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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has
impact on all areas of the control discipline. New theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new phi-
losophies…, new challenges. Much of this development work resides in industrial
reports, feasibility study papers, and in the reports of advanced collaborative pro-
jects. The series offers an opportunity for researchers to present an extended
exposition of such new work in all aspects of industrial control for wider and rapid
dissemination.

As every amateur gardener will know when growing tomatoes, if we use the
tomato feed too early the plants put all their energy into producing foliage giving
bushy plants with well-hidden flowers; and once the flowers have set, if we water
the plants too much the swelling fruits will split and spoil. Getting the timing and
quantities correct for a straightforward amateur gardening problem like this is a
simple example of agrosystem control in action. The sensor–controller–actuator
combination is the gardener who as “sensor” will observe the weather and look at
the forecast weather, study the soil condition and plant condition, then as
“controller” decide the actions and quantities needed and finally as “actuator”
administer, water and tomato feed appropriately. The gardener’s supervisory role
will involve pest control and cultivar maintenance, for example, looking for pest
infestations, and removing side shoots if necessary. A key feature to note is the
labor-intensive nature of agrosystem control.

The simple example given above was for growing tomatoes, but all the opera-
tions are a microcosm of those needed in the large-scale production of commercial
crops. Two particular features of consumer choice in vegetables are for uniformly
high-quality fruit and for vegetables (and flowers) out of season, both of which are
achieved for many vegetable and flower types using the controlled environments of
greenhouses and poly-tunnels. In this commercial situation creating a uniform
growing environment and a uniformity of high quality plant development thereby
minimizing the cost of production and maximizing the grower’s profit are key
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motivators for the use of automatic control in greenhouse crop production. This is
the system context for this first ever volume in the Advances in Industrial Control
monograph series that reports the use of automatic control for these agrosystems,
entitled Modeling and Control of Greenhouse Crop Growth and written by
Francisco Rodríguez, Manuel Berenguel, José Luis Guzmán and Armando
Ramírez-Arias.

The monograph follows the time-honored steps in an automatic control system
study: system description, modeling and model validation, control studies, and
applications. The particular application studied is the greenhouse crop growth of
tomatoes. One immediate impression gained from the monograph is the complexity
of the glasshouse crop growth system that is under control and, furthermore, that
this complexity is further complicated by different time horizons for the overall
system goals. Ultimately the authors propose a multi-layer hierarchical structure for
the system control, decision-making, and supervision. Within this structure the
authors investigate a wide range of control techniques for several different opera-
tional processes. These control techniques include adaptive control, model pre-
dictive control, event-based control, and fuzzy-logic control. However, the authors’
signature achievement is the use of hierarchical control to accommodate the
complexity of the glasshouse crop growth system and a multiobjective optimization
solution to satisfying the many conflicting objectives inherent in the control system
design.

In conclusion, this is the first monograph in the Advances in Industrial Control
series on an important commercial agrosystem process. The volume will be of
considerable interest to a wide range of readers from both the control and agri-
cultural-crop-growing communities. The Series Editors hope that the work reported
will inspire more monograph and textbook contributions on the control of these
important and interesting systems.

Glasgow, Scotland, UK M.J. Grimble
M.A. Johnson
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Preface

Modern agriculture is nowadays subject to regulations in terms of quality and
environmental impact and thus it is a field where the application of automatic
control techniques has increased during the last few years. The greenhouse pro-
duction agrosystem is a complex of physical, chemical, and biological processes,
taking place simultaneously, reacting with different response times and patterns to
environmental factors, and characterized by many interactions, which must be
controlled to obtain the best results for the grower. Crop growth is the most
important process and is mainly influenced by surrounding environmental climatic
variables (Photosynthetically Active Radiation—PAR, temperature, humidity, and
CO2 concentration of the inside air), the amount of water and fertilizers supplied by
irrigation, pests and diseases, and culture labors such as pruning and pesticide
treatments, among others. A greenhouse is ideal for crop growing since it consti-
tutes a closed environment in which climate and fertigation can be controlled (with
different control problems and objectives). Empirically, the water and nutrients
requirements of the different crop species are known and, in fact, the first automated
systems were those that control these variables. On the other hand, the market price
fluctuations and the environmental rules to improve water-use efficiency or to
reduce fertilizer residues in the soil (such as the nitrate contents) are other aspects to
be taken into account. Therefore, the optimal production process in a greenhouse
agrosystem may be summarized as the problem of reaching the following objec-
tives: an optimal crop growth (bigger production with better quality), reduction of
the associated costs (mainly fuel, electricity, and fertilizers), reduction of residues
(mainly pesticides and ions in soil), and the improvement of water use efficiency.

Many of these objectives are addressed in this book, where the major topics and
key features are:

• Discussion and presentation of the greenhouse crop growth problem and the new
challenges related to modeling and control issues, including a state of the art.

• Modeling of the different subsystems involved in the greenhouse crop grow
control. Different modeling techniques are described to show how the resulting
models can be used for simulation or control design purposes. Furthermore,

ix



suggestions and ideas about how to develop and use physical and/or black-box
models for the different subsystems are also described.

• Development of basic and advanced control strategies to control the different
variables of the climate and irrigation control problems. First, basic control
strategies such as PID control and feedforward compensators (which are widely
used in commercial tools) are summarized. Moreover, advanced control tech-
niques, such as event-based, robust, and predictive control, are described to
improve the performance of the basic control strategies.

• A multiobjective optimization problem is proposed and tested for greenhouse
crop growth management, obtaining tradeoff solutions of three objectives:
maximization of economic benefits, fruit quality, and water-use efficiency. This
optimization scheme has been integrated into a hierarchical control architecture
performing the automatic generation of setpoints for daytime and night-time
temperatures and electrical conductivity along a whole crop cycle (using a
receding horizon strategy). The obtained results show logical trajectories both in
short and long crop cycles.

The book summarizes research performed by the authors on modeling, simu-
lation, control, and optimization of greenhouse crop production during more than
10 years providing real results in an industrial greenhouse. It includes recent
research results mainly concerned with greenhouse crop growth problems. It can be
useful for a wide range of readers in the academic field, as graduate students
working on their Master’s or Ph.Ds. in automatic control and agricultural engi-
neering. Furthermore, suggestions are included for the greenhouse management,
which will be useful for practitioners and companies.

The book is organized as follows: Chap. 1 gives a brief introduction to the
greenhouse crop growth system justifying the need for automation. Furthermore, it
is devoted to describe a typical automated greenhouse and the timescales involved:
climate, crop growth, weather, and market. Chapter 2 is focused on climate
dynamical models, based both on mass and energy balances (fundamental models)
and obtained from data. Crop growth models are also developed in Chap. 2, as they
play an important role in the optimization problem. In this book, tomato has been
selected as representative crop so that the influence of both inside greenhouse
climate and irrigation on tomato crop growth are studied. Implementation and
disturbance forecast issues are also discussed in terms of parameters identification,
and model calibration and validation, including sensitivity analysis. The problem of
determining the trajectories to control greenhouse crop growth has traditionally
been solved by using constrained optimization or applying artificial intelligence
techniques. The economic profit has been used as the main criterion in most
research on optimization approaches to obtain adequate climatic control setpoints
for the crop growth. This book addresses the problem of greenhouse crop growth
through a hierarchical control architecture governed by a high-level multiobjective
optimization approach, where the solution to this problem is to find reference
trajectories for diurnal and nocturnal temperatures (climate-related setpoints) and
electrical conductivity (fertirrigation-related setpoints). The objectives are to
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maximize profit, fruit quality, and water-use efficiency, these being currently
fostered by international rules. Chapter 3 briefly describes control techniques used
in the regulation layer of the hierarchical control scheme to cope with climate and
irrigation control, including: PID control, feedforward control, gain scheduling
control, adaptive control, event-based control, robust control, fuzzy logic control,
and model predictive control. Chapter 4 is the core of the book. Taking into account
the different models explained in Chap. 2 and the time scales involved, the main
hierarchical control problem is introduced. The different control objectives are
explained, starting with the solution of the optimization problem based on maxi-
mizing profits and afterwards introducing other objectives, such as maximization of
water-use efficiency or quality. The solution of the multiobjective optimization
problem is explained and also its role in the multilevel hierarchical control archi-
tecture is described. Finally, Chap. 5 summarizes some advices and suggestions for
greenhouse users.

The text is composed of material collected from articles written by the authors,
technical reports and lectures given to graduate students. The book is comple-
mented with an extensive use of illustrations, tables and real examples which are
helpful to understand the text. For this reason, the book can be of interest to
engineers (agricultural, industrial, chemical, etc.) and process control engineers and
researchers, as well as Ph.D. students in the engineering field.

Almería, Spain, July 2014 Francisco Rodríguez
Chapingo, México Manuel Berenguel

José Luis Guzmán
Armando Ramírez-Arias
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Acronyms

2DoF Two degrees of freedom
AC Adaptive control
AI Artificial intelligence
AIC Akaike’s information criterion
ANN Artificial neural networks
AR Auto-regressive
ARIMA Auto-regressive integrated moving average
ARIMAX Auto-regressive integrated moving average with exogenous inputs
ARMA Auto-regressive moving average
ARMAX Auto-regressive moving average with exogenous inputs
ARX Auto-regressive with exogenous inputs
AW AntiWindup
BBCH Biologische Bundesanstalt, Bundessortenamt and Chemical Scale
BIBO Bounded-input bounded-output
BJ Box-Jenkins
CARIMA Controlled auto-regressive integrated moving average
CC Cascade control
DAE Differential algebraic equation
DES Double exponential smoothing
DHA Discrete hybrid automata
DKF Discrete Kalman filter
DKFDF Discrete Kalman filter with data fusion
DMC Dynamic matrix control
DTC Dead time compensator
EB Event-based
EBC Event-based control
EC Electrical conductivity
EKF Extended Kalman filter
ET Evapotranspiration
EWMA Exponentially weighted moving average
FDR Frequency domain reflectometry
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FF Feedforward
FIR Finite impulse response
FL Feedback linearization
FLC Fuzzy logic control
FOPDT First order plus dead time
GA Genetic algorithms
GM Gain margin
GPC Generalized predictive control
GS Gain scheduling
HC Hybrid control
IAE Integral of the absolute error
ISE Integral of the square of the error
ITAE Integral of time multiplied by the absolute error
ITSE Integral of time multiplied by the squared error
KBS Knowledge-based system
KF Kalman filter
KFDF Kalman filter with data fusion
LAI Leaf area index
LMIs Linear matrix inequalities
LS Least squares
LTI Linear time invariant
MIMO Multiple-inputs multiple-outputs
MIQP Mixed integer quadratic programming
MISO Multiple-inputs single-output
MLD Mixed logical dynamical
MLP Multi layer perceptron
MPC Model-based predictive control
MSE Mean squared error
NARX Nonlinear auto-regressive with exogenous inputs
NC Nonlinear control
NFIR Nonlinear finite impulse response
NFT Nutrient film technique
NLP Nonlinear programming
NMPC Nonlinear model predictive control
ODE Ordinary differential equation
OE Output error
OMT Object modeling technique
PAR Photosynthetically active radiation
PDC Parallel distributed compensation
PDE Partial differential equation
PDF Pseudo derivative feedback
PI Proportional-integral
PID Proportional-integral-derivative
PM Phase margin
PRBS Pseudo random binary sequence
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PRMS Pseudo random multilevel sequence
PVC Polyvinyl chloride
PWM Pulse width modulation
QFT Quantitative feedback theory
QP Quadratic programming
RBFN Radial basis functions network
RBS Random binary sequence
RC Robust control
RLS Recursive least squares
RMSE Root mean squared error
SCADA Supervisory control and data acquisition
SISO Single-input single-output
SLA Specific leaf area
SP Smith predictor
SQP Sequential quadratic programming
SSE Sum of squared errors
STC Self-tuning control
TB Time-based
TDC Time delay compensation
TDL Tapped delay lines
TDR Time domain reflectometry
TS Training set
T–S Takagi–Sugeno model
VPD Vapor pressure deficit
VS Validation set
WSN Wireless sensor network
WUE Water use efficiency
ZN Ziegler–Nichols
ZOH Zero order hold

Symbols and Operators

IN Set of natural numbers
IR Set of real numbers
Z Set of integers
argð�Þ Argument
detð�Þ Matrix determinant
ð�ÞT Transpose of ð�Þ
I Identity matrix of appropriate dimensions
sinð�Þ Sine function
cosð�Þ Cosine function
expð�Þ; eð�Þ Exponential function
logð�Þ Natural logarithm function
�, minð�Þ Minimum of a set
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�, maxð�Þ Maximum of a set
s Complex variable used in Laplace Transform
z�1 Backward shift operator
z Forward shift operator and complex variable used in Z-Transform
Δ ¼ 1� z�1 Increment
8 For all
k � k Cn�m Norm
k � k2 Ln�m

2 Norm
k � k1 1 Norm
¼: Definition
E½�� Expectation operator
�̂ Expected value
�� Mean value
X̂ðt þ jjtÞ Expected value of Xðt þ jÞ with available information at instant t
^ Logical AND
_ Logical OR
: Logical NOR
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Variables and Parameters Related
to Greenhouse Physical Models

The notation used is composed of three elements (Tsb1;sb2): a symbol (T) that
denotes the type of variables or constants, a first subscripts (sb1) that identifies the
name of the variable or constant and the physical process involved, and the second
subscript (sb2), that defines the greenhouse elements and the relation between them
(separate by an hyphenation) or indicates a property of the variables or constants.

Type of Variables or Constants

c System constants or coefficients (–)
D Disturbance variable (–)
M Water mass flux (kg m�2 s�1)
Q Heat flux (W m�2)
t Time (continuous and discrete) (s, samples)
U Control input variables (–)
V Algebraic variable (–)
X State variable (–)
Y Output variable (–)

Second Subscript Notating Elements

a Greenhouse internal air (–)
cr Crop (–)
cv Cover (–)
e Greenhouse external conditions (–)
g Greenhouse (–)
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in Inside/Incoming (–)
heat Heating system (–)
out Outside/Outcoming (–)
p Pools of the NFT irrigation system (–)
s1 First soil layer (–)
s2 Second soil layer (–)
shd Shade screen (–)
sky Sky (upper hemisphere) (–)
ss Soil surface (–)
wh Whitening (–)

First Subscript and Second Subscript Modifiers
Physical Processes (Q, M, V, U)

cd Condensation flux (–)
cl Characteristic length (m)
cnd Conduction flux (–)
cnv Convection flux (–)
ef Efficiency (–)
evp Evaporation flux (–)
gen Generated (–)
loss Leakage when vents are closed (m3 s�1)
phot Photosynthesis (–)
rad Long wave radiation flux (W m�2)
sol Solar absorption (W m�2)
tot Total amount of (–)
trp Transpiration flux (kg s�1 m�2)
ven Ventilation flux (m3 s�1)

Type of Variables or Constants Variables (X, V, D)

cnv Convection coefficient Vcnv;x�y: Convection coefficient between elements
x and y (W m�2 K�1)

CO2 CO2 concentration (ppm)
Ha Absolute humidity (kgwater kg�1

air )
Hr Relative humidity (%)
hsat Water concentration at saturation (kgwater kg�1

air )
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LAI Leaf Area Index (m2 m�2)
lt Latent heatvap: Vaporization air latent heat (J kg�1)
r Resistance; bl: Boundary layer (s m�1), s: Stomatal (s m�1),

trp: Transpiration (s m�1)
rn Net radiation (W m�2)
rp Par radiation (W m�2)
rs Solar radiation (W m�2)

First Subscript and Second Subscript Modifiers
Variables (X, V, D)

ssvp Slope of saturated vapor pressure curve (Hpa s�1)
T Temperature (°C, K)
Texth Exhaust temperature (°C, K)
tsw Short wave transmission (–)
ven Position of the ventilation (°, rad, %), area—lat: Sidewall ventilation area

(m2), area—roof: Roof ventilation area (m2), flux: Volumetric flow rate
(m3 s�1), hef: Effective height (m), reg: Regime (–)

vpd Vapor pressure deficit (Hpa)
vpsat Saturation Vapor pressure (Hpa)
wd Wind direction (°, rad)
ws Wind speed (m s�1)

Constants (c)
alw Long wave absorptivity (–)
area Surface of (m2)
asw Short wave absorptivity (–)
cl Characteristic length (m)
cnd Conduction flux, ccnd;x�y: Conduction coefficient between elements x

and y (W m�1 K�1)
cnv Convection flux, ccnv;x�y: Convection coefficient parameters
d Deep of (m)
den Density of (kg m�3)
elw Long wave emissivity (–)
extlw Long wave crop extinction coefficient (–)
extsw Short wave crop extinction coefficient (–)
evp Evaporation from the pools (kg W�1 s�1), 1: Net radiation calibration

factor (kg Hpa�1 m�2 s�1), 2: Humidity calibration factor (–)
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vf View factors for long wave radiation (–)
gv Gravity constant (m s�2)
loss Leakage when vents are closed, hw: Leakage with high wind speed

(m3 s�1), lw: Leakage with low wind speed (m3 s�1)
psyco Psychometric constant (Hpa)
sb Stefan–Boltzmann constant (W K�4 m�2)
sph Specific heat coefficient (J kg�1 K�1)
th Thickness of (m)
tlw Long wave transmission (–)
ven Ventilation, areap: Greenhouse section area perpendicular to vent flux

(m2), d: Discharge coefficient (–), l: Length of (m), max: Maximimun
aperture (°), n: Number of (–), w: Width of (m), wd: Wind coefficient (–)

vol Volume of (m3)
ws Wind speed, lim: Limit of (m s�1), hw: High wind coefficient (m s�1),

lw: Low wind coefficient (m s�1)

Variables and Parameters Related to Crop Growth
and Irrigation Models

ccon;phot Photosynthesis coefficient conversion (s m�1)
ccsol Solutes concentration (mol m�3)
cden;w Density of water (kg m�3)
cdf Constant representing the drainage fraction (–)
cE Growth efficiency (gdry weight g

�1
CH2O

)
cextlw Light extinction coefficient (–)
ckhr Parameter affecting resistance between soil and root (–)
ckwrs Parameter affecting resistance between soil and root (kgdry weight kg�1

water)
cky Sensitivity to evapotranspiration deficit factor (–)
cLAI;max LAI when the set of leaves of the plant reaches its maximum (m2 m�2)
cm Light transmission coefficient through leaves (–)
cMF Conversion factor between fresh and dry matter (–)
cnw Water electric conductivity parameter (m�1 d)
cprr Parameter that affects the pressure component of the hydric potential

within the root (kgdry weight kg�1
water)

cR Universal constant for gases (J mol�1 K�1)
crsr Parameter affecting resistance between soil and root (m s�1)
csor Parameter affecting resistance between soil and root (m2)
csuwa Constant threshold of EC over which there is a decrease

of water absorption (mS cm�1)
csrwa Reduction coefficient of water absorption per unit of EC (m3 mS�1 cm)
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cw1 Parameters of shape from the water retention curve (–)
cw2 Parameters of shape from the water retention curve (–)
cw3 Parameters of shape from the water retention curve (–)
cz Level in relation to the reference point (m)
cε Parameter of rigidity of the cell wall (Pa)
Dmc Content of dry matter in mature fruits (%)
fneor Nonstructural osmotically active fraction of dry matter for root (–)
fneoc Nonstructural osmotically active fraction of dry matter for canopy (–)
Fr Irrigation supplied (kg m�2 min�1)
Fwr�c Water flow from root to shoot (kg m�2 min�1)
Fws�r Water flow from substrate or soil to root (kg m�2 min�1)
Fwdr Excess flow or drainage (kg m�2 min�1)
Fws Water flow in the soil or substrate (kg m�2 min�1)
GRn Net aboveground growth rate (g m�2 d�1)
gwrc Conductivity of the flow from root to shoot (m s�1)
KF Number of nodes since the first fruit appears until it matures (nodes)
KrSe Relative hydraulic conductivity (kg m�3 s)
Ks Hydraulic conductivity at saturation (kg m�3 s)
Kso Soil hydraulic conductivity (kg m�3 s�1)
Mner Nonstructural root dry matter (kg m�2)
Mer Structural root dry matter (kg m�2)
Nb Parameter in expolinear equation (node)
NFF Number of nodes/plant when first fruit appears (nodes)
Nf 1 Number of nodes when the first fruit appears (nodes)
Nm Maximum rate of nodes appearance (node d�1)
p1 Loss of leaf dry weight per node (g node�1)
Q10 Sensitivity of respiration to temperature (–)
rm Maintenance respiration coefficient (gCH2O g�1

dry weight min�1)
rwsr Resistance to the flow from soil to root (s m�1)
Ry Reduction of yield per unit of XCE (% (mS cm)�1)
Se Effective water content of the substrate or saturation in relation

to sensible heat content (–)
St Threshold of electric conductivity above which there is a yield

decrease (mS cm�1)
Tcrit Mean daytime temperature above which fruit abortion starts (°C )
Ts Absolute temperature (K)
Vabs;crðtÞ Water absorbed by the plants (m3)
Vden;r Density of roots (kg m�3)
VdrðtÞ Drainage volume (m3)
VET Evapotranspiration (kg water m�2 min�1)
VETmax Maximum evapotranspiration (kg water m�2 min�1)
VffðtÞ Fruit firmness (%)
Vfot Photosynthesis (gCH2O m�2 min�1)
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VfsðtÞ Fruit size (%)
Vlt;vap Latent heat of evaporation (J kg�1)
Vmax Maximum increase in vegetative tissue per node (gdry weight node�1)
Vres Respiration (gCH2O m�2 min�1)
VR Yield obtained with limited irrigation (kg m�2)
VRmax Yield obtained under non limited irrigation (kg m�2)
Vrn Net radiation available for the canopy (W m�2)
VssolðtÞ Soluble solids concentration in the fruit (%)
VtaðtÞ Titratable acidity in fruits (%)
Vw;sðtÞ Water content in the substrate (m3)
XEC Electrical conductivity (mS cm�1)
XF Dry matter of fruits (g m�2)
XFF Fresh weight of fruits (kg m�2)
XLAI Leaf area index (m2 m�2)
XLDW Dry matter of the leaf area (g m�2)
XMF Dry matter of mature fruits (g m�2)
XN Number of nodes (–)
XNT Number of trusses (–)
XSLA Specific leaf area (cm�2 g�1)
�XTd;a Average daily temperature (°C)
XT;day Average temperature of the daylight hours (°C)
XW Total dry weight (kg m�2)
Xwc Mass of water in the shoot (kg water m�2)
Xwr Mass of water in the roots (kg water m�2)
Xwss Mass of water in the soil (kg water m�2)
αe Light efficiency (μmolCO2

μmol�1
absorbed photon)

αF Maximum partitioning of new growth to fruit (fraction d�1)
αv Tuning parameter in ventilation rate equation (–)
βl Coefficient in expolinear equation (node�1)
βv Tuning parameter in ventilation rate equation (–)
δl Maximum leaf area expansion per node (m2 leaf node�1)
μS Molal storage mass (kg mol�1)
ν Vegetative-fruit transition coefficient (–)
ψe Enclosing potential (Pa)
ψg Gravitational potential (Pa)
ψhc Potential of canopy (Pa)
ψhr Potential of root (Pa)
ψhs Potential of soil or substrate (Pa)
ψm Matric potential (Pa)
ψn Pneumatic potential (Pa)
ψos Osmotic potential (Pa)
ψosr Osmotic potential of root (Pa)
ψosc Osmotic potential of canopy (Pa)
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ψpr Potential of pressure (Pa)
ψprr Potential of pressure of root (Pa)
ψprc Potential of pressure of canopy (Pa)
θr Relative water content in the substrate (–)
θmx Field capacity or container capacity (–)
ρ Plants density (plants m�2)
τCO 2 Carbon dioxide efficiency (gdry weight node�1)

Other Variables and Parameters Related to Control
Algorithms

Type of Variables or Constants

a Pole of FOPDT discrete time transfer function (–)
A CARIMA model polynomial in z�1 (–)
b Numerator of FOPDT discrete time transfer function (–)
B CARIMA model polynomial in z�1 (–)
ck Static gain of linear FOPDT model (–)
cKp Proportional gain of PID controller (–)
cKpven,max Maximum value of the proportional gain (–)
cKpven,min Minimum value of the proportional gain (–)
cTaw Tracking time constant of antiwindup scheme (s, min)
cTd Derivative time of PID controller (s, min)
cTi Integral time of PID controller (s, min)
ctr Time delay of FOPDT model (s, min)
cτ Time constant of linear FOPDT model (s, min)
cTvenmin,wsmin Minimum outside temperature for vents opening

without wind (°C)
cTvenmin,wsmax Minimum outside temperature for vents opening

with maximum allowed wind speed (°C)
cTvenmax,wsmin Outside temperature for maximum vents opening

without wind (°C)
cTvenmax,wsmax Outside temperature for maximum vents opening

with maximum allowed wind speed (°C)
D CARIMA model polynomial in z�1 (–)
Dm Measured disturbance signal (–)
Dm Vector of future disturbances (–)
e White noise signal (–)
E Tracking error in feedback control (–)
Eee Electrical energy consumed by the heating system (W m�2)
Eu Input side event (–)
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Ey Output side event (–)
F Vector containing the free response of the system (–)
fi Free response coefficients of the system (–)
G Matrix containing step response coefficients from the input (–)
gi Coefficients of G (–)
H Matrix containing step response coefficients from the

disturbance (–)
Hheat Fuel consumption of the heating system (kg m�2)
hi Coefficients of H (–)
M(t) Estimated trend in DES method (–)
N Number/Prediction horizon (samples)
N1 Minimum Prediction horizon (samples)Truncation order

of a first order Volterra model
N2 Maximum prediction horizon (samples)Truncation order

of a second order Volterra model
Nd Disturbance estimation horizon (samples)
Nu Control horizon (samples)
Nt Truncation order of a second order Volterra model (samples)
q0 Parameter of discrete time PI controller (–)
q1 Parameter of discrete time PI controller (–)
S Unadjusted forecast in DES method (–)
tbase Base sampling time in EBC (s)
tf Variable sampling time in EBC (s)
th Harvesting time (d)
ti Initial time of crop cycle (d)
tk Time associated to an event (s)
tmax Maximum sampling time in EBC (s)
Tref Setpoint temperature (°C)
ts Sample time (s, min)
U Vector of actual and future control signals (–)
Usf(t) Supplied fertilizers in irrigation (m3 m�2)
Usw(t) Supplied water to the crop (m3 m�2)
Vcos Greenhouse production associated costs (€, $)
Vecos(t) Electricity costs (€ W�1; $ W�1)
Vfcos(t) Fuel costs (€ kg�1; $ kg�1)
Vfecos(t) Fertilizer cost (€ m�3; $ € m�3)
Vprice,cr Sales prices of the production at harvesting dates (€, $)
Vwcos(t) Water cost (€, m�3; $ m�3)
W Generic reference trajectory (–)
wff Optimization weighting parameter related to fruit firmness (–)
wfs Optimization weighting parameter related to fruit size (–)
wssol Optimization weighting parameter related to soluble solids

concentration in the fruit (–)
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wta Optimization weighting parameter related to titratable acidity
in fruits (–)

Y Vector of future estimated outputs of the system (–)
α Discrete variable allowing the commutation between dynamics

in MLD (–)
αd Smoothing parameter for data in DES method (–)
αv Tuning parameter of the simplified ventilation flux model (%�1)
βu Parameter determining the deadband for the actuator (–)
βv Tuning parameter of the simplified ventilation flux model (–)
βy Parameter determining the deadband for the sensor (–)
δ Weighting factor for future tracking errors (–)
γd Smoothing parameter for trend in DES method (–)
λ Weighting factor for control effort (–)
μi Normalized membership functions (–)
Φ Nonlinear mapping (–)
ρ Tracking specifications for QFT design (–)
ϕi Logical variables to determine a condition (–)
ω Frequency (rad s�1)
σ Discrete component of the state in MDL description (–)
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Chapter 1
Introduction

1.1 The Greenhouse Crop Growth System

A greenhouse is an enclosure that allows owners to control climatic, nutrition, biotic,
and cultural management variables that influence crop growth and development, so
that optimal conditions are obtained at different stages of crop growth. Moreover, it
permits producing off-season horticultural crops. The aim is to produce themaximum
amount of a product with the highest quality and at minimal cost.

The diverse elements composing a greenhouse and the multiple relationships
established inside make it a complex system, in which energy, mass, and information
flows (inherent to the genetic material of plants and that provided by people), are
dynamic and of different magnitudes. The crop is its main element as it is subjected to
the influenceof different variables, such asweather variations (temperature, humidity,
photosynthetic active radiation -PAR-, and carbon dioxide -CO2-), nutrition (water
and nutrients), biotic (pests, diseases, viruses, bacteria, and weeds), and cultural
management (pruning, spraying). These variables interact with each other with a
high level of complexity, so that it is necessary to examine and identify them in
subsystems. To achieve detailed knowledge of all the interactions and processes,
models (mainly dynamic ones) are an important support tool to explain the observed
behavior. Greenhouse subsystems have been dynamically characterized by different
authors at different levels: Climate [57, 134, 177, 360, 422, 441, 461], water behavior
in soil, or substrate [23, 145, 179, 293, 405], nutrition [179, 411], and pests and
diseases [335], among others.

An important aspect is the economic one, from two points of view. First, the
purchase prices at origin (paid to the farmer) fluctuate throughout the crop cycle. So,
the ideal decision policy should be to obtain the production and sell when prices are
the highest, trying to delay or advance crop growth to harvest at the optimal date.
Moreover, to implement this policy it must be considered that the time interval in
which delay/advance actions can be taken over the crop growth is limited to a range
from 1 to 2 weeks, depending on the kind of crop. Second, obtaining optimal climate
and fertigation conditions involves economic cost in terms of energy (electricity and
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1.1 The Greenhouse Crop Growth System 3

fuel), water, and fertilizers. Therefore, the ideal situation from the economic point
of view is not only maximizing production, but also optimizing the benefit defined
as the difference between incomes proceeding from the sale of the products and the
associated costs.

Figure1.1 shows the subsystems, processes, and variables in their relationship
with crop: The inputs are variables that can be controlled (inside climate, water,
nutrients, and so on), disturbances are those variables affecting crop growth that
cannot be manipulated, but can be measured so that their impact on the system
can be accounted for (e.g., outside weather conditions, pests, and diseases), and the
outputs are the variables to be controlled, distinguishing two types: Those that are the
target of production (fruits, leaves, flowers, stems, or roots) and pollutant waste ones
(e.g., waste of phytosanitary plant protection products). In addition, elements such
as market or environmental regulations that influence control decisions on the input
variables are shown. The integration of these elements is a major challenge for the
greenhouse potential, which not only helps users in understanding the interactions
between the different elements, but also allows them to control it.

This bookproposes a comprehensive solution to theproblemofoptimal greenhouse
production from an approach that includes climate, water, and nutritional elements
(understanding the latter as the synthesis of nutrients expressed as electrical conduc-
tivity), considering economic aspects and energy efficiency.

1.2 The Need for Automation of Crop Growth in Greenhouses

As mentioned above, a greenhouse is ideal for crop growing since it constitutes
a closed environment where climate and fertigation variables can be controlled.
Although working in a closed environment facilitates the environmental control task,
adequate control strategies are required to keep themain variables within the required
limits, besides the process disturbances. Therefore, greenhouses should be equipped
with sensors and actuators to be used by the control algorithms to interact with the
process in order to fulfill the required control specifications.

The use of computers in greenhouses has allowed farmers to control the most
important variables and to adapt the control parameters in an automatic manner.
However, commercial computers are commonly used as an interface with actuators,
and the control strategies are based on empirical rules according to the farmer expe-
rience [28]. Nowadays, most of the advanced control systems for climatic control
include too many heuristic rules with, in many cases, hundreds of parameters to be
tuned. The main problems in such controllers are the following [441]:

• The setpoint temperature tracking problem is affected by interactions between the
different control loops and control devices (that are not usually taken into account).

• The setpoint values for the different climatic variables are not defined from a scien-
tific point of view, and thus the energy usage in greenhouses is usually inefficient.
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• The energy efficiency and actuator performance are difficult to be evaluated
because of the large number of parameters and decision rules.

Currently, in most advanced control systems, many of them still under research, the
control task is performed based on mathematical models that describe the dynamical
behavior of the greenhouse, as usually done in the process industry [378]. The main
idea of the advanced control techniques relies on using an objective function, based
on climatic and crop models, and optimization techniques to determine the optimal
trajectories of the main variables in the greenhouse control crop problem [107, 177,
201, 360, 383, 421, 441]. Some of these techniques have been used experimentally in
greenhouses obtaining important energy savings [431]. However, although satisfac-
tory results have been obtained in these experiments, the estimation of the economic
benefit is still a challenge because of the small number of performed tests. Thus,
more detailed tests in commercial facilities during several seasons are required to
analyze the real impact of these control methodologies [429].

The complexity of the greenhouse production problem, with different simultane-
ous processes (physical, chemical, and biological) and with different timescales and
patterns [178] make it difficult to account for this problem from an optimal control
point of view. These different dynamics and timescales are associated to internal
greenhouse climate, fast crop dynamics (i.e., transpiration, photosynthesis, and res-
piration), and slow crop development (i.e., crop growth and fruit changes). Hence, a
multilayer hierarchical control architecture has been commonly proposed and used
[88, 360, 362, 440], where setpoints for the different layers are calculated from the
previous optimization problem. For instance, Fig. 1.2 shows the architecture pro-
posed in this book, which has three layers. The upper layer solves the optimization
problem defined by different objectives. The outputs of this layer are the growth
trajectories to be followed by the crop in order to maximize the benefit. The second
layer obtains the growth trajectories from the upper layer and calculates the low-level
setpoints (greenhouse air temperature and electrical conductivity—EC—trajectories
in this case) for the greenhouse crop, according to long-term and short-term weather
predictions. Finally, the lower layer includes the controllers trying to minimize the
error between the setpoints calculated by the second layer and the measured vari-
ables in the greenhouse system. A full description of the three layers is given in what
follows:

• Upper layer (market or tactical control layer). Taking into account the long-term
objectives (market prices, harvesting dates, and required quality) and the long-
term predictions of the growth state using the modified Tomgro model presented
in Sect. 2.2.1 [341] (for the estimation of yield and profits), the optimization is
performed to calculate the setpoint trajectories for the crop growth. This layer
usually receives the name of tactical control and is difficult to implement since it
requires adequate market models, which often have high degrees of uncertainty.

• Middle layer (crop or plant growth layer). In this layer, the daytime and nighttime
setpoints of the inside greenhouse temperature and the EC along the considered
control horizon (typically 65days for a short season −260 decision variables–or
120days for a long season −480 decision variables) are calculated. Models for

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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Fig. 1.2 Multilayer hierarchical control for greenhouse crop growth

irrigation have also been developed for control and optimization purposes [340],
as presented in Sect. 2.2.2. The long-term weather prediction is performed using
different kinds of disturbance models, as will be presented in Sect. 2.4. Starting
from a short-term weather prediction (with low uncertainty), the long-term one
is generated using a data window from the historical database. To account for
the inherent uncertainty, a receding horizon approach is implemented online. The
short-term weather prediction (with less uncertainty) is taking as the basis for
generating the estimation. This layer is divided into two levels:

– Short-term growth control. There are physiological processes taking place in a
temporal horizon of hours, such as photosynthesis or crop respiration, which
directly influence the crop growth. In this level, the setpoints to be sent to
the lower layer for the next day are calculated based on short-term weather
predictions (that has a lesser degree of uncertainty), the actual state of the crop,
and the short-term grower goals (considering his/her skill and the crop status).

– Long-term growth control. It includes the decisions on the global production
schedule of the crop. These decisions are based on the growing rate and vegeta-
tive features obtained from the grower experience and models to set the specific
climatic setpoint values. The main variables to be considered are the dry mat-
ter and leaves production, which correspond to the slower timescale of the crop
growth process. Thus, the climatic and irrigation setpoints are computed accord-
ing to a given harvesting date or a deserved growth trajectory.

• Lower layer (greenhouse or climate control and nutrition layer). Using the
temperature and EC setpoints from the upper layers, the controllers compute the
adequate control signals to be sent to the actuators. The control algorithms devel-
oped include a wide range from proportional-integral-derivative (PID) control,

http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
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feedforward control (FF), adaptive control (AC), model predictive control (MPC),
and hybrid control (HC) [342, 362, 400, 406, 431]. This layer also uses simplified
models for control design purposes.

Most research on greenhouse optimal control only considers one objective in the
optimization problem solved in the upper layer, mainly focused on increasing the
grower incomes [88, 177, 199, 360, 362, 440, 441, 458], only minimizing the CO2
supply [145], including the temperature integral in the control decision-maker [231],
or by minimizing the amount of nitrates in the crops [201, 259].

Although these control methods focus on only one objective, the greenhouse
control problem includes different objectives that have to be optimized at the same
time, existing conflicts among them. Thus, this multiobjective approach requests a
differentmeaning for the optimal solution,where the solution satisfying one objective
at the expense of others is the most common to be used. The aim of a multiobjective
optimization problem is to find a set of feasible solutions that satisfy constraints and
optimize the different objective functions [96]. The criterion maximizing profit in
the greenhouse control problem is the most common solution in the literature [177,
302, 360, 382, 431, 441, 448]. However, other requirements related to environmental
criteria [397, 424], efficient usage of water (mainly in arid regions) [47, 308, 424],
pests, and diseases support under adequate climatic control [229, 230, 231, 380],
product quality control [102, 125, 187, 201, 259, 411, 467], energy saving [47, 86,
98, 195, 304, 412, 433, 465, 494], or the pollution reduction problems, are becoming
popular [308].

Before the work of [343], there was only one attempt in the literature combining
more than one objective, specifically temperature and fertilization control problems
[201]. However, in that work, the long-term weather predictions during the grow-
ing stage are considered constant (which can lead to a high level of uncertainty in
the optimization problem). It is supposed that the temperature and nitrate profiles
resulting from the optimization process are always reached (which it is not always
ensured since there is a strong dependence on the current weather conditions), the
water supply is not considered an objective (this being an important issue in arid
regions), and only numerical simulation examples are provided. On the other hand,
a preliminary multiobjective solution combining tracking and energy consumption
problems is proposed in [193]. However, too many simplifications are performed
in the model used for the optimization problem and very simple simulation results
are shown. Thus, there is a lack of contributions combining the main objectives (to
maximize profits, fruit crop quality, and water-use efficiency) in the same optimiza-
tion problem and on the other hand, most of them are based on simulation results or
short-time real experiments.

Therefore, based on the previous discussion, it can be concluded that adequate
solution for the greenhouse crop growth problem is reached by considering different
simultaneous objectives, such as will be presented in Chap. 5 [343]. However, the use
of several objectives makes the optimization problem more complex since many of
themmay conflict, such as product qualitymaximization and incomes, cost reduction,
and/or pollution minimization problems [88, 250, 411]. Other approaches not treated

http://dx.doi.org/10.1007/978-3-319-11134-6_5
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in this book are related to the application of knowledge-based systems (KBS) and
expert systems to manage greenhouse crop production [368, 473].

1.3 General Features and Structures of Automated
Greenhouses

When the greenhouse system is analyzed from an automatic control point of view,
the following variables must be considered in the greenhouse crop growth control
problem:

• Controlled variables. Those variables that directly influence the crop growth. On
one hand, climatic variables, such as PAR radiation, inner temperature, and CO2
concentration. The relative humidity must be also controlled because it affects
indirectly CO2 absorption by assisting in pest growth. On the other hand, the
fertilization variables are water supply, EC, and pH.

• Disturbance variables. Those variables that affect the controlled variables but can-
not be manipulated. In this case, these variables are the external climatic ones
(temperature, relative humidity, solar radiation, rain, and wind speed and direc-
tion), the crop transpiration (which is based on the crop stage), and a set of different
variables describing the greenhouse elements (roof, soil surface, etc.)

• Manipulated variables. Those variables used to compensate for or to exploit the
effect of disturbances and that are associated with the process actuators. The cli-
matic actuators depend on each latitude where the greenhouse is located, being
the most common ones: Natural ventilation, shade screen, heating system, fogging
system, and CO2 enrichment systems. In the case of the fertigation process, these
systems are those used to supply water and fertilizers.

Hence, there exist a large number of coupled control loops composed of (Fig. 1.3):

• Process. Variable to be controlled (e.g., temperature).
• Measurement system. To measure the current value of each variable (e.g., temper-
ature sensor), measurable disturbances, and actuator state.

• Controller. The system that compares the desired reference value (setpoint) with
the current value of the controlled variable, and then takes the corresponding
action based on this comparison (e.g., computer and control software to regulate
the temperature variations).

• Actuators. Devices governed by the controller to keep the controlled variable
within the desired limits (e.g., natural ventilation, heating system).

Thus, three tasks are performed continuously in each implemented control loop:
To measure, compare, and act.

In this book, the results shown were obtained for tomato crop in different
greenhouses located in the province of Almería (South–East Spain). Their main
features are shown in Appendix A [339, 355, 373, 376]. This is a region with mild
climatic conditions.
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Fig. 1.3 Greenhouse climate control scheme

The data shown in this bookwere taken at a frequency of 1min for all themeasured
variables and control actions. The control systems for the ventilation, heating, and
fertigation systems were adapted to manage the control signal by relays from a
personal computer.

The tomato crop growth variables were measured manually in eight plants ran-
domly located in the greenhouse [339]. The following measurements were taken at
a frequency of 8 days: Number of nodes, number of nodes of the first bunch, flower
birth, curdle of fruits, number of nodes within the first fruit, number of nodes with
the curdle of the first fruit, and its growth dynamics. On the other hand, six different
plants were selected every 23days to measure the leaf area, dry weight, and bio-
mass of the different plant elements (roots, stems, leaves, flowers, and fruits), where
destructive methods were used to estimate their values.



Chapter 2
The Greenhouse Dynamical System

2.1 Climate Dynamic Models

As pointed out in [324], when a complex system is modeled, one of the questions
that arises is to discern whether models based on first principles or empirical models
based on experimental data are to be used. The former generally provide detailed
information of the process than empirical models, but they are usually more complex
requiring longer times and deep knowledge in the design phase. Although models
based on first principles can be used within model-based control structures, they are
generally used for simulation purposes, while empirical ones are used for control
tasks. These two approaches (and combinations) can be found within the framework
of greenhouse climate variables modeling. This section presents the development of
climate dynamic models based on first principles and on input–output data.

2.1.1 First Principles-Based Models

2.1.1.1 General Considerations

The dynamic behavior of the microclimate inside a greenhouse is a combination of
physical processes involving energy transfer (radiation and heat) and mass balance
(water vapor and CO2 fluxes). These processes depend on the outside environmen-
tal conditions, structure of the greenhouse, type and state of the crop, and on the
effect of the control actuators (typically ventilation and heating to modify inside
temperature and humidity conditions, shading and artificial lighting to change inter-
nal radiation, CO2 enrichment to influence photosynthesis and fogging/cooling for
humidity enrichment).

