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PREFACE

This book is intended for use in a junior-senior level course in abstract
algebra. The main change from the first edition is the addition of five new sections
on field extensions and Galois theory, providing enough material for a two-
semester course. More minor changes include the simplification of some points in
the presentation, the addition of some new exercises, and the updating of some
historical material.

In the earlier sections of the book I have preserved the emphasis on providing
a large number of examples and on helping students learn how to write proofs. In
the new sections the presentation is at a somewhat higher level. Unusual features,
for a book that is still relatively short, are the inclusion of full proofs of both
directions of Gauss’ theorem on constructible regular polygons and Galois’
theorem on solvability by radicals, a Galois-theoretic proof of the Fundamental
Theorem of Algebra, and a proof of the Primitive Element Theorem.

A one-semester course should probably include the material of Sections 0-13,
and some of the material on rings in Section 16 and the following sections.
Sections 14 and 15 allow the inclusion of some deeper results on groups. The
results of Section 14 are used in Section 15, and the First Sylow Theorem from
Section 15 is used in Sections 25 and 26.

In two semesters it should be possible to cover the whole book, possibly
omitting Section 21.

I want to express my appreciation to my students who used the manuscript for
the five new sections as a text and pointed out to me parts of the presentation that
needed clarification. 1 also want to thank all those who have sent me comments
about the book over the years, and those who suggested that a new edition would
be a good idea. I hope this second edition will be useful.

Dan Saracino



SECTION 0

SETS AND INDUCTION

One of the most fundamental notions in any part of mathematics is that of a
set. You are probably already familiar with the basics about sets, but we will
start out by running through them quickly, if for no other reason than to
establish some notational conventions. After these generalities, we will make
some remarks about the set of positive integers, and in particular about the
method of mathematical induction, which will be useful to us in later proofs.

For us, a set will be just a collection of entities, called the elements or
members of the set. We indicate that some object x is an element of a set S by
writing x €S. If x is not an element of §, we write x & §.

In order to specify a set S, we must indicate which objects are elements of
S. If S is finite, we can do this by writing down all the elements inside braces.
For example, we write

S={1,2,3,4}
to signify that S consists of the positive integers 1, 2, 3, and 4. If § is infinite,
then we cannot list all its elements, but sometimes we can give enough of
them to make it clear what set .S is. For instance,
§={1,4,7,10,13,16,...}
indicates the set of all positive integers that are of the form 1+3k for some
nonnegative integer k.

We can also specify a set by giving a criterion that determines which
objects are in the set. Using this method, the set {1,2,3,4} could be denoted
by

{ x|x is a positive integer <4},

where the vertical bar stands for the words “such that.” Likewise, the set
(1,4,7,10,13,16,...} could be written as

{x|x=1+3k for some nonnegative integer k }.
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Some sets occur so frequently that it is worthwhile to adopt special
notations for them. For example, we use

Z to denote the set of all integers,
Q to denote the set of all rational numbers,
R to denote the set of all real numbers, and

C to denote the set of all complex numbers.

The symbol & denotes the empty set or null set, i.e., the set with no elements.

Sometimes we wish to express the fact that one set is included in another,
i.e., that every element of the first set is also an element of the second set. We
do so by saying that the first set is a subset of the second.

DEFINITION If § and T are sets, then we say that S is a subset of 7, and write
S CT, if every element of § is an element of 7.

Examples If S={1,2,3} and 7={1,2,3,4,5}, then SCT.
If S={n,V2) and T={=,5V2 )}, then SCT. We write S Z{5,V2 )
because 7 €S but 7 €& {5, V2 }.
If we let
Z* ={x|x is a positive integer },
then Z* C Z; similarly, we have Q* CQ and R* CR.

Observe that for any set §, S CS, that is, S is a subset of itself. Also
observe that & C S, no matter what set S is. Perhaps the best way to see this is
to ask yourself how it could be false. If @Z S, then there is some x €& which
is not in §; but this is nonsense, because there is no x €J, period.

We say that two sets S and 7T are equal, and we write S=T, if S and T
have the same elements. Clearly, then, saying that S=T is equivalent to
saying that both SCT and TCS. If SC7T but S#7, we say that S is a
proper subset of 7. If we wish to emphasize that S is a proper subset, we write
SET.

Very often we consider sets that are obtained by performing some
operation on one or more given sets. For example, if § and T are sets, then
their intersection, denoted by S N 7, is defined by

SNT={x|xeS and xET}.
The union of § and 7, denoted by S U T, is given by
SuT={x|xeSor x€T or both}.
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The union and intersection of more than two sets are defined in an analogous
way; for instance,

SNTNU={x|xe€Sand xET and x€ U}.

Examples Let S={1,2,3,4,5) and T={2,4,6}. Then SN T={2,4} and
SUT={1,2,3,4,56).
Again let S={1,2,3,4,5). Then SNR=S and SUR=R.

We can illustrate many of the notions we have introduced by generalizing
this last example.

THEOREM 0.1 Let S and T be sets. Then S C 7' if and only if SN T=S.

PROOF. We must show that S C7 implies SN 7T=S, and that conversely
SN T=S implies SCT.

Assume S C 7. To show that SN T=S we have to show that SNTCS
and SCSNT. The first is clear; for the second we must show that every
element of § is an element of S and of 7. Clearly any element of § is an
element of S; and since we are assuming S C 7, any element of S is an
element of 7, too, so we are done with the first half of the proof.

Now assume SN 7=S; we show that S C7. Why is it true that any
element of S is an element of 77 Because any element of § is an element of
S N T by our assumption, and any element of S N T is clearly an element of

T. [

It is also true that S C 7' if and only if S U 7= T. The proof of this is left
as an exercise.

As a matter of notation, we adopt the abbreviation “iff” for “if and only
if.” Thus we say that § C T iff S U T=T. Sometimes the symbol <« is used in
place of iff; using <, we would write SCTeSUT=T.

One set that is particularly important in mathematics is the set Z* of
positive integers. We will see that, in abstract algebra, concepts defined in
terms of positive integers can often help to clarify what is going on. For this
reason, methods for working with integers can be very valuable tools. Perhaps
the most useful strategy for proving things about Z* is the method of
mathematical induction.

Suppose we have in mind a statement P{n) about the integer n. For
example, P(n) might say “n is even,” or “n is the square of some integer,” or
“If p is a prime, then every group of order p” has nontrivial center” (whatever
that means). Mathematical induction provides us with a way of trying to
prove that P(n) is true for every positive n.
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The technique rests on an intuitively acceptable axiom called the

Well-Ordering Principle: Every nonempty subset of Z* has
a smallest element.

The well-ordering principle yields two slightly different forms of induction,
both of which are good to know.

THEOREM 0.2 (Mathematical Induction, first form) Suppose P(n) is a state-
ment about positive integers, and we know two things:

i) P(1) is true;

ii) for every positive m, if P(m) is true, then P(m+1) is true.

Under these circumstances, we can conclude that P(n) is true for all positive
n.

PROOF. Suppose P(n) is false for some positive n. Then S={n|n€Z* and
P(n) is false} is a nonempty subset of Z*. By the well-ordering principle, S
has a smallest element, say n, Clearly ny#1, because P(1) is true by (i).
Therefore, ny—1 is a positive integer, and P(n,— 1) is true because n,—1 is
smaller than ny. By (ii), this means that P(n,—1+1) is true; that is, P(n,) is
true, and this contradicts the fact that P(n,) is false!

Since the supposition that P(n) is false for some n has led us to a
contradiction, we conclude that P(n) holds for all neZ*. ]

What you do to prove something by induction, then, is this. You first
show that P(1) is true (this is usually trivial). You then show that for an
arbitrary positive m, if P(m) is true, then P(m+1) is true. You do this by
assuming that P(m) is true and using this assumption to establish that
P(m+1) is true.

Sometimes people are bothered by the word “assuming” in the last
sentence. They get worried that “assuming that P(m) is true” amounts to
assuming what we are trying to prove. But it does not, for we are not assuming
that P(m) is true for all m. Rather we are arguing, for an arbitrary fixed m,
that if P(m) is true for that m, then so is P(m+ 1). The only way of doing this
is to show that P(m+1) is true on the basis of the assumption that P(m) is.

Examples

1. You may recall that, in calculus, when you are evaluating definite
integrals from the definition as a limit of Riemann sums, you run into sums
such as 1+2+3+--- +n, and you need formulas for these sums in terms of
n. The formula for 1+2+--- +n, for example, is n(n+1)/2. Let’s prove it,
by induction.

We take for P(n) the statement that

142+ - +n=n(n+1)/2;
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we hope to show that P(n) is true for all positive n. First we check P(1): It
says that 1=1(1+1)/2, which is certainly true. Second, we assume that P(m)
is true for some arbitrary positive m, and we use this assumption to show that
P(m+1) is true. That is, we assume that

142+~ +m=m(m+1)/2 [0.1]
and we try to show that
142+ - +m+m+1=(m+1)(m+1+1)/2. [0.2]
The natural thing to do is to add m+1 to both sides of Eq. [0.1]:
142+ - +m+m+1=[m(m+1)/2]+m+1.

Now
[m(m+1)/2]+m+1=[m(m+1)+2(m+1)]/2=[(m+1)(m+2)]/2,

so we have Eq. [0.2].

Therefore, by induction, P(n) holds for all positive #n, and we are done.

2. A similar formula, also used in calculus, is
n(n+1)2n+1)

6 .
If we take this equation as P(n), then P(1) says
2= 1(1+1)(2+1)
6 s

which is true. To show that P(m) implies P(m+ 1), we assume that

D T m(m+l()i(2m+1) ,

124224 ... +n’=

(03]

and we try to show that

(m+1)(m+2)[2(m+1)+1]
6 :
If we add (m+ 1)* to both sides of Eq. [0.3], we conclude that

124224 - +(m+1)’= [04]

m(m+1)2m+1)

4
6 +(m+1),

12422+ +m*+(m+1)’=

and the right-hand side is
m(m+1)2m+1)+6(m+1)* _ (m+1)[m2m+1)+6(m+1)]
6 6

_ (m+1)2m*+Tm+6) _ (m+1)(m+2)(2m+3)
6 6 "

so we have Eq. [0.4].
Thus our formula is established by induction.
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3. The following popular example illustrates the fact that some care is
necessary in trying to prove something by induction. We shall “prove” that
all horses are the same color.

Let P(n) be the statement: “For every set of n horses, all the horses in the
set are the same color.” We “prove” P(n) for all n by induction. Clearly, P(1)
is true since any horse is the same color as itself. Now assume that P(m) is
true and let us show that P(m + 1) holds. Let § be a set of m+ 1 horses; say
the horses in S are h,,h,,..., A, , (h for horse). Now h,,h,,...,h, comprise a
set of m horses, so since P(m) holds, A, h,,...,h, are all the same color.
Likewise, hy,hs,...,h,,,, make up a set of m horses, so hy,hy,...,h, , , are all
the same color. Combining these statements, we see that all m+ 1 horses are
the same color (for instance, they are all the same color as A,).

There must be something wrong with this, but what?

The second form of induction is similar to the first, except that (ii) is
modified somewhat.

THEOREM 03 (Mathematical Induction, second form) Suppose P(n) is a state-

ment about positive integers and we know two things:

1) P(1) is true;

11) for every positive m, if P(k) is true for all positive k <m, then P(m) is
true.

Under these circumstances, we can conclude that P(n) is true for all positive
n.

The verification that this works is like that for the first form, and we leave
it as an exercise.

The part that one assumes in trying to establish (i1) in a proof by
induction (either form) is called the inductive hypothesis. Thus in the first
form, the inductive hypothesis is the assumption that P(m) is true, from
which we try to argue that P(m+ 1) is true. In the second form, the inductive
hypothesis is that P(k) is true for all positive kK <m, and our task is to use this
to show that P(m) holds.

Which form of induction one should use in any particular case depends
on the situation at hand. We have seen some examples where the first form is
appropriate, and we would like to close with a significant instance where the
second form is called for.

If a and b are integers, then we say that a divides b, and we write a|b, if
there is an integer ¢ such that b=ac. If no such c exists, we write a}b. For
instance, 2|6, 7|14, and 3410. A positive integer p is called a prime if p > 1 and
the only positive integers that divide p are 1 and p. The first few primes are 2,
3.5.4L1L 15 17 ...
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The Fundamental Theorem of Arithmetic asserts that every positive n>1
can be written as the product of finitely many primes, and that except for a
possible rearrangement of the factors, there is only one such factorization.

THEOREM 04 (Fundamental Theorem of Arithmetic) Let n > 1. Then there are
primes p,, p,, Pi,-...,p, (not necessarily distinct) such that n=p p,---p,.
Moreover, if n=q,q," - - g, is another such factorization, then r=s and the p,’s
are the g;’s, possibly rearranged.

PROOF. We prove only the existence of a factorization here. The proof of the
uniqueness assertion requires some more groundwork and is left to the
exercises in Section 4.

We wish to prove that P(n) holds for every n > 2, where P(n) says that n
can be written as a product of primes. Accordingly, we start our induction at
2 rather than at 1; we show (see Exercise 0.13) that P(2) is true and that for
any m>2, if P(k) holds for all 2<k <m, then P(m) holds. Clearly P(2) is
true, since 2 is itself a prime. Now take m >2. If m is a prime, then P(m)
holds. If m is not a prime, then we can write m = ab, where neither a nor b is
m. Thus 2<a,b<m, and by the inductive hypothesis we can write

a=p\py'**Ps b=q:4,"--q,
for primes p;,g;. Then
m=ab=p,p,- - p,4\9," " * 4,
and we have shown that m can be factored into primes. []

Notice that all we can say about a and b here is that they are less than m,
so we need the inductive hypothesis as in the second form of induction, in
order for this proof to go through.

EXERCISES
Sets

0.1 Let S={(2,5,V2,25,7,5/2} and let T={4,25,V2 ,6,3/2).
Find SnTand SUT.

0.2 With § and T as in Exercise 0.1, show that
ZN(SuT)=(ZnNS)u(ZNT) and ZUu(SNT)=(ZuS)N(ZUT).
03 Let § and T be sets. Prove that
SN(SuT)=S and SU(SNT)=S.
04 Let § and T be sets. Prove that SUT=Tiff SCT.
0.5 Let 4, B, and C be sets. Prove that AN(BU C)=(ANB)u(4AnNC).
0.6 Let 4, B, and C be sets. Prove that AU(BN C)=(AUB)N(4UC).
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Induction
0.7 What’s wrong with the proof that all horses are the same color?

0.8 Prove that

2
l3+23+33+---+n3=[M]

2
foralln>1.
0.9 Prove that
14345+ +Q2n+1)=(n+1)’
forall n> 1.

0.10 Prove that
2+4+6+--- +2n=n(n+1)
foralln>1.

0.11 Prove Theorem 0.3.
0.12 Prove the following more general form of Theorem 0.2:

THEOREM. Suppose P(n) is a statement about positive integers and ¢ is some
fixed positive integer. Assume

i) P(c) is true; and
ii) for every m >c, if P(m) is true, then P(m+1) is true.
Then P(n) is true for all n >c.

0.13 Prove the following more general version of Theorem 0.3:

THEOREM. Suppose P(n) is a statement about positive integers and ¢ is some
fixed positive integer. Assume

i) P(c) is true; and
il) for every m >c, if P(k) is true for all & such that c <k <m, then P(m) is true.
Then P(n) is true for all n > c.

0.14 Prove that

1:242:343.44 - +(n—1n= LD D

foralln>2.

0.15 By trying a few cases, guess at a formula for

11 1 1
B Rl B B A v

Try to prove that your guess is correct.

n»2.

0.16 Prove that for every n > 1, 3 divides n’— n.
0.17 Prove that if a set S has n elements (where nEZ*), then S has 2" subsets.
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0.18 The Fibonacci sequence f,,fy,fs, ... is defined as follows:
h=h=1, fi=2, fu=3, fs=35, fe=8,...,
and in general,
fo=fa-1+fo-y foralln>3.

Prove that f, is divisible by 5 for every k > 1, that is, 5 divides every 5th member
of the sequence.

0.19 As in the preceding exercise, let f; denote the kth Fibonacci number. Prove that for
everyn21,

f:-ﬂ _f'lﬂ"'z = (_l)'
0.20 Again let f; denote the kth Fibonacci number. Let

1+\E s P l-«,/;'
2 2

Prove that forevery n 2> 1

f;'::

"

0.21 The nth Fermat number is F,, = 2(2.) + 1. Prove that for every n> 1
FRF,--F,  =F, -2.

0.22 Prove that the following statement is true for every integer n > 1: If the number of
squares in a “checkerboard” is 2" x 2" and we remove any one square, then the

remaining part of the board can be broken up into L-shaped regions each consisting of
3 squares.



SECTION 1

BINARY OPERATIONS

In high school algebra, we spend a great deal of time solving equations
involving real or complex numbers. At the heart of it, what we are really
doing is answering questions about the addition and multiplication of these
numbers.

In abstract algebra, we take a more general view, starting from the
observation that addition and multiplication are both just ways of taking two
elements and producing a third, in such a way that certain laws are obeyed.
We study the situation where we have a set and one or more “operations” for
producing outputs from given inputs, subject to some specified rules.

From this description, it i probably not clear to you why abstract algebra
is any more profitable than going off and counting the grains of sand on the
nearest beach. But it can be very profitable, for a number of reasons. For one
thing, the abstract approach may clarify our thinking about familiar situa-
tions by stripping away irrelevant aspects of what is happening. For another,
it may lead us to consider new systems that are valuable because they shed
light on old problems. Yet again, a general approach can save us effort by
dealing with a number of specific situations all at once. And finally, although
it can take some time to appreciate this, abstraction can be just plain
beautiful.

DEFINITION If § 1s a set, then a binary operation « on S is a function that
associates to each ordered pair (s,,5,) of elements of S an element of S, which
we denote by s, * s,.

Observe that the definition says ordered pair. Thus (s,,s,) is not neces-
sarily the same thing as (s,,s,), and s, * 5, is not necessarily the same thing as
s, * 5;. Notice too that » must assign an element of S to each and every pair
(s,,5,), including those pairs in which s, and s, are the same element of S.

10
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Examples

1. Addition is a binary operation on Z*:asb=a+ b. Subtrac-
tion (a*b=a— b) is not; but subtraction is a binary operation on Z.

2. Multiplication (a*b=a-b) is a binary operation on Z* or Z or R or Q.
Division (a*b=a/b) is a binary operation on Q" or R* butnot Z or Z* or
R or Q.

3. a+b=a’+b>+1 is a binary operation on Z, Q, R, Z*, Q*, or R*.

4. Let X be some set and let S be the set of all subsets of X. For example,
if X={1}, then S={J,(1}}, and if X = (1,2}, then
S={2,{1},{2},{1,2}}.

The operation of intersection is a binary operation on S, since if 4,B are
elements of S, then A * B= AN B is an element of S. Similarly, union gives us
another binary operation on §.

5, Let S be the set of all 2 X2 matrices with real entries. Thus an element
of S looks like (f: 2), where a,b,c,d €R. Define x*y to be the matrix

product of x and y, that is,
(a b)*(e f)_(ae+bg af+bh)
¢c d g h ce+dg cf+dh)
Then = is a binary operation on S. For instance,
1 2) (2 l)=(4 5) 3 (3 w) (0 1 )=(w 3——w)
(01"12 TFT Bl VR o YT i PR &
The definition of binary operation doesn’t impose any restrictions on =,
and in general a binary operation can be wildly misbehaved. Ordinarily, we

want to consider operations that have at least something in common with
familiar, concrete examples.

DEFINITIONS If * is a binary operation on S, then = is called commutative if
5, *5,=15,+5, for every 5,,5,ES. On the other hand, * is called associative if
(sy%5,)#5,=15,*(s5,*5;) for every s,,5,,5,E S.
Examples

1. Subtraction on Z is neither commutative nor associative. For example,

1-2%#2-1 and (1-2)—3%#1—-(2-3).
2. Leta*b=2(a+b) on Z; then clearly * is commutative. Now
(a*b)*c=2(a+b)*c=2(2(a+b)+c)=4a+4b+12c,
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and
as(bsc)=a=2(b+c)=2(a+2(b+c))=2a+4b+4c.
Since these are not always the same, * is not associative.
3. Let asb=2ab on Z. Commutativity is again clear, and since
(a*b)*c=2absc=4abc and a=*(b*c)=a=*2bc=4abc,
» is also associative in this case.

4. Multiplication of 2 X2 matrices is associative:

(AR N ()

c d g h k 1 c d g h k 1)

as may be verified by multiplying out both sides. This operation is not
commutative, however. For example,

(0 D6 D w6 e Y
1 0 3 4 1 2 3 4 1 0 4 3/
Before we consider a slightly more complicated example, observe that
these first four examples say something about the relationship between
commutativity and associativity—namely, that there isn’t any! A binary

operation can be commutative with or without being associative, and it can
be noncommutative with or without being associative.

5. We introduce another operation on sets: If 4, B are sets, then 4 4 B
denotes the symmetric difference of 4 and B. This is by definition the set of
all elements that belong to either 4 or B, but not to both. Thus

AaB=(A—B)u(B—A),

where A — B denotes the set of elements of 4 that are not elements of B, and
B— A denotes the set of elements of B that are not elements of 4. We can
also write

AsB=(AUB)—(4AN B).

In Fig. 1.1, if A4 is the set of points inside the square, and B is the set of
points inside the circle, then 4 2 B consists of the points in the shaded region:

Figure 1.1
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For example, if 4={1,2,3,4,5} and B={2,4,6}, then A 2B={1,3,5,6}.
If
A={x|x€Zand x>0} and B={x|xEZand x<0},
then
AsB={x|x€ Z and x#0}.
For any set A, AcA=J and A 20=A.

Now let X be a set and let S be the set of subsets of X. Then A*B=A42B
defines a binary operation on S. It is easy to see that & is commutative
(Exercise 1.7). We claim that 4 is an associative operation on S; that is, if 4,
B, C are subsets of X, then

(AaB)aC=As(BaC).
To verify this we have to show that each side of the equation is contained in
the other. Let’s assume that x €(4 24 B)a C and show that x€4 a(BaC().

Since x €(4 2 B)a C, we have either:

Case . x€E(AoB)and x&C, or

Case II. x&(A2B)and xeC.

In Case I, x €(A4 2 B) implies that either x€A4 and x& B or x& A and
x€ B. If the first of these holds, then we have x€4,x& B,x& C, so that
XEA and x&(BaC), so xEAa(BaC). If the second holds, then we have
x@A,xEB,x&C,so that x&A4 and x€(BaC),so x€e4Aa(BaC).

In Case II, x& A4 o B implies that either x€A4 and xE B, or x&A4 and
x & B. If the first alternative holds, then we have x€A4, x€ B, and x€C, so
that x€A4 and x&(BaC), and therefore xEAa(BaC). If the second
alternative holds, then we have x&4, x&¢B, and x€C, so x¢A4 and
x€(BaC), and therefore x€A a (B2 ().

This completes the proof that (4 4 B)aC CA a(BaC). The proof of the
reverse inclusion is left as an exercise.

Before leaving these ideas it might be well to say a bit more about the
need for talking about them in the first place. We are all so familiar with the
commutativity and associativity of addition and multiplication on the in-
tegers, rationals, and reals that we take them for granted. It never occurs to us
that they could be called into question. The point is that as we broaden our
perspective and consider less familiar systems, we run into many where
commutativity and associativity no longer hold true. Thus we have to be
careful in working with such systems; we can only use commutativity and
associativity in carrying out calculations if we have first ascertained that they
happen to hold for the system we are working with. Calculations with the
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integers are easy because we can replace xy by yx whenever we feel like it,
and we never have to worry about (x +y)+ z being the same as x +(y + z). In
general, we are not so lucky, and we do have to worry about such things.

EXERCISES

1.1 For the given sets S and 7, find S2T.
a) §=(2,5,V2,25,7,5/2), T=(4,25,V2,6,3/2)

ws=((1 DC DG 50 D)
{2 G O 2)

1.2 If A, B, and C are the sets of points inside the three circles below, what region
represents (4 4 B)a C?

VaY,
\/

1.3 In each case, determine whether or not the given s is a binary operation on the
given set §.

a) S=Z asb=a+b?
b) S=1Z, asb=a’h’

a

c) S=R,a+b=

) Iy
a*+2ab+ b*

d) S-Z, asb= *-—'—a_;?,—

€) S=2Z asb=a+b—ab

f) S=R,a+b=b

g) S={1,-2,3,2,—4}, asb=|b|

h) §={1,6,3,2,18}, asb=ab.

i) S=the set of all 2 X2 matrices with real entries, and if

r n rs Tg
a=("’3 ’4) and b-("'r rg )’

ri+rs r2+r6)

then
a-b=(

r3+r7 .l'4+ rs

Jj) S=the set of all subsets of a set X, A+ B=(AA2B)AB.
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1.4 Is division a commutative operation on R*? Is it associative?

1.5 If S is the set of subsets of a set X, is the operation of intersection commutative
on S? Is it associative?

1.6 For each case in Exercise 1.3 in which = is a binary operation on §, determine
whether * is commutative and whether it is associative.

1.7 Show that symmetric difference is a commutative operation.
1.8 Complete the proof that symmetric difference is an associative operation.

1.9 If S is a finite set, then we can define a binary operation on § by writing down
all the values of s, »s, in a table. For instance, if S={a,b,¢,d}, then the following
gives a binary operation on §.

Columns
* a b c d
a a ¢ b d
Rows b c a d b
c b d a c
d d b c a

Here, for 5,5, €S, s5,+5, is the element in row 5, and column s, For
example, csb=d.
Is the above binary operation commutative? Is it associative?

1.10 How many binary operations are there on a set S with # clements?
How many of these binary operations are commutative?



SECTION 2

GROUPS

As we have said, algebra is the study of various kinds of abstract systems.
One of the most fundamental of these systems is the kind known as a group.
In this section we shall get acquainted with this concept.

Certainly one of the attractive features of modern mathematics is the
intertwining that takes place among its different branches. If you study
algebra, analysis, topology, or mathematical logic, for example, you will see
that certain ideas recur in all of them. The notion of a group is one of these
ideas that seem to crop up everywhere. Beyond that, groups are important in
areas where mathematics is used as a tool, such as chemistry, quantum
mechanics, and elementary particle physics.

DEFINITION Suppose that:
i) G is a set and + is a binary operation on G,
ii) = is associative,
iii) there is an element e in G such that x*se=e+x=x for all x in G, and
iv) for each element x € G there is an element y € G such that xsy=ysx=e.

Then G, together with the binary operation #, is called a group, and is
denoted by (G, *).

Observe that (ii1) implies that G is nonempty. The element e in (iii) is
called an identity element of G (we shall soon see that there is only one such
element, so we will be able to call it the identity element of G). The element y
in (iv) is called an inverse of x; we shall see that any element x has only one
inverse, so we can call it ke inverse of x. It is worth emphasizing the fact that
the single identity element e satisfies x *e= e * x = x for any choice of x, while
the y in (iv) depends on x. We shall see that two distinct elements of G can

16
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never have the same inverse, so that if we picked a different x we would have
a different y.

It is also worth emphasizing that we do not assume that = is commutative.
Groups with the special added property that their operation is commutative
are called abelian, after the Norwegian mathematician Niels Abel (1802-
1829).

Before we begin investigating the properties of groups in general, we will
examine a number of examples in order to try to convey some impression of
the universality of this notion. Historically, of course, the examples preceded
the abstract definition; the abstract concept of “group” came into being only
when people realized that many objects they were working with had various
structural characteristics in common, and got the idea that some economy of
effort could be achieved by studying these common features abstractly rather
than over and over again in each separate case. In discussing the development
of the subject, E. T. Bell has remarked that “wherever groups disclosed
themselves, or could be introduced, simplicity crystallized out of comparative
chaos.”

We begin with the most familiar examples.

1. (Z, +). 0 is an identity element, and — x is an inverse for x:
x+(—x)=(—-x)+x=0.
We are all familiar with the fact that + is an associative binary operation on

Z.
Similarly, (Q, +) and (R, +) are groups.

2. (Q@*, ). Multiplication is an associative binary operation on Q*, 1 is
an identity element, and 1/x is an inverse for x since x -(1/x)=(1/x)-x=1.

Similarly, (R*, -) is a group. Observe, however, that (Z™, -) is not a group,
since no element other than 1 has an inverse. (R— {0}, -) and (Q— {0}, -) are
groups. The set R~ of negative real numbers under multiplication is not a
group because multiplication is not a binary operation on R .

3. The set of n-tuples (a,,...,a,) of real numbers is a group under the
binary operation given by addition of n-tuples:

(a,,ay,...,a,) *(b},by,...,b,)=(a,+ b,,a,+ b,,...,a,+b,).

(0,0,...,0) is an identity element and (—a,, —a,,..., —a,) is an inverse for
(ay,a,,...,a,). The fact that this operation is associative follows from the
associativity of addition on R.

If you have studied vector spaces, then you can see that, more generally,
the elements of any vector space form a group under vector addition.
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4. Consider the binary operation on R given by asb=2(a+b). Then
(R, ») fails to be a group for several reasons. First of all, * is not associative.
Secondly, there is no identity element. For suppose e were one. Then we
would have a*e=a for every a, that is, 2(a+ e¢)=a. But this implies that
e=—a/2, and clearly no one number can satisfy this equation for al/l a’s.
Thus there is no identity element e.

However, if we try instead R— {0} with the binary operation asb=2ab,
then we do get a group. For now # is associative, and 1/2 is an identity
element because for any a we have a*(1/2)=2a-(1/2)=a, and similarly
(1/2)*a=2:(1/2)-a=a. What is an inverse for a? If x is to work, then we
need a*x=1/2=x#a, that is, 2ax=1/2=2xa. Clearly x=1/4a meets the
requirement.

5. Consider the set of 2 X2 matrices with real entries, under the binary
operation given by matrix multiplication. Is this a group? The only candidate
for an identity element is / =( ") °), because this is the one and only matrix

(; a) such that I
(2 A6 2)-(2 2 &= 2

for all matrices (3 3). [Try (:’ z)=((‘) ?)!] But then an inverse for (3 z)

would just be a matrix (; i) such that

(a b)(e f)=(e f)(a b)=(l 0)

c d/\g h g h)\c d 0 1/

Since such a matrix need not exist [try (: z)=(3 g)], we do not have a
group.

However, we can attempt to salvage something here by throwing away the
matrices that do not have inverses. That is, we now let G be the set of all
invertible 2X2 real matrices. An immediate question is whether matnx
multiplication still gives us a binary operation on this smaller set. That is, if 4
and B are invertible, then is AB invertible? Recalling that matrix multiplica-
tion is associative, we see that if 4’ and B’ are inverses for A and B,
respectively, then

(AB)(B'A")=((AB)B")A'=(A(BB’))A’=(AI)A’'= AA' =1,
and similarly
(B'A’)(AB)=1,
so B'A’ serves as an inverse for AB.

Thus we do have a binary operation on the restricted set G, and it is
associative. There is an identity element in G, because / =( (') ‘]’) is invertible.
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Finally, any A €G has an inverse A" which is in G, because the equations
AA'= A'A =1 tell us that A" is invertible (its inverse is A4). Thus G is indeed a
group under matrix multiplication. It is called the general linear group of
degree 2 over R and denoted by GL(2, R).

If A=(2 ) is a matrix, then the number ad—bc is called the determi-
nant of A. Determinants are often very useful in working with matrices. For
instance, it is easy to check that if ad— bc#0, then A is invertible, and the
matrix

d —b
ad—bc  ad—be
—g a

ad — bc ad — bc

is an inverse for A4.

6. Let G consist of all real-valued functions on the real line, with the
binary operation given by pointwise addition of functions: If f,gE€ G then
S+ g is the function whose value at any x ER is f(x)+ g(x).

It is clear that this does give us a binary operation on G. To check
associativity, we must verify that

(f+g)+h=f+(g+h)
for all f,g,h€ G, and this means that for every x ER,
[(f+g)+h](x)=[f+(g+h)](x), thatis,
(f+8)(x)+h(x)=f(x)+(g+h)(x), thatis,
[f(x)+g(x)]+h(x)=f(x)+[ g(x)+h(x)],
which is true since f(x), g(x), and h(x) are real numbers and addition of real
numbers is associative.
The zero function—that is, the function f,€ G such that f(x)=0 for all
x € R—1is an identity element:

(fo+g)=(g+fo)=g forallgEgG.
Why? We must check that for any x ER,
(fo+&)(x)=(g+fo)(x)=g(x), thatis,
Jo(x) +g(x)=g(x) + fo(x)=g(x), thatis,
0+g(x)=g(x)+0=g(x),

which is true.
If fE€ G, then —f is an inverse of f, where — f is defined by

(—N(x)= “[f(x)] for all x ER.
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Why? We have

(=f+N(x)=(=N)(x)+f(x)=~[ f(x)] +f(x)=0,
and

[f+(=N)](x)=Ax)+ (= )(x)=f(x) - [ Ax)]=0,

for all x€R. Thus (—f)+ f=f, and f+(—f)=f, so (—f) is an inverse of f.
Thus G is a group with the given operation.

7. Let X be a set, let S be the set of all subsets of X, and consider the
binary operation of symmetric difference on S.

This is indeed a binary operation on S, and we have seen that it is
associative: (AaB)aC=Aa(BaC(C).

Is there an identity element? In other words, is there e€ S such that
Ase=esA=A for all AES? Well, 4 2e=A4 implies that ANne=, and it
also implies that e C A. Thus e would have to be the null set. Let’s check that
e= works:

As@B=(AuD)—(AND)=A—-D=A,
and
PJoA=(BUA)—(TNA)=A,
so & is in fact an identity element.
How about inverses? An inverse B of A would have to satisfy
AsB=D=BnA.
This implies that ACB and BCA, so B would have to be A4; in fact
AaA=U, so A itself is an inverse for A4.

Thus § forms a group under the operation of symmetric difference. As a
matter of notation, the set of subsets of a set X is called the power set of X,
and denoted by P(X). Thus we have the group (P(X), &).

Finally, we consider some groups obtained from Z.

8. Additive group of integers modulo n. Let n be a positive integer and
consider the set Z,={0,1,2,...,n—1}. We add the elements of Z, modulo n,
ie., we add them as integers and then disregard multiples of n so as to
produce an answer that is one of 0,1,2,...,n— 1. There is a lemma which we
need to make this work. (A lemma in mathematics is a preliminary or
auxiliary result, not the main result one is aiming at.)

LEMMA 2.1 (The Division Algorithm) If a and » are integers and n is positive,
then there exist unigue integers ¢ and r such that a=gn+r and 0<r<n (¢
stands for quotient and r stands for remainder).

PROOF. We prove the existence of g and r, then the uniqueness.
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Existence: Let gn be the greatest multiple of n that is <a. If we let r=a—gn
then clearly »» 0 and a=gn+ r, so all we have to check is that r < n. But if
r>n, then

r—-n=a—(q+1)n >0,

so (g+ 1)n is a multiple of n that is < a, contradicting the choice of gn as the
greatest such multiple.

Uniqueness: If ggn+r,=q,n+r, and 0<r,<n, 0< r,<n, then
Qnr—qn=ry=—r,

sO r,— ry is a multiple of n; but —n<r,—r,<n,sor,—r,=0,sor,=r,. Thus
q\n=qyn, 50 §,=¢q,. [J

We denote the unique r guaranteed by the lemma by a, and call it the
remainder of a mod n.

Observe that two integers @, and a, have the same remainder mod » 1iff
a,—a, 1s a multiple of n. When this happens, we say that 4, and a, are
congruent modulo n, and we write a, = a,(mod n).

Examples Let n=7. Then if a=16, we get 16=2-7+2, so ¢=2, r=2, and
16=r=2. If a=35, we get 35=5-7+0, so 35=0.

By the lemma we can unambiguously define a binary operation @ on Z,
by setung x@y =x+y. For example if n=7, then Z, —{0 1,2,3,4,5,6}, and
3@2=3+2=5=5304=3+4=7=0, and 6B3=6+3=9=2,

We claim that this operation turns Z, into a group (Z,, D).

Associativity: The question is whether (x®y)®z=x®(yDz), that is,

e o oo ? SR
x+y@z=xBy+z,
9

x+y+z=x+y+z.

Well,

x+y+z=(x+y)+z

since x+y and (x+ y) differ by a multiple of »; similarly,

x+y+z =x+(y+2z).

So all we have to check is whether (x+y)+ z equals x+(y+z). But this is
obviously so, since (x+y)+z=x+(y+2).
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Identity: The identity element is 0. Why? 0@ x=0+x=Xx=xif 0<x<n—1,
and, similarly, x@®0=x.

Inverses: We know that 0 is an inverse for 0, since 000=0+0=0=0, the
identity element. Now if x#0, then x€(1,2,...,n—1}, so n—x€
(1,2,...,n—1}, and we see that n— x is an inverse of x:

x®(n—x)=x+n—x=n=0,

and, similarly, (n— x)@& x=0.
For example, in (Z,, @), 1 is an inverse for 6, and 3 is an inverse for 4. In
(Z,5, D), 5 is an inverse for 8.

The group (Z,, ®) is called the additive group of integers mod n. Notice
that, for n=1, we have Z,={0}, so (Z,,®) is a group with only one element
in it. In general, any group having only one element is called trivial. If x is
any object whatsoever (e.g., x=Whistler’s Mother), then we get a trivial
group ({x},+) by defining x *x=x.

EXERCISES

2.1 Which of the following are groups? Why?
a) R* under addition
b) The set 37 of integers that are multiples of 3, under addition
¢) R— {0} under the operation a=b=|ab|
d) The set {1, — 1} under multiplication

e) The subset of Q consisting of all positive rationals that have rational square
roots, under multiplication

f) The set of all pairs (x,y) of real numbers, under the operation (x,y) *(z,w)
=(x+z,y—-w)

g) The set of all pairs (x,y) of real numbers such that y 0, under the operation
(x.p)s(z,w)=(x+2z,yw)

h) R— {1}, under the operation asb=a+b—ab

i) Z, under the operation asb=a+b—1

2.2 a) Of those examples in Exercise 2.1 that are groups, which are abelian?
b) Which of the groups in Examples 1-8 on pp. 17— 20 are abelian?
23 Let X be a set and let P(X') be the power set of X. Does P(X) with the binary

operation 4 *B=AN B form a group? How about P(X) with the binary
operation A s B=A U B?
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2.4 The operation in a finite group can be specified by writing down a table (see
Exercise 1.9). Write down the tables for the following.

a) (Z,, D)
b) (Zs, B)
C) (ZG’ @)

2.5 The following table defines a binary operation on the set S={a,b,c}.

*

a

b c

a
b

c

Is (S,+) a group?

oo

2]

c

(3~ I~ ]

2.6 The following table defines a binary operation on the set S={a,b,c}.

* a b c
a a b e
b b a c
c C b a

Is (S,#) a group?

2.7 Let §={a,b}. Write down a table that defines a binary operation = on .S such
that (S, ) is a group. Show that your table works.

2.8 Let G be the set of all real-valued functions f on the real line which have the
property that f(x)s=0 for all x €R. Define the product f x g of two functions

f, gin G by

(fxg)(x)=f(x)g(x) forall xER.
With this operation, does G form a group? Prove or disprove.

2.9 a) Show that for 22 matrices A and B,
determinant of 4 B =(determinant of 4 )(determinant of B).

b) Show that a 2 X2 matrix 4 is in GL(2, R) iff the determinant of A is not 0.
c) Use the results of (a) and (b) to give another proof that GL(2, R) is a group

under matrix multiplication.

2.10 Let G be the set of all 2 X2 matrices (

% ﬁ). where a,h €R and a?+ b?50.

Show that G forms a group under matrix multiplication.

2.11 Let G be the set of all 2 X2 matrices (g 0), where a and b are nonzero real

b

numbers. Show that G forms a group under matrix multiplication.

2.12 Let G be the set of all triples (a,b,¢) such that a,b,c are elements of Z;. Define * by

(@1, b1, 1) % (a2, b3, ) = (1 D ay, by @ by, €D 2 @ b1ay),
where all additions and multiplications are performed mod 3. Prove that (G, *)is a

group.
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2.13 Let ay,a;,...,a, be ¢clements of a group G. Show that

01.02.030 ok ‘au
has an unambiguous meaning in the sense that no matter how we insert
parentheses into the expression to indicate the order in which the multiplications
are carried out, we always get the same result. [Suggestion. Show that any
insertion of parentheses gives the same answer as

ay»(ay+(aze(age--- +(a,_ +a,)...))).

To do this, use induction on n.]

2.14 If Xisasetand 4,,...,4, are elements of (P(X),A) then by Exercise 2.13 4;A4,A" - *A4,
has an unambiguous meaning. Prove that for every n > 1 the elements of X that are in
AA4 A - -AA, are exactly those elements that are in 4; for an odd number of /’s in {1,

2, .., n}.



SECTION 3

FUNDAMENTAL THEOREMS
ABOUT GROUPS

If we hope to get anywhere in working with groups, there are certain
fundamental facts about their behavior that we must master at the outset. The
operation * in a group comes to us endowed only with the properties given to
it by the group axioms. Everything else must follow from these, and our first
task is to use the axioms to set down some basic rules of operation that
enable us to carry out with ease at least some elementary calculations.

First, a convention: We usually call the operation in a group “multiplica-
tion”; but very often the operation is called “addition” if the group happens
to be abelian.

THEOREM 3.1 (Uniqueness of the identity element) If (G, *) is a group, then
there is only one identity element in G.

PROOF. We must establish that if e and e, are two elements of G both of
which satisfy the defining property of an identity element in G, then in fact
e=e,. That is, we assume that x+e=e+*x=x forall x in G and x*e,=e,*x
= x for all x in G, and we then proceed to show that e must equal e,.
By the assumption on e, we have in particular (taking x to be ¢,)

e, re=exe =g,
By the assumption on e,;, we have (taking x to be ¢)

ere,=e *e=e.

Thus we have e, =e=*e, =e, and the proof is complete. []

THEOREM 32 (Uniqueness of inverses) If (G,+) is a group and x is any
element of G, then x has only one inverse in G.

PROOF. We must show that if both y, and y, satisfy the definition of an
inverse of x, that is, if x*y, =y ,sx=¢e and x*y,=y,*x=¢, then in fact
2™ Y
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We will take some of the given information and use it to derive an
equation which has y, on one side and y, on the other. It may leap to your
eye, for example, that

x*}?l =x¢y2,

because both sides are e. Once this is seen, all that remains is to get rid of the
x’s. We can do this by using more of the given information, namely the fact
that y, * x =e. We multiply both sides by y,:

yi#(xey) =y «(x*y,).
By using associativity, we get from this

(yi*#x)*y, =(y *x)*y,,
e*_yl =ety2,
V1=V
as desired. (]

The proof is finished, but we are going to do it again in a slightly
different way to illustrate the fact that there are often several different ways
to prove something. Suppose, for example, that the equation x*y,= x *y, did
not leap to your eye, and that you just took one of the equations given, say

Y ¥x=e,

to start with. If you want to get from this an equation with y, on one side and
¥, on the other, then certainly you observe that y, is already on the left, and
we can get y, on the right by multiplying both sides by y,:

(yi#x)sy,=exy,
=Vs.

Now if only we could get rid of the x and y, on the left-hand side, we’d be
done; but we know from the equations we had to start with that x+y,=e, so
we rewrite the left side by using associativity, so as to bring x +y, into play:

yi*(x*y))=y,,
Yyremy,,
V1=V
and we are done. [

We emphasize the significance of what we have just proved twice: The
group axioms simply assert that for any x, there must exist an inverse; our
theorem says that once you know you’ve got a group, any x has precisely one
inverse.
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Example Let (G,+) be GL(2,R). Then by applying our general result in this
specific case, we conclude that if (‘c' 3) is an invertible matrix, then there is

only one matrix (; { ) such that

il el o 4 L S R

This fact can of course be established directly, by working with systems
of linear equations in two variables. But one is struck by the economy and
elegance—the “cleanness”—of the proof we have obtained by viewing the

collection of all invertible 2 X2 matrices as a group.

Henceforth we will usually denote the unique inverse of x by x ~'. When
we are dealing with an abelian group and referring to the group operation as
addition, however, we will sometimes denote the inverse of x by —x. For

example, in GL(2, R) we write

3 -(2 3)

and in (Z,, ®) we write —3=4,
The next result will enable us to conclude that no two distinct elements of
a group G can have the same inverse.

THEOREM 33 If (G, +) is a group, then for any x €G we have (x~ ")~ '=x.

PROOF. Since x ' is the inverse of x, we know that x 's+x=x+x"'=e. By
these equations, x satisfies the definition of (x~')™', so x=(x"")""! by the
uniqueness of inverses. []

That was slick, but let’s do it again in a slightly different way. We know
that x ~'=x=e. We want to get from this to an equation with x on one side
and (x~")~! on the other. We need to get rid of the x ! on the left side, so
let’s multiply both sides by (x ') '

(x7 ) e (xTex)=(x"") " "we
((x")"'sx")¢x=(x_')_' (using associativity on the left)
esx=(x""""

x=(x"Y"'O
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Example Let G=(Z, +). Then for this example the theorem says that —(—n)
= n for any integer n.

Now suppose x,y are elements of a group (G, ) and x ™ '=y "', Then by
taking inverses on both sides we get (x )" '=(»~")7', so, by the theorem,
x=y. Thus, as promised, if two elements have the same inverse then they
must in fact be the same element. It is possible to prove this without reference
to the preceding theorem; see Exercise 3.8(b).

Next we examine the inverse of a product.

THEOREM 34 If (G,+) is a group and x, y € G, then

(x2y) =y lex"l

PROOF.

(xep)e(y~texD=xe(ys(y~ex7Y)

=x-((y:y_l)-x_')-xt(etx_')—xsx_l=e,

and similarly we can show that (y “'sx~")s(x*y)=e. (Do it!) Thus the
element y ~'+x ! satisfies the conditions that define (x+y)~!, and since we
already know that inverses are unique, this implies that y '«x~' and

(x#+y)~ ! must be the same element. []

It is worth emphasizing the reversal of order in the above result. In
general, it is not true that (x*y)~"is x “'+y !, This does, of course, hold true
in abelian groups, for then x ~'+y~! is the same thing as y ~'+x~!; in fact,
the equation (x*y)~'=x""'+«y ! holds for all x, y in a group G if and only if
G is abelian (Exercise 3.9).

It is somewhat bothersome to have to check both the conditions
(x*y)*(y "*x")=e and (y '+x " ")*(xxy)=e in the above theorem and,
in fact, it is not hard to show that it is really sufficient to check either one of
them.

THEOREM 35 Let (G,*) be a group and let x, y €EG. Suppose that either

xsy=eorysx=e. Thenyis x .

PROOF. Suppose that x*y =e. We wish to solve this equation for y, so let’s
multiply both sides by x ™ ':

x"le(xay)=x""ve.
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Thus
(x"tx)nry-—*x_],
esy=x"1,
y=x_l.

A similar argument shows that y + x = ¢ is also by itself sufficient to guarantee
that y=x"". (Do it!) (J

The same solving of an equation proves the more general

THEOREM 3.6 (Cancellation laws) Let (G,*) be a group and let x, y, zEG.
Then:
1) if xey=x#z, then y=z; and

i) if yex=ze«x, then y==z.

The proof is left as an exercise. Part (i) is called the left cancellation law,
and Part (ii) the right cancellation law.

We close this section by giving another formulation of the axioms for a
group which is equivalent to our original definition, but somewhat simpler to
work with in establishing that some system is in fact a group.

THEOREM 3.7 Let G be a set and * an associative binary operation on G.
Assume that there is an element e € G such that x*e=x for all x€ G, and
assume that for every x € G there exists an element y in G such that x * y =
e. Then (G,*) is a group.

The element e is called a right identity, and the element y associated to x
is called a right inverse of x. In order to prove the theorem we have to show
that G satisfies all the axioms for a group, and since we have assumed that #*
is a binary operation on G and = is associative, we have only to verify that e
is, in fact, also a left identity, that is, e* x= x for all x € G; and that a right
inverse y of x is also, in fact, a left inverse of x, that is, y*x=e.

PROOF OF THE THEOREM. First we show that e+ x = x for all x € G. Let us do
the proof backwards by trying to obtain some equations that we know would
yield e+ x = x. Let x" denote a right inverse of x. Certainly it would be enough
to have

(e*x)*xx'=x*x', [3.1)

for then we could multiply both sides by a right inverse of x’. But having [3.1]
is the same thing as having

ex(xsx')=x*x/,
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by associativity, and this is the same thing as having
ese=e,

by the definition of the right inverse x’. Certainly we know that ese=e,
because x se=x for any xE€G.

We have proved e*x = x, because each successive equation in our proof
implied the one before it, so that when we finally arrived at a true equation,
its truth implied the truth of all the previous equations. It is crucial to realize
that in this situation it would not have sufficed to have each equation
implying the one affer it. In other words, if we want to prove esx=x, it
suffices to show that e* x= x is implied by the true statement exe=e¢, but it
would not be enough to show that esx=x implies exe=e. (A simple
example: The false statement “— 1= 1" implies the true statement “1=1," as
we see by squaring both sides; but that doesn’t prove —1=1.)

Now let’s finish the proof of Theorem 3.7 by showing that a right inverse
x’ of x is also a left inverse of x, that is, x"+ x=e. We know that there is some
(x’) such that x"=(x’) = e, and it will suffice to show that x =(x")". Now from

xsx'=e
we get
(x*x)2(x') =e=x(x'),
and since we know that e is a left identity, this yields x =(x’). []

An analogous proof shows that assuming associativity and the existence
of a left identity and left inverses is also sufficient to guarantee a group. It
should be observed, however, that associativity plus the existence of a right
identity and left inverses (or a left identity and right inverses) is not enough.

Example Consider the set Z with the binary operation given by
xXsy=Xx,

It is easy to check that * is an associative binary operation on Z and that 1 is
a right identity element and also a left inverse for every element of Z.
However (Z,+) is not a group since, for example, there is no two-sided
identity element in (Z, #).

Since the axioms in Theorem 3.7 are manifestly simpler than those in our
definition of a group, you may wonder why we didn’t use the simpler version
as the definition and then show that the stronger axioms follow. We could
have done so, but we decided against it in favor of emphasizing the fact that
in a group the identity element and inverses work from both sides.
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EXERCISES
3.1 In (Z,,, ®), solve the equation 2 xD7=1 for x.

3.2 Let X=(1,2,3,4,5,6,7,8,9,10}. In (P(X), &), consider the elements 4=
(1,4,5,7,8) and B={2,4,6}, and solve 4 « x= B for x.

33 Find elements 4, B, C of GL(2,R) such that AB= BC but 4 #«C.

3.4 Let g be an element of a group (G, +) such that for some one element x € G,
x=g=x, Show that g=e.

3.5 If (G,s) is a group and x, y, z € G, then we can unambiguously write x sy »z to
denote either (x=y)sz or x «(y +2), since, by associativity, these are the same

element. Show that
(xeyez) '=z"leylex\.

3.6 Prove the cancellation laws (Theorem 3.6).

3.7 Let G be a finite group, and consider the multiplication table for G, i.e., the table
that gives the binary operation of G (see Exercise 1.9). Show that every element
of G occurs precisely once in each row of the table and precisely once in each
column.

3.8 Use the cancellation laws to give alternative proofs of:
a) Theorem 3.1;
b) the fact that if x '=y "' then x=y.
39 Let (G, »=) be a group. Show that (G, =) is abelian iff
(x+y) '=x"'sy~! forallx,yE€G.

3.10 Let (G,+) be a group and let g be some fixed element of G. Show that
G={g*x|xEG}.

3.11 Let (G,+) be a group such that x?= ¢ for all x € G. Show that (G, +) is abelian.
(Here x? means x s x.)

3.12 Let (G, ) be a group. Show that (G, +) is abelian iff (x +y)*= x?#y? for all x, y
in G.

3.13 Let G be a set and let » be an associative binary operation on G. Assume that
there exists a left identity element in G and that every element in G has a left
inverse. Prove that (G, +) is a group.

3.14 Let G be a nonempty set and let » be an associative binary operation on G.
Assume that for any elements a,b in G, we can find x € G such thata=x=Db,
and we can find y such that y «a=b. Show that (G, +) is a group.

3.15 Let G be a nonempty set and let = be an associative binary operation on G.
Assume that both the left and right cancellation laws hold in (G, *). Assume
moreover that G is finite. Show that (G, #) is a group.
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3.16 Give an example to show that if the assumption that G is finite is omitted from
Exercise 3.15, then the conclusion need no longer follow, i.e., (G, *) need not
be a group.

3.17 Suppose G is a set and * is an associative binary operation on G such that there is a
unique right identity element and every element has a lefi inverse. Prove that (G, * ) is

a group.



SECTION 4

POWERS OF AN ELEMENT;
CYCLIC GROUPS

Before going any further in our investigation of groups, we pause to stream-
line our notation. You have probably already started to get tired of writing
every time you want to indicate the operation in a group (G, #). It is common
practice to avoid this encumbrance by writing xy in place of x =y, so long as
no confusion can arise. For example, the equation

(xxy) t=p~lex!

is usually written

1 1

()~ t=y"x7,

and the associative law
(xxy)sz=xs(y=*z)
is written
()z=x(yz).
In keeping with this simplification, we will usually refer to an abstract group
as G, rather than (G, *).

In discussing concrete examples, we continue to use whatever notation is
appropriate. For example, if we are talking about (Z, +) we write x+y. You
are also reminded that the additive notation is very commonly used in
discussing any abelian group.

Another economy in notation is achieved by taking advantage of the
associative law in order to eliminate parentheses. For example, we can
unambiguously write xyz to denote either (xy)z or x(yz), since these two
elements are the same. Similarly, if x,,...,x, are elements of a group, then
X XX3*++x, has an unambiguous meaning; no matter how we insert
parentheses into the expression, the resulting product always equals

X1 (62065 -+ (- 1%0) - -+ )))-

33
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Verifying this for yourself is a good way to check your understanding of the
associative law. (See Exercise 2.13.)

A word of caution: There are times when parentheses cannot be omitted
without changing the meaning of an expression. For example, (xy) ™' is not in

general the same thing as xy ~'.

Now let x be an element of a group G. We define the powers x” of x (for
n€Z) as follows:
x0=e;
x"=xxx-++x (n factors), if n>0;
x ®m(x ) amx~lx~Ix~l...x", ifn>0.

Here are the rules for working with exponents.

THEOREM 4.1 Let G be a group and let x € G. Let m,n be integers. Then:

l) xmxn=xm+n;
i) (x")7'=x""

i) (x™)"=x""=(x")".
PROOF. i) First suppose that m and n are both positive. Then
xMx"= xx+ccx XXX = XXX (by associativity),
L R — — | S ——
m factors n factors m+ n factors
and this is x™*". Next, if m and n are both negative, say m= —r and n= — 3,
then
x™x"=x""x " =(x"N(x"")=(x"")Y"*" (by the first case),
and this is x ¢, that is, x™*". If m=—r<0 and n>0, then if r>n we
have

xmxn=(x—])rxn=(x—l)r—n=x—(r-—u)=x—r+n=xm+n'

The remaining cases can be treated similarly, and are left to the reader.
(1) and (ii1) are exercises. []

We observe that if we are writing the group operation additively, then x*
means x + x, x> means x+ x + x, and so on. In this context, we usually write
nx in place of x"; then (i) above becomes mx+ nx=(m+ n)x, (ii) becomes
—(nx)=(—n)x, and (ii1) becomes n(mx)=(nm)x = m(nx).

DEFINITIONS If G is a group and x € G, then x is said to be of finite order if
there exists a positive integer n such that x" = e. If such an integer exists, then
the smallest positive n such that x" = e is called the order of x and denoted by
o(x). If x is not of finite order, then we say that x is of infinite order and write

o(x)=oo0.



Section 4. Powers of an Element; Cyclic Groups 35

Examples

1. Let G be (Z,,®). Then o(1)=3, since
1#0, 1®1+40, and 1D 1B1=0.
2. Let G be (Z, +). Then o(1)= oo, since
10, 1+1%0, 1+1+4+1+0, etc.
3. Let G be (Q%, ). Then 0(2)= oo, since

2#1, 22#1, 22#1, 2°#1, etc.
4. Let G be GL(2,R). Then o(( = —01))=2 since

(o0 2020 9w (3 2)=(5 9)

Since the notion of “order of an element” is defined in terms of integers,
it is not surprising that one needs some information on integers in order to
investigate its properties. We include this material at this point as a change of
pace.

If m,n are integers, not both zero, then (m,n) denotes the greatest
common divisor (g.c.d.) of m and n. This is by definition the largest integer d
that divides both m and n. [If m=n=0, then (m,n) doesn’t exist because
every integer divides 0: 0= k-0 for any k.] It is clear that (m,n)=(|m|,|n|), so
that in what follows we can assume that m and n are nonnegative integers, at
least one of which is not zero.

There is a process called the Euclidean algorithm which enables us to find
(m,n) by doing some arithmetic. Say n <m; then we can find unique integers
q and r such that

m=gn+r and 0<r<n.
Now any integer divides m and »n if and only if it divides n and r, so the
greatest integer that divides m and n is the same as the greatest integer that
divides n and r, that is,
(m,n)=(n,r).

The good thing about knowing this is that we have traded in the pair m,n for
the pair n,r and in so doing we have replaced the greater of m,n by r, which
is smaller than the smaller of m,n. If r=0, then clearly (m,n)=n and we are
done. If r+0, then we repeat our trick and find ¢, and r, such that

n=q,r+r, where0<r <r.
Then

(m,n)=(n,r)=(r,r),
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and we have traded in n for r,, which is even smaller than r. If r, =0, then
(m,n)=r. If r; %0, we find ¢, and r, such that

r=q,r,+r,
and 0<r,<r,. Then
(m-")=(n’r)=(rirl)=(r!’r2)r

and if »,=0, (m,n)=r,. If r,70, then we continue the process, obtaining a
sequence of remainders r>r, >r,>ry> ..., where each r,>0. By the well-
ordering principle, such a decreasing sequence of nonnegative integers cannot
go on forever, so some r; must eventually be 0. If so, then

(m’")=("”l)=("h’z)= e =(’}—1»’f)=(’}—1’0)= Fi—-1

Thus (m, n) is the last nonzero remainder arising from our repeated divisions.

Example Let’s find (1251, 1976):

1976 =1251-1+ 725,
1251=725-1+ 526,
725=526-1+199,
526=199-2+128,
199=128-1+71,
128=71-1+57,
T1=57-1+ 14,
57=14-4+1,
14=1-14+0.

Here r=725, r, =526, r;=199, r;=128, ry,=71, rs=>57, rg=14, r;=1, rg=0.
Thus (1251, 1976)=r,=1. We indicate the fact that the g.c.d. is 1 by saying
that 1251 and 1976 are relatively prime.

Actually our interest in this process is not so much that it enables us to
find (m,n), but that it allows us to establish the following fact.

THEOREM 4.2 If m and n are integers, not both zero, then there exist integers x
and y such that

mx + ny =(m,n).

Thus the g.c.d. of m and n can be written as a “linear combination” of m and
n, with integer coefficients.

The utility of this information will become clear in a moment.
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PROOF OF THE THEOREM. We write down the steps in the calculation of (m,n)
by the Euclidean algorithm, and then use them in reverse order. We have

m=gqgn-+r,
n=qr+r,
r=gq,ry,+r,,

r=q5r,%r;,

Vica=@qi_ali_3tr_s

Ni3=q; iy tr_y (ri#0)
ri_a=qiri_ +0,
so r;_, =(m,n). Now the next-to-last step can be written as
iev=lr_s—q_yri_y (4.1]

so (m,n) is written as a linear combination of 7,_; and r,_,. The preceding
step (r;_4=q,_,ri_3+r,_,) can be used to replace r,_, by r,_,—¢q,_,r;_; in
Eq. [4.1], resulting in an expression for (m,n) as a linear combination of 7,_,4
and r,_,. Using all the equations from the Euclidean algorithm in reverse
order, we eventually arrive at an expression for (m,n) as a linear combination
of mand n. (J

Example We find x and y such that (1251, 1976)=1251x+ 1976y. Referring
back to our calculation of (1251, 1976)=1, we get:
1=1-57—-4-14
=1-57-4(71-57)=—4-71+5-57
=—4-7T1+5(128—71)=—-9-71+5-128
=5-128—9(199—-128)=14-128—-9-199
=—9-199+ 14(526 — 199-2) = —37-199+ 14-526
=14-526—37(725—526)=51-526—37-725
= —37(725)+51(1251 —725) = —88-725+ 51- 1251
=51-1251—-88(1976 —1251)=139-1251 —88-1976.

Thus we can take x=139 and y= —88.

After that, one should be in a good frame of mind to appreciate some
good clean abstraction, but before returning to groups we derive a con-
sequence of the last result that will be useful.

THEOREM 43 (Euclid) If r,s,7 are integers, r divides st, and (r,s)=1, then r
divides 1.

PROOF. Since (r,s)=1, there exist integers x and y such that
rx+sy=1.
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Multiplying both sides of this equation by ¢ yields
rxt+syt=1t, or
r(xt)+st(y)=1.
Manifestly, r divides r(xt); and r divides st(y) since it divides st by assump-
tion. Thus r divides the sum of r(xr) and st(y), i.e., r divides ¢, as claimed. []

There are many simple results in number theory which never lose their
charm, and that’s one of them.
Back to groups.

THEOREM 44 Let G be a group and x€G.
i) o(x)=o(x"").
ii) If o(x)=n and x™= e, then n divides m.
iii) If o(x)=n and (m,n)=d, then o(x™)=n/d.

PROOF. The proof of part i) is left as an exercise.

ii) We have x™=e¢ and we seek to make something of the fact that n is
the smallest positive integer such that x"=e. Write m=gn+r, where 0<r
< n. Then x™ = e becomes

an+r=e
xT"x"=e
(x")x"=e.
But x"=e, so the last equation becomes
x"=e.
But r is smaller than n, so this is impossible unless r=0. Thus m=gn+0, so n
divides m.
ii1) Here we use our information about greatest common divisors. We

must show that n/d is the smallest positive integer k such that (x™)* =e. First
of all,

(xm)n/d=xm-(n/d)=x(m/d)-n=(xu)m/d=em/d=e!

since o(x) = n. Now suppose & > 0 and (x")* = e. We will show than n/d divides k
and therefore, since n/d and k are positive integers, #/d < k. We have ™ = ¢, so by
part (ii) we know that »n divides mk, which implies that n/d divides (m/d) - k. Since
(m/d, n/d) = 1 (why?), this implies that n/d divides k (by Theorem 4.3). (J

We will use these results on the order of an element in Section 5, to help
us obtain some results about what are known as cyclic groups. For now, we
will just introduce cyclic groups.

We remarked that the study of abstract group theory evolved from the
study of specific examples. The abstract concept was formulated in an effort
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to bring together certain concrete cases. Once this was done, however, there
was, of course, a new problem. How far-reaching was the abstract concept?
What kinds of groups were there other than those that motivated the abstrac-
tion?

A central goal of group theory is to classify all groups, i.e., to see what
kinds of groups there are. One would like to start with the easiest groups. It
turns out that these are the cyclic groups—those groups that are just the set
of powers of some one element.

DEFINITIONS A group G is called cyciic if there is an element x € G such that
G={x"|nE€Z}; x is then called a generator for G.

It will be convenient to have a more compact notation for the set
{x"|nEZ}. We will denote it by (x). Thus G is cyclic with x as a generator
iff G={x).

In additive notation, {(x) = {nx|nE€Z}.

Examples

1. (Z,,®) is the trivial group {0} consisting of just an identity element.
Clearly, then, (Z,, ®)=<0).

2. If n>2, then (Z,, ®)= (1), for the powers

\L181L,18181,..., 181918 &1

n lerms

exhaust (Z,, D).

3. (Z, +) is cyclic with generator 1, that is, (Z, +)=<{1). In this case
we have to use all the powers of the generator to get all of the group:
0,1,-1,1+1,—-1-L1+1+41,—1—1-1, and so on.

4. (Q, +) is not cyclic. For clearly 0 is not a generator, and if g#0
then we can easily exhibit rational numbers that are not in {(¢) =
{ng|ln€EZ}. An example is g/2.

It should be made explicit that the powers of an element need not all be
distinct. In fact, we have the following result:

THEOREM 45 Let G={x). If o(x)=o00, then x/s#x* for j#k, and conse-
quently G is infinite. If o(x)=n, then x/=x* iff j =k (mod n), and conse-
quently the distinct elements of G are e, x, x%,...,x" 1.

PROOF. Suppose that jk and x’/=x*. If, say, j >k, then we obtain x/ *=e,
and j— k>0, so x has finite order. This proves the first statement.

For the second, suppose that o(x)=n. Then x/=x* iff x’~*=¢ iff (by
Theorem 4.4 ii) n divides j—k iff j =k (mod n). [J
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DEFINITION The order of a group G, denoted by |G|, is the number of
elements in G.

Theorem 4.5 has the following immediate consequence, or corollary.

COROLLARY 4.6 If G={x), then |G|= o(x).

The equality is intended to mean that |G| is infinite iff o(x) is, and that if
both sides are finite, then they are equal.

The reader may have noticed that all the examples of cyclic groups that
we have looked at are abelian. This is no accident.

THEOREM 4.7 If G is a cyclic group, then G is abelian.

PROOF. Suppose G=<{x). We have to show that for any elements a,b in G,
ab=ba. Say a= x", b=x", where m,ncZ. Then

ab=(x")(x")=x"*"=x"*"= x"x" = ba,
so we are done. [

The converse is false; there exist many noncyclic abelian groups. We have
already seen  one example: (Q,+). Another example is Klein’s 4-group. This
group has four elements, e, a, b, ¢, and the multiplication is given by ea = ae = g,
eb=be=bec=ce=c,é¢=a=b*=c*=e,ab=ba=c,ac=ca=b,and bc = cb
= g. Instead of verifying directly that this multiplication gives us a group we can
call on the known group (P(X), A), with X = {1,2}. If welete=0, a= {1}, b=
{2}, and ¢ = {1, 2}, then the multiplication specified above for Klein’s 4-group is
exactly the multiplication in (P(X), A), so this multiplication does indeed yield a
group. Klein’s 4-group is not cyclic because none of the elements e, a, b, c has
order 4.

Klein’s 4-group is named for the German mathematician Felix Klein (1849-
1925). The German word for “4-group” is “Viergruppe,” and the 4-group is often
denoted by V.

EXERCISES

4.1 Which elements of (Z,, @) are contained in {0)>?in {1)>? {(2)>? {(3>?7{4)? {(5)?
8>

4.2 Let G be the group of all real-valued functions on the real line under addition
of functions, and let f€ G be the function such that f{x)=1 for all xER.
Indicate what sort of configuration you would get if you drew the graphs of all
the functions in {(f) on one set of axes.

43 Let X={(1,2,3,4,5). If A is the element {1,4,5} in (P(X), 2), how many
elements are there in (A4 )? What are they?
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44 In (Z,, @), find the orders of the elements 3, 4, 6, 7, and 18.

4.5 Let G be a group and let x € G be an element of order 18. Find the orders of

4
a2t xS X% x5 xB

4.6 List all the elements of (Z4s, @) that are of order 15.

4.7 Let G=<{x) be a cyclic group of order 24. List all the elements in G that are of
order 4.

4.8 The set of even integers forms a group under addition. Is this group cyclic?

4.9 Show that (Q*, ) is not cyclic.

4.10 Let G={1,2,3,4,5,6) and define an operation © on G by a®b=ab, the
remainder of ab (mod 7). For instance, 204=8=1, and 506=30=2.

a) Show that (G, ©) is a group.
b) Is this group cyclic?
4.11 Is GL(2,R) cyclic?

4.12 Consider the group (Z,+), where asb=a+ b— 1. Is this group cyclic?
4.13 Show that if G is a finite group, then every element of G is of finite order.

4.14 Give an example of an infinite group G such that every element of G has finite
order.

4.15 a) Find (123,321), and find integers x and y such that 123x+ 321y =(123,321).
b) Find (862,347), and find integers x and y such that 862x + 347y = (862, 347).
c) Find (7469,2464), and find integers x and y such that 7469x + 2464y =

(7469, 2464).

4.16 Prove that if G={x), then G={(x"").

4.17 Prove that if G={x) and G is infinite, then x and x ~! are the only generators
of G.

4,18 Prove parts (ii) and (iii) of Theorem 4.1.

4.19 Prove part (i) of Theorem 4.4.

420 Let G be a group and let a € G. An element b € G is called a conjugate of a if
there exists an element x € G such that b= xax ~'. Show that any conjugate of
a has the same order as a.

4.21 Show that for any two elements x, y of any group G, o(xy)= o(yx).

4.22 Let G be an abelian group and let x, y € G. Suppose that x and y are of finite
order. Show that xy is of finite order and that, in fact, o(xy) divides o(x)o(y).

4.23 Let G, x, y be as in Exercise 4.22, and assume in addition that (o(x),e(y))=1.
Prove that o(xy) = o(x)o(y).
1 o2

4.24 Let G be a group and let x, y € G. Assume that x%e, o(y)=2, and yxy ~ ' = x*,
Find o(x).
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4.25 Show that if |G| is an even integer, then there is an element x € G such that x<e
and x?=e.

426 Let m,n€Z, not both 0, and let d €Z. Show that d=(m,n) iff d has the following
properties:

i) d is positive;

ii) d|m and d|n;
iii) every integer c that divides both m and n divides d.
These three properties are sometimes used to define g.c.d.’s.

427 Let p be a prime. Show that if g,,...,q, are positive integers and p divides
192" " * ¢, then p divides some g¢;.

4.28 Prove the “uniqueness” part of the Fundamental Theorem of Arithmetic
(Theorem 0.4). (Suggestion: Use the result of Exercise 4.27 and induction on n.)

4.29 Suppose m and n are positive integers and p,,...,p, are all the primes that divide
m or n or both. Say m=p{'1p2'.'2. . .p".r and n=p{1p£2. . -p‘{r. Show that
(m,m)=pfipfa- .. pk, where k, is the smaller of i, and j,, for each .

430 Let n,,...,n, be integers, not all 0. The greatest common divisor of n,,...,n,,
denoted by (n,,...,m,), is the largest integer that divides all of ny,n,,...,n,. Show
that there exist integers a,,...,a; such that

aymy+any+ - Fane=(ny,...,m).
[Suggestion: Use induction on k. Use the inductive hypothesis to show that
(nyecsm)=((ny,....,m_ 1), me),
and apply Theorem 4.2.]
431 If m and n are integers, we define their least common multiple, [m, n], as follows.

If m=0 or n=0, we set [m,n]=0; otherwise we let [m,n] be the smallest positive
integer that is divisible by both m and n.

a) Show that if m and n are both positive and m=p{1p%- - - p}, n=p{pf- - - p,
as in Exercise 4.29, then [m,n]=p[ip3:- - - p/, where [, is the larger of i, and
Ji, for each ¢.

b) Show that if m and n are both positive, then

mn=(m,n)[m,n].

432 Let G be an abelian group, and let x and y be elements of G such that o(x)=m
and o(y)=n. Show that G has an element z such that o(z) is the least common
multiple of m and n.

433 a) Show that in the group of Exercise 2.12 we have (xy)’ = x»' and
(x)*=x%" for all x and y, but the group is not abelian. (Compare Exercise 3.12.)

b) Prove that if G is a group and there exists a positive integer » such that for all
x, y in G we have

()" =x"" and (xy)™" ="'y and (xy)™? = X"/
then G is abelian.
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SUBGROUPS

Up to this point we have been considering groups as separate entities,
unrelated to each other. Even so, you have probably observed that some
groups sit inside others. For example, in (Z, +), the set 2Z of even integers is
itself a group under + : Addition is a binary operation on 2Z since the sum of
two even integers is even; addition is associative on 2Z since it is associative
on all of Z; 2Z contains the identity element 0 of (Z, +); and if x €2Z then
—x€2Z, so 2Z contains the inverse of each of its elements.

Indeed, one of the most natural questions one can ask about a group G is
“What groups sit inside G?7” Those that do are called subgrowps of G.

DEFINITION A subset H of a group (G,*) is called a subgroup of G if the
elements of H form a group under *.

It is worth emphasizing the “under *.” For example, (Q%,-) is a group
and (Q, +) is a group, and Q@* C @, but (Q™, -) is nor a subgroup of (Q, +)
because the operation on (Q7, -) is not the operation on (@, +).

Observe that if H is a subgroup of G, then H cannot be empty because H
must contain an identity element. In fact, the identity element of A must be
e, the identity element of G. For suppose €’ is the identity element of H; then
in particular ¢’* e’ = ¢’, a relationship between elements of the group G. Thus,
multiplying by (¢)™' in G, we get ¢’=e.

It is convenient to have a more compact criterion for a subset of a group
to constitute a subgroup.

THEOREM 5.1 Let H be a nonempty subset of a group G. Then H is a
subgroup of G if and only if the following two conditions are satisfied:

i) forall a,bEH, abE H, and
ii) forallaeH,a 'eH.

43
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Condition (i) is expressed by saying that H is closed under the operation
in G, and condition (ii) is expressed by saying that H is closed under inverses.

PROOF OF THE THEOREM. If H is, in fact, a subgroup of G then it is clear that
(1) 1s satisfied. As for (u1), if we let a_, denote the inverse of a in H, then
aa_,=e (we have remarked that the identity element of H is the same as the
identity element of G) in G, which implies that a_, is in fact @', the inverse
of a in G. Thus a~' € H for any a € H, so (ii) is satisfied.

Conversely, assume that the nonempty subset H is closed under the
operation * in G and that H is closed under inverses. To show that H is then
a group under « it suffices to check that e € H and that associativity holds in
H. Since H is nonempty by assumption, we can let x denote some element
of H. Then by (ii) x '€H, so by (i) xx '€H. But xx '=¢, so eEH.
Fihally, H inherits associativity from G: if a,b,c€ H then a,b,cEG, so
(ab)c = a(bc) by associativity in G. [J

Examples

1. (@*,-) is a subgroup of (R™,-), which is, in turn, a subgroup of
(R—{0},-).

2. Let G be any group and let a € G.. Then {a) is a subgroup of G. For
clearly (a)>#, and {a) is closed under multiplication since if @/, a* €{a)
then a’a*=a’**€(a). Finally, {a) is closed under inverses since if a’ €{a)
then (¢/) '=a~/€{a).

As a specific example, if G=(Z, +) and a=2, then {a) is the subgroup
2Z, +).

