Galois Theory 

We return to fields, for we can now give the main criterion that a polynomial be 
solvable by radicals. 

Theorem A-5.33 (Galois). Let f(x) E k[x], where k is a field, and let E be a 
splitting field off over k. If f is solvable by radicals, then its Galois group Gal(E/k) 
is a solvable group. 

Remark. The converse of this theorem is false if k has characteristic p > 0 (The
orem A-5.66), but it is true when k has characteristic 0 (Corollary A-5.63). ~ 

Proof. Let P1, ... , Pt be the types of the pure extensions occurring in the radical 
extension arising from f being solvable by radicals. Define m to be the product 
of all these Pi, define E* to be a splitting field of xm - 1 over E, and define 
k* = k(f!), where n is the set of all mth roots of unity in E*. Now E* /k* is 
a normal extension, for it is a splitting field of f over k*, and so Gal(E* /k*) is 
solvable, by Lemma A-5.21. Consider the tower k ~ k* ~ E*: 
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since k*/k is normal, Theorem A-5.17 gives Gal(E*/k*) <J Gal(E*/k) and 

Gal(E* /k)/ Gal(E* /k*) S:! Gal(k* /k). 

Now Gal(E* /k*) is solvable, while Gal(k* /k) is abelian, hence solvable; there
fore, Gal(E* /k) is solvable, by Proposition A-5.25. Finally, we may use Theo
rem A-5.17 once again, for the tower k ~ E ~ E* satisfies the hypothesis that 
both E and E* are normal (E* is a splitting field of (xm - l)f(x)). It follows 
that Gal(E*/k)/Gal(E*/E) S:! Gal(E/k), and so Gal(E/k), being a quotient of a 
solvable group, is solvable. • 

Recall that if k is a field and E = k(y1, ... , Yn) = Frac( k[y1, ... , YnD is the field 
of rational functions, then the general polynomial of degree n over k is 

(x - Y1)(x - Y2) · · · (x - Yn)· 

Galois's Theorem is strong enough to prove that there is no generalization of the 
quadratic formula for the general quintic polynomial. 

Theorem A-5.34 (Abel-Ruffini). If n 2 5, the general polynomial 

f(x) = (x -y1)(x -y2) · · · (x -yn) 

over a field k is not solvable by radicals. 

Proof. In Example A-3.92, we saw that if E = k(y1 , • •• , Yn) is the field of all ratio
nal functions inn variables with coefficients in a field k, and if F = k(ao, ... , an-i), 
where the ai are the coefficients of f(x), then Eis the splitting field off over F. 

We claim that Gal(E/F) S:! Sn. Recall Exercise A-3.38 on page 54: If A and 
R are domains and cp: A ---+ R is an isomorphism, then a/b H cp(a)/cp(b) is an 
isomorphism Frac(A) ---+ Frac(R). Now if a E Sn, then Theorem A-3.25 gives an 
automorphism a of k[y1, ... ,ynJ, defined by a: f(y1, ... ,yn) H /(Yu1, ... ,yun)i 
that is, a just permutes the variables. Thus, a extends to an automorphism a* of 
E = Frac(k[y1, ... , Yn]), and Eqs. (8) on page 179 show that a* fixes F; hence, a* E 
Gal(E/F). Using Lemma A-5.2, it is easy to see that a Ha* is an injection Sn---+ 
Gal(E/F), so that ISnl:::; I Gal(E/F)I. On the other hand, Theorem A-5.3 shows 
that Gal(E/ F) can be imbedded in Sn, giving the reverse inequality I Gal(E/ F)I:::; 
ISnl· Therefore, Gal(E/F) S:! Sn. But Sn is not a solvable group if n 2 5, by 
Example A-5.24, and so Theorem A-5.33 shows that f is not solvable by radicals . 

• 
Some quintics in Q[x] are solvable by radicals; for example, Example A-5.15 

says that x5 - 1 is solvable by radicals. Here is an explicit example of a quintic 
polynomial in Q[x] which is not solvable by radicals. 

Corollary A-5.35. f(x) = x5 - 4x + 2 E Q[x] is not solvable by radicals. 

Proof. By Eisenstein's criterion (Theorem A-3.111), f is irreducible over Q. We 
now use some calculus. There are exactly two real roots of the derivative f'(x) = 
5x4 -4, namely,± {1475 rv ± .946, and so f has two critical points. Now f( {/475) < 
0 and f ( - {/475) > 0, so that f has one relative maximum and one relative mini
mum. It follows easily that f has exactly three real roots. 
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Figure A-5.1. f(x) = x 5 - 4x + 2. 

Let E /Q be the splitting field of f contained in C. The restriction of complex 
conjugation to E, call it r, interchanges the two complex roots while it fixes the 
three real roots. Thus, if Xis the set of five roots of f(x), then Tis a transposition 
in Bx. The Galois group Gal(E/Q) off is isomorphic to a subgroup G ~ Bx. 
Corollary A-5.9 gives IGI = [E : QJ divisible by 5, so that G contains an element 
<J' of order 5, by Cauchy's Theorem (FCAA (94], p. 200). (If G is a finite group 
whose order is divisible by a prime p, then G contains an element of order p.) Now 
<J' must be a 5-cycle, for the only elements of order 5 in Bx ~ B5 are 5-cycles. But 
Exercise A-5.13 on page 221 says that B5 is generated by any transposition and any 
5-cycle. Since G;;? (<J', r), we have G =Bx. By Example A-5.24, Gal(E/Q) ~ B5 

is not a solvable group, and Theorem A-5.33 says that f is not solvable by radicals . 

• 

Let E be a field and let Aut(E) be the group of all (field) automorphisms 
of E (see Exercise A-5.16 on page 222). If k is any subfield of E, then the Galois 
group Gal(E/k) is a subgroup of Aut(E), and so it acts on E. We have already seen 
several theorems about Galois groups whose hypothesis involves a normal extension 
E/k. It turns out that the way to understand normal extensions E/k is to examine 
them in the context of this action of Gal(E/k) on E and separability. 

What elements of E are fixed by every <J' in some subset Hof Aut(E)? 

Definition. If E is a field and H is a subset4 of Aut(E), then the fixed field of 
H is defined by 

EH= {a EE: <J'(a) =a for all <J' EH}. 

4 The most important instance of a fixed field EH arises when His a subgroup of Aut(E), 
but we will meet cases in which it is merely a subset; for example, H = {u}. 
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It is easy to see that if a E Aut(E), then Ea= {a EE: a(a) =a} is a subfield 
of E; in fact, Ea = E(a) It follows that EH is a subfield of E, for 

EH= n Ea. 
a EH 

Example A-5.36. If k is a subfield of E and G = Gal(E/k), then k ~ E 0 , but this 
inclusion can be strict. For example, let E = Q( .v2) ~ R If a E G = Gal(E/Q), 
then a must fix Q, and so it permutes the roots of f(x) = x3 - 2. But the other 
two roots off are not real, so that a( .v2) = .v2. Lemma A-5.2 gives a= la; that 
is, E 0 = E. Note that E is not a splitting field off. .,. 

The proof of the following proposition is almost obvious. 

Proposition A-5.37. If E is a field, then the function from subsets of Aut(E) to 
subfields of E, given by H 1-t EH, is order-reversing: if H ~ L ~ Aut(E), then 
EL~ EH. 

Proof. If a E EL, then a(a) = a for all a E L. Since H ~ L, it follows, in 
particular, that a(a) =a for all a EH. Hence, EL~ EH. • 

Our immediate goal is to determine the degree [E : E 0 ], where G ~ Aut(E). 
To this end, we introduce the notion of characters. 

Definition. A character5 of a group G in a field E is a (group) homomorphism 
a: G ---+ Ex, where Ex denotes the multiplicative group of nonzero elements of the 
field E. 

If a E Aut(E), then its restriction alEx: Ex ---+ Ex is a character in E. In 
particular, if k is a subfield of E, then every a E Gal(E/k) gives a character in E. 

Definition. Let Ebe a field and let G be a group. A list a 1 , ... ,an of characters 
of G in E is independent if, whenever .L:i ciai ( x) = 0, for c1, ... , en E E and all 
x E G, then all the c; = 0. 

In Example A-7.14(iii), we saw that the set V of all the functions from a set X 
to a field E is a vector space over E: addition of functions is defined by 

a+ r: x 1-t a(x) + r(x), 

and scalar multiplication is defined, for c E E, by 

ca: xi-+ca(x). 

Independence of characters, as just defined, is linear independence in the vector 
space V when Xis the group G. 

5This definition gives a special case of character in representation theory: if a: G--+ GL(n, E) 
is a homomorphism, then its character Xu: G--+ E is defined, for x E G, by 

Xu(x) = tr(a(x)), 

where the trace, tr( A), of an n x n matrix A is the sum of its diagonal entries. If n = 1, then 
GL(l, E) =Ex and Xu(x) = a(x) is called a linear character. 
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Proposition A-5.38 (Dedekind). Every list ai, ... , an of distinct characters of 
a group G in a field E is independent. 

Proof. The proof is by induction on n ;?: 1. The base step n = 1 is true, for if 
ca(x) = 0 for all x E G, then either c = 0 or O"(x) = O; but a(x) =f:. 0, because 
imO" ~Ex = E - {O}. 

Assume that n > 1; if the characters are not independent, there are ci E E, 
not all zero, with 

(9) 

for all x E G. We may assume that all ci =f:. 0, for if some Ci = 0, then the inductive 
hypothesis can be invoked to reach a contradiction. Multiplying by c;:;- 1 if necessary, 
we may assume that Cn = 1. Since O" n =f:. O"i, there exists y E G with 0"1 (y) =/:- an (y). 
In Eq. (9), replace x by yx to obtain 

c1a1(y)a1(x) + · · · + Cn-1an-1(y)an-1(x) + an(y)an(x) = 0, 

for O"i(yx) = ai(Y)O"i(x). Now multiply this equation by an(Y)-1 to obtain the 
equation 

C1an(Y)- 1a1(y)a1(x) + · · · + Cn-1an(Y)- 1an-1(Y)O"n-1(x) + an(x) = 0. 

Subtract this last equation from Eq. (9) to obtain a sum of n - 1 terms: 

C1 (1- an(Y)-1a1(y)]a1(x) + c2(l - O"n(Y)-1a2(Y)]a2(x) + · · · = 0. 

By induction, each of the coefficients ci[l - an(Y)-1ai(y)] = 0. Now Ci =f:. 0, and 
so an(Y)-1ai(Y) = 1 for all i < n. In particular, O"n(Y) = 0"1(y), contradicting the 
definition of y. • 

Lemma A-5.39. If G = { O"i, •.. , an} is a set of n distinct automorphisms of a 
field E, then 

[E: E 0 ];?: n. 

Proof. Suppose, on the contrary, that [E : E 0 ] = r < n, and let a 1, ... , Ctr be a 
basis of E / E 0 . Consider the homogeneous linear system over E of r equations in 
n unknowns: 

0"1(et1)x1 + · · · + O"n(et1)Xn = 0, 

al(a2)X1 + · · · + an(a2)Xn = 0, 

al(etr)X1 + · · · + O"n(etr)Xn = 0. 

Since r < n, there are more unknowns than equations, and Corollary A-7.12 gives 
a nontrivial solution (c1 , ... , Cn) in En. 

We are now going to show that a 1 (,B)c1 + · · · + O"n(,B)cn = 0 for every ,8 E Ex, 
which will contradict the independence of the characters 0"1jEx, ... , O"nlEx. Since 
et1, ... , Ctr is a basis of E over E 0 , each ,8 E E can be written 

.a= l:biai, 
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where bi E E 0 . Multiply the ith row of the system by cr1 (bi) to obtain the system 
with ith row 

cr1(bi)cr1(ai)c1 + · · · + CT1(bi)crn(ai)Cn = 0. 
But cr1 (bi) = bi = O"J (bi) for all i, j, because bi E E 0 . Thus, the system has ith row 

cr1(biai)c1 + · · · + O"n(biai)cn = 0. 

Adding all the rows gives 

cr1(/3)c1 + · · · + O"n(f3)cn = 0, 

contradicting the independence of the characters. • 

Proposition A-5.40. If G = { cri, ... , crn} is a subgroup of Aut(E), then 

[E: E 0 ] = IGI. 

Proof. In light of Lemma A-5.39, it suffices to prove that [E : E 0 ] :::; IGI. If, 
on the contrary, [E : E 0 ] > n, there is a linearly independent list w1 , ... , Wn+l of 
vectors in E over E 0 . Consider the system of n equations in n + 1 unknowns: 

cr1(w1)x1 + · · · + cr1(wn+1)Xn+i = 0, 

O"n(w1)X1 + · · · + O"n(Wn+1)Xn+i = 0. 

Corollary A-7.12 gives nontrivial solutions over E, which we proceed to normalize. 
Choose a nontrivial solution (/31, ... ,/3ri 0, ... ,0) having the smallest number r of 
nonzero components (by reindexing the wi, we may assume that all nonzero com
ponents come first). Note that r =f. 1, lest cr1(w1)/31 = 0 imply /31 = 0, contradicting 
(/31 , 0, ... , 0) being nontrivial. Multiplying by its inverse if necessary, we may as
sume that f3r = 1. Not all /3i E E 0 , lest the row corresponding to CT= lE violate 
the linear independence of w1 , ... , Wn+i · Our last assumption is that /31 does not lie 
in E 0 (this, too, can be accomplished by reindexing the wi)i thus, there is some O"k 
with O"k(/31) =f. /31. Since /3r = 1, the original system has jth row (after renumbering 
the rows) 

(10) 

Apply O"k to this system to obtain 

O"kO"j (w1)crk(f31) + · · · + O"kO"j (wr-1)crk(f3r-1) + O"kO"j (wr) = 0. 

Since G is a group, O"k0"1,. . ., O"kO"n is just a permutation of cr1,. . ., O"n. Setting 
O"kO"j = O"i, the system has ith row 

O"i(w1)crk(f31) + · · · + O"i(Wr-1)crk(f3r-1) + O"i(wr) = 0. 

Subtract this from the ith row of Eq. (10) to obtain a new system with ith row 

O"i(w1) [/31 - O"k(/31)] + · · · + O"i(Wr-1) [/3r-1 - O"k(f3r-1)] = 0. 

Since /31 - O"k(/31) =f. 0, we have found a nontrivial solution of the original system 
having fewer than r nonzero components, a contradiction. • 

These ideas give a result needed in the proof of the Fundamental Theorem of 
Galois Theory. 
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Theorem A-5.41. If G and H are finite subgroups of Aut(E) with E 0 = EH, 
then G::::; H. 

Proof. We first show that a E Aut(E) fixes E 0 if and only if a E G. Clearly, a 
fixes E 0 if a E G. Suppose, conversely, that a fixes E 0 but a (j. G. If IGI = n, 
then 

n = IGI = [E : E 0 ], 

by Proposition A-5.40. Since a fixes E 0 , we have E 0 ~ EGu{a}. But the reverse 
inequality always holds, by Proposition A-5.37, so that E 0 = EGu{a}. Hence, 

n = [E: E 0 ] = [E: EGu{a}] ~ IG U {a}I = n + 1, 

by Lemma A-5.39, a contradiction. 

If a EH, then a fixes EH= E 0 , and hence a E G; that is, H ~ G; the reverse 
inclusion is proved the same way, and so H = G. • 

Here is the characterization we have been seeking. Recall that a normal exten
sion is a splitting field of some polynomial; we now characterize splitting fields of 
separable polynomials. 

Theorem A-5.42. If E/k is a finite extension.field with Galois group G=Gal(E/k), 
then the fallowing statements are equivalent. 

(i) Eis a splitting field of some separable polynomial f(x) E k[x]. 

(ii) k = E 0 . 

(iii) If a monic irreducible p(x) E k[x] has a root in E, then it is separable 
and splits in E[x]. 

Proof. 

(i) ::::} (ii) By Theorem A-5.7(ii), IGI = [E: k]. But Proposition A-5.40 gives 
IGI = [E: E 0 ]; hence, 

[E: k] = [E: E 0 ]. 

Since k ~ E 0 , we have [E: k] = [E: E 0 ][E0 : k], so that [E0 : k] = 1 
and k = E 0 . 

(ii) ::::} (iii) Let p(x) E k[x] be a monic irreducible polynomial having a root a 
in E, and let the distinct elements of the set { a(a): a E G} be ai, ... , an. 
Define g(x) E E[x] by 

g(x) = IT(x - ai)· 

Now each a E G permutes the ai, so that each a fixes each of the coef
ficients of g (for they are elementary symmetric functions of the roots); 
that is, the coefficients of g lie in E 0 = k. Hence, g is a polynomial in 
k[x] which, by construction, has no repeated roots. Now p and g have a 
common root in E, and so their gcd in E[x] is not 1, by Corollary A-3.72. 
Since pis irreducible, it must divide g. Therefore, p has no repeated roots; 
that is, p is separable. Finally, g = p, for they are monic polynomials of 
the same degree having the same roots. Hence, p splits in E[x]. 
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(iii) =? (i) Choose ai E E with a 1 fl. k. Since E/k is a finite extension 
field, ai must be algebraic over k; let p1(x) = irr(a1,k) E k[x] be its 
minimal polynomial. By hypothesis, p1 is a separable polynomial that 
splits over E; let Ki ~ E be its splitting field. If Ki = E, we are done. 
Otherwise, choose a2 E E with a 2 fl. K 1. By hypothesis, there is a 
separable irreducible p2(x) E k[x] having a 2 as a root that splits in E[x]. 
Let K2 ~Ebe the splitting field of p1p2 , a separable polynomial in k[x]. 
If K2 = E, we are done; otherwise, repeat this construction. This process 
must end with Km = E for some m because E / k is finite. Thus, E is a 
splitting field of the separable polynomial p1 ···Pm E k[x]. • 

Definition. A finite extension field E /k is a Galois extension6 if it satisfies any 
of the equivalent conditions in Theorem A-5.42. 

Example A-5.43. If B / k is a finite separable extension and E / B is the radical 
extension of B constructed in Lemma A-5.18, then Theorem A-5.42(i) shows that 
E / k is a Galois extension. "" 

Corollary A-5.44. If E/k is a.finite Galois extension and Bis an intermediate 
field (that is, a subfield B with k ~ B ~ E), then E / B is a Galois extension. 

Proof. We know that E is a splitting field of some separable polynomial f(x) E 
k[x]; that is, E = k(ai, ... , an), where a 1, ... , an are the roots off. Since k ~ 
B ~ E, we have E = B(a1, ... ,an), and f E B[x]. • 

We do not say that if E / k is a finite Galois extension and B / k is an inter
mediate field, then B / k is a Galois extension, for this may not be true. In Exam
ple A-5.ll(iii), we saw that E = Q( ?'2, w) is a splitting field of x3 -2 over Q, where 
w is a primitive cube root of unity, and so it is a Galois extension. However, the 
intermediate field B = Q( ?'2) is not a Galois extension, for x3 - 2 is an irreducible 
polynomial having a root in B, yet it does not split in B[x]. 

The next proposition determines when an intermediate field B is a Galois ex
tension. 

Definition. Let E / k be a Galois extension and let B be an intermediate field. A 
conjugate of B is an intermediate field of the form 

o-(B) = {o-(b): b EB} 

for some o- E Gal(E/k). 

Proposition A-5.45. If E/k is a finite Galois extension, then an intermediate 
field B is a Galois extension of k if and only if B has no conjugates other than B 
itself. 

Proof. Assume that o-(B) = B for all o- E G, where G = Gal(E/k). Let p(x) E k[x] 
be an irreducible polynomial having a root (3 in B. Since B ~ E and E/k is Galois, 
p(x) is a separable polynomial and it splits in E[x]. If (3' E E is another root of 
p(x), there exists an isomorphism o- E G with o-((3) = (3' (for G acts transitively 

6Infinite extension fields may be Galois extensions; we shall define them in Course II. 
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on the roots of an irreducible polynomial, by Proposition A-5.14). Therefore, (3' = 
0"((3) E O"(B) = B, so that p(x) splits in B[x]. Therefore, B/k is a Galois extension. 

The converse follows from Theorem A-5.17: since B/k is a splitting field of 
some (separable) polynomial f(x) over k, it is a normal extension. • 

We have looked at symmetric polynomials of several variables; we now consider 
rational functions in several variables. In Example A-3.92, we considered E = 
k(y1, ... , Yn), the rational function field inn variables with coefficients in a field k, 
and its subfield K = k(ao, ... , an-1), where 

f(x) = (x - Y1)(x - Y2) · · · (x - Yn) = ao + alx + · · · + an-1Xn-l + xn 

is the general polynomial of degree n over k. We saw that E is a splitting field 
of f over K, for it arises from K by adjoining to it all the roots of f, namely, 
Y = {y1 , ... , Yn}. Since every permutation of Y extends to an automorphism of E, 
by Theorem A-3.25, we may regard Sn as a subgroup of Aut(E). The elements of 
K are called the symmetric functions in n variables over k. 

Definition. A rational function g(y1, ... , Yn) / h(yi, ... , Yn) E k(y1, ... , Yn) is a 
symmetric function if it is unchanged by permuting its variables: for every 
O" E Sn, we have g(Yu1, ... , Yun)/h(Yui. ... , Yun)= g(y1, ... , Yn)fh(y1, ... , Yn)· 

The elementary symmetric functions are the polynomials, for j = 1, ... , n: 

ej(Y11···1Yn) = L Yi1 ···Yir 
i1 <· .. <i; 

We have seen that if aj is the jth coefficient of the general polynomial of degree n, 
then aj = (-l)Jen-J(Y1, ... , Yn)· We now prove that K = k(e1, ... , en)= E 8 n. 

Theorem A-5.46 {Fundamental Theorem of Symmetric Functions). If k 
is a field, every symmetric function in k(yi, ... , Yn) is a rational function in the 
elementary symmetric functions el, ... , en. 

Proof. Let K = k(e1, ... , en) ~ E = k(y1, ... , Yn)· As we saw in Example A-3.92, 
E is the splitting field of the general polynomial f(x) of degree n: 

n 

f(x) = IT(x -yi)· 
i=l 

As f is a separable polynomial, E / K is a Galois extension. We saw, in the proof 
of the Abel-Ruffini Theorem, that Gal(E/ K) ~Sn. Therefore, E 8 n = K, by The
orem A-5.42. But g(y1, ... , Yn) / h(y1, ... , Yn) E E 8 n if and only if it is unchanged 
by permuting its variables; that is, it is a symmetric function. • 

There is a useful variation of Theorem A-5.46. The Fundamental Theo
rem of Symmetric Polynomials says that every symmetric polynomial f E 

k[x1, ... , xn] lies in k(e1, ... , en]i that is, f is a polynomial (not merely a rational 
function) in the elementary symmetric functions. There is a proof of this in van 
der Waerden (118], pp. 78-81, but we think it is more natural to prove it using the 
Division Algorithm for polynomials in several variables (in Course II). 
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Definition. If A and Bare subfields of a field E, then their compositum, denoted 
by 

AVB, 

is the intersection of all the subfields of E containing AU B. 

It is easy to see that AV B is the smallest subfield of E containing both A and B. 
For example, if E / k is an extension field with intermediate fields A = k( a1, ... , an) 
and B = k(f31, ... , f3m), then their compositum is 

k(a1, ... , an) V k(f31, ... , f3m) = k(ai, ... , an, f31, ... , f3m)· 

Proposition A-5.47. 

(i) Every finite Galois extension is separable. 

(ii) If E/k is a (not necessarily finite) algebraic extension and S ~ E is a 
(possibly infinite) set of separable elements, then k(S)/k is separable. 

(iii) Let E/k be a (not necessarily finite) algebraic extension, where k is a 
field, and let A and B be intermediate fields. If both A/ k and B / k are 
separable, then their compositum AV B is also a separable extension of k. 

Proof. 

(i) If (3 EE, then p(x) = irr((3, k) E k[x] is an irreducible polynomial in k[x] 
having a root in E. By Theorem A-5.42(iii), pis a separable polynomial 
(which splits in E[x]). Therefore, (3 is separable over k, and E/k is 
separable. 

(ii) Let us first consider the case when Sis finite; that is, B = k(a1, ... ,at) 
is a finite extension field, where each ai is separable over k. By Lemma 
A-5 .18 ( i), there is an extension field E / B that is a splitting field of some 
separable polynomial f(x) E k[x]; hence, E/k is a Galois extension, by 
Theorem A-5.42(i). By part (i), E/k is separable; that is, for all a EE, 
the polynomial irr(a, k) has no repeated roots. In particular, irr(a, k) 
has no repeated roots for all a E B, and so B / k is separable. 

We now consider the general case. If a E k(S), then Exercise A-3.81 
on page 89 says that there are finitely many elements a1, ... , an E S 
with a E B = k( ai, ... , an). As we have just seen, B / k is separable, and 
so a is separable over k. As a is an arbitrary element of k(S), it follows 
that k(S)/k is separable. 

(iii) Apply part (ii) to the subset S =AU B, for AV B = k(A U B). • 

We are now going to show, when E/k is a finite Galois extension, that the 
intermediate fields are classified by the subgroups of Gal(E/k). 

We begin with some general definitions. 

Definition. A set X is a partially ordered set if it has a binary relation x j y 
defined on it that satisfies, for all x, y, z EX, 

(i) Reflexivity: x j x; 

(ii) Antisymmetry: if x j y, and y j x, then x = y; 

(iii) Transitivity: if x j y and y j z, then x j z. 
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An element c in a partially ordered set X is an upper bound of a pair a, b E X 
if a :::; c and b :::; c; an element d E X is a least upper bound of a, b if d is an upper 
bound and d :::; c for every upper bound c of a and b. Lower bounds and greatest 
lower bounds are defined similarly, everywhere reversing the inequalities. 

We shall return to•partially ordered sets in Course II when we discuss Zorn's 
Lemma, inverse limits, and direct limits. Here, we are more interested in special 
partially ordered sets called lattices. 

Definition. A lattice is a partially ordered set £ in which every pair of elements 
a, b E £ has a greatest lower bound a /\ b and a least upper bound a V b. 

Example A-5.48. 

(i) If U is a set, define£ to be the family of all the subsets of U, and define a 
partial order A :::; B by A ~ B. Then £ is a lattice, where A/\ B = An B 
and A V B = A U B. 

(ii) If G is a group, define £ = Sub( G) to be the family of all the subgroups 
of G, and define A:::; B to mean A~ B; that is, A is a subgroup of B. 
Then £ is a lattice, where A /\ B = A n B and A V B is the subgroup 
generated by A U B. 

(iii) If E/k is an extension field, define£= Int(E/k) to be the family of all 
the intermediate fields, and define K :::; B to mean K ~ B; that is, K is 
a subfield of B. Then£ is a lattice, where A/\ B =An Band AV Bis 
the compositum of A and B. 

(iv) If n is a positive integer, define Div(n) to be the set of all the positive 
divisors of n. Then Div( n) is a partially ordered set if one defines d :::; d' 
to mean d I d'. Here, d /\ d' = gcd( d, d') and d V d' = lcm( d, d'). ~ 

Definition. Let £ and £' be partially ordered sets. A function J: £, --+ £' is called 
order-reversing if a:::; bin£ implies f(b) :::; f(a) in£'. 

Example A-5.49. There exist lattices£ and£' and an order-reversing bijection 
cp: £ --+ £'whose inverse cp- 1 : £' --+ £is not order-reversing. For example, consider 
the lattices 

a 4 

b/~ I 
£= and £'= 3 
~/c I 

d 2 
I 
1 

The bijection cp: £, --+ £', defined by 

cp(a) = 1, cp(b) = 2, cp(c) = 3, cp(d) = 4, 

is an order-reversing bijection, but its inverse cp- 1 : £' --+ £, is not order-reversing, 
because 2:::; 3 but c = cp- 1 (3) ~ cp- 1(2) = b. ~ 
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The De Morgan laws say that if A and B are subsets of a set X, then 

(An B)' =A' U B' and (AU B)' =A' n B', 
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where A' denotes the complement of A. These identities are generalized in the next 
lemma. 

Lemma A-5.50. Let .C and .C' be lattices, and let cp: .C ---+ .C' be a bijection such 
that both cp and cp- 1 are order-reversing. Then 

cp(a /\ b) = cp(a) V cp(b) and cp(a Vb) = cp(a) /\ cp(b). 

Proof. Since a, b :::5 a Vb, we have cp(a Vb) :::5 cp(a), cp(b); that is, cp(a Vb) is a lower 
bound of cp(a), cp(b). It follows that cp(a Vb) :::5 cp(a) /\ cp(b). 

For the reverse inequality, surjectivity of cp gives c E .C with cp(a) /\cp(b) = cp(c). 
Now cp(c) = cp(a) /\ cp(b) :::5 cp(a), cp(b). Applying cp- 1, which is also order-reversing, 
we have a, b :::5 c. Hence, c is an upper bound of a, b, so that a V b :::5 c. Therefore, 
cp(a Vb) t cp(c) = cp(a) /\ cp(b). A similar argument proves the other half of the 
statement. • 

Recall Example A-5.48: if G is a group, then Sub( G) is the lattice of all its 
subgroups and, if E/k is an extension field, then Int(E/k) is the lattice of all the 
intermediate fields. 

Theorem A-5.51 (Fundamental Theorem of Galois Theory). Let E/k be a 
finite7 Galois extension with Galois group-G = Gal(E/k). 

(i) The function T Sub(Gal(E/k))---+ Int(E/k), defined by 

TH HEH, . 

is an order-reversing bijection whose inverse, 

c5: Int(E/k)---+ Sub(Gal(E/k)), 

is the order-reversing bijection 

c5: B H Gal(E/B). 

(ii) For every BE Int(E/k) and HE Sub(Gal(E/k)), 

EGal(E/B) = B and Gal(E/EH) = H. 

(iii) For every H, KE Sub(Gal(E/k)) and A, BE Int(E/k), 

EHvK =EH nEK, 

EHnK =EH V EK, 

Gal(E/(A VB))= Gal(E/A) n Gal(E/B), 

Gal(E/(A n B)) = Gal(E/A) V Gal(E/B). 

(iv) For every BE Int(E/k) and HE Sub(Gal(E/k)), 

[B: k] = [G: Gal(E/B)] and [G: HJ= [EH: k]. 

7There is a generalization to infinite Galois extensions in Course II. 
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(v) If BE Int(E/k), then B/k is a Galois extension if and only if Gal(E/B) 
is a normal subgroup of G. 

Proof. 

(i) Proposition A-5.37 proves that 'Y is order-reversing, and it is also easy to 
prove that o is order-reversing. Now injectivity of 'Y is proved in Theo
rem A-5.41, so that i,t suffices to prove that "fO: Int(E/k)-+ Int(E/k) is 
the identity;8 it will follow that 'Y is a bijection with inverse o. If Bis an 
intermediate field, then O"f: B H EGal(E/ B). But E /EB is a Galois ex
tension, by Corollary A-5.44, and so EGal(E/B) = B, by Theorem A-5.42. 

(ii) This is just the statement that "fO and O"f are identity functions. 

(iii) These statements follow from Lemma A-5.50. 

(iv) By Theorem A-5.7(ii) and the fact that E/B is a Galois extension, 

[B: k] = [E: k]/[E: B] = IGl/I Gal(E/B)I = [G: Gal(E/B)]. 

Thus, the degree of B/k is the index of its Galois group in G. The 
second equation follows from this one; take B = EH, noting that (ii) 
gives Gal(EjEH) = H: 

[EH: k] = [G: Gal(E/EH)] = [G: H]. 

(v) It follows from Theorem A-5.17 that Gal(E/ B) <JG when B/k is a Galois 
extension (both B/k and E/k are normal extensions). For the converse, 
let H = Gal(E/B), and assume that H <JG. Now EH= EGal(E/B) = B, 
by (ii), and so it suffices to prove that a(EH) = EH for every a E G, by 
Proposition A-5.45. Suppose now that a E EH; that is, ry(a) =a for all 
1J EH. If a E G, then we must show that ry(a(a)) = a(a) for all ry EH; 
that is, a(a) E EH. Now H <I G says that if 1J E Hand a E G, then there 
is ry' E H with rya = ary' (of course, ry' = a- 11J<T). But 

rya(a) = ary'(a) = a(a), 

because ry' (a) = a, as desired. Therefore, B / k = EH/ k is Galois. • 

Example A-5.52. We use our discussion of f(x) = x3 - 2 E Q[x] in Exam
ple A-5.16 to illustrate the Fundamental Theorem. The roots of f(x) are a 1 = (3, 
a2 = w(3, and a3 = w2(3, where (3 = ?f2 and w is a primitive cube root of unity. By 
Example A-5.ll(iii), the splitting field is E = Q((3,w) and Gal(E/Q) ~ 83 . 

Figure A-5.2 shows the lattice of subgroups of Gal(E/Q): O"ij denotes the 
automorphism that interchanges ai, aj, where i,j E {1,2,3}, and fixes the other 
root; T denotes the automorphism sending ai H a2, a2 H a3, and a 3 H a 1. 
Figure A-5.3 shows the lattice of intermediate fields (without the Fundamental 
Theorem, it would not be obvious that these are the only such). 

We compute fixed fields. If a= a12, what is E(u)? Now 

a( ai) = a(f3) = w(3 and a( a2) = a(wf3) = (3. 

8If f: X---+ Y and g: Y---+ X, then gf = lx implies that g is surjective and f is injective. 



Fundamental Theorem of Galois Theory 213 

Figure A-5.2. Sub(Gal(E/IQ!)). 

Figure A-5.3. Sub(Gal(E/IQ!)) and Int(E/IQ!). 

Hence, 

On the other hand, 

a(a2/a1) = a(a2)/a(a1) = f3/wf3 = w2. 

Therefore, a(w) = w2, so that w <t E(u). Since the only candidates for EM are 
Q(a3), Q(a2), Q(a1), and Q(w), we conclude that EM= Q(a3). 

What is EM? We note that it contains no root O/.i, for T moves each of them. 
On the other hand, 

a(w) = a(a2/ai) = a(a2)/a(ai) = w2f3/wf3 = w, 

so that w E EM. Thus, EM = Q(w), for it is not any of the other intermediate 
fields . Note, as the Fundamental Theorem predicts, that Q(w)/Q is a normal 
extension, for it corresponds to the normal subgroup (r) of Gal(E/Q); that is, 
A3 <l 83 (of course, Q(w)/Q is the splitting field of x3 - 1). .,.. 

Here are some corollaries. 

Theorem A-5.53. If E/k is a finite Galois extension whose Galois group is 
abelian, then every intermediate field is a Galois extension. 

Proof. Every subgroup of an abelian group is a normal subgroup. • 

Corollary A-5.54. A finite Galois extension E/k has only finitely many inter
mediate fields. 
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Proof. The finite group Gal(E/k) has only finitely many subgroups. • 

Definition. An extension field E / k is a simple extension if there is u E E with 
E = k(u). 

The following theorem characterizes simple extensions. 

Theorem A-5.55 {Steinitz). A finite extension field E/k is simple if and only 
if it has only finitely many intermediate fields. 

Proof. Assume that E/k is a simple extension, so that E = k(u); let p(x) 
irr(u, k) E k[x] be its minimal polynomial. If Bis any intermediate field, let 

q(x) = irr(u, B) = bo + blx + · · · + bn-1Xn-l + xn E B[x] 

be the minimal polynomial of u over B, and define 

B' = k(bo, ... , bn-1) ~ B. 

Note that q is an irreducible polynomial over the smaller field B'. Now 

E = k(u) ~ B'(u) ~ B(u) ~ E, 

so that B'(u) = E = B(u). Hence, [E: B] = [B(u): B] and [E: B'] = [B'(u): B']. 
But each of these is equal to deg(q), by Proposition A-3.84(v), so that [E : BJ = 
deg(q) = [E: B']. Since B' ~ B, it follows that [B: B'] = 1; that is, 

B = B' = k(bo, ... , bn-1). 

We have characterized Bin terms of the coefficients of q, a monic divisor of p(x) = 
irr( u, k) in E[x]. But p has only finitely many monic divisors, and hence there are 
only finitely many intermediate fields. 

Conversely, assume that E / k has only finitely many intermediate fields. If k is 
a finite field, then we know that E / k is a simple extension (take u to be a primitive 
element); therefore, we may assume that k is infinite. Since E / k is a finite extension 
field, there are elements u1, ... , Un with E = k(u1, ... , un)· By induction on n ~ 1, 
it suffices to prove that E = k( u, v) is a simple extension. Now there are infinitely 
many elements c E E of the form c = u + tv, where t E k, for k is now infinite. 
Since there are only finitely many intermediate fields, there are, in particular, only 
finitely many fields of the form k(c). By the Pigeonhole Principle, there exist 
distinct t,t' Ek with k(c) = k(c'), where c' = u + t'v. Clearly, k(c) ~ k(u,v). 
For the reverse inclusion, the field k(c) = k(c') contains c - c' = (t - t')v, so that 
v E k(c) (because t - t' E k and t - t' f:. 0). Hence, u = c - tv E k(c), and so 
k(c) = k(u, v). • 

An immediate consequence is that every Galois extension is simple; in fact, 
even more is true. 

Theorem A-5.56 {Theorem of the Primitive Element). If B/k is a finite 
separable extension, then there is u EB with B = k(u). 

In particular, if k has characteristic 0, then every finite extension field B/k is 
a simple extension. 
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Proof. By Example A-5.43, the radical extension E / k constructed in Lemma A-5.18 
is a Galois extension having B as an intermediate field, so that Corollary A-5.54 
says that the extension field E/k has only finitely many intermediate fields. It 
follows at once that the extension field B / k has only finitely many intermediate 
fields, and so Steinitz's Theorem says that B / k has a primitive element. • 

The Theorem of the Primitive Element was known to Lagrange, and Galois 
used a modification of it to construct the original version of the Galois group. 

We now turn to finite fields. 

Theorem A-5.57. The finite field IFq, where q = pn, has exactly one subfield of 
order pd for every divisor d of n, and no others. 

Proof. First, 1Fq/1Fp is a Galois extension, for it is a splitting field of the separable 
polynomial xq - x (all the roots of xq - x are distinct). Now G = Gal(1Fq/1Fp) is 
cyclic of order n, by Theorem A-5.13. Since a cyclic group of order n has exactly 
one subgroup of order d for every divisor d of n, by Lemma A-4.89, it follows that G 
has exactly one subgroup H of index n / d. Therefore, there is only one intermediate 
field, namely, EH, with [EH: 1Fp] = [G: H] = n/d, and EH= IFpn/d. • 

The Fundamental Theorem of Algebra was first proved by Gauss in 1799. Here 
is an algebraic proof which uses the Fundamental Theorem of Galois Theory as well 
as a two group theoretic results we will prove in Part 2: If pk is the largest power 
of a prime p dividing the order of a finite group G, then G contains a subgroup of 
order pk (this is one of the Sylow Theorems); Every group of order pk contains a 
subgroup of order pd for every d :::; k. 

We assume only that R satisfies a weak form of the Intermediate Value Theo
rem: If f(x) E R[x] and there exist a, b ER such that f(a) > 0 and f(b) < 0, then 
f has a real root. 

(i) Every positive real number r has a real square root. 
If f(x) = x2 - r, then f(l + r) = (1 + r) 2 - r = 1 + r + r 2 > 0, and 

f(O) = -r < 0. 

(ii) Every quadratic g(x) E C[x] has a complex root. 
First, every complex number z has a complex square root: when z 

is written in polar form z = rei8 , where r ?: 0, then JZ = ftei812 . The 
quadratic formula gives the (complex) roots of g. 

(iii) The field <C has no extension fields of degree 2. 
Such an extension field would contain an element whose minimal 

polynomial is an irreducible quadratic in C[x]; but item (ii) shows that 
no such polynomial exists. 

(iv) Every f(x) E R[x] having odd degree has a real root. 
Let f(x) = ao+a1x+· · +an-1Xn-1+xn E R[x]. Define t = 1+ L: lail· 

Now lail:::; t - 1 for all i and, if h(x) = f(x) - xn, then lh(t)I < tn: 

lh(t)I = lao + ait + · · · + an-1tn-l I 
:::; ( t - 1) ( 1 + t + · · · + tn- l) = tn - 1 < tn. 
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Therefore, -tn < -lh(t)I :::; h(t) and 0 = -tn + tn < h(t) + tn = f(t). A 
similar argument shows that lh(-t)I < tn, so that 

f(-t) = h(-t) + (-t)n < tn + (-tt. 

When n is odd, (-t)n = -tn, and so f ( -t) < tn - tn = 0. Therefore, 
the Intermediate Value Theorem provides a real number r E (-t, t) with 
f(r) = O; that is, f has a real root. 

( v) There is no extension field E /JR of odd degree > 1. 
If u EE, then its minimal polynomial irr(u,JR) must have even de

gree, by item (iv), so that [JR(u) : JR) is even. Hence [E : JR) = [E : 
JR(u))[JR(u) : JR) is even. 

Theorem A-5.58 (Fundamental Theorem of Algebra). Every nonconstant 
f(x) in C[x] has a complex root. 

Proof. If g(x) = l:aixi E C[x), define g(x) = l:aixi, where ai is the complex 
conjugate of ai. Now gg = I: ckxk, where Ck = Li+j=k aiaj; hence, Ck = Ck and 
gg E JR[x). We claim that if gg has a (complex) root, say z, then g must have a 
root. Since g(z)g(z) = 0, either g(z) = 0 and z is a root of g, or g(z) = 0. In the 
latter case, z is a root of g, and so z is a root of g. In either event, g has a root. 

It now suffices to prove that every nonconstant monic polynomial f(x) with 
real coefficients has a complex root. Let E/JR be a splitting field of (x2 + 1)/(x); 
of course, C is an intermediate field. Since JR has characteristic 0, E /JR is a Galois 
extension; let G = Gal(E/JR) be its Galois group. Now IGI = 2me, where m ~ 0 
and f, is odd. By the Sylow Theorem quoted above, G has a subgroup H of order 
2m; let B = EH be the corresponding intermediate field. By the Fundamental 
Theorem of Galois Theory, the degree [B : JR] is equal to the index [G : HJ = £. 
But we have seen, in item ( v), that JR has no extension field of odd degree greater 
than 1; hence f, = 1 and G is a 2-group (that is, IGI is a power of 2). Now E/C 
is also a Galois extension, and Gal(E/C) ~ G is also a 2-group. If this group is 
nontrivial, then it has a subgroup K of index 2. By the Fundamental Theorem once 
again, the intermediate field EK is an extension field of C of degree 2, contradicting 
item (iii). We conclude that [E: CJ = 1; that is, E = C. But Eis a splitting field 
off over C, and so f has a complex root. • 

We now prove the converse of Galois's Theorem (which holds only in character
istic 0): if the Galois group of a polynomial f(x) is solvable, then f(x) is solvable 
by radicals. In order to prove that certain extension fields are pure extensions, we 
will use the norm. 

Definition. If E/k is a Galois extension and u E Ex, the nonzero elements of E, 
define the norm N; Ex ---+ Ex by 

N(u) = II O'(u). 
aEGal(E/k) 

For example, if E = Q(i), then Gal(E/Q) = (r), where r: z i--+ z is complex 
conjugation, and N(u) = zz. 
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Here are some preliminary properties of the norm, whose simple proofs are left 
to the reader. 

(i) If u E Ex, then N(u) E P (because N(u) E Ea= k). 

(ii) N(uv) = N(u)N(v), so that N: Ex-+ P is a homomorphism. 

(iii) If a E kx ~Ex, then N(a) =an, where n = [E: k]. 

(iv) If a E G and u E Ex, then N(a(u)) = N(u). 

Given a homomorphism, we always ask about its kernel and image. The image 
of the norm is not easy to compute; the next result (which was the ninetieth theorem 
in Hilbert's 1897 exposition of algebraic number theory) computes the kernel of the 
norm in a special case. 

Theorem A-5.59 (Hilbert's Theorem 90). Let E/k be a Galois extension 
whose Galois group G = Gal(E/k) is cyclic of order n, say, with generator a. 
If u E Ex, then N(u) = 1 if and only if there exists v E Ex with u = va(v)-1. 

Proof. If u = va(v)-1, then 

N(u) = N(va(v)- 1) = N(v)N(a(v)-1) = N(v)N(a(v))- 1 = N(v)N(v)- 1 = 1. 

Conversely, let N ( u) = 1. Define "partial norms" in Ex : 

oo = u, 

01 = ua(u), 

02 = ua(u)a2(u), 

On-1 = ua(u) · · · an-1(u). 

Note that On-1 = N(u) = 1. It is easy to see that 

(11) ua(oi) = Oi+i for all 0 s i s n - 2. 

By independence of the characters 1, a, a 2 , ••• , an-1, there exists y E E with 

Ooy + oia(y) + · · · + On-2an-2(y) + an-1(y) :/; O; 

call this sum v. Using Eq. (11), we easily check that 

a(v) = a(oo)a(y) + a(o1)a2(y) + · · · + a(on_2)an-1(y) + an(y) 

= u-1oia(y) + u- 102a2(y) + · · · + u-10n-1an-1(y) + y 

= u-1(01a(y)+02a2(y) + · · · + On-1an-1(y)) + u-10oY 

= u-1v. 

Hence, a(v) = u-1v and u = v/a(v). • 

Corollary A-5.60. Let E/k be a Galois extension of prime degree p. If k contains 
a primitive pth root of unity w, then E = k(z), where zP Ek, and so E/k is a pure 
extension of type p. 
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Proof. The Galois group G = Gal(E/k) has order p, hence is cyclic; let a be a 
generator. Observe that N(w) = wP = 1, because w Ek. By Hilbert's Theorem 90, 
we have w = za(z)- 1 for some z E E. Hence a(z) = w- 1z. Thus, a(zP) = 
(w- 1z)P = zP, and so zP E E 0 , because a generates G; since E/k is Galois, 
however, we have EG = k, so that zP E k. Note that z (j. k, lest w = 1, so that 
k(z) "I k is an intermediate field. Therefore E = k(z), because [E : k] =pis prime, 
and hence E has no proper intermediate fields. • 

We confess that we have presented Hilbert's Theorem 90 not only because of 
its corollary, which will be used to prove Galois's theorem below, but also because 
it is a well-known result that is an early instance of homological algebra. 

Here is an elegant proof of Corollary A-5.60 which does not use Hilbert's The
orem 90. 

Proposition A-5.61 (= Corollary A-5.60). Let E/k be a Galois extension of 
prime degree p. If k contains a primitive pth root of unity w, then E = k(z), where 
zP Ek, and so E/k is a pure extension of type p. 

Proof (Houston). Since E/k is a Galois extension of degree p, its Galois group 
G = Gal(E/k) has order p, and hence it is cyclic: G =(a). We view a: E---+ E as 
a linear transformation. Now a satisfies the polynomial xP - 1, because aP = lE, 
by Lagrange's Theorem. But a satisfies no polynomial of smaller degree, lest we 
contradict independence of the characters 1, a, a 2 , ••• , aP- 1 . Therefore, xP -1 is the 
minimal polynomial of a, and so every pth root of unity is an eigenvalue of a. Since 
w- 1 E E, by hypothesis, there is some eigenvector z E E of a with a(z) = w- 1 z 
(note that z ~ k because it is not fixed by a). Hence, a(zP) = (a(z))P = (w- 1 )PzP = 
zP, from which it follows that zP E E 0 = k. Now p = [E: k] = [E: k(z)][k(z) : k]; 
since pis prime and [k(z) : k] "I 1, we have [E: k(z)] = 1; that is, E = k(z), and 
so E / k is a pure extension. • 

Theorem A-5.62 (Galois) .. Let k be afield of characteristic 0, let E/k be a Galois 
extension, and let G = Gal(E/k) be a solvable group. Then E can be imbedded in 
a radical extension of k. 

Proof. Since G is solvable, Exercise A-5.9 on page 200 says that it has a normal 
subgroup H of prime index, say, p. Let w be a primitive pth root of unity, which 
exists in some extension field because k has characteristic 0. 

Case (i): w E k. We prove the statement by induction on [E : k]. The base 
step is obviously true, for k = E is a radical extension of itself. For the inductive 
step, consider the intermediate field EH. Now E /EH is a Galois extension, by 
Corollary A-5.44, and H = Gal(E /EH) is solvable, being a subgroup of the solvable 
group G. Since [E : EH] < [E : k], the inductive hypothesis gives a radical tower 
EH ~ R1 ~ · · · ~ Rt, where E ~ Rt. Now EH /k is a Galois extension, for 
H <JG, and its index [G : H] = p = [EH : k], by the Fundamental Theorem. 
Corollary A-5.60 now applies to give EH = k(z), where zP E k; that is, EH /k is 
a pure extension. Hence, the radical tower above can be lengthened by adding the 
prefix k ~ EH, thus displaying Rt/ k as a radical extension containing E. 
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Case (ii): General case. Let k* = k(w), and define E* = E(w). We claim that 
E* / k is a Galois extension. Since E / k is a Galois extension, it is the splitting field 
of some separable f(x) E k[x], and so E* is a splitting field over k of f(x)(xP - 1). 
But xP - 1 is separable, because k has characteristic 0, and so E* /k is a Galois 
extension. Therefore, E* /k* is also a Galois extension, by Corollary A-5.44. Let 
G* = Gal(E* /k*). By Exercise A-5.3 on page 199 (Accessory Irrationalities), there 
is an injection 'ljJ: G* -+ G = Gal( E / k), so that G* is solvable, being isomorphic 
to a subgroup of a solvable group. Since w E k*, the first case says that there is a 
radical tower k* ~ Ri ~ · · · ~ R:i, with E ~ E* ~ R:i,. But k* = k(w) is a pure 
extension, so that this last radical tower can be lengthened by adding the prefix 
k ~ k*, thus displaying R:i,/k as a radical extension containing E. • 

Corollary A-5.63 (Galois). If k is a field of characteristic 0 and f(x) E k[x], 
then f is solvable by radicals if and only if the Galois group off is a solvable group. 

Remark. A counterexample in characteristic pis given in Theorem A-5.66. .,. 

Proof. Let E/k be a splitting field off and let G = Gal(E/k). Since G is solvable, 
Theorem A-5.62 says that there is a radical extension R/k with E ~ R; that is, f 
is solvable by radicals. The converse is Theorem A-5.33. • 

We now have another proof of the existence of the classical formulas. 

Corollary A-5.64. Let f(x) E k[x], where k has characteristic 0. If deg(!) :::; 4, 
then f is solvable by radicals. 

Proof. If G is the Galois group off, then G is isomorphic to a subgroup of 84. 
But 84 is a solvable group, and so every subgroup of 84 is also solvable. By 
Corollary A-5.63, f is solvable by radicals. • 

Suppose we know the Galois group G of a polynomial f(x) E Ql[x] and that 
G is solvable. Can we use this information to find the roots of f? The answer is 
affirmative; we suggest the reader look at the book by Gaal [40] to see how this is 
done. 

In 1827, Abel proved that if the Galois group of a polynomial f(x) is commu
tative, then f is solvable by radicals (of course, Galois groups had not yet been 
defined). This result was superseded by Galois's Theorem, proved in 1830 (for 
abelian groups are solvable), but it is the reason why abelian groups are so called. 

A deep theorem of Feit and Thompson (1963) says that every group of odd 
order is solvable. It follows that if k is a field of characteristic 0 and f(x) E k[x] 
is a polynomial whose Galois group has odd order or, equivalently, whose splitting 
field has odd degree over k, then f is solvable by radicals. 

The next theorem gives an example showing that the converse of Galois's The
orem is false in prime characteristic. 

Lemma A-5.65. The polynomial f(x) = xP - x - t E lFp[t] has no roots in lFp(t), 
the field of rational functions over lFp. 
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Proof. If there is a root a of f(x) lying in 1Fp(t), then there are g(t), h(t) E 1Fp[t] 
with a= g/h; we may assume that gcd(g, h) = 1. Since a is a root off, we have 
(g/h)P - (g/h) = t; clearing denominators, there is an equation 

gP - hp-lg= thP 

in 1Fp[t]. Hence, g I thP. Since gcd(g, h) = 1, we have g I t, so that g(t) = at 
or g(t) is a constant, say, g(t) = b, where a, b E 1Fp. Transposing hP-1g in the 
displayed equation shows that h I gP; but gcd(g, h) = 1 forces h to be a constant. 
We conclude that if a= g/h, then a= at or a= b. In the first case, 

O=aP-a-t 

= (at)P - (at) - t 

= aPtP - at-t 

= atP - at - t (by Fermat's Theorem) 

= t(atP-l - a - 1). 

Hence, atP- 1 -a-1 = 0. But a ¥- 0, and this contradicts t being transcendental over 
IFw In the second case, a= b E 1Fp. But bis not a root off, for f(b) = bP-b-t = -t, 
by Fermat's Theorem. Thus, no root a off can lie in 1Fp(t). • 

Theorem A-5.66. Let k = 1Fp(t), where p is prime. The Galois group of f(x) = 
xP - x - t over k is cyclic of order p, but f is not solvable by radicals over k. 

Proof. Let a be a root off. It is easy to see that the roots off are a+ i, where 
0 :::; i < p, for Fermat's Theorem gives iP = i in 1Fp, and so 

f(a + i) =(a+ i)P - (a+ i) - t = aP + iP - a - i - t = aP - a - t = 0. 

It follows that f is a separable polynomial and that k(a) is a splitting field off 
over k. We claim that f is irreducible in k[x]. Suppose that f = gh, where 

g(x) = xd + cd-1Xd-l +···+co E k[x] 

and 0 < d < deg(!) = p; then g is a product of d factors of the form x - (a+ i). 
Now -cd-1 E k is the sum of the roots: -Cd-1 = da + j, where j E 1Fp, and so 
da Ek. Since 0 < d < p, however, d ¥- 0 ink, and this forces a Ek, contradicting 
Lemma A-5.65. Therefore, f is an irreducible polynomial in k[x]. Since deg(!)= p, 
we have [k(a) : k] = p and, since f is separable, I Gal(k(a)/k)I = [k(a) : k] = p. 
Therefore, Gal(k(a)/k) ~ Zp. 

It will be convenient to have certain roots of unity available. Define 

n = {w: wq = 1, where q is a prime and q < p}. 

We claim that a rt k(!l). On the one hand, if n = ITq<p q, then n is contained in 
the splitting field of xn - 1, and so [k(!l) : k] I n!, by Theorem A-5.3. It follows 
that p f [k(n) : k]. On the other hand, if a E k(n), then k(a) ~ k(!l) and 
[k(!l) : k) = [k(!l) : k(a)J[k(a) : k] = p[k(!l) : k(a)]. Hence, p I [k(n) : k], and this 
is a contradiction. 

If f were solvable by radicals over k(il), there would be a radical extension 

k(!l) = Bo ~ Bi ~ .. · ~ Br 
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with k(O, a)~ Br. We may assume, for each i ~ 1, that Bi/ Bi-1 is of prime type; 
that is, Bi= Bi-1(ui), where u?i E Bi-1 and qi is prime. There is some j ~ 1 with 
a E Bj but a~ Bj-l· Simplifying notation, we set Uj = u, qi = q, Bj-1 = B, and 
Bj = B'. Thus, B' = B(u), uq = b E B, a E B', and a, u ~ B. We claim that 
f(x) = xP - x - t, which we know to be irreducible in k[x], is also irreducible in 
B[xJ. By Accessory Irrationalities (Exercise A-5.3 on page 199), restriction gives 
an injection Gal(B(a)/B) -+ Gal(k(a)/k) ~ ZP" If Gal(B(a)/B) = {1}, then 
B(a) =Band a EB, a contradiction. Therefore, Gal(B(a)/B) ~ Zp, and f is 
irreducible in B[x], by Exercise A-5.11 on page 200. 

Since u ~ B' and B contains all the qth roots of unity, Proposition A-3.94 shows 
that xq - bis irreducible in B[x], for it does not split in B(xJ. Now B' = B(u) is a 
splitting field of xq - b, and so [B': BJ= q. We have B ~ B(a) ~ B', and 

q = [B': BJ= [B': B(a)][B(a): BJ. 

Since q is prime, [B' : B(a)J = 1; that is, B' = B(a), and so q = [B(a) : BJ. 
As a is a root of the irreducible polynomial f(x) = xP - x - t E B(x], we have 
[B(a) : B] = p; therefore, q = p. Now B(u) = B' = B(a) is a separable extension, 
by Proposition A-5.47, for a is a separable element. It follows that u E B' is also 
a separable element, contradicting irr(u, B) = xq - b = xP - b = (x - u)P having 
repeated roots. 

We have shown that f is not solvable by radicals over k(O). It follows that f 
is not solvable by radicals over k, for if there were a radical extension k = Ro ~ 
Rl ~···~Rt with k(a) ~Rt, then k(O) = Ro(O) ~ Rl(O) ~ · · · ~ Rt(O) would 
show that f is solvable by radicals over k(O), a contradiction. • 

Exercises 

* A-5.13. (i) Let rJ, T E 85 , where rJ is a 5-cycle and T is a transposition. Prove that 
85 = (rJ,T); that is, 8s is generated by rJ,T. 

(ii) Show that 86 contains a 6-cycle rJ and a transposition T which generate a proper 
subgroup of 85. 

* A-5.14. Let k be a field, let f(x) E k[x] be a separable polynomial, and let E/k be 
a splitting field of f. Assume further that there is a factorization f(x) = g(x)h(x) in 
k[x], and that B/k and C/k are intermediate fields that are splitting fields of g and h, 
respectively. 

(i) Prove that Gal(E/ B), Gal(E/C) are normal subgroups of Gal(E/k). 

(ii) Prove that Gal(E/B) n Gal(E/C) = {l}. 

(iii) If B n C = k, prove that Gal(E/ B) Gal(E/C) = Gal(E/k). 
Hint. Use the Fundamental Theorem of Galois Theory, along with Proposi
tion A-4.83 and Theorem A-5.17, to show, in this case, that 

Gal(E/k) ~ Gal(B/k) x Gal(C/k). 

(Note that Gal(B/k) is not a subgroup of Gal(E/k).) 
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·, 

(iv) Use (iii) to give another proof that Gal(E/Q) ~ V, where E = Q(V2 + ./3) (see 
Example A-3.89 on page 81). 

(v) Let f(x) = (x3 - 2)(x3 - 3) E Q[x). If B/Q and G/Q are the splitting fields of 
x 3 - 2 and x 3 - 3 inside <C, prove that Gal(E/Q) '¥!- Gal(B/Q) x Gal(G/Q), where 
E is the splitting field of f contained in <C. 

A-5.15. Let k be a field of characteristic 0, and let f(x) E k[x) be a polynomial of degree 
5 with splitting field E/k. Prove that f is solvable by radicals if and only if [E: k) < 60. 

* A-5.16. Let Ebe a field and let Aut(E) be the group of·all (field) automorphisms of E. 
Prove that Aut(E) = Gal(E/k), where k is the prime field of E. 

A-5.17. Let E/k be a Galois extension with Gal(E/k) cyclic oforder n. If cp: Int(E/k)-+ 
Div(n) is defined by cp(L) = [L: k], prove that cp is an order-preserving lattice isomorphism 
(see Example A-5.48(iv)). 

A-5.18. Use Theorem A-5.57 to prove that lFpm is a subfield of lFpn if and only if m In. 

A-5.19. Find all finite fields k whose subfields form a chain; that is, if k' and k" are 
subfields of k, then either k' ~ k" or k" ~ k'. 

A-5.20. (i) Let k be an infinite field, let f(x) E k[x) be a separable polynomial, and let 
E = k( a 1, ... , an), where a1, ... , an are the roots off. Prove that there are Ci E k 
so that E = k((J), where (3 = c1a1 + · · · + Cnan. 

Hint. Use the proof of Steinitz's Theorem. 

(ii) (Janusz) Let k be afinite field and let k(a,(3)/k be finite. If k(a)nk((J) = k, prove 
that E = k(a + (3). (This result is false in general. For example, N. Boston used 
the computer algebra system MAGMA to show that there are primitive elements 
a of lF26 and (3 of lF210 such that 1F2(a,(J) = JF230 while JF2(a + (3) = lF21s.) 
Hint. Use Proposition A-3.74(ii). 

A-5.21. Let E/k be a finite Galois extension with Galois group G = Gal(E/k). Define 
the trace T: E-+ Eby 

T(u) = L a(u). 
uEG 

(i) Prove that im T ~ k and that T(u + v) = T(u) + T(v) for all u, v EE. 

(ii) Use independence of characters to prove that T is not identically zero. 

A-5.22. Let E/k be a Galois extension with [E : k) = n and with cyclic Galois group 
G = Gal(E/k), say, G = (a). Definer= a - lE, and prove that imr = kerT, where 
T: E -+ E is the trace. Conclude, in this case, that the Trace Theorem is true: 

kerT ={a EE: a= a(u) - u for some u EE}. 

Hint. Show that ker r = k, so that dim(im r) = n - 1 = dim(ker T). 

A-5.23. Let k be a field of characteristic p > 0, and let E/k be a Galois extension having 
a cyclic Galois group G = (a) of order p. Using the Trace Theorem, prove that there is 
an element u E E with a(u) - u = 1. Prove that E = k(u) and that there is c E k with 
irr(u, k) = xP - x - c. (This is an additive version of Hilbert's Theorem 90.) 

Hint. If u is a root of g(x) = xP - x - c, then so is u + i for 0 :s; i :s; p - 1. But 
irr(u, k) = rrr,:~ x - (u + i). 
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Calculations of Galois Groups 

We now show how to compute Galois groups of polynomials of low degree. The 
discriminant of a polynomial will be useful, as will some group-theoretic theorems 
we will cite when appropriate. 

If f(x) E k[x] is a monic polynomial having a splitting field E/k, then there is 
a factorization in E[x]: 

f(x) =IT (x - Qi), 
i 

where Qi, ... , Qn is a list of the roots off (with repetitions if f has repeated roots). 

Definition. Define 

A= A(!)= IT(Qi - Qj), 
i<j 

and define the discriminant to be 

D = D(f) = A2 = IT(Qi - Qj) 2. 
i<j 

The product A = Tii<j (Qi - Qj) has one factor Qi - Qj for each distinct pair of 
indices (i,j) (the inequality i < j prevents a pair of indices from occurring twice). 
It is clear that f has repeated roots if and only if its discriminant D(f) = 0. 
Each a E Gal(E/k) permutes the roots, and so a permutes all the distinct pairs. 
However, it may happen that i < j while the subscripts involved in a(Qi) - a(Qj) 
are in reverse order. For example, suppose the roots of a cubic are Qi, Q2, and Q3. 
If there is a E G with a(Q1) = Q2, a(Q2) = Qi, and a(Q3) = Q3 (that is, a is a 
transposition), then 

a(A) = (a(Q1) - a(Q2)) (a(Q1) - a(Q3)) (a(Q2) - a(Q3)) 

= (Q2 - Qi)(Q2 - Q3)(Q1 - Q3) = -(Q1 - Q2)(Q2 - Q3)(Q1 - Q3) =-A. 

Each term Qi - Qj occurs in a(A), but with a possible sign change. We conclude, 
for all a E Gal(E/k), that a(A) =±A. It is natural to consider A2 rather than A, 
for A depends not only on the roots of f(x), but also on the order in which they 
are listed, whereas D = A 2 does not depend on the ordering. For a connection 
between discriminants and the alternating group An, see the footnote on page 141. 
In fact, a(A) = sgn(a)A. 

Proposition A-5.67. If f(x) E k[x] is a separable polynomial, then its discrimi
nant D(f) lies ink. 

Proof. Let E/k be a splitting field off; since f is separable, Theorem A-5.42 
applies to show that E/k is a Galois extension. Each a E Gal(E/k) permutes the 
roots Qi, ... ,Qn off, and a(A) =±A, as we have just seen. Therefore, 

a(D) = a(A2) = a(D.) 2 = (±A)2 = D, 

so that DE E 0 . But E/k is a Galois extension, so that E 0 = k and DE k. • 
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If f(x) = x2 +bx+ c E k[x), where k is a field of characteristic =f:. 2, then the 
quadratic formula gives the roots off: 

a = H -b + v'b2 - 4c) and (3 = H -b - v'b2 - 4c). 

It follows that 
D = D..2 = (a - (3)2 = b2 - 4c. 

If f is a cubic with roots a, (3, 7, then 

D = D..2 = (a - (3)2(a - 7)2((3 - 7)2; 

it is not obvious how to compute the discriminant D from the coefficients off (see 
Theorem A-5.68(ii) below). 

Recall our discussion of the classical formulas for cubics and quartics. For each 
f(x) = xn + Cn-1Xn-l +···+co E k[x], the change of variable x to x - ~Cn-1 

produces a reduced polynomial f; that is, one with no xn-l term. This change 
of variable is always possible if k has characteristic O; it is also possible if the 
characteristic is p and p f n. 

If f(x) = xn + Cn-1Xn-l +···+co E k[x] and (3 Ek is a root off, then 

Q = f((3) = f((3 - ~Cn-1). 

Hence, (3 is a root off if and only if (3 - ~Cn-1 is a root off. 

Theorem A-5.68. Let k be a field of characteristic 0. 

(i) A polynomial f(x) E k[x] and its reduced polynomial f(x) have the same 
discriminant: D(f) = D(f). 

(ii) The discriminant of a reduced cubic f(x) = x3 + qx + r is 

D = D(f) = -4q3 - 27r2 • 

Proof. 

(i) If the roots off= I: Ci Xi are ai, ... , an, then the roots off are f31, ... , f3n, 
where f3i = ai + ~Cn-1 · Therefore, f3i - (3j = ai - aj for all i, j, 

D.(f) = IJ(ai - aj) = IJ(f3i - f3j) = D.(f), 
i<j i<j 

and so the discriminants, which are the squares of these, are equal. 

(ii) The cubic formula gives the roots off as 

a=g+h, f3=wg+w 2h, and 7=w2g+wh, 

where g = [~ (-r +.JR)] 113 , h = -q/3g, R = r 2 + 2~q3 , and w is a cube 
root of unity. Because w3 = 1, we have 

a - (3 = (g + h) - (wg + w2h) 

= (g - w2h) - (wg - h) 

= (g - w2h) - (g -w2h)w 

= (g - w2h)(l - w). 
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Similar calculations give 

a - / = (g + h) - (w2g + wh) = (g - wh)(I - w2 ) 

and 

(3 - 'Y = (wg + w2h) - (w2g + wh) = (g - h)w(I - w). 

It follows that 

6. = (g - h)(g -wh)(g - w2h)w(I - w2)(1 -w)2 . 

By Exercise A-5.24 on page 232, we have w(l - w2)(1 - w) 2 = 3iv'3; 
moreover, the identity 

x3 - 1 = (x - l)(x -w)(x - w2), 

with x = g / h, gives 

(g - h)(g - wh)(g - w2h) = g3 - h3 =JR 

(we saw that g3 - h3 = VR on page 5). Therefore, 6. = 3iv'3VR, and 

D = 6.2 = -27R = -27r2 - 4q3 • • 

Remark. Let k be a field, and let f ( x) = amxm + am-i xm-i + · · · + ai x + ao and 
g(x) = bnxn + bn-ixn-i + · · · + bix + bo E k[x] have degrees m 2: 1 and n 2: 1, 
respectively. Their resultant is defined as 

Res(f,g) = det(M), 

where M = M(f, g) is the (m + n) x (m + n) matrix 

am am-i ai ao 
am am-i ai ao 

am am-i ai ao 

M= 
bn bn-i bi bo 

bn bn-i bi bo 
bn bn-i bi bo 

there are n rows for the coefficients ai of f and m rows for the coefficients bj of 
g; all the entries other than those shown are assumed to be 0. It can be proved 
that Res(f,g) = 0 if and only if f and g have a nonconstant common divisor 
(Jacobson [51], p. 309). We mention the resultant here because the discriminant 
can be computed in terms of it: 

D(f) = (-1r(n-i)/2Res(f, J'), 

where f'(x) is the derivative of f (see van der Waerden [118], pp. 83-88, or 
Dummit-Foote [28], pp. 600-602). <Ill 

Here is a way to use the discriminant in computing Galois groups. 
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Proposition A-5.69. Let k be a field of characteristic =I 2, let f(x) E k[x] be a 
polynomial of degree n with no repeated roots, and let D = A 2 be its discriminant. 
Let E/k be a splitting field off, and let G = Gal(E/k) be regarded as a subgroup 
of Sn (as in Theorem A-5.3). 

(i) If H =Ann G, then EH= k(b.). 

(ii) G is a subgroup of An if and only if A= VD Ek. 

Proof. 

(i) The Second Isomorphism Theorem gives H = (G n An) <I G and 

[G : HJ = [G : Ann GJ = [AnG : An] :::; [Sn : An] = 2. 

By the Fundamental Theorem of Galois Theory (which applies because 
f has no repeated roots, hence is separable), [EH : k] = [G : H], so 
that [EH : k] = [G : HJ :::; 2. By Exercise A-5.28 on page 232, we have 
k(A) ~ EAn, and so k(A) ~EH, for His contained in An. Therefore, 

[EH : k] = [EH : k(A)J[k(A) : k] :::; 2. 

There are two cases. If [EH : k] = 1, then each factor in the dis
played equation is 1; in particular, [EH : k(A)] = 1 and EH = k(A). 
If [EH : k] = 2, then [G : HJ = 2 and there exists u E G, u ¢ An, 
so that u(A) = -A. Now A =I 0, because f has no repeated roots, 
and -A =I A, because k does not have characteristic 2. Hence, A ¢ 
EG = k and [k(A) : k] > 1. It follows from the displayed inequality that 
[EH : k(A)] = 1 and EH = k(A). 

(ii) The following are equivalent: G ~ An; H = G n An = G; EH = EG = k. 
Since EH = k(A), by part (i), EH = k is equivalent to k(A) = k; that 
is, A = VD E k. • 

We can now show how to compute Galois groups of polynomials over Q of low 
degree. 

If f (x) E Q[x] is quadratic, then its Galois group has order either 1 or 2 (because 
the symmetric group S2 has order 2). The Galois group has order 1 if f splits; it 
has order 2 if f does not split; that is, if f is irreducible. 

If f(x) E Q[x] is a cubic having a rational root, then its Galois group G is the 
same as that of its quadratic factor. Otherwise f is irreducible; since IGI is now a 
multiple of 3, by Corollary A-5.9, and G ~ S3, it follows that either G ~ A3 ~ Z3 
or G ~ S3. 

Proposition A-5.70. Let f(x) E Q[x] be an irreducible cubic with Galois group 
G and discriminant D. 

(i) f has exactly one real root if and only if D < 0, in which case G ~ S3 . 

(ii) f has three real roots if and only if D > 0. In this case, either VD E Q 
and G ~ Z3 or VD ¢ Q and G ~ S3. 
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Proof. Note first that D "I 0, for irreducible polynomials over Q have no repeated 
roots because Q has characteristic 0. Let E/Q be the splitting field off. 

(i) Suppose that f has one real root a and two complex roots: (3 = u +iv 
and 73 = u - iv, where u, v ER Since (3 - 73 = 2iv and a= a, we have 

D. =(a - (3)(a -/3)((3- /3) =(a - (3)(a - (3)((3-/3) = 2ivla - f31 2 , 

and so D = D..2 = -4v2 la - (31 4 < 0. Now E "I Q(a), because (3 EE is 
not real, so that [E: QJ = 6 and G ~ 83. 

(ii) If f has three real roots, then D. is real (by definition), D = D..2 > 0, and 
..fi5 is real. By Proposition A-5.69(ii), G ~ A3 ~ /£3 if and only if ..fi5 
is rational, and G ~ 83 if ..fi5 is irrational. • 

Example A-5. 71. The polynomial f (x) = x3 - 2 E Q[x] is irreducible, by Eisen
stein's Criterion. Its discriminant is D = -108, and so its Galois group is 83, by 
part (i) of the proposition. 

The polynomial x3 - 4x + 2 E Q[x] is irreducible, by Eisenstein's Criterion; 
its discriminant is D = 148, and so it has three real roots. Since JI48 = 2v'37 is 
irrational, the Galois group is 83. 

The polynomial f(x) = x3 -48x+64 E Q[x] is irreducible, by Theorem A-3.101 
(it has no rational roots); the discriminant is D = 21234 , and so f has three real 
roots. Since ..fi5 = 2632 is rational, the Galois group is A3 ~ /£3. <Ill 

The following corollary can sometimes be used to compute a splitting field of 
a polynomial even when we do not know all of its roots. 

Corollary A-5. 72. Let f (x) = x3 + qx + r E C[x] have discriminant D and roots 
u, v and w. If F = Q(q, r), then F(u, ..fi5) is a splitting field off over F. 

Proof. Let E = F(u, v, w) be a splitting field off, and let K = F(u, ..fi5). Now 
K ~ E, for the definition of discriminant gives ..fi5 = ±(u -v)(u-w)(v -w) EE. 
For the reverse inclusion, it suffices to prove that v E K and w E K. Since u E K 
is a root of f, there is a factorization 

f(x) = (x - u)g(x) in K[x]. 

Now the roots of the quadratic g are v and w, so that 

g(x) = (x - v)(x - w) = x 2 - (v + w)x + vw. 

Since g has its coefficients in K and u E K, we have 

g(u) = (u - v)(u - w) EK. 

Therefore, 

v - w = (u - v)(u - w)(v - w)/(u - v)(u - w) 

= ± ..fi5/(u -v)(u - w) EK. 

On the other hand, v + w E K, because it is a coefficient of g and g(x) E K[x]. 
But we have just seen that v -w EK; hence, v, w EK and E = F(u, v, w) ~ K = 
F(u, ..fi5). Therefore, F(u, v, w) = F(u, ..fi5). • 
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In Example A-1.4 on page 6, we observed that the cubic formula giving the 
roots of f(x) = x 3 + qx + r involves ../R, where R = r 2 + 4q3 /27. Thus, when 
R is negative, every root of f involves complex numbers. Since every cubic f has 
at least one real root, this phenomenon disturbed mathematicians of the sixteenth 
century, and they spent much time trying to rewrite specific formulas to eliminate 
complex numbers. The next theorem shows why such attempts were doomed to 
fail. On the other hand, these attempts ultimately led to a greater understanding 
of numbers in general and of complex numbers in particular. 

Theorem A-5.73 (Casus Irreducibilis). If f(x) = x 3 + qx + r E Q[x) is an 
irreducible cubic having three real roots u, v, and w, then any radical extension 
Kt/Q containing the splitting field off is not real; that is, if Kt ~ <C, then Kt ~JR.. 

Proof. Let F = Q(q, r), let E = F(u, v, w) be a splitting field off, and let 

F = Ko ~ Ki ~ · · · ~ Kt 

be a radical tower with E ~ Kt. 

Since all the roots u, v and w are real, 

D = ((u -v)(u -w)(v-w))2 2: 0, 

and so ..fi5 is real. There is no loss in generality in assuming that ..fi5 has been 
adjoined first: 

Ki= F(..fi5). 

We claim that f remains irreducible in Ki[x). If not, then Ki contains a root of 
f, say, u. Now w E Ki(v), because x - w = f(x)/(x - u)(x - v) E Ki(v)[x), 
and hence E ~ Ki(v). The reverse inclusion holds, for E contains v and ..fi5 = 
(u-v)(u-w)(v-w); thus, E = Ki(v). Now [E: Ki):::; 2 and [Ki : F):::; 2, so that 
[E : F) = [E : Ki)[Ki : F) is a divisor of 4. By Theorem A-3.88, the irreducibility 
of f over F gives 3 I [E : F). This contradiction shows that f is irreducible in 
Ki[x]. 

We may assume that each pure extension Ki+l /Ki in the radical tower is of 
prime type. As f is irreducible in Ki[x) and splits in Kt[x] (because E ~ Kt), 
there is a first pure extension Kj+l / Kj with f irreducible in Kj [x] and factoring in 
Kj+i[x]. By hypothesis, Kj+i = Kj(a), where a is a root of xP - c for some prime 
p and some c E Kj. By Proposition A-3.94, either xP - c is irreducible over Kj or c 
is a pth power in Kj. In the latter case, we have Kj+l = Ki, contradicting f being 
irreducible over Ki but not over Kj+l. Therefore, xP - c is irreducible over Ki, so 
that 

[KHi : Ki] = p. 

Since f factors over Ki+i, there is a root off lying in it, say, 

u E Ki+li 

hence, Ki ~ Kj(u) ~ Kj+l· But f is an irreducible cubic over Kj, so that 
3 I [Kj+i : Kj] = p, by Theorem A-3.88. It follows that p = 3 and 

Ki+l = Kj(u). 
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Now Kj+l contains u and VJ5, so that Kj ~ E = F(u, ../J5) ~ KJ+l• by 
Corollary A-5.72. Since [KJ+l : Kj] has no proper intermediate subfields (Corol
lary A-5.9 again), we have Kj+1 = E. Thus, KH1 is a splitting field off over Kj, 
and hence Kj+l is a Galois extension of Kj. The polynomial x3 - c (remember 
that p = 3) has a root, namely a, in KJ+l• so that Theorem A-5.42 says that KJ+1 
contains the other roots wa and w2a as well, where w is a primitive cube root of 
unity. But this gives w = (wa)/a E KH1, which is a contradiction because w is 
not real while KJ+l ~ Kt ~ JR. • 

Before examining quartics, we cite a property of 84 which is proved using a 
group-theoretic theorem of Sylow: If d is a divisor of 1841 = 24, then 84 has a 
subgroup of order d; moreover, V and Z.4 are nonisomorphic subgroups of order 4, 
but any two subgroups of order d # 4 are isomorphic. We conclude that the Galois 
group G of a quartic is determined, up to isomorphism, by its order unless IGI = 4. 

Consider a (reduced) quartic f(x) = x4 + qx2 + rx + s E Q[x]; let E/Q be its 
splitting field and let G = Gal(E/Q) be its Galois group (by Exercise A-5.25(ii) on 
page 232, a polynomial and its reduced polynomial have the same Galois group). 
If f has a rational root a, then f(x) = (x - a)c(x), and its Galois group is the 
same as that of the cubic factor c; but Galois groups of cubics have already been 
discussed. Suppose that f = hi is the product of two irreducible quadratics; let a be 
a root of h and let (3 be a root of i. If Q(a) n Q((3) = Q, then Exercise A-5.14(iii) 
on page 221 shows that G ~ V, the four-group; otherwise, a E Q((3), so that 
Q((3) = Q(a,(3) = E, and G has order 2. 

We are left with the case of f irreducible. The basic idea now is to compare G 
with the four-group V, namely, the normal subgroup of 84, 

v = { (1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3) }, 

so that we can identify the fixed field of V n G. If the four roots of f are a1, a2, a3, 
a4 (Proposition A-5.75(ii) shows that these are distinct), consider the numbers: 

{
u = (a1 + a2)(a3 + a4), 

(12) v = (a1 + a3)(a2 + a4), 

w = (a1 + a4)(a2 + a3). 

It is clear that if a EV n G, then a fixes u, v, and w. Conversely, if a E 84 fixes 
u = (a1 + a2)(a3 + a4), then 

a EV U { (1 2), (3 4), (1 3 2 4), (1 4 2 3) }. 

However, none of the last four permutations fixes both v and w, and so a E G fixes 
each of u, v, w if and only if a EV n G. Therefore, 

Evna = Q(u,v,w). 

Definition. The resolvent cubic of f(x) = x4 + qx2 + rx +sis 

g(x) = (x - u)(x - v)(x - w), 

where u, v, w are the numbers defined in Eqs. (12). 
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Proposition A-5.74. The resolvent cubic of f(x) = x4 + qx2 + rx + s is 

g(x) = x 3 - 2qx2 + (q2 - 4s)x + r 2 . 

Proof. If f ( x) = ( x2 + j x + .e) ( x2 - jx + m), then we saw, in our discussion of the 
quartic formula on page 7, that j2 is a root of 

h(x) = x 3 + 2qx2 + (q2 - 4s)x - r 2 , 

a polynomial differing from the claimed expression for g only in the sign of its 
quadratic and constant terms. Thus, a number f3 is a root of h if and only if -{3 is 
a root of g. 

Let the four roots o:i, 0:2, 0:3, 0:4 off be indexed so that o:i, 0:2 are the roots of 
x2 + jx + .e and o:3 , 0:4 are the roots of x2 - jx + m. Then j = -(0:1 + o:2) and 
-j = -(0:3 + 0:4); therefore, 

u = (0:1+0:2)(0:3 + 0:4) = -j2 

and -u is a root of h since h(j2 ) = 0. 

Now factor f into two quadratics, say, 

f(x) = (x2 + JX + R)(x2 -)x + m), 
where o:1 , o:3 are the roots of the first factor and 0:2, 0:4 are the roots of the second. 
The same argument as before now shows that 

-2 
v = (0:1 + 0:3)(0:2 + 0:4) = -j ; 

hence -v is a root of h. Similarly, -w = -(o:1 + 0:4)(0:2 + 0:3) is a root of h. 
Therefore, 

h(x) = (x + u)(x + v)(x + w), 

and so 
g(x) = (x - u)(x - v)(x - w) 

is obtained from h by changing the sign of the quadratic and constant terms. • 

Proposition A-5.75. Let f(x) E Q[x] be a quartic polynomial. 

(i) The discriminant D(f) is equal to the discriminant D(g) of its resolvent 
cubic g. 

(ii) If f is irreducible, then g has no repeated roots. 

Proof. 

(i) One checks easily that 

u - v = 0:10:3 + 0:20:4 - 0:10:2 - 0:30:4 = -(0:1 - 0:4)(0:2 - 0:3). 

Similarly, 

u -w = -(0:1 - 0:3)(0:2 - 0:4) and v - w = (0:1 - 0:2)(0:3 - 0:4). 

We conclude that 

D(g) = [(u - v)(u - w)(v - w)] 2 = [- II(o:i - O:j) r = D(f). 
i<j 
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(ii) If f is irreducible, then it has no repeated roots (it is separable because 
Q has characteristic 0), and so D(J) =f. 0. But D(g) = D(J) =f. 0, and so 
g has no repeated roots. • 

In the notation of Eqs. (12) on page 229, if f is an irreducible quartic, then, by 
(ii) above, u,v,w are distinct, and our discussion there gives Evnc = Q(u,v,w), 
where G = Gal(E/Q) is the Galois group off. We can almost compute G; there 
is one ambiguous case. The resolvent cubic contains much information about the 
Galois group of the irreducible quartic from which it comes. 

Proposition A-5.76. Let f(x) E Q[x) be an irreducible quartic. Let G be its 
Galois group, D its discriminant, g(x) its resolvent cubic, and m the order of the 
Galois group of g. 

(i) If m = 6, then G ~ 84. In this case, g is irreducible and VD is irrational. 

(ii) If m = 3, then G ~ A4. In this case, g is irreducible and VD is rational. 

(iii) If m = 1, then G ~ V. In this case, g splits in Q[x). 

(iv) If m = 2, then G ~ D8 or G ~ Z4 . In this case, g has an irreducible 
quadratic factor. 

Proof. We have seen that Evnc = Q(u,v,w). By the Fundamental Theorem of 
Galois Theory, 

[G: V n G) = [Evnc: QJ = [Q(u, v, w) : QJ =I Gal(Q(u, v, w)/Q)I = m. 

Since f is irreducible, IGI is divisible by 4, by Corollary A-5.9, and the group
theoretic statements follow from Exercise A-5.31 on page 233. Finally, in the first 
two cases, IGI is divisible by 12, and Proposition A-5.69(ii) shows whether G ~ 84 
or G ~ A4 . The conditions on gin the last two cases are easy to see. • 

Example A-5.77. 

(i) Let f(x) = x4 - 4x + 2 E Q[x); f is irreducible, by Eisenstein's cri
terion. (Alternatively, we can see that f has no rational roots, using 
Theorem A-3.101, and then show that f has no irreducible quadratic 
factors by examining conditions imposed on its coefficients.) By Propo
sition A-5.74, the resolvent cubic is 

g(x) = x3 - Bx+ 16. 

Now g is irreducible (for g(x) = x3 + 2x + 1 in JF5 [x), and the latter 
polynomial is irreducible because it has no roots in lF5). The discriminant 
of g is -4864, so that Theorem A-5.70(i) says that the Galois group of g 
is 83, hence has order 6. Theorem A-5.76(i) now shows that G ~ 84. 

(ii) Let f(x) = x4 - 10x2 + 1 E Q[x); f is irreducible, by Example A-3.89. 
By Proposition A-5.74, the resolvent cubic is 

x3 + 20x2 + 96x = x(x + 8)(x + 12). 

In this case, Q( u, v, w) = Q and m = 1. Therefore, G ~ V. (This should 
not be a surprise once we recall Example A-3.89, for f is the irreducible 
polynomial of a= J2 + v'3, where Q(a) = Q( J2, v'3).) <1111 
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An interesting open question is the inverse Galois problem: Which finite 
abstract groups Gare isomorphic to Gal(E/Q), where E/Q is a Galois extension? 
Hilbert proved that the symmetric groups Sn are such Galois groups, and Sha
farevich proved that every solvable group is a Galois group (see Neukirk-Schmidt
Wingberg [84], Chapter IX §6). After the classification of the finite simple groups, 
it was shown that most simple groups are Galois groups. For more information, 
the reader is referred to Malle-Matzat [74] and Serre [107]. 

Exercises 

* A-5.24. Prove that w(l - w2 )(1 - w)2 = 3i\!'3, where w = e21fi/3 . 

* A-5.25. (i) Prove that if a i= 0, then f(x) and af(x) have the same discriminant and 
the same Galois group. Conclude that it is no loss in generality to restrict our 
attention to monic polynomials when computing Galois groups. 

(ii) Let k be a field of characteristic O. Prove that a polynomial f(x) E k[x] and its 
reduced polynomial f(x) have the same Galois group. 

A-5.26. (i) Let k be a field of characteristic 0. If f(x) = x3 + ax2 +bx+ c E k[x], then 
its reduced polynomial is x 3 + qx + r, where 

b 12 d 23 lb q = - 3a an r = 27a - 3a + c. 

(ii) Show that the discriminant of f is 

D = a2 b2 - 4b3 - 4a3 c - 27c2 + 18abc. 

A-5.27. Find the Galois group of the cubic polynomial arising from the castle problem 
in Exercise A-1.1 on page 8. 

* A-5.28. If a E Sn and f(x1, ... ,xn) E k[x1, ... ,xn], where k is a field, define 

(af)(x1, ... ,Xn) = f(xu1, ... ,Xun)· 

(i) Prove that (a, f(x1, ... , Xn)) f-t a f is an action of Sn on k[x1, ... , Xn] (see Exam
ple A-4.55(ii) on page 152). 

(ii) Let A= A(x1, ... ,xn) = fli<i(xi - x;) (on page 223, we saw that aA =±A for 
all a E Sn)· If a E Sn, prove that a E An if and only if a A= A. 
Hint. Define <p: Sn -t G, where G is the multiplicative group {1, -1}, by 

) { 
1 if aA =A, 

<p(a = 
-1 if a A= -A. 

Prove that <pis a homomorphism, and that ker<p =An. 

A-5.29. Prove that if f(x) E Ql[x] is an irreducible quartic whose discriminant has a 
rational square root, then the Galois group of f has order 4 or 12. 

A-5.30. Let f(x) = x4 + rx + s E Q[x] have Galois group G. 

(i) Prove that the discriminant off is -27r4 + 256s3 . 

(ii) Prove that ifs< 0, then G is not isomorphic to a subgroup of A 4 . 

(iii) Prove that f(x) = x4 + x + 1 is irreducible and that G ~ S4. 
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* A-5.31. Let G be a subgroup of 84 with IGI a multiple of 4; define m = IG/(G n V)j. 

(i) Prove that m is a divisor of 6. 

(ii) If m = 6, then G = 84; if m = 3, then G = A4; if m = 1, then G = V; if m = 2, 
then G ~ Ds, G ~ Z4, or G ~ V. 

* A-5.32. Let G be a subgroup of 84, and let G act transitively on X = {1, 2, 3, 4}. If 
IG/(V n G)I = 2, prove that G ~ Ds or G ~ ;l4. (If we merely assume that G acts 
transitively on X, then IGI is a multiple of 4 (Corollary A-5.9). The added hypothesis 
IG/(V n G)I = 2 removes the possibility G ~ V when m = 2.) 

A-5.33. Compute the Galois group over Q of x4 + x2 - 6. 

A-5.34. Compute the Galois group over Q of f(x) = x4 + x2 + x + 1. 

Hint. Use Example A-3.105 to prove irreducibility off, and prove irreducibility of the 
resolvent cubic by reducing mod 2. 

A-5.35. Compute the Galois group over Q of f(x) = 4x4 + 12x + 9. 

Hint. Prove that f is irreducible in two steps: first show that it has no rational roots, 
and then use Descartes's method (on page 3) to show that f is not the product of two 
quadratics over Q. 





Chapter A-6 

Appendix: Set Theory 

Pick up any calculus book; somewhere near the beginning is a definition of function 
which reads something like this: A function f: A -+ B is a rule that assigns to 
each element a in a set A exactly one element, called f(a), in a set B. Actually, 
this isn't too bad. The spirit is right: f is dynamic; it is like a machine, whose 
input consists of the elements of A and whose output consists of certain elements 
of B. The sets A and B may be made up of numbers, but they don't have to be. 

One problem we have with this calculus definition of function lies in the word 
rule. To see why this causes problems, we ask when two functions are equal. If 
f is the function f(x) = x2 + 2x + 1 and g is the function g(x) = (x + 1) 2 , is 
f = g? We usually think of a rule as a recipe, a set of directions. With this 
understanding, f and g are surely different: f(5) = 25 + 10 + 1 and g(5) = 62 • 

These are different recipes; note, however, that both recipes cook the same dish: 
for example, f(5) = 36 = g(5). 

A second problem with the calculus definition is what a rule is. For example, 
is f: IR -+ IR, defined by 

f(x) = {1 if xis rational, 
0 if x is irrational, 

a function? Is the description off a rule? 

The simplest way to deal with these problems is to avoid the imprecise word 
rule. We begin with a little set theory. 

Definition. If Ai, A2, ... , An are sets, their cartesian product is 

Ai x A2 x ··· x An= {(ai,a2, ... ,an): ai E Ai for all i}. 

In particular, an ordered pair is an element (ai, a2) E Ai x A2. 

Two n-tuples (ai,a2, ... ,an) and (a~,a~, ... ,a~) are defined to be equal if 
ai = a~ for all subscripts i. -235 
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Informally, a function is what we usually call its graph. 

Definition. Let A and B be sets. A function f: A --"* B is a subset f ~ A x B 
such that, for each a E A, there is a unique b E B with (a, b) E f. The set A is 
called its domain, and the set B is called its target. 

If f is a function and (a, b) E f, then we write f(a) =band we call b the value 
of f at a. Define the image (or range) of f, denoted by im f, to be the subset of 
the target B consisting of all the values off. 

The second problem above - is f: JR. --"* JR., given by f ( x) = 1 if x is rational 
and f(x) = 0 if xis irrational, a function? - can now be resolved; f is a function. 

f = { (x, 1) : x is rational} U { (x, 0) : x is irrational} ~JR. x JR.. 

Before resolving the first problem arising from the imprecise term rule, let's see 
some more examples. 

Example A-6.1. 

(i) Consider squaring f: JR.--"* JR., given by f(a) = a2 • By definition, f is 
the parabola consisting of all points in the plane JR. x JR. of the form (a, a2 ). 

(ii) If A and Bare sets and bo EB, then the constant function at bo is the 
function f: A-* B defined by f(a) = bo for all a EA (when A= JR.= B, 
then the graph of a constant function is a horizontal line). 

(iii) For any set A, the identity function 

lA: A-* A 

is the function consisting of the diagonal, all (a, a) E Ax A, and lA (a) = 
a for all a E A. ~ 

To maintain the spirit of a function being dynamic, we often use the notation 

f: at-+ b, 

pronounced "f sends a to b,'' instead of f(a) = b. For example, we may write the 
squaring function as f: at-+ a2 instead of f(a) = a2 . 

Let's return to our first complaint about rules: when are two functions equal? 
Since functions f: A --"* B are subsets of A x B, let's review equality of subsets. 

Two subsets U and V of a set X are equal if they are comprised of exactly 
the same elements: If x EX, then x E U if and only if x E V. Now U is a subset 
of V, denoted by U ~ V if, for all u E U, we have u E V. Thus, U = V if and 
only if U ~ V and V ~ U. This obvious remark is important because many proofs 
of equality break into two parts, each showing that one subset is contained in the 
other. For example, let 

U = {x E JR.: x 2: O} and V = {x E JR.: there exists y E JR. with x = y2 }. 

Now U ~ V because x = (y'x) 2 E V, while V ~ U because y2 2: 0 for every real 
number y (if y < 0, then y =-a for a> 0 and y2 = a2). Hence, U = V. 

Proposition A-6.2. Let f: A --"* B and g: A --"* B be functions. Then f = g if 
and only if f(a) = g(a) for every a EA. 



Chapter A-6. Appendix: Set Theory 237 

ProM. Assume that f = g. Functions are subsets of Ax B, and so f = g means 
that each off and g is a subset of the other. If a E A, then (a, f(a)) E f; since 
f = g, we have (a, f(a)) E g. But there is only one ordered pair in g with first 
coordinate a, namely, (a, g( a)) (because the definition of function says that g gives 
a unique value to a). Therefore, (a, f(a)) =(a, g(a)), and equality of ordered pairs 
gives f(a) = g(a), as desired. 

Conversely, assume that f(a) = g(a) for every a E A. To see that f = g, it 
suffices to show that f ~ g and g ~ f. Each element off has the form (a, f(a)). 
Since f(a) = g(a), we have (a, f(a)) = (a, g(a)), and hence (a, f(a)) E g. Therefore, 
f ~ g. The reverse inclusion g ~ f is proved similarly. Therefore, f = g. • 

This proposition resolves the first problem raised by the imprecise term rule. 
If f, g: JR -t JR are given by f(x) = x2 + 2x + 1 and g(x) = (x + 1)2 , then f = g 
because f(a) = g(a) for every number a. 

Let us clarify a point. Can functions f: A -t B and g: A' ---+ B' be equal? 
Here is the commonly accepted usage. 

Definition. Functions f: A -t B and g: A' -t B' are equal if A = A', B = B', 
and f(a) = g(a) for all a E A. 

A function f: A -t B has three ingredients - its domain A, its target B, and 
its graph - and we are saying that two functions are equal if and only if they have 
the same domains, the same targets, and the same graphs. It is plain that the 
domain and the graph are essential parts of a function; why should we care about 
the target? Example A-7.24(iv) illustrates why the target is a necessary ingredient. 

If A is a subset of a set B, the inclusion i: A -t B is the function given by 
i(a) =a for all a E A; that is, i is the subset of A x B consisting of all (a, a) with 
a E A. If Sis a proper subset of a set A (that is, S ~ A and S =/:- A, which we 
denote by S £; A), then the inclusion i: S -t A is not the identity function ls 
because its target is A, not S; it is not the identity function lA because its domain 
is S, not A. 

Instead of saying that the values of a function f are unique, we sometimes 
says that f is single-valued or that it is well-defined. For example, if JR~ 
denotes the set of nonnegative reals, then y': JR~ ---+ JR~ is a function because we 
agree that Va> 0 for every positive number a. On the other hand, g(a) = ±va 
is not single-valued, and hence it is not a function. The simplest way to verify 
whether an alleged function f is single-valued is to phrase uniqueness of values as 
an implication: 

if a= a', then f(a) = f(a'). 

For example, consider the addition function a: Ql x Ql -t Ql. To say that a is 
well-defined is to say that if ( af b, cf d) = (a' f b', c' f d') in Ql x Ql, then a( af b, cf d) = 

a(a' fb', c' f d'); that is, afb +cf d =a' fb' + c' f d'. This is usually called the Law of 
Substitution. 

There is a name for functions whose image is equal to the whole target. 
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Definition. A function f: A --+ B is surjective (or onto) if 

im f = B. 

Thus, f is surjective if, for each b E B, there is some a E A (depending on b) 
with b = f(a). 

Example A-6.3. 

(i) The identity function lA: A --+ A is a surjection. 

(ii) The sine function ~ --+ ~ is not surjective, for its image is [-1, 1], a 
proper subset of its target R 

(iii) The functions x2 : ~ --+ ~ and e"': ~ --+ ~ have target R Now im x 2 

consists of the nonnegative reals and im e"' consists of the positive reals, 
so that neither x2 nor e"' is surjective. 

(iv) Let f: ~--+ ~ be defined by 

f(a)=6a+4. 

To see whether f is a surjection, we ask whether every b E ~ has the 
form b = f(a) for some a; that is, given b, can we find a so that 

6a + 4 = b? 

Since a= Hb - 4), this equation can always be solved for a, and so f is 
a surjection. 

( v) Let f: ~ - U} --+ ~ be defined by 

!( ) = 6a + 4 
a 2a - 3· 

To see whether f is a surjection, we seek, given b, a solution a: can we 
solve 

b = f(a) = 6a + 4? 
2a-3 

This leads to the equation a(6 - 2b) = -3b - 4, which can be solved for 
a if 6 - 2b =/. 0 (note that (-3b- 4)/(6 - 2b) =/. 3/2). On the other hand, 
it suggests that there is no solution when b = 3 and, indeed, there is 
not: if (6a + 4)/(2a - 3) = 3, cross multiplying gives the false equation 
6a + 4 = 6a - 9. Thus, 3 tt im f, and f is not a surjection (in fact, 
im f = ~ - {3}). 4111 

The following definition gives another important property a function may have. 

Definition. A function f: A --+ B is injective (or one-to-one) if, whenever a and 
a' are distinct elements of A, then f(a) =/. f(a'). Equivalently, (the contrapositive 
states that) f is injective if, for every pair a, a' EA, we have 

f(a) = f(a') implies a= a'. 

The reader should note that being injective is the converse of being single
valued: f is single-valued if a= a' implies f(a) = f(a'); f is injective if f(a) = f(a') 
implies a = a'. 



Chapter A-6. Appendix: Set Theory 

Example A-6.4. 

(i) The identity function lA: A--+ A is injective. 

(ii) If A~ B, then the inclusion i: A--+ B is an injection. 

(iii) Let f: IR - { ~} --+IR be defined by 

!( ) = 6a + 4 
a 2a-3' 

To check whether f is injective, suppose that f(a) = f (b): 

6a+4 6b+4 
2a - 3 2b- 3· 

Cross multiplying yields 

12ab + 8b - 18a - 12 = 12ab + 8a - 18b - 12, 
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which simplifies to 26a = 26b and hence a = b. We conclude that f is 
injective. 

(iv) Consider f: IR--+ IR given by f(x) = x2 - 2x - 3. If we try to check 
whether f is an injection by looking at the consequences of f(a) = f(b), 
as in part (ii), we arrive at the equation a 2 -2a = b2 -2b; it is not instantly 
clear whether this forces a = b. Instead, we seek the roots of f, which 
are 3 and -1. It follows that f is not injective, for f(3) = 0 = f(-1); 
that is, there are two distinct numbers having the same value. ""' 

Sometimes there is a way of combining two functions to form another function, 
their composite. 

Definition. If f: A --+ B and g: B --+ C are functions (the target of f is the 
domain of g), then their composite, denoted by go f, is the function A --+ C given 
by 

go f: a H g(f(a)); 

that is, first evaluate f on a and then evaluate g on f(a). 

Composition is thus a two-step process: a H f(a) H g(f(a)). For example, 
the function h: IR --+ IR, defined by h( x) = ecos x, is the composite g o f, where 
f ( x) = cos x and g ( x) = ex. This factorization is plain as soon as one tries to 
evaluate, say, h(n); one must first evaluate f(n) = cosn = -1 and then evaluate: 

h(n) = g(f(n)) = g(-1) = e-1 . 

The chain rule in calculus is a formula for computing the derivative (go!)' in terms 
of g' and f': 

(go J)'(x) = g'(f(x)) · J'(x). 

If f: A --+ B is a function, and if S is a subset of A, then the restriction of f 
to Sis the function JIB 

JIB: s--+ B, 
defined by (JIS)(s) = f(s) for alls ES. It is easy to see that if i: S--+ A is the 
inclusion, then f IS = f o i. 
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If f: N ~ N and g: N ~ ~ are functions, then g o f: N ~ ~ is defined, but 
fog is not defined (for target(g) =~-=JN= domain(!)). Even when f: A~ B 
and g: B ~ A, so that both composites go f and fog are defined, these composites 
need not be equal. For example, define f, g: N ~ N by f: n i-+ n2 and g: n i-+ 3n; 
then go f: 2 i-+ g(4) = 12 and fog: 2 i-+ f(6) = 36. Hence, go f -=If o g. 

Given a set A, let 
AA= {all functions A~ A}. 

The composite go f of two functions f, g E AA is always defined, and go f E AA; 
that is, g o f: A ~ A. As we have just seen, composition is not commutative; 
that is, f o g and g o f need not be equal. Let us now show that composition is 
always associative. 

Proposition A-6.5. Composition is associative: If f: A ~ B, g: B ~ C, and 
h: C ~ D are functions, then 

h 0 (g 0 !) = ( h 0 g) 0 f. 

Proof. We show that the value of either composite on an element a E A is just 
h(g(f(a))). If a EA, then 

ho (go!): a i-+ (go !)(a)= g(f(a)) i-+ h(g(f(a))) 

and 
(hog) of: a i-+ f(a) i-+ (ho g)(f(a)) = h(g(f(a))). 

Since both are functions A~ D, it follows from Proposition A-6.2 that the com
posites are equal. • 

In light of this proposition, we need not write parentheses: the notation hogof 
is unambiguous. 

Suppose that f: A~ Band g: C ~Dare functions. If B ~ C, then some 
authors define the composite h: A ~ D by h(a) = g(f(a)). We do not allow 
composition if B -=J C. However, we can define h as the composite h =go i of, 
where i: B ~ C is the inclusion. 

In the text, we usually abbreviate the notation for composites, writing gf 
instead of g o f. 

The next result shows that the identity function lA behaves for composition 
just as the number one does for multiplication of numbers. 

Proposition A-6.6. If f: A~ B, then lB of= f = f o lA. 

Proof. If a E A, then 
lB of: a i-+ f(a) i-+ f(a) 

and 
f o lA: a i-+ a i-+ f(a). • 

Are there "reciprocals" in AA; that is, are there any functions f: A ~ A for 
which there is g E AA with fog = lA and go f = lA? The following discussion 
will allow us to answer this question. 
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Definition. A function f: A --+ B is bijective (or is a one-to-one correspondence) 
if it is both injective and surjective. 

Example A-6.7. 

(i) Identity functions are always bijections. 

(ii) Let X = {1, 2, 3} and define f: X --+ X by 

f(l) = 2, /(2) = 3, /(3) = 1. 

It is easy to see that f is a bijection. ""' 

We can draw a picture of a function f: X --+ Y in the special case when X and 
Y are finite sets (see Figure A-6.1). Let X = {1,2,3,4,5}, let Y = {a,b,c,d,e}, 
and define f: X --+ Y by 

f(l) = b, /(2) = e, /(3) =a, /(4) = b, /(5) = c. 

Now f is not injective, because /(1) = b = /(4), and f is not surjective, because 
there is no x E X with f(x) = d. Can we reverse the arrows to get a function 
g: Y --+ X? There are two reasons why we can't. First, there is no arrow going 
to d, and so g(d) is not defined. Second, what is g(b)? Is it 1 or is it 4? The 
first problem is that the domain of g is not all of Y, and it arises because f is not 
smjective; the second problem is that g is not single-valued, and it arises because 
f is not injective (this reflects the fact that being single-valued is the converse of 
being injective). Neither problem arises when f is a bijection. 

a 

2 b 

x 3 c y 

4 d 

5 e 

Figure A-6.1. Picture of a function. 

Definition. A function f : X --+ Y is invertible if there is a function g: Y --+ X, 
called its inverse, with both composites g o f and f o g being identity functions. 

We do not say that every function f is invertible; on the contrary, we have 
just given two reasons why a function may not have an inverse. Notice that if 
an inverse function g does exist, then it "reverses the arrows" in Figure A-6.1. If 
f(a) = y, then there is an arrow from a to y. Now go f being the identity says 
that a= (go f)(a) = g(f(a)) = g(y); therefore g: y i--+ a, and so the picture of g is 
obtained from the picture off by reversing arrows. If f twists something, then its 
inverse g untwists it. 
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Lemma A-6.8. If f: X -+ Y and g: Y -+ X are functions such that g o f = lx, 
then f is injective and g is surjective. 

Proof. Suppose that f(a) = f(a'); apply g to obtain g(f(a)) = g(f(a')); that is, 
a= a' (because go f = lx ), and so f is injective. If x EX, then x = g(f(x)), so 
that x E im g; hence g is surjective. • 

Proposition A-6.9. A function f: X -+ Y has an inverse g: Y -+ X if and only 
if it is a bijection. 

Proof. If f has an inverse g, then Lemma A-6.8 shows that f is injective and 
surjective, for both composites g o f and f o g are identities. 

Assume that f is a bijection. Let y E Y. Since f is surjective, there is some 
a EX with f(a) = y; since f is injective, this element a is unique. Defining g(y) =a 
thus gives a (single-valued) function whose domain is Y (g merely "reverses arrows:" 
since f (a) = y, there is an arrow from a to y, and the reversed arrow goes from y 
to a). It is plain that g is the inverse off; that is, f(g(y)) = f(a) = y for ally E Y 
and g(f(a)) = g(y) =a for all a EX. • 

The inverse of a bijection f is denoted by f-1; this is the same notation used for 
inverse trigonometric functions in calculus; for example, sin - l x = arcsin x satisfies 
sin(arcsin(x)) = x and arcsin(sin(x)) = x. 

Example A-6.10. Here is an example of two functions f, g: N -+ N with one 
composite gf the identity, but with the other composite f g not the identity; thus, 
f and g are not inverse functions. 

Define f, g: N -+ N as follows: 

f(n) = n + 1, 

g(n) = { 0 
n-1 

if n = 0, 

if n ~ 1. 

The composite gf = lN, for g(f(n)) = g(n + 1) = n (because n + 1 ~ 1). On the 
other hand, f g =f. 11\1 because f(g(O)) = f(O) = 1 =f. 0. ~ 

The next theorem summarizes some results of this section. If X is a nonempty 
set, define the symmetric group 

Sx ={bijections u: X-+ X}. 

Theorem A-6.11. If X is a nonempty set, then composition (!, g) ....+ g o f is a 
function Sx x Sx-+ Sx satisfying the following properties: 

( i) (! o g) o h = f o (g o h) for all f, g, h E S x; 

(ii) there is lx E Sx with lx of= f = f o lx for all f E Sx; 

(iii) for all f E Sx, there is f' E Sx with f' of= lx = f of'. 
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Equivalence Relations 

When fractions are first discussed in grammar school, students are told that 
! = ~ because 1 x 6 = 3 x 2; cross-multiplying makes it so! Don't believe your eyes 
that 1 # 2 and 3 # 6. Doesn't everyone see that 1 x 6 = 6 = 3 x 2? Of course, a 
good teacher wouldn't just say this. Further explanation is required, and here it is. 
We begin with the general notion of relation. 

Definition. Let X and Y be sets. A relation from X to Y is a subset R of 
Xx Y (if X = Y, then we say that Risa relation on X). We usually write xRy 
instead of (x, y) E R. 

Here is a concrete example. Certainly :=:; should be a relation on JR.; to see that 
it is, define the subset 

R = { (x, y) E JR. x JR. : (x, y) lies on or above the line y = x }. 

You should check that (x, y) E R if the second coordinate is bigger than the first. 
Thus, xRy here coincides with the usual meaning x :=:; y. 

Example A-6.12. 

( i) Every function f : X ---+ Y is a relation from X to Y. 

(ii) Equality is a relation on any set X. 

(iii) For every natural number m, congruence mod mis a relation on Z. 

(iv) If X = {(a,b) E Z x Z : b # O}, then cross multiplication defines a 
relation= on X by (a, b) = (c, d) if ad= be. ~ 

Definition. A relation x = y on a set X is 

(i) reflexive if x = x for all x EX; 

(ii) symmetric if x = y implies y = x for all x, y EX; 

(iii) transitive if x = y and y = z imply x = z for all x, y, z EX. 

If= has all three properties. then it is called an equivalence relation on X. 

Example A-6.13. 

(i) Ordinary equality is an equivalence relation on any set. 

(ii) If m 2: 0, then x = y mod mis an equivalence relation on X = Z. 

(iii) In calculus, equivalence relations are implicit in the discussion of vectors. 
An arrow from a point P to a point Q can be denoted by the ordered 
pair (P, Q); call P its foot and Q its head. An equivalence relation on 
arrows can be defined by saying that (P,Q) = (P',Q') if these arrows 
have the same length and the same direction. More precisely, (P, Q) = 
(P', Q') if the quadrilateral obtained by joining P to P' and Q to Q' is 
a parallelogram (this definition is incomplete, for one must also relate 
collinear arrows as well as "degenerate" arrows (P, P)). Note that the 
direction of an arrow from P to Q is important; if P # Q, then (P, Q) ¢. 
(Q,P). ~ 
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An equivalence relation on a set X yields a family of subsets of X. 

Definition. Let = be an equivalence relation on a set X. If a E X, the equivalence 
class of a, denoted by [a], is defined by 

[a]= {x EX: x =a}~ X. 

We now display the equivalence classes arising from the equivalence relations 
in Example A-6.13. 

Example A-6.14. 

(i) If= is equality on a set X and a EX, then [a]= {a}, the subset having 
only one element, namely, a. After all, if x = a, then x and a are equal! 

(ii) Consider the relation= mod m on Z. The congruence class of a E Z 
is defined by 

{x E Z: x =a+ km where k E Z}. 

On the other hand, the equivalence class of a is, by definition, 

{ x E Z : x = a mod m}. 

Since x = a mod m if and only if x = a + km for some k E Z, these two 
subsets coincide; that is, the equivalence class [a] is the congruence class. 

(iii) The equivalence class of (a, b) under cross multiplication, where a, b E Z 
and b # 0, is 

[(a, b)] = {(c, d) : ad= be}. 

If we denote [(a, b)] by a/b, then this equivalence class is precisely the 
fraction usually denoted by a/b. After all, it is plain that (1, 3) # (2, 6), 
but [(1, 3)] = [(2, 6)]; that is, 1/3 = 2/6. 

(iv) An equivalence class [(P, Q)] of arrows, as in Example A-6.13, is called a 

vector; we denote it by [(P, Q)] = PQ. ""' 

The next lemma says that we can replace equivalence by honest equality at the 
cost of replacing elements by their equivalence classes. 

Lemma A-6.15. If= is an equivalence relation on a set X, then x = y if and 
only if [x] = [y]. 

Proof. Assume that x = y. If z E [x], then z = x, and so transitivity gives z = y; 
hence [x] ~ [y]. By symmetry, y = x, and this gives the reverse inclusion [y] ~ [x]. 
Thus, [x] = [y]. 

Conversely, if [x] = [y], then x E [x], by reflexivity, and so x E [x] = [y]. 
Therefore, x = y. • 

Here is a set-theoretic idea, partitions, that we'll see is intimately involved with 
equivalence relations. 
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Definition. Subsets A and B of a set X are disjoint if An B = 0; that is, no 
x EX lies in both A and B. A family P of subsets of a set X is called pairwise 
disjoint if, for all A, B E P, either A= B or An B = 0. 

A partition of a set X is a family of nonempty pairwise disjoint subsets, called 
blocks, whose union is all of X. 

We are now going to prove that equivalence relations and partitions are merely 
different ways of viewing the same thing. 

Proposition A-6.16. If= is an equivalence relation on a set X, then the equiva
lence classes form a partition of X. Conversely, given a partition P of X, there is 
an equivalence relation on X whose equivalence classes are the blocks in P. 

Proof. Assume that an equivalence relation = on X is given. Each x E X lies 
in the equivalence class [x] because = is reflexive; it follows that the equivalence 
classes are nonempty subsets whose union is X. To prove pairwise disjointness, 
assume that a E [x] n [y], so that a = x and a = y. By symmetry, x = a, and 
so transitivity gives x = y. Therefore, [x] = [y], by Lemma A-6.15, and so the 
equivalence classes form a partition of X. 

Conversely, let P be a partition of X. If x, y E X, define x = y if there is 
A E P with x E A and y E A. It is plain that = is reflexive and symmetric. To see 
that = is transitive, assume that x = y and y = z; that is, there are A, B E P with 
x, y EA and y, z EB. Since y EA n B, pairwise disjointness gives A= Band so 
x, z EA; that is, x = z. We have shown that =is an equivalence relation. 

It remains to show that the equivalence classes are the blocks in P. If x E X, 
then x EA for some A E P. By definition of=., if y EA, then y = x and y E [x]; 
hence, A~ [x]. For the reverse inclusion, let z E [x], so that z = x. There is some 
B with x E Band z EB; thus, x EA n B. By pairwise disjointness, A= B, so 
that z E A, and [x] ~ A. Hence, [x] = A. • 

Corollary A-6.17. If= is an equivalence relation on a set X and a,b EX, then 
[a] n [b] =I= 0 implies [a] = [b]. 

Example A-6.18. 

(i) If= is the identity relation on a set X, then the blocks are the one-point 
subsets of X. 

(ii) Let X = [O, 2n], and define the partition of X whose blocks are {O, 2n} 
and the singletons { x}, where 0 < x < 2n. This partition identifies the 
endpoints of the interval (and nothing else), and so we may regard this 
as a construction of the unit circle. """ 

Exercises 

* A-6.1. Let A and B be sets, and let a E A and b E B. Define their ordered pair as 
follows: 

(a,b) = {a,{a,b}}. 
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If a' EA and b' EB, prove that (a', b') =(a, b) if and only if a'= a and b' = b. 

Hint. One of the axioms constraining the E relation is that the statement 

aExEa 

is always false. 

A-6.2. If f: X -+ Y has an inverse g, show that g is a bijection. 

* A-6.3. Show that if f: X -+ Y is a bijection, then it has exactly one inverse. 

A-6.4. Show that f: R -+ R, defined by f ( x) = 3x + 5, is a bijection, and find its inverse. 

A-6.5. Determine whether f: Q x Q -+ Q, given by 

f(a/b, c/d) = (a+ c)/(b + d) 

is a function. 

* A-6.6. Let X = {xi, ... , Xm} and Y = {y1, ... , Yn} be finite sets, where the Xi are 
distinct and the Y; are distinct. Show that there is a bijection f: X -+ Y if and only if 
IXI = IYI; that is, m = n. 
Hint. If f is a bijection, there are m distinct elements f(xi), ... , f(xm) in Y, and so 
m::; n; using the bijection 1-1 in place off gives the reverse inequality n ::; m. 

* A-6.7. Let f: X-+ Y and g: Y-+ Z be functions. 

(i) If both f and g are injective, prove that go f is injective. 

(ii) If both f and g are surjective, prove that go f is surjective. 

(iii) If both f and g are bijective, prove that go f is bijective. 

(iv) If go f is a bijection, prove that f is an injection and g is a surjection. 

A-6.8. Let f: X-+ Y be a function. Define a relation on X by x = x' if f(x) = f(x'). 
Prove that = is an equivalence relation. If x EX and f(x) = y, the equivalence class [x] 
is denoted by r 1 (y); it is called the fiber over y. 

A-6.9. (i) Find the error in the following argument which claims to prove that a sym
metric and transitive relation R on a set X must be reflexive; that is, R is an 
equivalence relation on X. If x E X and xRy, then symmetry gives yRx and 
transitivity gives xRx. 

(ii) Give an example of a symmetric and transitive relation on the closed unit interval 
X = [O, 1] which is not reflexive. 
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Appendix: Linear Algebra 

Linear algebra is the study of vector spaces and their homomorphisms (linear trans
formations) with applications to systems of linear equations. Aside from its intrinsic 
value, it is a necessary tool in further investigation of groups and rings. Most read
ers have probably had some course involving matrices, perhaps only with real or 
complex entries. Here, we do not emphasize computational aspects of the subject, 
such as Gaussian elimination, finding inverses, determinants, and eigenvalues. In
stead, we discuss more theoretical properties of vector spaces with scalars in any 
field. Readers should skim this section if they feel they are already comfortable 
with its results. 

Vector Spaces 

Dimension is a rather subtle idea. We think of a curve in the plane, that is, 
the image of a continuous function f : JR ---+ JR2 , as a one-dimensional subset of a 
two-dimensional ambient space. Imagine the confusion at the end of the nineteenth 
century when a "space-filling curve" was discovered: there exists a continuous func
tion f: JR ---+ JR2 with image the whole plane! We are going to describe a way of 
defining dimension that works for analogs of euclidean space (there are topological 
ways of defining dimension of more general spaces). 

Definition. If k is a field, then a vector space over k is an additive abelian 
group V equipped with a function k x V ---+ V, denoted by (a, v) H av and called 
scalar multiplication, such that, for all a, b, 1 E k and all u, v E V, 

(i) a(u+v)=au+av, 

(ii) (a+ b)v =av+ bv, 

(iii) (ab)v = a(bv), 

(iv) Iv= v. 

-247 
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The elements of V are called vectors and the elements of k are called scalars. i 

Example A-7.1. 

(i) Euclidean space V =Rn is a vector space over R Vectors are n-tuples 
(ai, ... , an), where ai E R for all i. Picture a vector v as an arrow from 
the origin to the point having coordinates (ai, ... , an)· Addition is given 
by 

(ai, ... 'an)+ (bi, ... ' bn) = (ai +bi, ... ' an+ bn)i 

geometrically, the sum of two vectors is described by the parallelogram 
law. 

Scalar multiplication is given by 

av= a(ai, ... ,an)= (aai, ... ,aan)· 

Scalar multiplication v i-+ av "stretches" v by a factor jaj, reversing its 
direction when a is negative (we put quotes around stretches because av 
is shorter than v when lal < 1). 

(ii) We generalize part (i). If k is any field, define V = kn, the set of all 
n-tuples v = (ai, ... ,an), where ai Ek for all i. Addition is given by 

(ai, ... , an)+ (bi, ... , bn) = (ai +bi, ... , an+ bn), 

and scalar multiplication is given by 

av= a(ai, ... , an) = (aai, ... , aan)· 

We regard vectors in kn as n x 1 column vectors. Thus, we may write 
such a vector as c T = (ai, ... , an) T, where c = (ai, ... , an) and ai E k 
for all i.2 

(iii) If Risa commutative ring having a field k as a subring, then Risa vector 
space over k. Regard the elements of Ras vectors and the elements of k 
as scalars; define scalar multiplication av, where a E k and v E R, to be 
the given product of two elements in R. Notice that the axioms in the 
definition of vector space are just particular cases of some of the axioms 
of a ring. 

For example, if k is a field, then the polynomial ring R = k[x] is a 
vector space over k. Vectors are polynomials f(x), scalars are elements 
a Ek, and scalar multiplication gives the polynomial af(x); that is, if 

f(x) = bnxn + · · · + bix + bo, 

then 

1The word vector comes from the Latin word meaning "to carry;" vectors in euclidean space 
carry the data of length and direction. The word scalar comes from regarding v >-+ av as a change 
of scale. The terms scale and scalar come from the Latin word meaning "ladder," for the rungs 
of a ladder are evenly spaced. 

2If A= [aij] is an m x n matrix, then its transpose is then x m matrix AT= [aji]· Thus, 
c = (ai, ... , an) is a 1 x n row vector and its transpose c T = (ai, ... , an) T is an n x 1 column 
vector. 
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Here is another example: if E is a field and k is a subfield, then E is a 
vector space over k. • 

Informally, a subspace of a vector space V is a subset of V that is a vector space 
under the addition and scalar multiplication in V. 

Definition. If V is a vector space over a field k, then a subspace of V is a subset 
U of V such that 

(i) 0 E U, 

(ii) u, u' EU imply u + u' EU, 

(iii) u E U and a E k imply au E U. 

It is easy to see that every subspace is itself a vector space. 

Example A-7.2. 

(i) The extreme cases U = V and U = {O} (where {O} denotes the subset 
consisting of the zero vector alone) are always subspaces of a vector space 
V. A subspace U ~ V with U ":f Vis called a proper subspace of V; 
we may denote U being a proper subspace by U £;; V. 

(ii) If k is a field, then a linear system over k of m equations inn unknowns 
is a set of equations 

a11X1 + · · · + ainXn =bi, 
a21X1 + · · · + a2nXn = b2, 

am1X1 + · · · + amnXn = bm, 

where aij, bi Ek. A solution of this system is a vector c T = ( c1 , ... , en) TE 
kn (vectors in kn are n x 1 columns), where L:3 aijCj = bi for all i. A 
linear system is homogeneous if all bi = 0. A solution c T of a homoge
neous linear system is nontrivial if some c3 ":f 0. The set of all solutions 
of a homogeneous linear system is a subspace of kn, called the solution 
space (or nullspace) of the system. The m x n matrix A = [aij J is called 
the coefficient matrix of the system, and the system can be written 
compactly as Ax = b. 

In particular, we can solve systems of linear equations over 1Fp, where 
p is prime. This says that we can treat a system of congruences mod p 
just as we treat an ordinary system of equations. For example, the system 
of congruences 

3x - 2y + z = 1 mod 7, 

x + y - 2z = 0 mod 7, 

-x + 2y + z = 4 mod 7, 

can be regarded as a system of equations over the field IF 1. This system 
can be solved just as in high school, for inverses mod 7 are now known: 
(2](4] = (1]; [3][5] = [1]; [6][6] = [l]. The solution is 

(x, y, z) = ([5], [4], [1]). • 
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Definition. A list in a vector space V is an ordered set X = V1, ... , Vn of vectors 
in V. 

More precisely, a list Xis a function <p: {1,2, ... ,n}-+ V, for some n ;::=: 1, 
with <p(i) =Vi for all i, and we denote this list by X = <p(l), ... , <p(n). Thus, X is 
ordered in the sense that there is a first vector v 1 , a second vector v2, and so forth. 3 

A vector may appear several times on a list; that is, <p need not be injective. 

Definition. Let V be a vector space over a field k. A k-linear combination of 
a list X = v1 , ... , Vn in Vis a vector v of the form 

where ai E k for all i. 

Definition. If X = v1, ... , Vm is a list in a vector space V, then the subspace 
spanned by X, 

is the set of all the k-linear combinations of v1 , ... , Vm. We also say that v1 , ... , Vm 

spans ( v1, ... , Vm). (We will consider infinite spanning sets in Course II.) 

Lemma A-7.3. Let V be a vector space over a field k. 

(i) Every intersection of subspaces of V is itself a subspace. 

(ii) If X = v1, ... , Vm is a list in V, then the intersection of all the sub
spaces ofV containing the subset {v1, ... ,vm} is (v1, ... ,vm), the sub
space spanned by V1, ... , Vm. Thus, ( v1, ... , Vm) is the smallest sub
space of V containing {Vi, ... , Vm}. 

Proof. Part (i) is routine. For (ii), let S denote the family of all the subspaces of 
V containing {vi, ... , vm}i clearly, V is a subspace in S. We claim that 

n s = (v1, ... ,vm)· 
SES 

The inclusion ~ is clear, because (v1, ... , vm) ES. For the reverse inclusion, note 
that if S E S, then S contains V1, ... , Vm, and so it contains the set of all linear 
combinations of v1 , ... , Vm, namely, (vi, ... , Vm). • 

It follows from the second part of the lemma that the subspace spanned by a 
list X = v1 , ... , Vm does not depend on the ordering of the vectors, but only on 
the set of vectors themselves; that is, all the n! lists arising from a set of n vectors 
span the same subspace. Were all terminology in algebra consistent, we would call 
( v1, ... , Vm) the subspace generated by X. The reason for the different names is 
that the theories of rings, groups, and vector spaces developed independently of 
each other. 

3 For the purists, a similar notational trick defines an n-tuple; it is a function we choose to 
write using parentheses and commas: (ai, ... , an)· Thus, a list is an n-tuple. 
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Example A-7.4. 

(i) If X = 0, then (X) = nsES S, where Sis the family of all the subspaces 
of V, for every subspace contains 0. Thus, (0) = {O}. 

(ii) Let V = JR2, let e1 = (1, 0), and let e2 =(0,1). Now V = (ei, e2), for if 
v = (a, b) E V, then 

v = (a,O) + (O,b) 

= a(l, 0) + b(O, 1) 

= ae1 + be2 E (e1, e2)· 

(iii) If k is a field and V = kn, define ei as the n-tuple having 1 in the ith 
coordinate and O's elsewhere. The reader may adapt the argument in (ii) 
to show that ei, ... , en spans kn. 

(iv) A vector space V need not be spanned by a finite list. For example, let 
V = k[x], and suppose that X = Ji (x),. .. , fm(x) is a finite list in V. 
If dis the largest degree of any of the fi, then every (nonzero) k-linear 
combination of fi, ... , fm has degree at most d. Thus, xd+l is not a 
k-linear combination of vectors in X, and so X does not span k[x]. .,.. 

The following definition makes sense even though the term dimension has not 
yet been defined. 

Definition. A vector space V is called finite-dimensional if it is spanned by a 
finite list; otherwise, V is called infinite-dimensional. 

Example A-7.4(iii) shows that kn is finite-dimensional, while Example A-7.4(iv) 
shows that k[x] is infinite-dimensional. By Example A-7.l(iii), JR and Care vector 
spaces over Q; both of them are infinite-dimensional. 

Proposition A-7.5. If V is a vector space, then the following conditions on a list 
X = v1, ... , Vm spanning V are equivalent. 

(i) X is not a shortest spanning list. 

(ii) Some Vi is in the subspace spanned by the others; that is, 

Vi E ( V1 , ... , iJi, ... , Vm) 

(if v1 , ... , Vm is a list, then v1 , ... , Vi ... , Vm is the shorter list with Vi 
deleted). 

(iii) There are scalars a 1 , ... , am, not all zero, with 
m 

L aeve = 0. 
i!=l 

Proof. (i) =? (ii). If X is not a shortest spanning list, then one of the vectors 
in X, say vi, can be thrown out, and the shorter list still spans. Thus, Vi is a linear 
combination of the others. 
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(iii) ==> (i). The given equation implies that one of the vectors, say, Vi, is a linear 
combination of the others. Deleting vi gives a shorter list, which still spans: if v E V 
is a linear combination of all the Vj (including vi), just substitute the expression 
for Vi as a linear combination of the other Vj and collect terms. • 

Definition. A list X = v1 , ... , Vm in a vector space V is linearly dependent if 
there are scalars ai, ... , am, not all zero, with .L:~ 1 aew. = O; otherwise, Xis called 
linearly independent. 

The empty set 0 is defined to be linearly independent (we may interpret 0 as 
a list of length 0). 

Note that linear dependence or linear independence of a list X = v1 , ... , Vm 
does not depend on the ordering of the vectors, but only on the set of vectors 
themselves. 

Example A-7.6. 

(i) Any list X = V1, ... , Vm containing the zero vector is linearly dependent. 

(ii) A list v1 of length 1 is linearly dependent if and only if v1 = O; hence, a 
list v1 of length 1 is linearly independent if and only if v1 i= 0. 

(iii) A list v1 , v2 is linearly dependent if and only if one of the vectors is a 
scalar multiple of the other. 

(iv) If there is a repetition on the list v1, ... ,vm (that is, if vi= Vj for some 
i i= j), then vi, ... , Vm is linearly dependent: define Ci = 1, Cj = -1, and 
all other c = 0. Therefore, if v1 , ... , Vm is linearly independent, all the 
vectors Vi are distinct. <1111 

The contrapositive of Proposition A-7.5 is worth stating. 

Corollary A-7. 7. If X = v1, ... , Vm is a list spanning a vector space V, then X 
is a shortest spanning list if and only if X is linearly independent. 

Linear independence has been defined indirectly, as not being linearly depen
dent. Because of the importance of linear independence, let us define it directly. A 
list X = v1 , ... , Vm is linearly independent if, whenever a k-linear combination 
.L:~ 1 aeve = 0, then every ai = 0. It follows that every sublist of a linearly inde
pendent list is itself linearly independent (this is one reason for decreeing that 0 
be linearly independent). 

We have arrived at the notion we have been seeking. 

Definition. A basis of a vector space Vis a linearly independent list that spans V. 

Thus, bases are shortest spanning lists. Of course, all the vectors in a linearly 
independent list v1,. . .,vn are distinct, by Example A-7.6(iv). Note that a list 
X = v1, ... , Vm being a basis does not depend on the ordering of the vectors, but 
only on the set of vectors themselves, for neither spanning nor linear independence 
depends on the ordering. 
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Example A-7.8. In Example A-7.4(iii), we saw that X = e1, ... ,en spans kn, 
where ei is the n-tuple having 1 in the ith coordinate and O's elsewhere. It is easy 
to see that Xis linearly independent: 2:~1 aiei = (a1, ... , an), and (a1, ... , an)= 
(0, ... , 0) if and only if all ai = 0. Hence, the list e1, ... , en is a basis; it is called 
the standard basis of kn. <Ill 

Proposition A-7.9. Let X = V1, ... , Vn be a list in a vector space V over a field k. 
Then X is a basis if and only if each vector in V has a unique expression as a k
linear combination of vectors in X. 

Proof. If a vector v = L aivi = L bivi, then l:(ai-bi)vi = 0, and so independence 
gives ai = bi for all i; that is, the expression is unique. 

Conversely, existence of an expression shows that the list of vi spans. Moreover, 
if 0 = L CiVi with not all Ci = 0, then the vector 0 does not have a unique expression 
as a linear combination of the vi. • 

Definition. If X = V1, ... , Vn is a basis of a vector space V and v E V, then there 
are unique scalars ai, ... , an with v = l::~=l aivi. Then-tuple (a1, ... , an) is called 
the coordinate list of a vector v E V relative to the basis X. 

Observe that if V1, ... , Vn is the standard basis of V = kn, then this coordinate 
list coincides with the usual coordinate list. 

Coordinates are the reason we have defined bases as lists and not as subsets. If 
v1, ... , Vn is a basis of a vector space V over a field k, then each vector v E V has 
a unique expression 

v = aiv1 + a2v2 + · · · + anVn, 

where ai E k for all i. Since there is a first vector v1, a second vector v2, and 
so forth, the coefficients in this k-linear combination determine a unique n-tuple 
(ai, a2, ... , an)· Were a basis merely a subset of V and not a list (i.e., an ordered 
subset), then there would be n! coordinate lists for every vector. 

We are going to define the dimension of a vector space V to be the number of 
vectors in a basis. Two questions arise at once. 

(i) Does every vector space have a basis? 

(ii) Do all bases of a vector space have the same number of elements? 

The first question is easy to answer; the second needs some thought. 

Theorem A-7.10. Every finite-dimensional 4 vector space V has a basis. 

Proof. A finite spanning list X exists, since V is finite-dimensional. If it is linearly 
independent, it is a basis; if not, X can be shortened to a spanning sublist X', by 
Proposition A-7.5. If X' is linearly independent, it is a basis; if not, X' can be 
shortened to a spanning sublist X". Eventually, we arrive at a shortest spanning 
sublist, which is independent, by Corollary A-7. 7, and hence it is a basis. • 

4The definitions of spanning and linear independence can be extended to infinite-dimensional 
vector spaces, and we will see, in Course II, that bases always exist. It turns out that a basis of 
k[x] is l,x,x2 , ... ,xn, .... 
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We now prove Invariance of Dimension, one of the most important results about 
vector spaces. 

Lemma A-7.11. Let ui, ... , Un and V1, ..• , Vm be lists in a vector space V, and 
let V1, ... , Vm E ( u1, ... , Un). If m > n, then vi, ... , Vm is linearly dependent. 

Proof. The proof is by induction on n 2 1. 

If n = 1, then there are at least two vectors v 1 , v2 and v1 = ai u1 and v2 = a2u1. 
If u1 = 0, then V1 = 0 and the list of v's is linearly dependent. Suppose u 1 f:. 0. 
We may assume that V1 f:. 0, or we are done; hence, a 1 f:. 0. Therefore, v 1 , v2 is 
linearly dependent, for V2 - a2a;:- 1v1 = 0, and hence the larger list v1 , ... ,Vm is 
linearly dependent. 

Let us prove the inductive step by assuming the assertion true for n - 1. There 
are equations, for i = 1, ... , m, 

Vi= ailul + · · · + ainUn· 

We may assume that some ai1 f:. O; otherwise vi, .. ., Vm E ( u2, ... , Un), and the 
inductive hypothesis applies. Changing notation if necessary (that is, by reordering 
the v's), we may assume that an f:. 0. For each i 2 2, define 

(if we write v~ as a linear combination of the u's, then ail - (aila!l )an = 0 is the 
coefficient of u1). Clearly, v~, ... , v:n E ( u2, ... , un)· Since m - 1 > n - 1, the 
inductive hypothesis gives scalars b2 , •.. , bm, not all 0, with 

b2v~ + · · · + bmv:n = 0. 

Rewrite this equation using the definition of v~: 

(-L biai1a!l )vi+ b2v2 + · · · + bmvm = 0. 
i~2 

Not all the coefficients are 0, and so vi, ... , Vm is linearly dependent. • 

The following familiar fact illustrates the intimate relation between linear al
gebra and systems of linear equations. 

Corollary A-7.12. A homogeneous system of linear equations over a field k with 
more unknowns than equations has a nontrivial solution. 

Proof. An n-tuple (b1, ... , bn) T E kn is a solution of a system 

anx1 + · · · + ainXn = 0 

if ail bi + · · · + ainbn = 0 for all i. Thus, if ')'1, ... , 'Yn E km are the columns of the 
coefficient matrix [aij], then 

bn1 + · · · + bn'Yn = 0. 
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Now km can be spanned by m vectors (the standard basis, for example). Since 
n > m, by hypothesis, Lemma A-7.11 shows that the list ')'i, ... , 1'n is linearly de
pendent; there are scalars c1, ... , Cn, not all zero, with C11'1 + · · · + Cn1'n = 0. 
Therefore, c T = ( c1, ... , cn) T is a nontrivial solution of the system. • 

Theorem A-7.13 (Invariance of Dimension). If X = Xi, ... , Xn and Y 
Yi. ... , Ym are bases of a vector space V, then m = n. 

Proof. Suppose that m =f n. If n < m, then Y1, ... , Ym E ( x1, ... , Xn), because X 
spans V, and Lemma A-7.11 gives Y linearly dependent, a contradiction. A similar 
contradiction arises if m < n, and so m = n. • 

It is now permissible to make the following definition. 

Definition. The dimension of a finite-dimensional vector space V over a field k, 
denoted by 

dimk(V) or dim(V), 

is the number of elements in a basis of V. 

Example A-7.14. 

(i) Example A-7.8 shows that kn has dimension n, which agrees with our 
intuition when k = R Thus, the plane ~ x ~ is two-dimensional! 

(ii) If V = {O}, then dim(V) = 0, for there are no elements in its basis 0. 

(This is a good reason for defining 0 to be linearly independent.) 

(iii) Let X = {x1 , ... , xn} be a finite set. Define 

kx ={functions f: X--+ k}. 

Now kx is a vector space if we define addition kx x kx --+ kx by 

(f,g) r-t f + g: x r-t f(x) + g(x) 

and scalar multiplication k x kx --+ kx by 

(a,!) r-t af: x r-t af(x). 

It is easy to check that the set of n functions of the form f x, where x E X, 
defined by 

fx(Y)={l ~fy=x, 
0 if y =f x, 

form a basis, and so dim(kx) = n = IXI. 
This is not a new example: since an n-tuple ( ai, ... , an) is really 

a function f: {1, ... , n} --+ k with f ( i) = ai for all i, the functions f x 

comprise the standard basis. ~ 

Here is a second proof of Invariance of Dimension; it will be used in Course II 
to adapt the notion of dimension to the notion of transcendence degree. We begin 
with a modification of the proof of Proposition A-7.5. 
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Lemma A-7.15. If X = Vi, ... , Vn is a linearly dependent list of vectors in a 
vector space V, then there exists Vr with r 2: 1 with Vr E (vi, V2, ... , Vr-i) (when 
r = 1, we interpret (vi , ... , Vr- i) to mean { 0}) . 

Remark. Let us compare Proposition A-7.5 with this one. The earlier result says 
that if vi, v2, V3 is linearly dependent, then either vi E ( V2, V3), v2 E (vi, V3), or 
V3 E (vi.v2). This lemma says that either vi E {O}, v2 E (vi), or V3 E (vi,v2). ""' 

Proof. Let r be the largest integer for which vi, ... , Vr-i is linearly independent. 
If vi = 0, then r = 1, that is, vi E {O}, and we are done. If vi "I- 0, then r 2: 2; 
since vi, v2 , ••• , Vn is, by hypothesis, linearly dependent, we have r - 1 < n. As 
r - 1 is largest, the list vi, v2, ... , Vr is linearly dependent. There are thus scalars 
ai, ... , an not all zero, with ai vi + · · · + arVr = 0. In this expression, we must have 
ar "I- 0, lest Vi, ... ' Vr-i be linearly dependent. Therefore, 

r-i 
Vr = L (-a;i)aiVi E (vi. ... , Vr-i). • 

i=i 

Lemma A-7.16 (Exchange Lemma). If X = xi, ... , Xm is a basis of a vector 
space V and yi, ... , Yn is a linearly independent list in V, then n::::; m. 

Proof. We begin by showing that one of the x's in X can be replaced by Yn so 
that the new list still spans V. Now Yn E (X), since X spans V, so that the list 

Yn,Xi, ... ,Xm 

is linearly dependent, by Proposition A-7. 5. Since the list Yi , ... , Yn is linearly 
independent, Yn (j. (0). By Lemma A-7.15, there is some i with Xi = ayn + 
Lj<i ajXj. Throwing out xi and replacing it by Yn gives a spanning list of the 
same length, 

X' = Yn,Xi, ... ,£i, ... ,Xm 

(if v = L:.;i bjXj then, as in the proof of Proposition A-7.5, replace xi by its 
expression as a k-linear combination of the other x's and Yn, and then collect 
terms). 

Now repeat this argument for the spanning list Yn-1' Yn, xi, ... , xi, ... , Xm· 
The options offered by Lemma A-7.15 for this linearly dependent list are Yn E 

(Yn-i), Xi E (Yn-i,Yn), X2 E (Yn-i,Yn,xi), and so forth. Since Y is linearly 
independent, so is its sublist Yn-i,Yn, and the first option Yn E (Yn-i) is not 
feasible. It follows that the disposable vector (provided by Lemma A-7.15) must be 
one of the remaining x's, say xe. After throwing out xe, we have a new spanning list 
X" of the same length. Repeat this construction of spanning lists; each time a new y 
is adjoined as the first vector, an xis thrown out, for the option Yi E (YHi, ... , Yn) 
is not feasible. If n > m, that is, if there are more y's than x's, then this procedure 
ends with a spanning list consisting of m y's (one for each of the m x's thrown out) 
and no x 's. Thus a proper sublist Yi, ... , Ym of Y spans V, contradicting the linear 
independence of Y. Therefore, n::::; m. • 

Theorem A-7.17 (Invariance of Dimension again). If X =xi, ... ,xm and 
Y = Yi, ... , Yn are bases of a vector space V, then m = n. 
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Proof. By Lemma A-7.16, viewing X as a basis with m elements and Y as a 
linearly independent list with n elements gives the inequality n :::; m; viewing Y 
as a basis and X as a linearly independent list gives the reverse inequality m :::; n. 
Therefore, m = n, as desired. • 

We have constructed bases as shortest spanning lists; we are now going to 
construct them as longest linearly independent lists. 

Definition. A maximal (or longest) linearly independent list u1, ... , Um in a 
vector space V is a linearly independent list for which there is no vector v E V with 
ui, ... , Um, v linearly independent. 

Lemma A-7.18. Let X = u1 , ... , Um be a linearly independent list in a vector 
space V. If X does not span V, then there exists v E V such that the list X' = 
u1, ... , Um, v is linearly independent. 

Proof. Since X does not span V, there exists v E V with v ~ ( u1, ... , Um). By 
Proposition A-7.5(ii), the longer list X' is linearly independent. • 

Proposition A-7.19. Let V be a finite-dimensional vector space; say, dim(V) = n. 

(i) There exist maximal linearly independent lists in V. 

(ii) Every maximal linearly independent list X is a basis of V. 

Proof. 

(i) If a linearly independent list X = x1 , ... , Xr is not a basis, then it does 
not span: there is w E V with w ~ (xi, ... , Xr ). By Lemma A-7.18, 
the longer list X' = x1 , ... , Xr, w is linearly independent. If X' is a 
basis, we are done; otherwise, repeat and construct a longer list. If this 
process does not stop, then there is a linearly independent list having 
n + 1 elements. Comparing this list with a basis of V, we contradict the 
inequality in the Exchange Lemma. 

(ii) If a maximal linearly independent list Xis not a basis, then Lemma A-7.18 
constructs a larger linearly independent list, contradicting the maximal
ity of X. • 

Corollary A-7.20. Let V be a vector space with dim(V) = n. 

(i) Any list of n vectors that spans V must be linearly independent. 

(ii) Any linearly independent list of n vectors must span V. 

Proof. 

(i) Were a list linearly dependent, it could be shortened to give a basis; this 
basis is too small. 

(ii) If a list does not span, it could be lengthened to give a basis; this basis 
is too big. • 
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Proposition A-7.21. Let V be a finite-dimensional vector space. If Z = ui, ... , Um 

is a linearly independent list in V, then Z can be extended to a basis: there are 
vectors Vm+1, ... , Vn such that u1, ... , Um, Vm+1, ... , Vn is a basis of V. 

Proof. Iterated use of Lemma A-7.18 (as in the proof of Proposition A-7.19(i)) 
shows that Z can be extended to a maximal linearly independent set X in V. But 
Proposition A-7.19(ii) says that Xis a basis. • 

Corollary A-7.22. If dim(V) = n, then any list ofn+l or more vectors is linearly 
dependent. 

Proof. Otherwise, such a list could be extended to a basis having too many ele
ments. • 

Corollary A-7.23. Let U be a subspace of a vector space V, where dim(V) = n. 

(i) U is finite-dimensional and dim(U) S dim(V). 

(ii) If dim(U) = dim(V), then U = V. 

Proof. 

(i) Any linearly independent list in U is also a linearly independent list in V. 
Hence, there exists a maximal linearly independent list X = u1 , ... , Um 

in U. By Proposition A-7.19, X is a basis of U; hence, U is finite
dimensional and dim(U) = m Sn. 

(ii) If dim(U) = dim(V), then a basis of U is already a basis of V (otherwise 
it could be extended to a basis of V that would be too large). • 

Exercises 

A-7.1. Prove that dim{V) S 1 if and only if the only subspaces of a vector space V are 
{O} and V itself. 

A-7.2. Prove, in the presence of all the other axioms in the definition of vector space, 
that the commutative law for vector addition is redundant; that is, if V satisfies all the 
other axioms, then u + v = v + u for all u, v EV. 

Hint. Ifu,v EV, evaluate -[(-v) + (-u)] in two ways. 

A-7.3. If V is a vector space over 1F2 and v1 f= v2 are nonzero vectors in V, prove that 
v1 , v2 is linearly independent. Is this true for vector spaces over any other field? 

A-7.4. Prove that the columns of an m x n matrix A over a field k are linearly dependent 
in km if and only if the homogeneous linear system Ax = 0 has a nontrivial solution. 

A-7.5. If U is a subspace of a vector space V over a field k, define a scalar multiplication 
on the {additive) quotient group V/U by 

a(v + U) =av+ U, 

where a Ek and v EV. Prove that this is a well-defined function that makes V/U into a 
vector space over k (V/U is called a quotient space). 



Linear TI:ansformations and Matrices 259 

A-7.6. Let Ax = b be a linear system over a field k with m equations in n unknowns, 
and assume that c T E kn is a solution. Prove that if U <;;;; kn is the solution space of 
the homogeneous system Ax = 0, then the set of all solutions of Ax = b is the coset 
CT+ U <;;;;kn. 

A-7. 7. If Vis a finite-dimensional vector space and U is a subspace, prove that 

dim(U) + dim(V/U) = dim(V). 

Hint. Prove that if v1 + U, . .. , Vr + U is a basis of V /U, then the list v1, ... , Vr is linearly 
independent. 

* A-7.8. Prove that every finite-dimensional vector space over a countable field is countable. 

Definition. If U and W are subspaces of a vector space V, define 

U + W = {u + w: u EU and w E W}. 

* A-7.9. (i) Prove that U + W is a subspace of V. 

(ii) If U and U' are subspaces of a finite-dimensional vector space V, prove that 

dim(U) + dim(U') = dim(U n U') + dim(U + U'). 

Hint. Take a basis of Un U' and extend it to bases of U and of U'. 

Definition. Let V be a vector space having subspaces U and W. Then Vis the direct 
sum, V = U Ell W, if Un W = {O} and V = U + W. 

* A-7.10. If U and Ware finite-dimensional vector spaces over a field k, prove that 

dim(U Ell W) = dim(U) + dim(W). 

A-7.11. Let U be a subspace of a finite-dimensional vector space V. Prove that there 
exists a subspace W of V with V = U Ell W. 