Thedevelopment ofmodels of a dynamic system is a complexprocess that depends
on the characteristics of the dynamics of the process object of study. This section
deals with models based on physical principles as this is not a completely solved

© Springer International Publishing Switzerland 2015
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problem. These models have been developed in different parts of the world since the
1960s of the last century, applied to several greenhouse structures (many of them of
small size and used for research purposes), with different climatic actuators, cover
material, and crops. Among them, it is interesting to emphasize several works related
to that presented in this chapter, performed by the following authors:

• North and Central Europe: Bot [57], Udink ten Cate [461], Halleaux [167], Young
et al. [483], van Henten [177], Tchamitchan et al. [447, 448], Tap et al. [441–443],
Speetjens et al. [416]. It is interesting to highlight the work of Vanthoor et al. [468],
in which a general methodology for any latitude is developed, using a similar
approach as that proposed in this book.

• Mediterranean area: Kindelan [217], Cormary and Nicolas [99], Chaabane [83],
Manera et al. [264], Boisson [55], Ioslovich el al. [202], Boulard et al. [62], Zhang
et al. [489], Senent et al. [384], Wang and Boulard [476], and Tavares et al. [446].

• Central and North America: Takakura el al. [436, 437], Ahmadi et al. [3–5],
Halleaux [167], Trigui et al. [459, 460], Leal-Iga [244], Bot et al. [198].

• South of Asia: Sharme et al. [392].

Although all these models are based on the same physical principles, they show
differences in the approaches used when adapted to the particular conditions in each
area. All these works describe the basic equations of the mathematical models and
include some results, but they do not describe the complete methodology used for
the implementation, calibration, and validation of the models. Other approaches can
be found in [140, 306].

To model the climate that is generated inside a greenhouse based on physical,
physiological, biological, and chemical principles, mass and energy balances have
to be applied to all its constitutive elements. The main subsystems are [305]:

• Cover: It is a solid and homogeneous medium which partially transmits solar and
thermal radiation. Its main objective is to isolate the internal atmosphere of the
external weather conditions, making a bridge between the two environments.

• Crop: It is a living organism that is an open thermodynamic system that extracts
energy from the surrounding environment to create and maintain its own essential
management.

• Air: It is a gaseous medium joining the different solid elements in the greenhouse.
• Soil: It is a porous medium in which can be distinguished a solid phase (soil and
organic matter), a liquid phase (water), and a gaseous phase (vapor and air). It is
responsible for the greenhouse thermal inertia, absorbing energy during the day
and emitting it overnight. Actually, it is divided into:

– Surface, that is, the interface with the rest of the greenhouse.
– Lower layers, that separate layers of ground that have different thermal charac-
teristics related by conduction processes.

Therefore, the variables that describe the greenhouse climate are: Air temperature,
water content in the air, CO2 concentration in the air, temperatures of the outer and
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inner surface of the cover, crop temperature, soil surface temperature, and temper-
ature of each of the layers in which the soil is divided. Among these elements, the
various energy and mass transport processes occur (conduction, convection, radia-
tion, condensation, evaporation, and transpiration). Moreover, these processes are
affected by other climatic variables as air speed inside the greenhouse and apparent
temperature of the sky, which is defined as the temperature of a black hemisphere
exchanging thermal radiation with the different elements of the greenhouse accord-
ing to the Stefan–Boltzmann law, in the same amount as the actual exchange that
occurs between the greenhouse and the atmosphere [58].

Other devices to consider when modeling greenhouse climate are installed actua-
tors (those used to modify climatic variables) that constitute the inputs to the system
and that can be artificially manipulated. As discussed above, there is a wide variety of
climatic actuators, although the most common in warm climates are natural ventila-
tion, heating systems, shading and thermal screens, humidifiers, and CO2 enrichment
systems.

In a greenhouse, the Principle of Continuity between its elements applies [278],
so that the heat and mass transfer processes in each can be studied using mass and
energy balances.

The energy balance in a given volume (vol) is described by the following differ-
ential equation:

dQtot,vol

dt
= ch,vol

dXT,vol

dt
= Qin,vol − Qout,vol + Qgen,vol (2.1)

where Qtot,vol (J) is the total amount of energy accumulated in the volume, Qin,vol
and Qout,vol (J s−1) are the energy per time unit entering and leaving the volume,
respectively, and Qgen,vol (J s−1) is the energy generated inside the volume. The left-
hand term represents the change in energy per time unit t in the considered volume,
which is directly related to temperature, XT,vol (K), through the heat capacity ch,vol
(J K−1).

The same considerations can be done with the mass balances in a volume (related
with concentration, Xc,vol (kg m−3) and volume cvol (m3)), in such a way that the
variation with time of the mass within a determined volume, Mtot,vol (kg), is equal
to the difference between the input, Min,vol and output, Mout,vol, flows (kg s−1), plus
the mass generated per time unit inside the volume, Mgen,vol (kg s−1), following the
next balance:

dMtot,vol

dt
= cvol

dXc,vol

dt
= Min,vol − Mout,vol + Mgen,vol (2.2)

Therefore, greenhouse climate is defined by a system of ordinary differential
equations (ODEs) describing the mass and energy balances:

• Energy balances in: Outer and inner surfaces of the cover, inside air, crop, soil
surface, and soil layers (typically from 2 to 5).

• Mass balances: Of water vapor and CO2 concentration in the greenhouse air.
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Fig. 2.1 Relationship between greenhouse elements

The number of equations to be solved depends on the known or measured variables,
that is, on the boundary conditions. All authors agree to adopt as boundary conditions
all the greenhouse climate disturbances, i.e., outdoor climate, soil temperature at a
given depth, and wind speed inside. As the interest is in modeling inside air variables
(temperature, humidity, and CO2 concentration), if the variables describing the other
elements are measured, they can be used as boundary conditions, thus reducing the
complexity of the modeling problem as the number of ODEs is reduced. However,
due to technical or economic reasons, sometimes several of these variables are not
measured, being necessary to estimate them.

Therefore, to model climate variables in the volume of air that is in direct contact
with the crop, the system is divided into the following elements: Cover, crop, soil
surface, soil layers, and volume of air between the cover and the ground surface. If
a shading screen is installed, the volume of air between the cover and the ground
surface is divided into the corresponding two air volumes.Moreover, the surrounding
conditions of the system are defined by four elements: Sun, sky dome, outside air,
and ground outside the greenhouse.

Among these elements, energy transport phenomena are produced by heat transfer
(conduction, convection, absorption, reflection and transmission of solar radiation,
emission, absorption, reflection, and transmission of thermal radiation),mass transfer
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(condensation of water vapor, evaporation of water vapor, crop transpiration) and the
effects of. actuation systems

To summarize, the relationship among the most used actuation systems, the ele-
ments of the greenhouse and the outer systems are:

• Natural ventilation: It affects the thermal, vapor, and CO2 balances in indoor air
as it mixes with the outside.

• Shade screen: It reduces the amount of radiation that reaches the crop and the
soil surface. A convection process between the air and the surfaces of the shade
occurs. It also may produce condensation phenomena on its surfaces. Finally, as
it is composed of porous material, an infiltration phenomenon occurs between the
two volumes of air it defines.

• Thermal screen: It is a less porous element than the shade screen and also reduces
the loss of thermal radiation from the ground and crop.

• Heating: If hot water pipes are used (see Sect. 3.1.2.2), convection processes with
the surrounding air and thermal radiation exchange processeswith soil, crop, cover,
screen, outside ground, and sky dome occur.

• Humidifiers: They increase the concentration of water vapor in the air, they cause
a reduction in the temperature therein.

• CO2 enrichment systems. They increase the concentration of CO2 in the air.

The dynamics of the climatic variables in a greenhouse are complex due to the
following facts [361, 363]:

• Presence of different timescales, from minutes to months.
• Presence of nonlinearities, both static and dynamic.
• Time-varying parameters.
• The system is subjected to strong disturbances (measurable and nonmeasurable
ones).

• High degree of correlation among variables.
• Combination of continuous and discrete variables.
• Presence of unmodeled dynamics.
• Changing dynamics depending on the greenhouse characteristics and geographical
area.

It is thus a complex system and, although the physical processes taking place in
a greenhouse are known, a number of assumptions have to be made to simplify the
problem. The hypotheses accepted by most authors are [305]:

• Cover: Its material is homogeneous, with constant thermodynamic and optical
properties and negligible heat capacity. A descriptive temperature is considered
on each side.

• Crop: It is a subsystem with uniform density of vegetation that absorbs and trans-
mits solar and thermal radiation. Its thermal capacity can be considered negligible
and uniform temperature throughout its volume is assumed.

• Air: It is considered homogeneous in terms of thermodynamic properties except
in models that include forced ventilation.

http://dx.doi.org/10.1007/978-3-319-11134-6_3
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• Soil: It is considered as a medium divided into a finite number of horizontal layers
which are assumed homogeneous in their thermodynamic properties and chemical
composition. Heat flux is generally considered unidirectional, regardless of the
study of water movement.

2.1.1.2 First Principles Model Architecture and General Hypotheses

To model the distributed nature of the greenhouse, a partial differential equation
(PDE) model should be used to account for both time and spatial evolution of the
state variables of the system. Nevertheless, greenhouses are often equipped with few
sensors and the actuators affect all the greenhouse volume, so that a typical assump-
tion is to consider a perfect mixing behavior such that the greenhouse dynamics are
defined by a system of ODEs given as

dX
dt

= f (X, U, Dm, V, C, t) with X(ti ) = Xi (2.3)

where X = X(t) is a n-dimensional vector of state variables, U = U(t) is a
m-dimensional vector of input variables, Dm = Dm(t) is an o-dimensional vector of
measurable disturbances, V = V(t) is a p-dimensional vector of system variables,
C is a q-dimensional vector of system constants, t is the time, Xi is the known initial
state at the initial time ti and f = f (t) is a nonlinear function based on mass and
heat transfer balances.

The number of equations describing the system and their characteristics depend on
the greenhouse elements, the installed control actuators, and the type of cultivation
method. The model presented in this section corresponds to a typical greenhouse
located in theMediterranean areawith a tomato crop. It has been developed assuming
some general hypotheses:

• The greenhouse is divided into four elements (Fig. 2.2): Cover, internal air, soil
surface, and one soil layer. The crop is not considered as an element as no mea-
surements of the leaf temperature are usually available (the related sensors are not
very accurate) and thus it is considered as a source of disturbance for the inside
climate. As some of the physical processes require the crop temperature to be
known (i.e., thermal radiation among the solid elements), it has been considered
to be equal to the greenhouse air temperature.

• The state variables of the model are: The internal air temperature (XT,a) and
humidity (absolute XHa,a and relative XHr,a), cover temperature (XT,cv), soil sur-
face temperature (XT,ss), and first soil layer temperature (XT,sl). The PAR radiation
onto the canopy (output variable Xrp,a) is also modeled with an algebraic equation.
The CO2 concentration is measured.

• The exogenous and disturbance inputs acting on the system are the outside air tem-
perature (DT,e) and absolute humidity (DHa,e), wind speed (Dws,e) and direction
(Dwd,e), sky temperature (DT,sky), calculated using the Swinbank formula [55],
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Fig. 2.2 Heat and mass transfer fluxes in a greenhouse. a Heat transfer fluxes in a cover. b Heat
transfer fluxes in the soil layers. c Heat transfer fluxes with the internal air. d Mass transfer fluxes
with the internal air. e Complete heat and mass transfer fluxes with the internal air

outside global solar radiation (Drs,e), PAR radiation (Drp,e), greenhouse whiten-
ing (Dwh) [26], the transpiration rate inside the greenhouse via the leaf area index
(LAI, DLAI) and the temperature of the deepest soil layer (DT,s2) which can be cal-
culated as the average of the external air temperature during one year or measured
using dedicated sensors [55].

• The control inputs of the system are the position of the natural ventilation (Uven),
the position of the shade screen (Ushd) and the heating system control signal
(UT,heat, that is the temperature of the water of the pipes or the air heater status,
depending on the type of heating system used, as commented in Sect. 3.1.2.2).

http://dx.doi.org/10.1007/978-3-319-11134-6_3
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• The heat fluxes are one-dimensional. Themodel only considers the vertical dimen-
sion.

• The temperature models are based on a heat transfer balance where the following
physical processes are included: Solar (sol) and thermal radiation (rad) absorption,
heat convection (cnv) and conduction (cnd), crop transpiration (trp), condensation
(cd), and evaporation (evp).

• In order to design the humidity model, a mass balance is used based on artificial
water influxes, exchange with the outside, crop, condensation, and evaporation.

• The models of short and long wave radiation do not consider reflection, and the
air is inert to these processes.

• The physical characteristics of the different elements (cover material, soil com-
ponents, air, etc.), such as density or specific heat are considered constant in the
temperature range the greenhouse evolves.

• The thickness of the cover is in microns, so the conductive heat flow is quantita-
tively negligible compared to other heat flows that appear in the cover temperature
models. For this reason, it is accepted that the temperatures of both cover surfaces
are similar.

In what follows, the models representing the heat transfer and mass balances in the
four elements constituting the greenhouse are developed. The units of the different
variables are indicated in the acronyms section.

2.1.1.3 Model of the PAR Radiation

The PAR radiation onto the canopy is modeled using an algebraic equation, because
it is similar to the PAR radiation outside the greenhouse dimmed by the different
physical elements that absorb the radiation (mainly cover material, cover whitening
and shade screen). So it is modeled using Eq. (2.4).

Xrp,a = Vtsw,gDrp,e (2.4)

where Vtsw,g is the greenhouse short wave radiation transmission coefficient,
described by:

Vtsw,g =

⎧
⎪⎪⎨

⎪⎪⎩

ctsw,cv no shade, no whitening
ctsw,cvctsw,wh no shade, whitening
ctsw,cvctsw,shd shade, no whitening

ctsw,cvctsw,whctsw,shd shade, whitening

(2.5)

where ctsw,cv is the cover solar transmission coefficient, ctsw,shd is the shade screen
solar transmission coefficient and ctsw,wh is thewhitening solar transmission. This last
parameter is difficult to determine because it depends on the whitening concentration
between 4kg whitening/4 l water (ctsw,wh = 0.1) and 0.7kg whitening/4 l water
(ctsw,wh = 0.65) [278]. It is thus necessary to take measurements of global and PAR
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radiation inside and outside the greenhouse to determine this coefficient. Another
option is to search the value of this parameter in the modeling calibration phase. Note
that Eq. (2.5) introduces a switch in the simulation process. Aswill be discussed later,
the simulation packages used (both block-oriented ones as Simulink [268] and object-
oriented ones as Modelica [117]) can cope with such behavior. The same happens
with Eqs. (2.14), (2.19) and (2.22).

2.1.1.4 Heat Transfer Through the Cover

As Fig. 2.2a shows, the cover has two sides with different temperatures. Due to the
fact that the cover is made using a single material (plastic film) and that its thickness
is a few microns, the conduction heat flux, Q,cv, is quantitatively not significant
compared to the other fluxes appearing in the balance given by Eq. (2.6) [138]. So,
the temperatures of the two sides are assumed to be similar and only one cover
temperature is modeled (XT,cv) using the heat transfer balance given by Eq. (2.6).

csph,cvcden,cv
cvol,cv
carea,ss

dXT,cv

dt
= Qsol,cv − Qcnv,cv−a − Qcnv,cv−e − Qcd,cv + Qrad,cv

(2.6)
where Qsol,cv is the solar radiation absorbed by the cover, Qcnv,cv−a is the convective
hear transfer with the internal air, Qcnv,cv−e is the convective heat transfer with the
outside air, Qcd,cv is the latent heat produced by condensation on both sides of the
cover, Qrad,cv is the thermal radiation absorbed by the cover from the inside and
outside of the greenhouse, csph,cv is the specific heat of the cover material, cden,cv is
the cover material density, cvol,cv is the cover volume and carea,ss is the greenhouse
soil surface.

The solar radiation absorbed by the cover is determined by the shortwave radiation
cover material absorptivity, casw,cv, using the following equation:

Qsol,cv = casw,cvD,e (2.7)

The convective heat transfer from inside air to cover is calculated based on the
difference between the cover temperature, XT,cv, and the greenhouse air temperature,
XT,a, using the typical model of this type of heat transfer:

Qcnv,cv−a = Vcnv,cv−a
carea,cv
carea,ss

(
XT,cv − XT,a

)
(2.8)

where carea,cv is the cover surface, Vcnv,cv−a is the cover inside convective heat
transfer coefficient based on the difference between the cover temperature and the
internal air temperature, and the mean greenhouse air speed, Vws,a:

Vcnv,cv−a = ccnv,cv−a1|XT,cv − XT,a|ccnv,cv−a2 + ccnv,cv−a3
(
Vws,a

)ccnv,cv−a4 (2.9)
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where ccnv,cv−ax are empirical parameters that have to be estimated. This analysis
uses the Nusselt, Prandtl, Grashof, and Reynolds numbers related to the climate
variables involved in this process. There are tables with general cases, facilitating
the calculations. The parameters ccnv,cv−a1 and ccnv,cv−a2 are different depending
on the convection type (laminar or turbulent). In order to simplify the model, the
approach proposed by Chalabi and Bailey [85] is used: If the internal air temperature
is higher than the cover temperature, the heat transfer is turbulent; otherwise it is
laminar. On the other hand, the parameters ccnv,cv−a1 and ccnv,cv−a3 vary with the
position of the shade screen. When the screen is extended, the air is divided into two
volumes, so it is necessary to include three new balance equations (air between the
cover and the screen, upper and lower surfaces of the screen). Measurements of these
surface temperatures are not usually available, so the effect of the shade screen on
the convective coefficient is modeled by decreasing the value of this parameter. As
will be seen in the next sections, good results are obtained under this simplification.

The measurement of the greenhouse air speed is a difficult task, because during
long time intervals of the greenhouse operation the values are very low (< 1ms−1).
So it is necessary to use special anemometers (like ultrasound or thermal effect based
ones). As the installation of such sensors is not usual in Mediterranean greenhouses,
it can be estimated using the studies in [477], which provide the following expression:

Vws,a = Vven,flux

cven,areap
(2.10)

where cven,areap is the greenhouse section area perpendicular to the ventilation flux
and Vven,flux is the volumetric flow rate (also known as ventilation rate). There are
different theories to calculate this last variable. Models “M1” and “M4” proposed by
Boulard and Baille [61] have been used because the type of greenhouse structures
studied are similar to those treated in this book, equipped with long continuous
roofs. Moreover, the five models proposed by Boulard and Baille [61] were tested
and “M1” and “M4” fix better to the data. These models are based on the thermal
buoyancy (depending on the temperature difference between inside and ourside air
(XT,a − DT,e)) and wind forces (function of the outside wind speed Dws,e), and are
described by Eqs. (2.11) and (2.12),

Vven,fluxM1 = cven,ncven,lcven,dDT,e

3cgv(XT,a − DT,e)

[(

Vven,hefcgv
XT,a − DT,e

DT,e
+ cven,wdD2

ws,e

)3/2

−(cven,wdD2
ws,e)

3/2
]

+ Vloss (2.11)

Vven,fluxM4 = cven,ncven,lcven,dVven,hef

2

[(

cgv
Vven,hef

2

XT,a − DT,e

DT,e

)0.5

+(c0.5ven,wdDws,e)

]

+ Vloss (2.12)
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Fig. 2.3 Relationship
between vents aperture and
effective height of ventilation

where cven,n is the number of vents, cven,l is the length of the vents, cven,d is the
discharge coefficient, cgv is the gravity constant, cven,wd is the wind effect coefficient,
and Vven,hef is the cord joining the two extremities of the vent based on the position
of the vent [rad, ◦], Uven, using the following equation (see Fig. 2.3):

Vven,hef = 2cven,w sin (Uven/2) (2.13)

where cven,w is the width of vent.
Vloss is the leakage when the vent is closed, based on the wind speed, which can

be approximated by:

Vloss =
{

closs,lw Dws,e < cws,lim
closs,hw Dws,e ≥ cws,lim

(2.14)

closs,lw being the leakage with low wind speed, closs,hw is the leakage with high wind
speed and cws,lim is thewind speed considered as the limit between high and lowwind.
In [61], the authors proved empirically that the discharge and wind effect coefficients
are not really constant and their values depend on some variables as the wind speed,
but in this work they are considered to be constant due to the difficulty involved in
estimating these relations. After calibration of the model, the values obtained for
these parameters were lower than those provided by the references due to the effect
of insect-proof screens located on the vents [278]. A study was also performed to
analyze the effect of wind direction modifying the structure of the model. The wind
speed was modulated based on direction and orientation of vents and it was observed
that the wind effect was low, dependent on wind direction. This result agrees with
the conclusion drawn by Boulard and Baille [61]. In the case that the greenhouse
has lateral and roof ventilation, the following expression can be used to estimate
ventilation rate [219]:
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Vven,flux = cven,d

[(
Vven,area−latVven,area−roof√
V 2
ven,area−lat+V 2

ven,area−roof

)2(

2cgcven,h
XT,a−DT,e

DT,e

)

+
(

Vven,area−latVven,area−roof
2

)2

cven,wdD2
ws,e

]0.5

+ Vloss

(2.15)
where cven,h is the vertical distance between the midpoints of the lateral and roof
vents, Vven,area−lat and Vven,area−roof are the areas of the roof and sidewall ventilation
openings, given by the following equations based on Uvent expressed in %:

Vven,area−lat = cven,l−latcven,w−lat(Uven/100) (2.16)

Vven,area−roof = 2cven,l−roofcven,w−lat sin
(Uven

100

Uven,max

2

)
(2.17)

where cven,l−[lat,roof] and cven,w−[lat−roof] are, respectively, the length and width of
lateral or roof vents.

The convective heat transfer from outside air to cover is calculated in a similar
way as the inside convective term using the formula:

Qcnv,cv−e = Vcnv,cv−e
carea,cv
carea,ss

(
XT,cv − DT,e

)
(2.18)

where Vcnv,cv−e is the cover outside convective heat transfer coefficient based on
the difference between the cover temperature and the external air temperature, DT,e,
and on the outside wind speed. In this case, the wind effect is predominant, so
the temperature effect is neglected in the calculation of Vcnv,cv−e. Some authors
[57] propose a linear relationship with the wind speed and others [21] propose an
exponential one. Both approaches are tested in this work and the data fixed better
using a mixed formula including a linear equation for low wind velocity and an
exponential equation for high wind speed conditions. This formula is used by other
authors as indicated by Boisson [55]:

Vcnv,cv−e =
{

ccnv,cv−e1D
ccnv,cv−e2
ws,e Dws,e > cws,lim

ccnv,cv−e3Dws,e + ccnv,cv−e4 Dws,e � cws,lim
(2.19)

where ccnv,cv−ex are empirical parameters that have to be estimated.
The most important latent convective fluxes on the cover are produced by con-

densation on the inside surface. For this reason, some references [277, 447] do not
consider the effect of the condensation on the outside surface. Indeed, some authors,
van Henten and Tap et al. [177, 443], neglect the effect of condensation on both cover
surfaces compared with the other heat processes.

Condensation takes placewhenwater vapor concentrationof the internal air, XHa,a ,
is greater thanwater concentration of the cover at saturation,Vhsat,cv, calculated based
on the cover temperature. This flux can be written as:
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Qcd,cv = Vlt,vapMcd,cv (2.20)

where Vlt,vap is the latent heat of evaporation of water calculated at internal air
temperature (in ◦C) using Eq. (2.21).

Vlt,vap = 4185.5(597 − 0.56XT,a) (2.21)

Mcd,cv is the mass condensation flux from the cover calculated based on a convec-
tive term:

Mcd,cv =
{

0 XHa,a < Vhsat,cv

cden,a
Vcnv,cv−a

csph,a
carea,cv
carea,ss

(
Vhsat,cv − XHa,a

)
XHa,a ≥ Vhsat,cv

(2.22)

where csph,a is the specific heat of air and cden,a is the air density.
The cover thermal radiation flux can be calculated using the Stefan–Boltzmann

theory subtracting the thermal radiation emitted by the cover (two surfaces) and the
thermal radiation emitted by the other solid elements of the greenhouse: Internal soil
surface (ss), pipe heating (heat), crop (cr), and upper hemisphere (sky) that reach the
cover surface. Related to the effect of the outside soil surface, some authors consider
the temperature similar to the external air temperature [217]. In this proposal, this
flux is neglected like other authors (e.g. [447]). The crop is a solid whose surface
and volume are variables in time, so the thermal radiation processes between the
rest of the solids and the crop are also variable. To model this effect, the long wave
crop extinction coefficient, cextlw,cr, and the LAI, DLAI, are used to modulate the
crop growth and its effect on thermal processes. The LAI can be measured online or
modeled using, for example, Tomgro model developed in [211].

On the other hand, the thermal processes among the soil surface and pipe heating
with the rest of the solids are influenced by the crop status because it is located
between them, so these processes are modulated by the LAI, so that the heat transfer
is smaller when the crop grows. So, this flux can be described by:

Qrad,cv = carea,cv
carea,ss

calw,cvcsb
[(

cvf,ss−cvcelw,ssX4
T,ss + cvf,heat−cvcelw,heatU

4
T,heat

)

exp
(−cextlw,crDLAI

) + cvf,sky−cvD4
T,sky (2.23)

+ cvf,cr−cvcelw,cr
(
1 − cextlw,crDLAI

)
X4
T,cr − 2celw,cvX4

T,cv

]

where calw,cv is the long wave cover absorbance, csb is the Stefan–Boltzmann con-
stant, celw,x are the long wave emissivities of the solid elements, and cvf,x−cv are
the view factors for radiation exchange between the different considered elements
x (ss, heat, sky, crs) and the cover. These last parameters can be estimated using
input/output data due to the difficulty involved in obtaining their exact values in this
type of greenhouse with several surfaces forming the cover and the geometry of the
plants elements. In the case that the heating system is based on air heaters, the flux
due to this actuator can be ignored.
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2.1.1.5 Heat Transfer Fluxes in the Soil Layers

The soil (greenhouse thermal mass) plays an important role in greenhouse climate.
During diurnal time, the soil absorbs solar radiation on its surface, heating the deep
soil layers. During night, the soil transfers heat to the greenhouse environment from
these layers. So, the conductive fluxes are significant because this process is the
source of the heat fluxes between them. As shown in Fig. 2.2b, a simple model of the
soil is considered, divided into three layers (more layers could be taken into account):
Surface, first layer, and a deep layer with a constant temperature. The conduction
process is modeled solving the Fourier equation considering one-dimensional heat
transfer along the deep axis, in steady state, the different soil layers as flat parallel
planes, plus a delay in the process, obtaining acceptable results. This approach is con-
sidered because the computational cost decreases when compared with the solution
obtained via diffusion equations while the results are similar (see Fig. 2.4).

Soil surface temperature model. Based on energy balance, the temperature of the soil
surface (5cm thickness) is represented by the following equation:
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Fig. 2.4 First soil layer temperature model
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csph,sscden,sscth,ss
dXT,ss

dt
= Qsol,ss − Qcnv,ss−a − Qcnd,ss−s1 − Qevp,ss + Qrad,ss

(2.24)
where Qsol,ss is the solar radiation absorbed by the soil surface, Qcnv,ss−a is the
convective flux with the internal air, Qcnd,s−s1 is the conductive flux between the
soil surface, and the first soil layer located at 30cm depth, Qevp,ss is the latent heat
produced by evaporation on the soil surface, Qrad,ss is the thermal radiation absorbed
by the soil surface, csph,ss is the specific heat of the soil surface material, cden,ss is
the soil surface material density and cth,ss is the thickness of the soil surface.

The solar radiation absorbed by the soil surface is calculated based on the crop
status (defined by LAI), using Eq. (2.25),

Qsol,ss = casw,ssVrs,cr exp (−cextsw,crDLAI) (2.25)

where casw,ss is the solar absorptivity of the soil surface material for short wave
radiation, cextsw,cr is the canopy shortwave extinction coefficient andVrs,cr is the solar
radiation that reaches the top of the canopy based on the solar radiation absorption
by the physical elements that the radiation crosses:

Vrs,cr = Vtsw,gDrs,e (2.26)

Vtsw,g being the greenhouse short wave radiation transmission coefficient defined in
Eq. (2.5).

The convective heat transfer from inside air to soil surface is calculated in the
same way as cover convective fluxes using the following equation:

Qcnv,ss−a = Vcnv,ss−a
(
XT,ss − XT,a

)
(2.27)

where Vcnv,ss−a is the inside soil surface convective heat transfer coefficient based on
the difference between the soil surface temperature and the internal air temperature,
and the mean greenhouse air speed on the soil surface. Using studies of [447], the
mean greenhouse air speed proposed is calculated at crop level, so it is modulated
based on LAI to obtain an estimation of the greenhouse air speed at soil surface level:

Vcnv,ss−a = ccnv,ss−a1|XT,ss − XT,a|ccnv,ss−a2 + ccnv,ss−a3
[
Vws,a exp (ccnv,ss−a4DLAI)

]ccnv,ss−a5

(2.28)

where ccnv,ss−ax are empirical parameters that have to be estimated and Vws,a can be
measured or estimated using Eq. (2.10).

The conductive flux between the soil surface and the first soil layer is calculated
based on the assumption that the heat flux is one-dimensional (Z axis)

Qcnd,ss−s1 = ccnd,s1
XT,ss − XT,s1

cd,s1 − cd,ss
(2.29)
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where ccnd,s1 is the heat conductivity of the first soil layer, cd,ss is the soil surface
deepness, and cd,s1 is the first soil layer thickness.

The latent heat in the soil surface is mainly produced by evaporation, calculated
as a convective flux using Eq. (2.30),

Qevp,ss = Vlt,vapMevp,ss (2.30)

where Mevp,ss is the mass evaporation flux from the soil surface, which can be
obtained by:

Mevp,ss = cden,a
Vcnv,ss−a

csph,a

(
Vhsat,ss − XHa,a

)
(2.31)

Vhsat,ss being the water concentration of the soil surface at saturation, calculated
based on the soil surface temperature. The diffusion effect to the soil surface of the
water content in the internal soil layers is not considered. Some tests were performed
to show that this term is negligible when compared with other fluxes due to the
fact that the soil surface is mulched [421]. In such cases, evapotranspiration can be
considered equal to crop transpiration (Mtrp,cr = VET).

Similar to the cover thermal radiation flux, the Stefan–Boltzmann theory is used
to calculate the soil surface thermal radiation flux, considering the effect of the crop
growth between the soil surface and the cover and the sky and the effect of the cover
long wave transmission, ctlw,cv, in the radiation processes between the soil and the
sky. So, the model of this process is as follows:

Qrad,ss = calw,sscsb
[(

cvf,cv−sscelw,ssX4
T,cv + cvf,sky−ssctlw,cvD4

T,sky

)

exp (−cextlw,crDLAI) + cvf,cr−sscelw,cr
(
1 − cextlw,crDLAI

)
X4
T,cr

−celw,ssX4
T,ss

]
(2.32)

where calw,ss is the long wave soil surface absorbance, and cvf,x−ss are the view
factors for radiation exchange between the solid elements x and the soil surface and
XT,cr = XT,a following the hypothesis adopted when developing the model.

Heat transfer fluxes in the first soil layer. As can be seen in Figs. 2.1 and 2.2b, in the
first soil layer, only the conductive fluxes are considered and so, the heat balance in
this element is represented by Eq. (2.33),

csph,s1cden,s1cth,s1
dXT,s1

dt
= Qcnd,ss−s1 − Qcnd,s1−s2 (2.33)

where csph,s1 is the specific heat of the first soil layer material, cden,s1 is the first
soil layer material density and cth,s1 is the thickness of this layer, Qcnd,ss−s1 is the
conductive flux between the soil surface and the first layer of the soil, Qcnd,s1−s2
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is the conductive flux between the first soil layer and the deep layer at constant
temperature, DT,s2, described as

Qcnd,s1−s2 = ccnd,s2
XT,s1 − DT,s2

cd,s2 − cd,s1
(2.34)

where ccnd,s2 is the heat conductivity of the second soil layer, cd,s2 is the second soil
layer deep, and cd,s1 is the first soil layer deep.

Note that these models are formulated using physical properties of the different
materials constituting the soil, as the conductivity coefficient, specific heat, density,
or solar absorptivity. As some of these parameters are unknown, they are estimated
instead of using approximated values obtained from the literature.

It is interesting to show the behavior of the used simplified model of the soil
layer temperature. As indicated, the conduction processes between the different soil
layers were modeled considering steady-state regime to solve the Fourier equation.
The temperature of the first soil layer was modeled using this approach because there
are only conduction processes as energy fluxes. The dynamic response of a soil layer
temperature is characterized by a time constant based on the density and specific
heat of the material forming the layer and its thickness. Although this approach is
commonly used in the literature on greenhouse climate, the model based on the dif-
fusion equation is implemented and calibrated too, to compare the real first soil layer
temperature with the temperature estimated by the simplified model (low compu-
tational cost) and that estimated by the diffusion model (high computational cost).
Figure2.4a shows that the amplitude of the real temperature is similar to the estima-
tion of the simplified model without delay, although both curves are shifted in the
time axis. The delay between the real and the simulated temperature is due to the
consideration of the steady-state regime of the heat transfer between the soil layers.
On the other hand, if the diffusion equation is solved using Dirichlet conditions in
the soil surface and the second soil layer, the estimation of the model is similar in
amplitude and delay to the real temperature of the first soil layer (Fig. 2.4b). The
considered solution in this work is to use the simplified model including a delay, so
that the estimation of the model is similar to the real values, as shown in Fig. 2.4,
decreasing the computational cost.

2.1.1.6 Heat Transfer Fluxes with the Internal Air

Based on the processes shown in Fig. 2.2c, the greenhouse air temperature can be
modeled using the following balance:

csph,acden,a
cvol,g

carea,ss

dXT,a

dt
= Qcnv,cv−a + Qcnv,ss−a + Qheat−a

− Qven − Qtrp,cr − Qevp,p (2.35)
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where Qcnv,cv−a is the convective fluxwith the cover described in Eq. (2.8), Qcnv,ss−a
is the flux with the soil surface described in Eq. (2.27), Qheat−a is the convective
flux with the heating pipes, Qven is the heat lost by natural ventilation and the heat
lost by infiltration losses, Qtrp,cr is the latent heat effect of the crop transpiration,
Qevp,p is the latent heat effect of evaporation in the pools (in those cases in which
there are water reservoirs inside the greenhouse for the Nutrient Films Technique
(NFT) irrigation system), and cter = csph,acden,a(cvol,g/carea,ss) is the product of
specific heat of air, air density, and effective height of the greenhouse (greenhouse
volume/soil surface area).

Heat fluxes with the heating systems. Based on the heating system facilities, the used
model must be different. In the case of heating pipes, heat transfer is produced by
heat convective fluxes with the pipes (see Sect. 3.1.2.2 for details). It is calculated
considering that the hot water temperature is similar to the temperature of the external
surface of the pipes, neglecting the effect of the convective flux between the hot water
with the internal surface of the heating pipes and the conductive flux of the pipes.
This term is given by the following equation:

Qcnv,heat−a = Vcnv,heat−a
carea,heat
carea,ss

(
UT,heat − XT,a

)
(2.36)

where carea,heat is the heat pipe surface,UT,heat is the water temperature in the heating
pipes and Vcnv,heat−a is the heating convective heat transfer coefficient calculated in
the same way as the rest of convective coefficients:

Vcnv,heat−a = ccnv,heat−a1

∣
∣
∣
∣
UT,heat − XT,a

ccl,heat

∣
∣
∣
∣

ccnv,heat−a2

+
[
Vws,a exp (ccnv,heat−a4DLAI)

]ccnv,heat−a5

(2.37)
ccnv,heat−ax being empirical parameters that have to be estimated and ccl,heat is the
characteristic length of the heating system (in this case the diameter of the heating
pipes).

On the other hand, if the energy is supplied by an air heating system supposing
the heating system to be perfectly linear with respect to the control signal UT,heat, it
can be assumed that

Qcnv,heat−a = Qheat,encheat,efUT,heat (2.38)

where Qheat,en is the nominal energy of the heating system, cheat,ef is its coefficient
of efficiency, Qmax = Qheat,encheat,ef is the maximum energy that can be contributed
by the system, and UT,heat is the heater’s activation control signal (on/off).

Heat lost by natural ventilation. The heat lost by natural ventilation term is modeled
according to ASAE standard EP406.3 (1998), [14]:

http://dx.doi.org/10.1007/978-3-319-11134-6_3
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Qven = cden,acsph,a
carea,ss

Vven,flux

(
VTexh,a − DT,e

)
(2.39)

where Vven,flux is the volumetric flow rate described in Eqs. (2.12), (2.11) or (2.15)
and VTexh,a is the exhaust air temperature, calculated as a linear combination of
external and internal air temperature [379]:

VTexh,a = Vven,regXT,a +
(
1 − Vven,reg

)
DT,e (2.40)

where Vven,reg is the ventilation regime coefficient. Vvent,reg = 1 is a good approach
for natural ventilation through windows (as the type of greenhouse modeled in this
work), so Eq. (2.39) now becomes:

Qven = cden,acsph,a
carea,ss

Vven,flux

(
XT,a − DT,e

)
(2.41)

This term includes the heat lost by infiltration losses, as shown in the equation of the
volumetric flow rate (2.12), (2.11) or (2.15).

Latent heat effect of crop transpiration. The crop affects the greenhouse air tem-
perature. As no measurements of the leaf area are usually available online, it is not
possible to use a convective factor in the heat balance equation using it as a boundary
variable. One way to model the effect of the crop on the air temperature is based on
the latent heat due to transpiration of the plants described by Eq. (2.42),

Qtrp,cr = Vlt,vapMtrp,cr (2.42)

where Mtrp,cr is the transpiration of the crop. Most transpiration estimators are based
on the Penman–Monteith equation. In 1948, Penman derived an equation that com-
bined the energy balance and the convective transport of vapor. Later, this model was
adapted by Monteith to estimate actual evapotranspiration from plants [277]. This
equation essentially combines the equation for heat transfer between the crop and
the mass of the surrounding air. A simplified pseudo-physical transpiration model
can be used based on two main variables: solar radiation (Vrs) arriving at a particular
depth in the canopy plant, and vapor pressure deficit (VPD, Vvpd), [374]:

Vlt,vapMtrp,cr = exp (−cextsw,crDLAI)Vrscrs + VvpdDLAIcvpd (2.43)

where cextsw,cr is the light extinction coefficient for crops (it is related to the leaf
inclination angle and the leaf arrangement with regard to the LAI, and provides an
indication of the plant’s efficiency on intercepting solar radiation). The coefficient
crs is constant with appropriate dimension dependent on the crop. To obtain more
reliable results, the parameter cvpd is obtained for diurnal (cvpdd ) and nocturnal (cvpdn )
periods through calibration.

On the other hand, various authors have obtained new formulations without satis-
factory results for various crops. In the case treated in this book, the crop is tomato,
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so a specific transpiration model for this crop can be used, like the proposal of
Stanghellini [419] also based on the Penman–Monteith equation:

Mtrp,cr = 1

Vr,trp

(

Vhsat,a + 1

cden,a

Vssvp

cpsyco

Vr,bl

2DLAI

Vrn,cr

Vlt,vap
− XHa,a

)

(2.44)

where Vhsat,a is the water concentration of the air at saturation (calculated at air
temperature), cpsyco is the thermodynamic psychometric constant, Vssvp is the slope
of the saturated vapor pressure curve (calculated using the air temperature), Vrn,cr is
the net radiation available to the canopy (calculated on the basis of solar radiation),
and Vr,trp is a transpiration resistance described by Eq. (2.45),

Vr,trp = 1

2DLAI

[(

1 + Vssvp

cpsyco

)

Vr,bl + Vr,s

]

(2.45)

where Vr,bl is the boundary layer resistance and Vr,s is the stomatal resistance. Vr,bl
depends on the aerodynamic regime that prevails in the greenhouse. In [63], the
buoyancy effect is neglected when compared with the wind effect, so this resistance
can be expressed with respect to the average inside air speed using Eq. (2.46),

Vr,bl = 220
c0.2cl,cr

V 0.8
ws,a

(2.46)

where ccl,cr is the characteristic length of the crop leaf. Vr,s depends on the global
radiation on the crop, the greenhouse humidity, and the crop temperature [422]. For
greenhouse tomato crops, the effect of the global radiation is the most important, so
it can be calculated using the approach in [63]:

Vr,s = 200

(

1 + 1

exp(0.05Vrs,cr − 50)

)

(2.47)

Latent heat effect of the evaporation in the pools. This is not a typical process,
but may appear if the cultivation method is NFT [151]. The greenhouse contains
nonisolated pools to recycle the fertilized water to maintain the continuous water
flow. The evaporation of the water of the pools affects the greenhouse climate. In the
same way, the transpiration of the crop is included in the balances, a factor has been
added to the latent heat term:

Qevp,p = Vlt,vapMevp,p (2.48)

where Mevp,p is the evaporation flux from the pools. The evaporation from an open
water surface is produced by twomain factors: The energy to provide the vaporization
latent heat (solar radiation) and the capacity to move the water vapor out of the evap-
oration surface due to wind speed and the air humidity on the surface. Evaporation
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can be calculated by mixing the aerodynamic method based on the vapor pressure
deficit and the energy method based on the energy balance [90]. This mixed method
is adequate for small surfaces with known climate conditions and so, the following
equation is used:

Mevp,p = Vssvp

Vssvp + cpsyco
cevp,1Vrn,ss + cpsyco

Vssvp + cpsyco
cevp,2Vvpd,a (2.49)

where cevp,1 is a factor to calibrate the effect of the net radiation on the soil surface
and cevp,2 is a factor to calibrate the effect of the air vapor pressure deficit, Vvpd,a
calculated as

Vvpd,a = Vvpsat,a

(

1 − XHr,a

100

)

(2.50)

where Vvpsat,a is the saturation vapor pressure calculated as an exponential function
of the internal air temperature and XHr,a is the relative humidity calculated in the
basis of the absolute humidity, XHa,a (see Eq. (2.52)), using the following expression:

XHr,a = cden,a
0.00217

(
XHa,a XT,a

Vvpsat,a

)

(2.51)

2.1.1.7 Water Mass Transfer Fluxes with the Internal Air

Amodel of absolute humidity (water vapor content of the greenhouse air) is basedon a
water vapor mass balance equation. As Fig. 2.2d shows themain sources of vapor in a
greenhouse are crop transpiration, evaporation of the soil surface and pools, andwater
influx by fogging or cooling. The vapor outflow takes place through condensation
on the internal side of the cover, ventilation, and vapor lost by infiltration losses.
As artificial water influxes (cooling, fogging, etc.) are not installed in greenhouses
in which the experiments were carried out, the mean water vapor content of the
greenhouse air, XHa,a , (absolute humidity) is modeled using the water mass balance
equation given by Eq. (2.52),

cvol,g
carea,s

cden,a
dXHa,a

dt
= Mtrp,cr + Mevp,p + Mevp,ss − Mcd,cv − Mven,a−e (2.52)

where Mtrp,cr is the crop transpiration flux described in Eq. (2.44), Mevp,p is the
evaporation flux from the reservoirs described in Eq. (2.49), Mevp,ss is the mass
evaporation flux from the soil surface described in Eq. (2.31), Mcd,cv is the conden-
sation flux from the cover described in Eq. (2.22) and Mven,a−e is the outflow by
natural ventilation described by the following equation, where the volumetric flow
rate, Vven,flux, is described in Eqs. (2.12), (2.11) or (2.15):
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Mven,a−e = cden,a
carea,ss

Vven,flux

(
XHa,a − DHa,e

)
+ Mloss,a−e (2.53)

where Mloss,a−e are infiltration losses.