3. Let’s find all the subgroups of Klein’s 4-group, V={e,a,b,c} with
a*=b*=c*=e, ab=ba=c, ac=ca=b, bc=chb=a. The only subgroup that
contains none of a, b, or c is obviously {e}. If a subgroup contains just one of
a, b, or ¢ then it is either (a), {(b), or {c). If it contains two of a,b,c then by
the definition of multiplication in V¥, it contains the third as well, and since it
contains e it must then be V. Thus the subgroups are {(e), {(a), (b), {(¢), and

V.
Klein’s 4-group is thus an example of an abelian noncyclic group with the

property that all of its proper subgroups are cyclic. (A subgroup H of G is
proper if H#G.)

We sometimes make a schematic picture of the subgroups of a group by
drawing what is called a subgroup lattice. The subgroup lattice for Klein’s



Section 5. Subgroups 45

4-group is
i
21
La> <b> <>

Sl

<e>

A line going upward from one group to another indicates that the bottom
group is a subgroup of the top one.

4. If G=(Z, +) and n is any integer, then the set nZ={n) of multiples of
n forms a subgroup of G. In particular for n=0 we get the subgroup {0}
consisting of just the identity element, and for n=1 we get G itself.

In fact the nZ are all the subgroups of (Z, +). For if H is a subgroup
other than {0} there exist positive integers in . (Why?) If we let n be the
smallest positive integer in H, then we claim that H is nZ. Clearly, nZC H
since n€ H and H is a subgroup. But also H CnZ, for if h € H we can write
h=gn+r, with 0<r<n. Then

r=h—gneH (why?),

which contradicts the minimality of n unless r=0. Thus r is 0, so A=gn and
any h€ H is a multiple of n.

5. Let n be a positive integer and consider (Z,, ®). We have the sub-
groups
€00,<1:,42>;...,{n=1}

(not all of which are distinct if » > 2: for example, {1)={(n—1) sincen—1is
the inverse of 1), and an argument like that in Example 4 would show that
these are, in fact, all the subgroups of (Z,, ®). However, rather than go
through the argument in the context of (Z,, @), we will prove a general result
that covers Example 4 and (Z,, @) simultaneously.

THEOREM 52 Let G be a cyclic group. Then every subgroup of G is cyclic.

PROOF. Suppose G=(x), and let H be a subgroup of G. If H={e} then
clearly H is cyclic, so assume H#{e}. Let n be the smallest positive integer
such that x" € H. (Why does n exist?) We assert that H={x"). Forif h€ H
then A= x" for some integer m, because h € G={x). Write m=gn+ r, where
0<r<n. Then

h_xqud-rnanxrﬂ(xn)exr’ and (xn)QEH.
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So x"=x""h€ H. Since 0<r<n, the definition of » implies that r=0, so
m=gn and

h=x"=(x")"e{x").

Thus H C{x"), and since it is obvious that {(x" ) C H, the proof is complete.
O

It is often true in mathematics that the proof of a theorem contains
substantially more information than the statement of the theorem itself.
Theorem 5.2 is a case in point, and you are urged to study the proof carefully.
For example, the proof tells us not only that every subgroup is cyclic, but also
how to find a generator for each one.

There are, of course, questions about the subgroups of (Z,, @) that are
left unanswered by this theorem. Which of (0),{1),{2),...,{(n—1) coin-
cide? How many distinct subgroups does (Z,, ©) have? We shall return to
these questions after we consider some more examples of subgroups.

Examples (continued)

6. Let G be the group of real-valued functions on the real line, under
addition of functions, and let H be the set of continuous functions in G. Then
H is a subgroup of G since the sum of two continuous functions is continuous
(closure of H under addition of functions) and if f is continuous, then —f is
continuous (closure of H under inverses).

7. Let G= GL(2,R). Let H be the subset of G consisting of all matrices of
the form (3 z), where ad+#0. Then H is a subgroup of G. To see that H is
closed under matrix multiplication, observe that

(5 20 0-15 “&*)

and if ad+0 and eh 0 then (ae)(dh)=(ad)(eh)+#0. To check closure under

inverses, observe that if ad+0, then the inverse of (; - ) is
( 1fa - b/ad)
0 1/d )

and (1/a)-(1/d)#0.
8. If G is any group, then the center of G, denoted by Z(G), is the subset
consisting of those elements that commute with everything in G. Thus
Z(G)={z€G|zx=xz forallxEG}.
(The Z comes from the German word “Zentrum.”)
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Of course, if G is abelian, then Z(G)=G; but if G is nonabelian, then
Z(G) g G. As a specific example, let’s try to figure out what the center of
GL(2,R) looks like.

Suppose (: z) commutes with everything in GL(2, R). Then since (? Ly
€ GL(2,R), we have

(2 2 o)=( e 2)
(& =2 3

This means that a=4d and b=rc, so
(2 - 2
c d b al

Furthermore, since (.(1l ;)e GL(2,R), we also have
(5 206 D66 G 2
b al/\0 1 0 1/\b alf

(a a+b)=(a+b b-l-a)
b b+a b a |

Thus 6=0, so every element of the center has the form (3 g] a#0. It is
easy to see that, conversely, all elements of this form are in the center, so

that is,

that 1s,

Z(GL(2,R))={(S g)[a%ﬁ].

In this case the center is clearly a subgroup, and it is not hard to see that
the center is a/ways a subgroup, no matter what group G is (Exercise 5.22).

9. Let G=GL(2,C), the general linear group of degree two over the

complex numbers. This is the set of all invertible matrices
ot di+dyi)
where the a’s, b’s, c’s, and d’s are real numbers and i*= — 1, under matrix
multiplication. [All you need to know about multiplying complex numbers at
this point is that
(a+bi)(c+di)=(ac—bd)+(bc+ad)i.

That is, you just multiply it out and replace i by —1.]

We are going to consider a subgroup of G that is of order 8, called the
group of unit quaternions.
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Let
i 0 (0 1 s | B
J’(o : i)' x=( 2, o)’ o e ( i 0)'
Let Qg={1, —1,J, —J, K, — K, L, — L}, where I (for “identity”) is, of
course, (! 9), and —J is, for example, (3 4 ?) To show that Qg is in fact a
subgroup of GL(2,C) it suffices to check that Qg is closed under matrix
multiplication and inverses. Closure under multiplication follows from the
facts that
Ji=K*=L*=-1

and K/J=—-L,JK=L,KL=J, LK=-J,JL=—-K, LJ=K.

Closure under inverses follows from the fact that J "'= —J, K ~'= — K,
and L~ '= — L. [For example, J(—J)= —J%= —(—I)=1.] However, it turns
out that because Qj is a finite subset of GL(2,C) it was really enough to check
just closure under multiplication.

Thus Qg provides a nice illustration of the following elegant little theo-
rem.

THEOREM 53 Let G be a group and let H be a finite nonempty subset of G.
Then if A 1s closed under multiplication in G, H is a subgroup of G.

PROOF. Suppose h € H; we must show that /' € H. Since H is closed under
multiplication we know that k, #°, i, i, ... are all in H. These powers can’t all be
distinct, because H is finite. Therefore by Theorem 4.5 4 has finite order » for
some n € Z " and every power of & equals one of e, h, 1, ... I", i.e. one of A,
i, ..., K. But all of these are in H, so every power of 4 is in H and in particular
F'eH.O

In Exercise 5.17 you are asked to consider the question of whether it
would have been enough to assume only that / was closed under inverses.

The group of unit quaternions will be useful to us as an example when we
discuss what are called normal subgroups. For now we note that the multi-
plication in Q4 can be remembered by using the diagram

L

/\
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Going around the diagram clockwise we read off products: JK=L, LJ=K,
KL=J. Going around counterclockwise we attach minus signs: JL= —K,
and so on. The group Q; can be defined abstractly as the set of eight symbols
(I, —1,J, —J, K, — K, L, — L} with multiplication defined by J?=K?= L2
=-], JK=L, KL=J, LJ=K, JL=—-K, LK=-J, KJ=~L, and I the
identity element. If we take this approach then the fact that Q; satisfies the
group axioms must be checked from scratch, and verifying associativity
becomes rather tedious. This is why we have chosen to introduce Qg as a
subgroup of the known group GL(2,C) instead.

One cannot think for very long about subgroups without running into the
following questions. Suppose H and K are subgroups of G. Whenis HN K a
subgroup of G? How about H U K?

Let’s consider these questions in the context of (Z, +) for a moment.
Recall that the subgroups of (Z, +) are just the sets nZ, where n is an integer.
What is 2Z N 3Z? Since an integer is divisible by both 2 and 3 if and only if it
is divisible by 6, 2Z N 3Z=6Z. More generally,

mIZnnZ=kZ,
where k is the least common multiple of m and n. So in this case, at least, the
intersection of two subgroups is always a subgroup.

How about unions? Well, 2ZU3Z is not a subgroup of (Z,+). For
example, 2+3=5&2ZU3Z, so 2ZU3Z is not closed under addition. How-
ever, 2ZU6Z is a subgroup, since 2ZU6Z=2Z. (Why?) After trying a few
more examples, one would get the idea that the union of two subgroups of
(Z, +) is a subgroup if and only if one of the two subgroups is contained in
the other. This idea would be correct, and here is the general result.

THEOREM 54 Let H and K be subgroups of a group G. Then:
1) HN K is always a subgroup of G; and
i) H UK is a subgroup if and only if one of H, K is contained in the other.

Another way of stating (ii) is that # U K is a subgroup if and only if
H UK is either H or K.

PROOF OF THE THEOREM.

The proof of part (i) is left as an exercise.

i) Clearly if H UK is either H or K, then H UK is a subgroup of G.
Conversely, let us suppose that H £ K and K Z H, and try to show that H U K
is not a subgroup of G. What we know is that there is some A& H such that
h & K, and there is some k € K such that k & H. We show that hk & H U K, so
that H U X is not closed under the operation in G. (In the above example, H
was 2Z, K was 3Z, h was 2, k was 3, and 2+3=5&€ HUK.)



50  Section 5. Subgroups

Could hk be in H? If it were then, since 2 '€ H, we would have
h~(hk)€ H (why?), that is, k € H. But k & H. Similarly, Ak is not in X either,
sohk& KU H.

Observe that H U K will always be closed under inverses, so whenever it
fails to be a subgroup, the reason will always be that it is not closed under the
group operation.

We conclude this section by discussing the subgroups of a cyclic group G
of order n. We already know that all the subgroups of G are cyclic.

THEOREM 55 Let G=(x) be a cyclic group of order n. Then:

i) For any positive integer m, G has a subgroup of order m if and only if m
divides n.

ii) If in fact m does divide n, then G has a unigue subgroup of order m.

iii) Two powers x” and x* of x generate the same subgroup of G if and only
if (r,n)=(s,n).

PROOF. 1) First suppose that m divides n. Then {(x"/™) is a subgroup of G. By
Corollary 4.6, x has order n, so by Theorem 4.4, x"/™ has order

n n

(n/mm) ~ (nfm) "

Thus by Corollary 4.6 again, {(x"/™) is a subgroup of G of order m.
Conversely, assume that G has a subgroup H of order m. H must be

cyclic, say H={x*>. Then

|H|=o0(x*)=n/(k, n),
SO
m=n/(k, n).
This yields m(k, n)=n, and therefore m divides n.

ii) Let H, and H, be two subgroups of order m, where m divides n. Then,
as in the proof of Theorem 5.2, we have H,={x*) and H,=(x*), where
x*1 and x*: are the smallest positive powers of x that lie in H, and H,,
respectively. (In the present case this is true even if H, or H, is {e}, because x
has finite order.) Our task is to show that k,= k,, for this would imply that
H,= H,, thus finishing the proof. Now

n/(ky, n)=|H\|=m=|H,|=n/(k,, n),
so (k,, n)=(k,, n). How can we get from this to k,=k,?

We will show that (k,, n)=k, and (k,, n)= k,. All we have to do to show
that (k,, n)=k, is to show that k, divides n. But if ¢ is any integer such that
x'€ H,, then k, divides ¢ (see the proof of Theorem 5.2). Since x"=e € H , k,
divides n.
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We have shown that (k,, n)=k,, and the same argument shows that
(ky n)=k,. Thus k,= k, and the proof is complete.
iii) Consider two elements x’, x° of G. By part (ii), we see that
{x"y=<(x*> iff
[<x">|=|<x*>| iff
o(x")=o(x*) iff
n n
= iff
(r,n) (s,n) '
(r,n)=(s,n). O
Parts (i) and (ii) of the theorem imply that a cyclic group of order n has
exactly d(n) subgroups, where d(n) denotes the number of positive divisors of

n. The function d(n) [sometimes denoted by 7(n)] will be familiar to you if
you have studied number theory.

COROLLARY 56 If G={x) is cyclic of order n and d,,d,,...,d,,, are the
distinct positive divisors of n, then

(x5, (x%), ..., {x %)
are the distinct subgroups of G.

PROOF. Observe that, since each d divides n, we have (d,,n)=d,. Hence if
d,#d, then (d,,n)#(d;,n), and therefore (x%) #(x%) by part (iii) of Theorem
5.5. Thus all the indicated subgroups are distinct, and since there are d(n) of
them, they must give all d(»n) subgroups of G. [J

Example Let G=(Z,,,®). Then G=(1) and |G|=12. Since the positive
divisors of 12 are 1, 2, 3, 4, 6, and 12, the distinct subgroups of G are
generated by the 1st, 2nd, 3rd, 4th, 6th, and 12th powers of 1, namely 1, 2-1,
3-1,4-1,6-1, and 12-1. Thus the subgroups of G are (1), (2>, (3>, (4>, {(6),
and {0).

Observe that (5) ={1) = G since (5, 12)=(1, 12); similarly {(7)={1) and
{11)=1. We have {8)={4) since (8,12)=(4,12); (9> ={3); (10> =(2).

If we arrange the subgroups of (Z,,, @) in a lattice, it comes out like this:

/N
SN/

S

<0>
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Here is the situation for infinite cyclic groups.

THEOREM 5.7 Let G={x) be an infinite cyclic group. Then {e),{x),{x?),
{x>),{x*,... are all the distinct subgroups of G.

PROOF. This is a good exercise. [

EXERCISES

5.1 In each case, determine whether or not H is a subgroup of G.
a) G=(R,+); H=Q
b) G=(Q,+); H=Z
¢) G=(Z,+); H=1"
d) G=(Q@-{0},-); H=Q*
e) G=(Zy, D); H=(0,2,4}
f) G=the set of 2-tuples of real numbers (a,b) under addition of 2-tuples;
H =the subset consisting of all 2-tuples such that b= —g
g) G=Qy H={1,J, K}
h) G=(P(X), 2); H={D, A, B, A2 B}, where A, B are two elements of G
i) G=(P(X),2); H=P(Y), where YCX.
5.2 Let G be the group of real-valued functions on the real line, under addition of

functions. Let H be the set of differentiable functions in G. Show that H is a
subgroup of G.

53 Let H be the set of elements (: :) of GL(2, R) such that ad — bc = 1. Show that
H is a subgroup of GL(2, R). H is called the special linear group of degree 2 over
R and is denoted by SL(2, R).

54 a) How many subgroups does (Z,5, @) have? What are they?
b) How many subgroups does (Z35, @) have? What are they?
¢) How many subgroups does (Z,4, @) have? What are they?

5.5 Find all the subgroups of QOg. Show that Qg is an example of a nonabelian group
with the property that all its proper subgroups are cyclic..

5.6 a) Let G be a cyclic group of order n. Show that if m is a positive integer, then
G has an element of order m iff m divides n.
b) Let G be a cyclic group of order 40. List all the possibilities for the orders
of elements of G.

5.7 Let G={x) be a cyclic group of order n. Show that x™ is a generator of G if
and only if (m,n)=1. Thus the number of generators of a cyclic group of order
n is the number of integers m in the set {0, 1,...,n— 1} such that (m,n)=1. This
number is denoted by ¢(n); ¢ is called Euler’s function and plays a prominent
role in number theory.
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5.8 Let G={(x) be a cyclic group of order 144. How many elements are there in
the subgroup {x%¢>?

5.9 Let mZ and nZ be subgroups of (Z, +). What condition on m and n is equivalent
to mZ C nZ? What condition on m and n is equivalent to mZ UnZ being a
subgroup of (Z, +)?

5.10 Prove that every subgroup of an abelian group is abelian.

5.11 Let G be an abelian group, and let n be a positive integer. Let H be the subset
of G consisting of all x € G such that x" = e. Show that H is a subgroup of G.
5.12 Find the center of:
a) v,
b) Qs.
5.13 Let H be the group introduced in Example 7 on p. 46. Find Z(H).

5.14 Prove that the intersection of two subgroups of a group G is itself a subgroup
of G.

5.15 Show that if H and K are subgroups of the group G, then H U K is closed under
inverses.

5.16 Give an example of a group G and a subset H of G such that H is closed under
multiplication but H is not a subgroup of G.

5.17 Suppose H is a nonempty finite subset of a group G and H is closed under
inverses. Must H be a subgroup of G? Either prove that it must, or give a
counterexample.

5.18 a) Show that it is impossible for a group G to be the union of two proper
subgroups.

b) Give an example of a group that is the union of three proper subgroups.

5.19 Let G={x) be an infinite cyclic group. Show that all the distinct subgroups of
G are {e),{x>,{x?>,{x>>,{x*>,(x*),....

5.20 Let G be a finite group with no subgroups other than {e} or G itself. Prove that
G is either the trivial group {e} or a cyclic group of prime order.

§.21 Let G={x) be a cyclic group of order n. Find a condition on the integers r and
s that 1s equivalent to {x")» C{x*).

5.22 Let G be a group. Prove that Z(G) is a subgroup of G.

5.23 Let G be a group, and let g € G. Define the centralizer, Z( g), of g in G to be the
subset

Z(g)={xEG|xg=gx}.
Prove that Z(g) is a subgroup of G.

5.24 Let G be a group and let H be a nonempty subset of G such that whenever
X,y € H we have xy '€ H. Prove that H is a subgroup of G.



54  Section 5. Subgroups

5.25 Let G be a group and let @ be some fixed element of G. Let H be a subgroup
of G and let aHa ' be the subset of G consisting of all elements that are of the
form aha ™', with h € H. Show that aHa ~' is a subgroup of G. Itis called the
conjugate subgroup of H by a.

5.26 Let H be a subgroup of the group G and let N(H)={a€ G|aHa™'= H). (See
Exercise 5.25 for the definition of aHa ~'.) Prove that N(H) is a subgroup of
G.

5.27 Let G be a finite abelian group. Show that G is cyclic iff G has the property that
for every positive integer n, there are at most n elements x in G such that x"=e.

5.28 Prove that every infinite group has infinitely many subgroups.

5.29 Suppose G is a group and there is an element g € G such that g # e and g is in every
subgroup of G other than the trivial subgroup {e}. Prove that every clement of G has
finite order.

530 Prove that (Z,, D) has an element g as described in Exercise 5.29 ifand only if nis a
power of a prime.



SECTION 6

DIRECT PRODUCTS

In dealing with an abstract concept, it is very useful to have a good supply of
concrete examples on hand. The examples make the abstraction come to life,
and they also provide us with a means of testing out general ideas on specific
cases. In the preceding section, we saw that new examples of groups can
sometimes be found sitting inside old ones. Now we take the opposite tack by
considering how we can “patch together” given groups to make new ones.

Actually there are a number of different ways of doing this. We will
consider the simplest and most frequently used method, called the direct
product construction.

Suppose G and H are groups (not necessarily distinct). To form the direct
product of G and H, we consider the set of all ordered pairs (g,4), where
g€G and h€ H. We introduce an operation on this set by multiplying
componentwise:

(817 )(82h)=(8, 82 h,),
where g, g, is computed in G and A A, is computed in H. It is clear that this
definition gives us a binary operation, and we have associativity as a con-
sequence of associativity in G and H:

[( 81,h1)( gzshz)]( 83.h3)=(8, 82,1 hy)( 83, hy) = [ (218283 (hrhz)hal
- [ 31(8283)sh1(h2h3)] =(gl’h])(gzg:l’h2h3)=(gl’hl)[(gz’hz)( gs’ha)] .
The identity element is (e;,ey), where e; and ey, are the respective identity
elements of G and H, and the inverse of (g,A)is (g~ A~ ").
Thus we have a new group, which we denote by G X H and call the direct
product of G and H. The groups G and H are called factors of the product.
In a completely analogous fashion, we can form the direct product

Glezx"°xGn

55
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of n groups. The elements of this group are n-tuples (g,8,,...,8,) With g, € G,
and the multiplication is defined componentwise. As a matter of fact, there is
no reason why we have to restrict ourselves to finitely many factors, but we
will rarely use infinitely many.

Examples

1. Let G,=G,=--- =G,=(R, +). Then
G, XGyX -+ XG,=RXRX--- XR

is ordinary n-space R" under addition of n-tuples.

2. Consider Z, X Z,, where the operation on each factor is addition mod
2. This is a group of order 4, and already reveals some interesting things
about direct products.

First of all, Z,XZ, is not cyclic, although both factors are cyclic.
Denoting the operation on Z, X Z, by +, for simplicity, we have

(0,1)+(0,1)=(0,0),

(1,0)+(1,0)=(0,0),
and (1,1)+(1,1)=(0,0),
so that every nonidentity element has order 2, and there is no element of
order 4 to generate the group.

Notice something else. In general, a direct product G X H has certain
“obvious” subgroups, because if 4 is a subgroup of G and B 1s a subgroup of
H, then A X B is a subgroup of G X H (Exercise 6.5). Z,X Z, points out that
G X H may have subgroups other than those of the form A4 X B. For instance,
if the cyclic subgroup

(1,1)>={(1,1),(0,0)}

were of this form, then 4 and B would both have to be Z,; but then 4 X B
would be the whole group Z, X Z,, not {(1,1)).

3. For Z,X Z,, things are different. The group has order 6, and is cyclic,
because (1, 1) has order 6 [its first six powers are (1, 1), (0,2), (1,0), (0, 1), (1,2),
(0,0)]. Also, by Theorem 5.5, we know that there is a unique subgroup of
order m, for each m dividing 6. Since

0)x0), Z,%x<0), 0)xZ, and Z,XZ,

are subgroups of order 1, 2, 3, and 6, these are the only subgroups, so every
subgroup has the form A4 X B.
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The following result goes a long way toward explaining the difference
between Examples 2 and 3.

THEOREM 6.1 Let G=G, X G, X -+ X G,

i) If g,€G, for 1 <i<n, and each g, has finite order, then o((g,8;,-..,8,)) is
the least common multiple of o(g,),0(&,),-..,0(&,)

ii) If each G; is a cyclic group of finite order, then G is cyclic iff |G;| and |G|
are relatively prime for i+;/.

PROOF. i) If m is a positive integer, then

(glvgb'--sgn)m=(gr’g;‘""’gnm)'

It follows, by Theorem 4.4, that (g.8,,....8,)" =(€5,€5,---,€5) Ul m is
divisible by each o(g;). Thus o((g,,&5,-..,8,)) is the smallest positive integer
that is divisible by each o( g,).

i) If G is cyclic, let g=(g,,8,,...,8,) be a generator. Then for 1 <i<n, g
generates G, (why?), so by Corollary 4.6 we have o( g;)=|G,|. Thus, by part (i),

o( g) is the least common multiple of |G,|,|G,,...,|G,|. But since g generates
G,

o(8)=|G|=|G\|"|G,|- - - - -|G,|
(see Exercise 6.4). We conclude that the least common multiple of
|G\|,|G,l, ..., |G| is |G| |G| - -+ +|G,|, and this means that |G,| and |G| are

relatively prime if i%).

Conversely, if |G;| and |G| are relatively prime for i/, then the least
common multiple of |G,|,...,|G,| is |G,|- -+ - -|G,|. If we let g; be a generator
for G,, then o(g)=|G,|, so by part (i), (g,,...,8,) has order |G,|- - -+ -|G,| in
G. Thus (g,,...,8,) generates G, and G is cyclic. [J

Examples In Z,,, 0o(8)=3, and in Z,g, 0(15)=6. Thus in Z,, X Z,,, the order of
the element (8, 15) is the least common multiple of 3 and 6, namely 6.

The groups Z,, X Z,s and ZgXZyX Zs are cyclic; Z,XZ g and ZgX ZyX
L are not.

EXERCISES

6.1 Calculate the order of the element
a) (4,9)in Z ;g xXZ,3.
b) (7,5) in Z ;X Z;.
c) (8,6,4) in Z,g X Zgx Zg.
d) (8,6,4)in ZyXZ;XZ,,.
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6.2 Which of the following groups are cyclic?
a) Z)xZy
b) Z;oX Zgg
€) ZyXZysxX
d) ZyyXZy X Zys
63 Is ZX Z cyclic? [Here Z means (Z, +).]
6.4 Show that for finite groups G,,G,...,G,,
|Gy X Gy X = X Gp|=|Gy|-|Gyf- - -+ | Gyl-

6.5 Let A be a subgroup of G, and let B be a subgroup of H. Show that 4 X B is a
subgroup of G X H.

6.6 Show that G, X G, X --- X G, is abelian iff each G; is abelian.
6.7 Construct a nonabelian group of order 16, and one of order 24.

6.8 Construct a group of order 81 with the property that every element excep. the
identity has order 3.

6.9 Show that Z(G, X Gy X -+ - X G,)=Z(G )X Z(G) X - -+ X Z(G,).
6.10 Find all subgroups of Z, X Z,.
6.11 Find all subgroups of Z, X Z,xZ,.

6.12 Let G and H be finite groups. Show that if G X H is cyclic, then (i) G and H are
cyclic, and (ii) every subgroup of G X H is of the form 4 X B for some subgroups
A and B of G and H, respectively.

6.13 Prove the converse of the result in Exercise 6.12; that is, show that for finite
groups G and H, (i) and (ii) of Exercise 6.12 (taken together) imply that G X H
is cyclic.

6.14 Use Theorem 6.1 to prove the Chinese Remainder Theorem: If m,,...,m, are
positive integers such that m; and m; are relatively prime for i#/, and ky,..., k,
are any integers, then there is an integer x such that x = k;(mod m,) for 1 <i<n.
(Hint: Consider the generator (1,1,...,1) for Z,, X --- XZ,.)

6.15 Prove that if G is an infinite group and H is a group then G x H is cyclic if and only if
G is cyclic and H = {eg}.



SECTION 7

FUNCTIONS

In this section we will present some elementary results about functions. These
results will be useful in Section 8 when we investigate what are called
symmetric groups, and later on, when we discuss homomorphisms and isomor-
phisms.

DEFINITION If S and T are sets, then a function f from S to T assigns to each
s€ S a unique element f(s)E 7.

As a definition this is somewhat strange, in that it tells you what a
function does rather than what it is. Sometimes this difficulty is avoided by
saying that a function is a “rule” that assigns elements of 7 to the elements of
S, but this isn’t any better because “rule” isn’t defined. Besides, for some
functions the “rule” is obscure at best, and it may be so hard to state that
most people wouldn’t call it a rule at all.

The above definition is fine as a working definition, and is how we
usually think of functions. A more precise definition is as follows.

DEFINITION (precise) A function from S to 7 is a set of ordered pairs (s,?),
where each s€ S and each 1€ T, such that each s€S occurs as the first
element of one and only one pair (s, ).

Obviously this formulation captures the intent of our working definition;
if s€ S, then there is only one pair (s,7) with s as its first element, and the
function assigns the second element, 7, of that pair to s. We write f(s)=1¢, and
sometimes we say that f sends s to ¢, or maps s onto ¢. (The word “mapping”
is sometimes used for “function.”)

We write f: S— T to indicate that f is a function from S to 7.

59
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Examples

3‘

S=T=R; f:S>T is given by f(x)= x>

§={(1,2}, T=(3,4,5}; f: S> T is given by f(1)=3, f(2)=S5. In the
precise formulation, f is {(1,3),(2,5)}.

S=R, T=[—1,1], the closed interval —1<x<1; f: §—-T is given
by f(x)=sinx.

S=GL(2,R), T=R; f: S—T is given by

j((“ b))=detemxinamof(a b)=ad—bc.
c @ c d
S =set of continuous functions from Rto R, T7=R; F:S—T is given

by F(g)= fo g(x)dx.

S=2,XZ, T=1; f:S—T is given by f((x,y))=y.

Let G be a group, and let a € G. Define f: G—G by f(x)=ax. In the
precise formulation, f is {(x,ax)|xEG}.

If §=(1,2}, T=(3,4,5}, then f={(1,3)} is a function from {1} to

T, but it is not a function from S to T because f(2) isn’t defined. Also,
{(1,3),(2,5),(1,4)} isn’t a function, because 1 appears as the first
element of more than one pair.

Certain kinds of functions are particularly relevant to group theory.

DEFINITIONS Let f: S— T be a function. f is onto if for each t€ T there is at
least one s € S such that f(s)= 1. f is one-to-one if whenever s, and s, are two
different elements in S, we have f(s,)#f(s,).

Thus f is onto iff every 1 € T comes from at least one s €S, saying it yet
another way, everything in 7" gets hit by f. You can think of f as a cannon
firing shells (elements of S) at T (the target):

f is onto just if it doesn’t miss anything in 7.
On the other hand, f is one-to-one just if nothing in 7" gets hit twice. That
is, anything in 7 is hit either just once or not at all.
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Observe that if f is both one-to-one and onto, then every element of T is
hit once and only once, so that f establishes a one-to-one correspondence
between the elements of S and those of T: tE€ T is paired with the unique
s € § such that f(s)=1.

There is some standard terminology that is good to know in connection with
functions. If f- S—T is a function, then § is called the domain of f, and
the set of elements of 7 which are hit by f (more precisely {t € T'| for some
SES, f(s)=1}) is called the image (or range) of f.Thus f is onto iff the
image of fis T.

Examples Consider again Examples (1)-(7) on p. 60. The functions in Exam-
ples (3), (5), (6), and (7) are onto, and those in Examples (2) and (7) are
one-to-one.

The function f(x)= x2 in (1) is not onto since, for instance, — | &€image of
f. It is not one-to-one since f(— 1)=f(1).

The function in (4) is not onto since O&image of f, and it is not

one-to-one since f((é (l))) =/(( _01 (‘}))

The function F in (5) is onto since for any r€ T we can find some g€ S
such that F(g)=r. For instance, the constant function g such that g(x)=r for
all x will do. F is not one-to-one since if g, and g, are defined by

g(x)=0 forallx, g(x)=x—1,

then g, and g, are different elements of S, but

F(g,)=f0]0dx=0=fol(x—%)dxsF(gz).

Finally, consider the function f: G— G in (7), given by f(x)=ax. f is onto
since for every y € G there is some x such that f(x)=y. In fact, x=a
works, because then

fx)=fla"Yy)=ala"y)=y.
This function is one-to-one by the left cancellation law: if f(x,)=f(x,), that is,
if ax,=ax,, then x,= x,. (Here we have used the definition of “one-to-one”
in the following form: If f: S—T, then f is one-to-one iff whenever s5,,5,ES
and f(s,)=f(s,), then s5,=s5,)

The term “injective” is sometimes used in place of “one-to-one.” This
terminology expresses the fact that the domain is carried intact into the
image, without any collapsing taking place. People who use “injective” for
“one-to-one” often use “surjective” for “onto”; this word indicates that the

function throws the domain onto the set 7.
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Assume now that f: §S— 7 is one-to-one and onto. As we have seen, f
accomplishes a one-to-one pairing off of the elements of S with those of 7.
Therefore, f provides us with a function f~': 7—S, which maps any €T
onto the s € S with which ¢ is paired by f. f~' is called the inverse function
of f.

Let us examine f ' in a little more detail. Take any ¢ € T. Since f is onto,
there exists at least one s € S such that f(s)=1t. Since f is one-to-one, there is
only one such s. Thus we can unambiguously define f~'(r) by setting
=N t)=s.

Observe that if f were not one-to-one, then there might be two different
elements s, and s, of § such that both f(s)=¢ and f(s,)=¢. We would then
face a quandary in trying to define f'; the idea of the inverse function is
that it is supposed to undo everything f did, and if f(s,)=f(s,)=1¢, then we
cannot define f~'(#) so that f~' undoes what f did to both s, and s,. For
example, if we were to define f~'(z)=s,, then f would send s, to 7 and f ™!
would send ¢ to s,, rather than back to s,. Similarly, if we were to define
f~'(t)=s,, then ! would not undo what f did to s,.

If f is one-to-one but not onto, then f has an inverse function f~' with
domain equal to the image of f. In order that f have an inverse function with
domain 7, it is thus necessary and sufficient that f be one-to-one and onto.

Observe that if f: S— T is one-to-one and onto and we view f as a set of
ordered pairs (s,7), then f~': T—S is the function obtained by switching the
entries in each pair in f: (s,7) is replaced by (¢,s). It is not difficult to see that
f~!is itself both one-to-one and onto, so that it has an inverse (f ")~ ': §—
T. In fact (f~")~' is f, because we obtain it by switching all the pairs (z,s)
back to (s,7).

Examples

1. Let S=T=7Z and let f:S—T be given by f{n)=n+1. Then f is
one-to-one and onto, so it has an inverse function f~'. In fact
f'm)y=n—1for all n€Z.

2. LetS=Rand T=[—1,1], and let f: S— T be given by f(x)=sinx.
Then f is onto but not one-to-one. (For example, f(0)=f(7)=0.) We
can restrict the domain of f so that f becomes one-to-one and onto,
however. For example, if we restrict the domain to [ — 7 /2,7 /2], then
f has an inverse function which is called sin~' or arcsin. This
function is probably familiar to you from calculus.

3. LetS=Rand T=R", and let f: S— T be given by f(x)=e*. Then f
is one-to-one and onto, and its inverse f ~' is given by f ~'(x)=In x
for all xeR™
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The use of the term “inverse” is no accident vis-a-vis group theory. If X is
a nonempty set, then we are going to define a binary operation on the set of
all one-to-one onto functions X— X, which turns this set into a group in such
a way that the inverse of f in the above sense is the inverse of f in the group.

It will be useful to introduce this operation in a more general context, so
let f:S—T and g:T—>U be functions. We define the composite function
gof:S8— U by setting

(g<f)(s)=2(f(s))

for all sE€ S. Observe that f(s) € T, so g(f(s)) makes sense and is an element
of U.

Examples
1. Let S=T=U=R, and let f(x)=x>+1 and g(x)=x> for all xER.
Then
(go)(x)=g(x*+1)=(x*+1)’,
for all x€R. What is fog?
(fog)(x)=f(x")=(x*)+1=x"+1.

Thus we see that gof and fog are not necessarily the same function.

In general we say that two functions f, and f, are equal and write f, =f, if
f, and f, have the same domain and f,(x)=f,(x) for all x in that domain.
Thus in the present example we write g o f#f-g. Observe that in terms of the
precise definition of a function, two functions are equal iff they are the same
set of ordered pairs.

2. Let f: S— T be one-to-one and onto. Let ig be the identity function on
S, that is, ig(s)=s for all s € S. Similarly, let i, be the identity mapping on 7.
Then

flof:8—8 and fof ':T-T.
We have f~'of=ig and fof ~'=i,.

3. Let S=T={(a,b)la,bER}. Let f((a,b))=(b,a), and let g((a,d))
=(a,b+1). Then

(g 0f)((0,b))=(b,a+ ])
(fog)((a,b))=(b+1,a).

and

Here again, gof#fog.

Now let X be a nonempty set, and let S, denote the set of all one-to-one
onto mappings f: X— X.
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THEOREM 7.1 (Sy,°) is a group.

PROOF. If f and g are both in S, then certainly fog is a function from X to
X. To check that o is a binary operation on Sy, we must verify that if f,g are
both one-to-one and onto, then fog is one-to-one and onto. This is left as an
exercise.

Associativity of o requires that if f,g,h€ Sy then (fog)oh=fo(goh). In
other words, we must show that

[(feg)eh](x)=[fo(goh)](x)
for every x € X. But

[(fog)oh](x)=(fog)(h(x))=Fg(h(x))),

and

[fo(goh)](x)=1((gh)(x))=1(g(h(x))).
The identity element of (Sy, o) is iy. That is, fei, =i, of=f, for every
TE€8y:
Finally, if f€ Sy and f~' denotes its inverse function, then f '€ S, and
fof'=flof=iy,

so f~! is the group-theoretic inverse of f. []

EXERCISES

7.1 In each example below, f is given either as a rule or as a set of ordered pairs. In
each case, determine whether or not f is a function from S to 7. For those cases
in which it is, determine whether it is one-to-one, and whether it is onto.

a) §={1,2,3,4,5}, T={(6,7,8,9,10}, f={(1,8),(3,9),(4,10),(2,6),(5,9)}
b) § and T are as in (a), f={(1,8),(3,10),(2,6),(4,9)}

c) S and T are as in (a), f= {(1,7),(2,6),(4,5),(1,9),(5,10)}

d) S=T=R, f(x)=x*—x

e) S=T=R, f(x)=x>

f) S=T=R, f(x)=Vx

g) S=T=R, fi(x)=1/x

h) S=T=Z%, f(x)=x+1

i) S—T—Z"’,)‘(x)-{x 1 if x=1

-1 ifx>1
x

x2+1

j) §=T=R*, f(x)=

72 Let f: R>R.

a) Give a condition on the graph of y = f(x), in terms of its intersections with
horizontal lines, that is equivalent to f being one-to-one.

b) If g:R—R and f and g are both one-to-one, must f+ g be one-to-one?
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7.3 Let f: R—R be given by f(x)=ax + b, where a and b are fixed constants.

a) Show that if a+0 then f is one-to-one and onto, so that f ~! exists.

b) Assuming that a0, find an explicit formula for the inverse function f~'.
7.4 Let S=T=the set of polynomials with real coefficients, and define a function

from S to T by mapping each polynomial to its derivative. Is this function
one-to-one? Is it onto?

7.5 Let X be a set, and let A C X. Define a function f: P(X)->P(X) by f(B)=ANB
for B € P(X). Under what conditions is f one-to-one and onto?

7.6 Let X be a set, and let A C X. Define f: P(X)—>P(X) by f(B)y=A2B.Is f
one-to-one? Is f onto?

3

7.7 Let G be a group and let a € G. Define a function f: G—G by f(x)=axa " for
all x€G. Is f one-to-one? Is f onto?

7.8 Let G be a group, and let f(x)=x "' for all x €G. Is f a function from G to G?
If so, is it one-to-one? Is it onto?

7.9 Show that o is a binary operation in Theorem 7.1.

7.10 Let f: S—T.
a) Show that f is one-to-one if and only if there exists a function g: T— S such
tha.t 8 Gf- l-s.
b) Show that f is onto if and only if there exists a function g : 7— S such that
fog=ir.
c) Show that f is one-to-one and onto if and only if there exists a function
g:T-S such that gef=ig and fog=ir.
711 Let f:S»Tand g: T-U.
a) If gof is one-to-one, must both f and g be one-to-one?
b) If gof is onto, must both f and g be onto?
712 Let f: S—T. For any subset 4 of S, define
f(A)={f(s)|s€A)}.
a) Show that if A, B are subsets of S, then f(4 U B)=f(4)U A(B).
b) Show that f(4 N B) C (4)N f(B). Construct an example where the inclusion
is proper, i.e., AN B)gf(/l) N f(B).
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SYMMETRIC GROUPS

If X is a nonempty set, then a one-to-one onto mapping X—X is called a
permutation of X. We have seen that the set of all such permutations forms a
group (Sy, °) under composition of functions.

DEFINITION (S, ©) is called the symmetric group on X.

Symmetric groups were used in mathematics before the abstract concept
of “group” had been formulated. In particular, they were used to obtain deep
and incisive results about the solutions of polynomial equations, and the
success of these efforts gave an impetus to the development of the abstract
theory. After the abstract notion was established, the English mathematician
Arthur Cayley (1821-1895) again demonstrated the importance of symmetric
groups by showing that every group can be thought of as a subgroup of some
symmetric group. We will state Cayley’s result precisely, and prove it, in
Section 12.

For now, we will try to get familiar with symmetric groups by investigat-
ing symmetric groups on finite sets. If X is finite and has, say, n elements,
then we can represent X by {1,2,...,n}, and we accordingly denote (Sy, ) by
S, in this case. S, is called the symmetric group of degree n.

Let f€S,. Then f shuffles the elements 1,2,3,...,n, and we can represent
f explicitly by writing

( 1 2 3 n )
Ay A2) fB) ... fm))
where f(k) is placed under & for each k between 1 and n.
It is easy to calculate products in S,. For example, consider

(1 2 3 4)0(1 2 3 4)
2 4 1 3/°\3 2 4 1

66
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in §,. To see what goes under 1 in the product we just recall that the product
is the composition of the two given permutations, the one on the right being
performed first:
1234)0(1234) =(1234)_
(2413 3 2 4 1)=& 1 5)®=1

Similarly,

1234)0(1234)=

(2413 3241(2)4’

because 2 goes to 2, which then goes to 4. The product is

(l 2 3 4)°(l Zz 3 4)_:(1 2 3 4)
2 4 1 3 3 2 4 1 1 4 3 2/

Observe that the notation for the product

(l 2 3 4)
1 4 3 2

is rather uneconomical. Nothing happens to 1 or 3 (they are left fixed), and
the whole permutation does nothing more than interchange 2 and 4. To
achieve a more efficient notation for permutations—and to introduce an
important subgroup of S,—we consider special permutations called cycles.

Let x,x5,...,x,, 1<r<n, be r distinct elements of {1,2,...,n}. The
r-cycle (x,,x,,...,x,) is the element of S, that maps x,—x,, x,—>x4,...,X,_,—>
x,, x,—x,, and leaves all elements of {1,2,3,...,n} other than x,x,,...,x,
fixed:

—b
1 X2 \
X, 3
*—-—/

This cycle could just as well be written
(X XipXzesisXomy) OF  (Xe isX0 Xip s 0s Xy ), €46

For example,

(1234)
1 4 3 2

can be written more simply as (2,4), (or (4,2), which is the same thing). The
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identity permutation

( I 2 3 4 5)
1 2 3 4 5
in S5 can be written as (1), or as (2), or (3), or (4), or (5). It can also be written
as (2,5)0(2,5), since the right-hand factor just switches 2 and 5, and the
left-hand factor switches them back.

Two cycles (x,,X5...,%,) and (¥,,y5...,y,) in S, are called disjoint if no
element of {1,2,...,n)} is moved by both cycles. If r>2 and s> 2 this can be
expressed by saying that

{xl,-xz,-.v,xr} n {y]’yz""’y.l} =®'

It is not difficult to see that every permutation can be written as the product
of a finite number of cycles, any two of which are disjoint.

THEOREM 8.1 Let f € S,. Then there exist disjoint cycles f,,f,,....f,, in S, such
that f=flofyo - of .

PROOF. Choose some x;€(1,2,...,n}. Let x,=f(x,),x;=f(x,), and so on.
Since {1,2,3,...,n} is a finite set, there must be a first element in the
sequence x,,x,, X,,... which is the same as a previous element. Say this
element is x, and x, = x;, j<k. Then j must be 1, since if j > 1, x, = x; implies
Xy —1=X;_, (since f is one-to-one), contradicting the minimality of k. Thus the
first k—1 elements of the sequence x,, x,, x5,... are distinct and x, = x,. Thus
fincludes the cycle f, =(x,x,,...,x;_,), and

f‘_‘fl °hp

where h; permutes the elements of {1,2,...,n} other than x,...,x,_,. Repeat-
ing our argument on h,, we write

h=Leh,

where f, is a cycle disjoint from f,, and h, permutes the elements of
{1,2,...,n} not contained in either f; or f,. If we continue this process long
enough, we must come to a point where A,, has nothing left to permute, that
is, A, is the identity permutation. Then

f=fl °f2°f3°"' ofmohm=flof2°”. nfm' D

Example Consider the element

f=(l2345678)
357 4 2 81 6
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in Sg. We have

) 1 2 3 4 5 6 7 8
=(1,3,7 o( )
f=( ) 1 § 3 4 2 8 7 6

d F 2 3 4 5§ 6 7T &
=(1,3,7)0(2,5)0

( )°(2,5) (l 2 3"4 5 8 7 6)
=(1¢3’7)°(2:5)°(618)-

We might also have written this as (1,3,7)0(2,5) 2 (4) = (6, 8), but (4) is just
the identity element, and it is more economical to omit it.

The factorization of permutations into disjoint cycles is very much like
the factorization of integers into primes in the Fundamental Theorem of
Arnithmetic. It is easy to see that disjoint cycles commute (Exercise 8.8), so
that once we have

=1 °fz°f3° s |

we can also write

f=fz°f|°f3° S °f,,p

and so on. However, if we omit all factors which are the identity, then the
factorization is unique, except for this ability to rearrange the factors.

A 2-cycle, ie., a cycle that just interchanges two elements, is called a
transposition. We continue our decomposition of permutations by proving

THEOREM 82 If n> 2, then any cycle in §, can be written as a product of
transpositions.

PROOF. A l-cycle is the identity, hence can be written as (1,2)<(1,2). For an
r-cycle with r » 2, we have

(x5 X500 %) = (X1, %) 0 (X, X, ) o (X1, %,_5) 0+ =+ o (xpx5) o (x, %) O

Example Referring to the previous example, we have (1,3,7)=(1,7)<(1,3).
We also have (1,3,7)=(4,7)=(1,7)(1,4)2(1,3), and in general there are
many ways in which a cycle can be written as a product of transpositions. We
have now lost the uniqueness of factorization.

Combining the last two theorems proves

THEOREM 83 If n> 2, then any element of S, can be written as a product of
transpositions.
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Example Referring again to the example of

we have
f=(1,7)(1,3)2(2,5)(6,8),
and also
f=(4.7)2(1,7)2(1,4)2(1,3) 2 (2,5) = (6,8).

DEFINITION A permutation is even if it can be written as the product of an
even number of transpositions. It is odd if it can be written as the product of
an odd number of transpositions.

We would not want it to be possible for a permutation to be both even
and odd, and it turns out that it isn’t possible. Although a given permutation
may have many representations as products of transpositions, it will always
be the case that either these products all have an even number of factors or
they all have an odd number of factors. The neatest, most natural proof of
this fact that we have seen is a proof published in 1971 by William Miller (“Even
and Odd Permutations,” Marhematics Association of Two-Year Colleges Journal,
vol. 5, p. 32). Here it is:

THEOREM 84 No permutation is both even and odd.
PROOF. Suppose that f is both even and odd. Then we have
f=Hty =555 Sy
where k is even, { is odd, and the /’s and s’s are transpositions. Thus
ity s sy Vsl c sy s P =identity,
that is, Lty S8, - - - 5,5, =identity,

so since k +f is odd, the identity permutation is written as the product of an
odd number of transpositions. We are going to show that this is impossible,
hence f could not have been both even and odd.

Consider for a moment an arbitrary product P=1¢,---¢, of transposi-
tions. We assert that either

(I) P is not the identity permutation, or
(IT) P equals a product of m— 2 transpositions.

To see this, let a be some element of {1,2,...,n} that occurs in some ¢, and let
t; be the first ¢ from the right in which a appears. Say ¢ is (a,b).
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Now if 4 is ¢,, we have (I), since then P does not fix a. If 4; is not ¢, then
consider 7;_,. It must be either:

1) (a,b), in which case ¢, _#,=identity;

ii) (a,c), for some c#b, in which case f,_,1,=(a,c)(a,b)=(a,b)(b,c);

iii) (b,c), for some c #a, in which case ¢,_,;,=(b,c)(a,b)=(a,c)(b,c);

iv) (¢,d) for some c#a,b and d#a,b, in which case (,_ 4, =(c.d)(a,b)=

(a,b)(c,d).

If Case (i) occurs, then we can delete 7,_ 7, from P, and we have (II). If any of
the other cases occurs, then by using the indicated equalities we can find an
expression equal to P in which the rightmost occurrence of a is one factor
further to the left than it was when we started.

If we now keep repeating our argument on a, then either Case (i)
eventually occurs, and we have (II), or else we eventually replace P by an
equivalent expression in which the rightmost occurrence of g is in the leftmost
factor, and we have (I) as above.

Thus we have proved our assertion about P. It now follows that if m is
odd, then P=1tt,--- ¢, cannot be the identity permutation. For if it is, then
(IT) must hold for P, so we can write the identity as a product of m—2
transpositions. Then (II) holds for this shorter factorization, so we can find
another factorization with m —4 factors. Continuing in this way, we eventu-
ally reduce the number of factors to 1 (since m was odd to start with), and
then we are done because it is clear that a single transposition is not the
identity. [J

You might enjoy writing down a few products of transpositions for
yourself, and seeing how either (I) or (II) comes true for them.

Now let n > 2, and let 4, denote the subset of S, consisting of all the even
permutations. Recall that if n is a positive integer, then n! (read “» factorial™)
denotes the product n(n—1)(n—2)+ -« 3)2)1).

THEOREM 85 Let n>2. Then 4, is a subgroup of §,. |S,|=n!, and |4,|=
n!/2.

PROOF. To see that |S,|=n!, we consider what it takes to determine an
element f € S,. We must choose f(1) from among {1,2,...,n}; for any choice
we make, there are n— 1 ways of choosing f(2), because we must choose f(2)
from the set {1,2,...,n} —{ f(1)}. Thus there are n(n— 1) ways of determining
what f(1) and f(2) are going to be. For any one of these ways, there are n—2
ways of choosing f(3), so there are n(n—1)(n—2) ways of choosing the first
three values of f. Continuing in this way, we see that there are n! ways of
specifying an element of §,.
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Now to the claims about 4,. 4, is a nonempty subset of S, and therefore
a nonempty finite subset of §,. (Subsets of finite sets are finite.) Since the
product of two even permutations is even (why?), 4, is closed under the
group operation in S,. Therefore, A4, is a subgroup of S, by Theorem 5.3.

To see that |4,|=n!/2, we want to show that 4, contains exactly one half
of the elements of §,. Observe that if f}, f,,..., f, are all the distinct elements
of 4, then it suffices to show that there are exactly k distinct odd permuta-
tions in S,. If we let g be (1,2), then

&f,8h -8
are all distinct and all odd. (Why?) Furthermore, these are a// the odd
permutations in S,. For if & is odd, then gh is even, so gh is one of
Ji> for-- ooy and
g(gh)€{ gf1.8f»----&h}-

But g(gh) is h, since g” is the identity. Therefore, every odd permutation is
one of gfy,gfs-..,8f, and we have shown that there are exactly k odd
permutations in S,, as desired. []

A, is called the alternating group of degree n. Alternating groups (espe-
cially 4,) will be useful to us a little later on.

We conclude this section by working out some examples in detail.

First let’s look at S;. By Theorem 8.5, S, has 3! =6 elements. They are

(12 )

(12 -0
(12 Y-asa
(12 )-eo
(12 )-0a
(12 )-0o

If we denote the second element in the list by f, then

r=( 530G 3G 13

S S

and
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Thus o(f)=3, and f generates the cyclic subgroup {f)={e, f, f}. If we let
{1 2 3
g'(i 3 2)’
s [1 2 3)(1 2 3)=
% (1 3 2/\1 3 2)7°

so o(g)=2 and {g)={e,g}. The only subgroup of S, containing both f and g
is S, itself, because

then

(R B O N
an

re=(3 126 326G 3 1)
Thus

S3= {e’f?fz’ g!fg:fzg}-

Of course, gf is also an element of S,, and in fact

A A T

Likewise, gf*= fg.
The equations gf=fg and gf>= fg tell us how to multiply the elements of
S, without writing down the permutation notation. For instance,

(f2)(fe)=1f(gf)g=f(fg)g=1""=e,
() ) =rgfe=r(fe)g= g"=e,

so both fg and f% have order 2. Observe that in these calculations we simply
used the equations gf=f% and gf*= fg to “move f’s past g,” and thus get all
the f’s together and all the g’s together.

Let’s figure out what the subgroups of §, are. Of course we have the
cyclic subgroups (e, {f>,{f*>,{g>,{fg), and {f%g). Since {f)>={f?) and
g, fg, f*g are each of order 2, there is one cyclic subgroup of order 3, and
there are 3 cyclic subgroups of order 2. How about other subgroups?

As we have seen, any subgroup of S, that contains f and g must be all of
S,. Suppose that a subgroup contains f but not g. Then it cannot contain fg,
because if it did it would contain f2(fg)=g. Similarly, it cannot contain fg,
so it is {f). Next, if a subgroup contains g but not f, then it must be {g),
since if it contained f2, it would contain (f)?=f; and if it contained fg or f,
then it would contain (fg)g=f or (fg)g=f>

Finally, consider the possibilities for a subgroup that contains neither f
nor g. It cannot contain f2, and therefore it cannot contain both fg and f%,

and
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because their product is

(fe)(fg)=Aef*)e=1f(fz)g =1
If it contains neither fg nor f, then it is the trivial subgroup (e); otherwise
it is {fg)> or {f%).
Thus the only proper subgroups of S, are the cyclic subgroups given
above. The subgroup lattice for S, looks like this:

AN

<r>  <g> < fg> <flg>

N\ L7

<e>

By the way, we know that one of the subgroups must be 4, and since A4,
must have order 3, by Theorem 8.5, we have 4,={f). You can also check
directly that { f) consists precisely of the even permutations in S,.

One particularly interesting thing about S, is that it is nonabelian
(fg#gf) and has fewer elements than any other nonabelian group we have
seen. We will show in Section 10 that every group of order <5 is abelian, so
S, 1s in fact the smallest nonabelian group.

We will often use S5 as an example, so it is probably worthwhile for you
to become familiar with it now. The structure of S, is easily remembered by
thinking in terms of f and g. (You may find it easier to remember the
equations gf=f%g and gf*=fg in the form gf'=f""g, i=1,2.)

As our final example, we will consider a subgroup of S, that arises from
geometric considerations. Suppose we have a square P, drawn in a plane, and
we have labeled the corners as “places™:

Place | Place 2

Place 4 Place 3

Suppose we also have a cardboard square the same size as P,, placed on the
plane figure, with its vertices labeled 4, B, C, and D:

Place 1| A B | Place 2

Place 4 | P C|Place 3




Section 8. Symmetric Groups 75

By a symmetry of P,, we mean any resituation of the cardboard square that
can be accomplished by picking it up, rotating it and /or flipping it over any
number of times, and then placing it back on the plane figure. There are
exactly eight symmetries, because there are four positions we can achieve
without using flips, and four more we can get by using one flip.

Any symmetry of P, gives us an element of S, because for each J,
1</ <4, it tells us to move the vertex in place j to some place j'. We obtain
our element of S, by mapping each ;j to the corresponding ;. For instance, a
90° clockwise rotation of the cardboard square gives us

1 2 3 4
(2 3 4 1)=("2’3‘4)’
and a flip across the diagonal from upper left to lower right gives us
1 2 3 43
(1 4 3 2)_(2’4)'

Suppose we take symmetries F, and F,, which give us permutations f; and
f,, respectively. The symmetry F,o F, tells us to take the vertex in place j,
move it to place ;° as determined by F,, and from there to place j” as
determined by F,. Thus F, o F, gives us the permutation f, o f,.

Now let D, denote the subset of S, consisting of the eight permutations
that come from the symmetries of P,. Then D, is a finite subset of S, and it
is closed under multiplication in S,, by the observation in the preceding
paragraph. Hence by Theorem 5.3, D, is a subgroup of S,. It is called the
octic group, or group of symmetries of a square.

If we let f be the 90° clockwise rotation (1,2,3,4), and g the flip (2,4),
then o(f)=4 and o(g)=2. The four elements of {f>={e, f, f% f°} corre-
spond to the four positions we can attain without using flips, and the four
elements g, fg, f%g, f°g correspond to the positions that require a flip. Thus

D,={e f,f% f 8 f2. 8. [}
As for §,, we can multiply these elements without resorting to permutation
notation once we know how to move f’s past g. Now gfg=f""', a counter-
clockwise rotation of 90°. (Convince yourself!) Thus for any integer i,
(gfg)'=f"", and since g>= e, this becomes gf'g=f~". Thus
8f'=f"s

(just as for S,!), and we are all set. For instance,

(S =7 (el =(f%)=f""g=/%.

Likewise, for i=0,1,2,3, we have

(f8)’=(f9)(fle)=rf 'g*=e,
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in accordance with the fact that the elements f'g correspond to flips about
diagonals or vertical or horizontal axes, and thus have order 2 on geometric

grounds.

An investigation of the subgroups of D,, analogous to the one we carried

out for S, yields the following lattice:

Dy

e

le. 2.8 1)

| N\

<g> <[fig> <J

Ty

<f>

i

@ f2 fa.178)

el

2> <> <[flg>

//

<Le>

EXERCISES

8.1 Carry out the indicated multiplications in Sg.
9(3 6142 300 3
w325 41 ¢l 3
90 5613 50 &

3 4 35 6)
3 2 1 %
3 4 5 6)
« 1 2 3
3 4 3 6)
3 41 2

8.2 Write each permutation as a product of disjoint cycles, and then as a product

of transpositions. Determine whether

9(3 61435
B 2613 3)
(s 6341 3)
96 s 2123

83 a) Let f=(x,x5,x3,...,X,) be a cycle.

each permutation is even or odd.

For which 7’s is f an even permutation?

b) How do you find out whether a given permutation is even or odd without

factoring it into transpositions?
¢) Determine whether
( 1 2
6 7
is even or odd.

3 4 5 6
5 9 8 4

9
1

10
12

11
2

12

7 8
13 IO)ES”
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84 Let f=(x,,x3,...,x,)ES,. Show that o( f)=r.

8.5 Write down all the elements of S,, and indicate which ones are in 4,. Check your
results against Theorem 8.5.

8.6 This exercise provides an alternative to Theorem 8.2 for factoring an r-cycle into
transpositions. Prove that

(1, X2, X3, -y Xp) = (%1, X2) © (X2, X3) © (%3, Xg) © = * * © (X Xp1) © (Xpe1, X7).
8.7 Prove that S, is nonabelian if n > 3.
8.8 Show that if fand g are disjoint cycles then fg = gf.
8.9 Verify the uniqueness of the decomposition of permutations into disjoint cycles.
8.10 (See Exercises 8.4 and 8.8.)

a) Suppose that a permutation fis the product of disjoint cycles f,, /5, ..., fo Show that
off) is the least common multiple of o(f}), o(f2), ..., o(fm).

b) Find the order of
[123456789101]12]
6 7598 4113112210
in S,

8.11 a) Give an example of two elements x and y in Sy such that o(x) = o(y) = 5 and
o(xy) = 9.

b) What is the largest order that an element of S, can have?
8.12 Does 44 have an element of order 6? Does 4?7
8.13 Letfbe an r-cycle in S,
a) Prove that if 7 is odd then /2 is an r-cycle.

b) Prove that if 7 is even then /2 is the product of two disjoint (/ 2)-cycles.

8.14 Find Z(S;5) and Z(Dy).

8.15 Let n > 3 and let P, be a regular polygon with » sides. By using /= (1, 2, ..., n)
and g=

[1 2 3 4 .. n-2 n-1 n]
1 n n-1 n-2. 4 3 2

we can repeat our derivation of D, from P, and obtain a subgroup D, of S, We get

Dy= (6Ll ™ B BT e T '2)

where off) = n, o(g) = 2 and gf ' = f"'g for all i. D, is called the dihedral group of
order 2n.

a) Show that D; =S; but D, C S, forn >4,
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b) Calculate (f?g)(f°g)(f?) in Ds.
¢) Find Z(Ds).

d) Give an example of a nonabelian group of order 100 in which every element has
order at most 10.

8.16 Let X' be a set and let Y < X. Show that

{feSx|Ay)=yforallye ¥}
is a subgroup of Sx.

8.17 For which »n, n > 2, do the cycles in S, form a subgroup? Do the odd permutations
form a subgroup?

8.18 We have seen that if G is an abelian group and n € Z' then
(xeG|X"=¢)

is a subgroup of G. Give an example of a group and an » such that the set of elements
whose nth power is e do not form a subgroup.
8.19 a) In the symmetric group §,, let
H={fe S, foreveryne Z', fn) € Z*}.
Is H a subgroup of S;?
b) Let T be a finite subset of Z and let

K={feS,|foreveryt €T, fit) € T}.
Is K a subgroup of Sz?
8.20 Suppose H is a subgroup of S, Prove that either all the elements of H are even or else
|H] is even and exactly one-half of the elements of H are even.
8.21 Letf g be distinct transpositions.
a) Show that if fand g are disjoint then fg can be expressed as the product of two 3-
cycles.
b) Show that if fand g are not disjoint then fg can be expressed as a 3-cycle.
8.22 Prove that, for n > 3, every even permutation in S, can be expressed as a product of 3-
cycles.
8.23 Find elements x,y € S such that x and y each have finite order, yet xy has infinite
order.

8.24 If H and K are subgroups of a group G then HK denotes the set of all elements of G
that can be written in the form sk, with # € H and k € K. Find subgroups H and X of
S3 such that HK is not a subgroupof S;.

8.25 (See Exercise 8.15.) Show that Z(D,) consists of e alone if n is odd, and Z(D,)
contains exactly two elements if # is even.
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8.26 Let (xy, x5 ..., x;) be an r-cycle in S,.
a) Prove that for every & € S,

Boo (X1 X2 ey X7) © B =(h(%1), B(x), ..., h(x,)).

b) Prove that if f;, f; € S, then there exists 4 € S, such that f; =h o f; o & " iff for every
r > 2 the factorizations of f; and f; into disjoint cycles contain the same number of
r-cycles.

¢) How many elements of S, are conjugate to (1, 2, ..., n) in §,?

8.27 a) Let H be a subgroup of S, that contains the transposition (1,2) and the n-cycle
(1,2,...,n). Show that H=S§,,

b) Let p be a prime, and let A be a subgroup of S, that contains a transposition and a
p-cycle. Show that =S,



SECTION 9

EQUIVALENCE RELATIONS;
COSETS

Many times in mathematics we run into the following kind of situation. We
have a set § and we wish to identify certain elements of § with each other,
i.e., to regard certain elements as being “essentially the same” even though
they are different elements. This comes about when we are considering some
relationship that may or may not hold between two elements of §, and we
wish to “lump together” any two elements between which the relationship
holds. For example, if we were considering the set of all triangles in the plane,
we might want to regard as “the same” any two triangles that were congruent
to each other.

Let’s examine this general situation a bit more precisely. First of all, what
do we mean by a “relationship” that may or may not hold between two
elements of S? By a relation R on § we mean a set of ordered pairs of
elements of S. If 5,5, € S, then s, is in the relationship R to s, if and only if
the ordered pair (s,,s,) is one of the pairs in R. For example, if S=7Z and R is
the set of all pairs (m,n) where m and n are both even or both odd, then 2 is
related to 6 by R, since 2 and 6 are both even [(2,6) € R], but 2 is not related
to 3, since 2 is even and 3 is odd [(2,3)& R]. For convenience we usually
express the fact that (s,,s,) € R by wnting s, Rs,; thus in our example we
have 2R 6 but not 2R 3. Intuitively, s, Rs, just means that s, is related to s,
by R.

Not every relation R on § is suitable for use in performing identifica-
tions. For example, we certainly want to identify any element s with itself, so
if we aim to identify s, with s, if and only if 5, Rs,, then we want R to have
the property that s Rs, for every s € S. Similarly, if we are going to identify s,
with s, then we want to identify s, with 5,, so we want R to have the property
that s, Rs, implies s, Rs,. Finally, if we identify s, and s, and also s, and s,
then we want to identify s, and s;, so we want it to be the case that whenever

80
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s, R s, and s, Rs, then 5, Rs,. These considerations lead us to the definition of
a special kind of relation on § called an equivalence relation.

DEFINITION A relation R on § is called an equivalence relation on S if R has
the following three properties:

Reflexivity: For every s€ S, sRs;
Symmetry: For every s, and s, in S, if 5, Rs, then 5, Rs,;

Transitivity: For every s,,5,, and s, in §, if 5, Rs, and s, R, then s, Rs,.

Examples

1. Let S be any set and let R be the relation of equality on S, that is,
s;Rs, iff s;=s,. Clearly R is an equivalence relation on S, and it is the
smallest one in the sense that it relates two elements iff they are related by
every equivalence relation on S.

2. Let S=Z and let aR b iff a< b. R is not an equivalence relation, since
the fact that 1< 1 means that reflexivity fails. Symmetry fails too; we have
1<2, but 2<£ 1.

3. Let S be the set of all triangles in the plane and for two triangles A,
and A,, let A, R A, iff A, is congruent to A,. It is easy to see that R is an
equivalence relation.

4. Let S=Z and let aR b iff a and b are both even or both odd. Again it
is easy to see that R is an equivalence relation. R identifies all the even
integers and identifies all the odd integers.

Notice that here aRb iff a=b(mod 2). More generally, we obtain an
equivalence relation on Z from any positive integer n, by defining a R b iff
a = b (modn), that is, n|(a — b). Check: We have n|(a —a), so R is reflexive. If
n|(a— b), then n|(b—a), so R is symmetric. If n|(a— &) and n|(b— c), then

n|[(a—b)+(b—c)],
that is, n|(a—c), so R is transitive.
Before getting into some more sophisticated examples, we will see Aow an
equivalence relation R on S accomplishes the identification of certain ele-

ments. We shall show that R breaks S up into a collection of mutually
exclusive subsets (called equivalence classes).
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For any s€ §, let § denote the subset of S consisting of all x € § such that
x Rs. In symbols,

§={x€ESIxRs}.
§ is called the equivalence class of s under R.

THEOREM 9.1 Let R be an equivalence relation on S. Then every element of §
is in exactly one equivalence class under R. That is, the equivalence classes
partition § into a family of mutually disjoint nonempty subsets.

Conversely, given any partition of S into mutually disjoint nonempty
subsets, there is an equivalence relation on § whose equivalence classes are
precisely the: subsets in the given partition of S.

PROOF. First half: Since for any s€ § we have s €3 by virtue of the fact that
R is reflexive, we see that every s€ S is contained in some equivalence class
(and that every equivalence class is nonempty). Now we will show that if two
equivalence classes 5, and 5, are not disjoint, then they actually coincide.
Suppose x €5,N 5,. Then x Rs, and x Rs,, so 5, Rx and x Rs,, whence s, Rs,.
Thus if y is any element of 5,, we have y Rs, and s, Rs,, so y Rs,, that is,
»y €5,. This yields 5, C5,, and similarly we see that 5,Cs,, so 5,=5,. We have
established that any two different equivalence classes must be disjoint.

Second half: The second half of the theorem is not as important as the
first half, and we leave its proof to the reader. []

It follows from the proof of the first half that §, =35, iff 5,N §,#J. One
also sees easily that §,=35, iff s,Rs, (Exercise 9.4). In particular, if we are
given an equivalence class 3, then § is also 5/, for any s’ €5. Thus we can refer
to an equivalence class by using any one of its elements. The elements of an
equivalence class are sometimes called representatives of that class.

In Example | above, the equivalence classes consist of one element each.
In Example 3, an equivalence class consists of all the triangles that are
congruent to some one triangle. In Example 4, there are n equivalence classes
—namely, those of 0, 1,...,n— 1—since every integer is congruent to precisely
one of 0,1,...,n—=1 (modn).

We have not yet indicated any connection between equivalence relations
and group theory, but we don’t have to look far to find one. For in checking
that congruence modn (i.e., “differing by an element of nZ”) is an equiva-
lence relation on Z, we used the full strength of the fact that nZ is a subgroup
of (Z, +). Specifically, we used the fact that 0€nZ to check reflexivity, the
fact that nZ is closed under inverses to check symmetry, and the fact that nZ
is closed under addition to check transitivity.

We know that “congruence modn” is a useful notion, and this suggests
that it might be worthwhile to consider the general idea of two elements of a
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group G “differing” by an element of a given subgroup H. Since the analogue
of the difference x—y for arbitrary, possibly nonabelian groups is xy ~!, we
consider the relation =y given by

x=gy iff xy '€H.

THEOREM 9.2 For any group G and any subgroup H of G, the relation =4
defined above is an equivalence relation.

PROOF. Just like the verification for congruence modn, in different notation:
For any x€G, xx '=e€H, so x=y x, and =y is reflexive. Next, if
x=p y then xy '€ H, so (xy~!")"'EH, since H is a subgroup; thus

(»r)'x'eH,
that is, yx ™' € H, and y =y x. Therefore, = is symmetric.

Finally, we claim that =y is transitive. Suppose x=g y and y=p z. Then
xy~'€eH andyz"'€H, so

(o~ ")yz"")EH (why?),
that is, xz '€ H, and we have x=y z as desired. []

We are going to do some very interesting things with the equivalence
classes of =g, and it will be useful to have another description of them.

DEFINITION If H is a subgroup of G, then by a right coset of H in G we mean
a subset of G of the form Ha, where a€ G and Ha={halh€ H}.

Thus a coset of H is a “translate” of H by some element of G. For
instance, if we think of (R, +) as the set of points on a line and consider the
subgroup Z, then the coset Z+ 3 consists of the points we get by shifting all
the integers one-half unit to the right:

[We have written Z+ ; rather than Z; because the operation in (R, +) is
addition.] We will look at more examples after we make the connection
between right cosets and =y explicit.

THEOREM 93 Let H be a subgroup of G. For a€G, let a denote the
equivalence class of @ under =g. Then

a= Ha.
Thus the equivalence classes of =y are precisely the right cosets of H.
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PROOF. We show that if x € G then x€a iff xE Ha:
x€a iff x=pa iff xa '€H iff xEHa. [

COROLLARY 94 Let H be a subgroup of G, and let a,b € G. Then Ha= Hb iff
ab~'€H.

PROOF. Ha= Hb iff a=b iff a=yb iff ab~'€H.

In particular, taking b= e, we see that Ha=H iff aE H.

Examples In the following examples, a always denotes equivalence classes
with respect to =4.

1. Let G=(Z, +), and let H=6Z. The right cosets of H in G are:

6Z=6Z+0={...,—12,-6,0,6,12,...}) =6Z+6 =6Z—6=...=0= 6= —6
6Z+1={...,—11,-5,1,7,13,...}=6Z+7 =6Z—5=...=1= 7= —5
6Z+2=(...,—10,—-4,2,8,14,...}=6Z+8 =6Z—-4=...=2= 8= —4
6Z+3={(...,—9,-3,3,9,15,...} =6Z+9 =6Z—-3=...=3= 9= —3
6Z+4={...,—8,-2,4,10,16,...}) =6Z+10=6Z-2=...=4=10 = =2
6Z+5={...,—7,—1,511,17,...}=6Z+11=6Z—1=...=5=11 = —1

2. Let G=(Z,,, D), and let H={4) = {4,8,0}. The right cosets of H are:

H=H®0={4,8,0) =H®4=H® 8=0=4= §,

H®1={591) =H®5=H® 9=1 9,

H®2={6,10,2)= H®6=H®10=2=6= 10,

7=11.

H®3=(7,11,3})=H®71=H®11=3

3. Let G=12Z,X1Z,, and let H={(0,0),(0,1)}. H is a subgroup of G, and
its right cosets are:
H=H+(0,0)={(0,0),(0,1)}=H+(0,1)= (0,0) = (0,1)

H+(1,00={(1,0),(1, D} = H+(1, )= (1,0) = (1,1),

-___

H+(2,00={(2,0),2,))=H+@2,1)=(20) = 1).

I
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Note that two elements determine the same right coset of H iff they differ by
something in H, i.e., they have the same first coordinate.

4. Let G=S,={e,f.f%g.fe.f’), where o(f)=3, o(g)=2, and gf'=f"'g.
Let H={g)={e,g}. Then we have:

H= He={e,g} =Hg =é¢ =g,
Hf={fgf) =Hgf =f =4,
Hf*={f%,f*} = Hgf*= f* = g*.

5. Let G=(Q, +) and let H=1Z. We assert that the distinct right cosets of

Z in (Q, +) are precisely the cosets Z+ g, for 0<g<1.
First of all, if ¢,,¢,€Q, 0<¢,<1, 0<¢,<1, and ¢,%¢,, then Z+ ¢,
Z + q,, because ¢, and g, do not differ by something in Z, that is, g, — ¢, is
not an integer. Secondly, for any r € Q, the coset Z + r is the same as Z + ¢ for

some g, 0<g< 1, because there is such a g which differs from r by an integer.
Observe that, in this example, there are infinitely many cosets.

Having considered right cosets, it is natural to wonder about /eftr ones. If
H 1s a subgroup of G, then a left coset of H is of course a subset of G of the
form aH = {ah|lh€ H)}, where a € G. Arguments just like the ones we have
gone through show that the left cosets of H are the equivalence classes under
the equivalence relation , = defined by
xy=y iff x“'yeEH
(Exercise 9.16). The left cosets of H need not be the same as the right cosets.

Example Let’s find the left cosets of the subgroup H={e,g} in S;. We have:
H=eH={eg}=gH, (Check it!)
fH={/./g)=/eH,
fH={f*g}=f%H.
Observe that H is both a left coset and a right coset, but no other left coset is

a right coset. We will later single out for special attention those subgroups
with the property that right cosets and left cosets are the same thing.

EXERCISES
9.1 Determine which of the following relations R on Z are equivalence relations.
a)aRbiffa—-b>0
b) aR b iff|a| = ||
c)aRbiffab>0
d)aRbiffla—b|<1



86  Section 9. Equivalence Relations; Cosets

9.2 LetS={1,2 3}andletR={(1, 1), (2, 2), (3, 3). (1. 2). (2. 1), (3, 2)}.
Which of the properties of an equivalence relation hold for R?

9.3 Define an equivalence relation R on the set of points in the xy-plane by:
(x1, Y1) R (x, yo) iffy1 — X1 =y, — x5
Describe the equivalence classes of R geometrically.
9.4 Let R be an equivalence relation on S. Show that for all 5, 5, € S we have

S_I =Ez_ iff s\ Rs;,

9.5 Let G = Q3 Find the right cosets of H in G for:
a) H=<J>
b) H=<-I>
9.6 Let G= Dy and let H= {e, fg}. Find the right cosets of H in G, and the left cosets.
9.7 Find the right cosets of the subgroup H= {(0, 0), (1, 0), (2, 0)} in Z3 x Z,
9.8 Find the right cosets of the subgroup H = {(0, 0), (0, 2)} in Z4 X Z4
9.9 Find the right cosets of the subgroup H=<(1,1)>inZ, xZ 4

9.10 Let X= {1,2,3,4} and let ¥ = {1,2}. Let G be the group (P(X), A), H the subgroup
(P(Y), A). Find the right cosets of Hin G.

