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Chapter 1

Arithmetic in Revisited

1.1 The Division Algorithm

1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = −5, r = 3.

2. (a) q = −9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11.

3. (a) q = 6, r = 19. (b) q = −9, r = 54. (c) q = 62720, r = 92.

4. (a) q = 15021, r = 132. (b) q = −14940, r = 335. (c) q = 39763, r = 3997.

5. Suppose a = bq + r, with 0 ≤ r < b. Multiplying this equation through by c gives ac = (bc)q + rc.
Further, since 0 ≤ r < b, it follows that 0 ≤ rc < bc. Thus this equation expresses ac as a multiple
of bc plus a remainder between 0 and bc − 1. Since by Theorem 1.1 this representation is unique,
it must be that q is the quotient and rc the remainder on dividing ac by bc.

6. When q is divided by c, the quotient is k, so that q = ck. Thus a = bq + r = b(ck) + r = (bc)k + r.
Further, since 0 ≤ r < b, it follows (since c ≥ 1) than 0 ≤ r < bc. Thus a = (bc)k + r is the unique
representation with 0 ≤ r < bc, so that the quotient is indeed k.

7.

8.

9.

10.
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Answered in the text. 

Any integer n can be divided by 4 with remainder r equal to 0, 1, 2 or 3. Then either n = 4k,  
4k + 1, 4k + 2 or 4k + 3, where k is the quotient. If n = 4k or 4k + 2 then n is even. Therefore if 
n is odd then n = 4k + 1 or 4k + 3. 

We know that every integer a is of the form 3q, 3q + 1 or 3q + 2 for some q. In the last case
 a = (3q + 2)3 = 27q3 + 54q2 + 36q + 8 = 9k + 8 where k = 3q3 + 6q2 + 4q. Other cases are similar. 

Suppose a = nq + r where 0 ≤ r < n and c = nq' + r' where 0 < r' < n. If r = r' then a – c =  
n(q – q') and k = q – q' is an integer. Conversely, given a – c = nk we can substitute to find:  
(r – r') = n(k – q + q'). Suppose r ≥ r  (the other case is similar). The given inequalities imply 
that 0 ≤ (r – r') < n and it follows that 0 ≤ (k – q + q') < 10000  k – q + q' = 0. 
Therefore r – r' = 0, so that r = r' as claimed. 

3

1 and we conclude that
'

Z
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1.2 Divisibility

1. (a) 8.

(b) 6.

(c) 1.

(d) 11.

(e) 9.

(f) 17.

(g) 592.

(h) 6.

2.

3.

4.

5. Since a | b, we have b = ak for some integer k, and a 6= 0. Since b | a, we have a = bl for some
integer l, and b 6= 0. Thus a = bl = (ak)l = a(kl). Since a 6= 0, divide through by a to get 1 = kl.
But this means that k = ±1 and l = ±1, so that a = ± b.

6.

7. Clearly (a, 0) is at most |a| since no integer larger than |a| divides a. But also |a| | a, and |a| | 0
since any nonzero integer divides 0. Hence |a| is the gcd of a and 0.

8.

9. No, ab need not divide c. For one example, note that 4 | 12 and 6 | 12, but 4 · 6 = 24 does not
divide 12.

10.

11.

12. (a) False. (ab, a) is always at least a since a | ab and a | a.

(b) False. For example, (2, 3) = 1 and (2, 9) = 1, but (3, 9) = 3.

(c) False. For example, let a = 2, b = 3, and c = 9. Then (2, 3) = 1 = (2, 9), but (2 · 3, 9) = 3.

11.
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Given integers a and c with c ≠ 0. Apply Theorem 1.1 with b = |c| to get a = |c| . q + r where 0 
≤ r < |c|. Let q = q0 if c > 0 and q = –q0 if c < 0. Then a = cq + r as claimed. The uniqueness is 
proved as in Theorem 1.1. 

If b | a then a = bx for some integer x. Then a = (–b)(–x) so that (–b) | a. The converse follows 
similarly. 

Answered in the text. 

(a) Given b = ax and c = ay for some integers x, y, we find b + c = ax + ay = a(x + y). 
Since x + y is an integer, conclude that a | (b + c). 

(b) Given x and y as above we find br + ct = (ax)r + (ay)t = a(xr + yt) using the associative 
and distributive laws. Since xr + yt is an integer we conclude that a | (br + ct). 

Given b = ax and d = cy for some integers x, y, we have bd = (ax)(cy) = (ac)(xy). Then ac | bd 
because xy is an integer. 

If d = (n, n + 1) then d | n and d | (n + 1). Since (n + 1) – n = 1 we conclude that d | 1. (Apply 
Exercise 4(b).) This implies d = 1, since d > 0. 

Since a | a and a | 0 we have a | (a, 0). If (a, 0) = 1 then a | 1 forcing a = ±1. 

(a) 1 or 2 (b) 1, 2, 3 or 6. Generally if d = (n, n + c) then d | n and d | (n + c). 
Since c is a linear combination of n and n+c, conclude that d | c. 

0
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14.

15. (a) This is a calculation.

(b) At the first step, for example, by Exercise 13 we have (a, b) = (524, 148) = (148, 80) = (b, r).
The same applies at each of the remaining steps. So at the final step, we have (8, 4) = (4, 0);
putting this string of equalities together gives

(524, 148) = (148, 80) = (80, 68) = (68, 12) = (12, 8) = (8, 4) = (4, 0).

But by Example 4, (4, 0) = 4, so that (524, 148) = 4.

(c) 1003 = 56 · 17 + 51, 56 = 51 · 1 + 5, 51 = 5 · 10 + 1, 5 = 1 · 5 + 0. Thus (1003, 56) = (1, 0) = 1.

(d) 322 = 148 · 2 + 26, 148 = 26 · 5 + 18, 26 = 18 · 1 + 8, 18 = 8 · 2 + 2, 8 = 2 · 4 + 0, so that
(322, 148) = (2, 0) = 2.

(e) 5858 = 1436 · 4 + 114, 1436 = 114 · 12 + 68, 114 = 68 · 1 + 46, 68 = 46 · 1 + 22, 46 = 22 · 2 + 2,
22 = 2 · 11 + 0, so that (5858, 1436) = (2, 0) = 2.

(f) 68 = 148− (524− 148 · 3) = −524 + 148 · 4.

(g) 12 = 80− 68 · 1 = (524− 148 · 3)− (−524 + 148 · 4) · 1 = 524 · 2− 148 · 7.

(h) 8 = 68− 12 · 5 = (−524 + 148 · 4)− (524 · 2− 148 · 7) · 5 = −524 · 11 + 148 · 39.

(i) 4 = 12− 8 = (524 · 2− 148 · 7)− (−524 · 11 + 148 · 39) = 524 · 13− 148 · 46.

(j) Working the computation backwards gives 1 = 1003 · 11− 56 · 197.

16.

17. Since b | c, we know that c = bt for some integer t. Thus a | c means that a | bt. But then Theorem
1.4 tells us, since (a, b) = 1, that a | t. Multiplying both sides by b gives ab | bt = c.

18.

19.

1.2 Divisibility 3

13. (a) Suppose c | a and c | b. Write a = ck and b = cl. Then a = bq + r can be rewritten
ck = (cl)q + r, so that r = ck − clq = c(k − lq). Thus c | r as well, so that c is a common
divisor of b and r.

(b) Suppose c | b and c | r. Write b = ck and r = cl, and substitute into a = bq + r to get
a = ckq + cl = c(kq + l). Thus c | a, so that c is a common divisor of a and b.

(c) Since (a, b) is a common divisor of a and b, it is also a common divisor of b and r, by part (a).
If (a, b) is not the greatest common divisor (b, r) of b and r, then (a, b) > (b, r). Now, consider
(b, r). By part (b), this is also a common divisor of (a, b), but it is less than (a, b). This is a
contradiction. Thus (a, b) = (b, r).

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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By Theorem 1.3, the smallest positive integer in the set S of all linear combinations of a and b is 
exactly (a, b). 
 (a) (6, 15) = 3 (b) (12, 17)=1. 

Let a = da1 and b = db1. Then a1 and b1 are integers and we are to prove: (a1, b1) = l. By 
Theorem 1.3 there exist integers u, v such that au + bv = d. Substituting and cancelling we find 
that a1u + b1v = l. Therefore any common divisor of a1 and b1 must also divide this linear 
combination, so it divides 1. Hence (a1, b1) = 1. 

Let d = (a, b) so there exist integers x, y with ax + by = d. Note that cd | (ca, cb) since cd 
divides ca and cb. Also cd = cax + cby so that (ca, cb) | cd. Since these quantities are positive we 
get cd = (ca, cd). 

Let d = (a, b). Since b + c = aw for some integer w, we know c is a linear combination of a and b 
so that d | . But then d | (b ) = 1 forcing d = 1. Similarly ( ) = 1.  c  c ,  c ,a
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23.

24.

25.

26.

27.

28. Suppose the integer consists of the digits anan−1 . . . a1a0. Then the number is equal to

n∑
k=0

ak10k =

n∑
k=0

ak(10k − 1) +

n∑
k=0

ak.

Now, the first term consists of terms with factors of the form 10k − 1, all of which are of the form
999 . . . 99, which are divisible by 3, so that the first term is always divisible by 3. Thus

∑n
k=0 ak10k

is divisible by 3 if and only if the second term
∑n

k=0 ak is divisible by 3. But this is the sum of the
digits.

29. This is almost identical to Exercise 28. Suppose the integer consists of the digits anan−1 . . . a1a0.
Then the number is equal to

n∑
k=0

ak10k =

n∑
k=0

ak(10k − 1) +

n∑
k=0

ak.

Now, the first term consists of terms with factors of the form 10k − 1, all of which are of the form
999 . . . 99, which are divisible by 9, so that the first term is always divisible by 9. Thus

∑n
k=0 ak10k

is divisible by 9 if and only if the second term
∑n

k=0 ak is divisible by 9. But this is the sum of the
digits.

Arithmetic in Z Revisited4

20.

21.

22.
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Let d = (a, b) and e = (a, b + at). Since b + at is a linear combination of a and b, d | (b + at) so 
that d | e. Similarly since b = a(–t) + (b + at) is a linear combination of a and b + at we know e 
| b so that e | d. Therefore d = e. 

Answered in the text. 

Let d = (a, b, c). Claim: (a, d) = l. [Proof: (a, d) divides d so it also divides c. Then (a, d) | (a, c) 
= 1 so that (a, d)= 1.] Similarly (b, d)= 1. But d | ab and (a, d) = 1 so that Theorem 1.5 implies 
that d | b. Therefore d = (b. d) = 1. 

Define the powers bn recursively as follows: b1 = b and for every n ≥ 1, bn + 1 = b . bn. By 
hypothesis (a, b1) = 1. Given k ≥ 1, assume that (a, bk) = 1. Then (a, bk + 1) = (a, b . bk) = 1 by 
Exercise 24. This proves that (a, bn) = 1 for every n ≥ 1. 

Let d = (a, b). If ax + by = c for some integers x, y then c is a linear combination of a and b so 
that d | c. Conversely suppose c is given with d | c, say c = dw for an integer w. By Theorem 1.3 
there exist integers u, v with d = au + bv. Then c = dw = auw + bvw and we use x = uw and  
y = vw to solve the equation. 

(a) Given au + bv = 1 suppose d = (a, b). Then d | a and d | b so that d divides the linear 
combination au + bv = 1. Therefore d = 1. 

(b) There are many examples. For instance if a = b = d = u = v a, b) = (1, 1)= 1 
while d = au + bv = 1 + 1 = 2. 

Let d = (a, b) and express a = da1 and b = db1 for integers a1, b1. By Exercise 16, (a1, b1) = 1. 
Since a | c we have c = au = da1u for some integer u. Similarly c = bv = db1v for some integer v. 
Then a1u = c/d = b1V and Theorem 1.5 implies that a1 | v so that v = a1w for some integer w. 
Then c = da1b1w so that cd = d2a1b1w = abw and ab | cd. 

Answered in the text. 

 = 1 then (
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31. (a) [6, 10] = 30; [4, 5, 6, 10] = 60; [20, 42] = 420, and [2, 3, 14, 36, 42] = 252.

(b) Suppose ai | t for i = 1, 2, . . . , k, and let m = [a1, a2, . . . , ak]. Then we can write t = mq + r
with 0 ≤ r < m. For each i, ai | t by assumption, andai | m since m is a common multiple
of the ai. Thus ai | (t −mq) = r. Since ai | r for each i, we see that r is a common multiple
of the ai. But m is the smallest positive integer that is a common multiple of the ai; since
0 ≤ r < m, the only possibility is that r = 0 so that t = mq. Thus any common multiple of
the ai is a multiple of the least common multiple.

32. First suppose that t = [a, b]. Then by definition of the least common multiple, t is a multiple of
both a and b, so that t | a and t | b. If a | c and b | c, then c is also a common multiple of a and b,
so by Exercise 31, it is a multiple of t so that t | c.
Conversely, suppose that t satisfies the conditions (i) and (ii). Then since a | t and b | t, we see that
t is a common multiple of a and b. Choose any other common multiple c, so that a | c and b | c.
Then by condition (ii), we have t | c, so that t ≤ c. It follows that t is the least common multiple
of a and b.

33. Let d = (a, b), and writea = da1 and b = db1. Write m = ab
d = da1db1

d = da1b1. Since a and b are
both positive, so is m, and since m = da1b1 = (da1)b1 = ab1 and m = da1b1 = (db1)a1 = ba1, we
see that m is a common multiple of a and b. Suppose now that k is a positive integer with a | k
and b | k. Then k = au = bv, so that k = da1u = db1v. Thus k

d = a1u = b1v. By Exercise 16,
(a1, b1) = 1, so that a1 | v, say v = a1w. Then k = db1v = db1a1w = mw, so that m | k. Thus
m ≤ k. It follows that m is the least common multiple. But by construction, m = ab

(a,b) = ab
d .

34. (a) Let d = (a, b). Since d | a and d | b, it follows that d | (a + b) and d | (a − b), so that d is a
common divisor of a + b and a − b. Hence it is a divisor of the greatest common divisor, so
that d = (a, b) | (a+ b, a− b).

(b) We already know that (a, b) | (a+b, a−b). Now suppose that d = (a+b, a−b). Then a+b = dt
and a − b = du, so that 2a = d(t + u). Since a is even and b is odd, d must be odd. Since
d | 2a, it follows that d | a. Similarly, 2b = d(t− u), so by the same argument, d | b. Thus d is
a common divisor of a and b, so that d | (a, b). Thus (a, b) = (a+ b, a− b).

(c) Suppose that d = (a+ b, a− b). Then a+ b = dt and a− b = du, so that 2a = d(t+ u). Since
a and b are both odd, a+ b and a− b are both even, so thatd is even. Thus a = d

2 (t+ u), so

that d
2 | a. Similarly, d

2 | b, so that d
2 = (a+b,a−b)

2 | (a, b) | (a+ b, a− b). Thus (a, b) = (a+b,a−b)
2

or (a, b) = (a + b, a − b). But since (a, b) is odd and (a + b, a − b) is even, we must have
(a+b,a−b)

2 = (a, b), or 2(a, b) = (a+ b, a− b).

5

30.
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Let S = {a1x1 + a2x2 + … + anxn : x1 x2, ..., x are integers}. As in the proof of Theorem 1.3, S 
does contain some positive elements (for if aj ≠ 0 then aj

2 ∈ S is positive). By the Well Ordering 
Axiom this set S contains a smallest positive element, which we call t. Suppose t = a1u1 + a2u2 + 
… + anun for some integers uj. 
Claim. t = d. The first step is to show that t | a . By the division algorithm there exist integers q 
and r such that a1 = tq + r with 0 ≤ r < t. Then r = a1 – tq = a1(1 – u1q) + a2(–u2q) + … +  
an(–unq) is an element of S. Since r < t (the smallest positive element of S), we know r is not 
positive. Since r ≥ 0 the only possibility is r = 0. Therefore a1 = tq and t | a1. Similarly we have
 t | aj for each j, and t is a common divisor of a1, a2,…, an. Then t ≤ d by definition. 
 On the other hand d divides each aj so d divides every integer linear combination of a1, a2,..., an. 
In particular, d | t. Since t > 0 this implies that d ≤ t and therefore d = t. 

1.2 Divisibility

1
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Arithmetic in Z Revisited

5.

6. The possible remainders on dividing a number by 10 are 0, 1, 2, . . . , 9. If the remainder on dividing
p by 10 is 0, 2, 4, 6, or 8, then p is even; since p > 2, p is divisible by 2 in addition to 1 and itself
and cannot be prime. If the remainder is 5, then since p > 5, p is divisible by 5 in addition to 1
and itself and cannot be prime. That leaves as possible remainders only 1, 3, 7, and 9.

7. Since p | (a + bc) and p | a, we have a = pk and a + bc = pl, so that pk + bc = pl and thus
bc = p(l − k). Thus p | bc. By Theorem 1.5, either p | b or p | c (or both).

8. (a) As polynomials,
xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1).

(b) Since 22n · 3n − 1 = (22 · 3)n − 1 = 12n − 1, by part (a), 12n − 1 is divisible by 12− 1 = 11.

9.

10.

6

2. (a) Since 25 − 1 = 31, and
√

31 < 6, we need only check divisibility by the primes 2, 3, and 5.
Since none of those divides 31, it is prime.

(b) Since 27 − 1 = 127, and
√

127 < 12, we need only check divisibility by the primes 2, 3, 5, 7,
and 11. Since none of those divides 127, it is prime.

(c) 211 − 1 = 2047 = 23 · 89.

3. They are all prime.

4. The pairs are {3, 5}, {5, 7}, {11, 13}, {17, 19}, {29, 31}, {41, 43}, {59, 61}, {71, 73}, {101, 103},
{107, 109}, {137, 139}, {149, 151}, {179, 181}, {191, 193}, {197, 199}.

1.3 Primes and Unique Factorization

1. (a) 24 · 32 · 5 · 7.

(b) −5 · 7 · 67.

(c) 2 · 5 · 4567.

(d) 23 · 3 · 5 · 7 · 11 · 13 · 17.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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(a) Answered in the text. These divisors can be listed as 2j.3k for 0 ≤ j ≤ s and 0 ≤ k ≤ t. 
(b) The number of divisors equals (r + l)(s + l)(t + 1) 

If p is a prime and p = rs then by the definition r, s must lie in {1, –1, p, –p  r = ±1 
or r = ±p and s = p/r = ±1, Conversely if p is not a prime then it has a divisor r not in {1, –1, 
p, –p  p = rs for some integer s. If s equals ±1 or ±p then r = p/s would equal ±p or +1, 
contrary to assumption. This r, s provides an example where the given statement fails. 

Assume first that p > 0. If p is a prime then (a, p) is a positive divisor of p, so that (a, p) = 1 or 
p. If (a, p) = p then p | a. Conversely if p is not a prime it has a divisor d other than ±1 and ±p. 
We may change signs to assume d > 0. Then (p, d) = d ≠ l. Also p |  d since otherwise p | d and 
d = p implies d = p. Then a = d provides an example where the required statement fails. Finally 
if p < 0 apply the argument above to –p. 

. 

}. Then either

}. Then
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1.3 Primes and Unique Factorization

15.

16.

17.

18.

19. If ri ≤ si for every i, then

b = ps11 p
s2
2 . . . pskk = pr11 p

s1−r1
1 pr22 p

s2−r2
2 . . . prkk p

sk−rk
k = (pr11 p

r2
2 . . . prkk ) ·

(
ps1−r1
1 ps2−r2

2 . . . ps2−rk
k

)
= a ·

(
ps1−r1
1 ps2−r2

2 . . . ps2−rk
k

)
.

Since each si − ri ≥ 0, the second factor above is an integer, so that a | b.
Now suppose a | b, and consider prii . Since this is composed of factors only of pi, it must divide psii ,
since pi - pj for i 6= j. Thus prii | p

si
i . Clearly this holds if ri ≤ si, and also clearly it does not hold

if ri > si, since then prii > psii .

7

13. By Theorem 1.8, the Fundamental Theorem of Arithmetic, every integer except 0 and ±1 can be
written as a product of primes, and the representation is unique up to order and the signs of the
primes. Since in our case n > 1 is positive and we wish to use positive primes, the representation
is unique up to order. So write n = q1 q2 . . . qs where each qi > 0 is prime. Let p1, p2, . . . , pr be the
distinct primes in the list. Collect together all the occurrences of each pi, giving ri copies of pi,
i.e. prii .

14.

11. Since p | a − b and p | c − d, also p | (a − b) + (c − d) = (a + c) − (b + d). Thus p is a divisor of
(a+ c)− (b+ d); the fact that p is prime means that it is a prime divisor.

12.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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Suppose d | p so that p = dt for some integer t. The hypothesis then implies that p | d or p | t. If 
p | d then (applying Exercise 1.2.5) d = ±p. Similarly if p | t then, since we know that t | p, we 
get t = +p, and therefore d = ±1. 

Apply Corollary 1.9 in the case a1 =a2 = … = an to see that if p | an then p | a. Then a = pu for 
some integer u, so that an = pnun and pn | an. 

Generally, p | a and p | b if and only if p | (a, b), as in Corollary 1.4. Then the Exercise is 
equivalent to: (a, b) = 1 if and only if there is no prime p such that p | (a, b). This follows using 
Theorem 1.10. 

First suppose u, v are integers with (u, v) = 1. Claim. (u2, v2) = 1. For suppose p is a prime  
such that p | u2 and p | v2. Then p | u and p | v (using Theorem 1.8), contrary to the hypothesis 
(u, v) = 1. Then no such prime exists and the Claim follows by Exercise 8. 
 Given (a, b) = p write a = pa1 and b = pb1. Then (a1, b1) = 1 by Exercise 1.2.16. Then (a2, b2) = 
(p2a1

2, p2b1
2) = p2(a1

2, b1
2), using Exercise 1.2.18. By the Claim we conclude that (a2, b2) = p2.  

The choices p = 2, a = b = 0, c = d = 1 provide a counterexample to (a) and (b). 
(c) Since p | (a2 + b2) – a.a = b2, conclude that p | b by Theorem 1.8. 

 
Since n > 1 Theorem 1.10 implies that n equals a product of primes. We can pull out minus signs 
to see that n = p1 p  2 … pr where each pj is a positive prime. Re-ordering these primes if necessary,
 to

 
assume p1 ≤ p2 ≤ … ≤ pr. For the uniqueness, suppose there is another factorization n = q1 q2…qs 

for some positive primes qj with q1 ≤ q2 … ≤ qs. By theorem 1.11 we know that r = s and the pj’s 
are just a re-arrangement of the q js. Then p1 is the smallest of the pj’s, so it also equals the 
smallest of the q j’s and therefore p1 = q1. We can argue similarly that p2 = q2, …, pr = qr. (This 
last step should really be done by a formal proof invoking the Well Ordering Axiom.) 
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Arithmetic in Z Revisited

25. The binomial coefficient

(
p

k

)
is

(
p

k

)
=

p!

k!(p− k)!
=
p · (p− 1) · · · (p− k + 1)

k(k − 1) · · · 1
.

Now, the numerator is clearly divisible by p. The denominator, however, consists of a product of
integers all of which are less than p. Since p is prime, none of those integers (except 1) divide p,
so the product cannot have a factor of p (to make this more precise, you may wish to write the
denominator as a product of primes and note that p cannot appear in the list).

26.

27.

24. This is almost identical to the previous exercise. If n > 0 is an integer, suppose a = pr11 p
r2
2 . . . prkk

and b = ps11 p
s2
2 . . . pskk where the pi are distinct positive primes and ri ≥ 0, si ≥ 0. Then an =

pnr11 pnr22 . . . pnrkk and b2 = pns11 pns22 . . . pnskk . Then using Exercise 19 (twice), we have a | b if and
only if ri ≤ si for each i if and only if nri ≤ nsi for each i if and only if an | bn.

8

22.

23. Suppose a = pr11 p
r2
2 . . . prkk and b = ps11 p

s2
2 . . . pskk where the pi are distinct positive primes and ri ≥ 0,

si ≥ 0. Then a2 = p2r11 p2r22 . . . p2rkk and b2 = p2s11 p2s22 . . . p2skk . Then using Exercise 19 (twice), we
have a | b if and only if ri ≤ si for each i if and only if 2ri ≤ 2si for each i if and only if a2 | b2.

20.

21.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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(a) The positive divisors of a are the numbers d = p1
m1p2

m2…pk
mk where the exponents mj 

satisfy 0 ≤ mj ≤ rj for each j = 1, 2,,.., k. This follows from unique factorization. If d also 
divides b we have 0 ≤ mj ≤ sj for each i = 1, 2,... k. Since nj = min{rj, sj} we see that the 
positive common divisors of a and b are exactly those numbers d = p1

m1p2
m2 … pk

mk where 
0 ≤ mj ≤ nj for each j = 1, 2,..., k. Then (a, b) is the largest among these common 
divisors, so it equals p1

n1p2
n2…pk

nk. 
(b) For [a, b] a similar argument can be given, or we can apply Exercise 1.2.31, noting that 

max{r, s} = r + s – min{r, s} for any positive numbers r, s. 

Answered in the text. 

If every ri is even it is easy to see that n is a perfect square. Conversely suppose n is a square. 
First consider the special case n = pr is a power of a prime. If pr = m2 is a square, consider the 
prime factorization of m. By the uniqueness (Theorem 1.11), p is the only prime that can occur, 
so m = ps for some s, and pr = m2 = p2s. Then r = 2s' is even. Now for the general case, suppose  
n = m2 is a perfect square. If some ri is odd, express n = pi

ri . k where k is the product of the 
other primes involved in n. 
 Then pi

ri and k are relatively prime and Exercise 13 implies that pi
ri is a perfect square. By the 

special case, ri. is even. 

Claim: Each Ak = (n + 1)! + k is composite, for k = 2, 3,. .. , n + 1. Proof. Since k ≤ n + 
have k | (n + 1)! and therefore k | Ak . Then Ak  is composite since I < k < Ak . 

12k + 3 is a multiple of 3. Similarly if p = 6k + 5 then p2 +2 = 36k2 + 60k + 27 is a multiple of 
3. So in each case, p2 + 2 is composite. 

By the division algorithm p = 6k + r where 0 ≤ r < 6. Since p > 3 is prime it is not divisible by 2 
or 3, and we must have r = 1 or 5. If p = 6k + 1 then p2 = 36k2 + 12k + 1 and p2 + 2 = 36k2 + 

1 we 
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33. Suppose n is composite, and write n = rs where 1 < r, s < n. Then, as you can see by multiplying
it out,

2n − 1 = (2r − 1)
(

2s(r−1) + 2s(r−2) + 2s(r−3) + · · ·+ 2s + 1
)
.

Since r > 1, it follows that 2r > 1. Since s > 1, we see that 2s + 1 > 1, so that the second factor
must also be greater than 1. So 2n− 1 has been written as the product of two integers greater than
one, so it cannot be prime.

34.

35.

36.

91.3 Primes and Unique Factorization

31.

32.

30.

29.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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This assertion follows immediately from the Fundamental Theorem 1.11. 

(b) If 2  is rational it can be expressed as a fraction a
b  for some positive integers a, b. 

Clearing denominators and squaring leads to: a2 = 2b2, and part (a) applies. 

The argument in Exercise 20 applies. More generally see Exercise 27 below. 

Suppose all the primes can be put in a finite list p1, p2,…, pk and consider N = p1 p2 …pk + 1. None 
of these pj can divide N (since 1 can be expressed as a linear combination of pj and N). But N > 1 
so N must have some prime factor p. (Theorem 1.10). This p is a prime number not equal to any 
of the primes in our list, contrary to hypothesis. 

Proof: Since n > 2 we know that n! – 1 > 1 so it has some prime factor p. If p ≤ n then p | n!, 
contrary to the fact that p | n  n < p < n!. 

We sketch the proof (b). Suppose a > 0 (What if a < 0?), rn = a and r = u/v where u, v are 
integers and v > 0. Then un = avu. If p is a prime let k be the exponent of p occurring in a (that 
is: pk | a and 1 |kp a+ ). The exponents of p occurring in un and in vn must be multiples of n, so 
unique factorization implies k is a multiple of n. Putting all the primes together we conclude that 
a = bn for some integer b. 

If p is a prime > 3 then 2 | p and 3 | p, so by Exercise 1.2.34 we know 24 | p2 – 1. Similarly 24 | 
(q2 – 1) so that p2 – q2 = (p2 – 1) – (q2 – 1) is a multiple of 24. 

28. The sums in question are: 1 + 2 + 4 + … + 2n. When n = 7 the sum is 255 = 3.5.17 and when  
n = 8 the sum is 511 = 7.73. Therefore the assertion is false. The interested reader can verify that 
this sum equals 2n+1 – 1. These numbers are related to the  “Mersenne primes”.

(a) If a2 = 2b2 for positive integers a, b, compare the prime factorizations on both sides. The 
power of 2 occurring in the factorization of a2 must be even (since it is a square). The power 
of 2 occurring in 2b2 must be odd. By the uniqueness of factorizations (The Fundamental 
Theorem) these powers of 2 must be equal, a contradiction. 

!. Therefore
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Chapter 2

Congruence in Z and Modular
Arithmetic

2.1 Congruence and Congruence Classes

1.

2.

3. (a) Computing the checksum gives

10 · 3 + 9 · 5 + 8 · 4 + 7 · 0 + 6 · 9 + 5 · 0 + 4 · 5 + 3 · 1 + 2 · 8 + 1 · 9
= 30 + 45 + 32 + 54 + 20 + 3 + 16 + 9 = 209.

Since 209 = 11 · 19, we see that 209 ≡ 0 (mod 11), so that this could be a valid ISBN number.

(b) Computing the checksum gives

10 · 0 + 9 · 0 + 8 · 3 + 7 · 1 + 6 · 1 + 5 · 0 + 4 · 5 + 3 · 5 + 2 · 9 + 1 · 5
= 24 + 7 + 6 + 20 + 15 + 18 + 5 = 95.

Since 95 = 11 · 8 + 7, we see that 95 ≡ 7 (mod 11), so that this could not be a valid ISBN
number.

(c) Computing the checksum gives

10 · 0 + 9 · 3 + 8 · 8 + 7 · 5 + 6 · 4 + 5 · 9 + 4 · 5 + 3 · 9 + 2 · 6 + 1 · 10

= 27 + 64 + 35 + 24 + 45 + 20 + 27 + 12 + 10 = 264.

Since 264 = 11 · 24, we see that 264 ≡ 0 (mod 11), so that this could be a valid ISBN number.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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(a) 25–1 = 24 = 16 ≡ 1 (mod 5). (b) 47−1 = 46 = 4096 ≡ 1 (mod 7). 
(c) 311−1 = 310= 59049 1 (mod 11). 

(a) Use Theorems 2.1 and 2.2: 6k + 5 ≡ 6.1 + 5 ≡ 11 ≡ 3 (mod 4). 
(b) 2r + 3s ≡ 2.3 + 3.(–7) ≡ –15 ≡ 5 (mod 10). 

≡
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4. (a) Computing the checksum gives

3 · 0 + 3 + 3 · 7 + 0 + 3 · 0 + 0 + 3˙ 3 + 5 + 3 · 6 + 6 + 3 · 9 + 1 = 90.

Since 90 = 10 · 9, we have 90 ≡ 0 (mod 10), so that this was scanned correctly.

(b) Computing the checksum gives

3 · 8 + 3 + 3 · 3 + 7 + 3 · 3 + 2 + 3˙0 + 0 + 3 · 0 + 6 + 3 · 2 + 5 = 71.

Since 71 = 10 · 7 + 1, we have 71 ≡ 1 (mod 10), so that this was not scanned correctly.

(c) Computing the checksum gives

3 · 0 + 4 + 3 · 0 + 2 + 3 · 9 + 3 + 3˙6 + 7 + 3 · 3 + 0 + 3 · 3 + 4 = 83.

Since 83 = 10 · 8 + 3, we have 83 ≡ 3 (mod 10), so that this was not scanned correctly.

5. Since 5 ≡ 1 (mod 4), it follows from Theorem 2.2 that 52 ≡ 12 (mod 4), so that (applying Theorem
2.2 again) 53 ≡ 13 (mod 4). Continuing, we get 51000 ≡ 11000 ≡ 1 (mod 4). Since 51000 ≡ 1
(mod 4), Theorem 2.3 tells us that

[
51000

]
= [1] in Z4.

6.

7.

8.

9.

10.

11.

12.

13.

Congruence in Z and Modular Arithmetic
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Given n ⎟ (a – b) so that a – b = nq for some integer q. Since k ⎟ n it follows that k ⎟ (a – b) and 
therefore a ≡ b (mod k). 

By Corollary 2.5, a ≡ 0, 1, 2 or 3 (mod 4). Theorem 2.2 implies a2 ≡ 0, 1 (mod 4). Therefore a2 
cannot be congruent to either 2 or 3 (mod 4). 

By the division algorithm, any integer n is expressible as n = 4q + r where r ∈ {0, 1, 2, 3}, and n 
≡ r (mod 4). If r is 0 or 2 then n is even. Therefore if n is odd then n ≡ 1 or 3 (mod 4). 

(a) (n − a)2 ≡ n2 – 2na + a2 ≡ a2 (mod n) since n ≡ 0 (mod n). 
(b) (2n − a)2 ≡ 4n2 – 4na + a2 ≡ a2 (mod 4n) since 4n ≡ 0 (mod 4n). 

 Suppose the base ten digits of a are (cncn–1 . . . c1co). (Compare Exercise 1.2.32). Then a = 
cn10n + cn− 10n−1 +. . . c110 + c0 ≡ c0 (mod 10), since 10k ≡ 0 (mod 10) for every k ≥ 1. 

Since there are infinitely many primes (Exercise 1.3.25) there exists a prime p > ⎪a – b⎪. By 
hypothesis, p ⎪ (a – b) so the only possibility is a – b = 0 and a = b. 

If p ≡ 0, 2 or 4 (mod 6), then p is divisible by 2. If p ≡ 0 or 3 (mod 6) then p is divisible by 3. 
Since p is a prime > 3 these cases cannot occur, so that p ≡ 1 or 5 (mod 6). By Theorem 2.3 this 
says that [p] = [1] or [5] in 6. 

Suppose r, r' are the remainders for a and b, respectively. Theorem 2.3 and Corollary 2.5 imply: a ≡ b 
(mod n) if and only if [a] = [b] if and only if [r] = [r']. Then r = r' as in the proof of Corollary 
2.5(2). 

Z

1
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14.

15.

16.

17.

18.

19.

20.

21.

22.

2.2 Modular Arithmetic

1.
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(a) Here is one example: a = b = 2 and n = 4. 
(b) The assertion is: if n ⎪ ab then either n ⎪ a or n ⎪b. This is true when n is prime by 

Theorem 1.8. 

Since (a, n) = 1 there exist integers u, v such that au + nv = 1, by Theorem 1.3. Therefore  
au ≡ au + nv ≡ 1 (mod n), and we can choose b = u. 

Given that a ≡ 1 (mod n), we have a = nq + 1 for some integer q. Then (a, n) must divide a − nq 
= 1, so (a, n) = 1. One example to see that the converse is false is to use a = 2 and n = 3. Then 
(a, n) = 1 but [a] ≠ [1]. 

Since 10 ≡ –1 (mod 11), Theorem 2.2 (repeated) shows that 10n ≡ (–l)n (mod 11). 

By Exercise 23 we have 125698 ≡ 31 ≡ 4 (mod 9), 23797 ≡ 28 ≡ 1 (mod 9) and 2891235306 ≡ 39 ≡ 
12 ≡ 3 (mod 9). Since 4⋅1 ≢ 3 (mod 9) the conclusion follows. 

Proof: If [a] = [b] then a ≡ b (mod n) so that a = b + nk for some integer k. Then (a, n) = (b, n) 
using Lemma 1.7. 

(a) One counterexample occurs when a = 0, b = 2 and n = 4. 
(b) Given a2 ≡ b2 (mod n), we have n ⎪ (a2 – b2) = (a + b)(a – b). Since n is prime, use 

Theorem 1.8 to conclude that either n⎪(a + b) or n ⎪ (a − b).Therefore, either a ≡ b  
(mod n) or a ≡ −b (mod n). 

(a) Since 10 ≡ 1 (mod 9), Theorem 2.2 (repeated) shows that 10n ≡ 1 (mod 9). 
(b) (Compare Exercise 1.2.32). Express integer a in base ten notation: a = cn10n

c110+ c0. Then a ≡ cn+ cn - t + . . . c1 + c0 (mod 9), since 10k ≡ 1 (mod 9). 

(a) Here is one example: a = 2, b = 0, c = 2, n = 4. 
(b) We have n | ab – ac = a(b – c). Since (a, n) = l Theorem 1.5 implies that n ⎪(b – c) and 

therefore b ≡ c (mod n).  

(a) Answered in the text. 

(b) + 0 1 2 3 
0 0 1 2 3 
1 1 2 3 0 
2 2 3 0 1 
3 3 0 1 2 

 0 1 2 3 
0 0 0 0 0 
1 0 1 2 3 
2 0 2 0 2 
3 0 3 2 1 

 + . . . + 

–

2.2 Modular Arithmetic
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2. To solve x2 ⊕ x = [0] in Z4, substitute each of [0], [1], [2], and [3] in the equation to see if it is a
solution:

x x2 ⊕ x Is x2 ⊕ x = [0]?

[0] [0]⊗ [0]⊕ [0] = [0] + [0] = [0] Yes; solution.

[1] [1]⊗ [1]⊕ [1] = [1] + [1] = [2] No.

[2] [2]⊗ [2]⊕ [2] = [0] + [2] = [2] No.

[3] [3]⊗ [3]⊕ [3] = [1]⊕ [3] = [0] Yes; solution.

Congruence in Z and Modular Arithmetic
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(c) Answered in the text. 

(d) + 0 1 2 3 4 5 6 7 9 10 11 
0 0 1 2 3 4 5 6 7 8 9 10 11 
1 1 2 3 4 5 6 7 8 9 10 11 0 
2 2 3 4 5 6 7 8 9 10 11 0 
3 3 4 5 6 7 8 9 10 11 0 1 2 
4 4 5 6 7 8 9 10 11 0 1 2 3 
5 5 6 7 8 9 10 11 0 1 2 3 4 
6 6 7 8 9 10 11 0 1 2 3 4 5 
7 7 8 9 10 11 0 1 2 3 4 5 6 
8 8 9 10 11 0 1 2 3 4 5 6 7 
9 9 10 11 0 1 2 3 4 5 6 7 8 
10 10 11 0 1 2 3 4 5 6 7 8 9 
11 11 0 1 2 3 4 5 6 7 8 9 10 
 

 
 0 1 2 3 4 5 6 7 8 9 10 11 
0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 8 9 10 11 
2 0 2 4 6 8 10 0 2 4 6 8 10 
3 0 3 6 9 0 3 6 9 0 3 6 9 
4 0 4 8 0 4 8 0 4 8 0 4 8 
5 0 5 10 3 8 1 6 11 4 9 2 7 
6 0 6 0 6 0 6 0 6 0 6 0 6 
7 0 7 2 9 4 11 6 1 8 3 10 5 
8 0 8 4 0 8 4 0 8 4 0 8 4 
9 0 9 6 3 0 9 6 3 0 9 6 3 
10 0 10 8 6 4 2 0 10 8 6 4 2 
11 0 11 10 9 8 7 6 5 4 3 2 1 

3. x = 1, 3, 5 or 7 in ℤ0. 

However, the notation must be changed to correspond to the new notation. See the tables
in Example 2 to see what it must look like.

However, the notation should be changed to use, for example,

[3] instead of 3.

1 

8 
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2.2 Modular Arithmetic

4.

5.

6. To solve x2 ⊕ [8]⊗ x = [0] in Z9, substitute each of [0], [1], [2], . . . , [8] in the equation to see if it is
a solution:

x x2 ⊕ [8]⊗ x Is x2 ⊕ [8]⊗ x = [0]?

[0] [0]⊗ [0]⊕ [8]⊗ [0] = [0] + [0] = [0] Yes; solution.

[1] [1]⊗ [1]⊕ [8]⊗ [1] = [1] + [8] = [0] Yes; solution.

[2] [2]⊗ [2]⊕ [8]⊗ [2] = [4] + [7] = [2] No.

[3] [3]⊗ [3]⊕ [8]⊗ [3] = [0]⊕ [6] = [6] No.

[4] [4]⊗ [4]⊕ [8]⊗ [4] = [7]⊕ [5] = [3] No.

[5] [5]⊗ [5]⊕ [8]⊗ [5] = [7]⊕ [4] = [2] No.

[6] [6]⊗ [6]⊕ [8]⊗ [6] = [0]⊕ [3] = [3] No.

[7] [7]⊗ [7]⊕ [8]⊗ [7] = [4]⊕ [2] = [6] No.

[8] [8]⊗ [8]⊕ [8]⊗ [8] = [1]⊕ [1] = [2] No.

The solutions are x = [0] and x = [1].

7. To solve x3 ⊕ x2 ⊕ x⊕ [1] = [0] in Z8, substitute each of [0], [1], [2], . . . , [7] in the equation to see if
it is a solution:

x x3 ⊕ x2 ⊕ x⊕ [1] Is x3 ⊕ x2 ⊕ x⊕ [1] = [0]?

[0] [1] No.

[1] [4] No.

[2] [7] No.

[3] [0] No.

[4] [5] No.

[5] [4] No.

[6] [3] No.

[7] [0] Yes; solution.

The only solution is x = [7].

8. To solve x3 + x2 = [2] in Z10, substitute each of [0], [1], . . . , [9] in the equation to see if it is a

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

15

x = 1, 2, 4, 5 in ℤ 6. 

x = 1, 2, 3 or 4 in ℤ 5. However, the notation should be changed to use, for example,

[3] instead of 3.

However, the notation should be changed to use, for example,

[3] instead of 3.
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solution:
x x3 ⊕ x2 Is x3 ⊕ x2 = [2]?

[0] [0] No.

[1] [2] Yes; solution.

[2] [2] Yes; solution..

[3] [6] No.

[4] [0] No.

[5] [0] No.

[6] [2] Yes; solution.

[7] [2] Yes; solution.

[8] [6] No.

[9] [0] No.

The solutions are x = [1], [2], [6], and [7].

9.

10.

11.

12. See Exercise 2.1.14.

13. See Exercise 2.1.22.

14.

Congruence in Z and Modular Arithmetic
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(a) a = 3 or 5. (b) a = 2 or 3. (c) No such element exists in ℤ 6. 

 

Part 3: [a] ⊕ [b] = [a + b] = [b + a] = [b] ⊕ [a] since a + b = b + a in ℤ. 
 
Part 7: [a]  ([b]  [c]) = [a]  [be] = [a(bc)] = [(ab)c] = [ab]  [c] = ([a]  [b])  [c]. 
 
Part 8: [a]  ([b] ⊕ [c]) = [a]  [b + c] = [a(b + c)] = [ab + ac] = [ab] ⊕ [ac] = ([a]  [b]) ⊕ ([a

 [c]). 
 
Part 9: [a]  [b] = [ab] = [ba] = [b]  [a]. 

Every value of x satisfies these equations. 

(a) x = 0 or 4 in ℤ 5
. (b) x = 0, 2, 3 or 5 in ℤ 6. 

However, the notation should be changed to use, for example, [3] instead of 3.

However, the notation should be changed to use, for example, [3] instead of 3.
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2.3 The Structure of Zp (p Prime) and Zn

1.

2. (a) Since 7 is prime, part (3) of Theorem 2.8 says that there are no zero divisors in Z7.

(b) The zero divisors are 2, 4, and 6, since 2 · 4 = 0 and 6 · 4 = 0. Further computations will show
that the other elements of Z8 are not zero divisors.

(c) The zero divisors are 3 and 6, since 3 · 6 = 0. Further computations will show that the other
elements of Z9 are not zero divisors.

(d) The zero divisors are 2, 4, 5, 6, and 8, since 2 ·5 = 4 ·5 = 6 ·5 = 8 ·5 = 0. Further computations
will show that the other elements of Z10 are not zero divisors.

3. In Zn, it appears that every nonzero element is either a unit or a zero divisor.

4.

5. We first show that ab 6= 0. If ab = 0, then since a is a unit, then a−1ab = 0, so that b = 0. But b is
a zero divisor, so that b 6= 0 and thus ab 6= 0. Now, since b is a zero divisor, choose c 6= 0 such that
bc = 0; then (ab)c = a(bc) = 0 shows that ab is also a zero divisor.

6. Since n is composite, write n = ab where 1 < a, b < n. Then in Zn, [a] 6= 0 and [b] 6= 0, since both
a and b are less than n, but [a][b] = [ab] = [n] = 0, so that a and b are zero divisors.

7.

8.

9. (a) Suppose a is a unit. Choose b such that ab = 0. Then since a is a unit, we have a−1ab =
a−10 = 0, so that b = 0. Thus a is not a zero divisor, since any such b must be zero.

(b) This statement is the contrapositive of part (a), so is also true.

2.3 The Structure of Zp (p Prime) and Zn
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(a) 1, 2, 3, 4, 5, 6  (b) 1, 3, 5, 7  
(c) 1, 2, 4, 5, 7, 8  (d) 1, 3, 7, 9 

(a) 1 solution in ℤ 7  (b) 2 solutions in ℤ 8  

(c) 0 solutions in ℤ 9 (d) 2 solutions in ℤ |0. 

If ab = 0 in ℤ p then ab ≡ 0 (mod p) so that p ⎪ ab. By Theorem 1.8 we conclude that p ⎪ a or  
p ⎪ b. Then a ≡ 0 (mod p) or b ≡ 0 (mod p). Equivalently, a = 0 or b = 0 in ℤ p . 

(a) For instance choose a even and b odd. (b) Yes. 

15.

16.

(a) (a + b)5 = a5 + b5 in ℤ 5. (b) (a + b)3 = a3 + b3 in ℤ 3. 
 
(c) (a + b)2 = a2 + b2 in ℤ 2.  
(d) One is led to conjecture that (a + b)7 = a7 + b7 in 7 

 
To investigate the general result for any prime exponent, use the Binomial Theorem and Exercise 
1.4.13. 

(a) a = 1, 2, 3 or 4 in ℤ 5. (b) a = 1 or 3 in ℤ 4.  
(c) a = 1 or 2 in ℤ 3  (d) a = l or 5 in ℤ 6. 

However, the notation should be changed to use, for example, [ ] instead of .a a

However, the notation should be changed to use, for example, [3] instead of 3.

ℤ . 
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12.

13.

14.

15.

16. By Exercise 10, every nonzero element of Zn is a unit or a zero divisor, but not both. So the
statement we are trying to prove is equivalent to the following statement: If a 6= 0 and b are
elements of Zn and ax = b has no solutions in Zn, prove that a is not a unit. The contrapositive
of this statement, which is equivalent to the statement itself, is: If a 6= 0 and b are elements of Zn

and a is a unit, then ax = b has at least one solution in Zn. But Exercise 11 proves this statement.

17. Suppose that a and b are units. Then (ab)(b−1a−1) = a(bb−1)a−1 = aa−1 = 1, so that ab is a unit.

18. See the Hint when 0 < 1. Otherwise, if 0 6< 1, then since 0 = 1, we must have 1 < 0 since we have
fully ordered Zn. Adding 1 to both sides repeatedly, using rule (ii), gives n−1 < n−2 < · · · < 1 < 0,
so that, by rule (i), n− 1 < 0. Now add 1 to both sides to get 0 < 1, which is a contradiction.

Congruence in Z and Modular Arithmetic
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If x = [r] is a solution then [ar] = [b] so that ar ≡ b (mod n) and ar – b = kn for some integer k. 
Then d ⎪ a and d ⎪ n implies d ⎪ (ar – kn) = b. 

Since d divides each of a, b and n there are integers a1, n1, b1. with a = da1, b = db1. and n = 
dn1. By Theorem 1.3 there are integers u, v with au + nv = d so that au ≡ d (mod n). Therefore 
a(ub1) ≡ b1d = b (mod n) so that x = [ub1] is one solution. Since an  = a1dn1 = a1n ≡ 0 (mod n) we 
see that x = [ub1 + n1t] is a solution for every integer t. 

(a) If [ub1 + sn1] and [ub1 + tn1] are equal in ℤn for some 0 ≤ s < t < d, then n ⎪ (tn1 – sn1)  
= (t – s)n1 so that d ⎪ (t – s) contrary to 0 < (t – s) < d. 

(b) If x = [r] is a solution then [ar] = [b] = [a⋅ub1] so that n ⎪ a(r – ub1) so that a(r – ub1) = 
nw for some integer w. Cancel d to obtain a1(r – ub1) = n1w. Since (a1, n1) = 1, (Why?) 
Theorem 1.5 implies n1⎪(r – ub1) so that r = ub1 + tn1 for some t. Then x = [r] = [ub1 + 
tn1]. Divide t by d to get t = dq + k where 0 ≤ k < d. Then x = [ub1 + (dq + k)n1] = [ub1 
+ kn1] because [dn1] = [n] = [0]. 

(a) 15x = 9 in Z18 if and only if 15x ≡ 9 (mod 18) if and only if 5x ≡ 3 (mod 6) if and only if x 

 3 (mod 6) if and only if x  3, 9, 15 (mod 18) if and only if x = [3], [9], [15] in Z18. 

(b) x = 3, 16, 29, 42 or 55 in Z65. 

10. No element can be both a unit and a zero divisor, by Exercise 9. Choose x 6= 0 ∈ Zn, and consider
the set of products {x ·1, x ·2, . . . , x · (n−1)}. This set has n−1 elements. If x is not a zero divisor,
then 0 is not one of those elements. So there are two possibilities: either no element is duplicated
in that list, or there is a duplicate. If there is no duplicate, then since there are n− 1 elements and
n − 1 possible values, one of the elements must be 1; that is, for some a ∈ Zn, we have x · a = 1.
Thus x is a unit. If there is a duplicate, say x · a = x · b, then x · (a − b) = 0, so that x is a zero
divisor, which contradicts our original assumption. This shows that if x is not a zero divisor, then
it is a unit.

11. Since a is a unit, the equation ax = b has the solution a−1b, since aa−1b = b. Now, suppose that
ax = b and also ay = b. Then a(x − y) = 0. Since a is not a zero divisor, and a 6= 0 since it is a
unit, it follows that x− y = 0 so that x = y. Hence the solution is unique.

1

≡≡
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Chapter 3

Rings

3.1 Definition and Examples of Rings

1.

2.

3.

4. Use the matrices from the end of Example 6:(
4 6
2 3

)(
−3 −9

2 6

)
=

(
4(−3) + 6 · 2 4(−9) + 6 · 6
2(−3) + 3 · 2 2(−9) + 3 · 6

)
=

(
0 0
0 0

)
(
−3 −9

2 6

)(
4 6
2 3

)
=

(
−3˙ 4− 9 · 2 −3 · 6− 9 · 3
2 · 4 + 6 · 2 2 · 6 + 6 · 3

)
=

(
−30 −45

20 30

)
5. (a) This is a subring without identity; all products in this ring are zero.

(b) This is a subring with the identity

(
1 0
0 1

)
.

(c) This is not a subring. For example,(
1 1
1 0

)(
1 1
1 0

)
=

(
2 1
1 1

)
,

which is not of the required form.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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(a) closure for addition. (b) axiom 5 (additive inverses) 

The closure axioms are quickly seen from the tables (only the symbols 0, e, b, c appear). 
Commutativity of an operation appears as a symmetry of the table: the products xy and yx will 
appear in the table in positions which are symmetric relative to the “main diagonal”. The system 
is commutative if these symmetrically placed entries are equal. Equivalently, the entries of the kth 
row and the kth column of the table are identical. In this example both operations are 
commutative. Also 0 is the zero element since the row for 0 is (0, e, b, c) which is identical with 
the top (index) row. Similarly we read from the other table that e is the multiplicative identity 
element. Axiom 4 (additive inverses) follows since 0 occurs in each row of the addition table. 
Since we are assuming the other axioms, R is a commutative ring. 

As in Exercise 2 we can read quickly from the tables that the operations are closed and 
commutative. Also 0 is the zero element, and e is the multiplicative identity. Additive inverses 
exist since there is a 0 in every row of the addition table. Finally, multiplicative inverses exist for 
the non-zero elements e, a, b since e occurs in every row (and column) indexed by those entries. 
Since we are assuming the other axioms, F is a field. 
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(d) This is a subring without identity.

(e) This is a subring with the identity

(
1 0
0 1

)
.

(f) This is a subring with the identity

(
1 0
0 0

)
.

6.

7. Axiom 1 is satisfied since a
√

2 + b
√

2 = (a+ b)
√

2, so if a and b are integers, then (a+ b)
√

2 ∈ K.
Axiom 2 is satisfied since

a
√

2 + (b
√

2 + c
√

2) = a
√

2 + (b+ c)
√

2 = (a+ b+ c)
√

2 = (a+ b)
√

2 + c
√

2

= (a
√

2 + b
√

2) + c
√

2.

Axiom 3 is satisfied since a
√

2 + b
√

2 = (a+ b)
√

2 = (b+ a)
√

2 = b
√

2 + a
√

2. The additive identity
is 0 = 0

√
2, so Axiom 4 is satisfied. Given a

√
2 ∈ K, the element (−a)

√
2 is also in K,

and a
√

2 + (−a)
√

2 = (a− a)
√

2 = 0
√

2, so Axiom 5 is also satisfied.

However, K is not a ring, since if a
√

2, b
√

2 ∈ K, then (a
√

2)(b
√

2) = 2ab is not in K since it is not
an integer multiple of

√
2.

8.

9.

10. No, it is not a subring. For example, (3,−3) ∈ S and (4,−4) ∈ S, but (3,−3)·(4,−4) = (12, 12) /∈ S
since 12 + 12 6= 0.

11. (a) Axiom 1.

(
a a
b b

)
+

(
c c
d d

)
=

(
a+ c a+ c
b+ d b+ d

)
∈ S.

Axiom 2. This is similar to part (a); it follows since addition of reals is associative.

Axiom 3. This is similar to the previous parts:(
a a
b b

)
+

(
c c
d d

)
=

(
a+ c a+ c
b+ d b+ d

)
=

(
c c
d d

)
+

(
a a
b b

)
Axiom 4.

(
0 0
0 0

)
∈ S, and it is obviously an additive identity.

Axiom 5. The inverse of

(
a a
b b

)
is

(
−a −a
−b −b

)
.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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(a)  Check the axioms. Since the sum and product of two multiples of 3 is again a multiple of 
3 the closure axioms (1 and 6) hold. Since 0 is a multiple of 3, R has an additive identity 
element (Axiom 4), If a is a multiple of 3 then the solution of a + x = 0 (namely –a) is 
also a multiple of 3, and so Axiom 5 holds. The other axioms (associativity, 
commutativity, distributivity) hold for all integers and therefore are true in R. 

(b) The same proof works with k everywhere in place of 3. 

No, it is not closed under addition. 

(a) R* = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. 
(b) Check the properties in Theorem 3.2. If r, r′ ∈ R then (r, r) + (r′, r′) = (r + r′, r + r′) 

and (r, r)⋅(r, r′) = (rr′, rr′). Therefore R* is closed under addition and multiplication. 
The zero element (0, 0) is in R* and additive inverses exist: The solution to (r, r) + x = 
(0, 0) is x = −(r, r) = (−r, −r) which does lie in R*. 
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Axiom 6.

(
a a
b b

)(
c c
d d

)
=

(
ac+ ad ac+ ad
bc+ bd bc+ bd

)
∈ S.

Axiom 7.(
a a
b b

)((
c c
d d

)(
e e
f f

))
=

(
a a
b b

)(
ce+ cf ce+ cf
de+ df de+ df

)
=

(
a(ce+ cf) + a(de+ df) a(ce+ cf) + a(de+ df)
b(ce+ cf) + b(de+ df) b(ce+ cf) + b(de+ df)

)
=

(
ace+ acf + ade+ adf ace+ acf + ade+ adf
bce+ bcf + bde+ bdf bce+ bcf + bde+ bdf

)
((

a a
b b

)(
c c
d d

))(
e e
f f

)
=

(
ac+ ad ac+ ad
bc+ bd bc+ bd

)(
e e
f f

)
=

(
(ac+ ad)e+ (ac+ ad)f (ac+ ad)e+ (ac+ ad)f
(bc+ bd)e+ (bc+ bd)f (bc+ bd)e+ (bc+ bd)f

)
=

(
ace+ acf + ade+ adf ace+ acf + ade+ adf
bce+ bcf + bde+ bdf bce+ bcf + bde+ bdf

)
.

Axiom 8. (
a a
b b

)((
c c
d d

)
+

(
e e
f f

))
=

(
a a
b b

)(
c+ e c+ e
d+ f d+ f

)
=

(
a(c+ e) + a(d+ f) a(c+ e) + a(d+ f)
b(c+ e) + b(d+ f) b(c+ e) + b(d+ f)

)
=

(
ac+ ae+ ad+ af ac+ ae+ ad+ af
bc+ be+ bd+ bf bc+ be+ bd+ bf

)
(
a a
b b

)(
c c
d d

)
+

(
a a
b b

)(
e e
f f

)
=

(
ac+ ad ac+ ad
bc+ bd bc+ bd

)
+

(
ae+ af ae+ af
be+ bf be+ bf

)
=

(
ac+ ae+ ad+ af ac+ ae+ ad+ af
bc+ be+ bd+ bf bc+ be+ bd+ bf

)

Since S satisfies all 8 axioms, it is a ring.

(b) Note that J ∈ S, and that(
a a
b b

)(
1 1
0 0

)
=

(
a · 1 + b · 0 a · 1 + b · 0
b · 1 + a · 0 b · 1 + a · 0

)
=

(
a a
b b

)
.

Thus J is a right identity.

(c) We have (
1 1
0 0

)(
2 2
1 1

)
=

(
1 · 2 + 1 · 1 1 · 2 + 1 · 1
0 · 2 + 0 · 1 0 · 2 + 0 · 1

)
=

(
3 3
0 0

)
6=
(

1 1
0 0

)
.

12.
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3.1 Definition and Examples of Rings 21

 [i] is closed under addition and multiplication. For example (a + bi) ⋅ (c + di) = (ac – bd) + 
(ad + bc)i. The zero element and additive inverses exist in [i], (compare Exercise 9). 
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13.

14.

15.
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Rings22

Yes S is a subring (without identity). For instance to prove closure for addition suppose f, g ∈ S. 
Then (f + g)(2) = f(2) + g(2) = 0 + 0 = 0 so that f + g ∈ S.

(a) Answered in the text. 

Since (a + b 2 ) + (c + d 2 ) = (a + c) + (b + d) 2  and (a + b 2 )⋅(c + d 2 ) = (ac + 2bd) + 

(ad + bc) 2  we see that [ 2 ] is closed under addition and multiplication. The zero element 0 = 0 

+ 0 2  is in the set and additive inverses exist: –( 2)a b+  = (–a) + (–b) 2 .  Apply Theorem 3.2. 

(b)  + (0, 0) (1, 1) (1, 0) (0, 1) 
(0,0) (0, 0) (1, 1) (1, 0) (0, 1) 
(1, 1) (1, 1) (0, 0) (0, 1) (1, 0) 
(1, 0) (1, 0) (0, 1) (0, 0) (1, 1) 
(0, 1) (0, 1) (1, 0) (1, l) (0, 0) 

 (0, 0) (1.1) (1, 0) (0, 1)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(1.1) (0, 0) (1, 1) (1, 0) (0, 1)
(1, 0) (0, 0) (1, 0) (1, 0) (0, 0)
(0, 1) (0, 0) (0, 1) (0, 0) (0, 1)

(c) + (0, 0) (1, 1) (2, 2) (0, 1) (1, 2) (2, 0) (1, 0) (2, 1) (0, 2) 
(0, 0) (0, 0) (1, 1) (2, 2) (0, 1) (1, 2) (2, 0) (1, 0) (2, 1) (0, 2) 
(1, 1) (1, 1) (2, 2) (0, 0) (1, 2) (2, 0) (0, 1) (2, 1) (0, 2) (1, 0) 
(2, 2) (2, 2) (0, 0) (1, 1) (2, 0) (0, 1) (1, 2) (0, 2) (1, 0) (2, 1) 
(0, 1) (0, 1) (1, 2) (2, 0) (0, 2) (1, 0) (2, 1) (1, 1) (2, 2) (0, 0) 
(1, 2) (1, 2) (2, 0) (0, 1) (1, 0) (2, 1) (0, 2) (2, 2) (0, 0) (1, 1) 
(2, 0) (2, 0) (0, 1) (1, 2) (2, 1) (0, 2) (1, 0) (0, 0) (1, 1) (2, 2) 
(1, 0) (1, 0) (2, 1) (0, 2) (1, 1) (2, 2) (0, 0) (2, 0) (0, 1) (1, 2) 
(2, 1) (2, 1) (0, 2) (1, 0) (2, 2) (0, 0) (1, 1) (0, 1) (1, 2) (2, 0) 
(0, 2) (0, 2) (1, 0) (2, 1) (0, 0) (1, 1) (2, 2) (1, 2) (2, 0) (0, 1) 

 (0, 0) (1, 1) (2, 2) (0, 1) (1, 2) (2, 0) (1, 0) (2, 1) (0, 2)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(1, 1) (0, 0) (1, 1) (2, 2) (0, 1) (1, 2) (2, 0) (1, 0) (2, 1) (0, 2)
(2, 2) (0, 0) (2, 2) (1, 1) (0, 2) (2, 1) (1, 0) (2, 0) (1, 2) (0, 1)
(0, t) (0, 0) (0, 1) (0, 2) (0, 1) (0, 2) (0, 0) (0, 0) (0, 1) (0, 2)
(1, 2) (0, 0) (1, 2) (2, 1) (0, 2) (1, 1) (2, 0) (1, 0) (2, 2) (0, 1)
(2, 0) (0, 0) (2, 0) (1, 0) (0, 0) (2, 0) (1, 0) (2, 0) (1, 0) (0, 0)
(1, 0) (0, 0) (1, 0) (2, 0) (0, 0) (1, 0) (2, 0) (1, 0) (2, 0) (0, 0)
(2, 1) (0, 0) (2, 1) (1, 2) (0, 1) (2, 2) (1, 0) (2, 0) (1, 1) (0, 2)
(0, 2) (0, 0) (0, 2) (0, 1) (0, 2) (0, 1) (0, 0) (0, 0) (0, 2) (0, 1)

−

−
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16. (a) For example, (
1 2
−1 −2

)
,

(
−3 5

5 −3

)
,

(
0 4
0 −4

)
.

(b) Suppose B,C ∈ S. Then since M(R) is a ring, multiplication distributes over addition,
so that A(B + C) = AB + AC = 0 + 0 = 0 since B,C ∈ S. Thus B + C ∈ S. Also,
A(BC) = (AB)C = 0 · C = 0, so that BC ∈ S. Certainly 0 ∈ S. Finally, if B ∈ S, then
A(−B) = −AB = 0, so that −B ∈ S and thus condition (iv) for subrings is satisfied as well.
Thus S is a subring of M(R).

17.

18.

19.

20.

21.

22.

23.

24.
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3.1 Definition and Examples of Rings 23

The axioms involving addition only (1, 2, 3, 4) certainly remain true in the new system. The remaining 
axioms are trivial: Closure: ab = 0 is always in . Associativity: a(bc) = 0 = (ab)c. Distributivity: a(b + 
c) = 0 and ab + ac = 0 + 0 = 0. Also multiplication is commutative: ab = 0 = ba. 

This is not a ring since the distributive law fails: a(b + c) = 1 while ab + ac = 1 + 1 = 2. 

Answered in the text. 

S = 2. 10 is the set of all multiples of 2. Then S is a subring as in Exercise 16. Noting that 6.2 = 2, 
6.4 = 4, 6.6 = 6 and 6.8 = 8, we see that 6 acts as an identity element in S. 

Closure properties are clear. a ⊕ (b ⊕ c) = a ⊕ (b + c – l) = a + (b + c – l) – 1 = a + b + c – 2. 
Checking that (a ⊕ b) ⊕ c = a + b + c – 2, we see addition is associative. Commutativity: a ⊕ b = a 
+ b –1 = b + a –1 = b ⊕ a. Note that 1 is the “zero element” here: 1 ⊕ a = l + a – l = a. The 
“negative” of a is 2 – a, because a ⊕ (2 – a) = a + (2 – a) – 1 = 1, which is the “zero”. For 
multiplication, a  (b  c) = a  (b + c – bc) = a + (b + c – bc) – a(b + c – bc) = a + b + c – bc – 
ab – ac + abc. Check that (a  b)  c equals the same thing. Also a  b = a + b – ab = b + a – ba 
= b  a. For the distributive laws we need only check one side: a  (b  c) = a  (b + c – l) = a + 
(b + c – l) – a(b + c – l) = (a + b – ab) + (a + c – ac) – 1 = (a  b) ⊕ (a  c). Finally to prove it is 
an integral domain suppose a  b = 1, the “zero element”. Then a + b – ab = l so that (l – a)(l – b) = 
0 in . Therefore either a = l or b = l. That is, either a or b must equal “zero”. 

Answered in the text. 

The axioms for addition have been proved in Exercise 18. The multiplication is clearly closed in 
, Commutativity of  is easy. For associativity, a  (b  c) = a(b  c) – (a + (b  c)) + 2 = 

a(bc – (b + c) + 2) – (a + (bc – (b + c) + 2) + 2 = abc – ab – ac – bc + a + b + c. Check that 
(a  b)  c equals the same thing. For distributivity: a  (b  c) = a  (b + c – l) = a(b + c – 
l) – (a + (b + c – l)) + 2 = ab + ac – 2a – b – c + 3 = (ab – a – b + 2) + (ac – a – c + 2) – 1 = 
(a  b) ⊕ (a  c). Finally to prove it is an integral domain suppose a  b = l. Then ab – (a + b) 
+ 2 = l and (a – l)(b – 1) = 0 in  forcing a = 1 or b = 1. 

R = 3.ℤ18 is of all the multiples of 3, that is, R = { k : k  = 3r for some r  ℤ lg}. This observation 
makes it easy to check closure of the operations, the existence of a zero and of additive inverses. 
Therefore R is a subring (compare Exercise 21). If 3k is an identity element in R, then (3k)⋅(3n) ≡ 
(3n) (mod 18) for every n. Choosing n = 2 this implies 0 ≡ 6 (mod 18), which is false. No identity 
exists in R. 

∈
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25.

26.

27. If a
p ,

b
q ∈ S, with p, q odd, then

a

p
+
b

q
=
aq + bp

pq
∈ S since pq is odd

a

q
· b
q

=
ab

pq
∈ S since pq is odd.

Thus S satisfies conditions (i) and (ii) for being a subring. Clearly 0 = 0
1 ∈ S, satisfying (iii).

Finally, if a
p ∈ S, then −a

p ∈ S, so that a
p + x = 0 has a solution. Thus S is a subring.

However, S is not a field, since for example the inverse of 2
3 in Q is 3

2 , which cannot be written
with an odd denominator (and an integral numerator). Thus 2

3 does not have a multiplicative
inverse in S.

28.

29.

30.
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Closure properties are clear. a ⊕ (b ⊕ c) = a ⊕ (b + c + l) = a + (b + c + 1)+ 1 = a + b + c + 
2. Check that (a ⊕ b) ⊕ c = a + b + c + 2 to show that addition is associative. Commutativity: 
a ⊕ b = a + b + 1 = b + a + l = b ⊕ a. Note that –1 is the "zero element" here: (–1) ⊕ a = – l 
+ a + l = a. The “negative” of a is –2 – a, because a ⊕ (–2 – a) = a + (– 2 – a) + 1 = –1, 
which is the “zero”. For multiplication: a  (b  c) = a  (bc +b + c) = a(bc + b + c) + a + 
(bc + b + c) = abc + ab + ac + bc + a + b + c. Check that (a  b)  c equals the same thing. 
Also a  b = ab + a + b = ba + b + a = b  a. Distributivity: a  (b  c) = a  (b + c + l) 
= a(b + c + 1) + a + (b + c + l) = (ab + a + b) + (ac + a + c) + 1 = (a  b) ⊕ (a  c). 
Finally to prove it is an integral domain suppose a  b = –1, the “zero element”. Then ab + a + 
b = –l so that (l + a)(l + b) = 0 in . Therefore either a = –l or b = –l. That is, either a or b 
must equal zero . “ ”

Yes. Closure is clear and so is the commutativity and associativity of ⊕. The zero element is 1 

and the additive inverse of a is 1
a . Note that a  b = alogb = exp(log(a) – log(b)), where exp(x) = 

. From this the associativity and commutativity of  are easily seen. Also a  (b  c) = 

exp(log(a) – log(b ⊕ c)) = exp(log(a) – (log(b) + log(c))) = exp(log(a) – 1og(b)) ′exp(log(a) – 

log(c)) = (a  b) ⊕ (a  c). Therefore L is a commutative ring. The identity element is e (the 

base of the log). To prove L is a field we start with a ≠ e in L and show that there exists b with a 

 b = e. Equivalently we need log(a) – log(b) = 1 so that b = 1
log(b)exp( )  which does exist in L. 

Let r/pi and s/pi be typical elements of R. Then r/pi + s/pj = (rpi + spi)/pi+j and (r/pi)(s/pj) = 
(rs)/pi+j both lie in R, so that R is closed under the operations. Since  ⊆ R we know that 0, 1 ∈ 
R and R has additive inverses (if x ∈ R then – x = (–l)x ∈ R). 

st = s(s + s) = ss + ss = t + t = s. Similarly we have ts = s. Finally tt = (s + s)t = st + st = s 
+ s = t. 

There are several ways to produce the answers. For instance, xy = x(x + x) = xx + xx = y + y = 
w, Similarly yx = w. Then zx = (x + y)x = xx + yx = y + w = y and similarly xz = y. Finally 
yz = y(x + y) = yx + yy = w + w = w. 

ebx
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31. (a) Let S be the set of scalar matrices, and write Ak for the scalar matrix

(
a 0
0 a

)
. Then short

computations show that Ak + Ak = A2k ∈ S and Ak · Ak = Ak2 ∈ S. Clearly 0 ∈ S. Finally,
Ak +A−k = 0, so that Ak +x = 0 has a solution. Thus S satisfies all four conditions for being
a subring of M(R), so it is a subring.

(b) If A ∈M(R) is an arbitrary matrix, we have

AkA =

(
k 0
0 k

)(
a b
c d

)
=

(
ka kb
kc kd

)
, AAk =

(
a b
c d

)(
k 0
0 k

)
=

(
ka kb
kc kd

)
.

(c) Suppose K =

(
a b
c d

)
is such a matrix. Since KA = AK for every A ∈ M(R), we have for

instance with A =

(
1 0
0 0

)
:

KA =

(
a b
c d

)(
1 0
0 0

)
=

(
a 0
c 0

)
, while AK =

(
1 0
0 0

)(
a b
c d

)
=

(
a b
0 0

)
.

Since these two must be equal, we get b = c = 0, so that K =

(
a 0
0 d

)
. Now choose

A =

(
0 1
0 0

)
:

KA =

(
a 0
0 d

)(
0 1
0 0

)
=

(
0 a
0 0

)
, while AK =

(
0 1
0 0

)(
a 0
0 d

)
=

(
0 d
0 0

)
.

Since these two must be equal, we must have a = d, so that K is a scalar matrix.

32. If a, b ∈ Z(R), then for all r ∈ R we have (a+b)r = ar+br = ra+rb = r(a+b), so that a+b ∈ Z(R).
Similarly, for all r ∈ R we have (ab)r = a(br) = a(rb) = (ar)b = (ra)b = r(ab), so that ab ∈ Z(R).
Clearly 0 ∈ Z(R) since 0r = r0 = 0 for all r ∈ R. Finally, if a ∈ Z(R), then also −a ∈ Z(R), where
−a is a solution to a + x = 0R, since a + (−a) = 0 implies that (a + (−a))r = ar + (−a)r = 0
and also that r(a + (−a)) = ra + r(−a) = 0. Thus ar + (−a)r = ra + r(−a). But ar = ra, so
that ar + (−a)r = ar + r(−a). Let x be such that ar + x = 0R; then ar + (−a)r + x = (−a)r and
ar + r(−a) + x = r(−a), so that (−a)r = r(−a) and −a ∈ Z(R). Thus Z(R) is a subring of R.