2.1.1.8 Model Implementation

The designed greenhouse climate model is composed of five ODEs related to the
main greenhouse climate variables (temperature and humidity of internal air, cover
temperature, soil surface temperature, and first soil layer temperature) and 49 alge-
braic equations including the PAR radiation onto the canopy. This model is divided
hierarchically using a top-down approach from a high level that includes all the
submodels to the lower level where each physical process is modeled [355]. The
advantages of using this hierarchical division are:

• Each submodel can be studied independently, simplifying the problem of parame-
ter calibration.

• A new state variable submodel can be easily added, such as the crop temperature
or CO2 concentration, programming the new balance equations and adding or
eliminating physical effects in the determined submodels.

• A submodel can be added or eliminated depending on the installed actuators. If a
new actuator is installed (e.g., cooling), it can be modeled and added to humidity
and temperature submodels easily.

• A model of a physical process can be substituted when a better model is available
by changing the corresponding submodel.

• A submodel can be substituted by its real measurements when these are available,
thus reducing the uncertainties because the number of variables to estimate is
smaller.

• Each submodel can act separately as a “soft sensor,” providing an estimate of
unmeasured state variables (e.g., cover temperature) based on other measured
variables.

The input/output scheme of the model is shown in Fig. 2.5 and is divided into the
following submodels:

A. Temperature submodel

A.1. Cover temperature submodel
A.1.1. Cover solar radiation absorption submodel
A.1.2. Cover internal convective flux submodel
A.1.3. Cover external convective flux submodel
A.1.4. Cover condensation flux submodel
A.1.5. Cover thermal radiation absorption submodel

A.2. Soil Surface temperature submodel
A.2.1. Soil surface solar radiation absorption submodel
A.2.2. Soil surface convective flux submodel
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Fig. 2.5 Input–output scheme

A.2.3. Soil surface conduction to first layer submodel
A.2.4. Soil surface evaporation flux submodel
A.2.5. Soil surface thermal radiation absorption submodel

A.3. First soil layer temperature submodel
A.3.1. First soil layer conduction to soil surface submodel
A.3.2. First soil layer conduction to second layer submodel

A.4. Internal air temperature submodel
A.4.1. Air convective flux with cover submodel
A.4.2. Air convective flux with soil surface submodel
A.4.3. Air convective flux with heating submodel
A.4.4. Heat loss by ventilation submodel
A.4.5. Crop transpiration flux submodel
A.4.6. Pool evaporation flux submodel

B. Internal air humidity submodel

B.1. Cover condensation flux submodel
B.2. Soil surface evaporation flux submodel
B.3. Crop transpiration flux submodel
B.4. Pool evaporation flux submodel
B.5. Water vapor lost by ventilation submodel

C. Greenhouse PAR radiation submodel
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In order to implement the model, two paradigms can be used:

• A block-based modeling and simulation approach using Simulink [268] running
on Matlab. Matlab is a high-performance language for technical computing. It
integrates computation, visualization, and programming in an easy-to-use envi-
ronment [267]. Simulink is an interactive system for modeling, simulating, and
analyzing linear and nonlinear dynamical models (continuous, sampled, or hybrid
systems). It is a graphical mouse-driven program that allows the user to model a
system by drawing a block diagram on the screen and manipulating it dynami-
cally. Simulink includes a comprehensive block library of sinks, sources, linear
and nonlinear components, and connectors, so that the user can build the model
using these blocks and connecting them adequately. It is possible to add new cus-
tomized blocks. Each Simulink block is composed of an input vector and output
vector, and a state vector relating inputs to outputs. The main advantage of this
tool is that it is not necessary to write a program as happens with other simulations
tools. The initialization of the model is performed by a designed Matlab program
that loads in the workspace of Matlab the greenhouse structure data (surface, vol-
ume, etc.), the characteristic of the materials used in the greenhouse (cover, soil,
etc.), the features of the actuator systems (length and width of the vents, diame-
ter of the heating tubes, etc.), universal physical constants (psicometric constant,
etc.), values of the coefficients involved in the physical processes (convective and
conduction coefficients, etc.), crop data (density of plants, extinction coefficient,
etc.), and the initial values of state, output, characteristic, and disturbance vari-
ables. Furthermore, it reads the values of the available external variables contained
in data files (note that the model could also be used for online estimation of state
variables as typical sampling time is enough for their calculation, which could
be included, for instance, in predictive control schemes or production optimiza-
tion arquitectures). The way in which the Matlab program has been developed
simplifies the use of the developed model for new greenhouse structures or new
external data inputs. The greenhouse climate model has been divided into several
submodels hierarchically organized in five levels:

1. System level. It consists of two blocks (climate model and crop model). The
inputs (control and disturbances) and the outputs are included, as well as the
relations between the systems that constitute the compound model.

2. Variable type level. It corresponds to climate variables, consisting of three mod-
els: PAR radiation, temperature, and humidity.

3. Variable level. Some climate type variables can be defined by some variables.
The temperature level is divided into four submodels: Cover, soil surface, first
soil layer, and greenhouse air temperatures.

4. Process level. It is formed by the submodels of physical processes involved in
the models of the variables.

5. Implementation level. It corresponds with Simulink code to implement the
process models of the upper level.
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On the other hand, the simulation of this model involves the numerical integration
of five ordinary differential equations. Simulink provides a number of solvers for
the integration of such equations.Due to the diversity of dynamic systembehaviors,
some solvers may be more efficient than others when solving a particular problem.
In the case treated in this paper, the Gears methods are used, as the greenhouse
climate is a stiff problem (the system has slow and fast dynamics and these at last
reach a steady state).

• An object-oriented modeling proposal using Modelica as a declarative and
equation-based language for modeling multidomain physical systems [116, 117].
One natural method for physical systemsmodeling is to decompose the whole sys-
tem in subsystems interconnected by means of their interfaces. These subsystems
could decompose themselves in other interconnected subsubsystems and so on.
Each subsystem is modeled using conservation laws (energy, mass, momentum,
etc.) and constitutive equations in terms of differential and algebraic equations
(DAE). This methodology promotes greatly building reusable models. This para-
digm is different from the block-oriented modeling, presenting some advantages
as the causality management. To develop the model of the compound greenhouse
climate model using Modelica, the OMT (Object Modeling Technique) method-
ology, proposed by Rumbaugh et al. [367], is used. This tech nique proposes a
formal graph showing the relations (association, aggregation, and generalization)
between the different objects that constitute the systems and their properties and
attributes. Three general classes are defined [355, 363]:

Crop_model class. It represents the LAI (modeled or measured) of a tomato crop.
Greenhouse_class. This class describes the greenhouse where the simulation

test is designed. Its attributes are the parameters of the different elements con-
stituting the greenhouse. The main advantage of this design is the possibility
of changing or adding a physical element (i.e., actuators) easily. These classes
are described by their own name:
Structure. Type and dimensions of the greenhouse structure.
Ventilation. Type and dimensions of the ventilation.
Heating. Type and parameters of the heating system.
Soil_surface. Type of material of the soil surface.
First_layer_soil. Type of material of the first layer soil.
Second_layer_soil. Type of material of the second layer soil.
Cover. Type of cover material.

Greenhouse_model class. It represents the different models that describe the
greenhouse climate variables. It is related to the Greenhouse_class to obtain
the parameters of the greenhouse where the simulation experiences are per-
formed. Furthermore, this class is related with the Crop_model class to model
the effects of the plants on the climate. It is constituted by an aggregation
relation of the following classes:
Temperature_model. Class of the different models of internal air temperature.
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Humidity_model. Class of the different models of internal air humidity.
Cover_model. Class of the different models of cover temperature.
Soil_model. It is formed by two subclasses:

Soil_surface_model. Class of the different models of soil surface temper-
ature.

Soil_layer_model. Class of the different models of the soil layer temper-
ature.

The compound model is defined by five ordinary differential equations and 59
algebraic equations. This equation system is solved using the DASSL algorithm [65]
because the simulation computational time was the smallest and it is very efficient
to solve stiff systems.

The use of modeling environments as Simulink or Dymola/Modelica and sys-
tematic procedures for decomposing the complete model in submodels, which can
be independently validated, has shown to facilitate the implementation of the com-
pound model (as an integration of the single submodels) and its extension to other
types of greenhouses. The choice of a simulation paradigm and implementation tool
depends on the skill and ability of the user to implement the models and especially
their preferences on the working methodology of each.

2.1.1.9 Model Calibration

Due to the large set of unknown parameters (more than 30), it is difficult to obtain
their values using a unique search technique with the compound model. The solution
consists in performing single experimental tests for eachoneof the involvedprocesses
to estimate their parameters in a similarway as the experiences carried out byBot [57].
These experiments are not easy to perform, and some of them are expensive and
present a long duration. On the other hand, the input/output meteorological and
actuator status data are often at hand in a typical greenhouse installation, so it would
be desirable to use only these data to calibrate the greenhouse climate model, without
losing the physical meaning of the processes involved in the balance equations. This
problem can be simplified considering the following facts:

• Data of the different climate variables to model, the disturbances and the actua-
tors status are measured, so the problem has been divided into some submodels
calibration processes (air humidity and cover, air, soil surface, and first soil layer
temperature).

• Someof the involved physical processes in the balance equations are not coupled or
they have no influence in determined time lapses of a day (e.g., the solar absorbance
during the night or the crop presence), so all the parameters of a single submodel
do not have to be estimated simultaneously.

• Some of the involved physical processes are modeled in different forms based
on determined situations (as the convection process between the internal side
of the cover and the greenhouse air in which the parameters of the convection
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coefficient are different depending on laminar or turbulent regimes). So, the
calibration process can be divided for each of these situations.

• In order to estimate the parameters related to the actuation systems, some guided
test (mainly step response and impulse response ones) can be performed at the real
greenhouse.

Based on these considerations, a methodology to calibrate the compound model
was proposed by Rodríguez [355]. In what follows, the step sequence that has to be
carried out to calibrate the implementedmodel for any greenhouse is briefly explained
based on the typical measured data in a greenhouse. In each step, the number of the
estimated parameters is indicated:

1. Calibration of the climate variables with an empty greenhouse (without crop)

a. Climate variables calibration without the effects of the actuation systems
(no heating, no ventilation)
i. Calibration of the first soil layer temperature submodel [4 parameters]
ii. Calibration during nocturnal time intervals (without solar radiation)
iii. Calibration of cover temperature submodel
iv. High wind speed [1 parameter]
v. Low wind speed [3 parameters]
vi. Calibration of soil surface submodel [6 parameters]
vii. Calibration during diurnal time intervals (with solar radiation)
viii. Calibration of cover temperature submodel [3 parameters]
ix. Calibration of soil surface temperature submodel [3 parameters]
x. Calibration of internal air humidity submodel [2 parameters]

a. Calibration of the parameters related to natural ventilation (without heating)
[2 parameters]

b. Calibration of the parameters related to heating system (without vents)
[2 parameters for pipe heating systems or 1 parameter for air heaters]

2. Calibration of the climate variables with crop

a. Calibration of the long wave parameters in the cover temperature submodel
[1 parameter]

b. Calibration of the long wave parameters in the soil surface temperature
submodel [2 parameters]

c. Calibration of the parameters related with the crop transpiraton process
[4 parameters]

3. Calibration of the PAR radiation model [1 parameter]

The largest number of parameters to estimate simultaneously is six in the processes
of soil surface calibration in nocturnal time intervals with an empty greenhouse. The
use of an adequate parameter search technique can help to solve this problem. In
order to obtain the unknown parameters in the equations described in Sect. 2.1.1.2,
a large set of input/output data obtained at the real greenhouses are used in such a
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way that the values of the parameters are obtained by minimizing a least squares
criterion:

J = ‖Xreal − Xsim‖2 =
N∑

i=1

(Xreal(i) − Xsim(i))2 (2.54)

where Xreal = (Xreal(1), . . . , Xreal(N )) is a set of N real measurements of the
variables to estimate and Xsim = (Xsim(1), . . . , Xsim(N )) are the values of the
variables calculated by the implementedmodel. The used parameter search technique
is divided into two phases.

In a first phase, the submodels were calibrated independently using a direct
sequential search [330], consisting in an iterative method incrementing the values
of the parameters between upper and lower limits (wide margins) with a determined
step until a n-tuple of parameters that minimizes the least square criterion is found.
The initial upper and lower bounds were obtained from physical properties and from
values found in the literature. The search can be improved by decreasing the limits
and the sequential increment step. The main disadvantage of this type of techniques
is the high computational cost because it must evaluate all the values of the search
space. So, it is used to obtain only approximated values of the model parameters
reducing the search space.

Begin;
time=0;
generate initial population, P0;
evaluate P0;
while not finish-condition do

begin;
time=time+1;
select potential solutions Mtime from Ptime-1;
alter Mtime using genetic operators;
create new population Ptime from Mtime;
evaluate Ptime;

end
End.

Algorithm 1: Parameter search technique.

In a second phase, genetic algorithms (GAs) were used as heuristic search tech-
nique to refine the obtained values of the model parameters in the first phase. GAs
are globally oriented in searching and thus potentially useful in solving optimiza-
tion problems in which the objective functions response contain multiple optima
and other irregularities [172, 329, 463, 475]. Empirical studies have demonstrated
that GAs have been successfully applied to several types of problems, including
function optimization or model fitting [369]. GAs differ from the iterative search
in that they search among a population of points and use probabilistic rather than
deterministic transaction rules. These algorithms are formulated using a direct anal-
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ogy with evolution processes observed in nature. GAs work simultaneously with a
population of individuals (n-tuples of parameters) exploring a number of new areas
in the search space in parallel, thus reducing the probability of being trapped in a
local minimum [269]. As in nature, individuals in a population compete with each
other for surviving, so that fitter individuals tend to progress into new generations,
while the poor ones usually die out. This process is described in Algorithm 1.

The initial population is randomly generated within certain boundaries. The deter-
mination of these boundaries is a difficult problem. In the case treated in this section,
these limitswere determined by the study performedwith the sequential search phase.
In order to evaluate the population, the simulation is run for each individual (set of
all model parameters to estimate), and a numerical value is assigned to each member
of the population (possible set of model parameters) using the least squares criterion
given in Eq. (2.54). All the individuals in the population are evaluated and their fit-
ness are used as the basis of the selection. A common selection approach assigns a
probability of selection, P( j), to each individual j based on its fitness value. A series
of N random numbers is generated and compared against the cumulative probability
of the population:

C(i) =
i∑

j=1

P( j) (2.55)

The appropriate individual, i , is selected to belong to the newpopulation ifC(i−1) <

U (0, 1) < C(i) where U (0, 1) is a uniform distribution. In [190] different methods
to assign probabilities to individuals are proposed, such as the roulette wheel and
ranking methods. A normalized geometric ranking method has been used in this
application. It assigns a probability P(i) based on the rank of solution i when all
solutions are sorted. Themethod defines P(i) for each individual using the following
equation:

P(i) = Pbest

1 − (1 − Pbest)Ps
(1 − Pbest)

rank(i)−1 (2.56)

where Pbest is the probability of selecting the best individual, Ps is the population
size and rank(i) is the rank of the individual where 1 is the best. In order to alter the
selected individuals to generate the new population, GAs used two basic types of
operators:

• Crossover. This operator takes two individuals and produces two new individuals
exchanging genetic information in pairs or larger group between the parents. There
are some crossover operators and in this application, the real value simple crossover
has been used. Let X and Y two m-dimensional row vectors of floats denoting
individuals from the population. This operator generates a random number n from
a uniform distribution U (0, 1) and creates two new individuals X́ and Ý based on
the following equations:
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X́ = nX + (1 − n)Y
Ý = (1 − n)X + nY

(2.57)

• Mutation. This operator alters one individual to produce a single new solution. A
uniform mutation algorithm has been used that selects randomly one variable j ,
and sets it equal to a uniform random number U (ai , bi ) where a(i) and a(i) are
the lower and upper limit of the interval of variation of the parameter at parent
chromosome position, that is:

X́(i) =
{

U (a(i), a(i)) if i = j
X (i) if i �= j

(2.58)

Table2.1 and Fig. 2.6 (mean absolute error, maximum absolute error and standard
deviation) show that the estimation of the coefficients using GAs methods is better
than the iterative search for the complete model. Furthermore, this technique is more
efficient in time. Although it is necessary to indicate that the search space of the

Table 2.1 Comparison between real temperature (◦C) and relative humidity (%) and the estimation
of the compound model using GAs (GA) and direct sequential search (Sec) during August 2000 in
Araba greenhouse

Air Cover Soil surface First soil layer Air relative

temperature temperature temperature temperature humidity

Sec GA Sec GA Sec GA Sec GA Sec GA

Mean absolute error 1.13 0.93 0.89 0.79 0.74 0.64 0.34 0.32 4.29 3.92

Maximum absolute error 5.15 4.63 5.17 4.81 4.66 4.65 1.36 1.26 29.47 24.32

Standard deviation 0.88 0.65 0.79 0.64 0.63 0.50 0.28 0.26 3.76 3.69

0 5 10 15 20

25

30

35

40

45

50

G
re

en
ho

us
e 

ai
r 

te
m

pe
ra

tu
re

 (
ºC

)

Solar time (h)

Real greenhouse air temperature
Simulated temperature by sequential search
Simulated temperature by GA search

 

 

Fig. 2.6 Comparison between real temperature and complete model simulated temperatures of
greenhouse air using GAs and sequential search
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initial population was reduced because it was deduced of the study carried out with
the sequential search of the simple submodels.

In order to calibrate the parameters of the greenhouse climate models, several
tests were performed in the greenhouses: In summer season (without crop and with
guided experiences using natural ventilation) from June to August, and others in
winter season (with tomato crop and guided experiences using the heating system)
fromDecember toMarch. Data of 15 days with 1-min sample time (21,600 real mea-
surements) were used in the calibration phase in each season. In order to calibrate the
PAR radiation, modeled by an algebraic equation, data of a month without whitening
were used (January) to verify the data provided by the manufacturers of the cover
material and the shade screen. The values are slightly corrected because they lose
the original properties along time. This variation of the parameters is not accounted
for by the model because the chemical equations that describe the degradation of the
physical characteristics are not known. In any case, the degradation process takes
place slowly, so it is logical to suppose that these parameters are constant during a
simulation experiment (during one season at the most). It is obviously necessary to
calibrate these values along time. The used data calibrating the effect on the trans-
mission coefficient of the cover when it is whitened correspond toMay and June. The
submodels are independently calibrated because all the needed input/output data are
measured. The calibration process is similar for any greenhouse, so only the obtained
results for Araba greenhouse (see Appen. A) are shown in this section for lack of
space.

Some of the results of the calibration processes are shown in Fig. 2.7 and Table2.2,
where a comparison between real measurements and those obtained by separate
simulations are shown using data of August for all the variables and data of January
for air temperature and humidity (which are the main variables). These results are
different depending on the models defined by the known state variables:

• Configuration 1. Simple submodel with full measurements of the other state and
exogenous (external) variables. The model only estimates the air temperature.

• Configuration 2. Using real data of cover and soil temperatures and exogenous
variables. The model estimates the air greenhouse temperature and humidity.

• Configuration 3. Using real data of soil temperatures and exogenous variables.
The model has to estimate the greenhouse air temperature and humidity, and the
cover temperature.

• Configuration 4. Using real data of humidity and exogenous variables. The model
has to estimate the temperature of the first soil layer, the soil surface, the cover,
and the greenhouse air.

• Configuration 5. Without supplying data of humidity, cover temperature, and soil
temperatures (complete model). All the state variables are simulated and only
external variables are supposed to be known.
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Fig. 2.7 Simulation results with the independent submodels in the calibration process. a PAR
radiation submodel in spring. b Cover temperature submodel in summer. c Soil surface submodel
in summer. d First soil layer submodel in summer. e Greenhouse humidity submodel in sum-
mer. f Greenhouse temperature submodel in summer. g Greenhouse humidity submodel in winter.
h Greenhouse temperature submodel in winter

Table2.3 provides the results of the temperature estimated by the five configu-
rations, in terms of maximum, mean and standard deviation absolute errors when
compared with real data. As more variables are required to be modeled, larger errors
are obtained, as shown in Fig. 2.8. This is due to the fact that the uncertainties in
the modeled processes increase the numerical errors, which are greater because it is
necessary to solve a larger number of equations. This result was predictable, although
the behavior of the model can be considered adequate in every configuration because
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Table 2.2 Comparative results of the estimation of the different climate variables in the calibration
process

Summer Winter

Air Air relative Cover Soil surface First soil layer Air Air relative

temp. humidity temp. temp. temp. temp. humidity

Variation 21.1–49.0 21–94 20.55–52.1 25.5–42 28.19–31.4 11.5–25.5 47.9–100

interval (27.9 ◦C) (73%) (31.55 ◦C) (16.5 ◦C) (5.9 ◦C) (14 ◦C) (50.3%)

Mean 0.51 3.96 0.52 0.68 0.25 0.52 2.53

Maximum 2.81 24.32 3.38 4.12 0.79 2.06 17.19

Standard 0.52 3.75 0.53 0.44 0.17 0.48 2.39

deviation

Table 2.3 Comparative results of the estimation of the greenhouse air temperature using different
configurations

Configuration1 Configuration2 Configuration3 Configuration4 Configuration5

Mean 0.51 0.52 0.61 0.93 0.95

Maximum 2.81 2.83 3.12 4.63 4.73

Standard
deviation

0.52 0.53 0.59 0.65 0.66

the mean of the absolute errors is not greater than 4% within the variation interval of
the greenhouse air temperature. As the results show, the model calibration process
has been successfully performed.
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Fig. 2.8 Simulation results with the independent submodels in the calibration process
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2.1.1.10 Sensitivity Analysis

A sensitivity analysis based on the variation of the optimal obtained parameters has
been carried out to study the robustness of the model formulation. The numerical
methods proposed by Cameron [75] have been used, consisting in the calculation
of the cost function described in Eq. (2.54) for 21 values of each one of the model
parameters, in a variation interval of ±10% with respect to their optimal values. As
an example, Fig. 2.9 shows the greenhouse air temperature sensitivity analysis for
summer time (without crop) and duringwinter time (with crop and heating system).A
zoom of the obtained results shows that the curves corresponding to the variations of
the cost function are not symmetrical with respect to theminimum. This ismainly due
to the nonlinear dependence of themodelswith the parameters. Even so, it is observed
that around ±5% of the parameters optimal value, the linearization hypothesis is
valid and so the selection of a quadratic cost function can be considered correct. The
conclusions of the sensitivity analysis of each submodels are the following:

• Air temperature submodel. As Fig. 2.9a shows, in the case of an empty greenhouse
during summer time conditions, this model is more sensible to the parameters
of the convection process between the cover and the greenhouse air. This fact
can be explained because the greenhouse air temperature depends on the outside
climate and the cover acts like a union among them. Therefore, a small variation
in this process will cause a great difference between the real value and the model
estimation. Also, there are two sets of parameters providing a same variation of
the cost function (Fig. 2.9b shows with more detail these two groups). These are
those related to the convection with the soil surface, because the soil acts as a
climate regulator, providing energy during the nocturnal periods. Figure2.9b also
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shows that the air temperature has low sensitivity to the parameters related to the
ventilation process. This is not what was expected as the ventilation is the main
cooling source. Some sensitivity analyses were performed for diurnal periods of
10h where the ventilation was acting during a long time interval, observing that
all the obtained results are similar. A possible cause of the obtained result is the
low ventilation rate of the ventilation system installed in the analyzed greenhouse.
This result should not be extrapolated to other greenhouse structures. In the case of
a greenhouse with crop under winter conditions, the temperature of the air is more
sensible to the convection process with the heating pipes parameters as Fig. 2.9c
shows. Figure2.9d shows a zoom of the influence of the rest of parameters. The
results are similar to the previous analysis, where the model is sensible to cover
convection parameters, moderately robust to changes in the parameters of soil
convection and quite robust to the variation of the ventilation parameters.

• Cover temperature submodel. The cover temperature submodel is quite sensible
to the parameters related to long wave radiation between the cover and the rest
of the solids (soil, crop, and heating system) due to the fact that the temperature
difference between the different elements is the source of the processes of heat
transmission. The temperature of the heating system is very high compared with
that of the other elements, reason of why its effect is larger. The heat transmission
by thermal radiation depends on the temperature difference power to 4, reason of
why its contribution is very important.

• First soil temperature submodel. This model is more sensible to the conduction
coefficient with the soil surface as was to be expected. It is observed that the degree
of sensitivity with respect to other parameters is of similar order, since the value
of the cost function varies between 45 and 48, reason of why a special sensitivity
to anyone of the parameters cannot be deduced.

• Soil surface temperature submodel. Some of the previous conclusions are extrap-
olated to the soil surface temperature submodel, which is more sensible to the
variation of those parameters related to the processes of thermal radiation. In a
second level, the model is more sensible to the conduction processes than to the
convection processes with the inner air, due to the fact that the soil is a thermal
buffer where the conduction processes are dominant.

• Humidity submodel. The sensitivity analysis of the humidity submodel has been
divided into two stages. The first one corresponds to a period without crop under
summer conditions, where the humidity model is more sensible to the parameters
related to the evaporation process in the irrigation pools, mainlywith the parameter
related to the solar radiation. This is logical as under these conditions, this process
is the main source of water contribution to the greenhouse air. On the other hand,
it is less sensible to the parameters related to the natural ventilation as happened
with the temperature submodel previously commented. In the second stage, a
tomato crop with a middle-development state (LAI = 3) was considered, where
the humidity model is more sensible to the parameters related to the processes of
thermal radiation. This is due to the fact that, in this case, the main source of water
contribution is the crop transpiration that directly depends on the net radiation
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that reaches the canopy (related to the short wave and the thermal radiation). The
sensitivity to the rest of parameters is similar to that of the first period.

2.1.1.11 Model Validation

As some state variables are not measured (cover and soil layers temperatures), only
the configuration 5 of the compound climate model has been used to validate the
greenhouse air temperature and humidity. Due to the fact that all the state variables
are related, if two of them are validated, it can be expected that the behavior of
the rest of them is adequate. In any case, the estimation of these variables provided
by the model has been studied to confirm that their evolution is that expected. The
experiences performed to validate the model are the following:

• Model validation with data of Araba greenhouse. After the calibration, the model
for this greenhouse (described in the previous sections) with data of winter and
summer seasons, the following tests were performed:

– Evaluation of themodel in the same seasons of another year: January andAugust.
– Evaluation of the model in a different season of those used in the calibration
process: Spring season.

Figure2.10 shows some results of these experiences. Analyzing these data, the
validity of the developed model can be confirmed both from quantitative and qual-
itative viewpoints, because it follows the dynamics of the modeled variables and
the errors are within acceptable intervals for this type of applications (the relative
error of the absolute error average is less than 7%). Obviously, this assertion is
valid only for this greenhouse, so in order to generalize this conclusion, it was nec-
essary to perform new validation experiences in other greenhouses with different
structures, different actuators, and different control strategies as is commented in
what follows.

• Model validation with data of Araba greenhouse number 3. This greenhouse is
similar to Araba greenhouse except the position of the roof vents. So it was nec-
essary to carry out the calibration of the ventilation parameters. The rest of the
parameters are the same of the Araba greenhouse. In order to validate the model,
some tests were carried out for three different seasons: Winter (January), spring
(April), and summer (August). Table2.4 shows some results of these experiences.
The conclusions are similar to the another Araba greenhouse with a relative error
of the absolute error average less than 8%.

• Model validation with data of Inamed greenhouse. This is a hard test for the model
structure as this greenhouse is different from the previous ones.After the estimation
of the model parameters for Inamed structure (different to the Araba structure)
using the data corresponding to the winter and summer seasons, three different
experiences were performed to validate the climate model under different climate
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Fig. 2.10 Simulation results of Araba greenhouse in the validation process. a Greenhouse air
temperature in summer.bGreenhouse air relative humidity in summer. cGreenhouse air temperature
in winter. d Greenhouse air relative humidity in winter. e Greenhouse air temperature in spring.
f Detail of greenhouse air temperature in spring

Table 2.4 Comparative results of the estimation of the different climate variables in Araba green-
house number 3 in the validation process

January April August

Temperature Humidity Temperature Humidity Temperature Humidity

Variation 11.43–21.67 45.4–99.1 11.3–27.3 29.3–58.66 18.5–51.1 31.42–92.21

interval (10.24 ◦C) (53.7%) (16.0 ◦C) (59.36%) (32.6 ◦C) (60.79%)

Mean 0.56 4.11 0.58 4.54 1.12 3.62

Maximum 4.25 17.85 3.99 20.84 6.05 14.89

Standard 0.52 3.99 0.58 4.09 0.94 3.43

deviation

conditions: Winter (January), spring (April), and summer (August). Figure2.11
and Table2.5 show some of the results, obtaining similar conclusions as those
previously discussed.
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Fig. 2.11 Simulation results of Inamed greenhouse in the validation process. a Greenhouse air
temperature in spring.bDetail of greenhouse air temperature in spring. cGreenhouse air temperature
in summer. d Greenhouse air relative humidity in summer

Table 2.5 Comparative results of the estimation of the different climate variables in Inamed green-
house in the validation process

January April August

Temperature Humidity Temperature Humidity Temperature Humidity

Variation 12.54–23.66 59.4–100 14.72–32.53 63.18–93.41 18.5–51.1 31.42–92.21

interval (11.12 ◦C) (40.6%) (17.81 ◦C) (30.23%) (32.6 ◦C) (60.79%)

Mean 0.48 3.26 0.63 2.11 1.12 4.01

Maximum 3.12 16.01 4.89 12.99 6.05 15.54

Standard 0.43 3.17 0.55 2.19 0.94 3.97

deviation

• Model validation with data of Almería greenhouse. The same procedure was
applied to this kind of greenhouse and the obtained results were similar to the
Inamed case (not included for sake of space).

As it can be observed, simulations with a high degree of exigency were carried
out to validate the compound model, using data of other seasons (different to those
used in the calibration process) and with different greenhouse structures, obtaining
adequate results that confirm the validity and performance of the model.
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2.1.2 Pseudo-Physical Climate Models

2.1.2.1 General Considerations

As it has been analyzed in Sect. 2.1.1.2, the climate inside a greenhouse can be
described by a system of first-order ODE which characterize the dynamics of the air,
crop, soil and cover temperatures, air humidity, and CO2 concentration. Such model
is very useful for simulation and optimization purposes, but for other applications,
such as climate control, simplified versions capturing the dominant dynamics of the
system can be used. Several authors have proposed simple models keeping some
physical sense [38, 177, 202, 384, 441, 448, 459, 460, 461]. To derive a simplified
version of the model developed in Sect. 2.1.1.2, the following simplifications have
to be done:

• The cover is not considered as a greenhouse element characterized by its tempera-
ture, but an interface between the inside and outside air where energy is exchanged
depending on the inside-outside temperature difference. Thus, models of convec-
tion processes between the cover and the outside and inside air and the conduction
process between its two surfaces are replaced.

• The crop is not considered an element and its effect on climate is modeled by tran-
spiration and CO2 supply or consumption due to photosynthesis and respiration.
The modeling of these contributions can be done either using empirical relation-
ships with climatic variables or detailed models developed by other authors.

• When modeling air temperature, the fundamental heat sources are the sun and the
heating system, while ventilation and losses through the cover are the main heat
losses. The effect on the temperature of the crop is usually taken into account,
whereas the radiation through the cover is used both by the plants to perform
transpiration and photosynthesis and to heat the air. The latent heat due to con-
densation on the cover or the evaporation in the soil surface or pool are not taken
into account.

• The model of water vapor content in the air has as fundamental contributions crop
transpiration and humidification systems, and ventilation as the main cause of
moisture loss by exchange with the outside.

• The model of CO2 concentration has as main inputs the artificial CO2 supply
systems and the crop respiration, and ventilation and photosynthesis as the main
losses.

• Some authors include the model of the soil surface temperature in which only
the energy fluxes due to convection processes with greenhouse air and conduction
ones with the first soil layer (boundary condition) are taken into account. The
thermal radiation processes among physical elements of the greenhouses are not
considered.

• Although air is inert to radiation, most simplified models of inside air temperature
include a term depending on global radiation to model air warming due to the
sun. It used to be a constant factor between 0 and 1 multiplying the solar radiation
transmitted through the cover.
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• Heat transfer coefficients with the soil or heating pipes are considered constant
and not a function of the temperature difference between the solid and the fluid or
the velocity of the latter.

• The model of several physical processes such as ventilation is simplified, often
using empirical relationships or considering some energy fluxes in steady state
(constant), such as those from the heating system.

2.1.2.2 General Hypotheses and Simplified Model Development

The simplified pseudo-physical climate model developed in this section for control
purposes is developed under the following hypotheses:

1. The state variables of the system are the inside air temperature XT,a and humid-
ity (absolute XHa,a and relative XHr,a). The CO2 concentration is not modeled
because CO2 enrichment systems are not available, but this variable is measured.

2. Three main external systems interact with the greenhouse: Outside air, soil sur-
face, and crop.

3. The exogenous variables and disturbances acting on the system and considered as
boundary conditions are the outside air temperature DT,e and absolute humidity
DHa,e, wind speed Dws,e and direction Dwd,e, global radiation Drs,e, soil surface
temperature DT,ss and LAI as measurement of the state of the crop DLAI.

4. The control inputs are the vents positions Uven, the shade screen position Ushd,
and the temperature of the water within the pipes of the heating system UT,heat
(or the heater activation control signal in the case of air heating systems).

5. A uniform homogeneous distribution of variables is considered in the air volume.
6. With respect to the processes associated with solar radiation, the following

assumptions are made: Air is not inert to radiation (it absorbs and transmits
radiation). Reflection effects are not considered.

7. In the heating by hot water pipes installation, water temperature is measured 1m
downstream the mixing valve, but the convection with air is done by the external
surface of the tubes. The assumption is to disregard the effects of convection
between hot water and inner surface of the pipes and conduction between inside
and outside of the tubes, so that it is considered that the temperature of the outer
surface of the pipes is equal to that of the water flowing through them.

8. The physical properties of air, such as density or specific heat, are considered
constant with respect to temperature and time.

2.1.2.3 Internal Air Temperature Model

The greenhouse air temperature can be modeled using the following balance:

csph,acden,a
cvol,g

carea,ss

dXT,a

dt
= Qsol,a + Qcnv,ss−a + Qheat−a + Qcnv−cnd,a−e

−Qven,a−e − Qloss,a−e − Qtrp,cr (2.59)
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where Qsol,a is the solar radiation absorbed by the air, Qcnv,ss−a is the convective flux
with the soil surface, Qheat−a is the flux with the heating pipes, Qcnv−cnd,a−e is the
convective flux with the cover, Qven is the heat lost by natural ventilation, Qloss,a−e
is the heat lost by infiltration losses, Qtrp,cr is the latent heat effect of the crop
transpiration, and cter = csph,acden,a(cvol,g/carea,ss) is the product of specific heat
of air, air density and effective height of the greenhouse (greenhouse volume/soil
surface area). These fluxes can be modeled in different ways. In the case treated in
this book, the following paragraphs contain the terms used.

Solar radiation absorbed by the air. The solar radiation transmitted through the cover
and reaching the crop Vrs,cr is determined by:

Vrs,cr = Vtsw,gDrs,e (2.60)

where Vtsw,g is the short wave heat transmission coefficient, which depends on the
heat transmission coefficient of the cover, thewhitening state, and the shading screen,
as indicated by Eq. (2.5). The solar radiation absorbed by the air Qsol,a is given by:

Qsol,a = casw,aVrs,cr (2.61)

where casw,a is the short-wave absorption coefficient of the greenhouse air, although
as the air is inert to solar radiation, it is mostly a parameter of thermal efficiency of
solar energy. This coefficient must be estimated in the model calibration process.

Convective heat transfer between the soil surface and the inside air. The heat transfer
between the soil surface and the inside air Qcnv,ss−a is a function of the temperature
difference between soil surface temperature XT,ss and inside air temperature XT,a,
Eq. (2.62),

Qcnv,ss−a = ccnv,ss−a(XT,ss − XT,a) (2.62)

where ccnv,ss−a is a convection coefficient considered constant and that has to be
estimated.

Heat transfer by convection and conduction in the cover between the outside and
the inside air. This process is considered proportional to the temperature difference
between outside air temperature, DT,e and inside air temperature, XT,a:

Qcnd−cnv,a−e = ccnd−cnv,a−e(XT,a − DT,e) (2.63)

where ccnd−cnv,a−e is a thermal loss coefficient (considering convection and conduc-
tion processes) which is considered constant and is estimated empirically.
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Heat transfer by the heating system. The same models described in previous sections
can be used (Eqs. (2.36) and (2.38)).

Heat transfer to the outside air due to ventilation and infiltration. As mentioned
above, both fluxes are modeled simultaneously as the infiltration losses process
is included as a constant effect in the ventilation flux Vven,flux, as evidenced by
Eqs. (2.12), (2.11) and (2.15). Therefore, the following model is used to describe
these processes:

Qven,a−e + Qloss,a−e = cden,acsph,a
carea,ss

Vven,flux(XT,a − DT,e) (2.64)

The ventilation flux is described by Eqs. (2.12), (2.12) and (2.15). Another option is
to consider a simplified volumetric flow rate using an exponential expression of the
aperture control signal (this is usual in greenhouses of Almería type [325]):

Vven,flux = cven,ncven,lcven,wDws,e(αvUβv
ven) + Vloss (2.65)

whereUven in this case is the percentage or normalized aperture of the vents, cven,n is
the number of vents, cven,l is the length of the vents, cven,w is the width of the vents,
and αv and βv are tuning parameters which, according to actual measurements, show
subtle variations between leeward and windward ventilation, and Vloss is the leakage
when the vent is closed. This is a very simplified expression as the effective opening
surface should have to be used through variable Vven,hef , as in Eqs. (2.12) and (2.11)
(Eq. (2.15) if both roof and sidewall ventilation openings are considered—in that case
Eq. (2.65) should include two terms accounting for both control signals), but it has
demonstrated to be valid for the kind of greenhouses considered in this book [326].

Latent heat transfer by crop transpiration. The effect of crop transpiration on the
inside air temperature can be modeled using Eq. (2.42), considering that the net
radiation absorbed by the crop is equal to the solar radiation neglecting the effect of
thermal or long-wave radiation and that the boundary layer resistance, Vr,bl, can be
considered constant and equal to 200sm−1 in the range of wind speeds inside the
greenhouse [420].

2.1.2.4 Internal Air Humidity Model

The greenhouse air humidity can be modeled using the following equation:

cden,a(cvol,g/carea,ss)
dXHa,a

dt
= Mtrp,cr − Mven,a−e (2.66)

where the main source of water vapor is crop transpiration Mtrp,cr, described in
Eq. (2.44), while the primary source of loss of water vapor is produced by the
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Fig. 2.12 Simulation results ofAlmería greenhousewith simplified physicalmodels.aTemperature
in April. b Detail of temperature. c Humidity in August. d Humidity in April

exchange of air with the outside through ventilation and the infiltration, Mven,a−e,
computed using Eq. (2.53).

2.1.2.5 Implementation, Calibration and Validation of the Model

In order to implement and calibrate de model, the same techniques described in
Sects. 2.1.1.8 and 2.1.1.9 were used.

After the identification of the model parameters for the different greenhouses
structures using the data corresponding to winter and summer seasons, different
experiences were performed to validate this simplified climate model under dif-
ferent climate conditions: Winter (January), spring (April), and summer (August).
Figure2.12 and Table2.6 show some of the results of Almería greenhouse, obtaining
similar results in the other greenhouses. As it can be observed, adequate results were
obtained that confirm the validity and performance of the model.

2.1.3 Data-Driven Models

As has been demonstrated in the previous sections, in the design, implementation,
calibration, and validation of nonlinear simulation models, the rigorous develop-
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Table 2.6 Comparative results of the estimation of the different climate variables in Almería
greenhouse in the validation process with simplified physical models

January April August

Temperature Humidity Temperature Humidity Temperature Humidity

Variation 13.76–23.55 55.64–100 14.5–38.6 36.2–87.7 19.4–48.6 36.36–87.4

interval (9.79 ◦C) (44.36%) (24.1 ◦C) (51.5%) (29.2 ◦C) (51.11%)

Mean 0.74 3.64 1.31 4.32 1.14 4.71

Maximum 3.67 17.10 6.71 20.02 5.32 22.01

Standard
deviation

0.71 3.23 1.36 3.86 1.09 3.79

ment of dynamic models for simulating the production system in a greenhouse is a
time-consuming task that requires a wide knowledge of the involved physical
processes, both in the design phase and in themodel validation stage.An alternative to
models based onphysical principles are those obtained fromdata, also knownas black
box ones, as they are described by dynamic equations (linear or nonlinear), which
coefficients are obtained through an identification procedure, defined as the problem
of building mathematical models of dynamic systems based on observed data [257].
Therefore, empirical models can be developed, so that a very flexible mathematical
structure with modifiable parameters estimated from experimental data can be used
regardless of any consideration of the governing physical principles. The identifica-
tion process begins with the design and subsequent realization of experiments in the
system (using signals exciting the desired bandwidth the model has to reproduce),
acquiring the necessary input and output data from the system during a given period
of time. Next, the nature, size, and parametric structure of the model is determined.
Based on a predetermined criteria, the model is estimated, identifying the free para-
meters of the selected structure. To determine whether the model is acceptable, it is
then validated using real data different that those used in the parameter estimation
process. It is thus an iterative process, as if the model is not properly validated, the
procedure is repeated changing decisions made in the previous stages. Obviously,
these models are limited as they reproduce the dynamics of a system under particular
operating conditions. However, they present a number of advantages, among which
the relative simplicity of obtaining the model based on an appropriate methodology
stands out. In the literature, there aremany techniques for obtaining data-drivenmod-
els, both based on linear and nonlinear structures. In this section, some of the most
used black box model structures used within the greenhouse climate framework are
described.