9.11 For sets A and B, let 4 R B mean that there exists a one-to-one mapping from 4 onto
B. Show that R is an equivalence relation on the class of all sets.

9.12 Let G be a group and for elements g, b € G let a R b mean that there exists an element
x € G such that a = xbx™". Show that R is an equivalence relation on G.

9.13 Suppose G is a group and A and B are subgroups of G. Define a relation R on G by:
x R y iff there exist a € 4 and b € B such that x = ayb.

Prove that R is an equivalence relation on G.

9.14 Let G be a group and for a, b € G let @ R b mean that ab = ba. Must R be an
equivalence relation on G? If so, prove it; if not, indicate for which groups R is an
equivalence relation.

9.15 Suppose G is a group and define a relation R on G x G by:
(a b)R (c, d) iff ad = cb.

What condition on G is equivalent to R being an equivalence relation on G?
Prove your answer,

9.16 Let H be a subgroup of a group G and define 4= on G by letting
x=yiffx'y €H.
a) Show that 4= is an equivalence relation on G.

b) Show that the equivalence classes under ;= are the left cosets of Hin G.
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¢) Show that fora, » € G,aH=bH iffa'b € H.
Prove the second half of Theorem 9.1.

Suppose i and K are subgroyps of a group G and x, y € G. Prove that if Hx = Ky then
H=K

Let G be the subgroup of Sy consisting of all permutations that are of the form f{x) =
ax+ bwitha be Qand a# 0. Let H be the subgroup of G consisting of all
permutations of the form f{x) = x + n, with n € Z. Let £, and f; be the elements of G
given by fi(x) = 2x +1 and f3(x) = 2x. Show that f}H # f,H and Hf, = f{H U f,H. In
particular, it is impossible to choose exactly one representative from each left coset of
Hin G in such a way that we have also chosen exactly one representative from each
right coset.

Suppose K is a subgroup of H and H is a subgroup of G. Suppose h,,...,h,, are
elements of H that determine distinct right cosets of K and g,,..., g, are elements of G
that determine distinct right cosets of H. Prove that if either i # s or j # # then A,g; and
h,g, determine distinct right cosets of K.



SECTION 1 0

COUNTING THE ELEMENTS
OF A FINITE GROUP

In this section we shall consider two different ways of counting the elements
of a finite group G. One way will lead us to a classic result known as
Lagrange’s Theorem; the other will yield a powerful tool called the class
equation of G. In both cases, the plan will be to use an equivalence relation to
split G up into disjoint subsets, and then to count the elements of G by
counting those in each subset separately and adding the answers.

We begin with

THEOREM 10.1 (Lagrange’s Theorem) Let G be a finite group and let H be a
subgroup of G. Then |H| divides |G|.

Lagrange’s Theorem has an obvious significance in that it says a lot
about what possibilities there are for subgroups of a given fimite group. This
information can be used to derive a variety of interesting results with little or
no effort; but first let’s prove the theorem itself. This too is not hard, because
the groundwork was laid in the previous section. Notice, incidentally, that we
already know the theorem is true if G happens to be cyclic.

We do need the following easy preliminary result:

LEMMA 102 Let G be any group (not necessarily finite), and let H be a
subgroup of G. Let Ha and Hb be right cosets of H in G. Then there is a
one-to-one correspondence between the elements of Ha and those of Hb.

PROOF. Define a function f: Ha— Hb by declaring f(ha)= hb for every h€ H.
Then f is onto because every element of Hb has the form hb for some h € H;
and f is one-to-one since if f(h,a)= f(h,a)—that is, if hb=h,b—then h,=h,
by right cancellation, so h,a=h,a. []

The significance of this result is that any two right cosets of H in G have
the same number of elements. Thus, for example, if one right coset has

88
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sixteen elements, then every right coset has sixteen elements. If one right
coset is infinite, then every right coset is infinite, and has the “same infinite
number” of elements, because of the one-to-one correspondence exhibited
above. In general, for any two sets § and 7, we say that S and 7 have the
same cardinality, and we write |S|=|T|, if there exists a one-to-one corre-
spondence between the elements of § and those of 7. Thus we can express
the result of the lemma by saying that any two right cosets of H have the
same cardinality.

PROOF OF LAGRANGE’S THEOREM. Let G,H be as in the statement of the
theorem. The idea of the proof is that we can split G up into a finite number
of mutually disjoint subsets, each having | /| elements. Thus |G| is |H| times
the number of subsets.

Let =4 denote the equivalence relation given by a=yb iff ab~'€ H. By
Theorem 9.1, the equivalence classes under =y partition G into a collection
of mutually disjoint nonempty subsets, and by Theorem 9.3, these equiva-
lence classes are just the right cosets of H. Since G is finite, only finitely many
distinct cosets can fit into G, so we have

G=Ha,U Ha,U--- UHa,
for some integer k and elements a,,a,,...,q, in G. Now, by Lemma 10.2, all
the cosets have the same number of elements, namely |H|, since H is one of
the cosets. Thus, counting the elements on both sides of the last equation, we
get

|G|=|H|+|H[+--- +|H],
where there are k terms on the right. Thus |G|=k-|H|, and we have shown
that |H| divides |G|. []

If G is any group (not necessarily finite) and H is any subgroup, then the
number of distinct right cosets of H in G 1s called the index of H in G. We
denote this number by [G: H]. Thus Lagrange’s Theorem tells us that if G is
finite, we have

|G|=[G:H]-|H|.

Examples

1. Let G be Klein's 4-group, that is, G={e,a,b,c}, with a*>=b*=c?=e,
ab=ba=c, ac=ca=b, and bc=cb=a. Then if H=<{a), |H|=2, and since
|G|=4, we get 4=[G: H]-2, so [G: H]=2. In fact the right cosets of H are
H={e,a} and Hb= {b,c}.

2. Let G=(Z,, D) and let H=<4). Then |H|=3, and the right cosets of
H in G are H={4,8,0}), H®1={59,1}, H®2={6,10,2}, and H®3=
(7,11,3}. We have |G|=[G: H]-|H|, that is, 12=4-3,
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3. Let G=S, and let H=(g). Then |H|=2, so |G|=[G:H]-|H| says
that 6=[G:H)-2, or [G: H]=3. As we saw in Section 9, the distinct right
cosets of H in G are H, Hf, and Hf>

4. For an easy example in which G is infinite, let G=(Z, +) and let
H={2)=2Z. The right cosets of H are H and H+1, so [G: H]=2.

§. It is possible for [G: H] to be infinite. For instance, let G=(Q, +) and
H=1Z. We saw in Section 9 that there are infinitely many right cosets of H
in G.

We have defined [G: H] to be the number of right cosets of H in G. It is
natural to wonder what the number of left cosets is. Since the left cosets need
not be the same as the right ones, it comes as a pleasant surprise that the
number of left cosets is always the same as the number of right ones (even if G
is infinite).

THEOREM 103 Let H be a subgroup of G. Then the number of left cosets of A
in Gis [G:H].

PROOF. Let S be the set of all right cosets of H, and let T be the set of all left
cosets. To prove the theorem, we will show that there is a one-to-one function

from § onto T.
We want to define f: S— T by f(Ha)=a'H, for all a€ G. The one thing

we have to worry about is whether this assigns a unique value to each right
coset. In other words, if Hc= Hd, then we have mapped this coset to ¢ ~'H,
but also to d "'H. Does ¢ "'H=d 'H? It does, because if Hc= Hd, then
cd~'€H, that is, (¢ ")~ 'd "' € H. By Exercise 9.16, this says ¢~ 'H=d ~'H.

Thus we have assigned a unique value in T to each element of S. Our
function f is one-to-one by the reverse of the argument we just gave. That is,
if f(Hc)=f(Hd), i.e., c '"H=d 'H, then (¢ ")"'d"'€H, ¢d"'€H, and
Hc = Hd. Finally, f is onto since if cH is any element of 7, we have Hc '€ §,
and f(He Y)=(c"")"'H=cH. O

A word more about this proof. Instead of attempting to achieve f{Ha)=
a~'H for every a € G, we might have tried choosing one particular representa-
tive x for each right coset Hx, and defining f( Hx)=x""H just for that special
representative. This approach is not as satisfactory as the one we adopted. It
involves arbitrary choices, hence is not as “natural,” and it also binds us to
the particular representatives chosen. For instance, in checking that f is onto,
we took an arbitrary cH € T and said that f( Hc ~')= cH; if we had used fixed
representatives for all the cosets, we would have had to worry about whether
¢~ ! was the fixed representative for Hc ™!, in order to get f{Hc ™ ")=cH.



Section 10. Counting the Elements of a Finite Group 91

We will now look at several results that demonstrate the importance of
Lagrange’s Theorem.

THEOREM 104 Let G be a finite group and let x € G. Then o(x) divides |G|.
Consequently, x/°/ = ¢ for every x€G.

PROOF. If we are going to use Lagrange’s Theorem to show that o(x) divides
|G|, then obviously what we want to do is to find ourselves a subgroup H of
G such that |H|=o0(x). Take H={x); then indeed |H|=0(x), so o(x) does
divide |G|.

From this it is immediate that x/®/=e. [J

THEOREM 105 Let G be a group and assume that |G| is a prime. Then G is
cyclic. Moreover, any element of G other than e is a generator for G.

PROOF. If |G| is a prime p, then |G|>1, so G is not trivial and there is an
element x#e in G. Then by Lagrange’s Theorem, [{x)| divides p; since
[{x>|#1 this forces |{x)>|=p, because p is prime. Hence (x) contains the
same number of elements as G, so {x) = G, and any nonidentity element of G
is a generator for G. [J

To illustrate the use of Theorems 10.4 and 10.5, we will show that every
group G of order <5 is abelian, thus verifying a claim we made in Section 8.
If |G|=1,2,3, or 5, then by Theorem 10.5, G is cyclic, hence abelian. If
|G|=4, then by Theorem 10.4, every nonidentity element of G has order
either 2 or 4. If there is an element of order 4, then G is cyclic; otherwise we
have x*= e for every x € G, so G is abelian by Exercise 3.11.

Actually, the appeal to Exercise 3.11 can be avoided by the following
direct argument. Suppose that G={e;,4,B,C} and A, B, C are each of order
2. Then AB can’t be ¢;, because the inverse of 4 is 4, not B; and AB can’t be
A or B, since neither 4 nor B is e;. Thus AB must be C, and, similarly, BA
must be C. The same argument shows that BC=CB=A4 and AC=CA = B,
so G is abelian. Observe that this reasoning reveals more than the fact that G
is abelian; it shows that G is essentially the same as V={e,a,b,c}, with
A,B,C playing the roles of a,b,c. Putting it another way, if we take the
multiplication table for G and replace e;, 4, B, C everywhere in it by e,a,b,c,
respectively, then we get the multiplication table for V.

It follows that there are essentially only two possibilities for the structure
of a group G of order 4. If G is cyclic, say G={x), then the operation in G is
just like that in (Z,, @), with e, x,x?, x> playing the roles of 0,1,2,3. If G is not
cyclic, then, as above, G is essentially the same as V. Along the same lines,
there is only one possibility for the structure of a group of order 2, 3, or 5; the
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group is cyclic, hence essentially the same as (Z,, D), (Z;, D), or (Zs, D). We
will make the notion of two groups being “essentially the same” precise in
Section 12.

Right now we want to give an application of Lagrange’s Theorem in
number theory. To do this we introduce, for any prime p, the group (Z,—
{0}, @) of integers relatively prime to p under multiplication modulo p. The
elements of (Zp— {0},©) are 1,2,...,p—1; the operation is given by
mOn=mn, where — denotes remainders modulo p. This does define an
operation on Z,— ({0}, since if m,n€Z,—{0}, then neither m nor n is
divisible by p, so their product mn is not divisible by p, and mn is not 0, i.e., is
in Z,—{0}. We leave it as an exercise (10.17) to check that this operation
18 associative.

Clearly the identity element is 1. Finally, to find an inverse for meZ, -
{0}, we need n€Z,— {0} such that mn=1; in other words, we need n such
that mn= 1+ kp for some integer k. This is the same as asking for an » and a
k such that mn+ kp=1. The existence of » and k is guaranteed by Theorem
4.2, because (m,p)=1.

Thus (Z, — {0}, ©) is a group. Using it, we can easily prove the following
classic result of number theory, which was stated by Pierre de Fermat in
1640. The first published proof was given by Leonhard Euler in 1736.

THEOREM 106 (Fermat’s Theorem) Let p be a prime and suppose a is an
integer such that p does not divide a. Then a”~'=1 (mod p).

As an example, 372=1 (mod 23).

PROOF. If a i1s one of 1,2,3,...,p—1, then by applying Theorem 10.4 to the
group G=(Z,— {0}, ©), we see that a”~'=e in G, since |G|=p — 1. This says
that @ ~'=1 (mod p), as desired.

Now if a is any integer not divisible by p, then we can write a=¢gp +r,
where 0<r< p; then a”~'=r”~'(mod p) (why?), hence a”~'=1 by what we
have already shown. []

If you are familiar with number theory, you will recall that there is a
generalization of Fermat’s Theorem, called Euler’s Theorem. This says that if
m 1s any positive integer, not necessarily prime, and if a is an integer such that
(a,m)=1, then a*™=1 (mod m), where ¢(m) denotes the number of non-
negative integers less than m that are relatively prime to m. This generaliza-
tion can be proved by essentially the same technique we used above for the
special case. One considers the group of integers in the set {0,1,2,...,m—1}
that are relatively prime to m, under multiplication mod m. Since the order of
this group is ¢(m), the result follows. If you know about this theorem, you
might be interested in checking through the details of the proof.
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We conclude our discussion of Lagrange’s Theorem by mentioning that
the theorem does not have a complete converse. That is, if G is a finite group
and n is an integer which divides |G|, then it does not follow that G has a
subgroup of order n. (You will recall that if G is ¢yclic, then it does follow.)
The usual counterexample is the group G=A,, the alternating group of
degree 4. We know that |G|=4!/2=12, but it turns out that although 6
divides 12, A, has no subgroup of order 6. (See Exercise 11.24).

We now turn to our second major objective for this section: the class
equation.” We need some preliminary ideas.

In Exercise 5.23 we introduced the notion of the centralizer of an
element. If G is a group and y € G, then the centralizer of y, denoted by Z(y),
is the set of all elements that commute with y:

Z(y)={xEG|xy=px}.

The point of Exercise 5.23 was that Z(y) is always a subgroup of G. It is clear
that Z(G)C Z(y) (an element that commutes with everything certainly com-
mutes with y%), but in general Z(y) may be larger than Z(G).

Examples
1. If G is abelian, then Z(y)= G for every y €G.

2. Let G=5,={e.f.f.8./2.f8}. Then Z(f)={ef,f*}, since we can
verify by direct calculation that g, fg, and f% do not commute with f.
Likewise, Z(g)= {e,g), since f, f%, fg, and f% do not commute with g. In this
case, Z(G)={e}, the trivial subgroup, so both Z(f) and Z( g) are larger than
Z(G).

3. Let G=D,= {e’f-fzsfsﬁg’fgsfz stg}s where o(f)=4, o(g)=2, and gfl
= f~ig for all i. Here Z(g)={e,f? g.f’g)} (verify!), so Z(g) is larger than {g),
but smaller than G.

Now let G be a group. Define a relation R on G by
a R b iff a 1s conjugate to b,
that is, @ R b iff there exists some x € G such that a= xbx~".

LEMMA 10.7 The above relation R is an equivalence relation on G.

"The remaining material of this section is needed for Exercises 10.25-10.26 and 10.28-10.31 and for
Section 15 (and its applications in Sections 25 and 26), but can otherwise be omitted without loss of
continuity.



94  Section 10. Counting the Elements of a Finite Group

PROOF. For any a € G, we have a=eae ', so aRa, and R is reflexive. If a R b,
then a= xbx " for some x, whence

b=x'ax=x"la(x"")"",
so bRa, and R is symmetric. Finally, if aRb and bRc, then we have
a=xbx " and b=ycy "' for some x,y €G. Thus

a=x(yoy " )x "= (xp)e(xy) 7,
so aRc, and R is transitive. []

The equivalence class @ of an element a € G under R is called the
conjugacy class of a, and consists of all the conjugates of a. That is,
a={xax"'|x€G).

Example In S, = {e,f,f 2.f2.f%g), we have é= {e}. To find f, notice that f2 is
a conjugate of f, because f?=gfg ~'. Since every conjugate of f must have the
same order as f, namely 3, none of g, fg,fg is conjugate to f, and therefore
f={f.f*. As for g, the equations fg=f%(f?)~"' and f%x=fgf ' show that
both fg and f’g are conjugates of g, and we see that g={ g,fg,f¢}.

Thus R breaks S, up as

Sy={e}u{ff}u{sfe./s}.

Our general aim is to count an arbitrary finite group G by counting each
conjugacy class separately, so we need to find an expression for the number
of conjugates of an element 4. In the example of S, the element f has two
conjugates, and two also happens to be the index of the subgroup Z(f)=
{e.f.f*} in S;. The element g has three conjugates, and again this number
coincides with the index of Z( g). The element e has only one conjugate, and,
sure enough, [S;:Z(e)]=1.

LEMMA 108 Let G be a finite group, and let a€ G. Then the number of
distinct conjugates of a in G is [G: Z(a)].

PROOF. Let x,y € G. Then xax ~'=yay ~' iff ax ™'y = x "Yya iff x "'y € Z(a) iff
X z= y iff xZ(a)=yZ(a). In other words, x and y determine the same
conjugate of a iff they determine the same left coset of Z(a), so the mapping

xax '+ xZ(a)
establishes a one-to-one correspondence between the conjugates of a and the

left cosets of Z(a) in G. By Theorem 10.3, the number of left cosets of Z(a) is
[G: Z(a)), so the number of conjugates of a is [G: Z(a)]. (O

Notation The symbol “+ ” in the preceding proof is read “maps to”. This symbol
is placed between elements, whereas “—" is placed between sefs of elemenis.
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THEOREM 109 (Class equation) Let G be a finite group, and let {a,,...,q,}
consist of one element from each conjugacy class containing at least two
elements. Then

|G|-|Z(G)|+[G:Z(al)]+[G:Z(az)]+--- +[G:Z(ay)].

PROOF. Let g, _ ,...,aq, , , be the elements of the conjugacy classes containing
only one element each. Then we know that G is the disjoint union

G=a,UaU - UgU{a.,, U - U{a.,}.
By Lemma 108, 4, contains exactly [G:Z(aj)] many e¢lements, for j=
1,2,:.:;k: Thus
|G|=[G:Z(a)]+[G:Z(a) |+ +[G:Z(a,)] +s.
Also by Lemma 10.8, we see that for any a€ G, a consists of a alone <&

[G:Z(a)]=1 & Z(a)=G < a€ Z(G), and therefore a, ,,,...,a,,, are pre-
cisely the elements of Z(G). Hence s=|Z(G)|, and we are done. []

Perhaps the most noticeable difference between the situation here and
that in the proof of Lagrange’s Theorem is that here it need not be the case
that all the equivalence classes have the same number of elements. For
instance, we have already seen that

so the class equation of §; is

6=14+2+3.

The class equation has a number of striking applications. Two are presented in
Exercises 10.28 and 10.29, and we will see another one in Section 15.

EXERCISES
10.1 Let G= Qg. Find [G: H] for H={—1), H={(K ), and H={~L).
10.2 a) In G=(Zy, @), find [G: H] for H={32).
b) In G=(Zs,, ®), find [G: H] for H={24).
¢) In G=(Z,,,, D), find [G: H] for H={100).
103 Let G=Z;XZ,, and find [G: H] for:
a) H={0}) xZ,.
b) H={2>X{2).
104 Let X={(1,2,3,4,5} and let Y={1,2,3}. Let G=(P(X), &), H=(P(Y), 2).
Find [G: H].
10.5 Let G be a group of order 8 that is not cyclic. Show that a*=e for every a €G.

10.6 Let G be a group and let H, K be subgroups of G such that |H|=12 and |K|=S5.
Prove that H N K= {e).
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10.7 Let p and g be two prime numbers, and let G be a group of order pg. Show that
every proper subgroup of G is cyclic.

10.8 Let G be a group of order p?, where p is a prime. Show that G must have a
subgroup of order p.

10.9 Suppose G is a group and A and X are subgroups of G such that |H| =39 and |K| = 65.
Prove that # N X is cyclic.

10.10 Provide another version of the proof of Lagrange’s Theorem, as follows: List
the elements of H: hy,h,,...,h,. If these elements do not exhaust G, pick a, not
in the list and take the elements h;a,h,a,,...,h,a,. Show that the 2n elements
written down so far are all distinct. If they do not exhaust G, pick an element
a, not listed so far and write down h,a,, h,a,,...,h,a,. Show that the 3n
elements written down so far are all distinct. Continuing in this way, finish the
proof.

10.11 a) Show that if H is a subgroup of G, then all the left cosets of H in G have
the same number of elements.

b) Show that any right coset has the same number of elements as any left coset.

10.12 Show that if H is a subgroup of a finite group G, then the result of Theorem
10.3 can be established by redoing the proof of Lagrange’s Theorem using left
cosets instead of right ones.

10.13 In the proof of Theorem 10.3, try defining f( Ha) = aH, for all a € G. Show that
this may not give a well-defined function, because Ha may equal Hb without
aH equaling bH. (Suggestion: Let G=S,.)

10.14 Show that there are essentially only two groups of order 6, as follows.

a) If |G|=6 and G contains an element of order 6, then G is cyclic. Why?

b) If G is not cyclic, then all elements of G have order 1, 2, or 3. Why? Show
in fact that there must be an element of order 3. Call it a.

c) Let b be an element of G that is not in {a). Show that e,a,a? b,ab,a’ are
all the distinct elements of G.

d) Show that o(b)=2. Since b was chosen arbitrarily, it follows that also
o(ab)=2 and o(a’h)=2.

e) Show that ba=a?b and ba? =ab.

The above steps show that either G is cyclic, in which case the multiplication
in G is like that in (Z, @), or G is not cyclic, in which case the multiplication
in G is like that in S, with a and b playing the roles of the elements f and g.

10.15 Let G be a finite group, and let H be a subgroup of G. Let K be a subgroup
of H. Prove that [G:K]=[G: H)][H:K).

10.16 Let G be an abelian group such that |G| is an odd integer. Show that the
product of all the elements in G is e.
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10.17 Show that the multiplication in Z, — {0} is associative.
10.18 Carry out the proof of Euler’s Theorem suggested in the text.

10.19 Wilson's Theorem (Another application of the group (Z, — {0}, ® ) to number
theory):

a) Show that if p is prime then (p—1)! = —1 (mod p). [Hint: Consider which elements
of (Z,— {0}, ® ) are their own inverses.] This result was stated by John Wilson
(1741-1793). 1t also seems to have been known to Leibniz in the late 1600s. The
first published proof of the theorem was given by Lagrange in 1770.

b) Prove the converse of the result in (a): Show that if n >2 and (# — 1)! =—1 (mod
n) then n is prime.

10.20 If Gis a group, A and K are subgroups of G, and g € G then the set

HgK = {hgk|h€ Hand k € K}

is called a double coset. Prove that HgK is the union of exactly [H : H N gKg '] of the :
left cosets of K in G, and that HgK is the union of exactly [K : K N g 'Hg] of the right
cosets of Hin G.

10.21 Prove that every group of order 77 must have an element of order 7 and an element of
order 11.

10.22 a) Suppose G is a finite group such that (xy)’ =x*” forallx, y € Gand 3 {|G|.
Prove that G is abelian.

b) Does the result of part (a) remain true if we replace “3” by “5” throughout?
10.23 In each of the following cases, show that the given sets Sand T have the same

a) §=the set of even integers, T'= the set of odd integers

b)§S=2Z,T=2Z"

) S={xeR|0<x<1)},T={xeR|x>1)

d) S=R,T=R"

e) S={xeR|-1<x<1)},T=R

f) S={xeRla<x<b)},T={xeR|c<x<d),wherea<bandc<dinR
10.24 Let G be a group, and suppose there is g € G such that Z(g) = Z(G). Show that G is

abelian.
10.25 Find the conjugacy classes in Oy, and write down the class equation for Qg
10.26 Find the conjugacy classes in D,, and write down the class equation for D,
10.27 Let G be a finite group. Show that [G : Z(G)] cannot be a prime.

10.28 Let p be a prime number, and let » be a positive integer. Let G be a group such that
|G| =p". Use the class equation to show that |Z(G)| is divisible by p.
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10.29

10.30

10.31

10.32

10.33
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Let p be a prime number and let G be a group such that |G| = p>. Prove that G is
abelian.

Suppose G is a nonabelian finite group and p is a prime number such that p divides
|G]. Prove that there exists an element b € G such that b € Z(G) and p divides |Z(b)|.
(Here Z(b)= {g € G | gb = bg}.) ‘
Suppose that p is prime, n € Z+, and G is a group of order p”. Prove that if |H' = p
and ghg™' € H forall g € Gand h € H, then H C Z(G).

If G is a group with identity element e and X is a set, then a (left) action of Gon X'isa
function F : G x X — X such that, denoting F(g, x) by g -xforallge Gandx e X,
we have

i) 8 (82°x)=(:8,) xforallg, g, € Gandx € X, and

ii)e-x=xforallxe X

For any x € X, the orbit of x under G is the subset
ob(x)={g-x|g€G}

of X, and the stabilizer of x is the subset G,= {ge G | g - x=x )} of G.

a) Given an action of G on X, define a relation R on X by

X1 R x; iff there exists g € G such that x; = g - x,.

Prove that R is an equivalence relation on X. (Note that for every x € X, orb(x) is
the equivalence class of x under R.)

b) Prove that for every x € X, G, is a subgroup of G.

c) Prove that for every x € X, |orb(x)| =[G : G,]. (Note thatif G is a finite group, X =
G and the action of G on G is given by F(g, x) = gxg ™' then this result yields
Lemma 10.8.)

The following formula for the number of orbits under a group action is due to Georg
Frobenius (1849-1917), although it is usually referred to as Burnside’s Formula or
Bumside’s Lemma.

Suppose G is a finite group and G acts on the finite set X (i.e. we have an action of G
on X). Forge G, let X,= {x € X| g* x=x}. Let N be the number of orbits in X under
G. Prove that

1
N=—T3
|G| geG

x,|
[Suggestions: First show that
E 'Xl’ I = E IGx[
geG reX

by counting the set {(g, x) | g - x=x } in two different ways. Then determine X |G,|

by showing that the sum of the orders of the stabilizers of the elements of X i;f aﬁay
single orbit is |G]|.]



SECTION 11

NORMAL SUBGROUPS

At the end of Section 9 we pointed out that we would want to return to an
investigation of those subgroups of a given group G which have the property
that right cosets are the same thing as left cosets. We will now take up this
question. The main reason why such subgroups are important is that it is
possible to turn the set of right cosets (which is, in this case, the same thing as
the set of left cosets) into a group in a “natural” way, i.e., in such a way that
the multiplication on the cosets is inherited from the given multiplication
on G.

We will begin by giving an alternative description of the special sub-
groups we have in mind.

DEFINITION Let H be a subgroup of G. Then we say that H is a normal
subgroup if for every h€ H and g€ G, ghg ™' is in H.

This definition can be expressed in terms of subsets by letting, for g€ G,
gHg '=(ghg~'|h€ H}, and saying that H is normal if and only if gHg ™' C
H for every g€ G.

It should be observed that the definition does not say that ghg ~'=h for
every g € G and h € H; rather it says that ghg ~' will be some element of H,
not necessarily A. In fact ghg ~'=h iff gh= hg, that is, iff g and A commute
with each other.

THEOREM 11.1 Let H be a subgroup of G. Then the following are equivalent:
1) H is normal;
ii) gHg '= H for every g € G;

iii) gH = Hg for every g€ G, i.e., the left cosets are the same as the right
cosets.

99
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Remark. Condition (iii) does not say that for every h€ H we have gh=hg.
Condition (i) implies that gh will be A'g for some h’'E€ H, but it is not
necessary for &’ to be hA.

PROOF. (i) « (ii): Clearly, (ii) implies (i). Now assume (i), i.e., assume that
gHg ™' C H for every g€ G. Then for any g, g " 'H(g ") 'CH. Thus g " 'H C
Hg ', and H CgHg . This, with the assumed gHg "' C H, gives gHg '= H.
Therefore, (i) implies (ii).

(ii) « (ii1): This is immediate, since (i) and (iii) are obtained from each
other by multiplying on the right by g or g~'. [

Examples

1. We saw in Section 9 that the subgroup (g of S;={e,f, 18,12 fzg} is
not normal, since its right cosets do not coincide with its left cosets. However,
the subgroup (f) (=4,) is a normal subgroup of S,. Its right cosets are
Ay={ef,f*} and A,g={g.fg.f’}, and its left cosets are 4, and gd,=
{ g,2f,gf*), the same two subsets.

Observe how yay ~'€ A, for every a€ A,: for example, if y is f, then
fef '=e, fff~'=f, and fff~'=4? if y is g, then geg"'=¢, gfg ' =fgg "' =
f* and gfg ™' = fog 7' =f.

2. Let G and H be groups, and consider G X H. The subgroup {e;} X H
is normal, because if (g,h)E G X H and (e;, x)E{e;} X H, then

(8.h)(eg.x)(8.h) ™' =(gecg ™", hxh~")=(eg.hxh™') € {5} X H.
Likewise, the subgroup G X {eg} is normal.

It is worthwhile to develop some criteria that can be used to guarantee
that certain subgroups are normal without referring back to the definition of
normality. We shall give three such criteria, one involving the idea of
elements commuting with each other, and two involving counting arguments.

We have observed that the center Z(G) of a group G is always a
subgroup of G. We now show that Z(G) is always a normal subgroup. In fact,
more is true:

THEOREM 112 Let G be a group. Then any subgroup of Z(G) is a normal
subgroup of G.

PROOF. Let H be any subgroup of Z(G). One way to show that H is normal
in G is to show that ghg "' € H for every g € G and h € H. But since h € Z(G),
we have ghg "'=hgg~'=hEH. [
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COROLLARY If G is abelian, then every subgroup of G is normal.

PROOF. If G is abelian, then Z(G)= G, so every subgroup of G is a subgroup
of Z(G), hence normal by the theorem. []

THEOREM 113 Let H be a subgroup of G such that [G: H]=2. Then H is
normal in G.

PROOF. We will show that for any g € G, gH = Hg.

Since there are exactly two right cosets of H in G, the right cosets must be
H and G— H. Likewise, the two left cosets must be H and G— H. Thus the
left cosets are the same as the right cosets, and for any g € G, the left coset
containing g is also the right coset containing g, that is, gH = Hg. [

Examples

1. We have seen that if G is abelian then every subgroup of G is normal.
A very natural question is whether the converse is true: If G is a group such
that every subgroup of G is normal, must G be abelian? The answer is no, as
is shown by taking G = Q,. Our primary reason for introducing the group Q,
in the first place was to have it available as an example here.

The subgroups of Q, are {I), {—=1), {J), {K), {L), and Q. (Recall
that Qg=(1,—1,J,—J,K,— K,L,— L}.) Now Qg is normal in Q4 since any
group is obviously a normal subgroup of itself; (J), (K), and (L) are
normal because they each have index 2 in Q; (I) and {(—I) are normal
because they are contained in Z(Qj).

Thus every subgroup of Qg is normal, but Qg is not abelian. Nonabelian
groups with the property that every subgroup is normal are called Hamilto-
nian, after the Irish mathematician Sir William Rowan Hamilton. It can be
shown that every Hamiltonian group must have a subgroup which “looks just
like” Qg, so Qg is the simplest Hamiltonian group.

2. We have seen that 4, is a normal subgroup of §,. More generally, 4,

is a normal subgroup of S, for any n>2, because |4,|=n!/2=|S,|/2, so
[S,:4,]=2.

Our last criterion for normality will follow as an immediate corollary of

THEOREM 114 Let G be a group, H a subgroup of G, and g € G. Then gHg ™'
is a subgroup of G, with the same number of elements as H.

PROOF. To see that gHg ~ ' is a subgroup, note that gHg ' is nonempty, and

it is closed under multiplication since if gh,g~' and gh,g ' are elements of
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gHg ™!, then

(gh g7 ")(ghag™")=8h kg™,
which is in gHg ™' since h,h, € H. To check closure under inverses, note that
(ghg™")"'=gh~'g~, which is in gHg ~' since h '€ H. The verification that
gHg ™! has the same number of elements as H is left as an exercise. []

COROLLARY 115 If H 1s a subgroup of G, and no other subgroup has the same
number of elements as A, then H is normal in G.

PROOF. For any g€ G, gHg ™' is a subgroup of G with the same number of

elements as H, so gHg ™' must be H by hypothesis. Thus H is normal. ]

Examples

1. In 8, A, (={f)) is the only subgroup consisting of three elements.
Hence we see again that 4, is a normal subgroup of S.

2. For an example where neither of Theorems 11.2 or 11.3 is applicable
but Corollary 11.5 is, let H be the subgroup

H={e(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}
in
G=A,=HU{(1,2,3),(1,3,2),(1,2,4),(1,4,2),(1,3,4),(1,4,3),(2,3,4),(2,4,3)}.

Since every element of G— H has order 3, none of these elements can be
contained in a subgroup of order 4. Thus H is the only subgroup of order 4,
so H is normal in 4,, although H is not contained in Z(A4,) and does not have
index 2.

We will now proceed to the business that motivated the introduction of
normal subgroups in the first place: we will show that if H is a normal
subgroup of G, then there is a natural way to turn the set of right (= left)
cosets of H into a group.

First a standard piece of notation: We write H <G to signify that H is a
normal subgroup of G.

Now let H be any subgroup of G. If we want to turn the set of right
cosets of H into a group by using an operation that comes from the operation
in G, there is really only one way to try to proceed. If we take two right cosets
Ha and Hb and try to produce a right coset to be their product, what should
it be? Hab, of course.

There is only one problem with this: namely, is it a well-defined opera-
tion? That is, suppose Ha is also Ha’ and Hb is also Hb'. Is it then true that
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Hab is the same thing as Ha’b’? In other words, is our intended operation
independent of what representatives we pick from the cosets to perform the
multiplication? It turns out that it is if and only if H is a normal subgroup
of G.

Now saying that Ha= Ha’ is the same as saying that a(a’)"'€H, by
Corollary 9.4. Likewise, saying that Hb= Hb' is just saying that b(b")" '€ H.
We want to see when these two assumptions imply that Hab= Ha'b’, that is,
(ab)(a’b’)" '€ H. But

(ab)(a'b) '=ab(b)) " '(a’)""
=a[b(b’)-l]a' la(a’) ™!
-(a[b(b’)_l]a_l)a(a')_l.
Therefore, since a(a’)”'€H, we see that (ab)a’b")"'€H if and only if
(a[b(b’)~']la"')EH. But also b(b')"'E€ H; so certainly if H is normal then
a[b(b’)"'la”' € H and we have what we want. On the other hand, having
what we want for all possible choices of @ and b requires that H be normal;

that is, we need a[b(b")~']a ' € H for all choices of a and b, and this forces
H to be normal.

Thus we have established that the natural attempt at inducing an opera-
tion on the set of right cosets from that on G will succeed if and only if H is a
normal subgroup. Therein lies the significance of the concept.

We now press on and show that if H <G then: this operation on the set of
right cosets turns the set into a group.

Notation. If H<G, then G/H denotes the set of right (= left) cosets of H
in G.

THEOREM 11.6 If H <G, then G/ H is a group under the operation Ha* Hb=
H(ab).

PROOF. We have only to check that = satisfies the associative law, that there is
an identity element, and that inverses exist.
Observe that

(Ha+Hb)* Hc=H(ab) » Hc= H[(ab)c]| = H[ a(bc) ]
= Ha»H(bc)= Ha+(Hb+Hc),
so # is In fact associative. Notice how = is inheriting its associativity from the

associativity of the operation in G.
The identity element of G/ H is He (= H), since for any a € G we have

Ha+ He= H(ae)= Ha,
and similarly He s Ha= Ha.
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Finally, the inverse of Ha is Ha ' (what else?):
Ha+Ha '= H(aa"')= He,
the identity element, and similarly Ha '+« Ha= He. []

The group G/ H is called the quotient group, or factor group, of G by H.
The symbol “G/H” is usually read “Gmod H.”
Observe that

|G/H|=[G:H].

Examples
1. Let G=Klein’s 4-group={e,a,b,c} and let H={a). Then H is nor-

mal since G is abelian, and G/ H is a group with two elements in it, namely H
and Hb (= Ho).

2. Let G=S,, and let H=A,;={f). Then H is normal in G and again
G/H has two elements. They are H and Hg (= Hfg= Hf’g). We have
Hg+Hg=Hg’= He=H.

Let’s look at how coset multiplication fails to be well defined if we take
for H some non-normal subgroup of S,;. Try H={g)={e,g}. The right cosets
are H, Hf={f,gf}, and Hf?=( f2 gf*}. Consider trying to multiply Hf+ Hf?,
which is the same thing as H(gf)+* H(gf?). On the one hand we get Hf*= He
= H; but using the other representatives we get

H( gfzf*) = Hgffe = Hfgg = H],

not the same answer.

3. Let G=Qg and let H={I,—1I). Then H<G and G/H is a group
containing four elements, namely H, H-J, H-K, and H-L. Therefore, as we
remarked in Section 10, G/ H must be essentially the same as either (Z,, D)
or Klein’s 4-group. Which one? Since

(H-J))=H-J*=H-—I=H,

and similarly, (H-K)*=H and (H-L)*=H, the answer is Klein’s 4-group,
because every nonidentity element has order 2.

4. Let G=(Z,+) and let H=(2). Then G/H has two elements. More
generally, let G=(Z, +) and let H={n), where n is a positive integer. Then
G/ H has n elements, namely H+0,H+1,H+2,..., H+(n—1). Observe that
addition of these elements corresponds to addition of the indicated repre-
sentatives modulo »n. For instance, if n=6, then (H+2)+(H+5)=H+7=
H+ 1, corresponding to 25=1 in (Z, D).
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5. Let G=Z,XZ,, and let H be the normal subgroup {0}XZ,=
{(0,0),(0,1)}. The elements of G/ H are H, H+(1,0), and H +(2,0), and, for
instance, we have

[H+(1,0)]+[H+(2,0)]=H+(0,0)=H.

In closing, we remark that quotient groups are very valuable tools. For
example, in proving results about finite groups, one often proceeds by
induction on the order of the group G. The crucial step is frequently to
consider the quotient of G by some nontrivial normal subgroup. This quotient
group is a group of smaller order than G, and hence is subject to the inductive
hypothesis.

We shall use this approach repeatedly in Sections 14 and 15. For now,
we offer the following illustration, which provides a partial converse to
Lagrange’s Theorem.

THEOREM 11.7 Let G be a finite abelian group and suppose p is a prime such
that p divides |G|. Then G has a subgroup of order p.

PROOF (by induction on |G|). If |G| =1 the result is trivial, since then no
prime p divides |G| . Assume now that |G| = m, and that the result is true for all
abelian groups of order less than m. Let x # e be an element of G and let H=<x>.
H is a nontrivial normal subgroup of G, and by Lagrange’s Theorem we have

|G| = || - |H],

where |G/H| < m. Now since p divides |G| and p is prime, p divides either
|H|or |G/H|. If p divides |H| then, since H is cyclic, H has a subgroup of
order p, and this is the desired subgroup of G. Otherwise, p divides |G/H| , and
since G/H is abelian (see Exercise 11.17) the inductive hypothesis implies that
G/H has a subgroup of order p. This subgroup must be cyclic, so it is < Hg > for
some element Hg of order p. By Exercise 11.10, o(g) = kp for some positive
intcgerk,andthuso(g’)=p. Thus < g* > is the subgroup we seek in G. O

We know that Theorem 11.7 is no longer true if we drop the assumptions
that G is abelian and p is prime. One outcome of Sections 14 and 15 will be
that it is still true if we drop either one of these assumptions and keep the
other in force.
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EXERCISES

11.1

11.2

113
114
11.5
11.6

11.7

11.8

119

11.10

11.11
11.12

11.13
11.14

11.15
11.16
11.17
11.18

Show that SL(2,R) <4 GL(2,R). [Recall that
SLR)= {(? %)eGL(2,R)jad-bc=1} ]

Let H be the subgroup of GL(2,RR) consisting of all matrices
(a b
0 d
such that ad # 0. Is H a normal subgroup of GL(2,R)?

Let H< G, and assume that |H| = 2. Show that Hg Z(G).
Let H 94 Gand X < G. Show that HNK < G.
Let G be a group, H a subgroup of G, and K < G. Show that HFNK < H.

Prove that if H is a subgroup of G then /< G iff H satisfies the following condition:
forallx,y e G,xye Hiffyxe H.

Let H < G and K« G, and assume that H N K= {e}. Show thatifx € Handy € K
then xy = yx.

Let N be a normal subgroup of G and let H be any subgroup of G. Let NH={nh | n €
N, h € H}. Show that NH is a subgroup of G.

Suppose that in Exercise 11.8 we add the assumption that H is normal in G. Show that
we can then conclude that NH is normal in G.

Let G be a group, let g € G have finite order m, and let H < G. Show that the order of
the element Hg € G/H is finite and divides m.

How many normal subgroups does D4 have?

a) Let G = D4 Show that there exist subgroups H and X of G such that K<t H and H
< @G, but X is not normal in G,

b) Prove the same result for G = 4, instead of D,.

Suppose that A < Gand B < H. Showthat AxB <« G x H.
InG=Z;xZy,letH=<(2,2)>.

a) Find the order of the element H + (5, 8) in G/H and justify your answer.

b) Is G/H cyclic? Justify your answer.

D4/ Z (Dy) is “just like” one of the groups with which you are familiar. Which one?
Show that (Q, +) /(Z, +) is an infinite group every element of which has finite order.
Let G be abelian and let H be a subgroup of G. Show that G/H is abelian.

Let G be cyclic and let H be a subgroup of G. Show that G/H is cyclic.



11.19

11.20

11.21

11.22

11.23

11.24

11.25

11.26

11.27

11.28

11.29
11.30
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Give an example of a nonabelian group G such that G/Z (G) is:
a) abelian;
b) nonabelian.

Let G be a group and let A be a normal subgroup of G such that [G : H] =20 and |H]|
=7. Suppose x € G and x = e. Show that x € H.

Let G be an abelian group and let H be the subgroup of G consisting of all the
elements that have finite order. Prove that every element of G/H other than the
identity element has infinite order.

Let G be an abelian group of order pg, where p and ¢ are distinct primes. Show that G
is cyclic.

Let G be a group and let H be a subgroup of index 2. Show that for every a € G,
deH

Use Exercise 11.23 to verify the remark made in Section 10 to the effect that 44 has no
subgroup of order 6.

Let H<4 G. Here is another way of viewing the introduction of a multiplication on
G/H. We multiply right cosets as subsets: Ha % Hb= {hjahb | hy h, € H}. The only
question is whether or not this subset is again a right coset of H in G. Show that it is,
and that in fact it is Hab, so that this “multiplication as subsets” coincides with the
multiplication introduced in the text.

Verify the assertion in the proof of Theorem 11.4 that gHg ' has the same number of
clements as H.

Let H be a subgroup of G. Define N(H) = {g € G| gHg ' = H}. N(H) is called the
normalizer of H.

a) Show that N(H) is a subgroup of G. (This is a repeat of Exercise 5.26.)
b) Show that H <« N(H).
c¢) Show that if K is a subgroup of G and H < K then K < N(H).

Let G be a group and let N be a normal subgroup of G. Assume that N is cyclic. Show
that every subgroup of N is normal in G.

Show that if G /Z (G) is cyclic then G is abelian.

Let G be a group. The commutator subgroup G’ of G is the smallest subgroup of G
containing all the commutators, i.e. all elements of the form xyx 'y~". Thus G'is the
intersection of all the subgroups that contain all the commutators.

a) Show that G' consists of all elements of G that can be written as products of
commutators. (In general it need not be true that every element of G'is a
commutator.)
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b) Show that for every subgroup K of G the following are equivalent:
i) G'cK
ii) K < G and G/K is abelian.
11.31 Let G be an abelian group such that every x # e in G has order 2. Let H be an abelian
group such that every element of / has odd order. Show that Qs xGxH is

Hamiltonian. (Suggestion: Show that for any two elements x and y in Qg G XH, xyx "'
is a power of y. The result of Exercise 6.14 may be useful.)

Conversely, it can be shown that every Hamiltonian group must have the form
03 *GxH for some G and H with the indicated properties.

11.32 Suppose G is a finite group of order mn, where (m,n) = 1, and H is a normal subgroup
of order m. Prove that H is the only subgroup of order m in G
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HOMOMORPHISMS

In this section we are going to study “sensible” functions from one group to
another. One reason for doing this is that it reveals something of the dynamic
nature of group theory, something of the way in which different groups can
interact. Another reason is that this interaction often tells us a great deal
about one of the groups involved: One learns about a given group by
bringing into play its relationships with other groups.

The first thing we should do is make clear what the word “sensible”
means in the last paragraph. A function from one group to another is, after
all, a function from one set to another; such a function is “sensible” or
“reasonable” if it takes into account the fact that groups are more than just
sets. Groups have operations on them, and the reasonable functions to look at
are those that behave themselves with respect to these operations.

By this we mean nothing more than the following. Suppose G and H are
groups and ¢ : G— H is a function. Suppose a,b € G. Then we have ¢(a)€ H,
p(b)E H, and ¢(ab)€ H. What we want is that ¢(a)e(b) should be the same
as ¢(ab). That is, we want ¢ to respect the relationship among the elements
a,b, and ab. We want multiplying a by b and then applying ¢ to yield the
same element of H as first applying @ to each of @ and b and then multiplying
the answers.

Functions that “preserve structure” in this way are called homomorphisms.

DEFINITION Let G, H be groups and let ¢: G—H be a function. Then ¢ is
called a homomorphism if for every a and b in G we have

p(ab) = g(a)p(b).
We emphasize that on the left-hand side of this equation the multiplica-
tion is performed in G; on the right-hand side, it is performed in H. And we
repeat that the idea is that multiplying in G and then mapping over to H

109
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yields the same result as first mapping to H and then multiplying.
Before giving some examples, we single out an especially important kind
of homomorphism.

DEFINITIONS Let ¢ : G— H be a homomorphism. Then ¢ is called an isomor-
phism if it is a one-to-one onto function. Two groups G and H are said to be
isomorphic if there exists an isomorphism from G onto H. If G and H are
isomorphic, we write G=H.

It is worthwhile to point out a common misunderstanding of the defini-
tion of isomorphic groups. If we have tried several maps from G to H and
found that none of them is an isomorphism, it does not follow that G and H
are not isomorphic. For we might still find some other function that is an
isomorphism. If there is any function from G to H that is an isomorphism,
then G=H; to show that G and H are not isomorphic, we have to show that
no function from G to H is an isomorphism. Theorems 12.4 and 12.5 will
provide us with some ways of doing this.

Sometimes, one-to-one homomorphisms are called monomorphisms, and
onto homomorphisms are called epimorphisms. In this terminology, a map-
ping is an isomorphism iff it is both a monomorphism and an epimorphism.

Examples

1. Let G be any group, and let ¢ : G— G be the identity map, ¢(x)= x for
all x€G. Then ¢ is an isomorphism.

Let p: G—>G be given by g(x)=e for all xE€G. Then ¢ is a homomor-
phism, but g is neither a monomorphism nor an epimorphism, unless G is the
trivial group.

2. Let G=(Z,+) and let ¢:G—G be given by @(n)=2n for all neZ.
Then ¢ is a homomorphism since

@(n+m)=q(n)+ ¢(m)
for all n,meZ, that is,
2(n+m)=2n+2m.

¢ 1s a monomorphism since if 2n=2m, then n=m. ¢ is not an epimorphism.

3. Again let G=(Z, +), and this time let ¢ be given by (n7)= —n. @ is an
isomorphism from G onto itself.

In general, an isomorphism from a group onto itself is called an automor-
phism (“auto” for “self”). The mapping @(n)= —n is called a nontrivial
automorphism, because it is not the identity mapping. It can be shown that
any group with more than two elements has a nontrivial automorphism.



Section 12. Homomorphisms 111

4, Let ¢:(Z,+)—>(Z,,D) be given by ¢@(m)=m, the remainder of m
(modn). ¢ is a homomorphism because for any integers m, and m,,
m+m,=m ®m,.
¢ is not a monomorphism since, for example, ¢(0)=¢(n). ¢ is an epimor-
phism, however.
5. Let ¢: (R, +)—>(R*, ) be given by ¢(x)=e*. ¢ is a homomorphism
since
p(x+y)=9(x)e(»),
that i1s,
etV =¢e%e’.
In fact ¢ is both a monomorphism and an epimorphism, so (R, +) and
(R*, -) are isomorphic.

6. Let G be Klein’s 4-group. Define p: G— G by p(e)=qp(a)=e, @(b)=
@(c)=a. ¢ is a homomorphism [for example, @(ab)=¢(c)=a=ea=
¢(a)@(b)], but ¢ is neither one-to-one nor onto.

Now define ¢ by ¢(e)= @p(a)=g(b)=e,p(c)=a. This ¢ is not a homo-
morphism, since @(ab)= ¢(c)= a, but p(a)e(b)=ee=e#a.

7. Define ¢ : GL(2,R)—»(R—{0},-) by

a b)]= : a b)= d— be.
qo[(c d)] determmantof(c ) bl c

Then ¢ is a homomorphism since the determinant of the product of two
matrices is the product of their respective determinants, that is,

16206 e 34 0
@ is an epimorphism, but not a monomorphism.
8. Let 9:S,—»(R—{0}, -) be given by
1 iffiseven

"D(f)=[—1 if f is odd.

Then ¢ is a homomorphism. For example, if f,g are both odd, then ¢(f)=
¢(g)=—1, and since fg is even, ¢(fg)=1. Thus

o(f2)=o(fN)e(g).

The cases where f and g are both even, or one is even and one is odd, are
handled similarly.
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9. Let G and H be groups, and let ¢ : G X H— H be given by ¢[( g,h)]= A.
¢ is a homomorphism, since

'P[(gv"'l)(gzahz)] =¢’[(81 Szahlhz)] = hlhz=¢[(81’h|)]?’[(82rh2)]-

@ is called “projection onto the second component.” Similarly, we have a
projection homomorphism onto the first component.

It will be useful to know what happens when we apply two homomor-
phisms in succession.

THEOREM 12.1

1) Let ¢:G—>H and y: H—» K be homomorphisms. Then Yc¢p:G—K is a
homomorphism.

ii) If ¢ and ¢ are both isomorphisms, so is Y o ¢.
iii) If ¢p: G—H is an isomorphism, so is ¢ ~': H—G.

PROOF. 1) We must verify that for any a,b € G,

(Yo@)(ab)=[(¥-o)a)][(¥-g)(b)].

But
(Vop)(ab)=y[ p(ab) | =y[ p(a)p(b)]

=v[o(a) ]¥[e(0)]=[(¥op)a) ][ (¥ 9)(B)].

i) By part (i), Y e is a homomorphism. Since y o ¢ is one-to-one and
onto if both ¢ and ¢ are, ¢ o is an isomorphism if both ¢ and y are.
iii) If @ is one-to-one and onto, then we know that ¢ ~! is a one-to-one
onto function from H to G. We must verify that
o (w)=9 (x)9~'(»)

for all x,y € H. Both sides of this equation represent elements of G, so since ¢
is one-to-one it suffices to show that

oo () ]=¢[e (X '(»)].
But ¢[¢ ™ '(xy)]= xp, and
ele”'(Xe (W ]=e[o (¥ ]e[e'(»)]=w too. O
Example Let ¢: (R, +)—(R*, -) be the isomorphism given by ¢(x)=e*. In

this case, the inverse isomorphism ¢ ~': (R*, -)—(R, +) is given by ¢ ~'(x)=
Inx. The fact that ¢! is a homomorphism is expressed by the familiar
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equation
In xy=Inx+Iny.

One consequence of Theorem 12.1 is that the relation of isomorphism is
an equivalence relation on the class of all groups. For instance, part (ii1)
assures us that it doesn’t matter whether we say “G=H" or “H=G.”

The concept of isomorphism provides us with a precise way of saying that
two groups “look just alike” or “are essentially the same.” For suppose
¢: G—H is an isomorphism. If we replace each a € G by ¢(a), but keep the
multiplication the same—that is, we define gp(a)p(b) to be ¢(c) iff ab=c in G
—then the group we get is precisely H. In some sense, we have just relabeled
the elements of one group to get the other, and for all group-theoretic
purposes the two groups are the same.

As an example, let G={e;,4,B,C} be a noncyclic group of order 4. As
we saw in Section 10, it must be the case that A>=B*=C?=¢;, AB=BA=
C, BC=CB=A, and AC= CA =B, so that G ‘“is essentially the same as”
Klein’s 4-group. The precise statement is that the mapping ¢: G— V given by
olec)=¢e, p(d)=a, ¢(B)=>b, (C)=c is an isomorphism. For instance, we
have ¢(AB)=@(C)=c=ab=gp(A)p(B).

We also remarked in Section 10 that a group of order 4 which is cyclic
looks just like (Z,, ), because it is just the set of powers of some element x
of order 4. Saying this precisely, we have an isomorphism ¢: Z,— G given by
@(n)=x". More generally:

THEOREM 122 Let n be a positive integer, and let G be a cyclic group of order
n. Then G=(Z,, D). Consequently, any two cyclic groups of order n are
isomorphic to each other.

PROOF. Let G={g), where o(g)=n. Then G={e,g,g%...,g"" "'}, all the
indicated elements being distinct. Define ¢: Z,—G by ¢(j)=g/,0<i<n—1.
Then ¢ is an isomorphism from Z, onto G. For clearly ¢ is one-to-one and
onto; and ¢ is a homomorphism since for j,kEZ, we have

P(jOk)=g/% =g/ =glgk = (j)p(k). O
The corresponding result for infinite cyclic groups is also true:

THEOREM 123 Let G be an infinite cyclic group. Then G=(Z, +). Conse-
quently, any two infinite cyclic groups are isomorphic to each other.

PROOF. Exercise.

The next three theorems provide some information about the behavior of
homomorphisms with respect to elements and subgroups.



114 Section 12. Homomorphisms

THEOREM 124 Let ¢: G— H be a homomorphism. Then
1) gleg)=ey;

1) for any x € G and any integer.n, @(x")=[p(x)]";

ii1) if o(x)=n, then o[p(x)] divides n.

PROOF. i) We know that, in G, ege; =e4. Since ¢ is a homomorphism, this
gives us @(e;)p(e;) = @(e.), an equation in H. Since H is a group, this yields
@(eg) = ey, as desired.

ii) For n=0 the result is just part (i), and for n=1 it is trivial. We can

finish the proof for positive n’s by induction:

p(x")=g[x(x" )] =p(x)e(x"" N =p(x)[@(x)]" ' =[(x)]".
Finally, if n= — m, with m >0, then since x"x" =¢;, we get p(x")p(x")= ey,
so that @(x")=[@(x™)]~" in H. By the case of positive exponents, p(x™)=
[@(x)]™, so

e(x")=[[9(x)]"] " =[@(x)] " =[#(x)]".

iii) If x€ G and o(x)=n, then x"=¢;, so by parts (i) and (ii), [p(x)]'=
ey. Thus @(x) has finite order, and o[¢@(x)] divides n by Theorem 4.4 (ii). []

THEOREM 125 Let ¢: G—H be an isomorphism. Then, in addition to the
conclusions (i)—(iil)) above, we have

iv) o(x)= o[@(x)], for every x € G;

v) G and H have the same cardinality;

vi) G is abelian iff /A is.

PROOF. iv) We have already observed in the proof of (iii) that for any n,
x"=e; implies [¢(x)]" = e,. In the present situation, the reverse is also true.
For if [p(x)]"=e,, that is, if ¢(x")=q¢(e;), then we must have x"=e,
because ¢ is now one-to-one.

Thus we have, for every n,

x"=e; iff [g(x)]"=ey. (12.1)

It follows that there exists a positive n such that x"=e; if and only if there
exists a positive n such that [@(x)]" = e,. Thus x has finite order iff @(x) does.
And in the case where x and ¢(x) do have finite orders, Eq. [12.1] reveals that
the smallest n such that x"=e; equals the smallest n such that [p(x)]"=e.
Thus o(x) = o[ ¢(x)].

Of course, we have not used the fact wnat ¢ is onto in this proof, so
statement (iv) remains valid if ¢ is merely a monomorphism.

v) This is obvious, since an isomorphism is a one-to-one onto function.

vi) Exercise. []
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Examples

1. Consider the homomorphism @:(Zg, ®@)—>(Z,, D) given by ¢(x)=
remainder of x (mod4). Thus @(0)=¢(4)=0, p(1)=¢(5)=1, ¢(2)=g(6)=2,
and p(3)=¢(7)=3.

In (Zg, D),0(1)=8. Now ¢(1)=1€E(Z,, D), so o[p(1)]=4, which divides 8,
in illustration of Theorem 12.4(iii). The fact that o[¢(1)]#8 points out that ¢
is not an isomorphism, but of course this was obvious from the outset because
¢ as defined was not one-to-one. There can be no isomorphism from (Zg, ®)
onto (Z,, D), because these groups do not have the same number of elements.

2. (Z,, D) is not isomorphic to Klein’s 4-group, since (Z,, ©) contains an
element of order 4, namely 1. If ¢:(Z,, ®)—V were an isomorphism, then
@(1) would be an element of order 4 in V. But there is no such element.

3. We have seen that (R,+) and (R%,-) are isomorphic. However,
(Q, +) and (Q%, ) are not isomorphic. One reason is that every ¢ €(Q, +)
has a “square root” ¢/2 in terms of addition, while some elements of (Q7, )
have no square root in terms of multiplication. For example, there is no
xEQ"* such that x?=3. If ¢:(Q, +)—(Q*, -) were an isomorphism, then
there would be some ¢ € Q such that ¢(¢g)=3. We would have

[9(a/2)]*=9(a/2)9(a/2)=p(a/2+a/D)=9(q) =3,

and ¢(¢/2) would be a square root of 3 in (@™, -). Since this is impossible, no
such ¢ can exist.

4. (R—{0},-) and GL(2,R) are not isomorphic, because one is abelian
and the other is not.

THEOREM 126 Let ¢: G— K be a homomorphism. Then:

1) If H is a subgroup of G, then ¢(H) is a subgroup of K. Here ¢(H)
denotes the image of H, that is,

¢(H)={k€EK|k is ¢(h) for some hE H }.
ii) If J is a subgroup of K, then ¢ ~'(J) is a subgroup of G. Here ¢~ '(J) is
the inverse image of J, that is,
9 '(J)={2€Glp(g)ES ).
iii) If J<K, then ¢~ !(J)<G.
iv) Assume that ¢ is onto. Then if HQG, o(H)<K.

A word of caution about the notation “¢~'(J)”: The use of the symbol

P in this context does not imply that ¢ is one-to-one and has an inverse.
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@~ '(J) makes sense here even if ¢ is wildly non-one-to-one. (The symbol
“@ ' standing by itself, without “(J)” after it, only makes sense if ¢ has an
inverse.)

PROOF OF THE THEOREM. i) We show that ¢(H) is a nonempty subset of K
closed under multiplication and inverses. First, (/) is nonempty since H is
nonempty. Second, if x,y € p(H), then x=¢@(a) and y = @(b) for some a,bE
H, so xy=og(a)p(b)=g(ab), and g(ab)Ep(H) since ab&e H. Thus @(H) is
closed under multiplication. Finally, if xE¢@(H), then x=g(a) for some
ac€H,sox '=[p(a)] '=¢p(a " YE@(H), since a~' € H. Thus p(H) is closed
under inverses.

i) Exercise.

ii1) Exercise.

iv) We know from part (i) that @(H) is a subgroup of K. To show that
@(H)<1K, we must show that if xEK and y E@(H), then xyx '€ p(H).
Now y=e¢(a) for some a€ H, and since we are assuming that ¢ is onto,
x=g(b) for some b € G. Thus

xyx ' =q(b)p(a)[ @(b)] "' =g(b)p(a)g(b ") = p(bab").
Now bab~'€ H since H < G; thus xyx~'E¢@(H), and we are done. []

Example We show how part (iv) may fail if ¢ is not onto.

Let G=(Z,,®) and K=S,={e,f,f%2.f2,.f%¢}. Let p: G>K be given by
¢(0)=e, @(1)=g. Clearly ¢ is a homomorphism, in fact a monomorphism.
Now let H=G. Then H<G, but ¢(H)={g), which is not a normal sub-
group of K.

We would like to use Theorem 12.6 to help us deliver on a promise we
made in Section 8. In discussing symmetric groups, we remarked that one
reason why they are important is that every group can be “thought of” as a
subgroup of some symmetric group. The precise statement is that every group
is isomorphic to a subgroup of some symmetric group.

THEOREM 12.7 (Cayley’s Theorem) If G is a group, then G is isomorphic to a
subgroup of S, the symmetric group on the set G.

PROOF. To define a mapping ¢: G— S, we must assign a permutation of G to
each g € G. Given g, define f, € S; by
f(x)=gx,

for all x € G. We saw in Section 7 that f; 1s a one-to-one mapping of G onto
itself.
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Now define ¢: G- S; by
¢(8)=1

We assert that ¢ is a homomorphism, that is, ¢(g, 8,)=@(g,)9(g,), for all
21,8, € G. This equation says that

f8182=f8| of!z’

in other words, that f, , and f, of, are the same element of Sg. To verify this,
we show that f, _ (x)=(f, °f; Xx), for every x€ G:

Jo18,(%)=(8182)x = 8,(£2%) =1, (8:%) =f (f.(¥)) = (fg, o S )(%).

Since @ is a homomorphism, Theorem 12.6 tells us that ¢(G) is a
subgroup of S; (consisting of all the f’s). G is isomorphic to this subgroup,
since @ is one-to-one: if @(g,)=¢(g,), that is, if f, =4, , then in particular

Je(€)=J (e)
B1€ =8¢
g1=8- 0O

The impact of Cayley’s Theorem is lessened somewhat by the fact that S;
is usually huge in relation to G. (For instance, if |G| = 10, then |S;| = 10! =
3,628,800.) This makes it difficult to derive information about G from the fact
that G is isomorphic to a subgroup of S;. In Exercise 13.28 we will develop a
generalization of Cayley’s Theorem which sometimes enables us to show that
G is isomorphic to a subgroup of a symmetric group smaller than S;.

EXERCISES

12.1 Which of the following mappings are homomorphisms? Monomorphisms?
Epimorphisms? Isomorphisms?
a) G=(R-{0},-), H=(R™",); 9: G—H is given by ¢(x)=|x|.
b) G=(R*,-); :G—G is given by ¢(x)=Vx .
¢) G=group of polynomials p(x) with real coefficients, under addition of

polynomials; @: G—=(R, +) is given by ¢[ p(x)]=p(1).

d) Gis asin (¢); ¢: G—G is given by ¢[ p(x)]=p'(x), the derivative of p(x).

¢) G=the group of subsets of {1,2,3,4,5} under symmetric difference;
A={1,3,4}, and ¢:G—>G is given by ¢(B)=A 2B, for every BC
{1,2,3,4,5).

12.2 Let G be an abelian group. Show that the mapping ¢: G—G given by
@(x)=x""is an automorphism of G. Show that if G were not abelian, then ¢
would not be an automorphism.
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123 Let G be an abelian group, let n be a positive integer, and let ¢: G— G be given
by ¢(x)=x". Show that ¢ is a homomorphism. Need it be a monomorphism?
An epimorphism?
12.4 In each case, determine whether or not the two given groups are isomorphic.
a) (Z;3,®) and (Q*, )
b) (2Z, +) and (3Z, +)
¢) (R—{0},-)and (R, +)
d) Vand Z,XZ,
e) Z;XZ;and Z,
f) (R—{0},-) and (R, -)X(Z,, ®)
g) (Z, +) and (Z, »), where
asb=a+b-1
h) Gand G X G, where G=Z, X Z, X T, X I X - - -
(one copy of Z, for each positive integer)
i) (R - {0}, -) and the group of Exercise 2.1(h)
) (@) x(@QHand (QH) *(Z )
k) D3 x Zyand Dy XZ 4

125 Let G and H be groups. Show that G X H=H X G.

12.6 Let G, H and K be groups. Show that (G X H)X K=G X H XK.
12.7 Show that if A=G and B=H, then A X B=G X H.

12.8 Is (Z,,, ®) isomorphic to a subgroup of (Zys, B)? Of (Zse, B)?
129 Is V isomorphic to a subgroup of Qg?

12.10 Let X be a set containing at least two elements. Show that ¥V is isomorphic to
a subgroup of (P(X), 2).

12.11 Let G=2,x1Z,.
a) Find subgroups H and K of G such that H = K but G/H &% G/K.
b) Find subgroups 4 and B of G such that G/ A4 = G/B but 4 s B.

12.12 Show that there exist five groups of order 8, no two of which are isomorphic
to each other.

12.13 Let ¢: G— H be a homomorphism.
a) Show that if H is abelian and ¢ is one-to-one, then G is abelian.
b) Show that if G is abelian and ¢ is onto, then X is abelian.
c) Show that if ¢-is an isomorphism, then G is abelian iff H is.
12.14 Let ¢: G— H be an isomorphism. Show that Z(G)=Z(H).
12.15 Let ¢: G— H be an onto homomorphism. Show that if G is cyclic, so is H.
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12.16 Consider the mapping @: S;— S given by o( fig’)= fg’. Show that ¢ is an
automorphism of S;.

12.17 How many automorphisms does Klein’s 4-group have?

12.18 (Assumes familiarity with n X n matrices.) Let GL(n, R) be the group of all
invertible n X n real matrices under matrix multiplication. Let H be the subset
of GL(n, R) consisting of all matrices such that each column consists of one
1 and (n— 1) zeros, and each row consists of one 1 and (# — 1) zeros. Show that
H is a subgroup of GL(n,R) and H=S§,.

12.19 Prove Theorem 12.6(ii) and (iii).

12.20 (Exercise 12.3, revisited). Let G be a finite abelian group and let n be a positive
integer relatively prime to |G]|.

a) Show that the mapping ¢(x)= x" is an automorphism of G.
b) Show that every x € G has an nth root, i.e., for every x there exists some
Y €G such that y"=x.

12.21 Let G be the group of nonzero complex numbers under multiplication and let
H be the subgroup of GL(2, R) consisting of all matrices of the form ( . :)
where not both @ and b are 0. Show that G=H.

12.22 Let G be a group and let g € G. Show that the mapping ¢ : G — G given by ¢(x) =
gxg”" is an automorphism of G. Any such automorphism, obtained by conjugating by
a fixed element g € G, is called an inner automorphism of G.

12.23 A subgroup H of a group G is characteristic if o(H)C H for every
automorphism ¢ of G.

a) Show that every characteristic subgroup is normal.
b) Show that the converse of (a) is false.

12.24 Suppose that H <]G and X is a characteristic subgroup of H. Prove that K <|G.
(See Exercises 12.22 and 12.23.)

12.25 Show that the center of a group is a characteristic subgroup. (See Exercise
12.23))

12.26 Show that the commutator subgroup of a group is a characteristic subgroup. (See
Exercise 11.30.)

12.27 If G is a group, Aut(G) denotes the set of automorphisms of G. Show that
Aut(G) is a subgroup of (Sg, °).

12.28 Let G=(Z,, P). Show that Aut(G) is not a normal subgroup of S;.

12.29 Let p be a prime. Show that a cyclic group of order p has exactly p —1 distinct
automorphisms.

12.30 Let G be an infinite cyclic group. Prove that Aut(G)=(Z,, D).

1231 Let H be a proper subgroup of G and let y be an automorphism of H other
than the identity mapping. Define a mapping ¢: G—G by
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~l¥(x) ifxeH
v(x) { x  ifx@H.
Is ¢ an automorphism of G? Explain.

1232 Let G and H be two isomorphic groups. Exhibit a one-to-one correspondence

between the set of automorphisms of G and the set of isomorphisms from G
onto H.

1233 If we label the elements of V= {e,a,b,c} with the integers 1,2, 3,4, respectively,
then the proof of Cayley’s Theorem shows us how to find a subgroup of S,
isomorphic to V. Write down the elements of this subgroup.

1234 (See Exercise 12.22.) Show that the set of all inner automorphisms of a group
G is a subgroup of Aut(G). Is it a normal subgroup?

12.3§ Prove that if G is a finite cyclic group then (Aut(G), o) is an abelian group whose
order equals the number of generators of G.

12.36 To what familiar group is Aut (Z,;) isomorphic? Prove your answer.

12.37 Prove that if p is an odd prime then there is no finite group G such that Aut (G) =~ Z,.

12.38 a) Suppose G is a finite group and @ is an automorphism of G such that the set

{g € G| p(g) =g} contains more than three-fourths of the elements of G.
Prove that G is abelian and that p(g) =g ™' forall g€G.

b) Give an example of a nonabelian fimite group G and an automorphism @ of G
such that p(g) = g™* for exactly three-fourths of the elements g € G.

1239 Give an example of two finite groups G and H such that G and H have the same
numbser of elements of order n for every n € Z' but G and H are not isomorphic,



SECTION 13

HOMOMORPHISMS AND
NORMAL SUBGROUPS

In this section we will establish a connection between the seemingly unrelated
concepts examined in the preceding two sections. The main idea is that all
normal subgroups can be obtained from homomorphisms, and all homomor-
phisms can, in a sense, be obtained from normal subgroups.

First, let H<)G. We wish to find a homomorphism ¢, defined on G, from
which we can derive H. The first thing we need, in order to build ¢, is an
image group. That is, we need a group to replace the question mark:

P: hsrg
This group had better involve H somehow, or else there will be little hope of
recovering H from @. We could try H itself, but easy examples show that
there need not exist a homomorphism from G onto H (see Exercise 13.2). The
only other thing that comes to mind is to take advantage of the fact that H is
normal and try replacing the ? by G/ H.

Is there a homomorphism from G onto G/ H? There is certainly a natural
mapping from G onto G/H, because we can send a€G to Ha. So let us
define

p:G->G/H
by
p(a)=Ha,
for every a€G. Is p a homomorphism?
In other words, if a,b € G then is it true that p(ab) = p(a)p(b), i.e., does
Hab= Ha+ Hb?

Yes, it does, because this is the definition of the multiplication in G/ H. The
statement that p is a homomorphism may be taken as a formalization of our
observation that the multiplication in G/ H comes “naturally” from that in G.

121
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p is called the canonical (or natural) homomorphism from G onto G/ H.

Examples

1. Let G=S,={e.f,f%g./2.f g}, and let H={f). Then G/ H has order
2. If p:G—>G/H, then p(e)=p(f)=p(f>)=H=ez/y; and p(g)=p(fg)=
p(f%)= Hg, because the elements g,fg,f’¢ differ by elements of H. The
canonical homomorphism sends everything in H to e;,,, and thus “wipes
out” differences that lie in H.

2. Let G=Qgand H={I,—1}.If p:G—>G/H, then p({)=p(—I)=H=
e x> and p(J)=p(—J)=H-J. G/ H has order 4, and as we saw in Section
11, every nonidentity element of G/ H has order 2, so that G/ H is isomor-
phic to Klein’s 4-group. Thus there is a homomorphism from Qg onto ¥, and
we say that V' is a homomorphic image of Q.

Our next move is to try and recover H from p, and in fact this is very
easy. If we are given p, then we get H by taking the set of elements in G that
are mapped by p to the identity element in G/ H. That is,

H={a€G|p(a)=eg/u}

The success of the preceding paragraph leads us to consider the general
notion of the kernel of a homomorphism.

DEFINITION If ¢: G— K is a homomorphism, then the kernel of ¢ 1s
ker(g)=¢'({ex})={gEGlo(g)=ex}.

THEOREM 13.1 For any homomorphism ¢: G— K, ker(p) <G.

PROOF. Since {ey} <K, this is a special case of Theorem 12.6, but for

emphasis we repeat the proof that ker(p) is normal. Let gEker(p), xEG.
Then

o(xgx ) =g(x)p(g)p(x~ ')=¢(X)€x[¢’(x)]_l=ex,
so xgx ~' Eker(gp), as desired. []

Examples
1. Consider ¢: GL(2,R)—>(R— {0}, -) given by 9 (¢ 2))=ad—bc. Then
ker(¢)= {( *)|ad—be=1 } =SL(2,R), so SL(2,R)<AGL(2, R).
2. Consider ¢: S,—({1, —1},-) given by

1 if fiseven

"’U)={—1 if fis odd.
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Then ker(g)={ fle(f)=1}=A4,. Thus we see again that 4, <S,.

We have seen that if we start with a normal subgroup H, form the
canonical homomorphism p, and then take the kernel, we get back to H. The
next theorem will show us what happens if we start with a homomorphism
¢: G- K, take its kernel, and then form the canonical homomorphism p: G—

G /ker(g).

THEOREM 13.2 (Fundamental theorem on group homomorphisms) Let ¢: G5 K
be a homomorphism from G onto K. Then K=G /ker(p).

Remark. If ¢: G—K is not necessarily onto, we get o(G)=G /ker(gp).

PROOF OF THE THEOREM. We have a map ¢ from G to K and we wish to
construct a map ¢ from G /ker(¢) to K. Let us write ker(¢)= N for simplicity.
The elements of G/N are right cosets Na, and we have to decide where to
send each such coset. What other try is there but @(Na)= ¢(a)?

Let us reiterate. We have a mapping ¢ from G to K, and we wish to find
one from G/ N to K:

Our strategy in deciding where to send Na is to take a representative, a, for
Na and see what ¢ does to it. gp(a) will be an element of K, and this is where
we send Na.

We have to check that this gives us a well-defined mapping, i.e., that if
Na is also Nb then @(a)= ¢@(b), so that our definition of §(Na) is independent
of which representative of Na we pick to make the definition. Now if
Na= Nb, then ab~' € N =ker(p), so

p(ab~ ") =e,.
But

p(ab™")=g(a)p(b~")=g(a) ()],
50 ¢(a)=@(b) and all is well.
@ 1s a homomorphism, since

#(NaNb) = g(Nab) = p(ab) = ¢(a)p(b) = §(Na)§(Nb).
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The crucial step in this chain of equalities is the fact that @(ab)= @(a)e(b).
Thus the fact that @ is a homomorphism is thrown back on the fact that ¢
was one to begin with.