33.
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3.1 Definition and Examples of Rings 25

Since R and S are closed under addition and multiplication, Theorem 3.1 shows that R × S is also 
closed under addition and multiplication. Each of the commutative, associative and distributive 
laws for R × S follows from the corresponding law for R and S. For example, (r, s) ((r′, s′) . (r", 
s")) = (r, s) ⋅ (r′r", s′s") = (r(r′r"), s(s′s") = ((rr′)r", (ss′)s") = (rr′, ss′) (r", s") = ((r, s).(r′, s′))
(r", s"). We omit the verification of the other laws. The zero element is (0R 0S) and the additive 
inverse is given by – (r, s) = (–r, –s). If R and S each have an identity, it is easy to verify that 
(1R lS) is an identity for R × S. 

−
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34.

35.

36.

37. (a) If A,B ∈ M(R), then the entries of A + B and of AB are sums and products of the entries
of A and B; since those are elements of R, so are their sums and products. Thus A + B and
AB ∈M(R), satisfying Axioms 1 and 6. Since addition in M(R) is component by component,
and addition in R is commutative and associative, the same holds for M(R), so that Axioms
2 and 3 are satisfied. 0 ∈ M(R) is the matrix all of whose entries are 0, satisfying
Axiom 4.For axiom 5, the inverse of a matrix A ∈M(R) is the matrix −A each of whose entries

is the additive inverse in R of the corresponding entry of A. For axioms 7 and 8, let

a =

(
a1 a2
a3 a4

)
, b =

(
b1 b2
b3 b4

)
, c =

(
c1 c2
c3 c4

)
.
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Generally if R is a ring with identity then M(R) is also a ring with identity. The proof involves 

some direct calculations with the definitions of matrix addition and multiplication. We omit most 

of the details, but here is part of a proof for associativity of multiplication: Let 

11 12 11 12

,  
21 22 21 22

a a b b
A Ba a b b

⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜ ⎟⎜⎟= =⎜ ⎟⎜⎟ ⎟⎜ ⎟⎜ ⎜ ⎟⎜⎝ ⎠ ⎝ ⎠
and 

11 12 11 11 12 21 11 12 12 22

21 22 21 11 22 21 21 12 22 22

 in ( ). Then 
c c a b a b a b a b

C M R ABc c a b a b a b a b

⎛ ⎞+ +⎛ ⎞ ⎟⎜⎟⎜ ⎟⎜⎟= =⎜ ⎟⎜⎟ ⎟⎜ ⎟⎜ + +⎜ ⎟⎜⎝ ⎠ ⎝ ⎠
 and the upper left entry of 

(AB)C is (a11bI1 + a12b21)c11 + (a11b12+a12b22)c21. Similarly 
11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

b c b c b c b c
BC

b c b c b c b c

⎛ ⎞+ + ⎟⎜ ⎟⎜= ⎟⎜ ⎟+ +⎜ ⎟⎜⎝ ⎠
 

Answered in the text. The example shows that both assertions are false. 

To show that f and g lie in T check the continuity. Since the functions 0, x – 2 and 2 – x are 
clearly continuous, the question is whether f and g are continuous at x = 2, The one-sided limits 
at x = 2 are : 

.
x x x x→ → → →

+ +
  2 �  2 �   2  2

lim f(x) = lim 0 = 0 and lim f(x) = lim (x 2) = 0  

Since they are equal, the function f is continuous at 2. Similarly g is continuous. If x ≤ 2 then 
(fg)(x) = f(x).g(x) = 0 (2 – x) = 0. If 2 < x then (fg)(x) = f(x) g(x) = (x – 2).0 = 0. Therefore fg 
= 0 in the ring T. Since f ≠ 0 and g ≠ 0 we conclude that T is not an integral domain. 

and the upper left entry of A(BC) is a l l(b 11c11 + b 12c21) + a12(b 21c11 + b 22c21). These entries are 
equal, and three similar calculations show that (AB)C = A(BC). 

    Furthermore M(R) is noncommutative since for example the matrices 
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
0 1 0 0

U = and V =
0 0 1 0

 

do not commute: UV ≠ VU. To complete the problem we apply this information to the ring ℝ = ℤ2 
and note that there are 16 elements in the ring M(ℤ2). 

–
––
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Then

a(bc) =

(
a1 a2
a3 a4

)((
b1 b2
b3 b4

)(
c1 c2
c3 c4

))
=

(
a1 a2
a3 a4

)(
b1c1 + b2c3 b1c2 + b2c4
b3c1 + b4c3 b3c2 + b4c4

)
=

(
a1(b1c1 + b2c3) + a2(b3c1 + b4c3) a1(b1c2 + b2c4) + a2(b3c2 + b4c4)
a3(b1c1 + b2c3) + a4(b3c1 + b4c3) a3(b1c2 + b2c4) + a4(b3c2 + b4c4)

)
=

(
a1b1c1 + a1b2c3 + a2b3c1 + a2b4c1 a1b1c2 + a1b2c4 + a2b3c2 + a2b4c4
a3b1c1 + a3b2c3 + a4b3c1 + a4b4c3 a3b1c2 + a3b2c4 + a4b3c2 + a4b4c4

)
(ab)c =

((
a1 a2
a3 a4

)(
b1 b2
b3 b4

))(
c1 c2
c3 c4

)
=

(
a1b1 + a2b3 a1b2 + a2b4
a3b1 + a4b3 a3b2 + a4b4

)(
c1 c2
c3 c4

)
=

(
(a1b1 + a2b3)c1 + (a1b2 + a2b4)c3 (a1b1 + a2b3)c2 + (a1b2 + a2b4)c4
(a3b1 + a4b3)c1 + (a3b2 + a4b4)c3 (a3b1 + a4b3)c2 + (a3b2 + a4b4)c4

)
=

(
a1b1c1 + a1b2c3 + a2b3c1 + a2b4c3 a1b1c1 + a1b2c4 + a2b3c2 + a2b4c4
a3b1c1 + a3b2c3 + a4b3c1 + a4b4c3 a3b1c2 + a3b2c4 + a4b3c2 + a4b4c4

)
The computation for Axiom 8 is similar but simpler. Thus M(R) is a ring.

(b) If e is the identity in R, then I =

(
e 0
0 e

)
is the identity in M(R), since if A ∈M(R), we have

IA =

(
e 0
0 e

)(
a b
c d

)
=

(
e · a+ 0 · c e · b+ 0 · d
0 · a+ e · c 0 · b+ e · d

)
= A,

and similarly for AI.

38. Suppose r, s ∈ AR. Then a(r+ s) = ar+ as = 0 + 0 = 0, so that r+ s ∈ AR. Also a(rs) = (ar)s =
0s = 0, so that rs ∈ AR. Clearly 0 ∈ AR. Finally, if r ∈ AR, then −r ∈ AR, where −r is a solution
to r + x = 0R. This is true since r + (−r) = 0, so that a(r + (−r)) = ar + a(−r) = 0. But ar = 0,
so that 0 + a(−r) = a(−r) = 0. Hence AR is a subring of R.

39.

40.

41. (a) Let A =

(
a a
b b

)
∈ S. Then

A

(
0.5 0.5
0.5 0.5

)
=

(
a(0.5) + a(0.5) a(0.5) + a(0.5)
b(0.5) + b(0.5) b(0.5) + b(0.5)

)
=

(
a a
b b

)
= A

A

(
0.7 0.7
0.3 0.3

)
=

(
a(0.7) + a(0.3) a(0.7) + a(0.3)
b(0.7) + b(0.3) b(0.7) + b(0.3)

)
=

(
a a
b b

)
= A

A

(
2 2
−1 −1

)
=

(
a(2) + a(−1) a(2) + a(−1)
b(2) + b(−1) b(2) + b(−1)

)
=

(
a a
b b

)
= A.
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Since ( 2)( 2) ( 2 ) ( ) 2,r s u v ru sv ru su+ + = + + +  the set ( 2 ) is closed under 

multiplication. Closure under addition is easier to check. Since  ⊆ ( 2 ) we have 0 and 1 

there. Additive inverses are easy to check. To show that ( 2 ) is a subfield we need to show 

that if 0 ≠ r + s 2  in ( 2 ), then (r + s 2 )
1 also lies in ( 2 ). To see this, “rationalize the 

denominator” to express (r + s 2 )–1 =
  2  

2   
( 2)( 2  )  

r s r r

r s r s δ δ
= −

+
where δ = r2 – 2δ2. 

Repeat the answer for Exercise 31, changing 2 to d in all the appropriate places. 

–

–

–
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(b) Suppose B =

(
x x
y y

)
∈ S. Then

AB =

(
a a
b b

)(
x x
y y

)
=

(
ax+ ay ax+ ay
bx+ by bx+ by

)
=

(
a(x+ y) a(x+ y)
b(x+ y) b(x+ y)

)
Clearly AB = A if and only if x+ y = 1.

(c) Suppose B is as in the previous part, with x+ y = 1. Then

BA =

(
x x
y y

)(
a a
b b

)
=

(
xa+ xb xa+ xb
ya+ yb ya+ yb

)
If BA = A, then xa+ xb = x(a+ b) = a and ya+ yb = y(a+ b) = b, so that we must have

x+ y =
a

a+ b
+

b

a+ b
= 1.

42.

43.

44.
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(a) Suppose bv = 1R. Then if bb = b we find 1R = bv = (bb)v = b(bv) = blR = b. 
(b) Suppose au = 1R. Then ua ⋅ ua = u(au)a = u1Ra = ua and part (a) applies with b = ua. 

Therefore ua= lR, as claimed. 

(a) Verifying these formulas is a routine calculation with 2 × 2 matrices. 
(b) Showing closure under addition is easy. For multiplication: (a + bi + cj + dk)-(a′ + b′i + 

c′j + d′k) = (aa′ – bb′ – cc′ – dd′) + (ab′ + ba′ + cd ′ – dc′)i + (acv – bd ′ + ca′ + db′)j 
+ (ad′ + be′ – cb′ + da′)k. Since all the coefficients are real this answer lies in H. The 
commutative, associative and distributive laws are inherited from M(μ). Since the zero 
matrix and the identity matrix are in H, and H is closed under "negatives" we see that H 
is a subring. It is non-commutative since, for example, ij ≠ ji. 

(c) By explicit calculation we get (a + bi + cj + dk)(a – bi – cj – dk) = (a2 + b2 + c + d ). If 
α = (a + bi + cj + dk) ≠ 0 then ∆ = (a2 + b2 + c2 + d2) ≠ 0 in R and a–1 = ∆–l(a – bi – cj 
– dk) does lie in H. 

(d) Setting α = bi + cj+ dk we see from (c) that α2 = –α(–α) = –(b2 +c2 + d2). Then any 
choice of b, c, d € R with b2 + c2 + d2 = 1 provides a quaternion  with 2 = –1. 

(a) The sets M and N are indicated as disks in the pictures. (Such pictures are called “Venn 
diagrams”.) The shaded parts indicate the sets M + N and MN. 

 

 
M + N 

 

 
 MN

The axioms can be “proved by picture” here. For instance the commutativity is clear. The 
associativity follows after considering the following pictures. 

α α
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45.
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L + M + N LMN 
 
The distributive law is illustrated by drawing LM + LN and comparing it to the picture for L(M + N). 
 

 
LM LN L(M + N) 

 
The zero element is the empty set Ø, since M + Ø = (M ) ¯ (Ø) = M. The identity element is S 
since SM = S ˘ M = M. 

(b) M2 = M ˘ M = M and M + M = Ø ¯ Ø  = Ø. 

The axioms involving addition alone have already been verified. The closure of multiplication is 
clear from the formula. The associative, commutative and distributive laws can be checked by 
direct multiplication (compare Exercise 35). For example, (a, b) ⋅ ((a′, b′) + (a", b")) = (a, b) – 
(a′ + a", b′ + b") = (a(a′ + a") – b(b′ + b"), a(b′ + b") + b(a′ + a")) and (a, b) – (a′, b") + (a, b) 
–(a", b") = (aa′ – bb′, ab′ + ba′) + (aa" – bb", ab" + ba") = (aa′ – bb′ + aa" – bb", ab′ + ba′ + ab" 
+ ba"). These quantities are equal, so the distributive law is verified. The element (1, 0) is the 
identity element. Therefore these operations make ℝ × ℝ into a commutative ring with identity. 
Note that (a, b) ⋅ (a, –b) = (a2 + b2, 0). If (a, b) ≠ (0, 0) then a2 + b2 ≠ 0 and (a/(a2 + b2), –b/(a2 
+ b2)) is the inverse of (a, b). Hence this ring is a field. 
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3. (a) For example,

(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
, and

(
1 0
0 1

)
.

(b) Since 02 = 0, 12 = 1, 22 = 4, 32 = 9, 42 = 16 ≡ 4, 52 = 25 ≡ 1, 62 = 36 ≡ 0, 72 = 48 ≡ 1,
82 = 64 ≡ 4, 92 = 81 ≡ 9, 102 = 100 ≡ 4, and 112 = 121 ≡ 1, the idempotents are 0, 1, 4, and
9.

4. Of course C = 0 would work for all three matrices. But nonzero matrices are (for example):(
6 9
2 3

)(
−3 −3

2 2

)
=

(
0 0
0 0

)
(

2 5
2 5

)(
5 −10
−2 4

)
=

(
0 0
0 0

)
 1

2
1
4

3 3
2

−3 −3

2 2

 =

(
0 0
0 0

)

46.

3.2 Basic Properties of Rings

1.

2.

A−1 =

 5
3·5−2·7 − 2

3·5−2·7

− 7
3·5−2·7

3
3·5−2·7

 =

5 −2

7 3


B−1 =

 5
4·5−3·(−2) − 3

4·5−3·(−2)

− −2
4·5−3·(−2)

4
4·5−3·(−2)

 =

 5
26 − 3

26

1
13

2
13


C−1 =

 6
(1/3)·6−0·5 − 0

(1/3)·6−0·5

− 5
(1/3)·6−0·5

1/3
(1/3)·6−0·5

 =

 3 0

− 5
2

1
6



5. (a) Suppose that 0R is a zero element of R, and let w also be a zero element. Then 0R + x = 0R
has the solutions 0R, since 0R is a zero element, and also w, since w is a zero element. Since
the solution to that equation is unique, we must have w = 0R, so that the zero element is
unique.
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Let r, s be any positive integers and let T be the subset of all multiples of r in the ring rs. Since 
ar ≡ br (mod rs) if and only if a ≡ b (mod s), we see that T = {0, r, 2r, 3r, ... , (s – l)r} is the 
given subset. The closure of the operations in T and the existence of additive inverses is easy to 
check. For instance, if ar and br are typical elements of T then ar + br = (a + b)r is also in T. 
Hence T is a subring. 
 T has an identity element e if and only if e = xr for some x and (xr)(yr) ≡ (yr) (mod rs) for 
every y. This is equivalent to requiring xr2 ≡ r (mod rs), which becomes: xr ≡ 1 (mod s). By 
Corollary 2.10, such an x exists whenever (r, s) = 1. Therefore, the subring T has an identity 
element e if and only if (r, s) = 1. In that case, there exist integers x, k satisfying xr – ks = 1 and 
e = xr = ks + 1. 

 (a) a2 – ab  + ba 2 
 (b) a3 + a2b + aba  + ba2  + ab2 + bab  + b2a + b3 
 (c) a2 – b2     and   a3 + 3 a2b + 3 ab2  + b3 

 – b
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(b) Suppose that 1R is an identity of R, and let e also be an identity element. Since 1R is an
identity element, we have 1Re = e. Since e is an identity element, we have 1Re = 1R. Thus
1R = 1Re = e, so that e = 1R and the identity is unique.

(c) No, it cannot. Suppose that b and c are inverses to a. Then since ab = 1 = ac, we get ab = ac;
multiply both sides on the left by b to get (ba)b = (ba)c. But b is an inverse, so that ba = 1
and thus b = c.

6. (a) The product AC has entries each of which is a sum of terms; each of those terms is the product
of an entry of A and an entry of C, say ac. The product A(kC) has the same combination of
products of entries, obviously, but each entry of kC is k times the corresponding element of
C. Thus the product ac in AC becomes akc = k(ac) in the product A(kC). Since an entry
of AC is a sum of terms like that, it is k times the corresponding sum of terms in AC. But
AC = 0, so that each such sum of terms is zero, so k times it is zero, and A(kC) = 0.

(b) For example (other answers are possible)(
−1 −1

2 2

)
,

(
−3 −3

6 6

)
,

(
2 2
−4 −4

)
.

7.

8.

9. By Theorem 3.6, we need only show it is closed under subtraction and multiplication, since it is
clearly nonempty:(

a 4b
b a

)
−
(
c 4d
d c

)
=

(
a− c 4(b− d)
b− d a− c

)
,

(
a 4b
b a

)(
c 4d
d c

)
=

(
ac+ 4bd 4ad+ 4bc
bc+ ad 4bd+ ac

)
=

(
ac+ 4bd 4(ad+ bc)
ad+ bc ac+ 4bd

)
,

and both of those matrices are of the required form. Thus S is a subring.

10. (a) R = {(0, 0), (1, 0), (2, 0)} and S = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)}.
(b) R is closed under subtraction since (r1, 0S)− (r2, 0S) = (r1 − r2, 0S − 0S) = (r1 − r2, 0S) ∈ R.

It is closed under multiplication since (r1, 0S)(r2, 0S) = (r1r2, 0S0S) = (r1r2, 0s) ∈ R. Thus R
is a subring of R× S.

(c) S is closed under subtraction since (0R, s1)− (0R, s2) = (0R− 0R, s1− s2) = (0R, s1− s2) ∈ S.
It is closed under multiplication since (0R, s1)(0R, s2) = (0R0R, s1s2) = (0R, s1s2) ∈ S. Thus
S is a subring of R× S.

11. To show it is closed under subtraction, suppose r, s ∈ S. Then m(r−s) = mr−ms = 0R−0R = 0R,
so that r − s ∈ S. To show it is closed under multiplication, m(rs) = (mr)s = 0Rs = 0R, so that
rs ∈ S. Thus S is a subring of R.

12. (a) To see that it has a solution, add −a to both sides to get −a+a+x = −a+b, so that 0R +x =
−a+ b and thus x = −a+ b is a solution (check: a+ (−a+ b) = (a+ (−a)) + b = 0R + b = b).
To see that the solution is unique, suppose that a + x = b = a + y. Then by Theorem 3.4,
x = y, so that the solution is unique.
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To prove S is a subring we should know that if m, n ∈  then m1R – n1R = (m – n) 1R and 
(m1R)(n1R) = (mn)1R. These are special cases of formulas proved in Exercise 21. 

T is nonempty since it contains 0R. Suppose x, y ∈ T. Then x = rb and y = sb for some r, s ∈ R. 
Compute x – y = rb – sb = (r – s)b lies in T and xy = x(sb) = (xs)b lies in T. Apply Theorem 3.6. 
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(b) To see that it has a solution, multiply both sides on the left by a−1. This gives a−1(ax) = a−1b,
or (a−1a)x = 1Rx = x = a−1b. To see that the solution is unique, suppose ax = b = ay. Then
ax = ay; multiplying both sides of the equation by a−1 on the left gives a−1(ax) = a−1(ay),
so that (a−1a)x = 1Rx = x = (a−1a)y = 1Ry = y. Thus x = y and the solution is unique.

13.

14. Suppose e is an idempotent. Then e2 = e so that e2 − e = e(e − 1) = 0. But R is an integral
domain, so either e = 0 or e− 1 = 0; that is, either e = 0R or e = 1R.

15.

16.

17. Suppose that a is a unit and that ab = 0. Multiplying on the left by a−1 gives a−1ab = a−10 = 0.
But a−1ab = b, so we get b = 0. Thus if ab = 0, then b = 0, so that a is not a zero divisor.

18. We are given au = 1R = va. Thus

v = v1R = v(au) = (va)u = 1Ru = u.

19.

20.

21. (a) Since ab = ac, we have ab − ac = a(b − c) = 0. But a is not a zero divisor, and a 6= 0. It
follows that b− c = 0, so that b = c.

(b) Since ba = ca, we have ba − ca = (b − c)a = 0. But a is not a zero divisor, and a 6= 0. It
follows that b− c = 0, so that b = c.

22.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Rings32

(a) Yes. Use Theorem 3.6. S ˘ T is nonempty since 0R lies in every subring. If a, b ∈ S ˘ T 
then a, b ∈ S and a, b ∈ T. Therefore a – b and ab lie in both S and T, since they are 
subrings. Putting them back together, conclude that a – b and ab lie in S ˘ T. 

(b) Not necessarily. For example 2  and 3  are subrings of  but their union is not closed 
under addition. 

(a) We know that a–1 and b–l exist in R. Then (ab)(b–1a–1) = a bb –1)a–l = a(lR)a
–1 = aa–1 = 1R. 

Similarly we have (b–1 a–1 )ab = 1R. Therefore ab is a unit with inverse equal to b–1 a–1. 
(b) In the ring of quaternions, we know that i⋅(–i) = (–i);i = –i2 = 1, so that i–1 = –i. 

Similarly j–1 = –j and k–1 = –k. Then (ij)–1 = k–1 = –k while i–1 j–1 = (–i)(–j) = ij = k. 

False. 0R is not in the set of units of R (unless R is the zero ring {0R}). 

(r s) ∈ R × S is a unit if and only if r is a unit in R and s is a unit in S.

If 0R ≠ r ∈ R and 0R ≠ s ∈ S, then (r, 0s ) and (0R, s) are nonzero elements of R × S having 
product (r, 0s)⋅(0R, s) = (0R, 0s) = 0R × S. 

(a) A proof “by contradiction”: Suppose a and b are not zero divisors and suppose x ∈ R and 
(ab)x = 0R. Then a(bx) = 0R implies bx = 0R since otherwise a is a zero divisor. But bx = 
0R implies x = 0R, since b is not a zero divisor. The implication (ab)x = 0 => x = 0 shows 
that ab is not a zero divisor. 

(b) Suppose a is a zero divisor, so that ac = 0R for some c ± 0R. Then (ab)c = b(ac) = b0R = 
0R, so that ab is a zero divisor. When b is a zero divisor a similar proof works. 

(
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23.

24.

25. (a) Consider the subring S = Z × 0 of the ring Z × Z. Then S has identity 1S = (1, 0), but
1R = (1, 1).
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(a) (i) For a positive integer m we defined ma = a + a + . . . + a, where there are m 
summands. If m, n are positive integers then (m + n)a = (a + . . . + a) + (a + . . . + 
a), equalling m summands followed by n summands. Altogether there are m + n 
summands which add to (m + n)a. (Compare Exercise 17a.) If m = 0 then 0a = 0R. 
Therefore (0 + n)a = na = 0 + na = 0a + na = (0 + n)a, and the formula works in this 
case too. The case n = 0 is similar. 
(ii) Suppose m > 0. Then m(a + b) = (a + b) + (a + b) + . . . + (a + b) with m 
summands. Then there are m "a" terms and m "b" terms. Re-arranging (using the 
commutative and associative laws), we may First add up the m a′s, then the m b′s. Hence 
the quantity equals ma + mb. If m = 0 we easily find 0(a + b) = 0R = 0R + 0R = 0a + 
0b. 
(iii) Suppose m > 0. Then m(ab) = ab + ab + . . . + ab with m terms. By distributivity 
this equals (a + a + . . . + a)b = (ma)b. Similarly using the other distributive law, a(b + 
b + . . . + b) = a(mb). If m = 0 the equation is easier to verify. 
(iv) Suppose m, n > 0. Then (ma)(nb) = (a + a + . . . + a)(nb) with m summands. By 
distributivity this equals a(nb) + a(nb) + . . . + a(nb), and by (iii) it equals n(ab) + 
n(ab) + . . . + n(ab). Since there are m summands, this quantity equals mn(ab). (Note: 
For this last step we should really verify first that (mn)x = m(nx) for every x ∈ R.) If m 
= 0 or n = 0 a short separate argument is needed to show that each side of the equation 
equals 0R. 

(b) To handle negative cases, recall the definition. If n > 0 then (–n)a = (–a) + (–a) + . . . + 
(–a) with n summands. That is: (–n)a = n(–a). Claim, (–n)a = –(na). Proof. For by 
Theorem 3.5(4) we have –(2a) = –(a + a) = (–a) + (–a) = (–2)a. Extending this to 
larger sums proves the Claim. 
(i) Claim. If m, n ≥ 0 then (m – n)a = ma – na. Proof. In the case m – n ≥ 0 we apply 
part (a) to see: (m – n)a + na = (m – n + n)a = ma. Subtracting na we are done. If m – 
n ≤ 0, use the definition and the case just done to see: (m – n)a = –(n – m)a = –(na – 
ma) = ma – na. 
Claim. If m, n ≥ 0 then (–m + n)a = (–m)a + na. The proof is similar. 
Claim. If m, n ≥ 0 then (–m – n)a = (–m)a + (–n)a. 
Proof, (–m – n)a = (–(m + n))a = –((m + n)a) = –(ma + na) = –(ma) + –(na) = (–m)a 
+ (–n)a. These Claims combine to prove the assertion for all integers. 

(ii) if m > 0 then (–m)(a + b) = –(m(a + b)) = –(ma + mb) = –(ma) + –<mb) = (–m)a 
+ (–m)b. 
(iii) and (iv) are proved similarly. 

(a) For a positive integer m we have, by definition, am = a⋅a⋅a⋅⋅⋅a with m factors. Then aman 
= (a⋅a⋅⋅⋅a)(a⋅a⋅⋅⋅a) equals m factors followed by n factors, yielding a total of m + n 
factors. Then it equals a m+n. If R has identity and a ≠ 0 then we have defined a0 = 1. In 
this case the formulas also work when m or n equals 0. 

(b) (am)n = (am)⋅(am)⋅⋅⋅(am) with n factors. Expanding each factor am as a product of m a′s, we 
see that there is a total of mn factors of a. Hence it equals amn. 

(c) If ab = ba then anbn = (ab)n for every positive integer n. This can be proved in the same 
way, listing all the factors and rearranging. 

3.2 Basic Properties of Rings

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



30.

31.

32.

33.

26.

27.

28.

29.
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(b) By Exercise 14, the only idempotents in R are 0R and 1R, so these are the only solutions to
x2 = x in R. But 1S satisfies this equation, since multiplication in S is the same as that in R,
so that 1S = 0R = 0S or 1S = 1R. Since R and S are integral domains, 1S 6= 0S , so that we
must have 1S = 1R

.

34

If a ∈ S then a + 0s = a since 0s is the zero for S. But since S is a subring of R we may add –a to 
both sides (viewed in R now) to conclude that 0S = 0R .

No. For example in the polynomial ring ℝ[x] the subset S = x = {nx ⎟ n ∈ } is not closed 
under multiplication. 

We use 1 for 1R and 0 for 0R to simplify the table. Since a and b are units and a, b ≠ l, we know 
ab ≠ 0, a, b. Therefore ab = 1 and the following table is easy to complete. 
 

 0 1 a b 
0 0 0 0 0 
1 0 1 a b 
a 0 a b 1 
b 0 b 1 a

Assume 1R ≠ 0R. If R is an integral domain then we prove cancellation: Suppose a ≠ 0R and ab = 
ac. Then a(b – c) = ab – ac = 0R and therefore b – c = 0R (since R is an integral domain. Then b 
= c and cancellation holds. Conversely, to show: If ab = 0R then a = 0R or b = 0R. Proof. Suppose 
a ≠ 0R (otherwise we are immediately done). Then ab = 0R = a0R and cancellation implies b = 0R. 

Given a unit u ∈ T. For any x ∈ R we have xu ∈ T (compare Exercise 6). Then for any r ∈ R: r 
= (ru–1)u ∈ T. Therefore R = T. 

(a) Answered in the text. Consequently we have a = –a for every a. 
(b) a + b = (a + b)2 = a2 + ab + ba + b2 Cancelling a = a2 and b = b2 we conclude that 0R = ab + ba. 
 Then by part (a), ab = –ba = ba. 

(a) It is easy to check that the rules for addition all hold in R × . The system is closed under 
multiplication, since rs + ms + nr ∈ R and mn ∈ . Associativity: (r, m).((s, n)(t, k)) = 
(r, m).(st + nt + ks, nk) = (r(st + nt + ks) + m(st + nt + ks) + (nk)r, m(nk)). On the 
other hand ((r, m)⋅(s, n))⋅(t, k) = (rs + ms + nr, mn)⋅(t, k) = ((rs + ms + nr)t + (mn)t 
+ k(rs + ms + nr), (mn)k). These quantities are seen to be equal, using the rules derived 
in Exercise 21. 
Distributivitv. (r, m)⋅((s, n) + (t, k)) = (r, m)⋅(s + t, n + k) = (r(s + t) + m(s + t) + (n + 
k)r, m(n + k)). On the other hand (r, m)⋅(s, n) + (r, m)⋅(t, k) = (rs + ms + nr, mn) + (rt + 
mt + kr, mk) = (rs + rt + ms + mt + nr + kr, mn + mk). These quantities are equal. 

The other distributive law is similar. Hence T is a ring. The element (0, 1) is seen to be 
an identity element for T. 

(b) R* is closed under the two operations. For example, (r, 0) – (s, 0) = (rs + 0s + 0r, 0 
- 0) = (rs, 0). Also die zero element (0, 0) is in R* and R* is closed under negatives. 
Hence R* is a subring. 

Given ab⋅x = x⋅ab = 1R and ay = ya = lR. Then xa⋅b = l so xa should equal b–1 . To prove b is 
invertible we check that b⋅xa = 1R. First note that y = y⋅abx = ya⋅bx = bx. Then b⋅xa = bx⋅a = ya = 1R, 
as hoped. 
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Example 8, if ad− bc 6= 0F , then A is invertible. For the reverse, note that by Example 10, if
ad − bc = 0f , then A is a zero divisor, and thus is not invertible. Thus A is invertible if and
only if ad− bc 6= 0F .

(b) Example 10 shows that ad−bc = 0F implies that A is a zero divisor. By part (a), if ad−bc 6= 0F
then A is invertible, so by Exercise 17 it is not a zero divisor.

35. (a) By Example 7, the inverse of a matrix in M(R) with integer entries is a matrix of rational
numbers all of which have denominator ad− bc. Thus if ad− bc = ±1, the entries are actually
integers, so that the matrix is invertible in M(Z).

(b) If the inverse of A is an integer, then all of a
ad−bc , b

ad−bc , c
ad−bc , and d

ad−bc are integers. Thus
also

a

ad− bc
· d

ad− bc
− b

ad− bc
· c

ad− bc
=

ad− bc
(ad− bc)2

=
1

ad− bc
is an integer. Thus ad− bc = ±1. By Exercise 34(b), we know that A is a zero divisor if and
only if ad− bc = 0. Thus if ad− bc 6= 0, 1, or −1, A can be neither a unit nor a zero divisor.

36. Claim that

A−1 =

(
d(ad− bc)−1 −b(ad− bc)−1

−c(ad− bc)−1 a(ad− bc)−1

)
.

To see this, multiply the two together:

AA−1 =

(
a b
c d

)(
d(ad− bc)−1 −b(ad− bc)−1

−c(ad− bc)−1 a(ad− bc)−1

)
=

(
ad(ad− bc)−1 − bc(ad− bc)−1 −ab(ad− bc)−1 + ab(ad− bc)−1

cd(ad− bc)−1 − dc(ad− bc)−1 −bc(ad− bc)−1 + ad(ad− bc)−1

)
=

(
1 0
0 1

)

Similarly A−1A =

(
1 0
0 1

)
.

37. If ab = 1R, multiplying both sides by a on the right yields aba = a. Since a is not a zero divisor,
Exercise 21(a) shows that ba = 1R. Conversely, if ba = 1R, multiplying both sides by a on the left
yields aba = a. Since a is not a zero divisor, Exercise 21(b) shows that ab = 1R.

38. If ab is a unit, say with inverse c, then (ab)c = a(bc) = 1R, so that a is a unit. But then b is a unit,
since abc = 1R implies, multiplying both sides by a−1 on the left, that bc = a−1. Then multiply
both sides by a on the right to get bca = 1R, so that b(ca) = 1R and b is a unit.

39. Suppose a is not a zero divisor. Then in order to show that a is a unit, we must show that the
equation ax = 1R has a solution in R. Since R is finite, let a1, a2, . . . , ar be the distinct elements
of R. Consider the elements aa1, aa2, . . . , aar. Those elements are all distinct, for if aai = aaj and
a is not a zero divisor, Exercise 21(a) shows that ai = aj so that i = j. But there are r elements,
and they are distinct elements of R, which has r elements, so that one of them must be 1R; say
aak = 1R. Then a is a unit, since ak is its inverse.
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34. (a) SinceM(F ) has an identity, namely

(
1F 0
0 1F

)
, Exercise 17 shows that any unit (i.e., invertible

element) in M(F ) is not a zero divisor, and thus that any zero divisor is not invertible. By

3.2 Basic Properties of Rings 35
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41.

42.

43.

44.

45.
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40.

36

If there exists x ≠ 0R with x2 = 0R then x is a nonzero nilpotent element. Conversely if a is a 
nonzero nilpotent element choose the minimal positive integer n for which an = 0. Certainly n > 
1, and if n = 2 we are done. Suppose n ≥ 3 and set x = an–l. Then x ≠ 0 (by the minimality of n) 
and x2 = a2(n–1) = anan–2 = 0R. 

(a)  has characteristic zero since there is no positive integer n with n⋅lℤ = n = 0. Suppose 
that k > 0 and k⋅lR= 0R in R = n. Equivalently, k ≡ 0 (mod n), which means n ⎟ k. The 
smallest positive k satisfying this condition is certainly n, so the characteristic of n is n. 

(b) Let R = 4 × 6 so that 1R = (1, 1). Then for k > 0 we have k.lR = 0R if and only if k = 0 
(mod 4) and k ≡ 0 (mod 6). Equivalently, 4 ⎟ k and 6⎟ k, so that k is a common multiple of 4 
and 6. The characteristic of R is the smallest such k which is the least common multiple [4, 6] = 12. 

Since R is finite there must exist integers r < s with rlR = slR. Use the formulas in Exercise 21 to 
find (s – r)lR = 0R. Since s – r is a positive integer, R has finite characteristic. 

(a) na = n(lRa) = (nlR)a = 0Ra = 0R using formulas from Exercise 21. 
(b) Suppose n = n1n2 where n1,n2>l. Then 0R= nlR = (n1n2)lR = (n1lR)(n2, lR) using Exercise 21. 

Since R is an integral domain, nllR = 0R or n2lR = 0R. In either case this contradicts the 
minimality of n

(a) Suppose am = 0R and bn = 0R for some m, n > 0. Then (a + b)m+n–1 equals a sum of terms 
of the type C ar⋅bs where C > 0 is a binomial coefficient, and r, s > 0 with r + s = m + n 
– l. Then either r ≥ m or s ≥ n (for otherwise r ≤ m – 1 and s ≤ n –1 so that r + s ≤ m + 
n – 2 which is false). Therefore either ar = 0R or bs = 0R. Therefore each term of this sum 
equals 0R. Hence a + b is nilpotent. 

(b) If a, b ∈ N we have just seen that a + b ∈ N. Also ab ∈ N because, for the exponents m, 
n above, let k = max{a, b}. Then ak = 0R and bk = 0R so that (ab)k = 0R. Certainly 0R  ∈ 
N and if a ∈ N then also –a ∈ N. Therefore N is a subring. 

This tricky problem has a number of different solutions. Here is one that seems fairly efficient, 
using a sequence of steps: 
 
(1) If c2 = 0 then c = 0. 
Proof. c = c3 = c2c = 0c = 0. 
(2) yx = x2yx and xy = xyx2 for every x, y ∈ R. 
Proof. (yx – x2 yx)2 = yxyx – yxx2 yx – x2 yxyx + x2 yxx2 yx 
= yxyx – yxyx – x2yxyx + x2yxyx = 0. Now apply part (1). 
The second equation is proved similarly. 
(3) a2b = ba2 for every a, b ∈ R. 
Proof. Use x = a2 and y = b in (2) to conclude that ba2 = (a2)2ba2 = a2ba2 and a2b = a2b(a2)2 = 
a2ba2. 
(4) xy = yx for every x, y ∈ R. 
Proof, xy = (xy)3 = xy(xy)2 = x(xy)2y since squares commute with every element by (3). This 
quantity equals x(xyxy)y = x2 (yx)y2 = y2 (yx)x2 = y3x3 = yx. Here we used (3) again to switch 
around the x2 and y2. 
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3.3 Isomorphisms and Homomorphisms

1. If we denote by [a]6, [a]2, and [a]3, the congruence classes of a modulo 2, 3, and 6 respectively, then
by inspection, the bijection f is the function f([a]6) = ([a]2, [a]3). But then

f([a]6 + [b]6) = f([a+ b]6) (Addition in Z6)

= ([a+ b]2, [a+ b]3) (Definition of f)

= ([a]2 + [b]2, [a]3 + [b]3) (Addition in Z2, Z3)

= ([a]2, [a]3) + ([b]2, [b]3) (Addition in Z2 × Z3)

= f([a]6) + f([b]6) (Definition of f)

f([a]6[b]6] = f([ab]6) (Multiplication in Z6)

= ([ab]2, [ab]3) (Definition of f)

= ([a]2[b]2, [a]2[b]3) (Multiplication in Z2, Z3)

= ([a]2, [a]3) · ([b]2, [b]3) (Multiplication in Z2 × Z3)

= f([a]6)f([b]6) (Definition of f)

Thus f is a homomorphism; since it is a bijection, it is an isomorphism.

2.
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3.3 Isomorphisms and Homomorphisms 37

A nonzero commutative ring R with identity that has no zero divisors except for 0R is an integral 
domain. By Theorem 3.11 a finite integral domain is a field. The difficulty here is to prove that R 
has an identity element. 
 Let 0 ≠ a ∈ R and consider the “left multiplication” map λa: R → R defined by λa(x) = ax. This 
map λa is injective (If λa (x) = λ (y) then ax = ay so that a(x – y) = 0. Since a is not a zero 
divisor, x – y = 0 so that x = y.) Since R is finite λa is also surjective (This is essentially the 
argument in Theorem 3.11.)  

Therefore every r ∈ R can be expressed as r = ax for some x ∈ R. Similarly consider the “right 
multiplication” map pa defined by pa (y) = ya. By the same argument we find that every r ∈ R 
can be expressed as r = ya for some y ∈ R. 

 

    Applying this to r = a we see that there exist e, f ∈ R such that a = ae and a = fa. For any r 
∈ R, express r = ax = ya as above. Then re = yae = ya = r and fr = fax = ax = r. Applying 
these equations to r = e and r = f we obtain e = fe = f. Therefore re = r = er for every r , and e 
is the identity element for R

2 × 2 has 4 elements ([0], [0]), ([l],[l]), ([1], [0]), ([0], [1]). To shorten notations we refer to these 
elements as 00, 11, 10 and 01. The addition and multiplication tables for this ring are: 
 
+ 00 11 10 01 
00 00 11 10 01 
11 11 00 01 10 
10 10 01 00 11 
01 01 10 11 00 

 
 00 11 10 0) 
00 00 00 00 00 
11 00 11 10 01 
10 00 10 10 00 
01 00 01 00 01 

Compare these tables with those in Exercise 3.1.2, conclude that the correspondence 00 → 0, 11 
→ e, 10 → b, 01 → c is an isomorphism of rings. 

. 
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4.

5.

6.

7.

8.

9.

10. To show that f(1R) is an idempotent, we must show that f(1R)2 = f(1R). But since f is a
homomorphism, f(1R)2 = f(1R) · f(1R) = f(1R · 1R) = f(1R).

11. (a) For one thing, f is not defined on all of R, since square roots of negative numbers are not real.
For another, f(a+ b) =

√
a+ b 6=

√
a+
√
b = f(a) + f(b).

(b) This is not a homomorphism since f(xy) = 3xy while f(x)f(y) = 3x · 3y = 9xy.

(c) This is not a homomorphism since f(xy) = 2xy while f(x)f(y) = 2x ·2y = 2x+y. (Additionally,
f(x+ y) 6= f(x) + f(y)).  

(d) This is not a homomorphism since

f
(a
b

+
c

d

)
= f

(
ad+ bc

bd

)
=

bd

ad+ bc
, while

f
(a
b

)
+ f

( c
d

)
=
b

a
+
d

c
=
ad+ bc

ac
.

Rings
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38

f is bijective as shown in the answers in the text. Homomorphism conditions: f(a + b) = (a + b, 
a + b) = (a, a) + (b, b) = f(a) + f(b). Similarly, f(ab) = (ab, ab) = (a, a)(b, b) = f(a)f(b). 

Let f: 5 → S be the bijection listed. Then f(ī) = 2 and f( f(ī) = 2 while f(ī)f(ī) = 2 – 2 = 4. 
Then f is not a homomorphism. 

The map f : R → R  is injective (if f(a) = f(b) then (a, 0s ) = (b, 0s ) and therefore a = b). It is 
also subjective (a typical element of R  is (a, 0S) = f(a)), Homomorphism properties: f(a + b) = 
(a + b, 0S) = (a, 0S) + (b, 0S) = f(a) + f(b). Multiplication works similarly. 

Define g : R → D, where D is the set of all real matrices of the type 
0

0

a

a
⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
. by setting g(a) 

=
0

0

a

a

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
 It easily follows that e is an isomorphism. 

As seen in the answers in the text, f is injective. To prove f is subjective let a + b 2  be a typical 
element of ( 2 ). Then a + b 2  = f(a – b 2 ). (Compare Exercise 15.) The homomorphism 
property for addition is easy to check. For multiplication we have: f((a + b 2 )(c + d 2 )) = 
f((ac + 2bd) + (ad + bc) 2 ) = (ac + 2bd) – (ad + bc) 2  = (a – b 2 )(c – d 2 ) = f(a + 
b 2 )f(c + d 2 ). Therefore f is an isomorphism. 

f( ents must match. Claim. f(n) = n for every n > 0. Proof. If not, the 
Well-Ordering Axiom implies that there exists a smallest positive integer m with f(m) ≠ m. Then 
f(m – 1) = m – 1 by the minimality, so that f(m) = f(m – 1 + 1) = f(m – 1) + f(l) = m – 1 + 1 
= m, contradiction. 

Certainly f(0) = 0 and for n > 0 we have f(–n) = – f(n) = – n by Theorem 3.12. Therefore f is 
the identity map. 

. ) = 

1) = 1 since identity elem

⎛ ⎞

Let f(a) =
0 0

0 a

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
. Letting S be the set of all such matrices we see that f: ℝ → S is a bijective 

mapping. The definitions of matrix addition and multiplication are used to show that f(a + b) = 
f(a) + f(b) and f(ab) = f(a)f(b). 

ī ī
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13. (a) Choose r ∈ R. Then f((r, 0S)) = r. Thus f is surjective.

(b) Choose s ∈ S. Then g((0R, s)) = s. Thus g is surjective.

(c) Since S is nonzero, it contains some element a 6= 0S . Then for any r ∈ R, we have f((r, 0S)) =
r = f((r, a)). Since a 6= 0S , it follows that f is not injective. Similarly, since R is nonzero, it
contains some element b 6= 0R. Then for any s ∈ S, we have g((0R, s)) = s = g((b, s)). Since
b 6= 0R, it follows that g is not injective.

14. It suffices to show that K is closed under subtraction and multiplication. Suppose that a, b ∈ K.
Then since f is a homomorphism,

f(a− b) = f(a)− f(b) = [0]− [0] = [0], so that a− b ∈ K
f(ab) = f(a)f(b) = [0][0] = [0], so that ab ∈ K.

Thus K is a subring of Z (it is the subring consisting of all multiples of 6).

15.

16.

17.

18.

19.

20.

21.
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3.3 Isomorphisms and Homomorphisms 39

(a) Not a homomorphism. Consider f(– f(–
(b) Homomorphism. In fact f is the identity map since [–1] = [1] in 2. 
(c) Not a homomorphism. 
(d) Not a homomorphism. Consider h(
(e) Homomorphism. The hardest part here is to verify that f is well defined. (That is, show 

that [x]4 is independent of the choice of x representing the class [x]12). 

No. For example define f:  ×  →  by f(x, y) = x. Then the element (1, 0) is a zero divisor in  
×  but f(l,0)=1 is not a zero divisor in 

T is non-commutative (since rs ≠ sr) while R and F are commutative. Therefore T cannot be 
isomorphic to R or F. Also R and F cannot be isomorphic since F possesses 3 units while R has 
only 2 units. 

Note that f 2 = 1, the identity map on μ. (Because f(a + bi) = f(a – bi) = a + bi.) Then f is 
invertible (f 1 = f), so it is objective, using Theorem B.1 of Appendix B. 

We check the values f([0]5) = [0]10, f([l]5) = [6]10, f([2]5) = [12]10 = [2]10, f([3]5) = [18]10 = [8]10 and 
f([4]5) = [24]10 = [4]10. These match the values in the Example. Homomorphism properties: f([x]5 + 
[y]5) = f([x + y]5) = [6(x + y)]10 = [6x]10 + [6y]10 = f([x]5) + f([y]5). The products work similarly. 

Define f: 7 → 28 by f([x]7) = [8x]28 . As in Exercise 16, this f is a homomorphism. The image set 
is f( 7) = {[0]28, [8]28, [16]28, [24]28, [4]28, [I2]28, (20]28} = S, the given subset. Check that S is a 
subring. View f as a surjection f:  → S. Since these two rings have the same (finite) number of 
elements, f must be a objection. (See Exercises 31 and 32 of Appendix B.) 

f is a bijection since the map g :  → E given by g(x) = 2x is the inverse. Homomorphism 
properties: f(x + y) = (x + y)/2 = x/2 + y/2 = f(x) + f(y).   f(x*y) = (x*y)/2 = (xy/2)/2 = 
(x/2)(y/2) = f(x)f(y). 

Define f: * →  by f(x) = 1 – x. Then f is a bijection since the map g :  → * with g(y) = 1 – 
y is its inverse. Homomorphism: 
f(a ⊕ b) =1 – (a ⊕ b) = 1 – (a + b – 1) = (1 – a) + (1 – b) = f(a) + f(b). 
f(a b) = 1 – (a b) =1 – (a + b – ab) = (1 – a)(l – b) = f(a)f(b). 

1) 1). 

1). 
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23.

24. (a) Since addition in this new ring is the same as in the usual ring R × R, Axioms 1-5 in the
definition of a ring are still satisfied. For Axiom 6, if (a, b) and (c, d) ∈ R × R, then clearly
(ac, bc) ∈ R× R. To see that multiplication is associative,

((a, b)(c, d))(e, f) = (ac, bc)(e, f) = (ace, bce), and

(a, b)((c, d)(e, f)) = (a, b)(ce, de) = (ace, bce).

Finally, for the distributive laws, we have

(a, b)((c, d) + (e, f)) = (a, b)(c+ e, d+ f) = (a(c+ e), b(c+ e)) = (ac+ ae, bc+ be)

= (ac, bc) + (ae, be) = (a, b)(c, d) + (a, b)(e, f)

((a, b) + (c, d))(e, f) = (a+ c, b+ d)(e, f) = ((a+ c)e, (b+ d)e) = (ae+ ce, be+ de)

= (ae, be) + (ce, de) = (a, b)(e, f) + (c, d)(e, f).

Thus this new multiplication makes R× R into a ring.

(b) Write S for R× R with the multiplication in part (a), and define

f : S →M(R) : (a, b) 7→
(
a 0
b 0

)
.

We must show that f is a bijective homomorphism. f is obviously injective, since f((a, b)) =

f((c, d)) means that

(
a 0
b 0

)
=

(
c 0
d 0

)
, so that a = c and b = d and thus (a, b) = (c, d). It

is also obviously surjective, for the matrix

(
a 0
b 0

)
∈ M(R) is the image under f of (a, b), so

that any matrix in M(R) is in the image of f . To see that f is a homomorphism,

f((a, b)) + f((c, d)) =

(
a 0
b 0

)
+

(
c 0
d 0

)
=

(
a+ c 0
b+ d 0

)
= f((a+ c, b+ d)) = f((a, b) + (c, d))

f((a, b))f((c, d)) =

(
a 0
b 0

)(
c 0
d 0

)
=

(
ac 0
bc 0

)
= f((ac, bc)) = f((a, b)(c, d)).

Thus f is a bijective homomorphism, so is an isomorphism.

Rings
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22.

40

Define f : Z  →  by f(x) = x – 1. Then f is a bijection since the map g:  → Z  with g(y) = y + 

1 is its inverse. Homomorphism: 

f(a ⊕ b) = (a ⊕ b) – 1 = (a + b – 1) –1 = (a – 1) + (b – 1) = f(a) + f(b). 
f(a b) = (a b) –1 = (ab – (a + b) + 2) – 1 = (a – l) (b – 1) = f(a)f(b). 

Define f: R × E → μ by f(a, b) = a + bi. This f is a bijection since the inverse map is defined 
(use g(a + bi) = (a, b)). The homomorphism property for addition is easy to check. For 
multiplication, f((a, b)⋅(c, d)) = f(ac – bd, ad + bc) = (ac – bd) + (ad + bc)i = (a + bi)(c + di) 
= f(a, b)f(c, d). 
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27.

28.

29.

30.

31.

32.

33.
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26.

3.3 Isomorphisms and Homomorphisms 41

25. Certainly f is subjective since for any a ∈  we have 
0

0 0

a
f
⎛ ⎞⎟⎜ ⎟⎜ =⎟⎜ ⎟⎟⎜⎝ ⎠

 a. Also, f is not injective since 

0 00 1
 and

0 00 0

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟⎜ ⎟ ⎜⎝ ⎠⎝ ⎠
 have the since image Homomorphism properties:

0 ' 0

' '
( )

a a
f

b c b c

⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ + =⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟ ⎟⎜⎝ ⎠ ⎝ ⎠
 

0' 0 ' 0
' .

' ' ' '

aa a a
f a a f f

b cb b c c b c

+⎛ ⎞ ⎛ ⎞⎛ ⎞⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟⎜ ⎜⎜= + = +⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟+ +⎜ ⎜⎜ ⎟⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠

0 ' 0

' '
( )

a a
f

b c b c

⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ + =⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟ ⎟⎜⎝ ⎠ ⎝ ⎠
0' 0 ' 0

 '  
' ' ' ' '

aaa a
f aa f f

b cba cb cc b c

⎛ ⎞ ⎛ ⎞⎛ ⎞⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟⎜ ⎜⎜= =⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟+⎜ ⎜⎜ ⎟⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠
 

g: R → M(R) is injective since if g(r) = g(s) then 
0 0 0 0

,
- -r r s s

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟=⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
 forcing r = s. It is not 

subjective since, I2 = 
1 0

 
0 1

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
 is not in the image of g. 

Answered in the text. For(b), see Exercise 27 of Appendix B. 

Let A be a ring without identity, (a) Consider the zero map z :  → A. This does not contradict 
Theorem 3.12 since f is not surjective.  
(b) consider the zero ma  z. A → . 

By definition of “inverse”, f(g(x)) = x for every x ∈ S. Then f(g(x + y)) = x + y = f(g(x)) + 
f(g(y)) = f(g(x) + g(y)) since f is a homomorphism. Since f in injective this equality implies g(x + 
y) = g(x) + g(y). A similar argument works for products. 

Suppose r, s ∈ K, so that f(r) = 0R and f(s) = 0R. Then f(r – s) = f(r) – f(s) = 0R and r – s ∈ K. 
Also f(rs) = f(r)f(s) 0R and rs ∈ K. This proves K is a subring. 

Suppose r.s ∈ P so that f(r), f(s) ∈ T. Then f(r – s) = f(r) – f(s) ∈ T and f(rs) = f(r)f(s) ∈ T 
since T is a subring. Therefore r – s and rs ∈ P showing that P is a subring. 

First check that mis function makes sense. If [x]m = [y]m then show that [nx]mn = [ny]mn . That is, 
if x ≡ y (mod m) then nx ≡ ny (mod mn). This is easy to see, and hence f is a well-defined 
function. Conversely, if [nx]mn = [ny]mn then nx ≡ ny (mod mn). It follows that x ≡ y (mod m) 
(why?) and therefore [x]m = [y]m . Hence f is injective. Since the number of elements in the 
domain is m and the number of elements in the range is mn, we see that this f cannot be 
objective if n > 1. 

It is routine to check the homomorphism properties. 

(a) If c ∈ R define xc : R → R to be the constant function x(x) = C Then xc ∈ T and θ(xc) = 
xc(5) = c. Therefore θ is subjective, Homomorphism: If f, g ∈ T then f + g and fg are 
defined “pointwise”: (f + g((x) = f(x) + g(x) and (fg)(x) = f(x)g(x). Therefore θ(f + g) = 
(f + g)(5) = f(5) + g(5) = θ(f) + θ(g) and θ(fg) = (fg)(5) = f(5)g(5) = θ(f)θ(g). This θ is 
not an isomorphism. For instance f(x) = x – 5 is nonzero in T but (f) = 0. 

(b) Yes. 

p

θ
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(b) Suppose that f : F → R is not the zero homomorphism, and suppose that f(a) = f(b). Then
0R = f(a) − f(b) = f(a − b), so that f(a − b) = 0R. If a 6= b, then a − b is invertible, so
that f(1F ) = f((a− b)(a− b)−1) = f(a− b)f((a− b)−1) = 0Rf((a− b)−1) = 0R and then, by
the argument in Exercise 37(b), f is the zero homomorphism. This is a contradiction, so that
a = b and f is injective.

39.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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37. (a) Since e is an idempotent, that means by definition that e2 = e. Then if a ∈ R, we have
e2a = ea, or e(ea) = ea. Since e is not a zero divisor, Exercise 21(a) in Section 3.2 says that
we can cancel the e to get ea = a. Similarly, multiplying by a on the left and using the same
procedure gives ae = a. Since this holds for any a ∈ R, it follows that e is the identity in R.

(b) Since f(1S)2 = f(1S)f(1s) = f(1S1S) = f(1S), we see that f(1S) is an idempotent of T . Also,
f(1S) 6= 0T , since if it did, then for any s ∈ S, we would have f(s) = f(1Ss) = f(1S)f(s) =
0T f(s) = 0T in contradiction to the assumption that f is a nonzero homomorphism. Finally,
since T has no zero divisors, it follows that f(1S) satisfies the hypotheses of part (a), so that
f(1S) is the identity element of T .

38. (a) Chose any x ∈ F ; we must show that f(x) = 0R. Since F is a field and c ∈ F is nonzero, it is
invertible. But then

f(x) = f(xcc−1) = f(x)f(c)f(c−1) = f(x)0Rf(c−1) = 0R,

so that f is the zero homomorphism.

Rings

36.

42

34.

35.

(c)  preserved. Suppose s, t ∈ S with st = 0S. By subjectivity there exist a, b ∈ R with f(a) = 
s and f(b) = t. Then f(ab) = f(a)f(b) = st = 0s and injectivity implies that ab = 0. since R is 
an integral domain, either a = 0R or b = 0R, and therefore eimer s = f(a) = 0S or t = f(b) = 
0S. Then S is an integral domain. 

 
(a) preserved. Suppose ab = 0R and b ≠ 0R. Then f(a)f(b) = f(ab) = f(0R) = 0s and f(b) ≠ Os. 

Therefore f(a) is a zero divisor. 
(b) preserved. If a2 = a then f(a)2 = f(a2) = f(a) and f(a) is idempotent. 

 

Define f: R → R* by f(r) = (r, 0). This f is easily seen to be bijective, and is a homomorphism 
since (r, 0) + (s, 0) = (r + s, 0) and (r, 0) – (s, 0) = (rs, 0). 

(a) (c) (e) are answered in the text, (b) R × R × R × R is commutative but M(E) is not. 
(d) Any isomorphism f: R →  has f(2) = 2 (why?). The equation x2 = 2 has no solution in 

 but it does have solutions in E. 
(f) Every element x ∈ 4 × 4 satisfies x + x + x + x = 0, but the element l ∈ 16 does not 

satisfy such an equation. 

(a) If n > 0, then f(nr) = f(r + r + ... + r) = f(r) + f(r) + ... + f(r) = nf(r). Certainly f(0r) 
= f(0R) = 0s = 0f(r). Finally n > 0 then f((–n)r) = f(–nr) = –f(nr) = –(nf(r)) = (–n)f(r). 

(b) Suppose f: R → S is an isomorphism. If n > 0 and nlR = 0R then nls = nf(1R) = f(nlR) = 
f(0R) = 0S. Similarly nls = 0s implies that nlR = 0R. Therefore the characteristics are 
equal. 
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42.

3.3 Isomorphisms and Homomorphisms 43

41.

40. Suppose there is an isomorphism f: m  → n . Let f(m) = nz for some z ∈ , By Exercise 34(a) 
we have f(km) = kf(m) = knz for every k ∈ . Since f is surjective, there exists u ∈  with n = 
f(um) = unz. Therefore 1 = uz so that u = z = ±1. Apply the formula to k = m to get mnz = 
f(mm) = f(m)f(m) = n2 z2 , Cancel nz, to conclude m = nz = ± n. But then m = n since m, n are 
positive, contrary to the hypothesis. 

(a) If [a]mn = [b]mn then a ≡ b (mod mn), so that mn ⎟ (a – b). Then certainly n ⎟ (a – b), so 
that a ≡ b (mod n) and [a]n = [b]n. Similarly [a]m= [b] . 

(b) It is not hard to check that f is a homomorphism. To show f is injective suppose f([a]mn) 
= f([b]mn) = Then [a]m = [b]m and [a]n = [b]n, so that a ≡ b (mod m) and a ≡ b (mod n). 
Therefore m ⎟ (a – b) and n ⎟ (a – b). Since (m, n) = 1 we have mn ⎟ (a – b) (using 
Exercise 1.2.17), Therefore a ≡ b (mod mn) and [a]mn = [b]mn. 

The characteristic of mn is mn. (See Exercise 3.2.31.) The characteristic of R = m × n is the 
the least common multiple [m, n]. Proof. The characteristic is the smallest k > 0 where k – lR = 
0R. That is: [k]m = [0]m and [k]n = [0]n, or equivalently m ⎟ k and n ⎟ k. The smallest such k is 
exactly the least common multiple [m, n] = mn/(m, n) (as in Exercise 1.2.31). 
    If (m, n) > 1 then mn and m × n have unequal characteristics. By Exercise 34 these rings 
cannot be isomorphic. 

     Since f: m × n → mn is injective and both rings have exactly mn elements, conclude that f 
is also subjective. (See Exercise 32 of Appendix B.) 
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Chapter 4

Arithmetic in F [x]

4.1 Polynomial Arithmetic and the Division Algorithm

1.

.2

3.

4.

5.

6.

7.

© 2014 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

(a) 3x4 + x3 + 2x2 + 2 (b) x3 + 1 
(c) x5 – I (d) 2x5 + x4 + 6x2 + 3x + 2 

Let S be that set. Every a0 ∈  lies in S since we may choose n = 0, and π ∈ S by choosing n = 
1, a0 = 0 and a1 = 1. By the associative, commutative and distributive laws it is easy (but 
tedious) to show that the set S is closed under subtraction and multiplication. Therefore S is a 
subring . 

(a) Answered in the text. 
(b) 1, 2; 

 x, x + 1, x + 2, 2x, 2x + l, 2x + 2; 
x2, x2 + l, x2 + 2, x2 + x, x2 + x +l, x2 + x + 2, x2 + 2x, x2 + 2x + l, x2 + 2x + 2, 
2x2, 2x2 + 1, 2x2 + 2, 2x2 + x, 2x2 + x + 1, 2x2 + x + 2, 2x2 + 2x, 2x2 + 2x + 1, 2x2 + 2x + 2. 

(a) f(x) = x + 1 and g(x) = –x (b) f(x) = x + 1 and g(x) = 1. 

(a) Answered in the text. (b) q(x) = 
1

2
x2 – 

1

4
, r(x) = –7x + 

5

4
. 

(c) Answered in the text. (d) q(x) = 6x2 + 3x + 5, r(x) = 5x + 2. 

(a) Subring. f(x) has constant term zero if and only if f(x) = xg(x) for some polynomial g(x). 
Using this observation, the closure under subtraction and product is easy to check. 

(b) Not generally a subring. The closure properties fail. 
(c) Not generally a subring since it is not closed under multiplication. 
(d) Subring. If only even powers of x occur in f(x) and g(x) then only even powers can occur 

in f(x) – g(x) and in f(x)g(x). 
(e) Not a subring. For instance, x is in the set but x ⋅ x = x2 is not. 

In the definition of multiplication the coefficient of xk equals a0bk + a1bk–1 + ⋅ ⋅ ⋅ + ak bn. This 
formula is valid for every k provided we interpret the coefficient a1 to be 0 for i > n and b j = 0 
for j > m. 

 Interchanging the letters “a” and “b” in this formula, and using the commutative law in 
produces the same term. Therefore the multiplication is commutative. 

R, 
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11. Since
(1 + 3x)(1 + 6x) = 1 + 3x+ 6x+ 18x2 = 1 + 9x+ 18x2 = 1

in Z9[x], we see that 1 + 3x is a unit. If Z9 were an integral domain, Corollary 4.5 says that all
units are constants. However, Z9 is not an integral domain since for example 3 is a zero divisor.

12.

13.

14.

9.

10.
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8.

15. (a) As the hint suggests, multiply by 1R − ax+ a2x2:

(1R + ax)(1R − ax+ a2x2) = 1R − ax+ a2x2 + ax− a2x2 − a3x3 = 1R − a3x3 = 1R

since a3 = 0R.

Arithmetic in F [x]46

If f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx
n in [x] and c ∈ , then from the definition: c⋅f(x) = ca0 + ca1x + ⋅ 

⋅ ⋅ +canx
n and f(x)-c = a0c + a1cx + ⋅ ⋅ ⋅ : ancx

n. Therefore, 1R acts as the identity element in [x]. 

Yes. If c ≠ 0 and cd = 0 for some d ≠ 0 in  then these conditions still hold in [x]. 

If x is a unit there is some f(x) ∈  [x]  with x ⋅  f(x) = 1R. By Theorem 4.2 we have 0 = deg 1R  
= deg[x ⋅ f(x)] = deg x + deg f(x) = 1 + deg f(x) ≥ 1. This contradiction shows that no such f(x) 
can exist. 

(We must assume f(x) + g(x) ≠ 0R to have its degree defined here.) Let f(x) = a0 + a1x + ⋅ ⋅ ⋅ + 
anx

n and g(x) = b0 + ⋅ ⋅ ⋅ + bmxm, where an ≠ 0 and bm ≠ 0. Then deg f(x) = n and deg g(x) = m. 
Suppose n < m. 

 From the definition of addition, f(x) + g(x) = (a0 + b0) + ⋅ ⋅ ⋅ + (an + bn)x
n + bn+1x

n+1 + ⋅ ⋅ ⋅ + 
bmxm. Since bm ≠ 0 we conclude that deg[f(x) + g(x)] = m = max{n, m}. Similarly if n > m the 
highest degree term equals anx

n, and the degree is n = max{n, m}. Finally if n = m then f(x) + 
g(x) = (a0 + b0) + ⋅ ⋅ ⋅ + (an + bn )x

n. Therefore the degree is at most n, and it is less when an + 
bn = 0. 

Given (a0 + a1x + ⋅ ⋅ ⋅ + anx
n)⋅g(x) = 0 for some g(x) ≠ 0R in [x]. Write g(x) = b0 + ⋅ ⋅ ⋅ + 

bmxm for some bj   where bm ≠ 0R. Multiplying this out we get a0b0 + ⋅ ⋅ ⋅ + a bn mx"+m = 0R. In 
particular, anbm = 0R and bm ≠ 0R. Therefore an is a zero divisor in . 

(a) In the proof of Theorem 4.4 F can be any commutative ring, except for one place where 

inverses are used: to get the existence of 
1

mb
−

 where bm is the leading coefficient of the 

divisor g(x). If  is a commutative ring, then the division algorithm works in [x] 

provided that the divisor g(x) has leading coefficient which is a unit in , 

(b) Examples are easy to find. For instance consider the constant polynomials f(x) = 1 and 
g(x) = 2. If the division algorithm holds in [x] there must be q(x), r(x) ∈ [x] with 1 = 
2⋅q(x) + r(x) and either r(x) = 0 or deg r(x) < deg 2. Since deg 2 = 0 the second 
condition is impossible, so that r(x) = 0 and 1 = 2⋅q(x). This is impossible for q(x) ∈ [x]. 

R

 ∈ R
R

R

R

R

Summarizing, we have deg[f(x) + g(x)] ≤ max{deg f(x), deg g(x)}, with equality holding whenever 
deg f(x) ≠ deg g(x). 
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16. Suppose the inverse of 1R + ax is b0 + b1x+ b2x
2 + · · ·+ bkx

k. Then

1 = (1R + ax)(b0 + b1x+ b2x
2 + · · ·+ bkx

k)

= b0 + (ab0 + b1)x+ (ab1 + b2)x2 + · · ·+ (abk−1 + bk)xk + abkx
k+1.

Comparing coefficients of powers of x on both sides of this equation, we see first that b0 = 1R.
Since the coefficient of x on the left is zero, we must have ab0 + b1 = a+ b1 = 0R, so that b1 = −a.
Then ab1 + b2 = −a2 + b2 = 0, so that b2 = a2. Continuing, we get bj = (−1)jaj for 1 ≤ j ≤ k.
Now look at the final term, abkx

k+1. This term must be zero. Since bk = (−1)kak, the term is
(−1)kak+1xk+1 = 0R. Since xk+1 6= 0, and it is not a zero divisor, we must have ak+1 = 0R.

17.

18.

19.

20.
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(b) Multiply it by 1R − ax+ a2x2 − a3x3:

(1R + ax)(1R − ax+ a2x2 − a3x3) = 1R − ax+ a2x2 − a3x3 + ax− a2x2 + a3x3 − a4x4

= 1− a4x4 = 1

since a4 = 0R.

21.

Polynomial Arithmetric and the Division Algorithm 47

Answered in the text. 

Let f(x) = a0 + a1x + . . . + anx
n and g(x) = b0 + b1x + . . . + bmxm. Then f(x) + g(x) = (a0 + b0) 

+ (a1 + b1)x + . . . Therefore ϕ (f(x) + g(x)) = a0 + b0 = ϕ (f(x)) + ϕ (g(x)). Similarly f(x).g(x) = 
(a0b0) + (a0b1 + a1b0)x + . . ., so that ϕ (f(x)g(x)) = a0b0 = ϕf(x)) ϕ (g(x)). Also ϕ is surjective 
since every r ∈  is the constant term of some polynomial. (Just use the constant polynomial r !) 

The map ϕ is surjective since every element of n is of the form [k] for some k ∈ . Let f(x) and 
g(x) be as in Exercise 16, where ai, bj ∈ . Then ϕ (f(x) + g(x)) = ϕ ((a0 + b0) + (a1 + b1)x + . . . )
 = [a0 + b0] + [a1 + b1]x + . . . = [a0] + [b0] + ([a1]) + [b1])x + . . . = ([a0] + [a1]x + . . . ) + 

([b0]) +  [b1]x + . . . ) = ϕ (f(x)) + ϕ (g(x)). Similarly ϕ (f(x)⋅g(x)) = ϕ (a0b0) + (a0b1 + 
a1b0)x + . . . ) = [a0b0] + [a0b1 + a1b0]x + . . . = ([a0][b0]) + ([a0][b1] + [a1][b0])x + . . . = ([a0] + 
[a1]x + . . . )⋅([b0] + [b1]x + . . . ) = ϕ (f(x))⋅ϕ (g(x)). 

D is not a homomorphism, since D(f⋅g) = f⋅D(g) + D(f)⋅g by the product rule. Examples where 
this quantity does not equal D(f)⋅D(g) arc easy to find. 

(a) Let f(x) and g(x) be given as in Exercise 16. Recall the convention that ai = 0R for every  
> n and bj = 0R for every j > m. Let Σ denote a summation over all indices k = 0, 1, 2,  
. . These sums are really finite since after some point all the terms equal zero. For 

products: h (f(x)⋅g(x)) = h (Σ(a0bk + a1bk–1 + . . . + akb0)x
k) = Σh(a0bk + a1bk–1 + . . . + 

akb0)x
k = Σ(h(a0)h(bk) + h(a1)h(bk–1) + . . . + h(ak)h(b0))x

k = (Σh(ak)x
k)⋅(Σh(bk)x

k) = 
h (f(x))⋅ h (g(x)). The easier argument for sums is omitted. 

.

.
i

4 1.
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4.2 Divisibility in F [x]

1.

2.

3.

22.
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Arithmetic in F [x]48

(b) Suppose h  is injective, and h(a) = h(b) for some a, b ∈ . Viewing a, b ∈ [x] we have 
h (a) = h(a) = h(b) = h (b), so that a = b in [x] and hence a = b in . Suppose h is 
injective. For f(x) and g(x) as above suppose that h(f(x)) = h (g(x)). Then h(ak) = h(bk) 
for every k. Since h is injective this implies ak = bk for every k and therefore f(x) = g(x). 

(c) Suppose h  is surjective and c ∈ S. Then there exists some f(x) = Σakxk ∈ [x] with c = 
h (f(x)) = h(a0) + h(a1)x +h(a2)x

2 + . . . . The constant terms must coincide and we have 
c = h(a0). Therefore h is surjective. 
Suppose h is surjective and g(x) = Σckx

k is given in S[x], Then for every index k there exists 
a

 
∈

 
 with h(ak) = ck. Define f(x) = Σakx

k in [x]. Then h (f(x)) = Σh(ak)x
k = Σckxk = g(x). 

Therefore h  is surjective. 

(d) If h :  → S is an isomorphism, the function h : [x] → S[x] defined above is an 
isomorphism, using parts (a), (b) and (c). 

For any f(x) = Σamxm in [x], define ϕ(f(x)) = Σamk(x)m. This map ϕ : [x] → [x] is well defined 
since there are only finitely many of the am which are not zero. By definition ϕ(r) = r for every r 
∈ . 

 Homomorphism for products: Let f(x) = Σaix
i and g(x) = Σbjx

j. Then ϕ(f(x)g(x)) = ϕ(Σ(a0bm + 
a1bm–1 + . . . + amb0)x

m) = Σ(a0bm + a1bm–1 + . . . + amb0)k(x)
m = (Σaik(x)

i)(Σbjk(x)
j = 

ϕ(f(x))ϕ(g(x)). The easier proof for sums is omitted. 
 Suppose ψ : [x] → [x] is another such homomorphism. Then ψ(a0 + . . . + anx

n) = ψ(a0) + 
ψ(a1)ψ(x) + ψ(a2)ψ(x)2 + . . . +ψ(an)ψ(x)n = a0 + a1k(x) + . . . + ank(x)

n = ϕ(a0 + . . . + anx
n). 

Therefore ϕ is the unique homomorphism satisfying the given property. 
 Remark. If S is any ring containing  as a subring and s ∈ S is given, men there exists a unique 
homomorphism ϕ  : [x] → S satisfying: ϕ(r) = r for every r ∈  and ψ(x) = s. (Compare 
Exercise 24 of Section 4.4 below.) 

Answered in the text. 

Since a(x)⋅0F = 0F we have a(x) | 0F for every polynomial a(x). Then a(x) is a common divisor 
of f(x) and 0F if and only if a(x) | f(x). Certainly a(x) = f(x) provides a common divisor of 
maximal degree. Since it must be monic, the gcd = 1gcd ( ).c f x−=

If d(x) be the gcd of x + a and x + b. Since d(x) | (x + a) we have deg d(x) ≤ deg (x + a) = 
1. Suppose the degree is 1, so that d(x) = x + c for some c  ∈  F ,  (since d(x) is monic). The 
condition d(x) | (x + a) then implies c = a while d(x) | (x + b) implies c = b. Since a ≠ b this 
is impossible. Therefore deg d(x) = 0 and d(x) = 1. 

R R
R R

R

R R

RR

R R

R

R R

R
R R

4. (a) Given u(x), v(x) ∈ F[x] where g(x) = f(x)u(x) and f(x) = g(x) v(x). Therefore g(x) = 
g(x)u(x)v(x) and f(x) = f(x)u(x)v(x). If either f(x) ≠ 0 or g(x) ≠ 0, cancel to conclude 
u(x)v(x) = lF, so that v(x) is a unit in F[x]. By Exercise 4.1.12, v(x) = c is a non-zero 
constant and f(x) = cg(x). Finally if f(x) = g(x) = 0F the conclusion is trivial. 

 (b) Given  f(x) = cg(x) where 0F ≠ c ∈ F. If g(x) = xn + an–1x
n–1 + . . . then f(x) = cxn +  

can–1x
n–1 + . . .. Since f(x) is also monic, c = 1. 
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6.

7.

8.

9.

10.

(g) x2 + 3
14x−

1
7 .

11.

