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When a tubular girder with straight axis and with a thin, strongly curved
shell is exposed to bending, it will behave quite differently from a plain
cylindrical tube and the stress distribution will vary from that which might
be expected according to the ordinary theory of bending.

m^l ma

The attention of the author was drawn to this problem in a study of the
behavior of curved tubes subject to bending.2 A similar action, although
different in effect, occurs in all tubular girders where the shell is curved
in the plane of bending even if the axis is straight, a fact which has not,
to the author's knowledge, been previously explained or discussed. In
a simple ideal form the problem is that of an ellipsoidal shell, but in prin-
ciple the solution applies also to plane girders with curved flanges. In
the present paper the method is illustrated by application to a rigid airship.

Consider a rigid airship as shown diagrammatically in figure 1. The
structure consists of a number of longitudinal girders which perform the
function of flanges, while transverse circular or polygonal frames, stiffened
by transverse radial and chord wires, and a system of diagonal or shear
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wires perform the function of the web. The structure is not unlike a lattice
girder, since the transverse frames play the part of vertical posts and the
shear wires take the place of the diagonal tie-rods. In order to simplify,
it is assumed that the structure is perfectly symmetrical about the axis
and the longitudinals are placed at the apices of a regular polygon with the
top girder A and the bottom girder M in the center line. For the sake

Fx7. 2.

Al

of clearness the longitudinals are omitted in figure 1 except the top and
bottom girders, and the shear wires are represented symbolically by diag-
onal lines. Vertical lines represent the transverse frames. Terminal
couples M are assumed to act at certain stations AnMn near the ends,
produced by a system of horizontal forces, which act on each girder and
are proportional to their distance y from the horizontal plane through the
axis.
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In a straight cylindrical solid bar or tube the transverse stresses are of
the second order so long as the strains are within the elastic limit and are
usually neglected, but in the case here under consideration they should be
taken into account, first because the curvature of the longitudinals, which
constitute the flanges, causes the transverse stresses to attain appreciable
magnitude and, second, because the resistance of the shear wires, as also
of the transverse frames which act as stiffening bulkheads, is relatively
small in airships and permit certain peculiar deformations to take place.
In a curved tube of cylindrical section, the transverse stresses above and
below the axis counteract and balance each other, but in a straight tube
with curved shell, we have the remarkable condition that the resultant of
the transverse stresses both above and below the axis act in the same
direction.

In figure 2 is shown diagrammatically a section amidships of an airship,
one frame space in length with a transverse frame in the middle. We
assume it to be exposed to a hogging moment, so that the A girder is under
a tensile stress p, and due to the curvature the stress forces have a down-
ward directed resultant which we denote by f. Similarly, the lower or
M-girder, being under compression, will be subject to an f-force, which
likewise acts downward. In fact, all the longitudinals will be subject to
f-forces which have a downward component and thus the whole section
becomes loaded with a vertical force, F, which causes it to move down until
F is counterbalanced by the vertical component of the tension T in the
diagonals.

Similar F forces act on every frame and the load so produced is through
the diagonals transmitted to the terminal frames where they are counter-
balanced by the vertical components P,n and Pn, of the longitudinals
acting at An, and Mn, respectively. If it were not for the diagonal at
A,, this point as well as M,, would tend to move upward. The restraining
force is equal to 2F, the sum of the F-forces on one-half of the length
of the ship.
We may, therefore, conceive the internal stress system to be equivalent

to a distributed load on the longitudinals, everywhere acting in meridional
planes, inward directed above the neutral axis and outward below that
axis. This load produces vertical shear forces, which, being supported
at the terminal stations by the upward forces 2F, produce internal stress
couples MF acting in a direction contrary to the external couples M.
Yet, at any station the resulting bending moment is necessarily M and
the bending deflections of the axis may be calculated on this basis without
any regard to MF, but in determining the shearing deflections the f-forces
must be taken into account. It is a curious fact that shearing is here
produced by pure couples and this shearing, although entirely due to con-
cealed internal reactions, has a very real and tangible effect in that it gives
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to the axis a flexure contrary to and superposed on that produced by M.
It may be, in fact, so great as to overpower the deflections due to bending.

Shearing flexure will take place even if the transverse frames are abso-
lutely rigid, provided only the diagonals are elastic, but if, as in an airship,
also the frames are elastic and of relatively small stiffness, the latter will
suffer a peculiar deformation due to the fact that the upper and lower
longitudinals are under greater stress
and are subject to greater f-forces than ^'J 3
those on the sides. Hence the radial I
or meridional deflection of the longi-
tudinals at and near the top and bottom A
may be much greater than that of the
longitudinals farther from the vertical f ,
center plane and nearer to the neutral - - i- jjA
plane. The consequence is that the 10
top of the frame section will flatten out /
and the bottom will take on a sharp I /
bulge, giving to the contour a pear-
shaped form as indicated in figure 3.
The upper girders straighten and the
lower girders bulge out, being thus
enabled to shirk their duty in opposing the external couples. In order to
establish equilibrium these couples must turn through a greater angle than
if this action did not exist. The top and bottom girders may not now
be the most strained. Longitudinals on the sides nearer the neutral plane
may be subject to greater stresses, which may be in excess even of those
which the A and M girders should have according to the ordinary theory
of bending.