@ is one-to-one since if @(Na)= @(Nb) then ¢(a)= ¢(b), so (p(ab")=eK
and ab~ ' €kerp= N, yielding Na= Nb. Finally, ¢ is onto, since if kK € K then
there exists a € G such that ¢(a)= k (because ¢ was assumed to be onto), and
this means that §(Na)=k. [

Examples
1. Again let g: GL(2,R)—(R— {0}, -) be given by :p(“ 3) =ad— bc. Then

c

@ is onto, since for any r#0 we have (5 ‘1‘) € GL(2, R), and tp(( 4 ?)) =r. By
the Fundamental Theorem we conclude that
GL(2,R)/ker(p)=(R—{0},),
in other words,
GL(2,R)/SL(2,R)=(R—{0},-).
2. Let g:(Z, +)—>(Z,, D) be given by ¢(m)= m, the remainder of m (mod
n). Then ¢ is onto, so the Fundamental Theorem says that
(Z, +)/ker(9)=(Z,, D),
that is,
(Z,+)/nZ=(Z,, D).
This makes precise our observation in Section 11 that the addition of the
cosets of nZ “corresponds” to the addition of their representatives, mod n.
3. Let ¢:S,—({1, — 1}, -) be given by
_ 1 1iffiseven
o(f)= { —1 iffisodd.
Then ¢ is onto, and as we have seen, ker(p)=A4,. Thus

S,/ A=({1,—1},).

4. Think of the complex numbers as the points in a plane by identifying
the number x + yi with the point (x,y). Let U be the set of points on the circle
of radius 1 about the origin. Thus U consists of all points x+ yi such that
x?+ y?=1, and the points in U are precisely those that can be represented in
the form cos@+isin#, for some real §. We assert that U is a subgroup of
(C—{0},), and

U=(R,+)/Z.
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To see this, define a mapping ¢: R—(C— {0}, +) by
@(x)=cos2mx + isin2mx.
¢ maps R onto U, and ¢ is a homomorphism since for x, y ER we have
o(x+y)=cos(2mx +2my) +isin(2wx +2ay)
=(cos2wxcos2my —sin2wxsin2mwy)
+ i(sin 27rx cos 2@y + cos 27x sin 27y )
=(cos2mx+ isin 27x)(cos2my + isin 27y ) = @(x)p( »).
Thus U is a subgroup of (C— {0}, -) by Theorem 12.6. Its identity element is
1+0i, so
ker(p)={xER|cos27x=1 and sin27x=0} = Z.

By the Fundamental Theorem, (R, +)/Z=U.

S. Let G and H be groups, and consider the normal subgroup G X {e;}
in G X H. It would seem that if we factor G X H by G X {e,}, we should get
essentially H. Indeed we do, since there is an onto homomorphism ¢: G X H
— H given by ¢[(g,h)]=h, and the kernel of this map is G X {ey}. Thus

(G X H)/(G X {ey))=H.

These examples demonstrate that the Fundamental Theorem is a useful
tool for obtaining isomorphisms. On the theoretical side, the theorem tells us
that the image of any homomorphism can essentially be recovered from the
kernel. Moreover, the proof of the theorem shows us how close we can come
to recovering the homomorphism itself.

In the proof, the isomorphism ¢ was defined so that @(Na)= ¢(a) for
every a € G. Thus

#(p(a))=gp(a)
for every a, or, in other words,
Peop=9.
This equation is often expressed by saying that the diagram

®
G —2 K

N V
G /ker(p)
“commutes,” because going directly from G to K accomplishes the same thing

as taking the detour through G /ker(¢). The equation @ op=g tells us that ¢
and p come as close as could be hoped to being the “same” mapping. They
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map G onto groups that are isomorphic, and except for the isomorphism ¢
they are the same mapping.

In the situation of the Fundamental Theorem, there is a one-to-one
correspondence between subgroups of K and subgroups of G that contain
ker(p), normal subgroups corresponding to normal subgroups. To discuss this
correspondence, we shall use the fact that if H is a subgroup of G containing
ker(g) then @ ~'[@(H)]= H. (For the notation, see the statement of Theorem
12.6.) To verify this fact, note that H C¢~'[@(H)] automatically, that is, if
h€ H then ¢ maps & to an element of @(H). For the reverse inclusion, let
x €@ '[p(H)], i.e., suppose ¢(x) E p(H), with the aim of showing that x € H.
Since @(x)E@(H), we have @(x)= ¢@(h) for some hE€ H. Thus gp(xh~")=¢,,
so xh~'€ker(¢g), and therefore x2~' € H by our assumption that ker(p) C H.
Thus x=(xh~")A is the product of two elements of H, so x € H as desired.

Now to any subgroup H of G containing ker(p) we associate the
subgroup @(H) of K; @(H) is a subgroup by Theorem 12.6. This association
is one-to-one, since if H, is another subgroup of G containing ker(¢) and if
@(H,)=p(H), then

¢ '[e(H) =9 "[o(H)],

hence H,= H by the fact established above. The association is onto since if J
is any subgroup of K, then ¢ ~'(J) is a subgroup of G containing ker(¢), and
ole " '(J)] is J, because ¢ is onto (see Exercise 13.18). Notice that if HD
ker(@) is normal, then so is @(H); and if p(H) is normal in K, then HQG
because H=¢ '[p(H)]. Here we are using parts (iii) and (iv) of Theorem
12.6.

We have proved

THEOREM 133 Let ¢: G— K be an onto homomorphism. There is a one-to-one
correspondence between the subgroups of K and those subgroups of G that
contain ker(gp), given by H—>@(H). We have H G iff p(H)<K.

Observe that if H is any subgroup of G, not necessarily containing ker(p),
then @(H ) is still a subgroup of K. But it is only by restricting ourselves to the
subgroups of G containing ker(g) that we get a one-to-one correspondence.
For example, let G=S,={e,f,f% g,fg.f g}, and let ¢ be the canonical homo-
morphism G—»G/{f). Since |G/{f)|=2, the only subgroups of G/{f) are
the trivial subgroup and G/{f) itself. The corresponding subgroups of G
containing { f) are {f) and G. However, there are proper subgroups H of G,
not containing ¢ f), such that ¢(H)=G/{f) too. One example is {g); the
others are ( fg) and {f%g).
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The Fundamental Theorem is sometimes referred to as the First Isomor-
phism Theorem; we will now consider the Second. A bit of notation: If H and
K are subgroups of G, then HK={hklh€EH, k€K }.

THEOREM 134 (Second isomorphism theorem) Let H and K be subgroups of
G, and assume K<JG. Then
H/(HNK)=HK/K.

The statement of this result is at first a bit forbidding, but it really makes
good sense. If somebody asked you what HK/ K looked like, you might say
H; but after you thought a minute, you'd probably change your mind. When
we factor K out of HK, some of H goes with it, namely H N K; so what is left
is H/(H N K).

PROOF. Let’s first see that the terms in the conclusion make sense. To begin
with, HK is a subgroup of G by Exercise 11.8. K<IHK follows from K<G.
And H n K< H by Exercise 11.5.

Our strategy for the proof will be to use the Fundamental Theorem. We
will define a homomorphism ¢ from H onto HK/ K and show that its kernel

is HN K.
For h€ H, define ¢(h)= Kh€ HK /K. Observe that Kk is an element of
HK /K, since h€ HK. ¢ is a homomorphism since

@(hhy) = Kh hy= Kh Khy=g(h,)(h,).
@ is onto since any element of HK /K has the form K(hk) for some he H,
k€K, and
K(hk)= Kh* Kk= Kh*K = Kh.

Thus (k) is the given element K(hk).
The Fundamental Theorem yields

H /ker(p)=HK/K,
so all that remains is to show that ker(p)= H N K. Now assume x € H. Then
x Eker(@)e=gp(x) =eyx x=o9(x)=KeaKx=KexEKesxeEHNK.

This completes the proof. []

Example Let G=(Z, +), H=4Z, K=6Z. The theorem says that

47 _ 4Z+6Z
4Zn6Z 62 °

that is,
4z 27
122 62"
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This conclusion can be verified by other means, because both 4Z /12Z and
2Z /6Z are cyclic groups of order 3.

An application

Let G be a finite group, let H be a subgroup of G, and let K<]G. Theorem
13.4 tells us how many elements there are in HK. For it gives us
|H/(HNK)|=|HK/K|
H| _ |HK]|
|HN K| |K|
|H|IK]
|HNK|

|HK|= [13.1]
One use for this information is that it often helps us investigate the structure
of a given group. For instance, if we have a group G of order 15, a subgroup
H of order 3, and a normal subgroup X of order 5, then |H N K| divides both
3 and 5, hence is 1, so |HK|=(3:5)/1=|G|, and G= HK. We will use this
kind of reasoning in Sections 14 and 15.

It is interesting to note that formula [13.1] for | /K| remains valid without
the assumption that K is normal, although in this case HK need not be a
subgroup of G. We invite you to establish the general result in Exercise 13.17.

Theorem 13.4 has significant applications in the more advanced parts of
group theory, but at the moment its main value for us is that it provides us
with an opportunity to become more familiar with quotient groups and
homomorphisms. The same remarks apply to our final result for this section,
which points out one respect in which the quotient G/ H really does behave
like a fraction.

THEOREM 135 (Third isomorphism theorem) Suppose H JK <G and H QG.
Then K/H 1G/H, and
G/H

7(7"1? =G /K.

Remark. The assumption H <IG is not redundant, because H<IK <G does
not in general imply H <{G. See Exercise 11.12.

PROOF. First of all it is clear that K/ H C G/ H, that is, the set of right cosets
{Hala€ K} is contained in { Hala€ G}. In fact, K/H is obviously a sub-
group of G/ H, since K is a subgroup of G (Exercise 13.4). As for normality,
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let Hk€eK/H and Hg€ G/H. Then, in G/ H,
HgHk(Hg) '= HgHkHg '= Hgkg '€ K/H

since gkg ~' € K by the fact that K<1G. Thus (G/H)/(K/ H) makes sense.

To show that (G/H)/(K/H)=G /K, we shall again apply the Funda-
mental Theorem. This time we will define a homomorphism ¢ from G/ H
onto G/K and show that its kernel is K/H. Notice that this implies that
K/ H is normal all over again, but we didn’t think it would hurt to check it at
the outset.

To define ¢, we must decide where in G/ K to map Hg, for g€ G. Why
not Kg? There is no other natural choice. But we do have to verify that ¢,
thus defined, is a well-defined mapping. That is, if Hg= Hg,, is Kg= Kg,, so
that our definition is independent of our choice of a representative for Hg?
The answer is an easy “yes,” for if Hg= Hg,, then g(g,)"'€H, s0 g(g,) " '€
K, so Kg= Kg,.

Note that ¢ is a homomorphism:

o(Hg,Hg,) = ¢(Hg, g,)= Kg, g,= Kg,Kg, = @( Hg,)p( Hg,).

And ¢ is onto since if Kg€ G/K, then we can find an element in G/H
(namely, Hg) that gets mapped to Kg.
All that remains is to check that ker(¢)= K/ H. Now if HgE€ G/ H, then

Hgeker(p)e=p(Hg) = ¢/ x=>9p(Hg)= K& Kg=Kege Ke>Hge K/ H.
Thus ker{e) is K/ H, and since by the Fundamental Theorem

G/H _
ker(p)

we have the desired isomorphism. []

G/K;

Examples
1. Let G=(Z, +), K=2Z, H=6Z. The theorem says that
Z,+)/6Z 3
(“2_1'7)6/2_ =(Z,+)/2Z.

Observe that since [2Z /6Z|=3, the index of 2Z /6Z in (Z, +)/6Z (which
has order 6) must be 2, so that the quotient group on the left-hand side has
order 2. Since (Z, +)/2Z also has order 2, what the theorem tells us in this
case checks with our knowledge that any two groups of order 2 are isomor-
phic.
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2. Let G=Qy={1,—-1,J,-J,K,—K,L,— L)}, and consider the sub-
groups {J)={J,—1I,—J,I} and {(—1)={—1,1}. The theorem says that

Qs/<{-1)
I>/=15

Observe that the order of the quotient group on the left side is 4/2=2
and the order of Qz/(J ) is 8/4=2, so again we know by other means that
these two groups are isomorphic.

=Qs/<{J ).

EXERCISES

13.1 Let @:(Zg, ©)—(Zy, D) be given by ¢(x)=remainder of x (mod 4). Find ker(gp).
To which familiar group is (Zg, ®)/ker(¢) isomorphic?

13.2 Let G= Q4 and H={J ) 4G. Show that there is no homomorphism from G
onto H.

133 Find all the homomorphic images of D,, up to isomorphism, by identifying
each one with some familiar group.

13.4 Assume that H <]K <1G and H <{G. Show that K/ H is a subgroup of G/ H.

13.5 Let G be the group of all real-valued functions on the real line, under addition
of functions. Let H be the subset of G consisting of all f such that f(0)=0.

a) Show that H 4G.
b) Show that G/ H=(R, +).
13.6 Let
G= (Z,+)/12Z2
37/122
How many elements are there in G? Write them down explicitly.

13.7 Let G=(C— {0}, -), and let U be the subgroup U= {x +yi|x*+y*=1}. Use
the Fundamental Theorem to show that:

&) G/U:(R+, ');
b) G/R* = U.

138 Let G=(Q— (0}, ), and let H be the subgroup H={a/b | a and b are odd
integers}. Use the Fundamental Theorem to show that G/ H =(Z, +).

13.9 Let G be the group of all real matrices of the form
a b
[0 c)
with ac # 0, under matrix multiplication. Let H be the subgroup consisting of all the
elements in which a = ¢ = 1. Use the Fundamental Theorem to show that

G/H = (R - {0}, ) x (R— {0}, -).
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13.10 Let G be a group and let D be the subgroup of G % G consisting of all elements of the
form (g, g).
a) Prove that D is normal in G x G if and only if G is abelian.
b) Assuming that G is abelian, use the Fundamental Theorem to show that
(GxG)/D=G
13.11 Suppose H<« Gand K< G.
(a)Prove that G/H x G/K has a subgroup that is isomorphic to G AH N K).
(b)Prove that if G = HK then G AH N K) = G/H x G/K.

13.12 Let G be a group, let K < G, and let H be a subgroup of G such that HK = G and
HN G= {e}. Show that G/K = H.

13.13 a) Let X be the subgroup K = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} in ;. Show that
Ka S,

b) Show that §,/K = S,

13.14 Let G and H be finite groups, and let ¢ : G — H bean onto homomorphism. Show
that |H| divides |G].

13.15 Let m and n be positive integers. Show that there exists an onto homomorphism ¢ :
(Z,,®) — (Z,,®) if and only if m divides n.

13.16 Let4 9 Gand B < H. Must it be true that

GxH
AXB

=G/A X HIB?

Either prove that it must, or give a counterexample.

13.17 Let H and K be subgroups of a finite group G. Prove that
H||K
] < JBIEL
|H K]

13.18 Let @ : G — K be an onto homomorphism and let J be a subgroup of K. Show that

ple '] =1
13.19 Let @ : G — K be a homomorphism. Prove that ¢ is one-to-one if and only if ker (¢)

= {eg}.

13.20 Let @ : G — K be an epimorphism. Let J € K Prove that there exists a normal
subgroup H of G such that G/H = K/J.

13.21 Let @ : G — K be an epimorphism and let N be a subgroup of ker(¢) such that N <
G. Show that there is a homomorphism from G/N onto K.
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13.22

13.23

13.24
13.25

13.26

13.27

13.28

13.29

13.30

13.31

13.32
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Let @ : G — K be an epimorphism and assume that X is abelian. Show that every
subgroup of G containing ker(¢) is normal.

Prove Theorem 13.4 over again by using a @ that goes in the opposite direction from
the one we used in the text. That is, define an onto homomorphism ¢ : HK —
H/AH N K) and apply the Fundamental Theorem to obtain the desired result.

Prove Theorem 13.5 over again by starting with a mapping from G onto (G/H)A(K/H).

A group G is called metabelian if G has an abelian normal subgroup A such that G/H
is also abelian.

a) Give an example of a metabelian group that is not abelian.

b) Suppose ¢ : G — K is an onto homomorphism and G is metabelian. Prove that X is
metabelian. '

(See Exercise 13.25.) Let G be a metabelian group. Show that every subgroup of G is
metabelian.

Show that the group of inner automorphisms of a group G is isomorphic to G/Z(G).
(See Exercise 12.22 for the notion of “inner automorphism.”)

(Generalized Cayley’s Theorem) Let H be a subgroup of G and let X be the set of left
cosets of H in G. Show that there exists a normal subgroup N of G such that N g H
and G/N is isomorphic to a subgroup of Sy. (Suggestion: Define a mapping ¢ : G —
Sy by @(g) = f;, where f(aH) = gaH for all aHf € X. Show that ¢ is a homomorphism
and that ker(@) ¢ H.)

Suppose G is a group of order 10 and G has a subgroup of order 2 that is not normal.
Use the Generalized Cayley Theorem to show that G is isomorphic to a subgroup of
Ss.

Let G be a group, H a subgroup of index » in G. Prove that there is a normal subgroup
N of G such that N ¢ H and [G : N] divides n!. (Suggestion: Use Exercise 13.28.)

Suppose G is a group of order 105 and H is a subgroup of order 21 that is not normal
in G. Prove that G has a normal subgroup of order 7 that is contained in H. (Use
Exercise 13.30.)

(This exercise generalizes Theorem 11.3, for finite groups.) Suppose G is a finite
group and p is the smallest prime that divides |G|. Let H be a subgroup of G such that
|G : H] = p. Prove that H < G. (Suggestion: Use Exercise 13.30.)



SECTION 14

DIRECT PRODUCTS AND
FINITE ABELIAN GROUPS

Up until now we have used direct products only as examples. But aside from
providing us with an easy way of building new groups, they are also useful
from another point of view in that they often enable us to understand a given
group better. This happens when we are able to realize that the given group is
isomorphic to the direct product of some of its subgroups. In this way, we can
break the group down into simpler components that are easier to deal with.

Our goal in this section is to use direct products to analyze the structure
of finite abelian groups. We will prove a classic result that gives us complete
control over these groups.

To begin with, we seek to isolate conditions under which a group G will
be isomorphic to the direct product of two of its subgroups, 4 and B. We can
take a clue from A4 X B itself. For although 4 and B are not themselves
subgroups of A X B, there are subgroups A* and B* such that A*=A, B*=B,
and thus 4 X B=A* X B*: take

A*=AX{ez}, B*={e,}XB.
What can we say about A* and B*?

For one thing, they are both normal in 4 X B (we checked this in Section
11). For another, 4* B*=A X B, because any element (a,b) in A X B can be
written as (a,ez)(e,,b), with (a,e;) EA* and (e,,b)€ B*. Finally, we have
A*N B*={(e,,e5)} ={e xp} It turns out that the three indicated properties
capture the essence of the direct product situation.

THEOREM 14.1 Suppose 4 and B are subgroups of G such that
i) A<G and B<G,

ii) AB=G,

iii) AN B={e).

Then G=A4 X B.

133
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PROOF. We first observe that (i)-(iii) imply two more properties of the
subgroups A4 and B:

), If ab=a,b,, where a,a,€A4 and b,b € B, then a=gq, and b=b,.

v) If a€E A and b € B, then ab= ba.

Observe that, whereas (ii) says that every element of G can be written as
ab for some a€ A and b€ B, (iv) says that this representation is unique. To
prove (iv), note that ab=a,b, implies a; 'a=b,b"". Since a; 'a€ 4, b)b" '
B, and AN B= (e}, we conclude that

aila=e=bb"",

so a=a, and b=b,. For (v), we want to show that bab 'a~'=e, so we show

that bab~'a '€ AN B and apply (iii). Since a€A and 4 G, bab~'a~'=
(bab~"a~'€A; and since bE B and B<G, bab~'a '=b(ab~'a" "€ B.
Now, to prove the theorem, define a function @: 4 X B— G by

o[ (a,b)]=ab.
@ is onto by (ii), and ¢ is one-to-one because if ¢[(a,b)]=o[(a,,b,)], that is, if-
ab=ab,, then by (iv) a=a, and b=b,, so (a,b)=(a,b,). Finally, ¢ is a
homomorphism since
@[ (a,b)(a',b") | = @[ (aa’,bb") | = aa’bb’ = aba’b’

by (v), and this is ¢[(a,b)]¢[(a’,5)]. O

Examples

1. Let G=V={e,a,b,c}, and let A ={e,a} and B={e,b}. Then 4 and B
are normal, AB={ee,eb,ae,ab}={e,b,a,c}=V, and ANB={e}. Thus V=
AXB, and since A and B are both isomorphic to Z, we have V=
Z,X Z,. This checks with our knowledge that any noncyclic group of order 4
must be isomorphic to V.

2. Let G={x) be a cyclic group of order mn, where (m,n)=1. Then
A={(x"), B={(x™) are normal subgroups of orders m and n, respectively.
The order of any element of 4 N B must divide both m and n, hence is 1,
since (m,n)=1. Thus AN B={e}. Furthermore, |4B|=(m'n)/1=mn, so
AB=G. Thus G=A X B. This result agrees with our knowledge that A X B is
cyclic (because (m,n)=1), and any two cyclic groups of order mn are
isomorphic to each other.

We now want to put Theorem 14.1 to work on finite abelian groups. A
couple of definitions will help us state the result we are after.

If p is a prime number and G is a group, then G is said to be of p-power
order if |G|=p* for some integer k. On the other hand, G is called a p-group
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if for every x € G, o(x) is a power of p. It follows from Theorems 10.4 and
11.7 that a finite abelian group is of p-power order iff it is a p-group. (We will
see in the next section that the same is true for nonabelian groups.)

A group is of prime-power order if it is of p-power order for some prime p.

THEOREM 14.2 (Fundamental theorem on finite abelian groups) Let G be a
nontrivial finite abelian group. Then G is isomorphic to the direct product of
finitely many nontrivial cyclic groups of prime-power order. The prime-
powers that occur as the orders of the factors are uniquely determined by G.
More precisely, the primes that occur in the orders of the factors in any such
decomposition of G are exactly the primes that divide |G|; and for any such
prime p, if the orders of the factors that are p-groups in one such decomposi-
tion of G are p""2p>--- >p” then the orders of the factors that are
p-groups in any such decomposition of G are p*2p22 --- 3p*

The uniquel; determined integers p" 2p‘ > - - - »p*, taken for all primes
that divide |G|, are called the invariants of the nontrivial group G. We adopt
the convention that the invariants of a trivial group are {1}.

Before we consider the proof of Theorem 14.2, we will list some
corollaries which indicate the kind of control the theorem gives us over finite
abelian groups. The first corollary tells us when two finite abelian groups are

isomorphic.

COROLLARY 143 Let A and B be finite abelian groups. Then A =B iff A and B
have the same invariants.

PROOF. If A and B have the same invariants, then A is trivial iff B is. If they
are both trivial, they are isomorphic. If neither is trivial, then when we write
them both as direct products of (nontrivial) cyclic groups of prime-power
order, we get the same number of factors of each order in both cases, and
from this it follows that 4 =B.

Conversely, suppose A =B. If A is trivial, then so is B, so A and B have
the same invariants. If 4 is not trivial and we write A=A, XA4,X--- XA4,,
then B=A4,XA,X--- XA, so again 4 and B have the same invariants. []

If n is a positive integer, then by a partition of n we mean a sequence of
positive integers ¢, 21,2 - - - 21, such that #,+¢,+ - - - +1,= n. The number of
distinct partitions of n is denoted by p(n). For example, p(4)=>5, since we can
write4as 4, 3+1,24+2,2+1+1l,or 1+1+1+1.

COROLLARY 144 If ¢ is a prime and 7 is a positive integer, then the number of
nonisomorphic abelian groups of order ¢" is p(n). If m=gqq;?---g* for
distinct primes g;, then the number of nonisomorphic abelian groups of order

m is p(n,)p(n,)---p(ny).
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PROOF OF THE FIRST STATEMENT. To any partition ¢, 2#, 2 --- 2t, of n, we
associate the group

zqu qu:,)( s )(Zq;,,

an abelian group of order ¢” with invariants ¢ >¢" > --- >¢" The groups
associated to different partitions are nonisomorphic because they have dif-
ferent invariants. Thus we get p(n) nonisomorphic groups. But any abelian
group of order ¢” must be isomorphic to one of these because it has the same
invariants as one of them. Hence there are precisely p(n) nonisomorphic
abelian groups of order ¢".

The proof of the second statement is left to the reader, but the idea
should be clear from the following examples. [

Examples

1. Let’s find all abelian groups G of order 36. Since 36=2%32 the
possibilities for the 2-groups in the prime-power decomposition of G are Z,
and Z, X Z,, that is, Z, and Z, X Z,. The possibilities for the 3-groups are Z,
and Z; X Z,. Thus we have

Z,XZ,,
Z,XZ, X1,
Z,XZ,X1Z,
Ly XUy XT3 X Ly,
a total of four different abelian groups of order 36.

2. To find all abelian groups of order 600, we write 600=23'-52 The
possibilities for the 2-groups are Z;, Z,X Z,, and Z,XZ, X Z,. There must be
one 3-group, Z,. The 5-groups can be Z,5 or Zs X Z,. So we have

ZgXZyXZys,
ZXZ X T X L,
ZXZ, XLy XLy,
L XL, XL X T X L,
ZyXZyX T, X Ty X 2y,
LyX Ty XUy XA, XU X Ls,.
One of these groups must be isomorphic to Zgy,. In fact, it is ZgX Z; X

Z,s, because this is the only cyclic group in the list, by Theorem 6.1. We can
also write Zgpo=Z,, X Z,s=ZLy X L;5=Z X Z,y,. These examples serve to em-
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phasize the fact that two products of nontrivial cyclic groups can be isomor-
phic without the number of factors being the same, and without the orders of
the factors being the same. By restricting ourselves to factors of prime-power
order, however, we achieve uniqueness.

The information provided by Theorem 14.2 can sometimes be used to
handle the “abelian case” in more general contexts. For example, let us
sketch a proof that there are essentially only five groups of order 8 (non-
abelian ones included).

We assert that any group G of order 8 must be isomorphic to one of

2y 2 X2y 2, X2, X2,,Q04, D,

If G is abelian, then we know that G is isomorphic to Zg Z,XZ, or
Z,XZ,X1Z,. If G is not abelian, then G can have no element of order 8 (else
it would be cyclic), and G must have an element of order 4, since otherwise
we would have x?= e for every x € G, making G abelian (Exercise 3.11). Say
a€ G and o(a)=4. Then {a) is normal since it has index 2. Let bE G —{a).
Then G= [e,a,az,az’, b, ab,azb,a3b]. Now bab ~' must be a’, since it has to be
in (@) and cannot be e, a, or a* (Exercise 14.5). Thus ba = a’h, and therefore
the multiplication in G is completely determined once we know o(b). But o(b)
must be either 2 or 4; if it is 2, then G=D,, and if it is 4, then G=(Q4
(Exercise 14.5).

As our next corollary to Theorem 14.2, we will show that, for abelian
groups, Lagrange’s Theorem has a converse.

COROLLARY 145 Let G be an abelian group of order n and let m be an integer
that divides n. Then G has a subgroup of order m.

PROOF. By Theorem 14.2, we can assume that
G=G,XGyX -+ XGy,

where G, is a cyclic group of order p;, the p,’s being (not necessarily distinct)
primes. Then n=p[ip;*- - - p,*, so since m|n we have m=ppy*- - - pj for some
integers s;, 0<s; <r,. By Theorem 5.5 we can let H, be a subgroup of G, of
order p*; then

H X H,X--- XH,
is a subgroup of G of order m. []

COROLLARY 14.6 Let G be a finite group with more than two elements. Then
G has a nontrivial automorphism.

PROOF. Of course this is a statement about arbitrary finite groups, not just
abelian ones. We will use Theorem 14.2 to handle the abelian case.
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First suppose G is nonabelian, and choose g€ G— Z(G). Then the
mapping ¢: G— G given by ¢(x)=gxg~' is a nontrivial automorphism of G,
because if we choose x such that gx #xg, then ¢(x)+#x.

If G is abelian, then the mapping @(x)=x ' is an automorphism of G. It
is nontrivial unless x ~'=x for all xE G, that is, unless every nonidentity
element of G has order 2.

In this exceptional case, all the cyclic groups in the prime-power decom-
position of G must have order 2, so we can write

G=Z,XZ,X - X1,
where there are at least two copies of Z, because |G|>2. The group
Z,XZ,X--- XZ, has a nontrivial automorphism ¢, obtained by interchang-
ing the first and second components of all the elements. If ¢ denotes an

isomorphism from G onto Z,XZ,X -+ XZ,, then ¢ ' ogoy is a nontrivial
automorphism of G. [J

The only place where we used the finiteness of G in this proof was in
obtaining an isomorphism from G onto a product of Z,’s. It can be shown
that if G is an infinite abelian group such that x*>=e for all x€ G, then G is
isomorphic to a subgroup of the product of infinitely many Z,’s (the subgroup
consisting of all the elements with only finitely many nonzero components).
Our proof then shows that every group with more than two elements has a
nontrivial automorphism.

The preceding corollaries demonstrate that Theorem 14.2 is a powerful
tool. We will now take up its proof, which is essentially a reprise of the
“quotient groups and induction” theme we introduced in Section 11.

The proof is somewhat longer than any we have done before, so we will
split it into three steps:

Step 1. We show that every finite abelian group is isomorphic to a product of
abelian p-groups.

Step 2. We show that every finite abelian p-group is isomorphic to a product
of cyclic groups of p-power order.

Steps 1 and 2 establish the existence of the prime-power decomposition.
Step 3. We show that the prime-power decomposition is unique.

Suppose G is abelian and |G|=p{'p5*- - - p/*, where the p’s are distinct
primes, and each r, » 1. For each i, the set

G(p)={xEG|x""'=¢}
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is a subgroup of G, and is a p,-group. Step 1 of our program will be
accomplished if we can show that

G=G(p)) X G(py) X+ X G(py),
and to do this it will suffice, by induction, to prove the following lemma.

LEMMA 14.7 Let G be an abelian group, and let |G| = mn, with (m,n)=1. Let
A={xEG|x™=e) and let B={xE G|x"=e}. Then G=A4 X B.

PROOF. A and B are subgroups of G, and they are both normal, because G is
abelian. We must show that AB=G and AN B={e}.

Since (m,n)=1, there are integers r and s such that m+sm=1. If x€G,
then

x= xl =xm+:m=xrnx3m,

and x" €A, x*™ € B, since mn=|G|. Thus G=AB.
If x€EANB, then x=x"x"=c¢e=e. [

Step 2 of the proof takes a little more doing, but the plan of attack is
straightforward. Suppose G is a finite abelian p-group; we wish to show by
induction on |G| that G is isomorphic to a product of cyclic groups of
p-power order. If |G|=1, then G is already cyclic of order p°. Now assume
the result is true for all p-groups of order less than |G|.

We want to choose x#¢ in G, let A={x), and find a subgroup B of G
such that we can apply Theorem 14.1 to A and B. If we can do this, then since
|B| <|G]|, the inductive hypothesis will finish the proof.

Now if B exists at all, it has to be isomorphic to G/ A, so it is natural to
look at G/ A. The inductive hypothesis also applies to this group, so we have

G/A={y ) Xy X X{Ppm)>

where y,,...,»,, have orders p“,...,p", for some integers ¢,,...,Z,. This means
that there are cosets Ax,,...,Ax,, € G/A such that:

Every element of G/ A has a unique expression in the form
(Ax,)"(Ax,y)- -+ (Ax,)™, with0<r,<pfor | <i<m.

The way isnow clear; we must try to show that we can choose representatives
x; for Ax; such that o(x;)= o(Ax,), and then

B={x[x3* - x=0<r,<p"}

will be our choice for B, isomorphic to G/A4.

Assuming for the moment that the x;’s can be found, it is clear that Bis a
subgroup of G (B is a finite subset of G, closed under multiplication). We
assert that AB=G and AN B={e}.

[14.1]
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If g€ G, then by [14.1] we have
Ag=(Ax,)"(Ax)" -+ (Ax,)== Ax]'xf- - x}r = Ab,

with b€ B. Thus gb~' is some aE A, and g = ab, proving G=AB.
To see that AN B={e}, suppose that a€E A and a=x{'x;*- - - x,~, with

0<r,<p" Then in G/A we have
€G/4 =(Ax,)"(Axy)" - - (Ax,,)™.
Since we also have

€6/4~= (Axl)o(sz)o‘ - (‘A‘xm)o’
the uniqueness in [l4.1] implies that r,=ry,=--+-=r =0. Thus a
=x{xJ+ -+ x? =e, and we have what we want.

Everything has now come down to showing that we can choose repre-
sentatives x; such that o(x;)=o(A4x;)=p"% To simplify the notation a bit,
suppose we have a coset Ay with order p‘, and we want to find a representa-
tive with order p‘. Certainly p’ divides the order of any representative; the
problem is to find a representative whose p‘-th power is e. Now since Ay has
order p', we have y? € 4, that is,

P =x", [142)
for some n<o(x). If we had n=cp’ for some ¢, we would get
ypl=(x")p.l’
and thus
(rx=Y'=e.

Since yx ™€ is a representative for A4y, we would be done.

Suppose p* is the highest power of p that divides n; we want to show that
w2>t. We can get some information about the relationship between w and ¢
by computing orders on both sides of Eq. [14.2]. Say o(x)=p’, and o(y)=p’;
note that since p’ divides o(y), j >1, and since n <o(x), w <i. Now

o(y?”)= r__ r =p’,
(p.p") p'

and

o(x")= p.'i = P
= Gm e

Thus p/ ~'=p'~™ soj—t=i—w, and

w=t+i—j.
To achieve our goal of showing that w>¢, we need i >/, that is, we want
o(x) 2 o(y). As things stand this need not be true, but we can make it true by
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making a special choice of x at the outset. We choose x so that o(x) > o(y) for
all y € G to begin with, and then Step 2 of our proof is complete.

For Step 3, observe that if G=G, X - - - X Gy, where G,,..., G are nontri-
vial cyclic groups of prime-power order, then |G|=|G,|: -+ :|G,|, so the
primes that occur in the orders of the G’s are precisely the primes that divide
|G|. Also note that, for any such prime p, the product of those G’s that are
p-groups is isomorphic to the subgroup of G consisting of those elements with
order a power of p. Thus, to establish the uniqueness of the prime-power
decomposition, it will suffice to handle the case of a nontrivial finite p-group.

So suppose that

Q) X Qo) X oo XCx D&y ) Xy X+ X Yg)s (143]
where o(x))=p" 1,26,> -+ >1,> 1, and o(y)=p"% uy2u > - - 2u; > 1. We
proceed by induction on the (equal) orders of the two products involved, the
case of order p=p' being trivial. For the induction step, notice that any
isomorphism which gives us [14.3] must map the set of pth powers of all the
elements on the left onto the set of pth powers of all the elements on the right.
That is, [14.3] entails

Cxf ) XCxED X e e XLxPD =y XyED X X yyeds

where i, is the largest i/ such that 7 >2, and similarly for j,. These new
products have smaller order than the ones we started with, since {x/) has
order p“~' and (y/) has order p*%~'. Thus the inductive hypothesis implies
that iy=j, and

Hh=l=u—1, H=l=u—1,.. . 4~1=u —1
Therefore

h=Up..li =U,

and all that remains is to show that the number of /s with 7,=1 equals the
number of /’s with u,=1, that is, r—iy=s—j,. But if we compute orders on
both sides of [14.3], we get

p'p--plop""lo=p'p'r...plop* s,
sop”“fo=p*/ and we are done. []

EXERCISES

14.1 Find, up to isomorphism, all abelian groups of order:
a) 48;
b) 72;
c) 84;
d) 450;
e) 900.
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14.2 Let X be a set and let YC X. Let G=(P(X), &), and let A and B be the
subgroups (P(Y), &) and (P(X = Y), &), respectively. Show that G =A X B.

14.3 Characterize those finite abelian groups that are not isomorphic to the product
of two nontrivial subgroups.

14.4 Let n be a positive integer. Show that every abelian group of order n is cyclic
iff n is not divisible by the square of any prime.

14,5 Fill in the details in the classification of the groups of order 8.

14.6 Show that the conditions (i)—(iii) in the statement of Theorem 14.1 are
equivalent to (i) and (ii), where (ii)’ asserts that every element of G has a unigue
representation in the form ab, with a€ A4 and bEB.

14.7 Use Theorem 14.1 to show that for all odd n > 3 we have

D,,=D, X Z,.
14.8 Find a direct product of cyclic groups of prime-power order that is isomorphic to
(Zo x Zg) / < (3, 3) >, and show that your answer is correct.
14.9 Find a direct product of cyclic groups of prime-power order that is isomorphic to
Aut (Z,,), and show that your answer is correct.
14.10 Let G, ...,G, be subgroups of G such that:
i) Gy, ...,G, are all normal;
ii) G= G,G; ' - ‘G, that is, every element of G can be written as g,g, - - - g, with g, €
Gy,
iii)for 1 <i<n, G;N GGy '+ * Gy = {e}.
Showthat G=G, x Gy x - - x G,,.
14.11 Show, by an example, that if we replace (iii) in Exercise 14.10 by the weaker

condition G; N G; = {e} for i #j, then G does not have to be isomorphic to
Gy X Gy %+ %Gy

14.12 Let G, H, and X be finite abelian groups. Show thatif G x H=G x K, then H= K

14.13 Show, by example, that if we allow the group G in Exercise 14.12 to be infinite, then
H need not be isomorphic to K.

14.14 Let G be an abelian group of order p", where p is prime. An element x € G is said to
be of maximal order if o(x) > o(y) for all y € G. Show that the only subgroup of G that
contains all the elements of maximal order is G itself.

14.15 Let G and H be finite abelian groups such that for every positive integer n, G and /7
have the same number of elements of order n. Prove that G= H.

14.16 Let G be an abelian group of order p” with invariants p > p? >---> p* . LetH
be a subgroup of G with invariants pt > p"’ >---> p* _ Showthats <rand y <
t;forl1 <i<s.
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SYLOW THEOREMS

We have seen that for finite abelian groups, Lagrange’s Theorem has a
converse: if m divides |G| and G is abelian, then G must have a subgroup of
order m. Of course for general groups G this falls apart; 4, is a group of
order 12 with no subgroup of order 6. We are left wondering what can be
salvaged in general; if G is a group and m divides |G|, then under what
conditions can we assert that G must have a subgroup of order m?

Well, look at A,. It has subgroups of order 2, 3, and 4, namely
{(1,2)(3,4)), <(1,2,3)), and {e,(1,2)(3,4),(1,3)2,4),(1,4)(2,3)}. At least on
the basis of this (admittedly flimsy) evidence, we might suspect that the
trouble comes when we “mix primes,” i.e., when we try an m that is not just a
power of some one prime. This suspicion can be borne out. For we shall
prove in this section that if p* divides |G| for any finite group G, then G must
have a subgroup of order p*.

This assertion, together with some related facts, comprises what are
known as the three Sylow Theorems, after the Norwegian mathematician
Ludwig Sylow (1832-1918). We will state the three theorems together, then
look at some examples and applications, and finally present the proofs.

We need to recall a couple of old notions before we can get started. If /
is a subgroup of G and g € G, then the set gHg ™' is called the conjugate of H
by g. By Theorem 11.4, gHg ™" is a subgroup of G, with the same number of
elements as H. If K is also a subgroup of G, we say that H and K are
conjugate if K=gHg ' for some g€ G. Conjugacy is an equivalence relation
on the set of all subgroups of G by the same proof as for conjugacy of
elements. Finally, the normalizer of H in G is the subset

N(H)={geG|gHg '=H}.
By Exercise 11.27, N(H) is a subgroup of G. We have H c N (H).

143
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Example Let G=5,, and let H={f). Then H<G, so gHg ™ '=H for every
gE G, and N(H)=G. On the other hand, if H={g), then H is not normal,
so N(H) is a proper subgroup of S;. Thus |N(H)|=1, 2, or 3. But since
H C N(H) and |H|=2, the only possibility is |[N(H)|=2. Thus N(H)=H.

We can now state the Sylow Theorems. If n € Z" and p is a prime such that
p" divides |G| but p™*! does not, then any subgroup of order p” in G is called a
p-Sylow subgroup of G

THEOREM 15.1 (First Sylow Theorem) Let G be a finite group, p a prime, k € Z".

i) If p* divides |G|, then G has a subgroup of order p*. In particular, G has
a p-Sylow subgroup.

i) Let H be any p-Sylow subgroup of G. If K is any subgroup of order p* in

G, then for some g € G we have K CgHg ™. In particular, K is contained
in some p-Sylow subgroup of G.

THEOREM 152 (Second Sylow Theorem) All p-Sylow subgroups of G are
conjugate to each other. Consequently, a p-Sylow subgroup is normal iff it is
the only p-Sylow subgroup.

THEOREM 153 (Third Sylow Theorem) Let H be any p-Sylow subgroup of G.
Then the number of p-Sylow subgroups in G is [G: N(H)]. This number
divides |G| and has the form 1+ jp for some j > 0.

Examples Let G=A4,, a group of order 12. A 2-Sylow subgroup of G would
be a subgroup of order 4, and

H={e(1,2)(3,4).(1,3)(2,4),(1,4)(2,3)}

is an example. As we have remarked before, all elements of G—H are
3-cycles, hence have order 3. Thus H is the only 2-Sylow subgroup, and
H<G. In addition, all subgroups of order 2 or 4 in G are contained in H,
illustrating part (ii) of the First Sylow Theorem.

A 3-Sylow subgroup of G would be a subgroup of order 3. If H is any
such subgroup, then the number of 3-Sylow subgroups is [G: N(H)]. Since
H C N(H), we have

4=[G:H]=[G:N(H)][N(H):H],
so the possibilities for [G: N(H)] are 4, 2, and 1. But [G: N(H)] must have the

form 1+3j, so 2 is ruled out. In fact, there are four 3-Sylow subgroups,
namely {(1,2,3)>, <(1,2,4)), {(1,3,4), and {(2,3,4)). By Theorem 15.2,
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these subgroups are all conjugate to each other, and none of them is normal.
For instance, we have

(1,2,4)X(1,2,3)5(1,2,4) 7' =<(2,3,4)).

The Sylow Theorems are very useful in discussing the structure of finite
groups. For example, we saw in Section 14 that a finite abelian group is a
p-group iff |G|=p* for some k. We can now see that this holds for non-
abelian G’s as well.

THEOREM 154 Let G be a finite group, p a prime. Then G is a p-group iff |G|
is a power of p.

PROOF. If |G|=p", then clearly every element of G has order p", 0<r<k.
Conversely, if |G| is not a power of p, there is some prime g5p that divides
|G|. By Theorem 15.1, G has a subgroup of order ¢, and therefore G has an
element of order g, so that not every element of G has order a power of p. []

As another application, we have

THEOREM 155 Let G be a group of order pg, where p and ¢ are primes and
p<gq. Then if p does not divide g—1, G is cyclic.

For example, every group of order 35 is cyclic, so there is essentially only
one group of order 35.

PROOF. Let P and Q be p-Sylow and g¢-Sylow subgroups of G, respectively.
The number of p-Sylow subgroups is [G: N(P))], which divides [G : P], hence
must bé 1 or g. Since this number must have the form 1+ jp, it cannot be g,
because ¢ = 1+ jp would give us p|(¢ — 1), contrary to our assumption. Thus P
is the only p-Sylow subgroup, and P <{G. The number of ¢-Sylow subgroups
is [G: N(Q)), hence must be 1 or p. It can’t be p, because p =1+ kg would
make p >g. Thus Q 1s the only g-Sylow subgroup, and Q < G.

So both P and Q are normal. It is obvious that P N Q ={e}, and therefore

so PQ=G. Thus G=P X Q, and since (p,g)=1, G is cyclic. []

What happens to Theorem 15.5 if p does divide ¢ — 1?7 See Exercises 15.21
and 15.22.

The Sylow Theorems can be very incisive tools for analyzing the structure
of the groups of some given specific order, as the following examples
illustrate.
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Examples

1. A group G is called simple if its only normal subgroups are {e} and G.
For instance, any group of prime order is simple, and it can be shown that 4,
is simple, for n > 5.

We assert that no group G of order 28 is simple. For let H be a 7-Sylow
subgroup of G, and consider the number of 7-Sylow subgroups of G. This
number is [G: N(H)], hence must divide 4; but it is also of the form 1+7,.
Clearly, then, there is only one 7-Sylow subgroup, so H G.

2. A group of order 24 cannot be simple. In fact, G must have a normal
subgroup of order either 4 or 8. To see this, note first that the number of
2-Sylow subgroups has the form 1 + 2/ and divides 3, hence is either 1 or 3.
Thus we are not assured of the existence of a normal subgroup of order 8.
However, let H be some 2-Sylow subgroup. Then by Exercise 13.30, there is a
normal subgroup N of G such that Nc H and [G : N] divides [G: H]! = 3! =6.
If [IN| =1 or 2, then [G : N] = 24 or 12, and neither of these divides 6. Hence
|N|=4or8.

3. We will determine all groups of order 1225. Since 1225 = 5272, we
know that if |G| = 1225 then G has Sylow subgroups 4 and B of orders 25 and
49, respectively. The number of 5-Sylow subgroups has the form 1 + 5; and
divides 49, hence is 1. The number of 7-Sylow subgroups has the form 1 + 7%
and divides 25, hence is 1. Thus 4 and B are both normal, 4 N B = {e}, and
AB = G, since 4B has order (4| |B|)/1 = 25-49 = |G|. We conclude that
G = A x B, and since both 4 and B are abelian (Exercise 10.29), we see that G
is abelian.

Thus any group of order 1225 is isomorphic to one of
Zys XLy, ZysXZyXZg ZgXIXLyy or LsXIGXI,XI,

4. We will determine all groups G of order 30.

First of all, since 30=2-3-5, we know that there are Sylow subgroups 4,
B, and C of order 2, 3, and 5, respectively. The number of 5-Sylow subgroups
is [G: N(C)), hence must divide 6. But this number is also of the form 1+5j,
hence the number of 5-Sylow subgroups is either 1 or 6. Similarly, the number
of 3-Sylow subgroups has the form 1+ 3k and divides 10, so must be either |
or 10.

Now suppose there were six 5-Sylow subgroups and ten 3-Sylow sub-
groups. Any two distinct 5-Sylow subgroups must have trivial intersection
(since they both have order 5), so all six together would give us 6-4=24
elements of order 5 in G. Similarly, the 3-Sylow subgroups would give us 20
elements of order 3 in G. Thus we would have |G| > 44, which is nonsense.
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Thus, either there is only one 3-Sylow subgroup, or there is only one
5-Sylow subgroup. In other words, one of B, C must be normal. Thus BC is a
subgroup of G, of order (|B|:|C|)/(|Bn C|)=15. By Theorem 15.5, BC is
cyclic; say BC={x).

Since {x) has index 2, it is normal in G. If we let A={y), then

G=<{x><{¥),
since {x»>{y) has order 30. We must have yxy ' = x' for some integer 7, and
if we knew the value of 7, then the structure of G would be determined. (We
would know that yx” ~'=x™ for every integer n, hence yx" = x"y. This tells
us explicitly how to multiply any two elements in {x){y).)

Now yxy ~! must have order 15, because x does, and therefore (7,15)=1,
soi=1,2,4,7, 8, 11, 13, or 14. Moreover, we have
1

1

y(ro =Yyt =yxy T = () =(x) =x",

that is, x=x’l, SO x'l"=e, and thus 15 divides r?—1. This rules out 1=2, 7,
8, and 13, so there are at most four possibilities for 7, and hence at most four
nonisomorphic groups of order 30.

Actually, there are precisely four, because Z,,, S;XZ,, Z;X Ds, and D g
(see Exercises 8.15 and 8.25) are pairwise nonisomorphic. For instance, their
centers have orders 30, 5, and 1, respectively.

In each of the four groups of order 30, both the 3-Sylow subgroup B and the 5-
Sylow subgroup C are normal. We could have determined this earlier in our
analysis. For example, once we determined that BC was a cyclic normal subgroup
of G we could have called on Exercise 11.28 to conclude that all subgroups of BC
are normal in G,

Another way to see that C <« G, for example, is to apply the Sylow Theorems to
the group BC. If Ny (C) denotes the normalizer of C in BC then the number of 5-
Sylow subgroups in BC has the form | + 5m and divides [BC : Ngc (C)], which
divides [BC : C] = 3. So there is only one 5-Sylow subgroup in BC, i.e. C <« BC,
so BC < N (C). Thus [G : N (C)] divides [G : BC] = 2 so the number of 5-Sylow
subgroups in G divides 2 and has the form 1 + 5/ hence is 1. Thus C « G. A
similar argument shows that B < G.

Examples 3 and 4 might start you wondering what the number of
nonisomorphic groups of order n is for various n’s. The following table gives
the answers for n < 23; there is no known formula for computing the answers
in general.

Order of group |1234567891011121314151617181920212223
Numberofgroups|111212152 21 5121141515221

We now turn to the proofs of the Sylow Theorems. There are several
ways of approaching them; we have chosen the route that we think is the
cleanest and the most illustrative of things we have talked about before. To
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be honest about it, though, we have chosen the following proofs mostly
because we think they are beautiful.

The proof of part (i) of the First Sylow Theorem brings back our method
of “quotient groups and induction.” We let G be a finite group, and proceed
by induction on |G|. If |G|=2, the result is trivial. Now assume the statement
is true for all groups of order less than |G|, and suppose p* divides |G|. If G
has a proper subgroup H whose index is not divisible by p, then p* divides
|H|, so by the inductive hypothesis H has a subgroup of order p*, which is of
course also a subgroup of G. Thus we may as well assume that p|[G: H], for
every proper subgroup A of G.

From this it follows, via the class equation, that Z(G) has a subgroup of
order p. For if we choose { g,,...,8.} to consist of one representative from
each conjugacy class in G that has at least two elements, then

|G|=|Z(G)|+[G:Z(g) ]+ - +[G:Z(g,) ],
and each Z(g) is a proper subgroup since g;& Z(G). Hence each term
[G: Z(g;)] is divisible by p, and since p divides |G| this implies that p divides
|Z(G)|. Therefore Z(G) is a finite abelian group whose order is divisible by p,
s0 Z(G) has a subgroup A4 of order p, either by Theorem 11.7 or by Corollary
14.5.

Now A <G since A CZ(G), and therefore G/A4 is a group of order
|G|/p. If p* divides |G|, then p*~' divides |G/A|, so by the inductive
hypothesis G/A has a subgroup J of order p*~'. If p:G—>G/A is the
canonical homomorphism, then

pl(J)/A=J,
so p~'(J) has order p* and part (i) is proved.

To prove part (ii), we want to start with some given subgroup K of order*
p* in G and some given p-Sylow subgroup H, and find a conjugate H* of H
such that K C H*. We proceed in two steps:

LEMMA 156 With K, H as just indicated, there is a conjugate H* of H such
that K C N(H*).

LEMMA 15.7 With K, H as indicated, K C N(H*) implies K C H*.

Much of what we do from this point on will be strongly reminiscent of
the development of the class equation in Section 10, because we shall proceed
by counting conjugates. Specifically, the claim that K C N(H*) in Lemma
15.6 just says that kH*k~'= H* for every k€K, or, in other words, the
number of distinct conjugates of H* by elements of K is 1. We count
conjugates in Lemma 15.8, which is a cousin of Lemma 10.8. (Like Lemma 10.8,
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Lemma 15.8 can be proved by applying Exercise 10.32, but we give a direct
proof.)

LEMMA 158 Let G be a group, and let X and L be subgroups of G. Then the
number of distinct conjugates of L by elements of K is [K: KN N(L)]. In
particular, the number of distinct conjugates of L in G is [G: N(L)].

PROOF. Let x,y EK. Then xLx '=yLy~'iff L=x"YLy 'x iff x“yeN(L)
iff x“y e KN N(L). Thus if x,y €K, then xLx '=yLy ! iff x and y are in
the same left coset of KN N(L) in K. Therefore the mapping

xLx ' - x(KNN(L))
establishes a one-to-one correspondence between the conjugates of L by

elements of K and the left cosets of KN N(L) in K. This proves the lemma.
O

Example Let G=D,={e,f,f% 1 8./8./’8./ g}, let L={g)={e,g)}, and let
K={f). We know that N(L) contains L, and it also contains f>, since
f*€ Z(D,). Thus {e,f% g,f*%)} C N(L). Since L is not normal, |N(L)| <4, so
N(L)={e,f*g,f%). This gives us

[K:KNN(L)]=[{F>: 2] =2

so there should be exactly two conjugates of L by elements of K. Indeed this
is the case, since

e(gre ' =1} g)f =g,

and

KX =X gX={f%).

PROOF OF LEMMA 15.6. Let K be a subgroup of order p* in G, and let H be a
p-Sylow subgroup. If H,,H,,...,H,, are all the conjugates of H in G, we wish
to show that K C N(H,) for some i, that is, [K: K N N(H,)]=1. Since [K: KN
N(H))) must be among 1,p,p%,...,p* (because |K|=p¥), all we have to show is
that some [K: K N N(H,)] is not divisible by p.

Consider the equivalence relation R on the set {H,,H,,...,H,,} given by

H,RH; (iff there exists x € K such that H,=xHx~".

The equivalence class of any H, consists of all the conjugates of H, by
elements of K, and therefore contains [K: K N N(H,)] many elements. If every
[K: KN N(H))] were divisible by p, then the sum of the orders of the
equivalence classes would be divisible by p, that is, p would divide m. But p
does nor divide m, because by Lemma 15.8, m=[G: N(H)); if p|[G: N(H)),
then p|[G: H], contradicting the fact that |H| is the highest power of p that
divides |G|. O
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PROOF OF LEMMA 15.7. Suppose K is a subgroup of order p*, H is a p-Sylow
subgroup of order p", and K C N(H*) for some conjugate H* of H. If
K g H*, then K 0 H* is a proper subgroup of K, of order p/, for some j <k.
Then since H* JN(H*), KH* is a subgroup of N(H*), of order

|K|-|H*| _p'p"
|KnH*  p/

This contradicts the fact that H is a p-Sylow subgroup of G. Thus Lemma
15.7 is proved and, with it, the First Sylow Theorem. []

=pp* 7/ >p".

PROOF OF THE SECOND SYLOW THEOREM. Easy: If K and H are p-Sylow
subgroups, then by part (ii) of the First Sylow Theorem, we have K cgHg ™'
for some g€ G. But K and gHg ~' have the same order, so K= gHg ' and K
and H are conjugate.

Next, if a p-Sylow subgroup H is normal and K is any p-Sylow subgroup,
then the fact that K=gHg ' for some g means that K= H. Thus H is the
only p-Sylow subgroup. Conversely, if H is the only p-Sylow subgroup, then
H is normal by Corollary 11.5. [

PROOF OF THE THIRD SYLOW THEOREM. Let H be a p-Sylow subgroup. By the
Second Sylow Theorem, the number of p-Sylow subgroups is the number of
conjugates of H in G, and this is [G:N(H)] by Lemma 15.8. Finally, if
Hy,...,H,, are all the p-Sylow subgroups of G, we want to show that m =1 + jjp
for some j > 0. If K is any one of the p-Sylow subgroups, then as in the proof of
Theorem 15.1(ii), m is a sum of terms of the form [K : K N N (H;)], where each
term in the sum is among 1,p,p?,...,p" = |K|, and at least one term is 1. To
finish the proof, it will suffice to show that exactly one term in the sum is 1.
But what does [K:K N (H;)] = 1 mean? It means that K ¢ N(H,), which, by
Lemma 15.7, means that K ¢ H;. Since |K| = |H;|, this means that K = H,.
Thus [K: K n N (H)] = 1iff H;= K, and the proof is complete.[]

EXERCISES

15.1 Let H be a normal subgroup of a finite group G and suppose | H|=p*, where
p is a prime. Show that H is contained in every p-Sylow subgroup of G.

15.2 Let H be a p-Sylow subgroup of G. Show that H is the only p-Sylow subgroup
of G contained in N(H).

15.3 Suppose that K <]H <G and X is a p-Sylow subgroup of H. Show that K <1G.

15.4 Assume that all the Sylow subgroups of G are normal. Show that G is
isomorphic to their direct product.

15.5 Show that no group of order 56 is simple.
15.6 Show that no group of order 200 is simple.

15.7 In Exercise 10.14, we showed that there are essentially only two groups of order
6. Give a slicker proof of this result, by using the Sylow Theorems.
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15.8 Find all groups of order 4225.

15.9 Show that if |G| =66, then G has at least three normal subgroups other than

15.10
15.11
15.12

15.13

15.14

15.15

15.16

15.17

15.18

15.19

15.20

15.21

{e) and G.

Show that every group of order 255 is cyclic.
Show that every group of order 455 is cyclic.

Complete the classification of the groups of order 30 by verifying the parts that were
left as exercises.

Suppose G is a finite group, p is a prime, and k € Z". Suppose H is a subgroup of G of
order p* and t is the number of p-Sylow subgroups of G that contain H. Prove that 7 =
1 (mod p).

Let H be a p-Sylow subgroup of G. Show that N(N(H)) = N(H).

Let G be a finite group, let K< G, and let A be any Sylow subgroup of K. Prove that
G = K * N(H), where N(H) is the normalizer of H in G.

Let H'be a p-Sylow subgroup of G and let X < G, where p divides |K|. Show that
H N K is a p-Sylow subgroup of K.

Let G be a group of order p’q, where p and g are distinct primes. Show that G has
either a normal p-Sylow subgroup or a normal g-Sylow subgroup.

Let G be a group of order p’q, where p and ¢ are primes such that g < p and g does not
divide p* — 1. Show that G is abelian.

Let G be a group of order p’q?, where p and q are primes and p < g. Prove that if |G|
36 then G has a normal g-Sylow subgroup.

Suppose G is a group of order pgr, where p < g < r are primes. Let 4, B, C be Sylow
subgroups of G of orders p, g, », respectively.

a) Prove that at least one of 4,5, C must be normal in G.

b) Prove that in fact C < G.

c¢) Prove that if g does not divide r — 1 then B < G.

Carry out the following steps to show that if p and g are primes such that p divides
g — 1 then there exists a nonabelian group of order pgq.

a) Show that there exists an integer 7, 1 <f<q — 1,suchthatt = 1 (modg)but¢? =
1 (mod g). [Hint: Consider the group (Z, — {0}, ©® ).]

b) Let G be the set of all ordered pairs (x, ), where x € (Z,®) and y € (Z,, ®). Let t be
an integer as in (a) and define

(x, ) % (u, v)=(xB t’u, y ®v),
where the first entry is computed mod g and the second mod p. Show that G forms

a group of order pq under this operation. G is an example of what is called a
semidirect product. (Another example is the group in Exercise 2.12.)



152

15.22

15.23

15.24

15.25
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¢) Show that (0, 1)(1, 0)(0, 1)’ = (¢, 0), and therefore < (1, 0) > is normal in G, but G
is not abelian.

Let p, g be primes such that p divides g—1. Assume the following fact (which follows
from Corollary 19.4): If ¢ is an integer that satisfies the conditions¢ = 1 (mod g) and
t? = 1 (mod q), then any integer that satisfies these conditions must be congruent
mod q to one of , 7, ..., t?'. Use this to prove that all nonabelian groups of order pg
are isomorphic to each other. [Suggestions: Note that the g-Sylow subgroup O of any
such group must be normal. Let J=<ag>andtake b€ G— Q. Then<a><b>=G
and bab ' = d’ for some ¢. Show that b7ab ? = ¢” , and therefore t” = 1 (mod g),

although ¢ = 1 (mod g). Note that if we chm)?e a different generator for < b >—for
example b/, 2 <j <p—1—then Va(¥) ' = a". ]

Let |G| = p" and let H be a subgroup of G such that |H| = p™, where m < n. Show that
if m < k < n then there exists a subgroup K of G such that |K| = p* and H c K.
[Suggestion: Use the fact that, by the class equation, Z(G) has a subgroup of order p.]

a) InS§; x 8§y, let H=<f>x<f>and K=< (g, g)>. Show that HX is a subgroup of
order 18 in S; x §;.

b) Prove that there are exactly five pairwise nonisomorphic groups of order 18, and
find them all.

a) Show that < (f; 0) >< (g, 1) > is a subgroup of order 12 in S; x Zj4.

b) Prove that there are exactly five pairwise nonisomorphic groups of order 12, and
find them all.
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RINGS

Up to now we have been studying sets with a single binary operation defined
on them. For example, we have encountered groups such as (Q,+) and
(Q— {0}, -). But of course there are times in real life when one considers both
addition and multiplication simultaneously, for instance on @, or more
basically on Z. We will now consider an abstract notion designed to capture
the essence of such situations where two operations interact with each other.

What is the essence of the situation for addition and multiplication on Z,
for example? If we just look at addition, then we have an abelian group
(Z, +). If we concentrate on multiplication, we have an associative commuta-
tive binary operation. There happens to be an identity element for -, but most
elements fail to have inverses. Finally, if we consider both operations at once,
then the most salient point is that they are connected by the distributive laws:

a(b+c)=ab+ac and (b+c)a=ba+ca.

During the nineteenth century, number theorists worked with systems
more inclusive than Z which satisfied the same properties with respect to +
and -. One motivation for their efforts was the hope that by considering such
systems, one might answer questions about Z that could not be answered by
thinking in terms of Z alone. Although this hope was only partially realized
(questions about Z can be hard!), a great deal was accomplished, and
moreover, the groundwork was laid for the development of an abstract theory
in the twentieth century.

The abstract concept which emerged is that of a ring. A ring has all the
properties of Z indicated above, except that in order to achieve greater
generality, one does not require that there exist an identity element for
multiplication, nor that multiplication be commutative. (A good deal of work
has also been done on systems for which multiplication fails even to be
associative, but we will not consider such nonassociative rings.)
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In writing down the axioms for a ring, we should perhaps use symbols
such as *+ and O to denote the two operations involved, to emphasize that
they do not have to be ordinary addition and multiplication of numbers.
However, we shall just use + and -, for simplicity. You are experienced
enough by this time to keep in mind that we are just talking about two binary
operations, even though we denote them by + and - and call them addition
and multiplication.

DEFINITION Suppose that R is a set and + and - are two binary operations
on R. Suppose further that:
i) (R, +) is an abelian group,
i) - is associative, and
iii) the distributive laws hold, i.e.,

rl'(r2+r3)=rl'r2+r]'f‘3 aI'ld. (r2+r3)'f’|=r2'rl+r3'rl,
for all r,r,,r; in R.

Then R, together with the binary operations + and -, is called a ring. We
denote it by (R, +, -), or R for short.

The two distributive laws are referred to as the /eft and right distributive
laws, respectively. Of course, if - happens to be commutative, then these two
laws say the same thing.

A r1ing for which - is commutative is called a commutative ring. In
general, the addition on a ring has already been assumed to be pretty nice,
and one gets more special rings by imposing more assumptions on the
multiplication.

The additive identity element of R, i.e., the identity element for (R, +), 1s
denoted by 0, or 0. If there happens to be an identity element for -, then it is
an easy matter to see that there is only one such; it is called the multiplicative
identity element or the unmity of R, and is denoted by 1, or 1. A ring that
possesses a unity is called (what else?) a ring with unity.

Examples

1. (Z,+,-) is a commutative ring with unity, as are (Q,+,-) and
(R, +, ). Here + and - denote ordinary addition and multiplication.

2. (2Z, +,-) is a commutative ring, but not a ring with unity.

3. Let R be the set of all real numbers that can be written in the form
a+bV2 , where a,b€Z. It is clear that the sum of two elements of R is in R,
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and if a+ bV2 and c+dV2 are in R, then their product
(ac +2bd) + (ad+ bc) V2

is in R too. R is a commutative ring with unity under ordinary addition and
multiplication.

4. Let R={0,1,2,...,n—1}, and let ® and © denote addition and
multiplication modulo »n on R, that is,

a®b=a+b and a®b= ab,

where  denotes remainders modulo n. Then (R, ®) is the familiar group
(Z,,®), and we claim that (R, ©, ©O) is a commutative ring with unity, which
we will denote by (Z,,, @, ©). In fact, the proofs of associativity for © and of
the distributive laws are very similar to the proof we gave for the associativity
of ® on Z, in Section 2 (Exercise 16.8). (Z,, ®, ®) is commutative because

a®b= ab = ba=bQa.
The multiplicative identity element is 1.

The rings (Z,, D, ©) are interesting at this point because they already
begin to display behavior quite different from that of the prototype example
(Z, +, ). For instance, look at (Z,, @, ©). Here 203 =0 although neither 2
nor 3 is 0. Things like that certainly don’t happen in Z. To see something even
stranger, look at (Zg, @, ©). Here 2’(=20202)=0, so a power of a nonzero
element can be 0.

We introduce some terminology in order to deal with such situations. An
element a € R is called a zero-divisor if there exists an element b5 0 such that

either
ab=0 or ba=0.

a is called nilpotent if there exists some positive integer n such that a"=0.
(Here a” means a multiplied by itself » times.) Thus in Z, 2 is a zero-divisor,
and so i1s 3 (and 0 and 4). In Zg, 2 is nilpotent, as are 0, 4, and 6.

At the opposite extreme from these badly behaved elements are those
called units. Suppose R is a ring with unity. Then a € R is called a unit if there
exists an element b € R such that

ab=ba=1.
Note right away that “unit” and “unity” are not the same thing! The unity is
a unit because 1-1=1, but there may be many units other than 1. For
instance, in Zg, 1, 3, 5, and 7 are all units, since 12=3?=5?=7*=1.In Z,, 1,
3,7, and 9 are units because 1’=9"=1 and 30 7=703=1.

We shall see below that a unit can never be a zero-divisor. The general
situation for (Z,_, ®, ©) is that a€Z, is a unit iff (a,n)=1, and every element
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is either a unit or a zero-divisor (see Exercise 16.9). On the other hand, some
rings contain elements that are neither units nor zero-divisors. Can you give
an example?

It is easy to see that if @ is a unit, then there is only one b such that
ab=ba=1. We call b the multiplicative inverse of a, and denote it by o~ '.

Examples (continued)

5. Let R®R be the set of all ordered pairs (a,b) of real numbers, with
addition and multiplication defined componentwise:

(a,b)+(c,d)=(a+c,b+d) and (a,b)(c,d)=(ac,bd).

Then RO R is a commutative ring with unity. An element (a,b) in R®R is a
zero-divisor iff at least one of a,b is 0, and it is a unit iff neither of a,b 1s 0.
For example, the equation

(0,3) -(1,0)=(0,0)
shows that both (0,3) and (1,0) are zero-divisors, while

(5.6)(3.5)=0D

shows that both (5,6) and (%,%) are units. In this ring it is true that an
element is a zero-divisor iff it is not a unit.

The ring R®R is called a direct sum. It is common practice, in ring
theory, to speak of “direct sums” rather than “direct products.” The additive
terminology is also commonly used in discussing abelian groups.

6. Generalizing the previous example, let R, R,,...,R, be rings. Then
their direct sum R, R,®- - - @ R, is the ring whose elements are all n-tuples
(risry...,1,), with r,€ R, under componentwise addition and multiplication.
The direct sum is commutative iff each summand R, is, and it has a
multiplicative identity iff each R; has one.

7. Let R be the set of all real-valued functions defined on R, under
addition and multiplication of functions. R is a commutative ring with unity.
An element fin R is a zero-divisor iff f(x)=0 for at least one xER, and it is a
unit iff f(x)70 for all x ER. Here, too, an element is a zero-divisor iff it is not
a unit.

Which elements of R are nilpotent?

8. Let M,(R) denote the set of all 2X2 matrices with real entries, under
addition and multiplication of matrices. (Addition means adding correspond-
ing entries.) Then M,(R) is a noncommutative ring with unity. For example,
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the left distributive law requires that

O P o PR V) A L O P

and this is easily checked.
Note that there exist elements 4,8 in M,(R) such that AB=(3 g) but

BA #:( 0). For instance, we can take

0
0 0
(1 0) =( 0 0)
A ( i o and B o 1)
This example explains why, in the definition of zero-divisor, we said “ab=0

or ba=0."
Note also that this ring contains nonzero nilpotent elements. For exam-

ple,
(o 1)’-=(0 0)
0 0 0 0/

9. Let (G, +) be any abelian group, and denote the identity element of G
by 0. Define a multiplication on G by declaring a- 6=0 for all a,bEG. It is
then easy to check that (G, +,-) is a ring. We call this the ring on G with
trivial multiplication.

If, in particular, we start with G = {0}, the trivial group, then we get a ring
with one element. It is called the trivial ring, and is rather annoying. For
example, O satisfies the definition of a multiplicative identity element (0-x =
x-0=x for all x, right?), so 0 is 1. That should make you cringe, but there is
some comfort in noting that this anomaly can only occur in the trivial ring: If

R is a ring with unity and R has more than one element, then 051 in R. In
order to prove this, we need some basic information.

We frequently denote multiplication in a ring by juxtaposition, writing ab
rather than a - b.

THEOREM 16.1 Let R be a ring, and let a,b be elements of R. Then:
1) a-0=0-a=0;

1) a(—b)=(—a)b= —(ab);

) (—a)—b)=ab;

iv) m(ab)=(ma)b= a(mb) for any integer m;

v) mn(ab)=(ma)(nb) for any integers m and n.

PROOF. 1) To show that @ -0=0 it is enough to show that
a0+ a'0=a-0,
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for then we can add —(a -0) to both sides. But
a'0+a-0=a-(0+0) =a-0.

Similar reasoning works for 0-a.
i) To show that a(— b)= —(ab), it suffices to show that a(— b)+ab=0.
But

a(-b)+ab=a(—b+b)=a-0=0

by (i). A similar argument, using right distributivity instead of left, shows that
(—a)b= —(ab).

iii) Replacing @ by —a in the first equality of (ii), we obtain

(—a)(—b)=[—-(—a)]b=ab.

1v) Exercise.

v) Exercise. [J
COROLLARY 162 Let R be a nontrivial ring with unity. Then 01 in R.

PROOF. Since R is nontrivial, we can pick a0 in R. Then if 0=1 we get
a-0=ga-1, that is, 0=a, a contradiction. []

COROLLARY 163 Let R be a ring with unity, and let u€ R be a unit. Then u is
not a zero-divisor in R.

PROOF. We must show that if r is an element of R such that ur=0 or ru=0,
then r=0. Now if ur=0, then

u ™ (ur)=u"'(0)=0,
that is,

r=0.
A similar argument works if ru=0. [J

The next corollary is technical, but useful.

COROLLARY 164 If b and ¢ are elements of a ring R, define 6— ¢ to mean
b+(—c). Then for any a € R, we have

a(b—c)-::zb—ac, and (b—c)a=ba- ca.

PROOF.
a(b—c)=a(b+(—c))=ab+a(—c)=ab+[ —(ac)|=ab- ac.
Likewise for the second equality. [

We mentioned above that one gets nicer and nicer rings by imposing
more and more assumptions on the multiplication. For example, we get rings
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that behave somewhat like (Z, @, ©) by adding the assumptions indicated in
the following

DEFINITION An integral domain (or just domain, for short) is a commutative
ring with unity in which 1540 and there are no nonzero zero-divisors.

Thus Z, Q, and R are all domains. Another example is the ring in-
troduced in Example 3 above, consisting of all real numbers of the form
a+bV2 , with a,bEZ.

The following simple observation yields an alternative characterization of
integral domains.

THEOREM 165 Let R be a ring and let a,b,c € R. Assume that a i1s not a
zero-divisor. Then if ab=ac, we have b=c.

PROOF. From ab=ac we get ab—ac=0, so a(b—c)=0. Since a is not a
zero-divisor, this means b—c=0, so b=c. [J

COROLLARY 166 Let R be a commutative ring with unity 10. Then R is an
integral domain iff whenever a,b,c € R satisfy ab=ac and a#0, we have
b=c.

PROOF. Assume that R is a domain. Let a,b,c €E R, a#0, and suppose that
ab=ac. Then, since a is not a zero-divisor, the theorem implies that b=c.
Conversely, suppose that R is not an integral domain. We will find
a,b,cER, a#0, such that
ab=ac but b#c.

In fact, we know that there is a nonzero zero-divisor a € R. Let b € R be such
that b0 and ab=0. Then we have

a-b=a-0, but b+#0. ]

Finally, we consider rings with unity in which every nonzero element has
a multiplicative inverse.

DEFINITIONS R is called a division ring if R has a unity 150 and every
nonzero element of R is a unit. A commutative division ring is called a field.

Another way of saying that R is a division ring is to say that the set
R — {0} forms a group under multiplication. Saying that R is a field amounts
to saying that this group is abelian.

Familiar examples of fields include Q, R, and the complex numbers C. A
less familiar example is (Z,, ®, ©), where p is a prime number. Z, is a field
because each r€(1,2,...,p— 1} satisfies (r,p)=1 and is therefore a unit in Z,
(see Exercise 16.9).
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Examples of division rings that are not fields are a little harder to come
by. In fact, a celebrated theorem of J. H. M. Wedderburn asserts that there
aren’t any finite examples: Every finite division ring is necessarily a field.
Proving this here would take us too far afield (so to speak), so we shall
content ourselves with a much simpler result. We shall see an infinite division

ring that is not a field in Section 17.
We obtain our easy substitute for Wedderburn’s Theorem by replacing

“division ring” by “integral domain.”

THEOREM 16.7 Every finite integral domain is a field.

PROOF. Let R be a finite domain. Then R is commutative, and 170 in R. We
must show that if r€ R, r+0, then r has a multiplicative inverse in R.
Since R is finite we can list its elements as r,,r,,...,r,. Consider the

elements

AN (oW ST

Since r#0, these are all distinct by Corollary 16.6. Since they are all in R and
R has only n elements altogether, they must account for all the elements in R.

In particular, one of them is I, so
rr(=rr)=1
for some /, and 7 is a unit. []

This proof will look familiar to you if you worked Exercise 3.15.

Of course, there exist infinite domains that are not fields—Z, for in-
stance. On the other hand, every field, finite or infinite, is a domain, because
units are not zero-divisors. Thus the notions of “domain” and “field” coincide
for finite rings, but, in general, “field” is stronger.

EXERCISES
16.1 Let R be a ring with unity 1. Show that (= 1gz)a= —a for alla€ R.
16.2 a) If res=2(r+s) and rOs=rs, is (R,,0) a ring?
b) If res=2rs and rOs=rs, is (R— {0},+,0) a ring?
c) If res=rs and rOs=r", is (R*,+,0) a ring?