Hint. Extend a basis X of U to a basis X' of V, and define W = (X' - X). 

Linear Transformations and Matrices 

Homomorphisms between vector spaces are called linear transformations. 

Definition. If V and Ware vector spaces over a field k, then a linear transfor
mation is a function T: V --+ W such that, for all vectors u, v E V and all scalars 
a Ek, 

(i) T(u + v) = T(u) + T(v), 

(ii) T(av) = aT(v). 

We say that a linear transformation T: V --+ W is an isomorphism (or is non
singular) if it is a bijection. Two vector spaces V and W over k are isomorphic, 
denoted by V ~ W, if there exists an isomorphism T: V --+ W. 

If we forget the scalar multiplication, then a vector space is an (additive) abelian 
group and a linear transformation Tis a group homomorphism; thus, T(O) = 0. It 
is easy to see that T preserves all k-linear combinations: 

T(a1V1 + · · · + amvm) = aiT(v1) + · · · + amT(vm)· 
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Example A-7.24. 

(i) The identity function 1 v: V -+ V on any vector space V is a nonsingular 
linear transformation. 

(ii) If() is an angle, then rotation about the origin by() is a linear transforma
tion Ro: ~2 -+ ~2 • The function Ro preserves addition because it takes 
parallelograms to parallelograms, and it preserves scalar multiplication 
because it preserves the lengths of arrows (see Example A-7.l(i)). Every 
rotation is nonsingular: the inverse of Ro is R-o. 

(iii) If V and W are vector spaces over a field k, write Homk(V, W) for the 
set of all linear transformations V -+ W. Define addition S + T by v i-+ 

S(v) + T(v) for all v EV, and define scalar multiplication aT: V-+ W, 
where a E k, by v i-+ a[T( v)] for all v E V. Both S + T and aT are linear 
transformations, and Homk(V, W) is a vector space over k. 

(iv) A special case of part (iii) is given by the dual space V* of a vector 
space V over a field k: 

V* = Homk(V, k) 

(the field k can be viewed as a I-dimensional vector space over itself). 
If f: V -+ W is a linear transformation, then the function 

f*: W*-+ V*, 

defined by f* : T i-+ T f, is a linear transformation. 
This example illustrates why the target B of a function g: A -+ B 

is a necessary ingredient in the definition of function. Everyone agrees 
that the domain A is a necessary part. Now we see that the target W of 
f: V -+ W determines the domain of f* : W* -+ V*. 

(v) Regard elements of kn as n x 1 column vectors. If A is an m x n matrix 
with entries in k, then T: kn -+ km, given by v 1-t Av (where Av is 
the m x 1 column vector given by matrix multiplication), is a linear 
transformation. .,. 

Definition. If V is a vector space over a field k, then the general linear group, 
denoted by GL(V), is the set of all nonsingular linear transformations V-+ V. 

The composite ST of linear transformations S and T is again a linear transfor
mation, and ST is an isomorphism if both S and T are; moreover, the inverse of 
an isomorphism is again a linear transformation. It follows that GL(V) is a group 
with composition as operation, for composition of functions is always associative. 

Kernels and images of linear transformations are defined just as they are for 
group homomorphisms and ring homomorphisms. 

Definition. If T: V -+ W is a linear transformation, then the kernel (or null 
space) of T is 

kerT = {v EV: T(v) = O}, 

and the image (or range) of T is 

imT = {w E W: w = T(v) for some v EV}. 
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As in Example A-7.24( v), an m x n matrix A with entries in a field k determines 
a linear transformation kn ---+ km, namely, y H Ay, where y is an n x 1 column 
vector. The kernel of this linear transformation is usually called the solution space 
of A (see Example A-7.2(ii)). 

The proof of the next proposition is straightforward. 

Proposition A-7.25. Let T: V ---+ W be a linear transformation. 

(i) kerT is a subspace of V and imT is a subspace of W. 

(ii) Tis injective if and only if kerT = {O}. 

We can now interpret the fact that a homogeneous linear system over a field 
k with m equations in n unknowns has a nontrivial solution if m < n. If A is the 
m x n coefficient matrix of the system, then T: x H Ax is a linear transformation 
kn---+ km. If there is only the trivial solution, then kerT = {O}, so that kn is 
isomorphic to a subspace of km, contradicting Corollary A-7.23(i): if U ~ V, then 
dim(U) :::; dim(V). 

Lemma A-7.26. Let T: V---+ W be a linear transformation. 

(i) If T is an isomorphism, then for every basis X = vi, v2, ... , Vn of V, the 
listT(X) =T(v1),T(v2),. . .,T(vn) is a basis ofW. 

(ii) Conversely, if there exists some basis X = v1 , v2,. .. , Vn of V for which 
T(X) = T(v1), T(v2),. . ., T(vn) is a basis of W, then T is an isomor
phism. 

Proof. 

(i) Let T be an isomorphism. If I: ciT( vi) = 0, then T(L: civi) = 0, and 
so I: Ci Vi E ker T = ( 0). Hence each ci = 0, because X is linearly 
independent, and so T(X) is linearly independent. If w E W, then the 
surjectivity of T provides v EV with w = T(v). But v =I: aivi, and so 
w = T(v) = T(L:aivi) = L:aiT(vi)· Therefore, T(X) spans W, and so 
it is a basis of W. 

(ii) Let w E W. Since T(v1), ... , T(vn) is a basis of W, we have w = 
L:ciT(vi) = T(L:civi), and so Tis surjective. If L:civi E kerT, then 
I: ciT( vi) = 0, and so linear independence gives all ci = O; hence, 
I: Ci Vi = 0 and ker T = ( 0). Therefore, T is an isomorphism. • 

Recall Exercise A-4.1 on page 122, the Pigeonhole Principle: If X is a finite 
set, then a function f: X ---+ X is an injection if and only if it is a surjection. Here 
is the linear algebra version. 

Proposition A-7.27 (Pigeonhole Principle). Let V be a finite-dimensional 
vector space with dim(V) = n, and let T: V ---+ V be a linear transformation. The 
following statements are equivalent: 

(i) T is nonsingular; 

(ii) T is surjective; 

(iii) T is injective. 
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Proof. 

(i) =? (ii) This implication is obvious. 

(ii) =? (iii) Let vi, ... , Vn be a basis of V. Since T is surjective, there are 
vectors u1, ... , Un with Tui = Vi for all i. We claim that u1, ... , Un is 
linearly independent. If there are scalars c1 , ... , cn, not all zero, with 
I: ciui = 0, then after applying T, we obtain a dependency relation 0 = 
I: ciT(ui) =I: civi, a contradiction. By Corollary A-7.20(ii), u1, ... , Un 
is a basis of V. To show that T is injective, it suffices to show that 
kerT = (0). Suppose that T(u) = 0. Now u = l:ciui, and so 0 = 
TI: ciui = I: civi; hence, linear independence of V1, ... , Vn gives all 
ci = 0, and so u = 0. Therefore, T is injective. 

(iii) =? (i) Let V1, ... , Vn be a basis of V. If ci, ... , Cn are scalars, not all 0, 
then I: CiVi =F 0, for a basis is linearly independent. Since T is injective, 
it follows that I: ciTvi =F 0, and so Tv1 , •.. , Tvn is linearly independent. 
Therefore, Corollary A-7.20(ii) shows that Tis nonsingular. • 

We now show how to construct linear transformations T: V--+ W, where V 
and W are vector spaces over a field k. The next theorem says that there is a 
linear transformation that can do anything to a basis; moreover, such a linear 
transformation is unique. 

Theorem A-7.28. Let V and W be vector spaces over a field k. 

(i) If V1, ... , Vn is a basis of V and u1, ... , Un is a list in W, then there exists 
a unique linear transformation T: V--+ W with T(vi) = Ui for all i. 

(ii) If linear transformations S, T: V--+ W agree on a basis, then S = T. 

Proof. By Theorem A-7.9, each v E V has a unique expression of the form v = 
Li aivi, and so T: V--+ W, given by T(v) = I: aiui, is a (well-defined) function. 
It is now a routine verification to check that T is a linear transformation. 

To prove uniqueness of T, assume that S: V --+ W is a linear transformation 
with S(vi) = Ui = T(vi) for all i. If v E V, then v =I: aivi and 

Since v is arbitrary, S = T. • 

The statement of Theorem A-7.28 can be pictured. The list u1 , ... ,un in W 
gives the function f: X = {vi, ... , vn} --+ W defined by f (vi) = ui for all i; the 
vertical arrow j: X --+ V is the inclusion; the dotted arrow is the unique linear 
transformation which extends f: 
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Theorem A-7.29. If V is an n-dimensional vector space over a field k, then V is 
isomorphic to kn. 

Proof. Choose a basis v1, ... , Vn of V. If e1, ... , en is the standard basis of kn, 
then Theorem A-7.28(i) says that there is a linear transformation T: V-+ kn with 
T( vi) = ei for all i; by Lemma A-7.26, T is an isomorphism. • 

Theorem A-7.29 does more than say that every finite-dimensional vector space 
is essentially the familiar vector space of all n-tuples. It says that a choice of basis 
in V is tantamount to choosing coordinate lists for every vector in V. The freedom 
to change coordinates is important because the usual coordinates may not be the 
most convenient ones for a given problem, as the reader has seen (in a calculus 
course) when rotating axes to simplify the equation of a conic section. 

Corollary A-7.30. Two finite-dimensional vector spaces V and W over a field k 
are isomorphic if and only if dim(V) = dim(W). 

Proof. Assume that there is an isomorphism T: V -+ W. If X = v1, ... , Vn 
is a basis of V, then Lemma A-7.26 says that T(v1 ), •• ., T(vn) is a basis of W. 
Therefore, dim(W) = n = dim(V). 

If n = dim(V) = dim(W), there are isomorphisms T: V -+ kn and S: W -+ kn, 
by Theorem A-7.29, and the composite s-1r: V -+ W is an isomorphism. • 

Linear transformations defined on kn are easy to describe. 

Theorem A-7.31. If T: kn-+ km is a linear transformation, then there exists a 
unique m x n matrix A such that 

T(y) = Ay 

for all y E kn (here, y is an n x 1 column matrix and Ay is matrix multiplication). 

Proof. If e1, ... , en is the standard basis of kn and e~, ... , e~ is the standard basis 
of km, define A = [ aij J to be the matrix whose jth column is the coordinate list of 
T(ej)· If S: kn-+ km is defined by S(y) = Ay, then S = T because both agree on a 
basis: T(ej) =Li aijei = Aej. Uniqueness of A follows from Theorem A-7.28(ii): 
ifT(y) =By for ally, then Bej = T(ej) = Aej for all j; that is, the columns of A 
and B are the same. • 

Theorem A-7.31 establishes the connection between linear transformations and 
matrices, and the definition of matrix multiplication arises from applying this con
struction to the composite of two linear transformations. 

Definition. Let X = V1, ... , Vn be a basis of V and let Y = w1, ... , Wm be a basis 
of W. If T : V -+ W is a linear transformation, then the matrix of T is the m x n 
matrix A= [aij] whose jth column a1j, a2j, ... , amj is the coordinate list of T(vj) 
determined by thew's: T(vj) = 2:~1 aijWi· 



264 Chapter A-7. Appendix: Linear Algebra 

Since the matrix A depends on the choice of bases X and Y, we will write 

A=y[TJx 

when it is necessary to display them. 

Remark. Consider the linear transformation T: kn-+ km in Example A-7.24(v) 
given by T(y) = Ay, where A is an m x n matrix and y is an n x 1 column vector. 
If e1, ... , en and ei, ... , e~ are the standard bases of kn and km, respectively, then 
the definition of matrix multiplication says that T(ej) = Aej is the jth column 
of A. But 

Aej = a1jei + a2je~ + · · · + amje~; 
that is, the coordinates of T( ej) = Aej with respect to the basis ei, ... , e~ are 
(a1j, ... , amj)· Therefore, the matrix associated to Tis the original matrix A. <Ill 

In case V = W, we often let the bases X = v1, ... , Vn and Y = w1, ... , Wm 

coincide. If lv: V -+ V, given by v t-t v, is the identity linear transformation, 
then x[lv]x is then x n identity matrix In (usually, the subscript n is omitted), 
defined by 

where Oij is the Kronecker delta: 

{o if j =Ji, 
oij = 1 if j = i. 

Thus, I has 1 's on the diagonal and O's elsewhere else. On the other hand, if 
X and Y are different bases, then y[lv]x is not the identity matrix. The ma
trix y[lv]x is called the transition matrix from X to Y; its columns are the 
coordinate lists of the v's with respect to thew's. 

In Theorem A-7.34, we shall prove that matrix multiplication arises from com
position of linear transformations. If T: V -+ W has matrix A and S: W -+ U has 
matrix B, then the linear transformation ST: V-+ Uhas matrix BA. 

Example A-7.32. 

(i) Let X = c1, c2 be the standard basis of~2 , where c1 = (1, 0), c2 =(0,1). 
If T: ~2 -+ ~2 is rotation by 90°, then T: c1 t-t c2 and c2 t-t -c1. Hence, 
the matrix of T relative to X is 

x[T]x = [~ -~J : 
T(c1) = c2 = (0, 1), the first column of x[T]x, and T(c2) = -c1 = 

(-1, 0), which gives the second column. 
If we reorder X to obtain the new basis Y = 771, 7]2, where 771 = c2 and 

7]2 = c1, then T(771) = T(c2) = -c1 = -772 and T(772) = T(c1) = c2 = 7]1. 
The matrix of T relative to Y is 

y[T]y = [-~ ~]. 
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(ii) Let k be a field, let T: V --+ V be a linear transformation on a two
dimensional vector space, and assume that there is some vector v E V 
with T(v) not a scalar multiple of v. The assumption on v says that 
the list X = v, T(v) is linearly independent, by Example A-7.6(iii), and 
hence it is a basis of V (because dim(V) = 2). Write V1 = v and V2 = Tv. 

We compute x[T]x: 

T(v1) = v2 and T(v2) = av1 + bv2 

for some a, b Ek. We conclude that 

x[T]x = [~ ~] . -4 

The next proposition is a paraphrase of Theorem A-7.28(i). 

Proposition A-7.33. Let V and W be vector spaces over a field k, and let X = 
vi, ... , Vn and Y = W1, ... , Wm be bases of V and W, respectively. If Homk (V, l¥) 
denotes the set of all linear transformations T: V--+ W, and Matmxn(k) denotes 
the set of all m x n matrices with entries ink, then the function Ti-+ y[Tlx is a 
bijection F: Homk(V, W)--+ Matmxn(k). 

Proof. Given a matrix A, its columns define vectors in W; in more detail, if the 
jth column of A is (a13, ... ,am3), define z3 = L::~1 aijWi· By Theorem A-7.28(i), 
there exists a linear transformation T: V --+ W with T( v3) = z3 and y [Tix = A. 
Therefore, F is surjective. 

To see that Fis injective, suppose that y [Tix = A = y [Six. Since the columns 
of A determine T(v3) and S(v3) for all j, Theorem A-7.28(ii) gives S = T. • 

The next theorem shows where the definition of matrix multiplication comes 
from: the product of two matrices is the matrix of a composite. 

Theorem A-7.34. Let T: V --+ W and S: W --+ U be linear transformations. 
ChoosebasesX=xi, ... ,xn ofV, Y=y1, ... ,ym ofW, andZ=zi, ... ,ze ofU. 
Then 

z[SoT]x = (z[Sly)(y[T]x), 

where the product on the right is matrix multiplication. 

Proof. Let y[Tlx = [%1, so that T(x3) = Lp ap3Yp, and let z[Sly = [bqp], so that 
S(yp) = Lq bqpZq. Then 

ST(x3) = S(T(x3)) = s(:~:::>pjYp) 
p 

= L ap3S(yp) =LL apjbqpZq = L CqjZq, 
p 

where Cqj = Lp bqpapj. Therefore, 

p q 

z[STlx = [cq3I = (z[Sly )(y[T]x). • 

q 
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Corollary A-7.35. If X is a basis of an n-dimensional vector space V over a 
field k, then F: Homk(V, V) --t Matn(k), given by TH x(T]x, is an isomorphism 
of rings. 

Proof. The function F is a bijection, by Proposition A-7.33. It is easy to see that 
F(lv) = I and F(T + S) = F(T) + F(S), while F(TS) = F(T)F(S) follows from 
Theorem A-7.34. Therefore, Fis an isomorphism of rings. • 

Corollary A-7.36. Matrix multiplication is associative. 

Proof. Let A be an m x n matrix, let B be an n x p matrix, and let C be a p x q 
matrix. By Theorem A-7.28(i), there are linear transformations, 

kq ~ kP 4 kn ~ km 
' 

with C = (T], B = [SJ, and A= (R]. 

Then 
[Ro (So T)] = [R][S o T] = [R]([S](T]) = A(BC). 

On the other hand, 

[(Ro S) o T] = [Ro S][T] = ([R](S])(T] = (AB)C. 

Since composition of functions is associative, Ro (So T) = (Ro S) o T, and so 

A(BC) = [Ro (So T)] = [(Ro S) o T] = (AB)C. • 

The connection with composition of linear transformations is the real reason 
why matrix multiplication is associative. 

Recall that an n x n matrix P is called nonsingular if there is an n x n 
matrix Q with PQ = I = QP. If such a matrix Q exists, it is unique, and it is 
denoted by p-1 . 

Corollary A-7.37. Let T: V --t W be a linear transformation of vector spaces V 
and W over a field k, and let X and Y be bases of V and W, respectively. If T is 
an isomorphism, then the matrix of r-1 is the inverse of the matrix of T : 

x[T- 1]y = (y[T]x)-1. 

Proof. We have I= y[lw]Y = (y[T]x)(x[T-1]y), and so Theorem A-7.34 gives 
I= x[lv]x = (x[T-1]y )(y[T]x). • 

The next corollary determines all the matrices arising from the same linear 
transformation as we vary bases. 

Corollary A-7.38. Let T: V --t V be a linear transformation on a vector space 
V over a field k. If X and Y are bases of V, then there is a nonsingular matrix P 
(namely, the transition matrix P = y [1 v] x) with entries in k so that 

y[T]y = P(x[T]x)P-1 . 

Conversely, if B = PAP- 1 , where B, A, and P are n x n matrices with P nonsin
gular, then there is a linear transformation T: kn --t kn and bases X and Y of kn 

such that B = y[T]y and A= x[T]x. 
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Proof. The first statement follows from Theorem A-7.34 and associativity: 

y[T]y = y[lvTlv]Y = (y[lv]x)(x[T]x)(x[lv]y). 

Set P = y[lv]x and note that Corollary A-7.37 gives p-1 = x[lv]y. 

For the converse, let E = e1, ... , en be the standard basis of kn, and define 
T: kn ---+kn by T(ej) = Aei (remember that vectors in kn are column vectors, so 
that Aei is matrix multiplication; indeed, Aei is the jth column of A). It follows 
that A = E[T]E· Now define a basis Y = Y1, ... , Yn by Yi = p-lej; that is, 
the vectors in Y are the columns of p-1 . Note that Y is a basis because p-1 is 
nonsingular. It suffices to prove that B = y[T]y; that is, T(yj) =Li biiYi, where 
B = [bii]: 

T(yi) = Ayi = AP-1ei = p-1 Bei 

= p-l I:>ijei = L bijP- 1ei = L biiYi· • 

Definition. Two n x n matrices Band A with entries in a field k are similar if 
there is a nonsingular matrix P with entries in k such that B = P AP-1 • 

Corollary A-7.38 says that two matrices arise from the same linear transforma
tion on a vector space V (from different choices of bases) if and only if they are 
similar. In Course II, we will see how to determine whether two given matrices are 
similar. 

The next corollary shows that "one-sided inverses" are enough. 

Corollary A-7.39. If A and B are n x n matrices with AB= I, then BA= I. 
Therefore, A is nonsingular with inverse B. 

Proof. There are linear transformations T, S: kn ---+ kn with [T] = A and [ S] = B, 
and AB = I gives 

[TS]= [T][S] = [lkn]. 

Since T 1-t [T] is a bijection, by Proposition A-7.33, it follows that TS= lkn· By 
Set Theory, T is a surjection and S is an injection. But the Pigeonhole Principle, 
Proposition A-7.27, says that both T and Sare nonsingular, so that S = T-1 and 
TS= lkn =ST. Therefore, I= [ST] = [S][T] =BA, as desired. • 

Definition. The set of all nonsingular n x n matrices with entries in k is denoted 
by GL(n,k). 

Now that we have proven associativity, it is easy to prove that GL(n, k) is a 
group under matrix multiplication. 

A choice of basis gives an isomorphism between the general linear group and 
the group of nonsingular matrices. 

Proposition A-7.40. If V is an n-dimensional vector space over a field k and X 
is a basis of V, then f: GL(V)---+ GL(n,k), given by f(T) = x[T]x, is a group 
isomorphism. 
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Proof. By Corollary A-7.35, the function F: T H x[T]x is a ring isomorphism 
Homk(V, V) ---+ Matn(k), and so Proposition A-3.28(ii) says that the restriction 
of F gives an isomorphism U(Homk(V, V)) ~ U(Matn(k)) between the groups of 
units of these rings. Now T: V ---+ V is a unit if and only if it is nonsingular, while 
Corollary A-7.37 shows that F(T) = f (T) is a nonsingular matrix. • 

The center of the general linear group is easily identified; we now generalize 
Exercise A-4.64 on page 158. 

Definition. A linear transformation T: V ---+ V is a scalar transformation if 
there is c Ek with T(v) = cv for all v E V; that is, T = clv. Ann x n matrix A 
is a scalar matrix if A= cl, where c Ek and l is the identity matrix. 

A scalar transformation T = cl v is nonsingular if and only if c I- 0 (its inverse 
isc1 lv). 

Corollary A-7.41. 

(i) The center of the group GL(V) consists of all the nonsingular scalar 
transformations. 

(ii) The center of the group GL(n, k) consists of all the nonsingular scalar 
matrices. 

Proof. 

(i) If T E GL(V) is not scalar, then Example A-7.32(ii) shows that there 
exists v E V with v, T(v) linearly independent. By Proposition A-7.19, 
there is a basis v, T(v), u3, ... , Un of V. It is easy to see that v, v + 
T( v), u3, ... , Un is also a basis of V, and so there is a nonsingular linear 
transformation S with S(v) = v, S(T(v)) = v + T(v), and S(ui) = Ui 
for all i. Now S and T do not commute, for ST(v) = v + T(v) while 
TS(v) = T(v). Therefore, Tis not in the center of GL(V). 

(ii) If f: G---+ His any group isomorphism between groups G and H, then 
f(Z(G)) = Z(H). In particular, if T = clv is a nonsingular scalar 
transformation, then [T] is in the center of GL(n, k). But [T] = cl is a 
scalar matrix: if X = V1, ... , Vn is a basis of V, then T( vi) = cvi for all i . 

• 

Exercises 

A-7.12. If U and W are vector spaces over a field k, define their (external) direct sum 

U E0 W = { ( u, w) : u E U and w E W} 

with addition ( u, w) + ( u', w') = ( u + u', w + w') and scalar multiplication a( u, w) = 
(au, aw) for all a Ek. (Compare this definition with that on page 259.) 

Let V be a vector space with subspaces U and W such that Un W = {O} and 
U + W = {u + w: u EU and w E W} = V. Prove that V ~ U E0 W. 
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* A-7.13. Recall Example A-7.24(iii): if V and W are vector spaces over a field k, then 
Homk(V, W) is a vector space over k. 

(i) If V and W are finite-dimensional, prove that 

dim(Homk(V, W)) = dim(V) dim(W). 

(ii) The dual space V* of a vector space V over k is defined by 

V* = Homk(V, k). 

If dim(V) = n, prove that dim(V*) = n, and hence that V* ~ V. 

(iii) If X =vi, ... , Vn is a basis of V, define 01, ... , On EV* by 

Oi(Vj) = {01 if j =Ii, 
if j = i. 

Prove that 01, ... , On is a basis of V* (it is called the dual basis arising from 
V1, ... , Vn)· 

A-7.14. If A=[~~), define det(A) =ad-be. If Vis a vector space with basis X = v1, v2, 
define T: V-+ V by T(v1) = av1 +bv2 and T(v2) = cv1 +dv2. Prove that Tis nonsingular 
if and only if det(x (T)x) =I 0. 

Hint. You may assume the following (easily proved) fact of linear algebra: given a system 
of linear equations with coefficients in a field, 

ax+by =p, 

cx+dy = q, 

there exists a unique solution if and only if ad - be =I 0. 

A-7.15. Let U be a subspace of a vector space V. 

(i) Prove that the natural map 7r: V -+ V/U, given by v i-+ v + U, is a linear 
transformation with kernel U. (Quotient spaces were defined in Exercise A-7.5 on 
page 258.) 

(ii) (First Isomorphism Theorem for Vector Spaces) Prove that if T: V-+ W 
is a linear transformation, then ker T is a subspace of V and cp: V / ker T -+ im T, 
given by cp: v + kerT i-+ T(v), is an isomorphism. 

* A-7.16. Let V be a finite-dimensional vector space over a field k, and let B denote the 
family of all the bases of V. Prove that Bis a transitive GL(V)-set. 

Hint. Use Theorem A-7.28(i). 

* A-7.17. Ann x n matrix N with entries in a field k is strictly upper triangular if all 
entries of N above and on its diagonal are 0. 

(i) Prove that the sum and product of strictly upper triangular matrices is again 
strictly upper triangular. 

(ii) Prove that if N is strictly upper triangular, then Nn = 0. 
Hint. Let el, ... , en be the standard basis of kn (regarded as column vectors), 
and define T: kn -+kn by T(ei) = Nei. Show that Ti(ej) = 0 for all j :::; i and 
T(ei+i) E (e1, ... , ei), and conclude that Tn(ei) = 0 for all i. 

A-7.18. Define the rank of a linear transformation T: V -+ W between vector spaces 
over a field k by 

rank(T) = dimk(imT). 
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{i) Regard the columns of an m x n matrix A as m-tuples, and define the column 
space of A to be the subspace of km spanned by the columns; define the rank 
of A, denoted by rank{ A), to be the dimension of the column space. If T: kn -+ km 
is the linear transformation defined by T(X) = AX, where X is an n x 1 vector, 
prove that 

rank{A) = rank{T). 

{ii) If A is an m x n matrix and B is a p x m matrix, prove that 

rank(BA) ::; rank{A). 

{iii) Prove that similar n x n matrices have the same rank. 
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Chapter B-1 

Modules 

This course studies not necessarily commutative rings R from the viewpoint of 
R-modules, which are representations of R as operators on abelian groups. Equiv
alently, modules may be viewed as generalized vector spaces whose scalars lie in 
a ring instead of in a field. Investigating modules, especially when conditions are 
imposed on the ring, leads to many applications. For example, we shall see, when 
R is a PID, that the classification of finitely generated R-modules simultaneously 
classifies all finitely generated abelian groups as well as all square matrices over 
a field via canonical forms. Other important topics will arise: noetherian rings 
and the Hilbert Basis Theorem; Zorn's Lemma with applications to linear algebra 
and existence and uniqueness of algebraic closures of fields; categories and func
tors, which not only provide a unifying context, but which also lay the groundwork 
for homological algebra (projectives, injectives, tensor product, flats); direct and 
inverse limits. We shall also discuss multilinear algebra, some algebraic geometry, 
and Grobner bases. 

N oncommutative Rings 

We have concentrated on commutative rings in Course I; we now consider noncom
mutative rings. Recall the definition. 

Definition. A ring R is a set with two binary operations, addition and multipli
cation, such that 

(i) R is an abelian group under addition, 

(ii) a(bc) = (ab)c for every a, b, c E R, 

(iii) there is an element 1 E R with la = a = al for every a E R, 

(iv) a(b + c) =ab+ ac and (b + c)a = ba +ca for every a, b, c E R. 

A ring R is commutative if ab = ba for all a, b E R. -273 
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Here are some examples of noncommutative rings. 

Example B-1.1. 

(i) If k is any nonzero commutative ring, then Matn(k), all n x n matri
ces with entries in k, is a ring under matrix multiplication and matrix 
addition; Matn ( k) is commutative if and only if n = 1. 

(ii) Matrices over any, not necessarily commutative, ring k also form a ring. 
If A = [aip] is an m x e matrix and B = [bv3] is an ex n matrix, then 
their product AB is defined to be the m x n matrix whose ij entry has 
the usual formula: (AB)ij = Lp aipbpji just make sure that entries aip 
in A always appear on the left and that entries bpj of B always appear 
on the right. Thus, Matn(k) is a ring, even if k is not commutative. 

(iii) If G is a finite group (whose binary operation is written multiplicatively) 
and k is a field, we define the group algebra kG as follows. Its additive 
group is the vector space over k having a basis labeled by the elements 
of G; thus, each element has a unique expression of the form LgEG a9 g, 
where a9 E k for all g E G. If g and h are basis elements, that is, if 
g, h E G, define their product in kG to be their product gh in G, while 
ag = ga whenever a E k and g E G. The product of any two elements of 
kG is defined by extending by linearity: 

The group algebra kG is commutative if and only if the group G is abelian. 

(iv) Part (iii) can be generalized to rings kG where G is any, not necessarily 
finite, group and k is any commutative ring. In particular, we can define 
group rings ZG. If G is a group and k is a commutative ring, define 

kG = {cp: G-t k: cp(g) = 0 for almost all g E G}1. 

Equip kG with pointwise addition and a binary operation called convo
lution: If cp, 'I/; E kG, then cp'I/; is defined by 

cp'I/;: gt-+ I: cp(x)'l/;(x-19). 
xEG 

It is easy to see that kG is a ring. Exercise B-1.18 on page 282 says, 
when k is a field and G is finite, that this version of kG is isomorphic to 
that in part (iii). 

( v) An endomorphism of an abelia.n group A is a homomorphism f : A---+ A. 
The endomorphism ring of A, denoted by End(A), is the set of all 
endomorphisms with operation pointwise addition, 

f + g: at-+ f(a) + g(a), 

1 The phrase "tp(g) = 0 for almost all g E G" means that there can be only finitely many g 
with tp(g) # 0. 
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and composition as multiplication. It is easy to check that End(A) is 
always a ring. Simple examples show that End(A) may not be com
mutative; for example, there are endomorphisms of Z EB Z which do not 
commute (in fact, End(Z EB Z) ~ Mat2 (Z)). 

(vi) Here is a variation of End(A). Recall Example A-7.24(iii): If V and W 
are vector spaces over a field k, then 

Homk (V, W) = {all linear transformations T: V ---+ W} 

is also a vector space over k. If T, S E Homk(V, W), then their sum is 
defined by T+S: v 1-t T(v)+S(v), and ifa E k, then scalar multiplication 
is defined by aT: v 1-t aT( v). Write 

Endk(V) = Homk(V, V) 

when V = W. If we define multiplication as composite, then Endk(V) is 
a ring (whose identity is 1 v). 

(vii) A polynomial ring k[x] can be defined when k is any, not necessarily 
commutative, ring if we insist that the indeterminate x commutes with 
constants in k. 

(viii) Let k be a ring, and let 17: k ---+ k be a ring homomorphism. Define a 
new multiplication on polynomials k[x] = {L=i aixi : ai E k} satisfying 

xa = 17(a)x for all a E k. 

Thus, multiplication of two polynomials is now given by 

(Li aixi)( Lj bjxj) = Lr CrXr, 

where Cr = l:i+j=r ai17i(bJ ). It is a routine exercise to show that k[x] 
equipped with this new multiplication is a not necessarily commutative 
ring. This ring is denoted by k[x; 17), and it is called a ring of skew 
polynomials. 

(ix) If R1 , ... , Rt are rings, then their direct product 

R =Rix··· x Rt 

is the cartesian product with operations coordinatewise addition and mul
tiplication: If (r1, ... , rt) is abbreviated to (ri), then 

(ri) + (r~) = (ri + rD and (ri)(rD = (rir~). 

It is easy to see that Risa ring. Identify ri E Ri with the t-tuple whose 
ith coordinate is ri and whose other coordinates are O; then rirj = 0 if 
i=/=j. 

(x) A division ring D (or skew field) is a "noncommutative field;" that 
is, D is a ring in which 1 =I= 0 and every nonzero element a E D has a 
multiplicative inverse: there exists a' E D with aa' = 1 = a' a. Equiva
lently, a ring D is a division ring if the set D x of its nonzero elements 
is a multiplicative group. Of course, fields are division rings; here is a 
noncommutative example. 
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Let lHl be a four-dimensional vector space over IR, and label a basis 
1, i, j, k. Thus, a typical element h in lHl is 

h = a + bi + cj + dk, 

where a, b, c, d E R Define multiplication of basis elements as follows: 

i2 = j2 = k2 = -1, 

ij = k = -ji; jk = i = -kj; ki = j = -ik; 

we insist that every a E IR commutes with 1, i, j, k and lh = h = hl for 
all h E IHl, where 1 is a basis element in IH!. Finally, define multiplication 
of arbitrary elements by extending by linearity. It is straightforward to 
check that lHl is a ring; it is called the (real) quaternions. 2 To see that lHl 
is a division ring, it suffices to find inverses of nonzero elements. Define 
the conjugate u of u = a + bi + cj + dk E lHl by 

u = a - bi - cj - dk; 

we see easily that 

uu = a 2 + b2 + c2 + d2. 

Hence, uu # 0 when u # 0, and so 

-1 u u =-
uu a2 + b2 + c2 + d2. 

It is not difficult to prove that conjugation is an additive isomorphism 
satisfying 

UW=WU. 

As the Gaussian integers can be used to prove Fermat's Two-Squares The
orem, an odd prime p is a sum of two squares if and only if p = 1 mod 4, 
the quaternions can be used to prove Lagrange's Theorem that every 
positive integer is the sum of four squares (Samuel, Algebraic Theory of 
Numbers, pp. 82-85). Of course, the quaternions have other applications 
besides this result. 

The only property of the field IR we have used in constructing lHl is 
that a sum of nonzero squares is nonzero; <C does not have this property, 
but any subfield of IR does. Thus, there is a division ring of rational 
quaternions, for example. We shall construct other examples of division 
rings when we discuss crossed product algebras and the Brauer group in 
Part 2. ~ 

Here are some elementary properties of rings; the proofs are the same as for 
commutative rings (see Proposition A-3.2). 

2 The quaternions were discovered in 1843 by W.R. Hamilton when he was seeking a gener
alization of the complex numbers to model some physical phenomena. He had hoped to construct 
a three-dimensional algebra for this purpose, but he succeeded only when he saw that dimen
sion 3 should be replaced by dimension 4. This is why Hamilton called nn the quaternions, and 
this division ring is denoted by nn to honor Hamilton. The reader may check that the subset 
{ ± 1, ±i, ±j, ±k} is a multiplicative group isomorphic to the group Q of quaternions (see Exer
cise B-1.14 on page 281). 
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Proposition B-1.2. Let R be a ring. 

(i) 0 · a = 0 = a · 0 for every a E R. 

(ii) If-a is the additive inverse of a, then (-1)(-a) =a= (-1)(-a). In 
particular, (-1)(-1) = 1. 

(iii) (-l)a =-a= a(-1) for every a ER. 

Informally, a subring S of a ring R is a ring contained in R such that S and R 
have the same addition, multiplication, and unit. Recall the formal definition. 

Definition. A subring S of a ring R is a subset of R such that 

(i) 1 ES; 

(ii) if a, b E S, then a - b E S; 

(iii) if a, b E S, then ab E S. 

Subrings are rings in their own right. 

Definition. The center of a ring R, denoted by Z(R), is the set of all those 
elements z E R commuting with everything: 

Z(R) = {z ER: zr = rz for all r ER}. 

It is easy to see that Z(R) is a subring of R. 

Example B-1.3. 

(i) If k is a commutative ring and G is a group, then k ~ {al : a E k} ~ 
Z(kG). 

(ii) Exercise B-1.8 on page 281 asks you to prove, for any ring R, that the 
center of a matrix ring Matn ( R) is the set of all scalar matrices al, 
where a E Z(R) and I is then x n identity matrix. 

(iii) Exercise B-1.11 on page 281 says that Z(IHI) ={al: a E JR}~ JR. 

(iv) If D is a division ring, then its center, Z(D), is a field. <Ill 

Here are two nonexamples. 

Example B-1.4. 

(i) Define S = {a+ ib : a, b E Z} ~ C. Define addition in S to coincide with 
addition in C, but define multiplication in S by 

(a+ bi)(c +di)= ac +(ad+ bc)i 

(thus, i 2 = 0 in S, whereas i 2 i- 0 in C). It is easy to check that S is a 
ring that is a subset of C, but it is not a subring of C. 

(ii) If R = Z x Z is the direct product, then its unit is (1, 1). Let 

S = {(n, 0) E Z x Z: n E Z}. 

It is easily checked that S is closed under addition and multiplication; 
indeed, Sis a ring, for (1, 0) is the unit in S. However, Sis not a subring 
of R because S does not contain the unit (1, 1) of R. <Ill 
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An immediate complication arising from noncommutativity is that the notion 
of ideal splinters into three notions. There are now left ideals, right ideals, and 
two-sided ideals. 

Definition. Let R be a ring, and let I be an additive subgroup of R. Then I is a 
left ideal if a EI and r ER implies ra E J, while I is a right ideal if ar E J. We 
say that I is a two-sided ideal if it is both a left ideal and a right ideal. 

Both {O} and Rare two-sided ideals in R. Any ideal (left, right, or two-sided) 
distinct from R is called proper. 

Example B-1.5. In Mat2(1R), the equation 

[~ ~] [: ~] = [: ~] 
shows that the "first columns" (that is, the matrices that are 0 off the first column), 
form a left ideal (the "second columns" also form a left ideal); neither of these left 
ideals is a right ideal. The equation 

shows that the "first rows" (that is, the matrices that are 0 off the first row) form a 
right ideal (the "second rows" also form a right ideal); neither of these right ideals 
is a left ideal. The only two-sided ideals are {O} and Mat2(1R) itself, as the reader 
may check. 

This example generalizes, in the obvious way, to give examples of one-sided 
ideals in Matn(k) for all n ~ 2 and every commutative ring k. It is true, when k is 
a field, that Matn(k) has no two-sided ideals other than {O} and Matn(k). <Ill 

Example B-1.6. In a direct product of rings, R = R1 x · · · x Rt, each Ri is 
identified with 

Ri = {(O, ... ,0, ri, 0, ... ,0): ri E Rj}, 

where ri occurs in the jth coordinate. It is easy to see that each such Ri is a 
two-sided ideal in R (for if j "I- i, then riri = 0 = rirj)· Moreover, any left or right 
ideal in Rj is also a left or right ideal in R. Exercise B-1.8 on page 281 says that 
Z(R) = Z(R1 ) x · · · x Z(Rt)· <Ill 

We can form the quotient ring R/ I when I is a two-sided ideal, if we define 
multiplication on the abelian group R/ I by 

(r + I)(s +I) =rs+ I. 

This operation is well-defined: If r+ I = r' +I and s+ I = s' +I, then rs+ I = r's'+ I; 
that is, if r - r' EI ands - s' E J, then rs - r's' E J. To see this, note that 

rs - r's'= rs - rs'+ rs' - r's'= r(s - s') + (r - r')s' E J, 

for both s - s' and r - r' lie in I, and each term on the right side also lies in I 
because I is a two-sided ideal. 
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Example B-1.7. Here is an example in which Rf I is not a ring when I is not 
a two-sided ideal. Let R = Mat2 (1R.) and let I be the left ideal of first columns 
(see Example B-1.5). Set A = [g iJ, A' = (8 iJ, B = [ l 6J, and B' = (8 6J. Note 
that A - A' EI and B - B' E J. However, AB= [~ g] and A' B' = (8 n so that 
AB - A' B' ~I. Thus, the law of substitution does not hold: A+ I= A'+ I and 
B +I= B' +I, but AB+ If=. A' B' +I. .... 

Two-sided ideals arise from homomorphisms; we recall the definition. 

Definition. If R and S are rings, then a ring homomorphism (or ring map) is 
a function <p: R --+ S such that, for all r, r' E R, 

(i) cp(r + r') = cp(r) + cp(r'); 

(ii) cp(rr') = cp(r)cp(r'); 

(iii) cp(l) = 1. 

A ring isomorphism is a ring homomorphism that is also a bijection. 

It is easy to see that the natural map 7f: R --+ Rf I, defined (as usual) by 
rt-tr+ I, is a ring map. 

Some properties of a ring homomorphism f : A --+ R (between noncommutative 
rings) follow from f being a homomorphism between the additive groups of A and 
of R. For example, f(O) = 0, f(-a) = - f(a), and f(na) = nf(a) for all n E Z. 

Definition. If f: A --+ R is a ring homomorphism, then its kernel is 

ker f ={a EA with f(a) = O} 

and its image is 

imf = {r ER: r = f(a) for some a ER}. 

The proofs of the First Isomorphism Theorem and of the Correspondence The
orem for commutative rings are easily modified to prove their analogs for general, 
not necessarily commutative, rings. 

Theorem B-1.8 (First Isomomorphism Theorem). Let f: R--+ A be a ring 
homomorphism. Then ker f is a two-sided ideal in R, im f is a subring of A, and 
there is a ring isomorphism f: Rf ker f --+ im f given by 

f: r + ker f t-t f(r). 

Theorem B-1.9 (Correspondence Theorem). Let R be a ring, let I be a two
sided ideal in R, and let 7f: R --+ Rf I be the natural map. Then 

J t-t 7r(J) = Jf I 

is an order-preserving bijection between fld(R, I), the family of all those left ideals 
J of R containing I, and fld(Rf I), the family of all the left ideals of Rf I; that is, 
I <;, J <;, J' <;, R if and only if J f I <;, J' f I <;, Rf I. 

Similarly, J t-t 7r(J) = JfI is an order-preserving bijection between rld(R,I), 
the family of all those right ideals J of R containing I, and rld(Rf I), the family 
of all the right ideals of Rf I. 
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If I is an ideal in a commutative ring R, the Correspondence Theorem gives 
a bijection between the family of all the ideals in R/ I and all the "intermediate" 
ideals J in R containing I. In particular, if I is a maximal ideal in R, then R/ I has 
no proper nontrivial ideals, and Example A-3.31 shows that R/ I is a field. If R is a 
noncommutative ring and I is a maximal two-sided ideal in R, then Theorem B-1.9 
shows that R/ I has no proper nonzero two-sided ideals (we assume I is a two-sided 
ideal so that R/ I is a ring). But R/ I need not be a division ring; the analog of 
Example A-3.31 no longer holds. For example, Exercise B-1.17 on page 282 shows, 
when k is a field, that Mat2 ( k), has no proper nonzero two-sided ideals. Of course, 
Mat2(k) is not a division ring. 

Call a ring R simple if it is not the zero ring and it has no proper nonzero 
two-sided ideals. It is a theorem of Wedderburn, when D. is a division ring, that 
Matn(D.) is a simple ring for all n :2'.: 1. 

Exercises 

* B-1.1. Prove that every ring R has a unique 1. 

B-1.2. (i) Let <p: A --t R be a ring isomorphism, and let 'l/J: R --t A be its inverse 
function. Show that 'l/J is a ring isomorphism. 

(ii) Show that the composite of two ring homomorphisms (or isomorphisms) is again a 
ring homomorphism (or isomorphism). 

(iii) Show that A ~ R defines an equivalence relation on any set of rings. 

B-1.3. Prove that every two-sided ideal I in any ring R is a kernel; that is, there is a ring 
A and a homomorphism f: R --t A with I = ker f. 
B-1.4. Let R be a ring. (i) If (Si)iEI is a family of subrings of R, prove that niEI Si is 

also a subring of R. 

(ii) If X ~Risa subset of R, define the subring generated by X, denoted by (X), 
to be the intersection of all the subrings of R that contain X. Prove that (X) is 
the smallest subring containing X in the following sense: If S is. a subring of R and 
X ~ S, then (X) ~ S. 

(iii) If (lj)jEJ is a family of (left, right, or two-sided) ideals in R, prove that njEJ lj is 
also a (left, right, or two-sided) ideal in R. 

(iv) If X ~Risa subset of R, define the left ideal generated by X, denoted by (X), 
to be the intersection of all the left ideals in R that contain X. Prove that (X) is 
the smallest left ideal containing X in the following sense: If S is a left ideal in R 
and X ~ S, then (X) ~ S. Similarly, we can define the right ideal or the two-sided 
ideal generated by X. 

B-1.5. Let R be a ring. (i) Define the circle operation Rx R --t R by 

a o b = a + b - ab. 

Prove that the circle operation is associative and that 0 o a = a for all a E R. 

(ii) Prove that R is a field if and only if {a E R : a of= 1} is an abelian group under the 
circle operation. 
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Hint. If a "I 1, then 1 - a "I 0 and division by 1 - a is allowed. 

* B-1.6. (i) Show that if R and S are rings, then R x (0) is a two-sided ideal in R x S. 

(ii) Show that Rx (0) is a ring isomorphic to R, but it is not a subring of Rx S. 

* B-1. 7. (i) If k is a commutative ring and G is a cyclic group of finite order n, prove that 
kG ~ k(x)/(xn - 1). 

(ii) If k is a domain,3 define the ring of Laurent polynomials as the subring of k(x) 
consisting of all rational functions of the form f(x)/xn for f(x) E k(x) and n E Z. If 
G is infinite cyclic, prove that kG is isomorphic to the ring of Laurent polynomials. 

* B-1.8. (i) If Risa possibly noncommutative ring, prove that Matn(R) is a ring. 

(ii) Prove that the center of a matrix ring Matn(R) is the set of all scalar matrices al, 
where a E Z(R) and I is the identity matrix. 

* B-1.9. Let R = R1 x · · · x Rt be a direct product of rings. 

(i) Prove that Z(R) = Z(R1) x · · · x Z(Rt)· 

(ii) If k is a field and 

R = Matn1 (k) X · · · X Matnt (k), 

prove that dimk(R) = I:~n~ and dimk(Z(R)) = t. 

B-1.10. Let R be a four-dimensional vector space over C with basis 1,i,j,k. Define a 
multiplication on R so that these basis elements satisfy the same identities satisfied in the 
quaternions lHl (see Example B-1.l(x)). Prove that R is not a division ring. 

* B-1.11. Prove that Z(llll) ={al: a ER}. 

* B-1.12. Let A be a division ring. 

(i) Prove that the center Z(A) is a field. 

(ii) If Ax is the multiplicative group of nonzero elements of A, prove that Z(Ax) = 
Z(A)x; that is, the center of the multiplicative group Ax consists of the nonzero 
elements of Z(A). 

* B-1.13. Let R be the set of all complex matrices of the form [ ~b !] , where a denotes 

the complex conjugate of a. Prove that Risa subring of Mat2(C) and that R ~ llll, where 
lHl is the division ring of quaternions. 

* B-1.14. Write the elements of the group Q of quaternions as 

1, I, i, i, j, ], k, k, 

and define a linear transformation cp : RQ -t llll, where RQ is the group algebra, by 

cp(x) = x and cp(x) = -x for x = 1, i,j, k. 

Prove that cp is a surjective ring map, and conclude that there is an isomorphism of rings 
RQ/ ker cp ~ llll. 

B-1.15. (i) If R is a ring, r E R, and k ~ Z(R) is a subring, prove that the subring 
generated by r and k is commutative. 

3Laurent series over an arbitrary commutative ring k can be defined using localization at the 
multiplicative subset {xn: n ~ O}. 
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(ii) If I::!.. is a division ring, r E b.., and k ~ Z(b..) is a subring, prove that the sub-division 
ring generated by rand k is a (commutative) field. 

B-1.16. If Risa ring in which x2 = x for every x ER, prove that R is commutative. (A 
Boolean ring is an example of such a ring.) 

Remark. There are vast generalizations of this result. Here are two such. (i) If R is a 
ring for which there exists an integer n > 1 such that xn - x E Z(R) for all x E R, then 
R is commutative. (ii) If R is a ring such that, for all x, y E R, there exists n = n(x, y) 
with (xy - yx)n = xy - yx, then R is commutative. (See Herstein [48] Chapter 3.) <Ill 

* B-1.17. Prove. when k is a field, that the only two-sided ideals in Mat2(k) are {O} and 
Mat2(k). What if k is a division ring? 

* B-1.18. In Example B-1.l(iv), we defined the ring kG, where G is a group and k is a 
commutative ring, as the set of all those functions cp: G --+ k with cp( x) = 0 for almost all 
x E G, equipped with operations pointwise addition and convolution: 

(cp1/J)(g) = L cp(x)1/J(x-1g). 
xEG 

If u E G, define cp,,, E kG by cp,,,(g) = 0 for g =/= u while cp,,,(u) = 1. When k is a field and 
G is a finite group, prove that the ring kG constructed in Example B-1.l(iii) is isomorphic 
to that constructed in Example B-1.l(iv) via the map <P given by <P: u 1--t cp,,,. 

B-1.19. (Kaplansky) An element a in a ring R has a left inverse if there is u E R with 
ua = 1, and it has a right inverse if there is v ER with av= 1. 

(i) Prove that if a ER has both a left inverse u and a right inverse v, then u = v. 

(ii) Let k be a field and view k[x] as an infinite-dimensional vector space over k. If 
b E k, define a linear transformation Ab: k[x] --+ k[x] by Ab: f 1--t b + xf. Prove 
that U: k[x] --+ k[x], defined by 

U: ao + aix + · · · + anxn 1--t ai + a2X + · · · + anxn-l, 

is a left inverse of Ab in Endk(k[x]); that is, UAb = lk[x)· Find a linear transfor
mation U': k[x] --+ k[x] with U' =/= U and U' Ab= lk[x]· 

(iii) Let R be a ring and let a, u, v E R satisfy ua = 1 = va. If v =/= u, prove that a 
has infinitely many left inverses. Conclude that each element in a finite ring has at 
most one left inverse. 
Hint. Generalize the construction in (ii); you must show that the left inverses you 
construct are all distinct. 

Chain Conditions on Rings 

When k is a field, Hilbert's Basis Theorem states one of the most important prop
erties of k[x1, ... , xn]: every ideal can be generated by a finite number of elements. 
This finiteness property is intimately related to chains of ideals. 

Definition. A ring R satisfies left ACC (left ascending chain condition) if 
every ascending chain of left ideals 

Ii ~ I2 ~ · · · ~ In ~ · · · 
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stops; that is, the sequence is constant from some point on: there is an integer N 
with IN= IN+l = IN+2 = · · ·. Similarly, we can define ACC on right ideals or on 
two-sided ideals. 

Lemma A-3.125 shows that every PID satisfies ACC (the adjectives left and 
right modifying ACC are not necessary for commutative rings). 

Definition. If U is a subset of a ring R, then the left ideal generated by U is 
the set of all finite linear combinations 

(U) = { L riui: ri ER and ui EU}· 
finite 

We say that a left ideal I is finitely generated if there is a finite set U with 
I= (U); if U = { ui, ... , Un}, we abbreviate I= (U) = ( { ui, ... , Un}) to 

I=(u1, ... ,un), 

and we say that the left ideal I is generated by ui, ... , Un· 

A set of generators u1 , ... , Un of an ideal I is sometimes called a basis of I 
(this is a weaker notion than that of a basis of a vector space, for we do not assume 
that the coefficients ri inc= 2: riui are uniquely determined by c). 

Of course, every ideal I in a PID is finitely generated, for it can be generated 
by one element. 

Proposition B-1.10. The following conditions are equivalent for a ring R. 

(i) R satisfies the left ACC. 

(ii) R satisfies the left maximum condition: every nonempty family F of 
left ideals in R has a maximal element; that is, there is some M E F for 
which there is no I E F with M s;; I. 

(iii) Every left ideal in R is finitely generated. 

Proof. (i) ::::} (ii) Let 1i be a nonempty family of left ideals in R, and assume that 
1i has no maximal element. Choose Ii E 1i. Since Ii is not a maximal element, 
there is I 2 E 1i with Ii s;; I 2 . Now I 2 is not a maximal element in 1i, and so there 
is h E 1i with I2 £;:; I3. Continuing in this way constructs an ascending chain of 
ideals in R that does not stop, contradicting left ACC. 

(ii) =? (iii) Let I be a left ideal in R, and define Q to be the family of all the 
finitely generated left ideals contained in I; of course, Q "# 0, for (0) E Q. By 
hypothesis, there exists a maximal element }vf E Q. Now M ~ I because M E Q. 
If M £;:; I, then there is a E I with a rt M. The left ideal 

J = {m + ra: m EM and r ER}~ I 

is finitely generated, and so J E F; but Ms;; J, contradicting the maximality of M. 
Therefore, M = I, and I is finitely generated. 

(iii) =? (i) Assume that every left ideal in R is finitely generated, and let 

Ii ~ I2 ~ · · · ~ In ~ · · · 
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be an ascending chain of left ideals in R. By Lemma A-3.125(i), the ascending 
union J = Un>l In is a left ideal. By hypothesis, there are elements ai E J with 
J = (ai, ... , aq). Now ai got into J by being in In; for some ni. If N is the largest 
ni, then In; ~ IN for all i; hence, ai E IN for all i, and so 

J = (ai, ... , aq) ~ IN ~ J. 

It follows that if n 2: N, then J = IN ~ In ~ J, so that In = J; therefore, the 
chain stops, and R has left ACC. • 

We now give a name to a ring that satisfies any of the three equivalent conditions 
in the proposition. 

Definition. A ring R is called left noetherian4 if every left ideal in R is finitely 
generated. The term right noetherian is defined similarly. 

Exercise B-1.28 on page 288 gives an example of a left noetherian ring that is 
not right noetherian. 

We shall soon see that k[x1, ... , xn] is noetherian whenever k is a field. On the 
other hand, here is an example of a commutative ring that is not noetherian. 

Example B-1.11. Let R = F(IR) be the ring of all real-valued functions on the 
reals under pointwise operations (see Example A-3.10). For every positive integer n, 

In= {f: IR-* IR: f(x) = 0 for all x 2: n} 

is an ideal and In ~ In+l for all n. Therefore, R does not satisfy ACC, and so R 
is not noetherian. Note that In is finitely generated; however, Exercise B-1.23 on 
page 287 asks you to prove that the family {In : n 2: 1} does not have a maximal 
element, and that I = Un In is not finitely generated. <Iii 

Definition. If k is a commutative5 subring of a ring A, then we call A a k-algebra 
if scalars in k commute with everything: 

(au)v = a(uv) = u(av) 

for all a E k and u, v E A. Thus, k ~ Z(A). 

For example, matrix rings Matn(k), group algebras kG, endomorphism rings 
Endk(V) (see Example B-1.l(vi)), and polynomial rings k[x] are k-algebras. 

Proposition B-1.12. If k is a field, then every finite-dimensional k-algebra A is 
left and right noetherian. 

Proof. It is easy to see that A is a vector space over k and that a left or right ideal 
of A is a subspace of A. Hence, if dimk(A) = n, then there are at most n strict 
inclusions in any ascending chain of left ideals or of right ideals. • 

Here is an application of the maximum condition. 

4 This name honors Emmy Noether (1882-1935), who introduced chain conditions in 1921. 
5 If A is a k-algebra, then the subring k must be commutative: in the displayed equations, 

take v = 1 and u E k. 
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Corollary B-1.13. If I is a proper ideal in a left noetherian ring R, then there 
exists a maximal left ideal M in R containing I. In particular, every left noetherian 
ring has maximal left ideals.6 

Proof. Let F be the family of all those proper left ideals in R which contain I; 
note that F f. 0 because I E F. Since R is left noetherian, the maximum condition 
gives a maximal element M in F. We must still show that M is a maximal left 
ideal in R (that is, that M is a maximal element in the larger family F' consisting 
of all the proper left ideals in R). This is clear: if there is a proper left ideal J with 
M ~ J, then I~ J, and J E F. Hence, maximality of M gives M = J, and so M 
is a maximal left ideal in R. • 

The next result constructs a new noetherian ring from an old one. 

Corollary B-1.14. If R is a left noetherian ring and I is a two-sided ideal in R, 
then Rf I is also left noetherian. 

Proof. If A is a left ideal in Rf I, then the Correspondence Theorem for Rings 
provides a left ideal J in R with J f I = A. Since R is left noetherian, the left 
ideal J is finitely generated, say, J = (b1, ... , bn), and so A = J f I is also finitely 
generated (by the cosets b1 +I, ... , bn +I). Therefore, Rf I is left noetherian. • 

The following anecdote is well known. Around 1890, Hilbert proved the famous 
Hilbert Basis Theorem, showing that every ideal in C[x1, ... , Xn] is finitely gener
ated. As we will see, the proof is nonconstructive in the sense that it does not give 
an explicit set of generators of an ideal. It is reported that when P. Gordan, one of 
the leading algebraists of the time, first saw Hilbert's proof, he said, "This is not 
Mathematics, but theology!" On the other hand, Gordan said, in 1899 when he 
published a simplified proof of Hilbert's Theorem, "I have convinced myself that 
theology also has its advantages." 

Lemma B-1.15. A ring R is left noetherian if and only if, for every sequence 
ai, . .. , an, . .. of elements in R, there exist m 2:: 1 and r1, ... , Tm E R with am+l = 
r1a1 + · · · + rmam. 

Proof. Assume that R is left noetherian and that ai, ... , an, ... is a sequence of 
elements in R. If In is the left ideal generated by a1 , ... , an, then there is an 
ascending chain of left ideals, Ii ~ I 2 ~ · · ·• By left ACC, there exists m ;:::: 1 
with Im = Im+l· Therefore, am+l E Im+l = Im, and so there are ri E R with 
am+l = r1a1 + · · · + rmam. 

Conversely, suppose that R satisfies the condition on sequences of elements. If 
R is not left noetherian, then there is an ascending chain of left ideals Ii ~ I 2 ~ • • • 

that does not stop. Deleting any repetitions if necessary, we may assume that In s;; 
In+l for all n. For each n, choose an+l E In+l with an+l ¢: In. By hypothesis, there 
exist m and Ti E R for i :S m with am+l = L:i<m riai E Im. This contradiction 
implies that R is left noetherian. • -

6This corollary is true without assuming that R is noetherian, but the proof of the general 
result needs Zorn's Lemma (see Theorem B-2.3). 
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Theorem B-1.16 {Hilbert Basis Theorem). If Risa left noetherian ring, then 
R[x]1 is also left noetherian. 

Proof {Sarges). Assume that I is a left ideal in R[x] that is not finitely generated; 
of course, I "!- (0). Define fo(x) to be a polynomial in I of minimal degree and 
define, inductively, fn+l (x) to be a polynomial of minimal degree in I -(!0 , ••• , fn)· 
Note that fn(x) exists for all n 2'.: 0: if I - (Jo, ... , fn) were empty, then I would 
be finitely generated. It is clear that 

deg(fo) :::; deg(f1) :::; deg(/2) :::; · · · . 

Let an denote the leading coefficient of fn· Lemma B-1.15 gives an integer m with 
am+l E (ao, ... , am)i there are Ti ER with am+l = roao + · · · + rmam. Define 

m 

f*(x) = fm+i(x) - I:>dm+i-d;rdi(x), 
i=O 

where di = deg(fi)· Now f* EI - (Jo, ... , fm), for otherwise, f m+l E (Jo, ... , fm)· 
We claim that deg(!*) < deg(fm+l)· If fi(x) = aixd; +lower terms, then 

m 

f*(x) = fm+i(x) - 2::.>dm+i-d;rifi(x) 
i=O 

m 

= (am+lxdm+i +lower terms) - L xdm+i-d;ri(aixd; +lower terms). 
i=O 

The leading term being subtracted is thus L::,o riaixdm+i = am+lxdm+1 • We 
have contradicted f m+ 1 having minimal degree among polynomials in I not in 
(Jo, .. ·, fm)· • 

Corollary B-1.17. 

(i) If k is a field, then k[x1, ... , Xn] is noetherian. 

(ii) The ring Z[xi, ... , Xn] is noetherian. 

(iii) For any ideal I in k[x1, ... , xn], where k = Z or k is a field, the quotient 
ring k[xi, ... , Xnl/ I is noetherian. 

Proof. The proofs of the first two items are by induction on n ;::: 1, using the 
theorem, while the proof of (iii) follows from Corollary B-1.14. • 

Here is another chain condition. 

Definition. A ring R is left artinian if it has left DCC: every descending 
chain of left ideals Ii 2 I2 2 I3 2 · · · stops; that is, there is some t ;::: 1 with 
It = It+i = It+2 = · · · . 
Proposition B-1.18. The following conditions are equivalent for a ring R. 

(i) R satisfies left DCC. 

7This is the polynomial ring in which the indeterminate x commutes with each constant in R. 
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(ii) R satisfies the left minimum condition: every nonempty family F of 
left ideals in R has a minimal element; that is, there is some M E F for 
which there is no I E F with M "J I. 

Proof. Adapt the proof of Proposition B-1.10, replacing~ by ;2. • 

Definition. A left ideal L in a ring R is a minimal left ideal if L "# (0) and 
there is no left ideal J with (0) £; J £; L. 

Note that a ring need not contain minimal left ideals. For example, Z has no 
minimal ideals: every nonzero ideal I in Z has the form I = ( n) for some nonzero 
integer n, and I= (n) "J (2n) "# (0). 

We define right artinian rings similarly, and there are examples of left artinian 
rings that are not right artinian (Exercise B-1.30 on page 288). If k is a field, 
then every finite-dimensional k-algebra A is both left and right artinian, for if 
dimk(A) = n, then there are at most n strict inclusions in any descending chain of 
left ideals or of right ideals. In particular, if G is a finite group and k is a field, 
then kG is finite-dimensional, and so it is left and right artinian. We conclude that 
kG has both chain conditions (on the left and on the right) when k is a field and 
G is a finite group. 

The ring Z is left noetherian, but it is not left artinian, because the chain 

z 2 (2) 2 (22) 2 (23) 2 ... 

does not stop. The Hopkins-Levitzki Theorem, which we will prove later, says that 
every left artinian ring must be left noetherian. 

Exercises 

B-1.20. (i) Give an example of a noetherian ring R containing a subring that is not 
noetherian. 

(ii) Give an example of a commutative ring R containing proper ideals I £;; J £;; R with 
J finitely generated but with I not finitely generated. 

B-1.21. Let R be a (commutative) noetherian domain such that every a, b E R has a 
gcd that is an R-linear combination of a and b. Prove that Risa PID. (The noetherian 
hypothesis is necessary, for there exist non-noetherian domains, called Bezout rings, in 
which every finitely generated ideal is principal.) 

Hint. Use induction on the number of generators of an ideal. 

B-1.22. Give a proof not using Proposition B-1.10 that every nonempty family F of ideals 
in a PID R has a maximal element. 

* B-1.23. Example B-1.11 shows that R = F(R), the ring of all functions on R under 
pointwise operations, does not satisfy ACC. 

(i) Show that the family of ideals (/n)n;?:l in that example does not have a maximal 
element. 

(ii) Prove that I= Un;?: I In is an ideal that is not finitely generated. 
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B-1.24. If R is a commutative ring, define the ring of formal power series in several 
variables inductively: 

R([x1, ... , Xn+1Jl = A((xn+1]], 
where A = R[[x1, ... , xnll · Prove that if R is a noetherian ring, then R([x1, ... , xn)] is 
also a noetherian ring. 

Hint. If n = 1, use Exercise A-3.90 on page 103; when n 2 1, use the proof of the Hilbert 
Basis Theorem, but replace the degree of a polynomial by the order of a formal power 
series (the order of a nonzero formal power series I: CiXi is defined to be n, where n is the 
smallest i with Ci =/= O; see Exercise A-3.28 on page 46). 

B-1.25. Let 
8 2 = {(x,y,z) E IR3 : x2 +y2 +z2 =1} 

be the 2-sphere in IR3 . Prove that 

I= {f(x, y, z) E IR(x, y, z]: f(a, b, c) = 0 for all (a, b, c) E 8 2 } 

is a finitely generated ideal in IR[x,y,z]. 

B-1.26. If Rand Sare noetherian, prove that their direct product RxS is also noetherian. 

B-1.27. Let {An : n 2 1} be a family of (nonzero) rings and let R = ITn>l An. Prove 
that R is not noetherian. -

* B-1.28. (Small) Prove that the ring of all matrices of the form [ ~ ~], where a E Z 

and b, c E Q>, is left noetherian but not right noetherian. 

* B-1.29. Recall that a ring R has zero-divisors if there exist nonzero a, b E R with ab= 0. 
More precisely, an element a in a ring R is called a left zero-divisor if a =/= 0 and there 
exists a nonzero b E R with ab = O; the element b is called a right zero-divisor. Prove 
that a left artinian ring R having no left zero-divisors must be a division ring. 

* B-1.30. Let R be the ring of all 2 x 2 upper triangular matrices [~ ~],where a E Q> 

and b, c E IR. Prove that R is right artinian but not left artinian. 

Hint. The ring R is not left artinian because, for every V ~ IR that is a vector space 
over IQ, e.g., V = Q[v'2J, 

is a left ideal. 

Left and Right Modules 

We now introduce R-modules, where R is a ring. Informally, modules are "vector 
spaces over R;" that is, scalars in the definition of vector space are allowed to be 
in the ring R instead of in a field. 

Definition. Let R be a ring. A left R-module is an additive abelian group M 
equipped with a scalar multiplication R x M -t M, denoted by 

(r,m) H rm, 

such that the following axioms hold for all m, m' E M and all r, r', 1 E R: 

(i) r(m + m') =rm+ rm'. 
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(ii) (r + r')m =rm+ r'm. 

(iii) (rr')m = r(r'm). 

(iv) lm = m. 
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A right R-module is an additive abelian group M equipped with a scalar multi
plication M x R -+ M, denoted by 

(m, r) f-t mr, 

such that the following axioms hold for all m, m' E M and r, r', 1 E R: 

(i) (m + m')r = mr + m'r. 

(ii) m(r + r') = mr + mr'. 

(iii) m(rr') = (mr)r'. 

(iv) ml= m. 

Notation. A left R-module is often denoted by RM, and a right R-module Mis 
often denoted by MR. 

Of course, there is nothing to prevent us from denoting the scalar multiplication 
in a right R-module by (m, r) f-t rm. If we do so, then we see that only axiom (iii) 
differs from the axioms for a left R-module; the right version now reads 

(rr')m = r'(rm). 

If R is commutative, however, this distinction vanishes, for (rr')m = (r'r)m = 
r'(rm). Thus, when R is commutative, we will omit the adjective left or right and 
merely say that an abelian group M equipped with scalars in R is an R-module. 

Here are some examples of modules over commutative rings. 

Example B-1.19. 

(i) Every vector space over a field k is a k-module. 

(ii) The Laws of Exponents (Proposition A-4.20) say that every abelian group 
is a Z-module. 

(iii) Every commutative ring R is a module over itself: define scalar multipli
cation R x R -+ R to be the given multiplication of elements of R. 

More generally, every ideal I in R is an R-module, for if i E I and 
r E R, then ri E I. 

(iv) Let T: V-+ V be a linear transformation on a finite-dimensional vector 
space V over a field k. The vector space V can be made into a k[x]
module by defining scalar multiplication k[x] x V -+ V as follows. If 
f (x) = I:;:,0 Ci Xi lies in k[x], then 

m m 

fv = (Z:c;xi)v = L:ciTi(v), 
i=O i=O 

where T 0 is the identity map 1 v, T 1 = T, and Ti is the composite of T 
with itself i times if i ~ 2. We denote V viewed as a k(x]-module by vr. 
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Here is a special case of this construction. Let A be an n x n ma
trix with entries in k, and let T: kn -+ kn be the linear transformation 
T(w) =Aw, where w is an nx 1 column vector and Aw is matrix multipli
cation. Now the vector space kn becomes a k[x)-module by defining scalar 
multiplication k[x] x kn -+kn as follows: if f(x) = z::o CiXi E k[x], then 

m m 

fw = c~:::>ixi)w = 2::.>iAiw, 
i=O i=O 

where A0 = I is the identity matrix, A1 = A, and Ai is the ith power 
of A if i 2:: 2. We now show that (knf = (kn)A. Both modules are 
comprised of the same elements (namely, all n x 1 column vectors), and 
the scalar multiplications coincide: in (kn)T, we have xw = T(w); in 
(kn)A, we have xw =Aw; these are the same because T(w) =Aw. 

(v) The construction in part (iv) can be generalized. Let k be a commutative 
ring, M a k-module, and c.p: M -+ M a k-map. Then M becomes a k[x)
module, denoted by M'P, if we define 

m m 

(Lcixi)m = Lcic.pi(m), 
i=O i=O 

where f(x) = z::0 cixi E k[x) and m E M. <Ill 

Here are some examples of modules over noncommutative rings. 

Example B-1.20. 

(i) Left ideals in a ring R are left R-modules, while right ideals in R are 
right R-modules. Thus, we see that left R-modules and right R-modules 
are distinct entities. 

(ii) If Sis a subring of a ring R, then Risa left and a right S-module, where 
scalar multiplication is just the given multiplication of elements of R. For 
example, if S = k is a (not necessarily commutative) ring, then R = k[X] 
is a left k-module; thus, if k is a field, then k[X] is a vector space over k. 

(iii) If A is an abelian group, then A is a left End(A)-module, where scalar 
multiplication End( A) x A -t A is defined by evaluation: (f, a) i-+ f(a). 
We check associativity axiom (iii) in the definition of module using extra
fussy notation: write fog to denote the composite (which is the product 
off and gin End( A)), and write f *a to denote the action off on a (so 
that f *a= f(a)). Now 

(Jg)* a= (fog)* a= (f o g)(a) = f(g(a)), 

while 

f * (g *a)= f * (g(a)) = f(g(a)). 

Thus, (Jg)* a= f * (g *a); in the usual notation, (fg)a = f(ga). 
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(iv) Let E/k be an extension field with Galois group G = Gal(E/k). Then E 
is a left kG-module: if e E E, then 

(L auo-) (e) = L auo-(e). 
uEG uEG 

(v) Let G be a group, let k be a commutative ring, and let A be a left 
kG-module. Define a new action of G on A, denoted by g *a, by 

g *a= g- 1a, 

where a EA and g E G. For an arbitrary element of kG, define 

(L m 9 g) *a= L m 9g- 1a. 
gEG gEG 

It is easy to see that A is a right kG-module under this new action; that 
is, if u E kG and a E A, the function A x kG --+ A, given by (a, u) t--t u *a, 
satisfies the axioms in the definition of right module (in particular, check 
axiom (iii)). Of course, we usually write au instead of u *a. Thus, a 
kG-module can be viewed as either a left or a right kG-module. <Ill 

Here is the appropriate notion of homomorphism of modules. 

Definition. If R is a ring and M and N are both left R-modules (or both right 
R-modules), then a function f: M--+ N is an R-homomorphism (or R-map) if 

(i) f(m + m') = f(m) + f(m'); 

(ii) f(rm) = rf(m) (or f(mr) = f(m)r) 

for all m,m' EM and all r ER. 

If an R-homomorphism is a bijection, then it is called an R-isomorphism; 
we call R-modules Mand N isomorphic, denoted by M ~ N, if there is some 
R-isomorphism f: M--+ N. 

Note that the composite of R-homomorphisms is an R-homomorphism and, if 
f is an R-isomorphism, then its inverse function 1-1 is also an R-isomorphism. 

Example B-1.21. 

(i) If R is a field, then R-modules are vector spaces and R-maps are linear 
transformations. Isomorphisms here are nonsingular linear transforma
tions. 

(ii) By Example B-1.19(ii), Z-modules are just abelian groups, and Lemma 
A-4.54 shows that every homomorphism of (abelian) groups is a Z-map. 

(iii) If M is a left R-module and r E Z(R), then multiplication by r (or 
homothety by r) is the function µr : M --+ M given by µr : m H rm. 

The functions µr are R-maps because r lies in the center Z(R): if 
a ER and m EM, then µr(am) =ram while aµr(m) =arm= ram. 
Hence, if R is commutative, then µr is an R-map for all r E R. <Ill 

We are now going to show that ring elements can be regarded as operators 
(that is, as endomorphisms) on an abelian group. 
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Definition. A representation of a ring R is a ring homomorphism 

a: R-+ End(M), 

where M is an abelian group. 

Representations of rings can be translated into the language of modules. 

Proposition B-1.22. Every representation a: R -+ End(M), where M is an 
abelian group, equips M with the structure of a left R-module. Conversely, every 
left R-module M determines a representation a: R-+ End(M). 

Proof. Given a homomorphism a: R-+ End(M), denote a(r): M-+ M by ari 
and define scalar multiplication R x M -+ M by 

rm= ar(m), 

where m E M. A routine calculation shows that M, equipped with this scalar 
multiplication, is a left R-module. 

Conversely, assume that M is a left R-module. If r E R, then m 1-t rm 
defines an endomorphism Tr: M -+ M. It is easily checked that the function 
a: R -+ End(M), given by a: r 1-t Tr, is a representation. • 

Definition. A left R-module is called faithful if, for r E R, whenever rm = 0 for 
all m EM, we haver= 0. 

Of course, M being faithful merely says that the representation a: R-+ End( M) 
(given in Proposition B-1.22) is an injection. Exercise B-1.36 on page 299 says, when 
R = Z, that an abelian group M is a faithful Z-module if and only if there is no 
positive integer n with nM = {O}. 

Instead of stating definitions and results for all all left R-modules and then 
saying that similar statements hold for right R-modules, let us now show that it 
suffices to consider left modules only. 

Definition. Let R be a ring with multiplication µ: R x R -+ R. Define the 
opposite ring to be the ring R0 P whose additive group is the same as the additive 
group of R, but whose multiplication µ 0 P: Rx R -+ R is defined by µ 0 P(r, s) = 
µ(s,r) = sr. 

Thus, we have merely reversed the order of multiplication. It is straightforward 
to check that R0 P is a ring, that (R0 P)0 P = R, and that R = R0 P if and only if R 
is commutative. 

Proposition B-1.23. 

(i) Every right R-module Mis a left R 0 P-module, and every left R-module is 
a right R0 P -module. 

(ii) Any theorem about all left R-modules, as R varies over all rings, is also 
a theorem about all right R-modules. 
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Proof. 

(i) We will again be ultra-fussy. To say that M is a right R-module is to 
say that there is a function a: M x R --+ M, denoted by a( m, r) = mr. 
Ifµ: R x R --+ R is the given multiplication in R, then axiom (iii) in the 
definition of right R-module says that 

a(m, µ(r, r')) = a(a(m, r), r'). 

To obtain a left R0 P-module, define a': R0 P x M --+ M by a'(r, m) = 
a(m, r). To see that M is a left R0 P-module, it is only a question of 
checking axiom (iii), which reads, in the fussy notation, 

a'(µ 0 P(r,r'),m) = a'(r,a'(r',m)). 

But 

a'(µ0 P(r, r'), m) = a(m, µ0 P(r, r')) = a(m, µ(r', r)) = m(r'r), 

while the right side is 

a'(r,a'(r',m)) = a(a'(r',m),r) = a(a(m,r'),r) = (mr')r. 

Thus, the two sides are equal because M is a right R-module. 
The second half of the proposition now follows because a right R0 P

module M is a left (R0 P)0 P-module; that is, M is a left R-module, for 
(ROP)OP = R. 

(ii) As R varies over all rings, so does R0 P. Hence, a theorem about all left 
R-modules is necessarily a theorem about all left R0 P-modules; but, by 
part (i), it is also a theorem about all right R-modules. • 

As a consequence of Proposition B-l.23(ii), we no longer have to say "Similarly, 
this theorem also holds for all right R-modules." 

Opposite rings are more than an expository device; they do occur in nature. 

Definition. An anti-isomorphism <p: R --+ A, where R and A are rings, is an 
additive bijection such that 

cp(rs) = cp(s)cp(r). 

We need not say that cp(l) = 1, for this follows from the definition: if <p: R--+ A 
is an anti-isomorphism and r E R, then 

cp(r) = cp(r · 1) = cp(l)cp(r). 

That cp(l) = 1 now follows from the uniqueness of the identity element in a ring. 

We claim, for any ring R, that the identity lR: r H r is an anti-isomorphism 
<p: R--+ R0 P: cp(rs) =rs= µ(r,s), but in R0 P, we have rs= µ0 P(s,r); therefore, 
cp(rs) = cp(s)cp(r), the product on the right being multiplication in R0 P. 

If k is a commutative ring, then transposing, A H AT, is an anti-isomorphism 
of Matn(k) to itself. We saw, in Example B-1.l(x), that conjugation lHl--+ lHl is an 
anti-isomorphism of the quaternions lHl with itself. 
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It is easy to see that rings Rand A are anti-isomorphic if and only if R ~ A0 P. 
We conclude that Matn(k) ~ Matn(k) 0 P and lHl ~ JHl0 P. (There do exist rings R 
which are not isomorphic to R 0 P; in fact, there are division rings D. with D. ~ D. op.) 

In Example B-1.l(v), we defined End(A), where A is an abelian group, as 
the set of all homomorphisms A -t A; it is a ring under pointwise addition and 
composition as multiplication. We generalize this construction. 

Definition. If M is a left R-module, an R-endomorphism of M is an R-map 
f: M-tM. 

The set EndR(M) = HomR(M, M) of all R-endomorphisms of Mis an additive 
abelian group; EndR(M) is a ring, called the endomorphism ring of M, if we 
define multiplication to be composition: If f,g: M -t M, then Jg: m f-t f(g(m)). 

If M is regarded as an abelian group, then we may write Endz(M) for the 
endomorphism ring End(M) (with no subscript) defined in Example B-1.l(v). Note 
that EndR(M) is a subring of Endz(M). 

It was shown, in Example B-l.20(iii), that an abelian group A is always a left 
End(A)-module. The argument there generalizes to show that if R is any ring and 
Mis a left R-module, then Mis a left EndR(M)-module. 

Proposition B-1.24. If a ring R is regarded as a left module over itself, then there 
is an isomorphism of rings 

Proof. Define <p: EndR(R) -t R by <p(f) = f(I); it is routine to check that <p 
is an isomorphism of additive abelian groups. Now <p(f)<p(g) = f(l)g(l). On the 
other hand, <p(f g) = (f o g)(l) = f(g(I)). But if we writer= g(l), then f(g(I)) = 
f(r) = f(r · 1) = r f(I), because f is an R-map, and so f(g(I)) = r f(I) = g(l)f(l). 
Therefore, 

<p(f g) = <p(g)<p(f). 

We have shown that <p: EndR(R) -t R is an additive bijection that reverses mul
tiplication. Composing <p with the anti-isomorphism IR: R -t R0 P gives a ring 
isomorphism EndR(R) -t R0 P. • 

If k is a commutative ring, then transposition, A f-t AT, is an anti-isomorphism 

Matn(k) -t Matn(k), because (AB)T =BT AT; hence, Matn(k) ~ (Matn(k))°P. 

However, when k is not commutative, the formula (AB)T =BT AT no longer holds. 
For example, 

( [a b] [p q] ) T = [ap + br 
c d r s cp+ dr 

]
T 

aq+ bs 
cq+ds' 

while 

~ ;JT[~ ~]T = [: :] [~ ~] 
has pa+ rb f:. ap + br as its 1, 1 entry. 
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Proposition B-1.25. If R is any ring, then 

(Matn(R) rp ~ Matn(R0 P). 

Proof. We claim that transposing, A i--+ AT, is an isomorphism of rings, 

(Matn(R))°P---+ Matn(R0 P). 
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First, it follows from (AT) T = A that A i--+ AT is a bijection. Let us set notation. 
If M = [mi3] is a matrix, its ij entry mij may also be denoted by (M)ij· Denote 
the multiplication in R0 P by a * b, where a * b = ba, and denote the multiplication 
in (Matn(R)) 0 P by A* B, where A* B = BA, that is, (A* B)i3 = (BA)i3 = 
L,k bikakj E R. We must show that A* B (in Matn(R) 0 P) maps to AT BT (in 
Matn(R0 P)). In (Matn(R)) 0 P, we have 

(A* B)& = (BA)& = (BA)3i = L b3kaki· 
k 

In Matn ( R0 P), we have 

(AT B T)ij = L(AT)ik * (B T)kj = L(A)ki * (B)jk = L aki * b3k = L b3kaki· 
k k k k 

Therefore, (A* B)T =AT BT in Matn(R0 P), as desired. • 

Many constructions made for abelian groups and for vector spaces can also be 
made for modules. Informally, a submodule Sis an R-module contained in a larger 
R-module M such that ifs, s' E S and r E R, then s + s' and rs have the same 
meaning in S as in M. 

Definition. If M is a left R-module, then a submodule N of M, denoted by 
N ~ M, is an additive subgroup N of M closed under scalar multiplication: rn E N 
whenever n E N and r E R. 

Example B-1.26. 

(i) Both {O} and Mare submodules of a left R-module M. A proper sub
module of Mis a submodule N ~ M with N =f. M. In this case, we 
may write N ~ M. 

(ii) If a ring R is viewed as a left module over itself, then a submodule of R 
is a left ideal; I is a proper submodule when it is a proper ideal. 

(iii) A submodule of a Z-module (i.e., of an abelian group) is a subgroup. 

(iv) A submodule of a vector space is a subspace. 

(v) A submodule W of VT, where T: V---+ Vis a linear transformation, is 
a subspace W of V with T(W) ~ W (it is clear that a submodule has 
this property; the converse is left as an exercise for the reader). Such a 
subspace is called an invariant subspace. 

(vi) If M is a left R-module over a ring R and r E Z(R), then 

rM ={rm: m EM} 
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is a submodule of M. If r is an element of R not in the center of R, let 
J = Rr = {sr: s ER} (J is the left ideal generated by r). Now 

JM = {am : a E J and m E M} 

is a submodule. We illustrate these constructions. Let R = Mat2(k), 
where k is a field, let r = [A 8J (r ~ Z(R)), and let M =RR (that is, R 
viewed as a left R-module). Now rM = {[ 0 0]}, which is not a left ideal; 
hence, rM is not a submodule of M. On the other hand, if J = Rr, then 
JM={[! 8]} = J is a left ideal and hence a submodule of M. 

More generally, if J is any left ideal in R and M is a left R-module, 
then 

JM = { I.">imi: ji E J and mi E M} 
i 

is a submodule of M. 

(vii) If (Si)ieI is a family of submodules of a left R-module M, then niEI Si 
is a submodule of M. 

(viii) If X is a subset of a left R-module M, then 

(X) = { L rixi: ri ER and xi EX}. 
finite 

the set of all R-linear combinations of elements in X, is called the 
submodule generated by X (see Exercise B-1.33 on page 299 for a 
characterization of (X)). A left R-module M is finitely generated 
if M is generated by a finite set; that is, there is a finite subset X = 
{xi, ... ,xn} ~ M with M = (X). For example, a vector space is finitely 
generated if and only if it is finite-dimensional. 

(ix) If X = { x} is a single element, then ( x) = Rx is called the cyclic 
submodule generated by x. 

(x) If Sand Tare submodules of a left R-module M, then 

S + T = { s + t: s E S and t E T} 

is a submodule of M which contains Sand T. Indeed, it is the submodule 
generated by SU T. 

(xi) Recall Example B-l.20(iv): a (finite) extension field E/k with Galois 
group G = Gal(E/k) is a left kG-module. We say that E/k has a normal 
basis if E is a cyclic left kG-module. We will see later that every Galois 
extension E/k has a normal basis. ""' 

We continue extending definitions from abelian groups and vector spaces to 
modules. 

Definition. If f: M -+ N is an R-map between left R-modules, then its kernel is 

ker f = {m EM: f(m) = O} 

and its image is 

imf = {n EN: there exists m EM with n = f(m)}. 
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It is routine to check that ker f is a submodule of M and that im f is a submod
ule of N. Suppose that M = (X); that is, Mis generated by a subset X. Suppose 
further that N is a module and that f, g: M --+ N are R-homomorphisms. If f and 
g agree on X (that is, if f(x) = g(x) for all x EX), then f = g. The reason is that 
f- g: M---+ N, defined by f - g: m H f(m) - g(m), is an R-homomorphism with 
X ~ ker(f - g). Therefore, M = (X) ~ ker(f - g), and so f - g is identically zero; 
that is, f = g. 

Definition. If N is a submodule of a left R-module M, then the quotient module 
is the quotient group M/N (remember that M is an abelian group and N is a 
subgroup) equipped with scalar multiplication 

r(m+N) =rm+N. 

The natural map 7r: M---+ M/N, given by m H m + N, is easily seen to be an 
R-map. 

Scalar multiplication in the definition of quotient module is well-defined: if 
m + N = m' + N, then m - m' E N, hence r(m - m') E N (because N is a 
submodule), and so rm -rm' EN and rm+ N =rm'+ N. 

Definition. If f: M ---+ N is a map, its cokernel is 

A f M N ... t.cok.~rf=dN/,lin;ifk. f {O} df. . t' 'f map : ---+ lS mJec lve lf an on y lf'l er = , an lS surJeC lve 1 

and only if coker f = { 0}. The next theorem says that if f: M --+ N is an R-map 
and i: ker f ---+ M is the inclusion, then cokeri ~ im f. 

Theorem B-1.27 (First Isomorphism Theorem). If f: M---+ N is an R-map 
of left R-modules, then there is an R-isomorphism 

<p: M/ker f--+ imf 

given by 
<p: m + ker f H f(m). 

Proof. If we view M and N only as abelian groups, then the First Isomorphism 
Theorem for Groups says that <p: M / ker f --+ im f is an isomorphism of abelian 

M/kerf~imf 

groups. But <pis an R-map: <p(r(m + ker !)) = <p(rm + ker !) = f(rm); since f is 
an R-map, however, f(rm) = rf(m) = r<p(m + ker f), as desired. • 

The Second and Third Isomorphism Theorems are corollaries of the first one. 

Theorem B-1.28 (Second Isomorphism Theorem). If S and Tare submod
ules of a left R-module M, then there is an R-isomorphism 

S/(S n T) ---+ (S + T)/T. 
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Proof. Let 7!": M---+ M/T be the natural map, so that ker7r = T; define h = 7!"18, 
so that h: 8---+ M/T. Now kerh = 8nT and imh = (8+T)/T (for imh = {s+T: 
s E 8} = ( 8 + T) /T; that is, im h consists of all those cosets in M /T having a 
representative in 8). The First Isomorphism Theorem now applies. • 

Theorem B-1.29 (Third Isomorphism Theorem). If T ~ 8 ~Mis a tower 
of submodules, then 8/T is a submodule of M/T and there is an R-isomorphism 

(M/T)/(8/T)---+ M/8. 

Proof. Define the map g: M /T ---+ M / 8 to be enlargement of coset; that is, 

g: m+T1--tm+8. 

Now g is well-defined: if m+T = m' +T, then m-m' ET~ 8 and m+8 = m' +8. 
Moreover, kerg = 8/T and img = M/8. Again, the First Isomorphism Theorem 
completes the proof. • 

If f: M---+ N is a map of modules and 8 ~ N, then the reader may check that 

f- 1(8) = {m EM: f(m) E 8} 

is a submodule of M containing ker f. 

Theorem B-1.30 (Correspondence Theorem). If T is a submodule of a left 
R-module M, then 

cp: {intermediate submodules T ~ 8 ~ M}---+ {submodules of M/T}, 

given by cp: 8 H 8/T, is a bijection. Moreover, 8 ~ 8' in M if and only if 
8/T ~ 8' /Tin M/T: 

M 

I~ 
8' M/T 
l~I 

8 8'/T 
l~I 

T 8/T 
~I 

{O}. 

Proof. Since every module is an additive abelian group, every submodule is a sub
group, and so the Correspondence Theorem for Groups, Theorem A-4. 79, shows 
that cp is an injection that preserves inclusions: 8 ~ 8' in M if and only if 
8/T ~ 8' /Tin M/T. The remainder of this proof is an adaptation of the proof 
of Proposition B-1.9; we need check only that additive homomorphisms here are 
R-maps, and this is straightforward. • 

Proposition B-1.31. If Risa ring, then a left R-module M is cyclic if and only 
if M ~ R/ I for some left ideal I. 
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Proof. If M is cyclic, then M = ( m) for some m E M. Define f: R --+ M by 
f(r) =rm. Now f is an R-map, since f(ar) =arm= af(r); f is surjective, since 
M is cyclic, and its kernel is some left ideal I. The First Isomorphism Theorem 
gives R/I ~ M. 

Conversely, R/I is cyclic with generator 1 +I, and any module isomorphic to 
a cyclic module is itself cyclic. • 

Definition. A left R-module Mis simple (or irreducible) if M =/:- {O} and M has 
no proper nonzero submodules; that is, the only submodules of Mare {O} and M. 

Example B-1.32. By Proposition A-4.92, an abelian group G is simple if and only 
if G ~ Zp for some prime p. ""' 

Corollary B-1.33. A left R-module M is simple if and only if M ~ R/I, where 
I is a maximal left ideal. 

Proof. This follows from the Correspondence Theorem and the fact that simple 
modules are cyclic. • 

Thus, the existence of maximal left ideals guarantees the existence of simple 
left R-modules. 

Exercises 

* B-1.31. Prove that a division ring b. is a simple left b.-module. 

B-1.32. Let R be a ring. Call an (additive) abelian group Man almost left R-module 
if there is a function R x M -+ M satisfying all the axioms of a left R-module except 
axiom (iv): we do not assume that lm = m for all m EM. Prove that M =Mi EB Mo, 
where Mi= {m EM: lm = m} and Mo= {m EM: rm= 0 for all r ER} are subgroups 
of M that are almost left R-modules; in fact, Mi is a left R-module. 

* B-1.33. (i) If X is a subset of a module M, prove that (X), the submodule of M 
generated by X (as defined in Example B-l.26(viii)), is equal tons, where the 
intersection ranges over all those submodules S ~ M containing X. 

(ii) Prove that (X) is the smallest submodule containing X: if S is any submodule 
of M with X ~ S, then (X) ~ S. 

(iii) If Sand Tare submodules of a module M, define 

S + T = { s + t : s E S and t E T}. 

Prove that (SU T) = S + T. 

B-1.34. Prove that if f: M-+ N is an R-map and K is a submodule of M with K ~ ker f, 
then f induces an R-map 7: M/K-+ N by 7: m+ K 1--t f(m). 

* B-1.35. Let I be a two-sided ideal in a ring R. Prove that an abelian group M is a left 
(R/ /)-module if and only if it is a left R-module that is annihilated by I. 

* B-1.36. Prove that an abelian group M is faithful if and only if there is no positive 
integer n with nM = {O}. 
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* B-1.37. Let R be a commutative ring and let J be an ideal in R. Recall that if M is an 
R-module, then JM= U:::dimi: }i E J and mi EM} is a submodule of M. Prove that 
M /JM is an (R/ J)-module if we define scalar multiplication 

(r + J)(m+ JM)= rm+ JM. 

Conclude that if JM= {O}, then M itself is an (R/J)-module; in particular, if J is a 
maximal ideal in Rand JM= {O}, then Mis a vector space over R/J. 

* B-1.38. If A is a division ring, prove that A op is also a division ring. 

B-1.39. Give an example of a ring R for which R0 P ~ R. 

B-1.40. (i) Fork a field and Ga finite group, prove that (kG) 0 P ~ kG. 

(ii) Prove that IHI0 P ~IHI, where IHI is the division ring of real quaternions. 

B-1.41. Let M be a nonzero R-module over a commutative ring R. If m E M, define its 
order ideal by 

ord(m) = {r ER: rm= O}. 

(i) Prove that ord(m) is an ideal. 

(ii) Prove that every maximal element in X = { ord(m) : m E M and m =/= O} is a prime 
ideal. 

* B-1.42. Let Mand M' be R-modules, and let S ~ Mand S' ~ M' be submodules. 
If f: M --+ M' is an R-map with f(S) ~ S', prove that f.: M/S --+ M' /S', given by 
f. : m + S H f ( m) + S', is a well-defined R-map . Prove that if f is an isomorphism and 
f(S) = S', then f. is also an isomorphism. (Compare Exercise A-4.74 on page 171.) 

* B-1.43. (Modular Law) Let A, B, and A' be submodules of a module M. If A' ~A, 
prove that An (B +A')= (An B) +A'. 

* B-1.44. (Bass) Recall that a family (Ai)iEI of left R-modules is a chain if, for each 
i,j E J, either Ai ~Ai or Ai ~A. Prove that a left R-module Mis finitely generated 
if and only if the union of every ascending chain of proper submodules of M is a proper 
submodule. 

* B-1.45. Let A be a submodule of a module B. If both A and B/A are finitely generated, 
prove that B is finitely generated. 

Chain Conditions on Modules 

We have already considered chain conditions on rings and ideals; we now consider 
chain conditions on modules and submodules. There is no logical reason for first 
treating rings and then repeating things for modules; after all, every ring is a module 
over itself and its submodules are ideals. However, we think it is easier for readers 
to digest these results if we discuss them in two stages. 

Definition. A left R-module Mover a ring R has ACC (ascending chain con
dition) if every ascending chain of submodules stops; that is, if 

S1 ~ S2 ~ S3 ~ .. · 

is a chain of submodules, then there is some t ~ 1 with 

St= St+1 = St+2 = · · · . 
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A left R-module Mover a ring R has DCC (descending chain condition) 
if every descending chain of submodules stops; that is, if 

is a chain of submodules, then there is some t 2: 1 with 

St = St+i = St+2 = · · · . 

Specializing the first definition to the ring R considered as a left R-module over 
itself gives left noetherian rings; specializing the second definition gives left artinian 
rings. 

The next result generalizes Proposition B-1.10 from rings to modules; the proof 
is essentially the one given for rings. 

Proposition B-1.34. Let R be a ring. The following conditions on a left R-module 
M are equivalent. 

(i) M has ACC on submodules. 

(ii) Every nonempty family of submodules of M contains a maximal element. 

(iii) Every submodule of M is finitely generated. 

The next result extends the Hilbert Basis Theorem from rings to modules. 

Theorem B-1.35. A ring R is left noetherian if and only if every submodule of a 
finitely generated left R-module M is itself finitely generated. 

Proof. Assume that every submodule of a finitely generated left R-module is 
finitely generated. In particular, every submodule of R, which is a cyclic left 
R-module and hence is finitely generated, is finitely generated. But submodules 
of R are left ideals, and so every left ideal is finitely generated; that is, R is left 
noetherian. 

We prove the converse by induction on n 2: 1, where M = ( x1 , ... , Xn). If 
n = 1, then M is cyclic, and Proposition B-1.31 gives M ~ Rf I for some left 
ideal I. If Sis a submodule of M, then the Correspondence Theorem gives a left 
ideal J with I ~ J ~ R and S ~ J /I. But R is left noetherian, so that J, and 
hence S ~ J /I, is finitely generated. 

Ifn 2: 1 and M = (x1, ... ,xn,Xn+1), let M' = (xi, ... ,xn), let i: M'-+ M 
be the inclusion, and let p: M-+ M/M' be the natural map. Note that M/M' is 
cyclic, being generated by Xn+l + M'. Ifs ~ M is a submodule, then s n M' ~ s. 
Now Sn M' ~ M', and hence it is finitely generated, by the inductive hypothesis. 
F\J.rthermore, S/(S n M') ~ (S + M')/M' ~ M/M', so that S/(S n M') is finitely 
generated, by the base step. Using Exercise B-1.45 on page 300, we conclude that 
S is finitely generated • 

We have already proved the Jordan-Holder Theorem for groups (Theorem 
A-5.30); here is the version of this theorem for modules. Both of these versions 
are special cases of a theorem about operator groups; see Robinson [92], p. 65. 
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Theorem B-1.36 (Zassenhaus Lemma). Given four submodules A~ A* and 
B ~ B* of a left R-module Mover a ring R, then A+ (A* n B) ~A+ (A* n B*), 
B + (B* n A) ~ B + (B* n A*), and there is an isomorphism 

A+ (A* n B*) ,.._, B + (B* n A*) 
A+(A*nB) = B+(B*nA). 

Proof. A straightforward adaptation of the proof of Lemma A-5.28. • 

The Zassenhaus Lemma implies the Second Isomorphism Theorem: If S and T 
are submodules of a module M, then (T+S)/T S:!. S/(SnT)); set A*= M, A= T, 
B* = S, and B =Sn T. 

Definition. A filtration (or series) of a left R-module M over a ring R is a 
sequence of submodules, M = Mo, Mi, ... , Mn = {O}, such that 

M = Mo 2 Mi 2 · · · 2 Mn = {O}. 

The quotients Mo/M1, Mi/M2, ... , Mn_ if Mn= Mn-1 are called the factor mod
ules of this filtration, and the number of strict inclusions is called the length of 
the filtration; equivalently, the length is the number of nonzero factor modules. 

A refinement of a filtration is a filtration M = M~, M{, ... , Mf = {O} having 
the original filtration as a subsequence. Two filtrations of a module M are equiv
alent if there is a bijection between the lists of nonzero factor modules of each so 
that corresponding factor modules are isomorphic. 

Theorem B-1.37 (Schreier Refinement Theorem). Any two filtrations 

M = Mo 2 Mi 2 · · · 2 Mn = {O} and M = No 2 Ni 2 · · · 2 Nt = {O} 

of a left R-module M have equivalent refinements. 

Proof. A straightforward adaptation, using the Zassenhaus Lemma, of the proof 
of Theorem A-5.29. • 

Recall that a left R-module Mis simple (or irreducible) if M =I- {O} and M has 
no submodules other than {O} and M itself. The Correspondence Theorem shows 
that a submodule N of a left R-module M is a maximal submodule if and only if 
M/N is simple; indeed, the proof of Corollary B-1.33 (a left R-module Mis cyclic 
if and only if M S:!. R/ I for some left ideal I) can be adapted to show that a left 
R-module is simple if and only if it is isomorphic to R/ I for some maximal left 
ideal I. 

Definition. A composition series of a module is a filtration all of whose nonzero 
factor modules are simple. 

A module need not have a composition series; for example, the abelian group Z, 
considered as a Z-module, has no composition series (Proposition B-1.41). Notice 
that a composition series admits only insignificant refinements; we can only repeat 
terms (if Mi/Mi+1 is simple, then it has no proper nonzero submodules and, hence, 
there is no submodule L with Mi ~ L ~ MH1). More precisely, any refinement of 
a composition series is equivalent to the original composition series. 
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Theorem B-1.38 (Jordan-HOlder Theorem). Any two composition series of 
a left R-module M over a ring R are equivalent. In particular, the length of a 
composition series, if one exists, is an invariant of M, called the length of M. 

Proof. As we have just remarked, any refinement of a composition series is equiva
lent to the original composition series. It now follows from the Schreier Refinement 
Theorem that any two composition series are equivalent; in particular, they have 
the same length. • 

Corollary B-1.39. If a left R-module M has length n, then every ascending or 
descending chain of submodules of M has length ~ n. 

Proof. There is a refinement of the given chain that is a composition series, and 
so the length of the given chain is at most n. • 

The Jordan-Holder Theorem can be regarded as a kind of unique factorization 
theorem; for example, we used it in Corollary A-5.31, to prove the Fundamental 
Theorem of Arithmetic. Here is another proof of Invariance of Dimension. If V is 
an n-dimensional vector space over a field k, then V has length n: if vi, ... , Vn is a 
basis of V, then a composition series for V is 

V = ( V1 , · · · , Vn) ;;2 ( V2,. · · , Vn) ;;2 · · · ;;2 ( Vn) ;;2 { Q} 

(the factor modules are I-dimensional, hence they are simple k-modules). 

If 6. is a division ring, then a left 6.-module V is called a left vector space 
over 6.. We now use the Jordan-Holder Theorem to prove Invariance of Dimension 
for left vector spaces over division rings. 

Definition. Let V be a left vector space over a division ring 6.. A list X = 
X1, ... ,Xm in Vis linearly dependent if 

for some i; otherwise, X is called linearly independent. 

A basis of V is a linearly independent list that generates V. 

As for vector spaces over fields, linear independence of x1 , ... , Xm implies that 

(xi, ... , Xm) = (x1) EB··· EB (xm)· 

The proper attitude is that theorems about vector spaces over fields have true 
analogs for left vector spaces over division rings, but the reader should not merely 
accept the word of a gentleman and scholar that this is so. Here is a proof of 
Invariance of Dimension for left vector spaces. 

Proposition B-1.40. Let V be a finitely generated left vector space over a division 
ring 6.. 

(i) V is a direct sum of copies of 6.; that is, every finitely generated left 
vector space over 6. has a basis. 

(ii) Any two bases of V have the same number of elements. 
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Proof. 

(i) Let V = (vi, ... , Vn), and consider the series 

V = (Vi, .. · , Vn) 2 ( V2, .. · , Vn) ;;2 ( V3, .. · , Vn) 2 .. · 2 ( Vn) 2 { 0} · 

Denote (vi+i, ... 'Vn) by ui, so that (vi, ... ' vn) = (vi) + ui. By the 
Second Isomorphism Theorem, 

(vi, ... , vn) /(vi+i, ... , vn) = ( (vi)+ Ui)/Ui ~ (vi)/( (vi) n Ui)· 

Therefore, the ith factor module is isomorphic to a quotient of (Vi) ~ D. 
if vi -:f 0. Since D. is a division ring, its only quotients are D. and {O}. 
After throwing away those Vi corresponding to trivial factor modules {O}, 
we claim that the remaining v's, denote them by vi, ... , Vm, form a basis. 

(ii) As in the proof above for vector spaces over a field, a basis vi, v2, ... , Vn 
of V gives a filtration 

V =(vi, V2, .. ., vn) ;;;? (v2, .. ., vn) ;;;? .. ·;;;? (vn) ;;;? {O}. 

This is a composition series, for every factor module is isomorphic to D. 
and, hence, is simple, by Exercise B-1.31 on page 299. By the Jordan
Holder Theorem, the composition series arising from any other basis of 
V must have the same length. • 

It now follows that every finitely generated left vector space V over a division 
ring D. has a left dimension; it will be denoted by dim(V). 

If an abelian group V is a left vector space and a right vector space over a 
division ring D., must its left dimension equal its right dimension? There is an 
example (Jacobson (54], p. 158) of a division ring D. and an abelian group V, which 
is a vector space over D. on both sides, with left dimension 2 and right dimension 3. 

Not every group has a composition series, but every finite group does. When 
does a module have a composition series? 

Proposition B-1.41. A left R-module M over a ring R has a composition series 
if and only if M has both chain conditions on submodules. 

Proof. If M has a composition series of length n, then no sequence of submodules 
can have length > n, lest we violate the Schreier Refinement Theorem (refining a 
filtration cannot shorten it). Therefore, M has both chain conditions. 

Conversely, let Fi be the family of all the proper submodules of M. By Propo
sition B-1.18, the maximum condition gives a maximal submodule Mi E Fi. Let 
F2 be the family of all proper submodules of Mi, and let M2 be the maximal 
submodule of F2. Iterating, we have a descending sequence 

M;;?Mi ;;?M2;;;? ···. 

If Mn occurs in this sequence, the only obstruction to constructing Mn+l is if 
Mn = {O}. Since M has both chain conditions, this chain must stop, and so 
Mt = {O} for some t. This chain is a composition series of M, for each Mi is a 
maximal submodule of its predecessor. • 
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Exact Sequences 

We begin this section with a useful but very formal definition. 

Definition. A directed graph consists of a set V, called vertices and, for some 
ordered pairs ( u, v) E V x V, an arrow from u to v. A diagram is a directed 
graph whose vertices are modules (or groups or rings or ... ) and whose arrows are 
maps. 

For example, here are two diagrams: 

If we think of an arrow as a "one-way street," then a path in a diagram is a 
"walk" from one vertex to another taking care never to walk the wrong way. A 
path in a diagram may be regarded as a composite of maps. 

Definition. A diagram commutes if, for each pair of vertices A and B, any two 
paths from A to B are equal; that is, the composites are the same. 

For example, the triangular diagram above commutes if g f = h and the square 
diagram above commutes if gf = f'g'. The term commutes in this context arises 
from the latter example. 

The following terminology, coined by the algebraic topologist Hurewicz, comes 
from advanced calculus, where a differential form w is called closed if dw = 0 and 
it is called exact if w = dh for some function h (any discussion of the de Rham 
complex contains more details; for example, see Bott-Tu [11]). It is interesting 
to look at the book Hurewicz-Wallman [49], Chapter VIII, which was written just 
before this coinage. Many results there would have been much simpler to state and 
to digest had the term exact been available. 

Definition. A sequence of R-maps and left R-modules 

M fn+l M fn M · · · -+ n+l ---'-+ n ....:....:.:+ n-1 -+ · · · 

is called an exact sequence if imfn+i = ker fn for all n E Z. 

Observe that there is no need to label an arrow {O} .!+ A or B ~ {O} for, in 
either case, such maps are unique: either f: 0 i-+ 0 or g is the zero map g(b) = 0 
for all b EB. 

Here are some simple consequences of a sequence of homomorphisms being 
exact. 
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Proposition B-1.42. 

(i) A sequence 0---+ A -4 B is exact if and only if f is injective.8 

(ii) A sequence B 4 C---+ 0 is exact if and only if g is surjective. 

(iii) A sequence 0---+ A~ B---+ 0 is exact if and only if h is an isomorphism. 

Proof. 

(i) The image of 0 ---+ A is {O}, so that exactness gives ker f = {O}, and so 
f is injective. Conversely, given f: A ---+ B, there is an exact sequence 

ker f---+ A -1+ B. If f is injective, then ker f = {O}. 

(ii) The kernel of C ---+ 0 is C, so that exactness of B 4 C ---+ 0 gives 
img = C, and so g is surjective. Conversely, given g: B---+ C, there is an 
exact sequence B ~ C ---+ C / im g (Exercise B-1.49). If g is surjective, 
then C = im g and coker g = C / im g = { 0}. 

(iii) Part (i) shows that his injective if and only if 0 ---+ A ~ B is exact, while 

part (ii) shows that h is surjective if and only if A ~ B ---+ 0 is exact. 

Hence, h is an isomorphism if and only if the sequence 0 ---+ A ~ B ---+ 0 
is exact. • 

Some people denote an injective map A ---+ B by A>---•B and a surjective map 
A---+ B by A--*B. 

Definition. A short exact sequence is an exact sequence of the form 

0 ---+ A -4 B 4 C ---+ 0. 

We also call this short exact sequence an extension of A by C (some authors call 
it an extension of C by A). 

An extension is a short exact sequence, but we often call its middle module B 
an extension of A by C as well (so do most people). The Isomorphism Theorems 
can be restated in the language of exact sequences. 

Proposition B-1.43. 

(i) If 0 ---+ A -4 B 4 C ---+ 0 is a short exact sequence, then 

A ~ im f and B / im f ~ C. 

(ii) If S and T are submodules of a module M, then the following diagram 
is commutative, the rows are short exact sequences, the two left vertical 
arrows are inclusions, and there exists a third vertical arrow which is an 
isomorphism: 

o--. snr--s--~ S/(SnT)--o 

l l ! 
0--~T--+-S+T~ (S+T)/T~o. 

8 In displays, we usually write 0 instead of {O}. 
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(iii) If T ~ S ~ M is a tower of submodules, then there is an exact sequence 

0---+ S/T !+ M/T 4 M/S---+ 0. 

Proof. 

(i) Since f is injective, it is an isomorphism A ---+ im f. The First Isomor
phism Theorem gives B/kerg ~ img. By exactness, however, kerg = 
imf and img = C; therefore, B/imf ~ C. 

(ii) The Second Isomorphism Theorem says the map S/(SnT)---+ (S+T)/T, 
given by s +Sn T i-+ s + T, is an isomorphism. 

(iii) Define f: S/T---+ M/T to be the inclusion, and define g: M/T---+ M/S 
to be "enlargement of coset" g: m + T i-+ m + S. As in the proof of the 
Third Isomorphism Theorem, g is surjective, and ker g = S /T = im f. • 

In the special case when A is a submodule of B and f: A ---+ B is the inclusion, 

exactness of 0---+ A!+ B 4 C---+ 0 gives B/A ~ C. 

Definition. A short exact sequence 

0---+A~B~C-+0 
is split if there exists a map j: C---+ B with pj =le. 

Proposition B-1.44. If an exact sequence 

0---+A~B..!+C-tO 

is split, then B ~ A EB C. 

Proof. We show that B = im i EB im j, where j: C ---+ B satisfies pj = le. If b E B, 
then pb EC and b - jpb E kerp, for p(b - jpb) = pb - pj(pb) = 0 because pj =le. 
By exactness, there is a E A with ia = b - jpb. It follows that B = im i + im j. It 
remains to prove that im in imj = {O}. If ia = x = jc, then px = pia = 0, because 
pi = 0, whereas px = pjc = c, because pj = le. Therefore, x = jc = 0, and so 
B ~ AEBC. • 

Exercise B-1.55 below says that a short exact sequence 0---+ A~ B ..!+ C---+ 0 
splits if and only if there exists q: B---+ A with qi= lA· 

Example B-1.45. The converse of the last proposition is not true: there exist 
exact sequences 0 ---+ A ---+ B ---+ C ---+ 0 with B ~ A EB C which are not split. Let 
A= (a), B = (b), and C = (c) be cyclic groups of orders 2, 4, and 2, respectively. 
If i: A---+ B is defined by i(a) = 2b and p: B ---+ C is defined by p(b) = c, then 

0---+ A~ B ~ C---+ 0 is an exact sequence that is not split: imi = (2b) is not a 
direct summand of B (why?). By Exercise B-1.48 below, for any abelian group M, 
there is an exact sequence 

0 ---+ A ~ B EB M ~ C EB M ---+ 0, 

where i'(a) = (2b, 0) and p'(b, m) = (c, m), and this sequence does not split either. 
If we choose M = Z4 [x] EBZ2 [x] (the direct summands are the polynomial rings over 
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Z.4 and Z.2, respectively), then A EB (C EB M) ~ B EB M. (For readers familiar with 
infinite direct sums, Mis the direct sum of infinitely many copies of Z.4 EB Z2.) .,. 

Here is a useful proposition combining commutative diagrams and exact se
quences. 

Proposition B-1.46. Given a commutative diagram with exact rows in which f 
is a surjection and g is an isomorphism, 

A' ----2-. A ~ A'' _____. 0 

1! !g lh 
B' ----+ B _____. B'' _____. 0 

j q 

there exists a unique isomorphism h: A" ~ B" making the augmented diagram 
commute. 

Proof. If a" E A", then there is a E A with p(a) = a" because p is surjective. 
Define h(a") = qg(a). Of course, we must show that h is well-defined; that is, 
if u E A satisfies p(u) = a", then qg(u) = qg(a). Since p(a) = p(u), we have 
p( a - u) = 0, so that a - u E ker p = im i, by exactness. Hence, a - u = i( a'), for 
some a' EA'. Thus, qg(a - u) = qgi(a') = qjf(a') = 0, because qj = 0. Therefore, 
h is well-defined. 

To prove uniqueness of h, suppose that h': A" ~ B" satisfies h'p = qg. If 
a" E A", choose a E A with pa = a"; then h' a" = h' pa = qga = ha". 

To see that h is an injection, suppose that h(a") = 0. Now 0 = ha" = qga, 
where pa= a"; hence, ga E kerq = imj, and so ga = jb' for some b' E B'. Since 
f is surjective, there is a' E A' with fa' = b'. Commutativity of the first square 
gives gia' = jfa' = jb' = ga. Since g is an injective, we have ia' =a. Therefore, 
0 = pia' = pa = a" and h is injective. 

To see that h is a surjection, let b" E B". Since q is surjective, there is b E B 
with qb = b"; since g is surjective, there is a E A with qa = b. Commutativity of 
the second square gives h(pa) = qga = qb = b". • 

The proof of the last proposition is an example of diagram chasing. Such 
proofs appear long, but they are, in truth, quite mechanical. We choose an element 
and, at each step, there are only two possible things to do with it: either push it 
along an arrow or lift it (i.e., choose an inverse image) back along another arrow. 
The next proposition is also proved in this way. 

Proposition B-1.47. Given a commutative diagram with exact rows, 

0 _____. A' ----2-. A ___!___.,.. A'' 

f ~ ig ih 
0 _____. B' ----+ B ------ B'' j q , 

there exists a unique map f: A' ~ B' making the augmented diagram commute. 
Moreover, f is an isomorphism if g and h are isomorphisms. 
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Proof. A diagram chase. • 

Who would think that a lemma about 10 modules and 13 homomorphisms 
could be of any interest? 

Proposition B-1.48 (Five Lemma). Consider a commutative diagram with ex
act rows: 

Ai --A2 --A3 --A4 -A5 

hi! h2 ! ! ha ! h4 ! hs 

B1 -- B2 --B3 -- B4 --B5. 

(i) If h2 and h4 are surjective and h5 is injective, then h3 is surjective. 

(ii) If h2 and h4 are injective and h 1 is surjective, then h3 is injective. 

(iii) If hi, h2, h4, and h5 are isomorphisms, then h3 is an isomorphism. 

Proof. A diagram chase. • 

Exercise B-1.60 below asks for an example of a diagram in which all the data 
of part (iii) of the Five Lemma hold except the existence of a middle map h3. 

Exercises 

B-1.46. Let A !+ B 4 C be a sequence of module maps. Prove that gf = 0 if and only 
if im f ~ ker g. Give an example of such a sequence that is not exact. 

B-1.47. If 0-+ M -+ 0 is an exact sequence, prove that M = {O}. 

* B-1.48. Let 0 -+ A -+ B -+ C-+ 0 be a short exact sequence of modules. If M is any 
module, prove that there are exact sequences 

0-+AffiM-+BffiM-+ C-+0 

and 
0 -+ A -+ B ffi M -+ C ffi M -+ 0. 

* B-1.49. If f: M-+ N is a map, prove that there is an exact sequence 

0-+ ker f -+ M !+ N-+ cokerf-+ 0. 

B-1.50. If A !+ B -+ C _; D is an exact sequence, prove that f is surjective if and only 
if h is injective. 

B-1.51. If A ~ B ~ C -..!:..+ D ~ E is exact, prove that there is an exact sequence 

0-+ coker f ~ C ~ kerk-+ 0, 

where a:: b + im f 1-t gb and /3: c 1-t he. 

* B-1.52. (i) Let-+ An+l ~An~ An-1 -+be an exact sequence, and let imdn+l = 
Kn = ker dn for all n. Prove that 



310 Chapter B-1. Modules 

is an exact sequence for all n, where in is the inclusion and d~ is obtained from dn 
by changing its target. We say that the original sequence has been factored into 
these short exact sequences. 

(ii) Let -+ Ai A Ao -1!4 K -+ 0 and 0 -+ K ~ Bo ~ Bi -+ be exact sequences. 
Prove that 

-+ Ai A Ao ~ Bo ~ Bi -+ 

is an exact sequence. We say that the original two sequences have been spliced to 
form the new exact sequence. 

* B-1.53. Let 0 -+ A ~ B -.!+ C -+ 0 be a short exact sequence of modules. 

(i) Assume that A= (X) and C = (Y). For each y E Y, choose y' EB withp(y') = y. 
Prove that 

B = ( i(X) U {y': y E Y} ). 

(ii) Prove that if both A and C are finitely generated, then B is finitely generated. 
More precisely, prove that if A can be generated by m elements and C can be 
generated by n elements, then B can be generated by m + n elements. 

B-1.54. Prove that every short exact sequence of vector spaces is split. 

* B-1.55. Prove that a short exact sequence 0 -+ A ~ B -.!+ C -+ 0 splits if and only if 
there exists q: B -+ A with qi = lA. 

Hint. Take q to be a retraction. 

* B-1.56. Let 0 -+ A -+ B -+ C -+ 0 be an exact sequence of left R-modules, for some 
ring R. 

(i) Prove that if both A and C have DCC, then B has DCC. Conclude, in this case, 
that A EEl C has DCC. 

(ii) Prove that if both A and C have ACC, then B has ACC. Conclude, in this case, 
that A EEl C has ACC. 

(iii) Prove that every ring R that is a direct sum of minimal left ideals is left artinian. 

* B-1.57. Assume that the following diagram commutes, and that the vertical arrows are 
isomorphisms: 

0 -A' -A-A''------;.. 0 

t t t 
o-B'-B-B"-o. 

Prove that the bottom row is exact if and only if the top row is exact. 

* B-1.58. (3 x 3 Lemma) Consider the following commutative diagram of R-modules and 
R-maps having exact columns: 

0 0 0 
t t t 

o-A'-A-A''-o 
t f t 

o-B'-B-B"-o 
t f t 

o-c'-c-c''-o 
f t f 
0 0 0 
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If the bottom two rows are exact, prove that the top row is exact; if the top two rows are 
exact, prove that the bottom row is exact. 

* B-1.59. Consider the following commutative diagram of R-modules and R-maps having 
exact rows and columns: 

A'-A-A''-o 
t t t 
B'-B-B"-o 
t t t 
c'-c-c''-o 
t t t 
0 0 0 

If A" --+ B" and B' --+ B are injections, prove that C' --+ C is an injection. Similarly, if 
C' --+ C and A --+ B are injections, then A" --+ B" is an injection. Conclude that if the 
last column and the second row are short exact sequences, then the third row is a short 
exact sequence and, similarly, if the bottom row and the second column are short exact 
sequences, then the third column is a short exact sequence. 

* B-1.60. Give an example of a commutative diagram with exact rows and vertical maps 
hi,h2,h4,h5 isomorphisms 

Ai-A2-A3-A4-As 

h1t h2t th4 ths 
B1-B2-B3-B4-Bs 

for which there does not exist a map h3 : A3 --+ B3 making the diagram commute. 

Hint. Let the rows be 0 --+ Zv --+ ZP2 --+ Zv --+ 0 and 0 --+ Zp --+ Zp ffi Zp --+ Zp --+ 0. 





Chapter B-2 

Zorn's Lemma 

Dealing with infinite sets often requires appropriate tools of set theory. We now 
discuss Zorn's Lemma, the most useful such tool; we will then apply it to linear 
algebra, to free abelian groups, to algebraic closures of fields, and to the structure 
of fields. 

Zorn, Choice, and Well-Ordering 

We begin with the formal definition of cartesian product of sets. Recall that a set 
X is nonempty if there exists an element x E X. 

Definition. Given a family (Xa)aEA of nonempty sets, indexed by a possibly infi
nite set A, their cartesian product I1aEA Xa is the set of all functions: 

IT Xa = {,8: A---+ LJ Xa with ,B(a) E Xa for all a EA}. 
aEA aEA 

Such functions ,8 are called choice functions. 

Informally, TiaEA Xa consists of all "vectors" (xa) with Xa E Xa (of course, 
Xa = ,B(a)). The reason ,8 is called a choice function is that it "simultaneously 
chooses" an element from each Xa. 

If the index set A is finite, say with n elements, then it is easy to prove, by 
induction on n, that cartesian products of n nonempty sets are always nonempty. 

Definition. The Axiom of Choice states that every family of nonempty sets 
(Xa)aEA indexed by a nonempty set A has a choice function. 

Informally, the Axiom of Choice is a harmless looking statement; it asserts that 
any cartesian product IlaEA Xa contains some choice function ,8 = (xa)i that is, 
a cartesian product of nonempty sets is itself nonempty. The inductive argument 
above shows that the Axiom of Choice is only needed if the index set A is infinite. -313 
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The Axiom of Choice, one of the standard axioms of set theory, is easy to 
accept, but it is not convenient to use as it stands. There are various equivalent 
forms of it that are more useful, and we now discuss the most popular of them, 
Zorn's Lemma, which we will state after giving several preliminary definitions. 

Definition. A set X is partially ordered if there is a relation x ~ y defined on X 
which is 

(i) reflexive: x ~ x for all x E X; 

(ii) anti-symmetric: if x ~ y and y ~ x, then x = y; 

(iii) transitive: if x ~ y and y ~ z, then x ~ z. 

We often abbreviate "partially ordered set" to poset. 

An element m in a partially ordered set X is a maximal element if there is 
no x E X for which m -< x; that is, 

if m ~ x, then m = x. 

Example B-2.1. 

(i) A poset may have no maximal elements. For example, JR, with its usual 
ordering, has no maximal elements. 

(ii) A poset may have many maximal elements. For example, if A is a 
nonempty set and X = P*(A) is the family of all the proper subsets1 

of A partially ordered by inclusion, then a subset S ~ A is a maximal 
element of X if and only if S = A - {a} for some a E A; that is, S is the 
complement of a point. 

(iii) If X is the family of all the proper ideals in a commutative ring R, 
partially ordered by inclusion, then a maximal element in X is a maximal 
ideal. .,.. 

Zorn's Lemma gives a condition that guarantees the existence of maximal ele
ments. 

Definition. A poset X is a chain (or is simply ordered or is totally ordered) 
if, for all x,y EX, either x ~ y or y ~ x. 

The set of real numbers JR with its usual ordering is a chain. 

Recall that an upper bound of a nonempty subset Y of a poset X is an element 
xo E X, not necessarily in Y, with y ~ xo for every y E Y. 

Zorn's Lemma. If Xis a nonempty poset in which every chain has an upper bound 
in X, then X has a maximal element. 

The next lemma is frequently used in verifying that the hypothesis of Zorn's 
Lemma does hold. 

Lemma B-2.2. If C is a chain in a poset X and S = { c1 , ... , en} is a finite subset 
of C, then there exists some Ci with Cj ~ Ci for all Cj E S. 

1We denote the family of all, not necessarily proper, subsets of a set A by "P(A) or by 2A. 
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Proof. The proof is by induction on n ;:::: 1. The base step is trivially true. Let 
S = { ci, ... , Cn+d· The inductive hypothesis provides Ci, for 1 ::; i ::; n, with 
Cj :::S Ci for all Cj E S - { Cn+ i}. Since C is a chain, either Ci :::S Cn+i or Cn+i :::S Ci. 

Either case provides a largest element of S. • 

Let us illustrate how Zorn's Lemma is used. We have already proved the next 
result for noetherian rings using the maximal condition holding there. 

Theorem B-2.3. If Risa nonzero commutative ring, then R has a maximal ideal. 
Indeed, every proper ideal U in R is contained in a maximal ideal. 

Proof. The second statement implies the first, for if R is a nonzero ring, then the 
ideal (0) is a proper ideal, and so there exists a maximal ideal in R containing it. 
Let's prove the first statement. 

Let X be the family of all the proper ideals containing U, partially ordered 
by inclusion (note that X f=. 0 because U EX). A maximal element of X, if one 
exists, is a maximal ideal in R, for there is no proper ideal strictly containing it. 

Let C be a chain in X; thus, given I, J EC, either I~ J or J ~ I. We claim 
that I* = LJJEC I is an upper bound of C. Clearly, I~ I* for all IE C, so that it 
remains to prove that I* is a proper ideal. Lemma A-3.125(i) shows that I* is an 
ideal; let us show that I* is a proper ideal. If I* = R, then 1 E I*; now 1 got into 
I* because 1 E I for some I E C, and this contradicts I being a proper ideal. 

We have verified that every chain in X has an upper bound. Hence, Zorn's 
Lemma provides a maximal element in X, as desired. • 

Remark. 

(i) Commutativity of multiplication is not used in the proof of Theorem 
B-2.3. Thus, every left (or right) ideal in a ring is contained in a maximal 
left (or right) ideal. 

(ii) Theorem B-2.3 would be false if the definition of ring R did not insist on 
R containing 1. An example of such a "ring without unit" is any additive 
abelian group G with multiplication defined by ab = 0 for all a, b E G. 
The usual definition of ideal makes sense, and it is easy to see that a 
subset S ~ G is an ideal if and only if it is a subgroup. Thus, a maximal 
ideal S is just a maximal subgroup; that is, G / S has no proper subgroups, 
which says that G / S is a simple abelian group. But an abelian group 
is simple if and only if it is a finite group of prime order, so that S is a 
maximal ideal in G if and only if JG/SI= p for some prime p. 

Now choose G = Q, the additive abelian group of all rationals, and 
suppose S ~ Q is a maximal subgroup with IQ/ SI = p; by Lagrange's 
Theorem, p(Q/S) = {O}. But if a+ SEQ/Sis nonzero, where a E Q, 
then there is b E Q with a= pb. Hence, 0 f=. a+ S = pb +SE p(Q/S) = 
{O}, a contradiction. Thus, Q has no maximal subgroups and, therefore, 
the "ring without unit" Q has no maximal ideals. "" 

We emphasize the necessity of checking, when applying Zorn's Lemma to a 
poset X, that X be nonempty; after all, the conclusion of Zorn's Lemma is that 
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there exists a certain kind of element in X. For example, a careless person might 
claim that Zorn's Lemma can be used to prove that there is a maximal uncountable 
subset of Z. Define X to be the set of all the uncountable subsets of Z, and 
partially order X by inclusion. If C is a chain in X, then it is clear that the 
uncountable subset S* = Uscc S is an upper bound of C, for S ~ S* for every 
SEC. Therefore, Zorn's Lemma provides a maximal element in X, which must be 
a maximal uncountable subset of Z. The flaw, of course, is that X = 0 (for every 
subset of a countable set is itself countable). 

The following definitions enable us to state the Well-Ordering Principle, another 
statement equivalent to the Axiom of Choice. Well-ordering will also be involved 
in a generalization of induction on page 346 called transfinite induction. 

Definition. A poset X is well-ordered if every nonempty subset S of X contains 
a smallest element; that is, there is so E S with 

so ::; s for all s E S. 

The set of natural numbers N is well-ordered (this is precisely what the Least 
Integer Axiom in Course 1 states), but the set Z of all integers is not well-ordered 
because the negative integers form a nonempty subset with no smallest element. 

Remark. Every well-ordered set X is a chain: if x, y E X, then the nonempty 
subset { x, y} has a least element, say, x, and so x ::; y. .... 

Well-Ordering Principle. Every set X has some well-ordering of its elements. 

If X happens to be a poset, then a well-ordering, whose existence is asserted 
by the Well-Ordering Principle, may have nothing to do with the original partial 
ordering. For example, Z is not well-ordered in the usual ordering, but it can be 
well-ordered as follows: 

0::; 1::; -1::; 2::; -2::; .... 

Theorem B-2.4. The following statements are equivalent. 

(i) Zorn's Lemma. 

(ii) The Well-Ordering Principle. 

(iii) The Axiom of Choice. 

Proof. We merely sketch the proof; only the implication (iii) => (i) is tricky. 

(i) => (ii) Let X be a nonempty set and let X be the family of all subsets 
S ~ X, each equipped with every possible well-ordering of it; if a subset S 
cannot be well-ordered, then it does not belong to X. Note that X f=. 0, 

for every singleton set lies in it. Call a subset T of a well-ordered set S 
an initial segment if either T = S or there is s E S with T = { x E X : 
x < s} or there is s E S with T = { x E X : x :::; s}. 

If A, B E X, define A ::; B if A is an initial segment of B. Then X 
is a partially ordered set in which chains C = { A0 } have upper bounds. 
In more detail, let A* = LJ0 A 0 equipped with the following ordering: if 
a, b EA*, then a, b E A 0 for some a, and a:::; bin A* if a:::; bin A 0 • (Note 
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that this construction does not produce well-ordered sets in general: for 
every n E N, the set An = {m E Z : m 2:: -n} is well-ordered, but 
Un An = Z is not well-ordered). By Zorn, there is a maximal element 
MEX. If M = X, we are done. If Ms;; X, then there is some x0 EX 
with x0 <f. M. Define M* = MU {x0 }, and make it into a well-ordered 
set with m :::; x0 for every m E M (so M is an initial segment of M*). 
Clearly, M-< M*, contradicting the maximality of M. Thus, M = X, 
and X can be well-ordered. 

(ii) ::::} (iii) Let (Xa)aEA be a family of nonempty sets. Well-order each Xa. 
If Za is the smallest element in Xa, then (za) is a choice function. 

(iii) ::::} (i) See Kaplansky [60] Section 3.3. • 

Henceforth, we shall assume, unashamedly, that all these statements are true, 
and we will use any of them whenever convenient. 

The next application characterizes noetherian rings in terms of their prime 
ideals. 

Lemma B-2.5. Let R be a commutative ring and let F be the family of all those 
ideals in R that are not finitely generated. If F =F 0, then F has a maximal element. 

Proof. Partially order F by inclusion. It suffices, by Zorn's Lemma, to prove that 
if C is a chain in F, then I* = LJIEC I is not finitely generated, for then I* is an 
upper bound of C. If, on the contrary, I* = (ai, ... , an), then ai E Ii for some 
Ii E C. But C is a chain, and so one of the ideals Ii, ... , In, call it Io, contains 
the others, by Lemma B-2.2. It follows that I* = (ai, ... , an) ~ Io. The reverse 
inclusion is clear, for I~ I* for all I EC. Therefore, Io =I* is finitely generated, 
contradicting Io E F. • 

Theorem B-2.6 (I. S. Cohen). A commutative ring R is noetherian if and only 
if every prime ideal in R is finitely generated. 

Proof. Only sufficiency needs proof. Assume that every prime ideal is finitely 
generated, and let F be the family of all those ideals in R that are not finitely 
generated. If F =F 0, then the lemma provides an ideal I that is not finitely 
generated and is maximal in the set F. We will show that I is a prime ideal. With 
the hypothesis that every prime ideal is finitely generated, this contradiction will 
show that F = 0 and, hence, that R is noetherian. 

Suppose that ab E I but a <f. I and b <f. I. Since a <f. I, the ideal I+ Ra is 
strictly larger than I, and so I+ Ra is finitely generated; indeed, we may assume 
that 

I+ Ra= (i1 + r1a, ... , in+ rna), 

where ik E I and rk E R for all k. Consider J = (I : a) = {x E R : xa E I}. 
Now I+ Rb~ J; since b <f. I, we have I s;; J, and so J is finitely generated. We 
claim that I= (ii, ... , in, Ja). Clearly, (ii, ... , in, Ja) ~ I, for every ik E I and 
Ja ~ I. For the reverse inclusion, if z E I ~ I+ Ra, there are uk E R with z = 
Lk uk(ik+rka). Then (Lk ukrk)a = z- Lk ukik EI, so that Lk ukrk E J. Hence, 
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z = L:k Ukik + (l:k Ukrk)a E (i1, ... , in, Ja). It follows that I= (i1, ... , in, Ja) is 
finitely generated, a contradiction, and so I is a prime ideal. • 

A theorem of Krull says that noetherian rings have DCC (descending chain 
condition) on prime ideals: every descending series of ideals 

Ii 2 I2 2 · · · 2 In 2 · · · 
is constant from some point on. 

Exercises 

* B-2.1. Prove that every non-unit in a commutative ring lies in some maximal ideal. 

* B-2.2. Let R be a nonzero ring, and let a E R not have a left inverse; that is, there is no 
b E R with ba = 1. Prove that there is a maximal left ideal in R containing a. 

* B-2.3. Recall that if S is a subset of a partially ordered set X, then the least upper 
bound of S (should it exist) is an upper bound m of S such that m ::5 u for every upper 
bound u of S. If X is the following partially ordered set: 

a b 

IXI 
c d 

(in which d ::5 a is indicated by a line joining a and d with a higher than d), prove that 
the subset S = { c, d} has an upper bound but no least upper bound. 

* B-2.4. Let G be an abelian group and let S ~ G be a subgroup. Prove that there exists 
a subgroup Hof G maximal with the property that H n S = {O}. Is this true if G is not 
abelian? 

* B-2.5. Call a subset C of a partially ordered set X cofinal if, for each x E X, there 
exists c E C with x :::5 c. 

(i) Prove that Q and Z are cofinal subsets of R. 

(ii) Prove that every chain X contains a well-ordered cofinal subset. 
Hint. Use Zorn's Lemma on the family of all the well-ordered subsets of X. 

(iii) Prove that every well-ordered subset in X has an upper bound if and only if every 
chain in X has an upper bound. 

B-2.6. Prove that every commutative ring R has a minimal prime ideal, that is, a 
prime ideal I for which there is no prime ideal P with P £;; I. 

Hint. Partially order the set of all prime ideals by reverse inclusion: P ::5 Q means 
P~Q. 

* B-2. 7. A subset Sofa commutative ring R is multiplicative (many say multiplicatively 
closed instead of multiplicative) if 0 ~ S, 1 E S, and s, s' E S implies ss' E S. For 
example, the (set-theoretic) complement R - P of a prime ideal Pis multiplicative. 

(i) Given a multiplicative set S ~ R, prove that there exists an ideal J which is 
maximal with respect to the property Jn S = 0, and that any such ideal is a 
prime ideal. 
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(ii) Let R be a commutative ring and let x E R not be nilpotent; that is, xn "I 0 for 
all n 2: 0. Prove that there exists a prime ideal P ~ R with x f/: P. 
Hint. TakeS={l,x,x2 , ••• }. 

Zorn and Linear Algebra 

We begin by generalizing the usual definition of a basis of a vector space so that 
it applies to all, not necessarily finite-dimensional, vector spaces. All the results in 
this section are valid for left vector spaces over division rings, but we present them 
in the more familiar context of vector spaces over fields. 

Definition. Let V be a vector space over a field k, and let Y ~ V be a (possibly 
infinite) subset.2 

(i) Y is linearly independent if every finite subset of Y is linearly inde
pendent. 

(ii) Y spans V if each v E V is a linear combination of finitely3 many 
elements of Y. We write V = (Y) if Vis spanned by Y. 

(iii) A basis of a vector space Vis a linearly independent subset that spans V. 

We say that almost all elements of a set Y have a certain property if there 
are at most finitely many y E Y which do not enjoy this property; that is, there are 
only finitely many (perhaps no) exceptions. For example, let Y = {Yi : i E I} be a 
subset of a vector space. To say that E aiYi = 0 for almost all ai = 0 means that 
only finitely many ai can be nonzero. Thus, Y is linearly independent if, whenever 
E aiYi = 0, where almost all ai = 0, then all ai = 0. 

Example B-2.7. Let k be a field, and regard V = k[x] as a vector space over k. 
We claim that 

Y = {1, x, x2 , ... , xn, . .. } 

is a basis of V. Now Y spans V, for every polynomial of degree d 2: 0 is a k-linear 
combination of 1, x, x2 , ••• , xd. Also, Y is linearly independent. Otherwise, there is 
m 2: 0 with 1, x, x2 , ••• , xm linearly dependent; that is, there are ao, ai, ... , am E k, 
not all 0, with a0 +a1x+· · +amxm the zero polynomial, a contradiction. Therefore, 
Y is a basis of V. <111 

Theorem B-2.8. Every vector space V over a field k has a basis. Indeed, every 
linearly independent subset B of V is contained in a basis of V; that is, there is a 
subset B' so that BUB' is a basis of V. 

Proof. Note that the first statement follows from the second, for B 
linearly independent subset contained in any basis. 

0 is a 

2 When dealing with infinite bases, it is more convenient to work with subsets instead of with 
lists, that is, ordered subsets. We have noted that whether a finite list x1, ... , Xn of vectors is a 
basis depends only on the subset {xi, ... , Xn} and not upon its ordering. 

3 0nly finite sums of elements in V are allowed. Without limits, convergence of infinite series 
does not make sense, and so a sum with infinitely many nonzero terms is not defined. 
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Let X be the family of all the linearly independent subsets of V containing B. 
The family X is nonempty, for B E X. Partially order X by inclusion. We use 
Zorn's Lemma to prove the existence of a maximal element in X. Let /3 = (Bj)jEJ 
be a chain of X. Thus, each Bj is a linearly independent subset containing B 
and, for all i,j E J, either Bj ~ Bi or Bi ~ Bj. Proposition B-2.2 says that if 
Bji, ... , Bjn is any finite family of Bj 's, then one contains all of the others. 

Let B* = LJjEJ Bj· Clearly, B* contains B and Bj ~ B* for all j E J. Thus, 
B* is an upper bound of /3 if it belongs to X, that is, if B* is a linearly independent 
subset of V. If B* is not linearly independent, then it has a finite subset Yii, ... , Yim 
that is linearly dependent. How did Yik get into B*? Answer: Yik E Bjk for some 
index Jk· Since there are only finitely many Yik' Proposition B-2.2 applies again: 
there exists Bj0 containing all the Bik; that is, Yii, ... , Yim E Bj0 • But Bj0 is 
linearly independent, by hypothesis, and this is a contradiction. Therefore, B* is 
an upper bound of the chain /3. Thus, every chain in X has an upper bound and, 
hence, Zorn's Lemma applies to say that there exists a maximal element in X. 

Let M be a maximal element in X. Since Mis linearly independent, it suffices 
to show that it spans V (for then Mis a basis of V containing B). If M does not 
span V, then there is vo E V with Vo ff. (M), the subspace spanned by M. By 
Lemma A-7.18, the subset M* =MU {vo} is linearly independent, contradicting 
the maximality of M. Therefore, M spans V, and so it is a basis of V. The last 
statement follows if we define B' = M - B. • 

Recall that a subspace W of a vector space V is a direct summand if there is a 
subspace W' of V with {O} = W n W' and V = W + W' (i.e., each v EV can be 
written as v = w + w', where w E Wand w' E W'). We say that Vis the direct 
sum of Wand W', and we write V =WEB W'. 

Corollary B-2.9. Every subspace W of a vector space V is a direct summand. 

Proof. Let B be a basis of W. By the theorem, there is a subset B' with BU B' a 
basis of V. It is straightforward to check that V =WEB (B'), where (B') denotes 
the subspace spanned by B'. • 

The proof of Theorem B-2.8 is typical of proofs using Zorn's Lemma. After 
obtaining a maximal element, the argument is completed indirectly: if the desired 
result were false, then a maximal element could be enlarged. 

We can now generalize Theorem A-7.28 to infinite-dimensional vector spaces. 

Theorem B-2.10. Let V and W be vector spaces over a field k. If X is a basis 
of V and f: X -+ W is a function, then there exists a unique linear transformation 
T: V-+ W with T(x) = f(x) for all x EX. 

Proof. As in the proof of Proposition A-7.9, each v E V has a unique expression 
of the form v = L:i aiXi, where Xi, ... , Xn E X and ai E k, and so T: V -+ W, 
given by T(v) = L:ad(xi), is a (well-defined) function. It is routine to check that 
Tis a linear transformation and that it is the unique such extending f. • 
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Corollary B-2.11. If V is an infinite-dimensional vector space over a field k, then 
GL(V) =f:. {1}. 

Proof. Let X be a basis of V, and choose distinct elements y, z E X. By Theo
rem B-2.10, there exists alinear transformation T: V---+ V with T(y) = z, T(z) = y, 
and T(x) = x for all x EX - {y,z}. Now Tis nonsingular, because T 2 =Iv. • 

Example B-2.12. 

(i) The field of real numbers JR is a vector space over Q, and a basis H <::;;JR 
is called a Hamel basis; every real number r has a unique expression 
as a finite linear combination r = qih1 + · · · + qmhm, where qi E Q 
and hi E H for all i. Hamel bases can be used to construct analytic 
counterexamples. For example, we may use a Hamel basis to prove the 
existence of an everywhere discontinuous function f: JR ---+ JR such that 

j(x + y) = f(x) + f(y). 

Here is a sketch of a proof, using infinite cardinal numbers, that such 
discontinuous functions f exist. By Theorem B-2.10, if B is a (possibly 
infinite) basis of a vector space V, then any function f: B ---+ V extends 
to a linear transformation F: V ---+ V; namely, F('L, r ibi) = "£rd (bi). A 
Hamel basis has cardinal c = IJRI, and so there are cc = 2c > c functions 
f: JR ---+ JR satisfying f ( x + y) = f ( x) + f (y), for every linear transforma
tion is additive. On the other hand, every continuous function JR ---+ JR is 
determined by its values on Q, which is countable. It follows that there 
are only ~~0 = c continuous functions JR ---+ JR. Therefore, there exists an 
additive function f : JR ---+ JR and a real number u with f discontinuous 
at u: there is some c: > 0 such that, for every 8 > 0, there is v E JR 
with Iv - ul < 8 and lf(v) - f(u)I 2': c:. We now show that f is discon
tinuous at every w E JR. The identity v - u = ( v + w - u) - w gives 
l(v+w-u) -wl < 8, and the identity f(v +w-u)- f(w) = f(v) - f(u) 
gives lf(v + w - u) - f(w)I 2': c:. 

(ii) A Hamel basis H can be used to construct a nonmeasurable subset of JR 
(in the sense of Lebesgue): if H' is obtained from H by removing one 
element, then the subspace over Q spanned by H' is nonmeasurable 
(Kharazishvili [61], p. 35). 

(iii) A Hamel basis H of JR (viewed as a vector space over Q) can be used 
to give a positive definite inner product on JR all of whose values are 
rational. 

Definition. An inner product on a vector space V over a field k is a 
function V x V---+ k, whose values are denoted by (v, w), such that 
(a) (v + v',w) = (v,w) + (v', w) for all v,v',w EV; 
(b) (av, w) = a(v, w) for all v, w EV and a Ek; 
(c) (v,w) = (w,v) for all v,w EV. 

An inner product is positive definite if (v, v) 2': 0 for all v EV and 
(v,v) =f:. 0 whenever v =f:. 0. 
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Using zero coefficients if necessary, for each v, w E ~. there are 
hi EH and rationals ai and bi with v = L, aihi and w = L, bihi (the 
nonzero ai and nonzero bi are uniquely determined by v and w, respec
tively). Define 

(v w) = '""""a·b·· ' L....it i i' 

note that the sum has only finitely many nonzero terms. It is routine 
to check that we have defined a positive definite inner product all of 
whose values are rational. (Fixing a value of the first coordinate, say, 
(5, ) : ~ ---+ Q, given by u i--+ (5, u), is another example of an additive 
function on ~ that is not continuous.) <Ill 

There is a notion of dimension for infinite-dimensional vector spaces; of course, 
dimension will now be an infinite cardinal number. In the following proof, we 
shall cite and use several facts about cardinals. Recall that we denote the cardinal 
number of a set X by IXI. 

Theorem B-2.13. Let k be a field and let V be a vector space over k. 

(i) Any two bases of V have the same number of elements (that is, they have 
the same cardinal number); this cardinal, called the dimension of V, is 
denoted by dim(V). 

(ii) Vector spaces V and V' over k are isomorphic if and only if dim(V) = 
dim(V'). 

Proof. 

(i) Let B and B' be bases of V. If B is finite, then V is finite-dimensional, 
and hence B' is also finite (Corollary A-7.23); moreover, Invariance of 
Dimension, Theorem A-7.17, says that IBI = IB'I· Therefore, we may 
assume that both B and B' are infinite. 

Each v E V has a unique expression of the form v = L,bEB o:bb, where 
O:b E k and almost all O:b = 0. Define the support of v (with respect 
to B) by supp8 (v) = {b EB: O:b # 0}; thus, SUPPB(v) is a finite subset 
of B for every v E V. Define f: B' ---+ Fin(B), the family of all finite 
subsets of B, by f(b') = supp8 (b'). Note that ifsupp8 (b') ={bi, ... ,bn}, 
then b' E (bi. ... , bn) = (supp8 (b')), the subspace spanned by supp8 (b'). 
Since (supp8 (b')) has dimension n, it contains at most n elements of B', 
because B' is independent (Corollary A-7.22). Therefore, f- 1(T) is finite 
for every finite subset T ~ B (of course, f- 1 (T) = 0 is possible). Now 
IB'I :::; jFin(B)I = IBl.4 Interchanging the roles of B and B' gives the 
reverse inequality IBI :::; IB'I, and so IBI = IB'l.5 

(ii) Adapt the proof of the finite-dimensional version, Corollary A-7.30. • 

4We use two facts about cardinal numbers: (i) if X is infinite and f: X --+ Y is a function 
which is finite-to-one (that is, 1- 1 (y) is finite for ally E Y), then IXI :::; IYl~o :::; IYI; (ii) if Y is 
infinite, then IFin(Y)I = IYI· 

5If X and Y are sets with IXI :::; IYI and IYI :::; IXI, then IXI = IYI· This is usually called 
the Schroeder-Bernstein Theorem; see Birkhoff-Mac Lane [8], p. 387. 
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Exercises 

B-2.8. (i) If Sis a subspace of a vector space V, prove that there exists a subspace W 
of V maximal with the property that W n S = {O}. 

(ii) Prove that V = W E9 S. 

(iii) Is part (ii) true for Z-modules? 
Hint. Consider subgroups of Z4. 

B-2.9. Regard R as a vector space over Q. If P is the set of primes in Z, prove that 
{ yp: p E P} is linearly independent. 

B-2.10. If k is a countable field and V is a vector space over k of countable dimension, 
prove that V is countable. Conclude that dimQ(R) is uncountable. 

Zorn and Free Abelian Groups 

The notion of direct sum, already discussed for vector spaces and for groups, extends 
to modules. 

Definition. Let R be a ring and let (Ai)iEI be an indexed family of left R-modules. 
The (external) direct product rriEl Ai is the Cartesian product (i.e., the set of 
all I-tuples (ai) whose ith coordinate ai lies in Ai for every i) with coordinatewise 
addition and scalar multiplication: 

(ai) +(bi) = (ai +bi), 

r(ai) = (rai), 

where r E Rand ai, bi E Ai for all i. 

If a= (ai) E rriEl Ai, then the support of a is 

supp(a) = {i EI: ai =IO}. 