5. (a)

(b)

(c)

(d)

(e)

(f)

F [x]4.2 Divisibilityin 49

x – 1 

x2 + x + 2

x2 – 1

x + 6 

x – i

1

In each problem let f(x), g(x) be the given polynomials. 
(a) x – 1 = f(x)⋅(x + 1) + g(x)⋅(–x2 + 2) 

(b) x2 + x + 2 = f(x)⋅( 1

4
x + 

1

2
) + g(x)⋅(– 1

4
x2 – 

1

4
x + 

3

4
) 

(c) x2 – 1 = f(x)⋅(0) + g(x)⋅(1) 
 (d) x + 6 = f(x)⋅(3x + 4) + g(x)⋅(3x2 + 4x + 2) 

(e) x + i = f(x)⋅( 1

3
) + g(x)⋅(– 1

3
x + 

1

3
i) 

 (f) 1 = f(x)⋅(1) + g(x)⋅(x2 + x) 

 By hypothesis f(x) | x and f(x) | (x + 1). Therefore f(x) must divide (x + l) – x = 1. Therefore 

f(x) is a unit so it is a constant polynomial. 

 By Theorem 4.5 there exist u(x), v(x) ∈ F[x] such that d(x) = f(x)u(x) + g(x)v(x). Since h(x) | 
f(x) and h(x) | g(x) it follows that h(x) | d(x). Say d(x) = h(x)w(x) for some w(x). Since d(x) is 
a common divisor of f(x) and g(x) the definition of h(x) implies deg d(x) ≤ deg h(x). Conclude 
that deg h(x) = deg d(x) and therefore deg w(x) = 0. Then and w(x) = r is a nonzero 
constant and h(x) = r–1d(x). 

f(x) must be a unit (a nonzero constant). For if f(x) and 0F are relatively prime then 1 is the gcd 
of f(x) and 0F (and therefore f(x) ≠ 0F since the gcd of 0F with itself is undefined). But this gcd 
equals cf(x) for some non-zero constant c as in Exercise 2. Then cf(x)= 1F and f(x) is a nonzero 
constant. 

Since x3 – 3abx + a3 + b3 = (x + a + b)⋅(x2 – (a + b)x + (a2 – ab + b2)) we see that the gcd is 
x

 
+ a + b. 

We claim that t(x) is the gcd of f(x) and g(x). First let us show that t(x) | f(x). By the division 
algorithm there exist q(x) and r(x) with f(x) = t(x)q(x) + r(x) and either r(x) = 0 or deg r(x) < 
deg t(x). If the latter case holds then  r(x) = f(x) – t(x)q(x) = f(x) – (f(x)u(x) + g(x)v(x))q(x) = 
f(x)⋅(l – u(x)q(x)) + g(x)⋅(v(x)q(x)) lies in S. But r(x) has degree less than deg t(x), contrary to the 
choice of t(x). Therefore this case cannot hold, forcing r(x) = 0 so that f(x) = t(x)q(x) and t(x) | 
f(x) as claimed. Similarly we have t(x) | g(x), and t(x) is a common divisor. 

 Finally if c(x) | f(x) and c(x) | g(x) then c(x) divides every linear combination of f(x) and g(x), so 
in particular it divides t(x) = f(x)u(x) + g(x)v(x). Therefore deg c(x) ≤ deg t(x), and hence t(x) is 
the gcd. 
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14.

15.

16.

12.

13.

4.3 Irreducibles and Unique Factorization

Arithmetic in F [x]50

Let d(x) be the gcd. Then certainly (i) holds. For (ii) suppose c(x) | f(x) and c(x) | g(x). Then c(x) 
divides any linear combination of f(x) and g(x). By Theorem 4.4 we know that d(x) is such a 
linear combination: d(x) = f(x)u(x) + g(x)v(x) for some u(x) and v(x). Therefore c(x) divides d(x) 

 Suppose d(x) satisfied (i) and (ii). Then it is easy to check that d(x) satisfies the conditions (i) 
and (ii) of the definition of gcd, for if c(x)⎟d(x) then deg c(x) ≤ deg d(x). Therefore d(x) is the gcd. 

Since f(x) and g(x) are relatively prime their gcd is 1 and Theorem 4.5 implies that there exist 
u(x), v(x) such that 1 = f(x)u(x) + g(x)v(x). Therefore h(x) = f(x)⋅(u(x)h(x)) + (g(x)h(x))⋅v(x) 
which is a linear combination of f(x) and g(x)h(x). Since f(x) divides both of these terms, f(x) 
must divide their linear combination h(x). 

(Compare Exercise 1.2.17) Suppose h(x) = g(x)w(x) for some w(x). Then f(x) | g(x)w(x) and f(x), 
g(x) are relatively prime. Theorem 4.7 implies f(x) | w(x), say w(x) = f(x)q(x) for some q(x). 
Therefore h(x) = g(x)⋅(f(x)q(x)) and f(x)g(x) | h(x). 
 
Let d(x) be the gcd of h(x) and g(x). Then h(x) | f(x) implies d(x) | f(x). Since the gcd of f(x) and 
g(x) is 1F we must have d(x) | 1F. Then d(x) is a unit, hence a nonzero constant. Since d(x) is 
monic we see d(x) = 1F. 

Let d(x) be the gcd of f(x)h(x) and g(x), and let e(x) be the gcd of h(x) and g(x). Since e(x) 1 h(x) 
we also have e(x) | f(x)h(x), so mat e(x) is a common divisor of f(x)h(x) and g(x), and by 
Corollary 4.5 e(x) | d(x). 

 On the other hand d(x) | g(x) so by Exercise 15 d(x) and f(x) are relatively prime. Since d(x) | 
f(x)h(x) we deduce from Theorem 4.7 that d(x) | h(x). Therefore d(x) is a common divisor of h(x) 
and g(x) and Corollary 4.6 implies that d(x) | e(x). Exercise 4(b) then implies that e(x) = d(x). 

1. (a) Answered in the text. (b)  x5 + 2x 2 + 2 
(c) Answered in  the text. 

2. Let f(x) = anx
n + an-1 x

n–1 + . . . + a0 where an ≠ 0. Then g(x) = 
− − − −

−= + + +1 1 1 1
1 0( ) . . .n n

n n n na f x x a a x a a  is a monic associate of f(x). If h(x) is another monic 
associate of f(x) then g(x) = c⋅h(x) for some nonzero c ∈ F. Since g(x) and h(x) have leading 
coefficients equal to lF we see that c = lF and g(x) = h(x). 

3. (a) Answered in the text. 
(b) x + 3,  2x + 6,  3x + 2, 4x + 5, 5x + 1, 6x + 4 

4. Let f(x) = anx
n + . . . + a0 where an ≠ 0. (This is valid since we assume f(x) ≠ 0.) The 

associates of f(x) are exactly the polynomials c·f(x) = canx
n+ . . . + ca0 for the p – 1 different 

values of c which are the nonzero elements of Zp . These are all different since cf(x) = c'f(x) 

implies c = c'. 

5. If f(x) and g(x) are associates then f(x) = c·g(x) for some unit c. This equation implies g(x) ⎟ 
f(x) and the equation g(x) = c–1 ·f(x) implies that g(x) ⎟ f(x). The converse appears in Exercise 
4(a) of Section 4.2. 
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6. If x2 + 1 = (ax + b)(cx + d) then ac = 1, ad + bc = 0 and bd = 1. But then (ad)2 = ad·ad = 

(–bc) ad = –(ac)(bd) = –1. However every square in  is positive and –1 is negative, a 

contradiction. Therefore no such factorization can exist in [x], so it certainly cannot exist in [x]. 

7. (⇒) Answered in the text. (⇐) If every associate of f(x) is irreducible then certainly f(x) is 

irreducible since it is one of its associates. 

8. Suppose f(x) = g(x)h(x) where the polynomials g(x), h(x) have degrees smaller than deg f(x). 

Then g(x) ⎟ f(x), g(x) is not an associate of f(x) (since associates have the same degrees), and 

g(x) is not a unit (for if deg g(x) = 0 and deg h(x) = deg f(x)). 

9. (a) Answered in the text.        (b)  x3 + x + 1,   x3 + x2  + 1 
  (c) Answered in the text. 

10. (a) Irreducible in [x] but not in [x], because x2 – 3 = (x – 3 )(x + 3 ) and 3  is in  
but not in . 

(b) Reducible:   x2 + x – 2 = (x – l)(x + 2) in Z3[x] and in Z7[x]. 

11. If x3 – 3 factors non-trivially in Z7[x] then it equals r(x)s(x) where  deg r(x), deg s(x) are 1 or 
2 and add up to 3. Then one of the factors has degree 1. The monic associate of that factor is 
still a factor of x3 – 3 (see Exercise 5). Therefore (x – a) is a factor of x3 – 3 for some a ∈ Z7.  

 Claim, a3 = 3 in Z7. Proof. Suppose x3 – 3 = (x – a)⋅(x2 + bx + c).  By multiplying out the 
terms and equating like coefficients we obtain: a = b,   c = ab and ac = 3. Then a3 = aab = 
ac = 3. 
 Finally, by computing a3 for each of the 7 elements of Z7 we find that that 3 never arises. 
Then no such a can exist and the factorization is impossible. 

12. x4 – 4 = (x2 – 2)(x2 + 2) in  [x]. 
 It factors as (x – 2 )(x + 2 )(x2 + 2) in [x]. 
 It factors as (x – 2 )(x + 2 )(x + −2 )(x – −2 ) in [x]. 

The linear factors are clearly irreducible. If x + 2 factors in [x] it would be a product of 
two factors of degree 1, which we may assume are monic (as in Exercise 11). But then the unique 
factorization in [x] implies that the factors must be x ± −2 which do not lie in [x]. 

Since x2 +2 is irreducible in [x] it certainly is irreducible in [x]. The polynomial x2 – 2 
is irreducible in [x], for otherwise the monic factors x ± 2  would lie in [x], but 2  is 
not in . 

13. (a) (3x + l)(6x + 1) = 1 in Z9[x]. 
(b) First of all examine all the products (3x + r)(3x + s) and (3x + r)(6x + s). Every 

polynomial of the form ax + b in Z9[x] arises this way, except for the constant 
polynomials 3 and 6. If g(x) ∈ Z9[x] then g(x) = a(x)b(x) where a(x) = (3x + l)g(x) and 
b(x) = 6 x+l .  This factorization fulfills the condition provided a(x) has positive degree. 
This fails only when a(x) is a constant. Work (mod 3) to show that a(x) = g(x) (mod 3) 
is a constant so there is an expression g(x) = c0 + 3x ⋅·g1(x) in Z9[x]. Then a(x) = (3x + l)
(c0 + 3x·g1(x)) = c0 + 3x(c0 + g1(x)) is a constant, so that 3(c0 + g1(x)) = 0. But then 
g(x) = c0 + x·(3g1(x)) = c0 + x·(–3c0) has degree ≤ 1. Therefore if deg g(x) > 1 then the 
original factorization does not fail. All the cases where deg g(x) ≤ 1 were handled earlier. 
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14. x2 + x = x(x + l) = (x + 4)(x + 3). 

15. Answered in the text. Compare Exercise 1.3.11. 

16. (⇒) If p(x) is irreducible let d(x) be the gcd of p(x) and g(x). Then d(x) ⎟ p(x) so that either 
d(x) is a nonzero constant, and hence d(x) = 1 since it is monic, or d(x) is an associate of p(x). 
Since d(x) ⎟ g(x), the latter condition implies that p(x) ⎟ g(x). (See Exercise 5.) 
(⇐) If p(x) is reducible then there exists a factor a(x) ⎟ p(x) where 0 < deg a(x) < deg p(x). 
Then p(x) does not divide a(x) and is not relatively prime to a(x). Then the stated condition 
fails. 

17. The only gap is in the proof of (1) ⇒ (2). Suppose p(x) is irreducible and p(x) ⎟ b(x) c(x). If 
p(x) | b(x) then Exercise 16 implies that p(x) and b(x) are relatively prime. Theorem 4.7 then 
implies that p(x) ⎟ c(x). 

18. (1) ⇒ (3). Suppose p(x) is irreducible and p(x) = r(x)s(x). Then r(x) and s(x) are divisors of 
p(x) and the irreducibility implies that they are either nonzero constants or associates of p(x). 
If r(x) is not a nonzero constant then r(x) = cp(x) for some nonzero c ∈ F .  Then p(x) = 
cp(x)s(x) so that lF = cs(x). Then s(x) is a unit in F[x], so it is a nonzero constant. 

(3) ⇒ (1). Suppose r(x) is a divisor of p(x). Then p(x) = r(x)s(x) for some s(x). By 
hypothesis, r(x) or s(x) is a nonzero constant. If r(x) is not a nonzero constant then we must have 
s(x) = c is a nonzero constant. But then p(x) = cr(x) and r(x) = c–1p(x) is an associate of p(x). 

19. Use induction on n. The case n = 1 is vacuous and the case n = 2 is done in 
Theorem 4.11. Suppose n ≥ 3 and p(x) ⎟ a1(x)a2(x) . . . an(x). Applying Theorem 4.11 
we see that either p(x) ⎟ a1(x) or p(x) ⎟ a2(x) . . . an(x). In the latter case the 
induction hypothesis implies that p(x) divides one of the aj(x) for some j = 2, 3, . . . , n. 

20. From the definition of “irreducible” we know that p(x) cannot divide q(x). Then Exercise 16 
implies that p(x) and q(x) are relatively prime. 

21. (a) As seen in the answers in the text, if f(x) is a monic reducible quadratic then f(x) = (x – a) 

(x – b) for some a, b ∈ Zp. There are p of these of the type (x – a)2 and there are p(p – l)/2 of 
them having a ≠ b (the number of ways of choosing 2 things from a set of p things). Therefore 
there are p + p(p – l)/2 = (p2 + p)/2 of them. 

(b) The monic quadratic polynomials in Zp [x] are x
2 + rx + s for any r, s Zp. Therefore 

there are exactly p2 of them. Then using part (a), the number of irreducible quadratics is 

p2 – (p2 + p)/2 = (p2 – p)/2. 

22. These polynomials can be factored one by one. For a more unified approach recall Exercise 2.2.9. 
(a) Note that a3 = a for each of the 3 elements of Z3. Therefore (x + a)3 = x3 + a3 = x3 + a. 
(b) Note that a = a for each of the 5 elements of Z5. Therefore (x + a)5 = x5 + a5 = x5 + a. 

Arithmetic in F [x]

Those constant polynomials 3 and 6 cannot be factored that way. For instance suppose 3 = 
a(x)⋅b(x) in Z9[x]. Then a(x)·b(x) = 0 (mod 3). Switch the factors if necessary to assume a(x) = 0 
(mod 3). Then a(x) = 3a1(x) in Z9[x] and 3a1(x)·b(x) = 3. This implies that a1(x)·b(x) = 1 (mod 3) 
so both terms must be constants (mod 3). Express a1(x) = c0 + 3c1x + 3c2x

2 +. . . in Z9[x]. Then 
a(x) = 3a1(x) = 3c0 does not have positive degree in Z9[x]. 
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24. Let S = { f(x) ∈ F[x] : f(x) is nonconstant and f(x) is not expressible as a product of 
irreducibles in f[x] }. Assume S is not empty and try to derive a contradiction. Then the set 
S0 = { deg f(x) : f(x) ∈ S } is a non-empty subset of non-negative integers so (by the Well 
Ordering Axiom) it has a minimal element d. Let g(x) ∈ S be an element having this minimal 
degree: deg g(x) = d. Since no irreducible polynomial lies in S (by definition) we see that g(x) 
must be reducible. Therefore g(x) = a(x)b(x) for some a(x) and b(x), nonconstant polynomials 
of degree < d. By the minimal choice of d it follows that a(x) and b(x) are not in S so they 
are expressible as products of irreducibles. But then their product g(x) is also expressible as a 
product of irreducibles, contrary to hypothesis. This contradiction shows that S must be 
empty. 

The uniqueness proof is partly done in the text. To complete the argument we note that 
p2(x)(c1p3(x) . . . pr(x)) = q2(x)q3(x) . . . qs(x). Then p2(x) ⎟ q2(x)q3(x)···qs(x) and Corollary 4.12 
implies that p2(x) divides one of the qj(x); as above, assume p2(x) ⎟ q2(x). Hence p2(x) = c2q2(x) for 
some nonzero c2 ∈ F, and q2(x)(c1c2p3(x) . . . pr(x)) = p2(x)(c1p3(x) . . . pr(x)) = q2(x)q3(x)···qs(x). 
Cancel q2(x) to get p3(x)(c,c2p4(x) . . . pr(x)) = q3(x) . . . qs (x). Continue in this manner, 
repeatedly using Corollary 4.12 and eliminating one irreducible on each side at every step. If r > 
s then after s steps all the q’s will be eliminated and ps+1(x) . . . pr(x) = c for some c ∈ F. 
Comparing degrees yields a contradiction. By a similar argument, s > r is also impossible. 
Therefore r = s, and after r steps the elimination process ends with p1 (x) = c1q1(x), p2(x) = 
c2q2(x), . . . , pr(x) = crqr(x) for some nonzero cj ∈ F. 

25. By Theorem 4.13 f(x) = q1(x)q2(x) . . . qr(x) for some irreducible qi(x). Let qi(x) = cipi(x) where 
p . (x) is monic irreducible (see Exercises 2 and 7). Then f(x) = cp1(x)p2(x) . . . pr (x) where c = 
c1c2 . . . cr. 

Now suppose that f(x) = dg1(x)g2(x)···gs(x) where d ∈ F  and gj(x) is monic irreducible. Since 
all the polynomials pi(x) and gj(x) are monic, we have c = d by comparing the leading 
coefficients. Therefore pl(x)p2(x) . . . pr(x) = g1(x)g2(x)· · ·gs(x), and Theorem 4.10 implies that 
after relabeling the gj(x)’s we have r = s and pi(x) is an associate of gi(x) for each i. Since 
these are monic it follows that pi.(x) = gi(x) for each i. 

26. Suppose f(x) = ax2 +bx + c is irreducible in [x]. The quadratic formula implies that f(x) has 
a root in , so it factors into linear factors. To justify the quadratic formula, we must know 
that every element of  has a square root in . One proof is to use the polar form for 
elements of . Here is another method, using only properties of the real numbers: Proof. If a, 
b ∈ , solve (x + yi)2 = a + bi for real x, y by multiplying it out, eliminating y and using the 
quadratic formula. A solution exists since every nonnegative element in  has a square root in . 

23. (a) If x2 + 2 is reducible it must be a product of two linear factors. As in Exercise 11 we can 
adjust the leading coefficients to assume these factors are monic. Then x3 + 2 = (x – a)
(x – b) for some a, b ∈ Z5. 

 Multiplying this out and equating coefficients shows that a + b = 0 and ab = 2. 
Therefore a2 = a(–b) = –2 = 3 in Z5. Computing 02, 12, . . . , 42   in Z5 we see that 3 
never occurs. Then no such factorization can occur. 

(b) x4 – 4 = (x2 + 2)(x2 + 3). The same argument as in (a) shows that x2 +3 is also 
irreducible in Z [x]. 
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saravanansm
Note
Marked set by saravanansm



 
1. (a) Answered in the text. (b) xn – x is one example. 

 
2. (a) 2 (b) 170802 (c) –5 (d) 4 

 
3. (a) f(–2) = –24 ≠ 0 in , so x + 2 is not a factor. 

(b) f(
1

2
) = 0 in  so x–

1

2
 is a factor. 

(c) f(3) = 0 in 5 so x + 2 is a factor. 
(d) f(3) = 0 in 7 so x – 3 is a factor. 

 
4. (a) k = –2 (b) k = 2 

 
5. Let f(x) = anx

n + . . . + a2x
2 + a1x + a0. Then by Theorem 4.15 x – 1F is a factor of f(x) if 

and only if f(1F) = 0F. Since f(1F) = an + . . . + a1 + a0 the claim follows. 
 

6. (a) and (b) are direct calculations. For instance 3 4 = 81 ≡ 1 (mod 5) so that 35  ≡ 3 (mod 5).  

 (c) Conjecture that ap = a (mod p) for every integer a. 
 

7. As in Exercise 6, verify directly that a7 = a (mod 7) for each a = 0, 1, 2, 3, 4, 5 and 6. By 
the argument used to prove Corollary 4.16, the polynomial f(x) = x(x – l)(x – 2)(x – 3)(x – 
4)(x – 5)(x – 6) must divide x7 – x. Since they have the same degree, the quotient has 
degree 0, so it is a nonzero constant. Since both polynomials are monic, compare leading 
coefficients to see that they are equal. 

 
8. (a) 7  ∈  so it is reducible. 
 (d) No root in  so irreducible by Corollary 4.18. 
 (c) 7  ∈ μ so it is reducible. 
 (d) Irreducible since none of the 5 elements is a root. 
 (e) 4 is a root so it is reducible. 
 (f) 1 is a root so it is reducible. 

 
9. Answered in the text for 3[x]. 

For 5[x] : x
2 + 2, x2 + 3, x2 + x + 1, x2 + x + 2, x2 + 2x + 3, x2 + 2x + 4, x2 + 3x + 3, x2 + 

3x + 4, x2 + 4x + 1, x2 + 4x + 2 (There are 10 listed, as predicted in Exercise 4.3.21(b).) 
 

10. x2 + 1 is reducible in p[x] when it has a root in p, that is, when –1 is a square in p. For 
example, if p is expressible as p = a2 + 1 in , then [a] is a root of x2 + 1. For example, p 
= 17 and p = 37. 

 
11. The polynomial f(x) given has f(2) = 39 in , In order for f(2) = 0 in p we need p 139. 

Therefore p = 3 or 13. 
 

4.4 Polynomial Functions, Roots and Reducibility

Arithmetic in F [x]

© 2014 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

54

,

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



12. If f(x) = c0x
n + c1x

n–1 + . . . + cn–1x + cn define f*(x) = cnx
n + cn–1.x

n–1 + . . . + c1x + c0. 
Calculate that xnf(x_1) = f*(x) and xnf*(x–1) = f(x). Therefore if a ≠ 0 then a is a root of 
f(x) ⇔ 0 = f(a) = anf*(a–1) ⇔ f*(a–1) = 0 ⇔ a–1 is a root of f*(x). 

 
13. (a) Answered in the text, 
 (b) No. The polynomials x and x2 have the same roots. Similarly the polynomials 1 and x2 

+ 1 have the same roots in . 
 

14. (a) The Factor Theorem applied twice implies that (x – r)(x – s) divides ax2 + bx + c. 
Since these have the same degree, the quotient must be a nonzero constant. 
Comparison of leading coefficients shows that the quotient is a. Therefore ax + bx + c 
= a(x – r)(x – s). Multiplying this out and equating like coefficients yields the claim. 

 (b) The same argument implies that ax3 + bx2 + cx + d = a(x – r)(x – s)(x – t) = a(x3 – (r 
+ s + t)x2 + (rs + rt + st)x + rst). Equating like coefficients completes the proof. 

 
15. x2 + l is reducible in p[x] if and only if there is a root, or equivalently, there exists a ∈  

with a2 ≡ –1 (mod p). This is the same saying: there exists a ∈ 2 with a(p – a) ≡ 1 (mod p). 
Let b = p – a. 

 
16. Let h(x) = f(x) – g(x). By hypothesis this polynomial has n + 1 roots c0 . . . cn. If h(x) ≠ 0 

then deg h(x) ≤ max{deg f(x), deg g(x)} ≤ n contrary to Corollary 4.16. Therefore h(x) 
must be the zero polynomial and f(x) = g(x). 

 
17. x2 + 5x = x(x + 5) = (x + 2)(x + 3) has roots 0, 1, 4, 3 in 6. This does not contradict 

Corollary 4.13 since 6 is not a field. 
 

18. Let f(x) = cnx
n + cn–1x

n–1 + . . . + c1x + c0. Since ci ∈  we know that ϕ(ci) = ci. Then f(r) 
= 0 implies that 0 = ϕ(f(r)) = ϕ(cnr

n + + . . . + c1r + c0) = cnϕ(r)n + . . . + c1ϕ(r) c0 = 
f(ϕ(r)). Then ϕ(r) is also a root of f(x). 

 
19. (a) Partly answered in the text. We have f(x) = (x – a)kg(x) where g(a) ≠ 0. Then f′(x) = 

k(x – a)k–1g(x) + (x – a)kg′(x). If k ≥ 2 then a is a root of both f′(x) and f′(x). Conversely 
suppose a is a root of both f(x) and f′(x). If k = 1 then f′(x) = g(x)+ (x – a)g′(x) and 
f′(a) = g(a) ≠ 0. 

 b) If f(x) has a multiple root a ∈ f(x) and f′(x). 
Then x – a divides both f(x) and f′(x) so they are not relatively prime. 

 
20. The proofs of the Remainder and Factor Theorems involve dividing by the monic 

polynomial x – a and analyzing the remainder. By Exercise 4.1.14, division by monic 
polynomials is valid in [x], whenever  is a commutative ring with identity. The proofs of 
the Remainder and Factor Theorems go through unchanged. 

 
21. The proof of Corollary 4.16 contains only onestep where properties of the coefficient ring F 

are used. This step is the statement that if 0F = f(c) = (c – a)g(c) and c – a ≠ 0 then g(c) 
= 0F. This statement is valid in an integral domain , since there are no zero divisors. 
(Corollary 4.16 does fail when zero divisors exist, as in Exercise 17.) 
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22. The same proof works, substituting Exercise 21 for Corollary 4.16. 
 

23. These statements go back to the definitions of polynomial addition and multiplication and 
work equally well in [x] for any commutative ring  instead of a field F. 

Let g(x) = Σ anx
n, where the sigma denotes a sum over n = 0, 1, 2, . . . and all the 

coefficients equal 0F after some point, so the sum is a finite one. Similarly let h(x) = Σ bnx
n.  

(a) f(x) = g(x) + h(x) = Σ(an + bn)x
n by definition. By definition of “evaluation at r” we 

have f(r) = Σ(an + bn)r
n. The axioms of the ring F then imply that f(r) = (Σanr

n) +  
bnr

n) = g(r) + h(r). 
(b) f(x) = g(x)h(x) = Σ (a0bn + a1bn–1 + . . . + anb0)x

n by definition. Therefore f(r) = Σ (a0bn 
+ a1bn–1 + . . . + anb0)r

n and the axioms of the ring F imply that f(r) = (Σ air
i)(Σ bjr

j) = 
g(r)⋅h(r). 

These facts are often used when evaluations at x = r are made. For example in the proof 
of the Remainder Theorem 4.14 the polynomial f(x) = (x – a)q(x) + r(x) is evaluated at x = a 
to yield f(a) = r(a). This evaluation uses the properties above. Also compare Exercise 4.1.20. 

 
24. By Exercise 23, ϕa is a homomorphism. It is certainly surjective since for any c ∈ F we 

view c ∈ F[x] and find ϕa(c) = c. (See Exercise 31 for an application.) 
 

 26. (a) It is a subring for the same reasons as in Exercise 25 or Exercise 4.1.2. In this case the 
ring is much smaller since any power ( 2)m can be expressed as r or s 2  for suitable 
integers r, s. Then the general element of [ 2 ] is of the type r0 + r1 2  where r0, r1 ∈ 

. 
 (b) The function θ is the evaluation map 

2
ϕ  as described in Exercise 25, so it is a ring 

homomorphism. Clearly it is surjective, but it is not injective because θ(x2 – 2) = 0. 

 27. Suppose f, g ∈ T. Then there exist polynomials f0(x), g0(x) ∈ F[x] such that f(r) = f0(r) for 
every r ∈ F. Exercise 23 shows that f + g is the function associated to the polynomial f0(x) 
+ g0(x), and fg is the function associated to the polynomial f0(x)⋅g0(x). Therefore f + g, fg ∈ 
T. 

It is routine to verify the axioms to show T is a ring. The constant zero function is 0T, 
and the constant 1 function is 1T. The commutative, associative and distributive axioms 
are checked by evaluating at a fixed r ∈ F and using the corresponding axiom of F. 

 

Arithmetic in F [x]
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(Σ

25. (a) As Exercise 4.1.2, check that  [π] is a subring of  containing  and π. 
 (b) The proof in Exercises 23, 24 proves a more general result: 

Lemma. Suppose  and S are commutative rings with R ⊆ S, and a ∈ S is given. 
Define a map ϕa : [x] → S by ϕ(f(x)) = f(a). Then ϕa is a homomorphism of rings and 
ϕa(c) = c for every c ∈ R. In our case consider the homomorphism ϕπ :  [x] → . Its 
image is the set of all f(π) where f(x) ∈  [x]. That is, its image is  [π] and we obtain 
a surjective ring homomorphism ϕπ :  [x] → Q [π]. To prove it is injective, suppose 
ϕπ(f(x)) = ϕπ(g(x)) for some f, g ∈  [x], Consider h(x) = f(x) – g(x) and note that 
ϕπ(h(x)) = ϕπ(f(x) – g(x)) = ϕπ(f(x)) – ϕπ(g(x)) = 0. Then h(π) = 0 and the assumed 
nontrivial fact then implies that h(x) = 0. Therefore f(x) = g(x) proving that ϕπ is 
injective. 
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28. (a) A function θ : 3 → 3 is determined by the values θ([0]), θ([1]), θ([2]). Each of these 
values has three possibilities, so there are exactly 27 functions altogether. Then the 
ring T has at most 27 elements. By evaluating, check that (x + 1)⋅(x2 + 2x) = 0T but 
the factors are nonzero. 

 (b) T is finite but 3[x] is infinite, so they cannot be isomorphic. 
 
 

29. If f is a nonzero polynomial of degree zero, then it is a nonzero constant, so it has no roots 
in F and thus satisfies the conclusion of the corollary. Now suppose that the corollary holds 
for all functions with degree less than n, where n > 0 is some integer, and let f(x) be a 
nonzero polynomial of degree n. If f has no roots in F, then the corollary obviously holds, 
so assume that f has a root in F, say a ∈ F. Then by the Factor Theorem, 

 

f(x) = (x – a)g(x): 

 
Comparing degrees, we see that n = deg f(x) = deg(x – a) + deg g(x) = 1 + deg g(x), so 
that deg g(x) = n – 1. By the inductive hypothesis, g(x) has at most n – 1 roots in F. But 
the roots of F consist of a plus the roots of g(x), so that f(x) has at most n roots in F. 

 
30. Define ϕ : F[x] → T as in the Hint. First check that ϕ is a homomorphism: ϕ(f(x) + g(x)) is 

the function F → F sending r to (f + g)(r). = f(r) + g(r). This coincides with ϕ(f(x)) + 
ϕ(g(x)). Similarly ϕ(f(x)g(x)) coincides with ϕ(f(x))⋅ϕ(g(x)). By definition, the ring T is the 
image of ϕ, so ϕ is surjective. Finally, ϕ is injective by Corollary 4.19. 

 
31. If f(x) is reducible then f(x) = a(x)b(x) where a(x), b(x) are not units (i.e. they have degrees 

> 0). Then ϕ(f(x)) = ϕ(a(x))⋅ϕ(b(x)). Since ϕ is an isomorphism, ϕ  carries units to units 
and non-units to non-units. Therefore the factors ϕ(a(x)) and ϕ(b(x)) cannot be units, and 
ϕ(f(x)) is reducible. Conversely if ϕ(f(x)) is reducible then applying the part just done to 
the isomorphism ϕ –1 we see that f(x) is reducible. 

 
32. (a) Use the Lemma stated in Exercise 25 in the case  = F and S = F[x] with a = x + 1F. 

The corresponding map is a homomorphism Fixing F. Similarly defining ψ : F[x] → 
F[x] by setting ψ(f(x)) = f(x – 1F) we see that ψ is the inverse of ϕ. Therefore ϕ is 
bijective, so it is an isomorphism. (b) f(x) is irreducible if and only if ϕ(f(x)) = f(x + 
1F) is irreducible, using Exercise 30. 

 

4.5

4.5 Irreducibility in Q[ ]
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1. (a) Answered in the text. (b) xx(x3 + 4x2 + x + 1) 
 (c) Answered in the text. (d) (x + 1)(2x – 3)(x2 – 2x +2)  
 (e) Answered in the text. (f) (3x + l)(2x – 7)(x2 – 2x – 1) 
2. x2 – p is irreducible in [x] by the Eisenstein Criterion. Therefore the factor (x – p ) cannot 

be in [x]. Hence p  is not rational. (Alternatively we could use the Rational Root Test 
here. See Exercise 3.) 
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3. If f(x) = xn + an–1x
n–1 + . . . + a0 where each aj is an integer, and if r/s is a rational root (in 

lowest terms) then the Rational Root Test implies that s | 1. Therefore s = ±1 and r/s = 
±r is an integer. 

 
4. (a) First check that 1 and –1 are not roots. Then the Rational Root Test implies mere are 

no rational roots, hence no degree 1 factors. If it factors in [x] it must be the product 
of two irreducible quadratics. As in the example we would then get integers a, b, c, d 
satisfying a + c = 2, ac + b + d = 0, bc + ad = 1 and bd = 1. Therefore c = –a and b 
= d = +1. Eliminating c and d from the third equation yields: b(2 – a) + ab = 1 which 
leads to the adsurdity 2b = 1. Therefore no factorization is possible.  

 (b) Suppose it is reducible. As in (a), ±1 are not roots so it must factor as a product of 
two quadratics. This implies there are integers a, b, c, d satisfying a + c = 0, ac + b + 
d = –2, bc + ad = 8 and bd = 1. Then c = –a and b = d = ±1 so that 8 = b(–a) + ab, 
leading to the contradiction 8 = 0. Therefore no factorization is possible. 

 
5. (a) Let p – 2. (b) Let p = 5. (c) Let p = 2 or 3. 

 
6. Let k = 3m for any integer m not divisible by 3. Then Eisenstein applies with p = 3. 

 
7. 

 
8. f(x) = 2x2 + 3x + 1 is reducible in [x] since it equals (2x + 1)(x + 1). However ( )f x = x 

+ 1 in 2[x] and this is certainly irreducible. It does not contradict the Theorem since p 
divides the leading coefficient here. 

 
9. f(x) = x2 +60 is irreducible in [x] since it has no real root. It reduces (mod n) for n = 2, 

3, 4, 5 because ( )f x  = x ⋅ x in n [x]. For n = 7 we have ( )f x  = x2 + 4 in 7[x] which is 
irreducible since it has no root in r

 

 
11. Since 91 = 7⋅13, apply Eisenstein with p = 7 to deduce that 30xn – 91 is irreducible in [x]. 

Since n > 1 this polynomial has no linear factors, hence no rational roots (see Corollary 
4.17). 
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 (a)   Answered in the text.   (b) Reducing (mod 2) the polynomial becomes x4 + x + 1. 
This has no root in 2 so there is no degree 1 factor. If it factors in 2[x] it must be a 
product of two irreducible quadratics. But the only irreducible quadratic in x2 + x + 1. 
Since  (x2 + x + 1)2 = x4 + x2 + 1, the given polynomial is irreducible in 2[x]. 

. 

10. Given a monic f(x) ∈ [x] and a factorization f(x) = g(x)h(x) for some g(x), h(x) ∈ [x] 
where deg g(x) = m and deg h(x) = n. Suppose g(x) = amxm + . . . + a0 and h(x) = bnx

n + 
.

 
. . + b0. Then f(x) = am bn xm+n + . . . + a0b0. Since f(x) is monic we have am bn  = 1 so that 

am = bn = ±1. If am = bn = 1 then g(x) and h(x) are monic. Otherwise am = bn = –1 and 
f(x) = (–g(x))(–h(x)) is a factorization of the required type. 
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12. If f(x) is reducible then f(x) = g(x)h(x) forsome g(x), h(x) ∈ F[x] of degree ≥ 1. We can 
“evaluate” this equation at any particular value of x: f(a) = g(a)h(a). (Compare Exercise 
4.4.31.) Using a = x + c in the ring F[x] we have f(x + c) = g(x + c)h(x + c) in F[x]. 
Therefore f(x + c) is reducible in F[x]. 

 
13. f(x + 1) = (x + 1)4 + 4(x + 1) + 1 = x4 + 4x3 + 6x2 + 8x + 6. Eisenstein with p = 2 

shows that f(x + 1) is irreducible and therefore f(x) is also irreducible in [x]. 
 

14. Since f(x) = (x5 – 1)/(x – 1) we find: f(x + 1) = ((x + 1)5 – l)/x = x4 + 5x3 + 10x2 + 10x + 
5. Eisenstein with p = 5 shows that f(x + 1) is irreducible in [x]. By Exercise 12 f(x) is 
also irreducible. 

 
15. Let f*(x) = xnf(x–1) = a0x

n + a1x
n–1 + . . . + an as in Exercise 4.4.12. Suppose f(x) = 

g(x)h(x) is a non-trivial factorization in F[x]. Then deg g(x) = d and deg h(x) = n – d 
where 0 < d < n. Note that g*(x) = xdg(x–1) and h*(x) = xn–dh(x–1) arise from g(x) and h(x) 
respectively by reversing the coefficients. Furthermore f*(x) = xnf(x–1) = xdg(x–1 )xn–dh(x–1) = 
g*(x)h*(x) in [x]. Finally knowing a0 ≠ 0, the constant terms of g(x) and h(x) are also non-
zero. Therefore deg f(x) = n, deg g(x) = d and deg h(x) = n – d and the factorization of 
f*(x) is also non-trivial. 

Now for the particular situation in the problem, apply Eisenstein’s Criterion to deduce 
that f*(x) is irreducible in [x]. Since a0 ≠ 0, the discussion above shows that f(x) must also 
be irreducible in [x]. 

 
16. One example is f(x) = x2 + 1. 

 

 
18. (a) Irreducible. By the Rational Root Test the only possible rational roots are 1 and –1. 

Since these are not roots there arc no factors of degree 1. As in the examples, if the 
polynomial factors in [x] it must be the product of two monic quadratics in [x], say  
x4 – x2 + 1 = (x2 + ax + b)(x2 + cx + d). Then a + c = 0, ac + b + d = –1, ad + bc = 
0 and bd = 1. Then c = –a and b = d = ±1, so the second equation becomes –a2 + 2b 
= –1. Then a2 = 2b + 1 = –1 or 3 (since b = ±1). This is impossible for an integer a. 

 (b) Irreducible. One way to see this is to apply Theorem 4.24, recalling from Exercise 7(b) 
that x4 + x + 1 is irreducible in 2[x]. 

 (c) Irreducible. One proof uses Theorem 4,24, by showing that ( )f x  in 3[x] is irreducible. 
Express ( )f x  = x5 + x4 + 2x3 + 2x + 2 in 3[x]. Evaluation at x = 0, 1, 2 shows that 
there is no root in 3 and hence there is no linear factor. If it is reducible it must be a 
product of two monic irreducibles of degrees 2 and 3. The only monic irreducibles of 
degree 2 are: x2 + 1, x2 + x + 2 and x2 + 2x + 2 (see Exercise 4.4.9). Dividing each 
into ( )f x  shows that none is a factor. Hence ( )f x  is irreducible. 

 (d) Irreducible. As in (c) check that ( )f x   = x5 + 2x2 + x + 1 has no root in 3, and that 
the 3 monic irreducibles of degree 2 are not factors. Hence ( )f x  is irreducible in 3[x] 
and Theorem 4.24 applies. 
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17. Following the answer in the text we see that there are n choices for each coefficient a0, a1, . . ., 
ak–1 and there are n – 1 choices for ak (since we require ak ≠ 0 to have degree k. Altogether 
there are nk(n – 1) possibilities. 

x
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ϕ  : [x] → n[x] where ϕ (f(x)) = ( )f x   is a surjective 
homomorphism. Then if f(x) = g(x)h(x) in [x] then applying ϕ shows that ( )f x  = ( )g x  

( )h x (x) in n[x]. 
21. As in the Hint, use the Binomial Theorem (Appendix E) to show that f(x + 1) = ((x + 1)p 

– 1)/x = ( ) − − − − −−
= + + + … +∑ 1 1 2 3( 1)

.
2

p p k p p p
k

p p
x x px x p  By Exercise 1.4.13, |

p
p

k

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
 for k 

= 1, . . . p – 1, and the constant term is p, which is not divisible by p2. Eisenstein’s 

Criterion then implies that f(x + 1) is irreducible in [x]. By Exercise 12, f(x) is also 

irreducible in [x]. 
 

 
1. (a) Answered in the text.  (b)   1 + i,    1 – i   3 , − 3  
 (c) Answered in the text. 
 
2. (a) x3 – 8x2 + 22x – 20 (b) x4 – 2x3 + 6x2 – 8x + 8 (c) x3 – x2+ 11x – 51 
 
3. (a) Answered in the text. 

 

 (b) (x + l)(x2–x + l) in [x] and [x];    (x + l)(
+ ⋅

−
1 3

2

i
x )(

− ⋅
−

1 3

2

i
x ) in [x]. 

 (c) (x – l)(x2 – 5) in [x] and [x];     (x – l)(x – 5 )(x + 5 ) in [x]. 

 
4. (x + i)(x + 1 – i) 
 
5. By Lemma 4.28 the nonreal roots of f(x) occur in pairs, so there is an even number of 

them. By hypothesis there is no repetition among the roots, so there must be an odd 
number of real roots. 

 

6. If x ∈   is a root of f(x) then ax2 + bx2 + c = 0. Since a  ≠  0  we have x2 + (b/a)x = –

c/a. Adding (b/2a)2 to both sides we obtain: (x + b/(2a))2 = b2/(4a2) – c/a = (b2 – 

4ac)/(4a2). Take the square root of both sides to get: x + b/(2a) = ± −2 4 /(2 )b ac a . The 

claim follows. 

 

7. If it factors in [x] it is the product of two linear factors so that the two roots r1, r2 ∈  

must be real. From the quadratic formula (Exercise 6), a(r1 – r2) = −2 4b ac . Since this 

quantity is real, the number under the square root sign must be non-negative: b2 – 4ac ≥ 0. 

This contradicts the hypothesis, so the polynomial must be irreducible in [x].  
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.

19. (a) x5 + 2x4 − 6x2 − 16x− 8 = (x+ 2)(x− 2)(x3 + 2x2 + 4x+ 2). Since x3 + 2x2 + 4x+ 2 has
no rational roots (the only possibilities are 0, ±1, and ±2), it is irreducible over Q.

(b) x7−2x6− 6x4 − 15x2 − 33x− 9 = (x+ 1)(x− 3)(x5 + 3x3 + 9x+ 3). Since x5 + 3x3 + 9x+ 3
has no rational roots (the only possibilities are 0, ±1, and ±3), it is irreducible over Q.

20. From Exercise 4.1.17, the map 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



8. No. In fact if a + bi is a root of that polynomial f(x) = x3 – 3x2 + 2ix + i – 1 it turns out that a 

– bi is not a root of f(x). For suppose that a – bi is a root of f(x). Applying the “bar” as in the 

proof of Lemma 4.28, we find that a + bi is also a root of ( )f x  = x3 – 3x2 – 2ix – i – 1. But 

then a + bi is a root of f(x) – ( )f x  – 4ix + 2i forcing a + bi = –1/2. Check that –1/2 is not a 

root of f(x) to see that such a + bi cannot exist. 
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Chapter 5

Congruence in F [x] and
Congruence-Class Arithmetic

5.1 Congruence in F [x] and Congruence Classes

1. (a) f(x)− g(x) = x5− 2x4 + 4x3 + x+ 1− (3x4 + 2x3− 5x2− 9) = x5− 5x4 + 2x3 + 5x2 + x+ 10.
Using polynomial long division gives x5−5x4 +2x3 +5x2 +x+10 = (x2 +1)(x3−5x2 +x+10)
with no remainder, so that f(x) ≡ g(x) (mod p(x)).

(b) f(x)− g(x) = x4 +x2 +x+ 1− (x4 +x3 +x2 + 1) = −x3 +x = x3 +x. Using polynomial long
division gives x3 +x = (x2 +x)(x+1) with zero remainder (since the product is x3 +2x2 +x =
x3 + x in Z2), Thus f(x) ≡ g(x) (mod p(x)).

(c) f(x)− g(x) = (3x5 + 4x4 + 5x3− 6x2 + 5x− 7)− (2x5 + 6x4 +x3 + 2x2 + 2x− 5) = x5− 2x4 +
4x3 − 8x2 + 3x − 2. Using polynomial long division gives x5 − 2x4 + 4x3 − 8x2 + 3x − 2 =
(x3 − x2 + x− 1)(x2 − x+ 2)− 4x2. Since the remainder is nonzero, f(x) 6≡ g(x) (mod p(x)).

2. Given p(x) = c for some nonzero c ∈ F. For any f(x) ∈ F[x] we have c | f(x) (since f(x) = 
c(c–1 f(x))). Therefore f(x)  0 (mod c). 

 
3. There are 8 classes. 0, 1; x, x + 1; x2, x2 + 1, x2 + x, x2 + x + 1. 

 
4. By Corollary 5.5 the classes are uniquely represented by the elements ax  + bx2  + c for a, b, 

c ∈ 3. There are 3 independent choices for a, b, c here, yielding 27 possibilities. 
 
5. As above the classes are uniquely represented by the elements ax + b for a, b ∈ . There 

are an infinite number of different choices. 
 

6. By Corollary 5.5 the classes are uniquely represented by the elements c, for c ∈ F. In fact, 
by the Remainder Theorem, for any f(x) ∈ F[x] we have f(x) ≡ f(a) (mod x – a). 

7. f(x) ≡ g(x) (mod x) if and only if f(x) − g(x) is divisible by x. This happens if and only if
f(x) − g(x) has a zero constant term. So f(x) ≡ g(x) (mod x) whenever the constant terms in
f and g are the same, so that there is one congruence class for each possible constant, i.e., one
congruence class per element of F .
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8. Proof: Given p(x) divides f(x)k(x) – g(x)k(x) = (f(x) – g(x))k(x) and p(x), k(x) are relatively 
prime. By Theorem 4.7 conclude that p(x) divides f(x) – g(x) and therefore f(x) ≡ g(x) (mod 
p(x)). 

 
9. Answered in the text. 

 
10. Proof. Given p(x) | f(x)g(x). By Theorem 4.11 either p(x) | f(x) or p(x) | g(x). Therefore,  

f(x) ≡ 0F (mod p(x)) or g(x) ≡ 0F (mod p(x)). 
 

11. Given a factorization p(x) = f(x)g(x) where f(x), g(x) are polynomials of degrees ≥ 1. By 
comparing degrees we see that p(x) l f(x) and p(x) l g(x). Therefore f(x) Ú 0F (mod p(x)), 
g(x) Ú 0F (mod p(x)) and f(x)g(x) ≡ 0F (mod p(x)). 

 
12. Since the gcd is 1 Theorem 4.5 implies that there exist u(x), v(x) ∈ F[x] with f(x)u(x) + 

p(x)v(x) = 1F. Then f(x)u(x) ≡ lF (mod p(x)). 
 

13. f(x) ≡ g(x) (mod x) if and only if x | (f(x) – g(x)). By the Factor Theorem 4.15 this is 
equivalent to f(0) = g(0). This condition holds when the graphs have the same y-intercept. 

5.2 Congruence-Class Arithmetic

1. Answered in the text. 

2.  
+ [0] [1] [2] [x] [x+1] [x+2] [2x] [2x+1] [2x+2] 
[0] [0] [1] [2] [x] [x+1] [x+2] [2x] [2x+1] [2x+2] 
[1] [1] [2] [0] [x+1] [x+2] [x] [2x+1] [2x+2] [2x] 
[2] [2] 10] [1] [x+2] [x] [x+1] [2x+2] [2x] [2x+1] 
[x] [x] [x+1] [x+2] [2x] [2x+1] [2x+2] [0] [1] [2] 

[x+1] [x+1] [x+2] [x] [2x+1] [2x+2] [2x] [1] [2] [0] 
[x+2] [x+2] [x] [x+1] [2x+2] [2x] [2x+1] [2] [0] [1] 
[2x] [2x] [2x+1] [2x+2] [0] [1] [2] [x] [x+1] [x+1] 

[2x+1] [2x+1] [2x+2] [2x] [1] [2] [0] [x+1] [x+2] [x] 
[2x+2] [2x+2] [2x] [2x+1] [2] [0] [1] [x+2] [x] [x+1] 

 
⋅ [0] [1] [2] [x] [x+1] [x+2] [2x] x+1] x+2] 

[0] [0] [0] [0] [0] [0] [0] [0] [0] [0] 
[1] [0] [1] [2] [x] [x+1] [x+2] [2x] [2x+1] [2x+2] 
[2] [0] [2] [1] [2x] [2x+2] [2x+1] [x] [x+2] [x+1] 
[x] [0] [x] [2x] [2] [x+2] [2x+2] [1] [x+1] [2x+1] 

[x+1] [0] [x+1] [2x+2] [x+2] [2x] [1] [2x+1] [2] [x] 
[x+2] [0] [x+2] [2x+1] [2x+2] [1] [x] [x+1] [2x] [2] 
[2x] [0] [2x] [x] [1] [2x+1] [x+1] [2] [2x+2] [x+2] 

[2x+1] [0] [2x+1] [x+2] [x+1] [2] [2x] [2x+2] [x] [1] 
[2x+2] [0] [2x+2] [x+1] [2x+1] [x] [2] [x+2] [1] [2x] 

Congruence in F [x] and Congruence-Class Arithmetic
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3. Answered in the text. 
 

4. This 25 element ring is too big for us to give the complete tables here. It is not a field since 
there are zero divisors. For example [x+2]·[x+3] = [0]. 

 
5. [ax + b] + [cx + d] = [(a + c)x + (b + d)] 

 
  [ax + b]·[cx + d] = [(ad + bc)x + (–c + bd)] 

 
The rules for addition in these exercises are all the same. 

 
6. [ax + b]·[cx + d] = [(ad + bc)x + (2ac + bd)] 

 
7. [ax + b]·[cx + d] = [(ad + bc)x + (3ac + bd)] 

 
8. [ax + b]·[cx + d] = [(ad + bc)x + bd] 

 
9. If [ax + b] ≠ [0] then a, b are not both 0 so that δ = a2 + b2 > 0. Following the Hint let c 

= –a/δ and d = b/δ. Then [ax + b]·[cx + d] = [(ad + bc)x + (–ac + bd] = [0x + (a2 + 
b2)/δ] = [1]. 

 10. Since [a] + [b] = [a + b] and [ab] = [a]·[b] the subset F* is closed under addition and 
multiplication. Also [0] acts as the zero element and [1] acts as the identity element. All the 
other properties are automatic. (For instance, [a] + [–a] = [a – a] = [0] so that –[a] = [–a].) 

 
11. [x] ≠ [0] but [x]⋅[x] = [0], so [x] is a zero divisor. 

 
12. Given f – g = pu and h – k = pv for some u, v ∈ F[x]. Then (f + h) – (g + k) = p(u – v) 

and therefore [f + h] = [g + k]. Similarly, fh – gk = (g + pu)·(k + pv) –g·k = p(uk + gv + 
puv). Conclude that [fh] = [gk]. 

 
13. The proof that F[x]/(p(x)) is a commutative ring with identity is almost identical to the 

proof of Theorem 2.7. The only difference is a change of notation: write F[x] for �, p(x) for 
n, F[x]/(p(x)) for �, and write a(x) for a and b(x) for b, etc. For example to prove 
associativitiy for addition (property 2), use the definition of addition of classes: [a] ⊕ ([b] ⊕ 
[c]) = [a] ⊕ [b + c] = [a + (b + c)] = [(a + b) + c] = [a + b] ⊕ [c] = ([a] ⊕ [b]) ⊕ [c]. The 
remaining details are omitted. 

14. (a) Note that if f(x) ∈ Q[x], then on dividing f(x) by x2−2 we get f(x) = (x2−2)g(x)+r(x), and
deg r(x) < deg(x2− 2) = 2, so that f(x) ≡ r(x) = ax+ b for a, b ∈ Q. Thus any polynomial is
congruent to a linear function in Q[x]/(x2 − 2). To show that [f(x)] is a unit in Q[x]/(x2 − 2)
it suffices to show that f(x) is relatively prime to x2 − 2. But x2 − 2 is irreducible in Q[x],
so that indeed f(x) = 2x − 3 is relatively prime to x2 − 2 (see Exercise 16 in Section 4.3).
Thus by Theorem 5.9, [f(x)] is a unit in Q[x]/(x2 − 2). Thus there are u(x), v(x) ∈ Q[x] such
that [f(x)][u(x)] = [1] = [1] − [p(x)][v(x)], so that [f(x)][u(x)] + [p(x)][v(x)] = [1]. Per the
above comment, we may assume that u(x) = ax + b and v(x) = cx + d. Then we want to
solve (2x − 3)(ax + b) + (x2 − 2)(cx + d) = 1 in Q[x]. Expanding gives cx3 + (2a + d)x2 +
(−3a + 2b − 2c)x − (3b + 2d) = 1. Then c = 2a + d = −3a + 2b − 2c = 0 and −3b − 2d = 1.
Solving gives a = −2, b = −3, and d = 4, so that the inverse is ax + b = −2x − 3. Indeed
(2x− 3)(−2x− 3) = −4x2 + 9 = −4(x2 − 2) + 1.

© 2014 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Arithmetri 655.2 Congruence-Class c

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



Congruence in F [x] and Congruence-Class Arithmetic

(b) Note that [x2 + x + 1] = [x], since x2 + x + 1 − x = x2 + 1 is divisible by x2 + 1. To show
that [x] is a unit in Z3[x]/(x2 + 1) it suffices to show that x is relatively prime to x2 + 1 in
Z3[x]. But x2 + 1 is irreducible in Z3[x] since it has no roots, so that indeed x is relatively
prime to x2 + 1 (see Exercise 16 in Section 4.3). Thus by Theorem 5.9, [x] is a unit in
Z3[x]/(x2 + 1). Thus there are u(x), v(x) ∈ Z3[x] such that [x][u(x)] = [1] = [1]− [p(x)][v(x)],
so that [x][u(x)]+[p(x)][v(x)] = [1]. Per the above comment, we may assume that u(x) = ax+b
and v(x) = cx+d. Then we want to solve (x)(ax+b)+(x2+1)(cx+d) = 1 in Z3[x]. Expanding
gives cx3 + (a+ d)x2 + (b+ c)x+ (b+ d) = 1, so that a = −1, b = c = 0, and d = 1. Thus the
inverse is −x, and indeed

[(x2 + x+ 1)(−x)] = [−x3 − x2 − x] = [−x(x2 + 1)]− [x2] = −[x2] = [1].

5.3 The Structure of F [x]/(p(x)) When p(x) is Irreducible

 
15. Use a new variable T to avoid confusion with x. The polynomial T 2  + T has roots 0, 1 and 

the polynomial T 2  + T + 1 has roots [x], [x + 1]. Therefore T 4  + T = (T 2  + T)(T 2  + T 
+ 1) has all four roots. 

 
16. By Corollary 5.5 a typical element of this ring K = [x]/(x2 – 2) is [ax + b] where a, b ∈ 

. Since x2 – 2 is irreducible, ax + b and x2 – 2 are relatively prime whenever a, b are not 
both zero. Then by Theorem 5.9, every nonzero element [ax + b] is a unit in K. This shows 
that K is a field. 

1. (a) Evaluation at x = 0 ,1 ,2  shows that x3 + 2x2 + x + 1  has no root in 3.  By Corollary  
4.18, that polynomial is irreducible and Theorem 5.10 implies the ring is a field. 

  (b) Not a field by Theorem 5.10 since the polynomial is reducible. In fact 2x3 – 4x2 + 2x + 
1 = 2(x + 2)(x + 3)2. 

  (c) Not a field since  x4+ x2 + 1 = (x2 + x + 1)2. 
 

2. (a) Verifying that ( 2)  is a subring of  has essentially been done in Exercise 3.1.9. To 
show it is a subfield we must see that any nonzero element r + s 2  has an inverse in 

( 2) . Rationalizing the denominator shows that (r + s 2 )–1 = (r/δ) – (s/δ) 2  
where δ = r2 – 2s2. (Note that δ ≠ 0 since 2  is irrational.) These coefficients are in  
so the inverse lies in ( 2 ). 

 
 (b) By Corollary 5.5 every element of the ring A = [x]/(x2 – 2) can be uniquely expressed 

as [rx + s] for some r, s ∈ . Then the map ϕ : A → ( 2)  given by ϕ([r + sx]) = r 
+ s 2  is a well defined bijection. Also ϕ(r) = [r] for r ∈  and ϕ([x]) = 2 . Finally 
the calculation in Exercise 5.2.6 implies that this ϕ is a homomorphism. 
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3. By Theorem 5.7 we know that F* = {[a] : a ∈ F}  is a subring of F[x]/(x – a) which is 
isomorphic to F. In fact the map ϕ : F → F* defined by ϕ(a) = [a] is an isomorphism. 
Corollary 5.5 implies that every element of F[x]/(x – a) already lies in F*. Therefore (ϕ : F 
→ F[x]/(x – a) is an isomorphism. 

 
4. Restate the problem in terms of congruences: If f(x)g(x) ≡ 0F (mod p(x)) then either f(x) ≡ 

0F (mod p(x)) or g(x) ≡ 0p (mod p(x)). This is the content of Exercise 5.1.10. 
 

 

 

 
6. The assertion follows since F[x]/(p(x)) is a field (Theorem 5.9). Set [g(x)] = [f(x)]–1[h(x)]. 

 

 
8. By Theorem 5.10 we know that K = F[x]/(p(x)) is a field containing F and that there 

exists α ∈ K which is a root of p(x). The Factor Theorem implies that p(x) = (x – α)q(x) 
for some q(x) ∈ K[x]. Compare degrees to find deg q(x) = 1. Factoring out the leading 
coefficient β ∈ K of q(x) we get q(x) = β(x – γ) for some γ ∈ K. Then p(x) = β(x – α)(x – 
γ) and both roots α, γ lie in K. 

 
9. (a) By Corollary 4.18, x3 + x  + 1 is irreducible in 2[x], since neither 0 nor 1 is a root. By 

Theorem 5.10 the ring K = 2[x]/(x
3 + x + 1) is a field. 

  (b) As in Theorem 5.11 we know that α = [x] ∈ K is a root of x3 + x + 1. That is α3 = α 
+ 1. (Recall that –1 = 1 in K.) Dividing by (x + α) we find that x3 + x + 1 = (x + 
α)(x2 + αx + (α2 + 1)). This quadratic quotient can be factored (by inspection) in K 
to yield x3 + x + 1 = (x + α)(x + α2)(x + α2 + α). 

 
  Therefore the three roots α, α2 and α2+ α all lie in K. 
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5. (a) For subtraction: (a + b 3 ) – (c + d 3 ) = (a – c) + (b – d) 3 .   For multiplication:  
(a + b 3 )(c + d 3 ) = (ac + 3bd) + (ad + bc) 3 . Therefore ( 3)  is a subring of . 

  If a + b 3  ≠ 0 then δ = a2 – 3b2 ≠ 0 in  (for if a2 = 3b2 for positive a, b ∈  then 3  
= a/b would be rational). Since (a + b 3 )(a – b 3 ) = δ it follows that (a + b 3 )–1 = 
(a/δ) – (b/δ) 3  ∈ ( 3) . Hence it is a field. 

(b) As in Exercise 2(b) the map ϕ : ( [x]/(x2 – 3) → ( 3)  given by ϕ([r + sx]) = r + 
s 3  is a well defined bijection, with ϕ(r) = [r] for r ∈  and ϕ([x]) = 3 . The proof 
that ϕ is a homomorphism reduces to verifying that [a + bx]·[c+ dx] = [(ac + 3bd) + 
(ad + bc)x] in [x]/(x2 – 3). 

7. By Corollary 5.11 there is an extension field K1 of F which contains some root c1 of f(x). 
Then the Factor Theorem implies that f(x) = (x – c1)f1(x) for some f1(x) ∈ K1[x] of degree n 
– 1. If n > 1 repeat the process to find an extension K2 of K1 containing some root c2 of 
f1(x). Then f(x) = (x – c1)(x – c2)f2(x) for some f2(x) ∈ K2[x] of degree n – 2. Continue the 
process, finding extensions K2 ⊆ K3 ⊆ . . . ⊆ Kn where f(x) = (x – c1)(x – c2) ⊆ . . . (x – cn )fn(x) 
where deg fn(x) = 0. But then fn(x) = c0  is a nonzero constant. Let E = Kn to get the 
result. 
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10. By Exercises 2 and 5, if these fields were isomorphic there would be an isomorphism ϕ : 
( 2)  → ( 3) . Since ϕ(1) = 1  we find that α(n) = n for every positive integer n (since n 

= 1 + 1 + . . . + 1). (In fact, ϕ(r) = r for every r ∈ .) Suppose ϕ( 2)  = a + b 3  for some 
a, b ∈ . Then 2 = ϕ(2) = ϕ( 2) 2 = (a + b 3 )2 = (a2 – 3b2) + (2ab) 3 . Therefore a2 – 3b2 
= 2 and 2ab = 0, so either a = 0 or b = 0. If a = 0 then b = –2/3, which is impossible for b ∈ . 
If b = 0 then a2 = 2, also impossible in . Therefore no such isomorphism can exist. 

 
11. If u were a root in K then 3u2 +1 = 0. Since 6 = 0 in K, multiplying by 2 shows: 2 = 2(3u2 + 1) 

= 0 in K, contrary to the hypothesis that 6 is a subring. Consequently there is no commutative 
ring containing 6 and containing a root of 3x2 + 1. This shows that Corollary 5.12 requires 
the hypothesis that F is a field. 

 
12. If u were a root in K then 2u3 + 4u2 + 8u + 3 = 0. Since 16 = 0 in K we obtain 8 = 24 = 

8(2u3 + 4u2  + 8u + 3) = 0 in K contradicting the hypothesis that 16 is a subring. 
 
13. Let K = 2[x]/(x

4 + x + 1) with α = [x] ∈ K. Then α4 = α + 1. It is useful to compute a 
table of the powers of α: 

 
α4 = α + 1 α5 = α2 + α α6 = α3 + α2 α7 =α3 + α + 1 

 
α8 = α2 + 1 α9 = α3  + α α10 = α2 + α  + 1 α11 =α3 +α2+α 

 
α12 =α3+α2 +α + 1 α13 =α3+α + 1 α14 = α3 + 1 α15 = 1 
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It is enough to consider irreducible polynomials. The irreducibles of degree 1 are x, x + 1 
and these have roots already in  2. The only irreducible of degree 2 is x2 + x + 1. It turns 
out that β = α2 + α is a root, as we verify directly:   β 2  + β + 1 = (α2 + α)2 + (α2 + α) 
+ 1 = α4 + α + 1 = 0. 

The irreducibles of degree 4 are x4 + x + 1, x4 + x3 + 1 and x4 + x3 + x2 + x + 1. The 
first polynomial has α itself as a root, by construction. 

Let δ = α14 = α3 + 1. Then δ is a root of x4 + x3 + 1,  because: δ4 + δ3 + 1 = α56 + α42 
+ 1 = α11 + α12 + 1 = (α3 + α2 + α) + (α3 + α2 + α + 1) + 1 = 0. 

Let γ = α3. Then γ is a root of x4+ x3 + x2 + x + 1 as we verify similarly: γ4 + γ3 + γ2 + γ + 

1 = α12 + α9 + α6 + α3 + 1 = (α3 + α2 + α + 1) + (α3 + α) + (α3 + α2) + (α3) +1=0. 
In fact each of the 16 elements of K is a root of one of these polynomials of degree 1, 2 or 4. 
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Chapter 6

Ideals and Quotient Rings

6.1 Ideals and Congruence

1.

2.

3.

4.

5.

6.

The subset K is certainly closed under subtraction and multiplication, so it is a subring. 
However K is not an ideal since it does not “absorb” products. For instance 1 ∈ K and x ∈
[x] but x.1 = x is not in K. 

If f(x) ∈ [x] then f(x) lies in I if and only if f(0) is even. If f(x), g(x) ∈ I then (f – g)(0) = 
f(0) – g(0) is the sum of two even numbers, so it is even. Therefore f(x) – g(x) ∈  I. If f(x) ∈  I  
and r(x) ∈  [x] then (r . f)(0) = r(0)f(0) is even since f(0) is even. Therefore r(x)f(x) ∈ I. By 
Theorem 6.1 I is an ideal. 

(a) (k, 0) – (j, 0) = (k – j, 0) ∈ I and (r, s) . (k, 0) = (rk, 0) ∈ I for every k, j, r, s  ∈ . 
Therefore I is an ideal. 

(b) For example (1, 1) ∈ T and (1, 0) ∈  ×  but (1, 1).(1, 0) = (1, 0) ∉ T. 

No. For example 
⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

0 00 1 0 1

0 1 0 01 0
 so the set J does not absorb products. 

It is easy to check that K is closed under subtraction, and since 

+ +⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠0 0 0 0

x ya b ax bz ay bw

z w , K absorbs products from the right. In particular K is 

closed under multiplication (this is the case z = w = 0), and therefore K is a subring. 

However K does not absorb all products from the left. For example, 
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

0 00 1 0 1
.

0 0 0 11 0
 

(a) The set of nonunits, J = {0, 2, 4, 6} = (2) is a principal ideal in 8. 
(b) J = {0, 3, 6} = (3) is a principal ideal in 9. 
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11.

12. The list of candidates is the ideals generated by (0, 0), (1, 0), (0, 1), (1, 1), (0, 2), and (1, 2). Clearly
(0, 0) is the zero ideal, consisting of (0, 0) alone. Now, ((1, 0)) = {(1, 0), (0, 0)}, and ((0, 1)) =
{(0, 1), (0, 2), (0, 0)} = ((0, 2)). The ideal ((1, 1)) is equal to Z2 × Z3, since (1, 1)(a, b) = (a, b) ∈
((1, 1)) since ((1, 1)) is an ideal. Finally, ((1, 2)) = Z2 × Z3 as well, since (1, 2)(1, 2) = (1, 1) and
((1, 1)) = Z2 × Z3. Thus the distinct principal ideals are

{(0, 0)}, {(0, 0), (1, 0)}, {(0, 0), (0, 1), (0, 2)}, and Z2 × Z3.

13. No. For example, let R = Z and let a = −2 and b = 2. Then (−2) = (2), but −2 6= 2.

14.

7.

8.

9.

10.

(a)  The proof of Theorem 6.2 did not use the hypothesis that R possesses an identity 
element. 

(b) No, c need not be in I. As in the Hint, let I = {2k | k ∈ E} where E is the ring of even 
integers. Then every element x ∈ I is a multiple of 4 in  because x = 2k and k is even. In 
particular, 2 ∉ I. 

(c) Let c = 
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0

0 0
 in M( ). Then I = {rc | r ∈ M( )} consists of all matrices of the form 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

01 0
.

00 0

a b a

cc d
 This is the example given before Theorem 6.1. This I is not an 

ideal, but it is a left ideal. 

First note that I × J is nonempty since it contains (0R, 0S). As in Theorem 6.1, suppose (a, b) 
and (a', b') are in I × J. Then (a, b) – (a', b') = (a – a', b – b') lies in I × J, since I and J are 
ideals. Similarly if (a, b) ∈ I × J and (r, s) ∈ R × S then (r, s).(a, b) = (ra, sb) and (a, b).(r, s) 
= (ar, bs) both lie in R × S. 

(a) Answered in the text. 
(b) Suppose u ∈ I where u is a unit. Then u–1 ∈ R and 1R = u–1u ∈ I. By part (a) I = R. 

If I ≠ (0F) there exists a ∈ I with a ≠ 0F. Since F is a field this element a must be a unit. By 
Exercise 13, I = F. 

As in Theorem 6.1, suppose a, b ∈ I and r ∈ R. To show: a + b and ra lie in I. (The 
condition on ar is automatic by commutativity.) By hypothesis there exists expressions a = 
s1c1 + … sncn and b = t1c1 + … tncn for some s1, …, sn and t1, … tn ∈ R. By the usual 
associative, commutative and distributive laws, deduce that a + b = (s1 + t1)c1 + … + (sn + 
tn)cn and that ra = (rs1)c1 + …+ (rsn)cn. Since every sj + tj and rsj lie in R, conclude that a + 
b ∈ I and ra ∈ I. 

(a) Answered in the text. 
(b) (0) = {0}; (1) = (2) = (4) = (5) = (7) = (8) = 9; (3) = (6) = {0, 3, 6}. 
(c)  Answered in the text. 

15. Let J be the ideal in [x] generated by 2 and x. If g(x) ∈ J then g(x) = r(x).2 + s(x).x for 
some r(x), s(x) ∈ [x]. Since g(0) = r(0).2 + 0 is an even integer, conclude that g(x) lies in 
the ideal I. Conversely suppose h(x) ∈ I, so that h(x) = a0 + a1x + a2x

2 + … has even 
constant term. That is a0 = 2b for some b

 
∈

 
 and h(x) = b.2 + (a1 + a2x + a3x

2 +…).x lies 
in J. Hence I = J

. 
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16. (a) (2) = (–2). (b) Let R be a commutative ring. As mentioned after Theorem 6.3, let (c1, 
c2,..., cn) denote the ideal generated by c1, …, cn in R. 

Lemma. If J is an ideal of R and c1, …, cn ∈ J then (c1, ..., cn) ⊆ J. 
Proof. If a ∈ (c1, ..., cn) then a = r1c1 + …+ rncn. By the definition of ideals, each rici ∈ J and 
the sum a lies in J. QED  
In  we know that 4, 6 ∈ (2) so that (4, 6) ⊆ (2). Also, 2 = (–1).4 + 1.6 ∈ (4, 6) so that (2) 
⊆ (4, 6). 

This prove the equality. 

(c) Since 6, 9, 15 are multiples of 3 we know that 6, 9, 15 ∈ (3) so that (6, 9, 15) ⊆ (3), by 
the Lemma above. Similarly, 3 = (–1).6 + 1.9 + 0.15 ∈ (6, 9, 15) so that (3) ⊆ (6, 9, 15). 
This proves the equality. Compare Exercise 19. 

 
17. (a) If a, b ∈ I ∩ J then a, b ∈ I, so that a – b ∈ I. Similarly a, b ∈ J so that a – b ∈ J. 

Therefore a – b ∈ I ∩ J. 
If a ∈ I ∩ J and r ∈ R then a ∈ I so that ra, ar ∈ I and a ∈ J so that ra, ar ∈ J. Therefore 
ra, ar ∈ I ∩ J. Finally 0R ∈ I ∩ J so this set is not empty. 
(b) Let J be the intersection of the family of ideals Ik. If a, b ∈ J then a, b ∈ Ik and a – b ∈ 

Ik, for every ideal in the family. Then a – b ∈ J, since J is the intersection. Similarly let 
a

 
∈ J and r ∈ R. Then a ∈ Ik so that ra, ar ∈ Ik for every ideal in the family. Then ra, 

ar
 

∈ J since J is the intersection. Also J is not empty since 0R ∈ Ik. 

18. Let I = (2) and J = (3). Then I ∪ J = {n ∈  | either 2 | n or 3 | n}. This set is not closed 
under addition: 2, 3 ∈ I ∪ J but 5 ∉ I ∪ J. 

 
19. If a, b ∈ I ∩ S then a – b ∈ I since it is an ideal and a – b ∈ S since it is a subring. Therefore 

a – b ∈ I ∩ S. If a ∈ I ∩ S and s ∈ S men sa and as lie in I since I is an ideal in R and they 
lie in S since S is closed under multiplication. Hence sa, as ∈ I ∩ S. Since 0R ∈ I ∩ S we 
know it is nonempty. Therefore I ∩ S is an ideal in S. 

 
20. If a, a' ∈ I and b, b' ∈ J then (a + b) – (a' + b') = (a – a') + (b – b') lies in K. Similarly if 

a
 

∈ I, b ∈ J and r ∈ R then r(a + b) = ra + rb and (a + b)r = ar + br lie in K. Since 0R ∈ 
J

 
conclude that I = I + 0R ⊆ K and similarly J ⊆ K. In particular K is nonempty and therefore 

K is an ideal. (It is the smallest ideal containing both I and J.) 
 
21. Since d | a and d | b we have a, b ∈ (d) so that (a) + (b) = (a, b) ⊆ (d). (See the Lemma in 

Exercise 12 above.) Conversely by Theorem 1.3 there exist u, v ∈  such that d = au + bv. 
This says that d ∈ (a, b) so that (d) ⊆ (a, b) and equality follows. 

22. The set K is not necessarily an ideal. There should be a counterexample when R is a 
commutative ring with 1. If I = (c) is principal then K = {(rc)b | r ∈ R and c ∈ J) does turn 
out to be an ideal. For a counterexample we need I, J to be non-principal. Let I = J = (2, x) 
in R = [x]. Then K contains 4 = 2.2 and x2 = x.x but 4 + x2 is not in K (it is irreducible in 
[x]). 