2.1.3.1 Linear Model Obtained with Reaction Curve Method

When considering small changes around an operating point,most industrial processes
can be described by a linear model, usually of high order [72]. The reason for this is
that most processes are comprised of many dynamic elements, typically first order,
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so that the full model order is equal to the number of elements. If, as happens in many
processes, one of the time constants is much greater than the others, the smaller time
constants are joined to produce a delay that acts as a pure delay. It is therefore possible
to approximate the dynamic model of a complex high-order system using a first order
plus dead time (FOPDT) description. Hence, one of the most common practices in
process control is the estimation of simplified models of stable overdamped dynamic
systems (such as the greenhouse) from type tests, being the most widespread method
called the reaction curve, by which the system in open loop undergoes a change in
the input in the form of step and so that the output is modeled as a FOPDT system,
described by three parameters: Static gain ck, time constant cτ and time delay ctr ,
so that the system output Y (t) is described by a first-order differential equation as a
function of the input U (t), as described in all classical control textbooks [17]:

cτ

dY (t)

dt
+ Y (t) = ckU (t − ctr ) (2.67)

The main advantage of this method is its simplicity, ease of understanding by staff
with little mathematical background, generally short duration of the involved test
(on the order of magnitude as the dominant system dynamics), and the existence of
specific control methods for this type of systems [72]. It involves introducing a step
input and study the behavior of the output until steady state is reached, yielding the
model parameters in a graphical manner. In [295, 407, 408, 461] climate models are
obtained by this method.

This section summarizes the development of a FOPDT model of the temperature
of the greenhouse (state variable XT,a, considered homogeneous) obtained using
the reaction curve method. The exogenous variables and disturbances acting on the
system considered for modeling purposes are the outside temperature (DT,e), wind
speed (Dws,e), outside global radiation (Drs,e), and LAI (DLAI). The control inputs
are the vents position (Uven), shade screen position (Ushd), and the temperature of
the water inside the pipes of the heating system (UT,heat). The influence of crop on
climate inside the greenhouse has been taken into account in the transfer function
that relates temperature with radiation, since plants absorb part of this for their vital
functions, including transpiration and thus influencing the state variable.

Analyzing the influence of each of the disturbances and control inputs on green-
house air temperature, a series of simple models can be obtained. Different single-
input single-output (SISO)models represented by transfer functions can be obtained,
relating indoor air temperature with ventilation (Gven(s)), heating (Gheat(s)), shade
screen (Gshd(s)), outside radiation (Grs,e(s)), outside temperature (GT,e(s)) and
wind speed (Gws,e(s)), s being the complex variable used in Laplace transform.
As transfer functions apply on linear systems, the superposition principle holds, so
that the effect of each of the variables on temperature is independent and is added
to produce the output (Fig. 2.13). The transfer functions are obtained by applying
the Laplace transform to Eq. (2.67) with null initial conditions (defining deviation
variables from a specified operating point) and have the form:
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Fig. 2.13 Transfer functions
relating inputs and
disturbances to inside air
temperature

G(s) = ck
(cτ s + 1)

e−ctr s (2.68)

After the performed experiences, it has been observed that different parameters
are obtained when steps of different magnitude or sign are applied to the inputs
around a particular operating point, as was to be expected from the nonlinear nature
of the system. Arithmetic means of the obtained parameters can be applied. In the
Almería type greenhouse, the obtained results are summarized in Table2.7. Notice
that in the manipulated inputs, it is easy to perform open-loop step tests, but in
the case of disturbances, the historical database has to be searched trying to find
situations in which abrupt changes occur (with approximated step shape), while the
rest of inputs and disturbances are in quasi-steady state. Thus, the obtaining of these
simple models is constrained by the profile of disturbances. Obviously, if a nonlinear
model has been previously developed, simple transfer functions can be obtained by
linearizing it around the desired operating point. Another possibility is to obtain the
parameters of the transfer functions by identifying them using, for instance, a least
squares (LS) identification algorithm [257], as commented in the next section. The
mean of the absolute errors obtained with these models is around 6.5%.

Fig. 2.14 shows a graphical comparison between the real temperature for spring
and winter seasons (shown in dark and continuous line) and that obtained with the
simplified linear model based on the reaction curve (shown with a continuous line

Table 2.7 Parameters of the SISO FOPDT transfer functions relating air temperature with inputs
and disturbances

Radiation Wind Outdoor Ventilation Heating Shadow

speed temperature net

Static gain ck 0.015 Vtsw,g −0.1 1 −0.09 0.1 −0.023

(◦C W−1 m2) (◦C m−1 s) (◦C ◦C−1) (◦C %−1) (◦C ◦C−1) (◦C %−1)

Time constant
cτ (min)

42 3 30 3 25 6

Time delay ctr
(min)

1 1 1 1 10 1
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Fig. 2.14 Greenhouse air temperature simulation using FOPDT models versus real temperature.
a Greenhouse air temperature in summer (details on the right). b Greenhouse air temperature in
winter (details on the right)

of light color). As can be seen, the model captures the dominant dynamics of the
greenhouse air temperature in different situations as clear day or the effect of the
actuator continued operation. In nocturnal periods, the model shows a significant
deviation from the real temperature due mainly because the effect of the thermal
mass of the ground during these periods of time has not been modeled.

In order to compare the obtained results with the simulation model (Sect. 2.1.1),
Fig. 2.15 shows a comparison of the real measured temperature with that simulated
using linear FOPDT models and the full first principles-based model. The simplified
model has worse quantitative and qualitative results, but captures the main dynamics
of the system, being able to confirm the validity of the linear model obtained by
the method of the reaction curve for type of applications that need some simplified
models and control algorithms.

2.1.3.2 Linear Models Obtained with Input-Output Data

As shown in the previous section, due to the existence of a well-established mathe-
matical theory and the fact thatmany systems present a linear behavior around certain
operating points, linear models are one of the most used tools in identification for
control [11]. A linear system, time invariant and causal is completely characterized
by its impulse response, so that the output of the system Y (t) (considering the SISO
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Fig. 2.15 Comparison of simulated air temperature by the complete model based on first principles
versus linear model developed using the reaction curve method

case) in discrete time1 t , is related to the input (measurable disturbance and control
signal U (t)), through the general equation of convolution in discrete time:

Y (t) =
∞∑

i=1

g(i)U (t − i) +
∞∑

i=1

h(i)V (t − i) (2.69)

where V (t) is a zero mean white noise representing a disturbance. By applying the
backward shift operator z−1,

Y (t) = G(z−1)U (t) + H(z−1)V (t) (2.70)

where G(z−1) is the transfer function associated to the input and H(z−1) represents
the transfer function relating the output to disturbance. Linear parametric models
more widely used correspond to the following general structure:

A(z−1)Y (t) = B(z−1)

F(z−1)
U (t) + C(z−1)

D(z−1)
V (t) (2.71)

For amodel of this type, the transfer functions associatedwith inputs and disturbances
are given by:

G(z−1) = B(z−1)

A(z−1)F(z−1)
(2.72)

H(z−1) = C(z−1)

A(z−1)D(z−1)
(2.73)

1 In this book, t is used both for continuous and discrete time, depending on the context.
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Different model structures can be obtained as a function of the polynomials which
are used, see Table2.8.

Despite the fact that the AR and ARMA models do not considered the inputs,
B = 0, the main difference among model structures lies in the consideration of
disturbances. AR and ARX structures suppose that disturbances are a white noise,
C, D = 1, meanwhile ARMA and ARMAX suppose that they present a certain tem-
poral structure. Furthermore, while the transfer functions of the ARX and ARMAX
structures share the denominator, that is, D, F = 1 for both kind of model struc-
tures, OE and BJ models are totally independent. Finally, ARX, ARMAX, and BJ
models are used as prediction models, while OE are simulation models which do not
include any hypothesis about the structure of the disturbances since A, C, D = 1,
and in addition, they only model the transfer function associated with the inputs of
the system [257].

In [49, 51–54, 60, 104, 296, 305, 408, 461, 482, 483] climate models are obtained
using thesemethods and different structures. In the experiences shown in this section,
the system is modeled as a multiple-inputs single-output one (MISO), where the
output is the inside air temperature XT,a, the disturbances are the outside temperature
DT,e, wind speed Dws,e, solar radiation Drs,e, soil temperature DT,ss, and the inputs
are the percentage of vents opening, one for roof ventilation Uven,r and another one
for lateral ventilationUven,l. Themodels are valid in the operation around a particular
operating condition, defined by the boundary conditions and state of the actuators
and system. Thus, the linear models obtained by this way are only valid to operate
around the particular conditions defining the data used for identification purposes.

Thus, these kind of models serve to determine seasons and stage of the crop. As
an example, using data from the Almería greenhouse, the best structure fitting data
using cross-validation and residual analysis was an ARX443 model of fourth order
(Table2.9), with 92.53% fit and mean error in the order of the precision of the used
temperature sensors. As an example, Fig. 2.16 shows the greenhouse air temperature
predicted by this ARXmodel, comparing it with the real values measured in summer
with a large range of variation. As can be seen, the behavior of the ARX model is
reasonably closed to the data, with amean deviation smaller than 1.5 ◦C. In [281, 355]
there is an extensive analysis of this kind ofmodels for both temperature and humidity
identifiedwith data obtained in different climatic conditions of theSoutheast of Spain.

Table 2.8 Linear models structures

Used polynomials Model

B = 0, C = 1, D = 1 Autoregressive (AR)

B = 0, D = 1 Autoregressive Moving Average (ARMA)

C = 1, D = 1, F = 1 Autoregressive with eXogeneous inputs (ARX)

D = 1, F = 1 Autoregressive Moving Average with eXogeneous inputs (ARMAX)

A = 1, C = 1, D = 1 Output Error (OE)

A = 1 Box-Jenkins (BJ)
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Fig. 2.16 Validation of the ARX443 temperature model with data measured in the greenhouse

Main error sources inside a wrong system identification are known as constant
systematic error (bias) and random error (variance) [257]. On the one hand, constant
systematic errors can be originated by: (i) input signals without adequate frequency
content, (ii) a wrong choice of the model structure or operation model, for example,
trying to perform the system identification using a closed loop configuration instead
of an open loop one. On the other hand, random errors are introduced through the

Table 2.9 Description of the ARX model

Number of outputs: 1 (Y = XT,a)

Number of inputs: 6 (U1 = Uven,r , U2 = Uven,l, U3 = DT,e, U4 = Dws,e, U5 = DT,ss,
U6 = Drs,e)

Order: 4 Fit: 91.53 %

A polynomial order na = [4]
B polynomials orders nb = [444444]
delays [sample times] ntr = [330000]
Model structure: A(z−1)Y (t) = ∑6

i=1 Bi (z−1)Ui (t) + E(t)

A(z−1) = 1 − 1.145z−1 − 0.1101z−2 + 0.07028z−3 + 0.19111z−4

B1(z−1) = −9.354e−5z−3 − 3.428e−5z−4 + 2.642e−56z−5 − 4.608e−5z−6

B2(z−1) = −0.0001363z−3 − 7.982e−5z−4 − 6.114e−5z−5 − 2.5e−5z−6

B3(z−1) = 0.05246 − 0.06033z−1 + 0.00823z−2 + 0.003358z−3

B4(z−1) = −0.0001545 − 0.01797z−1 + 0.00133z−2 + 0.0134z−3

B5(z−1) = 5.191e−5 + 3.447e−5z−1 + .857e−6z−2 − 1.977e−5z−3

B6(z−1) = 0.6663 − 0.4621z−1 − 0.2932z−2 + 0.0933z−3

Maximum absolute error = 3.2 ◦C Mean absolute error = 0.7 ◦C Standard deviation = 0.5 ◦C
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presence of noise in the data, which prevent that the model reproduce exactly the
output of the system. In addition, models can also be affected by various factors just
as: The number of parameters of the model, identification of experiment length, and
the proportion between the noise/signal ratio [80].

Besides, the choice of an adequate set of input-output signals acceptable for
the whole identification process is one of the most fragile points along the total
procedure, since it permits a consistent estimation (free of constant systematic errors)
of the parameters of the model. Within the framework of control theory, the reaction
curve method is widespread used for obtaining models from data, as analyzed in the
previous section. However, step or impulse signals are not always appropriate for a
correct identification of industrial systems, since their frequency analysis only shows
a low-frequency persistent excitation near to the stationary state. Hence, for a correct
estimation of the parameters of amodel, it is necessary to obtain the identification and
validation data sets by means of an excitation signal with a wide frequency spectrum
or within the range where the identification will be performed.

Furthermore, determining the model structure is another vital factor in order to
obtain a system identification free of constant systematic errors. To do that, it is
necessary to select a structure with an order high enough that helps to capture the
real dynamics of the system but avoiding increasing the model order in excess.
Information criteria such as theAkaike’s InformationCriterion (AIC) are used during
the model selection stage to find a trade-off between performance and model order
(between bias and variance) [257]. More information about the selection of input
signals, identification data set and model structure can be found in [163, 164, 257,
350].

2.1.3.3 Linear Fuzzy Models

Fuzzy set theory uses linguistic concepts for representing quantitative values and
can be used to describe the greenhouse climate based on the system identification
approach [79, 148, 238, 258, 457]. Compared with traditional mathematical mod-
eling, fuzzy modeling possesses some distinctive features, such as the reasoning
mechanism in human understandable terms, the capacity of taking linguistic infor-
mation from human experts and combining it with numerical data and the ability of
approximating complex nonlinear functions with simple models. Several methods
for fuzzy identification are proposed in the literature [239], many of which generate
fuzzy rule relations from real input-output data. Generally, the resultant rule base
of the fuzzy system contains a large set of rules and may make the interpretation of
their consequences difficult. The Takagi–Sugeno (T-S) fuzzy model approach allows
the nonlinear system to be represented under the form of a valid linear model on
a restricted domain [435, 438]. This kind of models are described by rules repre-
senting the local relations of linear input-output relations in various operation points
of a system. These local representations, called “submodels,” make it possible to
express in state space the dynamics of a system around particular operation points.
Thus, the fuzzy formalism intervenes in the determination of the contribution of
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each one of these submodels to the representation of the total system. That is, a
nonlinear model can be represented by a set of linear models combined thorough
fuzzy rules. Thus, each subsystem may contain information related to the nonlinear
system. Consequently, a better resolution of the control problems is allowed.

Typically, the T-S fuzzy models represented in the discrete time state space are
described by a set of N rules using membership functions μli and fuzzy variables
zl(t) as follows:

Rule i : I F z1(t) is μ1i and zl(t) is μli

THEN =
{

X(t + 1) = Ai X(t) + Bi U(t) + Di V(t)
Y(t) = Ci X(t)

(2.74)

where Ai , Bi , Di and Ci are constant matrices of appropriate size, X(·) ∈ R
n is the

state vector, U(·) ∈ R
m is the control signal vector, V(·) ∈ R

s is the disturbance
vector andY(·) ∈ R

p is the output vector. The overall global model can be structured
as follows:

{
X(t + 1) = ∑N

i=1 hi (t)(Ai X(t) + Bi U(t) + Di V(t))
Y(t) = ∑N

i=1 hi (t)Ci X (t)
(2.75)

wherehi (t) are the so-called normalized activation function in relationwith submodel
i th such that:

hi (t) = Π l
j=1μ j i (z j (t))

∑N
i=1 �l

j=1μ j i (z j (t))
, hi (t) ≥ 0 (2.76)

In [288, 290, 292], a climate model for greenhouses, expressed using fuzzy logic
is presented. In particular, a T-S model is derived from a standard nonlinear model
representing energy and water vapor balances (from the pseudo-physical climate
models showed in Sect. 2.1.2), giving a set of linear models related through fuzzy
logic. This makes it possible to derive a greenhouse climate model based on linear
models. The variables considered for modeling purposes are:

• Output: Inside air temperature (XT,a) and humidity (XHa,a ).
• Input: Aperture of the roof (Uven,r) and lateral (Uven,l) ventilations and heating
system (UT,heat).

• Disturbances: Outside temperature (DT,e), wind speed (Dws,e), soil surface tem-
perature (DT,ss), outside global solar radiation (Drs,e) and LAI (DLAI).

The model was validated with data of winter and summer from quantitative and
qualitative viewpoints, because it follows the dynamics of the modeled variables
(see [292]) and the errors are within acceptable intervals for this type of applications
(the estimation root mean square error, RMSE, of the temperature is 1.24 ◦Cwhereas
for humidity is 10.6%). As an example, Fig. 2.17 shows the interior temperature
predicted by the T-S model, compared with the real values measured in early spring
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(the first eight days shown) and late autumn (the last four days) [291]. The T-S model
is reasonably close to the data taken in the different climatic conditions, with a mean
deviation smaller than 1 ◦C.

It can be seen that during some nights the fuzzymodel can not exactly approximate
the air temperature inside the greenhouse. This drawback often attributed to T-S
approximation method is in reality a problem of the mathematical model which is
used to extract the T-S fuzzy model.

2.1.3.4 Nonlinear Volterra Models

Before using nonlinear models, it is always advisable to explore all possibilities of
simplicity. After linear models, the next step in complexity are those models with
concentrated nonlinearities such as Volterra, Hammerstein or Wiener ones [114].
These models are unions of linear dynamic and static nonlinear blocks. Specifically,
Volterra models were used to generically exhibit a good behavior and their structure
can be exploited in the design of controllers, especially in the case of second-order
models with the truncation of terms (truncation orders N1 and N2), which can be
defined as:

Y (t) = h0 +
N1∑

i=1

a(i)U (t − i) +
N2∑

i=1

N2∑

j=1

b(i, j)U (t − i)U (t − j) (2.77)

which corresponds to a linear convolution model with a nonlinearity as additional
and additive term, as described in [156]. In that model, Y (t) and U (t) represent the
last measured output and input to the system, respectively (t is the actual sampling
instant). The offset is denoted with h0 and the linear and nonlinear term parameters
are given by a(i) and b(i, j), respectively. Notice that Volterra models are frequently
used to model bilinear systems in such a way that it seems to be a good idea to
use this formulation for modeling greenhouse temperature dynamics, including the
disturbances in the nominal formulation of second-order Volterra models.

Fig. 2.17 Validation of the TS model with data measured in the greenhouse. As a courtesy of the
authors [291]
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ApreliminaryVolterramodelwas developed tomodel the inside temperature of an
empty greenhouse (without crop) in order to evaluate the behavior of this modeling
technique for this kind of systems [155]. Several pseudo randommultilevel sequence
(PRMS) [350] tests were performed using natural ventilation to obtain adequate data
for identification purposes, because typical PRBS (pseudo random binary sequence)
and RBS (random binary sequence) tests do not sufficiently excite nonlinear systems.
The resulting model adequately fitted the real data but the number of parameters was
excessively high. Furthermore, the crop has an important effect on the greenhouse
temperature and thus it is a key factor to be included in the system model. In [156],
twoVolterramodels (AR andNon-AR) are developed in order to account for themain
dynamics describing changes in inside air temperature to outside weather using only
natural ventilation. The influence of the crop is taken into account as a disturbance to
the greenhouse temperature bymeans of theLAI. Thus, themain variables considered
for modeling purposes are:

• Output: Inside air temperature (XT,a).
• Input: Aperture of the roof (Uven,r) and lateral (Uven,l) ventilations.
• Disturbances: Outside temperature (DT,e), wind speed (Dws,e), soil surface tem-
perature (DT,ss), outside global solar radiation (Drs,e) and LAI (DLAI).

Themain interest is to see how thesemodels copewith the nonlinear behavior inherent
in the relationship between temperature and vents aperture, through the ventilation
rate, which is one of the most difficult dynamics to be modeled in the greenhouse.

A second-order Volterra series model of the greenhouse temperature was iden-
tified. In the model validation, carried out with the second data set containing the
period from September 2008 to June 2009, a mean square error in the temperature
of 0.93 was obtained. As a representative result, a comparison of the greenhouse
temperature and the output of the identified model is given in Figs. 2.18 and 2.19,
both for the autumn (10–19 January 2009) and spring conditions (15–24 May 2009),
respectively. As can be seen in the results, the model output shows a promising fit
with themeasured greenhouse temperature. In autumn conditions, themodel presents
a mean value of the absolute error of 0.6 ◦C, a standard deviation of 0.5 ◦C, a mean
relative error less than 4%, and amaximum error of 2.1 ◦C in a range of 11.1–26.4 ◦C.
In spring conditions, similar results were obtained, resulting in a mean value of the
absolute error of 0.68 ◦C, a standard deviation of 0:63 ◦C, a mean relative error less
than 4%, and a maximum error of 2.5 ◦C in a range of 15.4–31.4 ◦C.

2.1.3.5 Nonlinear Neural Networks Models

Artificial neural networks (ANN) are computational elements inspired by networks
of neurons in the nervous system of living beings. They consist of elements (neu-
rons or nodes) connected in parallel, whose collective action is able to reproduce
complex functions. In addition, the connections between nodes are customizable so
that the overall function of the network can be modified [11]. These characteristics
can be used to solve problems of identification of dynamical systems like climate
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Fig. 2.18 Data set used for the model validation with the greenhouse temperature XT,a (solid line)
and the model output (dashed line) for autumn conditions (10–19 January 2009), the input Uven
(aperture of the roof and lateral windows) and the disturbances DT,e (outside temperature), Dws,e
(outside wind speed), Drs,e (outside global solar radiation), and DT,ss (soil surface temperature).
As a courtesy of the authors [156]

that is generated inside a greenhouse, finding numerous references in the literature
emphasizing specialized work [8, 128, 129, 131, 254, 255, 312, 380, 381, 440, 453,
471].

The reasons for using neural networks as identification systems is due to its fast
response (parallel processing), their ability to interpolate, their flexibility to describe
nonlinear functions and the ability to work with spaces of large dimension. Differ-
ent neural models for the identification of dynamic systems exist, most of them are
extensions to the nonlinear case of linear parametric models, although the NARX
model (nonlinear autoregressive model with exogenous inputs) provides great flex-
ibility and allows it to be adjusted with simple algorithms [11]. The output of the
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Fig. 2.19 Data set used for the model validation with the greenhouse temperature XT,a (solid
line) and the model output (dashed line) for spring conditions (15–24 May 2009), the input Uven
(aperture of the roof and lateral windows) and the disturbances DT,e (outside temperature), Dws,e
(outside wind speed), Drs,e (outside global solar radiation), and DT,ss (soil surface temperature).
As a courtesy of the authors [156]

NARX model requires past values of input and outputs, so that tapped delay lines
(TDL) are used in the implementation. Mathematically the prediction model is given
by the following expression [356]:

Y(t +1) = h[Y(t), . . . , Y(t −l), U(t), . . . , U(t −m), D(t), . . . , Dm(t −n)] (2.78)

where U(t) is the input vector of the system at discrete time instant t , which includes
the values of ventilation, heating and shade screen, Y(t) is the output vector at time
instant t , which includes the values of temperature and relative humidity, Dm(t) is
the vector of measurable disturbances at time t , which includes the values of outside
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Table 2.10 Past values of the
inputs of the ANN

Variable Past values

Temperature 3

Humidity 3

Outside temperature 4

Solar radiation 2

Wind speed 9

Ventilation 5

Heating 10

Shade screens 2

temperature, humidity, radiation, wind speed and direction. The orders l, m and n
of the output, input and disturbance vectors are known only in some situations,
but generally are obtained by observations made on the system. The NARX model
shown in Eq. (2.78) can be implemented by neural networks using as input vector of
a historic values of the measured variables [356].

The time domain has been considered trying the past values of the variables as
different inputs to the system that feed a static neural network by means of TDL.
The number of past values used, as a rule, is unknown and difficult to determine.
For a higher number of past values, the stronger the prediction, but at the same time,
the model may be inefficient due to the high number of entries required. Moreover,
a lower number will cause the model could not accurately predict future outputs.
There are a number of methods for selection of input variables for nonlinear mod-
els, having used a model based on the estimated gradient as a ratio of distances
between points in the enclosed space entries, combined with the use of the informa-
tion obtained from linear methods using ARX type models, so that the past values of
input and output feedback linearmodels are used as indicative values for the neuronal
nonlinear models [356]. For example, the last values used to obtain a model of the
temperature and humidity inside the greenhouse Araba number 2 in a given instant
t , are shown in Table2.10 [355, 356]. The selected ANN structure is a multilayer
perceptron (MLP), with an input layer with 38 nodes, one hidden layer with 8 nodes
and nonlinear activation, and an output layer with 2 nodes. The weights are set as
connections to nodes with constant values. The number of nodes is determined by
training the different networks and determining, by the method of cross-validation,
their approximation and generalization ability. This process was carried out using
two disjoint sets of data: One for training the network and one for validation. The
training of the implemented neural network has been performed using the method
of supervised learning with back propagation, so that the least squares criterion is
minimized, as a function of the square of the difference between the measures of
real variables acquired in greenhouses and the values estimated by the model, as has
been done in the calibration of other models developed in previous sections.

In order to validate the ANN model of temperature and relative humidity using
MLP as a network representation, data from Araba number 2 greenhouse and from
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Fig. 2.20 Comparison between real temperature and ANN model estimation. a Temperature evo-
lution during 10 days. b Zoom of the evolution. c Relative humidity evolution during 10 days.
d Zoom of the evolution

the same season in which the model is calibrated (winter) were used. The results
obtained for the temperature are shown in Fig. 2.20 in which the real measurements
are represented by a dark solid line and the estimated by the models by a light solid
line color.

As can be seen, the temperature in summer is overestimated mainly because
the greenhouse roof is whitened which affects the final result. Table2.11 shows
the statistical of the residues in absolute value of the real temperature and relative
humidity and the estimated by the neural model. The temperature relative error is
2.4% in winter, while rises above 6% for the summer. It is due to the fact that the
neural network has been trained with data of winter, so the best results are obtained
with conditions an data located near the area of the input/output data used in the
identification processed. The extrapolation to distant points from the training space
may not produce the desired results [11], as seen in the results for summer whose
outside disturbance are different to the training space formed by the corresponding
disturbances to winter. However, the relative humidity model behaves correctly in all
tests performed at different season of the year, with a constant error for all of them,
not being more than 5% in the range of variation of this variable. Even so, the results
are acceptable for use in model-based control algorithms.
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Table 2.11 Results with the ANN model

Temperature Relative humidity

January August August January August August

Variation 13.76–.55 19.4–48.6 21.1–49 55.64–100 36.36–87–47 21–94

interval [9.79 ◦C] [29.2 ◦C] [27.9 ◦C] [44.36%] [51.11%] [73%]

Mean error 0.24 1.75 1.62 1.96 2.46 3.24

Maximum
error

2.59 3.72 3.27 1.12 2.09 2.51

Standard
deviation

0.21 1.12 1.02 1.12 2.09 2.51

Another possibility is to use finite impulse response (FIR) discrete time nonlinear
models with integrated variables for greenhouse indoor temperature simulation in
order to reduce the number of past values needed as inputs [12]. In this case, the
interest is in obtaining a discrete time model for simulation where the actual output
of the system Y (t) is not known at any time (except perhaps at the beginning of
the simulation t = 0). A model that uses past values of Y (i.e., an autoregressive
model) must then use its own output Ŷ as an estimation of the true output and use
it recursively during the entire simulation time. This can cause a built-up of the
simulation error producing errors that are larger as the simulation horizon increases.
A model that uses just past values of the input signal belongs to the family of FIR
models. The output of a FIR model is obtained as a linear combination of past
values of the system’s input. Since the real output of the system is not needed, this
kind of models produces simulation errors that are independent of the simulation
horizon. Also, any FIR model obtained by identification is stable, in the bounded
input—bounded output (BIBO) sense, since the output of the model is obtained as
a combination of past input values. Due to the nonlinear behavior of the greenhouse
temperature, NFIR (nonlinear counterpart of the FIR family) was used. The input
variables used are the same, but in the first case, the function that combines them is
a nonlinear mapping produced in this section by an artificial neural network. As a
result, the input vector for the ANN at sample time t is computed as:

U(t) = [U1(t − d1 − 1), . . . , U1(t − d1 − n1), . . . , Unv(t − dnv − nnv)] (2.79)

where all variables included (U1 to Unv) are control actions or disturbances. The
values d j j = 1, . . . , nv are the dead time for variable j . Model orders are the
number of lagged values n j of each variable from j = 1 to j = nv. The dimension
of the input vector is thus dim U = ∑nv

j=1 n j .
The output variable is assumed to be a nonlinear function of the input vector plus

a white noise signal n.
Y(t) = f (U(t)) + n(t) (2.80)
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Fig. 2.21 Comparison between real temperature and ANN model estimation. As a courtesy of the
authors [12]

A variation ofNFIRmodels consists of including integrated values of some variables.
Then, instead of using U (t − d − i) for i = 1, 2, . . . , n it is possible to accumulate
the effect in just m sums with m < n being the new variables

w(t, j) =
i= f j∑

i=s j

U (t − d − i) (2.81)

for j = 1 to j = m. Obviously the initial and final index for the sums must verify:
s1 = 1, sp+1 = f p +1 for all p = 1, . . . , m −1 and fm = n. The initial (s) and final
( f ) index define a time window in which the integration of variable U takes place to
yield the integrated variable W . Using the integrated variables, the input vector for
a neural NFIR model at sample time t is computed as:

U(t) = [w1(t, 1), . . . , w1(t, n1), . . . , w5(t, 1), . . . , w5(t, n5)] (2.82)

The adjustable parameters of the models are obtained minimizing a quadratic crite-
rion of the simulation error. For NFIR12314 model structure (the root mean squared
error was the lowest), a neural network was constructed of 20 hidden nodes, obtained
better results than the complete first principles model [12]. Figure2.21 shows a sim-
ulation example. The real temperature is plot in solid line, while the simulated one
obtained by model NFIR12314 is plot in dashed line. The simulation corresponds
to: a. clear day, b. vents opening, c. heating during the night.

2.2 Crop Growth Models

2.2.1 Tomato Growth and Development Models

Growth can be defined as an increment in biomass or an increment in the dimensions
of the plant, that are quantitative aspects [87]; growth can also be defined as an
increment in weight or height of the organs of the plant [149]. Development is a
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concept that indicates a change or organized process (not always) towards a superior
state,more organized ormore complex [45]. Development implies qualitative aspects
that are not only phase transitions as the change from juvenile to adult state, but
also the formation of new organs, the senescence of the organs [87] or the start of
the establishment of fruits (fruit setting), or tuber filling, changes in appearance of
the plant that can occur even if there is no weight increment [149]. Development
is an irreversible process of change in the state of an organism, which generally
progresses according to a pattern more or less fixed and specific for the species [149].
In [272] there is a very detailed numeric system which allows the description of
the states of phenologic development through a uniform code in plant species; this
system is known as the BBCH scale (Biologische Bundesanstalt, Bundessortenamt
and Chemical).

To study growth and development of the crops, it is necessary to understand the
physiological processes behind them, as far as the current knowledge allows it. The
basic physiological processes in plants are: Photosynthesis, respiration, metabolic
activities, nutrients and water uptake, nutrients and water transport, transpiration
and the generation of reproductive structures. Many of these processes have their
limits genetically determined, butmicroclimate, substrate, nutrition regime, and some
specific enzymes play an important role [276].

Because of its importance, microclimate has been extensively studied in the mod-
eling of growth and development of greenhouse crops. Microclimate includes main
elements that affect the physiological processes of the plant: Solar radiation, CO2
concentration and temperature. The considered radiation is the one that has the range
utilized by plants which is the PAR. There are other limiting elements that play a role
as relative humidity. Some authors give different weight to the elements mentioned
before, for example, for Challa and coworkers [87], the most important climatic
factors within the greenhouse are: CO2 concentration, air temperature, and vapor
pressure of water. Radiation can be considered as a surrounding condition due to the
fact that it is imposed by the exterior climate.

2.2.1.1 Importance and Classification of Growth Models

Models as an abstraction of reality are a tool that humans have developed in many
disciplines and also, with some delay, in the food production field. Is in the industry
where models have had a huge development, specially compared with agriculture. At
the beginning of the 1970s of the last century, the perception of the development of
models in agriculture can be summarized as follows: “A chemical engineer would not
design a chemical plant, nor its control processes, without first having a model of the
chemical process to be done by such plant as the foundation for the design. However,
the agricultural engineer, who is in charge of the design of environmental systems
for the biggest chemical factory in the world (the transformation of the energy from
the light and other chemical processes to food), does not have a proper model of the
system with which he or she works” [101].
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This situation has changed as it is explained below; however, agriculture is still a
field where the time between the generation and the application of a new technology
is greater than that in the services industry [338].

In agriculture, there are several families of models: Descriptive, teleonomic,
process based and functional-structural. The descriptivemodels include the statistical
regression and the empirical or black box ones. As has been treated in previous sec-
tions, they are direct descriptions of data and they indicate the relationship between
variables of a system, but do not give any explanation about mechanisms for those
relationships.

The models based on processes, also called explanatory or mechanistic, contain
submodels with at least one hierarchical level of greater depth than the described
response [243]. In a physiological model, every additional depth level increases the
explanatory power of the model. The mechanistic modeling follows the reductionist
traditional method, which has been successfully applied in the Physical Sciences,
Molecular Biology and Biochemistry [451].

The empirical models are direct descriptions of observed data, which can be of
great utility in certain circumstances [451]. In an empirical model, any proposed
mathematical relationship is not restricted by physical laws such as the conservation
of energy or the laws of thermodynamic or by biological information, or by any
knowledge of the structure of the system [451].

Another approach to modeling are the teleonomic models, which are clearly for-
mulated in terms of goals [451]. Even though this view has been questioned, some
authors claim the importance of these models to model the processes in live organ-
isms, and they indicate that processes oriented with an objective are intrinsic to life
itself, and not to nonliving things [332]; therefore, these types of models can be use-
ful as a link between empirical models and explanatory models [451], and they have
been applied in many aspects, among them the distribution of dry matter between
root and shoot [470] and to cellular level modeling [208].

Another approach are the functional-structural models, these models are oriented
tomerge geometrical models of plant visualizationwith process basedmodels. In this
approach, the goal is to control the whole plant development in its organogenesis and
photosynthesis; the organs play the true roles as sources and sinks andhave interaction
between the architecture and the functioning during the plant development [344], this
approach has emerged relatively recently and represents one of the key challenges
for plant modeling [445].

Most of the explanatory models are based on photosynthesis. The main compo-
nents of the models based on photosynthesis are: Development of leaf area, light
interception, photosynthesis, and respiration [265].

Models in crops have several applications. It is possible to utilize them in help
systems for decision-making in agricultural production, in scientific research, in the
definition of politics for agricultural development, in agricultural teaching [137], and
also in the climatic control of greenhouses [360, 430, 441].
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2.2.1.2 Growth Models for Tomato in Greenhouses

In the tomato crop, the most important growth and development models are of the
explanatory type, they are based on physiological processes; besides, these models
have been validated in different degrees and varied conditions of the crop. Despite
the improvement of this type of models, there is still a lot to be done, and the
most important weaknesses of the explanatory models are: The simulation of the
development of leaf area, the maintenance respiration, organ abortion, the content
of dry matter and the quality of the product [185, 265]. In [185], it is pointed out
that quality modeling in dry matter is a very important parameter. The models are
described in the next paragraphs.

Tomgro is a physiological model of development and yield for the tomato crop, in
which a series of differential equations represents the changes in number and weight
of leaves, fruits, segments of stem, leaf area as well as initiation of new organs,
their age, senescence, or those that are pruned. The model utilizes an approxima-
tion source–sink for the distribution of carbohydrates for the growth of different
organs [211].

This model is schematic and it is also modular, which means that it can be easily
adapted and its subprograms can be replaced by others and it can be combined with
more understandable greenhouse models, and it can also be utilized in procedures
of economical optimization [105]. This model was calibrated and validated with
data acquired in controlled conditions for varieties of “indeterminate” growth type
[106, 211].

Tomgrohas beenmodified to include the simulationof thegrowth anddevelopment
of individual organs, providing good simulations of number and weight of fruits per
cluster [211]. Thismodel has also interface adjustments that permit the establishment
of initial parameters and conditions before the simulation [136]. In themost complete
version, Tomgro can have 574 state variables and simulates with great detail the
development of fruits due to the fact that every fruit has a specific position within
the cluster, and in relation to the number of clusters [216]. With the aim of adapting
Tomgro for the climatic control of greenhouses, the model has been reduced to five
state variables, trying to preserve its main elements that allow it to be an explanatory
model [212].

De Koning [227] developed a model to predict the distribution of dry matter
in tomato, which can have 300 state variables. The number of organs is evaluated
through the prediction of initiation, abortion and harvest of individual organs. The
model calculates the sink strength of each organ through the potential growth. It is
capable of predicting in a reasonable way the formation of clusters, time frame for
the growth of the fruit and the distribution of dry matter, although the prediction of
number of fruits per cluster does not give very acceptable results.

Tomsim is anothermodel developed for tomato of the explanatory typewithmodu-
lar structure, which simulates growth and development [181–184]. The production of
drymatter in this system is predicted by a general growthmodel for greenhouse crops,
which has as a foundation the estimation of photosynthesis proposed by Gijzen [146]
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that was validated by Heuvelink [184]. The functions of fruit development were
adapted from the model developed by de Koning [227].

The Tomsim model of production of dry matter and its distribution to leaves,
stems, and fruits was validated with different transplant dates and plant density, and
the model was completed with data sets from commercial greenhouses, which is
important to the fact that the tomato crop covers a complete season, whereas the
experiments are evaluated only until 100 days after transplant. Besides, the model
helps to perform analyses for the tomato crop and it can be a significant contribution
as a decision support system in the crops management [182].

The Tompousse model is aimed to simulate the weekly production of greenhouse
tomato taking into consideration the information available according to the produc-
tion conditions. The key stages for the making of yield are the average transmission
of radiation for the cover of the greenhouse, the interception of radiation by the
canopy (dependant on LAI), the conversion of radiation to dry matter (in particular
dependant on the amount of CO2 and also on the distribution of a fraction of dry
matter to the fruits). The model allows the user a good simulation of the production
curves in changing climates as that in the French Brittany and in the Mediterranean
region [135].

In [468], a simulation model for tomato crop was calibrated and validated using
data from Spain and Netherlands in order to use this model in a model-based method
to design greenhouses.

In what follows, the units of variables are not included in the paragraphs for the
sake of space, but can be found in the acronyms section and in the tables included in
the following sections.

2.2.1.3 The Simplified Tomgro Model

The simplified Tomgro model emerges as an option to eliminate the complexity of
the complete Tomgro model [211] and to give the possibility of using the model in
control systems on line preserving its physiologic characteristics [212]. The state
variables in this model are: Number of nodes (XN), leaf area index (XLAI), total dry
weight (XW), dry matter of fruits (XF), and dry mater of mature fruits (XMF). For
more details about the simplified Tomgro model refer to [212].

The number of nodes is the result of the speed of nodes formation and this is
a function in sections of the variable temperature of the greenhouse microclimate,
modulated by an empirical coefficient. The maximum speed in the nodes appearance
is established under temperature conditions between 12 and 28 ◦Cand it is considered
that a temperature lower than 9 ◦C or greater than 50 ◦C stops the nodes appearance.
This state variable is calculated in the same way in all Tomgro versions [212].

The LAI considers daily average temperature, empirical coefficients, and plant
density. When all the leaves within the plant reach their maximum, they will be
pruned or will enter the state of senescence which is also considered in the model.

The total dry matter is a function of the growth rate of the plant. This growth
is a function of photosynthesis rate minus respiration multiplied by a conversion
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coefficient from carbohydrates to dry matter and multiplied also by a function of
distribution of dry matter to roots, which depends on the number of nodes. When the
maximumLAI is reached, a coefficient of lost of drymatter is applied. Photosynthesis
is calculated with the variables: Temperature, photosynthetically active radiation,
carbon dioxide, and LAI. Respiration is a function of temperature and total dry
matter.

Dry matter of fruits starts from the amount of nodes in which appears the first
fruit. Parameters of allocation to fruits and transition from vegetative to reproductive
growth are included. It is also included a function that calculates the effect of the
daily average temperature on the distribution between vegetative and reproductive
growth. Finally, it is considered a critical temperature for warm days, above such
temperature the allocation to fruits decreases.

Regarding dry matter of mature fruits, the dynamic of mature fruits is based on
the effect of temperature over fruit ripening through a linear function in sections that
is activated at certain amount of nodes, that indicates the period from the appearance
to the ripening of the first fruit. The assumption in the model is that mature fruits are
harvested immediately.

With data fromgreenhouses located Southeast of Spain, a regionwithmild climate
conditions with a minimum temperature of 12 ◦C, without addition of carbon dioxide
and for a fall-winter season, a process of parameter adjustment was performed using
the LS method with data sampled every minute.

The main equations of the Tomgro model [211, 212, 341] (some parameters that
have to be calibrated with their units are explained in Table2.12) are given by:

dXN

dt
= Nm fN (XT,a) (2.83)

where fN (XT,a) is a piecewise linear function that depends on temperature [212].
The dynamic evolution of LAI is given by:

dXLAI

dt
=

{
ρδl fLAI(X̄Td,a)

exp (βl (X N −Nb))
1+exp (βl (X N −Nb))

dX N
dt if XLAI < cLAI,max

0 if XLAI ≥ cLAI,max
(2.84)

where ρ is the plants density, and cLAI,max is defined as the LAIwhen the set of leaves
of the plant reaches its maximum (it will be pruned or will inter into state of senes-
cence) and unitless function fLAI(X̄Td,a) depending on average daily temperature
reduces the rate of leaf area expansion.

The total dry weight is described by:

dXW

dt
= G Rn − p1ρ

(
dX N

dt

)

(2.85)

where p1 is a parameter describing loss of leaf dry weight per node after reaching
cLAI,max and G Rn is a function modeling net aboveground growth rate, defined as

GRn = cE (Vfot − Vres)(1 − fR(X N )) (2.86)
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Table 2.12 Estimated parameters for Tomgro reduced model

Parameter Description Value Units Variable

cE Coefficient of dry matter conversion 0.12 (gdry weight g
−1
CH2O

) XW

cextlw Light extinction coefficient 0.61 – XW

Nm Maximum rate of nodes appearance 0.57 (node d−1) X N

Nb Parameter in expolinear equation 7 (node) X L AI

Tcrit Mean daytime temperature above 26 (◦C) X F

which fruit abortion starts

Vmax Maximum increase in vegetative 6 (gdry weight node−1) X L AI

tissue per node

αF Maximum partitioning of new growth to fruit 95 (fraction d−1) X F

αl Light efficiency 0.09
(
µmolCO2 XW

µmol−1
absorbed photon

)

βl Coefficient in expolinear equation 0.5 (node−1) X L AI

δl Maximum leaf area expansion per node 0.062
(
m2 node−1

leaf

)
X L AI

ν Vegetative-fruit transition coefficient 0.38 X F

τc Carbon dioxide efficiency 0.12 (gdry weight node−1) XW

where Vfot is photosynthesis, Vres is respiration, cE is the growth efficiency, a para-
meter that expresses the conversion of carbohydrates to dry matter and fR(X N ) is
the fraction of distributed growth to roots and it is considered as a function of the
number of nodes.