The (external) direct sum, denoted by Ef)iEI Ai (or by L:iEI Ai), is the sub
module of rriEl Ai consisting of all (ai) with finite support; that is, (ai) has only 
finitely many nonzero coordinates. 

Note that if the index set I is finite, then 11iEI Ai = Ef)iEI Ai. On the other 
hand, when I is infinite and infinitely many Ai =I 0, then the direct sum is a proper 
submodule of the direct product (and they are almost never isomorphic). 

There is another way to describe a finite direct sum; that is, the index set I is 
finite. The easiest version, given above, is their external direct sum whose elements 
are all n-tuples; we temporarily denote it by S1 x · · · x Sn. However, the most 
useful version, isomorphic to S1 x · · · x Sn, is sometimes called their internal direct 
sum; it is the additive version of the statement of Proposition A-4.83 (about the 
analogous construction for nonabelian groups) involving submodules Si of a given 
module M. 
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Recall Exercise B-1.33 on page 299: the submodule of a module M generated 
by submodules S and T is denoted by S + T: 

S + T = { s + t : s E S and t E T}. 

Definition. If S and T are left R-modules over a ring R, then their (external) 
direct sum, denoted by S x T, is the cartesian product S x T with coordinatewise 
operations: 

(s, t) + (s', t') = (s + s', t + t'), 

r(s, t) = (rs, rt), 

wheres, s' ES, t, t' ET, and r ER. 

If E = S x T, then there are injective R-maps i: S ---+ E and j: T ---+ E, namely 
i: s i--+ (s, 0) and j: t i--+ (0, t); thus, im i = S x {O} and imj = {O} x T. There 
are also surjective R-maps p: E ---+ S and q: E---+ T, namely p: (s, t) i--+ s and 
q: (s, t) i--+ t. Note that (S x {O}) + ( {O} x T) = E, (S x {O}) n ( {O} x T) = {O}, and 
each e = (s, t) E E has a unique expression e = (s, 0) + (0, t), where (s, 0) E S x {O} 
and (0, t) E {O} x T. These maps have the following properties: 

pi= ls, qj = lT, pj = 0, qi= 0, and ip + jq = lE. 

Here is a second version of direct sum. 

Definition. Let M be a left R-module M, and let Sand T be submodules of M. 
Then M is the (internal) direct sum, denoted by 

M = StJJT, 

if every m E M has a unique expression of the form m = s + t for s E S and t E T. 

For example, if V is a two-dimensional vector space over a field k with basis 
x,y, then V = (x) ffi (y), for every vector v E V has a unique expression as a 
linear combination of x and y; that is, there are scalars a, b E k with v = ax+ by, 
ax E (x) and by E (y). 

Exercise B-1.33 on page 299 shows that M = S (£) T if and only if S + T = M 
and Sn T = {O}. 

In light of the next proposition, we will omit the adjectives external and internal 
when speaking of direct sums of two modules, but our viewpoint is almost always 
internal. 

Proposition B-2.14. 

(i) If a left R-module M is an internal direct sum, M = S ffi T, then 

SxT~StJJT 

via (s, t) i--+ s + t. 
(ii) Conversely, every external direct sum is an internal direct sum: given left 

R-modules S and T, then 

S x T = S' ffi T', 

where S' = {(s,O): s ES}~ Sand T' = {(O,t): t ET}~ T. 
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Proof. 

(i) Define f: S x T-t SEBT by f: (s, t) H s+t. Now f is a homomorphism: 
f: (s, t) + (s', t') = (s + s', t + t') H s + s' + t + t'; on the other hand, 
f(s, t) + f(s', t') = s + t + s' + t'. These are equal because t + s' = s' + t 
in S EB T. Finally, f is an isomorphism, for its inverse s + t H (s, t) is 
well-defined because of uniqueness of expression. 

(ii) The submodule S' ~ S x T is isomorphic to S via (s, 0) H s; similarly, 
T' ~ T via (0, t) H t. Now S' + T' = S x T, for (s, t) = (s, 0) + (0, t) E 
S' +T'. Clearly, S' nT' = {(0,0)}, and so S x T = S' EBT'. • 

Definition. A submodule S of a left R-module M is a direct summand of M if 
there exists a submodule T of M, called a complement of S, with M = S EB T. 

Complements of a submodule S, if they exist, may not be unique. For example, 
if V is a two-dimensional vector space with basis x, y, then V = (x) EB (y). But 
x, x + y is also a basis, and V = (x) EB (x + y); hence, both (y) and (x + y) are 
complements of (x). On the other hand, if a module M = S EB T, then any two 
complements of S are isomorphic: if M = S EB T', then T' ~ M / S ~ T. 

The next corollary will connect direct summands with a special type of homo
morphism. 

Definition. Let S be a submodule of a left R-module M. Then S is a retract 
of M if there exists an R-homomorphism p: M -+ S, called a retraction, with 
p( s) = s for all s E S. 

We can rephrase this definition: If i: S -+ M is the inclusion, then p: M -+ S 
is a retraction if and only if pi= ls. 

Corollary B-2.15. A submodule S of a left R-module M is a direct summand if 
and only if there exists a retraction p: M-+ S, in which case M = S EB ker p; that 
is, ker p is a complement of S. 

Proof. If i: S -+ M is the inclusion and p: M -+ S is a retraction, we show that 
M = S EB T, where T = ker p. If m E M, then m = (m - pm) +pm. Plainly, 
pm E imp= S. On the other hand, p(m - pm)= pm - ppm= 0, because pm ES 
and so p(pm) =pm. Therefore, M = S + T. 

If m E S, then pm= m; if m E T = ker p, then pm= 0. Hence, if m E Sn T, 
then m = 0. Therefore, Sn T = {O}, and M = S EB T. 

For the converse, if M = S EB T, then each m EM has a unique expression of 
the form m = s+t, wheres ES and t ET, and it is easy to check that p: M-+ S, 
defined by p: s + t H s, is a retraction M-+ S. • 

Corollary B-2.16. If M = S EB T and S ~A~ M, then A= S EB (An T). 

Proof. Let p: M -+ S be the retraction s + t H s; note that ker p = T. Since 
S ~ A, the restriction plA: A -+ S is a retraction with ker(plA) = An T. Thus, 
An Tis a complement of S. • 
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We now extend the direct sum construction to finitely many modules. Again 
there are external and internal versions. 

Definition. Let S1, ... , Sn be left R-modules. Define the external direct sum 

S1 x · · · x Sn 

to be the left R-module whose underlying set is the cartesian product S1 x · · · x Sn 
and whose operations are 

(Si, ... , sn) + ( s~, ... , s~) = ( s1 + s~, ... , Sn + s~), 

r(s1, ... ,sn) = (rs1, ... ,rsn)· 

Let M be a left R-module, and let S1, ... , Sn be submodules of M. Then M 
is the internal direct sum, denoted by 

M = S1 EEl · · · EEl Sn, 

if each m E M has a unique expression of the form m = s1 + · · · +Sn, where si E Si 
for all i = 1, ... , n. We may denote S1 EEl · · · EEl Sn by 

n 

ffisi. 
i=l 

For example, if V is an n-dimensional vector space over a field k and v1 , ... , Vn 

is a basis, then 

V = ( V1) EEl · · · EEl ( Vn), 

where (Vi) is the subspace of V generated by Vi. We let the reader prove that the 
internal and external versions, when the former is defined, are isomorphic. 

If Si, ... , Sn are submodules of a module M, when is (Si, ... , Sn), the sub
module generated by the Si, equal to their direct sum? A common mistake is to 
say that it is enough to assume that Sin Si = {O} for all i =I- j, but this is not 
enough (see Example B-2.18 below). 

Proposition B-2.17. Let M = S1 + · · · +Sn, where the Si are submodules of M, 
and let ji: Si ---+ M be inclusions. The following conditions are equivalent. 

(i) M = S1 EEl · · · EEl Sn; that is, every m E M has a unique expression of the 
form m = s1 + · · · + sn, where Si E Si for all i. 

(ii) For each i, 

Sin (S1 + ... +Si+ ... + Sn) = {O}, 

where Si, ... , Si, ... , Sn is the list with Si deleted. 

(iii) There are homomorphisms Pi: M---+ Si for all i such that 

Pdi = ls;, Pkii = 0 for k =I- i, and i1P1 + · · · + inPn = lM. 

Proof. 

(i) =>(ii) If, for some i, there is Si E sin(S1 +·.·+Si+·. ·+Sn) with Si =I- 0, 
then Si has two expressions: Si and s1 + · · · + Si-1 + si+l +···+Sn. 
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(ii) =:;.. (iii) Uniqueness of expression says, for each i, that the functions 
Pi: M --+ Si, given by Pi: m = s1 + · · · + Sn I-+ Si, are well-defined. 
Verification of the displayed equations is routine. 

(iii) =:;.. (i) If m = s1 + · · · + sn, where Si E Si for all i, then the identities 
show that each Si = Pim, so that Si is uniquely determined by m. • 

Example B-2.18. Let x, y be a basis of a two-dimensional vector space V over a 
field k, and view Vas a k-module. It is easy to see that the intersection of any two 
of the one-dimensional subspaces (x), (y), and (x + y) is {O}. On the other hand, 
V =f (x) EB (y) EB (x + y) lest V be three-dimensional. ~ 

The next result constructs homomorphisms from direct sums. Informally, it 
says that a family of maps Si --+ M can be assembled to give a map EB Si --+ M. 

Definition. Let R be a ring, let D = EBiEJ Si be a direct sum of R-modules 
indexed by a set I, and for each Si E Si, let ji(si) be the element of D whose 
ith coordinate is si and whose other coordinates are 0. The maps ji: Si --+ D 
are called injections, and the maps Pi: D --+ Si, defined by (si) I-+ Si, are called 
projections. 

The equations Pdi = ls; show that the injections ji must be injective and the 
projections Pi must be surjective. 

Proposition B-2.19. Let R be a ring. Given a direct sum D = EBiEJ Si of left R
modules, a left R-module M, and a family of R-maps {fi: Si --+ M}iEJ, there exists 
a unique R-map (}: D --+ M making the following diagram commute for each i: 

Si 

y~ 
D------~M. 

8 

Proof. Define(}: D--+ M by B((si)) = Ei fi(si) (this makes sense, for only finitely 
many si are nonzero). The diagram commutes: if Si E Si, then Oji(si) = fi(si)· The 
map (} is unique: If 'ljJ: D --+ M also makes the diagram commute, then 7/J( ( si)) = 

Ei fi(si)· Since 'ljJ is a homomorphism, we have 

7/J((si)) = 7/J(L>i(si)) = L '1/Jji(si) = L fi(si) = B((si)). 
i i i 

Therefore, 'ljJ = B. • 

Here is a useful consequence. 

Proposition B-2.20. Let R be a ring. If { Mi}iEJ is a family of left R-modules 
and {Si ~ Mi}iEJ is a family of submodules, then 
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In particular, if the index set I is finite, then 

~1 EB ... EB ~n ~ (Mi/S1) EB ... EB (Mn/Sn)· 
1EB···EB n 

Proof. We apply Proposition B-2.19. Consider the diagram 

Mi 

;/~ 
Ef)iMi- - - - 9- - ,...Ef)i(Mi/Si) 

in which Ji: Mi -t Ef)i Mi is an injection into the direct sum, while fi is the compos
ite of the natural map 'Tri: Mi -t Mi/Si with the injection Mi/Si -t Ef)i(Mi/Si)· 
An explicit formula is (): (mi) M (mi +Si), and we see that () is surjective and 
kerO = Ef)i Si. Now apply the First Isomorphism Theorem. • 

Direct sums of copies of Z arise often enough to have their own name. 

Definition. An abelian group F is free abelian if it is isomorphic to the direct 
sum 

F =EB (xi), 
iEl 

where {(xi) hEr is a (possibly infinite) family of infinite cyclic groups. Call X = 
{Xi : i E I} a basis of F. 

In particular, a finitely generated free abelian group F looks like 

(x1) EB··· EB (xn), 

and a basis is X =xi, ... , Xn· Of course, a free abelian group has many bases. 

Note that F is isomorphic to zn via aix1 + ... + anXn M aie1 + ... + anen, 
where ei, ... , en is the standard basis of zn; that is, ei is the n-tuple having 1 in 
the ith place and O's elsewhere. We may denote F by zn. 

If G is an abelian group and m is an integer, let us write 

mG = {ma : a E G}. 

It is easy to see that mG is a subgroup of G. 

Proposition B-2.21. If G is an abelian group and p is prime, then G/pG is a 
vector space over IF P. 

Proof. If [r] E 1Fp = Zp and a E G, define scalar multiplication on G/pG by 

[r](a + pG) = ra + pG. 

This formula is well-defined: if r' = r mod p, then r' = r +pm for some integer m, 
and so 

r' a+ pG = ra + pma + pG = ra + pG, 
because pma E pG. Hence, [r'](a + pG) = [r](a + pG). It is routine to check that 
the axioms for a vector space do hold (see Exercise B-1.35 on page 299). • 

Proposition B-2.22. zm ~ zn if and only if m = n. 
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Proof. Only necessity needs proof. Note first that if an abelian group G is a 
direct sum, G = G1 EB · · · EB Gn, then 2G = 2G1 EB · · · EB 2Gn. It follows from 
Proposition B-2.20 that 

G/2G eE (Gi/2G1) EB ... EB (Gn/2Gn)· 

In particular, if G = zn, then IG/2GI = 2n. Finally, if zn eE zm, then zn;2zn eE 

zm /2zm and 2n = 2m. We conclude that n = m. • 

Corollary B-2.23. If F is a free abelian group, then any two (finite) bases of F 
have the same number of elements. 

Proof. If X1, ... , Xn is a basis of F, then F eE zn, and if Y1, ... , Ym is another basis 
of F, then F eE zm. By Proposition B-2.22, m = n. • 

Definition. If Fis a free abelian group with basis x1, ... , Xn, then n is called the 
rank of F, and we write 

rank(F) = n. 

Corollary B-2.23 says that rank(F) is well-defined; that is, it does not depend 
on the choice of basis. The proof actually applies to free abelian groups F of infinite 
rank as well, for it is only a question of whether dim(F/pF) is well-defined, which 
it is. In this language, Proposition B-2.22 says that two free abelian groups are 
isomorphic if and only if they have the same rank. Thus, the rank of a free abelian 
group plays the same role as the dimension of a vector space. 

We have been treating abelian groups, that is Z-modules, in this section. Since 
every result about abelian groups proved so far generalizes to R-modules when R 
is a PID, we continue our discussion in a more general context. 

Definition. If R is a ring, then a free left R-module F is a direct sum of copies 
of R, where each summand R is viewed as a left R-module. 

If F = ffiiEJ(xi), where (xi) eE R for all i, then X = {xihEI is called a basis 
of F. In particular, if F is a direct sum of n copies of R, then 

F = (x1) EB··· EB (xn), 
and we may denote F by Rn. 

Remark. If R is a ring, a natural question is whether rank is always well-defined; 
if Rm eE Rn, is m = n? The answer is yes if R is commutative, but there are 
noncommutative rings for which the answer is no. For example, if R = Endk(V), 
where Vis an infinite-dimensional vector space over a field k, then R eE REBR as left 
R-modules. If R is commutative, it has a maximal ideal m, and the rank of a finitely 
generated free R-module F' is well-defined because the proof of Proposition B-2.22 
can be generalized by replacing the vector space F/pF over Zp by the vector space 
Rn /mRn over the field R/m.6 There do exist noncommutative rings R for which 
the rank of finitely generated free left R-modules is well-defined; for example, left 
noetherian rings are such (Rotman [96], Theorem 3.24). .,.. 

6This proof may not apply to noncommutative rings R, for if m is a maximal two-sided ideal, 
the quotient ring R/m is a simple ring; that is, a ring with no nontrivial two-sided ideals, but it 
need not be a field or a division ring; it may be a ring of matrices, for example. 
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Recall Theorem A-7.28: Let vi, ... , Vn be a basis of a vector space V. If W 
is a vector space and u1, ... , Un is a list in W, then there exists a unique linear 
transformation T: V -+ W with T( vi) = Ui for all i. 

We rewrite this in terms of diagrams. Denote the basis of V by X = v1, ... , Vn, 

and define -y: X-+ W by -y(vi) = ui; then there exists a unique linear transforma
tion T: V -+ W with T( vi) = -y( vi) = Ui for all i and j: X -+ V is the inclusion 

v 
·l ''- T 

J ' 

"' x~w. 

Theorem B-2.24 (Freeness Property). Let R be a ring and let F be a free left 
R-module with basis X. If M is any left R-module and ')': X -+ M is any function, 
then there exists a unique R-map h: F -+ M making the diagram commute, where 
i: X-+ Fis the inclusion; that is, h(x) = -y(x) for all x EX: 

F 

·l ' ' h 
i ' 

"' X~M. 

Proof. For each x EX, there is an R-map fx: (x)-+ M given by rx i-+ r-y(x). By 
Proposition B-2.19, these maps can be assembled to give an R-map h: F -+ M. • 

Proposition B-2.25. For any ring R, every left R-module M is a quotient of a 
free left R-module F. Moreover, M is finitely generated if and only if F can be 
chosen to be finitely generated. 

Proof. Let F be the direct sum of IMI copies of R (so Fis a big free left R-module), 
and let (xm)mEM be a basis of F. By the Freeness Property, Theorem B-2.24, there 
is an R-map g: F-+ M with g(xm) = m for all m E M. Obviously, g is a surjection, 
and so F/kerg ~ M. 

If M is finitely generated, then M = ( m1, ... , mn). If we choose F to be 
the free left R-module with basis {x1,. . .,xn}, then the map g: F-+ M with 
g(xi) =mi is a surjection, for 

img = (g(x1), ... ,g(xn)) = (m1, ... ,mn) = M. 

The converse is obvious, for any image of a finitely generated module is itself finitely 
generated • 

Here is another nice application of the freeness property. 

Proposition B-2.26. If R is a ring, B a submodule of a left R-module A, and 
A/ B is free, then B has a complement: A= B EB C, where C is a submodule of A 
with C ~ A/ B. In other words, the exact sequence 

0 -+ B -+ A -+ A/ B -+ 0 

splits. 
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Proof. Let { ak + B : k E K} be a basis of A/ B. By Theorem B-2.24, there is a 
homomorphism h: A/B---+ A with h(ak + B) = ak for all k EK. The result now 
follows from Proposition B-1.44. • 

The following proposition characterizes free abelian groups. 

Proposition B-2.27. Let X be a subset of an abelian group A, and suppose that A 
have the freeness property: for every abelian group G and every function 'Y: X ---+ G, 
there exists a unique homomorphism g: A---+ G with g(x) = 7(x) for all x E X. 
Then A is a free abelian group of rank n with basis X. 

Proof. We set up notation. Let Y be a set for which there is a bijection q: X ---+ Y; 
let p: Y ---+ X be its inverse. There is a free abelian group F with basis Y, namely 
F = EByEY (y). Finally, let j: X ---+ A and k: Y ---+ F be the inclusions. 

Consider the diagram 

By the freeness property, there is a map g: A---+ F with gj = kq (for kq: X---+ F). 
Since F is a free abelian group with basis Y, it has the freeness property, by 
Theorem B-2.24; there is a map h: F ---+ A with hk = jp. 

To see that g: A ---+ F is an isomorphism, consider the diagram 

A 

·I ', hg 
J ' 

" 0 -+X -+A. 
j 

Now hgj = hkq = jpq = j. Since A has the freeness property, hg is the unique such 
homomorphism. But lA is another such, and so hg = lA. A similar diagram shows 
that the other composite gh = lF, and so g and hare isomorphisms. Finally, that 
F is free with basis Y implies that A is free with basis X = h(Y). • 

The next proof uses well-ordering instead of Zorn's Lemma. Vve quote Kaplan
sky: 

On page 50 of Lefschetz's Algebraic Topology, (American Math. 
Society Colloquium Publ. no. 27, 1942), it is asserted that for this 
theorem well-ordering gives a shorter, more intuitive proof than 
Zorn's lemma. I agree, although on page 44 of my Infinite Abelian 
Groups (Rev. ed., Univ. of Mich. Press, 1960) I have stubbornly 
given a Zorn style proof. 

Theorem B-2.28. If Risa PID, then every submodule H of a free R-module F 
is free and rank(H) ::; rank(F). 
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Proof. We are going to use the statement, equivalent to the Axiom of Choice and 
to Zorn's Lemma, that every set can be well-ordered. In particular, we may assume 
that {xk : k EK} is a basis of F having a well-ordered index set K. 

For each k E K, define 

F~ = (x3 : j--< k) and Fk = (x3 : j :5 k) = F~ EB (xk)i 

note that F = Uk Fk. Define 

Hk=HnF~ and Hk=HnFk. 

Now Hk = HnF~ = Hk n F~, so that 

Hk/ Hk = Hk/(Hk n F~) ~ (Hk + F~)/ F~ ~ Fk/ F~ ~ R. 

Thus, either Hk/ Hk = {O}, in which case Hk = Hk, or Hk/ Hk is isomorphic to a 
nonzero submodule of R; that is, a nonzero ideal. Since R is a PID, every ideal 
(a) in R is isomorphic as an R-module to R via the R-map Ta H T, the second 
case gives Hk/ Hk ~ R, and Proposition B-2.26 says Hk = Hk EB (hk), where 
hk E Hk ~Hand (hk) ~ R. We claim that His a free R-module with basis the 
set of all hk. It will then follow that rank(H) ::=; rank(F) (of course, these ranks 
may be infinite cardinals). 

Since F = U Fk, each f E Flies in some Fk. Since K is well-ordered, there is 
a smallest index k EK with f E Fk, and we denote this smallest index byµ(!). In 
particular, if h E H, then 

µ(h) = smallest index k with h E Fk. 

Note that if h E Hk ~ F~, then µ(h) --< k. Let H* be the submodule of H generated 
by all the hk. 

Suppose that H* is a proper submodule of H. Let j be the smallest index in 

{µ(h) : h E H and h fj. H*}, 

and choose h' E H to be such an element having index j; that is, h' fj_ H* and 
µ(h') = j. Now h' E HnF3, because µ(h') = j, and so there is a unique expression 

h' = a+ Th3, where a E Hj and T E R. 

Thus, a= h' - Th3 E Hj and a fj_ H*; otherwise h' EH* (because h3 EH*). Since 
µ(a) --< j, we have contradicted j being the smallest index of an element of H not 
in H*. We conclude that H* = H; that is, every h E H is a linear combination of 
hk's. 

It remains to prove that an expression of any h E H as a linear combination of 
hk 's is unique. By subtracting two such expressions, it suffices to prove that if 

0 = Tihk 1 + T2hk 2 + · · · + Tnhkn, 

then all the coefficients Ti = 0. Arrange the terms so that k1 --< k2 --< · · · --< kn. If 
Tn ":f 0, then Tnhkn E (hkJ n HL = {O}, a contradiction. Therefore, all Ti = 0, 
and so His a free module with basis {hk : k EK}. • 
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Alas, it is not true, for all rings R, that submodules of free left R-modules must 
also be free. For example, let R = k[x, y] where k is a field. Now Risa free module 
over itself (with basis { 1}), and its submodules are its ideals. The ideal M = ( x, y) 
is not principal; were it free, its rank would be ;::: 2, and hence there would be 
nonzero ideals I and J with M =I EB J. But if a EI and b E J are nonzero, then 
ab EI n J = {O}, contradicting R being a domain. Therefore, Mis not free. 

Exercises 

* B-2.11. (i) Given an abelian group G, prove that there is a free abelian group F and a 
surjective homomorphism g: F -+ G. 

(ii) If G is an abelian group for which every exact sequence 0 -+ A .!+ B ~ G -+ 0 
splits, prove that G is free abelian. 

* B-2.12. Let J be a maximal ideal in a commutative ring R, and let F be a free R
module. If Bis a basis of F, prove that the set of cosets (b + JF)bes is a basis of the 
vector space F/JF over the field R/J. See Exercise B-1.37 on page 300. 

B-2.13. (i) Prove that Zs£:-! Z2ffiZ3. Conclude that a finite cyclic group may be a direct 
sum of two nonzero subgroups. 

(ii) Prove that a finite cyclic group of prime power order is not a direct sum of two 
nonzero subgroups. 

B-2.14. Let M be a left R-module, let A, B be submodules of M, and let Ax B be their 
external direct sum: Ax B = {(a, b) : a E A, b E B}. Prove that the following sequence 
is exact: 

0 -+ A n B .!+ A x B ~ A + B -+ 0, 

where An Band A+ Bare submodules of M, f: xi-+ (x, x), and g: (a, b) i-+ a - b. 

B-2.15. (i) Prove that IQ, the additive group of rationals, is not a direct sum of two 
nonzero subgroups. (A module Mis called indecomposable if M =I- {O} and there 
do not exist nonzero submodules Sand T with M = S ffi T.) 

(ii) Prove that every nonzero subgroup of IQ is indecomposable. 
Hint. Describe the intersection of two distinct nonzero subgroups. 

B-2.16. There is an example of Pontrjagin, (see [35], p. 151), of an indecomposable group 
G with Z ffi Z ~ G ~ IQ ffi IQ, such that every subgroup S of rank 1 (S does not contain a 
basis of IQ ffi IQ) is isomorphic to Z. Use Pontrjagin's example to show that G =I- H ffi S in 
Exercise B-2.4 on page 318. 

B-2.17. An idempotent in a ring A is an element e E A with e =f. 0 and e2 = e. If M 
is a left R-module over a ring R, prove that every direct summand S ~ M determines an 
idempotent in EndR(M). 

Hint. See Corollary B-2.15. 

* B-2.18. Prove that a free abelian group E9ieI(xi) is finitely generated if and only if the 
index set I is finite. 

Hint. Use Propositions B-2.25 and B-2.26. 
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Semisimple Modules and Rings 

We now study an important class of rings, semisimple rings, which contains most 
group algebras kG, but we first consider semisimple modules over any ring. 

Definition. A left R-module M over a ring R is simple (or irreducible) if 
M =/:- { 0} and M has no proper nonzero submodules; we say that M is semisimple 
(or completely reducible) if it is a direct sum of (possibly infinitely many) simple 
modules. 

We saw in Theorem B-1.33 that a left R-module M is simple if and only if 
M ~ Rf I for some maximal left ideal I. 

The zero module is not simple, but it is semisimple, for {O} = ffiiE 0 Si. Let 
S be a simple submodule of a module M. If Tis another submodule of M, then 
Sn T, being a submodule of S, is either {O} or S. In the latter case, Sn T = S, so 
that S ~ T; that is, either Sand Tare disjoint or Sis contained in T. 

Proposition B-2.29. A left R-module M over a ring R is semisimple if and only 
if every submodule of M is a direct summand. 

Proof. Suppose that M is semisimple; hence, M = ffi3EJ S3, where each S3 is 
simple. For any subset I ~ J, define 

Sr= E9S3. 
3El 

If Bis a submodule of M, Zorn's Lemma provides a subset K ~ J maximal 
with the property that SK n B = { 0}. We claim that M = B ffi SK. We must show 
that M = B +SK, for their intersection is {O} by hypothesis; it suffices to prove 
that S3 ~ B +SK for all j E J. If j EK, then S3 ~SK~ B +SK. If j ~ K, then 
maximality gives (SK+ S3) n B =/:- {O}. Thus, 

SK+ S3 = b =/:- 0, 

where SK E SK, s3 E S3, and b EB. Note that s3 =/:- 0, lest SK= b E SKnB = {O}. 
Hence, 

s3 = b - SK E S3 n (B +SK), 

so that S3 n (B +SK)=/:- {O}. But S3 is simple, so that S3 = S3 n (B +SK) and 
S3 ~ B + SK, as desired. Therefore, M = B ffi SK. 

Conversely, assume that every submodule of M is a direct summand. 

(i) Every nonzero submodule B contains a simple summand. 

Let b E B be nonzero. By Zorn's Lemma, there exists a submodule 
C of B maximal with b ~ C. Now C is a submodule of Mas well, hence 
a direct summand of M; by Corollary B-2.16, C is a direct summand of 
B: there is some submodule D with B = C ffi D. We claim that D is 
simple. If D is not simple, we may repeat the argument just given to 
show that D = D' ffi D" for nonzero submodules D' and D". Thus, 

B = C ffi D = C ffi D' ffi D". 
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We claim that at least one of C EB D' or C EB D" does not contain the 
original element b. Otherwise, b = c' + d' = c" + d", where c', c" E C, 
d' E D', and d" E D". But c' - c" = d" - d' E C n D = {O} gives 
d' = d" E D' n D" = {O}. Hence, d' = d" = 0, and so b = c' E C, 
contradicting the definition of C. If, say, bf{. CEBD', then this contradicts 
the maximality of C. Hence, B = C EB D. 

(ii) M is semisimple. 

By Zorn's Lemma, there is a family (83 )3EI of simple submodules 
of M maximal such that the submodule U they generate is their direct 
sum: U = ffi3E1 83. By hypothesis, U is a direct summand: M = U EB V 
for some submodule V of M. If V = {O}, we are done. Otherwise, 
by part (i), there is some simple submodule 8 contained in V that is a 
summand: V = 8 EB V' for some V' ~ V. The family {8} U (83)3EI 
violates the maximality of the first family of simple submodules, for this 
larger family also generates its direct sum. Therefore, V = {O} and Mis 
left semisimple. • 

Corollary B-2.30. Every submodule and every quotient module of a semisimple 
left R-module M is itself a semisimple module. 

Proof. Let B be a submodule of M. Every submodule C of B is, clearly, a sub
module of M. Since M is semisimple, C is a direct summand of M and so, by 
Corollary B-2.16, C is a direct summand of B. Hence, Bis semisimple, by Propo
sition B-2.29. 

Let M/H be a quotient of M. Now His a direct summand of M, so that 
M = HEB H' for some submodule H' of M. But H' is semisimple, by the first 
paragraph, and M / H ~ H'. • 

Suppose a ring R is left semisimple when viewed as a left module over itself. 
Of course, submodules of R are just its left ideals. Now a simple submodule is 
a minimal left ideal, for it is a nonzero ideal containing no proper nonzero left 
ideals. (Such ideals may not exist; for example, Z has no minimal left ideals.) 

Definition. A ring R is left semisimple if it is a direct sum of minimal left ideals. 

Although a semisimple module can be a direct sum of infinitely many simple 
modules, a semisimple ring can have only finitely many summands. 

Lemma B-2.31. If a ring R is a direct sum of left ideals, say, R = ffiiEI Li, then 
only finitely many Li are nonzero. 

Proof. Each element in a direct sum has finite support; in particular, the unit 
element 1 E R = ffiiEI Li can be written as 1 = e1 + · · · + en, where ei E Li. If 
a E L3 for some j i- 1, ... , n, then 

a= al = ae1 + · · · + aen E L3 n (L1 EB··· EB Ln) = {O}. 

Therefore, L3 = {O}, and R =Li EB··· EB Ln. • 
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Corollary B-2.32. The direct product R = R1 x · · · x Rm of left semisimple rings 
Ri, ... , Rm is also a left semisimple ring. 

Proof. Since each Ri is left semisimple, it is a direct sum of minimal left ideals, 
say, Ri = Jil EB··· EB Jit(i)· Each Jik is a left ideal in R, not merely in Ri, as we 
saw in Example B-1.6. It follows that Jik is a minimal left ideal in R. Hence, R is 
a direct sum of minimal left ideals, and so it is a left semisimple ring. • 

Corollary B-2.33. A ring R which is a finite direct product of division rings is 
semisimple. In particular, a finite direct product of fields is a commutative semisim
ple ring. 

Proof. Division rings are simple. • 

It follows from the Chinese Remainder Theorem that if n is a squarefree integer, 
then Zn is semisimple. Moreover, let k be a field and let P1(x), ... ,Pn(x) E k[x] 
be distinct irreducible polynomials. If f(x) = p1(x) · · ·Pn(x), then k[x]/(f) is a 
semisimple ring. 

Corollary B-2.34. 

(i) If R is a left semisimple ring, then every left R-module M is a semisimple 
module. 

(ii) If I is a two-sided ideal in a left semisimple ring R, then the quotient 
ring R/ I is also a semisimple ring. 

Proof. 

(i) There is a free left R-module F and a surjective R-map cp: F--+ M. Now 
Risa semisimple R-module over itself (this is the definition of semisimple 
ring), and so Fis a semisimple R-module (for Fis a direct sum of copies 
of R). Thus, M is a quotient of the semisimple module F, and so it is 
itself semisimple, by Corollary B-2.30. 

(ii) First, R/ I is a ring, because I is a two-sided ideal. The left R-module 
R/I is semisimple, by (i), and so it is a direct sum R/I ~ ffiSi, where 
the Si are simple left R-modules annihilated by I. Hence, each Si is an 
R/ I-module as well. But each Si is also simple as a left (R/ !)-module, 
for any (R/J)-submodule of Si is also an R-submodule of Si. Therefore, 
R/ I is semisimple. • 

In Part 2, we will prove the Wedderburn-Artin Theorem, which says that every 
left semisimple ring R is (isomorphic to) a finite direct product of matrix rings: 

R ~ Matn1 (~1) X · · · X Matn. (~t), 

where the ~i are division rings (division rings arise here as endomorphism rings of 
simple modules). Moreover, the division rings ~i and the integers t, n 1, ... , nt are 
a complete set of invariants of R. 

Here are some consequences of this classification of left semisimple rings. A 
partial converse of Corollary B-2.33 holds: A commutatative ring is semisimple 
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if and only if it is a finite direct product of fields (for a matrix ring Matn(D.) is 
commutative if and only if n = 1 and the division ring D. is a field). Using opposite 
rings, we can see that every left semisimple ring is also right semisimple; thus, 
these rings are called semisimple, dropping the adjective left or right. Moreover, 
semisimple rings are left and right noetherian. 

The next theorem gives the most important example of a semisimple ring, for 
it is the starting point of representation theory. 

Theorem B-2.35 (Maschke's Theorem). If G is a finite group and k is a field 
whose characteristic p does not divide IGI, then kG is a left semisimple ring. 

Remark. The hypothesis holds if k has characteristic 0. <Ill 

Proof. By Proposition B-2.29, it suffices to prove that every left ideal I of kG is a 
direct summand. Since k is a field, kG is a vector space over k and I is a subspace. 
By Corollary B-2.9, I is a (vector space) direct summand: there is a subspace V 
(which may not be a left ideal in kG) with kG =I EB V. Each u E kG has a unique 
expression of the form u = b + v, where b EI and v E V, and d(u) = b; hence, the 
projection map d: kG --+ I is a k-linear transformation with d(b) = b for all b E I 
and with ker d = V. Were d a kG-map, not merely a k-map, then we would be 
done, by the criterion of Corollary B-2.15 (I is a summand of kG if and only if it 
is a retract: there is a kG-map D: kG--+ I with D(u) = u for all u E J). We now 
forced to be a kG-map by an "averaging process;" that is, we construct a kG-map 
D from d with D(u) = u for all u E J. 

Define D : kG --+ kG by 

D(u) = l~I L xd(x-1u) 
xEG 

for all u E kG. Note that IGI =f. 0 in k, by the hypothesis on the characteristic of 
k, and so 1/IGI is defined. It is obvious that D is a k-map. 

(i) imD~J. 
If u E kG and x E G, then d(x- 1u) E I (because imd ~ I), and 

xd(x-1u) E I because I is a left ideal. Therefore, D(u) E J, for each 
term in the sum defining D ( u) lies in I. 

(ii) If b E J, then D(b) = b. 
Since b E J, so is x-1b, and so d(x- 1b) = x- 1b. Hence, xd(x-1b) = 

xx-1b = b. Therefore, I::xEG xd(x-1b) = I Gib, and so D(b) = b. 

(iii) D is a kG-map. 
It suffices to prove that D(gu) = gD(u) for all g E G and all u E kG: 

1 1 
gD(u) = IGf L gxd(x- 1u) = IGI L gxd(x- 1g- 1gu) 

xEG xEG 

1 
= IGf L yd(y-1gu) = D(gu) 

y=gxEG 

(as x ranges over all of G, so does y = gx). • 
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The converse of Maschke's Theorem is true: if G is a finite group and k is a 
field whose characteristic p divides IGI, then kG is not left semisimple. 

The description of kG simplifies when the field k is algebraically closed. A 
theorem of Molien (which we will prove in Part 2) states that if G is a finite group 
and k is an algebraically closed field whose characteristic does not divide IGI, then 

kG £=! Matn1 (k) x · · · x Matnt(k). 

In particular, 

Here is a glimpse how information about a finite group G can be obtained from 
CG. Since CG has dimension IGI, we have IGI = n~ + n~ + · · · + n;, for the ith 
summand Matn; (C) has dimension nr It can be shown that the ni are divisors of 
IGI. The number t of summands in CG also has a group-theoretic interpretation: 
it is the number of conjugacy classes in G. 

On the other hand, there are nonisomorphic finite groups G and H having 
isomorphic complex group algebras. If G is an abelian group of order n, then CG, 
being a commutative ring, is a direct product of fields; here, it is a direct product of 
n copies of C. It follows that if His any abelian group of order n, then CG£=! CH. 
In particular, Z4 and Z2 EB Z2 are nonisomorphic groups with CG £=! CH as rings. 

Exercises 

* B-2.19. Let G be a finite group, and let k be a commutative ring. Define c:: kG-+ k by 

c:(2:a9 g) = 2:a9 

gEG gEG 

(this map is called the augmentation, and its kernel, denoted by Q, is called the aug
mentation ideal). 

(i) Prove that c: is a kG-map; prove that kG/Q ~ k as rings. Conclude that Q is a 
two-sided ideal in kG. 

(ii) Prove that kG/Q £=! Vo(k), where Vo(k) is k viewed as a trivial kG-module; that is, 
ga = a for all g E G and a E k. 
Hint. Q is a two-sided ideal generated by all xu - u = (x - l)u. 

(iii) Use part (ii) to prove that if kG = Q E9 V, then V = ( v ), where v = 2.:geG g. 

(iv) Show that c:(v) = IGI. 

( v) Prove that Q is a proper ideal of kG. 

(vi) Assume that k is a field whose characteristic p does divide !GI. Prove that kG is 
not left semisimple. 
Hint. If kG = Q E9 V, then c:(u) = 0 for all u E kG. 

* B-2.20. Let M be a left R-module over a semisimple ring R. Prove that Mis indecom
posable if and only if M is simple. (A left S-module M over any ring S is indecomposable 
if there do not exist nonzero submodules A and B with M =A E9 B.) 
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B-2.21. If b. is a division ring, prove that every two minimal left ideals in Matn(b.) are 
isomorphic. 

B-2.22. Let T: V--+ V be a linear transformation, where Vis a vector space over a field 
k, and let k(T] be defined by 

k(T] = k[x]/(m(x)), 

where m(x) is the minimum polynomial of T. 

(i) If m(x) = f1Pp(x)ev, where the p(x) E k[x] are distinct irreducible polynomials 
and ep ;?: 1, prove that k[T] ~ f1P k[x]/(p(xtv). 

(ii) Prove that k[T] is a semisimple ring if and only if m(x) is a product of distinct 
linear factors. (In linear algebra, this last condition is equivalent to T being di
agonalizable; that is, any matrix of T (arising from some choice of basis of T) is 
similar to a diagonal matrix.) 

Algebraic Closure 

Our next application involves algebraic closures of fields. Recall that an extension 
field K / k is algebraic if every a E K is a root of some nonzero polynomial f ( x) E 
k[x]; that is, K/k is an algebraic extension if every element a E K is algebraic 
over k. 

We have already discussed algebraic extensions in Proposition A-3.84, and the 
following proposition adds a bit more. 

Proposition B-2.36. Let K/k be an extension field. 

(i) If z E K, then z is algebraic over k if and only if k(z)/k is finite. 

(ii) If zi, z2, ... , Zn EK are algebraic over k, then k(zi, z2, ... , Zn)/k is finite. 

(iii) If y, z E K are algebraic over k, then y + z, yz, and y-1 (if y =fa 0) are 
also algebraic over k. 

(iv) Define 

(K/k)alg = {z EK: z is algebraic over k}. 

Then (K/k)alg is a subfield of K. 

Proof. 

(i) If k(z)/k is finite, then Proposition A-3.84(i) shows that z is algebraic 
over k. Conversely, if z is algebraic over k, then Proposition A-3.84(v) 
shows that k(z)/k is finite. 

(ii) We prove this by induction on n 2: 1; the base step is part (i). For the 
inductive step, there is a tower of fields 

k ~ k(z1) ~ k(zi, z2) ~ · · · ~ k(z1, ... , Zn)~ k(z1, ... , Zn+i)· 

Now [k(Zn+i) : k] is finite (by Theorem A-3.87); say, [k(zn+l) : k] = d, 
where dis the degree of the ,monic irreducible polynomial in k[x] having 
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Zn+l as a root. Since Zn+i satisfies a polynomial of degree dover k, it sat
isfies a polynomial of degreed' :::; dover the larger field F = k(zi, ... , zn): 

d' = [k(z1, ... , Zn+1) : k(zi, ... , Zn)]= [F(zn+i) : F] ::=; [k(Zn+i) : k] = d. 

Therefore, 

[k(zi, ... , Zn+l) : k] = [F(Zn+i) : k] = [F(zn+1) : F][F : k] ::=; d[F : k] < oo, 

because [F : k] = [k(zi, ... , Zn) : k] is finite, by the inductive hypothesis. 

(iii) Now k(y, z)/k is finite, by part (ii). Therefore, k(y + z) ~ k(y, z) and 
k(yz) ~ k(y, z) are also finite, for any subspace of a finite-dimensional 
vector space is itself finite-dimensional (Corollary A-7.23). By part (i), 
y + z, yz, and y-1 are algebraic over k. 

(iv) This follows at once from part (iii). • 

Definition. Given the extension C/Q, define the algebraic numbers by 

A= (C/Q) alg· 

Thus, A consists of all those complex numbers which are roots of nonzero 
polynomials in Q[x], and the proposition shows that A is a subfield of C that is 
algebraic over Q. 

Example B-2.37. We claim that A/Q is an algebraic extension that is not finite. 
Suppose, on the contrary, that [A : Q] = n for some integer n. There exist irre
ducible polynomials in Q[x] of degree n + 1; for example, p(x) = xn+l - 2. If a is 
a root of p(x), then a EA, and so Q(a) ~A. Thus, 

n =[A: Q] =[A: Q(a)][Q(a): Q] ~ n + 1, 

a contradiction. <1111 

Lemma B-2.38. 

(i) If k ~ K ~ E is a tower of fields with E/K and K/k algebraic, then 
E / k is also algebraic. 

(ii) Let 

Ko ~ Ki ~ · · · ~ Kn ~ Kn+l ~ · · · 

be an ascending tower of fields. If Kn+i/ Kn is algebraic for all n ~ 0, 
then K* = Un;:::o Kn is a field algebraic over Ko. 

(iii) Let K = k(A); that is, K is obtained from k by adjoining the elements 
in a (possibly infinite) set A. If each element a E A is algebraic over k, 
then K / k is an algebraic extension. 

Proof. 

(i) Let e E E; since E / K is algebraic, there is some f (x) = E~=O aixi E K[x] 
having e as a root. If F = k(ao, ... , an), then e is algebraic over F, and 
so k(ao, ... , an, e) = F(e) is a finite extension of F; that is, [F(e) : F] is 
finite. Since K/k is an algebraic extension, each ai is algebraic over k, 
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and Proposition B-2.36(ii) shows that the intermediate field F is finite
dimensional over k; that is, [F : k] is finite, 

[k(ao, ... , an, e) : k] = [F(e) : k] = [F(e) : F][F: k] < oo, 

and so e is algebraic over k, by Proposition B-2.36(i). Hence E/k is 
algebraic. 

(ii) If y, z E K*, then they are there because y E Km and z E Kn; we may 
assume that m :::; n, so that both y, z E Kn ~ K*. Since Kn is a field, it 
contains y + z, yz, and y-1 if y ":f 0. Therefore, K* is a field. 

If z E K*, then z must lie in Kn for some n. But Kn/ Ko is algebraic, 
by an obvious inductive generalization of part (i), and so z is algebraic 
over Ko. Since every element of K* is algebraic over Ko, the extension 
K* /Ko is algebraic. 

(iii) Let z E k(A); by Exercise A-3.81 on page 89, there is an expression for 
z involving k and finitely many elements of A; say, a 1 , ... , am. Hence, 
z E k(ai, ... , am)· By Proposition B-2.36(ii), k(z)/k is finite and hence 
z is algebraic over k. • 

Definition. A field K is algebraically closed if every nonconstant f(x) E K[x] 
has a root in K. An algebraic closure of a field k is an algebraic extension k of 
k that is algebraically closed. 

The algebraic closure of Q turns out to be the algebraic numbers: Q = A (it is 
not C, which is not algebraic over Q). 

The Fundamental Theorem of Algebra says that C is algebraically closed; more
over, C is an algebraic closure ofR We have already proved this in Theorem A-5.58, 
but the simplest proof of the Fundamental Theorem is probably that using Liou
ville's Theorem in complex variables: every bounded entire function is constant. If 
f(x) E C(x] had no roots, then l/f(x) would be a bounded entire function that is 
not constant. 

There are two main results here. First, every field has an algebraic closure; 
second, any two algebraic closures of a field are isomorphic. Our proof of existence 
will make use of "big" polynomial rings (see Proposition B-5.24): we assume that 
if k is a field and T is an infinite set, then there is a polynomial ring k[T] having 
one indeterminate for each t E T. We have already constructed k[T] when T is 
finite, and the infinite case is essentially a union of k[U], where U ranges over all 
the finite subsets of T. 

Lemma B-2.39. Let k be a field, and let k[T] be the polynomial ring in a set T of 
indeterminates. Ift1, ... , tn ET are distinct, where n 2: 2, and fi(ti) E k[ti] ~ k[T] 
are nonconstant polynomials, then the ideal I= (f1(t1), ... ,fn(tn)) in k[T] is a 
proper ideal. 

Remark. If n = 2, then fi(t1) and h(t2) are relatively prime, and this lemma 
says that 1 is not a linear combination of them. In contrast, k[ti] is a PID, and 
relatively prime polynomials of a single variable do generate k[t1]. <Ill 
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Proof. If I is not a proper ideal in k[T], then there exist hi(T) E k[T] with 

1 = hi(T)Ji(ti) + · · · + hn(T)fn(tn)· 

Consider the extension field k{ ai, ... , an), where ai is a root of fi (ti) for i 
1, ... , n {the fi are not constant). Denote the variables involved in the hi(T) 
other than ti, ... , tn, if any, by tn+l> ... , tm. Evaluating when ti = ai if i ::; n 
and ti = 0 if i ~ n + 1 {by Corollary A-3.26, evaluation is a ring homomorphism 
k[T] ---+ k( ai, ... , an)), the right side is 0, and we have the contradiction 1 = 0. • 

Theorem B-2.40. Given a field k, there exists an algebraic closure k of k. 

Proof. Let T be a set in bijective correspondence with the family of nonconstant 
polynomials in k[x]. Let R = k[T] be the big polynomial ring, and let I be the 
ideal in R generated by all elements of the form f(tt ), where t1 ET; that is, if 

f(x) = xn + an-1Xn-l + · · · + ao, 

where ai E k, then 

We claim that the ideal I is proper; if not, 1 E I, and there are distinct 
ti, ... ,tn ET and polynomials hi(T), ... ,hn(T) E k[T] with 1 = hi{T)fi(t1) + 
· · · + hn(T)fn(tn), contradicting Lemma B-2.39. Therefore, there is a maximal 
ideal Min R containing I, by Theorem B-2.3. Define K = RfM. The proof is now 
completed in a series of steps. 

{i) Kf k is an extension field. 
We know that K = Rf M is a field because M is a maximal ideal. 

Let i : k ---+ k [T] be the ring map taking a E k to the constant polynomial 

a, and let e be the composite k ~ k[T] = R ~ RfM = K. Now e is 
injective, by Corollary A-3.32, because k is a field. We identify k with 
imB ~ K. 

{ii) Every nonconstant f(x) E k[x] splits in K[x]. 
By definition, for each t1 E T, we have f(tt) E I~ M, and so the 

coset t f + M E Rf M = K is a root of f ( x). {It now follows by induction 
on degree that f(x) splits over K.) 

{iii) The extension Kfk is algebraic. 
By Lemma B-2.38{iii), it suffices to show that each t1+M is algebraic 

over k (for K = k{all t1 + M)); but this is obvious, for t1 is a root of 
f(x) E k[x]. 

We complete the proof as follows. Let k1 = K and construct kn+l from kn 
in the same way K is constructed from k. There is a tower of fields k = ko ~ 
ki ~ · · · ~kn~ kn+l ~ · · · with each extension kn+ifkn algebraic and with every 
nonconstant polynomial in kn[x] having a root in kn+l· By Lemma B-2.38{ii), 
E = Un kn is an algebraic extension of k. We claim that E is algebraically closed. 
If g(x) = I:~o eixi E E[x] is a nonconstant polynomial, then it has only finitely 
many coefficients eo, ... , em, and so there is some kq that contains them all. It 
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follows that g(x) E kq[x] and so g(x) has a root in kq+l ~ E, as desired. Therefore, 
E is an algebraic closure of k. • 

Remark. It turns out that K = k1 is algebraically closed (i.e., we can stop after 
the first step), but a proof is tricky. See Isaacs [50]. <Ill 

Corollary B-2.41. If k is a countable field, then it has a countable algebraic 
closure. In particular, the algebraic closures of the prime fields Q and 1Fp are 
countable. 

Proof. If k is countable, then the set T of all nonconstant polynomials is countable, 
say, T = {t1, t2, ... }, because k[x] is countable. Hence, k[T] = Ue>i k[t1, ... , te] is 
countable, as is its quotient k1 (our notation is that in the proof of Theorem B-2.40; 
thus, Un>l kn is an algebraic closure of k). It follows, by induction on n ~ 1, that 
every kn 18 countable. Finally, a countable union of countable sets is itself countable, 
so that an algebraic closure of k is countable. • 

We are now going to prove uniqueness of an algebraic closure. 

Definition. If Fjk and Kjk are extension fields, then a k-map is a ring homo
morphism cp : F -+ K that fixes k pointwise. 

Recall Proposition A-5.1: if Kjk is an extension field, cp: K-+ Kisak-map, 
and f(x) E k[x], then cp permutes all the roots of f(x) that lie in K. 

Lemma B-2.42. If Kjk is an algebraic extension, then every k-map cp: K-+ K 
is an automorphism of K. 

Proof. By Corollary A-3.32, the k-map cp is injective. To see that cp is surjective, 
let a E K. Since Kjk is algebraic, there is an irreducible polynomial p(x) E k[x] 
having a as a root. As we have just remarked, the k-map cp permutes the set A of 
all those roots ofp(x) that lie in K. Therefore, a E cp(A) ~ imcp. • 

The next lemma will use Zorn's Lemma by partially ordering a family of func
tions. Since a function is essentially a set (its graph), it is reasonable to take a 
union of functions in order to obtain an upper bound; we give details below. 

Lemma B-2.43. Let k be a field and let kjk be an algebraic closure. If Fjk is an 
algebraic extension, then there is an injective k-map 'ljJ : F-+ k. 

Proof. If Eis an intermediate field, k ~ E ~ F, let us call an ordered pair (E, !) 
an approximation if f : E -+ k is a k-map. In the following diagram, all arrows 
other than f are inclusions: 
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Define X = {approximations (E, f) : k ~ E ~ F}. Note that X =f. 0 because 
(k, i) EX. Partially order X by 

(E, f) j (E', !') if E ~ E' and f'IE = f. 

That the restriction !'IE is f means that f' extends f; that is, the two functions 
agree whenever possible: f'(u) = f(u) for all u EE. 

It is easy to see that an upper bound of a chain 

is given by (LJ Ej, LJ h). That LJ Ej is an intermediate field is, by now, a routine 
argument. We can take the union of the graphs of the h, but here is a more 
down-to-earth description of IP = LJ h: if u E LJ Ej, then u E Ej0 for some jo, 
and IP: u r-t ho ( u). Note that IP is well-defined: if u E Eii> we may assume, 
for notation, that Ej0 ~ Eii , and then fii ( u) = ho ( u) because fii extends ho. 
Observe that IP is a k-map because all the h are. 

By Zorn's Lemma, there exists a maximal element (E0 , Jo) in X. We claim 
that Eo = F, and this will complete the proof (take 'I/;= Jo). If Eo ~ F, then there 
is a E F with a <t Eo. Since F / k is algebraic, we have F / Eo algebraic, and there 
is an irreducible p(x) E Eo(x] having a as a root. Since k/k is algebraic and k is 
algebraically closed, we have a factorization in k[x]: 

n 

fo(p(x)) = II(x - bi), 
i=l 

where fo: Eo[x] ---+ k[x] is the map fo: eo + · · · + enxn r-t fo(eo) + · · · + fo(en)xn. 
If all the bi lie in fo(Eo) ~ k, then f01 (bi) E E0 ~ F for some i, and there is 
a factorization of p(x) in F[x], namely, p(x) = TI~=i[x - f01(bi)]. But a <t E0 

implies a =f. f01(bi) for any i. Thus, x - a is another factor of p(x) in F[x], 
contrary to unique factorization. We conclude that there is some bi <t fo(E0 ). By 
Theorem A-3.87(i), we may define Ji: Eo(a) ---+ k by 

co+ c1a + c2a2 + · · · r-t fo(co) + fo(c1)bi + fo(c2)b~ + · · · . 

A straightforward check shows that Ji is a (well-defined) k-map extending f0 . 

Hence, (Eo, Jo) -< (Eo(a), Ji), contradicting the maximality of (Eo, Jo). This com
pletes the proof. • 

Theorem B-2.44. Any two algebraic closures of a field k are isomorphic via a 
k-map. 

Proof. Let K and L be two algebraic closures of a field k. By Lemma B-2.43, 
there are injective k-maps 'I/;: K ---+ L and 0: L ---+ K. By Lemma B-2.42, both 
composites O'lj; : K ---+ K and 'lj;O: L ---+ L are automorphisms. It follows that 'I/; (and 
0) is a k-isomorphism. • 

It is now permissible to speak of the algebraic closure of a field. 
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Exercises 

B-2.23. Prove that every algebraically closed field is infinite. 

B-2.24. Prove that the algebraic closures of the prime fields Q and 1Fp are countable. 

Transcendence 

We investigate further the structure of arbitrary fields. 

Definition. Let E / k be an extension field. A subset U of E is algebraically 
dependent over k if there exists a finite subset { u1 , ... , Un} ~ U and a nonzero 
polynomial f(x1, ... ,xn) E k(x1, ... ,xn] with f(u1, ... ,un) = 0. A subset B of E 
is algebraically independent if it is not algebraically dependent. 

An extension field E / k is purely transcendental if either E = k or E contains 
an algebraically independent subset Band E = k(B). 

Since algebraically dependent subsets are necessarily nonempty, it follows that 
the empty subset 0 is algebraically independent. A singleton { u} ~ E is alge
braically dependent if u is algebraic over k; that is, u is a root of a nonconstant 
polynomial over k. If { u} is algebraically independent, then u is transcendental over 
k, in which case k(x) ~ k(u), for the surjective map k[x] --+ k[u] with x 1--t u has 
kernel {O}. By Exercise A-3.38 on page 54, this maps extends to an isomorphism 
of fraction fields k(x)--+ k(u). 

Lemma B-2.45. Let E/k be a purely transcendental extension with E = k(B), 
where B = { u1 , ... , Un} is a finite algebraically independent subset. If k(x1, . .. , Xn) 
is the function field with indeterminates x1, ... , Xn, then there is an isomorphism 
<p: k(x1, .. . , Xn) --+ E with <p: Xi 1--t ui for all i. 

Proof. The bijection X = {x1 , ... ,xn} --+ B given by Xi 1--t ui extends to an 
isomorphism <p: k[x1 , ... , Xn] --+ k[u1 , ... , unJ, by Theorem A-3.25, which in turn 

k(x1, ... ,xn) ~ Frac(E) = E 

l I 
extends to an isomorphism of fraction fields k(x1, .. . , Xn) --+ k( u1, ... , un)· • 

We eliminate the finiteness hypothesis on B by introducing a generalization of 
mathematical induction: transfinite induction. 

Given a family of statements {Sn : n EN}, ordinary induction proves that all 
Sn are true in two steps: the base step proves that So is true; the inductive step 
proves that the implication Sn =? Sn+l is true. Transfinite induction replaces the 
index set N by a well-ordered set A, and our aim is to prove that all the statements 
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{Sa : a E A} are true. We first prove the base step So is true, where 0 is the smallest 
index in A, but the inductive step is modified. To understand this, consider the 
well-ordered subset A of the reals 

A= {1- ~: n ~ 1} U {2 - ~ : n ~ 1} = {O, ~' ~, £, ... ; 1, ~, i, t• ... }. 
Now there are two types of elements a E A: the first type is exemplified by 2 - ~, 
which is the next7 index after 2 - ~; we call a a successor. The second type of 
element is a= 2- t = 1, which is not a successor; we call a a limit. The inductive 
step is: If S13 is true for all f3 < a, then Sa is true. Verifying this inductive step for 
Sa usually has two cases: a is a successor; a is a limit. 

Proposition B-2.46 (Transfinite Induction). Let A be a well-ordered set and 
let {Sa : a E A} be a family of statements. If 

(i) Base step: So is true (where 0 is the smallest element in A); 

(ii) Inductive step: If S-y is true for all 0:::; 'Y < (3, then S13 is true, 

then Sa is true for all a E A. 

Proof. Suppose, on the contrary, that not all the statements are true; that is, the 
subset F = { 'Y E A : S-y is false} is not empty. Since A is well-ordered, there is a 
smallest element f3 E F. Now 0 < f3 because the base step says that S0 is true, so 
that f3 has predecessors. But since f3 is the smallest index in F, all the statements 
S-y are true for 'Y < (3. The inductive step says that S13 is true, contradicting f3 E F. 
Therefore, F = 0 and all the statements Sa are true. • 

We can now improve Lemma B-2.45 by removing the finiteness hypothesis. 

Proposition B-2.47. Let E/k be a purely transcendental extension; that is, E = 
k(B), where B is an algebraically independent subset. Then E ~ k(X), the function 
field with indeterminates X, where IXI = IBI, via an isomorphism cp: k(X) -+ E 
with cp(x) EB for all x EX. 

Proof. 8 By the Well-Ordering Principle, we may assume that B is well-ordered. 
Now let X be a set equipped with a bijection h: X -+ B; we may assume that X 
is well-ordered by defining x < x' to mean h(x) < h(x'). If y EX, define 

Xy = {x EX: x :'Sy} and By= {h(x) EB: x :'Sy}. 

We prove by transfinite induction that there are isomorphisms cpy: k(Xy) -+ k(By) 
with cpy(x) = h(x) for all x:::; y and with 'Py' extending 'Py whenever y < y'. This 
will suffice, for k(X) = LJyEX k(Xy) and E = k(B) = LJyEX k(By)· 

The base step was proved in Lemma B-2.45 with E = k(By) = k(y), where y 
is the smallest element in B. 

The inductive step wants an isomorphism 'Pz: k(Xz) -+ k(Bz) with y i--+ h(y) 
for ally:::; z. If z is a successor, say z is the next index after y, then k(Xy)(z) = 

7If you want to be fussy, the next element after f3 (in any well-ordered set) is the smallest 
element of the subset b E A : /3 < ')' }. 

8We are being ultra-fussy here, but such arguments are really routine and usually much less 
detailed. 
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k(Xz), and the base step in Lemma B-2.45 gives an isomorphism k(Xy)(z) --+ 
k(By)(h(z)). 

If z is a limit, observe that the family of subfields k(Xy) for all y < z is an 
increasing chain, and so K* = LJy<z k(Xy) is a field; similarly, E* = LJy<z k(By) is a 
field. If y < y' < z, then the isomorphism <py': k(Xy') --+ k(By') extends <py, so that 
LJy<z <py is a (well-defined) isomorphism K* = LJy<z k(Xy) --+ LJy<z k(By) = E*. 
As every rational function in k(Xz) involves only finitely many indeterminates, say 
Y1 < · · · < Ym < z, the Lemma says the isomorphism <pym can be extended to an 
isomorphism k(Xym) --+ k(Bym). As these isomorphisms agree whenever possible, 
they can be assembled to an isomorphism <pz: k(Xz) --+ k(Bz). • 

Remark. In 1882, Lindemann proved that if u -=J 0 is algebraic over Q, then eu is 
transcendental over Q. Applying this for u = 1 shows that e is transcendental. It 
also shows that 7r is transcendental: assume, on the contrary, that 7r is algebraic. 
Since 2i is also algebraic, so is 27ri. But e27ri = 1 and 1 is not transcendental, 
contradicting Lindemann's Theorem. In 1885, Weierstrass generalized Lindemann's 
Theorem: the Lindemann- Weierstrass Theorem says that if a 1 , ... , an are 
algebraic numbers linearly independent over Q, then e°'1 , ••• , e°'n are algebraically 
independent over Q. 

A related result is the Gelfond-Schneider Theorem: If a and (3 are algebraic 
numbers with a -=J 0, 1 and f3 irrational, then af3 is transcendental. 9 ~ 

Proposition A-7.5 says that if V is a vector space and X = v1, ... , Vm is a list 
in V, then X is linearly dependent if and only if some vi is in the subspace spanned 
by the others. Here is an analog of this for algebraic dependence. 

Proposition B-2.48. Let E/k be an extension field. Then U ~ E is algebraically 
dependent over k if and only if there is v E U with v algebraic over k(U - { v}). 

Proof. If U is algebraically dependent over k, then there is a finite algebraically 
dependent subset {u1, ... , un} ~ U; thus, we may assume that U is finite. We 
prove, by induction on n ~ 1, that some Ui is algebraic over k(U - { ui} ). If n = 1, 
then there is some nonzero f(x) E k[x] with f(u1) = O; that is, u 1 is algebraic over k. 
But U - {ui} = 0, and so u1 is algebraic over k(U - {u1}) = k(0) = k. For the 
inductive step, let U = {u1, ... , Un+i} be algebraically dependent. We may assume 
that { u1, ... , un} is algebraically independent; otherwise, the inductive hypothesis 
gives some ui, for 1 :::; j :::; n, which is algebraic over k( u1 , ... , Uj, ... , un) and, 
hence, algebraic over k(U - { Uj}). Since U is algebraically dependent, there is 
a nonzero f(X,y) E k[x1,. . .,xn,Y] with f(u1,. . .,un,Un+i) = 0, where X = 
(xi, ... ,xn) and y is a new variable. We may write f(X,y) = I:,igi(X)yi, where 
gi(X) E k[X] (because k[X, y] = k[X][y]). Since f(X, y) -=J 0, some gi(X) -=J 0, and 
it follows from the algebraic independence of {u1, ... , Un} that gi(u1, ... , Un) -=J 0. 
Therefore, h(y) = I:,igi(u1, ... ,un)Yi E k(U)[y] is not the zero polynomial. But 
0 = f(u1, ... , Un, Un+i) = h(un+l), so that Un+l is algebraic over k(u1, ... , Un)· 

9 In 1900, Hilbert posed 23 open problems that he believed mathematicians should investigate 
in the new century. The Gelfond-Schneider Theorem solved one of them. 
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For the converse, assume that v is algebraic over k(U - {v}). We may as
sume that U - {v} is finite, say, U - {v} = {u1 , ... , un}, where n ~ 0 (if n = 0, 
we mean that U - {v} = 0). We prove, by induction on n ~ 0, that U is al
gebraically dependent. If n = 0, then v is algebraic over k, and so { v} is al
gebraically dependent. For the inductive step, let U - {un+i} = {ui, ... , Un}· 
We may assume that U - {un+i} = {u1, ... , Un} is algebraically independent, for 
otherwise U - {un+1}, and hence its superset U, is algebraically dependent. By 
hypothesis, there is a nonzero polynomial f(y) = Li CiYi E k(ui, ... , un)[y] with 
f(un+i) = 0. As f(y) =I 0, we may assume that at least one of its coefficients is 
nonzero. For all i, the coefficient Ci E k( u1, ... , un), so there are rational functions 
ci(xi, ... , Xn) with ci(u1, ... , Un) =Ci (because k(ui, ... , Un) ~ k(x1, ... , Xn), the 
function field inn variables). Since f(un+i) = 0, we may clear denominators and 
assume that each ci(x1, ... , Xn) is a polynomial in k[x1, ... , Xn]· Moreover, that 
some Ci ( u1, ... , Un) =I 0 implies Ci (Xi, ... , Xn) =I 0. Hence, 

c(xi, ... , Xn, y) = :L:>i(Xi, ... , Xn)Yi E k[xi, ... , XnJIY] 
i 

is nonzero and vanishes on ( u1, ... , Un+ 1); therefore, { u1, ... , Un+ 1} is algebraically 
dependent. • 

There is a strong parallel between linear dependence in a vector space and 
algebraic dependence in a field. The analog of a basis in a vector space is a tran
scendence basis in a field; the analog of dimension is transcendence degree. In 
fact, both discussions are special cases of theorems about dependence relations (see 
Jacobson, [53], p. 153) 

Notation. Let E/k be an extension field. If u EE and S ~ E, then u is depen
dent on S, denoted by 

ujS, 

if u is algebraic over k(S), the subfield of E generated by k and S. 

Theorem B-2.49. Let E/k be an extension field, let u EE, and let S ~ E. 

(i) If u ES, then u j S. 

(ii) !ju j S, then there exists a finite subset S' ~ S with u j S'. 

(iii) (Transitivity) Let T ~ E; if u j S and each element of S is dependent 
on T, then u is dependent on T. 

(iv) (Exchange Property) If u is dependent on S = { v, s1 , ... , sn} but 
not on { s1, ... , sn}, then v is dependent on { u, s1, ... , sn} but not on 
{si, ... ,sn}· 

Proof. It is easy to check (i) and (ii). 

We now verify (iii). If u j S, then u is algebraic over k(S); that is, u E 

(E/k(S))alg = {e E E : e is algebraic over k(S)}. Suppose there is some T ~ E 
withs j T for every s ES; that is, S ~ (E/k(T))alg· It follows from Lemma B-2.38 
that u is algebraic over k(T); that is, u is dependent on T. 
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Let us verify (iv). The Exchange Property assumes that u :::5 S (that is, u is 
algebraic over k( S)) and u is transcendental over k( S - { v}) (that is, u ~ S - { v}). 
Note that v E S, by hypothesis, and u (j. S (lest u be algebraic over k ( S - { v})). Let 
us apply Proposition B-2.48 to the subsets U' = { u, v} and S' = S - { v} of E and 
the subfield k' = k(S'). With this notation, k'(U'-{ u}) = k'(v) = k(S', v) = k(S), 
so that u algebraic over k(S) can be restated as u algebraic over k'(U' - {u}). 
Thus, Proposition B-2.48 says that U' = { u, v} is algebraically dependent over 
k' = k(S'): there is a nonzero polynomial f(x,y) E k(S')[x,y] with f(u,v) = 0. 
In more detail, f(x,y) = go(x) + gi(x)y + · · · + gn(x)yn, where gi(x) E k(S')[x]; 
that is, the coefficients of all gi(x) do not involve u, v. Define h(y) = f(u, y) = 
~igi(u)yi E k(S',u)[y]. Now h(y) is not the zero polynomial: some gi(u) # 0 
because u is transcendental over k(S - {v}) = k(S'). But h(v) = f(u,v) = 0. 
Therefore, vis algebraic over k(S - {v},u); that is, v :::5 (S - {v}) U {u}. • 

Let us extend the :::5 notation to vector spaces. If V is a vector space over a 
field k and if S ~ V, then we can say that v E V depends on S, denoted by 
v :::5 S, if vis a linear combination of vectors in S. We can now rephrase the notion 
of linear dependence in a vector space using :::5: a subset S is linearly dependent if 
s :::5 S - { s} for some s E S. 

Returning to extension fields E/k, a nonempty subset S ~ E is algebraically 
independent if and only ifs ~ S - { s} for all s E S. It follows that every subset of 
an algebraically independent set is itself algebraically independent. 

Definition. If E/k is an extension field, then a subset S ~ E generates E (in 
the sense of a dependency relation and not to be confused with k(S) = E) if x :::5 S 
for all x EE. 

A basis of E is an algebraically independent subset that generates E. 

Lemma B-2.50. Let E/k be an extension field. IfT ~Eis algebraically indepen
dent over k and z E E is transcendental over k(T), then T U { z} is algebraically 
independent. 

Proof. Since z ~ T, Theorem B-2.49(i) gives z (j. T, and so Ts;; TU {z}; it follows 
that (TU { z}) - { z} = T. If TU { z} is algebraically dependent, then there exists 
t E TU {z} with t :::5 (TU {z}) - {t}. If t = z, then z :::5 TU {z} - {z} = T, 
contradicting z ~ T. Therefore, t E T. Since T is algebraically independent, 
t ~ T- {t}. If we set S = (TU {z}) - {t}, t = x, and y = z in the Exchange 
Property, we conclude that z :::5 (T U { z} - { t}) - { z} U { t} = T, contradicting the 
hypothesis z ~ T. Therefore, T U { z} is algebraically independent. • 

Definition. If E / k is an extension field, then a transcendence basis is a maximal 
algebraically independent subset of E over k. 

Theorem B-2.51. If E/k is an extension field, then E has a transcendence basis. 
In fact, every algebraically independent subset is part of a transcendence basis. 

Proof. Let B be an algebraically independent subset of E. We use Zorn's Lemma 
to prove the existence of maximal algebraically independent subsets of E containing 
B. Let X be the family of all algebraically independent subsets of E containing B, 
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partially ordered by inclusion. Note that X is nonempty, for B E X. Suppose 
that B = (BJ)JEJ is a chain in X. It is clear that B* = LJjEJ Bj is an upper 
bound of B if it lies in X, that is, if B* is algebraically independent. If, on the 
contrary, B* is algebraically dependent, then there is y EB* with y ::5 B* -{y}. 
By Theorem B-2.49(ii), there is a finite subset {xi, ... , Xn} ~ B* - {y} with y ::5 
{xi, ... ,xn}· Now there is Bj0 EB with y E Bio> and, for each i with 1 :$ 
i :$ n, there is BJ; E B with Xi E BJ;. Since B is a chain, one of these, call 
it B', contains all the others, and the algebraically dependent set {y, xi, ... , Xn} is 
contained in B'. But since B' is algebraically independent, so are its subsets, and 
this is a contradiction. Zorn's Lemma now provides a maximal element M of X; 
that is, M is a maximal algebraically independent subset of E containing B. If M is 
not a basis, then there exists x EE with x ~ M. By Lemma B-2.50, MU {x} is an 
algebraically independent set strictly larger than M, contradicting the maximality 
of M. • 

Theorem B-2.52. If B is a transcendence basis, then k(B)/k is purely transcen
dental and E / k( B) is algebraic. 

Proof. By Theorem B-2.51, it suffices to show that if Bis a transcendence basis, 
then E/k(B) is algebraic. If not, then there exists u EE with u transcendental over 
k(B). By Lemma B-2.50, BU{u} is algebraically independent, and this contradicts 
the maximality of B. • 

We now generalize the proof of Lemma A-7.16, the Exchange Lemma, and its 
application to Invariance of Dimension, Theorem A-7.17. 

Theorem B-2.53. If B and C are transcendence bases of an extension field E/k, 
then IBI = ICI. 

Proof. If B = 0, we claim that C = 0. Otherwise, there exists y E C and, since 
C is algebraically independent, y ~ C - {y}. But y ::5 B = 0 since B generates E 
and 0 ~ C - {y}, so that Transitivity (Theorem B-2.49(iii)) gives y ::5 C - {y}, a 
contradiction. Therefore, we may assume that both B and C are nonempty. 

Now assume that Bis finite; say, B ={xi, ... ,xn}· We prove, by induction on 
k 2:: 0, that there exists {yi, ... , Yk-d ~ C with 

Bk= {yi, · · ·, Yk-i, Xk, · · ·, Xn} 

a basis; that is, the elements xi ... , Xk-i in B can be exchanged with elements 
Yi, ... , Yk-i E C so that Bk is a basis. We define Bo = B, and we interpret the 
base step to mean that if none of the elements of B are exchanged, then B = Bo is 
a basis; this is obviously true. 

For the inductive step, assume that Bk = {yi, ... , Yk-li Xk, ... , xn} is a basis. 
We'claim that there is y E C with y ~ Bk - {xk}· Otherwise, y ::5 Bk - {xk} for 
all y E C. But Xk ::5 C, because C is a basis, and so Theorem B-2.49(iii) gives 
Xk ::5 Bk - {xk}, contradicting the independence of Bk. Hence, we may choose 
Yk EC with Yk ~Bk - {xk}· By Lemma B-2.50, the set Bk+i, defined by 

Bk+l =(Bk - {xk}) U {yk} = {yi, ... ,yk,Xk+i, ... ,xn}, 
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is independent. To see that Bk+l is a basis, it suffices to show that it generates E. 
Now Yk :::5 Bk (because Bk is a basis), and Yk ~Bk - {xk} by the argument above; 
the Exchange Property, Theorem B-2.49(iv), gives Xk :::5 (Bk-{xk} )U{yk} = Bk+l· 
By Theorem B-2.49(i), all the other elements of Bk are dependent on Bk+l· Now 
each element of E is dependent on Bk, and each element of Bk is dependent on 
Bk+l· By Theorem B-2.49(iii), Bk+1 generates E. 

If ICI > n = IBI, that is, if there are more y's than x's, then Bn s;; C. Thus a 
proper subset of C generates E, contradicting the independence of C. Therefore, 
ICI ::; JBJ. It follows that C is finite, and so the preceding argument can be 
repeated, interchanging the roles of B and C. Hence, JBJ ::; JCJ, and we conclude 
that JBI = ICI if E has a finite basis. 

When B is infinite, the reader may complete the proof by adapting the proof of 
Theorem B-2.13. In particular, replace supp(u) in that proof by the smallest finite 
subset satisfying Theorem B-2.49(ii). • 

Theorem B-2.53 shows that the following analog of dimension is well-defined. 

Definition. The transcendence degree of an extension field E / k is defined by 

trdeg(E/k) = JBJ, 

where Bis a transcendence basis of E/k. 

Example B-2.54. 

(i) If E/k is an extension field, then trdeg(E/k) = 0 if and only if E/k is 
algebraic. 

(ii) If E = k(x1 , •• • , xn) is the function field inn variables over a field k, then 
trdeg(E/k) = n, because {xi, ... ,xn} is a transcendence basis of E. "" 

Here is a small application of transcendence degree. 

Proposition B-2.55. There are nonisomorphic fields each of which is isomorphic 
to a subfield of the other. 

Proof. Clearly, C is isomorphic to a subfield ofC(x). However, we claim that C(x) 
is isomorphic to a subfield of C. Let B be a transcendence basis of C over Q, and 
discard one of its elements, say, b. The algebraic closure F of Q( B - { b}) is a proper 
subfield of C, for b ~ F; in fact, bis transcendental over F, by Proposition B-2.48. 
Hence, F ~ C, by Exercise B-2.34 on page 352, and so F(b) ~ C(x). Therefore, 
each of C and C(x) is isomorphic to a subfield of the other. On the other hand, 
C(x) 1- C, because C(x) is not algebraically closed. • 

Schanuel 's conjecture is an interesting unsolved problem which would imply 
both the Lindemann-Weierstrass Theorem and the Gelfond-Schneider Theorem; it 
states, given any n complex numbers z1, ... , Zn algebraically independent over Q, 
that 
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If proved, Schanuel's conjecture, would show that e and rr are algebraically inde
pendent: just set z1 = 1 and z2 = rri, for then Q(l,rri,e,e1Ti) = Q(rri,e), because 
e1Ti + 1 = 0. 

Exercises 

B-2.25. Prove that log( a) is transcendental for any real algebraic number a =f. 0, 1. 

Hint. Assume that log(a) is algebraic and use the Lindemann-Weierstrass Theorem. 

B-2.26. (i) Prove that if a is a nonzero algebraic number, then the set {e0 , e°'} = {1, e°'} 
is linearly independent over the algebraic numbers. 

(ii) Prove that if a is a nonzero algebraic number, then e°' is transcendental. 

B-2.27. Prove that e + 7r is transcendental if Schanuel's conjecture is true. 

B-2.28. Prove that the set A of all algebraic numbers is the algebraic closure of IQ>. 

B-2.29. Consider the tower IQ>~ IQ>(x) ~ IQ>(x,x + v'2) = E. Prove that {x,x + v'2} is 
algebraically independent over IQ> and trdeg(E/IQ>) = 2. 

B-2.30. Prove that there is no intermediate field K with IQ> ~ K ~ C with C/ K purely 
transcendental. Conclude that an extension field E / k may not have an intermediate field 
K with K / k algebraic and E / K purely transcendental. 

B-2.31. If E = k(X) is an extension of a field k and every pair u, v E X is algebraically 
dependent, prove that trdeg(E/k) :::; 1. Conclude that if 

k ~ ki ~ k2 ~ ... 

is a tower of fields with trdeg(kn/k) = 1 for all n ~ 1, then trdeg(k* /k) 
k* = Un;:o:l kn. 

* B-2.32. (i) If k ~ F ~ E is a tower of fields, prove that 

trdeg(E/k) = trdeg(E/ F) + trdeg(F/k). 

1, where 

Hint. Prove that if X is a transcendence basis of F/k and Y is a transcendence 
basis of E / F, then X U Y is a transcendence basis for E / k. 

(ii) Let E/k be an extension field, and let K and L be intermediate fields. Prove that 

trdeg(K V L) + trdeg(K n L) = trdeg(K) + trdeg(L), 

where K V L is the compositum. 
Hint. Extend a transcendence basis of Kn L to a transcendence basis of K and 
to a transcendence basis of L. 

B-2.33. Prove that if k is the prime field of a field E and trdeg(E/k) :::; ~0 , then E is 
countable. 

* B-2.34. (i) Prove that two algebraically closed fields of the same characteristic are iso
morphic if and only if they have the same transcendence degree over their prime 
fields. 

Hint. Use Lemma B-2.43. 

(ii) Prove that trdeg(C/IQ>) = c, where c = IRI. 
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(iii) Prove that a field F is isomorphic to C if and only if F has characteristic 0, it is 
algebraically closed, and trdeg(F/tQ) = c. 

Liiroth's Theorem 

We now investigate the structure of simple transcendental extensions k(x), 
where k is a field and x is transcendental over k; that is, we examine the function 
field k(x). 

Definition. If cp E k(x) is in lowest terms, then cp = g(x)/h(x), where g(x), h(x) E 
k[x] and gcd(g, h) = 1. Define the height of cp by 

if 

height(cp) = max{deg(g),deg(h)}. 

A rational function cp E k(x) is called a linear fractional transformation 

ax+b 
cp= cx+d' 

where a, b, c, d E k and ad - be "I 0. Let 

LF(k) 

denote the set of all linear fractional transformations in k(x). Define a binary 
operation composition LF(k) xLF(k) --+ LF(k) as follows: If cp: x >--+ (ax+b)/(cx+d) 
and 1/J : x >--+ ( rx + s) / ( tx + u), then 

1/J rcp(x) + s (ra + sc)x + (rb + sd) 
cp: x >--+ tcp(x) + u = (ta+ ud)x + (tb + ud) · 

The reader can easily verify that LF(k) is a group under composition. 

Now cp E k(x) has height 0 if and only if cp is a constant (that is, cp Ek), while 
Exercise B-2.36 on page 358 says that cp E k(x) has height 1 if and only if cp is a 
linear fractional transformation. 

Proposition B-2.56. Let k be a field, let cp = g/h E k(x) be nonconstant, where 
g(x) = L:aixi, h(x) = L:bixi E k[x], and gcd(g,h) = 1. Then 

(i) cp is transcendental over k; 

(ii) k(x) is a finite extension of k(cp); 

(iii) the minimal polynomial irr(x, k(cp)) of x over k(cp) is O(y), where 

O(y) = g(y) - cph(y) E k(cp)[y] 

and 

[k(x): k(cp)] = height(cp). 
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Proof. Let us describe (}(y) in more detail (we allow some coefficients of g and h 
to be zero, so that even though we use the same index i of summation, we are not 
assuming that g and h have the same degree). 

(}(y) = g(y) - cph(y) 

= L:aiyi - 'P L:biyi 
i i 

= L(ai - cpbi)Yi· 
i 

If (}(y) is the zero polynomial, then all its coefficients are 0. But h is not the zero 
polynomial (being the denominator of cp = g/h), so h has some nonzero coefficient, 
say bi. But if the ith coefficient ai - cpbi of(} is 0, then cp = aifbi, contradicting cp 
not being a constant. Thus, (}=IO; we compute deg((}): 

deg((})= deg(g(y)- cph(y)) = max{deg(g),deg(h)} = height(cp). 

Now xis a root of(}, for (}(x) = g(x) - cph(x) = 0 because cp = g/h; therefore, xis 
algebraic over k(cp). Hence, k(x)/k(cp) is a finite extension field. 

Were cp algebraic over k, then k(cp)/k would be finite, giving [k(x) : kj = 
[k(x) : k(cp)][k(cp) : k] finite, a contradiction. Therefore, cp is transcendental over k. 
We have verifed statements (i) and (ii). 

We claim that (}(y) is an irreducible polynomial in k(cp)[y]. If not, then (}(y) 
factors in k(cp](y], by Gauss's Lemma (Corollary A-3.137). But (}(y) = g(y) -
cph(y) is linear in cp, and so Corollary A-3.140 shows that (}(y) is irreducible since 
gcd(g, h) = 1. Finally, since deg((})= height(cp), we have [k(x) : k(cp)] = height(cp). 
We have verified (iii), for the degree of any extension field k(a)/k is deg(irr(a, k)) . 

• 
Corollary B-2.57. Let cp E k(x), where k(x) is the field of rational functions over 
a field k. Then k(cp) = k(x) if and only if cp is a linear fractional transformation. 

Proof. By Proposition B-2.56, k(cp) = k(x) if and only if height(cp) = 1; that is, cp 
is a linear fractional transformation. • 

Define a map(: GL(2,k) -t LF(k) by [~~]....+(ax+ b)/(cx + d). It is easily 
checked that ( is a homomorphism of groups. In Exercise B-2.37 on page 358, 
the reader will prove that ker ( = Z(2, k), the center of GL(2, k) consisting of all 
nonzero 2 x 2 scalar matrices. Hence, if 

PGL(2, k) = GL(2, k)/Z(2, k), 

then LF(k) ~ PGL(2, k). 

Corollary B-2.58. If k(x) is the field of rational functions over a field k, then 

Gal(k(x)/k) ~ LF(k) ~ PGL(2, k). 

Proof. Let a: k(x) -t k(x) be an automorphism of k(x) fixing k. Since k(a(x)) = 
k(x), Corollary B-2.57 says that a(x) is a linear fractional transformation. Define 
"(: Gal(k(x)/k) -t LF(k) by Ta....+ a(x). Now 'Y is a homomorphism: 'Y(ar) = 
'Y(a)'Y(r), because (ar)(x) = a(x)r(x) (remember that the binary operation in 
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LF(k) is composition). Finally, 'Y is an isomorphism: 'Y- 1 is the function assigning, 
to any linear fractional transformation <p = (ax + b) / (ex + d), the automorphism of 
k(x) that sends x to <p. • 

We now prove Liiroth's Theorem which classifies all the intermediate fields 
ks;; B ~ k(x), where xis transcendental over k; the proof is essentially a converse 
of that of Proposition B-2.56. We will use the following result from the section on 
unique factorization domains. 

Corollary A-3.133: Let k be a field, and let 

I( ) n gn-1(x) n-1 go(x) k( )[ J 
x,y =y + hn-1(x)y +···+ ho(x) E x y, 

where each gifhi is in lowest terms. If I*(x, y) E k[x][y] is the associated primitive 
polynomial of I, then 

m!lx{height(gi/hi)} :::; degx(I*) and n = degy(I*), 
i 

where degx (I*) (or degy (I*)) is the highest power of x (or y) occurring in I*. 

Theorem B-2.59 (Liiroth's Theorem). If k(x) is a simple transcendental ex
tension, then every intermediate field B with k s;; B ~ k(x) is also a simple tran
scendental extension of k: there is <p E B with B = k( <p). 

Remark. Liiroth's Theorem can be rephrased: If k(x) is a simple transcendental 
extension of k, then every intermediate field B =f. k is isomorphic to it. <Ill 

Proof. If f3 E B is not constant, then Proposition B-2.56 says that /3 is transcen
dental over k, k(x)/k(/3) is algebraic, and [k(x) : k(/3)] is finite. As k(/3) ~ B ~ k(x), 
we have [k(x) : k(/3)] = [k(x) : B][B: k(/3)], so that k(x)/B is a finite extension 
field. Let 

I(x, y) = irr(x, B) E B[y] 

be the minimal polynomial of x over B: 

I(x, y) = yn + bn-lYn-l + · · · + bo E B[y]; 

of course, this says that 

[k(x): BJ= n. 

Each coefficient bi of I(x,y) is a rational function lying in B, say, bi= gi(x)/hi(x), 
where gi, hi E k[x] and gcd(gi, hi) = 1. Thus, 

(l3) I(x, y) = yn + gn-1(x) yn-1 + ... + go(x) E B[y]. 
hn-1 (x) ho(x) 

We may assume that x ~ B (otherwise B = k(x) and the theorem is obviously 
true). It follows that not all the coefficients bi = gif hi of I(x, y) lie in k, lest x be 
algebraic over k. If bj = gJ/hJ ~ k, we simplify notation by omitting the subscript j 
and defining <p = bj, g(x) = gJ(x), and h(x) = hj(x); thus, 

<p = g(x)/h(x) EB and <p ~ k. 
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Define 

(14) (}(x,y) = g(y) - cph(y) E k(cp)[y]. 

As in Proposition B-2.56, degy(e) = m = height(cp), and [k(x): k(cp] = height(cp). 
Since k(cp) ~ B ~ k(x), we have 

m = [k(x): k(cp] = [k(x): B][B: k(cp)] = n[B: k(cp)]. 

Therefore, if we show that m = n, then [B: k(cp)] = 1 and B = k(cp). 

Having reduced the problem to showing equality of two degrees, it is no loss 
in generality to forget cp and rewrite equations in terms of x and y; indeed, we 
can even forget Band the fact that I(x, y) = irr(x, B). However, we do remember 
that I(x, y) E k(x)[y] is a monic irreducible polynomial having x as a root, so that 
I(x,y) is the minimal polynomial of x in k(x)[y]. As xis a root of (}(y), we have I 
is a divisor of(} in k(x)[y]: there is a(x,y) E k(x)[y] with 

(15) (}(x, y) = a(x, y)I(x, y). 

We are in the setting of Gauss's treatment of UFDs, and we now factor each poly
nomial as the product of its content and its associated primitive polynomial. By 
Lemma A-3.132, we have c((}) = l/h(x) and(}= c((})(}*, where 

(}*(x,y) = h(x)g(y) - g(x)h(y) E k[x][y]. 

Reversing the roles of x and y, there is an anti-symmetry: 

(}*(y,x) = -{}*(x,y); 

thus, 

degx((}*) = degy( (}*). 

Taking associated primitive polynomials, Eq. (15) becomes 

(16) (}*(x, y) = a*(x, y)I*(x, y). 

Since a polynomial and its associated primitive polynomial have the same degree, 

m = degx((}) = degx((}*) = degx(a* I*)= degx(a*) + degx(J*). 

By Corollary A-3.133, we have degx(J*) ~ degx((}*) = m, so that m ~ degx(a*)+m. 
We conclude that degx(a*) = O; that is, a* is a function of y alone. The anti
symmetry of(}* says that (}* is primitive as a polynomial in x. But (}* =a* I*, and 
so a* divides all the coefficients. Therefore, we must have degy(a*) = O; that is, a* 
is a constant. Now take y-degrees in Eq. (16): 

degy((}*) = degy(a*) + degy(I*) = 0 + n. 

By anti-symmetry, degy((}*) = degx((}*) = m. Therefore, m = n, and the theorem 
is proved. • 
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For an old-fashioned geometric interpretation of Li.iroth's Theorem, we quote 
van der Waerden [118], p. 199. 

The significance of Li.iroth's Theorem in geometry is as follows: 
A plane (irreducible) algebraic curve F(e, 77) = 0 is called ratio

nal if its points, except a finite number of them, can be represented 
in terms of rational parametric equations: 

e = J(t), 

77 = g(t). 

It may happen that every point of the curve (perhaps with a 
finite number of exceptions) belongs to several values of t. (Exam
ple: If we put 

e = t2, 
77 = t 2 + 1, 

the same point belongs to t and -t.) But by means of Li.iroth's 
theorem this can always be avoided by a suitable choice of the 
parameter. For let D. be a field containing the coefficients of the 
functions f, g, and let t, for the present, be an indeterminate. E = 
D.(f,g) is a subfield of D.(t). If t' is a primitive element of E, we 
have, for example, 

f(t) = fi(t') (rational), 

g(t) = g1(t') (rational), 

t' = cp(f,g) = cp(e, 77), 

and we can verify easily that the new parametrization 

e = Ji(t'), 

77 = 91(t1) 

represents the same curve, while the denominator of the function 
cp(x, y) vanishes only at a finite number of points of the curve so 
that to all points of the curve (apart from a finite number of them) 
there belongs only one t'-value. 

Here is this geometric interpretation of Li.iroth's Theorem stated in more mod
ern language (which we will not elaborate upon here, but see Proposition B-6.54): 
Every affine algebraic curve over a given field k is birationally equivalent to a pro
jective curve over k. 

The generalization of Li.iroth's Theorem to several variables is best posed geo
metrically: Can the term curve in van der Waerden's account be replaced by surface 
or higher-dimensional variety? A theorem of Castelnuovo gives a positive answer 
for certain surfaces, but there are negative examples in all dimensions ~ 2. 
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Exercises 

B-2.35. Let k be a field. 

(i) What is trdeg(K), where K = k(x, ,,fi)? Is K ~ k(x)? 

(ii) What is trdeg(K), where K = k(x, v'l + x2 )? Is K ~ k(x)? 

* B-2.36. Prove that cp E k(x) has height 1 if and only if cp is a linear fractional transfor
mation. 

* B-2.37. For any field k, define a map(: GL(2, k)-+ LF(k) by 

(: [~~] t-t (ax+b)/(cx+d). 

(i) Prove that ( is a surjective group homomorphism. 

(ii) Prove that ker ( = Z(2, k), the subgroup of GL(2, k) consisting of all nonzero scalar 
matrices and Z(2, k) is its center. 
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Advanced Linear Algebra 

We are going to classify finitely generated R-modules when Risa PID. The Basis 
Theorem says that every such module is a direct sum of cyclic R-modules; the 
Fundamental Theorem states uniqueness conditions. When R = Z, we will have 
classified all finitely generated abelian groups. When R = k[x], where k is a field, 
we will have shown that square matrices over k are similar if and only if they have 
the same canonical forms. Logically, the proof for R-modules should be given first, 
followed by its special cases R =Zand R = k[x]. However, we think it is clearer 
to begin with abelian groups (Z-modules), then promote these results to modules 
over PIDs, and finally to apply the module results to linear algebra. 

Torsion and Torsion-free 

Here is an important subgroup. 

Definition. The torsion1 subgroup tG of an abelian group G is 

tG = {x E G: x has finite order}. 

We say that G is torsion if tG = G, while G is torsion-free if tG = {O}. 

It is plain that tG is a subgroup when G is abelian (it need not be a subgroup 
when G is not abelian). We now consider the short exact sequence 

0---+ tG---+ G---+ G/tG---+ 0. 

Proposition B-3.1. Let G and H be abelian groups. 

(i) G /tG is torsion-free. 

(ii) If G 9:i. H, then tG 9:i. tH and G/tG 9:i. H/tH. 

1 This terminology comes from algebraic topology. To each space X, a sequence of abelian 
groups is assigned, called homology groups, and if X is "twisted,'' then there are elements of finite 
order in some of these groups. 
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Proof. 

(i) Assume that x + tG "I- 0 in G/tG; that is, x ~ tG so that x has infinite 
order. If x + tG has finite order, then there is some n > 0 such that 
0 + tG = n(x + tG) = nx + tG; that is, nx E tG. Thus, there ism> 0 
with 0 = m(nx) = (mn)x, contradicting x having infinite order. 

(ii) If <p: G -+ H is a homomorphism and x E tG, then nx = 0 for some 
n > 0 and n<p(x) = <p(nx) = O; thus, cp(x) E tH and <p(tG) ~ tH. If <pis 
an isomorphism, then the reverse inclusion tH ~ <p(tG) holds as well, for 
if h E tH, then h = <p(g) for some g E tG (since isomorphisms preserve 
orders of elements), and so h = cp(g) E <p(tG). Therefore, <p(tG) = tH. 

For the second statement, Exercise B-1.42 on page 300, which applies 
because cp(tG) = tH, says that the map <p*: G/tG-+ H/tH, defined by 
<p*: x + tG t-+ cp(x) + tH, is an isomorphism. • 

Torsion-free abelian groups can be very complicated, but finitely generated 
torsion-free abelian groups are easy to describe. 

Theorem B-3.2. 

(i) Every finitely generated torsion-free abelian group G is free abelian. 

(ii) Every subgroup S of a finitely generated free abelian group F is itself free, 
and rank(S)::::; rank(F).2 

Proof. 

(i) The proof is by induction on n 2 1, where G = (vi, ... , vn)· If n = 1, 
then G is cyclic. Since G is torsion-free, G ~ Z and G is free abelian. 

For the inductive step, let G = (vi, ... , Vn+i ), and define 

U = {x E G: there is a nonzero m E Z with mx E (vn+i)}. 
It is easy to check that U is a subgroup of G and that U "I- {O} (for 
Vn+i E U). We show that G/U is torsion-free. If g E G, g ~ U, and 
k(g + U) = 0, then kg E U; hence, there is k' > 0 with k'kg E (vn+i), 
contradicting g ~ U. 

Plainly, G /U can be generated by the n elements v1 + U, ... , Vn + U, 
and so G/U is free abelian, by the inductive hypothesis. Now Proposi
tion B-2.26 gives 

G ~ U ffi (G/U), 
so that it suffices to prove that u ~ zr for some r. 

If x EU, then there is some nonzero r E Z with rx E (vn+i)i that is, 
there is a E Z with rx = avn+l· Define <p: U-+ Q by <p: x t-+ a/r. Now 
<p is well-defined: if rx = avn+l and sx = bvn+l • then savn+l = rbvn+l; 
since Vn+i has infinite order, we have sa = rb and a/r = b/s. It is 
a straightforward calculation, left to the reader, that <p is an injective 
homomorphism. Now im<p ~ U is finitely generated, for U is a direct 
summand, hence an image, of G. 

2This second statement is true without the finitely generated hypothesis; see Theorem B-2.28. 
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The proof will be complete if we prove that every finitely generated 
subgroup D of Q (e.g., D = im cp) is cyclic in which case U is isomorphic 
to Z. Now 

D = (bi/ci, ... , bm/cm), 
where bi, Ci E Z. Let c =It Ci, and define f: D--+ Z by f: d H cd for all 
d E D (it is plain that f has values in Z, for multiplication by c clears all 
denominators). Since D is torsion-free, f is an injective homomorphism, 
and so D is isomorphic to a subgroup of Z; that is, D is isomorphic to 
an ideal. But, every nonzero ideal in Z is principal, hence isomorphic to 
Z, and so U ~ imcp = D ~ Z or U = {O}. 

(ii) If n = 1, then Fis cyclic and, since Fis torsion-free, F ~ Z. A subgroup 
S of Fis an ideal and, since Z is a PID, either S = {O} or S ~ Z. 

For the inductive step, let G = (v1 , ... , Vn+i)· There is an exact 
sequence 

0--+ Sn (v1, ... , vn)--+ S--+ S/(S n (vi, ... , vn))--+ 0. 

The inductive hypothesis says that the first term can be generated by n 
or fewer elements, while the Second Isomorphism Theorem gives 

8 ~ 8 + ( V1, ... , Vn) C (Vi, · · · 1 Vn+ 1) 
8 n ( V1 , ... , Vn) (Vi, ... , Vn) - ( V1 , ... , Vn) 

But S / ( S n ( v1, ... , Vn)) is isomorphic to a subgroup of the cyclic group 
generated by Vn+i + ( V1, ... , Vn) and, hence, can be generated by one 
element; the result now follows from Exercise B-1.53 on page 310. • 

Corollary B-3.3. If an abelian group G can be generated by n elements, then every 
subgroup S ~ G can be generated by n or fewer elements. 

Proof. Let G = (g1, ... , Yn)· If Fis the free abelian group with basis x1, ... , Xn, 
then there is a surjective homomorphism cp: F --+ G with cp : Xi H Yi for all i. By 
the Correspondence Theorem, there is a subgroup F' with ker cp ~ F' ~ F such that 
F' / ker cp ~ S. By Theorem B-3.2, F' is free abelian and rank(F') :::; rank(F) = n, 
so that S can be generated by n or fewer elements. • 

Remark. It is not difficult to generalize Theorem B-3.2 and its Corollary B-3.3 
to R-modules, where Risa PID. However, they may not be true for modules over 
more general commutative rings. For example, if R is not noetherian, it has an 
ideal that is not finitely generated. But R, viewed as a module over itself, is finitely 
generated; it is even cyclic (with generator 1). Thus, it is possible that a submodule 
of a finitely generated module may not be finitely generated. 

Corollary B-3.3 may be false for noetherian rings. For example, if R = k[x, y], 
then the ideal (x, y) is a finitely generated submodule of the cyclic R-module R 
which cannot be generated by only one element. .,.. 

Both statements in the next corollary do require the finitely generated hypoth
esis, for there exist abelian groups G whose torsion subgroup tG is not a direct 
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summand of G. For example (see Exercise B-4.61 on page 507), G =TIP Zp, where 
p varies over all the primes, then tG = EBP Zp and it is not a direct summand of G. 

Corollary B-3.4. 

(i) Every finitely generated abelian group G is a direct sum, 

G= tGEBF, 

where F is a finitely generated free abelian group. 

(ii) If G and H are finitely generated abelian groups, then G ~ H if and only 
if tG ~ tH and rank(G/tG) = rank(H/tH). 

Proof. 

(i) The quotient group G /tG is finitely generated, because G is, and it is 
torsion-free, by Proposition B-3.1. Therefore, G /tG is free abelian, by 
Theorem B-3.2, and so G ~ tG EB (G/tG), by Proposition B-2.26. 

(ii) By Proposition B-3.1, ifG ~ H, then tG ~ tH and G/tG ~ H/tH. Since 
G/tG is finitely generated torsion-free, it is free abelian, as is H/tH, and 
these are isomorphic if they have the same rank. 

Conversely, since G ~ tG EB (G/tG) and H ~ tH EB (H/tH), we 
can assemble the isomorphisms on each summand into an isomorphism 
G---+ H. • 

Basis Theorem 

In light of Corollary B-3.4, we can now focus on the structure of torsion groups. 
It is convenient to analyze torsion groups locally; that is, one prime at a time. A 
not necessarily abelian group G is called a p-group if each a E G has order some 
power of p. When working wholly in the context of abelian groups, p-groups are 
usually called p-primary groups. 

Definition. Let p be a prime. An abelian group G is p-primary if, for each a E G, 
there is k 2: 1 with pka = 0. If we do not want to specify the prime p, we merely 
say that G is primary (instead of p-primary). 

If G is any abelian group, then its p-primary component is 

Gp = {a E G : pk a = 0 for some k 2: 1}. 

The reader may check that each Gp is a subgroup of G. 

The first result implies that it suffices to study p-primary groups. 

Theorem B-3.5 (Primary Decomposition). Let G and H be torsion abelian 
groups. 

(i) G is the direct sum of its p-primary components: 

G=E9GP. 
p 

(ii) G and H are isomorphic if and only if Gp~ Hp for every prime p. 
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Proof. 

(i) Let x E G have order d > 1, and let the prime factorization of d be 

d - Ji ft 
- P1 ···Pt · 

Define ri = d/p{;, so that p{;ri = d. It follows that rix E Gp; for each i 
(because dx = 0). But the gcd of r 1, ... , rt is 1 (the only possible prime 
divisors of dare pi, ... ,pt, and no Pi is a common divisor because Pi f ri)· 
Hence, there are integers s1 , ... , St with 1 =Li siri. Therefore, 

x = LSiriX E Gp1 + ... +Gp,· 
i 

Write Ai= Gp1 +···+Gp,+···+ Gp,· By Proposition B-2.17(iii), 
it suffices to prove, for all i, that 

Gp, n Ai = {O}. 

If x E Gp; n Ai, then pfx = 0 for some f ~ 0 (since x E Gp;) and 
ux = 0 for some u = nj#iPJj (since x E Ai, we have x = Lj#.i Yi and 
PJJYi = 0). But pf and u are relatively prime, so there exist integers s 

and t with 1 = spf + tu. Therefore, 

x = (spf + tu)x = spfx +tux= 0. 

(ii) If cp: G---+ His a homomorphism, then cp(Gp) ~ Hp for every prime p, 
for if ptx = 0, then 0 = cp(ptx) = ptcp(x). If cp is also an isomorphism, 
then cp- 1 : H---+ G is an isomorphism (so that cp-1(Hp) ~Gp for all p). 
It follows that each restriction cpl Gp: Gp ---+ Hp is an isomorphism, with 
inverse cp- 1 IHP. 

Conversely, given isomorphisms 1/Jp: Gp ---+ Hp for all p, there is an 
isomorphism W: E!1P Gp---+ E!1P Hp given by Lp ap H Lp 1/Jp(ap)· • 

Generators of a direct sum of cyclic groups enjoy a special type of independence, 
not to be confused with linear independence in a vector space. 

Proposition B-3.6. If G = (y1, ... , Yt), then Li miYi = 0 in G implies miYi = 0 
for all i 3 if and only if 

Proof. We use Proposition B-2.17(iii) to show that G is a direct sum. If 

g E (Yi) n (y1, ... , Yi, ... , Yt), 

there are mi, mi E Z with miYi = g = LHi miyi, and so -miYi + LJi.i miYi = 0. 
By hypothesis, each summand is O; in particular, g = miYi = 0, as desired. 

Conversely, suppose that G = (Y1)EB· · ·EB(Yt)· If Li miYi = 0, then uniqueness 
of expression gives miYi = 0 for each i. • 

3 In a vector space, linear independence would have all mi = 0 instead of all miYi = 0. 
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Example B-3. 7. Linear independence in a vector space is intimately related to 
direct sums of subspaces. View an n-dimensional vector space V over a field k 
merely as an additive abelian group by forgetting its scalar multiplication. If X = 
vi, ... , Vn is a linearly independent list in V, we claim that 

V = (v1) EB··· EB (vn), 

where (vi) = {rvi : r E k} is the one-dimensional subspace spanned by Vi· Each 
v E V has a unique expression of the form v = ai v1 + · · · + an Vn, where aivi E (Vi). 
Thus, Vis a direct sum, by Proposition B-2.17(ii). 

Conversely, if X = V1 , .•. , Vn is a list in a vector space V over a field k and the 
subspace it generates is a direct sum of one-dimensional subspaces, ( v1) EB· · ·EB ( Vn), 
then X is linearly independent. By uniqueness of expression, Ei aivi = 0 in V 
implies aivi = 0 for each i, where ai E k. But aivi = 0 holds in a vector space, 
where ai Ek and v EV, if and only if ai = 0 or Vi= 0. Therefore, X =vi, ... , Vn 
is a linearly independent list. <Ill 

Proposition B-3.8. Two torsion abelian groups G and G' are isomorphic if and 
only if Gp~ G~ for every prime p. 

Proof. If f: G ---+ G' is a homomorphism, then f(Gp) ~ G~ for every prime p, 
for if pix = 0, then 0 = f(plx) = ptf(x). If f is an isomorphism, then so is 
1-1 : G'---+ G. It follows that each restriction JIGP: Gp ---+ G~ is an isomorphism, 
with inverse 1- 1 1G~. 

Conversely, if there are isomorphisms f P: Gp ---+ G~ for all p, then there is an 
isomorphism <p: ffipGP---+ ffiPG~ given by l:pxP H l:Pfp(xp)· • 

We now focus on p-primary abelian groups. The next type of subgroup will 
play an important role. 

Definition. Let p be prime and let G be a p-primary abelian group. A subgroup 
S ~ G is a pure subgroup4 if, for all n ~ 0, 

S npnG = pnS. 5 

The inclusion Sn pnG 2 pnS is true for every subgroup S ~ G, and so it is 
only the reverse inclusion S n pnG ~ pn S that is significant. It says that if s E S 
satisfies an equations= pna for some a E G, then there exists s' ES withs= pns'. 

Example B-3.9. Let G be a p-primary abelian group. 

(i) Every direct summand S of G is a pure subgroup. Let G = S EB T and 
s ES. Ifs= pn(u + v) for u ES and v ET, thenpnv = s-pnu E SnT = 
{O}, and s = pnu. The converse, every pure subgroup S of a group G 

4 Recall that pure extensions k(u)/k arose in our discussion of solvability by radicals on 
page 187; in such an extension, the adjoined element u satisfies the equation un = a for some 
a Ek. Pure subgroups are defined in terms of similar equations (written additively), and they are 
probably so called because of this. 

5If G is not a primary group, then a pure subgroup S ~ G is defined to be a subgroup that 
satisfies Sn mG = mS for all m E Z (see Exercises B-3.3 and B-3.14 on page 371). 
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is a (direct) summand, is true when G is finite (see Exercise B-3.4 on 
page 370), but it may be false when G is infinite (see Exercise B-3.14). 

In fact, the torsion subgroup tG of an abelian group G is always pure; 
it is a direct summand when G is finitely generated, but it may not be 
summand otherwise. (It is a theorem of Priifer that tG is a summand 
if it has bounded order; that is, there is a positive integer m with 
m(tG) = {O}.) 

(ii) If G = (a) is a cyclic group oforder p2 , where pis prime, then S = (pa) is 
not a pure subgroup of G, for s =pa ES, but there is no elements' ES 
withs= ps' (because s' = mpa, form E Z, and sops'= mp2a = 0). ""' 

Lemma B-3.10. If p is prime and G is a finite p-primary abelian group, then G 
has a nonzero pure cyclic subgroup. Indeed, if y is an element of largest order in 
G, then (y) is a pure cyclic subgroup. 

Proof. Since G is finite, there exists y E G of largest order, say, pe. We claim that 
S = (y) is a pure subgroup of G. 

Ifs ES, thens= mpty, where t 2 0 and pf m. Suppose that 

s =pna 

for some a E G; an elements' ES withs= pns' must be found. We may assume 
that n < £: otherwise, s = pna = 0 (since y has largest order pe, we have peg= 0 
for all g E G), and we may chooses'= 0. 

We claim that t 2 n. If t < n, then 

pea= pe-npna = pe-ns = pe-nmpty = mpe-n+ty. 

But pf m and e - n + t < e, because -n + t < 0, and so pea =f 0, contradicting y 
having largest order. Thus, t 2 n, and we can defines'= mpt-ny. Nows' ES and 

pns' = pnmpt-ny = mpty = s, 

so that S is a pure subgroup. • 

Definition. If pis prime and G is a finite p-primary abelian group, then G/pG is 
a vector space over lF P and 

o(G) = dimJFp(G/pG). 

Observe that o is additive over direct sums, 

o(G E9 H) = o(G) + o(H), 

for Proposition A-4.82 gives 

(G E9 H)/p(G E9 H) = (G E9 H)/(pG E9 pH)~ (G/pG) E9 (H/pH). 

The dimension of the left side is o ( G E9 H) and the dimension of the right side is 
o(G) + o(H), for the union of a basis of G/pG and a basis of H/pH is a basis of 
(G/pG) E9 (H/pH). 

Exercise B-3.2 on page 369 shows that if G is a finite p-primary abelian group, 
then o(G) = 0 if and only if G = {O}. There are nonzero p-primary abelian groups 
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H with 8(H) = 0: for example, if His the Priifer group Z(p00 ), the subgroup of 
the multiplicative group of nonzero complex numbers defined as follows: 

Z(poo) = (e2ni/p;: j 2: o), 

then H =pH; that is, 8(H) = 0. 

Finite p-primary abelian groups G with 8(G) = 1 are easily characterized. 

Lemma B-3.11. If G is a finite p-primary abelian group, then 8(G) = 1 if and 
only if G is a nonzero cyclic group. 

Proof. If G is a nonzero cyclic group, then so is any nonzero quotient of G; in 
particular, G/pG is cyclic. Now G/pG "I- {O}, by Exercise B-3.2 on page 369, and 
so dim(G/pG) = 1; that is, g/pG ~ ZP' 

Conversely, if 8(G) = 1, then G/pG ~ Zp; hence G/pG is cyclic, say, G/pG = 
(z + pG). Of course, G "I- {O}, and we are done if G = (z). Assume, on the 
contrary, that (z) is a proper subgroup of G. The Correspondence Theorem says 
that pG is a maximal subgroup of G (for Zp is a simple group). We claim that 
pG is the only maximal subgroup of G. If L ~ G is any maximal subgroup, then 
G/L ~ Zp, for G/L is a simple abelian p-group and, hence, has order p. It follows 
that if a E G, then p(a + L) = 0 in G/L, and so pa E L; that is, pG ~ L. 
But here pG is a maximal subgroup, so that pG = L. As every proper subgroup 
is contained in a maximal subgroup, every proper subgroup of G is contained in 
pG. In particular, (z) ~ pG, so that the generator z + pG of G/pG is zero, a 
contradiction. Therefore, G = ( z) is a nonzero cyclic group. • 

We need one more lemma before proving the Basis Theorem. 

Lemma B-3.12. Let S be a subgroup of a finite p-primary abelian group G. 

(i) If S ~ G, then 8(G/S):::; 8(G). 

(ii) If Sis a pure subgroup of G, then 8(G) = 8(8) + 8(G/S). 

Proof. 

(i) By the Correspondence Theorem, p(G/S) = (pG + S)/S, so that 

G/S G/S _ G 
p(G/S) (pG + S)/S - pG + S 

by the Third Isomorphism Theorem. Since pG ~ pG + S, there is a 
surjective homomorphism (of vector spaces over 1Fp), 

G/pG -t G/(pG + S), 

namely, g + pG i-+ g + (pG + S). Hence, 

8(G) = dim(G/pG) 2: dim(G/(pG + S)) = 8(G/S). 

(ii) We now analyze (pG + S)/pG, the kernel of G/pG -7 G/(pG + S), which 
is isomorphic to (G/S)/p(G/S). By the Second Isomorphism Theorem, 

(pG + S)/pG ~ S/(S npG). 
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Since 8 is a pure subgroup, 8 n pG = p8; therefore, 

(pG + 8)/pG ~ 8/p8, 

and so dim[(pG + 8)/pG] = 8(8). But if W is a subspace of a finite
dimensional vector space V, then dim(V) = dim(W) + dim(V /W), by 
Exercise A-7.7 on page 259. Hence, for V = G/pG and W = (pG+8)/pG, 
we have 8(G) = 8(8) + 8(G/8). • 

Theorem B-3.13. Every finite abelian group G is the direct sum of primary cyclic 
groups. 

Proof. By the Primary Decomposition, we may assume that G is p-primary for 
some prime p. We prove that G is a direct sum of cyclic groups by induction on 
8(G) 2: 1. The base step is Lemma B-3.11, which shows that G must be cyclic in 
this case. 

For the inductive step, Lemma B-3.10 says that there exists a nonzero pure 
cyclic subgroup 8 ~ G, and Lemma B-3.12 says that 

8(G/8) = 8(G) - 8(8) = 8(G) - 1 < 8(G). 

By induction, G / 8 is a direct sum of q cyclic groups, say, 
q 

G/8 = ffi(xi), 
i=l 

where Xi= Xi+ 8. 

Let g E G and let g = g + 8 in G / 8 have order pe. We claim that there is a 
lifting z E G (that is, z + 8 = g = g + 8) such that 

order z = order g. 

Now g has order pn, where n;::: £. But pe(g + 8) =peg= 0 in G/8, so there is 
some s E 8 with P'·g = s. By purity, there is s' E 8 with peg= pes'. If we define 
z = g - s', then pe z = 0 and z + 8 = g + 8 = g. If z has order pm, then m 2: £ 
because z t-+ g; since pez = 0, the order of z is equal to pe. 

For each i, choose a lifting Zi E G with order Zi = order Xi, and define T by 

T=(zi, ... ,zq)· 

Now 8 + T = G, because G is generated by 8 and the Zi. To see that G = 8 EB T, 
it suffices to prove that 8 n T = {O}·. If y E 8 n T, then y = Li mizi, where 
mi E Z. Now y E 8, and so Limixi = 0 in G/8. Since G/8 is the direct sum 
(x1) EB··· EB (xn), Proposition B-3.6 says that each miXi = 0. Therefore, using the 
fact that Zi and Xi have the same order, miZi = 0 for all i, and hence y = 0. 

Finally, G = 8EBT implies 8(G) = 8(8)+8(T) = 1+8(T), so that 8(T) < 8(G). 
By induction, T is a direct sum of cyclic groups, and this completes the proof. • 

Theorem B-3.14 (Basis Theorem6 ). Every finitely generated abelian group G 
is a direct sum of primary cyclic and infinite cyclic groups. 

6 The Basis Theorem was proved by Schering in 1868 and, independently, by Kronecker in 
1870. 
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Proof. By Corollary B-3.4, G = tG EB F, where F is free abelian of finite rank. 
The Primary Decomposition shows that tG is a direct sum of primary groups, and 
Theoerem B-3.13 shows that each primary component is a direct sum of cyclics. • 

Here is a nice application of the Basis Theorem. The proof uses Dirichlet's 
Theorem on primes in arithmetic progressions: If gcd( a, d) = 1, then there are 
infinitely many primes of the form a+ nd (Borevich-Shafarevich [10], p. 339). 

Recall that the group of units in Zm is 

U(Zm) = {[k] E Zm: gcd(k, m) = l}. 

Theorem B-3.15. If G is a finite abelian group, then there exists an integer m7 

such that G is isomorphic to a subgroup of U(Zm)· 

Proof. Consider the special case when G is a cyclic group of order d. By Dirichlet's 
Theorem, there is a prime p of the form 1 +nd, and sod I (p-1). Now the group of 
units U(Zp) is a cyclic group of order p-1, by Corollary A-3.60, and so it contains a 
cyclic subgroup of order d, by Lemma A-4.89. Thus, G is isomorphic to a subgroup 
of U(Zp) in this case. 

By the Basis Theorem, G ~ EB:=l Ci, where Ci is a cyclic group of order di, say. 
By Dirichlet's Theorem, for each i ~ k, there exists a prime Pi with Pi= 1 mod di. 
Moreover, since there are infinitely many such primes for each i, we may assume 
that the primes P1, ... , Pk are distinct. By Theorem A-4.84 (essentially, the Chinese 
Remainder Theorem), Zm ~ Zp1 EB · · · EB ZPk, where m = P1 · · ·Pk, and so 

U(Zm) ~ U(Zpi) EB··· EB U(Zpk). 

Since Ci is isomorphic to a subgroup of U(Zpi) for all i, we have G !:>/ EBi Ci 
isomorphic to a subgroup of EBi U(Zp;) ~ U(Zm)· • 

There are shorter proofs of the Basis Theorem; here is one of them (one reason 
we have given the longer proof above is that it fits well with the upcoming proof of 
the Fundamental Theorem). 

Lemma B-3.16. A finite p-primary abelian group G is cyclic if and only if it has 
a unique subgroup of order p. 

Proof. Recall Theorem A-4.90: if G is an abelian group of order n having at most 
one cyclic subgroup of order p for every prime divisor p of n, then G is cyclic. This 
lemma follows at once when n is a power of p. The converse is Lemma A-4.89. • 

We cannot remove the hypothesis that G be abelian, for the group Q of quater
nions is a 2-group having a unique subgroup of order 2. However, if G is a (possibly 
nonabelian) finite p-group having a unique subgroup of order p, then G is either 
cyclic or generalized quaternion. The finiteness hypothesis cannot be removed, for 
the Priifer group Z(p00 ) is an infinite abelian p-primary group having a unique 
subgroup of order p. 

7The proof shows that m can be chosen to be squarefree. 
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The next lemma follows easily from the Basis Theorem and the fact (proved 
in Lemma B-3.10) that A is a pure subgroup. However, we want this alternative 
proof of the Basis Theorem to be self-contained. 

Lemma B-3.17. Let G be a finite p-primary abelian group. If a is an element of 
largest order in G, then A= (a) is a direct summand of G. 

Proof. The proof is by induction on IGI ;::: 1; the base step IGI = 1 is trivially true. 
We may assume that G is not cyclic, for any group is a direct summand of itself (with 
complementary summand { 0}). Now A = (a) has a unique subgroup of order p; call 
it C. By Lemma B-3.16, G contains another subgroup of order p, say C'. Of course, 
AnC' = {O}. By the Second Isomorphism Theorem, (A+C')/C' ~ A/(AnC') ~A 
is a cyclic subgroup of G / C'. But no homomorphic image of G can have a cyclic 
subgroup of order greater than IAI (for no element of an image can have order larger 
than the order of a). Therefore, (A+ C') / C' is a cyclic subgroup of G / C' of largest 
order and, by the inductive hypothesis, it is a direct summand; the Correspondence 
Theorem gives a subgroup B/C', with C' ~ B ~ G, such that 

G/C' = ((A+ C')/C') EB (B/C'). 

We claim that G =A EBB. Clearly, G =A+ C' + B =A+ B (for C' ~ B), while 
An B ~An ((A+ C') n B) ~An G' = {O}. • 

Theorem B-3.18 (Basis Theorem Again). Every finitely generated abelian 
group G is a direct sum of primary and infinite cyclic groups. 

Proof. As before, Corollary B-3.4 and the Primary Decomposition reduce the prob
lem, allowing us to assume G is p-primary. The proof is by induction on IGI ;::: 1, 
and the base step is obviously true. To prove the inductive step, let p be a prime 
divisor of jGj. Now G =Gp EB H, where pf IHI (either we can invoke the Primary 
Decomposition or reprove this special case of it). By induction, His a direct sum of 
primary cyclic groups. If Gp is cyclic, we are done. Otherwise, Lemma B-3.17 ap
plies to write Gp =A EBB, where A is primary cyclic. By the inductive hypothesis, 
B is a direct sum of primary cyclic groups, and the theorem is proved. • 

The shortest proof of the Basis Theorem that I know is due to Navarro (83]. 
Another short proof is due to Rado (91]. 

Exercises 

* B-3.1. (i) Show that GL(2, Z), the multiplicative group of all 2 x 2 matrices A over Z 
with det(A) = ±1, contains elements A, B of finite order such that AB has infinite 
order. Conclude that the set of all elements of finite order in a nonabelian group 
need not be a subgroup. 

(ii) Give an example of a nonabelian group G for which Gp, the subset of all the 
elements in G having order some power of a prime p, is not a subgroup. 

* B-3.2. Let G be a p-primary abelian group. If G = pG, prove that either G = {O} or G 
is infinite. 
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* B-3.3. Let G be an abelian group, not necessarily primary. Define a subgroup S ~ G to 
be a pure subgroup if, for all m E Z, 

SnmG=mS. 

Prove that if G is a p-primary abelian group, then a subgroup S ~ G is pure as just 
defined if and only if Sn pnG = pn S for all n 2 0 (the definition on page 364). 

* B-3.4. Prove that a subgroup of a finite abelian group is a direct summand if and only 
if it is a pure subgroup. 

Hint. Modify the proof of the Basis Theorem. 

B-3.5. If G is a torsion-free abelian group, prove that a subgroup S ~ G is pure if and 
only if G/S is torsion-free. 

B-3.6. Let R be a PID, and let M be an R-module, not necessarily primary. Define a 
submodule S ~ M to be a pure submodule if Sn rM = rS for all r ER. 

(i) Prove that if Mis a (p)-primary module, where (p) is a nonzero prime ideal in R, 
then a submodule S ~ M is pure as just defined if and only if S n pn M = pn S for 
all n 2 0. 

(ii) Prove that every direct summand of M is a pure submodule. 

(iii) Prove that the torsion submodule tM is a pure submodule of M. 

{iv) Prove that if M/S is torsion-free, then Sis a pure submodule of M. 

(v) Prove that if Sis a family of pure submodules of a module M that is a chain under 
inclusion (that is, if S, S' E S, then either S ~ S' or S' ~ S), then Uses S is a 
pure submodule of M. 

(vi) Give an example of a pure submodule that is not a direct summand. 

B-3.7. (i) If Fis a finitely generated free R-module, where Risa PID, prove that every 
pure submodule of F is a direct summand. 

(ii) Let R be a PID and let M be a finitely generated R-module. Prove that a sub
module S ~ M is a pure submodule of M if and only if S is a direct summand of 
M. 

B-3.8. (i) Give an example of an abelian group G having pure subgroups A and B such 
that An B is not a pure subgroup of G. 

Hint. Let G = Z4 EB Z4. 

(ii) Give an example of an abelian group G having direct summands A and B such 
that An Bis not a direct summand of G. 

* B-3.9. Let G be a torsion-free abelian group. 

(i) Prove that the intersection of any family of pure subgroups of G is also a pure 
subgroup of G. 

(ii) If X ~ G is any subset of G, define (X)*, the pure subgroup generated by X, 
to be the intersection of all the pure subgroups of G containing X. Prove that 

(X) * = {g E G : mg E (X) for some m > O}. 

(In the proof of Theorem B-3.2, the subgroup U is the pure subgroup generated by 
Vn+i·) 
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* B-3.10. Let G be the Prilfer group Z(p00 ), the multiplicative group of all p"th complex 
roots of unity for all natural numbers s. 

(i) Prove that G = pG. 

(ii) Prove that G has a unique subgroup of order p. 

(iii) Prove that the torsion subgroup of JR/Z is Q/Z. 

(iv) Prove that G is the p-primary component of Q/Z. Conclude that 

Q/Z ~ EB Zpoo. 
p 

* B-3.11. Let p be prime and let q be relatively prime top. Prove that if G is a p-primary 
group and g E G, then there exists x E G with qx = g. 

B-3.12. The proof of Theorem B-3.13 contains the following result: if Sis a pure subgroup 
of a p-primary abelian group G, then every g +SE G/S has a lifting g E G with g and 
g + S having the same order. Prove the converse: if S is a subgroup of G such that every 
element of G/S has a lifting of the same order, then Sis a pure subgroup. 

* B-3.13. If G is a finite abelian group (not necessarily primary) and x E G has maximal 
order (that is, no element in G has larger order), prove that ( x) is a direct summand of G. 

* B-3.14. Let G be a possibly infinite abelian group. Prove that tG is a pure subgroup 
of G. (There exist abelian groups G whose torsion subgroup tG is not a direct summand, 
so that a pure subgroup need not be a direct summand.) 

Fundamental Theorem 

When are two finitely generated abelian groups G and H isomorphic? By the Basis 
Theorem, these groups are direct sums of cyclic groups, and so our first guess is 
that G ~ H if they have the same number of cyclic summands of each type. Now 
we know that the number of infinite cyclic summands depends only on G (for it 
is equal to rank(G/tG)). Perhaps G and H have the same number of finite cyclic 
summands? This hope is dashed by Theorem A-4.84, which says that if m and 
n are relatively prime, then Zmn ~ Zm $Zn; for example, .Z6 ~ Z2 $ Z3. Thus, 
we retreat and try to count primary cyclic summands. But can we do this? Why 
should two decompositions of a finite p-primary group have the same number of 
summands of order p2 or p17? We are asking whether there is a unique factorization 
theorem here, analogous to the Fundamental Theorem of Arithmetic. 

Elementary Divisors 

Before stating the next lemma, recall that G / pG is a vector space over IF P and 
that we have defined 

o(G) = dimFv(G/pG). 

In particular, o(pG) = dim(pG/p2G) and, more generally, 

o(pnG) = dim(pnG/pn+1c). 

Let us denote a cyclic group of order pn by 
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Lemma B-3.19. Let G be a finite p-primary abelian group, let G = ffij Cj, where 
each Cj is cyclic, and let pt be the largest order of any of the cyclic summands Cj. 
If bn;::: 0 is the number of summands Cj isomorphic to C(pn), then 

8(pnG) = bn+l + bn+2 + · · · + bt. 

Proof. Let Bn be the direct sum of all Cj isomorphic to C(pn), if any. Since G is 
finite, there is some t with 

Now 
pnG = pn Bn+l EB .•. EB pn Bt, 

because pn Bj = {O} for all j :::; n. Similarly, 

pn+IG = pn+l Bn+2 EB •.• EB pn+l Bt. 

By Proposition B-2.20, pnG/pn+ic is isomorphic to 

(pn Bn+i!Pn+l Bn+i) EB (pn Bn+2/Pn+l Bn+2) EB .•. EB (pn Bt/pn+l Bt) 

(note that the first summand is just pn Bn+l because pn+l Bn+l = {O} ). By Exer
cise B-3.17 on page 377, 8(pnBm/Pn+1Bm) = 8(pnBm) = bm for all n < m; since 8 
is additive over direct sums, we have 8(pnG) = bn+l + bn+2 + · · · + bt. • 

The numbers bn can now be described in terms of G. 

Definition. Let G be a finite p-primary abelian group, where p is prime. For 
n;::: 0, define8 

Lemma B-3.19 shows that 8(pnG) = bn+l + · · · + bt and 8(pn+1G) = bn+2 + 
· · · + bt, so that U(n, G) = bn+l· 

Theorem B-3.20. If p is prime, any two decompositions of a finite p-primary 
abelian group G into direct sums of cyclic groups have the same number of cyclic 
summands of each type. More precisely, for each n ;::: 0, the number of cyclic 
summands having order pn+l is U(n, G). 

Proof. By the Basis Theorem, there exist cyclic subgroups Ci with G = ffii Cj. 
Lemma B-3.19 shows, for each n;::: 0, that the number of Cj having order pn+l is 
U(n, G), a number that is defined without any mention of the given decomposition 
of G into a direct sum of cyclics. Thus, if G = ffik Dk is another decomposition 
of G, where each Dk is cyclic, then the number of Dk having order pn+l is also 
U(n, G), as desired. • 

Corollary B-3.21. If G and H are finite p-primary abelian groups, then G ~ H 
if and only if U(n, G) = U(n, H) for all n 2 0. 

8 A theorem of Ulm [57] classifies all countable p-primary abelian groups, using Ulm invariants 
which generalize Un(n, G). Our proof of the F\indamental Theorem is an adaptation of the proof 
of Ulm's Theorem given in Kaplansky [57], p. 27. 
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Proof. If cp : G ---+ H is an isomorphism, then cp(pnG) = pn H for all n ;::: 0, and 
so cp induces isomorphisms, for all n ;::: 0, of the 1Fp-vector spaces pnG/pn+lG ~ 
pn H/pn+l H by png + pn+lG H pncp(g) + pn+l H. Thus, their dimensions are the 
same; hence, 

U(n, G) = dim(pnG/pn+lG) - dim(pn+1Gjpn+2G) 

= dim(pn H / pn+ 1 H) - dim(pn+l H / pn+2 H) 

= U(n,H). 

Conversely, assume that U(n, G) = U(n, H) for all n ;::: 0. If G = ffii Ci and 
H = ffij Cj, where the Ci and Cj are cyclic, then Lemma B-3.19 shows that the 
number of summands of each type is the same, and so it is a simple matter to 
construct an isomorphism G ---+ H. • 

Definition. If G is a p-primary abelian group, then its elementary divisors are 
the numbers in the sequence 

U(O, G), U(l, G), ... , U(t - 1, G), 

where pt is the largest order of a cyclic summand of G. 

If the elementary divisors of a finite p-primary abelian group G are U(O, G), 
U(l, G), ... , U(t - 1, G), then G is the direct sum of U(O, G) cyclic groups isomor
phic to C(p), U(l, G) cyclic groups isomorphic to C(p2), •• • , and U(t - 1, G) cyclic 
groups isomorphic to C(pt). For example, 

G = C(p) EB C(p) EB C(p) EB C(p2 ) EB C(p4 ) EB C(p4 ) 

is a p-group G with U(O, G) = 3, U(l, G) = 1, U(2, G) = 0, and U(3, G) = 2. We 
also describe G by the string 

( 2 4 4) p,p,p,p ,p ,p . 

Notice that the product of all the numbers in the string is IGI. 

We now extend the definition of elementary divisors to groups which may not 
be primary. 

Definition. If G is a finite (not necessarily primary) abelian group, then its el
ementary divisors are the elementary divisors of its primary components Gp, 
which we denote by 

If G is a finite abelian group G of order 

IGI = p~1pe2 ... p':;{'' 

then Up; (n, G) is the number of summands isomorphic to C(pf+1). For example, a 
group 

G = C(2) EB C(2) EB C(4) EB C(9) EB C(27) EB C(27) EB C(81) 

has elementary divisors U2(0, G) = 2, U2 (1, G) = 1, U3(0, G) = 0, U3(l, G) = 2, 
U3(2, G) = 1, U3(3, G) = 1. We may also describe Gas 

(2, 2, 22 ; 32 , 33, 33, 34 ) 

(a semicolon separates prime powers corresponding to different primes). 
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We can now classify all, not necessariy primary, finite abelian groups. 

Theorem B-3.22 (Fundamental Theorem of Finite Abelian Groups). Two 
finite abelian groups G and H are isomorphic if and only if, for each prime p, they 
have the same elementary divisors; that is, any two decompositions of G and H 
into direct sums of primary cyclic groups have the same number of such summands 
of each order. 

Proof. 9 By the Primary Decomposition, G ~ H if and only if Gp ~ Hp for every 
prime p. The result now follows from Corollary B-3.21. • 

Assemble the previous results. 

Theorem B-3.23 (Fundamental Theorem of Finitely Generated Abelian 
Groups). Two finitely generated abelian groups G and H are isomorphic if and 
only if they have the same number of infinite cyclic summands and their torsion 
subgroups have the same elementary divisors; that is, any two decompositions of G 
and H into direct sums of primary and infinite cyclic groups have the same number 
of such summands of each order. 

Example B-3.24. How many abelian groups are there of order 72? Now 72 = 2332 , 

so that any abelian group of order 72 is the direct sum of a 2-group of order 8 and a 
3-group of order 9. Up to isomorphism, there are three groups of order 8: P1, P2 , P3, 
described by the strings 

(2, 2, 2), (2, 4), or (8) 

(the groups have elementary divisors U2(0, P1) = 3 and U2(n, Pi)= 0 for all n;::: 1; 
U2(0, P2) = 1, U2(l, P2) = 1, U2(n, P2) = 0 for all n 2: 2; or U2(2, P3) = 1, 
U2(n, P3) = 0 for all n-:/::- 2), and two groups Q1, Q2 of order 9: 

(3,3) or (9) 

(with elementary divisors U3(0, Q1) = 2 and U3(n, Q1) = 0 for all n ;::: 1; or 
U3(l, Q2) = 1, and U2(n, Q2) = 0 for all n -:/::- 1). Therefore, there are six abelian 
groups of order 72. ~ 

Invariant Factors 

Here is a second type of decomposition of a finite abelian group into a direct 
sum of cyclics, which does not mention primary groups. 

Proposition B-3.25. Every finite (not necessarily primary) abelian group G is a 
direct sum of cyclic groups, 

where r;::: 1, C(dj) is a cyclic group of order di, and 

d1 I d2 I · · · I dr. 

9The Fundamental Theorem was first proved by Frobenius and Stickelberger in 1878. 
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Proof. Since the strings for different primary components of G may have different 
lengths, insert "dummy" powers P? = 1 at the front, if necessary, so that all the 
strings have the same length, say r. Make an m x r matrix: 

Elem(G) = ~
e(ll) 

P1 
e(21) 

P2 

e(ml) 
m 

e(lr) I P1 
e(2r) 

P2 

e(mr) 
··· Pm 

, 

where the ith row lists the elementary divisors of Gp; and 0:::; e(il) :::; e(i2) :::; · · · :::; 
e( ir) for all i. 

Define di, for 1 :::; j :::; r, to be the product of all the entries in the jth column 
of Elem(G): 

d e(lj) e(2j) e(mj) 
i = P1 P2 .. ·Pm 

Note that di I dj+1, for 

d e(lj) e(2j) e(mj) I e(lj+l) e(2j+l) e(mj+l) d 
i = P1 P2 · ··Pm P1 P2 · ··Pm = i+Ii 

because e( ij) :::; e( i j + 1) for all i, j. 

Finally, define 

C(di) = C(p~(li)) EB C(p~(2il) EB··· EB C(p~mil). 

Theorem A-4.84 says that each C(dj) is cyclic of order di. • 

Corollary B-3.26. Every noncyclic finite abelian group G has a subgroup isomor
phic to C(k) EB C(k) for some k > 1. 

Proof. By Proposition B-3.25, G ~ C(d1) EB C(d2) EB··· EB C(dr), where r 2: 2, 
because G is not cyclic. Since di I d2, the cyclic group C(d2) contains a subgroup 
isomorphic to C(d1), and so G has a subgroup isomorphic to C(d1) EB C(d1). • 

Example B-3.27. We illustrate the construction of three of the six groups in 
Example B-3.24. The group with strings (2, 2, 2) and (3, 3) has matrix 

[2 2 2] 
1 3 3 . 

The invariant factors are 2 I 6 I 6. 

The group with strings (2, 4) and (3, 3) has matrix 

[; ~] . 
The invariant factors are 6 I 12. 

The group with strings (2, 2, 2) and (9) has matrix 

[~ ~ ~] . 
The invariant factors are 2 I 2 I 18. <Ill 
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Definition. If G is a finite abelian group and 

G = C(di) EB C(d2) EB··· EB C(dr), 

where r :'.'.: 1, C(dj) is a cyclic group of order dj > 1, and di I d2 I · · · I dr, then 
di, d2, ... , dr are called the invariant factors of G. 

Note that IGI = did2 · · · dr. We will soon see that invariant factors really are 
invariant. 

There is a nice interpretation of the last invariant factor. 

Definition. If G is a finite abelian group, io then its exponent is the smallest 
positive integer e for which eG = {O}; that is, eg = 0 for all g E G. 

Corollary B-3.28. If G = C(di) EB C(d2) EB··· EB C(dr) is a finite abelian group, 
where C(dJ) is a cyclic group of order dj and di I d2 I · · · I dr, then dr is the 
exponent of G. 

Proof. Since dj I dr for all j, we have drC(dj) = {O} for all j, and so drG = {O}. 
On the other hand, there is no number e with 1:::; e < dr with eC(dr) = {O}, and 
so dr is the smallest positive integer annihilating G. • 

We now show that finite abelian groups are classified by invariant factors. 

Theorem B-3.29 (Fundamental Theorem II). Two finite abelian groups are 
isomorphic if and only they have the same invariant factors. 

Proof. Let IGI = lpf1 · · · p'I;:. It suffices to construct the elementary divisors of a 
finite abelian group G from the invariant factors dj = p~(iJ)p~(2J) · · · p~mj). For all 
j with 1 :::; j < r, we have 

e(i j+l) e(2j+i) e(mj+i) 
Pi P2 ···Pm e(ij+i)-e(i j) e(mj+l)-e(mj) 

e(i j) e(2j) e(mj) =Pi · · ·Pm 
Pi P2 ···Pm 

By the Fundamental Theorem of Arithmetic, we know the exponents for fixed i: 

e(ir)-e(ir-1), e(ir-1)-e(ir-2), ... , e(i2)-e(il). 

Adding, we have telescoping sums for all j > 1; hence, 

(17) e(ij) - e(i 1) for all i,j. 

Since the product of the entries in the ith row is IGPi I = pfi, the product of all the 
entries in Elem(G) is IGI; hence, IGI = did2 · · · dr = pf1 · · · p!/;,'. Finally, 

91 92 9m 
Pi P2 ... Pm _ 91-e(lll ... 9m-e(mi) 

e(i i) e(2 i) e(m i) - Pi Pm · 
Pi P2 ···Pm 

IGI 

Thus, we can calculate the exponents 9i - e(i 1), and all e(i 1) can be computed; 
using Eq. (17), we can compute e(ij) for all ij and, hence, Elem(G). • 

10This definition applies to nonabelian groups G as well; it is the smallest positive integer e 
with xe = 1 for all x E G. 
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Assembling previous results yields the following version of the Fundamental 
Theorem. 

Theorem B-3.30 (Finitely Generated Abelian Groups). Two finitely gen
erated abelian groups G and H are isomorphic if and only if they have the same 
number of infinite cyclic summands and their torsion subgroups have the same in
variant factors. 

Example B-3.31. Let us now start with invariant factors and compute elementary 
divisors. Consider the group G with invariant factors 

d1 I d2 I d3 = 2 I 6 I 6. 

Now IGI = 72 = 2 · 6 · 6 = 2332. Factoring, d1 = 2, d2 = 2 · 3, and d3 = 2 · 3. As in 
the proof of Theorem B-3.29, we can compute the exponents e(ij), and 

Elem(G) = [~ ~ ~] . .._ 

The Basis Theorem is no longer true for abelian groups that are not finitely 
generated; for example, the additive group Q of rational numbers is not a direct 
sum of cyclic groups. 

Exercises 

* B-3.15. Let G = (a) be a cyclic group of finite order m. Prove that G/nG is a cyclic 
group of order d, where d = gcd(m, n). 

Hint. First show that nG is generated by na and compute its order. 

* B-3.16. For an abelian group G and a positive integer n, define 

G[n) = {g E G : ng = O}. 

(i) Prove that G[n) is a subgroup of G. 

(ii) If G = (a) has order m, prove that G[n) = ((m/d)a), where d = (m,n), and 
conclude that G[n) ~ Zd. 

* B-3.17. Prove that if E =Em= (xi) EB··· EB (xbm) is a direct sum of bm cyclic groups 
of order pm, then for n < m, the cosets pnXi + pn+i E for 1 ::; i ::; bm form a basis for 
pn E/pn+i E. Conclude that o(pn Em) = bm when n < m. (Recall that if G is a finite 
abelian group, then G/pG is a vector space over lFp and o(G) = dim(G/pG).) 

* B-3.18. (i) If G and H are finite abelian groups, prove, for all primes p and all n :'.:'. 0, 
that Up(n, G EB H) = Up(n, G) + Up(n, H). 

(ii) If A, E, and Care finite abelian groups, prove that AEBE ~ AEBC implies E ~ C. 

(iii) If A and E are finite abelian groups, prove that A EB A~ E EBE implies A~ E. 

B-3.19. If n is a positive integer, then a partition of n is a sequence of positive integers 
ii ::; i2 ::; · · · ::; ir with ii + i2 + · · · + ir = n. If p is prime, prove that the number of 
nonisomorphic abelian groups of order pn is equal to the number of partitions of n. 

B-3.20. Prove that there are, up to isomorphism, exactly 14 abelian groups of order 288. 
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B-3.21. Prove the uniqueness assertion in the Fundamental Theorem of Arithmetic by 
applying the Fundamental Theorem of Finite Abelian Groups to G = Zn. 

B-3.22. (i) If G is a finite abelian group, define 

vk(G) = the number of elements in G of order k. 

Prove that two finite abelian groups G and H are isomorphic if and only if Vk ( G) = 
vk(H) for all integers k. 

Hint. If B is a direct sum of k copies of a cyclic group of order pn, then how many 
elements of order pn are in B? 

(ii) Give an example of two nonisomorphic not necessarily abelian finite groups G and 
H for which vk(G) = vk(H) for all integers k. 
Hint. Take G of order p3 . 

B-3.23. Let G be an abelian group with G = Hi EB H2 EB · · · EB Ht, where the Hi are 
subgroups of G. 

(i) Prove that G(p) = Hi(p) EB H2(p) EB··· EB Ht(p), where G(p) = {g E G: pg= O}. 

(ii) Using the notation of Lemma B-3.19, prove, for all n :'.'.'. 0, that 

pnG n G(p) = (pnG n Bi(pl) EB (pnG n B2(pl) EB··· EB (pnG n Bt(pl) 

= (pn Bi n Bi [pl) EB (Pn B2 n B2 [pl) EB · · · EB (pn Bt n Bt [pl). 

(iii) If G is a finite p-primary abelian group, prove, for all n :'.'.'. 0, that 

. ( pnGnG(p) ) 
Up(n, G) = dim pn+IG n G(p) . 

* B-3.24. Let M be a (p)-primary R-module, where R is a PID and (p) is a prime ideal. 
Define, for all n :'.'.'. 0, 

V(pJ(n, M) =dim ((pn Mn M(p))/(pn+I Mn M(p))), 

where M(p) = {m EM: pm= O}. 

(i) Prove that V(p)(n,M) = U(p)(n,M) when Mis finitely generated. (The invariant 
V(p)(n, M) is introduced because we cannot subtract infinite cardinal numbers.) 

(ii) Let M = ffiiEI Ci be a direct sum of cyclic modules Ci, where I is any index set, 
possibly infinite. Prove that the number of summands Ci having order ideal (pn) 
is V(p)(n, M), and hence it is an invariant of M. 

(iii) Let M and M' be torsion modules that are direct sums of cyclic modules. Prove 
that M ~ M' if and only if V(pJ(n,M) = V(p)(n,M') for all n :'.'.'. 0 and all prime 
ideals (p). 

From Abelian Groups to Modules 

The two versions of the Fundamental Theorem of Finite Abelian Groups, using 
elementary divisors or invariant factors, can be generalized to finitely generated 
modules ever PIDs. This is not mere generalization for its own sake. When applied 
to k[x]-modules, where k is a field, the module versions will yield canonical forms 
for matrices: invariant factors yield rational canonical forms; elementary divisors 
yield Jordan canonical forms. Not only do the theorems generalize, their proofs 
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generalize as well. After presenting a dictionary translating group terms into the 
language of modules, we will prove the module version of the primary decomposition 
in detail. This example should suffice to persuade readers that there is no difficulty 
in upgrading the group theorems in the previous section to their module versions. 

Even though some things we say are valid for more general rings, the reader 
may assume that R is a PID for the rest of this section. 

Definition. Let R be a commutative ring, and let M be an R-module. If m EM, 
then its order ideal (or annihilator) is 

ann(m) = {r ER: rm= O}. 

We say that m has finite order (or is a torsion element) if ann(m) "I (O); other
wise, m has infinite order. 

When a commutative ring R is regarded as a module over itself, its identity 
element 1 has infinite order, for ann(l) = (0). 

Let us see that order ideals generalize the group-theoretic notion of the order 
of an element. 

Proposition B-3.32. Let G be an abelian group. If g E G has finite order d, then 
the principal ideal ( d) in Z is equal to ann(g) when G is viewed as a Z-module. 

Proof. If k E ann(g), then kg = O; thus, d I k, by Proposition A-4.23, and so 
k E (d). For the reverse inclusion, if n E (d), then n = ad for some a E Z; hence, 
ng = adg = 0, and son E ann(g). • 

If an element g in an abelian group G has order d, then the cyclic subgroup 
(g) is isomorphic to Z/(d). A similar result holds for cyclic R-modules M = (m). 
Define cp: R -+ M by r 1-t rm. Then cp is surjective, ker cp = ann( m), and the First 
Isomorphism Theorem gives 

(18) M = (m) ~ R/ ann(m). 

Definition. If M is an R-module, where R is a domain, then its torsion sub
module tM is defined by 

tM = {m EM: m has finite order}. 

Proposition B-3.33. If R is a domain and M is an R-module, then tM is a 
submodule of M. 

Proof. If m, m' E tl\II, then there are nonzero elements r, r' E R with rm = 0 
and r'm' = 0. Clearly, rr'(m + m') = 0. Since R is a domain, rr' "I 0, and so 
ann(m + m') "I (O); therefore, m + m' E tM. 

Let m E tM and r E ann(m), where r -I 0. Ifs ER, then sm E tM, because 
r(sm) = s(rm) = 0. • 

Proposition B-3.33 may be false if R is not a domain. For example, let R = Z6. 
Viewing Z6 as a module over itself, both [3) and [4) have finite order: [2) E ann([3)) 
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and [3] E ann([4]). But [3] + [4] = [1] has infinite order because ann(l) = (0) in any 
commutative ring. 

Definition. Let R be a domain and let M be an R-module. Then M is a torsion 
module if tM = M, while M is torsion-free if tM = {O}. 

Proposition B-3.34. Let M and N be R-modules, where R is a domain. 11 

(i) M/tM is torsion-free. 

(ii) If M ~ N, then tM ~ tN and M/tM ~ N/tN. 

Proof. 

(i) Assume that m + tM =f. 0 in M/tM; that is, m ~ tM so that m has 
infinite order. If m + tM has finite order, then there is some r E R with 
r =f. 0 such that 0 = r(m + tM) =rm+ tM; that is, rm E tM. Thus, 
there is s ER withs =f. 0 and with 0 = s(rm) = (sr)m. But sr =f. 0, since 
R is a domain, and so ann(m) =f. (O); this contradicts m having infinite 
order. 