23. (a) I = (3) is a principal ideal. The cosets are I = {0, 3}, 1 + I = {1, 4} and 2 + I = {2, 5}. 
(b) I = (3) is a principal ideal. The cosets are I = {0, 3, 6, 9, 12}, 1 + I = {1, 4, 7, 10, 13} 

and 2 + I = {2, 5, 8, 11, 14}. 
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24. If R = 6 the nonunits are {0, 2, 3, 4}, which is not closed under addition. 
 
25. Certainly 0R ∈ I so I is not empty. If r, s ∈ I then for every t ∈ J we have rt = st = 0R. 

Therefore (r – s)t = rt – st = 0R and hence r – s ∈ I. Suppose r ∈ I and x ∈ R. Then (xr)t = 
x(rt) = x.0R = 0R so that xr ∈ I. Also (rx)t = r(xt) = 0R since xt ∈ J. Therefore rx ∈ I as 
well, and I is an ideal. 

 
26. Certainly 0R ∈ K so K is not empty. If a, b ∈ K and r ∈ R then ra, rb ∈ I. Hence r(a – b) = 

ra – rb ∈ I, and a – b ∈ K. Also if x ∈ R then r(xa) = (rx)a ∈ I and r(ax) = (ra)x ∈ Ix ⊆ I. 
Therefore xa, ax ∈ K and K is an ideal. 

 
27. Following the answers in the text, we suppose r ∈ R and a ∈ K. Then f(a) = 0S by 

hypothesis so that f(ra) = f(r)f(a) = f(r).0S = 0S. Therefore ra ∈ K and K is an ideal. 
 
28. Since polynomials add term-by-term, if f(x), g(x) ∈ I[x] then f(x) – g(x) ∈ I[x]. If r(x) = 

[ ]
j

ja x R x∈∑  and f(x) ∈ [ ]
j

jm x I x∈∑  then the coefficient of xn in r(x)f(x) equals 

0 1 1 0 .n n na m a m a m−+ + +  This lies in I since each mj ∈ I. Therefore r(x)f(x) ∈ I[x]. Hence 
I[x] is an ideal. 

 
29. Answered in the text. 
 
30. By Exercise 3.2.36 the set N of nilpotent elements of R is a subring. If n ∈ N and r ∈ R then 

nk = 0R for some positive integer k. Therefore (rn)k = rknk = 0R and rn ∈ N. Hence N is an 
ideal. 

 
31.  (⇒) Answered in the text. 

(⇐) Suppose a = bu where u is a unit. For any r ∈ R we have ra = (ru)b ∈ (b). Therefore 
(a) ⊆ (b). Since b = au–1 the same argument provides the reverse inclusion. 

 
32. (a) f(x) ∈ J if and only if f(0) is a multiple of 3 in , or equivalently: f(0) ∈ (3). If f(x), g(x) 

∈ J then (f – g)(0) = f(0) – g(0) ∈ (3) and hence f(x) – g(x) ∈ J. Also if f(x) ∈ J and 
r(x) ∈ [x] then (r . f)(0) = r(0)f(0) ∈ (3) as well so that r(x)f(x) ∈ J. Hence J is an 
ideal. 

 (b) Suppose J = (h(x)) is principal. Then 3 ∈ J implies that 3 = h(x)q(x) for some q(x) ∈ 
[x]. Then deg h(x) = 0 so that h(x) = c is a nonzero constant. Also x ∈ J so that x = 

c.r(x) for some r(x) ∈ [x]. Comparing the leading coefficients shows that c = ±1. But 
then  ∈ J so that J = [x] by Exercise 13. This contradiction shows that J is not 
principal. 

33. If r, s ∈ R and n, m ∈  then (ra + na) – (sa + ma) = (r – s)a + (n – m)a lies in A. If x, r 
∈ R and n ∈  then x. ra + na) = (xr + nx)a ∈ A. Also a = 0R

.a + 1.a lies in A. Hence A is 
an ideal containing a. 
If J is an ideal with a ∈ J then J absorbs products, so ra ∈ J for every r ∈ R. If n ∈  and 

n
 

> 0 then na = a + a + … + a ∈ J since J is closed under addition. Also (–n)a = –(na) = 0R 
– na ∈ J since J is closed under subtraction. Therefore A ⊆ J. 
 

34. Certainly M ⊂ J and M ≠ J. If m, m' ∈ M and r, r' ∈ R then (m + ra) – (m' + r'a) = (m – m') + 
(r – r')a ∈ J. If m ∈ M, r, x ∈ R then x(m + ra) = xm + xra ∈ J. Therefore J is an ideal. 
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35. If I ≠ (3) there exists b ∈ I with b ∉ (3). Then 3 b, 3) = 1. Then 
there exist x, y ∈  with 1 = 3x + by ∈ I. By Exercise 13 we conclude I = . 
 

36. By definition IJ is closed under addition (a finite sum plus a finite sum is another finite sum). 
If a ∈ I and b ∈ J then –(ab) = (–a)b lies in IJ. Therefore IJ is closed under taking negatives, 
so it is closed under subtraction. If a ∈ I, b ∈ J and r ∈ R then r(ab) = (ra)b and (ab)r = 
a(br) both lie in IJ. Therefore (using the distributive law) IJ absorbs products. Clearly 0R ∈ 
IJ so it is not empty. Hence it is an ideal. 
 

37. Suppose a ≠ 0R. Then the ideal (a) contains a = IR
.a, so that (a) ≠ (0R). Therefore (a) = R so 

that 1R ∈ (a). This means that R ra for some r ∈ R and therefore a is a unit. Since every 
nonzero element is a unit, R is a field. 

38. Suppose a ∈ J and x ∈ R. Then an ∈ I for some positive integer n, and (xa)n = xnan ∈ I since 
I is an ideal. Hence xa ∈ J. Now suppose a, b ∈ J so that am, bn ∈ I for some positive integers 
m, n. Then (as in Exercise 3.2.36) (a + b)m+n–1 equals a sum of terms of the type C.ar.bs where 
C > 0 is a binomial coefficient, and r, s ≥ 0 with r + s = m + n – 1. Then either r ≥ m or s ≥ 
n (for otherwise r ≤ m – 1 and s ≤ n – 1 so that r + s ≤ m + n – 2 which is false). Therefore 
either ar ∈ I or bs ∈ I, so that each term of this sum lies in I. Therefore a + b ∈ J. This 
proves that J is an ideal. 
 

39.  (a) 
1 0

0 0
c

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 has no inverse in M( ). (There is no matrix a with ac = 1, as seen in Exercise 9.) 

(b) Suppose J ≠ (0) is an ideal. Consider the special matrices 
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

11 12

1 0 0 1
, ,

0 0 0 0
E E  

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

21 22

0 0 0 0
and .

1 0 0 1
E E Note that E12 = E11E12, E21 = E21E11, and E22 = E21E11E12. 

Then if E11 ∈ J, all these special matrices lie in J and hence every matrix 

⎛ ⎞
= + + +⎜ ⎟⎜ ⎟

⎝ ⎠
11 12 21 22

a b
aE bE cE dE

c d
 lies in J. In that case, J = M( ). 

Suppose 
a b

M J
c d

⎛ ⎞
= ∈⎜ ⎟
⎝ ⎠

 is a nonzero element. Note that 

aE11 = E11ME11 bE11 = E11ME21 
cE11 = E12ME11 dE11 = E12ME21 

Since at least one of a, b, c, d must be nonzero, one of these equations implies that E11 lies in 
the ideal J. The preceding paragraph then applies. 
 

40. If I ≠ (0) then these exist positive elements in I (if r ∈ I men –r ∈ I). By the Well Ordering 
Axiom there is a smallest positive element c ∈ 1. Then certainly (c) ⊆ I. If a ∈ I, the division 
algorithm implies that a = cq + r for some q, r ∈  where 0 ≤ r < c. Then r = a – cq ∈ I 
and the minimality of c implies that r cannot be positive. Therefore r = 0 and a = cq ∈ (c). 
Therefore I ⊆ (c) and we do have I = (c). 
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41. (a) Suppose a/s, b/t ∈ S where s, t are odd. Then a/s – b/t = (at – bs)/st and (a/s)(b/t) = 
(ab)/(st) have odd denominators so they also let in S. Therefore S is a subring. 
(b) Suppose a/s, b/t ∈ I where a, b are even and s, t are odd. Since at – bs is even and st is 

odd we see that a/s – b/t ∈ I. For any c/u in S we see that ac is even and su is odd so 
that (a/s)(c/u) ∈ I. Hence I is an ideal in S. 

(c) Let a/s ∈ S. If a is even then a/s ∈ I. Otherwise a is odd so that a – s is even and (a/s) – 
a – s)/s ∈ I. Then a/s ∈ 1 + I. 

 
42. (a) Suppose a/s, b/t ∈ T where s, t are not divisible by p. Then a/s – b/t = (at – bs)/st and 

(a/s)(b/t) = (ab)/(st) have denominator st which is not divisible by p (by Theorem 1.8). 
Then these quantities lie in T so that T is a subring. 

(b) Suppose a/s, b/t ∈ I where a, b are multiples of p and s, t are not divisible by p. Since  
at – bs is a multiple of p and st is not, we see that a/s – b/t ∈ I. For any c/u in T we see 
that ac is a multiple of p and su is not, so that (a/s)(c/u) ∈ I. Hence I is an ideal in T. 

(c) Let a/s ∈ T. Since s and p are relatively prime there exists x ∈  with 0 ≤ x < p 
satisfying sx ≡ a (mod p). Then (a/s) – x = (a – sx)/s ∈ I, and a/s ∈ x + I for this value 
of x. Therefore the only cosets are I, 1 + I, 2 + I, …, (p – 1) + I. 

Finally to show those cosets are distinct suppose two of them coincide; n + I = m + I for 
some 0 ≤ n < m < p. Then k = m – n lies in I and 0 < k < p. This implies that k = a/s 
where p | a and p | s. But then a = ks and Theorem 1.8 implies p | k. This contradiction shows 
that there are p cosets. 
 

43. (a) If f(x) = xg(x) for some g(x) ∈  [x] then f(0) = 0 so that f(x) ∈ J. Conversely, if f(x) ∈ J 
then f(0) = 0 and the Factor Theorem 4.15 implies that x | f(x) so that f(x) ∈ (x). 

(b) Answered in the text. 
 

44.  (a) 
' ' ' '

0 0 ' 0 '

a b a a b ba b

a a a a

− −⎛ ⎞ ⎛ ⎞⎛ ⎞
− =⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 so T is closed under subtraction, 
⎛ ⎞⎛ ⎞

⋅ =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

' '

0 0 '

a ba b

a a
 

+⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

' ' '

0 '

aa ab ba

aa
 so T is closed under multiplication and it also follows that T is 

commutative. Therefore T is a subring. 

 

(b) It is easy to see I is closed under subtraction. Also 
0

0 0 0 00

x axa b

a
⎛ ⎞ ⎛ ⎞⎛ ⎞⋅ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 so that I is 

an ideal. Note that the product of any two elements of I equals 0T. 

(c) For any a, b ∈  we easily see that 
0

00

aa b

aa
⎛ ⎞ ⎛ ⎞

≡⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (mod I). Therefore each coset of I 

equals 
0

0

a
I

a
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 for some a ∈ . 
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45. (a) 
' ' ' ' ' ' ' ' '

and
0 00 ' 0 ' 0 ' 0 '

a b a a b b a b aa ab bca b a b

c cc c c c cc

− − +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
− = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 so that S is a 

subring. 

 

(b) I is closed under addition and we see that 
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

0 0 0

0 0 0 0 0 00 0

x ax xa b a b
and

c a
 

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

0
.

0 0

xc
 Therefore I is an ideal in S. 

 

(c) Certainly 
0

00

aa b

cc
⎛ ⎞ ⎛ ⎞≡⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (mod I), so that any coset of I equals 

0

0

a

c
⎛ ⎞
⎜ ⎟
⎝ ⎠

 + I for some 

pair (a, c) ∈  × . To show these cosets are all distinct it suffices to note that if 

0

0

a

c
⎛ ⎞ ∈⎜ ⎟
⎝ ⎠

 I then (a, c) = (0, 0). This statement is clear from the definition of I. 

 
46. Suppose I ≠ (0). Then there exist nonzero elements in I and the Well Ordering Axiom implies 

that there exists some p(x) ∈ I of smallest degree. Certainly (p(x)) ⊆ I. Conversely suppose  
f(x) ∈ I. The division algorithm implies that f(x) = p(x)q(x) + r(x) for some q(x), r(x) ∈ F[x] 
where either r(x) = 0F or deg r(x) < deg p(x). Since f(x), p(x) ∈ I we know r(x) ∈ I. If r(x) ≠ 
0F this contradicts the minimality of deg p(x). Therefore r(x) = 0F and f(x) ∈ (p(x)). Hence  
I ⊆ (p(x)). Consequently, I = (p(x)) is principal. 
 

47. (⇒) Let u be the identity element of S. The ideal (u) in n equals {0, u, 2u, 3u, ... , (n – 1)u}. 
Since S is closed under addition all these elements lie in S. Conversely if s ∈ S we have s = us 
∈ (u). Hence S ⊆ (u) so that S = (u). The condition u2 = u is clear since u is the identity 
element. 

(⇐) If S = (u) is an ideal then certainly S is a subring. Every s ∈ S can be written s = ru 
for some r ∈ n. Then su = (ru)u = ru2 = ru = s so that u acts as the identity element of S. 
 

6.2 Quotient Rings and Homomorphisms

1. Here θ(f(x)) = f(0) so θ is an “evaluation homomorphism” as considered in Exercise 4.4.24. 

2. If ϕ : F → R is a surjective homomorphism then the kernel is an ideal of F. By Exercise 
6.1.14 this ideal is either (0) or F. If it is F then ϕ carries every element to 0R so that R = 
{0R} is the zero ring. 
Otherwise the kernel is (0) and ϕ is injective, by Theorem 6.11. Hence ϕ is an isomorphism. 

3. Answered in the text. 

4. (a) If [a]12 = [b]12 then a = b + 12k for some integer k. Therefore [a]4 = [b]4. Also f([a]12 + 
[b]12) = f([a + b]12) = [a + b]4 = [a]4 + [b]4 = f([a]]2) + f([b]12). Products work similarly. 
For any n ∈ , [n]4 = f([n]12) so f is a surjective homomorphism. 

(b) The kernel equals ([4]12) = {[0]12, [4]12, [8]12}. 
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Ideals and Quotient Rings

6. kerϕ is the set of elements f(x) ∈ R[x] such that f(2) = 0, i.e., polynomials with 2 as a root. By
Theorem 4.16, this means that x− 2 is a factor of f(x). Thus kerϕ is the set of polynomials that
are multiples of x− 2; that is, kerϕ = (x− 2), the ideal generated by x− 2.

8.

9.

10.

11. (a) To see that f is a homomorphism, note that

f((a+ b
√

2) + (c+ d
√

2)) = f((a+ c) + (b+ d)
√

2) = (a+ c)− (b+ d)
√

2

= (a− b
√

2) + (c− d
√

2) = f(a+ b
√

2) + f(c+ d
√

2)

f((a+ b
√

2)(c+ d
√

2)) = f((ac+ 2bd) + (ad+ bc)
√

2) = (ac+ 2bd)− (ad+ bc)
√

2

= (a− b
√

2)(c− d
√

2) = f(a+ b
√

2)f(c+ d
√

2).

f is clearly surjective since an arbitrary element c+ d
√

2 ∈ Z[
√

2] is f(c− d
√

2).

(b) Suppose f(a + b
√

2) = 0. Then a − b
√

2 = 0 and thus a = b
√

2 for a, b ∈ Z. Since
√

2 is
irrational, this is impossible unless a = b = 0 (otherwise a

b =
√

2). Thus a+ b
√

2 = 0, so that
ker f = {0}. By Theorem 6.11, f is injective. Since it is also a surjective homomorphism, it
follows that f is an isomorphism.

5. Answered in the text. 6 is not an integral domain. 

7. The identity map τ : R → R has kernel (0R). The First Isomorphism Theorem implies that  
R/(0R) ≅  R. 

First check that π((r, s) + (r', s')) = π(r + r', s + s') = r + r' = π(r, s) + π(r', s') and 
similarly for products, so π is a homomorphism. It is surjective since r = π(r, 0S). The kernel 
K equals {(0R, s) | s ∈ S}. The map ρ : K → S defined by ρ(0R, s) = s shows that K ≅  S. 

(a) For subtraction: 
−⎛ ⎞ ⎛ ⎞⎛ ⎞

− =⎜ ⎟ ⎜ ⎟⎜ ⎟ − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0 ' 0 ' 0
.

' ' ' '

a a a a

b c b c b b c c
 For multiplication: 

  
⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0 ' 0 ' 0
.

' ' ' ' '

a a aa

b c b c ba cb cc
 Therefore R is a subring of M( ) and R contains the 

  identity matrix. 

 (b) The map f is surjective since for every a ∈ : 
⎛ ⎞

=⎜ ⎟
⎝ ⎠

0 .
0 0
af a  The homomorphism 

properties are easy to check by glancing at the formulas for subtraction and 

multiplication in part (a). 

(c) The kernel equals 
⎧ ⎫⎛ ⎞⎪ ⎪∈⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

0 0
: , .b c

b c
Z  

(a) If s, t ∈ f(I) then s = f(a) and t = f(b) for some a, b ∈ I. Then s + t = f(a) + f(b) = f(a 
+ b) ∈ f(I). For any u ∈ S there exists r ∈ R with u = f(r), using the surjectivity. Then 
us = f(r)f(a) = f(ar) ∈ f(I). Similarly su lies in f(I). Therefore f(I) is an ideal. 

(b) There are many examples. The inclusion map ϕ :  →  is a homomorphism of fields. The 
field  is an ideal in itself, but ϕ( ) =  is not an ideal in . 

76

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



12. For any a, b ∈ R we have (a + I)(b + I) – (b + I)(a + I) = ab + I – ba + I = (ab – ba) + I 
= I Therefore (a + I)(b + I) = (b + I)(a + I). 

 
13. a + I has a square root in R/I if and only if there exists b ∈ R where a + I = (b + I)2 = b2 + 

I. This occurs if and only if a – b2 ∈ I. 
 
14. If a ∈ R then a + I is a solution of x2 = x in R/I if and only if a + I = (a + I)2 = a2 + I. 

This occurs if and only if a – a2 ∈ I. 
 
15. R/I has an identity if and only if there exists e ∈ R such that (e + I)(a + I) = a + I for 

every a ∈ R. This equation is equivalent to: ea + I = a + I, which is the same as requiring: 
ea – a ∈ I. 

16. R/I is a commutative ring with identity and it is not the zero ring, since I ≠ R. Then R/I is 
an integral domain if and only if: whenever (a + I)(b + I) = I then either a + I = I or b + I 
= I. This is equivalent to saying: whenever ab ∈ I then either a ∈ I or b ∈ I. 

 
17. (a) f(a + b) = ((a + b) + I, (a + b) + J) = ((a + I) + (b + I), (a + J) + (b + J)) = (a + I, 

a + J) + (b + I, b + J) = f(a) + f(b). Similarly f(ab) = f(a)f(b). 
(b) No, f is not necessarily surjective. For example f :  → /(2) × /(4) is not surjective. In 

fact (a + (2), b + (4)) lies in the image of f if and only if a ≡ b (mod 2). (Why?) 
 
18. Let S be a homomorphic image of R, say f : R → S is a surjective homomorphism. Then the 

First Isomorphism Theorem implies that S ≡ R/K where K is the kernel of f. Theorem 6.9 
implies that S is a commutative ring with identity. Now let M be an ideal of S and define I = 
f –1(M) = {r ∈ R : f(r) ∈ M}. Lemma. I is an ideal of R containing K and f(I) = M. 

 

20. To show f  is well defined suppose r + I = r' + I. To Show. f(r) = f(r'). 
Proof. Given r – r' ∈ I we have f(r) – f(r') = f(r – r') = 0S since I is contained in the kernel. 
Then f(r) = f(r'). 

 If r, r' ∈ R then f ((r + I) + (r' + I)) = f (r + r' + I) = f(r + r') = f(r) + f(r') = f (r + I) 
+ f (r' + I). Similarly, f ((r + I).(r' + I)) = f(rr' + I) = f(rr') = f(r)f(r') = f (r + 1) f (r' + 
I). Hence  is a homomorphism. 

19. For any a, b ∈ R we have (a + K) – (b + K) = (a – b) + K ∈ I/K and for any r ∈ R we 
have (r + K)(a + K) = ra + K ∈ I/K and (a + K)(r + K) = ar + K ∈ I/K. Therefore I/K 
is an ideal. 
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f

  

Proof. If a, b ∈ I then f(a), f(b) ∈ M so that f(a + b) = f(a) + f(b) e M. Also if re R then f(ra) 
= f(r)f(a) ∈ M. Hence I is an ideal. Since 0S ∈ M it follows that K⊆I. It is clear that f(I) ⊆ M. 

Conversely if m ∈ M there exists r ∈ R  with f(r) = m, since f is surjective. But then re I by 
definition and m ∈ f(I). 
Now let us assume every ideal of R is principal. For any ideal M of S as above we have M = 
f(I) where I is an ideal of R. By hypothesis, I = (r) for some r ∈ R .  
Claim. M = (f(r)) is principal. 

Proof. If m ∈ M then m = f(w) for some w ∈ I. Then w = rt for some t ∈ R, so that m = 

f(rt) = f(r)f(t) ∈ (f(r)). Conversely if m ∈ (f(r)) then m = sf(r) for some s ∈ S. Since f is 

surjective we have s = f(t) for some t ∈ R and m = f(t)f(r) = f(tr) ∈ f(I) = M. 
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24. The idempotents are 0, 1, x2 + 1 and –x2. 
 
25. Answered in the text. 
 
26. A direct proof is easily given, since we know there are only two cosets, and the quotient ring 

is a commutative ring with identity. Comparing the tables shows that this ring of two 
elements is isomorphic to 2. For a more “abstract” proof see Exercise 29. 

27. Define ϕ : S → p by ϕ(r/s) = [r]p[s]p
–1. Suppose r/s is not in lowest terms, so that r = dr1 

and s = ds1 where d = (r, s) is the god. Since [r]p[s]p
–1 = [r1]p[s1]p

–1 we conclude that ϕ(r/s) = 
[r]p[s]p

–1 even if r/s is not in lowest terms (provided p | s of course). 
 

If r/s and r'/s' ∈ S then ϕ(r/s + r'/s') = ϕ((rs' + sr')/ss') = [rs' + sr']p[ss']p
–1 = [rs']p[ss']p

–1 + 
[sr']p [ss']p

–1 = ϕ(r/s) + ϕ(r'/s'). Similarly, ϕ((r/s)(r'/s')) = ϕ(rr'/ss') = [rr']p[ss']p
–1 = ([r]p[s]p

–1) 
([r']p[s']p

–1) = ϕ(r/s) ϕ(r'/s'). Therefore ϕ is a homomorphism. It is surjective since ϕ (r) = [r]p 
for any r ∈ . Check that the kernel equals the ideal I. The First Isomorphism Theorem 
implies S/I ≅  p. 

 
28. Define ϕ : T →  by .

0

a b
a

a
ϕ
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 From the formulas in Exercise 6.1.42 it follows that ϕ is a 

homomorphism. It is certainly surjective and the kernel is seen to be the ideal I of that 

Exercise. The First Isomorphism implies that T/I ≅ . 

 

29. Define ψ :T →  ×  by ψ
⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠

( , ).
0

a b
a c

c
 From the formulas in Exercise 6.1.43 it follows that 

ψ is a homomorphism. It is surjective with kernel = I. The First Isomorphism Theorem 

implies that T/I ≅  × . 
 
30. Define f : I → (I + J)/J as in the Hint. It is a homomorphism since it is the restriction of the 

projection homomorphism π : R → R/J. Every element of (I + J)/J equals some coset i + j 
+ J for i ∈ I and j ∈ J. But this coset equals i + J = f(i), so that f is surjective. If a ∈ I ∩ J 
then f(a) = a + J = J so that a is in the kernel. Conversely, if a ∈ I lies in the kernel then 
f(a) = a + J = J, so that a ∈ J. Therefore a ∈ I ∩ J. The First Isomorphism Theorem 
implies that I/(I ∩ J) ≡ (I + J)/J. 

Ideals and Quotient Rings78

Exercise 6.1.38, J = (n) is a principal ideal generated by the smallest positive element n ∈ J. 
That is, n is the smallest positive integer with n R R. Then n is the characteristic of R (as 
in Exercise 3.2.31). 
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1  =0

21. Let ϕ :  → 5 be the natural projection defined by ϕ(k) = [k]5. The kernel of ϕ is (5) which 
contains the ideal (20). By Exercise 22 there is an induced homomorphism ϕ : 20 → 5. Here 
ϕ  ([k]20) = [k]5 and we see that the kernel of ϕ  is exactly (5) in 20. The First Isomorphism 
Theorem then implies that 20/(5) ≅ 5. 

 
22. This was done in the solution to Exercise 20. 

23. (a) If m, n ∈  we need to know that (m + n)1R = m R n R mn)1R  = (m R )(n R ). 
These follow from results of Exercise 3.2.21. 

 (b) The kernel of f is an ideal J of . If J = (0) then for every n > 0 we have n R f(n) ≠ 0R . 
 Therefore the characteristic of R is zero, and the assertion is true. Suppose J ≠ (0). Then by 

1  + 1  and (

1  = 
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6.3 The Structure of R/I when I is Prime or Maximal

3.

(b) Let I(S) denote the set of all ideals in the ring S. Let IK(R) be the set of all ideals of R 
which contain K. Define α: I(S) → IK(R) by α(M) = f –1(M) = {r ∈ R | f (r) ∈ M}. (By 
Exercise 24, this map a is wetl-defined.) Define β IK (R) → I(S) by β(I) = f(I). (By 
Exercise 11 this β is well-defined.) As proved in Exercise 20 we also know that β(α(M)) = 
M. Claim. α(β(I)) = I. 
Proof. α(β(I)) = {r ∈ R | f(r) ∈ f(I)}. This set certainly contains I. Conversely if f(r) ∈ f(I) 
then f(r) = f(a) for some a ∈ I. Then f(r – a) = 0S so that r – a ∈ K ⊆ I, and r ∈ a + I = I. 

Therefore α and β are inverses of each other, so they are bijections. 

1. Answered in the text. 

2. If P is a prime ideal then Theorem 6.14 implies that R/P is a finite integral domain. By 
Theorem 3.11 it is a field, hence P is maximal by Theorem 6.15. 

(a) First note that p is prime if and only if –p is prime, and that (p) = (–p). Therefore we 
may assume p > 0. If p = l then p is not prime and /(p) = (0) is not a field. Suppose 
p

 
p is a prime if and only if P is a field. Then, p is a prime 

number if and only if (p) is a maximal ideal, using Theorem 6.15.  
(b) If p(x) = 0 is the zero polynomial the  it is not irreducible and (0F) is not maximal. If 

p(x) = c is a non-zero constant then it is not irreducible and (p(x)) = F[x] is not a 
maximal ideal. Suppose deg p(x) ≥ 1. By Theorem 5.10, p(x) is irreducible if and only if 
F[x]/(p(x)) is a field. By Theorem 6.15 this is equivalent to saying (p(x)) is a maximal 
ideal. 

4. R is an integral domain if and only if: if ab = 0R is R then either a = 0R or b = 0R. By the 
definition of “prime ideal” this says exactly that (0R) is prime. 

5. For 6 the maximal ideals are (2) and (3). 
For 12 the maximal ideals are: (2) = {0, 2, 4, 6, 8, 10} and (3) = {0, 3, 6, 9}. 

6. (a) The ideals of 8 are all principal (see Exercise 6.2.20) so they are (0), (I) = 8, (2) = {0, 
 2, 4, 6} and (4) = {0, 4}. The only maximal ideal is (2). Similarly the ideals of 9 are (0), 
  (1) = 9 and (3) = {0,3,6}. The only maximal ideal is (3).  

(b) The ideals (2) and (5) are maximal in 10 and (3) and (5) are maximal in 15. 

6.3 The Structure of R/I when I is Prime or Maximal 79
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 : 

 > l. Theorem 2.8 implies that 

n

31. Let π : R → R/I be the projection homomorphism, which is surjective with kernel I. Since K 
⊆ I Exercise 22 implies that there is an induced homomorphism f = π : R/K → R/I where f(r 
+ K) = r + I. It is surjective since π is surjective. If a ∈ I then f(a + K) = a + I = I so that 
a + K is in the kernel. Conversely, if r + K is in the kernel of f then r + I = f(r + K) = I 
and r ∈ I. Then the kernel = {a + K : a ∈ I} = I/K. The First Isomorphism Theorem 
implies that (R/K)/(I/K) = R/I. 

 
32. (a) Suppose M is an ideal in R/K. Let π : R → R/K be the projection homomorphism. Then 

I = π–1 (M) = {r ∈ R |π(r) ∈ M} is an ideal of R containing K, and furthermore, π(I) = M. 
This was all proved in the answer to Exercise 20. Note mat π(I) = {a + K | a ∈ I} = I/K. 
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13. Define f : R×R→ R/I ×R/I : (a, b) 7→ (a+ I, b+ I). Then f is a homomorphism of rings since

f((a, b) + (c, d)) = f((a+ c, b+ d)) = (a+ c+ I, b+ d+ I) = (a+ I, b+ I) + (c+ I, d+ I)

= f((a, b)) + f((c, d))

f((a, b)(c, d)) = f((ac, bd)) = (ac+ i, bd+ i) = (a+ I, b+ I)(c+ I, d+ I) = f((a, b))f((c, d)).

(The next-to-last equality in the previous line holds since (a+ I)(c+ I) = ac+aI+ cI+ II = ac+ I
since I is an ideal). Thus f is a ring homomorphism. It is clearly surjective, since given (a+I, b+I)
a general element of R/I ×R/I, we have (a+ I, b+ I) = f((a, b)), so it is in the image of f . (Note
that many choices are possible for a and b given an element of R/I×R/I). It remains to determine
ker f . Suppose f((a, b)) = 0. Then f((a, b)) = (a+ I, b+ I) = (0 + I, 0 + I), so that a+ I = 0 + I
and thus a ∈ I, and also b+ I = 0 + I so that b ∈ I. So ker f consists of those (a, b) with a, b ∈ I;
that is, ker f = I× I. Since f is a surjective homomorphism, we have (R×R)/(I× I) ∼= R/I×R/I
by Theorem 6.13.

11. The map ψ : [x] →  defined by ψ(f(x)) = f(
4.4.24. A polynomial f(x) is in the kernel if and only if f(
4.4.20 the Factor Theorem remains valid over any commutative ring with identity. Therefore 
f( ) = 0 if and only if (x – 1) | f(x). Then the kernel equals the ideal (x – 1). The First 
Isomorphism Theorem says that [x]/(x – 1) ≅  . By Theorems 6.14 and 6.15, (x – 1) is 
prime but not maximal. 

12. Define ϕ :  ×  →  by ϕ (m, n) = [m] . It is easy to verify that ϕ is a surjective 
homomorphism. The kernel of ϕ consists of all (m, n) with p | m. Therefore M is this kernel. 
The First Isomorphism Theorem implies that (  × )/M ≅   and Theorem 6.15 implies 
that M is maximal. 

14. No. In fact if I, J are ideals of R consider the map α: R × R → (R/I) × (R/J) given by α(a, b) 
= (a + I, b + J). Check that this is a surjective homomorphism with kernel I × J. The First 
Isomorphism Theorem then implies that (R × R)/(I × J) ≅  (R/I) × (R/J). In particular, (R × 
R)/(P × P) ≅  (R/P) × (R/P). This ring is not an integral domain and therefore P × P is not 
prime. 

 

Ideals and Quotient Rings80

10.  Define ϕ : [x] → P by ϕ (f(x)) = [f(0)] . This map is the composition of the evaluation 
homomorphism [x] →  considered in Exercise 4.1.16 (or Exercise 4.4.24) and the natural 
homomorphism π :  → p. Therefore ϕ is a surjective homomorphism. The First 
Isomorphism Theorem implies that [x]/K ≅   where K is the kernel of ϕ. This K is a 
maximal ideal by Theorem 6.15. Finally, a polynomial f(x) lies in K if and only if [f(0)]  = 
[0] , if and only if f(0) is divisible by p. Since f(0) is the constant term of f(x), J = K. 
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p

p

p

p

1) is a surjective homomorphism by Exercise 
1) = 0. As remarked in Exercise 

1

p p

p

7. Answered in the text. 

8. As the hint suggests, let I = (2) and J = (3) as ideals of Z. Then I consists of all multiples of 2
and J of all multiples of 3, so elements of I ∩ J are multiples of both 2 and 3, so are multiples of
6. Thus I ∩ J = (6). This is not a prime ideal, since for example 2 · 3 ∈ I ∩ J but neither 2 nor 3 is
in I ∩ J since neither is a multiple of 6.

9. Answered in the text. 
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19.

17. Answered in the text 

18. Suppose P has the given property. To prove P is prime suppose a, b ∈ R and ab ∈ P. 
Claim. The ideals A = P + (a) and B = P + (b) have the property that AB ⊆ P. Proof. 
Typical elements of A and B are p1 + ax and p2 + by for p1, p2 ∈ P and x, y ∈ R. Then (p1 + 
ax)(p2 + by) = p1p2 + p1by + axp2 + abxy. Each term here lies in P, so the whole product lies 
in P. Since these products generate AB we conclude AB ⊆ P. 

 Therefore either A ⊆ P so that a ∈ P, or B ⊆ P so that b ∈ P. 

 
Conversely suppose P is prime and A, B are ideals with AB ⊆ P. If the assertion is false then: 
A ⊆  P and B ⊆  P. Then there exist a ∈ A and b ∈ B with a, b ∉ P. But ab ∈ AB ⊆ P 
and since P is prime either a ∈ P or b  P. This contradiction shows that the assertion must 
be true. 

Claim. If R is a commutative ring with identity then the set of nonunits in R equals the 
union of all the maximal ideals of R. 
 Proof. If a ∈ R is a nonunit then the ideal (a) is not the whole ring. The assumed property 
implies that (a) is contained in some maximal ideal, so a lies in that union. Conversely, if u is 
a unit in R then u cannot lie in any maximal ideal. (An ideal J contains a unit only when  
J = R. See Exercise 6.1.13.) Therefore u is not in that union. 
 In the case R contains a unique maximal ideal M this claim says that the set of nonunits 
equals M. 
 Conversely suppose the set of nonunits forms an ideal J. The Claim implies that M ⊆ J for 
every maximal ideal M of R. Since J # R (since J does not contain any units) the maximality 
of M implies that M = J for every maximal ideal. Therefore there is a unique maximal ideal M . 

20. The projection map π :  ×  →  defined by π(m, n) = m is a surjective homomorphism 
with kernel K = (0) × . By the First Isomorphism Theorem we have (  × )/K ≅  . Then 
Theorem 6.14 and 6.15 imply that K is prime but not maximal. 

6.3 The Structure of R/I when I is Prime or Maximal 81

Claim. E/M has no identity element. Proof. For any x, y ∈ E, xy is a multiple of 4 so that xy 
∈ M. Therefore, (x + M)(y + M) = M and every product in E/M equals zero. An identity 
element e in E/M would have to be zero, since e = ee = 0. In that case E/M = (0) and

. Since E ≠ M, no identity can  
exist. Theorem 6.15 requires R to have an identity element. 
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E = M

∈

 exist.

15. (a) The axioms involving addition alone are certainly satisfied. For multiplication we have:  
Associative. a(bc) = 0 = (ab)c for every a, b, c. 
Commutative. ab = 0 = ba for every a, b. 
Distributive. a(b + c) = 0 = 0 + 0 = ab + ab. 

 (b) Answered in the text. Corollary 6.16 requires R to have an identity element. 

16. Suppose there is an ideal J ≠ M with M ⊆ J ⊆ E. Choose n ∈ J with n ∉ M. Since M contains 
every multiple of 4 in  we have n = 4k + 2 for some integer k. Since 4k ∈ M, 2 = n – 4k ∈ 
Then every multiple of 2 lies in J and J = E. Therefore M is maximal. 

 
J. 
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24.

25.

23. We want an explicit isomorphism R/(5) ≅  5 × 5. One way to do this is to argue that R ≅  
 [x]/(x2 + 1) so that we ought to have R/(5) ≅  5[x]/(x2 + 1). Since x2 + 1 = (x – 2)(x + 2) 

in 5[x] we get induced homomorphisms to 5[x]/(x – 2) and to 5[x]/(x + 2). These rings are 
isomorphic to 5 by “evaluation” at 2 and at –2. Gluing all these steps together, motivates 
the following definition. 

 Let ϕ : R → 5 × 5 be given by ϕ(a + bi) = ([a + 2b]5, [a – 2b]5). It is straightforward (but 
somewhat long) to check that this ϕ is a surjective homomorphism, and to calculate that the 
kernel is exactly the ideal (5). The First Isomorphism Theorem implies finally that R/(5) ≅  

5 × 5. 

The tedious calculation in the preceding paragraph can be avoided if the steps in the first 
paragraph can be made precise. This can all be done with a little more work, using various 
versions of the Isomorphism Theorems. 

As in Exercise 22 define ψ : R → 5 by ψ(a + bi) = [a – 2b]5. The work done there already 
implies that ψ is a surjective homomorphism. If a + bi is in the kernel then [a – 2b]5 = [0]5 so 
that a = 2b + 5q for some q ∈ . Therefore a + bi = (2 + i)b + 5q = (2 + i).(b + (2 – i)q) 
lies in the ideal (2 + i). Consequently the kernel is (2 + i) and the First Isomorphism 
Theorem can be applied. 

The set M here is exactly the principal ideal (5). Suppose J is an ideal larger than M and 
choose some 2r s J+ ∈  but not in M. Then either 5 | r or 5 | s. We know that 5 ∈ M ⊆ J 
and also that r2 – 2s2 = (r + 2s )(r – 2s ) ∈ J. 

Claim. r2 – 2s2 and 5 are relatively prime. 

Proof. If not then we have r2 = 2s2 (mod 5). If one of r, s is congruent to zero they both are. 
Therefore we must have r, s ≡  0 (mod 5). Then (r/s)2 ≡ 2 (mod 5), but checking 02, 12,..., 42 
we see that 2 does not occur. This contradiction proves the Claim. 

From the Claim conclude that 1 is an integer linear combination of r2 – 2s2 and 5 so that 1 ∈ 
J forcing J = (1) = T. Therefore M is a maximal ideal. 

Ideals and Quotient Rings82

22. The set J here is the principal ideal (5). Since (2 + i)(2 – i) ∈ J but 2 + i and 2 – i ∉ J. J is 
not a prime ideal. 
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21. (a) Verifying R is a subring is easy to do: just examine the formulas for sum and product of 
complex numbers. The set M is exactly the principal ideal (3). Suppose r + si ∉ M so that 
either 3 | r or 3 | s. 
 Claim. 3 |  (r2 + s2). Proof. Otherwise r2 + s2 = 0 (mod 3). Plug in all the possibilities for r, s 
(mod 3) to see that r ≡ s ≡ 0 (mod 3). Then 3 | r and 3 | s, contrary to hypothesis. 

 
Now suppose J is an ideal larger that M. Choose some r + si ∈ J where r + si ∉ M. Then r2 
+ s2 = (r + si)(r – si) ∈ J and we know 3 ∈ J. By the Claim, 3 and r2 + s2 are relatively 
prime integers, so there is a linear combination of them equal to 1. Then 1 ∈ J so that J = R. 
Therefore M is maximal.  
(b) By part (a) and Theorem 6.15, R/M is a field. Working with congruence mod M check 

that any a + bi ∈ R can be reduced to some a' + b'i where 0 ≤ a' < 3 and 0 ≤ b' < 3. 
There are 9 of these representative elements. Check that these are non-congruent, so that 
R/M has exactly 9 elements. 
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Chapter 7

Groups

7.1 Definition and Examples of Groups

2. (a) Since 1 is the multiplicative identity, it is its own inverse. Since 2 · 2 = 4 ≡ 1 (mod 3), we see
that 2−1 = 2.

(b) Since 1 is the multiplicative identity, it is its own inverse. Further, 2·3 = 3·2 = 6 ≡ 1 (mod 5),
so that 2 and 3 are multiplicative inverses. Finally, 4 ·4 = 16 ≡ 1 (mod 5), so that 4 is its own
inverse.

(c) Since 1 is the multiplicative identity, it is its own inverse. Further, 2·4 = 4·2 = 8 ≡ 1 (mod 7),
so that 2 and 4 are multiplicative inverses. Next, 3 · 5 = 5 · 3 = 15 ≡ 1 (mod 7), so that 3 and
5 are multiplicative inverses. Finally, 6 · 6 = 36 ≡ 1 (mod 7), so that 6 is its own inverse.

4. (a) No, it is not. Although G is closed under the operation as a subset of Z10, there is no
multiplicative identity.

(b) No, it is not. G is not closed under the operation, since for example 2− 2 = 0 /∈ G ⊂ Z10.

(c) No, it is not. G is not closed under the operation, since the sum of two odd integers is even.

(d) Yes, it is. G is closed since 2x ∗ 2y = 2x2y = 2x+y ∈ G since the sum of two rationals is
rational. Next, 20 is the identity, since 20 ∗ 2x = 202x = 20+x = 20, and the inverse of an
element 2x ∈ G is 2−x (which is again a rational power of 2), since 2x ∗ 2−x = 2x+(−x) = 20,
which is the identity.

5. (a) The determinant of this matrix is 2 · 1 − 0 · 2 = 2, and 2−1 = 2 in Z3. Also, in Z3, we have
−2 = 1 since 1 + 2 = 0. Then by Example 8 in Section 3.2, the inverse is(

2 0
2 1

)−1

=

(
1 · 2−1 0 · 2−1

−2 · 2−1 2 · 2−1

)
=

(
2 0

−2 · 2 2 · 2

)
=

(
2 0
2 1

)
Thus the matrix is its own inverse.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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Groups

(c) The determinant of this matrix is 3 · 6− 5 · 4 = 18− 20 = −2 ≡ 5 (mod 7), and 5−1 = 3 in Z7.
Then by Example 8 in Section 3.2, the inverse is(

3 5
4 6

)−1

=

(
6 · 5−1 −5 · 5−1

−4 · 5−1 3 · 5−1

)
=

(
6 · 3 2 · 3
3 · 3 3 · 3

)
=

(
4 6
2 2

)
6. Using the hint, note that Z2 as an additive group satisfies a+a = 0 for each element. Then consider

Z2 × Z2, and compute (for a, b arbitrary elements of Z2)

(a, b) ∗ (a, b) = (a+ a, b+ b) = (0, 0),

which is the identity element of Z2×Z2. Thus every element of the product group is its own inverse,
as desired.

7. (a) There are sixteen possible 2×2 matrices each of whose elements is 0 or 1. Of these, the matrices
that have zero or only one 1 have determinant zero, so they are not in GL(2,Z2). There are
five of these. There are also four matrices that have a row or column of zeros and a row or
column of ones; these also have determinant zero. That leaves seven matrices. The matrix(

1 1
1 1

)
also has determinant zero, leaving six matrices, which together form GL(2,Z2):

(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
1 1
1 0

)
.

(b) For example, in GL(2,R),(
1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
, but

(
1 0
1 1

)(
1 1
0 1

)
=

(
1 1
2 1

)
.

In GL(2,Z2), use the same two matrices. The two products, when interpreted as elements of
Z2, are the unequal matrices (

0 1
1 1

)
and

(
1 1
0 1

)
.

(b) The determinant of this matrix is 1 · 4− 2 · 3 = 4− 6 = −2 ≡ 3 (mod 5), and 3−1 = 2 in Z5.
Then by Example 8 in Section 3.2, the inverse is(

1 2
3 4

)−1

=

(
4 · 3−1 −2 · 3−1

−3 · 3−1 1 · 3−1

)
=

(
4 · 2 −2 · 2
−3 · 2 1 · 2

)
=

(
3 1
4 2

)
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8. U4 = {1, 3}. U6 = {1, 5}. U10 = {1.3,7,9}. U20 ={1, 3, 7, 9, 11, 13, 17, 19}. 
U30 = {1, 7, 11, 13, 17, 19, 23, 29} 

9. Answered in the text. 
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13. Note that if G is nonabelian, and H is any group, then G ×H is nonabelian. To see this, choose
two elements in G with a ∗ b 6= b ∗ a. Then in G×H, we have

(a, 1H) ∗ (b, 1H) = (a ∗ b, 1H) 6= (b ∗ a, 1H) = (b, 1H) ∗ (a, 1h).

Since for example D3 is a nonabelian group of order 6, we see that D3×Z4 is a nonabelian group of
order 3× 4 = 12, and similarly D3×Z10 and D3×Z16 are nonabelian of orders 30 and 48. Finally,
D4 is nonabelian of order 8, so that D4 × Z2 is nonabelian of order 16.

 

10. There is a direct computational proof that this set is closed under multiplication, contains 

inverses of its elements and is abelian. Another proof is provided by letting 

⎧ ⎫⎛ ⎞⎪ ⎪= ∈⎨ ⎬⎜ ⎟−⎝ ⎠⎪ ⎪⎩ ⎭
| ,   |

a b
C a b

b a
 and noting that the map ϕ: μ → C defined by 

ϕ
⎛ ⎞

+ = ⎜ ⎟−⎝ ⎠
( )

a b
a bi

b a
 is an isomorphism. (See the second Example in Section 3.3). Then G = 

ϕ(μ*) is an abelian group. 

11. The operation table for ×Z2 :G  
 

 (0,  1) (0, –1) (0,  i) (0, –i) (1,  1) (1, –1) (1,  i) (1,  –i) 
(1,  1) (0,  1) (0, –1) (0,  i) (0, –i) (1,  1) (1, –1) (1,  i) (1,  –i) 
(0, –1) (0, –1) (0,  1) (0, –i) (0,  i) (1, –1) (1,  1) (1, –i) (1,  i) 
(0,  i) (0,  i) (0, –i) (0, –1) (0,  1) (1,  i) (1, –i) (1, –1) (1,  1) 
(0, –i) (0, –i) (0,  i) (0,  1) (0, –1) (1, –i) (1,  i) (1,  1) (0, –1) 
(1,  1) (1,  1) (1, –1) (1,  i) (1, –i) (0,  1) (0, –1) (0,  i) (0,  –i) 
(1, –1) (1, –1) (1,  1) (1, –i) (1,  i) (0, –1) (0,  1) (0, –i) (0,  i) 
(1,  i) (1,  i) (1, –i) (0, –1) (1,  1) (0,  i) (0,  –i) (0, –1) (0,  1) 
(1, –i) (1, –i) (1,  i) (1,  1) (1, –1) (0, –i) (0,  i) (0,  1) (0, –1) 

  
12. Since a composition of bijective functions is bijective, A(T) is closed under the operation. (See 

Exercise 27 of Appendix B.) The composition of functions is always associative. The identity 
element is the identity map ιT. Finally if f ∈ A(T) then there is an inverse function g 
satisfying f ° g = ιT and g ° f = ιT (See Theorem B.l in Appendix B.) Therefore A(T) is a 
group. 

14. The corner 1 can go to any one of the 4 co
corner 1 is fixed there are two possibilities: orientation face up or face down. These choices 
completely determine the rigid motion. Therefore there are 4 ⋅ 2 = 8 rigid motions of the 
square. There are 8 rotations listed, so they must include all the rigid motions. 

 
15. (a) This group can be viewed as a subgroup of D4, the symmetry group of the square. The  

rectangle does not allow a 90° rotation or a reflection through a diagonal, so we are left  
with 4 elements: {r0, r2, h, v}. 

 (b) Similarly the parallelogram admits no reflections and has no 90° rotation, leaving only 
two elements: {r0, r2}. 

 (c) This figure admits neither 90° rotations nor diagonal reflections so its group is the 
same as that of the rectangle in part (a). 

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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16. (a) Compute the products:

i2 =

(
i 0
0 −i

)(
i 0
0 −i

)
=

(
i2 0
0 (−i)2

)
=

(
−1 0

0 −1

)
= −1

j2 =

(
0 1
−1 0

)(
0 1
−1 0

)
=

(
−1 0

0 −1

)
= −1

k2 =

(
0 i
i 0

)(
0 i
i 0

)
=

(
i2 0
0 i2

)
=

(
−1 0

0 −1

)
= −1

ij =

(
i 0
0 −i

)(
0 1
−1 0

)
=

(
0 i

(−i)(−1) 0

)
=

(
0 i
i 0

)
= k

−ji = −
(

0 1
−1 0

)(
i 0
0 −i

)
= −

(
0 −i

(−1)i 0

)
=

(
0 i
i 0

)
= k.

Since these matrices are all in GL(2,C), multiplication is associative. Then using the equalities
above, together with the obvious fact that −(−1) = 1, we get

jk = j(−ji) = −j2i = i

−kj = −ijj = −ij2 = i

ki = −jii = −ji2 = j

−ik = −iij = −i2j = j.

(b) The multiplication table is

· 1 i −1 −i j k −j −k
1 1 i −1 −i j k −j −k
i i −1 −i 1 k −j −k j

−1 −1 −i 1 i −j −k j k
−i −i 1 i −1 −k j k −j
j j −k −j k −1 i 1 −i
k k j −k −j −i −1 i 1
−j −j k j −k 1 −i −1 i
−k −k −j k j i 1 −i −1

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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17. (a) Answered in the text.  
(b) Closure: if a, b ≠ 0 then ab ≠ 0 in Q so that a*b ∈ G. 

Associativity: (a*b)*c = (ab/3)c/3 = abc/3. Similarly a*(b*c) = abc/3. The commutative 
law also holds: a*b = b*a. The identity element is 3 since: 3*a = a*3 = 3a/3 = a.  
For a ∈ G the inverse is 9/a, since (9/a)*a = ((9/a)a)/3 = 9/3 = 3. 

18. Function composition is always associative. The identity element is i ∈ G. 
Inverses: To find the inverse of a function f, set x = f(y) and solve for y. If x = f(y) = 1/(1 – y) 
then y = 1 – 1/x = (x – 1)/x = g(x). Then f–1 = g. Similarly, g–1 = f, h–1 = h, j–1 = j and k–1 = k. 
Closure. For example f 2 (x) =1/(1 – f(x)) = (1 – x)/(–x) = g(x). There are 36 such 
compositions to verify. 
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A somewhat shorter method is to verify that f  = i, j 2  = i and f 2 j = jf. From these 
relations it follows that all the functions expressible as compositions of f and j are: i, f, f 2 , j, 
fj, f

2
j. Therefore this set of six functions is closed under composition. These functions are i, f, 

g, j, h, k. 

 
19. Answered in the text. 

 
20. Let f ∈ Sn. There are n possibilities for f(1). After one such image has been chosen, there 

remain n – 1 possibilities for f(2). After one such image has been chosen there remain n – 2 
possibilities for f(3). This process continues until we have 2 possibilities for f(n – 1) and once 
that is chosen there is only one possibility for f(n). Then altogether there are n⋅(n – 1) . . . 2⋅1 
= n! possible permutations f. 
 

21. Certainly g is closed under #. The associative law follows: (a#b)#c = c*(b*a) = (c*b)*a = 
a#(b#c). The identity element and the inverses for the operation * also work for #. 
 

22. All rotations are taken counterclockwise around the center. Let rk be the rotation through 
72k°. Then there are 5 rotations preserving the pentagon: r0, r1, r2, r3, r4. For each vertex A of 
the pentagon let A  be the line through A and the center. The reflection τA through the line 

A  also preserves the pentagon. There are 5 such reflections, so we have found 10 symmetries 
so far. An argument similar to that in Exercise 12 shows that every rigid motion preserving 
the pentagon must be one of these 10. Therefore D5 consists of these 10 elements. 
 

23. If 
a b

A
c d

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 define det A = ad – bc. We must verify that det(AB) = (det A)(det B) whenever 

A, B ∈ M( ). Let G = SL(2, ). If A, B ∈ G then det(AB) = 1 so that AB ∈ G. The 

associative law is automatic here and the identity matrix is in SL(2, ). If A ∈ G then det A 

≠ 0 so A is invertible and det(A–1) = (det A)–1 = 1 so mat A–1 ∈ G as well. 

 
24. Let G ={nonzero real numbers}. If a, b ∈ G then from the definition it is clear that a*b ∈ G. 

Associativity: Here is a chart of the possibilities, depending on the signs of a and b: 
 

a b (a*b)*c a*(b*c) 
+ + (ab)c a(bc) 
+ – (ab)/c a(b/c) 
– + (a/b)/c a/(bc) 
– – (a/b)c a/(b/c) 

In each case the associative law is verified. 
Identity. The number 1 is the identity element for this operation. 

Inverses. The inverse of a is 
1/ if

if 0.

0a a

aa

⎧⎪⎪⎪⎨⎪ <⎪⎪⎩

>
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25. Closure. if (a,b) and (a′, b′) ∈ * ×  then aa′ ≠ 0 so also (aa′, ba′ + b′) ∈ * × .  
Associativity. First: (a, b)*((a′, b′)*(a″, b″)) = (a, b)*(a′a″, b′a″ + b″) = (a(a′a″), b(a′a″) + 
(b′a″ + b″).  
Second: ((a, b)*(a′, b′))*(a″, b″) = (aa′, ba′ + b′)*(a″, b″) = ((aa′)a″, (ba′ + b′)a″ + b″).  
These quantities are equal.  
Identity. The element (1, 0) is the identity element.  
Inverses, The inverse of (a, b) is (1/a, –b/a). 
 

26. Closure is clear. Associativity follows from the separate associative laws in G and H, by the 
same argument used for rings. The identity element is (eG, eH ). The inverses also work 
componentwise: If g ′  is the inverse of g ∈ G asnd h′ is the inverse of h ∈ H then (g ′, h′) is an 
inverse for (g, h). Also if G, H both satisfy the commutative law then so does G × H. It is 
generally true for any two finite sets G, H that |G × H| = |G|⋅|Hl. 
 

27. Answered in the text. 
 

28. Suppose G = {g1, g2, . . . , gn} has n distinct elements. The ith row of the operation table 
consists of the elements: gig1, gig2, . . . , gign. If two of these quantities were equal we would 
have gigr = gigs for some r < s. But by Exercise 25 this implies gr = gs, contrary to the 
hypothesis that these gj are distinct. Therefore there are no repetitions among the elements in 
the ith row. Let ig ′  be the inverse of gi. For any a ∈ G, ig a′  is some element of G so it equals gk 
for some k. Then i i i ka g g a g g′= =  does lie in the ith row of the table. Therefore every element 
of G occurs exactly once in the ith row. A similar argument applies to the jth column of the 
table. 

29. To avoid repetitions in a row or column we see that be cannot equal a, b or c. Then bc = d. 
Similarly cb = d. The rest of the table is easily completed. 

 
 a b c d 
a a b c d 
b b a d c 
c c d a b 
d d c b a 

30. First by the associative law, ba = a2a = aa2 =ab = e and bb = a2b = a(ab) = ae = a. Also  
af ≠ a, b, d, e, f since there can be no repetitions in a row or column. Therefore af = c. The 
products ad, bc, bd, bf follow similarly. The same argument shows that da = c, fa = d and db 
= f. Again by the associative law we find dc = cbc = cf = a. By the row and column 
argument, we get c2 = b or e. Since b and c do not commute we must have c2 =e. The rest of 
the table is easily done: 

 e a b c d f 
e e a b c d f 
a a b e d f c 
b b e a f c d 
c c f d e b a 
d d c f a e b 
f f d c b a e 

This group is isomorphic to S3 as seen by comparing tables, where a = (123), b = (132),  
c = (12), d = (13) and f = (23). 
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31. Answered in the text. 

 
32. If f ∈ A(T) let Sf = {t ∈ T | f(t) ≠ t}. If f(t) = g(t) = t then fg(t) = t as well. Then Sfg ⊆ Sf ∪ Sg. 

Similarly, f(t) = t if and only if f –1(t) = t so that Sf–1 = Sf . Since M = {f ∈ A(T) | Sf is finite} 
it follows that M is closed under composition and inverses. Certainly the identity map is in M 
and the associative law is automatic. Hence M is a group. 
 

33. Closure. Ta,b(Tc,d.(x)) = Ta,b(cx + d) = a(cx + d) + b = acx + ad + b. Therefore Ta,b °Tc,d = 
Tac, ad+b. 

 Identity. T1,0 is the identity map. Inverses. The inverse of Ta,b is T1/a, b/a. The associative law 
holds generally for compositions of functions. Hence G is a group. It is nonabelian since 
T1,1T1,0 ≠ T0,1T1,1. 
 

34. By the formula above we have T1,bT1,d = T1,b+d. Therefore H is closed under composition, the 
identity T1,0 is in H, and the inverse of T1,b is T1,–b. Then H is a group, and the commutative 
law is clear from the formula. 
 

35. Among the list of powers f, f 2 , f 3 , f 4 , . . . there can be at most n! = |Sn| different elements 
involved. Therefore there is an equality f r  = f 5  for some r < s. Successively cancelling f ’s 
(using Exercise 25), conclude that I = f s – r  where s – r is a positive integer. 

36. 0*1 ≠ 0 and ≤ 1 so that 0*1 = 1. Similarly 0*k = k*0 = k for each k, and 0 is the identity 
element. Also 1*2 ≠ 0, 1 and is ≤ 3 sothat 1*2 = 3. Operating by 1 yields 1*3= 1*(1*2) = 
(1*1)*2 = 0*2 = 2. Similarly 1*4 ≠ 0, 1, 2, 3, 4 so that 1*4 = 5 and 1*5=1*1*4 = 4. Verify 
that 1*5 = 7 and 1*7 = 6 and argue that k*1 = 1*k. Also 2*3 = 2*2*1 = 1. The rest of the 
table is computed by the same methods. 

 
 0 1 1 3 4 5 6 7 
0 0 1 2 3 4 5 6 7 
1 1 0 3 2 5 4 7 6 
2 2 3 0 I 6 7 4 5 
3 3 2 1 0 7 6 5 4 
4 4 5 6 7 0 1 2 3 
5 5 4 7 6 1 0 3 2 
6 6 7 4 5 2 3 0 1 
7 7 6 5 4 3 2 1 0 

7.2 Basic Properties of Groups

1. Answered in the text. 
 

2. 

1

1 1 1
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

( ) while .
3 2 1 3 2 1 2 3 1 1 3 2 2 1 3

ab a b

−

− − −
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜= = = =⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
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11. In an additive group, the sum of a with itself n times is written na. So statement (2) of Theorem
7.8 becomes

If ia = ja with i 6= j, then a has finite order,

and statements (1)-(3) of Theorem 7.9 becomes

ka = e if and only if n | k
ia = ij if and only if i ≡ j (mod n)

If n = td, with d ≥ 1, then ta has order d.

 

3. d–1c–1b–1a–1. 
 
4. If ab = e then b = a–1 and therefore ba = a–1 a = e. 
 
5. In ective. Answered in the text.  
 Subjective. For g ∈ G note that f(g–1) = (g–1)–1 = g using Corollary 7.6. 
 
6. U8 has 4 elements, each satisfying x2 = 1. 
 
7. (a) 2 (b) 7 (c) 6 (d) 3 
 
8. �2 × � using the operation of addition. 
 
9. (a) |U10| = 4. |U12| = 4. |U24| = 8. 
 (b) 1 has order 1; 9, 11, 19 have order 2; 3, 7, 13, 17 have order 4. 

 
10. (a) �4: 0 has order 1; 2 has order 2; 1 and 3 have order 4. 
 (b) �5: 0 has order 1; the other four elements have order 5. 
 (c) S3: The identity has order 1; the 3 non-identity elements which fix one symbol have order 

2; the 2 elements which fix no symbols have order 3. 
 (d) D4: The identity r0 has order 1; the elements r2 d, h, t, v have order 2; the elements r1 and 

r3 have order 4. 

12. Since
(aba−1)n = aba−1aba−1aba−1 . . . aba−1,

all the occurrences of a−1a become e, so what is left is n copies of b, and the product is abna−1.
An alternative, more precise, method of proof is using induction on n: the statement is clearly true
for n = 1. Assume it is true for n = k; then

(aba−1)k+1 = (aba−1)k(aba−1) = abka−1aba−1 = abkba−1 = abk+1a−1.

13. Answered in the text.  
 
14. False. Look at S3 with no element of order 6. 

 
1 . (a) By Theorem 7.8, |a| divides 12 so |a| = 1, 2, 3, 4, 6 or 12. 
 (b) By Theorem 7.8, |a| divides p and it is not 1 since a ≠ e. Hence |a| = p. 
5
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16. (a) |a| = 12; |a | = 6; |a | = 4; |a | = 3; |a | = 12; |a | = 2; |a | = 12; |a | = 3; |a | = 4; |a | = 
6; |a11| = 12  

 (b) |ak| = n/(n, k). 
 
17. (a) Answered in the text 

 (b) If 
12 3 123

, then , and .
213 312

a b x ab y ba x y
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜= = = = ≠⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

 

 
18. The elements 1 1

1,. . . ,na a− −  form a complete list of the elements of G (see Exercise 5). 
Therefore their product is also equal to x. Then 2 1 1

1 2 1( . . . )( . . . )n nx a a a a a e− −= =  
 

19. Claim. (bab–1)k = bakb–1 for every positive integer k. 
 Proof. For example (bab–1)2 = bab–1 bab–1 = ba2b–1. The higher exponents work similarly. 
 Now if ak = e then by the claim, (bab–1)k = bakb–1 = beb–1 = e. Similarly if (bab–1)k = e 

conclude that ak = e. These two implications suffice to prove that a and bab–1 have the same 
order. 

 

 (b) 
1 0

.
1 1

ab
⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟−⎜ ⎟⎜⎝ ⎠

 Prove by induction that 
1 0

( )
1

kab
k

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟−⎜ ⎟⎜⎝ ⎠
 for every positive integer k. 

Therefore (ab)k ≠ I for every k > 0 and ab has infinite order. 

 

the first statement is proved using additive notation in Exercise 3.2.17(i). It can be noted as 
well that Exercise 3.2.21(ii) implies:  
Lemma. If ab = ba in a group G then (ab)n = anbn for every integer n. 

  It remains to prove (am)n = amn when m or n is not positive. The cases were m = 0 or n = 
0 are easily checked. 

  Suppose m, n > 0. By definition a–n = (a–1)n and repeated application of Corollary 7.6 
shows that a–a = (an)–1 as well. Therefore: (am)–n = ((am)n)–1 = (a–mn)–1 = a–mn. Similarly, (a–m)n 

= ((a–1)m)n = (a–1)mn = a–mn and using the previous case we get (a–m)–n = ((a–1)m)–mn = (amn). 

22.   e a b 
e e a b 
a a b e 
b b e a 

 23. Suppose a, b ∈ G and let c = aba–1. Then ab = ca and the hypothesis implies b = c. 
Therefore ab = ba and G is abelian. 
 

24. Given aabb = abab. Cancelling yields ab = ba. 
 

25. Corollary 7.6 states that (ab)–1 = b–1a–1. If G is abelian then certainly (ab)–1 = a–1b–1. Conversely, 
suppose (ab)–1 = a–1b–1 for every a, b. Then (ba)–1 = a–1b–1 = (ab)–1 so that ab = ab by Corollary 
7.6. 

 

20. (a) This is a verification of some matrix products. 

21. The proof for positive integers is the same as that done for rings in Exercise 3.2.17. In fact 
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26. Suppose ab ≠ ba. Since a commutes with e, a and a–1 we know b cannot equal any of these. 
The condition b ≠ a–1 says that ab ≠ e and ba ≠ e. Since b ≠ e we know ab ≠ a and ba ≠ a. 
Similarly ab ≠ b and ba ≠ b. Hence H= {e, a, b, ab, ba} has 5 distinct elements. Suppose |G| < 
6 so that G = H. Then a2 ∈ H, and since e, a, b are distinct we see that a, a2, ab, ba are also 
distinct. Also a2 ≠ b since a2 commutes with a. Hence a2 = e. Now aba must be one of the 
elements of H, If aba = e then ab = a–1 = a. If aba = a then ab = e. If aba = b then ab = ba–1 
= ba. If aba = ba or ab then a = e. But then aba  H, contrary to the closure property. 

27. Answered in the text. 
 

28. Using Exercise 19 we have: If ak = e then (a–1)k = (ak)–1 = e. Similarly if (a–1)k = e then ak = e. It 
follows that |a| = |a–1|. 
 

29. Answered in the text. 
 

30. Since ab = a(ba)a–1 this follows from Exercise 17. 
 

31. (a) As noted in the answers to Exercise 19 if ab = ba we have (ab)k = akbk. Let n = |a| and  
m = |b|. Then (ab)mn = amnbmn = (an)m(bm)n = e. 

 (b) Answered in the text. 
 

32. Suppose G is a finite group with no element of order 2. Then every element a ≠ e has a ≠ a–1 
so the non-identity elements come in pairs. Therefore |G| = l + 2k is odd, where k is me 
number of those pairs. 
 

33. Answered in the text. 
 

34. (a) If |g| = 3 then G = (e, g, g2, d) where g3 = e. If gd = e then gd = g3 and d = g2. If gd = g 
then d = e. If gd = g2 then d = g. If gd = d then g = e. In each case the conclusion is 
false. Then gd cannot lie in G, contrary to closure. 

 (b) By Exercise 11, |a| ≤ 4 for every a ∈ G. If there is an element of order 4 then G is cyclic. 
There is no element of order 3 by part (a). Therefore every element has order 1 or 2. 
Only the identity element has order 1. 

 (c)  
 e a b c 
e e a b c 
a a e c b 
b b c e a 
c c b a e 

35. Answered in the text. 
 

36. |b| = 31. To see this note that ab = b2a. Then ab2 = (ab)b = b2ab = b2b2a = b4a. Similarly,  
abk = b2ka for every k = 1, 2, . . . Then a2b = a(ab) = a(b2a) = b4a2 and a3b = a(b4a2) = b8a2. 
Continuing we find that 2 .

nn na b b a=  In particular since a5 = e we find that b = a5b = b32a5 = 
b32. Hence b31 = e. Then Theorem 7.8 implies that |b| divides 31. Since b ≠ e, conclude that |b| 
= 31. 
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 37. a3b3 = (ab)3 = a(ba)2b and therefore a2b2 = (ba)2. Similarly a5b5 = (ab)5 = a(ba)4b so that a4b4 = (ba)4. 
Combine these equations to find: a4b4 = (ba)2(ba)2 = a2b2a2b2 which implies that a2b2 = b2a2. Then 
b⋅ba⋅a = b2a2 = a2b2 = (ba)2 = b⋅ab⋅a. Conclude that ba = ab. 

 
38. Suppose (ab)n = anbn and (ab)n+1 =an+1bn+1 for every a, b ∈ G. Note that (ab)n+1 = ab⋅ab⋅ab⋅ab 

= a⋅ba⋅ba⋅⋅⋅ba⋅b = a(ba)nb. Apply this formula to get: a(ba)nb = (ab)n+1 =an+1bn+l =a(anbn)b. 
Cancellation implies (ab)n = anbn = (ba)n. 

Now suppose (ab)n+2 = an+2bn+2 holds as well. Then as above (ab) ”+1 = (ba)n+l. Therefore 
ab⋅(ab)n = ba⋅(ba)n = ba⋅(ab)n and cancellation implies ab = ba. 

 
39. (a) Fix an element a ∈ G. Define λa : G → G by λa(x) = ax. By hypothesis λa. is injective 

and since G is finite we conclude λa is also subjective. (See Exercise 32 of Appendix B.) 
Therefore there exists e ∈ G with ae = a. Then for every x ∈G, aex = ax and cancellation 
implies ex = x so that e is a “left identity”. Similarly the map pa(x) = xa is surjective and 
mere exists f with fa = a and xf = x for every x ∈ G. Then e = ef = f and hence this e is an 
identity element. By the subjectivity of those maps there exist elements a′, a″ ∈ G such that 
aa′ = e = a″a. Then a′ = ea′ = a″aa′ = a″e = a″ so that a′ is an inverse for a. Therefore G is 
a group. 

 (b) The set of positive integers under addition provides an example. 
 
40. If x ∈ G write x′ for an element such that x′x = e. Claim. If x2 = x then x = e. 
 Proof. e = x′x = x′x2 = (x′x)x = ex = x. 

For any a ∈ G we have (aa′)2 = a(a′a)a′ = aea′ = aa′. By the Claim it follows that aa′ = 
e. Finally ae = a(a′a) = (aa′)a = ea = a. Therefore G is a group. 

 
41. (a) If a ∈ G, there exist elements e, f ∈ G with ae = a = fa. Also there exist elements a′, a″ 

∈ G with aa′ = e = a″a. Proceed as in Exercise 37. 

7.3 Subgroups

1. (a) Answered in the text. 
(b) 〈1〉 = {1}; 〈7〉 = 〈13〉 = {1, 7, 19, 13}; 〈19〉 = {1, 19}; 〈11〉 = {1, 11}; 〈17〉 = 〈23〉 = {1, 17, 

19, 23}; 〈29〉 = {1, 29} 
 
2. (a) 〈1〉 = {1}; 〈r1〉 = 〈r3〉 = {r0, r1, r2, r4}; 〈r2〉 = {r0, r2}; 〈d〉 = {r0, d}; 〈h〉 = [r0, h}; 

  〈t〉 = {r0, t}; 〈v〉 = {r0, v}. 

(b) D4 itself is a subgroup which is non-cyclic. Also H = {r0, r2, d, t} is a non-cyclic subgroup of 

D4. 

3. 2 3 4
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

,  ,  ,  ,  
7 2 4 1 5 3 6 1 2 6 3 5 7 1 6 2 1 7 5 4 3

I a a a a
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 5 5
1 2 3 4 5 6 7

and .  and .
6 2 1 7 5 4 3

a I a I
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠
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4. 〈2〉 ⊂ Z12 consists of all multiples of 2, so it is equal to {0, 2, 4, 6, 8, 10}.

5. 〈2〉 ⊂ Z consists of all multiples of 2, so it is the set of even integers.

.
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6. Multiplying, we get

22 = 4, 4 · 2 = 8, 8 · 2 = 16 ≡ 5 (mod 11), 5 · 2 = 10, 10 · 2 = 20 ≡ 9 (mod 11)

9 · 2 = 18 ≡ 7 (mod 11), 7 · 2 = 14 ≡ 3 (mod 11), 3 · 2 = 6, 6 · 2 = 12 ≡ 1 (mod 11).

Thus
〈2〉 = {2, 4, 8, 5, 10, 9, 7, 3, 6, 1} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

which is the entire multiplicative group of nonzero elements of Z11.

7. 〈2〉 = {2k | k ∈ Z}, which is the set

{1, 2, 4, 8, 16, . . . } ∪ {1

2
,

1

4
,

1

8
,

1

16
, . . . }.

8. Multiplying, we get

32 = 9, 9 · 3 = 27 ≡ 5 (mod 11), 5 · 3 = 15 ≡ 4 (mod 11), 4 · 3 = 12 ≡ 1 (mod 11).

Thus
〈3〉 = {1, 3, 4, 5, 9}.

11.

12.

13.

14.

15.

 

9. Answered in the text. 

   

Answered in the text. 

Every element g in this group has 4g = (0, 0). Therefore (g) can contain at most 4 elements. 
The elements (1, 0) and (0, 1) generate the group. 

 Answered in the text. 

 (a) In U8 let H = 〈3〉 = {1, 3} and K = 〈5〉 = {1,5}. Then H ∪ K = {I, 3, 5} is not closed. 
 (b) If H ⊆ K then H ∪ K = K and if K ⊆ H then H ∪ K = H. Conversely suppose H ∪ K 

is not in H or K. Choose x, y ∈ H ∪ K with x ∉ H and y ∉ K. Then y ∈ H and x ∈ K. 
 Claim, xy ∉ H ∪ K. 

Proof. If xy ∈ H then x ∈ Hy–1 ⊆ H. If xy ∈ K then y ∈ x–1K ⊆ K. Therefore H ∪ K is not 
closed. 

 (a) Answered in the text. 
 (b) If a, b ∈ ∩ Hi then a, b ∈ Hi for every i. Therefore ab, a–1 ∈ Hi for every i so that they 

lie in the intersection. By Theorem 7.10 this intersection is a subgroup. 
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16. Suppose (g, h), (g′, h′) ∈ G1 × H1. Then (g, h)(g′, h′) = (gg′, hh′) and (g, h)–1 = (g–1, h–1) lie in 
G1 × H1. Therefore it is a subgroup. 

17. If g is a generator then there exists some m ∈  with mg = 1. But this can be read as an 
equation in the ring  and the only solutions are m = g = ± l. 

18. Let H = 〈(3, 1), (–2, –1), (4,3)〉. Then (1,0) = (3, 1)+ (–2, –1) lies in H and (0,1) = (4, 3) +  
2 ⋅ (–2, –1) lies in H. It follows that every (a, b) = a ⋅ (l, 0) + b(0, 1) lies in H. 

