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INTRODUCTION

HETHER	 you	 are	 an	 executive	 concerned	with	 inventories	 and	markups	 and	 profit	 ratios	 or	 a
carpenter	who	works	with	board	feet	and	squares	of	shingles—whether	you	do	your	 figuring	 in

gallons	and	pennies	or	 tons	and	dollars—this	book	will	 show	you	new	ways	 to	do	 that	 figuring	with
dispatch	and	authority.

With	 the	 techniques	 in	 this	 book,	 you	will	 find	 yourself	 doing	many	 problems	 in	 your	 head	 that
formerly	 required	pencil	 and	paper.	More	 complex	problems	 that	 still	 need	pencil	 and	paper	will	 get
done	in	a	fraction	of	the	former	time,	and	in	many	cases	you	will	simply	jot	down	two	or	three	numbers
rather	than	copy	down	the	whole	problem.

When	a	quick	estimate	or	accurate	guess	is	needed,	you	will	be	the	one	who	can	glance	at	a	column
of	 figures	or	a	complicated	multiplication	and	give	a	 rapid	approximation	accurate	 to	any	number	of
places	needed.

If	all	this	sounds	too	good	to	be	true,	let	me	hasten	to	point	out	that	there	are	some	things	this	book
cannot	do:

This	book	cannot	make	you	a	“number	genius”	who	multiplies	a	six-digit	number	by	a	twelve-digit
number	in	his	head	and	gives	the	complete	answer	in	ten	seconds	flat.	There	are	such	people,	but	they
are	born—not	trained.	There	are	mighty	few	of	them,	at	that.

This	 book	 cannot	 hand	 you	mastery	 of	 streamlined	math	 on	 a	 silver	 platter.	 It	 can	 show	 you	 the
techniques,	 explain	 each	 of	 them	 as	 clearly	 and	 simply	 as	 possible,	 and	 encourage	 you	 to	 do	 the
pleasantest	 possible	 kind	 of	 practice.	 But	 only	 you	 can	 decide	 to	 spend	 the	 necessary	 time	 the
explanations	and	the	practice	will	inevitably	take.

You	have	already	taken	the	first	major	step	in	mastering	speed	math.	You	bought	or	borrowed	this
book	because	you	want	to	become	better	at	figures.	Wanting	to	learn	is	basic.	If	your	interest	ever	flags,
if	the	practice	ever	seems	irksome,	it	might	be	well	to	remind	yourself	why	you	picked	up	the	book	in
the	first	place.	Keeping	the	goal	in	mind	is	the	best	way	to	keep	your	feet	firmly	on	the	path.

There	are	at	least	half	a	dozen	books	in	print	on	“speed”	or	“short-cut”	mathematics.
Why,	then,	this	one?
There	 are	 a	 number	 of	 good	 reasons.	 First,	 almost	 all	 books	 on	 the	 subject	 rely	 primarily	 on	 a

number	 of	 standard	 short	 cuts.	 The	 use	 of	 these	 devices,	 which	 include	 such	 simple	 conversions	 as
aliquot	parts	and	factoring,	can	often	save	a	great	deal	of	time.	As	far	as	I	have	been	able	to	find	out,
however,	no	book	has	yet	attempted	to	relate	them	to	each	other	and	show	the	ways	to	pick	out	the	most
useful	in	each	case.	Here	you	will	find	the	most	valuable	of	the	classic	short	cuts	explained	quite	simply
and	arrranged	for	sensible,	rapid	selection	and	use.

Beyond	 this,	 the	book	 introduces	an	entirely	new	system	of	basic	 figuring	 that	works	 in	all	cases.
This	approach	builds	on	the	arithmetic	you	already	know.	It	takes	your	present	training	in	numbers	and
streamlines	it,	cutting	down	the	number	of	steps	you	take	in	solving	each	problem.	By	combining	this
approach	with	the	best	of	the	classic	short	cuts,	you	will	compound	your	speed	and	ease.

This	 new	 system	 is	 a	 development	 of	 a	 little-known	 oriental	 technique	 growing	 directly	 out	 of
abacus	 theory.	 The	 abacus	 is	 a	 startlingly	 efficient	machine,	 for	 all	 the	 jokes	made	 about	 it,	mainly
because	it	forced	on	the	orientals	who	perfected	the	modern	version	a	simplified	approach	to	numbers.

The	chapter	on	addition	will	go	more	fully	into	the	contributions	of	the	abacus	to	this	system.
One	more	point	about	this	book.	Simply	reading	through	it	will	accomplish	little.	Practice	is	required

to	master	any	activity,	whether	it	be	streamlined	mathematics	or	water	skiing.	I	have	already	mentioned
the	 importance	of	 this,	but	very	 few	of	us	have	 the	patience	 to	work	out	 small-print	examples	or	 the



self-control	to	avoid	peeking	at	the	answers	printed	right	beside	them.
That	 is	why	you	will	 find	a	different	method	of	practice	here.	 It	bears	 some	similarity	 to	 the	new

theories	of	“teaching	machines”	 in	 that	 it	 requires	you	 to	produce	 the	answer	and,	 immediately	after,
tells	you	whether	you	were	right	or	wrong.	In	addition,	I	have	kept	the	practice	as	varied	as	possible,
and	tried	to	give	it	some	pace	as	well.	The	method	is	designed	to	give	you	enough	basic	practice	as	you
go	to	begin	mastery	of	each	step.

Please	do	not	skip	these	sections.	They	are	absolutely	essential	 to	learning	how	to	use	 streamlined
math.	They	carry	you	from	knowing	how	it	 is	done	to	knowing	how	to	do	it—quite	a	different	 thing,
really.

This	is	how	these	sections	work:
As	you	come	to	an	example	or	series	of	speed-practice	steps,	you	will	be	asked	to	cover	the	answer

(if	it	is	on	the	same	page)	with	a	bit	of	working	paper	you	should	always	keep	on	hand.	Use	the	paper
for	 any	pencil	 figuring	 involved.	 I	would	 recommend	 that	you	 tuck	a	dozen	blank	 file	 cards	 into	 the
book	 for	 this	 purpose,	 or	 a	 thin	 pad	 no	 larger	 than	 the	 book.	 It	 can	 serve	 the	 additional	 use	 of	 a
bookmark,	too.	A	good	idea	would	be	to	stop	for	a	moment	and	get	hold	of	a	pencil	and	pad	or	cards
right	now.

When	you	come	to	a	demonstration	or	practice	problem,	read	it.	Be	sure	you	understand	the	specific
technique	to	be	used.	Then	work	it	out,	keeping	your	paper	over	the	answer.	If	a	pencil	is	needed,	work
it	out	on	 the	paper.	Then,	and	only	 then,	 look	at	 the	answer.	 If	you	made	a	mistake,	 stop	 to	see	why
before	going	on.

Do	this	faithfully	if	you	want	to	get	all	the	good	from	this	book.
As	in	learning	any	new	skill,	you	may	feet	a	bit	awkward	and	slow	at	first.	This	is	entirely	natural.

Repetition	and	time	will	cure	the	awkwardness.	The	only	way	to	learn	to	ice-skate	is	to	ice-skate.	The
only	way	to	learn	speed	mathematics	is	to	use	(not	merely	read	about)	speed	mathematics.

By	 the	 time	 you	 have	 finished	 this	 book,	 your	 speed	 and	 ease	 with	 figures	 should	 easily	 have
doubled.	From	then	on,	as	you	make	these	techniques	automatic	and	habitual,	your	skill	will	continue	to
improve.	You	can	ensure	this	in	two	ways:

First,	consciously	use	the	new	ways	you	have	learned	for	every	number	problem	you	run	across	in
business	or	personal	life.	At	the	beginning	you	will	have	to	strain	a	bit	to	break	the	old	habits,	and	the
process	will	take	a	little	longer	because	it	is	new.	But	soon	you	will	find	yourself	using	these	techniques
comfortably	and	quickly.	As	you	continue	using	them,	you	will	find	yourself	approaching	any	number
in	this	new	way	without	even	thinking	about	it.

Second,	do	a	bit	of	special	practice	now	and	then	just	for	fun.	Instead	of	doing	a	crossword	puzzle	on
the	 train,	 run	 through	 a	 few	 random	problems	 using	 your	 new	 techniques.	 Instead	 of	 reading	 an	 old
magazine	while	waiting	for	an	appointment,	do	some	mental	exercising	with	the	phone	number	or	street
address	of	the	office	where	you	are	waiting.	Instead	of	killing	half	an	hour	with	a	TV	program	you	don't
especially	want	to	look	at	anyway,	go	through	one	of	the	speed-developer	chapters	in	this	book	again.

Do	 all	 of	 these	 things	 cheerfully	 and	 conscientiously,	 making	 a	 game	 of	 them,	 and	 with	 only	 a
reasonable	amount	of	time	and	patience	you	will	find	yourself	becoming	truly	a	whiz	at	figures.
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1

NUMBER	SENSE

UMBER	 sense	 is	 our	 name	 for	 a	 “feel”	 for	 figures—an	 ability	 to	 sense	 relationships	 and	 to
visualize	completely	and	clearly	that	numbers	only	symbolize	real	situations.	They	have	no	life	of

their	own,	except	as	a	game.
Almost	all	of	us	disliked	arithmetic	in	school.	Most	of	us	still	find	it	a	chore.
There	are	two	main	reasons	for	this.	One	is	that	we	were	usually	taught	the	hardest,	slowest	way	to

do	problems	because	it	was	the	easiest	way	to	teach.	The	other	is	that	numbers	often	seem	utterly	cold,
impersonal,	and	foreign.

W.	W.	Sawyer	expresses	it	this	way	in	his	book	Mathematician's	Delight:	“The	fear	of	mathematics
is	a	tradition	handed	down	from	days	when	the	majority	of	teachers	knew	little	about	human	nature,	and
nothing	at	all	about	the	nature	of	mathematics	itself.	What	they	did	teach	was	an	imitation.”

By	“imitation,”	Mr.	Sawyer	means	the	parrot	repetition	of	rules,	the	memorizing	of	addition	tables	or
multiplication	tables	without	understanding	of	the	simple	truths	behind	them.

Actually,	of	course,	in	real	life	we	are	never	faced	with	an	abstract	number	four.	We	always	deal	with
four	tomatoes,	or	four	cats,	or	four	dollars.	It	is	only	in	order	to	learn	how	to	deal	conveniently	with	the
tomatoes	or	the	cats	or	the	dollars	that	we	practice	with	an	abstract	four.

In	recent	years,	teachers	of	mathematics	have	begun	to	express	concern	about	popular	understanding
of	numbers.	Some	advances	have	been	made,	especially	in	the	teaching	of	fractions	by	diagrams	and	by
colored	bars	of	different	lengths	to	help	students	visualize	the	relationships.

About	the	problem-solving	methods,	however,	very	little	has	been	done.	Most	teaching	is	of	methods
directly	contrary	to	speed	and	ease	with	numbers.

When	I	coached	my	son	in	his	multiplication	tables	a	year	ago,	for	instance,	I	was	horrified	at	 the
way	he	had	been	instructed	to	recite	them.	I	had	made	up	some	flash	cards	and	was	trying	to	train	him
to	“see	only	the	answer”—a	basic	technique	in	speed	mathematics	explained	in	the	next	few	pages.	He
hesitated,	obviously	ill	at	ease.	Finally	he	blurted	out	the	trouble:

“They	don't	let	me	do	it	that	way	in	school,	Daddy,”	he	said.	“I'm	not	allowed	to	look	at	6	x	7	and
just	say	‘42.’	I	have	to	say	‘six	times	seven	is	forty-two.’”

It	 is	 to	 be	 hoped	 that	 this	will	 change	 soon—no	 fewer	 than	 three	 separate	 professional	 groups	 of
mathematics	 teachers	 are	 re-examining	 current	 teaching	 methods—but	 meanwhile,	 we	 who	 went
through	this	method	of	learning	have	to	start	from	where	we	are.

Relationships

Even	 though	 arithmetic	 is	 basically	 useful	 only	 to	 serve	 us	 in	 dealing	with	 solid	 objects,	 be	 they
stocks,	 cows,	 column	 inches,	 or	 kilowatts,	 the	 fact	 that	 the	 same	 basic	 number	 system	 applies	 to	 all
these	things	makes	it	possible	to	isolate	“number”	from	“thing.”

This	is	both	the	beauty	and—to	schoolboys,	at	least—the	terror	of	arithmetic.	In	order	fully	to	grasp
its	entire	application,	we	study	it	as	a	thing	apart.

For	practice	purposes,	at	least,	we	forget	about	the	tomatoes	and	think	of	the	abstract	concept	“4”	as
if	it	had	a	real	existence	of	its	own.	It	exists	at	all,	of	course,	only	in	the	method	of	thinking	about	the
tools	we	call	“numbers”	that	we	have	slowly	and	painstakingly	built	up	through	thousands	of	years.

There	is	space	here	only	to	touch	briefly	on	the	intriguing	results	of	the	fact	that	we	were	born	with



ten	fingers,	and	therefore	use	ten	as	a	base	number	for	our	entire	counting	system.	Other	systems	have
been	and	still	are	used,	from	the	binary	system	based	on	two	required	by	digital	electronic	computers	to
the	duo-decimal	(dozens)	base	still	in	use	in	buying	eggs,	products	by	the	gross,	English	money,	inches
to	the	foot,	and	hours	to	the	day.

Our	counting	system	is	based	on	10,	because	we	have	10	fingers.	As	refined	and	perfected	over	the
centuries,	it	is	a	wonderful	system.

Everything	you	ever	need	to	do	in	arithmetic,	whether	it	happens	to	be	calculating	the	concrete	to	go
into	a	dam	or	making	sure	you	aren't	overcharged	on	a	three-and-a-half	pound	chicken	at	49½¢	a	pound,
can	and	will	be	done	within	the	framework	of	ten.

A	surprisingly	helpful	exercise	in	feeling	relationships	of	the	numbers	that	go	into	ten	is	to	spend	a
few	moments	with	the	following	little	example.

First,	look	at	these	three	dots:

Nothing	very	exciting	yet.	But	now	we	add	three	more	dots,	right	below	them:

How	many	dots	 are	 there?	Six,	of	 course.	But	how	did	 it	 come	about	 that	 there	are	now	six?	We
added	three	dots	to	the	first	three.	Then	what	is	three	plus	three?

Of	course	you	know	the	answer,	and	of	course	this	seems	pedestrian.	But	there	is	a	moral.
Did	we	also	double	the	first	number	of	dots?	There	were	three,	and	we	added	the	same	number.	Now

there	are	six.	So	what	is	three	plus	three,	again?	And	what	is	two	times	three?
You	know	the	answer,	but	sit	back	for	a	moment	and	try	to	visualize	the	six	dots.	They	are	both	three

plus	three,	and	two	times	three.	The	better	emotional	grasp	of	this	you	can	get	now,	the	more	firmly	you
can	feel	as	well	as	understand	this	relationship,	the	faster	and	easier	the	rest	of	the	book	will	go.

Now	we	add	three	more	dots:

How	many	dots?
What	is	three	times	three?	Can	you	feel	it?	What	is	six	plus	three?	Pause	as	you	answer	to	let	it	sink

in.
What	is	one-third	of	nine?
Play	with	 these	dots	a	bit.	Try	 to	see	as	many	relationships	as	you	can.	Notice	 that	 three-ninths	 is

equal	to	one-third.	Why?	What	is	six-ninths	in	simpler	numbers?
Oddly	enough,	all	of	our	arithmetic—even	 into	 the	millions—is	based	on	 the	number	of	dots	you

now	have	in	front	of	you.	Add	one	to	nine	and	you	have	ten—which	is	the	base	of	our	counting	system.
We	express	it	with	a	new	one	moved	over	to	mean	one	ten	and	a	zero	to	mean	nothing—nothing	more
than	ten.

If	we	really	have	a	feel	for	all	the	relationships	within	the	number	nine,	we	are	a	long	way	toward
feeling	at	home	with	numbers.

Stop	for	a	bit	here	and,	on	your	pad,	set	up	ten	dots.	Amuse	yourself	by	setting	them	up	in	two	rows
of	five	each.	See	what	happens	if	you	try	to	make	any	other	number	of	rows	with	the	same	number	of
dots	in	each	row	come	out	to	ten.	Look	back	at	the	two	rows	of	five	each	and	see	if	you	can	feel	the
reason	why	we	can	express	one-fifth	and	one-half	of	 ten	(or	one)	with	a	single-digit	decimal,	but	not



one-third	or	one-fourth.

Seeing	Only	the	Answer

Beyond	working	at	a	“feel”	for	number	relationships	there	are	certain	specific	rules	of	procedure	that
will	speed	up	your	handling	of	numbers.

The	first	of	these	is	simply	a	matter	of	training.	Quite	new	training	for	many	of	us,	and	one	directly
contrary	to	the	way	arithmetic	is	often	taught,	but	one	that	offers	an	amazing	improvement	all	by	itself.

The	technique	is	to	see	only	the	answer.
When	adding,	we	learn	to	“see”	the	two	digits	4	and	3	as	7—not	as	4	and	3.
Then,	multiplying,	we	learn	to	“see”	the	digits	4	and	3	as	12—not	as	4	and	3.
This	may	 seem	 elementary.	You	may	 already	 be	 doing	 something	 very	much	 like	 it	 in	 your	 own

number	handling.	Yet	some	conscious	work	in	this	direction	will	pay	handsome	dividends.
Try	to	remember,	if	you	can,	how	it	was	when	you	first	learned	to	read.	You	spelled	out	each	word

letter	by	letter.	It	was	slow	and	painful	and	not	really	very	enjoyable.	But	now	you	grasp	whole	words
and	phrases	at	a	glance.	It's	not	only	faster,	it	is	easier.

This	 is	unfortunately	 just	 the	opposite	 to	 the	way	most	arithmetic	 is	 taught,	so	most	of	us	have	 to
unlearn	what	was	drilled	into	us	in	school.	But	it	is	well	worth	the	effort,	and	it	is	essential	to	many	of
the	streamlined	methods	and	short	cuts	later	in	the	book.

Arithmetic	has	been	called	the	language	of	business.	In	many	most	important	senses	it	really	is,	and
in	 order	 to	 understand	 income-expense	 and	 financial	 statements	 you	 need	 a	 good	 grasp	 of	 it.	 Our
insistence	on	the	importance	of	seeing	only	the	answer—of	seeing	6	x	7	as	42—is	basic	to	a	vocabulary
of	the	language.	The	methods	and	short	cuts	to	come	later	might	be	called	the	grammar,	but	grammar	is
useless	without	vocabulary.

From	time	to	time	in	this	book	I	will	slip	in	a	little	casual	practice	at	seeing	only	the	answer.	Please
do	not	skip	these	examples.	They	are	important.	They	directly	affect	every	other	element	in	the	book.

Add	these	numbers:	8	7	6
Did	you	see	the	digits	8,	7,	and	6?	You	were	probably	taught	to	add	“8	plus	7	is	15;	15	plus	6	is	21.”
This	is	too	slow.
Instead,	practice	looking	at	the	8	and	the	7	and	thinking,	automatically,	“15.”	Try	to	do	this	without

saying	or	 thinking	either	 the	8	or	 the	7.	Then,	 thinking	only	“15,”	glance	at	 the	6	and	see	“21.”	You
don't	say	or	even	think	“6”	at	all.

If	you	have	never	tried	this,	the	idea	may	be	not	only	new	but	rather	shocking.	You	can	get	used	to	it
very	 quickly	 if	 you	 try,	 and	 it	will	 speed	 up	 your	 number	work	 substantially	 even	without	 the	 other
techniques.	It	isn't	hard.	It	takes	a	bit	of	practice,	and	knowing	your	addition	tables	so	you	don't	have	to
cudgel	your	brains	to	remember	what	8	and	7	add	up	to.	It's	just	what	you	do	when	you	look	at	m	and	e
and	think	“me”	without	consciously	putting	the	two	letters	together.

Try	it	again:	8	7	6
Now	practice	reading	the	following	additions	by	seeing	only	the	answer.	Don't	say	to	yourself,	and

try	to	avoid	even	thinking	to	yourself,	the	digits	you	are	adding.	Do	your	best	to	“see”	4	plus	5	as	9—
not	as	4	plus	5.	Read	the	answers	to	these	additions	just	as	you	would	read	i	and	t	as	it,	not	i	and	t:



If	you	found	yourself	beginning	to	see	only	the	answers,	very	good.	If	not,	you	might	find	it	helpful
to	try	again.

Work	With	Numbers,	Not	Digits

The	second	step	 to	developing	number	 sense	goes	even	 further	 in	aiding	a	natural	 and	 sure	 speed
with	figures.	This	step	is	far	more	drastic	than	seeing	only	the	answer.	It	violates	almost	everything	we
are	usually	taught	about	numbers,	yet	you	will	quickly	see	how	much	sense	it	makes	and	how	important
it	can	be.

This	rule,	agreed	on	by	almost	every	teacher	of	short-cut	mathematics,	is	to	work	from	left	to	right—
not	right	to	left.

This	is	just	opposite	to	what	is	taught	in	school.	We	are	taught	to	add,	subtract,	and	multiply	from
right	 to	 left.	 It	 is	 easier	 to	 teach	 to	 children	 and	 easier	 to	 learn	 from	 the	 “imitation”	 standpoint	 of
learning	by	rote,	but	it	is	directly	contrary	to	the	way	we	read	and	think	about	numbers.

There	are	at	least	three	important	advantages	to	working	from	left	to	right.
First,	it	is	the	way	we	look	at	everything	else	on	a	page.	We	read	from	left	to	right.
Second,	it	is	the	way	we	look	at	a	number	right	up	to	the	moment	we	begin	doing	something	to	it.

For	instance,	 look	at	 the	number	164,928.	You	read	 it	one-hundred	sixty-four	 thousand,	nine-hundred
and	twenty-eight.	But	when	you	begin	to	add	or	subtract	or	multiply	it,	you	are	taught	to	tackle	it	as	8,
2,	9,	4,	6,	1.

It	isn't	the	same	number	at	all.	At	the	very	outset	we	are	taught	to	combine	this	number	with	another
in	a	totally	foreign,	unrecognizable	form.

There	is	still	a	third	reason	why	it	is	faster	and	better	to	work	from	left	to	right.	You	develop	your
most	important	numbers	first	and	work	toward	the	“details.”

Suppose	you	are	a	salesman	who	has	just	sold	a	$423	order	for	which	you	will	get	a	6%	commission.
If	you	work	from	left	to	right	(you	will	learn	how	later),	you	know	by	the	time	you	get	just	one	digit	that
your	commission	will	be	twenty-something	dollars.	You	know	when	you	have	finished	two	digits	that
your	commission	is	$25	and	change.

But	if	you	work	in	the	schoolroom,	right-to-left	way,	the	first	two	digits	you	develop	tell	you	only
the	change.	You	know	only	that	you	will	get	something	dollars	and	38¢.	Not	until	you	finish	working
out	the	whole	commission	do	you	know	that	your	commission	will	be	$25.38.

That	38¢	may	be	 important	 to	a	bookkeeper,	but	 its	 importance	 in	 the	number	 itself	 is	relatively	a
detail.	You	care	a	lot	more	about	the	$25	than	you	do	about	the	38¢.

This	is	true	of	every	number	and	every	application,	whether	or	not	a	decimal	point	happens	to	break
it	into	dollars	and	cents.	The	first	digit	in	a	number	is	ten	times	as	important	as	the	second,	a	hundred
times	as	important	as	the	third,	and	so	on	down	the	line.	If	the	order	we	just	discussed	were	a	hundred
times	as	large,	you	would	still	care	a	great	deal	more	about	the	$2,500	part	of	the	commission	than	you
would	about	the	$38	part.

Working	 from	 left	 to	 right	 reveals	 to	you,	 step	by	step,	 the	most	 important	numbers	 first.	For	 this



reason	alone,	the	new	methods	for	doing	this	are	one	of	the	most	valuable	quick	estimating	tools	you
can	have.

The	fact	that	each	digit	in	a	number	decreases	in	importance	by	a	factor	of	ten	as	it	moves	one	place
to	 the	 right	 is	 the	 reason	why	many	companies	 today	report	 their	operations	and	financial	position	 in
“round”	 numbers:	 rounding	 off	 the	 pennies	 or,	 in	 very	 large	 companies,	 tens,	 hundreds,	 and	 even
thousands	of	dollars.	It	is	the	number	to	the	left	that	is	most	important.	Even	the	U.	S.	government	now
permits	each	of	us	to	figure	our	income	tax	in	round	numbers,	to	the	nearest	dollar	for	each	deduction
and	part	of	 the	calculation.	If	your	 income-tax	report	 is	at	all	complicated	and	you	do	it	yourself	and
have	not	tried	rounding	it	off,	you	will	be	astonished	next	time	you	do	it.	It	saves	close	to	half	the	time
of	doing	the	report.

If	 any	 one	 technique	 in	 this	 entire	 book	 is	 worth	 more	 than	 the	 price	 of	 admission,	 I	 would	 be
tempted	to	put	the	left-to-right	methods	of	working	first	on	the	list.	There	are	other	valuable	techniques,
but	the	left-to-right	methods	are	utterly	unique.

The	value	of	 this	 approach	 to	your	number	 sense	can	only	develop	as	you	 learn	 the	methods	 that
make	 it	possible.	The	point	 to	be	made	here	 is	simply	 this:	work	at	 it.	 It	 is,	as	you	 learn	 to	use	 it,	as
black-and-white	a	difference	as	thinking	of	the	number	462	or	approaching	it	as	2,	6,	4.

Convert	to	Simpler	Forms

Most	 of	 us	 convert	 some	 of	 our	 figuring	 problems	 to	 simpler	 forms,	when	we	 can	 and	when	we
notice	that	we	can,	without	thinking	very	much	about	it.

You	wouldn't	 give	 a	 second	 thought	 to	wondering	 how	much	 you	 had	 in	 terms	 of	 dollars	 if	 you
found	three	25¢	pieces	in	your	hand.	We	call	25¢	a	quarter	because	that	is	just	what	it	is—a	quarter	of	a
dollar.	 In	 fact,	 if	 you	 take	 one	 out	 of	 your	 pocket	 right	 now	 you	 will	 find	 that	 it	 doesn't	 even	 say
anything	about	cents.	The	official	designation	is	“quarter	dollar.”

Whether	 anybody	 has	 ever	 called	 your	 attention	 to	 it	 or	 not,	 you	 are	 thinking	 now	 in	 terms	 of
aliquots.	An	 important	 chapter	 comes	 later	 on	 the	 short	 cuts	 that	 aliquots	make	 possible.	 The	whole
concept,	 once	 you	 get	 used	 to	 it,	 is	 merely	 an	 extension	 and	 refinement	 of	 your	 instinctive
understanding	that	75¢	is	the	same	as	¾	of	a	dollar.

This	is	conversion	to	a	simpler	form.
Perhaps,	too,	you	have	noticed	that	you	can	more	easily	multiply	692	by	99,	by	subtracting	one	692

from	a	hundred	692’s	(69,200	–	692)	than	by	setting	up	the	whole	problem	with	a	pencil	and	paper	and
going	through	the	classical	form,	which	would	look	like	this:

Which	is	quicker	and	easier?	Yet	in	doing	the	first	you	were	merely	using	a	basic	and	helpful	form	of
the	technique	we	call	“round	off	and	adjust.”	It	can	apply	to	many	more	numbers	than	99.

This,	too,	is	conversion	to	a	simpler	form.
Or	perhaps,	 in	 quickly	 trying	 to	 come	up	with	 an	 appropriate	 tip	 for	 a	meal	 check	where	 15%	 is

standard,	you	noted	that	you	could	mentally	take	one-tenth	of	the	check	and	then	add	one-half	of	that
number	to	 the	one-tenth.	A	five-dollar	check,	for	 instance,	would	call	for	a	75¢	tip.	One	tenth	of	five
dollars	(50¢)	plus	one	half	of	50¢	(25¢),	gives	75¢	quickly	and	easily.



It	is	obviously	more	convenient	to	arrive	at	75¢	this	way	than	to	try	(mentally	or	on	the	edge	of	the
check)	to	multiply	in	the	classic	manner:

Yet	in	doing	this	little	trick,	you	are	merely	practicing	a	fairly	simple	form	of	the	short-cut	method
called	“breakdown.”

There	 are	 other	 useful	 forms	 of	 conversion,	 such	 as	 factoring	 and	 proportionate	 change.	 The
application	of	these	methods	to	number	sense	will	become	plain	as	you	learn	and	begin	to	apply	them.

The	Four	Steps	to	Number	Sense

Here,	for	quick	review,	are	the	four	steppingstones	to	number	sense:
Practice	seeing	relationships

How	does	5	relate	to	10?	3	to	9?
See	only	the	answer

Read	4	+	3	as	7—not	as	four	plus	three.
Work	from	left	to	right

27	is	27—not	7,	2.
Convert	to	simpler	forms

25¢	is	both	25¢	and	a	quarter	of	a	dollar.
99	is	100	minus	1.
15	is	10	plus	½	of	10.
(And	more	conversions	to	come.)

Before	going	on	to	the	first	real	“working”	chapter	of	this	book,	get	in	practice	for	using	it	as	well	as
reading	it	by	trying	to	see	only	the	answers	to	the	following	multiplications.	Remember,	6	x	7	is	42—
not	six	times	seven:



I

2

COMPLEMENT	ADDITION

T	HAS	been	estimated	by	experts	that,	for	the	average	business,	 the	total	 time	spent	in	arithmetical
computations	breaks	down	to	70%	addition,	5%	subtraction,	20%	multiplication,	and	5%	division.
These	exact	proportions	may	or	may	not	hold	in	your	particular	business	or	profession.	But	chances

are	that	they	are	not	far	wrong	if	you	include	all	the	number	work	you	do.
So	the	obvious	first	job	of	becoming	better	at	figures	is	to	simplify	by	a	very	substantial	margin	that

70%	of	 the	 time	 spent	 adding.	What	 is	 simpler	 is,	 by	nature,	 faster.	Since	 adding	 is	 the	 single	most-
often-used	process,	it	is	worth	spending	a	little	extra	effort	at	the	beginning	to	learn	a	new	approach	that
is	guaranteed	to	make	your	work	both	easier	and	much,	much	speedier.

The	approach	you	are	about	to	learn	is	quite	different	from	the	one	taught	in	any	school.	In	fact,	it
has	never	even	appeared	in	any	of	the	books	on	the	subject	and	is	practically	unknown	in	this	country.

There	 is	 a	 reason	 for	 this.	 The	 reason	 is	 that	 the	 basis	 of	 this	 system	 is	 not	 part	 of	 our	 western
civilization	at	all.	The	basis	comes	from	Japan.

Back	in	1946,	an	amusing	story	appeared	in	many	American	newspapers.	The	story	said,	incredibly,
that	 in	 a	 contest	 in	 the	 Ernie	 Pyle	 Theatre	 in	 Tokyo	 the	 most	 expert	 electric	 calculator	 operator	 of
General	MacArthur's	headquarters	had	been	roundly	defeated	in	a	public	match	by—of	all	things—an
abacus!

In	a	long	series	of	problems,	ranging	from	addition	and	subtraction	of	as	many	as	fifty	numbers	with
three	to	six	digits	each,	through	division	and	multiplication	problems	with	up	to	twelve	digits	each,	the
electric	 calculator	 had	 gone	 down	 to	 resounding	 defeat.	 The	winner	was	 a	 “primitive”	 instrument	 of
beads	on	rods.

An	abacus	is	really	nothing	more	than	a	recording,	not	a	calculating,	device.	It	is	basically	so	simple
and	useful	a	machine	that	different	forms	of	it	were	used	in	Rome,	India,	China,	Japan,	and	many	other
countries.	The	varieties	used	have	been	very	different	 indeed,	 some	of	 them	about	as	clumsy	as	 they
were	useful,	but	 in	 Japan	 the	highest	mathematical	 thinking	was	brought	 to	bear	on	 the	problem.	An
entirely	new,	“streamlined”	version	called	the	soroban	was	developed	within	the	last	few	decades.

The	soroban	still	consists	of	beads	on	rods.	This	is	basic	to	anything	that	can	be	called	an	abacus.
But	it	has	fewer	beads	on	each	rod	than	any	other	variety.	Where	some	contemporary	Chinese	models
still	have	as	many	as	fifteen	beads	on	each	rod,	the	soroban	has	exactly	nine.

The	number	nine	rings	a	bell.	It	is	the	highest	of	all	single	digit	numbers…the	basis	of	our	decimal
(tens)	counting	system.

The	 Japanese	mathematicians	 saw	 this	 fact.	After	 thousands	 of	 years	 of	 using	 the	 device	 in	 their
calculating,	they	sat	down	and	realized	that	it	was	silly	to	record	ten	or	more	on	any	one	rod,	because
that	ten	could	be	recorded	on	another	rod	with	just	one	bead	in	precisely	the	same	way	that	we	record	a
ten	on	paper—with	a	one	moved	over	one	place	to	the	left.

Actually,	of	course,	the	electric	calculator	in	that	Tokyo	contest	was	not	defeated	by	the	abacus	at	all.
The	 operator	 of	 the	 calculator	 was	 defeated	 by	 the	 operator	 of	 the	 abacus—a	 man	 trained	 in	 the
Japanese	 system	of	 soroban	 arithmetic,	which	 is	 so	much	 simpler	 and	 faster	 than	 ours	 that	 he	 could
solve	and	record	each	step	of	a	problem	faster	 than	 the	electric	calculator	operator	could	punch	 them
into	his	keyboard.

The	soroban	operator	was	no	number	genius,	incidentally.	He	was	a	champion	operator,	but	(as	he
himself	stated)	no	better	than	many	other	first-class	operators.	After	all,	the	soroban	is	still	the	basic	tool



of	Japanese	arithmetic,	which	today	is	building	an	industrial	complex	producing	the	most	sophisticated
binoculars	and	cameras	and	advanced	radios.

If	 today	you	want	a	number	job	in	Japan,	don't	bother	to	learn	how	to	operate	an	adding	machine.
Learn	the	soroban.

Soroban	Theory

The	 soroban,	 or	 modern	 Japanese	 abacus,	 is	 useful	 to	 us	 here	 because	 it	 is	 a	 valuable	 tool	 for
calculating	in	its	own	right	and	because	in	order	to	use	it	with	such	incredible	efficiency	and	speed	the
Japanese	had	to	develop	the	theory.

Three	 parts	 of	 this	 theory	 are	 especially	 useful	 and	 applicable	 to	 our	 technique	 of	 streamlined
arithmetic:

				1.	Do	each	step	one	at	a	time,	recording	the	results	in	the	quickest	and	easiest	way.
				2.	Work	from	left	to	right.
				3.	Never	calculate	over	ten.
That	last	one	is	a	surprise.	It	surprised	me	some	years	ago	when	I	was	researching	the	whole	field	of

short-cut	mathematics	for	a	program	I	was	editing	and,	remembering	that	story	about	the	Tokyo	contest,
I	did	some	research	on	modern	soroban	theory.

Never	 add	 over	 ten?	The	whole	 idea	 violates	 everything	we	 learned	 in	 school	 and	 everything	we
think	we	know	about	numbers.	At	first	sight,	the	method	for	doing	so	will	look	more	complicated.	We
are	tempted	to	dismiss	the	idea	and	go	on	to	something	else.

But	it	does	make	sense.	It	makes	enough	sense	for	a	soroban	operator	to	beat	the	pants	off	an	electric
calculator	operator.

Never	add	over	ten.	It	takes	time	to	get	used	to	this	idea.	If	you	react	as	I	did	when	I	first	read	the
theory	and	method,	 then	applied	 it	 to	streamlined	math	and	found	how	well	 it	worked,	you	will	need
several	days	to	adjust	to	the	concept.	But	use	it	anyway.	Force	yourself.	At	first	it	will	take	longer	than
the	way	you	now	do	arithmetic,	because	you	will	be	breaking	old	habits	and	building	new	ones:	new
ones	you'll	prize	for	the	rest	of	your	life.	Soon,	if	you	keep	working	at	it,	you	will	find	that	you	can	do
problems	far	more	quickly	and	accurately	than	you	have	ever	done	them	before.

Never	add	over	ten!	What	about	5	+	6?	8	+	3?	9	+	7?	We	will	get	to	that	very	shortly.	Before	going
into	it,	though,	you	should	understand	thoroughly	why	this	system	is	so	fast.

Even	though	you	have	already	memorized	the	addition	tables	up	to	9	+	9	or	even	more,	you	will	gain
tremendously	if	from	now	on	you	concentrate	on	just	about	half	of	them—the	easier	half,	at	that.	Soon
you	will	naturally,	almost	unavoidably,	become	almost	twice	as	fast	on	the	easier	half	you	really	use.

Combine	 this	with	an	automatic-recording	 system	 for	 taking	care	of	 the	 tens,	 such	as	 the	 soroban
provides	 or	 the	 two	 techniques	 developed	 especially	 for	 this	 system,	 and	 your	 speed	 accelerates	 still
further.

Look	at	 the	following	table	of	all	possible	combinations	of	 two	digits.	You	will	find	that	 there	are
forty-five	of	them	in	all,	from	1	+	1	to	9	+	9.	Now	notice	that	of	the	forty-five	combinations,	twenty	add
up	to	less	than	ten.	Five	add	up	to	ten.	Twenty	add	up	to	more	than	ten.

The	twenty	combinations	 that	add	up	to	more	 than	ten,	 incidentally,	are	also	 the	 twenty	hardest	 to
remember	quickly	and	the	ones	on	which	most	of	us	stumble	most	often.

The	table,	incidentally,	shows	each	pair	only	once.	That	is,	2	+	5	is	shown	in	the	“two”	column	but	5
+	2	is	not	shown	at	all;	it	is	merely	the	same	pair	backwards.



The	appearance	of	 this	 table	 is	not	 random.	 It	 could	be	set	up	 in	 slightly	different	 shapes,	but	 the
order	and	pattern	of	this	particular	arrangement	are	especially	instructive.	You	will	find	it	worthwhile	to
examine	the	pattern	with	some	care.	Note,	among	other	things,	the	heavy	concentration	of	pairs	adding
up	to	totals	around	ten,	and	how	the	possibilities	taper	off	toward	high	and	low	totals.

In	 the	 system	 about	 to	 be	 explained,	 here	 is	 how	 we	 will	 handle	 the	 forty-five	 different
combinations:

We	use	the	twenty	combinations	adding	up	to	less	than	ten	just	as	we	do	now.	They	are	the	easiest
ones.	We	use	the	five	combinations	that	add	up	to	ten	(1	+	9,	2	+	8,	3	+	7,	4	+	6,	and	5	+	5)	even	more
than	we	do	now,	so	we	learn	them	extra	well.	We	forget	those	twenty	hardest	combinations	that	add	up
to	more	than	ten	and	learn	the	technique	of	complement	addition.

Add	With	Complements

The	basic	rule	for	the	new	technique	is	this:
To	 “add”	 over	 ten,	 subtract	 the	 complement	 of	 the	 larger	 digit	 from	 the	 smaller	 digit—and
record	a	ten.
First	we	need	 to	 learn	what	 complements	are.	Then	we	will	 take	up	how	 to	 record	 tens.	Both	are

easy.
What	is	a	complement?	A	complement	is	simply	the	digit	that,	added	to	the	digit	you	have,	adds	up

to	 ten.	 You	 might	 say	 that	 a	 complement	 is	 that	 digit	 needed	 (in	 addition	 to	 the	 one	 you	 have)	 to
complete	a	ten.

For	example:	The	complement	of	9	is	1,	because	9	+	1	is	ten.	The	complement	of	8	is	2,	because	8	+
2	is	ten.	The	complement	of	7	is	3,	and	the	complement	of	6	is	4,	because	7	+	3	is	ten	and	6	+	4	is	ten.
Even	in	your	sleep	you	would	answer	that	the	complement	of	5	is	5.

Those	are	all	the	complements	you	ever	have	to	remember	in	adding	the	longest	column	of	figures.
There	 are	 only	 five	 of	 them:	 five	 pairs,	 you	 will	 note,	 that	 add	 up	 to	 ten	 in	 the	 table	 of	 possible
combinations.

Before	learning	how	to	add	with	complements,	make	doubly	sure	that	you	have	the	idea	by	looking
at	the	following	digits	and	giving	their	complements.	Try	to	“read”	the	complement	of	each	as	you	are



beginning	to	“read”	the	answer	to	a	simple	problem:

The	 way	 you	 add	 with	 complements	 takes	 a	 bit	 of	 getting	 used	 to.	 But	 it	 is	 one	 of	 the	 most
fascinating	and	fruitful	approaches	known	to	short-cut	arithmetic.	You	“add”	two	digits	that	total	more
than	ten	by	subtracting	the	complement	of	the	larger	digit	from	the	smaller	digit	and	recording	a	ten.

In	order	to	add	6	+	7,	you	subtract	the	complement	of	7	(3)	from	6,	and	record	a	ten.	6	–	3	gives	3.
The	recorded	ten	makes	it	13.

Or	to	add	8	+	4,	you	subtract	the	complement	of	8	(2)	from	4	and	record	a	ten.	4	–	2	gives	2.	The
recorded	ten	makes	it	12.

It	is	useful	to	subtract	the	complement	of	the	larger	digit	rather	than	the	complement	of	the	smaller.
In	this	way	you	cut	in	half	the	number	of	complements	you	have	to	remember	at	this	stage—though	the
other	half	of	the	complements	are	really	only	the	same	pairs	of	digits	that	add	up	to	ten	turned	around.
Just	as	2	is	the	complement	of	8,	so	is	8	the	complement	of	2.

Try	it	yourself,	before	going	any	further.	Add	7	+	9	by	subtracting	the	complement	of	the	larger	digit
from	the	smaller	digit.	The	complement	of	9	is—.	7	–—is—.	Remember	 to	record	a	 ten,	 in	ways	you
will	learn	very	soon.	So	the	answer	is	16.	I	hope	that	is	what	you	arrived	at	through	the	new	method,
even	 the	 first	 time.	 If	 not,	 then	 it	 hasn't	 become	 clear	 yet.	 Another	 reading	 of	 the	 last	 few	 pages	 is
indicated.

Now	add	3	+	8.	Would	you	subtract	 the	complement	of	8	 from	3?	What	 is	 the	complement	of	8?
Don't	forget	to	record	a	ten.

Strange	and	complex	as	this	system	undoubtedly	seems	at	the	moment,	it	is	really	far	faster.	This	is
because	you	are	working	with	only	the	easier	half	of	the	forty-five	digit	combinations,	the	half	that	add
up	to	less	than	ten.	Even	subtracting	the	complement	will	shortly	become	no	problem,	because	you	are
always	subtracting	digits	from	pairs	in	the	top	part	of	the	table.	Look	back	at	it	again	for	a	moment.	In
the	complement	system	of	addition,	you	cannot	possibly	get	 into	 that	bottom	part	of	 the	 table—those
twenty	toughest	(and	slowest)	combinations.

Give	it	one	more	try	before	going	on.	Each	time	you	use	it,	the	system	will	become	a	little	easier	and
more	natural.

Add	6	+	5.	The	complement	of	6	is—.	5	minus—is—.	Record	a	ten.

Recording	Tens

You	recall	that	we	said	the	soroban,	or	modern	Japanese	abacus,	is	not	really	a	calculating	instrument
at	 all.	 It	 is	 a	 recording	 instrument.	By	 recording	 the	 results	 of	 each	 step	 in	 a	 calculation,	 it	 frees	 the
operator	to	concentrate	on	skill	and	speed	in	taking	each	step.

We	can	record	steps,	too.	Our	methods	of	recording	will	enable	us	to	concentrate	on	speed,	just	as
the	soroban	does.

There	are	two	good	ways	to	record	tens	each	time	you	use	complements.	The	first	way	is	simply	to
put	a	 line	at	each	place	 in	a	column	of	figures	whenever	you	use	a	complement	or	add	to	 ten.	 If	you
adopt	this	system,	make	it	a	habit	so	it	becomes	automatic.	Then,	when	you	write	your	final	total,	you
just	sweep	your	eye	over	the	lines	in	that	column	and	put	down	the	total	number	of	lines	as	your	“tens”
digit,	one	place	 to	 the	 left.	 Instead	of	 remembering	“37,”	 for	 instance,	you	have	 in	your	mind	at	 that
point	only	the	single	digit	seven,	but	you	will	find	three	lines	along	the	column.

We	will	go	through	one	problem	slowly	and	carefully,	step	by	step.	At	first,	 the	process	will	seem
quite	long	and	complicated	because	each	step	must	be	made	clear.	Actually,	as	you	will	find	with	use,	it



is	far	simpler	and	faster	than	the	traditional	method	of	addition.

Remember	that	we	always	work	from	left	to	right:

First	column
2	+	3	is	5.
5	–	1	(complement	of	9)	is	4.	Record	ten	by	putting	a	line	under	the	9.
4	–	3	(complement	of	7)	is	1.	Record	ten	by	putting	a	line	under	the	7.
Put	down	the	remembered	1	under	the	column.
Count	the	lines.	There	are	two.	Put	a	2	one	place	to	the	left	of	the	column.

Second	column
4	+	5	is	9.
9	–	1	(complement	of	9)	is	8.	Record	ten	by	putting	a	line	under	the	9.
8	–	1	(complement	of	9)	is	7.	Record	ten	by	putting	a	line	under	the	9.
Put	down	the	remembered	7	under	the	column.
Count	the	lines.	There	are	two.	Put	a	2	one	place	to	the	left	of	the	column,	under	the	1	from	the

first	column.

Now	you	simply	add	and	get	the	answer,	237.
While	this	has	taken	some	time	to	explain	step	by	step,	in	practice	you	will	find	it	infinitely	faster

than	the	old	way.	When	you	do	it	automatically,	you	will	think	only	“5,	4	(line),	3	(line);	9,	8	(line),	7
(line);	237.”

One	element	about	the	problem	may	be	a	little	confusing.	We	combine	the	next	figure	in	the	column
with	the	figure	 in	our	mind	from	previous	additions,	not	with	the	figure	above	it.	For	 instance,	 in	 the
first	column	of	the	problem	above,	we	subtract	the	complement	of	9	(1)	from	5—the	result	of	adding	2
and	3—not	from	the	3.	It	works	just	like	regular	addition	in	this	respect.	The	use	of	complements	does
not	change	it.

Try	the	next	example,	in	which	we	will	go	through	the	steps	in	a	much	more	condensed	way.	See	if
you	 can	 follow	each	 step,	 identify	 the	 complement	being	used	 in	 each	 case,	 and	understand	why	we
record	a	ten	with	a	line	each	time	we	do	so:

This	example	should	have	gone	a	little	more	easily.	Take	it	slowly	now,	so	you	can	build	on	a	solid
base	of	thorough	understanding	in	later	parts	of	the	book.



Rather	 than	go	on	with	more	practice	at	 this	point,	 let	us	get	 into	 the	second	method	of	 recording
tens.	 Of	 the	 two,	 this	 is	 quicker	 and	more	 generally	 useful.	 But,	 in	 this	 case	 and	 in	many	 alternate
choices	in	the	“short	cuts”	section	later	in	the	book,	you	should	adopt	the	one	that	seems	most	natural	to
you	 and	 concentrate	 on	 it.	 Continuous	 use	 of	 one	 system	 will	 build	 the	 desirable	 habit	 pattern	 and
accelerate	your	speed.

Record	on	Your	Fingers

The	second	way	to	record	tens	is	to	use	your	fingers.	We	were	taught	not	to	count	on	our	fingers,	so
the	idea	may	come	as	something	of	a	shock.	Actually,	however,	the	purpose	here	is	vastly	different.	We
were	 taught	 not	 to	 count	 on	 our	 fingers	 because	 using	 them	 for	 counting	 is	 leaning	 on	 a	 crutch	 that
interferes	with	genuine	mastery	of	the	calculating	skill	itself.	Using	them	for	recording,	as	you	will	see,
approaches	the	automatic-recording	advantages	of	the	soroban,	and	frees	you	to	concentrate	on	adding
the	digits	with	extra	speed.

Should	you	need	any	more	encouragement,	 take	note	of	 the	fact	 that	 top	abacus	operators	become
amazingly	proficient	at	mental	arithmetic	by	 learning	 to	close	 their	eyes	and	visualize	 the	soroban	as
they	calculate—and	they	use	their	fingers	for	recording.	So	no	matter	how	much	distaste	for	using	your
fingers	your	school	 training	may	have	 left	you,	keep	 firmly	 in	mind	 that	 this	 is	 recording	 rather	 than
counting,	and	give	it	a	 try.	Speed	mathematics	can	and	should	make	use	of	any	device	that	simplifies
and	speeds	up	the	solving	of	problems.

Here	is	how	the	system	works.	To	record	the	first	 ten	(when	you	first	use	a	complement	or	add	to
ten),	fold	the	little	finger	of	your	left	hand	into	the	palm.	If	you	write	with	your	left	hand,	there	is	no
reason	why	you	cannot	record	on	the	right.	To	record	the	second	ten,	fold	the	next	finger	alongside	the
little	finger.	This	means	two	tens.	If	you	use	another	complement	or	add	to	ten	in	the	same	column,	fold
the	next	finger.	This	records	three	tens.	And	so	on,	up	to	five	tens.

If	you	have	more	than	five	tens	in	a	long	column,	open	the	hand	and	start	over	with	the	little	finger
again.	Perhaps	you	will	feel	happier	about	remembering	to	add	five	to	the	second	running	total	of	tens	if
you	make	a	line	in	the	column	when	you	start	over.	Or	use	any	other	signal	to	yourself	that	makes	sense.

This	is	not	silly.	Any	mechanical	aid	that	fits	your	habits	and	personality	is	a	valid	and	useful	device
for	freeing	your	mind	to	concentrate	on	the	basic	objective:	speed	and	ease	with	fingers.

Whatever	signal	you	adopt	in	a	case	like	this,	be	consistent	with	it.	Settle	down	to	use	this	method
for	 every	 single	 calculation	 you	 do,	 no	matter	 how	 simple	 it	 is	 or	where	 you	 do	 it.	Habits	 are	 very
important.	Making	a	habit	of	consistently	using	the	fastest	techniques	is	what	gives	speed.

The	use	of	 fingers	 instead	of	 lines	 to	 record	 tens	does	not	change	what	you	do	at	 the	end	of	each
column,	of	course.	First	you	put	down	the	digit	in	your	mind	from	the	final	addition.	Then	you	put,	one
place	to	the	left,	the	number	of	fingers	you	have	folded—adding	five	if	you	had	to	start	over	again.

Here	is	how	we	solve	a	problem	with	this	system.	Work	from	left	to	right:

First	column
5	+	1	is	6.
6	+	3	is	9.
7	–	1	(complement	of	9)	is	6.	Fold	a	finger.
Put	down	the	6	in	your	mind.
One	finger	folded.	Put	down	1	one	place	to	the	left.



Second	column
7	–	1	(complement	of	9)	is	6.	Fold	a	finger.
6	–	4	(complement	of	6)	is	2.	Fold	a	finger.
2	+	4	is	6.
Put	down	the	6	in	your	mind.
Two	fingers	folded.	Put	down	2	one	place	to	the	left,	under	the	6	from	the	first	column.

Third	column
4	–	2	(complement	of	8)	is	2.	Fold	a	finger.
2	+	5	is	7.
4	–	3	(complement	of	7)	is	1.	Fold	a	finger.
Put	down	the	1	in	your	mind.
Two	fingers	folded.	Put	down	2	one	place	to	the	left,	under	the	6	from	the	second	column.

Note	especially	that,	because	it	is	a	faster	habit	to	use	the	complement	of	the	larger	of	the	two	digits
to	be	added	at	any	point	(one	being	in	your	mind	from	the	last	addition,	the	other	being	the	next	digit	in
the	 column),	 sometimes	 you	 use	 the	 complement	 of	 the	 digit	 in	 your	 mind,	 and	 sometimes	 the
complement	of	the	next	digit	in	the	column.	It	makes	no	difference.

Now	we	will	go	through	another	example	with	a	condensed	explanation	of	the	process:?

First	column
1	(finger),	0	(finger),	3,	8.	8	under	the	column,	2	one	place	to	the	left.

Second	column
0	(finger),	8,	4	(finger),	1	(finger).	1	under	the
column,	3	one	place	to	the	left	(below	the	8).

Third	column
8,	2	(finger),	3,	2	(finger).	2	under	the	column,	2	one	place	to	the	left	(below	the	1).

This	 example	 demonstrates	 one	 new	 fact.	 In	 developing	 the	 final	 answer	 you	 sometimes	 have	 to
raise	a	digit	you	have	already	put	down.	In	the	problem	above,	the	2	in	the	very	left	column	becomes	3



in	the	final	answer	of	3132.	Since	you	are	adding	just	two	lines	at	this	point,	it	should	not	be	a	problem.
When	 we	 get	 into	 multiplication,	 where	 it	 can	 be	 a	 little	 harder,	 you	 will	 learn	 a	 special	 recording
technique	that	makes	it	possible	to	work	from	left	to	right	with	quite	complex	problems	in	this	way.	But
in	adding	you	never	have	to	add	more	than	two	lines,	and	no	digit	in	the	final	answer	ever	needs	to	be
raised	in	value	by	more	than	one.	You	should	be	able	to	work	from	left	to	right	by	merely	glancing	at
the	next	column	as	you	put	down	each	digit	to	see	if	the	total	of	the	next	column	will	be	ten	or	more.	If
it	will	be	(you	don't	care	how	much	more	than	ten	it	will	be	at	this	point),	just	add	one	to	the	digit	you
are	about	to	put	down.

In	the	problem	above,	you	glance	at	the	second	column	and	note	that	8	+	3	will	be	more	than	ten.	So
instead	of	putting	down	2	as	the	first	digit,	you	put	down	3.	In	a	sense	you	are	pre-recording	a	ten	from
the	 complement	 you	will	 use	when	 you	 get	 to	 the	 second	 column.	 For	 the	 second	 digit	 of	 the	 final
answer,	you	subtract	the	complement	of	8	(2)	from	3	and	put	down	1.	The	ten	has	already	been	recorded
by	raising	the	first	2	to	3.

Why	Complements	Work

The	use	of	 complements	 is	 at	 the	very	heart	 and	center	of	modem	abacus	 theory	 in	 Japan,	where
today	the	soroban	rather	than	the	adding	machine	stands	on	the	average	bookkeeper's	desk.

You	don't	have	to	understand	the	theory	of	complement	addition	to	use	it,	but	understanding	always
helps	mastery.	Learning	simply	by	rote	leads	to	a	shaky	mastery	at	best—to	what	W.	W.	Sawyer	calls
“imitation”	instead	of	substance.	So	let	us	take	apart	the	theory	of	complements	and	see	why	they	work
the	way	they	do.

Since	our	counting	base	is	ten,	any	addition	is	really	a	process	of	going	up	to	ten	and	then	starting
over	 again—recording	 a	 ten	 by	 remembering	 “xxteen,”	 “twenty-xx,”	 and	 so	 on;	 or,	 with	 our	 new
system,	by	using	a	line	or	a	folded	finger.

When	we	add	 two	digits	 that	would	go	over	 ten	 in	complement	addition,	we	really	do	 just	what	a
soroban	operator	does	when	he	has	to	add	some	beads	to	a	rod	and	finds	that	there	are	not	enough	beads
on	the	rod.	The	streamlined	abacus,	or	soroban,	has	only	five	beads	on	a	rod:	one	representing	a	value
of	five,	and	four	each	representing	a	value	of	one.	Altogether,	they	can	record	no	more	than	nine.

Suppose	the	operator	has	recorded	eight	on	one	rod.	Beads	are	moved	toward	the	center	divider	in
order	to	record,	and	a	total	of	eight	on	one	rod	would	look	like	this:

The	five-bead	is	the	one	above	the	separator.	It	is	moved	to	the	center	in	order	to	record	a	five.	Three
one-beads	have	been	moved	 toward	 the	 separator.	This	 rod	 is	 recording	 the	number	 eight—five	plus
three.

Now	 suppose	 the	 operator	 has	 to	 add	 nine	 to	 this	 number.	 He	 can't.	 There	 is	 only	 one	 bead	 not



recording	(the	one	on	the	bottom)	and	that	would	add	only	one.	How	can	he	add	nine?
This	is	where	modern	abacus	theory	took	over	in	Japan.	Mathematicians	developed	the	approach	that

the	operator	should	never	try	to	add	more	beads	than	he	can	find	on	the	rod—even	in	his	head,	which
was	the	way	it	had	been	done	before.	Instead,	he	should	subtract	the	complement	of	the	new	digit,	and
record	a	ten	on	the	rod	to	the	left.

So,	in	order	to	add	nine	to	the	eight	recorded	above,	the	operator—knowing	his	complements	cold,
as	he	must—merely	flicks	one	bead	away	from	the	separator	and	immediately	flicks	one	bead	on	the	rod
to	the	left	toward	the	separator	to	record	the	ten.

After	he	subtracts	one	(complement	of	nine)	from	this	rod	and	adds	one	(ten)	on	the	rod	to	the	left,
the	answer	looks	like	this:

Simple?	Yes.	But	very	subtle,	and	very	revolutionary	to	our	ways	of	doing	arithmetic.	The	answer	on
these	two	rods	is	17;	one	ten	plus	one	five	plus	two	ones.	But	it	was	produced	without	ever	adding	eight
plus	nine.	It	was	produced	by	subtracting	the	complement	of	nine	(one)	from	eight	and	recording	a	ten.

Soroban	teaching	calls	this	“letting	the	answer	form	naturally	on	the	board.”	What	we	are	learning	to
do,	in	our	mental	adaptation	of	soroban	theory,	is	let	the	answer	form	naturally	in	our	mind.

Let	us	go	a	little	more	deeply	into	the	theory	of	complements,	in	order	to	reinforce	still	further	your
“number	sense”	in	using	them.

Remember	that	each	time	we	add	beyond	ten	we	start	over	again	with	one—11,	21,	etc.	Since	using
an	addition	table	reaching	beyond	the	next	ten	only	compounds	the	number	of	possible	combinations	we
must	memorize	and	handle	with	ease,	the	use	of	complements	enables	us	to	deal	only	in	combinations
of	ten	or	less	and	yet	run	through	the	entire	counting	system.

Take	an	example	for	which	we	would	not	normally	use	the	complement	system.	You	can	add	ten	and
nine	in	either	of	two	ways:

This	 is	 very	 easy	 to	 understand	 at	 sight.	 9	 is	 1	 less	 than	 ten,	 so	we	 can	 just	 as	well	 add	 ten	 and
subtract	1	as	add	9.	This	is	true	no	matter	to	what	other	digit	we	add	it:



This	works	because,	as	you	already	know,	1	is	the	complement	of	9.	Working	out	each	step	of	the
theory,	the	complement	approach	may	appear	more	complicated.	Working	out	the	addition	of	ten	is	what
makes	it	appear	to	be	so;	we	never	bother	to	add	ten	as	such,	because	we	can	simply	record	it.

Done	in	this	fashion,	the	two	above	examples	now	look	like	this:

Can	you	feel	the	identity	of	all	three	processes?
We	chose	9	as	the	demonstration	example	because	it	is	so	obviously	1	less	than	ten.	Just	as	surely	as

9	is	1	less	than	ten,	8	is	2	less	than	ten,	7	is	3	less	than	ten,	and	so	on.	The	principle	does	not	change	one
bit	when	we	use	these	other	combinations.

As	one	further	example,	let	us	show	all	three	ways	of	expressing	another	“identity”:

Take	your	pad	at	this	point	and	work	out	the	addition	of	5	and	8	in	all	three	ways.	The	closer	you	can
come	to	“feeling”	the	identity	of	all	three	pictures	of	the	same	process,	the	more	confidently	you	will
handle	complements.