Photosynthesis is given by the following equation:

Vphot = ccnv,photFmax fT,phot(XT,a)

cextlw
ln

[
(1 − cm)Fmax + αecextlwVPAR

(1 − cm)Fmax + αecextlwVPAR exp (−cextlwXLAI)

]

(2.87)

where cm is the light transmission coefficient through leaves, cextlw is the light
extinction coefficient, αe is the light efficiency, ccnv,phot is a units conversion coef-
ficient, fT,phot is a piecewise linear function that modifies photosynthesis to sub-
optimal temperatures throughout the day and Fmax computes the effect of CO2 as
Fmax = τCO2VCO2 .

Respiration is described by:

Vres =
te∫

ti

Q
(XT,a−20)/10
10 rm(XW − XFM)dt (2.88)

where Q10 is the sensitivity of respiration to temperature and rm is a maintenance
respiration coefficient, ti is the initial time and t f is the final time. Breathing is
calculated updating in time the matter that has become ripe fruit, this means that
once a fruit has reached maturity is immediately harvested.
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The dry matter of fruits (X F ), is described by

dX F

dt
= G RnαF fF (X̄Td,a) (1 − exp (−ν(X N − NFF))) g(XT,day) ifX N > NFF (2.89)

where ν is the vegetative-fruit transition coefficient, αF is the maximum partitioning
of new growth to fruit, NFF is the number of nodes per plant when first fruit appears,
function fF (X̄Td,a) computes the effect of average daily temperature on the distri-
bution between vegetative and reproductive growth under low temperatures, while
function g(XT,day) modifies the distribution of fruits in very hot days [211, 212,
339], where XT,day is the average temperature of the daylight hours during the day.

The dry mater of mature fruits (XMF) is given by:

dXMF

dt
= DF (X̄Td,a)(XF − XMF) if X N > (N f 1 + KF ) (2.90)

where KF indicates the number of nodes since the first fruit appears until it matures,
N f 1 indicates the number of nodes when the first fruit appears and DF (X̄Td,a) is a
piecewise linear function of average daily temperature [211, 212, 339].

Figure2.22 shows the behavior of the state variables for the Tomgro model when
data from the spring season was used. Regarding the dynamic of the state variables, it
can be observed an acceptable behavior of the model. In [339], the average absolute
error is included, which has the following ranges of values: 0.5 and 1.9 for number
of nodes, 0.11 and 0.24 m−2

leaf m
−2
soil for leaf area index (XLAI), 23.9 and 44.4g m−2

for total dry matter (XW ), 19.9 and 42.1gm−2 for dry matter of the fruits (X F ), and
37.1 and 44.9 for dry matter of mature fruits (XMF) when the Tomgro model was
applied using data from the spring–summer and the fall-winter season, one of which
was performed with data from a commercial operation.

2.2.1.4 The Tomsim Model

The Tomsim model [182–184] is oriented towards the knowledge of the tomato
dynamic beginning at the flowering stage; it is considered no restriction of water and
nutrients and an optimum control of pests and diseases. This is a model based on
photosynthesis and it allows the user to know with great detail the clusters appear-
ance, the growth of the vegetative segment between two consecutive clusters (called
vegetative unit), and the growth of every cluster. Distribution of dry matter is reg-
ulated by the sink organs and it is independent from dry matter production [182,
183]. It is required to have data for the 24h: Temperature, light intensity, and carbon
dioxide concentration. Partition of photoassimilates among sink organs occurs every
day according to the relative strength of the sink, calculated considering the sum of
all the sinks [182–184]. This model utilizes previous work [146] for the simulation
of photosynthesis and production of dry matter. The photosynthesis equation used
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Fig. 2.22 Tomgro: Simulation (solid line) and observed data (asterisks) during a spring season. a
Number of nodes. b LAI. c Total dry weight. d Dry weight of fruits and mature fruits. Day = day
after planting

was validated in different experiments with different ranges of CO2 concentration
and PAR radiation [184].

Photosynthesis in this model is based on the Sukam model [146], which considers
photosynthesis for leaves and extrapolates the results to thewhole canopy. Themodel
includes the calculation of absorption of photosynthetic radiation for the layers of the
canopy, the diffused and the direct photosynthetically active radiation that reaches
every layer of leaves, and it is calculated in function of temperature, carbon dioxide,
and photosynthetically active radiation. The model takes into consideration dark
respiration, which is function of temperature, and alsomaintenance respirationwhich
considers the state of the different organs (leaves, stem, roots, and fruits).

Flowering estimation is described by state X N T describing number of trusses.
The function of clusters appearance per day in Tomsim has been developed with data
from different experiments [184, 227] and it is an empirical function that considers
temperature as an essential variable. Number of fruits is not modeled and it is an
entry from the user.

Trusses are harvested after a growth period from anthesis to ripening of fruits. This
growth period decreases with temperature, but the degree of this reduction is different
according to the fruit development [184]. Every day the model estimates the stage of
development of the fruit, which has values between 0 and 1. When the development
stage of the fruit reaches the value of one, it is ripe and must be harvested.
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The potential growth of every cluster is themaximum growth achieved under opti-
mum conditions. This is modeled from different parameters obtained in an empirical
way. The vegetative unit is formed by the stem section and three leaves between
two clusters, although the number of leaves before the first cluster is between 9 and
12, and therefore the first vegetative unit is assumed to be 2.5 times bigger than the
other [182, 184].

This model considers the detailed growth of the vegetative part of the crop, and it
measures the growth using vegetative units. The potential growth of the vegetative
units is a function of the daily average temperature and the potential growth of one
fruit in the cluster of reference. A vegetative unit starts its growth approximately 3
weeks before the corresponding cluster.

The allocation of dry matter is regulated by the sinks or destination of assimilates,
and these sinks are the clusters and the vegetative units. The available assimilates (g of
CH2O per plant) are distributed among the total number of sinks per plant according
to the strength of every sink, which is the potential growth of clusters and vegetative
units. The sink strength for roots is established in 15%of the vegetative sink strength.
The distribution within the vegetative part of the plant is 7:3:1.5 for leaves, stem,
and roots, respectively [183]. If the amount of available photoassimilates is equal or
greater than the sum of the sinks, every organwill grow to its potential and the unused
photoassimilates will be sent to storage. The next day these reserves are added to the
newly formed photoassimilates [182, 184].

LAI is simulated based on the estimated dry matter of the leaf area XLDW and the
specific leaf area (SLA). The model considers that leaves are eliminated when their
corresponding cluster reaches a development stage of 0.9 [183]. Specific leaf area
(SLA) expressed in cm−2 g−1 ismodeledbyTomsimwith a functionof dayof the year.

Figure2.23 shows the simulations and the observed data for a spring-summer
season applying Tomsim. With the exception of the regression coefficient for the
exponential equation that relates relative growth rate and maintenance respiration
which value is 10, and the extinction coefficient for diffuse radiation which value is
0.712 [339], the values of the utilized parameters are in [182] and [184]. This model
was applied with data from different spring-summer and fall-winter seasons, and
the average errors in relation to the observed data were the following: 0.41–0.59 on
number of trusses (X N T ), 21.6–52.3 gm−2 on total dry matter (XW ), 9.9–28.3 gm−2

on dry weight of fruits (X F ), 1.53–3.21 gm−2 on the first cluster, 2.07–4.75 gm−2

on the second cluster, 1.57–2.73 gm−2 on the third cluster, 2.61–6.24 gm−2 on the
fourth cluster, and 1.68–6.46 gm−2 on the fifth cluster [339, 341]. Equations of the
model and values of parameters are not included for the sake of space, but can be
found in [182, 184, 339, 341].
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Fig. 2.23 Tomsim: Simulation (solid line) and observed data (asterisks) during a spring season
crop. a Amount of clusters. b Total dry weight. c Dry weight of fruits. d Dry weight of clusters 1,
3 and 5

2.2.2 Effect of Salinity, Water Deficit and Vapor Pressure
Deficit in Yield

2.2.2.1 Salinity

The growth models of crops are oriented to the evaluation of the production of dry
matter; however, the product that growers take to the market is a fresh product, with
water content between 93 and 95% [186]. Simulation models allow the users to
estimate fresh yield by knowing the relationship dry weight/fresh weight of fruits.
According to some reports, the content of dry matter for tomato mature fruits is 5%
in fall and 5.6% in spring for the southeast of Spain [33, 339].

It is known that salinity in the root media causes a yield reduction of the commer-
cial freshweight of fruit vegetables [92, 120, 250, 411, 413, 414, 418]. Table2.13 indi-
cates the magnitude of the decrease of yield for different salinity degrees, expressed
as electrical conductivity (EC [mS cm−1], represented by state variable X EC ) of the
nutrient solution. In some conditions there was no effect, for example in [411] it is
indicated that a beefsteak variety grown in the fall had a solution that lasted 90 days
and had EC of 2.9. EC was then increased to 5.0 for one treatment and to 6.8 for
another, and these values were applied from day 91 to day 130; as a result, there
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Table 2.13 EC indicated by different authors and related to yield of tomato fruits

Crop Length of the Threshold Decrease of Min and max
X EC

Reference

season (months) value commercial yield in
experimental
trial

(mS cm−1) (% per unit of X EC ) (mS cm−1)

Estafette 4 (autumn) 2.5 2.3 2.5–5.2 [413]

Turbo 8 (spring–summer) 2.9 7.2 2.5–5.2

Abunda, 4 (autumn) 2.4 5.2 2.4–4.6 [411]

Calypso, 4 (spring) 2.6 7.0 2.6–3.5

Angela

Rambo, 5 (winter–spring) 2.7 9.8 2.7–13.0 [415]

Daniela,

Moneymaker

Daniela 5 (spring) 3.79 8.7 2.72–7.84 [261]

Chaser 5 (spring VPD=0.49) 2.0 5.1 2.2–9.3 [250]

5 (spring VPD=0.30) 2.0 3.4 2.2–9.0

nd 8 (autumn–winter 3.4 4.4 3.4–5.7 [418]

–spring)

Gokce F1 4 (spring) 1.9 8.3 2.8–6.2 [120]

FA 361 6 (autumn) 1.9 9.1 2.3–5.8

Counter 3 (spring) 3.0 5.7 1.0–11.0* [92]

3 (autumn) 3.0 1.5 1.0–11.0*

Capello 6 (autumn) 2.5 3.7 2.5–5.5 [479]

L1 4 (spring) 1.8 9.5 1.9–9.1 [346]

Done with information from the cited sources

were no significant differences in yield when compared with 2.9 during the whole
season treatment. By contrast, when the increase in EC was done at day 60 there was
a decrease of 3.1% for every mS cm−1 increased.

It has been also reported that under poor conditions of light and during early
stages of growth, high salinity values did not affect yield in the long run [411].
The same was observed when high values of salinity and poor light conditions were
applied in the reproductive stage. In some experiments where EC ranged from 2.0 to
5.6dS m−1 there was no yield reduction in commercial fruits developed under 100
µmol m−2 s−1 of artificial light, a CO2 concentration of 800± 200ppm and tem-
peratures between 17 and 21 ◦C [112].

When the concentration of nutrients in the nutrient solution is lower than
crop requirements the yield decreases [411]. Figure2.24 describes the relationship
between EC in the rhizosphere and relative yield; if the EC is below a minimum
or above a maximum there is a decrease in yield [411]. The maximum value above
which yield decreases is estimated at 2.55mS cm−1 and it is the average of the val-
ues in Table2.13. The average reduction in yield is 6.1% per mS cm−1. Figure2.24
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Fig. 2.24 Effect of salinity on tomato yield, relative yield respect to EC in the nutrient solution
(mS cm−1)

indicates the relationship between relative yield and salinity or nutrients deficiency,
which can be indicated as a function in sections.

From the information in Table2.13, it is possible to formulate a function of yield
or fresh weight of fruits which is valid when EC of the nutrient solution is above the
threshold of yield:

XFF = XMF

Dmc
[1 − Ry(XEC − St )] (2.91)

where XFF is fresh matter of fruits, XMF is dry matter of mature fruits, Dmc is the
content of dry matter in mature fruits, Ry is the reduction in yield per unit of EC
of the nutrient solution XEC, and St is the threshold of electric conductivity above
which there is a yield decrease.

It should be noted that there is an effect in the decrease of yield when the ionic
concentration in the nutrient solution expressed as XEC is below the threshold. Also,
it should be noted that yield decrease is greater when data from the experimental
trials in Spain are considered, compared to average results dealing with salinity.

2.2.2.2 Water Deficit

The effect of poor supply of water on yield of crops has been extensively studied
with the main goal of developing irrigation recommendations [109]. The equation of
Stewart, which relates yield with water supply, was evaluated in different crops and
is as follows:
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1 − VR

VRmax
= cky

(

1 − VET

VETmax

)

(2.92)

where VR is yield obtained with limited irrigation, estimated in function of actual
evapotranspiration (VET ), VRmax is the yield obtained in non-limited irrigation condi-
tions, equivalent to themaximum evapotranspiration (VETmax ), and cky is a sensitivity
to evapotranspiration deficit factor or a crop response factor [109]. The value of cky

is determined at 0.68 [218] for greenhouse tomato grown in soil with insufficient
irrigation. Reference [109] provides values of 1.0 and 1.1 for cky .

Applying a deficit irrigation, a linear equation for fresh fruit yield is developed
for greenhouse tomato, in which yield is function of irrigation applied as function of
evapotranspiration [37].

VR = 0.99VRmax

(
VET

VETmax

)

− 0.14 (2.93)

Considering the references mentioned above, and assuming in the growth models
the crop is well irrigated with maximum evapotranspiration, it is possible to develop
simulation models to show the effect of less amount of water than the required.

2.2.2.3 Vapor Pressure Deficit

Vapor pressure deficit (VPD) also has effect on yield, which is important during the
wintermonths in poor ventilated greenhouses or during the hottestmonths of the year.
When studying the effect of high VPD, [44] compared 2.2kPa and 1.6kPa calculated
during the six driest hours of the day and found a decrease of 16% in tomato yieldwith
high pressure deficit. At the other extreme, a yield decrease of approximately 30%
was reported when the treatments of 0.5kPa (control) and 0.1kPa (high humidity)
were compared and estimation was done considering the average of the 24h of the
day [286]. A piecewise linear functionwas createdwith thementioned data, as shown
in Fig. 2.25.

2.3 Water Models in Artificial Substrates

2.3.1 Water Dynamics

Water is important for plants; it is a constituent of vegetable tissues, a solvent, a
reagent, keeps cellular turgor [233, 276], and is an excellent medium for temperature
regulation [276]. Between 80 and 90% of fresh weight of plants is water. A decrease
in water content is accompanied with a loss of turgor and wilting, cellular elongation
halt, stomatal closure, reduction of the photosynthetic activity, andmalfunctioning of
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Fig. 2.25 Relative yield respect VPD [kPa]

many other basic metabolic processes [233, 434]. A nonadequate supply of water to
maintain turgor results in immediate reduction of vegetative growth [233, 276, 434].

It is important to analyze the hydric balance in a crop because this analysis helps to
understand themedium-plant-atmosphere continuumdynamics andmakes it possible
to efficiently manage water. This analysis can be done considering: Water in the
substrate, water uptake, transport from root to leaves, and movement from leaves to
the atmosphere. Since there is a close relationship between the processes mentioned
above, this division is only for analysis purposes.

2.3.1.1 Dynamics of Water in the Substrate

Movement of water is studied and explained in function of the energetic state of
water, describing the flux through a substrate [68] or the soil [233]. In this type
of flux it is considered that inertia in the movement of water is small, and what is
important is the potential energy [68].

It is possible to define a function for hydric potential that takes values in all the
points of the substrate, in which the flux of water at every point goes from greater to
smaller potentials and the direction is determined by the maximum variation of the
potential [68], although [233] indicates that there are situationswhere this tendency is
not followed. The speed of water is proportional to the gradient of such potential [68],
and the proportionality constant is a specific characteristic for the substrate utilized.
In otherwords, the same gradient of potential will generate a different flux in different
substrates [68].

The potential energy per unit of mass (or volume) of water is the hydric potential,
and at any point of the substrate it receives various contributions due to several factors
as gravity field, influence of dissolved ions, and local pressure [68, 233].
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Therefore, the hydric potential of the substrate ψhs is the sum of potentials that
can be measured in an independent way [68] and can be expressed as

ψhs = ψpr + ψg + ψos (2.94)

whereψpr is the potential of pressure,ψg is the gravitational potential andψos is the
osmotic potential. The potential of pressure is composed of the matric potential ψm ,
the pneumatic potential ψn and the enclosing potential ψe [68]. The gravitational
potential can be expressed in terms of height differences between the considered and
the reference point:

ψg = cden,wcgcz (2.95)

where cden,w is density of water, cg is acceleration of gravity and cz is the level in
relation to the reference point. The osmotic potential is given by osmotic pressure of
the substrate solution, and it can be determined with the equation of the state of the
perfect gases:

ψos = −ccsolcR Ts (2.96)

where ccsol is the solutes concentration, cR is the universal constant for gases, and Ts

is the absolute temperature. The potential of pressure depends on the local content
of water and for practical purposes the matric potential is considered as the only
component of the potential of pressure [68]. The matric potential can be understood
as the suction force applied by the plant to extract the water retained by the substrate
[10, 223].

On the other hand, and from the point of view of substrate characterization, one
important aspect is the capacity for water retention in function of its physic char-
acteristics, porosity, structure, size, and distribution of size of particles [10, 68].
Substrates with particles between 1 and 10mm have little variation in the amount
of retained water, and the capacity of water retention increases when particles are
smaller than 1mm [10]. The maximum content of water of a substrate is known as
container capacity and it is a function of the substrate characteristics and height of
the container [10, 68].

Water retained by the substrate expressed as its humidity content follows a
nonlinear relationship with the matric potential and shows a hysteresis phenom-
ena; in other words, the humidity content is different if the substrate is getting dry
than if is getting wet [68]. The knowledge of this relationship has been the object of
many studies [68, 409] and is useful to formulate models of hydric balance.
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2.3.2 Water Uptake by the Plant

2.3.2.1 Water Flow Towards the Root

Themost important structures in the root system are epidermis and root hairs because
they make direct contact with the soil and are the surfaces through which most water
and minerals enter the root. A root generally has access to all the available water in
a ratio of approximately 6mm. When the soil (substrate) dries off due to the effect
of the matric forces, the movement of water slows down [241].

Water uptake occurs because of potential gradients from the substrate to the roots;
there are two uptakemechanisms, active and passive. The firstmechanism, also called
osmotic uptake, occurs in plants with slow transpiration where the roots behave as
osmometers [233], and not as resistances, so in absence of transpiration the uptake
of ions to the xylem produces a flow of osmotic nature and therefore it produces a
pressure at the root level [426]. Passive uptake in plants happens when transpiration
is high and water is suctioned toward the roots [233]. There is evidence that forces
involved in the uptake of water to roots (passive process) are caused by a tension
created by transpiration of the canopy, which expands to the root xylem [241, 426],
although some authors recognize that the relationship between time of response and
transpiration strategy of plants is not clear [121].

By definition, and for modeling purposes, the hydraulic properties of roots have
two parameters: The minimum gradient of hydric potential to induce a flow, and the
hydric conductivity [347]. The flow of the soil solution from soil to root and from root
to canopy occurs through a complex structure with variable hydraulic resistances,
some of which can be considered serially (in different tissues of the root cylinder)
or in parallel (different cellular ways for water) [427].

2.3.2.2 Water Potential in Root and Leaves

In a similar way as the hydric potential in the substrate, in vegetable cells there is
a hydric potential determined by the potential of pressure, the osmotic pressure due
to solutes and the matric potential, although the matric potential is very small [451].
Measurement of hydric potential in roots is difficult and the commonly usedmethods
are not completely appropriate because they utilize cut roots and the conditions are
different from the conditions in roots of intact plants [491]. Different studies of hydric
potential in roots indicate that this is influenced by climatic factors and by the plant
itself. Hydric potential in roots, specifically the osmotic potential of sap in roots,
decreases with flood treatments and the cause is osmolality [204]. This additional
osmotic force explains a greater speed of the flow of the sap through the tomato
roots of flooded plants, compared with well-drained plants in similar experimental
conditions of pressure applied [204].

When severe hydric deficit was applied it was observed a decrease in the
hydric potential in leaves, reaching values of −2.5MPa, although this hydric poten-
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tial was partially reestablished when the deficit stopped (−1.8MPa) in Populus
seedlings [398]; in tomato the hydric potential was −1.65 and −0.40MPa for the
maximum hydric stress and when irrigation was restored, respectively [456].

Salinity induces a decrease of hydric potential within the plant (usually measured
in the leaves) [78, 266, 364, 375], and the response is different according to the
species and the salinity degree.

The minimum gradient of hydric potential for a flow to happen within the roots is
in the range of 0.08 and 0.49MPa. These values were determined in intact plants; the
gradient is associated to the presence of exodermis in the root, and it is not correlated
to the cortex thickness or with the root diameter [374].

2.3.2.3 Hydraulic Conductivity in the Roots

Hydraulic conductivity is a property of roots and expresses the relationship between
water flow and the hydric potential gradient [347]. Hydraulic conductance or resis-
tance in roots has a different magnitude if it is a radial flow through the root cylinder
or an axial flow along the xylem, and the axial conductance is smaller [427]. The
behavior of conductance or resistance depends on the age of the root and can be
different according to the external conditions (salinity or water deficit) or internal
factors (nutrition or water needs of the plant) [426].

According to some authors hydraulic resistance in the plant is independent of the
flow ofwater for transpiration, and there is a linear relationship between transpiration
and gradients of hydric potential of the nutrient solution in relation to stem, and also
of the stem in relation to the leaves [248].

Hydraulic conductivity increases as transpiration speed increases [210, 427],
whereas such conductivity decreases when plants are flooded at the beginning of
the morning when daylight starts, and this could be originated by the decrease of O2
in the root zone [108].

2.3.3 Transpiration

Transpiration has been described in Sect. 2.1.1.6, Eqs. (2.42)–(2.47), following the
approaches based in the Penman-Monteith equation [241, 301, 419, 451]. Transpi-
ration causes a decrease in the leaf cells hydric potential, and it originates water
demand toward the evaporation surfaces. This flow continues as long as there are
gradients, which are established step-by-step through the soil–plant system, and they
define the flow speed of the water to the leaf [233, 491].

The elements to simulate the movement of water dynamics from the soil or the
substrate to the atmosphere, passing by the plant, are: Hydric potentials, resistance
of the substrate to water movement, resistance of the roots, resistance of the transfer
elements, resistance for the water to leave toward the atmosphere and the architecture
of the root system.
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2.3.4 Integrated Water Model

In this section a generic model that considers water balance from an integral point
of view is presented as a submodel to make connection with an explanatory growth
model for the crop and the ecosystem. It is dynamic, explanatory and simple. It
considers the amount of water in the substrate, the root and the shoot (leaves, stems
and fruits). The model of water balance is combined to a growth model in which the
dry matter is divided into structural biomass and nonstructural biomass (storage),
whereas the soil or substrate has only one layer. The state variables are mass of
water in the substrate, mass of water in root, and mass of water in shoot; it has
30 parameters, 6 of which can be changed [452] to adjust the model to different
conditions.

Themain dynamics of the state variables, that aremass of water in the shoot (Xwc)

and root (Xwr ), are defined by the next equations.

dXwc

dt
= Fwr−c − VET (2.97)

dXwr

dt
= Fws−r − Fwr−c (2.98)

where Fwr−c is the water flow from root to shoot, VET is the flow from shoot to
atmosphere, and Fws−r from substrate or soil to root.

When the relative water content in the substrate (θr ) is greater or equal to field
capacity or container capacity (θmx ) the water flow is an excess flow or drainage
(Fwdr ) and therefore the mass of water in the soil (Xwss) does not change; in other
cases it happens that:

dXwss

dt
= Fws (2.99)

where Fws is the water flow in the soil or substrate. Flows of water are determined
according to:

Fws = Fr − Fws−r (2.100)

Fws−r = ψhs − ψhr

rwsr
(2.101)

Fwr−c = gwrc (ψhr − ψhc) (2.102)

Fwdr = Fws (2.103)

where Fr is the irrigation supplied, ψhs , ψhr and ψhc are water potentials of soil,
root and canopy, respectively; rwsr is the resistance to the flow from soil to root, and
gwrc is conductivity of the flow from root to shoot.
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The model is oriented toward the application in intensive crops which have low
volume of substrate and the height of the container is less than 15cm. Under these
conditions the hydric potential of the substrate considers Eq. (2.94), in which the
gravity potential is negligible because of low height of container. It is also consid-
ered that the matric potential (ψm) is the most important component of the pressure
potential, therefore the hydric potential of the substrate can be estimated with the
following equation:

ψhs = (ψos + ψm) (2.104)

Taking into consideration the relationship between the matric potential and the char-
acteristic curve for water retention, the expression proposed by van Genutchen [141]
is used:

Se = 1

(1 + |cw1ψm |cw2)cw3
(2.105)

where Se is the effective water content of the substrate or effective saturation, cw1,
cw2 and cw3 are parameters of shape from the water retention curve. Hydraulic con-
ductivity of the substrate is calculated according to equation [285]:

Kr Se = S0.5
e

(

1 −
(
1 − S

1
Cw3
e

)Cw3
)2

(2.106)

where Kr Se is the relative hydraulic conductivity, Kr Se = KSe/Ks , where Ks is the
hydraulic conductivity at saturation.

The potentials in root (ψhr ) and canopy (ψhc) are defined by the osmotic potential
(ψosr and ψosc) and the pressure potential (ψprr , ψprc) in each, according to the
following equations:

ψhr = ψosr + ψprr (2.107)

ψhc = ψosc + ψprc (2.108)

ψosr = −cR(XT,a + 273.15) fneor Mner

μS Xwr
(2.109)

ψprr =
cε

(
cprr Xwr

Mer
− 1

)

cden,w
(2.110)

where cR is the universal constant of gases, Mner is the nonstructural root dry matter,
Mer is the structural root dry matter, Xwr is the mass of water in roots, XT,a is the
air temperature, fneor is the osmotically active storage fraction of the root, μS is the
molal mass of storage, cprr is a parameter that affects the pressure component of the
hydric potential within the root, cε is the parameter of rigidity of the cell wall and
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cden,w is water density. In a similar fashion are defined the osmotic potential and the
pressure potential for the canopy.

The resistance to the passage of water from the soil to the root (rwsr ) and hydraulic
conductivity (gwrc) from the root to the canopy, are defined as

rwsr = csor Vden,r

Kso Mer
+ crsr

Vden,r

(
Mer + ckwrs

Mer

)

(2.111)

gwrc = cnw
Xwr Xwc

Xwr + Xwc
(2.112)

where csor , crsr , cnw, and ckwrs are parameters affecting the resistance between soil
and root, Kso is the soil hydraulic conductivity and Vden,r is the density of roots.

It is known that root hydraulic resistance is variable, and that with high transpira-
tion amounts such resistance lowers leading to a quick uptake of water [365, 427]. A
coefficient is included (ckhr ) [-] in which the resistance to water flux from soil to root
is modified (rwsrm) as an effect of transpiration through an exponential function:

rwsrm = rwsr (exp (−ckhr VET )) (2.113)

With the aim of adapting the model, some parameters can be considered as just one.
The parameters are the nonstructural osmotically active fraction of drymatter for root
and canopy ( fneor , fneoc) and the molal storage mass (μS). The relationship between
these parameters is indicated by the following expressions: c f ar = fneor/μS and
c f ac = fneoc/μS .

The model was adapted to the Tomgro model mentioned before, which has been
adjusted to estimate structural and nonstructural dry matter utilizing the results
of [331] for the tomato crop.

Figure2.26 shows the dynamic of the water potential in the substrate, root and
canopy during 4 days with data of the integrated water model. In the middle of the
day the plants have the most negative water potential, therefore it is the period when
the crop is more susceptible to stress in the case of having insufficient supply of
water in the substrate. By contrast, the less negative water potentials are at dawn, in
this moment the water in the system substrate-root-canopy can be in equilibrium.

Figure2.27 shows the behavior for the water content in the substrate, the dynamic
of the simulated and measured data can be seen in this graph.

2.4 Disturbance Forecast

Automatic weather forecasts are important to devise control strategies for green-
houses, being necessary to perform long-term (days) and short-term (min) predic-
tions which help the user to obtain optimal trajectories for the controlled variables
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Fig. 2.26 Water potentials in: Substrate (ψhs ), root (ψhr ) and canopy (ψhc)

Fig. 2.27 Water content simulated (continuous) or measured (dashed) in the rock wool substrate

taking the desired objectives into account [71, 343]. There are several methods to
perform weather forecasts, and can be classified as a function of:

1. Prediction horizon: Long-term [270] or short-term [345] predictions.
2. Used methodology: There exist in literature different methodologies which can

be used to estimate disturbances [307, 345, 484]. In this section, three different
methods are summarized: (i) Pattern search models, (ii) Time-series models and,
(iii) Artificial Neural Networks (ANN).
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2.4.1 Pattern Search Based on the Information Provided
by the AEMET

The AEMET which depends on the Agriculture, Food and Environment Spanish
Ministry is the reference organism regarding weather forecasts in Spain. These
forecasts are obtained through the execution of a limited area numeric prediction
model (HIRLAM) based on the environmental conditions provided by the model of
the European Centre of Weather Forecasting Medium Range (ECWFM). Therefore,
the weather forecasts daily updated (from 05:45—UTC) are published in the Web
of the AEMET (http://www.aemet.es/es/portada) and they offer a prediction hori-
zon equal to 7 days for each city of Spain, and equal to 4 days for each province
and autonomous community. In Fig. 2.28 a snapshot of the information provided
by AEMET by city is shown. More specifically, this information mainly comprises
sky state (sunny, cloudy, rainy, etc.), the probability of precipitation, maximum and

Fig. 2.28 Weather forecast by city. Source http://www.aemet.es/es/portada

http://www.aemet.es/es/portada
http://www.aemet.es/es/portada
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minimumexpected temperature, thermal sensation and relative humidity,wind veloc-
ity and direction, and the maximum ultraviolet index.

Moreover, as environmental variables usually repeat each year certain behavior
patterns, it is possible to use historic data series as weather forecast. In [303] a
predictor module, whose main architecture can be observed in Fig. 2.29a, which
provides accurate short/long-termweather forecasts of these outdoor variables which
affect the indoor climate of a closed environment is shown. More specifically, the
predictor module is able to integrate the information provided by AEMET with data
series obtained since 1994, and look for the best pattern equivalent to the forecasts
performed by AEMET. For this, the predictor module follows the general algorithm
which is shown in Fig. 2.29b. Therefore, it is able to interpret the predictions provided
by AEMET, and perform a pattern search within the historic database with the main
objective of obtaining a set of patterns with characteristics similar to the predictions
of AEMET. Then, each one of the patterns are analyzed as a function of several
constraints, as the length of the prediction horizon and the maximum error allowed,
and finally, the best pattern is selected from that ones which fulfill the established
constraints. If any of the patterns satisfies these constraints, they are relaxed, and the
pattern search process starts again.

In order to test the performance of the proposed methodology, to obtain short- and
long-term predictions of two important environmental variables, outdoor irradiance
and temperature, have been used. On the one hand, for short-term predictions a
prediction horizon equal to one day is fixed and, on the other hand, for long-term
predictions the prediction horizon is between 60 and 90 days. As can be observed in
Figs. 2.30 and 2.31, this methodology provides acceptable results for both long-term
and short-term predictions.

2.4.2 Time-Series Models

In general, weather disturbances are represented as time-series structures since they
present stochastic behavior. Therefore, a prediction of weather disturbances can be
obtained through time-series models. Such models are based on the assumption
that the modeled data is autocorrelated and characterized by trends and seasonal
variations [323]. Hence, the main objectives derived from time-series methods are:
modeling, prediction, and characterization. More specifically, prediction by means
of time-series methods require, first, to identify the pattern observed in the data, and
second, to propagate it in time with obtained trends and integrate with other data.
To do that, in [323] four different well-known time-series methods are analyzed and
compared: Discrete Kalman Filter (DKF) [377], discrete Kalman Filter with Data
Fusion (DKFDF) [300], Exponentially Weighted Moving Average (EWMA) [464],
and Double Exponential Smoothing (DES) [297]. More specifically, they are used
to estimate short-term forecasts of solar radiation from real data of a meteorological
station placed in the Almería type greenhouse. Nevertheless, the proposed methods
and methodology can be easily extrapolated to any location with an appropriate
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Fig. 2.29 Pattern Search based on the Information provided by the AEMET [303]. a Main scheme.
b General algorithm for the short/long-term climate predictor module
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Fig. 2.30 Short-term prediction. Source As courtesy of the authors [303]. a Short-term prediction
of outdoor irradiance. b Short-term prediction of outdoor temperature

meteorologic station. A complete description of each of these methods can be found
in [323].

To validate the application of the previous forecast methods, one year of meteoro-
logical data collected with a sample time, ts = 1 [min] have been used. Figure2.32
shows the results obtained for each of the time-series methods mentioned previously
and for the prediction of solar radiation under different conditions, a clear day and
a day with passing clouds. In addition, a short-term horizon equal to 15 samples,
that is, 15min has been used. The obtained results [323] are good since a precise
approximation is obtained with all the analyzed methods.
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Fig. 2.31 Long-term prediction. Source As a courtesy of the authors [303]. a Long-term prediction
of outdoor irradiance. b Long-term prediction of outdoor temperature

2.4.3 Artificial Neural Networks

Finally, ANN can be also used to obtain disturbance models since, as mentioned
previously within the climate ANN approximation, their design is based on train-
ing and it is not necessary to perform any statistical assumption for the training
dataset. As example of the application of this method to estimate disturbance mod-
els, twodifferent approximations to obtain solar radiation and outdoor air temperature
short-term predictions have been developed. For this, the methodology commented
in Sect. 2.1.3.5 of this chapter has been used. More specifically, in this case, two
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Fig. 2.32 Example of the solar radiation time-seriesmodelmodel under different conditions.Source
Courtesy of the authors of [323]. a Clear day with a 15-sample horizon (15min). bDaywith passing
clouds and a 15-sample horizon

different NARX ANN have been calculated. The structure of the selected ANN is
similar for both, and consists of a NARX configuration with 1 node in the input, a
hidden layer with 10 nodes, and a node in the output layer, the solar radiation or
the outdoor air temperature prediction. In addition, TDL blocks to take into account
past values of the inputs have been included in the ANN architecture. More specif-
ically, a number of past values equal to 4 for each one of the inputs have been
used. Besides, different approximation by varying the prediction horizons have been
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Fig. 2.33 Example of solar radiation and outdoor air temperature ANN short-term prediction
models. a Solar radiation with a prediction horizon equal to 60 min. b Outdoor air temperature with
a prediction horizon equal to 60 min

used, N = [5, 10, 15, 60] (min). The training process has been performed using
a variable-step gradient descent process, namely the Matlab’s implementation of
the Levenberg-Marquardt algorithm [282]. Furthermore, as training dataset differ-
ent fragments within the period from 1st September 2010 to 29th February 2012
and a sample time of ts = 60 (s) has been used. Finally, the different models were
validated using a real dataset from the meteorologic station. More specifically, the
selected dataset has a total duration of a week, from 24 to 30th October 2011, and
a sample time of ts = 60 (s). The results obtained for the solar radiation and out-
door air temperature with a prediction horizon equal to 60min can be observed in
Fig. 2.33a, b respectively.
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2.5 Conclusions

Acomplex nonlinear dynamical model of the greenhouse climate has been developed
for the particular conditions of the Southeast of Spain, where the largest concentra-
tion of greenhouses in the world is located [355]. These greenhouses are character-
ized by low-cost structures of medium yield, normally passive or with a low-level
of automation and made of plastic cover, taking advantage of favorable outside cli-
matic conditions. In Sect. 2.1.1.2, a description of the dynamicmodel of the industrial
greenhouse climate is formulated. It is composed of six submodels describing the
cover temperature, soil surface temperature, first soil layer temperature, inside air
temperature and humidity, and PAR radiation onto the canopy. The model imple-
mentation is described in detail. It was hierarchically implemented using top-down
and bottom-up approaches to provide insight into how the model is organized and
how its parts interact. Two different modeling paradigms, block-oriented modeling
and object-oriented modeling, were used. The methodology proposed to estimate the
unknown parameters of the model is explained based on the fact that the involved
physical processes are not coupled. A combination of sequential iterative search and
genetic algorithms techniques is used to search the values of the parameters of the
model obtaining acceptable results. A sensitivity analysis of themodelwith respect to
the parameters is also included. The model validation process is also explained with
different greenhouse structures in winter, spring, and summer seasons, comparing
real data measured in greenhouses with data estimated by the model.

The same approach is used for semiphysicalmodels development, aimed at finding
simplified models that retain the main nonlinear characteristics of the system but can
be used for control purposes. The chapter also includes different structures data-
driven models, from linear (based on reaction curve tests or identification), Volterra,
and ANN ones.

The second part of the chapter is devoted to develop models for tomato growth
for climate conditions of the Southeast of Spain. The tomato crop growth models
Tomsim and Tomgro were calibrated and validated for total dry matter production
and calibrated for fruit dry mater production. The parameter estimation was carried
out in such a way that the models can be used to simulate the main dynamics of
tomato crop growth with differences less than 10% in total dry matter estimation in
both models. The dynamics of tomato crop growth are represented by both models
in an acceptable way.

Moreover, water management models are described for soilless systems to supply
the adequate quantities without yield reduction but with saving of lixiviates emitted
to the environment.

Prediction models for disturbances are also introduced. They play an important
role in the hierarchical control architecture where climate setpoints are generated
based on the models described in this paper and on predictions of weather and
market forecasts.



Chapter 3
Climate and Irrigation Control

3.1 Basic Automatic Control Algorithms
for Climate and Irrigation

3.1.1 Introduction

This chapter deals with climate and irrigation control strategies aimed at maintaining
ideal conditions for crop growth inside greenhouses. The controlled variables are
usually PAR radiation, temperature, relative humidity and CO2 concentration. The
usual actuators are natural ventilation, shading screen, heating, CO2 injection and
fogging. Fertigation control systems are also required to provide the required quantity
of different fertilizers, taking into account the pH and electrical conductivity of the
drain and reference nutritive solutions. The disturbances affecting the system are
outside ones like temperature, relative humidity, solar irradiance, wind speed and
direction, sky temperature and rain. Also crop transpiration can be considered as a
disturbance, as well as a set of variables describing other elements of the greenhouse
like cover and soil temperature. Although the algorithms presented in this book are of
general nature, the results focus on Mediterranean greenhouses in which the control
problem is mainly refrigeration and irrigation. Anyway, some control strategies for
heating are also included. For a more extensive analysis of the heating problem, the
book of van Straten et al. [431] is strongly recommended. For tropical climates, recent
surveys have been published [391], while the general case is treated inDuarte-Galvan
et al. [115].

A greenhouse is a closed environmentwhere some climate variables can bemanip-
ulated to control the development and growth of the crop. The Horticulture Science
proposes reference values of the climate and fertigation variables, which can be
also obtained through the optimization of a given objective function involving costs,
incomes, and other aspects, as will be shown in Chap.4. So, control engineering prac-
tice allows the engineers designing and implementing automatic control systems to
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help tracking these reference values in spite of disturbances acting on the system,
thus obtaining the optimal performance of the crop [357, 358].

Greenhouse environmental control involves four fields of study [215]:

• Physics. Knowledge of climatic factors: Light/radiation, temperature, air humid-
ity, CO2, air circulation, and the relationships among these factors.

• Physiology. Knowledge of the influence the greenhouse environment has on plant
growth. The basic processes for growth are photosynthesis and transpiration and
both can be optimized to adequate environmental control.

• Technology. Availability of environment control equipment, such as heating, ven-
tilation, screens, lighting, misting, CO2 enrichment, and so on, as well as sensors
of the outside and inside environmental variables.

• Control technology. As the way to optimize inside greenhouse climate based on
measured variables and acting on greenhouse equipment.

The main objective of greenhouses crop production is to increment the economic
benefits of the farmer by means of finding a trade-off between the improvement of
the quality of the horticultural products and the cost of obtaining adequate climatic
conditions using new greenhouse structures and automatic control strategies. As a
basic requirement, climate control helps to avoid extreme conditions (high tempera-
ture or humidity levels), which can cause damage to the crop and to achieve adequate
temperature integrals that can accelerate the crop development and its quality while
reducing pollution and energy consumption [1, 69, 194, 226, 349].

As has been mentioned previously, the dynamic behavior of the microclimate is a
combination of physical processes involving energy transfer (radiation and heat) and
mass balance (water vapor fluxes and CO2 concentration). These processes depend
on the outside environmental conditions, structure of the greenhouse, type and state
of the crop, and on the effect of the control actuators [57]. The main ways of control-
ling the greenhouse climate are by using ventilation and heating in order to modify
inside temperature and humidity conditions, shading and artificial light to change
internal radiation, CO2 injection to influence photosynthesis, and fogging/misting
for humidity enrichment. Fertigation control systems are also required to provide the
required quantity of different fertilizers, taking into account the pH and electrical
conductivity of the drain and reference nutritive solutions [41].

The main variables affecting plant growth in Mediterranean greenhouses have
been shown in Fig. 2.5 of Chap.2. Variations to such list can be considered by
including as state variables CO2 concentration and light intensity at plant level, fog-
ging/misting systems [2] and CO2 enrichment as control variables (although these
systems have not an extensive use) and outside CO2 concentration and leaf area of
the plants (evapotranspiration rate inside the greenhouse) as disturbances.

Disturbance variables have a dominant role and coherent action onto the forma-
tion of the greenhouse environment. As has been pointed out in [408], solar radiation
has a strong immediate effect on the internal conditions and produces frequent oscil-
lations (i.e., under passing clouds) in the controlled variables. In practice, a time
running average filter can be used when the measurements of this variable are used
for control purposes. Outside temperature and humidity suffer slow variations and

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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their measurements can be directly used for disturbance attenuation. Wind velocity
includes a steady component, corresponding to the mean wind speed, and a transient
component, corresponding to the gusting of the wind about the mean value. Mean
wind velocity affects the air exchanges of the greenhouse or else the heat balance
and can be also used for control purposes. Two crop properties that can influence
the inside environment are its albedo and canopy resistance [381]. In well-irrigated
crops, both properties are likely to be well correlated with the LAI, which can be
included as a measurable disturbance, as in this case, the growth and development
of the plants are considered to be measured/estimated.