10. The multiples of (1, 0) provide all the elements (a, 0). The multiples of (0, 2) provide all the 
elements (0, b). Then every element (a, b) = (a, 0) + (0, b) can be generated. 
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19. If a, b ∈ T then a–1 ∈ T by Exercise 7.2.26 and ab ∈ T be Exercise 7.2.29. Therefore T is a 
subgroup by Theorem 7.10. 

20. Note that |a| divides k if and only if ak = e, as in Theorem 7.8. If a, b ∈ H then ak = bk = e 
and therefore (ab)k = akbk = e and (a–1)k = (ak)–1 = e. That is, ab, a–1 ∈ H so that H is a 
subgroup by Theorem 7.10. 

21. (a) No. In any group G we have gg–1 = e ∈ Z(G). To get a counterexample choose G and 
  g ∉ Z(G). 

(b) If ab ∈ Z(G) then (ab)x = x(ab) for every x. In particular, ba = a–1(ab)a = (ab)a–1a = ab. 

22. By exercise 7.2.17, gag–1 has order 2, and the uniqueness implies gag–1 = a. Then ga = ag for 
every g ∈ G so that a ∈ Z(G). 

24. Suppose ** = 〈r〉 is cyclic. Since 〈r〉 = 〈r–1〉 by Exercise 14 we may assume r > 1. 
Then … r–2 < r–1 < 1 < r < r2 < r3 < … and this list must include all positive rationals, 
since r is a generator. But there is a positive rational number between 1 and r. This 
contradiction shows that the group cannot be cyclic. (Can ** be generated by some finite 
subset?) 

 

 
23. Since an = (a–1)–n, every power of a is also a power of a–1. The converse also follows. 

25. Let α σ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 2 3 1 2 3
and .

2 1 3 2 3 1
Then ασ σα⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 2 3 1 2 3
 and 

1 3 2 3 2 1
 so that 

neither α nor β lies in the center. Since the center is a subgroup it also follows that 

σ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

1
1 2 3

3 1 2
 is not in the center. Similar calculations with β γ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

1 2 3 1 2 3
 and 

1 3 2 3 2 1
 

show that βσ ≠ σβ and γσ ≠ σγ. Therefore e is the only element in die center. 

26. (a) If ab and a'b' are elements of HK then (ab)(a'b') = (aa')(bb') and (ab)–1 = b–1 a–1 = a–1 b–1 

lie in HK. Therefore HK is a subgroup. 

 (b) Use G = S3 and H = 〈a〉 and K  = 〈b〉, where 
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 2 3 1 2 3
and 

1 3 2 3 2 1
a b . Then 

HK = {  a, b, ab} does not contain ba. 

27. Answered in the text. 

28. (a) If a, b ∈ H, then (ab–1)n = an(bn)–l = e so that ab–1 ∈ H. By Exercise 23 H is a 
subgroup. 

 (b) When n = 2 and G = S3 show that 
1 2 3 1 2 3 1 2 3

, , , ,
1 3 2 3 2 1 2 1 3

H e
⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
 a subset 

not closed under the operation. 

29. Answered in the text. 
 
30. If f, g ∈ H then for every t ∈ T1 we have (fg)(t) = f(g(t)) = f(t) = t and also f –1(t) = t 

Therefore fg and f –1 ∈ H so that H is a subgroup. 
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37. Since (k, n) = 1, we may choose r and s such that rk+ sn = 1. Then since a has order n, we know
that an = e, so that

a = a1 = ark+sn = arkasn = (ak)r(an)s = (ak)res = (ak)r.

But ak ∈ H, so that (ak)r = a ∈ H.

31. If f, g ∈ K then (fg)(T1) = f(g(T1)) = f(T1) = T1 and, by the definition of “inverse function”, 
f 

–1(T1) = T1. Hence K is a subgroup. By the definitions H ⊆ K. If a, b ∈ T1 are distinct 
elements let α ∈ A(T) be defined by setting α(a) = b, α(b) = a and α(x) = x for every x ≠ a, 
b. Then α ∈ K but α ∉ H. 

 

32. Applying the hypothesis to the element x–1, note that xHx–1 ⊆ H. Multiplying by x–1 on the 
left and x on the right we get H ⊆ x–1Hx. Hence these sets are equal. 

33. If g, h ∈ C(a) then ga = ag and ha = ah. Then ag–1 = g–1a and (gh)a = a(gh). Therefore C(a) 
is a subgroup. 

 
34. g ∈ Z(G) if and only if ag = ga for every a ∈ G. This occurs if and only if g ∈ C(a) for every 

a ∈ G. Equivalently, g ∈ ∩ C(a). 
 
35. a ∈ Z(G) if and only if ax = xa for every x ∈ G. This occurs if and only if every x ∈ G lies in 

C(a). Equivalently, C(a) = G. 

36. False. U8 and S3 are counter examples. 

 
38. (a) Up consists of all the nonzero elements of p (by Corollary 7.3), so |Up| = p – 1. By 

Theorem 7.15 the group Up is cyclic, so Up = 〈g〉 for some generator g of order p – 1. If 
b ∈ Up express b = gk  for some integer k and note that bp – 1 = (gk)p – 1 = (gp – 1)k = 1. 

  (b) If (a, p) = 1 then [a] ∈ p is nonzero and [a]p – 1 = [1] by part (a). This means that  
[a]p – 1 ≡ [1] (mod p) and consequently ap ≡ a (mod p). If (a, p) > 1 then p | a and a = 0 
(mod p). In this case it is clear that ap ≡ a (mod p). 

 
39. If x, y ∈ NH then x–lHx = H and y–1Hy = H. The first equation implies that H = xHx–1. Also 

we have (xy)–lH(xy) = y–l(x–1Hx)y = y–lHy = H. Therefore x–1 and xy lie in NH so that NH is a 
subgroup. Since H is a subgroup we know that hH = Hh = H for every h ∈ H. It follows that  
H ⊆ NH. 

 

40. ( )( ) ( )   0 0 01 1    1
a b a b aa aa b+=' ' ' '  so the set H is closed. Also ( ) ( )

1

  0 01   1
a b a ab− −=  since a2 = 1. 

Therefore H is a subgroup. 

 
41. Answered in the text. 
 
42. If a ∈ Un we must first check that the statement “a ≡ 1 (mod k) ” makes sense. The element 

a is actually a class [r] for some r ∈ �. But the same class a can be represented in other ways, 
say a = [s] for s ∈ �. If r ≡ 1 (mod k) does it follow that s ≡ 1 (mod k) ? Yes, because [r] = 
[s] so that r ≡ s (mod n) and n | (r – s). Now since k | n conclude that k | (r – s) and r ≡ s 
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49. Since x ∈ G = 〈a〉, we know that x = na for some integer n. Thus x+ x = na+ na = 2na = a, so
that (2n− 1)a = eG. But this means that a has finite order, contradicting the assumption that G,
an infinite cyclic group, is generated by a.

(mod n). To stress this point, one can ask whether it makes any sense to consider the 
elements a ∈ �s such that a ≡ 1 (mod 2). 

 If a, b ∈ Hk then a,b ≡ l (mod k) and ab ≡ l (mod k). By Theorem 7.11, HK is a subgroup. 

43. The case �12 is answered in the text. Since �n is cyclic, the subgroups are all cyclic groups, by 
Theorem 7.16. The subgroups of �20 are 〈1〉 = �20, 〈2〉 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18},  
〈4〉 = {0, 4, 8, 12, 16}, 〈5〉 = {0, 5, 10, 15}, 〈10〉 = {0, 10} and 〈20〉 ={0}. 
 

44. (a) If m = dm1 then am = (ad)m1 lies in 〈ad〉 so that 〈am〉 ⊆ 〈ad〉. By Theorem 1.3 there exist 
integers u,v with d = mu + nv. Then ad = amuanv = (am)u lies in 〈am〉 so that 〈ad〉 ⊆ 〈am〉. 

 (b) Apply part (a) to the case d = 1. 
 
45. By Theorem 7.16 H = 〈am〉 for some m. By Exercise 38, H = 〈ad〉 for some d dividing n. By 

Theorems 7.14 and 7.8 we conclude that |H| = |ad| = n/d is a divisorof n. 
 
46. By Theorems 7,8 and 7.14, H = 〈an/k〉 has order k. If K is any subgroup of order k then as in 

Exercise 39, K = 〈ad〉 for some d | n and that k = |K| = n/d. Therefore K. = H. 
 
47. Answered in the text, referring to Exercise 7.2.31. 
 
48. If G = 〈g〉 is cyclic of infinite order, the equation x3 = g has no solution in G. (For if x = gn 

for some integer n then g3n-1 = e implying that g has finite order.) However in * every 
equation x3 = g does have a solution. Alternatively, if * were cyclic then by Theorem 7.16, 
every subgroup would be cyclic. This would imply that ** is cyclic, contrary to Exercise 16. 

 
50. If G = 〈a〉 is a cyclic group of infinite order, using additive notation, then 2x = a has no 

solution in G. (Compare the proof in Exercise 42.) In the group Q every equation 2x = a has 
a solution. 

 
51. The subset G ' = {(g, eH ) |g ∈ G}} is easily seen to be a subgroup of G × H, and therefore by 

Theorem 7.16 it is cyclic. If (a, eH) is a generator of this subgroup it follows that a is a 
generator of G so that G is cyclic. Similarly H is cyclic. 

 
53. Answered in the text in the case (m, n) > 1, If (m, n) = 1 then Exercise 41 shows that the 

group is cyclic. 

 

52. Let 
1 1

0 1
g

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 Using induction we can see that 
1

0 1
n

n
g

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 for every integer n. Therefore g 

is a generator of that subgroup. 
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54. If e � a ∈ G then 〈a〉 is a subgroup of order > 1. Since it cannot be a proper subgroup, G = 

〈a〉, If the order of a is infinite then H = 〈a2〉 is a proper subgroup. Then |a| = n is finite. If n 
is not prime then n = rs for some integers r, s > 1. Then H = 〈ar〉 is a subgroup of order s 
(by Theorem 7.8) so it is proper, The only remaining case is that n is prime. 
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55. No. If there were a generator 2x y+  then there would exist integers m, n with 
( 2) 1m x y+ =  and ( 2) 2.n x y+ =  These imply that mx = l, my = 0, nx = 0, ny = l, 

which are impossible to satisfy. 

 57. Answered in the text. 

 
56. U20  = {1, 3, 7, 9, 11, 13, 17, 19} has more than one subgroup of order 2 (generated by 9, 11 

or 19). Therefore the group is not cyclic, by Exercise 40). 

 
58. This is a restatement of Theorem 7.17. 

 

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

7.4 Isomorphisms and Homomorphisms

3. The operation table for GL(2,Z2) is

·

(
1 0

0 1

) (
1 1

0 1

) (
0 1

1 0

) (
0 1

1 1

) (
1 1

1 0

) (
1 0

1 1

)
(

1 0

0 1

) (
1 0

0 1

) (
1 1

0 1

) (
0 1

1 0

) (
0 1

1 1

) (
1 1

1 0

) (
1 0

1 1

)
(

1 1

0 1

) (
1 1

0 1

) (
1 0

0 1

) (
1 1

1 0

) (
1 0

1 1

) (
0 1

1 0

) (
0 1

1 1

)
(

0 1

1 0

) (
0 1

1 0

) (
0 1

1 1

) (
1 0

0 1

) (
1 1

0 1

) (
1 0

1 1

) (
1 1

1 0

)
(

0 1

1 1

) (
0 1

1 1

) (
0 1

1 0

) (
1 0

1 1

) (
1 1

1 0

) (
1 0

0 1

) (
1 1

0 1

)
(

1 1

1 0

) (
1 1

1 0

) (
1 0

1 1

) (
1 1

0 1

) (
1 0

0 1

) (
0 1

1 1

) (
0 1

1 0

)
(

1 0

1 1

) (
1 0

1 1

) (
1 1

1 0

) (
0 1

1 1

) (
0 1

1 0

) (
1 1

0 1

) (
1 0

0 1

)
 

 
1. Answered in the text. 
 

2. Homomorphism. ( ) ( ) ( ).f xy xy x y f x f y= = =  

Injective. If f(x) = f(y) then x y=  and squaring shows that x = y. 

Surjective. If r ∈ ** then 2 2( ) .fr r r= =  
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and the operation table for S3 is

·

(
1 2 3

1 2 3

) (
1 2 3

2 1 3

) (
1 2 3

3 2 1

) (
1 2 3

2 3 1

) (
1 2 3

3 1 2

) (
1 2 3

1 3 2

)
(

1 2 3

1 2 3

) (
1 2 3

1 2 3

) (
1 2 3

2 1 3

) (
1 2 3

3 2 1

) (
1 2 3

2 3 1

) (
1 2 3

1 3 2

) (
1 2 3

3 1 2

)
(

1 2 3

2 1 3

) (
1 2 3

2 1 3

) (
1 2 3

1 2 3

) (
1 2 3

3 1 2

) (
1 2 3

1 3 2

) (
1 2 3

3 2 1

) (
1 2 3

2 3 1

)
(

1 2 3

3 2 1

) (
1 2 3

3 2 1

) (
1 2 3

2 3 1

) (
1 2 3

1 2 3

) (
1 2 3

2 1 3

) (
1 2 3

1 3 2

) (
1 2 3

3 1 2

)
(

1 2 3

2 3 1

) (
1 2 3

2 3 1

) (
1 2 3

3 2 1

) (
1 2 3

1 3 2

) (
1 2 3

3 1 2

) (
1 2 3

1 2 3

) (
1 2 3

2 1 3

)
(

1 2 3

3 1 2

) (
1 2 3

3 1 2

) (
1 2 3

1 3 2

) (
1 2 3

2 1 3

) (
1 2 3

1 2 3

) (
1 2 3

2 3 1

) (
1 2 3

3 2 1

)
(

1 2 3

1 3 2

) (
1 2 3

1 3 2

) (
1 2 3

3 1 2

) (
1 2 3

2 3 1

) (
1 2 3

3 2 1

) (
1 2 3

2 1 3

) (
1 2 3

1 2 3

)
An examination of corresponding elements shows that the group tables are actually identical except
for labeling.

4. It is 1-1 since x3 = y3 implies that x = y for real numbers. It is onto since every real number has
a cube root. Thus f is a bijection of sets. To see that it is a homomorphism, note that

f(xy) = (xy)3 = x3y3 = f(x)f(y).

Since f is a bijective homomorphism, it is an isomorphism.

5. Since 2 is invertible in Z9 (2−1 = 5), we see that g is 1-1, since if g(x) = g(y), then 2x = 2y, so
that 5 · 2x = 5 · 2y and thus x = y. Since it is 1-1 and Z9 is finite, it is also surjective. It is a
homomorphism since

g(x+ y) = 2(x+ y) = 2x+ 2y = g(x) + g(y).

Since g is a bijective homomorphism, it is an isomorphism.

6. h is not injective since (for example) h(4) = 2 · 4 ≡ 0 (mod 8), so that h(4) = h(0). Since it is not
injective, and Z8 is finite, it cannot be surjective either. However, it is a homomorphism, since

h(x+ y) = 2(x+ y) = 2x+ 2y = h(x) + h(y).

7. f is surjective, since if x ∈ R∗∗, then x > 0 so that x = |x| and thus x = f(x). However, it is not
injective since (for example) f(−2) = f(2) = 2. It is a homomorphism since

f(xy) = |xy| = |x| · |y| = f(x)f(y).

8. f is injective, since if 2x = 2y, then 2x−y = 1 so that x− y = 0 and then x = y. However, it is not
surjective, since 2x > 0 for all x ∈ R, so that the image of g is only R∗∗. It is a homomorphism
since

g(x+ y) = 2x+y = 2x2y = g(x)g(y).
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9. It is obvious that f is surjective, since if a ∈ G, then a = f((a, eH)). To see that f is a homomor-
phism, note that

f((a, b) ∗ (c, d)) = f((a ∗ c, b ∗ d)) = a ∗ c = f((a, b)) ∗ f((c, d)).

 

10. This is not a homomorphism since (recalling that R is an additive group) (x + y)2 6= x2 + y2 in
general. Thus f(x+ y) = (x+ y)2 6= x2 + y2 = f(x) + f(y).

11. It is obviously an injective map, since if x 6= y then g(x) 6= g(y) since the matrices have different
lower right entries. It is also clear that the image of the map actually lies in GL(2,R) since any
matrix of that form has a nonzero determinant. To see that it is a homomorphism, note that

g(x)g(y) =

(
1 0
0 x

)(
1 0
0 y

)
=

(
1 0
0 xy

)
= g(xy).

12. It is obviously an injective map, since if x 6= y then h(x) 6= h(y) since the matrices have different
lower right entries. It is also clear that the image of the map actually lies in GL(2,R) since any
matrix of that form has a nonzero determinant. To see that it is a homomorphism, note that

h(x)h(y) =

(
1 0
x 0

)(
1 0
y 0

)
=

(
1 0

x+ y 0

)
= h(x+ y).

 
13. Answered in the text. 
 
14. By Theorem 7.15, orcomputing the order of 3, the group U7 is cyclic. Apply Theorem 7.18. 

15. Answered in the text. For negative n recall from Theorem 7.19 that f(a–1) = f(a)–1. Use the 
result for positive n to get: f(a–n) = f((a–1)n) = f(a–1)n = (f(a)–1)n = f(a)–n. 

 
16. If a, b ∈ H then a = f(x) and b = f(y) for some x, y ∈ G. Then ab = f(x)f(y) = f(xy) = f(yx) 

= f(y)f(x) = ba. 

17. First note that f is well-defined; this is so because a has infinite order so that all of the ak are
distinct and therefore the power of a associated with any element of G is unique. Now, for k ∈ Z,
we see that k = f(ak), so that f is surjective. Further, if f(ak) = f(al), then k = f(ak) = f(al) = l,
so that k = l and thus f is injective.

 
18. If α: G → G1 and β : H → H1 are isomorphisms, define the mapping ϕ : G × H → G1 × H1 by 

ϕ(x, y) = (α(x), β(y). Check that ϕ is an isomorphism. 
 
19. (⇒) Answered in the text. 

(⇐) Use the homomorphism property and the fact that (a–1)–1 = a to show that for a, b ∈ G, 
ab = f(a–1)f(b–1) = f(a–1b–1) = f((ba)–1) = ba. 
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20. (a) By Theorem 7.11, to show that a−1Na is a subgroup of G it suffices to show that it is nonempty,
that it is closed under the operation in G, and that it is closed under inverses. It is clearly
nonempty since it contains at least a−1eGa = eG. Now, if a−1n1a and a−1n2a are elements of
a−1Na, where n1, n2 ∈ N , then

(a−1n1a)(a−1n2a) = a−1n1(aa−1)n2a = a−1n1n2a.

Since N is a subgroup, clearly n1n2 ∈ N , so that the product above is in a−1Na. Finally,
given an element a−1na ∈ a−1Na, its inverse in G is (a−1na)−1 = a−1n−1(a−1)−1 = a−1n−1a.
Since N is a subgroup, we know that n−1 ∈ N , so it follows that a−1n−1a ∈ a−1Na. Thus
a−1Na is a subgroup.

(b) As the hint suggests, define f : N → a−1Na : n 7→ a−1na. f is clearly surjective. To see that
it is injective, suppose f(n) = f(m) for m,n ∈ N . Then a−1na = a−1ma. Multiplying on the
left by a and on the right by a−1 gives n = m. It remains to show that f is a homomorphism.
But for m,n ∈ N ,

f(mn) = a−1mna = a−1maa−1na = (a−1ma)(a−1na) = f(m)f(n).

Thus f is a bijective homomorphism, so is an isomorphism.

 

21. g ◦ f is injective since if (g ◦ f)(x) = (g ◦ f)(y), then g(f(x)) = g(f(y)). But g is injective, so
that f(x) = f(y). Since f is also injective, we get x = y. Thus g ◦ f is injective. To see that it
is surjective, choose k ∈ K. Since g is surjective, there is some h ∈ H with g(h) = k. Since f is
surjective, there is some x ∈ G with f(x) = h. But then (g ◦ f)(x) = g(f(x)) = g(h) = k so that
g ◦ f is surjective. Finally, to see that g ◦ f is a homomorphism, we have (since both f and g are
homomorphisms)

(g ◦ f)(xy) = g(f(xy)) = g(f(x)f(y)) = g(f(x))g(f(y)) = (g ◦ f)(x)(g ◦ f)(y).

22.

23. (a) We need to show that f(ab) = f(a)f(b). But f(ab) = (ab)2 = abab. Since G is abelian,
abab = aabb = a2b2 = f(a)f(b) and we are done.

(b) If G is nonabelian, then there are two elements a, b ∈ G such that ab 6= ba. Then f(ab) =
(ab)2 = abab while f(a)f(b) = a2b2 = aabb. If these two are equal, i.e., if abab = aabb, multiply
on the left by a−1 and on the right by b−1 to get ba = ab in contradiction to our assumption.
Thus f cannot be a homomorphism, since for these elements f(ab) 6= f(a)f(b).

24. (a) See Exercise 7.1.19. 
(b) Define f: G → Gop by f(x) = x–1. This f is objective since f ° f =  is the identity map. 
Homomorphism. f(xy) = (xy)–1 = y–1 x–1 = f(y)f(x) = f(x)*f(y). 

25. We first show that f is well-defined. If G is infinite then an element g ∈ G is uniquely 
represented as g = am for some m ∈ . Then mere is no ambiguity in defining f(am) = bm. 
Since b is also a generator we see that f is an isomorphism. The homomorphism property 
follows from the rules of exponents.  

If |G| = n is finite this representation g = am is not unique. The proof of Theorem 7.18 shows that if 
a is a generator of G, there is an isomorphism ϕ a: n → G with ϕ a( a. Defining f = ϕ b ° ϕ –1

a:  
G

 

→

 

G1 we conclude that f is an isomorphism and f(a) = ϕ

 

b(1) = b. 
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f restricts a map f1: T → H, which is still an injective homomorphism. By Theorem 7.19 f(T) 
= f1(T) = Im f1 is a subgroup of H and f1 induces an isomorphism T ≅ f(T). 
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28. (a) If a has order k, that means that ak = e. Then by Exercise 15, f(a)k = f(ak) = f(e) = e
(Theorem 7.20(1)).

(b) By Theorem 7.9, since f(a)k = e, the order of f(a) divides k. But k = |a|, so that |f(a)|
divides |a|.

31. By Theorem 7.11, in order to show that F is a subgroup of G it suffices to show it is nonempty,
closed under the operation of G, and closed under inverses. It is obviously nonempty, since for
example f(e) = e ∈ F . To see that it is closed under the operation of G, choose a, b ∈ F . Then
since f is a homomorphism, ab = f(a)f(b) = f(ab), so that ab is also fixed by f and thus lies in
Finally, if a ∈ F , then f(a−1) = f(a)−1 = a−1 (since a ∈ F ), so that a−1 ∈ F as well.

32. f is clearly surjective, since if a ∈ R∗, then

f

((
a 0
0 1

))
= det

(
a 0
0 1

)
= a · 1− 0 = a.

To see that f is a homomorphism, suppose

A =

(
a b
c d

)
and B =

(
e f
g h

)
are two matrices in GL(2,R). Then

AB =

(
a b
c d

)(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)
,

 
26. If h ∈ H then, by subjectivity, h = f(an) for some integer n. Then by Exercise 11, h = f(a)n 

lies in 〈f(a)〉. 
 
27. (a) Closure is clear. 

Associative. x*(y*z) = xc(ycz) and (x*y)*z = (xcy)cz. 
Identity, c–1 is the identity element for *. Here the exponent –1 refers to the inverse in the 
group G. 
Inverses;. For any x ∈ H the inverse is c–1x–1c–1.  
(b) The map g : H → G defined g(x) = cx is die inverse of f. Therefore f is bijective. 

Homomorphism. f(xy) = c–1 xy = (c–1 x)c(c–1 y) = f(x)cf(y) = f(x)*f(y). 

29. Answered in the text. 
 
30. Let T = {a ∈ G [f(a) ∈ K}. If a, b ∈ T then f(a), f(b) ∈ K so that f(ab) = f(a)f(b) ∈ K. 

Therefore ab ∈ T. Similarly f(a–1) = f(a)–l ∈ K so that a–1 ∈ T. Therefore T is a subgroup. 
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so that

det(AB) = (ae+ bg)(cf + dh)− (af + bh)(ce+ dg)

= (acef + adeh+ bcfg + bdgh)− (acef + adfg + bceh+ bdgh)

= adeh+ bcfg − adfg − bceh.
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But
det(A) det(B) = (ad− bc)(eh− fg) = adeh− bceh− adfg + bcfg

and the two are equal. Thus det(AB) = det(A) det(B) and det is a surjective homomorphism.

33. To show thatKf is a subgroup ofG it suffices to show that it is nonempty, closed under the operation
of H, and closed under inverses (Theorem 7.11). Clearly f(1G) = 1H , so that 1G ∈ Kf and thus
Kf is nonempty. Now, suppose a, b ∈ Kf . Then since f is a homomorphism, f(ab) = f(a)f(b) =
1H1H = 1H , so that ab ∈ Kf as well. Finally, if a ∈ Kf , then f(a−1) = f(a)−1 = e−1

H = eH , so
that a−1 ∈ Kf . Thus Kf is a subgroup of G.

34. [x] = [0] if x− 0 is a multiple of 5, i.e., if x is a multiple of 5. Thus Kf is the set of multiples of 5,
which is {. . . , −10, −5, 0, 5, 10, . . . }.

35. U5 is the multiplicative group whose elements are {1, 2, 3, 4} and whose operation is given by
multiplication modulo 5. Its identity is 1. Since 12 = 1, 22 = 4, 32 = 9 ≡ 4 (mod 5), and
42 = 16 ≡ 1 (mod 5), we have Kf = {1, 4}.

 
36. If f, g ∈ Aut(G) then f ° g ∈ Aut(G) by Exercise 9. Therefore Aut(G) is closed under 

composition. The identity map lies in Aut(G) and inverses exist there by Exercise 22. The 
associative law is automatic for compositions of functions. 

 
37. Answered in the text. 
 
38. Let α : T → {1, 2, . . . . n} be a bijection (a relabeling). If σ ∈ A(T) then define f(σ) ∈ Sn = 

A({1,2, . . . . n}) by f(σ) = α ° α ° α–1. Check that f : A(T) → Sn is an isomorphism. 
 
39.  is cyclic but  is not, by Exercise 7.3.43. 
 
40. 6 is abelian and S3 is not. Apply Exercise 10. 
 
41. 4 × 2 is abelian and D4 is not. Apply Exercise 10. 
 
42. 4 × 2 has an element of order 4 and 2 × 2 × 2 does not. Apply Exercise 21. 
 
43. Answered in the text. 
 
44. Every element of U12 satisfies x2 = 1 but U10 has elements of order 4. Apply Exercise 21. 
 
45. Answered in the text. 
 
46. In the additive group , every nonzero element has infinite order (for if nx = 0 for some 

positive integer n then x = 0). However in * the element –1 has order 2. Apply Exercise 21. 
 
47. D4 has 5 elements of order 2 and the quaternion group has only one element of order 2. Apply 

Exercise 21. 
 
48. For every a ∈  there exists x ∈  such that 2x = a. If there were an isomorphism to ** 

then for every r ∈  there would exist s ∈ Q** such that s2 = r. When r = 2 for example 
this is false. 
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49. If c ∈ G define g(c) ∈ Aut(G) by: g(c)(x) = cxc–1. Then g(cd)(x) = (cd) × (cd)–1 = cdxd–1 c–1 = 
c(g(d)(x))c–1 = g(c)(g(d)(x)) = (g(c) °  g(d))(x). Since this holds for every x we conclude: g(cd) 
= g(c) ° g(d). Note. Defining h : G → Aug(G) by: h(c)(x)= c–1xc, yields: h(cd) = h(d) ° h(c). 

 
50. For every a, x ∈ G we have h(ax) = h ° ϕa(x) = ϕa ° h(x) = ah(x). Apply this to x = e to find 

h(a) = ah(1). Define b = h(l)–1 and conclude that: h(a) = ab–1 for every a ∈ G. 
 
51. (a) Answered in the text. 
 (b) In ective. If h(c) = h(d) then θc = θd so that c–1 = θc(l) = θd(l) = d–1 and therefore c = d. 

Homomorphism. For any c, d, x ∈ G we have: θcd(x) = x(cd)–1 = xd–1c–1 = θd(x)c
–1 = θc (θd(x)) 

= (θc ° θd)(x). Therefore h(cd) = θcd = θc ° θd = h(c) ° h(d). By Theorem7.19 G ≅ 1m h. 
 

52. (a) 0 1 1

0 1 2 0 1 2 0 1 2
, , .

0 1 2 1 2 0 2 0 1
ϕ ϕ ϕ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 (b) 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
, , , .

0 1 2 3 1 2 3 0 2 3 0 1 3 0 1 2
ϕ ϕ ϕ ϕ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 (c) To get reasonable notations, label the elements of S3 by the six symbols 1, 2, 3, 4, 5, 6 in 
some order, and compute the action of each left multiplication as an element of S6. The 
details are left to the reader. 

 
53. The argument in Exercise 3.3.27 works the same here. 
 
54. (a) Each σ ∈ D3 is a rigid motion carrying the given triangle to itself. Then σ carries a vertex 

to a vertex, so it permutes the 3 vertices. Labeling the vertices 1, 2, 3, the restriction map 
induces a map f : D3 → S3. Since f(σ) is just the restriction of σ to the set of vertices it is 
clear that f is a homomorphism. Two symmetries of the triangle which are identical on 
the three vertices must be the same. (Why?) Therefore f is injective. Since |D3| = |S3|, f is 
also subjective. 

 (b) Each σ ∈ D4 carries a vertex of the given square to another vertex, so the restriction map 
induces a homomorphism f : D → S4. A symmetry of the square which fixes all 4 vertices 
must be the identity. It follows that this f is injective. By Theorem 7.19 D4 is isomorphic 
to Im f which is a subgroup of S4. 

 

55. (a) Define α :  →  GL(2, ) by 
1

( ) .
1

n n
n

n n
α

− −⎛ ⎞= ⎜ ⎟+⎝ ⎠
 Then Im α equals the given set H. 

Express α(n) = I + nP where I is the identity matrix and 
1 1

.
1 1

P
− −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 Since P2 = 0, 

calculate: α(n)α(m) = (I + nP)(I + mP) = I + nP + mP = I + (n + m)P = α(n + m). 

Therefore α is a homomorphism and Theorem 7.19 implies that H = Im α is a group. 

(b) By definition, α :  → H is a subjective homomorphism. Injective. If α(n) = α(m) then I 
+ nP = I + mP so that (n – m)P = 0, Since P ≠ 0 conclude that n = m. 
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56. (a) Define β:  → GL(2, ) by β(n) = I + nQ where 
2 1

.
4 2

Q
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 Since Q2 = 0, check that 

β is a homomorphism. Since K = Im β, Theorem 7.19 implies that K is a group. 

 (b) Yes. β is a subjective homomorphism. Check that it is injective, as in Exercise 37. 
 
57. Define ϕ : [x] → ** as in the Hint. 

Homomorphism. ( ) ( ) ( ) ( )k k k k

k k k

k k a b a b
k k p p pa x b xϕ ϕ ϕ +∑ ⋅ ∑ = ∏ ⋅ ∏ = ∏  by the rules of exponents. By the 

definition of addition of polynomials we also have ( ) ( ) ( )( ) k k

k

k k k a b
k k k k pa x b x a b xϕ ϕ +∑ + ∑ = ∑ + = ∏ . 

Subjective. Every positive rational number can be expressed as some k

k

a
p∏  for some ak ∈  

(where ak = 0 for all large values of k). To see this just factor the numerator and denominator 
and use the rules of exponents. 
Injective. To show: if 1k

k

a
p∏ =  (where ak = 0 for all large k) then ak = 0 for every k. To prove 

this clear denominators and apply the Unique Factorization Theorem for positive integers. 
 
58. As in Exercise 33 let g(c) be the inner automorphism induced by c. If G is abelian then 

g(c)(x) = cxc–1 = xcc–1 = x so g(c) = ιG the identity map. Therefore Inn G={ιG}. Conversely 
if Inn G has just one element then g(c) = ιG for every c. This means that for every c, x ∈ G 
we have cxc–1 = g(c)(x) = x. Therefore cx = xc and G is abelian. 

 

59 (a) Let g : D4 → Inn D4 be the function defined in Exercise 33. Check directly from the 
operation table that g(r2) = ιG. Since r1

–1r3 = r2, h
–1v = r2 and d–1t = r2 we get that g(r1) 

= g(r3), g(h) = g(v) and g(d) = g(t). Check from the table that none of these 3 
automorphisms equals ιG. Therefore Inn D4 = {ιG, g(r1), g(h), g(d)} is a group of exactly 4 
elements. 

(b) Since r1
2 = r2 and h2 = d2 = ιG. conclude that H = Inn D4 is a group of order 4 with x2 = 

e for every x ∈ H. Constructing the operation table of any such group H, check that H ≅ 

2 × 2. 
 
60. If f ∈ Aut  then f(l) is a generator (by Exercise 18). Therefore f(l) = ±, by Exercise 7.3.19. If 

f(l) = 1 then f(n) = n and f = i is the identity map. If f(l) = –l then f(n) = –n and f = –ι (as 
in Exercise 17). Therefore Aut  = {ι, –ι} ≅ 2. 

 
61. If k ∈ Un define ϕk : Zn → Zn by ϕk(x) = kx. Then ϕk is a homomorphism (by the distributive 

law), and ϕk is bijective since k is invertible in n. Then ϕk ∈ Aut n. Since ϕk = ϕj ° ϕk, the 
map ϕ : Un → Aut Zn is a homomorphism. Injective. If ϕj = ϕk then j = ϕj(l) = ϕk(l) = k. 
Subjective. Suppose f ∈Aut Zn. Then f(l) is a generator of n by Exercise 18. By Exercise 
7.3.38(b), the generators of n are exactly the elements k ∈ Un. Therefore f(l) = k for some k 
∈ Un and it follows that f(x) = kx for every x (compare Exercise 19). Therefore f = ϕk and ϕ 
is subjective. 

 
62. If α ∈ Aut( 2 × 2) then α(0) = 0 so α permutes the three nonzero elements. This restriction 

map provides a homomorphism f : Aut( 2 × 2) → S3. It is injective (if two automorphisms 
coincide on the nonzero elements they must be equal). It remains to show that these 6 
permutations actually are automorphisms. 
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Suppose H is any additive group of 4 elements generated by elements x, y with 2x = 2y = 
0. Then H = {0, x, y, x + y}. Since y + x cannot equal e, x or y it must equal x + y. Also 2(x 
+ y) = 2x + 2y = 0. Comparing operation tables, conclude that there is an isomorphism ϕ  : 
H → 2 ×  with ϕ(x) = (1, 0) and (ϕ(y) = (0, 1). 

Apply this to the case H = 2 × 2 where the elements x, y are any 2 of the 3 nonzero 
elements. Each of the 6 choices of x, y provides an automorphism. Therefore the map f above 
is bijective. 

An alternative approach to this problem is to argue that Aut( 2 × 2) ≅ GL(2, 2) and 
work directly with matrices. Compare Exercise 3. 
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7.5 The Symmetric and Alternating Groups
 
1. (a) (173) (b) (1245789) (c) (1476283) (d) (35798) 
 
2. (a) (1234) (b) (1356247) (c) (14532) (d) (12453) 
 
3. (a) (12)(45)(679) (b) (13)(254)(789) (c) (13)(254)(69)(78) 
 (d) (1573)(24) (e) (123)(456)(78) 
 
4 (a) (12)(45)(69)(67) (b) (13)(24)(25)(79)(78) (c) (13)(24)(25)(69)(78) 
 (d) (13)(17)(15)(24) (e) (13)(12)(46)(45)(78) 

5. (a) Since (12)(12) = e, |(12)| = 2.

(b) We have (123)(123) = (132), and (123)(132) = e, so that |(123)| = 3.

(c) We have (1234)(1234) = (13)(24), (1234)(13)(24) = (1432), (1234)(1432) = e, and therefore
|(1234)| = 4.

(d) |(123456789)| = 9.

6. (a) (13)(24)(13)(24) = e, so |(13)(24)| = 2.

(b) We have

((123)(456))2 = (123)(456)(123)(456) = (132)(465)

((123)(456))3 = (132)(465)(123)(456) = e.

Thus Abs(123)(456) = 3.

(c) We have

((123)(435))2 = (123)(435)(123)(435) = (13425)

((123)(435))3 = (13425)(123)(435) = (15243)

((123)(435))4 = (15243)(123)(435) = (14532)

((123)(435))5 = (14532)(123)(435) = e.

Thus |(123)(435)| = 5.
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(d) Since (1234)(4231) = (132), we want to know the order of (132). But

(132)2 = (132)(132) = (123), (132)3 = (123)(132) = e,

so that |(1234)(4231)| = |(123)| = 3.

(e) Since (1234)(24)(43215) = (13)(45), we want the order of (13)(45). But (13)(45)(13)(45) = e,
so the order is 2.

 

7. (b) and (c) are even. 
 
8. (a) {e} (b) {e, (123), (132)} 
 (c) {e, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)} 
 
9. (a) 3 (b) 12 (c) 60 (d) 101/2=1814400 

10. No, Bn is not a subgroup of Sn. Bn consists of those permutations that can be written as a product
of an odd number of transpositions. But then a product of any two elements of Bn can be written
as a product of an even number of transpositions (since the product is just the transpositions of
the two elements written one after the other). Thus the product of any two elements of Bn is even,
so is not in Bn. (It is also valid to simply observe that the identity permutation is even, so is not
in Bn, so that Bn cannot be a subgroup).

11. The elements (12)(34), (13)(24), and (14)(23) each have order 2. The elements (123), (132), (124),
(142), (134), (143), (234), and (243) each have order 3. Finally, the identity element has order 1.

12. For example, (12)(34) = (314)(123).

13. Multiplying (123)(234) gives (123)(234) = (12)(34), so this is the product of two disjoint transposi-
tions. Multiplying the other pair of cycles gives (567)(789 10) = (56789 10). Thus α can be written
as a product of disjoint cycles as α = (12)(34)(56789 10). The cycles have orders 2, 2, and 6, so
that |α| = lcm(2, 2, 6) = 6.

14. Multiplying out the cycles in β gives β = (1236784)(59 10). Thus β is the product of a 3-cycle and
a 7-cycle, so that |β| = lcm(3, 7) = 21.

15. Answered in the text. 
 
16. If σ = (a1a2 . . . ak) then σ(aj) = aj + 1 where the subscripts are read modulo k as before. Then 

σ–1(aj + 1) = aj, and in cycle notation σ–1 =(a1ak – 1 . . . a2a1) = (a1akak – 1 . . . a2). 
 
17. If σ = (a0, a1, a2, . . . ak – 1) then σ(aj) = aj + 1 where the subscripts are viewed as integers 

modulo k (so that σ (ak – 1) = a0). Therefore σr(aj) = aj + r. Therefore σr = e if and only if j 
≡ j + r (mod k) for every j. This occurs if and only if r = 0 (mod k). Therefore |σ| = k. 

 
18. If i = ar then στ(i) = σ(i) = τσ(i). If i = bs then στ(i) = τ(i) = τσ(i). Finally if i is not one of 

the a′s or b′s then στ(i) = i = τσ(i). 
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20. (a)

α β αβα−1 αβα−1β−1

even even even even
even odd odd even
odd even even even
odd odd odd even

(b) The conjugate of an even permutation by any permutation is again even, and the conjugate of
an odd permutation by any permutation is again odd. The product αβα−1β−1 is always even.

22. An element of order 10 is, for example, (12345)(67), since this is the disjoint product of a 5-cycle
and a 2-cycle and lcm(5, 2) = 10. An element of order 20 is, for example, (12345)(6789), since this
is the disjoint product of a 5-cycle and a 4-cycle, and lcm(5, 4) = 20. An element of order 30 is, for
example, (12345)(67)(89 10), since this is the disjoint product of a 5-cycle, a 3-cycle, and a 2-cycle,
and lcm(5, 3, 2) = 30. There is no element of order 40: note that any such element must have either
a 5-cycle or a 10-cycle in its disjoint cycle representation in order for the least common multiple of
the cycle components to be 40. If it has a 10-cycle, then this is the complete element since we are
working in S10, and this element has order 10. If it has a 5-cycle, then the remaining 5 element
must combine to give an 8-cycle, but the maximum cycle length from 5 elements is 6 = lcm(2, 3).
Thus there is no element of order 40.

 

19. Suppose τ = σ1 σ2 . . . σr a product of disjoint cycles, where σj is a kj-cycle. Since these 
σj. commute (by Exercise 12), 1 2 . . . .n n n n

rτ σ σ σ=  Claim. τn = e if and only if n
j eσ =  for each 

j. Proof. (⇐) Easy. (⇒) Suppose τj = (c1c2 . . . ckj). Then the other σ′s fix these ci.’s and c
i = τn(ci) = σj

n(ci). Therefore n
j eσ = . 

By Exercise 9, n
j eσ =  if and only if kj | n. Then |τ| is the smallest n > 0 where kj | n

 for every j. This is exactly the least common multiple of k1, k2, . . . , kr. 

21. σ = (138)(27)(4965) so |σ| = 12, the 1cm of 3, 2 and 4. Then σ1O00 = σ4 + 12.83 = σ4 has order 3 
by Theorem 7.8. 

23. Let K be that subset. It is easy to verify that K is closed under composition, hence it is a 
subgroup. Furthermore since there are only 4 symbols involved, a direct count shows that K 
contains every α ∈ S4 which is the product of 2 disjoint 2-cycles. If σ ∈ S4 then α(12)(34)σ–1 
= (σ(l)σ(2))(σ(3)σ(4)) is also a product of 2 disjoint 2 cycles, using Exercise 23. Therefore 
this element lies in K. Similarly we conclude that σKσ–1 ⊆ K so that K is normal by Theorem 
7.21. 

24. (a) Suppose that f(α) = f(β). Then (12)α = (12)β, so (working in Sn), α = (12)(12)α =
(12)(12)β = β, so that α = β. Hence f is injective.

(b) Choose β ∈ Bn. Then β can be written with an odd number of transpositions, so that (12)β
can be written with an even number of transpositions. Thus (12)β ∈ An, and f((12)β) =
(12)(12)β = β. Thus f is surjective. Since f is both injective and surjective, it follows that
An and Bn have the same number of elements.
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Groups108 Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



26. Suppose α is in the center of Sn and α ≠ e. Then there exists i where α(i) = j ≠ i. Since n > 2 
there is some k where i, j, k are distinct. Evaluating α ° (i, k) = (i, k) ° α at i shows that α(k) 
= j contrary to the injectivity of α. Therefore α = e. 

 
27. By Exercise 9, σk: = e. Let τ = σ ( k + 1)/2. 
 
28. As in Exercise 9 suppose σ = (a0a1a2 . . . ak – 1) and view the subscripts in k. To find the 

cycle decomposition of σ2, compute the cycle containing a0 : σ2(a0) = a2, σ2(a0) = a4, . . . , 
σ2r(a0) = a2r. This is an r-cycle where r is the smallest positive integer with a2r = a0. Since the 
subscripts are in k this equality means: 2r ≡ 0 (mod k). 
(a) If k is odd then r ≡ 0 (mod k) and the smallest positive solution is k. Therefore σ2 is a k-

cycle. 
(b) If k = 2t is even then r ≡ 0 (mod t) and the smallest positive solution is t. Then σ2 

contains a t-cycle starting with a0. This argument works just as well starting with any aj.: 
each cycle in the decomposition of σ2 is a t-cycle. Then σ2 is a product of 2 disjoint t-
cycles. 
Generally, for any m the permutation σm is the product of k/d d-cycles, where d = (m, k). 

 
29. Answered in the text. 
 
30. Every element of An is a product of an even number of 2-cycles. Every product of two 2-

cycles equals a product of 3-cycles, by Exercise 29. Therefore every element of An is a product 
of 3-cycles. 

 
31. If σ = (a11a21 . . . an1)(a12a22 . . . aa2) . . . (a1ma2m . . . anm) is a product of m disjoint n-cycles. 

Define τ = (a11a12 . . . a1ma21a22 . . . a2m . . . an1an2 . . . anm), an nm-cycle, Notethat τn = σ. 
  
32. Suppose σ permutes the symbols {1, 2, . . . , n}. Express σ as a product of disjoint cycles, 

including the trivial 1-cycles. Then every symbol i occurs in exactly one of the given cycles. If 
i is in a k-cycle then mat cycle must equal (i, σ(i), σ2(i), . . . , σk – 1 (i)) and σk(i) = i. 
Therefore the cycles in the decomposition are unique, up to the order in which they are 
written. 

 
33. As in the Hint, (kr)τ is viewed in Sn – 1 and the induction hypothesis says that (kr)τ is a 

product of transpositions. Multiplying by (kr) we see that τ is also such a product. 
 
34. As in the solution to Exercise 11, any k-cycle is a product of k-1 transpositions. Suppose σ ∈ 

Sn is written as a product of disjoint cycles: σ = α1α2 . . . αr where αj is a kj-cycle. Then n ≥ 
k1 + k2  + . . . + kr and each αj is a product of kj – 1 transpositions. Then σ

 
is expressed as 

a product of (k1 – 1) + (k2 – 1) + . . . + (kr – 1) ≤ n – r transpositions. 

 35. Answered in the text. 
 
36. Suppose σ(ai.) = bi. for each i, and the indices are viewed modulo k. Then (στσ–1)(bi) = στ(ai) 

= σ(ai+ 1)  = bi+ 1. If c is a symbol unequal to any bi then σ–1 (c) is unequal to any of the ai so 
it is fixed by τ. Hence (στσ–1)(c) = σ(σ–1(c)) = c. Therefore στσ–1 = (b1b2 . . . bk). 
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37. Clearly H is nonempty since (1) ∈ H. So if H is closed under permutation multiplication, then H
is a subgroup. But if α and β each fix 1 and n, then in the product αβ, clearly neither 1 nor n is
moved by either factor, so that αβ also fixes 1 and n, so that αβ ∈ H. Thus H is a subgroup of Sn.
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39. (a) G must have at least one even permutation as well, since (1) ∈ G is even. Let the even
permutations be e1, . . . , ek, and let π be the known odd permutation. Consider the set of
products πe1, . . . , πek. Since π is odd and each of the ei are even, it follows that πei is odd
for all i. Further, these products are all distinct, for if πei = πej , multiplying on the left
by π−1 ∈ G gives ei = ej so that i = j. Thus there are at least k odd permutations in
G. Let the odd permutations be π = o1, o2, . . . , ol where l ≥ k. Then all the permutations
πo1, πo2, . . . , πol are even and distinct, by the same argument as above. But there are only k
even permutations, so that k = l and the number of odd and even permutations is the same.

(b) Since every permutation in G is either odd or even, and there are the same number of each,
|G| is even, i.e., 2 divides |G|.

(c) Let K be any subgroup of Sn. If K is not a subgroup of An, then K must contain at least one
odd permutation, since all even permutations lie in An. But by part (b), this means that |K|
is odd.

 

38. Consider the map f: D → S4 defined in the Hint. Since f is just a restriction of maps, it is a 
homomorphism. From the definition of r1 as a 90° rotation note that r1(1) = 2, r1(2) = 3, etc., 
showing that f(r1) = (1234). Also d fixes vertices 1 and 3 and interchanges vertices 2 and 4. 
That is, f(d) = (24). Therefore f(D4) ⊇ G. By the First Isomorphism Theorem, f(D4) ≅ 
D4/(ker f) has at most 8 elements. By Exercise 15 |G| = 8. Conclude that f(D4) = G has 
exactly 8 elements and ker f = {e} so that f is injective. 

40. If n ≤ 3 the statement is trivial. Suppose n = 4 and note that (123) = (ln(n – 1) . . . 
432)(13245 . . . n) is a product of two n-cycles. Similarly every 3-cycIe is a product of two n-
cycles. Use Exercise 30 to conclude that every element of An is expressible as a product of n-
cycles. 

 
41. Let H be the subgroup generated by those transpositions. If 1, a, b are distinct symbols then 

(ab) = (1a)(1b)(1a) so that every 2-cycIe lies in H. Use Corollary 7.48 to conclude that H = 
Sn. 

 
42. Let K be the subgroup generated by (12) and α = (123 . . . n). View the symbols as elements 

of n so that: α(i) = i + l. Then by Exercise 24, αk – 1(12)α–k + 1 = (k(k+l)) so these 
transpositions lie in K. Then (13) = (12)(23)(12) ∈ K, and (14) = (13)(34)(13) ∈ K. 
Continuing this pattern we find (1k) ∈ K for every k = 2, ….. , n. Therefore K = Sn using 
Exercise 32. 

 
43. S3 contains 3 elements of order 2, namely (12), (13), (23). Since the transpositions (12) and 

(13) generate S3 (as in Exercise 32), two automorphisms with the same behavior at (12) and 
(13) must be equal. Also f preserves the orders of elements (by Exercise 7.4.21), Therefore 
f(12) = (xy) is another 2-cycle. 

Suppose f(12) = (12). Then f(13) is either (13) or (23). If f(l3) = (13), then f is the 
identity. If f(13) = (23) then f(τ) = (12)τ(12) for every τ, since these two automorphisms 
agree on the generators (12) and (13). 

Generally if f(12) = (xy), use Exercise 24 to find α ∈ S3 with αf(12)α–1 = (12). Then the 
automorphism g(τ) = αf(τ)α–1 fixes (12) and the argument above describes g. Therefore, 
either f is the identity or f(τ) = στσ–1 where σ = α–1 (12). 

 

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Groups110

 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



45. Define f : Sn → An+2 as follows: if α ∈ An, then f(α) = α. If α is an odd permutation, then
f(α) = α(n+ 1 n+ 2). This is obviously an injective map.

Before proving that f is a homomorphism, observe that if α ∈ Sn+2 fixes both n + 1 and n + 2,
then α(n + 1 n + 2) = (n + 1 n + 2)α. This is true since if we write α as a product of disjoint
cycles, those cycles will involve only the numbers 1 through n; by Exercise 18, each of those cycles
commutes with (n+ 1 n+ 2), so that α does as well.

Now, if α, β ∈ An, then f(αβ) = αβ = f(α)f(β). If α ∈ An and β ∈ Bn = Sn −An, then αβ ∈ Bn

as well, since α is even and β is odd so that αβ is odd. Thus f(αβ) = αβ(n+ 1 n+ 2) = f(α)f(β).
If α ∈ Bn and β ∈ An, then αβ ∈ Bn as above. Then f(αβ) = αβ(n + 1 n + 2). By the above
observation, this is the same as α(n+1 n+2)β = f(α)f(β). Finally, if α, β ∈ Bn, then αβ ∈ An, so
that f(αβ) = αβ = αβ(n+ 1 n+ 2)(n+ 1 n+ 2) = α(n+ 1 n+ 2)β(n+ 1 n+ 2) by the observation
above. But this is just f(α)f(β). Thus in all cases, f(αβ) = f(α)f(β), so that f is an injective
homomorphism and thus its image is a subgroup of An+2 that is isomorphic to Sn.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

(b) Suppose τ(bi) = aj for some j. If j > 1 then τ(bi) = τ(ak). If j = 1 then τ(bi) = τ(a)k . In 
either case this contradicts the injectivity. 

(c), (d) The same argument applies. The permutation τ agrees with the product of the 
disjoint cycles (a1 – ak)(b1 – br) . . . , and therefore τ equals this product in Sn. 

44. (a) If τ(ak) = aj for some j > 1 then τ(ak.) = τ(aj – 1) contrary to the injectivity of τ. Therefore 
τ(ak) =τ(a1). 

7.5 The Symmetric and Alternating Groups 111

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



Chapter 8

Normal Subgroups and Quotient
Groups

8.1 Congruence and Lagrange’s Theorem

1.

2.

3.

4.

5.

6. K3 = {3, 3 · 3 = 9, 9 · 3 = 27, 27 · 3 = 81 = 17, 17 · 3 = 51 = 19, 19 · 3 = 57 = 25, 25 · 3 = 11, 11 · 3 = 1}
= {1, 3, 9, 11, 17, 19, 25, 27}

K5 = {1 · 5 = 5, 3 · 5 = 15, 9 · 5 = 45 = 13, 11 · 5 = 55 = 23, 17 · 5 = 85 = 21, 19 · 5 = 95 = 31,

25 · 5 = 125 = 29, 27 · 5 = 7}
= {5, 7, 13, 15, 21, 23, 29, 31}.

7.

8.

9.

10.

() Answered in the text. (⇐) If a ∈ K then a ∈ Ka ∩ K so that Ka = K by Corollary 7.19. 

Kr0 = {r0, v};   Kr1 = {r1, t}; Kr2 = {Kr2, h}; Kr3 = {r3, d}. 

Kr0 = {r0, r1, r2, r3};   Kd = {d, h, t, v}. 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
, ; , ; ,

1 3 2 2 1 3 2 1 3 3 1 2 3 1 2 3 1 2 2 1 3
Ke e K K

ì ü ì ü ì üæ ö æ ö æ ö æ ö æ ö æ ö æ öï ï ï ï ï÷ ÷ ÷ ÷ ÷ ÷ ÷ï ï ï ï ïç ç ç ç ç ç çï ï ï ï ï÷ ÷ ÷ ÷ ÷ ÷ ÷ç ç ç ç ç ç ç= = =í ý í ý í ý÷ ÷ ÷ ÷ ÷ ÷ ÷ç ç ç ç ç ç ç÷ ÷ ÷ ÷ ÷ ÷ ÷ï ï ï ï ïç ç ç ç ç ç ç÷ ÷ ÷ ÷ ÷ ÷ ÷ç ç ç ç ç ç çè ø è ø è ø è ø è ø è ø è øï ï ï ï ïï ï ï ï ïî þ î þ î
.

ïïï
ïïïþ

 

K1 = {1, 17};   K3 = {3, 19}; K5 = {5, 21}; K7 = {7, 23}; K9 = {9, 25}; K11 = {11, 27}; K13 = 
(13, 29}; K15 = {15, 31}. 

4 

3 

1 

4 

11. 6 
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12. (a) Using Theorem 7.12, all we need to show is that the elements of K lie in A4 and that K is
closed under the operation of permutation multiplication. Clearly the elements lie in A4 since
they are all written with an even number of disjoint transpositions ((1) being written with zero
transpositions). Further, (1)π = π = π(1) for any π ∈ K; for the remaining multiplications,
we have

(12)(34) · (13)(24) = (14)(23) = (13)(24) · (12)(34)

(12)(34) · (14)(23) = (13)(24) = (14)(23) · (12)(34)

(13)(24) · (14)(23) = (12)(34) = (14)(23) · (13)(24)

(b) Since K has four elements and A4 has 12 elements, there are 12
4 = 3 cosets of K in A4, by

Lagrange’s Theorem.

(c) Since K has four elements and S4 has 24 elements, there are 24
4 = 6 cosets of K in S4, by

Lagrange’s Theorem.

13. (a) These cosets are not identical. K + 4 consists of all integers leaving a remainder of 4 when
divided by 7; since 3 does not, 3 /∈ K + 4, so that K + 4 and K + 3 are disjoint.

(b) These cosets are identical, since K + 137 = K + (19 · 7 + 4) = (K + 19 · 7) + 4 = K + 4.

(c) These cosets are identical, since K + 59 = K + (9 · 7 + (−4)) = (K + 9 · 7) + (−4) = K + (−4).

14. (a) Since K(12) contains the permutation (12)(34)(12) = (34), we see that (34) ∈ K(12), so that
K(34) ⊂ K(12). Since the cosets are not disjoint, they are equal.

(b) K(1234) contains the elements (1)(1234) = (1234), (12)(34)(1234) = (24), (13)(24)(1234) =
(1432), and (14)(23)(1234) = (13). K(1324) contains the element (13)(24)(1324) = (34), which
is not in K(1234). Since the cosets are not identical, they are disjoint.

15. (a) From Exercise 6, 17 and 19 are both in the coset K3: 34 = 81 ≡ 17 (mod 32) and 35 = 243 ≡
19 (mod 32).

(b) From Exercise 6, 9 and 25 are both in the coset K3: 32 = 9, and 36 = 729 ≡ 25 (mod 32).

16.

17.

18.

19.

20.

21.

Ke = {1, a3, a6, a9, a12}; Ka = {a, a4, a7, a10, a13};   Ka2 = {a2, a5, a8, a11, a14}. 

(a), (c) Answered in the text. 
(b) All the positive divisors of 24, as in (a). 

(a) There are many examples, including G =  and H = n  and G =  × 2 and H = × {0}. 
(b) For instance G =  and H =  or G = ×  and H = × {0}. 

Answered in the text. 

50  

Answered in the text. 

22. H ∩ K is a subgroup of H and of K. Lagrange’s Theorem implies that |H ∩ K| must divide |H| and |K|. 

23.

24.

Answered in the text. 

Suppose G is not cyclic. If g ∈ G then |g| divides 25 so it equals  1, 5 or 25. It cannot be 25 since  
G is not cyclic. If g ≠ e then |g| >1 and therefore |g| = 5. 
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25.

26. Since |G| = 8, Corollary 8.6 says that every element of G has order 1, 2, 4, or 8. Choose a
nonidentity element a. Then the order of a is 2, 4, or 8. If it is 2, we are done. So suppose the
order of a is 4. Then a2 6= e but a4 = e. Since (a2)2 = a4 = e, we have found an element a2 with
order 2. Finally, suppose the order of a is 8. Then a2 6= e but a8 = e. Since (a2)4 = a8 = e, we
have an element of order 2. So in any case there is an element of order 2.

27. In Un, we have (n− 1)2 = n2− 2n+ 1 ≡ 1 (mod n), so that (n− 1)2 = 1. However, n− 1 6= 1 since
n > 2. Thus n− 1 has order 2.

28.

29. By Lagrange’s Theorem applied to the subgroup H of G, we get |G| = |H| [G : H]. By Lagrange’s
Theorem applied to the subgroup K of H, we get |H| = |K| [H : K]. Substituting into the first
equality gives |G| = |K| [H : K][G : H] = |K| [G : H][H : K]. But regarding K as a subgroup of
G, Lagrange’s Theorem gives |G| = |K| [G : K]. Thus |K| [G : K] = |K| [G : H][H : K] and thus
[G : K] = [G : H][H : K].

Answered in the text. 

By Corollary 7.27 conclude that 2 divides |Un|. 

30.

31. Suppose that G has no element of order 2. Then for a ∈ G, we know that a 6= a−1. Then elements
come in pairs, {a, a−1}, except that e is its own inverse. If there are k such pairs, then |G| = 2k+1,
which is odd. Thus if |G| is even, there must be an element of order 2.

32.

33. (a) Since a has order 3, we know that a3 = e, so that a(a2) = e = (a2)a. Thus a−1 = a2, and
similarly b−1 = b2. Since a2 = b2, we get a−1 = b−1, so that a = b.

(b) To each a ∈ G of order 3 associate a2 ∈ G. Clearly a2 has order 3 as well. By part (a), if a 6= b
both have order 3, then a2 6= b2. Thus elements of order 3 can be grouped into pairs, {a, a2}.
Hence there are an even number of them.

If G is finite the formula immediately follows from Lagrange’s Theorem. But the result remains true 
when G is infinite: Suppose the distinct cosets of H in G are Hg1, Hg2, . . . , Hgn where n = [G : H]. 
Suppose the distinct cosets of K in H are Kh1, Kh2

, . . . , Khm where m = [H : K]. Show that the cosets 
Khigj for 1 ≤ i ≤ m,  1 ≤ j ≤ n forms a list of the distinct cosets of K in G. Therefore [G : K] = nm = 
[G : H]⋅[H : K]. 

By Exercise 7.3.36 there is a subgroup of order p in U p2. Consequently there is an element of order p. 

Alternatively expand (1 + p)p by the Binomial Theorem and reduce each term (mod p2) to conclude 
that 1 + p has order p in U p2

34. G can have no elements of order 2, since by Corollary 8.6, the order of each element divides |G|,
which is odd. Thus no element is its own inverse. So in the list a1a2 . . . a2k+1, each nonidentity
element appears separately from its inverse. Since G is abelian, reorder the list so that a2 = a−1

1 ,
a4 = a−1

3 , until a2k = a−1
2k−1 and a2k+1 = e. Then clearly the product of all the ai is the identity.

35. Answered in the text. 

36. [G H ∩ K] = p[H : H ∩ K] by Lagrange’s Theorem. Similarly q | [G : H ∩ K] and since p, q are 
relatively prime also pq is a factor. 
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38.

39. (a) Suppose G has no elements of order 5. By Lagrange’s Theorem, every nonidentity element of
G must have order 2, 5, or 10. If it has an element a of order 10, then a10 = e but a2 6= e.
But then (a2)5 = a10 = e, so that a2 has order 5. So if G has no elements of order 5, all the
nonidentity elements must have order 2. But now Exercise 27 of Section 7.2 shows that G
must be abelian, contradicting the assumption that G is nonabelian.

(b) Let a be an element of order 5, by part (a). Then {e, a, a2, a3, a4} are five distinct elements
of G, which form a cyclic subgroup H. Let b be an element of G that is not in H. Then
H = {e, a, a2, a3, a4} and Hb = {b, ab, a2b, a3b, a4b} are not identical, since b ∈ Hb and b /∈ H
by construction. Thus the cosets are disjoint, so G = H∪Hb as a set. Since G is nonabelian, it
cannot be cyclic, so that b cannot have order 10. Thus it has order 2 or 5. Suppose b has order
5, and consider b2. If b2 ∈ H, then b2 = ak for some 0 ≤ k ≤ 4. Then a2k = b4 = b5b−1 = b−1,
so that b−1 ∈ H and thus b ∈ H. This is impossible. Thus b2 = akb for some 0 ≤ k ≤ 4;
multiplying on the right by b−1 gives b = ak, another contradiction. Thus b cannot have order
5, so it has order 2. But we chose b arbitrarily from among the five elements of G not in H.
Thus all of those elements have order 2, so that G has five elements of order 2.

40.

41.

42.

37. f is a homomorphism since (ab)k = akbk. By Corollary 7.27 we know an = e. Since (k, n) = 1 there 
exist integers x, y with kx + ny = 1, Surjective. For any a ∈ G we have a = a kx+ny = akx = f(ax).  
Since f : G → G is a surjective map on a finite set, deduce that f must be injective. (One can check 
injectivity directly by first showing: f(a) = e  a = e, (Proof. Given ak = e deduce a = akx+ny = e.) 
If f(a) = f(b), note that (ab–1)k = akb–k = e, then conclude that ab–1 = e, so that a = b.) 

There are 2n–1 subsets of G which contain e. By hypothesis each of these subsets is a subgroup. If |G| 
> 2 let e, a, b be distinct elements. Apply Corollary 7.27, to show that a2 = e since {e, a} is a 
subgroup and a3 = e since {e, a, b} is a subgroup. But then a = a3a–2 = e, a contradiction. 

Let H1 H2, . . . , Hk be the distinct subgroups of order p in G. By Lagrange, every nonidentity 

element of Hj. has order p. If g ∈ G has order p then g  = Hj for some j. If g ∈ Hi ∩ Hj then Hi = 
g  = Hj. Therefore, the set of all elements of order p in G is exactly the union of the disjoint sets  

Hj – {e}. Hence there are k(p – 1) such elements. 

Suppose |G| = 33 and G has no element of order 3. Then by Theorem 7.8 there is no element of 
order 33, and Lagrange implies that every nonidentity element has order 11. Count the number of 
subgroups of order 11, as in Exercise 25 below, to obtain a contradiction. 

Let N = a  so that |N| = 4. If b ∈ N then b commutes with a and ab = ba = a3b. Cancellation 
implies a2 = e contrary to hypothesis. Therefore b ∉ N and there are 8 elements in N ∪ Nb. Using 
the relation ba = a3b, check that N ∪ Nb is closed under multiplication. In fact, the entire 8 × 8 

operation table is uniquely determined. Therefore N ∪ Nb is a subgroup containing a and b. Then  
G = N ∪ Nb, since G is generated by a, b, so that |G| = 8. Note that D4   is generated by the 
elements a = r1 and b = h satisfying the relation ba = a3b. Since the operation table above is unique, 

conclude that G D4. 
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43.

44. (a) By Exercise 8 in Section 7.5, the elements of A4 consist of

(1)

(12)(34), (13)(24), (14)(23)

(123), (132), (124), (142), (134), (143), (234), (243).

Since the elements of the form (abc) all have order 3, only the three elements (12)(34), (13)(24),
and (14)(23) have order 2.

Let N = a  so that |N| = 4. As in Exercise 26 show that b ∉ N, that N ∪ Nb is a subgroup with a 
uniquely determined operation table, using the given relations. Since G is generated by a, b conclude 
that G = N ∪ Nb has 8 elements. The quaternion group Q of Exercise 7.1.14 is generated by the 
elements i, j where |i| = 4, j2  = –1 = i2 and ji = –k = –ij = i3j. The uniqueness of the operation 

table above implies G ≅ Q. 

(b) By Exercise 12(a) in this section, these three elements together with (1) form a subgroup of
A4.

(c) If A4 had a subgroup G of order 6, it would (by Theorem 8.9) be isomorphic to Z6 or to S3.
But it could not be isomorphic to Z6, since then A4 would have an element of order 6 — and
all of the elements listed above have order 1, 2, or 3. Thus such a subgroup must be isomorphic
to S3. Now, both S3 and A4 have three elements of order 2, so that an isomorphic image of
S3 in A4 must contain (1), (12)(34), (13)(24), (14)(23) and two other elements of A4. By part
(b), these four elements form a subgroup of A4 and thence a subgroup of the image of S3. But
this is impossible, since S3 has order 6, so it cannot have a subgroup of order 4.

8.2 Normal Subgroups

1.

2. r1 ≡ t (mod K) since r1t
−1 = r1t = v ∈ K, and r2 ≡ h (mod K) since r2h

−1 = r2h = v ∈ K.
However, r1 ◦ r2 = r3, and t ◦ h = r1, but r3 6≡ r1 (mod K) since r3r

−1
1 = r3r3 = r2 /∈ K.

3.

4.

5.

Compare Exercise 7.5.1. If aK = K then a = ae ∈ aK = K. Conversely suppose a ∈ K. Since K is a 
subgroup, a–1 ∈ K and the closure property implies aK ⊆ K and a–1K ⊆ K. Then K ⊆ aK as well, 
and the equality follows. 

The left cosets are N and r1N while the right cosets are N and Nr1. Calculating the products 
of elements, we find that r1N = Nr1 = {r1, r3, t, d}. (Compare Exercise 20 below.) 

For any g ∈ G note that g e  = {g} = e g and gG = G = Gg. Therefore these subgroups are 

normal. 
 
(a) H is a subgroup since 

1 1/ /
and lie in .

0 0 0 1/0 0

a b a b aa ab bd a b a b ad
H

d d dd dd

-æ ö æ ö¢ ¢ ¢ ¢ ¢ æ öæ ö æ ö+ -÷ ÷ ÷ç ç÷ ÷ çç ç÷ ÷ ÷ç ç÷ ÷ çç ç÷ ÷= = ÷÷ ÷ç ç çç ç÷ ÷ ÷÷ ÷ç ç çç ÷ ÷ ç¢ ¢ ÷÷ ÷ç ç ÷ç÷ ÷ç çè ø è ø è øè ø è ø
 

 

Similarly N is a subgroup since 

11 1 11 1
and lie in .

0 1 0 1 0 10 1 0 1

b b bb b b
N

-æ ö æ ö¢ ¢æ ö æ ö æ ö-+÷ ÷÷ ÷ ÷ç çç ç ç÷ ÷÷ ÷ ÷ç çç ç ç= =÷ ÷÷ ÷ ÷ç çç ç ç÷ ÷÷ ÷ ÷ç çç ç ç÷ ÷÷ ÷ ÷ç ç ç÷ ÷ç çè ø è ø è øè ø è ø
 

 (b) Answered in the text. 
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Normal Subgroups and Quotient Groups

6.

7.

8.

9.

10.

11.

12.

13.

14.

15. If τ ∈ An, then τ is even. Then by Exercise 20 of Section 7.5, σ−1τ(σ−1)−1 = σ−1τσ is even
regardless of the parity of σ, so that for any σ ∈ Sn, we have σ−1τσ ∈ An. Thus σ−1Anσ ⊂ An so
that An is normal in Sn (see Theorem 8.11).

16. Since K is normal and of order 2, suppose K = {e, k} with k 6= e. Then if a ∈ G, we know that
aka−1 ∈ K. If aka−1 = e, then ak = a, which is impossible. Thus aka−1 = k, so that, multiplying
through on the right by a, ak = ka. Thus k ∈ Z(G); since e ∈ Z(G), it follows that K ⊆ Z(G).

 

K is the subgroup generated by 
1 2 3

.
2 1 3

æ ö÷ç ÷ç ÷ç ÷ç ÷çè ø
 The right cosets are K,  

1 2 3 1 2 3 1 2 3 1 2 3
, and , .

1 3 2 2 3 1 3 2 1 3 1 2

ì ü ì üæ ö æ ö æ ö æ öï ï ï ï÷ ÷ ÷ ÷ï ï ï ïç ç ç çï ï ï ï÷ ÷ ÷ ÷ç ç ç çí ý í ý÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ï ï ï ïç ç ç ç÷ ÷ ÷ ÷ç ç ç çè ø è ø è ø è øï ï ï ïï ï ï ïî þ î þ
 The left cosets are K,   

1 2 3 1 2 3 1 2 3 1 2 3
, and , .

3 2 1 2 3 1 1 3 2 3 1 2
K

ì ü ì üæ ö æ ö æ ö æ öï ï ï ï÷ ÷ ÷ ÷ï ï ï ïç ç ç çï ï ï ï÷ ÷ ÷ ÷ç ç ç çí ý í ý÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ï ï ï ïç ç ç ç÷ ÷ ÷ ÷ç ç ç çè ø è ø è ø è øï ï ï ïï ï ï ïî þ î þ
 These are not the same so K is not normal. 

Answered in the text. 

(a) 1  = {1}; 1-  = {1, –1}; i = {1, i, –1, –i}; j  = {1, j, –1, –j}; k  = {1, k, –1, –k}. 
 
(b) The first two subgroups are normal since their elements commute with every element of Q. 

The remaining subgroups have order 4. Claim. Any subgroup H of order 4 in Q is normal. 
Rather than writing out the cosets explicitly we refer to the general fact given in Exercise 20 
below. 

If Na = bN then a = ea ∈ Na = bN and the cosets aN and bN both contain a. Use Corollary 7.24 to 
conclude that Na = aN. Therefore N is normal. 

Suppose H is a subgroup of Z(G). Then gh = hg for any g ∈ G and h ∈ H. Therefore Hg = {hg | h ∈ 
H) = gH and H is normal. 

Answered in the text. 

Lemma. If ϕ : G → H is a surjective homomorphism of groups then ϕ(Z(G)) ⊆ Z(H). 
Proof. Let z ∈ Z(G) and h ∈ H. Since ϕ is surjective there exists g ∈ G with ϕ(g) = h. Then ϕ(z)h = 
ϕ(z)ϕ(g) = ϕ(gz) = ϕ(zg) = ϕ(z)ϕ(g) = ϕ(z)h. Then ϕ(z) commutes with everything so it lies in 
Z(H). 
Consequently for every automorphism f of G we have f(Z(G)) ⊆ Z(G). Therefore Z(G) is 
characteristic. 

An inner automorphism f is defined using a fixed c ∈ G as follows: f(x) = c–1xc. By Theorem 7.34 N 
is normal if and only if f(N) = N for every such f. 

As suggested in the Hint consider M ⊆ N ⊆ D4 where |M| = 2, |N| = 4 and |D4| = 8. Checking the 
operation tables note that these are subgroups, and by Exercise 20 below it follows that M is normal 
in N and N is normal in D4. However M is not normal in D4 as one can see by noting: t–1Mt = {h, r0} 

≠ M. 
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17.

18.

19.

20.

21.

Let x ∈ K ∩ N and g ∈ G. Then g–1xg ∈ g–1Kg = K since K is normal and g–1xg ∈ g–1Ng = N since N 
is normal. Therefore g–1xg ∈ K ∩ N and K ∩ N  is normal by Theorem 7.34. 

Answered in the text. 

(a) If n ∈ N and k ∈ K then (nk)–1 = k–1n–1 = (k–1n–1n–1)k–1  lies in NK because k–1n–1k ∈ k–1Nk = N. 
Similarly, let n, n′ ∈ N and k, k′ ∈ K. Then (nk)(n′k′) = n(kn′k–1)kk′ lies in NK. Therefore NK is 
a subgroup. 