One	analogy	that	has	proved	helpful	to	some	people	is	to	visualize	the	process	of	adding	as	climbing
a	series	of	ladders,	each	with	ten	rungs,	from	level	to	level.	At	any	point,	you	know	your	position	on	a
ladder	and	you	know	on	which	ladder	you	stand.	For	instance,	you	are	now	standing	on	the	sixth	rung	of
the	third	ladder—an	analogy	of	the	number	36.	You	are	told	that	you	can	advance	eight	more	rungs,	and
wish	the	quickest	and	easiest	way	of	projecting	where	you	will	be	standing	after	eight	rungs.

First,	you	know	that	you	will	be	on	the	next	higher	ladder	(in	the	40’s),	because	there	are	not	eight
more	rungs	above	you	on	the	third	ladder.	Adding	6	and	8,	let	us	say,	is	something	you	have	never	been
taught	to	do.	You	do	know	that	if	you	could	advance	a	full	ten	rungs	you	would	be	on	the	corresponding
rung	of	the	fourth	ladder—46.	But	since	8	fails	by	2	to	complete	a	ten,	you	will	be	2	rungs	lower—44.

So,	in	any	addition	that	crosses	the	next	ten-point,	you	will	fail	to	reach	the	corresponding	number
across	 that	 ten-point	 by	 precisely	 the	 amount	 that	 the	 number	 you	 add	 fails	 to	 reach	 ten.	 That	 is	 its



complement.
Before	going	on	to	the	next	chapter,	work	for	a	few	moments	at	making	the	use	of	complements	a

habit	by	using	them	conscientiously	in	adding	the	following	problems.	Use	either	lines	or	fingers	as	you
prefer,	but	standardize	now	on	one	system	or	the	other.

Do	not	add	these	pairs.	In	each	case,	subtract	the	complement	of	the	larger	digit	from	the	smaller	and
record	a	ten.	Just	“see”	the	answer;	don't	write	it	down:

As	you	“read”	these	examples	(and	you	should	be	trying	to	“read”	rather	than	“solve”	them)	it	may
help	to	channel	your	thoughts	in	the	right	direction	if	you	lip-read	them	the	first	few	times.	This	is	not
good	 permanent	 practice,	 but	 it	will	 help	 break	 your	 old	 habit	 patterns.	You	would	 lip-read	 the	 first
problem,	for	example,	as	“5	–	3	is	2;	finger,”	to	help	you	avoid	slipping	back	into	the	thought	pattern	of
“5	+	7	is	12.”	Ultimately,	you	will	try	to	“see”	it	as	merely	“2,	finger.”

The	 first	 key	 to	 speed	 in	 this	 system	 is	 obviously	 knowing	 your	 complements	 at	 sight,	 without
pausing	to	think	for	a	second.	Review	them	quickly.	Try	to	“read”	the	complement	of	each	digit	as	you
see	it,	without	stopping	to	ponder:

These	 are	 the	only	digits	 for	which	you	have	 to	 remember	 complements	 at	 this	 point.	Five	 is	 the
complement	of	five,	but	you	never	use	it	that	way	in	adding	because	when	faced	with	a	five	and	a	five
you	simply	react	“0,	finger.”	When	faced	with	a	five	and	a	larger	digit,	you	use	the	complement	of	the
larger	digit.

What	is	the	complement	of	7?
If	you	had	to	pause	for	even	a	flicker,	build	your	base	for	rapid	progress	later	in	the	book	by	reading

the	above	digits	again.	React	without	thought	with	the	complements	to	these	digits:

The	sheer	repetition	here	is	not	overdone.	It	is	essential	to	mastering	the	new	system.	One	of	the	two
major	approaches	to	teaching	machines	uses	precisely	this	principle.

Go	through	this	brief	check-up	to	make	sure	you	are	ready	for	the	next	chapter,	which	will	begin	to
build	your	speed	and	confidence	in	complement	addition.

What	is	a	complement?
What	is	the	complement	of	7?
When	you	add	two	digits	that	would	go	over	ten,	do	you	add	or	subtract	the	complement	of	one

of	them?
Is	it	quicker	to	use	the	complement	of	the	larger	digit,	or	the	smaller	one?	Why?
What	is	the	complement	of	6?
When	adding	a	column,	do	you	keep	all	the	tens	in	your	mind,	or	do	you	record	them?
What	is	the	complement	of	8?
How	do	you	record	a	ten?
What	is	the	complement	of	9?
In	adding	a	column,	do	you	combine	each	new	digit	with	the	digit	above	it,	or	with	the	digit	in



your	mind	from	above	additions?
Could	you	explain	 to	a	 friend	why	complements	work	as	 they	do?	Pretend	he	has	 just	asked

you,	and	see	if	you	can.
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3

BUILDING	SPEED	IN	ADDITION

N	THE	last	chapter	you	have	had	a	taste	of	one	of	the	newest	and	most	exciting	developments	in	the
whole	 field	 of	 speed	mathematics.	 Its	 sheer	 beauty	 and	 rapidity	will	 grow	on	 you	 as	 you	 begin	 to

make	it	a	habit.
Part	of	making	it	a	habit	 is	plain	old-fashioned	practice.	There	 is	simply	no	way	of	 learning	high-

speed	arithmetic	without	a	pretty	fair	dose	of	practice.	You	cannot	begin	to	master	the	systems	without
using	them	enough	times	to	feel	at	ease	with	them.

It	is	always	a	temptation	to	skip	the	practice	in	a	book	of	this	kind.	You	are	interested	in	the	“meat,”
in	 the	 theories,	 in	what	comes	next.	There	 is	a	great	deal	coming	next.	But	 to	skip	 the	practice	 in	 its
proper	place	would	be	unfair	to	yourself.	The	best	theory,	the	finest	technique	in	the	world,	is	useless
unless	you	can	use	it.	You	cannot	use	it	simply	by	knowing	the	theory.	The	difference	between	knowing
how	something	is	done	and	knowing	how	to	do	it	is	skill.	Only	practice	can	build	skill.

We	will	vary	the	practice,	break	it	up	into	modest	doses,	to	keep	it	as	inviting	as	we	can.	But—don't
skip	it!

In	order	to	encourage	you	to	do	the	practice	page	by	page,	I	have	hidden	right	in	the	middle	of	it	one
more	big	step	for	even	greater	speed	in	addition.

Start	now	by	reading	at	sight	the	answers	to	the	following	additions.	Don't	think	or	lip-read	or	even
“see”	the	problem	itself	if	possible;	see	only	the	answer.	Remember	your	complements	for	groups	that
would	go	over	ten:

Pause	and	ask	yourself	 some	questions	here.	Did	you	manage	 to	see	only	 the	answer,	not	 the	 two
digits	to	be	added?	Did	you	begin	to	find	yourself	glancing	at	each	group	that	would	add	over	ten	and
automatically	 subtracting	 the	 complement	 of	 the	 larger	 digit	 from	 the	 smaller	 digit—and	 folding	 a
finger?

If	 not,	 go	 back	 over	 them	 and	 make	 the	 special	 effort	 to	 use	 complements	 in	 these	 cases.	 Such
combinations	are	mixed	in	with	“under	ten”	combinations	on	purpose.	The	two	are	always	mixed	in	the
figure	work	we	meet	in	our	lives.

Now	 let	us	go	on	 to	another	easy	dose	of	practice.	These	numbers	are	not	 simply	 random,	by	 the
way.	Every	possible	combination	of	digits	has	been	recorded	and	appears	in	the	practice	tables.	By	the
time	you	finish	this	chapter	you	will	have	practiced	every	single	possibility.

See	only	the	answers	to	these,	using	complements	where	appropriate:



That's	 enough	 for	a	moment.	Arithmetic,	 even	 the	 streamlined	variety,	 takes	concentration.	At	 the
start,	the	new	techniques	take	even	more	concentration	than	the	old	ones,	because	you	have	to	stop	and
think	about	doing	things	in	the	new	way.

Before	finishing	the	random	series	of	all	digit	combinations,	take	a	breather	by	hearing	the	famous
(and	 possibly	 apochryphal)	 end	 to	 the	 story	 of	 that	 Tokyo	 contest	 between	 the	 abacus	 and	 the
calculating	machine.	The	electric	calculator,	according	to	the	story,	was	made	by	International	Business
Machines,	whose	company-wide	motto	is	THINK.

After	the	American	machine-operator	was	roundly	defeated	by	the	soroban-operator,	he	is	reported
to	have	said:	“Maybe	his	way	is	faster.	But	all	I	have	to	do	is	punch	buttons.	He	has	to	think.”

Now	 we	 will	 finish	 up	 our	 speed	 practice	 in	 basic	 digit	 combinations.	 Remember	 to	 use
complements	where	the	addition	would	go	over	ten,	and	fold	a	finger	or	think	“line”:

That's	 all.	Those	 are	 all	 the	possible	digit	 combinations.	You	will	 never,	 in	 all	 your	 life,	 face	 any
combination	of	digits	that	you	haven't	just	practiced.

Some	of	the	addition	we	do	in	our	jobs	or	at	home	consists	of	single	pairs,	such	as	the	examples	you
have	just	done.	Much	of	it,	however,	does	not.	We	frequently	have	to	add	three	or	more	digits	in	each
column	of	a	particular	addition,	whether	it	is	sales	in	seven	different	territories	or	prices	of	twelve	lots
from	the	real-estate	developer.

Handling	more	 than	 two	digits	using	 the	complement	system	is	something	you	already	understand



but	might	profitably	use	a	little	practice	on.	This	involves	handling	complements	when	one	of	the	digits
to	be	combined	is	in	your	mind	(from	adding	the	previous	digits	in	the	column)	and	the	other	is	the	next
digit	in	the	column,	rather	than	with	two	digits	set	up	just	for	you	to	practice	with.

Consider	this	addition:

When	you	add	the	first	two	digits,	you	subtract	3	(the	complement	of	7)	to	get	4,	and	record	a	ten—
14.	The	only	digit	you	carry	 in	your	mind,	however,	 is	4.	The	 ten	you	record	with	a	 line	or	a	 folded
finger,	and	promptly	ignore	for	greater	speed	and	accuracy.

Now	you	glance	at	 the	last	7.	You	combine	it,	of	course,	not	with	the	7	above	it	but	with	the	4	in
your	mind.	4	–	3	(complement	of	7)	is	1,	with	another	recorded	ten.	You	have	recorded	two	tens	and	are
remembering	1,	so	your	answer	is	21

This	answer	“formed	itself	naturally”	in	your	mind,	just	as	it	forms	itself	naturally	on	the	board	of
the	soroban.

While	you	know	all	 this,	you	will	handle	 the	process	more	easily	and	quickly	 if	you	spend	a	 few
minutes	 consciously	 practicing	 the	 use	 of	 it.	 Run	 through	 the	 next	 column	 with	 the	 complement
technique.	Then	see	if	your	handling	agrees	with	the	description	below	it.

The	 complement	 system,	 assuming	 you	 use	 fingers	 (if	 you	 use	 lines,	 read	 “lines”	 for	 “fingers”),
would	go	like	this:	“7	(finger),	3	(finger),	1	(finger),	0	(finger),	5,	2	(finger).	5	fingers	plus	2—52.”

Note	especially	that	between	the	5	and	the	last	7	there	is	no	finger.	Why?
Now	read	 through	these	examples,	using	complements	 in	each	case	and	seeing	 if	 the	 total	of	your

recorded	tens	plus	the	number	in	your	mind	comes	out	the	same	as	the	answer.	If	not,	do	them	again:

The	 last	 one	 was	 put	 in	 there	 on	 purpose,	 just	 to	 remind	 everyone	 that	 we	 don't	 always	 use
complements.	They	only	apply	when	addition	goes	over	ten.

Compound	Your	Speed	by	Grouping



You	have	learned,	and	begun	to	practice,	two	basic	elements	of	real	addition	speed:	recording	tens,
and	using	complements	instead	of	adding	over	ten.

There	is	one	other	major	contributor	to	high-speed	adding.	It	is	a	standard	“short-cut”	method.	But	it
is	 easier	 than	 ever	 to	 use	 with	 complement	 addition,	 because	 you	 will	 get	 to	 know	 the	 twenty-five
combinations	to	which	it	most	easily	applies	by	first	name,	instead	of	scattering	your	memory	over	all
forty-five	possible	combinations.

Your	full	mastery	of	those	twenty-five	easiest	combinations	can	speed	up	your	addition	still	further	if
you	stretch	it	to	include	the	technique	called	grouping.	In	grouping,	you	“see”	any	pair	of	digits	adding
to	less	than	ten	as	one	digit,	and	any	complementary	pair	as	leaving	the	number	in	your	mind	unchanged
but	worth	another	recorded	ten.

Just	as	you	look	at	the	two	letters	i	and	t	and	see—not	i	and	t—but	“it,”	so	you	will	learn	to	look	at
“3”	and	“4”	and	(if	you	are	adding)	see	only	“7.”	It	works	like	this:

An	expert	will	handle	this	as	the	addition	of	7,	8,	(record),	and	8.	He	will	“see”	the
3	and	4	as	7,	and	so	on.	Simply	think	“5	(finger),	(finger),	3	(finger)—33.”	It's	fast
—and	surprisingly	easy.

Now	try	grouping	on	these	examples:

In	any	future	addition	examples,	make	a	special	effort	to	group	digits	that	add	up	to	less	than	ten	as
well	as	to	ten	exactly.	Steady	work	with	complements	will	help	flag	3	plus	7	as	worth	exactly	one	folded
finger	(or	one	line),	without	changing	the	number	in	your	mind	from	previous	additions.

All	your	adding	practice	so	far	has	been	single-column	work.	Some	of	the	adding	we	do	in	our	jobs
or	at	home	is	of	this	nature,	but	it	is	more	than	likely	that	a	large	part	of	it	includes	several	columns.

Now	is	 the	time	to	refresh	your	memory	on	working	from	left	 to	right.	The	abacus	is	always	used
this	way.	That	 Japanese	operator	who	 so	 thoroughly	beat	 the	calculator	operator	would	not	dream	of
working	from	right	to	left.	It	just	would	not	be	natural.

Remember	 that	when	we	add	several	columns,	we	put	down	under	each	column	 the	 last	digit	 that



developed	naturally	 in	our	mind,	 and	one	place	 to	 the	 left	 of	 it	we	put	 the	number	of	 recorded	 tens.
Under	the	first	column	we	can	place	our	recorded	tens	immediately	to	the	left,	but	under	later	columns
they	 have	 to	 go	 down	 one	 line	 because	 of	 the	 totals	 of	 those	 columns.	 Follow,	 using	 all	 your	 new
techniques,	this	example	and	see	if	your	answer	agrees.	Work	from	left	to	right:

This	example	shows	one	or	two	special	points.	Note	that	in	the	next-to-last	column,	there	are	no	tens
recorded	and	therefore	there	is	no	digit	placed	to	the	left	of	 that	column.	Note	also	that	 in	adding	the
two	sub-totals,	you	carry	one	“ten”	back	from	the	next-to-last	column,	through	the	column	before	that,
to	the	column	before	that	one.	When	you	come	to	adding	your	sub-total	lines,	you	will	sometimes	have
to	do	this.	Since	you	never	add	more	than	two	lines	of	sub-totals,	a	glance	ahead	will	show	when	you
need	to	“carry	back”	a	ten.	If	this	proves	difficult,	simply	underline	a	digit	to	which	you	find	you	have
to	carry	back	a	ten.	The	underline	raises	the	value	of	the	underlined	digit	by	one—a	technique	you	will
learn	to	use	automatically	when	we	get	to	multiplication.

Using	this	method,	the	final	answer	to	the	example	above	would	look	like	this:

You	underline	 the	1	because	you	have	 looked	at	 the	next	column	before	putting	 it	down	and	seen
nothing	to	carry	back.	But	when	you	add	that	next	column	(the	9	with	nothing	under	it),	you	see	that
you	will	have	to	add	a	ten	from	the	next-to-last	column—the	9	plus	11—and	this	will	change	the	9	to	a
0,	with	a	ten	carried	back	to	the	1	you	have	already	put	down.	It	would	be	awkward	to	change	the	1	by
this	time,	so	you	simply	underline	it.	In	reading	or	copying	the	final	answer,	read	the	1	as	2.

If	this	seems	hard	or	slow,	note	that	the	same	thing	often	happens	when	you	add	or	multiply	on	the
abacus;	and	it	is	considered	more	than	worthwhile	to	carry	back	a	ten	in	this	fashion	rather	than	pay	the
far	greater	price	of	working	from	right	to	left.

The	obvious	job	remaining	is	to	practice	a	bit	more;	practice	so	that	the	techniques	become	second
nature,	so	that	you	begin	to	“see”	only	the	answer,	so	that	you	group	digits	adding	to	ten	or	less	without
having	to	think	about	it.

Try	 reading	 right	 through	 the	 following	 problems,	 using	 all	 your	 newly	 learned	 techniques	 and
noting	your	answers	on	your	pad	or	cards	for	later	reference:

At	this	point	your	practice	is	beginning	to	combine	all	the	separate	elements	you	have	learned.	Some
columns	involve	complements	and	recorded	tens;	some	do	not.	Some	columns	require	you	to	carry	tens
back	 to	 a	 previous	 column	 in	 the	 final	 answer;	 some	 do	 not.	 Some	 columns	 contain	 digits	 you	 can
combine	at	a	glance;	some	do	not.	This	is	the	variety	of	which	our	daily	arithmetic	is	composed.	It	never
comes	in	neat	parcels	designed	especially	to	illustrate	some	special	point.

Now	go	back,	with	a	fresh	page	of	your	pad,	and	do	the	examples	over	again.



Compare	the	answers	you	got	the	two	different	times.	Are	they	the	same,	or	different?	If	you	have
two	different	answers	in	any	case,	do	it	still	once	again—and	find	out	where	you	went	wrong.

Now	go	on	to	these:

Note	your	answers	as	you	did	before.	These	examples	have	fewer	columns	but	more	digits	in	each
column.	The	variety	 is	planned,	 in	order	 to	show	examples	of	different	applications	of	 the	 techniques
and	to	keep	the	practice	from	becoming	too	monotonous.

Now	turn	your	pad	or	card	over	and	do	the	above	problems	again.	Compare	your	answers	to	the	ones
you	got	the	first	time	around.	If	they	are	the	same,	good.	If	not,	learn	from	your	mistakes	by	doing	any
problems	to	which	you	got	different	answers	once	more,	and	seeing	which	one	is	really	right.

Because	it	is	so	important	to	everything	you	will	do	for	the	rest	of	your	life	in	mathematics,	review
right	now	the	twenty	combinations	of	digits	under	ten.	Other	than	complements,	they	are	the	only	ones
you	have	to	handle	from	now	on.	Combine	these	pairs	at	a	glance:

This	 table	 includes	 every	 possible	 digit	 combination	 in	 adding	 other	 than	 complement	 pairs.	 The
complementary	pairs,	too,	should	be	starting	to	feel	as	natural	as	breathing.	Look	at	the	following	digits
and,	in	a	flash,	see	only	the	complement:

As	a	 finale	 to	 this	chapter,	 try	your	hand	at	one	really	big	problem—the	sort	most	of	us	approach
with	 some	 reluctance	 when	 we	 have	 to	 solve	 it,	 yet	 which	 combines	 in	 just	 one	 practice	 session
everything	you	have	learned	so	far.	Approach	it	with	these	rules	in	mind:	first,	work	from	left	to	right;
second,	add	“over”	ten	by	using	complements	and	recording	the	ten;	 third,	record	the	tens	as	you	go;
fourth,	combine	digit-pairs	adding	to	ten	or	less	at	a	glance	and	handle	them	as	a	single	digit	or	recorded
ten.

Work	for	speed	on	this	one.	Note	down	your	answer,	and	come	back	from	time	to	time	to	see	if	on
another	try	you	still	get	the	same	answer.	Vary	your	practice	by	adding	down	one	time,	adding	up	the
next:



Do	this	at	 least	once	before	going	on.	It	embodies,	 in	one	example,	every	possible	technique	from
the	last	two	chapters.
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COMPLEMENT	SUBTRACTION

UBTRACTION	is	merely	the	other	side	of	the	coin	of	addition.
For	most	 of	 us,	 however,	 it	 causes	 far	more	 trouble.	 There	 are	 probably	 two	 reasons	 for	 this.

While	 many	 of	 us	 learned	 our	 “addition	 tables”	 by	 heart	 in	 school,	 few	 of	 us	 really	 mastered	 the
conversion	of	these	into	“subtraction	tables”	with	anything	approaching	the	same	thoroughness.	More
important,	 however,	 the	 traditional	 process	 of	 “borrowing”	 is	 a	 tricky	 concept.	 Many	 of	 us	 find
ourselves	forgetting	to	borrow,	or	borrowing	twice,	because	it	is	basically	unnatural.

This	 chapter	 will	 eliminate	 both	 these	 handicaps.	 It	 brings	 to	 your	 work	 in	 subtracting	 three
important	aids	to	speed	and	accuracy.

First,	complement	subtraction	will	enable	you	to	work	from	left	to	right.	This	is	quite	impossible	in
any	other	method	of	 speed	mathematics,	but,	 surprisingly,	 the	 left-to-right	procedure	works	best	with
complements.	You	should	begin	to	have	some	feeling	at	 this	point	of	how	much	left-to-right	working
helps	preserve	and	build	your	number	sense.

Second,	you	will	use	a	new	technique	that	does	away	with	“borrowing”	entirely.	The	same	necessary
step	will	develop	naturally	and	easily	in	your	answer,	just	as	it	does	on	the	abacus.

Third,	 you	 will	 apply	 to	 subtraction	 the	 same	 complement	 technique	 you	 have	 just	 learned	 for
addition.	 This	 means	 that	 never	 again	 will	 you	 have	 to	 subtract	 a	 larger	 digit	 from	 a	 smaller—the
process	that	causes	so	much	confusion	and	error.	Just	as	you	now	do	in	adding,	you	will	work	entirely
with	 the	 twenty	 easiest	 combinations	 and	 the	 five	 pairs	 that	 “complete”	 tens—and	 forget	 the	 twenty
hardest	combinations	altogether.

Before	getting	into	the	complement	portion	of	subtraction,	it	will	be	helpful	to	get	used	to	handling
subtraction	from	left	to	right	on	a	few	problems	in	which	you	can	work	from	left	to	right	with	standard
methods.	Such	problems	are	 those	 in	which	each	digit	 in	 the	smaller	number	 is	smaller—or	the	same
size	 as,	 but	 never	 larger—than	 its	 corresponding	 digit	 in	 the	 larger	 number.	 In	 other	 words,	 in	 any
problem	that	does	not	 involve	“borrowing”	you	can	as	easily	work	from	left	 to	 right	as	 from	right	 to
left:

Take	your	pad	and	pencil	and	subtract	the	above	problem	from	left	to	right.	It	will	feel	strange	the
first	time,	but	your	answer	will	come	out	right.	If	you	feel	at	all	uneasy	about	it,	reassure	yourself	by
doing	it	over	in	the	way	you	are	accustomed	to	working	and	note	that	the	answer	is	the	same.

Because	working	from	left	to	right	is	a	much	harder	adjustment	to	make	in	subtraction	than	it	is	in
addition,	do	a	few	more	examples	in	this	way	before	going	on	to	the	complement	techniques:

Just	to	make	sure	that	you	really	have	the	idea,	do	them	over	again	to	see	if	your	answers	agree.
When	 we	 come	 to	 problems	 in	 which	 any	 digit	 of	 the	 smaller	 number	 is	 larger	 than	 the

corresponding	 digit	 of	 the	 larger	 number,	 we	 face	 the	 situation	 handled	 in	 traditional	 methods	 by
“borrowing.”	The	relationship	is	really	the	reverse	of	the	similar	situation	in	adding	two	digits	that	go



over	ten,	which	traditionally	calls	for	“carrying”	but	which	we	now	handle	by	“recording.”	Just	as	we
have	substituted	recording	for	carrying,	we	will	now	in	subtraction	throw	out	the	concept	of	borrowing
and	substitute	for	it	a	new	technique	we	call	canceling.

Here	is	a	situation	in	which	you	must	borrow	or	cancel:

Schoolbook	 thinking	would	 approach	 this	 problem,	 from	 right	 to	 left,	 in	 this	 fashion:	 “7	 from	14
(borrow	the	1	from	the	3)	is	7.	2	from	3—no,	we	borrowed	a	1	so	it	is	now	2—2	from	2	is	0.	Answer:
7.”

Working	from	left	to	right	in	complement	subtraction,	our	thinking	is	quite	different.	First,	we	glance
at	 the	first	column	and	“see”	3	–	2	as	1.	We	put	 it	down.	There	 is	a	 reason	for	 this,	so	bear	with	 the
obvious	wrongness	of	 that	1	for	a	moment—you	will	see	why.	Then	we	glance	at	 the	second	column
and	“see”	4	–	7	as	4	plus	the	complement	of	7—and	cancel	a	ten.

The	complement	of	7	is	3.	4	plus	3	is	7.	Put	it	down	under	the	second	column.
Keeping	 in	mind	 that	 subtraction	 is	 just	 the	 reverse	 of	 addition,	 it	 should	make	 sense	 that	 when

subtracting	you	add	a	complement,	just	as	when	adding	you	subtract	it.	A	full	explanation	comes	later,
but	 for	 the	 moment	 just	 remember	 that	 you	 are	 (in	 effect)	 doing	 addition	 in	 reverse	 and	 so	 your
complements	are	added	rather	than	subtracted.

Now	we	have	used	a	complement,	and	when	we	use	a	complement	in	subtraction	we	must	cancel	a
ten—just	as	when	we	use	one	in	addition	we	must	record	a	ten.

The	method	that	makes	possible	our	left-to-right	working	is	that	we	cancel	that	ten	in	the	answer—
rather	than	“borrowing”	it	in	the	larger	number.	The	technique	for	this	is	quite	simple.	We	merely	slash
the	1	we	put	down	under	the	first	column:

A	slashed	digit	in	the	answer	to	a	subtraction	is	a	digit	from	which	a	ten	has	been	canceled.	In	this
particular	case	there	is	only	one	ten	there—the	ten	of	17—so	the	answer	is	7.

The	general	rule	goes	like	this:	To	cancel	a	ten,	slash	the	digit	to	the	left	in	the	answer.	That	digit	is
then	reduced	in	value	by	one.

If	there	seems	to	be	any	confusion	over	the	apparent	interchangeability	of	the	words	“ten”	and	“one”
here,	reflect	on	the	fact	that	each	digit	increases	in	importance	by	a	factor	of	ten	as	it	moves	one	place	to
the	left.

Note	 the	 similarity	of	 these	 answers	 to	 the	 last	 one,	 and	 follow	 the	 left-to-right	process	by	which
each	was	produced:

Now,	 however,	 keep	 in	mind	 that	 a	 slashed	digit	 is	 reduced	 in	 value	 by	one—it	 is	 not	wiped	out
entirely—and	go	through	the	development	of	these	answers:



At	this	point	 the	necessity	for	putting	down	that	 first	digit	at	all,	 then	slashing	 it	and	reading	 it	as
“one	less”	than	it	was	before	it	was	slashed,	may	be	obscure.	Its	value	and	utility	in	working	from	left	to
right	will	become	apparent	when	we	get	 into	 longer	problems	with	many	columns,	so	make	sure	you
understand	the	process	thoroughly.

Why	the	Process	Works

After	visualizing	the	way	complements	function	in	adding,	you	have	perhaps	already	seen	the	reason
why	 the	 reverse	 should	 be	 true	 in	 subtracting.	 Let's	 go	 through	 a	 similar	 group	 of	 comparisons,
however,	to	drive	the	point	home.

Remember	 that	 group	 of	 ten-rung	 ladders.	 You	 are	 now	 standing	 on	 the	 third	 rung	 of	 the	 fourth
ladder.	Your	instructions	are	to	step	down	exactly	eight	rungs.	Where	will	you	be	standing	then?

Obviously,	you	must	drop	down	to	the	next	ladder	because	you	are	only	on	the	third	rung	of	this	one
and	 you	 are	 to	 go	 down	 eight.	 If	 you	 descended	 a	 full	 ten	 rungs,	 you	 would	 then	 stand	 on	 the
corresponding	rung	of	that	next-down	ladder,	or	at	the	number	33.	But	you	are	to	go	down	a	number	of
rungs	that	fails	by	two	(the	complement	of	eight)	to	reach	the	corresponding	rung—so	you	will	be	two
rungs	higher.	You	add	the	two,	by	which	your	eight-move	fails	to	make	ten,	to	the	corresponding	rung
(three)	and	know	that	you	will	be	on	the	fifth	rung	of	the	third	ladder.

In	 simpler	 terms,	 43	 –	 8	 is	 35.	But	 you	 have	 arrived	 at	 this	 fact	without	 ever	 subtracting	 8	 from
(borrow)	3.	Instead,	you	added	the	complement	of	8	(2)	to	3	to	get	the	5,	and	canceled	a	ten	to	reduce	4
to	3.

First,	compare	these	two	expressions:

Now	see	 if	 you	can	 feel	 the	 identity	of	 these	 two	expressions	with	 the	 third,	which	describes	our
method	of	complement	subtraction:

Using	complements	instead	of	subtracting	a	larger	digit	from	a	smaller	digit	gives	you	not	just	one,
but	two	major	advantages	in	speed	and	accuracy.	First,	most	of	us	find	the	process	of	adding	easier	than
subtracting.	 Second,	 your	 thinking	 is	 restricted	 to	 the	 twenty	 easiest	 digit	 combinations	 and	 five
complement	pairs;	you	never	deal	at	all	in	the	pair	8	+	5,	for	example,	which	is	the	digit-pair	called	for
in	our	first	expression	43	–	8.	Instead,	your	thinking	is	converted	to	the	simpler	pair	3	+	2	by	the	use	of



a	complement.
You	 also	 have	 a	 simple	 and	 highly	 automatic	 signal	 for	 the	 proper	 time	 to	 use	 a	 complement.	 In

adding,	it	is	when	the	two	digits	would	add	up	to	more	than	ten.	In	subtracting	it	is	even	easier.	You	use
a	complement	whenever	you	would	otherwise	have	to	subtract	a	larger	digit	from	a	smaller.

Just	 remember,	 always,	 that	 subtraction	 is	 the	 reverse	 of	 addition.	 In	 adding,	 you	 subtract	 a
complement.	In	subtracting,	you	add	the	complement—and	always	the	complement	of	 the	digit	being
subtracted.

When	adding,	you	record	a	ten	every	time	you	resort	to	a	complement.	When	subtracting,	you	cancel
a	ten	every	time	you	use	a	complement.

Put	 the	 theory	 to	 use	 now	by	 doing	 these	 four	 simple	 problems	 in	 the	 left-to-right	method,	 using
complements:

Easy	as	these	are,	they	are	designed	to	start	you	off	with	confidence	in	complement	subtraction.	Be
sure	to	do	them	carefully	and	properly	with	the	new	technique.

The	first	example	should	develop	like	this:	Nothing	from	1	is	1.	Put	down	1.	4	is	larger	than	2,	so	do
not	subtract.	Add	complement	of	4	(6)	to	2.	Put	down	8,	and	immediately	(before	you	forget)	slash	the	1
to	cancel	a	ten.	The	answer	is	 	8,	or	8.

Second:	1	from	2	is	1.	Put	down	1.	6	is	larger	than	5,	so	do	not	subtract.	Add	the	complements	of	6
(4)	to	5	and	put	down	9.	At	once	slash	the	1	to	cancel	a	ten.	Answer,	 	or	9.

Third:	2	from	3	is	1.	Put	down	1.	8	is	larger	than	7,	so	do	not	subtract.	Add	the	complement	of	8	(2)
to	7.	Put	down	9.	Immediately	cancel	a	ten	by	slashing	the	1.	Answer,	 	9,	or	9.

The	last	example:	3	from	4	is	1.	Put	down	1.	6	is	the	same	as	6.	Nothing,	or	0.	No	complement,	no
cancel.	The	answer	is	10.

Perhaps	 the	 last	one	caught	you.	 It	was	designed	 to.	Complements	only	apply	when	we	subtract	a
larger	digit	from	a	smaller.	You	will	still	subtract,	about	half	the	time,	a	smaller	digit	from	a	larger	one
or	from	one	of	the	same	value.

Why	We	Slash	Digits

In	the	examples	so	far,	it	has	really	been	a	little	childish	to	bother	slashing	digits	in	order	to	cancel
tens.	A	 fourth-grade	 schoolboy	knows	 that	4	 from	12	 is	8.	But	you	are	exploring	a	new	 technique,	a
technique	 that	applies	not	merely	 to	4	 from	12	but	also	 to	8,344,897	 from	9,432,752.	Learning	 to	go
through	the	proper	steps	is	as	important	as	learning	to	play	the	scales	before	tackling	Chopin.

Play	a	few	scales	right	now.	First,	make	your	complement-reaction	 just	a	 little	 faster	by	“reading”
the	complements	to	these	digits:

You	will	notice	that	in	subtraction	we	now	use	both	halves	of	each	complement	pair.	We	find	it	faster
to	use	only	the	larger	of	each	pair	in	addition,	but	you	have	to	use	all	of	them	in	subtraction.	This	is	no
problem,	because	there	are	still	only	five	pairs.	If	you	pause	to	wonder	why	we	can	pick	which	half	of
each	complement	pair	we	wish	to	use	in	adding,	but	have	no	choice	in	subtracting,	notice	that	you	can
add	7	+	9	or	9	+	7	as	you	choose,	but	have	no	choice	of	complements	in	each	of	the	two	corresponding
subtractions:	16	–	9	or	16	–	7.



Subtract	the	following	examples	from	left	to	right.	Put	down	on	your	pad	or	card	every	digit	as	you
go	along,	even	if	it	seems	silly.	This	habit	is	important	to	your	successful	handling	of	longer	and	more
complicated	problems.	Whenever	you	come	to	a	larger	digit	from	a	smaller,	add	the	complement	of	the
digit	to	be	subtracted	to	the	digit	you	are	subtracting	from,	and	cancel	a	ten	by	slashing	the	digit	to	the
left	in	the	answer:

One	 more	 point.	 A	 slashed	 5	 ($)	 is	 read	 as	 a	 4,	 because	 the	 slash	 “borrows”	 or	 more	 properly
“cancels”	 in	 the	 answer.	But	until	 this	 too	becomes	 second	nature,	 you	may	wish	 to	 rewrite	 answers
before	 considering	 them	 finished.	 Remember	 that	 a	 slashed	 digit	 is	 reduced	 in	 value	 by	 one;	 then	 a
subtraction	answer	that	looks	like	this

would	be	rewritten	or	would	read	like	this

After	you	have	used	this	technique	steadily	for	a	few	days,	you	will	probably	not	bother	to	rewrite
answers	in	this	fashion.	But	until	you	have	fully	mastered	the	art	of	reading	a	slashed	digit	as	one	less
than	it	was	before	the	slash,	you	will	profit	by	making	sure	you	interpret	such	answers	without	error	by
rewriting	them.

Take	your	pad	now.	Use	it	to	cover	the	rewritten	version	of	the	following	subtraction	answer	as	you
copy	it	in	final	form.	Every	slashed	digit	becomes	the	next	digit	smaller:

After	you	have	rewritten	this	answer,	compare	your	version	with	the	one	that	follows.	If	you	got	any
of	the	digits	wrong,	it	would	be	worth	while	to	do	it	again.

Here	is	how	your	copied	answer	should	read:

Now	try	 these	examples.	Remember	 to	work	from	left	 to	 right,	use	complements	where	 indicated,
and	“borrow”	by	slashing	the	preceding	digit	in	the	answer:

By	this	time	you	should	be	finding	it	a	little	easier	to	work	from	left	to	right,	and	canceling	tens	in
the	answer—rather	than	“borrowing”	in	the	larger	number—should	be	beginning	to	feel	natural.	Once
you	become	fully	used	to	it	you	will	find	it	far	more	natural	and	infinitely	more	foolproof	than	the	older
system.

It	 has	 been	 estimated	 that	 80%	of	 all	mistakes	 in	 subtraction	 come	 from	 forgetting	 to	 borrow,	 or
borrowing	too	much.	Since	we	eliminate	borrowing	altogether,	this	method	is	by	nature	more	accurate
as	well	as	faster.



Carrying	Back	Slashes

There	 is	 one	 more	 important	 element	 in	 this	 high-speed	 method	 of	 subtraction.	 This	 element	 is
handling	a	slashed	zero— .

A	slashed	zero	is,	like	any	other	digit,	reduced	in	value	by	one.	Since	it	must	have	a	digit	to	the	left
of	it	in	the	answer	(or	you	could	not	subtract),	then	obviously	the	zero	must	become	9—and	the	digit	to
the	left	of	it	must	also	be	slashed,	to	reduce	it	in	value	by	one	(since	you	“borrowed”	from	it	in	order	to
get	09	from	10).

Consider	this:

You	would	 read	 the	 answer	 as	9.	 If	 the	 example	were	 	 you	would	 read	 it	 as	 19.	 In	 practice,
particularly	in	a	long	problem,	it	is	important	to	slash	both	digits.	In	reading	that	last	 	you	would
read	 	as	1,	and	 	as	9.

This	may	sound	formidable,	but	it	is	really	not	as	complicated	as	borrowing	continuously	to	the	left
as	you	sometimes	have	 to	do	 in	ordinary	subtraction.	Go	 through	 the	steps	 in	 this	example,	and	note
where	we	start	canceling	tens:

Follow	each	step	carefully:	Nothing	from	1	is	1.	Put	down	1.	5	from	5	is	0.	Put	down	0.	3	from	3,
and	so	on,	gives	you	zeros	until	you	come	to	the	final	column.

In	the	final	column,	9	is	larger	than	8.	Do	not	subtract.	Add	the	complement	of	9	(1)	to	8.	Put	down
9,	and	cancel	a	ten	by	slashing	to	the	left.

The	digit	to	the	left	is	0.	Slash	it.	Whenever	you	slash	a	0,	you	must	go	back	and	slash	the	digit	to	the
left	of	it	too.	That	next	digit	is	also	a	0,	so	you	have	to	keep	on	slashing	until	you	slash	a	digit	that	is	not
a	zero.

This	may	still	sound	a	little	strange.	If	you	have	any	lingering	doubts,	do	the	problem	above	in	the
old-fashioned,	schoolbook	fashion.	You	will	find	that	you	have	to	do	precisely	the	same	thing,	but	in	the
more	complex,	error-prone	method	of	borrowing	over	and	over	for	each	subtraction.

Try	two	longer	problems	now.	Remember,	as	always,	to	practice	the	new	technique	as	you	do	them.
Work	 from	 left	 to	 right.	 Subtract	 a	 smaller	 digit	 from	 a	 larger	 digit	 just	 as	 you	 do	 now.	But	 do	 not
subtract	a	larger	digit	from	a	smaller.	Instead,	add	the	complement	of	the	larger	digit	to	the	smaller	digit
and	slash	left	in	the	answer.	If	you	slash	a	zero,	remember	to	go	back	a	step	and	slash	the	digit	to	the	left
of	the	zero	too.

The	next	 chapter	will	 carry	 you	on	 to	 developing	 speed	 and	 accuracy	 at	 complement	 subtraction.
Before	you	turn	to	it,	however,	let's	cover	another	major	advantage	of	adding	and	subtracting	from	left
to	right	instead	of	from	right	to	left.



Automatic	Estimating

Any	left-to-right	method	of	doing	arithmetic	is	self-estimating.	Since	you	develop	your	answer	from
the	 left,	 the	 important	 end,	 you	 can	 always	 carry	 it	 exactly	 as	 far	 as	 you	 need	 for	 the	 accuracy	 you
require	and	stop	there.

Many	of	us	have	often	tried	to	do	this	in	the	old-fashioned	method	of	working	when	under	pressure,
but	 that	 is	 a	 backwards	 method	 and	 very	 difficult.	 Complement	 addition	 and	 subtraction	 does	 it
automatically.

Suppose,	 for	 instance,	 you	 are	 production	 manager	 of	 a	 company	 making	 brass	 buttons.	 Your
inventory	as	of	 the	moment	 is	37,852	buttons.	Today's	orders	 total	16,965.	The	salesman	selling	 to	a
large	chain	of	stores	calls	to	see	how	many	buttons	you	could	ship	tonight	on	an	emergency	order.	You
must	know,	while	he	waits	on	the	phone,	about	how	many	buttons	you	have.

Quick	now:	1	from	3,	2.	6	from	7,	1.	You	have	about	21,0	buttons.	You	have	done	merely	the	first
two	 steps	 of	 your	 regular	 process	 in	 complement	 subtraction,	 instead	 of	 changing	 your	 method	 for
estimating	needs.

Suppose	you	need	the	next	figure,	too.	9	from	8.	Add	the	complement	of	9	(1)	to	8:	9.	Slash	the	digit
to	the	left:	 .	20,900	buttons.

See	how	quickly	and	accurately	you	can	give	a	three-digit	estimate	of	the	following	subtractions:

For	 estimating—as	well	 as	 for	many	 rounded-off	 computations—you	 simply	 ignore	 the	 relatively
unimportant	numbers	to	the	right,	and	carry	your	subtraction	just	as	far	as	you	wish.

The	 automatic	 estimating	 feature	 applies	 just	 as	 much	 to	 complement	 addition	 as	 it	 does	 to
subtraction.	The	only	 thing	 to	beware	of	 in	adding	 is	 that	whenever	you	stop,	 the	next	column	could
make	a	substantial	change	in	your	stopped-at	digit.	In	subtracting,	the	next	column	can	never	affect	your
stopped-at	digit	by	more	than	a	reduction	in	value	of	one.

These	two	examples	illustrate	this	point:

The	illustrations	are	admittedly	extreme.	A	first-column-only	estimate	of	the	addition	would	give	a
rough	 total	 of	 50,	 while	 actually	 the	 real	 total	 is	 95.	 A	 first-column-only	 approximation	 of	 the
subtraction	would	be	60,	while	the	real	answer	is	51.

The	reason	why	the	first	digit	of	the	addition	can	be	changed	in	this	case	by	4,	and	the	first	digit	of
the	subtraction	is	changed	only	by	1,	is	that	you	might	be	adding	any	quantity	of	numbers	and	any	two
of	 them	 can	 add	 up	 to	 more	 than	 ten—carrying	 back	 as	 much	 as	 ten	 for	 each	 two	 numbers.	 In
subtraction,	you	never	deal	with	more	than	two	numbers	and	the	maximum	amount	that	can	be	canceled
is	one	ten.

In	subtraction,	 the	safe	approach	is	 to	work	out	your	subtraction	to	one	more	digit	 than	you	really
need,	and	 round	off.	 In	adding,	carry	your	addition	at	 least	one	more	place	 than	you	 really	need	and
assume	that	the	final	digit	is	raised	by	one	for	each	two	numbers	you	have	added,	then	round	off;	or	else



carry	it	two	digits	beyond	the	accuracy	required	and	round	off.
Try	 one	 estimate	 in	 addition	 at	 this	 point.	 Give	 a	 rounded-off	 three-digit	 approximation	 of	 the

following	 problem	 (The	 section	 immediately	 following	 takes	 up	 rounding	 off,	 in	 case	 you	 are	 not
acquainted	with	the	technique.):

If	you	worked	this	out	to	four	digits	and	assumed	the	last	digit	would	be	raised	by	3	(since	you	added
six	 numbers),	 your	 working	 figures	 would	 be	 2874	 plus	 3,	 or	 2877.	 This	 you	 would	 round	 off	 to
1,880,000,000.	 If	 you	 went	 to	 five	 digits,	 they	 would	 be	 28770.	 You	 would	 still	 round	 off	 to
2,880,000,000.

A	properly	 rounded-off	 three-digit	 estimate	 can	 never	 at	worst	 be	more	 than	 one	 per	 cent	wrong,
incidentally,	 and	more	 usually	 is	 restricted	 to	 no	more	 than	 one-half	 of	 one	 per	 cent.	 The	maximum
error	would	be	in	an	estimate	of	100	when	the	accurate	answer	is	101.	An	estimate	of	999,	if	properly
rounded	 off,	 cannot	 be	wrong	 by	more	 than	 one-tenth	 of	 one	 per	 cent.	Numbers	 in	 between	 have	 a
maximum	possible	error	that	increases	as	the	first	digit	decreases,	from	9	to	1,	but	it	cannot	go	over	one
per	cent.	This,	once	again,	 is	because	each	digit	becomes	 just	one-tenth	as	 important	as	 it	moves	one
place	to	the	right.

How	to	Round	Off

If	anyone	doesn't	know	how	to	round	off,	he	has	missed	one	of	the	greatest	time-	and	energy-savers
in	modern	business.	Traditional	accountants	kicked	and	dragged	their	heels	until	they	had	worked	with
it	a	bit,	then	became	its	most	enthusiastic	supporters.

Rounding	off	simply	means	expressing	any	quantity	to	the	nearest	standard	unit.	The	standard	unit
may	be	whatever	you	say	it	is.	In	the	three-digit	estimates	you	just	did,	we	in	effect	determined	that	the
standard	unit	would	be	one	in	which	there	could	not	be	an	error	greater	than	one	per	cent.

The	standard	unit	in	a	U.	S.	personal	income-tax	report	is	one	dollar.	$3.99	is	rounded	off	to	$4.00.
$3.01	becomes	$3.00.	To	become	a	little	subtler,	$3.51	becomes	$4.00	and	$3.49	becomes	$3.00.	The
usual	rule	is	to	give	away	an	even	half,	and	call	$3.50	an	even	$4.00.

Any	other	standard	unit	that	makes	sense	for	a	particular	situation	can	be	adopted.	The	operating	and
financial	statements	of	many	companies	are	rounded	off	 to	even	thousands.	$357,800	is	expressed	on
the	statement	as	358—with	a	note	at	the	top	of	the	report,	of	course,	that	all	figures	are	in	thousands	of
dollars.	Smaller	companies	may	round	off	to	tens	or	hundreds	of	dollars.	Very	large	corporations	may
even	round	off	to	hundreds	of	thousands	or,	for	certain	purposes,	to	the	nearest	million!

At	the	other	extreme,	there	is	an	almost	forgotten	currency	value	in	this	country	of	one	mil—a	tenth
of	a	cent.	 It	was	used	primarily	 in	 state	 sales	 taxes,	before	 sales	 taxes	went	up	 to	much	higher	 rates.
Naturally,	people	working	with	quantities	of	mils	soon	learned	to	round	off	their	reports—to	the	nearest
cent!

The	most	accurate	way	 to	estimate	 in	adding	or	 subtracting,	as	we	have	said,	 is	 to	work	out	your
figures	to	one	place	more	than	the	accuracy	needed,	and	round	off.	If	the	extra	(not	needed)	digit	is	5	or
more,	raise	the	preceding	digit	by	one	before	reporting	the	estimate.	If	the	extra	digit	is	4	or	less,	leave



the	final	significant	digit	alone.
The	theory	is	that	roundings-off	tend	to	cancel	each	other	out	in	practice.	You	will	add	half	or	less	to

just	about	as	many	numbers	as	those	from	which	you	subtract	 less	than	half.	To	the	surprise	of	many
old-line	accountants	and	bookkeepers,	 several	 test-runs	of	 complicated	 reports	 and	 statements	proved
this	to	be	completely	true.	The	error	is	hardly	ever	likely	to	be	larger	than	a	single	rounding-off.

Review	quickly	now	the	three	secrets	of	speed	in	subtraction,	before	going	on	to	practice	that	speed.
The	three	major	secrets—in	addition	to	the	over-all	speed-math	secret	of	“seeing	only	the	answer”—are

						1.	Subtract	from	left	to	right.
						2.	Never	subtract	a	larger	digit	from	a	smaller.	Instead,	add	the	complement	of	the	larger

digit	to	the	smaller	digit	and—
						3.	Cancel	tens	in	the	answer	by	slashing,	rather	than	“borrowing”	in	the	larger	number.
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BUILDING	SPEED	IN	SUBTRACTION

ERTAIN	parts	of	this	book	may	seem	repetitious.
This	 is	 intentional.	Repeating	 the	basic	points	 is	 the	easiest	and	most	painless	 form	of	 review.

Doing	 one	 essential	 exercise	 over	 several	 times—but	 not	 over	 and	 over	 in	 succession—is	 the	 most
effective	way	to	build	the	automatic	response	that	is	the	foundation	of	high-speed	mathematics.

Read	 the	 following	 line	 as	 if	 it	 were	 a	 sentence	 of	 words.	 But	 instead	 of	 words,	 read	 the
complements	of	these	digits:

Before	going	on	to	some	necessary	practice	in	complement	subtraction,	reinforce	your	understanding
of	 the	 principle	 at	 work	 by	 describing	 in	 words	 completely	 different	 from	 any	 used	 in	 this	 book
precisely	what	a	complement	is.

Now	explain	to	yourself,	as	if	you	had	never	heard	of	the	idea	before,	how	you	can	subtract	7	from
12	by	adding	3	plus	2—and	doing	something	else	in	the	answer.	It	might	be	a	good	idea	to	set	up,	on
your	pad,	the	three	expressions	12	–	7,	12	–	10	+	3,	and	12	+	3	(cancel).

Your	 speed	 and	 ease	 with	 numbers	 will	 depend	 not	 only	 on	 how	 easily	 and	 automatically	 you
“sense”	these	new	techniques,	but	also	on	how	easily	and	automatically	you	see	only	the	answer	to	any
digit	 combination.	We	will	 now	go	 through	 the	basic	vocabulary	of	 subtraction.	 It	will	 not	 take	very
long,	because	the	combinations	are	really	the	same	ones	you	have	already	practiced	for	addition.	They
are	all	pairs	you	recognize	at	sight,	but	 in	 this	case	one-half	of	each	pair	and	the	addition-answer	are
given,	and	you	must	respond	with	the	missing	number.	3	+	5	is	a	pair	you	should	be	starting	to	read	at
sight	as	“8”	instead	of	“3	+	5	is	8”;	the	same	pair	will	show	up	here	as	8	–	5	(see	3)	and	8	–	3	(see	5).

Work	for	speed	with	these	combinations.	School	yourself	to	think	not	about	the	digits	you	see,	but
only	the	answer.	Where	the	bottom	digit	 is	smaller	 than	the	top	digit,	see	only	the	answer.	Where	the
bottom	digit	 is	 larger	 than	 the	 top,	work	at	seeing	 the	result	of	adding	 the	complement	of	 the	bottom
digit	to	the	top	digit,	and	mentally	slash	an	imaginary	digit	to	the	left	in	the	answer.	Therefore	you	“see”
6	–	7	as	“3	+	6	(9)—slash.”

Just	as	 in	 the	practice	 tables	 in	adding,	every	possible	digit	combination	has	been	 include	 in	 these
section.	If	you	learn	to	read	the	answers	to	these	without	effort,	you	know	you	will	never	handle	a	single
combination	that	you	did	not	have	a	chance	to	practice.



See	how	quickly	and	automatically	you	can	subtract	these:

A	certain	amount	of	your	speed	at	handling	these	must	be	pure	habit,	of	course.	There	is	no	way	to
avoid	developing	the	“automatic	response”	that	only	practice	can	bring.	But	the	number	sense	at	which
you	worked	in	Chapter	II	will	be	a	substantial	help	here.	The	better	you	can	visualize	the	relationships
of	numbers,	the	more	quickly	you	will	develop	astonishing	mastery	of	basic	mathematical	figuring.

Remember,	too,	that	while	this	practice	series	shows	94	pairs	(the	45	pairs,	the	45	pairs	upside	down,
plus	 the	four	hardest	pairs	repeated	just	 to	make	it	come	out	even),	you	need	only	be	concerned	with
those	 twenty	 easiest	 combinations,	 plus	 the	 five	 complement	 pairs.	 Looked	 at	 this	 way,	 it	 should
certainly	be	a	reasonable	task	to	master	fully	and	automatically.	What	you	are	really	doing,	in	effect,	is
learning	 to	 recognize	 those	 twenty	 easiest	 pairs	whether	 they	 show	up	 in	 simple	 smaller-from-larger
form	or	disguised	in	complement	applications.

Use	 your	 complements	 faithfully,	 and	you	will	 never	 deal	with	 any	 combinations	 adding	 to	more
than	ten—or	subtract	a	larger	digit	from	a	smaller.

This	finishes	up	all	the	possibilities:

That	 covers	 everything:	 94	 expressions	of	 only	 twenty	 combinations,	 plus	 five	 complement	 pairs.
Every	problem	you	will	ever	face	contains	only	these	basic	combinations,	arranged	in	a	different	order.
The	only	extra	complication	is	your	remembering	to	slash	the	answer-digit	to	the	left	whenever	you	use



a	complement.	Even	that	is	a	far	simpler	system	than	trying	to	remember	to	“borrow.”
Try	this	example.	Be	sure	to	use	your	pad:

A	long	subtraction,	indeed.	Yet	you	do	it,	step	by	step,	in	precisely	the	same	way	you	would	do	your
scales.

Use	a	clean	page	of	your	pad	now	and	go	through	it	once	more.	Compare	the	two	answers.	If	they
are	not	the	same,	you	had	better	do	it	once	again.	Speed	mathematics	is	useful	only	if	it	is	also	accurate.

Do	these	problems	now,	to	help	build	your	habits:

If	you	got	an	answer	of	any	kind	 to	 that	 last	one,	 take	another	 look	at	 it	 and	bring	your	“number
sense”	to	bear.	There	cannot	be	an	answer,	other	than	a	minus	one.	It	was	put	there	to	make	sure	you
practice	the	reality,	not	an	imitation.

Now	do	these:

Each	 of	 these	 examples	 illustrates	 some	variation	 of	 the	 pattern	 your	 left-to-right	 subtraction	will
form.	Some	of	them	require	carrying	back	a	slash	to	one	or	more	preceding	digits	in	the	answer.	Others
may	momentarily	surprise	you	because	they	do	not	require	the	use	of	complements	at	all,	and	you	will
find	no	slashes	whatsoever	in	your	answer.

Do	another	group	now:

The	system	works	just	as	well,	naturally,	with	dollars	and	cents.	You	can	slash	across	a	decimal	point
without	hesitation,	because	as	you	move	left	each	digit	becomes	ten	times	as	important	whether	or	not	a
decimal	point	appears	between	two	digits.	All	the	decimal	point	does	is	break	the	number	into	a	whole
quantity	and	a	fraction.	The	digits	retain	precisely	the	same	relative	value	right	across	the	decimal	point:
ten	times	in	value	for	each	place	a	digit	moves	to	the	left.

In	order	to	make	sure	that	a	decimal	does	not	slow	you	up	in	your	handling	of	canceled	tens,	work
through	these	with	your	pad:

If	you	are	 rewriting	your	answers	with	each	slashed	digit	 reduced	 in	value	by	one,	 then	you	have
already	had	some	good	practice	at	reading	such	answers	directly,	without	bothering	to	rewrite	them.

Prove	this	to	yourself	by	seeing	if	you	can	read	the	answer	below	as	you	would	rewrite	it,	without
pausing	to	figure	out	what	each	slashed	digit	should	represent:



If	you	read	through	that	like	an	expert,	see	if	you	can	tell	what	is	wrong	with	this	answer:

I	would	urge	you	not	to	skip	over	this.	Unless	one	glaring	error	caught	your	eye	in	that	answer,	you
would	do	well	to	review	the	last	chapter	on	the	subject	of	carried-back	slashes.	This	is	important—and
will	become	even	more	important	as	you	apply	some	of	the	elements	learned	so	far	to	future	sections	of
this	book.

What	Have	You	Learned

Unless	you	are	unusually	at	home	with	numbers,	or	have	a	natural	liking	for	them	(which	few	of	us
do,	although	new	mastery	of	any	subject	often	brings	enjoyment	with	it),	now	is	a	good	time	to	pause
and	make	sure	everything	covered	so	far	is	solidly	entrenched.

You	will	 profit	most	 from	 this	 book	 if	 you	 take	 it	 in	 easy	 stages.	Whenever	 a	 point	 seems	 a	 litle
difficult	 to	 understand	on	one	 reading,	 go	back	 and	 reread	 it	 once	 or	 twice.	That	 same	point	 is	 very
probably	one	 that	will	 crop	up	 again	 as	 something	you	will	 be	 expected	 to	 know	 thoroughly	 in	 new
applications	for	multiplying	and	dividing.	Take	a	pencil	and	your	pad	and	doodle	with	the	obscure	point
for	 a	 bit.	 See	 if	 you	 can	 set	 up	 different	 expressions	 of	 it,	 as	 we	 did	 for	 addition	 and	 subtraction
involving	complements.	The	idea	is	to	visualize	it	as	clearly	as	you	can.	In	this	way,	you	will	understand
the	why	as	well	as	the	how.

If	you	truly	understand	the	why,	I	promise	that	you	will	never	forget	the	how.	Even	if	you	did,	you
could	easly	reconstruct	it—because	you	know	why	it	works.

The	 next	 chapter	 will	 take	 up	 another	 major	 area	 of	 basic	 mathematics:	 multiplying.	 It	 is	 a
fascinating	and	quite	new	approach,	but	do	not	tackle	it	until	you	feel	completely	comfortable	with	the
complement,	 left-to-right	methods	of	adding	and	subtracting.	Between	them,	they	account	for	75%	of
the	arithmetic	used	in	the	average	business.

A	final	re-check	would	be	in	order	now,	to	make	sure	your	base	is	really	solid.
First,	find	your	own	words	to	describe	exactly	what	a	complement	is	and	how	it	works	in	adding.	If

you	have	trouble	putting	the	theory	into	words,	then	set	up	the	three	expressions	for	adding	6	plus	9	on
your	pad	in	the	same	way	we	did	before.	Then	do	the	same	thing	for	subtracting	7	from	13.

Once	 you	 have	 lived	 a	 little	 longer	with	 the	 idea	 of	 complements,	 they	will	 seem	 to	 be	 the	most
natural	 and	 useful	 devices	 in	 the	 world.	 They	 are	 basic	 to	 the	 structure	 of	 our	 ten-based	 counting
system.	Yet,	oddly	enough,	nobody	had	ever	formalized	their	use	for	arithmetic	until	the	Japanese	found
how	much	they	simplified	calculation	on	the	abacus.

Skip	ahead	now	to	that	 last	secret	of	extra	speed	in	adding	called	grouping.	Practice	the	technique
briefly	once	again	by	grouping	the	following	pairs	at	a	glance	as	if	they	were	together	in	a	column	you
were	adding	and	you	wished	to	handle	each	pair	as	a	single	digit:

You	are	well	on	your	way	to	mastery	if	your	only	reaction	to	that	third	group	was	“nothing,	fold.”
One	more	reading	of	the	complements	is	now	indicated.	See	the	complements	to	the	following	digits

as	quickly	and	automatically	as	you	can:



This	brush-up	on	your	basic	vocabulary	is	not	casual.	It	provides	one	more	opportunity	to	drive	the
new	habits	a	little	more	deeply	into	your	mind,	as	well	as	to	refresh	your	understanding	of	the	principles
at	work.

Add	 the	 following	 example	 from	 left	 to	 right,	 using	 either	 the	 finger	 or	 line	method	of	 recording
tens.	Make	sure	to	group	whenever	you	can.	Do	it	on	your	pad:

It	is	entirely	normal	to	hesitate	a	bit	over	some	of	the	operations	at	this	point.	Do	not	worry	if	this
happens	to	you.	It	takes	quite	a	bit	of	living	with	any	radically	new	methods	before	they	become	second
nature.	 But	 if	 you	 have	 thoroughly	 understood	 each	 new	 idea	 and	 done	 each	 practice	 section
conscientiously,	you	should	have	gone	through	each	step	without	too	much	trouble.