It is seen that we have to deal with two distinctly different deformations
besides that due to simple bending. One is a bodily downward movement
of the frames due to shearing deflections of the whole ship. The other is
a deformation of the transverse frames due to unequal loading. The mag-
nitude of the former deformation depends on shearing stiffness in the
longitudinal plane, the latter on stiffness in the transverse plane.
The effects here pointed out are most marked in short airships of full

form and show the necessity for a good stiffness of the transverse
frames.

In non-rigids, where the stiffening element provided by transverse
frames is absent, the effects are probably much greater than in rigid air-
ships.
Appendix.-The displacement of a longitudinal normal to the surface is denoted by

An, the radial transverse displacement by Ar and the transverse tangential displacement
by At. Let -y be the inclination of the tangent to the axis at any point P, then Ar =
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An cos -Y. The relation between Ar and At is fotmd under the assumption of inextensi-
bility of the transverse frame.

Referring to the midship frame section, figure 2, each of the longitudinals is subject to
a stress p, which causes it to stretch or contract as in an ordinary girder, producing an
angular deflection AV, of the boundary planes relative to each other, but at the same time,
due to the curvature of the girders, thef-forces will cause the longitudinals to move down
to the points A o' and Mo' whereby the strain is reduced. The movement of the trans-
verse frame consists of two parts; first, its form is changed from circular to pear-shaped
without any displacement of the center; second, it moves bodily downward, without
change of form, a distance Ay,, as allowed by the tension in the diagonals. Due to the
latter deflection the longitudinals above the axis straighten out and those below the axis
bulge down, thus relieving the stresses, but the bending couples at once turn the bound-
ing planes through an additional angle Ag,. until equilibrium is established, when the
stress distribution will be the same as before the shearing deflection took place.

It is first assumed that the diagonals are rigid while the frames are elastic and we
consider in particular the deformation of the midship frame in its own plane, when
exposed to a hogging moment.
Let

h = frame spacing
p = radius of curvature of the longitudinals
r = radius of the transverse frame
y = vertical ordinate at any point P of the frame referred to a horizontal plane

through the axis
s = length of a longitudinal, within the frame space considered. Amidships we

reckon s = h

s h
A, = - = angle subtended by s. For the midship frame Ay =- approximately.

p p

A4, = angular deflection of a transverse plane due to bending, i.e., the angle between
the two bounding transverse planes of the section in the strained condition.

e = angle between the radius OP and the horizontal radius OG. Figure 3.
The elongation due to longitudinal strains, assuming that the bounding planes remain

plane, is y At, and that due to the radial displacement of P is approximately Ar Ay.
Thus the total elongation of A1A2 is e = yAlV + ArA-y and this expression holds for
any girder both above and below the axis.

Following Ritz's method the unknown deflection Ar was expressed in a series of trig-
onometrical or exponential terms with a corresponding number of constants.

It was found that the expression which best fulfilled the limiting conditions was:

Ar = tr sin 0- 1r sin3O (1)

where t is a coefficient to be determined so that the downward parallel displacement due
to shear is zero, and ,B, which characterizes the deformation of the frame, is determined
so as to make the internal elastic work a minimum, not including the work done on the
diagonals.
The assumed inextensibility of the frame leads to:

At = r(r - j3)cos 6 + -rOcos3O (2)
3

which for 0 = 0 gives the downward displacement of the center:
2

Ato = 3 r
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Since this is to be zero we must have: 3 =2.

Substituting and dividing the total elongation by s = h = pAy we find the unit
elongation

e = r (( 4 + 3- )sin G- d sin3 ) (3)

and the longitudinal stress

p=Er((k ++) sinG-0 sin3G). (4)

Let co be the area of the longitudinals per unit length of the contour of the transverse
section, imagining their area to be distributed uniformly along the circumference.
We can then determine the f-forces which result from the curvature of the longitudinals.
For the midship frame space we have:

f = pwrd0dy = wsr2E ((A + 2 )sin 0- ! sin3 ) dO (5)

so that the total vertical force acting on this section is:

F f sin E= _- (6)
pr h 12

where I = 7rcwr3 is the moment of inertia of the ship about the neutral axis.
This downward force will be resisted by the shear wires so that by equating F to the

sum of the vertical components of the tensions T in the shear wires all round the section
we can find these tensions.
We may now proceed to determine the elastic work done by the internal stresses in

the various parts of the structure.
This work includes first the straining of the longitudinals under the stress p, which

work we denote by WI, second, W2, the work done in deformation of the frame ring against
its inherent stiffness and third, W3, that done against the tension of the transverse wires.
The work done against the tension of the shear wires, W. is considered separately as it
is independent of 3. We have thus the internal work: Wi = W, + W2 + Ws.