(ii) If cp: M ---+ M' is an isomorphism, then cp( tM) ~ tM', for if rm = 0 with 
r =f. 0, then rcp(m) = cp(rm) = 0 (this is true for any R-homomorphism). 
Hence, cpltM: tM ---+ tM' is an isomorphism (with inverse cp- 11tM'). 
For the second statement, the map cp* : M /tM ---+ M' /tM', defined by 
cp* : m + tM H cp( m) + tM', is easily seen to be an isomorphism. • 

Thus, when R is a domain, every R-module M is an extension of a torsion 
module by a torsion-free module; there is an exact sequence 

0---t tM-t M-t M/tM-t 0. 

Much of our discussion of the Basis Theorem and the Fundamental Theorem 
for abelian groups considered finite abelian groups, but finite does not have an 
obvious translation into the language of modules. But we can characterize finite 
abelian groups. 

Proposition B-3.35. An abelian group G is finite if and only if it is finitely 
generated torsion. 

Proof. If G is finite, it surely is finitely generated. By Corollary A-4.46 to La
grange's Theorem, each g E G has finite order; hence, G is torsion. 

Conversely, assume that G = (g1, ... , Yt) is torsion, so there are positive inte
gers di with digi = 0 for all i. Let F be the free abelian group with basis xi, ... , Xt, 

and define h: F ---+ G by h: Xi H Yi· Now h is surjective, for imh contains a 
set of generators of G. Since dF ~ ker h, where d = TI di, there is a surjection 
F / dF ---+ F / ker h, namely, enlargement of coset u + dF H u + ker h, where u E F. 
But F/dF is finite (for IF/dFI = td), and so its image F/kerh ~ G is also finite . 

• 
11 There is a generalization of the torsion submodule, called the singular submodule, which 

is defined for left R-modules over any not necessarily commutative ring. See Dauns [24], pp. 231-
238. 
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One more term needs translation. 

Definition. If Mis an R-module, then its annihilator is 

ann(M) = {r ER: rM = {O}}. 

It is easy to see that ann(M) is an ideal, and if R is a PID, then ann(M) = (a); it 
is called the exponent of M. 

Here is our dictionary. 

abelian group G 

finite order d 

cyclic group C(d) of order d 

Zp = Z/(p) = 1Fp for prime p 

finite group 

exponent of group G 

R-module M 

order ideal ( d) 

cyclic module C(d) ~ R/(d) 

Rf (p) for irreducible p 

finitely generated torsion module 

ann(M) of module M 

Having completed the dictionary, we now illustrate upgrading a theorem about 
abelian groups to one about modules over a PID. 

Recall that every PID Risa UFD, so that every nonzero prime ideal in R has 
the form (p) for some irreducible element p E R; moreover, two irreducible elements 
generate the same (prime) ideal if and only if they are associates. 

Theorem B-3.36. Every finitely generated torsion-free module over a PID is a 
free module. 

Proof. See the proof of Theorem B-3.2. • 

Definition. Let R be a PID and M be an R-module. If (p) is a nonzero prime ideal 
in R, then Mis (p)-primary if, for each m EM, there is n ~ 1 with pnm = 0. 

If M is any R-module, then its (p )-primary component is 

M(p) = {m EM: pnm = 0 for some n ~ 1}. 

Every nonzero prime ideal (p) in a PID R is a maximal ideal, and so the quotient 
ring R/(p) is a field; it is the analog of Zp. It is clear that (p)-primary components 
are submodules. If we do not want to specify the prime (p), we will say that a 
module is primary (instead of (p)-primary). 

Proposition B-3.37. Two torsion modules M and M' over a PID are isomorphic 
if and only if M(p) ~ M(P) for every nonzero prime ideal (p). 

Proof. See the proof of Proposition B-3.8. • 

The translation from abelian groups to modules is straightforward, but let us 
see this explicitly by generalizing the primary decomposition for torsion abelian 
groups, Theorem B-3.5, to modules over PIDs. 
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Theorem B-3.38 (Primary Decomposition). If Risa PID, then every torsion 
R-module M is the direct sum of its (p)-primary components: 

Proof. If m E M is nonzero, its order ideal ann( m) = ( d), for some nonzero d E R. 
By unique factorization, there are irreducible elements pi, ... ,pn, no two of which 
are associates, and positive exponents e1 , ... , en with 

By Proposition A-3.124, (Pi) is a prime ideal for each i. Define ri = dfp:i, so 
that p:iri = d. It follows that rim E M(p;) for each i. But the gcd of the elements 
r1, ... , rn is 1, and so there are elements s1, ... , Sn ER with 1 = Ei Siri. Therefore, 

m = L:sirim E (LJM(p))· 
i (p) 

For each prime (p), write H(p) = (LJ(q)#(p) M(q))· To prove that Mis a direct 
sum, we use Exercise B-7.11 on page 671: it suffices to prove that if 

m E M(p) n H(p) 

for all p, then m = 0. Since m E M(p)• we have ptm = 0 for some e 2 O; since 
m E H(P)> we have um = 0, where u is divisible only by the prime divisors of d 
not equal to p. But pl and u are relatively prime, so there exist s, t E R with 
1 = sp£ + tu. Therefore, 

m = (sp£ + tu)m = sp£m +tum= 0. • 

We can now state the module versions of the Basis Theorem and Fundamental 
Theorem of Finite Abelian Groups. 

Theorem B-3.39. Every finitely generated torsion R-module M, where R is a 
PID, is a direct sum of cyclic (p )-primary cyclic modules. 

Theorem B-3.40. Let R be a PID, and let M and N be finitely generated torsion 
R-modules. Then M ~ N if and only if they have the same elementary divisors; 
that is, any two decompositions of M and N into direct sums of primary cyclic 
modules have the same number of such summands of each order. 

If Mis an R-module, then 

M = C(d1) EB C(d2) EB··· EB C(dr), 

where r 2 1, C(dj) is a cyclic module of order (dj), and (d1) 2 (d2) 2 · · · 2 (dr)i 
that is, di I d2 I · · · I dr. The ideals (d1) 2 (d2) 2 · · · 2 (dr) are called the 
invariant factors of M. 

Theorem B-3.41. Let R be a PID, and let M and N be finitely generated torsion 
R-modules. Then M ~ N if and only they have the same invariant factors. 
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Corollary B-3.42. Let R be a PID, and let M be a finitely generated torsion R
module. If the invariant factors of M are (d1) 2 (d2) 2 .. · 2 (dr), then (dr) = 
ann(M); that is, (dr) is the module analog of the exponent of afinite abelian group. 

Proof. Corollary B-3.28 says that the exponent of a finite abelian group is the 
largest invariant factor. • 

Rational Canonical Forms 

In Appendix A-7, we saw that if T: V --+ V is a linear transformation and X = 
vi, ... , Vn is a basis of V, then T determines the n x n matrix A = x [T]x = [aij] 
whose jth column alj, a2j, ... , amj is the coordinate list of T( Vj) determined by X: 
T(vj) = E~=l %Vi· If Y is another basis of V, then the matrix B = y[T]y may 
be different from A, but Corollary A-7.38 says that A and B are similar; that is, 
there exists a nonsingular matrix P with B = PAP- 1 . 

Corollary A-7.38. Let T: V --+ V be a linear transformation on a vector space 
V over a field k. If X and Y are bases of V, then there is a nonsingular matrix P 
with entries ink, namely, P = y[lv]x, so that 

y[T]y = P(x[T]x)P-1 . 

Conversely, if B = PAP-1 , where B,A, and P are n x n matrices with entries 
in k and P is nonsingular, then there is a linear transformation T: kn --+ kn and 
bases X and Y of kn such that B = y [T]y and A = x [T]x. 

We now consider how to determine when two given matrices are similar. Recall 
Example B-l.19(iv): If T: V--+ Vis a linear transformation, where V is a vector 
space over a field k, then V is a k(x]-module: it admits a scalar multiplication by 
polynomials f(x) E k(x]: 

m m 

f(x)v = (Lcixi)v = LciTi(v), 
i=O i=O 

where T 0 is the identity map 1 v, and Ti is the composite of T with itself i times 
if i 2:: 1. We denote this k(x]-module by vr. 

We now show that if V is n-dimensional, then vr is a finitely generated torsion 
k(x]-module. To see that vr is finitely generated, note that if x = V1' ... , Vn is 
a basis of v over k, then x generates vr over k[x]; that is, vr = (v1, ... ,vn).12 

To see that vr is torsion, note that Corollary A-7.22 says, for each v E V, that 
the list v, T(v), T 2(v), ... , rn(v) must be linearly dependent (for it contains n + 1 
vectors). Therefore, there are Ci E k, not all 0, with E~=O ciTi(v) = 0, and this 
says that g(x) = E~=O cixi lies in the order ideal ann(v). 

An important special case of the construction of the k(x]-module vr arises 
from an n x n matrix A with entries ink. Define T: kn --+ kn by T(v) =Av (the 

12 Most likely, VT can be generated by a proper sublist of X, since to say that X generates 
V is to say, for each v E V, that v = L:;i aiVi for ai E k, while X generates vT says that 
v = L:;i /i(x)vi for fi(x) E k[x]. 
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elements of kn are n x 1 column vectors v and Av is matrix multiplication). This 
k(x]-module (kn)T is denoted by (kn)A; explicitly, the action is given by 

m m 

fv = (Lcixi)v = L:ciAiv. 
i=O i=O 

It is shown in Example B-l.19(iv) that VT~ (kn)A as k[x]-modules. 

We now interpret the results in the previous section (about finitely generated 
modules over general PIDs) for the special k(x]-modules vr and (kn)A. HT: V---+ V 
is a linear transformation, then a submodule w of vr is called an invariant 
subspace; in other words, f(T)W ~ W for all f E k[x]. We have shown that 
W is a subspace of V with T(W) ~ W, and so the restriction TIW is a linear 
transformation on W; that is, TIW: W---+ W. 

Definition. If A is an r x r matrix and B is an s x s matrix, then their direct 
sum A EBB is the (r + s) x (r + s) matrix 

AEBB=[i ~]· 
Lemma B-3.43. If vr = W EB W', where W and W' are submodules, then 

BuB1 [T]BuB 1 = B[TIW]B EB B1 [TIW']B 1 , 

where B = w1 , ... ,wr is a basis ofW and B' = w~, ... ,w~ is a basis of W'. 

Proof. Since W and W' are submodules, we have T(W) ~ W and T(W') ~ W'; 
that is, the restrictions TIW and TIW' are linear transformations on W and W', 
respectively. Since V = W EB W', the union B U B' is a basis of V. Finally, the 
matrix BUB'[T]BuB' is a direct sum: T(wi) E W, so that it is a linear combination 
of wi, ... , Wr, and hence it requires no nonzero coordinates from the wj; similarly, 
T(wj) E W', and so it requires no nonzero coordinates from the Wi· • 

When we studied permutations, we saw that the cycle notation allowed us 
to recognize important properties that are masked by the conventional functional 
notation. We now ask whether there is an analogous notation for matrices; for 
example, if vr is a cyclic k(x]-module, can we find a basis B of V so that the 
corresponding matrix B[T]B displays the order ideal of T? 

Lemma B-3.44. Let T: V ---+ V be a linear transformation on a vector space V 
over a field k, and let W be a submodule of vr. Then W is cyclic with generator v 
of finite order if and only if there is an integer s ;::: 1 such that 

v, Tv, T 2v, ... , Ts- 1v 

is a (vector space) basis ofW. If (Ts+ E:~~ ciTi)v = 0, then ann(v) = (g), where 
g(x) =XS+ Cs-1Xs-l + ... + C1X +co, and 

W ~ k[x]/(g) 

as k[x]-modules. 
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Proof. Since the cyclic module W = (v) = {fv : e E k[x]} has finite order, 
there is a nonzero polynomial f(x) E k[x] with fv = 0. If g(x) is the monic 
polynomial of least degree with gv = 0, then Eq. (18) gives (g) = ann(v) and 
W 9:! k[x]/(g); let deg(g) = s. We claim that the list v, Tv, T 2v, ... , rs- 1v is 
linearly independent; otherwise, a nontrivial linear combination of them being zero 
would give a polynomial h(x) with hv = 0 and deg(h) < deg(g), contradicting the 
minimality of s. This list spans W: If w E W, then W = (v) says that w = fv 
for some f (x) E k[x]. The Division Algorithm gives q, r E k[x] with f = qg + r 
and either deg(r) < s or r = 0. Now w = fv = qgv + rv = rv, since gv = 0, 
so that w = rv. But rv does lie in the subspace spanned by v, Tv, T 2v, ... , rs- 1v 
(or we would again contradict the minimality of s, because deg(r) < deg(g) = s). 
Therefore, this list is a vector space basis of W. 

To prove the converse, assume that there is a vector v E W and an integer s ~ 1 
such that the list v, Tv, T 2v, ... , rs-1v is a (vector space) basis of W. It suffices to 
show that W = ( v) and that v has finite order. Now ( v) ~ W, for W is a submodule 
of VT containing v. For the reverse inclusion, each w E Wis a linear combination 
of the basis: there are Ci Ek with w =Li ciTiv. Hence, if f(x) =Li cixi, then 
w = fv E (v). Therefore, W = (v). Finally, v has finite order. Adjoining the 
vector T 8 v E W to the basis v, Tv, T 2v, ... , rs-lv gives a linearly dependent list, 
and a nontrivial k-linear combination gives a nonzero polynomial in ann(v). • 

Definition. If g(x) = x+c0 , then its companion matrix G(g) is the 1x1 matrix 
[-co]; ifs ~ 2 and g(x) = X 8 + c8 _ 1xs-l + · · · + C1X +co, then its companion 
matrix G (g) is the s x s matrix 

0 0 0 0 -Co 
1 0 0 0 -C1 
0 1 0 0 -C2 

G(g) = 0 0 1 0 -C3 

0 0 0 1 -Cs-1 

Obviously, we can recapture the polynomial g from the last column of the 
companion matrix G(g). This notation is consistent with that in our dictionary on 
page 379. 

Lemma B-3.45. Let T: V -t V be a linear transformation on a vector space V 
over a field k, and let VT be a cyclic k[x]-module with generator v. If ann(v) = (g), 
where g(x) = X8 + Cs-lXs-l + ... + C1X +co, then B = v, Tv, T 2v, ... 'rs-lv is a 
basis of V and the matrix B [T] B is the companion matrix G (g). 

Proof. Let A= B[T]B· By definition, the first column of A consists of the coor
dinate list of T(v), the second column, the coordinate list of T(Tv) = T 2v, and, 
more generally, for i < s - 1, we have T(Tiv) = Ti+1v; that is, T sends each basis 
vector into the next one. However, for the last basis vector, T(T8 - 1v) = T 8 v = 
- L:,:-6 ciTiv, where g(x) = X8 + L:,:-6 cixi. Thus, B[T]B is the companion matrix 
C(g). • 
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We now invoke the Fundamental Theorem, invariant factor version. 

Theorem B-3.46. 

(i) Let A be an n x n matrix with entries in a field k. If 

(kn)A = Wi ©···EB Wr, 

where each Wi is a cyclic module, say, with order ideal (gi), then A is 
similar to a direct sum of companion matrices 

C(g1) EB .. · EB C(gr)· 

(ii) Everynxn matrix A over afield k is similar to a direct sum of companion 
matrices 

C(gi) EB .. · EB C(gr) 

in which the 9i ( x) are monic polynomials and 

91 I 92 I · · · I 9r. 

Proof. Define V =kn and define T: V -t V by T(y) = Ay, where y is a column 
vector. 

(i) By Lemma B-3.45, each Wi has a basis Bi such that the matrix of TIWi 
with respect to Bi is C(gi), the companion matrix of 9i· Now B1 U· · ·UBr 
is a basis of V, and Proposition B-3.43 shows that T has the desired 
matrix with respect to this basis. By Corollary A-7.38, A is similar to 
C(gi) EB··· EB C(gr)· 

(ii) As we discussed on page 384, the k[x]-module vr is a finitely gener
ated torsion module, and so the module version of the Basis Theorem, 
Theorem B-3.39, gives 

(kn)A = Wi E9 W2 E9 · · · E9 Wr, 

where each Wi is a cyclic module, say, with generator Vi having order 
ideal (gi), and 91 I 92 I · · · I 9r· The statement now follows from part (i) . 

• 
Definition. A rational canonical form 13 is a matrix R that is a direct sum of 
companion matrices, 

R = C(gi) EB··· E9 C(gr), 

where the 9i are monic polynomials with 91 I 92 I · · · I 9r· 

If a matrix A is similar to a rational canonical form C (g1) EB · · · E9 C (gr), where 
91 I 92 I · · · I 9r, then its invariant factors are 91, 92, ... , 9r. 

13The usage of the adjective rational in rational canonical form arises as follows. If E/k is 
an extension field, then we call the elements of the ground field k rational (so that every e E E 
not in k is irrational; this generalizes our calling numbers in JR not in Q irrational). Now all the 
entries of a rational canonical form lie in the field k and not in some extension of it. In contrast, 
the Jordan canonical form, to be discussed in the next section, involves the eigenvalues of a matrix 
which may not lie in k. 

The adjective canonical originally meant something dictated by ecclesiastical law, as canon
ical hours being those times devoted to prayers. The meaning broadened to mean things of 
excellence, leading to the mathematical meaning of something given by a general rule or formula. 
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We have just proved that every n x n matrix over a field is similar to a rational 
canonical form, and so it has invariant factors. Can a matrix A have more than 
one list of invariant factors? 

Theorem B-3.47. Let k be a field. 

(i) Two n x n matrices A and B with entries ink are similar if and only if 
they have the same invariant factors. 

(ii) An n x n matrix A over k is similar to exactly one rational canonical 
form. 

Proof. 

(i) By Corollary A-7.38, A and Bare similar if and only if (kn)A ~ (kn)B. 
By Theorem B-3.41, (kn)A ~ (kn)B if and only if their invariant factors 
are the same. 

(ii) If C(g1) EB·· · EBC(gr) and C(h1) EB· · · EBC(ht) are rational canonical forms 
of A, then part (i) says that the k[x]-modules k[x]/(g1) EB··· EB k[x]/(gr) 
and k[x]/(h1) EB · · · EB k[x]/(ht) are isomorphic. Theorem B-3.41 gives 
t = r and gi =hi for all i. • 

Recall Corollary A-3.71: if k is a subfield of a field Kand f,g E k[x], then 
their gcd in k[x] is equal to their gcd in K[x]. Here is an analog of this result. 

Corollary B-3.48. 

(i) Let k be a subfield of a field K, and let A and B be n x n matrices with 
entries ink. If A and B are similar over K, then they are similar over 
k (that is, if there is a nonsingular matrix P having entries in K with 
B = P AP-1, then there is a nonsingular matrix Q having entries in k 
with B = QAQ-1). 

(ii) If k is the algebraic closure of a field k, then two n x n matrices A and B 
with entries in k are similar over k if and only if they are similar over k. 

Proof. 

(i) Suppose that gl, ... , gr are the invariant factors of A regarded as a matrix 
over k, while G1, ... , Gr are the invariant factors of A regarded as a 
matrix over K. By Theorem B-3.47(ii), the two lists of polynomials 
coincide, for both are invariant factors for A as a matrix over K. Now 
B has the same invariant factors as A, for they are similar over K; since 
these invariant factors lie in k, however, A and B are similar over k. 

(ii) Immediate from part (i). • 

For example, suppose that A and B are matrices with real entries that are 
similar over the complexes; that is, if there is a nonsingular complex matrix P 
such that B = PAP-1 , then there exists a nonsingular real matrix Q such that 
B = QAQ- 1• 
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Eigenvalues 

Does a linear transformation T on a finite-dimensional vector space V over a field k 
leave any one-dimensional subspaces of V invariant; that is, is there a nonzero 
vector v E V with T(v) = av for some a E k? We ask this question for square 
matrices as well. Is there a column vector v with Av = av? 

Definition. Let V be a vector space over a field k and let T: V ---t V be a linear 
transformation. If T(v) =av, where a Ek and v E Vis nonzero, then a is called 
an eigenvalue of T and v is called an eigenvector14 of T for a 

Let A be an n x n matrix over a field k. If Av = av, where a E k and 
v E kn is a nonzero column, then a is called an eigenvalue of A and v is called an 
eigenvector of A for a. 

Rotation by 90° has no (real) eigenvalues: If T: ~2 ---t ~2 is rotation by 90°, 
then its matrix A with respect to the standard basis is [~ (}]: T: (1, 0) i-+ (0, 1) 
and (0,1) i-+ (-1,0). Now 

T: [~] i-+ [~ ~1] [~] [~y]. 
If v = [ ~] is a nonzero vector and T( v) = av for some a E ~. then ax = -y and 
ay = x; it follows that (a2 + l)x = 0 and (a2 + l)y = 0. Since v =f. 0, a 2 + 1 = 0 
and a (j. R Thus, T has no one-dimensional invariant subspaces. Note that [ ~ (}] 
is the companion matrix of x2 +1. Eigenvalues of a matrix A over a field k may not 
lie in k, as in this example of rotation, and it is convenient to extend the definition 
so that they may lie in some extension field K/k. We may regard A as a matrix 
over K, and a E K is an eigenvalue if there is a nonzero column v (whose entries 
may lie in K) with Av = av. 

Eigenvalues first arose in applications. Euler studied rotational motion of a 
rigid body and discovered the importance of principal axes, and Lagrange realized 
that principal axes are the eigenvectors of the "inertia matrix." In the early 19th 
century, Cauchy saw how eigenvalues could be used to classify quadric surfaces. 
Cauchy also coined the term racine caracteristique (characteristic root) for what is 
now called eigenvalue; his language survives in the term characteristic polynomial 
we will soon define. 

Similarity of matrices is intimately bound to eigenvalues and to determinants. 
Courses introducing linear algebra usually discuss determinants of square matrices 
with entries in ~ and, often, with entries in C. It should not be surprising that 
properties of determinants established there hold when entries lie in any field. In
deed, most properties actually hold for matrices with entries in any commutative 
ring, and this is necessary because a discussion of the characteristic polynomial, 
for example, requires entries lying in polynomial rings. We are going to use some 
properties of determinants now, usually without proof. In a later chapter, we will 
develop determinants more thoroughly, giving complete proofs. 

14This standard English translation of the German Eigenwert is curious, for it is a hybrid of 
the German eigen and the English value. Other renditions, but less common, are characteristic 
value and proper value. 



Eigenvalues 389 

Definition. Let R be a commutative ring and let B = [bij] be an n x n matrix 
over R; that is, the entries of B lie in R. The determinant of B is defined by 

det(B) = L sgn(a)bu(1)1bu(2)2···bu(n)ni 

where sgn(a) = ±1 depending on whether a permutation a of {1, 2, ... , n} is even 
or odd. 

Each term bu(l) 1 bu(2) 2 · · · bu(n) n has exactly one factor from each column in B 

because all the second subscripts j are distinct; similarly, each term has exactly one 
factor from each row in B because all the first subscripts a(j) are distinct. This 
definition of det(B) (there are other equivalent ones) is usually called the complete 
expansion. 

It is plain that det(B) makes sense when entries of B lie in any commutative 
ring R, and that det(B) ER. 

Determinants can be used to check nonsingularity. 

Proposition B-3.49. Let P be an n x n matrix over a field k. 

(i) P is nonsingular if and only if det(P) =I- 0. 

(ii) If P is nonsingular, then det(P-1) = det(P)-1. 

(iii) If A and B are similar, then det(A) = det(B). 

Proof. 

(i) It is known that det(AB) = det(A) det(B) for all n x n matrices A 
and B. Hence, pp-l =I gives 1 = det(PP-1) = det(P)det(P-1), and 
so det(P) =I- 0. 

(ii) As in (i), 1 = det(P) det(P-1 ), so that det(P-1) = det(P)-1. 

(iii) There is a nonsingular P with B = PAP- 1, and so 

det(B) = det(PAP- 1) = det(P) det(A) det(P)-1 = det(A). • 

Theorem B-3.50. Let A be an n x n matrix with entries in a field k, and let 
K/k be an extension field. An element a EK is an eigenvalue of A if and only if 
det(al - A) = 0. 

Proof. If a is an eigenvalue of A, then Av = av for v nonzero. Thus, v is a 
nontrivial solution of the homogeneous system (A - al)v = O; that is, al - A is a 
singular matrix. Hence, det(xl - A)= 0. 

Conversely, if det(xl - A) = 0, then al - A is a singular matrix, and so the 
homogeneous system Ax - ax= 0 has a nonzero solution v. Hence, Av= av and 
a is an eigenvalue of A. • 

How do we find the eigenvalues of a matrix A? 

Lemma B-3.51. Let A= [aij] be an n x n matrix with entries in a commutative 
ring k. Then det(xl -A) is a manic polynomial in k[x] of degree n whose coefficient 
of xn-l is -(au+···+ ann). 
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Proof. First, the entries of xl - A lie in k[x], so that det(xl - A) is a polynomial 
in k[x]. For the moment, write xl -A = B so that the ij entry of xl -A is denoted 
by biji thus, only the diagonal entries bii = x - aii involve x. Can there be a term 
sgn(a)bO'(l)l · · · b"'(n)n in the formula for det(B) having at least n - 1 factors b"'(i)i 
which involve x? Since the indeterminate x occurs only on the diagonal in xl - A, 
any such factor b"'(i)i must have a(i) = i. Thus, a E Sn fixes n - 1 numbers in 
{1, 2, ... , n}, and so it must fix the remaining number as well; that is, a is the 
identity permutation. Since sgn( a) = + 1 when a E Sn is the identity, the only 
term in det(xl - A) involving xn and xn-l is 

bu · · · bnn = (x - au) · · · (x - ann)· 

This last polynomial is monic of degree n, while Example A-3.92 shows that the 
coefficient of xn- l is as advertised. • 

We give a name to det(xl - A). 

Definition. The characteristic polynomial of an n x n matrix A over a field k 
is 

1/JA(x) = det(xl - A) E k[x]. 

Corollary B-3.52. Let A be an n x n matrix with entries in a field k, and let k/k 
be the algebraic closure of k. An element a Ek is an eigenvalue of A if and only if 
it is a root of the characteristic polynomial 1/JA· 

Proof. This follows at once from Theorem B-3.50. • 

Corollary B-3.53. An n x n matrix A over a field has at most n eigenvalues 
in k. 15 

Proof. A polynomial f(x) E k[x] of degree n, where k is a field, has at most n 
roots ink. • 

Recall that the trace of an n x n matrix A= [ai3] is 

n 

tr( A) = L aii. 
i=l 

Proposition B-3.54. If A= [ai3] is an n x n matrix over a field k having eigen
values (with multiplicities) ai, ... , an, then 

tr( A) = - Lai and det(A) =IT ai. 

15 In functional analysis, a linear operator Ton an infinite-dimensional complex vector space 
V can have eigenvalues: they are complex numbers a for which T- al v is not invertible. The set 
of all eigenvalues is called the spectrum of T, and it may be infinite. In the infinite-dimensional 
case, no analog of determinant is known that computes eigenvalues. 
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Proof. We know that 

1/JA(x) = (x - al)··· (x - an)· 

On the other hand, we saw in the proof of Lemma B-3.51 that 

1/JA(x) = xn - (au+···+ ann)xn-l + g(x), 

where g = 0 or deg(g) :::; n - 2; that is, 

1/JA(x) = xn - tr(A)xn-l + g(x). 

For any polynomial f E k[x), if 

f(x) = xn + Cn-1Xn-l + · · · + C1X +co= (x - al)··· (x - an), 
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then Cn-1 = - ~i ai and co = (-1r Tii ai. In particular, 1/JA = TI~=l (x - ai), so 
that Cn-1 = - ~i ai = -tr(A). Now the constant term of any polynomial f is just 
f(O); setting x = 0in1/JA = det(xJ -A) gives 1/JA(O) = det(-A) = (-l)ndet(A). 
Hence, det(A) = Tii ai. • 

The next result generalizes Proposition B-3.54. 

Proposition B-3.55. Similar matrices A and B have the same characteristic poly
nomial: 1/JA = 1/Js. 

Proof. If B = P AP-1, then xI commutes with every matrix, and so 

1/Js(x) = det(xJ - B) 

= det(xJ - P AP-1) 

= det(PxIP- 1 - PAP- 1) 

= det(P(xJ - A)P-1 ) 

= det(P) det(xJ -A) det(P- 1) 

= det(xJ - A)= 1/JA(x). • 

Here is another formula for determinant; it is most convenient when proving 
results about determinants of n x n matrices by induction on n. 

Notation. Let A= [aij) be an n x n matrix over a commutative ring R. For fixed 
i and j, let Aij denote the ( n - 1) x ( n - 1) matrix obtained from A by deleting its 
ith row and jth column. 

Proposition B-3.56. If Risa commutative ring and A= [aij) is an n x n matrix 
over R, then for each fixed i, 

(19) det(A) = 2:)-l)i+jaij det(Aij)· 
j 

Eq. (19) is called Laplace expansion across the ith row. We will prove that 
det(AT) = det(A), where AT is the transpose of A. Since transposing interchanges 
rows and columns, we can compute det(A) by Laplace expansion down the jth 
column. 

Here are two more results about determinants (which we will prove later). 
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Fact 1. If A= [aij] is a lower triangular n x n matrix; that is, aij = 0 for all 
i < j, then det(A) = f1~1 aii. 

Fact 2. If A1, ... , At are nix ni matrices, then the determinant of their direct 
sum is 

t 

det(A1 EB··· EB At) =II det(Ai)· 
i=l 

We return to rational canonical forms. 

Lemma B-3.57. If C(g) is the companion matrix of g(x) E k[x], then 

det(xI - C(g)) = g. 

Proof. If g(x) = x + c0 , then C(g) is the 1x1 matrix [-co], and det(xI - C(g)) = 
x + c0 = g. If deg(g) = s 2: 2, then 

x 0 0 0 Co 
-1 x 0 0 C1 

'l/Jc(g) = xI - C(g) = 0 -1 x 0 C2 

0 0 0 -1 X + Cs-1 

and Laplace expansion across the first row gives 

det(xI - C(g)) = xdet(L) + (-1)1+8 codet(M), 

where L is the matrix obtained by erasing the top row and first column, and M is 
the matrix obtained by erasing the top row and last column. Now M is a triangular 
(s-l) x (s-l) matrix having -l's on the diagonal, while L = xI-C((g(x)-c0 )/x). 
By induction, det(L) = (g(x)-c0 )/x, while det(M) = (-1) 8 - 1. Therefore, 

det(xI - C(g)) = x[(g(x) - co)/x] + (-l)(l+s)+(s-l)c0 = g(x). • 

Proposition B-3.58. If A is an n x n matrix over a field k, then its characteristic 
polynomial is the product of its invariant factors: If R = C(g1) EB··· EB C(gr) is a 
rational canonical form for A, then 

r 

'l/JA(x) =II 9i(x). 
i=l 

Proof. Now xI - R = [xI - C(g1)] EB··· EB [xI - C(gr)]. Using Fact 2 above, 
Lemma B-3.57 gives '¢R(x) = f];=l 'l/Jc(gi) (x) = f1;= 1 9i(x). But Proposition B-3.55 
says that '¢A= '¢R· • 

In light of our observation on page 376, the characteristic polynomial of an 
n x n matrix A over a field k is the analog for (kn)A of the order of a finite abelian 
group. 

Theorem B-3.59 (Cayley-Hamilton). If A is an n x n matrix with character
istic polynomial 'l/JA(x) = xn + bn-1Xn-l + · · · + b1x + bo, then '¢A(A) = O; that 
is, 
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Proof. We may assume that A = C(g1 ) EB· ··EB C(gr) is a rational canonical form, 
by Proposition B-3.55, where 1/JA = g1 ···gr. If we regard kn as the k[x]-module 
(kn)A, then Corollary B-3.42 says that gr(A)y = 0 for ally E kn. Thus, gr(A) = 0. 
As gr 11/JA, however, we have '¢A(A) = 0. • 

There are proofs of the Cayley-Hamilton Theorem without rational canonical 
forms; for example, see Birkhoff-Mac Lane [8], p. 341. 

The Cayley-Hamilton Theorem is the analog of Corollary A-4.46 to Lagrange's 
Theorem: if G is a finite group, then alGI = 1 for all a E G; in additive notation, 
IGla = 0 for all a E G. If M = (kn)A is the k[x]-module corresponding to an n x n 
matrix A, then, as we mentioned above, the characteristic polynomial corresponds 
to the order of M. 

Definition. The minimal polynomial mA(x) of an n x n matrix A is the monic 
polynomial f(x) ofleast degree with the property that f(A) = 0. 

Recall that if Mis an R-module, then 

ann(M) = {r ER: rm= 0 for all m EM}. 

In particular, given an n x n matrix A, let M = (kn)A be its corresponding k[x]
module. Since k[x] is a PID, the ideal ann(M) is principal, and mA is its monic 
generator. The minimal polynomial is the analog for matrices of the exponent of a 
finite abelian group. 

Proposition B-3.60. The minimal polynomial mA is a divisor of the characteristic 
polynomial 1/JA, and every eigenvalue of A is a root of mA. 

Proof. By the Cayley-Hamilton Theorem, 1/JA E ann((kn)A). But ann((kn)A) = 
(mA), so that ffiA 11/JA· 

Corollary B-3.42 implies that gr is the minimal polynomial of A, where gr(x) 
is the invariant factor of A of highest degree. It follows from the fact that 

1/JA = gl '''gr, 

where gl I g2 I · · · I gri that mA = gr is a polynomial having every eigenvalue 
of A as a root (of course, the multiplicity of a root of mA may be less than its 
multiplicity as a root of the characteristic polynomial 1/JA)· • 

Corollary B-3.61. If all the eigenvalues of an n x n matrix A are distinct, then 
mA = 1/JA; that is, the minimal polynomial coincides with the characteristic polyno
mial. 

Proof. This is true because every root of '¢A is a root of mA. • 

Corollary B-3.62. 

(i) A finite abelian group G is cyclic if and only if its exponent equals its 
order. 

(ii) Ann x n matrix A is similar to a companion matrix if and only if 

ffiA ='¢A· 
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Remark. Ann x n matrix A whose minimum polynomial is equal to its charac
teristic polynomial is called nonderogatory. <Ill 

Proof. 

(i) A cyclic group of order n has only one invariant factor, namely, n; but 
Corollary B-3.42 identifies the exponent as the last invariant factor. 

If the exponent of G is equal to its order IGI, then G has only one 
invariant factor, namely, IGI. Hence, G and Z1a1 have the same invariant 
factors, and so they are isomorphic. 

(ii) A companion matrix C(g) has only one invariant factor, namely, g; but 
Corollary B-3.42 identifies the minimal polynomial as the last invariant 
factor. 

If m A = 'l/J A, then A has only one invariant factor, namely, 'l/J A. 

Hence, A and C('lfJA) have the same invariant factors, and so they are 
similar. • 

Exercises 

B-3.25. (i) How many 10x10 matrices A over JR are there, up to similarity, with A2 =I? 

(ii) How many 10 x 10 matrices A over lFp are there, up to similarity, with A 2 =I? 
Hint. The answer depends on the parity of p. 

B-3.26. Find the rational canonical forms of 

[
2 0 

B = 1 2 
0 0 

* B-3.27. If A is similar to A' and Bis similar to B', prove that AE9B is similar to A' E9B'. 

B-3.28. Let k be a field, and let f(x) and g(x) lie in k(x]. If g I f and every root off 
is a root of g, show that there exists a matrix A having minimal polynomial mA = g and 
characteristic polynomial 'ljJ A = f. 
B-3.29. (i) Give an example of two nonisomorphic finite abelian groups having the same 

order and the same exponent. 

(ii) Give an example of two nonsimilar matrices having the same characteristic poly
nomial and the same minimal polynomial. 

B-3.30. Prove that two 2 x 2 matrices over a field k are similar if and only if they have 
the same trace and the same determinant. 

B-3.31. Prove that if a is an eigenvalue of an n x n matrix A, then am is an eigenvalue 
of Am for all m 2:: 0. 

* B-3.32. A matrix over a field is diagonalizable if it is similar to a diagonal matrix 
diag(a1, ... , an)· Let A be an n x n matrix over a field k. 

(i) If A is similar to diag(a1, ... ,an), prove that every ai is an eigenvalue of A. 

(ii) Prove that A is diagonalizable if and only if kn has a basis of eigenvectors of A. 
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(iii) Prove that A is diagonalizable if and only if its minimum polynomial mA(x) has 
no multiple roots; that is, mA(x) is a product of distinct linear factors. 

(iv) Prove that if A has n distinct eigenvalues, then A is diagonalizable. 

We remark that every symmetric matrix A over R (that is, AT= A) is diagonalizable. 

Jordan Canonical Forms 

The multiplicative group GL(n, k) of all nonsingular n x n matrices over k is a 
finite group when k is finite, and so every element in it has finite order. Consider 

the group-theoretic question: What is the order of A= [~ 8 lJ in GL(3,lF7), the 
0 1 3 

multiplicative group of all nonsingular n x n matrices over lF 7? Of course, we can 
compute the powers A2 , A3 , ••• , and Lagrange's Theorem guarantees that there is 
some m ~ 1 with Am= I; but this procedure for finding the order of A is tedious. 
We recognize A as the companion matrix of 

(20) g(x) = x 3 - 3x2 - 4x - 1 = x 3 - 3x2 + 3x - 1 = (x - 1)3 

(remember that g(x) E IF7[x]). Now A and PAP- 1 are conjugates in the group 
GL(3,1F1) and, hence, they have the same order. But the powers of a companion 
matrix are complicated (e.g., the square of a companion matrix is not a companion 
matrix). We now give a second canonical form whose powers are easily calculated, 
and we shall use it to compute the order of A later in this section. 

Definition. Let k be a field and let a E k. A 1 x 1 Jordan block is a matrix 
J(a, 1) =[a] and, ifs~ 2, ans x s Jordan block is a matrix J(a, s) of the form 

Here is a more compact description of a Jordan block whens~ 2. Let L denote 
the s x s matrix having all entries 0 except for l's on the subdiagonal just below 
the main diagonal. With this notation, a Jordan block J(a, s) can be written as 

J(a,s)=al+L. 

Let us regard L as a linear transformation on ks. If e1 , ... , es is the standard basis, 
then Lei = ei+1 if i < s while Les = 0. It follows easily that the matrix L2 is all 
O's except for l's on the second subdiagonal below the main diagonal; L3 is all O's 
except for l's on the third subdiagonal; L8 - 1 has 1 in the s, 1 position, with O's 
everywhere else, and L8 = 0. Thus, Lis nilpotent. 
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Lemma B-3.63. If J = J(a, s) =al+ L is ans x s Jordan block, then for all 
m;::: 1, 

Proof. Since L and al commute (the scalar matrix al commutes with every ma
trix), the subring of Mats(k) generated over k by al and L is commutative, and 
the Binomial Theorem applies. Finally, note that all terms involving Li for i ;::: s 
are 0 because Ls = 0. • 

Example B-3.64. Different powers of L are "disjoint"; that is, if m =f. n and the 
i, j entry of Ln is nonzero, then the i, j entry of Lm is zero. For example, 

and 

[
a 0 
1 a 
0 1 

[a O]m [ am O] 
1 a = mam-l am 

Lemma B-3.65. If g(x) = (x - a)s, then the companion matrix C(g) is similar 
to the s x s Jordan block J(a, s). 

Proof. If T: ks -+ k8 is defined by z I-+ C(g)z, then the proof of Lemma B-3.45 
gives a basis of ks of the form v, Tv, T 2v, ... , rs-1v. Another basis of ks is given 
by the list Y =yo, ... , Ys-1, where 

Yo = v, YI = (T - al)v, ... , Ys-1 = (T - al)s-1v. 

It is easy to see that Y spans V, because Tiv E (yo, ... , Yi) for all 0 :::; i :::; s - 1. 
Since there ares elements in Y, Proposition A-7.19 shows that Y is a basis. 

We now compute J = y[T]y, the matrix of T with respect to Y. If j + 1 :::; s, 
then 

Ty3 = T(T- a/)3v 

= (T- al)3Tv 

= (T- aJ)3[al + (T- al)]v 

= a(T - al)3v + (T - a/)H1v. 

Thus, if j + 1 < s, then 

Ty3 = ay3 + Y3+l · 

If j + 1 = s, then (T-a/)H1v = (T-a/) 8 v = 0, by the Cayley-Hamilton Theorem 
(for 1/Jc(g)(x) = (x - a) 8 here); hence, 

TYs-1 = ays-l· 

Therefore, J is the Jordan block J(a,s). By Corollary A-7.38, C(g) and J(a,s) 
are similar. • 
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It follows that Jordan blocks correspond to polynomials (just as companion 
matrices do); in particular, the characteristic polynomial of J(a, s) is the same as 
that of C((x - a) 8 ): 

'l/JJ(o:,s)(x) = (x - a) 8 • 

Theorem B-3.66. Let A be an n x n matrix with entries in a field k. If k contains 
all the eigenvalues of A (in particular, if k is algebraically closed), then A is similar 
to a direct sum of Jordan blocks. 

Proof. Instead of using the invariant factors 91 I 92 I · · · I 9r, we are now going 
to use the elementary divisors fi(x) occurring in the Basis Theorem itself; that is, 
each fi is a power of an irreducible polynomial in k[x]. By Theorem B-3.46(i), a 
decomposition of (kn)A into a direct sum of cyclic k[x]-modules Wi yields a direct 
sum of companion matrices 

U = C(f1) EB · · · EB C(ft) 

(where (Ji) is the order ideal of the k[x]-module Wi) and U is similar to A. However, 
the hypothesis on k says that each fi = (x - ai)s; for some si ;::: 1, where O'.i is 
an eigenvalue of A. By Lemma B-3.65, C(fi) is similar to a Jordan block and, by 
Exercise B-3.27 on page 394, A is similar to a direct sum of Jordan blocks. • 

Definition. A Jordan canonical form is a direct sum of Jordan blocks. 

If a matrix A is similar to the Jordan canonical form 

J(ai, s1) EB··· EB J(ari sr), 

then we say that A has elementary divisors (x - a 1)s1 , ••• , (x - O'.r )sr. 

Theorem B-3.66 says that every square matrix A having entries in a field con
taining all the eigenvalues of A is similar to a Jordan canonical form. Can a matrix 
be similar to several Jordan canonical forms? The answer is yes, but not really. 

Example B-3.67. Let Ir be the r x r identity matrix, and let Is be the s x s 
identity matrix. Then interchanging blocks in a direct sum yields a similar matrix: 

[B OJ = [O Ir] [A OJ [O Is] 
0 A Is 0 0 B Ir 0 . 

Since every permutation is a product of transpositions, it follows that permuting 
the blocks of a matrix of the form A1 EB A 2 EB · · ·EB At yields a matrix similar to the 
original one. <Ill 

Theorem B-3.68. 

(i) If A and B are n x n matrices over a field k containing all their eigen
values, then A and B are similar if and only if they have the same ele
mentary divisors. 

(ii) If a matrix A is similar to two Jordan canonical forms, say, H and H', 
then H and H' have the same Jordan blocks (i.e., H' arises from H by 
permuting its Jordan blocks). 
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Remark. The hypothesis that all the eigenvalues of A and B lie in k is not a serious 
problem. Recall that Corollary B-3.48(ii) says that if K/k is an extension field and 
A and B are similar over K, then they are similar over k. Thus, if A and B are 
matrices over k, define K = k(ai, ... , at), where a 1 , ... , l¥t are their eigenvalues. 
Use Jordan canonical forms to determine whether A and Bare similar over K, and 
then invoke Corollary B-3.48(ii) to conclude that they are similar over k. .... 

Proof. 

(i) By Corollary A-7.38, A and Bare similar if and only if (kn)A ~ (kn)B. 
By Theorem B-3.41, (kn)A ~ (kn)B if and only if their elementary divi
sors are the same. 

(ii) In contrast to the invariant factors, which are given in a specific order 
(each dividing the next), A determines only a set of elementary divisors, 
hence only a set of Jordan blocks. By Example B-3.67, the different 
Jordan canonical forms obtained from a given Jordan canonical form by 
permuting its Jordan blocks are all similar. • 

Here are more applications of canonical forms. 

Proposition B-3.69. If A is an n x n matrix with entries in a field k, then A is 
similar to its transpose AT. 

Proof. First, Corollary B-3.48(ii) allows us to assume that k contains all the eigen
values of A. Now if B = PAP- 1 , then BT = (PT)-1 AT pT; that is, if Bis similar 
to A, then BT is similar to AT. Thus, it suffices to prove that H is similar to HT 
for a Jordan canonical form H; by Exercise B-3.27 on page 394, it is enough to 
show that a Jordan block J = J(a,s) is similar to JT. 

We illustrate the idea for J(a, 3). Let Q be the matrix having l's on the 
"wrong" diagonal and O's everywhere else; notice that Q = Q-1 : 

[~~~J[~~ 
1 0 0 0 1 

OJ [o o lJ [a 1 OJ 0 010=0al. 
a 100 OOa 

A proof can be given using the following idea: let v1, ... , Vs be a basis of a vector 
space W, define Q: W -+ W by Q: Vi f-t Vs-i+l, and define J: W -+ W by 
J: Vi f-t avi + Vi+i for i < s and J: Vs f-t avs. The reader can now prove that 
Q = Q-1 and QJ(a, s)Q-1 = J(a, s)T. • 

Since similar matrices have the same characteristic polynomial, it follows that 
for all square matrices A, we have det(AT) = det(A); we will give a more elementary 
proof of this later. 

Example B-3. 70. At the beginning of this section, we asked for the order of the 
matrix 



Jordan Canonical Forms 399 

in the group GL(3,IF7). Now A is the companion matrix of (x -1)3 (see Eq. (20)); 
since 1/JA is a power of x - 1, the eigenvalues of A are all equal to 1 and, hence, lie 
in IF7. By Lemma B-3.65, A is similar to the Jordan block 

J~ [i Hl 
By Example B-3.64, 

Jm ~ [ (~) ! ~l · 
and it follows that J7 =I because, in IF7, we have [7] = [OJ and [(;)J = [21] = [OJ. 
Hence, A has order 7 in GL(3,IF7). ""' 

Exponentiating a matrix is used to find solutions to systems of linear differential 
equations; it is also very useful in setting up the relation between a Lie group and 
its corresponding Lie algebra. An n x n complex matrix B consists of n 2 entries, 
and so B may be regarded as a point in C n 2

• This allows us to define convergence 
of a sequence of n x n complex matrices: B 1 , B2 , ... , Bk, . . . converges to a matrix 
M if, for each i, j, the sequence of i, j entries converges. As in calculus, convergence 
of a series means convergence of the sequence of its partial sums. 

Definition. If A is an n x n complex matrix, then 
00 

A ~ 1 Ak I A 1 A2 1 A3 1 An e = ~ k! = + + 2 + 6 + · · · + nr + · · · · 
k=O 

This series converges for every matrix A (see Exercise B-3.39 on page 402), and 
the function A H eA is continuous; that is, if limk--too Ak = f'vl, then 

lim eAk = eM. 
k--too 

Since the Jordan canonical form of A allows us to deal with powers of matrices, 
it allows us to compute eA. 

Proposition B-3.71. Let A= [aij] be an n x n complex matrix. 

(i) If P is nonsingular, then PeA p-1 = ePAP- 1
• 

(ii) If AB = BA, then eAeB = eA+B. 

(iii) For every matrix A, the matrix eA is nonsingular; indeed, 

(eA)-1 = e-A. 

(iv) If L is then x n matrix having I's just below the main diagonal and 0 's 
elsewhere, then eL is a lower triangular matrix with 1 's on the diagonal. 

( v) If D is a diagonal matrix, say, D = diag( a1, a2, ... , an), then 

eD = diag( e°'1 , e°'2 , ••• , e°'n). 

(vi) If ai, ... , an are the eigenvalues of A (with multiplicities), then e°'1 , ••• , 

e°'n are the eigenvalues of eA (with multiplicities). 
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(vii) We can compute eA. 

(viii) If tr(A) = 0, then det(eA) = 1. 

Proof. 

(i) We use the continuity of matrix exponentiation: 

PeA p-l = P( lim ~ 2_Ak)p-1 
n--+oo ~kl 

k=O 

= lim t k\ (PAkp-1) 
n--+oo . 

k=O 

= lim ~ 2_(PAP-1)k 
n--+oo~ kl 

k=O 
= ePAP- 1 

(ii) The coefficient of the kth term of the power series for eA+B is 

1 k 
kl(A+B) , 

while the kth term of eAeB is 

"""' 1 . 1 . ~ 1 . k . 1 ~ (k) . k . 
~ 7i"A• 71 B3 = ~ .,(k- .) 1A'B -• = k' ~ . A'B -•. 

. . k i. J. . 0 i. i . . . 0 i 
•+J= •= •= 
Since A and B commute, the Binomial Theorem shows that both kth 
coefficients are equal. (See Exercise B-3.41 on page 402 for an example 
where this is false if A and B do not commute.) 

(iii) This follows immediately from part (ii), for -A and A commute and 
e0 =I, where 0 denotes the zero matrix. 

(iv) The equation 

1 1 
eL=l+L+-L2+···+ Ls-1 

2 (s - 1)1 

holds because L8 = 0. For example, whens= 5, 

1 0 0 0 0 

1 1 0 0 0 

eL = 1 1 1 0 0 2 
1 1 1 1 0 6 2 
1 1 1 1 1 24 6 2 

( v) This is clear from the definition: 

eD = I + D + ~ D2 + ~ D 3 + · · · , 
for Dk= diag(a~, a~, ... , a~). 
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(vi) Since C is algebraically closed, A is similar to its Jordan canonical form J: 
there is a nonsingular matrix P with P AP-1 = J. Now A and J have 
the same characteristic polynomial and, hence, the same eigenvalues with 
multiplicities. But J is a lower triangular matrix with the eigenvalues 
a 1, ... , an of A on the diagonal, and so the definition of matrix expo
nentiation gives eJ lower triangular with e01 ' ••• , e0 n on the diagonal. 
Since eA = ep-iJp = p-leJ P, it follows that the eigenvalues of eA are 
as claimed. 

(vii) Since A is similar to a direct sum of Jordan blocks, it follows that A is 
similar to D. + L, where D. is a diagonal matrix, Ln = 0, and D.L = LD.. 
Hence, 

PeAp-1 = ePAP- 1 = eLl+L = eLleL. 

But ell is computed in part (v) and eL is computed in part (iv). Hence, 
eA = p-leLleL Pis computable. 

(viii) By Proposition B-3.54, - tr( A) is the sum of its eigenvalues, while det(A) 
is the product of the eigenvalues. By (vi), the eigenvalues of eA are 
e01 , ••• , e0 n, we have 

det(eA) =IT eo; = e2::;o; = e-tr(A). 
i 

Hence, tr(A) = 0 implies det(eA) = 1. • 

Exercises 

B-3.33. Find all n x n matrices A over a field k for which A and A2 are similar. 

* B-3.34. (Jordan Decomposition) Prove that every nxn matrix A over an algebraically 
closed field k can be written as 

A=D+N, 

where Dis diagonalizable (i.e., Dis similar to a diagonal matrix), N is nilpotent (i.e., 
Nm = 0 for some m ~ 1), and DN = ND. We remark that the Jordan decomposition 
of a matrix is unique if k is a perfect field; that is, either k has characteristic 0 or k has 
characteristic p and every a E k is a pth power (a = bP for some b E k). 

B-3.35. Give an example of an n x n complex matrix that is not diagonalizable. (It is 
known that every hermitian matrix A is diagonalizable (A is hermitian if A= A*, where 
the i,j entry of A* is aji), the complex conjugate of aji· In particular, the eigenvalues of 
a real symmetric matrix B = [bij) (that is, bji = biji equivalently, BT = B) are real.) 

Hint. A rotation (not the identity) about the origin in IR2 sends no line through the origin 
into itself. 

B-3.36. (i) Prove that all the eigenvalues of a nilpotent matrix are 0. 

(ii) Use the Jordan form to prove the converse: if all the eigenvalues of a matrix A 
are 0, then A is nilpotent. (This result also follows from the Cayley-Hamilton 
Theorem.) 

B-3.37. How many similarity classes of 6 x 6 nilpotent matrices are there over a field k?, 
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B-3.38. If A and B are similar and A is nonsingular, prove that B is nonsingular and 
that A- 1 is similar to B-1 . 

* B-3.39. Let A= (a;j) be an n x n complex matrix. 

(i) If M = max;j la;i I, prove that no entry of A" has absolute value greater than ( nM)". 

(ii) Prove that the series defining eA converges. 

(iii) Prove that A 1--t eA is a continuous function: cn2 --+ cn2
• 

* B-3.40. (i) Prove that every nilpotent matrix N is similar to a strictly lower triangular 
matrix (i.e., all entries on and above the diagonal are 0). 

(ii) If N is a nilpotent matrix, prove that I+ N is nonsingular. 

* B-3.41. Let A=[~ 81andB=18 n Prove that eAeB # eBeA and eAeB # eA+B. 

B-3.42. How many conjugacy classes are there in the group GL(3, IF1 )? 

B-3.43. (Schottenfels, 1900). The projective unimodular group over a field k is 
defined as 

PSL(n, k) = SL(n, k)/SZ(n, k), 
where SL(n, k) is the multiplicative group of all n x n matrices A over k with det(A) = 1 
and SZ(n, k) is the subgroup of all scalar matrices al with an = 1. It is known ((97), 
Theorem 8.23)), for all n ~ 3 and all fields k, that PSL(n, k) is a simple group. Moreover, 
if k = IFq, then 

IPSL(n IF )I= (qn - l)(qn - q) ... (qn - qn-1) 
, q d(q - 1) , 

where d = gcd(n, q - 1). Thus, PSL(3,IF4) is a simple group of order 20160 = ~8!. 

Now As contains an element of order 15, namely, (1 2 3 4 5)(6 7 8). Prove that 
PSL(3, IF4) has no element of order 15, and conclude that PSL(3, IF4) ~ As. Conclude 
further that there exist nonisomorphic finite simple groups of the same order. 

Hint. Use Corollary B-3.48 to replace IF4 by a larger field containing any needed eigen
values of a matrix. Compute the order (in the group PSL(3,IF4)) of the possible Jordan 
canonical forms 

OJ [a 0 0 ,andC= 0 b 
b 0 0 

Smith Normal Forms 

There is a defect in our account of canonical forms: how do we find the invariant 
factors or the elementary divisors of a given matrix? This section will give an 
algorithm for computing them; in particular, it will enable us to compute minimal 
polynomials. 

Our discussion of canonical forms to this point began by translating n x n 
matrices A over a field k into the language of modules by defining k[x]-modules 
VA, where V is an n-dimensional vector space over k. The key idea now is to 
describe VA in terms of generators and relations. Indeed, the next proposition 
describes R-modules over any ring R. 



Smith Normal Forms 403 

Proposition B-3.72 (= Propostion B-2.25). For any ring R, every left R
module M is a quotient of a free left R-module F. Moreover, M is finitely generated 
if and only if F can be chosen to be finitely generated. 

Proof. Let F be the direct sum of IMI copies of R (so Fis a free left R-module), 
and let {xm}mEM be a basis of F. By the Freeness Property, Theorem B-2.24, 
there is an R-map g: F ~ M with g(xm) = m for all m EM. Obviously, g is a 
surjection, and so F/kerg ~ M. 

If !YI is finitely generated, then M = (mi, ... , mn)· If we choose F to be 
the free left R-module with basis { x1, ... , Xn}, then the map g: F ~ M with 
g(xi) =mi is a surjection, for 

img = (g(x1), ... ,g(xn)) =(mi, ... ,mn) = M. 

The converse is obvious, for any image of a finitely generated module is itself finitely 
generated • 

Let's rewrite Proposition B-3.72. 

Corollary B-3. 73. Let R be a ring. Given a left R-module M, there is an exact 
sequence 

F' .!:+ F ~ M ~ 0, 

where F' and F are free left R-modules. 

Proof. By Theorem B-2.24, there exists a free left R-module F and a surjective 
R-map g: F ~ M. Apply this proposition again: there is a free left R-module F' 
and a surjective R-map h: F ~ ker g. Since im h = ker g, we can assemble this 
data into the desired exact sequence. • 

Definition. Given a ring R, a left R-module 11.1, and an exact sequence 

F'!:+F~M~O 
' 

where F' and F are free left R-modules, then a: presentation of M is an ordered 
pair 

(XI Y), 

where Xis a basis of F, Y generates imh ~ F, and Ff (Y) ~ M. We call X 
generators 16 and (Y) relations of M. 

The reason we had to apply Theorem B-2.24 twice in proving Corollary B-3. 73 
is that ker g may not be a free left R-module. But things are better if R is a PID. 

Corollary B-3.74. Let R be a PID. Given a R-module M, there is an exact 
sequence 

0 ~ F' ~ F ~ M ~ 0, 

where F' and F are free R-modules. 

Proof. Since R is a PID, every submodule of a free R-module is itself free. • 

16This usage of generators differs from our previous usage, for X is a subset of F, not of M. 
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The last proposition can give descriptions of modules. For example, consider 
the abelian group G = (a) of order 6 and the homomophism a: F -+ G defined 
by a(x) = a, where F is a free abelian group with basis x (so that F ~ Z). 
Now ker a = ( 6x). If we define F' = (6x) and h: F' -+ F to be the inclusion, 
then (x I 6x) is a presentation of G. The homomorphism a': F -+ G defined by 
a'(x) =-a gives a different presentation: (x I -6x). 

Here is a another presentation of G. Now let F be the free abelian group with 
basis x,y. Define /3: F-+ G by f3(x) = 3a and f3(y) = 2a. The reader may check 
that ker f3 = (2x, 3y) which gives the presentation (x, y I 2x, 3y) for G. 

Yet another presentation arises from letting F be the free abelian group with 
basis x,y,z. Define')': F-+ G by !'(x) = 3a,')'(y) = 2a, and ')'(z) = 6a. The 
corresponding presentation is (x, y, z I 2x, 3y, 6z). 

In each of these examples, we began with an abelian group G and found pre
sentations of it. Two important questions arise. Given G (more generally, given a 
module), find presentations of it. And, of all these presentations, is there a "best" 
one that helps us understand G? The Smith normal form gives complete answers to 
these questions for finitely generated k[x]-modules. In particular, it will provide an 
explicit algorithm to compute the best presentation. At the end of this section, we 
will use the Smith normal form to show that if an abelian group G has presentation 

(x,y,z I 7x+5y+2z,3x+3y,l3x+lly+2z), 

Remark. We can also use presentations (that is, homomorphisms between free 
modules) to construct new modules. We contrast this viewpoint with our examples 
above. Rather than starting with a known module M, we now want to show that 
modules having certain properties exist. 

The abelian group Q contains a nonzero element a satisfying the equations a = 

n!xn for all n ~ 1 (indeed, these equations can be solved for every nonzero a E Q; let 
Xn = ajn!). Thus, a E nn>l n!Q, where n!Ql = {q E Ql: q = n!q' for some q1 E Ql}; 
in fact, n!Ql = Ql for all n ~ 1, so that nn~l n!Q = Q. 

Is there an abelian group G containing a nonzero a satisfying the equations 
a = n!xn with Xn E G for all n ~ 1 and with nn>l n!G = (a)? Contrast the 
presentation of Ql, -

(a,bn for n ~ 1 I a= bi, bn+l = (n + l)bn for n ~ 1), 17 

with the following presentation defining an abelian group G: 

(a, bn for n ~ 1 I a= bi, a= nbn for n ~ 1). 

How can we prove that a =/: 0 in this last group G? We can solve equations. 
Let F be the free abelian group with basis x, Yn for n ~ 1 and let F' ~ F be the 
subgroup generated by x - Y1,x - nyn for n ~ 1. To see that a =/: 0 in G, we 
must show that x ¢ F'. If, on the contrary, x E F', then x would be a finite linear 
combination x = m(x -yi) + Ei mi(x - iyi)· Multiply and collect terms, and use 

i 7we often write a = bi, for example, instead of a - bi. After all, the relations in a presen
tation correspond are all equal to 0 in the module. 
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uniqueness of coordinates to prove the result. This method can be used to prove 
that (a)= nn?:l n!G = (a). "" 

We are now going to give a practical formula for the map i : F' ---+ F in 
Corollary B-3. 73 

Recall that a linear transformation T: V ---+ W between finite-dimensional 
vector spaces determines a matrix z[T]y once bases Y of V and Z of Ware chosen. 
This construction can be generalized. If R is a commutative ring, then an R-map 
cp: Rt---+ Rn between free R-modules Rt and Rn determines a matrix z[cp]y = [aij] 
once bases Y of Rt and Z of Rn are chosen. As usual, the elements of Rt are t x 1 
column vectors. 

Definition. Let R be a commutative ring and let <p: Rt ---+ Rn be an R-map, where 
Rt and Rn are free R-modules. If Y = Y1, ... , Yt is a basis of Rt and Z = z1, ... , Zn 
is a basis of Rn, then z[cp]y is then x t matrix over R whose ith column, for each 
i, is the coordinate list cp(yi) 

n 

cp(yi) = L ajiZj 
j=l 

The matrix z [cp]y is called a presentation matrix for M ~ coker <p = Rn/ im <p. 

Suppose an R-module M has an n x t presentation matrix for some n, t. We 
are now going to compare two such matrices arising from different choices of bases 
in Rt and in Rn (one could try to compare presentation matrices of different sizes, 
but we shall not). 

Proposition B-3. 75. Let cp: Rt ---+ Rn be an R-map between free R-modules, 
where R is a commutative ring. Choose bases Y and Y' of Rt and Z and Z' of Rn. 
There exist invertible18 matrices P and Q (where P is t x t and Q is n x n), with 

r' = QrP-1, 

where r' = v[cp]y, and r = z[cp]y are the corresponding presentation matrices. 

Conversely, if r and r' are n x t matrices with r' = Qr p-1 for some invertible 
matrices P and Q, then there is an R-map cp: Rt ---+ Rn, bases Y and Y' of Rt, 
and bases Z and Z' of Rn, respectively, such that r = z [cp]y and r' = v [cp]Y'. 

Proof. This is the same calculation we did in Corollary A-7.38 when we applied 
the formula 

(z[B]y)(y[T]x) = z[ST]x, 

where T: V ---+ V' and S: V' ---+ V" and X, Y, and Z are bases of V, V', and 
V", respectively. Note that the original proof never used the inverse of any matrix 
entry, so that the earlier hypothesis that the entries lie in a field can be relaxed to 
allow entries to lie in any commutative ring. • 

18 A matrix P is invertible if it is square and there exists a matrix P' with PP' = I and 
P'P=l. 
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Definition. Two n x t matrices r and r' with entries in a commutative ring R are 
R-equivalent if there are invertible matrices19 P and Q with entries in R with 

r' =QrP. 

Of course, equivalence as just defined is an equivalence relation on the set of 
all (rectangular) n x t matrices over R. Thus, Proposition B-3.75 says that any two 
n x t presentation matrices of an R-module M ~ Rn/ im cp are R-equivalent. The 
following corollary proves that the converse is true as well. 

The following corollary shows that the converse is also true. 

Corollary B-3. 76. Let M and M' be R-modules over a commutative ring R. 
Assume that there are exact sequences 

t .>. 1r t >.' ?r' R --+ Rn --+ M --+ 0 and R --+ Rn --+ M' --+ 0, 

and that bases Y, Y' of Rt and Z, Z' of Rn are chosen. If r = z[A]y and r1 

Z' [A']Y' are R-equivalent, then M ~ M'. 

Proof. Since r and r' are R-equivalent, there are invertible matrices P and Q with 
r' = Qr p-1 . Now Q determines an R-isomorphism (}: Rn --+ Rn, and P determines 
an R-isomorphism cp: Rt--+ Rt. The equation r' = Qrp-1 gives commutativity of 
the diagram 

Define an R-map v: M --+ M' as follows. If m E M then surjectivity of 7f gives an 
element u E Rn with 7r(u) = m; set v(m) = 7r1B(u). Proposition B-1.46 (diagram
chasing) shows that v is a well-defined isomorphism. • 

If V is a vector space over a field k, then we saw, in Example B-1.19(iv), how 
to construct an k[x]-module VT from a linear transformation T: V --+ V. For 
each f(x) = E cixi E k[x] and v E V, define fv = Ei ciTi(v). In particular, if 
V =kn and A is an n x n matrix over k, then T: V --+ V defined by T(v) =Av 
is a linear transformation and the k[x]-module VT is denoted by VA. Thus, scalar 
multiplication fv in VA, where f(x) = l:cixi and v EV, is given by 

fv = :L::CiAiv. 
i 

We are now going to give a nice presentation of the k[x]-module VA. (The theorem's 
hypothesis that k is a field is much too strong; we could assume that k is any 
commutative ring and V is a free k-module. However, when we get serious and 
apply the theorem, we will want k[x] to be a euclidean ring.) 

Part (i) of the next theorem is just a restatement of Corollary B-3.73, since R 
is a PID. The long proof here will allow us to compute the maps A and 7f explicitly. 

19In light of Proposition B-3.75, it would have been more natural to define R-equivalence of 
rand r' if r' = QrP- 1 . But these relations are the same because Pis assumed invertible, 
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Theorem B-3. 77 (Characteristic Sequence). Let V be an n-dimensional vector 
space over a field k and let A= [aij] be an n x n matrix over k. 

(i) Then there is an exact sequence of k[x]-modules 

(21) 0-+ k(x]n ~ k(xt ~ VA -+ 0. 

(ii) The presentation matrix E[A]E of the exact sequence (21) with respect to 
the standard basis E of k[x]n is xl - A. 

Proof. 

(22) 

(i) This proof is elementary, but it is long because there are many items to 
check. 

Let Y = Yi, ... , Yn be a basis of V. The standard basis E = ei, ... , en 
of F = k[x]n consists of n-tuples having 1 in the ith spot and O's else
where. Each element w in the direct sum 

F = k[xt 

has a unique expression of the form w = fi(x)e1 + · · · + fn(x)en, where 
fi(x) = CiQ + ci1x + ci2x2 + · · · E k[x]. Expand this, collecting terms 
involving xi: 

W = Uo + XU1 + X2U2 + · · · , 
where each Uj is a k-linear combination of e1, ... , en; that is, each Uj E kn. 
Let U ~ F be the subset of all k-linear combinations of ei, ... , en; that 
is, U is a vector space over k that is a replica of V via ei t-+ Yi· Thus, 
Eq. (22) allows us to regard elements w E Fas polynomials L:j xjuj in 
x with coefficients in U. 
(a) Define ?r: F-+ VA by 

7r(xju) = Ajv, 

where u = c1 ei + · · · + Cnen E U and v is the column vector 
(c1, · · · ,cn)T. 

(b) 7r is a k(x]-map: 

?r(x(xiu)) = 7r(xi+1u) = Ai+1v = xAiv = x?r(xju). 

(c) ?r!U: U-+ Vis an isomorphism: 

if u E U, then u = c1e1 + · · · + Cnen and ?r: u t-+ A0 v v 
C1Y1 + · · · + CnYn· 

(d) 7r is surjective: 

This follows from (c), for VA and V are equal as sets. 

(e) Define A: F-+ F by 

A(xiu) = xi+1u - xj Au 

(if u = c1 ei + · · · + Cnen, view the coordinate list ( C1, ... , Cn) as a 
column vector c E kn; now the notation Au means c~ ei + · · · + c~en, 
where the column (c~, ... , c~)T =Ac). 
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(f) .X is a k(x]-map: 

.X(x(x3u)) = .X(x3+1u) = x3+2u - xH1 Au 

= x(x3+1u - x3 Au) = x.X(x3u). 

(g) im A ~ ker ?r: 

7r .X(x3u) = 7r(x3+1u - x3 Au) = A3+lv - AJ Av= 0. 

(h) ker 7r ~ im .X: 

If w E ker 7r, then w = L:;j:0 x3 u3, where L:;j:0 A3 v3 = O; by ( c), 

L:'7=o A3u3 = 0. Now 

m m 

w = w - 'L:A3u3 = L (x3u3 -A3u3). 
j=O j=O 

Since x0uo - A0uo = uo - uo = 0, we may assume j 2:: 1: 
m 

w = L (x3u3 -A3u3 ). 
j=l 

But, for each j ;:::: 1, x3u3 - A3u3 is the telescoping sum: 

j-1 

x3u3 -A3u3 = L (x3-eAeu3 - xj-l-lAl+1u3) 
l=O 

. . 1 . 1 . 2 = (x3u3 - x3 - Au3) + (x3 - Au3 - x3 A u3) + · · · . 

As each term x3-l Aeu3 - x3-l-l Al+lu3 obviously lies in im .X, we 
have w E im.X. 

(i) A is injective: 

Suppose that w' = L:::1 x3u3 E ker .X; that is, .X(w') = 0. We may 
assume that xmum =fa 0, and so Um E kn is nonzero. Now k[x] is a 
k-module; indeed, it is a free k-module with basis {1,x, x2, ... }. It 
follows that xm+lum "# 0. Now 

m 

0 = .X(w') = °E(x1+1u3 - xi Au3), 
j=O 

so that 
m-1 

xm+lum = -xm Aum - L (x3+1uj - x3 Au3). 
j=O 

Hence, viewing k[x] as a free k-module with basis {xi: i;:::: O}, 

m 

0 =fa xm+lum E (xm+l) n Ef)(x3) = {O}, 
j=O 

a contradiction. Therefore, all u3 = 0, w' = 0, and A is injective. 
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(ii) The ith column of E[A]E arises from writing .X(ei) in terms of E. Recall 
that then x n identity matrix I= [oij], where Oji is the Kronecker delta. 
Now 

.X(ei) = xei - Aei 

= xei - L ajiej 
j 

= L xoijej - L ajiej 
j j 

= L (xoii - aii)ei. 
j 

Therefore, the presentation matrix EAE = xI - A. • 

Corollary B-3. 78. Two n x n matrices A and B over a field k are similar if and 
only if the matrices r = xI - A and r' = xI - B are k[x]-equivalent. 

Proof. If A is similar to B, there is a nonsingular matrix P with entries in k such 
that B = P AP-1 . But 

P(xI - A)P-1 = xI - PAP- 1 = xI - B, 

because the scalar matrix xI commutes with P (it commutes with every matrix). 
Thus, xI - A and xI - B are k[x]-equivalent. 

Conversely, suppose that the matrices xI-A and xI-B are k[x]-equivalent. By 
Theorem B-3.77, (k[x]n)A and (k[x]n)B are finitely generated k[x]-modules having 
presentation matrices xI -A and xI -B, respectively. Now Corollary B-3.76 shows 
that (kn)A ~ (kn)B as k[x]-modules, and so Theorem B-3.47 gives A and B similar. 

• 
As we remarked earlier, Corollary B-3.76 is a criterion for two finitely presented 

R-modules to be isomorphic, but it is virtually useless because, for most commuta
tive rings R, there is no way to determine whether matrices r and r' with entries 
in R are R-equivalent. 

However, Corollary B-3.78 reduces the question of similarity of matrices over 
a field k to a problem of equivalence of matrices over k[x]. Fortunately, we shall 
see that Gaussian elimination, a method for solving systems of linear equations 
whose coefficients lie in a field k, can be used when R = k[x] (indeed, when R is 
any euclidean ring) to find a computable normal form of a matrix. 

In what follows, we denote the ith row of a matrix A by ROW( i) and the jth 
column by COL(j). 

Definition. There are three elementary row operations on an n x t matrix A 
with entries in a commutative ring R: 

I. Multiply ROW(j) by a unit u E R. 

II. Replace ROW(i) by Row(i) + cRow(j), where j =f i and c ER; that is, 
add cROW(j) to ROW(i). 

III. Interchange ROW(i) and ROW(j). 
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There are three analogous elementary column operations. 

Notice that an operation of type III (an interchange) can be accomplished by 
operations of the other two types. We indicate this schematically: 

Definition. An elementary matrix is an n x n matrix obtained from the n x n 
identity matrix I by applying an elementary row20 operation to it. 

Thus, there are three types of elementary matrix. Performing an elementary 
row operation is the same as multiplying on the left by an elementary matrix. For 
example, given a 2 x 3 matrix A= [l ~-~],consider elementary matrices 

En= [1 OJ. 
c 1 ' Em= [~ ~], 

where u is a unit in R. The product E1A is A with its first row multiplied by u; the 
product EnA is A after adding c times its first row to its second row; the product 
EmA is A with its first and second rows interchanged. 

E A = [u 2u 3u] . 
I 4 5 6 ' 

EA- [ 1 2 3 ] . 
II - c + 4 2c + 5 3c + 6 ' 

[4 5 6] 
EmA = 1 2 3 . 

Similarly, applying an elementary column operation to A gives the matrix AE, 
where E is the corresponding 3 x 3 elementary matrix. 

In general, given an m x n matrix A, applying an elementary row operation to A 
gives the matrix EA obtained by multiplying A on the left by a suitable elementary 
matrix E, while applying an elementary column operation to A gives the matrix 
AE obtained by multiplying A on the right by a suitable elementary matrix E. 

It is easy to see that every elementary matrix is invertible, and its inverse is 
elementary of the same type. It follows that every product of elementary matrices 
is invertible. 

Definition. Let R be a commutative ring. Then an n x t matrix r' is Gaussian 
equivalent to an n x t matrix r if there is a sequence of elementary row and column 
operations 

Gaussian equivalence is an equivalence relation on the family of all n x t matrices 
over R. It follows that if r' is Gaussian equivalent to r, then there are matrices Q 
and P (where Q is n x n and Pis t x t), each a product of elementary matrices, with 
r' = Qr P. Recall that two n x t matrices r' and r are R-equivalent if there are 
invertible matrices Q and P with r' = Qr P. Hence, if r' is Gaussian equivalent 
to r, then r' and r are R-equivalent, for the inverse of an elementary matrix is 
elementary. We shall see that the converse is true when R is euclidean. 

20 Applying elementary column operations to I gives the same collection of elementary 
matrices. 
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Theorem B-3. 79 {Smith Normal Form21 ). Every nonzero n x t matrix r with 
entries in a euclidean ring R is Gaussian equivalent to a matrix of the form 

[~ ~], 
where E = diag( ai, ... , a q) and a1 I a2 I · · · I a q are nonzero (the lower blocks of 
0 's or the blocks of 0 's on the right may not be present). 

Proof. If a E R is nonzero, let 8(a) denote its degree in the euclidean ring R. 
Among all the nonzero entries of all those matrices Gaussian equivalent to r, let 
a 1 have the smallest degree, and let .D. be a matrix Gaussian equivalent to r that 
has a1 as an entry, say, in position k, f. 22 We claim that a1 I 'T/kj for all 'T/kj in 
ROW(k) of .D.. Otherwise, there is j =f. f, and an equation 'T/kj = Ka1 + p, where 
8(p) < 8(a1). Adding (-K)COL(f) to co1(j) gives a matrix .D.' having p as an 
entry. But .D.' is Gaussian equivalent to r, and it has an entry p whose degree 
is smaller than 8(a1), a contradiction. The same argument shows that a1 divides 
every entry in its column. Let us return to .D., a matrix Gaussian equivalent to r 
that contains a 1 as an entry. We claim that a 1 divides every entry of .D., not merely 
those entries in a1 's row and column; let a be such an entry. Schematically, we are 
focusing on a submatrix [ ~ J11 ], where b = ua1 and c = va1. Now replace ROW(l) 
by ROW(l)+(l - u)Row(2) = [a+ (1 - u)c, ai]. Since the new matrix is Gaussian 
equivalent to .D., we have a 1 dividing a+ (1 - u)c; since a1 I c, we have a1 I a. We 
conclude that we may assume that a 1 is an entry of r which divides every entry 
of r. 

Let us normalize r further. By interchanges, there is a matrix that is Gaussian 
equivalent to r and that has a 1 in the 1, 1 position. If 'T/lj is another entry in the 
first row, then 'T/lj = Kj<T1, and adding (-Kj)co1(l) to co1(j) gives a new matrix 
whose 1,j entry is 0. Thus, we may also assume that r has a1 in the 1, 1 position 
and with O's in the rest of the first row. 

Having normalized r, we now complete the proof by induction on the number 
n ~ 1 of its rows. If n = 1, we have just seen that a nonzero 1 x t matrix is Gaussian 
equivalent to [a1 0 ... O]. For the inductive step, we may assume that a1 is in the 
1, 1 position and that all other entries in the first row are 0. Since a1 divides all 
entries in the first column, r is Gaussian equivalent to a matrix having all O's in 
the rest of the first column as well. Thus, r is Gaussian equivalent to a matrix of 
the form [ ~1 g J. By induction, the matrix n is Gaussian equivalent to a matrix 
[~' g], where E' = diag(a2, ... ,aq) and 0"2 I 0"3 I ... I O"q· Hence, r is Gaussian 

equivalent to [~1 ~' g], and so a 1 divides every entry of this matrix. In particular, 
0 0 0 

a1 I a2. • 

Definition. The n x t matrix [ ~ g] in the statement of the theorem is called a 
Smith normal form of r. 

21 This theorem and the corresponding uniqueness result, soon to be proved, were found by 
H. J. S. Smith in 1861. 

22 It is amusing that this nonconstructive existence proof will soon be used to explicitly 
compute elementary divisors. 
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Thus, Theorem B-3.79 states that every nonzero (rectangular) matrix with 
entries in a euclidean ring R is Gaussian equivalent to a Smith normal form. 

Theorem B-3.80. Let R be a euclidean ring. 

(i) Every invertible n x n matrix r with entries in R is a product of elemen
tary matrices. 

(ii) Two matrices r and r' over R are R-equivalent if and only if they are 
Gaussian equivalent. 

Proof. 

(i) We now know that r is Gaussian equivalent to a Smith normal form rn 8], 
where Eis diagonal. Since r is a (square) invertible matrix, there can be 
no blocks of O's, and so r is Gaussian equivalent to E; that is, there are 
matrices Q and P that are products of elementary matrices such that 

QrP = E = diag(a1, ... ,an)· 

Hence, r = Q-1 EP-1. Now the inverse of an elementary matrix is again 
elementary, so that Q-1 and p-l are products of elementary matrices. 
Since E is invertible, det(E) = a 1 · · · O"n is a unit in R. It follows that 
each O"i is a unit, and so Eis a product of n elementary matrices (arising 
from the elementary operations of multiplying ROW(i) by the unit ai)· 

(ii) It is always true that if r' and r are Gaussian equivalent, then they are 
R-equivalent, for if r' = Qr P, where P and Q are products of elementary 
matrices, then P and Q are invertible. Conversely, if r' is R-equivalent 
tor, then r' = QrP, where P and Qare invertible, and part (i) shows 
that r' and rare Gaussian equivalent. • 

There are examples showing that Theorem B-3.79 may be false for PID's that 
are not euclidean. 23 Investigating this phenomenon was important in the beginnings 
of algebraic K-theory (see Milnor [78]). 

Theorem B-3.81 (Simultaneous Bases). Let R be a euclidean ring, let F be a 
finitely generated free R-module, and let S be a submodule of F. Then there exists 
a basis z1, ... , Zn of F and nonzero ai, ... , a q in R, where 0 :::; q :::; n, such that 
a1 I··· I O"q and a1z1, ... ,aqZq is a basis of S. 

Proof. If M = F/S, then Theorem B-3.2 shows that Sis free of rank:::; n, and so 

0-+S_;F-tM-tO 

is a presentation of M, where >. is the inclusion. Now any choice of bases of S 
and F associates a (possibly rectangular) presentation matrix r to >.. According 
to Proposition B-3.75, there are new bases X of S and Y of F relative to which 
r = y[>.Jx is R-equivalent to a Smith normal form; these new bases are as described 
in the theorem. • 

23There is a version for general PID's obtained by augmenting the collection of elementary 
matrices by secondary matrices; see Exercise B-3.47 on page 416. 
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Corollary B-3.82. Let R be a euclidean ring, let r be the n x t presentation 
matrix associated to an R-map A: Rt ---+ Rn relative to some choice of bases, and 
let M = coker A. 

(i) If r is R-equivalent to a Smith normal form diag(0"1, ... , O"q) EEl 0, then 
those 0"1, ... , O"q that are not units are the invariant factors of M. 

(ii) If diag(ryi, ... ,1J8 )EEl0 is another Smith normal form ofr, thens= q and 

Proof. 

there are units ui with 1Ji = UiO"i for all i; that is, the diagonal entries 
are associates. 

(i) If diag(O"i, ... , O"q) EEl 0 is a Smith normal form of r, then there are bases 
yi, ... , Yt of Rt and zi, ... , Zn of Rn with A(Y1) = 0"1Z1, ... , A(yq) = O"qZq 
and A(yj) = 0 for all Yi with j > q, if any. Now R/(O) 9:! R and 
R/(u) = {O} if u is a unit. If 0"8 is the first O"i that is not a unit, then 

M s::! Rn-q EEl __!!:__ EEl .. · EEl __!!:__, 
(O"s) (O"q) 

a direct sum of cyclic modules for which a8 I · · · I O"q. The Fundamental 
Theorem of Finitely Generated R-Modules identifies 0"8 , ••• , O"q as the 
invariant factors of M. 

(ii) Part (i) proves the essential uniqueness of the Smith normal form, for the 
invariant factors, being generators of order ideals in a domain, are only 
determined up to associates. • 

With a slight abuse of language, we may now speak of the Smith normal form 
of a matrix r. 
Theorem B-3.83. Two n x n matrices A and B over a field k are similar if and 
only if xI - A and xI - B have the same Smith normal form over k[x]. 

Proof. By Theorem B-3. 78, A and B are similar if and only if xI - A is k[x]
equivalent to xI - B, and, since k[x] is euclidean, Corollary B-3.82 shows that 
xI - A and xI - B are k[x]-equivalent if and only if they have the same Smith 
normal form. • 

Corollary B-3.84. Let F be a finitely generated free abelian group, and let S be a 
subgroup of F having finite index. Let Y1, ... , Yn be a basis of F, let z1, ... , Zn be a 
basis of S, and let A = [aij] be the n x n matrix with Zi = L:j ajiYj. Then 

[F: SJ= I det(A)I. 

Proof. Changing bases of S and of F replaces A by a matrix B that is Z-equivalent 
to it: 

B=QAP, 

where Q and P are invertible matrices with entries in Z. Since the only units in 
Z are 1 and -1, we have I det(B)I = I det(A)I. In particular, if we choose B to be 
a Smith normal form, then B = diag(g1, ... ,gn), and so I det(B)I = g1···9n· But 
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g1, ... , gn are the invariant factors of F / S; by Corollary B-3. 28, their product is 
the order of F/S, which is the index [F: SJ. • 

We have not yet kept our promise to give an algorithm computing the invariant 
factors of a matrix with entries in a field k. Of course, the most interesting euclidean 
ring R for us in the next theorem is the polynomial ring k[x]. 

Theorem B-3.85. Let E = diag( 0-1, ... , a-q) be the diagonal block in the Smith nor
mal form of a matrix r with entries in a euclidean ring R. Define di (r) inductively: 
d0(r) = 1 and, for i > 0, 

di(r) = gcd(all i x i minors of r). 

Then, for all i ;::: 1, 

Proof. Write a "' b to denote a and b being associates in R. 

We are going to show that if r and r' are R-equivalent, then 

di(r) rv di(r') 

for all i. This will suffice to prove the theorem, for if r' is the Smith normal form 
of r whose diagonal block is diag(o-i, ... , o-q), then di(r') = 0-10-2 · · · o-i. Hence, 

O"i(x) = di(r')/di-1(r') rv di(r)/di-1(r). 

By Theorem B-3.80, it suffices to prove that 

di(r) "'di(Lr) and di(r) "'di(rL) 

for every elementary matrix L. Indeed, it suffices to prove that di(rL) "'di(r), 
because di(rL) = di([rL]T) = di(LTrT) (the i xi submatrices of rT are the 
transposes of the i x i submatrices of r; now use the facts that LT is elementary 
and that, for every square matrix M, we have det(MT) = det(M)). 

As a final simplification, it suffices to consider only elementary operations of 
types I and II, for we have seen on page 410 that an operation of type III, inter
changing two rows, can be accomplished using the other two types. 

Lis of type I: If we multiply Row(£) of r by a unit u, then an ix i submatrix 
either remains unchanged or one of its rows is multiplied by u. In the first case, 
the minor, namely, its determinant, is unchanged; in the second case, the minor is 
multiplied by the unit u. Therefore, every i x i minor of Lr is an associate of the 
corresponding i xi minor of r, and so di(Lr) "'di(r). 

Lis of type II: If L replaces ROW(£) by ROW(£) +rROW(j), then only ROW(£) 
of r is changed. Thus, an i x i submatrix of r either does not involve this row 
or it does. In the first case, the corresponding minor of Lr is unchanged. The 
second case has two subcases: the i x i submatrix involves ROW(j) or it does not. 
If it does involve ROW(j), the minors (that is, the determinants of the submatrices) 
are equal. If the submatrix does not involve ROW(j), then the new minor has the 
form m +rm', where m and m' are i x i minors of r (for det is a multilinear 
function of the rows of a matrix). It follows that di(r) I di(Lr), for di(r) I m and 
di (r) I m'. Since L -l is also an elementary matrix of type II, this argument shows 
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that di(Lr) I di(L-1(Lr)). Of course, L- 1 (Lr) = r, so that di(r) and di(Lr) 
divide each other. As Risa domain, we have di(Lr),...., di(r). • 

Theorem B-3.86. There is an algorithm to compute the elementary divisors of 
any square matrix A with entries in a field k. 

Proof. By Theorem B-3.83, it suffices to find a Smith normal form for r = xl - A 
over the ring k[x]; by Corollary B-3.82, the invariant factors of A are those nonzero 
diagonal entries that are not units. 

Here are two algorithms. 

(i) Compute di(xI - A) for all i (of course, this is not a very efficient algo
rithm for large matrices). 

(ii) Put xl -A into Smith normal form using Gaussian elimination over k[x]. 

The reader should now have no difficulty in writing a program to compute the 
elementary divisors. • 

Example B-3.87. Find the invariant factors over Q> of 

A=[~~ ~]· 
0 0 -4 

We are going to use a combination of the two modes of attack: Gaussian elimination 
and gcd's of minors. Now 

[
x-2 -3 -1 i 

xl - A = -1 x - 2 -1 . 
0 0 x+4 

It is plain that g1 = 1, for it is the gcd of all the entries of A, some of which are 
nonzero constants. Interchange ROW(l) and ROW(2), and then change sign in the 
top row to obtain 

[ 
1 -x + 2 

x-2 -3 
0 0 

Add -(x - 2)Row(l) to Row(2) to obtain 

[~ x2 -=_x4~ ! 1 -x
1
+ 1] --+ [~ 

0 0 x+4 0 

The gcd of the entries in the 2 x 2 submatrix 

1 l -1 
x+4 

0 
x2 - 4x + 1 

0 

-x+ 1] 
x+4 

-x
0+ 1] . 

x+4 

is 1, for -x+l and x+4 are distinct irreducibles, and so 92 = 1. We have shown that 
there is only one invariant factor of A, namely, (x2 -4x+l)(x+4) = x3 -15x+4, and 
it must be the characteristic polynomial of A. It follows that the characteristic and 
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minimal polynomials of A coincide, and Corollary B-3.62 shows that the rational 
canonical form of A is 

[o o -4] 
1 0 15 . 
0 1 0 

Example B-3.88. Find the abelian group G having generators a, b, c and relations 

7a + 5b + 2c = 0, 

3a +3b = 0, 

l3a + llb + 2c = 0. 

Using elementary operations over Z, we find the Smith normal form of the matrix 
of relations: 

[ 7 5 2] [1 0 OJ 3 3 0-+060. 
13 11 2 0 0 0 

It follows that G ~ (Z/lZ) EB (Z/6Z) EB (Z/OZ). Simplifying, G ~ Z.5 EB Z. """ 

Exercises 

B-3.44. Let G be the abelian group G constructed in the Remark on page 404. 

(i) Prove that a E G is nonzero. 

(ii) Prove that nn;:::i n!G = (a). 

B-3.45. Find the invariant factors over <Q of the matrix 

[
-4 6 3] 
-3 5 4 . 
4 -5 3 

B-3.46. Find the invariant factors over <Q of the matrix 

[

-6 2 
2 0 

-2 1 
3 -1 

* B-3.47. Let R be a PID, and let a, b ER. 

(i) If d is the gcd of a and b, prove that there is a 2 x 2 matrix Q = [;,:) with 
det(Q) = 1 so that 

where d Id'. 
Hint. If d = xa + yb, define x' = b/d and y' = -a/d. 
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(ii) Call an n x n matrix U secondary if it can be partitioned 

where Q is a 2 x 2 matrix of determinant 1. Prove that every n x n matrix A with 
entries in a PID can be transformed into a Smith canonical form by a sequence of 
elementary and secondary matrices. 

Inner Product Spaces 

In this section, V will be a vector space over a field k, usually finite-dimensional, 
equipped with more structure. In the next section, we will see the impact on those 
linear transformations that preserve this extra structure. 

We begin by generalizing the usual dot product Rn x Rn -+ R to any finite
dimensional vector space over a field k. 

Definition. If V is a vector space over a field k, then a function f: V x V -+ k is 
bilinear if, for all v, v', w, w' E V and a E k, we have 

f(v + v', w) = f(v, w) + f(v', w), 

f(v, w + w') = f(v, w) + f(v, w'), 

f(av,w) = af(v,w) = f(v,aw). 

A bilinear form (or inner product) on a finite-dimensional vector space V 
over a field k is a bilinear function 

/: V x V-+ k. 

The ordered pair (V, f) is called an inner product space over k. 

Of course, (kn, f) is an inner product space if f is the familiar dot product 

f(u,v) = .L:::Uivi, 
i 

where u = (ui, ... ,un)T and v = (v1, ... ,vn)T (the superscript T denotes trans
pose; remember that the elements of kn are n x 1 column vectors). In terms of 
matrix multiplication, we have 

f(u,v)=uTv 

(if u = (u1, ... , Un) T, then u T = (ui, ... , un) is a 1 x n row matrix while v 
(vi, ... , vn) T is an n x 1 column matrix; thus, u T v is 1 x 1; that is, u T v E k). 

Two types of bilinear forms are of special interest. 

Definition. A bilinear form f: V x V -+ k is symmetric if 

f(u, v) = f(v, u) 

for all u, v E V; we call an inner product space (V, !) a symmetric space when f 
is symmetric. 
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A bilinear form f: V x V -t k is alternating if 

f(v,v)=O 

for all v EV; we call an inner product space (V, f) an alternating space when f 
is alternating. 

Example B-3.89. 

(i) Dot product kn x kn -t k is an example of a symmetric bilinear form. 

(ii) If we view the elements of V = k2 as column vectors, then we may identify 
Mat2 (k) with V x V. The function f: V x V -t k, given by 

f: ( [ ~] , [ ~]) H <let [ ~ ~] = ad - be, 

is an alternating bilinear form, for if two columns of A are equal, then 
det(A) = 0. This example will be generalized to determinants of n x n 
matrices. <Ill 

Every bilinear form over a field of characteristic not 2 can be expressed in terms 
of symmetric and alternating bilinear forms. 

Proposition B-3.90. Let k be a field of characteristic not 2, and let f be a bilinear 
form defined on a vector space V over k. Then there are unique bilinear forms fs 
and fa, where fs is symmetric and fa is alternating, such that f = Is+ fa· 

Proof. By hypothesis, ~ E k, and so we may define 

fs(u,v) = !{J(u,v) + f(v,u)) 

and 
' 

fa(u,v) = ~(f(u,v)-f(v,u)). 
It is clear that f = fs +fa, that fs is symmetric, and that fa is alternating. Let us 
prove uniqueness. If f = f~ + f~, where f~ is symmetric and f~ is alternating, then 
Is+ fa = f~ + f~, so that Is - f~ = f~ - fa· If we define g to be the common value, 
fs - f~ = g = f~ - fa, then g is both symmetric and alternating. By Exercise B-3.51 
on page 439, we have g = 0, and so fs = f~ and fa = f~. • 

Definition. A bilinear form g on a vector space V is called skew (or skew
symmetric) if 

g(v,u) = -g(u,v) 

for all u, v E V. 

Proposition B-3.91. If k is a field of characteristic not 2, then g is alternating 
if and only if g is skew. 

Proof. If g is any bilinear form, we have 

g(u + v, u + v) = g(u, u) + g(u, v) + g(v, u) + g(v, v). 

Therefore, if g is alternating, then 0 = g(u,v) + g(v,u), so that g is skew. (This 
implication does not assume that k has characteristic not 2.) 
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Conversely, if g is skew, then set u = v in the equation g(u, v) = -g(v, u) to 
get g(u,u) = -g(u,u); that is, 2g(u,u) = 0. Since k does not have characteristic 2, 
g(u, u) = 0, and g is alternating. (When k has characteristic 2, then g is alternating 
if and only if g(u,u) = 0 for all u.) • 

Definition. Let (V, f) be an inner product space over k. If E = e1 , ... , en is a 
basis of V, then the inner product matrix of f relative to E is 

[f(ei, ej)]. 

Suppose that (V, f) is an inner product space, E = e1 , ... , en is a basis of V, 
and A= [f(ei,ej)] is the inner product matrix off relative to E. If b = L:biei 
and c = L ciei are vectors in V, then 

f(b,c) = f(L)iei,LCiei) = Lbd(ei,ej)Cj· 
i,j 

If b = (b1, ... , bn) T and c = ( c1, ... , en) T are column vectors, then the displayed 
equation can be rewritten in matrix form: 

(23) f(b,c) = bT Ac. 

Thus, an inner product matrix determines f completely. 

Proposition B-3.92. Let V be an n-dimensional vector space over a field k. 

(i) Every n x n matrix A over a field k is the inner product matrix of some 
bilinear form f defined on V. 

(ii) If f is symmetric, then its inner product matrix A relative to any basis 
of Vis a symmetric matrix (i.e., AT= A). 

(iii) If f is alternating and k has characteristic not 2, then the inner product 
matrix off relative to any basis of V is a skew-symmetric matrix 
(i.e., AT = -A). If k has characteristic 2, then every skew-symmetric 
matrix is symmetric with 0 's on the diagonal. 

(iv) Given n x n matrices A and A', if bT Ac= bT A'c for all column vectors 
band c, then A= A'. 

(v) Let A and A' be inner product matrices of bilinear forms f and f' on V 
relative to bases E and E', respectively. Then f = f' if and only if A 
and A' are congruent; that is, there exists a nonsingular matrix P with 

A'= pT AP. 

In fact, P is the transition matrix ElE'. 

Proof. 

(i) For any matrix A, the function f: kn x kn ---+ k, defined by f (b, c) = b T Ac, 
is easily seen to be a bilinear form, and A is its inner product matrix 
relative to the standard basis ei, ... , en. The reader may easily transfer 
this construction to any vector space V once a basis of V is chosen. 

(ii) If f is symmetric, then so is its inner product matrix A = [aij], for 
lliJ = f(ei, ei) = f(ej, ei) = aii· 
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(iii) Assume that f is alternating. If k does not have characteristic 2, then f 
is skew: aij = f(ei, ei) = -f(ej, ei) = -aii• and so A is skew-symmetric. 
If k has characteristic 2, then f(ei, ei) = -f(ej, ei) = f(ej, ei), while 
f(ei, ei) = 0 for all i; that is, A is symmetric with O's on the diagonal. 

(iv) If b = Ei biei and c = Ei ciei, then we have seen that f (b, c) = b T Ac, 
where b and c are the column vectors of the coordinate lists of b and c 
with respect to E. In particular, if b = ei and c = ei, then f ( ei, ei) = aii 
is the i, j entry of A. 

(v) Let the coordinate lists of b and c with respect to the basis E' be b' 
and c', respectively, so that f'(b,c) = (b')T A'c', where A'= [f(e~,ej)]. 
If Pis the transition matrix E[l]E', then b = Pb' and c =Pc'. Hence, 
f(b,c) = bT Ac= (Pb')T A(Pc') = (b')T(pT AP)c'. By part (iv), we must 
have pT AP= A'. 

For the converse, the given matrix equation A'= pT AP yields equa
tions: 

[f'(e~, ej)] =A'= pT AP= [LPtd(et, eq)Pqi] 
£,q 

= [f (Lpuet, LPqjeq) J = [f(e~, ej)]. 
£ q 

Hence, f'(e~,ej) = f(e~,ej) for all i,j, from which it follows that 
f'(b, c) = f(b, c) for all b, c EV. Therefore, f = f'. • 

Corollary B-3.93. If (V, f) is an inner product space and A and A' are inner 
product matrices off relative to different bases of V, then there exists a nonzero 
dEkwith 

det(A') = d2 det(A). 

Consequently, A' is nonsingular if and only if A is nonsingular. 

Proof. This follows from the familiar facts: det(PT) = det(P) and det(AB) = 
det(A) det(B). Thus, 

det(A') = det(PT AP)= det(P) 2 det(A). • 

The most important bilinear forms are the nondegenerate ones. 

Definition. A bilinear form f is nondegenerate if it has a nonsingular inner 
product matrix. 

For example, the dot product on kn is nondegenerate, for its inner product 
matrix relative to the standard basis is the identity matrix I. 

The discriminant of a bilinear form is essentially the determinant of its inner 
product matrix. However, since the inner product matrix depends on a choice of 
basis, we must complicate the definition a bit. 

Definition. If k is a field, then its multiplicative group of nonzero elements is 
denoted by kx. Define (kx)2 = {a2 : a E kx}. The discriminant of a bilinear 
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form f is either 0 or 
det(A)(kx) 2 E kx /(kx) 2 , 

where A is an inner product matrix of f. 
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It follows from Corollary B-3.93 that the discriminant of f is well-defined. 
Quite often, however, we are less careful and say that det(A) is the discriminant of 
f, where A is some inner product matrix of f. 

The next (technical) definition will be used in characterizing nondegeneracy. 

Definition. If (V, f) is an inner product space and W ~ V is a subspace of V, 
then the left orthogonal complement of W is 

Wl.L = {b EV: f(b,w) = 0 for all w E W}; 

the right orthogonal complement of W is 

W.lR = {c EV: f(w,c) = 0 for all w E W}. 

It is easy to see that both w.lL and w.lR are subspaces of v. Moreover, 
W .lL = W .lR if f is either symmetric or alternating, in which case we write 

w-1. 

Let (V, !) be an inner product space, and let A be the inner product matrix 
of f relative to a basis ei, ... , en of V. We claim that b E V .lL if and only if b is 
a solution of the homogeneous system AT x = 0. If b E V .lL. then f (b, ei) = 0 for 
allj. Writing b =Li biei, we see that 0 = f(b, ei) = f(Li biei, ej) =Li bd(ei, ei)· 
In matrix terms, b = (bi, ... , bn) T and b TA = O; transposing, b is a solution 
of the homogeneous system AT x = 0. The proof of the converse is left to the 
reader. A similar argument shows that c E V.lR if and only if c is a solution of the 
homogeneous system Ax= 0. 

Theorem B-3.94. Let (V, !) be an inner product space. Then f is nondegenerate 
if and only if Vl.L = {0} = V.lR; that is, if f(b, c) = 0 for all c E V, then b = 0, 
and if f(b, c) = 0 for all b E V, then c = 0. 

Proof. Our remarks above show that b E V .lL if and only if b is a solution of the 
homogeneous system AT x = 0. Therefore, v.lL # {O} if and only if there is a 
nontrivial solution b, and Exercise A-7.4 on page 258 shows that this holds if and 
only if det(AT) = 0. Since det(AT) = det(A), we have f degenerate. A similar 
argument shows that V.lR # {O} if and only if there is a nontrivial solution to 
Ax= 0. • 

Remark. If X, Y, Z are sets, then every function of two variables, f: Xx Y---+ Z, 
gives rise to two (one-parameter families of) functions of one variable. If x0 E X, 
then 

f(xo, ) : Y---+ Z sends y H f(xo, y), 

and if Yo E Y, then 

f( , Yo): X ---+ Z sends x H f(x, Yo). 
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Here is another characterization of nondegeneracy, in terms of the dual space. 
This is quite natural, for if f is a bilinear form on a vector space V over a field k, 
then the function f ( , u) : V -+ k is a linear functional for any fixed u E V. 

Theorem B-3.95. Let (V, f) be an inner product space, and let ei, ... , en be a 
basis of V. Then f is nondegenerate if and only if the list f( , ei), ... , f( , en) 
is a basis of the dual space V*. 

Proof. Assume that f is nondegenerate. Since dim(V*) = n, it suffices to prove 
linear independence. If there are scalars ci, ... , Cn with Li cd( , ei) = 0, then 

L:cd(v,ei) = 0 for all v EV. 
i 

If we define u = Li ciei, then f(v, u) = 0 for all v, so that nondegeneracy gives 
u = 0. But ei, ... , en is a linearly independent list, so that all Ci = O; hence, 
f( , e1), ... , f( , en) is also linearly independent, and hence it is a basis of V*. 

Conversely, assume that the given linear functionals are a basis of V*. If 
f(v,u) = 0 for all v EV, where u = Liciei, then Lied( ,ei) = 0. Since these 
linear functionals are linearly independent, all Ci = 0, and so u = O; that is, f is 
nondegenerate. • 

We call the list f( , ei), ... , f( , en) the dual basis of V with respect to f. 

Corollary B-3.96. If (V, f) is an inner product space with f nondegenerate, then 
every linear functional g E V* has the form 

g=f( ,u) 

for a unique u EV. 

Proof. Let ei, ... , en be a basis of V, and let f( , e1), ... , f( , en) be its dual 
basis. Since g E V*, there are scalars Ci with g = Li cd( , ei)· If we define 
u =Li ciei, then g(v) = f(v, u). 

To prove uniqueness, suppose that f( , u) = f( , u'). Then f(v, u - u') = 0 
for all v EV, and so nondegeneracy off gives u - u' = 0. • 

Remark. There is an analog of this corollary in functional analysis, called the 
Reisz Representation Theorem. If (V, f) is an inner product space, where V 
is a vector space over JR and f is nondegenerate, then we can define a norm on V 
by 

llvll = Jf(v,v). 

Norms should be viewed as generalizations of absolute value; the norm makes V 
into a metric space, and the completion of V is called a real Hilbert space. 

For example, if I! = [O, lj is the closed unit interval, then the set V of all 
continuous real-valued functions f: ][ -+ JR is an inner product space with 

(f,g) = fo1 
f(x)g(x)dx. 
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The completion His a Hilbert space, usually denoted by £ 2 (1!). The Reisz Repre
sentation Theorem says, for every linear functional cp on H, there is f E H with 

cp(g) = fo 1 f(x)g(x) dx. ~ 
Corollary B-3.97. Let (V,f) be an inner product space with f nondegenerate. If 
ei, ... , en is a basis of V, then there exists a basis b1 , ... , bn of V with 

f(ei,bJ) = oiJ· 

Proof. Since f is nondegenerate, the function V -+ V*, given by v H f ( , v), is 
an isomorphism. Hence, the following diagram commutes: 

f V x V----.k, 

~!~ 
VxV* 

where ev is evaluation (x, g) H g(x) and cp: (x, y) H (x, f( , y)). For each i, 
let 9i E V* be the ith coordinate function: if v E V and v = L.:j Cjej, then 
9i(v) =Ci· By Corollary B-3.96, there are bi, ... , bn EV with 9i = f( , bi) for all 
i. Commutativity of the diagram gives 

f(ei,bj) = ev(ei,9J) = Oij· • 

Example B-3.98. Let (V, f) be an inner product space, and let W ~ V be a 
subspace. It is possible that f is nondegenerate, while its restriction f I (W x W) 
is degenerate. For example, let V = k2 , and let f have the inner product matrix 
A= [~Al relative to the standard basis ei, e2. It is clear that A is nonsingular, so 
that f is nondegenerate. On the other han.d, if W = (e1), then fl(W x W) = 0, 
and hence it is degenerate. ~ 

Proposition B-3.99. Let (V, f) be either a symmetric or an alternating space, 
and let W be a subspace of V. If fl(W x W) is nondegenerate, then 

V=WEBW.L. 

Remark. We do not assume that f itself is nondegenerate; even if we did, it would 
not force fl(W x W) to be nondegenerate, as we have seen in Example B-3.98. ~ 

Proof. If u E W n W.L, then f(w,u) = 0 for all w E W. Since fl(W x W) is 
nondegenerate and u E W, we have u = O; hence, W n Wl. = {O}. If v EV, 
then f( ,v)IW is a linear functional on W; that is, f( ,v)IW E W*. By 
Corollary B-3.96, there is Wo E W with f(w, v) = f(w, wo) for all w E W; i.e., 
f(w, v - wo) = 0 for all w E W). Hence, v = wo + (v - wo), where wo E Wand 
v-wo E W.L. • 

There is a name for direct sum decompositions as in the proposition. 

Definition. Let (V, f) be an inner product space. Then a direct sum 

V = W1 EB · · · EB Wr 
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is an orthogonal direct sum if, for all i -:j:. j, we have f(wi, Wj) = 0 for all Wi E Wi 
and Wj E Wj. (Some authors denote orthogonal direct sum by V = W1..l · · · ..lWr.) 

We are now going to look more carefully at special bilinear forms; first we 
examine alternating forms, then symmetric ones. 

We begin by constructing all alternating bilinear forms f on a two-dimensional 
vector space V over a field k. As always, f = 0 is an example. Otherwise, there 
exist two vectors el,e2 EV with f(e1,e2)-:/:- O; say, f(e1,e2) = c. Ifwe replace el 
bye~ = c-1ei, then f(e~, e2) = 1. Since f is alternating, the inner product matrix 
A of f relative to the basis e~, e2 is A = [ ~1 A]. This is even true when k has 
characteristic 2; in this case, A = [ ~ AJ. 
Definition. A hyperbolic plane over a field k is a two-dimensional vector space 
over k equipped with a nonzero alternating bilinear form. 

We have just seen that every two-dimensional alternating space (V, !) in which 
f is not identically zero has an inner product matrix A= [ ~1 A]. 

Theorem B-3.100. Let (V, !) be an alternating space, where V is a vector space 
over any field k. If f is nondegenerate, then there is an orthogonal direct sum 

V = H1 EB · · · EB Hm, 

where each Hi is a hyperbolic plane. 

Proof. The proof is by induction on dim(V) ~ 1. For the base step, note that 
dim(V) ~ 2, because an alternating form on a one-dimensional space must be 0, 
hence degenerate. If dim(V) = 2, then we saw that V is a hyperbolic plane. For the 
inductive step, note that there are vectors e1, e2 E V with f ( ei, e2) -:/:- 0 (because f 
is nondegenerate, hence, nonzero), and we may normalize so that f(e1, e2) = 1: if 
f ( ei, e2) = d, replace e2 by d-1 e2. The subspace H 1 = ( ei, e2) is a hyperbolic plane, 
and the restriction fl(H1 x H1) is nondegenerate. Thus, Proposition B-3.99 gives 
V = H 1 EBH [-. Since the restriction off to H [- is nondegenerate, by Exercise B-3.53 
on page 439, the inductive hypothesis applies. • 

Corollary B-3.101. Let (V, f) be an alternating space, where V is a vector space 
over a field k. If f is nondegenerate, then dim(V) is even. 

Proof. By the theorem, V is a direct sum of two-dimensional subspaces. • 

Definition. Let (V, f) be an alternating space with f nondegenerate. A symplec
tic basis24 is a basis x1, yi, ... , Xm, Ym such that f(xi, Yi)= 1, f(yi, xi)= -1 for 
all i, and all other f(xi,Xj), f(yi,Yj), f(xi,Yj), and f(yj,Xi) are 0. 

24The term symplectic was coined by Wey! [120], p. 165; he wrote, "The name 'complex 
group' formerly advocated by me in allusion to line complexes, as these are defined by the vanishing 
of antisymmetric bilinear forms, has become more and more embarrassing through collision with 
the word 'complex' in the connotation of complex number. I therefore propose to replace it by the 
corresponding Greek adjective 'symplectic.' Dickson calls the group the 'Abelian linear group' in 
homage to Abel who first studied it." 
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Corollary B-3.102. Let (V, !) be an alternating space with f nondegenerate, and 
let A be an inner product matrix for f (relative to some basis of V). 

(i) There exists a symplectic basis xi, yi, ... , Xm, Ym for V, and A is a 2m x 
2m matrix for some m 2: 1. 

(ii) If k has characteristic not 2, then A is congruent to a matrix direct sum 
of blocks of the form [ -9i A], and the latter is congruent to [ -91 b], where 
I is the m x m identity matrix. 25 If k has characteristic 2, then remove 
the minus signs, for -1 = 1. 

(iii) Every nonsingular skew-symmetric matrix A over a field k of character
istic not 2 is congruent to a direct sum of 2 x 2 blocks [ -9i A]. If k has 
characteristic 2, then remove the minus signs. 

Proof. 

(i) By Theorem B-3.100, a symplectic basis exists, and so Vis even dimen
sional. 

(ii) The matrix A is congruent to the inner product matrix relative to a 
symplectic basis arising from a symplectic basis xi, Yi, . .. , Xm, Ym· The 
second inner product matrix arises from a reordered symplectic basis 
Xi, .. · ,Xm,Yi, · · · ,Ym· 

(iii) A routine calculation. • 

We now consider symmetric bilinear forms. 

Definition. Let (V, f) be a symmetric space, and let E = ei, ... , en be a basis 
of V. Then Eis an orthogonal basis if f(ei, ei) = 0 for all i "I- j, and Eis an 
orthonormal basis if f(ei, ei) = Oij, where Oij is the Kronecker delta. 

If ei, ... , en is an orthogonal basis of a symmetric space (V, f), then V 
(ei) EB··· EB (en) is an orthogonal direct sum. In Corollary B-3.97, we saw that 
if (V, !) is a symmetric space with f nondegenerate and ei, ... , en is a basis of V, 
then there exists a basis bi, ... , bn of V with f(ei, bj) = Oij· If Eis an orthonormal 
basis, then we can set bi = ei for all i. 

Theorem B-3.103. Let (V, !) be a symmetric space, where V is a vector space 
over a field k of characteristic not 2. 

(i) V has an orthogonal basis, and so every symmetric matrix A with entries 
in k is congruent to a diagonal matrix. 

(ii) If C = diag[c~di, ... , c~dnJ, then C is congruent to D = diag[di, ... , dn]. 

(iii) If f is nondegenerate and every element ink has a square root ink, then 
V has an orthonormal basis. Every nonsingular symmetric matrix A with 
entries in k is congruent to I. 

25If the form f is degenerate, then A is congruent to a direct sum of 2 x 2 blocks [ ~1 A] and 
a block of O's. 
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Proof. 

(i) If f = 0, then every basis is an orthogonal basis. We may now assume 
that ff:. 0. By Exercise B-3.51 on page 439, which applies because k does 
not have characteristic 2, there is some v EV with f(v, v) f:. 0 (otherwise, 
f is both symmetric and alternating). If W = (v), then fl(W x W) is 
nondegenerate, so that Proposition B-3.99 gives V = WEB Wl.. The 
proof is now completed by induction on dim(W). 

If A is a symmetric n x n matrix, then Proposition B-3.92(i) shows 
that there is a symmetric bilinear form f and a basis U = ui, ... , Un, 

so that A is the inner product matrix off relative to U. We have just 
seen that there exists an orthogonal basis v1 , ... , Vn, so that Proposi
tion B-3.92(v) shows A is congruent to the diagonal matrix diag[f(vi, vi)]. 

(ii) If an orthogonal basis consists of vectors Vi with f(vi,vi) = c~di, then 
replacing each Vi by v~ = c;1vi gives an orthogonal basis with f(v~,vD = 
di. It follows that the inner product matrix of f relative to the basis 
v~, ... , v~ is D = diag[d1, ... , dn]· 

(iii) This follows from parts (i) and (ii) by letting di = 1 for each i. • 

Notice that Theorem B-3.103 does not say that any two diagonal matrices over 
a field k of characteristic not 2 are congruent; this depends on k. For example, if 
k = C, then all (nonsingular) diagonal matrices are congruent to I, but we now 
show that this is false if k = JR. 

Definition. A symmetric bilinear form f on a vector space V over JR is positive 
definite if f ( v, v) > 0 for all nonzero v E V, while f is negative definite if 
f ( v, v) < 0 for all nonzero v E V. 

The next result, and its matrix corollary, was proved by Sylvester. When n = 2, 
it classifies the conic sections, and when n = 3, it classifies the quadric surfaces. 

Lemma B-3.104. If f is a symmetric bilinear form on a vector space V over JR 
of dimension m, then there is an orthogonal direct sum 

V = W + EB W _ EB Wo, 

where flW+ is positive de.finite, flW- is negative de.finite, and flWo is identically 0. 
Moreover, the dimensions of these three subspaces are uniquely determined by f. 

Proof. By Theorem B-3.103, there is an orthogonal basis v1, ... , Vm of V. Denote 
f(vi, vi) by di. As any real number, each di is either positive, negative, or 0, and 
we rearrange the basis vectors so that v1, ... , Vp have positive di, Vv+ 1, ... , Vp+r 
have negative di, and the last vectors have di = 0. It follows easily that V is the 
orthogonal direct sum 

and that the restrictions of f to each summand are positive definite, negative defi
nite, and zero. 
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Now W0 = V 1- depends only on f, and hence its dimension depends only on 
f as well. To prove uniqueness of the other two dimensions, suppose that there 
is a second orthogonal direct sum V = w+ EB W~ EB W0 • If T: V ---+ W + is the 
projection, then kerT = w_ EB Wo. It follows that if <p = TIW+, then 

ker<p = w+ n kerT = w+ n (W_ EB Wo). 

However, if v E w+, then f(v,v) 2:: 0, while if v E W_ EB Wo, then f(v,v):::; 0; 
hence, if v E ker <p, then f ( v, v) = 0. But flW+ is positive definite, for this is one of 
the defining properties of w+, so that f(v,v) = 0 implies v = 0. We conclude that 
ker<p = {O}, and cp: w+ ---+ W+ is an injection; therefore, dim(W+) :::; dim(W+)· 
The reverse inequality is proved similarly, so that dim(W+) = dim(W+)· Finally, 
the formula dim(W_) = dim(V) - dim(W+) - dim(Wo) and its primed version 
dim(W~) = dim(V) - dim(W+) - dim(Wo) give dim(W~) = dim(W_), • 

Theorem B-3.105 (Law of Inertia). Every symmetric n x n matrix A over JR. 
is congruent to a matrix of the form 

[
Ip 0 Ol 
0 -Ir 0 . 
0 0 0 

Moreover, the signature s off, defined by s = p - r, is well-defined, and two 
symmetric real n x n matrices are congruent if and only if they have the same rank 
and the same signature. 

Proof. By Theorem B-3.103, A is congruent to a diagonal matrix diag[d1, ... , dn], 
where d1, ... , dp are positive, dp+ 1 , ••• , dp+r are negative, and dp+r+l, ... , dn are 
0. But every positive real is a square, while every negative real is the negative of 
a square; it now follows from Theorem B-3.103(ii) that A is congruent to a matrix 
as in the statement of the theorem. 

It is clear that congruent n x n matrices have the same rank and the same 
signature. Conversely, let A and A' have the same rank and the same signature. 
Now A is congruent to the matrix direct sum Ip EB -Ir EB 0 and A' is congruent 
to Ip' EB -Ir' EB 0. Since rank(A) = rank(A'), we have p' + r' = p + r; since the 
signatures are the same, we have p' - r' = p - r. It follows that p' = p and r' = r, 
so that both A and A' are congruent to the same diagonal matrix of l's, -1 's, and 
O's, and hence they are congruent to each other. • 

It would be simplest if a symmetric space (V, !) with f nondegenerate always 
had an orthonormal basis; that is, if every symmetric matrix were congruent to the 
identity matrix. This need not be so: the real 2 x 2 matrix - I is not congruent to I 
because their signatures are different (I has signature 2 and -I has signature -2). 

Closely related to a bilinear form f is a quadratic form Q. given by Q(v) = 

f(v, v). Recall that the length of a vector v =(xi, ... , Xn) E IR.n is Jx~ + · · · + x;. 
Thus, if f is the dot product on IR.n, then 

llvll 2 = (Jx~+ .. ·+x;)2 =f(v,v)=Q(v). 
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Definition. Let V be a vector space over a field k. A quadratic form is a function 
Q : V ---+ k such that 

(i) Q(cv) = c2Q(v) for all v EV and c Ek; 

(ii) the function f: V x V---+ k, defined by 

f(u, v) = Q(u + v) - Q(u) - Q(v), 

is a bilinear form. We call f the associated bilinear form. 

If Q is a quadratic form, it is clear that its associated bilinear form f is sym
metric: f(u,v) = f(v,u). 

Example B-3.106. 

(i) If g is a bilinear form on a vector space V over a field k, we claim that Q, 
defined by Q(v) = g(v, v), is a quadratic form. Now Q(cv) = g(cv, cv) = 
c2g(v,v) = c2Q(v), giving the first axiom in the definition. If u,v EV, 
then 

where 

Q(u+v) =g(u+v,u+v) 

= g(u, u) + g(u, v) + g(v, u) + g(v, v) 

= Q(u) + Q(v) + f(u,v), 

f(u, v) = g(u, v) + g(v, u). 

It is easy to check that f is a symmetric bilinear form. 

(ii) We have just seen that every bilinear form g determines a quadratic form 
Q; the converse is true if g is symmetric and k does not have character
istic 2. In this case, Q determines g; in fact, the formula from part (i), 
f(u, v) = g(u, v) + g(v, u) = 2g(u, v), gives 

g(u,v) = !J(u,v). 

In other words, given a symmetric bilinear form f over a field k of char
acteristic not 2, we can construct the quadratic form Q (as in part (i)) 
associated to ! f. 

(iii) If f is the usual dot product defined on IR.n, then the corresponding 
quadratic form is Q(v) = llvll 2 , where llvll is the length of the vector v. 

(iv) If f is a bilinear form on a vector space V with inner product matrix 
A = [aii] relative to some basis ei, ... , en, and u = I: ciei is a column 
vector, then Q(u) = u TT Au; that is, 

Q(u) = L:aijCiCj· 

If n = 2, for example, we have i,j 

Q(u) = auc~ + (a12 + a21)c1c2 + a22c~. 
Thus, quadratic forms are really homogeneous quadratic polynomials in 
a finite number of indeterminants. .,.. 



Orthogonal and Symplectic Groups 429 

We have just observed, in Example B-3.106(ii), that if a field k does not have 
characteristic 2, then symmetric bilinear forms and quadratic forms are merely two 
different ways of viewing the same thing, for each determines the other. Thus, 
we have classified quadratic forms Q over C (Theorem B-3.103(iii)) and over ~ 
(Theorem B-3.105). The classification over the prime fields (even over IF2 ) is also 
known, as is the classification over the finite fields. 

Call two quadratic forms equivalent if their associated bilinear forms have 
congruent inner product matrices, and call a quadratic form nondegenerate if its 
bilinear form f is nondegenerate. 

We now state (without proof) the results when Q is nondegenerate. If k is 
a finite field of odd characteristic, then two nondegenerate quadratic forms over 
k are equivalent if and only if they have the same discriminant (Kaplansky [59], 
pp. 14-15 or Lam [64]). If k is a finite field of characteristic 2, the theory is a bit 
more complicated. In this case, the associated symmetric bilinear form 

f(x, y) = Q(x + y) + Q(x) + Q(y) 

must also be alternating, for f(x,x) = Q(2x) + 2Q(x) = 0. Therefore, V has a 
symplectic basis x1,Y1, ... ,xm,Ym· The Arf invariant of Q is defined by 

m 
Arf(Q) = L Q(xi)Q(yi) 

i=l 

(it is not at all obvious that the Arf invariant is an invariant, i.e., that Arf(Q) does 
not depend on the choice of symplectic basis; see Dye [29] for an elegant proof). If 
k is a finite field of characteristic 2, then two nondegenerate quadratic forms over 
k are equivalent if and only if they have the same discriminant and the same Arf 
invariant ([59], pp. 27-33). The classification of quadratic forms over Q is much 
deeper. Just as ~ can be obtained from Q by completing it with respect to the 
usual metric d(a, b) = la - bl, so, too, can we complete Z, for every prime p, with 
respect to the p-adic metric; the completion Zp is called the p-adic integers. The 
p-adic metric on Z can be extended to Q, and its completion Qp (which turns out to 
be Frac(Zp)) is called the p-adic numbers. The Hasse-Minkowski Theorem 
([10], pp. 61) says that two quadratic forms over Q are equivalent if and only if 
they are equivalent over ~ and over Qp for all primes p. 

Orthogonal and Symplectic Groups 

The first theorems of linear algebra consider the structure of vector spaces in or
der to pave the way for a discussion of linear transformations. Similarly, the first 
theorems of inner product spaces enable us to discuss appropriate linear transfor
mations. 

Definition. If (V, !) is an inner product space with f nondegenerate, then an 
isometry is a linear transformation <p: V -t V such that, for all u, v E V, 

f(u, v) = f(<pu, <pv). 
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For example, if f is the dot product on !Rn and v = (x1, ... , Xn), then we saw 
in Example B-3.106(iii) that llvll 2 = f(v,v). If <p: !Rn--+ !Rn is an isometry, then 

llip(v)ll 2 = f(ipv,ipv) = f(v,v) = llvll 2 , 

so that llip(v)ll = llvll. Since the distance between two points u, v E !Rn is llu - vii, 
every isometry <.p preserves distance; it follows that isometries are continuous. 

Definition. Let (V, f) be an inner product space with f nondegenerate. Then 

Isom(V, f) = {all isometries V --+ V}. 

Proposition B-3.107. If (V, f) is an inner product space with f nondegenerate, 
then Isom(V, f) is a subgroup of GL(V). 

Proof. Let us see that every isometry <.p : V --+ V is nonsingular. If u E V and ipu = 
0, then, for all v EV, we have 0 = f(ipu,ipv) = f(u,v). Since f is nondegenerate, 
u = 0 and so <.p is an injection. Hence, dim(im <.p) = dim(V), so that im <.p = V, by 
Corollary A-7.23(ii). Thus, <.p E GL(V), and Isom(V, f) ~ GL(V). 

We now show that Isom(V, f) is a subgroup. Of course, 1 v is an isometry. The 
inverse of an isometry <.p is also an isometry: for all u, v E V, 

f(ip- 1u, <.p- 1v) = f(<.pip- 1u, <.p<.p- 1v) = f(u, v). 

Finally, the composite of two isometries <.p and () is also an isometry: 

f ( u, v) = f ( ipu, <.pv) = f ( Oipu, O<.pv). • 

Proposition B-3.108. Let (V, f) be an inner product space with f nondegenerate, 
let E = ei, ... , en be a basis of V, and let A be the inner product matrix relative to 
E. Then <.p E GL(V) is an isometry if and only if its matrix M = E['P]E satisfies 
the equation MT AM = A. 

Proof. Recall Equation (1) on page 419: 

f(b,c) = bT Ac, 

where b, c E V (elements of kn are n x 1 column vectors). If e1 , ... , en is the 
standard basis of kn, then 

<.p( ei) = Mei 

for all i, because Mei is the ith column of M (which is the coordinate list of ip( ei)). 
Therefore, 

f(ipei,<.pei) = (Mei)T A(MeJ) = el(MT AM)ej. 

If <.p is an isometry, then 

f(ipei, <.pej) = f(ei, ej) =el Aej, 

so that f(ei, ei) =el Aej =el (MT AM)eJ for all i, j. Hence, Proposition B-3.92(iv) 
gives MT AM = A. 

Conversely, if MT AM = A, then 

f(ipei, <.peJ) = el(MT AM)ei =el Aej = f(ei, ej), 

and <.p is an isometry. • 
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Computing the inverse of a general nonsingular matrix is quite time-consuming, 
but it is easier for isometries. For example, if a matrix A is the identity matrix I, 
then the equation MT AM= A in Proposition B-3.108 simplifies to MT IM= I; 
that is, MT = M- 1 . 

We introduce the adjoint of a linear transformation to aid us. 

Definition. Let (V, f) be an inner product space with f nondegenerate. The 
adjoint of a linear transformation T: V ---+ V is a linear transformation T* : V ---+ V 
such that, for all u, v E V, 

f(Tu, v) = f(u, T*v). 

Let us see that adjoints exist. 

Proposition B-3.109. If (V, f) is an inner product space with f nondegenerate, 
then every linear transformation T: V ---+ V has an adjoint. 

Proof. Let ei, ... , en be a basis of V. For each j, the function 'Pi: V---+ k, defined 
by 

'Pi(v) = f(Tv,ej), 

is easily seen to be a linear functional. By Corollary B-3.96, there exists Uj E V 
with cpj(v) = f(v,uj) for all v EV. Define T*: V---+ V by T*(ej) = Uj, and note 
that 

f(Tei,ej) = 'Pi(ei) = f(ei,uj) = f(ei,T*ei)· • 

Proposition B-3.110. Let (V, f) be an inner product space with f nondegenerate. 
If T: V ---+ V is a linear transformation, then T is an isometry if and only if 
T*T =Iv, in which case T* = T- 1 . 

Proof. If T*T =Iv, then, for all u, v EV, we have 

f(Tu,Tv) = f(u,T*Tv) = f(u,v), 

so that T is an isometry. 

Conversely, assume that T is an isometry. Choose v E V; for all u E V, we 
have 

f(u, T*Tv - v) = f(u, T*Tv) - f(u, v) = f(Tu, Tv) - f(u, v) = 0. 

Since f is nondegenerate, T*Tv - v = O; that is, T*Tv = v. As this is true for all 
v EV, we have T*T =Iv. • 

Definition. Let (V, f) be an inner product space with f nondegenerate. 

(i) If f is alternating, then Isom(V, f) is called the symplectic group, and 
it is denoted by Sp(V, f). 

(ii) If f is symmetric, then Isom(V, f) is called the orthogonal 26 group, and 
it is denoted by O(V, f). 

26Symplectic groups turn out not to depend on the nondegenerate bilinear form, but orthog
onal groups do; there are different orthogonal groups. 
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As always, a choice of basis E of an n-dimensional vector space V over a 
field k gives an isomorphismµ: GL(V) ---+ GL(n, k), the group of all nonsingular 
n x n matrices over k. In particular, let (V,J) be an alternating space with f 
nondegenerate, and let E = xi, Yi, ... , Xm, Ym be a symplectic basis of V (which 
exists, by Corollary B-3.102); recall that n = dim(V) is even; say, n = 2m. Denote 
the image of Sp(V, f) by Sp(2m, k). Similarly, if (V, f) is a symmetric space with 
f nondegenerate and Eis an orthogonal basis (which exists when k does not have 
characteristic 2, by Theorem B-3.103), denote the image of O(V, f) by O(n, !). The 
description of orthogonal groups when k has characteristic 2 is more complicated; 
see our discussion on page 435. 

Let (V, f) be an inner product space with f nondegenerate. We find adjoints, 
first when f is symmetric, then when f is alternating. This will enable us to 
recognize orthogonal matrices and symplectic matrices. 

Proposition B-3.111. Let (V, f) be a symmetric space with f nondegenerate, let 
T: V ---+ V be a linear transformation, let E = ei, ... , en be a basis of V, and let 
B = [bij] = ETE· Let B* denote the matrix of the adjoint T* of T. 

(i) If E is an orthogonal basis, then B* is the "weighted" transpose B* = 
[ci1cjbji], where f(ei, ei) =Ci for all i. 

(ii) If Eis an orthonormal basis, then B* =BT. Moreover, B is orthogonal 
if and only if BT B =I. 

Proof. We have 

f(Bei,ej) = f(L)uet,ej) = L,btd(et,ej) = bjiCj· 
l l 

If B* = [bij], then a similar calculation gives 

f(ei,B*ej) = L,b£if(ei,et) = cib;j. 
l 

Since f(Bei, ej) = f(ei, B*ej), we have bjiCj = cibij for all i,j. Since f is nonde
generate, all Ci =F 0, and so 

b* -1 b ij = Ci Cj ji1 

because B is the matrix of the map T. Statement (ii) follows from Proposi
tion B-3.110, for Ci = 1 for all i when Eis orthonormal. • 

How can we recognize symplectic matrices? 

Proposition B-3.112. Let (V, f) be an alternating space with f nondegenerate, 
where V is a 2m-dimensional vector space. If B = [ ~ ~] is a 2m x 2m matrix 
partitioned into m x m blocks, then the adjoint of B is 

B* - [TT - -ST 

and B is symplectic if and only if B* B = I. 
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Proof. Let Ebe a symplectic basis ordered as x 1 , ... ,xm,Y1, ... ,ym, and assume 
that the partition of B respects E; that is, 

f(Bxi, xi)= f ('Lpuxe + suye, xi) = LPed(xe, xi)+ L sed(ye, xi)= -sii 
e e e 

[the definition of symplectic basis says that f (xe, Xj) = 0 and f (ye, Xj) = -8ej for 
all i,j]. Partition the adjoint B* into m x m blocks: 

B* = [~ ~]. 
Hence, 

f(xi, B*xi) = f (Xi, L 1fejXe + aejYe) = L 1fejf(xi, xe) + L aeif(xi, Ye) = aii 
e e e 

[for f(xi,xe) = 0 and f(xi,Ye) = 8iel· Since f(Bxi,xi) = f(xi,B*xi), we have 
O"ij = -Sji· Hence, E = -ST. Computation of the other blocks of B* is similar, 
and is left to the reader. The last statement follows from Proposition B-3.110. • 

The next question is whether Isom(V, !) depends on the choice of nondegenerate 
bilinear form f. We shall see that it does not depend on f when f is alternating, 
and so there is only one symplectic group Sp(V) (however, when f is symmetric, 
then Isom(V, f) does depend on f and there are several types of orthogonal groups). 

Definition. Let V and W be finite-dimensional vector spaces over a field k, and let 
f: V x V --+ k and g: W x W --+ k be bilinear forms. Then f and g are equivalent 
ifthere is an isometry cp: V--+ W; that is, f(u,v) = g(cpu,cpv) for all u,v EV. 

Lemma B-3.113. If f,g are bilinear forms on a finite-dimensional vector space V, 
then the following statements are equivalent. 

(i) f and g are equivalent. 

(ii) If E = ei, ... , en is a basis of V, then the inner product matrices off 
and g with respect to E are congruent. 

(iii) There is cp E GL(V) with g = f'P. 

Proof. 

(i) =? (ii) If cp: V --+ V is an isometry, then g(cp(b), cp(c)) = f(b, c) for all 
b,c EV. If E = ei, ... ,en is a basis of V, then E' = cp(e1), ... ,cp(en) 
is also a basis, because isometries are isomorphisms. Thus, for all i, j, 
we have g(cp(ei), cp(ei)) = f(ei, ei)· Now the inner product matrix A' 
of g with respect to the basis E' is A' = [g(cpei,cpei)J, while the inner 
product matrix A off with respect to the basis Eis A= [f(ei, ej)]. By 
Proposition B-3.92(v), the inner product matrix of g with respect to E 
is congruent to A. 

(ii) =?(iii) If A= [f(ei, ei)J and A'= [g(ei, ei)J, then there exists a nonsingu
lar matrix Q = [%] with A'= QT AQ, by hypothesis. Define B: V--+ V 
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to be the linear transformation with B( ej) = L:v Qvjev. Finally, g = f 8- 1
: 

[g(ei,ej)] =A'= QT AQ = [f(LQviev, LQ>..je>..)] 
v >.. 

9-l = [f(B(ei), B(ej))] = [f (ei, eJ)]. 

Now let cp = e-1 . 

(iii) =? (i) It is obvious from the definition that cp- 1 : (V, g) ---+ (V, f) is an 
isometry: 

g(b, c) = f'P(b, c) = f(cp- 1b, cp- 1c). 

Hence, cp is an isometry, and g is equivalent to f. • 

Remark. The next lemma, which implies that equivalent bilinear forms have iso
morphic isometry groups, uses some elementary results about group actions, stabi
lizers, and orbits. The reader may accept the lemma (it is used here only in the 
proof of Theorem B-3.115) or read the appropriate bit of group theory (for example, 
in Part 2). 

In more detail, observe that GL(V) acts on kvxv: if cp E GL(V) and 
f: V x V ---+ k, define cp f = f'P, where 

f'P(b, c) = f(cp- 1b, cp- 1c). 

This.formula does yield an action: if(} E GL(V), then (cpB)f = f"'8 , where 

(cpB)f(b, c) = f"' 8 (b, c) = f((cpe)- 1b, (cpe)- 1c) = f(e- 1cp- 1b, e-1cp- 1c). 

On the other hand, cp( (} f) is defined by 

(!8 )"'(b, c) = f 8 (cp- 1b, cp- 1c) = f(e- 1cp- 1b, e-1cp- 1c), 

so that (cpB)f = cp(Bf). <111 

Lemma B-3.114. 

(i) Let (V, f) be an inner product space with f nondegenerate. The stabilizer 
GL(V)J off under the action on kvxv is Isom(V, !). 

(ii) If a bilinear form g: V x V ---+ k lies in the same orbit as f, then 
Isom(V, f) and Isom(V, g) are isomorphic; in fact, they are conjugate 
subgroups of GL(V). 

Proof. 

(i) By definition of stabilizer, cp E GL(V)J if and only if f"' = f; that is, for 
all b, c EV, we have f(cp- 1b, cp- 1c) = f(b, c). Thus, cp-1, and hence cp, is 
an isometry. 

(ii) Since two points in the same orbit have conjugate stabilizers, we have 
GL(V)9 = r(GL(V)1)r- 1 for some r E GL(V); that is, Isom(V,g) = 
risom(V, f)r- 1. • 

We can now show that the symplectic group is, up to isomorphism, independent 
of the choice of nondegenerate alternating form. 
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Theorem B-3.115. If (V,f) and (V,g) are alternating spaces with f and g non
degenerate, then f and g are equivalent and 

Sp(V, !) ~ Sp(V, g). 

Proof. By Corollary B-3.102(ii), the inner product matrix of any nondegenerate 
alternating bilinear form is congruent to [ .!}1 6], where I is the identity matrix. 
The result now follows from Lemma B-3.113. • 

When k is a finite field, say, k = IF q for some prime power q, the matrix 
group GL(n, k) is often denoted by GL(n, q). A similar notation is used for other 
groups arising from GL(n, k). For example, if Vis a 2m-dimensional space over lFq 
equipped with a nondegenerate alternating form g, then Sp(V, !) may be denoted 
by Sp(2m, q) (we have just seen that this group does not depend on f). 

Symplectic and orthogonal groups give rise to simple groups. We summarize the 
main facts below; a full discussion can be found in the following books: E. Artin [3]; 
Carter [18], as well as the article by Carter in Kostrikin-Shafarevich [63]; Conway 
et al. [21]; Dieudonne [26]; Suzuki [114]. 

Symplectic groups yield the following simple groups. If k is a field, define 

PSp(2m, k) = Sp(2m, k)/Z(2m, k), 

where Z(2m, k) is the subgroup of all scalar matrices in Sp(2m, k). The groups 
PSp(2m, k) are simple for all m :'.'.: 1 and all fields k with only three exceptions: 
PSp(2,lF2) ~ 83, PSp(2,lF3) ~ A4, and PSp(4,lF2) ~ 85. 

The orthogonal groups, that is, isometry groups of a symmetric space (V, !) 
when f is nondegenerate, also give rise to simple groups. In contrast to symplectic 
groups, however, they depend on properties of the field k. We restrict our attention 
to finite fields k. 

Assume that k has odd characteristic p. 

There is only one orthogonal group, O(n,pm), when n is odd, but when n is 
even, there are two groups, o+(n,pm) and o-(n,pm). Simple groups are defined 
from these groups as follows: first form SO'(n,pm) (where f = + or f = -) as 
all orthogonal matrices having determinant 1; next, form PSO'(n,pm) by dividing 
by all scalar matrices in SO'(n,pm). Finally, we define a subgroup O'(n,pm) of 
PSO'(n,pm) (essentially the commutator subgroup), and these groups are simple 
with only a finite number of exceptions (which can be explicitly listed). 

Assume that k has characteristic 2. 

We usually begin with a quadratic form instead of a symmetric bilinear form. 
In this case, there is also only one orthogonal group O(n, 2m) when n is odd, but 
there are two, which are also denoted by o+(n, 2m) and o-(n, 2m), when n is 
even. If n is odd, say, n = 2t' + 1, then 0(2.e + 1, 2m) ~ Sp(2t', 2m), so that we 
consider only orthogonal groups 0'(2.e, 2m) arising from symmetric spaces of even 
dimension. Each of these groups gives rise to a simple group in a manner analogous 
to the odd characteristic case. 



436 Chapter B-3. Advanced Linear Algebra 

Quadratic forms are of great importance in number theory. For an introduction 
to this aspect of the subject, see Hahn [43], Lam [64], and O'Meara [88]. 

Hermitian Forms and Unitary Groups 

Definition. Let (V, f) be an inner product space with f nondegenerate. A linear 
transformation T: V ---+ V is self-adjoint if T = T*. 

For example, if f is symmetric, then Proposition B-3.lll(ii) shows that the 
matrix B of a self-adjoint linear transformation T relative to an orthonormal basis 
of V is symmetric since B* = TT. We shall see that a matrix being self-adjoint 
influences its eigenvalues. 

There is a variant of the dot product that is useful for complex vector spaces. 

Definition. If V is a finite-dimensional vector space over C, define the complex 
inner product h: V x V ---+ C by 

n 

h(u, v) = L u/ilj, 
j=l 

where u = (ui, ... , Un), v =(vi, ... , vn) EV, and z denotes the complex conjugate 
of a complex number z. 

Here are some elementary properties of h. 

Proposition B-3.116. Let V be a finite-dimensional vector space over C equipped 
with a complex inner product h. 

(i) h(u + u', v) = h(u, v) + h(u', v) and h(u, v + v') = h(u, v) + h(u, v') for 
all u,u',v,v' EV. 

(ii) h(cu, v) = ch(u, v) and h(u, cv) = ch(u, v) for all c EC and u, v EV. 

(iii) h(v, u) = h(u, v) for all u, v EV, 

(iv) h(u,u) = 0 if and only if u = 0. 

(v) The standard basis ei, ... , en is an orthonormal basis; that is, h(ei, ej) = 
t5ij. 

(vi) Q(v) = h(v,v) is a real-valued quadratic form. 

Remark. It follows from (ii) that h is not bilinear, for it does not preserve scalar 
multiplication in the second variable. However, it is often called sesquilinear 
(from the Latin meaning one and a half). ..,. 

Proof. All verifications are routine; nevertheless, we check nondegeneracy. If 
h(u, u) = 0, then 

n n 

0 = L UjUj = L luil2 . 

j=l j=l 

Since luil 2 is a nonnegative real, each Uj = 0 and u = 0. This last computation 
also shows that Q is real-valued. • 
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Definition. Let V be a finite-dimensional complex vector space equipped with a 
complex inner product h. An isometry T: V --t V (that is, h(Tu, Tv) = h( u, v) for 
all u, v E V) is called unitary. 

The matrix A of a unitary transformation T relative to the standard basis is 
called a unitary matrix. 

It is easy to see, as in the proof of Proposition B-3.107, that all unitary matrices 
form a subgroup of GL(n, q. 
Definition. The unitary group U(n, q is the set of all n x n unitary linear ma
trices. The special unitary group SU(n, q is the subgroup of U(n, q consisting 
of all unitary matrices having determinant 1. 

Even though the complex inner product h is not bilinear, its resemblance to 
"honest" inner products allows us to define the adjoint of a linear transformation 
T: V --t V as a linear transformation T* : V --t V such that, for all u, v E V, 

h(Tu, v) = h(u, T*v). 

Proposition B-3.117. Let V be a finite-dimensional complex vector space equipped 
with a complex inner product h, and let T: V --t V be a linear transformation. 

(i) Tis a unitary transformation if and only if T*T = lv. 

(ii) If A=[%] is the matrix of T relative to the standard basis E, then the 
matrix A* = [aiJJ of T* relative to E is its conjugate transpose: for 
all i,j, 

Proof. Adapt the proofs of Propositions B-3.110 and B-3.111. • 

We are now going to see that self-adjoint matrices are useful. 

Definition. A complex n x n matrix A is called hermitian if A = A*. 

Thus, A= [aiJ] is hermitian if and only if aji = aij for all i,j and its diagonal 
entries are real; a real matrix is hermitian if and only if it is symmetric. 

What are the eigenvalues of a real symmetric 2 x 2 matrix A? If A = [~ n 
then its characteristic polynomial is 

det(xl-A)=det([x-p -q ]) =(x-p)(x-r)-q2 =x2 -(p+r)x-q2 , 
-q x-r 

and its eigenvalues are given by the quadratic formula: 

! ( -(p + r) ± J (p + r )2 + 4q2). 

The eigenvalues are real because the discriminant (p + r) 2 + 4q2 , being a sum of 
squares, is nonnegative. Therefore, the eigenvalues of a real symmetric 2 x 2 matrix 
are real. 

One needs great courage to extend this method to prove that the eigenvalues 
of a real symmetric 3 x 3 matrix are real, even if one assumes the characteristic 
polynomial is a reduced cubic and uses the cubic formula. 
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The next result is half of the Principal Axis Theorem. 

Theorem B-3.118. The eigenvalues of a hermitian n x n matrix A are real. In 
particular, the eigenvalues of a symmetric real n x n matrix are real. 

Proof. The second statement follows from the first, for real hermitian matrices are 
symmetric. 

Since C is algebraically closed, all the eigenvalues of A lie in C. If c is an 
eigenvalue, then Au = cu for some nonzero vector u. Now h(Au, u) = h(cu, u) = 
ch( u, u). On the other hand, since A is hermitian, we have A* = A and h( Au, u) = 
h(u, A*u) = h(u, Au) = h(u, cu) = ch(u, u). Therefore, (c - c)h(u, u) = 0. But 
h( u, u) =I- 0, and so c = c; that is, c is real. • 

The other half of the Principal Axis Theorem says that if A is a hermitian 
matrix, then there is an unitary matrix U with U Au-1 = U AU* diagonal; if A is 
a real symmetric matrix, then there is a real orthogonal matrix 0 with OAo-1 = 
0 AO T diagonal. 

The definition of the complex inner product h can be extended to vector spaces 
over any field k that has an automorphism er of order 2 (in place of complex con
jugation on C); for example, if k is a finite field with lkl = q2 = p2n elements, then 
er: a i-+ au = aq is an automorphism of order 2. If V is a finite-dimensional vector 
space over such a field k, call a function g: V x V -+ k hermitian it satisfies the 
first four properties of h in Proposition B-3.116. 

(i) g(u+u',v) = g(u,v) + g(u',v) and g(u,v +v') = g(u,v) + g(u,v') for all 
u,u',v,v' EV. 

(ii) g(au,v) = ag(u,v) and g(u,av) = a,,.g(u,v) for all a Ek and u,v EV. 

(iii) g(v,u) = g(u,v)u for all u,v EV, 

(iv) g(u, u) = 0 if and only if u = 0. 

If A= [%] E GL(n, k), define A* = [ajJ Call A unitary if AA* =I, and 
define the unitary group U(n, k) to be the family of all unitary n x n matrices 
over k; it is a subgroup of GL(n,k). The special unitary group SU(n,k) is the 
subgroup of U(n, k) consisting of all unitary matrices having determinant 1. The 
projective unitary group PSU(n, k) = SU(n, k)/Z(n, k), where Z(n, k) is the 
center of SU(n, k) consisting of all scalar matrices al with aau = 1. When k is a 
finite field of order q2 , then every PSU(n,k) is a simple group except PSU(2,lF4), 
PSU(2,lF9 ), and PSU(3,lF4). 

Exercises 

B-3.48. It is shown in analytic geometry that if .e1 and f2 are lines with slopes m 1 and 
m2, respectively, then f1 and f2 are perpendicular if and only if mim2 = -1. If 

.ei = {avi +ui: a E JR}, 
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for i = 1, 2, prove that m1m2 = -1 if and only if the dot product v1 · v2 = 0. (Since both 
lines have slopes, neither of them is vertical.) 

Hint. The slope of a vector v =(a, b) ism= b/a. 

B-3.49. (i) In calculus, a line in space passing through a point u is defined as 

{u+aw: a ER}<;;; 11~.3, 

where w is a fixed nonzero vector. Show that every line through the origin is a 
one-dimensional subspace of R3 . 

(ii) In calculus, a plane in space passing through a point u is defined as the subset 

{v E R3 : (v- u) · n = O} <;;; R3 , 

where n "I- 0 is a fixed normal vector. Prove that a plane through the origin is a 
two-dimensional subspace of R3 . 

Hint. To determine the dimension of a plane through the origin, find an orthogonal 
basis of JR3 containing n. 

B-3.50. If k is a field of characteristic not 2, prove that for every n x n matrix A with 
entries in k, there are unique matrices B and C with B symmetric, C skew-symmetric 
(i.e., CT = -C), and A = B + C. 

* B-3.51. Let (V, J) be an inner product space, where Vis a vector space over a field k of 
characteristic not 2. Prove that if f is both symmetric and alternating, then f = 0. 