Now	 re-check	 your	 left-to-right	 complement	 subtraction	 on	 the	 following	 problem.	Use	 the	 slash
method	 of	 canceling	 in	 the	 answer	 rather	 than	 borrowing	 in	 the	 larger	 number	 whenever	 you	 use	 a
complement	to	“subtract”	a	larger	digit	from	a	smaller:

If	 you	 tackled	 each	 of	 these	 examples	 with	 dispatch	 and	 confidence,	 then	 you	 are	 ready	 for	 the
brand-new	method	of	no-carry	multiplication.
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NO-CARRY	MULTIPLICATION

ULTIPLYING,	according	to	the	same	estimates	we	mentioned	before,	averages	about	20%	of	the
figuring	done	in	normal	business.

But	while	it	is	used	less	than	addition,	multiplication	is	dreaded	by	more	people,	and	done	poorly	or
inaccurately	by	more	people,	than	either	addition	or	subtraction.

Perhaps	 this	 is	 because	 multiplication,	 particularly	 of	 one	 long	 number	 by	 another	 long	 number,
becomes	so	fearfully	complicated	in	comparison	to	the	simpler	process	of	adding	or	subtracting.	Most
of	 us	 have	 little	 trouble	 visualizing	 that	 adding	 ten	 lines	 of	 numbers	may	 involve	more	work,	 but	 is
really	no	more	complex,	than	adding	two	lines	of	digits.	But	multiplying	2,958	by	165	is	something	that
few	 of	 us	 can	 really	 “see”	 as	 a	 whole.	 We	 tackle	 it	 step	 by	 step,	 by	 pure	 rote,	 in	 inefficient	 and
inherently	slow	traditional	methods.

Our	 new	way	 to	multiply	 solves	 a	 large	 part	 of	 this.	 It	 involves	 three	 secrets.	 Two	 of	 them	 you
already	know	from	adding	and	subtracting.	The	third	is	brand-new.

The	first	secret	is	the	one	we	use	throughout	this	book:	work	from	left	to	right.	Tackle	165	as	165,
not	 as	5,	 6,	 1.	The	 less	we	have	 to	use	methods	 that	 violate	 the	plain	 common	 sense	of	 the	way	we
normally	read	numbers,	the	better	off	we	are.	Our	number	sense	becomes	sharper	instead	of	becoming
dulled	by	backward	absurdities.

Working	from	left	to	right	also	makes	our	new	method	of	multiplying	a	self-estimating	system,	just
as	our	left-to-right	addition	or	subtraction	is.

There	is	no	simple	way	to	work	from	left	to	right	in	the	classical	method	of	multiplying.	But	our	no-
carry	method	works	just	as	easily	from	left	 to	right	as	from	right	to	left,	so	you	will	find	it	natural	to
work	in	the	proper	direction.

The	second	secret,	again,	is	the	same	as	its	equivalent	secret	in	adding	or	subtracting:	“see”	only	the
answer,	 combining	 digits	 at	 a	 glance.	 This	 is	 simply	 a	matter	 of	 practice,	 but	 chances	 are	 you	 have
already	had	more	practice	at	this	than	you	had	for	adding.	Most	schools	spend	far	more	time	on	drill	in
multiplication	tables	than	they	do	on	drill	in	addition	and	subtraction	tables.	So	you	are	probably	closer
to	mastering	this	step	in	multiplication	than	you	were	for	the	two	earlier	processes.

If	you	were	taught	in	the	standard	way,	however,	you	would	do	well	to	begin	practicing	the	deletion
of	the	slowdown	steps	taught	in	school.	Instead	of	reading	the	example

as	“4	times	7	is	28,”	make	a	conscious	effort	to	look	at	it	and	think	only	“28.”	You	do	not	look	at	“me”
and	think	“m	and	e	is	‘me.’”

In	fact,	the	entirely	new	way	to	multiply	involved	in	the	third	step	will	bring	up	quite	a	different	way
of	looking	at	4	x	7.	You	will	never,	oddly	enough,	think	the	whole	product	at	all,	but	only	half	of	it	at	a
time.

The	 third	 secret	 is	 the	 new	method.	 It	 is	 radically	 different	 from	 the	 traditional	 way	 to	multiply
because	you	never	have	to	“carry.”	The	greatest	 trouble	with	standard	multiplication,	and	the	greatest
source	of	errors,	is	carrying.	It	is	very	much	like	the	difficulty	in	“borrowing”	in	subtraction.	Either	you
forget	to	carry,	or	carry	twice,	or	carry	the	wrong	figure—and	wind	up	hating	numbers.

The	no-carry	method	of	multiplying	works	without	remembering	to	carry	at	all.	It	may	look	a	little



strange	at	first,	but	once	you	try	it	a	few	times	you	will	get	the	idea.
The	easiest	way	to	approach	this	method	is	to	take	apart	a	sample	multiplication	and	see	what	makes

it	tick.	Make	sure	you	fully	understand	every	step	of	this,	because	once	you	understand	why	the	system
works	 as	 it	 does	 you	will	 find	 it	 very	 easy	 to	 use.	 If	 you	 simply	 try	 to	 learn	 the	 technique	 by	 rote,
however,	it	will	always	seem	complicated.

Let's	take	this	multiplication	apart:

Look	at	the	answer,	digit	by	digit,	and	see	how	it	really	develops.
The	first	digit,	3,	is	simply	the	left-hand	(tens)	digit	of	4	times	8—32.
Look	back	at	the	example	and	note	this.	The	first	digit	of	this	answer	is	merely	the	tens,	or	left-hand,

digit	produced	by	multiplying	the	first	digit	of	the	number	multiplied	by	the	multiplier.
The	second	digit	is	a	little	more	complicated.	This	7	is	the	sum	of	two	other	digits.	It	is	the	sum	of

the	right-hand	(units)	digit	of	the	multiplication	we	just	examined—4	times	8—and	the	left-hand	(tens)
digit	of	7	times	8.	The	right-hand	digit	of	4	times	8	is	32,	or	2.	The	left-hand	digit	of	7	times	8	is	56,	or
5.	2	plus	5	is	7—the	middle	digit	in	our	answer.

Look	back	at	the	example	again	to	make	sure	this	is	completely	clear.	Read	the	above	explanation
again	if	you	need	to.

If	you	remember	our	earlier	comments	about	left-to-right	working,	in	which	we	pointed	out	that	each
digit	 increases	 in	value	by	a	factor	of	 ten	as	 it	moves	one	place	 to	 the	 left,	 then	you	can	see	why	the
middle	digit	in	this	answer	is	the	sum	of	the	unit	part	of	the	4	times	8,	and	the	tens	part	of	the	7	times	8.
It	is	because	the	4	in	47	is	really	ten	times	4	because	of	its	position—or	40.

The	last	digit	in	this	answer	is	6.	This	is	simply	the	right-hand	(units)	digit	of	7	times	8—56.
This	is	a	new	way	of	looking	at	multiplication	for	most	people.	Get	it	clear	now,	and	everything	that

follows	will	fall	into	place	naturally	and	easily.
Now	 let	 us	 try	 multiplying	 those	 same	 numbers	 left	 to	 right	 in	 the	 new	 method,	 using	 the

understanding	above	of	how	the	answer	really	develops.	If	the	method	seems	unclear	at	any	point,	re-
check	the	explanation	above.

Step	one:	Look	at	4	x	8	 to	see	only	what	 the	 left-hand	(tens)	digit	of	 the	product	will	be.	In	other
words,	is	4	x	8	in	the	teens,	twenties,	thirties,	forties,	or	what?

4	x	8	is	in	the	30’s.	The	tens	digit	of	this	pair	is	3.	For	the	moment,	you	do	not	care	what	the	right-
hand,	or	units,	digit	is.	All	you	care	about	is	the	3.

For	the	first	digit	of	your	answer,	put	down	that	3:

Step	two:	Now	look	at	4	x	8	to	see	what	the	right-hand,	or	units,	digit	of	this	pair	is…what	the	full
product	of	4	x	8	“ends	in.”	The	units	digit	is	2,	the	2	of	32.	Remember	that	2	for	just	an	instant	while



you	look	at	7	x	8	to	see	what	its	left-hand,	or	tens,	digit	will	be.	7	x	8	is	in	the	50’s.	Add	this	5	to	the
remembered	2	and	put	down	the	total	as	the	second	digit	of	your	answer.	2	plus	5	is	7,	so	your	answer
now	looks	like	this:

Step	three:	Look	at	7	x	8	again	to	see	only	what	digit	the	product	ends	in.	The	right-hand,	or	units,
digit	of	7	x	8	is	6—the	6	of	56.	Put	it	down	as	the	last	digit	in	your	answer:

Pause	here	for	a	moment	to	let	this	sink	in.	It	is	just	as	shocking	an	idea	in	its	own	way	as	is	the	idea
of	complements	for	adding	and	subtracting,	and	just	as	useful.	But,	as	with	complements,	you	need	a	bit
of	time	to	adjust	to	the	thought.

There	is	one	point	in	step	two	when	you	must	remember	one	digit	while	“seeing”	another	one	to	add
to	it.	Check	the	traditional	process	taught	in	school,	however,	and	you	will	find	that	you	had	to	juggle
three	digits	at	this	point.	You	had	to	carry	the	5	from	56	while	noting	the	32,	then	remember	the	3	from
32	while	adding	 the	2	and	5	and	putting	down	7.	After	 that,	you	had	 to	remember	 to	put	down	the	3
from	32.	The	new	no-carry	method	is	at	least	one-third	simpler—and	produces	the	answer	from	left	to
right	as	well.

Here	is	another	run-through	to	reinforce	your	grasp	of	this	method:

Step	one:	8	x	9	is	in	the	70’s.	Write	down	7	as	the	first	digit	of	your	answer:

Step	two:	8	x	9	ends	in	2.	Remember	2.	3	x	9	is	in	the	20’s.	Add	the	remembered	2	and	the	2	from
the	20’s	and	put	down	4:

Step	three:	3	x	9	ends	in	7.	Put	down	7	as	the	last	digit	in	your	answer:

If	any	element	along	 the	way	does	not	seem	to	make	sense,	go	 through	 the	 three	steps	again	with
pencil	and	pad.	This	is	really	an	incredibly	simple	idea,	but	it	is	vastly	different	from	the	way	we	were
taught	to	work	with	numbers.

Now	we	will	try	one	more,	adding	another	digit.	This	means	simply	that	we	shall	do	step	two	twice.
More	 properly,	 steps	 “one”	 and	 “three”	 are	 special	 steps	 for	 the	 extreme	 left	 and	 right	 digits	 of	 the
number	multiplied.	Step	“two”	 is	 the	step	done	for	every	pair	of	digits	across	 the	number	multiplied;
once	for	a	two-digit	number,	twice	for	three	digits,	and	so	on.

Here	is	how	it	works	with	a	three-digit	number:



One:	5	x	7	is	in	the	30’s.	Put	down	3:

Two	(1):	5	x	7	ends	in	5.	Remember	5.	3	x	7	is	in	the	20’s.	Add	5	and	2.	Put	down	7:

Two	(2):	3	x	7	ends	in	1.	Remember	1.	2	x	7	is	in	the	10’s	(teens).	Add	1	and	1.	Put	down	2:

Three:	2	x	7	ends	in	4.	Put	down	4:

That	is	the	basic	system.	It	is	that	simple,	and	that	revolutionary.	If	there	had	been	twenty	digits	in
the	number	multiplied,	you	would	simply	have	repeated	step	two	until	you	got	to	the	end.

Get	 out	 your	 pad,	 open	 to	 a	 clean	 page,	 and	 go	 through	 the	 steps	 exactly	 as	 described	 for	 the
following	example.	Do	not	try	it	on	other	random	problems	yet,	however,	because	there	are	two	special
techniques	for	special	cases	yet	to	be	revealed.

After	you	have	done	this,	check	your	answer	by	the	usual	method	of	multiplying.	If	 it	checks	out,
good.	If	not,	go	back	through	the	steps	and	see	where	you	went	wrong.

If	it	still	does	not	come	out	right,	compare	your	working	with	this	description	of	the	proper	steps:

Step	one:	4	x	4	is	in	the	10’s.	Put	down	1.

Step	two:	4	x	4	ends	in	6.	7	x	4	is	in	the	20’s.	Add	6	and	2.	Put	down	8.

Step	three:	7	x	4	ends	in	8.	Put	down	8.	The	final	answer	is	188.

Now	for	 the	two	special	cases.	Both	are	important,	because	examples	involving	them	will	crop	up
repeatedly	in	your	work	with	numbers.

How	to	Handle	Zeros

Sometimes,	in	going	through	the	no-carry	multiplying	system,	you	will	match	a	pair	of	digits	whose
product	is	less	than	ten.	It	might	be	3	x	2.	This	product	is	6.	There	is	no	left-hand,	or	tens,	digit	at	all.	In
effect	this	product	is	in	the	zeros.

For	 this	system,	however,	you	must	use	a	 left-hand	digit.	Otherwise	 the	answer	will	not	come	out
right.	So	no-carry	multiplication	always	depends	on	using	a	left-hand	digit	even	if	that	digit	is	zero.

When	you	come	across	3	x	2,	you	will	consider	it	in	the	zeros,	just	as	3	x	4	is	in	the	10’s,	and	3	x	7	is
in	the	20’s.

The	reason	for	keeping	this	in	mind	is	that	your	left-hand	and	right-hand	product	digits	are	essential
to	keeping	your	imaginary	“carries”	in	proper	order.	Later,	when	we	come	to	working	with	two	or	more
digits	in	the	multiplier,	you	will	find	them	important	for	keeping	your	columns	in	line	too.	This	is	really



no	more	difficult	than	remembering	to	put	down	the	zero	in	5	x	6	when	working	from	right	to	left,	and
performs	basically	the	same	function.

Suppose,	for	instance,	you	faced	this	example:

Step	one:	5	x	7	is	in	the	30’s:

Step	two	(1):	5	x	7	ends	in	5.	1	x	7	is	in	the	zeros.	5	plus	zero	is	5:

Step	two	(2):	1	x	7	ends	in	7.	4	x	7	is	in	the	20’s.	7	plus	2	is	9:

Step	three:	4	x	7	ends	in	8:

One	other	important	point	about	products	whose	left-hand,	or	tens,	digits	are	in	the	zeros	should	be
kept	in	mind.	Get	in	the	habit	of	putting	down	a	zero	as	the	first	digit	of	the	answer	if	this	is	what	the
problem	produces.	It	is	not	essential	for	one-line	answers	such	as	those	in	the	above	examples,	but	it	is
absolutely	essential	to	getting	two-line	answers	lined	up	properly.

This	is	what	I	mean:

Step	one:	1	x	4	is	in	the	zeros.	Put	down	0:

Step	two:	1	x	4	ends	in	4.	6	x	4	is	in	the	20’s.	Add	4	and	2.	Put	down	6:

Step	three:	6	x	4	ends	in	4.	Put	down	4:

Your	answer	is	merely	64.	The	zero	in	front	of	it	does	not	change	its	value.	But	when	you	come	to
multiplying	 by	 numbers	 of	 two	 or	more	 digits,	 you	will	 see	 the	 necessity	 of	 this	 technique.	 It	 is	 for
precisely	the	same	reason,	as	we	said	a	page	back,	that	in	the	traditional	method	you	put	down	the	zero
of	thirty	or	forty	at	the	right	of	the	answer	in	a	two-line	multiplication.

But	 since	 this	 is	 a	 new	 way	 of	 doing	 things,	 be	 sure	 to	 get	 into	 the	 habit	 of	 doing	 it	 this	 way
whenever	the	problem	works	out	like	this.	Try	it	on	these	two	samples.	Use	your	pad:



Be	sure	to	do	these.	Simply	reading	through	practice	examples,	intending	to	do	them	later,	will	not
teach	you	how	to	do	speed	mathematics.	Theory	and	practice	go	hand	in	hand.

Check	 your	 results	 and	 the	 steps	 you	 went	 through	 in	 the	 two	 samples	 above	 against	 this
explanation:

First	sample.	Step	one:	4	x	2	is	in	the	zeros.	Put	down	0.	Step	two:	4	x	2	ends	in	8.	9	x	2	is	in	the
10’s.	8	plus	1	is	9.	Step	three:	9	x	2	ends	in	8.	Answer:	0	9	8.

Second	sample.	Step	one:	3	x	2	is	in	the	zeros.	Put	down	0.	Step	two	(1):	3	x	2	ends	in	6.	8	x	2	is	in
the	10’s.	6	plus	1	is	7.	Step	two	(2):	8	x	2	ends	in	6.	6	x	2	is	in	the	10’s.	6	plus	1	is	7.	Step	three:	6	x	2
ends	in	2.	Answer:	0	7	7	2.

If	 you	 neglected	 to	 put	 down	 the	 zeros	 in	 front	 of	 these	 answers,	 do	 (for	 the	 sake	 of	 your	 swift
mastery	of	two-digit	multipliers)	go	back	and	do	them	properly	now.	Simple	repetition,	pencil	in	hand,
means	a	great	deal	in	getting	accustomed	to	new	techniques	such	as	these.

The	new	way	of	looking	at	half-products	may	come	a	little	hard	at	first.	You	were	taught	to	think	“6
times	8	is	48.”	Now,	in	two	separate	steps,	you	are	learning	to	look	at	6	times	8	and	(for	one	step)	think
only	“40’s,”	then	(for	another	step)	think	only	“8.”	Don't	worry	about	that	part	yet.	It	is	really	quite	a
simplification	of	the	multiplication	tables,	and	there	is	some	practice	ahead	to	help	give	you	the	knack.

Before	going	on	 to	 the	 final	 step	 in	no-carry	multiplying,	get	 a	 firmer	grip	on	 the	 steps	 so	 far	by
doing	these	two	examples.	Turn	to	a	clean	page	of	your	pad	and	try	your	teeth	on	these:

We	 will	 not	 go	 through	 the	 explanation	 of	 these	 in	 detail.	 Do	 them	 thoughtfully	 and	 carefully,
working	at	this	point	for	full	understanding	and	accuracy	rather	than	speed.	Speed	will	follow	because
you	are	now	working	in	what	is	essentially	a	simpler	and	more	logical	manner.

Once	you	have	done	the	two	examples,	check	your	results	by	repeating	the	two	problems	according
to	your	old	method.	If	the	answers	check	out,	fine.	If	not,	study	the	steps	in	detail	to	find	out	where	you
went	wrong.

Now	for	the	final	step.

Recording	Tens

So	far,	all	our	examples	have	been	carefully	selected	to	avoid	one	special	situation	that	is	really	more
complicated	in	 the	 traditional	method	than	it	 is	 in	no-carry	multiplying.	But	 the	situation	does	need	a
technique	to	handle	it,	and	we	have	a	simple	and	automatic	one.

This	 example	will	 demonstrate	 the	 special	 situation.	Go	 through	 it	 step	 by	 step	 and	 find	 the	 new
problem:

Step	one:	8	x	6	is	in	the	40’s:



Step	two:	8	x	6	ends	in	8.	9	x	6	is	in	the	50’s.	8	plus	5	is—
STOP!	You	cannot	put	down	a	single	digit	standing	for	the	sum	of	8	and	5.	This	goes	over	ten.	In	our

new	way	to	add,	we	do	not	even	try	to	add	them.	Instead,	we	subtract	the	complement	of	8	(2)	from	5
and	put	down	3:

But	this	is	not	quite	right.	When	we	use	a	complement,	we	must	also	record	a	ten.	How	do	we	record
a	ten	here?

One	of	the	secrets	of	this	simplified	mathematics	is	that	we	let	the	tens	take	care	of	themselves.	We
record	 them	 in	 adding,	 or	 cancel	 them	 in	 subtracting.	We	 never,	 never	 try	 to	 remember	 them.	 That
would	be	inefficient.

In	 multiplying,	 then,	 we	 will	 simply	 use	 the	 same	 written	 symbol	 we	 use	 in	 adding.	 We	 will
underline.	 In	 this	 case,	 an	 underline	 will	 raise	 the	 value	 of	 the	 underlined	 digit	 by	 one—just	 as,	 in
subtracting,	a	slash	reduces	the	value	of	the	slashed	digit	by	one.	Since	the	underline	is	in	effect	carried
back	from	the	3	(the	underline	represents	the	1	in	13,	which	is	one	place	to	the	left),	we	will	underline
the	digit	one	place	to	the	left.

So	our	answer	now	looks	like	this:

Step	three:	9	x	6	ends	in	4:

Since	the	underline	raises	the	value	of	the	underlined	digit	by	one,	we	read	our	answer	like	this:

Is	 this	 correct?	Check	 the	 problem	and	 see.	 Just	 as	 important,	 or	 even	more	 important,	 see	 if	 the
logic	of	it	is	clear.

If	this	seems	the	least	bit	complicated,	review	in	your	mind	the	schoolbook	approach	to	this	problem.
Here	is	the	thinking	you	were	instructed	to	do:	“6	x	9	is	54.	Put	down	the	4,	carry	the	5.	6	x	8	is	48.	We
carried	a	5.	8	plus	5	is	13.	Put	down	the	3.	Carry	one	from	the	13.	Add	the	1	of	the	13	to	the	4	of	48.	1
plus	4	is	5.	Put	down	5.”	Which,	once	you	are	equally	familiar	with	both	approaches,	is	really	simpler?

Let's	go	through	this	new	process	once	more	in	detail:

Step	one:	4	x	3	is	in	the	10’s:

Step	two	(1):	4	x	3	ends	in	2.	6	x	3	is	in	the	10’s.	2	plus	1	is	3	:



Step	two	(2)	:	6	x	3	ends	in	8.	8	x	3	is	in	the	20’s.	8	and	2	are	complements.	Zero,	record:

Step	three:	8	x	3	ends	in	4:

Until	 you	 are	 thoroughly	 accustomed	 to	 reading	 slashed	 and	 underlined	 digits	 accurately	without
hesitation,	it	is	good	practice	to	rewrite	such	answers:

Now	try	doing	a	problem	that	involves	this	situation	on	your	own.	Write	your	answer,	left	to	right,
before	going	on.	Then	check	your	steps	against	the	explanation	that	follows:

Here	is	the	way	the	no-carry	method	works	on	this	problem:
Step	one:	7	x	8	is	in	the	50’s:

Step	two:	7	x	8	ends	in	6.	8	x	8	is	in	the	60’s.	Complement	of	6	(4)	from	6	is	2,	and	record	the	ten:

Step	three:	8	x	8	ends	in	4:

Rewrite	this	answer	as	624,	and	you	are	done.
Sometimes,	too,	your	recorded	ten	will	affect	a	first-place	zero.	Here	is	such	a	case:

Work	this	one	out	yourself,	being	sure	to	put	down	a	zero	if	the	left-hand,	or	tens,	digit	of	any	of	the
products	is	in	the	zeros,	and	see	if	this	changes	as	you	go	through	the	full	answer.

Work	it	out	now	on	your	pad.
If	you	did	each	step	correctly,	your	answer	should	look	like	052,	which	you	rewrite	as	152.
Do	 the	 next	 two	 problems	 on	 your	 pad.	 Be	 sure	 to	 go	 through	 exactly	 the	 steps	 we	 have	 been

demonstrating,	and	check	your	answers	to	make	sure	they	are	right.	If	you	hesitate	too	much,	or	come
up	with	a	wrong	answer	on	two	or	three	tries,	then	a	review	of	the	last	few	pages	is	in	order.



How	Complements	Help

By	 this	 time,	 you	 have	 surely	 noticed	 a	 surprising	 and	 delightful	 fact:	 complement	 addition	 is	 a
tremendous	aid	to	no-carry	multiplication.	You	need	have	no	worry	about	remembering	when	to	record
a	ten.	The	occasion	is	signaled	to	you	automatically.	You	record	a	ten	every	time	you	use	a	complement
or	add	to	ten,	and	that	is	all.	One	goes	with	the	other.

Whenever	you	use	a	complement,	of	course,	this	also	gives	you	the	digit	to	enter	in	the	answer	more
quickly	and	accurately	 than	would	 trying	 to	 add	 (say)	9	plus	9	 and	getting	18—of	which	you	would
have	to	put	down	the	8	and	carry	the	ten.	Working	the	new	way,	you	think	simply	“8,	record.”

It	 is	 almost	 foolproof,	 once	 it	 becomes	 a	 habit.	 No-carry	 multiplication	 is	 the	 closest	 possible
approach	to	the	secret	of	the	soroban:	to	make	as	much	of	the	operation	as	possible	mechanical,	so	you
can	give	your	attention	 to	 the	digit-by-digit	 sums	and	products	and	divisions	without	worrying	about
carrying	and	holding	numbers	in	your	mind.	Since	you	are	released	from	much	of	the	mental	labor	of
ordinary	mathematics,	 you	 can	 concentrate	 on	 the	 single	most	 important	 skill	 needed	 to	 handle	 this
quickly	and	easily:	your	ability	to	“see”	6	x	7	as	“40’s”	and	“ends	in	2”	without	hesitation	or	effort.	The
next	chapter	will	go	more	fully	into	this.

Two-Digit	Multipliers

No	part	of	no-carry	multiplication	changes	when	we	approach	multipliers	of	two	or	more	digits.	It
would	be	theoretically	possible	to	produce	the	answer	to	two-	or	three-digit	multipliers	in	one	operation,
but	 this	means	 juggling	 four	 digits	 in	 your	mind	 at	 once.	This,	 for	most	 of	 us,	 is	 impractical.	 Some
“short-cut”	 mathematics	 books	 do	 urge	 this	 method,	 but	 it	 is	 really	 going	 in	 precisely	 the	 wrong
direction	for	true	speed.	Unless	years	of	practice	go	into	them,	the	methods	for	producing	the	answer	to
59	times	38	in	one	operation,	on	one	line,	are	more	apt	to	get	mixed	up	and	give	a	wrong	answer	than	to
speed	up	your	results.

You	now	know	how	to	produce	a	left-to-right	answer	to	any	multiplication	by	one	digit	with	greater
speed	 and	 accuracy,	 as	 well	 as	 ease.	 Let	 us	 stick	 to	 this	 head	 start,	 and	 do	 longer	 problems	 in	 the
simplest	and	fastest	way.	We	will	use	a	different	 line	for	each	digit	 in	 the	multiplier.	We	will	arrange
these	lines,	however,	in	the	reverse	of	the	classical	system.	Start	your	top	line	with	the	left	digit	of	the
multiplier,	and	put	each	following	line	one	place	to	the	right.

This	method	is	both	easier	and	faster	once	you	get	the	hang	of	it.	It	keeps	you	working	from	left	to
right—which	is	more	natural,	and	also	makes	the	system	self-estimating.

Watch	this	demonstration:

Step	one:	2	x	9	is	in	the	10’s:

Step	two:	2	x	9	ends	in	8.	6	x	9	is	in	the	50’s.	Complement	of	8	(2)	from	5,	and	record:

Step	three:	6	x	9	ends	in	4:



Now,	 for	 the	 second	 line.	 This	 we	 get	 by	multiplying	 the	 8	 by	 each	 digit	 in	 turn	 of	 the	 number
multiplied,	and	we	place	the	answer	one	place	to	the	right	(we	work	always	from	left	to	right):

Step	one:	2	x	8	is	in	the	10’s:

Step	two:	2	x	8	ends	in	6.	6	x	8	is	in	the	40’s.	6	and	4	are	complements.	Zero,	record:

Step	three:	6	x	8	ends	in	8:

Now	you	simply	add	these	lines	from	left	to	right.	The	easiest	way	to	handle	the	recorded	tens	is	to
add	each	underline	as	one,	rather	than	rewrite	the	two	lines	before	adding:

This	should	be	clear	through	every	step.	If	not,	recheck	your	understanding	of	the	preceding	pages.
There	 is	one	special	point	 to	watch	carefully.	You	 recall	 the	 stress	we	put	on	putting	down	a	 first

digit	for	each	line,	even	if	 that	first	digit	happens	to	be	a	zero.	If	you	forget	 to	do	this,	your	lines	for
each	digit	in	the	multiplier	will	get	out	of	order	and	your	answer	will	be	wildly	wrong.	Notice	how	it
works	in	this	example:

If	you	had	not	put	down	 the	zero	 in	 front	of	 the	7	 in	 that	 first	 line,	you	might	very	possibly	have
lined	up	the	two	partial-products	like	this:

Not	only	is	the	answer	absurdly	wrong,	but	it	is	the	type	of	error	that	is	infernally	hard	to	catch.	You
might	do	the	problem	over	several	times,	get	every	line	right,	and	still	get	the	wrong	answer.	So	watch,
very	carefully,	your	first-place	zeros.

Go	through	the	process	once	yourself.	Doing	is	the	secret	of	remembering:



Cover	the	solution	below	with	your	pad	while	you	work	out	this	example.
If	you	remembered	that	you	always	put	down	a	left-hand	digit	even	if	it	is	a	zero,	then	your	answer

looked	like	this:

Note	how	we	handled	the	two	recorded	tens	in	adding	the	lines	of	partial	answers.	You	are	already
learning	 to	 read	 underlined	 digits	 as	 increased	 in	 value	 by	 one.	 Occasionally,	 in	 very	 complex
multiplications	with	three,	four,	or	more	digits	in	the	multiplier	you	will	need	to	record	more	than	one
ten	for	the	same	place.	That	is,	sometimes	you	will	need	to	add	two	or	three	to	a	digit	already	put	down
as	you	work	from	left	to	right.

In	any	multiplication	likely	to	become	this	involved,	you	may	wish	to	handle	the	addition	of	partial
answers	just	as	if	it	were	a	major	addition	problem,	and	record	tens	on	your	fingers	to	be	noted	beneath
each	digit	to	the	left.	But	multiplication	seldom	becomes	this	complex.	In	most	cases,	you	will	find	it
quicker	and	easier	to	use	two	or	even	three	underlines	when	you	need	to.

Now	it	 is	 time	 to	handle	a	couple	of	 two-digit	multiplications	entirely	on	your	own.	Cover	up	 the
answers	 below	 with	 your	 pad	 while	 you	 use	 it	 to	 work	 out	 the	 answers.	 Use	 your	 new	 techniques
exclusively.

After	you	have	finished,	compare	your	working	with	these	answers:

Larger	Multipliers

When	you	get	into	three-	and	four-digit	multipliers,	you	simply	follow	the	steps	you	already	know.
They	are	no	different	in	kind,	only	in	degree.	Just	add	one	more	line	for	each	new	digit	in	the	multiplier,
stepping	one	place	to	the	right	for	each	line,	and	remember	to	put	down	a	left-hand	digit	even	if	it	is	a
zero	in	order	to	keep	the	lines	in	proper	order.

There	is	no	magic	to	getting	the	right	answer	for	a	long	multiplication	problem.	There	are	two	ways
of	getting	very	rapid,	quite	accurate	estimates—the	slide	rule,	and	the	self-estimating	feature	of	no-carry
multiplication—but	for	a	full,	complete	answer	you	simply	have	 to	go	patiently	 through	all	 the	steps.
Those	steps	are	made	more	natural	and	easier	as	well	as	quicker	by	this	method.

Watch	the	step-by-step	development	of	the	answer	to	the	following	example.	You	should	be	able	to
understand	why	each	new	digit	appears	without	trouble.	If	anything	does	not	seem	clear,	review	the	last



few	pages	and	try	again.	It	might	be	a	good	idea	to	follow	with	pencil	and	pad,	too.

Now	add,	from	left	to	right	of	course:

Go	through	the	mental	processes	in	your	mind,	making	sure	that	you	too	would	put	down	each	new
digit	as	it	appears	in	the	step-by-step	unfolding	of	this	answer.	Note	especially	how	the	underlines	are
handled.

Now	try	a	couple	of	three-digit	multiplier	problems	on	your	own.	Work	from	left	to	right,	in	the	no-
carry	method,	and	remember	to	put	down	a	left-hand	digit	for	your	first	product	in	each	line	even	if	it	is
a	zero:

You	will	 find	 the	detailed	working	of	 these	 two	examples	at	 the	end	of	 this	chapter.	Get	your	pad
now,	though,	and	go	through	them	to	the	end	before	reading	on.	Save	your	working	for	a	check	against
the	solutions	to	come	later.

Automatic	Estimating

One	of	 the	 beautiful	 features	 of	 left-to-right,	 no-carry	multiplication	 is	 the	way	 it	 produces	 quick



estimates.	It	is	as	fully	automatic	in	this	respect	as	is	left-to-right	addition	or	subtraction.
There	is	no	easy	and	accurate	way	of	doing	this	with	traditional	multiplication.	Yet	it	is	built	right	in,

at	no	extra	cost,	to	any	left-to-right	system.
You	can	get	a	two-digit	estimate	in	a	twinkling.	You	can	get	a	three-digit	estimate	(which	equals	the

accuracy	of	almost	any	slide	rule)	while	the	man	with	the	slide	rule	is	still	getting	out	his	“slip	stick”
and	setting	it.

This	is	not	a	criticism	of	the	slide	rule.	If	you	must	do	a	great	deal	of	multiplying	and	dividing	and
are	satisfied	with	rounded-off	answers—which	the	slide	rule	provides	by	its	very	nature—then	it	is	well
worthwhile	getting	one	and	learning	how	to	use	it.	It	is	not	hard.	But	do	not	pass	up	this	estimating	short
cut	even	if	you	have	a	slide	rule,	because	the	system	is	both	useful	and	impressive.	It	also	works	when
your	slide	rule	is	somewhere	else.

The	 technique	 for	 estimating	 with	 no-carry	 multiplication	 to	 any	 required	 degree	 of	 accuracy	 is
simply	this:	Multiply	as	far	as	you	have	to	and	stop.	Raise	the	last	digit	by	one	for	each	two	digits	in	the
multiplier.

Suppose	you	face	a	really	formidable	multiplication	such	as	the	cost	of	53,926	items	at	$48.75	each.
You	must	give	a	rapid	approximation	to	three	digits.

All	you	need	 to	do	 is	quickly	scrawl	each	part	of	your	new	no-carry	multiplication	as	 far	as	 three
digits	from	the	left.	Here	is	how	you	do	it:

So	far,	you	have	260.	There	are	four	digits	in	the	multiplier—count	4,	8,	7,	5—so	raise	the	0	by	2.
Now	you	have	262.

A	slide	rule	would	not	do	any	better.	Carry	the	multiplication	further,	if	you	wish,	and	see	how	close
we	are.

Does	 this	 mean	 $262,000	 or	 $2,620,000?	 One	 simple	 rule	 gives	 you	 an	 unfailing	 answer	 to	 this
question.	Your	answer	has	exactly	as	many	digits	as	the	total	of	the	two	numbers	multiplied.	Just	add
the	digits	in	these	two	numbers,	and	figure	on	that	many	in	the	answer.	Special	note:	If	the	first	digit	of
the	answer	is	a	zero	(the	first	digit	of	the	first	line	of	partial	answers),	this	must	be	counted	too.

In	the	above	estimate,	your	answer	is	$2,620,000.	Try	working	it	out	and	see—keeping	in	mind	that
two	of	the	digits	in	the	multiplier	are	behind	the	decimal	point	and	therefore	are	a	fraction.

An	estimate	of

would	have	five	digits	in	the	final	answer,	or	68,900.	The	total	number	of	digits	in	number	multiplied
and	multiplier	is	six,	but	in	the	answer	one	of	that	total	is	lost	in	the	initial	zero.

Two	other	special	points	are	interesting	in	this	matter	of	estimating.	First,	note	that	you	work	your



answer	out	to	only	as	many	places	as	you	need	and,	in	order	to	do	it,	you	work	out	each	partial	answer
to	 this	 same	number	of	places	 starting	at	 the	 top	 left.	 For	 a	 three-digit	 estimate,	 you	will	 have	 three
digits	in	the	top	partial	answer,	two	in	the	second,	and	one	in	the	third.	If	the	first	line	begins	with	a	zero
(as	in	the	one	above)	then	you	will	go	to	four	digits	in	the	first	line.	Should	your	multiplier	have	twenty
digits	in	it,	you	would	ignore	all	but	the	first	few.

Perhaps	you	wonder	why	you	raise	the	last	digit	by	one	for	each	two	digits	in	the	multiplier.	Check
back	to	the	section	on	estimating	in	the	chapter	on	subtraction,	and	you	will	find	a	very	similar	rule.	The
reason	is	this:	The	average	of	any	random	number	of	digits	including	0	is	4½.	The	average	for	each	two
lines	 in	 addition	 is	 therefore	9—plus	 the	 likelihood	of	 tens	 recorded	 (or	 carried	back	 to	 this	 column)
from	the	column	to	the	right,	at	the	rate	of	about	one	for	each	2½	lines.	The	best	average	for	estimating,
then,	is	to	increase	your	final	digit	by	one	for	each	two	lines	in	the	addition.	And	the	number	of	lines	in
the	final	addition	of	a	multiplication	problem	is	determined	by	 the	number	of	digits	 in	 the	multiplier:
one	line	of	partial	answer	for	each	digit.

So	raise	the	final	digit	of	your	estimate	by	one	for	each	two	digits	in	the	multiplier.	Forget	any	extra
digits,	and	count	five	as	two,	seven	as	three.

Practice	estimating	these	two	problems	accurate	to	three	digits.	Use	pencil	and	paper.	Remember	to
raise	the	last	digit	of	your	estimate	in	the	way	described	above,	and	to	count	the	digits	in	both	numbers
and	use	this	total	as	the	number	of	digits	in	your	answer—including	an	initial	zero	if	it	appears	in	the
top	line	of	partial	answers.

Do	these	now:

The	estimates	of	these	appear	at	the	end	of	the	chapter.	Do	them	yourself,	though,	before	you	look.

Here	 are	 the	 answers	 to	 the	 two	 three-digit	 problems	 you	 were	 asked	 to	 work	 out	 on	 page	 78.
Compare	them	with	your	solutions:

And	here	is	the	way	we	estimate	to	three-digit	accuracy	the	two	examples	at	the	top	of	this	page:



Add	2	(4	digits	m	multiplier):	4	1	9 	 Note	especially	the	two	underlines,	meaning	two	recorded	tens.
Nine	digits:

419,000,000 	 Add	1	(3	digits	in	multiplier):	4	3	2

	 	 Six	digits:
	 	 432,000
The	next	chapter	will	help	you	to	develop	greater	familiarity	and	speed	with	these	techniques.	If	you

feel	that	everything	in	this	chapter	is	completely	clear,	go	on	ahead.	If	not—review.
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BUILDING	SPEED	IN	MULTIPLICATION

OU	recall	that	we	stated	three	basic	secrets	for	speed	in	multiplication:
First,	work	from	left	to	right	(possible	only	with	this	system).

Second,	“see”	the	result	of	each	multiplication	of	two	digits,	rather	than	the	problem.
Third,	use	the	no-carry	method.
The	 second	point	 is	 the	one	 that	 obviously	 requires	 the	most	 practice.	The	 foundation	of	 all	 your

speed	is	the	easy,	natural,	painless	use	of	the	no-carry	system—but	the	way	to	make	it	easy	and	painless
is	to	make	as	automatic	and	unthinking	as	possible	the	process	of	“seeing”	8	x	7	as	“50’s”	and	“ends	in
6.”

Your	job	now	is	to	go	over	these	half-products	enough	times	to	make	the	automatic	response	a	habit.
Since	 you	 un	 doubtedly	 got	 far	more	 drill	 in	 the	multiplication	 tables	 than	 you	 did	 in	 addition	 and
subtraction	tables,	learning	to	see	each	product	as	only	the	left-hand	or	right-hand	digit	is	not	really	all
that	much	more	work.	Once	you	become	fully	used	to	it,	you	will	find	it	quicker	and	simpler	than	the
old	way.

Let's	review	for	a	moment	what	we	mean	by	left-hand	and	right-hand	digits	in	multiplication.	Try	to
“see”	the	left-hand	(tens)	digit	of

If	you	fully	mastered	the	last	chapter,	you	answered,	almost	without	a	second	thought,	“zero.”
What	is	the	right-hand	(units)	digit?
If	 the	 digit	 8	 sprang	 into	 your	mind	with	 little	 or	 no	 effort,	 you	 are	 already	well	 on	 the	 way	 to

accelerating	your	multiplication	with	 the	no-carry	method.	If	you	had	to	stop	and	think,	however—as
most	of	us	do	at	this	point—then	that	is	exactly	what	this	chapter	is	for.

Your	first	exercise	is	to	go	through	the	following	digit	pairs	with	the	object	of	“seeing”	only	the	left-
hand	(tens)	digit—the	one	we	have	been	describing	as	“is	in	the	20’s,	70’s,”	etc.	See	and	think,	as	well
as	you	can,	4	x	4	as	“1.”

The	first	time	you	go	through	these,	it	might	be	wise	not	to	try	for	speed.	The	first	job	is	to	begin
training	 the	habit	of	 recognizing	 the	 left-hand	digit	automatically.	Just	as	 important,	you	should	build
the	habit	of	thinking	“zero”	when	there	is	no	real	left-hand	digit	(that	is,	when	the	full	product	is	less
than	ten)	because	this	is	so	important	to	accuracy	in	multiplying	longer	numbers.

Remember	to	see	4	x	9	as	“3”—not	“the	left-hand	digit	of	4	x	9	is	3,	because	4	x	9	is	36	and	36	is	in
the	30’s”—just	as	you	see	u	and	p	as	“up.”

Go	slowly	and	carefully	this	first	time,	training	your	mind	to	see	only	the	answer.	Left-hand	(tens)
digits	only:



That	is	enough	for	the	first	dose.	You	will	go	through	every	possible	digit	combination	before	you
are	through,	but	doing	them	all	at	once	might	become	tedious.

Compare,	if	you	will,	the	study	of	speed	mathematics	to	learning	any	new	skill.	There	is	a	specific
objective	in	mind,	of	course—in	this	case,	to	solve	problems	more	rapidly	and	easily.	But	there	is	also	a
helpful	 secondary	 objective:	 becoming	 fascinated	 with	 the	 process	 of	 doing	 and	 excited	 about	 your
mastery	of	 the	 technique.	Just	as	a	craftsman	enjoys	 the	actual	process	of	making	a	perfect	 joint	 in	a
woodworking	project	because	it	is	satisfying	to	do	something	skillfully,	so	can	you	become	fascinated
with	the	dispatch	and	accuracy	of	your	working	of	a	sample	problem	in	a	new	way.

When	we	use	them	in	business,	numbers	always	stand	for	something.	When	we	practice	with	them,
however,	 they	become	an	 impersonal	sort	of	puzzle.	Look	on	 them	as	a	crossword	puzzle,	or	a	chess
problem,	or	a	brain-teaser.	Just	as	satisfying	as	 these	and	far	more	rewarding—because	your	growing
skill	at	this	type	of	puzzle	will	pay	you	solid	dividends	for	the	rest	of	your	life.

Now,	carefully	rather	than	hastily	this	first	time,	continue	working	at	the	habit	of	seeing	only	the	left-
hand	(tens)	digits	of	these	combinations:

By	now	you	should	find	the	habit	beginning	to	take	hold.	Once	the	proper	response	starts	becoming
a	habit,	you	can	go	back	over	the	examples	with	the	objective	of	speeding	up	your	reaction	time.

Make	 very	 sure	 at	 this	 point,	 though,	 that	 you	work	 at	 giving	 your	 response	 in	 the	 right	 fashion,
rather	than	giving	a	fast	but	improper	one.	Going	reasonably	slowly	now	will	contribute	to	greater	speed
in	the	future.

Now	finish	your	practice	on	left-hand	(tens)	digits	with	the	rest	of	the	basic	digit	combinations:



Stop	and	take	stock	of	your	technique	now.	Do	you	find	that	you	are	looking	only	for	the	left-hand
digit	as	you	glance	at	each	pair?	Have	you	schooled	yourself	to	give	only	the	answer?	Are	you	always
thinking	“zero”	when	the	product	of	the	two	digits	is	less	than	ten?

If	not,	make	a	point	of	going	back	over	the	combinations	from	time	to	time,	working	specifically	to
develop	this	habit.	If	you	feel	that	you	are	making	the	proper	responses	a	routine,	then	your	next	step
should	be	 to	develop	 speed.	Time	yourself	 in	 completing	 the	 tables,	 and	make	a	note	of	how	 long	 it
took.	Next	time,	see	if	you	can	shave	a	few	seconds	off	the	last	record.

So	far,	you	have	worked	at	accuracy	and	speed	in	seeing

Right-Hand	Digits

only	 the	 left-hand,	 or	 tens,	 digit	 of	 each	 product.	This	 is	 only	 half	 the	 story.	The	 other	 half	 is	 to	 do
precisely	the	same	thing	for	what	the	product	“ends	in.”

Glance	at	this	example:

What	is	the	left-hand	digit?
What	is	the	right-hand	digit?
There	would	 be	 little	 point	 to	 repeating	 all	 the	 tables	 again	 just	 for	 the	 right-hand	 digit	 practice.

Instead,	use	the	same	tables	on	the	last	few	pages.
Keep	in	mind	the	important	practice	points	mentioned	in	connection	with	left-hand	digits.	Go	slowly

the	first	time,	consciously	making	an	effort	to	“see”	only	the	right-hand	digit,	rather	than	the	problem.
You	may	find	it	helpful	to	say	the	answer	to	yourself;	if	you	do,	be	very	careful	not	to	say	the	problem.

After	 you	 have	 gone	 over	 the	 tables	 just	 a	 few	 times,	 you	 should	 begin	 to	 find	 yourself	 simply
reading	the	answers—just	as	you	read	these	words	or	phrases	rather	than	the	letters.

If	you	need	proof	of	this,	stop	right	now	and	try	to	recall	whether	there	were	any	f	s	in	the	paragraph
above.	 In	 all	 likelihood,	 you	 haven't	 the	 vaguest	 idea.	 You	 undoubtedly	 read	 the	 first	 word	 “after”
without	even	noticing	the	f	in	it.	In	the	same	way,	you	can	approach	this	“end-result-only”	ability	with
digit	combinations.



Go	back	to	the	tables	and	do	your	first	right-hand	digit	practice	now.
Work	 at	 the	 tables	 conscientiously,	 but	 I	 would	 suggest	 that	 you	 alternate	 practicing	 the	 digit

combinations	with	 some	of	 the	other	practice	 to	 come.	Avoid	 the	 stale,	 “overtrained”	 reaction	of	 too
much	consecutive	time	spent	at	only	one	part	of	the	whole.

Two-Digit	Practice

The	whole	reason	you	practice	the	basic	multiplication	table	with	left-hand	and	right-hand	digits	is
so	you	can	multiply	from	left	to	right	without	carrying.	Picking	up	the	right-hand	digit	from	one	product
and	 adding	 it	 to	 the	 left-hand	 digit	 of	 the	 product	 to	 the	 right	 is	 the	 secret	 that	 eliminates	 carrying
altogether.

You	 do	 have	 to	 keep	 one	 digit	 in	 your	mind	 for	 a	moment,	 but	 this	 is	 considerably	 simpler	 than
juggling	three	(and	sometimes	four)	digits	in	traditional	right-to-left	multiplication.

Refresh	your	memory	with	this	example:

See	if	you	can	anticipate	each	step	of	this	review:
Step	one:	7	x	4	is	in	the	20’s:

Step	two:	7	x	4	ends	in	8.	8	x	4	is	in	the	30’s.	3	minus	2	(complement	of	8)	is	1,	and	record	the	ten:

Step	three:	8	x	4	ends	in	2:

The	step	two	above	is	as	complicated	as	no-carry	multiplication	can	ever	get.	You	have	to	remember
the	8	while	getting	the	3.	If	you	have	learned	to	read	answers,	you	would	think	only	“8,	3,	1,	record.”
The	same	point	in	schoolbook	multiplication	would	involve	these	thoughts:	“Carry	the	3	from	32.	4	x	7
is	28.	Add	the	carried	3	to	8,	which	makes	it	11.	Put	down	1	and	carry	1	to	the	20.	Put	down	3.”

This	 review	 is	 to	 encourage	you	 to	 spend	 some	of	 your	 practice	 time	on	 the	 two-digit	 tables	 that
follow.	It	would	be	impractical	to	include	every	possible	combination	(there	are	just	under	a	thousand	of
them),	but	you	will	find	a	good	spread	of	every	type.

The	first	time	you	do	this	section,	work	slowly	and	evenly,	disciplining	yourself	to	think	along	the
lines	we	have	covered:

Read	only	the	answer	to	each	digit	combination.
Work	from	left	to	right.
Think	an	initial	zero	if	this	is	the	left-hand	digit	of	the	first	product.
Add	the	center	digits	of	the	answer	with	a	complement	if	it	goes	over	ten,	and	mentally	record	the

ten	by	underlining	the	imaginary	digit	to	the	left	in	the	answer.
Say	aloud	the	answers	to	these	problems:



The	most	 important	 thing	you	undoubtedly	noticed	 is	 that	your	ease	with	 these	problems	 is	based
very	directly	on	your	ability	to	read	automatically	the	left-	and	right-hand	digits	of	the	products	of	each
combination.	If	they	pop	into	your	mind	without	thought—as	they	will	after	surprisingly	little	practice
—then	expanding	your	practice	 to	 two-digit	examples	 is	almost	painless.	But	 if	you	have	 to	stop	and
think	hard	to	get	each	digit,	then	you	will	find	this	section	much	harder	and	slower	than	it	should	be.

If	you	experienced	trouble	in	“reading”	the	left-	and	right-hand	digits	to	make	these	problems	easy,
go	back	and	review	your	single-digit	tables	once	or	twice	before	going	on.	Each	time	you	do	them,	the
answer	will	come	a	little	more	automatically.

Now	 read	 from	 left	 to	 right	 the	 answers	 to	 these	 problems.	Make	 sure	 you	 are	 building	 the	 right
habits	as	you	do	so.	Make	it	a	point	to	use	the	proper	technique:

The	final	practice	table	of	this	chapter	follows.	You	have	already	practiced	all	the	essentials.	If	you
can	handle	two-digit	 tables	with	snap	and	decisiveness,	 then	you	can	keep	on	doing	step	two	through
twenty-digit	problems.	You	already	know	how	to	line	up	your	columns	for	multipliers	of	two	digits	or
more,	and	you	know	how	to	add	more	effectively	and	quickly	than	ever	before.	The	final	section	asks
you	 to	 say	 aloud,	 from	 left	 to	 right,	 the	 answers	 to	 a	 variety	 of	 multiplications	 with	 single-digit
multipliers	but	differing	numbers	of	digits	in	the	numbers	multiplied.

Just	as	you	did	with	both	the	one-digit	and	two-digit	tables,	work	slowly	and	carefully	the	first	time
over	 this	varied	practice	group.	Get	 the	foundation	of	proper	habits	 firmly	established.	Say	your	zero



first	digits	where	they	are	required,	think	an	underline	to	the	left	when	you	use	a	complement,	and	do
your	very	best	to	read	only	the	answer	to	each	combination—not	the	combination	itself.

For	longer	problems	you	may	wish	to	write	down	your	answer.	Just	put	your	pad	under	the	problem
and	jot	down	the	answer	from	left	to	right,	as	it	develops	naturally	in	your	mind.

Spend	several	minutes	at	this:

The	mixing	of	problems	with	one,	two,	three,	and	more	digits	in	this	section	was	intentional.	This	is
the	 way	 problems	 are	 presented	 to	 us	 in	 business.	 They	 do	 not	 ordinarily	 come	 neatly	 packaged	 in
orderly	 rows	of	similar	problems.	Your	mastery	of	each	method	and	 technique	always	has	 to	become
adaptable	as	well	as	proficient.
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SHORT-HAND	DIVISION

O	FAR,	we	have	covered	three	out	of	the	four	basic	arithmetical	computations.
In	adding,	we	learned	to	use	complements	for	the	tougher	combinations—those	that	would	add

over	ten	if	we	ever	added	over	ten—and	to	record	tens	in	such	a	way	that	the	answer	forms	naturally	in
our	mind,	just	as,	on	the	modern	abacus,	the	answer	forms	naturally	on	the	board.

In	subtracting,	we	learned	never	to	subtract	a	larger	digit	from	a	smaller,	and	to	avoid	that	crude	and
precarious	method	of	“borrowing,”	so	that	again	the	answer	forms	itself	easily	and	naturally	in	the	mind
or	on	the	paper.

In	multiplying,	we	have	torn	apart	 the	multiplication	table	so	that	we	use	only	half	of	 it	at	a	 time.
This	 enables	 us	 to	 discard	 the	 idea	 of	 “carrying,”	 and	 furthermore	 produces	 the	 answer	 from	 left	 to
right.	When	we	have	to	record	tens	in	preceding	digits	in	our	answer,	we	adopt	a	simple	and	effective
method	that—again—gives	us	a	natural	development	of	the	answer.

Now,	what	about	dividing?
There	 is	no	single	 secret	 for	 speed	division	comparable	 to	 the	secrets	of	complements	or	no-carry

multiplication.	 But	 by	 leaning	 on	 both	 complements	 and	 no-carry	 multiplication,	 we	 can	 build	 a
streamlined	technique	for	division	that,	in	its	total	effect,	can	save	you	as	much	time	and	effort	in	this
field	as	the	single	secrets	can	in	theirs.

In	order	to	get	our	ground	firmly	established,	let	us	look	at	a	sample	problem	in	division	and	work	it
in	the	traditional	long-division	way:

This	is	a	fairly	simple	problem.	It	has	no	remainder.	Everything	comes	out	even.	Yet	a	great	deal	of
pencil	work	was	involved.	It	looks	complicated.

Just	 for	 comparison,	 although	 the	 figures	will	 be	meaningless	 to	 you	 at	 the	moment,	 let	 us	 show
what	the	same	problem	would	look	like	in	the	shorthand	method	you	will	learn	in	this	chapter:

Certain	 elements	 of	 these	 numbers	 should	 be	 familiar	 to	 you—the	underline	 and	 the	 slashes.	The
shorthand	 method	 will	 rely	 on	 your	 confident	 handling	 of	 complement	 subtraction	 and	 no-carry
multiplication.

The	two	hardest	parts	of	traditional	long	division,	you	will	undoubtedly	agree,	are	(first)	determining



at	 a	 glance	 the	 next	 digit	 of	 the	 answer	 and	 (second)	 going	 through	 the	 complex	 pencil	 work	 of
verifying	that	digit	and	finding	the	remainder	into	which	you	divide	in	order	to	determine	the	next	digit
of	the	answer.

This	 chapter	will	 offer	 a	 simpler	way	 of	 doing	 each	 of	 these	 processes.	Before	we	 go	 into	 them,
however,	consider	a	few	basic	facts	about	the	process	of	division.

Continuous	Approximation

Long	 division,	 by	which	we	mean	 division	 by	 a	 number	 of	 several	 digits,	 is	 really	 a	 progressive
estimate	that	gets	more	accurate	as	we	finish	more	of	it.

In	 this	 sense,	division	 is	 radically	different	 from	adding,	 subtracting,	or	multiplying.	 It	 is	 the	only
one	of	the	four	processes	that	we	were	taught	to	do	from	left	to	right,	in	the	natural	way.	Since	this	is
true,	division	is	already	self-estimating,	just	as	the	new	methods	for	doing	the	other	three	processes	are.

The	familiar	process	we	call	long	division,	incidentally,	seems	to	be	a	special	crutch	developed	only
in	England	and	America,	which,	because	every	single	step	is	spelled	out	(and	written	down	in	detail),	no
rational	person	in	school	can	fail	 to	learn	to	handle.	It	 is	certainly	accurate	and	easy	enough,	but	 it	 is
also	infernally	slow	and	cumbersome.

For	another	comparison,	look	at	the	division	we	just	examined,	next	to	the	same	problem	solved	in
the	European	short-hand	method:

If	you	have	never	before	confronted	 this	European	(in	England	 it	 is	called	“Continental”)	method,
you	may	feel	 some	awe	of	European	education	when	you	 learn	 that	 the	difference	 is	 simply	 this:	 the
multiplying	and	subtracting	are	done	entirely	in	the	head.	They	are	never	written	down	at	all.	The	two
lines	of	working	figures	you	see	under	the	problem	are	merely	the	results	of	each	subtraction.

Difficult?	To	us,	yes.	To	a	French	or	German	schoolboy	it	is	something	he	is	expected	to	learn;	and
learn	it	he	does,	or	flunks	out	and	spends	the	rest	of	his	life	hoeing	potatoes.	But	to	those	of	us	trained	in
the	“dot-every-i,	 put-down-every-digit”	methods	of	American	 arithmetic,	 it	 is	 rather	 difficult	 to	 learn
late	in	life.

What	you	will	discover	before	this	chapter	 is	over,	however,	 is	 that	applying	your	new	mastery	of
simplified	left-to-right	multiplication	and	subtraction	will	make	it	not	only	possible	to	divide	in	a	way
similar	to	the	European	method,	but	actually	easier	than	it	was	in	the	standard	long-division	way.

Before	 we	 get	 into	 this	 subject,	 we	 will	 first	 explore	 a	 method	 for	 rapid	 answer-producing	 that
removes	the	first	major	stumbling	block	to	quick	and	easy	dividing.

Automatic	Division

The	 point	 at	which	most	 of	 us	 hesitate	 longest	 in	working	 our	way	 through	 any	 long	 division	 is
deciding	on	the	next	digit	of	the	answer.

Consider	this	example:



The	first	step	is	to	divide	87	into	42	or,	since	this	“won't	go,”	into	426.
Almost	all	of	us,	no	matter	how	good	our	number	sense	is	otherwise,	lack	any	sort	of	genuine	feel

for	such	an	answer.	We	are	not	dividing	by	8,	but	by	87.	Think	back,	and	you	will	probably	find	that
you	often	try	two	or	three	“trial	answers”	in	your	mind	before	deciding	on	one	to	put	down.

Here	is	a	simple	trick	to	overcome	this	difficulty—a	trick	that	automatically	delivers	to	you	the	next
digit	of	your	answer	no	matter	how	complicated	the	divider	is.	It	makes	dividing	by	34,968	as	simple	(at
this	point)	as	dividing	by	4.

The	trick	is	this:	Do	not	divide	by	the	divider.	Divide	only	by	its	first	digit,	raised	by	one.	Do	not
divide	 into	 the	number	divided.	Divide	only	 into	 its	 first	 digit	 (if	 that	 digit	 is	 larger	 than	 the	divider
digit)	or	into	its	first	two	digits	(if	the	first	digit	is	smaller	than	the	divider	digit).

This	technique,	by	the	way,	is	also	adapted	with	minor	variations	from	modern	soroban	theory.	It	is
considered	 as	 basic	 to	 speed	 and	 ease	 on	 the	 abacus	 as	 is	 the	 use	 of	 complements	 for	 adding	 and
subtracting.

In	the	example	above,	you	do	not	try	dividing	87	into	4263.	Instead,	divide	9	into	42.	This	is	much,
much	easier.	You	should	“see”	the	answer	4	at	a	glance.

The	reason	this	works	is	that	87	is	somewhere	between	80	and	90,	but	for	simplicity	we	consider	it
to	be	90.	A	little	over	half	the	time,	this	first	digit	will	be	correct.	Less	than	half	the	time,	it	will	need
revision—but	the	revision	will	be	automatic	and	quick,	just	as	it	is	on	the	abacus.