(b) For n, k as above and g ∈ G we have g–1(nk)g = (g–1ng)(g–1kg) ∈ (g–1Ng)(g–1Kg) = NK. 
Therefore NK is normal by Theorem 7.34. 

Answered in the text. 

22.

23.

24. Since det : GL(2,R)→ R∗ is a homomorphism, we know that if A,B ∈ GL(2,R), then

det(ABA−1) = det(A) det(B) det(A−1) = det(A) det(B) det(A)−1 = det(B).

Thus if B ∈ N , so that detB ∈ Q∗, it follows that det(ABA−1) ∈ Q∗, so that ABA−1 ∈ N . Thus
ANA−1 ⊂ N for every A ∈ GL(2,R), so that N is normal in GL(2,R) by Theorem 8.11.

25.

26.

27.

We may restrict f to a homomorphism f1 : N → H. Then Theorem 7.19 implies f(N) = Im f1 is a 
subgroup of H. Let h ∈ H and x ∈ f(N). By definition x = f(n) for some n ∈ N and the surjectivity 
implies that h = f(g) for some g ∈ G. Then h–1xh = f(g)–1f(n)f(g) = f(g–1ng) ∈ f(g–1Ng) = f(N), since 
N is normal in G. Therefore f(N) is normal by Theorem 7.34. 

Suppose a ∈ G. If a ∈ N then the closure of N implies aN = N = Na. Suppose a ∉ N. Then by 
Corollary 7.24 and Theorem 7.25, G = N ∪ Na and N ∩ Na is empty. Consequently Na = {g ∈ G | 
g ∉ N}. Also the left coset aN contains a ∉ N so it must be disjoint from N by the analog of 
Corollary 7.24. Then aN ⊆ Na by the description of Na above. Therefore aNa–1 ⊆ N for every a ∈ G 
and Theorem 7.34 applies. 

Apply Exercise 15 to the homomorphism in Exercise 22. 

For any g ∈ G use Exercise 7.4.13 to show that g–1Hg is a subgroup of order n. By the uniqueness,  
g–1Hg = H. Then Theorem 7.34 applies. 

If N is normal and ab ∈ N then ba = b(ab)b–1 ∈ bNb–1 = N. Conversely, suppose N has the stated 
property. For any g ∈ G and n ∈ N we have g(g–1n) = n ∈ N and the assumed property implies that 
g–1ng ∈ N. Therefore g–1Ng ⊆ N for every g and N is normal, by Theorem 7.34. 

28.

29.

If a  is normal then for any g ∈ G, gag–1 ∈ g a g–1 ⊆ a . Therefore gag–1 = ak for some integer k. 
That is, ga = gak. Conversely suppose a has the given property: for any g ∈ G there exists k such 
that gag–1 = ak. Then, for any integer n, gang–1 = (gag–1)n = (ak)n = akn ∈ a . Then g a g–1 ⊆ a  for 
every g. Apply Theorem 7.34. 

Answered in the text. 
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8.2 Normal Subgroups

If a, b ∈ K then f(ab–1) = f(a)f(b)–1 = eH so mat ab–1 ∈ K. Therefore K is a subgroup. For any g ∈ G 
and a ∈ K we have f(g–1ag) = f(g)–1f(a)f(g) = f(g)–1f(g) = eH. Therefore g–1ag ∈ K and Theorem 7.34 
implies that K is normal. 
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30.

31.

32.

33.

34.

35.

36.

37.

8.3 Quotient Groups

1. The order of 13 +N in Z20/N is the smallest integer k such that k(13 +N) = 13k +N ⊂ N , i.e.,
the smallest integer k such that 13k ∈ N . Clearly then k = 4, so that the order of this element is 4.

2. The order of 15 +N in G/ < 15 > is the smallest integer k such that k(6 +N) = 6k+N ⊂ N , i.e.,
the smallest integer k such that 6k ∈ N . Thus k = 5, since 6 · 5 = 30 = 15 · 2.

By Exercise 19 we know that ab = ba for every a ∈ A and b ∈ B. Define f as in the Hint. 
Homomorphism. f((a, b)⋅(a′, b′)) = f(aa′, bb′) = aa′bb′ = aba′b′ = f(a, b)f(a′, b′). Surjective. f(A × B) 
= AB = G. Injectiye. If f(a, b) = f(a′, b′) then ab = a′b′ and a–1a′ = bb′–1 ∈ A ∩ B = {e}. Therefore 
a′ = a and b′ = b so that (a, b) = (a′, b′). 

(a) If x ∈ NH then by definition x–1Hx = H. Then H is normal in NH by Theorem 7.34. 
(b) If H is normal in K then for every x ∈ K we have x–1Hx = H by Theorem 7.34. Therefore x ∈ 

NH by definition, and we conclude that K ⊆ NH. 

As in Exercise 7.4.33, for c ∈G let g(c) be the inner automorphism induced by c: g(c)(x) = cxc–1. If f 
∈ Aut(G) then (f°g(c))(x) = f(g(c)(x)) = f(cxc–1) = f(c)f(x)f(c)–1 = g(f(c))(f(x)) = (g(f(c))°f)x). 
Therefore f°g(c) = g(f(c))°f so that f°g(c)°f

–1 = g(f(c)) ∈ Inn G. Therefore Inn G is normal in Aut G 
by Theorem 7.34. 

Claim. If σ ∈ A(T) then σHaσ–1 = Hσ(a).   
Proof. Let b = σ(a). If f ∈ Ha then (σfσ–1)(b) = σ(f(σ–1(b))) = σ(f(a)) = σ(a) = b so that σfσ–1 ∈ Hb. 
Therefore σHaσ–1 ⊆ Hσ(a). Applying this to a = σ–1(b) provides the reverse inclusion and the Claim 
follows.  
Suppose |T| ≥ 3 and let a, b, c be three distinct elements of T. Define f ∈ A(T) be setting f(b) = c, 
f(c) = b and f(x) = x for every x ≠ b, c. Then f ∈ Ha but f ∉ Hb. Using any σ ∈ A(T) with σ(a) = b 
the Claim implies that σHaσ–1 = Hb ≠ Ha. Therefore Ha is not normal. 

If f, g ∈ Ha then (f°g)(a) = f(g(a)) = f(a) = a so that f°g ∈ Ha. Also f(a) = a implies that a = f–1(a) 
so that f – 1  ∈ 

Ha. Hence Ha is a subgroup. 

Suppose f : S → T is any injective map of sets, and F is some family of subsets of S. Then f(∩ Y) = 
(∩ f(Y), where the intersection runs over all Y ∈ F. In our case this implies: a–1Na ⊆ ∩ a–1Ka for 
every a ∈ G. Using Exercise 7.4.13, show that for any fixed a ∈ G, the operation sending K to a–1Ka 
provides a bijection on the set of all subgroups of order n. Therefore the intersection above runs over 
all subgroups of order n in G, so that a–1Na ⊆ N. Hence N is normal by Theorem 7.34. 

As in the Hint, N is a subgroup. By definition, N ⊆ a–1Ha for every element a. Let g ∈ G. Therefore 
g–1Ng ⊆ g–1a–1Hag = (ag)–1H(ag) for every a ∈ G. For any b ∈ G let a = bg–1 and deduce that  
g–1Ng ⊆ b–1Hb. Therefore g–1Ng ⊆ b–1Hb = N and Theorem 7.34 applies. 

∈
∩
b g

Let g(c) be the inner automorphism induced by c, as in Exercise 7,4.33. Then g(c)(N) = cNc–1 = N 
since N is normal. Therefore the restriction of g(c) to N provides an automorphism ϕ ∈ Aut N. Since 
M is characteristic in N we know that ϕ(M) ⊆ M. By the definition of ϕ this says: cMc–1 ⊆ M. Since 
c ∈ G was arbitrary, M is normal in G. 

Answered in the text. 
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3. The completed table is
Mr0 Mr1 Mh Md

Mr0 Mr0 Mr1 Mh Md
Mr1 Mr1 Mr0 Md Mh
Mh Mh Md Mr0 Mr1
Md Md Mh Mr1 Mr0

since for example (Mh)(Md) = M(hd) = Mr1. Since Mr0 is the identity in this group (because r0
is the identity in D4), examining the table shows that (Mr0)(Mr0) = (Mr1)(Mr1) = (Mh)(Mh) =
(Md)(Md) = Mr0, so that every element has order 2.

4.

5.

N is normal as seen in Exercise 7.6.3 and the quotient group has 2 elements. There is only one 
possible operation table for a group of 2 elements (after relabeling) so G/N 2

. 

The quotient group has 6 elements, M, 1 + M, 2 + M, 3 + M, 4 + M and 5 + M. Clearly  1 + M 
generates all die others, so the group is cyclic of order 6. By Theorem 7.14 it is isomorphic to 6. 

6.

7. Since U26 is abelian, 〈5〉 is normal. The group 〈5〉 is

〈5〉 = {5, 5 · 5 = 25, 25 · 5 = 125 ≡ 21, 21 · 5 = 105 · 1},

so that |〈5〉| = 4. But U26 has elements {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}, so that |U26| = 12.
Since [U26 : 〈5〉] = 3, and since by the table at the end of Section 8.1 the only group of order 3 is
Z3, we must have U26/〈5〉 ∼= Z3.

8.

9.

10.

The cosets are N, 1 + N and 2 + N. Since  1+N has order 3 in the group 6/N this group is cyclic, 
and hence isomorphic to 3. (See Theorem 7.14.) 

N = {(0, 0), (3, 2), (2,0), (1, 2)} and there are 4 cosets. Since (0, 1), (0, 2) and (0, 3) are not in N, 
the coset (0, 1) + N does not have order 1, 2 or 3 in the quotient group. Therefore it is a generator. 
By Theorem 7.14 the group is ≅ 4. 

Answered in the text. 

(b)  M + (0, 0) M + (1, 0) M + (0, 1) M + (1, 1)
 M + (0, 0) M + (0, 0) M + (1, 0) M + (0, 1) M + (1, 1)
 M + (1, 0) M + (1, 0) M + (0, 0) M + (1, 1) M + (0, 1)
 M + (0, 1) M + (0, 1) M + (1, 1) M + (0, 0) M + (1, 0)
 M + (1, 1) M + (1, 1) M + (0, 1) M + (1, 0) M + (0, 0)
 
 
(c) N + (0, 1) has order 4 in G/N but there are no elements of order 4 in G/M. Therefore these 

groups are not isomorphic. 

(a) M = {(0, 0), (0, 2)} and N = {(0, 0), (1, 2)} are groups of order 2, so they are isomorphic by 
Corollary 7.18. 

11.

12.

Answered in the text. 

A nonidentity element in G/N is some Nx where x ∉ N. Since x2 ∈ N note that (Nx)2 = Nx2 = N so 
that Nx has order 2. 
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Normal Subgroups and Quotient Groups

13.

14.

15. Recall that an element a has infinite order if ak 6= e for every positive integer k. Then for example
(1, 0) has infinite order, since (1, 0)k = (k, 0) 6= (1, 1) = e.

16. Recall that an element a has infinite order if ak 6= e for every positive integer k. Then for example
(0, 1) has infinite order, since (0, 1)k = (0, k) 6= (1, 1) = e.

17. (a) E consists of the set of even numbers, while N is the set of multiples of 8. Thus the cosets of
N in E are the congruence classes of 8 among even numbers, which are clearly 0, 2, 4, and 6.
Thus E/N has four elements (N is normal since E is abelian).

(b) Since (2 + N) + (2 + N) = 4 + N 6= N , the element 2 + N ∈ E/N does not have order 2.
Therefore E/N is not isomorphic to Z2 × Z2, so by Theorem 8.8 it is isomorphic to Z4.

18.

19. Suppose g ∈ G. Then gN is a square in G/N , so that gN = (g1N)2 = g21N , so that for some
m,n ∈ N , gm = g21n and thus g = g21nm

−1. But nm−1 ∈ N , so nm−1 = n21 for some n1 ∈ N .
Then g = g21n

2
1 = (g1n1)2 since G is abelian.

20. Since [G : Z(G)] = 4, it follows that G/Z(G) ∼= Z4 or G/Z(G) ∼= Z2×Z2. Suppose that G/Z(G) ∼=
Z4, and let aZ(G) be a generator. Then the elements of G/Z(G) are Z(G), aZ(G), a2Z(G), and
a3Z(G). Since these are the cosets of Z(G) in G, every element of G can be written as akz for
k ∈ {0, 1, 2, 3} and z ∈ Z(G). But then if g, h ∈ G, we have g = akz1 and h = alz2; since zi ∈ Z(G),
we get ab = akz1a

lz2 = ak+lz1z2 = al+kz2z1 = alz2a
kz1 = ba. But this means that any two

elements of G commute, so that Z(G) = G, contradiction. Thus G/Z(G) ∼= Z2 × Z2.

21. Suppose that gT ∈ G/T has finite order. Then (gT )k = gkT = eT = T for some k ≥ 0, so that
gk ∈ T . But T consists of the set of elements of finite order, so that for some n, (gk)n = gkn = e.
Thus g has finite order, so that g ∈ T and gT = T . So gT is the identity element of G/T , and thus
no nonidentity element of G/T has finite order.

22.

23.

24.

(a) If G is abelian, then G = Z(G) so that G/Z(G) = {e} is abelian. Nonabelian examples 
include D4 and the quaternion group Q. 

(b) G = S3 has trivial center: Z(S3) = {e}, so that S3/Z(S3) = S3  is nonabelian. 

This problem can be done directly using many multiplications of permutations. The 6 right cosets 
can be listed explicitly and compared to the 6 left cosets to see that V is normal. Then the 6 × 6 
operation table can be constructed to prove that S4/V ≅ S3. 

Define ϕ : ** → */N by ϕ(x) = Nx. It is easy to check that ϕ is a homomorphism. Injective. If 
ϕ(x) = ϕ(y) then Nx = Ny so that x ∈ Ny = {y, –y}. Since x, y are positive, conclude that x = y. 
Surjective. For any x ∈ *, the absolute value |x| is in **. Also |x| ∈ Nx so that ϕ(|x|) = Nx. 
Therefore ϕ is an isomorphism. 

 

Define ϕ : U32/N → U16 by ϕ(N[a]32) = [a]16. To show ϕ is well-defined suppose a, b are odd integers 
and N[a]32 = N[b]32. Then [a]32 ∈ N[b]16 = {[b]32, [17b]32}. Hence, a ≡ b or 17b (mod 32) which implies  
a ≡ b (mod 16). Verify the homomorphism property. Since ϕ is surjective and both groups have  
8 elements the map ϕ is automatically injective. (See Exercise 32 of Appendix B.) Hence it is an 
isomorphism. 

Answered in the text. 

Suppose G = a . If g ∈ G then g = ak for some integer k. Therefore Ng = Nak = (Na)k so that Na is 
a generator of the group G/N. 
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Better proofs are possible using more of the theory of permutation groups. For example see Exercise 
7.9.27 below. 
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8.3 Quotient Groups

25. (a) Since 9 · 89 = 8 ∈ Z and no smaller multiple of 8
9 is an integer, the order of 8

9 in Q/Z is 8.
Similarly, the order of 14

5 in Q/Z is 5. Finally, since 48
28 = 12

7 , and 7 · 127 is the smallest integral
multiple of 12

7 , the order of 48
28 in Q/Z is 7.

(b) Suppose that m
n ∈ Q/Z, where m,n ∈ Z. Then clearly n · mn = m ∈ Z, so that m

n has order at
most n and thus has finite order.

(c) For any positive integer n consider the element 1
n + Z ∈ Q/Z. Then n

(
1
n + Z

)
= 1 + nZ = Z.

Now, let k be the order of 1
n + Z. Then k

n ∈ Z, so that n | k. Thus n is the order of 1
n + Z.

2 .6 If a ∈  then a +  has finite order, by Exercise 15. If a ∈  and a +  has order n in /  then 
na + Z = n(a + ) = 0 + , so that na ∈ . Therefore a = m/n for some integer m, and a ∈ 

(a) Define ϕ : G → G* by ϕ(a) = (a, e). It is routine to check that ϕ is an isomorphism. 
(b) If a, g ∈ G and h ∈ H then (g, h)–1(a, e)(g, h) = (g–1ag, h–1eh) = (g–1ag, e) ∈ G*. Therefore 

G* is normal, by Theorem 7.34. 
(c) Define ψ : H → (G × H)/G* by ψ(h) = G*(e, h). The natural embedding H → G × H 

sending h to (e, h) is a homomorphism, and the natural projection π : G × H → H is a 
homomorphism. Therefore ψ is also a homomorphism. Injective. If ψ(h) = ψ(h′) then

 (e,
 

h′h–1) = (e, h′)(e, h)–1 ∈ G* which implies that h′h–l = e and h′ = h. Surjective. For any 
(g, h) ∈ G × H we have ψ(h) = G*(e, h) = G*(g, e)(e, h) = G*(g, h). Therefore ψ is an 
isomorphism. 

27.

28. Define α : G → (G/M) × (G/N) by α(g) = (Mg, Ng). Check that α is a 
homomorphism. Injective. If α(x) = α(y) then Mx = My and Nx = Ny. Therefore xy–1 ∈ 
M ∩ N = {e} so that x = y. Now let H = Im α be the image, a subgroup of (G/M) × 
(G/N). Then α induces an isomorphism G H. 

29. Let g ∈  G. Since gN has finite order in G/N, there exists an integer r > 0 with grN = 
(gN)r = N, so that gr ∈ N. This element of N has finite order so there exists an integer 
s

 
> 0 with (gr)s = e. Then grs = e and g has finite order. 

30. Suppose gN has order n in G/N. Then gnN = (gN)n = N so that gn ∈ N. Since N is 
finite there exists t  > 0 with (gn)t = e. Then g has finite order k = |g|. Hence (gN)k =gkN = N 
so that n | k by Theorem 7.8(2) and Theorem 7.8(3) implies that |gk/ | = n in G. 

31. Suppose Z(G) ≠ G and ≠ e . Then Lagrange implies that Z(G) has index p or q and 
Theorem 7.28 implies that G/Z(G) is cyclic. Apply Theorem 7.38 to conclude G is 
abelian. But then Z(G) = G, contrary to hypothesis. 

32. Suppose 1 2,  , , nN x x x= …  and 1 2/ ,  , ,  mG N Ny Ny Ny= …  for some xi, yj, ∈ G. 
Certainly Ng ⊆ (x1, x2,. . . , xn, g) for any g ∈G. Therefore G ⊆ 

1 2 1 2, , , , , , ,n mx x y y y… …  
and G is finitely generated. 

3 .3 (a) Answered in the Hint. 
(b) Since (G′a)(G′b) = G′ab = G′(aba b )ba = G′ba = (G′b)(G′a). In fact, if N is a normal 

subgroup of G then Theorem 7.37 implies that G/N is abelian if and only if G′ ⊆ N. 

34. (a) N = {(x, –x) | x ∈ }. It is easy to see that N is closed under addition and negatives, so N 
is a subgroup. 

(b) × )/N  . Use the mapping f  → (  × )/N defined by f(x) = (x, –x). 
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35. (a) For any n ∈ N and g ∈ G we have gn–1g–1 ∈ gNg–1 = N. Then ngn–1g–1 ∈ N ∩ G′ = {e} 
which implies that ng = gn. Therefore N ⊆ Z(G). 

(b) If z ∈ Z(G) then zg = gz for any g ∈ G, so that (Nz)(Ng) = Nzg = Ngz = (Ng)(Nz). 
Hence Nz ∈ Z(G/N). Conversely, if Na is in the center of G/N then Nag = (Na)(Ng) = 
(Ng)(Na) = Nga for every g ∈ G. Therefore aga–1g–1 ∈ N and it clearly lies in G′ as well. 
Therefore aga–1g–1 = e and ag = ga. Hence a ∈ Z(G) so that Na ∈ Z(G)/N. 

36. As in Exercise 7.4.33 the map g : G → Aut(G) defined by g(u)(x) = uxu–1 is a 
homomorphism. By definition, the image of this map is Inn G, and we have a surjective 
homomorphism g : G → Inn G. Define an induced map g : G/Z(G) → Inn G by g (Z(G)u) = 
g(u). To prove g  is well-defined suppose Z(G)u = Z(G)v. Then vu–1 ∈ Z(G) and for any x ∈ G 
we have g(u)(x) = uxu–1 = uxv–1(vu–1 ) = (vu–1)uxv–1 = vxv–1 = g(v)(x). Therefore g(u) = 
g(v) and g  is well-defined. Verify that g  is a surjective homomorphism. Injective. If 
g (Z(G)u) = g (Z(G)v)  then  g(u) = g(v) and g(vu–1) = 1G. Therefore (vu–1)x(vu–1)–1 = x for 
every x ∈ G and we conclude that vu–1 ∈ Z(G) so that Z(G)u = Z(G)v. 

37. Define f : A/N × B/N → G/N by f(Na, Nb) = Nab. Well-defined. If Na = Na′ and Nb = 
Nb′ then Nab = NaNb = Na′Nb  = Na′b′ since N is normal. Claim. If a ∈ A and b ∈ B then 
Nab = Nba. Proof As in Exercise 7.6.28, consider (aba–1)b–1 = a(ba–1b–1) ∈ A ∩ B = N. This 
proves the Claim. Homomorphism. f((Na, Nb)⋅(Na′, Nb′)) = f(Naa′, Nbb′) = Naa′bb′ = 
(Na)(Na′)(Nb)(Nb′) = (Na)(Nb)(Na′)(Nb′) = f(Na, Nb)f(Na′, Nb′) using the Claim. Injective. 
If f(Na, Nb) = N then ab ∈ N so that a ∈ Nb–1 ⊆ B. Then a ∈ A ∩ B = N and Na = N. 
Similarly Nb = N. Surjective. By hypothesis every g ∈ G can be written as g = ab for some 
a

 
∈ A and b ∈ B. Then Ng = f(Na, Nb). 

8.4 Quotient Groups and Homomorphisms

1. The function is a homomorphism since f((a + bi) + (c + di)) = f((a + c) + (b + d)i) = b + d =
f(a + bi) + f(c + di). Its kernel is the set of all a + bi such that f(a + bi) = b = 0, so that
ker f = {a+ 0i} ⊂ C.

2. To see that g is a homomorphism, note that if x and y have the same sign, then xy > 0, so that
g(xy) = 0. Since x and y have the same sign, g(x) = g(y), so that in Z2, g(x) + g(y) = 0. Then
in this case g(xy) = 0 and g(x) + g(y) = 0 so that g(xy) = g(x) + g(y). If x and y have opposite
signs, then xy < 0, so that g(xy) = 1. Also, one of g(x) and g(y) is 1 and the other is 0, so that
g(x) + g(y) = 1. Thus again g(xy) = g(x) + g(y), so g is a homomorphism. ker g is the set of
nonzero reals whose image is zero; by definition of g, this is obviously R∗∗, the set of positive real
numbers.

3. h is a homomorphism since h(xy) = (xy)3 = x3y3 = h(x)h(y). Since x3 = 1 implies that x = 1, we
see that kerh = {1}.

4. f is a homomorphism since |xy| = |x| · |y|, so that f(xy) = f(x)f(y). The identity element in both
Q∗ and Q∗∗ is 1, and f(x) = 1 when |x| = 1, i.e., when x = ±1. The kernel of f is {−1, 1}.

5. g is a homomorphism since g((q1, n1) + (q2, n2)) = g((q1 + q2, n1 + n2)) = n1 + n2 = g((q1, n1)) +
g((q2, n2)). ker g is the set of all elements whose image is 0 ∈ Z, but g((x, y)) = y = 0 exactly when
y = 0, so that the kernel of g is Q× {0} ⊂ Q× Z.
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6. h is a homomorphism since h(xy) = (xy)4 = x4y4 = h(x)h(y). The identity element of C∗ is 1, so
kerh is the set of elements of C∗ whose fourth power is 1, i.e. the fourth roots of unity. These are
{1,−1, i,−i}.

7. If σ and τ are both even or both odd, then στ is even, so that f(στ) = 0. But in this case
f(σ) = f(τ) since the two permutations have the same parity, so that f(σ) + f(τ) = 0 in Z2. Thus
f(στ) = f(σ) + f(τ). If one of σ and τ is even and the other is odd, then στ is odd, so that
f(στ) = 1. But in this case one of f(σ) and f(τ) is 1 and the other is 0, so that f(σ) + f(τ) = 1.
Thus again f(στ) = f(σ) + f(τ), so that f is a homomorphism. The kernel of f is the set of
permutations whose image is 0 ∈ Z2, which is obviously the set of even permutations.

8.

9.

10.

11. If [a]n = [b]n, then [ra]k = f([a]n) = f([b]n) = [rb]k. The middle equality holds since [a]n = [b]n.

Answered in the text. 
 
Homomorphism. f(a + b) = ([a + b]2, [a + b]4) = {[a]2 + [b]2, [a]4 + [b]4) = f(a) + f(b). 

Homomorphism with kernel {e}. 

12. The function is well-defined by Exercise 11 (with n = 12, k = 6, r = 1). It is a homomorphism
since (using the addition [a]n + [b]n = [a+ b]n in Zn)

h([a]12 + [b]12) = h([a+ b]12) = [a+ b]6 = [a]6 + [b]6 = h([a]12) + h([b]12).

To see that it is surjective, choose x ∈ Z6 and choose any a so that x = [a]6. Then x = [a]6 =
h([a]12). The kernel of h is elements of Z12 which are congruent to 0 (mod 6); these elements
are [0]12 and [6]12, so that the kernel is {[0]12, [6]12}. This is a two-element group, so it must be
congruent to Z2, and in fact [6]12 + [6]12 = [12]12 = [0]12.

13. This function is well-defined by Exercise 11 (with n = 16, k = 4, and r = 3). It is a homomorphism
since (using the addition [a]n + [b]n = [a+ b]n in Zn)

h([a]16 + [b]16) = h([a+ b]16) = [3(a+ b)]4 = [3a+ 3b]4 = [3a]4 + [3b]4 = h([a]16) + h([b]16).

To see that it is surjective, choose x ∈ Z4, and choose any a such that 3x = [a]4. Then 3x ≡ a
(mod 4), so that 3 · 3x ≡ 3a (mod 4), i.e., x ≡ 3a (mod 4), so that x = [3a]4. Then x = [3a]4 =
h([a]16), so that h is surjective. Now, [a]16 ∈ kerh means that [3a]4 = [0]4, so that 3a ≡ 0 (mod 4)
and thus 3 · 3a ≡ 3 · 0 ≡ 0 (mod 4). Thus a ≡ 0 (mod 4). So the kernel consists of congruence
classes modulo 16 that are 0 (mod 4); these classes are [0]16, [4]16, [8]16, and [12]16. Thus the kernel
is a group of order 4; since [4]16 + [4]16 = [8]16 6= [0]16, it has an element that is not of order 2, so
it must be congruent to Z4 rather than to Z2 × Z2.

14. Answered in the text. 

15. Define f : H̄ → H : (eG, h) 7→ h. Clearly f is surjective. It is also clear that it is injective: if
f((eG, h)) = f((eG, k)), then using the definition of f gives h = k. Thus it is a bijection, and it is
a homomorphism since

f((eG, h)(eG, k)) = f((eGeG, hk)) = f((eG, hk)) = hk = f((eG, h))f((eG, k)).

Thus f is an isomorphism, so that H̄ ∼= H.
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Normal Subgroups and Quotient Groups

16.

17.

18. Suppose that f : D4 → G is a surjective homomorphism. Then if K = ker f , we have D4/K ∼=
G, and |D4/K| = [D4 : K], which by Lagrange’s Theorem must divide |D4| = 8. Thus any
homomorphic image of D4 must have order 1, 2, 4, or 8. Clearly the trivial group is a homomorphic
image of D4 under the map f : D4 → {0} : x 7→ 0. Also, the only group of order 8 that is a
homomorphic image of D4 is D4 itself, since if f : D4 → G is a surjective homomorphism with
trivial kernel, then D4

∼= G by the first isomorphism theorem. This leaves groups of order 2 and
4. By Example 1 in Section 8.3, we know that N = {r0, r1, r2, r3} is a normal subgroup with
D4/N ∼= Z2, so that Z2 is a homomorphic image of D4. By Example 2 in the same section,
we know that M = {r0, r2} is a normal subgroup with D4/M ∼= Z2 × Z2, so that Z2 × Z2 is
a homomorphic image of D4. The only remaining possibility is Z4. Now, if f : D4 → Z4 is a
surjective homomorphism, its kernel must be a normal subgroup of D4 of order 2, so it must be
generated by an element of order 2. The elements of order 2 in D4 are r2, h, v, d, and t. We
know from the above that D4/〈r2〉 ∼= Z2 × Z2. Also, {r0, h} is not normal, since for example
r1hr

−1
1 = r1hr3 = r1t = v /∈ {r0, h}. Similarly, none of {r0, v}, {r0, d}, or {r0, t} is normal. Thus

{r0, r2} is the only normal subgroup of order 2, so that Z4 is not a homomorphic image of D4. So
the only homomorphic images of D4 are {0}, D4, Z2, and Z2 × Z2.

19. Since |S3| = 6, homomorphic images of S3 must have order 1, 2, 3, or 6. Clearly the trivial
group is a homomorphic image of S3 under the map f : S3 →}0} : x 7→ 0. Also, the only group

Note that for z ∈ ˙ *, f(z) = |z|2 and the homomorphism property follows from the usual “norm 
property”: |zw| = |z||w|. A simple proof can also be given using just the definition of multiplication 
in ˙.  
Surjective. If r ∈ ** then r  is real and f( )r  = r. 

(a) Answered in the text. 
(b) 0 , 2, 4, 5,  10, 20 

of order 6 that is a homomorphic image of S3 is S3 itself, since if f : S3 → G is a surjective
homomorphism with trivial kernel, then S3

∼= G by the first isomorphism theorem. This leaves
groups of order 2 and 4. By Exercise 15 in Section 8.2, A3 is a normal subgroup of S3; since
|A3| = 3, we know that S3/A3 must have two elements so is isomorphic to Z2. If S3 has a group
of order 3 as a homomorphic image, that group is perforce isomorphic to Z3, so that there must
be a surjective homomorphism f : S3 → Z3. If N is the kernel of this map, then N must be a
normal subgroup of S3 of order 2, so it consists of (1) together with an element of S3 of order 2.
Those elements are (12), (13), and (23). However, {(1), (12)} is not normal in S3 since for example
(123)(12)(123)−1 = (123)(12)(132) = (23) /∈ {(1), (12)}. So S3 has no normal subgroups of order 2.
Thus the only homomorphic images of S3 are the trivial group, S3 itself, and Z2.

20.

21.

22.

 

(a) Use list in Exercise 7.3.37 and the discussion of Theorem 7.43 These subgroups are: {H},  
{H, 3 + H}, {H, 2 + H, 4 + H}  and 12/H. 

(b) {K}, {K, 2 + K} and 20/K. 

If K = ker f then Theorem 7.39 and the simplicity of G imply mat K is either e  or G. If K = e  

then f is injective (by Theorem 7.40), so that f is an isomorphism. If K = G then H = f(G) = {e}. 

(a) K = {a ∈ G | a2 = e}. If a, b ∈ K then (ab)2 = a2b2 = e so ab ∈ K. If a ∈ K then a–1 = a ∈ K. 
Hence K is a subgroup. 

(b) If x2, y2 ∈ H then x2y2 = (xy)2 and (x2)–1 = (x–1)2 lie in H.  Hence H  is a subgroup.  
(c) Define f : G → H by f(x) = x2. It is easily checked that f is a surjective homomorphism and 

its kernel is K. The First Isomorphism Theorem then implies G/K ≅ H. 
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8.4 Quotient Groups and Homomorphisms

23. It suffices to show that H is closed under the operation of G. Suppose that a, b ∈ H. Then
N(ab) = (Na)(Nb) since N is normal in G. But a ∈ H, so that Na ∈ T ; similarly Nb ∈ T . Since
T is a subgroup of G/N , it follows that (Na)(Nb) ∈ T . Thus N(ab) ∈ T , so by definition of H, we
get ab ∈ H. Thus H is a subgroup of G.

24.

25. Define f : Z × Z → Z : (a, b) 7→ a − b. To see that f is surjective, choose x ∈ Z. Then x =
f((x, 0)) = x− 0. Also, f is a homomorphism, since

f((a, b) + (c, d)) = f((a+ c, b+ d)) = (a+ c)− (b+ d) = (a− b) + (c− d) = f((a, b)) + f((c, d)).

If K = ker f , then (Z× Z)/K ∼= Z by the First Isomorphism Theorem. So it remains to determine
ker f . But f((a, b)) = a − b = 0 if and only if a = b, so that ker f = {(a, a)} = {a(1, 1)} = 〈(1, 1)〉
and thus (Z× Z)/〈(1, 1)〉 ∼= Z.

26. Define h : Z × Z → Z × Z2 : (a, b) 7→ (a − b, [b]2). To see that f is surjective, choose x ∈ Z. Then
f((x, 0)) = (x−0, [0]2) = (x, [0]2) and f((x+1, 1)) = (x+1−1, [1]2) = (x, [1]2). Thus each element
of Z× Z2 is in the image of f , so that f is surjective. Also, f is a homomorphism since

h((a, b) + (c, d)) = h((a+ c, b+ d)) = ((a+ c)− (b+ d), [b+ d]2) = ((a− b) + (c− d), [b]2 + [d]2)

= (a− b, [b]2) + (c− d, [d]2) = h((a, b)) + h((c, d)).

If K = kerh, then (Z × Z)/K ∼= Z × Z2 by the First Isomorphism Theorem. So it remains to
determine kerh. Now, f((a, b)) = (a− b, [b]2) = (0, [0]2) if and only if b is even and a− b = 0. Thus
ker f = {(2b, 2b)} = {b(2, 2)} = 〈(2, 2)〉 and thus (Z× Z)/〈(2, 2)〉 ∼= Z× Z2.

27.

28.

29. Define f : Zn → Zk : [a]n 7→ [a]k. This is well-defined by Exercise 11. It is surjective, since if
x ∈ Zk, choose a with x = [a]k; then x = [a]k = f([a]n). It is a homomorphism since

f([a]n + [b]n) = f([a+ b]n) = [a+ b]k = [a]k + [b]k = f([a]n) + f([b]n).

It remains to determine the kernel of f . Now, f([a]n) = [a]k if and only if k | a, so that the
congruence classes in Zn that are taken to zero by f are the congruence classes containing multiples
of k, which are 0, k, 2k, . . . , (n/k − 1)k = 〈k〉. Thus ker f = 〈k〉, so that Zn/〈k〉 = Zk.

Well-defined. If [x]n  = [y]n then n | (x – y). Then k | n implies that k | (x – y) and [x]k = [y]k. 
Homomorphism. f([x]n[y]n = f([xy]n) = [xy]k = [x][y]k = f([x]n)f([y]n).  
 The kernel K = {x ∈ Un | x ≡ 1 (mod k)}. Compare Exercise 7.3.36. Is this map f also surjective?  

Define ϕ: G × H → G/M × H/N by ϕ(g, h) = (Mg, Nh). It is easy to check that ϕ is a surjective 
homotnorphism and that the kernel is exactly M × N. Apply Theorems 7.39 and 7.42 to conclude 
that M × N is normal and (G × H)/(M × N) ≅ G/M × H/N. 

The determinant mapping f : GL(2, ) → * is a surjective homomorphism with kernel SL(2, ). 
The claims follow from Theorems 7.39 and 7.42. 

30. By Theorem 7.20(3), Im f is a subgroup of H, so that by Lagrange’s Theorem, |=f | divides |H|.
Let K = ker f . Then by the First Isomorphism Theorem, since f : G → Im f is a surjective
homomorphism of groups, G/K ∼= Im f . But then

|Im f | = |G/K| = [G : K] = |G| / |K|

again by Lagrange’s Theorem. Thus |Im f | divides |G|.
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Normal Subgroups and Quotient Groups

31. Define f : Z→ Z3 × Z4 : a 7→ ([a]3, [a]4). This is a homomorphism, since

f(a+ b) = ([a+ b]3, [a+ b]4) = ([a]3 + [b]3, [a]4 + [b]4) = ([a]3, [a]4) + ([b]3, [b]4) = f(a) + f(b).

To see that it is surjective, choose (x, y) ∈ Z3 × Z4. Then [x]3 = [x + 3]3 = [x + 6]3 = [x + 9]3,
and also [x + 9]4 = [x + 1 + 8]4 = [x + 1]4 and [x + 6]4 = [x + 2 + 4]4 = [x + 2]4. So one of those
four is congruent to y (mod 4). Set a equal to that number, so that ([a]3, [a]4) = (x, y). Then
f(a) = (x, y). It remains to determine ker f . Now, f(a) = ([a]3, [a]4) = (0, 0) if and only if a ≡ 0
(mod 3) and a ≡ 0 (mod 4). But a is divisible by 3 and 4 if and only if it is divisible by 12, so that
f(a) = (0, 0) if and only if a ≡ 0 (mod 12). Thus ker f = 〈12〉, so that Z/〈12〉 = Z12

∼= Z3 × Z4.

32. Suppose that Mx and My are two representatives of the same coset of M in G. Then xy−1 ∈ M ,
so that x = ym for some m ∈M . But then

g(Mx) = Nf(x) = Nf(ym) = Nf(y)f(m) = f(y)Nf(m) = f(y)N = Nf(y) = g(My)

since f(M) ⊆ N and N is normal in H. Thus g is well-defined. Since M is normal in G, we get
that G/M is a group; the map is a homomorphism since

g((Mx)(My)) = g(Mxy) = Nf(xy) = Nf(x)f(y) = Nf(x)Nf(y) = g(Mx)g(My)

again using normality.

33.

34.

Answered in the text. 

(a) 

1
1 11 1 1

0 1 0 1 0 1 and 0 1 0 1 .

0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

a b a a b ac ba b a b a ac b

c c c c c c

-æ ö é ù æ ö æ ö æ ö¢ ¢ ¢ ¢ ¢+ + + - -÷ ÷ ÷ ÷ç ç ç çê ú÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç çê ú÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷¢ ¢⋅ = + = -ê úç ç ç ç÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ê ú÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç çê ú÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç çè ø è ø è ø è øê úë û

 Therefore G is a 

group. 

(b) 

1

0 1

0 0 1

a b

c

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷çè ø

 lies in the center if and only if   b + ac′ + b′ = b′ + a′c + b for every a′, b′ ∈ . This 

occurs if and only if a = c = 0. Then C is the set of all matrices of the form 

1 0

0 1 0

0 0 1

bæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷çè ø

 Define  

ϕ :  → C by setting ϕ(b) to be the matrix above. By formula in part (a), check that ϕ is 

an isomorphism. 

(c) Define f : G →  ×  by f

1

0 1

0 0 1

a b

c

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷çè ø

 = (a, c). The formulas in part (a) show that f is a 

homomorphism and it is certainly surjective with kernel equal to C. The First Isomorphism 

Theorem applies. 
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8.4 Quotient Groups and Homomorphisms

37. Since Q∗ is abelian, Q∗∗ is a normal subgroup. Now, with f : Q∗ → Q∗∗ : x→ |x|, the restriction of
f to Q∗ is the identity map, since |x| = x for x > 0. Thus this situation satisfies the conditions of
Exercise 36, where G = Q∗ and N = H = Q∗∗. It follows that Q∗ ∼= Q∗∗ × ker f . But by Exercise
4, ker f = {−1, 1}, which is a two-element multiplicative group and thus isomorphic to Z2. Thus
Q∗ ∼= Q∗∗ × Z2.

38.

39.

40.

41.

35.

36.

Define f : G → * by f(Ta,b) = a. Homomorphism. f(Ta,b°Tc,d) = f(Tac, ad+b) = ac = f(Ta,b)f(Tc,d). 
Surjective. For any a ∈ *, a = f(Ta,0). The kernel is exactly the subgroup H. By Theorem 7.39 H is 
normal, and the First Isomorphism Theorem implies that G/H ≅ *. 

Proof. Let g ∈ G. Then f(g) ∈ H and the surjectivity of the restriction of f implies that f(g) = f(n) 
for some n ∈ N. Therefore f(n–1g) = e so that n–1 g ∈ K and g ∈ nK ⊆  NK.  
The result now follows using Exercise 7.6.28. 

K and N are normal subgroups of G. The injectivity of f implies that K ∩ N = {e}. Claim, G = NK. 

By Theorem 7.44 and Exercise 19 there is a bijection between the set S of normal subgroups of G 
which contain N and the set T of all normal subgroups of G/N. Therefore G/N is simple if and only 
if the only normal subgroups of G containing N are N and G. 

The given map T is easily seen to be a group homomorphism.  
Surjective. For any g(x) = c0 + c1x + . . . + cnx

n ∈ Z[x] we have Z + g(x) = T(h(x)) where h(x) = c1 
+ c2x + . . . + cnx

n–1. 
Infective. If f(x) is in the kernel then xf(x) ∈ Z. Comparing degrees shows that f(x) = 0. Then T is 
injective by Theorem 7.40. 

(a) Since N is normal in G we have g–1Ng = N for every g ∈ G. In particular this holds for every 
g ∈ NK, so N is normal in NK. 

(b) f is certainly a homomorphism since N is normal. Surjective. If g ∈ NK then g = nk for some 
n ∈ N and k ∈ K. Then Ng = Nnk = Nk = f(k). Kernel. An element k ∈ K lies in the kernel 
if and only if Nk = N. Equivalently, k ∈ K ∩ N. 

(c) Apply the First Isomorphism Theorem. 

(a) Claim. fx°fy = fyx. Proof. (fx°fy)(Kb) = (fx(fy(Kb)) = Kbyx = fyx(Kb). Since fe = ι is the identity 

map we see that 1a
f -  is the inverse of the map fa. Therefore fa is a bijection, that is, a 

permutation. 

(b) Using the Claim above we have ϕ(xy) = 1 1 1 1 1( )
( ) ( ).

xy y x x y
f f f f x yj j- - - - -= = =   An element a 

is in the kernel if and only if Kba = Kb for every b ∈ G. Equivalently bab–1 ∈ K so that a ∈ 

b–1 Kb for every b ∈ G. Therefore kernel ϕ = ∩ b–1 Kb where the intersection is taken over 

all b ∈ G. In particular, kernel ϕ ⊆ K. 

(c) If K is normal then b–1Kb = K for every b and kernel j  = K. 
(d) When K = ,e  every right coset is a singleton and T = G. Also kernel ϕ = e  and by 

Theorem 7.40, ϕ is injective. Cayley’s Theorem easily follows. 
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6. By Exercise 30 in Section 8.2, any subgroup of index 2 is normal. Since |A5| = 60, a subgroup of
order 30 would be normal. But since A5 is simple, it has no proper normal subgroups.

7. By Exercise 23 in Section 7.5, these four elements form a subgroup N . The elements of A4 other
than these elements are (123), (132), (124), (142), (134), (143), (234), and (243). The following
table shows the result of computing gng−1 where g is one of these three-cycles and n ∈ N . It is
clear that in all cases, gng−1 ∈ N , so that N is normal:

n g (123) (132) (124) (142) (134) (143) (234) (243)
(1) (1) (1) (1) (1) (1) (1) (1) (1)

(12)(34) (14)(23) (13)(24) (13)(24) (14)(23) (14)(23) (13)(24) (13)(24) (14)(23)
(13)(24) (12)(34) (14)(23) (14)(23) (12)(34) (12)(34) (14)(23) (14)(23) (12)(34)
(14)(23) (13)(24) (12)(34) (12)(34) (13)(24) (13)(24) (12)(34) (12)(34) (13)(24)

8.5 The Simplicity of An

1.

2.

3.

4.

5.

42. (a) Apply Exercise 7.7.1. 
 We will prove the results in (b) and (c) assuming the Second Isomorphism Theorem, given in 

Exercise 24. 
(b) Let G be metabelian with its special subgroup N as above. By the First Isomorphism 

Theorem any homomorphic image of G is isomorphic to G/K for some normal subgroup K of 
G. By Exercise 7.6.18, NK is a normal subgroup of G. The Third Isomorphism Theorem says 
that (G/K)/(NK/K) ≅ G/NK ≅ (G/N)/(NK/N) which is a homomorphic image of the 
abelian group G/N. The Second Isomorphism Theorem implies that NK/K ≅ N/(N ∩ K) 
which is a homomorphic image of the abelian group N. Since a homomorphic image of an 
abelian group is also abelian, the subgroup NK/K in G/K shows that G/K is metabelian. 

(c) For G and N as above let H be a subgroup of G. Then H ∩ N is a subgroup of the abelian 
group N. The Second Isomorphism Theorem implies that H ∩ N is normal in H and H/(H ∩ 
N) ≅ HN/N which is a subgroup of the abelian group G/N. Therefore H is metabelian using 
the subgroup H ∩ N. 

(a) Answered in the text.  
(b) 

(13)(24) = (132)(243), (14)(23) = (143)(243). 

(a) The order of An   is n!/2. When n = 2 this equals 1.  
(b) |A3| = 3!/2 = 3 and any group of order 3 is cyclic. 

e  A direct computation. 

.e  This follows from the simplicity, since the center is a normal subgroup.  

σ = τ1 . . . τn where eit
2 =  and these τ commute. Then σ2 = e. 

8.

9.

(Assume n ≥ 3.) As in Exercise 7.6.32 the subgroup of order 2 must lie in the center, contrary to 
Exercise 6. 

Since σ2 = e for every σ ∈ N it follows from Exercise 7.9.13 that σ = e or σ is a product of disjoint 
2-cycles. If σ, τ are nonidentity elements of N then στ = e implies that σ = τ–1 = τ. Therefore |N| ≤ 2. 
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10. Since N ∩ An = An, it follows that N ⊇ An (since x ∈ An implies that x ∈ N ∩ An implies that
x ∈ N). Clearly N ⊆ Sn. Now, |N | divides |Sn| by Lagrange’s Theorem. But since |Sn| / |An| = 2
and An ⊆ N , we must have |Sn| / |N | ≤ 2, so that it equals 1 or 2. If it equals 1, then obviously
N = Sn, while if it equals 2, then obviously N = An.

11.

12.

Any subgroup of index 2 in S  must be normal (see Exercise 7.6.20). Apply Corollary 7.55. 

Let K be the kernel of f. By Corollary 7.55, K = (1), An or Sn. If An ⊆ K then f(An) = (1) ⊆ An. 
Otherwise K = (1) and f is an isomorphism. Then f(An) is a subgroup of index 2 in Sn and Exercise 
10 applies. 
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Chapter 9

Topics in Group Theory

9.1 Direct Products

1. If (a, b) ∈ G × H then the order is |(a, b)| = |cm {|a|, |b|}. With this information the numerical 
questions here are easily done. 

 
2. 4⋅2⋅6⋅4 = 192. 

 
3. (a) Answered in the text.  (b) {(0, 0)} is the subgroup of 1 element; there are 7 subgroups of 2 

elements; there are 7 subgroups of 4 elements; there is 1 subgroup of 8 elements (namely, the 
whole group). 

 
4. Define ϕ : G × H → H  ×  G  by ϕ (x, y) = (y, x) and verify that it is an isomorphism. 

 
5. ℤ2 × ℤ2 is not cyclic. 

 
6. (a) ℤ12 ≅ ℤ3 × ℤ4. Explicitly let A = 〈[4]12〉 and B = 〈[9]12〉 and show that ℤ12 = A × B. 

(b) Z15 ≅ ℤ3 × ℤ 5  
(c) ℤ30 ≅ ℤ2 × ℤ15 ≅ ℤ3 × ℤ10 ≅ ℤ5 × ℤ6 

 
7. (⇒) Clear since Gi is isomorphic to a subgroup of the product. 

(⇐) (a1, a2, . . . )(b1, b2, . . . ) = (a1b1, a2b2, . . . ) = (b1a1, b2a2, . . . ) = (b1, b2, . . . ) (a1, a2, . . . ). 
 

8. Since πi(e1,. . . ,ei–1,ai,ei+1,. . . ,en) = ai the projection map is surjective. The homomorphism 
property follows quickly from the definitions. 

 
9. No. ℤ4 × ℤ2 has no element of order 8. 

 
10. (a) Since f, g are bijective it is routine to check that θ is bijective. Also θ((a, b)⋅(a′, b′)) = θ (aa′, 

bb′) = (f(aa′), g(bb′)) = (f(a)f(a′), g(b)g(b′)) = (f(a), g(b))⋅(f(a′), g(b′)) = θ(a, b) ⋅ (a′, b′). 
 (b) Induction on n. The case n = 2 is done in (a). Suppose n > 2. By the inductive hypothesis  

G1 × . . . × Gn–1 ≅ H1 × . . . × Hn–t. Apply (a) to complete the proof. 
 
11. Let α : K → M × N bean isomorphism with α(x) = (α1(x), α2(x)). Define ϕ : H × K → H × M × N  

by ϕ (h, k) = (h, α1(k), α2(k)). Verify that ϕ is an isomorphism. 
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12. (a) Define ϕi : G1 × · · · ×Gn → G1 × · · · ×Gi−1 ×Gi+1 × · · · ×Gn by

ϕi((g1, g2, . . . , gi−1, gi, gi+1, . . . , gn)) = (g1, g2, . . . , gi−1, gi+1, . . . , gn).

It is easy to see that this is a homomorphism, since the operation in the cross product is the
component-wise operations. Further, the kernel of ϕi is exactly Ḡi. Thus Ḡi is a normal
subgroup.

(b) Define δi : Gi → G1 × · · · × Gn : x 7→ (e1, . . . , ei−1, x, ei+1, . . . , en). Then δi is obviously
injective, and Im δi = Ḡi. Also, δi is a homomorphism since the operation in the cross-product
is simply the component-wise operation. Thus Gi

∼= Ḡi.

(c) If g = (g1, . . . , gn), then δi(πi(g)) = δi(gi) = (e1, . . . , ei−1, gi, ei+1, . . . , en). Thus

g = δ1(π1(g))δ2(π2(g)) . . . δn(πn(g)),

so every element of G1 × . . .×Gn can be written as a product of elements of Ḡ1, . . . , Ḡn. But
this representation is clearly unique, since in any product of elements from the Ḡ1, . . . , Ḡn,
the ith component is ei except in Ḡi. Theorem 9.1 then gives us that G1 × · · · × Gn is the
internal direct product of its subgroups Ḡ1, . . . , Ḡn.

13.

14.

15.

16.

17.

18. U16 = {1, 3, 5, 7, 9, 11, 13, 15}. Clearly {1, 15} is a subgroup since 152 = 225 ≡ 1 (mod 16). This
subgroup must be isomorphic to Z2, since this is the only group of order 2. Also, {1, 3, 9, 11} is
a subgroup since 32 = 9, 3 · 9 = 27 ∼= 11 (mod 16), and 3 · 11 = 33 ∼= 1 (mod 16). Since 3 has
order four in the subgroup, the subgroup is cyclic, so is isomorphic to Z4. Hence U16 has subgroups
M and N isomorphic to Z2 and Z4 respectively, and M ∩ N = {1}. But also 11 · 15 = 165 ≡ 5
(mod 16), 9 · 15 = 135 ≡ 7 (mod 16), and 3 · 15 = 45 ≡ 13 (mod 16), so that U16 = MN (the
other elements of U16 are already in either M or N , so are in the product). Thus by Theorem 9.3,
U16 = {1, 15} × {1, 3, 9, 11} ∼= Z2 × Z4.

 
(a) Closure under multiplication and inverses is easily verified.  
(b) (⇒) Answered in the text. (⇐) G × G × G is abelian so every subgroup is normal. 

If k is any common multiple of |a1|, . . . , |an| then ai
k = ei for every index i. Therefore (a1, . . . , aa)

k = 
(e1, . . . , en). The order of this element is the smallest positive such k. That is the 1cm. 

Define σ ∈ Sn by σ(j) = ij. Define the map f from G1 × . . . × Gn to 
1i

G × . . . × 
ni

G by f(a1, . . . , 
an) = (aσ(1), ..., aσ(1), . . . , aσ(n)). Verify that this f is an isomorphism. 

View G = NK as an internal direct product so that xy = yx for every x ∈ N and y ∈ K. For any a ∈ 
M we have (xy)–1a(xy) = y–1 (x–1ax)y = x–1ax ∈ M since M is normal in N. 

Every element r ∈ ℚ∗ can be uniquely written as r = ε⋅|r| where ε = ±1 and |r| is the absolute value 
of r. Apply Theorem 8.1. 

19. (a) f*(xy) = (f1(xy), . . . , fn(xy)) = (f1(x)f1(y), . . . , fn(x)fn(y)) = f*(x)f*(y). Also πi(f*(x)) = 
πi(f1(x), . . . , fn(x)) = fi(x). 

(b) If g is any such homomorphism then as in Exercise 12 g(x) = δ1(π1(g(x))) . . .δn(πn(g(x)) = 
δ1(f1(x)) . . .δn(fn(x) = f*(x). 
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20. Suppose g ∈ G can be expressed in 2 ways: g = a1. . .an = b1. . .bn where ai, bi ∈ Ni. Then  
(al

–1b1) . . . (an
–1bn) = e since G is abelian. Then the hypothesis implies ai

–1bi = e for each i, so that  
ai = bi. Apply Theorem 8.1. 
 

21. If G = H × K then use δi. and πi. as in Exercise 12. Conversely suppose δi and πi; are given. 
Define H* = δ1(H) and K* = δ2(K). These are subgroups of G, automatically normal since G is 
abelian. Since πi

oδ1 is the identity, δi is injective so that H ≅ H* and K ≅ K*. The condition 
δ1π1+δ2π2 = 1G implies H* + K* = G. The conditions πiδj = 0 imply that H* ∩ K* = {0}, and 
Theorem 8.3 applies. 
 

22. Let g ∈ G and h ∈ H be generators, so |g |  = n and |h |  = m. Lagrange’s Theorem implies that n | 
|G| and m.| |H| By Exercise 14, |(g, h)| = 1cm{n, m}. The result follows since 1cm{n, m} = nm if 
and only if (n, m) = 1. 
 

23. (a) Answered in the text. (b) Use the same example. 
 
24. No. Use die example of 23(a) noting that M is normal in S3. 
 
25. Induction on k. Let H = Nl. . .Nk–l. Then H is a normal subgroup (see Exercise 7.6.18) and by 

hypothesis H ∩ Nk = 〈e〉. By Theorem 8.3 G ≅ H × Nk. Apply the induction hypothesis to H. 
 
26. We use a modified statement and prove it by induction on k. 

Claim, Let Ni be normal subgroups of a finite group G. Then |N1. . .Nk| divides |N1|. . .|Nk| with 
equality if and only if and only if N1. . .Nk ≅ N1 × . . . × Nk. 
Proof. Suppose k ≥ 2 and let H = N1. . .Nk–1. Then H is normal and |N1. . .Nk| = |H|⋅|Nk /  H ∩ 
Nk|, using the Second Isomorphism Theorem (see Exercise 7.8.24). By the induction hypothesis (or 
trivially if k = 2) this divides |N1|. . .|Nk–1|⋅|Nk /  H ∩ Nk| which divides |N1|. . .|Nk|. Equality holds 
here if and only if |H| = |N1|. . .|Nk–1| and H ∩ Nk = 〈e〉. By induction (or trivially if k = 2), this 
occurs if and only if H ≅ N1 × . . . × Nk–1 and H ∩ Nk = 〈e〉. Apply Theorem 8.3. 

 
27. (a) Use the subgroups in the answer to Exercise 23. 

(b) Let N = 〈r1〉 and H = 〈h〉. 
(c) Use N = A4 and H〈(12)〉. 

 
28. Claim. If G is nonabelian with |G| < 12 then G is indecomposable. 
 Proof. If not then G = A × B for proper subgroups A, B. Then |A|, |B| ≤ |G /2 < 6 so that A, B 

are abelian (see Theorems 7.28 and 7.29). But then G would also be abelian (see Exercise 7). 
 This Claim settles (a), (b) 
 (c) Any two nonzero subgroups of ℤ meet nontrivially. (Compare Exercise 30.) 

 
29. The only nonzero subgroups are 〈1〉, 〈p〉, 〈p2〉, . . .  〈pn–1〉. Since any two of these meet nontrivially, 

the group is indecomposable. 
 

30. If A1, A2 are nonzero subgroups of ℚ let /i ia b  ∈ Ai be nonzero elements. Then a1a2 = (a2b1) ⋅  

1 1/a b  = (a1b2) ⋅ 2 2/a b  is in A1 ∩ A2. Then ℚ cannot be the direct product of A1 and A2. 
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31. ℤ is indecomposable but ℤ6 is decomposable. 
 

32. Apply the definition of “indecomposable”. 
 

33. This is a straightforward check of the definitions. 

34. If c = (c1, c2, ...) ∈ ∑ Gi. and a = (a1, a2, ...) ∈ ∏ Gi then a–1ca = (a1
–1c1a1, a2

–1c2a2, . . . ). 
Whenever cj = ej we also have aj

–1cjaj = ej. Therefore a–1ca ∈ ∑ Gi and it is normal. 
 

35. The proof of Theorem 8.1 is easily adapted to this case. 
 

36. Define f : ℤmn → ℤm × ℤn by f([a]mn) = ([a]m, [a]n) and note that f is a ring homomorphism. If (m, 
n) = 1 then the kernel is {0} and f is injective. Since the orders of these rings are equal it follows 
that f is an isomorphism. Since isomorphic rings have isomorphic unit groups the result follows. 
(Compare Lemma 8.8 and Corollary 13.5.) 
 

37. Let G = G1 × . . . × Gn with projections] πi.: G → Gi. By hypothesis there is a unique g* : G → 
H with τi

og* = πi. Exercise 19 provides a unique homomorphism f* : H → G with πi
of* = τi.  

Now g*f* : H → H → H is the unique homomorphism with τi
og*f* = τi. It follows that g*f* = 1H. 

Similarly f*g* = 1G. Therefore f* and g* are isomorphisms. 

9.2 Finite Abelian Groups

1. Answered in the text. 
 
2. pG is the image of the homomorphism f : G → G defined: f(x) = px. Checking the homomorphism 

property is routine. 
 
3. (a), (c), (e), (g) are answered in the text. 

(b) ℤ15 (d) ℤ8 ⊕ 29, ℤ4 ⊕ ℤ2 ⊕ ℤ9, ℤ2 ⊕ ℤ2 ⊕ ℤ2 ⊕ ℤ9, ℤ8 ⊕ ℤ3 ⊕ ℤ3, ℤ4 ⊕ ℤ2 ⊕ ℤ3 ⊕ ℤ3, ℤ2 ⊕ 
ℤ2 ⊕ ℤ2 ⊕ ℤ3 ⊕ ℤ3. 

(f) Use the decompositions: 24 = 2321 =2222 = 222121 = 21212121 combined with 32 = 3131 to get 10 
non-isomorphic groups. 

(h) 1160 = 2351291 = 222151291 = 21212151291 yields 3 groups. 
 

4. Since f(x) = px is a homomorphism we have pG = pG1 +. . .+ pGn. This sum is easily seen to be 
direct. 

5. (a), (c) are answered in the text. (b) 2, 2, 22, 3, 3, 32 (d) 2, 22, 22, 24, 3, 3, 3, 5, 5, 52 
 
6. (a) 250 (b) 6, 6, 36 (c) 2, 10, 20, 40 (d) 2, 60, 60, 1200 
 
7. (a) 2,2, and 2,2 (b) 16 and 16 (c) 2,4 and 2,4 

(d) 2, 2, 2, 2 and 2, 2, 2, 2 
 
8. Elements of G(p) are / kn p  + ℤ. 
 
9. (a) Answered in the text, (b) Since /2kn  + ℤ = 2( +1/2kn  + ℤ) we see that 2⋅G(2) = G(2) when  

G = Q/Z. 

Topics in Group Theory
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10. The homomorphism property is easy to check. Suppose a ∈ G is given and let pk = |a | .  Since  
(p, n) = 1 there exist integers x, y such that nx + pky = 1. Then a = x(na) + y(pka) = xf(a). 

 Injective. If f(a) = 0 then a = 0. Surjective. a = f(xa). 
 
11. Note that pℤp

n = {0} if and only if n = 1. Apply Theorem 8.7. 

12. The Fundamental Theorem 8.7 says that G is isomorphic to a direct sum of cyclic groups of 
prime power order. Since |G| is the product of these prime powers, some power of p must occur. 
Then one of the direct summands must be ℤp

k for some k ≥ 1 Then G contains an element of order 
pk and hence an element of order p by Theorem 7.8. 

 
13. Answered in the text. 
 
14. Exercise 13 implies that |G(pi)| = pi

k1 for some k1. By Theorem 8.5 we know that ptm = |G| = 
|G(p1)| . . .|G(pn)| = p1

kl. . .pn
kn where p = p1, and p1, ..., pn are distinct primes. It follows that  

t = kl. 
 
15. Say |G| = p mt  where (p, m ) = 1,  Then n  ≤  t .  The Fundamental Theorem implies that G(p) ≅ 

ℤp
k1 ⊕ . . . ⊕ ℤpk1 where t = k1 + . . . + k3. Note that pℤpk is a subgroup of order pk–1. Altering one 

summand in this way we find subgroups of every order p1,p1–1, . . . , p2, p. 
 
16. This occurs if and only if n is squarefree (i.e. either n = 1 or n is a product of one or more 

distinct primes). 
 
17. (a),  (b) Compare the elementary divisors and apply Theorem 8.12. 
 
18. Using Exercise 15 it follows that if d n  (and d > 0) there is a subgroup N of G with |N| = d. 

Applying this to d = n/k we use H = G/N. 
 
19. (a) Answered in the text. (b) If a + T is of finite order in G/T, n(a + T) = 0 + T for some 

positive integer n. Then na ∈ T so it has finite order, say k. But then kna = 0 and a itself 
has finite order, so that a ∈ T. Then 0 + T is the only element of finite order in G/T. 

 
20. Not necessarily. As in the Hint, (1, 1) + (–1, 0) = (0, 1) is a sum of two elements of infinite order 

equal to one of finite order in ℤ ⊕ ℤ3. 
 
21. Let h ∈ G with f(h) = 1, and set H = 〈h〉. Let K be the kernel of f. For any x ∈ G we have f(x) = 

f(hn) for some n ∈ ℤ so that xh–n ∈ K and x ∈ hnK ⊆ HK. Then G = HK and certainly H ∩ K = 
〈e〉. Apply Theorem 8.3. 

22. First let us suppose G and H are p-groups. Let NG(m) be the number of elements of G with order 
pm. Recall that Zpn has unique subgroup of order pk for every k  =  1 ,  2 ,  . . . , n  (by Exercise 
7.3.40). Therefore the number of elements of order pk in ℤpn is a function ϕ(pk) independent of n, 
as long as n ≥ k. (This is often called the Euler ϕ-function.) 
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Now suppose the invariant factors of G are p, p,.., p2, p2, ... where there are kj copies of pj, for 
each j, and each kj. ≥ 0. Then NG(p) = (k1 + k2 + k3 + . . .)ϕ(p), NG(p

2) = (k2 + k3 + . . .)ϕ(p2), 

NG(p
3) = (k3 + . . .)ϕ(p3), etc. Consequently, 1 1( )/ ( ) ( )/ ( )m m m m

m Gk NG p p N p pϕ ϕ+ += −  is determined 

entirely by the values of NG, Therefore if NG = NH it follows that G and H have the same 

elementary divisors and hence are isomorphic. 

The extension of the argument beyond the case of p-groups is left to the reader. 
 

23. The equation xm = e has almost m solutions in G. The proof of Theorem 7.41 (or Corollary 8.11) 
applies to G. 

24. Given the invariant factors m1, m2, ..., m1 in a divisor chain, we can re-build the elementary 

divisors: Factor m3 = 1 .i j sjk k
sp p  The divisor conditions imply: 0 ≤ ki1 ≤ ki2 ≤ . . . ≤ kit. for each i 

= 1, 2, ..., s. The elementary divisors are then easily read off this array: p1
k11, p1

k12, . . . , p1
k11, p2

k21, 

 . . . , p2
k2, . . . , ps

ks1 . . . , ps
kst, where we omit any entry equal to 1. Now apply Theorem 8.12. 

25. By Lemma 8.4: If a ∈ G then a = ∑ap where ap ∈ G(p). The sum is taken over all prime numbers 
p, noting that ap = 0 for all but finitely many p (since ap ≠ 0 only if p divides |a|). The proof of 
the uniqueness is the same as in the proof of Theorem 8.5, using the finiteness of the sums to 

reduce to the case there. By Exercise 8.1.5 conclude that G ≅ ∑G(p). 

9.3 The Sylow Theorems
 
1. H1 = {e, (abcd), (ac)(bd), (adcb)}. There are 45 subgroups of this type. (There are 6⋅5⋅4⋅3 = 360 

ways of choosing an ordered 4-tuple from 6 symbols, and each 4-cycle can be written 4 ways: 
360/4 90=  Such a group contains 2 4-cycles, so we have 90/2 45=  subgroups.) 

 H2 = {e, (abcd)(ef), (ac)(bd), (adcb)(ef)} Similarly there are 45 subgroups of this type. 
 H3 = {e, (ab), (cd), (ab)(cd)}. There are 45 subgroups of this type. (There are 15 2-cycles and 

each appears in 6 such groups, and each group is counted twice here, so we get 15 6/2 45⋅ =  
subgroups.) 

 H4 = {e, (ab), (cd)(ef), (ab)(cd)(ef)}. There are 45 subgroups of this type. (There are 15 2-cycles 
each appearing in 3 such groups.) 

 H5 = {e, (ab)(cd), (ac)(bd), (ad)(bc)}. There are 15 subgroups of this type. (There are 15 subsets 
of 4 elements from 6 symbols, and each such S4 contains one such subgroup.) 

 Altogether we have discovered 195 subgroups of order 4 in S6. 
 
2. (a) H = {e, (13), (24), (13)(24), (12)(34), (14)(23), (1234), (1432)}. Permuting the symbols yields 

3 such subgroups. 
(b) K = {e, (123), (132)}. Permuting symbols yields 4 such subgroups, one for each copy of S3 in 

S4. 
 
3. Answered in the text. 
 
4. ℤ4 × ℤ4 × ℤ2, ℤ3 × ℤ3 × {0}, {0} × {0} × ℤ5. 

 

Topics in Group Theory
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6. 115 = 5⋅23, 143 = 11⋅13, 391 = 17⋅23. In each case Corollary 8.18 applies to provide a unique 
group of each order. 

 
7. (a) The number of Sylow p-subgroups must be 1 for a suitable prime p in each case, (a) p = 7  

(b) p = 5 (c) p = 11 (d) p = 17. 
 

8. If q is a prime ≠ p, and q divides |G| then Cauchy’s Theorem implies that G has an element of 
order q, contrary to hypothesis. Therefore |G| has only p as a prime divisor, so it is a power of p. 

 
9. Answered in the text. 

 
10. By Exercise 8.4.24, H is contained in some Sylow p-subgroup P of G. If K is any Sylow p-

subgroup then the Second Sylow Theorem implies that K = xPx–1 for some x ∈ G. Then since H is 
normal, H = xHx–1 ⊆ xPx–1 = K. 

 
11. No. Inner automorphisms preserve a subgroup only when it is normal. 

 
12. No. Let G = S4, H = S3 and p = 3 with K e, (124), (142)}. 

 
13. Answered in the text. 

14. Any Sylow p-subgroup has index 2 so it must be normal, by Exercise 7.6.20. 

15. (a) Define f : H × K → HK by f(x, y) = xy. Generally this is not a homomorphism, but it 
certainly is surjective. If f(h, k) = f(h1, k1) then hk = h1k1 and h1

–1h = k1k–1 ∈ H ∩ K = 〈e〉. 
Then h = h1, and k = k1 so that f is injective. Then f is a bijection so the orders of the two 
sets coincide. 

(b) The argument above shows that if f(h, k) = f(h1, k1 ) then there is some w ∈ H ∩ K where  
h1 = hw–1 and k1 = wk. Therefore every image element in HK arises from exactly |H ∩ K| pre-
images. Consequently, |H × K| = |HK|⋅|H ∩ K|. 

16. Let P be the normal Sylow 3-subgroup and consider / .G P  It is a group of order 20 and hence 
must have a normal Sylow 5-subgroup M (by the Third Sylow Theorem). Then by Theorem 7.44, 
there is a normal subgroup N of G such that /N P  is isomorphic to M. Hence N has order 15 so it 
contains at least one Sylow 5-subgroup of G. The normality of N implies that N contains all the 
Sylow 5-subgroups of G (by the Second Sylow Theorem). Since |N| = 15 it has a unique Sylow 5-
subgroup (by the Third Sylow Theorem), and therefore G must have a unique Sylow 5-subgroup. 
 

17. Let np denote the number of Sylow p-subgroups. By the Third Sylow Theorem deduce that n7 = 1 
and n3 = 1 or 7. As in the proof of Corollary 8.18, if n3 = 1 then G is cyclic. Since this is false by 
hypothesis conclude that n3 = 7. 
 

18. By the Third Sylow theorem the number n7 of Sylow 7-subgroups must divide 168/7 24=  and 
satisfy n7 ≡ l (mod 7). Therefore n7 = 1 or 8. Since G is simple Corollary 8.16 shows that n7 > 1. 
Therefore n7 = 8. 

19. Suppose |G| = pq where p > q. By the first part of the proof of Corollary 8.18, the Sylow p-
subgroup is normal. 
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Topics in Group Theory

22.

23.

24.

25.

20. Let nf be the number of Sylow p-subgroups. By the Third Sylow Theorem, np divides m and  
np ≡ 1 (mod p). But then np ≤  m  <  p  forcing np = 1. Then by Corollary 8.16, the Sylow  
p-subgroup is normal and G is not simple. 

 
21. Answered in the text. 

Let np denote the number of Sylow p-subgroups in G. By the Third Sylow Theorem n = 1 or q and nq 
= 1, p or p2. If G is simple, np = q so that q ≡ 1 (mod p) and p | (q – 1). In particular, p < q. 
 Similarly if nq = p then q < p, a contradiction. Therefore nq = p

2
 and there are p

2
( q  – 1) elements in 

G of order q. That leaves only p2 elements of order ≠ q. Since there exists a Sylow p-subgroup of order 
p2 it must consist exactly of those remaining p2 elements. But then it is unique, and np = 1, a 
contradiction. 

(a) Let A be a Sylow 5-subgroup and B a Sylow 7-subgroup. Let np be the number of Sylow p-

subgroups. The Third Sylow Theorem implies that n7 =1 or 15 and n5 = l or 21. If n7 = 15 

then there are 15⋅6 = 90 elements of order 7. If n5 = 21 then there are 21⋅4 = 84 elements of 
order 5. These cannot both occur, so Corollary 8.16 implies that A or B is normal. Then AB 
is a subgroup (see Exercise 7.6.18) and Exercise 16 implies AB has order 35. 

(b) The Third Sylow Theorem implies n5 = 1 so that the Sylow 5-subgroup P is normal. Let H be 
any subgroup of order 3 (use Cauchy’s Theorem). The argument in (a) shows that PH has 
order 15. 

The Second Isomorphism theorem (Exercise 7.8.24) implies that [K : K ∩ N] = [NK : N], 
Computing [NK :K ∩ N] in two ways (see Exercise 7.8.18) then implies that [N :K ∩ N] = [NK :K] 
which divides [G : K], Since [G : K] is relatively prime to p it follows that [N :K ∩ N] is prime to p. 
Also since |K| is a power of p Lagrange’s Theorem implies that |K ∩ N| is a power of p. Therefore  
K ∩ N is a Sylow p-subgroup of N. 

The number nr of Sylow r-subgroups is 1,  p ,  q  or pq by the Third Sylow Theorem. Suppose nr ≠ 1. 

Since nr ≡ 1 (mod r) and r > p, q, conclude that nr = pq. Then the number of elements of order r is pq 

(r – 1). Similarly the number of order p is np(p – 1) and the number of order q is n q (q  –  1 ) .  

Counting all these elements and the identity e, yields: pqr – pq + np(p – 1) + np(q – 1) + 1 ≤ |G| = 

pqr. Then np(p – 1) + nq(q – 1) ≤ pq – 1. If nq ≠ 1 then the Third Sylow Theorem implies nq ≥ r and 

the inequality yields a contradiction. Therefore nq =1 and there is a normal Sylow q-subgroup Q, by 

Corollary 8.16. (From here we know that G is not simple.) 

order pr has a unique Sylow r-subgroup. Therefore there are exactly r elements in G/Q satisfying the 
equation xr = e. Since π is a q-to-1 mapping it follows that there are exactly qr elements of G 
satisfying the condition xr  ∈ Q. The pq(r – 1) elements of order r and the q elements of Q satisfy this 
condition. Therefore: pq(r – 1) + q ≤ qr. This is a contradiction since p  >  1.  Therefore the hypothesis 
nr ≠ 1 fails. 