B-3.52. If (V,f) is an inner product space, define u l. v to mean f ( u, v) = 0. Prove that 
l. is a symmetric relation if and only if f is either symmetric or alternating. 

* B-3.53. Let (V, J) be an inner product space with f nondegenerate. If W is a proper 
subspace and V =WEB W.L, prove that fl(W.L x W.L) is nondegenerate. 

B-3.54. (i) Let (V, f) be an inner product space, where V is a vector space over a field k 
of characteristic not 2. Prove that if f is symmetric, then there is a basis e1, ... , en 

of V and scalars c1, ... , Cn such that f(x, y) = Ei CiXiYi, where x = E Xiei and 
y = l:Yiei. Moreover, if f is nondegenerate and k has square roots, then the basis 
e1, ... ,en can be chosen so that f(x,y) = l:iXiYi· 

(ii) If k is a field of characteristic not 2, then every symmetric matrix A with entries 
in k is congruent to a diagonal matrix. Moreover, if A is nonsingular and k has 
square roots, then A= pT P for some nonsingular matrix P. 

B-3.55. Give an example of two real symmetric m x m matrices having the same rank 
and the same discriminant but that are not congruent. 

B-3.56. For every field k, prove that Sp(2, k) = SL(2, k). 

Hint. By Corollary B-3.102(ii), we know that if P E Sp(2m, k), then det(P) = ±1. 
However, Proposition B-3.111 shows that det(P) = 1 for P E Sp(2, k) (it is true, for all 
m 2: 1, that Sp(2m, k) <;;; SL(2m, k)). 

B-3.57. If A is an m x m matrix with AT A= I, prove that [ ~ ~] is a symplectic matrix. 
Conclude, if k is a finite field of odd characteristic, that O(m, k) <;;; Sp(2m, k). 

B-3.58. Let (V, J) be an alternating space with f nondegenerate. Prove that T E GL(V) 
is an isometry [i.e., T E Sp(V, !)] if and only if, whenever E = x1, y1, ... , Xm, Ym is a 
symplectic basis of V, then T(E) = Tx1, Ty1, ... , Txm, Tym is also a symplectic basis 
of V. 
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B-3.59. Prove that the group Q of quaternions is isomorphic to a subgroup of the special 
unitary group SU(2, <C). 

Hint. Recall that Q = (A,B) ~ GL(2,<C), where A= [~1 6] and B = [~ 6). 



Chapter B-4 

Categories of Modules 

This chapter introduces the language of categories and functors. The categories 
of left or right R-modules for various rings R, as well as Hom functors and ten
sor product functors will be considered, after which we will investigate projective, 
injective, and fl.at modules. 

Eilenberg and Mac Lane invented categories and functors in the 1940s by dis
tilling ideas that had arisen in algebraic topology, where topological spaces and con
tinuous maps are studied by means of various algebraic systems (homology groups, 
cohomology rings, homotopy groups) associated to them. Categorical notions have 
proven to be valuable in purely algebraic contexts as well; indeed, it is fair to say 
that the recent great strides in algebraic geometry and arithmetic geometry, pi
oneered by Grothendieck and Serre (for example, Wiles' proof of Fermat's Last 
Theorem could not have occurred outside a categorical setting). 

Categorie~ 

Imagine a set theory whose primitive terms, instead of set and element, are set 
and function. 1 How could we define bijection, cartesian product, union, and inter
section? Category theory will force us to think in this way. Now categories are 
the context for discussing general properties of systems such as groups, rings, vec
tor spaces, modules, sets, and topological spaces, in tandem with their respective 
transformations: homomorphisms, functions, or continuous maps. Here are two 
basic reasons for studying categories: the first is that they are needed to define 
functors and natural transformations; the other is that categories will force us to 
regard a module, for example, not in isolation, but in a context serving to relate 
it to all other modules (for example, we will define certain modules as solutions to 
universal mapping problems). The essence of the development of abstract algebra in 

1 Actually, the term element does not occur explicitly in the commonly accepted axioms of 
set theory; "elements" of sets are certain other sets but, informally, we can discuss elements by 
using various circumlocutions. 

-441 
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the nineteenth century was an emphasis on the structure of sets of solutions rather 
than only finding all solutions. For example, the solution set of a homogeneous 
system of linear equations has a structure - it is a vector space, and the dimension 
of this space is important in describing and understanding the original system. The 
twentieth century viewpoint also involves a change in viewpoint: a passage from 
algebraic systems - groups, rings, modules - to categories. 

The heart of an indirect proof is the Law of the Excluded Middle: given 
a statement S, either it or its negation -S is true. For example, if P is the set 
of all prime numbers, either P is finite or P is infinite. Having shown that P is 
not finite, we concluded that there are infinitely many primes. What do we do if 
neither S nor -S is true? We have a "paradox:" there must be something wrong 
with the statement S. One such paradox shows that contradictions arise if we 
are not careful about how the undefined terms set or E are used. For example, 
Russell's paradox gives a contradiction arising from regarding every collection 
as a set. Define a Russell set to be a set C that is not a member of itself; that is, 
C ~ C, and define R to be the collection of all Russell sets. Is R itself a Russell set? 
The short answer is that if it is, it isn't, and if it isn't, it is. In more detail, if R is 
in R, that is, if R E R, then R is a Russell set (for R is comprised only of Russell 
sets); but the definition of Russell set says R <I. R, and this is a contradiction. On 
the other hand, the negation "R is not in R,'' in symbols R ~ R, is also false; in 
this case, R isn't a Russell set, for R contains all the Russell sets; thus, R E R, 
which says that R is a Russell set, another contradiction.2 Poor R has no home. 
We conclude that some conditions are needed to determine which collections are 
allowed to be sets; such conditions are given in the Zermelo-F'raenkel axioms 
for set theory, specifically, by the Axiom of Comprehension. The collection 
R is not a set, and this is one way to resolve the Russell paradox. Some other 
resolutions involve restricting the E relation: some declare that x E x is not a 
well-formed formula; others allow x E x to be well-formed, but insist it is always 
false. 

Let us give a bit more detail. The Zermelo-Fraenkel axioms (usually called 
ZFC, the C standing for the Axiom of Choice) have primitive terms class and E 
and rules for constructing classes, as well as for constructing certain special classes, 
called sets. For example, finite classes and the natural numbers N are assumed to 
be sets. A class is called small if it has a cardinal number, and it is a theorem 
that a class is a set if and only if it is small. A class that is not a set is called 
a proper class. For example, N, Z, and Q, are sets of cardinal ~0 , JR and C are 
sets of cardinal c, the collection of all sets is a proper class, and the collection 
R of all Russell classes is not even a class. For a more complete discussion, see 
Mac Lane [71], pp. 21-24 and Herrlich-Strecker [46], Chapter II and its Appendix. 
We quote [46], p. 331. 

2Compare this argument with the proof that l2xl > IXI for a set X. If, on the contrary, 
l2xl = IXI, there is a bijection cp: 2X-+ X, and then each x EX has the form cp(S) for a unique 
subset S ~ X. Considering whether cp(S*) ES*, where S* = {x = cp(S): cp(S) ¢:. S}, gives a 
contradiction. 
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There are two important points (in different approaches to Cat
egory Theory) .... First, there is no such thing as the category 
Sets of all sets. If one approaches Set Theory from a naive 
standpoint, inconsistencies will arise, and approaching it from 
any other standpoint requires an axiom scheme, so that the 
properties of Sets will depend upon the foundation chosen. . .. 
The second point is that (there is) a foundation that allows us 
to perform all of the categorical-theoretical constructions that 
at the moment seem desirable. If at some later time different 
constructions that cannot be performed within this system are 
needed, then the foundation should be expanded to accommo
date them, or perhaps should be replaced entirely. After all, 
the purpose of foundations is not to arbitrarily restrict inquiry, 
but to provide a framework wherein one can legitimately per
form those constructions and operations that are mathemati
cally interesting and useful, so long as they are not inconsistent 
within themselves. 
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We will be rather relaxed about set theory. As a practical matter, when an alleged 
class arises, there are three possibilities: it is a set; it is a proper class; it is not a 
class at all. In this book, we will not worry about the third possibility. 

Definition. A category C consists of three ingredients: a class obj(C) of objects, 
a set of morphisms (or arrows) Hom(A,B) for every ordered pair (A,B) of 
objects, and composition Hom(A, B) x Hom(B, C)-+ Hom(A, C), denoted by 

(!, g) 1-t gf, 

for every ordered triple (A, B, C) of objects. We often write f: A-+ B or A !+ B 
to denote f E Hom( A, B). These ingredients are subject to the following axioms. 

(i) Hom sets are pairwise disjoint;3 that is, each morphism f E Hom( A, B) 
has a unique domain A and a unique target B. 

(ii) For each object A, there is an identity morphism lA E Hom( A, A) 
such that 

flA = f and lB/ = f for all f: A-+ B. 

(iii) Composition is assoc:iative: given morphisms 

A!+ B ~ C ..!!+ D, 

we have 
h(gf) = (hg)f. 

The important notion in this circle of ideas is not category but functor, which 
will be introduced in the next section; categories are necessary because they are an 

3In the unlikely event that some particular candidate for a category does not have dis
joint Hom sets, we can force pairwise disjointness: redefine Hom(A, B) as Hom(A, B) 
{A} x Hom(A, B) x {B}, so that each morphism f E Hom(A, B) is relabeled as (A, f, B). If 
(A,B) i' (A',B'), then Hom(A,B) and Hom(A',B') are disjoint. 
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essential ingredient in the definition of functor. A similar situation occurs in linear 
algebra: linear transformation is the important notion, but we must first consider 
vector spaces in order to define it. 

The following examples explain certain fine points in the definition of category. 

Example B-4.1. 

(i) C = Sets. The objects in this category are sets (not proper classes), 
morphisms are functions, and composition is the usual composition of 
functions. 

A standard result of set theory is that Hom( A, B), the class of all 
functions from a set A to a set B, is a set. That Hom sets are pairwise 
disjoint is just the reflection of the definition of equality of functions given 
in Course I: in order that two functions be equal, they must, first, have 
the same domain and the same target (and, of course, they must have 
the same graph). 

(ii) C =Groups. Objects are groups, morphisms are homomorphisms, and 
composition is the usual composition (homomorphisms are functions). 

(iii) C = Ab. Objects are abelian groups, morphisms are homomorphisms, 
and composition is the usual composition. 

(iv) C = Rings. Objects are rings, morphisms are (ring) homomorphisms, 
and composition is the usual composition of functions. 

(v) C = ComRings. Objects are commutative rings, morphisms are ring 
homomorphisms, and composition is the usual composition. 

(vi) C = RMod. The objects in this category are left R-modules over a 
ring R, morphisms are R-homomorphisms, and composition is the usual 
composition. We denote the sets Hom( A, B) in RMod by 

HomR(A,B). 

If R = Z, then :r;Mod = Ab, for Z-modules are just abelian groups. 

(vii) C = ModR· The objects in this category are right R-modules over a 
ring R, morphisms are R-homomorphisms, and composition is the usual 
composition. The Hom sets in ModR are also denoted by 

HomR(A,B). 

(viii) C = PO(X). Regard a partially ordered set (X, :5) as a category whose 
objects are the elements of X, whose Hom sets are either empty or have 
only one element: 

Hom(x, y) = { 0 
{K~} 

if x ~ y, 

if x j y 

(the symbol K~ denotes the unique element in the Hom set when x j y), 
and whose composition is given by 
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Note that lx = K;!;, by reflexivity, while composition makes sense because 
~ is transitive. 4 

We insisted, in the definition of category, that Horn( A, B) be a set, 
but we left open the possibility that it be empty. The category PO(X) 
is an example in which this possibility occurs. Not every Horn set in a 
category C can be empty, for Horn( A, A) -=f 0 for every object A E C 
because it contains the identity rnorphisrn lA. 

(ix) C = C(G). If G is a group, then the following description defines a 
category C(G): there is only one object, denoted by*• Horn(*,*) = G, 
and composition 

Horn(*,*) x Horn(*,*)-+ Horn(*,*); 

that is, G x G -+ G, is the given multiplication in G. We leave verification 
of the axioms to the reader. 5 The category C ( G) can be visualized as a 
rnultigraph having one vertex, namely *• and IGI edges joining* to itself 
labeled by the elements of G. 

The category C(G) has an unusual property. Since * is merely an 
object, not a set, there are no functions * -+ * defined on it; rnorphisrns 
here are not functions! Another curious property of this category is 
also a consequence of there being only one object: there are no proper 
"subobjects" here. 

(x) There are rnany interesting nonalgebraic examples of categories. For 
example, C = Top, the category with objects all topological spaces, rnor
phisrns all continuous functions, and usual composition. One step in ver
ifying that Top is a category is showing that the composite of continuous 
functions is continuous. 

(xi) Another example is the homotopy category hTop whose objects are 
topological spaces but whose rnorphisrns are homotopy classes of continu
ous functions. In rnore detail, two continous functions f: X -+ Y are ho
motopic, denoted by f ,...., g, if there is a continuous F: X x I -+ Y, where 
I is the closed unit interval [O, 1], with F(x, 0) = f(x) and F(x, 1) = g(x) 
for all x E X. Homotopy is an equivalence relation, and the equivalence 
class of f, denoted by [f], is called its homotopy class. It turns out that 
if continuous rnaps h, k: Y -+ Z are hornotopic, then [hf] = [kg], and so 
we can define the composite [h][f] of two homotopy classes as [hf]. <Ill 

Here is how to translate isomorphism into categorical language. 

Definition. A rnorphisrn f: A -+ B in a category C is an isomorphism if there 
exists a rnorphisrn g: B -+ A in C with 

gf = IA and f g = lB. 

The rnorphisrn g is called the inverse of f. 
4 A nonempty set X is called quasiordered if it has a relation x ::5 y that is reflexive and 

transitive (if, in addition, this relation is anti-symmetric, then X is partially ordered). PO(X) is 
a category for every quasiordered set X. 

5That every element in G have an inverse is not needed to prove that C(G) is a category, and 
C(G) is a category for every monoid G. 
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It is easy to see that an inverse of an isomorphism is unique. 

Identity morphisms in a category are always isomorphisms. If C = PO(X), 
where X is a partially ordered set, then the only isomorphisms are identities; if 
C = C(G), where G is a group (see Example B-4.l(ix)), then every morphism is an 
isomorphism. If C = Sets, then isomorphisms are bijections; if C = Groups, Ab, 
RMod, ModR, Rings, or ComRings, then isomorphisms are isomorphisms in 
the usual sense; if C = Top, then isomorphisms are homeomorphisms; in hTop, 
isomorphisms are called homotopy equivalences. 

Let us give a name to a feature of the categories RMod and ModR that is not 
shared by more general categories: homomorphisms can be added. 

Definition. A category C is pre-additive if every Hom( A, B) is equipped with a 
binary operation making it an (additive) abelian group for which the distributive 
laws hold: for all f, g E Hom( A, B), 

(i) if p: B--+ B', then 

p(f + g) =pf+ pg E Hom(A, B'); 

(ii) if q: A'--+ A, then 

(! + g)q = fq + gq E Hom(A', B). 

In Exercise B-4.3 on page 457, it is shown that Groups does not have the 
structure of a pre-additive category. 

Definition. A subcategory Sofa category C is a category with obj(S) ~ obj(C), 
morphisms Homs(A, B) ~ Homc(A, B) for every ordered pair (A, B) of objects in 
S, such that lA E Homs(A, A) for all A E obj(S), and composition is the restriction 
of composition in C. 

Example B-4.2. 

(i) Every category is a subcategory of itself. 

(ii) Ab is a subcategory of Groups. 

(iii) ComRings is a subcategory of Rings. 

(iv) hTop is not a subcategory of Top. <1111 

We now try to describe various constructions in Sets or in RMod in such a 
way that they make sense in arbitrary categories. At this stage, it is probably best 
to read the text "lightly," just to get the flavor of it; proper digestion will occur 
naturally as the constructions are used later in this course. 

We gave the following characterization of direct sum of modules M = A EB B 
in Chapter B-2: there are homomorphisms p: M--+ A, q: M--+ B, i: A--+ M, and 
j : B --+ M such that 

pi=lA, qj=lB, pj=O, qi=O, and ip+jq=l!vf. 
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Even though this description of direct sum is phrased in terms of arrows, it is 
not general enough to make sense in every category; morphisms can be added 
because RMod is pre-additive, but they cannot be added in Sets, for example. In 
Corollary B-2.15, we gave another description of direct sum in terms of arrows: if 
S ~ M is a submodule, then there is a map p: M ---+ S with ps = s; moreover, 
ker p = im j, imp = im i, and p( s) = s for every s E imp. This description 
( M = imp E9 ker p) does not make sense in arbitrary categories because image and 
kernel of a morphism may fail to be defined. For example, the morphisms in C(G) 
are elements in Hom(*,*) = G, not functions, and so the image of a morphism 
has no obvious meaning. Thus, we have to think a bit more in order to find 
the appropriate categorical description. On the other hand, we can define direct 
summand categorically using retracts: recall that an object Sis (isomorphic to) a 
retract of an object M if there exist morphisms i: S ---+ M and p: M ---+ S with 
pi= ls. 

One of the nice aspects of thinking in a categorical way is that it enables us to 
see analogies we might not have recognized before. For example, we shall soon see 
that "direct sum" in RMod is the same notion as "disjoint union" in Sets. 

If A and E are subsets of a set S, then their intersection is defined: 

An E = {s ES: s EA ands EE}. 

If two sets are not given as subsets, then their intersection may surprise us: for 
example, if Q is defined as all equivalence classes of ordered pairs ( m, n) of integers 
with n "I 0, then ZnQ = 0. 

We can force two overlapping subsets A and E to be disjoint by "disjointifying" 
them. Consider the cartesian product (AUE) x {1, 2} and its subsets A'= Ax {1} 
and E' = E x {2}. It is plain that A' n E' = 0, for a point in the intersection 
would have coordinates (a, 1) = (b, 2); this cannot be, for their second coordinates 
are not equal. We call A' U E' the disjoint union of A and E. Let us take note of 
the functions a: A---+ A' and (3: E ---+ E', given by a: a i--+ (a, 1) and (3: bi--+ (b, 2). 
We denote the disjoint union A' U E' by A U E. 

If there are functions f : A ---+ X and g : E ---+ X, for some set X, then there is a 
unique function B: AUE---+ X with Ba= f and ()(3 = g, defined by B((a, 1)) = f(a) 
and B((b, 2)) = g(b); the function() is well-defined because A' and E' are disjoint. 

Here is a way to describe this construction categorically (i.e., with diagrams). 

Definition. If A and E are objects in a category C, then their coproduct, denoted 
by AUE, is an object C in obj ( C) together with injections6 a: A ---+ AUE and 
(3: E ---+ AUE, such that, for every object X in C and every pair of morphisms 
f: A ---+ X and g: E ---+ X, there exists a unique morphism (): A U E ---+ X making 

6The name injection here is merely a name, harking back to the familiar example of coproduct 
in RMod (which is C =A E9 B, as is proved in Proposition B-4.3 below); the maps A-+ C and 
B -+ C were called "injections,'' and they turn out to be one-one functions. We have yet to discuss 
whether a version of one-one function can be defined in a general category. 
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the following diagram commute (i.e., ()a= f and ()(3 = g): 

A 

;/~ 
AUB- - - 9- - - -;..X 

~/. 
B. 

Here is a formal proof that the set A LJ B = A' U B' ~ (AU B) x {1, 2} just 
constructed is a coproduct in Sets. If X is any set and f: A ---+ X and g: B ---+ X 
are any given functions, then we have already defined a function (): A LJ B ---+ X 
that extends both f and g. It remains to show that () is the unique such function. 
If'¢: A LJ B---+ X satisfies '¢a= f and '¢(3 = g, then 

'¢(a(a)) ='¢((a, 1)) = f(a) =()((a, 1)) 

and, similarly, 
'¢((b, 2)) = g(b). 

Therefore,'¢ agrees with() on A' U B' =A LJ B, and so'¢=(). 

We do not assert that coproducts always exist; in fact, it is easy to construct 
examples of categories in which a pair of objects does not have a coproduct (see 
Exercise B-4.2 on page 457). The formal proof just given, however, shows that 
coproducts do exist in Sets, where they are disjoint unions. Coproducts exist in 
Groups; they are called free products. Free groups turn out to be free products of 
infinite cyclic groups (analogous to free abelian groups being direct sums of infinite 
cyclic groups; see Rotman (97], p. 388). A theorem of Kurosh states that every 
subgroup of a free product is itself a free product ((97], p. 392). 

Proposition B-4.3. If A and B are R-modules, then a coproduct in RMod exists, 
and it is the ( externa0 direct sum C = A Ef) B. 

Proof. The statement of the proposition is not complete, for a coproduct requires 
injection morphisms a and (3. The underlying set of the external direct sum C is 
the cartesian product A x B, so that we may define a: A ---+ C by a: a H (a, 0) 
and (3: B---+ C by (3: b H (O,b). 

Now let X be a module, and let f: A ---+ X and g: B ---+ X be homomorphisms. 
Define(): C---+ X by(): (a,b) H f(a)+g(b). First, the diagram commutes: ifa EA, 
then ()a(a) =()((a, 0)) = f(a) and, similarly, if b EB, then ()(3(b) = ()((0, b)) = g(b). 
Finally,() is unique. If'¢: C---+ X makes the diagram commute, then '¢((a,O)) = 

f(a) for all a EA and '¢((0, b)) = g(b) for all b E B. Since'¢ is a homomorphism, 
we have 

'¢((a, b)) ='¢((a, 0) + (0, b)) ='¢((a, 0)) + '¢((0, b)) = f(a) + g(b). 

Therefore, '¢ = (). • 

A similar proof shows that coproducts exist in ModR. 
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We can give an explicit formula for the map (} in the proof of Proposition B-4.3. 
If f: A-+ X and g: B-+ X are R-maps, then B: A EBB-+ Xis given by 

(}: (a, b) t-+ f(a) + g(b). 

Proposition B-4.4. If C is a category and A and B are objects in C, then any two 
coproducts of A and B, should they exist, are isomorphic: 

A 

:/~ 
C---~--~D 

~/. 
B 

A 

;/~ 
D---'!--~c 

~/. 
B 

Proof. Suppose that C and Dare coproducts of A and B. In more detail, assume 
that a: A -+ C, f3: B -+ C, "(: A -+ D, and 8: B -+ D are injection morphisms. If, 
in the defining diagram for C, we take X = D, then there is a morphism (}: C -+ D 
making the left diagram commute. Similarly, if, in the defining diagram for D, we 
take X = C, we obtain a morphism 'ljJ: D -+ C making the right diagram commute. 

Consider now the following diagram, which arises from the juxtaposition of the 
two diagrams above: 

A 

;/~9~ 
c- D ~C 

~;: 
B. 

This diagram commutes because 'ljJBa = 'l/J"t =a and 'ljJBf3 ='I/Jo= (3. But plainly, 
the identity morphism le : C -+ C also makes this diagram commute. By the 
uniqueness of the dashed arrow in the defining diagram for coproduct, 'ljJ(} = le. 
The same argument, mutatis mutandis, shows that (}'ljJ = ln. We conclude that 
(} : C -+ D is an isomorphism. • 

Informally, an object S in a category C is called a solution to a univer
sal mapping problem if S is defined by a diagram which shows, whenever we 
vary an object X and various morphisms, that there exists a unique morphism 
making some subdiagrams commute. For example, Proposition B-2.27 proves the 
universal mapping property for free abelian groups. The "metatheorem" is that 
solutions, if they exist, are unique up to unique isomorphism. The proof just 
given is a prototype for proving the metatheorem7 (if we wax categorical, then the 
statement of the metatheorem can be made precise, and we can then prove it; see 
Mac Lane [71] Chapter III for appropriate definitions, statement, and proof). The 
strategy of such a proof involves two steps. First, if C and C' are solutions, get 

7 Another prototype is given in Exercise B-4.11 on page 459. 
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morphisms (): C -+ C' and 'I/;: C' -+ C by setting X = C' in the diagram showing 
that C is a solution, and by setting X = C in the corresponding diagram showing 
that C' is a solution. Second, set X = C in the diagram for C and show that 
both 'ljJ() and le are "dashed" morphisms making the diagram commute; as such a 
dashed morphism is unique, conclude that 'ljJ() = le. Similarly, the other composite 
B'I/; = le', and so () is an isomorphism. 

Here is a construction "dual" to coproduct. 

Definition. If A and Bare objects in a category C, then their product, denoted 
by An B, is an object PE obj(C) and projections p: P-+ A and q: P-+ B, such 
that, for every object X E C and every pair of morphisms f: X -+ A and g: X -+ B, 
there exists a unique morphism (): X -+ P making the following diagram commute: 

A 

;/ 'Z 
An B""" - - 8- - - - x 

~/. 
B. 

The cartesian product P = A x B of two sets A and B is the categorical 
product in Sets: define p: Ax B-+ A by p: (a,b) Ha and define q: Ax B-+ B 
by q: (a, b) H b. If X is a set and f: X -+ A and g: X -+ B are functions, then 
the reader may show that(): X-+ Ax B, defined by fJ: x H (f(x),g(x)) EA x B, 
satisfies the necessary conditions. 

Proposition B-4.5. If A and B are objects in a category C, then any two products 
of A and B, should they exist, are isomorphic. 

Proof. Adapt the proof of the prototype, Proposition B-4.4. • 

Reversing the arrows in the defining diagram for coproduct gives the defining 
diagram for product. A similar reversal of arrows can be seen in Exercise B-4.47 on 
page 491: the diagram characterizing surjections in RMod is obtained by reversing 
all the arrows in the diagram characterizing injections. If S is a solution to a 
universal mapping problem posed by a commutative diagram V, let V' be the 
commutative diagram obtained from V by reversing all its arrows. If S' is a solution 
to the universal mapping problem posed by V', then we call S and S' duals. There 
are examples of categories in which an object and its dual object both exist, and 
there are examples in which an object exists but its dual does not. 

What is the product of two modules? 

Proposition B-4.6. If R is a ring and A and B are left R-modules, then their 
( categorica0 product An B exists in R Mod; in fact, 

AnB ~ AEBB ~AUE. 
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Remark. Thus, the product and coproduct of two objects, though distinct in Sets, 
coincide in RMod. <1111 

Proof. In Proposition B-4.3, we characterized the direct sum M = A EEl B by 
. q 

the existence of projection and injection morphisms A .::Z. M ~ B satisfying the 
p J 

equations 

pi=lA, qj=ls, pj=O, qi=O, and ip+jq=lM. 

If X is a module and f: X ---+ A and g: X ---+ B are homomorphisms, define 
(): X---+ AU B by O(x) = if(x) + jg(x). The product diagram 

A 

;/ 'Z 
AUB--i--8----X 

~ /, 
B 

commutes because pO(x) = pif(x) + pjg(x) = pif(x) = f(x) for all x E X (using 
the given equations) and, similarly, qO(x) = g(x). To prove uniqueness of(), note 
that pre-additivity and the equation ip + jq = lAuB give 

'ljJ = ip'l/J + jq'l/J =if+ jg=(). 

Thus, the coproduct A U B in RMod is also a solution to the universal mapping 
problem for product, so uniqueness of solutions gives An B ~ AU B in RMod. • 

Here is an explicit formula for the map () in the proof of Proposition B-4.6. If 
f: A ---+ X and g: B ---+ X are R-maps, then (): X ---+ A EEl B is given by 

(): (a) 1--t f(a) + g(a). 

Exercise B-4.4 on page 457 shows that products in Groups are direct products, 
so that, in contrast to RMod, products and coproducts of two objects can be 
different. 

Recall that there are (at least) two ways to extend the notion of direct sum of 
modules from two summands to an indexed family of summands. 

Definition. Let R be a ring and let (Ai)ieI be an indexed family of left R-modules. 
The direct product niEl Ai is the Cartesian product (i.e., the set of all I-tuples8 

(ai) whose ith coordinate ai lies in Ai for every i) with coordinatewise addition and 
scalar multiplication: 

(ai) +(bi) = (ai +bi), 

r(ai) = (rai), 

where r E Rand ai, bi E Ai for all i. 

The direct sum, denoted by ffiiEI Ai (or by EiEI Ai), is the submodule of 
niEl Ai consisting of all (ai) having only finitely many nonzero coordinates. 

8 An I-tuple is a function f: I-+ LJi Ai with /(i) E Ai for all i E J. 
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Given a family (Aj)jEI of left R-modules, define injections ai: Ai ---+ ffii Ai 
by setting ai(ai) to be the I-tuple whose ith coordinate is ai and whose other 
coordinates are 0. Each m E ffiiEI Ai has a unique expression of the form 

m = Lai(ai), 
iEl 

where ai E Ai and almost all ai = O; that is, only finitely many ai can be nonzero. 

Note that if the index set I is finite, then I1iEI Ai = ffiiEI Ai. On the other 
hand, when I is infinite and infinitely many Ai =/:- 0, then the direct sum is a proper 
submodule of the direct product (they are almost never isomorphic). 

We now extend the definitions of coproduct and product to a family of objects. 

Definition. Let C be a category, and let (Ai)iEI be a family of objects in C indexed 
by a set I. A coproduct is an ordered pair ( C, { ai : Ai ---+ C}), consisting of an 
object C and a family (ai: Ai ---+ C)iEI of injections, that satisfies the following 
property. For every object X equipped with morphisms fi: Ai ---+ X, there exists a 
unique morphism (): C ---+ X making the following diagram commute for each i: 

A coproduct, should it exist, is denoted by LJiEI Ai; it is unique up to isomor
phism. 

We sketch the existence of the disjoint union of sets (Ai)iEI. First form the set 
B = (LJiEI Ai) x I, and then define 

Then the disjoint union is UEI Ai = uiEI A~ (of course, the disjoint union of 
two sets is a special case of this construction). The reader may show that LJi Ai 
together with the functions ai: Ai ---+ LJi Ai, given by ai: ai t--+ (ai, i) E LJi Ai 
(where ai E Ai), comprise the coproduct in Sets; that is, we have described a 
solution to the universal mapping problem. 

Proposition B-2.19 shows that the direct sum C = ffiiEI Ai, equipped with 
injections ji: Ai ---+ C (where jiai, for ai E Ai, is the I-tuple having ith coordinate 
ai and all other coordinates 0), is the coproduct in RMod. 

Here is the dual notion. 

Definition. Let C be a category, and let (Ai)iEI be a family of objects in C indexed 
by a set I. A product is an ordered pair ( C, {Pi : C ---+ Ai}), consisting of an 
object C and a family (Pi: C ---+ Ai)iEI of projections, that satisfies the following 
condition. For every object X equipped with morphisms fi: X ---+ Ai, there exists 
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a unique morphism (): X --+ G making the following diagram commute for each i: 

Ai 

;/ '( 
0--E------X. 

(J 

Should it exist, a product is denoted by niEJAi, and it is unique up to isomor
phism. 

We let the reader prove that cartesian product is the product in Sets. 

Proposition B-4. 7. If (Ai)iEI is a family of left R-modules, then the direct product 
G = niEl Ai is their product in RMod. 

Proof. The statement of the proposition is not complete, for a product requires 
projections. For each j EI, define p3: G--+ A3 by p3: (ai) H a3 E A3. 

Now let X be a module and, for each i EI, let fi: X--+ Ai be a homomorphism. 
Define(): X--+ G by(): x H (fi(x)). First, the diagram commutes: if x EX, then 
PiB(x) = fi(x). Finally,() is unique. If 1/J: X--+ G makes the diagram commute, 
then Pi1/J(x) = fi(x) for all i; that is, for each i, the ith coordinate of 'lj;(x) is fi(x), 
which is also the ith coordinate of B(x). Therefore, 'lj;(x) = B(x) for all x EX, and 
so 1/J = {}, • 

An explicit formula for the map (): x --+ niEJ Ai is (): x H (Ji ( x)). 

The categorical viewpoint makes the proof of the next theorem straightforward. 

Theorem B-4.8. Let R be a ring. 

(i) For every left R-module A and every family (Bi)iEI of left R-modules, 

HomR(A,IT Bi)~ ITHomR(A,Bi), 
iEJ iEl 

via the Z-isomorphism9 cp: f H (pd) (Pi are the projections of the prod
uct niEl Bi)· 

(ii) For every left R-module B and every family (Ai)iEI of R-modules, 

HomR (EB Ai, B) ~ IT HomR(Ai, B), 
iEJ iEJ 

via the Z-isomorphism f H (fai) (ai are the injections of the sum 

EBiEl Ai)· 
(iii) If A, A', B, and B' are left R-modules. then there are Z-isomorphisms 

HomR(A, B EBB') ~ HomR(A, B) EB HomR(A, B') 

and 

HomR(A EB A', B) ~ HomR(A, B) EB HomR(A', B). 

9There are certain cases when the abelian group HomR(A, B) is a module; in these cases, 
the IL-isomorphisms in parts (i), (ii), and (iii) are R-module isomorphisms (see Theorem B-4.28). 
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Proof. 

(i) It is easy to see that cp is additive; let us see that cp is surjective. If 
(fi) E Tii HomR(A, Bi), then fi: A --t Bi for every i: 

Bi 

;/ 'Z 
TI Bi """ - - - - - - A . 

() 

By Proposition B-4. 7, TI Bi is the product in RMod, and so there is a 
unique R-map (}: A --t TI Bi with Pi(} = fi for all i. Thus, (fi) = cp(B) 
and cp is surjective. 

To see that cp is injective, suppose that f E ker cp; that is, 0 = cp(f) = 
(pd). Thus, pd= 0 for every i. Hence, the following diagram containing 
f commutes: 

TI Bi -----A. 
f 

But the zero homomorphism also makes this diagram commute, and so 
the uniqueness of the arrow A --t TI Bi gives f = 0. 

(ii) This proof, similar to that of part (i), is left to the reader. 

(iii) When the index set is finite, direct sum and direct product of modules 
are equal. • 

Exercise B-4.7 on page 458 shows that HomR(A, ffii Bi) ~ EBi HomR(A, Bi) 
and HomR(f}; Ai, B) ~ Tii HomR(Ai, B). 

Remark. Let II= Tin>l (en), where each (en) is infinite cyclic. Call a torsion-free 
abelian group S slender if, for every homomorphism f: II --t S, we have f(en) = 0 
for large n. Sl].Siada [103] proved that a countable torsion-free abelian group G is 
slender if and only if it is reduced (that is, Hom(Q, G) = {O} ), and Fuchs proved 
that any direct sum of slender groups is slender (see Fuchs [37], pp. 159-160). Here 
is a remarkable theorem of Los ([37], p. 162). If Sis slender and (Ai)iEI is a family 
of torsion-free abelian groups, where I is not a measurable cardinal, 10 then there 
is an isomorphism 

iEJ iEJ 

In fact, if f: TiiEI Ai --t S, then there is a finite subset Ai1 , ••• , Ain with cp(f) = 
fl(Ai1 EB··· EB AiJ· In particular, 

Homz(IlZi,Z) ~ EBzi and Homz(ffizi,Z) ~ rrzi. .... 
iEN iEN iEN iEN 

10 A cardinal number d is measurable if d is uncountable and every set of cardinal d has a 
countably additive measure whose only values are 0 and 1. It is unknown whether measurable 
cardinals exist. 
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We now present two dual constructions, pullbacks and pushouts, that are very 
useful. We shall see, in Sets, that intersections are pullbacks and unions are 
pushouts. 

Definition. Given two morphisms f: B ---+ A and g: C ---+ A in a category C, a 
solution is an ordered triple (D, a, /3) making the left-hand diagram in Figure B-4.l 
commute. A pullback (or fibered product) is a solution (D,a,/3) that is "best" in 
the following sense: for every solution (X, a', /3'), there exists a unique morphism 
(): X ---+ D making the right-hand diagram in Figure B-4.1 commute. 

Figure B-4.1. Pullback diagram. 

Example B-4.9. We show that kernel is a pullback. More precisely, if f: B ---+ A is 
a homomorphism in R Mod, then the pullback of the first diagram in Figure B-4.2 
is (ker f, 0, i), where i: ker f ---+ B is the inclusion. Let i': X ---+ B be a map with 
fi' = O; then fi'x = 0 for all x EX, and so i'x E ker f. If we define 0: X---+ ker f 
to be the map obtained from i' by changing its target, then the diagram commutes: 
i() = i'. To prove uniqueness of the map (), suppose that ()' : X ---+ ker f satisfies 
i()' = i'. Since i is the inclusion, ()' x = i' x = Ox for all x E X, and so ()' = (). Thus, 
(ker f, 0, i) is a pullback. .,.. 

0 
ker f -----+ 0 

! i ! 0 

B-A 
f 

Figure B-4.2. Kernel as pullback. 

Pullbacks, when they exist, are unique up to isomorphism; the proof is in the 
same style as the proof of Proposition B-4.4 that coproducts are unique. 

Proposition B-4.10. The pullback of two maps f: B ---+ A and g: C ---+ A in 
RMod exists. 
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Proof. Define 
D = {(b, c) EB EB C: f(b) = g(c)}, 

define a: D -+ C to be the restriction of the projection (b, c) H c, and define 
f3: D -+ B to be the restriction of the projection (b, c) H b. It is easy to see that 
(D, a, /3) is a solution. 

If ( X, a', /3') is another solution, define (} : X -+ D by (}: x H (/3' ( x), a' ( x)). 
The values of(} do lie in D, for f /3'(x) = ga'(x) because X is a solution. We let 
the reader prove that the diagram commutes and that (} is unique. • 

Example B-4.11. That Band Care subsets of a set A can be restated as saying 
that there are inclusion maps i: B -+ A and j: C -+ A. The reader will enjoy 
proving that the pullback D exists in Sets, and that D = B n C. ""' 

Here is the dual construction. 

Definition. Given two morphisms f: A -+ B and g: A -+ C in a category C, a 
solution is an ordered triple (D, a, /3) making the left-hand diagram commute. 
A pushout (or fibered sum) is a solution (D,a,/3) that is "best" in the following 
sense: for every solution (X,a',/3'), there exists a unique morphism B: D-+ X 
making the right-hand diagram in Figure B-4.3 commute. 

g 

fl~k /[~]\,. 
. ~ 

x 

Figure B-4.3. Pushout diagram. 

Example B-4.12. We show that cokernel is a pushout in RMod. More precisely, 
if f: A -+ B is an R-map, then the pushout of the first diagram in Figure B-4.4 
is (cokerf,7r,0), where 7r: B-+ cokerf is the natural map. The verification that 
cokernel is a pushout is similar to that in Example B-4.9. ""' 

B ------::-- coker f 

Figure B-4.4. Cokernel as pushout. 

Again, pushouts are unique up to isomorphism when they exist. 
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Proposition B-4.13. The pushout of two maps f: A --+ B and g: A --+ C in 
RMod exists. 

Proof. It is easy to see that 

S={(f(a),-g(a)) EBUC:aEA} 

is a submodule of BUG. Define D = (BUC)/S, define a: B--+ D by b t-+ (b, O)+S, 
and define f3: C--+ D by ct-+ (0, c) + S. It is easy to see that (D, a, (3) is a solution. 

Given another solution ( X, a', (3'), define the map (}: D --+ X by (}: (b, c) + S t-+ 
a'(b) + f3'(c). Again, we let the reader prove commutativity of the diagram and 
uniqueness of{}, • 

Pushouts in Groups are quite interesting; the pushout of two injective homo
morphisms is called a free product with amalgamation [97], pp. 401-406. 

Example B-4.14. If B and C are subsets of a set A, then there are inclusion maps 
i: B n C --+ B and j : B n C --+ B. The reader will enjoy proving that the pushout 
D exists in Sets, and that Dis their union BU C. ~ 

Exercises 

B-4.1. (i) Prove, in every category C, that each object A E C has a unique identity 
morphism. 

(ii) If f is an isomorphism in a category, prove that its inverse is unique. 

* B-4.2. (i) Let X be a partially ordered set, and let a, b EX. Show, in PO(X) (defined 
in Example B-4.l(viii)), that the coproduct aUb is the least upper bound of a and 
b, and that the product a n b is the greatest lower bound. 

(ii) Let Y be a set, let 2Y denote the family of all its subsets, and regard 2Y as a partially 
ordered set under inclusion. If A and B are subsets of Y, show, in P0(2Y), that 
the coproduct Au B =AU Band that the product An B =An B. 

(iii) Give an example of a category in which there are two objects whose coproduct does 
not exist. 
Hint. See Exercise B-2.3 on page 318. 

* B-4.3. (i) Prove that Groups is not a pre-additive category. 

Hint. If G is not abelian and f, g: G --+ G are homomorphisms, show that the 
function x H f(x)g(x) may not be a homomorphism. 

(ii) Prove that Rings and ComRings are not pre-additive categories. 

* B-4.4. If A and Bare (not necessarily abelian) groups, prove that AnB =Ax B (direct 
product) in Groups. 

B-4.5. If G is a finite abelian group, prove that Homz(Q, G) = 0. 
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B-4.6. Generalize Proposition B-2.20 for infinite index sets. Let (Mi)ieI be a family of 
modules and, for each i, let Ni be a submodule of Mi. Prove that 

( ffiMi)f( ffiNi) ~ ffi(Mi/Ni)· 
i i i 

* B-4. 7. (i) Prove, for every abelian group A, that n Hom( A, Zn) = {O}; that is, nf = 0 
for every homomorphism f: A --+ Zn. 

(ii) Let A= E9n> 2 Zn. Prove that Hom(A, ®n Zn) "!- ®n Hom(A, Zn)· 
Hint. The right-hand side is a torsion group, but the element IA on the left-hand 
side has infinite order. 

* B-4.8. Given ·a map u: I1 Bi --+ I1 Ci, find a map a making the following diagram 
commute: 

where T and r' are the isomorphisms of Theorem B-4.8(i). 

Hint. If f E Hom( A, I1 Bi), define a: (fi) 1--t (piuf); that is, the jth coordinate of a(fi) 
is the jth coordinate of u(f) E I1 Ci. 

* B-4.9. (i) Given a pushout diagram in RMod, 

A~C 

f 1 1p 
B ------;;+ D , 

prove that g injective implies a injective, and that g surjective implies a surjective. 
Thus, parallel arrows have the same properties. 

(ii) Given a pullback diagram in RMod, 

D~C 

p 1 19 

B~A, 

prove that f injective implies a injective, and that f surjective implies a surjective. 
Thus, parallel arrows have the same properties. 

* B-4.10. Let u: A-+ B be a map in RMod. 

(i) Prove that the inclusion i: ker u --+ A solves the following universal mapping prob
lem: ui = 0 and, for every X and g: X --+ A with ug = 0, there exists a unique 
IJ: X--+ keru with ilJ = g: 

.r~ 
keru___,..A___,..B, 

i 'U 

Hint. Use Proposition B-1.47. 
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(ii) Prove that the natural map 71": B -t cokeru solves the following universal mapping 
problem: 11"U = 0 and, for every Y and h: B -t Y with hu = 0, there exists a 
unique (}: coker u -t Y with (}11" = h: 

Hint. Use Proposition B-1.46. 

Definition. An object A in a category C is called an initial object if, for every object 
C in C, there exists a unique morphism A -t C. 

An object n in a category C is called a terminal object if, for every object C in C, 
there exists a unique morphism C -t n. 

* B-4.11. (i) Prove the uniqueness of initial and terminal objects, if they exist. Give 
an example of a category which contains no initial object. Give an example of a 
category that contains no terminal object. 

(ii) If n is a terminal object in a category C, prove, for any G E obj(C), that the 
projections .A: G n n -t G and p: n n G -t Gare isomorphisms. 

(iii) Let A and B be objects in a category C. Define a new category C' whose objects are 

diagrams A~ C +f!- B, where C is an object in C and a: and (3 are morphisms 
in C. Define a morphism in C' to be a morphism(} in C that makes the following 
diagram commute: 

There is an obvious candidate for composition. Prove that C' is a category. 

(iv) Prove that an initial object in C' is a coproduct in C, and use this to give another 
proof of Proposition B-4.4, the uniqueness of coproduct (should it exist). 

(v) Give an analogous construction showing that product is a terminal object in a 
suitable category, and give another proof of Proposition B-4.5. 

* B-4.12. A zero object in a category C is an object Z that is both an initial object and 
a terminal object. 

(i) Prove that {O} is a zero object in RMod. 

(ii) Prove that 0 is an initial object in Sets. 

(iii) Prove that any one-point set is a terminal object in Sets. 

(iv) Prove that a zero object does not exist in Sets. 

B-4.13. (i) Assuming that coproducts exist, prove associativity: 

A LJ (B LJ C) ~ (A LJ B) LJ C. 

(ii) Assuming that products exist, prove associativity: 

A n (B n C) ~ (A n B) n c. 
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B-4.14. Let Ci, C2, Di, D2 be objects in a category C. 

(i) If there are morphisms fi: Ci --+ Di, for i = 1, 2, and C1 n C2 and Dl n D2 exist, 
prove that there exists a unique morphism fi n f2 making the following diagram 
commute: 

Ci----~Di. 
Ii 

where Pi and qi are projections. 

(ii) If there are morphisms 9i: X --+ Ci, where X is an object in C and i = 1, 2, prove 
that there is a unique morphism (91, 92) making the following diagram commute: 

x 

YL~ 
C1~C1 n C2~C2. 

where the Pi are projections. 
Hint. First define an analog of the diagonal l:::..x: X--+ X x X in Sets, given by 
x 1-t (x,x), and then define (91,92) = (91 n 92)!:::..x. 

B-4.15. Let C be a category having finite products and a terminal object n. A group 

object inC is a quadruple (G,µ,11,E), where G is an object inC, µ: GnG -t G, 11: G -t G, 
and E: n --+ G are morphisms, so that the following diagrams commute: 

Associativity: 

Identity: 

G n G---.,.G. 
µ 

Gnn~GnG~nnG 

~tµ/ 
G 

where A and pare the isomorphisms in Exercise B-4.11 on page 459. 

Inverse: 

n---+-G---n 

where w: G -t n is the unique morphism to the terminal object. 

(i) Prove that a group object in Sets is a group. 

(ii) Prove that a group object in Groups is an abelian group. 
Hint. Use Exercise A-4.83 on page 172. 
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(iii) Prove that a group object in Top2 , the category of all Hausdorff topological spaces, 
is a topological group (a group G is a topological group if G is a topological space 
such that multiplication G x G--+ G taking (g1,g2) 1-t g1g2 and inversion G--+ G 
taking g i-+ g-1 are both continuous. It is usually, but not always, assumed that G 
is a Hausdorff space.) 

(iv) Define cogroup objects, the dual of groups. (In topology, the n-sphere sn, for 
n ~ 1, turns out to be a cogroup object in hTop; in algebra, cogroup objects arise 
in Hopf algebras.) 

Functors 

Functors11 are homomorphisms of categories. 

Definition. If C and V are categories, then a functor T: C ---+ V is a function 
such that 

(i) if A E obj(C), then T(A) E obj(V); 

(ii) if f: A ---+ A' in C, then T(f): T(A) ---+ T(A') in V; 

(iii) if A -4 A' ~A" in C, then T(A) 'IJ4 T(A') ~ T(A") in V and 

T(gf) = T(g)T(f); 

(iv) for every A E obj(C), 

There are two types of functors: those which preserve the direction of arrows; 
those which reverse the direction of arrows. The former, as in the definition just 
given, are called covariant; the latter, to be introduced soon, are called con
travariant. 

Example B-4.15. 

(i) If C is a category, then the identity functor le: C---+ C is defined by 

le(A) =A for all objects A 

and 
le(!) = f for all morphisms f. 

(ii) If C is a category and A E obj(C), then the Hom functor TA: C---+ Sets 
is defined by 

TA(B) = Hom(A, B) for all BE obj(C), 

and if f: B---+ B' in C, then TA(!): Hom( A, B)---+ Hom( A, B') is given 
by 

TA(!): hf-+ fh. 
We call TA(!) the induced map, and we denote it by/*: 

f*: h H fh. 

11The term functor was coined by the philosopher R. Carnap, and S. Mac Lane thought it 
was the appropriate term in this context. 
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Because of the importance of this example, we verify each part of 
the definition in detail. First, the very definition of category says that 
Hom( A, B) is a set. Note that the composite f h makes sense: 

fh 

A~B'. 
h f 

Suppose now that g: B' ---t B". Let us compare the functions 

(gf)* and g*f*: Hom( A, B) ---t Hom( A, B"). 

If h E Hom(A,B), i.e., if h: A---t B, then 

(gf)*: h H (gf)h; 

on the other hand, 

g*f*: h Hf h H g(f h), 

and these are equal by associativity. Finally, if f is the identity map 
ls: B ---t B, then 

(ls)*: h H lsh = h 

for all h E Hom(A,B), so that (ls)*= lHom(A,S)· 

We usually denote TA by 

Hom(A, ). 

Theorem B-4.8(i) says that TA preserves products in RMod; that is, 
TA (fli Bi) ~ fli TA (Bi). In the usual notation, we write 

Hom( A, IT Bi) ~IT Hom( A, Bi)· 
i i 

(iii) Let C be a category, and let A E obj(C). Define T: C ---t C by T(C) =A 
for every CE obj(C), and T(f) = lA for every morphism fin C. Then 
T is a functor, called the constant functor at A. 

(iv) If C = Groups, define the forgetful functor U: Groups ---t Sets 
as follows: U(G) is the "underlying" set of a group G and U(f) is a 
homomorphism f regarded as a mere function. A group is really an 
ordered triple (G,µ,i), where G is its (underlying) set,µ: G x G---t G is 
its operation, and 1,: G ---t G is inversion x H x-1. Thus, the functor U 
"forgets" the operation and inversion, and remembers only the underlying 
set G. 

There are many variants. For example, an R-module is an ordered 
triple (M,a,a), where Mis a set, a: M x M ---t Mis addition, and 
a: R x M ---t M is scalar multiplication. There are forgetful functors 
U': RMod ---t Ab with U'((M,a,a)) = (M,a), and U": RMod ---t Sets 
with U"((M,a,a)) = M, for example. 

(v) Let Top*, the category of pointed spaces, have objects (X,x0 ), where 
X is a topological space with basepoint x0 E X, and morphisms pointed 
maps, f: (X, xo) ---t (Y, Yo), where f: X ---t Y is a continuous function 
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with J(xo) =Yo· For example, the unit circle 8 1 = {e211"ix : x Ell= [O, 1]} 
can be viewed as the pointed space (81, 1), where 1 = e211"ix for x = 0. 

If g, h: ( 81, 1) --+ ( X, x0 ) are pointed maps, then a relative homo
topy F: g ~ h is a continuous function F: 8 1 x JI --+ X such that 

F(e211"ix,o) = g(e211"ix) for all x E JI, 

F(e211"ix, 1) = h(e211"ix) for all x E JI, 

F(l, t) = xo for all t E JI. 

It can be shown that this is an equivalence relation; the equivalence class 
of g is denoted by [g]. The fundamental group 11"1 (X, xo) is defined as 
follows: its elements are classes [g], where g: (81, 1)--+ (X,x0 ), and the 
binary operation is [g][h] = [g * h], where 

h( 27rtX) - - 2 > 
. {g(e211"i2x) if 0 < x < l 

g* e = h(e27ri(2x-1) if~~x~l. 

It can be shown (Rotman [98], Chapter 3) that this operation is well
defined, that rr1 (X, x0 ) is a group (the inverse of [g] is [g'], defined by 
g'(e211"ix) = g(e27ri(l-xl)), and that rr1: Top* --+ Group is a functor (if 
J: (X,xo)--+ (Y,yo), then rr1(f): rr1(X,xo)--+ rr1(Y,yo) is defined by 
[g] 1-t [Jg] - if g: (81, 1) --+ (X,x0 ), then Jg: (81, 1) --+ (Y,yo)). We 
remark that the fundamental group is the first of the sequence of homo
topy groups 11"n: Top* --+ Group; its elements are relative homotopy 
classes of pointed maps sn --+ x. If n ~ 2, then it turns out that 11"n 

takes values in Ab. 
The fundamental group functor illustrates why, when defining func

tions, we have to be so fussy about targets. Suppose that J is the identity 
(81, 1) --+ (81, 1) and that j: (81, 1) --+ (JR.2, 1) is the inclusion; thus, the 
morphisms J and j J differ only in their target. Now J induces the identity 
rr1(S1, 1) --+ rr1(S1, 1), while jJ induces rr1(jf): rr1(S1, 1) --+ rr1(1R.2, 1). 
But rr1(81,1) ~ Z while rr1(JR.2,1) = {O}, so that J induces the identity 
on Z while j J induces rr1 (j !) = rr1 (j)rr1 (f) = 0 [98]. It follows that 
J -:f j J. Similarly, we must also be fussy about domains of functions. .,. 

The following result is important, even though it is very easy to prove. 

Proposition B-4.16. IJT: C--+ 'Dis aJunctor and J: A-+ Bis an isomorphism 
in C, then T(f) is an isomorphism in 'D. 

Proof. If g is the inverse of J, apply T to the equations 

gJ = lA and Jg= lB. • 

This proposition illustrates, admittedly at a low level, the reason why it is useful 
to give categorical definitions: functors can recognize definitions phrased solely in 
terms of objects, morphisms, and diagrams. How could we prove this result in Ab 
if we only regard an isomorphism as a homomorphism that is an injection and a 
surjection? 
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A second type of functor reverses the direction of arrows. 

Definition. If C and V are categories, then a contravariant functor T: C ---+ V 
is a function such that 

(i) if CE obj(C), then T(C) E obj(V); 

(ii) if f: C-+ C' in C, then T(f): T(C')---+ T(C) in V; 

(iii) if C ~ C' ~ C" in C, then T(C") ~ T(C') 'IJ!4 T(C) in V and 

T(gf) = T(f)T(g); 

(iv) for every A E obj(C), 

Example B-4.17. 

(i) If C is a category and BE obj(C), then the contravariant Hom func
tor TB: C---+ Sets is defined, for all CE obj(C), by 

TB(C) = Hom(C,B) 

and, if f: C ---+ C' in C, then TB(!): Hom( C', B) ---+ Hom( C, B) is given 
by 

TB(!): hi--+ hf. 

We call TB(!) the induced map, and we denote it by f*: 

f*: h I-+ hf. 

We usually denote TB by 

Hom( ,B). 

Because of the importance of this example, we verify the axioms, showing 
that TB is a (contravariant) functor. Note that the composite hf makes 
sense: 

hf 
c- C' :=:-t= B. 

f h 

Given homomorphisms 

C !+ C' !4 C" , 
let us compare the functions 

(gf)* and f*g*: Hom(C",B)-+Hom(C,B). 

If h E Hom(C", B) (i.e., if h: C"---+ B), then 

(gf)*: h I-+ h(gf); 

on the other hand, 

f*g*: h I-+ hg I-+ (hg)f, 

and these are equal by associativity. Finally, if f is the identity map 
le: C-+ C, then 

(le)*: hi--+ hle = h 
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for all h E Hom(C, B), so that (le)*= lHom(C,B)

We usually denote TB by 

Hom( ,B). 
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Theorem B-4.8(ii) says that the contravariant functor TB converts sums 
to products in RMod: TB(ffiiAi) ~ [LTB(Ai)· In the usual notation, 
we write 

Hom(Ef1Ai,B) ~ IlHom(Ai,B). ""' 

It is easy to see, as in Proposition B-4.16, that contravariant functors preserve 
isomorphisms; that is, if T: C ~ 'D is a contravariant functor and f: C ~ C' is an 
isomorphism in C, then T(f): T(C') ~ T(C) is an isomorphism in 'D. 

The following construction plays the same role for categories and functors as 
opposite rings play for left and right modules. 

Definition. If c is a category, its opposite category C0 P has objects obj(C0 P) = 
obj(C), morphisms Homcop(A, B) = Homc(B, A) (we may write morphisms in C0 P 
as !°P, where f is the corresponding morphism in C), and composition the reverse 

of that in C; that is, !°Pg0 P = (gf)0 P when A~ B ~ C in C. 

It is routine to check that C0 P is a category. We illustrate composition in C0 P: 
r r 1 g a diagram C -=---+ B -=---+ A in C0 P corresponds to A ---=-+ B ---=--+ C in C. Opposite 

categories are hard to visualize. If C =Sets, for example, the set Homsetsop (X, 0) 
for any set X has exactly one element, namely, i 0 P, where i is the inclusion 0 ~ X 
in Sets. But i 0 P : X ~ 0 cannot be a function, for there are no functions from a 
nonempty set X to 0. 

If T: c ~ 'D is a functor, define T 0 P: C0 P ~ V0 P by T 0 P(C) = T(C) for all 
C E obj(C) and T 0 P(f0 P) = T(f)0 P for all morphisms f in C. It is easy to show 
that T 0 P is a functor C0 P ~ 'D0 P having the same variance as T. For example, if T 
is covariant, then 

TOP(JOPgOP) = TOP((g/JOP) = T(gf)OP 

= [TgTJ]op = [TJJOP[Tg]op = TOP(JOP)TOP(gOP). 

If a category has extra structure, then a functor preserving the structure gains 
an adjective. 

Definition. If C and 'D are pre-additive categories, then a functor T: C ~ 'D, 
of either variance, is called an additive functor if, for every pair of morphisms 
f,g: A~ B, we have 

T(f + g) = T(f) + T(g). 

Hom functors RMod ~ Ab of either variance are additive functors. 

Every covariant functor T: C ~ 'D gives rise to functions 

TAB: Hom(A,B)~Hom(TA,TB), 
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for every A and B, defined by h i--+ T(h). If T is an additive functor between 
pre-additive categories, then each TAB is a homomorphism of abelian groups; the 
analogous statement for contravariant functors is also true. 

Here is a modest generalization of Theorem B-4.8. 

Proposition B-4.18. If T: RMod -t Ab is an additive functor of either variance, 
then T preserves finite direct sums: 

T(A1 EB ... EB An) ~ T(A1) EB ... EB T(An)· 

Proof. By induction, it suffices to prove that T(A EBB)~ T(A) EB T(B). Proposi
tion B-4.3 characterizes M =A EBB by maps p: M -t A, q: M -t B, i: A -t M, 
and j: B -t M such that pi= IA, qj =ls, pj = 0, qi= 0, and ip + jq = lM. 
Since Tis an additive functor, Exercise B-4.18 on page 474 gives T(O) = 0, and so 
T preserves these equations. • 

We have just seen that additive functors T: RMod -t Ab preserve the direct 
sum of two modules: 

T(A EB C) = T(A) EB T(C). 

If we regard such a direct sum as a split short exact sequence, then we may rephrase 
this by saying that if 

0-tA~BJ+C-tO 
is a split short exact sequence, then so is 

0 -t T(A) ~ T(B) !J!4 T(C) -t 0. 

This leads us to a more general question: If 

0-tA~BJ+C-tO 

is any, not necessarily split, short exact sequence, is 

0 -t T(A) ~ T(B) !J!4 T(C) -t 0 

also an exact sequence? Here is the answer for covariant Hom functors (there is no 
misprint in the statement of the theorem: "-+ O" should not appear at the end of 
both sequences, and we shall discuss this point after the proof). 

Theorem B-4.19. If 0 -t A ~ B J+ C is an exact sequence of R-modules and X 
is an R-module, then there is an exact sequence 

0 -t HomR(X, A) ~ HomR(X, B) ~ HomR(X, C). 

Proof. 

(i) ker i* = {O}. 
If f E keri*, then f: X -t A and i*(f) = O; that is, 

if(x) = 0 for all x EX. 

Since i is injective, f(x) = 0 for all x EX, and so f = 0. 
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(ii) imi* ~ kerp*. 
If g E imi*, then g: X---+ Band g = i*(f) =if for some f: X---+ A. 

But p*(g) =pg = pif = 0, because exactness of the original sequence, 
namely, im i = ker p, implies pi = 0. 

(iii) kerp* ~ imi*. 
If g E kerp*, then g: X---+ Band p*(g) =pg= 0. Hence, pg(x) = 0 

for all x EX, so that g(x) E kerp = imi. Thus, g(x) = i(a) for some 
a E A; since i is injective, this element a is unique. Hence, the function 
f: X---+ A, given by f(x) =a if g(x) = i(a), is well-defined. It is easy to 
check that f E HomR(X, A); that is, f is an R-homomorphism. Since 

g(x + x') = g(x) + g(x') = i(a) + i(a') = i(a +a'), 

we have 

f(x + x') =a+ a'= f(x) + f(x'). 

A similar argument shows that f ( rx) = r f ( x) for all r E R. But i* (!) = 
if and if(x) = i(a) = g(x) for all x E X; that is, i*(f) = g, and so 
g E imi*. • 

Example B-4.20. Even if the map p: B ---+ C in the original exact sequence is 
assumed to be surjective, the functored sequence need not end with "---+ O;" that is, 
p*: HomR(X, B) ---+ HomR(X, C) may fail to be surjective. 

The abelian group Q/'ll consists of cosets q + 'll for q E Q, and it is easy to see 
that its element ~ + 'll has order 2. It follows that Homz('ll2, Q/'ll) =I {O}, for it 
contains the nonzero homomorphism (1] r-+ ~ + 'll. 

Apply the functor Homz('ll2, ) to 

0 ---+ 'll ~ Q .Et Q/'ll ---+ 0, 

where i is the inclusion and p is the natural map. We have just seen that 

on the other hand, Homz('ll2,Q) = {O} because Q has no (nonzero) elements of 
finite order. Therefore, the induced map p*: Homz('ll2, Q) ---+ Homz('ll2, Q/'ll) 
cannot be surjective. .,.. 

Definition. A covariant functor T: RMod ---+ Ab is called left exact if exactness 
of 

0---+A~B.EtC 
implies exactness of 

0---+ T(A) ~ T(B) ~ T(C). 

Thus, Theorem B-4.19 shows that covariant Hom functors HomR(X, ) are 
left exact functors. Investigation of the cokernel of T(p) is done in homological 
algebra; it is related to a functor called Extk(X, ). 

There is an analogous result for contravariant Hom functors. 
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Theorem B-4.21. If A ~ B 2+ C ---+ 0 is an exact sequence of R-modules and Y 
is an R-module, then there is an exact sequence in Ab 

p* ·• 
0---+ HomR(C, Y) :....+ HomR(B, Y) ~ HomR(A, Y). 

Proof. 

(i) kerp* = {O}. 
If h E kerp*, then h: C---+ Y and 0 = p*(h) =hp. Thus, h(p(b)) = 0 

for all b E B, so that h(c) = 0 for all c E imp. Since p is surjective, 
imp= C, and so h = 0. 

(ii) imp*~ keri*. 
If g E HomR(C, Y), then i*p*(g) = (pi)*(g) = 0, because exactness 

of the original sequence, namely, im i = ker p, implies pi = 0. 

(iii) ker i* ~ imp*. 
If g E keri*, then g: B---+ Y and i*(g) = gi = 0. If c E C, then 

c = p(b) for some b E B, because pis surjective. Define f: C---+ Y by 
f(c) = g(b) if c = p(b). Note that f is well-defined: if p(b) = p(b'), then 
b - b' E kerp = im i, so that b - b' = i(a) for some a EA. Hence, 

g(b) - g(b') = g(b - b') = gi(a) = 0, 

because gi = 0. The reader may check that f is an R-map. Finally, 

p*(f) = fp = g, 

for c = p(b) implies g(b) = f(c) = f(p(b)). Therefore, g E imp*. • 

Example B-4.22. Even if the map i: A ---+ B in the original exact sequence is 
assumed to be injective, the functored sequence need not end with "---+ O;" that is, 
i*: HomR(B, Y)---+ HomR(A, Y) may fail to be surjective. 

We claim that Homz(Q,Z) = {O}. Suppose that f: Q--+ Zand f(a/b) =f:. 0 for 
some a/b E Q. If f(a/b) = m, then, for all n > 0, 

nf(a/nb) = f(na/nb) = f(a/b) = m. 

Thus, mis divisible by every positive integer n. Therefore, m = 0, lest we contradict 
the Fundamental Theorem of Arithmetic, and so f = 0. 

If we apply the functor Homz( , Z) to the short exact sequence 

0 ---+ Z ~ Q -!+ Q/Z --t 0, 

where i is the inclusion and p is the natural map, then the induced map 

i*: Homz(Q, Z) ---+ Homz(Z, Z) 

cannot be surjective, for Homz(Q, Z) = {O} while Homz(Z, Z) =f:. {O}, because it 
contains lz. <Ill 

Definition. A contravariant functor T: RMod ---+ Ab is called left exact if ex-
actness of 
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implies exactness of 

0-t T(C) ~ T(B) ~ T(A). 

Thus, Theorem B-4.21 shows that contravariant Hom functors HomR( , Y) are 
left exact functors. 12 Investigation of the cokernel of T( i) is done in homological 
algebra; it is related to a contravariant functor called Extk( , Y). 

Here is a converse of Theorem B-4.21; a dual statement holds for covariant 
Hom functors. 

Proposition B-4.23. Let i: B' ---+ B and p: B ---+ B" be R-maps, where R is a 
ring. If 

p* ·• 
0---+ HomR(B", M)--=---+ HomR(B, M) ~ HomR(B', M) 

is an exact sequence in Ab for every R-module M, then so is 

B' --2.+ B ~ B" -t 0. 

Proof. 

(i) p is surjective. 

Let M = B" / imp and let f: B" ---+ M be the natural map, so that 
f E Hom(B",M). Then p*(f) = fp = 0, so that f = 0, because p* is 
injective. Therefore, B" /imp= 0, and pis surjective. 

(ii) im i ~ ker p. 

Since i*p* = 0, we have 0 = (pi)*. Hence, if M = B" and g = lB", 
so that g E Hom( B", M), then 0 = (pi)* g = gpi = pi, and so im i ~ ker p. 

(iii) kerp ~ imi. 

Now choose M = B/imi and let h: B---+ M be the natural map, so 
that h E Hom(B, M). Clearly, i*h =hi= 0, so that exactness of the Hom 
sequence gives an element h' E HomR(B", M) withp*(h') = h'p = h. We 
have imi ~ kerp, by part (ii); hence, if imi -:f kerp, there is an element 
b E B with b <I. im i and b E ker p. Thus, hb -:f 0 and pb = 0, which gives 
the contradiction 0 -:f hb = h'pb = 0. • 

Definition. A covariant functor T: RMod ---+ Ab is an exact functor if exactness 
of 

implies exactness of 

0---+ T(A) ~ T(B) ~ T(C)---+ 0. 

An exact contravariant functor is defined similarly. 

In the next chapter, we will see that covariant Hom functors are exact functors 
for certain choices of modules, namely projective modules, while contravariant Hom 
functors are exact for injective modules. 

12These functors are called left exact because the functored sequences have 0 -+ on the left. 
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Recall that if A and B are left R-modules, then HomR(A, B) is an abelian 
group. However, if R is a commutative ring, then it turns out that HomR(A, B) is 
also an R-module. We now show, for any ring R, that HomR(A, B) is a module if 
A or B has extra structure. 

Definition. Let R and S be rings and let M be an abelian group. Then M is an 
(R, S)-bimodule, denoted by 

RMs, 
if M is a left R-module, a right S-module, and the two scalar multiplications are 
related by an associative law: 

r(ms) = (rm)s 

for all r E R, m E M, and s E S. 

If Mis an (R, 8)-bimodule, it is permissible to write rms with no parentheses, 
for the definition of bimodule says that the two possible associations agree. 

Example B-4.24. 

(i) Every ring R is an (R, R)-bimodule; the extra identity is just the asso
ciativity of multiplication in R. 

(ii) Every two-sided ideal in a ring R is an (R, R)-bimodule. 

(iii) If Mis a left R-module (i.e., if M =RM), then Mis an (R, Z)-bimodule; 
that is, M = RM'll.. Similarly, a right R-module N is a bimodule '11.NR. 

(iv) If R is commutative, then every left (or right) R-module is an (R,R)
bimodule. In more detail, if M =RM, define a new scalar multiplication 
M x R -+ M by ( m, r) t-+ rm; that is, simply define mr to equal rm. 
To see that Mis a right R-module, we must show that m(rr') = (mr)r', 
that is, (rr')m = r'(rm), and this is so because rr' = r'r. Finally, Mis 
an (R, R)-bimodule because both r(mr') and (rm)r' are equal to (rr')m. 

(v) In Example B-l.20(v), we made any left kG-module Minto a right kG
module by defining mg= g-1m for every m EM and every gin the group 
G. Even though Mis both a left and right kG-module, it is usually not 
a (kG, kG)-bimodule because the required associativity formula may not 
hold. For example, let G be a nonabelian group, and let g, h E G be 
noncommuting elements. If m EM, then g(mh) = g(h- 1m) = (gh- 1 )m; 
on the other hand, (gm)h = h-1(gm) = (h- 1g)m. In particular, if 
M = kG and m = 1, then g(lh) = gh- 1 , while (gl)h = h-1g. Therefore, 
g(lh) -::/- (gl)h, and kG is not a (kG, kG)-bimodule. <Ill 

We now show that HomR(A, B) is a module when one of the modules A and 
B is also a bimodule. The reader should bookmark this page, for the following 
technical result will be used often. 

Proposition B-4.25. Let R and S be rings. 

(i) Let RAs be a bimodule and RB be a left R-module. Then 

HomR(A, ): RMod-+ sMod 
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is a covariant functor; that is, HomR(A, B) is a left S-module and 
sf: a 1-t f(as) is an S-map. 

(ii) Let RAs be a bimodule and Bs be a right S-module. Then 

Homs(A, ) : Mods ~ ModR 

is a covariant functor; that is, Homs(A, B) is a right R-module and 
fr: a 1-t f(ra) is an R-map. 

(iii) Let sBR be a bimodule and AR be a right R-module. Then 

HomR( ,B): ModR ~ sMod 

is a contravariant functor; that is, HomR(A, B) is a left S-module and 
sf: a 1-t sf(a) is an S-map. 

(iv) Let sBR be a bimodule and sA be a left S-module. Then 

Homs(A, ): sMod ~ ModR 

is a contravariant functor; that is, Homs(A, B) is a right R-module and 
fr: a 1-t f(a)r is an R-map. 

Proof. We only prove (i); the proofs of the other parts are left to the reader. First, 
as makes sense because A is a right S-module, and so f(as) is defined. To see that 
HomR(A, B) is a left S-module, we compare (ss')f and s(s' f), where s, s' E Sand 
f: A~ B. Now (ss')f: a 1-t f(a(ss')), while s(s' f): a 1-t (s' !)(as) = f((as)s'). 
But a(ss') = (as)s' because A is an (R, S)-bimodule. 

To see that the functor HomR(A, ) takes values in s Mod, we must show 
that if g: B ~ B' is an R-map, then g*: HomR(A, B) ~ HomR(A, B'), given by 
f 1-t gf, is an S-map; that is, g*(sf) = s(g*f) for alls ES and f: A~ B. Now 
g*(sf): a 1-t g((sf)a) = g(f(as)), and s(g*f): a 1-t (g*f)(as) = gf(as) = g(f(as)), 
as desired. • 

For example, every ring Risa (Z, R)-bimodule. Hence, for any abelian group D, 
Proposition B-4.25(i) shows that Homz(R, D) is a left R-module. 

Remark. Suppose f: A ~ B is an R-map and we write the function symbol f on 
the side opposite the scalar action; that is, write fa if A is a right R-module and 
write af when A is a left R-module. With this notation, each of the four parts of 
Proposition B-4.25 (which makes Hom( A, B) into a module when either A or B is 
a bimodule) is an associative law. For example, in part (i) with both A and B left 
R-modules, writing sf for s ES, we have a(sf) = (as)f. Similarly, in part (ii), we 
define fr, for r ER so that (fr)a = f(ra). ""' 

Corollary B-4.26. Let R be a commutative ring and A, B be R-modules. Then 
HomR(A,B) is an R-module if we define rf: a 1-t f(ra). In this case, 

HomR(A, ): RMod ~ RMod and HomR( ,B): RMod ~ RMod 

are functors. 

Proof. When R is commutative, Example B-4.24(iv) shows that R-modules are 
(R, R)-bimodules. • 
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We have shown, when R is commutative, that HomR(A, ) is a functor with 
values in RMod; similarly, when R is commutative, HomR( , B) takes values in 
RMod. In particular, if R is a field, then the HomR's are vector spaces and the 
induced maps are linear transformations 

Corollary B-4.27. If Risa ring and M is a left R-module, then HomR(R, M) is 
a left R-module and 

'PM: HomR(R, M) -+ M, 

given by 'PM: f t-t f(l), is an R-isomorphism. 

Proof. Note that R is an (R, R)-bimodule, so that Proposition B-4.25(i) says 
that HomR(R, M) is a left R-module if scalar multiplication R x HomR(R, M) -+ 
HomR(R, M) is defined by (r, f) t-t fn where fr( a)= f(ar) for all a ER. 

It is easy to check that cp M is an additive function. To see that cp M is an 
R-homomorphism, note that 

'PM(rf) = (rf)(l) = f(lr) = f(r) = r[f(l)] = rcpM(f), 

because f is an R-map. Consider the function M -+ HomR(R, M) defined as 
follows: if m EM, then fm: R-+ Mis given by fm(r) =rm; it is easy to see that 
fm is an R-homomorphism, and that m t-t fm is the inverse of 'PM· • 

In the presence of bimodules, the group isomorphisms in Theorem B-4.8 are 
module isomorphisms. 

Theorem B-4.28. 

(i) If RAs is a bimodule and (Bi)iEI is a family of left R-modules, then the 
Z-isomorphism 

cp: HomR( A, II Bi)~ IIHomR(A, Bi), 
iEl iEl 

given by cp: f t-t (pd) (Pi are the projections of the product niEI Bi)' is 
an S-isomorphism. 

(ii) Given a bimodule RAs and left R-modules B, B', the Z-isomorphism 

HomR(A, B EBB') ~ HomR(A, B) EB HomR(A, B') 

is an S-isomorphism. 

(iii) If R is commutative, A is an R-module, and (Bi)iEI is a family of R
modules, then 

cp: HomR( A, II Bi)~ IIHomR(A,Bi) 
iEI iEl 

is an R-isomorphism. 

(iv) If R is commutative and A, B, B' are R-modules, then the Z-isomorphism 

HomR(A, B EBB') ~ HomR(A, B) EB HomR(A, B') 

is an R-isomorphism. 
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Remark. There is a similar result involving the isomorphism 

cp: HomR(EBAi,B) ~rrHomR(Ai,B) . .... 
iEJ iEJ 

Proof. To prove (i), we must show that cp(sf) = scp(f) for alls ES and f: A---+ 
I1 Bi· Now cp(sf) = (Pi(sf)), the I-tuple whose ith coordinate is Pi(sf). On the 
other hand, since S acts coordinatewise on an I-tuple (gi) by s(gi) = (sgi), we have 
scp(f) = (s(pif)). Thus, we must show that Pi(sf) = s(pd) for all i. Note that 
both of these are maps A---+ Bi. If a E A, then Pi(sf): a 1-t Pi[(sf)(a)] = Pi(f(as)), 
and s(pd): a 1-t (pd)(as) = Pi(f(as)), as desired. 

Part (ii) is a special case of (i): when the index set if finite, direct sum and 
direct product of modules are equal. Parts (iii) and (iv) are special cases of (i) and 
(ii), for all R-modules are (R, R)-bimodules when R is commutative. • 

Example B-4.29. 

(i) A linear functional on a vector space V over a field k is a linear 
transformation cp: V---+ k (after all, k is a (one-dimensional) vector space 
over itself). For example, if 

V ={continuous f: [O, 1] -t JR}, 

then integration, f 1-t f0
1 f(t) dt, is a linear functional on V. Recall that 

if Vis a vector space over a field k, then its dual space is 

V* = Homk(V, k). 

By Corollary B-4.26, V* is also a k-module; that is, V* is a vector space 
over k. 

If dim(V) = n < oo, then we know that V =Vi EB··· EB Vn, where 
each Vi is one-dimensional; that is, Vi ~ k. By the previous remark, 
V* ~ ffii Homk(Vi, k) is a direct sum of n one-dimensional spaces (for 
Corollary B-4.27 gives Homk(k, k) ~ k), and so dim(V*) = dim(V) = n. 
Therefore, a finite-dimensional vector space and its dual space are isomor
phic. It follows that the double dual, V**, defined as (V*)*, is isomorphic 
to V as well when V is finite-dimensional. However, the isomorphism 
V ~ V**, called natural, is more important (it will be one of the first 
examples we will see of natural transformation, which compare functors 
of the same variance). 

(ii) There are variations of dual spaces. In functional analysis, one encoun
ters topological real vector spaces V, so that it makes sense to speak of 
continuous linear functionals. The topological dual V* consists of all the 
continuous linear functionals, and it is important to know whether V is 
reflexive; that is, whether an analog of the natural isomorphism V ---+ V** 
for finite-dimensional spaces is a homeomorphism for such a space. For 
example, the fact that Hilbert space is reflexive is one of its important 
properties. """ 
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Exercises 

* B-4.16. If M is a finitely generated abelian group, prove that the additive group of the 
ring End(M) is a finitely generated abelian group. 

Hint. There is a finitely generated free abelian group F mapping onto M; apply 
Hom( , M) to F -+ M -+ 0 to obtain an injection 0 -+ Hom(M, M) -+ Hom(F, M). 
But F is a direct sum of finitely many copies of Z, and so Hom(F, M) is a finite direct 
sum of copies of M. 

* B-4.17. Let v1, ... , Vn be a basis of a vector space V over a field k, so that every v E V 
has a unique expression v = ai v1 + · · · + anvn, where ai E k for i = 1, ... , n. Recall 
Exercise A-7.13 on page 269. For each i, the function vi: V-+ k, defined by vi: vi-+ ai, 
lies in the dual space v·' and the list vi' ... 'v;; is a basis of v· (called the dual basis of 
V1, · · ·, Vn)· 

If f: V -+ V is a linear transformation, let A be the matrix of f with respect to a 
basis v1, ... ,vn of V; that is, the ith column of A consists of the coordinate list of f(vi) 
with respect to the given basis. Prove that the matrix of the induced map f* : V* -+ V* 
with respect to the dual basis is AT, the transpose of A. 

* B-4.18. Let T: RMod-+ Ab be an additive functor of either variance. 

(i) Prove that T(O) = 0, where 0 is a zero morphism. 

(ii) Prove that T( {O}) = {O}, where {O} is a zero module. 

* B-4.19. Give an example of a covariant functor that does not preserve coproducts. 

B-4.20. Let A ~ B 2+ C be functors. Prove that the composite A ~ C is a functor 
that is covariant if the variances of S and T are the same, and contravariant if the variances 
of S and T are different. 

B-4.21. Define F: ComRings-+ ComRings on objects by F(R) = R(x], and on ring 
homomorphisms cp: R-+ S by F(cp): Ei aixi i-+ Ei cp(ai)xi. Prove that Fis a functor. 

B-4.22. Prove that there is a functor Groups -+ Ab taking each group G to G/G', 
where G' is its commutator subgroup. 

Hint. A commutator in a group G is an element of the form xyx- 1y- 1 , and the com
mutator subgroup G' is the subgroup of G generated by all the commutators (see Exer
cise A-4.76 on page 172). 

* B-4.23. (i) If X is a set and k is a field, define the vector space kx to be the set of 
all functions X -+ k under pointwise operations. Prove that there is a functor 
F: Sets -+ kMod with F(X) = kx. 

(ii) If X is a set, define F(X) to be the free group with basis X. Prove that there is a 
functor F: Sets-+ Groups with F: Xi-+ F(X). 

B-4.24. Let R be a ring, and let M, N be right R-modules. If f E HomR(M, N) and 
r ER, define rf: M-+ N by rf: mi-+ f(mr). 

(i) Prove that if r, s ER, then (rs)f = r(sf) for all f E HomR(M, N). 

(ii) Show that HomR(M, N) need not be a left R-module. 
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* B-4.25. (Change of Rings). Let k, k* be commutative rings, let cp: k --+ k* be a ring 
homomorphism, and let M* be a left k* -module. 

(i) Prove that M* is a k-module, denoted by ..,M* and called an induced module, if 
we define rm* = cp(r)m* for all r Ek and m* EM*. 

(ii) Prove that every k* -map f*: M* --+ N* induces a k-map ..,M* --+ ..,N*. 

(iii) Use parts (i) and (ii) to prove that cp induces an additive exact functor 

ii): k* Mod --+ k Mod 

with ii): M* 1--t ..,M*. We call ii) a change of rings functor. 

* B-4.26. Let E/k be a finite Galois extension with Galois group Gal(E/k). 

(i) Prove that F(E/k) is a category whose objects are the intermediate fields B/k 
with B ~ E and whose morphisms are inclusions. 

(ii) Prove that Q(E/k) is a category whose objects are the subgroups of Gal(E/k) and 
whose morphisms are inclusions. 

(iii) Prove that Gal: B 1--t Gal(E/B) is a contravariant functor F(E/k)--+ <J(E/k). 

(iv) Prove that H 1--t EH is a contravariant functor Q(E/k)--+ F(E/k). 

Galois Theory for Infinite Extensions 

We have investigated Galois theory for finite extensions E/k, but there is also a 
theory for infinite algebraic extensions. In short, the Galois group Gal(E/k) will be 
made into a topological group, and there is a bijection between all the intermediate 
fields of E/k and all the closed subgroups of Gal(E/k). 

Definition. A extension field E/k is a Galois extension if it is algebraic and 
E 0 = k, where G = Gal(E/k). If E/k is an extension field, then its Galois group, 
Gal(E/k), is the set of all those automorphisms of E that fix k. 

Theorem A-5.42 shows that if E/k is a finite extension, then this definition 
coincides with our earlier definition on page 206. Many properties of finite Galois 
extensions hold in the general case. 

Lemma B-4.30. If E/k is a Galois extension and (Ki/k)iEI is the family of all 
finite Galois extensions k ~Ki~ E, then E = LJiEI Ki. 

Proof. It suffices to prove that every a E E is contained in a finite Galois exten
sion K/k. Now irr(a, k) is a separable polynomial in k[x] having a root in E, by 
Theorem A-5.42 (the finiteness hypothesis is not needed in proving this implica
tion), and its splitting field K over k is a finite Galois extension contained in E. 
Therefore, a E K ~ E. • 

Proposition B-4.31. Let k ~ B ~ E be a tower of fields, where E/k and B/k 
are both Galois extensions. 

(i) If TE Gal(E/k), then r(B) = B. 

(ii) If a E Gal(B/k), then there is a E Gal(E/k) with alB =a. 
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(iii) The map p: Gal(E/k)---+ Gal(B/k), given by a H ajB, is surjective, its 
kernel is Gal(E/B), and Gal(E/k)/Gal(E/B) ~ Gal(B/k). 

(iv) If H ~ Gal(E/k) and EH~ B, then EH= EP(H)_ 

Proof. 

(i) By Lemma B-4.30, we have B = LJjEJ F3, where (F3/k)3EJ is the family 
of all finite Galois extensions in B. But T(F3) = F3, by Theorem A-5.17. 

(ii) Consider the family X of all ordered pairs (K, cp), where B ~ K ~ E and 
cp: K ---+ E is a field map extending a. Partially order X by (K, cp) ::S 
(K', cp') if K ~ K' and cp'IK = cp. By Zorn's Lemma, there is a maximal 
element (K0 , cp0 ) in X. The proof of Lemma A-3.98, which proves this 
result for finite extensions, shows that Ko = E. 

(iii) The proof of Theorem A-5.17 assumes that E /k is a finite extension. 
However, parts (i) and (ii) show that this assumption is not necessary. 

(iv) If a E E, then a(a) = a for all a E H if and only if (ajB)(a) = a for all 
ajB E p(H). • 

By Lemma B-4.30, E is a (set-theoretic) union of the finite Galois extensions 
Kifk. If Ki ~ K3, there are inclusion maps A;: Ki ---+ K3 which show how these 
subfields of E fit together to form E (more precisely, AtA; =A~ if Ki~ K3 ~Kr)· 
There is a universal mapping problem, discussed in the appendix on limits, whose 
solution ~iEJ Ki, called a direct limit,13 recaptures E from these data. In the 
diagram below, Xis any extension field of k, E = ~iEJ Ki, and the maps Ki---+ E 
and K3 ---+ E are inclusions: 

It is easy to generalize the spirit of Exercise B-4.26 on page 475 to infinite 
Galois extensions; regard Gal: B H Gal(E/ B) as a contravariant functor C(E/k) ---+ 
Q(E/k), where C(E/k) is the category of all finite Galois extensions Kifk with 
Ki ~ E, and Q(E/k) consists of the subgroups of Gal(E/k). Since contravariant 
functors reverse arrows, Gal converts the universal mapping problem above to the 
dual universal mapping problem (which is also discussed in the appendix on limits) 

13Direct limit generalizes coproduct, pushout, and ascending union. 
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described by the diagram below in which G is any group: 

lim G · "" - - 11- - - - - G 
F<El ~ /J 

Gi 
+. 

1/.13 
1' 

Gi. 
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The solution ~iEI Gi to this problem, called an inverse limit, 14 suggests that 
Gal(E/k) = ~iEI Gi. Indeed, this is true: we proceed in two steps: the inverse 
limit exists; it is the Galois group. (One great bonus of phrasing things in terms of 
categories and functors is that we can often guess the value of a functor on certain 
objects-of course, our guess might be wrong.) There is another important example 
of inverse limit: the completion of a metric space, and this suggests that Gal(E/k) 
might have a topology. Inverse limits of finite groups, as here, are called profinite 
groups. 15 

At this point, let's be more precise about the data. We assume that the ho
momorphisms 'l/Jf: Gj --? Gi, defined whenever Ki ~ Kj, satisfy 'I/Ji = 'l/Jf 'l/Jj if 
Ki~ Ki ~Kr. These conditions do, in fact, hold in our situation above. 

We now specialize the existence theorem for general inverse limits, Proposi
tion B-7.2, to our present case. 

Proposition B-4.32. There is a subgroup L ~ TiiEI Gi which solves the universal 
mapping problem described by the diagram above, and so L ~ ~iEI Gi. 

Proof. Call an element (xi) E TiiEI Gi a thread if Xi = 'l/Jf (xj) whenever i :::; j, 
and define L ~ TiiEI Gi to be the subset of all the threads. It is easy to check that 
Lis a subgroup of TiiEI Gi, and we now show that L solves the universal mapping 
problem whose solution is ~iEI Gi (see Proposition B-7.2); it will then follow that 
L ~ ~iEI Gi, for it is a general fact that any two solutions are isomorphic. 

Define Cti: L--? Gi to be the restriction of the projection (xi) H Xi· It is clear 
that 'l/Jf Ctj = ai. Assume that G is a group having homomorphisms hi : G --? Gi 
satisfying 'l/Jf hj = hi for all i :::; j. Define (): G --? TiiEI Gi by 

()(z) = (hi(z)) 

for z E G. That im () ~ L follows from the given equation 'l/Jf hj = hi for all i :::; j. 
Also, ()makes the diagram commute: ai(): z H (hi(z)) H hi(z). Finally, () is 
the unique such map G --? L (making the diagram commute for all i :::; j). If 
<p: G --? L is another such map, then c.p(z) = (xi) and Cti<p(z) = Xi for all z E G. 
Thus, if <p satisfies aic.p(z) = hi(z) for all i, then Xi = hi(z), and so <p = (). Since 

14Inverse limit generalizes product, pullback, and nested intersection. 
15When inverse limits were first studied, they were sometimes called projective limits

nowadays, some call direct limits colimits and inverse limits merely limits). 
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solutions to universal mapping problems are unique to isomorphism, we conclude 
that L ~ ~iEJ Gi. • 

We can now see that our guess that Gal( E / k) is an inverse limit is correct. 

Proposition B-4.33. Let E/k be a Galois extension, let (Kifk)iEI be the family 
of all finite Galois extensions k ~Ki~ E, and let Gi = Gal(Ki/k). Then 

Gal(E/k) ~ ~Gal(Ki/k). 
iEJ 

Proof. If Ki ~ Kj, then Proposition B-4.31(iii) shows that 7/Jf: Gal(Kj/k) --+ 
Gal(Ki/k), given by a H alKi, is well-defined and 'I/Ji = 7/Jf 7/Jj if Ki ~ Kj ~ Kr. 
By Theorem A-5.17, the restriction fi: a H alKi is a homomorphism Gal(E/k)--+ 
Gal(Ki/k) making the following diagram commute: 

~Gal(K~i/k) :- - - 8
- -~-7,-Gal(E/k) 

l(Kif k) !· 
..P; :Jt :J 

Gal(Kj/k). 

The universal property of inverse limit gives a map B: Gal(E/k)--+ ~Gal(Ki/k) 
which we claim is an isomorphism. 

(i) () is injective: Take a E Gal(E/k) with a t 1. There is a E E with 
a(a) ta. By Lemma B-4.30, there is a finite Galois extension Ki with a E Ki, and 
alKi E Gal(Ki/k). Now (alKi)(a) = a(a) #a, so that alKi t 1. Thus, fw # 1, 
hence, aiB(a) t 1, and so () is injective (since the O:i are merely projections). 

(ii) ()is surjective: Take T = (Ti) E ~iEJ Gal(Ki/k). If a E E, then a E Ki 
for some i, by Lemma B-4.30. Define a: E--+ Eby a(a) = Ti(a). This definition 
does not depend on i because of the coherence conditions holding for (Ti) E L ~ 
TiiE Gal(Ki/k): if i S j, then Ti(a) = Tj(a). The reader may check that a lies in 
Gal(E/k) and that B(a) = T. • 

At the moment, the Galois group Gal(E/k) of a Galois extension has no topol
ogy; we will topologize it using the next proposition. 

A topological group is a group G which is also a Hausdorff topological space 
for which multiplication G x G --+ G and inversion G --+ G are continuous. Recall 
that a product p = fliEJ Xi is a topological space with the product topology: a 
cylinder is a subset of P of the form TiiEI Vi, where Vi is an open subset of Xi 
and almost all Vi = Xi, and a subset U ~ P is open if and only if it is a union 
of cylinders. The product of Hausdorff spaces is Hausdorff (Lemma B-8.3), and 
the product of topological groups is a topological group (Proposition B-8.7(i)). In 
particular, if finite groups are given the discrete topology, then they are topological 
groups, and every profinite group, that is, every inverse limit of finite groups, is a 
topological group, by Proposition B-8.7(ii). We can say more. 
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Proposition B-4.34. If E/k is a Galois extension, then Gal(E/k) is a compact 
topological group. 

Proof. Each Gi is compact, for it is finite, and the Tychonoff Theorem says that 
rriE/ Gi is compact. Now Lemma B-8.4 shows that rriE/ Gi is a compact Haus
dorff space, and Proposition B-8.6 shows that the inverse limit is a closed sub
set of I1iEI Gi, and so it is compact. Now use the isomorphism 0: Gal(E/k) -+ 
~Gal(Ki/k) in Proposition B-4.33 to induce a topology on Gal(E/k) • 

Product spaces are related to function spaces. Given sets X and Y, the function 
space y x is the set of all f: x -+ y. Since elements of a product space rriE/ xi are 
functions f: I -+ uiE/ xi with f ( i) E xi for all i, we can imbed y x into IIxEX Zx 
(where Zx = Y for all x) via f H (f(x)). 

Definition. If X and Y are spaces, then the finite topology on the function space 
Y x has a sub base of open sets consisting of all sets 

U(f;x1, ... ,xn) = {g E yx: g(xi) = f(xi) for 1::; i::; n}, 

where f: X-+ Y, n ~ 1, and x1, ... ,Xn EX. 

In Proposition B-8.8, we show that if Y is discrete, then the finite topology 
on Y x coincides with the topology induced by its being a subspace of IIxEX Zx 
(where Zx = Y for all x EX). 

We have used the fact that closed subsets of compact (Hausdorff) spaces are 
compact. We use compactness below, for compact subspaces of Hausdorff spaces 
must be closed. 

The generalization to infinite Galois extensions of Theorem A-5.51, the Funda
mental Theorem of Galois Theory, is due to Krull. Let E / k be a Galois extension, 
let 

Sub(Gal(E/k)) 

denote the family of all closed subgroups of Gal(E/k), and let Int(E/k) denote the 
family of all intermediate fields k ~ B ~ E. 

Theorem B-4.35 (Fundamental Theorem of Galois Theory II). Let E/k 
be a Galois extension. The function -y: Sub(Gal(E/k))-+ Int(E/k), defined by 

1:Hi-+EH, 

is an order-reversing bijection whose inverse, 8: Int(E/k)-+ Sub(Gal(E/k)), is the 
order-reversing bijection 

8: B H Gal(E/B). 

Moreover, an intermediate field B/k is a Galois extension if and only if Gal(E/B) 
is a normal subgroup ofG, in which case Gal(E/k)/Gal(E/B) ~ Gal(B/k). 

Proof. Proposition A-5.37 proves that "'f is order-reversing: if H ~ L, then EL ~ 
EH. If B is an intermediate field, then Gal( E / B) is a compact subgroup of 
Gal(E/k). Since Gal(E/k) is Hausdorff, every compact subset of it is closed; there
fore, 8(B) = Gal(E/B) is closed and, hence, it lies in Sub(Gal(E/k)). It is easy to 
prove that 8 is order-reversing: if B ~ C, then Gal(E/C) ~ Gal(E/B). 
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To see that "(8 = lrnt(E/k)> we must show that if B is an intermediate field, 
then EGal(E/B) = B. Of course, B ~ EGal(E/B), for Gal(E/B) fixes B. For the 
reverse inclusion, let a E E with a¢. B. By Lemma B-4.30, there is a finite Galois 
extension K/B with a E K. By finite Galois Theory, B = KGal(K/B), so there 
is a E Gal(K/B) with a(a) "I- a. Now Proposition B-4.31 says that a extends to 
0- E Gal(E/B); thus, 0-(a) = a(a) "I- a, and so a¢. EGal(E/B). 

To see that 8"( = lsub(Gal(E/k)), we must show that if H is a closed sub
group of Gal(E/k), then Gal(EjEH) = H. Of course, H ~ Gal(EjEH), for 
if a E H, then a E Gal(E/k) and a fixes EH. For the reverse inclusion, let 
T E Gal(E/EH), and assume that T ¢. H. Since His closed, its complement is 
open. Hence, there exists an open neighborhood U of T disjoint from H; we may 
assume that U is a cylinder: U = U(r; ai, ... , an), where a1 , ... , an E E - EH. 
But since the product topology coincides here with the finite topology, we have 
U = {g E yx : g(ai) = r(ai) for 1 :Si :Sn}. If K/EH(a1 , •.• ,an) is a fi
nite Galois extension (where EH ~ K ~ E), then Proposition B-4.31(iii) says 
that restriction p: a ....+ alK is a surjection Gal(E/EH) -+ Gal(K/EH). Now 
p(r) = rlK E Gal(K/EH), by Proposition B-4.31(i); we claim that rlK ¢. p(H); 
that is, p(H) is a proper subgroup of Gal(K/ EH). Otherwise, rlK = alK for 
some a E Gal(E/ EH), contradicting U(r; a1, ... , an) n H = 0 (which says, for 
all a E Gal(E/EH), that there is some ai with r(ai) "I- a(ai)). But finite Ga
lois Theory says that p(H) = Gal(K/EP(H)) = Gal(K/EH) (for EP(H) =EH, by 
Proposition B-4.31(iv)), another contradiction. It follows that both 'Y and 8 are 
bijections. The last statement is just Proposition B-4.31(iii). • 

The lattice-theoretic statements in the original Fundamental Theorem of Galois 
Theory, e.g., Gal(E/B) n Gal(E/C) = Gal(E/B V C), are valid in the general 
case as well, for their proof in Lemma A-5.50 does not assume finiteness (and the 
intersection of two closed sets is closed!). 

Definition. The absolute Galois group of a field k is Gal(ks/k), where ks is the 
separable algebraic closure of k; that is, ks is the maximal separable extension16 

of kink. 

Chapter IX of Neukirch-Schmidt-Wingberg [84] is entitled "The Absolute Ga
lois Group of a Global Field." It begins by raising the question of "the determi
nation of all extensions of a fixed base field k (where the most important case is 
k = Q), which means exploring how these extensions are built up over each other, 
how they are related, and how they can be classified. In other words, we want to 
study the structure of the absolute Galois group as a profinite group." 

We mention that there is a Galois Theory of commutative ring extensions; see 
Chase-Harrison-Rosenberg [20]. 

16See Exercise B-4.34 below. 
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Exercises 

B-4.27. If G is a group, His a discrete group, and HG has the product topology, prove 
that Hom(G, H) ~HG is a closed subset. 

B-4.28. (i) Prove that a topological group G is Hausdorff if and only if {1} is closed. 

(ii) Prove that if N is a closed normal subgroup of a topological group G, then the 
quotient group G / H is Hausdorff. 

B-4.29. Give an example of a subgroup of the p-adic integers z; that is not closed. 

Hint. Since z; is compact, look for a subgroup which is not compact. 

B-4.30. (i) A topological space is totally disconnected if its components are its points. 
Prove that a compact topological group G is totally disconnected if and only if 
nJ Vj = {1}, where (YJ)jEJ is the family of all the compact Open neighborhoods 
of 1. 

(ii) Prove that a topological group G is profinite if and only if it is compact and totally 
disconnected. 
Hint. See the article by Gruenberg in Cassels-Frohlich [19]. 

B-4.31. Prove that every Galois extension E / k is separable. 

Hint. Use Proposition A-5.47(iii). 

B-4.32. Prove, for every prime p, that the absolute Galois group of lFp is an uncountable 
torsion-free group. 

B-4.33. If G is a profinite group, prove that G ~ ~1 G/U;, where (U;)iEI is the family 
of all open normal subgroups of G. 

* B-4.34. If E/k is an algebraic extension, prove that 

S ={a EE: a is separable over k} 

is an intermediate field that is the unique maximal separable extension of k contained 
in E. 

Hint. Use Proposition A-5.47. 

Free and Projective Modules 

The simplest modules are free modules and, as for abelian groups, every module is 
a quotient of a free module; that is, every module has a presentation by generators 
and relations. Projective modules are generalizations of free modules, and they, 
too, turn out to be useful. 

Recall that a left R-module Fis called a free left R-module if Fis isomorphic 
to a direct sum of copies of R: that is, there is a (possibly infinite) index set I with 

where Ri = (bi) ~ R for all i. We call B = (bi)iEI a basis of F. 
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A free Z-module is just a free abelian group. Every ring R, when considered as 
a left module over itself, is a free left R-module (with basis the one-point set {1} ). 

From our discussion of direct sums, we know that each m E F has a unique 
expression of the form 

m = :~:::>ibi, iEl 
where ri E Rand almost all ri = 0. A basis of a free module has a strong resem
blance to a basis of a vector space. Indeed, it is easy to see that a vector space V 
over a field k is a free k-module and that the two notions of basis coincide in this 
case. 

Here is a generalization of Theorem A-7.28 from finite-dimensional vector spaces 
to arbitrary free modules (in particular, to infinite-dimensional vector spaces). 

Proposition B-4.36. Let F be a free left R-module with basis B, and let i: B ---+ F 
be the inclusion. For every left R-module M and every function -y: B---+ M, there 
exists a unique R-map g: F---+ M with gi(b) = 'Y(b) for all b EB. 

F 

·I' ..... g i ' 

"' B~M. 

Remark. The map g is said to arise from 'Y by extending by linearity. ~ 

Proof. Every element v E F has a unique expression of the form v = LbEB rbb, 
where rb ER and almost all rb = 0. Define g: F---+ M by g(v) = LbEB rn(b). It 
is easy to check that g is an R-map making the diagram above commute. To prove 
uniqueness, suppose that (}: F ---+ M is an R-map with (J(b) = 'Y(b) for all b E B. 
Thus, the maps(} and g agree on a generating set B, and so(}= g. • 

The following two results, while true for all commutative rings, are false in 
general, as we shall soon see. 

Proposition B-4.37. If R is a nonzero commutative ring, then any two bases of 
a free R-module F have the same cardinality. 

Proof. Choose a maximal ideal Jin R (which exists, by Theorem B-2.3). If Bis 
a basis of the free R-module F, then Exercise B-2.12 on page 333 says that the set 
of cosets (b + J F)bEB is a basis of the vector space F / J F over the field Rf J. If Y 
is another basis of F, then the same argument gives (y + J F)yEY, a basis of F / J F. 
But any two bases of a vector space have the same size (which is the dimension of 
the space), and so JBJ = JYJ, by Theorem B-2.13. • 

Definition. If F is a free k-module, where k is a commutative ring, then the 
number of elements in a basis is called the rank of F. 

Proposition B-4.37 shows that the rank of free modules over commutative rings 
is well-defined. Of course, rank is the analog of dimension. 
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Corollary B-4.38. If R is a nonzero commutative ring, then free R-modules F 
and F' are isomorphic if and only if rank(F) = rank(F'). 

Proof. Suppose that cp: F ---+ F' is an isomorphism. If B is a basis of F, then it 
is easy to see that cp(B) is a basis of F'. But any two bases of the free module F' 
have the same size, namely, rank(F'), by Proposition B-4.37. Hence, rank(F') = 
rank(F). 

Conversely, let B be a basis of F, let B' be a basis of F', and let 'Y: B ---+ B' 
be a bijection. Composing 'Y with the inclusion B' ---+ F', we may assume that 
TB---+ F'. By Proposition B-4.36, there is a unique R-map cp: F---+ F' extending 
'Y· Similarly, we may regard 'Y-1 : B' ---+ B as a function B' ---+ F, and there 
is a unique '1/J: F' ---+ F extending 'Y-1. Finally, both '1/Jcp and lp extend lB, so 
that '1/Jcp = lp. Similarly, the other composite is lF', and so cp: F ---+ F' is an 
isomorphism. (The astute reader will notice a strong resemblance of this proof to 
that of the uniqueness of a solution to a universal mapping problem (see the proof 
of Proposition B-4.4, for example.)) • 

Definition. We say that a ring R has IBN (invariant basis number) if 
Rm~ Rn implies m = n for all m, n EN. 

Thus, every commutative ring has IBN. It can be shown, [96], p. 58, that rank 
is well-defined for free left R-modules when R is left noetherian; that is, if every 
left ideal in R is finitely generated (Rotman [96], p. 113). However, there do exist 
noncommutative rings R such that R ~ R EB Ras left R-modules (for example, if 
V is an infinite-dimensional vector space over a field k, then R = Endk(V) is such 
a ring), and so the notion of rank is not always defined. The reason the proof of 
Proposition B-4.37(i) fails for noncommutative rings R is that R/ I need not be a 
division ring if I is a maximal two-sided ideal (Exercise B-4.37 on page 490). 

Let us now focus on the key property of bases, Lemma B-4.36 (which holds 
for free modules as well as for vector spaces) in order to get a theorem about free 
modules that does not mention bases. 

Theorem B-4.39. If R is a ring and F is a free left R-module, then for every sur
jection p: A ---+ A" and each h: F ---+ A", there exists a homomorphism g: F ---+ A 
making the following diagram commute: 

F 

g / / ! 
/ h 

/I-
A -----.. A'' -----.. 0 . p 

Proof. Let B = (bi)iEI be a basis of F. Since pis surjective, there is ai E A with 
p(ai) = h(bi) for all i. There is an R-map g: F ---+ A with g(bi) = ai for all i, by 
Proposition B-4.36. Now pg(bi) = p(ai) = h(bi), so that pg agrees with h on the 
basis B; it follows that pg= hon (B) = F; that is, pg= h. • 

Definition. We call a map g: F ---+ A with pg = h (in the diagram in Theo
rem B-4.39) a lifting of h. 
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If F is any, not necessarily free, module, then a lifting g of h, should one exist, 
need not be unique. Since pi = 0, where i: ker p -+ A is the inclusion, other 
liftings are g +if for any f E HomR(F, kerp), because p(g +if) =pg+ pif =pg. 
Alternatively, this follows from exactness of the sequence 

0-+ Hom(F,kerp) ~ Hom(F,A) ~ Hom(F,A"). 

Any two liftings of h differ by a map in ker p* = im i* ~ Hom( F, A). 

We now promote the (basis-free) property of free modules in Theorem B-4.39 
to a definition. 

Definition. A left R-module Pis projective if, whenever p: A -+ A" is surjective 
and h: P -+ A" is any map, there exists a lifting g : P -+ A; that is, there exists a 
map g making the following diagram commute: 

p 

g / / ! 
/ h 

> 
A-A''-o p • 

Remark. The definition of projective module can be generalized to define a pro
jective object in more general categories if we can translate surjection into the 
language of categories. For example, if we define surjections in Groups to be the 
usual surjections, then we can define projectives there. Exercise B-4.35 on page 490 
says that a group G is projective in Groups if and only if it is a free group. <Ill 

We know that every free left R-module is projective; is the converse true? Is 
every projective R-module free? We shall see that the answer depends on the 
ring R. Note that if projective left R-modules happen to be free, then free modules 
are characterized without having to refer to a basis. 

Let us now see that projective modules arise in a natural way. We know that 
the Hom functors are left exact; that is, for any module P, applying HomR(P, ) 
to an exact sequence 

0 -+ A' ~ A ~ A" 

gives an exact sequence 

0-+ HomR(P, A') ~ HomR(P, A) ~ HomR(P, A"). 

Proposition B-4.40. A left R-module P is projective if and only if HomR(P, 
is an exact functor. 

Remark. Since HomR(P, ) is a left exact functor, the thrust of the proposition 
is that p* is surjective whenever p is surjective. .,.. 

Proof. If P is projective, then given a surjection h: P -+ A", there exists a lifting 
g: P-+ A with pg= h. Thus, if h E HomR(P,A"), then h =pg= p*(g) E imp*, 
and sop* is surjective. Hence, Hom(P, ) is an exact functor. 

For the converse, assume that Hom(P, ) is an exact functor and that p* is 
surjective: if h E HomR(P, A"), there exists g E HomR(P, A) with h = p*(g) =pg. 
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This says that given p and h, there exists a lifting g making the diagram commute; 
that is, P is projective. • 

Proposition B-4.41. A left R-module P is projective if and only if every short 

exact sequence 0 -+ A -.!+ B -.!+ P -+ 0 is split. 

Proof. Assume that every short exact sequence ending with P splits. Consider 
the left-hand diagram below with p surjective: 

p 

!1 
B-c-o p 

Now form the pullback. By Exercise B-4.9 on page 458, surjectivity of p in the 
pullback diagram gives surjectivity of a. By hypothesis, there is a (retraction) map 
j: P-+ D with aj = lp. Define g: P-+ B by g = f3j. We check: pg= pf3j = 
faj = flp = f. Therefore, Pis projective. 

Conversely, if Pis projective, then there exists j: P-+ B making the following 
diagram commute; that is, pj = lp: 

p 

Jt-j/ / / ! lp 

B-P-O. p 

Corollary B-2.15 now gives the result, for Pis a retract of B, and so the sequence 
splits. • 

We restate one half of Proposition B-4.41 without mentioning the word exact. 

Proposition B-4.42. Let A be a submodule of a module B. If B /A is projective, 
then A has a complement: there is a submodule C of B with C ~ B/A and 
B = AEBC. 

Proposition B-4.43. 

(i) If (Pi)iEI is a family of projective left R-modules, then their direct sum 
EBiEI Pi is also projective. 

(ii) Every direct summand S of a projective module P is projective. 

Proof. 

(i) Consider the left-hand diagram below. If ai: Pi -+ EB Pi is an injection 
of the direct sum, then hai is a map Pi -+ C, and so projectivity of Pj 
gives a map gi : Pj -+ B with pgi = hai. Since EB Pi is a coproduct, there 
is a map (): EB Pi -+ B with ()ai = gi for all j. Hence, p()ai = pgi = hai 
for all j, and so p() = h. Therefore, EB Pi is projective. 
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Pj. 

g; / / !ha· 
/ J 

Je-

B---c---o B ~ c~o 
p p 

(ii) Suppose that S is a direct summand of a projective module P, so there 
are maps q: P ---+ S and i: S ---+ P with qi = ls. Now consider the 
diagram 

q 

P~S 
I i _... l 

hi ........ f 
'f J' g 

B--c--o p 

where p is surjective. The composite f q is a map P ---+ C; since P is 
projective, there is a map h: P ---+ B with ph = f q. Define g: S ---+ B by 
g =hi. It remains to prove that pg= f. But pg= phi= fqi =/ls= f. 

• 
Theorem B-4.44. A left R-module P is projective if and only if it is a direct 
summand of a free left R-module. 

Proof. Sufficiency follows from Proposition B-4.43, for free modules are projective, 
and every direct summand of a projective is itself projective. 

Conversely, assume that Pis projective. By Proposition B-3. 72, every module is 
a quotient of a free module. Thus, there is a free module F and a surjection g: F ---+ 
P, and so there is an exact sequence 0---+ ker g---+ F .!!t P---+ 0. Proposition B-4.41 
now shows that this sequence splits, so that Pis a direct summand of F. • 

Theorem B-4.44 gives another proof of Proposition B-4.43. To prove (i), note 
that if Pi is projective, then there are Qi with Pi EB Qi = Fi, where Fi is free. Thus, 

EB(Pi EB Qi) = EB pi EB EB Qi = EB Fi. 
i i i i 

But, obviously, a direct sum of free modules is free. To prove (ii), note that if Pis 
projective, then there is a module Q with PEBQ = F, where Fis free. If SEBT = P, 
then S EB (T EB Q) = P EB Q = F. 

We can now give an example of a (commutative) ring R and a projective R
module that is not free. 

Example B-4.45. The ring R = Z.6 is the direct sum of two ideals: 

Z6 = JEBI, 

where J = Z.3 x {O} ~ Z.3 and I = {O} x Z2 ~ Z2. Now Z.6 is a free module 
over itself, and so J and I, being direct summands of a free module, are projective 
Z.6-modules. Neither J nor I can be free, however. After all, a (finitely generated) 
free Z.6-module Fis a direct sum of, say, n copies of Z.6, and so F has 6n elements. 
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Therefore, J and I are too small to be free, for each of them has fewer than six 
elements. ..,. 

Describing projective R-modules is a problem very much dependent on the 
ring R. In Theorem B-2.28, we proved that if R is a PID, then every submodule 
of a free module is itself free; it follows from Theorem B-4.44 that every projective 
R-module is free in this case. A much harder result is that if R = k[x1 , ... , xn) is 
the polynomial ring in n variables over a field k, then every projective R-module 
is also free; this theorem, implicitly conjectured 17 by Serre, was proved, indepen
dently, by Quillen and by Suslin in 1976 (Lam [67) or Rotman [96), pp. 203-
211). Another proof of the Quillen-Suslin Theorem, using Grobner bases, is due to 
Fitchas-Galligo [32). 

There are domains having projective modules that are not free. For example, 
if R is the ring of all the algebraic integers in an algebraic number field E (that 
is, E/Q is an extension field of finite degree), then every ideal in Risa projective 
R-module. There are such rings R that are not PIDs, and any ideal in R that is not 
principal is a projective module that is not free (we will see this when we discuss 
Dedekind rings in Part 2). 

Here is another characterization of projective modules. Note that if A is a 
free left R-module with basis (ai)iEJ, then each x E A has a unique expression 
x = LiEI riai, and so there are coordinate maps, namely, the R-maps cpi: A-+ R, 
given by cpi: x t-t ri. 

Proposition B-4.46. A left R-module A is projective if and only if there exist 
elements (ai)iEI in A and R-maps (cpi: A-+ R)iEI such that 

(i) for each x EA, almost all cpi(x) = O; 

(ii) for each x EA, we have x = LiEI(cpix)ai. 

Moreover, A is generated by (ai)iEI in this case. 

Proof. If A is projective, there is a free left R-module F and a surjective R-map 
'ljJ: F -+ A. Since A is projective, there is an R-map cp: A -+ F with '1/Jcp = lA, 
by Proposition B-4.41. Let (ei)iEI be a basis of F, and define ai = 'ljJ(ei). Now if 
x EA, then there is a unique expression cp(x) =Li riei, where ri ER and almost 
all ri = 0. Define cpi: A-t R by cpi(x) = ri. Of course, given x, we have cpi(x) = 0 
for almost all i. Since 'ljJ is surjective, A is generated by (ai = 'ljJ(ei))iEI" Finally, 

Conversely, given ( ai)iEI ~ A and a family of R-maps ( cpi: A -+ R)iEI as in 
the statement, define F to be the free left R-module with basis (ei)iEJ, and define 
an R-map 'ljJ: F-+ A by 'ljJ: ei t-t ai. It suffices to find an R-map cp: A-+ F with 
'1/Jcp = lA, for then A is (isomorphic to) a retract (i.e., A is a direct summand of 
F), and hence A is projective. Define cp by cp(x) = Li(cpix)ei, for x EA. The sum 

170n page 243 of [106), Serre writes " ... on ignore s'il existe des A-modules projectifs de 
type fini qui ne soient pas libres." Here, A = k[xi. ... , Xn). 



488 Chapter B-4. Categories of Modules 

is finite, by condition (i), and so <pis well-defined. By condition (ii), 

that is, 7/J<p = IA· • 

Definition. If A is a left R-module, then a subset (ai)iEI of A and a family of 
R-maps ('Pi: A ---+ R)iEI satisfying the conditions in Proposition B-4.46 is called a 
projective basis. 

An interesting application of projective bases is a proof of a result of Bkouche. 
Let X be a locally compact Hausdorff space, let C(X) be the ring of all continuous 
real-valued functions on X, and let J be the ideal in C(X) consisting of all such 
functions having compact support. Then X is a paracompact space if and only if 
J is a projective C(X)-module (Finney-Rotman (31]). 

Recall, for any ring R, that every left R-module M is a quotient of a free left 
R-module F. Moreover, Mis finitely generated if and only if F can be chosen to 
be finitely generated. Thus, every module has a presentation. 

Definition. A left R-module M is finitely presented if it has a presentation 
(XI Y) in which both X and Y are finite. 

The fundamental group 7f1 (K, xo) of a simplicial complex K is finitely presented 
if and only if K is finite (Rotman (98], p. 172). 

If a left R-module M is finitely presented, there is a short exact sequence 

0 ---+ K ---+ F ---+ M ---+ 0, 

where F is free and both K and F are finitely generated. Equivalently, M is finitely 
presented if there is an exact sequence 

F' ---+ F ---+ M ---+ 0, 

where both F' and F are finitely generated free modules (just map a finitely gener
ated free module F' onto K). Note that the second exact sequence does not begin 
with "O ---+." 

Proposition B-4.47. If R is a left noetherian ring, then every finitely generated 
left R-module M is finitely presented. 

Proof. There is a surjection <p: F ---+ M, where F is a finitely generated free left R
module. Since R is left noetherian, Proposition B-1.35 says that every submodule 
of F is finitely generated. In particular, ker<p is finitely generated, and so M is 
finitely presented. • 

Every finitely presented left R-module is finitely generated, but we will soon 
see that the converse may be false. We begin by comparing two presentations of a 
module (we generalize a bit by replacing free modules with projectives); compare 
this with the proof of Corollary B-3. 76. 
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Proposition B-4.48 (Schanuel's Lemma). Given exact sequences of left R
modules 

0-tK..!:.+P.!!tM-tO 

and 

0 -+ K' it P' ~ M -+ 0, 

where P and P' are projective, there is an R-isomorphism 

K EB P' ~ K' EB P. 

Proof. Consider the diagram with exact rows: 

o~K~P~M-o 

a: :p llM 
'f 'f t 

o-K'-P'-M-o. 
i' w' 

Since P is projective, there is a map (3: P -+ P' with n:' (3 = n:; that is, the right 
square in the diagram commutes. We now show that there is a map a: K -+ K' 
making the other square commute. If x E K, then n:' (3ix = n:ix = 0, because n:i = 0. 
Hence, (3ix E ker n:' = im i'; thus, there is x' E K' with i' x' = (3ix; moreover, x' 
is unique because i' is injective. Therefore, a: x H x' is a well-defined function 
a: K -+ K' that makes the first square commute. The reader can show that a is 
an R-map. Consider the sequence 

0 -+ K .!!+ P EB K' ~ P' -+ 0, 

where 0: x H (ix, ax) and 'I/;: (u,x') H (Ju - i'x', for x EK, u E P, and x' EK'. 
This sequence is exact; the straightforward calculation, using commutativity of the 
diagram and exactness of its rows, is left to the reader. But this sequence splits, 
because P' is projective, so that P EB K' ~ K EB P'. • 

Corollary B-4.49. If M is a finitely presented left R-module and 

0-+K-+F-+M-+0 

is an exact sequence, where F is a finitely generated free left R-module, then K is 
finitely generated. 

Proof. Since M is finitely presented, there is an exact sequence 

0 -+ K' -+ F' -+ M -+ 0 

with F' free and with both F' and K' finitely generated. By Schanuel's Lemma, 
K EB F' ~ K' EB F. Now K' EB Fis finitely generated because both summands are, 
so that the left side is also finitely generated. But K, being a summand, is also a 
homomorphic image of K EB F', and hence it is finitely generated. • 

We can now give an example of a finitely generated module that is not finitely 
presented. 
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Example B-4.50. Let R be a commutative ring that is not noetherian; that is, R 
contains an ideal I that is not finitely generated (Example B-1.11). We claim that 
the R-module M =Rf I is finitely generated but not finitely presented. Of course, 
M is finitely generated; it is even cyclic. If M were finitely presented, then there 
would be an exact sequence 0 -+ K -+ F -+ M -+ 0 with F free and both K and F 
finitely generated. Comparing this with the exact sequence 0 -+ I -+ R -+ M -+ 0, 
as in Corollary B-4.49, gives I finitely generated, a contradiction. Therefore, M is 
not finitely presented. ..,. 

Exercises 

* B-4.35. Prove that a group G is projective in Groups if and only if G is a free group. 

Hint. Pree groups are defined by the diagram in Proposition B-4.36 ( surjections in 
Groups are the usual surjections.), and they are generated by special subsets (also called 
bases). You may use the Nielsen-Schreier Theorem, Rotman [97], p. 383, that every 
subgroup of a free group is itself a free group. 

* B-4.36. Let R be a ring and let S be a nonzero submodule of a free right R-module. 
Prove that if a ER is not a right zero-divisor (i.e., there is no nonzero b E R with ba = 0), 
then Sa=/; {O}. 

* B-4.37. (i) If k is a field, prove that the only two-sided ideals in Mat2(k) are (0) and 
the whole ring. 

(ii) Let p be a prime and let <p: Mat2(Z)-+ Mat2(1Fp) be the ring homomorphism which 
reduces entries mod p. Prove that ker <pis a maximal two-sided ideal in Mat2(Z) 
and that im t.p is not a division ring. 

* B-4.38. (i) Prove that if a ring R has IBN, then so does R/ I for every proper two-sided 
ideal I. 

(ii) If F00 is the free abelian group with basis (x;);~o, prove that End(F00 ) is isomorphic 
to the ring of all column-finite (almost all the entries in every column are zero) 
No x No matrices with entries in Z. 

(iii) Prove that End(Foo) does not have IBN. 
Hint. Actually, Endk(V) does not have IBN, where V is an infinite-dimensional 
vector space over a field k. 

B-4.39. Let M be a free R-module, where Risa domain. Prove that if rm= 0, where 
r ER and m EM, then either r = 0 or m = 0. (This is false if R is not a domain.) 

B-4.40. Prove that Homz(Zn, G) ~ G[n] for any abelian group G, where G[n] = {g E G: 
ng = O}. 

Hint. Use left exactness of Hom( , G) and the exact sequence 0 -+ Z -+ Z -+ Zn -+ 0. 

* B-4.41. If R is a domain but not a field and Q = Frac( R), prove that HomR ( Q, R) = { 0}. 

B-4.42. Prove that every left exact covariant functor T: RMod -+ Ab preserves pull
backs. Conclude that if B and C are submodules of a module A, then for every module 
M, we have 

HomR(M, B n C) = HomR(M, B) n HomR(M, C). 
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B-4.43. Given a set X, prove that there exists a free R-module F with a basis B for 
which there is a bijection cp: B--+ X. 

* B-4.44. (i) Prove that every vector space V over a field k is a free k-module. 

(ii) Prove that a subset B of V is a basis of V considered as a vector space (B is a 
linearly independent spanning set) if and only if B is a basis of V considered as a free 
k-module (functions with domain B extend to homomorphisms with domain V). 

* B-4.45. Define G to be the abelian group having the presentation (X I Y), where 

X={a,b1,b2, ... ,bn 1 ... } and Y={2a,a-2nbn,n~l}. 

Thus, G = F/K, where Fis the free abelian group with basis X and K = (Y). 

(i) Prove that a+ KEG is nonzero. 

(ii) Prove that z =a+ K satisfies equations z = 2nyn, where Yn E G and n ~ 1, and 
that z is the unique such element of G. 

(iii) Prove that there is an exact sequence 0--+ (a) --+ G--+ ©n;::i Z2n --+ 0. 

(iv) Prove that Homz(Q, G) = {O} by applying Homz(Q, ) to the exact sequence in 
part (iii). 

B-4.46. (i) If Risa domain and I and J are nonzero ideals in R, prove that In J =I- (0). 

(ii) Let R be a domain and let I be an ideal in R that is a free R-module; prove that 
I is a principal ideal. 

* B-4.47. Let cp: B--+ C be an R-map of left R-modules. 

(i) Prove that cp is injective if and only if cp can be canceled from the left; that is, for 
all modules A and all maps f,g: A--+ B, we have cpf = cpg implies f = g: 

A ~ B !:+ C. 
g 

(ii) Prove that cp is surjective if and only if cp can be canceled from the right; that is, 
for all R-modules D and all R-maps h, k: C--+ D, we have hep= kcp implies h = k: 

BJ!+C ~ D. 
k 

* B-4.48. (Eilenberg-Moore) Let G be a (possibly nonabelian) group. 

(i) If H is a proper subgroup of a group G, prove that there exists a group L and 
distinct homomorphisms f,g: G--+ L with JIH = glH. 

Hint. Define L = Sx, where X denotes the family of all the left cosets of Hin G 
together with an additional element, denoted oo. If a E G, define f(a) =fa E Sx 
by fa(oo) = oo and fa(bH) = abH. Define g: G--+ Sx by g ='Yo J, where 'YE Sx 
is conjugation by the transposition (H, oo ). 

(ii) If A and G are groups, prove that a homomorphism cp: A --+ G is surjective if and 
only if cp can be canceled from the right; that is, for all groups L and all maps 
f, g: G --+ L, we have f cp = gcp implies f = g: 

BJ!+G ~ L. 
g 
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Injective Modules 

There is another type of module, injective module, that is interesting. Even though 
there are some nice examples in this section and the next, the basic reason for 
studying injective modules will not be seen until we discuss homological algebra in 
Part 2. 

Definition. A left R-module Eis injective if HomR( , E) is an exact functor. 

We will give examples of injective modules after we establish some of their 
properties. Of course, E = {O} is injective. 

Injective modules are duals of projective modules in that these modules are 
characterized by commutative diagrams, and the diagram for injectivity is obtained 
from the diagram for projectivity by reversing all arrows. For example, a surjective 
homomorphism p: B --+ C can be characterized by exactness of B ~ C --+ 0, 
while an injective homomorphism i : A --+ B can be characterized by exactness of 

0--+ A~ B. 

The next proposition is the dual of Proposition B-4.40. 

Proposition B-4.51. A left R-module Eis injective if and only if, given any map 
f: A --+ E and an injection i: A --+ B, there exists g: B --+ E making the following 
diagram commute: 

E 

1f "'~, 
o-A-B. 

i 

Remark. In words, homomorphisms from a submodule into E can always be ex
tended to homomorphisms from the big module into E. <Ill 

Proof. Since the contravariant functor HomR( , E) is left exact for any module E, 
the thrust of the proposition is that i* is surjective whenever i is an injection; that 

is, exactness of 0--+ A~ B gives exactness of HomR(B, E) ~ HomR(A, E)--+ 0. 

If E is an injective left R-module, then HomR( , E) is an exact functor, so 
that i* is surjective. Therefore, if f E HomR(A, E), there exists g E HomR(B, E) 
with f = i*(g) = gi; that is, the diagram commutes. 

For the converse, if E satisfies the diagram condition, then given f: A --+ E, 
there exists g: B --+ E with gi = f. Thus, if f E HomR(A, E), then f = gi = 
i* (g) E im i*, and so i* is surjective. Hence, Hom( , E) is an exact functor, and 
so E is injective. • 

The next result is the dual of Proposition B-4.41. 

Proposition B-4.52. A left R-module E is injective if and only if every short 

exact sequence 0 --+ E ~ B ~ C --+ 0 splits. 
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Proof. If E is injective, then there exists q: B ---+ E making the following diagram 
commute; that is, qi= lE: 

Thus, q is a retraction and the result follows. 

Conversely, assume every exact sequence beginning with E splits. The pushout 
of the left-hand diagram below is the right-hand diagram: 

E ,, 
0 ---. A ---. B 

i 

E~D 

,,~,;, tp 
o---. A---. B. 

i 

By Exercise B-4.9 on page 458, the map a is an injection, so that 0---+ E---+ D---+ 
coker a ---+ 0 splits; that is, there is q: D ---+ E with qa = lE. If we define g: B ---+ E 
by g = q/3, then the original diagram commutes: gi = qf3i = qaf = lEf = f. 
Therefore, E is injective. • 

Necessity of this proposition can be restated without mentioning the word exact. 

Corollary B-4.53. If an injective left R-module E is a submodule of a left R
module M, then E is a direct summand of M: there is a submodule S of M with 
M = EtBS. 

Proposition B-4.54. Every direct summand of an injective module E is injective. 

Proof. Suppose that Sis a direct summand of an injective module E, so there are 
maps q: E---+ Sandi: S---+ E with qi= ls. Now consider the diagram 

i 
S~E I"' q ! 

f ······... I h 
g ··· ... I 

0 ---. A ---. B 
j 

where j is injective. The composite if is a map A---+ E; since E is injective, there 
is a map h: B---+ E with hj =if. Define g: B ---+ S by g = qh. It remains to prove 
that gj = f. But gj = qhj = qif = lsf = f. • 

Proposition B-4.55. Let (Ei)iEI be a family of left R-modules. Then IliEI Ei is 
injective if and only if each Ei is injective. 
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Proof. Consider the diagram 

E 

fl 
o-A-B 

K, 

where E = TI Ei and "": A ---+ B is an injection. Let Pi : E ---+ Ei be the ith 
projection. Since Ei is injective, there is 9i: B ---+ Ei with 9i"" = pif. By the 
universal property of products, there is a map g: B---+ E given by g: b H (gi(b)), 
and g clearly extends f. 

The converse follows from Proposition B-4.54, for IlkEJ Ek = Ei EB TI#i Ej. • 

Corollary B-4.56. A .finite18 direct sum of injective left R-modules is injective. 

Proof. The direct sum of finitely many modules is their direct product. • 

The following theorem is very useful. 

Theorem B-4.57 (Baer Criterion). A left R-module E is injective if and only 
if every R-map f: I ---+ E, where I is a left ideal in R, can be extended to R: 

E 

11"';, 
Q---. J--+ R. 

i 

Proof. Necessity is clear: since left ideals I are submodules of R, the existence of 
extensions g off is just a special case of the definition of injectivity of E. 

For sufficiency, consider the diagram with exact row: 

E 

fl 
o-A-B. 

i 

For notational convenience, let us assume that i is the inclusion (this assumption 
amounts to permitting us to write a instead of i(a) whenever a E A). As in the 
proof of Lemma B-2.43, we are going to use Zorn's Lemma on approximations to 
an extension off. More precisely, let X be the set of all ordered pairs (A',g'), 
where A~ A'~ Band g': A'---+ E extends f; that is, g'IA = f. Note that X # 0 
because (A,!) EX. Partially order X by defining 

(A',g') ~ (A",g") 

to mean A' ~ A" and g" extends g'. The reader may supply the argument that 
Zorn's Lemma applies, and so there exists a maximal element (A0 ,g0 ) in X. If 
Ao = B, we are done, and so we may assume that there is some b E B with b tJ. Ao. 

18 A direct sum of infinitely many injective left R-modules need not be injective; it depends 
on the ring R (see Proposition B-4.66). 
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Define 
I= {r ER: rb E Ao}. 

It is easy to see that I is an ideal in R. Define h : I --+ E by 

h(r) = go(rb) 

(the map h makes sense because rb E Ao if r E I). By hypothesis, there is a map 
h*: R--+ E extending h. Now define Ai =Ao+ (b) and gi: Ai --+Eby 

gi(ao + rb) = go(ao) + rh*(l), 

where ao E Ao and r E R. 

Let us show that gi is well-defined. If a0 + rb = a0 + r'b, then (r - r')b = 
a0 - ao E Ao; it follows that r - r' EI. Therefore, go((r - r')b) and h(r - r') are 
defined, and we have 

go(a0 - ao) = go((r - r')b) = h(r - r') = h*(r - r') = (r - r')h*(l). 

Thus, go(a0) - go(ao) = rh*(l) - r'h*(l) and go(a0) + r'h*(l) = go(ao) + rh*(l), 
as desired. Clearly, gi ( ao) = go ( ao) for all ao E Ao, so that the map gi extends 
go. We conclude that (Ao, go) -< (Ai, gi), contradicting the maximality of (Ao, go). 
Therefore, Ao = B, the map g0 is a lifting of f, and E is injective. • 

We have not yet presented any nonzero examples of injective modules (Theo
rem B-4.64 will show there are plenty of them), but here are some. 

Proposition B-4.58. Let R be a domain and let Q = Frac(R). 

(i) If f: I --+ Q is an R-map, where I is an ideal in R, then there is c E Q 
with f(a) =ca for all a EI. 

(ii) Q is an injective R-module. 

(iii) If g: Q--+ Q is an R-map, there is c E Q with g(x) =ex for all x E Q. 

Proof. 

(i) If a, b E I are nonzero, then f(ab) is defined (because I is an ideal) and 
af(b) = f(ab) = bf(a) (because f is an R-map). Hence, 

f(a)/a = f(b)/b. 

If c E Q denotes their common value, then f(a)/a = c and f(a) =ca for 
all a EI. 

(ii) By the Baer Criterion, it suffices to extend an R-map f: I--+ Q, where 
I is an ideal in R, to all of R. By (i), there is c E Q with f(a) = ca for 
all a EI; define g: R--+ Q by 

g(r) =er 

for all r ER. It is obvious that g is an R-map extending f, and so Q is 
an injective R-module. 

(iii) Let g: Q --+ Q be an R-map, and let f = glR: R --+ Q. By (i) with 
I = R, there is c E Q with f(a) = g(a) = ca for all a E R. Now if 
x E Q, then x = a/b for a,b ER. Hence, bx= a and g(bx) = g(a). But 
g(bx) = bg(x), because g is an R-map. Therefore, g(x) = ca/b =ex. • 
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Definition. Let R be a domain. Then an R-module D is divisible if, for each 
d E D and nonzero r E R, there exists d' E D with d = rd'. 

Example B-4.59. Let R be a domain. 

(i) Frac(R) is a divisible R-module. In particular, Q is divisible. 

(ii) Every direct sum of divisible R-modules is divisible. Hence, every vector 
space over Frac(R) is a divisible R-module. 

(iii) Every quotient of a divisible R-module is divisible. <Ill 

Lemma B-4.60. If R is a domain, then every injective R-module E is divisible. 

Proof. Assume that E is injective. Let e E E and let ro E R be nonzero; we 
must find x E E with e = rox. Define f: (ro) ---+ E by f (rro) = re (note that f is 
well-defined: since R is a domain, rr0 = r'r0 implies r = r'). Since E is injective, 
there exists h : R ---+ E extending f. In particular, 

e = f(ro) = h(ro) = roh(l), 

so that x = h(l) is the element in E required by the definition of divisible. • 

We now prove the converse of Lemma B-4.60 for PIDs. 

Corollary B-4.61. If R is a PID, then an R-module E is injective if and only if 
it is divisible. 

Proof. Assume that E is divisible. By the Baer Criterion, Theorem B-4.57, it 
suffices to extend any map f: I ---+ E to all of R. Since R is a PID, I is principal; 
say, I = (ro) for some ro E I. Since E is divisible, there exists e E E with 
roe= f(ro), and so f(rro) = rroe. Define h: R---+ Eby h(r) =re. It is easy to see 
that his an R-map extending f, and so Eis injective. • 

Remark. Corollary B-4.61 may be false for more general rings R, but it is true for 
Dedekind rings, domains arising in algebraic number theory; for example, rings of 
integers in algebraic number fields are Dedekind rings. Indeed, one characterization 
of them is that a domain Risa Dedekind ring if and only if every divisible R-module 
is injective. Hence, if R is a domain that is not Dedekind, then there exist divisible 
R-modules that are not injective. <Ill 

Example B-4.62. In light of Example B-4.59, the following abelian groups are 
injective Z-modules: 

Q, IR, C, Q/Z, IR/Z, 8 1, 

where 8 1 is the circle group; that is, the multiplicative group of all complex numbers 
z with lzl = 1. <Ill 

Proposition B-3.72 says, for any ring R, that every left R-module is a quotient 
of a projective left R-module (actually, it is a stronger result: every module is a 
quotient of a free left R-module). 

Corollary B-4.63. Every abelian group M can be imbedded as a subgroup of some 
injective abelian group. 
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Proof. By Proposition B-3. 72, there is a free abelian group F = ffii Zi with M = 
F/K for some K ~ F. Now 

M = F/K = ( ffizi)/K ~ ( EBQi)/K, 
i i 

where we have merely imbedded each copy Zi of Z into a copy Qi of Q. But 
Example B-4.59 gives divisibility of ffii Qi and of the quotient ( EEli Qi)/ K. By 
Corollary B-4.61, (ffii Qi)/ K is injective. • 

Writing an abelian group M as a quotient of a free abelian group F (exactness 
of F --+ M --+ O) is the essence of describing it by generators and relations. Thus, 
we may think of Corollary B-4.63, imbedding M as a subgroup of an injective 
abelian group E (exactness of 0 --+ M --+ E) as dualizing this idea. The next 
theorem generalizes this corollary to left R-modules for any ring R, but its proof 
uses Proposition B-4.102: if R is a ring and D is a divisible abelian group, then 
Homz(R, D) is an injective left R-module. 

Theorem B-4.64. For every ring R, every left R-module M can be imbedded as 
a submodule of some injective left R-module. 

Proof. If we regard M as an abelian group, then Corollary B-4.63 says that there 
is a divisible abelian group D and an injective Z-map j: M --+ D. For a fixed 
m EM, the function fm: r H j(rm) lies in Homz(R, D), and it is easy to see that 
<p: m H fm is an injective R-map M--+ Homz(R, D) (recall that Homz(R, D) is 
a left R-module with scalar multiplication defined by sf: R--+ D, where sf: r H 

f(rs)). This completes the proof, for Homz(R, D) is an injective left R-module, by 
Proposition B-4.102. • 

This last theorem can be improved, for there is a smallest injective module 
containing any given module, called its injective envelope (Rotman [96], p. 127). 

If k is a field, then k-modules are vector spaces. It follows that all k-modules are 
projective (even free, for every vector space has a basis). Indeed, every k-module 
is injective. We now show that semisimple rings form the precise class of all those 
rings for which this is true. 

Proposition B-4.65. The following conditions on a ring R are equivalent. 

(i) R is semisimple. 

(ii) Every left (or right) R-module M is a semisimple module. 

(iii) Every left (or right) R-module M is injective. 

(iv) Every short exact sequence of left (or right) R-modules splits. 

( v) Every left (or right) R-module M is projective. 

Proof. 

(i) =? (ii). Since R is semisimple, it is semisimple as a module over itself; 
hence, every free left R-module is a semisimple module. Now M is a 
quotient of a free module, by Theorem B-3. 72, and so Corollary B-2.30 
gives M semisimple. 
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(ii) => (iii). If M is a left R-module, then Proposition B-4.52 says that M 
is injective if every exact sequence 0 ---t M ---t B ---t C ---t 0 splits. By 
hypothesis, M is a semisimple module, and so Proposition B-2.29 implies 
that the sequence splits; thus, M is injective. 

(iii) => (iv). If 0 ---t A ---t B ---t C ---t 0 is an exact sequence, then it must split 
because, as every module, A is injective (see Corollary B-4.53). 

(iv) => (v). Given a module M, there is an exact sequence 

0 ---t F' ---t F ---t M ---t 0, 

where F is free. By hypothesis, this sequence splits and F ~ M EB F'. 
Therefore, M is a direct summand of a free module, and hence it is 
projective, by Theorem B-4.44. 

(v) => (i). If I is a left ideal of R, then 

0 ---t I ---t R ---t RI I ---t 0 

is an exact sequence. By hypothesis, R/ I is projective, and so this se
quence splits, by Proposition B-4.41; that is, I is a direct summand of 
R. By Proposition B-2.29, Risa semisimple left R-module. Therefore, 
R is a left semisimple ring. • 

Semisimple rings are so nice that there is a notion in homological algebra of 
global dimension of a ring R which measures how far R is from being semisimple. 

Left noetherian rings can be characterized in terms of their injective modules. 

Proposition B-4.66. 

(i) If R is a left noetherian ring and (Ei)iEI is a family of injective R
modules, then Ef)iEJ Ei is an injective R-module. 

(ii) (Bass-Papp) If R is a ring for which every direct sum of injective left 
R-modules is injective, then R is left noetherian. 

Proof. 

(i) By the Baer Criterion, Theorem B-4.57, it suffices to complete the dia
gram 

Ef)iEJ Ei 

ft 
0--~J--~~R 

where J is an ideal in R. Since R is noetherian, J is finitely generated, 
say, J = (ai, ... , an)· For k = 1, ... , n, f(ak) E Ef)iEJ Ei has only 
finitely many nonzero coordinates, occurring, say, at indices in some set 
S(ak) ~I. Thus, S = LJ~=l S(ak) is a finite set, and so imf ~ Ef)iES Ei; 
by Corollary B-4.56, this finite sum is injective. Hence, there is an R
map g': R ---t Ef)iES Ei extending f. Composing g' with the inclusion of 
Ef)iES Ei into Ef)iEJ Ei completes the given diagram. 
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(ii) We show that if R is not left noetherian, then there is a left ideal I and 
an R-map to a sum of injectives that cannot be extended to R. Since 
R is not left noetherian, there is a strictly ascending chain of left ideals 
Ii ~ I2 ~ · · · ; let I = U In. By Theorem B-4.64, we may imbed I/ In in 
an injective left R-module En; we claim that E = EBn En is not injective. 

Let 11'n: I --+ I/ In be the natural map. For each a E I, note that 
11'n(a) = 0 for large n (because a E In for some n), and so the R-map 
f: I--+ IJ(I/In), defined by 

f: at-+ (11'n(a)), 

actually has its image in EBn(I/In)i that is, for each a E I, almost 
all the coordinates of f(a) are 0. We note that I/ In # {O} for all n. 
Composing with the inclusion EB(I /In) --+ EB En = E, we may regard f 
as a map I --+ E. If there is an R-map g: R --+ E extending f, then 
g(l) is defined; say, g(l) = (xn)· Choose an index m and choose a E I 
with a rj. Im; since a rj. Im, we have 11'm(a) # 0, and so g(a) = f(a) has 
nonzero mth coordinate 11'm(a). But g(a) = ag(l) = a(xn) = (axn), so 
that 11'm(a) = axm. It follows that Xn # 0 for all n, and this contradicts 
g(l) lying in the direct sum E =EB En· • 

The next result gives a curious example of an injective module; we use it to 
give another proof of the Basis Theorem for Finite Abelian Groups. 

Proposition B-4.67. Let R be a PID, let a E R be neither zero nor a unit, and 
let J = (a). Then R/ J is an injective R/ J -module. 

Proof. By the Correspondence Theorem, every ideal in R/ J has the form I/ J for 
some ideal I in R containing J. Now I = (b) for some b E I, so that I/ J is cyclic 
with generator x = b + J. Since (a) ~ (b), we have a= rb for some r ER. We are 
going to use the Baer Criterion, Theorem B-4.57, to prove that R/ J is an injective 
R/ J-module. 

Assume that f: I/ J--+ R/ J is an R/ J-map, and write f(b+J) = s+J for some 
s E R. Since r(b+J) = rb+J = a+J = 0, we haver f(b+J) = r(s+J) = rs+J = 0, 
and so rs E J =(a). Hence, there is some r' ER with rs= r'a = r'br; canceling r 
gives s = r'b. Thus, 

f (b + J) = s + J = r'b + J. 

Define h: R/J--+ R/J to be multiplication by r'; that is, h: u+ J t-+ r'u+ J. The 
displayed equation gives h(b + J) = f(b + J), so that h does extend f. Therefore, 
R/ J is injective. • 

For example, if m 2:: 2, then Zm is self-injective; that is, Zm is an injective 
module over itself. 

Corollary B-4.68 (Basis Theorem). Every finite abelian group G is a direct 
sum of cyclic groups. 

Proof. By the Primary Decomposition, we may assume that G is a p-primary 
group for some prime p. If pn is the largest order of elements in G, then png = 0 for 
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all g E G, and so G is a Zpn-module. If x E G has order pn, then S = (x) ~ Zpn· 
Hence, S is self-injective, by the previous remark. But injective submodules Sare 
always direct summands in exact sequences 0 --+ S --+ G, and so G = S EEl T for 
some Zpn-module T.19 By induction on IGI, the complement Tis a direct sum of 
cyclic groups. • 

Exercises 

* B-4.49. Prove that the following conditions are equivalent for an abelian group A. 

(i} A is torsion-free and divisible; 

(ii} A a vector space over Q; 

(iii} for every positive integer n, the multiplication map µn: A --+ A, given by a 1-t na, 
is an isomorphism. 

* B-4.50. (i) Prove that a left R-module E is injective if and only if, for every left ideal 
I in R, every short exact sequence 0 --+ E --+ B --+ I--+ 0 of left R-modules splits. 

(ii) If R is a domain, prove that torsion-free divisible R-modules are injective. 

B-4.51. Prove the dual of Schanuel's Lemma. Given exact sequences 

0 --+ M ~ E -.!+ Q --+ 0 and 0 --+ M ~ E' ~ Q' --+ 0, 

where E and E' are injective, then there is an isomorphism Q Ee E' ~ Q' Ee E. 

B-4.52. (i} Prove that every vector space over a field k is an injective k-module. 

(ii} Prove that if 0 --+ U --+ V --+ W --+ 0 is an exact sequence of vector spaces, then 
the corresponding sequence of dual spaces 0--+ W* --+ V* --+ U* --+ 0 is also exact. 

B-4.53. (i) Prove that if a domain R is self-injective, that is, R is an injective R
module, then R is a field. 

(ii) Prove that Zs is simultaneously an injective and a projective module over itself. 

(iii) Let R be a domain that is not a field, and let M be an R-module that is both 
injective and projective. Prove that M = {O}. 

* B-4.54. Prove that every torsion-free abelian group A can be imbedded as a subgroup of 
a vector space over Q. 

Hint. Imbed A in a divisible abelian group D, and show that A n tD = {O}, where 
tD = {d ED: d has finite order}. 

* B-4.55. Let A and B be abelian groups and let µ: A --+ A be the multiplication map 
a i-+ na. 

(i) Prove that the induced maps 

µ*: Homz(A, B) --+ Homz(A, B) andµ*: Homz(B, A} --+ Homz(B, A) 

are also multiplication by n. 

(ii} Prove that Homz(Q, A) and Homz(A, Q) are vector spaces over Q. 

19Lemma B-3.17 gives another proof of this fact. 
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B-4.56. Give an example of two injective submodules of a module whose intersection is 
not injective. 

Hint. Define abelian groups A~ Z(p00 ) ~A': 

A= (an,n ~ Olpao = 0,pan+l =an) and A'= (a~,n ~ Olpa~ = O,pa~+1 =a~). 
In A ffi A', define E =A ffi {O} and E' = ( {(an+l, a~): n ~ O} ). 

* B-4.57. (Pontrjagin Duality) If G is an abelian group, its Pontrjagin dual is the 
group 

G* = Homz(G, IQ>/Z). 
(Pontrjagin duality extends to locally compact abelian topological groups G, and the 
dual G* consists of all continuous homomorphisms G --+ Wl../Z. However, G i--+ G* is not 
an exact functor: if Wl..d is the additive group of reals in the discrete topology, then the 
"identity" f: WI. --+ Wl..d is a continuous injective homomorphism, but f* : (Wl..d)* --+ WI.* is 
not surjective.) 

(i) Prove that if G is an abelian group and a E G is nonzero, then there is a homo
morphism f: G --+ IQ>/Z with f (a) =F 0. 

(ii) Prove that IQ>/Z is an injective abelian group. 

(iii) Prove that if 0 --+ A--+ G--+ B --+ 0 is an exact sequence of abelian groups, then 
so is 0 --+ B* --+ G* --+ A* --+ 0. 

(iv) If G ~Zn, prove that G* ~ G. 

(v) If G is a finite abelian group, prove that G* ~ G. 