Try	this	technique	on	these	examples:

On	these	three	problems,	our	automatic	division	works	like	this:
5	(instead	of	47)	into	26	(instead	of	268)	is	5.	This	is	the	correct	first	digit	of	the	answer.
7	(instead	of	65)	into	51	(instead	of	513)	is	7.	Right.
3	(instead	of	28)	into	13	(instead	of	136)	is	4.	This	also	checks	out.
Caution:	Note	with	special	care	 that	using	 this	 trick	 to	“see”	each	successive	digit	of	your	answer

does	not	alter	the	position	of	each	answer	digit.	In	the	first	example,	you	put	the	answer	digit	5	over	the
8,	not	over	the	6.	You	still	follow	your	classical	rule	for	placing	your	answer:	start	as	many	digits	over
in	 the	number	divided	 as	 there	 are	digits	 in	your	divider—plus	one	 if	 you	 start	 by	dividing	 into	 two
digits	instead	of	one:

In	the	first	case,	we	“see”	8	into	9	and	put	down	the	answer	digit	1	two	places	to	the	right	because
there	are	two	digits	in	the	divider.	In	the	second	case,	we	“see”	8	into	17	and	put	down	the	answer	digit
2	three	places	to	the	right	because	there	are	two	digits	in	the	divider	and	we	started	the	division	into	two
digits	of	the	number	divided.

Now	get	the	idea	firmly	in	hand	by	trying	these:

Remember	that	we	are	not	yet	finishing	these	divisions.	At	the	moment,	we	are	concerned	only	with
developing	 this	 rapid	 and	 foolproof	 way	 to	 produce	 automatically	 each	 digit	 of	 the	 answer	 without



hesitation.
Check	your	reactions	to	the	above	three	examples.	Did	you	see	the	first	as	6	into	21,	and	put	down	3

over	the	6?	Did	the	second	become	10	instead	of	9—indicating	that	the	answer	digit	1	goes	over	the	8?
When	you	got	to	the	third,	did	you	“see”	4	into	8	as	2,	and	put	it	over	the	3?	If	any	of	your	answer	digits
got	misplaced,	review	the	general	rule	once	more:

If	your	first	division	is	into	a	single	digit	(4	into	9),	the	first	answer	digit	appears	as	many	places	to
the	right	over	the	number	divided	as	there	are	digits	in	the	divider.

If	your	first	division	is	into	two	digits	(4	into	23),	the	first	answer	digit	moves	one	more	place	to	the
right.

The	principle	of	finding	each	digit	of	the	answer	by	dividing	with	only	the	first	digit	of	the	divider,
raised	by	one,	works	with	problems	of	any	length.	Experiment	only	on	the	examples	provided,	however,
until	we	come	to	automatic	revision.

Go	through	the	following	problem	on	your	pad.	Find	the	two	digits	of	the	answer	by	dividing	with
the	first	digit	only	(plus	one)	of	the	divider:

Work	this	out	completely	in	your	traditional	handling	of	long	division,	applying	to	it	at	the	moment
only	the	new	automatic	digit-finder.

The	 final	answer	 is	65.	The	 first	digit	 is	produced	by	dividing	9	 (not	876)	 into	57	 (not	5714)	and
putting	the	resulting	6	over	the	4.	When	you	multiply	out	and	subtract,	you	divide	into	the	remainder
4580	for	the	second	digit.	876	might	make	you	hesitate	between	5	and	6	for	the	second	answer	digit,	but
9	into	45	can	only	be	5.	We	have	produced	two	digits	of	the	answer	by	simple	inspection.	For	now,	we
will	ignore	the	fractional	remainder.

Now	we	will	go	on	 to	 the	 special	 aid	 that	makes	 this	 technique	useful	on	any	problem	at	 all,	 not
merely	on	carefully	selected	examples.

Automatic	Revision

Consider	this	case:

Start	with	the	trick	of	dividing	9	into	43,	instead	of	876	into	4380.	9	will	go	into	43	no	more	than	4
times.	Yet	 if	you	multiply	out	 the	divider	by	4	and	subtract,	you	find	a	 remainder	of	876.	This	 is	 the
divider	itself.	The	answer	to	this	problem	is	5,	not	4.	Then	it	comes	out	even.

What	 is	wrong?	Nothing,	 really.	We	said	earlier	 that	division	 is	 really	a	continuous	approximation
from	left	to	right.	The	digit	of	the	answer	we	first	put	down	is	an	approximation	that	may	need	revising
before	we	finish.

On	the	abacus,	each	trial	digit	is	produced	by	dividing	with	the	first	digit	of	the	divider	but	without
raising	it	first.	Revision	is	frequently	necessary,	just	as	it	is	in	this	system.	But	revision	on	the	abacus	is
always	 to	 reduce	 the	 trial	 digit	 by	 one	 (sometimes	 two),	 adding	 in	 this	 revision	 factor	 to	 the	 trial
remainder.	In	our	system	of	using	a	digit	that	is	one	higher	than	the	first	digit	of	the	divider,	the	only
way	we	ever	have	to	revise	is	upward.	As	you	will	see	when	the	technique	develops	fully,	this	is	easier
and	more	automatic	with	pencil	and	paper.

Since	you	are	in	effect	dividing	by	a	number	larger	than	your	real	divider,	you	could	not	possibly	try
too	large	an	answer	digit.	It	is	child's	play	to	revise	your	answer	upward	in	our	system,	but	it	would	be



quite	difficult	to	revise	it	downward.
You	 have	 learned	 in	 no-carry	multiplication	 how	 to	 increase	 the	 value	 of	 a	 digit	 by	 one	without

rewriting	it.	You	simply	underline	it.	The	answer	to	the	example	above,	when	finished,	would	look	like
4.	You	read	it	as	5.

All	of	this	will	be	drawn	together	as	we	assemble	the	various	parts	of	the	complete	division	system.
For	 the	moment,	 remember	 only	 that	 you	 speed	 up	 your	 division	 by	 “seeing”	 the	 answer	 to	 9	
rather	than	trying	to	work	out	an	answer	to	876	

Try	 this	part	of	 the	 technique	once	more.	Do	not	bother	 to	complete	 these	examples.	 Just	practice
“seeing”	the	first	answer	digit	by	dividing	with	the	first	digit	only	of	the	divider,	raised	by	one:

Now	we	will	combine	everything	we	know	about	multiplication	and	subtraction,	both	of	which	are
continuously	 involved,	 with	 this	 simplified	 digit-finding	 technique,	 to	 make	 the	 complete	 shorthand
division	method	both	easier	and	faster	than	the	cumbersome	method	of	long	division.

Shorthand	Division

We	began	 the	explanation	of	no-carry	multiplication	by	 taking	apart	a	sample	problem	and	seeing
how	the	answer	develops.	Let	us	do	the	same	thing	with	a	sample	division:

We	have	called	the	process	of	division	“continuous	approximation.”	The	first	approximation	you	got
in	the	above	problem	was	really	60,	not	6:	7	goes	into	441	something	more	than	60	times.	You	know
this	because	there	is	obviously	another	answer	digit	to	come.

We	get	the	second	answer	digit	by	finding	out	first	how	much	of	the	441	is	left	after	subtracting	from
it	exactly	60	7’s.	In	long	division,	we	multiply	the	answer	digit	by	the	divider	and	put	this	product	under
the	portion	of	the	number	divided	that	produced	the	digit.

That	product	here	is	420.	We	do	not	ordinarily	bother	with	the	0,	any	more	than	we	bothered	with	the
0	in	60,	since	careful	placement	of	each	digit	takes	them	into	account.

By	subtracting	42	from	44	and	then	“bringing	down”	the	remaining	1	in	the	number	divided,	we	find
that	there	is	21	left	over.	Actually,	we	really	subtracted	420	from	441.	The	“bringing	down”	completes
that	process.	It	would	be	helpful	to	inspect	two	expressions	of	this	situation:

Dividing	now	the	7	into	the	remainder,	we	find	that	it	will	go	exactly	3	times.	In	long	division,	we



verify	this	by	multiplying	7	x	3	and	subtracting	it	from	the	remainder,	getting	a	final	remainder	of	0.
Again,	try	to	feel	the	identity	of	these	two	expressions	of	the	current	situation:

Now	we	will	accomplish	the	same	result	with	a	fraction	of	the	pencil	work	involved	in	long	division.
The	two	most	tedious	parts	of	long	division	are	(1)	multiplying	the	answer	digit	by	the	divider	and

writing	 it	 down	 as	 you	 go,	 and	 (2)	 subtracting	 this	 product	 from	 the	 part	 of	 the	 number	 divided
involved,	in	order	to	establish	the	remainder	so	far.

The	European	system,	you	recall,	involves	doing	these	two	steps	in	your	head.	You	write	down	only
the	 final	 result	 of	 each	 subtraction.	But	 this	 involves	 handling	 several	 digits	 at	 once	 in	 your	 head—
contrary	to	the	best	approach	to	speed	mathematics.

Since	you	know	how	to	multiply	from	left	to	right,	digit	by	digit,	and	also	how	to	subtract	from	left
to	right,	digit	by	digit—without	carrying	or	borrowing—you	can	combine	the	two	and	accomplish	the
European	result	without	ever	handling	more	than	one	digit	at	a	time.

We	will	use	that	same	problem	as	the	first	model:

The	following	process,	remember,	is	multiplication	and	subtraction	done	in	one-two	order,	one	digit
at	a	time:

One:	7	x	6	is	in	the	40’s,	and	4	from	4	is	0:

We	do	not	bother	to	write	the	0.	As	you	become	accustomed	to	this	system,	you	will	not	even	bother
to	make	any	mark	at	all	for	this	result.	The	lack	of	a	digit	there	shows	you	that	the	result	was	0.

Two:	7	x	6	ends	in	2,	and	2	from	4	is	2:

Traditional	long	division	would	now	require	you	to	rewrite	the	next	digit	of	the	number	divided—1
—beside	the	2.	You	do	not	need	to	do	this.	You	can	bring	it	down	mentally	and	see	that	the	remainder	is
now	21,	by	reading	the	problem	like	this:

The	next	digit	of	 the	answer	 is	3,	and	you	know	this	 is	 right	merely	by	 inspection.	Just	 to	get	 the
technique	 thoroughly	 established,	 however,	 we	 will	 verify	 it	 as	 you	 would	 in	 a	 more	 complicated



problem:

One:	7	x	3	is	in	the	20’s,	and	2	from	2	is	0.

Two:	7	x	3	ends	in	1,	and	1	from	1	is	0.

Compare	the	work	you	have	now	finished	with	the	same	problem	spelled	out	in	long	division:

Get	out	your	pad	and	pencil	and	actively	follow	each	step	in	this	demonstration:

Although	we	have	not	mentioned	it	before,	you	naturally	divide	by	any	single	digit	without	raising	it
in	value	by	1.	If	this	divider	were	84,	we	would	divide	by	9	because	84	is	somewhere	between	8	and	9.
But	8	is	obviously	nothing	but	8.

The	first	answer	digit,	by	inspection,	is	7.	Now	we	multiply	and	subtract	digit	by	digit:

One:	8	x	7	is	in	the	50’s,	and	5	from	5	is	0.

Two:	8	x	7	ends	in	6,	and	6	from	9	is	3.

The	remainder	so	far	is	336.	In	order	to	produce	the	next	answer	digit,	we	mentally	bring	down	the	3
and	divide	8	into	33.	We	put	down	the	answer	digit	4.	Now	we	verify	and	produce	the	remainder:

One:	8	x	4	is	in	the	30’s,	and	3	from	3	is	0.

Two:	8	x	4	ends	in	2,	and	2	from	3	is	1.

The	remainder	at	this	point	is	16.	In	the	illustration	above,	we	have	already	mentally	brought	down
the	6	and	put	down	the	next	answer	digit,	2.	Is	there	any	remainder?

One:	8	x	2	is	in	the	10’s,	and	1	from	1	is	0.

Two:	8	x	2	ends	in	6,	and	6	from	6	is	0.



The	problem	comes	out	even.	A	little	later	on,	we	shall	get	into	fractional	and	decimal	remainders.
Now	try	one	entirely	on	your	own.	It	will	be	an	easy	one,	to	get	the	technique	firmly	bedded	in	your

habits	before	going	on	to	more	complicated	problems.	Do	this	one	on	your	pad:

After	you	have	finished,	check	your	working	against	this	step-by-step	explanation:
First	digit:	7.	One:	6	x	7	is	in	the	40’s,	and	4	from	4	is	0.	Two:	6	x	7	ends	in	2,	and	2	from	5	is	3.

Remainder	(by	mentally	bringing	down	the	6),	36.
Second	digit:	6.	One:	6	x	6	is	in	the	30’s,	and	3	from	3	is	0.	Two:	6	x	6	ends	in	6,	and	6	from	6	is	0.

Automatic	“Borrowing*

The	demonstrations	so	 far	have	been	chosen	for	simplicity.	They	are	simple	both	because	you	are
dividing	by	single	digits	and	because	there	is	no	canceling	(“borrowing”)	involved	in	the	subtraction.

Consider	this	case:

This	problem	will	 involve	canceling.	Yet	because	you	have	learned	to	use	canceling	in	 the	answer
instead	of	“borrowing”	in	the	larger	number,	you	will	find	it	no	trick	at	all	 to	adapt	what	you	already
know	to	the	smooth	and	efficient	working	of	this	kind	of	division.

The	first	answer	digit,	by	inspection,	is	2.	We	get	the	remainder	so	far	in	our	usual	way:

One:	9	x	2	is	in	the	10’s,	and	1	from	2	is	1.

Two:	9	x	2	ends	in	8,	and	8	from	2	is—

STOP!	Larger	from	smaller.	Do	not	subtract.	Add	the	complement	of	8	(2)	to	2	and	slash	left:

This	answer	should	look	perfectly	normal	after	your	work	with	left-to-right	subtraction.	It	is	simply
4.	The	(slashed)	1	has	been	reduced	by	the	slash	by	one	in	value,	to	0.

Mentally	bringing	down	the	next	2,	you	“see”	the	answer	of	9	into	42	as	4	and	put	this	down	as	the
second	answer	digit.	Now	for	the	remainder:

One:	9	x	4	is	in	the	30’s,	and	3	from	4	is	1.

Two:	9	x	4	ends	in	6,	and	6	from	2	is—larger	from

smaller.	Do	not	subtract.	The	complement	of	6	(4)	plus	2	is	6,	and	slash:



See	if	you	can	finish	this	problem	yourself.	Mentally	bring	down	the	proper	digit	and	see	the	answer.
After	you	have	worked	it	out,	check	against	this	explanation:

The	next	answer	digit	is	7—9	into	63.

One:	9	x	7	is	in	the	60’s,	and	6	from	6	is	0.

Two:	9	x	7	ends	in	3,	and	3	from	3	is	0.

Try	one	example	that	involves	“borrowing”	before	going	on.	Use	your	pad	and	do	this	problem	just
as	we	did	the	one	above:

Do	 this	 with	 your	 pad	 and	 pencil	 before	 checking	 against	 the	 working	 figures	 below.	 A	 full
understanding	of	the	steps	in	shorthand	division	is	essential	before	we	get	into	longer	problems.	Once
you	have	gone	 through	the	routine	several	 times,	you	will	 find	 that	you	can	handle	any	division	with
confidence.

Check	your	work	and	your	answer	with	this	finished	problem.	Here	is	how	it	should	look:

That	is	all	there	is	to	it.	No	single	part	of	this	process	is	complicated.	It	is	all	based	on	techniques
you	have	already	mastered	in	earlier	parts	of	this	book.	But	the	combination	of	them	is	new.	If	you	have
any	 trouble	 assembling	 the	 parts	 into	 a	 smooth-working	whole,	 then	 go	 back	 and	 re-check	 the	weak
parts.

Make	very	sure	you	have	everything	so	far	down	pat,	because	we	are	now	going	to	add	the	third	and
final	element	in	shorthand	division	that	makes	it	just	a	bit	more	complex.	You	have	already	learned	to
handle	 this	step	 in	multiplication,	but	 the	mental	processes	will	have	 to	stretch	one	more	notch	when
you	apply	it	to	division.

Stop	now	and	make	sure	you	are	ready	for	the	next	step	by	doing	these	two	problems	on	your	pad:

When	you	have	done	these,	compare	your	results	with	these	models:

Now	 let	 us	 pick	 up	 the	 final	 technique	 from	 multiplying	 that	 enables	 you	 to	 handle	 shorthand
division	with	dividers	of	any	length.

No-Carry	in	Division



So	far,	you	have	been	dividing	by	only	one	digit.	In	such	divisions,	you	would	ordinarily	do	most	or
all	of	these	steps	entirely	in	your	head	anyway	and	not	worry	about	putting	down	the	remainders	as	you
went	along.	It	 is	really	short	division,	and	we	have	started	with	 this	only	to	get	 the	general	 technique
firmly	established.

When	you	divide	by	numbers	of	 two	or	more	digits—by	653,	 for	 instance—you	will	 add	 to	your
simultaneous	left-to-right	multiplication	and	subtraction	the	efficient	and	handy	no-carry	system.

This	 is	 the	 point	 where	 the	 European	 shorthand	method	 becomes	 really	 difficult	 for	 most	 of	 us.
When	 dividing	 by	 a	 number	 of	 two	 or	 more	 digits,	 the	 European	 system	 requires	 you	 to	 multiply
(including	carrying)	and	subtract	(including	borrowing),	all	in	your	head.	This	can	involve	juggling	as
many	 as	 six	 digits	 all	 at	 once	 in	 your	 mind.	 With	 our	 left-to-right	 methods,	 however,	 we	 can	 do
everything	digit	by	digit.

If	 you	 understand	 thoroughly	 both	 the	 no-carry	 multiplication	 method	 and	 the	 division	 method
covered	so	far,	then	you	could	probably	work	out	the	entire	method	yourself	without	further	help.	Since
it	is	using	no-carry	multiplication	within	a	new	framework,	however,	we	will	go	into	the	entire	process
step	by	step.

Recall,	as	we	get	into	this,	the	technique	of	dividing	by	only	the	first	digit	of	the	divider—raised	by
one:

Our	first	answer	digit	we	“see”	by	dividing	4	into	13,	and	putting	3	over	the	5.	Remember	that	the
first	answer	digit	starts	as	many	places	over	the	number	divided	as	there	are	digits	in	the	divider—plus
one	if	you	start	dividing	into	two	digits	instead	of	one.

Now	we	develop	the	remainder:
One:	3	x	3	is	in	the	zeros,	and	0	from	1	is	1:

Two:	3	x	3	ends	in	9.	8	x	3	is	in	the	20’s.	9	+	2	is	(complement	of	9	from	2)	1,	and	record.	Now	you
have	two	things	to	do:	subtract	1	from	3,	and	record	the	ten.	Since	we	are	subtracting	while	we	multiply,
this	ten	obviously	gets	subtracted.	How?	Just	by	canceling;	slash	left:

Three:	8	x	3	ends	in	4,	and	4	from	5	is	1:

There	was	a	curve	hidden	in	point	two	of	that	example,	but	it	seemed	best	to	slide	it	in	quietly.	It	is	a
new	 application	 of	 recording	 by	 slashing,	 because	 the	 only	 digits	we	 jot	 down	 are	 the	 results	 of	 the
subtraction	 and	 the	 final	 effect	 of	 a	 recorded	 ten	 from	 the	multiplication	 is	 obviously	 to	 reduce	 the
preceding	digit	in	the	answer	to	the	subtraction	by	1.

So	 one	 of	 the	 side-rules	 of	 speed	 division	 grows	 from	 this:	 when	 your	 no-carry	 multiplication



involves	a	complement	(and	therefore	a	recorded	ten),	slash	the	digit	to	the	left	in	your	working	figures.
Our	remainder	so	far	is	2,128.	38	will	go	into	13,528	300	times,	with	2,128	left	over.	If	the	size	of

these	figures	jars	you,	inspect	the	work	so	far	and	think	back	to	the	identity-expressions	at	the	start	of
this	section.

Note	 that	we	 have	 two	digits	 in	 the	 answer	 to	 the	 subtraction.	We	 still	 bring	 down	 the	 next	 digit
(mentally),	 so	 the	 next	 division	 is	 38	 into	 212.	We	 “see”	 it	 as	 4	 into	 21,	 and	 put	 down	 5.	Now	we
develop	the	remainder:

One:	3	x	5	is	in	the	10’s,	and	1	from	2	is	1:

Two:	3	x	5	ends	in	5.	8	x	5	is	in	the	40’s.	5	plus	4	is	9,	and	9	from	1	is—larger	from	smaller.	Add	the
complement	of	9	to	1,	and	put	down	2.	Cancel	by	slashing	to	the	left:

This	brings	up	an	interesting	point.	You	have	two	occasions	to	slash	to	the	left	when	doing	shorthand
division:	when	 a	 complement	 is	 used	 in	 no-carry	multiplication,	 and	when	 a	 complement	 is	 used	 in
subtraction.	Both	 involve	 the	use	of	a	complement,	and	both	 result	 in	a	 slash	 to	 the	 left.	One	special
result	of	this	will	develop	later.

Three:	8	x	5	ends	in	0,	and	0	from	2	is	2:

The	remainder	at	this	point	is	228.	This	is	the	excess	after	subtracting	38	x	350	from	13528.
Before	going	on	to	the	final	digit	of	this	answer,	and	determining	the	remainder	(if	any),	recall	our

earlier	comments	about	revised	digits.	Dividing	by	only	the	first	digit	of	the	divider	is	the	quickest	and
easiest	way	to	produce	the	next	digit	of	the	answer,	but	sometimes	it	will	need	revising.	This	is	a	price
paid	happily	by	operators	of	the	high-speed	abacus,	because	it	saves	more	time	in	producing	each	digit
than	it	costs	in	revision.

The	final	digit	of	this	answer	will	demonstrate	such	a	case.
See	the	next	digit	of	the	answer	as	4	into	22—5.	Now	let	us	work	out	the	remainder	(if	any)	and	see

what	happens.
One:	3	x	5	is	in	the	10’s,	and	1	from	2	is	1:



Two:	3	x	5	ends	in	5.	8	x	5	is	in	the	40’s.	5	plus	4	is	9,	and	9	from	2	is—complement	of	9	plus	2,	and
slash:

Three:	8	x	5	ends	in	0,	and	0	from	8	is	8:

The	 remainder	 is	 the	 same	 as	 the	 divider.	 So	 our	 final	 answer	 digit	must	 be	 raised	 by	 1,	 and	 the
problem	will	come	out	even.	As	we	pointed	out	before,	you	raise	the	digit	by	underlining	it,	so	the	final
answer	is

which	you	read	as	356.
You	were	promised	that	digit-revision	would	be	automatic.	It	is.	Any	digit	in	your	answer	may	need

revising,	even	 the	first.	But	 the	 time	 to	do	so	 is	signaled	 to	you	automatically,	so	you	do	not	need	 to
watch	especially	for	such	events.

This	problem	demonstrates	why:

We	“see”	the	first	answer	digit	as	the	result	of	7	into	54,	which	can	be	only	7.	Now	(use	your	pencil
and	pad	to	help	build	the	technique)	we	find	the	first	remainder:

One:	6	x	7	is	in	the	40’s,	and	4	from	5	is	1:

Two:	6	x	7	ends	in	2.	3	x	7	is	in	the	20’s.	2	plus	2	is	4,	and	4	from	4	is	0.	Where	a	zero	digit	appears
in	 the	middle	 of	 a	 subtraction	 answer,	 as	 it	 does	 here,	 it	 is	 wise	 to	 put	 it	 down	 to	 avoid	 possible
confusion:

Three:	3	x	7	ends	in	1,	and	1	from	7	is	6:



Perhaps	you	have	noticed	that	your	remainder	in	this	case	is	larger	than	your	divider.	Something	is
wrong,	and	what	is	wrong	is	that	your	answer	digit	needs	raising	by	one.

You	do	not	have	to	be	especially	alert	to	this	situation,	however.	If	you	didn't	notice	at	this	point,	you
could	not	help	but	notice	as	soon	as	you	tried	to	get	the	next	answer	digit.	You	mentally	bring	down	the
4	and	divide	63	into	1064—seeing	it	as	7	into	106.

Such	an	answer	digit	would	be	over	ten.	There	is	no	such	digit.	This,	in	case	you	missed	the	signal
that	developed	when	your	first	remainder	was	larger	than	the	divider,	is	the	STOP	signal	that	warns	you
to	revise	your	answer	digit.

This	 is	 automatic	 division.	 To	 raise	 the	 answer	 digit,	 you	 merely	 underline	 it.	 To	 adjust	 the
remainder,	you	merely	subtract	the	divider	and	put	down	the	new	remainder	before	going	on:

The	underlined	7	is,	of	course,	now	8.	The	43	is	the	answer	we	get	after	subtracting	63	(the	divider)
from	106	(the	too	large	remainder).	Now	we	are	ready	to	continue,	with	everything	adjusted	and	correct
so	far.

Finish	this	problem	yourself	on	your	pad.	It	does	come	out	even,	though	one	other	answer	digit	will
need	 revision.	 Finishing	 this	 problem	 will	 involve	 just	 about	 every	 technique	 in	 shorthand	 division
covered	so	far.

Do	it	now.
If	your	final	answer	did	not	come	out	to	an	even	768,	which	you	read	or	rewrite	as	869,	check	the

appearance	of	your	working	figures	against	this	model:

This	section,	in	its	joining	together	of	many	different	techniques	from	earlier	parts	of	the	book	into
one	effective	but	apparantly	complex	whole,	has	been	perhaps	the	most	difficult	chapter	to	understand
in	one	reading.

Sit	 back	 for	 a	 moment	 and	 let	 some	 of	 what	 you	 have	 done	 sink	 into	 your	 mind.	 Don't	 be
discouraged	if	it	takes	several	readings	to	understand	fully	what	has	been	going	on.	It	involves	quite	a
new	way	of	looking	at	numbers,	a	way	really	simpler	than	the	traditional	ways	because	much	of	it	has
been	 adapted	 from	 the	 simplest	 and	 highest-speed	 arithmetical	 system	 known—the	modem	 Japanese
abacus—but	until	you	get	used	to	it	it	does	take	some	special	lip-biting.

Division	is	the	most	complex	of	all	our	basic	operations	in	arithmetic.	There	is	simply	no	help	for
this;	it	is	the	nature	of	the	beast.

What	 we	 have	 done	 so	 far	 is	 to	 reduce	 the	 process	 to	 the	 simplest	 series	 of	 easy	 steps	 that	 can



possibly	work.	You	never	hold	more	than	a	digit	or	two	in	your	mind	at	any	one	point;	you	work	from
left	to	right;	you	never	have	to	carry	as	you	multiply;	and	you	never	have	to	“borrow”	as	you	subtract.

The	seeming	complexity	at	this	point	is	inherent	in	the	function	itself.	If	you	had	never	learned	long
division,	and	if	somebody	sat	down	to	explain	it	to	you,	it	would	seem	much	more	complex.	There	are
many	separate	processes	to	be	done,	and	if	full	accuracy	is	required	every	process	must	be	done	in	full.

Except	for	one	really	minor	special	case,	you	now	know	everything	you	need	to	know	for	this	rapid
way	to	divide.	Ease	and	speed	will	come	with	practice,	which	the	next	chapter	will	help	to	provide.

The	one	special	case	 involves	slashing	a	number	not	once,	but	 twice.	We	hinted	at	 this	possibility
when	we	pointed	out	that	you	slash	left	when	you	use	a	complement	in	multiplying,	and	you	also	slash
left	when	you	use	a	complement	in	subtracting.	It	does	not	come	up	very	often,	but	it	does	come	up	and
it	is	very	easy	to	handle.

Here	is	the	sort	of	problem	in	which	you	will	find	this	necessity:

Let's	begin	this	problem	step	by	step,	to	drive	the	method	deeper	into	your	mind.
8	 (not	 74)	 into	 50	 (not	 505)	 gives	 6	 as	 the	 first	 answer	 digit.	 Put	 it	 down,	 and	 determine	 the

remainder:
One:	7	x	6	is	in	the	40’s,	and	4	from	5	is	1.
Two:	7	x	6	ends	in	2.	4	x	6	is	in	the	20’s.	2	plus	2	is	4,	and	4	from	0	is	(complement)	6	and	slash.
Three:	4	x	6	ends	in	4,	and	4	from	5	is	1.
Our	example	now	looks	like	this:

Inspection	 shows	us	 that	 the	next	 answer	digit	 (8	 into	61)	 is	7.	We	put	 it	 down	and	work	out	 the
remainder:

One:	7	x	7	is	in	the	40’s,	and	4	from	6	is	2:

Two:	7	x	7	ends	in	9.	4	x	7	is	in	the	20’s.	9	plus	2	(complement,	slash)	is	1,	from	1	is	0:

Three:	4	x	7	ends	in	8,	and	8	from	4	is	(complement)	6	and	slash.
BUT—when	we	slash	a	zero,	we	must	always	slash	the	digit	to	the	left	of	it	as	well.	The	2	to	the	left

of	the	0	is	already	slashed,	but	we	slash	it	again.	We	have	no	choice.	If	one	slash	reduces	a	digit	in	value
by	one,	two	slashes	reduce	it	in	value	by	two,	leaving	nothing	of	that	double-slashed	2:



Why	does	it	happen	this	way?	The	answer	is	simply	that	we	are	multiplying	and	subtracting	at	the
same	time,	digit	by	digit.	The	use	of	a	complement	in	either	case	calls	for	recording	a	ten	in	multiplying
(which	means	canceling	a	ten	here,	since	we	put	down	only	the	result	of	the	subtraction)	or	canceling	a
ten	in	subtraction.	Now	and	then,	both	may	affect	the	same	digit—as	they	did	here.

That	slashed	0,	remember,	is	now	a	9.
Let's	go	on.	See	the	next	answer	digit	as	8	into	96—MORE	THAN	TEN.
This	signals	the	need	for	raising	the	answer	digit	by	1.	This	is	not	difficult.	Just	underline	it,	subtract

the	divider	from	the	remainder,	and	the	problem	now	looks	like	this:

The	remainder	222	comes	from	the	subtraction	of	74	from	96—really,	of	course,	740	from	962.
Now	we	will	find	the	last	digit	of	the	answer.	8	into	22	is	3.	Multiply	and	subtract	at	the	same	time

on	your	pad	and	find	out	whether	or	not	this	problem	comes	out	even.
Do	it	yourself.
Does	the	problem	come	out	even	or	not?

Longer	Dividers

Perhaps	you	are	already	wondering	whether	dividing	by	numbers	of	three	or	more	digits	make	things
much	more	complicated.

The	answer	is,	not	much.
Nothing	in	our	technique	changes	one	bit,	except	that	we	repeat	step	two	of	no-carry	multiplication

as	many	times	as	we	need	to	in	order	to	get	a	full	subtraction.	Dividing	by	four-	or	five-digit	dividers	is
no	harder	than	dividing	by	two-digit	dividers.	There	are	more	details	and	it	will	take	a	little	longer,	but
the	process	is	not	really	different.

You	 still	 divide	 by	 only	 the	 first	 digit	 of	 your	 divider,	 raised	 in	 value	 by	 one,	 to	 produce
automatically	 each	 succeeding	digit	 of	 your	 answer.	Should	 that	 answer	digit	 need	 revising,	 that	 fact
will	be	signaled	to	you	when	the	remainder	is	 larger	 than	the	divider.	If	you	miss	that	signal,	you	are
notified	again	when	the	next	answer	digit	seems	to	be	ten	or	more.

Once	in	a	very	great	while	an	answer	digit	will	need	revising	twice.	After	you	have	raised	it	once
and	adjusted	your	 remainder,	 the	 remainder	will	still	be	 larger	 than	 the	divider—and	 the	next	answer
digit	will	still	be	ten	or	more.	In	such	rare	cases,	just	underline	the	answer	digit	again	(raising	it	in	value
by	2)	and	subtract	the	divider	once	again	from	the	remainder	before	continuing.

The	following	example	is	admittedly	a	wild	extreme,	so	obvious	on	the	face	of	it	that	even	by	rote
you	could	hardly	get	into	this	sort	of	situation.	Yet,	even	should	you	abandon	all	your	number	sense	and
follow	every	 rule	without	 looking	at	 the	problem	 itself,	 the	 rules	would	eventually	bail	you	out.	You
would	have	to	raise	your	answer	digit	no	less	than	five	times,	yet	it	would	ultimately	be	right:



This,	as	we	said,	 is	absurd.	Yet	 it	demonstrates	 the	absolute	 reliability	of	 the	operating	 rules	even
when	your	own	common	sense	sees	nothing	wrong.	You	divide	2	into	9	and	see	an	answer	digit	of	4,	so
your	first	remainder	is	55.	You	raise	the	answer	by	one	and	subtract	the	divider,	giving	a	remainder	of
44.	 This	 goes	 on	 through	 four	 more	 revisions	 of	 the	 answer	 digit,	 the	 last	 one	 taking	 care	 of	 the
remainder	11.

The	 problem	 was	 selected	 especially	 to	 demonstrate	 this	 ultimate	 possibility.	 If	 an	 answer	 digit
seems	to	need	revising	more	than	once	or	twice,	sit	back	and	look	at	the	problem	as	a	whole.	Chances
are	 you	 have	 overlooked	 something	 very	 obvious.	The	 rules	 are	 as	 important	 to	 fast	mathematics	 as
trees	 are	 to	 a	 forest—but	we	 take	 note	 of	 the	 forest	 first,	 then	 use	 the	 trees.	 The	 folk	 saying	 is	 too
obvious	to	need	repetition	here.

One	more	point	might	be	mentioned.	If	you	work	entirely	by	rote,	you	might	sometimes	be	confused
by	the	placement	of	your	remainder	when	working	out	a	problem	like	this:

The	 first	 answer	 digit,	 by	 inspection,	 is	 2—4	 into	 8.	 But	 beware	 when	 you	 start	 to	 develop	 the
remainder:

One:	3	x	2	is	in	the	0’s,	and	0	from—
STOP.	0	from	8?	This	cannot	be	so.	The	answer	digit	would	need	several	revisions.	No,	in	this	case	it

is	0	from	0—the	unshown	0	to	the	left	of	8.
Why?	Your	own	number	sense	should	give	you	a	strong	inkling.	To	distill	it	into	an	operating	rule,	it

is	because	you	divided	into	the	first	one	digit	of	the	number	divided,	rather	than	into	the	first	two	digits.
This	in	effect	moves	the	product	of	this	first	multiplication	one	place	to	the	left.

So	when	you	divide	the	first	digit	of	the	divider	into	the	first	digit	only	of	the	number	divided,	start
right	out	by	ignoring	what	that	first	answer	digit	and	the	first	digit	of	the	divider	would	“be	in.”	They
wouldn't	 “be	 in”	 anything	 but	 the	 zeros,	 or	 you	 would	 have	 divided	 into	 the	 first	 two	 digits	 of	 the
number	divided.

The	rest	of	this	particular	problem,	by	the	way,	shows	a	typical	example	of	two-digit	revisions.	Let's
go	through	it.	So	far,	the	figures	look	like	this:

The	next	answer	digit,	by	inspection,	is	6—4	into	25.	Put	it	down	and	work	out	the	remainder:
One:	3	x	6	is	in	the	10’s,	and	1	from	2	is	1.
Two:	3	x	6	ends	in	8.	2	x	6	is	in	the	10’s.	8	and	1	is	9,	and	9	from	5	is—complement,	slash:



Three:	2	x	6	ends	in	2,	and	2	from	6	is	4:

Look	at	the	remainder.	Your	growing	number	sense	might	show	right	away	that	it	is	exactly	twice	the
divider.	If	not,	you	would	at	least	notice	that	it	is	larger	than	the	divider,	so	you	underline	the	6	to	raise
it	to	7,	and	subtract	the	divider	from	the	remainder:	3	from	6	is	3.	2	from	4	is	2.

Look	at	 the	 remainder	again.	 It	 is	 the	same	as	 the	divider.	Underline	 the	underlined	6	once	again,
subtract	the	divider,	and	the	problem	comes	out	even.	The	answer	is	2	6,	which	you	read	or	rewrite	as
28.

Get	out	your	pad	now,	have	an	absolutely	clean	page	on	top,	and	start	one	problem	with	a	five-digit
divider.	This	one	problem	embodies	just	about	every	possible	wrinkle	in	shortcut	division.

This	problem	is	bound	to	be	a	bit	tedious,	in	any	method	of	arithmetic.	We	can	get	a	rapid	estimate,
as	the	next	chapter	will	show,	but	for	a	complete	answer	there	is	no	avoiding	a	number	of	steps.

Take	a	deep	breath	and	plunge	in.
4	 into	 18—our	way	 of	 producing	 the	 first	 answer	 digit	 automatically—is	 4.	This	 4	 goes	 over	 the

sixth	digit	of	 the	number	divided,	since	there	are	five	digits	 in	 the	divider	and	we	started	by	dividing
into	two	digits	rather	than	one.	Now	we	start	on	the	remainder:

One:	3	x	4	is	in	the	10’s,	and	1	from	1	is	0.
Two:	3	x	4	ends	in	2.	6	x	4	is	in	the	20’s.	2	plus	2	is	4,	and	4	from	8	is	4.
(We	 are	 still	 spelling	 out	 every	 step	 to	make	 it	 clear.	But	 as	 you	practice	 the	 smooth	 handling	of

these	 steps,	 your	 eye	 and	 mind	 should	 begin	 to	 jump	 from	 one	 fact	 to	 the	 other	 almost	 without
intermediate	thought.	Step	two	above	will,	with	experience,	become	“2—4—4.”)

Three:	6	x	4	ends	in	4.	1	x	4	is	in	the	O's.	4	from	9	is	5.
Four:	1	x	4	ends	in	4.	8	x	4	is	in	the	30’s.	4	and	3	are	7,	and	7	from	2	is	(complement)	5	and	slash

left.
Five:	8	x	4	ends	in	2.	2	x	4	is	in	the	O's.	2	from	6	is	4.
Six:	2	x	4	ends	in	8.	8	from	8	is	0.
If	you	followed	these	steps	on	your	pad,	here	is	what	your	work	should	look	like:

Are	 you	 ready	 to	 go	 on?	Or	would	 it	 be	 a	 good	 idea	 to	 take	 another	 look	 at	 the	 remainder?	The
remainder	 is	 larger	 than	 the	 divider.	 So	 underline	 the	 4—raising	 it	 to	 5—and	 subtract	 36182	 from
44640,	left	to	right,	canceling	in	the	answer:



If	 	is	smaller	than	36182,	we	are	ready	to	go	on.	Divide	4	into	8	and	put	down	2	as	the	second
answer	digit.	Start	developing	the	remainder:

One:	3	x	2	is	in	the	0’s.	Ignore	it,	because	we	divided	into	one	digit	rather	than	two.
Two:	3	x	2	ends	in	6.	6	x	2	is	in	the	10’s.	6	plus	1	is	7,	and	7	from	8	is	1.
Three:	6	x	2	ends	in	2.	1	x	2	is	in	the	0’s.	2	from	3	is	1.
Four:	1	x	2	ends	in	2.	8	x	2	is	in	the	10’s.	2	plus	1	is	3,	and	3	from	5	is	2.
Five:	8	x	2	ends	in	6.	2	x	2	is	in	the	0’s.	6	from	8	is	2.
Six:	2	x	2	ends	in	4.	4	from	2	(complement)	8,	and	slash.
Check	your	jottings	against	the	model	at	this	point:

This	should	be	enough	step-by-step	explanation.	Go	ahead	and	finish	this	problem.	You	will	find	that
it	does	not	come	out	even.	There	will	be	a	remainder.	Make	sure	 to	examine	 the	remainder	carefully.
There	is	a	reason	why	you	should.

Do	not	look	ahead	to	the	finished	problem	until	you	have	a	remainder	that	satisfies	you.	Then,	if	you
feel	you	understand	all	the	techniques	in	this	chapter,	go	ahead	to	build	speed	in	division.

The	remainder,	as	you	undoubtedly	discovered,	held	within	it	a	revision	of	the	last	digit:

Final	answer,	523;	remainder,	3,638.
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BUILDING	SPEED	IN	DIVISION

HE	 last	 exercise	 in	 the	 last	 chapter	 was	 a	 stunner.	 It	 was,	 just	 from	 the	 quantity	 of	 digits	 to	 be
handled,	the	most	tedious	situation	you	are	likely	to	face	in	arithmetic.	The	numbers	go	on	and	on,

and	if	you	need	a	full	answer	there	is	simply	no	way	to	avoid	dealing	with	every	single	digit.
Most	division	is	much	simpler.
First	of	all,	we	seldom	need	to	work	out	any	division	problem	of	this	length	in	such	detail.	Largely

because	American	business	has	become	accustomed	(and	wisely	so)	to	dealing	in	rounded-off	numbers,
you	would	most	likely	find	such	a	problem	rounded	off	to	start	with.	Second,	the	only	reason	we	had	to
use	 every	 single	 digit	was	 to	 get	 a	 fully	 accurate	 remainder.	We	would	 have	 got	 precisely	 the	 same
whole-number	answer	by	cutting	down	the	divider	from	five	to	three	digits.

Remember	 the	 two	 reasons	 for	 working	 from	 left	 to	 right:	 it	 is	more	 natural,	 and	 it	 is	 also	 self-
estimating.	 Turn	 back	 to	 the	 last	 problem	 for	 a	 moment,	 then	 compare	 the	 final	 working	 with	 this
version	of	the	same	problem:

This	is	really	the	same	problem—but	a	rounded-off	version	of	it.	We	rounded	it	off	before	beginning
by	doing	two	things:

First,	we	rounded	off	the	divider	to	three	digits	because	we	saw	simply	by	inspection	that	the	whole-
number	answer	would	be	in	three	digits.	In	rounding	off,	the	first	three	digits	(361)	became	362	because
the	following	digit	is	5	or	more.

Second,	we	dropped	the	same	number	of	digits	from	the	number	divided	as	we	did	from	the	divider.
This	ensures	that	our	answer	will	not	be	ten	times	too	big	or	ten	times	too	small.

Rounding	off	such	a	problem	is	obviously	 faster	as	well	as	simpler.	For	most	purposes,	 it	 is	quite
accurate	enough.	You	will	note	 that	 the	remainder	 is	not	 the	same,	and	sometimes	 the	 last	digit	 itself
might	be	off	by	one	or	two	points	in	value—but	we	are	still	more	accurate	than	a	slide	rule.

When	you	need	a	very	quick	estimate,	you	can	carry	this	even	further.	If	you	care	only	about	the	first
two	digits	of	the	answer,	then	round	off	your	divider	to	two	digits	and	cross	out	as	many	digits	in	the
number	divided	as	you	did	in	the	divider.

In	 this	event,	 the	full	divider	36182	becomes	36.	The	number	divided,	18936824,	becomes	the	far
more	manageable	18937.

Your	solution	now	looks	like	this:



Notice	that	the	third	digit	of	your	answer	is	no	longer	accurate	at	all.	But	your	first	two	digits	are.
You	would	seldom	simplify	a	problem	to	quite	this	extent,	because	the	possible	error	is	ten	to	twenty

per	cent,	but	it	is	a	useful	device	to	know	when	speed	rather	than	perfect	accuracy	is	required	for	a	very
fast	approximation.

Try	rounding	off	one	sample	to	make	sure	you	have	the	idea	firmly	in	mind—especially	the	proper
handling	of	the	number	divided.	Reduce	this	example	to	a	form	suitable	for	a	three-digit	answer:

As	we	pointed	out	before,	an	answer	of	which	the	first	two	digits	are	correct,	and	the	third	digit	is
one	more	or	one	less	than	it	should	be,	can	never	be	more	than	one	per	cent	wrong,	and	may	be	as	little
as	one-tenth	of	one	per	cent	wrong.	The	least	error	is	998	when	it	should	be	999.

Your	rounding	off	of	the	above	problem	should	look	like	this:

In	this	case,	both	final	digits	were	raised	by	one	in	the	rounding	off,	because	both	following	digits
were	5	or	more.	The	only	new	element	in	this	kind	of	rounding	off	is	establishing	the	proper	size	of	the
number	divided.	Since	we	dropped	two	digits	from	the	divider	in	this	case,	we	also	dropped	two	digits
in	the	number	divided.

Other	than	some	of	the	short	cuts	in	the	last	part	of	this	book,	which	apply	to	many	(though	not	all)
problems,	this	is	about	all	there	is	to	know	about	estimating	in	division.	The	most	important	elements,
as	 you	 can	 see	 from	 the	 work	 so	 far,	 are	 your	 quickness	 and	 confidence	 with	 the	 basic	 digit
combinations	 in	 dividing,	 multiplying,	 and	 subtracting,	 and	 your	 mastery	 of	 the	 one-two-three	 of
shorthand	division.

It	is	now	time	to	brush	up	on	your	vocabulary.
Division	is,	after	all,	only	multiplication	done	backwards.	Instead	of	“seeing”	6	x	7	as	42,	we	learn	to

see	6	 	as	7…or	7	 	as	6.	Just	as	it	is	in	adding,	subtracting,	and	multiplying,	the	best	medicine
for	this	is	repetition.

Keep	 in	mind	 that	 the	 following	 practice	 section	 is	not	 to	 be	 done	 as	 a	 simple	 division	 drill.	Go
slowly	and	carefully,	making	every	effort	to	“see”	the	answer	rather	than	the	problem.	It	may	help	to	say
aloud	the	answer	in	each	case,	shoving	the	problem	as	far	back	in	your	mind	as	you	can.

Once	again,	you	are	practicing	to	see	h	and	e	as	“he”—not	as	“h.	and	e	spell	‘he.’”	You	can	do	this
with	numbers	just	as	you	can	with	letters	if	you	spend	a	reasonable	amount	of	time	at	it.

Try	to	read	through	these	just	as	if	they	were	words,	seeing	the	words	rather	than	the	letters:



This	 is	 quite	 a	 new	 bit	 of	 practice	 for	 most	 of	 us.	 Even	 though	 division	 is	 merely	 inverted
multiplying,	it	is	the	basic	process	on	which	the	average	person	has	spent	less	“drill”	time	learning	his
tables	 than	on	any	other.	Yet,	 for	quick	working	of	short	division	(or	even	 long	division),	 there	 is	no
substitute	for	knowing	them	backwards	and	forwards.

Your	 confidence	 and	 accuracy	with	 any	method	 of	 speed	mathematics	 are	 based	 entirely	 on	 your
confidence	and	accuracy	with	 the	 individual	digit	 combinations.	No	 technique	can	be	very	helpful	 in
your	daily	mathematical	needs	unless	you	can	do	it—with	confidence	and	accuracy.

Improve	 your	 handling	 of	 division	 now	 by	 practicing	 the	 rest	 of	 the	 possible	 combinations.	 As
always,	work	at	seeing	only	the	answer—not	the	problem:

That	is	the	whole	series.	There	are	no	other	combinations.
There	is,	though,	an	important	variation.	When	you	stop	to	think	about	it,	division	is	the	only	one	of

the	four	processes	in	which	you	usually	have	an	approximate	answer.
When	you	add,	you	get	one	specific	result.	9	plus	6	is	always	(whether	you	add	it	or	whether	you

subtract	a	complement	and	record	a	ten)	15.
When	you	subtract,	there	is	no	question	about	it.	8	from	13	is	always	5.
When	you	multiply,	4	times	7	is	always	28.	There	are	no	if	s,	and's,	or	but's	about	it.
But	what	about	8	



Your	instinct	or	number	sense	or	practice	at	division	tells	you	that	the	answer	to	this	is	“almost	4.”
But	it	is	not	4.	No	matter	how	close	it	is,	you	still	cannot	get	four	8’s	into	31.

It	is	so	close,	of	course,	that	you	can	get	3	and	87/100’s	8’s	into	31.	But	you	still	do	not	get	4.
You	 will	 get	 3	 +.	 Your	 answer	 will	 approach	 4	 as	 you	 work	 out	 the	 remainder	 in	 decimal	 or

fractional	form,	but	your	first	digit	has	to	be	3.	This	is	because	our	methods	of	writing	numbers	include
ways	to	write	3	plus	a	fraction,	but	not	4	minus	a	fraction.

The	thought	is	worth	considering	because	quick	and	efficient	division	requires	us	to	“see”	8	into	31
as	3.

The	 usual	 process	 for	 many	 of	 us	 is	 to	 take	 a	 stab	 at	 the	 closest	 answer,	 then	 (consciously	 or
unconsciously)	 multiply	 it	 out	 in	 our	 minds	 to	 see	 if	 it	 checks	 out,	 and	 revise	 our	 trial	 digit	 when
required.

The	automatic	digit-finding	 technique	of	shorthand	division	(dividing	by	only	 the	first	digit	of	 the
divider,	 increased	 in	value	by	one)	 solves	 a	 large	part	 of	 the	problem.	The	 second	half	 of	 the	battle,
however,	 is	 to	 learn	 to	“see”	an	approximate	division,	such	as	 the	one	above,	cleanly	and	properly	at
first	glance.	This	means	knowing	at	sight	that	8	 	is	“5,”	even	though	the	final	answer	will	be	much
closer	to	6.

Here	is	some	practice	on	this,	which	will	pay	in	faster	and	easier	dividing.	Work	at	these	tables	with
the	objective	of	“seeing”	only	the	 first	answer	digit.	Do	not	worry	about	whether	the	eventual	answer
will	be	3.001	or	3.999.	In	both	cases,	you	start	with	3.

Start	now:

This	group	includes	over	half	the	possibilities.	Perhaps	you	have	seen	the	nature	of	the	practice	you
are	now	doing.	Each	of	the	division	examples	you	did	contains	a	number	divided	just	1	less	in	quantity
than	one	which	would	call	for	a	higher	first-answer	digit.	For	instance,	3	 	is	practically	5—but	you
start	with	4.

Learning	to	“see”	what	we	might	call	the	breaking	point	of	each	answer	digit	cannot	help	but	ease
and	speed	up	your	automatic	division.	Once	you	have	learned	to	“see”	3	 	as	4	rather	than	“almost
5,”	 you	 should	 have	 no	 trouble	 reading	 3	 	 as	 4	 also.	 If	 you	 recognize	 8	 	 as	 8	 rather	 than
“almost	 9,”	 then	 whenever	 you	 need	 an	 answer	 digit	 for	 8	 	 8	 	 and	 all	 the	 intermediate
possibilities	down	to	8	 ,	you	should	answer	without	a	second	thought	“8.”

Go	through	the	rest	of	these	“breaking	point”	combinations	now:



That	finishes	all	the	possibilities.	This	practice	section	is	vastly	different	from	any	other	in	the	book,
in	that	it	calls	for	you	to	give	what	you	know	to	be	a	very	approximate	answer—an	answer	you	know
full	well	will	need	adding	to	later.	Yet	this	is	the	way	we	must	divide,	and	what	at	first	may	seem	very
odd	must	become	second	nature.

Having	 done	 the	 single-digit	 tables,	 expand	 your	 practice	 a	 bit	 now	 by	 doing	 precisely	 the	 same
thing	with	these	examples.	In	each	case,	be	sure	to	divide	by	only	the	first	digit	of	the	divider,	raised	in
value	by	one.	See	only	the	first	answer	digit	for	each	of	these	problems:

Those	 are	 the	 basic	 vocabulary	 elements	 in	 speed	 division.	 When	 you	 put	 them	 together	 with
simultaneous	 left-to-right	multiplication	and	subtraction,	 short	hand	division	 really	becomes	short-cut
division.

See	how	well	you	remember	 the	entire	system	now	by	working	this	problem	out	 in	detail	on	your
pad:

Cover	the	demonstration	below	with	your	pad	while	you	work	it	out.	This	problem	comes	out	even,
so	you	know	without	looking	ahead	whether	or	not	you	solved	it	properly.

When	you	are	finished,	compare	your	working	with	this	model:

One	way	to	speed	up	your	working	of	any	problem	such	as	this	is	simply	to	jot	down	your	working
figures	on	whatever	piece	of	paper	you	have	handy.	You	do	not	always	have	to	copy	the	entire	problem,
although	this	is	often	helpful	during	early	stages	of	practice,	when	each	move	still	seems	rather	strange.

If	 you	 have	 been	 doing	 your	 practice,	 you	 should	 be	 able	 to	 solve	 the	 following	 problem	 by	 the
shorthand	method	without	copying	it.	I	do	not	suggest	that	you	solve	it	in	your	head	(some	people	can,



but	most	of	us	have	to	lean	on	our	pencils	even	with	simplified	techniques),	but	you	should	be	able	to
glance	from	printed	problem	to	jotted	working	figures	and	produce	the	answer	without	turning	yourself
into	a	stenographer:

See	if	you	can	do	this	problem	without	copying	it.	Use	your	pad	only	for	jotting	down	the	answer
and	working	figures.	If	you	have	never	done	it	this	way	before	the	technique	may	seem	difficult,	but	it
can	save	you	a	great	deal	of	time	in	your	number	work.

When	you	have	finished,	compare	your	jotted	figures	with	these:

Try	a	simpler	problem	with	this	non-copying	method.	See	if	you	can	jot	down	your	answer	and	your
working	figures	for	this	example	without	coyping	the	problem	itself:

Cover	the	answer	below	until	you	have	done	your	best.
Here	is	the	way	you	jot	down	your	answer	and	working	figures:

You	 have	 practiced	 all	 possible	 digit	 combinations.	 Now,	 before	 going	 on	 to	 other	 methods	 of
speeding	up	your	number	work,	do	a	bit	more	drill	in	actual	division	examples.

If	you	can,	solve	these	without	copying	them.	Use	your	pad	for	answers	and	working	figures	only.

If	you	did	the	above	examples	in	the	shorthand	method	with	confidence,	then	divisions	of	any	length
at	all	are	merely	extensions	of	what	you	already	know.	Try	the	following	three-digit	dividers.	Again,	do
your	best	to	jot	down	only	the	developing	answer	and	working	figures	rather	than	copying	the	problem
over:



Give	these	your	best	before	checking	your	work	against	the	solutions	following.	If	you	were	able	to
handle	them	without	copying,	extra	good.	The	solutions	will	be	given	in	copied	form,	however,	so	you
can	check	your	work	whether	or	not	you	jotted	your	answer	and	working	figures	separately.

Every	one	of	the	preceding	problems	comes	out	even,	as	a	quick	check	on	yourself	before	looking	at
the	solutions.	If	you	have	any	remainders,	go	back	and	recheck	now.
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ACCURACY:	THE	QUICK	CHECK

RODUCING	a	quick	answer	is	not	always	the	end	of	a	problem	in	arithmetic.	A	wrong	answer	can
be	worse	than	none	at	all.
When	 you	 balance	 your	 checkbook,	 you	 care	 whether	 every	 stub	 was	 done	 perfectly	 because

otherwise	you	face	an	unpleasant	hour	or	so	finding	out	why	your	balance	does	not	agree	with	the	bank
statement.	When	you	make	out	your	income-tax	return,	you	check	and	double-check	every	operation	to
make	sure	you	are	not	paying	too	much,	or	else	getting	yourself	into	trouble	with	wrong	arithmetic.	And
in	 business,	where	 so	many	 decisions	 are	 based	 on	 numbers,	 the	wrong	 numbers	 can	 lead	 to	wrong
decisions.

There	are	two	fast	ways	of	checking	your	answers.	The	faster	of	the	two	is	the	subject	of	this	chapter.
A	slightly	more	complex	“back-up”	check	is	discussed	in	the	next	chapter.	Both	of	them	are	infinitely
quicker	than	the	standard	technique	of	doing	the	problem	over.

The	standard	way	of	checking	an	answer	is	effective,	but	very	slow.	It	takes	just	as	much	time	to	tell
whether	an	answer	is	right	as	it	does	to	produce	it	in	the	first	place.	The	standard	way,	of	course,	is	to	do
the	problem	over	again	in	the	opposite	way.	If	we	got	the	answer	by	adding	down,	we	check	by	adding
up.	This	(to	some	extent)	keeps	us	from	repeating	some	habitual	error	that	we	might	commit	twice	if	we
handled	the	figures	in	the	same	order	both	times.	If	we	subtracted,	we	check	by	adding	the	answer	and
the	smaller	number	to	see	if	the	total	equals	the	larger	number.	If	we	multiplied	897	by	123,	we	check
by	multiplying	 123	 by	 897.	And	 if	we	 divided,	we	 check	 by	multiplying	 the	 answer	 by	 the	 divider,
adding	the	remainder,	and	seeing	if	the	result	equals	the	number	divided.

There	are	two	serious	weaknesses	to	this	“backward”	method	of	checking.
First,	 it	 is	 slow	 and	 rather	 boring.	 Our	 object	 is	 speed	 and	 accuracy,	 with	 as	 little	 boredom	 as

possible.
Second,	 it	 is	 not	 really	 a	 proof	 at	 all.	 If	we	 get	 the	 same	 answer	 both	 times,	we	assume	 the	 first

solution	 to	 be	 correct.	Yet	 if	we	 habitually	 think	 of	 4	 x	 7	 as	 32	 (and	 such	 habitual	mistakes	 are	 not
uncommon),	then	we	might	indeed	get	the	same	wrong	answer	twice.	Even	if	our	second	try	produces	a
different	 answer,	 we	 still	 do	 not	 know	 if	 one	 of	 them	 is	 right—or	which	 one	 it	 is.	We	must	 do	 the
problem	still	a	third	time.

The	 techniques	of	simplified	mathematics	you	have	 learned	are	 inherently	more	accurate	 (because
they	are	simpler)	 than	traditional	methods,	but	 it	 is	still	unwise	to	assume	an	answer	is	correct	unless
you	know	it	is	correct	because	you	have	checked	it.

The	two	methods	for	checking	answers	you	are	about	to	learn	are	very	similar.	Neither	one	is	new,
although	some	of	the	short	cuts	in	applying	them	are.	The	first	method	is	known	in	mathematical	circles
as	“casting	out	nines”	or	“the	digit	sum”	method.	The	second	is	“casting	out	elevens.”	Both	work	on	a
system	of	check	figures	completely	divorced	from	your	calculations	in	solving	the	problem,	so	habitual
errors	 are	 unlikely	 to	 be	 repeated,	 but	 the	methods	 of	 deriving	 the	 check	 figures	 are	 quite	 different.
Actually,	 each	of	 them	 is	a	way	of	 testing	whether	 the	 remainders	of	nine	or	eleven	 remain	properly
constant	 through	your	calculations.	This	will	be	discussed	at	greater	 length	 in	 the	next	 chapter.	First,
learn	the	technique	of	handling	what	is	known	as	the	digit	sum.

The	Digit	Sum



The	digit	sum,	as	the	phrase	suggests,	is	simply	the	sum	of	all	the	digits	in	a	number.	This	sum	will
be	your	“check	figure”	for	each	number.

Learn	first	how	to	find	a	digit	sum.	Then	we	will	go	on	to	the	ways	of	using	it.	After	you	have	found
a	few	digit	sums,	you	will	be	able	to	derive	one	almost	as	fast	as	you	can	read	the	number	itself.	It	is
really	that	quick.

If	the	digit	sum	is	merely	the	sum	of	the	digits	in	a	number,	then	the	digit	sum	of	23	should	be	2	plus
3,	or	5.	Odd	as	this	may	seem	at	first,	that	is	precisely	right.	The	digit	sum	of	23	is	5.