163 Show that the set of all real numbers of the form a+bV2 , where a,b €Q,
forms a field under ordinary addition and multiplication.

164 Consider (Q,=, O), where » is the addition given by asb=a+b—1, and O is
the multiplication given by aOb=a+b—ab. Is (Q, »,0) a field?
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(A construction of the complex numbers.) Let F be the set of all 2 X2 matrices

( )

where a,b €R. Show that F forms a field under addition and multiplication
of matrices.

Remarks. Note that if we think of

(.

as representing the complex number a + b/, then addition and multiplication
in F correspond to the usual operations on complex numbers. For example,

(- -2 Pl =l

which corresponds to (ac — bd)+ (ad + bc)i. Thus this exercise shows you how

to construct a field having all the desired properties of C, starting only with R.

Let F be a field. For a,b€ F, b0, define a/b to mean ab~'. Show that:
O(FHE)- 5 @ §+ 5

Let F be a field, let a,b € F, and assume as<0. Show that the equation

ax+b=0

can be solved for x in F; that is, there is x € F which makes the equation true.

Prove the following for (Z,, ®, ©):

a) associativity for ©;

b) the distributive laws.

a) Show that an element a €(Z,, ®, ©) is a unit iff (a,n)=1.

b) Show that every element of Z, is either a unit or a zero-divisor.

¢) Which elements of Z, are nilpotent?

Prove parts (iv) and (v) of Theorem 16.1.

Find all units, zero-divisors, and nilpotent elements in the following rings:

a) ZDZ;

b) Z,DZ,;

c) Z,DZ,.

a) Show that the trivial ring is the only ring in which 0 is not a zero-divisor.

b) Show that in any ring except the trivial ring, every nilpotent element is a
zero-divisor.

a) Show that if R is a ring with unity, then the multiplicative identity element
in R is unique.

161
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b) Show that if R is a ring with unity and a € R is a unit, then the multiplicative
inverse of a is unique.

16.14 An element 7 in a ring R is called idempotent if 7= r. Find all the idempotent
elements in the ring of real-valued functions on R under addition and
multiplication of functions.

16.15 (See Exercise 16.14.) Let R be a nontrivial ring with unity. Let rE R be
idempotent. Show that:
a) 1—r is also idempotent, and
b) either r or 1 —r is a zero-divisor.

16.16 Let R be a ring with unity. R is called Boolean if every element of R is
idempotent. Show that if R is Boolean then:
a) 2r=0 for every r € R (in other words, r= —r);

b) R is commutative.
[Hint for (a): Consider (r+ r)?]

16.17 Let X be a set and let R be the set of all subsets of X.

a) Show that (R, &, N) is a commutative ring with unity, where & denotes the
operation of symmetric difference.

b) Show that (R, &, n) is Boolean (see Exercise 16.16).

16.18 Let R be a ring with unity, and assume that R has no nonzero zero-divisors.
Let a,b € R, and assume that ab= 1. Show that ba=1 too, and therefore a and
b are units.

16.19 Let R be a ring with unity, and let a € R. Assume that there is a unigue b€ R
such that ab=1. Show that ba=1, and therefore a is a unit.

1620 a) Let S be the set of all real-valued functions on R. Is (S, +, o) a ring? (Here
o denotes composition of functions.)

b) Let R be the set of all real-valued functions on R that are homomorphisms
of the additive group (R, +). Is (R, +, <) a ring?

16.21 Let G be the infinite direct product ZXZ XZ X Z X - - -, where there is one copy
of Z for each positive integer, and the operation on each copy is ordinary
addition. If g, and ¢, are homomorphisms from G into itself, define ¢, + ¢, by

(@1 +92)(2)=pi(8) + 92 8)
for all g€ G.
a) Show that ¢, + @, is a homomorphism, and that the set of all homomor-
phisms from G into itself forms a ring R with unity under the operations
+ and o.
b) Show that there exist elements @ and ¢ in R such that ¢y =1 but Y@ 1
(here 1 denotes the unity of R).

16.22 Let (R, +,-) be a ring, and let S be a set. Let RS denote the set of all functions
from § to R. Show that RS forms a ring under addition and multiplication of
functions.
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16.23 Let R be a ring with unity, and let U denote the set of units in R. Show that
U is a group under the multiplication in R.

16.24 a) Let Z[i] denote the set of all complex numbers of the form a + bi, where
a,bEZ. Show that Z[/] is a commutative ring with unity under ordinary
addition and multiplication of complex numbers. Z[i] is called the ring of
Gaussian integers.

b) For r=a+ bi € Z[i}, define the norm N(r) of r by N(r)=a’+ b*. Show that
if ,s €Z[i], then N(rs)= N(r)N(s).

¢) Show that r=a+ bi is a unit in Z[] iff N(r)=1. Using this information, find
all the units in Z[i].

d) (See Exercise 16.23.) The group of units of Z[/] is isomorphic to a familiar
group. Which one?

16.25 Let R denote the ring of all real numbers of the form a+ V2 , where a,b € Z.

For r=a+bV2 €R, define N(r) by N(r)=a*—2b%

a) Show that if r,5s € R then N(rs)= N(r)N(s).

b) Show that r is a unit in R iff N(r)=*1.

¢) Show that there are infinitely many units in R.

16.26 Give an example of a finite noncommutative ring.
16.27 Give an example of a noncommutative ring with no multiplicative identity.

16.28 Let R be an integral domain. If there exists a positive integer n such that
n -1=0, then the smallest such integer is called the characteristic of R. If no
such n exists, then we say that R has characteristic 0.

a) Show that if R has characteristic n, then n-r=0 for every rER.

b) Show that if R has characteristic n >0, then »n is a prime number.

¢) For each prime number p, give an example of a field of characteristic p. Give
an example of a field of characteristic 0.

16.29 Must every ring with a prime number of elements be commutative? Either prove
that it must, or give a counterexample.

1630 Let R be a finite nontrivial ring with no nonzero zero-divisors. Show that R
is a division ring.

16.31 Prove that if F is a finite field then there exist a prime number p and a positive integer
j such that |F| = p’ . [Suggestion: Use the result of Exercise 16.28(b).]

16.32 a) Suppose R is a ring with unity and for all x and y in R we have (xy)* = x**. Prove
that R is commutative.
b) Give an example to show that the result of part (a) may fail if R does not have a
unity.
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SUBRINGS, IDEALS,
AND QUOTIENT RINGS

In this section we shall develop analogues, for rings, of some of the concepts
we encountered in dealing with groups. As for groups, the purpose of doing
this is to develop ways of talking about the internal structure of a given ring
and the relationships between different rings.

We begin with the analogue of “subgroup.”

DEFINITION Let (R, +, -) be a ring. A subset S of R is called a subring of R if
the elements of S form a ring under + and -.

In particular, the definition requires that (S, +) be a subgroup of (R, +).
Thus if § is a subring of R, then we know that the additive identity element 0
of R is in S, and that § is closed under addition and under additive inverses.
The relationship between R and S with respect to multiplication need not be
so clean. For example, if R has a multiplicative identity 1, then 1 need not be
in S, and it is even possible that § may have an identity element different
from that of R.

Examples

1. Let (Z, +, ) be the integers under crdinary addition and multiplica-
tion, and let 2Z be the set of even integers. Then it is easy to see that 2Z is a
subring of Z. Although Z is a ring with unity, 2Z has no unity.

2. Consider the ring R®R. Let S denote the set of all pairs of the form
(r,0), where rER. Then § is a subring of R®R, and RGR has unity (1, 1),

164
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which is not in S. In this case, S has its own unity, namely (1,0). Note that
(1,0) is not a unity for R®R, but only for §.

As for subgroups, the definition of “subring” can be recast in more
compact form.

THEOREM 17.1 Let (R, +, ) be a ring, and let S be a subset of R. Then S is a
subring of R iff the following two conditions are satisfied:

1) (S, +) is a subgroup of (R, +); and
ii) S is closed under multiplication, that is, if r|,r,€.S then r,r,€S.

PROOF. It is clear that if S is a subring of R, then (i) and (ii) hold. Conversely,
assume that (i) and (ii) hold for S. Then + and - are both binary operations
on S, and (S, +) is an abelian group, so we need only check that - is
associative on S and that the distributive laws hold in (S, +, -). But associa-

tivity and distributivity hold for all elements of R, hence for those of S. []

Condition (i) can be reduced further by using your favorite subgroup
criteria. For example, by using the result of Exercise 5.24 we obtain the
following.

COROLLARY 17.2 Let (R, +, +) be a ring and let S be a nonempty subset of R.
Then S is a subring of R iff the following two conditions hold:

1) for every r,r, €S, we have r|—r, €S

ii) for every r|,r,€ S, we have r,r,€S.

Examples (continued)

3. Let’s find all the subrings of (Z, +, -). We know that any subring must
be a subgroup of (Z, +) and hence must be additively a cyclic subgroup of
the form mZ, for some m. We have only to figure out which of these
subgroups constitute subrings. The extra requirement that mZ must satisfy to
be a subring is closure under multiplication. But clearly if i, j are integers,
then (im)(jm)=(ijm)m € mZ. Thus every subgroup of (Z, +) is a subring of
Z,+,-).

Similar reasoning shows that every subgroup of (Z,, @) is a subring of
.9, 0).

4. Let R be the set of all real-valued functions defined on R under
pointwise addition and multiplication of functions. Let S be the subset of R
consisting of all the continuous functions. Then § is a subring of R, for if f,g
are continuous functions so is f—g and so is fg. (We have used Corollary
17.2.)
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5. Let R be as in the previous example and let

§={/€R|f0)=0},

so that S consists of those functions that take the value 0 at x=0. Then S'is a
subring of R, for if f,g € S then f(0)=0 and g(0)=0, so

(f—2)(0)=£(0)—-g(0)=0,
which shows that f— g€ S, and
f2(0)=1(0)g(0) =0,

which shows that fg € S.
Observe that if 7= { f€ R| (0)=1}, then T is not a subring of R, because
if (0)=g(0)=1 then (f—g)0)=1-1=0.

6. Let M,(R) be the ring of all 22 matrices with real entries. Let S
consist of all matrices of the form ( . 3). Then S is a subring of M,(R), for if

(g 3) and (; i) are in S, then so is (; 2)—(; i), and so is (3 3)(0‘ ;f,)

On the other hand, if T consists of all matrices of the form (" 3), then T
1s not closed under multiplication, so 7 is not a subring of M,(R).

7. Let M,(C) be the ring of all 2 X2 matrices with complex entries. Let

=g D) =l L) x=(Oy ) wma == (D)

Let H be the following subset of M,(C):
H={al+bJ+cK+dL|a,b,c,d ER}.

(Note: The product of a constant and a matrix is obtained by multiplying
each entry of the matrix by the constant.) H is a subring of M,(C), for it is
clear that H is an additive subgroup, and closure of H under multiplication
follows from distributivity in M,(C) and the fact that {*/,*J, + K, * L} is
closed under multiplication. [{*/, =J, + K, = L}, under multiplication, is
0y]

H is called the ring of quaternions, and “H” is for Hamilton, the man who
discovered this ring. H is a noncommutative ring, for the same reason that Q
is a nonabelian group: JK#KJ. H has an identity I=,J=(g g), and it is easy to
see that H is in fact a division ring. For if

aI+bJ+cK+dL=( a+bi c+d’:)EH
—c+di a-—bi
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and at least one of a,b,c,d i1s not zero, we have

( a+ bi c+di)_': 1 (a—bi —c—di)
—c+di a—bi a2+ bi+ci+d*\c—di a+ bi
1
= al —bJ — cK—dL)eH.
az+b2+c2+d2( )

H is the example of a noncommutative division ring that we promised you in
Section 16.

Hamilton discovered the quaternions in 1843, after he had spent ten or
fifteen years seeking a generalization of C that could be used in connection
with geometric and physical problems in 3-space. One reason why it took him
so long was that he started out looking for a commutative generalization;
coming up with a noncommutative one was, at the time, a revolutionary step.

The definition of H via M,(C) was not possible until 1858, when Cayley
introduced matrices. Hamilton thought of H while taking a stroll on the
evening of October 16, 1843; it occurred to him as a set of elements of the
form

a+ bi+ ¢j + dk,
where a,b,c,d €R and
i2=jl= k2= jjk=—1.
Although he made other distinguished contributions to science, Hamilton
considered the discovery of the quaternions to be the crowning achievement

of his life. He spent twenty years studying them, and wrote several huge
volumes about them.

In dealing with groups, we found that some subgroups were better than
others. For example, in attempting to construct the quotient group modulo a
subgroup H, we saw that it was crucial for H to be normal. We encounter a
similar situation when we try to construct quotient rings.

Let (R, +, ) be a ring and let S be a subring of R. We know that (S, +)
is a subgroup of (R, +), and in fact there is no problem about (S, +) being a
normal subgroup of (R, +), because (R, +) is abelian. Thus we already know
how to conmstruct a quotient group (R/S, +), the elements of which are the
cosets of § in R, with addition defined by

(S+a)+(S+b)=S+(a+b).

We would like to endow this quotient group with a multiplication, arising
naturally from the given multiplication in R, in such a way that the quotient
becomes a ring. As usual with these things, there is only one reasonable
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attempt; we want to define
(S+a)(S+b)=S+ab.

What we have to check is that this is a well-defined operation, that is, if

S+a=S+a and S+b=S+10,
then
S+ab=S+a'b’,
so that the product doesn’t depend on which representatives we use to define
it.

So we assume a—a'€S and b—b'ES, and we wish to show that
ab—a’'b’€S. It is clear that if this is to work for all possible choices of
a,a’,b,b’, then S has to be rather special. For instance, if we take a€ S, a’ =0,
b arbitrary, and b'= b, then

a—a'eS and b—-b ES,
so we want
ab—-0b&E S, thatis, abeSs.

In other words, we require that if a€ S and b is any element of R, then
ab € S. Similar reasoning shows that we also require that if bES and a€R is
arbitrary, then ab € S.

Now we claim that these two conditions are enough to make our
multiplication work out. For suppose § satisfies both conditions. Assume
a—a €S and b—b'€S. Then

ab—a'b'=(a—a’)b+a'(b—b).
By the conditions on S, (a—a")bE S and a'(b—b)ES, so
(a—a)b+a(b—-b)ES
since S is an additive subgroup. Thus ab—a’b’ € S, and our multiplication is
well defined.

Subrings that have the special properties required to make multiplication
of the additive cosets well defined are called ideals.

DEFINITION A subring S of a ring R is called an ideal of R if for every s€ §
and rER we have rsE S and sr€S.

We have seen that if § is a subring of R, then the natural attempt at
introducing a multiplication on R /S will succeed iff S is an ideal. It is now
easy to complete the proof of
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THEOREM 173 Let (R, +, -) be a ring, and let § be an ideal of R. Then the set
R/ S of cosets of the additive subgroup (S, +) is a ring under the operations
(S+a)+(S+b6)=S+(a+b),
(S+a)(S+b)=S+ab.

PROOF. We know that R/S is a group under the indicated addition, and this
group is abelian because (R, +) is. We have seen above that the indicated
multiplication yields a binary operation on R/ S, so all that we have to check
is that this multiplication is associative and that the distributive laws hold.
Associativity requires that

[(S+a)(S+b)](S+c)=(S+a)[(S+b)(S+c)]
for all a,b,c € R. This amounts to
(S+ab)(S+c)=(S+a)(S+bc), thatis,
S+(ab)e=S+a(bc),

which is true by associativity of multiplication in R. Similarly, R/S inherits
distributivity from R; we leave the details of this to the reader. [J

R/ S is called the quotient ring (or factor ring) of R by S.

There is a certain redundancy in our definition of “ideal,” in that the
condition that rs € § and sr € S for every r€R and s € S already implies part
of the condition that S be a subring. The next result provides a neater
characterization of ideals.

THEOREM 174 Let R be a ring and let S be a subset of R. Then § is an ideal
of R iff the following two conditions hold:

i) § is an additive subgroup of R (equivalently, § is nonempty and closed under
subtraction);
ii) For every rER and s€ S, we have rs€ S and sr€ S.

PROOF. Exercise.

We will usually denote an ideal by 7, rather than §, from now on.

Examples (continued)

8. As we have seen, the subrings of (Z, +, ) are precisely the additive
subgroups mZ. In this case [likewise for (Z,, D, ©)], every subring is also an
ideal, because if we multiply an element of mZ by any integer we get an
element of mZ.

9. Z is a subring of (Q, +, -), but not an ideal. For example, 1 €Z and
JEQ, but 1-;€Z.
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Actually, there is something more general going on in this example. If R
is a ring with unity 1, then the only ideal of R that contains 1 is R itself.
(Prove it!)

Incidentally, R will always be an ideal of R, no matter what ring R is. We
will call R the improper ideal; all other ideals are called proper. The ideal {0}
is called trivial.

10. Refer back to Examples 4 and 5, which present two examples of
subrings of the ring R of all real-valued functions on R. The subring S in
Example 4 is not an ideal, because if f €S and g € R then fg need not be in S,
since it need not be continuous. (Can you give an example?) The subring § in
Example 5 is an ideal, however, because if f(0)=0 and g is any element of R,

then
/8(0)=£(0)g(0)=0-g(0)=0,
so fg€S. Likewise gfe S.

11. Let I be the subring of R®R consisting of all pairs of the form (r,0).
Then I is an ideal, because (r,0)a,b)=(ra,0)€1] for any r,a,bER, and
likewise (a,b)(r,0) € 1. Note that I has a unity, and yet / is a proper ideal of
R. Why does this not contradict our observation in Example 9 about ideals
that contain the unity?

12. Let R be a commutative ring with unity, and let a € R. Let
aR={ar|[rER},
so that aR is the set of all multiples of ¢ in R. Then aR is an ideal of R. First
of all, if ar,ar,€aR then ar,—ar,=a(r,—r,)EaR, so aR is an additive
subgroup of R. Secondly, if ar EaR and ¢ € R, then
t(ar)=(ar)t=a(rt)EaR,
since R is commutative, and this verifies that aR is an ideal.

We call aR the principal ideal generated by a. Note that a €aR, since
a=a-1. Also observe that aR = Ra={ra|rER}.

13. Let R=(Z, +,-) and let / be the ideal nZ for some positive integer ».
Then (R/I, +,-) has n elements, namely, 7+0,7+1,/+2,...,1+(n—1). We
saw in Section 13 that (R/I, +) is isomorphic, as a group, to (Z,,®). In
Section 18 we shall introduce a notion of isomorphism for rings, and it will
turn out that (Z/nZ, +, -) is isomorphic, as a ring, to (Z,, ®, ©).

Suppose now that R is a ring and / is an ideal of R. Then R/ is a ring,
and we can sensibly (and profitably) ask which properties in R translate into
familiar properties for the elements of R/I. For example, if a € R, when is
I+ a a zero-divisor in R/ I?
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I+a is a zero-divisor iff there is some 7+ b7#I+0 such that either
(I+a)I+b)=1+0 or (I+b)I+a)=1I+0. This boils down to there being
some b € I such that either ab€ I or ba € 1. In particular, /+ a is a nontrivial
(i.e., nonzero) zero-divisor in R/ iff a& ] and there is some b €& I such that
abel or ba€l.

From this it is clear what conditions we need on / to rule out nontrivial
zero-divisors in R/ 1.

DEFINITION Let R be a ring, / an ideal in R. Then / is prime if whenever
a,be R and ab € I, then at least one of a or b is in /.

Example Let p be a prime in Z. Then pZ is a prime ideal, because if ab is
divisible by p, then one of @ or b must be divisible by p.

THEOREM 175 R /I has no nontrivial zero-divisors iff / is prime.

The proof is immediate from the above discussion. Specializing to the
case where R is a commutative ring with unity, we get:

COROLLARY 17.6 Let R be a commutative ring with unity, / an ideal in R.
Then R/1 is an integral domain iff 7 is a proper prime ideal.

PROOF. R/ I is a commutative ring with unity (see Exercise 17.14). Thus R/J
is an integral domain iff it is nontrivial and has no nontrivial zero-divisors,
that is, iff I is proper and prime. []

When is R/ a field?

DEFINITION. An ideal 7 of R is called maximal if / is proper and there 1s no
proper ideal J 2 / 8

Thus I is maximal iff it is proper and cannot be extended to a larger
proper ideal.

THEOREM 17.7 Let R be a commutative ring with unity. If 7 is an ideal in R,
then R/1 is a field iff J is maximal.

PROOF. R/I is a commutative ring with unity. Thus it is a field iff it is
nontrivial and each of its nonzero elements is a unit.

Now R/1 is nontrivial iff 7 is proper. And every nonzero element of R//
is a unit < for every a€ R — I, there is b€ R such that (/+a)(I/+b)=1+1,
in other words,

for every a € I, there is b such thatab—1 € I. [17.1]

Thus R/ 1 is a field iff / is proper and [17.1] holds. To conclude the proof, we
will show that a proper ideal 7 is maximal iff [17.1] holds.
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First suppose that / is maximal, and take a & I. Then the set

J={ar+x|rERand x€l)

is an ideal that properly includes I, hence is not proper. Therefore, ary+ x,= 1
for some r, and x,, and this yields

which means that [17.1] holds. Conversely, if [17.1] holds, then let 7’ be an
ideal such that I’ D I, with the aim of showing that /'=R. Take a€l'—1I,

and take b such thatab—1=ye&l. Thena€l’andy€l’,so ab—y €I’. Thus
1€1l’,s0 I'’=R, and I is maximal. [

COROLLARY 178 Let R be a commutative ring with unity. Then every maxi-
mal ideal of R is prime.

PROOF. If I is maximal, then R/ is a field, hence an integral domain. Thus /
is prime by Corollary 17.6. [J

This last result can fail when we try to weaken the assumptions. For
instance, let R be the ring on (Z,, ®) with trivial multiplication. Then R is a
commutative ring without unity, and {0} is a maximal ideal which is not
prime.

On the other hand, prime ideals need not be maximal, even if R is a
commutative ring with unity. According to our definitions, in fact, any ring is
a prime ideal of itself which is not maximal. If this seems like cheating, note
that {0} is a prime ideal in Z which is not maximal. And for an example of a
nontrivial proper prime ideal which is not maximal, take the subset / of Z&Z
consisting of all pairs (a,0). Note that

((a,2b)|a,bEZ)

1s a proper ideal which is strictly larger than /.

Some conditions under which proper prime ideals are maximal are
indicated in Exercises 17.29-17.31.

Here are a few more examples of maximal ideals.

Examples

1. We have observed that every ideal in Z has the form nZ for some n,
and that if n is a prime p, then pZ is a prime ideal. If 7> 2 is not prime, then
nZ is clearly not a prime ideal, so the only other prime ideals in Z are {0}
and Z.
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What are the maximal ideals? Since Z is a commutative ring with unity,
any maximal ideal must be prime; and since {0} and Z are obviously not
maximal, the only possible maximal ideals are of the form pZ. In fact every
pZ is maximal. For suppose J QpZ and J is an ideal. If x&€J—pZ then
(x,p)=1, so there are a,b such that ax+ bp=1. Since ax€J and bpEJ, | €J,
soJ=12.

Thus for Z the maximal ideals are the nontrivial proper prime ideals.

2. The ideal /= {(a,2b)|a,b €Z} is maximal in Z®Z. For if J is an ideal
properly including /, we have (m,2n+ 1)€J for some m,n €Z. Since (m,2n)
€ 1, subtracting shows that (0, 1)EJ. Also, (1,0)€7 CJ. Adding, we see that
(LDHEJ, soJ=ZD7Z.

3. Let us return to Example 5 above. R is the ring of all real-valued
functions on R, under pointwise addition and multiplication, and 7 is the
ideal consisting of all f such that f(0)=0. We want to show that / is maximal.
Suppose J is an ideal that is strictly larger than 7, and take g€J — 1. Then
g(0)#0, so there is & € R such that

1
h(0) 20)°
We have g(0)2(0)=1, so if f, denotes the multiplicative identity in R, the
value of the function gh—f, at 0 is 0. Hence
gh—fi€ICJ,

so since gheJ, f,€J. Thus J= R, and / is maximal.
The same argument demonstrates that for any rER, I,={ fE R|f(r)=0}
is a maximal ideal in R.

4. Let S be the subring of M,(R) introduced in Example 6 above, that is,
S={(; :)Ia,b,dER}. We contend that I={(; g)|a,bER} is a maximal
ideal of S. First of all, it is clear that 7 is closed under subtraction in S, and if

(; i)ES and (; g)el, we have

(5 25 o)=(§ §)er me

(a b)(e f)z(ae af+bh)€1’

0 0/\0 & 0 0

so / is an ideal. To see that / is maximal, let J be an ideal of S that properly
includes 1. Then we have (; 3) €J for some a,b,d, with d+0, and therefore

(o 17a)(5 @)=(c )=~
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Since ((') g)e I, we get

lo 0)*(@ 1)=(5 V)=~

s0 J= 8§, as desired.

EXERCISES
17.1 Which of the following subsets of M,(R) are subrings?

a) §=all matrices of the form ( 2 3)

= i 0
b) §=all matrices of the form (: d)
¢) S=GL(2,R)
- - b
d) S =all matrices of the form (¢ °).
17.2 Let R be the ring of real-valued functions on the real line, under pointwise

operations. Which of the following subsets S of R are subrings? Which are
ideals?

2) S={fER|A1)=0}
b) S={fER|A1)=0 or f(2)=0}
¢) S={fER|f3)=/4)}.
173 Let R be the ring with trivial multiplication on some abelian group G. What
are the ideals of R?

17.4 Let S, T be subrings of R. Under what conditions is S U T a subring of R?

17.5 Let R be a finite ring with, say, n elements. Let S be a subring of R that has
m elements. Show that m divides n.

17.6 Find a maximal ideal in
a) 16; b) le; C) Z]s.

17.7 Find all the maximal ideals in Z,.

17.8 Let R=2Z be the ring of even integers, under ordinary addition and
multiplication, and consider the subset §=4Z. Show that S is an ideal of R.
Is § maximal? Is it prime?

179 Let R={qE€Q|gq=a/b, a,bEZ and b is odd}. Show that R has a unique
maximal ideal.

17.10 Let X be a nonempty set and let R be the ring (P(X),2,N).

a) Show thatif ¥ E X, then P(Y) is an ideal in R and has a unity different from
that of R.

b) Find a maximal ideal in R.
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17.11 Prove Theorem 17.4.

17.12 Let R be a ring with unity. Show that a nonempty subset S of R is an ideal iff
the following two conditions are satisfied:
1) 5,+5,ES for every 5,5,ES;
ii) rs and sr are in S for every s€ S, rER.

17.13 Show that if 7 is an ideal of R, then the distributive laws hold in R/ 1.
17.14 Let R be a ring and 7 an ideal of R. Show that

a) if R is commutative, so is R/ I,
b) if R has a unity, so does R/ /.

17.15 Show that if S is a subring of R and 7 is an ideal such that / C S, then S// is
a subring of R/ /. Show that if S is an ideal of R, then S/ 7 is an ideal of R /1.

17.16 Show that M,(R) has no ideals other than the trivial ideal and the improper
ideal.

17.17 Let S be the ring of all matrices of the form (; 3), with a,b,d ER. Find a
maximal ideal of § other than the one found in the text, and show that every
proper ideal of § is contained in one of these two maximal ideals.

17.18 Let Z[/] be the ring of Gaussian integers (see Exercise 16.24). Let I be the
principal ideal generated by the element 2+ 2i. How many elements are there
in Z[i]/1?

17.19 Let R be a commutative ring with unity 1:0.
a) Show that R is a domain iff {0} is a prime ideal in R.
b) Show that R is a field iff {0} is a maximal ideal in R.

17.20 Let R be a commutative ring with unity, and let 2 € R. Show that aR= R iff
a is a unit.

17.21 a) Let R be a ring. Define the center of R to consist of all »€ R such that rx = xr
for every x € R. Show that the center of R is a subring of R.

b)Must the center of a ring be an ideal?

17.22 a) Let R be a commutative ring and X a subset of R. Define
Ann(X )={r€R|rx=0for every xEX }.
Ann(X) is called the annihilator of X. Show that Ann(X) is an ideal.
b) In (Z,,, ®, ©), find Ann({2)).

c) If R were not commutative, then the set Ann(X) defined above would be
called the /eft annihilator of X. Show that in this case, if X is itself an ideal,
then Ann(X) is still an ideal.

17.23 a) Let R|,R,,..., R, be rings with unity. Show that every ideal of
R®R,D--- ®R, is of the form 1, DL,D- - ©1,, where [, is an ideal of
R; for each i.
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b) Show that this result may fail if the R;’s are not rings with unity.
17.24 Let R,,R,,...,R, be nngs with unity. What do the maximal ideals of
R®R,® - ®R, look like?
17.25 a) Let R be a ring and let 7 and J be ideals of R. Show that I N J is an ideal
of R.
b) Suppose that I and J are prime. Must / NJ be prime?
17.26 a) Give an example of a ring R, an ideal I of R, and an ideal J of I such that
J is not an ideal of R.
b) Show that J must be an ideal of R if it is a prime ideal of /.

1727 Let R be a commutative ring.
a) Show that the set of nilpotent elements in R forms an ideal.
b) Show that the quotient of R by this ideal has no nonzero nilpotent elements.

17.28 Let R be a commutative ring, and let / be an ideal of R. Define the radical, V7 ,
of I to consist of all 7€ R such that some power of r is in /.

a) Show that V7 is an ideal of R.

b) [ is called semiprime if /= VI . Show that / is semiprime iff R/ I has no
nontrivial nilpotent elements.

17.29 Let R be a finite commutative ring with unity. Show that every proper prime
ideal of R is maximal.

1730 Let R be an integral domain. We call R a principal ideal domain (PID) if every
ideal of R is of the form aR for some a € R. Show that in a PID every nontrivial
proper prime ideal is maximal.

1731 Let R be a Boolean ring (see Exercise 16.16). Show that every proper prime
ideal of R is maximal.

17.32 Prove that every nontrivial finite subring of a division ring is a division ring.

1733 a) Let I and J be i1deals of R. Define their sum /+J by
I+J={x+y|x€l,y€J}.

Show that 7+ J is an ideal.
b) Find 6Z + 14Z in (Z, +, -).
1734 Let I and J be ideals of R. Define their product ZJ to be the set of all finite sums

of the form x, y, + - + + + x,.v,, where each x; €7 and each y; €EJ. Show that IJ
is an ideal, and that IJ CInNJ.

17.35 Let I, J, K be ideals of R. Assume that JJ C K and K is prime. Show that at
least one of / or J is contained in K.

1736 Let R be a commutative ring with unity, and let J and J be ideals of R such
that /+J= R. Show that IJ=INJ.

1737 Let 1, J, K be ideals of R. Show that /(J+ K)=1J+ IK.
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RING HOMOMORPHISMS

We have seen that group homomorphisms enable us to relate different groups
to each other. Ring homomorphisms do the same thing for rings.

In the context of rings, a homomorphism must be “sensible” with respect
to both operations:

DEFINITION Let R and § be rings, and let ¢: R— S be a function. Then ¢ is
called a (ring) homomorphism if for every a,b € R we have

i) @(a+b)=¢(a)+@(b) and
1) o(ab)=g(a)p(b).

Thus a ring homomorphism is in particular a group homomorphism from
(R, +) into (S, +). As such, it has many familiar properties. For instance,
¢(0g) =0y, and @(na)= ng(a) for every aER and n€Z.

A ring homomorphism ¢ must also preserve products, but in general this
doesn’t have as many consequences as the corresponding fact for sums,
because (R— {0}, -) and (S— {0}, -) need not be groups. It is entirely possi-
ble, for instance, that R and S are both rings with unity, and yet ¢(1,)# 1.
Because of this, it is possible that # € R is a unit but @(u) € S is not.

Examples Let ¢: R—R be given by ¢(r)=0 for all r€ER. Then ¢ is a ring
homomorphism, ¢(1g)# lg, and ¢(r) is never a unit, although every r#0 is a
unit in R.
For a slightly less trivial example, let
¢:R>ROBR

be given by ¢(r)=(r,0) for every r €R. Clearly ¢ is a ring homomorphism,
but ¢(1g)=(1,0), which is not the multiplicative identity in R®R. Again ¢
maps all the units in R to nonunits.

177
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Many times people who are working solely in the context of rings with
unity tighten up their definition of homomorphism so as to insist that
@(1z)= 1. This is nice in that it avoids maps like the ¢’s in our examples, but
in our general context our definition is probably better, and we will stick to it.

We record some basic properties of ring homomorphisms for reference.

THEOREM 18.1 Let ¢: R— S be a ring homomorphism. Then:
1) ¢(0z)=0g;
ii) @(na)=ne(a), for every a€R and n€Z;
iii) @(a”)=[gp(a)]" for every a € R and every positive integer n.

iv) If R and § are rings with unity and ¢(1z)=1g, then for every unit uER,
@(u) is a unit in S and @(u~")=[@(u)]~'. More generally, @(u™)=[p(u)]"
for every integer n. (Here, for n<0, u" is defined to be (u~ "))

The proofs of parts (iii) and (iv) are left as exercises. In light of (iv) it is of
some interest to have conditions under which ¢(1,) will equal 1.

THEOREM 182 Let R and S be rings with unity, and let ¢: R—S be a ring
homomorphism. Then:
i) if @ is onto, @(1z)=15;
i) If § is a division ring and (1) 0, then ¢(15)=15.
iii) if § is an integral domain and @(1z)#0g, then @(15)=15.

PROOF. 1) If we knew that @(1;)-s=s -@(1g)=s for every s € S, then we could
conclude that ¢(lz)=1g, by the uniqueness of the multiplicative identity.
Since @ is onto, any s must be ¢(r) for some r€ R, and we know that
lger=r-lg=r.
Thus
e(1g) - @(r)=o(r) - e(1z) = (),
which gives us @(lg) - s=s5- @(l1gz)=1s, as desired.
ii) We know that g =14 14, so

P(1z)=(1g) - @(1).

Since S 1s a division ring and @(1g)#0g, this yields ¢(1z)=1g, because we

can multiply both sides of the equation by [@(1.)] .
ii1) Exercise. [

As in the case of groups, we give special names to ring homomorphisms ¢
that satisfy extra conditions. Thus, @ is 2 monomorphism (or an embedding) if
it is one-to-one; ¢ is an epimorphism if it is onto; and ¢ is an isomorphism if it
is both one-to-one and onto. Two rings R and § are said to be isomorphic if
there exists an isomorphism from R onto S. In this case we write R=S.
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Examples

1. Let @:(Zy D, O)—>(Z,, ©,0) be given by ¢(x)=the remainder of x
(mod 4), for each x€{0,1,2,...,7}. Then ¢ 1s a nng homomorphism. For
instance,

p(a®©b)=g(a)Op(d),

where the multiplication on the left is carried out mod 8 and that on the right
is carried out mod 4. For if  denotes remainders mod 4, this equation
says L

remainder of ab (mod 8) = a-b .
The left-hand side equals ab, since the remainder of ab (mod 8) differs from
ab by a multiple of 4 (in fact, by a multiple of 8). Similarly, the right-hand
side equals ab, so the equation is true.

2. The mapping ¢:(Z, +, -)—(Z, +, ) given by ¢(n)=2n is an additive
group homomorphism, but it is not a ring homomorphism since ¢@(ab)=2ab
and @(a)p(b)=4ab.

3. Let R be the ring of all real numbers of the form a+bV?2 , where
a,b€Z. Map R—>R by g@(a+bV2)=a—bV2 . It is clear that ¢ preserves
sums, and @ preserves products since

¢[(a+bV2 )(c+dV2 )] =g[ac+2bd+(bc+ad)V2 |
=ac+2bd—(bc+ad)V2 =(a—bV2 )c—-dV2)
=g(a+bV2)p(c+dV2).

Thus @ is a ring homomorphism. It is in fact an isomorphism from R onto
itself, that is, an automorphism of R.

4. Let ¢: M,(R)—(R, +,-) be given by tp[(‘: z)]=the determinant of
( : 2). Then ¢ preserves products, but not sums; for instance,

(o o)+ Di=ello D]=1o=ello S)+(G 1)}

Thus ¢ is not a ring homomorphism.
5. Let C be the field of complex numbers and H the ring of quaternions.
Let ¢: C—H be given by

pla+bi)=al+bJ.
@ preserves sums, and it preserves products since
o[ (a+ bi)(c + di) | = ¢(ac — bd +(ad + bc)i)
=(ac—bd) I+ (ad+ bc)J =(al + bJ )(cI+ dJ)
=g@(a+ bi)g(c+ di).

¢ is a monomorphism from C into H, and an isomorphism from C onto a
subring of H.
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6. Let R be the ring of real-valued functions on the real line, under
pointwise addition and multiplication. R has a subring isomorphic to
(R, +, -)—in fact, zillions of them! For let » be any real number; then
S={fE€R|f(x)=0 for every x5r} is a subring of R and is isomorphic to R
via the mapping given by “evaluating at r,” that is, by @(f)=f(r). For
instance, if f,g € S we have

o(f+8)=(f+g)(r)=1(r)+g(r)=o(f)+9(g),
and likewise for products. ¢ is one-to-one and onto because for each a€R

there is exactly one f € § such that f(r)=a.
Similarly, R has many subrings isomorphic to R®R. For example, if r
and s are distinct real numbers then { f € R| f(x)=0 if x is not r or s} will do.

The next two theorems are the translations of Theorems 12.1 and 12.6
into the context of rings. From now on we will usually say “homomorphism™
instead of “ring homomorphism™ if it is clear that we mean ring homomor-
phism and not just group homomorphism.

THEOREM 183 Let R, S, 7 be rings and let ¢: R— S and ¢: S— T be homomor-
phisms. Then:
1) Yo@:R—T is a homomorphism;
i) if ¢ and { are both isomorphisms, so 18 Y o @;
iii) if @ is an isomorphism, so is ¢ ~': S—R.

THEOREM 184 Let ¢: R— T be a homomorphism. Then:
1) if § is a subring of R, then ¢(S) is a subring of T,
ii) if U is a subring of T, then ¢~ '(U) is a subring of R;
iii) if U is an ideal of T, then ¢ ~'(U) is an ideal of R;
iv) if @ is onto and § is an ideal of R, then ¢(S) is an ideal of 7.

An easy example shows that the assumption that ¢ is onto cannot be
dropped in part (iv). Let ¢: Z—R be the identity map. Z is certainly an ideal
of Z, but p(Z)=Z is not an ideal of R.

The relationship between homomorphisms and normal subgroups in
group theory has its counterpart in a parallel relationship between homomor-
phisms and ideals in ring theory. If 7 is an ideal of R, then the mapping
p:R—R/1I given by p(r)=1+r is a (ring) homomorphism, called the canoni-
cal homomorphism. Note that, in terms of just the additive groups (R, +) and
(R/1,+), p is the canonical group homomorphism. p preserves products since

p(rs)=1I+rs=(I+r)(I+s)=p(r)p(s).
We can recover I from p by forming the set {r&R|p(r)=0g,}. In
general, if we are given a ring homomorphism ¢: R— S, we define

ker(p)={reR|p(r)=0s}.
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Ker(g) is just the kernel of ¢ considered as a homomorphism of abelian
groups, and it is therefore clear that ker(p) is an additive subgroup of R.
Furthermore, if r€ker(p) and x€ R, then xr and rx are both in ker(¢),
because, for instance, @(xr)=@(x)p(r)=¢(x)-0,=05. Hence ker(¢) is an
ideal.

The following result rounds out the picture by telling us to what extent ¢
can be recovered from ker(p).

THEOREM 185 (Fundamental theorem on ring homomorphisms) If ¢: R->7 is
an onto homomorphism, then R /ker(p)=7. Moreover, if p is the canonical
homomorphism from R onto R/ker(gp), then there is an isomorphism
@: R /ker(p)—T such that gop=g.

PROOF. Just as for groups: Define ¢: R /ker(¢)— T by

p(ker(p) +r)=q(r).
This mapping is well defined, one-to-one, onto, and a homomorphism of
additive groups by the proof of the Fundamental Theorem on Group Homo-
morphisms. It preserves products since

@([ ker(p) +r][ker(p) +5]) = g(ker(p) + r5) = p(rs)
=g(r)o(s)=g(ker(p) + r)p(ker(p)+s5). O

If : R>T is an onto homomorphism, then we have a one-to-one
correspondence between the subrings of 7" and the subrings of R that contain
ker(p), with ideals corresponding to ideals. Namely, to a subring S Dker(¢)
we associate the subring @(S) of T. It is easy to check that this establishes a
one-to-one correspondence—everything goes just as it did for groups. If S is
an ideal, then @(S) is an ideal because ¢ is onto; conversely, if ¢(S) is an
ideal, then S is an ideal because S= ¢~ '(¢(S)), as follows from the fact that
S Dker(g).

Examples

1. Let n> 1, and let @:(Z, +,-)—>(Z,,®,O) be given by ¢(x)=Xx, the
remainder of x (mod n). Then ¢ is an onto homomorphism, and ker(¢)=nZ,

SO
(Z,+,)/nZ=(Z,, ®,0).

The distinct subrings of (Z,, @, ©) are {d,),...,{d, ), where d,,...,d, are
the positive divisors of n (Corollary 5.6). The distinct subrings of (Z, +, -)
that contain nZ are d,Z,d,Z,...,d, Z, so the correspondence between the
subrings is very transparent in this case.
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2. Let p: Z®Z—Z be given by ¢[(m,n)]=n. Then ¢ is onto and ker(gp) is
the ideal {(m,0))mE€Z}. We have

(ZDZ)/ker(p)=Z.

The ideals of Z@Z that contain ker(g) correspond in an obvious way to the
ideals of Z.

3. Let R be the ring of real-valued functions on R, under pointwise
operations. Fix some real number » in mind, and define a mapping ¢,: R—R
by

e, (f)=A(r).
¢, is an onto homomorphism, and ker(¢,)=1,={ f € R| f(r)=0}. Since
R /ker(g,) =R

and R is a field, Theorem 17.7 tells us that I, is maximal in R for every ». We
verified this by more heavy-handed means in Example 3 on p. 173.

The proofs of the second and third isomorphism theorems offer no
surprises, so we leave them as easy exercises.

THEOREM 18.6 (Second isomorphism theorem for rings) Let S be a subring of
R and let I be an ideal. Then S N1 is an ideal of S, and

S/(SNI)=(S+1I)/I.
Here S+ 7 is the subring {s+ x|s€ S, xEI} of R.

THEOREM 18.7 (Third isomorphism theorem for rings) Let / and J be ideals of
R and suppose I CJ. Then J /I is an ideal of R/ and
R/I

With these theorems stated, we have now remodeled all our basic
machinery so that it is suitable for use in ring theory. We will proceed to
some new results, each of which involves ring homomorphisms.

We first want to show that every field F has a subfield that is isomorphic
either to Q or to (Z,,®, ©) for some prime p. In fact, more is true: F has
exactly one such subfield. We are interested in this result because it provides
a useful classification of fields. The nature of the solutions of equations
involving elements of F can be heavily influenced by whether it is Q, on the
one hand, or some Z,, on the other, which is isomorphic to a subfield of F.

THEOREM 188 Let F be a field. Then the intersection of all the subfields of F is

itself a subfield of F, and is isomorphic either to Q or to Z, for some prime p. This
is the only subfield of F that is isomorphic either to Q or to some Z,
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PROOF. Let K be the intersection of all the subfields of 7. As in Exercise 5.14 we
see that X is a subfield of F. K is contained in every subfield of F, and the
multiplicative identity element e of F is in K. (We use “¢” instead of “1” or “1”
for clarity in what follows.) We consider two cases depending on the order o(e)
of e in the group (F,1).
Case 1: If o(e) is infinite then S = {me(ne)™ | m, n € Z, n# 0} c K. It is easy to
verify that S is a subfield of F, so we have K — § and therefore X = S. The
mapping ¢ : Q »K given by ¢ (m/n) = me (ne)™ is a well-defined isomorphism.
Case 2: If o(e) = n € Z" then it follows from Exercise 16.28 that n is a prime
number p. If §= {0 e, 2e,..., (p — 1) e} then S C K. S is a subring of F' isomorphic
to the field Z,, so S is a subfield of F and thus K S. So K=Sand K = Z,,

To prove the uniqueness assertion, suppose L is a subfield of Fand y: L - Q
is an isomorphism. Then y(e) =1, so since Q= {m/n|m,n e Z, n= 0},

L={me(me)'|mne Z,nz0}=K

(because ofe) is infinite in (F, +)). Likewise, if L = Z,, for some prime p then L =
{O0g e, 2e,...,(p—1)e}=K 0O

The subfield of F that is isomorphic to @ or some Z, is called the prime
subfield of F. If F is itself either @ or some Z,, then F is its own prime
subfield, and @ and the Z,’s are accordingly called prime fields.

If the prime subfield of F is isomorphic to Q, equivalently if 1, has
infinite order in (F, +), we say that F is of characteristic 0. Thus Q, R, and C
are all of characteristic 0. If the prime subfield of F is isomorphic to Z,, we
say that F is of characteristic p. It is clear, for example, that every finite field
must be of characteristic p for some prime p.

Our next two results are examples of what are called embedding theorems,
in that they state that a ring of some kind can be embedded in a ring of some
other kind. To say that R can be embedded into S is simply to say that there
is an embedding (monomorphism) from R into S, that is, R is isomorphic to a
subring of S. The usual purpose of an embedding theorem is to remedy some
defect of a given ring by embedding the ring in a bigger ring, where things are
better. For example, we know that some rings lack multiplicative identities.
But:

THEOREM 189 Let R be a ring. Then R can be embedded in a ring with unity.

PROOF. Let S={(r,n)|r€ R, n€Z}, with operations defined by
(r,n)+(s,m)=(r+s,n+m)
and

(r,n)(s,m)=(rs+ ns+ mr,nm).
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It is clear that § forms an abelian group under addition, and a routine
calculation shows that multiplication is associative and the distributive laws

hold. Thus S is a ring.

We map R—-S by ¢@(r)=(r,0). ¢ is clearly one-to-one, and ¢ is a

homomorphism because

@(r+s)=(r+s,0)=(r,0)+(s,0)=@(r) + ¢(s),
and
@(rs)=(r5,0)=(r,0)(5,0) = p(r)p(s).
S has unity (0, 1), since
(r,n)(0g, 1)=(r -0 +n0g + 1r,n)=(r,n)
and
(Og, D)(r,n)=(0g:r+ 1r+n0g,n)=(r,n). 0O

Notice that if R already had a unity 1, to begin with, then 1, is mapped
to (1g,0), which is not the unity in S. In this case the subring {(r,0)|r€ R} of
S has a unity different from that of S.

Our next result is motivated by a desire to provide a multiplicative inverse
for every nonzero element of a commutative ring R with unity, that is, to
embed R into a field. Of course this is not always possible, for if R is going to
be isomorphic to a subring of a field, then R cannot contain any nonzero
zero-divisors. Thus the best we could hope for would be that every integral
domain could be embedded in a field. And this is precisely what we get.

THEOREM 18.10 If D is an integral domain, then D can be embedded in a
field.

PROOF. The field we seek must at least have elements corresponding to a/b
(that is, ab™"), for all a,b € D, b#0,. We attempt to build it by starting with
the set S={(a,b)la,bE D, b0y}, in the hope that (a,b) will turn out to be
the element corresponding to a/b.

One problem arises immediately, in that if (a, ) is going to correspond to
a/b, then for x#0,, (xa,xb) should correspond to xa/xb, which should be
the same element as a/b. In other words, S contains more than one
contender for the role of a/b. We overcome this difficulty by introducing an
e%t_livalence relation on §, so as to lump all these contenders together into one
object.

Define (a,b)R(c,d) iff ad= bc (or, intuitively, a/b=c/d). R is reflexive
because (a,b)R(a, b) says ab= ba, which is true because D is commutative. If
(a,b)R(c,d), then ad=bc, and so cb=da, and (c,d)R(a,b). Thus R is
symmetric. Finally, if (a,b)R(c,d) and (c,d)R(e,f), then

ad= bc and cf=de; [18.1)
we wish to conclude that af= be, that is, (a,b)R(e,f). Multiplying the equa-
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tions in [18.1] yields adcf= bede, whence acf= bce since d#0,, and D 1s a
domain. If ¢#0, we get af=be, as desired. If ¢=0, then [18.1] gives us
a=0, and e=0,, so again af = be.

Now let F be the set of equivalence classes under R:

F={(a,b)|(a,b)ES}.
We introduce addition and multiplication on F by defining
(a,b) + (c,d) = (ad+ bc,bd)
[because we want a/b+c¢/d=(ad+ bc)/bd], and
(a,b) - (¢,d) = (ac,bd)

[because we want a/b-c/d=ac/bd]. In both cases we use the fact that
bd+#0,, to guarantee that the answer is in F. Both operations are well defined
in that the choice of representatives for the classes involved does not affect
the answers (Exercise 18.28).

We claim now that F is a field. First we show that F is an abelian group
under addition. Associativity demands that

[ (@,6) + (c.d) |+ (e.f) = (a,b) +[ (¢,d) + (e.f) ].

This reduces to

(ad+ bc,bd) + (e,f) = (a,b) + (cf+de,df) , or
((ad+ be)f+(bd)e, (bd)f) = (a(df)+ b(cf+ de),b(df)) ,

which we know is true because we have the same element of S on both sides.
The additive identity is (0,5), for any nonzero b€ D:

(c.d) + (0,b) = (cb+d0,db) = (c,d) .

[Note that the choice of b does not affect the class of (0,4).] The inverse of

(c,d) is (—c,d), and addition is commutative since
(a,b) + (¢,d) = (ad+ bc,bd)
= (cb+da,db) = (c,d) + (a,b) .

To complete the verification that F is a field, we must show that
multiplication is associative and commutative (but these are obvious), that the
distributive laws hold (Exercise 18.29), that F has a multiplicative identity
distinct from the additive identity [(b,5) is it, for any nonzero b€ D], and
that every nonzero element of F is a unit. For this last step, note that if
(¢,d)#0g, then ¢#0,, so (d,c) EF and

(c,d)- (d,c) = (cd,dc) =1;.
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We have now concocted the field F, and all that remains is to embed D in
F. The way is clear: let

o(d)=T31,) .
@ is one-to-one since if ¢#d then (c¢,1)#(d,1). ¢ is a homomorphism since

gc+d)=(c+d,1) = (c,1) + (d,1) =9(c) +9(d),

and

p(cd)= (cd,1) = (c,1)- (d,1) =p(c)p(d).
This completes the proof. []

The field constructed in this proof is called the field of quotients of D, or,
more briefly, the quotient field of D. Note that every element of the quotient
field can be written in the form

(a,0) = (a,1p) (15,6) =g(a)[ 9(6)] ",

for some a,b€ D, b#0,,.

This embedding theorem (or any embedding theorem, for that matter)
becomes more convenient to use if we modify it in the following way. Let
¢@: R—S be an embedding. We construct a ring S’ that is isomorphic to S and
actually contains R (rather than just some ring isomorphic to R) as a subring.
Let S’ be obtained from § by replacing ¢(r) by r, for each r ER:

The shaded portion is S —@(R) = 8" —R.

Let ¢ be the following one-to-one onto mapping from §’ to §:
_[o(x) ifxER,
¥{x) [ x ifxeS—R
We define addition and multiplication on S’ by

x+y=‘p_l('il"(x)+4’(y))! and [18.2]
xy =y~ (Y(x)¥(»))
for all x,y € §'. (The operations on the right are carried out in the known ring
S. Note that if x and y are both in R, then the operations on the left coincide
with the original operations in R.) The equations in [18.2] give us

Y(x+y)=Y(x)+¥(y)
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and

Y(x) =9 (x)Y( ).
Thus ¢ is an isomorphism from S’ onto S, and therefore S’ is a ring and is
isomorphic to §.

Since R is a subring of §’, we say that S is an extension of R. Thus
Theorem 18.9 tells us that any ring actually has an extension which is a ring
with unity, and Theorem 18.10 says that any integral domain has an exten-
sion which is a field. In particular, we can regard the quotient field of a
domain D as an extension of D, and we thus obtain the following sharper
version of Theorem 18.10.

THEOREM 18.11 Let D be a domain. Then D has an extension F which is a
field, such that every element of F can be written in the form a / b for some
a,beD, b+#0,,.

It can be shown that if F, and F, are fields, both having the properties
described in Theorem 18.11, then there is an isomorphism ¢: F,— F, such that
¢(d)=d for every d € D (see Exercise 18.30). For this reason, any such field
is called a quotient field of D.

In particular, the quotient field of Z is Q. Thus one very concrete benefit
of the proof of Theorem 18.10 is that it shows us how to construct the
rational numbers from the integers.

EXERCISES

18.1 Which of the following are ring homomorphisms?
a) ¢: R—>R by ¢(x)=|x|
b) ¢: C—C by @(a+ bi)=a—bi
c) p:C-»R by p(a+ bi)=a

d) Let R={a+bV2 |a,bEZ) and S={a+bV3 |a,bEZ}. Let p: RS be
given by g(a+bV2 )=a+bV3 .

€) Llet R be the ring of polynomials with real coefficients, and let p: R—R be
given by @(p(x))=p’(x), the derivative of p(x).
18.2 Consider the mapping @: Zy—Z given by ¢(x)=2x, for x=0,1,2. Is ¢ a ring
homomorphism? How about the mapping @(x) =remainder of 4x (mod 6)?
18.3 Determine whether the rings 27 and 3Z are isomorphic.

18.4 Let X be a nonempty set. Let R=(P(X), 4, N). For each subset Y of X, define
a function fy: X—(Z,, @, ©) by

wo={5 iy

Show. that the set { fy|Y C X'} forms a ring of functions on X, under pointwise
addition and multiplication (mod 2), and that this ring is isomorphic to R.
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185 Find all homomorphisms from (Z, +, +) into itself.
18.6 Show that the ring {a+ bV2 |a,bEZ) has precisely two automorphisms.
18.7 What are all the quotient rings of Z,?
18.8 Prove Theorem 18.1 (i) and (iv).
18.9 Prove Theorem 18.2 (iii).
18.10 Prove Theorem 18.3.
18.11 Prove Theorem 18.4.

18.12 Suppose F is a field. Determine all the homomorphic images of F, up to
isomorphism. (That is, determine for which rings R there exists an onto
homomorphism @: F>R.)

18.13 a) Let ¢: R—S be a homomorphism, and let / be an ideal of R such that

I Cker(g). Show that ¢ induces a homomorphism from R/ into S.

b) Let ¢: R— S be a homomorphism, let / be an ideal of R, and let J be an ideal
of S such that (/) CJ. Show that ¢ induces a homomorphism from R/ [
into S/J.

c) Let : R— S be an isomorphism, and let 7 be an ideal of R. Show that ¢
induces an isomorphism from R/ 7 onto S/¢(J).

18.14 Let ¢: R— S be a homomorphism, and suppose S has a unity, 1. Show that
@~ '({1g)) is an ideal in R iff S is trivial.
18.15 Let ¢: R— S be a homomorphism. Show that ¢ is one-to-one iff ker(@)={0g}.

18.16 Let R be a ring, and let I and J be ideals of R such that 7 +J = R. (See Exercise
17.33 for the definition of I+ J.) Show that R/(INnJ)=R/IDR/J.

18.17 Let I be an ideal of R and J an ideal of §. Show that
(R®S)/(I®J)=R/IDS/J.

18.18 Let 7 and J be ideals of R such that /+J=R and I nJ={0}. Show that
R/1=J.

18.19 Suppose R has ideals 7 and J such that /+J =R and ] nJ = {0}. Show that
R=1&J. Generalize to more than two summands.

18.20 Prove Theorem 18.6.

18.21 Prove Theorem 18.7.

18.22 Let ¢: R— S be a homomorphism.
a) Show that if J is a prime ideal in S then ¢ ~'(J) is a prime ideal in R.

b) Show that if / is a prime ideal in R, then ¢(/) need not be a prime ideal in
8§, even if @ 1s onto. Show that @(7) will be prime, however, if ¢ is onto and

ker(p)C 1.
18.23 Let ¢: R— S be an onto homomorphism.
a) Show that if J is a maximal ideal in S then @ ~'(J) is a maximal ideal in R.
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b) Show that if 7 is a maximal ideal in R, then (/) is maximal iff it is proper,
and that it is maximal if ker(¢)C /.
18.24 a) Let F be a field and let Aut(F) denote the set of ring automorphisms of F.
Show that Aut(F) forms a group under composition of functions.
b) Let K be a subfield of F. Show that the set
{pE€Aut(F)|p(k)=k for every kEK }
is a subgroup of Aut(F).
18.25 Let R be a ring. Does the set of automorphisms of R form a ring under addition
and composition?

18.26 Prove that multiplication is associative and the distributive laws hold in the ring
S of Theorem 18.9.

18.27 Prove that if R is a commutative ring, then R can be embedded in a
commutative ring with unity.

18.28 Prove that the operations introduced in the proof of Theorem 18.10 are well
defined.

18.29 Prove the distributive laws for the field F of Theorem 18.10.

1830 a) Let D be a domain, and let F be a field extending D, such that every element

of F can be written in the form ab ', with a,b € D. Let K be a field, and
let ¢: D—K be an embedding. Show that there is a unique embedding
¥: F- K such that y(d)= ¢(d) for every d € D. (We say that y extends ¢.
In the sense of this result, the quotient field of D is the smallest field
extending D.)

b) In particular, let X be a field extending D, and suppose K also has the
property that each of its elements can be written as ab ', with a,b € D.
Show that there is an isomorphism ¥ from F onto K such that y(d)=d for
everydeD.

1831 A field F is said to be orderable if F has a subset F* with the following
properties:
i) F* is closed under addition and multiplication;
i) For every x € F exactly one of the following holds:
-x€EF*, x=0, or x€F*.

If F is orderable, and we have chosen a subset F* with the indicated properties,
then F is said to be ordered, and F * is called the set of positive elements of F.

a) Suppose that F is ordered, with set of positive elements F*. Show that
x2EF* for every nonzero x € F. Show that, in particular, 1€ F*.

b) Show that every orderable field has characteristic 0.
¢) Show that C is not orderable.

1832 Let F be an ordered field with set of positive elements F *. For x,y € F, define
x < y (equivalently, y > x) to mean that y — x € F *. Show that, for all x,y,z € F:
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a) exactly one of the following holds:
x <y, x=y, or x>y,
b) if x<y and y < z, then x < z;
¢) if x>0 and y >0, then x+y >0 and xy >0;
d) if x<y, then x+:z<y+z;
e) if x<y and z >0, then xz < yz, while if x <y and z <0, then xz > yz.
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POLYNOMIALS

We have all been familiar with polynomials since our days in high school
algebra. We are by now accustomed to thinking of them as functions of the
form f(x)=ay+a,x+ -+ +a,x", with x being a variable and the gs being
real constants. In this section we will take another look at them, from the
point of view of abstract algebra.

We shall denote variables by upper-case letters: X, Y,.... If R is a ring,
then by a polynomial in X with coefficients from R we mean an infinite formal
symbol

a0+alX+02X2+03X3+ R

where each g; € R and there is some 7 such that ;=0 for all i >n. The g;’s are
called the coefficients of the polynomial, and g, is called the coefficient of X".
If a,70 and ;=0 for all i >n, then we usually write the above polynomial
more simply as

ay+a X+a,X2+ - +a, X",

but we still regard it as having a coefficient g, for every j > 0. This approach is
often very convenient. For instance, it makes it easy for us to say what we
mean by two polynomials being equal. If

f(X)=ay+a X+a,X*+---  and  g(X)=by+bX+bX*+--.

are polynomials with coefficients from R, then we say that they are equal, and
we write f(X)=g(X), if a,= b, for every i. Notice that we don’t have to worry
about one of f(X) or g(X) having more coefficients than the other (for
instance, extra O-coefficients) because we regard them both as having a
coefficient for each power of X.

191
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Observe that a polynomial f(X) with coefficients from R gives us a
function on R, obtained by plugging elements of R in for X and interpreting
addition and multiplication as the operations in R. However, our point of
view at the moment is that f(X) is a formal expression, and not the function
this expression induces on R. This distinction is a significant one, because it is
possible for two different polynomials to induce the same function on R. For
example, if R is (Z,, ®, ©), then both 0+0X+0X2+--- and O+ 1X+1X2
give us the function that maps every element of R to 0.

In denoting polynomials, we usually omit terms with coefficient 0,
wherever they occur. For instance, a,+0X +a,X? can be written as a,+
a,X?. On the other hand, if R is a ring with unity, then we usually do not
bother to write 1; when it occurs as a coefficient. Thus if we are considering
polynomials with coefficients from Z,, then we write X+ X2 in place of
1IX+1Xx2

We denote the set of all polynomials in X with coefficients from R by
R[X]. The elements of R[X] are also sometimes called polynomials over R.

We turn R[X] into a ring by introducing the natural addition and
multiplication. If

f(X)=ay+a,X+a,X*+--- and  g(X)=by+bX+b,X + -+,
then we add f(X) and g(X) by adding corresponding coefficients:

We multiply just as we did in high school algebra: f(X)g(X)=cy+c, X+
¢,X?+ - -+, where for each n,
Cﬂ=a0bn+albn__|+azbn__2+ ves d,,_lbl'l'a,,bn.

Thus the product is obtained by multiplying everything out, using the rule
aX'bX’=abX'*/, and then collecting terms that involve the same power of
X. The product is indeed a polynomial over R, because there exists n such
that ¢, =0 for every i >n. Specifically, if @,=0 for all i>m and b,=0 for all
i>1, then we can take n=m+ /. For with this choice of n, each term g;b; in
the expression for ¢,, kK >n, must have i +j >m+ [, so either i >m or j >, and
therefore either g, =0 or b,=0, whence g,b;=0.

Observe that, under these definitions, a polynomial such as ay+a, X +
a,X* is actually the sum of a,, a,X, and a,X* in R[X]. By the same token, if
R is a ring with unity, so that X € R[X], then a,X? is the product of a,X and
X.

It is not very difficult (but neither is it very exciting) to verify that R[X]
does form a ring under the given operations. We shall forego getting into this,
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and instead take up the more interesting question of which properties of R
carry over to the new ring R[X].

Some things can be seen at once. For instance, if R has unity 1, then
R[X] has unity 14+0X+0X?+---, which we also denote by 1. If R is
commutative, then so is R[X], for if

f(X)=a,+a, X +a,X*+ - and  g(X)=by+bX+b,X*+ -,
then the coefficient of X" in f{X)g(X) is
agb,+ab,_+---+a,_b,+a,b,
and the coefficient of X" in g(X)f(X) is
boa,+bja, +--- +b,_a,+b,a,
These are the same, by the commutativity of multiplication in R.

What if R is a domain? Must R[X] be one too? The answer is yes,
because if f(X) and g(X) are as in the last paragraph, and neither one is the
zero polynomial

0+0X+0X24---,

then we can let n be such that a, %0 and @,=0 for all i >n, and let m be such
that b, 70 and b,=0 for all i >m. It then follows that the coefficient of X"*™
in (X)g(X) is a,b,,, which is not 0 since a,,b,, are nonzero elements of a
domain. Thus f(X)g(X) is not the zero polynomial, and it follows that R[X]
is a domain.

Arguments such as the one we have just given can be expressed more
succinctly if we allow ourselves some additional terminology. If f{X)€ R[X]
is not the zero polynomial, then we can write

f(X)=ay+a,X+--- +a,X", wherea,#0.

The integer n is called the degree of f(X), and a,, is called the leading coeffi-
cient. We denote the degree of f(X) by deg (1), or deg (f(X)). Notice that deg (/)
=0 iff /(X) is a nonzero constant polynominal, that is, iff f(X) is the polynomi-
nal a, for some nonzero @y € R. The zero polynominal is not assigned a degree.'

The argument we gave above can now be expressed more precisely by
saying that if R is a domain, and f(X),g(X )& R[X] have leading coefficients
a, and b,, respectively, then f(X)g(X) has leading coefficient a,b,,. As a
consequence, we have

*No confusion should result from using the same symbol to denote both a5 € R and the constant
polynomial a,. In fact, R is isomorphic to the subring of R[X] consisting of all the constant
polynomials, and we often think of R itself as a subring of R[X].
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THEOREM 19.1 (Degree rule) If R is a domain and f(X),g(X) are nonzero
elements of R[X], then

deg(AX)g(X)) = deg(AX)) + deg(g(X)).

The assumption that R is a domain is crucial here. For instance, in the
nondomain Z,, we have (2X)(3X + 1)=2X, or, even worse, 2X)3X +3)=0.

We have seen above that a number of properties will always be passed on
from R to R[X]. One property that will obviously not be passed on is that of
being a field. For if F is a field, then the element X is clearly not a unit in
F[X]. :

Nevertheless, it does seem reasonable to expect that assuming F to be a
field will have a beneficial impact on F[X], beyond that of making it a
domain. Much of what can be said about F[X] depends on the following
analogue of the division algorithm for Z.

THEOREM 192 (Division algorithm for F[X]) Let F be a field, and let
f(X),g(X)E F[X]. If g(X)+0, then there exist g(X),7(X)€E F[X] such that
f(X)=q(X)g(X)+r(X)
and either r(X)=0 or deg(r) <deg(g).
PROOF. If f(X)=0, or if f(X)#0 and deg(f) <deg(g), we write
f(X)=0-g(X)+f(X),
and we are done.
We now proceed by induction on deg( f). If deg( f)=0, then by the above

we are done unless deg(g)=0. But in this case both f(X) and g(X) are
constant polynomials—say, f(X)=a,, g(X)=b,—and thus we can write

f(X)=(agb5 ")g(X)+0.

Note that by ' exists because F is a field and b,70.
Now assume the result has been proved for deg(f) <n, and suppose

fiX)=ay+aX+---+a,X", g(X)=by+bX+---+b, X", witha,b,70.

If n<m then we are done by the special case handled at the outset. Otherwise
we write '

f(X)=a,b, 'X"""g(X)+h(X),

where A(X)=0 or deg(h)<deg(f). If h(X)=0, we have what we want; if
h(X)#0, then the inductive hypothesis tells us that we can write

h(X)=q(X)g(X)+r(X), with r(X)=0 or deg(r)<deg(g).
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Thus
f(X)=[a,b,'X"""+q(X)] &(X)+r(X),
and we are done. []

If you think about it, this proof really boils down to the “long division”
of polynomials, a process you have been familiar with for years. It is not
difficult to show that the quotient ¢g(X) and remainder r(X) are uniquely
determined by f(X) and g(X).

We will see in Section 20 that Theorem 19.2 has a powerful impact on the
ideals of F[X]. At the moment, we want to use a very special case of the
theorem to clarify the distinction between “polynomials as formal symbols”
and “polynomials as functions.” We remarked above that if F is the finite
field Z,, then the nonzero polynomial X2+ X (=X+ X?) induces the zero
function on F, that is, a’>+ a=0 for every a € F. Theorem 19.2 makes it easy
to see that this kind of thing cannot happen if £ is an infinite field.

If Fis a field and f(X)=ay+a,X+--- +a,X" € F[X], then an element
a € F is called a root (or zero) of f(X) if f(a)=0, that is, ag+ aa+--- +a,a"
=0 in F. Thus, above, each element of Z, is a root of X2+ X.

THEOREM 193 Let F be a field, a€ F, (X)€ F[X]. Then f(a)=0 iff X—a
divides f(X) in F[X] (i.e., there is h(X)E F[X] such that f(X)=(X — a)h(X)).

PROOF. If f(X)=(X —a)h(X), then f(a)=0-h(a)=0 (see Exercise 19.12). Con-

versely, assume that f(a)=0. By Theorem 19.2, we can write
AX)=(X—a)q(X)+r(X),

where either r(X)=0 or deg(r)<deg(X—a). In any case, r(X) must be a

constant here, because deg(X —a)=1. Now since f(a)=0, we have (again by
Exercise 19.12)

0=f(a)=(a—a)q(a)+r(a)=r(a).
Since r(X) is constant, this means r(X)=0, so (X)=(X—a)q(X). (]

COROLLARY 194 Let F be a field, f(X) a polynomial of degree n over F. Then
f(X) has at most n distinct roots in F.

PROOF. By induction on n. If n=0, then f(X) is a nonzero constant poly-
nomial, hence has no roots in F.

Now suppose n=m+ 1, and the result is known for n= m. Suppose f(X)
has m+2 distinct roots in F, say a,,a,,...,a,,,,. If we write

f(X)=(X—a)h(X),
then, since F is a domain, each of a,,...,a,,,, must be a root of either X —a,
or h(X). In particular, a,,...,a,, ., are m+ 1 distinct roots of ~2(X). Since A(X)
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has degree m, this contradicts the inductive hypothesis, and completes the

proof. [J
COROLLARY 195 Let F be an infinite field, S an infinite subset of F. If
f(X)E F[X] and f(s)=0 for every s € S, then f(X) is the zero polynomial.

PROOF. If not, then f(X) has degree n for some n>0, so f(X) has at most n
roots and cannot have all the elements of S as roots. []

COROLLARY 196 Let F be an infinite field, S an infinite subset of F. Suppose
AX),g(X)E F[X] and f(s)=g(s) for every s€ S. Then f(X)=g(X), that is,
f(X) and g(X) are the same polynomial.

PROOF. Apply Corollary 19.5 to the polynomial f(X)—g(X). (]

Examples

1. Two polynomials in R[X'] induce the same function on R iff they are
the same polynomial.

2. Corollary 19.4 may fail if F is not a field. For instance, let R=2Z,DZ,,
and let f(X)=X2+ X € R[X]. Then deg(f)=2, but each of the four elements
of R is a root of f(X).

Corollary 19.4 (and, with it, 19.5 and 19.6) does hold true for any domain
R, however. See Exercise 19.16.

3. Corollary 19.4 says that if deg(f)=n, then f(X) has ar most n roots in
F. It may have fewer; indeed, it may have none. For example, the polynomial
X?+1 in R[X] has no roots in R.

The problem of trying to determine the roots of a polynomial in R[X] is
one that we all encountered in our earliest experience with polynomials. One
of the standard methods for dealing with this problem is, of course, to write
the given polynomial as a product of simpler factors, and then to find the
roots of all the factors. You may remember that in R[X], every nonconstant
polynomial can be written as a product of factors that either have degree 1, or
have degree 2 and are irreducible in the sense that they cannot be factored
any further (Exercise 19.5).

DEFINITION Let F be a field. A nonconstant polynomial f{X) &€ F[X] is called
irreducible in F[ X] (or irreducible over F) if f cannot be written as the product
of two nonconstant polynomials in F[X].

In general, F[X] may contain irreducible polynomials of degree higher
than 2. It is still true, however, that every nonconstant polynomial can be
written as a product of irreducible factors.
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THEOREM 19.7 Let F be a field, and let f(X) be a nonconstant polynomial in
F[X]. Then there exist irreducible polynomials f,(X),...,f(X) in F[X] such
that f(X)=f(X)f;(X) - fi(X).

PROOF. By induction on deg( f). If deg(f)=1, then f(X) is itself irreducible,
and we are done. Now suppose deg(f)=n, and the theorem is proved for all
polynomials of degree less than n. If f(X) is irreducible, we are done.
Otherwise, we can write f{X)=g(X)h(X), where g(X) and h(X) each have
degree at least 1. By the degree rule, g(X) and h(X) each have degree less
than n, so by the inductive hypothesis we can factor g(X) and A(X) into
irreducible factors. This yields the desired factorization of f(X). [J

This proof of the existence of a factorization into irreducibles is very
easy. What is not so easy is to actually find a factorization for a given
polynomial, or even to determine whether the polynomial is itself irreducible.
There are not many simple criteria that can be used in this connection.

For polynomials of degree 2 or 3, reducibility 1s actually equivalent to the
existence of a root:

THEOREM 198 Let F be a field, and let f(X) € F[X] have degree 2 or 3. Then
f(X) is reducible in F[X] iff f(X) has a root in F.

PROOF. If f(X) has a root a € F, then Theorem 19.3 shows that we can write
f(X)=(X —a)h(X), where deg(h)=1 or 2. Thus f(X) is reducible. Conversely,
if f(X) factors as the product of two nonconstant polynomials, then one of
these has degree 1 (since deg( f)=2 or 3). This factor has a root in F, which is
also a root of f(X). O

The message of Theorem 19.8 is that we should sometimes use roots to
determine reducibility, rather than the other way around.

Examples

1. The polynomial X?+1 is irreducible in R[X], because it has no roots
in R. Of course, X%+ 1 factors in C[X], as (X — i)(X + ). This simple example
illustrates the fact that the irreducibility of f(X)& F[X] depends as much on
F as it does on f.

2. Consider the polynomial f(X)=X>—X2+2X—2 in Z,[X]. It is clear
that 1 is a root of f(X), and we find by long division that

f(X)=(X—-1)(X*+2).
Since 1 is again a root of X%+ 2, we obtain

AX)=(X—-1)(X—=1)(X+1).
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We could also have factored X2+2 by observing that 2=—1 in Z,, so
X 4+2=X2-1=(X-1)(X+]).

On the other hand, the polynomial g(X)=X?+2X+1 has no roots in Z,,
since g(0)=g(1)=g(2)=1. Thus g(X) is irreducible in Z,[X].

3. Consider the polynomial f(X)=X’+7X2+3X+1 in Q[X]. By Ex-
ercise 19.1, the only possible roots of f(X) in Q are + 1. Since neither of these
works, f(X) is irreducible in Q[X].

4. It is very important to remember that Theorem 19.8 talks only about
polynomials of degree 2 or 3. For instance, the fourth-degree polynomial
(X%+1)(X 2+ 1) is manifestly reducible in R[X], but it has no roots in R.

In most cases the information provided by Theorem 19.8 is grossly
inadequate, and we have to use other methods to try and determine irreduc-
ibility. We will now focus our attention on developing some additional
techniques that can be used in dealing with the important special case of
irreducibility in Q[X].

Actually there is a method, due to Leopold Kronecker (1823-1891), that
will determine the reducibility or irreducibility of any polynomial in Q[X] in
a finite number of steps. Unfortunately, the use of Kronecker’s method
involves a great deal of tedious calculation (“finite” doesn’t mean “small™).
The drudgery can be avoided by using a computer, but rather than discuss
Kronecker’s method we will pursue a couple of simpler criteria that some-
times enable us to see at a glance that polynomials in Q[X] are irreducible.

We can confine our attention to polynomials with integer coefficients,
because if

f(X)= 20/ 4 2 i vmer sy &X"EQ[X]
by b, b, ’
then the irreducibility of f(X) is equivalent to the irreducibility of g(X'), where
g(X)EZ[X] is obtained by multiplying f(X) by the product of the b,’s.