This chapter briefly describes the elements of the greenhouse climate control sys-
tems and different algorithms to control greenhouse climate. Themain actuators con-
sidered are natural ventilation, heating, and shading screen. A review of cooling and
heating technologies can be found in Sethi and Sharma [386] and [387, 388], respec-
tively. An overview of control algorithms for shading screen can be found in [32]
and references therein. The chapter is mainly devoted to explain the control of green-
house climate conditions, that is the bottom level (fast time scale-seconds/minutes)
of the hierarchical control system explained in Chap.1, Fig. 1.2. Traditionally, this
regulatory layer implements classical [215] or feedback-feedforward control (FF),
sometimes involving adaptive control (AC) algorithms and online estimation of sim-
ple model parameters. The problem of optimal control of greenhouse crop growth
has been treated in an excellent way in the book by van Straten et al. [431]. Other
recent approaches includeModel PredictiveControl (MPC),NonlinearControl (NC),
Robust Control (RC), Event-Based Control (EBC) or Fuzzy Logic Control (FLC).
Some of these approaches are explained in this chapter. Tables3.1 and 3.2 overview
different approaches used within climate control framework.

3.1.2 Climate Control

The climate control problem has the main following features (some of them treated
in Chap. 2):

• The system (greenhouse climate) is subject to strong disturbances, bothmeasurable
and nonmeasurable (including errors and noise in the sensors). The characteristics
of disturbances impose fundamental limits to the system.

• There is a high correlation degree between several variables, like temperature and
humidity, and the same actuators are used to control them.

• It is a time-varying system in which the characteristic parameters associated to the
actuators (generally of convective nature) are affected by disturbances, so that the
same state of actuators may produce different effects.

• There exist constraints in inputs of amplitude, slew rate, and quantization type. The
saturation limits sometimes are time dependent (for instance, in tube-based heating
systems). There are also constraints in the states and outputs (operative and security
ones) of the system. The greenhouse temperature must evolve between aminimum
and a maximum value to promote growth and avoid stress or damage to plants. In

http://dx.doi.org/10.1007/978-3-319-11134-6_1
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Table 3.1 Different approaches in greenhouse climate control (I)

Controlled
variable

Control variable Control technique References

Temperature Natural vents
Heating

Proportional control
PI+antiwindup

[49, 103, 461,
462, 478]

Temperature Heating PI (cascaded) [104]

Temperature,
humidity, CO2

Natural vents,
spraying, CO2
enrichment

PID control (multiobjective) [192]

Temperature Heating PIP control [482, 483]

Temperature,
humidity

Vents, heating,
humidifiers, shading

PDF control [6, 389, 390]

Temperature Heating Feedforward control [361, 439, 440]

Temperature,
humidity, PAR
radiation, CO2

Natural vents,
heating, shading,
CO2 enrichment

Gain scheduling on/off [41, 215]

Temperature Natural vents Adaptive control (multirate) [13, 43, 362, 407]

Temperature Vents, heating GPC control [49, 342, 354]

Temperature Heating GPC control [296]

Temperature,
humidity, CO2

Heating, vents
spraying, CO2
enrichment

Nonlinear adaptive PID control
based on RBFN

[485]

Temperature,
humidity,

Natural vents,
humidifiers

Multivariable MPC [384]

Temperature,
CO2

Vents, heating,
shading, CO2
enrichment

Multivariable MPC [50]

Temperature Heating Decentralized MPC [119]

Temperature Heating,
refrigeration

Dynamic Matrix Control DMC [480]

Temperature Heating MPC, feedback linearization [327]

Temperature Vents, heating MPC (genetic and particle swarm
optimization)

[94, 95]

Temperature,
humidity

Heating, fogging,
natural vents

Nonlinear MPC [48, 153, 154,
492]

Temperature Heating, CO2
enrichment

Nonlinear neural network MPC
(expert systems)

[471]

Temperature
CO2

Natural vents,
heating, CO2
enrichment

Receding horizon MPC Optimal
control (Pontryagin), feedforward

[132, 177, 428,
430, 432, 441,
442, 443]

Temperature
CO2

Heating, natural
vents

Optimal control, feedforward
neural network control

[7]

CO2 Vents, CO2
enrichment

Optimal control [255]

Temperature Heating Optimal control (Pontryagin) [447]

Temperature Heating, natural
vents

Optimal control (linear
programming, Pontryagin)

[159, 200]
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Table 3.2 Different approaches in greenhouse climate control (II)

Controlled
variable

Control variable Control technique References

Temperature,
CO2

Natural vents, CO2
enrichment

Optimal control
(Pontryagin),
feedforward

[202]

Temperature,
humidity, CO2

Heating, vents fogging Backstepping, optimal
control

[34]

Temperature,
humidity

Heating, vents, fogging Feedback-feedforward
linearization, extended
Kalman Filter

[169, 395]

Temperature,
humidity

Vents, fogging Feedback-feedforward
linearization,
decoupling and
feedforward

[42, 158]

Temperature,
humidity

Natural vents, heating Exact linearization [158]

Temperature
CO2

Natural vents, heating,
CO2 enrichment

Robust QFT control [253, 284]

Temperature Heating H∞ PI control [406]

Temperature,
humidity

Heating, roofing,
shading, moistening

H2 robust control [38]

Temperature Vents Neural network control [20]

Temperature,
humidity, CO2

Heating, shutter,
sprayer, shading, natural
vents

Neural network control [130, 260, 371, 481]

Humidity Humidifiers Neural network control [399, 402, 403, 404]

Temperature,
humidity

Natural vents, heating
shading, misting

Hybrid control [165, 259, 280, 336,
337, 362]

Temperature Heating Hybrid predictive
control

[242, 280]

Temperature Natural vents, heating Event-based control [127, 313, 314, 316,
317, 318, 319, 320, 321,
322]

Temperature,
humidity

Heating, natural vents,
shading, fogging

Model-free control [240]

Temperature,
humidity

Heating, humidifiers Fuzzy logic control [203]

Temperature,
humidity

Natural vents, heating,
humidifiers

Fuzzy logic control [238]

Temperature Vents, heating Fuzzy logic control [139]

Temperature,
humidity, CO2,
illuminance

Natural vents, heating,
CO2 enrichment,
shading, artificial
lighting, fogging

Fuzzy logic control [76, 77, 79, 89, 122,
123, 139, 148, 168, 195,
205, 209, 225, 238, 247,
258, 274, 288, 290, 291,
292, 298, 334, 372, 396,
417, 457, 490]
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some cases [401], constraints on temperature integrals can be also imposed [228].
Furthermore, humidity has lower and upper bounds on the achievable values,
to avoid reaching saturation water vapor and condensation on the cover or in
the plants, as this may cause the appearance of fungal diseases such as Mildium
or Botrytis [29, 207]. Moreover, high relative humidity is not desirable, since
it reduces transpiration and correct pollination. Low relative humidity leads to
closing stomata and thus reducing photosynthesis. InMediterranean areas, it is also
usual to control the photoperiod of the crop including a time-varying constraint
on the maximum solar irradiance. As mentioned above, the constraints values
are time-varying, since the crop evolves in different phases (sowing, transplant,
fruit set, and harvesting) requiring different climatic conditions. In addition, in
certain situations, such as potential disease problems, certain weather conditions
are needed to minimize their adverse effects. Moreover, there are different types of
crop cycles (long, autumn short, and spring short), which obviously have different
climatic disturbances that result in diverse bounds.

• Greenhouse climate is a complex process that cannot be completely described by
linear models (used for control purposes), as there are unmodeled dynamics and
parameter estimation errorswhich cannot be handled by using linear time-invariant
models. In order to properly control the system, information on possible sources
of uncertainty (parametric or structural) is required, assessing their effect on the
behavior of the whole system.

• Most control approaches consider perfectmixing (homogeneous thermodynamical
properties of air), but there always exist spatial gradients. As a few amount of
sensors are usually placed inside greenhouses, it is considered that the greenhouse
climate is represented by these local measurements, not considering the distributed
nature of the system. Moreover, most actuators do not allow the user to perform a
distributed control of this kind of installations.

The following sectionswill focus on the temperature (and humidity) control problem,
as PAR radiation is usually managed by on/off controllers. Some ideas on irrigation
control are also included.

Temperature is the climate variable that directly influences on crop growth, and
that is traditionally controlled inside greenhouses. The plants grow only under the
influence of light, that is, when photosynthesize, thus requiring a relatively high tem-
perature. During the night crop is not active (there is not growth), so it is not necessary
to keep it at a high temperature. It is, therefore, desirable to have a higher temperature
during the day than at night, so that different temperature set points are defined for
these periods. In those areas with favorable weather conditions (like Mediterranean
ones), during daytime periods, the energy required to reach the optimum temperature
is provided by the sun. The contribution of additional energy is not necessary except
in extreme situations.

The problem of controlling the daytime temperature is to avoid the temperature
is above this optimum, since its effect is detrimental to the crop. Natural ventilation
is used for this purpose. If the temperature is less than the set point, the vents are
closed and the heating should be used to achieve the desired reference value, but
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this option is usually rejected because the associated cost does not compensate the
obtained benefit (although, as will be commented on in Chap. 4, this is not always
true and many growers are nowadays changing their idea about the use of the heating
systems). During the night periods, as it is not necessary to maintain a high growth
temperature, lower set points are determined but keeping adequate conditions for the
plants. While the temperature remains above the set point value, the heating system
does not operate. If the temperature surpasses the lower limit, the heating system
must be switched on.

The daytime temperature set point is the one from which it starts to open the
vent. There exists a temperature interval in which no control action is required (the
actuators do not work), as the daytime set point must be greater than the night one.
The size of this dead zone varies with the greenhouse performance, common values
being from 0.5 to 6 ◦C [215]. The objective of this zone is to avoid frequent switching
between ventilation and heating. Moreover, abrupt or sudden changes in temperature
are not desirable because they can lead to condensation of water vapor in the air onto
leaves and fruits or the cover, producing water falling onto the plants that may lead
to some kind of cryptogamic diseases [207].

Figure3.1 shows an example of control of greenhouse air temperature for 2days,
in which the main features of set point changes are commented on.

Fig. 3.1 Example of temperature control where the main characteristics of set point changes are
commented on

http://dx.doi.org/10.1007/978-3-319-11134-6_4
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3.1.2.1 Temperature Control Using Natural Ventilation

Natural ventilation provides air exchange between the inside and outside of the
greenhouse. As the outside air is generally cooler than the indoor air, it tends to fill
the lower layers of the air volume and hot air rises to the upper layers coming out
through the open vents. In this way, the inside air temperature is diminished. The
controller should calculate the vents opening required to reach the desired set point.
The daytime temperature control problem using natural ventilation has the following
features:

• The actuation system has two main structural limits:

– Saturation: The vent may be opened between 0 and 100% (or corresponding
angular aperture).

– Output resolution: Although it is a continuous actuation system, the window
positioning is performed using a rack whose teeth permit minimal movement
of 5 % (approximately depending on the facilities).

• The temperature response of indoor air to ventilation steps typically behaves like
a FOPDT system, where the describing parameters (time constant, static gain,
and dead-time) vary depending on the amplitude of the input step and also when
changing from one operating point to another. This is logical as the system is
nonlinear (smooth).

• Outside conditions significantly influence on the effect of ventilation on the tem-
perature. When opening the vents, hot air inside the greenhouse is replaced by
colder outside air. The air removal speed mainly depends on the size of the vents
(greenhouse design constant) and on the difference between indoor and outdoor
temperature and wind speed, so that the controller should have to take into account
the outdoor weather conditions to compute the ventilation opening. The represen-
tative static gain, time constant, and dead-time values vary with wind speed and
outside temperature.

Considering all these features, different techniques can be used to address this
control problem, some of which are developed in this chapter.

3.1.2.2 Temperature Control Using Heating

Temperature control in greenhouses is a practical problem of considerable interest
and economic significance since the primary objective of greenhouses is to pro-
duce agricultural products outside the cultivation season, representing the fuel-based
heating costs and 30% of the overall operational costs in the greenhouse industry.
Generally, greenhouses are heated by hot water that circulates in pipes or by hot air
that is distributed by ducts. In [24], six types of heating systems were presented and
discussed: (1) heat exchangers in the soil, (2) heat exchangers laid directly on the
ground, (3) aerial pipes near the ground or benches, (4) fan heater units, (5) roof
heating systems, and (6) a combination of two of these. In Sethi et al. [387, 388], a
review and evaluation of all the available heating technologies for worldwide agricul-
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tural greenhouses is discussed. The influence of the heating method on greenhouse
climate and energy consumption if treated in Bartzanas et al. [31].

Regulating air temperature in the greenhouse is important for both vegetative
growth and fruiting. To determine heating requirements, it is essential to know the
minimum temperature requirements for the crop, the lowest outdoor temperature
that might be expected, and the surface area of the greenhouse. Heat lost will be also
affected by wind and site exposure. Due to the favorable weather conditions in the
Mediterranean areas, the required energy to provide adequate temperature integrals
to the crop during daylight is provided by the sun. Moreover, during the day the
problem is to avoid large values of the temperature and thus natural and forced
ventilation are used. During the night, the temperature set points are lower and while
the temperature remains over these the heating is not used. The most widely used
heating systems inMediterranean greenhouses are based on hot air, distributed in the
greenhouse via perforated polyethylene ducts [449] or hot-water PVC pipe systems
in new greenhouses:

• Heating by aerial pipes. The pipes heated by hot water circulating through them
transmit heat to the air by convection, producing an increase in the greenhouse
inside temperature. Then, the control problem consists in calculating the required
temperature of the water within the pipes to meet inside air set point requirements.
In order to perform this task, the system has one three-way valve to mix the water
of the boiler (constant temperature) with the water returning from the greenhouse
in a cascade structure (Fig. 3.2), where the temperature measurement is acquired
near the boiler. The actuators have constraints as the water temperature through

Fig. 3.2 Schematic diagram of the aerial pipes heating system and control blocks
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Fig. 3.3 Schematic diagram of the air heating system

the pipes is lower than the water temperature in the boiler and higher than that of
the greenhouse air.

• Heating by forced-air heaters. In this kind of systems, the equipment is composed
by an indirect combustion hot air generator using a heat exchanger to separate
exhaust gases from hot air that is introduced in the greenhouse (Fig. 3.3). The
system incorporates three units: A combustion chamber supplied with fuel oil, the
heat exchanger, and a fan to extract the exhaust gases throughout a chimney. The
efficiency is between 80 and 90%.

The main features of the heating control system are:

• All actuators have limited resolution and saturation limits, that may vary with time
depending on the inside temperature.

• The dynamical response to stepwise changes in the actuator can be modeled as
a FOPDT system, which descriptive parameters vary with input signal amplitude
and operating point.

• Outside disturbances (mainly outside temperature and wind speed) influence the
heating temperature set points.

These features must be taken into account by the control strategies used to control
greenhouse temperature and humidity.

There are several examples in the literature of the application of various tem-
perature control techniques using heating systems (see Tables3.1 and 3.2). For
instance, [461, 462] evaluated several PI control structures, comparing them with
AC strategies, which showed a good behavior in stationary state but with greatly
excessive oscillations. The authors of [104] used a PI control in cascade, which gave
better results. Concentrating on greenhouses in a Mediterranean climate, in [200]
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different techniques in Israel are developed using linear programming, and the
Pontryagin Principle, to minimize the heating costs. In Spain, [355] and [342] car-
ried out the integration of a heating system within a hierarchical control scheme by
making use of different control techniques, such as cascade control (CC) and GPC.
They obtained acceptable results with a 15% saving in fuel.

3.1.2.3 Humidity Control

The content of water vapor in the air inside the greenhouse, measured for example
by the relative humidity, is not one of the climatic variables that directly affect crop
growth, although its control is of particular interest. As described in Chap.2, the
emergence and development of fungal diseases is favored with high relative humidi-
ties, thus decreasing transpiration, reducing the absorption of water and nutrients,
which can result in deficit of elements such as calcium. However, with low relative
humidities, the transpiration rate increases which can lead to water stress, the closure
of the stomata, and therefore reducing photosynthesis [81]. Based on these facts, it is
necessary to maintain the relative humidity within a certain range, which for tomato
crop can be set between 60 and 80%. Controlling the relative humidity of air inside
the greenhouse has two major drawbacks:

• Air temperature and relative humidity are highly inversely correlated.
• Both temperature and humidity share the same actuation systems.

As themain variable is air temperature, as it affects crop growth, it is considered as the
controlled variable, so that climate controllers should try to keep humidity within a
desired range, modifying temperature-based control action accordingly. The general
actions that are usually performed when the relative humidity has a value outside the
defined range are:

• Low relative humidity. This problem is usually associated with excessive temper-
ature and the solution is to provide water to the greenhouse through nebulizers,
humidifiers, or cooling pads, but installing such systems is not widespread in the
area.

• High relative humidity. Generally, this situation occurs in closed greenhouses
under cold weather or first/last night hours. The solution should be to combine
the action of heating and ventilation, so that greenhouse warm and humid air is
replaced with cold outside air that raises the temperature and reduces relative
humidity.

It is interesting to analyze the effect of ventilation and heating on relative humidity
to better understand the control algorithms used for controlling it. Absolute humidity
is defined as the ratio of the mass of water vapor with respect to the mass of dry air
that contains (kgwater/kgair). Greenhouse air can hold a maximum amount of water
vapor depending on the temperature (air is saturated). Relative humidity provides a
measure between the amount of water vapor contained in the air and that obtained
when saturated at the same temperature.

http://dx.doi.org/10.1007/978-3-319-11134-6_2


110 3 Climate and Irrigation Control

Whenheating is activated, the greenhouse vents are usually closed, so that nowater
vapor exchange with the outside exists and if transpiration is not considered, relative
humidity should remain constant. An increase in air temperature causes a reduction
in relative humidity. This reduction in moisture will be partially compensated by an
increase in crop transpiration.

When using ventilation, themixing of indoor and outdoor air produces two effects.
On one hand, the inside temperature decreases as the outside temperature is lower,
and on the other hand, the absolute humidity is also reduced, since, generally, the
amount of water vapor inside the greenhouse is higher than that contained by the
outside air. These two facts cause a decrease in relative humidity.

The daytime control of inside air temperature is performed using natural ventila-
tion. Two situations may arise:

• High internal temperature and too low relative humidity. If vents are opened,
temperature will reach the set point, but humidity will also decrease as outside
humidity is lower. If vents keep closed, no water vapor is removed, although
temperature stays too high.

• Low indoor temperature and high relative humidity. This case is the opposite. If
vents are opened, humidity would decrease, but also temperature. If vents keep
closed, temperature would reach a better value, but water vapor content should
remain high (above soil evaporation and crop transpiration).

The solution adopted is to change the temperature set point within an interval depend-
ing on the relative humidity. The reference governor uses a predefined relative humid-
ity. If relative humidity surpasses that value, the temperature set point is reduced to
produce vent opening helping to evacuate water vapor. If relative humidity is quite
low, temperature set point is increased to avoid vents opening.

During the night the heating system is used to raise the temperature (reducing the
relative humidity) so that when used, there is usually no problem of excess water
vapor, except at sunrise by condensation. During spring, summer, and autumn, when
demand forwarmth at night isminimal or absent, the temperature ofwater in the pipes
(in the case of aerial pipes heating system) is kept at a minimum value determined
for the air that is not saturated with water vapor (100% relative humidity).

3.1.2.4 PID-Type Controllers

As in other industrial processes, PID control has been widely used for greenhouse
climate control purposes [6, 49, 103, 104, 192, 389, 390, 461, 462, 478, 482, 483].
Most PID tuning techniques are basedon simplified transfer functionmodels obtained
from reaction curve tests or linearization of nonlinear models around the desired
operating point. Due to the significant variations in the dynamic characteristics of
greenhouses, it is difficult to obtain a satisfactory performance over the total operation
range with a fixed parameter controller, mainly if well damped and fast responses
are required. As the system response for both ventilation and heating is of FOPDT
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type, the use of PID controllers with fixed parameters is anyway a very good option
for greenhouse climate control tuned for disturbance compensation purposes.

The classical implementation of the PID controller is the noninteractive scheme,
where the control signal is given by:

U (t) = cKp

⎛

⎝E(t) + 1

cTi

t∫

0

E(η) dη + cTd
dE(t)

dt

⎞

⎠ (3.1)

where U (t) is the control signal (for instance, percentage of vents opening in day-
time climate control), E(t) is the error signal, computed as the difference between the
set point and the measured variable (e.g., difference between temperature reference
Tref and measured inside air temperature XT,a), cKp is the proportional gain, cTi the
integral time and cTd the derivative time. These last three parameters represent the
degrees of freedom the designer has to achieve the requested performance (generally
in terms of well damped response, adequate disturbance rejection capabilities and so
on). Figure3.4 shows the implementation selected in the examples shown in this text,
where 1/s stands for an integrator in Laplace transform. The typical tuning meth-
ods are those based on step responses or analytical methods: Ziegler–Nichols (ZN),
Chien, Hrones and Reswich, Cohen-Coon, AMIGO, λmethod, SIMC, pole cancela-
tion, pole placement, …[17]. The implementation should be done using antiwindup
(AW) action (to account for actuator saturation effects, with descriptive parameter
tracking time constant cTaw [17]), two degrees of freedom setting and/or set point
weighting (to design both for disturbance rejection and set point tracking purposes),
derivative filtering (to reduce the effect of sensor noise in the control action), and
bumpless transfer (to transfer frommanual to automatic control mode or tolet chang-
ing the active controller in gain-scheduling or switching control schemes). Excellent
references to these methods can be found in [17, 152, 299, 469] and references
therein.

PID control is often used in combination with other control schemes, as those
explained in the following sections. Its parameters are changed according to outside
conditions or it is usually combined with a feedforward term in the control loop to
account for the effect of measurable disturbances.

Fig. 3.4 PID control structure including antiwindup action
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3.1.2.5 Gain-Scheduling Controllers

PI controllers are usually implemented in greenhouse climate control within a
gain-scheduling (GS) strategy to explicitly take into account disturbances acting
on the system. A typical implementation consists in using a PI controller based on
inside temperature feedback to reduce sensitivity of the system with respect to dis-
turbances and smooth nonlinearities. The nonlinear nature of the system prescribes
an adaptive implementation of the PI controller, or an alternative like a GS con-
troller [18]. Although not strictly considered an AC scheme in some classifications,
GS can be used when there is a direct relationship (or through auxiliary variables)
of disturbances with the main system dynamics. The controller parameters are mod-
ified from a table or function previously calculated for different operating points in
terms of these auxiliary variables. It can be considered as a system with a closed
loop controller where its gain is adjusted by a feedforward compensation. Actually,
it is an open loop adjustment since there is no feedback to compensate for the wrong
choice of parameters [18].

A drawback of this type of algorithm is the construction and design of the table
or function relating the parameters of the controller with the variables measured,
because lots of operating conditions have to be tested and the proper operation of
the system has to be analyzed under numerous simulations. Moreover, in general
there are no results on the robustness, performance, or stability of the controlled
complete system, existing studies for cases where the access variable to the table
is the reference or the output of the system. However, it has the advantage that the
controller can be changed very quickly, depending on how the scheduling variable
is able to capture the possible changes in the dynamics of the process.

When dealing with the ventilation problem (one of which objectives is to remove
excess heat), the GS control approach takes into account outside conditions by imple-
menting a control structure like the one shown in Fig. 3.5. The way in which propor-
tional control gain is modified as a function of outside temperature and wind speed
is shown in Fig. 3.6 [215] for the case treated in this book. For a constant set point, it
can be seen how the proportional gain cKp increases when outside temperature rises
to try to maintain the same rate of inside hot air removal. When outside wind velocity
increases, vents opening should be smaller for a constant set point. The wind velocity
signal has to be filtered before entering in the GS control computation to avoid noisy
control signals.

Instead of using a table, the controller implementation must take into account
the kind of installed vents, the desired inside temperature and the typical climate
of the area. Six parameters have to be determined from tests in different operating
conditions (units and typical values are shown in Fig. 3.6 and Table3.3). Notice that
this can be a time-consuming task and that may depend on the season the greenhouse
is operated.

Only the controller proportional gain is modified in this way. The integral part of
the controller avoids situations in which steady-state error may arise, being necessary
to tune cTi parameter in a conservative way. Commercial control systems implement
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Fig. 3.5 Gain-scheduling control structure for temperature control using ventilation

Fig. 3.6 Relationship between PI controller proportional gain cKp and outside conditions and
characteristic parameters used to obtain it

Table 3.3 Descriptive parameters of the ventilation gain-scheduling controller

Parameter Description Typical
value

cKpven,max Maximum value of the proportional gain 20

cKpven,min Minimum value of the proportional gain 5

cT venmin,wsmin Minimum outside temperature for vents opening without wind
(Dws,e = 0 m s−1)

10

cT venmin,wsmax Minimum outside temperature for vents opening with maximum
allowed wind speed (Dws,e = cws,max = 15ms−1)

20

cT venmax,wsmin Outside temperature for maximum vents opening without wind
(Dws,e = 0ms−1)

25

cT venmax,wsmax Outside temperature for maximum vents opening with maximum
allowed wind speed (Dws,e = cws,max = 15ms−1)

35



114 3 Climate and Irrigation Control

32
(a) (b)

(c) (d)

(e) (f)

5.5

F
ilt

er
ed

 w
in

d 
sp

ee
d 

(m
/s

)

O
ut

si
de

 te
m

pe
ra

tu
re

 (
 C

)
In

si
de

 te
m

pe
ra

tu
re

 (
ºC

)
O

ut
si

de
 g

lo
ba

l i
rr

ad
ia

nc
e 

(W
/m

2)

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

20900

800

700

600

500

400

300

200

100

33
32
31

30

29

28

27

26

25

24

23

22

18

16

14

12

10

8

6

4

2

0

35

30

25

20

15

10

5

0

30

28

26

24

22

5 10 15 20 25
Time (h)

30 35 40 45 5 10 15 20 25
Time (h)

30 35 40 45

5 10 15 20 25
Time (h)

30 35 40 45
5 10 15 20 25

Time (h)
30 35 40 45

5 10 15 20 25
Time (h)

30 35 40 45 5 10 15 20 25
Time (h)

30 35 40 45

V
en

ts
 p

os
iti

on
 (

o )
C

on
tr

ol
le

r 
ck

p 
pa

ra
m

et
er

  (
ºa

pe
rt

ur
e/

 ºC
)

Fig. 3.7 Real test in summer conditions: gain-scheduling temperature control using ventilation.
a Outside temperature (◦C). b Filtered outside wind speed (ms−1). c Outside global irradiance
(Wm−2). d Controller ckp parameter (◦ aperture ◦C−1). e Inside temperature controlled during the
day (◦C). f Vents position (◦)

the integral action in a stepwise version, opening or closing the vents at a determined
amount depending on the steady-state error.

As an illustrative example of the performance achievable with this kind of con-
troller, Fig. 3.7 shows results with the Araba greenhouse duringAugust 2000with the
shading screen completely extended. The outside conditions are typical in summer
time, with high values of irradiance and temperature and variable wind speed. The
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proportional gain is sensible to the wind speed. Under high temperature and low
wind conditions, the actuators are prone to saturation.

3.1.2.6 Feedforward Control

This section presents the development of feedforward (FF) controllers for greenhouse
climate control. These controllers are mainly based on physical laws and measured
data and are discussed in terms of their suitability for disturbances compensation and
potential use for AC purposes [361]. As has been mentioned, crop growth control
is characterized by both fast and slow dynamics [444], the first associated with the
greenhouse climate and the second with crop growth. As a first approximation, sea-
sonal optimization can treat the physical climate as immediately realizable through
the control. In nowadays greenhouse climate control, the emphasis is on achieving
a temperature integral for crop growing and development purposes. However, when
disturbances due to environmental variables are subjected to large changes (solar
radiation, wind speed and direction changes, etc.), greenhouse climate dynamics
seriously affects the net profit [444], even leading to dangerous situations (e.g., con-
densation) as a consequence of the surpassing of temperature or humidity limits.
Due to this reason, it is important to minimize the effect of disturbances in the inside
conditions of the greenhouse by using adequate FF controllers, based on the mea-
surement of disturbances and trying to compensate for their effects before they have
created control errors. This control paradigmcan be used for both linear and nonlinear
systems and requires a mathematical model of the process [16]. Black box models or
models based on heat balances may be used for FF control. Both should be updated
by online parameter estimation and can be static or dynamic. Using conventional
feedback control in combination with FF control has several advantages [74, 440]:
The improvement of closed loop stability properties, the reduction of the control
effort, and the avoiding of oscillatory behavior as the control system can react earlier
on changes of outdoor weather conditions.

Using models relating the controlled variable and the inputs to the system, the
control variable can be computed to cancel the effect of the disturbances on the
system output. The set point tracking error resulting from modeling errors can be
compensated for by adding a feedback controller. Without FF action, the feedback
controller is used to track all load changes that occur in the process. However, when
using also FF compensation, the feedback controller only has to compensate for
those errors the FF controller cannot handle. There are mainly two basic ways of
implementing FF: Parallel and series configurations [74]. In both cases, the measur-
able disturbances are used to maintain the inside air temperature of the gases at the
desired level. Combined feedforward-feedback design is a research field very active
nowadays [161, 162, 173, 352, 353].

The series implementation is presented in this section, as shown in Fig. 3.8, so
that the reference temperature to the FF controller can be used as control action and
thus the system has a static gain near unity and it can be treated as a SISO one as
the disturbances are intrinsically compensated by the FF term. The output of the FF
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Fig. 3.8 Series feedforward controller for greenhouse temperature control using ventilation

controller is thus the vents opening. This configuration is of special interest when
using AC techniques.

The production process in greenhouses can be described by a dynamic model
represented in a general form by the expressions included in Chap. 2, Eq. (2.3). That
kindofmodel is not suitable for control purposes due to its complexity (although it can
be used within an optimization framework). A control model should account for the
relevant environmental factorswith their interactions (coupling) andbe linearized and
reduced, generating model inaccuracies. Important nonlinearities, such as product
modulationof parameters (i.e.,windowsaspectwithwind speed) canbe accounted for
by input variable transformation before entering the linearized model. Such separate
FF actions and submodels are recommended due to the complexity of the greenhouse
operation [408]. An approximation introduced in [74] and successfully used in [39,
71] for designing FF controllers for solar plants can be used in the greenhouse climate
control framework, as the main sources of disturbances in the case of solar plants
and greenhouses are of similar nature. Taking into account the most relevant terms in
Eq. (2.3) and by performing several simplifications and assumptions, a relationship
can be obtained relating inside temperature with control variables and disturbances
(as done by other authors such as [253, 408]), given by Eq. (2.59). Considering some
of the coefficient constants (calculated in regime operating conditions), the following
simplified expression can be obtained:

cter,a
dXT,a

dt
= crs,aDrs,e + ccnv,ss−a(DT,ss − XT,a) + cheatUT,heat

+ ccnd−cnv,a−e(XT,a − DT,e) − cter,a
cvol,g

Vven,flux(XT,a − DT,e) − Vlt,vapMtrp,cr

(3.2)

where XT,a is the greenhouse inside air temperature, Drs,e is the solar irradiance,
DT,e is the outside temperature, DT,ss is the temperature of the soil (considered as a
measurable disturbance for control purposes), UT,heat is the control signal of the air

http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
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heating system (usually on/off) described by Eq. (2.38),1 Mtrp,cr is the transpiration
of the crop, cter,a = csph,acden,a(cvol,g/carea,ss) is the product of specific heat of
air, air density, and effective height of the greenhouse, crs,a is a solar heating effi-
ciency, ccnv,ss−a is the heat transfer coefficient from soil to inside air, cheat is the heat
power per soil surface unit, ccnd−cnv,a−e is the heat transfer coefficient (convection
and conduction) from inside of the greenhouse out (assumed positive), cvol,g is the
greenhouse volume, Vlt,vap is the vaporization energy of water (temperature depen-
dent), and Vven,flux is the ventilation flux, described by Eq. (2.11) (or by any of the
models shown in [61], as done in [361]):

Vven,flux = cven,ncven,lcven,dDT,e

3cgv(XT,a − DT,e)

[(

Vven,hefcgv
(XT,a − DT,e)

DT,e
+ cven,wdD2

ws,e

)3/2

− (cven,wdD2
ws,e)

3/2
]

+ Vloss (3.3)

with
Vven,hef = 2cven,w sin (Uven/2)

where Vloss is the leakage when the vent is closed, given by Eq. (2.14), cven,n is the
number of vents, cven,l is the length of the vents, cven,d is the discharge coefficient,
cgv is the gravity constant, cven,wd is the wind effect coefficient, and Uven is the
position of the vent (control signal, expressed here in angular aperture units). This
model is characterized by the discharge coefficient and the wind coefficient, which
have to be estimated (and another parameters explained in Eqs. (2.12)–(2.15)). The
discharge coefficient depends on environmental factors, but it has been considered to
be constant in the obtaining of a simple FF controller. Another option is to consider
a simplified ventilation rate as that described by [326] for Almería-type greenhouses
using an exponential expression of the combined aperture control signal:

Vven,flux = cven,ncven,lcven,w Dws,e(αvUβv
ven) + Vloss (3.4)

where Uven in this case is the percentage or normalized aperture of the vents, cven,w
is the width of the vents, and αv and βv are tuning parameters which, according to
actual measurements, show subtle variations between leeward and windward ven-
tilation. This is a very simplified expression as the opening surface should have to
be used through variable Vven,hef, but it has demonstrated to be valid for the kind of
greenhouses considered in this book, as will be shown in Sect. 3.2.3.

The value of the coefficients in Eqs. (3.2)–(3.4) have been obtained using input/
output data obtained at the greenhouse and by iterative search in the range of val-
ues given by different authors using genetic algorithms, as explained in Chap. 2.
Figure3.9 shows a comparison of the real temperature and the simulated tem-

1 Notice that if heating pipes are used, the heat transfer by the heating system should be given by
Eqs. (2.36) and (2.37) in this balance.

http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2


118 3 Climate and Irrigation Control

Fig. 3.9 Comparison of real and simulated temperatures

peratures obtained by using the nonlinear neural networks model developed in
Sect. 2.1.3.5 [356] and the simplified model given by Eq. (3.2). Differences at night
are due to the fixing of the coefficient ccnd−cnv,a−e, which was estimated for winds
of about 6ms−1. At night wind speed decreases in the area and modeling errors due
to this coefficient are evidenced.

By using the simplified representation of the heat balance given in Eq. (3.2) and
considering a steady state balance (dXT,a/dt = 0) and Vloss = 0, it is possible
to derive a correlation for the input variables (ventilation and heating) as function
of the environmental conditions and the inside temperature. As will be explained
below, the resulting expression can be used as a FF action in the control system.
The input to the series FF controller is a reference temperature (UT,ref) provided
by a feedback controller. As a first approximation, as there is one output variable
(temperature XT,a) and two control variables (ventilation Uven and heating UT,heat),
these are considered to be exclusive control actions when controlling temperature in
order to save energy [200]. Then, using the mentioned static balance in Eq. (3.2), the
series FF controller is obtained by substituting the air temperature XT,a by the desired
temperature UT,ref. Thus, for each sampling instant the following calculations have
to be performed:

Day. If UT,ref > DT,e and DT,e > 0

1. Vven,flux = cvol,g
cter,a

(crs,aDrs,e+ccnv,ss−a(DT,ss−UT,ref)+ccnd−cnv,a−e(UT,ref−DT,e)−Vlt,vapMtrp,cr)
(UT,ref−DT,e)

2. Vven,hef = DT,e
cgv(UT,ref−DT,e)

[(
3cgv(UT,ref−DT,e)Vven,flux

cven,ncven,lcven,dDT,e
+ (cven,wdD2

ws,e)
3/2
)2/3

−cven,wdD2
ws,e

]

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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3. Uven = 2 arcsin
(

Vven,hef
2cven,w

)

Night.
UT,heat = 1

cheat

(
ccnv,ss−a(UT,ref − DT,ss) + ccnd−cnv,a−e(DT,e − UT,ref) + Vlt,vapMtrp,cr

)

where a low-pass filter is applied to solar irradiance and wind speed disturbances to
avoid sudden changes in the control signals and conversions to normalized angular
units are used in Uven. Notice that the term accounting for latent heat in the exper-
iments shown in this section is negligible, due to the fact that the crop was in the
early stages of its development. In other cases, it has to be measured or estimated
using Eq. (2.44). Feedforward controllers are usually calculated by using the ratio
between the transfer function of the measured disturbance to the system output and
the process transfer function (fully dynamic forward compensation) [161, 174]. The
FF term developed based directly on the steady state energy balance relationship
provides a trade-off between complexity and performance. Only filtering of the fast
disturbances before entering the calculations is required. When humidity bounds are
taken into account due to condensation, a reduced dynamic equation of humidity
could be used in such a way that a system of two equations and two variables can be
solved on line, providing the values of the desired heating and ventilation signals.
These values should be implemented only when the humidity surpasses its limits.
In other cases, the value given by the FF term obtained by using Eqs. (3.2) and (3.3)
will be used. In the parallel FF case, the inside greenhouse temperature XT,a in the
static balance is substituted by the set point temperature, and a similar development
to that performed in the series FF case can be carried out.

Notice that the feedback controller must incorporate integral action to avoid
steady-state errors. Feedforward tends to provide high values in the control action
to compensate for disturbances and set point changes, what produces saturation in
the control signal. To avoid integral windup [17], and AW compensation scheme is
recommended. The way it has been implemented is shown in Fig. 3.10, where the
inverse of the static FF term is used to map physical constraints into constraints in the
reference temperature of the FF controller (control signal of the feedback controller).

Fig. 3.10 Implementation of feedback PI control including series feedforward with antiwindup
mechanism in temperature control using ventilation

http://dx.doi.org/10.1007/978-3-319-11134-6_2


120 3 Climate and Irrigation Control

In the classical approach, both the vents aperture demanded by the control system
and that provided by the saturation block or actuator should fed the antiwindup block.
The problem that arises in this application is that the control signal provided by the
feedback controller is the reference temperature for the FF controller, which provides
the vents aperture depending on the measurements of environmental variables. So,
the first input point to the AW block has been displaced to the output of the feedback
controller. Fortunately, when saturation occurs in the vents aperture, the correspond-
ing reference temperature of the FF controller can be online calculated taking into
account the actual value of disturbances (the FF term is invertible as inside temper-
ature is higher than outside temperature when vents are used), in such a way that the
scheme reproduces the classical one.

Figure3.11 shows the results obtained when controlling ARABA-type green-
house during summer. Both set point tracking and disturbance compensation results
are quite acceptable under clear-day conditions with outside temperatures around
29 ◦C and variable wind speed. The series FF can be used for AC purposes using
simplified linearmodels of the greenhouse [408]. In this case, the inclusion of a series
FF term presents advantages, as the reference temperature to the FF term (UT,ref) can
be used as the input signal to the identifier, instead of the aperture of the vents. As the
FF compensates for variations in disturbances, the dynamic variations in the inside
temperature will be mainly related to the control signal from the estimation and AC
point of view [74]. If the feedback controller incorporates integral action, then the
inside temperature should be close to the set point temperature in steady state and,
and also the set point temperature to the FF term (UT,ref) and the model employed in
the self-tuning algorithm will always have steady-state gain of approximately unity
and the static nonlinearities will be canceled. This strategy will be explained in more
detail in Sect. 3.2.2.

3.1.3 Irrigation Control

The importance of water in plants has been described in previous chapter. In this
section, the main methods used for irrigation water supply in greenhouses are sum-
marized. Whereas the field of knowledge is vast, only some representative works of
each method are described. In soil-less systems it is important to precisely define
the time and volume associated to water supply, as they are low capacity contain-
ers requiring high frequency of watering. Irrigation control is addressed from the
perspective of water supply, regardless of the nutritional element that has its own
dynamics for an adequate supply of nutrients required by plants.

The supply of water and nutrients to crops, called fertigation, has the follow-
ing objectives: To provide the suitable amount of each nutrient, ensuring proper
nutritional balance to promote plant growth, to provide good aeration to allow roots
respiration in perfect condition, to keep the temperature levels within interval defined
for each specie, to maintain the advisable amounts of readily available water (low
retention stress), to facilitate the uptake of water, and to maintain uniformity of the
above objectives across the volume of the container where the roots develop.
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Fig. 3.11 Representative results of feedforward control a Outside temperature (◦C). b Filtered
outside wind speed (ms−1). c Outside global radiance (Wm−2). d Inside temperature (◦C). e Zoom
of temperature set point tracking performance (◦C). f Vents aperture (◦)

The methods for the management of water supply in soilless systems seek pre-
dicting plant uptake under different approaches [220]:

• Adding the amount of water that forecasts indicate to be absorbed by the plants
(amount criterion).

• Control of the humidity and nutrient concentration in the root environment (con-
centration criterion).

• Control of thewater content and nutrients concentration of plant tissues (“speaking
plant approach”, [171, 214]).
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In soilless systems a relevant aspect is the low reserve capacity of water and
nutrients in the root zone. With a substrate volume between 0.014 (rockwool) and
0.025 (perlite) [m3m−2

surface], the water content in the root zone is comprised between

0.010 and 0.012 m3m−2 for rockwool and perlite, respectively [220]. This indicates
the importance of an adequate supply of water, both in time and frequency.

Nowadays, the control of water supply is carried out based on different specific
criteria associated with: Moisture content of the soil or substrate, the estimated crop
evapotranspiration, measures of the plant, the irrigation system and the integration
of the plant–substrate–climate system.

3.1.3.1 Irrigation Based on the Moisture Content of the Soil or Substrate

It is based on measuring the volumetric water content or matric potential of soil
or substrate [245]. In intensive crops grown in soilless systems, rhizosphere is a
highly saline medium and therefore its osmotic potential contributes significantly
to the total water potential of the substrate, which must be taken into account in
determining this indicator. The determination of the starting time for irrigation is
done by knowing the desired volumetric water content in the substrate or the hydric
potential corresponding to the water capacity reserve of it.

The sensors used in determining the moisture content are based on the measure-
ment of the dielectric constant of the matrix of the substrate, either Time Domain
Reflectometry (TDR) or Frequency Domain Reflectometry (FDR). The first ones are
based on the transmission time of an electromagnetic signal along a metallic tube
inserted into the substrate, while the latter ones use the capacitance to measure the
dielectric constant [64, 100].