The	digit	sum	of	341	is	3	plus	4	plus	1.	The	digit	sum	of	341,	then,	is	8.
Just	add	the	digits.	The	digit	sum	of	42	is—
Did	you	get	6?
Now,	however,	it	becomes	a	little	trickier.	For	quick	utility,	the	check	figure	must	always	be	a	single

digit.	But	the	sum	of	the	digits	in	longer	numbers	goes	over	ten.
In	this	case,	we	use	the	digit	sum	of	the	digit	sum.	This	is	the	digit	sum	of	the	number	itself.
This	is	how	it	works.	The	digit	sum	of	587,	for	instance,	goes	into	two	digits	by	the	time	we	add	5

and	8,	which	make	13.	When	we	add	the	final	7,	we	have	a	digit	sum	of	20.
You	can	reduce	this	to	a	single	digit	at	the	end,	by	adding	2	plus	0	and	getting	2.	Or	you	can	reduce

as	you	go	along,	like	this:	5	plus	8	is	13.	Reduce	this	by	adding	1	plus	3	to	get	4.	4	plus	the	final	7	is	11.
Reduce	this	by	adding	1	plus	1	and	get	2.

This	peculiarity	of	the	digit	sum	is	only	a	foretaste	of	those	to	come.	Let	us	finish	this	thought	before
getting	to	that,	however.	Try	one	digit	sum	now.	Add	all	the	digits	of	the	number	6934	and	then	add	the
digits	of	 the	answer	until	you	come	out	with	a	single	digit.	Then	reduce	as	you	go	along	 through	 the
same	number	6934	and	see	if	you	come	out	with	the	same	final	digit	sum.

Done	the	first	way,	you	add	6	plus	9	plus	3	plus	4	and	get	22.	Reduce	this	by	adding	2	plus	2	to	get
4.	The	digit	sum	of	6934	is	4.

Done	the	second	way,	you	add	6	plus	9	to	get	15.	The	digits	of	this	total	6.	6	plus	3	is	9,	plus	4	is	13.
1	plus	3	is	4.	The	digit	sum	is	still	4.

There	is,	however,	a	third	way.	This	third	way	is	called	casting	out	nines.	The	reason	for	the	name	is
inherent	in	the	digit	sum,	and	is	a	fascinating	byway	in	the	mysteries	of	numbers.

The	odd	fact	boils	down	to	this:	If	you	divide	any	number	by	nine,	the	remainder	is	the	same	as	the
sum	of	all	the	digits	of	that	same	number—reduced	to	one	digit	by	continually	adding	the	digits	of	the
sum	of	the	digits	until	you	wind	up	with	one	digit.

In	other	words,	the	digit	sum	of	any	number	divisible	by	nine	will	be	nine.	The	algebraic	proof	of
this	is	a	little	complicated	for	this	book,	but	you	can	demonstrate	it	for	yourself.

Take	one	of	our	examples	of	a	minute	ago.	We	found	that	the	digit	sum	of	587	is	2.	If	you	divide	587
by	9,	you	will	get	an	answer	of	65—and	a	remainder	of	2.

The	last	example	we	tried	was	6934.	Our	digit	sum	was	4.	Try	dividing	6934	by	9.	The	answer	is
770—and	a	remainder	of	4.

The	digit	sum	is,	in	essence,	the	same	as	the	“nines	remainder”—the	amount	left	over	after	an	even
division	by	nine.	This	 is	 important	not	only	 to	digit	sums	but	 in	understanding	how	the	entire	check-
figure	system	works,	A	more	complete	explanation	comes	in	the	next	chapter.

The	fact	that	the	digit	sum	is	the	same	as	the	remainder	after	dividing	by	nine	brings	up	two	more
useful	oddities.	First,	nine	(for	digit-sum	purposes)	becomes	zero.	Second,	a	digit	9	counts	for	nothing
in	the	number	itself.

This	 brings	 up	 a	 great	 short	 cut	 in	 deriving	 digit	 sums.	As	 you	 add	 the	 digits,	 simply	 ignore	 any
nines.	They	do	not	count.

Demonstrate	this	to	yourself	a	few	times.	The	thought	takes	a	little	getting	used	to.
Add	the	digits	of	19.	The	total	is	10.	The	digit	sum	of	of	this	is	1.	If	you	looked	at	19	and	ignored	the



9,	you	would	see	1	anyway.
Now	try	29.	2	plus	9	is	11,	which	reduces	(1	plus	1)	to	2.	Look	at	the	same	number,	ignoring	the	9,

and	you	see	2.
See	if	you	can	find	any	combination	of	two	digits,	of	which	one	is	9,	which,	when	you	add	the	digits

and	reduce,	does	not	produce	the	digit	which	was	not	9.	This	is	an	intriguing	and	frustrating	search.	95
becomes	14,	which	reduces	to	5.	89	becomes	17,	which	reduces	to	8.	93	becomes	12,	which	reduces	to
3.

Do	not	stop	with	two-digit	numbers.	Try	any	number	you	wish,	that	contains	a	quantity	of	9’s	and
any	other	digit.	Convince	yourself	of	this	very	peculiar	truth	by	reducing	these	numbers	to	digit	sums:

This	 is	a	strange	phenomenon,	but	 in	addition	to	being	strange	it	 is	highly	useful.	It	means	that	 in
finding	a	digit	sum	your	eye	can	simply	skip	over	any	9’s.	They	will	not	change	the	digit	sum.	The	digit
sum	of	99999999999997	will	be	7.

Perhaps	your	mind	is	already	ranging	ahead,	wondering	if	digits	in	a	number	that	add	up	to	9	behave
in	the	same	way.	If	the	digit	9	does	not	change	the	digit	sum,	what	about	3	and	6?

Try	 it	 and	 see.	Find	 the	digit	 sum	of	361.	Actually	work	 it	 out.	Now	envision	 the	3	 and	 the	6	 as
adding	to	9,	and	therefore	to	be	ignored.	Cast	both	of	them	out,	as	you	would	cast	out	a	9.	Your	answer,
of	course,	is	1—the	1	you	see	if	you	ignore	the	3	and	the	6	(because	they	add	to	9)	in	361.

The	lesson	is	quite	true.	Since	9	will	not	affect	the	digit	sum,	you	may	ignore	any	9’s	you	see	in	the
number—or	any	combination	of	digits	that	add	to	9.

Try	these:

In	each	case,	you	will	find	that	adding	all	the	digits	and	then	reducing	by	adding	together	the	digits
of	the	sum	(as	many	times	as	you	need	to)	is	precisely	the	same	as	the	digit	left	after	casting	out	digit
combinations	that	would	add	to	9—no	matter	where	those	digits	appear	in	the	number.

Zeros,	too,	obviously	count	for	nothing.	You	would	not	add	them	as	you	added	the	digits	anyway,	so
you	can	safely	ignore	any	0’s	in	any	number	as	you	derive	its	digit	sum.

For	digit-sum	purposes,	9	and	0	are	equal.	This	is	only	a	device	for	this	particular	purpose,	of	course.
But	for	simplicity	 in	working,	consider	a	final	digit	sum	of	9	 to	be	0.	 It	would	come	out	 to	 the	same
result	in	the	end,	and	it	can	save	a	significant	amount	of	time	to	wipe	out	the	9	to	start	with.

Before	you	learn	how	to	apply	digit	sums	in	checking	your	results	to	problems,	try	deriving	a	few.
Ignore	any	0’s,	9’s,	or	combinations	of	digits	adding	to	9	in	the	following	numbers	as	you	extract	the
digit	sum	of	each:

Notice	 that	one	of	 the	digit	 sums	above	works	out	 to	9.	This,	 for	digit-sum	purposes	only,	can	be
treated	as	0.

Running	Adjustment



One	 more	 short	 cut	 is	 worth	 noting	 in	 developing	 digit	 sums.	 Since	 you	 know	 that	 9	 or	 any
combination	of	digits	adding	to	9	(such	as	324)	can	be	ignored,	you	can	also	think	of	any	pair	of	digits
adding	to	ten	as	being	worth	1,	or	any	pair	adding	to	8	as	subtracting	1	from	the	partial	total	already	in
your	mind,	and	so	on.

Glance	back	at	the	first	example	above.	You	can	do	it	with	extra	speed	by	counting	“1—(6	and	4	are
complements,	count	as	1)	2—(2	and	8	are	complements,	count	as	1)	3.”	In	the	last	example,	you	might
start	adding	like	this:	“(2	and	6	are	8,	or	minus	1)	from	7	is	6—and	3	is	9,	or	0—(8	is	minus	1)	from	5	is
4—and	5	(group	1	and	4)	is	9,	or	0.	Digit	sum,	0.”

I	think	you	already	see	how	you	will	soon	be	able	to	derive	the	digit	sum	of	a	number	almost	as	fast
as	you	can,	read	the	number	itself.	You	simply	add	up	to	9	and	then	start	over,	dropping	each	9	in	turn
and	not	even	recording	it.	In	doing	so,	you	use	every	trick	of	grouping	you	have	learned.

These	extra-speed	tricks	are	helpful	 to	very	rapid	work.	They	can	become	so	fast	and	so	easy	you
could,	if	you	wish,	make	a	parlor	trick	out	of	the	idea.	Glance	at	any	figure	and	predict	the	total	of	its
digits,	 totaled	 in	 turn	 until	 you	 get	 a	 single	 digit.	 You	will	 have	 your	 result,	 if	 you	 play	with	 these
methods	a	bit,	before	your	challenger	has	added	the	first	three	digits.

Try	it	once	on	this	number:

Watch	how	quickly	it	goes:	“8	from	6	is	5—skip	9—plus	5	(the	3	and	2)	is	1	(ten	reduced)—plus	5	is
6—skip	the	0’s—minus	1	is	5—plus	1	(the	4	and	6)	is	6—plus	4	(the	2,	1,	1)	is	1	(ten	reduced)—less	1
(the	final	8)	is	0.”

After	a	few	more	moments	of	practice,	you	will	find	yourself	almost	scanning	a	digit	sum.	You	will
ignore	pairs	adding	to	9.	You	will	add	1	for	pairs	that	are	complements,	and	subtract	1	for	8’s	or	pairs
adding	to	8.	Beyond	this,	you	may	begin	to	note	pairs	adding	to	7	(or	7’s	themselves)	as	subtracting	2.
You	may	even	begin	to	skip	around	a	little,	“seeing”	485	in	a	long	number	as	minus	1	because	the	4	and
5	add	to	9	and	the	8	is	minus	1.

This	is	such	a	joyous	and	useful	byway	of	numbers	that	you	will	profit	by	making	a	game	of	finding
digit	sums	as	quickly	as	you	can.

Checking	Your	Answers

The	digit	sum	is	not	merely	fascinating.	Its	utility	is	in	the	quick	check.
The	general	rule	for	checking	by	digit	sums	is	simply	this:	Do	to	the	digit	sums	of	the	numbers	in	the

problem	whatever	you	did	to	the	numbers	themselves.	The	result	must	equal	the	digit	sum	of	the	answer
—if	the	answer	is	correct.

If	you	add	a	column	of	numbers,	then	you	simply	add	the	digit	sums	of	those	same	numbers.	This
result	(reduced	as	always	to	a	single	digit)	must	equal	the	digit	sum	of	the	answer.	If	you	multiply	two
numbers,	 then	 you	multiply	 their	 digit	 sums.	 This,	 reduced,	must	 equal	 the	 digit	 sum	 of	 the	 correct
answer.

The	 reason	why	 it	works	will	 be	 explored	 in	 the	 next	 chapter.	 For	 the	moment,	 let	 us	 see	 how	 it
works.

Follow	this	example	in	addition:



In	this	case,	the	sum	of	the	digit	sums	is	the	same	as	the	digit	sum	of	the	answer.	Check.
Once	you	are	in	full	training	at	digit-sum	reduction,	you	will	be	able	to	check	such	a	problem	about

as	fast	as	you	read	it	over.	A	peculiarity	of	checking	problems	in	addition,	especially,	is	that	since	you
added	the	numbers	you	can	merely	add	all	the	digit	sums	in	one	operation.	That	is,	you	can	develop	one
digit	sum	for	the	columns	of	digits	in	one	operation	instead	of	getting	a	separate	sum	for	each	number.
In	the	problem	above,	it	would	be	equal	to	getting	a	digit	sum	for	146,928,357.	If	you	try	it,	you	will
find	that	this	digit	sum	is	0.

Now	for	a	longer	problem.	Each	digit	sum	appears	on	a	separate	line	for	clarity,	but	you	do	not	need
to	do	it	this	way.	You	can	go	through	the	three	numbers	one	after	the	other	until	you	have	one	final	digit
sum—which	in	this	case	will	be	3:

Now	try	these	problems	and	check	your	answers	by	using	digit	sums.	Be	sure	to	work	at	your	new
habits:	work	from	left	to	right,	use	complements,	and	record	tens:

Cover	the	answers	and	their	check	figures	with	your	pad	until	you	have	finished.

Here	are	the	totals,	together	with	their	digit	sums:

Locating	Errors

Before	going	on	to	the	ways	of	using	digit	sums	in	other	types	of	problems,	face	one	imperfection	in
the	system—and	learn	a	special	advantage	in	return.

Digit	sums	do	not	invariably	catch	every	type	of	error.	The	errors	they	miss	are	so	unlikely	that	for
all	practical	purposes	you	can	almost	forget	them,	but	you	should	know	about	the	possibility.



Since	for	digit-sum	purposes	9	is	the	same	as	0,	you	can	easily	see	that	this	method	of	checking	will
not	catch	an	error	in	which	one	digit	in	your	answer	is	9	when	it	should	be	0,	or	0	when	it	should	be	9.	If
you	have	two	correct	digits,	but	have	them	reversed	(36	instead	of	63)	it	will	not	catch	this	either.	Or	if
by	any	odd	chance	your	error	consisted	of	a	digit	or	combination	of	digits	that	was	exactly	9	more	or
less	than	it	should	be,	the	digit-sum	check	would	not	ferret	this	out	either.

Actually,	years	of	experience	have	shown	that	the	errors	not	caught	by	the	digit	sum	are	exceedingly
rare.	For	most	needs,	it	is	perfectly	adequate—far	more	accurate	than	doing	the	problem	over,	in	fact.

In	return	for	these	shortcomings,	however,	the	digit-sum	check	offers	a	substantial	bonus.
The	digit	 sum	will	not	only	 tell	you	 if	your	 answer	 is	wrong;	 it	will	 also	 tell	you	how	much	 it	 is

wrong.	If	 the	digit	sum	of	your	answer	is	4,	and	you	find	that	it	should	be	7,	then	you	know	that	one
digit	of	your	answer	is	too	low	by	exactly	3.	You	do	not	know	which	digit	it	is,	but	the	fact	that	one	digit
is	precisely	3	less	than	it	should	be	is	helpful	in	locating	the	error	quickly.

Checking	Subtraction

Our	general	rule	 is	 that	you	do	to	 the	digit	sums	of	 the	numbers	whatever	you	did	to	 the	numbers
themselves.	This	result,	reduced,	must	equal	the	digit	sum	of	the	correct	answer.

In	subtraction,	it	is	important	to	recall	that	for	digit-sum	purposes	we	can	consider	9	to	be	0.	This	is
because	you	will	sometimes	have	to	subtract	a	larger	digit	sum	from	a	smaller.	The	way	to	do	it	is	to	add
9	to	the	digit	sum	that	is	otherwise	too	small	to	be	subtracted	from.

Here	is	an	example	of	this	situation:

You	do	not	always	have	to	add	9	to	one	digit	sum	before	you	can	subtract	the	other.	About	half	the
time,	the	digit	sum	of	the	larger	number	will	be	as	large	as	or	larger	than	the	digit	sum	of	the	smaller
number.	In	this	case,	of	course,	you	do	not	tamper	with	either	digit	sum;	you	simply	subtract.

Another	way	to	tackle	the	check	when	the	situation	is	as	above	is	not	to	subtract	at	all.	You	will	get
exactly	the	same	result	by	adding	the	digit	sum	of	the	answer	to	the	digit	sum	of	the	smaller	number.
This,	 if	 the	 answer	 is	 correct,	must	 equal	 the	 digit	 sum	 of	 the	 larger	 number.	 Try	 it	 on	 the	 example
above:	The	digit	sum	of	the	answer	(4)	plus	the	digit	sum	of	the	smaller	number	(8)	is	12,	which	reduces
to	3.	This	is	the	digit	sum	of	the	larger	number.	Check.

Try	 these	 subtractions	and	check	 them	with	digit	 sums.	Remember	 to	work	 from	 left	 to	 right,	use
complements,	and	cancel	in	the	answer:

Because	finding	digit	sums	themselves	is	and	should	be	entirely	a	mental	process,	you	may	not	have
used	your	pad	recently.	Locate	 it	now	and	actually	do	the	above	problems	and	their	digit-sum	checks



before	uncovering	the	answers	below.

Now	compare	your	results	with	these:

If	you	have	any	difficulty	in	determining	how	the	digit	sums	of	the	numbers	in	each	problem	worked
to	produce	the	digit	sum	of	each	answer,	go	back	over	the	last	two	or	three	pages.	You	cannot	subtract	3
from	2—but	you	can	subtract	3	from	11,	or	add	3	and	8	to	get	11,	which	reduces	to	2.

Checking	Multiplication

In	checking	multiplication,	you	follow	 the	same	general	 rule	 that	applies	 to	all	digit-sum	proving:
since	you	multiplied	two	numbers,	you	multiply	their	digit	sums.	This	result,	reduced	to	a	single	digit,
must	equal	the	digit	sum	of	the	correct	answer.

Here	is	an	example:

Odd	 as	 it	 may	 seem	 to	 multiply	 digit	 sums	 together,	 that	 is	 just	 what	 you	 do	 in	 order	 to	 prove
multiplication.	As	you	can	see,	it	works.

Suppose,	though,	that	you	set	out	to	check	a	multiplication	and	found	this	result:

Something	is	wrong.	The	product	of	the	digit	sums	does	not	equal	the	digit	sum	of	the	product.
The	key	here	is	that	the	digit	sum	of	the	answer	is	1	higher	than	it	should	be—if	the	digit	sums	of	the

individual	answers	are	correct.	If	the	digit	sum	of	the	answer	is	1	higher	than	it	should	be,	then	one	digit
of	the	answer	is	1	higher	than	it	should	be,	too.

Does	this	help	you	locate	the	error	more	quickly	than	you	otherwise	would?	Try	it	and	see.	One	digit
of	the	answer	is	exactly	1	higher	than	it	should	be.

Try	the	two	following	examples	on	your	pad,	covering	the	answers	below	with	the	pad	until	you	are
finished.	Work	from	left	to	right	with	the	no-carry	method,	and	check	your	answers	with	digit	sums:



In	order	to	check	your	answers	to	these	problems,	of	course,	you	multiply	the	digit	sums	and	reduce.
Here	are	the	results:

Don't	forget	that	when	any	digit	is	multiplied	by	0,	the	result	is	0.	So	if	the	digit	sum	of	either	of	the
multiplied	numbers	is	0	(or	9)	the	digit	sum	of	the	answer	must	be	0.	For	instance:

In	a	case	like	this,	keep	in	mind	that	despite	the	apparent	extra	dangers	of	multiplying	by	0	(which
would	seem	to	permit	any	digit	sum	at	all	for	the	other	number	without	changing	the	final	check	figure),
the	answer	to	the	problem	must	also	have	a	digit	sum	of	0	in	order	to	check	out.	So	it	is	as	accurate	as
any	other	digit-sum	proof.

Checking	Division

When	we	 come	 to	 checking	division	with	digit	 sums,	we	have	 to	use	 a	 special	 application	of	 the
general	 rule.	 Instead	of	 trying	 to	divide	 the	digit	sum	of	 the	divider	 into	 the	digit	sum	of	 the	number
divided,	 work	 the	 process	 in	 reverse.	Multiply	 the	 digit	 sum	 of	 the	 divider	 by	 the	 digit	 sum	 of	 the
answer.	This,	reduced,	should	equal	the	digit	sum	of	the	number	divided.

The	reason	for	this	special	handling	is	illustrated	by	the	following	example:

Check:	4	x	8	is	32,	which	reduces	to	5.	This	is	the	digit	sum	of	the	number	divided.
You	can	easily	see	the	trouble	you	would	have	trying	to	divide	the	digit	sum	of	the	divider	(8)	into

the	digit	sum	of	the	number	divided	(5)	and	produce	any	rational	whole-digit	result.	The	reason	for	this
lies	in	the	special	reduction	of	digit	sums,	which	pretends	(for	digit-sum	purposes)	that	10	is	1,	that	14	is
5,	and	 that	9	 is	0.	The	system	works	perfectly	 if	you	multiply	as	outlined	above,	but	cannot	possibly
work	if	you	try	to	divide.

If	there	is	a	remainder	in	the	answer	to	the	division,	add	one	more	step.	First	multiply	the	digit	sums
of	the	divider	and	the	answer,	as	before.	Now,	however,	add	the	digit	sum	of	the	remainder.	This	total,
reduced,	should	equal	the	digit	sum	of	the	number	divided.

Here	is	how	it	works:



Check:	2	x	5	is	10,	which	reduces	to	1.	1	plus	2	is	3,	which	is	the	digit	sum	of	the	number	divided.
Right.

Now	try	 these	problems,	using	your	pad	 to	cover	 the	correct	solutions	as	you	always	do.	Caution:
Any	digit	multiplied	by	0	must	give	0.

The	 illustrations	 below	 will,	 as	 always,	 be	 in	 shorthand	 division.	 Look	 at	 them	 after	 you	 have
finished	your	practice.

Check:	1	x	8	is	8.	Right.	Problem

Check:	0	x	8	is	0.	0	plus	3	is	3.	Right.

This	is	all	there	is	to	know	about	digit-sum	checking.	The	back-up	check	in	the	next	chapter	works
the	same	way,	but	the	check	figures	will	be	quite	different.
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ACCURACY:	THE	BACK-UP	CHECK

HE	digit-sum,	or	“casting	out	nines,”	method	is	the	quickest	and	easiest	way	to	check	any	problem.
Once	 you	 become	 fully	 accustomed	 to	 it,	 you	 will	 find	 yourself	 checking	 a	 problem	 about	 as

quickly	as	you	could	read	it	over.
It	is	not,	however,	completely	foolproof.	The	last	chapter	explained	the	types	of	errors	to	which	it	is

quite	blind.	As	someone	once	pointed	out,	the	digit-sum	method	will	tell	you	that	a	problem	is	wrong,
but	it	will	not	tell	you	for	sure	that	it	is	right.

This	chapter	explains	how	to	“cast	out	elevens.”	This	is	a	little	slower	but	inherently	more	accurate
than	casting	out	nines.	In	cases	of	critical	accuracy,	some	experts	advise	using	both	methods.	You	can
easily	 do	 one	 right	 after	 the	 other	 in	 much	 less	 time	 than	 it	 would	 take	 to	 check	 by	 conventional
methods,	and	 if	both	your	digit-sum	and	your	“elevens”	 results	check	out,	you	can	be	quite	sure	you
have	a	perfect	answer.

Casting	out	elevens,	or	simply	“elevens”	as	we	will	call	it,	works	on	precisely	the	same	check-figure
method	as	does	casting	out	nines.	In	fact,	adding	up	the	digits	is	really	only	casting	out	nines	because
the	proof	of	a	number's	divisibility	by	nine	 is	 the	addition	of	 its	digits.	 If	 the	 sum	 is	nine	 (or	0),	 the
number	is	exactly	divisible	by	nine.	Any	other	result	is	the	remainder	you	will	have	after	dividing	by
nine.

Both	casting	out	nines	and	casting	out	elevens	are	merely	special	(and	convenient)	applications	of	a
general	 rule.	 You	 could	 check	 a	 problem	 by	 “casting	 out”	 any	 number	 at	 all.	 You	 could	 find	 the
remainder	 of	 each	 number	 after	 dividing	 it	 by	 four,	 say,	 and	 use	 these	 remainders	 as	 check	 figures.
Nines	and	elevens	are	merely	the	easiest	numbers	to	cast	out	 that	also	depend	for	their	divisibility	on
every	digit	in	the	number.

This	 use	 of	 a	 division-remainder	 is	 not	 as	 odd	 as	 it	 might	 sound	 at	 first.	 If	 you	 add	 a	 series	 of
numbers	exactly	divisible	by	four,	then	their	total	must	obviously	be	divisible	by	four.	If	one	of	those
numbers	has	a	remainder	of	two	after	a	division	by	four,	then	the	answer	must	also	have	a	remainder	of
two	after	a	division	by	four.	If	you	multiply	two	numbers	each	of	which	is	exactly	divisible	by	seven,
then	their	product	must	also	be	exactly	divisible	by	seven.

When	the	numbers	are	not	exactly	divisible	by	whatever	number	you	use	for	your	check	figure,	then
the	remainders	of	each	number	get	carried	along	through	the	arithmetic	too,	and	once	you	do	to	these
remainders	 whatever	 you	 did	 to	 the	 numbers	 themselves,	 they	 must	 come	 out	 in	 exactly	 the	 same
relationship	to	the	remainder	of	the	answer.

In	 order	 to	 get	 a	 clearer	 understanding	 of	 what	 is	 behind	 this	 general	 method	 of	 checking,	 try
“casting	out”	the	fives	in	the	following	example.	That	 is,	use	as	a	check	figure	the	remainder	of	each
number	after	dividing	it	by	five:

Five-remainder	of	answer:	1.	Right.



Note	that	in	none	of	these	check	figures	do	we	count	the	answer	to	any	division	by	the	“base”	of	our
check	figure.	It	is	only	the	remainder	we	watch—because	the	remainders	must	stay	in	order	through	the
calculations.	If	the	remainders	do	not	check	out,	we	know	the	answer	is	wrong.?

As	a	general	exercise	in	number	sense,	try	“casting	out”	the	sevens	in	the	next	example.	Your	check
figure	in	each	case	is	now	the	remainder	after	dividing	by	seven,	and	you	use	the	check	figures	just	as
you	would	use	digit	sums:

Cover	 up	 the	 explanation	 below	 with	 your	 pad	 while	 you	 do	 this	 problem	 (from	 left	 to	 right,
canceling	in	the	answer)	and	then	check	your	results	by	dividing	each	number	by	seven	and	using	only
the	remainder	as	your	check	figure.	Handle	the	check	figures	just	as	you	would	digit	sums.

Here	is	the	working:

Check	figure	of	answer:	4

The	one	weak	point	 of	 casting	out	 any	 single-digit	 number	 for	 checking	purposes	 is	 that	 any	one
digit	in	your	answer	that	happens	to	wrong	by	the	exact	size	of	the	digit	you	are	casting	out	will	not	be
caught.	“Casting	out”	(or	dividing	by)	a	two-digit	number	is	by	nature	more	accurate.	The	easiest	two-
digit	number	to	cast	out—which	also	depends	on	every	digit	in	the	number	when	casting	it	out,	unlike
ten	 for	 example—is	 11.	There	 are	 three	 different	ways	 to	 test	 divisibility	 by	 11,	 or	 to	 determine	 the
remainder	after	a	division	by	11	to	use	as	a	check	figure.	None	of	them	is	quite	as	simple	as	adding	up
the	digits	(which	casts	out	nines),	but	with	a	little	practice	it	goes	quite	fast.

Dividing	By	Eleven

In	your	work	with	numbers	in	the	past,	you	may	have	learned	to	recognize	numbers	exactly	divisible
by	eleven	because	of	the	pattern	they	form.?

All	two-digit	numbers	divisible	by	eleven,	for	instance,	are	paired	digits—from	11	through	99.
For	 two-digit	 numbers,	 then,	 you	 can	 quickly	 get	 the	 elevens-remainder	 by	 subtracting	 from	 the

number	(mentally)	the	next	lower	number	with	paired	digits.	Here	are	some	examples:

Note	with	special	care	that	next-to-last	example.	When	you	cast	out	elevens,	nine	is	no	longer	“0.”
Nine	is	“0”	only	for	digit-sum	purposes.	Both	nine	and	ten	are	check	figures	you	will	use	when	casting
out	elevens.	When	you	cast	out	elevens,	eleven	becomes	0.	Since	you	are	using	 remainders	as	check
figures,	within	the	check	system	the	number	you	cast	out	becomes	0.

The	check	figure	of	88,	when	you	cast	out	11’s,	is	0.	The	check	figure	of	98	is	ten.	The	check	figure
of	97	is	nine.	Don't	forget	and	call	it	0.



Numbers	 from	 100	 to	 999	 also	 form	 a	 particular	 pattern	 when	 exactly	 divisible	 by	 11.	 The	 two
“outside”	digits	of	any	three-digit	number	will	(when	added)	equal	the	“middle”	digit	or	else	exceed	it
by	11—if	the	number	is	divisible	by	11.	In	other	words,	a	three-digit	number	is	exactly	divisible	by	11	if
the	sum	of	the	first	and	third	digits	equals	the	middle	digit	or	else	exceeds	it	by	11.

Here	are	some	examples:

At	this	point,	the	pattern	becomes	more	of	a	figuring	job	and	less	an	obvious	shape	you	can	“scan”
as	you	glance	at	the	number.	The	above	examples,	particularly	if	you	test	them	out	by	dividing	with	11
and	 watching	why	 the	 patterns	 form	 as	 they	 do,	 is	 an	 excellent	 exercise	 in	 number	 sense.	 Just	 as
important,	however,	they	lead	to	two	general	rules	for	determining	11’s	remainders.

Numbers	divisible	 by	11	 continue	 to	 form	patterns,	 but	more	 complicated	ones,	 as	 the	number	of
digits	goes	above	three.	The	patterns,	however,	are	the	reasons	why	the	rules	work.	Try	the	first	rule	on
the	above	numbers	to	gain	some	feeling	of	why	it	works.

Odd	and	Even	Digits

A	quick	way	to	extract	a	check	figure	based	on	division	by	11	is	to	subtract	the	total	of	all	the	digits
in	even	places	(starting	from	the	right)	from	the	total	of	all	the	digits	in	odd	places.

In	the	first	example	above,	the	only	even-placed	digit	is	9.	(Even,	of	course,	means	divisible	by	two.)
The	first	and	third,	or	odd,	digits	(starting	from	the	right)	are	1	and	8.	These	total	9.	9	from	9	is	0.	The
11’s	remainder	is	0.

In	deciding	“odd”	and	“even”	places,	you	always	start	from	the	right.	This	is	the	only	place	in	the
entire	 book	 where	 you	 are	 permitted	 to	 read	 a	 number	 from	 right	 to	 left,	 but	 you	 have	 to	 for	 this
purpose.

In	the	last	example	above,	the	only	even-placed	digit	is	0.	The	total	of	the	two	odd-placed	digits	(5
and	6)	 is	11.	Perhaps	you	can	guess	 that,	 since	11	 is	0	 for	11’s-remainder	purposes,	you	are	 in	effect
subtracting	0	from	0—or	if	the	middle	(even)	digit	were	2,	you	would	be	subtracting	0	from	2.

If	you	have	any	trouble	remembering	whether	“even”	or	“odd”	comes	first—is	to	be	subtracted	from
the	 other—just	 recall	 that	 E	 (for	 even)	 appears	 in	 the	 alphabet	 before	 0	 (for	 odd).	 In	 professional
memory-expert	circles	this	is	called	a	mnemonic	key.	After	a	few	days’	disuse,	such	a	key	can	be	very
useful.

Here	is	how	this	technique	works	with	a	few	numbers	you	already	can	“feel”:

In	order,	here	is	the	working:
The	even-placed	digit	(counting	from	the	right)	in	23	is	2.	2	from	3	is	1.	This	is	the	11’s	remainder.
In	the	number	46,	you	subtract	4	from	6	and	find	the	check	figure	2.	Test	this	against	dividing	46	by

11	and	finding	the	remainder.
For	308,	the	even-placed	digit	is	0.	Subtract	this	from	the	sum	of	the	odd-placed	digits	(3	plus	8)	or

11.	The	result	is	11.	For	11’s-remainder	purposes,	this	is	0.
Do	the	last	two	on	your	own.



Now	one	complication	creeps	in.	Sometimes,	you	will	find	that	the	total	of	the	even-placed	digits	is
greater	than	the	total	of	the	odd-placed	digits—and	not	always	by	an	exact	11,	which	we	consider	to	be
0.	Consider:

The	only	even-placed	digit	is	9.	The	total	of	the	odd-placed	digits	is	7.	You	cannot	subtract.
But,	as	you	might	suspect	in	this	system,	you	can	add	11	to	that	7	and	then	subtract.	7	plus	11	is	18.

18	minus	9	is	9.
The	 rule	 is	 this:	When	 the	 total	 of	 your	 even-placed	 digits	 is	 smaller	 than	 the	 total	 of	 your	 odd-

placed	digits,	add	11	to	the	total	of	the	odd-placed	digits	and	then	subtract.
This	method	works	on	numbers	of	any	length.	In	general,	it	is	most	useful	for	numbers	of	three,	four,

and	 five	 digits.	Above	 that,	 another	method	will	 become	more	 useful.	 First,	 however,	 reinforce	 your
understanding	of	the	even-from-odd	method	by	trying	it	on	the	following	numbers:

The	11’s	remainders	of	these	four	numbers	are,	in	order,	10,	8,	1,	and	10.
The	 even-from-odd	 technique	 is	 useful	 primarily	 for	 numbers	 in	 which	 you	 can	 spot	 the	 even

numbers	 and	 hold	 their	 total	 in	 your	 mind	 while	 adding	 the	 odd	 numbers,	 then	 (after	 adding	 11	 if
necessary)	subtract.	The	optimum	size	for	rapid	“scanning”	(after	some	practice)	is	four	or	five	digits.
For	longer	numbers,	still	a	third	alternative	becomes	most	useful.

Continuous	Subtraction

For	 any	 number,	 no	matter	 how	many	 digits	 it	 contains,	 there	 is	 a	 technique	 for	 finding	 the	 11’s
remainder	in	one	continuous	process	from	left	to	right.	It	is	not	(alas)	quite	as	much	of	a	snap	as	adding
up	digit	sums,	but	it	is	as	simple	as	we	can	make	it.	Once	you	really	learn	the	technique,	you	will	find	it
amazingly	swift.

The	method	is	to	subtract	the	first	digit	from	the	second,	this	result	from	the	third,	this	result	from
the	 fourth,	 and	 so	on	 through	 the	very	 end	of	 the	number.	 If	 any	 succeeding	digit	 is	 too	 small	 to	be
subtracted	from,	add	11	and	then	subtract.

Notice	how	it	works	on	a	simple	example:

Start	by	subtracting	1	from	3.	Answer,	2.	Now	subtract	 this	answer	from	the	next	digit:	2	 from	4.
Answer,	2.	Test	the	correctness	of	this	11’s	check	figure	by	finding	the	remainder	by	the	even-from-odd
method:	3	from	the	sum	of	1	and	4	is	also	2.

Try	the	continuous	subtraction	technique	on	this	number:

Working	from	the	 left,	 the	process	goes:	1	from	3	 is	2,	 from	5	 is	3,	 from	7	 is	4,	 from	9	 is	5.	11’s
remainder,	5.	Verify	it,	if	you	wish,	by	subtracting	the	total	of	the	even-placed	digits	from	the	total	of
the	odd-placed	digits:	7	plus	3	is	ten.	9	plus	5	plus	1	is	15.	10	from	15	is	5.

So	far,	continuous	subtraction	seems	almost	as	easy	as	digit	sums.	Now,	however,	try	it	on	the	same
number	reversed:



To	start	with,	you	cannot	subtract	9	from	7.	First	you	must	add	11	to	the	7,	then	subtract:	9	from	18
is	9.	This	9,	in	turn,	cannot	be	subtracted	from	5.	It	can,	however,	be	subtracted	from	5	plus	11:9	from
16	is	7.	Once	more,	you	have	to	add	11	to	the	3	before	you	can	subtract:	7	from	14	is	7.	Adding	11	to
the	final	1,	you	find	that	7	from	12	is	5.	The	11’s	remainder	is	5.

This	number	is	an	extreme.	On	the	average,	you	have	to	adjust	with	an	extra	11	in	about	half	of	the
digits,	not	all	of	them.	A	more	typical	process	would	go	like	this:

Here	is	how	it	goes:	4	from	6	is	2,	from	12	(1	plus	11)	is	10,	from	18	(7	plus	11)	is	8,	from	9	is	1,
from	8	is	7.	11’s	remainder,	7.

Take	special	care	to	go	through	any	zeros	at	the	end	of	the	number.	Zeros	after	a	decimal	point	do
not	 count	 (unless	 followed	 by	 another	 digit),	 but	 zeros	 before	 a	 decimal	 must	 be	 included	 in	 your
calculation.	For	instance:

You	can	“feel”	what	 the	11’s	remainder	of	 this	 is	by	mentally	subtracting	the	next-lower	 two-digit
number	with	paired	digits:	99	from	100	is	1.	Continuous	subtraction,	for	demonstration,	would	go	like
this:	1	from	11	(0	plus	11)	is	10,	from	11	(0	plus	11)	is	1.

Use	of	Complements

If	you	have	learned	your	complements	thoroughly,	you	will	find	that	they	can	speed	up	this	process.
You	subtract,	of	course,	by	adding	the	complement	of	the	number	to	be	subtracted	to	the	number	from
which	you	are	subtracting—if	the	number	to	be	subtracted	is	larger	than	the	other.

You	can	make	a	routine	of	this	for	continuous	subtraction,	with	the	extra	little	kicker	that	you	add
one	extra	1	each	time	you	use	a	complement.	This	gives	the	same	result	as	adding	11.

Try	this	technique	on	this	number:

Complement-kicker	subtraction	goes	like	this:	Complement	of	8	(2)	plus	4	plus	1	is	7;	complement
(3)	plus	2	plus	1	 is	6;	 complement	 (4)	plus	5	plus	1	 is	 10;	 (no	 complement)	 plus	3	plus	1	 is	 4.	 11’s
remainder,	4.

Checking	Addition

Except	 that	 you	 extract	 your	 check	 figures	 in	 a	 different	 fashion,	 proving	your	 answers	with	 11’s
works	 precisely	 the	 same	way	 as	 checking	 with	 digit	 sums.	 Find	 your	 11’s	 remainders,	 do	 to	 them
whatever	you	did	to	the	numbers,	and	the	result	must	equal	the	11’s	remainder	of	the	correct	answer.

When	adding,	you	add	the	check	figures,	reduce	if	need	be	by	casting	out	the	11’s	of	your	total	(you
can	no	longer	reduce	by	adding	the	digits,	remember;	that	is	for	digit	sums	only)	until	you	have	a	final
check	figure	of	10	or	less.	This	is	equal	to	the	11’s	remainder	of	the	answer.

Follow	the	checking	of	this	problem	step	by	step:



11’s	remainder	of	answer:	2	from	4	is	2	from	8	is	6	from	11	(0	plus	11)	is	5;	or	10	(8	plus	2)	from	15
(4	plus	0	plus	11	to	adjust)	is	5.

Try	this	one	on	your	pad:

Work	out	the	answer	and	check	it	with	11’s	before	comparing	your	results	with	this	explanation:
The	check	figure	of	638	is	0;	of	147	is	4;	of	269	is	5.	The	total	of	these	is	9.	The	correct	answer	is

1054,	which	has	a	check	figure	of	9:	1	from	11	(for	the	0)	is	10,	from	16	is	6,	from	15	is	9.	Or	the	even-
placed	digits	5	and	1	total	6,	from	4	plus	0	plus	11	(to	adjust)	is	6	from	15,	or	9.

Checking	Subtraction

In	subtraction,	just	as	in	using	digit	sums,	you	subtract	your	check	figures	to	see	if	the	result	equals
the	check	figure	of	your	answer.	If	the	check	figure	of	the	larger	number	is	smaller	than	the	check	figure
of	the	smaller	number,	add	11	to	it	before	subtracting.	If	you	prefer,	add	the	check	figures	of	the	answer
and	smaller	number;	this	must	equal	the	check	figure	of	the	larger	number.

Check	figure	of	answer:	9.

Try	this	one	on	your	pad	before	looking	at	the	answer	and	its	proof:

Remember	to	work	from	left	to	right	and	cancel	in	the	answer.
The	11’s	remainder	of	the	larger	number	is	5,	of	the	smaller	number	is	3.	3	from	5	is	2.	The	check

figure	of	the	correct	answer,	108352,	is	2.	Right.

Checking	Multiplication

You	 prove	 your	 multiplication	 answer	 by	 multiplying	 the	 check	 figures	 of	 the	 numbers	 you



multiplied	to	see	if	the	result—reduced	by	casting	out	11’s—equals	the	check	figure	of	your	answer.

Check	figure	of	answer:	3.	Try	it	yourself.

Now	carry	one	through	on	your	own:

Cover	the	answer	and	its	proof	with	your	pad	until	you	have	finished.
The	11’s	remainder	of	735	is	9.	The	check	figure	of	48	is	4.9	×	4	is	36,	which	reduces	(3	from	6)	to

3.	The	correct	answer	is	35280,	and	has	a	check	figure	of	3.

Checking	Division

You	recall	that	in	checking	division	with	digit	sums,	you	could	not	divide	the	digit	sums	even	though
you	had	divided	the	numbers.	This	is	inherent	in	all	check	figures	because	(with	the	two	remainders	we
use	as	check	figures)	either	9	or	11	is	“0.”

Just	 as	 in	 checking	with	 digit	 sums,	 you	 check	with	 11’s	 by	multiplying	 the	 check	 figure	 of	 the
answer	by	the	check	figure	of	the	divider—adding	the	check	figure	of	the	remainder,	if	any—and	seeing
if	this	equals	the	check	figure	of	the	number	divided.

Here	is	an	example:

The	check	figures	work	like	this:	11’s	remainder	of	answer	(0)	times	remainder	of	divider	(3)	is	0,
plus	 check	 figure	 of	 remainder	 (2)	 is	 2.	 The	 11’s	 remainder	 of	 the	 number	 divided	 is	 2.	 Everything
checks	out.

Try	this	one,	working	out	the	solution	in	shorthand	division	and	checking	it	by	casting	out	11’s:

Cover	the	explanation	with	your	pad	until	you	have	finished.
The	answer	is	248,	which	has	an	11’s	check	figure	of	6.	There	is	no	remainder.	The	check	figure	of

the	divider	is	4.	6	×	4	is	24,	which	reduces	(2	from	4)	to	2.	The	check	figure	of	the	number	divided	is
also	2.	Perfect.



Duplicate	Proofs

Several	times,	we	have	mentioned	the	advisability	in	critically	important	cases	of	double-checking.
Unlike	the	traditional	double-check	of	doing	the	problem	over	twice	in	opposite	directions,	the	use	of
both	 9’s	 and	 11’s	 gives	 an	 absolute,	 unquestioned	 proof	 of	 accuracy—completely	 divorced	 from	 the
human	possibility	of	multiplying	4	×	8	and	getting	28	three	times	in	a	row.

Here	is	one	final	example	of	division,	the	trickiest	both	to	solve	and	to	check,	worked	out	and	proved
in	both	ways:

Proof	with	9’s:	3	×	l	is	3,	plus	1	is	4.	Check	figure	of	number	divided	is	4.
Proof	with	11’s:	9	×	2	is	18,	which	reduces	(1	from	8)	to	7.	7	plus	10	is	17,	which	reduces	(1	from	7)

to	6.	Check	figure	of	number	divided	is	6.
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HOW	TO	USE	SHORT	CUTS

N	 THIS	 chapter	 we	 shift	 gears	 entirely,	 and	 learn	 how	 to	 build	 on	 our	 simplified	 arithmetic	 a
different,	but	very	useful,	system	of	conversion.
This	second	section	does	not	ignore	the	first.	Indeed,	the	swift	and	confident	working	of	these	new

principles	depends	very	much	on	a	smooth	and	automatic	handling	of	your	basic	number	combinations
—the	practical,	fast,	fully	integrated	system	of	speed	arithmetic	based	on	the	phenomenal	simplicity	of
the	modem	Japanese	abacus.

Before	going	on	to	the	short	cuts,	let	your	mind	range	back	over	what	you	have	learned.
In	complement	addition,	you	have	learned	to	add	from	left	to	right.	You	have	discarded	the	twenty

hardest	 digit	 combinations	 by	 using	 a	 complement	 instead	 of	 adding	 over	 ten.	 You	 have	 learned	 to
record	and	forget	tens	as	you	go	along,	picking	them	up	at	the	end	of	each	column.

In	 complement	 subtraction,	 you	 have	 learned	 never	 to	 subtract	 a	 larger	 digit	 from	 a	 smaller,	 but
instead	 to	 use	 a	 complement.	 You	 have	 learned	 to	 avoid	 the	 cumbersome,	 confusing	 system	 of
“borrowing,”	by	accomplishing	the	same	thing	in	the	answer	itself.	This	lets	you	work	from	left	to	right.

In	no-carry	multiplication,	you	have	learned	to	work	from	left	 to	right	too.	You	also	now	have	the
technique	for	producing	the	answer	swiftly	and	easily	without	carrying—without	juggling	a	number	of
digits	in	your	mind	at	the	same	time	or	stopping	to	make	notes	of	them	as	you	work.

In	 all	 three	 operations,	 your	 answer	 takes	 form	naturally	 in	 your	 head	or	 on	 the	 paper—just	 as	 it
takes	form	naturally	on	the	abacus.

In	 shorthand	division,	 you	have	 learned	 to	 combine	 the	 techniques	 of	 no-carry	multiplication	 and
complement	subtraction	with	the	European	“shorthand”	method	of	long	division,	shorten	it	still	further
in	several	respects,	and	get	your	answer	with	half	the	pencil	work	needed	in	traditional	long	division.
You	have	also	learned	a	simple	but	effective	secret	for	producing	your	next	answer	digit	in	a	flash	by
dividing	with	only	the	first	digit	of	the	divider,	raised	by	one,	and	adjusting	it	later	if	you	need	to.	This,
also,	has	been	adapted	from	abacus	theory.

This	entire	system	is	a	remarkably	fast	and	easy	approach	to	numbers,	once	you	fully	master	it.	But
it	also	lends	itself	so	beautifully	to	speeding	up	still	further	the	better	standard	short	cuts	that	you	can
compound	your	new	handling	of	figures	by	carrying	the	“abacus”	system	into	short	cuts.

The	approaches	of	the	two	methods	are	very	different.
Our	 simplified	 arithmetic	 is	 an	 integrated	 system.	 Standard	 short	 cuts	 are	 not.	 They	 consist	 of	 a

variety	 of	 tricks,	 mainly	 in	 converting	 problems	 to	 simpler	 forms,	 that	 apply	 to	 a	 wide	 variety	 of
problems	 but	 not	 to	 all	 of	 them.	 Further,	 they	 have	 never	 before	 been	 assembled	 into	 anything
resembling	a	unified	whole.

I	hope	 to	 show	before	 this	book	 is	 finished	 that	 the	more	useful	of	 the	 standard	short	 cuts	can	be
learned	 in	 relation	 to	 each	 other,	 so	 that	 you	 can	 reach	 for	 the	most	 effective	 in	 any	 particular	 case.
More	than	on	any	other	single	foundation,	this	“integrated”	approach	to	the	short	cuts	will	rest	on	the
firm	base	of	your	number	sense.

Perhaps	this	is	the	appropriate	time	to	explode	some	of	the	fables	about	number	short	cuts.	Valuable
short	cuts	there	are,	but	not	one	of	them	will	enable	you	to	multiply	38,657	by	49,956	in	ten	seconds	in
your	 head,	 without	 effort,	 and	 with	 perfect	 accuracy.	 History	 has	 been	 made	 by	 a	 number	 of
mathematical	geniuses,	but	 a	 thorough	 sifting	of	 the	 evidence	exposes	 the	 single	 secret	possessed	by
every	one	of	them.	It	is	a	secret,	alas,	beyond	most	of	us.



Jedidiah	Buxton,	the	illiterate	son	of	an	English	schoolteacher,	was	able	to	calculate	entirely	in	his
head	 the	 problem:	 “Multiply	 two	 times	 two	 140	 times,	 then	 assume	 that	 this	 answer	 is	 in	 quarter-
pennies	 and	 reduce	 it	 to	 pounds,	 shillings,	 and	 pence.”	His	 answer	was	 in	 39	 digits.	Oddly	 enough,
however,	 Buxton	 did	 not	 know	 very	much	 about	 arithmetic.	 His	methods	 were	 almost	 unbelievably
crude.	 Instead	 of	 multiplying	 by	 300,	 for	 instance,	 he	 would	 multiply	 by	 5,	 then	 20	 (in	 effect
multiplying	 by	 100,	which	 he	 could	 have	 done	 by	 adding	 two	 zeros),	 then	multiply	 the	 result	 by	 3.
Buxton's	 one	 secret	 was	 the	 basic	 secret	 of	 all	 the	 “mental	 calculators”	 of	 history—a	 staggeringly
complete	memory	 for	 figures.	This	enabled	him	 to	handle	 immense	numbers	 in	his	head,	even	doing
calculations	 that	 took	days	or	weeks,	 remembering	every	digit	 as	 if	 returning	 to	a	mental	blackboard
when	he	resumed	work	on	a	problem.

Thomas	Fuller	was	a	slave	who	showed	no	signs	of	his	unusual	gift	until	he	was	70,	a	little	after	the
American	Revolution.	Then	he	gave	demonstrations	on	the	order	of	finding	the	number	of	seconds	in	70
years,	17	days,	in	just	a	minute	and	a	half.	Zerah	Colburn,	the	son	of	a	Vermont	farmer,	started	at	eight.
His	father	took	him	on	an	exhibition	tour,	and	he	brought	a	skeptical	academic	audience	in	England	to
the	verge	of	tears	by	giving	the	16th	power	of	8	(8	used	as	a	multiplier	16	times)	faster	than	the	answer
could	be	written;	the	answer,	incidentally,	is	281,	474,	976,	710,	656.

The	point	to	these	stories	is	simply	this:	the	secret	possessed	by	every	mental	calculator	is	nothing
more	or	less	than	a	prodigious	memory	for	numbers.	Some	of	them	became	real	mathematicians;	others
never	learned	to	apply	their	mental	oddity	to	anything	more	serious	than	number	stunts	to	impress	paid
audiences.	In	some	cases,	their	actual	understanding	of	numbers,	as	such,	was	ludicrous.

For	most	 of	 us	who	have	 trouble	 remembering	what	 to	 “carry”	or	whether	or	 not	we	 “borrowed”
because	we	 had	 to	 deal	with	 another	 number	 in	 the	meantime,	 the	most	 fruitful	 approach	 is	 to	 strip
down	our	methods	to	the	simplest,	fastest,	and	easiest	techniques.

In	a	number	of	cases,	however,	there	is	a	way	to	“see	through”	a	seemingly	complex	problem—see
through	the	apparantly	unrelated	figures	and	reduce	them	to	a	simple,	sensible	relationship	that	we	can
almost	recognize	at	a	glance.	It	cannot	produce	an	exact	answer	to	every	problem;	instead,	it	picks	and
chooses,	 from	 the	many	problems	we	must	 solve,	 the	one-half	 to	 three-quarters,	 roughly,	 that	 can	be
solved	in	less	time	if	we	convert	them	to	other	forms	first.

The	classic	short	cuts	are	really	nothing	more	or	less	than	methods	of	conversion—conversion	from
one	form	into	another	form	entirely,	where	the	relationships	can	more	easily	be	seen	or	solved.

For	 instance,	 if	 faced	with	 the	problem	15	 	you	might	or	might	not	 recognize	 the	answer	at
once	as	3.	If	not,	and	if	you	were	trained	and	alert	to	conversion	possibilities,	you	would	note	that	15
doubled	is	30—a	far	simpler	divider.	Being	knowledgeable	about	short-cut	methods,	you	would	double
the	15	and	the	45	as	well	(to	keep	the	relationship	identical)	and	see	the	problem	as	30	 	This	can
be	nothing	but	3.

Most	short	cuts	are	basically	as	simple	as	that,	which	is	an	example	of	“proportionate	change.”
Another	example	we	have	mentioned	before	is	 the	shortcut	method	of	figuring	a	15%	tip.	The	15,

you	will	note,	is	the	same	as	the	15	in	the	last	paragraph.	But	in	this	case	most	experts	use	another	short
cut.	Start,	for	example,	with	a	meal	check	for	$4.00.	15	is	exactly	 	of	a	hundred	plus	½	of	that	tenth.
The	15%	tip	on	$4.00	then	is	40¢	( )	plus	20¢	( 	the	tenth),	or	60¢.

This	method	is	called	“breakdown.”
Could	 you	use	 the	method	we	 first	mentioned,	 proportionate	 change,	 to	 find	 the	 tip?	Yes,	 though

multiplication	works	in	a	different	fashion	from	division.	In	division	you	double	both	numbers	to	keep
the	relationship	the	same.	In	multiplication,	to	keep	the	relationship	the	same	you	must	cut	one	of	them
in	half	if	you	double	the	other.	½	×	2	is	1—so	the	problem	will	have	the	same	answer.

To	use	proportionate	change	on	this	tip,	you	would	double	the	15	to	30,	and	cut	the	$4.00	in	half	to



get	$2.00.	30%	of	$2.00	is	(3	×	2)	60¢	again.
Which	is	the	better	short	cut?	Neither.	Each	one	fits	certain	combinations	of	numbers	better	than	the

other	does,	and	it	is	helpful	to	know	both	so	you	can	select	the	easier	of	the	two	for	any	one	case.
This	 is	 the	central	 fact	about	 short	cuts.	There	are	 literally	hundreds	of	 short	cuts,	 from	 the	quick

method	of	squaring	a	number	ending	in	5	(when	did	you	last	have	to	square	a	number	ending	in	5?)	to
multiplying	 by	 11	 in	 one	 operation	 (a	 little	 more	 useful,	 but	 still	 pretty	 specialized).	 Of	 the	 many
available,	only	four	types	of	short	cut	are	really	applicable	to	enough	problems	to	be	worth	the	trouble
of	learning,	unless	for	the	reward	of	knowing	a	number	oddity	to	impress	people.

These	four	short	cuts	have	certain	similarities	and	certain	differences.	Learn	them	well,	learn	how	to
recognize	which	is	most	valuable	in	any	one	case,	and	you	can	add	to	your	already	advanced	handling
of	basic	numbers	the	extra	advantage	of	frequent	“overleaps”	in	lightning	calculation.

Dig	out	your	pad	again,	or	better	yet	get	a	fresh	one,	and	prepare	to	enter	another	fascinating	aspect
of	numbers.



I

13

BREAKDOWN

T	IS	hardly	likely	that	you	would	ever	multiply	a	number	by	ten	by	putting	down	the	number	with	ten
under	it,	and	multiplying	out	digit	by	digit	like	this:

Instead,	you	know	that	in	order	to	multiply	any	number	by	ten	you	simply	add	a	zero.	If	the	number
has	a	decimal	point	in	it,	you	move	the	decimal	point	to	the	right	instead	of	adding	the	zero.

984	×	10	is	9840.
653.92	×	10	is	6539.2.
Elementary	as	this	is,	the	principle	is	basic	to	many	of	the	short	cuts	in	number	work.	In	many	cases,

we	can	 save	 time	by	multiplying	or	dividing	a	number	by	 ten,	 a	hundred,	or	 even	a	 thousand	before
even	beginning	work.

In	division,	of	course,	you	remove	a	zero	(or	move	the	decimal	point	one	place	to	the	left)	in	order	to
divide	by	ten.

2390	divided	by	10	is	239.
718.64	divided	by	10	is	71.864.
In	 order	 to	 avoid	 any	 possible	 confusion,	 make	 sure	 you	 understand	 that	 any	 whole	 number	 is

presumed	 to	 have	 a	 decimal	 after	 it.	 We	 shall	 get	 more	 deeply	 into	 the	 subject	 in	 the	 chapter	 on
decimals,	but	for	the	moment	let's	point	out	that	75	can	be	considered	to	be	75.00.	Then,	if	we	divide	by
10,	we	move	that	presumed	decimal	one	place	to	the	left.	75	divided	by	10	is	7.5.

Each	digit,	you	remember,	increases	tenfold	in	value	as	it	moves	one	place	to	the	left.	So	to	multiply
by	a	hundred,	we	add	two	zeros	(ten	times	ten),	or	move	the	decimal	point	two	places	to	the	right.

984	×	100	is	98400.
653.92	×	100	is	65392.
When	dividing	by	a	hundred,	we	also	move	the	decimal	point	two	places—to	the	left.
984	divided	by	100	is	9.84.
653.92	divided	by	100	is	6.5392.	We	would	most	likely	round	it	off	to	6.54.
Undoubtedly	 none	 of	 this	 is	 new	 to	 you.	 It	 is	merely	 a	 refresher.	 But	 the	 refresher	 is	 important,

because	 the	more	 easily	 and	 automatically	 you	 can	 think	 this	 multiplication	 or	 division	 by	 ten	 or	 a
hundred,	the	more	quickly	and	confidently	you	will	handle	the	short	cuts	that	involve	such	division	or
multiplication	as	a	basic	part.

Our	second	step	into	the	breakdown	short	cut	is	through	another	obvious	technique	that	may	well	be
second	nature	to	you	already.

In	dealing	with	many	numbers,	you	probably	know	already	how	to	multiply	by	9	in	the	“round	off
and	adjust”	method.	Rather	than	multiplying	by	9,	you	multiply	by	10—and	subtract	1.

Compare	the	two	methods:



The	working	 in	 these	 two	 examples	 is	 not	 dramatically	 different,	 but	 they	 are	 cited	 to	 illustrate	 a
point	and	to	lead	into	more	sophisticated	examples.	Once	again,	for	the	sake	of	your	number	sense,	try
to	“feel”	the	identity	of	the	two	expressions	above	of	precisely	the	same	situation.

Just	as	you	probably	already	knew	this	special	dodge	in	handling	9,	it	is	likely	that	you	have	used	in
the	past	the	same	sort	of	approach	in	handling	numbers	very	near	100.

If	you	have	 to	multiply	238	by	99,	 surely	you	would	not	bother	 to	 set	up	 the	whole	problem	and
multiply	 it	 out	 line	 by	 line.	 You	 just	 subtract	 one	 238	 from	 a	 hundred	 238’s,	 as	 this	 comparison
demonstrates:

If	 you	were	 required	 to	multiply	 by	 101,	 on	 the	 other	 hand,	 you	would	 simply	 add	 one	 238	 to	 a
hundred	238’s.	This,	after	a	very	moderate	amount	of	practice,	you	easily	do	in	your	head.	After	a	few
tries,	you	should	be	able	to	“see”	the	answer	as	24038.

Not	very	often	is	your	work	as	extra-simple	as	multiplying	by	99	or	101.	But	the	principle	works	in	a
surprising	 variety	 of	 cases,	 and	 is	 the	 “round	 off	 and	 adjust”	 special	 subdivision	 of	 our	 first	 general
short	cut:	breakdown.

The	over-all	rule	for	breakdown	is	this:	break	one	of	your	numbers	down	into	two	easier-to-handle
numbers.

Thus	we	broke	9	down	into	10	and	1.
We	broke	99	down	into	100	and	1.
We	can	also—here	is	where	the	method	becomes	far	more	generally	useful—break	45	into	50	less	5.

5,	you	note,	is	exactly	 	of	50.	Or	we	break	44	down	into	40	plus	4—the	4	being	exactly	 	of	40.

Stop	for	a	moment	and	try	the	first	example:

It	is	especially	helpful	when	you	can	break	down	a	number	into	two	parts	of	which	one	is	an	even
fraction	of	the	other,	such	as	50	and	5.	You	cannot	always	do	this,	of	course,	which	is	why	we	also	use
other	short	cuts.



The	exact	breakdown	may	well	depend	on	the	relationship	between	the	numbers	to	be	multiplied.	In
some	cases	one	breakdown	will	make	sense,	in	other	cases	quite	a	different	breakdown.

Note	how	it	varies	in	these	two	cases:

Which	breakdown	of	18	might	you	use	in	the	first	example?	The	number	18	can	be	broken	into	12
plus	6	(½	of	12),	into	9	plus	9	(two	equal	parts),	into	20	minus	2	( 	of	20).