(vi) Prove that if G is a finite abelian group and G/H is a quotient group of G, then 
G / H is isomorphic to a subgroup of G. (The analogous statement for nonabelian 
groups is false: if Q is the group of quaternions, then Q/Z(Q) ~ V, where V is 
the four-group; but Q has only one element of order 2 while V has three elements 
of order 2. This exercise is also false for infinite abelian groups: since Z has_ no 
element of order 2, it has no subgroup isomorphic to Z/2Z ~ Z2.) 

Divisible Abelian Groups 

Injective Z-modules (that is, injective abelian groups) turn out to be quite familiar. 
Recall that an abelian group D is divisible if, for each d E D and each positive 
integer n, there exists d' E D with d = nd'. Every quotient of a divisible group is 
divisible, as is every direct sum of divisible groups. 

The statement of the following proposition is in Exercise B-4.49, but the proof 
here is different from that outlined in the exercise. 

Proposition B-4.69. A torsion-free abelian group D is divisible if and only if it 
is a vector space over Q. 

Proof. If D is a vector space over Q, then it is a direct sum of copies of Q, for 
every vector space has a basis. But Q is a divisible group, and any direct sum of 
divisible groups is itself a divisible group. 

Let D be torsion-free and divisible; we must show that D admits scalar mul
tiplication by rational numbers. Suppose that d E D and n is a positive integer. 
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Since D is divisible, there exists d' E D with nd' = d (of course, d' is a candidate 
for (1/n)d). Note, since D is torsion-free, that d' is the unique such element: if 
also nd" = d, then n(d' - d") = 0, so that d' - d" has finite order, and hence is 
0. If m/n E Q, define (m/n)d = md', where nd' = d. The reader can prove that 
this scalar multiplication is well-defined (if m/n = a/b, then (m/n)d = (a/b)d) and 
that the various axioms in the definition of vector space hold. • 

Definition. If G is an abelian group, then dG is the subgroup generated by all the 
divisible subgroups of G. 

Proposition B-4. 70. 

(i) For any abelian group G, the subgroup dG is the unique maximal divisible 
subgroup of G. 

(ii) Every abelian group G is a direct sum 

G = dGEBR, 

where dR = {O}. Hence, R ~ G/dG has no nonzero divisible subgroups. 

Proof. 

(i) It suffices to prove that dG is divisible, for then it is obviously the largest 
such. If x E dG, then x = X1 + · · · + Xt, where Xi E Di and the Di are 
divisible subgroups of G. If n is a positive integer, then there are Yi E Di 
with Xi= nyi, because Di is divisible. Hence, y = Y1 + · · · +Yt E dG and 
x = ny, so that dG is divisible. 

(ii) Since dG is divisible, Proposition B-4.52 and Corollary B-4.53 give 

G = dGEBR, 

where R is a subgroup of G. If R has a nonzero divisible subgroup D, 
then R =DEBS for some subgroup S, by Corollary B-4.53. But dG EB D 
is a divisible subgroup of G properly containing dG, contradicting (i). • 

Definition. An abelian group G is reduced if dG = {O}; that is, G has no nonzero 
divisible subgroups. 

Exercise B-4.60 on page 507 says that an abelian group G is reduced if and 
only if Hom(Q, G) = {O}. 

We have just shown that G / dG is always reduced. The reader should compare 
the roles of the maximal divisible subgroup dG of a group G with that of tG, its 
torsion subgroup: G is torsion if tG = G, and it is torsion-free if tG = {O}; G is 
divisible if dG = G, and it is reduced if dG = {O}. There are exact sequences 

0-+ dG-+ G-+ G/dG-+ 0 

and 

0-+ tG-+ G-+ G/tG-+ O; 

the first sequence always splits, but we will see, in Exercise B-4.61 on page 507, 
that the second sequence may not split. 
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If pis a prime and n :2': 1, let us denote the primitive pnth root of unity by 

Zn = e21T:i/pn. 

Of course, every complex pnth root of unity is a power of Zn· 
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Definition. The Prilfer group zr;: (or the quasicyclic p-group20 ) is the sub
group of the multiplicative group <C x: 

Z(p00 ) = (zn : n :2': 1) = (e27T:i/pn : n :2': 1). 

Note, for every integer n :2': 1, that the subgroup (zn) is the unique subgroup 
of Z(p00 ) of order pn, for the polynomial xPn - 1 E <C[x] has exactly pn complex 
roots. 

Proposition B-4. 71. Let p be a prime. 

(i) Z(p00 ) is isomorphic to the p-primary component of Q/Z. Hence 

Q/Z ~ Ef:) Z(p00 ). 

p 

(ii) Z(p00 ) is a divisible p-primary abelian group. 

(iii) The subgroups of Z(p00 ) are 

{1} ~ (z1) ~ (z2) ~ · · · ~ (zn) ~ (zn+i) ~ · · · ~ Z(p00 ), 

and so they are well-ordered by inclusion. 

(iv) Z(p00 ) has DCC on subgroups but not ACC.21 

Proof. 

(i) Define <p: EBP Z(p00 ) ---+ Q/Z by <p: (e27T:icp/pnP) f-t L.,P Cp/Pnp + Z, where 
Cp E Z. It is easy to see that <p is an injective homomorphism. To see 
that <p is surjective, let a/b + Z E Q/Z and write b = TipPnp. Since 
the numbers b/pnp are relatively prime, there are integers mp with 1 = 
L.,P mp(b/pnP). Therefore, a/b = L.,P amp/Pnp = cp((ea21T:imp/pnP)). 

(ii) Since a direct summand is always a homomorphic image, Z(p00 ) is a 
homomorphic image of the divisible group Q/Z; but every quotient of a 
divisible group is itself divisible. 

(iii) Let S be a proper subgroup of Z(p00 ). Since {zn : n :2': 1} generates 
Z(p00 ), we may assume that Zm ¢ S for some (large) m. It follows that 

t-m 
Zf ¢ S for all f, > m; otherwise Zm = z: E S. If S "!- {0}, we claim 
that S contains some Zni indeed, we show that S contains z1. Now S 
must contain some element x of order p, by Cauchy's Theorem (proved in 
Part 2): If G is a finite group whose order is divisible by a prime p, then 
G contains an element of order p. Thus, ( x) contains all the elements 
of order pin Z(p00 ) (there are only p of them), and so z1 E (x). Let d 

20The group Z(p00 ) is called quasicyclic because every proper subgroup of it is cyclic (Propo
sition B-4.71(iii)). 

21 We will prove the Hopkins-Levitzki Theorem in Part 2: A ring with DCC must also have 
ACC. Proposition B-4.71(iv) shows that the analogous result for abelian groups is false. 
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be the largest integer with Zd E S. Clearly, (zd) ~ S. For the reverse 
inclusion, lets ES. Ifs has order pn >pd, then (s) contains Zn, because 
(zn) contains all the elements of order pn in Z(p00 ). But this contradicts 
our observation that ze ¢ S for all i > d. Hence, s has order ~ pd, and 
so s E (zd); therefore, S = (zd)· 

As the only proper nonzero subgroups of Z(p00 ) are the groups (zn), 
it follows that the subgroups are well-ordered by inclusion. 

(iv) First, Z(p00 ) does not have ACC, as the chain of subgroups 

{1} £; (z1) £; (z2) £; · · · 

illustrates. Now every strictly decreasing sequence in a well-ordered set 
is finite (if X1 >- X2 >- X3 >- · · · is infinite, the subset (xn)n;:::1 has no 
smallest element). It follows that Z(p00 ) has DCC on subgroups. • 

Notation. If G is an abelian group and n is a positive integer, then 

G[n] = {g E G: ng = O}. 

It is easy to see that G[n] is a subgroup of G. Note that if pis prime, then G[p] 
is a vector space over IF P. 

Lemma B-4. 72. If G and H are divisible p-primary abelian groups, then G ~ H 
if and only if G[p] ~ H[p]. 

Proof. If there is an isomorphism f: G ---* H, then it is easy to see that its restric
tion f IG[p] is an isomorphism G[p] ---* H[p] . 

For sufficiency, assume that f: G[p] ---* H[p] is an isomorphism. Composing 
with the inclusion H[p] ---* H, we may assume that f: G[p] ---* H. Since H is 
divisible, f extends to a homomorphism F: G ---* H; we claim that any such F is 
an isomorphism. 

(i) F is an injection. 
If g E G has order p, then g E G[p] and, since f is an isomorphism, 

F(g) = f(g) =F 0. Suppose that g has order pn for n ~ 2. If F(g) = 0, 
then F(pn- 19) = 0 as well, and this contradicts the hypothesis, because 
pn-lg has order p. Therefore, Fis an injection. 

(ii) F is a surjection. 
We show, by induction on n ~ 1, that if h E H has order pn, then 

h E imF. If n = 1, then h E H[p] = imf ~ imF. For the inductive 
step, assume that h E H has order pn+l. Now pnh E H[p], so there exists 
g E G with F(g) = f(g) = pnh. Since G is divisible, there is g' E G with 
png' = g; thus, F(png') = F(g), which implies that pn F(g') = pnh, and 
so pn(h-F(g')) = 0. By induction, there is x E G with F(x) = h-F(g'). 
Therefore, F(x + g') = h, as desired. • 

The next theorem classifies all divisible abelian groups. Recall Exercise B-4.49 
on page 500: every torsion-free divisible abelian group is a vector space over Q. 
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Definition. If D is a divisible abelian group, define 

c500 (D) = dimiQ(D/tD) 

(for D /tD is torsion-free and divisible) and, for all primes p, define 

op(D) = dimJFp(D[p]). 

Of course, dimensions may be infinite cardinals. 

Theorem B-4. 73. 

(i) Every divisible abelian group is isomorphic to a direct sum of copies of 
Q and of copies of Z(p00 ) for various primes p. 

(ii) Let D and D' be divisible abelian groups. Then D ~ D' if and only if 
c500 (D) = c500 (D') and Op(D) = Op(D') for all primes p. 

Proof. 

(i) If x E D has finite order, n is a positive integer, and x = ny for some 
y E D, then y has finite order. It follows that if D is divisible, then its 
torsion subgroup tD is also divisible, and hence, by Corollary B-4.53, 

D = tDEB V, 

where V is torsion-free. Since every quotient of a divisible group is di
visible, Vis torsion-free and divisible, and hence it is a vector space over 
Q, by Proposition B-4.69. 

Now tD is the direct sum of its primary components: tD = ffiP Tp, 
each of which is p-primary and divisible, and so it suffices to prove that 
each Tp is a direct sum of copies of Z(p00 ). If dim(Tp[p]) = r (r may 
be infinite), define W to be a direct sum of r copies of Z(p00 ), so that 
dim(W[p]) = r. Lemma B-4.72 now shows that Tp ~ W. 

(ii) By Proposition B-3.34, if D ~ D', then D/tD ~ D'/tD' and tD ~ tD'; 
hence, the p-primary components (tD)p ~ (tD')p for all p. But D/tD 
and D' /tD' are isomorphic vector spaces over Q, and hence have the 
same dimension; moreover, the vector spaces (tD)p[p] and (tD')p[p] are 
also isomorphic, so they, too, have the same dimension over F P' 

For the converse, write D = V EB E9P Tp and D' = V' EB E9P r;, 
where V and V' are torsion-free divisible, and Tp and r; are p-primary 
divisible. By Lemma B-4.72, op(D) = op(D') implies Tp ~ r;, while 
c500 (D) = c500 (D') implies that the vector spaces V and V' are isomorphic. 
Now imbed each summand of D into D', and use Proposition B-2.19 to 
assemble these imbeddings into an isomorphism D ~ D'. • 

We can now describe some familiar groups. The additive group of a field K is 
easy to describe: it is a vector space over its prime field k, and so the only question 
is computing its degree [K : k] = dimk(K). In particular, if K = k is the algebraic 
closure of k = Fp or of k = Q, then [k: k) = l{o. 

Recall our notation: if F is a field, then px denotes the multiplicative group 
of its nonzero elements. 
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Corollary B-4. 7 4. 

(i) If K is an algebraically closed field with prime field k, then 

Kx s:! t(kx) EB V, 

where V is a vector space over Q. 

(ii) t(Qx) s:! Q/Z s:! ffiP Z(p00), where Q is the algebraic closure of Q. 

(iii) t(iF;) s:! ffiqh'll.,(q00 ), where Fp is the algebraic closure of"!Fp. 

Proof. 

(i) Since K is algebraically closed, the polynomials xn - a have roots in K 
whenever a E K; this says that every a has an nth root in K, which is 
the multiplicative way of saying that Kx is a divisible abelian group. An 
element a E K has finite order if and only if an = 1 for some positive 
integer n; that is, a is an nth root of unity. It is easy to see that the torsion 
subgroup T = t(Kx) is divisible and, hence, it is a direct summand: 
Kx = T EB V, by Lemma B-4.70. The complementary summand V is 
a vector space over Q, for V is torsion-free divisible. Finally, we claim 
that T = t(kx ), for all roots of unity in Kx are already present in the 
algebraic closure k of the prime field k. 

(ii) If K = Q is the algebraic closure of Q, there is no loss in generality in 
assuming that K ~ C. Now the torsion subgroup T of K consists of 
all the roots of unity e21rir, where r E Q. It follows easily that the map 
r i-+ e21rir is a surjection Q ---+ T having kernel Z, so that T s:! Q/Z. 

(iii) Let us examine the primary components of t(iF; ). If q =f. pis a prime, then 
the polynomial f ( x) = xq_ 1 has no repeated roots (for gcd (f ( x), f' ( x)) = 
1), and so there is some qth root of unity other than 1. Thus, the q
primary component is nontrivial, and there is at least one summand iso
morphic to Z(q00 ) (since t(iF;) is a torsion divisible abelian group, it is a 
direct sum of copies of Prilfer groups, by Theorem B-4.73(i)). Were there 
more than one such summand, there would be more than q elements of 
order q, and this would provide too many roots for xq - 1 in iF P. Finally, 
there is no summand isomorphic to Z(p00), for xP -1 = (x- l)P in iFp[x], 
and so 1 is the only pth root of unity. • 

Corollary B-4. 75. The following abelian groups G are isomorphic: 

ex; (Q/Z) Ef! IR; JR/Z; II Z(p00); 8 1 

p 

(81 is the circle group; that is, the multiplicative group of all complex numbers z 
with lzl = 1). 

Proof. All the groups G on the list are divisible. Theorem B-4. 73(iii) shows they 
are isomorphic, since 8p ( G) = 1 for all primes p and 800 ( G) = c (the cardinal of the 
continuum). • 
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Exercises 

* B-4.58. If M is an R-module, where R is a domain, and r E R, let µr: M --+ M be 
multiplication by r; that is, µr: m f-t rm (see Example B-1.21). 

(i) Prove that µr is an injection for every r "I= 0 if and only if M is torsion-free. 

(ii) Prove that µr is a surjection for every r "I= 0 if and only if M is divisible. 

(iii) Prove that M is a vector space over Q if and only if, for every r "I= 0, the map 
µr : M --+ M is an isomorphism. 

* B-4.59. Let R be a domain with Q = Frac(R), and let M be an R-module. 

(i) Prove that M is a vector space over Q if and only if it is torsion-free and divisible. 
(This generalizes Exercise B-4.49 on page 500.) 

(ii) Let µr: M --+ M be multiplication by r, where r E R. For every R-module A, 
prove that the induced maps 

(µr ). : HomR(A, M) --+ HomR(A, M) and (µr )*: HomR(M, A) --+ HomR(M, A) 

are also multiplication by r. 

(iii) Prove that both HomR(Q, M) and HomR(M, Q) are vector spaces over Q. 

* B-4.60. Prove that an abelian group G is reduced if and only if Homz(Q, G) = {O}. 

* B-4.61. Let G = ITP(ap), where p varies over all the primes, and (ap) ~ Zp. 

(i) Prove that tG = ©P(ap)· 
Hint. Use Exercise B-3.11 on page 371. 

(ii) Prove that G/tG is a divisible group. 

(iii) Prove that tG is not a direct summand of G. 
Hint. Use Exercise B-4.60: show that Hom(Q, G) = {O} but that Hom(Q, G/tG) "I= 
{O}. Conclude that G ~ tG EB G/tG. 

B-4.62. Prove that if R is a domain that is not a field, then an R-module M that is both 
projective and injective must be {O}. 

Hint. Use Exercise B-4.41 on page 490. 

B-4.63. If M is a torsion R-module, where R is a PID, prove that 

HomR(M, M) ~ IJ HomR(M(p)> M(p)), 
(p) 

where M(p) is the (p)-primary component of M. 

* B-4.64. (i) If G is a torsion abelian group with p-primary components {Gp : p E P}, 
where Pis the set of all primes, prove that G = t(ITpEP Gp). 

(ii) Prove that (ITpEP Gp)/(©pEP Gp) is torsion-free and divisible. 
Hint. Use Exercise B-3.11 on page 371. 

B-4.65. (i) If pis a prime and G = t(ITk>I (ak)), where (ak) is a cyclic group of order 
pk, prove that G is an uncountable P:,primary abelian group with Vp(n, G) = 1 for 
all n ~ 0. 
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(ii) Use Exercise B-3.24 to prove that the primary group G in part (i) is not a direct 
sum of cyclic groups. 

B-4.66. Prove that there is an additive functor d: Ab-+ Ab that assigns to each group 
G its maximal divisible subgroup dG. 

B-4.67. (i) Prove that Z{p00 ) has no maximal subgroups. 

(ii) Prove that Z(p00 ) = Un Zpn. 

(iii) Prove that a presentation of Z(p00 ) is 

(an, n ~ 1 I pa1 = 0,pan+l =an for n ~ 1). 

B-4.68. If 0 -+ A -+ B -+ C -+ 0 is exact and both A and C are reduced, prove that B 
is reduced. 

Hint. Use left exactness of Homz(Q>, ). 

B-4.69. If {Di : i E /} is a family of divisible abelian groups, prove that niEI Di is 
isomorphic to a direct sum EB;eJ E;, where each E; is divisible. 

B-4. 70. Prove that the multiplicative group of nonzero rationals, Qlx, is isomorphic to 
Z2 EB F, where Fis a free abelian group of infinite rank. 

B-4.71. Prove that Rx~ Z2 EBR 

Hint. Use e"'. 

B-4. 72. (i) Prove, for every group homomorphism f: Ql -+ Q>, that there exists r E Q> 
with f(x) = rx for all x E Ql. 

(ii) Prove that Homz(Q>, Q>) ~ Ql. 

(iii) Prove that Endz(Q>) ~ Q> as rings. 

B-4.73. Prove that if G is a nonzero abelian group, then Homz(G,Q>/Z) "I {O}. 

B-4. 7 4. Prove that an abelian group G is injective if and only if every nonzero quotient 
group is infinite. 

B-4. 75. Prove that if G is an infinite abelian group all of whose proper subgroups are 
finite, then G ~ Z(p00 ) for some prime p. 22 

B-4.76. (i) Let D = EB~=l Di, where each Di ~ Z(pf) for some prime Pi· Prove that 
every subgroup of D has DCC. 

(ii) Prove, conversely, that if an abelian group G has DCC, then G is isomorphic to a 
subgroup of a direct sum of a finite number of copies of Z(pf). 

B-4. 77. If G = npEP Z(p00 ), where p is the set of all primes, prove that 

tG = ffi Z(p00 ) and G/tG ~ R. 
pEP 

22There exist infinite nonabelian groups all of whose proper subgroups are finite. Indeed, 
Ol'shanskii proved that there exist infinite groups, called Tarski monsters, all of whose proper 
subgroups have prime order. 
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Tensor Products 

One of the most compelling reasons to study tensor products comes from algebraic 
topology. We assign to every topological space X a sequence of homology groups, 
Hn(X) for n;:::: 0, that are of basic importance. The Kunneth Formula computes 
the homology groups of the cartesian product X x Y of two topological spaces in 
terms of the tensor product of the homology groups of the factors X and Y. 

Tensor products are also useful in many areas of algebra. For example, they are 
involved in bilinear forms, the Adjoint Isomorphism, free algebras, exterior algebra, 
and determinants. They are especially interesting in representation theory (as we 
shall see in Part 2), which glean information about a group G by looking at its 
homomorphisms into familiar groups; such homomorphisms lead to modules over 
group rings kG for fields k. Now induced representations, which extend represen
tations of subgroups H (that is, kH-modules M) to representations of the whole 
groups G), are most easily constructed as kG ®kH M, which turn out to be much 
simpler to define and to use than their original computational definition. 

Consider the following more general problem: if S is a subring of a ring R, can 
we construct an R-module from an S-module M? Here is a naive approach. If M 
is generated as an S-module by a set X, each m E M has an expression of the form 
m = L::i SiXi, where Si E Sand xi E X. Perhaps we can construct an R-module 
containing M by taking all expressions of the form L::i riXi, where ri E R. This 
simple idea is doomed to failure. For example, a cyclic group G = (g) of finite 
order n is a Z-module; can we make it into a Q-module? A Q-module Vis a vector 
space over Q, and it is easy to see, when v E V and q E Q, that qv = 0 if and 
only if q = 0 or v = 0. If we could create a rational vector space V containing G 
in the naive way just described, then ng = 0 would imply g = 0 in V! Our idea of 
adjoining scalars to obtain a module over a larger ring still has merit but, plainly, 
we cannot be so cavalier about its construction. The proper way to deal with such 
matters is to use tensor products. In notation to be introduced later in this section, 
an S-module M will be replaced by the R-module R ®s M. 

Definition. Let R be a ring, let AR be a right R-module, let RB be a left R
module, and let G be an (additive) abelian group. A function f: A x B --+ G is 
called R-biadditive if, for all a, a' EA, b, b' EB, and r ER, we have 

f(a +a', b) = f(a, b) + f(a', b), 

f(a, b + b') = f(a, b) + f(a, b'), 

f(ar, b) = f(a, rb). 

Let R be commutative and let A, B, and M be R-modules. Then a biadditive 
function f: A x B --+ M is called R-bilinear if 

f(ar,b) = f(a,rb) = rf(a,b). 

Example B-4. 76. 

(i) If R is a ring, then its multiplication µ: R x R--+ R is R-biadditive; the 
first two axioms are the right and left distributive laws, while the third 
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axiom is associativity: 

µ(ar, b) = (ar)b = a(rb) =µ(a, rb). 

If Risa commutative ring, thenµ is R-bilinear, for (ar)b = a(rb) = r(ab). 

(ii) If RM is a left R-module, then its scalar multiplication a-: R x M ---+ M 
is R-biadditive; if R is a commutative ring, then a- is R-bilinear. 

(iii) If MR is a right R-module and RN R is an (R, R)-bimodule, then Propo
sition B-4.25(iii) shows that HomR(M, N) is a left R-module: if f E 

HomR(M, N) and r E R, define r f: M ---+ N by 

rf: m H r[f(m)]. 

We can now see that evaluation e: M x HomR(M,N)---+ N, given by 
(m, f) H f(m), is R-biadditive. 

The dual space V* of a vector space V over a field k gives a special 
case of this construction: evaluation V x V* ---+ k is k-bilinear. 

(iv) If G* = Homz(G,Q/Z) is the Pontrjagin dual of an abelian group G, 
then evaluation G x G* ---+ Q/Z is Z-bilinear (see Exercise B-4.57 on 
page 501). <Ill 

The coming definition may appear unusual. Instead of saying that a tensor 
product is an abelian group and describing its elements, we draw a diagram one of 
whose vertices is labeled tensor product. Even though we defined projective and 
injective modules in this way, this definition seems to say how tensor products are 
used rather than what they are. 

This is not so weird. Suppose we were defining sucrose, ordinary table sugar. 
We could say what it is: sucrose consists of a six member ring of glucose and a five 
member ring of fructose, joined by an acetal oxygen bridge in the alpha-1 on the 
glucose and beta-2 on the fructose orientation. Its formula is C12H22011. But we 
could also say that sucrose is used to sweeten food. The coming definition says that 
tensor products convert biadditive functions to linear ones; that is, it is an abelian 
group used to replace biadditive functions by homomorphisms. 

Definition. Given a ring Rand modules AR and RB, their tensor product is an 
abelian group A ®RB and an R-biadditive function23 

h: Ax B---+ A ®RB 

such that, for every abelian group G and every R-biadditive f: A x B ---+ G, there 
exists a unique Z-homomorphism TA ®RB---+ G making the following diagram 
commute: 

23Strictly speaking, a tensor product is an ordered pair (A ®RB, h), but we usually don't 
mention the biadditive function h explicitly. 
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If a tensor product of A and B exists, then it is unique up to isomorphism, for 
it has been defined as a solution to a universal mapping problem (see the proof of 
Proposition B-4.4 on page 449). 

Quite often, A © R B is denoted by A © B when R = Z. 

Proposition B-4. 77. If R is a ring and AR and RB are modules, then their tensor 
product exists. 

Proof. Let F be the free abelian group with basis A x B; that is, F is free on all 
ordered pairs (a, b), where a E A and b E B. Define S to be the subgroup of F 
generated by all elements of the following types: 

(a, b + b') - (a, b) - (a, b'), 

(a+ a', b) - (a, b) - (a', b), 

(ar, b) - (a, rb). 

Define A © R B = F / S, denote the coset (a, b) + S by a © b, and define 

h:AxB-+A©RB by h:(a,b)t-+a©b 

(thus, his the restriction to the basis Ax B of the natural map F-+ F/S). It is 
easy to see that the following identities hold in A ©RB: 

a© (b + b') = a © b + a© b', 

(a + a') © b = a © b + a' © b, 

ar ©b = a©rb. 

It is now obvious that his R-biadditive. For example, the first equality a©(b+b') = 
a© b +a© b' is just a rewriting of (a, b + b') + S =(a, b) + S +(a, b') + S. 

Consider the following diagram, where G is an abelian group and f is R
biadditive: 

where i: A x B -+ F is the inclusion. Since F is free abelian with basis A x B, 
there exists a homomorphism cp: F-+ G with cp((a,b)) = f((a,bl) for all (a,b); 
now S ~ ker cp because f is R-biadditive, and so cp induces a map f: A© R B -+ G 
(because A ©RB= F/S) by 

f{a © b) = f((a, b) + S) = cp((a, b)) = f((a, b)). 

!his equation may be rewritten as fh = f; that is, the diagram commutes. Finally, 
f is unique because A © R B is generated by the set of all a © b's. • 
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Here is an explicit formula for f: the abelian group A © R B is generated by all 
a©b, and 

f(a © b) = f((a, b)) for all (a, b) EA x B. 

Since A© R B is generated by the elements of the form a© b, every u E A© R B 
has the form 

U= 2.:ai©bi 
i 

(there is no need to write a Z-linear combination L:i ci(ai © bi) for ci E Z, for 
ci(ai ©bi)= (ciai) ©bi) and ciai EA). 

This expression for u is not unique; there are many ways to express u = 0, for 
example: 

0 =a© (b + b') - a© b - a© b', 

=(a+ a')© b- a© b- a'© b, 

= ar © b - a© rb. 

Therefore, given some abelian group G, we must be suspicious of a definition of a 
map g: A © R B --+ G that is given by specifying g on the generators a © b; such a 
"function" g may not be well-defined because elements have many expressions in 
terms of these generators. In essence, g is only defined on F (the free abelian group 
with basis Ax B), and we must still show that g(S) = {O}, because A©RB = F/S. 
The simplest (and safest!) procedure is to define an R-biadditive function on Ax B, 
and it will yield a (well-defined) homomorphism with domain A©RB. We illustrate 
this procedure in the next proofs. 

Proposition B-4. 78. Let f: AR --+ A~ and g: RB --+ RB' be maps of right R
modules and left R-modules, respectively. Then there is a unique Z-homomorphism, 
denoted by f © g: A ©RB--+ A' ©RB', with 

f©g: a©bt--+f(a)©g(b). 

Proof. The function cp: Ax B--+ A' ©RB', given by (a,b) H f(a) ©g(b), is easily 
seen to be an R-biadditive function. For example, 

cp: (ar, b) H f(ar) © g(b) = f(a)r © g(b) 

and 
cp: (a,r) H f(a) ©g(rb) = f(a) ©rg(b); 

these are equal because of the identity a' r © b' = a' ©rb' in A'© RB'. The biadditive 
function cp yields a unique homomorphism A © R B --+ A' © R B' taking 

a© b H f(a) © g(b). • 

Corollary B-4. 79. Given maps of right R-modules, A .!+ A' 4 A", and maps of 

left R-modules, B .!4 B' .4 B", we have 

(!' ©g')(f ©g) = f'f ©g'g. 

Proof. Both maps take a© b H f' f(a) © g' g(b), and so the uniqueness of such a 
homomorphism gives the desired equation. • 
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Theorem B-4.80. Given AR, there is an additive functor FA: RMod --+ Ab, 
defined by 

FA(B) =A ®RB and FA(g) =IA® g, 

where g: B --+ B' is a map of left R-modules. 

Proof. First, note that FA preserves identities: FA(IB) =IA® IB is the identity 
IA0B, because it fixes every generator a® b. Second, FA preserves composition: 

FA(g' g) =IA® g' g =(IA® g')(IA ® g) = FA(g')FA(g), 

by Corollary B-4.79. Therefore, FA is a functor. 

To see that FA is additive, we must show that FA(g + h) = FA(g) + FA(h), 
where g, h: B--+ B'; that is, IA® (g + h) =IA® g +IA® h. This is also easy, for 
both these maps send a® b Ha® g(b) +a® h(b). • 

We denote the functor FA: RMod --+ Ab by 

A®R-· 

Of course, there is a similar result if we fix a left R-module B: there is an additive 
functor 

- ®RB: ModR--+ Ab. 

Corollary B-4.81. If f: M --+ M' and g: N --+ N' are, respectively, isomorphisms 
of right and left R-modules, then f ® g: M ® R N --+ M' ® R N' is an isomorphism 
of abelian groups. 

Proof. Now f®IN' is the value of the functor FN' on the isomorphism f, and hence 
f®IN' is an isomorphism; similarly, IM®g is an isomorphism. By Corollary B-4.79, 
we have f ® g = (!®IN' )(IM® g). Therefore, f ® g is an isomorphism, being the 
composite of isomorphisms. • 

In general, the tensor product of two modules is only an abelian group; is it 
ever a module? In Proposition B-4.25, we saw that HomR(M, N) has a module 
structure when one of the variables is a bimodule. Here is the analogous result for 
tensor product. 

Proposition B-4.82. 

(i) Given a bimodule sAR and a left module RB, the tensor product A®RB 
is a left S-module, where s(a ® b) = (sa) ® b. 

(ii) Given AR and RBs, the tensor product A ®RB is a right S-module, 
where (a® b)s =a® (bs). 

Proof. For fixed s E S, the multiplication µ 8 : A --+ A, defined by a H sa, is an 
R-map, for A being a bimodule gives 

µ 8 (ar) = s(ar) = (sa)r = µ 8 (a)r. 

If F = - ®RB: ModR--+ Ab, then F(µ 8 ): A ®RB--+ A ®RB is a (well-defined) 
Z-homomorphism. Thus, F(µ 8 ) = µ 8 ® IB: a®b H (sa) ® b, and so the formula in 
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the statement of the lemma makes sense. It is now straightforward to check that 
the module axioms do hold for A © R B. • 

For example, if V and lV are vector spaces over a field k, then their tensor 
product V ©kW is also a vector space over k. 

Corollary B-4.83. 

(i) Given a bimodule sAR, then the functor A ©R - : RMod-+ Ab actually 
takes values in sMod. 

(ii) If R is a commutative ring, then A ©RB is an R-module, where 

r(a©b) = (ra)©b=a©rb 

for all r E R, a E A, and b E B. 

(iii) If R is a commutative ring, r E R, and µr: B-+ B is multiplication by r, 
then IA © µr : A © R B -+ A © R B is also multiplication by r. 

Proof. 

(i) We know, by Proposition B-4.82, that A ©RB is a left S-module, where 
s(a © b) = (sa) © b, and so it suffices to show that if g: B-+ B' is a map 
of left R-modules, then the induced map lA © g is an S-map. But 

(IA© g)[s(a © b)] = (lA © g)[(sa) © b] 

= (sa) © gb 

= s(a © gb) by Proposition B-4.82 

= s(lA © g)(a © b). 

(ii) Since R is commutative, we may regard A as an (R, R)-bimodule by 
defining ar = ra. Proposition B-4.82 now gives 

r(a © b) = (ra) © b = (ar) © b =a© rb. 

(iii) This statement merely sees the last equation a© rb = r(a © b) from a 
different viewpoint: 

Recall Corollary B-4.27: if Mis a left R-module, then HomR(R, M) is also a 
left R-module, and there is an R-isomorphism <{JM: HomR(R, M) -+ M. Here is 
the analogous result for tensor product. 

Proposition B-4.84. For every left R-module M, there is an R-isomorphism 

(}M:R©RM-+M 

given by (JM: r ©mi-+ rm. 

Proof. The function Rx M-+ M, given by (r,m) i-+ rm, is R-biadditive, and so 
there is an R-homomorphism (}: R©RM-+ M with r©m i-+ rm (we are using the 
fact that R is an (R, R)-bimodule). To see that (} is an R-isomorphism, it suffices 
to find a Z-homomorphism /: M-+ R©R M with (}f and f(} identity maps (for it 
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is now only a question of whether the function () is a bijection). Such a Z-map is 
given by f: m 1-t 1 © m. • 

After a while, we see that proving properties of tensor products is just a matter 
of showing that the obvious maps are, indeed, well-defined functions. 

We have now proved the assertion made at the beginning of this section: if 
S is a subring of a ring R and M is a left S-module, then R ©s M is a left 
R-module. We have created a left R-module from M by extending scalars; 
that is, Proposition B-4.82 shows that R ©s M is a left R-module, for R is an 
(R, 8)-bimodule. The following special case of extending scalars is important in 
representation theory. If Bis a subgroup of a group G and Vis a left kB-module, 
where kB is the group ring (see Example B-1.l(iv)), then the induced module 
va = kG ©kH V is a left kG-module, by Proposition B-4.82. Note that kG is a 
right kB-module (it is even a right kG-module), and so the tensor product kG©kH V 
makes sense. 

We have defined R-biadditive functions for arbitrary, possibly noncommutative, 
rings R, whereas we have defined R-bilinear functions only for commutative rings. 
Tensor product was defined as the solution of a certain universal mapping problem 
involving R-biadditive functions; we now consider the analogous problem for R
bilinear functions when R is commutative. 

Here is a provisional definition, soon to be seen unnecessary. 

Definition. If R is a commutative ring, then an R-bilinear product is an R
module X and an R-bilinear function h: A x B ---+ X such that, for every R
module M and every R-bilinear function g: Ax B ---+ M, there exists a unique 
R-homomorphism g: X---+ M making the following diagram commute: 

AxB h X 

"'i /~/ 
g~ )<- g 

M. 

Of course, when R is commutative, R-bilinear functions are R-biadditive. The 
next result shows that R-bilinear products exist, but they are nothing new. 

Proposition B-4.85. If R is a commutative ring and A and B are R-modules, 
then the R-module A©RB and the biadditive function h form an R-bilinear product. 

Proof. We show that X = A©RB provides the solution if we define h(a, b) = a©b; 
note that his also R-bilinear, thanks to Corollary B-4.83(ii). Since g is R-bilinear, 
it is R-biadditive, and so there does exist a Z-homomorphism g: A©RB---+ M with 
g(a © b) = g(a, b) for all (a, b) EA x B. We need only show that g is an R-map. If 
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u Ek, then 

g(u(a ® b)) = g((ua) ® b) 

=g(ua,b) 

=ug(a,b) 

= ug(a® b). • 

Chapter B-4. Categories of Modules 

for g is R-bilinear 

As a consequence of the proposition, the term bilinear product is unnecessary, 
and we shall call it the tensor product instead. 

The next theorem says that tensor product preserves arbitrary direct sums. 

Theorem B-4.86. Given a right module AR and left R-modules {RBi : i E J}, 
there is a Z-isomorphism 

<p: A®R (ffiBi)-+ ffi(A®RBi) 
iEl iEl 

with <p: a® (bi) H (a® bi)· Moreover, if R is commutative, then <p is an R
isomorphism. 

Proof. Since the function f: Ax (EBi Bi) -+ ffii(A®RBi), given by f: (a, (bi)) H 

(a® bi), is R-biadditive, there exists a Z-homomorphism 

<p: A ®R (EB Bi) -+ ffi(A ®R Bi) 
i i 

with <p: a® (bi) H (a® bi)· If R is commutative, then A ®R (EBiEI Bi) and 
EBiEI(A ®R Bi) are R-modules and <pis an R-map (for <pis the function given by 
the universal mapping problem in Proposition B-4.85). 

To see that <p is an isomorphism, we give its inverse. Denote the injection 
Bj -+ EBi Bi by Aj (where Aj(bj) E EBi Bi has jth coordinate bj and all other 
coordinates 0), so that lA ® Aj: A ®R Bj-+ A ®R (ffiiBi) is a Z-map (that is 
not necessarily an injection). That direct sum is the coproduct in RMod gives a 
homomorphism B: ffii(A®RBi)-+ A®R (EBi Bi) with B: (a®bi) Ha® L::i Ai(bi)· 
It is now routine to check that B is the inverse of <p, so that <p is an isomorphism . 

• 
Example B-4.87. Let k be a field and let V and W be k-modules; that is, V 
and Ware vector spaces over k. Now Wis a free k-module; say, W = EBiEI(wi), 
where (wi)iEI is a basis of W. Therefore, V ®kW~ EBiEI V ®k (wi)· Similarly, 
V = EBjEJ(vj), where (vj)jEJ is a basis of V and V ®k (wi) ~ EBjEAvj) ®k (wi) 
for each i. But the one-dimensional vector spaces ( Vj) and ( Wi) are isomorphic to 
k, and Proposition B-4.84 gives (vj) ®k (wi) ~ (vj ® wi)· Hence, V ®kW is a 
vector space over k having (vj ®wi)(j,i)EJxI as a basis. In case both V and Ware 
finite-dimensional, we have 

dim(V ®kW)= dim(V) dim(W). <1111 

Example B-4.88. We now show that there may exist elements in a tensor product 
V ®kV that cannot be written in the form u ® w for u, w E V. 
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Let v1, v2 be a basis of a two-dimensional vector space V over a field k. As in 
Example B-4.87, a basis for V 0k Vis 

V1 0 Vi, V1 0 V2, V2 0 V1, V2 0 V2 · 

We claim that there do not exist u, w E V with v1 0v2 +v2 0v1 = u0w. Otherwise, 
write u and w in terms of v1 and v2: 

V1 0 V2 + V2 0 V1 = U 0 W 

= (av1 + bv2) 0 (cv1 + dv2) 

= acv1 0 V1 + adv1 0 V2 + bcv2 0 v1 + bdv2 0 v2. 

By linear independence of the basis, 

ac = 0 = bd and ad = 1 = be. 

The first equation gives a = 0 or c = 0, and either possibility, when substituted 
into the second equation, gives 0 = 1. ~ 

As a consequence of Theorem B-4.86, if 

O-tB'~B-4B"-+0 

is a split short exact sequence of left R-modules, then, for every right R-module A, 

0 -+ A 0R B' ~i A 0R B 1~ A 0R B" -+ 0 

is also a split short exact sequence. What if the exact sequence is not split? 

Theorem B-4.89 (Right Exactness). Let A be a right R-module, and let 

B' ~ B -4 B" -+ 0 

be an exact sequence of left R-modules. Then 

A 0R B' l~i A 0R B 1~ A 0R B" -+ 0 

is an exact sequence of abelian groups. 

Remark. 

(i) The absence of 0 -+ at the beginning of the sequence will be discussed 
after this proof. 

(ii) We will give a nicer proof of this theorem, in Proposition B-4.100, once 
we prove the Adjoint Isomorphism. ~ 

Proof. There are three things to check. 

(i) im(l 0 i) ~ ker(l 0 p). 
It suffices to prove that the composite is O; but 

(10 p)(l 0 i) = 10 pi= 10 0 = 0. 

(ii) ker(l 0 p) ~ im(l 0 i). 
Let E = im(l 0 i). By part (i), E ~ ker(l 0 p), and so 10 p induces 

amapp: (A0B)/E-+A0B" with 

fi: a 0 b + E i-t a 0 pb, 
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where a E A and b E B. Now if 7r: A© B ---+ (A© B)/ E is the natural 
map, then 

p7r = 1 ©p, 

for both send a © b i--+ a © pb: 

A@B". 

Suppose we show that pis an isomorphism. Then 

ker(l © p) = kerp7r = ker?r = E = im(l © i), 

and we are done. To see that p is, indeed, an isomorphism, we construct 
its inverse A© B" ---+ (A© B)/ E. Define 

f: Ax B"---+ (A©B)/E 

as follows. If b" E B", there is b E B with pb = b", because p is surjective; 
let 

f: (a,b") i--+ a©b+E. 

Now f is well-defined: if pbi = b", then p(b - bi) = 0 and b - bi E ker p = 
imi. Thus, there is b' E B' with ib' = b - bi; hence a© (b - bi) = 
a© ib' E im(l © i) = E. Thus, a© b + E = a© bi + E. Clearly, f is R
biadditive, and so the definition of tensor product gives a homomorphism 
f: A© B" ":!'(A© B)/E with f(a © b") =a© b + E. The reader may 
check that f is the inverse of p, as desired. 

(iii) 1 © p is surjective. 
If I: ai © b~ E A © B", then there exist bi E B with pbi = b~' for all 

i, for p is surjective. But 

1 ©p: Lai ©bi i--+ Lai ©pbi =Lai ©b~'. • 

A similar statement holds for the functor - ©RB. If Bis a left R-module and 

A' ~ A !?t A" ---+ 0 

is a short exact sequence of right R-modules, then the following sequence is exact: 

A' ©RB i~ A©R BP~ A" ©RB---+ 0. 

Definition. A (covariant) functor T: RMod ---+ Ab is called right exact if ex
actness of a sequence of left R-modules 

B' ~ B !?t B" ---+ 0 

implies exactness of the sequence 

T(B') ~ T(B) '!J!4 T(B") ---+ 0. 

There is a similar definition for covariant functors ModR---+ Ab. 
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In this terminology, the functors A © R - and - © R B are right exact functors. 

The next example illustrates the absence of "O --+" in Theorem B-4.89. 

Example B-4.90. Consider the exact sequence of abelian groups 

0 --+ Z ~ Q --+ Q/Z --+ 0, 

where i is the inclusion. For every prime p, right exactness gives an exact sequence 

Zp ® Z ~ Zp © Q --+ Zp © (Q/Z) --+ 0 

(we have abbreviated ®z to®). Now Zp ® Z ~ Zp, by Proposition B-4.84. On the 
other hand, if a® q is a generator of Zp ® Q, then 

a® q =a® (pq/p) =pa© (q/p) = 0 ® (q/p) = 0. 

Therefore, Zp ® Q = {O}, and so 1 ® i cannot be an injection. <Ill 

We have seen that if B' is a submodule of a left R-module B, then A ®RB' 
may not be a submodule of A ©RB (the coming discussion of flat modules A will 
investigate the question when A ©R - preserves injections). Clearly, this is related 
to our initial problem of imbedding an abelian group G in a vector space over Q. In 

Part 2, we shall consider ker(A ©RB' 14i A ©RB), where i: B' --+Bis inclusion, 
using the functor Tor~( A, ) of homological algebra. 

The next proposition helps one compute tensor products (at last we look at 
sucrose itself). 

Proposition B-4.91. For every abelian group B and every n ~ 2, we have 

Zn ®z B ~ B/nB. 

Proof. There is an exact sequence 

0 --+ Z ~ Z It Zn --+ 0, 

where µn is multiplication by n. Tensoring by B gives exactness of 

Z®zB µ~s Z®zBP~ Zn ®zB-+ 0. 

Consider the diagram 

B ---- B --~~ B/nB ---- 0 µn " 

where (}: Z®z B --+ B is the isomorphism of Proposition B-4.84, namely, (}: m© b f-t 
mb, where m E Z and b E B. This diagram commutes, for both composites take 
m ® b to nmb. Proposition B-1.46, diagram-chasing, constructs an isomorphism 
Zn ®z B ~ B/nB. • 

A tensor product of two nonzero modules can be zero. The following proposition 
generalizes the computation in Example B-4.90. 
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Proposition B-4.92. If D is a divisible abelian group and T is a torsion abelian 
group, then D ©z T = {O}. 

Proof. It suffices to show that each generator d © t, where d E D and t E T, is 
equal to 0 in D@zT. Ast has finite order, there is a nonzero integer n with nt = 0. 
Since D is divisible, there exists d' E D with d = nd'. Hence, 

d © t = nd' © t = d' © nt = d' © 0 = 0. • 

We now understand why we cannot make a finite cyclic group G into a IQ
module. Even though 0 -t Z -+ IQ is exact, the sequence 0 -+ Z ©z G -+ IQ ©z G is 
not exact; since Z ©z G = G and IQ ©z G = {O}, the group G cannot be imbedded 
into IQ©z G. 

Corollary B-4.93. If D is a nonzero divisible abelian group with every element of 
finite order (e.g., D = IQ/Z), then there is no multiplication D x D-+ D making 
Daring. 

Proof. Assume, on the contrary, that there is a multiplication µ: D x D -+ D 
making D a ring. If 1 is the identity, we have 1 =/:- 0, lest D be the zero ring. Since 
multiplication in a ring is Z-bilinear, there is a homomorphism 'ji,: D ©z D -+ D 
with 'ji,(d © d') = µ(d, d') for all d, d' E D. In particular, if d =/:- 0, then 'ji,(d © 1) = 
µ(d, 1) = d =f. 0. But D ©z D = {O}, by Proposition B-4.92, so that 'ji,(d © 1) = 0. 
This contradiction shows that no multiplication µ on D exists. • 

Exercises 

B-4. 78. Let V and W be finite-dimensional vector spaces over a field k, say, and let 
v1, ... , Vm and w1, ... , Wn be bases of V and W, respectively. Let S: V -+ V be a linear 
transformation having matrix A = [aij], and let T: W -+ W be a linear transformation 
having matrix B = [bkt]. Show that the matrix of S©T: V©k W-+ V©k W, with respect 
to a suitable listing of the vectors Vi© Wj, is their Kronecker product: the nm x nm 
matrix which we write in block form: 

A©B= . . [ :~~~ :~:~ 
. . . . 

am1B am2B 

B-4.79. Let R be a domain with Q = Frac(R). If A is an R-module, prove that every 
element in Q ©RA has the form q ©a for q E Q and a E A (instead of :Li Qi© ai)· 
(Compare this result with Example B-4.88.) 

* B-4.80. Let m and n be positive integers, and let d = gcd(m, n). Prove that there is an 
isomorphism of abelian groups 

Hint. See Proposition B-4.91. 

* B-4.81. (i) Let k be a commutative ring, and let P and Q be projective k-modules. 
Prove that P ©k Q is a projective k-module. 
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(ii) Let cp: R -t R' be a ring homomorphism. Prove that R' is an (R',R)-bimodule 
if we define r'r = r'cp(r) for all r E Rand r' E R'. Conclude that if P is a left 
R-module, then R' ©RP is a left R'-module. 

(iii) Let cp: R -t R' be a ring homomorphism. Prove that if P is a projective left 
R-module, then R' ©RP is a projective left R'-module. Moreover, if Pis finitely 
generated, so is R' ©RP. 

* B-4.82. Call a subset X of an abelian group A independent if, whenever Li miXi = 0, 
where mi E Z and almost all mi = 0, then mi = 0 for all i. Define rank(A) to be the 
number of elements in a maximal independent subset of A. 

(i) If X is independent, prove that (X) = EB.,ex(x) is a free abelian group with 
basis X. 

(ii) If A is torsion, prove that rank(A) = O. 

(iii) If A is free abelian, prove that the two notions of rank coincide (the earlier notion 
defined rank(A) as the number of elements in a basis of A). 

(iv) Prove that rank(A) = dim(Q ©z A), and conclude that every two maximal in
dependent subsets of A have the same number of elements; that is, rank(A) is 
well-defined. 

(v) If 0 -t A -t B -t C -t 0 is an exact sequence of abelian groups, prove that 
rank(B) =rank( A)+ rank(C). 

B-4.83. (Kulikov) Call a subset X of an abelian p-group G pure-independent if X is 
independent (Exercise B-4.82) and (X) is a pure subgroup. 

(i) Prove that G has a maximal pure-independent subset. 

(ii) If X is a maximal pure-independent subset of G, the subgroup B = (X) is called 
a basic subgroup of G. Prove that if Bis a basic subgroup of G, then G/B is 
divisible. (See Fuchs (36] Chapter VI, for more about basic subgroups.) 

B-4.84. Prove that if G and H are torsion abelian groups, then G ©z H is a direct sum 
of cyclic groups. 

Hint. Use an exact sequence 0 -t B -t G -t G / B -t 0, where B is a basic subgroup, 

along with the following theorem: if 0 -t A' -2.+ A -t A" -t 0 is an exact sequence of 
abelian groups and i(A') is a pure subgroup of A, then 

0 -t A' ©z B -t A ©z B -t A" ©z B -t 0 

is exact for every abelian group B (Rotman (96], p. 150). 

B-4.85. Let A, B, and C be categories. A functor of two variables (or bifunctor) is 
a function T: Ax B -t C that assigns to each ordered pair of objects (A, B) an object 
T(A,B) E obj(C), and to each ordered pair of morphisms/: A -t A' and g: B -t B' a 
morphism T(f,g): T(A,B)-tT(A',B'), such that: 

(a) Fixing either variable is a functor; that is, for all A E obj(A) and B E obj(.B), 

TA =T(A, ): B-tC and Ts =T( ,B): A-tC 

are functors, where TA(B) = T(A,B) and TA(g) = T(lA,g). 
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(b) The following diagram commutes: 

T(A, B) ~ T(A, B') 

T(f,lB) ! ~ !T(f,lB1) 

T(A', B)-----+ T(A',B'). 
T(1A1,g) 

(i) Prove that tensor ModR x RMod--+ Ab, given by (A, B) 1-t A ©RB, is a functor 
of two variables. 

(ii) Prove that direct sum R Mod x R Mod --+ R Mod, given by (A, B) 1-t A EBB, is a 
functor of two variables (if f : A --+ A' and g : B --+ B', then f EB g : A EBB --+ A' EBB' 
is defined by (a,b) 1-t (fa,gb)). 

(iii) Modify the definition of a functor of two variables to allow contravariance in a 
variable, and prove that HomR( , ) : R Mod x R Mod--+ Ab is a functor of two 
variables. 

* B-4.86. Let A be a category with finite products, let A, B E obj(A), and let i,j: A --+ 
AEBA and i',j': B--+ BEBE be injections. If f,g: A--+ B, prove that fEBg: AEBA--+ BEBE 
is the unique map completing the coproduct diagram 

A 

/~ 
A EB A f$g B EB B 

~A 
A. 

B-4.87. Let 0--+ A--+ B--+ C--+ 0 and 0--+ A'--+ B'--+ C'--+ 0 be, respectively, exact 
sequences of right R-modules and left R-modules. Prove that the following diagram is 
commutative and all its rows and columns are exact: 

A©RA' --B©RA' ---+C©RA'--o 

t t t 
A©RB1 ---.B©RB1 ---.C©RB' ---.o 

t t t 
A©RC' ---.B©RC'---.C©RC' ---.Q 

t t t 
0 0 0 

Adjoint Isomorphisms 

There is a remarkable relationship between Hom and ©: the Adjoint Isomorphisms. 

We begin by introducing a way of comparing two functors. The reader has 
probably noticed that some homomorphisms are easier to construct than others. 
For example, if V, W, U are vector spaces over a field k and cp: W -+ U is a linear 
transformation, then cp*: Homk(V, W) -+ Homk(V, U), given by f t-+ fcp, is a 
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linear transformation. On the other hand, if dim(V) = n and dim(W) = m, 
then Matm,n(k), the vector space of all m x n matrices over k, is isomorphic to 
Homk(V, W); to construct an isomorphism Ow, we usually choose bases of V and 
of W (see the proof of Proposition A-7.40). We think of the first homomorphism as 
simpler, more natural, than the second one; the second depends on making choices, 
while the first does not. The next definition arose from trying to recognize this 
difference and to describe it precisely. 

Definition. Let F, G: C --+ V be covariant functors. A natural transformation 
is a family of morphisms T = (Tc: FC --+ GC)cEobj{C)• such that the following 
diagram commutes for all f: C--+ C' in C: 

FC~FC' 

TC! ! Tei 
GC ----aj GC' . 

If each Tc is an isomorphism, then T is called a natural isomorphism and F and 
G are called naturally isomorphic. 

There is a similar definition of natural transformation between contravariant 
functors. 

When V = k, the induced maps <p*: Homk(V, W) --+ Homk(V, U) in our pre
amble play the role of the maps Ff above in the natural transformation 
Homk(k, ) --+ lkMod (this is a special case of Proposition B-4.95 below). How
ever, the isomorphisms Ow: Homk(V, W) --+ Matm,n(k), which assign spaces of 
linear transformations to spaces of matrices, do not form a natural transformation; 
in fact, the assignment isn't even a functor! 

Example B-4.94. 

(i) If P = {p} is a one-point set, we claim that Hom(P, ) : Sets--+ Sets is 
naturally isomorphic to the identity functor lsets· If X is a set, define 

Tx: Hom(P, X) --+ lsets(X) = X by f i--+ f(p). 

Each Tx is a bijection, as is easily seen, and we now show that T is a 
natural transformation. Let X and Y be sets, and let h: X --+ Y; we 
must show that the following diagram commutes: 

Hom(P, X) ~ Hom(P, Y) 

TX! ! Ty 
lsets(X) --~ lsets(Y) 

h 

where h*: f i--+ hf. Going clockwise, f i--+ hf i--+ (hf)(p) = h(f(p)), while 
going counterclockwise, f i--+ f(p) i--+ h(f(p)). 

(ii) If k is a field and Vis a vector space over k, then its dual space V* is the 
vector space Homk (V, k) of all linear functionals on V. If we fix v E V, 
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then the evaluation map ev: f 1-t f(v) is a linear functional on V*; that 
is, ev: V*-+ k and so ev E (V*)* = V**. Define Tv: V-+ V** by 

TV: v 1-t ev. 

The reader may check that T is a natural transformation from the identity 
functor lkMod to the double dual functor; its restriction to the subcate
gory of finite-dimensional vector spaces is a natural isomorphism. """ 

From now on, we will abbreviate notation like lsets(X) to X. 

Proposition B-4.95. The isomorphisms <{JM of Corollary B-4.27 form a natural 
isomorphism HomR(R, ) -+ lRMod, the identity functor on R Mod. 

Proof. 24 The isomorphism <{JM: HomR(R, M) -+ M is given by f 1-t /(1). To see 
that these isomorphisms <p M form a natural isomorphism, it suffices to show, for 
any module homomorphism h: M -+ N, that the following diagram commutes: 

HomR(R, M) ~ HomR(R, N) 

~M ! ! ~N 
M----~N 

h 

whereh*: fi-+hf. Let/: R-+M. Goingclockwise,/1-th/1-t (hf)(l) =h(f(l)), 
while going counterclockwise, f 1-t /(1) 1-t h(f(l)). • 

Proposition B-4.96. The isomorphisms OM of Corollary B-4.84 form a natural 
isomorphism R©R - -+ lRMod, the identity functor on RMod. 

Proof. The isomorphism 0 M : R x R M -+ M is given by r © m 1-t rm. To see that 
these isomorphisms OM form a natural isomorphism, we must show, for any module 
homomorphism h: M -+ N, that the following diagram commutes: 

l®h 
R©RM~R@RN 

9M ! ! 9N 

M---~N. 
h 

It suffices to look at a generator r©m (sometimes called a pure tensor) of R@RM. 
Going clockwise, r©m 1-t r©h(m) 1-t rh(m), while going counterclockwise, r©m 1-t 
rm 1-t h(rm). These agree, for his an R-map, so that h(rm) = rh(m). • 

Example B-4.97. 

(i) We are now going to construct functor categories. Given categories A 
and C, we construct the category cA whose objects are (covariant) func
tors F: A-+ C, whose morphisms are natural transformations T: F-+ G, 
and whose composition is the only reasonable candidate: if 

F.-!...+G....'!..-tH 

24Note the similarity of this proof and the next with the argument in Example B-4.94(i). 
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are natural transformations, define (JT: F --+ H by ( ar) A = a Ar A for 
every A E obj(A). 

Recall that a category consists of a class of objects, sets of morphisms, 
and composition. It would be routine to check that cA is a category 
if each Hom(F, G) = {all natural transformations F --+ G} were a set. 
But if obj(A) is a proper class, then so is any natural transformation 
r: F--+ G, for Tis a family of morphisms, one for each object in A. In 
the usual set theory, however, a proper class is forbidden to be an element 
of a class: hence, T ¢ Hom(F, G). A definition saves us. 

Definition. A category A is a small category if obj(A) is a set. 

The functor category CA actually is a category when A is a small category. 
If F, G: A --+ C are functors, then HomcA (F, G) is a bona fide set; it is 
often denoted by Nat(F, G). 

(ii) Let 'D be a category with objects A, B. In Exercise B-4.11 on page 459, 

we constructed a category C whose objects are sequences A ~ X +f!..- B, 
where A, Bare two chosen objectis in 'D, and whose morphisms are triples 
(lA, 0, lB) making the following diagram commute: 

We saw that a coproduct of A and B in C is an initial object in this new 
category, and we used this fact to prove uniqueness of coproduct. If A 
is the (small) category with obj(A) = {1, 2, 3} and Hom(l, 2) = { i} and 
Hom(3, 2) = {j}, then a functor F: A--+ C sends 

to the sequence 

A--+C+--B 

(note that A and Bare fixed). A commutative diagram is just a natural 
transformation. Hence, the category that arose in the exercise is just the 
functor category CA. 

(iii) Consider Z as a partially ordered set in which we reverse the usual in
equalities. As in Example B-4.l(viii), we consider the (small) category 
PO(Z) whose objects are integers and whose morphisms are identities 
n --+ n and composites of arrows n --+ n - 1. Given a category C, a 
covariant functor F: PO(Z) --+ C is a sequence 

· · · --+ Fn+l --+ Fn --+ Fn-1 --+ · · · 
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and a natural transformation is just a sequence (Tn)nEZ making the fol
lowing diagram commute: 

···-F'+1 -F'-F' 1 -··· n f' n 9, n-

Thus, the functor category cPO(Z) can be viewed as a category whose 
objects are sequences and whose morphisms are commutative diagrams . 

.... 

The key idea behind the Adjoint Isomorphisms is that a function of two vari
ables, say, f: Ax B --* C, can be viewed as a one-parameter family Ua)aEA of 
functions of the first variable: fix a EA and define fa: B--* C by fa: b 1--7 f(a, b). 

Recall Proposition B-4.82: if Rand Sare rings, AR is a module, and RBs is a 
bimodule, then A@RB is aright S-module, where (a®b)s = a®(bs). FUrthermore, 
if Cs is a module, then Proposition B-4.25 shows that Homs(B, C) is a right R
module, where (fr)(b) = f(rb). Thus, HomR(A, Homs(B, C)) makes sense, for 
it consists of R-maps between right R-modules. Finally, if F: A--* Homs(B, C), 
that is, FE HomR(A, Homs(B, C)), then Fis a one-parameter family of functions 
(Fa: B-* C)aEA, where Fa: bl--7 F(a)(b). 

Theorem B-4.98 (Adjoint Isomorphism). Given modules AR, RBs, and Cs, 
where R and S are rings, there is an isomorphism of abelian groups 

TA,B,c: Homs(A ®RB, C) --* HomR(A, Homs(B, C)); 

namely, for f: A ®RB--* C, a EA, and b EB, 

TA,B,C: f 1--7 f* = (!;: B--* C)aEA, where f:: b 1--7 f(a ® b). 

Indeed, fixing any two of A, B, C, the maps T A,B ,c constitute natural isomorphisms 

Homs(-®R B,C)-* HomR( ,Homs(B,C)), 

Homs(A®R -,C)--* HomR(A,Homs( ,C)), 

and 

Homs(A ®RB, ) --* HomR(A,Homs(B, )). 

Proof. To prove that T = TA,B,C is a Z-homomorphism, let f,g: A ®RB--* C. 
The definition of f + g gives, for all a E A, 

T(j + g)a: b 1--7 (! + g)(a ® b) = f(a ® b) + g(a ® b) = T(f)a(b) + T(g)a(b). 

Therefore, T(j + g) = T(j) + T(g). 

Next, T is injective. If T(j) = 0, then T(j)a = 0 for all a E A, so that 
0 = T(j)a(b) = f(a ® b) for all a E A and b E B. Therefore, f = 0 because it 
vanishes on every generator of A ® R B. 
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We now show that T is surjective. If F: A --+ Homs ( B, C) is an R-map, define 
<p: Ax B--+ C by <p(a,b) = Fa(b). Now consider the diagram: 

It is straightforward to check that <p is R-biadditive, and so there exists a Z
homomorphism cp: A ®RB--+ C with cp(a ® b) = <p(a,b) = Fa(b) for all a E A 
and b EB. Therefore, F = r(tp), so that Tis surjective. 

We let the reader prove that the indicated maps form natural transformations 
by supplying diagrams and verifying that they commute. • 

We merely state a variation of the Adjoint Isomorphism. The key idea now 
is to view a function f: A x B --+ C of two variables as a one-parameter family 
(/b)bEB of functions of the second variable: fix b E B and define fb: A --+ C by 
fb: a i--+ f(a, b). 

Theorem B-4.99 {Adjoint Isomorphism II). Given modules RA, sBR, and 
sC, where R and S are rings, there is an isomorphism of abelian groups 

TA,B,C: Homs(B ®RA, C) --+ HomR(A, Homs(B, C)); 

namely, for f: B ®RA--+ C, a EA, and b EB, 

TA,B,C: f i--+ f* = (!;: B--+ C)aEA, where f:: bi--+ f(b ®a). 

Moreover, TA,B,C is a natural isomorphism in each variable. 

As promised earlier, here is a less computational proof of Theorem B-4.89, the 
right exactness of tensor product. 

Proposition B-4.100. If A is a right R-module, then A ®R - is a right exact 
functor, that is, if 

B' ~ B -4 B" --+ 0 

is an exact sequence of left R-modules, then 

A ® R B' 14i A ® R B 1~ A ® R B" --+ 0 

is an exact sequence of abelian groups. 

Proof. Regard a left R-module B as an (R, Z)-bimodule, and note, for any abelian 
group C, that Homz(B, C) is a right R-module, by Proposition B-4.25(iv). In light 
of Proposition B-4.23, it suffices to prove that the top row of the following diagram 
is exact for every C: 

0 _,.. Homz (A ® R B", C) _,.. Homz (A ® R B, C) _,.. Homz (A ® R B', C) 

T~,C ! ! TA,C ! T~,C 
0 - HomR(A, H") --~ HomR(A, H) --~ HomR(A, H') 
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where H" = Homz(B",C), H = Homz(B,C), and H' = Homz(B',C). By the 
Adjoint Isomorphism, the vertical maps are isomorphisms and the diagram com
mutes. The bottom row is exact, for it arises from the given exact sequence 
B' --t B --t B" --t 0 by first applying the left exact ( contravariant) functor 
Homz( , C), and then applying the left exact (covariant) functor HomR(A, ). 
Exactness of the top row now follows from Exercise B-1.57 on page 310. • 

Exercises 

B-4.88. Let F, G: R Mod --t Ab be additive functors of the same variance. If F and G 
are naturally isomorphic, prove that the following properties of Fare also enjoyed by G: 
left exact; right exact; exact. 

B-4.89. A functor T: RMod--+ Ab is called representable if it is naturally isomorphic 
to HomR(A, ) for some R-module A. Prove that if HomR(A, ) ~ HomR(B, ), then 
A~ B. Conclude that if Tis naturally isomorphic to HomR(A, ), then T determines A 
up to isomorphism. 

Hint. Use Yoneda's Lemma (Rotman [96], p. 25). Let C be a category, let A E obj(C), 
and let G: C--+ Sets be a covariant functor. Then there is a bijection 

y: Nat(Homc{A, ),G)--+ G(A) 

given by y: T 1-t TA(lA)· 

B-4.90. If kV is the category of all finite-dimensional vector spaces over a field k, prove 
that the double dual, v 1-t v··, is naturally isomorphic to the identity functor. 

B-4.91. Prove that there is a category, Cat, whose objects are small categories and whose 
morphisms are (covariant) functors. 

B-4.92. Define a category Groups2 whose objects are ordered pairs (G,N), where N 
is a normal subgroup of G, whose morphisms {G, N) --+ (H, M) are homomorphisms 
f: G--+ H with f (N) ~ M, and with the obvious composition. 

{i) Prove that Groups2 is a category. 

{ii) Prove that Q: Groups2 --+ Groups2 is a functor, where Q is defined on objects 
by Q(G, N) = (G/N, {1}) and on morphisms by Q(f): (G/N, {1})--+ (H/M, {1}), 
where Q(f): x + N 1-t f(x) + M. 

(iii) Prove that the family of natural maps 7r: G --+ G / N form a natural transformation 
7r: laroups2 --+ Q; that is, the following diagrams commute: 

(G,N)--1----- (H,M) 

'lr(G,N) l l 1r(H 0 M) 

(G/N, {1}) --qi (H/M, {1}). 

Thus, the natural maps are natural! 
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Flat Modules 

Flat modules arise from tensor products in the same way that projective and injec
tive modules arise from Hom. 

Definition. Let R be a ring. A right R-module A is ftat 25 if A ®R - is an exact 
functor. A left R-module Bis flat if - ®RB is an exact functor. 

Since A®R- is a right exact functor for every right R-module A, we see that A 
is flat if and only if lA ®i: A®RB' ---+ A®RB is an injection whenever i: B' ---+ Bis 
an injection. Investigation of the kernel of A®RB'---+ A®RB is done in homological 
algebra; it is intimately related to a functor called Torf (A, ). Similarly, a left 
R-module Bis flat if and only if j®lB: A' ®RB---+ A®RB is an injection whenever 
j : A' ---+ A is an injection, and investigation of the kernel of A' ® R B ---+ A ® R B is 
related to a functor called Torf ( , B). 

We will see, in Corollary B-4.105, that abelian groups are flat Z-modules if 
and only if they are torsion-free. In particular, Z, Q, JR, and C are flat Z-modules. 
However, finite fields IFq are not flat when viewed as Z-modules. 

Here are some examples of flat modules over more general rings. 

Lemma B-4.101. Let R be an arbitrary ring. 

(i) The right R-module R is a fiat right R-module, and the left R-module R 
is a fiat left R-module. 

(ii) A direct sum E9j Mi of right R-modules is fiat if and only each Mj is 
fiat. 

(iii) Every projective right R-module F is fiat. 

Proof. 

(i) Consider the commutative diagram 

where i: A---+ Bis an injection, O': a i-+ 1 ®a, and r: bi-+ 1 ® b. Now 
both O' and T are natural isomorphisms, by Proposition B-4.84, and so 
lR ® i = Ti0'- 1 is an injection. Therefore, R is a flat module over itself. 

(ii) Any family of R-maps (fj: Uj ---+ ltj)jEJ can be assembled into an R-map 
cp: E9j Uj ---+ E9j ltj, where cp: (uj) i-+ (fj(uj)), and it is easy to check 
that cp is an injection if and only if each fj is an injection (compose fj 
with the imbedding of ltj into E9 Vi, and then apply Proposition B-2.19). 

25 This term arose as the translation into algebra of a geometric property of varieties. 
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Let i : A -+ B be an injection. There is a commutative diagram 

where cp: (mi© a) H (mj © ia), (in the previous paragraph, take Uj = 
Mi ©RA and Vj =Mi ©RB), 1 is the identity map on ffii Mi, and the 
downward maps are the isomorphisms of Proposition B-4.86. 

By our initial observation, 1 © i is an injection if and only if each 
lMi © i is an injection; this says that ffii Mi is fl.at if and only if each 
Mi is fl.at. 

(iii) A free right R-module, being a direct sum of copies of R, must be fl.at, 
by (i) and (ii). But a module is projective if and only if it is a direct 
summand of a free module, so that (ii) shows that projective modules 
are fl.at. • 

This lemma cannot be improved without further assumptions on the ring, for 
there exist rings R for which right R-modules are fl.at if and only if they are pro
jective. 

We can now prove a result that we used earlier, in the proof of Theorem B-4.64: 
Every left R-module can be imbedded as a submodule of an injective left R-module. 

Proposition B-4.102. If B is a fiat right R-module and D is a divisible abelian 
group, then Homz(B, D) is an injective left R-module. In particular, Homz(R, D) 
is an injective left R-module. 

Proof. Since Bis a (Z, R)-bimodule, Proposition B-4.25(i) shows that Homz(B, D) 
is a left R-module. It suffices to prove that HomR( , Homz(B, D)) is an exact func
tor. For any left R-module A, Adjoint Isomorphism II gives natural isomorphisms 

TA: Homz(B ©R A,D)-+ HomR(A,Homz(B,D)); 

that is, the functors Homz(B©R , D) and HomR( , Homz(B, D)) are isomorphic. 
Now Homz(B©R , D) is just the composite A H B ©RAH Homz(B ©RA, D). 
The first functor B © R - is exact because BR is fl.at, and the second functor 
Homz( , D) is exact because Dis divisible (hence Z-injective). Since the composite 
of exact functors is exact, we have Homz(B, D) injective. • 

Proposition B-4.103. If every finitely generated submodule of a right R-module 
M is fiat, then M is fiat. 

Proof. Let f: A -+ B be an injective R-map between left R-modules. If u E 

M ©RA lies in ker(lM ©!),then u = l:i mi© ai, where mi EM and ai EA, and 

n 

(lM © f)(u) = 2:::: mi© fai = 0 in M ©RB. 
i=l 



Flat Modules 531 

As in the construction of the tensor product in the proof of Proposition B-4. 77, we 
have M ®RB~ F/S, where Fis the free abelian group with basis M x Band S 
is the subgroup generated by all elements in F of the form 

(m, b + b') - (m, b) - (m, b'), 
( m + m', b) - ( m, b) - ( m', b), 

(mr, b) - (m, rb). 

Since I:i mi® fai = 0, we must have l::i(mi, fai) E S, and hence it is a sum of 
finitely many relators (i.e., generators of S); let D denote the finite set consisting 
of the first coordinates in this expression. Define N to be the submodule of M 
generated by {mi, ... , mn} n D. Of course, N is a finitely generated submodule of 
M; let j: N---+ M be the inclusion. Consider the element 

v = L mi® ai E N ®RA. 
i 

Notethatj®lA: N®RA-+M®RA, and 

(j ® lA)(v) = L mi® ai = u. 
i 

Now v lies in ker(lN ® !), for we have taken care that all the relations making 
(lM ® f)(u) = 0 in M ®RB are still present in N ®RB: 

M®RA~M®RB 

j®lA l l j®lB 

N@RA__,..N®RB. 
lN®f 

Since N is fl.at, by hypothesis, we have v = 0. But (j ® lA)(v) = u, so that u = 0 
and hence Mis fl.at. • 

Proposition B-4.104. If R is a domain, then every fiat R-module A is torsion
free. 

Proof. Since A is flat, the functor A®R- is exact. Hence, exactness ofO---+ R---+ Q, 
where Q = FracR, gives exactness of 0---+ R ®RA---+ Q ®RA. Now R ®RA~ A 
and Q ®RA is torsion-free, for it is a vector space over Q. As any submodule of a 
torsion-free R-module, A is torsion-free. • 

Corollary B-4.105. If Risa PID, then an R-module A is fiat if and only if it is 
torsion-free. 

Proof. Necessity if Proposition B-4.104. For sufficiency, assume that A is torsion
free. By Proposition B-4.103, it suffices to prove that every finitely generated 
submodule S of A is flat. But the Basis Theorem says that S is free, since A is 
torsion-free, and so Sis flat. • 

Remark. Proposition B-4.103 will be generalized in the appendix on limits. Given 
a family of modules (AJ)JEJ indexed by a poset J, and a family of maps relating 
the Aj, there is a construction of a module !!!¥jEJ Aj, called their direct limit, 
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which generalizes direct sum, pushout, and union (if the index set J has an extra 
property-J is directed-then ~iEJ Ai behaves "nicely"). We shall see that every 

direct limit (with directed index set) of flat modules is flat. This does generalize 
Proposition B-4.103 because every module is a direct limit (with directed index 
set) of its finitely generated submodules. If Risa domain, then Frac(R) is a direct 
limit of cyclic modules, and this will generalize the next corollary. <Ill 

Corollary B-4.106. If Risa PID with Q = Frac(R), then Q is a fiat R-module. 

Remark. As we have just remarked, this corollary is true for every domain R. <Ill 

Proof. By Proposition B-4.103, it suffices to prove that every finitely generated 
submodule N = \xi, ... ,xn) ~ Q is flat. Now each Xi= ri/si, where ri,si ER 
and Si-:/:- 0. Ifs= s1 · · ·sn, then N ~ (1/s) ~ R. Now N is torsion-free, being a 
submodule of a torsion-free module, and so it is flat, by Corollary B-4.105. • 

We are now going to give a connection between flat modules and injective 
modules (Proposition B-4.108). 

Definition. If Bis a right R-module, its character group B* is the left R-module 

B* = Homz(B, Q/Z). 

Recall that B* is a left R-module if we define r f (for r E R and f: B -+ Q/Z) 
by 

rf: b H f(br). 

The next lemma improves Proposition B-4.23. 

Lemma B-4.107. A sequence of right R-modules 

0-tA~B~C-tO 
is exact if and only if the sequence of character groups 

0 -+ C* £:..+ B* ~ A* -+ 0 

is exact. 

Proof. Since divisible abelian groups are injective Z-modules, by Corollary B-4.61, 
Q/Z is injective. Hence, Homz( , Q/Z) is an exact contravariant functor, and ex
actness of the original sequence gives exactness of the sequence of character groups. 

For the converse, it suffices to prove that ker (3 = im a without assuming that 
either a* is surjective or (3* is injective. 

imo: ~ ker (3: If x EA and ax fj. ker (3, then f3o:(x)-:/:- 0. Now there is a map 
f: C-+ Q/Z with ff3o:(x)-:/:- 0, by Exercise B-4.57(i) on page on page 501. Thus, 
f E C* and f (30: -:/:- 0, which contradicts the hypothesis that a* (3* = 0. 

ker (3 ~ im a: If y E ker (3 and y fj. im a, then y + im a is a nonzero element 
of B / im a. Thus, there is a map g: B / im a -+ Q/Z with g(y + im a) -:/:- 0, by 
Exercise B-4.57(i). If v: B-+ B/imo: is the natural map, define g' = gv EB*; 
note that g'(y)-:/:- 0, for g'(y) = gv(y) = g(y + imo:). Now g'(imo:) = {O}, so that 
0 = g' a = a* (g') and g' E ker a* = im (3*. Thus, g' = (3* ( h) for some h E C*; that 
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is, g' = hf3. Hence, g'(y) = hf3(y), which is a contradiction, for g'(y) =/:- 0, while 
hf3(y) = 0, because y E ker (3. • 

Proposition B-4.108 (Lambek). A right R-module B is flat if and only if its 
character group B* is an injective left R-module. 

Proof. If B is fl.at, then Proposition B-4.102 shows that the left R-module B* = 
Homz(B, Q/Z) is an injective left R-module (for Q/Z is divisible). 

Conversely, let B* be an injective left R-module and let A' -+A be an injection 
between left R-modules A' and A. Since HomR(A, B*) = HomR(A, Homz(B, Q/Z)), 
the Adjoint Isomorphism gives a commutative diagram in which the vertical maps 
are isomorphisms: 

HomR(A, B*) HomR(A', B*) 0 

! ! 
Homz(B ©R A,Q/Z)----. Homz(B © A',Q/Z) - 0 

=! != 
(B ©RA)* ----~ (B ©RA')* -----+ 0. 

Since B* is injective, the top row is exact, which gives exactness of the bottom row. 
By Lemma B-4.107, the sequence 0-+ B ©RA'-+ B ©RA is exact, and this gives 
B fl.at. • 

Corollary B-4.109. A right R-module B is flat if and only if 0 -+ B ©RI -+ 
B © R R is exact for every finitely generated left ideal I. 

Proof. If B is fl.at, then the sequence 0 -+ B © R I -+ B © R R is exact for every 
left R-module I; in particular, this sequence is exact when I is a finitely generated 
left ideal. 

Conversely, Proposition B-4.103 shows that every (not necessarily finitely gen
erated) left ideal I is fl.at (for every finitely generated ideal contained in I is fl.at). 
There is an exact sequence (B ©RR)* -+ (B ©RI)* -+ 0 that, by the Adjoint Iso
morphism, gives exactness of HomR(R, B*) -+ HomR(I, B*) -+ 0. This says that 
every map from a left ideal I to B* extends to a map R-+ B*; thus, B* satisfies the 
Baer Criterion, Theorem B-4.57, and so B* is injective. By Proposition B-4.108, 
Bis fl.at. • 

We now seek further connections between fl.at modules and projectives. 

Lemma B-4.110. Given modules (RX, RYs, Zs), where Rand Sare rings, there 
is a natural transformation, 

Tx,Y,z: Homs(Y, Z) ©RX -+ Homs(HomR(X, Y), Z), 

given by 
Tx,Y,z(f © x): g 1-t f(g(x)) 

(where f E Homs (Y, Z) and x E X), which is an isomorphism whenever X is a 
finitely generated free left R-module. 
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Proof. Note that both Homs(Y, Z) and HomR(X, Y) make sense, for Y is a bi
module. It is straightforward to check that Tx,Y,z is a homomorphism natural in 
X, Y, Z, that TR,Y,z is an isomorphism, and, by induction on the size of a basis, 
that Tx,Y,z is an isomorphism when Xis finitely generated and free. • 

Theorem B-4.111. A finitely presented left R-module B over any ring R is fiat 
if and only if it is projective. 

Remark. See Rotman [96], p. 142, for a different proof of this theorem. ""' 

Proof. All projective modules are fl.at, by Lemma B-4.101, and so only the converse 
is significant. Since B is finitely presented, there is an exact sequence 

F' -+ F -+ B -+ 0, 

where both F' and F are finitely generated free left R-modules. We begin by show
ing, for every left R-module Y (which is necessarily an (R, Z)-bimodule), that the 
map TB = rB,Y,Q/Z: Y* ©RB -+ HomR(B, Y)* of Lemma B-4.110 is an isomor
phism. 

Consider the following diagram: 

Y* ©RF'---- Y* ©RF---- Y* ©RB--~ 0 

TFI ! ! TF ! TB 

HomR(F', Y)*---. HomR(F, Y)*---. HomR(B, Y)*---. 0. 

By Lemma B-4.110, this diagram commutes (for Y* ©RF= Homz(Y, Q/Z) ©RF 
and HomR(F, Y)* = Homz(HomR(F, Y), Q/Z)) and the first two vertical maps 
are isomorphisms. The top row is exact, because Y* ©R - is right exact. The 
bottom row is exact because HomR( , Y)* is left exact: it is the composite of the 
contravariant left exact functor HomR( , Y) and the contravariant exact functor 
* = Homz( , Q/Z). Proposition B-1.46 now shows that the third vertical arrow, 
TB: Y* ©RB-+ HomR(B, Y)*, is an isomorphism. 

To prove that B is projective, it suffices to prove that Hom(B, ) preserves 
surjections: that is, if A-+ A"-+ 0 is exact, then Hom(B, A)-+ Hom(B, A")-+ 0 
is exact. By Lemma B-4.107, it suffices to show that 0 -+ Hom(B, A")* -+ 
Hom(B, A)* is exact. Consider the diagram: 

0---. Hom(B, A")*---. Hom(B, A)*. 

Naturality of T gives commutativity, and the vertical maps T are isomorphisms, 
by Lemma B-4.110, because B is finitely presented. Since A-+ A" -+ 0 is exact, 
0 -+ A"* -+ A* is exact, and so the top row is exact, because B is fl.at. It follows 
that the bottom row is also exact; that is, 0 -+ Hom(B, A")* -+ Hom(B, A")* is 
exact, which is what we were to show. Therefore, Bis projective. • 
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Corollary B-4.112. If R is left noetherian, then a finitely generated left R-module 
B is fiat if and only if it is projective. 

Proof. This follows from the theorem once we recall Proposition B-4.47: every 
finitely generated left module over a noetherian ring is finitely presented. • 

We have seen that if R is a PID, then an R-module is flat if and only if it is 
torsion-free; it follows that every submodule of a flat R-module is itself flat. If R 
is not a PID, are submodules of flat R-modules always flat? We choose to consider 
this question in the context of algebraic number theory. 

Definition. A ring R is left hereditary if every left ideal is a projective left R
module. A ring R is right hereditary if every right ideal is a projective right 
R-module. 

A Dedekind ring is a domain R that is (left and right) hereditary; that is, 
every ideal is a projective R-module. 

Every PID R is a Dedekind ring, for every ideal I is principal. Hence, either 
I = (0) (which is projective) or I = (a) for a i- 0, in which case r H ra is an 
isomorphism, R 9:! I; thus, I is free and, hence, is projective. 

A more interesting example of a Dedekind ring is the ring of integers in an 
algebraic number field, which we will discuss in Part 2. 

There is an interesting noncommutative example of a left hereditary ring due 
to Small: 

R={ [~ ~] :aEZandb,cEQ}. 

We have already seen, in Exercise B-1.28 on page 288, that R is left noetherian but 
not right noetherian. It turns out that R is left hereditary but not right hereditary. 

The following theorem, well-known for modules over PIDs (where every nonzero 
ideal is isomorphic to R-see Theorem B-2.28) and more generally over Dedekind 
rings, was generalized by Kaplansky for left hereditary rings. 

Theorem B-4.113 (Kaplansky). If R is left hereditary, then every submodule A 
of a free left R-module F is isomorphic to a direct sum of left ideals. 

Proof. Let { Xk : k E K} be a basis of F; by the Axiom of Choice, we may assume 
that the index set K is well-ordered. Define Fo = {O}, where 0 is the smallest index 
in K and, for each k E K, define 

and Fk = E9 Rxi = Fk ffi Rxk. 
i:E;k 

It follows that F 0 = Rx0 . Each element a E An Fk has a unique expression 
a= b + rxk, where b E Fk and r ER, so that 'Pk: An Fk--+ R, given by a Hr, is 
well-defined. There is an exact sequence of R-modules 

0--+ An Fk--+ An Fk--+ imcpk--+ 0. 
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Since im cpk is a left ideal, it is projective, and so this sequence splits: 

AnFk = (AnFk) $Ck, 

where ck~ imcpk. We claim that A= EBkEK ck, which will complete the proof. 

(i) A= (LJkEK Ck): Since F = ukEK Fk, each a EA (as any element of F) lies in 
some Fk; let µ(a) be the smallest index k with a E Fk. Define C = (LJkEK Ck) ~A. 
If C £; A, then J = {µ(a) : a E A - C} -:f 0. Let j be the smallest element in 
J, and let y EA - C have µ(y) = j. Now y EA n Fj = (An Fj) $ Cj, so that 
y = b + c, where b EA n Fj and c E Cj. Hence, b = y- c EA, b ~ C (lest y EC), 
and µ(b) < j, a contradiction. Therefore, A= C = (LJkEK Ck)· 

(ii) Uniqueness of expression: Suppose that C1 + ... + Cn = 0, where Ci E ck;' 
k1 < · · · < kn, and kn is minimal (among all such equations). Then 

c1 + · · · + Cn-1 = -Cn E (An Fkn) n Ckn = {0}. 

It follows that Cn = 0, contradicting the minimality of kn. • 

Corollary B-4.114. If R is a left hereditary ring, then every submodule S of a 
projective left R-module P is projective. 

Proof. Since P is projective, it is a submodule, even a direct summand, of a free 
module, by Theorem B-4.44. Therefore, S is a submodule of a free module, and 
so S is a direct sum of ideals, by Theorem B-4.113, each of which is projective. 
Therefore, S is projective, by Corollary B-4.43. • 

Here is another proof for PIDs. 

Corollary B-4.115. If R is a PID, then every submodule A of a free R-module F 
is a free R-module. 

Proof. In the notation of Theorem B-4.113, if F has a basis {xk : k E K}, then 
A= EBkEK ck, where ck is isomorphic to an ideal in R. Since Risa PID, every 
nonzero ideal is isomorphic to R: either Ck= {O} or Ck~ R. Therefore, A is free 
and rank(A) :::; IKI = rank(F). • 

Let A be a submodule of a free R-module F. While rank(A) :::; rank(F) holds 
when Risa PID, this inequality need not hold for more general domains R. First, 
if R is a domain that is not noetherian, then it has an ideal I that is not finitely 
generated; that is, I is a submodule of a cyclic module that is not finitely generated. 
Second, if B can be generated by n elements and B' ~ B is finitely generated, 
B' still may require more than n generators. For example, if k is a field and 
R = k[x, y], then R is not a PID, and so there is some ideal I that is not principal 
(e.g., I= (x, y)); that is, R is generated by one element and its submodule I cannot 
be generated by one element. 

Corollary B-4.116. If R is a PID, then every projective R-module is free. 

Proof. This follows at once from Corollary B-4.115(i), for every projective module 
is a submodule (even a summand) of a free module. • 
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If R is a Dedekind ring, then we have just shown, in Theorem B-4.113, that 
every finitely generated projective R-module P, being a submodule of a free module, 
is (isomorphic to) a direct sum of ideals: P 9"' Ii EB··· EB In. This decomposition 
is not unique: P 9"' FEB J, where F is free and J is an ideal (in fact, J is the 
product ideal Ii··· In)· Steinitz proved that this latter decomposition is unique to 
isomorphism (we shall prove this in Part 2). 

Let us show that a direct product of projectives need not be projective. 

Theorem B-4.117 (Baer). The direct product 'I}" of infinitely many copies of Z 
is not free (and, hence, it is not projective). 

Remark. It is easy to see that the standard "basis" B ={en: n 2: 1}, where en 
has nth coordinate 1 and all other coordinates 0, is not a basis here, for (B) is 
countable while zN is uncountable. <Ill 

Proof. Let us write the elements of zN as sequences (mn), where mn E Z. It 
suffices, by Corollary B-4.115, to exhibit a subgroup s ~ zN that is not free. 
Choose a prime p, and define S by 

s = { (mn) E zN: for each k 2: 1, we have pk I mn for almost all n }26. 

Thus, p divides almost all mn, p2 divides almost all mn, and so forth. For example, 
s = (1,p,p2 ,p3 , ... ) ES. It is easy to check that Sis a subgroup of zN. We claim 
that ifs= (mn) ES ands= ps* for some s* E zN, thens* ES. Ifs* = (dn), then 
pdn = mn for all n; since pk+l I mn for almost all n, we have pk I dn for almost 
all n. 

If (mn) ES, then so is (Enmn), where En= ±1, so that Sis uncountable. Were 
Sa free abelian group, then S/pS would be uncountable, for S = EBjEJ C3 implies 
S/pS 9"' E.9jEJ(C3/pC3). We complete the proof by showing that dim(S/pS) is 
countable, contradicting S/pS being countable. Let en= (0, ... , 0, 1, 0, ... ), where 
1 is in the nth spot; note that en ES. We claim that the countable family of cosets 
{en+ pS: n EN} spans S/pS. Ifs= (mn) ES, then almost all mn are divisible 
by p. Hence, there is an integer N so that s - L~=O mnen = ps*, and s* lies in S. 
Thus, in S/pS, the coset s + pS is a finite linear combination of cosets of en, and 
so dim(S/pS) is countable. • 

We have just seen that zN, the direct product of countably many copies of 
Z, is not free abelian, but it is true that every countable subgroup of zN is a free 
abelian group. A theorem of Specker-Nobeling (see Fuchs [37], p. 175) shows that 
the subgroup B of all bounded sequences, 

B = {(mn) E zN: there exists N with lmnl :SN for all n}, 

is a free abelian group (in fact, this is true for Z1 for any index set I). 

We are going to show that Corollary B-4.114 characterizes left hereditary rings, 
but we begin with a lemma. 

26 For readers familiar with the p-adic topology, S consists of null-sequences. 
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Lemma B-4.118. A left R-module P is projective if and only if every diagram 
with exact row and with Q injective can be completed to a commutative diagram; 
that is, every map f : P -+ Q" can be lifted: 

p 

///if 
p. 

Q ----- Q'' ----- 0. 

Proof. If P is projective, then the diagram can always be completed, with no 
hypothesis on Q. 

For the converse, we must find a map P -+ A making the following diagram 
commute: 

p 

///if 
p. 

0 -----. A' -----. A -----. A'' -----. 0. 
i T 

By Theorem B-4.64, there are an injective module Q and an imbedding a: A-+ Q. 
Enlarge the diagram to obtain 

where Q" = cokerai and vis the natural map. By Proposition B-1.46, there exists 
a map p: A"-+ Q" making the diagram commute. By hypothesis, the map pf can 
be lifted: there exists -y: P-+ Q with V/ =pf. We claim that im1 ~ ima, which 
will complete the proof (because ima ~A). If x E P, choose a EA with rn = fx. 
Then V/X = pfx = pra = vaa, so that /X - aa E kerv = imai. Hence, there is 
a' EA' with /X - aa = aia', and so /X = a(a + ia') E ima. • 

Theorem B-4.119 (Cartan-Eilenberg). The following statements are equiva
lent for a ring R. 

(i) R is left hereditary. 

(ii) Every submodule of a projective module is projective. 

(iii) Every quotient of an injective module is injective. 

Proof. 

(i) ::::} (ii) Corollary B-4.114. 

(ii) ::::} (i) R is a free R-module, and so it is projective. Therefore, its sub
modules, the left ideals, are projective, and R is left hereditary. 
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(iii) ::::} (ii) Consider the diagram with exact rows 

P ..,,.__!___ P' .___ 0 
I ' .. · .. 1 

klh>( 9 J 
'f p:: ..... 

Q ~ Q'' ------ 0, 

where Pis projective and Q is injective. By Lemma B-4.118, it suffices to 
find a map g: P' -t Q with rg = f. Now Q" is injective, by hypothesis, so 
that there exists a map h: P -+ Q" giving commutativity: hj = f. Since 
P is projective, there is a map k: P -+ Q with rk = h. The composite 
g = kj: P' -+ P -+ Q is the desired map, for rg = r(kj) = hj = f. 

(ii) ::::} (iii) Dualize the proof just given, using the dual of Lemma B-4.118. • 

We can characterize noetherian hereditary rings in terms of flatness. 

Proposition B-4.120. If R is a left noetherian ring, then every left ideal is fiat 
if and only if R is left hereditary. 

Proof. Since R is left noetherian, every left ideal I is finitely presented, and so I 
flat implies that it is projective, by Corollary B-4.112. Hence, R is left hereditary. 
Conversely, if R is left hereditary, then every left ideal is projective, and so every 
left ideal is flat, by Proposition B-4.101. • 

Let us now show that our definition of Dedekind ring coincides with more 
classical definitions. 

Definition. Let R be a domain with Q = Frac(R). An ideal I is invertible if 
there are elements al, ... , an E I and elements Q1, ... , Qn E Q with 

(i) qi! ~ R for all i = 1, ... , n, 

(ii) 1 = I:i~l Qiai. 

For example, every nonzero principal ideal Ra is invertible: define al = a and 
Q1=1/a. Note that if I is invertible, then I =f. (0). We show that I= (a1, ... ,an)· 
Clearly, (ai, ... , an) ~ I. For the reverse inclusion, let b E /. Now b = bl = 
l:(bqi)ai; since bqi E qi!~ R, we have I~ (ai, ... , an)· 

Remark. If Risa domain and Q = Frac(R), then a fractional ideal is a finitely 
generated nonzero R-submodule of Q. All the fractional ideals in Q form a commu
tative monoid under the following multiplication: if I, J are fractional ideals, their 
product is 

I J = {~= ak/'k : ak E I and l'k E J}. 
k 

The unit in this monoid is R. If I is an invertible ideal and 1-1 is the R-submodule 
of Q generated by q1 , ... , Qn, then 1-1 is a fractional ideal and 

n- 1 = R = r 1I. 
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We will soon see that every nonzero ideal in a Dedekind ring R is invertible, so that 
the monoid of all fractional ideals is an abelian group (which turns out to be free 
with basis all nonzero prime ideals). The class group of R is defined to be the 
quotient group of this group by the subgroup of all nonzero principal ideals. 27 <Ill 

Proposition B-4.121. If R is a domain, then a nonzero ideal I is projective if 
and only if it is invertible. 

Proof. If I is projective, then Proposition B-4.46 says that I has a projective basis: 
there are (ak E I)kEK and R-maps (cpk: I -7 R)kEK such that, (i) for each b E I, 
almost all 'Pk(b) = 0, (ii) for each b EI, we have b = L,kEK(cpkb)ak. 

Let Q = Frac(R). If b EI and b =f:. 0, define Qk E Q by 

Qk = 'Pk(b)/b. 

Note that Qk does not depend on the choice of nonzero b: if b' E I is nonzero, then 
b'cpk(b) = 'Pk(b'b) = bcpk(b'), so that 'Pk(b')/b' = 'Pk(b)/b. It follows that Qkl ~ R 
for all k: if b E J, then Qkb = [cpk(b)/b]b = 'Pk(b) E R. By condition (i), if b E I, 
then almost all 'Pk(b) = 0. Since Qk = 'Pk(b)/b whenever b =f:. 0, there are only 
finitely many (nonzero) Qk· Discard all ak for which Qk = 0. Condition (ii) gives, 
for b E J, 

b = ~)cpkb)ak = L(qkb)ak = b(L Qkak). 

Cancel b from both sides to obtain 1 = L, Qkak. Thus, I is invertible. 

Conversely, if I is invertible, there are elements a1, ..• , an E I and q1 , ... , Qn E 

Q, as in the definition. Define 'Pk: I -7 R by b 1--t Qkb (note that Qkb E Qkl ~ R). If 
b E J, then 

L(cpkb)ak = LQkbak = b LQkak = b. 

Therefore, I has a projective basis and, hence, I is a projective module. • 

Corollary B-4.122. A domain R is a Dedekind ring if and only if every nonzero 
ideal in R is invertible. 

Proof. This follows at once from Proposition B-4.121. • 

Corollary B-4.123. Every Dedekind ring is noetherian. 

Proof. Invertible ideals are finitely generated. • 

We can now generalize Corollary B-4.61 from PIDs to Dedekind rings. 

Theorem B-4.124. A domain R is a Dedekind ring if and only if every divisible 
R-module is injective. 

27 Alternatively, two fractional ideals I and J of R are isomorphic as R-modules if and only 
if there is a nonzero a E Q with I = aJ, and the class group consists of the isomorphism classes 
of fractional ideals. 
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Proof. Assume that every divisible R-module is injective. If E is an injective R
module, then E is divisible, by Lemma B-4.60. Since every quotient of a divisible 
module is divisible, every quotient E" of E is divisible, and so E" is injective, by 
hypothesis. Therefore, Risa Dedekind ring, by Theorem B-4.119. 

Conversely, assume that R is Dedekind and that Eis a divisible R-module. By 
the Baer Criterion, it suffices to complete the diagram 

E 

it""' ' 
o~I~R, 

me 

where I is an ideal and inc is the inclusion. Of course, we may assume that I is 
nonzero, so that I is invertible: there are elements a 1 , ... , an E I and q1 , ... , Qn E 

Frac(R) with qi! ~ R and 1 = Li qiai. Since E is divisible, there are elements 
ei E E with f(ai) = aiei. Note, for every b E J, that 

f(b) = f(Lqiaib) = L(qib)f(ai) = L(qib)aiei = b L(qiai)ei. 
i i i i 

Hence, if we define e = Li(qiai)ei, then e E E and f(b) = be for all b E J. Now 
define g: R -t Eby g(r) =re; since g extends f, the module Eis injective. • 

Lemma B-4.125. If R is a unique factorization domain, then a nonzero ideal I 
is projective if and only if it is principal. 

Proof. Every nonzero principal ideal I = (b) in a domain R is isomorphic to R 
via r i-+ rb. Thus, I is free and, hence, projective. Conversely, suppose that R is a 
UFD. If I is a projective ideal, then it is invertible, by Proposition B-4.121. There 
are elements ai, ... , an E I and qi, ... , Qn E Q with 1 = Li qiai and Qi! ~ R for 
all i. Write qi = bi/ Ci and assume, by unique factorization, that bi and Ci have no 
non-unit factors in common. Since (bi/ ci)a1 E R for j = 1, ... , n, we have Ci I a1 
for all i,j. We claim that I= (c), where c = lcm{c1 , ... ,en}· Note that c E J, 
for c = c L biai/ci = L(bic/ci)ai E J, for (bic/ci) E R. Hence, (c) ~ I. For the 
reverse inclusion, Ci I a1 for all i,j implies c I a1 for all j, and so a1 E (c) for all j. 
Hence, I~ (c). • 

Theorem B-4.126. A Dedekind ring R is a unique factorization domain if and 
only if it is a PID. 

Proof. Every PID is a UFD. Conversely, if Risa Dedekind ring, then every nonzero 
ideal I is projective. Since Risa UFD, I is principal, by Lemma B-4.125, and so 
Risa PID. • 

Example B-4.127. If k is a field, then R = k[x, y] is not a Dedekind ring, for it 
is not a PID (for example, we know that I = (x, y) is not a principal ideal). For 
noetherian domains, we have shown that the following conditions are equivalent 
for an ideal J: projective; flat; invertible; principal. Therefore, I = (x, y) is a 
submodule of a flat module, namely R, but it is not flat. 

Another proof of this fact is given in Exercise B-4.96 below. <Ill 
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Exercises 

* B-4.93. Let k be a commutative ring, and let P and Q be fl.at k-modules. Prove that 
P ®k Q is a fl.at k-module. 

B-4.94. Prove that if G and Hare torsion abelian groups, then G ®z His a direct sum 
of cyclic groups. 

Hint. Use an exact sequence 0-+ B-+ G-+ G/B-+ 0, where Bis a basic subgroup, 

along with the following theorem: if 0 -+ A' ~ A -+ A" -+ 0 is an exact sequence of 
abelian groups and i(A') is a pure subgroup of A, then 

0 -+ A' ®z B -+ A ®z B -+ A" ®z B -+ 0 

is exact for every abelian group B (Rotman (96], p. 150). 

* B-4.95. Generalize Proposition B-4.92 as follows: if R is a domain, D is a divisible R
module, and Tis a torsion R-module, then D ®RT= {O}. 

* B-4.96. Let R = k[x, y] be the polynomial ring in two variables over a field k, and let 
l = (x,y). 

(i) Prove that x 18> y - y 18> x =/:- 0 in l ®R l. 
Hint. Show that this element has a nonzero image in (J/12 ) ®R (I/12). 

(ii) Prove that x 18> y - y 18> x is a torsion element in l ®R l, and conclude that the 
tensor product of torsion-free modules need not be torsion-free. Conclude, in light 
of Exercise B-4.93, that l is not a fl.at R-module. 

B-4.97. For every positive integer n, prove that Zn is not a fl.at Z-module. 

B-4.98. Use the Basis Theorem to prove that if A is a finite abelian group, then A ~ 
A*= Homz(A,Q/Z). 

* B-4.99. Let R be a domain with Q = Frac(R). 

(i) If Eis an injective R-module, prove that E/tE is a vector space over Q, where tE 
is the torsion submodule of E. 

(ii) Prove that every torsion-free R-module M can be imbedded as a submodule of a 
vector space over Q. 
Hint. Imbed Min an injective R-module E, show that MntE = {O}, and conclude 
that Mis imbedded in E/tE. 



Chapter B-5 

Multilinear Algebra 

We are now going to use tensor products of several modules in order to construct 
some useful rings, such as tensor algebras (which are free noncommutative rings), 
exterior algebra, and determinants. Alas, this material is rather dry, and so it 
should be skimmed now to see what's in it. When you need it (and you will need 
it), you will find it very interesting. 

Throughout this chapter, k denotes a commutative ring. 

Algebras and Graded Algebras 

Algebras are rings having an extra structure. 

Definition. If k is a commutative1 ring, then a ring R is a k-algebra if R is a 
k-module and scalars ink commute with everything: 

a(rs) = (ar)s = r(as) 

for all a E k and r, s E R. 

If R and S are k-algebras, then a ring homomorphism f: R --+ S is called a 
k-algebra map if 

f(ar) = af(r) 

for all a E k and r E R; that is, f is also a map of k-modules. 

For example, if k is a field, then the polynomial ring k[x] is a k-algebra; it is a 
ring and a vector space. 

1The hypothesis that k be commutative is essentially redundant: in the important special 
case when k is a subring of A, the displayed equations in the definition, with s = 1 and r E k, 
give ar = ra; that is, k must be commutative. 

-543 
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Example B-5.1. 

(i) Every ring Risa Z-algebra, and every ring homomorphism is a Z-algebra 
map. This example shows why, in the definition of R-algebra, we do not 
demand that k be a subring of R: the ring Z2 is a Z-algebra even though 
Z is not a subring of Z2. 

(ii) The polynomial ring A = <C[x] is a C-algebra and <p: A --+ A, defined by 
t.p: I:j CjXj H I:j Cj(X - l)J, is a C-algebra map. On the other hand, 
the function 0: A--+ A, defined by 0: I:j CjXj H I:j Cj(X - l)J (where 
c is the complex conjugate of c), is a ring map but it is not a C-algebra 
map. For example, O(ix) = -i(x - 1) while iO(x) = i(x - 1). Now <C[x] 
is also an IR.-algebra, and (} is an IR.-algebra map. 

(iii) If k is a subring contained in the center of R, then R is a k-algebra. 

(iv) If k is a commutative ring, then Matn(k) is a k-algebra. 

(v) If k is a commutative ring and G is a group, then the group ring kG is a 
k-algebra. .,.. 

We are now going to use tensor product to construct k-algebras; if A and B 
are k-algebras, then we shall make A ©k B into a k-algebra. 

In contrast to the Hom functors, the tensor functors obey certain commutativity 
and associativity laws. 

Proposition B-5.2 {Commutativity). If M and N are k-modules, then there 
is a k-isomorphism 

T: M ©k N --+ N ©k M 

with r: m©n H n©m. 

Proof. First, Corollary B-4.83 shows that both M©kN and N©kM are k-modules. 
Consider the diagram 

where f(m, n) = n © m. It is easy to see that f is k-bilinear, and so there is a 
unique k-map T: M ©k N --+ N ©k M with T: m © n H n © m. Similarly, there is a 
k-map r': N ©k M--+ M ©k N with r': n © m H m © n. Clearly, r' is the inverse 
of r; that is, T is a k-isomorphism. • 

Proposition B-5.3 {Associativity). Given AR, RBs, and sC, there is an iso
morphism of Z-modules 

given by 

a© (b © c) H (a© b) © c. 
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Proof. Define a triadditive function f: A x B x C ---+ G, where G is an abelian 
group, to be a function that is additive in each of the three variables (when we fix 
the other two), such that 

f(ar, b, c) = f(a, rb, c) and f(a, bs, c) = f(a, b, sc) 

for all r ER ands ES. Consider the universal mapping problem described by the 
diagram 

where G is an abelian group, hand fare triadditive, and f is a IE-homomorphism. 
As for biadditive functions and tensor products of two modules, define T( A, B, C) = 
F/N, where Fis the free abelian group on all ordered triples (a,b,c) EA x Bx C, 
and N is the obvious subgroup ofrelations. Define h: Ax Bx C---+ T(A, B, C) by 

h: (a,b,c) H (a,b,c) +N, 

and denote (a, b, c) + N by a© b © c. A routine check shows that this construction 
does give a solution to the universal mapping problem for triadditive functions. 

We now show that A©n (B©sC) is another solution to this universal problem. 
Define a triadditive function 77: A x B x C ---+ A © R ( B ©s C) by 

77: (a,b,c) Ha© (b©c); 

we must find a IE-homomorphism f: A ©n (B ©s C)---+ G with J77 = f. For each 
a E A, the S-biadditive function fa: B x C ---+ G, defined by (b, c) H f(a, b, c), 
gives a unique IE-homomorphism la: B ©s C ---+ G taking b © c H f(a, b, c). If 
a,a' E A, then la+a'(b © c) = f(a + a',b,c) = f(a,b,c) + f(a',b,c) = fa(b © 
c) + fa,(b © c). It follows that the function <p: A x (B ©s C) ---+ G, defined by 
<p(a,b©c) = fa(b©c), is additive in both variables. It is R-biadditive, for ifr ER, 
then <p(ar,b©c) = far(b©c) = f(ar,b,c) = f(a,rb,c) = ia(rb©c) = <p(a,r(b©c)) 
(note that rb makes sense because Bis a left R-module, and r(b © c) makes sense 
because C is also a left R-module). Therefore, there is a unique IE-homomorphism 
[: A ©n (B ©s C) ---+ G with a © (b © c) H <p(a, b © c) = f(a, b, c); that is, 
/77 = f. Uniqueness of solutions to universal mapping problems shows there is 
an isomorphism T(A, B, C) ---+ A ©n (B ©s C) with a © b © c H a© (b © c). 
Similarly, T(A, B, C) ~ (A ©n B) ©s C via a © b © c H (a © b) © c, and so 
A ©n (B ©s C) ~(A ©n B) ©s C via a© (b © c) H (a© b) © c. • 

We have proved that (A ©kB) ©k C ~A ©k (B ©k C), and we are tempted to 
invoke Corollary A-4.22: generalized associativity holds in any semigroup. However, 
this corollary does not apply; it needs equality (A© B) © C =A© (B © C), not 
the weaker relation of isomorphism. We will return to this on page 553, but here 
is a special case of associativity that we need now. 
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Proposition B-5.4 (4-Associativity). If A, B, C, D are k-modules, then there 
is a k-isomorphism 

given by 

(a®b)®(c®d) H [a®(b®c)]®d. 

Proof. The proof is a straightforward modification of the proof of Proposition 
B-5.3, using 4-additive functions Ax Bx C x D---+ M, for a k-module M, in place 
of triadditive functions. We leave the details to the reader; note, however, that the 
proof is a bit less fussy because all modules here are k-modules. • 

Proposition B-5.5. If A and B are k-algebras, then their tensor product A ®kB 
is a k-algebra if we define (a® b )(a' ® b') = aa' ® bb'. 

Proof. First, A ®k B is a k-module, by Corollary B-4.83. Let µ: A x A ---+ A and 
11: Bx B---+ B be the given multiplications on the algebras A and B, respectively. 
We must show that there is a multiplication on A ®kB as in the statement; that 
is, there is a well-defined k-bilinear function>.: (A ®kB) x (A ®kB) ---+A ®kB 
with >.: (a® b, a' ® b') H aa' ® bb'. Indeed, >. is the composite 

(A®B) x (A®B) ~ (A®B)®(A®B) ~ [A®(B®A)]®B 

(l~®1 [A® (A® B)] ® B ~ (A® A)® (B ® B) ~A® B 

(the map () is 4-Associativity); on generators, these maps are 

(a® b, a'® b') H (a® b) ®(a'® b') H [a® (b ®a')]® b' 

H [a® (a'® b)] ® b' H (a® a')® (b ® b') H (aa') ® (bb'). 

It is now routine to check that the k-module A ®kB is a k-algebra. • 

Example B-5.6. Exercise B-4.80 on page 520 shows that there is an isomor
phism of abelian groups: Zm ®Zn ~ Zd, where d = gcd(m, n). It follows that if 
gcd(m,n) = 1, then Zm®Zn = {O}. Of course, this tensor product is still {O} if we 
regard Zm and Zn as Z-algebras. Thus, in this case, the tensor product is the zero 
ring. Had we insisted, in the definition of ring, that 1 -:/:- 0, then the tensor product 
of rings would not always be defined. But any rings A and B are Z-algebras, and 
the Z-algebra A ®z B always exists. .... 

We now show that the tensor product of algebras is an "honest" construction; 
it really occurs in nature. 

Proposition B-5. 7. If A and B are commutative k-algebras, then A ®k B is the 
coproduct in the category of commutative k-algebras. 
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Proof. Define p: A---+ A ©kB by p: a i--+ a© 1, and define a: B ---+A ©kB by 
a: b i--+ 1 © b. Let R be a commutative k-algebra, and consider the diagram 

A 

/~ 
A ©k B - - - 8 - - - ,... R 

~/. 
B, 

where f and g are k-algebra maps. The function cp: A x B ---+ R, given by (a, b) i--+ 

f(a)g(b), is easily seen to be k-bilinear, and so there is a unique map of k-modules 
0: A ©k B ---+ R with O(a © b) = f(a)g(b). It remains to prove that 0 is also a k
algebra map, for which it suffices to prove that 0( (a©b)(a' ©b')) = O(a©b)O(a' ©b'). 
Now 

O((a © b)(a' © b')) = O(aa' © bb') = f(a)f(a')g(b)g(b'). 

On the other hand, O(a©b)O(a' ©b') = f(a)g(b)f(a')g(b'). Since R is commutative, 
e does preserve multiplication. • 

Proposition B-5.8. 

(i) If A is a commutative k-algebra, there is a k-algebra isomorphism 

0: A ©k k[x] ---+ A[x] 

such that, for all i 2: 0, u E A, and r E k, 

e: u © rxi I-+ urxi. 

(ii) If k is a field and L = k( a) is a simple field extension, where p( x) E k[x] 
is irrreducible and a is a root of p, then there is a k-algebra isomorphism 

cp: L ©k L ~ L[x]/(p) 

where (p) is the principal ideal in L[x] generated by p. 

Proof. 

(i) This is a special case of the proof of Proposition B-5.7: take B = k[x], 
p: a i--+ a © 1 for a E A, f : a i--+ a (that is, f (a) is the constant polyno
mial), a: hi--+ 1 © h (where h(x) E k[x]), and g: hi--+ eh, where e is the 
unit element in A. 

(ii) There is an exact sequence of k-modules 

0 ---+ I ~ k[x] ~ L ---+ 0, 

where I is the principal ideal in k[x] generated by p, i is the inclusion, and 
v is the k-algebra map with v: x i--+ a. Since k is a field, the vector space 
L is a free k-module, and hence it is flat. Thus, the following sequence 
is exact: 

0 ---+ L ©k I ~ L ©k k[x] ~ L ©k L ---+ 0. 
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By (i), the map 1£ ®vis a k-algebra homomorphism, hence a ring homo
morphism, so that its image is an ideal in L ®k k[x]. Let B: L ®k k[x] -t 
L[x] be the isomorphism in part (i), and let A: L ®k I -t (!) be the 
restriction of B. Now the following diagram commutes and its rows are 
exact: 

l®i l®v 
0----. L ®k I----. L ®k k[x] --- L ®k L --- 0 

Al !e l~ 
0 (!) L[x] L[x]/(f)----. 0. 

There is a k-homomorphism <p: L®kL -t L[x]/(f), by Proposition B-1.46 
(diagram chasing), which is a k-isomorphism, by the Five Lemma. Using 
an explicit formula for <p. the reader may check that <p is also a k-algebra 
isomorphism. • 

A consequence of the construction of the tensor product of two algebras is that 
bimodules can be viewed as left modules over a suitable ring. 

Proposition B-5.9. If R and S are k-algebras, then every (R, S)-bimodule M is 
a left R ®k S 0 P-module, where S0 P is the opposite ring and (r ® s)m = rms. 

Proof. The function Rx S0 P x M -t M, given by (r, s, m) H rms, is k-trilinear, 
and this can be used to prove that (r ® s)m = rms is well-defined. Let us write 
8* s' for the product in S0 P; that is, s * s' = s's. The only axiom that is not obvious 
is axiom (iii) in the definition of module: if a, a' E R®k S0 P, then (aa')m = a(a'm), 
and it is enough to check that this is true for generators a = r ® s and a' = r' ® s' 
of R®k S0 P. But 

[(r ® s)(r' ® s')Jm = [rr' ® s * s'Jm = (rr')m(s * s') = (rr')m(s' s) = r(r'ms')s. 

On the other hand, 

(r ® s)[(r' ® s')m] = (r ® s)[r'(ms')J = r(r'ms')s. • 

Definition. If A is a k-algebra, then its enveloping algebra is 

Ae=A®kAop. 

Corollary B-5.10. If A is a k-algebra, then A is a left Ae-module whose submod
ules are the two-sided ideals. 

Proof. Since a k-algebra A is an (A, A)-bimodule, it is a left Ae-module. • 

Enveloping algebras let us recapture the center of a ring. 

Proposition B-5.11. If A is a k-algebra, then 

EndA·(A) ~ Z(A). 

Proof. If f: A -t A is an Ae-map, then it is a map of A viewed only as a left A
module. Proposition B-1.24 applies to say that f is determined by z = /(1), because 
f(a) = f(al) = af(l) = az for all a EA. On the other hand, since f is also a map 
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of A viewed as a right A-module, we have f(a) = f(la) = f(l)a = za. Therefore, 
z = f(l) E Z(A); that is, the map <p: f 1--7 f(l) is a map EndA•(A)-+ Z(A). The 
map <p is surjective, for if z E Z(A), then f(a) = za is an Ae-endomorphism with 
i.p(f) = z; the map <pis injective, for if f E EndA•(A) and f(l) = 0, then f = 0. • 

Separability of a finite extension field will now be described using enveloping 
algebras. If Lis a commutative k-algebra, then its enveloping algebra is U = L©kL, 
for L0 P = L. Recall that multiplication in U is given by 

(a© b)(a' © b') = aa' © bb'. 

Theorem B-5.12. If L and k are fields and L is a finite separable extension of k, 
then L is a projective U-module. 

Proof. Since Lis an (L,L)-bimodule, it is an U-module. It suffices to prove 
that U = L ©k L is a direct product of fields, for then it is a semisimple ring 
(Corollary B-2.33) and every module over a semisimple ring is projective (Proposi
tion B-4.65). 

Since L is a finite separable extension of k, Theorem A-5.56, the Theorem of 
the Primitive Element, gives a EL with L = k(a). If p(x) E k(x] is the irreducible 
polynomial of a, then there is an exact sequence of k-modules 

0-+ (p) --2.+ k[x] ~ L-+ 0, 

where (!) is the principal ideal generated by f, i is the inclusion, and v is the 
k-algebra map with v: x 1--7 a. Since k is a field, the k-algebra L, viewed as a 
vector space, is a free k-module and, hence, it is flat. Thus, the following sequence 
is exact: 

0 -+ L ©k (!) ~ L ©k k[x] ~ L ©k L -+ 0. 

By Proposition B-5.8(i), this exact sequence can be rewritten as 

0-+ (!) -+ L[x] -+ L[x]/(f) -+ 0, 

for Proposition B-5.8(ii) gives a k-algebra isomorphism <p: L©kL = U-+ L[x]/(f). 
Now p, though irreducible in k[x], may factor in L[x], and separability says it has 
no repeated factors: 

p(x) =IT Qi(x), 
i 

where the Qi are distinct irreducible polynomials in L[x]. The ideals (qi) are thus 
distinct maximal ideals in L[x], and the Chinese Remainder Theorem gives a k
algebra isomorphism 

Le~ L[x]/(p) ~IT L[x]/(qi)· 
i 

Since each L[x]/(qi) is a field, Le is a semisimple ring. • 

The converse of Theorem B-5.12 is true (see De Meyer-Ingraham (25], p. 49), 
and generalizations of Galois theory to commutative k-algebras R (where k is a 
commutative ring) define R to be separable over k if R is a projective Re-module 
(Chase-Harrison-Rosenberg (20]). 

We now consider algebras equipped with an extra structure. 
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Definition. A k-algebra A is a graded k-algebra if there are k-submodules AP, 
for p ~ 0, such that 

(i) A= El1p;?:O AP; 

(ii) for all p, q ~ 0, if x E AP and y E Aq, then xy E AP+q; that is, 

APAq ~ Ap+q. 

An element x E AP is called homogeneous of degree p. 

Notice that 0 is homogeneous of any degree, but that most elements in a graded 
ring are not homogeneous and, hence, have no degree. Note also that (ii) implies 
that any product of homogeneous elements is itself homogeneous. 

Just as the degree of a polynomial is often useful, so, too, is the degree of a 
homogeneous element in a graded algebra. 

Example B-5.13. 

(i) The polynomial ring A= k[x] is a graded k-algebra if we define 

AP= {rxP: r Ek}. 

The homogeneous elements are the monomials and, in contrast to ordi
nary usage, only monomials (including 0) have degrees. On the other 
hand, xP has degree p in both usages of the term degree. 

(ii) The polynomial ring A = k[xi, x2, ... , xn] is a graded k-algebra if we 
define 

AP = { rx~1 x~2 • • • x~n : r E k and L ei = p}; 
that is, AP consists of all monomials of total degree p. 

(iii) In algebraic topology, we assign a sequence of ( abelian) cohomology groups 
HP(X, k) to a space X, where k is a commutative ring and p ~ 0, and we 
define a multiplication on E9p;::::o HP(X, k), called cup product, making it 
a graded k-algebra (called the cohomology ring). 

If A is a graded k-algebra and u E Ar, then multiplication by u 
gives k-maps AP---+ AP+r for all p. This elementary observation arises in 
applications of the cohomology ring of a space. .,.. 

Definition. If A and B are graded k-algebras and d E Z, then a graded map of 
degree dis a k-algebra map f: A---+ B such that f(AP) ~ BP+d for all p ~ 0. 2 

If A is a graded k-algebra, then a graded ideal (or homogeneous ideal) is a 
two-sided ideal J in A with J = El1p;?:O JP' where JP = J n AP. 

Example B-5.14. In k[x], where k is a commutative ring, take 

J = (xn) = {xn f(x) : J(x) E k[x]}. 

Clearly, J = El1p;::>:n JP, where JP = { rxP : r E k }. .,.. 

Here are some first properties of graded algebras. 

2Some authors assume graded maps f: A -t B always have degree O; that is, f(AP) ~BP. 
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Proposition B-5.15. Let A, B, and C be graded k-algebras. 

(i) If f: A --+ B is a graded map of degree d and g: B --+ C is a graded 
map of degreed', then their composite gf: A --+ C is a graded map of 
degree d + d'. 

(ii) If f: A --+ B is a graded map, then ker f is a graded ideal. 

(iii) Let I be a graded ideal in A. Then A/ I is a graded k-algebra if we define 

(Af J)P =(AP+!)/!. 

Moreover, A/I= ffip(A/J)P ~ ffip(AP/JP). 

(iv) A two-sided ideal I in A is graded if and only if it is generated by homo
geneous elements. 

(v) The identity element 1 in A is homogeneous of degree 0. 

Proof. 

(i) Routine 

(ii) This is also routine. 

(iii) Since I is a graded ideal, the Second Isomorphism Theorem gives 

(A/ J)P = (AP + I)/ I ~ AP/ (I n AP) = AP/ JP. 

(iv) If I is graded, then I= ffiPJP, so that I is generated by LJPJP. But 
up JP consists of homogeneous elements because JP = I n AP ~ AP for 
all p. 

Conversely, suppose that I is generated by a set X of homogeneous 
elements. We must show that I= ffip(I n AP), and it is only necessary 
to prove I ~ ffip(I n AP), for the reverse inclusion always holds. Since 
I is the two-sided ideal generated by X, a typical element in I has the 
form Ei aixibi, where ai, bi E A and Xi E X. It suffices to show that 
each aixibi lies in EBP(I n AP), and so we drop the subscript i. Since 
a= E ai and b =Ebe (where each ai and be is homogeneous), we have 
axb = Ej,e aixbe. But each aixbe lies in I (because I is generated by 
X), and it is homogeneous, being the product of homogeneous elements. 

(v) Write 1 = eo + ei +···+et, where ei E Ai. If ap E AP, then 

ap - eoap = eiap + · · · + etap E AP n (AP+l E£) • • • E£) AP+t) = {O}. 

It follows that ap = eoap for all homogeneous elements ap, and so a = 
E ap = eo E ap = eoa for all a E A. A similar argument, examining 
ap = apl instead of ap = lap, shows that a= aeo for all a E A; that is, 
eo is also a right identity. Therefore, 1 = eo, by the uniqueness of the 
identity element in a ring. • 

Example B-5.16. The quotient k[x)/(x13) is a graded k-algebra. Now (x13 ) = 

EBP?'. 13 /P, where JP= {rxP: r Ek}. Thus k[x)/(x13) ~ EBP(AP/JP) ~ EBP<13 AP, 
where AP = {rxP : r E k}. However, there is no obvious grading on the algebra 
k[x)/(x13 + 1). After all, what degree should be assigned to the coset of x13 , which 
is the same as the coset of -1? <Ill 
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Tensor Algebra 

We continue the discussion of associativity of tensor product. 

Definition. Let Mi, ... , Mp be k-modules. A function f: Mi x · · · x Mp -t N, 
where N is a k-module, is k-multilinear if it is additive in each of the p variables 
(when we fix the other p - 1 variables) and, if 1 :::; i :::; p, then 

/(mi, ... , rmi, ... , mp) = r /(mi, ... , mi, ... , mp), 

where r E k and mi E Mi for all i. 

If p = 2, then multilinear is just bilinear. 

Proposition B-5.17. Let Mi, ... , Mp be k-modules. 

(i) There exists a k-module U[Mi, ... , Mp] that is a solution to the universal 
mapping problem posed by multilinearity: 

h Mix··· x Mp U[Mi, .. . ,Mp] 

~ ~//!// 
N; 

that is, there is a k-multilinear h such t':._at, whenever f is k-multilinear, 
there exists a unique k-homomorphism f making the diagram commute. 

(ii) If fi: Mi -t Mf are k-maps, then there is a unique k-map 

u[/i, ... , fp]: U[Mi, ... , Mp] -t U[M{, ... , M;J 

with h(mi, ... ,mp) t-t h'(/i(mi), ... , fp(mp)), where 

h': M~ x ··· x M;-t U[M~, ... ,M;J. 

Proof. 

(i) This is a straightforward generalization of Theorem B-4. 77, the existence 
of tensor products, using multilinear functions instead of bilinear ones. 
Let Fp be the free k-module with basis Mi x · · · x Mp, and let S be the 
submodule of Fp generated by all elements of the following two types: 

(A, mi+ m~, B) - (A, mi, B) - (A, m~, B), 

(A, rmi, B) - r(A, mi, B), 

where A= mi, ... ,mi-i, B = mi+i, ... ,mp, r Ek, mi,m~ E Mi, and 
1 :::; i:::; p (of course, A is empty if i = 1 and Bis empty if i = p). Define 

U[Mi, ... ,Mp] = Fp/S, 

and define h: Mix··· x Mp -t U[Mi, ... ,Mp] by 

h: (mi, ... , mp) t-t (mi, ... , mp)+ S. 

The reader should check that h is k-multilinear. The remainder of the 
proof is merely an adaptation of the proof of Proposition B-4.77, and it 
is also left to the reader. 
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(ii) The function Mi x · · · x Mp --+ U[M{, . .. , M;J, given by 

(mi, ... ,mp) H h'(fi(mi), ... ,fp(mp)), 

is easily seen to be k-multilinear; by universality, there exists a unique 
k-homomorphism as described in the statement. • 

Observe that no parentheses are needed in the argument of the generator 
h(mi, ... , mp); that is, 

h(mi, ... , mp)= (mi, ... , mp)+ S 

depends only on the p-tuple (mi, ... , mp) and not on any association of its coordi
nates. The next proposition relates this construction to iterated tensor products. 
Once this is done, we will change the notation U[Mi, ... , Mp] to Mi®·· ·®Mp and 
(mi, ... , mp)+ S to mi®···® mp. 

Proposition B-5.18 (Generalized Associativity). If Mi ®k · · · ®k Mp is a 
tensor product of k-modules Mi, ... , Mp in some association, then there is a k
isomorphism 

U[Mi, ... , Mp]--+ Mi ®k · · · ®k Mp 

taking h(mi, ... , mp) H mi®···® mp. 

Remark. As we remarked earlier, associativity of tensor product for three fac
tors does not imply associativity for many factors, because we proved the as
sociative law for three factors only to isomorphism; we did not prove equality 
A ®k (B ®k C) =(A ®kB) ®k C. There is an extra condition, due, independently, 
to Mac Lane and Stasheff: if the associative law holds up to isomorphism and a 
certain "pentagonal" diagram commutes, then generalized associativity holds up to 
isomorphism (Mac Lane [71], pp. 157-161). <1111 

Proof. The proof is by induction on p ;:::: 2. The base step is true, for U[Mi, M2] = 
Mi ®k M 2 • For the inductive step, let us assume that 

Mi ®k · · · ®k Mp= U[Mi, ... ,Mi] ®k U[Mi+l, ... ,Mp].3 

We are going to prove that U[Mi, .. . , Mp] ~ Mi ®k ® · · · ®k Mp. 

By induction, there are multilinear functions 

h': Mi x · · · x Mi --+ Mi ®k · · · ®k Mi 

and 
h": Mi+i x · · · x Mp --+ Mi+i ®k · · · ®k Mp 

·with h'(mi, ... , mi) =mi®···® mi associated as in Mi ®k · · · ®k Mi, and with 
h"(mi+l, ... , mp)= mi+l ®···®mp associated as in Mi+i ®k · · · ®k Mp. Induction 
also gives isomorphisms 

cp': U[Mi, ... , Mi]--+ Mi ®k · · · ®k Mi 

3 We have indicated the final factors in the given association; for example, 

{(M1 ®k M2) ®k Ma) ®k (M4 ®k Ms)= U[M1,M2,Ma] ®k U[M4,M5]. 
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and 
cp": U[MHi, ... , Mp] -+ Mi+i ®k · · · ®k Mp 

with cp'h' = hl(Mi x · · · xMi) and cp"h" = hl(Mi+l x · · · xMp)· By Corollary B-4.81, 
cp'@ cp" is an isomorphism U[Mi, ... , Mi] ®k U[MHi, ... , Mp] -+ Mi ®k · · · ®k Mp. 

We now show that U[Mi, ... , Mi] ®k U[MHi, ... , Mp] is a solution to the uni
versal problem for multilinear functions. Consider the diagram 

where ry(mi, ... , mp)= h'(mi, ... , mi)®h"(mi+li ... , mp), 1'!_ is a k-module, and f 
is a given multilinear map. We must find a homomorphism f making the diagram 
commute. 

If (mi, ... ,mi) E Mi X· • ·XMi, the function f(m1, ... ,mi): Mi+l x · · · xMp-+ N, 
defined by (mHi,. . .,mp) H /(mi,. . .,mi,mi+i,. . .,mp)), is multilinear; 
hence, there is a unique homomorphism l{m1,. . .,mi): U[Mi+l• ... , Mp]-+ N with 

J{m1,. . .,mi): h"(mi+i. ... , mp) H /(mi, ... , mp)· 

If r Ek and 1::::; j::::; i, then 

l{m1,. . .,rm;,. . .,mi)(h"(mHi1 ... , mp))= /(mi, ... , rmj, ... , mp) 

= rf(mi, ... ,mj, ... ,mi) 

= rl{m1, .. .,mi)(h"(mi+i, ... ,mp)). 

Similarly, if mj, mj E Mj, where 1 ::::; j ::::; i, then 

The function of i + 1 variables Mi x · · · x Mi x U[Mi+li ... , Mp] -+ N, defined 
by (mi, ... ,mi,u") H l{m1,. . .,mi)(u"), is multilinear, and so it gives a bilinear 
function U[Mi, ... ,Mi] x U[Mi+l•···,Mp]-+ N. Thus, there is a unique homo
morphism f: U[Mi,. . .,Mi] ®k U[MHi,. . .,Mp] -+ N with fry= f. Therefore, 
U[Mi, ... , Mi] ®k U[MHi, ... , Mp] is a solution to the universal mapping prob
lem. By uniqueness of such solutions, there is an isomorphism (}: U[Mi, ... , Mp] -+ 
U[Mi, ... , Mi] ®k U[Mi+i, ... , Mp] with 

Bh(mi, ... , mp)= h'(mi, ... , mi)@ h"(mi+i. ... , mp)= ry(mi, ... , mp)· 

Therefore, (cp'@cp")B: U[Mi, ... , Mp]~ Mi®k' · ·®kMp is the desired isomorphism . 

• 
Notation. Abandon the notation in Proposition B-5.17; from now on, we write 

U[Mi, ... ,Mp]= Mi ®k · · · ®k Mp, 

h(mi, ... ,mp)= mi@··· ®mp, 

u[fi,. . ., fp] =Ji® .. ·® fp· 
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This notation is simplified when all Mi= M, where Mis a k-module; write 
0 

@M=k, 
I 

@M=M, 

@PM= M ©k · · · ©k M (p times) if p;:::: 2. 

Thus, when p ;:::: 2, the k-module ®PM is generated by symbols mI © · · ·©mp 
in which no parentheses occur. 

We now construct tensor algebras. In contrast to A ©kB (a k-algebra with 
multiplication (a© b)(a' © b') = aa' © bb'), we now begin with a k-module M 
instead of with k-algebras A and B. 

Definition. If M is a k-module, define 

T(M) = E9 (@PM) = k EB M EB (M ©k M) EB (M ©k M ©k M) EB · · · . 
p:2'.0 

Define a scalar multiplication on T(M) by 

r(yI © · · · © Yp) = (ryI) © Y2 © · · · © Yv 

ifr Ek and YI®'· ·©yp E ®PM, and multiplicationµ: ®PMx@qM---+ ®p+qM, 
for p,q;:::: 1 by 

µ: (xI ©···©xv, YI©···© Yq) t-t XI©···© Xp ©YI©···© Yq· 

Proposition B-5.19. If M is a k-module, then T(M) is a graded k-algebra with 
the scalar multiplication and multiplication just defined. 

Proof. Since scalars are allowed to slide across the tensor sign, we have 

r((xI © .. · © Xp) ©(YI© .. ·© Yq)) =r(xI © .. · © Xp) ©(YI© .. ·© Yq) 

=(rxI © · · · ©xp) ©(YI©··· ©yq) 

=XI © · · · © rxp ©YI © · · · © Yq 

=XI © · · · © Xp © ryI © · · · © Yq 

=(xI © · · · © xp) © r(yI © · · · © Yq)· 

Thus, scalars commute with everything in T(M). Now define the product of two ho
mogeneous elements by the formula in the definition. It follows that multiplication 
µ: T(M) x T(M) ---+ T(M) is 

µ: c~=mp,L:m~) t-+ L:mp©m~, 
p q p,q 

where mp E ®PM and m~ E ®q M. Multiplication is associative because no 
parentheses are needed in describing generators XI © · · · © Xp of ®PM; the dis
tributive laws hold because multiplication is k-bilinear. Finally, 1 E k = @0 M 
is the identity, each element of k commutes with every element of T(M), and 
(®PM)(@qM) ~ ®p+qM, so that T(M) is a graded k-algebra. • 
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For example, if u = x1 ® · · · ® Xp in T(M), then 
2 

U = X1 Q9 • • • Q9 Xp Q9 X1 Q9 • • • Q9 Xp. 

The reader may check that if M = k, then T(M) ~ k[x], the polynomial ring. 

Associativity holds in T(M), for example, (u®v)®w = u®(v®w), because both 
are equal to u ® v ® w. Remember, in the definition of ®P M, that a homogeneous 
element x1 ® · · · ® Xp is equal to the coset (xi, ... , xp) + S in Fp/S, where Fp is 
the free k-module with basis M x · · · x M (p factors); this definition depends only 
on the p-tuple and not on any grouping of its coordinates. Finally, if x, y, z E M, 
what is (xy) ® z, where xy EM and z EM? This really isn't a problem, because 
xy E M doesn't make sense. After all, M is only a k-module, not a k-algebra, and 
so xy isn't defined (even if M were a k-algebra, the construction ofT(M) uses only 
the module structure of M; any additional structure M may have is forgotten). 

For every commutative ring k, we are going to construct a functor T: k Mod -t 
GrkAlg, the category of all graded k-algebras and graded maps of degree 0. In 
particular, if Vis the free k-module with basis X, then T(V) consists of polynomials 
in noncommuting variables X. 

Definition. If Mis a k-module, then T(M) is called the tensor algebra on M. 

Proposition B-5.20. Tensor algebra defines a functor T: kMod -t GrkAlg that 
preserves surjections. 

Proof. We have already defined Ton every k-module M: it is the tensor algebra 
T(M). If f: M -t N is a k-homomorphism, then Proposition B-5.17 provides maps 

/® .. ·®/: &/M-t(j!/N, 

for each p, which give a graded k-algebra map T(M) -t T(N) of degree 0. It is a 
simple matter to check that T preserves identity maps and composites. 

Assume that f: M -t N is a surjective k-map. If n 1 ® · · · ® np E ®P N, then 
surjectivity off provides mi E M, for all i, with /(mi) = ni, and so 

T(!): mi ® · · · ® mp H ni ® · · · ® nP' • 

We now generalize the notion of free module to free algebra. 

Definition. Let X be a subset of a k-algebra F. Then F is a free k-algebra 
with basis X if, for every k-algebra A and every function cp: X -t A, there exists 
a unique k-algebra map cp with cp(x) = cp(x) for all x E X. In other words, the 
following diagram commutes, where i: X -t F is the inclusion: 

F l' -' "' 
i ' 

" X~A. 

In the special case when V is a free k-module with basis X, T(V) is called the ring 
of polynomials over k in noncommuting variables X, and it is denoted by 

k(X). 
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If V is the free k-module with basis X = {xi : i E I}, then any expression of the 
form ri1 Xi1 © ri2 Xi 2 © · · · © ripXip can be written as ri1 ri2 ···rip (xi1 © Xi 2 • • • © Xip), 
so that each element u in k(X) = T(V) has a unique expression 

u = L ri1,. . .,ip(Xi1 © ... © Xip), 
p~O 

ii, ... ,ip 

where ri1,. . .,ip = ri1 ri2 ···rip E k and Xii E X. We obtain the usual notation 
for such a polynomial by erasing the tensor product symbols. For example, if 
X = {x,y}, then 

u = ro + rix + r2y + r3x2 + r4y2 + rsXY + r5yx + · · · . 
We must remember, when multiplying two monomials in k(X), that the indeter
minates in X do not commute. 

Proposition B-5.21. If Vis a free k-module with basis X, then k(X) = T(V) is 
a free k-algebra with basis X. 

Proof. Consider the diagram 

X--~A, 
'P 

where i: X -+ V and j : V -+ T(V) are inclusions, and A is a k-algebra. Viewing 
A only as a k-module gives a k-module map cp: V-+ A, for Vis a free k-module 
with basis X. Applying the functor T gives a k-algebra map T(<p): T(V)-+ T(A). 
For existence of a k-algebra map T(V) -+ A, it suffices to define a k-algebra map 
µ: T(A) -+ A such that the composite µ o T( cp) is a k-algebra map extending c.p. 
For each p, consider the diagram 

hp p 
Ax ... x A-----.@ A 

~lµp 
A, 

where hp: (ai, ... , ap) H a1 © · · · © ap and mp: (a1, ... , ap) Hai··· ap, the latter 
being the product of the elements ai, ... , ap in the k-algebra A. Of course, mp is 
k-multilinear, and so it induces a k-map µP making the diagram commute. Now 
defineµ: T(A) = EBP(®P A)-+ A byµ= LpµP. To see thatµ is multiplicative, 
it suffices to show that 

µp+q((a1 © · · · © ap) © (ai ©···©a~)) = µp(a1 © · · · © ap)µq(ai ©···©a~). 

But this equation follows from the associative law in A: 

(a1 · .. ap)(ai .. ·a~)= ai · .. apai .. ·a~. 
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Finally, uniqueness of this k-algebra map follows from V generating T(V) as a k
algebra (after all, every homogeneous element in T(V) is a product of elements of 
degree 1). • 

Corollary B-5.22. 

(i) If A is a k-algebra, then there is a surjective k-algebra map T(A) -+A. 

(ii) Every k-algebra A is a quotient of a free k-algebra. 

Proof. 

(i) The map T(A) -+ A, constructed in the proof of Proposition B-5.21, is 
surjective because A has a unit 1, and it is easily seen to be a map of 
k-algebras; that is, it preserves multiplication. 

(ii) Let V be a free k-module for which there exists a surjective k-map 
cp: V -+ A. By Proposition B-5.20, the induced map T(<p): T(V) -+ 
T(A) is surjective. Now T(V) is a free k-algebra, and if we compose 
T(<p) with the surjection T(A)-+ A, then A is a quotient of T(V). • 

Example B-5.23. Just as for modules, we can now construct rings (:£:-algebras) 
by generators and relations. The first example of a ring that is left noetherian but 
not right noetherian was given by Dieudonne (see Cartan-Eilenberg [17], p. 16); 
it is the ring R generated by elements x and y satisfying the relations yx = 0 and 
y2 = 0. Proving that such a ring R exists is now easy: let V be the free abelian 
group with basis u, v, let R = T(V)/ I, where I is the two-sided ideal generated by 
vu and v2 , and set x = u+I and y = v+I. Note that since the ideal I is generated 
by homogeneous elements of degree 2, we have @ 1 V = V n I= {O}, and so x f. 0 
and y f. 0. <Ill 

We can now give a precise definition of a k-algebra being finitely generated. 

Definition. A k-algebra A can be generated by n elements if A is a homomor
phic image of a free k-algebra T(V), where Vis a free k-module of rank n. 

If A is a k-algebra that can be generated by n elements, then there is a set 
X = { x1, ... , Xn} and every a E A has a (not necessarily unique) expression of the 
form 

where ri 1 , ••• iv Ek and Xii EX. 

For example, given two matrices M, N E Matn(k), where k is a commutative 
ring, we can construct the k-subalgebra they generate: it is the set of all finite sums 
of products involving M and N having coeffi.cents in k. 

We now construct polynomial rings in any (possibly infinite) set of commuting 
variables. The existence of polynomial rings k[X] in infinitely many variables X 
was assumed in Lemma B-2.39 in constructing the algebraic closure of a field. 

Definition. Let X be a subset of a commutative k-algebra F. Then Fis a free 
commutative k-algebra with basis X if, for every commutative k-algebra A and 
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every function cp: X---+ A, there exists a unique k-algebra map <P with <P(x) = cp(x) 
for all x E X. In other words, the following diagram commutes, where i: X ---+ F 
is the inclusion: 

Proposition B-5.24. Given any set X, there exists a free commutative k-algebra 
having X as a basis; it is given by T(V)/ I, where V is the free k-module with basis 
X and I is the two-sided ideal generated by all v © v' - v' © v for v, v' E V. 

Proof. The reader may show that I is a graded ideal, so that T(V) /I is a graded 
k-algebra. 

Define X' = {x+I: x EX}, and note that v: x t-t x+I is a bijection X---+ X'. 
It follows from X generating V that X' generates T(V)/ I. Consider the diagram 

T(V) __ 11"_~ T(V)/ I 

,,)A(,,. 
X X'. v 

Here A is an arbitrary commutative k-algebra, >. and >.' are inclusions, 7r is the 
natural map, v: x t-t x +I, and TX' ---+ A is a function. Let g: T(V) ---+ A 
be the unique homomorphism with g>. = "(V, which exists because T(V) is a free 
k-algebra, and define g': T(V) /I ---+ A by w +I t-t g( w) (g' is well-defined because 
A commutative implies g(v © v') = g(v)g(v') = g(v')g(v) = g(v' © v) - recall that 
that multiplication in T(V) is tensor), and so I~ ker g). Now g' >.' = "(, for 

g1A1V = g17rA = g). = "(V; 

since v is a surjection, it follows that g' >.' = 'Y· Finally, g' is the unique such map, 
for if g" satisfies g" >.' = 'Y, then g' and g" agree on the generating set X', hence 
they are equal. • 

Definition. Let V be the free k-module with basis X, and let I be the two-sided 
ideal in T(V) generated by all v©v' -v' ©v, where v, v' E V. Then T(V)/ I is called 
the ring of polynomials over k in commuting variables X, and it is denoted by 

k(X]. 4 

4 This construction is a special case of the symmetric algebra S( M) of a k-module M, which 
is defined as T(M)/ I, where I is the two-sided ideal generated by all m ® m' - m' ® m, where 
m,m'EM. 
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As usual, solutions to universal mapping problems are unique up to isomor-
phism. If X = { x1, ... , xn} is finite, then Theorem A-3.25 shows that the usual 
polynomial ring k[xi, ... , Xn] is the free commutative k-algebra on X. As we said 
earlier, the existence of big polynomial rings k[X] was used to construct algebraic 
closures of fields. We now know how to construct k[X]; it is just a quotient of the 
tensor algebra T(M), where Mis the free k-module with basis X. 

Our earlier definition of k[x, y] as A[y], where A = k[x], was careless. For 
example, it does not imply that k[x, y] = k[y, x], although these two rings are 
isomorphic {Exercise A-3.32 on page 53). However, if Vis the free k-module with 
basis x, y, then y, x is also a basis of the k-module V, and so k[x, y] ~ k[y, x] via 
an isomorphism interchanging x and y. 

We now mention a class of rings generalizing commutative rings. A polynomial 
identity on a k-algebra A is an element f(X) E k(X) {the ring of polynomials 
over k in noncommuting variables X) all of whose substitutions in A give 0. For 
example, when f(x, y) = xy - yx E k(x, y), we have fa polynomial identity on a 
k-algebra A if ab - ba = 0 for all a, b E A; that is, A is a commutative k-algebra. 

Definition. A k-algebra A is a PI-algebra if A satisfies some polynomial identity 
at least one of whose coefficients is 1. 

The standard polynomial Sm E k(X) is defined by 

sm(Xi, ... 'Xm) = L sgn(CT)Xu(l) ... Xu(m)· 
uESm 

For example, a commutative k-algebra satisfies s2{x1, x2). We can prove that 
the matrix algebra Matm{k) satisfies the standard polynomial sm2+1 {see Exer
cise B-5.3 on page 572), and Amitsur and Levitzki proved that Matm{k) satisfies 
s2m; moreover, 2m is the lowest possible degree of such a polynomial identity. There 
is a short proof of this due to Rosset [93]. 

Definition. A central polynomial identity on a k-algebra A is a polynomial 
f(X) E k(X) on A all of whose values f(ai, a2, ... ) (as the ai vary over all elements 
of A) lie in Z(A). 

It was proved, independently, by Formanek [33] and Razmyslov [90] that 
Matm ( k) satisfies central polynomial identities. 

There are theorems showing, in several respects, that PI-algebras behave like 
commutative algebras. For example, a ring R is called primitive if it has a faithful 
simple left R-module; commutative primitive rings are fields (Lam [65], p. 184). 
Kaplansky proved that every primitive quotient of a PI-algebra is simple and finite
dimensional over its center. The reader is referred to Procesi [89]. 

Another interesting area of current research involves noncommutative algebraic 
geometry. In essence, this involves the study of varieties now defined as zeros of 
ideals in k( x1, ... , Xn) (the free k-algebra in n noncommuting variables) instead of 
in k[x1, ... ,xn]· 
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Exterior Algebra 

In calculus, the differential df of a differentiable function f(x, y) at a point P = 
(xo, Yo) is defined by 

ofl ofl dflP =ox P(x - xo) + oy P(Y-Yo). 

If (x, y) is a point near P, then dflP linearly approximates the difference between 
the true value f(x, y) and f(xo, Yo). The quantity df is considered "small,'' and so 
its square, a second-order approximation, is regarded as negligible. For the moment, 
let's take being negligible seriously; write (df) 2 ~ 0, but let's pretend (df)2 were 
actually equal to zero for all differentials df. There is a curious consequence: if du 
and dv are differentials, then so is du+ dv = d(u + v). But (du+ dv) 2 ~ 0 gives 

0 ~(du+ dv) 2 ~ (du) 2 + dudv + dvdu + (dv) 2 ~ dudv + dvdu, 

and so du and dv anticommute: 

dvdu ~ -dudv. 

Now consider a double integral ff n f(x, y)dx dy, where D is some region in the 
plane. Equations 

x = F(u, v), 

y = G(u, v), 

lead to the change of variables formula, 

j l f(x,y)dxdy = j L f(F(u,v), G(u, v))J(u, v)dudv, 

where !:l. is some new region and J ( u, v) is the Jacobian: J ( u, v) = I <let [ b: b: ] I . 
A key idea in proving this formula is that the graph of a differentiable function 
f(x, y) in JR3 looks, locally, like a real vector space-its tangent plane. Consider 
a basis of the tangent plane at a point comprised of two vectors we name dx, dy. 
If du, dv is another basis of this tangent plane, then the chain rule defines a linear 
transformation by the following system of linear equations: 

dx = Fudu + Fvdv 

dy = Gudu + Gvdv. 

The Jacobian J now arises in a natural way if we treat all these quantities as mere 
symbols (this is an algebra text!) stripped of their meaning in calculus: 

dx dy = (Fu du + Fvdv) (Gu du + Gvdv) 

=~~~~+~~~~+~~~~+~~~~ 

= FuGu(du) 2 + FuGvdudv + FvGudv du+ FvGv(dv) 2 

~ Fu Gvdu dv + FvGudv du 

~ (FuGv - FvGu)du dv 

=<let [Fu F,,] dudv. 
Gu G,, 

Analytic considerations, involving orientation, force us to use the absolute value of 
the determinant when proving the change of variables formula. 
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In the preceding equations, we used the distributive and associative laws, to
gether with anticommutativity; that is, we assumed that the differentials form a ring 
in which all squares are 0. The following construction puts this kind of reasoning 
on a firm basis. 