Consider the homomorphism π : G → G/Q. As in the proof of Corollary 8.18, me group G/Q of 
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9.4 Conjugacy and the Proof of the Sylow Theorems

4. f(Cy) = f(Cx)⇒ y−1ay = x−1ax [Definition of f ]

⇒ a = yx−1axy−1 [Left multiply by y and right multiply by y−1]

⇒ a = (xy−1)−1a(xy−1) [Definition of inverse; see Corollary 7.6(a)]

⇒ (xy−1)a = a(xy−1) [Left multiply by xy−1]

⇒ xy−1 ∈ C = C(a) [Definition of the centralizer C(a)]

⇒ Cx = Cy [Theorem 8.2; cosets are disjoint or equal]

Thus f(Cy) = f(Cx) implies that Cy = Cx, so that f is an injective map of cosets.

1.

2.

3.

(a) Answered in the text. 
(b) {e}, {(12), (13), (14), (23), (24), (34)} {(12)(34),(I3)(24),(I4)(23)}, {(123), (124), (132), (134), 

(142), (143), (234), (243)}, {(1234), (1243), (1324), (1342), (1423), (1432)}. 
(c) {e}, {(12)(34), (13)(24), (14)(23)}, {(123), (134), (142), (243)}, {(132), (124), (143), (234)}. 

Done in the Hint. 

Answered in the text. 

5. 〈((123)〉. 〈((124)〉, 〈((134)〉, 〈((234)〉 
 
6. Since H is normal in K we know that X–1HX = H for every x ∈ K. Therefore K ⊆ N(H) by 

definition. 
 
7. (a) If x ∈ A the closure implies x–lAx = A so that x ∈ N(A). Therefore A is a subgroup of N(A). 
 (b) By definition, g ∈ N(A) if and only if g–1Ag = A. Multiply on the left by g to see that this is 

equivalent to: Ag = gA. 
 
8. For x ∈ G, and y ∈ N then xy = yx so that x–1yx = x ∈ N. Therefore x–1Nx = N. 
 
9. Let a ∈ C. If b ∈ C then b = x–1ax for some x ∈ G, and f(b) = f(x)–1f(a)f(x) is conjugate to f(a). 

The implications are reversible, so that f(C) = the conjugacy class of f(a). 
 
10. Suppose a, b ∈ H. Let a = a1, a2, ..., am be the conjugates of a and b = b1, b2, . . . , bn be the 

conjugates of b. Since x–1(ab)x = (x–1ax)(x–1bx), every conjugate of ab is one of the aibj. Then the 
conjugacy class of ab has at most mn elements, and ab ∈ H. Also the conjugacy class of a–1 is just 
a1

–1, a2
–1, . . . , an

–1 so that a–1 ∈ H. 
 

11. Suppose |G| = n = p1
e1p2

e2. . .pk
ek where the pj. are distinct primes and mj > 0. By Sylow there is a 

subgroup Pj. of order pj
ej. Since m|n the factorization is m = p1

f1p2
f2. . .pk

fk for some integers fj. with  
0 ≤ fj. ≤ ej By repeated application of Exercise 22 (an induction!) there exists a subgroup Qj ⊆ Pj 
of order pj

fj. Since G is nilpotent it is a direct product of the subgroups Pj. Therefore the subgroup  
H = Q1 Q2 . . .  Qk is a direct product of the Qj′s and |H| = m. 
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12. If f is any automorphism of N then f(K) is another Sylow p-subgroup of N. Then Corollary 8.16 
implies that f(K) = K. Now if x ∈ G then x–1Nx = N so that f : N → N defined f(a) = x–1ax is an 
automorphism of N. Therefore x–1Kx = f(K) = K as above. 
 

13. Write A ~ B if A is H-conjugate to B. Since A = e–1 Ae, A ~ A. If A ~ B then B = x–1Ax for some 
x ∈ H. Then A = xBx–1 and B ~ A. If A ~ B and B ~ C then B = x–1Ax and C = y–1 By for some 
x, y ∈ H. Then C = (xy)–1 A(xy) and xy ∈ H so that A ~ C. 
 

14. (a) If a ∈ N then x–1ax ∈ x–1Nx = N. Therefore C ⊆ N. The converse is clear. 
 (b) If Ci ∩ N is not empty then part (a) implies Ci ⊆ N. 
 (c) This follows easily from part (b). 
 
15. Answered in the text. As one special case conclude that if G is a non-trivial p-group then Z(G) ≠ 〈e〉. 
 
16. If g, h ∈ N(A) then (gh)A = g(Ah) = (Ag)h = A(gh) so gh ∈ N(A), Also gA = Ag implies Ag–1 = 

g–1A so that g–1 ∈ N(A). Therefore N(A) is a subgroup. 
 

17. x–1Ax = y–1Ay ⇔ A = (yx–1)–1 A (yx–1) ⇔ yx–1 ∈ N(A). If x, y ∈ H then yx–1 ∈ H ∩ N(A) and  
(H ∩ N(A))x = (H ∩ N(A))y. The converse also holds. This provides a bijection between the set 
of H-conjugates of A and the right cosets of H ∩ N(A) in H. 
 

18. The Second and Third Sylow Theorems imply that the number of conjugates of K in G equals the 
number of Sylow p-subgroups and this number is ≡ 1 (mod p). By Theorem 8.25 this number is 
the index of the normalizer: [G : N(K)] ≡ 1 (mod p). Since N(K) ⊆ H this argument also applies to 
K as a Sylow p-subgroup of H: [ H : N(K)] ≡ 1 (mod p). Since the indexes multiply it follows that 
[G : H] ≡ 1 (mod p). 
 

19. Answered in the text. 

20. There are m = [G : N(H)] distinct conjugates of H in G. Note that m H| ≤ m⋅|N(H)| = G by 
Lagrange. Any two of these conjugates have at least {e} in common, possibly more. Therefore the 
number of elements in the union of all the conjugates of H is at most 1 + m⋅(|H| – 1) = m–|H| –  
(m – 1) ≤ |G| – (m – 1) ≤ |G|. If this union is all of G these inequalities are equalities, implying 
m=l. But then G = N(H) and H is normal in G. Then the only conjugate of H is H itself, and G 
= union of the conjugates = H. But H is a proper subgroup. 
 

21. Answered in the text. 
 
22. From Exercise 15, or by Theorem 8.27 below, we know that Z(G) ≠ {e}. (Compare Theorem 

8.27.) To solve the problem, use induction on n, and assume n ≥ 2. Since Z(G) is nontrivial there 
exists a ∈ Z(G) with |a| = p (by Cauchy). The subgroup N = 〈a〉 is normal in G (by Exercise 8) 
and Lagrange implies that /G N  has order pn–1. By the induction hypothesis there is a subgroup T 
of /G N  having |T| = pn−2. By Theorem 7.44 there is a subgroup H of G with N ⊆ H and 

/T H N= . Therefore |H| = |T|-|N| = pn−1. 

Topics in Group Theory
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9.5 The Structure of Finite Groups

9.5 The Structure of Finite Groups

1.

2.

3. By Theorem 9.33, since S3 has order 6, it is isomorphic to either Z6 or D3. But it cannot be
isomorphic to Z6 since it is not abelian. Thus S3

∼= D3.

4.

5.

6.

23. As in Exercise 22 we use induction on n. Suppose H is a subgroup of G of index p. By Exercise 15 
there exists a ∈ H ∩ Z(G) of order p. Let N = 〈a〉 and use Theorem 7.44 to see that /H N  has 
index  p in /G N . By inductive hypothesis /H N  is normal in /G N  and Theorem 7.44 implies 
that H is normal in G. 
 

24. Every H-conjugacy class has order dividing |H| which is a p-power. Since there are t Sylow  
p-subgroups and (p, t) = 1 there must be some H-conjugacy class of these subgroups of order 1. 
Then there is a Sylow p-subgroup K where x−1Kx = K for every x ∈ H. But then Lemma 8.26 
implies that  x ∈ K and we conclude that H ⊆ K. 

Theorem 8.30 applies except in the case p2 ≡ l (mod q). In that case q  |  (p  –  l ) (p  +  1). Certainly 
q cannot divide p – 1, since p < q. Therefore q | (p + 1) so that p  <  q  ≤  p  +  l .  But then q = p 
+ l ≡ l (mod p), contrary to hypothesis. 

The number n3 of Sylow 3-subgroups must equal 1 or 4, by the Sylow Theorems. If n3 = 1 the Sylow 
3-subgroup is normal. Otherwise n3 = 4 and we count 8 elements of order 3. This leaves only 4 
elements of order ≠ 3. Since a Sylow 2-subgroup has 4 elements it fills up those 4 elements and 
therefore it must be unique, hence normal. 

(a) The missing corner of the table is: 
 

e a3 a2 a 
a e a3 a2 

a2 a e a3 

a3 a2 a e 

(b) A direct comparison of the operation tables does show that the correspondence described in an 
isomorphism. Details are omitted. 

(a) Answered in the text. 
(b) A direct comparison of the operation tables does show that the correspondence described in an 

isomorphism. Details are omitted. 

There are Theorems classifying groups of order p , 2 , 6,8,12, pq (when p < q and q  ≢ 1 (mod p)), and 
pzq (when q ≢ 1 (mod p) and p2 ≢ 1 (mod q)). Here p and q are distinct odd primes. These cases 
include the numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 22, 23, 25, 26, 29, 31, 33, 34, 
35, 37, 38, 41, 43, 46, 47, 49, 51, 53, 58, 59, 61, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 
94, 95, 97, 99. 

7. By Exercise 8.3.13 G is the direct product of its Sylow subgroups. Since these Sylow subgroups are 
cyclic of relatively prime orders, Theorem 8.9 implies that G is cyclic. 

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

 p

143

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



8.

9.

10.

11.

12. (a) By the proof of Theorem 9.32, the elements of Dn are {e, r, r2, . . . , rn−1, d, rd, r2d, . . . , rn−1d}.
Then it is clearly that ϕ is surjective, since if r̄idj is an element of De (for 0 ≤ i ≤ 2, 0 ≤ j ≤ 2),
then r̄idj = ϕ(ridj). To see that it is a homomorphism, write

ϕ(ridjrkdl) = ϕ(rir−kdj+l) = ϕ(ri−kdj+l) = r̄i−kdj+l = r̄ir̄−kdjdl = r̄idj r̄kdl

= ϕ(ridj)ϕ(rkdl).

Thus ϕ is a surjective homomorphism. If r̄idj = e ∈ D3, then clearly j = 0 and i is a multiple
of 3. The only elements of D6 satisfying these restrictions are r0d0 = r0 and r3d0 = r3. Thus
the kernel of ϕ is the subgroup {r0, r3} of D6.

(b) Since r0 = e in Dn, the kernel of ϕ is {e, r3}, which, by Exercise 11(b), is equal to Z(D6).
Since ϕ : D6 → D3 is a surjective homomorphism with kernel {e, r3} = Z(D6), the First
Isomorphism Theorem shows that D6/Z(D6) ∼= D3.

Let r = 
1 1
0 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

 and d = 
1 0

0 1
−⎛ ⎞
⎜ ⎟
⎝ ⎠

 Then rm = 
1
0 1

m⎛ ⎞
⎜ ⎟
⎝ ⎠

 and rmd = 
1

0 1
m−⎛ ⎞

⎜ ⎟
⎝ ⎠

. Therefore G is 

contained in the group H = 〈r, d〉. Since the coefficients are in ℤn we see that |r | = n and |d| = 2. 

Moreover  = 
1 1
0 1

−⎛ ⎞
⎜ ⎟
⎝ ⎠

 
1 0

0 1
−⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
1 1

0 1
− −⎛ ⎞
⎜ ⎟
⎝ ⎠

 = dr. By Theorem 8.32, H ≡ Dn is a group with 

2n elements. But G has 2n elements listed. Conclude that G = H. 

well-defined bijective map. Since r and a both have order p these formulas hold for every integer i. 
Then f(rirj) = f(ri+j) = ai+aj = aiaj = f(ri)f(rj) and similarly for f(ri⋅rjd). From dr = r–1d deduce that 
drk = r–kd. Then rjd⋅rj = ri–jd and rid⋅rjd = ri–j. Analogous formulas hold with a, b in place of r, d. The 
homomorphism properties for f(rid⋅rj) and for f(rid⋅rjd) now follow easily. 

Define a map f : Dp → G by f(r1) = a1 and f(r1d) = a1b whenever 0 ≤ i < p. This map is certainly a 

D6 is generated by r and d such that |r |  = 6. |d| = 2 and dr = r–1d, Then r3  ∈  Z(D6) because dr3 = 
r–3d = r3d. Therefore K = 〈r3〉 is a normal subgroup of order 2. Let H = 〈r2, d〉. Since |r2| = 3 and dr2 
= r–2d it follows that H ≡ D3 ≅ S3. Since H has index 2 it is normal, and certainly H ∩ K = 〈e〉. 

 Counting shows that HK has 12 elements so that G = HK and Theorem 8.3 implies that G = H × K. 

(a) From rk = r–k conclude that rk and d commute. Therefore rk commutes with every rid and r  ∈ 
Z(Dn). 

(b), (c) For the dihedral group Dn we always assume n ≥ 3. Then r2 ≠ e so that rid⋅r = rj–1d ≠ 
ri+1d = r⋅rid. This says that rid ∉ Z(Dn). Then every element of the center is of the form rj. 
From rjd = drj = r–jd, conclude that r2j = e, and hence n|2j. If n is odd this implies n|j so that 
rj = e. Consequently, Z(Da) = 〈e〉. If n = 2k is even then k|j and e only central elements are 
e and rk. 

13. Z(Q) = {1, −1}. 
 
14. Certainly the subgroups 〈e〉 and Q are normal. Any subgroup of order 4 is normal by Exercise 

7.6.20. It is not hard to see that −1 is the only element of order 2. Therefore there is only one 
subgroup of order 2 in Q, and his certainly normal. This covers all the possibilities. 

4 Topics in Group Theory
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15. b6 = (b2)3 = (a3)3 = a9 = a so that ab = b6b = bb6 = ba and G is abelian. 
 
16. (a) The powers of a and b are easily computed. Also ba = ((12)(123), 2+1) = ((23), 3) and  

a−1 b = ((132)(12),-2+l) = ((23), 3) are equal. 
 (b) The 12 elements can be written explicitly. Alternatively note that 〈a〉 is a subgroup of 6 

elements and b ∉ 〈a〉 since the second component is odd. Then T = 〈a〉 ∪ 〈a〉b contains 12 
elements. 

 (c) Certainly aiaj = ai+j ∈ T and ai⋅ajb = ai+jb ∈ T. Since bak = a−kb show that aib⋅aj = ai−jb and 
aib⋅ajb = ai⋅a−j⋅b2 = ai-j+3 ∈ T. Therefore T is a subgroup by Theorem 7.11. 

 (d) The element b has order 4 in T but D6 has no element of order 4. The element a has order 6 
in T but A4 has no element of order 6. 

 
17. Suppose G is simple and |G| = pmk where |p .k  From the Third Sylow Theorem, the number of 

Sylow p-subgroups must equal 1. By Corollary 8.16, the Sylow p-subgroup is normal in G. Since G 
is simple it must equal its Sylow p-subgroup, so n = pm, By Exercise 8.4.23 G has a normal 
subgroup of order pm−1, and the simplicity implies m − 1=0. But then |G| = p, contrary to the 
hypothesis that n is composite. 

 
18. Suppose G is a group and K is a subgroup of index n. Then G acts on the set T of the n right 

cosets of K in G. This action induces a homomorphism ϕ : G – A(T) = Sn as in Exercise 7.8.25. 
Moreover ker ϕ is contained in K and by the First Isomorphism Theorem, / kerG ϕ  is isomorphic 
to a subgroup of Sn. In particular, the index [G : ker ϕ]  divides n!. If G is simple then ker ϕ 
must be 〈e〉 and |G| divides n!. 

 
19. Suppose |G| = 21. By the Sylow Theorems there is a unique Sylow 7-subgroup A. Then A = 〈a〉 

where |a| = 7. Let b be any element of order 3 (which exists by Sylow theory). Then a and b 
generate G. The element bab−1 must lie in A so that bab−1 = ak for some k between 0 and 7. Then 
b2ab−2 = b(bab−1)−1 = b(ak)b−1 = (bab−1)k = (ak)k = ak2. Similarly a = b3ab−3 = ak3 so that k3 ≡ 
1(mod7). Therefore k = l, 2 or 4. If k = l then ab = ba and G ≅ Z21. Suppose k = 2. Then b2ab−2 = 
a4 and b2 is also an element of order 3. Therefore using b2 in place of b yields the case k = 4. So 
there are only two possibilities for G : either Z21 or the nonabelian group generated by a of order 
7, b of order 3 and satisfying bab−1 = a2. 

 But does that nonabelian group really exist? Just writing down these generators and relations does 
not produce an explicit group. It can be constructed by considering a 7-cycle a = (1234567) in S7. 
Then a2 = (1357246) and we search for b with bab−1 = a2. It turns out that b = (235)(476) does 
the job. 
 

20. Here are four groups of order 66: Z66, D33, D11 × Z3, S3 × Z11. These are non-isomorphic since their 
centers are all different (see Exercise 10). Suppose G is any group of order 66. To prove; G must 
be isomorphic to one of the four listed. By Sylow Theory there exist a, b, c ∈ G of orders 2, 3, 11, 
respectively. Also there is only one Sylow 11-subgroup, so 〈c〉 is normal. By Exercise 7.6.18, H = 
〈b, c〉 = 〈b〉〈c〉 is a subgroup of order 33 which must be cyclic by Corollary 8. 18. In fact, bc = cb 
has order 33. Then aHa−1 = H which implies a(bc)a−1 = (bc)k for some k determined (mod 33). 
Since a2 = e deduce that k2 ≡ 1 (mod 33). There are exactly 4 solutions to this congruence: k ≡ 
±1, ±10 (mod 33). (This can be seen by solving the congruence (mod 3) and (mod 11), to obtain 
k ≡ ±1 (mod 3) and k ≡ ±1 (mod 11). Then “glue” these together in all possible ways.) This 
completes the proof since there are at most four possibilities for G here, determined by the four 
values of k, and we already listed four non-isomorphic groups of order 66. 

9.5 The Structure of Finite Groups
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21. By Exercise 8.4.22, a group of order pn is not simple, provided p is prime and n > 1. Groups of 
order p are abelian simple groups so they don’t count here. A group of order pq where p < q has a 
normal Sylow q-subgroup as in Corollary 8.18. Groups of order p2q and pqr are not simple, by 
Corollary 8.2.1 and Exercise 8.3.25. The remaining numbers less that 60 not included in one of 
these cases are: 24, 36, 40, 48, 54 and 56. By Exercise 16: If G is simple and has a subgroup of 
index n, then |G| divides n!. If |G| = 24, 36, 48 or 54, one of the Sylow subgroups has a small 
index, contrary to this restriction on |G|. If |G| = 40, the Third Sylow Theorem implies that the 
Sylow 5-subgroup is normal. The case |G| = 56 is done in the second Example after Theorem 8.17. 

4 Topics in Group Theory
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Chapter 10

Arithmetic in Integral Domains

10.1 Euclidean Domains

1.

2.

3.

4.

5.

6.

7.

8.

9. Apply the division algorithm to a and |b|, giving a = |b| q + r with 0 ≤ r < |b|. Since b < 0, this
is the same as a = b(−q) + r. Since r ≥ 0, we know that r = |r| = δ(r), and δ(b) = |b|, so that
0 ≤ δ(r) < δ(b). Thus property (ii) holds for b < 0.

Z [ ]d  is a subset of C. It is easy to check it is closed under addition and multiplication. For example, 
(r + s d )(t + u d ) = (rt + dsu) + (ru + st) d. Hence it is a subring. If d ≥ 0 then d  is a real 
number. 

We know x2 – d is irreducible in Q[x], by Eisenstein's criterion. Therefore d  is irrational. If r + s d  
= r1 + s1 d  and s ≠ s1 then = − − ∈1 1( )/( )d r r s s . Therefore s = s1 and r = r1. If d = 4 then 
0+1 4  = 2 + 0 4.  

(a) Answered in the text. 

 (b) False. In Z use a = b = c = 1 and d = 2 for a counterexample. 

(⇒) If c = du for a unit u ∈ R, then d = cu 1. Therefore d | c and c | d .  (⇐) Given c = dx and d = 
cy for some x, y ∈ R. If c = 0R then also d = 0R and c, d are associates. Suppose c ≠ 0R. Since c = 
(cy)x and R is an integral domain we may cancel c to conclude lR = yx. Then y and x are units so 
that c, d are associates. 

Answered in the text. 

(i) r = r ⋅ l so r ~ r. (ii) If r ~ s  then r = su for a unit u. Then s = ru–1 and s ~ r. (iii) If r ~ s and s 
~ t then r = su and s = tv for units u, v. Then r = tvu and vu is a unit, so that r ~ t. 

Answered in the text.

 u = v(v 1u) and v 1u is a unit. 
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10. 2x + 2 = 2(x + 1) and neither 2 nor x + 1 is a unit. 
 
11. This is an easy multiplication. 
 
12. (a) Check the Definition. Certainly δ(ab) = (ab)2 = a2b2 ≥ a2 = δ(a). If a, b ∈ Z and b ≠ 0 then usual 

division yields a = bq + r where 0  ≤ r< | b | .  Then δ(r) = r 2 < b 2  = δ(b). 
 (b) Yes. If a, b ∈ Q and b ≠ 0 then = ∈/q a b  and a = bq + r where r = 0. 

  
13. (a) It is easy to check that θ(ab) = δ(ab) + k ≤ δ(a)δ(b) + k ≤ (δ(a) + k)(δ(b) + k) = θ(a)θ(b). Now 

suppose a = bq + r where either r = 0 or δ(r) < δ(b). In the case r ≠ 0 check that θ(a) = 
δ(b) + k = θ(b). 

 
(b) Check that β(ab) = kδ(ab) ≤ kδ(a)δ(b) ≤ k2δ(a)δ(b) = β(a)β(b). Suppose a = bq + r where either 

or δ(r) < δ(b). In the case r ≠ 0 check that β(a) = kδ(a) ≤ kδ(b) = β(b). 

 
14. Certainly δ(ab) ≤ δ(a)δ(b). If a, b ∈ F and b ≠ 0 then q = ab–1 ∈ F and a = bq + r where r = 0. 
 
15. For any nonzero a ∈ R, certainly δ(1R) ≤ δ(lRa) = δ(a). If u is a unit there exists v such that uv = lR. 

Then δ(u) ≤ δ(uv) = δ(1R). Therefore δ(u) = δ(lR). Conversely if δ(u) = δ(1R) the argument (2) ⇒ (3) 
⇒ (1) in Theorem 9.2 shows that u is a unit. 

 
16. Suppose d is a greatest common divisor of a and b in the Euclidean domain R. If d' is an associate of 

d then d' = du for some unit u. Using u–1 check that d ' | a and d ' | b. Also δ(d ') = δ(d) by Theorem 
9.2(3) and the Definition shows that d' is a gcd of a and b. 

 
17. Answered in the text. 

r = 0 

18. Suppose d satisfies properties (i) and (ii). Property (i) in the Definition of greatest common divisor is 
the same. To Show: If c | a and c | b then δ(c) ≤ δ(d). By the hypothesis we know that c | d. That is, 
d = cs for some s ∈ R. Therefore δ(c) ≤ δ(cs) = δ(d). 

19. Answered in the Hint. The two remainders are 1 + 4i and 4 – i. 

20. Any nonzero element is an associate of 1R so it is a unit. 

21. Answered in the text. 

22. (a) + = −–1(1 ) (1/2) (1/2)i i  is not in Z[i]. 
 (b) 2 = (1 + i)(l – i) and these factors are not units in Z[i]. 

23. Answered in the text. 

24. No. Consider the natural homomorphism π : Z → Zp. 

25. (a) δ(lR) ≤ δ(a ⋅ lR) = δ(a) for any a ≠ 0R. 
 (b) If a = bu where u is a unit then δ(a) ≤ δ(b) and since b = au–1 we also have δ(b) ≤ δ(a). 
 (c) The Euclidean property says that b = aq + r where either r = 0R or δ(r) < δ(b). Then a | r. If r ≠ 

0R then δ(a) ≤ δ(r) < δ(b) = δ(a). Therefore r = 0R and a |  b .  Hence a, b are associates. 
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26. Let R = Z −[ 2].  In analogy with Exercise 15 we have δ(ab) = δ(a)δ(b). Also, δ(a) ≥ 1 whenever a ≠ 
0R. Therefore if a, b are nonzero then δ(a) ≤ δ(ab). Suppose a, b ∈ R and b ≠ 0R. Then 

= + −/ 2a b x y  where x, y ∈ Q. Let m, n be integers with | x – m | ≤ 1/2  and | y – n | ≤ 1/2 . 
Define q = m + −2n  and r = a – bq. Then = − = − + − −/ / ( ) ( ) 2r b a b q x m y n  so that δ(r) = ((x – 
m)2 + 2(y – m) )2 ⋅δ(b) ≤ (3/4)δ(b)  δ(b). 

27. It is routine to verify that R = Z[ω] is a ring and that δ(ab) = δ(a)δ(b). Also 
+ = + ≥2 2 2 2– ( – /2) 3( /2) 0u uv v u v v  with equality only if u = v = 0. Therefore δ(a) ≥ 1 whenever a ≠ 

0R and δ(a) ≤ δ(ab) whenever a, b are nonzero. Suppose a, b ∈ R and b ≠ 0R. Then ω= +/a b x y  for 
some x, y ∈ Q. As in Exercise 24 choose those integers m, n and define q = m + nω and r = a – bq = 
(( /a b ) – q)⋅b = ((x – m) + (y – n)ω)⋅b. 
Claim. If |u|, |v| ≤ 1/2  then |u 2 – uv + v2| ≤ 3/4. 
Proof. By the equation above, |u2 – uv + v2| ≤ |u – /2v |2 + 3| /2v |2 ≤ 2(3/4)  + 23(1/4)  = 3/4 .  

δ(r) ≤ (3/4)δ(b) < δ(b). 
 
28. False even in Z. 
 
29. Answered in the text. 
 
30. (a) If 1 + i = ab then 2 = δ(1 + i) = δ(a)δ(b) in Z. Then either δ(a) = 1 or δ(b) = 1 so either a or b 

is a unit, by Exercise 22. 
 (b) 2 = ( l  +  i ) ( 1  –  i )  
 
31. The procedure is the same as explained in Theorem 1.6. The conditions on the remainders become: 

either rj = 0R or δ(rj) < δ(rj – 1). The last nonzero remainder is a gcd for a, b. For the proof we use the 
analog of Lemma 1.7: If a = bq + r then (a, b) ~ (b, r). 

 
32. Suppose a = bq + r = bq' + r' are divisions satisfying the conditions, and suppose r ≠ r' If r' = 0R 

then r ≠ 0R and b | r implies δ(b) ≤ δ(r) < δ(b) which is impossible. Then r' ≠ 0R and similarly r ≠ 0R. 
Then δ(b) ≤ δ(b(q' – q)) = δ(r – r') ≤ max{δ(r), δ(r')}. This contradicts the original inequalities for r, 
r'. Therefore r = r' and we also get q = q'. 

Therefore

10.2 Principal Ideal Domains and Unique Factorization Domains

1. Answered in the text. 

2. Induction on n. The case n = 2 is assumed. Suppose n  ≥  3  a n d  p a1a2 ⋅⋅⋅ an. By that hypothesis 
either p | a1 or p | a2 ⋅⋅⋅ an. Apply the inductive hypothesis. 

3. (a) Suppose f(x)g(x) = 1 in QZ[x]. Compare degrees to see that f(x) and g(x) are nonzero constants: 
f(x) = a and g(x) = b and ab = 1. By definition, a, b ∈ Z so that a = b = ± 1. 

 (b) An associate of f(x) is f(x)⋅u where u is a unit. But the only units are ±1. 

4. Yes. In a field there are no nonzero nonunits elements so the requirements are trivially satisfied. 
 
5. Answered in the text. 
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6. Suppose 2f(x) + xg(x) = 1 for some f(x), g(x) ∈ Z[x]. Evaluating at x = 0 shows that 2⋅f(0)=l in Z 
which is impossible. 

 
7. Let d' = du where u is a unit. For any x ∈ R show that: d | x if and only if d' | x; and: x | d if and 

only if x | d'. From this observation and the definition of gcd the Exercise is done. 
 
8. (⇒) If p | a then p divides the gcd of p and a, so that gcd ≠ 1R. 

(⇐) Suppose |p a  and d is a gcd of p and a. Then d |  p so d is either a unit or an associate of p. If d is 
an associate of p then d | a implies p | a, contrary to hypothesis. Then d is a unit, and Exercise 7 
implies that 1R is also a ged of p and a. 

 
9. We may assume (c) ≠ R so that c is not a unit. By Theorem 9.12 R is a UFD so that c = P1P2⋅⋅⋅Pk for 

some irreducible elements pj in R. By Theorem 9.13 there are only finitely many divisors d of c which 
are not associates. Therefore there are finitely many ideals (d) containing (c). 

 
10. (p) is maximal if and only if the only ideal properly containing (p) is the unit ideal R. Equivalently, 

the only proper divisors of p are units. This is the definition of "irreducible". 
 
11. Answered in the text. 
 
12. A maximal ideal is always prime. Suppose (p) is a prime ideal. By Exercise 9.1.21, p is irreducible and 

Exercise 10 applies. 
 
13. (a) See Exercise 6.2.20. (b) Answered in the text. 
 
14. Compare Exercise 6.1.40. 
 
(a) Certainly Z ⊆ R ⊆ Q and the closure properties are easily checked. 
(b) If |p a  then ∈/ .b a R  
(c) I contains a nonzero element x which is not a unit. Then = ' /x p a b  where p does not divide a or b, 

and t > 0. Therefore = ∈' / .p xb a I  
(d) Part (c) shows that if x ≠ 0 then (x) = (pk) for some k ≥ 0. Also if y ∉ (pt) then (y) = (pk) for some k 

< t. Now suppose I is an ideal ≠ (0), ≠ R. By (c) there exists a smallest integer t > 0 with (pt) ⊆ I. If 
y ∈ I and y ∉ (pt) then (pk) = (y) ⊆ I for some k < t, contrary to the choice of t. Therefore I = (pt). 

 
15. Answered in the text. 

16. (a) If p = f(x)g(x) in QZ[x], compare degrees to show that f(x) = a, g(x) = b are nonzero constants. 
Since ab = p in Z, either a or b is ±1. 

 (b) The only units are 1 and –1 by Exercise 3. Then p and q are associates if and only if p = ±q. 

17. (a) If x = f(x)g(x) then deg f(x) ≤ 1. If deg f(x) = 0 then by comparing coefficients we find f(x) = a 
and g(x) = a–1x. Here a can be any nonzero integer. If deg f(x) = 1 then by comparing coefficients 
show that f(x) = ax, g(x) = a–1. All the constant terms here are integers so we must have = 1/a n  for 
some nonzero integer n. 

 (b) Note that if a ∈ Q then ax is not irreducible in QZ[x]because it has proper factorizations: 
ax = (2)⋅(( /2)a x ). Then the only irreducible factors of x in QZ[x] are the primes of Z. No product of such 
primes can equal x. 
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18. Suppose I1 ⊆ I2 ⊆ ⋅⋅⋅ is a chain of ideal in R. Let J be union of these Ik, s. Then J is an ideal (as in the 
proof of Lemma 9.10). By hypothesis J is finitely generated, say J = (a1 , a2 , ... ,a s) for some ak  ∈  J . 
Since J is the union, each ak lies in some In(k) for some integer n(k). Let m be the maximum of n(l),..., 
n(s). Then every Ink ⊆ Im so that ak ∈ Im for every k. But then J = (a1, ⋅⋅⋅ as) ⊆ Im ⊆ Im+1 ⊆ ⋅⋅⋅  
⊆ J. Conclude that Ij = Im for every j ≥ m. 

 
19. (a) Let Im = (2m) in Z. Then I1 ⊇ I2 ⊇ … is an infinite descending chain. 
 (b) Suppose R has DCC and 0 ≠ a ∈ R. By DCC there exists n such that (aj) = (an) for every j ≥ n. 

In particular, (an) = (an + 1) so that an = an + 1 c for some c ∈ R. Since R is an integral domain, 
factors of a can be cancelled so that 1 = ac. But then a is a unit. 

 
20. Since (a), (b) ⊆ (d) conclude that d | a and d | b. If c | a and c | b then (a) and (b) ⊆ (c). Since a, b 

generate (d) we have (d) ⊆ (c) so c | d .  
 
21. Answered in the text. 
 
22. Let a1, ... an be elements that are not all zero and let (d) be the ideal generated by a1, .... an. The same 

argument as in Exercise 20 shows that d is a gcd. 
 
23. If p|b  then by Exercise 8 there exist x, y ∈ R such that px + by = 1R. Then cpx + (bc)y = c is a 

multiple of p. 
 
24. If I is an ideal of R then by (i), I is generated by some a1,..., an. That is, I = (a1) + ⋅⋅⋅ + (an). Choose 

n minimal here and suppose n  >  l .  Then by (ii) (a1) +(a2) = (c) for some c, and I = (c) + (a3) ⋅⋅⋅ + 
(an) is a sum of n – 1 principal ideals, contrary to the minimality. Therefore n = 1 and I is principal. 

(d) Clearly d = (r, (s, t)) is a divisor of r and of (s, t), hence is a divisor of r, s, and t. If c is any
common divisor of r, s, and t, then c | r, c | s, and c | t, so that also c | (s, t). Thus c | d, so
that d is a gcd of r, s, and t. Similarly ((r, s), t) is a gcd of r, s, and t, so that the two are
associates.

25. (a) Since s ∼ t, we have s = tu for some unit u. Multiplying on the left by r gives rs = rtu = (rt)u.
Since rs is the product of rt by a unit, we have rs ∼ rt.

(b) Let d = (r, s) and e = (r, t). By Exercise 10.1.4 it suffices to show that d | e and e | d. Since
d | s = tu, we have dx = tu for some x ∈ R and thus dxu−1 = t so that d | t. Thus d | r and
d | t, so that d | (r, t). Similarly, e | t so that e | tu = s and thus e | r and e | s so that e | (r, s).
Thus d and e are associates.

(c) By Exercise 10.1.4 it suffices to show that r(s, t) | (rs, rt) and (rs, rt) | r(s, t). Certainly
r(s, t) | rs since (s, t) | s, and similarly r(s, t) | rt. Thus r(s, t) | (rs, rt). For the other
direction, r | (rs, rt), so that (rs, rt) = rd for some d. Since rd | rs and R is an integral
domain, it follows that rs = rdk ⇒ s = dk so that d | s. Similarly, d | t, so that d | (s, t) and
hence (rs, rt) = rd | r(s, t).
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Arithmetic in Integral Domains

 

27. Suppose |p c  and |p .d  By Exercise 8. (p, c) ~ (p, d) ~ 1R. By Exercise 26, (p, cd) ~ 1R contrary to the 
hypothesis p | cd. 

28. Let a = pl ⋅⋅⋅ ps, b = ql⋅⋅⋅ql where pi, qj are irreducibles. Since (a, b) ~ 1R, no pi and qj are associates. 
Since a | c show that c = p1⋅⋅⋅ psps+1 ⋅⋅⋅ pn for some irreducibles pi for s < i ≤ n. Since b | c the factor ql 
⋅⋅⋅ qt must occur among these irreducible factors, but not among the first s terms. Therefore they 
occur among Ps+l ⋅⋅⋅ Pn so that ab |  c .  

 

29. Answered in the text. 
 

30. Using the notation in the proof of Corollary 9.18 we let sj be the maximum of m11, m21,..., mn1. Use 
Theorem 9.13 to verify that ⋅ ⋅ ⋅1 2

1 2
ts s s

tp p p  is the 1cm. 
 

31. By definition, s is the 1cm of a, b if and only if s ∈ (a) ∩ (b) and whenever c ∈ (a) ∩ (b) then c ∈ 
(s). This says: (a) ∩ (b) = (s). 

26. By Exercise 25(c), (bd, cd) ∼ d(b, c) ∼ d1R = d. Then by Exercise 25(b), 1R ∼ (b, d) ∼ (b, (bd, cd)).
But (b, (bd, cd)) ∼ ((b, bd), cd) by Exercise 25(d). Now, (b, bd) ∼ b(1R, d) by Exercise 25(c), and
1R is a gcd of 1R and d, so that (b, bd) ∼ b. Then by Exercise 25(b), since (b, bd) ∼ b we get
((b, bd), cd) ∼ (b, cd). Putting this string of associates together gives

1R ∼ (b, d) ∼ (b, (bd, cd)) ∼ ((b, bd), cd) ∼ (b, cd),

as desired.

32. (a), (b) are direct verifications of the definitions, and part (c) is done in the Hint. 

33. (⇐) If p(x) is a prime integer then it is prime by Exercise 16. Suppose p(x) is irreducible in Q[x] and 
has constant term ±1. If it factors in QZ[x] one of the terms must be of degree 0. Compare the 
constant terms to show that it must be ±1, and hence is a unit. 

 (⇒) Let p(x) be irreducible in QZ[x]. If it is constant then factorizations must involve only integers, so 
p is a prime number. Suppose deg p(x) ≥ 1 and p(x) = a(x)b(x) in Q[x]. Claim. p(x) = a'(x)b'(x) in 
QZ[x] where deg a'(x) = deg a(x) and deg b'(x) = deg b(x). 

 Proof. Suppose the constant terms are =(0) /a r s  and =(0) /b u v  in lowest terms in Q. Since z is an 
integer so that s | u  and v | r  by Theorem 1.5. Define ='( ) ( / ) ( )a x s v a x  and ='( ) ( / ) ( )b x v s b x . Then 

='(0) /a r v  and ='(0) /b u s  are integers. 
 Therefore p(x) must be irreducible in Q[x]. Furthermore if p(0) is a multiple of some prime number q, 

then = ⋅( ) (1/ ) ( )p x q q p x  is a nontrivial factorization in QZ[x]. Then the integer p(0) is not divisible by 
any prime number so it must equal ±1. 

 The final assertion can be quickly deduced from the following claim. The proofs are omitted. Claim. 
(1) Let p ∈ Z be prime and f(x)∈ QZ[x]. Then p | f(x) in QZ[x] if and only if p | f(0) in Z. 

 (2) Let f(x), p(x) ∈ QZ[x] with p(x) irreducible. Then p(x) | f(x) in QZ[x] if and only if p(x) | f(x) in Q[x]. 
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10.3 Factorization of Quadratic Integers

34. By the unique factorization in Q[x]. f(x) is a product of irreducible. Among these factors, replace each 
associate of x by x, and replace every p(x) which is not an associate of x by p(0)–1p(x). These 
adjustments leave a constant term factor, so that f(x) = cxnp1(x) ⋅⋅⋅ pk(x) where c ∈ Q, n ≥ 0 and each 
pj(x) is irreducible in Q[x] with constant term 1. By Exercise 33 each pj(x) is irreducible in QZ[x]. 
(Note that if n = 0 then c ∈ Z.) Uniqueness. With the two given factorizations, no pi(x) or qj(x) is an 
associate of x. Also if pi(x) is an associate of qj(x) in Q[x] then pi(x) = qj(x) since their constant terms 
equal 1. The uniqueness in Q[x] then implies that n = m, k = t  and the qj(x)’s are just a 
rearrangement of the pi(x)'s. Compare the leading coefficients of the two factorizations to conclude 
finally that c = d. 

35. By Exercise 34 every nonzero f(x) ∈ QZ[x] can be written as f(x) = cxnpl(x)
n1⋅⋅⋅ pk(x)

nk where c ∈ Q, n 
≥ 0, the p1(x), ..., pk(x) are distinct irreducibles with constant term 1, and each nj ≥ 0. This 
decomposition is unique up to the order of the factors. If g(x) = c'xmp1(x)

m1⋅⋅⋅pk(x)
mk is factored 

similarly (using the same set of irreducibles by inserting zero exponents), then let d = min{n, m} and 
di = min{ni, mi}. The gcd is (c, c')xdp1(x)

d1⋅⋅⋅pk(x)
dk as in Theorem 9.18. 

36. (a) (⇒) If f(x) = p is prime then any factorization of it in Z[x] must already be in Z. So it remains 
irreducible. Suppose f(x) ∈ Z[x] has the gcd of its coefficients = 1 and f(x) is irreducible in Q[x]. If f(x) 
= a(x)b(x) in Z[x] then either a(x) or b(x) is a constant, by the irreducibility in Q[x], Since the gcd of 
the coefficients is 1 that constant must be a unit (i.e. it is ±1). 

 (⇐) Suppose f(x) is irreducible in Z[x]. If f(x) = n is a nonzero constant, it is irreducible in Z so it is a 
prime. Suppose deg f(x) > 0. Theorem 4.22 implies that f(x) is irreducible in Q[x]. If the gcd of the 
coefficients of f(x) is > 1 factor it out to get a nontrivial factorization in Z[x]. Therefore that gcd is 1. 

 (b) Any nonzero f(x) ∈ Z[x] can be factored as a nonzero constant times a product of (zero or more) 
irreducibles in Q[x]. Altering each irreducible by a constant we may assume that each is in Z[x] and 
has relatively prime coefficients. All those constants are put together to get: f(x) = cp1(x)p2(x) ⋅⋅⋅ pk(x) 
where (by part (a)) each pj(x) is an irreducible in Z[x] of degree ≥ 1. By Lemma 4.21 applied to the 
product of the pj(x)'s, the gcd of the coefficients of p1(x)p2(x) ⋅⋅⋅ pk(x) is 1. Therefore c must be an 
integer (in fact c = gcd(coefficients of f(x))). Factor c into primes in Z to obtain the factorization of 
f(x) into irreducibles in Z[x]. The uniqueness follows from the unique factorization in Z and in Q[x]. 

1. Answered in the text. 
 
2. Since every power ωk reduces to one of 1, ω,..., ωp – 1 the closure properties are easily checked. Hence 

Z[ω] is a subring of  C. 
 
3. Answered in the text. 
 
4. If it were Euclidean it would be a UFD contrary to the Example after Theorem 9.23. 
 
5. Let = /a r s  where r, s are coprime integers. By hypothesis a is a root of some xn + cn–1x

n–1 + ⋅⋅⋅ + c0 
where all the cj ∈ Z. By the Rational Root Test (Theorem 4.20), s | l so that a ∈ Z. 

 
6. (a) irreducible. (b) reducible (2 + i)(2 – i) (c) irreducible 
 
7. Check that 1 ± −7  and 2 are irreducible by noting that if any of them factored nontrivially we 

would find some a with N(a) = 2. No such a exists. 
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8. (a) 3 (b) 7 (c) (2 – i)(l + 2i) (d) (1 + i)(l + 2i)(l – 4i) 
 
9. (a) Their norms are primes. 
 

(b) 11 – 7 2  = u⋅(5 + 2 ) and 2 + 2  = u–1⋅(2 – 2 ) where u = 3 – 2 2  is a unit with 
2 2 . 

 
10. 9 = 3⋅3 = (2 + −5 )⋅(2 – −5 ). These factors are irreducible since mere is no element a with N(a) 

= 3. 
 
11. 10 = 2.5 = (2 + −6 )⋅(2 – −6 ). The factors are irreducible since there is no element a with N(a) = 

2 or 5. 
 
12. 6 = 2⋅3 = (2 + 10 )(–2 + 10 ). The factors are irreducible since there is no integer solution to x2 – 10y2 

= 2, 3 (look at it (mod 5)). 
 
13. N(a) = 1 occurs if and only if a = ±l. N(a) = 6 if and only if a = ±l ± −5 . N(a) = 4 if and only if 

a = ±2. N(a) = 2, 3 or 12 is impossible. Checking these quantities we see that the common divisors 
are: ±1, ±2, ±(1 + −5 ). None of these is divisible by all the others. 

 
14. If a is a common divisor then N(a) divides N(2) = 4 and N(l + −5 ) = 6, so it divides 2. Since N(a) 

= 2 is impossible we have N(a) = l and a = ±l. Therefore 1 is aged. If l = 2a + (l + −5 )b we set a 
= x + y −5 , b = u + v −5  and conclude that 2x + u + 5v = 1 and 2y + u + v = 0. This implies u 
+ v is both even and odd, which is impossible. 

 
15. In a UFD a principal ideal (c) is prime if and only if c is irreducible (see Theorem 9.16 and Exercise 

9.1.21). Note that we can cancel principal ideals: If I, J are ideals and 0 ≠ a ∈ R then (a)I = (a)J 
implies I = J. Suppose (c) is the given ideal and factor c = p1p2⋅⋅⋅pk where pj is irreducible. Then (c) is 
the product of the prime ideals (pj). Suppose (c) = Q1 Q2 ⋅⋅⋅ Qm is another factorization into prime 
ideals. Re-number the Q's to assume Ql is minimal among the Qj. Since (p1p2⋅⋅⋅pk) = (c) ⊆ Q1 and Q1 is 
prime, there is some j where (pj) ⊆ Ql (see Exercise 6.3.18). Re-numbering the p's, assume j = 1. 
Similarly Ql ⋅⋅⋅ Qm = (c) ⊆ (p1) so there is some i with Qi ⊆ (pl). By the minimality of Ql, conclude 
that Ql = (pl). Cancel this ideal to conclude that (p2 ⋅⋅⋅ pk) = Q2 ⋅⋅⋅ Q . Continue this process to show 

u–1 = 3 + 

that each Qi equals one of the (pj) and the uniqueness of factorizations in R finishes the proof. 

16. If R is any integral domain and a, b ∈ R then (a)(b) = (ab). This follows easily from the definition of 
the product ideal. 

 
17. (a) Answered in the text. 

(b) if r ; s (mod 2) write  τ = 2m + s. Then r + s −5  = 2m = s(l + −5 ). 
 
18. P is generated by a = 2 and b =  l+ −5,  so that P2 is generated by the products a2, ab and b2. Since 

each of these is a multiple of 2 conclude: P2  ⊆ (2). On the other hand 2 = ab – a2 – b2 ∈ P2 so that 
(2) ⊆ P2. 

 
19. (a) If r = 3m + s then certainly r + s −5  ∈ Q1 Conversely suppose that r + s −5  = 3(x + y −5 ) + 

(1 + −5 )(u + v −5 ) for some integers x, y, u, v. Reduce everything modulo 3 to find: r ≡ u – 5v ≡ u 
+ v ≡ s (mod 3). 
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10.4 The Field of Quotients of an Integral Domain

20. If 2 is in the ideal (a) where a = r + s −5  then a | 2 so that N(a) | 4. Then r2 + 5s2 = N(a) ≤ 4 
forcing s = 0. 

 (b) r + s −5  = r – s + s(I + −5 ) ≡ r –  s  (mod Qt). Adjusting by a multiple of 3 we find: r + 
s −5  ≡ 0, 1 or 2 (mod Ql). These three values are not congruent by part (a). Hence there are 3 
cosets. 

 (c) The natural ring homomorphism ϕ → − 1:  [ 5]/Q  is surjective by part (b). Its kernel is the 
ideal (3) and the First Isomorphism Theorem provides the required isomorphism. 

 (d) The arguments are easily altered to show that r + s −5  ∈ Q2 if and only if r ≡ – s (mod 3) and 
that − ≡2 3[ 5]/ .Q  

 (e) Q1 Q2 is generated by the products 3⋅3 = 9, 3⋅(l + −5 ), 3⋅(l – −5 ) and (1 + −5 )⋅(1 – −5 ) 
= 6. Since each term is a multiple of 3, Q1 Q2 ⊆ (3). Since 3 = 9  –  6  ∈  Q1Q2 the reverse inclusion 
holds. 

 
21. Lemma. If α, β ∈ Z[ d ] with (α) ⊆ (β) and N(α) = ±N(β) then (α) = (β). 
 Proof. Given α = βγ for some γ. Compute mat N(γ) = ±1 so that γ is a unit in Z[ d ]. Q.E.D. Now 

suppose (a1) ⊆ (a2) ⊆ (a3) ⊆ ⋅⋅⋅ is a chain of principal ideals in Z[ ].d  Then ai+1 | ai in Z d  so that 
N(ai+1) | N(ai) in Z. Since Z has ACC on ideals there exists m so that N(ai) and N(am) generate the 
same ideal for every i ≥ m. That is, N(ai) = ±N(am) and by the Lemma, (ai) = (am) for every i ≥ m. 

 
22. (a) If a = x + y d  let t be the 1cm of the denominators of x, y. Then = /x r t  and = /y s t  where r, s, 

t are relatively prime integers. 
 (b) Multiply out (x – a)(x – a ). 

 
(c) If p(x) factors in Q[x] then its root a lies in Q, but s ≠ 0. 

 
(d) Done in the Hint. 

 

(e) By (b) and (d) show that t | 2r and t
2
 | (r

2
 - ds

2
), so that t

2
 | 4ds

2
. Suppose p is an odd prime and  

p | t. Then p | r so that s and hence 4s2 are prime to p. But then p2 | d contrary to the hypothesis 
that d is square free. Therefore t = 2m for some m. If m > l then 4 | t so that 2 | r and s must be odd. 
Then 16 | 4d forcing 4 | d with a contradiction as before. Therefore m ≤  l .  

 
(f) Done in the Hint. 
(g) Suppose t = 2. By (b) and (d), a is a quadratic integer if and only if r2 ≡ ds2 ≡ s2 (mod 4). This occurs 

if and only if r ≡ s (mod 2). Since (r, s, t) = 1 we know r, s are not both even. 
 (h) This summarizes parts (f) and (g). 

 

1. (1) 0Rd = b0R. (2) a(bk) = b(ak) (3) ac = ca. 
 
2. (a) [a, b] + ([c, d] + [e, f]) = [a(df) + b(cf + de), b(df]] and ([a, b] + [c, d]) + [e, f] = [(ad + bc)f + 

(bd)e, (bd)f]. They are equal. 
(b) [a, b]⋅([c, d]⋅[e, f]) = [a(ce), b(df)] and ([a, b]⋅[c, d])⋅[e, f] = [(ac)e, (bd)f]. They are equal. 
(c) [a, b]⋅[c, d] = [ac, bd] = [ca, db] = [c, d][a, b]. 

 
3. Answered in the text. 
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4. View R = R* ⊆ F and note that [a, b] = [ab–1, 1R] ∈ R. 

5. Answered in the text. 

6. Define f : R → Q[ ]d  by f(x + y d , u + v d ) = (xu – δ)/dyv  + δ( – )/yu xv d  where δ2 = u2 – 
dv2. Verify that f is an isomorphism. 

7. If R is a ring with Z ⊆ R ⊆ Q, it is easy to check that R is an integral domain Q as its field of 
quotients. As in Exercise 3.1.23, for each prime p there is a ring Rp consisting of all rationals having 
denominator equal to a power of p. These rings are all different since 1/p  ∉ Rp for unequal primes p, 
q. Compare Exercise 6.1.40. 

8. Well-defined. If [a, b] = [c, d] then ad = bc so that f(a)f(d) = f(b)f(c). Then [f(a), f(b)] = [f(c), f(d)]. 
Therefore f*( / )a b  does make sense. 

 Homomorphism. + = + = + = +

= + = +

* (( / ) ( / )) * (( )/ ) ( )/ ( ( ( ) ( ) ( ) ( ))/ ( ) ( )

( )/ ( ) ( )/ ( ) * ( / ) * ( / ).

f a b c d f ad bc bd f ad bc f bd f a f d f b f c f b f d

f a f b f c f d f a b f c d
 

= = = = =* (( / )( / )) * ( / ) ( )/ ( ) ( ) ( )/ ( ) ( ) ( ( )/ ( ))( ( )/ ( )) * ( / ) * ( / ).f a b c d f ac bd f ac f bd f a f c f b f d f a f b f c f d f a b f c d  

 Injective. =/ 0Fx y  if and only if x = 0R. Therefore =
1

* ( / ) 0Ff a b  implies f(a) = 0Rl. Since f is 

injective, a = 0R and =/ 0 .Fa b  

 Surjective. For any /x y  ∈ Fl we have x = f(a), y = f(b) for some a, b ∈ R since f is surjective. Then 
=* ( / ) / .f a b x y  

9. If =/ /a b c d  in F then ad = bc in R ⊆ K. Then ab–1 = cd–1 in K. 
 

10. (a) Done in the Hint. 
 (b) − − −+ = + = + = + = +1 1 1(( / ) ( / )) (( )/ ) ( )( ) ( / ) ( / ).f a b c d f ad bc bd ad bc bd ab cd f a b f c d  Also 

− −−= = = =1 1 1(( / )( / )) ( / ) ( )( ) )( ) ( / ) ( / ).(f a b c d f ac bd ac bd ab cd f a b f c d  
 
11. Answered in the text. 
 
12. (a) The map ϕ : Z → R by ϕ(n) = n 1R is a homomorphism (see Exercise 3.2.21). Since R has 

characteristic 0 this ϕ is injective, so that Z is isomorphic to the subring ϕ(Z) ⊆ R. 
(b) If K is a field of characteristic 0, view Z ⊆ K by part (a). By Theorem 9.31 K has a subfield ≡ Q. 

 
13. The identity element 1R was not mentioned in this Section before Lemma 9.22. Since [a, a][x, y] = [ax, ay] 

= [x, y] the element [a, a] is an identity element in F. The rest of the proof that F is a field is 
unchanged. Define α : R → F by α(r) = [ra, a] for any nonzero a ∈ R. This map is well-defined since 
[ra, a] = [rb, b] for any nonzero a, b ∈ R. It is routine to check that α is a ring homomorphism. Since 
R has no zero divisors, α is injective, so that R ≅  α(R) ⊆ F. 

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Arithmetic in Integral Domains156 Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



3. Answered in the text. 
 
4. Suppose g(x) = a(x)b(x) in R[x] and a(x) is nonconstant. Write a(x) = ca1(x) and b(x) = c'bl(x) where 

c, c' ∈ R and al(x), bl(x) are primitive. Then g(x) = cc'al(x)bl(x) and Gauss's Lemma and Theorem 
9.35 imply that cc' is a unit in R. Therefore c is a unit and a(x) is primitive. 

 
5. If f(x) = anx

n + ⋅⋅⋅ + a1x + a0 and c ∈ R then c | f(x) if and only if c is a common divisor of the 
coefficients aj. The claim quickly follows. 

 
6. If f(x) = a(x)b(x) is a nontrivial factorization in R[x] then the irreducibility in F[x] implies that one of 

the factors has degree 0. If a(x) = c has degree 0, then c | f(x) and the primitivity implies c = a(x) is 
a unit. 

 
7. Answered in the text. 
 
8. Since R[x] is an integral domain it follows that R is an integral domain. Let a ba a nonzero element of 

R. The ideal J generated by a and x is principal, say J = (f(x)). Then a = f(x)g(x) for some g(x), and 
degrees imply that f(x) = c ∈ R. Then x = ch(x) for some h(x) and leading coefficients imply that c is 
a unit in R. Therefore J = R[x] and have IR = a⋅u(x) + x⋅v(x) for some u(x), v(x) ∈ R[x]. Comparing 
constant terms, we see that a is a unit in R. Hence R is a field. 

 
9. The key step is that every element of F can be written as /r s  where r, s ∈ R and 1R  is a gcd of r, s. 

(For any / ,a b  factor out and cancel the gcd of a and b.) Then if r | a0s
n conclude (using Exercise 

9.2.29) that r | a0. The proof of Theorem 4.20 is easily completed. 
 
10. Let f(x) ∈ R[x] and f(x) = a(x)b(x) in F[x]. We may write f(x) = rfl(x), a(x) = cal(x) and b(x) = c'bl(x) 

where r ∈ R, c, c ' ∈ F and f1(x), al(x), b1(x) are primitive in R[x]. Then fl(x) and al(x)bl(x) are 
primitive and are associates in F[x], hence they are associates in R[x], by Corollary 9.36. Therefore 
f(x) = rua1(x)b1(x) for some unit u, and real(x), bl(x) have the same degrees as a(x), b(x), respectively. 

 
11. The same proof works, using Theorem 9.15 in place of Theorem 1.8. 
 
12. The irreducible element 1 – i divides –6, 4i and 1 + 3i, and ( l  –  i ) 2=–2 i  does not divide 1 + 3i. 

Eisenstein's Criterion applies. 

10.5 Unique Factorization in Polynomial Domains

1. (⇒) Suppose p is irreducible in R and p = a(x)b(x) in R[x]. Then a(x), b(x) have degree 0 so they are in 
R, and one of them must be a unit. (⇐) Answered in the text. 

 
2. The constant polynomials 2 and 3 in Z[x] are associates in Q[x] but not in Z[x], There is no 

contradiction since they are not primitive. 
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Chapter 11 
 

Field Extensions 

1. Check the axioms to show that M( ) is a vector space over . An element of M( ) is 
given by an ordered 4-tuple, with addition and scalar multiplication given componentwise. 
Then M( ) is essentially the same as 4. See Exercise 6. 

 
2. Check the axioms. This is a special case of Exercise 6. 

 
3. The axioms showing that [x] is a vector space over  immediately follow from the 

knowledge that [x] is a commutative ring containing  as a subring. 
 

4. Checking the axioms is straightforward. In fact, since the operations are restrictions of the 
operations of [x], the important thing to check is that n[x] is closed under addition and 
scalar multiplication. 

 
5. From group theory recall that the direct product of groups is a group. Then Fn = F × F × 

⋅⋅⋅ × F is an abelian group, using componentwise operations. Checking the axioms for vector 
spaces is routine. For example, suppose a ∈ F and v1, v2 ∈ Fn. Express v1 = (s1, ..., sn) and 
v2 = (t1,..., tn) and compute a(v1 + v2) = a⋅(s1 + t1, ..., sn + tn) = (a(sl + t1), ..., a(sn + tn)) 
= (as1 + at1, ..., asn + atn) = (as1, ..., asn) + (at1, ..., atn) = av1 + av2. 

 
6. An expression w = c1v1 + ⋅⋅⋅ + cnvn exists for some cj since {v1, ..., vn} spans K. Then w = 

0⋅w + c1v1 + ⋅⋅⋅ + cnvn also lies in the span of {w, v1, ..., vn}. 
 
7. Answered in the text. 

 
8. Suppose c1(1, 0, 0) + c2(0, 1, 0) + c3(0, 0, 1) = (0, 0, 0) for some ci ∈ . To Show: each cj 

= 0. Multiply this out to find: (c1, c2, c3) = (0, 0, 0) and use the definition of equality in 3 
to conclude that c1 = c2 = c3 = 0. 

 
9. Answered in the text. 

 
10. Suppose av = 0v for some a ∈ F. If a ≠ 0F then a–1 exists in F and v = 1Fv = (a–1a)v = a–1(av) =  

a–1 0v = 0v, contrary to hypothesis v ≠ 0v. (We used the property 0Fv = 0v proved below in 
Exercise 21(a).) 
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11. For any vi, note that 1F⋅0v + 0Fv1 + ⋅⋅⋅ + 0Fvn = 0v. (Again Exercise 21(a) was used.) 
 

12. If au + b(u + v) + c(u + v + w) = 0v for some a, b, c ∈ F, then (a + b + c)u + (b + c)v + cw 
= 0v. By the independence of u, v, w conclude: a + b + c = 0F, b + c = 0F and c = 0F. Hence a 
= b = c = 0F. 

 
13. Answered in the text. 

 
14. A dependence relation among the elements of the subset is automatically a dependence 

relation among the elements of T, using coefficient 0F for those elements not in the subset. 

15. See the answer in the text. If xb + y(c + di) = 0 for some x, y ∈  then xb + yc = 0 and 
yd = 0. Since b, d ≠ 0 it follows that x, t = 0. Hence the set in linearly independent. 

 
16. If v1,. . . , vn is a basis then every element of K equals a1v1 + ⋅⋅⋅ + anvn for some ai ∈ p. 

There are pn possible choices for these coefficients, so |K| ≤ pn. 
 

17. Since vi = ci
–1 (civi) the new set also spans K. If a1(c1v1) + ⋅⋅⋅ + an(cnvn) = 0v then the 

independence of the vi implies that aici = 0F and hence ai = 0F for every i. 
 

18. For any f(x) ∈ 2[x], divide by x2 + x +1 to find a, b ∈ 2 with f(x) ≡ ax + b (mod x2 + x 
+ 1). Therefore [f(x)] = a[x] + b[1] so the set spans everything. Also If a[x] + b[1] = 0 for 
some a, b ∈ 2 then ax + b ≡ 0 (mod x2 + x + 1). Hence a = b = 0. 

 
19. For any vectors w1, …, wk the set {0v, w1, ..., wk} is linearly dependent. This is proved by 

exhibiting a nontrivial relation 1F⋅0v + 0F⋅w1 + ⋅⋅⋅ + 0F⋅wk = 0v. Therefore the vector 0v can 
never be an element of an independent set. 

 
20. For any w ∈ L the hypothesis implies that w = c1vl + ⋅⋅⋅ + cnvn for some cj ∈ F. But 

certainly cj ∈ K as well, so every w is a linear combination of {v1, ..., vn} over K. 
 

21. (a) 0Fv = (0F + 0F)v = 0Fv + 0Fv and since V is an abelian group conclude 0v = 0Fv. 
 (b) a0v = a(0v + 0v) = a0v + a0v. Since V is an abelian group conclude 0v = a0v. 
 (c) av + (–a)v = (a – a)v = 0Fv = 0v. Therefore (–a)v = –(av). 
 Similarly av + a(–v) = a(v + (–v)) = a0v = 0v so that a(–v) = –(av). 

 
22. (a) Suppose 2 0a b+ =  for some a, b ∈  which are not both zero. If b = 0 then a = 0, 

contrary to hypothesis. Then b ≠ 0 and 2 /a b= −  lies in . This is a contradiction since 
2  is irrational. 

 (b) If 3 2a b= +  for some a, b ∈  then 3 = (a2 + 2b2) + 2 2ab . Since 2  is 
irrational conclude that 2ab = 0. If a = 0 then 3 = 2b2 so that 6 = (2b)2. If b = 0 then 
3 = a2. Since 6  and 3  are irrational these equations are impossible. 

 
23. (a) Answered in the text, (b) Suppose 2 3 6 0a b c d+ + + =  for some a, b, c, d ∈  

which are not all 0. Then c, d are not both 0, since {1, 2}  is independent over . 
Then 13 ( 2)( 2) ( 2),a b c d −= + + ∈  which contradicts part (a) (or Exercise 
22(b)).  
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24. If v is rational then v⋅1 + (–1)⋅v = 0 is a dependence relation. Conversely, if {1, v} is 
linearly dependent then a + bv = 0 for some rational a, b which are not both 0. Then b ≠ 0 
(for if b = 0 then a = 0). Then v = /a b  ∈ . 

 
25.  Suppose there is a relation c01 + c1x + c2x

2 + ⋅⋅⋅ + ckx
k = 0 in [x], for some cj ∈ . By 

basic properties of polynomials, each cj = 0. This proves the independence. 
 

26. By definition, n[x] is spanned by {1, x, x2, ⋅⋅⋅, xn}. By Exercise 25 this set is also linearly 
independent, so it is a basis. Therefore n[x] has dimension n + 1. 

 
27. Let e1 = (1, 0, ..., 0), e2 = (0, 1, 0 , ..., 0), etc. Then any v ∈ Fn can be expressed: v = (s1, 

s2, ..., sn) = s1el + s2e2 + ⋅⋅⋅ + snen for some sj ∈ F. Therefore {e1, ..., en} spans Fn. That set 
is also linearly independent (compare Exercise 8), so it is a basis. Conclude that Fn has 
dimension n. 

 
28. Suppose K has only one basis {u1, u2 …, un} over F. If n > 1 it is not hard to check that 

{u1 + u2, u2, …, un} is also a basis. The uniqueness implies that u1 equals one of the 
elements of the second basis, but each case is impossible by the independence of the ui. 
Therefore n = 1 and K = F. For any nonzero a ∈ F, {a} is a basis of F over F 
(independent since a ≠ 0 and it spans since x = (xa–1) a for any x ∈ F). The uniqueness 
implies F has only 2 elements, so F ≅  2. 

29. If a(u + v) + b(v + w) + c(u + w) = 0v then (a + c)u + (a + b)v + (b + c)w = 0v and the 
independence implies a + c = a + b = b + c = 0F. These imply a = b = c and 2a = 0F. 
Then a = b = c = 0F since 2 is invertible in F. Note that 2u = (u + v) – (v + w) + (u + 
w). Since 2 is invertible, u is in the span of {u + v, v + w, u + w}. Similarly v and w are in 
this span. Since {u, v, w} spans V it follows that {u + v, v + w, u + w} also spans V. 

 
30. (⇒). Since the set spans V every element can be written as a linear combination. For the 

uniqueness, suppose c1v1 + ⋅⋅⋅ + cnvn = d1v1 + ⋅⋅⋅ + dnvn. Then (c1 – d1)v1 + ⋅⋅⋅ + (cn – dn)vn 
= 0v. By the independence conclude that ci = di for every i. 

 (⇐) Since every element is a linear combination of the vi, the set spans V. By the 
uniqueness, a relation a1v1 + ⋅⋅⋅ + anvn= 0v must coincide with the relation 0Fv1 + ⋅⋅⋅ + 0Fvn 
= 0v. Hence ai = 0F for all i. 

 
31. By Theorem 5.10 L is a field. Corollary 5.5 says that every element of L can be expressed 

uniquely as some [a0 + a1x + ⋅⋅⋅ + an–1x
n–1]. That is, every element is written in a unique 

way as a linear combination of [1F], [x],…,[xn–1]. By Exercise 30, [L : F] = n. 
 

32. If S is linearly dependent, Lemma 10.1 implies that some vi is a linear combination of the 
previous vj's. Then S' = {v1, ..., vi–1, vi+1, ..., vt} still spans K. If S' is linearly independent 
then it is a basis. Otherwise, repeat the argument with S' in place of S.  

33. Answered in the text. 
 

34. V does not have a finite basis. By Exercise 32 deduce that there is no finite subset of V 
which spans V. If V = {0v} then V is spanned by the one element set {0v}. This 
contradiction shows that there exists v ∈ V with V ≠ 0v. By Exercise 10 {v} is a linearly 
independent set of 1 element. Use induction on k that V contains a linearly independent set 
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of k elements. The case k = 1 is done. Suppose the statement is true for k = n. That is, 
suppose there is a linearly independent set {v1, ..., vn} in V. By hypothesis this finite set 
cannot span V so there exists w ∈ V which is not expressible as a linear combination of v1, 
..., vn. By Lemma 10.1 the set {v1 ..., vn, w} is a linearly independent set of n + 1 elements. 
This is the induction step needed. 

 
35. If that set is linearly dependent then a1(w – v1) + ⋅⋅⋅ + an(w – vn) = 0v for some ai not all 

zero. Then a1v1 + ⋅⋅⋅ + anvn = δw = δc1v1 + ⋅⋅⋅ + δcnvn where δ = a1 + ⋅⋅⋅ + an. Since the vi 
are independent, ai = δci for all i. Consequently δ ≠ 0F and c1 + ⋅⋅⋅ + cn = δ(a1 + ⋅⋅⋅ + an) 
= 1F. Conversely if that sum equals 1F then c1(w – v1) + ⋅⋅⋅ + cn(w – vn) = w – (c1v1 + ⋅⋅⋅ + 
cnvn) = 0F. 

 
36. Done in the Hint. 

 
37. (i) ⇒ (iii) is done in the text. Clearly, (iii) ⇒ (i) and (ii). 
 (ii) ⇒ (iii): By Exercise 36 the given set S is a subset of a basis T. Since [K : F] = n, T has 

n elements and S = T. 
 

38. The proof of Theorem 10.4 also settles this question. 
 Corollary. Let F, K, L be fields with F ⊆ K ⊆ L. If [L : F] is finite then [L : K] and [K : F] 

are also finite. 
 Proof. Suppose {u1, ..., um} is a set of elements of K which is independent over F, and {v1, 

..., vn} is a set of elements of L which is independent over K. The proof of Theorem 10.4 
shows that {uivj} is independent over F. By Exercise 36 this set is contained in a basis of L 
over F, so that mn ≤ [L : F]. If either [L : K] or [K : F] is infinite we could arrange m or n 
to be arbitrarily large, which is impossible. 

 
39. If F ⊆ E ⊆ K and [K : F] = p is finite then Exercise 38 and Theorem 10.4 imply that p = 

[K :  E] ⋅ [E : F]. Since p is prime, one of these factors is 1, so that either E = K  or E = F. 

 
1. Let F be the intersection. If a, b ∈ F then a + b and ab lie in every Ei so they are in F. 

Also if a ≠ 0F then a–1 lies in every Ei. so it also lies in F. 
 

2. u2 ∈ F(u) and F(u2) is the smallest field containing F and u2. 
 

3. Answered in the text. 
 

4. Clearly 3 + i ∈ (i) and i = (3 + i)–3 ∈ (3 + i). Hence (3 + i) = (i). Similarly (1 – 
i) = (i). 

 
5. (a), (c) done in the text. (b) Root of (x4 – 1)2 + 2. 

 
6. Suppose u2 is a root of f(x) = xn + cn–1x

n–1 + ⋅⋅⋅ + c0 ∈ K[x]. Then u is a root of f(x2) = x2n 
+ cn–1x

2n–2 + ⋅⋅⋅ + c0 ∈ K[x].  
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7. Answered in the text. 
 

8. If u + v is a root of some f(x) ∈ F[x], then u is a root of f(x + v) ∈ F(v)[x]. 
 

9. Answered in the text. 
 

10. If 0F ≠ c ∈ F and u + c is a root of f(x) ∈ F[x] then u is a root of f(x – c) ∈ F[x]. If cu is a 
root of g(x) ∈ F[x] then u is a root of g(c–1x) ∈ F[X]. Therefore u + c and cu are 
transcendental. By Exercise 6, u2 is also transcendental. 

 
11. degree 6, since x6 – 2 is irreducible by Eisenstein. 

 
12. i = b–1(a + bi) –b–1 a ∈ (a + bi). Therefore  ⊆ (a + bi) ⊆ . 

 
13. F ⊆ F(u) ⊆ K. Apply Exercise 10.2.39. 

 
14. By the Rational Root Test, any rational root must be in {±1, ±2, ±4}. Check these to see 

that there are no roots in , hence no linear factors. As in Section 4.5, If the polynomial 
factors nontrivially then: x4 – 16x2 + 4 = (x2 + ax + b)(x2 + cx + d) for some a, b, c, d ∈ 

. Then a + c = 0, ac + b + d = –16, bc + ad = 0 and bd = 4. If a = 0 then c = 0, and b 
+ d = –16, which is impossible for integers with bd = 4. Then c = –a ≠ 0, and a(–b + d) = 
0 implies b = d. Consequently –a2 + 2b = –16 and b2 = 4. Then b = ±2 and a2 = 20 or 12, 
which is impossible in . Hence no factorization exists. 

 
15. Answered in the text. 

 
16. See Exercise 10. 

 
17. (a) (x2 – 1)2 – 5 = x4 – 2x2 – 4 (b) (x2 + 1)2 + 24 = x4 + 2x2 + 25. These can be proved 

irreducible as in Exercise 14. 
 

18. Over : (x2 + 1)2 + 8 = x4 – 2x2 + 9. Prove irreducibility as in Exercise 14. 
 Over : 2( 2)x −  + 1 = x2 2 2x−  + 3. 

 
19. By Theorem 10.7, [F(u) : F] = p is prime. Apply Exercise 10.1.39. 

 
20. We know F ⊆ F(u2) ⊆ F(u). Since u is a root of x2 – u2, the minimal polynomial of u over 

F(u2) must have degree 1 or 2. By Theorem 10.7, [F(u) : F(u2)] = 1 or 2. That Theorem 
also implies that [F(u) : F] is odd. Theorem 10.4 then applies. 

 
21. Answered in the text. 

 
22. (⇐) r  = t s  and t ≠ 0 so the fields coincide. (⇒) If s  is rational then r = u2 and s = 

v2 for some u, v ∈ . Let t = / .u v  If 2  is irrational we have r a b s= +  for some a, b 
∈ . Then  r = a2 + sb2 + 2 .ab s  By the irrationality, r = a2 + sb2 and ab = 0. If b = 0 
then r  = ±a ∈  which implies that s  ∈ , contrary to hypothesis. Hence a = 0 and 
r = sb2. 
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23. Let {1, c} be a basis of K over . Then c2 ∈ K is expressible as c2 = rc + s for some r, s ∈ 

, and c is a root of x2 – rx – s ∈ [x]. If this polynomial factors in [x] its roots would be 
rational, but c ∉  since {1, c} is linearly independent. By the quadratic formula, 

( )/2c r d= ±  where d = r2 + 4s. Then d  = ±(2c – r) ∈ K and K = (c) ⊆ ( d ) ⊆ 
K. Then K = ( d ). Altering d by a nonzero square factor in  changes d  by a 
rational multiple, and this generates the same field. Therefore we may assume d is a 
square-free integer. 