Tensiometers determine the matric potential of the substrate, so that the irrigation
set point is determined based on this measurement. The matric potential for soilless
crop shows negative values lower than −10 kPa. In tomato crop the typical values
for switching on the irrigation are −10 kPa for the first 139days and −4 kPa from
140 to 221days after transplantation [180]. The recommendation for pepper crop is
a threshold to start irrigation of −8 kPa [309].

The electrical resistance based sensors consist of two electrodes, so that the dis-
solution of the substrate maintains an equilibrium with a sensor array. The electrical
resistance between the electrodes is a function of moisture content. These kind of
sensors require calibration, but are simple and easy to install [450].

The load cells are a type of lysimeter whereby themoisture content in the substrate
is estimated [111]. Several weight platforms hold plants and a specific correlation
among the crop, its age and the moisture content is established. The system sends
the signal to the irrigation controller that activates irrigation when reaching the limit
set by the user.

In a comparative study of different methods for measuring volumetric water
content (TDR, tensiometers and load cells) in the substrate with physiological indi-
cators of the plant (photosynthesis and stomatal conductance), it was pointed out the
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limited predictive ability of load cells to manage water content in rockwool substrate
and pure sawdust [111]. Load cells and TDR correlated with stomatal conductivity
and sap flow in the substrate mixed with sawdust plus 30% of wood fiber [111].

An important aspect to consider with this type of measurement is the variation
of moisture content or water potential in the soil, since there is no uniformity in
their distribution. In studies with rockwool, it is determined that more humidity is
present in the lower level of the substrate located near the bottom of the container and
lower on the top of it [66, 348]. The differences in the moisture content of rockwool
substrate or due to the layered structure of the blocks and polyethylene bag containing
it. There is also a gradient relative to the longitudinal and horizontal direction from
the emitter; the furthest points of the dropper have less water [66, 348].

3.1.3.2 Irrigation Based on Evapotranspiration

Several works on estimation of evapotranspiration have been described in Chap. 2.
One way to calculate water demand by the plants is using the estimation of water
loss by the plants. Estimation of evapotranspiration in different species grown in
greenhouse were developed: In ornamental plants [25], in tomato [206, 419, 422], in
geranium [279, 374], and in cucumber [271], among others.

Irrigation management should be done with the information coming from the
climate sensors and that provided by the user, from which evapotranspiration can be
estimated.

An important point in this strategy is the estimation of LAI,whichmay be obtained
from the user (measured offline) or by using some model. Other parameters are
the dose of irrigation and desirable drainage level. The controller calculates the
transpiration rate, the accumulated amount of water lost by evapotranspiration since
the last irrigation, compare it to the previously set dose and when the transpiration
integral equals the fixed dose activates irrigation. This type of strategy has been used
in NFT [170] in tomato crop in which the model underestimated the amount of water
required by the crop by 10–31%. It was also used in rockwool substrate and the
model underestimated the water required by up to 21% [170]. The application of
irrigation control using a transpiration model is reported in [150], which seeks the
minimum cucumber crop transpiration.

3.1.3.3 Irrigation Based on Measurements

One option in this type of approach is the log ofmicrometer diameter variations of the
plant, through dendrometers, depending on the hydric status of the plant. It is possible
to use this kind of measurements after treatment of the data as the diameter variations
can also be caused by growth. Such sensors have been used in experimental tests in
tomato [67, 157, 246, 466], ornamental plants [27], melon [466], and pepper [97,
466].

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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The leaf temperature has also been used tomeasure thewater status of the plant that
determines a water stress index, which is feasible to be used for irrigation scheduling.
This technique has the problem of being a late indicator of hydric stress because the
temperature rise happens when partial stomatal closure occurs, taking place subse-
quently to the reduction of other more sensitive processes such as growth by leaf
expansion [133]. In [423] the index of water stress for a kind of grass (Lolium
perenne) was determined using infrared thermometry, while in [294] it was deter-
mined for Impatiens crop in order to set a threshold for irrigation activation, using
limits allowing the users to detect hydric stress 1 or 2days in advance regarding the
visual symptoms.

The thickness of the leaves has also been used in irrigation scheduling [393].
The sensor continuously measures the thickness of the leaf with an accuracy of ±1
micron. It is based on the principle that the thickness of the leaf is correlated with the
potential of turgidity and leaf, and the fact that if the plant is subject to water stress
its turgor decreases. It has been tested in fruit to turn irrigation systems in response
to variations in the thickness of the leaf, producing high frequency and low volume
irrigation, leading to water savings of 30% in citrus tests for 6 years, avocado for 3
years, and cotton during a season [393].

The named sap flow technique obtains direct measurement of flow through the
plant. The sensor is attached to the stem and may restrict growth or cause infections
in heat-based sensors [118]. Some applications to woody plants have been developed
to control irrigation using this technique [126, 311].

Another example of such devices is the development of an integrated system for
measuring physiological conditions of the plant, which is linked to software that
presents information in physiological and agronomic terms, so that the farmer can
be alerted about possible problems in the crop [455]. It allows him tomeasure climate
(solar radiation, temperature and relative humidity), sap flow, stem diameter, fruit
diameter, leaf temperature, moisture, and soil temperature. With this system it is
possible to define climate and irrigation set points using trial and error tests, and also
helps in decision making [454].

3.1.3.4 Irrigation Based on Solar Irradiance

A method widely used in irrigation systems involves the application of irrigation
empirical methods for estimating water demand based on solar radiation. An irriga-
tion threshold is established based on the cumulative radiation. In [309] it is indicated
that irrigation was applied when a threshold of 7 MJ m−2 is reached for pepper crop.
In gerbera crop, the threshold was set in 2 MJ m−2 for irrigation start [236].

3.1.3.5 Irrigation Based on Drainage

The volume of drainage accumulated in a container determines the activation of
irrigation trying to supply the water consumed by the plants. It is widely used in
soilless systems [370].
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Another approach is to measure the EC of drainage, activating irrigation based on
maximum and minimum limits on this variable [46]. A method is described in [144]
where drainage flow and ions are measured using ion-selective sensors, helping in
the determination of volume of water and nutrients concentration to apply.

3.1.3.6 Irrigation Based on Integrated Methods

Irrigation based on integrated methods using models requires knowing the interac-
tions of the water in the plant [210]. The application of integrated methods is based
on models at three levels: Water absorption, water transport in plants, and water loss
to the atmosphere. The models of these processes are essential to enable predicting
accurate dynamics of plant water status and the development of practical irrigation
management systems [210].

The development of a two-dimensional model of water flow on the substrate is
described in [176], where the absorption of nutrients coupled to a model of lettuce
growing in sand substrate is modeled. The supply of water and nutrients is carried
out by estimating the demand by the plant. In [176] absorption of water and nutrients
is described from tomato growth modeling and water flow and nutrients models in
rockwool.

An integrated application was also developed from models of photosynthesis,
transpiration, and nutrient demand; the required amount of water and nutrients by
the plants was calculated based on the greenhouse climate and from that the set
points of irrigation and nutrients were fixed. This procedure was applied to tomato
and pepper crops [222–224].

Another example is Hortimed, which is a decision support system for the man-
agement of hydroponic systems [9]. It consists of two parts: Online and offline man-
agement. The online system operates as the supervisor of other irrigation control
systems and implements the best management based on crop conditions, irrigation
water, climatic conditions, and characteristics of irrigation equipment. The offline
module considers climate inputs, installed equipment, crop production, and salin-
ity tolerance and water resources available to assist in the decision about potential
investments relating to hydroponic systems, so that the farmer can manage several
scenarios.

3.2 Advanced Control Algorithms

3.2.1 Introduction

3.2.2 Adaptive Control of Daytime Temperature

This section presents the development of mixed feedforward-adaptive controllers
(FF-AC) for greenhouse climate control [43]. This type of control strategy is ade-
quate to control greenhouse temperature and humidity as the dynamics are nonlinear
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(e.g., the relation between natural ventilation and temperature) and time-varying
due to several factors such as crop growth, wearing down of constitutive elements,
etc. Previous works in this field [408] used multiple-input multiple-output (MIMO)
linear models for online parameter estimation purposes, requiring the estimation
a large number of parameters (36). The identification in this case is possible if a
sufficient number of variables is monitored and under conditions of persistent exci-
tation. Important nonlinearities such as product modulation of parameters (i.e., win-
dows aspect with wind speed) can be accounted for by input variable transformation
before entering the linearized model. As discussed in Sect. 3.1.2.6, such FF actions
and submodels are recommended due to the complexity of the greenhouse operation.

In the approach presented in this section, the combination of FF and adaptive
feedback schemes and the accounting for humidity control by online set point modi-
fication simplifies the estimation stageof the control algorithmasonly twoparameters
have to be identified. The system should continuously update the model parameters
as the greenhouse properties drift due to physical changes, and also to account for
nonlinearities and model structure inaccuracies. As it is also pointed out in [408],
supervisory mechanisms seem to be necessary for practical purposes. The daytime
climate control will be studied in this section (using natural ventilation as control
input), although results shown are easily applicable to night operation (using heating
system as control input).

During the daytime operation, the changes in vents aperture produce large vari-
ations in the dynamics of the system (the relationship between vents aperture and
inside temperature is not linear), justifying the inclusion of AC schemes. It is even
more interesting to compensate for changes in system dynamics due to crop growth
and plastic cover deterioration, which require the modification of parameters in fixed
parameters control schemes. In fact, many commercial solutions include heuristi-
cally tuned GS controllers to cope with both fast and slow changing dynamics. As
an alternative, AC performs self-tuning of control parameters in the face of changing
dynamics. As has been previously mentioned, a feature of this type of system is that
it is convenient to include a FF term, like that explained in Sect. 3.1.2.6 within the
control scheme to compensate for disturbances acting on the system. In this case, it
can be used even to cancel nonlinearities, in such a way that if the FF controller is
placed in series with the greenhouse, and the variations in inside temperature would
be mainly dependent on vents aperture changes. This is a feature of systems using
solar radiation as themain energy source [71, 74]. The system composed by the series
FF controller plus the plant can then be modeled as a FOPDT system. Figure3.12
shows the control scheme mixing the FF controller with an adaptive one. It consists
of a self-tuning regulator [18] in which the plant to be identified is composed by
the FF controller in series with the system, such that the feedback AC calculates
the reference temperature for the FF term, that also generates the vents aperture to
achieve the desired set point temperature. As the vents are physically constrained,
an antiwindup scheme has to be included (see Fig. 3.10), as has been explained in
Sect. 3.1.2.6.
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Fig. 3.12 AC architecture. Source As a courtesy of the authors [43]

In each sampling time, the AC:

1. Estimates the parameters of the linear model using filtered input (reference tem-
perature for the FF controller) and output (inside temperature) signals. The identi-
fication algorithms used is described in [70] and is based on recursive least squares
(RLS) identification with UDU factorization and variable forgetting factor in
order to reduce the identifier memory and to avoid the identifier gain reaching
zero. A supervisory module has been included to check conditions under which
identification has to be stopped (saturation of the control signal, poor dynamic
excitation, etc.) and to avoid the use of wrong estimated parameters.

2. Adapts controller parameters. The design of the PI controller in discrete time
(GPI(z−1) = (q0 + q1z−1)/(1 − z−1)) has been performed by pole cancelation.
The system between the reference temperature to the FF (UT,ref) and the inside
temperature can be modeled as a FOPDT system G(z−1) = bz−2/(1 − az−1)

with a delay of one sampling time, in such a way that only two parameters have
to be identified (static gain and time constant). If the zero of the PI controller
cancels the system pole (q1/q0 = −a, integral time equal the time constant),
and, for instance, it is imposed that the closed loop system should have two real
poles at the same location, the relationship q0 = 1/4b is obtained, in such a way
that the adaptation mechanism is given by q0 = 1/(4b̂)) and q1 = −âq0, where
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â and b̂ are online estimated by the RLS algorithm (related to static gain ck and
time constant cτ ).

3. Calculation of the control signal by the PI controller.
4. Supervision of the correct control behavior.

Regarding humidity control, the adopted solution has been to modify temperature
set points as a function of the relative humidity (Fig. 3.12), that is, when humidity
surpasses predefined bounds, the set point temperature is changed to help humidity
evolve inside the operational band. More comments on this issue will be done in
Sect. 3.2.9 devoted to switching control strategies.

The combined adaptive-feedforward scheme has been implemented and tested in
simulation to analyze both short-term and long-term performance. On one way, the
behavior of the control scheme has been analyzed during daily operation (fast time
scale) to compensate for changing dynamics induced by operating point changes and
disturbance cycles. The inclusion of a series FF controller serves both to compensate
for disturbances and to perform a pseudolinearization of the nonlinear structure of
the system. Unmodeled dynamics can then be compensated by the action of the
feedback controller. If the FF term perfectly accounted for changes in disturbances,
the inside temperature changes observed would be caused solely by changes in the
control input signal. Although obviously exact elimination cannot be achieved, a
compensation element based on steady state considerations considerably reduces
the major problems inherent in the single input model and permits the successful
estimation of the system parameters. Thus, the FF term serves to preserve the validity
of the assumed system models in the control scheme that uses a SISO description of
the plant [70]. The improvement achieved is not quite high and there are some risks
related to the coupling of system dynamics with adaptation dynamics. Nevertheless,
the inclusion of filters in data entering the identifier and supervisory mechanisms
helps to avoid or diminish these undesirable effects.

On the other side, as the greenhouse dynamics vary during the whole crop cycle
(from 90 to 180days) as a consequence of crop growth (characterized by changes in
LAI) and deterioration of plastic cover and even whitening, the inclusion of adapta-
tion in this slow time scale provides clear benefits, as in other case the parameters
of fixed PI controllers should be manually changed accordingly to drifts in system
dynamics.

The behavior of the control system in the fast time scale (10days) in which the
crop state (represented by the LAI) can be considered constant, can be observed in
Fig. 3.13, which shows the evolution of the representative parameters of a tests with
data of August 2000. The daytime temperature set point was 40 ◦C (quite high due to
extreme outside conditions and closing of the shade screen the second day) to avoid
actuator saturation. The controller was working during the night also to see how
the AW block adequately works even under extreme conditions in which vents are
completely closed duringmore than 8h. This figure also shows environmental condi-
tions during this test. All the filters and supervisory mechanisms were implemented.
The evolution of the estimated parameters is also shown. Figure3.14 displays the
evolution of the inside temperature during a test performed with data of spring 1998.
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The daytime set point temperature was 30 ◦C. As can be seen, the effect of passing
clouds and high wind speed values produced saturation during several parts of the
operation.

The response of the adaptive PI control scheme is acceptable for all the considered
seasons and for both slow and fast time scales (as the behavior is pseudolinearized by
the action of the FF term). Adaptation has the advantage that the change of control
parameters is done in an automatic way (GS being another possibility). Notice that
even in the long-term scale, the LAI of the plants is an input for the FF controller
and thus the adaptation to crop growth can be performed in part by this term. It
is also interesting to comment that the identification mechanism of the self-tuning
controller tends to identify a system with time constants higher than those expected
from step response tests. One possible justification is that one of the supervisory
mechanism activates identification when the control signal (vents aperture) is greater
than zero (to avoid identification windup). This usually occurs when solar radiation
is rising. Although the effect of solar radiation should be compensated by the FF
term, unmodeled dynamics from solar radiation lead to the identification of a slower
system (as the greenhouse integrates solar radiation). Another possible cause of the
drift in the identified parameters may be the selection of the filters of signals entering

Fig. 3.13 Summer tests with the adaptive controller. As a courtesy of the authors [43]
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Fig. 3.13 (continued)
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Fig. 3.14 Spring tests with the adaptive controller. As a courtesy of the authors [43]

the identifier. Nevertheless, the identification of a slower system increases the integral
time of the PI controller leading to a more conservative behavior, which is secure
from the operational point of view.

3.2.3 Feedback Linearization Control of Daytime Temperature

As has been studied in Sect. 3.1.2.6, the complexity of the obtained FF controller
is high due to the implementation of Eq. (3.3) and the use of a static version of the
algorithm tends to provide aggressive control actions. Taking these considerations
into account, a feedback linearization (FL) control strategy can be developed to cope
with the daytime temperature control problem, so that, the full dynamic simplified
model given by Eq. (3.2) is used for control purposes and also a simpler description
of Vven,flux given by Eq. (3.4) is implemented to obtain a less complex controller.
Other examples of the application of FL control of temperature and humidity can be
found in [158, 486].

The ventilation rate model used in this section is given by Eq. (3.4), which is a
simplified version of that used for feedforward purposes. In [326] it is demonstrated
that this simplified model fits well physical-based approaches proposed by other
authors [219]. Figure3.15 shows a plot of the results obtained with this simplified
model when compared with that of [219].

The FL method is an approach to NC design methods where the main idea is
to transform a nonlinear system into a linear one, and thus obtaining a closed loop
dynamics in linear form, so that any linear control method can be applied. The
final approach combines a linear controller with a nonlinear term obtained from the
transformation. Several authors have used this control approach within the field of
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Fig. 3.15 Comparison of empirical and physical models of ventilation rate

greenhouse climate control (e.g. [6, 310]) with different types of models. In this
section, input–output linearization is used to control the greenhouse daytime tem-
perature using the dynamical model shown in Eq. (3.2). In order to analyze the con-
trollability of the plant, the system in Eq. (3.2) has a relative degree equal to one,
the same as the order of the system [410]. For systems that can be represented in
the form Ẋ = f (X) + g(X) U, a nonlinear mapping can be used to transform the
system into a linear one:

U = Ũ − f (X)

g(X)
(3.5)

with the condition that g(X) cannot be equal to zero. A typical choice when using
FL (see Fig. 3.16) consists in selecting:

Ũven = 1

cter,a

(
crs,aDrs,e + ccnv,ss−a(DT,ss − XT,a) + ccnd−cnv,a−e(XT,a − DT,e)

− cter,a
cvol,g

Vven,flux(XT,a − DT,e) − Vlt,vapMtrp,cr

)
(3.6)

so that the resulting linear input–output relationship is represented by a simple inte-
grator. Nevertheless, sometimes it is useful to include in the map only the nonlinear
terms from the right hand side of Eq. (3.2),mainly in the face of unmodeled dynamics,
disturbances affecting the system output and amplitude constraints in the actuators.



3.2 Advanced Control Algorithms 133

Fig. 3.16 Feedback linearization controller

In this case, the following selection is made:

Ũven = cter,a

cvol,g
Vven,flux(XT,a − DT,e) + Vlt,vapMtrp,cr (3.7)

= cter,a
cvol,g

(
cven,ncven,lcven,w Dws,e(αvUβv

ven) + Vloss
)
(XT,a − DT,e) + Vlt,vapMtrp,cr

so that the resulting linear system (considering constant values of the coefficients) is
given by:

cter,a
dXT,a

dt
= crs,aDrs,e+ccnv,ss−a(DT,ss−XT,a)+ccnd−cnv,a−e(XT,a−DT,e)−Ũven

(3.8)
Thus, it is possible to use any linear control method in order to obtain the virtual
signal Ũven, and then the transform given by (3.7) can be applied to obtain the real
control signal Uven.

Uven =
[

1

cven,ncven,lcven,w Dws,eαv

(
cvol,g
cter,a

(Ũven − Vlt,vapMtrp,cr)

(XT,a − DT,e)
− Vloss

)] 1
βv

(3.9)
Notice that input–output linearization can be practically achieved in all those cases in
which the outlet and inlet temperatures are different, which covers all the operation
regimes. Only the plant start-up has to be supervised to avoid numerical problems,
or those cases in which wind speed (Dws,e) is near zero (where the approximation
given by (3.7) is not good, this being the main drawback of this approach). In the
latter, the values of the vents aperture can be either held to the immediately previous
or closed. In order to control the linearized system, a basic PI control structure with
AW mechanism and disturbance compensation using FF control can be used. The
FF part is composed by the terms in Eq. (3.8) including measurable disturbances.
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A first set of parameters for the PI controller were obtained by using the green-
house simulator explained in Sect. 2.1.1.8. A diagram of the final control structure
is shown in Fig. 3.16. A sampling time of 1min was chosen. During the start-up
stage, the outside temperature may be higher than the inside one. This fact may
cause that the temperature difference in (3.9) be negative. For this reason, during
this period the same control structure is used, but the feedback signal used in the
nonlinear mapping is the reference temperature instead of the inside temperature
(dashed line in Fig. 3.16), which has many advantages in this phase. Once the outlet
temperature reaches the reference, the control scheme is switched to nominal state.
The control scheme shown in Fig. 3.16 resembles that of the FF controller analyzed in
Sect. 3.1.2.6 [361], that were also based on a simplified physical model of the system,
but considering steady-state conditions and a more complex expression of Qven,a−e.
Thus, the main difference with the scheme presented in this section is that now an
internal feedback is included both for linearizing and disturbance compensation pur-
poses, providing smother control actions. An AW strategy has also been included to
account for possible saturation of the control signal. The physical limits in the vents
aperture can be dynamically mapped each sampling time into limits of the virtual
control signal Ũven using again the nonlinear mapping represented by Eq. (3.7). As
can be seen, the physical limits of the real control signal are transformed into variable
constraints of the virtual control signal that depend on the operating conditions. This
mechanism has provided very useful results, mainly, during the start-up stage of the
operation. All the disturbances (solar radiation, wind speed and outside temperature)
are adequately filtered before entering the FL mechanism, to avoid sudden changes
in the control signal.

Figure3.17 shows a representative simulation result when applying the explained
technique. As can be seen, the tracking and disturbance compensation properties
of the control scheme are acceptable and disturbances, modeling uncertainties, and
constraints in the actuator are adequately handled by this control technique through
FF action, feedback, and AW, respectively. Notice that using this technique, the con-
troller design can be done using linear techniques. Thus, in this case, the PI controller
parameters can be tuned to achieve different control objectives. As pointed out, the
main drawback of the scheme is the numerical sensitivity inherent to Eq. (3.9) and
the control effort characteristic of FL, being necessary to include a supervisory level
to avoid the evaluation of such expression when wind speed is below a threshold or
when the outside temperature surpasses the inside one. Crop transpiration parame-
ters were estimated by a physical model based on growth and transpiration models
(Eq. (2.44)).

3.2.4 Robust Control of Daytime Temperature

This section deals with the development and implementation of RC techniques based
on the quantitative feedback theory (QFT) aimed at achieving desired values of
inside greenhouse temperature in spite of uncertainties and disturbances acting on

http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
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Fig. 3.17 Simulation results with the feedback linearization controller

the system [284]. From the system dynamics point of view, the greenhouse can be
considered a smooth dynamical system which dynamics are operating point depen-
dent. The classical approach in QFT method is to include the effect of disturbances
as unmodeled dynamics or to formulate the problem as a disturbance rejection one.
In the case of greenhouse climate, the disturbances have the important role of being
the main energy source in the system and thus, they should be exploited to minimize
the energy consumption and to help to achieve the desired set points. A modification
to the standard formulation has been performed to include a FF controller previously
described in Sect. 3.1.2.6 and AW action in combination with the RC to exploit the
effect of measurable disturbances.

Quantitative Feedback Theory (QFT) is a RC design method [189] that uses a two
degrees of freedom (2DoF) feedback scheme (Fig. 3.18), where it is assumed that
the uncertain system is represented by a transfer function P(s) belonging to a set of
plants℘, whileC(s) and F(s) are, respectively, the compensator and precompensator
to be synthesized in order to meet robust stability and performance specifications.

In QFT, closed loop specifications are given in the frequency domain, in terms
of admissible bounds on closed loop transfer functions. Then, specifications are
combined with the uncertainty of the system (given in the form of templates) to
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Fig. 3.18 A 2DoF feedback system

obtain limits or boundaries on the frequency shape of the compensator C(s). In
addition, nominal specifications are used to shape the precompensator F(s).

The inclusion of the FF term described in Sect. 3.1.2.6 in series with the plant
(Fig. 3.10, adding a prefilter F in the reference) helps to explicitly take into account
the measured value of the disturbances in such a way that the control signal provided
by the feedback controller is the reference temperature to the FF term. Notice that if
the model used by the FF term was an exact one, the system constituted by the FF
term in series with the plant should have a steady state gain near unity. Unfortunately,
the simplicity of the models (fixed coefficients) in comparison with a large complex
simulation model of the real system (in which several coefficients change depend on
operating conditions) and the uncertainty in the system (it is impossible to exactly
model the greenhouse dynamics) advices the use of RC techniques to account for
the mentioned sources of uncertainties. To demonstrate this, Fig. 3.19 shows the
results obtainedwhen implementing only the FF term in open loop (without feedback
controller). As can be seen, due to model mismatches the real behavior presents a
different behavior, including offset.

Another feature of the system is that it suffers from frequent saturations of the
input signal (vents) due to disturbances and operating point changes and deficient
sizing of vents (often occurs), strongly limiting the control bandwidth. Due to this
fact, as the controller must include integral action to track the set point temperature,
the use of an AW scheme is of advice. In the classical approach, both the vents
aperture demanded by the control system and that provided by the saturation block
or actuator should feed the AW block. As has been mentioned in the case of FF and

Fig. 3.19 Open loop effect of feedforward action. As a courtesy of the authors [284]
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FL approaches, the problem that arises in this application is that the control signal
provided by the RC is the reference temperature of the FF controller (Fig. 3.10),
which provides the vents aperture depending on the measurements of environmental
variables. So, the first input point to the AW block has been displaced to the output
of the feedback controller. The drawback of this approach when compared to the
classical one is that no conditions can be imposed to guarantee robust stability in the
face of saturations, but the performance can be strongly improved, as it is shown in
the results.

In order to design the RC a relationship between the FF term input and the green-
house output has been found. The input–output description of the system constituted
by the FF term in series with the plant consists of an uncertain first-order system:

P(s) = ck

cτ s + 1
(3.10)

with ck ∈ [0.3, 10] and cτ ∈ [360, 1,080] seconds (the delay of 60s has not been
taken into account as it is smaller than the characteristic time constant).

Due to the uncertainty in the system, RC can be used, and Horowitz’s method is
chosen. The first step in this method is to choose performance and stability specifi-
cations. Figure3.20 shows the performance specifications.

In order to ensure stability of the closed loop, a gain margin of GM = 5 [dB] and
phase margin of PM = 45 [◦] are desired (ω being frequency in rad s−1):

∣
∣
∣
∣

C( jω)P( jω)

1 + C( jω)P( jω)

∣
∣
∣
∣ ≤ 2.3 dB,∀P ∈ ℘,∀ω > 0, (3.11)

with ℘ =
{

ck
cτ s + 1 : ck ∈ [0.3, 10], cτ ∈ [360, 1080]

}
.

Fig. 3.20 Frequency domain specifications. As a courtesy of the authors [284]
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Fig. 3.21 System value sets. As a courtesy of the authors [284]

A controller F, C is designed in order to enclose the closed loop transfer func-
tion T from reference to output between envelopes in Fig. 3.20, and the stability
specification in Eq. (3.11) is achieved, with

T ∈ � =
{

F(s)
C(s)P(s)

1 + C(s)P(s)
: P ∈ ℘

}

. (3.12)

In order to proceed with the design of the controller, the value sets [30], which
describe the system uncertainty in the Nichols chart, are computed (Fig. 3.21).

Taking into account the typical time constants involved in this problem and spec-
ifications, this is a low-frequency problem and so, the selected frequency points
[rad s−1] for the design are W = [0.0001, 0.001, 0.005, 0.01], leading to values of
	|T ( jω)| = [0.0063, 0.6777, 5.5564, 14.7622], respectively.

Using the algorithm in [283], the performance and stability boundaries are
computed, and the nominal open-loop transfer function (Fig. 3.22) using computer
tools [56].

The resulting controller C is given by equation:

C(s) =
(

10 + 0.028

s

)(
0.021

s + 0.021

)

(3.13)

Finally, the precompensator F to achieve the nominal specification is:

F(s) =
(

0.017

s + 0.0017

)

(3.14)

Figure3.23 shows the final result of the design for the considered set of plants ℘.
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Fig. 3.22 Nominal open loop and bounds at design frequencies in W . As a courtesy of the
authors [284]

Fig. 3.23 Closed loop specifications (dashdot) and frequency responses (solid) of the controlled
system. As a courtesy of the authors [284]

Some illustrative results of the proposed approach are shown in Fig. 3.24, which
represents the evolution of a test covering 13 complete days in summer time with a
fixed set point and a shading screen covering the greenhouse. Although the control
scheme has been developed for operation during sun-shining conditions, it has not
been turned off during the night to show the performance of the AW block even
in such strongly adverse situation (the vents are completely closed during the night
and so, large feedback errors feed the controller). The evolution of the outside solar
radiation corresponds to clear-day conditions, except during the fifth and sixth day
in which drops of more than 100 W m−2 occurs. Outside temperature conditions
are also varying and wind velocity experiments quite large variations during all the
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Fig. 3.24 QFT control: Complete 13days simulation. As a courtesy of the authors [284]. a Set
point and inside air temperature (◦C). b Vents aperture (◦). c Global solar irradiance (Wm−2). d
Outside wind speed (ms−1). e Outside temperature (◦C)

days, covering values from 0 to 12m s−1 which largely influence the system behavior
when vents are opened. Due to the size of the figures, a zoom of a region has been
included.

As can be seen, the tracking and disturbance rejection capabilities are adequate in
those cases in which the vents are not saturated. When saturation occurs, no degrees
of freedom are available to control the temperature. After saturation, the performance
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Fig. 3.25 QFT control: Response to set point changes. As a courtesy of the authors [284]. a Set
point and inside air temperatures (◦C). b Vents aperture (◦)

of the system is quite good, as is expected due to the use of the AW scheme. As can be
seen in Fig. 3.24b, the control signal suffers from large excursions covering thewhole
control range. This figure reflects the main drawback of the approach used in this
section: As the controller tends to quickly react to changes in disturbances (mainly
due to the structure of the FF term), the control system is prone to overactuate, thus
increasing electricity costs associated to the motors moving the vents (even when
filtering the disturbances before entering the FF term). The design can be improved by
finding a trade-off between fast tracking and associated costs (by including stronger
filters within the FF term or by including design restrictions in the control effort).

Figure3.25 shows typical responses to set point changes and Fig. 3.26 shows the
disturbance rejection capabilities of the system. Figure3.25 corresponds to wind
speed conditions of 7 m s−1 and clear-day solar radiation between 900 and 1,000
Wm−2. Set point changes of ±2 ◦C have been performed around 33 ◦C. Due to the
nonlinear nature of the system, different closed-loop time constants are obtained, but
lying inside the specifications, even in the case in which the model used to develop
the FF term is not a good approximation of the real system. Figure3.26 shows the
response under passing clouds and varying low wind speed conditions. It can be
seen how the control system quickly reacts to changes in solar radiation in order
to compensate for the temperature drop following a cloud (tracking error less than
0.5 ◦C).

3.2.5 Optimal Control

The problem of optimal control of greenhouse crop growth has been treated in an
excellent way in the book by van Straten et al. [431] using the theory of optimal
greenhouse climate control [22, 132], so this approach is not treated in this book,
where the models and control approaches are different to tackle the greenhouse crop
growth control problem from a hierarchical point of view. Some comments on this
will be given in Chap. 4.

http://dx.doi.org/10.1007/978-3-319-11134-6_4
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Fig. 3.26 QFT control: Disturbance response capabilities. As a courtesy of the authors [284]. a Set
point and inside air temperature (◦C). bVents aperture (◦). c Outside global solar radiance (Wm−2).
d Wind speed (ms−1)

Thebook [431] treats physicalmodelingof greenhouse climate in response to heat-
ing, ventilation, and other control variables with the biological modeling of variables
such as plant evapotranspiration and growth. It includes the design of integrated opti-
mal controllers that exploit rather thanmitigate outsideweather conditions, especially
sunlight, given widely different time scales. The book reviews classical rule-based
and multivariable feedback controllers in comparison with the optimal hierarchical
control paradigm. Relevant references are: [7, 34, 132, 159, 177, 200, 202, 255, 428,
430, 432, 441, 442, 443, 447] and recent developments in that field can be found
in [147].

3.2.6 Model Predictive Control of Daytime Temperature

In this section, several MPC approaches are presented to handle both daytime and
nighttime temperature control of greenhouses. The daytime temperature is controlled
using natural ventilation, while nighttime temperature control is performed using
heating systems.
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3.2.6.1 Daytime Temperature Control Using Generalized Predictive Control

As has been pointed out in previous sections, the climatic control problem in green-
houses is characterized by frequent actuator saturation, due to energy source and
greenhouse structure layout characteristics. An MPC combined with a FF compen-
sator is used in this section to face both disturbance and actuators saturation. As
has been commented in the previous sections, the treatment of input constraints is
usually addressed by means of AW techniques. Taking care about control signal con-
straints is very important when dealing with greenhouses climate control problems,
because actuators suffer saturation continuously during daily operation. Therefore,
this section is focused on the development of a predictive control algorithm (Gen-
eralized Predictive Control GPC is used in this case [73, 91]) in series with the FF
controller developed in Sect. 3.1.2.6 to regulate the greenhouse inside temperature
during the daytime period. The proposed control scheme helps to compensate process
disturbances and adequately manage the input constraints [354]. Since the predictive
control algorithm has not direct access to the control signal, because of the feedfor-
wad is placed in series, a constraintmapping strategy [234, 351] is applied to translate
the real input constraints to restrictions in the FF input along the control horizon,
which can be managed by the predictive control algorithm. Figure3.27 shows the
combination of both systems. In this case, GPC internal model will be obtained tak-
ing into account the whole system shown above (Fig. 3.27). Moreover, as mentioned
previously, adding FF controller to greenhouse in series makes it possible to obtain
whole system linear models with nearly unitary gain and uncertainties that will be
compensated by feedback controller.

GPC uses a model of the process and at each sampling instant, the future out-
puts are predicted for a given horizon (Ŷ (t + j |t), j = 1 . . . N , t being the current
sampling instant) and substituted within an objective function to compute the future
controls (U (t + j |t), j = 0 . . . N −1), while taking process constraints into account.
Following the receding horizon approach, the first control signal calculated is imple-
mented and then the horizon is moved ahead and the procedure is repeated in the

Fig. 3.27 Greenhouse control scheme using constrains mapping
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next sampling instant as the new output is known (all the sequences are updated).
A Controlled Autoregressive Integrated Moving Average (CARIMA) model [91]
has been used obtained from transfer functions relating greenhouse temperature
(Y (t) = XT,a(t)) to changes in reference temperature of FF term (U (t) = UT,ref(t))
and disturbances when operating around a particular set point. Both empirical trans-
fer functions obtained by linearization of the full nonlinear climate model developed
in Chap. 2 [355] have been used and integrated in the CARIMA model:

A(z−1)Y (t) = B(z−1)U (t − 1) + D(z−1)Dm(t) + e(t)

	
(3.15)

where the variable Dm(t) is the measured disturbance at discrete time t , e(t) is a
zero mean white noise, A, B, and D are adequate polynomials in the backward shift
operator z−1, and 	 = 1 − z−1.

The classical GPC cost function has been implemented and constraints have been
taken into account [160].

J =
N2∑

j=N1

δ( j)(Ŷ (t + j |t) − W (t + j))2 +
Nu∑

j=1

λ( j)	U (t + j − 1)2 (3.16)

In this cost function, Ŷ (t + j |t) is an optimal system output prediction sequence
performed with data known up to instant t , 	U (t + j − 1) is a sequence of future
control increments, obtained from cost function minimization, N1 and N2 are the
minimum and maximum prediction horizons, Nu is the control horizon, and λ( j)
and δ( j) areweighting sequences that penalize the future tracking and control efforts,
respectively, along the horizons (in the applications shown in this book δ equals 1 and
λ is a user-chosen constant). The reference trajectory W (t + j) can be the set point
itself or a smooth approximation from the present value of outputY (t) to the set point,
usually implemented as a first-order filter. If no constraints are taken into account,
as the model is linear and the optimization criterion is quadratic, an explicit solution
can be found. Otherwise, a quadratic programming (QP) optimization algorithm is
used [73].

In the daytime greenhouse climate control problem, the main constraint is the
vents aperture:

Uven = 0% ≤ Uven ≤ 100% = U ven (3.17)

As well known, predictive control provides a clear constrains management, as it is
possible to include systematic constraint handling during the design phase. The GPC
algorithm described in the paragraph above is used for this purpose. Nevertheless, in
this case the predictive algorithm uses the reference temperature of the FF controller
as the control input, UT,ref, which has to be mapped into the real control signal (the
vents aperture). This method implies that, although the output constraints do not
vary, the control signal (Uven) constraints must be mapped into virtual signal (UT,ref)
constrains, as done in the case of the FL controller. This idea is shown in Fig. 3.27,

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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where the GPC algorithm provides a vector, UT,ref, with the future predictions of the
reference temperature to the FF controller, which along with the current state and
disturbances, are used to recalculate the mapped constraints, [UT,ref, UT,ref], at each
sampling time [351].

Before addressing the mapping algorithm, it is necessary to obtain the inverse
function providing a mapping between real saturation signals into FF input satu-
ration signals. Using the same approach followed in the development of the FF
controller in Sect. 3.1.2.6 but using the simplified model of ventilation rate given
by Eq. (3.4), already used in the FL control, the following expression can be
obtained relating the vents aperture with the reference temperature to the FF term
(Uven = Φ(UT,ref, Drs,e, XT,ss, DT,e, Dws,e

︸ ︷︷ ︸
Dm

)):

Φ−1(Uven, Dm) = UT,ref = nref

dref
(3.18)

nref = crs,aDrs,e + ccnv,ss−aDT,ss − ccnd−cnv,a−eDT,e

+ cter,a

cvol,g
(cven,ncven,lcven,w Dws,e(αvUβv

ven) + Vloss)DT,e − Vlt,vapMtrp,cr

dref = ccnv,ss−a − ccnd−cnv,a−e + cven,ncven,lcven,w Dws,e(αvUβv
ven) + Vloss

There are different ways to solve the mapping problem of combining predictive
and feeforward control techniques considering input constraints. A simple solution
would be to place a conservative limit on the range of the virtual control signal so the
system never reaches saturation. This choice could be applied when FF input to the
real control signal mapping varies within a narrow range, that is, low disturbances
variability:

U T,ref = Φ−1(U ven, Dm)

U T,ref = Φ−1(U ven, Dm) (3.19)

However, if the FF input signal limits are not properly chosen, the control may be
too conservative or too aggressive. Second, alternative lays on obtaining, for each
instant in the control horizon, a pair of virtual saturation limit values usingGPC future
control signals to get future narrowest constraint bands. Assuming GPC algorithm is
developed using a linear system, the objective lays on finding future constraints over
UT,ref (see Fig. 3.27) along control horizon, the control signal sequence generated
by GPC at t − 1 can be described as [234, 351]:

UT,ref(t −1|t −1) = [UT,ref(t −1|t −1), UT,ref(t |t −1), . . . , UT,ref(t +Nu −2|t −1)]
(3.20)

whereas the first element in sequence UT,ref(t − 1|t − 1) is used to evaluate the
control signal Uven(t − 1) by means of Φ transformation, the following elements
may be used to make estimations of the future state variables (using an estimation of
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future disturbances, usually considering them equal to the last measured value) from
the discretized version of the linear system describing system dynamics, as shown
in [351]. Therefore, each constraint band value can be obtained as a solution of the
optimization problem described in [351] and considering the different disturbances
constant along the control horizon. This solution can be represented as:

UT,ref = Φ−1(max (U ven, Φ(UT,ref)))

UT,ref = Φ−1(min (U ven, Φ(UT,ref))) (3.21)

After performing several tests in open loop, the GPC internal model was approx-
imated as a FOPDT system representing the FF controller in series with the real
plant. GPC parameters were obtained by testing and resulted in N1 = 2, N2 = 8,
Nu = 6, δ = 1, and λ = 1, with a sampling period of 1min. In order to show
the advantages of the control solution, the results are compared to the case where
conservative constraints are considered along the horizon. For this study, the cho-
sen simulation disturbances correspond to data recorded on April 6, 2009, where
disturbances for 2 full days are evaluated. Figure3.28 shows the control results for
these 2days using both strategies, GPC+FFwith constant constrains mapping using
conservative limits in the GPC control signal, and on the other hand, GPC+FF with
online constrains mapping. As it can be seen from the figure, both control strategies
work properly reaching the reference signal despite of the changing disturbances.
The main difference between both cases can be observed at the beginning of the
steps. The case with constant mapping is lower saturated because of the conservative
limits. However, the GPC+FF using online mapping reaches the reference softly
without going into saturation, since the saturation limits are changing depending on
the inner temperature and disturbances values. Real results of the application of this
approach can be found in [354].

The previous control strategy can be modified to try to better account for mea-
surable disturbances in the prediction horizon. This GPC control architecture can
be extended using DES (see Sect. 2.4.2) technique to perform future disturbance
estimation [322]. In what follows, the disturbance models are obtained, validated,
and embedded within a GPC controller to compensate for future disturbances. The
proposed system is comparedwith a typical GPCwithout FF action, the GPCwith FF
considering constant disturbances in the future explained in the previous paragraphs,
and a GPC with FF taking the original real data in the future. The proposed control
scheme is tested by simulation of a greenhouse inside temperature control. The
obtained results show that the GPC with disturbance forecasting provide improved
behavior that standard techniques.

As has been mentioned in Sect. 2.4.2, there are many methods to estimate dis-
turbances and they can be characterized by the prediction horizon length and the
selected methodology. The prediction horizon can vary depending on the application
and it can be considered as short-term for prediction up to 60min [345], or long-term
forecast for hourly, daily, andmonthly prediction values [270]. On the other hand, the
disturbance variables are usually represented as time-series structures due mainly to

http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
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Fig. 3.28 Simulation results with GPC control. As a courtesy of the authors [354]

their stochastic behavior. Time-series models are one of the ways to estimate future
values of disturbances. These models are obtained using past data and are used to
estimate the future behavior along a prediction horizon [345]. Time-seriesmodels are
based on the assumption that the modeled data are autocorrelated and characterized
by trends and seasonal variations. Thus, well-known autocorrelated models (ARMA,
ARIMA, ARMAX, ARIMAX) could be also used for disturbance estimation [345].
Furthermore, ANN also provides a good solution to perform estimations because its
design is based on training and no statistical assumptions are needed for the source
data.
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The DES technique explained in [323] is used here for short-term disturbance
estimation and it is described by the following equations [297]:

S(t) = αdDm(t) + (1 − αd)(S(t − 1) + M(t − 1)) (3.22)

M(t) = γd(S(t) − S(t − 1)) + (1 − γd)M(t − 1) (3.23)

where Dm(t) is actual disturbance signal value, S(t) is the unadjusted forecast, M(t)
is the estimated trend, αd is the smoothing parameter for data, and γd is the smoothing
parameter for trend. Note that the current value of the series is used to calculate its
smoothed value replacement in DES. The one-period-ahead forecast is given by:

D̂m(t + 1) = S(t) + M(t) (3.24)

and the j-periods-ahead forecast is given by:

D̂m(t + j) = S(t) + j M(t) (3.25)

There are a variety of schemes to set initial values for S(t) and M(t) in double
smoothing, but for this section S(t0) = Dm(1) and M(t0) = (Dm(1) + Dm(2) +
x Dm(3))/3 have been chosen as suggested in [297]. The first smoothing equation
adjusts S(t) directly for the trend of the previous period, M(t − 1), by adding it to
the last smoothed value, S(t − 1). This helps to eliminate the lag and brings S(t)
to the appropriated base of the current value. Then, the second smoothing equation
updates the trend, which is expressed as the difference between the last two values.
The equation is similar to the basic form of single smoothing, but here it is applied
to the updating of the trend. The values for αd and γd ∈ (0, 1) can be obtained via
optimization techniques as described in [297].