Definition. If M is a k-module, then its exterior algebra5 is /\M = T(M)/ J, 
pronounced wedge M, where J is the two-sided ideal in the tensor algebra T(M) 
generated by all m © m with m EM; that is, 

J = {a©m©m©b: a,b E T(M) and m EM}. 

The coset m1 ©···©mp+ Jin /\M, denoted by 

mi/\···/\ mp, 

is called a wedge of p factors. 

Notice that J is generated by homogeneous elements (of degree 2). Moreover, 
Proposition B-5.15 says that J is a graded ideal in T(M) and /\M = T(M)/J is a 
graded k-algebra: 

2 3 
f\M = k tB M tB f\ M tB f\ M tB .. ·, 

where, for p 2 2, we have /\PM= (<i!;lM)/JP and JP= Jn <g;PM. Finally, /\M 
is generated, as a k-algebra, by /\ 1 M = M. 

Definition. We call /\PM the pth exterior power of a k-module M. 

Lemma B-5.25. Let M be a k-module. 

(i) Ifm,m' EM, then m/\m1 = -m' /\min f\ 2M. 

(ii) If p 2 2 and mi= mj for some i :/: j, then mi/\···/\ mp= 0 in /\PM. 

Proof. 

(i) Recall that /\ 2 M = (M ©k M)/ J 2 , where J 2 = Jn (M ©k M). If 
m,m' EM, then 

(m+m')©(m+m') =m©m+m©m' +m'©m+m'©m'. 

Therefore, m©m'+J2 = -m'©m+J2, because J 2 contains the elements 
(m+m') © (m+m'), m©m, and m' ©m'. It follows, for all m,m' EM, 
that 

m /\ m' = -m' /\ m. 

(ii) As we saw in the proof of Proposition B-5.15, /\PM= (@P M)/JP, where 
JP = Jn@P M consists of all elements of degree pin the ideal J generated 
by all elements in @2 M of the form m © m. In more detail, JP consists 
of all sums of homogeneous elements a© m © m © /3, where m E M, 
a E ®q M, /3 E ®r M, and q+r+2 = p; it follows that m 1 /\· ··/\mp= 0 if 
there are two equal adjacent factors, say, mi = mi+l · Since multiplication 

5 The original adjective in this context-the German aufter, meaning "outer" -was intro
duced by Grassmann in 1844. Grassmann used it in contrast to inner product. The first usage 
of the translation exterior can be found in work of Cartan in 1945, who wrote that he was using 
terminology of Kaehler. The wedge notation seems to have been introduced by Bourbaki. 
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in f\M is associative, however, we can (anti)commute a factor mi of 
m1 /\ · · · /\ mp several steps away at the possible cost of a change in sign, 
and so we can force any pair of factors to be adjacent. • 

One of our goals is to give a "basis-free" construction of determinants, and the 
idea is to focus on some properties that such a function has. If we regard an n x n 
matrix A as consisting of its n columns, then its determinant, det(A), is a function 
of n variables (each ranging over n-tuples). One property of determinants is that 
det(A) = 0 if two columns of A are equal, and another property is that it is mul
tilinear. Corollary B-5.44 will show that these two properties almost characterize 
the determinant. 

Definition. If M and N are k-modules, a k-multilinear function f: xP M ---+ N 
(where xP M is the cartesian product of M with itself p times) is alternating if 

whenever mi = mj for some i =f. j. 

An alternating JR-bilinear function arises naturally when considering (signed) 
areas in the plane JR2 . Informally, if v1 , v2 E JR2 , let A( vi, v2 ) denote the area of 
the parallelogram having sides v1 and v2. It is clear that 

for all r, s E JR (but we must say what this means when these numbers are negative), 
and a geometric argument can be given to show that 

that is, A is JR-bilinear. Now A is alternating, for A(vi, v1) = 0 because the de
generate "parallelogram" having sides v1 and v1 has zero area. A similar argument 
shows that volume is an alternating JR-multilinear function on JR3 , as we see in 
vector calculus using the cross product. 

Theorem B-5.26. For all p ~ 0 and all k-modules M, the pth exterior power /\PM 
solves the universal mapping problem posed by alternating multilinear functions: 

If h: xP M---+ /\PM is defined by h(m1, ... , mp) =mi/\···/\ mp, then f!r every 

alternating multilinear function f, there exists a unique k-homomorphism f making 
the diagram commute. 
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Proof. Consider the diagram 

where h'(m1, ... ,mp)= mi@·· ·®mp and v(m1@· ··®mp)= mi@·· ·®mp+J = 
m 1 /\· ··/\mp. Since f is multilinear, there is a k-map f': ®PM-+ N with f'h' = /; 
since f is alternating, Jn ®PM ~ ker f', and so f' can be factored through /\P M; 
that is, f' induces a map 

with f v = f'. Hence, 
fh = fvh' = f'h' = f. 

But ®PM/ ( J n ®PM) = /\PM, as desired. Finally, f is the unique such map 
because im h generates /\PM. • 

Proposition B-5.27. For each p 2'. 0, the pth exterior power is a functor 

/\P: kMod -+ kMod. 

Proof. Now /\PM has been defined on modules; it remains to define it on mor
phisms. Suppose that g: M -+ M' is a k-homomorphism. Consider the diagram 

where f (mi, ... , mp) = gm1 I\ · · · I\ gmp. It is easy to see that f is an alternating 
multilinear function, and so universality yields a unique map 

f\v (g): f\P M-+ f\P M' 

with mi I\ · · · I\ mp H gm1 I\ · · · I\ gmv-

If g is the identity map on a module M, then /\P(g) is also the identity map, 
for it fixes a set of generators. Finally, suppose that g': M' -+ M" is a k-map. It 
is routine to check that both /\P(g'g) and /\P(g')/\P(g) make the following diagram 
commute: 
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where F(mi, ... , mp) = (g' gmi) /\ · · · /\ (g' gmp)· Uniqueness of such a dashed arrow 
gives /\P(g'g) = /\P(g')/\P(g), as desired. • 

We will soon see that /\Pis not as nice as Hom or tensor, for it is not an additive 
functor. 

Theorem B-5.28 (Anticommutativity). If M is a k-module, x E /\PM, and 
y E f\qM, then 

X /\ y = (-l)Pqy /\ X. 

Remark. This identity holds only for products of homogeneous elements. <11111 

Proof. If x E /\ 0 M = k, then f\M being a k-algebra implies that x /\ y = y /\ x for 
ally E f\M, and so the identity holds, in particular, when y E /\ q M for any q. A 
similar argument holds if y is homogeneous of degree 0. Therefore, we may assume 
that p, q ~ 1; we do a double induction. 

Base Step: p = 1 and q = 1. Suppose that x, y E /\ i M = M. Now 

0 = (x + y) /\ (x + y) 
=x/\x+x/\y+y/\x+y/\y 

= x /\ y + y /\ x. 

It follows that x /\ y = -y /\ x, as desired. 

Inductive Step: (p, 1) =? (p + 1, 1). The inductive hypothesis gives 

(x1 /\ ... /\ Xp) /\ y = (-l)Py /\(xi/\ ... /\ Xp)· 

Using associativity, we have 

(xi/\ ... /\ Xp+i) /\ y =Xi /\ [(x2 /\ ... /\ Xp+i) /\ y] 

=Xi/\ [(-l)Py /\ (x2 /\ · · · /\ Xp+i)J 

=[xi/\ (-l)Py] /\ (x2 /\ .. · /\ Xp+i) 

= (-l)P+l(y /\Xi)/\ (x2 /\ ''' /\ Xp+i)· 

Inductive Step: (p, q) =? (p, q + 1). Assume that 

(xi/\ .. ·/\ xp) /\(Yi/\ .. ·/\ Yq) = (-l)Pq(Yi /\ .. · /\ Yq) /\(xi/\ .. ·/\ xp)· 

We let the reader prove, using associativity, that 

(xi/\···/\ xp) /\ (y1 /\ · · · /\ Yq+i) 

= (-l)p(q+l)(Yi /\ · · · /\ Yq+i) /\(xi/\···/\ xp)· • 

Definition. Let n be a positive integer and let 1 :S p :S n. An increasing p :S n 
list of integers is a list 

H =ii, ... ,ip 

for which 1 :S ii < i2 < · · · < ip :S n. 
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If H = ii, ... , ip is an increasing p :::; n list, we write 

Of course, the number of increasing p :::; n lists is the same as the number of 
p-subsets of a set with n elements, namely, (;). 

Proposition B-5.29. Let M be finitely generated, say, M = ( ei, ... , en). If 
p ~ 1, then the k-module f\P M is generated by all elements of the form eH, where 
H = ii, ... , iv is an increasing p :::; n list. 

Proof. Every element of M has some expression of the form I: aiei, where ai Ek. 
We prove the proposition by induction on p ~ 1. Let mi /\ · · · /\ mv+i be a typical 
generator of /\p+l M. By induction, each generator of the k-module /\PM can be 
written 

mi/\···/\ mp= LaHeH, 
H 

where aH Ek and His an increasing p:::; n list. If mp+l =I: b3e3, then 

mi /\ · · · /\ mv+i = (L aHeH) /\ (L b3e3). 
H j 

Each e3 in I: b3e3 can be moved to any position in each eH = ei1 /\ • • • /\ eip (with 
a possible change in sign) by (anti)commuting it from right to left. Of course, if 
e3 = eit for any f, then this term is 0, and so we can assume that all the factors in 
surviving wedges are distinct and are arranged with indices in ascending order. • 

Corollary B-5.30. If M can be generated by n elements, then /\PM= {O} for all 
p>n. 

Proof. Any wedge of p factors must be 0, for it must contain a repetition of one 
of the generators. • 

Grassmann Algebras 

Grassmann algebras are graded algebras we shall use to prove the Binomial Theo
rem, which computes the wedge of direct sums. 

Definition. If V is a free k-module of rank n, then a Grassmann algebra on V 
is a k-algebra G(V) with identity element, denoted by eo, such that 

(a) G(V) contains (eo) EB Vas a submodule, where (eo) ~ k; 

(b) G(V) is generated, as a k-algebra, by the set (eo) EB V; 

( c) v2 = 0 for all v E V; 

(d) G(V) is a free k-module ofrank 2n. 

The computation on page 561 shows that the condition v2 = 0 for all v E V 
implies vu= -uv for all u, v E V. A candidate for G(V) is /\ V but, at this stage, 
it is not clear how to show that /\ V is free and of the desired rank. 
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Grassmann algebras carry a generalization of complex conjugation, and this 
fact is the key to proving their existence. If A is a k-algebra, then an algebra 
automorphism is a k-algebra isomorphism of A with itself. 

The notation eH = ei1 /\ • • • /\ eip in /\PV can be extended to eH = ei1 • • • eip in 
GP(V). 

Theorem B-5.31. Let V be a free k-module with basis ei, ... , en, where n ~ 1. 

(i) A Grassmann algebra G(V) exists; moreover, it has a k-algebra automor
phism u H u, called conjugation, such that 

u=u, 
eo = eo, 

v = -v for all v E V. 

(ii) The Grassmann algebra G(V) is a graded k-algebra 

Proof. 

G(V) = ffiGP(V), 
p 

where GP(V) = (eH : His an increasing p ~ n list). Moreover, GP(V) is 
a free k-module with 

rank(GP(V)) = (;). 

(i) The proof is by induction on n ~ 1. The base step is clear: if V = ( e1 ) ~ 
k, set G(V) = (eo) EB (e1); note that G(V) is a free k-module ofrank 2. 
Define a multiplication on G(V) by 

It is routine to check that G(V) is a k-algebra that satisfies the axioms of 
a Grassmann algebra. There is no choice in defining the automorphism; 
we must have 

aeo + be1 = aeo + be1 = aeo - be1. 

Finally, it is easy to see that u H u is the automorphism we seek. 
For the inductive step, let V be a free k-module of rank n + 1 and 

let ei, ... , en+l be a basis of V. If W = (ei, ... , en), then the inductive 
hypothesis provides a Grassmann algebra G(W), free of rank 2n, and an 
automorphism u Hu for all u E G(W). Define G(V) = G(W) EB G(W), 
so that G(V) is a free module of rank 2n + 2n = 2n+l. We make G(V) 
into a k-algebra by defining 

(x1,x2)(y1,Y2) = (x1y1,X2Y1 +x1y2). 

Note that G(W) is a subalgebra of G(V), for (x1, O)(yi, 0) = (x1y1, 0). 
We now verify the four parts in the definition of Grassmann algebra. 
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(a) At the moment, V is not a submodule of G(V). Each v E V has a 
unique expression of the form v = w + aen+i. where w E Wand a E k. 
The k-map V-+ G(V), given by 

v = w + aen+l f-t ( w, aeo), 

is an isomorphism of k-modules since ( e0 ) ~ k, and we identify V with 
its image in G(V). In particular, en+1 is identified with (0, eo). Note 
that the identity element e0 E G(W) in G(W) has been identified with 
(e0 , 0) in G(V), and that the definition of multiplication in G(V) shows 
that (e0 , 0) is the identity in G(V). 

(b) By induction, we know that the elements of ( eo) EB W generate G (W) 
as a k-algebra; that is, all (xi, 0) E G(W) ~ G(V) arising from elements 
of W. Next, by our identification, en+l = (0, eo), 

(xi, O)en+l = (xi, 0)(0, eo) = (0, xi), 

and so the elements of V generate all pairs of the form (0, x2 ). Since 
addition is coordinatewise, all (xi,x2) = (x1,0) + (O,x2) arise from V 
using algebra operations. 

(c) If v EV, then v = w + aen+i, where w E W, and vis identified with 
(w, aeo) in G(V). Hence, 

v2 = (w,aeo)(w,aeo) = (w2 ,aeow+aeow). 

Now w2 = 0, and w = -w, so that v2 = 0. 

(d) rankG(V) = 2n+l because G(V) = G(W) EB G(W). 
We have shown that G(V) is a Grassmann algebra. Finally, define 

conjugation by 

(x1,x2) = (xi,-x2). 

The reader may check that this defines a function with the desired prop
erties. 

(ii) We prove, by induction on n 2:: 1, that 

GP (V) = ( e H : H is an increasing p S n list) 

is a free k-module with the displayed products as a basis. The base step 
is obvious: if rank(V) = 1, say, with basis ei, then G(V) = (e0 , e1); 
moreover, both G0 (V) and G1 (V) are free ofrank 1. 

For the inductive step, assume that V is free with basis e1, ... , en+l · 
As in the proof of part (i), let W = (e1, ... , en)· By induction, GP(W) 
is a free k-module of rank (;) with basis all eH, where H is an in
creasing p s n list. Here are two types of element of GP(V): ele
ments eH E G(W), where H is an increasing p S n list; elements 
eK = ei1 • • • eip-i en+l> where K is an increasing p S (n + 1) list that 
involves en+l · We know that the elements of the first type comprise 
a basis of G(W). The definition of multiplication in G(V) gives eK = 
ei1 • • • eip-l en+l = ( ei1 • · • eip-1' 0)(0, eo) = (0, ei1 • • • eip-l ). Thus, the 
number of such products is (P~J As G(V) = G(W) EB G(W), we see 
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that the union of these two types of products form a basis for GP(V), 
and so rank(GP(V)) = (;) + (p~l) = (n~ 1). 

It remains to prove that GP(V)Gq(V) ~ av+q(V). Consider a prod
uct ei1 • • • eive31 • • • e3q. If some subscript ir equals a subscript j 8 , then 
the product is 0, because it has a repeated factor; if all the subscripts are 
distinct, then the product lies in av+q(V), as desired. Therefore, G(V) 
is a graded k-algebra whose graded part of degree p is a free k-module of 
rank (;). • 

Theorem B-5.32 (Binomial Theorem). If V is a free k-module of rank n, then 
there is an isomorphism of graded k-algebras, 

f\ V ~ G(V). 

Thus, /\PV is a free k-module, for all p ~ 1, with basis all increasing p :::; n lists, 
and hence 

Proof. For any p ~ 2, consider the diagram 

xPV ____ h ___ ~ /\PV 

~ >//~/ 
GP(V)' 

where h(v1, ... , vp) = v1 /\ · · • /\ Vp and gp(v1, ... , vp) = v1 · · · Vp· Since v 2 = 0 in 
QP(V) for all v E V, the function 9v is alternating multilinear. By the universal 
property of exterior power, there is a unique k-homomorphism gp: /\PV--+ GP(V) 
making the diagram commute; that is, 

gp(V1 /\ · · · /\ Vp) = V1 · • • Vp· 

If ei, ... , en is a basis of V, then we have just seen that QP(V) is a free k-module 
with basis all ei1 • • • eiv, and so 9v is surjective. Now /\PV is generated by all 
eii /\ · · · /\ eiv' by Proposition B-5.29. If some k-linear combination L:;H aHeH lies 
in kergp, then L:;aHgp(eH) = 0 in GP(V). But the list of images 9v(eH) forms a 
basis of the free k-module GP(V), so that all the coefficients aH = 0. Therefore, 
ker 9v = { 0}, and so 9v is a k-isomorphism. 

Define')': /\V--+ G(V) by 'Y(L::;=ouv) = L::;=o9v(up), so that 'Y(/\PV) ~ 
GP (V). We are done if we can show that ')' is an algebra map: 'Y( u /\ v) = 'Y( u )"t( v). 
But this is clear for homogeneous elements of /\ V, and hence it is true for all 
elements. • 

Corollary B-5.33. If V is a free k-module with basis ei, ... , en, then 

/\ nv = (e1 /\ ... /\en)~ k. 

Proof. By Proposition B-5.29, we know that/\ nv is a cyclic module generated by 
e1 /\···/\en (there is only one nonzero wedge of with n factors that arises from an 
increasing p :::; n list!), but we cannot conclude from this proposition whether or 
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not this element is zero. However, the Binomial Theorem not only says that this 
element is nonzero; it also says that it generates a cyclic module isomorphic to k . 

• 
Proposition B-4.18 says that if T: kMod -+ kMod is an additive functor, then 

T(VEBV') ~ T(V)EBT(V'). It follows, for p;::: 2, that /\Pis not an additive functor: 
if V is a free k-module of rank n, then /\P(V EB V) is free of rank (2;), whereas 
/\PV EB /\PV is free of rank 2(;). 

An astute reader will have noticed that our construction of a Grassmann alge
bra G(V) depends not only on the free k-module V but also on a choice of basis 
of V. Had we chosen a second basis of V, would the second Grassmann algebra be 
isomorphic to the first one? 

Corollary B-5.34. Let V be a free k-module, and let B and B' be bases of V. 
If G(V) is the Grassmann algebra defined using B and G'(V) is the Grassmann 
algebra defined using B', then G(V) ~ G'(V) as graded k-algebras. 

Proof. Both G(V) and G'(V) are isomorphic to /\ V, and the latter has been 
defined without any choice of basis. • 

A second proof of the Binomial Theorem follows from the next result. 

Theorem B-5.35. For all p ;::: 0 and all k-modules A and B, 

Proof. We sketch a proof. Let A be the category of all alternating anticommutative 
graded k-algebras R = ffip2'.0 RP (these algebras satisfy r 2 = 0 for all r E R 
homogeneous of odd degree, and rs = (-l)Pq sr, where r E RP and s E Sq); 
by Theorem B-5.28, the exterior algebra /\A E obj(A) for every k-module A. If 
R, SE obj(A), then one verifies that R©k S = ffip2'.0 ( ffif=o Ri ©k SP-i) E obj(A); 
using anticommutativity, a modest generalization of Proposition B-5. 7 shows that 
A has coproducts. 

We claim that (/\, D) is an adjoint pair of functors, where /\: kMod -+ A 
sends A H /\A, and D: A -+ kMod sends L:p2'.0 RP H Ri, the terms of degree 1. 
If R = ffiP RP, then there is a map 7rR: /\Ri -+ R; define TA,R: HomA (/\A, R) -+ 
Homk(A, Ri) by <pH 7rR(<plA). It follows from Theorem B-7.20 that /\preserves 

coproducts: /\(AEBB) ~ /\A©k/\B and /\P(AEBB) ~ ffif=o (/\iA©k/\p-iB) for 

all p. • 

Here is an explicit formula for an isomorphism. In/\ 3(A EBB), we have 

(ai +bi)/\ (a2 + b2) /\ (a3 + b3) = ai /\ a2 /\ a3 + ai /\ b2 /\ a3 

+ bi /\ a2 /\ a3 + bi /\ b2 /\ a3 + ai /\ a2 /\ b3 

+ ai /\ b2 /\ b3 + bi /\ a2 /\ b3 + bi /\ b2 /\ b3. 
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By anticommutativity, this can be rewritten so that each a precedes all the b's: 

(ai +bi)/\ (a2 + b2) /\ (a3 + b3) = ai /\ a2 /\ a3 - ai /\ a3 /\ b2 

+~/\~/\~+~/\~/\~+~/\~/\~ 

+ ai /\ b2 /\ b3 - a2 /\ bi /\ b3 + bi /\ b2 /\ b3. 

An i-shuffie is a partition of {1, 2, ... ,p} into two disjoint subsets µi < · · · < µi 
and vi < · · · < Vp-i; it gives the permutation a E Sp with a(j) = µj for j :::; i 
and a( i + f) = ve for j = i + f > i. (This term arises from shuffling cards: a deck 
of cards is divided into two piles which are then reunited with the ordering of the 
cards in each pile unchanged; for example, if the ace of hearts comes before the ten 
of spades in the first pile, then the ace still comes before the ten in the reunited 
deck, but there may be cards of the second pile between them). Each "mixed" term 
in (ai +bi)/\ (a2 + b2) /\ (a3 + b3) defines a shuffie, with the a's giving the µ and 
the b's giving the v; for example, ai /\ b2 /\ a3 is a 2-shuffie and bi /\ a2 /\ b3 is a 
1-shuffie. We define the signature c(a) of a to be the total number of leftward 
moves of a's so that they precede all the b's, and the reader may check that the 
signs in the rewritten expansion are sgn(a) = (-l)e(a)_ 

The isomorphism f: /'t(A tJJ B)--+ ffif=o (/\iA ©k f{-iB) of Theorem B-5.35 
is given by 

p 

f((ai +bi)/\···/\ (ap +bp)) = L ( L sgn(a)aµ 1 /\···/\aµ; ©b.,1 /\ · • • /\ b.,p-i). 
i=O i-shuffies u 

Corollary B-5.36 (Binomial Theorem Again). If V is a free k-module of 
rank n, then f\PV is a free k-module of rank (;). 

Proof. Write V = k tJJ Band use induction on rank(V). • 

Here is a nice result when k is a field and, hence, k-modules are vector spaces. 

Proposition B-5.37. Let k be a field, let V be a vector space over k, and let 
Vi, ... , Vp be vectors in V. Then vi/\···/\ Vp = 0 in/\ V if and only if vi, ... , Vp is 
a linearly dependent list. 

Proof. Since k is a field, a linearly independent list vi, ... , vp can be extended to a 
basis vi, ... , Vp, ... , Vn of V. By Corollary B-5.33, v1 /\ · · · /\ Vn =f. 0. But v1 /\ · · · /\ Vp 
is a factor of V1 /\ · · · /\ Vn, so that V1 /\ · · · /\ Vp =f. 0. 

Conversely, if v1, ... , Vp is linearly dependent, there is an i with vi = Lif.i ajVj, 
where aj E k. Hence, 

v1 /\ · · · /\Vi /\ · · · /\ vp = v1 /\ · · · /\ L ajVj /\ · · · /\ Vp 
jf.i 

= L ajV1 /\ · · · /\ Vj /\ · · · /\ vp. 
jf.i 

After expanding, each term has a repeated factor Vj, and so this is 0. • 
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Exercises 

B-5.1. Prove that the ring R in Example B-5.23 is left noetherian but not right noether
ian. 

B-5.2. Let G be a group. Then a k-algebra A is called G-graded ifthere are k-submodules 
Ag, for all g E G, such that 

(i) A= E9gEG Ag; 

(ii) for all g, h E G, Ag Ah ~ Agh. 

An Z2-graded algebra is called a superalgebra. If A is a G-graded algebra and e is the 
identity element of G, prove that 1 E Ae. 

* B-5.3. (i) If A is a k-algebra generated by n elements, prove that A satisfies a standard 
polynomial defined on page 560. (This is not so easy.) 

(ii) Prove that Matm(k) satisfies the standard polynomial sm2+1(x1, ... ,xm2+i) de
fined on page 560. 
Hint. Use Corollary B-5.30. 

B-5.4. Let G(V) be the Grassmann algebra of a free k-module V, and let u = L:P Up E 

G(V), where Up E GP(V) is homogeneous of degree p. If u is the conjugate of u in 
Theorem B-5.31, prove that u = L:P(-l)Pup. 

B-5.5. (i) Let p be a prime. Show that f\2(Zp EB Zp) =J 0, where Zp EB Zp is viewed as a 
Z-module (i.e., as an abelian group). 

(ii) Let D = Q/Z EB Q/Z. Prove that /\ 2 D = 0, and conclude that if i: Zp EB Zp --+ D 
is an inclusion, then /\ 2 ( i) is not an injection. 

B-5.6. (i) If k is a commutative ring and N is a direct summand of a k-module M, prove 
that /\P N is a direct summand of /\PM for all p ~ 0. 

Hint. Use Corollary B-2.15 on page 325. 

(ii) If k is a field and i: W --+ V is an injection of vector spaces over k, prove that 
f\P(i) is an injection for all p ~ 0. 

B-5. 7. Prove, for all p, that the functor /\P preserves surjections. 

B-5.8. If P is a projective k-module, where k is a commutative ring, prove that /\ q P is 
a projective k-module for all q. 

B-5.9. Let k be a field, and let V be a vector space over k. Prove that two linearly 
independent lists u1, ... , up and v1, ... , Vp span the same subspace of V if and only if 
there is a nonzero c E k with u1 A · · · A Up = cv1 A · · · A Vp. 

* B-5.10. If U and V are k-modules over a commutative ring k and U' ~ U and V' ~ V 
are submodules, prove that 

(U/U') ®k (V/V') ~ (U ®k V)/(U' ®kV+ U ®kV'). 

Hint. Compute the kernel and image of cp: U ®kV --+ (U/U') ®k (V/V') defined by 
cp: u ® v 1-t (u + U') ® v + u ® (v + V'). 

B-5.11. Let V be a finite-dimensional vector space over a field k, and let q: V--+ k be 
a quadratic form on V. Define the Clifford algebra C(V, q) as the quotient C(V, q) = 
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T(V)/J, where J is the two-sided ideal generated by all elements of the form v©v-q(v)l 
(note that J is not a graded ideal). For v E V, denote the coset v + J by [v), and define 
h: V-+ C(V,q) by h(v) = [v). 

(i) Prove that C(V, q) is a solution to the following universal problem: 

V~C(V,q) 

fl / :_ / 
>/ I 

A, 

where A is a k-algebra and f: V-+ A is a k-module map with f(v) 2 = q(v) for all 
VE V. 

(ii) If q is the zero quadratic form, prove that C(V, q) = G(V). 

(iii) If k = IR, q is nondegenerate, and n = 2, prove that the Clifford algebra has 
dimension 4 and C(V, q) ~ lHl, the division ring of quaternions. 

Clifford algebras are used in the study of quadratic forms, hence of orthogonal groups; see 
Jacobson [52), pp. 228-245. 

Exterior Algebra and Differential Forms 

We introduced exterior algebra by looking at Jacobians; we now use exterior algebra 
to introduce differential forms. Let X be a connected open6 subset of !Rn. A 
function f: x --+ JR is called a C00-function if, for all p 2: 1, the pth partials 
{)Pf /axf H exist for all i = 1, ... , n, as do all the mixed partials. 

Definition. If X is a connected open subset of !Rn, define 

A(X) = {!: X--+ JR: f is a C00-function}. 

The condition that X be a connected open subset of !Rn is present so that 
C00-functions are defined. It is easy to see that A(X) is a commutative ring under 
pointwise operations: 

f + g: x H f(x) + g(x); Jg: x H f(x)g(x). 

In the free A(X)-module A(X)n of all n-tuples, rename the standard basis 

dxi, ... , dxn. 

The Binomial Theorem says that a basis for f\P A(X)n consists of all elements 
of the form dxi 1 /\ • • • /\ dxiv, where ii, ... , ip is an increasing p :::; n list. But 
Proposition B-5.19 says that if M is a k-module, then scalar multiplication by 
r E k is given by r(m1 © · · · ©mp) = (rm1) © · · · ©mp . It follows that each 
w E /\P A(X)n has a unique expression 

w = L (/ii, ... ,ivdxii) /\ · · · /\ dxiv• 
ii, ... ,ip 

6 A topological space X is connected if it has no proper nonempty subset that is simultane
ously closed and open, while X is path connected if any pair of points in X can be joined by a 
path lying wholly in X. An open subset in IR.n is connected if and only if it is path connected. 
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where fi 1 ,. • .,iv E A(X) is a C00-function on X and ii, ... ,ip is an increasing p:::; n 
list. We write 

f2P(X) = f\P A(Xt, 

and we call its elements differential p-forms on X. 

Definition. The exterior derivative dP : f2P ( X) --+ f2P+l ( X) is defined as follows: 

(i) if f E n°(X) = A(X), then d0 f = E.i=i l!;dx3; 

(ii) if p 2:: 1 and w E f2P(X), then w = Ei1 ... iv fi 1 ... ivdxi1 /\ • • • /\ dxiv• and 

dPw = ""' d0 (f· · ) /\ dx· /\ .. · /\ dx· . L..J i1 ... ip i1 'l.p 

If X is a connected open subset of ~n, exterior derivatives give a sequence of 
A(X)-maps, called the de Rham complex: 

O--+ n°(X) ~ ni(X) ~ f22(X)--+ · · ·--+ nn-i(X) ~ nn(X)--+ 0. 

Proposition B-5.38. If X is a connected open subset of ~n, then 

dp+idp: f2P(X) --+ f2P+2(X) 

is the zero map for all p 2:: 0. 

Proof. It suffices to prove that ddw = 0, where w = fdx1 (we are using an earlier 
abbreviation: dx1 = dxi 1 /\ • • • /\ dxiv' where I= ii, ... , ip is an increasing p:::; n 
list). Now 

Compare the i, j and j, i terms in this double sum: the first is 

a2 J -a a dx3/\dxi/\dx1, 
Xi Xj 

the second is 
a2f -a a dxi/\dx3/\dx1, 
Xj Xi 

and these cancel each other because the mixed second partials are equal and 
dxi /\ dx3 = -dx3 /\ dxi. • 

Example B-5.39. Consider the special case of the de Rham complex for n = 3: 

o--+ n°(x) ..!.+ ni(x) ~ n 2(x) ~ n 3 (X)--+ o. 
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If w E n°(X), then w = f(x, y, z) E A(X), and 

o of of of 
d f = ax dx + ay dy + {)z dz, 

a 1-form resembling grad(!). 

If w E 0 1(X), then w = fdx + gdy + hdz, and a simple calculation gives 

d1w = ( 89 - of) dx /\. dy + (ah - 89 ) dy /\.dz+ ( 0 f - ah) dz/\. dx, 
& ~ ~ fu fu & 

a 2-form resembling curl(w). 

If w E 0 2 (X), then w = Fdy /\.dz+ Gdz /\. dx + Hdx /\. dy. Now 

d2 _ 8F 8G 8H 
w - ax + {)y + {)z , 

a 3-form resembling div(w). 

These are not mere resemblances. Since 0 1(X) is a free A(X)-module with 
basis dx, dy, dz, we see that d0w is grad(w) when w is a 0-form. Now 0 2 (X) is a 
free A(X)-module, but we choose a basis dx /\. dy, dy /\.dz, dz/\. dx instead of the 
usual basis dx /\. dy, dx /\. dz, dy /\. dz; it follows that d1w is curl(w) in this case. 
Finally, 0 3(X) has a basis dx /\. dy /\.dz, and so d3w is div(w) when w is a 2-form. 
We have shown that the de Rham complex is 

o--+ n°(x) ~ n 1 (x) ~ n 2 (x) ~ n 3 (X)--+ o. 

Proposition B-5.38 now gives the familiar identities from Advanced Calculus: 

curl · grad = 0 and div · curl = 0. 

We call a 1-form w closed if dw = 0, and we call it exact if w = gradf for 
some C00-function f. More generally, call a p-form w closed if dPw = 0, and call 
it exact if w = dP- 1w' for some (p - 1)-form w'. Thus, w E f2P(X) is closed if and 
only if w E ker dP, and w is exact if and only if w E im dP- 1 . Therefore, the de Rham 
complex is an exact sequence of A(X)-modules if and only if every closed form is 
exact; indeed, this is the etymology of the adjective exact in "exact sequence." It 
can be proved that the de Rham complex is an exact sequence whenever X is a 
simply connected open subset of !Rn. For any (not necessarily simply connected) 
space X, we have imgrad ~ kercurl and imcurl ~ kerdiv, and the JR-vector spaces 
ker curl/ im grad and ker div/ im curl are called the co homology groups of X (Bott
Tu [11] Chapter I). <Ill 

Determinants 

We have been using familiar properties of determinants, even though the reader 
may have seen their verifications only over fields and not over general commutative 
rings. Since determinants of matrices whose values lie in a commutative ring k are 
of interest, the time has come to establish these properties in general, for exterior 
algebra is now available to help us. 
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We claim that every k-module map f: k -t k is just multiplication by some 
d E k: if f(l) = d, then 

f(a) = f(al) = af(l) =ad= da 

for all a E k. Here is a slight generalization: if V = (v) £::! k, then every k-map 
f: V -t V has the form f: av H dav, where f(v) = dv. Suppose now that Vis 
a free k-module with basis e1, ... , en; Corollary B-5.33 shows that /\ nv is free of 
rank 1 with generator ei /\ ... /\en. It follows that every k-map f: /\ nv -t /\ nv has 
the form f(a(e1 /\···/\en)) = d(a(e1 /\···/\en)). In particular, /\ n: kMod -t kMod 
is a functor, by Proposition B-5.27, and /\ n(f): e1 /\···/\en H d(e1 /\···/\en) for 
some d Ek; we call d the determinant off. 

Definition. If V is a free k-module with basis ei, ... , en and f: V -t V is a k
homomorphism, then the determinant off, denoted by det(f), is the element 
det(f) E k for which 

/\ n (!): ei /\···/\en H f(e1) /\ · · · /\ f(en) = det(f)(e1 /\···/\en)· 

If A is an n x n matrix over k, define det(A) = det(f), where f: kn -t kn is given 
by f(x) =Ax. 

We restate the definition of determinant of a matrix in down-to-earth language. 

Proposition B-5.40. If A is an n x n matrix over k, then 

det(A)(e1 /\···/\en)= Ae1 /\ · · · /\ Aen. 

Proof. An n x n matrix A with entries in k defines the k-map f: kn -t kn with 
f(x) =Ax, where x E kn is a column vector. If ei, ... , en is the standard basis of 
kn, then the ith column of A is Aei. By definition, 

Ae1 /\ · · · /\ Aen = det(A)(e1 /\···/\en)· 

Thus, the wedge of the columns of A in /\ n kn is a constant multiple of e1 /\ · · · /\en, 
and det(A) is that constant. • 

Example B-5.41. If A = [ g H then the wedge of the columns of A is 

(ae1 + be2) /\ (ce1 + de2) = ace1 /\ ei + ade1 /\ e2 + bce2 /\ ei + bde2 /\ e2 

= ade1 /\ e2 + bce2 /\ ei 

= ade1 /\ e2 - bce1 /\ e2 

=(ad- bc)(e1 /\ e2)· 

Therefore, det(A) =ad - be. <Ill 

The reader has probably noticed that this calculation is a repetition of the 
calculation on page 561 where we computed the Jacobian of a change of variables 
in a double integral. The next example considers triple integrals. 
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Example B-5.42. Let us change variables in Jf f v f(x, y, z) dxdydz using equa
tions: 

x = F(u,v,w), 

y = G(u,v,w), 

z = H(u,v,w). 

Denote a basis of the tangent space Tanp of f(x, y, z) at a point P E IR3 by dx, 
dy, dz. If du, dv, dw is another basis of Tanp, then the chain rule defines a linear 
transformation on Tanp by the equations: 

dx = Fudu + Fvdv + Fwdw, 

dy = Gudu + Gvdv + Gwdw, 

dz = Hudu + Hvdv + Hwdw. 

If we write the differential dxdydz in the integrand as dx A. dy A. dz, then the change 
of variables gives the new differential 

Expand 

to obtain nine terms, three of which involve (du )2 , ( dv )2 , or ( dw )2 , and hence are 0. 
Of the remaining six terms, three have a minus sign, and it is now easy to see that 
this sum is the determinant. .,.. 

Proposition· B-5.43. 

(i) If I is the identity matrix, then det(I) = 1. 

(ii) If A and B are n x n matrices with entries ink, then 

det(AB) = det(A) det(B). 

Proof. Both results follow from Proposition B-5.27: /\ n: kMod ---+ kMod is a 
functor! 

(i) If A is the identity matrix, its linear transformation is f = lkn: v H v. 
Since every functor takes identities to identities we have/\ n(f) = lN(kn); 

that is, /\ n(f)(e1 A.··· A. en) = f(e1) A.··· A. f(en) = ei A.··· A. en. Since 
/\ n(f)(e1 fl. .. ·A.en)= det(f)(e1 fl. .. ·A.en), we have det(A) = det(f) = 1. 

(ii) If f and g are the linear transformations on kn arising from A and B, 
respectively, then f g is the linear transformation arising from AB. If we 
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denote ei /\···/\en by eN, then 

det(f g)eN = /\. n (fg)(eN) 

= /\. n (!) (/\. n (g)(eN)) 

= /\.n(f)(det(g)eN) 

= det(g)f\.n(f)(eN) 

= det(g) det(f)eN 

= det(f) det(g)eN. 

The next to last equation uses the fact that /\ n(f) is a k-map. The last 
equation follows because det(f) and det(g) lie in k. Therefore, 

det(AB) = det(f g) = det(f) det(g) = det(A) det(B). • 

Corollary B-5.44. <let: Matn ( k) ---+ k is the unique alternating multilinear func
tion with det(I) = 1. 

Proof. The definition of determinant as the wedge of the columns shows that 
it is an alternating multilinear function <let: xn V ---+ k, where V = kn, and 
Proposition B-5.43 shows that det(I) = 1. 

The uniqueness of such a function follows from the universal property of /\ n: 

If <let' is another multilinear map, then there exists a unique k-map f: /\ nv ---+ k 
with oh= <let'. Moreover, det'(ei, ... , en)= 1 implies o(e1 /\···/\en)= 1. Since 
/\ nv ~ k, every k-map o: /\ nv ---+ k is determined by o(e1 /\···/\en)· Thus, the 
map 0 is the same for <let' as it is for <let, and so <let' =oh= <let. • 

We now show that the determinant just defined coincides with the familiar, 
determinant function. 

Lemma B-5.45. Let ei, ... , en be a basis of a free k-module. If a is a permutation 
of 1, 2, ... , n, then 

ea(l) /\ · · · /\ ea(n) = sgn(a)(e1 /\···/\en)= sgn(a)eN, 

where eN = ei /\···/\en. 

Proof. Since m /\ m' = -m' /\ m, it follows that interchanging adjacent factors in 
the product eN = ei /\···/\en gives 

ei /\ · · · /\ ei /\ ei+l /\ · · · /\en = -e1 /\ · · · /\ ei+l /\ ei /\ · · · /\en. 

More generally, if i < j, then we can interchange ei and e3 by a sequence of inter
changes of adjacent factors, each of which causes a sign change. By Exercise A-4.16 
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on page 127, this can be accomplished with an odd number of interchanges of 
adjacent factors. Hence, for any transposition 7 E Sn, we have 

e7 (1) /\ · · · /\ e7 (n) = e1 /\ · · · /\ ej /\ · · · /\ ei /\ · · · /\ en 

= -[e1 /\ · · · /\ ei /\ · · · /\ ej /\···/\en] 

= sgn(7)(e1 /\···/\en)= sgn(7)eN. 

We prove the general statement by induction on m, where a is a product of m 
transpositions. The base step having just been proven, we proceed to the inductive 
step. Write a = 71 72 · · · 7 m+l • and denote 72 · · · 7 m+l by a'. By the inductive 
hypothesis, 

e,,.'(l) /\ · · · /\ e,,.'(n) = sgn(a')eN, 

and so 

e,,.(1) /\ · · · /\ e,,.(n) = e71 u'(l) /\ · · · /\ e71 ,,.1(n) 

= -e,,.'(1) /\ · · · /\ e,,.'(n) (base step) 

= -sgn(a')eN (inductive step) 

= sgn(71) sgn(a')eN 

= sgn(a)eN. • 

Remark. Here is another proof of this lemma in the special case when k is a field. 
If k has characteristic 2, then Lemma B-5.45 is obviously true, and so we may 
assume that the characteristic of k is not 2. Let e1, ... , en be the standard basis of 
kn. If a E Sn, define a linear transformation <p,,.: kn--+ kn by <p,,.: ei H e,,.(i)· Since 
<p,,.7 = 'Pu'Pn as is easily verified, there is a group homomorphism d: Sn --+ kx given 
by d: a H det(<p,,.). If a is a transposition, then a 2 = (1) and d(a) 2 = 1 in P. 
Since k is a field, d(a) = ±1. As every permutation is a product of transpositions, 
it follows that d(a) = ±1 for every permutation a, and so im(d) ~ {±1}. Now 
there are only two homomorphisms Sn --+ { ±1 }: the trivial homomorphism with 
kernel Sn and sgn. To show that d = sgn, it suffices to show that d{(l 2)) f. 1. 
But d{(l 2)) = det('P(l 2)); that is, by the very definition of determinant, 

det(<p(12))eN = det(<p(12))(e1 /\···/\en) 

= 'P(12)(e1) /\ · · · /\ 'P(12)(en) 

= e2 /\ e1 /\ e3 /\ · · · /\ en 

= -(e1 /\···/\en)= -eN. 

Therefore, d((l 2)) = -1f.1, because k does not have characteristic 2, and so, for 
all a E Sn, d(a) = det(<p,,.) = sgn(a); that is, e,,.(l) /\ · · · /\ e,,.(n) = sgn(a)eN. .,.. 

We return to our notation that k be a commutative ring, not necessarily a field. 

Proposition B-5.46 (Complete Expansion). If A= [aij] is an n x n matrix 
with entries in k, then 

det(A) = L sgn(a)a,,.(1),1au(2),2 · · · a,,.(n),n· 
<TE Sn 
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Proof. The jth column Xj = L:i aijei, where el, ... , en is a basis of a free module. 
Since it is hazardous to use the same symbol to mean different things in a single 
equation, we denote the jqth column by Xjq = L:iq aiqjqeiq> where 1 ::; q ::; n. 
Expand the wedge of the columns of A: 

L ai1 1ei1 /\ ai2 2ei2 /\ • • • /\ ainnein· 
i1,i2, ... ,in 

Any summand in which eip = eiq for p =/. q must be 0 because it has a repeated 
factor, and so we may assume, in any surviving term, that ii, i2,. . ., in are all 
distinct; that is, for each summand, there is a permutation a E Sn with iq = a(q) 
for all 1 ::; q ::; n. The original product now has the form 

:L:: ( au(l)l au(2)2 ... au(n)n) eu(l) "eu(2) " ... "eu(n). 
uESn 

By Lemma B-5.45, eu(l) /\ eu(2) /\ · · · /\ eu(n) = sgn(a)eN. Therefore, the wedge of 
the columns is equal to (L:uESn sgn(a)au(1)1au(2)2 · · · au(n)n)eN, and this completes 
the proof. • 

Quite often, the complete expansion is taken as the definition of the determi
nant, but proofs are then more complicated. 

Corollary B-5.47. Let A be an n x n matrix with entries ink. The characteristic 
polynomial 1/JA(x) = det(xJ -A) E k[x] is a monic polynomial of degree n, and the 
coefficient of xn-l in 1/JA(x) is -tr(A). 

Proof. Let A = [%] and let B = [bij], where bii = XOij - % (where Oij is the 
Kronecker delta). By Proposition B-5.46, the Complete Expansion, 

det(B) = L sgn(a)bu(l),1bu(2),2 · · · bu(n),n· 
uESn 

If a= (1), then the corresponding term in the complete expansion is 

b11b22 · · · bnn =IT (x - aii) = g(x), 
i 

where g(x) = Ili(x-aii) is a monic polynomial in k[x] of degree n. If a=/. (1), then 
the ath term in the complete expansion cannot have exactly n - 1 factors from the 
diagonal of xI - A, for if a fixes n - 1 indices, then a= (1). Therefore, the sum of 
the terms over all a=/. (1) is either 0 or a polynomial in k[x] of degree at most n- 2. 
It follows that deg('!/JA) = n and the coefficient of xn-l is - L:i aii = - tr(A). • 

Let f(x) E k[x], where k is a field. If f(x) = (x - ai) · · · (x - an) = xn + 
an-1Xn-l + · · · + ao, then an-1 = -(a1 + · · · +an); that is, -an-1 is the sum 
of the roots of f(x). In particular, since - tr(A) is the coefficient of xn-l in the 
characteristic polynomial of an n x n matrix A, we see that tr(A) is the sum (with 
multiplicities) of the eigenvalues of A. 
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Proposition B-5.48. If A is an n x n matrix, then 

det(AT) = det(A), 

where AT is the transpose of A. 

Proof. If A= [aii], write the complete expansion of det(A) more compactly: 

det(A) = L sgn(a) 11 au(i),i· 

uESn i 

For any permutation TE Sn, we have i = r(j) for all i, and so 

11 au(i),i = 11 au(r(j)),r(j)' 
i j 

for this merely rearranges the factors in the product. Choosing T = a- 1 gives 

11 au(r(j)),r(j) = 11 aj,u-l(j)-
j j 

Therefore, 

det(A) = L sgn(a) 11 aj,u-l(j)-

uESn j 
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Now sgn(a) = sgn(a- 1) (if a = r 1 · · ·Tq, where the Tare transpositions, then 
a- 1 = Tq · · · r 1); moreover, as a varies over Sn, so does a- 1. Hence, writing a- 1 = p 
gives 

det(A) = L sgn(p) 11 aj,p(j)-

pESn j 

Now write AT= [bij], where bii = aii· Then 

det(AT) = L sgn(p) 11 bp(j),i = L sgn(p) 11 aj,p(j) = det(A). • 
j j 

We now prepare for a proof that determinants can be computed by Laplace 
expansions. 

Definition. Let A be an n x n matrix with entries in a commutative ring k. If 
H = ii, ... , ip and L = ji, ... , }p are increasing p :::; n lists (that is, 1 :::; i1 < i2 < 
· · · < ip :::; n and 1 :::; }1 < }2 < · · · < }p :::; n), then AH,L is the p x p submatrix 
[ast], where (s, t) E H x L. A minor of order pis the determinant of a p x p 
submatrix. 

The submatrix AH,L is obtained from A by deleting all ith rows for i not in 
H and all jth columns for j not in L. For example, every entry aii is a minor 
of A = [aij] (for it is the determinant of the 1 x 1 submatrix obtained from A by 
deleting all rows except the ith and all columns except the jth). If 
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then some minors of order 2 are 

det [an ai2] 
a2i a22 

and <let [ai2 a13] . 
aa2 aa3 

If 1 :::; i :::; n, let i' denote the increasing n - 1 :::; n list in which i is omitted; thus, 
an (n -1) x (n -1) submatrix has the form Ai',i'• and its determinant is a minor 
of order n - 1. Note that Ai',i' is the submatrix obtained from A by deleting its 
ith row and jth column. 

Lemma B-5.49. Let ei, ... , en be the standard basis of kn, letA = [aii] be an nxn 
matrix over k, and let L = ji, ... , jp be an increasing p :::; n list. If xii , ... , xiv are 
the corresponding columns of A, then 

xii/\···/\ xiv = L det(AH,L)eH, 
H 

where H varies over all increasing p :::; n lists ii, ... , ip and eH = eii /\ · · · /\ eiv. 

Proof. The proof is quite similar to the proof of Proposition B-5.46, the Complete 
Expansion. For q = 1, 2, ... , p, write Xjq = Ltq atqiq etq, so that 

x· /\ 00 ·/\x· ='°'a·. e· /\ 00 ·/\ '°'a·. e· = "" a·. • 00 a·. e· /\ 00 ·/\e·. Ji Jp L....J iiJi ii L....J ipJp ip L....J iiJi ipJp ii ip 

All terms involving a repeated index are 0, so that we may assume that the sum 
is over all ii, ... , ip having no repetitions; that is, for each summand, there is a 
permutation a E Sp with ii = iu(i), ... , ip = iu(p)· With this notation, 

aiiii · · · aiviv eii /\ · · · /\ eiv = ai .. ci>ii · · · ai .. cv>iv ei .. (1) /\ • • • /\ ei .. cv> 

= sgn(a)ai .. {l)ii · · · ai .. <v>iveH. 

Summing over all H gives the desired formula 

L:aiiii · · · aiviveii /\ · · · /\ eiv = Ldet(AH,L)eH. • 
H H 

Multiplication in the algebra f\ V is determined by the products eH /\ eK of 
pairs of basis elements. Let us introduce the following notation: if H = ti, ... , tp 
and K = ii, ... , fq are disjoint increasing lists, then define 

TH,K 

to be the permutation that rearranges the list ti' ... ' tp' e i, ... 'fq into an increasing 
list, denoted by H * K. Define 

p H,K = sgn( TH,K). 

With this notation, Lemma B-5.45 says that 

ifHnK=j:0, 

ifHnK=0. 
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Example B-5.50. The lists H = 1, 3, 4 and K = 2, 6 are increasing: 

H * K = 1,2,3,4,6 

and 

( 1 3 4 2 6) TH,K = l 2 3 4 6 = (2 4 3). 

Therefore, 
PH,K = sgnTH,K = +1 

and 

eH /\ex= (e1 /\ e3 /\ e4) /\ (e2 /\ e6) = ei /\ e2 /\ e3 /\ e4 /\ e6 = eH*X· ... 

Proposition B-5.51. Let A= [aij] be an n x n matrix with entries ink. 

(i) If I = ii, ... , ip is an increasing p S n list and Xi1 , ••• , Xip are the corre
sponding columns of A, then denote Xi1 /\ · · • /\ Xip by x1. If J = ji, ... , jq 
is an increasing q S n list, then 

x1 /\ XJ = L PH,x det(AH,1) det(Ax,J )eH*X' 
H,X 

where the sum is taken over all those p S n lists H and q S n lists K 
such that H n K = 0. 

(ii) Laplace expansion down the jth column: For each fixed j, 

det(A) = (-l)Hi aij det(A1'j') + · · · + (-l)n+j anj det(An'j' ), 

where Ai' ,j' is the ( n - 1) x ( n - 1) submatrix obtained from A by deleting 
its ith row and jth column. 

(iii) Laplace expansion across the ith row: For each fixed i, 

det(A) = (-l)i+lail det(Ai',1') + · · · + (-l)i+nain det(Ai',n' ). 

Proof. 

(i) By Lemma B-5.49, 

x1 /\ XJ = L det(AH,I )eH /\ L det(Ax,J )ex 
H X 

= L det(AH,1 )eH /\ det(Ax,J )ex 
H,X 

H,X 

H,X 

(ii) If I = j has only one element and J = j' = 1, ... , J, .. . , n is its comple
ment, then 

Xj /\ Xj' = Xj /\ X1 /\ · · · /\ X;; /\ · · · /\ Xn 
. 1 = (-1 )3- X1 /\ · · • /\ Xn 
. 1 

= (-1)3- det(A)e1 /\···/\en, 
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because j, 1, ... ,J, ... , n can be put in increasing order by j -1 transpo
sitions. On the other hand, we can evaluate Xj /\. Xj' using part (i): 

Xj /\ Xj' = L PH,K det(AH,j) det(AK,j' )eH*K· 
H,K 

In this sum, H has just one element, say, H = i, while K has n - 1 
elements; thus, K = £' for some element e. Since eh/\. et' = 0 if { i} n £' =f. 
0, we may assume that i </.£';that is, we may assume that£'= i'. Now, 
det(Ai,j) = % (this is a 1x1 minor), while det(AK,j') = det(Ai',i' ); that 
is, Ai',i' is the submatrix obtained from A by deleting its jth column and 
its ith row. Hence, if eN = e1 /\···/\.en, 

Xj /\ Xj' = L PH,K det(AH,i) det(AK,i' )eH*K 
H,K 

= '"'p· ., det(A- ·) det(A ., ·1)eN L...,; i,i i3 i ,3 

i 

= L(-l)i-laii det(Ai',i' )eN. 
i 

Therefore, equating both values for Xj /\ Xj' gives 

det(A) = L(-l)i+iaii det(Ai',i' ). 
i 

(iii) Laplace expansion across the ith row of A is Laplace expansion down the 
ith column of AT, and the result follows because det(AT) = det(A). • 

The determinant is independent of the row or column used in Laplace expan
sion. 

Corollary B-5.52. Given any n x n matrix A, Laplace expansion across any row 
or down any column always has the same value. 

Proof. All expansions equal det(A). • 

The Laplace expansions resemble the sums arising in matrix multiplication, 
and the following matrix was invented to make this resemblance a reality. 

Definition. If A= [aij] is an n x n matrix with entries in a commutative ring k, 
then the adjoint7 of A is the matrix 

adj(A) = [Cij], 

where 
Cii = (-l)i+idet(Ai'i')· 

The reversing of indices is deliberate. In words, adj(A) is the transpose of the 
matrix whose i,j entry is (-l)i+i det(Ai'j' ). We call Cij the ij-cofactor of A. 

Corollary B-5.53. If A is an n x n matrix, then 

Aadj(A) = det(A)I = adj(A)A. 

7There is no connection between the adjoint of a matrix as just defined and the adjoint of a 
matrix with respect to an inner product defined on page 431. 
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Proof. Denote the ij entry of Aadj(A) by bij· The definition of matrix multipli
cation gives 

n n 

bij = L aipCpj = L aip(-l)HP det(Aj'p' ). 
p=l p=l 

If j = i, Proposition B-5.51 gives 

bii = det(A). 

If j =/=- i, consider the matrix M obtained from A by replacing row j with row 
i. Of course, det(M) = 0, for it has two identical rows. On the other hand, we 
may compute det(M) using Laplace expansion across its "new" row j. All the 
submatrices Mj'p' = Aj'p', and so all the corresponding cofactors of M and A are 
equal. The matrix entries of the new row j are aip, so that 

0 = det(M) = (-l)i+lail det(Aj'l') + · · · + (-l)i+nain det(Aj'n' ). 

We have shown that A adj(A) is a diagonal matrix having each diagonal entry equal 
to det(A). The similar proof that det(A)J = adj(A)A is left to the reader. • 

Definition. An n x n matrix A is invertible over k if there is a matrix B with 
entries in k such that 

AB= I= BA. 

If k is a field, then invertible matrices are usually called nonsingular, and they 
are characterized by having a nonzero determinant. Consider the matrix with 
entries in Z: 

A= [~ ~]. 
Now det(A) = 2 =/=- 0, but it is not invertible over z. Suppose 

[ ~ ~] [ ~ ~] = [ 3aa: bb 3cc: dd] . 

If this product is I, then 

3a + b = 1 = c + d, 

3c + d = 0 = a + b. 

Hence, b = -a and 1 = 3a + b = 2a; as there is no solution to 1 = 2a in Z, the 
matrix A is not invertible over Z. Of course, A is invertible over Q. 

Theorem B-5.54. Let A E Matn(k). Then A is invertible if and only if det(A) is 
a unit ink. 

Proof. If A is invertible, then there is a matrix B with AB= I. Hence, 

1 = det(J) = det(AB) = det(A) det(B); 

this says that det(A) is a unit in k. 

Conversely, assume that det(A) is a unit ink, so there is an element u E k with 
u det(A) = 1. Define 

B = uadj(A). 
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By Corollary B-5.53, 

AB= Auadj(A) = udet(A)I =I= uadj(A)A =BA. 

Thus, A is invertible. • 

The next result generalizes Corollary A-7.39 from matrices over fields to ma
trices over commutative rings. 

Corollary B-5.55. Let A and B be n x n matrices; if AB= I, then BA= I. 

Proof. If AB = I, then det(A) det(B) = 1; that is, det(A) is a unit ink. Therefore, 
A is invertible, by Theorem B-5.54; that is, AB= I= BA. • 

Corollary B-5.56 {Cramer's Rule). If A is an invertible n x n matrix and 
B = [bi] is an n x 1 column matrix, then the solution of the linear system AX = B 
is X = (xi, ... , Xn) T, where Xj = det(Mj) det(A)- 1 and Mi is obtained from A by 
replacing its j th column by B. 

Proof. Multiply AX= B by adj(A) to obtain 

det(A)X = adj(A)B. 

Now if Cij is the ij cofactor of A, then 
n 

(adj(A)B)j = L Cjibi 
i=l 

n 

= L bi(-l)i+i det(Ai'i') 
i=l 

Here is a proof by exterior algebra of the computation of the determinant of a 
matrix in block form. 

Proposition B-5.57. Let k be a commutative ring, and let 

x = [~ ~] 
be an ( m + n) x ( m + n) matrix with entries in k, where A is an m x m submatrix, 
and B is an n x n submatrix. Then 

det(X) = det(A) det(B). 

Proof. Let ei, ... , em+n be the standard basis of km+n, let a 1, ... , am be the 
columns of A (which are also the first m columns of X), and write the (m + i)th 
column of X as 'Yi+ f3i, where 'Yi stands for the C-part and f3i stands for the B-part. 

Now 'Yi E (e1, ... , em), so that 'Yi= LJ:=i Cjiej. Therefore, if H = 1, 2, ... , m, 
then 

m 

eH /\'Yi = eH /\ L Cjiej = 0, 
j=l 
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because each term has a repeated ej. Using associativity, we see that 

es /\ bi +.Bi) /\ (1'2 + .82) /\ · · · /\ bn + .Bn) 

= es /\.Bi /\ b2 + .82) /\ ... /\ bn + .Bn) 

=es/\ .Bi/\ .82 /\ · · · /\ ('"Yn + .Bn) 

= es /\.Bi /\ .82 /\ · · · /\ .Bn· 

Hence, if J = m + 1, m + 2, ... , m + n, 

det(X)es /\ e1 = o:i /\ · · · /\ O:m /\bi +.Bi)/\···/\ bn + .Bn) 

= det(A)es /\bi +.Bi)/\···/\ bn + .Bn) 

= det(A)es /\.Bi /\ · · · /\ .Bn 

= det(A)es /\ det(B)e1 

= det(A) det(B)es /\ e1. 

Therefore, det(X) = det(A) det(B). • 
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Corollary B-5.58. If A= [aij] is a triangular n x n matrix, that is, aij = 0 for 
all i < j (lower triangular) or aij = 0 for all i > j (upper triangular), then 

n 

det(A) = IT aii; 
i=i 

that is, det(A) is the product of the diagonal entries. 

Proof. An easy induction on n :2:: 1, using Laplace expansion down the first column 
(for upper triangular matrices) and the proposition for the inductive step. • 

Although the definition of determinant of a matrix A in terms of the wedge of 
its columns gives an obvious algorithm for computing it, there is a more efficient 
means of calculating det(A). Using Gaussian elimination, there are elementary row 
operations changing A into an upper triangular matrix T: 

A---+ Ai---+···---+ Ar= T. 

Keep a record of the operations used. For example, if A ---+ Ai is an operation 
of Type I, which multiplies a row by a unit c, then cdet(A) = det(Ai) and so 
det(A) = c-i det(Ai); if A---+ Ai is an operation of Type II, which adds a multiple 
of some row to another one, then det(A) = det(Ai); if A ---+ Ai is an operation of 
Type III, which interchanges two rows, then det(A) = - det(Ai). Thus, the record 
allows us, eventually, to write det(A) in terms of det(T). But since T is upper 
triangular, det(T) is the product of its diagonal entries. 

Another application of exterior algebra constructs the trace of a map. 

Definition. A derivation of a k-algebra A is a homomorphism d: A ---+ A of k
modules for which 

d(ab) = (da)b + a(db). 

In words, a derivation acts like ordinary differentiation in calculus, for we are 
saying that the product rule, (Jg)'= f'g +Jg', holds. 
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Lemma B-5.59. Let M be a k-module. 

(i) Given a k-map cp: M-+ M, there exists a unique derivation 

Dip: T(M) -+ T(M), 

where T(M) is the tensor algebra on M, which is a graded map of degree 0 
with DiplM = cp; that is, for all p 2:: 0, 

Dip(fi!/M) ~ fj!/M. 
(ii) Given a k-map cp: M-+ M, there exists a unique derivation 

dip: f\M-+ f\M 

which is a graded map of degree 0 with diplM = cp; that is, for all p 2:: 0, 

Proof. 

(i) Define Diplk = lk (recall that @0 M = k), and define Dipl@1 M = cp 
(recall that @ 1M = M). Ifp 2:: 2, define D~: ®PM-+ ®PM by 

p 

n:(m1@ ... ©mp)= Lm1@ ... @<p(mi)@ ... ©mp-
i=l 

For each i, the ith summand in the sum is well-defined, because it arises 
from the k-multilinear function (m1 , ... , mp) H m 1 © · · · © <p(mi) © · · · © 
mp; it follows that Dip is well-defined. 

It is clear that Dip is a map of k-modules. To check that Dip is 
a derivation, it suffices to consider its action on homogeneous elements 
u = U1 © ... ©Up and v = V1 © ... © Vq: 

Dip(uv) = Dip(u1 ©···©Up© V1 © · · · © vq) 
p 

= L U1 © ... © <p( Ui) © ... ©Up © v 
i=l 

q 

+ Lu© V1 © ... © <p( Vj) © ... © Vq 
j=l 

= Dip(u)v + uDip(v). 

We leave the proof of uniqueness to the reader. 

(ii) Define dip: AM -+ AM using the same formula as that for Dip after 
replacing © by /\. To see that this is well-defined, we must show that 
Dip(J) ~ J, where J is the two-sided ideal generated by all elements 
of the form m © m. It suffices to prove, by induction on p 2:: 2, that 
Dip( JP) ~ JP, where JP = Jn ®p M. The base step p = 2 follows from 
the identity, for a, b E M, 

a© b + b ©a= (a+ b) ©(a+ b) - a© a - b © b E J 2 • 
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To prove the inductive step Dcp(JP+l) ~ JP+1, note that JP+ 1 is 
generated by all a® b ® c, where a, c E M and b E JP- 1 . Since Dcp is a 
derivation, we have Dcp(a ® b® c) = Dcp(a ® b) ® c+ a® b ® Dcp(c). Now 
Dcp(a®b) E JP, by induction, for a®b E JP, so that Dcp(a®b)®c E JP+1; 

since a®b E JP and Dcp(c) E J, we have a®b®Dcp(c) E JP+l; therefore, 
the whole sum lies in JP+1. • 

Proposition B-5.60. Let cp: M ---+ M be a k-map, where M is the free k-module 
with basis el, ... , en, and let dcp: /\M---+ /\M be the derivation it determines; then 

dcpjf\ nM = tr(cp)eN, 

Proof. By Lemma B-5.59(ii), we have dcp: /\ n M ---+ /\ n M. Since M is a free k
module ofrank n, the Binomial Theorem gives /\ n M ~ k. Hence, dcp(eN) = ceN 
for some c Ek; we show that c = tr(cp). Now cp(ei) = L,ajiej, and 

dcp(eN) = ~:::.>1 /\ .. · /\ cp(er) /\ .. ·/\en 
r 

r 

r 

r 

= tr(cp)eN. • 

Exercises 

B-5.12. Let V and W be free k-modules of ranks m and n, respectively. 

(i) If f: V -t Vis a k-map, prove that det(f ® lw) = [det(f)t. 

(ii) If f: V-t V and g: W-t Ware k-maps, prove det(f ®g) = [det(f)t[det(g)r. 

* B-5.13. (i) Consider the Vandermonde matrix with entries in a commutative ring k: 

1 1 
Z1 Z2 

( ) z? V Z1, •.• ,Zn = z~ 

Prove that det(V(z1, ... , Zn))= ni<j(Zj - Zi)· 

1 
Zn 

z2 n 

(ii) If f(x) = ITi(x - z;) has discriminant D, prove that D = det(V(z1, ... ,zn)). 

(iii) Prove that if z1, ... ,Zn are distinct elements of a field k, then V(z1, ... ,zn) is 
nonsingular. 
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B-5.14. Define a tridiagonal matrix to be an n x n matrix of the form 

X1 1 0 0 0 0 0 0 
-1 X2 1 0 0 0 0 0 
0 -1 X3 1 0 0 0 0 
0 0 -1 X4 0 0 0 0 

T[x1, ... ,xn] = 
0 0 0 0 Xn-3 1 0 0 
0 0 0 0 -1 Xn-2 1 0 
0 0 0 0 0 -1 Xn-1 1 
0 0 0 0 0 0 -1 Xn 

(i) If Dn = det(T[x1, ... , xn]), prove that D1 = X1, D2 = x1x2 + 1, and, for all n > 2, 

Dn = XnDn-1 + Dn-2· 

(ii) Prove that if all Xi = 1, then Dn = Fn+ii the nth Fibonacci number. 
Fo = 0, Fi= 1, and Fn = Fn-1 + Fn-2 for all n 2:: 2.) 

B-5.15. If a matrix A is a direct sum of square blocks, 

A= Bl Ee··· Ee Bt, 

prove that det(A) = f1i det(Bi)· 

(Recall that 

B-5.16. If A and B are n x n matrices with entries in a commutative ring k, prove that 
AB and BA have the same characteristic polynomial. 

Hint. (Goodwillie) 

[I BJ [O 0 J [I -BJ = [BA OJ 
OIAABO I Ao· 



Chapter B-6 

Commutative Algebra II 

This chapter is divided into two parts, both of which focus on polynomial rings in 
several variables. The first part deals with studying the relation between such rings 
and geometry which began with Descartes, while the second part deals with the 
algorithmic study of such rings using modern computers. 

Old-Fashioned Algebraic Geometry 

Linear algebra is the study of solutions of systems of linear equations: 

Ji (xi, .. . , Xn) = aux1 + · · · + ainXn = bi, 

where the coefficients aij and the bi lie in a commutative ring k. A solution is 
an element (ci, ... ,cn)T E kn such that fi(ci, ... ,en) = bi for all i. There is 
a geometric aspect in describing the set S of all the solutions when this system is 
homogeneous; that is, when all bi = 0. If k is a field, then S is a vector space over k, 
and its dimension is an important invariant. More generally, for any commutative 
ring k, the totality of all solutions forms a submodule S of kn which has a geometric 
structure that can be used in describing it. 

Algebraic geometry is the study of solutions of systems of equations in which 
the polynomials fi need not be linear. Descartes recognized that a solution has 
a geometric interpretation (at least when k = ~ and n ~ 3) by introducing co
ordinates of points, thereby identifying algebraic solutions with geometric points. 
Thus, analytic geometry gives pictures of equations. For example, we picture a 
function f: ~ --+ ~ as its graph, which consists of all the ordered pairs (a, f (a)) in 
the plane; that is, f is the set of all the solutions (a, b) E ~2 of 

g(x,y) = y- f(x) = 0. -591 



592 Chapter B-6. Commutative Algebra II 

We can also picture equations that are not graphs of functions. For example, the 
set of all the zeros of the polynomial 

h(x, y) = x2 + y2 - 1 

is the unit circle. Simultaneous solutions in IR2 of several polynomials of two vari
ables can also be pictured; indeed, simultaneous solutions of several polynomials of 
n variables can be pictured in !Rn. 

It is no surprise that graphs are useful in studying functions f: JR ---+ JR; indeed, 
functions g: !Rm ---+ !Rn benefit from geometric intuition. Why should we care about 
polynomials with coefficients in other fields? One obvious reason is that there may 
be complex solutions and no real solutions. For example, 

h(x, y) = x2 + y2 + 1 = 0 

has no real solutions but lots of complex ones. Why should we care about other 
fields, say, finite fields? Number theory studies systems of equations involving poly
nomials with coefficients in Z (usually called Diophantine equations). For exam
ple, Fermat's Last Theorem involves looking for solutions of f(x, y, z) = 0, where 
f(x, y, z) = xn + yn - zn E Z[x, y, z]. A fruitful approach in investigating solu
tions is to reduce coefficients mod p, replacing Z[x,y,z] by 1Fp[x,y,z]. Sometimes 
solutions mod pm, which involve coefficients in Z/(pm), can lead (using Hensel's 
Lemma) to solutions in p-adic integers z; and then to solutions over its fraction 
field Frac (z;) = Q;, the p-adic numbers. In short, it makes sense to study systems 
of polynomial equations whose coefficients lie not only in various fields but also in 
fairly general commutative rings; however, here we will focus on polynomial rings 
over fields 

A second generalization involves the definition of solution; if the polynomials 
in the system lie in k[x1, ... , xn], must their solutions lie in kn? Most likely your 
first algebra course involved quadratic polynomials f(x) E IR[x], and finding their 
roots (that is, solutions of f(x) = 0), leads outside of JR to C. Thus, we may want 
to consider solutions in Kn instead of in kn, where K is some extension field of k. 
But even this may not be enough. Consider the system 

y2 - x2 -1=0, 

y-x = 0, 

where the polynomials lie in IR[x, y]. The graph of the first polynomial is a curve in 
the plane JR2 , the graph of the second is a line, and the solutions are the points of 
intersection of the curve and the line. Now this intersection is empty, but if you draw 
the picture, you will see that the curve is asymptotic to the line. This suggests that 
there is a "point at infinity" which may reasonably be regarded as a solution; this 
line of thought suggests looking inside of projective space. As a practical matter, the 
suggestion is necessary in stating and proving Bezout's Theorem which describes 
how solution sets intersect. 

We call this study old-fashioned algebraic geometry (perhaps we should call it 
classical algebraic geometry), for this is how solutions were studied from Descartes' 
time, the early 1600s, until the 1950s. Many beautiful results and conjectures 
were made, but the subject was revolutionized by Grothendieck and Serre who 
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introduced schemes and sheaves as their proper context. There is a deep analogy 
between differentiable manifolds and varieties. An n-manifold is a Hausdorff space 
M each of whose points has an open neighborhood homeomorphic to IR.n; that is, it 
is a union of open replicas of euclidean space glued together in a coherent way; M is 
differentiable if it has a tangent space at each of its points. For example, a torus 
T (i.e., a doughnut) is a differentiable manifold. A variety V can be identified with 
its coordinate ring k[V], and neighborhoods of its points can be described "locally", 
using what is called a sheaf of local rings. If we "glue" sheaves together along open 
subsets, we obtain a scheme, and schemes are the modern way to treat varieties. 

We shall say a bit more about modern algebraic geometry in Part 2, but the 
power of these new ideas can be seen in their providing the viewpoint that led to 
the proof of Fermat's Last Theorem in 1995 by Wiles. 

Affine Varieties and Ideals 

Let k be a field and let kn denote the set of all n-tuples: 

kn= {a= (ai, ... ,an): ai Ek for all i}. 

We use the abbreviation 

X = (x1, ... ,xn), 

so that the polynomial ring k[xi, ... , xn] in several variables may be denoted by 
k[X] and a polynomial f (x1, ... , xn) in k[X] may be abbreviated by f (X). 

Polynomials f(X) E k[X] determine polynomial functions kn~ k. 

Definition. If f(X) E k[X], its associated polynomial function l: kn~ k is 
defined by evaluation: 

In Proposition A-3.58(ii), we proved that if k is an infinite field and fb = l, 
then f(X) = g(X). Recall that algebraically closed fields are infinite (every finite 
field is isomorphic to !Fq for some q, and there are irreducible polynomials in IFq[x] 
of any degree). 

For the remainder of this section, we assume that all fields are infinite. 

Consequently, we drop the fb notation and identify polynomials with their associ
ated polynomial functions. 

Definition. If f(X) E k[X] = k[xi, ... , Xn] and f(a) = 0, where a E kn, then a is 
called a zero of f(X). If f(x) is a polynomial in one variable, then a zero off is 
usually called a root1 off. 

Proposition B-6.1. If k is an algebraically closed field and f(X) E k[X] is not a 
constant, then f(X) has a zero. 

1The etymology of root is discussed in FCAA, pp. 33-34. 
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Proof. We prove the result by induction on n 2: 1, where X = (xi, ... , Xn)· The 
base step follows at once from our assuming that k1 = k is algebraically closed. As 
in the proof of Proposition A-3.58(ii), write 

f(X,y) = Lgi(X)yi. 
i 

For each a E kn, define fa(Y) = Eigi(a)yi. If f(X,y) has no zeros, then for each 
a E kn, the polynomial fa(Y) E k[y] has no zeros, and the base step says that fa(Y) 
is a nonzero constant for all a E kn. Thus, gi (a) = 0 for all i > 0 and all a E kn. By 
Proposition A-3.58(ii), which applies because algebraically closed fields are infinite, 
gi(X) = 0 for all i > 0, and so f(X, y) = go(X)y0 = go(X). By the inductive 
hypothesis, go(X) is a nonzero constant, and the proof is complete. • 

Here are some general definitions describing solution sets of polynomials. 

Definition. If F is a subset of k[X] = k[xi, ... , Xn], then the affine variety 2 •3 

defined by F is 

Var(F) ={a E kn: f(a) = 0 for every f(X) E F}; 

thus, Var(F) consists of all those a E kn which are zeros of every f(X) E F. 

The projective plane arose from the plane JR2 by adjoining a "line at infinity,'' 
which is a precise way of describing the horizon. The plane is called affine, for it is 
the finite part of the projective plane. 

We shall abbreviate affine variety to variety until we reach the section on 
irreducibility. 

Example B-6.2. 

(i) Assume that k is algebraically closed; Proposition B-6.1 now says that if 
f(X) E k[X] is not constant, then Var(!) =F 0. 

(ii) Here are some varieties defined by two equations: 

Var(x,y) = {(a,b) E k2 : x = 0 and y = O} = {(0,0)} 

and 
Var(xy) =x-axis Uy-axis. 

(iii) Here is an example in higher-dimensional space. Let A be an m x n 
matrix with entries in k. A system of m equations in n unknowns, 

AX=B, 

where B is an n x 1 column matrix, defines a variety, Var(AX = B), 
which is a subset of kn. Of course, AX = B is really a shorthand for 
a set of m linear equations inn variables, and Var(AX = B) is usually 
called the solution set of the system AX = B. When this system is 

2There is some disagreement about the usage of this term. Many insist that varieties should 
be irreducible, which we will define later in this chapter. In modern terminology, affine varieties 
correspond to sheaves and varieties correspond to schemes. 

3The term variety arose in 1869 as E. Beltrami's translation of the German term Mannig
faltigkeit used by Riemann; nowadays, this term is usually translated as manifold. 
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homogeneous, that is, when B = 0, then Var(AX = 0) is a subspace of 
kn, called the solution space of the system. <1111 

The next result shows, as far as varieties are concerned, that we may just as 
well assume that the subsets F of k[X] are ideals of k[X]. 

Proposition B-6.3. Let k be a field, and let F and G be subsets of k[X]. 

(i) If F ~ G ~ k[X], then Var(G) ~ Var(F). 

(ii) If F ~ k[X] and I= (F) is the ideal generated by F, then 

Var(F) =Var(/). 

Proof. 

(i) If a E Var(G), then g(a) = 0 for all g(X) E G; since F ~ G, it follows, 
in particular, that f(a) = 0 for all f(X) E F. 

(ii) Since F ~ (F) = I, we have Var(/) ~ Var(F), by part (i). For the 
reverse inclusion, let a E Var(F), so that f(a) = 0 for every f(X) E F. 
If g(X) E J, then g(X) = Li ri(X)fi(X), where ri(X) E k[X] and 
fi(X) E F; hence, g(a) =Li ri(a)fi(a) = 0 and a E Var(/). • 

It follows that not every subset of kn is a variety. For example, if n = 1, then 
k[x] is a PID. Hence, if Fis a subset of k[x], then (F) = (g) for some g(x) E k[x], 
and so 

Var(F) = Var((F)) = Var((g)) = Var(g). 

But if g f:. 0, then it has only a finite number of roots, and so Var(F) is finite. 
Thus, for infinite fields k, most subsets of k1 = k are not varieties. 

In spite of our wanting to draw pictures in the plane, there is a major defect 
with k =JR: some polynomials have no zeros. For example, f(x) = x2 + 1 has no 
real roots, and so Var(x2 +1) = 0. More generally, g(xi, ... , xn) = x~ + · · · +x; + 1 
has no zeros in !Rn, and so Var(g) = 0. It is natural to want the simplest varieties, 
those defined by a single nonconstant polynomial, to be nonempty. For polynomials 
in one variable over a field k, this amounts to saying that k is algebraically closed. 
In light of Proposition B-6.1, we know that Var(!) f:. 0 for every nonconstant 
f(X) in several variables over an algebraically closed field. Of course, varieties are 
of interest for all fields k, but it makes more sense to consider the simplest case 
before trying to understand more complicated problems. On the other hand, many 
of the first results are valid for any field k. Thus, even though we may state weaker 
hypotheses, the reader may always assume (the most important case here) that k 
is algebraically closed. 

Here are some elementary properties of Var. 

Proposition B-6.4. Let k be a field. 

(i) Var(l) = 0 and Var(O) =kn, where 0 is the zero polynomial. 
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(ii) If I and J are ideals in k[X], then 

Var(/ J) =Var(/ n J) =Var(/) U Var(J), 

where IJ ={Li fi(X)gi(X): fi(X) EI and gi(X) E J}. 

(iii) If (Ie)eEL is a family of ideals in k[X], then Var (Le le) = ne Var( le), 

where Le le is the set of all finite sums of the form Le re with re E fe. 

Proof. 

(i) That Var(l) = 0 is clear, for the constant polynomial 1 has no zeros. 
That Var(O) =kn is clear, for every point a is a zero of the zero polyno
mial. 

(ii) Since I J ~ In J, it follows that Var(/ J) 2 Var(/ n J); since I J ~ I, it 
follows that Var(JJ) 2 Var(/). Similarly, Var(JJ) 2 Var(J). Hence, 

Var(/ J) 2 Var(/ n J) 2 Var(/) U Var(J). 

To complete the proof, it suffices to show that Var(J)UVar(J) 2 Var(/ J). 
If a f/. Var(/) U Var(J), then there exist f(X) E I and g(X) E J with 
f(a) =I- 0 and g(a) =I- 0. But f(X)g(X) E IJ and (fg)(a) = f(a)g(a) =I- 0, 
because fields are domains. Therefore, a f/. Var(/ J), as desired. 

(iii) For each e, the inclusion It ~ Lt It gives Var(Lt It) ~Var( le), and so 

Var(Llt) ~ nvar(It)· 
t e 

For the reverse inclusion, if g(X) E Le le, then there are finitely many f 
with g(X) =Lt Je, where fe(X) E fe. Therefore, if a E ne Var(Je), then 
fe(a) = 0 for all£, and so g(a) = O; that is, a E Var(Lele). • 

Corollary B-6.5. If k is a field, then kn is a topological space whose closed sets 
are the varieties. 

Proof. The different parts of Proposition B-6.4 verify the axioms for closed sets 
that define a topology. • 

Definition. The Zariski topology on kn is the topology whose closed sets are 
the varieties. 

The usual way of regarding IR = IR 1 as a topological space has many closed 
sets; for example, every closed interval is a closed set. In contrast, the only Zariski 
closed sets in IR, aside from IR itself, are the finite sets. The Zariski open sets are, 
of course, complements of Zariski closed sets. A subset U of a set X is cofinite 
if its complement uc = X - U is finite. In particular, the Zariski open sets in k 
are the cofinite sets. Since we are assuming that k is infinite, it follows that any 
two nonempty Zariski open sets intersect nontrivially, and so k is not a Hausdorff 
space. 

Definition. A hypersurface in kn is a subset of the form Var(!) for some non
constant f(X) E k[X]. 
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Corollary B-6.6. Every variety Var(I) in kn is the intersection of finitely many 
hypersurfaces. 

Proof. By the Hilbert Basis Theorem, the ideal I is finitely generated: there are 
fi, ... , ft E k[X] with I = (Ji, ... , ft) = L,i(fi)· By Proposition B-6.4(iii), we 
have Var(I) = ni Var(fi)· • 

Given an ideal I in k[X], we have just defined its variety Var(I) ~kn. We now 
reverse direction: given a subset A ~ kn, we assign an ideal Id( A) in k[X] to it; in 
particular, we assign an ideal to every variety. 

Definition. If A ~ kn is an affine variety, then 

Id(A) = {g(X) E k[X] : g(a) = 0 for all a EA}. 

It is easy to see that Id(A) is an ideal in k[X], and the Hilbert Basis Theorem 
says that Id(A) is a finitely generated ideal. 

When do polynomials g, h E k[X] agree on A? 

Definition. If A ~ kn, its coordinate ring k[A] is defined by 

k[A] = {g: A-+ k;g =GIA for some GE k[X]}. 

Note that k[A] is a commutative ring under pointwise operations: if g, h E k[A] 
and a= (ai, ... , an), then 

g + h: at-+ g(a) + h(a), 

gh: at-+ g(a)h(a). 

We assume that k is a subring of k[A] by identifying each c E k with the constant 
function at c. Thus, we may regard k[A] as a k-algebra. 

Proposition B-6. 7. If A ~ kn, there is an isomorphism 

k[X]/ Id( A) ~ k[A]. 

Proof. The restriction map res: k[X] --+ k[A] is a surjection with kernel Id( A), and 
so the result follows from the First Isomorphism Theorem. Thus, if two polynomials 
f and g agree on A, then f - g E Id(A). • 

Although the definition of Var(F) makes sense for any subset F of k[X], it is 
most interesting when F is an ideal. Similarly, although the definition of Id(A) 
makes sense for any subset A of kn, it is most interesting when A is a variety. After 
all, varieties are comprised of solutions of (polynomial) equations, which is what 
we care about. 

Proposition B-6.8. Let k be an infinite field. 

(i) Id(0) = k[X] and Id(kn) = (0). 

(ii) If A~ B are subsets of kn, then Id(B) ~ Id(A). 

(iii) If (A)e)eEL is a family of subsets of kn' then Id( Ue Ae) = ne Id(Ae). 
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Proof. 

(i) If A= 0, every f(X) E k[X] must lie in Id(0), for there are no elements 
a E 0. Therefore, Id(0) = k[X]. 

If f(X) E Id( kn), then fb = Ob, and so f(X) = 0, by Proposi
tion A-3.58(ii). 

(ii) If f(X) E Id(B), then f(b) = 0 for all b E B; in particular, f(a) = 0 for 
all a E A, because A~ B, and so f(X) E Id(A). 

(iii) Since Ae ~ Ue Ae, we have Id(Ae) 2 Id(Ue Ae) for all e E L; hence, 
ne Id(Ae) 2 Id(LJe Ae). For the reverse inclusion, suppose that f(X) E 

ne Id(Ae); that is, f(ae) = 0 for all e and all ae E Ae. If b E Ue Ae, then 
b E Ae for some e, and hence f(b) = O; therefore, f(X) E Id(LJeAe). • 

We would like to have a formula for Id( An B). Certainly, it is not true that 
Id( An B) =Id( A) U Id(B), for the union of two ideals is almost never an ideal. 

Once we prove the Nullstellensatz, we will see that varieties A and A' in k(X] 
are equal if and only if their coordinate rings k[A] and k(A'] are isomorphic via 
f +Id( A) 1-t f +Id( A'). (See Corollary B-6.16(iii)) 

The next idea arises in characterizing those ideals of the form Id(V) when V is 
a variety. 

Definition. If I is an ideal in a commutative ring R, then its radical is 

radical(!)= Vi= {r ER: rm EI for some integer m :'.:: l}. 

An ideal I is called a radical ideal 4 if VI = I. 

Exercise B-6.13 on page 622 asks you to prove that VI is an ideal. It is easy 
to see that I~ VI, and so an ideal I is a radical ideal if and only if VI~ I. For 
example, every prime ideal P is a radical ideal, for if r E P, then f E P. It is 
easy to give an example of an ideal that is not radical: I = (x2 ) is not a radical 
ideal because x2 E I and x ff. I. 

Definition. An element a in a ring R is called nilpotent if a # 0 and there is 
some n :'.:: 1 with an = 0. 

Note that I is a radical ideal in a commutative ring R if and only if R/ I has 
no nilpotent elements. A commutative ring having no nilpotent elements is called 
reduced. 

Proposition B-6.9. If an ideal I = Id( A) for some A ~ kn, then it is a radical 
ideal. Hence, the coordinate ring k[A] has no nilpotent elements. 

Proof. Since I ~ VI is always true, it suffices to check the reverse inclusion. By 
hypothesis, I= Id(A) for some A ~ kn; hence, if f E VI, then fm E I= Id(A); 
that is, f(a)m = 0 for all a E A. But the values of f(ar lie in the field k, so that 
f(ar = O implies f(a) = O; that is, f E Id(A) =I. • 

4 This term is appropriate, for if rm E J, then its mth root r also lies in J. 
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Proposition B-6.10. 

(i) If I and J are ideals, then JI n J =Vin../]. 

(ii) If I and J are radical ideals, then In J is a radical ideal. 

Proof. 

(i) If f E JI n J, then fm E In J for some m ~ 1. Hence, fm E I and 
fm E J, and so f E Vi and f E ../J; that is, f E Vi n ../J. 

For the reverse inclusion, assume that f E Vi n ../], so that fm E I 
and fQ E J. We may assume that m ~ q, and so fm EI n J; that is, 
fEJinJ. 

(ii) If I and J are radical ideals, then I= Vi and J = ../]; by part (i), 

In J <;JI n J =Vin../]= In J. • 

N ullstellensatz 

We are now going to prove Hilbert's Nullstellensatz5 for C[X). Actually, we will give 
two proofs. The first proof easily generalizes to k[X), where k is any uncountable 
algebraically closed field. The second proof applies to k[X) for all algebraically 
closed fields k so that, in particular, the Nullstellensatz is true for the algebraic 
closures of the prime fields (which are countable). 

Lemma B-6.11. If k is afield and cp: k[X)--+ k is a surjective ring homomorphism 
which fixes k pointwise, then cp is an evaluation map. Hence, if J = kercp, then 
Var(J) =F 0. 

Proof. Let cp(xi) = ai Ek and let a= (a1, ... ,an) E kn. If 

f(X) = L Ca1 , ... ,anXf1 • • • X~n E k[X), 
et1, ... ,Ctn 

then 

et1 , ... ,Ctn 

This shows that cp is an evaluation map: f =ea. Hence, if f(X) E J = kercp, then 
f(a) = 0, and so a E Var(J). • 

As you read this proof of the Nullstellensatz, Theorem B-6.13, note that the 
only properties of C used are that it is an uncountable algebraically closed field. 

Theorem B-6.12 (Weak Nullstellensatz over q. If fi(X), ... , ft(X) E C[X), 
then I= (Ji, ... , ft) is a proper ideal in C[X) if and only if the fi have a common 
zero; i.e., if and only if Var( I) =I 0. 

5 The German word Nullstelle means root or zero, and so Nullstellensatz means the theorem 
of zeros. 
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Proof. If Var(!) "I- 0, then I is a proper ideal, because Var(C[X]) = 0. 

For the converse, suppose that I is a proper ideal. By Corollary B-1.13, there 
is a maximal ideal M containing I, and so K = C[X]/M is a field. It is plain 
that the natural map cp: C[X] ---+ C[X]/M = K carries C to itself, so that K/C 
is an extension field; it follows that K is a vector space over C. Now C[X] has 
countable dimension, as a C-space, for a basis consists of all the monic monomials 
1, x, x2 , x3 , .... Therefore, dimc(K) is countable (possibly finite), for it is a quotient 
ofC[X]. 

Suppose that K is a proper extension of C; that is, there is some t E K with 
t ~ C. Since C is algebraically closed, t cannot be algebraic over C, and so it is 
transcendental. Consider the subset B of K, 

B = {1/(t - c): c E C} 

(note that t - c "I- 0 because t ~ q. The set B is uncountable, for it is indexed 
by the uncountable set C. We claim that B is linearly independent over C; if so, 
then the fact that dimc(K) is countable is contradicted, and we will conclude that 
K = C. If B is linearly dependent, there are nonzero a 1 , ..• , ar E C and distinct 
Ci, ... , Cr E C with :L;=l aif (t - ci) = 0. Clearing denominators, we have shown 
that tis a root of h(x), where 

h(x) = :~.::>i(x -c1) · · · (~) · · · (x - Cr)· 

i 

Now h(ci) = ai(c1 - c2) · · · (c1 - er) "I- 0, so that h(x) is not the zero polynomial. 
But this contradicts t being transcendental; therefore, K = C. Thus, cp: C[x] ---+ C 
is a surjective ring homomorphism with kernel M. Lemma B-6.11 now applies to 
show that Var(M) "I- 0. But Var(M) ~ Var(!), and this completes the proof. • 

Consider the special case of this theorem for I=(!) ~ C[x], where f(x) E C[x] 
is not constant. To say that Var(!) ~ C is nonempty is to say that f has a complex 
root. Thus, the Weak Nullstellensatz is a generalization to several variables of the 
Fundamental Theorem of Algebra. 

This proof of Hilbert's Nullstellensatz uses the Rabinowitz trick 6 of imbedding 
a polynomial ring in n variables into a polynomial ring in n + 1 variables. 

Theorem B-6.13 (Nullstellensatz). If I is an ideal in C[X], then 

Id(Var(J)) =.Ji. 
Thus, f vanishes on Var(J) if and only if fm EI for some m 2: 1. 

Proof. The inclusion Id(Var(J)) 2 .Ji is obviously true. In fact, if f E .Ji, then 
fm EI for some m > 0. If a is a common root of all the polynomials in J, that is, 

6Searching publications of mathematicians named Rabinowitz, say from 1915 through 1930, 
turns up no articles containing the Rabinowitz trick. Here is an anecdote, perhaps apocryphal, 
that may explain this. Professor R (many versions of this story identify Professor R as G. Y. 
Rainich), who came to the United States in the 1920s from Russia, had Americanized his name, 
as did many emigres. In the middle of one of his first lectures in his new country, a mathematician 
in the audience interrupted him and angrily said, "How dare you say these are your theorems! I 
happen to know that they were proved by Rabinowitz." Professor R replied, "I am Rabinowitz." 
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if a E Var(!), then, in particular, fm(a) = 0. Since e is a field, hence a domain, it 
follows that f(a) = 0, and so f E Id(Var(J)). 

For the converse, assume that h E Id(Var(J)), where I= (Ji. ... , ft); that is, 
if fi(a) = 0 for all i, where a E en, then h(a) = 0. We must show that some power 
of h lies in J. Of course, we may assume that h is not the zero polynomial. Let us 
regard 

<C[x1, ... ,xn] ~ <C[x1, ... ,xn,y]; 

thus, every fi(xi, ... , xn) is regarded as a polynomial in n + 1 variables that does 
not depend on the last variable y. We claim that the polynomials 

Ji, .. ., ft, 1-yh 

in e[x1, ... , Xn, y] have no common zeros. If (ai, ... , an, b) E en+l is a common 
zero, then a= (ai, ... , an) E en is a common zero of Ji, ... , ft, and so h(a) = 0. 
But now 1- bh(a) = 1 =f 0. The weak Nullstellensatz now applies to show that the 
ideal (Ji, ... , ft, 1 - yh) in <C[x1, ... , Xn, y] is not a proper ideal. Therefore, there 
are gi, ... , 9t+l E <C[x1, ... , Xn, y] with 

1 = fig1 + ... + !t9t + (1 - yh)9t+l· 

Let di be the degree in y of 9i(xi, ... , Xn, y). Make the substitution y = l/h, so 
that the last term involving 9t+i vanishes. Rewriting, 9i ( X, y) = E1~o Uj ( X)yJ, 

and so 9i(X,h- 1 ) = E1~ouj(X)h-J. It follows that, ifr z di, then 

hrgi(x,h-1 ) E <C[X]. 

Therefore, if m = max{ d1, ... , dt}, then 

We remark that some call Theorem B-6.13 the Nullstellensatz, while others call 
the next theorem the Nullstellensatz; the theorems are equivalent. 

Theorem B-6.14. Every maximal ideal Min <C[x1, ... ,xn] has the form 

M = (x1 - ai, ... ,Xn - an)= Id(a) 

for some a= (a1, ... , an) E en. 

Proof. By Proposition A-3. 78, the ideal (x1 - a1, ... , Xn - an) is a maximal ideal. 

Conversely, if Mis maximal, then by Theorem B-6.13, Id(Var(M)) = VM = 
M, because M is a prime, hence radical, ideal. Since M is a proper ideal, we 
have Var(M) =f 0, by Theorem B-6.12; that is, there is a = (a1, ... , an) E en 
with f(a) = 0 for all f E M. Hence, a E Var(M), and Proposition B-6.8(ii) gives 
M = Id(Var(M)) ~Id( a). Since Id( a) does not contain any nonzero constant, it is a 
proper ideal, and so maximality of M gives M =Id( a)= {f(X) E <C[X] : f(a) = O}. 
If fi(X) =Xi -ai, then fi(a) = 0, so that (!1,. .. ,Jn)= (x1 -a1,. . .,Xn -an)~ 
Id( a). But (x1 -ai, ... , Xn -an) is a maximal ideal, so that (x1 -a1, ... , Xn -an) = 
M. • 
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We may now identify en with the family of maximal ideals in q X1, ... , Xn] via 
the bijection (a1, ... , an)....+ (x1 - ai, ... , Xn - an)· 

As we said earlier, the proofs we have just given for C[X] easily generalize 
to k[X], where k is any uncountable algebraically closed field. Before giving a 
second proof of the Nullstellensatz which holds for all algebraically closed fields, 
we continue the study of the operators Var and Id. Using the Nullstellensatz, 
we will prove Corollary B-6.16(ii): If Ii and /2 are radical ideals in C[X] with 
Var(fi) = Var(/2), then Ii = h 

Proposition B-6.15. Let k be any field. 

(i) For every subset F ~ kn, 

Var(Id(F)) 2 F. 

(ii) For every ideal I~ k[X], 

Id(Var(J)) 2 I. 

(iii) If V is a variety of kn, then Var(Id(V)) = V. 

(iv) If F ~kn, then Var(Id(F)) = F, the Zariski closure of F, that is, the 
intersection of all those varieties containing F. 

( v) If V ~ V* ~ kn are varieties, then 

V* = VUV* -V, 

the Zariski closure of V* - V. 

Proof. 

(i) This result is almost a tautology. If a E F, then g(a) = 0 for all g(X) E 

Id(F). Hence, the set Var(Id(F)) of common roots of Id(F) contains a. 
Therefore, Var(Id(F)) 2 F. 

(ii) Again, we merely look at the definitions. If f(X) E J, then f(a) = 0 for 
all a E Var(/); hence, f(X) is surely one of the polynomials annihilating 
Var(/). 

(iii) If Vis a variety, then V = Var(J) for some ideal Jin k[X]. Now 

Var(Id(Var(J))) 2 Var(J), 

by part (i). Also, part (ii) gives Id(Var(J)) 2 J, and applying Proposi
tion B-6.3(i) gives the reverse inclusion 

Var(Id(Var(J))) ~ Var(J). 

Therefore, Var(Id(Var(J))) = Var(J); that is, Var(Id(V)) = V. 

(iv) By Proposition B-6.4(iii), F = nv:;;>F V is a variety containing F. Since 
Var(Id(F)) is a variety containing F, it follows that F ~ Var(Id(F)). 
For the reverse inclusion, it suffices to prove that if V is any variety 
containing F, then V 2 Var(Id(F)). If V 2 F, then Id(V) ~ Id(F), and 
V = Var(Id(V)) 2 Var(Id(F)). 
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(v) Since V*-V ~ V*, we have V* - V ~ V* = V*. By hypothesis, V ~ V*, 
and so V U V* - V ~ V*. For the reverse inclusion, there is an equation 
of subsets, V* = V U (V* - V). Taking closures, 

V* = V* ~ V U V* - V = V U V* - V, 

because V = V. • 

Corollary B-6.16. 

(i) If V1 and V2 are varieties over any field k and Id(Vi) = Id(Vi), then 
Vi= Vi. 

(ii) Ifli andl2 areradicalidealsinC[x] andVar(li) =Var(/2), thenli =12. 

(iii) The function V i-+ Id(V) is a bijection from varieties in en to radical 
ideals in C[x]. 

Proof. 

(i) If Id(Vi) = Id(Vi), then Var(Id(Vi)) = Var(Id(Vi)); it now follows from 
Proposition B-6.15(iii) that Vi =Vi. 

(ii) If Var(li) = Var(/2), then Id(Var(li)) = Id(Var(/2)). By the Nullstel
lensatz, /Tl.= /!2; since Ii and /2 are radical ideals, we have Ii = /2. 

(iii) The inverse function is Ii-+ Var(/). • 

Definition. Let R be a commutative ring, I an ideal in R, and S a subset of R. 
Then the colon ideal (or ideal quotient) is 

(I: S) = {r ER: rs EI for alls ES}. 

It is easy to check that (I : S) is an ideal in R. Other properties of colon ideals 
can be found in the exercises below. 

We can now give a geometric interpretation of colon ideals. 

Proposition B-6.17. Let I be a radical ideal in C[X]. Then, for every ideal J, 

Var((/: J)) =Var(/) - Var(J). 

Proof. We first show that Var((/ : J)) 2 Var(!) - Var(J). If f E (J : J), then 
f g EI for all g E J. Hence, if x E Var(!), then f(x)g(x) = 0 for all g E J. However, 
if x ~ Var(J), then there is some g E J with g(x) I= 0. Since C[X] is a domain, we 
have f(x) = 0 for all x E Var(!) - Var(J); that is, f E Id(Var(J) - Var(J)). Thus, 
(I: J) ~ Id(Var(J) - Var(J)), and so 

Var((/: J)) 2 Var(Id(Var(J) - Var(J))) =Var(!) - Var(J), 

by Proposition B-6.15(iv). 

Conversely, suppose now that h E Id(Var(J) - Var(J)). If g E J, then hg van
ishes on Var(J) (because g does); on the other hand, hg vanishes on Var(/) - Var(J) 
(because h does). It follows that hg vanishes on Var(J)U(Var(J)-Var(J)) =Var(/); 
hence, hg E VJ= I for all g E J, because I is a radical ideal, and so h E (J: J). 
Therefore, Var((!: J)) ~ Var(Id(Var(J) - Var(J))) =Var(/) - Var(J). • 
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Nullstellensatz Redux 

We now prove the Nullstellensatz for arbitrary, possibly countable, algebraically 
closed fields (in particular, for the algebraic closures of prime fields, which are all 
countable). There are several different proofs of this result, and we present the 
proof of Goldman as expounded by Kaplansky [55], pp. 12-20. 

More precisely, we are going to prove the Weak Nullstellensatz: If k is an 
algebraically closed field, then every maximal ideal min k[xi, ... , Xn] has the form 
m = (x1 - ai, ... , Xn - an) for ai, ... , an E k. As before, this result implies the 
Nullstellensatz: For every ideal I in k[x1, ... , Xn], we have Id(Var(J)) = VJ. The 
idea is to prove the theorem by induction on n 2: 1. The base step is easy. Since 
k[x] is a PID, every maximal ideal mis equal to (f) for some irreducible f(x) E k[x]; 
since k is algebraically closed, f(x) = x - a for some a Ek. 

The inductive step is not straightforward. Let m in k[x1, ... , Xn+il be a maxi-
mal ideal; the obvious candidate for a maximal ideal in k[x1, ... , xn] is the contrac-
tion I = m n k[x1, ... , Xn]. Recall Exercise A-3.67 on page 82: If S is a subring of 
a commutative ring R and p is a prime ideal in R, then I = p n S is a prime ideal 
in S. The proof is easy. Suppose a, b E S, a ~ I, and b ~ I. If ab E I= p n S, 
then ab E p, contradicting p being prime. In particular, if m is a maximal ideal 
in k[xi, ... ,Xn+i], then I= mnk[x1, ... ,xn] is a prime ideal in k[x1, ... ,xn]; 
unfortunately, it may not be maximal. Thus, we must use the hypothesis that 
R = k[x1, ... , Xn+i] here. 

Let's begin. 

Definition. If A is a subring of a commutative ring R, then R is a finitely gen
erated A-algebra if there is a surjective A-algebra map cp: A [x1, ... , Xn] -+ R. If 
cp(xi) = ai, then we write 

The notion of integrality is fundamental in algebraic number theory, but we will 
use it here only in a technical way. We will discuss it more thoroughly in Part 2 in 
its proper context. 

Definition. Let A be a subring of a commutative ring R. An element u E R is 
integral over A if it is a root of a monic polynomial in A(x]: there are ai E A with 

un + an-1Un-l + · · · + aiu + ao = 0. 

Let OR/A be the set of all u E R that are integral over A; OR/A is called the 
integral closure of A in R. 

Here is a characterization of integrality. Recall that if Mis an A-module, where 
A is a commutative ring, then 

annA(M) ={a EA: am= 0 for all m EM}. 

Recall that an A-module Mis faithful if annA(M) = (0). 

Proposition B-6.18. Let A be a subring of a commutative ring R and let u ER. 
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(i) The element u is integral over A if and only if there is a finitely generated 
faithful A-submodule M of R with uM ~ M. 

(ii) OR/A is a ring containing A as a subring. 

Proof. 

(i) If u is integral over A, then un + an-1 un-l + · · · + ai u + ao = 0, where 
ai E A for all i. Define M to be the A-submodule of R generated by 
1, u, ... un-1. It is plain that Mis finitely generated and that uM ~ M. 
Moreover, if r E annR(M), then rm= 0 for all m EM; since 1 EM, we 
must have r = 0. Thus, M is faithful. 

Conversely, suppose that u E R and there is a finitely generated A
module N, say N = (b1 , ... , bt) ~ R, with annR(N) = (0) and uN ~ N. 
If we pretend that bi, ... , bn are indeterminates, then there is a system of 
n equations ubi = E;=l Cijbj with all coefficients Cij E A. If C = [cij] and 
X = (bi, ... , bn) T is an n x 1 column vector, then the n x n system can 
be rewritten in matrix notation: (ul - C)X = 0. By Corollary B-5.53, 
0 = (adj(uJ -C))(ul -C) = dX, where d = det(uJ -C). Since dX = 0, 
we have dbi = 0 for all i, and so dN = {O}. Hence, d E annR(N) = (0), 
by hypothesis, and d = 0. On the other hand, Corollary B-5.47 says that 
d = 1/Jc(u), where 1/Jc(x) E A[x] is a monic polynomial of degree n. Thus, 
u is integral over A. 

(ii) Clearly, each a EA is integral over A, for it is a root of x-a; in particular, 
1 is integral, and so 1 E 0 R/ A. Suppose u, u' E R are integral over A. By 
(i), there are finitely generated A-submodules of R, say N = (b1, ... , bp) 
and N' = (b~, ... , b~), with annR(N) = (0) = annR(N'), uN ~ N, and 
u' N' ~ N'. Define 

NN' = (bibj : 1 :::; i:::; p, 1 :::; j :::; q). 

Note that the products bibj make sense because N and N' are contained 
in R. But (u+u')NN' ~ NN' and (uu')NN' ~ NN', and so both u+u' 
and uu' are integral over A. Therefore, OR/A is a subring of R. • 

For the rest of this section, k will denote a domain with F = Frac(k). 

Lemma B-6.19. Let k be a domain with F = Frac(k). Then F is a finitely 
generated k-algebra if and only if there is u Ek with F = k[u- 1]. 

Proof. Sufficiency is obvious; we prove necessity. If F = k[aif b1, ... , an/bnJ. define 
u = Tii bi. We claim that F = k[u- 1]. Clearly, F 2 k[u-1]. For the reverse 
inclusion, note that ai/bi = a/uifu E k[u- 1], where Ui =bi··· bi··· bn. • 

Proposition B-6.20. Let k be a domain which is a subring of a domain R. If R 
is integral over k, then R is a field if and only if k is a field. 

Proof. Assume that Risa field. If u Ek is nonzero, then u- 1 ER, and so u-1 is 
integral over k. Therefore, there is an equation (u- 1 )n+an-l (u- 1 )n-1+· · +ao = 0, 
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where all ai E k. Multiplying by (u- 1 r- 1 gives u-1 = -(an-1 + · · · + roun-l ). 
Therefore, u- 1 E k and k is a field. 

Conversely, assume that k is a field. If a E R is nonzero, then there is a monic 
f(x) E k[x] with f(a) = 0. Thus, a is algebraic over k, so we may assume that 
f(x) = irr(a, k); that is, f is irreducible. If f(x) = L~=O aixi, where ai Ek, then 

a(an-l + an-1an-l + · · · + ai) = -ao. 

Irreducibility off gives ao ":f O; hence, a- 1 = -a;;-1(an-1+an_1an- 1+ · ·+ai) ER; 
thus, R is a field. • 

Definition. A domain k is a G-domain if F = Frac(k) is a finitely generated 
k-algebra. 

Obviously, every field is a G-domain. Corollary B-6.24 below says that Z is not 
a G-domain. More important, we shall see that k[x] is never a G-domain. 

We now seek an "internal" characterization of G-domains, phrased solely in 
terms of k, with no mention of Frac( k). 

Proposition B-6.21. Let k be a domain with F = Frac(k). The following condi
tions are equivalent, where u E k is nonzero. 

(i) u lies in every nonzero prime ideal of k. 

(ii) for every nonzero ideal I ink, there is an integer n = n(I) with un E I. 

(iii) k is a G-domain; that is, F = k[u- 1]. 

Proof. 

(i) => (ii). Suppose there is a nonzero ideal I for which un ~ I for all n 2 0. 
If S = {un: n;::: O}, then InS = 0. By Zorn's Lemma, there is an ideal 
p maximal with I~ p and p n S = 0. Now p is a prime ideal, and this 
contradicts u lying in every prime ideal. 

(ii) => (iii). If b E k and b ":f 0, then un E (b) for some n;::: 1, by hypothesis. 
Hence, un = rb for some r Ek, and so b- 1 = ru-n E k[u- 1]. Since bis 
arbitrary, it follows that F = k[u- 1]. 

(iii) => (i). Let p be a nonzero prime ideal in k. If b E p is nonzero, then 
b-1 = L~=O riu-i, where Ti E k, because F = k[u- 1]. Hence un = 
b(Li riun-i) lies in jJ, because b E jJ and Li riun-i E k. Since jJ is a 
prime ideal, u E p. • 

Corollary B-6.22. If k is a G-domain and k ~ R ~ F = Frac(k). then R is a 
G-domain. 

Proof. There is u E F with F = k[u- 1], and so F = R[u- 1]. Hence R is a 
G-domain, by Proposition B-6.21. • 

Corollary B-6.23. A domain k is a G-domain if and only if n p prime p ":f (0). 
p,PO 

Proof. By Proposition B-6.21, k is a G-domain if and only if it has a nonzero 
element u lying in every nonzero prime ideal. • 
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Corollary B-6.24. If k is a PID, then k is a G-domain if and only if k has only 
finitely many prime ideals. 

Proof. If k is a G-domain, then I = n p ":f (0), where p ranges over all nonzero 
prime ideals. Suppose that k has infinitely many prime ideals, say, (p1), (p2), .... 
If a E I, then Pi I a for all i. But a = p~1 • • • p~n, where the Pi are distinct prime 
elements, contradicting unique factorization in the PID k. 

Conversely, if k has only finitely many nonzero prime ideals, say, (p1), ... , (Pm), 
then the product P1 ···Pm is a nonzero element lying in ni(Pi)· Therefore, k is a 
G-domain. • 

It follows, for example, that the ring Z(p) in Exercise B-6.6 on page 613 is a 
G-domain. 

On the other hand, we show that k[x] is never a G-domain. If Frac(k) = F 
and k(x] is a G-domain, then F(x] would also be a G-domain, by Corollary B-6.22. 
Now F[x], being a PID, is a G-domain if and only if it has only finitely many prime 
ideals, by Corollary B-6.24. But we know, for every field K, that K[x] has infinitely 
many different monic irreducible polynomials, hence infinitely many prime ideals. 

Proposition B-6.25. Let E be a domain having a domain k as a subring. If E 
is a finitely generated k-algebra and each a E E is algebraic over k (that is, a is a 
root of a nonzero polynomial in k[x]), then k is a G-domain if and only if E is a 
G-domain. 

Proof. Let k be a G-domain, so that F = Frac(k) = k[u-1] for some nonzero 
u E k, by Lemma B-6.19. Now E[u-1] ~ Frac(E), because u E k ~ E,. But 
E[u-1] is a domain algebraic over the field F = k[u-1], so that E[u-1] is a field, by 
Exercise B-6.5 on page 613. Since Frac(E) is the smallest field containing E, we 
have E[u-1] = Frac(E), and so Eis a G-domain. 

If Eis a G-domain, then there is v EE with Frac(E) = E[v-1]. By hypothesis, 
E = k[b1, ... , bn], where bi is algebraic over k and hence over F = Frac(k) for all i. 
Now v E E, so that v algebraic over k implies v-1 is algebraic over F. Thus, there 
are monic polynomials fo(x),fi(x) E F[x] with fo(v- 1) = 0 and fi(bi) = 0 for all 
i ~ 1. Clearing denominators, we obtain equations f3di(bi) = 0, for i ~ 0, with 
coefficients in k: 

f3o( v-l )do + ... = 0, 

f3ibfi + ... = 0. 

Define k* = k[(301, f3! 1, ... , (3;1]. Each bi is integral over k*, for we can multiply the 
ith equation by f3i 1 since each f3i is a unit ink*. The same holds for v-1. Since each 
(3i-l E Frac(k) and E[v-1] is a field, E[v-1] = k*[v-1,bi, ... ,bn]· Thus, the field 
E[v-1] is integral over k*, by Proposition B-6.18 (since E[v-1] = k*[v-1, bi, ... , bn] 
and each of the displayed generators is integral over k*), and this forces k* to be 
a field, by Proposition B-6.20. But k* = k[f30\f3!1. ... ,(3;1] ~ F, because f3i Ek 
for all i, so that k* = F. Therefore, F = k[f301, f31 1, ... , (3;1] is a finitely generated 
k-algebra; that is, k is a G-domain. • 



608 Chapter B-6. Commutative Algebra II 

Proposition B-6.26. Let k ~ R be domains, and let u E R. If k[u] is a G-domain, 
then u is algebraic over k and k is a G-domain. 

Proof. Set E = k[u] in Proposition B-6.25. Now u must be algebraic over k 
because the polynomial ring k[x] is not a G-domain. • 

The discussion so far arose because proving the Weak Nullensatz by induction 
on the number of variables in k[x1, ... , xn] hit a snag: we could not guarantee 
that the contraction of a maximal ideal is maximal. We can now make explicit the 
relation between ideals in k[x1, ... ,xn] and those in k[x1, ... ,xn-1]. 

Theorem B-6.27. A domain k is a G-domain if and only if the polynomial ring 
k[x] has a maximal ideal m such that m n k = (0). 

Proof. If k is a G-domain, then F = Frac(k) = k[u-1]. There is a k-algebra map 
<p: k[x]---+ F with cp: x H u-1. Now <pis surjective, since F = k[u-1, and so its 
kernel mis a maximal ideal in k[x]. But cplk is an injection, so that m n k = (0). 

Conversely, suppose that there is a maximal ideal min k[x] with m n k = (0). 
If v = v(x). where v: k[x]---+ k[x]/m is the natural map, then k[v] = imv is a field. 
Now Proposition B-6.26 says that k is a G-domain. • 

Definition. An ideal I in a commutative ring R is a G-ideal 7 if it is prime and 
R/ I is a G-domain. 

Obviously, every field is a G-domain, and so every maximal ideal in a commu
tative ring is a G-ideal. However, Corollary B-6.24 says that Z is not a G-domain. 
Hence, the ideal (x) in Z[x] is a prime ideal which is not a G-ideal, for Z[x]/(x) ~ Z. 

Definition. If k is a commutative ring, then its nilradical is 

nil(k) = {r Ek: r is nilpotent}. 

We note that nil(k) is an ideal. If r, s Ek are nilpotent, then rn = 0 = sm, for 
positive integers m and n. Hence, 

(r + sr+n-1 = mI:-1 (m + ~ - l)rism+n-1-i. 

i=O 

If i 2: n, then ri = 0 and the ith term in the sum is O; if i < n, then m+n-i- l 2: m, 
sm+n-l-i = 0, and the ith term in the sum is 0 in this case as well. Thus, 
(r + s)m+n-l = 0 and r + s is nilpotent. Finally, rs is nilpotent, for (rs)mn = 
rmnsms = 0. 

Given a prime ideal jl, it is easy to prove that every nilpotent element u must 
lie in jl: if um = 0, use induction on m 2: 1. Therefore, every nilpotent element lies 
in the intersection of all the prime ideals; that is, nil{k) ~ np jl, where ll varies over 
all prime ideals in k. 

The next theorem is a modest improvement of a theorem of Krull which char
acterizes the nilradical as the intersection of all the prime ideals. 

7 G-domains and G-ideals are named after 0. Goldman. 
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Theorem B-6.28 (Krull). If k is a commutative ring, then 

nil(k) = n p = n p. 
p=prime 

ideal 
p=G-ideal 

609 

Remark. If k is a domain, then (0) is a prime ideal, and so nil(k) = (0) (there 
are no nonzero nilpotent elements in a domain). However, the intersection of all 
the nonzero prime ideals in a commutative ring k may be larger than nil( k); this 
happens, for example, when k = Z(p), the ring in Exercise B-6.6 on page 613. .... 

Proof. There are inclusions nil(k) ~ np=prime ideal p ~ np=G-ideal p: just before 
stating the theorem, we observed that the first inclusion holds, and the second one 
holds because every G-ideal is a prime ideal. 

For the reverse inclusion, we show that np= G-ideal p ~ nil(k). Suppose that 
un # 0 for all n # 1 Now the subset S = { un : n 2: 1} is multiplicative, By 
Exercise B-2.7 on page 318, there exists an ideal q, maximal with q n S = 0, which 
is necessarily a prime ideal, and so k/q is a domain. We claim that q is a G-ideal, 
which will give U <f_ np=G-ideal IJ. If there is a nonzero prime ideal p* in kjq not 
containing u + q, then there is an ideal p ;;;? q in k with p* = p/q (for p* # (0)) 
not containing u, contradicting the maximality of q. Therefore, u + q lies in every 
nonzero prime ideal in k/q. By Corollary B-6.23, k/q is a G-domain, and so q is a 
G-ideal. • 

The next corollary follows easily from Krull's Theorem. 

Corollary B-6.29. If I is an ideal in a commutative ring k, then ./i is the inter
section of all the G-ideals containing I. 

Proof. By definition, ./i = { r E k : rn E I for some n 2: 1}. Therefore, ./i /I = 
nil(k/ I) = np•=G-ideal p*. For each p*, there is an ideal p containing I with p* = 
p/I, and Vi = np/I=G-ideal p. Finally, every p involved in the intersection is a 
G-ideal, because (k/ I)/p* is a G-domain, and k/p ~ (k/ I)/(p/ I) = (k/ I)/p*. • 

We can now characterize G-ideals. 

Proposition B-6.30. An ideal I in a commutative ring k is a G-ideal if and only 
if I is the contraction of a maximal ideal m in k[x]; that is, I= m n k. 

Proof. If I is a G-ideal in k, then I is prime and k/ I is a G-domain. By Propo
sition B-6.27, there is a maximal ideal m' in (k/I)[x] with m' n (k/I) = (0). By 
Exercise A-3.52(iv) on page 61, there is an ideal m in k[x], necessarily maximal, 
with m/I = m', and mn k =I. 

Conversely, assume that m is a maximal ideal in k[x] and m n k = I. As we 
noted above, I is a prime ideal in k (so k /I is a domain), and it suffices to show that 
k/ I is a G-domain. Again we use Proposition B-6.27: there is a maximal ideal m' in 
(k/ I)[x] with m' n k/ I= (0). Now lift this equation to k[x], using Exercise A-3.52. 
If cp: k[x]---+ (k/I)[x] reduces coefficients mod I, then let m = cp- 1 (m'). • 
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Notation. If I is an ideal in a commutative ring k and f(x) E k[x], then f(x) 
denotes the polynomial in (k/J)[x] obtained from f by reducing its coefficients 
mod I; that is, if f(x) = Liaixi, for some ai Ek, then 

f(x) = f(x) +I= :L)ai + I)xi. 
i 

Corollary B-6.31. Let k be a commutative ring, and let m be a maximal ideal in 
k[x]. If the contraction m' = m n k is a maximal ideal in k, then m = ( m' ,f ( x)) for 
some f(x) E k[x] with f(x) E (k/m')[x] irreducible. If k/m' is algebraically closed, 
then m = (m', x - a) for some a Ek. 

Proof. First, Proposition B-6.30 says that m' = m n k is a G-ideal ink. Consider 
the map r.p: k[x] ---+ (k/m')[x] which reduces coefficients mod m'. Since r.p is a 
surjection, the ideal r.p(m) is a maximal ideal; since k/m' is a field, it follows that 
r.p(m) = (g), where g(x) E (k/m')[x] is irreducible. Therefore, m = (m', f(x)), where 
r.p(f) = g; that is, f(x) = g(x). • 

Maximal ideals are always G-ideals, and G-ideals are always prime ideals. The 
next definition gives a class of rings in which the converse holds. 

Definition. A commutative ring k is a Jacobson ring8 if every G-ideal is a 
maximal ideal. 

Example B-6.32. 

(i) Every field is a Jacobson ring. 

(ii) By Corollary B-6.24, a PID k is a G-domain if and only if it has only 
finitely many prime ideals. Such a G-domain cannot be a Jacobson ring, 
for (0) is a G-ideal which is not maximal (k/(O) ~ k is a G-domain). 
On the other hand, if k has infinitely many prime ideals, then k is not a 
G-domain and (0) is not a G-ideal. The G-ideals, which are now nonzero 
prime ideals, must be maximal. Therefore, a PID is a Jacobson ring if 
and only if it has infinitely many prime ideals. 

(iii) We note that if k is a Jacobson ring, then so is any quotient k* = k/ I. If 
p* is a G-ideal in k*, then k* /p* is a G-domain. Now p* = p/ I for some 
ideal p in k, and k/p ~ (k/ J)/(p/ I) = k* /p*. Thus, p is a G-ideal in k. 
Since k is a Jacobson ring, p is a maximal ideal, and k/p ~ k* /p* is a 
field. Therefore, p* is a maximal ideal, and so k* is also a Jacobson ring. 

(iv) By Corollary B-6.29, every radical ideal in a commutative ring k is the 
intersection of all the G-ideals containing it. Therefore, if k is a Jacobson 
ring, then every radical ideal is an intersection of some maximal ideals . 

.... 

Example B-6.32(iv) suggests the following result. 

8 These rings are called Hilbert rings by some authors. In 1951, Krull and Goldman, in
dependently, published proofs of the Nullstellensatz using the techniques in this section. Krull 
introduced the term Jacobson ring in his paper. 
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Proposition B-6.33. A commutative ring k is a Jacobson ring if and only if every 
prime ideal ink is an intersection of maximal ideals. 

Proof. By Corollary B-6.29, every radical ideal, hence, every prime ideal, is the 
intersection of all the G-ideals containing I. But in a Jacobson ring, every G-ideal 
is maximal. 

Conversely, assume that every prime ideal in k is an intersection of maximal 
ideals. We let the reader check that this property is inherited by quotient rings. 
Let p be a G-ideal in k, so that k/p is a G-domain. Thus, there is u f:. 0 in k/p 
with Frac(k/p) = (k/p)[u- 1). By Proposition B-6.21, u lies in every nonzero prime 
ideal of k/p, and so u lies in every nonzero maximal ideal. Now every prime ideal 
in k/p is an intersection of maximal ideals; in particular, since k/p is a domain, 
there are maximal ideals mo with (0) = no mo. If all these mo are nonzero, then 
u E n0 m0 = (0), a contradiction. We conclude that (0) is a maximal ideal. 
Therefore, k/p is a field, the G-ideal p is maximal, and k is a Jacobson ring. • 

Proposition B-6.34. A commutative ring k is a Jacobson ring if and only if 

nil(k/ I) = (0) 

for every ideal I. 

Proof. Let k be a Jacobson ring. If I is an ideal in k, then VI= nm, where m is 
a maximal ideal containing I. Now nil(k/J) consists of all the nilpotent elements in 
kj I. But 0 = (f +I)n = r+I holds if and only if r EI; that is, f E VJ. To prove 
the converse, note that hypothesis says that every radical ideal in k is an intersection 
of maximal ideals. In particular, every prime ideal is such an intersection, and so 
k is a Jacobson ring. • 

The next result can be used to give many examples of Jacobson rings. 

Theorem B-6.35. A commutative ring k is a Jacobson ring if and only if k[x] is 
a Jacobson ring. 

Proof. We have seen that every quotient of a Jacobson ring is a Jacobson ring. 
Hence, if k[x] is a Jacobson ring, then k ~ k[x]/(x) is also a Jacobson ring. 

Conversely, suppose that k is a Jacobson ring. If q is a G-ideal in k[x), then we 
may assume that q n k = (0), by Exercise B-6.7 on page 614. If v: k[x] ---+ k[x)/q 
is the natural map, then k[x)/q = k[u], where u = v(x). Now k[u] is a G-domain, 
because q is a G-ideal; hence, if K = Frac(k[u)), then there is v E K with K = 
k[u)[v- 1). If Frac(k) = F, then 

K = k[u)[v- 1) <::; F[u)[v-1) <::; K, 

so that F[u)[v-1) = K; that is, F[u] is a G-domain. But F[u] is not a G-domain 
if u is transcendental over F, by Corollary B-6.24, for F[x] ~ F[u] has infinitely 
many prime ideals. Thus, u is algebraic over F, and hence u is algebraic over k. 
Since k[u] is a G-domain, Proposition B-6.25 says that k is a G-domain. Now k is 
a Jacobson ring, and so k is a field, by Exercise B-6.4 on page 613. But if k is a 
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field, so is kk[u], for u is algebraic over k. Therefore, k[u] = k[x]/q is a field, so 
that q is a maximal ideal, and k[x] is a Jacobson ring. • 

We have now found the property of k[x1, ... , xn] that can be used to do the 
inductive step we need to prove the Weak Nullstellensatz. 

Corollary B-6.36. If k is a field, then k[x1, ... , xn] is a Jacobson ring. 

Proof. The proof is by induction on n ~ 1. For the base step, k[x] is a PID having 
infinitely many prime ideals, by Exercise B-6.11 on page 614, and so it is a Jacobson 
ring, by Example B-6.32(ii). For the inductive step, the inductive hypothesis gives 
R = k[xi, .. . , Xn-1] a Jacobson ring, and Theorem B-6.35 applies. • 

Theorem B-6.37. If m is a maximal ideal in k[x1, ... , xn], where k is an alge-
braically closed field, then there are al, ... , an E k such that 

m = (x1 - ai, ... , Xn - an)· 

Proof. The proof is by induction on n ~ 1. If n = 1, then m = (p(x)), where 
p(x) E k[x] is irreducible. Since k is algebraically closed, p(x) is linear. For the 
inductive step, let R = k[x1, ... ,xn_1]. Corollary B-6.36 says that Risa Jacobson 
ring, and so m n R is a G-ideal in R, by Proposition B-6.30. Since R is a Jacobson 
ring, m' is a maximal ideal. Corollary B-6.31 now applies to give m = (m', f(xn)), 
where f(xn) E R[xn] and f(xn) E (R/m')[xn] is irreducible. Ask is algebraically 
closed and R/m' is a field which is a finitely generated k-algebra, R/m' ~ k, and 
we may assume that f(xn) is linear; there is an Ek with fn(x) = Xn - an. By the 
inductive hypothesis, m' = (x1 -ai, ... , Xn-1 -an-1) for al, ... , an-1 Ek, and this 
completes the proof. • 

We now use Theorem B-6.37 to prove the Weak Nullstellensatz for every al
gebraically closed field; Theorem B-6.12, the special case of the Nullstellensatz for 
k = <C, was proved earlier. 

Theorem B-6.38 (Weak Nullstellensatz). Let Ji (X), ... , ft(X) E k[X], where 
k is an algebraically closed field. Then I = (!1, ... , ft) is a proper ideal in k[X] if 
and only if Var(f1, ... , ft) =I 0. 

Proof. If I is a proper ideal, then there is a maximal ideal m containing it. By 
Theorem B-6.12, there is a = (ai, ... , an) E kn with m = (x1 - ai, ... , Xn - an)· 
Now I~ m implies Var(m) ~ Var(J). But a E Var(m), and so Var(J) # 0. • 

We could now repeat the proof of the Nullstellensatz over <C, Theorem B-6.13, to 
obtain the Nullstellensatz over any algebraically closed field. However, the following 
proof is easier. 

Theorem B-6.39 (Nullstellensatz). Let k be an algebraically closed field. If I 
is an ideal in k[x1, ... , Xn], then Id(Var(J)) = VJ. 

Proof. The inclusion Id(Var(J)) 2 VJ is easy to see. If f E VJ, so that r(a) = 0 
for all a E Var(!), then f(a) = 0 for all a E Var(!), because the values off lie in 
the field k. Hence, f E Id(Var(J)). 
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For the reverse inclusion, note first that k[x1 , ... , Xn] is a Jacobson ring, by 
Corollary B-6.36; hence, Example B-6.32(iv) shows that ..Ji is an intersection of 
maximal ideals. Let g E Id(Var(J)). If m is a maximal ideal containing I, then 
Var(m) ~ Var(!), and so Id(Var(J)) ~ Id(Var(m)). But Id(Var(m)) = m; in fact, 
Id(Var(J)) 2 y'ffi = m, because m is a maximal, hence prime ideal. Therefore, 
g E nm;;2J m = ..Ji, as desired. • 

Another proof of the Nullstellnsatz is due to Munshi. The key result there is 
the following (compare this with Proposition B-6.30). 

Theorem B-6.40 (Munshi). Let R be a domain such that the intersection of 
all its nonzero prime ideals is (0). If m is a maximal ideal in R[xi, ... , Xn], then 
mn R :f (0). 

Proof. See [75]. • 

Exercises 

* B-6.1. Let f(X) E k(X] be an irreducible polynomial, where k is an algebraically closed 
field, and let V =Var(/), where I= (!). Prove that Id(V) = (!). 

B-6.2. Let R be a commutative ring, I an ideal in R, and S a subset of R, 

(i) If J = (S) is the ideal generated by S, prove that (/: S) =(I: J). 

(ii) Let R be a domain and a, b E R, where b =/= O. If I = (ab) and J = (b), prove 
that (I : J) = (a) (this is the reason colon ideals (also called ideal quotients) are 
so called). 

* B-6.3. Let I and J be ideals in a commutative ring R. 

(i) Prove that I ~ (I : J) and J(I : J) ~ I. 

(ii) If I = Qi n · · · n Qr, where the Qs are ideals, prove that 

(I: J) = (Qi : J) n .. · n (Qr : J). 

(iii) If I = Ji + · · · + Jn is a sum of ideals, prove that 

(I : J) = (I : Ji) n .. · n (/ : Jn)· 

* B-6.4. Prove that a commutative ring R is a field if and only if R is both a Jacobson ring 
and a G-domain. 

* B-6.5. Let E be a domain containing a subring R which is a field. 

(i) Let b E E be algebraic over R. Prove that there exists an equation 

bn + Tn-ibn-i + · · · + Tib +To = 0, 

where Ti E R for all i and To =/= 0. 

(ii) If E = R(bi, ... , bm], where each bj is algebraic over R, prove that E is a field. 

* B-6.6. Let p be a prime, and define 

Z(p) = {a/b E Q: gcd(b,p) = 1}. 

Prove that Z(p) is a domain having a unique nonzero prime ideal. 
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* B-6.7. Let R be a Jacobson ring, and assume that (R/q')[x] is a Jacobson ring for every 
G-ideal q in R[x], where q' = q n R. Prove that R[x] is a Jacobson ring. 

B-6.8. (i) Prove that m = (x2 - y, y2 - 2) is a maximal ideal in Q[x, y]. 

(ii) Prove that there do not exist f(x) E Q(x] and g(y) E Q(y] with m = {J(x),g(y)). 

B-6.9. Let k be a field and let m be a maximal ideal in k(x1, ... , xn]. Prove that there 
are polynomials fi such that 

m = {f1 (x1), f2(x1, X2), · · ·, f n-1 (x1, · · ·, Xn-1),Jn(X1, · · ·, Xn)) · 

Hint. Use Corollary B-6.31. 

* B-6.10 . . Recall that if I is an ideal, then 

r = {Lai ... an : ai E /}. 

We say that I is nilpotent if there is n 2: 1 with r = (0). Prove that if R is noetherian, 
then nil(R) is a nilpotent ideal 

* B-6.11. If k is a field, prove that k(x] has infinitely many prime ideals. 

Irreducible Varieties 

Can a variety be decomposed into simpler subvarieties? In this section, we let k 
denote a field and k its algebraic closure. 

Definition. A variety V over a field k is irreducible if it is not a union of distinct 
proper subvarieties; that is, V =f. W' U W", where both W' and W" are nonempty. 

Proposition B-6.41. Let k be any field. Every variety V in kn is a union of 
finitely many irreducible subvarieties: 

V = Vi U V2 U · · · U Vm. 

Proof. Call a variety W E kn good if it is irreducible or a union of finitely many 
irreducible subvarieties; otherwise, call W bad. We must show that there are no 
bad varieties. If W is bad, it is not irreducible, and so W = W' U W", where both 
W' and W" are proper subvarieties. But a union of good varieties is good, and so 
at least one of W' and W" is bad; say, W' is bad, and rename it W' = W1. Repeat 
this construction for W1 to get a bad subvariety W2 • It follows by induction that 
there exists a strictly descending sequence 

W 2 W1 2 · · · 2 Wn 2 · · · 
of bad subvarieties. Since the operator Id reverses inclusions, there is a strictly 
increasing chain of ideals (the inclusions are strict because of Corollary B-6.16(i)) 

Id(W) s;; Id(W1) s;; · · · s;; Id(Wn) s;; · · · , 
contradicting the Hilbert Basis Theorem. Therefore, every variety is good. • 

Irreducible varieties over infinite fields have a nice characterization. 
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Proposition B-6.42. Let k be an infinite field. A variety V in kn is irreducible 
if and only if Id(V) is a prime ideal in k[X]. 

Hence, the coordinate ring k[V] of an irreducible variety V is a domain. 

Proof. Assume that V is an irreducible variety. It suffices to show that if Ji (X), 
h(X) tj. Id(V), then fi(X)f2(X) tj_ Id(V). Define, for i = 1,2, 

Wi = V n Var(fi(X)). 

Note that each Wi is a subvariety of V, for it is the intersection of two varieties; 
moreover, since fi(X) tj. Id(V), there is some ai E V with fi(ai) =I 0, and so Wi is a 
proper subvariety of V. Since Vis irreducible, we cannot have V = W1 UW2. Thus, 
there is some b E V that is not in W1 U W2; that is, Ji ( b) =I 0 =I h ( b). Therefore, 
fi(b)f2(b) =I 0, hence fi(X)h(X) tj_ Id(V), and so Id(V) is a prime ideal. 

Conversely, assume that Id(V) is a prime ideal. Suppose that V = Vi U Vi, 
where Vi and Y2 are subvarieties. If V2 s;; V, then we must show that V =Vi. Now 

Id(V) = Id(Vi) n Id(Vi) 2 Id(Vi) Id(Vi); 

the equality is given by Proposition B-6.8, and the inequality 2 is given by Ex
ercise A-3.72 on page 82. Since Id(V) is a prime ideal, Proposition A-3.82 says 
that Id(Vi) ~ Id(V) or Id(V2) ~ Id(V). But Vi s;; V implies Id(V2) ~ Id(V), 
and we conclude that Id(Vi) ~ Id(V). Now the reverse inclusion Id(Vi) 2 Id(V) 
holds as well, because Vi ~ V, and so Id(Vi) = Id(V). Therefore, Vi = V, by 
Corollary B-6.16, and so V is irreducible. • 

In particular, Proposition B-6.42 holds for all algebraically closed fields because 
they are all infinite. 

Remark. Proposition B-6.42 shows the significance of prime ideals, for most people 
assume that affine varieties V are irreducible.9 

We have already equipped affine space kn with the Zariski topology: the closed 
sets are all the subsets of the form V =Var( I), where I is an ideal in k[xi, ... , Xn]· 

~ 

Definition. The set of all the prime ideals in a commutative ring R is denoted by 

Spec(R). 

Proposition B-6.42 shows that the restriction of V i-+ Id(V) to irreducible 
varieties is a bijection to Spec(k[X]). This construction can be extended to arbitrary 
commutative rings R. 

The Zariski topology on Spec(R) defines the closure of X ~ Spec(R) to be 

X = {all the prime ideals in R containing X} 

(after all, the Zariski closed subvarieties of a variety Var(!) have the form Var(J), 
where J 2 I). 

9 As we mentioned earlier, the term affine variety is ambiguous; most assume Vis irreducible, 
but we have not. However, both usages are covered if we say (Zariski) closed set instead of variety. 
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Alternatively, we can prove that Spec(R) is a topological space directly, without 
using V H Id(V), by showing: 

(i) (0) = Spec(R). 

(ii) R = 0. 

(iii) Ee Ie = ne Ie. 
(iv) In J =I u J. 

Note that a point p in Spec(R) is a closed set if and only if it is a maximal ideal; 
hence, Spec(R) is not Hausdorff. 

Exercise B-6.18 on page 622 says that Spec: ComRings ---+ Top is a con
travariant functor. 

We now consider whether the irreducible subvarieties in the decomposition of 
a variety over an arbitrary field k into a union of irreducible varieties are uniquely 
determined. There is one obvious way to arrange nonuniqueness: if in a decompo
sition V =Vi U · · · U Vm, some Vi~ ltj, leave out l/i. 

Definition. A decomposition V = Vi U · · · U Vm is an irredundant union if no 
Vi can be omitted; that is, for all i, 

V # Vi U .. · U ~ U · .. U Vm. 

Proposition B-6.43. Every variety V over an arbitrary field k is an irredundant 
union of irreducible subvarieties 

V=V1U···UVm; 

moreover, the irreducible subvarieties Vi are uniquely determined by V. 

Proof. By Proposition B-6.41, V is a union of finitely many irreducible subvari
eties; say, V = Vi U · · · U Vm. If m is chosen minimal, then this union must be 
irred undant. 

We now prove uniqueness. Suppose that V = W1 U · · · U W 8 is another ir
redundant union of irreducible subvarieties. Let X = {Vi, ... , Vm} and let Y = 
{Wi, ... , W 8 }; we shall show that X = Y. If Vi E X, we have 

Vi= Vin v = LJ (Vin W3). 
j 

Now Vin W3 "!- 0 for some j; since Vi is irreducible, there is only one such W3. 
Therefore, Vi = Vi n W3, and so Vi ~ W3. The same argument applied to W3 shows 
that there is exactly one V£ with W3 ~ l/£. Hence, 

Vi~ W3 ~ l/£. 
Since the union V1 U · · · U Vm is irredundant, we must have Vi = l/£, and so Vi = 
W3 = l/£; that is, Vi E Y and X ~ Y. The reverse inclusion is proved in the same 
way. • 

Definition. An intersection I = J1 n · · · n Jm is irredundant if no Ji can be 
omitted; that is, for all i, 

I "!- J1 n · · · n ~ n · · · n Jm. 
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Corollary B-6.44. Every radical ideal J in k[X] is an irredundant intersection of 
prime ideals: 

J= P1 n--·nPm. 
Moreover, the prime ideals Pi are uniquely determined by J. 

Remark. This corollary is generalized in Exercise B-6.21 on page 623: an ideal in 
an arbitrary commutative noetherian ring is a radical ideal if and only if it is an 
intersection of finitely many prime ideals. <Ill 

Proof. Since J is a radical ideal, there is a variety V with J = Id(V) (by Corol
lary B-6.16(iii)). Now Vis an irredundant union of irreducible subvarieties, 

V =Vi U···UVm, 

so that 
J = Id(V) = Id(Vi) n · · · n Id(Vm)· 

By Proposition B-6.42, Vi irreducible implies Id(Vi) is prime, and so J is an inter
section of prime ideals. This is an irredundant intersection, for if there is £ with 
J = Id(V) = n#t Id(Vj), then 

V = Var(Id(V)) = LJ Var(Id(Vj)) = LJ Vj, 
#£ #£ 

contradicting the given irredundancy of the union. 

Uniqueness is proved similarly. If J admits another decomposition, say, 
Id(W1) n · · · n Id(Ws), where each Id(Wi) is a prime ideal (hence is a radical ideal), 
then each Wi is an irreducible variety. Applying Var expresses V = Var(Id(V)) = 
Var(J) as an irredundant union of irreducible subvarieties, and the uniqueness of 
this decomposition gives the uniqueness of the prime ideals in the intersection. • 

Given an ideal I in k[X], how can we find the irreducible components Ci of 
Var(/)? To ask the question another way, what are the prime ideals Pi with Ci= 
Var( Pi)? The first guess is that I = P1 n · · · n Pr, but this is easily seen to be 
incorrect: an ideal need not be an intersection of prime ideals. For example, in 
C[x], the ideal ((x - 1)2) is not an intersection of prime ideals. In light of the 
Nullstellensatz, we can replace the prime ideals Pi by ideals Qi with~= Pi, for 
Var(Pi) =Var( Qi)· We are led to the notion of primary ideal, defined soon, and the 
Primary Decomposition Theorem, which states that every ideal in a commutative 
noetherian ring, not merely in k[X], is an intersection of primary ideals. 

We now leave the realm of (algebraic) geometry and return to commutative 
algebra. 

Definition. An ideal Q in a commutative ring R is primary if it is a proper ideal 
such that ab E Q (where a, b ER) and b ~ Q implies an E Q for some n ~ 1. 

It is clear that every prime ideal is primary. Moreover, in Z, the ideal (pe), 
where p is prime and e ~ 2, is a primary ideal that is not a prime ideal. Exam
ple B-6.49 below shows that this example is, alas, misleading: there are primary 
ideals that are not powers of prime ideals; there are powers of prime ideals that are 
not primary ideals. 
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Proposition B-6.45. If Q is a primary ideal in a commutative ring, then its 
radical P = ./Q is a prime ideal. Moreover, if Q is primary, then ab E Q and 
a tj. Q implies b E P. 

Proof. Assume that ab E VQ, so that (ab r = am bm E Q for some m 2:: 1. If 
a tj. VQ, then am tj. Q. Since Q is primary, it follows that some power of bm, 
say, bmn E Q; that is, b E VQ. We have proved that VQ is prime. The second 
statement is almost a tautology. • 

Definition. If Q is primary and P = VQ, then we often call Q a P-primary 
ideal, and we say that Q and P belong to each other. 

We now prove that the properties in Proposition B-6.45 characterize primary 
ideals. 

Proposition B-6.46. Let J and T be ideals in a commutative ring. If 

(i) J ~ T, 

(ii) t E T implies there is some m 2:: 1 with tm E J, 

(iii) if ab E J and a tj. J, then b ET, 

then J is a primary ideal with radical T. 

Proof. Now J is a primary ideal, for if ab E Janda tj. J, then item (iii) gives b ET, 
and item (ii) gives bm E J. It remains to prove that T = VJ. Now item (ii) gives 
T ~ VJ. For the reverse inclusion, if r E VJ, then rm E J; choose m minimal. If 
m = 1, then item (i) gives r E J ~ T, as desired. If m > 1, then rrm-l E J; since, 
by the minimality of m, rm-l tj. J, item (iii) gives r ET. Therefore, T =VJ. • 

Let R be a commutative ring, and let M be an R-module. Multiplication 
by an element a E R defines an R-map aM: M -+ M by aM: m H am (recall 
that if Q is an ideal in R, then R/Q is an R-module with scalar multiplication 
r(a + Q) = ra + Q). 

Lemma B-6.47. Let Q be an ideal in a commutative ring R. Then Q is a primary 
ideal if and only if, for each a E R, the map aR/Q: R/Q-+ R/Q, given by r + Q H 
ar + Q, is either an injection or is nilpotent [(aR/Q)n = 0 for some n;::: 1]. 

Proof. Assume that Q is primary. If a E R and aR/Q is not an injection, then 
there is b ER with b tj. Q and aR/Q(b+Q) = ab+Q = Q; that is, ab E Q. We must 
prove that aR/Q is nilpotent. Since Q is primary, there is n;::: 1 with an E Q; hence, 
anr E Q for all r ER, because Q is an ideal. Thus, (aR/Qr(r+Q) = anr+Q = Q 
for all r E R, and (aR;Q)n = O; that is, aR/Q is nilpotent. 

Conversely, assume that every aR/Q is either injective or nilpotent. Suppose 
that aR/Q is not injective, so that a+ Q E keraR/Q· By hypothesis, (aR/Q)n = 0 
for some n ;::: 1; that is, anr E Q for all r E R. Setting r = 1 gives an E Q, and so 
Q is primary. • 

The next result gives a way of constructing primary ideals. 
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Proposition B-6.48. If P is a maximal ideal in a commutative ring R and Q 
is an ideal with pe ~ Q ~ P for some e 2: 0, then Q is a P-primary ideal. In 
particular, every power of a maximal ideal is primary. 

Proof. We show, for each a ER, that aR/Q is either nilpotent or injective. Suppose 
first that a E P. In this case, ae E pe ~ Q; hence, aeb E Q for all b E R, and 
so (aR/Q)e = O; that is, aR/Q is nilpotent. Now assume that a ~ P; we are going 
to show that a+ Q is a unit in RfQ, which implies that aR/Q is injective, by 
Lemma B-6.47. Since Pis a maximal ideal, the ring Rf Pis a field; since a ~ P, 
the element a+ P is a unit in Rf P: there are a' E Rand z E P with aa' = 1 - z. 
Now z + Q is a nilpotent element of RfQ, for ze E pe ~ Q. Thus, 1 - z + Q is a 
unit in Rf Q (its inverse is 1 + z + · · · + ze-l + Q). It follows that a+ Q is a unit 
in RfQ, because (a+ Q)(a' + Q) = aa' + Q = 1- z + Q. Finally, Q belongs to P, 
for P = ffe ~ ./Q ~ VP = P, and so the radical of Q equals P. • 

Example B-6.49. 

(i) We now show that a power of a prime ideal need not be primary. Suppose 
that R is a commutative ring containing elements a, b, c such that ab = c2 , 

P = (a,c) is a prime ideal, a~ P 2 , and b ~ P. Now ab= c2 E P 2 ; were 
P 2 primary, then a ~ P 2 would imply that b E Vf?2 = P, and this is not 
so. We construct such a ring R as follows. Let k be a field, and define 
R = k[x, y, z]/(xy- z2 ) (note that R is noetherian). Define a, b, c ER to 
be the cosets of x, y, z, respectively. Now P = (a, c) is a prime ideal, for 
the Third Isomorphism Theorem for Rings, Exercise A-3.53 on page 62, 
gives 

Rf (a, c) = k[x, y, z]/(xy - z2 ) ~ k[x, y, z] ~ k[y], 
(x, z)f (xy - z2 ) (x, z) 

which is a domain. The equation ab = c2 obviously holds in R. Now 
P 2 = (a2 , c2 , ac), i.e., it is the set of elements of the form f x2 + gxz + 
+hz2 + .e(xy - z2). Were a E P 2 , then it would yield an equation 

x = f(x, y, z)x2 + g(x, y, z)xz + h(x, y, z)z2 + .e(x, y, z)(xy - z2). 

Setting y = 0 = z (i.e., using the evaluation homomorphism k[x, y, z] ---+ 
k[x]) gives the equation x = f(x, 0, O)x2 in k[x], a contradiction. A 
similar argument shows that b ~ P. 

(ii) We use Proposition B-6.48 to show that there are primary ideals Q that 
are not powers of prime ideals. Let R = k[x, y], where k is a field. The 
ideal P = (x, y) is maximal, hence prime (for Rf P ~ k); moreover, 

p2 £; (x2' y) £; (x, y) = p 

[the strict inequalities follow from x ~ (x2 , y) and y ~ P 2]. Thus, Q = 
(x2 ,y) is not a power of P; indeed, we show that Q =/:-Le, where Lis a 
prime ideal. If Q =Le, then P 2 ~Le ~ P, hence Vf?2 ~ ./Le~ VP, 
and so P ~ L ~ P, a contradiction. "'ill 
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We now generalize Corollary B-6.44 by proving that every ideal in a noetherian 
ring, in particular, in k[X] for k a field, is an intersection of primary ideals. This 
result, along with uniqueness properties, was first proved by E. Lasker10; his proof 
was later simplified by E. Noether. Note that we will be working in arbitrary 
noetherian rings, not merely in k[X]. 