For	the	first	example,	the	most	convenient	breakdown	of	18	might	well	be	12	plus	6—because	most
of	us	have	dealt	enough	in	grosses	to	know	almost	by	instinct	that	12	×	12	is	144.	So	18	×	12	is	144	plus
½	of	144	(72)—which	we	can	see	as	216.

For	the	second	example,	however,	most	of	us	could	not	quickly	“see”	the	answer	to	62	×	12.	If	we
break	 down	 18	 into	 9	 plus	 9,	 we	 can	 quickly	 multiply	 62	 ×	 9	 and	 then	 add	 the	 answer	 to	 itself.
Furthermore,	we	can	multiply	by	9	using	10	minus	1.	This	is	two-step	breakdown.	Complex	as	it	may
seem	at	first	glance,	a	very	quick	and	simple	way	of	solving	this	example	would	be	to	handle	it	as	“620
minus	62—doubled.”

If	we	chose	the	third	breakdown,	our	number	work	would	be	surprisingly	similar	to	that	involved	in
the	second.	20	minus	2	is	identical	to	10	minus	1,	doubled;	only	the	order	of	operation	is	changed.

The	advantages	of	this	sort	of	breakdown	show	up	more	dramatically,	of	course,	in	longer	numbers.
Try	one	of	the	last	two	breakdowns	of	18	on	the	following	problem.	Use	your	pad	and	pencil:

Let	us	choose	the	(10	minus	1)	doubled	breakdown	for	18	in	this	case.	Here	is	how	the	work	should
look:

As	with	many	of	the	demonstrations,	the	short-cut	nature	of	the	method	is	not	as	striking	at	first	sight
as	you	will	find	it	in	actual	practice.	Often	you	will	use	almost	as	many	figures,	and	as	many	operations.
But	you	are	using	basically	simpler	combinations:	multiplying	by	10	instead	of	by	9;	subtracting	instead
of	doing	another	digit-by-digit	multiplication;	doubling	instead	of	adding	two	lines.

Just	for	comparison,	here	is	how	the	20	minus	2	breakdown	for	18	works	in	the	same	problem:

In	this	case,	it	is	presumed	that	you	can	jot	down	twice	any	figure	at	sight,	and	add	a	0	at	the	end	to
get	the	effect	of	multiplying	by	20.

There	is	virtually	no	limit	to	the	breakdowns	you	can	find.	You	can	break	down	a	number	into	two
parts	 that	add	up	 to	 the	original	number	(such	as	12	plus	6	 in	18,	or	10	plus	5	 in	15)	or	 two	parts	of



which	you	subtract	one	from	the	other	to	get	the	number	(such	as	100	minus	1	for	99,	20	minus	2	for	18,
60	minus	6	for	54).

How	would	you	break	down	81?	Depending	on	the	number	you	needed	to	multiply,	you	could	make
it	80	plus	the	original	number,	or	90	minus	 	of	the	product	(since	90	minus	9	is	81,	and	9	is	 	of	90).

Your	proportions	need	not	always	be	 .	They	can	be	½,	1/3,	¼,	or	any	other	convenient	fraction.
The	key	is	to	find	a	convenient	fraction,	or	there	is	no	sense	in	using	the	breakdown	method.

See	if	you	can	recognize	convenient	breakdowns	for	these	numbers:

Of	39,	we	can	make	40	minus	1.	Of	26,	we	would	make	25	plus	1.	In	another	short	cut,	incidentally,
you	will	 find	 a	 far	 easier	way	 to	 use	 a	 number	 such	 as	 25	 than	by	multiplying	by	2	 and	 then	5	 and
adding.	 77	 is	 obviously	70	plus	 	 of	 the	product,	while	63	 is	 70	minus	 	 of	 the	 product.	We	 can
tackle	125	in	several	ways;	for	this	use,	we	can	consider	it	100	plus	¼	of	the	product.	720	is	800	minus	

	the	product.
In	the	choice	of	short-cut	methods,	and	in	the	best	use	of	each,	you	have	great	flexibility.	There	is	no

substitute	for	number	sense	here,	for	it	is	in	finding	the	relationships	that	your	key	to	method	selection
lies.	There	are	so	many	variations,	so	many	slightly	different	approaches,	that	it	is	up	to	you	to	select	the
fastest	and	easiest	in	each	case.

Try	these	problems	on	your	pad,	finding	an	appropriate	breakdown	for	each:

We	have	already	covered	the	most	convenient	breakdown	for	15.	It	was	inserted	here	to	remind	you
of	 the	 repetitive	character	of	many	useful	breakdowns.	 In	multiplying	895	by	10	and	adding	half	 the
product,	you	would	think	simply	“8950,	plus	4475,	is	13425.”

In	dealing	with	473	×	38,	you	run	into	another	fraction	in	your	breakdown.	38	is	2	less	than	40.	2,	in
turn,	is	 	of	40.	So,	to	multiply	by	38,	you	can	multiply	by	40	and	subtract	 	of	the	product.	 	 is
just	½	of	 .	You	do	it	like	this:

Note	two	instructive	points	about	this	example:
First,	you	can	(and	should)	jot	down	the	answer	to	40	times	473	from	left	to	right	without	copying

the	original	number.	It	is	simply	4	×	473,	digit	by	digit	in	the	no-carry	method,	plus	one	zero.
Second,	you	can	(and	should)	 jot	down	from	left	 to	right	 the	division	of	18920	by	20	without	any

strain.	You	simply	divide	by	2	and	start	one	place	to	 the	right	when	you	put	down	the	answer,	which
also	divides	automatically	by	10.	The	combination	results	in	a	division	by	20.

The	third	breakdown,	682	×	27,	breaks	down	the	27	into	30	minus	 	the	product.	Here	again,	you
multiply	682	by	3	as	you	jot	down	the	result	and	add	one	zero	to	make	the	multiplication	by	30	instead
of	by	3.	Under	it	you	write	the	same	digits	one	place	to	the	right,	without	the	zero,	which	automatically
divides	by	10,	and	then	subtract:



Short	cuts	are	a	variety	of	methods,	not	a	single	system.	There	are	many	problems	to	which	you	can
find	short	cuts,	others	to	which	you	cannot,	without	doing	more	work	than	simplified	arithmetic	would
involve.	It	comes	down	to	recognizing	the	short	cut	that	makes	sense	in	a	flash,	because	if	you	brood	for
more	than	an	instant	or	two	on	whether	or	not	to	use	a	short	cut	at	all,	in	that	time	your	new	systems	of
basic	arithmetic	could	have	finished	most	of	the	problem.

Try	recognizing	breakdown	possibilities	in	these	numbers:

Some	of	these	begin	to	pioneer	new	breakdown	possibilities	that	we	have	mentioned	but	not	yet	fully
demonstrated.	Yet	your	own	good	number	sense	should	show	you	interesting	ways	in	each	case.

50,	for	instance,	is	exactly	half	of	100.	It	is	entirely	up	to	you	whether	you	find	it	easier	and	quicker
to	multiply	by	5	and	add	a	zero,	or	to	add	two	zeros	and	divide	by	2.	Simple	as	it	may	seem,	this	is	a
perfectly	valid	short	cut.

45	 has	 been	mentioned	 before,	 as	 50	 times	 the	 number,	 less	 	 of	 the	 product.	 If	 you	 have	 not
noticed	 it	 before,	 45	 is	 also	 30	 times	 the	 number,	 plus	 ½	 the	 product.	Which	 is	 better?	 Neither.	 It
depends	on	the	relationships	of	the	numbers	with	which	you	are	working,	and	on	your	own	preferences.

24	is	a	new	one.	24	is	20	times	the	number	(double	it	and	add	a	zero),	plus	 	of	the	product.	Jotting
down	 	is	simple:	double	the	product,	but	start	one	place	to	the	right.	This	divides	by	10	and	multiplies
by	2	at	the	same	time.	If	this	seems	at	all	obscure,	follow	the	working	in	this	example:

This	breakdown	example	emphasizes	the	value	we	put	at	the	beginning	of	this	chapter	on	being	able
to	handle	multiplication	and	division	by	10,	100,	 etc.,	without	hesitation	or	 strain.	This	 is	 the	key	 to
handling	breakdowns	such	as	 the	one	above	of	doubling	a	number	and	 then	doubling	 the	 result—but
multiplying	by	10	in	the	first	case	and	dividing	by	10	in	the	second.

Our	next	number	is	33.	This	is	obviously	30,	plus	 	of	the	product.
63	 is	 based	 on	 the	 opposite	 principle.	 63	 can	 easily	 be	 broken	 down	 into	 70,	 minus	 	 of	 the

product.
82	is	a	bit	different.	We	will	break	82	down	into	80,	plus	 	of	the	product.	This	is	not	difficult	to

handle.	You	simply	divide	the	product	by	4,	but	start	writing	your	answer	one	extra	place	to	the	right.
This	divides	by	4	and	by	10	all	at	once—dividing	by	40.	See	how	it	works:



In	a	division	such	as	the	one	above,	you	have	an	automatic	running	check	on	your	accuracy	because
the	division	must	come	out	even.	If	it	does	not,	you	know	you	have	made	a	mistake.	This	is	because	two
whole	 numbers,	 when	 multiplied,	 must	 give	 a	 whole-number	 answer.	 So	 if	 your	 division	 has	 a
remainder,	you	are	warned	to	recheck	it.

There	is	no	clear-cut	advantage	in	this	particular	problem	to	breaking	down	82	in	the	fashion	we	did,
rather	 than	 into	80	plus	 twice	 the	original	number	(which	 is	merely	a	simpler	expression	of	what	our
regular	multiplication	does).	In	one	case	you	divide	by	4	and	10;	in	the	other	you	double.	If	the	product
of	80	×	5555	were	part	of	the	problem,	however,	it	would	be	very	tempting	to	divide	the	first	product	of
44440	by	4	and	10	 to	get	 the	second	 line.	Once	again,	which	breakdown	 is	best	depends	on	how	the
numbers	relate	to	each	other.

By	and	large,	the	major	value	of	breakdown	is	in	permitting	you	to	use	easier-to-handle	operations
and	digits.	Breaking	down	78	into	80	minus	twice	the	other	number,	for	instance,	lets	you	substitute	a
simple	doubling	for	a	multiplication	by	8	at	the	second	step.

Breakdown—like	any	short-cut	technique—is	valuable	to	you	only	as	you	learn	to	handle	it	easily
and	well.	Do	not	dismiss	 it	out	of	hand	 if	your	 first	 reading	of	a	particular	problem	leaves	you	more
baffled	than	enlightened,	but	on	the	other	hand	do	not	force	yourself	 to	use	a	particular	short	cut	 that
after	a	few	tries	does	not	spring	into	your	mind	naturally	and	obviously.	The	purpose	is	to	save	work,
not	make	it.

Longer	Numbers

The	easiest	numbers	 to	break	down	are	usually	 those	with	 two	digits.	But	 this	does	not	mean	 that
much	longer	numbers	cannot	also	be	broken	down,	frequently	with	dramatic	results.

Take	the	multiplier	297,	for	instance.	The	nearest	one-digit	number	that	can	form	the	base	of	your
breakdown	is	300.	The	difference	between	297	and	300	happens	to	be	a	very	convenient	 	of	the
product.

Note	 the	 same	 feature	 in	 the	 numbers	 396—495—594.	 For	 each	 of	 them,	 you	 can	 substitute	 a
multiplication	 by	 the	 next	 even	 hundred	 and	 subtract	 	 of	 the	 product,	 instead	 of	 multiplying
through	by	three	digits	and	then	adding	all	three	lines.

In	 reverse,	 the	 same	 short	 cut	 is	 possible	 with	 303—which	 you	 have	 probably	 used	 in	 the	 past
without	special	instruction.	There	is	no	need	to	multiply	twice	by	3;	merely	copy	the	first	product	again,
two	places	to	the	right,	and	add.

Now	that	you	have	learned	to	add	or	subtract	 	or	 ,	 	or	 ,	and	so	on,	the	possible	range
becomes	 considerably	 larger.	 You	might	 handle	 306,	 for	 instance,	 by	 doubling	 the	 first	 product	 two
places	to	the	right,	rather	than	multiplying	by	6.

As	 the	 breakdowns	 become	more	 complex,	 so	 does	 the	 saving	 of	 time	 in	 using	 them.	When	 you
break	down	a	three-digit	number	into	two	one-digit	parts,	you	save	a	full	digit	in	your	work	while	at	the
same	time	performing	a	basically	simpler	operation.

For	 instance,	 consider	 the	multiplier	784.	There	 is	no	 simple	 relationship	between	700	and	84,	 so



you	do	not	break	it	down	that	way.	784	is	just	16	less	than	800,	however,	and	16	is	exactly	 	of	800.
So,	instead	of	multiplying	digit	by	digit	by	784,	we	can	multiply	by	800	and	subtract	 	of	the	product.
Now	the	short	cuts	become	visibly	dramatic:

In	 finding	 the	 first	 line	 of	 the	working	 figures	 for	 the	 breakdown	 example,	 you	 do	 not	 copy	 the
problem	itself.	You	should	be	able	to	work	without	copying	the	problem	with	any	single-digit	multiplier
if	you	have	been	working	conscientiously	on	your	no-carry	multiplication.	The	second	line	of	working
figures,	of	course,	is	merely	the	first	line	doubled—two	places	to	the	right.

Since	you	are	beginning	 to	 find	 it	more	and	more	natural	 to	multiply	by	any	single	digit,	you	can
extend	your	breakdowns	into	any	number	of	tenths	or	hundredths.	The	number	558	might,	at	first	sight,
not	show	any	exciting	breakdown	possibilities.	58	bears	no	reasonably	simple	proportion	to	500.	558	is
42	 less	 than	600.	The	key	 is	 to	 look	 at	 the	42	 and	 the	6	 in	 600,	 and	note—6	×	7	 is	 42.	So	you	 can
multiply	any	number	by	558	by	first	multiplying	with	600	and	then	subtracting	 —which	you	do	by
multiplying	the	first	product	by	7	and	putting	down	the	answer	two	places	to	the	right.

Choosing	Multipliers

In	all	of	our	demonstrations	so	far,	we	have	broken	down	the	bottom	number	of	the	problem—the
one	normally	considered	to	be	 the	multiplier.	Except	when	problems	are	set	up	for	us	 in	 this	fashion,
there	is	of	course	no	real	“multiplier”	and	“number	multiplied.”	In	actual	business	or	personal	life,	we
simply	need	to	multiply	 two	numbers	 together,	and	it	 is	up	to	us	 to	decide	which	we	will	 treat	as	 the
multiplier.

The	 reason	 this	 fact	 is	 worth	 special	 attention	 is	 that	 you	 can	 break	 down	 either	 number	 of	 a
multiplication.	As	you	start	a	particular	problem,	glance	at	both	numbers	 for	breakdown	possibilities.
The	one	you	break	down	becomes	your	multiplier.

For	 example,	 you	might	 face	 the	 problem	 69	 ×	 58.	A	 quick	 look	 at	 69	 shows	 you	 that	 it	 can	 be
broken	down	 into	70,	minus	1.	58	can	be	broken	down,	but	not	nearly	 as	 easily.	So	pick	69	as	your
multiplier.

Mixed	through	the	various	examples	so	far	have	been	two	different	methods	of	breakdown.	One	is
the	special	case	called	“rounding	off	and	adjusting,”	in	which	you	choose	a	convenient	round	number
and	then	add	or	subtract	the	other	number	or	a	simple	multiple	of	it	to	adjust.	69	is	an	example	of	this.
So	might	be	68,	since	it	is	easier	to	multiply	by	70	and	then	subtract	twice	the	other	number	than	it	is	to
multiply	it	first	by	6	and	then	by	8	and	then	add.

The	 second	 method	 is	 rounding	 off	 and	 adjusting	 by	 a	 fraction	 of	 the	 product	 of	 your	 first
multiplication,	 rather	 than	 by	 the	 other	 number.	 For	 63,	 you	multiply	 by	 70	 and	 subtract	 	 of	 the
product.	For	392,	you	multiply	by	400	and	subtract	 	of	the	product.

This	difference	should	be	crystal	clear.	In	the	first	case,	your	difference	is	adjusted	in	terms	of	the
number	multiplied.	In	the	second	case,	your	difference	is	adjusted	in	terms	of	the	product	of	your	first



multiplication.
Here,	in	order	to	make	the	difference	very	specific,	is	the	same	number	broken	down	in	each	way:

Other-Number	Adjustment 	
First-
Product
Adjustment

	 	 	

48—50	minus	2	times	the	other	number 	
48—40	 plus

	 the
product

Which	of	the	two	breakdowns	is	better?	Once	again,	neither.	It	depends	on	the	other	number	and	on
the	methods	you	yourself	find	easiest	to	handle.	Either	breakdown,	you	note,	permits	you	to	substitute	a
simple	doubling	for	a	multiplication	by	8.

You	 can	 push	 the	 breakdown	 technique	 to	 impressive	 extremes.	 The	 nearest	 convenient	 one-digit
multiplier	 may	 not	 be	 the	 next	 even	 ten	 or	 hundred	 at	 all;	 it	 may	 be	 two	 or	 more	 away.	 1860,	 for
instance,	 can	be	broken	down	so	 that	you	multiply	by	60	and	add	30	 times	 the	product.	328	can	be-
become:	multiply	by	8	and	add	40	times	the	result.

This	field	of	sophisticated	breakdowns	is	fascinating,	but	it	is	too	involved	to	be	treated	fully	here.	If
you	enjoy	the	idea,	you	can	doodle	for	hours	and	find	a	breakdown	for	almost	any	number	you	may	try.
As	genuinely	useful	 short	 cuts,	however,	 the	more	abstruse	applications	are	questionable.	You	would
spend	 more	 time	 breaking	 down	 your	 multiplier	 than	 the	 whole	 problem	 would	 take	 in	 simplified
arithmetic.	 Number	 sense,	 again,	 is	 the	 real	 key.	 If	 you	 cannot	 “see”	 a	 relationship	 at	 one	 or	 two
glances,	then	the	short	cut	is	not	a	real	short	cut	for	you.

The	most	useful	ground	rules	for	the	two	types	of	breakdowns	are	these:

ONE: 	

If	 you	 round
off	 one	 of	 the
numbers	 to	 be
multiplied,	can
you	 add	 or
subtract	 the
other	 number
to	 adjust	 few
enough	 times
to	 be	 easier
than	 the	 full
multiplication?

	 	

TWO: 	

If	 you	 round
off	 one	 of	 the
numbers	 to	 be
multiplied,	can
you	 add	 or
subtract	 a
simple	 enough



fraction	 of	 the
first	product	to
be	 easier	 than
the	 full
multiplication?

If	 the	 answer	 to	 either	 of	 these	 questions	 is	 yes,	 then	 breakdown	 can	 save	 you	work	 and	 time	 in
solving	the	problem.	If	the	answer	seems	to	be	no,	then	another	short	cut	may	be	in	order.

Answering	these	two	questions	rapidly	is	 the	way	to	break	down	problems	quickly	and	easily.	See
how	many	sensible	breakdowns	you	can	find	in	these	multipliers:

Each	of	these	numbers	can	be	broken	down	in	a	way	that	will	save	you	work.	Some	of	them	save
you	quite	a	bit	of	work;	others	let	you	add	or	subtract	instead	of	multiplying	by	a	high	digit;	still	others
reduce	the	number	of	lines	of	working	figures.	Try	them	on	your	pad	before	you	check	your	reactions
against	the	proposed	breakdowns	that	follow.

In	some	cases,	more	than	one	breakdown	is	possible.	We	will	give	only	the	one	that	seems	simplest
and	most	generally	useful.	Since	the	breakdowns	are	of	both	types,	we	will	use	the	shorthand	N	to	mean
that	adjustment	is	in	terms	of	the	other	number,	and	P	to	mean	that	adjustment	is	in	terms	of	the	product
of	the	first	multiplication.

For	 instance,	 our	 breakdown	 for	 the	 first	 number—58—is	 given	 as	 60	 –	 2N.	 This	 means	 you
multiply	by	60	and	then	subtract	the	other	number,	doubled.	The	breakdown	for	72	is	given	as	80	–	 P,
which	means	you	multiply	the	other	number	by	80	and	then	subtract	 	of	the	product.

Here	are	the	breakdowns:



Two	or	three	special	notes	are	in	order.	The	idea	of	“breaking	down”	9	may	seem	peculiar.	Yet	it	is
possible,	 should	 you	 choose	 to	 use	 it;	 and	 you	may	well	 prefer	 to	 subtract	 a	 number	 from	 the	 same
number	(with	an	added	0)	rather	than	to	multiply	through	the	entire	number	by	9.

The	same	comment	applies	to	90,	of	course.	It	is	precisely	the	same	breakdown,	with	one	more	0	on
both	numbers.

Breaking	down	the	number	26	into	20	plus	 	 the	product	does	not,	 in	one	sense,	save	any	steps.
The	point	here	is	that	it	offers	you	the	choice	of	multiplying	the	other	number	by	6,	or	the	first	line	of
working	figures	by	3	(starting	one	place	to	the	right).	Other	factors	being	equal,	it	is	usually	easier	to
multiply	by	the	smaller	of	two	digits—in	this	case,	by	3	rather	than	by	6.	So	while	breaking	down	26	is
not	a	short	cut	in	the	sense	of	saving	steps,	it	does	simplify	the	operation.

Breakdown	in	Subtraction

Ninety	per	 cent	 of	 the	 value	 of	 breakdown	 is	 in	multiplication.	There	 is	 no	 easy	way	 to	 use	 it	 in
division,	 and	 it	 does	 not	 really	 save	 any	 time	 in	 addition.	 In	 subtraction,	 however,	 breakdown	 can
sometimes	speed	up	a	problem	if	the	relationship	of	the	numbers	is	within	a	certain	range.

The	technique	in	subtraction	is	to	raise	the	smaller	number	to	the	next-higher	even	number,	then	add
the	same	amount	to	the	larger	number.	This	converts	the	problem	into	a	form	in	which	you	can	see	the
answer	at	a	glance.

Suppose	you	need	 to	 subtract	 64¢	 from	98¢.	Using	 the	 breakdown	 technique,	 you	 add	6	 to	 64	 to
make	it	an	even	70.	You	adjust	by	adding	6	to	98	too,	which	then	becomes	$1.04.	Subtracting	70	from
104	is	a	sight	job.	In	subtracting	297	from	465,	you	add	3	to	297	to	make	it	an	even	300,	and	adjust	by
adding	3	to	465	to	make	468.	The	answer,	168,	is	automatic.

The	main	application	of	 this	method	 is	 in	 adjusting	numbers	 that	 fail	 by	merely	a	digit	or	 two	of
reaching	the	next	even	number.	If	the	adjustment	is	much	more	than	this,	complement	subtraction	will
be	both	easier	and	faster.

For	such	special	cases,	however,	breakdown	can	be	useful.	Here	is	one	example:



While	you	will	not	find	such	examples	in	your	work	every	day,	they	do	come	up	once	in	a	while	and
this	little	trick	is	well	worth	keeping	in	mind.
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ALIQUOTS

HIS	fascinating	and	useful	technique	of	conversion	suffers	under	a	traditional	and	foreign-sounding
name.	“Aliquot”	means,	simply,	an	exact	fraction.	The	word	is	derived	from	a	Latin	word	meaning

some,	or	several.	 It	 is	usually	used	as	an	adjective	(aliquot	parts,	meaning	exact	parts),	but	since	 it	 is
also	a	noun	we	will	save	words.

The	 key	word	 in	 the	 definition	 is	 exact.	 8	 is	 an	 aliquot	 of	 16,	 because	 it	 is	 contained	within	 16
exactly	twice	and	leaves	no	remainder.

Since	we	 count	 by	 the	 decimal	 system,	 based	 on	 ten,	 the	 aliquots	 of	most	 use	 to	 us	 in	 short-cut
mathematics	are	aliquots	of	ten,	a	hundred,	a	thousand,	and	so	on.	Incidentally,	the	word	is	pronounced
ali-kwut.

We	all	think	of	25¢	or	“a	quarter”	as	completely	interchangeable,	without	giving	it	a	second	thought.
We	have	dealt	in	quarter-dollars	so	much	that	we	know	by	instinct	that	25¢	is	one	quarter	of	100¢.	The
special	usefulness	of	this	and	many	other	aliquots	(for	25	is	indeed	an	aliquot	of	100)	may	or	may	not
have	been	brought	to	your	attention.

For	instance,	you	can	multiply	by	25	by	adding	two	zeros	to	the	other	number	and	then	dividing	by
4:

The	value	of	aliquots	is	not	restricted	to	the	number	25	(or	its	equivalents	250,	2500,	2.5,	.25,	and	so
on).	Half	of	25	is	12½,	and	12½	is	a	number	we	meet	surprisingly	often.	It	is	exactly	1/8	of	100.	The
same	aliquot	shows	up	as	125	(1/8	of	1000),	as	1.25	(1/8	of	10),	as	.125	(1/8	of	1).

You	might	soon	need	to	multiply	965	by	12.5.	Which	of	these	two	ways	looks	easier?

The	number	5	is	also	an	aliquot,	of	course.	It	may	be	a	tossup	whether	you	would	prefer	to	multiply
by	5,	or	 add	a	0	 and	divide	by	2.	 It	 depends	on	which	you	 find	easier.	A	very	 similar	 approach	was
suggested	 for	 50	 in	 the	 chapter	 on	 breakdown,	 incidentally;	 this	 illustrates	 the	 overlapping	 nature	 of
some	of	the	features	of	the	different	short-cut	methods.

There	are	only	11	useful	exact	aliquots	in	the	decimal	system,	but	they	are	number	combinations	that



show	up	very	often.	In	addition,	there	are	a	number	of	approximate	aliquots	which	can	prove	useful	in
estimating—such	as	33	for	1/3	of	100—but	be	sure	to	remember	that	they	are	not	real	aliquots	at	all.

Here	are	the	11	aliquots.	In	order	to	avoid	decimals,	we	will	show	them	as	aliquots	of	1,000.	Adding
zeros,	 or	 moving	 decimal	 points	 to	 the	 left,	 can	 make	 these	 same	 numbers	 prove	 to	 be	 aliquots	 of
anything	from	1	to	any	number	of	million	you	wish.

Exact	Aliquots

All	the	16th's,	by	the	way,	are	exact	four-digit	aliquots,	except	 ,	but	since	the	fraction	is	 in	 two
digits	 (16)	 their	 utility	 for	 short-cut	 arithmetic	 becomes	 somewhat	 remote.	 	 of	 10,000	 is	 precisely
625,	while	 	of	100,000	is	1875.	 —naturally—is	the	same	as	1/8,	which	appears	in	the	table	above.

Even	aliquots	with	top	and	bottom	digits	(such	as	3/8)	can	save	work,	because	the	number	375	for
which	3/8	is	the	aliquot	contains	three	digits.	In	order	to	multiply	by	375	in	the	aliquot	way,	you	first
divide	by	8	(after	adding	three	0’s	to	the	other	number,	since	375	is	3/8	of	1000)	and	then	multiply	the
result	 by	3.	Although	you	 first	 divide	 and	 then	multiply,	 this	 is	 still	 a	 little	 simpler	 than	multiplying
through	with	each	of	three	digits	and	then	adding	the	three	lines	of	partial	products.

Here	is	a	comparison	of	the	two	methods:

Do	one	on	your	own	now.	Cover	the	explanation	that	follows	with	your	pad	until	you	have	solved
this	problem	with	an	aliquot:

This	is	a	very	simple	one,	but	you	may	be	surprised	at	how	much	work	an	aliquot	can	save	you	even
in	a	case	like	this.

Multiplying	24747	by	25	is,	naturally,	precisely	the	same	as	dividing	100	times	24747	by	4.	So	that
is	what	we	do.	Our	answer	is



Work	out	the	answer	to	the	problem	in	the	traditional	way	and	look	at	the	two	workings,	side	by	side.
The	difference	is	quite	dramatic.

Try	one	more,	before	moving	on	to	other	applications	of	the	aliquot	short	cut.	The	following	problem
can	be	solved	by	using	two	aliquots,	one	for	each	stage	of	the	solution.	See	if	you	can	decipher	this:

As	always,	cover	the	explanation	with	your	pad	until	you	have	finished.
625	is	an	aliquot	of	1,000,	being	5/8	of	it.	Instead	of	multiplying	by	625,	then,	we	can	divide	1,000

times	2654	by	8	and	then	multiply	the	result	by	5.	First,	let	us	show	the	straight	comparison:

The	second-stage	aliquot	solution	here	can	come	in	multiplying	the	456,750	×	5.	If	you	find	it	easier
to	add	a	0	and	divide	by	2	instead	of	multiplying	by	5,	you	can	easily	set	up	this	step	into	the	answer	of
the	first.	Your	working	then	looks	like	this:

Even	in	so	complex	a	solution	as	this,	the	aliquot	method	obviously	involves	fewer	working	figures.
Compare	it	with	the	standard	solution	once	more.

Special	Aliquots

The	fact	that	many	of	our	measuring	systems	are	non-decimal	(not	based	on	ten)	gives	them	different
sets	of	aliquots.	¼	of	ten,	for	instance,	is	0.25.	But	the	gallon	is	based	on	eight,	not	ten	(two	pints	in	a
quart,	four	quarts	to	a	gallon),	so	in	terms	of	pints	¼	of	a	gallon	is	2.

This	gives	us	an	occasional	and	interesting	interplay	between	regular	ten-base	aliquots	and	gallons,
feet,	yards,	hours,	and	other	non-decimal	measurements.



We	can	see	at	a	glance	that	one	pint	is	precisely	0.125	gallon.	If	we	need	to	know	how	many	pints
are	in	0.8750	gallon,	we	find	that	the	8	in	the	fraction	form	of	the	aliquot	875	(7/8)	is	wiped	out	by	the
conversion	from	decimal	to	pints-gallons,	and	we	are	left	with	an	even	7	pints.

Inches	to	feet	is	a	little	tougher,	since	 	does	not	have	a	precise	decimal	equivalent.	In	other	terms,	
	is	not	an	aliquot	of	the	ten-base	system,	because	its	decimal	equivalent	is	.0833+,	with	3’s	going	on

forever	 because	 it	 never	 becomes	 exact.	 It	 is	 very	 close,	 however,	 so	 except	 for	 complete	 scientific
accuracy	you	will	find	it	accurate	enough.

To	find	the	number	of	inches	in	0.9166	feet,	then,	you	would	note	that	the	approximate	fraction	of
.9166	is	 .	In	converting	from	decimal	to	duo-decimals	(dozens),	the	12	gets	dropped	and	you	have
11	inches.

Here	are	the	most	frequently	used	approximate	aliquots.	Remember	that	these	are	not	true	aliquots,
because	they	are	not	precise,	but	they	are	close	enough	for	a	great	deal	of	your	number	work.

It	is	interesting	to	note	that	all	the	approximate	aliquots	are	based	on	thirds	and	multiples	of	thirds—
sixths	and	twelfths.	This	is	inherent	in	the	ten-based	(decimal)	system.

An	 extra	 bonus	 in	 the	 use	 of	 aliquots	 to	 bridge	 the	 difference	 between	 a	 ten-base	 system	 and	 an
eight-,	 twelve-,	 or	 other-base	 system	 in	weights	 and	measures	 is	 that	 becoming	 aware	 of	 the	 aliquot
equivalents	is	one	of	the	best	exercises	you	can	give	your	number	sense.

Try	it	once	yourself.	Using	aliquots,	figure	out	the	number	of	pints	in	375	gallons.
It	should	not	take	long.	375	is	an	exact	aliquot,	being	3/8	of	1,000.	Since	there	are	8	pints	in	a	gallon,

there	would	be	8,000	pints	in	1,000	gallons.	The	8’s	cancel	out,	and	you	are	left	with	3,000	pints.
How	many	months	in	83	years,	for	a	quick	guess?	83	is	an	approximate	aliquot,	about	 	of	100.	

is	of	course	the	same	as	 ,	and	there	are	12	months	in	a	year.	So	the	12’s	cancel	out,	and	we	have
about	10	times	100—or	a	thousand	months.	Actually	it	is	996,	so	we	are	.4	of	1%	off.

Dividing	with	Aliquots

Unlike	breakdowns,	aliquots	are	just	as	valuable	in	dividing	as	in	multiplying.	When	you	divide	with
an	aliquot,	you	simply	reverse	the	rule	for	multiplying.

In	multiplying,	you	multiply	by	the	fractional	form	of	your	aliquot.	 In	dividing,	you	divide	by	the
fraction.

In	multiplying,	you	add	enough	zeros	to	the	other	number	to	make	the	aliquot	stay	in	proportion.	50
is	½—of	100—so	to	multiply	by	50	with	a	division	of	2,	you	first	add	two	zeros	to	the	other	number.

In	dividing,	you	subtract	as	many	zeros	as	you	need	to.	Usually,	you	must	use	a	decimal	point.
Let	us	start	with	one	of	the	simpler	aliquots.	Here	is	how	you	use	the	aliquot	25	for	dividing:



Note	 that	 we	 subtracted	 two	 zeros	 from	 the	 number	 divided	 by	 using	 the	 decimal	 point.	 We
subtracted	two	zeros	because	25	is	¼	of	100.	If	we	had	been	dividing	by	2.5,	we	would	have	subtracted
one	zero	because	2.5	is	¼	of	10.	Dividing	by	250	would	require	us	to	subtract	three	zeros.

The	reason	you	almost	always	have	to	use	a	decimal	point	to	subtract	zeros	when	dividing	with	an
aliquot	is	that	division	often	does	not	come	out	even.	The	example	above	was	a	simplified	introduction.
If	the	number	to	be	divided	were	9643,	of	course,	then	we	know	simply	by	inspection	that	there	would
be	a	remainder	because	subtracting	two	zeros	(by	moving	the	decimal	to	the	left)	from	9643	gives	us
96.43,	and	those	two	digits	to	the	right	of	the	decimal	must	be	multiplied	too.

Try	a	longer	division	yourself.	Cover	the	answer	with	your	pad	until	you	have	finished:

The	proper	aliquot	form	to	use	for	125	is	1/8.	Since	125	is	1/8	of	1,000,	we	subtract	three	zeros	from
the	number	divided.	Here	is	how	the	problem	is	set	up:

If	you	feel	ambitious,	you	might	 try	dividing	73984	by	125	 in	 the	usual	way	 to	see	 if	you	get	 the
same	answer—and	to	compare	the	amount	of	work	involved.

Since	 you	multiply	 from	 left	 to	 right,	 you	may	 not	 have	 to	 finish	 this	multiplication	 all	 the	way
through.	Carry	it	to	the	accuracy	you	need	and	then	stop.	If	you	need	only	the	nearest	tenth,	work	it	out
through	the	7	and	round	off	your	answer	to	591.9.

In	aliquots	with	two	digits,	you	again	reverse	the	multiplication	process.	In	multiplying,	you	divide
by	the	bottom	figure	of	the	fraction	(the	8	in	5/8)	and	then	multiply	by	the	top	digit.	In	dividing,	you
multiply	by	the	bottom	digit	and	then	divide	by	the	top.	This,	naturally,	is	equivalent	to	division	by	the
fraction.

Suppose	we	go	through	the	following	problem	with	an	aliquot	solution:

First,	determine	the	aliquot.	87.5	is	7/8	of	100.	Since	we	are	using	a	fraction	of	100,	we	subtract	two
zeros	from	the	other	number	and	start	by	multiplying	it	with	the	bottom	of	the	fraction:

Now—and	you	would	not	bother	to	rewrite	the	result	in	actual	practice—you	divide	by	the	top	of	the
fraction:



This	 is	 obviously	 much	 easier	 than	 dividing,	 even	 in	 shorthand	 long	 division,	 by	 a	 three-digit
number.

Turn	to	a	clean	page	of	your	work	pad	now	and	tackle	this	problem	with	an	aliquot	solution:

Cover	the	answer	with	the	pad.
The	fraction	for	 the	aliquot	75	is	¾	of	100.	First	we	subtract	 two	zeros	(we	can	simply	omit	 them

here,	since	there	are	two	zeros)	and	multiply	by	the	bottom	of	the	fraction:

Now	divide	this	product	by	the	top	of	the	fraction.	In	practice	you	would	do	it	at	sight:

That	is	all	there	is	to	it.	Without	dividing	by	anything	more	difficult	than	the	single	digit	3,	you	know
that	29700	divided	by	75	is	396.

Reversing	Aliquots

If	you	will	turn	back	for	a	moment	to	the	table	of	exact	aliquots,	you	will	note	that	several	of	them
are	really	simpler	in	their	decimal	form	than	they	are	in	their	fractional	form.

A	 later	 chapter	 will	 cover	 fractions	 and	 decimals.	 If	 this	 special	 application	 of	 their
interchangeability	 in	 terms	 of	 aliquots	 is	 at	 all	 confusing,	 it	 might	 be	 a	 good	 idea	 to	 refresh	 your
memory	with	that	chapter	first.

The	fraction	 ,	for	instance,	has	the	aliquot	form	.8.	The	decimal	form	of	 	is	.4.
This	 fact	 makes	 possible	 a	 reverse	 short	 cut	 whenever	 you	 must	 deal	 in	 fractions	 that	 are	 more

simply	expressed	in	decimals.	Rather	than	suffer	through	the	fraction,	use	the	simpler	form.
One	example	should	illustrate	this	sufficiently.	Consider	this	problem:

This	problem	would	traditionally	be	solved	by	multiplying	3	×	287	and	then	dividing	the	product	by
5.	But	it	is	far,	far	easier	to	multiply	287	×	.6:



The	 important	 lesson	 in	 this	 reverse-aliquot	approach	 is	 that	no	single	method	 is	always	best.	The
point	is	to	learn	awareness	of	the	many	different	ways	of	accomplishing	the	same	result,	and	to	be	on
the	lookout	for	the	easiest	and	quickest	in	each	particular	case.

Sometimes	it	will	be	breakdown.	Sometimes	it	will	be	the	use	of	an	aliquot.	And	sometimes	it	will
be	the	use	of	factors—quite	a	different	short	cut.
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FACTORS

OST	 of	 us	 remember,	 from	 our	 school	 days,	 the	 word	 “factors.”	 Chances	 are	 you	 have	 not
encountered	 the	word	 or	 the	 process	 since.	 Instead	 of	 considering	 them	merely	 an	 exercise	 for

students,	however,	we	will	show	how	they	can	short-cut	many	problems	in	multiplication	and	division.
A	 factor	 means,	 basically,	 a	 maker	 or	 doer.	 The	 word	 has	 many	 applications	 in	 English.	 In

mathematics	it	means	one	of	two	or	more	numbers	which,	multiplied	together,	produce	the	number	in
question.

6	has	two	factors:	2	and	3.	2	and	3	are	factors	of	6	because	2	×	3	gives	6.
Almost	 three-quarters	of	all	numbers	are	factorable.	That	 is,	 they	can	be	broken	down	into	 two	or

more	 other	 numbers	 which,	 multiplied	 together,	 produce	 the	 number	 you	 started	 with.	 Of	 the	 first
hundred	numbers	(from	1	to	100)	only	26	are	prime	numbers.	Prime	numbers	are	those	that	cannot	be
factored.

1	and	2	are	both	prime	numbers,	because	they	cannot	be	factored.	It	is	true	that	1	×	1	is	1,	but	we	do
not	consider	1	to	be	a	legitimate	factor.	It	would	not	be	of	any	use	to	us	in	short-cut	mathematics,	in	any
event.	3	is	also	prime.	But	4	can	be	factored	into	2	and	2,	because	2	×	2	is	4.

Before	going	into	the	ways	of	factoring	numbers,	let	us	show	the	exciting	possibilities	in	their	use.
They	are	a	powerful	short	cut	because	they	can	save	major	steps	in	multiplying	and	dividing.

To	multiply	by	a	factorable	number,	multiply	first	by	one	of	its	factors	and	then	multiply	the	result
by	the	other.	Where	is	the	short	cut?	Watch:

In	order	to	use	factors,	we	first	find	a	number	that	can	be	factored.	Even	though	in	real-life	situations
you	will	 look	 at	 both	 parts	 of	 a	multiplication	 rather	 than	 arbitrarily	 decide	 that	 one	 of	 them	 is	 the
multiplier,	it	is	usually	quicker	to	consider	the	shorter	of	the	two	numbers	the	multiplier.

In	 this	 case,	 56	 is	 the	 multiplier.	 Can	 it	 be	 factored?	 Can	 you	 think	 of	 two	 other	 numbers	 that,
multiplied	together,	produce	56?	Your	knowledge	of	the	multiplication	tables	should	snap	the	factors	7
and	8	into	your	mind.

The	factor	short	cut	in	multiplying	any	number	by	56,	then,	is	to	multiply	first	by	7,	then	the	result	of
that	multiplication	by	8.	Compare	the	two	ways:

The	 two	 examples	may	 look	 about	 equally	 time-consuming.	 But	 note	 than	 in	 the	 usual	 way	 you
multiply	first	by	5,	then	by	6,	then	add	the	two	products	to	get	your	final	answer.	In	the	factor	method
you	still	multiply	by	two	digits—7	and	then	8—but	you	never	add	any	partial	products	at	all.	You	save



roughly	one-third	the	work.
Let's	do	another	before	you	try	one	on	your	own.	Check	this	problem	for	factor	possibilities:

If	you	have	“seen”	the	factors	of	28	at	a	glance,	let	us	compare	methods	again:

Once	more,	we	managed	to	skip	entirely	the	step	of	adding	two	lines	of	partial	products.	Multiply	by
4,	then	by	7,	and	you	have	the	final	answer.

Try	this	one	by	yourself.	Cover	the	answer	with	your	pad	as	you	work:

This	problem	has	two	different,	equally	correct	factor	solutions.	You	can	factor	36	into	6	and	6,	or
into	4	and	9.	Any	series	of	accurate	 factors	will	produce	 the	 same	 result.	Compare	 the	working	with
these	two	sets:

Incidentally,	there	are	several	other	factors	of	36.	You	could	use	2	and	18,	or	3	and	12.	But	each	of
these	sets	involves	two-digit	factors.	These	are	useful	in	longer	problems,	but	it	always	pays	to	seek	the
simplest	solution.	For	simplicity,	the	choice	between	two	digits	and	one	digit	is	plain.

How	to	Factor

We	 set	 aside	 until	 now	 the	 question	 of	 factoring	 itself,	 so	 we	 could	 show	 how	 it	 works	 in
multiplication.	With	 this	specific	encouragement,	we	will	get	down	to	 the	process	of	 factoring	before
going	on	to	division.

For	numbers	up	to	100,	you	should	be	able	to	recognize	factors	pretty	much	at	a	glance.	The	most
useful	 factors	 are	 single	 digits,	 and	 these	 can	 carry	 you	 up	 to	 81.	 Some	 two-digit	 numbers	 can	 be
factored	only	with	three	factors	or	factors	of	which	one	has	two	digits	(we	will	get	into	the	handling	of
these	later),	but	74	out	of	the	first	100	numbers	can	be	factored.

Just	for	a	taste,	go	through	the	numbers	40	to	49	to	see	what	the	possibilities	are:



Just	because	you	can	factor	seven	out	of	these	ten	numbers	(several	of	them	in	more	than	one	way)
you	should	not	 think	 that	you	should	always	use	factors.	Rule	number	one	for	all	 short	cuts	 remains:
look	for	every	possibility,	then	do	it	the	easiest	way.	Sometimes	you	will	use	factors,	and	sometimes	you
will	 pass	 them	up	 even	 if	 they	would	be	possible,	 because	 another	 short	 cut	 happens	 to	 be	 easier	 or
because	your	new	simplified	arithmetic	is	easiest	of	all	in	this	particular	case.

Sharpen	your	factor-eye	by	trying	the	numbers	from	30	to	40.	Jot	down	all	the	possibilities	you	see
on	your	pad	before	checking	with	the	following	table.

Here	are	the	factors	for	numbers	in	the	30’s:

So	much	for	the	numbers	up	to	100.	Some	of	those	that	can	be	factored	are	easier	to	use	straight	than
with	factors	(38,	for	instance),	but	such	two-digit	factors	lead	us	into	higher	numbers	where	they	can	be
very	valuable	indeed.

It	becomes	more	difficult	to	recognize	factors	at	sight	when	we	get	above	100.	Yet	factors	are	even
more	useful	 for	numbers	going	 into	several	digits,	because	 they	often	become	dramatic	short	cuts	 for
bigger	numbers.

How	would	you	know,	for	instance,	that	261	can	be	factored	into	9	and	29?	Or	536	into	8	and	67?
There	are	very	definite	keys	developed	over	the	years	that	show	almost	at	a	glance	whether	a	number

can	be	factored	with	a	single	digit	as	one	of	the	factors.
You	already	know	one	of	them	from	your	work	in	casting	out	nines.	The	digit	sum	of	261	above	is	0;

this	means	that	the	remainder	after	dividing	by	9	is	0.	Obviously,	then,	9	must	be	a	factor	of	261.
Casting	out	 elevens,	 too,	 is	merely	 testing	a	number	 for	 even	divisibility	by	eleven.	 If	 there	 is	no

elevens-remainder,	then	eleven	is	a	factor	of	that	number.
Here,	in	numerical	order,	are	the	keys	to	determining	the	divisibility	of	any	number	by	2	through	12

—except	for	7.	There	is	a	key	for	7,	but	it	is	so	hideously	complicated	that	it	is	in	no	sense	a	short	cut.



Key	for	Divisibility

		2 	

If	 it	 is	even
(the	 last
digit	can	be
divided	 by
2).

		3 	

If	 the	 digit
sum	 is
divisible	 by
3.	 Just	 cast
out	 the	 9’s,
and	 if	 the
remainder
is	3	or	6	the
number	 is
exactly
divisible	 by
3.	 (If	9	 is	 a
factor,	 it
can
obviously
be	 broken
down
further	 into
3	 ×	 3,	 but
there	 isn't
much	 point
in	 doing	 so
because
this	 would
raise	 the
other	 factor
in	 the	 same
proportion.)

		4 	

If	 the	 last
two	 digits
are
divisible	 by
4.	 536
above	has	4
as	 a	 factor,
because	 36
can	 be
evenly
divided	 by



4.	 Two	 0’s
as	 the	 last
two	 digits
also	make	it
divisible	 by
4.

		5 	
If	 the	 last
digit	is	0	or
5.

		6 	

If	 it	 is
divisible	 by
both	 2	 and
3,	 as
outlined
above.

		7 	

Too
complex	 a
key	 to	 be
useful	here.

		8 	

If	 the	 last
three	 digits
are
divisible	 by
8.	 There	 is
a	 simpler
approach	 to
this	 in
actual
working,
however,
since	 the
other	 factor
(when
found)	 will
often	 show
you	 how	 to
increase	 4
to	 8.	 Wait
and	 see	 in
the
examples	to
come.

		9 	 If	 the	 digit
sum	is	0.
If	it	ends	in
0,	 of



10 	 course.

11 	

If	 the	 11’s-
remainder
is	 0.	 Check
back	 with
the	 chapter
on	 the
back-up
check.

12 	

If	 it	 is
divisible	 by
both	 3	 and
4,	 as
outlined
above.

Try	these	keys	on	the	two	examples	mentioned	earlier.	How	can	you	tell	 that	9	is	a	factor	of	261?
Because	 the	 digit	 sum	 is	 0.	How	do	 you	 know	what	 the	 other	 factor	 is?	 Simply	 by	 dividing	with	 9,
which	is	simple	with	a	one-digit	divider.	9	goes	into	261	exactly	29	times,	so	the	factors	of	261	are	9
and	29.

Now	take	536.	You	know	at	sight	that	4	is	a	factor,	because	the	last	two	digits	(36)	are	divisible	by	4.
The	next	step	is	 to	find	the	other	factor	by	dividing	536	by	4.	This	gives	you	134	as	 the	other	factor.
BUT—since	134	 is	 even,	you	can	double	 the	4	 (to	8)	 and	cut	134	 in	half,	 to	67.	This	 is	 the	 simpler
approach	mentioned	in	the	key	table	to	divisibility	by	8.	If	you	start	with	4	and	find	that	the	other	factor
is	even,	double	the	4	to	8	and	cut	the	other	factor	in	half.

As	a	general	rule,	it	is	helpful	to	use	the	largest	one-digit	factor	you	can,	because	this	cuts	the	other
factor	down	to	the	smallest	possible	size.	For	536,	it	is	obviously	easier	to	deal	with	8	and	67	than	with
4	and	134.

For	a	bit	of	practice,	factor	these	numbers.	Use	your	pad	to	cover	the	answers:

Warning:	one	of	these	numbers	is	prime,	but	only	one.	All	the	others	can	be	factored.
Here	is	how	we	factor	all	but	the	next-to-last	of	the	above	numbers:

114: 	 It	is	even,	so	2	is	a	factor.	The	digit	sum	is	6,	so	3	is	also	a	factor.	If	both	2	and	3
are	factors,	then	we	know	6	is	a	factor.	The	factors	of	114	are	6	and	19.

345: 	
This	ends	in	5,	so	5	is	a	factor.	5	into	345	gives	you	69	as	the	other	factor.	You
will	note	that	3	is	also	a	factor,	but	this	would	give	you	the	set	3	and	115.	5	and	69
is	an	easier	pair.

486: 	 Digit	sum,	0.	The	factors	are	9	and	54.
603: 	 Digit	sum,	0.	The	factors	are	9	and	67.

159: 	
Digit	sum,	6.	3	is	a	factor.	It	is	not	even,	so	2	is	not	a	factor,	and	if	2	is	not	a	factor
then	neither	is	6.	3	is	the	largest	single-digit	factor,	and	the	other	(by	division	at



sight)	is	53.

546: 	 The	digit	 sum	 is	6,	 and	 it	 is	 also	even.	Both	2	and	3	are	 factors,	 so	 the	highest
factor	is	6.	546	is	produced	by	the	factors	6	and	91.

392: 	

2	is	a	factor	(the	number	is	even),	but	3	is	not	because	the	digit	sum	is	5.	The	last
two	 digits,	 however,	 are	 divisible	 by	 4.	 So	we	 start	 with	 the	 factors	 4	 and	 98.
Since	98	is	even,	we	simplify	matters	by	doubling	the	4	and	halving	the	98,	and
get	the	factors	8	and	49.

139: 	 This	is	a	prime	number.	It	has	no	factors.	Try	all	the	keys.
243: 	 The	digit	sum	is	0.	The	factors	are	9	and	27.

How	to	Factor	Factors

So	 far,	 you	 have	 learned	 to	 multiply	 by	 two	 one-digit	 factors.	 In	 order	 to	 multiply	 by	 56,	 you
multiplied	first	by	7	and	then	by	8.	In	our	last	number	above,	however,	is	it	really	simpler	to	multiply	by
9	and	then	by	27	rather	than	by	243?

It	might	not	seem	to	be	at	first	thought,	but	it	really	is.	When	you	multiply	by	243	you	have	three
lines	of	partial	products	to	add.	Using	the	factors,	you	have	only	two	(from	the	two-digit	factor).

Often,	however,	you	can	factor	the	factors.	You	recognize	27	as	3	×	9.	So	the	factors	of	243	are	9,	9,
and	3.

Extend	the	factor	solution	now	to	include	three	factors.	Instead	of	multiplying	by	243,	multiply	first
by	9.	Multiply	 this	 result	by	9.	Multiply	 this	 result,	 in	 turn,	by	3.	The	answer	will	be	correct,	as	 this
comparison	of	all	three	solutions	shows:

examples.	In	the	usual	way	you	multiply	by	each	of	three	digits,
Do	not	be	deceived	by	the	lines	of	type	occupied	by	these	then	add	three	lines	of	partial	products.

With	 two	factors,	you	again	multiply	by	 three	digits,	but	add	only	 two	lines	of	partial	products.	With
three	factors	(each	of	one	digit)	you	multiply	still	by	three	digits—but	never	do	any	adding	at	all.

See	if	you	can	factor	the	multiplier	in	the	following	example	into	three	single-digit	factors,	and	work
out	the	problem	on	your	pad	before	reading	on:

There	are	several	ways	you	might	have	 factored	336.	You	could	have	started	with	6	 (digit	 sum	3,
number	is	even)	or	4	(36	is	divisible	by	4).	Suppose	you	started	with	4.	This	would	produce	the	factors
4	and	84.	Since	84	is	even,	you	would	immediately	change	the	factors	to	8	and	42.	Since	you	recognize
42	as	the	product	of	6	and	7,	you	have	the	three	factors	8,	6,	and	7.



One	technique	we	have	not	yet	mentioned,	which	is	frequently	quickest,	is	to	start	multiplying	with
your	largest	factor.	It	is	usually	easier	for	most	of	us	to	multiply	quickly	by	smaller	digits	than	by	larger
ones,	and	the	working	figures	you	multiply	get	larger	at	each	step.

Our	three-factor	solution	to	this	problem	then	goes	like

Does	this	answer	check	out?	Try	nines-	or	elevens-remainders	on	it	and	see.

Dividing	with	Factors

Factors	 are	 as	 useful	 for	 division	 as	 they	 are	 for	 multiplication.	 Division	 is	 by	 nature	 the	 most
difficult	 of	 the	 four	 basic	 processes	 for	 most	 of	 us,	 and	 you	 may	 like	 the	 application	 of	 factors	 to
division	most	 of	 all	 because	 they	 frequently	 permit	 us	 to	 divide	with	 single	 digits	 rather	 than	more
complex	numbers.

Division	is	 just	 the	reverse	of	multiplication,	so	the	use	of	factors	in	division	is	 just	 the	reverse	of
their	use	in	multiplication.	The	technique	is	to	factor	the	divider	if	you	can,	then	divide	by	each	of	the
factors.	 Each	 division,	 of	 course,	 is	 into	 the	 result	 of	 the	 last	 division	 rather	 than	 into	 the	 original
number	divided.

Watch	how	it	works	in	this	case:

The	factors	of	63	are	7	and	9.	Divide	first	by	7:

Now	divide	the	result	by	the	other	factor,	9:

Compare	this	solution	to	the	usual	method	of	working:



Which	way,	even	at	first	glance,	looks	easier?	The	faster	nature	of	the	factor	short	cut	becomes	even
more	dramatic	if	you	divide	the	second	factor	into	the	result	of	 the	first	division	without	bothering	to
rewrite,	like	this:

The	work	should	be	clear.	You	started	at	the	bottom	and	worked	up,	setting	up	the	second	division
into	the	answer	of	the	first.	It	is	merely	a	condensed	picture	of	the	two	stages	shown	separately	in	the
first	explanation,	and	is	the	way	you	would	actually	do	it	in	practice—assuming	you	did	not	merely	jot
down	the	answer	to	the	first	division	without	bothering	to	rewrite	the	problem.

Which	Factor	to	Use	First

In	multiplication,	we	start	with	the	largest	factor	and	work	down.	In	division,	we	usually	start	with
the	smallest	factor	and	work	up—for	precisely	the	same	reason,	in	reverse.	The	easiest	digits	to	divide
by	 are	 usually	 the	 smallest,	 and	 our	 division	 stages	 get	 smaller	 as	 we	 progress.	 So	 for	 the	 earlier
divisions	into	longer	numbers,	it	is	most	often	easier	to	start	with	the	smallest	factors.

Watch	out	for	special	cases,	however,	particularly	in	problems	with	remainders—which	so	many	in
division	have.	In	these	cases	you	may	be	able	to	get	through	the	first	division	without	a	remainder	if	you
handle	it	properly.	This	simplifies	things.

In	general,	match	the	factor	used	first	to	the	number	divided.	If	one	factor	is	odd	and	the	other	even,
start	by	dividing	with	the	odd	factor	if	the	number	divided	is	odd	and	by	dividing	with	the	even	factor	if
the	number	divided	is	even.

Here	is	an	example	that	illustrates	this:

The	first	step	is	to	factor	the	divider	into	4	and	7.	Second,	note	that	this	division	cannot	come	out
even;	it	must	have	a	remainder.	You	know	this	because	even	into	odd	can	never	produce	an	even	answer
(although	odd	into	even	can).	So,	in	this	case,	we	start	with	the	odd	factor	rather	than	the	even	one:

If	we	started	with	the	even	factor,	here	is	what	the	first	step	would	look	like:



Obviously,	the	other	approach	is	easier	to	begin	with.	Dividing	this	result	by	the	second	factor,	now,
we	produce	the	final	answer:

This	illustration	does	not	bother	to	put	the	decimal	point	and	zeros	into	the	second	number	divided
because	you	do	not	need	to	either.	Just	keep	mentally	“bringing	down”	zeros	after	the	decimal	point.

If	you	try	dividing	2654.75	by	7,	you	will	get	the	same	final	answer.	But	it	is	more	work.	You	had	a
remainder	on	the	first	division	by	4,	so	you	have	to	divide	through	two	remainders	instead	of	just	one.

Matching	 odd	 and	 even	 will	 not	 always	 avoid	 this,	 but	 it	 often	 will.	 When	 you	 cannot	 avoid	 a
remainder	in	the	first	result,	by	the	way,	carry	it	only	to	as	many	decimal	places	as	you	will	need	in	the
final	answer.	There	is	no	point	to	dividing	on	and	on	with	a	remainder	that	may	never	come	out	even.

One	other	key	 to	watch	for	 in	picking	your	 first-division	factor	 is	 to	see	 if	either	of	 the	factors	of
your	divider	is	also	a	factor	of	the	number	divided.	If	it	is,	you	know	that	the	first	division	by	this	factor
must	come	out	even.

Now	try	one	division	by	factors	on	your	own:

Cover	the	answer	with	your	pad	until	you	have	finished.
The	factors	of	72	are	recognizable	at	sight:	8	and	9.	Since	the	number	divided	is	even,	we	will	start

with	 the	 even	 factor,	 then	divide	 that	 result	by	 the	other	 factor.	The	 illustration	will	 be	 in	 condensed
style.	See	if	your	working	agrees	with	this:

Division	with	Three	Factors

Just	as	 it	often	pays	to	use	 three	factors	 in	multiplying,	so	you	can	use	three	factors	 in	division	to
speed	up	and	simplify	your	work.

In	multiplying,	you	use	each	of	 the	 three	 (or	more)	 factors	 in	 turn	 to	avoid	adding	 lines	of	partial
products.	 In	dividing,	you	use	each	of	 the	factors	 in	 turn	 to	avoid	 the	extra	complications	of	dividing
with	a	number	of	two	or	more	digits—where	you	can.	When	one	of	the	factors	has	to	be	of	two	or	more
digits,	you	will	still	find	the	division	simpler	than	dividing	with	a	still	longer	number.

Suppose	we	factor	this	problem:

No	matter	how	we	tackle	it,	this	is	admittedly	one	of	the	divisions	most	of	us	hate	to	face.
First,	 see	 if	 the	divider	can	be	 factored.	567	has	a	digit	 sum	of	0,	 so	we	know	at	once	 that	9	 is	a

factor.	9	 into	567	 (without	writing	down	 the	problem,	of	course)	gives	us	 the	other	 factor,	63.	63	we
recognize	as	7	×	9.	So	567	has	three	one-digit	factors:	9,	9,	7.

Since	all	the	factors	are	odd,	you	may	as	well	start	with	the	smallest.	Stack	your	working	as	we	did



before,	and	the	factor	solution	looks	like	this:

What	factoring	really	accomplished	in	this	case,	as	you	can	see,	was	to	reduce	the	solution	to	three
divisions	of	single	digits	each,	rather	than	one	division	by	a	number	of	three	digits.