The results we are after depend on the observation that if (X)EZ[X]

and we can write

A(X)=g(X)h(X)
for nonconstant g,h € Q[X ], then f(X) can already be written as the product
of two nonconstant polynomials in Z[X]. To verify this observation, we write
g(X)=(1/0)g*(X)), i(X)=(1/d)[h*(X))], with ¢c,d EZ and g*,h* €Z[X]; we
want to show that we can pull enough common factors out from the
coefficients of g* and the coefficients of 4#* to cancel out 1/¢ and 1/4.

We thus define the content 'of a nonzero polynomial in Z[X] to be the
g.c.d. of its coefficients; we call a polynomial primitive if its content is 1. The
essential fact about these concepts is
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LEMMA 199 (Gauss’ Lemma) The product of two primitive polynomials is
primitive.
PROOF. Suppose

gi(X)=ay+a, X+ ---+a, X" and A~ (X)=by+b X+ - +b, X"
are two primitive polynomials in Z[X ]. We must show that if p is any prime,
then there is some coefficient of g,(X)h,(X) that is not divisible by p. Let a,
be the highest (i.e., rightmost) coefficient of g, that is not divisible by p (there
is one since g, is primitive), and let b, be the highest coefficient of 4, that is
not divisible by p. The coefficient of X**/ in g,(X)h,(X) is

Cp+ ;= aib,+terms of the form a;b;, where either i >k or j>1.

Since p does not divide g, b, but does divide all the other terms, p does not
divide ¢, ,;, and Gauss’ Lemma is proved. []

We put it to work:

LEMMA 19.10 Let f(X)EZ[X). If f(X) can be written as the product of two
nonconstant polynomials in Q[X], then f(X') can be written as the product of
two nonconstant polynomials in Z[X).

PROOF. As in the discussion preceding the statement of Gauss’ Lemma,
suppose g,h €Q[X] are nonconstant polynomials such that

f(X)=g(X)h(X),
and write g(X)=(1/¢)g*(X), h(X)=(1/d)h*(X), with g*,h* €Z[X]. We can
now write
g*(X)=content(g*) -g,(X) and h*(X)=content(h*) -h,(X),
with g, and A, primitive. Therefore,

f(X) — Content( 8'3;0ntent(h') g](X)hl(X )’

and since g, and A, have the same degrees as g and A, we will be done if we
can show that the constant factor on the right-hand side is in Z. Now
cd-f(X') =content( g*)content(h*)g,(X)h,(X),
so, taking contents on both sides,
|ed |- content( f) = content( g*)content(h*)content( g, h,).

By Gauss’ Lemma, content (g,4,)=1, so we obtain
content( g*)content(h*)
|ed|

Since content( f) EZ, we have what we want. []

content( f) =

We now reap the first benefit of the preceding discussion by stating a
criterion for irreducibility in @[X] due to Ferdinand Eisenstein (1823-1852).
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Eisenstein was a prize pupil of Gauss, and his result is very much in the spirit
of Gauss’ Lemma.

THEOREM 19.11 (The Eisenstein Criterion) Let (X)=a,+a,X+--- +q,X"E
Z[X ], and suppose p is a prime such that

p‘acl!pialv “"Planul’ p’{/am and Pz*ao-
Then f(X) is irreducible in Q[ X].

PROOF. If not, then by Lemma 19.10 there are nonconstant g(X),h(X)EZ[X]
such that f(X)=g(X)h(X). Say
g(X)=by+b X+ - +b, X"  h(X)=cytc, X+ - +c Xk
with 1<m, k<n.
Then byc,= ay, so since p|a, but pfa, exactly one of by,c, is divisible by p.
Say p|by,pfc,. There is some b; that is not divisible by p; in fact, since
b,c,=a,,ptb,. Let b, 1<r<m, be the first b, from the left that is not
divisible by p. Consider
a,=byc,+bic,_,+ - +b.c,
The last term in this sum is not divisible by p, since p/b, and pjc,. But every

other term is divisible by p, by the choice of b,. Thus p/}a,. Since r <m <n, this
contradicts the given assumptions about p. []

Examples

1. The polynomial 2X°+9X*+3X%+15X +12 is irreducible in Q[X],
because the prime 3 divides 9, 3, 15, and 12, but not 2, and 3%}12.

2. The polynomial X2—2 is irreducible in @Q[X], since 2|—2, 2}1, and
22f—2. In particular, X*—2 has no root in @, so we have proved that V2 is
not a rational number.

3. Eisenstein’s Criterion does not apply to the polynomial X*+ 1. This
does not mean that X *+ 1 is reducible in Q[ X ], however, because Eisenstein’s
Criterion is only a sufficient condition for irreducibility. It isn’t a necessary
condition, and in the present case, X 4+1 is in fact irreducible in Q[X]. We
can see this by supplementing Eisenstein’s Criterion with a simple trick.
Namely, if X*+ 1=£(X)g(X) in Q[X], then

(X+1D*+1=,X+1)g(X +1).

That is, the factorization remains if we replace X by X+1. Thus the
reducibility of X*+ 1 would entail the reducibility of (X + 1)*+1. But

(X+1D)'+1=X%4+4X>+6X2+4X +2,
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to which Eisenstein’s Criterion does apply, with p=2. Hence X*+1 is
irreducible in Q[X].

4. Continuing the last example, note that in R[X] we have

X4+ 1=(X2=V2X+1)(X2+ V2X+1).
Thus X *+ 1 is reducible in R[X], and we see again that the irreducibility of a
given polynomial depends on which field we consider the coefficients to lie in.

Our final criterion for irreducibility attempts to answer questions about
polynomials over Q by looking at polynomials over the finite field Z,, where
p 1s a prime.

THEOREM 19.12 Let p be a prime, and for m €Z, let m denote the remainder of
m (mod p). Let
f(X)=ay+a,X+---+a X"
be a nonconstant polynomial in Z[X], and let
f(X)=a,+aX+---+3,X"€Z,[X]

be the polynomial obtained by reducing all the coefficients of f(X) mod p.
Then if f(X) is irreducible in Z ,[X] and deg( fy=deg()), f(X) is irreducible in
QX].

PROOF. If f(X) 1s reducible in Q[X], then by Lemma 19.10 we can write
AX)=g(X)h(X), with g,hE Z[X] and deg(g) > 1, deg(h) > 1. We thus obtain
f(X)=g(X)h(X) (see Exercise 19.13), and since deg( f)=deg(f) we must have
deg(2)=deg(g)> 1, deg(h)=deg(h)>1. Thus f(X) is reducible in Z,[X],
contrary to our assumption. []

Example The polynomial X3+ 2X +20 is irreducible in Q[X], because if we
reduce its coefficients mod 3, we get X >+2X +2 € Z,[X], which has the same
degree and is irreducible by Theorem 19.8. Note that if we reduce the
coefficients mod 2, we get X > €Z,[X], which is reducible. Thus if we reduce
mod some prime and get a reducible polynomial, it does not follow that the
original polynomial is reducible.

EXERCISES

19.1 Let (X)=ag+a X+ --- +a,X" €Z[X]. Suppose m/nEQ, with (m,n)=1.
Show that if m/n is a root of f(X), then m|a, and n|a,.

19.2 Determine which of the following are irreducible in Q[X].
a) X*+X+36
b) 2X°—-8X?—-6X+20
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¢) 2X43X3415X+6

d) X44+2X3+ X2+ X +1

e) X3+ 14X2+4X+6

f) X*+ X3+ X2+ X+ 1 [This is (X *—1)/(X — 1). Recall how we dealt with
X4+1]

g X -3 +6X+1

hX-x+1
19.3 Write each polynomial as a product of irreducible polynomials over the given
field.
a) 2X3+X%+2, over Z,
b) X34+3X %+ X +4, over Z
¢) X2+5, over Z,
d) X*+ X +2X*+ X +2, over Z,
e) X3+ X2—X—1, over Z,
19.4 a) Suppose that f(x) € R[X] and ¢ = a + bi € C is a root of X). Show that the
complex conjugate ¢ = a — bi of ¢ is also a root of AX).
b) The Fundamental Theorem of Algebra asserts that every nonconstant f{X) € C[X]
has a factorization in C[X] of the form
fX)=cX=c) )X —¢3) - (X —cp)

Assuming this, show that every nonconstant f(X) € R[X] can be factored in R[X]
as a product of irreducible polynomials of degree at most 2.

19.5 Suppose Fis a field and ap, a,, ..., a, € F. Let
fX)=a X"+ +aX+a

and
gX)=aX"+a X" '+ +a, X +a,
Prove that f{X) is irreducible over F iff g(X) is irreducible over F.
19.6 Let (X)=aX?+ bX + c ER[X], a#0. Show that f{ X) is irreducible in R[X]
iff b2 —4ac <0.

19.7 Leta€Z™. Show that X *+ a is reducible in Q[ X iff a =4b* for some integer
b.

19.8 Let f(X),g(X) be nonzero polynomials in Z[X]. Show that
content( fg) = content( f)- content( g).

19.9 Show that the polynomials ¢(X) and r(X) in Theorem 19.2 are uniquely
determined by f(X) and g(X).
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19.10 Let F be a field.
a) What are the units in F[X]?
b) Show that if ¢ € F, ¢ 0, then for any f(X)€ F[X), f(X) and cf(X) generate
the same principal ideal in F[X].
19.11 Let R be a ring. Verify the following for R[X]:
a) the left distributive law;
b) associativity of multiplication.
19.12 Let R be a commutative ring, r € R, (X),g(X)E R[X]. Let A(X)=fiX)+g(X)
and k(X)=f(X)g(X). Show that
Wr)y=f()+g(r) and  k(r)=f(r)g(r).
Thus the mapping ¢,: R[X]—R given by ¢,(f(X))=f(r)is a homomorphism.
It is called an evaluation homomorphism.

19.13 Let R and S be rings and let @ : R — S be a homomorphism. For AX) € R[X], let f*(X)
€ §[X] denote the polynomial obtained by replacing each coefficient a, of AX) by
@(a)). Show that the mapping RLX] — S[X] given by f > f* is a homomorphism.

19.14 Give another proof of Eisenstein’s Criterion, by considering the homomorphism
Z[X]-Z,[ X ] obtained by reducing all the coefficients of polynomials in Z[X]
mod p.

19.15 Let F be a field, let b,,...,b,,, be n+1 distinct elements of F, and let
CpyeeeyCpyq De n+ 1 elements of F (not necessarily distinct).
a) Find a polynomial f(X)€ F[X] such that f{X)=0 or deg(f) <n, and

Jb)=c, 1<i<n+1.

b) Show that there is only one such polynomial.

The result of this exercise is often referred to as the Lagrange Interpolation
Theorem.

19.16 a) Let D be a domain, f(X)€ D[X], a€ D. Show that f(a)=0 iff X — a divides
J(X) in D[X].
b) Show that if f(X) has degree n, then f has at most » roots in D.
¢) Show that if D is infinite and two polynomials f,g in D[X] induce the same
function on D, then f=g.

19.17 Let F be a field. For fiX)=ao+a,X + -+ +a,X" € F[X], define the formal
derivative f'(X) by

f’(X)-al+202X+3a3X2+ oo +na X",
a) Show that if f,g € F[X] and (X )=f(X)+ g(X), then A'(X)=f"(X)+g'(X).

c) Show that if n is a positive integer, then the formal derivative of [ f(X)]" is
n[ X~ 1-f/(X).
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19.18 Let F be a field, AX)EF[X]). If aEF is a root of f, then we can write
AX)=(X-a)"g(X), where m > 1 and X —a does not divide g(X).
a) Show that m is uniquely determined by f and a. That is, if we also have
f(X)=(X —a)Yh(X), where X —a does not divide A(X), then r=m.
b) If m > 2, we say that a is a multiple root of f. Show that a is a multiple root
of f iff f’(a)=0. (See Exercise 19.17.) '

19.19 Let F be a finite field with ¢ elements.
a) Show that a7 '=1 for every a0 in F.
b) Let f{X)€E F[X]. Show that there exists a polynomial f*(X) € F[X] such that
either f* =0 or deg(f*) <gq, and f* induces the same function on F as f does.

¢) Show that if two polynomials f and g, each of degree <g, induce the same
function on F, then f=g.

19.20 Kronecker’'s method. Let f(X ) € Z| X ] be nonconstant. If f is reducible in Q[ X],
then there exist nonconstant g(X),h(X) in Z[ X ] such that f(X)=g(X)h(X).
Thus for m €Z, g(m)| f(m). Use this fact together with the result of Exercise
19.15 to describe a method for deciding in a finite number of steps whether f(X)
is irreducible over Q.

19.21 We have shown that the polynomial X* +1 is irreducible over Q. Prove that X *+1 is
reducible over Z, for every prime p. [You may assume the following facts: If p = 1
(mod 4) then —1 is a square mod p, i.e. b* = —1 (mod p) for some b € Z,; while if p =
7 (mod 8) then 2 is a square mod p and if p = 3 (mod 8) then -2 is a square mod p.]



SECTION 20

FROM POLYNOMIALS
TO FIELDS

In the preceding section we consolidated our position with respect to some
old ideas. We now break new ground, by indicating how polynomial rings
can be used to construct interesting new fields.

Our plan is to take the polynomial ring F[X'] over a known field F and
factor it by a maximal ideal, thus obtaining a field. To see what kinds of
fields we can get this way, we first have to ask ourselves what the maximal
ideals of F[X] are.

Better yet, what are the ideals?

THEOREM 20.1 If F is a field, every ideal of F[X] is principal.

In other words, if 7 is any ideal of F[X], then there is some f(X)€& I such
that 7={ f(X)g(X)|g(X)€E F[X]}. According to our usual aR notation for
principal ideals, we should denote this ideal by f(X)F[X]. However, we will
use (f(X)) instead, because it is less cumbersome.

PROOF OF THE THEOREM. Let I be an ideal of F[X]. If I is the trivial ideal,
then 7=(0). Otherwise, / contains some nonzero elements, and it is clear that
if 1 is to be (f(X)) then, by the degree rule, every nonzero element of / must
have degree > deg(f).

So let S$={deg(g)|gEI and g+0}. Since § is 2 nonempty set of non-
negative integers, it has a smallest element, n. Choose f(X) in I such that
deg(f)=n. It is clear that (f(X))C/, and to establish the reverse inclusion we
use the division algorithm for F[X].

Let g(X)€E 1, and write g(X)=f(X)q(X)+ r(X), where either r(X)=0 or
deg(r)<deg(f). Since g(X)€ I and f(X)g(X)€E€ I, we have

r(X)=g(X)-f(X)q(X)EL

205
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Thus deg(r) <deg(f) is impossible, by the choice of f(X), and we conclude
that 7(X)=0. Therefore g(X)=f(X)q(X)E(A(X)), and I C(f(X)), as desired.

a

If you think back to how we showed that every ideal of Z is principal,
you’ll recall that it essentially came down to an application of the division
algorithm for Z. Thus the parallel between the argument for F[X] and the
argument for Z is inescapable.

THEOREM 20.2 Let F be a field. The ideal (f(X)) is maximal in F[X ] iff f(X) is
an irreducible polynomial.

PROOF. First suppose that f(X) is irreducible. To show that /=(f(X)) is
maximal, we want to show that if J is an ideal of F[X] such that / CJ, then
either /=1 or J= F[X]. By Theorem 20.1, we know that J =(g(X)) for some
g(X)€E F[X], and since (f(X))C(g(X)) we have f(X)=g(X)h(X) for some
h(X). But f is irreducible, so either g or A must be a nonzero constant
polynomial. If g is constant, then J= F[X], and if 4 is constant, then J=1.

Conversely, assume that ( (X)) is maximal. Then f(X) is nonconstant,
since the ideal generated by a constant polynomial is either {0} or F[X], and
neither of these is maximal. To see that f{ X)) must be irreducible, suppose that
f(X)=g(X)h(X) for two nonconstant polynomials g(X) and A(X), each of
degree less than deg(f). Then neither g nor A4 can be in (f(X)), although their
product is. This means that ( f( X)) is not prime, and therefore not maximal, a
contradiction. []

By way of analogy, recall that the maximal ideals of Z are the ideals pZ,
where p is prime.

Example 1 The polynomial f(X)=X?+ X +1 is irreducible in Z,[X), since it
has no roots in Z, Thus (f(X)) is a maximal ideal in Z,[X], and
Z,[X]/(f(X)) is a field. Let us denote it by XK.

To see what K looks like, notice that the coset g(X) determined by any
g(X)EZ,[ X ] 1s the same as that determined by some 7(X) which is either 0 or
has degree < 1. This follows from the fact that we can write g(X)=f(X)g(X)
+ r(X') for some such r(X), so g and r differ by an element of (f{X)). Thus
the elements of K are

00 1, X, and X+1,
the indicated elements being distinct since no two of 0, 1, X, and X + 1 differ
by an element of (f(X)).

Thus K is a field with four elements in it! This is the first finite field we

have seen, other than the prime fields Z,



Section 20. From Polynomials to Fields 207

Actually, there is something else fascinating about K. For in K we have
X2+ X +1=0, that is,
X2+ X+1=0.
Since the subfield (0,1} of K is isomorphic to Z,, we can regard Z, as a
subfield of K, by replacing 0 and 1 by 0 and 1. If we do this, then the above
equation reads
X2+ X +1=0,
in other words f(X)=0. Thus although f had no root in Z,, it has acquired
one in the extension K! We have actually manufactured a solution to the
equation f(X)=0.
Magic, no?
Let’s try it again.

Example 2 The polynomial f(X)=X2+1 is irreducible in R[X]. Thus
R[X]/(A(X)) is a field, which we will call C. By the division algorithm for
R[X], the elements of C are the elements

a+bX =a+bX,
for a,bER. In C we have X2+ 1=0, that is, X2+ 1=0.

The subset {a@laE€R} is a subfield of C isomorphic to R. If we replace
each a by a, then we have RC C, and C={a+ bX|a,bER}. The element X
in C is a root of the polynomial X?+1.

Thus X is a square root of —1, and it follows that the addition and
multiplication in C satisfy

(a+bX )+ (c+dX)=(a+c)+(b+d)X,
(a+bX )(c+dX )=(ac—bd)+(ad+ bc)X.
Therefore C=C, and we have once again constructed C from R (compare
Exercise 16.5).

The preceding examples are illustrations of a general phenomenon:

THEOREM 203 (Kronecker) Let F be a field and let f(X)€ F[X] have degree
> 1. Then there is an extension field K of F that contains a root of f(X).

PROOF. We can assume that f(X) is irreducible in F[X], because if it isn’t we
can work with one of its irreducible factors.

Under this assumption, F[X]/(f(X)) is a field, in which f{X)=0. If
f(X)=ay+a,X+--- +a,X", this means that
Go+ @ X+ +axX"=0. (20.1]

We have an embedding ¢: F— F[X]/(f(X)), given by @(a)=a, for every
a€ F. g is clearly a homomorphism, and it is one-to-one since if a,,a, € F and
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a,=a,, then f(X) divides a,—a, in F[X]. This means that a,—a,=0, since
deg(f)2 1, so a,=a,.

Thus {ala€ F} is a subfield of F[X]/(f(X)), isomorphic to F. If we
replace each element a by a, we obtain a field K that extends F, in which
ap+a, X+ --- +a,X"=0, by [20.1]. O

Theorem 20.3 is the key to an in-depth analysis of the roots of polynomi-
als, because it tells us we can always get our hands on a complete set of roots
to work with:

COROLLARY 204 Let f(X)€ F[X] have degree n> 1. Then there is a field
K D F such that in K[X] we can write f(X)=a(X —c, (X —c¢y): (X —c,).

PROOF. By induction on n. For n=1 we have f(X)=aX+ b, with a,bEF,
a#0, so we can write f(X)=a(X—=(—b/a)) in F[X]. Now suppose deg(f)=
m and the result is proved for polynomials of degree m — 1. By Theorem 20.3,
we can let K, D F be a field containing a root ¢, of fX). In K,[X], we can
write f(X)=(X—c,)g(X), where g(X) has degree m—1 and is therefore
subject to the inductive hypothesis. Let K D K| be such that in K[X] we have

g(X)=a(X—cy)--+(X—c,).
Then K is an extension of F, and we have

AX)=a(X—cy) - (X-¢c,)
in K[X]. O

Of course, some of ¢,,...,c, may already lie in F, and ¢,,...,c, need not
be distinct.

Example Let f(X)=X*—X?- X+1€ZJX). Then 1 is a root of f(X), and
long division yields

f(X)=(X-1)(Xx>-1)
in Z[X]. Since 1 is again a root of X*— 1, we obtain
fX)=(X-D(X=-DX3+X+]1).

The factor X2+ X + 1 has no roots in Z,, but we know there is a root ¢ in
some extension K of Z,. We divide X2+ X+ 1 by X—c in K[X]:

X +(c+1)

X—c|X%+ X+1
X2~ cX

(c+1)X+1
(c+DX—=c(c+1)

c(c+D)+1=c+c+1=0.
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Thus, in K[X],
JX)=(X-D)(X =X =e)X—(=c—1)).

EXERCISES

20.1 Let p be a prime. Show that Z,[X]/(X*+ 1) is a field iff the equation x*= —
has no solution (mod p).

20.2 Is Q(X]/((X—1)?) a domain?
203 Is Q[X]/(X*+2X +2) a field? How about R[X]/(X*+2X +2)?

20.4 Let K= {0, 1, X, X + 1} be the four-clement field constructed in Example 1 on
pp. 206-207. Write X2 + X + 1 as a product of factors of degree 1 in K[.X].

20.5 The elements of the field X in Exercise 20.4 can each be written uniquely in
the form a+ bX, with a,bEZ,. Find a general rule for writing the product
(a+ bX)c+dX) in this form.

20.6 a) Let f(X) be irreducible in F[X], and let K be the field obtained from
F[X]/(f(X)) by replacing a by a, for each a € F. Show that if deg(f)=n,
then every element of K has a unique representation in the form

g+ a X+ +a,_ X",
with g, € F.
b) Show that if we start with F=2, and deg(f) = n, then the field K in part
(a) has p" elements.
20.7 Use the result of Exercise 20.6 to construct a field with m elements, for m=
a) §;
b) 9;
c) 27,
d) 25;
e¢) 125,

20.8 Let F be a field. What are the prime ideals in F[X]?

209 Letn > 1, let p be a prime, and let f(X)=X?"—X € Z,[X]. By Corollary 204,
let K be an extension of Z, such that in K[X] we have

JX)=(X=c)) - (X —cpn).
a) Show that in this case cy,...,c,~ are all distinct. (Use Exercise 19.18.)

b) Show that {c,,...,c,.} is a subfield of K, and hence that there exists a field
with p" elements.

20.10 If Fis a field and fiX), g(X) are elements of F[.X] then a polynomial A(X) € F]X] is
called a greatest common divisor (g.c.d) of AX) and g(X) if

i) h(X) divides both f{X) and g(X), and
ii) every A(X) in F1.X] that divides both fX) and g(X) divides h(X).
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a) By applying Theorem 20.1 to the ideal

I'= {a(XX) + b(X)g(X) | a(X), b(X) € F1X]},
prove that any two polynomials AX), g(X) in F1X] have a g.c.d. that can be written
as a(XAX)+b(X)g(X) for some a(X), b(X) € FIX].

b) Prove that if at least one of f{X) or g(X) is not the zero polynomial then any two
g.c.d.’s of f{X) and g(X) differ by a constant factor.

20.11 Let Fbe a field, let @ € F, and let p be a prime. Let AX) = X¥’—a. Prove that f(X) is
irreducible in F1.X] if and only if X) has no roots in F.

20.12 Let F be a field of prime characteristic p, let a € F, and let n € Z". Prove that X7 =
a is irreducible in F1.X] if and only if X* — a has no roots in F.



SECTION 2 1

UNIQUE FACTORIZATION
DOMAINS

We have called a positive integer p a prime if p51 and the only positive
divisors of p are 1 and p itself. This notion of “prime” generalizes in a natural
way to allow negative primes: an integer » is called prime if n5#0, n %1,
and the only divisors of » are *1,*n. Thus 2,-2,3,—-3,5, -5,7,
-7,11, = 11... are all primes in Z.

In these terms, the Fundamental Theorem of Arithmetic may be taken as
the statement that every integer n which is neither zero nor *1 can be
factored into a product of primes, and that if

n=p,p,-p, and n=gq,q, - q,

are two such factorizations, then r=s and, after rearranging the g’s if
necessary, we have p,= *g. For example, we have —60=(—-2)(2)3)(5)=
(=3)2)(—5)(—2), and if we rearrange the second factorization it becomes
(=2)2)(=3)(—3).

The Fundamental Theorem of Arithmetic seems obvious to most of us,
because we all grew up with it in school. For this reason, it is easy to get
lulled into thinking that the theorem doesn’t require any proof. One purpose
of this section is to convince you that it does require proof by showing you
some integral domains for which the analogue of the Fundamental Theorem
is false. With such examples in hand, it becomes interesting to try to
enunciate some conditions on a domain which will guarantee that the
analogue of the Fundamental Theorem does hold.

The necessity for such an investigation is underscored by the fact that
some notable mathematicians have fallen into the trap of assuming that the
Fundamental Theorem holds in cases where in fact it does not. Efforts to
salvage the results which they based on these faulty assumptions have been
largely responsible for the development of ring theory as we know it today.

! This section can be omitted without loss of continuity.
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Before we recount a specific instance, let us establish some vocabulary, so
that we can say things a bit more precisely.

Let D be a domain. (We concentrate on domains because domains are
the natural generalization of Z.) An element d € D is called irreducible if 4 is
neither 0, nor a unit, and whenever a,b € D and d=ab, then eitheraorbisa
unit.

Examples

1. Since the units in Z are =+ 1, the irreducible elements of Z are precisely
the primes.

2. If F is a field, the units in F[X] are the nonzero elements of F. Thus
the irreducible elements of F[X] are the nonconstant polynomials that are
irreducible according to the meaning of the word in Section 19.

3. We claim that a nonconstant polynomial f{X)&EZ[X] is irreducible in
Z[X] iff f(X) is primitive and cannot be written as the product of two
nonconstant polynomials in Z[X].

First of all, if f is irreducible then f must be primitive, for otherwise we
could write f(X)=p-g(X) for some prime p and nonconstant g(X), and
neither p nor g(X) is a unit in Z[X]. Likewise, f cannot be written as the
product of two nonconstant polynomials.

Conversely, suppose that f has the two indicated properties. Then if
f(X)=g(X)h(X) in Z[X], either g or & must be a constant; since f is
primitive, this constant must be *1, so it is a unit in Z[X]. Thus f is
irreducible.

It is easy to see that a constant is irreducible in Z[X'] iff it is a prime in Z,
and therefore the irreducible elements of Z[X'] are the primes of Z and the
nonconstant irreducibles described above.

In light of Example 2, our use of the term “irreducible element” seems
very natural; but in terms of Example 1, “prime element” might seem more
appropriate. In general, the word “prime” is used in connection with a
concept that is sometimes stronger than irreducibility. If D is a domain, and
x,y € D, then we say that x divides y, and we write x|y, if there is some z € D
such that y = xz. An element d € D is called prime if 4 is neither 0,, nor a unit
and whenever a,b € D and d|ab, then d|a or d|b.

Prime elements are always irreducible, in any integral domain:

THEOREM 21.1 Let D be a domain, and let d €D be prime. Then 4 is
irreducible.
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PROOF. Suppose d=ab; we must show that either @ or b 1s a unit. Since 4 is
prime, we know that 4 divides either a or b. If d|a, then we have a=dc for
some c, and so

d=(dc)b.
Since d#0 and D is a domain, we conclude that 1=cbh and b is a unit.
Similarly, if d|b then a is a unit. [J

For (Z, +, ), the notions of “prime” and “irreducible” coincide (Theo-
rem 4.3) and in general the truth of the implication *“irreducible = prime” for
a domain D is very intimately connected with the truth of an analogue of the
Fundamental Theorem for D (see Exercise 21.9). We will soon see examples
of irreducibles that are not prime.

Two elements a and b of a domain D are said to be associates if a= bu
for some unit u. For example, any element a is an associate of itself, because
a=a-1. Similarly, if a and b are associates, then b and a are associates,
because a = bu implies b=au ~'. The relation

aRb iff a and b are associates
is in fact an equivalence relation; transitivity is easily verified.
We now have the words we need in order to say precisely what it means
for an analogue of the Fundamental Theorem to hold for D.

DEFINITION Let D be an integral domain. Then D is called a unique factoriza-

tion domain (UFD) if:

i) Every element 4 € D that is neither 0 nor a unit can be factored as the
product of a finite number of irreducible elements; and

ii) Ifd=p,p,---p, and d=gq,q," - g, are two such factorizations, then r=s,
and there is a permutation f of (1,2,...,s5} such that p, and g, are
associates, for each i€(1,2,...,s5}.

Note that this is a direct generalization of the statement of the Funda-
mental Theorem that we gave on p. 211, because in Z, two elements a and b
are associates iff a =+ b.

Now for a bit of history. We all know that there are triples x, y, z of
nonzero integers such that x2 + y2 = z2; for instance, 32 + 4> = 52, In 1637,
Pierre de Fermat claimed to have discovered a “truly remarkable proof”
that if n > 2 then there do not exist nonzero integers such that x” + " = 2",
This result is referred to as Fermat’s Last Theorem, although Fermat
never revealed a proof and there is a great deal of doubt as to whether he
ever had one. Mathematicians sought a proof for over 350 years, until a
proof was finally published by Andrew Wiles in 1995.



214 Section 21. Unique Factorization Domains

The problem is very easily reduced to showing that x"+y"=:z" is
impossible (for nonzero x,y,z) if n is 4 or an odd prime. (It is fun to do this
for yourself, and we won’t spoil it by showing you how.) The case n=4 can
be disposed of by elementary means, and we know that Fermat did prove this
case himself. In any event, the general problem boils down to proving that
x? + y?=z”? is impossible if p is an odd prime and xyz+0.

A proof for p=3 was published in 1770 by Leonhard Euler, the most
prolific mathematician of all time. Euler’s proof involved using numbers of
the form a+ bV -3, where a,hbEZ and V —3 =V3i. At one point in his
argument, he made a claim about these numbers which was apparently based
on the tacit assumption that they obey unique factorization. His claim was
correct, but the tacit assumption behind it was not, and his proof remained
incomplete until the missing justification was supplied by Legendre some time
later.

A proof for p=35 was given by Legendre, and independently by Dirichlet,
around 1825. The case p=7 was handled by Lamé in 1840. The first general
—and by far the most significant—attack on the problem was made by E.
Kummer in 1843. Kummer’s basic idea was to consider numbers of the form

ao+ algp+azgp2+ aiatco +ﬂp_|§;n],

where ¢, € Z and §, is a complex number #1 such that §; = 1. (For example,
§, =cos(2m/p)+ isin(2m/ p).") These numbers form a subring of C, which we
denote by Z[{,]. Using them, it is possible to factor x”+y” completely, and
the equation x? +y?=z” becomes

(x+y)(x+28)(x+y87) - (x+p88 ") =2".

Assuming that Z[{ )] is a UFD, Kummer used this form of the equation to
prove that x? +y? = z” is impossible if xyz #0.

Kummer presented his proof to Dirichlet (a more established mathemati-
cian), who pointed out that Kummer had neglected to verify the assumption
that factorization into irreducibles is unique in Z[{ ]. (Kummer was later to
point out a similar flaw in an attempt by Lamé.) In 1847, Cauchy (after
having made the same mistake himself) pointed out that factorization is not
unique in Z[{,;]. Thus Fermat’s Last Theorem remained unproved.

TThat [cos(27/p)+ isin(2n /p)) =1 follows from De Moivre’s Theorem:
[cosd+ isin@]* =coskf + isinkf.
De Moivre’s Theorem can be proved by induction on k, using the fact that

[cosa+ isina)[cos B+ isinB]=(cosacosB—sinasinB)+ i(sinacos B +cosasinf)
=cos(a+ )+ isin(a+ B).



Section 21. Unique Factorization Domains 215

Undaunted, Kummer set about trying to modify Z[C,] so as to restore
the uniqueness of factorization. He introduced what he called ideal
numbers, and the theory he developed was a precursor of the modern theory
of ideals. Kummer succeeded in proving Fermat’s Last Theorem for certain
primes which he called regular.

The complete proof that Wiles published in 1995 employed modern and
sophisticated ideas far beyond those known to Kummer (and far beyond the
scope of this book). But Kummer’s method had a lasting impact on the
development of algebra. Attempts by number theorists to exploit the
properties of specific systems more inclusive than Z led naturally to a
study of such systems in general, hence to the emergence of an abstract
theory of rings.

After we have developed some more information about UFDs, we will
discuss in detail the application of another extended number system (the ring
of Gaussian integers) to the proof of Fermat’s classic “two squares” theorem.
But first we want to show you an explicit example of the failure of unique
factorization in a fairly simple domain.

In fact, let us use the set of all complex numbers of the form a + bV -3,
with a,b€Z, referred to above. If we denote this set by Z[V =3 ], then
Z[V -3 is a subring of C containing 1, hence an integral domain. In
Z[V -3 | we have the following two factorizations of the number 4:

4=22=(1+V-=-3)1-V-=3).
We are going to show that 2, 1+V —3, and 1—V =3 are all irreducible in
Z[V =3 ) and that no two of them are associates. This will establish that
Z[V =3 ] is not a UFD.

For a=a+ bV =3, define the norm N(a) of « to be N(a)=a>*+3b>. For
every a €Z[V —3 ), N(a) is a nonnegative integer, and N(a)=0 iff @=0. An
easy calculation shows that if &, 8 €Z[V =3 ], then

N(aB)= N(a)N(B).
Using norms, we can readily determine all the units in Z[V —3 ]. For if «
1s a unit, then aff=1 for some B, whence
N(@)N(B)=N(1)=1,
which implies that N(a)=1, since N(a) and N(B) are both nonnegative
integers. Conversely, if N(a)=1 and, say, a=a+bV -3, then a*+3b>=1,
which implies that a= *1 and 6=0. Thus a= *1, and a is a unit. Thus we
see that a is a unit iff N(a)=1, and the only units in Z[V =3 ] are *1.
Now we claim that 2 is irreducible in Z[ V=3 ]. Clearly, 2 is not 0, and

it is not a unit since 2% + 1. We must show that if 2= af, then either a or 8
must be a unit, that is, either N(a) or N(f) must be 1. Now if 2=af3, then
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N(2)=N(a)N(B)
4= N(a)N(B),
so all we have to show is that neither N(a) nor N(f) can be 2. But the norm
of any element of Z][ V' =3 ] has the form a?+ 356 and it is clear that this
never gives us 2.

The same argument shows that both 1+V =3 and 1—V =3 are irre-
ducible, because their norms are both 4.

No two of our three irreducible elements are associates, because the only
units are + 1. Thus Z[ V-3 ] is not a UFD.

Notice a couple of other interesting things. The equation

22=(1+V=-3)(1-V=3)
shows that 2 divides the product (1+V =3 )1—V =3), but it obviously
does not divide either factor. Thus 2 is irreducible, but not prime. The same
can be said for 1+V =3 and 1-V =3

Observe that if a€Z[V —3] and N(a) is a prime integer, then a is
irreducible. For if a= By, then N(a)= N(B)N(y), so one of N(B), N(y) is 1.
The converse is false; for example, 2 is irreducible, but N(2)=4 is not a prime
integer.

By considering norms, it can be shown that every element of Z[V —3 |
which is neither 0 nor a unit can be factored into a product of irreducibles
(Exercise 21.5), and thus it is only the wnigueness of factorization that fails,
not the existence. On the other hand, it is not true that every element 50, *+ 1
can be written as a product of prime elements. For instance, 2 is not a prime,
and if

2=aay- 0, k>1,
then
N(2)=4=N(a;,)N(ay)" - N(ex,),
so some a«; has norm 4 and the others are units, not primes.

We have not yet exhibited a prime in Z[V —3 |. An example is given in
Exercise 21.22.

Under what conditions might it be impossible to factor an element into
irreducible factors? Suppose D is a domain, a € D is neither 0 nor a unit, and
a cannot be written as the product of a finite number of irreducible elements.
In particular, then, a is not itself irreducible, so we can write a=a,b,, where
neither @, nor b, is a unit. Furthermore, our assumptions on 4 imply that a,
and b, cannot both be written as products of irreducible elements. Say b,
cannot be so written. We have

a=a,b,; a,,b, are not units; b, is not a product of irreducible elements.
[21.1]
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Now b, has the same properties that « had when we started, so we can write
b, = a,b,, where neither a, nor b, is a unit, and, say, b, cannot be written as a
product of irreducible elements. Looking at &,, we write b,=a,b,;, where
neither @, nor b, is a unit, and b, cannot be written as a product of irreducible
elements. Clearly we can continue like this indefinitely by induction; we have
b,=a,,\b,,, witha,, b, ., notunits and b, , not a product of irreducible

n

elements. We have the following equations:

a= albl - alazbz . alazasb'} - a1020304b4 e LR
What conditions on D could possibly rule this out? Think what the recurring
situation [21.1] means. If we have a= a,b,, then a € b, D, the principal ideal of

D generated b, and this implies that aD Cbh,D, since b D is an ideal. Is
b,D CaD too? If so, then in particular b, EaD, so b, = ac for some c. Then

by=ac=ab,c.
Since 5,0 and D is a domain, this yields 1=a,c, and a, is a unit.
Contradiction!
Thus aD ¢ b, D. Since b, was obtained from b, just as b, was obtained
from a, we get b,D C b,D by an identical argument. And, in general,
b,D % b, +,D, so we have a strictly increasing chain of ideals:

ang,ngzng,D$b4D$
The union of this chain, aD U b, D U b,D U ---, is easily seen to be an ideal. If
this ideal were principal, then the fact that our chain of ideals is strictly
increasing would be contradicted. For if

aD Ub,D Ub,DUbDU - =dD,

then d € b, D for some i, hence dD Cb,D, and the chain would stop at b,D.

Thus one way to ensure that elements factor into irreducibles is to assume
that every ideal in D is principal. An integral domain with the property that
every ideal is principal is called a principal ideal domain (PID). For example,
Z is a PID, and so is F[X], for any field F. Our discussion proves

THEOREM 212 Let D be a PID, and let a € D. If a is neither 0 nor a unit, then
a can be written as the product of finitely many irreducible elements.

This theorem constitutes half of a proof that every PID is a UFD. The
other half deals with the uniqueness of the factorization, and for this we take
a hint from Z. The key to the uniqueness of factorization for Z (Exercise 4.28)
was the fact that if p were irreducible and p divided a product ab, then p had
to divide either @ or 5. In our current terminology this says that every
irreducible element was prime.

We thus rest our hope for unique factorization in PID’s on
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THEOREM 213 Every irreducible element of a PID is prime.

We will establish Theorem 21.3 by proving the following sharper resuit,
which also generalizes Theorem 20.2.

THEOREM 214 Let D be a PID, let 4 € D, and assume that 4 is neither 0, nor
a unit. Then the following are equivalent:
1) d is prime
i) d is irreducible
iii) 4D is a maximal ideal
1v) dD is a prime ideal.

PROOF. The proof is not much longer than the statement of the theorem; we
will show that (i) = (ii) = (iii) = (iv) = (1).

(1) = (ii): See Theorem 21.1.

(i) = (iii): Since 4 is not a unit, 1 €& dD, so dD is a proper ideal. We must
show that if dD C bD, then bD=D. Now if dD S bD, then in particular
d € bD, so we have d= bc for some c. Since d is irreducible, either b or ¢ must
be a unit. If ¢ is a unit, then b=dc ™' and bEdD, so bD CdD, a contradic-
tion. Thus b is a unit, and bD=D.

(iii) = (iv): See Corollary 17.8.

(iv) = (1): Suppose dD is prime, and suppose d divides a product bc. Then
bc €dD, so either b€ dD or c €dD, that is, either d|b or d|c, as desired. [

THEOREM 215 Every PID is a UFD.

PROOF. By Theorem 21.2, it suffices to show that if

PPy Pr=9192" " 4 [21.2]
for irreducible elements p, g, then r=s and there is a permutation f of
{1,2,...,s} such that p, and gy, are associates for each i€(1,2,...,5}.

Now, from the above equation, p,|¢,4, - ¢,, s0 by Theorem 21.3 and
induction, p, divides some g;. By renaming the ¢’s if necessary, we can assume
Jj=1.Thus g, = ap, for some a, and since g, and p, are irreducible, this means
that a is a unit, so g, and p, are associates. We have

P\Py " Pr=ap\4qy" " 4,
and since we are in a domain, this becomes

(a™'pa)ps P, =295 - 4. (21.3]

We now proceed by induction on r. If r=1, then s must be 1, else

Equation [21.3] would show that the irreducible element g, is a unit, which is

nonsense. Thus if =1, then the original equation [21.2] had one irreducible
on each side, and p,=gq,.
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Assuming the result for r= n, suppose that r=n+1. Then by [21.3], s > 1,
and by the inductive hypothesis, r— 1=s5—1 and there is a permutation g of
{2,...,5) such that p, and g,, are associates for 2 <i<s. (Actually, a™ 'p, is an
associate of g, but that makes p, one, 100.) So we have r=s, and we can
extend g to a permutation of {1,2,...,s} by defining f(1)=1; then p; and g,
are associates for all i€ {1,2,...,5}, and we are done. []

Examples

1. Specialized to Z, Theorem 21.5 proves the Fundamental Theorem of
Arithmetic.

2. Let F be a field. Applying Theorem 21.5 to F[X], we see that the
factorization of polynomials over F into irreducible factors is unique, except
for nonzero constant factors and the order in which the factors are written.

3. The converse of Theorem 21.5 is false; there exist UFDs that are not
PIDs.

For instance, consider the domain Z[X], and let / be the ideal consisting
of all elements whose constant term is even. / is not principal, since 2€ I and
X €1, but there is clearly no element f{X)€& I such that 2 and X are both
multiples of f(X). Thus Z[X] is not a PID.

It is a UFD, however. We will leave the proof that every element factors
into irreducibles as an exercise, and concentrate on the uniqueness. So,
recalling our description of the irreducibles of Z[X], suppose that

PPy P Si(X) - fi(X)=q,q," - 4,8(X)- - - g(X),

where the p’s and g’s are primes in Z and the f’s and g’s are nonconstant
primitive polynomials in Z[X] that cannot be written as products of noncon-
stant factors. By Gauss’ Lemma and induction, the product of the f’s is
primitive, and likewise for the product of the g’s. It follows (by taking
contents) that

PPy Pr™=Xq14 " Gy

so by unique factorization in Z, r=s and, after a permutation, p, and g; are
associates. Moreover, since

H(X)- - fil(X)=%g,(X)--- g(X)

and the f’s and g’s are irreducible in Q[X'] (by Lemma 19.10), the uniqueness
of factorization in Q[X] implies that k=/, and, after a permutation, f, and g;
are associates in Q[.X]. Since f, and g; are primitive, this implies that they are
associates in Z[X].
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The argument we have just given amounts to showing that since Z is a
UFD, Z[X] is one too. Essentially the same argument establishes

THEOREM 21.6 If D is a UFD then D[X] is a UFD.

Returning to Theorem 21.5, we now have an aesthetically appealing way
of trying to show that a domain D is a UFD: we can try to show that D is a
PID. But we must admit that, in practice, it may not be the easiest thing in the
world to determine whether or not a given domain is a PID. In terms of the
domains that intervene in number theory, for example, one would like to have

some practical way to try and see if they really are PID’s (hence UFD’s).
Once again we go back to known examples and recall how we showed

that Z and F[X] are PIDs. The argument for Z amounted to choosing the
smallest positive element »n in a nontrivial ideal 7, and using the division
algorithm to show that /=nZ. The argument for F[X] was similar, starting
with an element of smallest degree. It seems clear that the same kind of
reasoning should work again, any time we have a suitable way of associating
nonnegative integers (“‘degrees”) to the elements of the domain in question.

DEFINITION Let D be a domain. Suppose there exists a function v: D —{0,)
—Z* {0} such that

i) o(a)<ov(ab) for all nonzero a,b € D; and

ii) for any a,b € D, with b0, there exist ¢ and r in D such that a=gbh+r
and either r=0, or v(r) <o(b).
Then we say that D is a Euclidean domain.

The nomenclature arises from the fact that in a Euclidean domain, the
function v enables us to develop an analogue of the Euclidean algorithm for
determining g.c.d.’s (see Exercises 21.11, 21.14, and 21.18). What we want to
know about Euclidean domains at the moment is

THEOREM 21.7 Any Euclidean domain is a PID (hence a UFD).

PROOF. Let I be an ideal of the Euclidean domain D. If I= {0}, then clearly /
is principal. If [ is not trivial, then the set {v(d)|d €1 and d+#0)} is a
nonempty set of nonnegative integers, hence has a least element, n. Let d €/
be such that v(d)= n; we assert that /= Dd. For if x& I we can find ¢,r€D
such that x =gd+r and either r=0, or v(r)<v(d). But the fact that both x
and 4 are in / means that r=x —gd is in I t00, so v(r) <v(d) is impossible by
the choice of d. Hence r=0,, and x=¢gd € Dd. Thus I CDd, and since
trivially Dd C I, we are done. [J
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Examples

1. Z is a Euclidean domain, with v(n)=|n| for every n €Z — {0}. Notice
that we could regard v as being defined on all of Z, here, with v(0)=|0|=0.
However, the general theory of Euclidean domains works out neatest if we

regard v(0) as being undefined.

2. Let F be any field, and define v(a)=0 for @+ 0. This makes F into a
Euclidean domain.

3. Let F be a field and define o(f(X))=deg(f) for all nonzero f(x)€E
F[X]. With this definition, F[X] is a Euclidean domain.

You have probably noticed that we have not yet used Condition (i) in the
definition of Euclidean domain. Condition (i) does have uses; you will find it
helpful in Exercise 21.7, and it can also be used to give a direct proof that
elements of a Euclidean domain can be factored into irreducibles, without
using the fact that a Euclidean domain is a PID.

Observe that Theorems 21.5 and 21.7 can be summarized in the diagram

Euclidean domain = PID = UFD.
We have already seen that the second implication cannot be reversed, and
neither can the first. The domain

D={a+ 20+V-T9 )|a,bL—‘.Z}

is a PID, but it is impossible to define a function v from D — {0} to Z* U {0}
so that D becomes a Euclidean domain. [This example is due to T. Motzkin.
See “The Euclidean Algorithm,” Bulletin of the American Mathematical
Society, vol. 55, pp. 1142-1146 (1949).]

We will illustrate the utility of the Euclidean domain concept by using it
to prove that the ring Z[i] of Gaussian integers is a PID. Recall that

Z[i]={a+ bila,bEZ)

(see Exercise 16.24).

Define v(a+ bi)= a’+ b?, for a+ bi*0. By Exercise 16.24, v is multiplica-
tive, that is, v(ef3) = v(a)ov( ) for all nonzero a, 8 € Z[i]. From this it follows
that v(a) <v(af) for all nonzero a, 3, because v( 8) 2 1. Thus Condition (i) in
the definition of Euclidean domain is satisfied.

Now for Condition (ii). Let a, 8 € Z[i], B#0. We seek to find y and p in
Z[i] such that a = yB +p, and either p=0 or v(p) <v( B). Since B#0, a /B is a
complex number, so there are real numbers x and y such that

a=(x+yi)B.
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Our idea is to use for y an element of Z[i] that is close to x + yi. Specifically,
choose integers a and b such that |x—a|< ] and |y —b| < 3. Then

a=(a+bi)B+[(x—a)+(y—b)i]B,
so if we take y=a+ bi and p=[(x—a)+(y — b)i] B, we have
a=yB+p.

Now if p=0, we are done. Otherwise v[(x —a)+(y —b)i] is defined, and we
have

v(p)=v[(x—a)+(y—b)i]v(B)
=[(x—a)’+(y—b)"]e(B)
<[(3)+(3) ]«»

o(B) <v(B),

N —

as desired.

Unique factorization in Z and Z[i] provide a very appealing proof of a
classic theorem of Fermat. Fermat observed that some primes can be ex-
pressed in the form a®+ b? (with a,b €Z), while others cannot. For instance,
5=22+1% 13=32422 17=4+1% 29=5%+22, 37=6%+1% but none of 3, 7,
11, 19, 23, or 31 can be written as the sum of two squares. It is also true that
5, 13, 17, 29, and 37 are all congruent to 1 (mod 4), while 3, 7, 11, 19, 23, and
31 are all congruent to 3. Fermat’s Two Squares Theorem asserts that, in
general, a positive odd prime p is the sum of two squares iff p=1 (mod 4).

Fermat claimed to have proved this result in a letter he wrote in 1640. In
accordance with the practice of the time, he never published a proof, and the
first published proof was given by Euler in 1754. It is said that Euler worked
on and off for seven years to find a proof.

THEOREM 21.8 (Fermat) Let p >0 be an odd prime. Then there exist integers a
and b such that p=a®+ b? iff p=1 (mod4). If p=1 (mod4), then p can be
written as a®>+ b? in only one way (we do not count things like 4*+ a2 or
(— a)*+(— b)? as different ways.)

PROOF. Suppose p=a’+ b%. Then p=a*+ b* (mod4), and each of a%b? is
congruent (mod4) to one of 0%, 12, 22, or 3%; that is, each of a2 b%is =0 or 1
(mod4). Since p is odd, one of a?b? is =0 and the other is =1 (mod4).
Hence p=1 (mod4).

That was the easy half. To finish the proof, we must show that if p=1
(mod4), then p can be written (uniquely) as a*>+ b%. The idea of our proof is
to view a*>+b? as being (a+ bi)(a— bi) in Z[i], and to shaw that p can be
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written as (a+ bi)(a— bi) for some integers a,b.

Our first step is to show that p is at least not irreducible in Z[i]. We know
that if p were irreducible, then since Z[i] is a PID, p would be prime in Z[i].
We are going to show that this is not the case by showing that there exists an
integer m such that

(m—=i)(m+i)=kp
for some integer k. Thus p|(m — i)(m + i), but clearly p divides neither (m— i)
nor (m+ i) in Z[i], so p is not prime.

We find m by observing that having (m —i)(m+ i)= kp for some k is the
same as having m*+1=0 (mod p), that is, m*=—1 (mod p). We know
something that is =—1 (mod p), namely (p—1)! (see Wilson’s Theorem,
Exercise 10.19). Thus to find a suitable m it suffices to show that (p — 1)! = m2
for some m. Now we know that p = 4n + 1 for some »n > 0, hence

(p=D!=(1)(2):-- 2n)2n+1)(2n+2)- - - (4n—1)(4n)
=(1D@Q)--- @n)(=2n)(—=(2n—1))- - (=2)(—1)(mod p)
=(—1)"122232. . . (2n)*(mod p)
=[(1(2)(3)- - - (2n)]*(mod p).

Thus if we take m=(1)(2)(3)- - - (2n), we have the required m, and we see that
p is not prime, hence not irreducible, in Z[i].
The rest is easy. Write

p=(a+bi)(c+di),
where neither a + bi nor ¢+ di is a unit in Z[i]. Then
v(p) =v(a+ bi)v(c+ di),
that 1s,
p=(a*+b»(c*+d?).

Since neither a+ bi nor c+di is a unit, neither a’+ b? nor c*+d? is 1
(Exercise 16.24), so by unique factorization in Z,

a’+b’=p=c’+d?

and we have shown that p can be written as the sum of two squares. (Note
that from p =(a + bi)(c + di) it follows that c=a and d= —b.)

All that remains is to establish the essential uniqueness of the representa-
tion. We leave this to you as Exercise 21.19.

EXERCISES

21.1 Let D be a domain. Show that it is not possible to express a unit of D as a
product of prime elements.
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21.2 Let D be a domain and let a,b€ D. Under what conditions is it true that
Da= Db?

213 Let R be a UFD, r€ R. Show that r is irreducible in R iff it is irreducible in
R[X].

21.4 Complete the proof that Z[ X ] is a UFD by showing that every element which
is neither 0 nor a unit can be written as a product of finitely many irreducible
elements,

21.5 Show that every element 0, =1 in Z[V —3 ] can be expressed as the product
of finitely many irreducible elements.
21.6 Show that the following domains are not UFDs.
a) D={a+bV10 |a,bE€Z}. (Consider N(a+bV10 )=a’~10b?% and find
two distinct factorizations of 6.)
b) D= {a+ bV -5 [a,bEZ}‘. (Consider N(a+ bV =5 )=a?+5b% and find
three distinct factorizations of 21.)
21.7 Let D be a Euclidean domain, with v: D—{0,}—Z" U (0}.
a) Show-that if 4 € D, then 4 is a unit iff o(d)=10v(1p).
b) Show that if v is a constant function then D is a field.
¢) Show that, in general, if two nonzero elements a and b of a Euclidean
domain are associates, then v(a)=v(b).
21.8 Show that the following domains are Euclidean with the given function v.
a) D={a+bV2 |a,bEZ}, with o(a+bV2 )=|a’—2b?
b) D={a+bV -2 |a,bEZ}, with v(a+bV 2 )=a’+2b>
21.9 Let D be a domain with the property that every element of D which is neither

0 nor a unit can be written as the product of a finite number of irreducibles.
Show that D is a UFD iff every irreducible element of D is prime.

21,10 Let F be a field, and let X and Y be variables. Define the polynomial ring
F[X,Y]in two variables over F by
F[X,Y]=F[X][ Y]
Thus F[X, Y] is the ring of polynomials in Y, over F[X].

a) Show that every element of F[X, Y] is a finite sum of terms of the form
aX'Y’, where a € F and i,j are nonnegative integers.

b) Show that F[X, Y] is not a PID.
21.11 Let D be a domain, and let a,h € D. An element d € D is called a greatest

common divisor (g.c.d.) of a and b if

i) d|a and d|b; and

ii) if ¢ is any element such that c|a and c|b, then c|d.

Show that if D is a PID, then any two elements of D have a g.c.d. which can
be written in the form xa + yb, for some x,y € D. (Suggestion: Consider the
ideal {xa+yb|x,yED}.)
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21.12 In the context of Z, the definition in Exercise 21.11 assigns two g.c.d.’s to each
pair of nonzero elements a, b. For instance, the g.c.d.’s of 12 and 15 are 3 and
— 3. (Compare Exercise 4.26.) Show that, in general, if D is a domain, and
d € D is a g.c.d. of a and b, then all the g.c.d.’s of @ and b are precisely the
associates of 4.

21.13 Show that the elements 4 and 2(1+V=3) in Z[V =3 ] have no g.c.d.

21.14 Use the Euclidean algorithm (that is, repeated application of the division
algorithm) in Q[X] to find a g.c.d. of the elements 2X*+9X 2+ 12X +5 and
2X3+5X*+8X +20.

21.15 Let a €Z[i]. Show that « is a prime element in Z[i] iff either v(a) is a prime
integer or a is an associate of some prime integer p such that p=3 (mod4).

21.16 Write each of the following elements of Z[i] as a product of primes (see Exercise
21.15).
a) 1+3i
b) 7+8i
c) 99+27i
21.17 a) Prove that if a,bEZ and p is a prime integer, p=3 (mod4), such that

pl(a*+ b?), then p?|(a®+ b?).
(Use the fact that p is prime in Z[/].)

b) Prove that an integer n > 2 is the sum of two (integer) squares iff in the prime
factorization of n (in Z), every prime p =3 (mod4) occurs to an even power.

21.18 a) Use the Euclidean algorithm in Z[{] to find a g.c.d. for 53+9i and 1 +7i.
(See the proof that Z[{] is a Euclidean domain, and use the fact that for
complex numbers a+ bi and ¢+ di,

a+bi _ (a+bi)(c—di)
c+di ct+d? ]

b) The proof that Z[i] is Euclidean provides an upper bound on the number
of steps it will take the Euclidean algorithm to produce a g.c.d. What is this
bound?

21.19 Prove the uniqueness statement of Theorem 21.7.

21.20 Give an example of two domains D and D’ such that D isa UFD, D’ is a
homomorphic image of D, and D’ is not a UFD.

21.21 Let R be a PID and 7 an ideal of R.
a) Show that every ideal of R/ is principal. Must R/ be a PID?

b) Show that R/I has only finitely many ideals if / is nontrivial.
21.22 Show that V —3 is prime in Z[V —3 |].

2123 Let

{y=cos(27/3)+isin(2n/3)=—1+i(V3)/2= -l+2 = '
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Let

Z[{5)={a+ bt + ct|a.b,cEZ},
and observe that {;= 1. Thus Z[{,] is the domain considered by Kummer in
his work on Fermat’s Last Theorem, for p = 3. This exercise will result in a proof
that Z[{,] is a Euclidean domain. [A proof of Fermat’s Last Theorem for p =3,
using Z[{;], can be found in Hardy and Wright, An Introduction to the Theory
of Numbers, Chapter XIII (Oxford: Clarendon Press, 1960),]

a) Show that Z[{;]={a+ b{,|a,b EZ}, and that every element of Z[{,] has a
unique representation in the form a+ b{,.

b) Let us write just { instead of {,, for simplicity. Define

v(a+b{)=(a+bf)(a+bs?).

Show that v(a+ b{)=a®+ b*— ab, and that v is multiplicative, that is,
v(aB)= o(a)o( B).

c) Show that v maps Z[{]— {0} into Z*, and that Z[{], with the function v,
is a Euclidean domain.

21.24 a) Show that Z[V —3 | CZ[{;). (See the preceding exercise.)

b) Determine the relationship between Z[V —3 ] and Z[{,] by describing the
elements of Z[{;]—Z[V —3 ] in terms of integers and V —3.

21.25 See Exercise 21.23.
a) Show that if « €Z[{,], then a is a unit iff o(a)=1.
b) Show that if a EZ[{,]) and v(a) is a prime integer, then « is irreducible.
Conclude that 1 — {; is irreducible.
¢) Show that 2 is prime in Z[{;). (Hint: Show that if 2|(a*+ b*— ab), then both
a and b are even.) There are many more primes in Z[{,]; see Hardy and
Wright, Chapter XV.

21.26 Let D be a Euclidean domain. Show that the g and r in Condition (ii) for a
Euclidean domain will be unique for every choice of a and 4 iff v has the
property that v(a + b) < max{v(a),v(d)} for all nonzero a and b such that
a+b+0.
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EXTENSIONS OF FIELDS

In this section we begin an in-depth study of fields. The work begun here will
culminate in the presentation of Galois theory in Section 25.

The developments in this and the succeeding sections represent a beautiful
interplay between the ideas we have developed so far. Aside from this, we will see
a number of striking applications, some in Sections 25 and 26 and some even
sooner in Section 23.

If E and F are fields we write F < E to indicate that £ is an extension of F, i.e.
F is a subfield of £. In this context we are of course using the symbol “c” to mean
more than just “is a subset of”’; here the symbol means that (F, +) is a subgroup of
(£, +) and (F — {0}, -) is a subgroup of (£ — {0}, -).

If F < E and a € E we will often study a by considering the smallest subfield
of £ containing FU {a}.

Notation. If F < E and a € £ then F(a) denotes the intersection of all subfields of £
containing /U {a}. (The notation “F(a)” is read *F adjoin a”.)

It is easy to see that F(a) is a subfield of £ containing F v {a¢} and is
contained in every subfield of £ that contains F U {«}.

THEOREM 22.1 F(a) = {g(a)/ h(a) | g(X), h(X) € F[X] and h(a) # 0}.

PROOF. If we denote the set on the right side of the equation by § then clearly
every element g(a) / h(a) of S is in F(a) since F(a) is a subfield of E containing F
 {a}. On the other hand, S is a subfield of E containing F U {a}, so F(a) is a

subset of S. Thus F(a) = §. [J
There is one very important situation in which the description of F(a) in

Theorem 22.1 can be simplified considerably. This is the situation in which the
element @ happens to be a root of some nonzero polynomial in F1.X].
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DEFINITIONS If F ¢ £ and a4 € E then « is algebraic over F if there exists a
nonzero polynomial LX) € F].X] such that f{¢) = 0. We say that £ is an algebraic
extension of F (or that £ is algebraic over F) if every element of £ is algebraic
over F.

If a is algebraic over F then the set of polynomials
I={fX) € FIX] | fla)=0}

is a nontrivial ideal in F[.X]. By Theorem 20.1 there must exist f{.X) € / such that / =
(f(X)), the prinicipal ideal generated by f(X). It will be convenient to have several
equivalent ways to describe those polynomials that generate /.

THEOREM 222 If Fc E, a € E is algebraic over F, and / = {f{X) € F[X] | Aa) =
0} then the following statements about an element f.X) € 7 are all equivalent to
each other:

i) 1= (X))
i1) LX) has minimal degree among all the nonzero polynomials in /
iii) f(X) is irreducible.

PROOF. That (i) implies (ii) is clear, since if I = (f{X)) then AX) divides every g(X)
€ I, so if g(X) is nonzero then deg(f) < deg(g) by the degree rule. To see that (i1)
implies (i) note that if fX) is reducible and fiX) = g(X)h(X) with g(X) and A(X)
each of degree less than deg(f), then 0 = fla) = g(a)h(a) in E, so either g(a) = 0 or
h(a) = 0. Thus either g(X) € I or h(X) € I, and thus (ii) cannot be true. Finally, (iii)
implies (1) because if {X) € / is irreducible and g(X) is any generator for / then AX)
= g(X)h(X) for some /i(X), so since f{X) is irreducible #(X) must be a nonzero
constant. Thus f(X) is a generator for /. [

A polynomial is called monic if its leading coefficient is 1. We can obtain a
monic generator for the ideal / by starting with any generator and multiplying by
an clement of F. / has only one monic generator, because any two generators
divide each other and therefore differ by a constant factor.

DEFINITIONS Let F c E and let a € E be algebraic over F. The unique monic
irreducible polynomial in F[X] having a as a root is called the irreducible
polynomial of @ over F. We denote it by irr(«/F). The degree of irr(a/F) is called
the degree of @ over F and denoted by deg(a/F).

It follows from Theorem 22.2 that if A.X) is any nonzero polynomial in F[.X]
such that f{a) = 0 then deg(a/F) < deg(f(.X)), and we have deg(a/F) = deg(AX)) iff
AX) is irreducible in FLX].
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Examples

1. Let F be any field and let a € F. Then a is algebraic over F, irrf(@/F) is X —
a, and deg(a/F) = 1.

Conversely, if F ¢ E and a € E is such that deg(a/F) = 1, then a is a root of
some polynomial of degree 1 in F[.X] and thus a € F because F is a field.

2. Consider R ¢ C. The element i € C is algebraic over R, irr(¢/R) is ol
and deg (/R) = 2.

3. Foraprime p € Z', let {;, € C be defined by
{, = cos(2m/p) + i sin(2wp).

Then ({,)’ = 1 by de Moivre’s Theorem. Thus {, is a root of the polynomial

¢p(X)=~'§-{:ll=X”"+X"'2+---+X+1,

S0 ¢, is algebraic over Q. We claim that irr({,/Q) = ®,(X), and therefore deg({,/Q)
=P~k

To see this it suffices to show that @,(X) is irreducuble over @, which we do
by applying Eisenstein’s Criterion to @ (X + 1):

- P T O
Q,,(X+l)=(x+l) I=X +pX" +---+ pX
(X +1)-1 X

where for each r € {1, ..., p — 1} the coefficient of X7 in the numerator is the
binomial coefficient W-% and is thus an integer divisible by p since p is prime.
By Eisenstein’s Criterion, QJp(X + 1) is irreducible over @Q and therefore so is
D, (X).

[

®,(X) is called the pth cyclotomic polynomial. Its roots in the complex plane,
together with the number 1, are p equally spaced points on the circle of radius 1
around the origin. (The word “cyclotomic™ means “circle-cutting”.) As we will see
later, the fact that deg({,/Q) = p — 1 is the key to determining for which primes p it
is possible to construct a regular p-gon using straightedge and compass

4.If F is a field then by Theorem 22.1 the quotient field of the domain F[X] is
F(X). The element X in F(X) is not algebraic over F, because if aq, a), ..., a, € F
and a,X" + apn X' + - - - + ;X + ag is 0 in F|X] then all the coefficients a; are 0 in
F because this is what it means for @,X" + a,.: X" + - - - + a;X + ag to be 0 in F[X].

In general, any element that is not algebraic over F is called transcendental
over F.
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We can now simplify our description of F(a) in the case where a is algebraic
over F.

THEOREM 22.3 Let F c E and let a € E be algebraic over F. Then every element
of F(a) has a unique representation in the form fla), where fX) € F[X] is either 0
or of degree less than deg(a/F).

PROOF. Let K = {g(a) | g(X) € F{X]}. We first show that F(a) = K. Every element
of K is in F(a) since F(a) is a subfield of £ containing FU{u}. To establish the
reverse inclusion it suffices to show that K is a field (for then K is a subfield of £
containing Fuia}).

We have an evaluation homomorphism ¢, : F|.X] — K such that

PuglX)) = gla)

for all g(X) € F1X] (Exercise 19.12). The kernel of ¢, is {g(X) | g(a) = 0},and this
is the principal ideal / = (irr(a/F)). We thus have an isomorphism

o, : FIX)I =K,
so to show that K is a field it suffices, by Theorem 17.7, to show that / is a
maximal ideal. But this is so by Theorem 20.2, since irr(a/F) is irreducible over F.
We now know that F(a) = K. We also know (Exercise 20.6) that each element
of FLXV/ is the coset f(.X) represented by a unique polynomial that is either 0 or
has degree less than deg(a/F). Since ¢, (f(X)) = f(a), we see that each element of
K = F(a) is f(a) for a unique such polynomial f(X).0]

We have also proved

THEOREM 22.4 Suppose F < E and a € E is algebraic over F. Let [ = (irr(«/F))
and denote each element / +f(.X) of F[.X}// by f(X). Then there is an isomorphism

0, : FIXVI — F(a)

such that g, (f(X)) = f(a) for all f(X) € F[X]. In particular , (¢)=cforallc € F
and ¢,(X)=a.

In Section 20 we saw that if we start with an irreducible polynomial f(X) over
F then we can find a field extending F and containing a root of f(X) by forming
FIX1/(f(X)). Theorem 22.4 shows that this is the only way to adjoin a root for f(X)
to £

COROLLARY 22.5 Suppose f{X) is irreducible over F and a,; and a, are roots of
AX) in extension fields E, and E, of F. Then there is an isomorphism
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¢ Fla)) — F(a)
such that ¢(c) = ¢ for all c € F and @(a,) = a,.

PROOF. Note that irr(a,/F) = irr(a,/F) since both are obtained by multiplying fAX)
by the multiplicative inverse of its leading coefficient. Thus by Theorem 22.4 ¢ =
Pa, © @, " has the desired properties. (]

Our purpose in considering F(a) is to use it to draw conclusions about the
element a. To do this we will need to use some ideas that will be familiar to you if
you have studied linear algebra.

In general, if F C E then a subset S of E is said to be linearly independent
over F if whenever s, 55, ..., 5, are finitely many distinct elements of § and ¢, ¢y,
..., ¢, are elements of Fsuch that cysy + cas2+ “ "+ sy =0inE then¢y=¢c; ="~
= ¢, = 0 in F. On the other hand, a subset S of £ is said to span E over F if for
every element b € E there exist finitely many elements s,, 55, ..., s, in S and ¢, ¢,
s Cpin F such that ¢;sy + ¢a55 + - -+ +¢,8, = b, i.e, b is a linear combination of s,
s, ..., 8, with coefficients ¢, € F. S is called a basis for E over F if § spans £ over
F and is linearly independent over F.

Example Theorem 22.3 shows that if a € E is algebraic over F and deg(a/F) = n
then the set {1, a, &, ..., a"'} is a basis for F(a) over F.

As a specific example, consider Q < Q(3/5) < R. Since 3/5 is a root of X° — 5,
which is irreducible over Q by Eisenstein’s Criterion, deg(3/5/Q) = 3. Thus
{1,5'3, 523} is a basis for Q(3/3) over Q.

THEOREM 22.6 Suppose I < £ If {5, 52, ..., 5,} spans £ over F then no subset
of £ that is linearly independent over £ can have more than » elements.

PROOF. Suppose for a contradiction that {4, b,, ..., b, } is asetof n + | elements
linearly independent over £. Since {s,, s, ..., 5,} spans £ over F there exist ¢, ¢,
..., €, in F such that

bl =08 L g o

Since {b,, b3, ..., b, } is linearly independent, b, # 0 and therefore at least one ¢, #
0. By renumbering if necessary we can assume ¢, # 0, and therefore we can
express s, as a linear combination of b, 5,, 83, ..., 5,. It follows that since {s,, 55, ...,
S,t spans £ over F, so does {b), 53, 53, ..., $,4. Therefore there are d, d», ..., d, in F
such that

by=d\by+ dysy ++ -+ +dps,

If d, = - - = d, = 0 this contradicts the independence of {b,, b, ..., b,.1}, s0 by
renumbering if necessary we can assume that d» # 0 and therefore we can express
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s, as a linear combination of by, b, s3, ..., s, Thus since {b), s, ..., 5,} spans £ over
F, so does {b,, by, 53, ..., 5,}.

Continuing in this way, we conclude that {6, ..., b,} spans E over F. In
particular, b,,, is a linear combination of by, ..., b,, and this contradicts the linear

independence of {by, ..., by, }.0J

COROLLARY 22.7 If F < E and S is a finite basis for £ over F then every basis
for E over F has the same number of elements as S.

PROOF. If B is any basis for £ over F then, since S spans E over F and B is
linearly independent over F, Theorem 22.6 shows that the number of elements in B
is no larger than the number in §. But then reversing the roles of § and B shows

that the number of elements in § is no larger than the number in B. [J

DEFINITION If F ¢ E, we say that E is a finite extension of 7 (or that E is finite
over F) if there exists a finite basis for £ over F. The number of elements in such a
basis is called the degree (or dimension) of £ over F. We denote this degree by
[E: F].

Note that [E : F] is well defined by Corollary 22.7.

Examples

1. If E = F then {1} is a basis for E over F, so [E : F] = 1. Conversely, if [E : F]
= 1 and {b} is a basis for £ over F then since {b} spans £ over F we can in
particular write 1 = ¢b for some ¢ € F. Thus b= ¢! € F, so since every element of
E can be written in the form db withd € F, E=F.

2. If FC E and a € E is algebraic over F then F(a) is a finite extension of F
and [F(a) : F] = deg(a/F). For we have observed that {1, a, &, .... @'} is a basis for
F(a) over F, where n = deg(a/F).

3. Consider F < F(X), where F(X) is the quotient field of F[.X]. Since the subset
{1,X, X% X3, ..} is linearly independent over F, theorem 22.6 shows that F(X) is
not a finite extension of F.

We noted previously that F(X) is not an algebraic extension of F, and therefore
the fact that F(X) is not finite over F also follows from

THEOREM 22.8 Every finite extension is algebraic.

PROOF. Suppose £ is a finite extension of F, with [E : F] = n. We want to show
that every a € E is algebraic over F.
If " = d" for two distinct positive integers m and  then a is a root of X™ — X,
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50 a is algebraic over F. If "« a" for all m # k then {a, &, ..., @'} is a set of more
than n elements of £ and cannot be linearly independent over F by Theorem 22.6.
Therefore there must exist ¢|, ¢, ..., Cue1 In F, not all zero, such that cja + - -+ +

a™'=0.Soaisarootof o X+ + ey X™. O

COROLLARY 229. If F ¢ E and a € E is algebraic over F then F(a) is an
algebraic extension of F.

PROOF. F(a) is finite over F, hence algebraic over F. []

This result is not a triviality. For it asserts that every element of F(a)—not just
a—is algebraic over F.

Example Here’s an example of an algebraic extension that is not a finite extension.
For each integer n 2> 1 let a,, be the positive real 2"th root of 2. Let g = Q@ and
forn>11let Q,=Q,_;(a,). Then

QccQcQc.
LetE=Q0uQ1uQ2u -+ .30Q¢c Eg R.

Since Q,, = Q(a,;) (why?) and a,, is a root of X P Q,, is algebraic over Q by
Corollary 22.9. Since every element of E is in some @, this implies that E is
algebraic over Q.

But E is not finite over Q. For since X2 -2 is irreducible over Q by
Eisenstein’s Criterion, [Q (a,,) : Q] = 2". Thus for every n = 1 there is a subset of £
that has 2" elements and is linearly independent over Q. Therefore by Theorem 22.6
E cannot be finite over Q.

Before we can establish the most useful fact about finite extensions, we need
another result about linear independence.

THEOREM 22.10 Suppose F < £ and there exists a positive integer » such that
every subset of £ that is linearly independent over F has at most n elements. Then
any linearly independent m-element subset {«,, ..., a,} of E can be extended to a
basis for E over F, i.e. there is a basis for £ over F that contains {a,, ..., a,}.

PROOF:. If {a,, ..., a,} spans E over F then it is already a basis for £ over F. If {a,,
..., @y} does not span E over F there is some b, € E that is not a linear combination
of ay, ..., a, with coefficients from F. It follows that {a,, ..., a, b,} is independent
over F, for if not we can write

caay* ot eqa,+dby =90
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with ¢, ..., ¢w and d in F, not all 0. Since {a,, ..., a,} is independent we must have
d # 0, and thus we can solve for 4, and contradict the fact that &, is not a linear
combination of @, ..., am.

If {a,, ..., a,, b} spans E over F then it is a basis for £ over F. If {a,, ..., a,,
b} does not span £ over F then we can repeat the above argument to show that
there is b, € E such that {a,, ..., a,, b, b>} is independent over F.

If we keep repeating this reasoning then, since no subset of E linearly
independent over F can have more than n elements, we must arrive at some by, b,
..., by such that {ay, ..., a,, by, ..., by} is a basis for E over F. J

The most frequently used fact about finite extensions is the fact that “degrees
multiply”.

THEOREM 22.11 Suppose £ ¢ E < K. Then K is finite over F iff E is finite over
F and K is finite over E. Furthermore, if [E: F]=mand [K : E] =nthen [K : F] =
mn, and if {a,, ..., a,} is a basis for £ over F and {b,, ..., b,} is a basis for K over E
thenS= {ab,| 1 <i<m, | <j<n}isabasis for K over F.

PROOQOF. Suppose first that K is finite over F and B is a basis for K over F having,
say, r elements. Then B spans K over F and therefore B spans K over £. Applying
Theorem 22.6 twice, we see that no subset of £ that is independent over F can have
more than » elements, and that no subset of K that is independent over E can have
more than r elements. Applying Theorem 22,10 twice, we see that the independent
subset {1} of £ can be extended to a basis for £ over F with at most » elements,
and that the independent subset {1} of K can be extended to a basis for K over £
with at most » elements. So £ is finite over F and K is finite over £.