 
24. The evaluation map ϕ : F[x] → F[u] sending f(x) to f(u) is a surjective ring homomorphism. 

Since u is transcendental, the kernel is {0F} and the map is an isomorphism. Suppose F[u] ⊆ 
K for some field K. 

 The results on fields of quotients in Section 9.4 imply that ϕ extends to a homomorphism 
ϕ : F(x) → K where ( ( )/ ( ))f x g xϕ  = f(u)g(u)–1 (compare Exercise 9.4.8). Since F(u) is the 
smallest field containing F[u] this provides an isomorphism F(x) ≅ F(u). 

 
25. Suppose w ∈ F(u) is algebraic over F and w ∉ F. Let f(x) = xn + cn–1x

n–1 + … + c0 be its 
minimal polynomial. Note that n ≥ 2 and c0 ≠ 0 since w ∉ F and f(x) is irreducible. Express 

( )/ ( )w a u b u=  where a(u), b(u) ∈ F[u] are polynomials with gcd = 1 (see Exercise 24). The 
analog of the Rational Root Test (see Exercise 9.5.11) implies that b(u)/1 and a(u)|c0 in 
the ring F[u]. This implies that a(u), b(u) are units, and hence lie in F. Then w ∈ F, 
contrary to hypothesis. 

 
26. By Exercises 24 and 25 we need only check that 3/( 1)x x +  ∉ F. 

 

 
1. Both equal F(u, v). 

 
2. Certainly [K : F] is finite. Use Theorem 10.9. 

 
3. (a), (c) answered in the text. (b) {1, 5, 7, 35}  (d) 3 3 3 3{1, 2, 4, 3, 3 2, 3 4}  

 
4. {1, 2}  

 
5. Answered in the text. 

 
6. The given field is ( 2, 5).  Verify that 5 ( 2).∉  

 
7. Answered in the text. 

 

8  If {v1 , . . . , vn } is a basis of K over F and w ∈ K(u) then w = a0  + a1 u + ⋅ ⋅ ⋅+ am um  for 
some aj ∈ K. Express each aj as a linear combination of the vi over F and collect terms to 
see that w is a combination of the vi with coefficients in F(u). Hence {v1, . . .,vn} contains a 
basis of K(u) over F(u), and [K(u) : F(u)], ≤ n. 

 
9. Answered in the text. 
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10. (⇐) This is Theorem 10.10. (⇒) If {v1, . . . , vn} is a basis of K over F then certainly K = 
F(v1, . . . , vn). By Theorem 10.9 each vi is algebraic over F. 

 
11. (a) Answered in the text, (b) Use u = v = i over . (c) 6 using part (a) with x2 − 2 and x3 − 2. 

 
12. Suppose u ∈ D and u ∉ F. By Theorem 10.9 u has a minimal polynomial xn + cn−1x

n−1 + ⋅ ⋅ ⋅ 
+ c0. Then n > 1 and c0 ≠ 0 so that u−1 = c0

−1⋅(un−1 + cn−1u
n−2 + ⋅ ⋅ ⋅ + c1) ∈ F[u] ⊆ D. 

 
13. Answered in the text. 

 
14. (a) Check closure under addition, multiplication and inverse. 

  (b) If c is in the union then c ∈ Fi for some i and hence c is algebraic over F1. 
 

15. Answered in the text. 
 

16. The number 1/2 n  is a root of xn − 2, which is irreducible over  by Eisenstein. Then it lies 
in E and n = [ 1/(2 )n : ] ≤ [E : ]. Since this holds for every n, the degree [E : ] must 
be infinite. 

 
17. If u = v the result is clear. If u ≠ v, compute 2(u − v) v  = ( u  + v )3 – (u + 3v)( u  + 

v ). Since 2⋅1F ≠ 0F and u − v ≠ 0F, conclude that v  ∈ F( u  + v ). Similarly for .u  
 

18. Consider the tower  ⊆ 1( )n  ⊆ 1 2( ,  )n n  ⊆ . . . and apply Theorem 10.4. 
 

19. It is perhaps easier to prove a stronger result: 
 

Lemma. Let a1, a2, . . . be square-free integers where ai ≠ 1 and (ai, aj) = 1 for every i ≠ j. 

Then r(ak+1) ∉ 1( ,  ,  ).ka a⋅ ⋅⋅  

 Proof. Suppose 1ka +  is in that field. First let k = 1. Then by Exercise 10.2.22, a2 = t2a1 for 
some t ∈ . Expressing /t r s=  in lowest terms we get s2a2 = r2a1 in . Since a1, a2 are 
square-free it follows that a1 = a2 and 1 = (a1, a2) = a1 contrary to hypothesis. Now assume 
the result true for sequences of k − 1 terms. Let u = ak+1, v = ak and E = ( 1 ,a  . . . , 

1ka − ). Then u  ∈ E( )v  and Exercise 10.2.22 implies that u = t2v for some t ∈ E. But 
then uv  ∈ E, contradicting the inductive hypothesis applied to the sequence a1, . . . , ak−1, 
uv. 

 

 1. If 2  ∈ (i) then it is a real number in (i), so it must lie in . But 2  is irrational. 
 

2. They are irreducible by Eisenstein. The roots of x2 − 3 are ± 3.  the roots of x2 − 2x − 2 are 
1 3.±  
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3. Answered in the text. 
 

4. By the Fundamental Theorem of Algebra (see Corollary 4.27) f(x) splits in . Then there 
is a splitting field E of f(x) with  ⊆ E ⊆ . Since [ : ] = 2 we know that E =  or E = 

. 
 

5. Let u1 . . . , un be the roots of f(x) in K. Then K = F(u1 .. . , un) so that K = E(u1 . . . , un). 
 

6. F ⊆ F(u) ⊆ K and apply Exercise 10.2.39. 
 

7. Answered in the text. 
 

8. (a) normal (b) not normal  (c) normal 
 

9. The given polynomial ∈ F[x] has no root in F. 
 

10. (x2 + 4x + 1)(x2 − 2x − 1). The quadratic formula gives the roots. 
 

11. Answered in the text. 
 

12. (a) 4( 2, i)  (b)  

 
13. Since (x6 + x3 + 1)(x3 − 1) = x9 − 1, deMoivre s Theorem implies that the complex roots of 

the given polynomial are α, α2, α4, α5, α7, α8 where 2 / 9 cos(2 /9) sin(2 /9).ie rc i rcπα = = + ⋅  
The splitting field is (α), which has degree 6 over . 

 
14. The roots are 2 .i±  

 
15. Answered in the text. 

 
16. Let 3

2[ ]/( 1).K x x x= + +  This is a field of 8 elements, since that polynomial is 
irreducible. The element α = [x] ∈ K is one root. The elements α2 and α2 + α are the other 
2 roots in K. Hence K is a splitting field. 

 
17. Suppose f(x) ∈ F[x] is irreducible and has a root c ∈ K. Then f(x) is the minimal 

polynomial of c and deg f(x) = [F(c) : F] ≤ [K : F] = 2. Therefore f(x) = (x − c)q(x) for 
some q(x) ∈ K[x] of degree ≤ 1. Hence every root of q(x) also lies in K and f(x) splits in K. 

 
18. (⇒) see Exercise 5. (⇐) Given K = E(u1, . . . , un) where f(x) = c(x − uj)⋅ ⋅ ⋅(x − un). Since 

E = F(u1, . . . , ut) conclude that F(u1, . . . , un) = E(u1, . . . ,un) = K as well. 
 

19. (i) ⇒ (ii). Let f(x) be a nonconstant polynomial of degree n in K[x]. By (i) there exists c ∈ 
K with f(x) = (x − c)f1(x) where deg f1(x) = n − 1. If f1(x) is nonconstant apply (i) again to 
get another linear factor.  
Repeating this n times shows that f(x) splits in K[x]. 
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 (ii) ⇒ (iii). If f(x) is irreducible then by (ii) it splits into linear factors. Since there are no 
nontrivial factorizations there can be only one factor. 

 
 (iii) ⇒ (iv). If K ⊆ E is an algebraic extension with K ≠ E let u ∈ E with u ≠ K. Then the 

minimal polynomial p(x) ∈ K[x] for u over K must be irreducible of degree > 1, contrary to 
(iii). 

 
 (iv) ⇒ (i). If f(x) ∈ K[x] is nonconstant, let E = K(u) be a field obtained by adjoining a 

root u of f(x). 
 

 By (iv) E = K so that u ∈ K. 
 

20. By Corollary 10.12 E is algebraic over F. If f(x) ∈ E[x] is a nonconstant polynomial then it 
has a root u ∈ K since K is algebraically closed. By Corollary 10.11 E(u) is algebraic over 
F, so that u is algebraic over F and u ∈ E. By Exercise 19 E is algebraically closed. 

 
21. Answered in the text. 

 
22. If F = K we are done. Otherwise choose ∈ K with u ∉ F and define F = F(u). Since [K : 

F] is finite, u is algebraic over F and has a minimal polynomial p(x) ∈ F[x]. Let K' be an 
extension of K containing a root of σp(x). By Corollary 10.8 there is a homomorphism σ' : 
F → K' extending σ. Now if F' = K we are done. Otherwise choose u' ∈ K with u' ∉ F', let 
F” = F'(u') and repeat the argument. After a finite number of such steps we get an 
extension of σ to the field K. 

 
23. ( ⇒). Suppose K is a normal extension and σ : K → L is given. For u ∈ K, let p(x) be the 

minimal polynomial of u over F. Then σ(u) is a root of σp(x) = p(x). Since all the roots of 
p(x) lie in K by hypothesis, we conclude σ(u) ∈ K. 

  (⇐). Let p(x) be the minimal polynomial of u over F. (u is algebraic since [K : F] is finite.) 
Let M be a splitting field of p(x) over K and let w be another root of p(x) in M. By 
Corollary 10.8 there is an isomorphism σ : F(u) → F(w) where σ(a) = a for every a ∈ F 
and σ(u) = w. Exercise 22 provides an extension L of M and a homomorphism ϕ : M → L 
extending σ. By hypothesis σ(K) ⊆ K and therefore w = ϕ(u) ∈ K. Therefore every root of 
f(x) lies in K, so that K is normal. 

 

 
1. Answered in the text. 

 
2. n1K = n1F ≠ 0F. 

 
3. The homomorphism ϕ :  → F is injective. 
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4. (a) If f(x) = ∑ amxm and g(x) = ∑ bmxm then (f + g)'(x) = (∑ (am +bm)xm)' = ∑ (am + 
bm)mxm–1 = ∑ ammxm–1 + ∑ bmmxm–1 = f'(x)⋅g'(x). 

 (b) (cf)'(x)= (∑ camxm)’ = ∑ cammxm–1 = cf'(x). 
 
5. (a) (fg)'(x) = ∑ cbmxm+n = ∑ cbm(m + n)xm+n–1 = cxn ∑ bmmxm–1 + cnxn–1∑ bmxm = f(x)g'(x) 

+ f '(x)g(x). 
 (b) Use the Hint. 
 
6. The case n = 1 is clear. Suppose n > 1 and the result is true for n – 1. Then (fn)' = (f⋅f n–1)' 

= f'⋅f n–1 + f⋅(f n–1)' + f⋅(fn–l)' = f'⋅fn–1 + f⋅((n – 1)fn–2⋅f') = fn–1⋅f'. 
 
7. (a) Answered in the text. 
 (b) f(x) = x2 has f'(x) = 0 in 2[x]. 
 
8. f'(x) = (x – u)m–1(mg(x) + (x – u)g'(x)). Since mg(u) ≠ 0F we see that m > 1 if and only if 

f'(u) = 0F. 
 
9. Answered in the text. 
 
10. If p(x) is separable then p(x) and p'(x) are relatively prime. Since p(x) is nonconstant this 

implies that p'(x) ≠ 0F. Conversely if p(x) is not separable then the gcd is not a unit. It 
divides p(x) so the irreducibility implies the gcd is an associate of p(x). Therefore p(x) | 
p'(x). Comparing degrees we get a contradiction unless p'(x) = 0F. 

11. If u is a root of F use the factorization in Exercise 8 to see that (x – u)m–1 is the largest 
power of  (x  –  u)  dividing  d(x).  Therefore  (x  –  u)  divides  h(x)  but  (x  –  u)2  does  not.  Parts  (a)

 and (b) now follow. 

 12. (a) ( 2 3)c+  for any c ≠ 0 in . 
 (b) ( 3  + ci) for any c ≠ 0 in . 

 (c) ( 2 3 5)c d+ +  for any c, d ≠ 0 in . 
 
13. Answered in the text. 
 
14. The proof of Theorem 10.18 never uses the assumption that v is separable. 
 
15. (a) Use the analog of Eisenstein for the domain 2[x], as in Exercise 9.5.13. 
 (b) Done in the hint. In fact, if α is a root then x2 – t = (x – α)2.  

 
1. See Exercise 3.2.21. 
 
2. (a)0 (b) 6 (c) 3 (d) 0 (e) 3 
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3. Answered in the text. 
 
4. If P is the prime subfield then it is generated by 1k so it is contained in every subfield. 
 
5. Answered in the text. 
 
6. xk – 1k has every a ≠ 0k as a root (see the proof of Theorem 10.25). Therefore it has k = pn 

– 1 distinct roots, so it splits into linear factors in K[x]. That is, all the roots lie in K. 
 
7. Given 

npa  = a. Then (– )
npa  = –a if p is odd. If p = 2 then –1 = 1 in 2 and (– )

npa  = a = 
–a. 

 
8. Since p⋅1 = 0 we know p(x) has characteristic p. Since 1, x, x2, x3, . . . are distinct 

polynomials the field is infinite. 
 
9. As in Exercise 7 note that ( 1)

np−  = –1. The claim follows by Lemma 10.24. 
 
10. f(ab) = (ab)p = apbp = f(a)f(b) and f(a + b) = f(a) + f(b) by Lemma 10.24. If a is in the 

kernel then ap = 0 which implies a = 0 since we are in a field. Therefore f is injective. Since 
K is finite f is automatically surjective (see Exercise 32 of Appendix B). 

 

11. In 6 (1 + l)6 = 4 while 16 + 16 = 2. In M( 2) let a = 
0 1

0 0

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 and 

0 0

1 0

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
. Then a2 + b2 = 0 while (a + 

b)2 = I. 

 
12. Apply the isomorphism of Exercise 10 to the equation f(c) = 0. 
 
13. Answered in the text. 
 
14. f(x) has only finitely many roots so the set E is finite. Since it is a field, Theorem 10.23 

implies that deg f(x) = |E| = pn for some prime p and integer n ≥ 1. Theorem 10.25 states 
that E is exactly the set of roots of g(x) = 

npx  – x. Therefore g(x) and f(x) have the same 
set of roots, and they are both separable. Therefore f(x) = cg(x) for some c ∈ E. Since both 
polynomials are monic we find c = 1. 

 
15. In each case the field is K = [ ]/( ( ))p x g x  where g(x) is the given irreducible polynomial. 
 
 (a) The polynomial has no root in 2 so it is irreducible. (See Corollary 4.18.) 
  (b) It has no root in 3 so it is irreducible. 
  (c) It has no root in 2 and it is not the square of the only irreducible quadratic 

polynomial x2 + x + 1. Hence it is irreducible. 
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16. (a) Check closure under addition and multiplication, using Lemma 10.24. 
 (b) As in Exercise 10 the map ϕm : K → K defined by ϕm(c) = 

mpc  is an isomorphism. 
Clearly ϕm(F) ⊆ F for any subfield. Since ϕm is bijective we see that ϕm(F) = F. The 
set L is defined to be L = 1

mϕ
− (F) = F. 

 

17. Answered in the text. 
 

18. Done in the Hint. 
 

19. (a) |F| = pd for some d using Theorem 10.23. Since the group F* of nonzero elements of F 
is a subgroup of K*, Lagrange's Theorem implies that (pd – 1) | (pn – 1). Then d | n by 
Exercise 18. 

 (b) Exercise 18(b) implies that (pd – 1) | (pn – 1). By Exercise 18(a), ( pdx  – x) | ( pnx  – x). 
By Theorem 10.25, 

npx  – x splits in K[x]. Therefore 
dpx  – x also splits in K. The set E 

of the pd roots of this polynomial provides the desired subfield, by Theorem 10.25. The 
uniqueness follows since any subfield of pd elements must consist exactly of the roots of 

dpx  – x. 
 

20. See Exercise 10.3.13. Let α be a root of f(x) is a splitting field of f(x) over K. Then 3[K(α): 
K] = [K(α): p ] = 2[K(α): p(α)]. Therefore [K(α): K] ≥ 2 so that f(x) is irreducible over 
K. 

 
21. Let K be the given field with pn elements. If p = 2 then every element is a square, by 

Exercise 10. Suppose p is odd and let S = {a2 | a ∈ K} the set of all squares in K. If a, b are 
nonzero in K then: a2 = b2 if and only if a = b or –b. (Why?) Therefore exactly half of the 
nonzero elements of K are squares. Since 0 is a square, S contains more than half the 
elements of K. For any given c ∈ K let T = {c – b2 | b ∈ K}. Again T contains more than 
half of the elements of K. Therefore S and T cannot be disjoint sets, so there exists a2 = c – 
b2 for some a, b ∈ K. Therefore c is a sum of two squares. 

 
22. Since the set K* of nonzero elements of K is a group of order pn – 1, Lagrange’s Theorem 

(Corollary 7.27) implies that 1npc −  = 1k for every c ≠ 0k. Then every c ∈ K satisfies 
npc  = c 

so it is a root of 
npx  – x. Therefore K is the splitting field of 

npx  – x. The proof of the 
other direction in Theorem 10.25 remains the same. 
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Chapter 12 
 

Galois Theory 
 

 
1. Answered in the text. 
 
2. Yes, by Theorem 11.4. 
 
3. Answered in the text. 
 
4. This is easily done since  τ2 = α2 = β2 = ι and τα = β. 
 
5. Answered in the text. 
 
6. Since σ is an automorphism for the additive group we see that σ(n) = n ⋅ σ( n. Also, 

( / ) ( )n m n m mσ σ⋅ = =  so that ( / ) /m n m nσ =  Therefore σ fixes . 
 
7. (a) ( 2)  is the splitting field of x2 – 2 so there are at most 2 elements in the Galois group. Since 

x2 – 2 is irreducible, Corollary 10.8 implies the existence of an automorphism σ with 
( 2) 2.σ = −  

 (b) The same argument applies since x2 – d is irreducible. 
 
8. If 4 2c =  then c and –c are roots of x4 – 2. This polynomial is irreducible in  [x] and Corollary 

10.8 provides an automorphism σ of (c) with σ(c) = –c. 
 
9. Answered in the text. 
 
10. (a) The group is  ≅ 2 × 2.  
 (b) By Exercise 10.3.19, { ,  )p q  has degree 4 over . It follows that x2 – 3 is irreducible over 

 and x2 – 5 is irreducible over ( 3) . The argument in Example 2.A is valid here, replacing 
3 by p and 5 by q. 

 
11. As in Exercise 10.3.5 we know the degree is 4. Proceed as in Exercise 10. 
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12. Since any automorphism sends c  to c±  there are at most 8 automorphisms. By Exercise 
10.3.19 the degree of this field is 8. Therefore x2 – 5 is irreducible over K = ( 2, 3)  so that each 
of the 4 automorphisms of K extends to the whole field in 2 ways, (sending 5  to 5)± . Then we 
have constructed 8 automorphisms, each with square = ι. 

 
13. Theorems 10.17 and 10.18 imply that K = F(u) for some u. Let p(x) be the minimal polynomial of 

u over F. Since K is a splitting field, it is normal by Theorem 10.15. Since p(x) has one root in K 
it must split: p(x) = (x – u1)(x – u2)…(x – un) where u = u1. Note that n = deg p(x) = 
[K : F]. Any σ ∈ GalFK must have σ(u) = ui for some i. Theorem 11.4 then implies that there are 
at most n elements in that group. 
Since the characteristic is 0, the roots ui are distinct. Corollary 10.8 provides an F-isomorphism K 
= F(u) → F(ui) = K sending u → ui. Then we have n different elements of GalFK, and therefore 
|GalFK| = n = [K : F]. 

 
14. That degree in the Hint is 2 since [ ( 3, 5) : ] = 4. 

 
15. (a) Any automorphism sends squares to squares. Hence it sends positives to positives. 
 (b) Apply the Hint and part (a). 
 (c) As in Exercise 6, σ fixes . Then if r ∈  and c < r < d for c, d ∈  then c < σ(r) < d. This 

implication forces r = σ(r). (The proof involves the definition of . For example, let C(r) = 
{(a ∈  | a < r}. Then r is the least upper bound of the set C(r). Since C(r) = C(σ(r)) it follows 
that r = σ(r).) 

 
16. Any σ, τ ∈ Gal (ζ) have σ(ζ) = ζi and τ(ζ) = ζj for some i, j (by Theorem 11.2). Then 

στ(ζ = σ(ζj) = σ(ζ)j = ζij = τ (ζ). By Theorem 11.4 conclude that στ = τσ. 

 
17. For u ∈ E let p(x) be the minimal polynomial of u over F. Since p(x) has one root in E and E is 

normal over F we know that p(x) splits in E[x]. By Theorem 11.2 σ(u) is a root of p(x) and hence 
σ(u) ∈ E. 

 

 
1. Answered in the text. 

 
2. K is a Galois extension of  and |Gal K| = [K : ] = p by the Fundamental Theorem 11.11. So 

it must be ≅ p. 

 
3. 2 ( 1 3 )/2iω = − −  so that ω3 = ωω2 = 1. Also ω + ω2 = –1 so that (x – ω)(x – ω2) = x2 + x + 

1. Alternatively we can apply the quadratic formula to x2 + x + 1 to see that ω and ω2 are roots. 
 

4. In each case we have a field K with [K : ] = 2. Such an extension is always Galois with group G 
≅ 2. The only intermediate fields are  ⊆ K; the only subgroups are G ⊇ 〈e〉. 

 
5. Answered in the text. 

 
6. F = , K = ( 2) , L = ( 3).  
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7. Let ( , )K F a b=  be an extension of F of degree, and assume the characteristic is ≠ 2 so that the 
extension is separable. Then K is a Galois extension of F and the Galois group is G = {ι, α, β, αβ} 
where α fixes a  and sends b  to its negative, and β fixes b  and sends  a to its negative. The 
intermediate fields are F, ( ),  ( ),  ( ),F a F b F ab  and K. The corresponding subgroups are G, 〈α〉, 
〈β〉, 〈αβ〉, 〈e〉. 

 
8. In fact if E is any intermediate field then it is normal over F. This follows from Theorem 11.11, 

since its corresponding subgroup is normal in the abelian group G = GalFK. Note that GalEK ⊆ G 
and GalFE is a quotient group of G. Therefore these groups are also abelian. 

 
9. (a) Answered in the text. (b) By Exercise 7.3.40 there is exactly one subgroup of n for every 

positive divisor of n. Apply the Galois correspondence. 
 
10. (⇒) Suppose σ(E) = L. If α ∈ GalEK then α(x) = x for every x ∈ E. Check that σασ–1 fixes L so 

it lies in GalLK. Therefore σ(GalEK)σ–1 ⊆ GalLK. The same argument applied to σ–1(L) = E 
provides the reverse inclusion. Hence GalEK and GalLK are conjugate.  
(⇐) Suppose σ(GalEK)σ–1 = GalLK. If c ∈ E then c is fixed by every σ–1βσ  for β ∈ GalLK. Then 
βσ(c) = σ(c) so that σ(c) is fixed by GalLK. The Galois correspondence (Theorem 11.9) implies 
that σ(c) ∈ L. Therefore σ(E) ⊆ L. The same argument applied to σ–1 provides the reverse 
inclusion. 

 
11. (a) Let 4 2.c =  The roots of x4 – 2 are c, ic, –c, –ic, so the splitting field is generated by c and i. 
 (b) Answered in the text. 
 (c) Using (b) we see that x4 – 2 is still irreducible in (i)[x]. Since c and ci are roots, Corollary 9.8 

implies that there is an automorphism σ  fixing (i) sending c to ci. Then σ2(c) = σ(ci) = (ci)i 
= –c. Similarly we compute σ3(c) = – ci and σ4(c) = c. Therefore ⎟σ⎟ = 4. 

 (d) These 8 elements are distinct since they act differently on the generators c and i. 
 (e) Since |Gal K| = [K : ] = 8 we have a complete list of the Galois group. Note that τστ = σ–ι. 

Mapping σ to r1 and τ to d, check the tables to see that this group is ≅ D4. 

 
12. The element σ fixes (i) and has order 4. Since that Galois group has order = [K : (i)] = 4, it 

must be 〈σ〉. 
 

13. Here is a chart of the correspondence. Let 4 2.c =  
 

Subgroups of G Intermediate fields 
G  
〈σ〉 (i) 
〈σ2〉 (i, 2 ) 

〈τ, σ2〉 ( 2 ) 

〈τ〉 (c) 
〈στ〉 ((1 + i)c) 
〈σ3τ〉 ((1 – i)c) 
〈e〉 K 
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14. Let ( 2, 3, 5)K =  and G = Gal K. Let α ∈ G be the automorphism fixing 2  and 3  and 

sending 5  to its negative. Similarly let β fix 2  and 5  and send 3  to its negative, and let 

γ fix 3, 5  and send 2  to its negative. 

 
The G = {e, α, β, γ, αβ, αγ, βγ, αβγ} and the subgroups are easy to write out. The intermediate 
fields are generated by some of: 2, 3, 5, 6, 10, 15, 130.  Listing the explicit groups and 
fields is straightforward. 
 

 
1. (a) Answered in the text. 
 (b)  ⊆ ( 2)  ⊆ ( 2 , i) ⊆ ( 2,  i, 

3 5)  ⊆ ( 2,  i, 3 5,  
5 2 1+ ) 

 (c)  ⊆ ( 2)  ⊆ 3( 2, 3 2).−  
 
2. Compute the roots by the quadratic formula and note that ( 3)  is the splitting field in each 

case. 
 
3. There is a chain F = F0 ⊆ F1 ⊆ … ⊆ Ft = K where Fi = Fi – 1 (ui) and ui

ni ∈ Fi – 1. Theorem 10.7 
implies that [Fi : Fi – 1] ≤ ni. Then Theorem 10.4 implies that [K : F] ≤ n1 n2 … nt. 

 
4. If An is solvable then there is a chain of subgroups A1 = H0 ⊇ H1 ⊇ … ⊇ Ht = 〈e〉 with abelian 

quotients. But then Sn ⊇ An ⊇ H1 ⊇ … ⊇ H1 = 〈e〉 is a similar chain, contradicting Theorem 11.14. 
Compare Exercise 10 below. 

 
5. (a) Answered in the text. 
 (b) D4 has a subgroup H of order 4. Then H is abelian and has index 2, so it is normal with abelian 

quotient. The chain is D4 ⊇ H ⊇ 〈e〉. 
 

6. If G is solvable there is a chain G = G0 ⊇ G1 ⊇ … ⊇ Gn = 〈e〉 with each Gi normal in Gi–1 with 
abelian quotient. We may delete repetitions to assume that Gi ≠ Gi–1 for each i. Since G is simple 
the only possibility for the proper normal subgroup G1 is 〈e〉. But then 1/G G G≅  is abelian, 
contrary to hypothesis. 

 
7. (a), (c), (e) Answered in the text. 
 (b) 1, (–1 ±i⋅1,( 3)/2i−± ⋅  

 (d) cos(2 /5) sin(2 /5)k i kπ π+ ⋅  for k = 0, 1, 2, 3, 4. If cos(2 /5) sin(2 /5),iζ π π= + ⋅  then the roots 

are 1, ζ, ζ2 , ζ3, ζ4. These quantities can be expressed explicitly in terms of radicals. For 

example, (1 5)/ 4 i (5 5))/ 8.ζ = + + ⋅ +  

 
8. Compare Exercise 7.9.34. (a) The values α(r), α2(r), . . . range over all 5 symbols since α is a 

5-cycle. One of those symbols is s, so that αk(r) = s for some k. 
 (b) Direct calculation. Compare Exercise 7.9.24. 
 (c) (12)(23)(12) = (13), (13)(34)(13) = (14), etc. 
 (d) If a, b ≠ 1 then (ab) = (1a)(1b)(1a) ∈ G. 

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

174 Galois Theory

12.3   Solvability by Radicals 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



9. (a) Free choice of 4 elements of G has n4 possibilities. 
 (b) This follows since a composition of cyclic permutations is another cyclic permutation. 
 (c) Suppose 2 elements of an equivalence class are the same. For example, (r, s, t, u, v) = (t, u, v, 

r, s). Then r = t, s = u, t = v, u = r, v = s. Then r = t = v = s = u, so all the entries are equal. 
The other cases are similar. 

 (d) S is a union of the disjoint equivalence classes. Since |S| = n4 is a multiple of 5 and every class 
has 1 or 5 elements, the number of singleton classes must be a multiple of 5. Since 
(e, e, e, e, e) provides one singleton class, there must be at least 4 others. 

 (e) Suppose c ≠ e and {(c, c, c, c, c)} is a singleton class. The definition of S implies c5 = e. Then 
|c| divides 5 and is ≠ 1, so |c| = 5. 

 
10. Suppose 0 1/ kG N T T T Ne= ⊇ ⊇ ⊇ 〈 〉  is a chain of subgroups with successive quotients abelian. 

By Theorem 7.44 there are subgroups Hi of G with N ⊆ Hi and / .i iH N T=  Then G = H0 ⊇ H1 ⊇ 
… ⊇ Hk = N. Applying Theorem 7.44 to N ⊆ Hi ⊆ Hi – 1 we find that Hi is normal in Hi – 1  and 
Theorem 7.43 implies that 1 1/ /i i i iH H T T− −≅  is abelian. Now since N is also solvable, we can 
lengthen this chain of subgroups from N down to 〈e〉. Therefore G is solvable. 

 
11. As in the Hint, Hi is normal in Hi–1 Define the homomorphism 1 1: /i i iH G Gϕ − −→  by ϕ(x) = Gix. 

Then x lies in the kernel if and only if x ∈ Hi – 1 ∩ Gi = (H ∩ Gi – 1) ∩ Gi = H ∩ Gi = Hi. By the 
First Isomorphism Theorem, /1/i iH H  is isomorphic to a subgroup of 1 /i iG G−  which is abelian. 

 
12. The splitting field has degree 2 so the Galois group has 2 elements. 
 
13. Answered in the text. 
 
14. By Corollary 11.5 the Galois group G is isomorphic to a subgroup of S4. By Exercises 5 and 11 G 

is solvable. 
 
15. The splitting field is K = F(u, v). If v ∈ F(u) then K = F(u) is a quadratic extension and the group 

is 2. Otherwise [K : F] = 4 and we can write out the automorphisms explicitly as in Example 2.A. 
 
16. Let K be the splitting field of the given polynomial, and G = GalFK. K is not affected by linear 

factors of f(x) since their roots lie in F. Therefore assume f(x) has no linear factors. 
Cases: (1) f(x) is an irreducible quadratic. Use Exercise 12. 
(2) f(x) is an irreducible cubic. Use Exercise 13. 
(3) f(x) is a product of 2 irreducible quadratics. Use Exercise 15. 
(4) f(x) is an irreducible quartic. Use Exercise 14. 

 
17. (a), (c), (e) Answered in the text. 
 (b) (x2 – 2)(x2 – 3) has splitting field ( 2, 3)K =  with G ≅ 2 × 2. 
 (d) (x3 – 2)(x + 3) has splitting field 3( 2,  )K ω=  as in Example 3. By Exercise 13 the group is 

S3. 
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18. (a) Solvable. (x3 + 12) factors with linear and quadratic factors. 
 (b) Not solvable. It is irreducible by Eisenstein and has 3 real roots. 
 (c) Not solvable. It is irreducible by Eisenstein and has 3 real roots. 
 (d) Solvable since it factors into linear and quadratic factors. 

 
19. (a) Every quadratic extension is normal. 
 (b) 24( 2(1 )) 2 2i i− =−  and a quadratic extension is normal. 
 (c) It is certainly a radical extension and each step has degree 2. 
 (d) Done in the Hint. 
 (e) x4 + 8 is irreducible in [x] by Eisenstein, and has one root u in L but v is a root not in L. 

Therefore L is not normal over . 
 

20. x5 – 1 = (x – l)(x4 + x3 + x2 + x + 1). That degree 4 factor is irreducible in [x], as in Exercise 4.5.20. 
If ζ is a root of that polynomial, then every power of ζ is also a root of x5 – 1. Therefore the roots 
of that degree 4 factor are: ζ ζ2, ζ3, ζ4 and K =  (ζ) is the splitting field. Let G = Gal K so that 
|G| = [K : ] = 4. By Corollary 10.8 there exists α ∈ G with a(ζ) = ζ2. Then α2(ζ) = α(ζ2) = (ζ2)2 
= ζ4 and α3(ζ) = α(ζ4) = ζ8 = ζ3. Therefore G = {ι, α, α2, α3} ≅ 4. 

 
21. The roots of x5 + 32 are – 2ζk for k = 0, 1, 2, 3, 4, where ζ is given as in Exercise 20. The splitting 

field is again K = (ζ). 
 
22. K = F(u) where un = c. Then α(u) = ζku for some k. This k is uniquely determined modulo n, 

because if ζku = ζmu then ζk – m = 1 so that n | (k – m) and k ≡ m (mod n). Therefore f : GalFK → 

n is well defined. If σ, τ ∈ GalFK and σ(u) = ζku and τ(u) = ζju then ατ(u) = α(ζku) = ζkα(u) = 
ζk + ju. Hence f is a homomorphism. Since an automorphism σ is determined by the value σ(u) the 
map is injective. Therefore GalFK is isomorphic to a subgroup of a cyclic group, so it is cyclic. 

 
23. (Compare Exercise 7.9.34.) We may relabel to assume (12) ∈ G and α ∈ G is a p-cycle. Since α(1), 

α2(1), . . . runs through all of the p symbols, there exists k with αk(1) = 2. Since k and p are 
relatively prime, αk is another p-cycle. Replacing α by αk we may relabel the symbols 3, 
4, . . . , p to assume α = (123 … p). From Exercise 7.9.24 we know that (m, m+1) = αm – 1 (12)α–m 

+ 1∈ G. As in Exercise 8 conclude that (1k) ∈ G and finally show that every 2-cycle is in G. 
Therefore G = Sn. 

 
24. The Galois group G is a subgroup of Sp by Corollary 11.5 and |G| = [K : F] is a multiple of p. 

Cauchy’s Theorem implies that G has an element of order p. The only elements of order p in Sp are 
p-cycles (since p is prime). Therefore G contains a p-cycle. The complex conjugation map induces 
an automorphism σ of the splitting field. Since there are exactly 2 nonreal roots this σ is a 2-cycle, 
when viewed as a permutation of the roots. Apply Exercise 23. 

 
25. As in Exercise 24, if f(x) is irreducible of degree 7 in [x] and has exactly 2 nonreal roots, then the 

Galois group is all of S7. There are many ways of finding examples. One way is to consider f(x) = 
(x – 3)(x – 2)(x – 1)x(x + 1)(x + 2)(x + 3) = x7 – 14x5 + 49x3 – 36x. Graphing this shows that there 
are the 7 given roots, and relative maxima and minima of approximately 95.84, 
– 23.15, 12.36, – 12.36, 23.15, –98.84. 
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Then adding a constant between 13 and 23 will yield a polynomial with exactly 5 real roots. The 
difficulty is to get irreducibility. One method is to add 14 and alter the x coefficient: f1(x) = x7 – 
14x5 + 49x3 – 35x + 14. 
Then this is irreducible by Eisenstein but must be analyzed again to ensure that there are still 
exactly 5 real roots. 

 The following general result provides another method. 

 Lemma. If F has characteristic p and f(x) = xp – x + a ∈ F[x] has no roots in F, then it is irreducible. 

 Proof. Suppose α is a root in an extension field. The set of roots is {α, α + 1, α + 2, . . . , 
α + p – 1}. If f(x) factors nontrivially in F[x] then some proper subset forms the roots of a factor. 
In particular the sum of this subset is in F. This implies α ∈ F. 

 Let f2(x) = x7 – 14x5 + 49x3 – 35x + 15 ∈ [x]. Reducing (mod 7), show that 2( )f x  is irreducible 
in 7[x] and deduce that f2(x) is irreducible in [x]. 
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Chapter 13 
 

Public-Key Cryptography 
 

 
1. Answered in the text. 
 
2. If q | pk then Theorem 1.8 implies q | p or q | k. But the first case cannot happen, for the only 

positive divisors of p are 1 and p, and neither of these equals q. Therefore k = qm for some integer 
m so that c = pqm. 

 
3. (a) Answered in the text. 
 (b) 1392 1818 0008 0165 1595 
 (c) 2131 0835 0064 1497 1933 
 
4. If |p a  then ap–1 ≡ 1 (mod p), by Lemma 12.2. Multiplying by a we obtain ap ≡ a (mod p). If p | a 

then ap ≡ 0 ≡ a (mod p). 
 
5. The decoding algorithm sends the code word C to the least residue of Cd (mod 2773) where d is a 

solution to 3d ≡ 1 (mod 2668). (As in the Example we have k = 46⋅58 = 2668.) Since 1 + 2⋅2668 
= 5337 = 3⋅1779 we see that d = 1779. 

 
6. Suppose the gcd is a = (C, n) ≠ 1. Then 1 a ≤ C <n = pq. Since the only positive divisors of n = 

pq are 1, p, q and pq it follows that a = p or q. Knowing one of the factors immediately yields the 
other one by dividing. Therefore, knowing a we also know p and q and hence we can find k = (p 
– 1)(q – 1). Euclid’s algorithm then provides the solution d to the congruence ed ≡ 1 (mod k). 
Therefore the decoding algorithm C → Cd is known. 
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Chapter 14 
 

The Chinese Remainder Theorem 
 

14.1 Proof of the Chinese Remainder Theorem 
 

1. By Theorem 2.2, 6v + 5 ≡ 6u + 5 ≡ 7 (mod n). 
 
2. If u is a solution there exists some r ∈ {0, 1, 2,. . ., n – 1} such that u ≡ r (mod n). By Exercise 1 

this r is also a solution. 
 
3. Answered in the text. 
 
4. Every integer u with u ≡ 2 (mod 5) is a solution.  
 
5. If they are not relatively prime then the gcd is > 1 so it is divisible by some prime p (by Theorem 

1.10). Then p | mk+1 and p |m1m2 … mk. By Theorem 1.9 then p | mi for some i ∈ {1, 2, . . . , k}. 
But then p | (mi, mk) contrary to the hypothesis. 

 
6. See Exercise 1.2.17. 
 
7. Since (m1, m2) = 1 Exercise 6 implies that m1m2 | d. Exercise 5 implies that (m1m2, m3) = 1 so we 

can apply Exercise 6 again to conclude m1m2m3 | d. Continue in this fashion until all the mi are 
used. This proof could be made more formal by using induction on r. 

 
8. 29 (mod 66) 9. – 30 ≡ 157 (mod 187) 
 
10. –7 ≡ 23 (mod 30) 11. –18 ≡ 192 (mod 210) 
 
12. 621 (mod 4290) 13. 204 (mod 204204) 
 
14. If n is the number of coins, the conditions state that n ≡ 3 (mod 7), n ≡ 10 (mod 16), n ≡ 4 (mod 

11) and n ≡ 0 (mod 7). The solution is n ≡ 2842 (mod 10944). Then the smallest positive solution 
is 2842 coins. 

 
15. By Theorem 1.3 there exist integers u, v with au + nv = d. Therefore au ≡ d (mod n). Given b = 

dc for some integer c, deduce that auc ≡ dc ≡ b (mod n) and x = uc is a solution. 
 
16. If x is a solution then ax – b = ny for some integer y. Use d | a and d | n to show: d | ax – ny = b. 
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17. Since as ≡ b ≡ at (mod n) we find that a(s – t) ≡ 0 (mod n) so that n | a(s – t). Since (a, n) = 1, 
Theorem 1.5 implies that n | (s – t) and s ≡ t (mod n). 

 
18. As in Exercise 17, n | a(s – t) so that a(s – t) = nx for some integer x. Let a = da1 and n = dn1. Then 

(a1, n1) = 1 (see Exercise 1.2.16) and a1(s – t) = n1x. Theorem 1.5 then implies that nl | (s – t). 
Conclude that s ≡ t (mod n1). 

 
19. Solving the given system of congruences is equivalent to finding an integer t such that mt ≡ (b – 

a) (mod n). For given such t define x = a + mt. By Exercise 15, this congruence has a solution t 
if and only if d | (b – a). This occurs if and only if a ≡ b (mod d). 

 
20. Given s ≡ a ≡ t (mod m) so that m | (s – t) and s ≡ b ≡ t (mod n) so that n | (s – t). By the definition 

of the 1cm (see Exercise 1.2.31) it follows that r | (s – t) so that s ≡ t (mod r). 
 

21. (a) The prime factors of Ni consist of the primes appearing in each of m1, m1; . . . ;mi–1, mi+1, . . .; 
mr. Since the mi are pairwise relatively prime, mi is not divisible by any of those primes. Thus 
(Ni, mi) = 1. Then by Theorem 1.2, there are integers ui and vi such that Niui + mivi = (Ni, mi) 
= 1. 

 (b) If i ≠ j, then mj | Ni by definition of Ni, so that Ni ≡ 0 (mod mj) and thus Niui ≡ 0 (mod mj). 
 (c) Since Niui + mivi = 1, we see that Niui – 1 = mivi, so that Niui ≡ 1 (mod mi). 
 (d) Modulo mi we have 

 
1 1 1 2 2 2

1 1 1 2 2 2

(mod ) ( ) (mod )

(mod  ) (mod ) (mod ).

i r r r

i r r r i

t m a N u a N u a N u mi

a N u mi a N u m a N u m

= + + +

≡ + + +
 

 
By parts (b) and (c), the only summand that is nonzero is aiNiui (mod mi), and since Niui ≡ 1 
(mod mi), we have t ≡ aiNiui ≡ ai (mod mi). Thus t is a solution of the system. 

 

14.2 Applications of the Chinese Remainder Theorem 
 

1. A calculation left to the reader. 
 
2. (a) 64 = 6⋅10 + 4 ≡ 4 (mod 12). Then 643 = 64⋅10 + 3 ≡ 4⋅10 + 3 ≡ 7 (mod 12). Then 6439 = 643⋅10 

+ 9 ≡ 7⋅10 + 9 ≡ 7 (mod 12). Finally 64397 = 6439⋅10 + 7 ≡ 7⋅10 + 7 ≡ 5 (mod 12). 
 
3. Answered in the text. The answer is 7 ⋅ 8 ≡ 11 (mod 15). 
 
4. (a) If f(r) = f(s) then r ≡ s (mod 3), (mod 4) and (mod 5). That is, r – s is a common multiple of 

3, 4 and 5. By Exercise 13.1.7, 60 = 3 ⋅ 4 ⋅ 5 divides r – s. But –60 < r – s < 60 so this divisibility 
forces r – s = 0 and r = s. 

 (b) Use r = 0 and s = 60 for example. 
 

5. If f(r) = f(s) then mi | (r – s) for each i and Exercise 13.1.7 implies that M | (r – s). Since – M < 
(r – s) < M it follows that r = s. 
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6. Choose m1 = 235 – 1, m2 = 234 – 1, m3 = 233 – 1, m4 = 231 – 1, m5 = 229 – 1 and m6 = 223 – 1. 
 These are pairwise relatively prime by Exercise 7(c). With these choices, we can do arithmetic with 

integers as large as M = m1m2 … m6. Note that M = 2185 – (some 6 terms each ≤ 2162) + (other 
terms)…. Making some rough estimates of the sizes of the negative terms we find that M > 2184. 

 
7. (a) We have a = bq + r where 0 ≤ r < b. Since 2b ≡ 1 (mod 2b – l) we have 2a – 1 = 2bq2r – 1 ≡ 2r 

– l (mod 2b – 1). Since 0 ≤ 2r – 1 < 2b – 1 we know it is the least residue. 
 (b) The Euclidean algorithm for (a, b) can be stated as: 
  a ≡ r1 (mod b) and 0 ≤ r1 < b. 
  b ≡ r2 (mod r1) and 0 ≤ r2 < r1. 
  r2 ≡ r3 (mod r2) and 0 ≤ r3 < r2. 

The process continues, and t = (a, b) is the last nonzero rk. Now apply part (a) to see that: 
  1a r b2 1 2 1 (mod2 1).− ≡ − −  
  2 1b r r2 1 2 1 (mod2 1).− ≡ − −  
  2 3 2r r r2 1 2 1 (mod2 1).− ≡ − −  

The process continues, and as in (a) we have a least residue at each step. Since 2r – 1 = 0 if 
and only if r = 0, the last nonzero term here is kr t2 1 2 1.− = −  Therefore this is the gcd. 

 (c) (2a – 1, 2b – 1) = 1 if and only if 2(a,b) – 1 = 1, by part (b). This occurs if and only if (a, b) = 1. 
 

14.3 The Chinese Remainder Theorem for Rings 
 

1. (a) Answered in the text. 
 (b) Yes, both are ≅ 4 × 5 × 7. 

 
2. ab ∈ Ib ⊆ I and ab ∈ aJ ⊆ J. 
 
3. Done in the hint. 
 
4. The 2nd, 3rd, 4th and 6th rings are ≅ 4 × 3 × 7. The 1st and 5th rings are = 2 × 2 × 3 × 7. 
 
5. Following the Hint, r = i1t2 + (i1t3 + i3t2 + i3t3) ∈ I1 ∩ I2 + I3. We used Exercise 2 to see that i1t2 

is in the intersection. 
 
6. By Theorem 13.3 the first two congruences have a solution s. Furthermore x ∈ R is a solution of 

those two if and only if x ≡ s (mod I1 ∩ I2). By Exercise 5 and Theorem 13.3 we can solve the system 
stated in the Hint. 
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CHAPTER 15 
 

Geometric Constructions 
 

 
1. Draw a circle with the center at the origin and radius r. Since r is constructible this is a 

constructible circle. It meets the x-axis at the points (r, 0) and (–r, 0). Therefore –r is 
constructible. 

 
2. Draw a circle with center (a, 0) and radius |b|. This is a constructible circle since (a, 0) is a 

constructible point and |b| is the distance between the constructible points (0, 0) and (b, 0). 
This circle meets the x-axis at the points (a + b, 0) and (a – b, 0). Therefore a + b and a – b 
are constructible. 

 
3. (a) Answered in the text. 

  (b) Use the construction of perpendiculars to make a square. Draw a diagonal of the square 
and use the resulting 45° angle. More generally, any angle can be bisected using 
straightedge and compass. 

 
 (c) Answered in the text. 

 
4. If n is constructible then Exercise 2 implies that n + 1 and n – 1 are constructible. All integers 

can be constructed this way. (Use induction). 
 

5. Answered in the text. 
 

6. No for the first question: If 31/ 3 cos 3 4 cos 3 cost t t= = −  then cos t is a root of 12x3 – 9x + 
1. The Rational Root Test implies that this polynomial has no root in , and Theorem 15.9 
applies. Yes for the second question: 311/16 cos 3 4 cos 3 cost t t= = −  shows that cos t is a 
root of 64x3 – 48x – 11 = (4x + 1)(16x2 – 4x – 11). Therefore cos t is a constructible number 
so that an angle of t degrees can be constructed. 

 
7. No. Since x2y = 3 and 2x2 + 4xy = 7 we find that 2x3 – 7x + 12 = 0. Apply the Rational Root 

Test and Theorem 15.9. 
 

8. Construct a segment of length 3  as in Theorem 15.1, using a circle of radius 2. Add 3  and 
1 by striking off a segment of length 1 adjacent to the segment of length 3 . 
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9. If the base is 2x and the other two sides have length y then the height h satisfies x2 + h2 = y2. 
The area is xh = 1 and the perimeter is 2x + 2y = 8. Express y, h in terms of x to find that 4x3 
– 4x2 + 1 = 0. Apply the Rational Root Test and Theorem 15.9. 

 
10. (a) If ABC is a given triangle and A’B’ is a segment equal in length to AB, then the triangle 

can be (constructibly) “copied” to yield a triangle A’B’C’ congruent to ABC. Then if two 
angles α and β are given, we can “copy” the angle β  to yield an equal angle β ′  having one 
line in common with the angle α. Depending on which way it is constructed we get α + β 
and α – α. Alternatively, we could use Exercise 11 and note that the result follows from the 
formula for cos(α + β). 

  (b) By part (a) if 1° is constructible then so is 20°, contrary to the discussion on trisection in 
the text. 

 
11. If an angle of t degrees is constructible, strike off a unit length along one of the sides of the 

angle, and drop a perpendicular to the other side. The segment cut off on that side has length 
cos t. Conversely, if cos t is constructible, strike off that length along a radius of a unit circle 
from the center O to a point P. Construct the perpendicular to OP at P and let Q be one of 
the points where it meets the circle. Then the (constructible) angle POQ measures t degrees. 

 
12. If r is constructible then the point (r, 0) can be constructed by straightedge and compass 

starting with the origin and the point (1, 0). The segment from (0, 0) to (r, 0) has length |r|. 
Conversely if a segment of that length is constructible, use the given unit length to define the 
measurement along an axis, set up a coordinate system and construct the point (r, 0). 
Therefore r is a constructible number. 

 
13. By Exercise 1, a number d is constructible if and only if |d| is a constructible (positive) number. 

Then the question reduces immediately to the positive case (which is done in the proof of 
Theorem 15.1). 

 
14. The set C of constructible numbers is a subset of , it is closed under addition and 

multiplication and contains inverses of its nonzero elements, by Theorem 15.1. Hence C is a 
subfield of .  

 
15. Closure under addition and multiplication follow by simply collecting terms. The inverses are 

given in the answers in the text. Hence it is a subfield. 
 

16. Define a subfield F of  to be called “constructible” if F ⊆ C, the field of all constructible 
numbers (see Exercise 14). 

  Claim. If F is a constructible field and c is a positive element of F, then ( )F c  is also a 
constructible field. 

  Proof. By Theorem 15.1, c  is constructible. Then F and c  are in C so the field they 
generate is also inside C. 

 

1 Geometric Constructions
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 Suppose  = F0 ⊆ F1 ⊆ … ⊆ Fn ⊆  is a chain of fields, where ( )1i i iF F c+ =  for some  
ci ∈ Fi, for each i = 0, 1, ... , n – 1. The Claim implies that every element r ∈ Fn is a 
constructible number. 

 
17. Following the Hint, let M be the intersection point of the lines L and CQ. By the construction, 

CD = CE = QD = QE. Therefore α = ∠DCQ = ∠DQC, and β = ∠CDE = ∠CED. Examining 
sides yields congruent triangles ΔCDE ≅ ΔQDE and ΔCDQ ≅ ΔCEQ. Then s.a.s implies that 
ΔDMC ≅ ΔEMC so that θ = ∠DMC = ∠EMC. Since these angles are supplements it follows 
that θ is a right angle and CQ is perpendicular to the line L. 

 

 
 

18. Since the x-axis is constructible and (r, s) is constructible, Exercise 17 implies that the vertical 
line through (r, s) is constructible. This line and the x-axis meet at the point (r, 0). Therefore 
(r, 0) is constructible so that r is a constructible number, Similarly (0, s) is a constructible 
point, and it is easy to use it to construct (s, 0) and conclude that s is a constructible number. 

 
19. Done in the Hint. 

 
20. Let A and B be the given constructible points and draw the circle with center A and radius AB 

and the circle with center B and radius AB. Let P, Q be the points where these two circles 
intersect. The line PQ then meets the segment AB at the midpoint M. All the points and lines 
mentioned here are constructible. The proof that M is the midpoint is done as in Exercise 17. 

 
21. Set up the coordinate system using the given radius as the unit length 1. Then the area of the 

given circle (in these units) is π. If a square of side s units has the same area then s2 = π  so 
that πs .=  Then such a square is constructible if and only if π  is a constructible number. 
By Theorem 15.1 this is equivalent to saying that π is constructible. If this occurs then 
Theorem 15.6 says that π lies in some quadratic extension chain,  = F0 ⊆ F1 ⊆ … ⊆ Fn. Using 
ideas from Section 10.1 deduce that [Fi+1 : Fi] = 2 whenever 0 ≤ i < n, so that Theorem 10.4 
implies that [Fn : ] = 2n. 

 

187
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 However the assumption that π is not the root of any polynomial in  [x] implies that the set 
{1, π , π2, π3, . . . } is a linearly independent set. Proof. If not then there is a linear dependence 
relation c0·1 + c2π2 + … + ckπk = 0 for some integer k and some coefficients ci ∈ , not all equal 
to zero. But this says that f(π) = 0 where f(x) = c0 + c1x + c2x

2 + … + ckx
k ∈  [x], contrary 

to assumption. 
  Since π ∈ Fn, this independence implies that [Fn : ] is infinite, contrary to the bound obtained 

above. 

Geometric Constructions
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CHAPTER 16 
 

Algebraic Coding Theory 
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1. Answered in the text. 
 
2. (a) 4 (b) 6 (c) 1 (d) 8 
 
3. (a) 1 (b) 5 (c) 4 (d) 1 
 
4. (a) 0111 (b) 1101 
 (c) at least one error was made, but there is not a unique closest codeword (1011010 and 

1010101 are closest codewords). 
 (d) 0010 

 
5. (a), (c) Answered in the text. 
 (b) 00000, 01010, 10111, 11101 
 (d) 000000, 001110, 101010, 011011, 100111, 101001, 110010, 111100 

 
6. (a) detects 0, corrects 0 (b) detects 1, corrects 0 
 (c) detects 0, corrects (d) detects 2, corrects 1 

 
7. For any message word abcde ∈ B(5), the corresponding codeword is (abcde)G = abcdef where 

f is the sum a + b + c + d + e in 2 . This is exactly the way the (6, 5) parity-check code was 
defined. 

 
8. Any message word ab ∈ B(2), the corresponding codeword is (ab)G = ababababab. This is 

exactly the way the (10, 2) repetition code is defined. 
 

9. The message word a ∈ B(1) has corresponding codeword (a)G = aaaa. 
 

10. The set does have order 2n and it is certainly closed under the operation. The zero element is 
00…0 and every element is its own inverse: a + a = 0. The associative and commutative laws 
are easily checked componentwise. 

 
11. (a) d(u, v) = number of coordinates in which u and v differ. The same coordinates occur for 

v and u. 
 (b) f two words differ in zero coordinates, they are equal. 

 (c) Answered in the text. 

16.1   Linear Codes 
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1 Algebraic Coding Theory

12. Given six elements of 2 . The sum of the 6 elements is zero if and only if the last element is 
the sum of the first 5 elements. 

13. C = {abcdef ∈ B(6) |a + b + c + d + e + f = 0}. It is easy to check that this set is closed under 
addition, and hence is a subgroup. 

14–15. By the definition of “corrects t errors”, any possible received message is of Hamming 
distance ≤ t from a unique codeword. Suppose there are two codewords u, v with d(u, v) 
= k ≤ 2t. Then there is a “path” of words u = u0, u1 , . . ., uk = v where d(ui, ui+1) = 1 for 
every i = 0, 1, . . . , k – 1. If k < t then the message word u is distance 0 from the codeword 
u and distance k < t from the codeword v, contrary to the uniqueness hypothesis. If t ≤ k 
≤ 2t then the message word ut is distance t from the codeword u and distance k – t ≤ t from 
the codeword v, again contrary to the uniqueness. Therefore d(u, v) ≤ 2t is impossible. 

 
16. Suppose there are codewords u, v with d(u, v) = r ≤ t. If the codeword u is sent, possibly exactly 

r errors could occur to yield the received word v. The receiver would believe that v was the 
correct codeword, and those r errors would go undetected. Then the code would not be 
detecting t errors. 

17. Answered in the text. 

18. Such a code is a subgroup of 8 elements in the group B(6). Theorem 16.2 implies that the 
Hamming distance between any 2 codewords is ≥ 5. In particular, every nonzero codeword has 
Hamming weight ≥ 5, so the codewords are in the set: {111111, 111110, 111101, 111011, 
110111, 101111, 011111}. Since any two elements in this set have Hamming distance ≤ 2, such 
a code cannot exist. 

19. Many correct answers, including: 0000000, 1111000, 0011110, 1100110, 1010101, 0101101, 
1001011, 0110011. 

20. Yes. For example: 000000, 111100, 001111, 110011. 

21. We need 2k ≥ 3 codewords, so that k ≥ 2, and we need the minimum Hamming weight ≥ 3. 
This can be achieved in a (5, 2) code. 

 
22. (a) Just multiply uG. 
 (b) If v is a codeword then those relations follow from the expression in (a). Conversely if v 

satisfies those conditions, we can replace v5, v6, v7 in terms of v1 . . ., v4 and write out the 
word v. It comes out to be exactly the expression in (a), with v replacing u. Then, v is the 
codeword corresponding to the message word v1v2v3v4. 

23. Since the first k columns of G form the identity matrix Ik, the first k entries of uG are uIk = u. 

24. Claim. The mapping f : B(n) → 2  with f(u) = [Wt(u)]2 is a homomorphism. 

 Proof. In fact, if u = u1u2…un then f(u) = u1 + u2 + … + un, the sum in 2 . From this it is 
clear that f(u + v) = f(u) + f(v). Another way to state this observation is: Wt(u + v) ≅ Wt(u) 
+ Wt(v) (mod 2). 
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    Let C0 be the subset of C consisting of all codewords of even weight. Since C0 is exactly the 
kernel of f, it is a subgroup. If C0 ≠  C let w ∈ C with w ∉ C0. Then the only cosets are C0 and 
w + C0, so that C0 contains exactly half of the elements of C. Stated more simply, if there is 
a codeword w of odd weight then w + C0 is the set of all codewords of odd weight, and this set 
has the same size as C0. 

 
25. By Exercise 24 there are 2n−1 elements of B(n) with even weight. They form a subgroup so we 

have an (n, n – 1) code. 
 

26. Im f is a code since it is a subgroup. Im f is an (n, j) code if Im f contains 2j elements. If f is 
not injective then Im f has fewer than 2k elements so it is not an (n, k) code. 

 
27. (a), (c), (e) Answered in the text. 

  (b) .03881196 (d) .00000001 (f) .00000397 Here is an explanation of the calculation in 
calculation of (c): consider a message abcd where a, b are transmitted correctly 
(probability (.99)2) and c, d are transmitted erroneously (probability (.01)2). The 
probability of this event is (.99)2 (.01)2 = .00009801. This event is one way of making 
exactly 2 errors. The errors could have occurred elsewhere, perhaps in b and d, or in a and 
b,... There are altogether 6 ways of choosing 2 places out of 4 coordinates, so the 
probability of exactly 2 errors is: (.00009801 ).6 = .00058806 

28.  no errors: .9509900499 1 error: .0480298005
2 errors: .000970299 3 errors: .000009801 
4 errors: .0000000495 5 errors: .0000000001

 
29. A received digit of 0 was probably (with probability > 50%) transmitted as a 1, and a received 

digit 1 was probably transmitted as a 0. 
 

30. (a) (.99)500 = .006570483 
 (b) Sending a single digit as aaa leads to an incorrect decoding provided there are 2 or 3 errors 

in this 3 digit transmitted word. The probability of that event is (.99)(.01)2.3+(.01)3 = 
.000298. Then the probability of a correct decoding of a 500 digit message is (.999702)500 
= .86155003. 

 
31. (a) The k errors could occur at any k of the n coordinates. There are exactly ( )n

k  ways of 
choosing a k-element subset from an n-element set. 

 (b) Suppose the first k digits contain errors and the last n − k digits are correct. Assuming that 
multiple errors occur independently, the probability of that event is pkqn−k. The k errors 
could occur at any of the ( )n

k  k-element subsets of the n coordinates, and the formula 
follows. 

 

Linear Codes 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

1 Algebraic Coding Theory

 
1. (a), (c) Answered in the text. 
 
 

 (b) 

1 1 1

0 1 0

1 0 0

0 1 0

0 0 1

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 

 

 (d) 

1 1 1

1 0 1

1 1 0

1 0 0

0 1 0

0 0 1

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

 

 

2. 

0 1 1

1 0 1

1 1 0

1 0 0

0 1 0

0 0 1

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

 

 

3. Answered in the text. 
 

4. It is a 10 × 8 matrix with top two rows = 
1 0 1 0 1 0 1 0

,
0 1 0 1 0 1 0 1

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 and with an 8 × 8 

identity matrix as the last 8 rows. 
 

5. Answered in the text. 
 

6. By Corollary 16.4 a code which can correct every single error must have every nonzero 
codeword of weight ≥3. For the given code, x1x2··· x6 is a codeword if and only if x1+x3+x5 = 0 
and x2+x4+x6 = 0. For example 101000 is a codeword of weight 2. 

16.2   Decoding Techniques 
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19316.2

7.  0000 0101 1011 1110 Codewords 
1000 1101 0011 0110  
0100 0001 1111 1010 Received words
0010 0111 1001 1100  

 The parity check matrix is 

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 1

0 1
H

1 0

0 1

and the syndrome of w is wH. 

Syndrome 00 11 10 01 
Coset leader 0000 1000 0100 0010

8.  000000 001110 010101 011011 100011 101101 110110 111000 
100000 101110 110101 111011 000011 001101 010110 011000 
010000 011110 000101 001011 110011 111101 100110 101000 
001000 000110 011101 010011 101011 100101 111110 110000 
000100 001010 010001 011111 100111 101001 110010 111100 
000010 001100 010111 011001 100001 101111 110100 111010 
000001 001111 010100 011010 100010 101100 110111 111001 
100100 101010 110001 111111 000111 001001 010010 011100 

 
 Here is a chart of the syndromes and the coset leaders: 

 
000 011 101 110 100 010 001 111 
000000 100000 010000 001000 000100 000010 000001 100100 

 
9. The cosets are listed as the rows of the standard array. Any element of the row could be chosen as 

the “leader”. For example, in every row after the first we can choose the second entry as the new 
leader, and recompute the rows. In the new array, the rows of the old array have been permuted. 

 
00000 10110 01101 11011 
00110 10000 01011 11101 
11110 01000 10011 00101 
10010 00100 11111 01001 
10100 00010 11001 01111 
10111 00001 11010 01100 
Oino 11000 00011 10101 
00111 10001 01010 11100 

 
10. If v is the column vector with entries c1, . . . , cn then eiv = 0·c1 + ·· + 1·ci + ·· + 0·cn = ci. If 

H = (aij) is an n ×k matrix, the jth entry of the row eiH is the product of the row ei and the jth 
column of H. By the comment above, that entry is aij. Therefore eiH = (ai1, ai2, … , aik) which 
is the ith row of H. 

Decoding Techniques 
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1 Algebraic Coding Theory

11. The method will decode w as the codeword u' which is in the top of the column in which w 
appears. If w appears in the row with coset leader e, then the construction of the array implies 
that w = e + u', so that u' = w – e. Then w is decoded as u if and only if w –e = u. This occurs 
exactly when w –u = e is a coset leader. 

12. Suppose a codeword u is transmitted and w is received. If at most t errors occurred then e = 
w – u has Wt(e) ≤ t. By hypothesis this word e is a coset leader, and Exercise 11 implies that 
w is correctly decoded to be u. 

 
13. Answered in the text. 

 
14. Answered in the Hint, after a direct matrix calculation. 

 
15. C corrects single errors if and only if every nonzero u ∈ C has Wt(u) ≥ 3, by Corollary 16.4. 

Equivalently, if u ≠ 0 and Wt(u) ≤ 2 then u ∉ C. By Theorem 16.9 this can be restated as: if 
Wt(u) = 1 or 2 then uH ≠ 0. Let r1, . . ., rn be the n rows of H. If Wt(u) = 1 then u = ei for 
some i and Exercise 10 implies that uh = ri. If Wt(u) = 2 then u = ei + ej for some indices i 
≠ j. Then uH = ri + rj. Therefore C corrects single errors if and only if ri ≠ 0 and ri ≠ rj for every 
choice of unequal indices i, j. Equivalently, the rows of H are nonzero and distinct. 

 
16. In the list of codewords in the Example after Corollary 16.4, we see that 0000000 and 0010110 

are codewords. If 0000000 was sent and three errors occurred, possibly 0010110 is received and 
that is decoded as the codeword 0010110 with no errors made in transmission. The 3 errors 
went undetected. 

17. By definition the parity check matrix of any Hamming code are distinct and nonzero. By 
Exercise 15 the code can correct single errors. Therefore every nonzero codeword has weight 
≥ 3, by Corollary 16.4. 

18. (a) (.99)5 = .95099 
 (b) Raise to the 100th power: (.99)500 ≥ .00657048 
 (c) (.99)4(.01)·5 = .0480298. From the formula see Exercise 16.1.31. 
 (d) 0 or 1 errors, add the quantities in (a) and (c): probability ≥ .9990198 
 (e) Probability ≥ (.9990198)100 ≥ .9065. 

 
1. (a) Answered in the text. 
 (b) If u = [f(x)] then u + u = [f(x) + f(x)] = [0]. 

 
2. The polynomials of degree 2 are: x2, x2 + 1 = (x+1)2 , x2 + x = x(x+1) and x2 + x + 1. Since 

the last one has no root it is irreducible. 
 

3. Answered in the text. 

16.3   BCH Codes 
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11 .6 3

4. 1+α5 + (α5)2 = 1 + (α + α2) + (1+α+ α2) = 0. Then α5 is a root of the irreducible polynomial 
1 + x + x2. 

 
5. (a) Answered in the text. Since (1+x+x2)2 = 1+x2+x4 is not equal to the given polynomial, and 

since 0 and 1 are not roots, that polynomial is irreducible. 

 (b) By the argument in the text, m1(α4) = 1 + (α 4) + (α 4)4 = (1 + α + α 4)4 = 0 by the 
Freshman’s Dream (Lemma 10.24). Of course this equality can also be verified easily using 
the table of powers of α. 

6. Let f(x) = c0 + c1x +···+ cnx
n where ci ∈ 2 . Note that (u + v)2 = u2 + v2 in that field, and 

ci
2 = ci (since ci = 0 or 1). Therefore for any u in an extension field: f(u2) = ∑ci(u

2)i = ∑(ciu
i)2 

= f(u)2. Apply this to u = αk. 

7. (a) From the formula we see that any element (a0, a1, ... , an−1) in B(n) does equal f([h(x)]) for 
h(x) = a0 + a1x +···+ an−1x

n−1. 
 (b) This is clear since addition of polynomials and addition of elements of B(n) are both 

performed “componentwise”. 
 (c) Answered in the text. 

8. (a) Following the Hint, since p(x)|q(x)h(x) and ( ) | ( )p x q x  (since they are distinct 
irreducibles), Theorem 4.11 implies p(x)|h(x). Then h(x) = p(x)g(x) for some g(x), so that 
f(x) = p(x)q(x)g(x). 

 (b) Use induction of k. The case k = 2 is done in (a). Suppose the result is true for k and m1(x), 
. . . , mk+1(x) divide f(x). By the induction hypothesis, f(x) = m1(x) ... mk(x)q(x) for some 
polynomial q(x). Since mk+1(x) divides this product, and mk+1(x) does not divide any of the 
mi(x) in the product, Corollary 4.12 implies mk+1 (x) | q(x). The result follows. 

9. (a), (c) Answered in the text. 
 (b) D(x) = x2 + α 6x + α 7 has roots α 8 and α 14. Therefore errors occurred in the coefficients 

of x8 and x14, so the corrected word is c(x) = 1 + x3 + x4 + x5 + x8 + x14 = 100111001000001. 
 (d) D(x) = x2 + α 14x + α 13 has roots α 4 and α 9. Therefore errors occurred in the coefficients 

of x4 and x9, so the corrected word is c(x) = 1 + x4 + x6 + x7 + x8 = 100010111000000. 

10. The field K is the same as in the Example. Let mi(x) be the minimal polynomial for �i. Then 
m1(x) = 1 + x + x4. By Exercise 6, m1(x) = m2(x) = m4(x) and m3(x) = m6(x). The polynomials 
m3(x) and m5(x) are calculated in Exercise 5, and g(x) = m1(x)m3(x)m5(x). Multiplying this out 
gives the stated value. 

11. The nonzero elements of K form a group of order n = 2r – 1 with generator α. Therefore  
αn = 1 so that every αi is a root of xn − 1. By Theorem 10.6, each minimal polynomial mi(x) 
divides xn – 1. 

12. g(x) is a product of distinct minimal polynomials mi(x) and mi(x) divides xn – 1, as in Exercise 
11. By Exercise 8 we conclude g(x) divides xn – 1. 

13. Done in the Hint, using the fact that g(x)|(xn – 1) (see Exercise 12). 
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1 Algebraic Coding Theory

14. (a) Let xn − 1 = g(x)f(x) so that deg f(x) = n – m = k. A typical element of C is [h(x)g(x)] for 
some polynomial h(x). Divide h by f to obtain: h(x) = f(x)q(x) + s(x) for some q(x), s(x) 
where either s(x) = 0 or deg s(x) < k. This condition says exactly that s(x) ε J. Multiplying 
by g(x), conclude that h(x)g(x) = (xn – l)q(x) + s(x)g(x) and [h(x)g(x)] = [s(x)g(x)]. 

 (b) Claim. ϕ  : J → C defined ϕ  (s(x)) = [s(x)g(x)] is bijective. 

  Therefore |C| = |J| = 2k and C is an (n, k) code. 

 
15. (a) The received word r(x) and the codeword c(x) differ at exactly the two places xi and xj.  
 (b) By definition of g(x) we have g(αk) = 0 for k = l, 2, 3, 4. Since c(x) is a codeword it is a 

multiple of g(x) and the claim follows from (a). 
 (c) Multiplying out D(x) yields the first formula. By (b) we know that ai + aj = r(α). 
 (d) r(a)3 = (αi + αj)3 = α3i + α3j + αi+j(αi + αj) = r(α3) + αi+jr(α). Therefore 

2 3( ) ( )/ ( ).i j r r rα α α α+ = +  By the Freshman’s Dream 10.24, r(α)2 = r(α2). 
 

16. A (7, 4) Hamming code is one whose parity check matrix H is a 7 × 3 matrix whose rows are 
the 7 distinct nonzero elements of B(3). The BCH code constructed with t = 1 and r = 3 has 
n = 2r−1 = 7 and field K of 2r = 8 elements. For example 3

2[ ]/(    1)K x x x= + +  has 
generator α = [x] with minimal polynomial m1(x) = x3 + x + 1. As before the minimal 
polynomial for α2 is also m1(x), so that g(x) = x3 + x + 1. Then m = deg g(x) = 3 and k = n 
– m = 4. Therefore we have a (7, 4) BCH code. By the theory of BCH codes this one corrects 
single errors. Then by Exercise 16.2.15, the parity check matrix H must have rows which are 
distinct and nonzero. However, this H is a 7 × 3 matrix so that all 7 of the nonzero elements 
of B(3) must occur as rows of H, and we have a Hamming code.  

 We can identify H more explicitly. Recall that  7
2[ ( )] [ ]/( 1)a x x x∈ −  is a codeword when  

g(x) | a(x). Factor x7 – 1 = g(x)f(x) and compute that f(x) = x4 + x2 + x + 1. Then [a(x)] is a 
codeword if and only if x7 – 1 divides a(x)f(x), which says that [a(x)]·[f(x)] = [0]. This gives a 

“parity check” criterion for codewords. To change this criterion into a matrix condition, 

consider multiplication by f(x), xf(x), x2f(x), . . . But x3f(x) can be expressed in terms of the 

earlier terms (mod x7 – 1). Then the parity check matrix H has columns f(x), xf(x), x2f(x). 
(View them as columns since we want to multiply them by rows). Writing out these columns 

yields 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1 0 0

1 1 0

1 1 1

0 1 1H

1 0 1

0 1 0

0 0 1

.

 This does correspond to a (7, 4) Hamming code. 

Proof. ϕ  is surjective, by part (a). It is easy to check that φ is a homomorphism of additive 
groups. If s(x) is in the kernel then [s(x)g(x)] = [0] so that s(x)g(x) = (xn – 1)Q(x) for some 
Q(x). Cancel g(x) to deduce that s(x) = f(x)Q(x). Since deg f(x) = k and s(x) ε J this implies 
s(x) = 0. Hence φ is injective. 
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