It	is	time	now	to	try	a	three-factor	division	yourself.	Cover	the	answer	with	your	pad	until	you	have
finished	this	problem:

The	first	step	is	to	see	if	the	divider	can	be	factored.	The	digit	sum	is	8,	so	it	is	not	divisible	by	9	or
3.	It	is	even,	so	it	is	divisible	by	2,	but	moreover	the	last	two	digits	are	divisible	by	4,	so	4	is	a	factor.
We	start	by	factoring	it	into	4	and	56.	Since	56	is	even,	we	double	the	4	and	cut	the	56	in	half:	factors,	8
and	28.

We	prefer	to	work	with	single-digit	factors	if	we	can,	so	we	further	factor	the	28	to	4	and	7.	All	the
factors	we	need	for	224,	then,	are	4,	7,	and	8.

Since	the	number	divided	is	even,	let's	start	with	the	4	and	work	up:

That's	all	there	is	to	it.	That	rather	fearsome	division	problem	is	reduced,	thanks	to	factoring,	to	three
quick	and	simple	single-digit	divisions.

Sometimes	you	can	 factor	a	number	 into	one	one-digit	 factor	and	one	 two-digit	 factor,	but	cannot
further	factor	the	two-digit	factor	at	all.	You	may	still	save	time	by	using	these	two	factors,	though,	just
as	you	can	in	multiplication.	Dividing	by	a	two-digit	number	is	so	much	easier	than	dividing	by	a	three-
digit	number	(even	in	the	shorthand	method)	that	it	will	probably	pay	you	to	use	the	factors—especially
since	you	have	already	gone	to	the	trouble	of	factoring	the	divider.

Every	time	you	use	factors,	you	will	become	fonder	of	them.	They	are	the	third	major	area	of	short-
cut	conversions,	following	naturally	after	breakdown	and	aliquots.

Now	we	will	take	up	the	fourth	type	of	conversion.



T

16

PROPORTIONATE	CHANGE

HE	 fourth	 generally	 useful	 type	 of	 short	 cut	 has	 no	 traditional	 name.	 Because	 the	 phrase	 most
accurately	describes	what	we	do,	we	will	call	it	proportionate	change.
The	 technique	 is	 simply	 that:	 proportionate	 change.	You	 change	 one	 number	 of	 a	 problem	 into	 a

simpler	form	in	any	way	you	wish	(double	it,	triple	it,	cut	it	to	one-third,	or	whatever)	but	change	the
other	number	in	proportion	so	the	essential	relationship	remains	the	same.

For	instance:

The	conversion	here	should	be	quite	obvious.	One	glance	at	 the	problem	shows	us	 that	45	can	be
converted	into	a	one-digit	(plus	0)	number	by	doubling.	So	we	double	it,	without	hesitation,	to	the	more
easily	handled	90.

The	proportionate	part	of	the	rule	is	simpler	for	division	than	it	is	for	multiplication.	In	division,	you
do	to	the	number	divided	precisely	the	same	thing	you	did	to	the	divider.	In	multiplication,	you	do	to	the
other	number	exactly	the	opposite	of	whatever	you	did	to	the	first	number.

In	the	example	above,	you	double	45	to	90.	To	keep	the	proportion,	you	now	double	the	180	to	360.
The	answer,	simply	by	inspection,	is	obviously	4—9	into	36.

Try	one	yourself:

Start	by	examining	the	divider	for	any	simple	change	that	will	convert	it	to	a	one-digit	number—plus
a	0	if	necessary.	Doubling	35	changes	it	to	70.	Do	the	same	thing	to	the	number	divided,	which	changes
it	to	420.	Most	of	us	would	find	it	rather	difficult	to	“see”	the	answer	to	35	 ,	but	the	answer	to	70	

	should	be	a	matter	of	reading	ea	and	sy	as	“easy.”
There	 is	 another	 way	 of	 handling	 the	 proportions,	 incidentally,	 and	 this	 is	 to	 change	 the	 answer

rather	 than	 the	 number	 divided.	 In	 division,	 you	 can	 change	 the	 divider—divide	 into	 the	 original
number	divided—,	then	change	the	answer	in	the	same	way	you	changed	the	divider.

Our	example	above	now	becomes	70	 	×	2.	“See”	the	answer;	it	is	the	same	one	we	got	before.
According	to	the	numbers	and	the	change	involved,	this	is	sometimes	easier.

Doubling	 is	 only	 one	 of	 the	 proportionate	 changes	 you	 can	 use.	 You	 can	 triple,	 quadruple,	 or
multiply	 by	 any	 number	 you	 choose.	 Or	 you	 can	 cut	 in	 half,	 in	 thirds,	 in	 quarters,	 as	 you	 will.
Remember	that	in	division	and	multiplication	you	cannot	add	or	subtract,	however;	the	change	must	be
in	the	nature	of	a	multiplication	or	division.	And	remember	to	compensate	in	the	other	number	or	in	the
answer.

In	its	simplest	terms,	here	is	an	illustration	of	a	problem	clearly	calling	for	one	specific	proportionate
change:



The	simplest	change	here	is	to	triple	the	divider.	This	gets	rid	of	the	fraction	and	reduces	the	whole
divider	 to	 one	 working	 digit	 to	 boot.	 You	 divide	 by	 100—and	 multiply	 the	 number	 divided	 or	 the
answer	by	3	to	compensate.

The	 general	 rule	 becomes	 obvious	 from	 this	 example	 and	 the	 former	 ones.	Use	 the	 proportionate
change	that	will	get	rid	of	any	fraction	or	turn	the	last	digit	into	a	0—when	possible,	of	course.

When	dealing	with	 the	number	45	as	 a	divider	or	multiplier,	we	double	 it—to	 form	 the	easier-to-
handle	90.

When	dealing	with	33	1/3,	we	triple—because	it	gets	rid	of	the	fraction,	but	also	because	in	this	case
it	turns	the	number	into	100.

How	would	this	rule	apply	to	the	divider	3½?
In	order	to	get	rid	of	the	fraction,	you	double	it	to	7.	If	you	see	it	in	decimal	terms—3.5—the	.5	is

also	the	signal	to	double,	and	you	still	change	it	to	7.
How	about	the	number	1.25	(or	12.5,	125,	etc.)?	If	you	double	it,	you	have	2.5.	This	is	simpler	to

handle	 than	 1.25,	 of	 course,	 but	 it	 is	 still	 in	 two	 digits.	 Double	 it	 again,	 on	 quadruple	 the	 original
number,	 and	 it	 becomes	 the	 easy-to-handle	 number	 5.	You	 then	 compensate,	 if	 you	 are	 dividing,	 by
multiplying	the	number	divided	or	the	answer	by	5	to	keep	the	change	proportionate.

Changing	Downward

Proportionate	change	does	not	always	mean	multiplying.	It	can	also	mean	changing	in	the	opposite
direction.	Consider	this	problem:

How	 can	 you	 most	 easily	 change	 this	 divider	 into	 a	 single	 digit	 number?	 You	 could	 do	 it	 by
multiplying	by	5,	which	converts	18	to	90.	In	this	case,	however,	that	is	the	hard	way.	Instead,	cut	it	in
half.	Half	of	18	is	9.	Keep	the	change	proportionate	by	cutting	the	number	divided	or	the	answer	in	half
too.	9	 	gives	40.	Or	9	 	×	½	gives	40.

Here	is	another	example:

No	multiplication	of	the	divider	will	change	it	to	a	single	digit	number.	But	cutting	it	to	1/3	will;	1/3
of	21	is	7.	So	divide	7	into	1/3	of	168	(56)	or	into	168	and	compensate	by	dividing	the	answer	by	3.

It	may	have	struck	you	that	dividing	a	number	to	convert	it	is	really	only	a	new	facet	of	the	factor
short	cut.	It	is	indeed.	When	we	cut	a	divider	to	½	or	1/3	or	some	other	fraction,	we	are	really	factoring
it—but	you	will	note	that	 the	rest	of	our	handling	 is	a	 little	different,	and	your	frame	of	mind	as	you
look	at	the	problem	is	quite	different.	You	are	thinking	of	change—not	factors.

Some	 of	 the	 following	 numbers	 can	 be	 simplified	 by	 changing	 upward,	 some	 by	 changing
downward.	Play	with	them	a	bit	until	you	feel	you	have	the	simplest	form	of	each.

Try	them	yourself	before	reading	on.
The	quickest	way	to	convert	each	of	these	in	the	proportionate-change	short	cut	is:



Multiplying

It	has	already	been	pointed	out	that	proportionate	change	applies	as	easily	to	multiplying	as	it	does	to
dividing.	 In	 multiplying,	 however,	 you	 reverse	 the	 compensation.	 If	 you	 double	 the	 multiplier	 to
simplify	it,	 then	you	cut	the	other	number	or	the	answer	in	half.	If	you	use	1/3	of	the	multiplier,	 then
you	triple	the	other	number	or	the	answer.

Here	is	an	example:

Try	this	one	on	your	pad	or	in	your	head:

Cover	the	answer	with	your	pad	until	you	have	finished.
To	simplify	45,	you	naturally	double	it	to	90.	Note	here	that	if	you	divide	695	by	2,	you	will	have	a

remainder.	 This	 will	 be	 wiped	 out	 when	 you	 multiply	 by	 90;	 if	 it	 is	 not,	 then	 you	 went	 astray
somewhere.	 In	 such	 a	 case,	 however,	 it	 is	 usually	 easier	 to	 divide	 the	 answer	 by	 2	 rather	 than	 the
number	multiplied.

Here	are	both	workings:

When	you	change	your	multiplier	by	cutting	it	in	half	or	into	another	fraction,	then	you	compensate
by	multiplying	the	other	number	or	the	answer	by	the	same	amount.	Again,	it	is	just	the	reverse	of	your
compensation	in	division.



In	order	to	master	the	point	thoroughly,	it	would	not	hurt	to	work	out	all	three	forms	of	this	problem.
It	will	 help	 you	 “feel”	 the	 identity	 of	 the	 end	 results,	 no	matter	 how	 the	 numbers	were	 twisted	 and
turned	in	working	out	those	results.

Proportionate	 change	 is	 especially	 valuable	 in	 dealing	 with	 fractions	 of	 all	 kinds.	 Even	 when	 a
proportionate	change	cannot	reduce	one	of	the	numbers	you	must	handle	to	a	single	digit,	it	can	often
simplify	it	to	a	remarkable	degree.

Would	you	rather	divide	by	4	1/3—or	by	13,	and	multiply	the	answer	by	3?
Is	it	easier	to	multiply	by	6	5/8—or	by	53,	and	divide	the	answer	by	8?	For	an	even	more	dramatic

example,	you	would	prefer	to	handle	6	¼	as	25—and	compensate	by	multiplying	by	4	(in	division)	or
dividing	by	4	(in	multiplication).

Try	out	the	idea	on	these	numbers:

If	you	multiply	each	of	these	numbers	by	the	quantity	that	will	convert	it	into	a	whole	number,	you
get	the	following	results	(The	multiplier	is	in	parentheses.):

In	each	of	the	above	cases,	of	course,	you	compensate	in	the	other	number	or	in	the	answer	with	the
same	multiplier.	Do	whichever	comes	more	easily.

Run	 through	one	whole	problem	now.	Cover	 the	answer	with	your	pad	as	you	work	 this	out	with
proportionate	change:

Surely	it	is	much	simpler	with	the	short	cut	than	without	it.	We	double	7	½	to	make	15,	which	we	see
at	once	goes	into	300	exactly	20	times—times	2	is	40.	Or	15	goes	into	600	precisely	40	times.

Now	do	a	multiplication	with	this	technique.	Move	your	pad	over	the	answer	and	solve	this	problem
with	proportionate	change:

Use	whichever	proportionate	change	suits	you	best,	but	do	it	before	checking	with	the	answer.
The	logical	conversion	for	1	¾	is	to	multiply	it	by	4	and	divide	the	other	number	or	the	answer	by

the	same	factor.	Your	answer	either	way	is	497.	The	two	workings	are	these:



Proportionate	change	is	very	largely	a	special	application	of	factoring,	and	contains	some	elements
of	 aliquots	 as	well—as	 you	 have	 no	 doubt	 observed.	 It	 is	 such	 a	 special	 application,	 particularly	 in
compensating	in	the	other	number	and	in	often	making	a	number	larger,	that	it	is	classically	considered
a	separate	short-cut	method.

As	 an	 exercise	 in	 number	 sense,	 consider	 the	 essential	 identity	 of	 doubling	 35	 to	 make	 70	 and
factoring	it	into	7	and	5.	In	multiplication,	if	you	double	35	to	70,	you	divide	the	other	number	or	the
answer	by	2	in	order	to	compensate.	Now,	dividing	by	2	is	an	aliquot	approach	to	multiplying	by	5,	is	it
not?	And	we	picked	up	 an	 extra	0	when	we	doubled	35	 to	70—which	 corresponds	 to	 the	 seemingly
missing	0	if	we	consider	a	division	by	2	to	be	an	aliquot	for	5.

The	various	short	cuts	overlap	and	are	overlapped	by	the	others	in	many	respects.	The	basic	number
relationships	 remain	 constant;	we	 are	merely	 using	 different	 conversions	 to	make	 those	 relationships
more	visible	and	easier	to	handle.
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CHOOSING	AND	COMBINING	SHORT	CUTS

OU	have	learned	and	practiced	the	four	most	generally	useful	short	cuts.	There	are	others,	but	they
are	 quite	 specialized.	 The	 most	 complete	 assortment	 can	 be	 found	 in	 the	 books	 listed	 in	 the

bibliography.	With	the	four	short	cuts	you	have	learned,	however,	you	can	convert	a	great	deal	of	your
multiplying	and	dividing	into	simpler	forms.

Review	all	together	in	one	place	the	four	different	approaches:

BREAKDOWN	For	 one	 of	 the	 numbers	 to	 be	multiplied,	 use	 a	 round	 number	 if	 this	 permits	 an
adjustment	with	an	easy	fraction	of	the	other	number	or	of	the	result	of	the	first	step.	39	becomes	40	–
1;	45	becomes	50	–	 	the	first	product.

ALIQUOTS	When	one	of	the	numbers	is	an	even	fraction	of	a	ten-base,	use	the	fraction	instead	of
the	number.	25	is	treated	as	¼	of	100.

FACTORS	When	one	of	 the	numbers	can	be	factored,	multiply	or	divide	by	each	of	 the	factors	 in
turn.	63	is	treated	as	9,	then	7.

PROPORTIONATE	CHANGE	When	one	of	the	numbers	can	be	simplified	by	doubling	or	halving	it
(or	any	other	such	change),	use	 the	simpler	form	and	compensate	 the	other	number	or	 the	answer.	35
becomes	70,	with	a	compensating	factor	of	2.

Many	numbers	can	be	short-cut	with	not	 just	one,	but	with	 two	or	more	of	 these	methods.	45,	 for
instance,	can	be	factored	(5	×	9),	broken	down	(50	less	 	product),	or	changed	(90,	compensate	with
2).	An	interesting	exercise	is	to	locate	one	number	to	which	all	of	these	methods	can	apply.	One	such
number	is	125.	Witness	the	various	short-cut	handlings	of	the	number	125:

BREAKDOWN:	100,	plus	¼	product.

ALIQUOTS:	1/8	of	1,000.

FACTORS:	5	×	5	×	5.

PROPORTIONATE	CHANGE:	quadruple	to	500.

For	real	mastery	of	short	cuts,	try	to	get	a	feel	for	the	real	identity	of	these	four	apparantly	different
relationships.	One	of	the	techniques	will	work	out	in	even-number	terms	for	a	number	that	none	of	the
others	might	handle	 in	 this	way,	but	 essentially	 they	are	all	merely	different	 expressions	of	 the	 same
fundamental	situation.

The	aliquot	approach	to	125,	for	instance,	is	to	take	1/8	of	1,000.	The	proportionate	change	approach
is	 to	use	500,	and	compensate	by	a	 factor	of	4.	500	 is	 just	half	of	1,000,	and	4	 is	 just	half	of	8.	The
relationships	are	the	same;	only	the	facets	we	choose	to	see	in	any	one	case	appear	to	be	different.

Numbers	to	which	all	four	approaches	apply	without	remainders	or	fractions	are	few,	but	numbers
for	which	two	of	the	short	cuts	work	are	plentiful.	Exercise	your	understanding	of	the	four	approaches



by	converting	each	of	the	following	numbers	in	at	least	two	ways:

Cover	the	explanations	with	your	pad	until	you	have	found	two	or	more	short	cuts	for	each	of	these
numbers.

Here	are	the	possibilities:

This	 does	 not	 mean	 that	 the	 different	 short	 cuts	 are	 of	 equal	 value	 whenever	 a	 number	 can	 be
converted	in	two	or	more	different	ways.	The	value	in	each	case	depends	not	only	on	the	possibilities	of
that	number,	but	also	on	the	other	number	involved.	It	also	depends	on	which	of	the	ways	you	find	most
adapted	to	your	own	ease	and	speed.	The	idea	is	to	pick	the	simplest	method	for	working	the	problem.
Sometimes	it	will	be	one	of	the	short	cuts,	and	other	times	it	will	be	to	go	ahead	and	do	it	with	your	new
streamlined	arithmetic.	Flexibility	is	the	key.	You	do	not	dig	a	hole	for	a	rose	bush	with	a	steam	shovel,
or	use	a	garden	spade	for	a	house	foundation.	Equally,	you	do	not	use	three	two-digit	factors	in	place	of
multiplying	by	the	number	you	factored,	because	it	would	not	save	you	any	work.

Combining	Short	Cuts

The	 possibilities	 of	 combining	 two	 short	 cuts	 in	 one	 problem	 are	 quite	 extensive	 and	 rather
intriguing.

Breakdown	by	 itself,	 for	 instance,	makes	sense	only	 if	you	can	break	a	number	down	 to	a	 simple
base	 and	 an	 adjustment	 that	 is	 a	 simple	 fraction	of	 the	other	 number	or	 the	product.	 If	 you	 combine
methods,	however,	you	can	use	any	aliquot	or	any	easily	factored	or	any	easily	changed	number	as	a
base.

In	the	range	of	numbers	in	which	breakdown	alone	would	save	you	work,	25	was	not	a	useful	base
because	you	would	 still	have	 to	multiply	 through	by	 two	digits.	But	with	aliquots	 to	help,	you	could
break	 down	 26	 into	 the	 combination	 technique	 “divide	 by	 4	 (aliquot)	 plus	 the	 other	 number
(breakdown).”

Here	is	how	you	would	do	it:

Note	 that	 since	 you	 are	 dividing	 by	 the	 easy-to-handle	 divider	 4,	 your	 short-cut	method	 is	 to	 jot



down	only	the	answer.
Surprisingly	 difficult-looking	 problems	 can	 sometimes	 be	 solved	 almost	 at	 sight	when	 one	 of	 the

numbers	happens	to	contain	an	aliquot	as	an	easy	breakdown	base.	1375	×	8642	becomes	merely	1/8	of
86420000,	plus	 	of	the	product—because	1375	can	be	broken	down	into	1250	(1/8	of	10,000)	plus
125	( 	of	1250).	Try	it	and	see.

Do	the	following	problem	with	an	aliquot-breakdown.

Cover	the	explanation	with	your	pad	while	you	give	it	your	best.
We	break	the	number	385	into	375	plus	10—3/8	of	1,000	plus	10	times	the	other	number.	First	you

divide	4782000	by	8,	 jotting	down	only	 the	answer.	Multiply	 the	result	by	3.	Then	add	47820—10	×
4782:

Just	for	comparison,	here	is	the	usual	way	of	solving	the	same	problem:

Try	breaking	down	these	multipliers	to	aliquot	bases:

Some	of	 these	get	a	 little	 tricky,	but	each	of	 them	can	be	broken	down	to	an	aliquot	base.	Here	 is
how:

Just	as	you	can	break	down	a	complex	multiplier	to	an	aliquot	base	as	well	as	a	rounded-off	base,	so



can	you	break	down	multipliers	to	a	factorable	base.	There	would	be	no	point	in	breaking	down	37	by
the	breakdown	method	alone.	But	by	combining	it	with	the	factor	short	cut,	37	becomes	6	×	6	(factors)
plus	the	other	number	(breakdown).

See	if	you	can	find	the	surprisingly	easy	breakdown-factor	short	cut	for	this	problem:

Any	series	of	digits	that	repeats	itself—such	as	81,	81—is	a	very	automatic	breakdown.	This	number
is	8100	plus	 	of	itself.	8100,	in	turn,	is	at	sight	90	×	90.	So	the	breakdown-factor	short	cut	would
be:	“90	×	90	(factors)	plus	 	of	the	product	(breakdown).”	In	addition,	however,	we	often	handle
multiplication	by	9	as	a	breakdown,	using	10	–	1.	 In	 this	case,	90	 is	100	–	10.	Let	us	show	all	 three
methods	of	working:

As	very	often	happens,	the	illustrations	of	the	two	short	cuts	do	not	dramatize	the	real	simplification
involved:	the	handling	of	easier	processes	at	each	step.	Follow	each	of	them	pencil	in	hand	to	see	how
this	works.

Breakdown	can	also	 sometimes	be	combined	with	proportionate	 change.	The	number	34	does	not
find	a	natural	place	in	any	one	of	the	individual	short-cut	methods.	But	if	you	realize	that	34	is	just	one
less	 than	 an	 easy	 proportionate-change	 base,	 you	 might	 choose	 to	 handle	 it	 as	 a	 multiplier	 as	 70
(proportionate	 change)	 and	 cut	 the	 other	 number	 or	 answer	 in	 half;	 then	 subtract	 the	 other	 number
(breakdown).

You	might	or	might	not	choose	to	use	any	of	these	specific	combinations.	Again,	and	again:	hunt	for
relationships,	use	the	short	cut	or	combination	of	short	cuts	that	flashes	into	your	mind	as	an	easy	and
sensible	method,	and	get	the	problem	done.	This,	after	all,	is	the	end	purpose	of	all	mathematics,	short-
cut	or	not;	get	the	problem	done.



Other	Combinations

The	 possible	 combinations	 of	 short	 cuts	 are	 almost	 endless.	 A	 book	 could	 be	 written	 about	 the
refinements	 of	 double	 and	 triple	 and	 quadruple	 combinations	 of	methods.	 It	would	 be	 an	 interesting
exercise,	but	would	not	really	get	you	through	your	arithmetic	with	greater	speed	and	accuracy	except
for	the	particular	relationships	that	happen	to	hit	you	with	special	and	memorable	force.

One	or	two	other	wrinkles	would,	however,	speed	up	your	number	work	from	time	to	time.	They	are
rather	intriguing,	too.

We	noted	a	page	or	two	back	that	sometimes	you	will	break	a	multiplier	down	to	a	factorable	base.
You	will,	as	well,	discover	sometimes	after	you	have	factored	a	number	 that	one	of	 the	factors	 is	 too
complex	 to	 save	much	 time	 in	 using	 the	 straight	 factor	 approach—but	 that	 complex	 factor	might	 be
broken	down.	This	is	just	the	reverse	of	breakdown-factor;	it	is,	if	you	will,	factor-breakdown.

Let	us	try	one.	As	a	start,	factor	the	multiplier	261.
The	digit	sum	of	261	is	0,	so	you	know	9	is	a	factor.	9	into	261	gives	you	29	as	the	other	factor.
Now	29	is	a	prime	number	and	it	is	a	two-digit	number,	so	factors	do	not	short-cut	this	problem	as

much	 as	 we	 should	 like.	 But	 29	 is	 a	 very	 natural	 candidate	 for	 breakdown.	 We	 might	 solve	 a
multiplication	involving	261	by	multiplying	by	9,	then	30,	then	subtracting.

Be	very	careful	here	to	subtract,	not	the	other	number,	but	the	product	of	9	times	the	other	number.
Why?	Because	that	30	–	1	is	a	factor,	not	a	breakdown	of	the	whole	number.	Work	the	factors	backward,
if	you	wish,	to	get	this	point	clear.	9	×	30	is	270.	Subtract	9	(not	1)	from	270	to	get	261,	the	number	we
started	with.

Here	is	an	example	involving	this	specific	factor-break-down:

We	have	covered	only	the	combinations	 involving	breakdown	because	they	are	 the	most	generally
useful.	Some	combinations	do	not	make	any	sense	at	all,	such	as	factoring	to	an	aliquot.	Play	with	the
idea	on	your	pad	and	you	will	see	why.

The	ultimate	short	cut	is	to	have	so	firm	a	grip	on	your	number	sense	and	on	the	possible	short	cuts
—together	with	useful	combinations	of	them—that	in	each	case	you	can	quickly	and	unerringly	pick	the
shortest,	easiest	road	to	the	solution.

The	next	step	is	obvious.	It	is	to	practice,	on	some	actual	examples,	the	best	approach	to	each.	Do
not	bother	to	solve	the	following	problems	unless	you	wish	to.	The	exercise	is	simply	to	select,	in	each
case,	the	best	technique.	Keep	in	mind	as	you	go	through	the	exercise	that	in	multiplication	you	might
choose	to	short-cut	either	number,	not	just	the	one	that	appears	on	the	bottom.

Examine	each	of	the	following	problems	for	all	reasonable	short-cut	possibilities	and	definitely	state
to	yourself	how	you	would	tackle	it	before	going	on	to	the	suggested	approaches.	Not	all	of	them,	by	the
way,	 should	 be	 converted.	 In	 four	 cases,	 there	 is	 no	 short	 cut	 possible.	 For	 practice,	 however,	 spend
more	time	with	each	than	you	would	expect	to	spend	looking	for	short	cuts	in	your	work	with	figures.?



Don't	 skip	 over	 the	 above	 exercise.	 Short	 of	 knowing	 the	 short	 cuts	 themselves,	 it	 is	 the	 most
important	practice	in	the	short-cut	section	of	this	book.	It	does	little	good	to	know	several	short	methods
if	you	cannot	see	quickly	whether	or	not	each	can	be	used.

In	some	of	the	above	problems	more	than	one	conversion	can	be	applied.	You	can	treat	the	divider
25	 in	 problem	18,	 for	 instance,	 as	 5	 ×	 5,	 or	½	 of	 50,	 or	¼	 of	 100.	The	 suggested	 short	 cuts	 below,
however,	are	those	I	believe	simplest	in	each	case.	You	are	perfectly	free	to	choose	a	different	one	if	it
will	work	and	if	it	is	easier	for	you.

		1. 	

Convert	 the
top	 number
into	 1/8	 of
10,000.

		2. 	
No	 practical
short	cuts.	Do
it	straight.
All	 short	 cuts



		3. 	

are	 not
complicated.
It	 is	 still
easier	 to
multiply	by	9
by
subtracting
the	 number
from	10	times
the	number.

		4. 	

You	 can
factor	 35	 into
7	 and	 5,	 or
double	 it	 to
70.

		5. 	

Two-step
short	cut.	126
is	125	plus	1,
and	125	is	1/8
of	1,000.

		6. 	

Here	 is	 a
reverse
aliquot.	 Far
simpler	 to
multiply	by	.8
than	by	 .

		7. 	

47	 is	 1	 less
than	 48,
which	 is	 6	 ×
8.

		8. 	 Treat	 79	 as
80	–	1.

		9. 	

Reverse	 this
fraction	 to	 its
aliquot	 form:
.4.

10. 	

The	 most
elementary	of
all	 short	 cuts.
99	is	100	–	1.

11. 	

Factor	 378
into	 9,	 7,	 and
6.	You	divide
three	 times,
but	 by	 a



single	 digit
each	time.

12. 	
69	 is,	 of
course,	 70	 –
1.

13. 	 Factor	 the	 72
into	9	and	8.

14. 	

Choose
among
factoring	 the
45	 into	 9	 and
5;	 doubling	 it
to	 90;	 or
breaking	 it
down	 to	 50	 –

	product.

15. 	

75	 is	 ¾	 of
100.	 Instead
of
multiplying
by	 75,	 just
multiply	 by
3(00)	 and
divide	by	4.

16. 	

1	 would
convert	 the
top	 number
on	 this,
although	 97
is	easy	as	100
–	 3.	 But	 180
is	 twice	 90,
so	subtract	10
97’s	from	100
97’s	 and
double	 the
answer.

17. 	
625	 is	 an
aliquot,	 being
5/8	of	1,000.

18. 	

Don't	 ever
divide	 by	 25.
Subtract	 two
zeros	 from
the	 number
divided



(using	 a
decimal)	 and
multiply	by	4.

19. 	

375	 is	 3/8	 of
1,000.
Subtract	three
zeros;
multiply	 by
8;	then	divide
by	3.

20. 	

The	digit	sum
of	432	is	0,	so
you	 can
factor	it:	9,	8,
and	6.

21. 	

You	 cannot
do	 much	 to
the	 bottom
number,	but	5
is	obviously	a
factor	 of	 the
top	 number.
A	 quick
sight-division
shows	 that
the	 other
factor	 is	 49,
which	 in	 turn
you	 factor	 to
7	and	7.

22. 	 No	 practical
short	cut.

23. 	

You	 should
recognize
factorable
numbers	 of
81	or	less	at	a
glance.	 49	 is
7	×	7.

24. 	

Do	not	let	the
decimal	 fool
you.	 4.5	 can
be	 handled
just	 like	 the
45	in	problem



14—but	 keep
track	 of	 the
decimal
point.

25. 	

No	 short	 cut
would	 be
worthwhile
here.

26. 	

Factor	the	top
number	 in
this	 problem.
256	 is	 the
product	 of	 8,
8,	and	4.

27. 	

This	 is	 the
last	 of	 the
booby	 traps.
Use	 your
nocarry,	 left-
to-right
multiplication
for	 quick
results.

28. 	

This	 divider
can	 be
converted	 to
a	 single	 digit
with
proportionate
change.
Divide	 by
900	 and
multiply	by	4.

29. 	

875	 is	 a
perfectly
good	 aliquot.
Subtract	 4
zeros,	 then
divide	 by	 8
and	 multiply
by	7.

30. 	

63	 is	 an	 easy
breakdown:
70	 –	
product.



O

18

MASTERING	FRACTIONS

F	ALL	 the	 specialized	branches	of	mathematics,	 fractions	 seem	 to	be	greeted	with	more	general
panic	than	all	the	others	put	together.
It	 does	 not	 have	 to	 be	 so.	 Fractions	 are	 really	 not	 much	 more	 complicated	 than	 multiplying	 or

dividing.	Perhaps	 the	 reason	 for	 their	general	unpopularity	 is	 that	 they	are	 taught,	 to	 an	 even	greater
extent	than	is	true	for	the	other	processes,	almost	entirely	by	rote.	The	rote	itself	simply	has	to	have	a
few	more	steps	and	rules	than	do	whole	numbers.

You	can	add	any	two	whole	numbers	together	without	doing	anything	to	them	first.	But	not	fractions.
The	 reason	why	 this	 is	 so	 has	 apparently	 escaped	 the	 normal	 teaching	 methods.	Many	 people	 have
trouble	 understanding	 why	 you	 can	 multiply	 two	 fractions	 together	 and	 get	 an	 answer	 smaller	 than
either	of	 them.	 If	you	multiply	 two	numbers	 together,	 isn't	 the	answer	 larger	 than	either?	Again—not
with	fractions.

Both	peculiarities,	along	with	the	other	peculiarities,	are	inherent	in	the	true	nature	of	fractions.	Let
us	approach	their	nature	with	some	general	observations.

A	fraction	is,	in	essence,	a	number	that	cannot	be	expressed	normally	in	our	decimal	system	of	digits
running	from	1	to	9	and	then	starting	over.	It	is	usually	smaller	than	1,	and	our	counting	system	has	no
way	of	expressing	such	a	quantity	other	than	the	apparently	awkward	form	of	the	fraction	(other	than	a
decimal,	which	is	merely	a	fraction	written	in	another	way).

A	fraction,	even	if	we	have	no	other	way	to	indicate	it	than	a	fraction,	is	however	a	very	real	number
or	 quantity.	 The	 form	 in	 which	 we	 show	 it	 is	 really	 a	 fabulously	 ingenious	 and	 useful	 method	 of
expressing	any	conceivable	quantity	from	any	conceivable	counting	base	in	terms	of	the	number	system
we	know.

Imagine,	 if	 you	will,	 that	 our	 base	 quantity	 “1”	 is	 a	 loaf	 of	 bread.	We	 have	 built	 up	 a	 complete
arithmetic	based	on	loaves	of	bread;	we	have	units	of	ten	loaves;	we	have	learned	by	heart	how	to	add	3
loaves	to	6	loaves,	to	start	with	8	loaves	and	take	away	4	loaves,	to	imagine	that	one	group	of	2	loaves
has	been	doubled,	or	multiplied	by	2.	But	then,	suddenly,	one	of	our	loaves	breaks	into	pieces	and	we
must	account	for	the	pieces.

This	is	a	fraction.	The	loaf	may	have	broken	into	“3”	pieces,	but	we	have	no	arithmetic	with	which
to	handle	 it.	The	only	units	we	know	are	 in	 terms	of	 loaves	of	 bread.	Yet	 this	 “1”—this	 loaf—is	no
longer	1.	It	is	less	than	1.

How	 do	we	 express	 the	 quantity	 represented	 by	 each	 of	 these	 pieces?	 Some	 genius	 or	 geniuses,
centuries	ago,	suggested	that	we	represent	it	by	“1”—because	it	once	was	1	loaf—divided	by	“3”—as	if
each	of	the	pieces	were	now	a	loaf.	The	3	came	from	1,	so	the	essential	quantity	is	the	one	expressed	by
a	division	of	3	into	1.

We	write	it	1/3.
This	 is	 the	 basic	 fact	 about	 all	 fractions.	 They	 are	 real	 quantities,	 but	 quantities	 that	 cannot	 be

expressed	in	our	regular	number	system,	so	we	express	them	in	terms	of	divisions.
A	fraction	is,	then,	merely	a	division	problem.
When	we	write	the	quantity	2/5,	we	really	intend	to	convey	the	idea	of	a	quantity	that	is	outside	our

number	system,	and	can	best	be	expressed	by	dividing	2	by	5,	or	2	÷	5,	or	5	 	Because	we	wish	to
show	it	as	a	quantity	more	than	a	problem,	we	write	it	2/5.

Thinking	of	a	fraction	as	really	a	problem	in	division,	which	also	expresses	a	specific	quantity,	may



help	you	to	gain	an	emotional	grasp	of	the	entire	system.

Why	2	×	2	Is	“Less”	Than	2

One	of	 the	most	baffling	habits	of	 fractions	 is	 that	when	you	multiply	 two	of	 them	 together,	your
answer	 is	 less	 than	 either	 of	 them	 alone.	We	 are	 so	 accustomed	 to	 thinking	 of	 multiplication	 as	 an
increasing	process	that	this	jars	our	basic	number	sense.

If	you	think	of	multiplying	as	counting	a	number	a	certain	number	of	times—which	is	precisely	what
it	is—the	concept	becomes	clearer.	If	you	count	a	number	more	than	once,	then	the	result	is	obviously
larger	than	the	number	was.	But	if	you	count	the	number	less	than	once,	as	you	do	when	you	count	it
only	1/3	times,	for	instance,	then	the	answer	must	be	smaller	than	the	number	was	when	you	started.	If
the	number	you	counted	was	less	than	1	to	start	with,	such	as	¼,	then	the	answer	will	obviously	also	be
smaller	than	the	number	of	times	you	counted	it—because	to	get	an	answer	as	large	as	your	“counting”
number	you	would	have	to	count	another	number	at	least	as	large	as	1.

This	is	why	multiplying	by	two	fractions	smaller	than	1	gives	you	an	answer	smaller	than	either	of
the	fractions.	You	count	a	number	that	is	smaller	than	1	to	begin	with,	and	you	don't	even	count	it	one
whole	time.	When	you	multiply	¼	×	½,	you	are	saying	in	effect	“count	½	exactly	¼	times.”

This	 fact	 leads	 us	 into	 the	 first	 natural	 rule	 for	 handling	 fractions	 with	 understanding	 as	 well	 as
memorized	rules:	to	multiply	fractions,	multiply	the	top	numbers	together	for	the	top	of	the	answer,	and
multiply	the	bottom	numbers	together	for	the	bottom	of	the	answer.

Note	that	we	define	this	rule	in	terms	of	top	numbers	and	bottom	numbers.	Arithmetic	has	become
topheavy	with	 special	 names	 such	 as	 “numerator”	 and	 “denominator”	 that	 confuse	 things	more	 than
they	clarify	them	for	most	of	us.	If	you	agree,	“top”	and	“bottom”	is	instantly	and	unmistakably	clear.

Following	this	rule,	then,	count	3/5	exactly	¼	times—or,	if	it	sounds	clearer,	¼	of	one	time:

The	top	of	our	answer	is	3,	which	is	what	we	get	when	we	multiply	3	×	1.	The	bottom	is	20,	which	is
produced	by	multiplying	5	×	4.	This	is	what	is	produced	when	you	start	with	a	quantity	expressed	by
dividing	5	into	3	(3/5)	and	count	it	not	even	once,	but	a	number	of	times	expressed	by	the	division	of	4
into	1	(¼).

In	order	to	refresh	your	memory,	try	it	yourself:

This	is	simple,	naturally,	but	if	you	are	at	all	rusty	it	would	help	to	cover	up	the	answer	with	your
pad	and	write	down	the	answer.

Multiplying	the	top	numbers,	we	get	6.	Multiplying	the	bottom	numbers,	we	get	28.	The	answer	is
6/28.

This	is	true,	but	6/28	is	a	fairly	complex	fraction.	Is	there	a	simpler	expression	of	the	same	quantity?
6	and	28	are	both	evenly	divisible	by	2.	If	we	divide	both	the	top	and	bottom	by	2,	our	fraction	becomes
3/14.

Think	about	this	fact	for	a	bit.	Your	memory	of	the	rules	undoubtedly	tells	you	that	it	is	the	same,	but
visualize	the	two	expressions	and	see	if	you	can	feel	their	identity.

This	leads	us	to	a	general	rule	for	all	fractions:



If	you	multiply	or	divide	both	the	top	and	bottom	numbers	of	a	fraction	by	the	same	number,	the
quantity	remains	unchanged.

By	this	rule,	6/8	is	the	same	quantity	as	¾.	Is	it?	You	know	by	training	that	it	is.	But	can	you	feel	it?
As	 a	 good	 exercise	 in	 number	 sense,	 try	 expressing	 this	 quantity	 by	6	 dots	 above	 a	 line	with	 8	 dots
below	it.	Thoughtfully	connect	each	two	adjacent	dots	so	they	become	1	line,	in	pairs,	and	note	that	you
now	have	3	lines	over	4	lines.	You	have	not	changed	the	relationship	of	the	quantities	above	and	below
the	line,	but	you	have	changed	the	numbers.

Try	a	few	multiplication	exercises	on	your	pad:

Work	these	out.	They	are	elementary,	but	important.
The	raw	answers	are,	of	course,	6/72,	5/60,	3/8,	and	1/8.	We	say	“raw”	because	some	of	these	can	be

reduced	 to	 simpler	 terms.	6/72,	 for	 instance,	 is	 reduceable	at	 sight	 to	3/86,	and	 this	 in	 turn	 is	 clearly
1/12.	Check	your	other	answers	for	reduction	possibilities.

Short-Cut	Multiplying

If	any	 fraction	whose	 top	and	bottom	numbers	can	be	evenly	divided	by	 the	same	number	can	be
reduced	to	a	simpler	form	by	dividing,	then	two	fractions	to	be	multiplied	can	also	go	through	the	same
process	even	before	they	are	multiplied.

This	means	that	often	you	can	do	part	of	the	reducing	before	you	multiply,	rather	than	after.
The	 secret	 that	makes	 this	 possible	 is	 that	 it	 does	 not	make	 a	 bit	 of	 difference	 in	what	 order	 you

multiply	or	divide	numbers:	the	result	will	be	the	same.	4	×	8	×	6	is	the	same	as	8	×	6	×	4	is	the	same	as
6	×	4	×	8—as	well	as	8	×	4	×	6	and	6	×	8	×	4.

If	 this	 fact	 is	 not	 instinctive	 with	 you,	 work	 out	 each	 of	 the	 above	 multiplications	 and	 make	 it
instinctive.

When	we	start	out	with	a	problem	such	as	the	first	one	above,	we	note	that	more	than	one	top	and
bottom	can	be	divided	by	the	same	number:

The	 top	3	 and	bottom	9	 are	 both	divisible	 by	3.	They	become,	 respectively,	 1	 and	3.	So	now	we
have:

But	the	top	2	and	bottom	8	are	also	divisible	by	the	same	number.	Dividing	both	by	2,	we	have:

Now	our	answer	comes	out	as	1/12.	This	is	the	same	as	our	answer	the	first	 time	we	tried	it,	after
reduction.



This	 process	 is	 traditionally	 called	 “cancellation.”	 It	 might	 more	 sensibly	 be	 called	 “reduction,”
because	that	is	what	you	really	do.	You	do	not	cancel	anything;	you	reduce	numbers	where	you	can.

Try	the	short-cut	method	of	reduction	on	these:

Use	your	pad	to	play	with	these	before	checking	the	reduced	forms	below.
4/7	×	5/12	can	be	reduced	by	dividing	the	top	4	and	bottom	12	by	4.	The	reduced	form	is	1/7	×	5/9,

giving	the	answer	5/21.
3/5	×	5/9	has	two	reductions.	The	two	5’s	can	both	be	divided	by	5,	which	gives	us	3/1	×	1/9.	The

top	3	and	bottom	9	can	both	be	divided	by	3,	giving	1/1	×	1/3.	The	answer	must	be	1/3.
2/3	×	6/7	offers	only	the	bottom	3	and	top	6,	both	to	be	divided	by	3.	Now	the	problem	is	2/1	×	2/7,

which	gives	4/7.
5/6	×	3/20	offers	two	reductions.	5	goes	into	the	top	5	and	bottom	20,	reducing	the	problem	to	1/6	×

¾.	3	goes	evenly	into	the	bottom	6	and	top	3,	further	reducing	the	problem	to	½	×	¼.	Answer,	1/8.
There	 is	 an	 important	 reason	 why	 I	 refuse	 to	 call	 this	 process	 “cancellation.”	 The	 technique	 is

usually	taught	as	an	“X”	process,	from	the	top	of	one	fraction	to	the	bottom	of	another.	It	is	definitely
not	necessarily	so;	any	top	and	bottom	(never	a	top	and	top	or	bottom	and	bottom,	of	course)	will	do,	in
the	same	fraction	or	in	any	of	the	fractions	to	be	multiplied.

You	can	reduce	6/8	×	2/12	the	same	way	you	would	8/12	×	2/8,	using	any	top	and	bottom	that	can	be
divided	 evenly	 by	 the	 same	 number.	 The	 only	 difference	 is	 that	 usually	 fractions	 are	 presented	 in
arithmetic	books	already	reduced	for	such	problems.	In	our	real-life	figure	work,	they	are	not	always	so
reduced	for	us.	Look	for	reducing	possibilities	everywhere.

Dividing	Fractions

Just	 as	 it	may	 seem	 peculiar	 to	multiply	 two	 quantities	 (if	 they	 are	 fractions)	 and	 get	 an	 answer
smaller	than	either	of	them,	so	may	it	appear	outrageous	to	divide	one	quantity	into	another	and	(if	they
are	fractions)	get	an	answer	larger	than	either.

Keep	firmly	in	mind	that	division	is	merely	the	reverse	of	multiplication,	and	review	in	your	mind
the	reasons	for	the	strange	results	you	get	in	multiplication.	In	effect,	the	fraction	divided	is	the	answer
to	 an	 imaginary	multiplication,	 and	 the	 purpose	 of	 the	 division	 is	 to	 find	 the	missing	 partner	 in	 the
multiplication.

Let	us	start	into	the	division	of	fractions	with	a	simple	example:

If	we	multiply	by	multiplying	 the	 respective	 tops	and	bottoms,	 then	we	might	expect	 to	divide	by
dividing	them.	In	a	problem	this	simple,	we	can	indeed:	1	into	3	gives	3,	and	2	into	4	gives	2:	3/2	is	the
answer.

Do	not	worry	about	that	3/2	yet.	We	will	get	into	so-called	improper	fractions	later.
The	technique	of	simple	division	will	theoretically	work	with	any	problem,	but	since	every	number

does	 not	 “go	 into”	 every	 other	 number	 evenly	 we	 sometimes	 would	 end	 up	 with	 awkward	 decimal
remainders	and	create	some	really	difficult-	to-handle	answers.

This	is	why	the	standard	trick	of	“inversion”	has	been	developed.	The	trick	has	this	rule:



To	divide	by	a	fraction,	turn	it	upside	down	and	multiply	by	it.

If	this	seems	at	all	odd,	reinforce	your	grasp	of	the	reason	why,	as	well	as	the	rule,	by	considering
that	all	division	is	merely	an	inversion	of	multiplication.	When	you	multiply	by	4,	you	count	the	other
number	¼	times.

Another	way	of	saying	“divide	by	27”	is	to	say	“multiply	by	1/27.”
So	another	way	to	say	“divide	by	¾”	is	to	invert	the	fraction	and	say	“multiply	by	4/3.”
The	single	greatest	source	of	confusion	to	many	people	is	remembering	which	fraction	to	invert.	If

you	fully	understand	the	why,	you	cannot	ever	again	become	confused.	To	make	extra	sure,	run	through
the	comparison	once	more.

In	order	to	divide	28	by	14,	would	you	set	it	up	as

So	in	order	to	divide	½	by	¼,	by	would	you	set	it	up	as

It	is	the	fraction	by	which	you	divide	that	you	invert—always.

Pull	out	your	pad	and	do	these	examples	with	inversion:

Inverting	the	divider	of	the	first	problem	gives	us	¾	×	2/1.	The	answer	is	6/4,	which	reduces	to	3/2.
If	you	used	short-cut	reduction,	you	would	have	converted	the	problem	to	3/2	×	1/1	before	multiplying.

The	second	problem	becomes	7/8	×	5/2,	which	gives	an	answer	of	35/16.	This	 fraction	cannot	be
reduced.

The	third,	when	you	invert	the	divider,	becomes	5/6	×	3/2.	This	can	be	reduced	to	5/2	×	1/2,	with	the
answer	5/4.

Short-Cut	Division

If	you	are	sure	of	your	technique,	there	is	no	need	to	rewrite	such	division	problems	with	the	divider
inverted.	You	can	do	the	inversion	in	your	head	by	following	this	rule:

To	divide,	multiply	the	top	of	the	fraction	divided	by	the	bottom	of	the	divider,	and	put	it	on	top.
Multiply	the	bottom	of	the	fraction	divided	by	the	top	of	the	divider,	and	put	it	on	the	bottom.

In	 other	words,	 you	 simply	multiply	 each	 top	 by	 the	 other	 bottom.	Keep	your	 answer	 straight	 by
using	 the	 fraction	divided	as	your	guide	 for	 the	answer:	 the	product	of	 this	 top	and	 the	other	bottom
becomes	the	top	of	the	answer.	The	entire	process	automatically	inverts	the	divider	without	rewriting.



Here	is	an	example:

Top	of	 fraction	divided	 (2)	 times	 the	other	bottom	(4)	 is	8.	Since	you	used	 the	 top	of	 the	 fraction
divided,	 this	8	goes	on	 top	of	 the	answer.	Bottom	of	 fraction	divided	(3)	 times	 the	other	 top	(3)	 is	9.
This	goes	on	the	bottom	of	the	answer.	The	answer	is	8/9.

Try	one	yourself:

Keep	your	top	and	bottom	straight	by	matching	to	the	fraction	divided	rather	than	to	the	divider,	and
you	can	read	the	answer	at	sight.	It	is	5/8.

Beware	of	one	possible	misunderstanding	here.	When	you	divide	in	this	fashion,	you	cannot	reduce
in	 the	normal	fashion	by	dividing	tops	and	bottoms	simultaneously.	This	 is	because	you	would	invert
the	divider	if	you	rewrote	it	before	multiplying,	so	in	essence	the	top	of	the	divider	becomes	its	bottom
and	 vice	 versa.	 You	 can,	 if	 you	 take	 care	 to	 keep	 track	 of	 the	 proper	 tops	 and	 bottoms,	 reduce	 by
dividing	both	tops	or	both	bottoms	by	any	number	that	will	go	into	them	evenly,	because	you	invert	the
divider	in	multiplying	anyway.

Adding	Fractions

Adding	and	subtracting	fractions	is,	surprisingly,	more	work	than	multiplying	or	dividing	them.	The
reason	is	simple,	and	is	based	on	the	fact	that	it	makes	no	difference	in	what	order	you	multiply	a	series
of	numbers—but	it	makes	a	big	difference	in	what	order	you	multiply	and	add.

Consider	this	quantity:

Does	it	make	any	difference	whether	you	treat	this	as	2	×	3,	plus	4—or	as	2	×	the	sum	of	3	+	4?	Try
it	and	see.	One	handling	gives	you	10.	The	other	gives	you	14.

It	is	critically	important	to	add	and	multiply	in	the	proper	portions.	2	×	(3	+	4)	is	not	the	same	as	(2	×
3)	+	4.	Examine	the	two	expressions	carefully	and	you	will	discover	the	cause	for	the	difference.	In	the
first	handling,	the	4	gets	multiplied	by	the	2	after	it	has	been	added	to	the	3.	In	the	second,	the	4	never
gets	multiplied	by	the	2	at	all.	So	the	end	result	is	quite	different.

Another	way	of	approaching	 the	 special	 rules	 for	adding	and	subtracting	 fractions	 is	 to	 remember
that	 each	 fraction	 is,	 depending	 on	 its	 bottom	 number,	 in	 its	 own	 special	 number	 system—one	 not
accounted	for	in	our	regular	digits	and	expressible	in	our	digit	system	only	as	a	division	problem.	1/3,
2/3,	and	3/3	are	all	quantities	based	on	one-third	of	1.	But	¼,	2/4,	3/4,	and	4/4	are	quantities	based	on
one-fourth	 of	 1.	 Thirds	 and	 fourths	 are	 not	 in	 the	 same	 number	 system	 at	 all,	 and	 trying	 to	 add	 or
subtract	combinations	of	the	two	is	like	adding	gallons	and	litres.

The	first	job	in	adding	or	subtracting	fractions,	then,	is	to	get	them	all	into	the	same	number	system,
Fortunately,	it	is	not	hard	at	all.

There	is	a	very	simple	way	of	converting	different	fractions	into	the	same	system.	We	just	multiply
the	bottoms	and	adjust	the	tops.	We	can	even	forget	that	forbidding	schoolroom	phrase	“lowest	common



denominator,”	because	we	do	not	need	it.	All	we	have	to	do	is	multiply.

Here	is	how	it	works:

First,	in	order	to	determine	the	number	system	in	which	we	can	express	both	quantities,	we	multiply
the	bottoms.	4	×	3	is	12.	This	12	will	be	the	bottom	of	the	answer,	because	it	is	a	number	system	that
can	express	both	fourths	and	thirds	accurately.

Before	we	can	add,	however,	we	must	convert	each	fraction	to	this	new	system.	¾	is	¾,	but	it	is	not
3/12.	How	many	twelfths	is	it?	The	simplest	way	to	convert	is	to	multiply	each	top	by	the	other	bottom,
because	 this	 is	 the	number	by	which	we	multiplied	 the	bottom	and,	as	we	know,	multiplying	 top	and
bottom	by	the	same	number	does	not	change	the	value	of	the	fraction.

3	×	3	is	9,	so	¾	is	9/12.	We	do	not	worry	about	that	in	working,	however.	All	we	care	about	at	the
moment	is	the	9.	For	the	second	fraction,	we	multiply	2	×	4	and	get	8.	Now	we	add	the	two	products,
and	this	becomes	the	top	of	the	answer.	9	+	8	is	17.	The	answer	is	17/12.

Once	again,	look	at	these	four	expressions	and	try	to	feel	their	identity:

This	answer	is	a	fraction	larger	than	1.	We	will	get	to	the	handling	of	such	fractions	soon.	First,	let	us
finish	addition	and	subtraction.

Try	the	simplified	rule	on	the	following	addition.	The	rule,	in	one	sentence,	reads:	To	add	fractions,
multiply	the	bottoms	for	the	new	bottom;	multiply	each	top	by	the	other	bottom	and	add	these	products
for	the	new	top.

You	do	not	have	to	go	through	the	entire	step-by-step	visualization	above	each	time	you	do	it.	Just
multiply	the	bottoms	for	the	bottom	of	the	answer.	Multiply	each	top	by	the	other	bottom	and	add	the
products	for	the	top	of	the	answer.

For	the	problem	above,	our	bottom	is	2	×	3	or	6.	1	×	3	is	3,	plus	2	×	2	is	4,	gives	7	as	the	top.	The
answer	is	7/6.

Try	 a	 few	more	with	 this	 technique.	 It	 is	 really	 simpler	 and	 faster	 than	worrying	 about	 common
denominators:

Work	out	and	reduce	where	possible	the	answers	to	these	on	your	pad.
The	 answers,	 in	 order,	 are	 17/20,	 16/12,	 10/12,	 and	 26/20.	 The	 second	 answer—16/20—can	 be

reduced	to	4/3.

Adding	More	Than	Two

The	rule	becomes	just	a	little	more	complicated	when	you	add	three	or	more	fractions.	You	have	to



reduce	all	of	them	to	the	same	number	system.
The	rule	is	not	very	much	more	complicated,	however.	Let	us	take	it	in	two	steps:

						1.	Multiply	all	the	bottoms	together.	This	will	be	the	bottom	of	the	answer.

						2.	Multiply	each	top	by	all	the	bottoms	except	its	own,	and	add	all	the	products.	This	will	be	the
top	of	the	answer.

This	rule	is	precisely	the	same	as	the	rule	for	adding	two	fractions,	generalized	to	handle	any	number
of	fractions.	Here	is	an	example:

The	first	step	is	to	multiply	all	the	bottoms	together.	2	×	3	is	6,	×	5	is	30.	The	bottom	of	the	answer	is
30.

The	second	step	is	to	multiply	each	top	by	all	the	bottoms	except	its	own.	1	×	3	is	3,	×	5	is	15.	2	×	2
is	4,	×	5	is	20.	3	×	2	is	6,	×	3	is	18.	Add	15	and	20	and	18	to	get	the	top	of	the	answer:	53.	The	answer	is
53/30.

Examine	 carefully	 the	 steps	 in	 this	 addition,	 and	 you	 will	 see	 that	 in	 each	 case	 we	 are	 really
multiplying	each	fraction's	top	and	bottom	by	the	same	number:	the	products	of	the	bottoms	of	all	the
other	fractions.	This	translates	all	the	fractions	into	the	same	number	system	and	adjusts	all	the	tops	at
the	same	time,	without	changing	the	quantity	of	each	fraction.

Do	one	on	your	own	with	this	method:

First,	find	the	bottom	of	the	answer.	4	×	3	is	12,	×	5	is	60.
Now	for	the	top.	3	×	3	is	9,	×	5	is	45.	2	×	4	is	8,	×	5	is	40.	2	×	4	is	8,	×	3	is	24.	Adding	45,	40,	and

24,	we	get	109	as	the	top	of	the	answer…109/60.

Special	Cases

There	is	a	further	short	cut	in	adding	a	series	of	fractions	in	which	some	of	them	are	already	in	the
same	terms.	The	usual	method	is	to	hunt	through	all	the	bottoms	for	the	“lowest	common	denominator,”
which	takes	a	bit	of	figuring	and	then	adjustment	of	each	top.

It	 is	 far	 easier	 simply	 to	 add	 all	 like	 fractions	 first;	 then	 add	 the	 resulting	 unlike	 fractions	 in	 the
method	just	described.

In	order	to	add	like	fractions	(all	thirds,	say,	or	all	fifths),	you	simply	add	the	tops.	Do	nothing	to	the
bottoms.	The	sum	1/5	and	2/5	is	the	sum	of	the	tops—3—over	the	same	bottom:	3/5.

Here	is	how	to	handle	a	typical	situation:

The	simplified	way	is	first	to	add	the	like	fractions.	1/5	and	2/5	are	in	the	same	terms,	so	they	total
3/5.	2/7	and	4/7	are	in	the	same	terms,	so	they	total	6/7.	Now	merely	add	3/5	and	6/7	as	you	have	done
before,	and	get	51/35.



Try	it	yourself:

The	 first	 and	 last	 fractions	 are	 both	 in	 ninths,	 so	 simply	 add	 the	 tops:	 6/9.	 The	 second	 and	 third
fractions	are	both	in	terms	of	fifths,	so	add	the	tops	and	get	3/5.	The	sum	of	6/9	and	3/5	is	57/45,	which
reduces	to	19/15.

Reducing	As	You	Go

You	can	save	work	by	reducing	fractions	as	you	go.	The	6/9	in	the	last	example	can	be	reduced	at
sight	to	2/5.	This	gives	the	final	answer,	19/15,	directly.	It	is	obviously	easier	to	reduce	6/9	to	2/3	than
to	note	that	57/45	is	also	divisible,	top	and	bottom,	by	3.

It	is	good	practice,	then,	to	reduce	each	fraction	in	your	problem,	or	any	of	the	intermediate	working
figures,	to	its	simplest	form	before	continuing.

Another	 form	 of	 reduction-as-you-go	 is	 to	 avoid	 multiplying	 all	 the	 bottoms,	 when	 you	 can.
Suppose,	for	instance,	you	start	out	to	add	this	problem:

You	will	get	the	right	answer	if	you	follow	the	general	rule:	4	×	8	is	32,	for	the	bottom	of	the	answer;
3	×	8	is	24,	and	5	×	4	is	20,	totaling	44	for	the	top:	44/32.	This	reduces	to	11/8.

Note,	however,	as	you	look	at	the	bottoms,	that	4	goes	into	8	exactly	twice.	If	we	simply	double	¾	to
6/8,	 the	 fraction	 is	 in	 the	 same	 terms	 (eighths)	 as	 the	 other.	We	 can	 then	 add	 the	 tops	 and	 find	 the
answer,	11/8.	This	is	easier.

The	intermediate	step	here,	6/8,	is	not	the	simplest	expression	of	the	quantity;	3/4	is.	Yet	because	it
puts	 the	quantity	 into	 the	 same	numerical	 system	as	 the	other,	 6/8	 is	 the	 simplest	 expression	 for	 this
problem.

The	 same	 lesson	 applies	when	 you	 add	 a	 series	 of	 fractions.	 The	 short	 cut	 is	 first	 to	 add	 all	 like
fractions,	 then	add	the	results.	 If	 inspection	shows	you	as	you	start	multiplying	the	bottoms	that	your
product	so	far	is	identical	with	(or	divisible	by)	one	or	more	of	the	other	bottoms,	stop	right	there	and
add	the	fractions	so	far	before	continuing.

Here	is	an	example:

Using	the	general	rule,	you	start	to	find	the	bottom	of	the	answer	by	multiplying	the	bottoms.	2	×	3	is
6,	times…the	next	number	is	identical.

This	means	 that	 the	 first	 two	 fractions	 can	 be	 expressed	 in	 sixths.	 The	 last	 fraction	 is	 already	 in
sixths.	So—this	is	non-standard,	but	a	definite	short	cut—first	add	the	two	fractions	on	the	left,	then	add
their	total	to	the	last	fraction.	Work	it	out	both	ways,	if	you	wish,	and	see	that	your	final	answer	is	12/6
either	way.	This	is	a	very	“improper”	fraction	indeed,	but	we	will	get	through	subtraction	before	taking
up	that	subject.