This equation takes the form:

w= v2 (58+ 144(M+ X))- h-A, + 2 (7)l44p2 12 lip 2/i2

where ,u is quantity which depends on the fransverse stiffness of the frame itself and X
depends on the transverse wires in the plane of the frame ring. The quantity a is equal
to hEI which expresses the stiffness of the whole section multiplied by the frame space.

In order to determine ( it is argued that it must be such as to make the internal elastic
work a minimum. Hence the angular deflection Azp is regarded as constant and (3,
which determines the displacement of the longitudinals, is supposed to vary and is
adjusted so as to make:

awS, = 0. (8)

This is an equation of the first degree in ,B and gives
6p5 A4, (9)

h(53 + 144(IA + X))
We next substitute the value of i# so determined in the expression for the bending

moment M:
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M=frpywrde=EI(4h=E) (10)

and find A4, in terms ofM

A4, h'M (108 + 288(Mu + X)) =AhkM (11)
8 (98+ 288&&u+ X)) EI

where A is a factor which is always greater than one, showing that the angular deflection
of a girder of this type will be greater than that found by the ordinary formula. It
appears that A is not much greater than unity in rigid airships if the frames are well
stiffened, but it will probably attain higher values in non-rigids.

If we now substitute the value of A4, in (9) we obtain

12phM (12)
+ 288 +X)

which gives S in terms of the bending moment.
The solution here obtained satisfies the condition that the internal and external work

1
shall be equal, W. = -MA4.

It remains to show that W., the work done against the shear wires, has its equivalent
in work done by M turning through the additional angle A#,.
Assume that the frames are rigid but the longitudinals and diagonals elastic, then

the shearing deflection calculated by the method ordinarily used in rigid airships is
found:

Ay. = 2KrpB (13)

where K is a factor depending on the resistance to shear and API is the angular de-
flection caused by the strains in the longitudinals as in ordinary bending.

,I = MIMh M =2 A (14)

The work done is: W. = KA2M2 which is equal to 2 FAy. and is seen to be independent
of the deformation of the frame.
As explained above, the shearing deflection causes the bounding plane to rotate

through an angle Alp. taking up, so to speak, the slack in the longitudinals. It can be
shown geometrically that

tW', = 2K8,&1 = 2K8 A4. (15)

Hence the extemal work is I MAO. = KSMA#1= Kh2M2 = Ws and we have com-

plete equality between the external and the total internal work:

W, = W; + Ws M + = 2 MiI(A +21() (16)

The total angle through which M turns is seen to be greater than that in ordinary bend-
ing in the ratio (A + 21().
The formulas for other frame sections where the hull is tapering gives analogous

formulas differing from the above only in the occurrence of cos oy and sec y in the ex-
pressions for g@ and A*.
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The total downward shear deflection of the amidship frame and the total rotation of
the end frames in the ship are the sum of the respective deflections of all the frame
sections on one side of amidships.

1 A more detailed account will probably appear in Trans. Institution of Naval
Architects, London, 1927.

2 Proc. Nat. A cad. Sci., 12, No. 6, June, 1926.

INFLUENCE OF IRON CONTENT ON MORTAR STRENGTH
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Those most intimately concerned with the use of concrete for bridges,
highways or other work freely admit that the most important problem is
the variation in mortar strength developed by mixtures of different kinds
of sands. This variation in actual test conditions lies between 100 and 600
pounds per square inch in the 28-day tension test. In the attempt to find
the cause for some of this variation and, therefore, its control the authors
have been investigating several different elements of sand and mortar
structure, chemical content, etc., which might lead to or influence mortar
strength. One of the elements which has come under consideration is that
of the iron found in the native sand. This element is usually present as an
oxide, due to the weathering or disintegration of some of the component
materials found in the sand aggregate. The iron may be present as a dis-
integration of several of the common component minerals or due to the
leaching of ferruginous material from other sources into the sand. It should
be noticed that the makeup of the sand aggregate with regard to iron is
quite different under these two methods of allocating the iron in the ag-
gregate. It is, however, difficult to differentiate between iron derived from
one source as contrasted with that derived from the other. The material
will, therefore, be treated as though the iron content came from the same
source.

After some experiment a delicate test for determining the presence and
the approximate amount of iron was developed in this laboratory.'
Through the use of this test it is possible to arrange sands on the basis of the
amount of iron present in them and to contrast this with the strength de-
veloped by these sands in the ordinary mortar test. While the amount of
the iron detected in this manner is extremely small in total amount the
data show that its effect on strength is significant for the 284 native Maine
sands involved. The percentages of the sand's iron content are arranged
on a geometric basis.
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