Definition. A primary decomposition of an ideal I in a commutative ring R is 
a finite family of primary ideals Qi, ... , Qr with 

I = Qi n Q2 n .. · n Qr. 

Theorem B-6.50 (Lasker-Noether I). If R is a commutative noetherian ring, 
then every proper ideal I in R has a primary decomposition. 

Proof. Let F be the family of all those proper ideals in R that do not have a 
primary decomposition; we must show that F is empty. Since R is noetherian, if 
F =f. 0, then it has a maximal element, say, J. Of course, J is not primary, and 
so there exists a ER with aR;J: Rf J--+ Rf J neither injective nor nilpotent. The 
ascending chain of ideals of Rf J, 

ker aR/J ~ ker (aR/J) 2 ~ ker (aR/J) 3 ~ • · • , 

must stop (because aR/Q is not injective, and so Rf J, being a quotient of the 
noetherian ring R, is itself noetherian); there ism 2: 1 with ker(a~/J) = ker(aR/J) 

for all f, 2: m. Denote (aR/Jr by cp, so that ker(cp2) = kercp. Note that kercp =f. (0), 
because (0) s;; keraR/J ~ ker(aR/J)m = kercp, and that imcp = im(aR/J)m =f. (0), 
because aR/J is not nilpotent. 

We claim that kercpnimcp = (0). Therefore, if x E kercpnimcp, then cp(x) = 0 
and x = cp(y) for some y E Rf J. But cp(x) = cp(cp(y)) = cp2(y), so that y E 

ker(cp2) = kercp and x = cp(y) = 0. 

If rr: R--+ Rf J is the natural map, then A= rr-i(kercp) and A'= rr-i(imcp) 
are ideals of R with An A' = J. It is obvious that A is a proper ideal; we claim 
that A' is also proper. Otherwise, A'= R, so that An A'= A; but An A'= J, as 
we saw above, and A =f. J, a contradiction. Since A and A' are strictly larger than 
J, neither of them lies in F: there are primary decompositions A = Qi n · · · n Qm 
and A' = Q~ n · · · n Q~. Therefore, 

J =An A' = Qin··· n Qm n Q~ n · · · n Q~, 

contradicting J not having a primary decomposition (for J E F). • 

Definition. A primary decomposition I = Qi n · · · n Qr is irredundant if no Qi 
can be omitted; for all i, 

I =f. Qi n · · · n Qi n · · · n Qr. 

The prime ideals Pi = -/Qi., ... , Pr = ,,/Q;. are called the associated prime 
ideals of the irredundant primary decomposition. 

It is clear that any primary decomposition can be made irredundant by throwing 
away, one at a time, any primary ideals that contain the intersection of the others. 

10Emanuel Lasker was also the world chess champion 1894-1910. 
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Theorem B-6.51 (Lasker-Noether II). If I is an ideal in a noetherian ring R, 
then any two irredundant primary decompositions of I have the same set of as
sociated prime ideals. Hence, the associated prime ideals are uniquely determined 
by I. 

Proof. Let I = Qi n · · · n Qr be an irredundant primary decomposition, and let 
Pi = ./<Ji be the associated primes. We are going to prove that a prime ideal P 
in R is equal to an associated prime if and only if there is c <j. I with (J : c) a 
P-primary ideal. This will suffice, for the colon ideal (J : c) is defined solely in 
terms of I and not in terms of any primary decomposition. 

Given Pi, there exists c E n#i Qi with c <j. Qi, because of irredundancy; we 
show that (I : c) is Pi-primary. Proposition B-6.46 says that the following three 
conditions: 

(i) (I : c) ~ Pi; 

(ii) b E Pi implies there is some m ~ 1 with bm E (J: c); 

(iii) if ab E (J : c) and a <j. (I : c), imply that b E Pi and (J : c) is Pi-primary. 

To see (i), take u E (J : c); then uc E I ~ Pi. As c <j. Qi, we have u E Pi, 
by Proposition B-6.45. To prove (ii), we first show that Qi ~ (I : c). If a E Qi, 
then ca E Qi, since Qi is an ideal. If j =f i, then c E Qj, and so ca E Qi. 
Therefore, ca E Qi n · · · n Qr = I, and so a E (J : c). If, now, b E Pi, then 
bm E Qi ~ (I : c). Finally, we establish (iii) by proving its contrapositive: if 
xy E (J: c) and x <j. Pi, then y E (J: c). Thus, assume that xyc E J; since I~ Qi 
and x <j. Pi = ./<Ji, we have ye E Qi. But ye E Qi for all j =f i, for c E Qi. 
Therefore, ye E Qin··· n Qr =I, and soy E (J: c). We conclude that (I: c) is 
Pi-primary. 

Conversely, assume that there is an element c <j. I and a prime ideal P such that 
(I : c) is P-primary. We must show that P = Pi for some i. Exercise B-6.3(ii) on 
page 613 gives (I: c) =(Qi : c) n · · · n (Qr : c). Therefore, by Proposition B-6.10, 

P= ~ = J(Qi: c)n···nJ(Qr: c). 

If c E Qi, then (Qi: c) = R; if c <j. Qi, then, as we saw in the first part of this proof, 
with Qi playing the role of I, (Qi : c) is Pi-primary. Thus, there is s:::; r with 

P = J(Qi 1 : c) n .. · n J(Qi. : c) = Pi1 n .. · n Pi.· 

Of course, P ~ Pi; for all j. On the other hand, Exercise A-3.72(iii) on page 82 
gives Pi; ~ P for some j, and so P = Pi;, as desired. • 

Example B-6.52. 

(i) Let R = Z, let (n) be a nonzero proper ideal, and let n = p~1 • • • p:t be 
the prime factorization. Then 

( n) = (p~ 1 ) n · · . n (p:t) 

is an irredundant primary decomposition. 

(ii) Let R = k[x,y], where k is a field. Define Qi= (x) and Q2 = (x,y) 2 . 

Note that Qi is prime, and hence Qi is Pi -primary for every prime P 
is P-primary. Also, P2 = (x, y) is a maximal ideal, and so Q2 = Pi is 
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P2-primary, by Proposition B-6.48. Define I = Qin Q2. This primary 
decomposition of I is irredundant. The associated primes of I are thus 
{P1,P2}. <Ill 

Exercises 

B-6.12. Prove that if an element a in a commutative ring R is nilpotent, then 1 +a is a 
unit. 

Hint. Consider the formal power series for 1/(1 +a). 

* B-6.13. Prove that the radical VJ of an ideal I in a commutative ring R is an ideal. 

Hint. If r EI and g• E J, prove that(!+ gt+• E J. 

B-6.14. If R is a commutative ring, then its nilradical nil(R) is defined to be the in
tersection of all the prime ideals in R. Prove that nil(R) coincides with the set of all the 
nilpotent elements in R: 

nil(R) = {r ER: rm = 0 for some m ~ 1}. 

Hint. If r ER is not nilpotent, show that there is some prime ideal not containing r. 

B-6.15. (i) Show that x2 + y 2 is irreducible in IR[x, y), and conclude that (x2 + y 2 ) is a 
prime, hence radical, ideal in IR[x, y). 

(ii) Prove that Var(x2 + y 2 ) = { (0, O)}. 

(iii) Prove that Id(Var(x2 +y2 )) ;;2 (x2+y2 ), and conclude that the radical ideal (x2 + y2 ) 

in IR[x, y) is not of the form Id(V) for some variety V. Conclude that the Nullstel
lensatz may fail in k(X) if k is not algebraically closed. 

(iv) Prove that (x2 + y2 ) = (x + iy) n (x - iy) in C[x, yJ. 

(v) Prove that Id(Var(x2 + y2 )) = (x2 + y2 ) in C[x, yJ. 

B-6.16. Let fi(X),. . .,ft(X) E C[X]. Prove that Var(/1, .. .,ft)= 0 if and only ifthere 
are hi, ... , ht E C[X) such that 

t 

1 = Lhi(X)fi(X). 
i=l 

* B-6.17. Let I= (/1(X),. . ., ft(X)) ~ C[X). For every g(X) E C[X), prove that g E 
VJ~ C[X] if and only if (/1,. .. .ft, 1 - yg) is not a proper ideal in qx, y). 

Hint. Use the Rabinowitz trick. 

* B-6.18. (i) Let f: R-+ A be a ring homomorphism, and define f*: Spec(A) -+ Spec(R) 
by f*(p) = 1-1(p), where p is any prime ideal in A. Prove that f* is a continuous 
function. (Recall that r 1 ( p) is a prime ideal.) 

(ii) Prove that Spec: ComRings-+ Top is a contravariant functor. 

B-6.19. Prove that the function <p: kn-+ Spec(k(x1, ... ,xn)), given by 

<p: (ai, ... , an) 1--t (x1 - ai, ... , Xn - an), 

is a continuous injection [where k = C or k is an (uncountable) algebraically closed field 
and both kn and Spec(k[x1, ... , xn)) are equipped with the Zariski topology). 
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B-6.20. Prove that any descending chain 

Fi 2 F2 2 ... 2 Fm 2 Fm+i 2 ... 

of Zariski closed sets in kn (where k is a field) stops; there is some t with Ft = Ft+i = · · · . 
* B-6.21. If R is a commutative noetherian ring, prove that an ideal I in R is a radical 

ideal if and only if I= Pin··· n Pr, where the P; are prime ideals. 

B-6.22. Give an example of a commutative ring R containing an ideal I that is not 
primary and whose radical ,,fl is prime. 

Hint. Take R = k(x, y), where k is a field, and I= (x2 , xy). 

B-6.23. Let R = k(x,y), where k is a field, and let I= (x 2 ,y). For each a Ek, prove 
that I= (x) n (y +ax, x 2 ) is an irredundant primary decomposition. Conclude that the 
primary ideals in an irredundant primary decomposition of an ideal need not be unique. 

Affine Morphisms 

We are going to define morphisms between affine varieties over an algebraically 
closed field k, thereby defining a category Aff(k). Our aim is a modest one: to see 
how these definitions arise. It is clearest if we first consider algebraic curves and 
their morphisms. 

When we first learned the Pythagorean Theorem, we were pleased to see right 
triangles, all of whose sides were integers: 3, 4, 5 and 5, 12, 13. So were the 
Babylonians: a cuneiform tablet from 1800 BCE (now called Plimpton 322) has a 
list of such, one of which has sides 12709, 13500, 18541. Most likely, such triplets 
were used in creating exercises involving a2 + b2 = c2 , for computing square roots 
was tedious in those days. 

Definition. A Pythagorean triple is a triplet (a, b, c) of positive integers such 
that a2 + b2 = c2 • 

Around 250 CE, Diophantus found all Pythagorean triples. In modern language, 
he saw that (~) 2 + (~) 2 = 1, which led him to the equation x2 + y2 = 1 and its 
curve, the unit circle. Thus, the problem of finding all Pythagorean triples is the 
same as finding all (x, y) on the circle and in the first quadrant that are rational 
points; that is, points both of whose coordinates lie in Q. Even though Diophantus 
lived about 1500 years before the invention of analytic geometry, we see that his 
solution is geometric. Choose the point A = (-1, 0) on the circle, and parametrize 
all the points of the circle by seeing where lines f through A, which have equation 
y = t(x + 1), intersect it (see Figure B-6.1). The usual formula for the slope off, 
namely t = (y - O)/(x - (-1)), coupled with x2 + y2 = 1 gives 

1 - t2 2t 
x = 1 + t2 and y = 1 + t2 . 

Now, 

( 1- t 2 2t ) 
(x,y)= l+t2 '1+t2 
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is a rational point if and only if t is rational, solving the problem. (This method of 
Diophantus can be found in many places; in particular, it is in LMA [23], pp. 11-
13.) 

(-1,0) =A 

Figure B-6.1. Tangent half-angle. 

Here is an interesting application of this parametrization of the unit circle (well, 
the point A = ( -1, 0) is left out). The usual parametrization involves trigonometry 
and a parameter 0: 

(x,y) = (cosO,sinO). 

The equation 

. (1- t 2 2t ) (cosO,smO) = --2 , --2 , 
l+t l+t 

leads to the tangent half-angle formula, a substitution useful in integration. 
The line f through A intersecting the circle in B = (cos 0, sin 0) joins the points 
(-1,0) and (cosO,sinO), and it has slope 

sint 
t=---

1 +cost 

In Figure B-6.1, we see that t =tan~' so that 

(24) 0 = 2 arctan t and dO = -3!!:!_ . 
1 + t 2 

In most calculus courses, the indefinite integral J sec 0 dO = log I sec 0 + tan OI 
is found by some unmotivated trick, but this integration is quite natural when we 
use the method of Diophantus: 

Since 

we have 

J sec 0 dO = j _:!!!__ = j 1 + t 2 
• ~ = j ~ 

cos 0 1 - t2 1 + t2 1 - t2 . 

2 1 1 
1 - t2 = 1 + t + 1 - t ' 

J 2dt J dt J dt -- = -+ - =logll+tl-logll-tl. 
1- t2 1 + t 1- t 
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The hard work is done; log II +ti-log II-ti =log I~~~ I, and it is merely cosmetic 

to continue, using Eq. (24), 

1 + t (l + t) 2 

1 - t 1 - t2 
1 + 2t + t 2 - 1 + t 2 ~ - () () 

1 - t2 - 1 - t2 + 1 - t2 - sec + tan . 

Let's extend this example to more general curves. 

Definition. Let k be a field, f(x, y) E k[x, y], and V ~ k2 be the curve consisting 
of all points (a, b) for which f(a, b) = 0. Then Vis a rational curve if there are 
rational functions <p, 'ljJ E k(t), not both constant, such that 

f(<p(t), 'ljJ(t)) = 0 in k(t). 

Saying that f(<p(t),'ljJ(t)) = 0 in k(t) means that f(<p(a),'ljJ(a)) = 0 for almost 
all a E k: there are finitely many exceptions, namely, the roots of the denominators 
of the rational functions <p(t) and of 'ljJ(t). 

Now some curves are rational and some are not. We have just seen that the 
unit circle is a rational curve when k = Ql. On the other hand, the curve arising 
from f(x, y) = x3 + y3 - 1 E Ql[x) is not rational. Were it rational, there would be 
nonzero integers a, b, c with a3 + b3 = c3 , contradicting Euler's proof that Fermat's 
Last Theorem is true for n = 3 (see LMA [23) Section 8.3). 

Let a curve V be defined by f(x, y) = 0, where f E k[x, y]. If f factors in k[x, y], 
say f = gh, then V is the union of the curves of g and of h. If f is an irreducible 
polynomial; that is, it has no such factorization, then its curve V irreducible as 
defined in the previous section. How can we see whether an irreducible curve V is 
rational? 

By Proposition B-6.42, the coordinate ring k[V] = k[x, y]/ Id(V) of any irre
ducible affine variety V is a domain, and hence we can consider its fraction field. 

Definition. If V is an irreducible affine variety, then its coordinate field is 

k(V) = Frac(k(V)). 

A rational function u E k(V) is defined on V if u( x, y) = p( x, y) / q( x, y), where 
q =f 0 in k[V). 

We are going to show that every irreducible affine curve is rational. 

Lemma B-6.53. If k is a field and gcd(f, q) = 1, where f(x, y), q(x, y) E k[x, y], 
then Var(!) n Var(q) is finite. 

Proof. That f, q have no common divisor in k[x, y] = k[x][y] implies, by Gauss's 
Lemma, Corollary A-3.137, that they have no common divisor in k(x)[y]. Now 
k(x)[y] is a PID (for k(x) is a field), so there are u, v E k(x)[y] with 

(25) 1 = uf + vq. 

Clearing denominators, there is c(x) E k[x] with cu, cv in k[x, y]; hence, multiplying 
Eq. (25) by c gives c = (cu)f + (cv)g. If (a, b) E Var(!) n Var(q), then c(a) = 0. 
But the polynomial c(x) has only finitely many zeros; that is, there are only finitely 
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many different first coordinates of points in Var(!) n Var(q). Similarly, there are 
only finitely many second coordinates, and so Var(!) n Var(q) is finite. • 

Theorem B-6.54. Let k be an algebraically closed field. If V is an irreducible 
curve defined by f(x, y) = 0, where f E k[x, y] is irreducible, then V is a rational 
curve if and only if its coordinate field k(V) is isomorphic to k(t). 

Proof. If V is rational, there are cp, '¢ E k(t), not both constant, such that 
f(cp(t),'¢(t)) = 0. Note that Id(V) = (!), by Exercise B-6.1 on page 613. If 
u(x,y) = p(x, y)/q(x, y), define .A: k(V) = Frac(k[V]/(f))-+ k(t) by 

.A: u + (f) t-+ p(cp(t), 7/J(t)) E k(t). 
q(cp(t), ¢(t)) 

We claim that q(cp(t), '¢(t)) is not the zero polynomial in k[t]. If q(cp, '¢) + (!)) = 0 
in k(t), then almost all a Ek satisfy q(cp(a), ¢(a))= 0. On the other hand, almost 
all a Ek satisfy f(cp(a),'¢(a)) = 0. Therefore, since k is infinite, f and q agree on 
infinitely many a E k; that is, Var(!) n Var(q) is infinite. But q (j. (!), so that f 
irreducible says that f and q have no common factor; that is, gcd(f, q) = 1. By 
Lemma B-6.53, Var(!) n Var(q) is finite, a contradiction. Thus, .A is a well-defined 
function. 

It is easy to check that .A is a homomorphism; it is injective because its domain 
is a field. Now im .A "I- k, because not both cp and '¢ are constant. Therefore, 
Liiroth's Theorem applies, giving im.A 9'! k(t); that is, k(V) 9'! k(t). 

Conversely, if A: k(V) -+ k(t) is an isomorphism, let A(x + (!)) = cp(t) and 
A(y + (!)) = '¢(t). Since f(x, y) = 0 in k(V), we have 

0 = A(f(x,y)) = f(A(x),A(y)) = f(cp(t),¢(t)). 

Therefore, f is a rational curve. • 

The following definition should now be natural. 

Definition. Let V = Var(/) ~ kn and W = Var(J) ~ km be irreducible affine 
varieties. A rational map F: V -+ W is a sequence 

F = (cpi, ... , cpm), where all cpi E k(xi, ... , Xn), 

such that for all a= (a1, ... , an) EV= Var(/); we have 

F(a) = F(a1, ... , an)= (cp1(a1, ... , an), ... , cpm(a1, ... , an)) E W = Var(J); 

that is, 
g(cp1(ai, ... ,an), ... ,cpm(a1, ... ,an))= 0 for all g E J. 

A regular map F: kn -+ km is a rational map such that all cpi are polynomials 
in k[x1, ... , Xn]· 

For example, that a curve V ~ k2 , given by f(x,y) = 0, is a rational curve 
(that is, V can be parametrized by rational functions cp(t),'¢(t) E k(t)), can be 
phrased in terms of rational maps. If we define X ~ k1 = k to be k itself, then 
F = (cp,'¢) is a rational map X-+ V because f(cp(t),'¢(t)) = 0. 
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Note that a rational map F = (cp(t), 'l/J(t)) need not be defined for all values of 
the parameter t. As we have seen, the denominators of the rational functions have 
roots in k, for k is algebraically closed, and so there may be finitely many points 
a E k for which F is not defined. 

Definition. Given an algebraically closed field k, the class of all affine varieties 
with morphisms rational maps is a category if composition is defined as follows: if 
F = (cp1, ... ,cpm), where all cpi E k(x1, ... ,xn) and G = ('l/J1, ... ,'l/Jr), where all 
'l/Jj E k(x1, .. . , Xm) then 

G F = ( 'l/J1 ( cp1, · · · , cpm), · · · , 'I/Jr ( cp1, · · · , cpm)) · 

We denote this category by 

Aff(k). 

The reader may easily verify that Aff ( k) is a category. Isomorphisms in Aff ( k) 
are called birational maps. A regular morphism is called biregular if it has a 
regular inverse. 

As usual, morphisms are used to compare different objects as well as to detect 
invariants of them. Just as canonical forms replace matrices by simpler ones with 
the same invariants, indeed, just as rotations and translations replace conic sections 
in the plane by conics with simpler equations, so too are varieties replaced with 
simpler ones. We merely mention an interesting result. 

Theorem B-6.55. Let V and V' be irreducible affine varieties over an algebraically 
closed field k. 

(i) There is a biregular morphism V --+ V' if and only if their coordinate 
rings are isomorphic; that is, k[V] ~ k[V'] ask-algebras. 

(ii) There is a birational morphism V--+ V' if and only if their their coordi
nate fields are isomorphic; that is, k(V) ~ k(V'). 

Proof. For (i), see Shafarevich [109], p. 20, and for (ii), see Fulton [38], p. 155. • 

There is one more general construction before geometers get serious: projective 
varieties. Informally, there are affine curves in k2 that ought to intersect but don't; 
they might be asymptotic, for example. The projective plane adjoins the "horizon" 
to k2 (it is called the line at infinity), and asymptotic curves intersect there. In 
fact, even in euclidean geometry, theorems about lines often need separate cases 
dealing with parallel lines (the projective plane is constructed so that parallel lines 
intersect on the line at infinity). More generally, affine space kn is imbedded in 
projective n-space, and this is the reason affine space is so-called: it is the finite 
part of projective space. 

This is really the beginning of classical algebraic geometry, but we are ending 
this introduction just as it starts to get interesting. One way the reader may 
continue is to read more about curves and projective space in Fulton [38] and 
then read Harris [45] for a discussion of higher dimensional varieties. After these, 
Macdonald [70] and Atiyah-Macdonald [5] discuss the transition from classical 
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algebraic geometry to the modern version. Along the way, consult Shafarevich 
[109], which covers the gamut from classical to modern, and Mumford [80]. 

Exercises 

B-6.24. (i) Prove that the parabola y2 = x has a parametrization 

1 1 
X=t2' y=t' 

and conclude that it is a rational curve. 

(ii) Prove that every conic section in IR.2 is a rational curve. 

B-6.25. If .P(x, y) E IR(x, y), prove that J .P(cos (},sin 8) d(} can be integrated explicitly. 

Hint. Use the tangent half-angle substitution. 

B-6.26. Prove that y 2 = x 2 + x3 = 0 gives a rational curve in the plane JR.2 • 

B-6.27. If V is a line in k2 , where k is an infinite field, prove that its coordinate field 
k(V) is isomorphic to k(t). 

Hint. First prove this in an easy case, say, f (x, y) = y. 

Algorithms in k[x1, ... , Xn] 

Computer programs and efficient algorithms are useful, if for no other reason than to 
provide data from which we might conjecture theorems. But algorithms can do more 
than provide data in particular cases. For example, the Euclidean Algorithm is used 
in an essential way in proving that if K / k is an extension field and f ( x), g ( x) E k [ x] , 
then their gcd in K[x] is equal to their gcd in k[x]. 

Given two polynomials f(x),g(x) E k[x] with g(x) -:f 0, where k is a field, 
when is g(x) a divisor of f(x)? The Division Algorithm gives unique polynomials 
q(x),r(x) E k[x] with 

f(x) = q(x)g(x) + r(x), 

where r = 0 or deg(r) < deg(g), and g I f if and only if the remainder r = 0. 
Let us look at this formula from a different point of view. To say that g I f is to 
say that f E (g), the principal ideal generated by g(x). Thus, the remainder r is 
the obstruction to f lying in this ideal; that is, f E (g) if and only if r = 0. Now 
consider the membership problem. Given polynomials 

f(x),g1(x), ... ,gm(x) E k[x], 

where k is a field, when is f EI= (g1, ... ,gm)? The Euclidean Algorithm finds 
d = gcd {91, ... , gm}, 11 and I = ( d). Thus, the two classical algorithms combine to 
give an algorithm determining whether f EI= (g1, ... ,gm)= (d). 

11 Use induction on m 2:: 2 to find d' = gcd{gi, ... ,gm-di then d = gcd{d',gm}. 
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We now ask whether there is an algorithm in k[x1 , ... , xn] = k[X] to determine, 
given f(X),g1(X), ... ,gm(X) E k[X], whether f E (91, ... ,gm)· A generalized 
Division Algorithm in k[X] should be an algorithm yielding 

r(X),a1(X), ... ,am(X) E k[X], 

with r(X) unique, such that 

f = a191 + · · · + am9m + r 

and f E (gi, .. . , 9m) if and only if r = 0. Since (91, ... , 9m) consists of all the linear 
combinations of the g's, such an algorithm would say that the remainder r is the 
obstruction to f lying in (91, ... , 9m). 

We are going to show that both the Division Algorithm and the Euclidean Al
gorithm can be extended to polynomials in several variables. Even though these 
results are elementary, they were discovered only recently, in 1965, by B. Buch
berger. Algebra has always dealt with algorithms, but the power and beauty of 
the axiomatic method has dominated the subject ever since Cayley and Dedekind 
in the second half of the nineteenth century. After the invention of the transistor 
in 1948, high-speed calculation became a reality, and old complicated algorithms, 
as well as new ones, could be implemented; a higher order of computing had en
tered algebra. Most likely, the development of computer science is a major reason 
why generalizations of the classical algorithms, from polynomials in one variable to 
polynomials in several variables, are only now being discovered. This is a dramatic 
illustration of the impact of external ideas on mathematics. 

Monomial Orders 

The most important feature of the Division Algorithm in k[x], where k is a field, is 
that the remainder r(x) has small degree. Without the inequality deg(r) < deg(g), 
the result would be virtually useless; after all, given any Q(x) E k[x], there is an 
equation 

f(x) = Q(x)g(x) + [f(x) - Q(x)g(x)]. 

When dividing f(x) by g(x) in k[x], one usually arranges the monomials in 
f(x) in descending order, according to degree: 

f(x) = CnXn + Cn-lXn-l + · · · + C2X2 + C1X +Co. 

Consider a polynomial in several variables: 

f(X) = f(xi. ... , xn) = L cca1 , ... ,a:,.)xf1 • • • x~", 

where cc01 , ••. ,a:,.) Ek and ai ~ 0 for all i. We will abbreviate (a1, ... ,an) to a and 
xf1 • • • x~" to X°', so that f (X) can be written more compactly as 

f(X) = L::c0 X°'. 
a: 

Our aim is to arrange the monomials involved in /(X) in a reasonable way. 
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Definition. The degree of a nonzero monomial cxf1 • • • x~" = cX°' E k[X] 
k[xi, ... , Xn] is then-tuple a:= (o:i, ... , O:n) E Nn. We write 

DEG(cX°') =a:. 

The weight lo:I of cX°' is the sum lo:I = 0:1 + · · · + O:n E N. 

The set Nn, consisting of all then-tuples a:= (0:1, ... , o:n) of natural numbers, 
is a commutative monoid, where addition is coordinatewise: 

( 0:1, · · ·, O:n) + ((3i, · · ·, f3n) = ( 0:1 + f3i. · · ·, O:n + f3n)· 

We now return to well-ordered sets. 

Proposition B-6.56. Let !1 be a well-ordered set. 

(i) !1 is a chain; that is, if x, y E !1, then either x ::S y or y ::S x. 

(ii) Every strictly decreasing sequence in !1 is finite. 

Proof. 

(i) The subset {x,y} has a smallest element, which must be either x or y. 
In the first case, x ::S y; in the second case, y ::S x. 

(ii) Assume that there is an infinite strictly decreasing sequence, say, 

X1 >- X2 >- X3 >- · · · · 
Since !1 is well-ordered, the subset consisting of all the Xi has a smallest 
element, say, Xn· But Xn+i -< Xn, a contradiction. • 

The second property of well-ordered sets will be used in showing that an al
gorithm eventually stops. Given f(x),g(x) E k[x], the Division Algorithm yielding 
q, r E k[x] with f = qg + r and either r = 0 or deg(r) < deg(g) proceeds by low
ering the degree of f at each step; the Euclidean Algorithm proceeds by lowering 
the degree of certain remainders. If the algorithm yielding the gcd does not stop at 
a given step, then the natural number associated to the next step-the degree of 
an associated polynomial-is strictly smaller. Since the set N of natural numbers, 
equipped with the usual inequality :::;, is well-ordered, any strictly decreasing se
quence of natural numbers must be finite; that is, the algorithm stops after a finite 
number of steps. 

We are interested in orderings of degrees that are compatible with addition in 
the monoid N n. 

Definition. A monomial order is a well-ordering of N n such that 

a: ::S (3 implies a: + ')' ::S (3 + ')' 

A monomial order on Nn gives a well-ordering of monomials in k[xi, ... , xn]: 
define 



Monomial Orders 631 

if a :5 (3. Thus, monomials are ordered according to their degrees: X°' :5 Xf3 if 
DEG(X°') :5 DEG(Xf3). We now extend this definition of degree from monomials to 
polynomials. 

Definition. If Nn is equipped with a monomial order, then every f(X) E k[X] = 
k[x1, ••• , Xn] can be written with its largest monomial first, followed by its other, 
smaller, monomials in descending order: f(X) = caX°' + lower monomials. Define 
its leading monomial12 to be 

LM(f) = CaX°' 

and its degree to be 

DEG{!)= a= DEG(caX°') = DEG(LM{f)). 

Call f(X) monic if LM(f) = X°'; that is, if Ca = 1. 

There are many examples of monomial orders, but we shall give only the two 
most popular ones. Here is the first example. 

Definition. The lexicographic order on N n is defined by a :51ex f3 if either a = f3 
or the first nonzero coordinate in f3 - a is positive. 13 

In other words, if a -<1ex f3, their first i - 1 coordinates agree for some i ~ 1 
(that is, a1 = /31, ... , ai-1 = f3i-I) and there is strict inequality ai < f3i. 

The term lexicographic refers to the standard ordering in a dictionary. For 
example, the following 8-letter German words are increasing in lexicographic order 
(the letters are ordered a< b < c < · · · < z): 

ausgehen 

ausladen 

auslagen 

auslegen 

bedeuten 

Proposition B-6.57. The lexicographic order on Nn is a monomial order. 

Proof. First, we show that the lexicographic order is a partial order. The relation 
:51ex is reflexive, for its definition shows that a :51ex a. To prove antisymmetry, 
assume that a :51ex f3 and f3 =51ex a. If a "# (3, there is a first coordinate, say the 
ith, where they disagree. For notation, we may assume that ai < f3i· But this 
contradicts f3 =51ex a. To prove transitivity, suppose that a -<1ex f3 and f3 -<1ex 'Y (it 
suffices to consider strict inequality). Now a1 = /3i, ... , ai-1 = f3i-I and ai < f3i· 
Let "/p be the first coordinate with /3p < "/p· If p < i, then 

"11 = /31 = a1, ... ,"fp-1 = /3p-1 = ap-1, ap = /3p < "/p; 

if p ~ i, then 

12The leading monomial if often called the leading term; it is then denoted by LT. 
13The difference /3 - a may not lie in N n I but it does lie in zn. 



632 Chapter B-6. Commutative Algebra II 

In either case, the first nonzero coordinate of 'Y - a is positive; that is, a -<Jex 'Y· 

Next, we show that the lexicographic order is a well-order. If S is a nonempty 
subset of N n, define 

C1 ={all first coordinates of n-tuples in S}, 

and define 81 to be the smallest number in C1 (note that C1 is a nonempty subset 
of the well-ordered set N). Inductively, for all i < n, define CH1 as all the (i + l)th 
coordinates of those n-tuples in S whose first i coordinates are (81 , 82 , ... , 8i), 
and define 8i+l to be the smallest number in Ci+ 1 (note that Ci+l cannot be 
empty). By construction, the n-tuple 8 = (81, 82, ... , 8n) lies in S; moreover, if 
a= (a1, a2, ... , an) ES, then 

a - 8 = (a1 - 81, a2 - 82, ... , an - 8n) 

has all nonnegative coordinates. Hence, if a =I 8, then its first nonzero coordinate 
is positive, and so 8 -<Jex a. Therefore, the lexicographic order is a well-order. 

Assume that a ::5Jex (3; we claim that 

a+ 'Y ::Stex f3 + 'Y 

for all "f E N. If a = (3, then a+ "f = (3 + "f· If a -<Jex (3, then the first nonzero 
coordinate of f3 - a is positive. But 

((3 +"!)-(a+"!)= (3-a, 

and so a+ "f -<Jex (3 + "f· Therefore, ::5Jex is a monomial order. • 

Remark. If n is any well-ordered set with order ::5, then the lexicographic order on 
nn can be defined by a = ( ai, ... , an) ::5Jex b = (b1, ... , bn) if either a = b or they 
first disagree in the ith coordinate and ai -< bi. It is straightforward to generalize 
Proposition B-6.57 by replacing :r::;in with nn. <1111 

If ::5 is a monomial order on :r::;in, then monomials in k[X] are well-ordered by 
xo: ::5 Xf3 if a ::5 (3. In particular, x 1 >- x2 >- x3 >- · · · in the lexicographic order, 
for 

(1, 0, ... , 0) >- (0, 1, 0, ... , 0) >- ... >- (0, 0, ... , 1). 

Permutations of the variables Xcr(l), ... , Xcr(n) can arise from different lexicographic 
orders on N n. 

Given a well-ordered set n, we define a monoid 

as the set of all words On f2; that is, all finite sequences X1X2 · · · Xp with all Xi E f!. 
Its binary operation is juxtaposition, and its identity is 1, the empty word (p = 0). 
In contrast to :r::;in, in which all words have length n, the monoid w+(n) has words 
of different lengths. 

Corollary B-6.58. If n is a well-ordered set, then the monoid w+(n) is well
ordered in the lexicographic order (which we also denote by ::5Jex). 
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Proof. We will only give a careful definition of the lexicographic order here; the 
proof that it is a well-order is left to the reader. First, define the empty word 
1 :::S1ex w for all w E w+(n). Next, given words u = X1 ... Xp and v = Y1 ... Yq 
in w+(n), make them the same length by adjoining l's at the end of the shorter 
word, and rename them u' and v' in w+(n). If m = max{p, q}, we may regard 
u', v', E nm, and we define u :::S1ex v if u' :::S1ex v' in nm. (This is the word order 
commonly used in dictionaries, where a blank precedes any letter: for example, 
muse precedes museum.) • 

Definition. Given a monomial order on Nn, each polynomial f(X) = 2::0 c0 X°' E 

k[X] = k[x1, ... , Xn] can be written with the degrees of its monomials in descending 
order: a1 :>- a2 :>- · · · :>- ap. Define 

word(!)= a1 · · · ap E w+(Nn). 

In light of Corollary B-6.58, for g another polynomial, it makes sense to write 

word(!) :::S1ex word(g). 

Consider, for example, the polynomial 

f(x, y) = x 3 + 4xy2 - 2xy + y - 5. 

We use the lexicographic order on Nn. The exponents of f are 

a1 = (3, 0), a2 = (1, 2), a3 = (1, 1), a4 = (0, 1), as = (0, 0). 

The terms of f are in descending order: for a 1 - a2 = (2, -2), so 4xy2 :::S x3; 
a2 - a3=(0,1), so -2xy :::S 4xy2 , and so forth. 

The next lemma considers the change in word(!) after replacing a monomial 
c13Xf3 in f(X), not necessarily the leading monomial, by a polynomial h with 
DEG(h) -< (3. 

Lemma B-6.59. Given a monomial order on Nn, let f(X), h(X) E k[X], let c13Xf3 
be a nonzero monomial in f(X), and let DEG(h) -< (3. 

(i) word(f(X) - c13Xf3 + h(X)) -<1ex word(!) in w+(Nn). 
(ii) Any sequence of steps of the form 

Proof. 

f(X) ---+ f(X) - c13X13 + h(X), 

where c13Xf3 is a nonzero monomial in f(X) and DEG(h) -< (3, must be 
finite. 

(i) The result is clearly true if c13Xf3 = LM(f), and so we may assume that 
(3 -< DEG(!). Write f(X) = f'(X) + c13Xf3 + f"(X), where f'(X) is 
the sum of all monomials in f(X) with DEG :>- (3 and f"(X) is the sum 
of all monomials in f(X) with DEG -< (3. The sum of the monomials 
in f(X) - c13Xf3 + h(X) having DEG :>- (3 is f'(X), and the sum of the 
lower monomials is f"(X) + h(X). Now DEG(!" + h) = -y -< (3, by 
Exercise B-6.32 on page 636. Therefore, the leading monomials of f(X) 
and f(X) - ceXf3 + h(X) of DEG> (3 agree, while the next monomial in 
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f(X) - c13Xf3 + h(X) has DEG 'Y-< (3. The definition of the lexicographic 
order on w+(Nn) now gives f(X) >-1ex f(X) - c13Xf3 + h(X), for the 
first disagreement occurs in the (3th position: word(!) = o:1 · · · ai/3 · · · 
and word(f (X) - c13Xf3 + g(X)) = 0:1 · · · O:i"f · · ·, where (3 >- 'Y· 

(ii) By part (i), word(!) >-1ex word(f(X) - c13Xf3 + h(X)). Since w+(Nn) 
is well-ordered, it follows from Proposition B-6.56 that any sequence of 
steps of the form f (X) --+ f (X) - c13Xf3 + h(X) must be finite. • 

The classical Division Algorithm is a sequence of steps in which the leading 
monomial of a polynomial is replaced by a polynomial of smaller degree. The 
Division Algorithm for polynomials in several variables is also a sequence of steps, 
but a step may involve replacing a monomial, not necessarily the leading monomial, 
by a polynomial of smaller degree. This is the reason we have introduced w+(Nn), 
for an induction on DEG is not strong enough to prove that a sequence of such 
replacements must stop. 

Here is a second monomial order. Recall that if a: = (o:1 , ... , an) E Nn, then 
its weight is lo:I = 0:1 + · · · + O:n. 

Definition. The degree-lexicographic order on N n is defined by a: :::5dlex (3 if 
either a:= (3, or lo:I < lf31, or lad= lf31 and the first nonzero coordinate in (3 - a: is 
positive. 

It would be more natural for us to call this the weight-lexicographic order. In 
other words, given ( o:1 , ... , O:n) = a: f. (3 = ((3i, ... , f3n), first check weights: if 
lo:I < lf31, then a: :::5dlex (3; if there is a tie, that is, if a: and (3 have the same weight, 
then order them lexicographically. For example, (1, 2, 3, 0) -<dlex (0, 2, 5, 0) and 
(1, 2, 3, 4) -<dlex (1, 2, 5, 2). 

Proposition B-6.60. The degree-lexicographic order :::5d1ex is a monomial order 
onNn. 

Proof. It is routine to show that :::5dlex is a partial order on N n. To see that it 
is a well-order, let S be a nonempty subset of Nn. The weights of elements in S 
form a nonempty subset of N, and so there is a smallest such weight, say, t. The 
nonempty subset of all a: E S having weight t has a smallest element, because the 
degree-lexicographic order :::5dlex coincides with the lexicographic order :::51ex on this 
subset. Hence, there is a smallest element in Sin the degree-lexicographic order. 

Assume that a: :::5dlex (3 and 'Y E Nn. Now lo:+ 'YI = lo:I + l'YI, so that lo:I = lf31 
implies lo:+ 'YI = lf3 +'YI and lo:I < lf31 implies lo:+ 'YI < lf3 + 'Yli in the former case, 
Proposition B-6.57 shows that a:+ 'Y :::5dlex (3 + 'Y· • 

The next proposition shows, with respect to any monomial order, that polyno
mials in several variables behave like polynomials in a single variable. 

Proposition B-6.61. Let :::5 be a monomial order on Nn, and let f(X),g(X), 
h(X) E k[X) = k[xi, . .. , XnJ, where k is a field. 

(i) If DEG(!)= DEG(g), then LM(g) I LM(f). 
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(ii) LM(hg) = LM(h)LM(g). 

(iii) If DEG(!)= DEG(hg), then LM(g) I LM(f). 

Proof. 

(i) If DEG(!) =a= DEG(g), then LM(f) = cXo: and LM(g) = dXo:. Since 
k is a field, LM(g) I LM(f) (and also LM(f) I LM(g)). 

(ii) Let DEG(g) = "(, so that g(X) = bX'Y +lower monomials; let DEG(h) = 
(3, so that h(X) = cX/3 +lower monomials; thus, LM(g) = bXf3 and 
LM(h) = cX'Y. Clearly, cbX'Y+/3 is a nonzero monomial in h(X)g(X). 
To see that it is the leading monomial, let cµXµ be a monomial in h(X) 
with µ -< "f, and let b,,X" be a monomial in g(X) with v -< (3. Now 
DEG(cµXµb,,X") = µ + v; since ~is a monomial order, we haveµ+ v-< 
'Y + v -< 'Y + (3. Thus, cbX'Y+/3 is the monomial in h(X)g(X) with largest 
degree. 

(iii) Since DEG(!) = DEG(hg), part (i) gives LM(hg) I LM(f) and part (ii) 
gives LM(h)LM(g) = LM(hg); hence, LM(g) I LM(f). • 

Exercises 

B-6.28. Give an example of a well-ordered set X containing an element u having infinitely 
many predecessors. 

B-6.29. Every subset X ~ JR is a chain. Prove that X is countable if it is well-ordered. 

Hint. There is a rational number between any two real numbers. 

B-6.30. (i) Write the first 10 manic monomials in k[x, y] in lexicographic order and in 
degree-lexicographic order. 

(ii) Write all the manic monomials in k[x, y, z] of weight at most 2 in lexicographic 
order and in degree-lexicographic order. 

* B-6.31. (i) Let (X, :::S) and (Y, :::S') be well-ordered sets, where X and Y are disjoint. 
Define a binary relation :::::; on X U Y by 

X1:::::; X2 if X1,X2 Ex and X1 :::S X2, 

Y1:::::; Y2 ify1,y2 E Y and Y1 :::S' y2, 

x :::::; y if x E X and y E Y. 

Prove that (XU Y, :::::;) is a well-ordered set. 

(ii) If r :::::; n, we may regard Nr as the subset of Nn consisting of all n-tuples of the 
form (n1, ... ,nr,0, .. .,0), where ni EN for all i:::::; r. Prove that there exists a 
monomial order on Nn in which a-< b whenever a E Nr and (3 E Nn - Nr. 
Hint. Consider the lex order on k[x1, ... ,xn] in which x1-< x2-< · · ·-< Xn. 
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* B-6.32. Let :j be a monomial order on Nn, and let f(X), g(X) E k(X] = k[x1 , ... , xn] 
be nonzero polynomials. Prove that if f + g =f. 0, then 

DEG(!+ g) ::5 max{DEG(j),DEG(g)}, 

and that strict inequality can occur only if DEG(!)= DEG(g). 

Division Algorithm 

We are now going to use monomial orders to give a Division Algorithm for polyno
mials in several variables. 

Definition. Let :j be a monomial order on Nn and let f(X),g(X) E k[X] = 
k[x1, ... , xn]. If there is a nonzero monomial c13Xf3 in f (X) with LM(g) I c13Xf3, 
then reduction 

f(X) ~ f'(X) = f(X) - ~~~:)g(X) 
is the replacement of f(X) by f'(X). 

Reduction uses g to eliminate a monomial of degree (3 from f. Now g(X) = 
bX7 +lower terms, so LM(g) = bX7. Then LM(g) I c13Xf3 implies 'Y :j (3. Hence, 

c13 Xf3 c13xf3-7 
(26) LM(g)g(X) = b (bX7 +lower terms)= c13 xf3 - h(X), 

where DEG(h) -< (3. Thus, 

c13Xf3 
f'(X) = f(X) - LM(g)g(X) = f(X) - c13X13 + h(X). 

When (3 = DEG(!), it replaces the leading monomial LM(f); when (3 -< DEG(!), 
reduction is a replacement as in Lemma B-6.59. 

Proposition B-6.62. Let :j be a monomial order on Nn, let f(X),g(X) E k[X] = 
k[x1, ... , xn], and let c13Xf3 be a nonzero monomial in f(X) with LM(g) I c13Xf3; 

define f'(X) = f(X) - ~~~:)g(X). 
(i) If (3 =DEG(!), then either f'(X) = 0 or DEG(!') -<DEG(!). 

(ii) If (3-< DEG(!), then DEG(!')= DEG(!). 

In either case, 

Proof. We have seen, in Eq. (26), that reduction replaces a monomial of degree 
(3 either with 0 or with a polynomial h(X) having DEG(h) -< (3. In case (i), (3 = 
DEG(!), then DEG(!') -< DEG(!); in case (ii), (3 -< DEG(!), we have DEG(!') = 
DEG(!). It is now easy to see that the last stated inequality holds. • 

Definition. Let {gi, ... , 9m} be a set of polynomials in k[X]. A polynomial r(X) 
is reduced mod {gi, ... , 9m} if either r(X) = 0 or no LM(gi) divides any nonzero 
monomial in r(X). 
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Here is the Division Algorithm for polynomials in several variables. Because 
the algorithm requires the "divisor polynomials" {gi, ... , 9m} to be used in a spe
cific order (after all, an algorithm must give explicit directions), we will be using 
an m-tuple of polynomials instead of a subset of polynomials. We use the nota
tion [g1, ... , gm] for the m-tuple whose ith entry is gi, because the usual notation 
(g1, ... , gm) would be confused with the notation for the ideal (gi, ... , gm) gener
ated by the gi. 

Theorem B-6.63 (Division Algorithm in k[x1, ... , xnD· Let :::5 be a mono
mial order on Nn, and let k[X] = k[xi, ... ,xn]· If f(X) E k[X] and G = 
[g1(X), ... ,gm(X)] is an m-tuple of polynomials in k[X], then there is an algo
rithm giving polynomials r(X), a1 (X), ... , am(X) E k[X] with 

f = algl + · · · + amgm + r, 
where r is reduced mod {91 , ... , gm}, and aigi = 0 or DEG ( aigi) :::5 DEG(!) for all i. 

Proof. Once a monomial order is chosen, so that leading monomials and degrees 
are defined, the algorithm is a straightforward generalization of the Division Al
gorithm in one variable. Starting with a polynomial f, first apply reductions of 
the form h ~ h' as many times as possible, then apply reductions of the form 
h ~ h', then h 4 h' again, etc. Here is a pseudocode describing the algorithm 
more precisely: 

Input: f (X) = L:,a c,aX.B, [gi, ... , gm] 
Output: r, al, ... , am 
r := f; ai := 0 
WHILE r is not reduced mod {g1, ... , gm} DO 

select the smallest i such that LM(gi) I c,aX.B with f3 maximal among the c,aX.B 
in r 
f - [c,aX.B /LM(gi)]gi := f 
ai + [c,aX.B /LM(gi)] := ai 

END WHILE 
g· 

At each step h3 4 h3+i of the algorithm, 

word(h3) )-1ex word(hJ+1) in w+(Nn), 

by Lemma B-6.59, and so the algorithm does stop, because :::51ex is a well-order on 
w+(Nn). Obviously, the output r(X) is reduced mod {91, ... , gm}, for if r(X) has 
a monomial divisible by some LM(gi), then one further reduction is possible. 

Finally, each monomial in ai(X) has the form c,aX.B /LM(gi) for some interme
diate output h(X) (as one sees in the pseudocode). It now follows from Proposi
tion B-6.62 that either aigi = 0 or DEG(aigi) :::5 DEG(j). • 

Definition. Given a monomial order on Nn, a polynomial f(X) E k[X], and an 
m-tuple G = [g1, ... , gm], we call the output r(X) of the Division Algorithm the 
remainder off mod G. 

The remainder r of f mod G is reduced mod {91, ... , gm}, and f - r E I = 
(g1, ... ,gm)· The Division Algorithm requires that G be an m-tuple, because of 
the command, 

select smallest i with LM(gi) I c,aX.B for some (3, 
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specifying the order of reductions. The next example shows that the remainder may 
depend not only on the set of polynomials {91, ... , 9m} but also on the ordering of 
the coordinates in them-tuple G = [g1, ... , 9m]· That is, if er E Sm is a permutation 
and Ga = [9a(l)> ... , 9a(m)J, then the remainder ra off mod Ga may not be the 
same as the remainder r off mod G. Even worse, it is possible that r =/:- 0 and 
r a = 0, so that the remainder mod G is not the obstruction to f being in the ideal 
(g1, ... ,gm)· We illustrate this phenomenon in the next example, and we will deal 
with it in the next section. 

Example B-6.64. Let f(x,y,z) = x2y2 +xy, and let G = (g1,g2,g3], where 

91 = y2 + z2, 

92 = x2y + yz, 

g3 = z3 +xy. 

We use the degree-lexicographic order on N3. Now y2 = LM(g1) I LM(f) = x2y2 , 

and so f -4 h, where h = f - a)2 (y2 + z2) = -x2z2 + xy. The polynomial 
-x2z2 + xy is reduced mod G, because neither -x2z2 nor xy is divisible by any of 
the leading monomials LM(g1) = y2, LM(g2) = x 2y, or LM(g3 ) = z3 . 

On the other hand, let us apply the Division Algorithm using the 3-tuple G' = 
[g2, 91, g3]. The first reduction gives f ~ h', where 

x2y2 
h' = f - - 2-(x2y + yz) = -y2z + xy. 

xy 

Now h' is not reduced, and reducing mod 91 gives 

-y2z 
h' - -2-(Y2 + z2) = z3 + xy. 

y 

But z3 + xy = g3, and so z3 + xy ~ 0. 

Thus, the remainder depends on the ordering of the divisor polynomials 9i in 
them-tuple. 

For a simpler example of different remainders (but with neither remainder O); 
see Exercise B-6.33. ""' 

Exercises 

* B-6.33. Let G = [x - y, x - z] and G' = [x - z, x - y]. Show that the remainder of x 
mod G (degree-lexicographic order) is distinct from the remainder of x mod G'. 
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B-6.34. Use the degree-lexicographic order in this exercise. 

(i) Find the remainder of x7 y2 + x3 y2 - y + 1 mod [xy2 - x, x - y3). 

(ii) Find the remainder of x7 y2 + x3 y2 - y + 1 mod [x - y3, xy2 - x). 

B-6.35. Use the degree-lexicographic order in this exercise. 

(i) Find the remainder of x 2 y + xy2 + y2 mod [y2 - 1, xy - 1). 

(ii) Find the remainder of x2 y + xy2 + y2 mod [xy - 1, y2 - 1). 
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* B-6.36. Let xa be a monomial, and let f (X), g(X) E k[X) be polynomials none of whose 
monomials is divisible by xa. Prove that none of the monomials in f(X)-g(X) is divisible 
by xa. 

B-6.37. Let J(X) = Ea caXa E k[X), where k is a field and X = (x1, ... ,xn), be 
symmetric; that is, for all permutations u E Sn, 

f(Xul, · · ·, Xun) = f (xi,· .. , Xn)· 

If a monomial caxr1 • • • x~n in f(X) occurs with nonzero coefficient ca, prove that every 
monomial x~i · · · x~~, where u E Sn, also occurs in f (X) with nonzero coefficient. 

* B-6.38. Let Nn be equipped with the degree-lexicographic order, let X = (x1, ... , Xn), 
and let k(X) = k[x1, ... ,xn), where k is a field. 

(i) If J(X) = Ea CaXa E k[X) is symmetric and DEG{!) = (3 = (/31, ... , f3n), prove 
that /31 ~ /32 ~ · · · ~ f3n· 

(ii) If el, ... , en are the elementary symmetric polynomials, prove that 

DEG(ei) = (1, ... , 1, 0, ... , 0), 

where there are i 1 's. 

(iii) Let (11, ... 1 /n) = (/31-/32,/32-(33, ... ,f3n-1-f3n,f3n)· Prove that if g(x1, ... ,xn) = 
x11 • • • x~n, then g(e1, ... , en) is symmetric and DEG(g) = (3. 

(iv) (Fundamental Theorem of Symmetric Polynomials) Prove that if k is a field, 
then every symmetric polynomial f(X) E k[X) is a polynomial in the elementary 
symmetric functions ei, ... , en (compare with Theorem A-5.46). 
Hint. Prove that h(X) = f(X) - c13g(e1, ... , en) is symmetric and DEG(h) < (3. 

Grobner Bases 

We will assume in this section that N n is equipped with some monomial order (the 
reader may use the degree-lexicographic order), so that degrees are defined and the 
Division Algorithm makes sense. 

We have seen that the remainder of f mod [g1, ... , 9m] obtained from the 
Division Algorithm depends upon the order in which the 9i are listed. Informally, 
a Grabner basis fo1, ... , 9m} of the ideal I = (g1, ... , 9m) is a generating set such 
that, for any of the m-tuples G formed from the gi, the remainder of f mod G 
is always the obstruction to whether f lies in I. We define Grabner bases using a 
property that is more easily checked, and we then show, in Proposition B-6.65, that 
they are characterized by the more interesting obstruction property just mentioned. 
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Definition. A set of polynomials {g1 , ... , gm} is a Grobner basis 14 of the ideal 
I= (gi, ... , gm) if, for each nonzero f E J, there is some gi with LM(gi) I LM(f). 

Note that a Grabner basis is a set of polynomials, not an m-tuple of polyno
mials. Example B-6.64 shows that 

{y2 +z2,x2y+yz,z3 +xy} 

is not a Grabner basis of the ideal I= (y2 + z2, x2y + yz, z3 + xy). 

Proposition B-6.65. A set {g1 , ... ,gm} of polynomials is a Grabner basis of 
I = (g1, ... ,gm) if and only if, for each m-tuple Gu = [gu(l)> ... ,gu(m)], where 
a E Sm, every f EI has remainder 0 mod Gu. 

Proof. Assume that {91, ... , gm} is a Grabner basis, and there is some permutation 
a E Sm and some f E I whose remainder mod Gu is not 0. Among all such 
polynomials, choose f of minimal degree. Since {91, ... ,gm} is a Grabner basis, 

LM(gi) I LM(f) for some i; select the smallest a(i). thus, we have a reduction f 9~> 
h; the reader can check that h E J. Since DEG(h) -<DEG(!), by Proposition B-6.62, 
the Division Algorithm gives a sequence of reductions h = ho -+ h1 -+ h2 -+ · · · -+ 
hp = 0. But the Division Algorithm for f adjoins f -+ h at the front, showing that 
0 is the remainder of f mod Gu, a contradiction. 

Conversely, if {91 , ... , gm} is not a Grabner basis of I = (g1 , ... , gm), then there 
is a nonzero f EI with LM(gi) f LM(f) for every i. Thus, in any reduction f -4 h, 
we have LM( h) = LM(f). Hence, if G = [g1, ... , gm], the Division Algorithm 
mod G gives reductions f-+ hl -+ h2 -+ · · · -+ hp = r in which LM(r) = LM(f). 
Therefore, r =f 0. • 

Corollary B-6.66. Let I= (gi, ... ,gm) be an ideal, let {g1 , •.• ,gm} be a Grabner 
basis of I, and let G = [g1, ... , gm] be any m-tuple formed from the gi. If f(X) E 
k[X], then there is a unique r(X) E k[X], which is reduced mod G, such that 
f - r EI; in fact, r is the remainder off mod G. 

Proof. The Division Algorithm gives polynomials a 1, ... , am and a polynomial r 
reduced mod Gwith f = algl +· · +amgm+r; clearly, f-r = alg1+· · ·+amgm E J. 

To prove uniqueness, suppose that r and r' are reduced mod G and that f - r 
and f - r' lie in I, so that (! - r') - (! - r) = r - r' E J. Since r and r' are 
reduced mod G, none of their monomials is divisible by any LM(gi)· If r - r' =f 0, 
then Exercise B-6.36 on page 639 says that no monomial in r - r' is divisible by 
any LM(gi); in particular, LM(r - r') is not divisible by any LM(gi), and this 
contradicts the definition of a Grabner basis. Therefore, r = r'. • 

The next corollary shows that Grabner bases resolve the problem of differ
ent remainders in the Division Algorithm arising from different permutations of 
gl, ···,gm. 

14It was B. Buchberger who, in his dissertation, defined Grebner bases and proved their main 
properties. He named these bases to honor his thesis advisor, W. Grebner. 
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Corollary B-6.67. Let I= (gi, ... ,gm) be an ideal, let fo1, ... ,gm} be a Grobner 
basis of I, and let G be the m-tuple G = [gi, ... , gm]. 

(i) If f (X) E k[X] and Gu = [gu(l)> ... , gu(m)], where a E Sm is a permu-
tation, then the remainder of f mod G is equal to the remainder of f 
mod Gu. 

(ii) A polynomial f EI if and only if f has remainder 0 mod G. 

Proof. 

(i) If r is the remainder of f mod G, then Corollary B-6.66 says that r is 
the unique polynomial, reduced mod G, with f - r E /; similarly, the 
remainder ru off mod Gu is the unique polynomial, reduced mod Gu, 
with f - ru E /. The uniqueness assertion in Corollary B-6.66 gives 
r = ru. 

(ii) Proposition B-6.65 shows that if f E J, then its remainder is 0. For the 
converse, if r is the remainder off mod G, then f = q + r, where q E /. 

Hence, if r = 0, then f E /. • 

There are several obvious questions. Do Grabner bases exist and, if they do, 
are they unique? Given an ideal I in k[X], is there an algorithm to find a Grabner 
basis of I? 

The notion of S-polynomial will allow us to recognize a Grabner basis, but we 
first introduce some notation. 

Definition. If a = ( o:1, ... , o:n) and (3 = ((31, ... , f3n) are in N n, define 

a V (3 = µ, 

Note that xoN/3 is the least common multiple of the monomials X 0 and x/3. 

Definition. Let f(X),g(X) E k[X]. IfLM(f) = a0 X 0 and LM(g) = b13Xf3, define 

L(f,g) = xav/3. 

The S-polynomial S(f,g) is defined by 

L(f,g) L(f,g) 
S(f,g) = LM(f/- LM(g) g. 

Note that S(f, g) = -S(g, f). 

Here's an example. Consider the polynomials 

f(x,y) = x3 + 4xy2 - 2xy + y- 5, 

g(x, y) = 7x2y + 5y2 • 
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Now LM(f) = x3 and a= (3, O); LM(9) = 7x2y and (3=(2,1); hence, av (3=(3,1) 
and L(f, 9) = x3y. Therefore, 

x3y x3y 
S(f, 9) = x3 f - 7x2y9 

x 
= yf- 79 

= y(x3 + 4xy2 - 2xy + y - 5) - ~(7x2y + 5y2 ) 

19 = 4xy3 - 7xy2 + y2 - 5y. 

We claim that either S(f,9) = 0 or DEG(S(f,9)) -< max{DEG(j),DEG(9)}. 
Let f(X) = aa:Xa: + f'(X) and 9(X) = b13Xf3 + 91(X), where DEG(!') -< a and 
DEG(9') -< (3. If (3 :j a, then 

S(f ) = L(f, 9) f - L(f, 9) 
' 9 LM(f) LM(9) 9 

= a~l X(a:Vf3)-a: f _ b~l X(a:vf3)-f3 9 

= [Xa:Vf3 + a~l X(a:Vf3)-a: f'J - [Xa:vf3 + b~l X(a:Vf3)-f391] 

= a~l X(a:Vf3)-a: f' _ b~l X(a:Vf3)-f3 9, 

_L(f,9)!'_L(f,9) I 

- LM(f) LM(9) 9 . 

Example B-6.68. We show that if f = xa: and 9 = Xf3 are monomials, then 
S(f,9) = 0. Since f and 9 are monomials, we have LM(f) = f and LM(9) = 9. 
Hence, 

L(f, 9) L(f, 9) xa:vf3 xa:vf3 
S(f, 9) = LM(f/- LM(9) 9 = -f-f- -9-9 = O. 

The following technical lemma indicates why S-polynomials are relevant. It 
gives a condition when a polynomial can be rewritten as a linear combination of 
S-polynomials with monomial coefficients. 

Lemma B-6.69. Let 91(X), ... ,9e(X) E k[X] = k[x1, ... , xn]. Given monomials 
CjXa:(i), where a(j) E Nn, let h(X) = L;=l ciXa:(j)9j(X). 

Leto E Nn. If DEG(h) -< o and DEG(cjXa:(i)9j(X)) = o for all j :::; £, then 
there are di E k with 

h(X) = Ldixc5-µ(j)s(9j,9j+i), 
j<f 

where µ(j) = DEG(9j) V DEG(9i+i), and for all j < £, 

DEG(Xc5-µ(j) 8(9j, 9j+i)) -< O. 

Proof. Let LM(9i) = biXf3Ci), so that LM(ciXa:(i)9i(X)) = cibiX5. The coeffi
cient of X 5 in h(X) is thus Lj cibi. Since DEG(h) -< o, we must have Lj cibi = 0. 
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Define monic polynomials 

There is a telescoping sum 
£ £ 

h(X) = L::CixaU)gj(X) = Lcibiui 
j=l j=l 

= c1b1(u1 - u2) + (c1b1 + c2b2)(u2 - u3) + · · · 
+ (c1b1 + · · · + C£-1bt-1)(U£-l - U£) 

+ (c1b1 + · · · + C£bt)U£. 
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Now the last monomial (c1b1 + · · · + Ctbdut = 0 because L::j cibi = 0. We have 
a(j) + (3(j) = 8, since DEG(cjXa(i)gj(X)) = 8, so that Xf3(i) I X 0 for all j. Hence, 
for all j < e, we have Icm{Xf3(j), Xf3(j+l)} = Xf3(j)Vf3(j+l) I X 0; that is, if we write 
µ(j) = (3(j) V (3(j + 1), then 8 - µ(j) E Nn. But 

0 · 0 · ( Xµ(i) Xµ(j) ) 
X -µ(J)S(gi,gi+i) = X -µ(1) LM(gi)gi(X)- LM(gH1)gH1(X) 

xo xo 
LM(gi)gj(X) - LM(gi+i)gi+i(X) 

- b-lxa(j)g· - b-1 xa(j+l)g· 
- j J j+l J+l 
= Uj -Uj+l· 

Substituting this equation into the telescoping sum gives a sum of the desired form, 
where di = c1b1 + · · · + Cjbj: 

h(X) = c1b1xo-µ(l)S(g1,g2) + (c1b1 + c2b2)xo-µ( 2)S(g2,g3) + · · · 
+ (c1b1 + · · · + ct-1bt-1)x0-µ(£-l) S(gt-i. g£). 

Finally, since both Uj and Uj+i are monic with leading monomial of DEG 8, we 
have DEG(uj-Uj+i)-< 8. But we have shown that Uj-Uj+l = xo-µ(j)S(gj,gj+1), 
and so DEG(Xo-µ(i)S(gi,gi+i))-< 8, as desired. • 

Let I= (gi, ... , gm)· By Proposition B-6.65, {91, ... , gm} is a Grabner basis of 
the ideal I if every f E I has remainder 0 mod G (where G is any m-tuple formed 
by ordering the gi)· The importance of the next theorem lies in its showing that it 
is necessary to compute the remainders of only finitely many polynomials, namely, 
the S-polynomials S(gp, gq), to determine whether {91, ... , gm} is a Grabner basis. 

Theorem B-6.70 (Buchberger). A set {gi, ... ,gm} is a Grabner basis of I= 
(g1, ... ,gm) if and only if S(gp,gq) has remainder 0 mod G for all p,q, where G = 
[g1, .. ·,gm]· 

Proof. Clearly, S (gp, gq), being a linear combination of gp and gq, lies in I. Hence, 
if G = {gi, ... , gm} is a Grabner basis, then S (gp, gq) has remainder 0 mod G, by 
Proposition B-6.65. 

Conversely, assume that S(gp, gq) has remainder 0 mod G for all p, q; we must 
show that every f E I has remainder 0 mod G. By definition, it suffices to show 
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that if f E J, then LM(gi) I LM(f) for some i. Suppose there is f E I for which 
this is false. Since f EI= (91, ... ,gm), we may write f =Li higi, and so 

If DEG{!) = DEG(hi9i) for some i, then Proposition B-6.61 gives LM(gi) I LM(f), a 
contradiction. Hence, we may assume strict inequality: DEG{!)-< maxi{DEG(higi)}. 

The polynomial f may be written as a linear combination of the 9i in many 
ways. Of all the expressions of the form f = Li higi, choose one in which 8 = 
maxi{DEG(higi)} is minimal (which is possible because :::S is a well-order). We are 
done if DEG{!)= 8, as we have seen above; therefore, we may assume that there is 
strict inequality: DEG{!) -< 8. Write 

(27) f = 
j, DEG(h;g;)=6 R., DEG(htgt)-<6 

If DEG(Lj hjgj) = 8, then DEG{!)= 8, a contradiction; hence, DEG(Lj hjgj)-< 8. 

But the coefficient of X 6 in this sum is obtained from its leading monomials, so 
that 

DEG(LLM(hj)9j)-< 8. 
j 

Now Lj LM(hj)9i is a polynomial satisfying the hypotheses of Lemma B-6.69, and 
so there are constants dj and degrees µ(j) so that 

(28) 
j j 

where DEG(XfJ-µ(j)S(gj,9j+1)) -< 8. 15 

Since each S(gi,9Hl) has remainder 0 mod G, the Division Algorithm gives 
aji(X) E k[X] with 

S(gi,9i+i) = Laii9i, 
i 

where DEG(aii9i) :::S DEG(S(gi,9H1)) for all j,i. It follows that 

x"-µ(ilS(gj,9j+i) = L:x"-µU)aii9i· 
i 

Therefore, Lemma B-6.69 gives 

(29) 

15The reader may wonder why we consider all S-polynomials S(gp, gq) instead of only those 
of the form S(gi, 9i+l)· The answer is that the remainder condition is applied only to those h;g; 
for which DEG(h;g;) = 8, and so the indices viewed as i's need not be consecutive. 
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Substituting into Eq. (28), we have 

(30) 

2:LM(h3)g3 = L:d3x 5-µ,U)s(g3,g3+i) 
j j 

= Ldi(Lxo-µ,(j)aii9i) 
j i 

= L(Ld3X0-µ,(i)aii)9i· 
i j 

2:LM(h3)g3 = Lh~gi, 
j 

where, by Eq. (29), DEG(h~gi) -< 8 for all i. 

Finally, we substitute the expression in Eq. (30) into Eq. (27): 

f = L h3g3 + L hege 
i e 

DEG(h;g;)=O DEG(htge)-<5 

L LM(h3)g3 
j 

+ 
j 

DEG(h;g;)=O DEG(h;g;)=O 

L:h~gi + 
j 

DEG(h;g;)=O 

+ 

We have rewritten f as a linear combination of the 9i in which each monomial has 
DEG strictly smaller than 8, contradicting the minimality of 8. This completes the 
proof. • 

Definition. A monomial ideal in k(X] = k[x1 , . •• , Xn] is an ideal I that is 
generated by monomials; that is, I = (Xa(l), ... , xa(q)), where a(j) E Nn for 
j = 1, ... ,q. 

Lemma B-6. 71. Let I= (Xa(l), ... , xa(q)) be a monomial ideal. 

(i) Let f (X) = L.e c.eX.8. Then f (X) E I if and only if, for each nonzero 

c.eX.8' there is j with xa(j) I x.e. 

(ii) If G = (91 , ... , 9m] and r is reduced mod G, then r does not lie in the 
monomial ideal (LM(g1), ... , LM(gm)). 

Proof. 

(i) If each monomial in f is divisible by some xa(i), then just collect terms 
(for each i) to see that f E I. 

Conversely, if f EI, then f = Liai(X)Xa(i), where ai(X) E k(X]. 
Expand this expression to see that every monomial in f is divisible by 
some xa(i). 
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(ii) The definition of being reduced mod G says that no monomial in r(X) is 
divisible by any LM(gi)· Hence, r ~ (LM(g1), ... ,LM(gm)), by part (i) . 

• 
Corollary B-6. 72. If I = (Ji, ... , fs) is a monomial ideal in k[X], that is, each 
fi is a monomial, then {Ji, ... , fs} is a Grabner basis of I. 

Proof. By Example B-6.68, the S-polynomial of any pair of monomials is 0. • 

Here is the main result. 

Theorem B-6.73 (Buchberger's Algorithm). Every ideal I= (Ji, ... , fs) in 
k[X] has a Grabner basis16 which can be computed by an algorithm. 

Proof. Here is a pseudocode for an algorithm. 

Input: B ={Ji, ... , fs} G =[Ji, .. ·, fsl 
Output: a Grabner basis B = {gi, ... , 9m} containing {!1, ... , fs} 
B := {!1, · · ·, fs}; G :=[Ji,···, fsl 
REPEAT 

B' := B; G' := G 
FOR each pair g, g' with g f:. g' DO 

r := remainder of S(g, g') mod G' 
IF r f:. 0 THEN 

B :=BU {r}; G' := [gi, ... ,gm,rl 
ENDIF 

END FOR 
UNTIL B = B' 

Now each loop of the algorithm enlarges a subset B ~ I by adjoining the remainder 
mod G of one of its S-polynomials S(g, g'). As g, g' EI, the remainder r of S(g, g') 
lies in I, and so the larger set B U { r} is contained in I. 

The only obstruction to the algorithm stopping at some point is if some S(g, g') 
does not have remainder 0 mod G'. Thus, if the algorithm stops, then Theo
rem B-6. 70 shows that B' is a Grabner basis. 

To see that the algorithm does stop, suppose a loop of the FOR cycle starts 
with B' and ends with B. Since B' ~ B, we have an inclusion of monomial ideals 

(LM(g'): g' E B') ~ (LM(g): g E B) . 

We claim that if B' ~ B, then there is also a strict inclusion of ideals. Suppose that 
r is a nonzero remainder of some S-polynomial mod B', and that B = B' U { r}. By 
definition, the remainder r is reduced mod G', and so no monomial in r is divisible 
by LM(g') for any g' E B'; in particular, LM(r) is not divisible by any LM(g'). 
Hence, LM(r) ~ (LM(g'): g' E B'), by Lemma B-6.71. On the other hand, we do 
have LM(r) E (LM(g): g EB). Therefore, if the algorithm does not stop, there is 

16 A nonconstructive proof of the existence of a Grabner basis can be given using the proof of 
the Hilbert Basis Theorem; for example, see Section 2.5 of the book by Cox, Little, and O'Shea (22) 
(they give a constructive proof in Section 2.7). 
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an infinite strictly ascending chain of ideals in k[X], which contradicts the Hilbert 
Basis Theorem, for k[X] has ACC. • 

Example B-6.74. The reader may show that B' = {y2 + z2 ,x2 y + yz,z3 + xy} 
is not a Grabner basis because S(y2 + z2 ,x2y + yz) = x 2 z2 -y2z does not have 
remainder O mod G'. However, adjoining x2 z2 - y2z does give a Grabner basis B 
because all S-polynomials in B have remainder 0 mod B'. .,.. 

Theoretically, Buchberger's algorithm computes a Grabner basis, but the ques
tion arises how practical it is. In very many cases, it does compute in a reasonable 
amount of time; on the other hand, there are examples in which it takes a very long 
time to produce its output. The efficiency of Buchberger's Algorithm is discussed 
in Cox-Little-O'Shea [22], Section 2.9. 

Corollary B-6. 75. 

(i) If I = (!1, ... , ft) is an ideal in k[X], then there is an algorithm to 
determine whether a polynomial h(X) E k[X] lies in I. 

(ii) If I= (!1, ... , ft) and I' = (!{, ... , f;) are ideals in k[X], then there is 
an algorithm to determine whether I = I'. 

Proof. 

(i) Use Buchberger's algorithm to find a Grabner basis B of I, and then use 
the Division Algorithm to compute the remainder of h mod G (where G 
is any m-tuple arising from ordering the polynomials in B). By Corol
lary B-6.67(ii), h E I if and only if r = 0. 

(ii) Use Buchberger's algorithm to find Grabner bases {91, ... , gm} of I and 
{g~, ... ,g~} of I'. By part (i), there is an algorithm to determine whether 
each gj E I, and hence I' ~ I if each gj E I. Similarly, there is an 
algorithm to determine the reverse inclusion, and so there is an algorithm 
to determine whether I = I'. • 

One must be careful here. Corollary B-6. 75 does not begin by saying "If I 
is an ideal in k[X]"; instead, it specifies a generating set: I= (!1 , ... ,ft)· The 
reason, of course, is that Buchberger's Algorithm requires a generating set as input. 
For example, the algorithm cannot be used directly to check whether a polynomial 
f(X) lies in the radical VJ, for we do not have a generating set of VJ. The book of 
Becker-Weispfenning [7], p. 393, gives an algorithm computing a basis of VJ when 
the field k of coefficients satisfies certain conditions. 

No algorithm is known that computes the associated primes of an ideal, al
though there are algorithms to do some special cases of this general problem. We 
have seen that if an ideal I has a primary decomposition I = Qin· · · n Qr, then the 
associated prime Pi has the form J(I: Ci) for any Ci E n#i Qj and Ci~ Qi. Now 
there is an algorithm computing a basis of colon ideals (see Becker-Weispfenning [7], 
p. 266); thus, we could compute Pi if there were an algorithm finding the required 
elements Ci· A survey of applications of Grabner bases to various parts of mathe
matics can be found in Buchberger-Winkler [14]. 
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A Grabner basis B = {gi, ... , 9m} can be too large. For example, it follows 
from Proposition B-6.65 that if f E I, then BU{!} is also a Grabner basis of I; 
thus, we seek Grabner bases that are, in some sense, minimal. 

Definition. A basis {g1, ... , 9m} of an ideal I is reduced if 

(i) each 9i is monic; 

(ii) each 9i is reduced mod {g1 , ... , gi, ... , 9m}. 

Exercise B-6.43 on page 650 gives an algorithm for computing a reduced basis 
for every ideal (Ji, ... , ft)· When combined with the algorithm in Exercise B-6.44 
on page 650, it shrinks a Grabner basis to a reduced Grabner basis. It can be 
proved (Becker-Weispfenning [7], p. 209) that a reduced Grabner basis of an ideal 
is unique. 

In the special case when each fi(X) is linear, that is, 

fi(X) = ai1X1 + · · · + ainXn, 

the common zeros Var(fi, ... , ft) are the solutions of a homogeneous system oft 
equations inn unknowns. If A= [aij] is the t x n matrix of coefficients, then it can 
be shown that the reduced Grabner basis corresponds to the row reduced echelon 
form for the matrix A ([7], Section 10.5). 

Another special case occurs when Ji, ... , ft are polynomials in one variable. 
The reduced Grabner basis obtained from {Ji, ... , ft} turns out to be their gcd, 
and so the Euclidean Algorithm has been generalized to polynomials in several 
variables ([7], p. 217, last paragraph). 

We end this chapter by showing how to find a basis of an intersection of ideals. 
There is a family of results called elimination theory whose starting point is the 
next proposition. Given a system of polynomial equations in several variables, one 
way to find solutions is to eliminate variables (van der Waerden [118], Chapter XI 
and Eisenbud [30], Chapters 14 and 15). Given an ideal I ~ k[X], we are led to 
an ideal in a subset of the indeterminates, which is essentially the intersection of 
Var(I) with a lower-dimensional space. 

Definition. Let k be a field and let I~ k[X, Y] be an ideal, where k[X, Y] is the 
polynomial ring in two disjoint sets of variables X and Y. The elimination ideal 
Ix is defined by Ix= In k[X]. 

For example, if I = ( x 2, xy), then a Grabner basis is { x 2, xy} (by Corol
lary B-6.72, because its generators are monomials), and Ix = (x2 ) ~ k[x], while 
ly = (0). 

Proposition B-6. 76. Let k be a field and let k[X] = k[x1, ... , Xn] have a monomial 
order for which x1 :>- X2 :>- • • • :>- Xn (for example, the lexicographic order) and, for a 
fixed p > 1, let Y = Xp, ... , Xn· If I~ k[X] has a Grobner basis G = {gi, ... , 9m}, 
then G n /y is a Grobner basis for the elimination ideal Jy = In k[xp, . .. 'Xn]. 

Proof. Recall that {gi, ... , 9m} being a Grabner basis of I = (gi, .. . , 9m) means 
that for each nonzero f EI, there is 9i with LM(gi) I LM(J). Let f(xp, ... , Xn) E Iy 
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be nonzero. Since Iy ~I, there is some 9i(X) with LM(gi) I LM(f); hence, LM(gi) 
involves only the "later" variables Xp, ... , Xn· Let DEG(LM(gi)) = (3. If 9i has a 
monomial CcxXcx involving "early" variables Xi with i < p, then a >- (3, because 
x1 >- · · · >- Xp >- · · · >- Xn· This is a contradiction, for (3, the degree of the leading 
monomial of 9i, is greater than the degree of any other monomial in 9i. It follows 
that 9i E k[xp, ... , xnl· Exercise B-6.42 on page 650 shows that G n k[xp, ... , xn] 
is a Grabner basis for Iy =In k[xp, ... 'Xn]· • 

We can now give Grabner bases of intersections of ideals. 

Proposition B-6. 77. Let k be a field, and let Ii, ... , It be ideals in k[X], where 
X =Xi, ... ,Xni let Y = yi, ... ,Yt· 

(i) Consider the polynomial ring k[X, Y] inn+ t indeterminates. If J is the 
ideal in k[X, Y] generated by 1 - (Y1 + · · · + Yt) and by all the yjij, then 

nJ=1 Ii= Jx. 

(ii) Given Grabner bases of Ii, ... , Ii, a Grabner basis of nJ=1 Ii can be 
computed. 

Proof. 

(i) If f = f(X) E Jx =Jn k[X], then f E J, and so there is an equation 

f(X) = g(X, Y)(l - LYi) + Lhj(X, ?')YjQj(X), 
j 

where g, hi E k[X, Y] and qi E Ij. Since the polynomial f does not 
depend on the indeterminates Yi, we can assign any value to them, leaving 
f unchanged. Therefore, if Yi = 1 and Ye = 0 for £ =/= j, then f = 
hj(X, 0, ... , 1, ... , O)qi(X). Note that hj(X, 0, ... , 1, ... , 0) E k[X], and 
so f E Ij. As j was arbitrary, we have f E nij, and so Jx ~ nI3. For 
the reverse inclusion, f E n Ij implies f E J x' for f = f ( 1 - L Yj) + 
LjYif E Jnk[X] = Jx. 

(ii) This follows from part (i) and Proposition B-6.76 if we use a monomial 
order in which all the variables in X precede the variables in Y. • 

Example B-6.78. Consider the ideal I= (x) n (x2 ,xy,y2 ) ~ k[x,y], where k is a 
field. Even though it is not difficult to find a basis of I by hand, we shall use Grabner 
bases to illustrate Proposition B-6. 77. Let u and v be new variables, and define 
J = (l -u-v,ux,vx2 ,vxy,vy2 ) ~ k[x,y,u,v]. The first step is to find a Grabner 
basis of J; we use the lexicographic monomial order with x -< y -< u -< v. Since 
the 8-polynomial of two monomials is 0 (Example B-6.68), Buchberger's algorithm 
quickly gives a Grabner basis17 G of J: 

G = {v + u - l,x2 ,yx,ux,uy2 -y2}. 

It follows from Proposition B-6.76 that a Grabner basis of I is Gnk[x,y]: all those 
elements of G that do not involve the variables u and v. Thus, 

I= (x) n (x2 ,xy,y2 ) = (x 2 ,xy). ""' 

17This is actually the reduced Grabner basis given by Exercise B-6.44 on page 650. 
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Exercises 

Use the degree-lexicographic monomial order in the following exercises. 

B-6.39. Let I= (y - x2 , z - x3 ). 

(i) Order x -< y -< z, and let :51ex be the corresponding monomial order on N3 . Prove 
that [y - x 2 , z - x 3] is not a Grabner basis of I. 

(ii) Order y -< z -< x, and let :51ex be the corresponding monomial order on N3 . Prove 
that [y - x 2 , z - x3] is a Grabner basis of I. 

B-6.40. Find a Grabner basis of/= (x2 -1, xy2 -x) and of J = (x2 +y,x4 +2x2y+y2 +3). 

B-6.41. (i) Find a Grabner basis of I= (xz,xy - z,yz - x). Does x3 + x + 1 lie in I? 

(ii) Find a Grabner basis of I= (x 2 - y, y2 - x, x2 y2 - xy). Does x4 + x + 1 lie in I? 

* B-6.42. Let I be an ideal in k(X], where k is a field and k(X] has a monomial order. 
Prove that if a set of polynomials {91, ... , 9m} ~ I has the property that, for each nonzero 
f EI, there is some gi with LM(gi) I LM(f), then I= (g1, ... ,gm)· Conclude, in the 
definition of Grabner basis, that one need not assume that I is generated by g1, ... , 9m. 

* B-6.43. Show that the following pseudocode gives a reduced basis Q of an ideal I = 
(!1, .. ., ft): 

Input: P = [fi, ... , ft] 
Output: Q = (q1, ... , q.] 
Q:=P 
WHILE there is q E Q which is not reduced mod Q - {q} DO 

select q E Q which is not reduced mod Q - {q} 
Q :=Q-{q} 
h :=the remainder of q mod Q 
IF h =I 0 THEN 

Q := QU{h} 
END IF 

END WHILE 
make all q E Q monic 

B-6.44. Show that the following pseudocode replaces a Grabner basis G with a reduced 
Grabner basis H: 

Input: G = {91, ... , 9m} 
Output: H 
H:=0; F:=G 
WHILE F =I 0 DO 

select J' from F 
F := F-{f'} 
IF LM(f) f LM(J') for all f E F AND 

LM(h) f LM(J') for all h E H THEN 
H :=HU{!'} 

END IF 
END WHILE 
apply the algorithm in Exercise B-6.43 to H 



Appendix: Categorical 
Limits 

Chapter B-7 

Many of the categorical constructions we have given are special cases of inverse 
limits or direct limits. For example, given a family of modules (Aj)jEJ indexed 
by a poset Janda family of maps relating the Ai, their inverse limit, ~jEJ Aj, 
generalizes direct product, pullback, kernel, and intersection, while their direct 
limit, ~jEJ Aj, generalizes direct sum, pushout, cokernel, and union. The main 
advantage of recognizing these constructions as limits is that we can often see how 
to evaluate functors on them, but another advantage is that they may suggest 
stronger versions of theorems. Thus, we shall generalize Proposition B-4.103 by 
proving that direct limits of flat modules are flat. 

Inverse Limits 

The data needed to define inverse limit form an inverse system. 

Definition. An inverse system in a category C consists of an ordered pair 
{Mi,'¢!}, where (Mi)iEJ is a family of objects in C indexed by a partially ordered 
set (I, :5) and ('t/Jf: Mi -+ Mi)i:5.i in Ix! is a family of morphisms, such that the 
following diagram commutes whenever i :5 j :5 k: 

Mi. 
In Example B-4.l(viii), we saw that a partially ordered set I defines a category 

PO(I) whose objects are the elements of I and whose morphisms are 

Hom(i,j) = { {~} ifi:5j, 

otherwise, 

-651 
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where K:J is a symbol denoting the unique morphism i -+ j. Define F( i) = Mi and 

F(K:J) = 1/J{ It is now easy to see that {Mi, 1/Jf} is an inverse system in C if and 
only if F: PO(/)-+ C is a contravariant functor. 

Example B-7.1. 

(i) If I= {1, 2, 3} is the partially ordered set in which 1 ::::5 2 and 1 ::::5 3, then 
an inverse system over I is a diagram of the form 

A 

19 
B~C. 

(ii) A family 1 of submodules of a module A can be partially ordered by 
reverse inclusion: M ::::5 M' in case M 2 M'. If M ::::5 M', then the 
inclusion map M' -+ M is defined, and it is easy to see that the family 
of all M E 1 with inclusion maps is an inverse system. 

(iii) Let a set I be equipped with the discrete partial order; that is, i ::::5 j 
if and only if i = j. There is only one morphism 1/Jf : Mi -+ Mi, namely, 
'I/JI = lM;i and {Mi, lM;} an inverse system over I. This inverse system 
is just an indexed family of modules. 

(iv) If N is the natural numbers with the usual partial order, then an inverse 
system over N is a diagram 

Mo~M1~M2~···. 

(v) If J is an ideal in a commutative ring R, then its nth power is defined by 

r = (~=a1 ···an: ai E J}. 
Each Jn is an ideal and there is a decreasing sequence 

R 2 J 2 J 2 2 J 3 2 · · · . 
If A is an R-module, there is a sequence of submodules 

A 2 J A 2 J 2 A 2 J 3 A 2 · · · . 
If m ;?: n, define 1/J'!,'( : A/ Jm A -+ A/ Jn A by 

1f;;:: : a + Jm A H a + r A. 

These maps are well-defined, for m ;?: n implies Jm A ~ Jn A; in fact, 
they are enlargement of coset maps, because 1/J'!,'( is the inclusion. It is 
easy to see that 

{A/ r A, 1/J;::} 
is an inverse system over N. 

(vi) Let G be a group and let N be the family of all the normal subgroups N 
of G having finite index partially ordered by reverse inclusion. If N ::::5 N' 
in N, then N':::; N; define 1/J~': G/N'-+ G/N by gN' H gN. It is easy 
to see that the family of all such quotients together with the maps 1/J~' 
form an inverse system over N. ~ 
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When we extended Galois theory to infinite algebraic extensions, we introduced 
profinite groups as certain closed subgroups of cartesian products of discrete groups. 
Profinite groups enjoy a certain universal mapping property, and inverse limits 
generalize this construction. 

Definition. Let I be a partially ordered set, and let {Mi, 'l/;f} be an inverse system 
over I in a category C. The inverse limit (also called projective limit or limit) 
is an object ~Mi and a family of morphisms (ai: ~Mi-+ Mi)iEJ, such that 

(i) .1,j a · = a· whenever i --< J. · 'l'i J i - , 

(ii) for every object X having morphisms fi: X -+ Mi satisfying 'l/;f fj = fi 
for all i :5 j, there exists a unique morphism (): X -+ ~Mi making the 
following diagram commute: 

~Mi'°"'-_!_ - - -X 

~1 
Mi. 

The notation ~Mi for an inverse limit is deficient in that it does not display 
the morphisms of the inverse system (and ~Mi does depend on them). However, 
this is standard practice. 

As with any object defined as a solution to a universal mapping problem, the 
inverse limit of an inverse system is unique (up to isomorphism) if it exists. 

Proposition B-7.2. The inverse limit of any inverse system {Mi, 'l/;f} of left R
modules over a partially ordered index set I exists. 

Proof. Define 

L = {(mi) E IT Mi: mi= 'l/;f (mj) whenever i :5 j }; 1 

it is easy to check that L is a submodule of Ili Mi. If Pi is the projection of the 
product to Mi, define ai: L -+ Mi to be the restriction Pi IL. It is clear that 
'l/;f Clj = Cli· 

Assume that X is a module having maps fi : X -+ Mi satisfying 'l/;f fj = fi for 
all i :5 j. Define (): X -+ TI Mi by 

B(x) = (fi(x)). 

That im () ~ L follows from the given equation 'l/;f fj = fi for all i :5 j. Also, () 
makes the diagram commute: ai(): x t-+ (fi(x)) t-+ fi(x). Finally,() is the unique 
map X -+ L making the diagram commute for all i :5 j. If cp: X -+ L, then 

1 An element (mi) E Il Mi is called a thread if mi = 1/1{ for all i ::5 j. Thus, L is the set of 
all threads. 
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cp(x) =(mi) and aicp(x) =mi. Thus, if cp satisfies aicp(x) = fi(x) for all i and all 
x, then mi= fi(x), and so cp = 0. We conclude that L ~~Mi. • 

Inverse limits in categories other than module categories may exist; for example, 
inverse limits of commutative algebras exist, as do inverse limits of groups or of 
topological spaces. However, it is not difficult to construct categories in which 
inverse limits do not exist. 

The reader should verify the following assertions in which we describe the in
verse limit of each of the inverse systems in Example B-7.1. 

Example B-7.3. 

(i) If I is the partially ordered set {1, 2, 3} with 1 :::5 2 and 1 :::5 3, then an 
inverse system is a diagram 

A 

!9 
B---.C 

f 

and the inverse limit is the pullback. 

(ii) Recall Example B-4.9(i): kernels of R-maps are pullbacks. Thus, ker
nels are inverse limits. Therefore, if an additive contravariant functor 
F: RMod--+ sMod preserves inverse limits, it preserves kernels in par
ticular, and so it is left exact. 

(iii) We have seen that the intersection of two submodules of a module is a 
special case of pullback. Suppose now that I is a family of submodules of 
a module A, so that I and inclusion maps form an inverse system, as in 
Example B-7.l(ii). The inverse limit of this inverse system is nMEI M. 

(iv) If I is a discrete index set, then the only morphisms are identities lM;. 
Thus, there are no morphisms Mi --+ Mi for i =f. j in the diagram defining 
inverse limit. Indeed, this is just the diagrammatic definition of product, 
so that the inverse limit is the product fl Mi. 

(v) If J is an ideal in a commutative ring Rand Mis an R-module, then the 
inverse limit of the inverse system {M/JnM,'¢?;:} in Example B-7.l(v) 

is usually called the J -adic completion of M; let us denote it by M. 
Recall that a sequence (xn) in a metric space X with metric d con

verges to a limit y EX if, for every E > 0, there is an integer N so that 
d(xn, y) < E whenever n 2:: N; we denote (xn) converging toy by 

Xn--+ Y· 

A sequence (xn) is a Cauchy sequence if, for every E > 0, there is 
N so that d(xm, Xn) < E whenever m, n ;::: N (far out terms are close 
together). The virtue of this condition on a sequence is that it involves 
only the terms of the sequence and not its limit. In general metric spaces, 
we can prove that convergent sequences are Cauchy sequences, but the 
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converse may be false. A metric space X is complete if every Cauchy 
sequence in X converges to a limit in X. 

Definition. A completion of a metric space (X, d) is an ordered pair 
(X, cp: X -t X) such that: 
(a) ( X, J) is a complete metric space; 
(b) cp is an isometry; that is, d(cp(x), cp(y)) = d(x, y) for all x, y EX; 
( c) cp( X) is a dense subspace of X; that is, for every x E X, there is a 

sequence (xn) in X with cp(xn) -t x. 
It can be proved that completions exist (Kaplansky [60], p. 92) and 

that any two completions of a metric space X are isometric: if (X, cp) 
and (Y, 1/J) are completions of X, then there exists a unique bijective 
isometry (): X -t Y with 1/J = Bcp. Indeed, a completion of X is just a 
solution to the obvious universal mapping problem (density of im cp gives 
the required uniqueness of()). One way to prove existence of a completion 
is to define its elements as equivalence classes of Cauchy sequences (xn) 
in X, where we define (xn) = (Yn) if d(xn, Yn) -t 0. 

Let us return to the inverse system { M /Jn M, 1/J":}. A sequence 

(a1 + JM,a2 + J 2M,a3 + J 3M, .. . ) E ~(M/rM) 

satisfies the condition 1/J": (am + Jm M) = am + Jn M for all m ;::: n, so 
that 

am - an E Jn M whenever m ;::: n. 

This suggests the following metric on Min the (most important) special 
case when n:=l Jn M = {O}. If x E M and x -=/- 0, then there is i 
with x E Ji M and x tj. Ji+l M; define llxll = 2-i; define llOll = 0. It 
is a routine calculation to see that d(x, y) = llx - Yll is a metric on 
M (without the intersection condition, llxll would not be defined for a 
nonzero x E n:=l Jn M). Define cp( a), for a E M, to be the sequence 
(a+ JM, a+ J2 M, a+ J 3 M, ... , ). If a sequence (an) in M is a Cauchy 
sequence, then it is easy to construct an element (bn +JM) E ~ M /Jn M 
that is a limit of (cp(an)) (just let bn =an for all n). In particular, when 
M =Zand J = (p), where pis prime, then the completion z; is called 
the ring of p-adic integers. It turns out that z; is a domain, and 
Q; = Frac(z;) is called the field of p-adic numbers. 

As in Example B-7.l(v), 1/Jf is just coset enlargement; that is, if i :::; j, 

then 1/Jf: x + piZ r-+ x + piz, where x = ao + aip + a2p2 + · · · + a3pi 
and ak E Z. We may think of p-adic integers as infinite series L:;k akpk; 
of course, this series does not converge in the usual topology, but it does 
converge in the p-adic topology. 

(vi) We have seen, in Example B-7.l(vi), that the family N of all normal 
subgroups of finite index in a group G forms an inverse system; the inverse 
limit of this system, ~ G/N, denoted by G, is called the profinite 

completion of G. There is a map G -t G, namely, gt-+ (gN), and it is 
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an injection if and only if G is residually finite; that is, nN EN N = { 1}. 
We will prove in Part 2 that every free group is residually finite. 

There are some lovely results obtained making use of profinite com
pletions. A group G is said to have rank r ;::: 1 if every subgroup of 
G can be generated by r or fewer elements. If G is a residually finite 
p-group (every element in G has order a power of p) of rank r, then G is 
isomorphic to a subgroup of GL(n, Zp) for some n (not every residually 
finite group admits such a linear imbedding). See Dixon-du Sautoy
Mann-Segal [27], p. 172. .,. 

The next result, generalizing Theorem B-4.8(i), says that HomR(A, ) pre
serves inverse limits. 

Proposition B-7 .4. If {Mi, ,,pf} is an inverse system of left R-modules, then 

for every left R-module A. 

Proof. Note that Exercise B-7.2 on page 670 shows that {HomR(A, Mi), (<pj)*} is 
an inverse system, so that ~HomR(A,Mi) makes sense. 

This statement follows from inverse limit being the solution of a universal map
ping problem. In more detail, consider the diagram 

where the f3i are the maps given in the definition of inverse limit. 

To see that B: Hom(A,~Mi)-+ ~Hom(A,Mi) is injective, suppose that 
f: A -+ ~Mi and B(f) = 0. Then 0 = f3i(} f = ad for all i, and so the following 
diagram commutes: 

But the zero map in place of f also makes the diagram commute, and so the 
uniqueness of such a map gives f = O; that is, (} is injective. 
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To see that(} is surjective, take g E ~Hom(A, Mi)· For each i, there is a map 

f3ig: A -+ Mi with '¢{ f3ig = (3ig: 

~Mi ...e - - it_ - - - -A a·;i .f3ig 

Mi /3jg 

tt 
Mi. 

The definition of ~Mi provides a map g': A -+ ~Mi with o:ig' = f3ig for all i. 
It follows that g = O(g'); that is, (} is surjective. • 

Here is another proof of Theorem B-4.8(i). 

Corollary B-7.5. For every left R-module A over a ring R and every family 
(Mi)iEI of left R-modules, 

HomR(A,fl Mi)~ flHomR(A,Mi)· 
iEl iEl 

Direct Limits 

We now consider the dual construction. 

Definition. A direct system in a category C consists of an ordered pair {Mi, cp}}, 
where (Mi)iEI is a family of objects in C indexed by a partially ordered set (I, ::::5) 

and (cp}: Mi -+ Mj)i-jj in rxr is a family of morphisms, such that the following 
diagram commutes whenever i ::::5 j ::::5 k: 

In Example B-4.l(viii), we viewed I as a category, PO(J). Define F(i) =Mi 
and F(1o;;}) = <p;. It is easy to see that {Mi,<p;l is a direct system if and only if 
F: PO(J) -+ C is a covariant functor. 

Example B-7.6. 

(i) If I = {1, 2, 3} is the partially ordered set in which 1 ::::5 2 and 1 ::::5 3, then 
a direct system over I is a diagram of the form 

A~B 

1! 
c. 

(ii) If I is a family of submodules of a module A, then it can be partially 
ordered by inclusion; that is, M ::::5 M' in case M ~ M'. For M ::::5 M', 
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the inclusion map M -+ M' is defined, and it is easy to see that the 
family of all ME I with inclusion maps is a direct system. 

(iii) If N is the natural numbers with the usual partial order, then a direct 
system over N is a diagram 

Mo -+ Mi -+ M2 -+ · · · . 
(iv) If I is equipped with the discrete partial order, then a direct system over 

I is just a family of modules indexed by I. .,.. 

Definition. Let I be a partially ordered set, and let {Mi,<p)} be a direct system 
over I in a category C. The direct limit (also called colimit or injective limit) 
is an object !!!¥Mi and a family of morphisms (ai : !!!¥Mi-+ Mi)iEJ, such that 

(i) 

(ii) 

a .,r/ =a· whenever i-< 1·· 
JYJ i - ' 

for every module X having maps fi: Mi-+ X satisfying fj<p) = fi for all 
i ~ j, there exists a unique map (}: !!!¥Mi -+ X making the following 
diagram commute: 

The notation !!!¥Mi for a direct limit is deficient in that it does not display the 
morphisms of the corresponding direct system (and !!!¥Mi does depend on them). 
However, this is standard practice. 

As with any object defined as a solution to a universal mapping problem, the 
direct limit of a direct system is unique (to isomorphism) if it exists. 

Proposition B-7.7. The direct limit of any direct system {Mi,<p)} of left R
modules over a partially ordered index set I exists. 

Proof. For each i EI, let Ai be the injection of Mi into the sum ffii Mi. Define 

D = ( E9Mi)/s, 
i 

where S is the submodule of E9 Mi generated by all elements Aj<p)mi - >.imi with 
mi E Mi and i ~ j. Now define ai: Mi-+ D by ai: mi H >.i(mi) + S. It is routine 
to check that D ~!!!¥Mi. For example, if mi = <p)mi, then ai(mi) = Aimi + S 
and ai(mi) = >.imi + S; these are equal, for Aimi - >.imi ES. • 

Thus, each element of!!!¥ Mi has a representative of the form E >.imi + S. 

The argument in Proposition B-7.7 can be modified to prove that direct limits 
in other categories exist; for example, direct limits of commutative rings, of groups, 
or of topological spaces exist. However, it is not difficult to construct categories in 
which direct limits do not exist. 
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The reader should verify the following assertions, in which we describe the 
direct limit of two of the direct systems in Example B-7.6. 

Example B-7.8. 

(i) If I is the partially ordered set {1, 2, 3} with 1 .:::; 2 and 1 .:::; 3, then a 
direct system is a diagram 

A~B 

1! 
c 

and the direct limit is the pushout. 

(ii) Recall Example B-4.12(i): cokernels of R-maps are pushouts. Thus, 
cokernels are direct limits. Therefore, if an additive covariant functor 
F: RMod -+ sMod preserves direct limits, it preserves cokernels in 
particular, and so it is right exact. 

(iii) If I is a discrete index set, then the direct system is just the indexed family 
{Mi,lw!;}, and the direct limit is the direct sum: ~Mi~ ffiiMi, for 
the submodule Sin the construction of ~Mi is {O}. Alternatively, this 
is just the diagrammatic definition of a coproduct. <Ill 

The next result says that the contravariant functor Hom( , B) converts direct 
limits to inverse limits. 

Theorem B-7.9. If {Mi,<pH is a direct system of left R-modules, then 

HomR(~Mi,B) ~ ~HomR(Mi,B) 

for every left R-module B. 

Proof. This statement follows from direct limit being the solution of a universal 
mapping problem. The proof is dual to that of Proposition B-7.4, and it is left to 
the reader. • 

We have generalized Theorem B-4.8(ii). 

Corollary B-7.10. For every left R-module B over a ring R and every family 
(Mi)iEI of R-modules, 

HomR (EB Mi, B) ~IT HomR(Mi, B), 
iEl iEI 

Directed Index Sets 

There is a special kind of partially ordered index set that is useful for direct 
limits. 

Definition. A directed set is a partially ordered set I such that, for every i, j E I, 
there is k E I with i .:::; k and j .:::; k. 
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Example B-7.11. 

(i) Let I be a chain of submodules of a module A; that is, if M, M' EI, then 
either M ~ M' or M' ~ M. As in Example B-7.6(ii), I is a partially 
ordered set; in fact, it is a directed set. 

(ii) If I is the partially ordered set {I, 2, 3} with 1 :::5 2 and 1 :::5 3, then I is 
not a directed set. 

(iii) If {Mi : i E I} is some family of modules and I is a discrete partially 
ordered index set, then I is not directed. However, if we consider the 
family F of all finite partial sums 

Mi1 EB · · · EB Min , 

where n ~ 1, then Fis a directed set under inclusion. 

(iv) If A is a module, then the family Fin(A) of all the finitely generated 
submodules of A is partially ordered by inclusion, as in Example B-7.6(ii), 
and it is a directed set. 

(v) If R is a domain and Q = Frac(R), then the family of all cyclic R
submodules of Q of the form (1/r), where r ER and r =/:- 0, is a partially 
ordered set, as in Example B-7.6(ii); it is a directed set under inclusion, 
for given (1/r) and (1/s), then each is contained in (I/rs). 

(vi) Let Ube the family of all the open intervals in JR containing 0. Partially 
order U by reverse inclusion: 

U:::SV if v~u. 

Notice that U is directed: given U, V E U, then Un V E U, and it is clear 
that u :::5 unv and v :::5 unv. 

For each U E U, define 

F(U) = {!: U -+ JR : f is continuous}, 

and, if U :::5 V, that is, V ~ U, define p~: F(U) -+ F(V) to be the 
restriction map f H flV. Then {F(U),p~} is a direct system. <Ill 

There are two reasons to consider direct systems with directed index sets. The 
first is that a simpler description of the elements in the direct limit can be given; 
the second is that then ~ preserves short exact sequences. 

Proposition B-7.12. Let {Mi, cp)} be a direct system of left R-modules over a 
directed index set I, and let Ai: Mi -+ EB Mi be the ith injection, so that ~Mi = 
(ffiMi)/S, where 

S = (.A1cp;mi - Aimi : mi E Mi and i :::5 j). 

(i) Each element of~ Mi has a representative of the form Aimi +s (instead 
of l:i Ai mi + S). 

(ii) Aimi + S = 0 if and only if cp~(mi) = 0 for some t !: i. 
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Proof. 

(i) As in the proof of the existence of direct limits, ~Mi= (ffi Mi)/S, and 
so a typical element x E ~Mi has the form x =I:; Aimi + S. Since I is 
directed, there is an index j with j !:: i for all i occurring in the (finite) 
sum for x. For each such i, define bi = cp)mi E Mi, so that the element 
b, defined by b = L:;i bi, lies in Mi. It follows that 

L Aimi - Ajb = L(Aimi - Ajbi) 

= L(>-.imi - Ajcp;mi) E S. 

Therefore, x = I:; Aimi + S = Ajb + S, as desired. 

(ii) If cp~mi = 0 for some t !:: i, then 

Aimi + S = Aimi + (>-.tcp~mi - Aimi) + S = S. 

Conversely, if Aimi+S = 0, then Aimi ES, and there is an expression 

Aimi = Lai(>-.kcp{mi - Ajmi) ES, 
j 

where ai E R. We are going to normalize this expression. First, we 
introduce the following notation for relators: if j :::5 k, define 

r(j, k, mi) = Akcp{mi - )..imi. 

Since air(j, k, mi)= r(j, k, aimi), we may assume that the notation has 
been adjusted so that 

Aimi = L r(j,k,mi)· 
j 

As I is directed, we may choose an index t E I larger than any of the 
indices i,j, k occurring in the last equation. Now 

Next, 

Atcp~mi = (>-.tcp~mi - Aimi) + Aimi 

= r( i, t, mi) + Ai mi 

= r(i, t, mi)+ L r(j, k, mi)· 
j 

r(j, k, mi) = Akcp{mi - )..imi 

= (>-.tcp1mi - Ajmj) + [>-.tcpf(-cp{mj) - Ak(-cp{mi)] 

= r(j, t, mi)+ r(k, t, -cp{mi), 

because cpfcpt = cpL by definition of direct system. Hence, 

Atcp;mi = L r(f, t, Xtt), 
t 

where for each f each term Xtt belongs to Mt. But it is easily checked, 
for f :::5 t, that 

r(f, t, mt)+ r(f, t, me) = r(f, t, mt+ me)· 



662 Chapter B- 7. Appendix: Categorical Limits 

Therefore, we may amalgamate all relators with the same smaller index 
e and write 

At<p~mi = L r(£, t, Xt) 
I! 

= L(Atcpfxt - AtXt) 
I! 

= At (L cpixt) - L A£Xt, 
I! £ 

where Xt E Mt and all the indices e are distinct. The unique expression 
of an element in a direct sum allows us to conclude, if£ =f. t, that AtXt = 
O; that is, Xt = 0, for At is an injection. The right side simplifies to 
At<p~mt - Atmt = 0, because cp~ is the identity. Thus, the right side is 0 
and At<p~mi = 0. Since At is an injection, we have cp~mi = 0, as desired . 

• 
Remark. Our original construction of !!!¥Mi involved a quotient of E9 Mi; that 
is, !!!¥Mi is a quotient of a coproduct. In the category Sets, coproduct is disjoint 
union LJi Mi. We may regard a "quotient" of a set X as an orbit space, that is, as 
the family of equivalence classes of some equivalence relation on X. This categorical 
analogy suggests that we might be able to give a second construction of !!!¥ Mi using 
an equivalence relation on LJi Mi. When the index set is directed, this can actually 
be done (Exercise B-7.1 on page 670). .,.. 

Example B-7.13. 

(i) Let I be a chain of submodules of a module A; that is, if M, M' E I, 
then either M ~ M' or M' ~ M. Then I is a directed set, and !!!¥Mi ~ 
UiMi. 

(ii) If {Mi : i E J} is some family of modules, then F, the family of all finite 
partial sums, is a directed set under inclusion, and !!!¥Mi ~ ffii Mi. 

(iii) If A is a module, then the family Fin(A) of all the finitely generated 
submodules of A is a directed set and !!!¥Mi ~ A. 

(iv) If R is a domain and Q = Frac(R), then the family of all cyclic R
submodules of Q of the form (1/r), where r E R and r =f. 0, forms a 
directed set under inclusion, and !!!¥Mi ~ Q; that is, Q is a direct limit 
of its cyclic modules. .,.. 

Definition. Let {Ai, aj} and {Bi, ,BJ} be direct systems over the same index set I. 
A transformation 2 r: {Ai, aj} --+ {Bi, ,Bj} is an indexed family of homomor
phisms 

2If we recall that a direct system of R-modules over I can be regarded as a covariant functor 
PO(J) -+R Mod, then transformations are natural transformations. Similarly, we can define 
transformations of inverse systems over an index set I. 
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that makes the following diagram commute for all i :::5 j: 

by 

A transformation r: {Ai, a;} ---+ {Bi, .Bj} determines a homomorphism 

f': ~Ai-+~Bi 

f': L Aiai + S 1-t L µiriai + T, 
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where S ~ EB Ai and T ~ EB Bi are the relation submodules in the construction 
of ~Ai and ~Bi, respectively, and Ai and µi are the injections of Ai and Bi 
into the direct sums. The reader should check that r being a transformation of 
direct systems implies that r is independent of the choice of coset representative, 
and hence it is a well-defined function. 

Proposition B-7.14. Let I be a directed set, and let {Ai,a)l, {Bi,,Bj}, and 
{Ci,'Yj} be direct systems over I. If r: {Ai, a;} ---+ {Bi,.Bj} ands: {Bi,.Bj} ---+ 
{Ci, 7J} are trans! ormations and 

0 ---+ Ai ~ Bi ~ Ci ---+ 0 

is exact for each i E I, then there is an exact sequence 

0 ---+ ~Ai ~ ~Bi ~ ~Ci ---+ 0. 

Remark. The hypothesis that I be directed enters the proof only in showing that 
r is an injection. ~ 

Proof. We prove only that r is an injection, for the proof of exactness of the 
rest is routine. Suppose that r(x) = 0, where x E ~Ai. Since I is directed, 
Proposition B-7.12(i) allows us to write x = Aiai + S (where S ~ EB Ai is the 
relation submodule and Ai is the injection of Ai into the direct sum). By definition, 
r(x + S) = µiriai + T (where T ~ EB Bi is the relation submodule and µi is 
the injection of Bi into the direct sum). Now Proposition B-7.12(ii) shows that 
µiriai + T = 0 in ~Bi implies that there is an index k !:::: i with .Bkriai = 0. Since 
r is a transformation of direct systems, we have 

0 = .Bkriai = rkakai. 

Finally, since rk is an injection, we have atai = 0 and, hence, using Proposi
tion B-7.12(ii) again, x = Aiai + S = 0. Therefore, r is an injection. • 

An analysis of the proof of Proposition B-7.4 shows that it can be generalized 
by replacing Hom(A, ) by any (covariant) left exact functor F: RMod ---+ Ab 
that preserves products. However, this added generality is only illusory, for it is 
a theorem of Watts, given such a functor F, that there exists a module A with 
F naturally isomorphic to HomR(A, ). Another theorem of Watts characterizes 
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contravariant Hom functors: if G: RMod ---+ Ab is a contravariant left exact func
tor that converts sums to products, then there exists a module B with G naturally 
isomorphic to HomR( , B). Watts also characterized tensor functors as right ex
act additive functors which preserve direct sums. Proofs of these theorems can be 
found in Rotman [96], pp. 261-266. 

In Theorem B-7.4, we proved that Hom(A, ) preserves inverse limits; we now 
prove that A ® - preserves direct limits. Both of these results will follow from 
Theorem B-7.20. However, we now give a proof based on the construction of direct 
limits. 

Theorem B-7.15. If A is a right R-module and {Bi, <pH is a direct system of left 
R-modules (over any, not necessarily directed, index set I), then 

A ®R ~Bi~ ~(A ®R Bi)· 

Proof. Note that Exercise B-7.2 on page 670 shows that {A ®R Bi, 1 ® 'P)} is a 
direct system, so that ~(A ®R Bi) makes sense. 

We begin by constructing ~Bi as the cokernel of a certain map between sums. 
For each pair i,j E I with i :; j in the partially ordered index set I, define Bij 
to be a module isomorphic to Bi by a bijective map bi t-+ bij, where bi E Bi, and 
define O": EBij Bij ---+ EBi Bi by 

u: bij t-+ Aj<p)bi - >..ibi, 

where >..i is the injection of Bi into the sum. Note that imu = S, the submod
ule arising in the construction of ~Bi in Proposition B-7. 7. Thus, coker u = 
(EB Bi)/ S ~ ~Bi, and there is an exact sequence 

$Bij ~$Bi---+ ~Bi---+ 0. 

Right exactness of A ® R - gives exactness of 

A® R (EB Bij) ~ A® R (EB Bi) ---+ A ® R (~Bi) ---+ 0. 

By Theorem B-4.86, the map T: A ®R ( ffii Bi) ---+ ffii(A ®R Bi), given by 

r: a®(bi) t-+ (a®bi), 

is an isomorphism, and so there is a commutative diagram 

where r' is another instance of the isomorphism of Theorem B-4.86, and 

a: a®bij t-+ (1®>..j)(a@<p)bi)-(1®>..i)(a®bi)· 

There is an isomorphism A ®R ~Bi ---+ cokera ~ ~(A ®R Bi), by Proposi
tion B-1.46. • 



Chapter B-7. Appendix: Categorical Limits 665 

The reader has probably observed that we have actually proved a stronger 
result: any right exact functor that preserves direct sums must preserve all direct 
limits. Let us record this observation. 

Proposition B-7.16. If T: R Mod-+ Ab is a right exact functor that preserves 
all direct sums, then T preserves all direct limits. 

Proof. This result is contained in the proof of Theorem B-7.15. • 

The dual result also holds, and it has a similar proof; every left exact functor 
that preserves products must preserve all inverse limits. 

The next result generalizes Proposition B-4.103. 

Corollary B-7.17. If {Fi,'P;l is a direct system of fiat right R-modules over a 
directed index set I, then ~Fi is also fiat. 

k 
Proof. Let 0-+ A--+ B be an exact sequence of left R-modules. Since each Fi is 
flat, the sequence 

0-+Fi©RA ~ Fi©RB 

is exact for every i, where li abbreviates lpi. Consider the commutative diagram 

0 -- ~(Fi ©A) _E___,,._ ~(Fi© B) 

~! !~ 
0 -- (~Fi)© A 1®t° (~Fi)© B, 

where the vertical maps <p and 1/; are the isomorphisms of Theorem B-7.15, the 
map k is induced from the transformation of direct systems { li © k}, and 1 is the 
identity map on !4¥ Fi. Since each Fi is flat, the maps li © k are injections; since 
the index set I is directed, the top row is exact, by Proposition B-7.14. Therefore, 
1© k: (~Fi)©A-+ (~Fi)©B is an injection, for it is the composite of injections 

1/;krp-1. Therefore, ~Fi is flat. • 

Here are new proofs of Proposition B-4.103 and Corollary B-4.106. 

Corollary B-7.18. 

(i) If every finitely generated submodule of a right R-module M is fiat, then 
Mis fiat. 

(ii) If R is a domain with Q = Frac(R), then Q is a fiat R-module. 

Proof. 

(i) In Example B-7.13(iii), we saw that Mis a direct limit, over a directed 
index set, of its finitely generated submodules. Since every finitely gen
erated submodule is flat, by hypothesis, the result follows from Corol
lary B-7.17. 
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(ii) In Example B-7.ll(v), we saw that Q is a direct limit, over a directed 
index set, of cyclic submodules, each of which is isomorphic to R. Since 
R is flat, the result follows from Corollary B-7.17. • 

A remarkable theorem of Lazard states that a left R-module over any ring R is 
flat if and only if it is a direct limit (over a directed index set) of finitely generated 
free left R-modules (Rotman [96], p. 253). 

Adjoint Functors 

The Adjoint Isomorphisms, Theorem B-4.98, give natural isomorphisms 

r: Homs(A ©RB, C) -t HomR(A, Homs(B, C)), 

where R and S are rings and AR, RBs, and Cs are modules. Rewrite this by 
keeping B fixed; that is, by setting F = - ©RB and G = Homs(B, ), so that 
F: ModR -t Mods and G: Mods -t ModR: 

r: Homs(FA,C)-t HomR(A,GC). 

If we pretend that Hom( , ) is an inner product, then we are reminded of ad
joints in linear algebra (we discuss them on page 431): if T: V -t W is a linear 
transformation, then its adjoint is the linear transformation T* : W -t V such that 

(Tv, w) = (v, T*w) 

for all v E V and w E W. 

Definition. Given categories C and 7J, an ordered pair (F, G) of functors, 

F: C -t 1J and G: 1J -t C 

is an adjoint pair if, for each pair of objects CE C and D E 7J, there are bijections 

rc,D: Homv(FC, D) -t Homc(C, GD) 

that are natural transformations in C and in D. 

In more detail, the following two diagrams commute for every f: C' -t C in C 
and g: D -t D' in 7J: 

(Ff)" 
Homv(FC, D)-----. Homv(FC', D) Homv(FC, D) ~ Homv(FC, D') 

TC,D ! ! Tct,D TC,D ! ! Tc,D' 

Homc(C, GD) ----.1• Homc(C', GD), Homc(C, GD)-----. Homc(C, GD'). 
(Gg). 

Example B-7.19. 

(i) Recall Example B-4.15(iv): let U: Groups -t Sets be the forgetful func
tor that assigns to each group G its underlying set and views each homo
morphism as a mere function, and let F: Sets -t Groups be the free 
functor that assigns to each set X the free group FX having basis X. 
That F X is free with basis X says, for every group H, that every func
tion <p: X -t H corresponds to a unique homomorphism cp: F X -t H. 
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Define F on morphisms by Fcp = (j). The reader should realize that the 
function Tx,H: f i-+ flX is a bijection (whose inverse is cp i-+ Cji) 

TX,H: HomGroups(FX, H)-+ Homsets(X, UH). 

Indeed, Tx,H is a natural bijection, showing that (F, U) is an adjoint pair 
of functors. 

This example can be generalized by replacing Groups with other 
categories having free objects; for example, RMod for any ring R. 

(ii) Adjointness is a property of an ordered pair of functors. In (i), we saw 
that ( F, U) is an adjoint pair, where F is a free functor and U is the 
forgetful functor. Were (U, F) an adjoint pair, then there would be a 
natural bijection Homsets(U H, Y) ~ HomGroups(H, FY), where H is a 
group and Y is a set. This is false in general; if H = Z2 and Y is a 
set with more than one element, then I Homsets(U H, Y) I = IYl2 , while 
I HomGroups(H, FY)I = 1 (the free group FY has no elements of order 2). 
Therefore, (U, F) is not an adjoint pair. 

(iii) Theorem B-4.98 shows that if R and S are rings and B is an (R, S)
bimodule, then 

(-©RB, Homs(B, )) 

is an adjoint pair of functors. <Ill 

For many more examples of adjoint pairs of functors, see Mac Lane [71], Chap
ter 4, especially pp. 85-86, and Herrlich-Strecker [46], pp. 197-199. 

Let (F,G) be an adjoint pair of functors, where F: C-+ D and G: D-+ C. 
If C E obj(C), then setting D = FC gives a bijection T: Homv(FC, FC) -+ 
Homc(C, GFC), so that 'f/c, defined by 

'f/C = T(lFc), 

is a morphism C-+ GFC. Exercise B-7.12 on page 671 shows that ry: le-+ GF is 
a natural transformation; it is called the unit of the adjoint pair. 

Theorem B-7.20. Let (F, G) be an adjoint pair of functors, where F: C -+ D and 
G: D -+ C. Then F preserves all direct limits and G preserves all inverse limits. 

Remark. 

(i) There is no restriction on the index sets of the limits; in particular, they 
need not be directed. 

(ii) A more precise statement is that if~ Ci exists in C, then~ FCi exists 
in D, and ~FCi ~ F(~Ci)· Moreover, if ~Di exists in D, then 
~GDi exists in C, and ~GDi ~ G(~Di) <Ill 

Proof. Let I be a partially ordered set, and let {Ci, cpD be a direct system in C 
over I. It is easy to see that {FCi, FcpD is a direct system in Dover I. Consider 



the following diagram in V: 

FC3 , 

where ai: Ci ---+ !!!¥Ci are the maps in the definition of direct limit. We must 
show that there exists a unique morphism 'Y: F(!!!¥ Ci) ---+ D making the diagram 
commute. The idea is to apply G to this diagram, and to use the unit rt: le ---+ G F 
to replace GF(!!!¥Ci) and GFCi by !!!¥Ci and Ci, respectively. In more detail, 
there are morphisms rt and rti, by Exercise B-7.12 on page 671, making the following 
diagram commute: 

!!!¥Ci~ GF(!!!¥Ci) 

ta; GFa; t 
C.---~GFC •. • 1/i • 

Composing this with G applied to the original diagram gives commutativity of 

. /3=(G7)11 
~Ci - - - - - - ~GD 

a (Gf~ 

;~i (Gf;)11; 

jt 
C3. 

By definition of direct limit, there exists a unique f3: !!!¥ Ci ---+ GD making the 
diagram commute; that is, f3 E Home(!!!¥ Ci, GD). Since ( F, G) is an adjoint pair, 
there exists a natural bijection 

~c;,D: Homv(F(!!!¥Ci),D)-+ Homc(!!!¥Ci,GD). 

We will omit the indices on r in the rest of the proof; the context will still be clear. 
Define 

'Y = r- 1 ((3) E Homv(F(!!!¥Ci),D). 

We claim that 'Y: F(~ Ci) ---+ D makes the first diagram commute. The first 
commutative square in the definition of adjointness gives commutativity of 

Homv(F(lim Ci), D)-----. Homv(FCi, D). 
---t (Fa;)* 
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Hence, r- 1ai = (Fai)*r- 1• Evaluating both functions on (3, we have 

(Fai)*r- 1 ({3) = (Fai)*"Y = "'{Fai. 

On the other hand, since f3ai = (Gfi)TJi, we have 

T- 1ai(f3) = T- 1(f3ai) = T- 1((Gfi)TJi)· 

Therefore, 
"'{FO!i = T- 1((Gfi)TJi)· 

669 

The second commutative square in the definition of adjointness gives commutativity 
of 

that is, 
r(fi)* = (Gfi)*r. 

Evaluating at lpc., we have r(fi)*(l) = (Gfi)*r(l), and so the definition of "Ii 
gives rfi = (Gfi)"li· Therefore, 

"'{FO!i = T- 1 ((Gfi)TJi) = T- 1Tfi =Ji, 
so that "Y makes the original diagram commute. 

We leave the proof of the uniqueness of "Y as an exercise for the reader, with 
the hint to use the uniqueness of f3. 

The dual proof shows that G preserves inverse limits. • 

There is a necessary and sufficient condition, called the Adjoint Functor 
Theorem, that a functor F: C---+ 1J be part of an adjoint pair; see Mac Lane [71], 
p. 117. We state the special case of this theorem when C, 1J are categories of modules 
and Fis covariant. 

Theorem B-7.21. If F: ModR---+ Ab is an additive functor, then the following 
statements are equivalent. 

(i) F preserves direct limits. 

(ii) F is right exact and preserves direct sums. 

(iii) F ~ - ©RB for some left R-module B. 

(iv) F has a right adjoint: there is a functor G: Ab---+ ModR so that (F, G) 
is an adjoint pair. 

Proof. Rotman [96], p. 267. • 

Theorem B-7.22. If G: R Mod ---+ Ab is an additive functor, then the following 
statements are equivalent. 

(i) G preserves inverse limits. 

(ii) G is left exact and preserves direct products. 
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(iii) 

(iv) 

G is representable; i.e., G ~ HomR(B, 

G has a left adjoint: there is a functor F : 
is an adjoint pair. 

Proof. Rotman [96], p. 267. • 

) for some left R-module B. 

Ab---+ R Mod so that (F, G) 

Exercises 

* B-7.1. Let {Mi, <pn be a direct system of left R-modules with index set I, and let LJi Mi 
be the disjoint union. Define mi ,....., m; on LJi Mi, where mi E Mi and m; E M;, if there 
exists an index k with kt i and kt j such that <pimi = <p{m;. 

(i) Prove that,....., is an equivalence relation on LJi Mi. 

(ii) Denote the equivalence class of mi by [mi], and let L denote the family of all such 
equivalence classes. Prove that the following definitions give L the structure of an 
R-module: 

r[mi] = [rmi] if r E R; 

[mi]+ [mj] = [<pimi + 'l'{mj], where kt i and kt j. 

(iii) Prove that L ~!!!¥Mi. 
Hint. Use Proposition B-7.12. 

* B-7.2. Let {Mi,</'n be a direct system of left R-modules, and let F: RMod-+ C be 
a functor to some category C. Prove that { F Mi, F<p;} is a direct system in C if F is 
covariant, while it is an inverse system if Fis contravariant. 

B-7.3. Give an example of a direct system of modules, {Ai, an, over some directed index 
set I, for which Ai "I {O} for all i and ~Ai= {O}. 

B-7.4. (i) Let K be a cofinal subset of a directed index set I (that is, for each i E I, 
there is k EK with i j k), let {Mi,</'n be a direct system over I, and let {Mi,<pn 
be the subdirect system whose indices lie in K. Prove that the direct limit over I 
is isomorphic to the direct limit over K. 

(ii) A partially ordered set I has a top element if there exists oo EI with i j oo for 
all i E I. If {Mi, <pn is a direct system over I, prove that 

~Mi~Moo. 

(iii) Show that part (i) may not be true if the index set is not directed. 
Hint. Pushout. 

B-7.5. Prove that a ring R is left noetherian if and only if every direct limit (with directed 
index set) of injective left R-modules is itself injective. 

Hint. See Proposition B-4.66. 

B-7.6. Consider the ideal (x) in k[x], where k is a commutative ring. Prove that the 
completion of the polynomial ring k[x] in the (x)-adic topology (see Example B-7.l(v)) is 
k[[x]], the ring of formal power series. 

B-7. 7. Let r : {Ai, an -+ {Bi, .en and s : {Bi, .en -+ {Ci, 'YJ} be transformations of 
inverse systems over an index set I. If 

0 -+ Ai ~ Bi ~ Ci 
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is exact for each i EI, prove that there is an exact sequence 

0-t ~Ai_.; ~Bi~ ~Ci. 

* B-7.8. A commutative k-algebra F is a free commutative k-algebra with basis X, 
where X is a subset of F, if for every commutative k-algebra A and every function 
<p: X-+ A, there exists a unique k-algebra map cp with cp(x) = <p(x) for all x EX: 

F 

·l ' ' ip 
i ' 

"" X~A. 

(i) Let Fin(X) be the family of all finite subsets of a set X, partially ordered by 
inclusion. Prove that {k(Y),<pk}, where the morphisms <p~: k[Y)-+ k[Z) are the 
k-algebra maps induced by inclusions Y-+ Z, is a direct system of commutative 
k-algebras over Fin(X). 

(ii) Denote ~k[Y) by k(X), and prove that k(X) is the free commutative k-algebra 
with basis X. (Another construction of k[X) is given on page 559.) 

B-7.9. If I is a partially ordered set and C is a category, then a presheaf over I in C is 
a contravariant functor F: PO(I)-+ C (see Example B-4.l(viii)). 

(i) If I is the family of all open intervals U in JR containing 0, show that Fin Exam
ple B-7.ll(vi) is a presheaf of abelian groups. 

(ii) Let X be a topological space, and let I be the partially ordered set whose elements 
are the open sets in X. Define a sequence of presheaves F' -+ F -+ F" over I to 
Ab to be exact if 

F' (U) -+ F(U) -+ F" (U) 

is an exact sequence for every U E I. If F is a presheaf on I, define Fx, the stalk at 
x E X, by F,, = ~u3x F(U). If F' -+ F-+ F" is an exact sequence of presheaves, 
prove, for every x E X, that there is an exact sequence of stalks 

F~ -+ Fx -+ F';. 

B-7.10. Prove that if T: RMod-+ Ab is an additive left exact functor preserving prod
ucts, then T preserves inverse limits. 

* B-7.11. Generalize Proposition B-2.17 to allow infinitely many summands. Let (Si)iEI 
be a family of submodules of an R-module M, where Risa commutative ring. If M = 
(UiEI Si), then the following conditions are equivalent. 

(i) M = EBiE/ Si. 

(ii) Every a E M has a unique expression of the form a= Si1 +·.·+sin' where Sij E sij. 

(iii) For each i EI, 

sin (LJ Si)= {o}. 
#i 

* B-7.12. Let (F,G) be an adjoint pair of functors, where F: C-+ V and G: V-+ C, and 
let 

(31) rc,D: Hom(FC, D)-+ Hom(C, GD) 

be the natural bijection. 
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(i) If D = FC in Eq. (31), there is a natural bijection 

rc,Fc: Hom(FC,FC)-+ Hom(C,GFC) 

with r(bc) = T/C E Hom(C,GFC). Prove that ri: le-+ GF is a natural transfor
mation. 

(ii) If C =GD in Eq. (31), there is a natural bijection 

rab,v: Hom(GD,GD)-+ Hom(FGD,D) 

with r- 1 (1v) = c:v E Hom(FGD, D). Prove that c:: FG -+ Iv is a natural 
transformation. (We call c: the counit of the adjoint pair.) 

B-7.13. (i) Let F: Groups-+ Ab be the functor with F(G) = G/G', where G' is the 
commutator subgroup of a group G, and let U: Ab -+ Groups be the functor 
taking every abelian group A into itself (that is, U A regards A as an object in 
Groups). Prove that (F, U) is an adjoint pair of functors. 

(ii) Prove that the unit of the adjoint pair (F, U) is the natural map G-+ G/G'. 

B-7.14. Let cp: k-+ k* be a ring homomorphism. 

(i) Prove that if F = Homk(k*, ) : kMod-+ k•Mod, then both ('l'O, F) and (F, 'l'D) 
are adjoint pairs of functors, where 'l'O is the change of rings functor (see Exer
cise B-4.25 on page 475). 

(ii) Using Theorem B-7.20, conclude that both 'l'O and F preserve all direct limits and 
all inverse limits. 



Appendix: Topological 
Spaces 

Chapter B-8 

We begin by reviewing some point-set topology. A metric space is a set in which it 
makes sense to speak of the distance between points. 

Definition. A set X is a metric space if there exists a function d: X x X ---+ JR., 
called a metric (or a distance function) such that, for all x,y,z EX, 

(i) d(x, y) 2 0 and d(x, y) = 0 if and only if x = y; 

(ii) d(x,y) = d(y,x); 

(iii) (Triangle Inequality) d(x, y) :::; d(x, z) + d(z, y). 

We will denote a metric space X by (X, d) if we wish to display its metric d. 

Euclidean space IR.n is a metric space with the usual metric: if x = (x1, ... , Xn) 
and y = (y1, ... ,yn), then d(x,y) = v'L:~=1 (xi -yi) 2 • In particular, when n = 1, 
dis absolute value, for d(x, y) = J(x - y) 2 = Ix - YI· 

Here is a more exotic example. Given a prime p and nonzero a E Z, let pk be 
the highest power of p dividing a; that is, a = pkm, where gcd(p, m) = 1. Define 
the p-adic norm llall to be 0 if a= 0 and1 

llall = e-k 

if a -=f. 0. Define the p-adic metric on Z by 

d(a,b) =Ila - bll. 

It is easy to check that the p-adic norm on Z behaves much like the usual absolute 
value on JR., and that the p-adic metric on Z is, in fact, a metric. In fact, there is 
a stronger version of the Triangle Inequality (in this case, the metric is called an 
ultrometric): Ila - bll :::; max{lla - ell, lie- bll}. 

1 Any real number > 1 could be used instead of e. 

-673 



674 Chapter B-8. Appendix: Topological Spaces 

As in elementary analysis, define the limit of a sequence {xn} in a metric 
space X by limn-too Xn = L if, for every E > 0, there is N such that d(xn, L) < E 

for all n ~ N (we also say that {xn} converges to L, and we may write Xn---+ L). 
A metric space Xis compact if every sequence {xn} in X has a convergent sub
sequence Xn 1 , Xn2 , Xn3 , • •• ; that is, there is L E X with limi-too Xn; = L. 

If X and Y are metric spaces, a function f: X ---+ Y is continuous if whenever 
Xn---+ Lin X, then f(xn)---+ f(L) in Y. 

A Cauchy sequence is a sequence {xn} such that, for every E > 0, there is M 
such that d(xn, xm) < E for all m, n ~ M. Every convergent sequence is Cauchy, 
but the converse may not be true (if X is the closed interval X = [O, 1], then 
the sequence {1/n} converges, for limn-too 1/n = O; but if X is the open interval 
X = (0, 1), then the Cauchy sequence {1/n} does not converge, for its limit is no 
longer there). 

Definition. A metric space X is complete if every Cauchy sequence {xn} in X 
converges; that is, there is L in X with limn-too Xn = L. 

The completion of a metric space (X, d) is a complete metric space (X*, d*) 
with X ~ X*, with d*(x,y) = d(x,y) for all x,y EX, and such that, for each 
x* E X*, there exists a sequence { Xn} E X with limn-too Xn = x* (we say that X 
is dense in X* if the last property holds). 

Every metric space ( X, d) has a completion ( X*, d*) which is unique in the 
following sense: if (Xi, di) is another completion, then there is a homeomorphism2 

h: X* ---+ Xi with h(x) = x for all x E X. Moreover, his an isometry; that is, 
d*(x*,y*) = di(h(x*),h(y*)) for all x*,y* EX*. For example, the completion of 
the open interval (0, 1) is [O, l]. 

The completion of Z with respect to the p-adic metric is called the p-adic 
integers, and it is denoted by3 

z;. 
The p-adic integers form a commutative ring: if a*, b* E z;, there are sequences 
{an} and {bn} in Z with an ---+ a* and bn ---+ b*, and we define binary operations 

a*+ b* = lim (an+ bn) and a*b* = lim (anbn)· 
n-too n-too 

Addition and multiplication are well-defined, and z; is a domain; the fraction field 
Q; = Frac(z;) is called the field of p-adic numbers. 

The important result for us is to recall a construction of the completion. Each 
sequence {xn} in X can be viewed as the "vector" (xn) in the cartesian product 
n = Iln>i Xn (where all Xn = X). We can equip n with a metric, and X* is 
essentially the subset of n consisting of Cauchy sequences in X (more precisely, X* 
consists of all equivalence classes of sequences (xn) inn where we identify (xn) and 
(Yn) if d(xn, Yn) ---+ 0 in IR). 

2 A homeomorphism is a continuous bijection whose inverse is also continuous. If !Rd is the 
real numbers with d(x,y) = 1 whenever x =I y, then the "identity"/: !Rd -t JR, given by J(x) = x, 
is a continuous bijection which in not a homeomorphism because its inverse is not continuous. 

3Some denote the ring of p-adic integers by Zp, which is our notation for the integers mod p. 
Be careful! 
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Topological spaces are generalizations of metric spaces. Recall that a topology 
on a set X is a family U of subsets of X, whose elements are called open sets, 
which is closed under finite intersections and (possibly infinite) unions; in particular, 
X itself and the empty set 0 are open. A subset C of X is called closed if its 
complement X - C is open. A topological space is an ordered pair (X,U), where 
X is a set and U is a topology on X; we usually simplify notation and say that X 
(instead of (X,U)) is a (topological) space. Topologies allow us to define continuity: 
a function f: X -t Y is continuous if the inverse image 1-1 (V) of each open V 
in Y is an open set in X. 

A set X can have different topologies. For example, X is discrete if every 
subset is open. We say that a topology U1 on a set X is stronger that another 
topology U2 on X if U2 ~ U1; that is, U1 has more open sets. As the intersection 
of any family of topologies on a set X is also a topology on X, it makes sense to 
speak of the strongest topology on X having a given property. Here is one way this 
topology can be described explicitly. Given a family S = (U0 )aEA of subsets of X, 
the topology generated by S is the set of all unions of finite intersections of U's 
in S. A subbase of a topology U is a family B ~ U of open sets that generates 
U; that is, every open Vis a union of subsets of the form B 1 n · · · n Bn, where all 
Bi E B. A base S of U is a family of open subsets with every open V a union of 
sets in S (thus, all finite intersections of sets in S form a base of U). 

The reader is, of course, familiar with the topology of euclidean space ~n (more 
generally, the topology of any metric space (X, d)), which has a base consisting of 
all open balls 

Br(x) = {y EX: d(x,y) < r}, 

for x EX and r > 0. 

Here are two useful algebraic constructions. 

Definition. If G is an (additive) abelian group and pis a prime, then the p-adic 
topology is the family having a base consisting of all the cosets of pnG, where 
n 2: 0. 

The p-adic topology on Z arises from the p-adic metric. 

Definition. The finite index topology on a (possibly nonabelian) group G is the 
topology having a base consisting of all cosets of subgroups N having finite index. 

Lemma B-8.1. 

(i) The p-adic topology on an abelian group G is a topology. 

(ii) The finite index topology on a group G is a topology. 

Proof. 

(i) It suffices to show that all the cosets form a base: that is, a finite inter
section of cosets can be written as a union of cosets. But Exercise A-4.45 
on page 150 says that (a+pmG) n (b+pnG) is either empty or a coset of 
pmG n pnG; of course, if m :::; n, then pnG n pmG = pnG. Thus, a finite 
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intersection of cosets ai + pniG is either empty or a coset of pmG, where 
m = maxi{ni}· 

(ii) This proof is similar to that in (i), using Exercise A-4.45(ii): if N and M 
are subgroups of finite index, then so is N n M. • 

Here are some similar constructions. The Priifer topology on an abelian 
group G has a base consisting of all the cosets of n!G for all n ~ 0. If R is a 
commutative ring, m is an ideal in R, and M is an R-module, then the m-adic 
topology on M has a base consisting of all the cosets of mn M for n ~ 0. 

Definition. A topological space X is Hausdorff if distinct points in X have 
disjoint neighborhoods; that is, if x, y E X and x f. y, then there exist disjoint 
open sets U, V with x EU and v EV. 

Although there are some interesting spaces that are not Hausdorff, the most 
interesting spaces are Hausdorff. 

If G is an abelian group, then the p-adic topology on G is Hausdorff if and only 
if nn>oPnG = {O}. Define the p-adic norm of x E G by llxll = e-n if x E pnG 
but x-~ pn+1G; then G is a metric space with d(x, y) = llx -yll if and only if G is 
Hausdorff. Similarly, the m-adic topology on an R-module M is Hausdorff if and 
only if nn> 1 mn M = { 0}, and a metric can be defined on M if and only if M is 
Hausdorff. -

Here is a second way to construct a topology on a set X (other than generating 
it from a family of subsets of X). 

Definition. Given families (Xi)iEI of topological spaces and ('Pi: X -t Xi)iEI, the 
induced topology on X is the strongest topology on X making all 'Pi continuous. 

In particular, if X is a subset of a topological space Y and if the family has only 
one member, the inclusion cp: X -t Y, then X is called a subspace if it has the 
induced topology, and a subset A is open in X if and only if A= cp-1(U) = X n U 
for some open U in Y. Every subspace of a Hausdorff space is Hausdorff. 

The product topology on a Cartesian product x = TiiE/ xi of topological 
spaces is induced by the projections Pi: X -t Xi, so that all the projections are 
continuous. If Uj is an open subset of Xj, then pj1(UJ) = TI Vi, where Vj = Uj 
and Vi = Xi for all i f. j. A cylinder is a finite intersection of such sets; it is a 
subset of the form IliE/ "\Ii, where "\Ii is an open set in Xi and almost all "\Ii = Xi. 
The family of all cylinders is a base of the product topology: every open set in X 
is a union of cylinders. 

Here is a characterization of Hausdorff spaces, preceded by a set-theoretic ob
servation. 

Lemma B-8.2. If U and V are subsets of a set X, then U and V are disjoint if 
and only if D..x n (U x V) = 0, where D..x is the diagonal: 

D..x = {(x,x) EX x X: x EX}. 
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Proof. The following statements are equivalent: UnV =f. 0; there exists x E UnV; 
(x,x) E Ax n (U x V); Ax n (U x V) =f. 0. • 

Proposition B-8.3. A topological space X is Hausdorff if and only if the diagonal 
Ax is a closed subset of X x X. 

Proof. Let x, y be distinct points in X, so that (x, y) ~ Ax. If X is Hausdorff, 
there are disjoint open sets U and V with x E U and y E V. By the Lemma, 
Ax n (U x V) = 0; that is, U x V ~Ax, the complement of Ax. Since U x Vis 
an open subset of X x X, we have Ax open, and so Ax is closed. 

Conversely, suppose that Ax is closed, so that Ax is open. Now (x,y) E Ax., 
so there exists an open set W containing (x, y) with W n Ax = 0. Since the 
cylinders comprise a base of the product topology of X x X, there are open sets U 
and V with (x, y) E U x V ~ W. But Ax n (U x V) = 0, for Ax n W = 0, and 
so U and V are disjoint, by the lemma. Therefore, X is Hausdorff. • 

Lemma B-8.4. Let X = TiiEJ Xi be a product, and let Pi: X -+ Xi be the ith 
projection. 

(i) If all Xi are Hausdorff, then X is Hausdorff. 

(ii) If Y is a topological space, then a function f: Y -+ X is continuous if 
and only if Pd: Y -+ Xi is continuous for all i. 

(iii) Given families (Yi)iEI of topological spaces and (gi: Yi -+ Xi)iEI of con
tinuous maps, the function g: TI Yi -+ TI xi defined by g: (Yi) t-t (gi(Yi)) 
is continuous. 

Proof. 

(i) If a= (ai) and b =(bi) are distinct points in X, then ai =f. bi for some j. 
Since Xi is Hausdorff, there are disjoint open sets Ui and l-j in Xi with 
ai E Ui and bi E l-j. It follows that the cylinders Ui x Tiih Xi and 
l-j x Tiih xi are disjoint neighborhoods of a and b, respectively. 

(ii) If f is continuous, then so are all the pd, because the composite of 
continuous functions is continuous. 

Conversely, if V ~Xis in the subbase, then V = Pi1(Uf), where Uf 
is an open set in Xi. Therefore, 

is open (for the pd are continuous), and so f is continuous. 

(iii) If qi: TI Yi -+ }j is the jth projection, then there is a commutative 
diagram 

YJ·--~XJ·· 9; 
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Thus, Pig = gjqj is continuous, being the composite of the continuous 
functions gj and Qj· It now follows from part (ii) (with Y =fl Yi) that 
g is continuous. • 

Here are two special types of topologies. A space X is discrete if every subset 
of X is open; that is, its topology U is the family of all the subsets of X. 

Compactness can be generalized from metric spaces to topological spaces: a 
space (X,U) is compact if, whenever X = LJi Ui, where all Ui are open, then there 
are finitely many of them with x = ui1 u ... u uin (in words, every open cover 
of x has a finite subcover). It turns out that the p-adic integers z; is compact. 
Every closed subspace of a compact space is itself compact. The 'l'ychonoff The
orem (whose proof uses Zorn's Lemma) says that products of compact spaces are 
compact. 

Topological Groups 

Definition. A group G is a topological group if it is a Hausdorff topological 
space4 such that inversion i: G ---+ G (given by i: g i-+ g-1) and multiplication 
µ: G x G---+ G (given byµ: (g,h) i-+ gh) are continuous. 

Of course, if a space G is equipped with the discrete topology and Y is any 
topological space, then every function f: G ---+ Y is continuous: since every subset 
of G is open, f- 1(V) is open for every open V ~ Y. In particular, every discrete 
group is a topological group, for G discrete implies that G x G is also discrete. 

Here are some elementary properties of topological groups. 

Proposition B-8.5. Let G be a topological group. 

(i) If a E G, then translation Ta: x i-+ ax and x I-+ xa are homeomor
phisms. 

(ii) If U is open in G, then so is every translate aU and Ua. In particular, 
if a subgroup N of G is open, then so is every coset of N. 

(iii) If N is an open subgroup of G, then N is also a closed subset of G. 

(iv) If His a topological group and f: G---+ His a homomorphism continuous 
at l, then f is continuous at every x E G. 

Proof. 

(i) Every translation xi-+ ax is a bijection, for its inverse is xi-+ a-1x. It is 
continuous because multiplication is continuous; it is a homeomorphism 
for its inverse is continuous, again because multiplication is continuous. 

(ii) Every homeomorphism preserves open sets. 

(iii) The group G is the union of the cosets of N. Since different cosets of N 
are disjoint, the complement G - N is a union of cosets, each of which is 
open. Hence, G - N is open, and so its complement N is closed. 

4 Some people do not require G to be Hausdorff. 
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(iv) By hypothesis, if Vis an open set in H containing f(l), then f- 1(V) is 
open in G. Now take x E G, and let W be an open set in H containing 
f(x). Then f(x)W is an open set containing f(l), so that f- 1(f(x)W) 
is open in G. Now translate by x. • 

Proposition B-8.6. If all the Gi are discrete, then ~iEI Gi is a closed subset of 

TiiEJ ai. 

Proof. Let L = ~1 Gi; if x = (xi) is in the closure of L, then every open neigh
borhood U of x meets L. Choose p ~ q in I, and let U ={xv} x {xq} x TI#v,q ll,; 
be such a neighborhood, where Vi = Gi for all i =F p, q. Note that U is a cylinder: 
since Gp and Gq are discrete, {xv} and {xq} are open. There is (gi) E L with 
Xp = gp and Xq = gq; hence, cpZ(xq) = Xp· The argument above is true for all index 
pairs p, q with p-< q; hence, x = (xi) E L, and so L is closed. • 

Proposition B-8. 7. 

(i) If (Gi)iEI is a family of topological groups, then TiiEJ Gi is a topological 
group. 

(ii) If { Gi, '!/if} is an inverse system of topological groups, then ~1 Gi is a 
topological group. 

Proof. 

(i) By Lemma B-8.4(i), the product TiiEJ Gi is Hausdorff. Now inversion 
i: TI Gi---+ TI Gi is given by i: (xi) f-t (x;1); since each Xi f-t x;1 is con
tinuous, so is i, by Lemma B-8.4(iii). Finally, if we view Tii Gi x Tii Gi 
as Tii(Gi x Gi), then multiplicationµ: Tii Gi x Tii Gi ---+ Tii Gi is continu
ous, by Lemma B-8.4(iii), because each multiplication 
Gi x Gi ---+ Gi is continuous. 

(ii) View~ Gi as a subgroup of TI Gi; every subgroup of a topological group 
is a topological group. • 

Product spaces are related to function spaces. Given sets X and Y, the function 
space y x is the set of all f: x ---+ y. Since elements of a product space TiiEJ xi are 

functions f: I ---+ uiEJ xi with f ( i) E xi for all i, we can imbed y x into TixEX Zx 
(where Zx = Y for all x) via f f-t (f(x)). 

Definition. If X and Y are spaces, then the finite topology on the function space 
Y x has a sub base of open sets consisting of all sets 

U(f;x1, ... ,xn) = {g E yx: g(xi) = f(xi) for 1 ~ i ~ n}, 

where f: X---+ Y, n 2: 1, and Xi, ... , Xn EX. 

Proposition B-8.8. If Y is discrete, then the finite topology on yx coincides 
with the topology induced by its being a subspace of TixEX Zx (where Zx = y for 
all x EX). 
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Proof. When y is discrete, a Cartesian product niEl Vi, where Vi= x for almost 
all i and the other Vi = {xi} for some Xi E X, is a cylinder. But these cylinders 
are precisely the subsets comprising the subbase of the finite topology. • 

Definition. A profinite group G is an inverse limit of finite groups. 

Clearly, each finite group is a topological group if we equip its underlying set 
with the discrete topology. By Proposition B-8.7, if G = ~ Gi with each Gi finite, 
then G is a topological group. Since each finite group is compact, any product 
of finite groups is compact, by Tychonoff's Theorem, and so profinite groups are 
compact. For example, the p-adic integers z; = ~n Z/pnz is a profinite group, so 
that it is compact, as are Galois groups of separable algebraic extensions. On the 
other hand, the p-adic numbers <!J!; is not compact. 
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