Rather	than	seeking	lowest	common	denominators,	then,	start	the	addition	of	any	series	of	fractions
by	multiplying	 the	 smallest	 bottoms	 first.	 Often,	 your	 running	 product	 will	 be	 identical	 with	 larger



bottoms	 when	 you	 get	 to	 them,	 or	 evenly	 divisible	 into	 them	 or	 by	 them.	 In	 this	 case,	 add	 up	 the
fractions	so	far	and	then	add	this	sum	to	the	others.	It	is	an	easier	approach.

Your	number	sense	is	the	best	guide	to	partial	addition	before	completing	a	problem.	If	you	start	to
add	three	fractions	with	bottoms	of	12,	3,	and	4,	you	will	note	that	3	×	4	is	12.	So	first	adjust	and	add
these	two	fractions,	then	add	the	sum	to	the	other…which	is	already	in	twelfths.

Subtracting	Fractions

If	you	are	completely	and	confidently	at	home	with	adding	fractions,	subtraction	poses	no	problems.
The	 rules	 are	 all	 identical	 in	 reverse.	 Instead	of	 adding	 the	adjusted	 tops,	you	 subtract	 the	 top	of	 the
smaller	fraction	from	the	top	of	the	larger	fraction.	(Larger	and	smaller	applies	not	to	the	individual	tops
or	bottoms,	of	course,	but	describes	which	fraction	is	subtracted	from	which.	It	is	easier	than	“minuend
and	subtrahend.”)

One	example	should	make	this	clear:

Start	just	the	way	you	would	in	adding.	Multiply	the	two	bottoms	to	find	the	bottom	of	the	answer.	4
×	9	is	36.

Now,	 however,	 you	 clearly	 separate	 one	 top	 from	 the	 other	 top,	 because	 it	makes	 a	 great	 deal	 of
difference	in	subtraction	although	none	in	addition.	The	top	of	the	larger	fraction	is	3.	Multiplying	this
by	the	bottom	of	 the	other,	we	have	27.	The	 top	of	 the	smaller	 fraction	 is	2.	2	×	4	 is	8.	8	from	27	is
(complement	and	slash)	19.	The	answer	is	19/36.

Do	one	yourself:

Use	your	pad	to	finish	this	before	going	on.
The	answer,	of	course,	is	1/20.

Improper	Fractions

In	many	of	the	examples,	we	have	produced	answers	such	as	9/4	or	53/40.	If	the	top	of	a	fraction	is
larger	than	its	bottom,	then	the	quantity	expressed	by	the	fraction	is	larger	than	1.	A	fraction	expressing
a	quantity	larger	than	1	is	called	improper	because	the	quantity	is	really	a	whole	number	plus	a	fraction.

Nevertheless,	 we	 often	 deal	 with	 “improper”	 fractions,	 because	 these	 are	 frequently	 the	 most
convenient	ways	of	expressing	the	quantities	we	are	handling.

The	method	for	translating	an	improper	fraction	into	proper	form	is	simple.	You	merely	divide	the
top	by	the	bottom.	A	fraction,	you	recall,	is	merely	a	special	way	of	writing	a	division	problem	anyway.

In	most	cases,	the	answer	to	the	division	of	an	improper	fraction	will	be	a	number	and	a	remainder.
This	 remainder	 will	 be	 in	 the	 same	 terms	 as	 the	 improper	 fraction	 you	 started	 with,	 so	 it	 merely
becomes	the	top	of	the	new	fraction.	The	answer	to	the	division	becomes	the	whole	number.

Let	 us	 try	 translating	 the	 two	 improper	 fractions	mentioned	 above	 into	mixed	 numbers.	 The	 two
fractions	are	9/4	and	53/40:



Most	improper	fractions	turn	out	 to	be	1	plus	a	fraction	when	translated	to	mixed	numbers.	If	you
see	by	 inspection	 that	 the	 top	of	 the	 improper	 fraction	 is	 less	 that	 twice	 the	bottom,	you	do	not	 even
have	to	divide	to	translate	it.	Merely	put	down	a	1	for	the	whole	number,	and	subtract	the	bottom	from
the	top	to	produce	the	top	of	your	fractional	part.	17/12,	by	this	short	cut,	is	1	plus	5/12—the	5	being
produced	by	subtracting	12	from	17.	The	reason	for	this	is	obvious,	since	12/12	is	equal	to	1.

Translate	these	improper	fractions	to	proper	mixed	numbers:

Cover	the	answers	with	your	pad,	please.
The	proper	equivalents	for	the	above	fractions	are

Mixed	Numbers

The	 “proper”	 form	 of	many	 quantities	 equal	 to	more	 than	 1,	 but	 not	 any	 even	whole	 number,	 is
expressed	in	the	number-plus-fraction	form	you	just	created	from	improper	fractions.	Often,	you	must
calculate	with	such	mixed	numbers.

In	adding	or	subtracting,	you	simply	handle	the	two	parts	of	each	number	separately.	If	the	fractional
parts	give	you	an	improper	fraction	at	the	end,	translate	it.	Then	add	the	entire	result	to	the	whole	part	of
the	answer.	Watch:

Handle	 this	as	 two	separate	additions.	2	+	3	 is	5.	5/8	+	7/8	 is	12/8.	First,	 reduce	 this	 to	3/2.	Now
translate	it	to	1½.	5	+	1½	is	6½—the	final	answer.

The	principle	does	not	change	when	unlike	fractions	are	involved:

First	we	add	6	+	7	to	get	13.	Our	technique	for	adding	2/3	+	5/7	gives	is	29/21,	which	translates	into
1	8/21.	Add	this	to	13	for	the	final	answer,	14	8/21.

Subtraction	is	handled	in	the	same	way:

First,	 subtract	 the	 whole	 numbers.	 3	 –	 2	 is	 1.	 Now	 use	 the	 standard	 subtraction	 method	 on	 the
fractions	to	get	7/20.	The	answer	is	1	7/20.

Sometimes,	however,	we	must	subtract	mixed	numbers	in	which	the	fraction	in	the	smaller	number
is	 larger	 than	 the	 fraction	 in	 the	 larger	 number.	 In	 this	 case,	 we	 make	 an	 improper	 fraction	 by
“borrowing”	 1	 from	 the	 whole	 part	 of	 the	 larger	 number.	 This	 is	 just	 the	 reverse	 of	 translating	 an



improper	fraction	to	a	mixed	number.
The	technique	is	very	simple.	After	you	“borrow”	1,	reducing	the	value	of	the	whole	number	by	1,

you	make	an	improper	fraction	by	merely	adding	the	bottom	and	top	of	 the	fraction	 to	make	 the	new
top.	I	have	never	seen	it	described	like	this,	but	it	works	like	magic.	1	3/8	becomes	11/8—because	3	+	8
total	11.	So	6	3/8	becomes	5	11/8	after	you	“borrow”	1	from	the	6.

Here	is	a	case	in	which	this	technique	is	required:

You	 cannot	 subtract	 the	 fractions,	 because	 you	 cannot	 subtract	 7	 from	 3.	 Nor	 can	 you	 use	 a
complement,	because	the	base	here	is	16,	not	10.	The	solution	is	to	“borrow”	1	from	the	4	and	translate
3/16	to	19/16	by	adding	top	and	bottom	for	the	top	of	the	improper	fraction.	Now	the	problem	looks	like
this:

The	answer	is	natural	now.	It	is	1	12/16,	and	the	fractional	part	quickly	reduces	to	¾.	Final	answer,
1¾.

The	principle	does	not	change	when	the	fractional	part	of	the	problem	is	in	unlike	fractions.	You	still
raise	the	fraction	in	the	larger	number	by	borrowing,	if	you	need	to,	and	then	subtract,	using	the	general
technique	for	subtracting:

First	borrow	1	from	17	and	raise	the	fraction	so	you	have	16	4/3.	8	from	16	leaves	8.	7/8	from	4/3
leaves	11/24.	Answer,	8	11/24.

Multiplying	and	Dividing

When	 you	 come	 to	 multiplying	 and	 dividing	 mixed	 numbers,	 however,	 the	 situation	 is	 quite
different.	This	is	because	multiplying	or	dividing	affects	every	part	of	every	number.	If	we	multiply	14
6/7	×	¾,	for	instance,	we	must	“count”	both	the	14	and	the	6/7	exactly	¾	of	one	time.

The	 easiest	 general	 rule	 is	 to	 turn	 every	mixed	number	 into	 an	 improper	 fraction	when	you	must
multiply	or	divide.	Since	you	are	usually	“borrowing”	 far	more	 than	1	 from	 the	whole	number—you
“borrow”	 the	 entire	 number—you	 do	 not	 just	 add	 the	 top	 and	 bottom	 of	 the	 fraction	 for	 the	 new
fraction.	The	rule,	however,	is	not	much	more	complicated:

To	turn	any	mixed	number	into	an	improper	fraction,	multiply	the	whole	number	by	the	bottom
of	the	fraction,	add	the	top	of	the	fraction,	and	put	the	result	over	the	bottom.

Turn	7	3/8	into	an	improper	fraction	by	this	rule.	First,	multiply	the	(whole)	7	by	the	(bottom)	8:	56.
Second,	add	the	(top)	3:	59.	Put	this	result	over	the	bottom:	59/8.

If	you	try	translating	59/8	back	into	“proper”	form,	you	will	find	that	it	does	come	out	to	7	3/8.
Follow	this	multiplication:



Both	numbers	must	first	be	turned	into	improper	fractions.	7	2/3	becomes	23/3	(7	×	3,	plus	2).	3¾
becomes	15/4	(3	×	4,	plus	3).

Pause	for	a	moment	to	see	if	the	problem	can	be	reduced	in	any	way	before	continuing:

Note	that	one	top	and	one	bottom	are	both	divisible	by	3.	Divide	both	by	3	before	going	on:

Now	multiply	 the	 top	by	 the	 top,	 and	 the	bottom	by	 the	bottom,	as	you	always	do	 in	multiplying
fractions.	The	result	is:

Remember	the	general	rule	for	translating	improper	fractions	into	mixed	numbers:	divide	the	top	by
the	bottom.	The	answer	is	 the	whole	number,	and	the	remainder	 is	 the	top	of	 the	fractional	part.	This
answer	translates	to	28¾.

Cover	the	answer	below	with	your	pad	while	you	exercise	the	technique	on	this	problem:

The	answer	is	14	31/48.	You	got	it	by,	first,	translating	4	5/8	into	37/8.	Then	you	translated	3	1/6	to
19/6.	This	multiplication	 shows	no	 reduction	possibilities,	 so	you	multiply	 top	by	 top	and	bottom	by
bottom	to	get	703/48.	Translate	 this	back	to	a	mixed	number	by	dividing	703	by	48,	and	produce	the
final	proper	answer	of	14	31/48.

Dividing	by	mixed	numbers	is	just	the	reverse	of	multiplying.	Translate	each	to	an	improper	fraction,
then	invert	the	divider	and	multiply	as	always.

Let's	do	the	last	example	as	a	division:

The	 two	 mixed	 numbers	 translate	 to	 the	 same	 improper	 fractions:	 37/8	 and	 19/6.	 Since	 this	 is
division,	however,	we	turn	the	divider	upside	down	and	handle	it	as	a	multiplication:

Pause	to	look	for	reduction	possibilities.	The	6	and	the	8	are	both	divisible	by	2,	so	we	can	simplify
the	problem	a	bit	to	read:



Multiplying	 top	 by	 top	 and	 bottom	 by	 bottom,	 we	 get	 the	 answer	 111/76.	 This	 is	 an	 improper
fraction,	but	the	top	is	not	twice	the	bottom	so	we	do	not	divide.	We	put	down	a	1	for	the	whole-number
part,	and	subtract	 the	bottom	from	the	 top	 to	find	 the	 top	of	 the	fractional	part.	The	final	answer	 is	1
35/76.

Most	 of	 the	 fractions	 and	 examples	 in	 this	 chapter	 have	 been	 more	 complex	 than	 the	 ones	 you
normally	run	into	in	your	number	work.	This	has	been	entirely	on	purpose.	Learn	to	handle	those	in	this
chapter	well,	and	simpler	ones	should	be	easy.
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SPEED	AND	EASE	IN	DECIMALS

RACTIONS	are	one	way	of	expressing	quantities	of	less	than	1,	or	more	than	1	but	not	reaching	an
exact	digit.	Decimals	are	another	way	of	doing	the	same	thing.
Of	 the	 two,	 decimals	 are	 usually	 by	 far	 the	 easier	 and	more	 convenient	way	 to	 express	 fractional

quantities.	If	our	measuring	systems	were	based	on	our	ten-base	counting	system	(as	is	the	Continental
system	of	meters,	grams,	litres,	and	so	on)	we	would	perhaps	face	fractions	only	a	very	few	times	in	our
lives.	But	since	we	have	inherited	a	jumbled	group	of	weights	and	measures	broken	down	variously	into
twelfths	 (feet),	 sixteenths	 (pounds),	 sixtieths	 (hours),	 fourths	 (gallons)	and	even	5,280th's	 (miles),	we
face	fractions	all	the	time.

Only	in	our	U.	S.	money	system	are	we	blessed	with	a	commonsense	decimal	progression.	In	all	our
other	measurements,	we	cling	to	outrageous	counting	bases.

Even	for	these,	however,	decimal	fractions	are	usually	accurate	enough.	They	are	not	as	perfect	an
expression	of	many	quantities	as	are	fractions,	which	can	express	any	conceivable	quantity	with	exact
preciseness,	 but	 the	 difference	 is	 so	 slight	 as	 to	 be	meaningless	 in	most	 cases.	 In	 fact,	many	 of	 the
quantities	we	consider	“hard”	or	“exact”	are	only	approximations	to	begin	with.	5	apples	is	precisely	5
apples,	 but	 5	 inches	 or	 5	 pounds	 is	 only	 as	 (approximately)	 close	 to	 5	 inches	 or	 5	 pounds	 as	 our
measuring	equipment	can	determine	at	the	time.

Actually,	these	are	two	completely	different	types	of	numbers.	One	is	a	precise	quantity;	the	other	is
a	declaration	of	comparison	to	an	artificial	standard	such	as	acres	or	gallons.	Think	for	a	bit	about	the
essential	differentness	of	the	two	approaches	to	numbers,	for	the	sake	of	your	number	sense.

As	far	as	preciseness	of	decimals	goes,	1/3	is	a	prime	example.	There	is	no	decimal	equivalent,	nor
can	 there	ever	be.	The	 fraction	1/3	expresses	a	certain	quantity	with	complete	accuracy.	The	decimal
0.3333333333333333333	approaches	1/3,	but	it	is	not	1/3.	No	matter	how	many	3’s	you	add,	you	never
quite	reach	1/3.	.33	is	accurate	to	1	part	in	100,	however,	while	.333	is	accurate	to	1	part	in	1,000.	For
most	practical	needs,	this	is	more	than	enough	accuracy.

A	decimal	is	a	shorthand	way	of	expressing	a	fraction	that	has	a	bottom	of	10,	100,	1,000,	or	some
other	multiple	of	10.	We	use	the	decimal	point,	the	little	period,	to	indicate	that	the	digits	following	it	do
not	express	a	whole-number	quantity,	but	a	fraction	whose	bottom	is	a	multiple	of	10.	The	number	.3	is
the	same	as	 .	1.3	is	the	same	as	l, .	The	point	tells	us	when	to	stop	figuring	in	whole	numbers	and
begin	noting	the	fraction.

The	first	 lesson	usually	taught	in	reference	to	decimals	is	how	to	read	them	properly.	Do	you	read
0.33	 as	 33	 tenths,	 hundredths,	 or	 thousandths?	 There	 is	 a	 beautifully	 simple	 and	 reliable	 trick	 that
removes	 any	 possible	 confusion.	Merely	 pretend	 that	 the	 decimal	 point	 itself	 is	 a	 1,	 followed	 by	 as
many	0’s	as	there	are	digits	after	the	point.	This	imaginary	number	is	the	bottom	of	your	fraction.

Thus	0.3	must	be	 ,	since	the	“1”	(point)	is	followed	by	one	digit,	and	10	is	ten.	0.33	must	be	
,	because	there	are	two	digits	after	the	point	and	two	0’s	in	100.

See	if	you	can	read	0.4567	with	this	method.	The	top	of	the	fraction	is	4567,	of	course.	The	bottom
is	a	1	followed	by	four	0’s.	So	the	bottom	must	be	10,000.

If	 there	 are	 any	 zeros	 immediately	 following	 the	 point,	 count	 them	 as	 digits	 too	 in	 figuring	 the
bottom.	0.03	is	 ,	not	 ,	because	there	are	two	digits	after	the	point.

A	 surprising	 number	 of	 people	 have	 trouble	 determining	 the	 proper	 “bottom”	 to	 decimal-form
fractions,	 because	 they	 never	 learned	 this	 simple	 trick.	 For	 practice	 in	 using	 it,	 read	 the	 following



decimals	as	fractions	by	saying	aloud	both	the	top	and	bottom	of	each	fraction,	just	as	we	might	say	.3
as	 :

If	you	keep	firmly	in	mind	the	visualization	of	the	point	as	a	1	followed	by	as	many	0’s	as	there	are
digits,	you	should	be	able	to	read	the	above	decimals	at	sight	as	67/100	(hundredths);	20/100	(this	is	the
same	 as	 2/10,	 but	 it	 has	 a	 slightly	 different	 meaning	 in	 decimals.	 That	 comes	 later.);	 432/1,000
(thousandths);	5/10;	25/100;	6478/10,000	(ten-thousandths);	4/1,000.

Mixed	Numbers

Expressing	mixed	numbers	(a	whole	number	plus	a	fraction)	is	much	easier	in	decimals	than	it	is	in
fractional	form.	Whatever	part	of	the	number	is	in	front	of	(to	the	left	of)	the	point	is	a	whole	number.
The	part	to	the	right	of	the	point	expresses	the	fraction.

So	22.4	is	read	as	“22	and	4/10ths.”
It	 is	 often	 read,	 too,	 as	 “22	point	 4.”	There	 is	 nothing	wrong	with	 this.	 It	 is	 a	 short	 hand	way	of

reading	and	saying	the	number,	but	it	does	not	drive	home	the	actual	quantity	involved	as	firmly	as	does
reading	the	decimal	as	a	full	fraction.

1.43	is	read	as	“1	and	43/100ths.”

Read	aloud	the	number	45.67.

If	you	 read	 it	properly	as	“45	and	67/100	 (hundredths),”	go	ahead	 to	 read	 the	 following	numbers.
Say	 the	 full	 number	 followed	 by	 the	 fractional	 part	 in	 terms	 of	 tenths,	 hundredths,	 thousandths,	 or
whatever:

If	you	hesitated	over	any	of	these,	particularly	the	one-thousandth	or	eight-hundredths,	it	would	be	a
good	idea	to	review	the	last	few	pages	before	going	on.

Adding	Decimals

There	is	no	trick	at	all	to	adding	numbers	with	decimals	in	them	if	you	keep	the	basic	rule	in	mind:
line	 up	 the	 points.	 If	 you	were	 adding	10,342	 to	 61,	 you	would	 line	 up	 the	 right-hand	 ends	 of	 these
numbers.	 The	 point	 in	 a	 number	with	 a	 decimal	 fraction	 is	 just	 as	 clearly	 and	 firmly	 the	 end	 of	 the
whole	number	as	is	the	end	when	the	digits	come	to	a	stop	there.

Using	this	rule,	set	up	the	following	numbers	for	addition:

Cover	the	arrangement	below	with	your	pad	until	you	have	done	your	part.



Using	the	points	as	the	ends	of	the	whole	numbers,	you	line	up	the	above	numbers	for	addition	like
this:

That	is	really	all	there	is	to	it.	Elementary,	but	very	important.	Once	you	have	lined	up	the	numbers
properly,	you	simply	go	ahead	and	add.	Ignore	the	points,	except	to	put	a	point	in	your	answer	in	line
with	 the	column.	Tens	carried	back	across	 the	point	as	you	add	behave	 just	as	 if	 there	were	no	point
there,	which	is	one	of	the	great	advantages	of	using	decimals.	They	enable	you	to	handle	the	fractional
parts	right	along	with	your	whole	numbers,	instead	of	creating	them	separately.

Having	dismissed	addition	this	easily,	we	can	say	the	same	thing	about	subtraction:	keep	your	points
in	line,	and	“borrow”	(or	slash)	across	the	point	as	if	it	were	not	even	there.	One	example	will	make	this
clear:

In	both	addition	and	subtraction,	you	can	pretend	the	points	are	invisible—as	long	as	you	line	them
up,	and	make	sure	to	put	one	in	your	answer	in	line	with	the	others.

Multiplying	Decimals

When	you	come	to	multiplying	decimals,	you	do	not	bother	to	line	up	the	points	because	you	have
another	 way	 of	 placing	 the	 point	 properly	 in	 your	 answer.	 Refer	 back	 to	 the	 chapter	 on	 no-carry
multiplication,	if	need	be,	to	refresh	your	understanding	of	the	following	rule:

Add	the	digits	in	the	two	numbers	multiplied.	Starting	with	the	very	left	top	digit	(including	the
0	if	it	is	a	0),	count	this	many	digits	for	the	answer.

In	multiplying	decimals,	add	only	the	following	special	qualifier	to	the	general	rule:

—to	the	left	of	the	point.

That	“to	the	left	of	the	point”	applies	both	to	the	numbers	multiplied,	and	to	the	answer	as	well.
It	works	like	this:

How	did	we	place	that	point	in	the	answer?	Each	of	the	two	numbers	multiplied	has	two	digits	to	the
left	of	the	point.	So	our	answer	should	have	four	digits	before	the	point.	We	start	at	the	very	left	of	the



top	line	with	the	0	that	does	not	show	up	in	the	final	answer	but	that	does	have	to	be	counted.
In	every	other	aspect	of	the	problem,	we	simply	ignore	the	points	altogether.	You	can	prove	it	out	by

nines-remainders	or	elevens-remainders,	ignoring	the	points	for	this	purpose	too	except	that	you	start	at
the	point	in	figuring	odd	and	even	digits	for	an	eleven-remainder.	If	you	use	continuous	subtraction,	just
keep	right	on	subtracting	as	you	go	past	the	point.

In	the	example	above,	you	could	also	have	used	the	classic	“point	off	as	many	places	from	the	right
as	 there	 are	 places	 to	 the	 right	 of	 the	 point	 in	 the	 two	numbers	multiplied.”	To	 rely	 on	 this	method,
however,	would	rob	you	of	the	rapid-estimating	nature	of	no-carry	multiplying.	Work	from	left	to	right
instead	of	right	to	left,	and	you	can	do	just	as	much	of	any	problem	as	you	need	to	in	order	to	get	the
accuracy	required	in	that	particular	situation.

Dividing	Decimals

For	dividing	decimals,	we	cannot	improve	on	the	usual	rule:	move	the	point	in	the	divider	(if	any)	all
the	way	to	the	right.	Put	a	point	in	your	answer	as	many	places	to	the	right	of	the	point	in	the	number
divided	(if	any)	as	you	moved	the	point	in	the	divider.

If	this	means	adding	0’s	to	the	number	divided	in	order	to	move	your	point	far	enough,	go	ahead	and
add	them.

Here	are	two	examples:

Try	it	yourself.	Where	will	the	point	in	the	answer	appear	for	each	of	the	following	problems?

Each	of	these	is	a	little	different,	but	all	operate	on	exactly	the	same	system.

						1.	The	point	in	the	answer	will	be	between	the	7	and	8	of	the	number	divided,	because	we	move
the	point	one	place	to	the	right.

						2.	The	point	in	the	answer	will	be	directly	above	the	point	in	the	number	divided,	since	there	is
no	point	in	the	divider.

						3.	The	point	in	the	answer	will	be	after	the	final	6	in	the	number	divided.	Moved	two	places.
						4.	The	point	in	the	answer	will	be	between	the	3	and	9	in	the	number	divided.	Moved	one	place.

Other	 than	 placing	 your	 decimal	 point	 properly	 in	 the	 answer,	 there	 is	 no	more	 to	 dividing	with
decimal	numbers	than	there	is	to	any	division.	Once	you	have	determined	the	right	place	for	the	point,
simply	ignore	all	the	points	in	the	original	problem.	Your	answer	will	be	correct.

Only	one	other	aspect	needs	special	mention.	We	demonstrated	it	before,	but	it	should	be	spelled	out
too.	If	you	have	to	move	the	point	in	your	answer	way	beyond	the	end	of	the	number	divided,	simply	do
it.	Fill	in	with	0’s	as	needed.	For	instance:



Decimal	Remainders

Depending	on	the	particular	problem	and	the	particular	field	in	which	your	answer	will	be	used,	you
may	work	out	a	division	problem	that	has	a	remainder	in	either	fractional	or	decimal	form.

The	making	of	a	decimal	remainder	 is	very	simple.	It	makes	no	difference	how	many	0’s	you	add
after	the	last	digit	to	the	right	of	the	point,	any	more	than	it	makes	any	difference	how	many	0’s	you	add
to	the	left	of	a	whole	number.

There	is	one	special	meaning	to	0’s	following	the	last	digit	to	the	right	of	a	decimal	point,	however,
and	 you	 should	 be	 aware	 of	 it.	 By	 common	 agreement,	 the	 0	 you	 place	 to	 the	 right	means	 that	 the
number	is	accurate	to	this	point.

The	number	4.6	might	be	a	rounded-off	number	anywhere	from	4.56	to	4.64.	But	the	number	4.60
means	 that	 any	 rounding	 off	 was	 done	 beyond	 the	 0.	 The	 convention	 in	 mathematics	 goes	 further,
incidentally,	and	often	places	a	plus	or	minus	sign	at	the	end	of	a	number	that	has	been	rounded	off,	to
indicate	that	it	is	not	a	precise	quantity.

To	make	 a	 decimal	 remainder,	 then,	 you	 simply	 keep	mentally	 bringing	 down	0’s	 as	 long	 as	 you
have	 to	 in	 order	 to	 get	 an	 exact	 answer	 or	 the	 accuracy	 you	 need.	With	 your	mastery	 of	 shorthand
division,	you	do	not	even	have	to	note	the	0’s	in	the	number	divided;	just	bring	down	imaginary	ones:

If	the	final	division	here	had	not	come	out	even,	you	would	keep	bringing	down	imaginary	0’s	until
you	had	no	remainder,	or	had	as	complete	an	answer	as	you	needed.	If	you	divide	3	into	10,	you	will
never	get	a	complete	answer.	But	at	some	point	you	will	have	as	complete	an	answer	as	you	need.

Converting	from	Fractions

A	 fraction,	 as	 we	 have	 said,	 is	 only	 a	 special	 way	 of	 writing	 a	 division	 problem.	 It	 expresses	 a
specific	quantity,	but	one	that	(except	by	decimals)	we	have	no	other	way	of	showing	with	the	numbers
available	than	as	a	division	of	two	known	numbers.	3/8	is	the	same	as	3	÷	8	or	8	 .	The	fraction	has	a
different	purpose	from	the	division,	however;	it	says,	in	effect,	“this	is	a	quantity,”	rather	than	“here	is	a
problem,”	because	for	many	purposes	3/8	is	more	convenient	than	other	expressions	of	that	quantity.

Often,	however,	you	want	 to	convert	a	fraction	to	a	decimal	form.	The	method	is	simplicity	 itself.
Simply	carry	out	the	implied	division,	and	use	a	decimal	remainder.

To	convert	3/8	to	a	decimal,	for	instance,	you	do	this:

The	decimal	equivalent	of	3/8	 is	0.375.	 In	 this	case,	 it	 is	an	exact	equivalent,	and	 it	 should	sound
familiar:	375	is	one	of	the	basic	aliquots.

Now	you	convert	6/7	to	a	decimal.	Get	out	your	pad	and	cover	the	answer.	Express	6/7	as	a	decimal
accurate	to	the	nearest	10,000th.



Here	is	how	the	conversion	looks	in	shorthand	division:

The	nearest	10,000th	means	four	places	after	the	point.	We	worked	it	out	to	five	places	so	we	could
round	off,	and	the	last	4	indicates	that	the	rounded-off	form	is	.8571.

Sometimes	 you	 find	 it	 necessary	 to	 convert	 decimals	 back	 to	 fractions	 for	 particular	 purposes.	 In
some	problems,	fractions	are	easier	to	handle.	This,	in	fact,	is	part	of	the	basis	of	the	aliquot	short	cut.

For	decimals	other	than	aliquots,	 the	process	for	converting	to	a	fraction	is	to	write	it	 in	fractional
form	and	 then	see	 if	 it	can	be	 reduced.	The	decimal	 .1	can	be	written	1/10	and	 .45	can	be	written	as
45/100.

You	 reduce	 this	 resulting	 fraction	 exactly	 as	 you	 reduce	 any	 other	 fraction:	 divide	 both	 top	 and
bottom	by	any	number	that	will	divide	both	exactly,	if	there	is	any.	Try	reducing	the	example	above,	.45.

45	is	exactly	divisible	by	5	or	by	9.	100,	however,	is	divisible	by	5	but	not	by	9.	Dividing	both	top
and	bottom	by	5,	we	reduce	45/100	to	9/20.	No	further	reduction	is	possible.

Convert	the	following	decimals	to	fractions:

The	 last	one,	admittedly,	 is	a	dilly.	But	 it	can	be	 reduced	quite	 substantially.	Cover	 the	 reductions
with	your	pad	until	you	are	satisfied.

Your	answers	should	read	1/4,	13/16,	5/8,	and	31/32.
The	next	chapter	will	take	up	decimals	in	another	and	quite	special	form,	percentage.	Before	going

on	to	that	chapter,	reflect	for	a	moment	or	two	on	the	entire	decimal	method	of	expressing	fractions—
and	its	firm	foundation	on	the	point	made	several	times	before	in	this	book	that	each	digit	decreases	in
importance	by	a	factor	of	10	as	 it	moves	each	place	to	 the	right.	This	 is	 true	right	across	 the	decimal
point—which	is	the	end	of	the	whole	number.
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HANDLING	PERCENTAGES

PERCENT	AGE	is	merely	a	two-place	decimal	without	the	decimal	point	shown.
Except	that	it	seems	to	be	the	cause	of	so	much	general	lip-biting,	we	would	dismiss	percentages

with	 the	 above	definition.	 82%	 is	 exactly	 the	 same	as	 .82.	 6%	 is	 no	more	 and	no	 less	 than	 .06	 (two
places,	remember).	4½%	is	.04½,	or	.045.

A	decimal-form	fraction	with	two	digits	to	the	right	of	the	point	is	in	hundredths—a	“1”	followed	by
as	many	0’s	as	there	are	digits	to	the	right	of	the	point.	The	term	per	cent	comes	from	the	same	root	as
century	(a	hundred	years)	and	cent	(one-hundredth	of	a	dollar):	the	Latin	word	for	a	hundred.	Per	cent	is
our	contraction	of	the	original	per	centum—per	hundred.

So	if	you	say	you	will	pay	interest	on	a	loan	at	the	rate	of	7%	a	year,	for	instance,	you	are	saying	that
for	each	100	parts	of	the	loan	you	will	pay	7	parts	a	year	in	interest.	If	the	loan	is	for	$300,	you	will	pay
$21	a	year;	there	are	3100’s,	and	you	will	pay	7	for	each	of	them.	You	get	precisely	the	same	result	if
you	multiply	300	by	.07.

Since	we	often	handle	percentages	in	different	ways,	let	us	explore	some	of	the	basic	relationships
and	processes	involved.

Finding	a	Percentage	of	a	Number

Finding	 a	 percentage	 of	 a	 number	 is	 what	 we	 just	 did,	 and	 it	 is	 the	 simplest	 of	 all	 percentage
calculations.	 Just	multiply	 the	number	by	 the	decimal	equivalent	of	 the	percentage,	and	you	have	 the
answer.

Try	one	yourself:	find	36%	of	298.
Here,	 in	 no-carry	multiplication,	 is	 the	 way	 you	 work	 it	 out.	 36%	 is,	 by	 definition,	 the	 same	 as

36/100,	or	.36:

How	do	we	place	 the	decimal?	Remember	 the	decimal	 rule.	The	 answer	has	 the	 same	number	of
digits	(to	the	left	of	the	point)	as	do	the	two	numbers	multiplied	(to	the	left	of	the	point).	298	has	three
places,	.36	has	none,	so	the	answer	has	three	digits	to	the	left	of	the	point	including	the	first	digit	of	the
first	partial	product,	even	if	it	is	a	0.	The	answer	is	107.28.

Do	one	more:

Cover	the	solution	with	your	pad	until	you	have	finished	this	to	your	satisfaction.



8%	is	the	equivalent	of	.08,	and	our	solution	looks	like	this:

Note	 that	 there	 seems	 to	be	 a	 spare	0	 in	 the	 answer.	This	 is	 to	 aid	 the	placing	of	 the	point	 in	 the
answer,	since	the	multiplier	(.08)	has	in	effect	minus	one	places	before	the	point.	If	we	include	the	0	in
.08	in	writing	our	answer,	the	correct	handling	of	the	point	is	automatic.	We	place	it	two	spaces	to	the
right	because	there	are	two	places	to	the	left	of	the	points	in	the	numbers	multiplied.

Finding	What	Per	Cent	A	Number	I8

Often	you	need	to	find	what	per	cent	one	number	is	of	another.	You	might	have,	for	instance,	the	two
numbers	15	and	75,	and	be	required	to	express	one	of	them	as	a	percentage	of	the	other.

The	important	 thing	is	 to	make	very	sure	which	number	 is	which.	Do	you	want	 to	know	what	per
cent	15	is	of	75,	or	what	per	cent	75	is	of	15?	It	makes	a	big	difference.

Recall	at	this	point	that	a	per	cent	is	only	a	special	way	of	writing	a	decimal,	and	that	a	decimal	is	a
special	form	of	fraction.	So	in	either	of	the	above	cases,	you	are	really	being	asked	to	show	a	fraction	in
percentage	form.

If	 you	want	 to	 know	what	 per	 cent	 15	 is	 of	 75,	 you	 need	 to	 convert	 into	 decimal	 (and	 therefore
percentage)	 form	the	 fraction	15/75.	 If	you	are	 required	 to	state	what	per	cent	75	 is	of	15,	you	again
must	convert	into	decimal	and	percentage	form	the	fraction	75/15.

Another	way	of	keeping	your	relationships	absolutely	straight,	in	case	this	conversion	does	not	lock
itself	memorably	in	your	mind,	is	that	one	of	the	numbers	always	follows	the	word	of.	You	always	ask
“what	per	cent	is	this	number	of	that?”	The	number	following	the	“of”	is	always	the	base—the	base	of
which	you	are	figuring	a	percentage—and	the	base	is	always	the	bottom	of	the	fraction.

You	know	perfectly	well	 how	 to	 convert	 any	 fraction	 to	decimal	 form.	You	divide	 the	 top	by	 the
bottom.	To	convert	this	decimal	fraction	to	a	per	cent,	move	the	decimal	point	two	places	to	the	right.

What	per	cent	is	15	of	75?
The	 fraction	 to	 which	 we	 want	 a	 percentage	 answer	 is	 15/75.	 Using	 the	 other	 key,	 the	 number

following	“of’	is	75,	and	the	base	is	the	bottom—again,	15/75.	Now	convert:

Move	the	point	two	places	to	the	right,	and	we	have	the	answer	20%.	15	is	20%	of	75.
Turn	the	relationship	around.	What	per	cent	is	75	of	15?	Here	the	fraction	expressing	the	relationship

is	75/15.	Or,	again,	the	number	following	“of”	is	15	and	therefore	the	base	and	the	bottom.	Divide:

In	order	to	convert	this	in	turn	to	a	percentage,	move	the	point	two	places	to	the	right—adding	0’s	as
necessary.	So	75	is	500%	of	15.

500%	means	that	for	each	100	parts	of	the	other	number,	you	have	500	parts	of	this	one.	Wiping	out
the	100’s,	you	see	that	500%	is	the	same	as	five	times	as	much.



Try	one	on	your	own	now.	Cover	the	explanation	below	with	your	pad	and	work	out	both	sides	of
this	relationship:

20	is	what	per	cent	of	50?
50	is	what	per	cent	of	20?
For	the	first	comparison,	the	number	following	the	“of,”	and	therefore	our	base,	is	50.	The	fraction	is

20/50.	Dividing	by	the	bottom,	we	get

We	move	the	point	two	places	to	the	right,	and	find	that	20	is	40%	of	50.
Reversing	the	question,	we	have	a	base	of	20—the	number	following	the	“of.”	The	fraction	is	50/20.

The	division	is

Again	we	move	the	point	two	places	to	the	right.	50	is	250%	of	20.
In	these	examples,	we	have	not	bothered	to	reduce	each	fraction	to	its	simplest	form	before	dividing

because	 showing	 the	 division	 with	 the	 original	 numbers	 in	 the	 question	 seems	 to	make	 the	 process
clearer.	In	practice,	of	course,	you	would	consider	these	numbers	2	and	5	rather	than	20	and	50.

Finding	An	Unknown	Base

One	of	the	most	baffling	operations	in	percentage	seems	to	be	finding	an	unknown	base.	If	you	have
a	clear	grasp	of	the	relationships,	however,	it	becomes	quite	easy.

An	example	of	this	situation	might	be	the	question,	“90	is	45%	of	what?”
We	know	the	number	that	is	a	percentage	of	another.	We	know	the	percentage.	But	we	do	not	know

the	base.
Let	us	approach	the	method	through	logical	conversion	of	the	methods	we	already	understand.	Once

you	know	why,	you	are	not	likely	to	forget	how.
We	have	three	numbers:	90,	45%,	and	“what.”	The	number	(unknown)	following	“of”	is	“what,”	so

“what”	is	the	base.

The	fraction,	therefore,	is

We	know	 the	answer	 to	 the	 fraction,	but	we	do	not	know	 the	 fraction	 itself.	 In	order	 to	convert	 a
fraction	to	a	decimal,	and	therefore	a	percentage,	we	divide	the	top	by	the	bottom.	So	we	will	set	up	the
problem,	along	with	the	answer	we	know:

Now,	if	someone	asked	you,	without	confusing	matters	by	including	words	such	as	percentage	and



decimals,	 the	 question,	 “What	 divided	 into	 90	 gives	 the	 answer	 .45?”	 you	 would	 answer	 without	 a
second	thought,	“Divide	.45	into	90	and	find	out.”

Divider	multiplied	by	answer	must	give	number	divided.	Number	divided,	divided	by	 the	answer,
must	give	the	divider.

So	we	simply	divide	the	number	we	have	by	the	percentage,	and	we	find	the	base:

Note	how	the	decimal	point	was	moved	over,	following	the	rule	in	the	chapter	on	decimals.

90	is	45%	of	200.

The	reason	we	developed	this	method	step	by	step	is	to	emphasize	the	logical	reasoning	behind	the
general	rule:

To	 find	 an	unknown	base,	 convert	 the	percentage	 to	 a	 decimal	 and	divide	 it	 into	 the	known
number.

Reinforce	this	rule	at	once	by	trying	another	example.	68	is	20%	of	what?
Convert	the	percentage	into	a	decimal	and	divide	it	into	the	known	number:

68	is	20%	of	340.

Try	one	by	yourself.	Cover	up	the	solution	with	your	pad.	87	is	30%	of	what?
To	 find	 the	 unknown	 base,	 convert	 the	 percentage	 into	 a	 decimal	 and	 divide	 it	 into	 the	 known

number:

87	is	30%	of	290.

Percentage	of	Change

Business	arithmetic	often	involves	a	percentage	of	change	or	difference.	Rather	than	asking	what	per
cent	18	is	of	360,	the	business	world	is	more	apt	to	ask,	“How	much	more	is	500	than	475?”	or,	“How
much	less	is	390	than	415?”

Suppose	that	sales	in	territory	#8	were	$350,000	last	year,	and	are	$375,000	this	year.	What	is	 the
percentage	of	increase?

The	first	step	is	to	find	the	raw	amount	of	the	difference	in	plain	numbers.	It	is	$25,000,	found	by
subtracting	the	total	last	year	from	the	total	this	year.

Now	our	problem	is,	“$25,000	is	what	per	cent	of	$350,000?”
This	is	familiar.	You	did	similar	problems	a	few	pages	ago.	The	dollar	signs	and	0’s	do	not	change



the	principle.	In	fact,	you	can	simplify	matters	by	dropping	both	the	dollar	signs	and	the	same	number
of	0’s:	25	is	what	per	cent	of	350?

Remember	your	base,	the	number	following	“of.”	The	fraction	is

Work	out	the	division	to	convert	this	fraction	to	decimal	form	in	shorthand	division:

The	answer	is	not	precise,	but	we	can	round	it	off	to	7%.	Territory	#	8	is	7%	ahead	of	last	year.
The	general	rule,	then,	is	this:

Find	the	difference,	and	divide	it	by	the	base.

Sometimes	the	base	is	the	smaller	of	the	two	numbers;	sometimes	it	is	the	larger.	After	all,	sales	in
territory	#8	might	have	gone	down	this	year.	Then	the	base	would	be	the	larger	of	the	two	figures.

Do	this	one	on	your	pad:

Sales	last	year	$320,000
Sales	this	year	$307,200

What	is	the	percentage	of	decrease?

When	we	find	a	percentage	of	decrease,	our	base	 is	 the	 larger	number.	The	difference	 in	sales,	by
subtraction,	is	$12,800.	Dividing	by	the	base—dropping	thousands	and	dollar	signs—we	have.

This	territory	is,	unhappily,	4%	behind	last	year	in	sales.
Note	 especially	 that	 sometimes	 you	 figure	 the	 percentage	 of	 difference	 on	 the	 smaller	 of	 two

numbers,	and	sometimes	on	the	larger.	The	difference,	as	a	percentage,	will	be	larger	when	based	on	the
smaller	number—and	smaller	when	based	on	the	larger	number.

The	saving	grace,	perhaps,	is	that	an	increase	in	sales	from	$100,000	to	$150,000	will	show	up	as	a
50%	increase,	while	a	decline	from	$150,000	to	$100,000	is	only	33%!

Now	 that	we	have	covered	decimals	and	percentage,	we	are	equipped	 to	cover	 the	more	common
business	 expressions	 such	 as	 discount	 and	 interest	 and	 some	 of	 the	 other	 yardsticks	most	 frequently
used	in	the	commercial	world.
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BUSINESS	ARITHMETIC

HIS	 chapter	 will	 cover	 once	 over	 lightly	 the	 more	 common	 business	 expression	 involving
arithmetic.
The	 first	 of	 these	 is	 discount,	 or	mark-down.	 Retail	 stores	 figure	 the	 discount	 they	 get	 from	 the

manufacturer	 or	 wholesaler	 with	 the	 retail	 price	 as	 the	 base	 (book	 stores,	 hardware	 stores,	 most
specialized	 stores)	 or—just	 the	 opposite	 in	 some	 fields—with	 the	 net,	 discounted	 price	 as	 the	 base
(department	stores,	chain	stores,	etc.).	When	the	net	price	is	the	base,	the	store	figures	mark	on	or	mark
up,	rather	than	mark	down.

The	difference	becomes	clear	in	a	concrete	example.

Mark-down

Suppose	a	lawn	mower	retailing	for	$150	comes	to	the	store	with	a	30%	discount.	What	is	the	net
price	to	the	store?

The	base	 here	 is	 $150.	Change	 the	 percentage	 to	 a	 decimal	 and	 simply	multiply.	The	discount	 in
dollars	is	.30	times	$150,	or	$45.	The	net	price	is	$150	minus	$45,	or	$105.
Short	cut:	The	quickest	way	to	figure	a	net	price	is	not	to	work	out	the	discount	in	dollars	and	then

subtract,	but	to	mentally	convert	the	discount	into	its	complement	(of	100)	and	multiply	the	retail	price
directly	by	this.	If	the	retailer	gets	a	30%	discount,	then	he	naturally	pays	70%	of	the	retail	price.	.70	x
$150	gives	$105	in	one	operation,	without	subtracting.

Try	one	yourself.	A	typewriter	with	a	list	price	of	$85	carries	a	15%	discount	to	the	store.	What	does
the	retailer	pay	for	it?

The	standard	way	of	doing	this	is	to	take	.15	of	$85,	or	$12.75,	and	deduct	this	from	$85	to	get	a	net
price	of	$72.25.	The	short	way	 is	 to	note	 that	 the	dealer,	 in	getting	a	15%	discount,	pays	85%	of	 the
retail	price.	So	we	multiply	.85	×	$85	and,	again,	get	$72.25	in	one	operation.

Mark-up

The	opposite	expression	used	in	many	fields	is	to	begin	with	the	net	price	(the	discounted	price	to
the	dealer)	and	arrive	at	a	desired	selling	price	by	deciding	how	much	mark-up	is	required.

A	store	might	have	a	desired	20%	mark-up,	for	instance.	If	it	buys	baby	carriages	at	$30	each	net,
how	much	should	it	sell	them	for?

Mark-up	is	figured	with	the	net	price	as	the	base,	rather	than	the	retail	price,	so	20%	of	$30	is	$6.00.
Adding	the	cost	and	the	mark-up,	the	store	will	sell	its	baby	carriages	for	$36.

Once	again,	this	can	be	done	without	adding,	in	one	operation,	by	considering	that	adding	20%	to	the
net	price	is	the	same	as	multiplying	die	net	price	by	120%.	In	this	case	the	short	cut	is	not	so	effective,
however,	since	you	add	in	the	process	of	multiplying	anyway.

Work	out	a	proper	selling	price	for	an	article	that	costs	$47	and	should	deliver	a	40%	mark-up	to	the
store.

For	 this	 calculation	 40%	 becomes	 .4,	 and	 .4	 ×	 $47	 is	 $18.80.	 Adding	 $18.80	 to	 $47,	 we	 find	 a
desired	retail	price	of	$65.80.



Compound	Discounts

Frequently	 discounts	 from	 the	 retail	 price	 are	 quoted	 in	 compound	 or	 chain	 fashion.	 Toy	 jobbers
(local	wholesalers	who	stock	 toys	and	resell	 them	to	stores)	often	buy	at	discounts	such	as	50%	plus
10%,	often	called	“50	and	10.”

This	discount	is	by	no	means	as	simple	as	it	looks.	It	is	not	 the	sum	of	50	and	10;	that	is,	it	 is	not
equal	to	a	60%	discount.	This	is	because	the	second	discount	is	figured	on	the	net	price	after	the	first
discount,	not	on	the	full	retail	price.

This	becomes	clear	if	we	start	with	a	$100	item.	The	50%	discount	gives	us	a	first	net	price	of	$50.
The	10%	discount	is	now	applied	to	the	$50,	not	to	the	$100,	and	amounts	to	$5.	This	leaves	a	net-net
price	of	$45.	If	we	had	totaled	the	discounts,	we	should	have	figured	a	net-net	price	of	$40.

The	very	general	2%	cash	discount	operates	 in	 the	same	way.	In	order	 to	get	 their	money	quickly,
most	manufacturers	 allow	 an	 extra	 2%	off	 the	net	 amount	 of	 the	 bill	 if	 it	 is	 paid	 by	 the	 10th	 of	 the
following	month.

If	our	$100	item	came	to	a	jobber	on	such	terms,	he	could	(by	prompt	payment)	deduct	2%	of	the	net
price.	This	is	2%	of	$45,	not	of	$100,	so	it	amounts	to	900	rather	than	$2.00.	The	2%	is	important	over
the	 total	 picture	 (2%	 can	 be	 the	 profit-margin	 in	 some	 types	 of	 business)	 even	 if	 it	 does	 not	 seem
spectacular	on	this	$100	item.

So	the	net	result	of	buying	a	$100-at-retail	toy	at	a	discount	of	50%	plus	10%	plus	2%	is	that	you
pay	$44.10.

It	 saves	 time,	 in	a	business	 in	which	 such	discounts	prevail,	 to	work	out	 equivalents	 for	 the	most
usual	combinations.	We	have	just	noted	that	a	discount	of	50%	plus	10%	plus	2%	is	in	effect	55.9%	off
the	retail	price.

Turn	 to	 your	 pad	 and,	 using	 100	 as	 a	 convenient	 starting	 point,	 work	 out	 equivalent	 one-step
discounts	for	the	following	compound	discounts:

30%	plus	5%
40%	plus	10%
20%	plus	10%	plus	5%

The	equivalent	discounts	for	these	three	compound	or	chain	discounts	are	33½%,	46%,	and	31.6%.
Not	nearly	as	generous	as	 they	 look—which	 is	 the	reason	for	quoting	 them	in	compound	form.	They
appear	to	be	better	than	they	really	are.

Figuring	Discounts

A	chair	retailing	for	$26	costs	the	store	$18.20.	What	is	the	discount	percentage?
This	 is	 the	 familiar	problem	we	covered	 in	 the	 chapter	on	percentage—the	process	of	 finding	 the

percentage	of	difference.	The	difference	here	(subtract	net	from	retail)	is	$7.80.	$7.80	is	what	per	cent
of	$26?

Remember	to	divide	by	the	base,	the	number	following	“of.”	Our	fraction	is	7.80/26:

Move	the	decimal	point	two	places	to	the	right	to	convert	the	decimal	to	a	percentage:	30%.
Suppose	we	want	 to	know	the	percentage	of	mark-up	 in	 this	same	case?	The	net	price	 is	now	our



base,	so	the	fraction	is	7.80/18.20:

We	see	at	once	that	the	next	digit	of	the	answer	will	be	5	or	more	(2	into	10),	so	we	can	move	the
point	over	to	convert	to	a	percentage	and	round	off	to	40.7%.

Note	 how	 much	 more	 the	 mark-up	 is	 as	 a	 percentage	 than	 is	 the	 discount.	 This	 is	 always	 true,
because	the	base	(the	net	price)	is	smaller	than	the	retail	price.

Break-even

A	common	expression	in	many	business	endeavors	is	the	phrase	“break-even	point.”	There	are	many
special	 applications,	 but	 in	 general	 the	 phrase	 describes	 the	minimum	 quantity	 (or	 volume)	 required
before	a	product	or	operation	can	break	even	and	begin	to	make	a	profit.

In	 tooling	 up	 for	 a	 new	 plastic	 toy,	 for	 instance,	 a	 manufacturer	 may	 have	 to	 spend	 $20,000	 in
research	and	die-making	costs.	If	the	toy	sells	for	$1.00	retail	and	he	gives	the	normal	50%	plus	10%
discount,	then	he	receives	45¢	for	each	toy.	His	selling	overhead	may	be	10%,	his	raw	cost	of	plastic,
manufacture,	packing	and	shipping	another	10%,	and	his	general	company	overhead	20%,	or	a	total	of
40%	of	that	45¢	(since	the	manufacturer	figures	his	volume	on	his	sales	volume,	not	 the	retail	price).
This	leaves	60%	of	that	45¢	to	pay	back	the	cost	of	getting	ready	to	produce	the	toy,	or	27¢	each.	How
many	toys	does	he	have	to	sell	before	he	begins	to	make	a	profit?

The	answer	is	found	by	dividing	the	“contribution”	of	each	sale	(27¢)	into	the	“plant	account,”	as	it
is	often	called:

He	will	have	to	sell	roughly	74,000	of	this	toy	before	he	recovers	his	initial	investment.	Once	that
investment	has	been	recovered,	however,	he	stands	to	make	27¢	profit	for	each	toy	sold.

A	very	 similar	 type	of	calculation	 is	used	 to	determine	 the	break-even	point	of	volume	 for,	 say,	 a
grocery	store.	In	any	break-even	problem,	certain	assumptions	are	made	about	“fixed”	costs,	such	as	the
plant	account	for	the	toy	above,	or	the	running	expenses	of	a	store,	and	“variable”	costs,	or	costs	that	are
incurred	only	when	each	sale	is	made.

If	all	the	fixed	costs	for	a	certain	store	were	$1,000	a	month—including	rent,	salaries,	insurance,	etc.
—and	 the	average	net	profit	before	overhead	was	12%,	 then	 it	 is	not	difficult	 to	calculate	how	much
volume	this	store	must	do	in	order	to	break	even.	12%	is	the	contribution	of	sales	to	fixed	overhead,	or
12¢	on	the	dollar,	so	we	divide	the	fixed	cost	again	by	the	contribution:



This	store	must	do	over	$8,300	a	month	in	sales	volume	before	it	can	meet	its	fixed	costs.	For	every
dollar	above	that	it	does	each	month,	it	returns	12¢	profit.

Commission

Salesmen,	stockbrokerage	houses,	insurance	agents,	and	many	other	companies	and	people	are	paid
in	commission	rather	than	by	salary.

Commission	 is	 a	 simple	 percentage	 of	 the	 gross,	 or	 retail	 price	 (or	 net	 price,	 depending	 on	 the
agreement).	If	a	real-estate	broker	arranges	the	sale	of	a	house	for	$20,000	and	earns	a	5%	commission,
he	gets	$1,000.

Commissions	vary	widely.	Salesmen,	depending	on	the	field	of	business,	may	earn	from	1%	or	2%
to	15%	or	even	more.	Stockbrokers	work	on	a	sliding	scale	that	goes	down	as	the	volume	goes	up,	on
the	theory	that	there	is	about	as	much	paper	work	in	buying	or	selling	$50	worth	of	stock	as	there	is	in
buying	or	selling	$100,000	worth.	Advertising	agencies	traditionally	get	a	15%	discount	(commission)
on	the	space	they	buy	from	magazines	or	newspapers	and	the	time	they	buy	on	radio	or	television.

As	 in	 any	percentage	 situation,	 you	 can	 start	with	 any	 two	known	 factors	 and	 calculate	 the	 third,
unknown	one.

These	three	cases	represent	each	possible	type	of	unknown.	See	if	you	can	answer	each	of	them:
A	salesman	is	on	6%	commission.	He	makes	a	$480	sale.	How	much	commission	does	he	earn	by

this	sale?
Another	salesman,	on	8%	commission,	earned	$64	one	afternoon.	How	much	business	did	he	write

in	order	to	get	the	commission	of	$64?
A	 third	 salesman,	on	orders	 totaling	$1,300,	 earned	$91	 in	 commissions.	What	 is	 his	 commission

rate?
Cover	the	answers	with	your	pad	as	you	work	these	out.
The	first	salesman	merely	has	to	multiply	$480	by	.06.	He	earns	$28.80.
The	second	salesman	has	to	find	the	base.	$64	is	8%	of	what?	As	you	remember	from	the	chapter	on

percentage,	he	determines	the	unknown	base	by	dividing	$64	by	.08:

The	third	salesman	also	has	to	divide,	but	he	divides	his	commission	by	the	base	in	order	to	make
sure	of	his	rate.	The	answer	is	7	%.

Interest

Most	 of	 us	 deal	with	 interest	 in	 our	 personal	 lives,	whether	 or	 not	we	 deal	 very	much	with	 it	 in
business.	We	 buy	 homes	 almost	 invariably	with	 a	mortgage	 carrying	 interest	 charges.	Often	we	 buy
automobiles,	major	appliances,	 furniture	on	“time	payments”	 that	 include	 interest,	whether	or	not	 the
interest	is	called	that.	Sometimes	it	is	called	“carrying	charges.”	A	bank	loan	or	finance	company	loan
always	carries	interest	charges.

Compound	interest	is	an	intriguing	subcategory	that	has	little	actual	utility	for	most	of	us.	It	merely
means	 that	 the	 interest	 is	 continually	 added	 to	 the	 principal	 on	 which	 interest	 is	 paid,	 so	 there	 is
eventually	a	snowballing	effect	that	can	become	quite	dramatic	after	a	century	or	two.	Except	for	large
interest	rates	and	long	periods	of	time,	however,	there	is	little	difference	in	the	results.

The	 interest	you	receive	on	your	savings	account,	or	 the	 interest	you	pay	on	most	mortgages,	 is	a



“real”	interest,	figured	periodically	on	the	amount	of	money	the	bank	owes	you	or	you	owe	the	person
holding	the	mortgage.

If	you	owe	$16,000	on	a	6%	mortgage,	the	proper	charge	for	one	month	for	the	use	of	this	money	is
1/12	of	.06,	or	½	of	1%	(.005),	which	works	out	to	$80.	We	use	1/12	of	the	interest	rate	for	one	month
because	interest	is	(unless	otherwise	stated)	figured	by	the	year.

All	fair	and	square.	With	your	mastery	of	percentages,	you	should	have	no	trouble	with	any	problem
in	this	area.

But	 interest,	 in	 today's	 world,	 has	 become	 quite	 a	 different	 thing	 for	 most	 of	 us.	 A	 lender	 may
“prove”	 to	you	in	black	and	white	 that	he	 is	charging	you	8%	interest,	yet	really	can	be	quite	 legally
gouging	you	to	the	extent	of	16%	or	even	more.	This	is	so	important	to	almost	everybody	who	borrows
money	any	time	in	his	life	that	it	is	worth	a	page	of	special	explanation.

Hidden	Interest

Let	 us	 show	 how	 the	 most	 honest,	 time-honored,	 and	 respectable	 type	 of	 loan	 from	 the	 most
inexpensive	possible	place	works:	a	new-car	loan	from	a	bank.

Banks	are	by	far	the	most	reliable	and	safe	places	with	which	to	do	this	kind	of	business.	But	when
you	take	out	a	new-car	loan	and	they	say	you	will	pay	6%	interest,	the	reality	is	that	you	will	pay	more
than	12%.	At	a	finance	company,	this	could	easily	go	over	24%	in	real	interest	charges.

This	is	why:

When	you	borrow	money	and	agree	to	pay	interest	for	the	use	of	it,	you	properly	pay	interest	on	the
money	 while	 you	 have	 it.	 This	 is	 the	 way	 mortgages	 and	 savings	 accounts	 work.	 Each	 month	 (or
quarter),	the	interest	on	the	balance	owed	is	figured	and	you	pay	it.

But	it	does	not	work	this	way	with	consumer	loans.
Suppose	you	go	to	a	bank	to	borrow,	say,	about	$1,100	to	help	buy	a	new	car.	Your	credit	standing	is

good,	so	the	bank	says,	“Fine.”	They	will	charge	you	only	6%	interest,	deducted	in	advance.	This	means
that	you	sign	a	note	for	$1,200,	payable	in	12	monthly	installments.	From	this	$1,200	they	now	deduct
6%	interest	for	the	year	it	will	take	you	to	pay	back	the	loan.	6%	of	$1,200	is	$72,	so	they	give	you	a
check	for	$1,128	and	you	buy	your	car.

The	real	 interest	on	this	 loan	is	more	than	twice	the	6%	quoted.	Why?	For	two	reasons,	First,	you
never	got	 the	 $1,200	 on	which	 you	 pay	 the	 6%.	You	 got	 only	 $1,128.	 Second,	 you	 do	 not	have	 the
money	for	a	year	at	all.	You	start	paying	it	back	the	very	next	month—but	the	money	you	pay	back	the
next	month	has	had	interest	charged	for	a	full	year.

Here	 is	how	the	 interest	would	be	charged	 if	you	were	paying	a	 real	6%	on	 the	amount	you	owe,
making	payments	every	month.	We	chose	a	$1,200	note	to	make	the	figuring	easy,	since	you	pay	back
$100	a	month	for	a	year.



The	 real	 6%	 interest	 on	 such	 a	 loan	 totals	 $34.68.	 The	 discounted-in-advance-for-the-full-term
arrangement	has	you	pay	$72—over	twice	as	much.

This	 illustration	 is	 not	 designed	 to	 malign	 banks.	 They	 are	 the	 most	 trustworthy	 of	 all	 such
institutions.	But	if	a	quoted	interest	rate	at	a	bank	can	be	so	deceptive,	imagine	what	your	real	charges
can	 become	 at	 finance	 companies	 when	 they	 talk	 about	 “only”	 8%	 or	 12%	 a	 year—discounted	 in
advance.
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