Now assume that E is finite over F and K is finite over E. Let {a,, ..., a,}, {b),
..., b,} and S be as given in the statement of the theorem. All our claims will be
established if we can show that S is a basis for K over F.

For any v € K there exist d,, ..., d, € E such that

V= d|bl Wi e d”b".
Each d; can be written as a linear combination of a,, ..., a, with coefficients in F,
and therefore v can be written as a linear combination of elements of § with
coefficients in F. Thus § spans K over F.
To see that S is linearly independent over F, suppose we have
(epaby+eyayb +--- +epanb)) + -+ + (cr,@ b, t gyl + - - +cpa,b,) = 0

for some cy’s in F, i.e.

(cnay+- -+ leam)bl + o+ (Clﬂai +- 0+ Cmn“m)bn =0.
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For every b, the coefficient ¢, a,+ - - - +c,,a, on b, is in E, so since {b, ..., b,} is
independent over £ and b,, ..., b, are distinct we conclude that ¢;,a;+ -+ * + ¢ an =
0 for each j, 1 <j <n. By the independence of {aj, ..., a,,} over F we then conclude
that all ¢;; = 0.0J

COROLLARY 2212 If F ¢ E and [E : F| = n then, for every a € E, deg(a/F)
divides n.

PROOF. We have F C F(a) C E, so by Theorem 22.11 [F(a) : F] divides n, i.e.
deg(a/F) divides n.(]

Notation. If F c E and a,, ..., a, € E then F(a,, ..., a,) denotes the intersection of all
subfields of E containing F U {ay, ..., a,}.

Note that for elements a, and a,, F(a,, a>) can also be described as F(a,)(a1),
the extension obtained by adjoining a, to F(a,). Equally well, F(a,, a;) = F(a))(a)).

Examples

1. Since irr( V2 /Q) = X* - 2, deg( /2 /Q) = 2 and every element of Q(+/2 ) can
be written uniquely in the form a + b2, with a, b € Q. Thus B g Q2),
because if (¢ + 5+2 )* = 3 then

(&% +2b%) +2ab\2 =3.

If ab # 0 we can solve for ¥2 and conclude that V2 € Q, contradicting
deg(+/2/Q)=2. Soa=0o0r b =0, and thus 26* = 3 or @* = 3. But then J3/2 € Q
or v/3 € Q, again a contradiction

Since 3 ¢ Q(+2) the polynomial X*~3 in Q(V2)[.X] is irreducible over
Q(+2) (it has degree 2 and has no root in Q(+/2)), so deg(V/3 /Q(+2)) = 2 and
{1,43 } is a basis for £=Q(~/2, /3 ) over Q(+/2 ). By Theorem 22.11

[E:Q1=[Q(v2):Q] [E: Q(+2)]
and this equals
deg(V2 /Q) - deg(V3 /Q(V2))=2-2=4,

Again by Theorem 22.11, {1 -1, 143, V2 - 1, ¥2 -3} ={1, V3, V2, V6 } isa
basis for £ over Q.

It is interesting to note that £ can be obtained by adjoining one element to Q.
For note that since £ is a field containing the number a = V2 + 3, Q(a)c E. On
the other hand, £ ¢ Q(a) because Q(a) is a field containing both V2 and /3. To
see this, note that



236  Section 22. Extensions of Fields

(V2 +V3)Y=2+3+26 =5+246,

and thus V6 € Q(a). Therefore V6 (V2+43) € Q(a), ie. 234342 € Q).
Since 2(v/2 + V3) € Q(a) we conclude by subtracting that V2 € Q(a), and
similarly V3 € Q(a).

Since Q(a) = E we know that [Q(a) : Q] = 4, i.e. deg(a/Q) = 4. Thus {1, a, @,
@’} is a basis for E over (, different from the basis we found above. We can also
find irr(a/Q): we have (a — V2)' =3, and thus ¢® -1 = 2a2,s0a* - 10a*+ 1 =
0. T;ms irr(@/Q) is a monic factor of X* — 10X* + 1 of degree 4, so irr(a/Q) = X* -
10X° + 1.

2. We claim that the polynomial A.X) = X°— 4X*~2.X +6 has no root in the field
E = Q(+2,3 ). Verifying this by brute force is very messy, but there is a clean
argument using degrees.

If b € E were a root of AX) we would have deg(b/Q) = 3 since fiX) is
irreducible over () by Eisenstein’s Criterion. So by Corollary 22.12, we would
have 3|[E :Q], i.e. 3|4.

3. Let E=Q(Y2) and let K = Q(¥2, &), where § = _l%@ is a root of the
cyclotomic polynomial ®5(X) = X? +X +1. The other root of ®3(X) in C is — _; -1
so since £ € R, ®;(X) has no root in E. Since ®3(X) has degree 2, ®3(X) is

therefore irreducible over E, so since

[K:Q]=[E:Q]K: El

[K:Q]=3-2=6.

Notice that, like ¥2, b = (332 is a root of X* — 2, which is irreducible over
Q, so deg(b/QQ) = 3. On the other hand, since E(b) = E({3), deg(b/E)=deg({y/E) = 2.
This shows that if F < E < K are fields and b € K is algebraic over F then deg(b/E)
need not divide deg(b/F ).

The fact that “degrees multiply” has the following nice application to
algebraic extensions.

THEOREM 22.13 Let F c E < K. Assume that E is algebraic over F and K is algebraic
over E. Then KX is algebraic over F.

PROOF. Let a € K; we must show that a is algebraic over F. We know a is
algebraic over E, so there are d, ..., d,, in E, not all zero, such that dy + dija + - - - +
d,a” = 0. Thus a is algebraic over F(d,, ..., d,), so the last step in the chain of
fields
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FC Fldy) € Fldy, dy) - - C Fldy, ..., dp) C F(dy, ..., dy, a)

is a finite extension. All the other steps are finite too, for d, is algebraic over F(d,,

., d,-;) because it (being in E) is already algebraic over F. Thus by Theorem
22.11, F(dy, ..., d.,, a) is finite over F, hence algebraic over F by Theorem 22.8. In
particular, a is algebraic over F. [

Theorem 22.11 will be applied in the next section to geometric constructions
using a straightedge and compass. We conclude this section by using the idea of a
basis for an extension field to say something about the possibilities for the number
of elements in a finite field.

THEOREM 22.14 If k € Z" then there exists a field with exactly k elements if and
only if k = p" for some prime p and some n € Z".

PROOF. If E is a field with exactly & elements its prime subfield F must be finite,
so F must have p elements for some prime p. Since no subset of E linearly
independent over F can have more than & elements, Theorem 22.10 implies that the
subset {1} of E can be extended to a finite basis {b,, ..., b,} for E over F. Then
every element of E has a representation in the form ¢ b, + - * * + ¢,,b, with ¢y, ..., ¢,
in F, and this representation is unique. (Why?) Since each ¢; can be any of the p
elements of F, the number of elements in E is p".

Conversely, if k = p”" then there exists a field with exactly £ elements by

Exercise 20.9. (J

For another proof of the first half of Theorem 22.14, see Exercise 16.31.

EXERCISES

22.1 Prove that if F < £ < K and K is algebraic over F then £ is algebraic over F and K is
algebraic over E.

222 Let E=Q(+2, 32 ) c R. Find [E : Q] and a basis for E over Q.
223Let E=Q(v2,V3,\5 ). Find [E : Q] and a basis for E over Q.

22.4 Find [Q(y1+42 ) : Q].

225Let E=Q (li} cC. Find [E: Q).

V2
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22.6 Consider the subfields £=Q(2 ) and L= Q(&Y2) of K= Q(V2, &).
a) Prove that E M L =().

b) Use Theorem 22.11 to find a basis for K over (.

1+

?
\I'-‘I

22.71si € Q ( -

22.8 Find an element a of K = Q(/2, &) such that K = Q(a).

22.9 Let (> = cos(n/6) + i sin(a/6) =

3+
==
a) Show that Q(C,) = Q(V3 , 1)
b) Find irr(¢2/Q). (This 1s the cyclotomic polynomial @;.)
22.10 a) Prove the trigonometric identity cos(36) = 4cos’ 6 — 3 cos 6.
b) Use part (a) to show that deg(cos(n/9)Q) = 3.

22.11 Letp € Z' beprime and let { , = cos(2m/p?) + i sin(2n/p?). Then { » isarootof the
cyclotomic polynomial

X =1

X? -1

() = = B,(1").

Prove that le; (X) is irreducible over (@ and that deg( sz /Q) =p(p—1).

22.12 Suppose £ is an extension field of Zs and £ has exactly 78125 clements.
Find deg(a/Zs) foreverya € £ Zs

22.13 Suppose E is an extension field of Z; and d € E — Z,. Find deg(d/Z;) if
ayd =2
byd'=2
o) d®=2.

22.14 Prove that ¢, ¢ Q(¢,).

22.15 Suppose £ is a finite extension of £ and [£ : /] is prime. Prove that /{a) = E for every
ackE-F



Section 22. Extensions of Fields 239

22.16 Suppose £ is an extension ficld of Q and E has elements a and b such that a® + 44’
+2a® — 6a+2=0and b’ + 3b°+ 126 - 6b + 15 = 0. Prove that Q(a) N Q(b) = Q.

22.17 Suppose F < E, a € E is algebraic over F and deg(a/F) is odd. Prove that F(a) =
F(a®).

22.18 Suppose FF C E and let K = {a € E | a is algebraic over F}.

a) Prove that K is a subfield of £. (K is called the algebraic closure of F'in E.)

b) Prove that if b € E and b is algebraic over K then b € K.

22.19 Suppose F < E and ¢ and d are elements of £ that are algebraic over F, such that
deg(c¢/F) and deg(d’F) are relatively prime.

a) Prove that [F(c, d) : F] = deg(¢/F ) - deg(d/F).
b) Prove that irr(d/F) is irreducible over F{(c).

22.20 Suppose /' < E and a and b are elements of £ that are algebraic over F. Prove that
irr(a/F) is irreducible over F(b) iff irr(b/F) is irreducible over F(a).

22.21 a) If p,, is the nth positive prime, show that for every n

(@24, 2%, 21,2V, 2V, ., 297 ): Q)= 2:3-5.7-11 - -p,.

n

b) Prove that the infinite set {2'7, 2'%, 215, 217 211} is linearly independent
over QQ.

22.22 Suppose £ is an algebraic extension of / and D is a subring of £ containing F. Prove
that D is a field.

22.23 Prove that if F ¢ E and a and b are elements of £ that are not both algebraic over F
then ab and a + b cannot both be algebraic over F.

22.24 Suppose F < E and assume there are ay, ..., a, in £ such that £= F{(a,, .... a,). Prove
that the following three statements are all equivalent to each other:

i) Eis finite over F.
i) £ is algebraic over F.
iii) Each of @), ..., g, is algebraic over F.

22.25 Let E be an algebraic extension of Fand let ¢ : E — E be a one-to-one ring
homomorphism such that ¢(c) = ¢ for all ¢ € F. Prove that ¢ is onto.

22.26 Suppose F < E and {s, ..., 5, is a finite subset of £ that spans £ over I, Prove that
there exists a subset of {s,, .., s,} that is a basis for £ over F.



SECTION 23

CONSTRUCTIONS WITH
STRAIGHTEDGE AND
COMPASS

The geometers of ancient Greece considered the problem of performing
geometric constructions using only a straightedge and compass. (A straightedge is
a ruler with no markings on it. Thus the straightedge can be used to draw the line
through two previously constructed points, but not to measure or mark off
distances. The compass can be used to draw the circle whose center is a previously
constructed point and whose radius is the distance between two previously
constructed points.) The Greeks succeeded, for example, in constructing regular 3-
gons (equilateral triangles), 4-gons (squares), pentagons and hexagons, and they
were familiar with the method for bisecting a given angle.

When it came to certain other problems, however, the Greeks were baffled.
They were unable to solve any of the following. (We use the word “construct” to
mean “construct with straightedge and compass™.)

Problem [. Given the side of a cube, construct the side of a larger cube with twice
the volume.

Problem Il. Give a general method for trisecting angles. That is, show how,
starting with a given angle, to construct an angle one-third the size.

Problem 111. Construct a regular heptagon (7-gon).

The Greeks worked on these problems over 2000 years ago, and in the
intervening centuries many people have sought in vain for solutions. Even today
there are people who still try, unaware that the task is utterly hopeless. For it was
proved in the nineteenth century that the constructions required by these problems
cannot be carried out using only straightedge and compass. Our purpose in this
section is to use what we know about field extensions to prove that the
constructions are impossible.

240
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We shall be working with a certain subfield C. of C, called the field of
constructible numbers. To describe this subfield, we identify C with the set of
points in the xy-plane. The field R of real numbers is identified with the set of
points on the x-axis.

We will define the set C, of constructible (or, more precisely, constructible
from 0 and 1) numbers to consist of all elements of C that can be obtained by
starting with 0 and 1 and using the following methods (A), (B), (C) any finite
number of times:

(A) Let L, be the line determined by two points that we already know are in C,
and let L, be another such line that is not parallel to L,. Take the point of
intersection of L, and L,.

(B) Let L be the line determined by two points in C,, and let C be a circle whose
center is in C, and whose radius is the distance between some two points of C,.
Take the points of intersection of L and C.

(C) Let C, and C; be two (distinct) circles satisfying the requirements on the circle
C in (B). Take the points of intersection of C, and C..

DEFINITION Let z € C. Then z € C, if and only if z can be obtained by starting
with O and 1 and applying methods (A), (B), (C) some finite number of times.

To get an idea of how this definition generates points, observe that the points
marked in each of the following diagrams are in C, :

(3]
(3]

The points in C. correspond in a clear sense to the points we want to call
“constructible”, because we get them by starting with 0 and 1 and using the
straightedge (for lines) and compass (for circles).

THEOREM 23.1 C, is a subfield of C.

PROOF. We first show that C. N R is a subfield of C. To show this it will suffice,
since 0 and 1 are in C,., to establish (i) and (ii):
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()Ifa beC. NRandb#0thena-be C.NR.

(Ifa beC, NRand b#0thenabec C. N R

To establish (i) we use method (B), with the x-axis as the line L (the x-axis is
determined by 0, 1 € C,, so we can use it) and the circle with center at a and
radius |b| as C. (This circle is legitimate since its radius is the distance between 0,
b € C,.) One of the two points of intersection of L and C'is a — b.

To establish (ii) it suffices by (i) to handle the case where both a, b > 0.
Notice that there are points of C, on the y-axis, other than the origin. For example,
-1, 2 € C. by (i), so if we draw the circles of radius 2 centered at +1, their points
of intersection (++/3i ) are both in C, . Thus we can use the y-axis as the line in
method (B), and in particular if we intersect the y-axis first with the circle of radius
a centered at the origin, and then with the circle of radius b centered at ai, we see
that the points ai and (a + b)i are both in C,. . By a similar argument we see that the
point 1 + ai is in C, . If we draw the line L through (a + b)i and 1 + ai, then the
point 1 + ¢ where L intersects the x-axis is in C,:

Hence, by (i), ¢ € C, . But, using similar triangles,

a+b a
1+¢ ’

and thus ¢ = a/b, soa/b € C,. NR. |
We now prove that C, itself is a subfield of C. We will use the fact that ifz=

a + bi € C then z € C, iff both a and b are in C, . (See Exercise 23.1.) Using this
fact, we see thatif z=a+biand w=c +diarein C.thena, b,¢c,d€ C,,s0a - ¢
and b — d are in C,. since C, N R is a field, and thus z — w = (a=c)+(b—diis
in C... Finally, if w # O then
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Lot _(a+bi)(c-di) ‘(ac+bd)+[bc—ad}i

“e+di (c+di)(c-di) \*+d’) I +d?

Since C, N R is a field, Exercise 23.1 implies that z/w € C. . This concludes the
proof. [

It follows from Theorem 23.1 that (), the prime subfield of C, is contained in
C, . The key to the applications of C, to the construction problems is the following
characterization of the elements of C,, which enables us to apply our results on
field extensions.

THEOREM 23.2 Let z € C. Then z € C, iff there exist z,, ..., z, € C such that
#H€Q 7 € Qzy, - g1) for2<j <m, and z € Q(zy, ..., 20).

PROQF. Assume first that there exist such numbers z,, ..., z,. We want to show
that z € C, . If we knew the truth of the implication

weC,=» weC,,

then we could argue as follows: First, z; € C, because z7 € Q; hence Q(z;) < C,
since C, is a field. Then z; € C. since z3 € Q(z;) £ C,, so Q(z), z2) < C, since
C. is a field. Continuing in this way, we could conclude by induction that QX(z, ...,
z,) € C. and hence z € C, .

To verify the above implication we first deal with the case where w’ is a
positive real number and thus w € R. We can assume w > 0 since C, is a field.
The following diagram indicates how to construct w from w’:

The length of the vertical segment is w, as we see by using the fact that the two

small triangles are similar.
For the general case we use the fact that one square root of ¢ + di is given by
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J\}(‘2 +d* +c¢ +{,\j\w] +d*-c¢

2 B 2

L

[23.1]

(we take the “+” if d > 0 and the *-” if & < 0). It follows from the special case we
have just dealt with and Exercise 23.1 that if ¢ + i € C_ then both square roots of
¢+ diare in C_. This concludes the first half of the proof.

For the second half it will be convenient to call a sequence z,, ..., z, of
complex numbers a square root sequence if 23 €Qand zf € Q(zy, ..., gj-1) for2 £
J <n. We let S be the set of complex numbers z for which there exists a square root
sequence zj, ..., 2, such that z € Q(z,, ..., z,). We want to show that C. < §. We
will frequently use the easily verified fact that if z, ..., z, and w), ...,w,, are square
root sequences then zy, ..., 2, Wy, ...,W,, IS a square root sequence.

To prove that C, < S it will suffice to establish

ifz=a+biecC, thenae Sandb € S, [23.2])
for then ifa € Q (z), ..., z,) and b € Q (w,, ..., w,,) for square root sequences z,, ...,
zpand wy, ..., w, we have a+ bi € Q (2, ..., zp, Wy, ..., Wp, ).

Notice that if a line L is determined by two points that have all their
coordinates in Q(z,, ..., z,) then L has an equation of the form ax + by + ¢ = 0 with
a, b, ce Q(z,, ..., z,). Likewise, if a circle C has center w, and radius the distance
between w, and ws, and all the coordinates of w, w,, w; are in Q(z,, ..., z,,), then C
has an equation of the form x +y2 +ax+by+c=0witha b ce Q(z), ..., zn).

We now prove [23.2] by induction on the number of applications of methods
(A), (B), and (C) used in constructing z. If no applications are used then z = 0 or 1,
and0, 1 e Qc S

Assume now that z is obtained by applying method (A) to two lines
determined by points which, by inductive hypothesis, have all their coordinates in
Q(zy, ..., z,) for some square root sequence z,, .., z, Then these lines have
equations

axt+by+c=0andakx+by+c’=0

with all the coefficients in @Q(z,, ..., z,). The coordinates of z are obtained by
solving these two equations simultaneously and hence are in Q(zy, ..., 2,).

If z is obtained by applying method (B) then the coordinates of z are found by
solving simultaneously two equations

ax+by+c=0andx’+)y* +ax+by+c'=0

with all coefficients in Q(z,, ..., z,) for some square root sequence zj, ..., Z,. Finding
the coordinates of z will require us to use a square root z,,, of an element of QQ(z,,
s Zn)- Then zy, ..., 2,, Zu41 18 @ square root sequence and the coordinates of z are in

@(er vees Z“...]).
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Finally, if z is obtained by using method (C) then the coordinates of z are
found by solving simultaneously two equations

Py rax+tbytce=0andx’ +y +ak+by+c’=0

with all coefficients in Q (z,, ..., z,) for some square root sequence zy, ..., z,. Solving
these equations is equivalent to solving

(a—ax+(b-b)y+(c-c)=0andx’+)* +ax+by+c =0,
so we can conclude the argument as we did for method (B). OJ

COROLLARY 23.3 If z € C, then z is algebraic over Q and deg(z/Q) = 2" for
some nonnegative integer r.

PROOF. If z € C, then by Theorem 23.2 we have z € Q(z), ..., z,) for some square
root sequence z,, ..., z, Then each extension in the chain

Qc Q@) Qi ) Q... 20)

is finite, of degree 1 or 2. Hence [Q(zy, ..., z,) : Q] = 2" for some m < n. By
Corollary 22.12, deg(/Q) = 2" for some r <m. [J

It is worth mentioning that the converse of Corollary 23.2 is false. There exist
z’s in C such that deg(z/Q) = 4 but z ¢ C,. (See Exercise 24.28.)

Applications

1. (Doubling the Cube) If we could construct from the side of a cube the side
of a larger cube with twice the volume, then from 1 we could construct ¥/2. Since
1 € C, this would imply 2 € C.. But deg(3/2 /Q) = 3 and therefore by Corollary
233 32 ¢ C.. Thus there is no construction for doubling cubes.

The problem of doubling the cube is sometimes called the Delian problem,
because of a legend concerning its origin. As the story goes, there was a terrible
plague in Athens about 2500 years ago, and the Athenians consulted the oracle at
Delos about what steps they could take to end it. The oracle told them to double the
cubical altar to Apollo. They proceeded to double its side, which of course
multiplied the volume by 8. The plague continued, and it was surmised that
perhaps the oracle had meant that they should double the volume. At this point it
became rather a pressing matter to construct 32 .

2. (Trisecting Angles) In order to demonstrate the nonexistence of a general
construction for trisecting angles with straightedge and compass, it suffices to



246  Section 23. Constructions with Straightedge and Compass

exhibit one specific angle that cannot be so trisected. We use an angle of #/3
radians.

It is easy to see that the point {5 = cos(n/3) + isin(#/3) is in C. If it were
possible to trisect an angle of #/3 radians with straightedge and compass then the
point (i3 = cos(w9)+isin(z/9) would be in C,, and so would cos(z9). But by
Exercise 22.10 deg(cos(7/9)/Q) = 3, so cos(z9) ¢ C..

3. (Constructing a Regular Heptagon) We will prove the general result that if p
is prime and p > 3 then the constructibility of a regular p-gon implies that p = 2"+1
for some r > 1. From this it is immediate that it is impossible to construct a 7-gon.

The constructibility of a regular p-gon implies that {, = cos(2a/p) + i sin(27/p)
is in C, (Exercise 23.5). But irr(/Q) = ®,(X) = X '+X* %+ - - - + X + 1, s0
deg(¢,/Q) = p — 1. Thus by Corollary 23.3, {, € C, implies that p — 1 = 2" for some
r, as claimed.

Actually, if p = 2" +1 is prime and r > 1 then r must itself be a power of 2
(Exercise 23.9). Thus if a regular p-gon is constructible then p = 2% +1 for some n
> 0. Such primes p are called Fermat primes. Fermat observed that forn =0, 1, 2,
3,4, 2 + 1 yields 3, 5, 17, 257, and 65,537, each of which is prime, and he
conjectured that 2% + 1 is prime for every integer n > 0. However, Euler showed
in 1732 that 27 + 1 = 4,294,967,297 is divisible by 641, hence is not prime. Since
Euler’s time, a number of »’s other than 5 have been found for which 2% + 1 is
not prime, and to this day nobody has ever found another » for which 2% + 1 is
prime. It should be pointed out, though, that Fermat never claimed to have proved
that the integers 2*° + 1 are all prime. It was only a guess.

A slight elaboration of the above ideas enables us to provide a necessary
condition for the constructibility of a regular n-gon, where » is not necessarily
prime. Suppose n >3, n= q/iq;: - - - g, for distinct primes g, ..., g, and a regular
n-gon is constructible. Then for any r, > 2, a regular g”-gon is constructible.
(Why?) Thus

£z =cos2n/q] )+ isin(2n/q})

is in C. so deg(¢,: /Q) = 2" for some r > 0. But by Exercise 22.11, this says that
gAg; — 1) = 2", and therefore ¢; = 2. Thus for all ¢; > 3 we must have r, = 1 and ¢ ”
€ C,, so g; must be a Fermat prime, as above. We have proved

THEOREM 23.4 If n >3 and a regular n-gon can be constructed with straightedge
and compass then n = 2"p, - - - p, where m > 0, k > 0 and p,, ..., p; are distinct
Fermat primes.

The conditions on n given in Theorem 23.4 are also sufficient for the
constructibility of a regular »n-gon. (We will prove this in Section 25, using Galois
theory.) The sufficiency was first proved by Gauss towards the end of his now
classic book Disquisitiones Arithmeticae (1801). In this work Gauss also claimed
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that he had a proof of the result in Theorem 23.4, but he never published a proof.
The first published proof was given by Pierre Wantzel in a paper that appeared in
1837. In this paper Wantzel also gave the first proofs of the impossibility of
doubling the cube or trisecting angles with straightedge and compass.

The ancient Greeks also considered constructions with tools other than
straightedge and compass. For example, they considered the possibility of allowing
the distance between any two constructed points to be marked off on the
straightedge. With this added ability it is possible to double the cube, trisect angles,
and construct a heptagon (see Exercises 23.12-23.14).

EXERCISES

23.1 Letz=a + bi € C. Show that z € C, iff both a and 4 are in C..
23.2 For each of the following values of # determine whether a regular n-gon is
constructible with straightedge and compass: n = 11; 13; 15; 18; 19; 112; 340.

23.3 Give an example of a nonzero angle that can be trisected using straightedge and
compass.

23.4 Show how to construct a regular hexagon using straightedge and compass.,
23.5 Show that if a regular p-gon is constructible anywhere in the xy-plane then {, € C..

23.6 Prove that a regular decagon (10-gon) is constructible, as follows. Consider the triangle
with vertices at 0, 1, and {o = cos(n/3) + isin(z/5). Find the length of the side
connecting 1 and {;, by bisecting the angle of the triangle at {}, and using similar
triangles.

23.7 The result of Exercise 23.6 implies that a regular pentagon is constructible. Prove this
in another way by starting from the fact that if @ = 2a/5 then cos(26) = cos(36).

23.8 (Squaring the Circle) Lindemann proved in 1882 that r is transcendental over Q.
Assuming this result, show that there is no construction with straightedge and compass
that will produce from the radius of a given circle the side of a square that has the same
arca as that circle.

23.9 Prove that if r € Z' and p = 2" + 1 is prime then r = 2” for some nonnegative integer n.

23.10 Express cos 56 in terms of cos & and use your result to show that there is no general
method for cutting angles into five equal pieces with straightedge and compass.

23.11 We have seen that an angle of 20° is not constructible with straightedge and compass.

a) Prove that neither an angle of 1° nor an angle of 2° is constructible.

b) Prove thatif n € Z" then an angle of n° is constructible iff 3.
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23.12 The following construction for trisecting angles using compass and marked
straightedge is due to Archimedes.

a) Consider an acute angle AOB, where A is the point 1, O is the origin, and B is a
point in the first quadrant one unit from O. Construct the circle of radius 1 with
center at O. Mark two points one unit apart on the straightedge. Then place
the straightedge so that its edge passes through B and one of the two marked
points is on the circle while the other is on the negative x-axis at some point C
outside the circle. Prove that angle ACB is one-third of angle
AOB.

b) Explain why being able to trisect acute angles enables us to trisect all
angles.

23.13 The following construction for doubling the cube using compass and marked
straightedge is due to Isaac Newton.

Construct a line L with negative slope that passes through the origin and makes an
angle of 30° with the positive x-axis. Mark two points one unit apart on the
straightedge. Then place the straightedge so that its edge passes through the point i
and one of the two marked points is on L while the other is at a point 4 on the
positive x-axis. Prove that the distance from 4 to { is .

23.14 The following construction of a regular heptagon using compass and marked
straightedge was published by Crockett Johnson in the Mathematical Gazette,
volume 59 (1975), pages 17-21.

Construct a square ABCD with sides of length 1. Then construct the circle centered at
B and passing through D, and construct the perpendicular bisector of AB at M. Mark
two points £ and F one unit apart on the straightedge, and place the straightedge so
that £ lies on the perpendicular bisector. F lies on the circle. and the straightedge
passes through 4, with / between A4 and E£.

Let x denote the length of BE and let @ denote angle AEM. Note that 2x sin # = | and
apply the law of cosines to triangle BEF to show that sin 38 = cos 40. Conclude that ¢
= /14 and thus we can construct the angle 4(z/'14) = 22/7.
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NORMAL AND
SEPARABLE EXTENSIONS

We will now consider certain special kinds of ficld extensions that are useful
in studying the roots of polynomials.

If F C E and AX) € F[X] can be written as c¢(X—a)(X—ay) - - - (X—a,) for some
c and some a;s in E (not necessarily distinct) then we say that f{X) splits over E
and that E splits f{X). Note that then ¢ € F, because c is the leading coefficient of
AX) € FLX]. 1t is apparent that if K is any extension of £ then f{.X) also splits over
K, so there are many different extensions of F over which fX) splits. We wish to
single out a standard extension that splits f.X), so that we can discuss fX) in terms
of this one definite extension. The thing to do is to opt for economy and use a
minimal extension that splits f.X).

DEFINITION Let F c E, and let f{.X) € F[X] be nonconstant. We say that £ is a
splitting field for f(X) over F if A.X) splits over £ but does not split over any
proper subfield of £ containing F.

THEOREM 24.1 Suppose f(X) € F[X] has degree » > 1 and E is an extension of F
such that in E[.X] we have

.f(*X) =X~ a!)("\/ a al) o (X ay).
Then E is a splitting field for f{.X) over F if and only if E = F(a,, ..., ay).

PROOF. If E is a splitting field for AX) over F then it follows from the fact that
AX) splits over F(ay, ..., a,) that F(a,, ..., a,) cannot be a proper subfield of E.
Hence E = F(a,, ..., a,). Conversely, if E = F(a,, ..., a,) then to show that E is a
splitting field for f{.X) over F we must show that if K is a subfield of £ containing F
and f(X) splits over K, say as A.X) = c(X — b;) - - (X - b,), then every a, is in K (for
then K = E because E = F(a, ..., a,)). But since 0 = fla;) = c(a, = b)) - * - (a;, — b,),
some a; — b;=0and thus ¢, = b, € K. [J

249



250  Section 24. Normal and Separable Extensions

[t follows from Corollary 20.4 and Theorem 24.1 that for any f.X) € F[X]
there exists a splitting field for A.X) over F, and every splitting field for A.X) over
is a finite extension of /. But we can say a little more.

THEOREM 24.2 Suppose f(X) € F[X] has degree n > 1. Then there exists a
splitting field for f(X) over F whose degree over F divides n!.

PROQF. We argue by induction on ». If » = | then F itself is a splitting field for
AX) over F, of degree 1 over F.

Assuming the result for polynomials of degree less than n, we consider two
cases. First, if f{.X) is irreducible over F of degree » then we consider an extension
F(a,) of F, where q, is a root of AX). In F(a,)[.X] we can write LX) = (X — a,)g(X)
with deg(g(X)) = n — 1. Then by the inductive hypothesis there is a splitting field £
for g(X) over F(a,) such that [E : F(a,)] divides (n — 1)!. By Theorem 24.1, £ =
F(a))(a,, ..., a,) where a,, ..., a, are roots of g(X). Since f.X) splits over £ and E =
F(ay, ..., a,), E is a splitting field for fX) over F. Since [F(a,) : F] = n because f(X)
is irreducible over F, [E : F] = n ' [E : F(a,)], and this divides n! because [£ :
F(a,)] divides (n — 1)!.

Second, if fX) factors in F[X] as LX) = g(X)h(X), where deg(g(X)) = m < n
and deg(4(X)) = k < n, then by inductive hypothesis there is a splitting field K =
F(a,, ..., ay) for g(X) over F such that [K : F] divides m!. Again by inductive
hypothesis there is a splitting field £ = K(b,, ..., &) for A(X) over K such that [E :
K] divides k!. Then E = F(a, ..., a, by, ..., by) is a splitting field for fX) over F,
and [E : F] = [K : F][E : K], which divides m!k!, which divides n!. (Note that
nYm'k! = n!/m!(n — m)! is an integer since it is the number of ways of choosing m
elements from an n-element set.) []

Examples

1. C is a splitting field for X? +1 over R, since X+l= X-HX+iHand C =
R(7). We have [C : R] = 2.

2. If A.X) = X*- 2 then the roots of LX) in Care 32, &2, and¢3 2, s0 E=
Q2,6 382,853¥2)=Q( 2, &) is a splitting field for X* — 2 over Q. We saw
in the third example following Corollary 22.12 that [£: Q] = 6.

3. Continuing the preceding example, we note that since 2 eR RG)isa
splitting field for X* =2 over R. Since (; is a root of X* +X +1, which is irreducible
over R, we have [R((3) : R] = 2. R({3) is also a splitting field for X* + X + 1 over
R.

4 IAN) =X —5X+6=(X—2)(X* - 3) then £=Q (V2,3 ) is a splitting
field for AX) over Q. We saw in the first example following Corollary 22.12 that
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[E : Q] = 4 We also saw that £ = Q(v/2 ++3) and that irr((v2 +V3 ) Q) = X*
~10X*> + 1. The other roots of this polynomial in £ are —(~2++3) and
+(v2 =3 ), and E is a splitting field for X*—10X*+1 over Q.

5.1fn e Z' and ¢, = cos(2a/n) + isin(27/n) then the roots of X” — 1 in C are ¢,
PO 1so Q (G, is a splitting field for X7 — 1 over Q. If » is a prime p then,

nIdn2°*"30n

as we have seen, the splitting field QQ(¢,) has degree p — 1 over Q.

We have indicated that we want a splitting field for fAX) over F to serve as a
“standard™ extension of F that splits fL.X). What we want to show, then, is that if £
and K are both splitting fields for /LX) over F then £ and K are essentially the
“same” extension of F, in the sense that there is an isomorphism ¢ : E — K such
that (c) = c for every c € F.

DEFINITION Let £ K be extension fields of F. E and K are isomorphic over F if
there exists an isomorphism @ from £ onto K such that ¢(c) = ¢ for every ¢ € F.
Such an isomorphism is called an isomorphism of £ and K over F,

THEOREM 24.3 Let F be a field, A.X) € FLX]. Let E and K be splitting fields for
SX) over F. Then £ and K are isomorphic over F.

The idea of the proof is to proceed by induction on deg(/(X)). We take an
irreducible factor g(X) of AX) in F[X] and let @ € E, b € K be roots of g(.X). We
show that F(a) and F(b) are isomorphic over F via an isomorphism that sends a to
b, and then we want to apply the inductive hypothesis to AX)/(X —a) € F(a)[X] and
the corresponding polynomial AX)(X —&) € F(b)[X]. Unfortunately we now have
two polynomials, with coefficients in two different fields. But the fields are
isomorphic, and under this isomorphism the two polynomials match up. To prove
Theorem 24.3, therefore, we first state it in a more general form.

THEOREM 24.4 Let F, F* be fields and let ¢ : F — F* be an isomorphism. Let
SX) € F1X] be nonconstant and let /*(X) € F*[.X] be the polynomial obtained by
replacing each coefficient ¢, of AX) by @(c,). Let £ be a splitting field for AX) over
F and let E* be a splitting field for f*(X) over F*. Then there exists an
isomorphism @* : E — E* such that ¢*(c) = @(c) for every ¢ € F.

We express the result of this theorem by saying that ¢ can be extended to an
isomorphism @~ : E — E*. Note that Theorem 24.3 follows immediately from
Theorem 24 .4, by starting with the identity isomorphism from F onto F.

We aim to prove Theorem 24.4 by induction on deg(flX)). We need the
following result to carry out the induction step.

LEMMA 24.5 Let F, F*, ¢, fiX),and f*(X) be as in Theorem 24.4 and assume that
AX) is irreducible in F[X]. Then if a and b are roots of AX) and f*(X) in extensions
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of F and F*, respectively, there is an isomorphism ¢, : F(a) — F*(b) such that
@i(a) = b and @ (c) = @(c) for every ¢ € F.

PROOF. We use a generalized version of the proof of Corollary 22.5.

First, @ extends in an obvious way to an isomorphism from F[X] onto F*[X],
obtained by mapping every g(X) € F[X] to g*(X). If we let I be the principal ideal
(X)) in F[X] and let I* = (f*(X)) in F*[X] then I is mapped onto I* so we have an
isomorphism

w : FIXVI — F*[X)/I*

such that for every g(X) in F[X] the coset g(X) of g(X) in FIX)/I is mapped to the
coset of g*(X) in F*[X]/I*, which we will denote by [g*(X)].

Since f{X) is irreducible over F, f*(X) is irreducible over F*. Note that / =
(irr(a/F)) and I*= (irr(b/F*)). If we let @, : FIX)/I — F(a) and @, : F*[X]/I* —>
F*(b) be the isomorphisms provided by Theorem 22.4, and let @, = @, © wo @,,
we see that @, : F(a) — F*(b) is an an isomorphism. We have

pi(a)= @, (W(X))= @, ((X])=b,

and for everyc € F

@ie) = @, (w(c)) = g, (Ic) =c.
O

Another version of this proof, using Theorem 22.3 instead of Theorem 22.4, is
requested in Exercise 24.14.

PROOF OF THEOREM 24.4. We proceed by induction on the degree of fiX). If
deg(fiX)) = 1 there is nothing to prove, since £ = F and E* = F*. So suppose
deg(fAX)) = n and the theorem is true for all fields F, F* and all g(X) € F[X] of
degree less than n. Let h(X) be an irreducible factor of f{X) in F[X] and let h*(X) be
the corresponding irreducible factor of f#(X) in F*[X]. Since AX) splits over £
there is a root a of h(X) in E (see Exercise 24.1). Likewise, there is a root b of
h*(X) in E*. By Lemma 24.5 there is an isomorphiam ¢, : F(a) — F*(b) that
extends ¢ and maps a to b.

We now conclude the proof by applying the inductive hypothesis to the
isomorphism ¢,. In order to do so, we write flX) = (X—a)g(X) in F(a)[X]. This
yields f*(X) = (X — b)g*(X), where g*(X) is obtained by applying ¢, to all the
coetficients of g(X). If we can show that E is a splitting field for g(X) over F(a) and
E* is a splitting field for g*(X) over F*(b) then the inductive hypothesis will imply
that ¢, can be extended to an isomorphism @* : E — E*, and ¢" will extend ¢
because ¢, does.
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Now g(X) splits over E, because f.X) does (Exercise 24.1). Furthermore, if
g(X) were to split over some proper subfield of £ containing F(a) then so would
fX), and this would contradict the fact that £ is a splitting field for A.X) over F.
Thus £ is a splitting field for g(X) over F(a), and similarly E* is a splitting field for
g*(X) over F*(b). This completes the proof. []

With this theorem behind us, we can speak of rhe splitting field of a
polynomial over a given field.

It is worthwhile to record the following consequences of Theorem 24.4 while
the ideas are still fresh.

COROLLARY 24.6 Let F be a field, AX) € F[X], and let E be the splitting field
for f{X) over F. Let K,K* be subfields of £ containing F, and let ¢ : K — K* be an
isomorphism over F. Then @ extends to an automorphism of E over F.

PROOF. E is the splitting field for fAX) over K, and £ is also the splitting field for
SX) over K*. Since ¢ fixes every element of F, fX) is the polynomial obtained by
applying ¢ to all the coefficients of f{iX). Thus, by Theorem 24.4, ¢ extends to an
isomorphism from E onto E. [J

DEFINITION If F C E then two elements a and b of E are said to be conjugate
over F if a and b are algebraic over F and irr(a/F) =irr(b/F).

COROLLARY 24.7 Let F, LX), and E be as in the previous corollary and let g, &
€ E. Then a and b are conjugate over £ iff there exists an automorphism ¢ of £
over F such that @(a) = b.

PROOF. Since E is finite over F, a and b are algebraic over F. If there exists an
automorphism @ of £ over F such that ¢(a) = b, then denoting irr(a/F) by g(X) and
applying @ to both sides of the equation g(a) = 0 yields g(b) = 0. Thus g(X) is
irr(&/F).

Conversely, if @ and b are conjugate over F then, applying Lemma 24.5 to the
irreducible polynomial of @ and b over F, we see that the identity isomorphism
from F onto itself extends to an isomorphism from F(a) onto F(b) that maps a to b.
By Corollary 24.6 this isomorphism extends to an automorphism of E over F. [

Example The roots of X' — 2 in C are +4/2 and i ¥/2, so the splitting field for xt
~2overQis E=Q(¥2, ), and [E: Q) =4 -2 =8 since irr(i/Q(Y2)) = X* + L.

If b is any of the four roots of X* — 2 we know by Lemma 24.5 that there is an
isomorphism ¢, : Q( 42 ) — Q(b) over Q mapping 2 to b. Since irr(=i/Q( ¥2))
= X* +1 and applying ¢, to the coefficients of X +1 leaves the polynomial
unchanged, Lemma 24.5 tells us that ¢, can be extended to an automorphism of £
over Q mapping / to either of the roots +/ of X* + 1. So we have obtained eight
automorphisms of £ over Q. Since any automorphism of £ over Q is completely
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determined by its effects on 42 and i, and has the same effects on ¥2 and i as one
of the eight automorphisms we have indicated, we have found all the
automorphisms of £ over QQ.

As another illustration of Lemma 24.5, consider ¢, : QX 2) — QGi¥2) such
that @,(¥2) = i¥2. Since irr(i¥2/Q(¥2)) =X2++2 and applying ¢, to the
coefficients of X* + /2 gives us X* — /2, Lemma 24.5 tells us that we can extend
@, to an automorphism of E over Q by choosing to map i4/2 to either of the roots
+2 of X* - V2.

The following theorem provides a couple of alternate characterizations of
splitting fields over F. The equivalence of properties (i) and (iii) in this theorem is
rather remarkable, because (1) refers to one particular polynomial and (iii) involves
all irreducible polynomials over F.

THEOREM 24.8 Let E be a finite extension of F. Then the following statements
are all equivalent to each other:

i) E is the splitting field over F for some polynomial X) € F[.X].
ii) If E < K and @ is an automorphism of K over F then @(£) = E.
iii) Every irreducible polynomial in F[.X] that has a root in £ splits over E.

PROOF. We prove (1)=(i1)= (iii)= (i).

()=(ii): If ay, ..., a, are the distinct roots of AX) in £ then £ = Flay, ..., ay). If
E ¢ K and @ is an automorphism of K over £, then f(a,) = 0 implies A@(a,)) = 0 for
each a, so ¢(a,) = a, € E for some g, . Since £ = F(a,, ..., a;) this implies that @(£)
c E. To see that £ c @(E) it suffices to show that each g, is in p(£). But o(a), ...,
@(ay) are k distinct roots of A.X) in £, hence must be a,, ..., a; in some order.

(11)=>(1i1): Suppose g(X) is irreducible in F{X] and a € E is a root of g(X). To
show that g(.X) splits over £ we will find an extension K of £ such that g(X) splits
over K and K is the splitting field over F for some polynomial A(X) € F[.X]. We can
then argue as follows: For any root & of g(X) in K, @ and b are conjugate over F, so
by Corollary 24.7 there is an automorphism ¢ of K over F such that ¢(a) = b. By
(ii), @(E) = E and in particular @(a) € E, i.e. b € E. Thus all the roots of g(X) in K
are actually in E, so g(X) splits over E.

To find the desired extension K of £ we let {6y, ..., b,} be a basis for E over F,
so that E = F(b,, ..., b,), and let K be the splitting field over £ for the polynomial

h(X) = g(X) - ir(by/F) - - - irr(b/F).

Then g(X) splits over K, and K is the splitting field for h(X) over F because if F <
L < K and A(X) splits over L then each irr(b/F) splits over L and in particular each
b, € L. Thus E = F(b,, ..., b,) < L and therefore L must be all of K because no
proper subfield of K containing £ can split A£(.X).
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(ii)=>(i): Let {b,, ..., b,} be a basis for £ over F and let g(X) = irr(b/F) for
each /. Each g(X) has a root in E, so by (iii) each g(X) splits over E, Thus AX) =
21(X)ga(X) - - - gX) splits over E, and E is in fact the splitting field for A.X) over F
since if F < L C E and fiX) splits over L then in particular by, ..., b, are all in L so L
=:E. [

DEFINITION A finite extension £ of F is called a normal extension of F if it
satisfies the conditions of Theorem 24.8.

The proof that (ii)=(iii) in Theorem 24.8 includes a proof of the following
fact, which we record for future use.

LEMMA 24.9 If F(b,, ..., b,) is a finite extension of F then the splitting field over
F(b,, ..., b,) of irr(by/F) - - irr(b,/F) is a finite normal extension of F.

It turns out that for algebraic extensions that are not finite, (ii) and (iii) in
Theorem 24.8 are still equivalent, and (i) gets replaced by the statement that £ is
the splitting field over F for a set of polynomials.

Normal extensions will be tied in with normal subgroups when we come to the
main theorem of Galois theory.

Examples

1. Extensions of degree 2 are normal. For let [E : F] = 2 and let g(X) be an
irreducible polynomial over F that has a root ¢ € E. Then [F(a) : F] divides 2, i.e.
deg(g(X)) is 1 or 2. Thus g(X) splits over £, so E is normal over F using
characterization (ii1) of normality.

2. A normal extension of a normal extension of F need not be a normal
extension of F. For consider

Qe Q(V2)cQ( ¥2).

We have [Q(V2): Q] =2 =[Q(¥2): Q(V2)], so both extensions are normal.
But Q(¥2) is not normal over @, since X* -2 is irreducible over Q and has a root
in Q( ¥2 ) but does not split over Q( ¥2 ).

3. We have seen that there are automorphisms of K = Q(42, i) over @ that
send ¥2 to i¥2 and thus do not map Q(2) onto itself. Thus property (ii) of
Theorem 24.8 fails for the extension Q(/2) of @, showing again that Q( ¥2) is
not normal over Q.
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4. If a is an element of an extension of Z, such that ¢’ = 2, then the elements a,
2a, and 4a of Z(a) are roots of X* — 2. So X* — 2 splits over Z-(a) and Z-(a) is the
splitting field for X’ 2 over Z,. Thus Z+(a) is normal over Z.

The polynomial g(X) = X" + X + 1 is irreducible over Z, (since it has degree 3
and has no roots in Z), but the element a* + a of Z-(a) is a root of g(X). It follows
from property (iii) of Theorem 24.8 that g(.X) must split over Z4(a). (It turns out
that the other two roots of g(X) in Z,(a) are 4a” + 2a and 24" + 4a.)

If £ is the splitting field over F for a nonconstant polynomial A.X) € F[X] and
we write (X) = c(X — a;) -+ - (X — a,) in E[X], then a,, ..., @, need not all be
distinct. This is a significant issue when we try to use £ to study f(.X).

DEFINITION If AX) € F|X] and a is a root of /{.X) in an extension K of F, we say
that a is a root of multiplicity = if in K[X] we can write fLX) = (X — a)"g(X) with

gla)=0.

The meaning of the definition is unchanged if we replace K[X] by L[.X], for
any extension L of K, because if AX) = (X — a)"g(X) in L[X] then g(X) € K[X]. In
particular, if L is the splitting field for A.X) over K and AX) = (X — a))- - (X — a,)
in L[X] then a is a root of multiplicity m if and only if there are exactly m factors X
- a;such thatq, = a.

DEFINITIONS Roots of multiplicity 1 are called simple roots, and roots of
multiplicity at least 2 are called multiple roots. A polynomial is said to have
distinct roots if all of its roots are simple.

There is an easy way to determine whether a root a of a polynomial ﬁ;X) is a
multiple root, by using the formal derivative f{X). If AX) = ¢y +¢;X +c2X° + -
+¢,X", then the formal derivative of f{X) is defined to be

FX=c1+20, X+ -+ ne, X"\,

This is called the “formal” derivative because it is not defined by a limit, as
derivatives are defined in calculus. (We have no notion of “limit” available, since
we are working over an arbitrary field /) Nevertheless, formal derivatives obey
the usual sum, product, and power rules for derivatives in calculus. (See Exercise
19.17.)

THEOREM 24.10 Let fLX) € F[X] be nonconstant.

i) If F C K and a is a root of f{X) in K then a is a multiple root if and only if
fla)=0.
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ii) Suppose fiX) is irreducible over F. Then there exists an extension K of F
containing a multiple root of f{X) if and only if f(X) is the zero polynomial, and in
this case every root of f{X) in every extension K of F is a multiple root.

PROOF. 1) Exercise 19.18(b).

i) First suppose f{X) has a multiple root @ in some extension K of F. We want
to show that fI(X) is the zero polynomial. By part (i), f(@) = 0, so by Theorem
22.2 fiX) divides f(X) in F[X]. But this is impossible if f(X) is not the zero
polynomial, because then f(X) has a degree that is less than that of f{X). So f(X) is
the zero polynomial.

Now suppose f(X) is the zero polynomial. Then f(a) = 0 for every root a of
fiX) in any extension K of F, so by part (i) every root of f{X) is a multiple root. []

COROLLARY 24.11 If F is of characteristic 0 and f{.X) € F[.X] is irreducible over
F, then fA(X) has distinct roots.

PROOF. If the leading coefficient of AX) is ¢, # O then the leading coefficient of
F(X) is nc, # 0 (since F is of characteristic 0), so f(X) is not the zero polynomial.
Thus fiX) has distinct roots. []

The assumption that fX) is irreducible is indispensable in Corollary 24.11. For
example, the polynomial (X - 1)’ in Q[X] clearly does not have distinct roots.
In characteristic p, even an irreducible polynomial can have multiple roots.

Example Consider Z,(X), the quotient field of Z,[.X]. The polynomial Y 2 - Xin
Zop(X)[Y] is irreducible over Z,(X) because it has degree 2 and has no roots in
Zo(X). (If g(X), h(X) € Z, [X] and (g(X)/h(X))* = X, then, multiplying both sides by
h(X)* we get an equation in which the left side has even degree and the right side
has odd degree.) Since the formal derivative of ¥ — X is 2Y — 0 = 0, every root of
Y? — Xis a multiple root. Indeed, if we adjoin a root @ then ¥* — X = (¥ — a)* since
we are in characteristic 2.

DEFINITIONS Suppose F c E. If a € E then a is said to be separable over /' ifa
is algebraic over F and irr(a/F) has distinct roots. £ is called a separable extension
of F if every element of E is separable over F.

It follows from Corollary 24.11 that if F has characteristic 0 then every
algebraic extension of F is separable. In characteristic p, some algebraic extensions
are separable and some are not. (The extension Z,(X)(a) of Z,(X) in the preceding
example is not separable.)

DEFINITIONS If F < E then E is called a simple extension of F if there exists a
€ E such that E = F(a). The element « is then called a primitive element for £
over F.
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One nice thing about finite separable extensions is that they are always simple
extensions. To see this we need a preliminary result that is interesting in its own
right.

THEOREM 24.12 If F'is a field then every finite subgroup of the multiplicative
group F - {0} is cyclic.

PROOF. Let H be a finite subgroupof F — {0} under multiplication. For every
positive integer », the polynomial X" — 1 has at most » roots in F by Corollary
19.4, so #" = 1 has at most n solutions # € H. Thus H is cyclic by Exercise 5.27.
(Exercise 5.27 can be proved directly, or by applying Theorem 14.2.)0]

And now for our result about finite separable extensions.

THEOREM 24.13 (Primitive Element Theorem) If F is a field then every finite
separable extension £ of F is simple.

PROOF. If F is a finite field, then since E is finite over F, E has only finitely many
elements. Therefore the multiplicative group £ —{0} is cyclic by Theorem 24.12.
If a is a generator for £ — {0} then E = F(a), so E is a simple extension of F.

For the remainder of the proof we can assume that F has infinitely many
elements. :

Since E is a finite extension of F, there are elements a;, ..., a, in E such that E
= F(a,, ..., a,). If we can show that E is a simple extension of F in the case where r
= 2 then the result for all »’s will follow by an easy induction. So suppose E = F(a,
b). Let [F(a) : Fl=m and [E : F(a)] = n, so that [E : F| = mn.

We will show that there is some ¢ € F such that E = F(a + ¢b). The idea is that
we can find ¢ € F such that [F(a + ¢b) : F] > mn, and therefore F(a + cb) = E.

Let K be the splitting field for irr(a/F) « irr(b/F ) over F. We claim that we can
find embeddings 7, ..., 7, Of E into K over F such that for some ¢ € F the
elements t(a + cb), 1 <i < mn, are all distinct. It will then follow that irr((a +
cb)/F) has at least mn distinct roots in K, and therefore deg((a + ¢b)/F) > mn, as
desired.

To find 7y, ..., 7,,, note that irr(e/F) splits over K and has distinct roots a, ...,
a, in K since a is separable over F. For any q; there is by Lemma 24.5 an
isomorphism @; : F(a) — F(a;) over F such that ¢ (a) = a;. If AX) = irr(b/F(a)) then
there is some g(X) € F(a)[X] such that irr(b/F) = fiX)g(X), so if we denote by fi(X)
and g,(X) the polynomials obtained by applying ¢; to the coefficients of AX) and
g(X) then irr(b/F) = £fi(X)g(X), with deg(f(X)) = n. Since irr(b/F) splits over K and
has distinct roots, it follows that f(X) has n distinct roots by, ..., b, in K. For any b;
there is by Lemma 24.5 an extension of ¢; to an embedding ¢;; of E into K such
that @, (b) = b; . The embeddings @; , 1 <i <m, 1 <j < n are mn distinct
embeddings of E into K over F. Call these embeddings 7y, ..., T,
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If i # j then either 7(a) # 1(a) or 1(b) # 1(b). We want to show that there is
some ¢ € F such that r(a + ¢b) # 1(a + cb) whenever | #j, i.e.

t(a) — t(a) # c(r(b) — 1b)) if either 1(a) # t(a) or r,(b) # 1(b).

If 7,(b) = 1,(b) this is clearly true for every ¢, for then ti(a) # 7,(a). So all we need is

r,(a)- T,(a)

G
7,(b)-7,(b)

if 7,(b) # 7,(b),

and since F is infinite it is clear that such a ¢ exists. []

The Primitive Element Theorem will be useful to us in our discussion of
Galois theory in the next section. The argument that produced 7, ..., 7, has the
following consequence, which will also be significant.

If AX) € F[X] we say f{X) is separable over F if every irreducible factor of
AX) in F1X] has distinct roots.

THEOREM 24.14 If f(X) is separable over F and £ is the splitting field for AX)
over F, then there are exactly [E£ : F] automorphisms of £ over F.

PROOF. We have E = F(a,, ..., a,), where the a;’s are the roots of f{X) in E. For
each a, irr(a/F) divides A{X) in F1.X] and thus has distinct roots. If [F(a)) : F] = m,
and [F(ay, ..., @) : F(a, ..., @-)] = m; for 2 < j < n then as in the proof of the
Primitive Element Theorem we see that there are m, embeddings of F(a,) into E
over F; that each of these has m, extensions to an embedding of F(a,, a;) into £
over F; that each of these extensions has mj; extensions to an embedding of F(a;,
a,, a;) into E over F; and so on. This gives us m;-m; - - - m, = [E : F] embeddings
of E into E over F. Since AX) splits over the image of each of these embeddings
(because f{X) splits over E), the image cannot be a proper subfield of the splitting
field E. So each of these embeddings is onto and is therefore an automorphism of E
over F. By considering a, ..., a, in that order we see that every automorphism of £
over F must have the same effect on a,, ..., a, as one of our [£ : F] embeddings,
hence must be one of these embeddings. [J

We conclude this section by taking a closer look at finite fields.

By Theorem 22.13, there exists a finite field with exactly & elements if and
only if k is a power of a prime. If F is any field with p" elements then the
multiplicative group F—{0} has p" — | elements, so by Theorem 10.4 every
nonzero element of F is a root of X” ™' — 1. Therefore every element of F,
including 0, is a root of X”" — X, and F is a splitting field for X”" = X over the
prime subfield. It follows, by Theorem 24.4, that if two fields each have p"
elements then the obvious isomorphism of their prime subfields extends to an
isomorphism between the fields themselves. We have proved
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THEOREM 24.15 If F is a field with exactly p" elements then every element of
is a root of X”'~ X , and F is a splitting field for X”~ X over the prime subfield.
If two finite fields have the same number of elements then they are isomorphic.

Notice that if F has p" elements then F has an extension of degree r, for any
integer r > 1, obtained as a splitting field £ for X”"— X over F. For since p" — 1
divides p”" — 1, a”" = 1 for every nonzero a € F, so every element of F is a root
of X""=X . Therefore E is also a splitting field for X"~ X over the prime
subfield of #, so |E| = p" . Since |F| = p" , a basis for E over F must have exactly r
elements,so [E: Fl=r.

In addition, any extension of F of degree r must have exactly p" elements, and
must therefore be a splitting field for X "_ X over the prime subfield, hence over

F. Thus any two such extensions are isomorphic over F, and we have

THEOREM 24.16 Let F be a field with exactly p" elements. Then for any integer
r > 1, F has an extension of degree r, which is obtained as a splitting field for
x"™-X over F.

Any extension of F of degree r has exactly p” elements, and any two
extensions of F of degree r are isomorphic over F. Furthermore, any such
extension is normal and separable over F.

nr

The statement about separability follows from the fact that for every element a
of the extension, irr(a/F) divides X "_X in F[X], hence has distinct roots.

EXERCISES

24.1 Suppose K is a field, fiX) € K[X] and g(X) is a nonconstant factor of fiX) in K[X].
Prove that if f{IX) splits over K then g(X) splits over K.

24.2 For each polynomial, find the splitting field over Q and its degree over (2

a X -1 b) X -1

C') 4\,8 -1 d)/‘(o -8

X +1 NX+1

X +2 X +4

i) X* — 2, where p is prime D=3 -2)
k) 24X° — 26X* +9X - | DX +5X+6

m) X' — 5X*+ 36 X+ X+ 1

24.3 Find all multiple roots of X* + X — 1 in its splitting field over Z;.

24.4 Find all multiple roots of 3X° + 2X + 3 in its splitting field over Zs.
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24.5 How many automorphisms are there of (J( Hp) ) over 3?7 How many are there of

Q (2, &) over Q?

24.6 Give an example of a finite extension that is not normal but has the property of normal
extensions indicated in Corollary 24.6.

24.7 Show again that ( 2 ) is not normal over Q by exhibiting two elements a, b of
Q( 2 ) that are conjugate over () for which there is no automorphism of (( {6 ) over
@ mapping a to b.

24.8 Prove that Q( 42 +2 ) is normal over Q.

24.9 Suppose F ¢ E ¢ K with K finite and normal over F. Must £ be normal over £7 Must
K be normal over E?

24.10 Let E be a finite normal extension of . Must condition (iii) of Theorem 24.8 continue
to hold if we delete the word “irreducible™?

24.11 Give an example of a separable extension that is not normal, and give an example of a
normal extension that is not separable.

24.12 Suppose I'c E < K and K is separable over /. Must £ be separable over F? Must K
be separable over £7

24.13 Suppose that £ is a separable extension of /" and there exists a positive integer n such
that deg(a’F) < n for all @ € E. Prove that E is a finite extension of /and [£ : /] <n.

24.14 Give another proof of Lemma 24.5, by using Theorem 22.3 instead of Theorem 22.4.

24.15 A field F is called perfect if every finite extension of / is separable. Show that every
field of characteristic 0 is perfect and that every finite field is perfect.

24.16 Let F be a field of prime characteristic p and let A.X) € F]X] be irreducible over F.

a) Show that there is a polynomial g(X) € F1X] such that fX) = g(X*") for
some integer » > () and g(X) has distinct roots.

b) Show that there is an integer » > 0 such that all the roots of f{X) have
multiplicity p".

¢) Suppose FF < [ and a € E is algebraic over F. Show that there is an integer r
>0 such that a” is separable over F.

24.17 Let F be a field of characteristic p, where p is prime. Prove that F is perfect if’ and
only if every element of F has a pth root in F.

24.18 Let F be the quotient field of Z,[X][Y ]. and consider the extension F(a, b), where a* =
Xand b2 =Y.
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a) Show that [F(a, b) : F] =4 and F(a, b) is not a simple extension of F.

b) Show that F(a, b) is a normal extension of F, but F(a, b) is not the splitting
field over F of any irreducible polynomial.

24.19 Let F be a finite field and let LX), g(X) be two irreducible polynomials in F[X] of the
same degree. Prove that the splitting field for f.X) over F is also the splitting field for

g(X) over F.

24.20 Let F be a finite field such that |[F| = p" and let k € Z". Prove that F has a subfield
with exactly p* elements if and only if k|n, and that if such a subfield exists it is
unique.

24.21 Let p be prime and let g(X) be irreducible over the field Z,. Prove that ifn € Z' then
g(X) divides X" - Xin Z,[X] if and only if deg(g(X)) divides n.

24.22 (Automorphisms of a finite field) Let F be the finite field such that |[F] = p" and let G
be the group of automorphisms of F over its prime subfield, under composition.

a) The Frobenius automorphism of F is the mapping o : F — F given by a(a) = &.
Verify that ¢ € G.

b) Show that ¢ has order n in G.
¢) Show that G =< ¢ > .

d) Let £ be an extension of F of degree ». Show that the group of automorphisms of Eover
Fis cyclic of order r, generated by the automorphism that maps everya € Eto a” .

24.23 Let F be a finite field. Prove that every element of F can be written as the sum of two
squares, i.c. for every a € F there exist b, ¢ € F such that a = b* + ¢*.

24.24 Suppose E is a finite extension of a field F and K, and K, are subfields of £ that
contain F and are normal over F. Prove that K, (1 K, is normal over F.

24.25 Suppose F c K, c E, E is finite over F and K is normal over F. Prove that if F c K,
c E and no proper subfield of £ contains both K, and K then E is normal over K.

24.26 Prove that if £ is a finite extension of F then £ is normal over F if and only if for
every polynomial /{X) € F[X] that is irreducible over F, all the irreducible factors of

AX) in E[X] have the same degree.

24.27 Let E be a finite extension of F. Prove that £ is a simple extension of £ if and only if
there are only finitely many distinct subfields of £ containing F. [Hints: Show that if
E = F(a) then any subfield K of £ containing F is obtained by adjoining to F the
coefficients of irr(a/K), and irr(a/K) divides irr(a/F) in E[X]. For the converse, it
suffices to show that for any two elements b, d € E, F(b, d) is a simple extension of F.
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coefficients of irr(a/K). and irr(a/K) divides irr(a/F) in E[X]. For the converse, it
suffices to show that for any two elements b, d € E, F{(b, d) is a simple extension of F.
Consider the subfields F(b + ed), for ¢ € F. If F is infinite there must exist ¢; # ¢; in F
such that F(b+ ¢\d)=F(b+ ¢.d).]

24.28 Suppose the complex number z is in C,, so z € Q(ay, ..., a,) for some square root
sequence a, ..., a, of complex numbers. By Lemma 24.9 let K be an extension of
Q(a,, ..., a,) that is a finite normal extension of ().

a) Prove that for every root z’ of irr(z/Q) in K, there is a sequence d, ..., d,, of
elements of K such thatz' € Q(d, ..., d,), 4] € Q and d} € Q(d,. ..., d; 1)
forall2<j<n

b) Prove that if E is the splitting field for irr(z/Q) over Q then [E : Q] = 2" for
some integer m.

c) Prove that if w € C and deg(w/Q) = 4 and the splitting field for irr(w/Q)
over Q has degree 12 or 24 over (Q then w ¢ C_. This indicates how the
converse of Corollary 23.3 can fail. (For an example where this happens see
Exercise 26.13.)

The remaining sequence of exercises develops further aspects of the idea of
separability,

24.29 Let E be a finite extension of . By Lemma 24.9 let K be an extension of E that is a
finite normal extension of F. Define the separable degree [E : F], of E over F to be
the number of embeddings of £ into K over F.

a) Show that [£ : F], <[E : F].

b) Show that [E : F], does not depend on our choice of K.

24.30 Prove that if ' £ < K and K is finite over F then
IK:FL=IE:F), [K: E};

24.31 Prove that if £ is a finite extension of F then [E£ : F], divides [£ : F]. [Suggestion:
Consider the case E = F(a) first, and use Exercise 24.16 in characteristic p.|

24.32 Prove that if £ is a finite extension of F then E is a separable extension of # if and
onlyif [E: F],=[E: F].

24.33 Prove that if ¥ — E c K are finite extensions such that £ is separable over £ and K is
separable over £ then K is separable over F.

24.34 Show that /(a,. ..., a,) is a separable extension of F'if and only if each ¢, is separable
over F.
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24.35 Let F c E. Define the separable closure S:(F) of F in E to consist of all elements of
£ that are separable over F.

a) Prove that Sg(F) is a subfield of £ containing F.

b) Prove that if E is finite over F then [Sg(F) : F] = [E : F],
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GALOIS THEORY

Galois theory brings together ideas from group theory (subgroups, normal
subgroups, quotient groups, indices) and ideas from field theory (subfields, normal
and separable extensions, degrees, automorphisms). It is often referred to as one of
the most beautiful parts of mathematics, both because it reveals a close and precise
interplay between these two sets of ideas and because this interplay has fascinating
consequences. We will see in this section that it enables us to complete the
determination of which regular polygons are constructible with straightedge and
compass by turning a question about a field extension into an answerable question
about a group. In the next section we will see that the same kind of translation
allows us to answer questions about formulas for finding the roots of polynomials.

Our first step is to introduce the main ingredients of the theory. If F < £ then
the set of automorphisms of £ over F is a group under composition. We call this
group the Galois group of £ over /" and denote it by ['(£/F). On the other hand, if
S is a set of automorphisms of a field £, then by the fixed field of S we mean the
subset {a € E | ¢(a) = a for every @ € S}. It is easy to verify that this subset is a
subfield of £. We denote it by ®(S).

It is obviously true that

F < O(T(E/F)) [25.1]
since every element of F is fixed (not moved) by every automorphism of £ that
fixes all of F. The finite extensions that provide the setting for Galois theory are
those for which equality holds in [25.1]. These extensions can be characterized in
several equivalent ways.

THEOREM 25.1 Let E be a finite extension of F. The following are equivalent:
1) F = O(I'(E/F)).

ii) E is normal and separable over F.
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iii) £ is the splitting field over F for some separable A.X) € F[X].

PROOF., We show that (1)= (ii))= (iii))=(i).

(i)=>(i1): Suppose that F' = O(I'(E/F)). Every a € E is algebraic over F, and to
show that £ is normal and separable over F it will suffice to show that for every a
irr(a/F) splits over E and has distinct roots. For then E is separable over F by
definition, and E is normal over F by Theorem 24.8(iii).

Let ay, ..., a, be the distinct roots of irr(a/F) in E, with a, = a. Let

fXN=X-a)X-a) - X-a)=X"+b,_ . X'+ +bX+by [25.2]

in E[X]. We want to show that irr(a/F) = f{X), for then it is clear that irr(a/F) splits
over £ and has distinct roots. All we really need to show is that all the coefficients
b, are in F, for then irr(a/F) divides f{X) in F[X] and has degree at least », so is a
constant multiple of f.X). Since f{.X) and irr(a/F) are both monic it then follows that
ir(a/F) = AX).

Since F = ®(I"(E/F)) what we need to show is that each b, € ®(I'(E/F)), i.e. for
every @ € ['(E/F) we have @(b,) = b, But applying ¢ to [25.2] yields

X =@a)) - (X = @@@)=X"+ @b, )X '+ +@b)X+ @by,

and since ¢(a)), ..., ¢(a,) are n distinct roots of irr(@/F) in E they are 4, ..., a, in
some order. Thus

JX) =X+ @by X"+ 4 @(b)X + lbo),

so @(b;) = b, for every b;

(ii)= (iii): Since E is finite over F we can write E = F(a,, ..., a,). Each
irr(a/F) has distinct roots, since E is separable over F, and each irr(a/F) splits over
E, since E is normal over F. Thus E is the splitting field over F for the separable
polynomial irr(a/F) - - - irr(a,/F).

(iii)=>(i): Suppose E is the splitting field over F for fX), which is separable
over F. Let K= ®(I'(E/F)). We want to show that K = F.

By Theorem 24.14, [E : F] = |I'(E/F)|. Since E is also the splitting field for
f(X) over K, and A(X) is separable over K (why?), applying Theorem 24.14to K C E
yields [E : K] = |[(E/K)|. But ['(£/K) = I'(E/F) since every element of ['(E/F) fixes
all of K. So |E : F] = |E : K], and therefore, since FC KCE, [K: F]=1. Thus K=
F.[

Finite extensions that satisfy the three equivalent conditions of Theorem 25.1
are called Galois extensions. For algebraic extensions that are not finite, (1) and
(ii) are still equivalent, and the AX) in (iii) gets replaced by a family of
polynomials that are separable over F. Algebraic extensions satisfying these three
conditions are then called Galois. We will only be werking with finite Galois
extensions.
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If £ is any extension of F, then any field K such that F ¢ K < E is called an
intermediate field. One way to approach the problem of trying to understand the
extension £ is to try to find out what the intermediate fields are. For finite Galois
extensions there is a one-to-one correspondence between these subfields and the
subgroups of I'(£/F). The basic objective of Galois theory is to establish and
exploit this correspondence, so that we can use groups to study fields.

Evariste Galois (1811-1832) created the theory that bears his name during the
years when he was between seventeen and twenty years old. He sought recognition
for this work but became frustrated and resentful of the mathematical
establishment as his papers were sometimes misplaced by senior mathematicians
and sometimes rejected because his proofs were not judged to be clear enough. He
was also active in political groups opposed to the French monarchy and was
arrested twice, the second arrest resulting in his imprisonment. Shortly after his
release from prison he took part in a duel and was shot through the stomach. He
died the next day (May 31, 1832), at the age of twenty. He was buried in a
common grave at the cemetery of Montparnasse. No trace of his grave remains
today.

Galois’ original version of his theory looked somewhat different from the
modern version that we are about to present. For one thing, Galois worked only
with subfields of C, so separability was not an issue for him. Another difference is
that Galois thought in terms of groups of permutations of the roots of a
polynomial, rather than in terms of groups of automorphisms of a field. The
modern formulation in terms of fields is due to Emil Artin (1898-1962).

To appreciate the insight and innovation in Galois’ work it helps to bear in
mind that in the 1820s the general concept of a “group” had not yet been
formulated. Yet Galois sought to understand the roots of a polynomial by
analyzing the structure of certain groups of permutations of these roots, and
introduced ideas for which we now have standard names (for example, the ideas of
subgroups, normal subgroups, and indices).

THEOREM 25.2 (Fundamental Theorem of Galois Theory) Let E be a finite
Galois extension of F, and let G = I'(E/F).

i) If Fc K< Ethen [E: K] = |['(E/K)|. In particular [E : F] = |G].

) If F C K C E then ®(I'(E/K)) = K, and if H is any subgroup of G then
I'(E/®(H)) = H. Thus the mapping K + ['(E/K) is a one-to-one mapping
of the set of intermediate ficlds onto the set of subgroups of G and the
mapping H + ®(H) is its inverse.

i) If K and L are intermediate fields then K C L iff I'(E/K) 2 T'(E/L).
1v) For any subgroup H of G, [E : ®(H)] = |H| and [D(H) : F] =[G : H].

v) If H is a subgroup of G then H <« G iff ®(H) is normal over F, and in this
case
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I(®(H)/F) = G/H.

Before you look at the proof, take a few minutes to absorb what the theorem
says, and to appreciate the symmetry and harmony it expresses. The result is
beautiful because it is so perfect, and everything fits together so well.

PROOF OF THEOREM 25.2. i) This is immediate from Theorem 24.14, since £ is
the splitting field over F (and therefore over K) of a polynomial f{X) that is
separable over F (and therefore over K).

i) Since £ 1s the splitting field over K for a separable polynomial we have
O(I'(E/K)) = K by Theorem 25.1.

Next, for any subgroup H of G, every element of H is clearly in I'(E/D(H)), so
if we can show that |['(E/D(H))| < |H| we will have I'(E/®(H)) = H.

Let K = ®(H), so that our goal is to show that [['(E/K)| < |H]|, i.e. [E: K] < |H|
by part (i). If (using the Primitive Element Theorem) we choose a € E such that £
= K(a) it will suffice to show that @ is a root of some polynomial A.X) € K[.X] of
degree |H|. If H= {¢,, ..., @,} we claim that

JX) = (X = @@)X — @a(a)) -+ (X — @ia))

will do. Clearly f{a) = 0 since some ¢, is the identity automorphism. To see that the
coefficients of A.X) are all in K = ®(/) we need only show that every ¢, fixes all
the coefficients. For this it suffices to show that

@jc @i(a), ..., ¢;c pla)

are @,(a), ..., ¢{a) in some order. But this is so since / is a group, so @, © @y, ...,
@, © @, are @,, ..., @, in some order.

iii) If K < L then every automorphism of £ that fixes every element of L fixes
every element of K, so I'(E/K) o I'(E/L). Conversely, if I'(E/K) 2 I'(£/L) then
every a € E that is fixed by every element of ['(£/K) is fixed by every element of
I(E/L), i.e. D(I(E/K)) € D(I(E/L)). By part (ii) this says K c L.

iv) By parts (i) and (i),

[£: ®(H)] = [I(E/D(H))| = |H].
This yields
(@) : F]=[E: FYIE: ®(H)] = |G)/|H| =[G : H]

v) First suppose H < G. To show that @(H) is normal over F it suffices to show
that for every a € ®(H), irr(a/F) splits over ®(H). We know it splits over E, so we
need to show that if b € E is a root of irr(a/F) then b € O(H).

Since E is normal over F, Corollary 24.7 tells us that there is some ¢ € ['(E/F)
such that ¢(a) = b. We want to show that for every t € H, 1(b) = b, 1.e. T° p(a) =
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@(a), i.e. ¢ o 10 @(a)=a Butthis is true because ¢ 'c 70 @ € Hand a € D(H).

To conclude the proof we will assume that K = ®(H) is normal over F and
define an onto homomorphism ¥ : G — I'(K/F) with kernel H. We can then apply
the Fundamental Theorem on Group Homomorphisms. We define ¥ by restriction:
If o € G then since K is normal over F we have a(K) = K by Theorem 24.8(ii).
Thus the automorphism ¢* : K — K given by o*%(¢) = o(a) for all @ € K is in
['(K/F). We define ¥ by letting W(¢) = o*. Then 'Y is a homomorphism since (¢, ©
oy)* = g] o o3, and ¥ is onto because for any @ € I'(K/F), @ extends to an
element ¢ € G since E is normal over /' (Corollary 24.6), and then ¢* = ¢, i.e. ¥(0)
= ¢. Finally, ker('¥) = H because for any ¢ € G, o € ker('t) iff o* fixes all of K,
1.e. all of ®(H), and this is so iff ¢ € ['(E/D(H)) = H. [J

DEFINITION If f{X) € F[X] then the Galois group I'(AX)/F) of AX) over F is
defined to be I'(E/F), where E is the splitting field for f(X) over F.

Every element of I'({X)/F) must permute the distinct roots of f.X) in the
splitting field, and is completely determined by its effect on these roots. Thus
distinct automorphisms give rise to distinct permutations, and we have a one-to-
one mapping from I'(A.X)/F) into the group of permutations of the distinct roots of
JX). If g, T € I'(AX)F) give rise to permutations g,, g,, then g o r givesrise to g, ©
g, S0 our mapping is an isomorphism from I'(A{.X)/F) onto a subgroup of the
symmetric group S, where m is the number of distinct roots of f.X). Since S,, is
isomorphic to a subgroup of S,, where n = deg(f(.X)), we have

THEOREM 253 If fiX) € F[X] has degree »n then I'(AX)/F) is isomorphic to a
subgroup of S,

Even if m = n and f(X) is irreducible, however, the Galois group need not be
isomorphic to S, itself.

As an illustration, let us consider the case of an irreducible polynomial /.X) of
degree 3 over a field F of characteristic # 2, 3. Since the characteristic is not 3,
f(X) is not the zero polynomial, so AX) is separable over F. ['(AX)/F) is
isomorphic to a subgroup of S3, and has (by Theorem 25.2(i)) order [E : F], where
E is the splitting field for f(.X) over F. For any root a of A.X) in E,. [F(a) : F] =3, so
3 divides [E : F]. Thus I'(AX)/F) is isomorphic to either 45 or §;, and there is an
easy way to find out which.

If @, a;, a; are the three distinct roots of AX) in E, let

d=(a, — a;)(a; — a;)(a; — a3).

Then for any ¢ in the Galois group, o(d) = +d, and o(d) = 4 iff o gives rise to an
even permutation of the indices I, 2, 3. (This is because any transposition of the
indices sends ¢ to —d. We have used the fact that, since the characteristic is not 2, d
#—d.) Thus d is in ®(I'(E/F))y—i.e. d € F, since E i1s Galois over F—iff I'(AX)/F) =
As.
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It is clear that if we let D = & then D does not depend on how we order the
roots of A{X), and a(D) = D for every o, so D € F. D is called the discriminant of
AX). We have proved

THEOREM 25.4 Let fiX) be an irreducible polynomial of degree 3 over a field F
whose characteristic is neither 2 nor 3. Then f{iX) is separable over F and ['(AX)/F)
is 1somorphic to either A; or §3. I'(fiX)/F) = §; if and only if the discriminant of
fiX) has no square root in F.

This result makes it interesting to find an easy way to calculate the
discriminant. It can be shown that, under the circumstances of Theorem 25.4, if
fiX) = X* + aX® + bX + c then the discriminant is

D = a*bh® - 4b® - 4a°c + 18abc - 27c%

In general, if AX) is separable over F then its splitting field over F is a finite
Galois extension and thus we can use Theorem 25.2 to study I'(AX)/F). Of course,
if F has characteristic O or is a finite field then (by Corollary 24.11 and Theorem
24.16) all polynomials in F[X] are separable over F, so we can always apply
Theorem 25.2 in these cases.

Examples

1. Let fiX) = X* = 3X + 1 in Q[X]. By Exercise 19.1 the only possible roots of
fiX) in Q are +1, neither of which works. So, since flX) has degree 3, fiX) is
irreducible in Q[X]. The discriminant is D = -4(-3)* =27(1)* = 81, which has a
square root in Q. So T'(fiAX)/ Q) = As.

2. The splitting field of X* =2 over Q is E = Q(%/2, i), which has degree 8
over (). Since E is a Galois extension of (), Theorem 25.2 guarantees us that if G =
[(E/AQ) then |G| = 8. In the example following Corollary 24.7 we confirmed this
directly, by showing that we get all the elements of G by choosing to map 2 to
any of +32 or Y2 and choosing to map i to +i.

Let o € G be such that a( Y2 ) = i {2 and a(i) = i. Then

A2)=o((¥2)=aid2)=i i¥2 =- {2,

and likewise o°(¥2) = —-i¥2 and 6*(¥2) = ¥2. So ¢ has order 4 as an element of
G.

Now let T € G be such that 7(¥2 ) = ¥2 and (i) = —i. Then °(i) = ©(~i) =
——i=1, 50t has order 2 in G.

Since 1€ <o >,

G={e¢ a (J‘z, 0‘3, 1, 01,0°T, ajr]
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1

Since< o >hasindex2inG <o ><dGsotot € <o >.Since 1ot ! has order

4, tot ! must be oor o', But

wr (2)=10({2)=1{2)=-i¥2 2a({2),

and therefore to1~! = &', which leads to 16* = o*1 for all k € Z. Thus G~ D,.

Since D, has exactly 10 subgroups it follows from Theorem 25.2(ii) that there
are exactly 10 intermediate subfields in E.

For example, if H, is the subgroup < 7 > of G then by Theorem 25.2(iv) we
have [O(H)) : Q] = [G : H,] = 4. Since ¥2 € ®(H,) it follows that O(H,) =
Q(¥2)

If H, =< g > then [®(H;) : Q] =[G : H,] = 2. Since i € O(H,) it follows that
O(H;) = Q(i). Note that Q(2) is normal over Q, corresponding to the fact that A, «
G, and F(Q(J)/ Q)= G/Hz = Z,.

If H; = {e, o 1, 0’7} then [D(H:) : Q] =[G : Hs] =2. Smce Hyc Hy, O(H3) <
O(H,y) = Q(\/-L 2). Thus ®(H3) = Q(a), where a € Q(/2) - Q is fixed by o*. Since
A(¥2)=-42, A(V2) = (*(¥2))* = V2. Thus O(H3) = Q(JE).

If H, =< o > then H, c H; so O(H,) o O(H;). Likewise, since H, = Ha,
(Hy) 2 D(H,). So O(Hy) 2 Q(v2, i) But [O(H,) : Q] = [G : Hy] = 4 and
therefore ®(H,) = Q(+2, i). Note that H, <« G and Q(~/2, i) is normal over Q
(being the splitting field for (X* — 2)(X* + 1) over Q). By Theorem 25.2(v),
[(®(H)/Q) = G/Hy = V , Klein’s 4-group. We can verify this conclusion directly
by observing that ['(Q(~/2, i/Q) is a group of order 4 in which every element has
order 1 or 2.

3. Let F be a finite field such that |F] = p", with prime subfield Z, By
Theorem 24.16, F is Galois over Z, and [F : Z,] = n. If G = I'(F/Z,) then by
Theorem 25.2(i) |G| = n. If ¢ is the Frobenius automorphism defined by o(a) = &’
then o has order  in G since a” = a for all elements @ € F and » is the smallest
integer with this property. Thus G =< ¢ > .

For every positive integer & that divides », G has a unique subgroup < ¢ > of
order n/k. Thus the intermediate subfields of F are

(O(< *>) | ke Z'and kln }.
By Theorem 25.2(iv)
[O(<d >):Z,]=[G:<d" >]=n(wk) =&

so O(< o >) is a field with p elements. The fact that ¢ fixes every element of
®(< o* >) just says that every element of ®(< ¢! >) is a root of X" - X By
Theorem 25.2(ii), N(F/®(< o >)) =< ¢ >
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fX)=X-X)X-X)) - (X-X,)
= X" = 51X, e X)X 4 55X o, X)XT2 =
=D e (X o XX (=D i X

where sy, ..., s, € F[X), ....X,] and s; is the sum of all products of j distinct X;'s. For
instance

S](Xl, ...,X,,) =X| 3= X2+ v.e v Xn and S (X[, ...,Xﬂ) ﬁX[Xz' : 'Xn-

The s5,’s are called the elementary symmetric polynomials in X,, .. X, because
they remain unchanged if we apply any element of S, to the subscripts of the X;’s.
Clearly f(.X) is a separable polynomial over K = F(s,, ..., s,). £ is a splitting field for
AX) over K, so £ is Galois over K. We get an isomorphism of S, with I'(£/K) by
associating to each permutation the element of I'(£/K) whose value at g(X,,
LXa)Yh(X, .., X,) is obtained by applying the permutation to the subscripts of the
X’s.

An element of £ is called symmetric if it is left fixed by every permutation of
the X’s, i.e. by every element of I'(E/K). Since E is Galois over K, an element of E
is symmetric if and only if it is in X, i.e. it can be written in the form g(sy, ...,

S VAT s Bp)

We will conclude this section by giving a couple of applications of Galois
theory. Section 26 will be devoted to the application that motivated Galois.

In Theorem 23.4 we showed that if a regular n-gon is constructible with
straightedge and compass then n=2"p, - - - p;, where m >0, k > 0 and the p,’s are
distinct Fermat primes. We can now establish the converse.

THEOREM 25.5 Suppose n23 and n=2"p, - - - p, where m 20, k>0 and p,, ...,
p« are distinct Fermat primes. Then a regular n-gon can be constructed with
straightedge and compass.

PROOF.Letr=p; - pi. If r =1 then n = 2" for some m > 2, so we can construct
a regular n-gon by starting with the square with vertices at +1,#, inscribed in the
unit circle around the origin, and repeatedly bisecting the central angles to double
the number of sides.

If r > I then to construct a regular n-gon it suffices to construct a regular r-
gon. For once we have an r-gon we can bisect the central angles repeatedly to
obtain an n-gon.

We now claim that if £ € C, for every p; then {, € C, so a regular r-gon is
constructible. Since the integers »/py, ..., 1/p; have greatest common divisor 1 there
exist ay, ..., a; € 7 such that
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ai(r’p)) + axr/p) + - - -+ alr/p) = 1,
and thus

a\(2m/p)) + ax2a/py) + - - + aQuipy) = 2akr.
Using the identity
cos(a + f) + isin(a + f) = (cos a + isin a)(cos £ + isin ff)

repeatedly, we thus obtain

o) - (o) o)

ie. & oo g =( Thusifevery {, € C, then(, € C, so our problem is now
reduced to showmg that each {, € C..

We want to show that if p is a Fermat prime then {, € Q(ay, ..., a,) for some
square root sequence a,, ..., . We know that Q({,) is a Galois extension of ( (as
the splitting field of X” —1 over Q) and [Q(,) : Q] = p — 1 = 2" for some ¢, since p
is a Fermat prime. Thus I'(Q(¢,)/Q) has order 2', so by the First Sylow Theorem
there are subgroups

{e}=HycH cH,c- -cH=T(QYQ)
such that |H, | = 2/. If we let K, = ®(H,) then by Galois theory

Q=K ck Ig"'gK{}:@(Cp)

and [Q ((p) : Kj] = [H;| =2, soforl<;<rwehave[K :K;]=2.Forany b €
,,I—Kthere are thusc d € K; such that b2 + cb + d = Oand thus

2 2
i -] o
2 2

If we leta = b + = then K;_ = K{(a) and @’ € K; . Thus there is a square root
sequence ay, ..., 4, sach that Q({,) = Q(ay, ..., a,), and in particular ¢, € Q(a,, ..., a,).
O

We have mentioned previously that the determination (before Galois theory
existed) of which regular polygons are constructible with straightedge and compass
is due to Carl Friedrich Gauss (1777-1855). Gauss was an extraordinary
mathematician; many consider him to have been the greatest of all time. He did his
work on polygons while he was still in his teens, and it is said that this success was
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what made him decide to be a mathematician. He remained very proud of this work
throughout his life.

Our final result for this section is another result of Gauss (often referred to as
the Fundamental Theorem of Algebra). which states that every nonconstant f{.X) €
C[X] splits over C. If we are working with a polynomial in Q[X], for example, a
splitting field always exists inside €. Gauss gave several proofs of this theorem
over a span of roughly 50 years, the first in his Ph.D. thesis (1799). There are now
a number of different proofs using results from different parts of mathematics.
Here’s a proof using Galois theory.

THEOREM 25.6 Every nonconstant f(.X) € C[.X] splits over C,

PROOF. We first show that every nonconstant g(X) € R[X] splits over C.

Let E be the splitting field for g(X) - (X* + 1) over C, so that E is also the
splitting field for g(X) - (X2 + 1) over R. Then E is a Galois extension of R, because
separability is automatic in characteristic 0. Let G = ['(E/R) and write |G| = 2'm,
with m odd. We have

RcCceE,

with [E : R] = 2%m and [E:C]= 2 1m. We want to show that 2" = 1, for then E
= C and g(X) splits over C.

We first show that m = 1. Let H be a 2-Sylow subgroup of G and let K = ®(H).
By Galois theory, [K : R] = m. We assert that K = R and thus m = 1. For if K # R,
let @ € K — R. Then deg(a/R) is greater than 1 and divides m, hence is odd. Thus
h(X) = irr(a/R) is a polynomial of odd degree over R that has no root in R. But this
is impossible, because for large enough |r|, h(r) and h(-r) have opposite signs, and
thus by the Intermediate Value Theorem there is some real ¢ between —r and r
such that A(c) = 0.

So m = 1 and |[(EAC)| = 2", To prove that 2*"' = 1, suppose not. Then
I'(E/C) has a subgroup of index 2, and the fixed field of this subgroup is an
extension of C of degree 2. As in the last few lines of the proof of Theorem 25.5
we see that this extension is obtained by adjoining a square root of some element
of C. But this is impossible, since every element of C already has all its square
roots in C (see formula [23.1]). This completes the proof that g(X) splits over C.

To see that every nonconstant fiX) € C[X] splits over C let g(X) = AX)f*(X),
where f*(X) is obtained from fiX) by replacing each coefficient a+bi of fAX) by its
complex conjugate a—bi. Then replacing the coefficients of g(X) by their complex
conjugates leaves g(X) unchanged, so g(X) € R[X]. By what we have already
proved, g(X) splits over C and therefore so does AX). [J

A field F'is said to be algebraically closed if every nonconstant f.X) € FIX]
has a root in F. This is equivalent to saying that every nonconstant AX) € FlX]
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splits over F, so the Fundamental Theorem of Algebra says that C is algebraically
closed.

EXERCISES

25.1 For each of the following polynomials, determine the Galois group over Q, i.e.
determine to which familiar group the Galois group 1s isomorphic.

a) X>+2X+5
b) X3 -1

c) X* = 5X*-=5X+10

25.2 For each of the following polynomials, determine the Galois group over Q.

a)X'-1 b) X - 1, where p is prime
X+ 1 d) (X = 2)X* = 3)
X' —4x*+2 NX'+2

25.3 For each of the following polynomials, determine the Galois group over (¥ and find all
the subfields of the splitting field.

a) (X* = 2)(X* - 3)
b) X*+ 1
)X’ -2
25.4 Referring to Example 2 in the text, find ®(H) for
a) H = {e, o, o1,0°T)
b)H=<dt>.

25.5 If Fis a field such that |F| =4 and £ is an extension field such that |£| = 4096, find
T(E/F).

25.6 Suppose E is an algebraic extension of F and every nonconstant f(X) € F[X] splits over
E. Prove that E is algebraically closed. (This provides an alternative to the last

paragraph of the proof of Theorem 25.6.)

25.7 Is Q(i) algebraically closed?
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25.8 Prove that no finite field is algebraically closed.

25.9 Let p be a prime and consider a chain of fields

FieFh, CF3C e,

where, for each n, |F,| = p". Prove that the field F obtained by taking the union of
the chain is algebraically closed.

25.10 If F, and F are as defined in Exercise 25.9, prove that I'(F/F)) is an infinite abelian
group.

25.11 How many elements does I'(RAQ) have?
25.12 Let £ be a finite extension of R. Show that if E#R then E is isomorphic to C over R.

25.13 Suppose that z € C is algebraic over @ and E is the splitting field for irr(zAQ) over Q.
Prove that if [E : Q] = 2" for some integer m then z € C,. (This is the converse of
Exercise 24.28.)

25.14 Let G be a finite group. Show that there exists a finite Galois extension F C E such
that I'(E/F) = G. [Hint: Use Example 5 in the text.]

25.15 A finite extension F' c £ is said to be abelian (respectively cyclic) over Fif E is
Galois over F" and I'(E/F) is abelian (respectively cyclic).

a) Prove that if £ is abelian over F then every intermediate field is abelian over
F.

b) Prove that if E is cyclic over F then every intermediate field is cyclic over F
and the intermediate fields are in one-to-one correspondence with the positive
divisors of [E : F].

25.16 Let E be a finite Galois extension of F and let G = I'(E/F). Let H, and H, be
subgroups of G.

a) Show that ®(H, (" H;) is the smallest subfield of £ that contains both ®(H,)
and O(H,).

b) Show that ®(H ) D(H,) is the fixed field of the smallest subgroup of G that
contains both H, and H,.

25.17 Suppose £ is a finite Galois extension of F. Prove that I'(£/F) is cyclic if and only if
there is some ¢ € I'(E/F) such that ®({s}) = F.
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25.18 Suppose E is a finite Galois extension of F and I'(E/F) = {a), ..., 0,,}. Fora € E, let
N(a)=a(a) * - * g,(a). Prove that N(a) € F foralla € E.

25.19 Prove that for every integer n > 1, T'(X" — 14Q) is abelian.

25.20 Prove that if E is a finite extension of F then E is Galois over F if and only if [E : F] =
|T(E/F)|.

25.21 Referring to Theorem 25.1, prove that (i) and (ii) are equivalent for every algebraic
extension £ of I (not necessarily finite).

25.22 a) Let E be a finite Galois extension of F, and let K and L be intermediate fields such
that K is Galois over F and no proper subfield of £ contains both K and L. Show
that we obtain an embedding of I'(£/L) into I'(K/F) by restricting the domain of
each element of I'(E/L) to K.

b) Show that if we assume that K NL = F then I'(E/L) = I'(K/F).

25.23 a) In the situation of Exercise 25.22(a), assume that L is also Galois over F. Show that
then I'(E/F) is isomorphic to a subgroup of I'(K/F) x I'(L/F).

b) Let fX), g(X) € F1.X] be separablé over F. Show that fX)g(X) is separable
over F and that I'(f{X)g(X)/F) is isomorphic to a subgroup of '(AX)/F) x
[(g(X)/F).

c) In the situation of part (a), assume K N L = F. Show that then
[(E/F) = T(K/F) x I'(L/F).

25.24 Let F be a field whose characteristic is not 2. Suppose £ is a Galois extension of F
and [E : F] = 4. Prove that the following are equivalent:

i) There exist a, b € E such that@® b’ € Fand E = F(a, b).
i) ['(E/F) = V (Klein's 4-group).

25,25 Suppose £'is a field and G is a finite group of automorphisms of E. Prove that E'is a
Galois extension of ®(G) and [£ : &(G)] = |G|



SECTION 26

SOLVABILITY

Methods for solving quadratic equations date back at least to the time of the
ancient Babylonians. Methods for solving cubics were not found until much later,
in the early 1500s.

Sometime around 1515 Scipione del Ferro, a professor at the University of
Bologna, discovered how to solve equations of the form X°+ aX = b, with a, b > 0.
(In those days it was not possible to write all cubic equations in the form
X*+aX*+bX+c¢=0, because negative numbers were not accepted. Solving
cubic equations was therefore a matter of dealing with a number of different
cases.) Like other professors of his time, del Ferro kept his job by competing in
mathematical contests and being able to solve problems that others couldn’t solve.
So he did not make his method public, although he did later reveal it to his student
Antonio Fiore.

In 1535 Niccolo Tartaglia announced that he had discovered a method for
solving equations of the form X° + aX® = b. Fiore challenged him to a contest and
posed problems requiring the solution of equations of the form X’+aX = b.
Tartaglia figured out how to solve equations of this type too, and won the contest.
He kept his methods to himself for several more years, but in 1539 was persuaded
to reveal them to Geralamo Cardano, in return for a pledge of secrecy and the
promise of an introduction to a potential patron.

Cardano’s life is one of the strangest and most varied in the history of
mathematics. He was trained as a physician and was for a time a prominent one in
Milan and throughout Europe. At other times he wrote on mathematics and was
professor of mathematics at several universities in Italy. At still other times he was
a philosopher and astrologer. He also had a reputation as a gambler, and at one
point was brought before the Inquisition for casting a horoscope of Christ. His
elder son murdered his own wife and was beheaded for it, and Cardano had his
younger son imprisoned several times and disinherited him. (One story says
Cardano went so far as to cut off the boy’s ears in a fit of anger.) He spent the last
part of his life as astrologer to the papal court, and while in Rome wrote his
autobiography (The Book of My Life), which is still in print today.

In any case, Cardano set about demonstrating that Tartaglia’s method for X* +

279
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aX = b was correct, and eventually developed methods for solving all cases of the
cubic. He also learned, by gaining access to del Ferro’s unpublished papers in
Bologna, that del Ferro had solved X° + aX = b about twenty years before Tartaglia.
He felt that this released him from his promise to Tartaglia, and so in 1545 he
published the solutions for cubics in his Ars Magna, acknowledging del Ferro’s
and Tartaglia’s accomplishments. Cardano’s student Ludovico Ferrari had by this
time discovered a method for solving quartics (equations of degree 4), and this was
also included in the Ars Magna.

Tartaglia felt that Cardano had, by publishing the solutions, robbed him of the
credit he deserved for his discoveries. Afier a bitter public dispute, a contest was
held between Tartaglia and Ferrari. Ferrari won, and as a result Tartaglia lost his
teaching position. Today the formulas for solving cubics bear Cardano’s name.

The methods given in the Ars Magna make it possible to express the roots of
cubic and quartic polynomials in terms of the coefficients by using addition,
subtraction, multiplication, division, and the extraction of radicals. The success of
these methods led mathematicians to seek similar “solutions by radicals™ for
equations of the fifth and higher degrees, but centuries went by without any
progress being made. In 1770, Lagrange gave a unified account of why equations
of degree at most 4 are solvable by radicals. He observed that the known methods
reduced the problem of finding the roots of a polynomial f.X) to that of finding the
roots of an associated polynomial of smaller degree. When he tried this for AX) of
degree 5, however, he was unable to produce such a polynomial of smaller degree.
This impasse was actually a signal pointing in the direction of the truth.

In the years between 1799 and 1813 Paolo Ruffini made several attempts to
prove that it was actually impossible to find a formula for solving quintics
(equations of degree 5) by radicals. His arguments were difficult to follow and
incomplete at some points, so his results were not accepted by his contemporaries.
The matter was finally settled in 1826, when Neils Abel published a proof that for
n > 5 there is no general formula for finding the roots of nth-degree polynomials in
terms of radicals.

An earlier (1824) version of Abel’s result for quintics was published at his
own expense and had to be kept very brief to keep down the cost. As a result the
arguments were difficult to follow and the work did not receive much attention.
(Gauss apparently didn’t bother to read the copy that was sent to him.) Even after
the 1826 version appeared, recognition was slow in coming, and Abel supported
himself by taking low-level academic jobs while he continued to work on
mathematics. His life came to a premature end in spring 1829, when he died of
tuberculosis at the age of 26. Two days after his death he was sent a letter
informing him that he would be offered a position on the faculty of the University
of Berlin.

The work of Ruffini and Abel demonstrated that there is no general formula
for solving all quintics by radicals. This left open the possibility that every quintic
in, say, Q[X] might have roots expressible in terms of radicals, using different
expressions in terms of radicals for different quintics. The most  celebrated
consequence of Galois theory is the establishment of a criterion that is necessary
and sufficient for the expressibility of the roots of a polynomial in terms of
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radicals. It follows from this criterion that there are polynomials in Q[.X] whose
roots cannot be so expressed.

To establish Galois’ criterion we first need to give a precise definition of what
it means for a polynomial to be “solvable by radicals.”

DEFINITIONS If F C E then a sequence ay, ..., a; of elements of E is a radical

sequence over F if there exist ny, ..., n, € Z" such that a' € Fand a}y c F(ay, ...,
aj-y) for 2 <j <k Eis called a radical extension (or extension by radicals) of F if
E = Fla, ..., a) for some radical sequence a;, ... a; of elements of E. A

polynomial fiX) € F[X] is said to be solvable by radicals over F if the splitting
field for fAX) over F is contained in some radical extension of F.

Example Any square root sequence a;, ..., @ of complex numbers is a radical
sequence over (), with all n, = 2, and Q(a,, ..., ay) is then a radical extension of (.

The elements of a radical extension of F can be obtained by starting with
elements of F and applying the operations of addition, subtraction, multiplication,
division, and root extraction (to obtain @, from a:” ). Thus a polynomial f(.X) is
solvable by radicals over F if and only if its roots can be obtained in this way from
elements of F.

Notice that a radical extension of F must be finite over F. Notice too that for
SX) to be solvable by radicals over F it is nor required that the splitting field for
fLX) over F be aradical extension of F. It is only required that the splitting ficld be
contained in a radical extension of F. The splitting field itself might not be a
radical extension of /. (See Exercise 26.9.)

Galois’ criterion for solvability of fX) by radicals over F is stated as a
condition on the group I'(AX)/F).

DEFINITION A group G is solvable if there is a series of subgroups
le}=Gpa G aGy @ aG,,<20G,=C

such that G/C,. , is abelian for 1 </ <r.

Examples

1. Every abelian group G is solvable, because we have {e} < G and G/{e} =G is
abelian.

2. S5, the smallest nonabelian group, is solvable. For we have {e} < 4;<.S;and both
Sy/A; and Ay/{e} are cyclic groups of prime order.

3. S, is solvable. Ay is a normal subgroup consisting of 8 3-cycles and the 4
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elements of the subgroup H = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)2, 3)}. H<a A,
since H consists of all the elements of order 1 or 2 in A;. So we have

fe} a Ha Ay 4 S,
with both §,/4, and A,/H cyclic of prime order, and H/{e} = V.
S, is solvable for n <4, but that’s where it ends:
THEOREM 26.1 If n > 5 then S,, is not solvable.

PROOF. Right off the bat we use n>5: Let a, b, ¢, d, e be five distinct elements of
{1, 2, ..., n}. Note that

(@b c)=(c a dlc b eXcad '(cbe)' [26.1]
Now suppose for a contradiction that
{e}ZGgﬂG]Q"‘QGrJQG,=Sn

with each G/G,., abelian. Then since G,-, <« S, and S,/G,, is abelian, xyx Iy'l (S
G, , forallx, y € S, so by [26.1] all 3-cycles are in G,-,. Since G, < G, and
G,1/G,_, is abelian, it follows that xyx 'y ' € G,_, for all 3-cycles x, y. Thus by
[26.1] all 3-cycles are in G,,. Continuing in this way we conclude that all 3-cycles
in S, are in {e}, which is sheer nonsense. (]

The nonsolvability of S, for n > 5 implies the nonexistence, for n > 5, of a
general formula for solving polynomials of degree n by radicals. Here is the first
half of Galois’ classic theorem.

THEOREM 26.2 If F has characteristic 0 and AX) € F[.X] is solvable by radicals
over F then the group I'(ALX)/F) is solvable.

The assumption that F has characteristic 0 is not essential, but it does
eliminate separability as an issue. (Galois himself only considered the theorem in
characteristic 0.) We will get to the proof shortly.

The results of Ruffini and Abel can be obtained by applying Theorem 26.2 to
the general polynomial of degree », with » > 5. This is the polynomial

X' =YX 4 X e (1),

with coefficients in F(Y,, ..., ¥,), with ¥,, ..., Y, being variables. Saying that there is
no formula for solving all polynomials of degree n in F].X] by radicals is the same
as saying that the general polynomial of degree » is not solvable by radicals over
F(Yy, .., Y,) So, by Theorem 26.2, what we want to show is that the Galois group
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of the general polynomial of degree n over F(Y), ..., ¥,) is not solvable if n > 5. We
establish this by showing that for every » the Galois group of the general
polynomial over F(Y), ..., ¥,,) is S,.

We have already shown something close to this in Example 5 of Section 25.
There we showed that if X, ..., X, are variables and, for 1 <j <n, s, = s/(X), ..., X},)
is the jth elementary symmetric polynomial, then the Galois group of F(Xj, ..., X,)
over F(sy, ..., sy) is isomorphic to S,. If r, ..., r, are the roots of the general
polynomial of degree » in its splitting field over F(Y), ..., V,), then from the
factorization of the general polynomial as (X—r)- - (X —r, we see that
Y,=s(ri, ..., r,) and therefore the splitting field for the general polynomial over
F(Y, ..., Y,) is just F(ry, ..., r,). To show that the Galois group of F(r,, ..., r,) over
F(Y,, ..., Y,,) is isomorphic to S, it will suffice to show that there is an isomorphism

W2 F(Piy cons W) = FXXy 000 Ki)

that maps F(Y,, ..., ¥,) onto F(sy, ..., s,), with 5, = s(X), ..., X,).

To get ¥ we first note that there is a ring homomorphism ‘¥, from the
polynomial ring F[Y,, ..., V] onto Flsy, ..., ,], the smallest subring of F{(s, ..., 5,)
containing F U {s,, ..., 5,}. ¥, maps each polynomial g(Y, ..., ¥,,) to g(s), ..., 8,). ¥
is in fact one-to-one, because we also have a homomorphism

Y i FIX, oo Xo] = Flrts oo, 7]

that sends A(X, ..., X)) to A(ry, ..., r,), and for any Y;,
T o Y=Y (BLK5 s Bn]) = 54T 1 ens Fie) = 1.

It follows that Y o ¥, is the identity mapping on F[Y,, ..., ¥,] and therefore ‘¥, is
one-to-one.
The isomorphism ¥, extends to an isomorphism

¥y AV, oy Vo) — F(81 i 8a)
of quotient fields. If we apply ‘¥, to the coefficients of the general polynomial

.Xﬂ = Y;){n I R (_' l)”Yn
we get the polynomial

{rﬂ N Sl/kn | 4 ""I"(—])”S”_

so ¥, extends to an isomorphism ¥ between the splitting fields of these
polynomials, i.e. an isomorphism from F(ry, ..., r,) onto F(X,, ..., X)), completing
the argument.
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Once we have proved Theorem 26.2, then, we will have proved the result
established by Abel and Ruffini:

THEOREM 26.3 If F has characteristic 0 and n > 5 then the general polynomial
X" Y X" +Y, X2 — .. +(_})" ¥ is not solvable by radicals over F(Y}, ..., ¥;).

As indicated above, when we consider, say, quintics over (, we cannot
sidestep the nonexistence of a general formula for finding the roots in terms of
radicals by using different formulas for different quintics. There exist quintics in
Q[X] whose Galois group over QQ is Ss, and such quintics are not solvable by
radicals over Q.

THEOREM 26.4 Let f{X) € Q[X] be irreducible of prime degree p. If AX) hasp —
2 real roots and 2 nonreal roots in C then I'(AXY Q) = S,.

PROOF. Let E be the splitting field for f.X) over Q, with Q c E c C, and say the
roots of fX) in E are z,, z, ..., z, with z; and z; nonreal. As in the proof of
Theorem 25.3, [(A{X)/ Q) is isomorphic to a subgroup H of S, via an isomorphism
that sends each automorphism to the permutation of z,, ..., z, it induces. If we can
show that // contains a transposition and a p-cycle then // = S, by Exercise 8.27.

The mapping @(a + bi) = a — bi is an automorphism of C over Q, so @(E) = E
since E is normal over Q. The restriction of ¢ to £ is an element of I'(f{.X)/ Q) that
interchanges z, and z; and fixes z3, ..., z,, S0 the transposition (z,, z;) is in .

To see that H contains a p-cycle it suffices, since p is prime, to show that H
has an element of order p. But Q < Q(z;) < £ and [Q(z)) : Q] = p, so p divides [E:
Q), i.e. p divides |[(RX) Q)|, so p divides |H|. By the First Sylow Theorem, H has
an element of order p. O]

Examples

1. Let fX) = 2X° — 5X* + 5. Then AX) is irreducible in Q[.X] by Eisenstein’s
Criterion.

Since f(X) = 10X°(X - 2), f(.X) is increasing for X < 0 and for X > 2, and
decreasing for 0 < X < 2. Since f0) = 5 and f2) = —~11 it follows that f{X) has
exactly 3 real roots, and therefore exactly 2 nonreal roots in C.

By Theorem 26.4 I'(AX) Q) = S5 and thus by Theorems 26.1 and 26.2 the
roots of f{.X) are not contained in any radical extension of Q.

2. Theorem 26.4 is no longer true if we drop the hypothesis that p is prime.
The Galois group of X* - 2 over Q is Dy, not S,.

It is possible, for every prime p, to produce a polynomial in Q[.X] that satisfies
the hypotheses of Theorem 26.4. Therefore for every prime p there is a finite
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Galois extension of Q with Galois group S,. A famous unsolved problem of Galois
theory is whether for every finite group G there exists a finite Galois extension of
@Q with Galois group G. The answer is known to be “yes” for every S, and 4,, and
Shafarevich proved in 1954 that the answer is affirmative for every solvable group
G. But the answer in general is still unknown.

In order to prove Theorem 26.2 we will need a preliminary result on solvable
groups, and one on radical extensions.

LEMMA 26.5 If G is a solvable group and N <« G then G/N is solvable.

PROOF:. Since G is solvable we have a series of subgroups

{8}2604614""36,-]46,:6

such that G,;/G;_; is abelian for 1 < i < r, and we wish to induce such a series of
subgroups in G/N. For each G; let G;* = {Ng | g € G;}. Clearly each G;* is a
subgroup of G/N. Since for any g, h € G; we have ghg 'h! € Gy, we get

NgNh(Ng)™'(Nh)™ = Nghg™'h™"' € G__,.
It follows that G,, <« G and G, /G, is abelianfor 1 <i<r. O

LEMMA 26.6 If F has characteristic 0 and E is a radical extension of F then there
exists an extension K of E that is radical and Galois over F.

PROOF. We have E = F(a,, ... a) for some radical sequence a,, ..., @, with
associated positive integers ny, ..., m. 1f K is the splitting field over E for

ir(ayF) - - - ire(ayF)

then K is a finite normal extension of F by Lemma 24.9, and K is separable over
since we are in characteristic 0. So K is Galois over F,

To see that K is radical over F, let, for each i, a;,..., a;, be the roots of irr(a/F)
in K. Then K is obtained by adjoining all of the a;’s to £, so it will suffice to show
that each a;; is a member of some radical sequence of elements of K. (If we string
together such radical sequences for all the a;'s we get a radical sequence that,
when adjoined to F, gives us K.)

Since a; and a; are conjugate over F and K is normal over F we have an
automorphism ¢ of K over F such that ¢(a;) = a;; . Then @(a,), @(ay), ..., p(a,) is a
radical sequence of elements of K (for example, from & € F(a,, ..., a;-;) we get
(@a))" € F(g(a,), ..., p(a;—,))), and its ith member is a; . [

PROOF OF THEOREM 26.2 If L is the splitting field for f{X) over F then by
assumption there is an extension E of L that is radical over F. By Lemma 26.6 we
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have E C K, where K is radical and Galois over F, say K = F(ay, ..., ay), with a" €
Fand o} € F(ay, ..., aj-1) for2 <j <k

In the course of the following argument we will want to apply Example 4 of
Section 25 to each polynomial X" —aj’, so we will need n, distinct roots of X"
-1 for each j. Accordingly, let n be the least common multiple of n,, ..., n;. The
equation X" — 1 has » distinct roots in its splitting field over K since we are in
characteristic 0, and these form a cyclic group under multiplication by Theorem
24.12. If b is a generator then K(b) is still radical over F (since " = 1), and is still
Galois over F since if K is the splitting field for, say, g(X) over F then K(b) is the
splitting field for g(X) - (X"—1). (Separability is again automatic.) For each n, K(b)
contains n, distinct nth roots of I.

We now have F ¢ L < K(b), with both L and K(b) Galois over F. We want to

show that I'(L/F) is solvable, and we know by Theorem 25.2(v) that

T(L/F) = T(K(bYF)YT(K(bYL),

so it will suffice, by Lemma 26.5, to show that I'(K(b)F) is solvable. The
advantage of shifting the problem from L to K(#) is that in addition to being Galois
over F as L was, K(b) is also radical over F and contains the needed nth roots of 1.

To show that I'(K(b)YF) is solvable, we think of K(b) as being obtained by
adjoining first b and then a,, ..., @4 to F:

Foechohockhc - chiich=Kb)

with Fy = F(b) and F} = F}-_,(aj) for 1< j < k. This chain of intermediate fields will
give us the series of subgroups in I'(K(b)/F) needed to demonstrate its solvability.
Let G; = I'(K(b)/F)) for 0 < j < kand G = ['(K(b)/F). Then

{e}=G, G, <G G, ca

We assert first that G; < G;_; and G;_/G;j is abelian for 1 £ < k. For we have F;_,
C F; < K(b) with K(b) Galois over F;_,. F; is also Galois over Fj_; since it is the
splitting field for x" — a;fi over F;_; and separability is automatic. Thus by
Theorem 25.2(v)

T(K(b)F,) aT(K(b)F,_,)ie. G, <G, ,

and G;_,/G; = I'(F;/F;_;), which is abelian (in fact cyclic) by Example 4 in Section
25, since F;_ contains #; distinct ;th roots of 1.

To conclude, we claim that G, « G and G/G, is abelian. For we have F ¢ F;
< K(b), and Fy is Galois over F since it is the splitting field for X" — | over F and
separability is automatic. So by Theorem 25.2(v)

F(K(bYFy) < T(K(bYF), i.e. Gy <« G,
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and G/G, = I'(Fy/F) which is abelian: if o, 1 € ['(Fy/F) then a(b) = b" and 1(b) = b"
for some integers «, v, so

got1(b)=b"=100(b)

and thus o o 7 = 7 o ¢ because Fy = F(b) so elements of I'(Fy/F) are completely
determined by their effects on 4. (J

We now turn to the second half of Galois’ classic theorem. This converse of
Theorem 26.2 is not always true in prime characteristic p.

THEOREM 26.7 Suppose F has characteristic 0 and f{X) € F[X]. Then if
I'(A{X)YF) is solvable, f{X) is solvable by radicals over F.

The special case in which the operation in I'(fAX)F) is commutative was
proved by Abel prior to Galois’ work, and it was this result of Abel that led to
groups with a commutative operation being called “abelian”.

For the proof of Theorem 26.7 it is again best to prepare the way with some
lemmas.

LEMMA 26.8 If G is a solvable group then every subgroup A of G is solvable.
PROOF. We have

{e}=G, <G <+ «aG , <G, =G
withG,/G,_, abelianfor I1Si<r. Ifwelet H, =G, N H for0<i<r then

{e}=H,cH c-cH, cH =H.

We want to show that H,_; < H, and H/H,_, is abelian for 1 <i < r, and for this it
will suffice to show that for all x, y € H; we have xyx'y™' € H,_, = G,_,NH. Since
x, y € Hitisclearthat xyx'y™' € H, and xyx™'y™" € G_;sincex, y € G;, Gi-y < G,
and G/G;_, is abelian. (J

LEMMA 26.9 If G is a nontrivial finite solvable group then there is a series of
subgroups

{e}=G, <G 4G, «--<G_, <G, =G

such that G;/G;_; is cyclic of prime order for 1 < i <s.

PROOF. Since G is solvable we have a series of subgroups
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{e}=H,<«H <«H,<-+<H,  <H, =G

such that H;/H;  is a nontrivial finite abelian group for 1 < i < ». We assert that we
can keep inserting more subgroups into this series until we arrive at the situation
where all the quotients are of prime order. To see this it suffices to show that for
any i we can insert a subgroup H between H; ; and H; sothat H;, | 1 H < H;
and H/H;_, has prime order.

If we take any prime p that divides |H/H,.,|, then H/H,_, has a subgroup K of
order p. If p : H; — H/H,_, is the canonical homomorphism and we let H = p'l(K)
then H,_<H <H; and H/H;,_, = K by the Fundamental Theorem on Group
Homomorphisms. So H/H;., has prime order. J

LEMMA 26.10 If {X) € F[X] and F < K then ['(f{X)/K) is isomorphic to a
subgroup of I'(AX)/F.)

PROOF. Let E be the splitting field for fX) over K. If a, ..., a, are the roots of AX)
in E we have E = K(a,, ..., a,). The subfield L = F(a,, ..., a,) is the splitting field for
f(X) over F, and we want to show that I'(E/K) is isomorphic to a subgroup of
I(L/F.)

Now any o € I'(E/K) is also in ['(E/F), so since L is normal over F we have
o(L) = L. We therefore obtain a homomorphism from ['(E/K) into I'(L/F) by
sending each ¢ € I'(E/K) to its restriction to L. This homomorphism is one-to-one
because if o and 7 have the same restriction to L then a(a,) = 7 (a,) for 1 £i <n and
therefore o = t because £ = K(a,, ..., a,). U

LEMMA 26.11 Suppose p is a prime, F has characteristic 0, and £ is a Galois
extension of F such that I'(E/F) is cyclic of order p. Then if F contains p distinct
roots of X¥ — 1, there exists a € E such that &’ € F and E = F(a).

PROOF. By Theorem 25.2(i) [E : F] = p, so since p is prime we know that for
every a € E — F we have deg(a/F) = p and therefore £ = F(a). Our task is to
produce some a € E — F with the property that &’ € F.

We use an old device due to Lagrange. Let o be a generator for ['(E/F) and let
b be a generator for the multiplicative group of roots of X’ = 1 in F. Forany i, 0 <i
<p - 1 and any ¢ € E - F we define the Lagrange resolvent (', ¢) by

(b, ¢) = c+bla(c) + b¥a2(c) + - + B VigP(c), [26.2]
Note that

o((b'. ©)) = 0(c) + b'o*(c) + b¥oP(c) + -+ - + B Vic
= b (b'o(c) + bEd%(c) + b (0) + - - - + bc)
=b"'(¥, o),
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so o((&, €)P) = b"P(b, ¢)P = (b', c)P. Since [(E/F) = < o > it follows that (¥, ¢}’ €
®(T'(E/F) = F. If we can show that there is an i such that (', ¢) ¢ F then this (¢', ¢)
will be the element a we are after.

If we add the equations in [26.2] for 0 <i < p—1, then for I <j <p—1 the
coefficient on d(¢) is

G+ B+ By =0
since ¥ is a root of

X7 -1
X -1

=X+ XP 24 oo +X+1.

Thus adding the p equations in [26.2] yields

B )+ (b e)+ - +(b77,¢) = pe.

Since ¢ € F and F has characteristic 0, pc € F. Therefore at least one (&, ¢) is not
inF.0O

PROOF OF THEOREM 26.7 Let E be the splitting field for AX) over F. By
assumption, ['(E/F) is solvable. If [E : F] = n then since F has characteristic 0 the
polynomial X" — 1 has # distinct roots in its splitting field over E, and these form a
cyclic group under multiplication. Let b be a generator for this group and consider
F' = F(b). (We consider F' in order to prepare ourselves for an application of
Lemma 26.11.) By Lemma 26.10, I'(AX)/F") is isomorphic to a subgroup of
C(AXVF), so I'(AXVF") is solvable by Lemma 26.8. We will show that this implies
that the splitting field E’ for AX) over F'is a radical extension of F’, hence a radical
extension of F. Since £’ contains a splitting field for f{X) over F this will yield the
desired result that A.X) is solvable by radicals over F.

To see that £'is a radical extension of F'let G = I'(EYF"). Since G is solvable,
Lemma 26.9 tells us that there is a series of subgroups

{e}=Gpa G, a9aGra---aGy | 1G,=G

such that G;/G_; is cyclic of prime order p; for 1 <i<s.Let F;=®(G) for0<i<s.
Then
F'=F cCF

ol gf,=E.

For 1 <i<s, E’' is Galois over F; and, by Theorem 25.2(ii), I'(E'/F;) = G;. Since
G; 1 < G;, Theorem 25.2(v) tells us that ®(G; ) is Galois over F;, i.e. F; ;is
Galois over F;. Furthermore, I'(F; ;/F;) ~ G;/G; , and this group is cyclic of
order p;. If we can show that F; contains p; distinct roots of X #— 1 then Lemma 26.11
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will tell us that F;_; = F;(a;) for some g; such that g;#* € F;_;, and therefore E’ is a
radical extension of F'.

But p; divides |[(EV/F")| which divides |I'(E/F)| = n, since I'(E7F") is
isomorphic to a subgroup of I'(E/F). Thus &™” has order p; in (F'-{0}, ), so F’
(and therefore F;) contains p; distinct roots of X% - 1. [

Since the Galois group of the general polynomial of degree n is S,, and since
S; and S, are solvable, Theorem 26.7 implies that in characteristic 0 the general
polynomials of degree 3 and 4 are solvable by radicals. To explicitly obtain
Cardano’s solution for the cubic we first use the fact that if {X) = X° + aX* + bX +
c then

f[X——w—X3+pX+q withp = b—-—z andq~c~—b+2i [26.3]
3) 3 327

So if we can find the roots of X> + p.X + g (which is called a reduced cubic because
it has no X*-term) then by subtracting @3 from each of them we obtain the roots of

£

Although variables were not yet in use when Cardano wrote the Ars Magna
(and he therefore had to write everything out in words) the idea of his strategy for
solving X> + pX + g = 0 is to compare it with the identity

(A+B)’ - 34B(4+B) - (4’ + B)=0.

If we can find A4, B such that
AB=—-§ and £ + B’ = —¢ [26.4]

then 4 + B is a root of X° tpX+aq
We need 4°B® = —(p/3)* and 4* + B* = —q, so A® and B® are required to be
roots of
(Y-AY-B)=Y*+qY - (p3).

By the quadratic formula, 4° and B’ are

—q+.‘fq +4 pf3 _“q_
2 J

Therefore
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with (by [26.4]) the cube roots chosen so that their product is —p/3. If r, =4 + B
results from one such choice, and w is such that w # 1 but @® = 1, then r; = wA +
’B and r; = w*4 + wB are also valid choices, and it can be checked that

X=r)X=r)X-r) =X +pX+q,

so that 7y, r», r; are all the roots of X* + pX+gq.
The preceding argument is valid over any field of characteristic # 2, 3. Using
[26.3], then, we have proved

THEOREM 26.12 (Cardano’s formula) If AX) = X° + aX*+ bX + ¢ € F[X], with
£ of characteristic # 2, 3 and

P g ¢ 3 27"

S ES OGRS £¥ 0RO}

with the cube roots chosen so that their product is —p/3, then the roots of X)) are

A+B—§, wA+w23—§,and LuZA-bcuB—%,
where w is such that w # 1 but @’ = 1.

Example Let A.X) = X° - 2X* = X + 2 € Q[X]. Then we find

720 A:%/—10+9r\/§ B_%H-m—gfﬁ
L] 3 L] = 3 »

TRt 9

with 4,8 € C chosen to be complex conjugates so that their product is real (and =
7/9). Using w = {5 € C, the three roots of AX) are then

.4-r-8+§. §3.4+§53+-§-, and §§A+538+§. (26.5]

On the other hand, it is easy to check that the roots of fiX) are 1 and 2. It is not
immediately apparent how these match up with the roots in [26.5], but if we
expand out the equation (x+yi J3) = —10+9iJ/3 we can see that one cube root of
-10+9iy/3 inCis 2+ i3, so with

2+3:J§ and B= 2—;5

we have AB = 7/9, and the roots in [26.5] are then, respectively, 2, —1,and 1.

A=
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The cubic formula is significantly more complicated than the quadratic
formula, and the quartic formula even more so. Instead of developing the quartic
formula we will just outline Ferrari’s method of solution.

Ferrari was originally hired by Cardano as a servant but became Cardano’s
student and secretary when Cardano realized how bright he was. Ferrari discovered
his method for solving quartics when Cardano was unable 1o solve a problem that
had been sent to him requiring the solution of a quartic, and passed the problem on
to Ferrari. Ferrari eventually left Cardano’s service to go out on his own as a
lecturer in mathematics, and he became a professor at the University of Bologna in
1565. Less than a year after he assumed this post he was poisoned to death,
apparently by his own sister.

Ferrari’s method for solving a quartic consists of transforming the equation
into the form

() = (g(X))

with deg(f.X)) = 2 and deg(g(X)) = 1, and then taking square roots. During the
process a root of a certain cubic equation is needed, and this can be found either by
using Cardano’s formula or by other means.

Example To find the solutions of X* + 6X° + 15X* + 2X =24 = 0 we write the
equation as

X +6X°=-15X - 2X+24
and then complete the square on the left by adding 9X” to both sides:

(P +3X=—6X¥-2x+724
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—42Y* — 15Y% + 54Y — 145)=0.

We could try to find a root of this cubic by using Cardano’s formula, but it is
simpler to apply Exercise 19.1, according to which any rational root has the form
m/n with m|145 and n|2. By trial and error we find the root 5, and using this in
[26.6] we get

(X +3X+5)7=4X +28X+49=(2X +7)*
Thus
X +3X+5=+02X+7).
Solving the resulting quadratic equations

X+X-2=0 and X>+5X+12=0

~5+i/23
we get the roots 1, —2, and ! .
2

We could also have found the roots | and —2 at the outset by using Exercise
19.1, and then divided the original quartic by (X — 1)(X +2) to be left with X* + 5X

+ 12.

EXERCISES

26.1 Let G be a group with a normal subgroup /7 such that both /1 and G/H are solvable.
Prove that G is solvable.

26.2 Is every f{.X) € R[X] solvable by radicals over R?

26.3 Determine whether cach of the following polynomials is solvable by radicals over (.
a) SX* - 12X +9x2 - 7
bJ /k’s e GJY + 3

¢)3XP - 203 + 15

26.4 Find all roots in C for the following cubics.
a) X’ + 54X - 54
b) X* + 3X% + 66X - 20

OX+6X2+93X+8
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26.5 In the Ars Magna Cardano solved the equation X° + 6.X = 20,

a) Find the roots of X° + 6X —20 in C by using Cardano’s formula.

b) By finding the cube roots involved in the form x + y 3, show that the roots
are2and — 1 + 3

26.6 a) Find the roots of X* —15X -4 in C by using Cardano’s formula.

b) By evaluating the cube roots involved, show that the roots in C are 4 and
—2 + /3. [This problem appeared in the Algebra of Rafael Bombelli in

1572. Although Bombelli did not see how to make rigorous sense out of
complex numbers, he was the first to calculate with them, and he showed
via these calculations how Cardano’s formula could yield real roots of
cubics even when the formulainvolved square roots of negative numbers.]

26.7 Let f(X) =X +pX+ g in R[X]. Show that al! the roots of f{X) in C are real if and only
if 27 + 4p’ <0, and that they are all real and distinct if and only if 27¢% + 4p® < 0.

26.8 (the “casus irreducibilis™) The purpose of this exercise is to show that if f.X) is an
irreducible cubic in Q[X] with 3 {necessarily distinct) real roots then there is no radical
extension of (@ contained in R and containing the splitting field £ for /{.X) over Q. So
although all the roots of f{X) are real they cannot be expressed in terms of radicals
without involving nonreal numbers. This was troublesome to mathematicians when
they did not yet accept the existence of nonreal numbers.

a) Prove that if F is a field, F € F(a) C R, pisprime, and@” € Fbuta & F then
[F(a): F]=p.

b) Show that the discriminant D of f{X) is positive.
¢) Now assume for a contradiction that there is a radical extension K of Q such that £

c K c R. Show that there exist a radical sequence JD, a,, ..., a;and primes py, ...,
pi such thatEgQ(Ji_) , 4y, .. 3x) € R and

a” EQ(-JB) and aj‘"" EQ{\(E, . — ajpl) for 2< j<k.

d)Let K, =Q(J5) and let K; = Ko(ay, ..., @) for 1 < j < k. Choosej as small as
possible so that K; contains a root of /(X). Showthatj > | and that [K; : K; ] =p;=3.

¢) Show that K; is the splitting field for /() over K ;. (Use the fact that VD € K ,_,.)

f) Show that X* ~ a? splits over K, and conclude that {3 € K, c R, a contradiction.
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26.9 Use the result of Exercise 26.8 to show that if /{.X) is an irreducible cubic in Q[.X] with

three real roots then although f{.X) is solvable by radicals over Q the splitting field for
AUX) over Q is not a radical extension of

26.10 Frangois Viete (1540-1603) showed that when a cubic in Q[X] has three distinct real

roots (as in the “casus irreducibilis” of Exercise 26.8) these roots can be expressed in
terms of the cosine function. As in the development of Cardano’s formula, Viete
replaced the cubic by a reduced cubic g(X) = X° + pX + ¢, and then he matched up
g(X) with the trigonometric identity

cus36-2c058—1c0538=0
4 4

(see Exercise 22.10).

a) Show that for every r and @ in R, r cos 6 is a root of

2 3
y? -[%JY_ r 03536 i

b) Note that 27¢” + 4p® < 0 by Exercise 26.7. Using this, show that we can choose r €
R such that '—':f— =p.

c) Sho;w that with r chosen as in part (b) there is some € in R such that

—r'cos 30
T:q_

d) With r and @ so chosen, show that the roots of g(X) are
4
r cos B, r cos (8%-%7{} and r cos (6+—3£).

[By the way, Viete was the first person to use letters to represent unknown quantities
in algebra.]

26.11 Find all roots in C for the following quartics.

a) X' -4 +5X2 - 16X - 35
b)X +6X + 10X +2X -3
X +3X+4X -2X-24

)X - X +26 - 14X - 12
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26.12 Let f{.X) be an irreducible quartic in Q[X] and let r|, r,, rs. r4 be the four (necessarily
distinct) roots of {X) in C. Let £ be the splitting field for fX) over (Y and let ¢, ¢;, 3
€ E be defined by

= Frary +rg) ¢ =(ry + )y + 1), c3 = (ry 4 ra)(r + 1)
Let K=Q (¢, ¢ ¢3) and let G = I'(EAQ).
a) Show that ¢,, ¢,, ¢; are all distinet.
b) Let g(X) = (X - ¢\ )(X — c2)(X - ¢3). Show that g(X) € QLX)
¢) Show that if [K : Q] =6 then G= S,
d) Show that if [K: @] =3 then G = A4,
e) Show that if [K: Q)= 1then G = V-

f) Show that if [K : Q] = 2 then either G= Z,0r G= D,

26.13 For a quartic fAX) = X* + pX* + gX + r with no X’-term (i.e. a reduced quartic) it can
be shown that the cubic g(X) of Exercise 26.12 is

gX) =X -2pX + (0’ - )X + &~

Assuming this, determine I'(AX)Q) for:
afi)=X'+6Y+3

b)) =X +2X+2

AAXN=X"+2¥ +4X +2.



SUGGESTIONS FOR
FURTHER READING

Algebra

Artin, E. (1997) Galois Theory, 2nd ed. Notre Dame Mathematical Lectures
Number 2. New York: Dover.

Dummit, D. S., and R. M. Foote (2004). Abstract Algebra, 3rd ed. New York:
Wiley.

Gaal, L. (1998) Classical Galois Theory with Examples, 5th ed. Providence, R.I.:
American Mathematical Society.

Garling, D. J. H. (1986). A Course in Galois Theory. Cambridge: Cambridge
University Press.

Hadlock, C. R. (1978) Field Theory and its Classical Problems. Carus
Mathematical Monographs, No.19. Providence, R.1.: The Mathematical
Association of America.

Hall, M., Jr. (1976) The Theory of Groups. New York: Chelsea.

Herstein, 1. N. (1975). Topics in Algebra, 2nd ed. New York: Wiley.
Jacobson, N. (1985). Basic Algebra I, 2nd ed. New York: W. H. Freeman.
Lang, S. (2005) A/gebra, 3rd ed. New York: Springer.

Rotman, J. (2002). Advanced Modern Algebra. Upper Saddle River, N.J.:
Prentice Hall.

Rotman, J. (1994). The Theory of Groups. An Introduction, 4th ed. New York:
Springer.

Stewart, I. (2003). Galois Theory, 3rd ed. London: Chapman and Hall/CRC

297



298  Suggestions for Further Reading

Number Theory
Burton, D. M. (2007). Elementary Number Theory, 6th ed. Boston: McGraw Hill.

Dudley, U. (1978). Elementary Number Theory, 2nd ed. San Francisco: W. H.
Freeman.

Edwards, H. M. (1994). Fermat’s Last Theorem. New York: Springer-Verlag.

Guy, R. K. (1994). Unsolved Problems in Number Theory, 2nd ed. New York:
Springer-Verlag.

Hallegouarch, Y. (2002). /nvitation to the Mathematics of Fermat-Wiles. New
York: Academic Press.

Hardy, G. H. and E. M. Wright (1980). An Introduction to the Theory of Numbers,
5th ed. Oxford: Oxford University Press.

Pollard, H. and H. G. Diamond (1975). The Theory of Algebraic Numbers, 2nd ed.
Carus Mathematical Monographs, no. 9. Providence, R.I.: The Mathematical
Association of America.

Ribenboim, P. (1999). Fermat’s Last Theorem for Amateurs. New York: Springer.

Rosen, K. (2004). Elementary Number Theory and its Applications, Sth ed.
Reading, Massachusetts: Addison-Wesley.

Sierpinski, W. (1988). Elementary Theory of Numbers, 2nd ed. New York: North
Holland.

van der Poorten, A. (1996). Notes on Fermat's Last Theorem. New York: Wiley.

History
Bell, E. T. (1992). The Development of Mathematics, 2nd ed. New York: Dover.
Bell, E. T. (1986). Men of Mathematics. New York: Touchstone Books.

Boyer, C. B. (1985). A History of Mathematics. Princeton: Princeton University
Press.

Burton, D. M. (2005). The History of Mathematics: An Introduction, 6" ed.
Boston: McGraw Hill.

Cajori, F. (1999). A History of Mathematics, 5Sth ed. New York: Chelsea.



Suggestions for Further Reading 299

Cardan, J. (1962). The Book of My Life. New York: Dover.

Dickson, L. E. (2005). History of the Theory of Numbers, 3 vols. New York:
Dover.

Eves, H. W. (1990). An Introduction to the History of Mathematics, 6th ed. New
York: Brooks Cole.

Katz, V. (1998). A History of Mathematics.: An Introduction, 2nd ed. Reading,
Massachusetts: Addison-Wesley.

Kline, M. (1972). Mathematical Thought From Ancient to Modern Times. New
York: Oxford University Press.






ANSWERS TO
SELECTED EXERCISES

Section 1

1.1

(@) (2,5,7,5/2,4,6,3/2)

® {0 6 DG DE DG D

13  (a) Yes; (d)no; (e) yes; (h)no; (j) yes
14 No; no
1.5  Yes; yes
1.6 (a) Not commutative; not associative
(e) Commutative; associative
(j) Commutative only if X =J; associative

1.9 Yes; no
Section 2
2.1  (b), (d), (e), (), (h), and (i) are groups
2.2 (a) All of them; (b) all except GL(2,R)
23 Onlyif X=0
24 (a &0 1 2 3

00 1 2 3

1 1 2 3 0

212 3 0 1

313 0 1 2
25 No
28 Itis a group.
Section 3
31 x=4
32 x=(1,2,5,6,7,8)
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302 Answers to Selected Exercises

Section 4

41 (3)=2,; <8)=(8,6,4,2,0}

43 (A)={A,D)

44 10, 15, 5, 30, and 5, respectively

45 9,6, 9, 18, and 3, respectively

46 3,6, 12, 21, 24, 33, 39, 42

47 x5x'8

48 Yes

4.10 (b) Yes

4.15 (b) (862, 347)=1 and we can use x=126, y= —313

Section §

5.1 (a), (b), (d), (f), (h), and (i) are subgroups

54 (a) Six. They are (1), (2D, (3D, (6), (9>, and {0).
58 N2

59 n|m; one of m,n divides the other

512 (b) {1, —1)
5.13 {(o g)!a;&[]}
Section 6

6.1 (a) 18; (b) 24; (c) 18; (d) 765

6.2 The group in (d) is cyclic.

6.11 You should end up with 16 distinct subgroups.
Section 7

7.1 (a) Function from § to T; neither one-to-one nor onto
(b) Not a function from S to T
(c) Not a function
(d) Function from S to T; neither one-to-one nor onto
(e) Function from S to T; one-to-one and onto
(f) Not a function from S to 7T
(g) Not a function from S to T
(h) Function from § to T; one-to-one but not onto
(i) Function from § to T; onto but not one-to-one
(j) Function from S to 7; neither one-to-one nor onto
74 Onto, not one-to-one
75 A=X
76 Yes
78 Yes, on all counts



Answers to Selected Exercises

Section 8

81 & 1339

82 @ (! 23 43 §)=(1,3)2,65=(1,3)25)26). 0dd.
© (1 2343 $)=(1,5(26). Even.

83 (a) Odd r’s

(b) Factor it into cycles. The permutation is even iff the number of
r-cycles with even 7’s is even.

(c) Even
8.10 (c) 12 8.12  No;yes 8.14 {e}and{e /%)
8.15 (b)f(c){e} 8.19 (a) No; (b) Yes
Section 9

9.1 The relation in (b) is an equivalence relation.
9.3 The equivalence classes are straight lines with slope 1.

95 (a)H={J-I~J,I}and H-K={L,~K~LK}

303

9.6 The right cosets are H= {e, f%g}, Hf = {f f} = Hfg, Hf* = {f%. g} = Hg, and Hf"

={f’.fg).

9.7 H={0,0),(10),2 0}and H+(0, D={(0, 1), (1, ), (2 D}=H+(1, 1)=
H+(2, 1)

Section 10

10.1 4,2 and 2 10.2 (a) 16; (b) 6; (c) 4

103 (a) 6; (b) 4 104 4

10.25 The conjugacy classes are {I}, {—1}, {J,—J}, {K,— K}, and {L,—L}.

The class equation is 8=2+2+2+2.

Section 11

112 No

11.11 6

11.14 (a)4; (b) No

11.15 It is essentially the same as V.

11.20 Just a remark: You are given more information than you need to answer
the question.



304  Answers to Selected Exercises

Section 12

12.1 (a) Epimorphism; (b) isomorphism; (c) epimorphism;
(e) not a homomorphism

123 No; no

124 (a) No; (b) yes; (c) no; (e) no; (g) yes; (h) yes

128 No; yes

129 No

1217 6

Section 13

(d) epimorphism,;

13.1 ker(p)={0,4}. The quotient group is isomorphic to (Z,, D).

133 D, V, (Z,, D), and the trivial group
13.6 G has 3 elements.

Section 14

141 (b) ZyxZ,

Ly XTI} Z,
L, XZ, X1,
L X, X Ty X Z,
LyxXZyx 2y X2y
Ly XTIy X Ty XT3 X 2,y

(d) Z,XZyXZ,s
Ly X TgX T X s
LyXT XLy X Tys
LyXT XLy X AKX

148 ZoxZs

Section 15
158 Z)5xXZ6
Z)sXZ 13X,

Section 16
16.2 (a) No; (b) no

164 Yes

16.11 (b) Units: (1,1),(1,2),(2,1),(2,2);
zero-divisors: (0,0),(0,1),(0,2),(1,0),(2,0);
nilpotent elements: (0,0)

16.20 (a) No



Answers to Selected Exercises

Section 17

17.1 The sets in (b) and (d) are subrings.

17.2 (a) Ideal; (b) not a subring; (c) subring, not an ideal
173 The subgroups of G

17.6 (a) {0,3}, the principal ideal generated by 3; or {0,2,4},
the principal ideal generated by 2 or 4.

Section 18

18.1 The mapping in (b) is a ring homomorphism.
18.2 No; yes
18.7 Up to isomorphism, they are {Z,|d a positive divisor of n}.

Section 19

19.2 (a) Irreducible
(e) Irreducible
19.3 (a) Irreducible
(d) (X+1)X3+2X+2)
Section 20
20.2 No
205 (ac+ bd)+(ad+ bc+bd)X

20.7 (a) Let F=2,, let f(X)=X>+ X+ 1, and let K be the field
described in Exercise 20.6.

Section 21

21.14 2X+5
21.16 (a) (—1+i)1—2i)
2118 (a) —1+i

Section 22
224 4 22.12 7 2213 (a)3;(b)2;(c)4

Section 24

242 (b) QL) =QGi V3 ), degree 2; (c) Q (&) =Q (V2. i), degree 4;
(m) Q (V17, aﬁ.). degree 4; (n) Q (&), degree 6

245 1landé6 24.10 No 24.12 Yesand yes
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Section 25

252 () Zi; (B Ds
25.7 No

Section 26
26.3 (@) Yes; ) No n Jﬁ

2611  (c)-1+i+/5 and
2613 (a)S,



abelian extension, 277
abelian group, 17
action of a group on a set, 98
addition
in an abelian group, 25, 33, 34
inaring, 154
additive group of integers mod n, 20
additive identity element, 154
algebraically closed field, 275
algebraic closure of a subfield, 239
algebraic element, 228
algebraic extension, 228
alternating group, 72
of degree 4, 93
annihilator, 175
associates, 213
associative operation, 11
automorphism of a group,110
inner, 119
nontrivial, 110
automorphism of a ring, 179
axioms
for groups, 16
for rings, 154

INDEX

basis, 231

Bell, ET., 17

binary operation, 10
associative, 11
commutative, 11

Boolean ring, 162, 176

Burnside’s formula, 98

cancellation laws, 29
canonical homomorphism

for groups, 122

for rings, 180
cardinality of a set, 89
Cauchy, Augustin-Louis, 214
Cayley, Arthur, 66, 168
Cayley’s Theorem, 116

generalized, 132
center

of a group, 46

of aring, 175
centralizer of an element, 93
characteristic

of a domain, 163

of a field, 183
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308 Index

characteristic subgroup, 119
class equation, 94, 148
closure

under inverses, 44

under an operation, 44
coefficients of a polynomial, 191
commutative operation. 11
commutative ring, 154
commutator subgroup, 107, 119
composite function, 63
congruent modulo n, 21
conjugacy class, 94
conjugate elements

of a field over a subfield, 253

of a group, 41, 93, 94
conjugate subgroups, 54, 143
constant polynomial, 193
constructible numbers, 24 1
content of a polynomial, 198
coset, 83

double, 97

left, 85

right, 83
cycle, 67
cyclic extension, 277
cyclic groups, 39

isomorphisms between, 113

subgroups of, 50
cyclotomic polynomial, 229

degree of a field extension, 232

degree of an algebraic element
over a subfield, 228

degree of a polynomial, 193

degree rule, 194

Delian problem, 245

de Moivre’s Theorem, 214
determinant, 19

dihedral group, 77
direct product of groups, 55

direct sum of rings, 156
Dirichlet, P.G. Lejeune, 214
discriminant, 270
disjoint cycles, 68
distributive laws, 153

left and right, 154
division algorithm

for F1X], 194

for Z[i], 221

for Z, 20
division ring, 159
domain, integral, 159
domain of a function, 61
double coset, 97
doubling the cube, 245

Eisenstein Criterion, 200
Eisenstein, Ferdinand, 199, 200
element

of finite order, 34

of infinite order, 34

of a set, 1
elementary symmetric

polynomials, 273
embedding, 178, 183
empty set, 2
epimorphism

of groups, 110

of rings, 178
equality

of functions, 63

of sets, 2



equivalence class, 82
equivalence relation, 81
Euclidean algorithm, 35, 225
Euclidean domain, 220
Euler, Leonhard, 92, 214
Euler’s function, 52

Euler’s Theorem, 92
evaluation homomorphism, 203
even permutation, 70
extension by radicals, 281
extension of a ring, 187

factor of a direct product, 55
factor group, 104
factor ring, 169
Fermat, Pierre de, 92, 213
Fermat’s Last Theorem, 213
Fermat primes, 246, 273
Fermat’s Theorem, 92
Fibonacci sequence, 9
field, 159
algebraically closed, 275
finite, 237, 259, 260
of characterisitc p, 183
of characteristic zero, 183
perfect, 261
field extension, 227
algebraic, 228
finite, 232
Galois, 266
normal, 255
radical, 281
separable, 257
simple, 257
field of quotients, 186
finite abelian groups

Index

converse of Lagrange's Theorem for,

137
fundamental theorem on, 135
invariants of, 135
number of order m, 135
finite extension of a field, 232
First Isomorphism Theorem
for groups, 127
for rings, 181
fixed field, 265
formal derivative, 203, 256
Frobenius automorphism, 262

function, 59
composite, 63

domain of, 61
image of, 61
injective, 61
inverse, 62
one-to-one, 60
onto, 60
surjective, 61
Fundamental Theorem of
Algebra, 225
Fundamental Theorem of
Arithmetic, 7, 42, 211
Fundamental Theorem on
Finite Abelian groups, 135
Fundamental Theorem on
Group Homomorphisms, 123
Fundamental Theorem on
Ring Homomorphisms, 181

Galois extension, 266
Galois group
of a field extension, 265
of a polynomial, 269
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Gauss’ Lemma, 199
Gaussian integers, 163
general linear group
over the real numbers, 19
over the complex numbers, 47
general polynomial of degree n, 282
generator, 39
greatest common divisor
of elements in a domain, 224
of integers, 35
of polynomials, 209
group, 16
abelian, 17
acting on a set, 98
alternating, 72
cyclic, 39
dihedral, 77
general linear, 19
of integers mod n, 20
of prime-power order, 135
simple, 146
special linear, 52
of subsets of X, 20
symmetric, 66
of symmetries of a square, 75
trivial, 22
of unit quaternions, 47

Hamilton, Sir William Rowan,

101, 166, 167
Hamiltonian group, 101, 107
heptagon, 240, 246, 248
homomorphic image, 122
homomorphism

of groups, 109

of rings, 177

ideal, 168

improper, 170

maximal, 171, 189

prime, 171, 189

principal, 170

proper, 170

semiprime, 176

trivial, 170
idempotent element, 162
identity element, 16

left, 29

right, 29
identity function, 63
image of a function, 61
improper ideal, 170
index of a subgroup, 89
inductive hypothesis, 6
injective function, 61
inner automorphism, 119
integral domain, 159
intermediate field, 267
intersection

of sets, 2

of subgroups, 49

invariants of a finite abelian group, 135

inverse
of an element in a group, 16
of a function, 62
left, 29
right, 29
inverse image, 115
irreducible element of a domain, 212
irreducible polynomial, 196
isomorphism
of groups, 110
of rings, 178



isomorphism over a field, 251

kernel of a homomorphism
for groups, 122
for rings, 180, 181
Klein's 4-group, 40
Kronecker, Leopold, 198, 207
Kronecker’s method, 204
Kummer, Ernst Eduard, 214

Lagrange, Joseph-Louis, 97
Lagrange Interpolation Theorem, 203
Lagrange resolvent, 288
Lagrange’s Theorem, 88
Lamé, Gabriel, 214

leading coefficient, 193

least common multiple, 42
left cancellation law, 29

left coset, 85

left identity, 29

left inverse, 29

Legendre, Adrien-Marie, 214
Leibniz, Gottfried, 97

linear combination, 231
linear independence, 231

marked straightedge, 247, 248
mathematical induction

first form, 4

second form, 6
matrix, 11

invertible, 18
members of a set, |
metabelian group, 131

Index 311

Miller, William, 70
monic polynomial, 228
monomorphism

of groups, 110

of rings, 178
Motzkin, T., 221
multiple root, 203
multiplication

in a group, 25

in aring, 154

table, 31
multiplicative identity element, 154
multiplicative inverse, 156
multiplicity of a root, 256

natural homomorphism, 122
nilpotent element, 155

norm, 215

normal extension, 255

normal subgroup, 99

normalizer of a subgroup, 107, 143
null set, 2

octic group, 75
odd permutation, 70
one-to-one function, 60
onto function, 60
orbit, 98
order
of an element, 34
of a group, 40
orderable field, 190
ordered field, 190



312 Index

partition of a positive integer, 135
perfect field, 261
permutation, 66

even, 70

odd, 70
p-group, 134
polynomial, 191
power set, 20
p-power order, group of, 134
prime element of a domain, 212
prime ideal, 171
prime integer, 6, 211
prime subfield, 183
prime-power order, group of, 135
primitive element, 257
Primitive Element Theorem, 258
primitive polynomial, 198
principal ideal, 170
principal ideal domain, 217
product of ideals, 176
proper ideal, 170
proper subset, 2
proper subgroup, 44
p-Sylow subgroup 144

quaternions
group of unit, 47
ring of, 166
quotient field of a domain, 186
quotient group, 104
quotient ring, 169

radical extension, 281
radical of an ideal, 176
radical sequence, 281

reduced cubic, 290
reduced quartic, 296
reflexive relation, 81
regular heptagon, 240, 246, 248
regular n-gon, 246
relation on a set, 80
reflexive, 81
symmetric, 81
transitive, 81
relatively prime integers, 36
remainder of @ mod n, 21

representative of an equivalence class,

82

right cancellation law, 29

right coset, 82

right identity, 29

right inverse, 29

ring, 154
Boolean, 162
commutative, 154
of Gaussian integers, 163
of quaternions, 166
trivial, 157
with trivial multiplication, 157
with unity, 154

root of a polynomial, 195

multiple, 256
simple, 256

Second Isomorphism Theorem
for groups, 127
for rings, 182
semidirect product, 151
semiprime ideal, 176
separable closure of a subfield, 264
separable degree, 263



separable element, 257
separable extension, 257
separable polynomial, 259
set, |
empty, 2
simple extension, 257
simple group, 146
simple root, 256
solvable by radicals, 281
solvable group, 281
span, 231
special linear group, 52
splitting field, 249
square root sequence, 244
squaring the circle, 247
stabilizer, 98
straightedge and compass, 240
subgroup, 43
characteristic, 119
lattice, 44
normal, 99
proper, 44
subring, 164
subset, 2
proper, 2
sum of ideals, 176
surjective function, 61
Sylow Theorems, 144
symmetric difference of sets, 12
symmetric group, 66
symmetric relation, 81
symmetry of a polygon, 75

Index

Third Isomorphism Theorem
for groups, 128
for rings, 182
transcendental element, 229
transitive relation, 81
transposition, 69
trisecting angles, 240, 245
trivial group, 22
trivial ideal, 170
trivial multiplication, 157
trivial ring, 157

union
of sets, 2
of subgroups, 49

unique factorization domain, 213

unit in a ring, 155
unity of a ring, 154

Viergruppe, 40

Wedderburn, J.LH.M., 160
well-ordering principle, 4
Wilson’s Theorem, 97

zero of a polynomial, 195
zero-divisor, 155
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