The GPC approach has been the same described by cost function (3.16) and
CARIMA model (3.15). When using this model to obtain a prediction of the system
output in the prediction horizon, the second term of the right hand of Eq. (3.15) will
include the effect of future measurable disturbances. In some cases, when related to
the process load, future disturbance are known. In other cases, they can be predicted
using trends or other means. If this is the case, the term corresponding to future deter-
ministic disturbance can be computed. If the future load disturbances are supported
to be constant and equal to the last measured value (i.e., Dm(t + j) = Dm(t)), then
	Dm(t + j) = 0 and the second term of this equation vanishes. Notice that this
is not the case of the work presented in this section, since future behavior of the
disturbances will be estimated using the DES technique.

Consider a set of N ahead predictions [73] with different prediction (N = N2),
control (Nu), and disturbance estimation (Nd) horizons [322]:
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(3.26)

g0…gN−1 being the step response coefficients of the system, h0…hN−N1 the coeffi-
cients of the system step response to the disturbance, and f1… fN the free response
coefficients of the system.

If future disturbances are knownor can be estimated, bymakingF′ = H	Dm + F,
the prediction equation is now:

Y = G	U + F′ (3.27)

which has the same shape as the general prediction equation used in the disturbance-
free case. The future control signal can be found in the same way simply using
as free response the process response due to initial condition (including external
disturbances) and future “known” disturbances [73].

In order to implement this technique, the inside temperature greenhouse process
is considered as MISO (Multi Input Single Output) system, where soil temperature
(Dm1(t) = DT,ss(t)), solar radiation (Dm2(t) = Drs,e(t)), wind velocity (Dm3(t) =
Dws,e(t)), outside temperature (Dm4(t) = DT,e(t)), and vents opening percentage
(U (t) = Uven(t)) are the input variables and the inside temperature (Y (t) = XT,a(t))
is the output variable (see Fig. 3.29). In this case, only vents opening variable can be
controlled and the rest of variables are considered measurable disturbances. Notice
that wind velocity is characterized by fast changes in its dynamics, solar radiation
is a combination of smooth dynamics (solar cycle) and fast dynamics (caused by
passing clouds). Soil temperature and outside temperature are characterized by slow
changes. Aswas presented in previous section, GPC scheme can considermeasurable
disturbances, but to take the full advantage of this feature is necessary to “know” the
future disturbances.
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Fig. 3.29 Greenhouse’s process model with disturbances for daytime temperature control. As a
courtesy of the authors [322]

Considering all mentioned process properties, the CARIMA model can be
expressed as follows:

A(z−1)Y (t) = B(z−1)U (t − 1) +
4∑

i=1

Di (z
−1)Dmi (t) + e(t)

	
(3.28)

Many experiments have been carried out through several dayswhere a combination of
PRBS and step-based input signals were applied at different operating points. It was
observed that the ARX model using AIC as information criterion (see Sect. 2.1.3.2)
presents better adjustment to the dynamic behavior of the real system. This fact is
confirmed by cross-correlation and residuals analysis, obtaining best-fit model of
92.53%. The following discrete-time polynomials were obtained as the results of
estimation around 25 ◦C (see Fig. 3.29):

A(z−1) = 1 − 0.3682z−1

B(z−1) = −0.0402z−2 − 0.0027z−3

D1(z
−1) = 0.1989z−2 + 0.0924z−3 + 0.1614z−4

D2(z
−1) = 0.0001z−1 + 0.0067z−2 + 0.0002z−3

D3(z
−1) = −0.0002z−1 − 0.3618z−2 + 0.0175z−3

D4(z
−1) = 0.0525z−1 + 0.3306z−2 + 0.0058z−3

Forecasting results: To perform the forecasts, theDES technique is used. Thismethod
has been implemented to estimate the future Nd values for each measurable dis-
turbance. This action is repeated every sampling period for each disturbance vari-
able obtaining the corresponding future forecast vectors Dm1 …Dm4. The matrices
H1 …H4 are calculated containing the coefficients of the system step response to the
disturbances. Then, thesematrices are included in the calculation of the free response
F′ = H + F, where H = H1	Dm1 + H2	Dm2 + H3	Dm3 + H4	Dm4.

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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Fig. 3.30 Example of online prediction with the DES technique. As a courtesy of the authors [322]

Figure3.30 shows the online prediction performed every sampling period for the
different disturbances.Notice that a low-pass filter is used tofilter all the realmeasure-
ment before the DES processing due to noisy measurements. As it can be observed,
variables with lower changing dynamics have been predicted with better accuracy.
Wind velocity signal is characterized by a very noisy dynamics, and its prediction
performance is worst but still acceptable [323]. It can be observed that future predic-
tion (green line) acts as a filtered version of the real signal and approximates properly
the future evaluation for each measurable disturbance (red line).

Control simulation results: To show the benefits of GPC control scheme with consid-
eration of measurable disturbances, four control architectures have been simulated



152 3 Climate and Irrigation Control

in order to compare the results and observe the advantages of the proposed control
scheme:

• “GPC”—generic GPC algorithm without consideration of measurable distur-
bances.

• “GPC + const.”—GPC controller with disturbance models (implicit FF action)
and the disturbance is kept constant along the prediction horizon.

• “GPC + real”—the real future values of the inputs variables (taken from the
acquired data at the greenhouse) are provided in order to obtain optimal predictions
(implicit FF action).

• “GPC + DES”—the GPC controller with disturbance models (implicit FF action)
where the disturbances are estimated with the DES technique.

The simulations have been performed for 19days from winter season with different
disturbance profiles. Temperature set point was set to 25 ◦C for daytime period. The
controller parameters were set to N1 = 1, N = Nd = 40, Nu = 10, λ = 1, and
δ = 1. The GPC parameters have been selected after different simulations to provide
good performance and the prediction horizon N = 40 to cover a time window
in which disturbances may vary significantly. The DES technique parameters were
αd = 0.99 and γd = 0.1.Due to physical limitation of actuators, GPC control scheme
was implemented with constrains on control signal: 0 < U (t) < 100% ∀t using QP
optimization.

Figure3.31presents the control results for the 14day.This day is characterizedby a
moderatewind speed and a clear sky. For this day, as expected, “GPC” schemeobtains
the worst performance. “GPC+const.” slightly improves the results from generic
GPC, but the best performance is obtained for the controllers considering future
knowledge of the disturbances. Analyzing the control signals, it can be observed that
the controllers using information about the future behavior of disturbances react in
advance to those without using future disturbance information.

Figure3.32 shows the control results for 18th day, during this day the solar radi-
ation was highly altered by passing clouds, what had direct influence on greenhouse
inside temperature. As in the previously analyzed day the controllers with the future
disturbance information obtains better results than “GPC” and “GPC+const”. Pass-
ing clouds produce control signal change, and as can be observed “GPC+DES”
reacts faster than other controllers. Also for this simulation day, “GPC+DES” con-
troller shows that disturbance rejection can be improved by the estimation of future
disturbances.

The control performance along the nineteen simulation days is summarized in
Table3.4, where the IntegratedAbsolute Error (IAE) is used as performance index. In
this study, the prediction horizon N = Nd has been modified in order to observe how
this modification affects to the future disturbances estimations and system perfor-
mance.Notice that as the prediction horizon increases, better performance is obtained
for those techniques considering future knowledge of the disturbances. Table3.4
shows that “GPC+DES” presents the best result even outperforming “GPC+ real”.
This somewhat surprising fact may be related with the future degrees of freedom
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Fig. 3.31 Details of control performance for the 14day. As a courtesy of the authors [322]
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Table 3.4 Performance comparison using the IAE index for the 19th simulation days with Nu = 10

Prediction horizon GPC GPC+constant GPC+ real GPC+DES

10 2275.0 2198.9 1931.1 1915.7

15 1971.1 1887.1 1472.3 1420.1

20 1848.1 1760.7 1260.0 1149.7

25 1794.4 1705.4 1163.3 992.0

30 1770.1 1680.4 1121.3 899.5

35 1759.0 1669.0 1103.4 844.5

40 1753.9 1663.7 1096.6 812.8

(control moves) required to account for changes in future values of the fourth dis-
turbances. The filtering effect introduced by the DES technique helps to reduce
control variability (the real disturbance signals contain local variations along the
prediction horizon requiring more control effort). In Table3.4 it can be observed that
when N decreases, the performance of GPC+ real and GPC+DES converge. For
Nu = Nd = N = 40, GPC+ real provides a value of the IAE index of 1,068, while
GPC+DES provides 737. The comparison of both techniques depends on the values
of the tuning knobs used in the GPC algorithm.

The previous results can be even improved by taking into consideration the
approach presented in [317], where first, it is analyzed how the unconstrained GPC
algorithmwith implicit disturbance compensation can be interpreted as a typical feed-
back plus FF control scheme, where the main feature is that the FF action includes
future estimations of the measurable disturbances. Then, it is shown that classi-
cal GPC cannot always eliminate the effect of measurable disturbances even using
perfect disturbance models and having exact disturbance estimations along the pre-
diction horizon. To overcome this problem, a particular GPC-tuning condition is
proposed, which allows the improved GPC controller to eliminate the disturbance
effect even in those cases where causality and instability problems can appear in
the relation between the dynamics of the load disturbance and the process output
with the dynamics of the control signal and the process output. Since the new tuning
condition for disturbance compensation in GPC leads to a high bandwidth in the
feedback loop, a two degrees of freedom control scheme within the Filtered Smith
Predictor (FSP)-based GPC framework can be implemented to improve the robust-
ness capabilities of the control law. In [317], results in greenhouse climate control
problem are provided.

3.2.6.2 Daytime Temperature Control Using Nonlinear MPC Based
on a Volterra Series

This section summarizes the design of a nonlinear model predictive control (NMPC)
strategy for greenhouse temperature control using natural ventilation. The NMPC
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strategy is based on a second-order Volterra series model (Sect. 2.1.3.4) identified
from experimental input/output data of a greenhouse in [154].

Theuse of a nonlinearmodel changes the predictive control problem fromaconvex
quadratic program to a nonconvex nonlinear problem, which is much more difficult
to solve. Furthermore, in this situation there is no guarantee that the global optimum
can be found, especially in real-time control, when the optimum has to be obtained
in a prescribed time. The solution of this problem requires the consideration (and
at least a partial solution) of a nonconvex, nonlinear problem (NLP), which gives
rise to computational difficulties related to the expense and reliability of solving the
NLP online. Nevertheless, when the process is described by a Volterra series model,
efficient solutions for the MPC problem can be found [114, 252, 263]. This solution
makes use of the particular structure of the model, giving an online feasible solu-
tion. The main advantage about the use of Volterra series models relies on the fact
that being a natural extension of linear convolution models, they are quite straight-
forward to obtain from input/output data without any prior consideration about the
process-model structure. Being linear in the parameters, Volterra series models can
be identified using the LS method. Hence, in this section the ability to capture non-
linear dynamics of the process by a Volterra series model and its use in NMPC of
the greenhouse temperature are shown. Preliminary versions of this work presented
a Volterra series model of the greenhouse climate only for autumn seasons [156],
which was used to design an NMPC strategy being validated by simulations for this
same period [153].

A SISO second-order Volterra series model, with the truncation of terms (trun-
cation orders N1 and N2), is defined by Eq. (2.77). Analogously, a second-order
Volterra series model with 1 input and n measurable disturbances can be given by:

Y (t) = h0 +
N1,u∑

i=1

au(i)U (t − i) +
N2,u∑

i=1

N2,u∑

j=i

bu(i, j)U (t − i)U (t − j) (3.29)

+
n∑

m=1

N1,dm∑

i=1

adm (i)Dm(t − i) +
n∑

m=1

N2,dm∑

i=1

N2,dm∑

j=i

bdm (i, j)Dm(t − i)Dm(t − j)

where Dm represents the measurable disturbances, and N1,dm and N2,dm denote the
corresponding truncation orders. The linear and nonlinear truncation orders with
respect to the input U are denoted with N1,u and N2,u , respectively. The linear and
nonlinear input term parameters are denoted with au(i) and bu(i, j), respectively. In
the sameway, the parameters adm (i) and bdm (i, j) are used in the linear and nonlinear
terms depending on the disturbances Dm .

In this application, the Almería-type greenhouse has been used and thus the
opening of the roof and lateral windows has been regarded as a combined variable.
The main variables considered for modeling purposes are the greenhouse temper-
ature, input aperture of the roof and lateral windows, outside temperature, outside
wind speed, soil surface temperature, and outside global solar radiation. The model
(3.29) has been defined with one input and n = 4 disturbances. The wind direction

http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
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has not been considered here as measurable disturbance because the greenhouse used
in this work only has roof vents oriented to the West with high-density anti-insect
screens, what decreases the wind effect on the ventilation process and thus the wind
direction influence is despicable.

In order to identify the parameters of the Volterra series model of the greenhouse
temperature, experimental data of autumn (from August to February) and spring
(from March to June) seasons from 2007 and 2008 have been used [154]. A second
set of experimental data of a long season from September 2008 to June 2009 has
been used for validation purposes. The used sets for identification and validation have
rich input signals, necessary for the identification of a second-order Volterra series
model. The sample time for both sets was 1min and the data of the wind speed and
the global solar radiation were filtered through a first-order filter with a time constant
of 5 min before using them for calibration purposes. The data used for identification
and validationwere normalized to the interval [0, 1]. To identify the parameters of the
Volterra seriesmodel, both LSmethods and constrained nonlinear optimization using
sequential quadratic programming (SQP) have been used. The procedure followed
to select the truncation orders is explained in [154], where simulation results are also
shown.

The future output of the identified nonlinear model (3.29) with the prediction
horizon N , the control horizon Nu and the truncation order Nt can be calculated in
matrix form as:

Y = GuU + Fu + c (3.30)

where here U is the future input sequence in this case Y the predicted output vector
(both of length N ) and the term c contains only terms which do not depend on the
current or future inputs, as usual in the MPC formulation. The term GuU represents
the linear part depending on the future input. Analogously, the vector Fu contains the
future–future cross terms depending on the input sequence U. For the future values
of the disturbances, constant values are assumed in this application (equal to the last
measured value).

For the design of a MPC strategy based on the identified second-order Volterra
series model (3.29), the following general MPC optimization problem is considered:

U∗ = arg min
U

J, s.t. RU ≤ r (3.31)

where the variable to be optimized is the future input sequence U and general linear
inequality constraints are considered described by matrix R and vector r which
dimension equals the number of constraints [160]. J is the typical cost function
defined in Eq. (3.16). With the prediction model (3.30) based on a second-order
Volterra series model and the cost function (3.16), an iterative approach to calculate
the control action has been chosen. This approach, originally presented in [114,
263], represents an unconstrained NMPC. This approach has been modified in [154]
to consider constraints in the input sequence to be optimized as well as a weighting
for the control increments. For more details about this method see [154].
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The proposed controller was implemented in Matlab/Simulink and used with a
sampling time of ts = 1min, corresponding to the sampling time used during the
identification. The prediction and control horizons were chosen in such a way that
the length of the considered dynamic behavior corresponds to the time constant of
the identified model. Finally, based on the used truncation orders of the Volterra
series model, values of N = 9 for the prediction horizon and Nu = 9 for the control
horizon were chosen, respectively. The weighting factor used in the control strategy
was set to a value of λ = 0.01 and constraints both in the control signal and its
increments were considered:

0% ≤ U (t + i |t) ≤ 100%, i = 0, . . . , Nu − 1
−25% ≤ 	U (t + i |t) ≤ 25%, i = 0, . . . , Nu − 1

(3.32)

The constraints in the control signal and its increments have been chosen according
to the physical limitations of the actuators. The lower and upper bounds of the control
signal represent completely closed or openedwindows. The constraints in the control
increments were necessary as the windows need time to completely open or close.
Furthermore, the following hysteresis

U (t |t) =
{

U∗(t |t) if |U∗(t |t) − U (t − 1)| ≥ ε

U (t − 1) if |U∗(t |t) − U (t − 1)| < ε
(3.33)

for the control signal has been used reducing the number of control changes in order to
preserve the electricmotors of the roof and lateralwindows.With the given hysteresis,
the control signal calculated by the controller is applied only if the difference to the
last applied control signal is greater or equal than ε. Otherwise, the control signal
applied in the previous sampling period will be applied again in the current sampling
period. Based on the range of the input signal (from 0% to 100%) and the experience
with the real system, a value of ε = 3% has been used.

After validation the proposed control algorithm in simulation [154], several tests
were carried out in autumn and winter yielding promising results. Figure3.33 shows
the control results and the main system disturbances for the test performed in the
period of 19–24 January 2010. It is important to mention that the presented results
have been obtained with a tomato crop inside the greenhouse. During the shown
experiment, the set point was set to 24 ◦C for most of the days and it was changed to
22 ◦C between days 2 and 3 in order to evaluate the reaction of the control algorithm.
As it can be observed from the figure, the control algorithm properly follows the
set point despite of system disturbances. Notice that most of the experiments are
under cloudy days and with important variations in the wind speed. In the first day,
the control system is not able to reach the set point. The reason is because it is a
very cloudy day and thus there is not enough energy source to increase the inside
temperature. Notice also how the control algorithm closes the windows in order to
try increasing the controlled variable. On the other hand, during the third day, the
inside temperature is slightly over the set point for all the day. The control algorithm
fully opens the windows in order to decrease the inside temperature and the control
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Fig. 3.33 Experimental results of the proposed controller for the period of 19–24 January 2010.
From top to bottom: Output XT,a (greenhouse temperature) and desired reference, inputUven (aper-
ture of the roof and lateral windows) and disturbances DT,e (outside temperature), Dws,e (outside
wind speed), Drs,e (outside global solar radiation), and DT,ss (soil surface temperature). Courtesy
of the authors [154]

signal is saturated all the time. However, there is nothing to do since it is a warm
day and the air exchange through the windows is not enough to decrease the inside
temperature below the desired set point.

3.2.7 Model Predictive Control of Nighttime Temperature

3.2.7.1 Nighttime Temperature Control Using Generalized Predictive Control

This section presents the application of MPC strategies to two types of heating sys-
tems: Aerial pipes near the ground or benches and fan heater units. Results in the
Almería-type greenhouse are provided. Several authors have used different green-
house heating climate control strategies (mainly by aerial pipes). In [461, 462],
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several PI control structures were tested and compared to model reference AC in a
Venlo greenhouse with tomato crop, showing good steady-state behavior but large
overshoots without optimizing efficiency. In [104], a cascaded PI control is intro-
duced and tested in a Venlo greenhouse improving the results obtained with classical
PI control. In [482], a PIP control scheme is used with a model of a Venlo green-
house, while Tantau and co-workers [439, 440, 119] used FF controllers and extended
linearized predictive controllers obtaining also acceptable results. In [49, 93] both
PID and GPC controllers were used in a tunnel greenhouse in Portugal, obtaining
better results with the GPC approach, accordingly with the results of [296] in cold
climates. The most relevant experiences with receding horizon optimal controllers
have been reported by van Straten and co-workers [428, 429, 430, 432, 441, 442,
443], demonstrating the feasibility and features of this kind of control technique in
a Venlo greenhouse in the Netherlands. Seginer and co-workers [159, 200] studied
different techniques using linear programming and Pontryagin’s principle to min-
imize heating costs. In [215] the integration of heating within a hierarchical crop
production control scheme is treated. Many authors only report results in simulation.
Gain-scheduling control algorithms are explained in [215], without providing exper-
imental results. Decentralized MPC controllers have been tested under simulation
by [235], while [327] used several MPC control schemes, including embedded FL
and RC. In [7] neural network based predictive controllers and optimal controllers
are used to cope with the temperature control problems.

As seen before, many authors have selected MPC techniques for heating control
purposes. There are some reasons which may justify the use of a MPC scheme when
controlling greenhouse heating, as the problem is not only related with a classical
regulatory control loop, but also to the costs associated to the control actions (fuel
consumption). In this sense, the use of a cost function as that used byMPC algorithms
helps the costs associated to the control actions to be taken into account. Although the
delay time in this kind of applications is lower or of the same order of the dominant
time constant of the system, it influences the consumption.Moreover, althoughmany
control strategies can cope with the disturbance rejection problem (mainly changes
in outside temperature and wind speed), MPC approaches offer a natural way to
deal with FF control. System constraints can be taken into account in the design and
optimization process.

Commercial hot-water heating systems are usually controlled by proportional
or cascaded PI+parallel FF controllers to cope with outlet disturbances like those
shown in Fig. 3.2, while on/off control with dead zone is used in forced-air heaters.
Commercially available control algorithms have been described in horticultural
engineering textbooks (e.g., [215]). Although this system is nonlinear [355], it can
be linearized when operating around a set point for control purposes, as a FOPDT
system. The same conclusions can be obtained when linearizing a model of the
system obtained from physical principles [355]. Notice that disturbances affect the
heating performance. During the night, the greenhouse looses heat through the cover
(conduction-convection), depending on the outside temperature and wind speed.
Thus, ideally the controller must take into account the outside climatic conditions
to calculate the water temperature in the pipes. Transfer functions can also be found
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Fig. 3.34 Branch-and-bound GPC. As a courtesy of the authors [342]

relating these disturbances to changes in inside air temperature, to be used for FF
control purposes. In other cases, a FF term based on first principles models can also
be used [361].

In order to control heating systems based on aerial pipes, both a classical cascade
control and a classical GPC control approach [91] defined by cost function (3.16) has
beenused including constraints in the actuators. For controlling the forced-air heaters,
due to the discrete nature of the actuator, two possible ways of implementation
have been considered, providing very similar results: A branch and bound strategy
previously used by the authors within the control of photobioreactors framework [40]
and a PWM (pulse width modulation) approximation in which the activation of the
actuator is done between4min (1%) and10min (100%)using a control timeof 1min.
When the tracking error is negative the control is switched off. Figure3.34 shows
the basic MPC strategy taking into account the discrete nature of the control signal
in this problem. The predictions along the prediction horizon using possible input
values in the control horizon are used to evaluate the following objective function:

J =
N2∑

N1

(Ŷ (t + j |t) − W (t + j))2 +
Nu∑

j=1

λ( j)U (t + j − 1)2 (3.34)
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Fig. 3.35 Results under heating pipes cascade control. As a courtesy of the authors [342]. a Inside
air temperature evolution. b Pipes temperature evolution

Y ≤ Ŷ (·) ≤ Y , U (·) ∈ {U , U } = {0, 1}, 	U (·) ∈ {	U ,	U } = {0, 1},
{0, 1} : {off, on}. Those future input values (and associated predictions) minimizing
the cost function are selected and only U (t) is implemented at the current sampling
time. In this case, the values of the control actions have been used (weighted by the
control effort weighting factor λ) as they are related with the costs associated to fuel
consumption. Figure3.34 illustrates the basic idea of this technique for the control
space discretized into two alternatives (on/off control) and lower prediction horizon
N1 = 2.

Illustrative results of heating with aerial pipes: Figure3.35 shows the results when
controlling the greenhouse using the control scheme in Fig. 3.2, saturating the pipes
temperatures at a maximum of 55 ◦C during three nights. Two kind of linearized
models have been used to design the controllers: A first-order linear model relating
inside temperature with heating has been obtained for an operating point defined
by heating status (set point) and outside disturbances (temperature and wind speed
levels), thus no explicit models of the disturbances have been considered. In a sec-
ond stage, approximated linear models of how disturbances affect the inside tem-
perature have been obtained using LS identification over a set of data. In both cases
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acceptable results have been obtained when the linearized models have been used
to design the controllers. The tuning of the master controller has been done using
open loop Ziegler–Nichols rules around an operating point of 17 ◦C, with a mean
wind speed of 6ms−1 and with an outlet mean temperature of 11 ◦C (typical in the
area from December to February). A proportional gain of 12.8 and an integral time
of 300min have been obtained. The same procedure has been used to tune the slave
controller. As seen in the figure, the results are quite acceptable as in this case the
actuator is continuous and the control scheme is appropriate for this kind of appli-
cation, although it should be desirable to diminish the variance of the temperature
signal. A classical constrained GPC strategy has been also implemented to calculate
the desired temperature of the water pumped through the pipes using the same linear
models. The parameters of the GPC are: N1 = 11, N2 = 30, Nu = 30, δ = 1 and
λ = 0.001. The sampling time is 1 min and the control signal has been saturated

Fig. 3.36 Results under heating pipes GPC control. As a courtesy of the authors [342]. a Inside
air temperature evolution. b Pipes temperature evolution
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to 55 ◦C. The unknown outside conditions over the prediction horizon have been
considered constant and equal to the actual measured value. Other different con-
troller configurations have been tested obtaining similar results. Figure3.36 presents
illustrative results during four nights (the last one leading to actuator saturation). As
is to be expected, the differences between both techniques are not quite considerable,
although the predictive nature of the GPC algorithm and the fact that the constraints
surpassing can be anticipated produce slightly better results that can help to save
energy.

Illustrative results of heating with forced-air heaters: In this case, the tuning knobs
of the GPC algorithms were selected taking into account the characteristic dynamics
of the system (static gain 0.04 ◦C%−1, time constant of about 15 min, representative
delay of 2 min and settling time of 30 min): N1 = 3, N2 = 30 and Nu = 30. After
several simulations and real tests, the selected values are: N2 = 10 and Nu = 6, as
no improvements are observed when increasing these values. The value of N2 is a
trade-off between tracking characteristics and number of activations of the controller.
As in the previous case, two kind of implementations have been done, one without
explicitly taking into account disturbances (then the model is only valid for a range
of operating conditions) and other including the linear models of the disturbances
within the GPC framework. In this last case, again the unknown outside conditions
over the prediction horizon have been considered constant and equal to the actual
measured value. Obviously, the DES method could also be used here to improve
disturbance estimation.

Figure3.37 shows a typical profile of the control using an on/off controller with
dead zone of ±0.5 and sample time of 10 min. Many tests have been performed
modifying the activation time till the minimum allowed by the vendor (4 min) and
similar results have been obtained regarding number of commutations and activation
times. Figure3.38 shows representative results of the performance of the GPC-PWM
controller (similar to those of the branch-and bound algorithms). This controller

Fig. 3.37 On/off control with dead zone. As a courtesy of the authors [342]
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Fig. 3.38 Results using the GPC-PWM.As a courtesy of the authors [342]. a Inside air temperature
evolution. b Continuous control signal. c Discrete control signal
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Fig. 3.39 Comparing GPC-PWM and PI. As a courtesy of the authors [342]

helps to achieve about 20% of saving in fuel consumption, although it has been
observed that, even using different tuning knobs in the GPC algorithm and different
sample times and dead-zones in the on/off control, the GPC controller produces
more commutations and less consumption than the on/off controller, the number of
commutations being within the ranges recommended by the supplier. As an example,
during a typical night the number of minutes during which the heating system is on
with the on/off control is 221 min (11.27 e cost), while with the GPC controller is
164 min (8.36 e cost). There might also be effects on the crop, but not evident on
the relatively short time scales used here.

It is common textbook knowledge that almost any control scheme will do better
than an on/off control scheme. So, the comparison of MPC with an on/off controller
may not be very convincing (despite decades of research, this point has not yet been
fully accepted in horticultural industry, e.g., forced-air heaters still have on/off con-
trol, today). The effects of outdoor weather conditions such as outdoor temperature
and wind speed have a relatively low-frequency behavior and a simple well-tuned
PI algorithm could in principle do the job equally well. For instance, in Fig. 3.39,
a comparison between the responses of a PI-PWM+AW controller and that of a
GPC-PWM controller without incorporating models of the disturbances are shown
using a validated nonlinear model of the greenhouse [355] explained in Chap. 2. As
can be seen, at the beginning of the night the GPC controller anticipates the control
action, while at the end of the night the control signals are similar in the case of
PI and GPC controllers, and thus the operating costs. This is an expected result as
the PI and the GPC are based on the same model and no input or output constraints
are violated, although in this case the λ parameter tuning modulates the trade-off
between costs and tracking. The advantages of GPC are more evident when reliable
system and disturbance models are used and the operating conditions are such that
minimum inside temperature constraints are violated.

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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3.2.8 Event-Based Control of Daytime Temperature

Event-based sampling and control has been receiving special attention since the last
few years due to the necessity of reducing the exchange of information between sen-
sors, controllers, and actuators, aimed at extending the lifetime of battery-powered
wireless sensors, to reduce the computational load in embedded devices, or to cut
down the network bandwidth [275]. In contrast to traditional computer control sys-
tems where the controller acts synchronously using a predefined sample time, the
event-based control (EBC) systems is the proper dynamic evolution of the system
that decides when the next control action will be executed, and thus the sampling
period is governed by system events, and it is called event-based sampling. Under an
event-based sampling framework, information is transmitted only when a significant
change exists in the signal that justifies the acquisition of a new sample.

Traditionally, greenhouse installations require a great effort to connect and distrib-
ute all the sensors and data acquisition systems. These installations need many data
and power wires to be distributed along the greenhouses making the system complex
and expensive. For this reason, and others such as unavailability of distributed actu-
ators, only individual sensors are usually located in a fixed point of the greenhouse
selected as representative of greenhouse dynamics. On the other hand, the actuation
system in many greenhouses are usually composed of mechanical devices controlled
using relays, being desirable to reduce the number of commutations of the control
signal from security and economical point of views. The greenhouse climate control
can be represented as an event-based system, where low-frequency dynamics vari-
ables have to be controlled and this control usually acts against events governed by
external disturbances. In the last few years, the authors have developed some applica-
tions in collaboration with other colleagues where wireless sensor networks (WSN)
are used in a combination with event-based sampling and control approaches within
the greenhouse climate control problem [127, 313, 314, 316–322]. As result, reduc-
tions by more than 80% on the number of changes in the control signal were reached
in comparison with traditional time-based controllers. This result is a key issue for
greenhouses since it helps decreasing electricity costs and increases the actuator life-
time. This section summarizes the application of an event-based predictive control
algorithm for the greenhouse diurnal temperature control problem, which includes
a combination of all the event-based sampling and control approaches developed by
the authors and coworkers in this topic [313, 315, 316].

The control approach is composed by a complete event-basedGPCcontrol scheme
that considers both sensor and actuator deadband at the same time [315]. This event-
based structure is built first for the sensor deadband approach [316], and addition-
ally, the actuator deadband in the optimization procedure for the developed con-
trollers [313]. In this way, an event-based GPC controller manages two sources of
events, related to process output and input, respectively. Thus, the complete event-
based GPC control structure has two additional tuning parameters, βy and βu , which
determine the deadband for the sensor and the actuator, respectively. Each of these
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Fig. 3.40 Event-based control approach; tk refers to time of events and t to discrete time (samples)

tuning parameters can be used to obtain the desired trade-off between control per-
formance and the number of events for the sensor and the actuator, independently.

The EBC structure used is shown in Fig. 3.40, where C represents an EBC and
P(s) the controlled process. In this configuration, two types of events can be gener-
ated from u-based and y-based conditions. In the developed application, the actuator
possesses a ZOH (Zero Order Hold), so the current control action is maintained until
the arrival of a new one.

The u-based criterion is used to trigger the input side event, Eu , consisting of
the transmission of a new control action, U (tk), when it is different enough (bigger
than a threshold βu) with respect to the previous control action. On the other hand,
the y-based condition will trigger the output side event, Ey , when the difference
between the reference W (t) and the process output is out of the limit βy . The adaptive
sampling technique with deadband sampling/updating is used for y-based and u-
based conditions [328].

Since the u-based condition is related to the actuator and the y-based condition
with the sensor, three approaches to perform EBC strategies can be established:
Sensor deadband approach, actuator deadband approach, and complete event-based
approach.

3.2.8.1 Sensor Deadband Approach for Event-Based Control

In a generalway, anEBCconsists of twoparts:An event detector and a controller [15].
The event detector deals with informing the controller when a new control signal
must be calculated due to the occurrence of a new event. In this case, the controller is
composed of a set of GPC controllers, in such a way that one of themwill be selected
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according to the time instant when a new event is detected, such as described below.
This scheme operates using the following ideas [316]:

• The process output is sampled using a constant sampling time tbase at the event
generator block, while the control action is computed and applied to the process
using a variable sampling time, t f , which is determined by an event occurrence.

• t f is multiple of tbase (t f = f tbase, f ∈ [1, nmax]) and verifies t f ≤ tmax, being
tmax = nmaxtbase the maximum sampling time value. This maximum sampling
time will be chosen to maintain a minimum performance and stability margins.

• tbase and tmax are defined considering process data and closed loop specifications,
following classical methods for sampling time choice.

• After applying a control action at time t , the process output is monitored by the
event generator block at each base sampling time, tbase. This information is used
by the event detector block, which verifies if the process output satisfies some
specific conditions. If these conditions are satisfied, an event is generated with a
sampling period t f and a new control action is computed. Otherwise, the control
action is only computed by a timing event, at tk = t + tmax.

• Notice that according to the previous description, the control actions will be com-
puted based on a variable sampling time, t f . For that reason, a set of GPC con-
trollers is used, where each GPC controller is designed for a specific sampling
time t f = f tbase, f ∈ [1, nmax]. On the other hand, resampling of the signals is
necessary to avoid undesirable jumps in the control action at each change among
controllers.

As pointed out above, the proposed control structure is based on the use of theGPC
algorithm as the feedback controller. Specifically, a set of GPC controllers is used to
implement the proposed strategy, one for each sampling time t f , f ∈ [1, nmax]. Each
individual controller in that set is implemented as a classical GPC algorithm. The
GPC controller consists of applying a control sequence that minimizes a multistage
cost function defined by Eq. (3.16), which in this case has the form [316]:

J =
N f
2∑

j=N f
1

δ f [Ŷ f (t + j |t) − W (t + j)]2 +
N f

u∑

j=1

λ f [	U f (t + j − 1)]2 (3.35)

where Ŷ f (t + j |t) is an optimum j step ahead prediction of the system output on
data up to time t , 	U f (t + j − 1) are the future control increments and W (t + j)
is the future reference trajectory, considering all signals with a sampling time t f

(t = kt f , k ∈ Z+). Moreover, the tuning parameters are theminimum andmaximum

prediction horizons, N f
1 and N f

2 , the control horizon, N f
u , and the future error and

control weighting factors, δ f and λ f , respectively [316]. The objective of GPC is
to compute the future control sequence U f (t), U f (t + 1), . . . , U f (t + N f

u − 1) in
such a way that the future plant output Y f (t + j) is driven close to W (t + j). This
is accomplished by minimizing J .
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Signal sampling and resampling technique: Such as described above, the computation
of a new control action is done with a variable sampling period t f . So, in order
to implement the GPC control algorithm, the past values of the process variables
and of the control signals must be available sampled with that sampling period t f .
Therefore, a resampling of the corresponding signals is required, such as described
in the following.

Resampling of process output: As discussed previously, the controller block only
receives the new state of the process output when a new event is generated. This
information is stored in the controller block and is resampled to generate a vector Yb

including the past values of the process output with tbase samples. The resampling
of the process output is performed by using a linear approximation between two
consecutive events, and afterward this linear approximation is sampled with the tbase
sampling period, resulting in Y b(k) with k = 0, tbase, 2tbase, 3tbase, . . . . Once the
process output signal is resampled, the required past information must be obtained
according to the new sampling time t f , resulting in a new signal, Y f , with the past
information of the process output every t f samples. Hence, a vector Y f is obtained
as a result, which contains the past process information with the new sampling period
t f to be used in the calculation of the current control action.

Reconstruction of past control signals: The procedure is similar to that described
for the resampling of the process output. There is a control signal, U b, which is
always used to store the control signal values every tbase samples. Nevertheless, the
procedure for the control signal is done in the opposite way than for the process
output. First, the required past information is calculated and afterward the signal
U b is updated. Lets consider that a new event is generated, which results in a new
sampling period t f = f tbase. Now, the past information for the new sampling period,
t f , is first calculated from the past values in U b and stored in a variable called U f

p.

Afterward, this information, together with the past process output data given by Y f ,
will be used to calculate the new control action, U f (t f ) = U b(k). Once the new
control action has been calculated, the U b signal is updated by keeping constant the
values between the two consecutive events.

3.2.8.2 Actuator Deadband Approach for Event-Based Control

The main idea of this approach is to develop a control structure where the control
signal is updated in an asynchronous manner. The main goal is to reduce the num-
ber of control signal updates, saving system resources, retaining acceptable control
performance. Therefore, this section will focus on the actuator deadband approach,
which tries to face these drawbacks regarding control signal changes. The actuator
deadband can be understood as a constraint on control signal increments 	U (t):

|	U (t)| = |U (t − 1) − U (t)| � βu (3.36)

where βu is the proposed deadband.
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The introduced deadband, βu , will be used as an additional tuning parameter
for control system design, to adjust the number of actuator events (transmissions
from controller to actuator). In this section, the presence of the actuator deadband is
included into the controller design procedure in order to improve the EBC system
performance.

The methodology presented here consists of the actuator virtual deadband into
the GPC design framework [313]. The deadband nonlinearity can be handled
together with other constraints on controlled process. The deadband can be expressed
mathematically with a hybrid design framework developed by [36], that translates
discrete rules into a set of linear logical constraints. The resulting formulation con-
sists in a system containing continuous and discrete components, which is known as
a Mixed Logical Dynamic (MLD) system [36] (MLD systems will be treated with
more detail in Sect. 3.2.9).

Let us introduce two logical variables, ϕ1 and ϕ2, to determine a condition on
control signal increments,	U (t). So, these logical variables are used to describe the
different stages of the control signal with respect to the deadband, as following:

x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

	U (t) : 	U (t) � β

0 : 	U (t) � β

0 : 	U (t) � −β

	U (t) : 	U (t) � −β

∣
∣
∣
∣
∣
∣
∣
∣

ϕ2 = 1
ϕ2 = 0
ϕ1 = 0
ϕ1 = 1

(3.37)

To make this solution more general, minimal m and maximal M values for control
signal increments are included into the control system design procedure, resulting in
M = max{	U (t)} and m = min{	U (t)}. In this way, it is possible to determine the
solution region based on binary variables. Figure3.41 shows the virtual deadband
in a graphical form, where each region can be distinguished. Thus, the proposed

m M

m

M

0111 1202

x

u

Fig. 3.41 Control signal increments with deadband
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logic determined by Eq. (3.37) can be translated into a set of mixed-integer linear
inequalities involving both continuous variables, 	U ∈ R, and logical variables
ϕi ∈ {0, 1}. Finally, a set of mixed-integer linear inequalities constraints for the
actuator deadband are established as:

	U − (M − β)ϕ2 � β

	U + (M + β)ϕ1 � M
	U − Mϕ2 � 0

−	U + (m + β)ϕ1 � β

−	U − (m − β)ϕ2 � −m
−	U + mϕ1 � 0

ϕ1 + ϕ2 � 1

Mixed-integer quadratic programming-based design for control signal deadband—
The reformulated hybrid input constraints presented above are integrated in the GPC
optimization problem, where the resulting formulation belongs to a mixed-integer
quadratic programming (MIQP) optimization problem.
In the case where the control horizon is Nu > 1, the corresponding matrix becomes:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1D 0D −(M − β)D
1D (M + β)D 0D
1D 0D −MD

−1D (m + β)D 0D
−1D 0D −(m − β)D
−1D mD 0D
0D 1D 1D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
C

⎡

⎣
	Ud
ϕ1d
ϕ2d

⎤

⎦

︸ ︷︷ ︸
x

�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

βd
Md
0d
βd

−md
0d
1d

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
ρ

where D is a matrix (Nu × Nu) of ones and d is a vector of ones with size (Nu × 1).
The previous matrices that contain linear inequality constraints can be expressed

in a general form as

Cx � ρ (3.38)

with x = [xc, xd ]T , where xc represents the continuous variables 	U , and xd are
those of the logical variables ϕi . Introducing the matrix Q(3Nu×3Nu) and l(3Nu×1)
defined as:

Q =
⎡

⎣
H 0 0
0 0 0
0 0 0

⎤

⎦ ; l =
⎡

⎣
b
0̂
0̂

⎤

⎦ (3.39)

where 0 = Nu × Nu , 0̂ = Nu × 1 both of zeros, H and b are a matrices used in
classical QP optimization, the GPC optimization problem is expressed as:
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min
x

xT Qx + lT x (3.40)

subject to (3.38), which is a MIQP optimization problem [36]. The optimization
problem involves a quadratic objective function and a set ofmixed linear inequalities.
Moreover, the classical set of constraints, R	u ≤ r can also be included into the
optimization procedure, introducing an auxiliary matrix R̂ of the form [R 0 0], where
0 is a matrix of zeros with the same dimensions that R̂. Finally, all constraints that
must be considered into the optimization procedure are grouped in:

[
C
R̂

]

x �
[

ρ

r

]

In such a way, the event-based GPC with actuator deadband obtains optimal control
signal values considering established deadband and classical constraints.

3.2.8.3 Complete Event-Based GPC Scheme and Results

The complete event-based GPC control scheme considers both sensor and actuator
deadband at the same time [315]. To perform such an EBC structure, it is necessary to
build the control structure introduced for the sensor deadband approach.Additionally,
the developed controllers consider the actuator deadband in the optimization proce-
dure. In this way, an event-based GPC controller manages two sources of events,
related to process output and input, respectively. Thus, the complete event-based
GPC control structure has two additional tuning parameters, βy and βu , which deter-
mine the deadband for the sensor and the actuator, respectively. Each of these tuning
parameters, can be used to obtain the desired trade-off between control performance
and the number of events for the sensor and the actuator, independently.

In this configuration, the process output is sampled using the intelligent sensor,
where the deadband sampling logic is implemented. When one of the conditions
becomes true, the event generator transmits the current process output to the controller
node. The usage of the sensor deadband allows one to reduce the process output
events, Ey . Afterward, the received information in the EBC node triggers the event
detector to calculate the time elapsed since the last event. The obtained time value
is used as the current sampling time and the corresponding controller is selected to
calculate a new control signal. Because the virtual actuator deadband is also used in
such a configuration, the corresponding constraints on the control signal are active
for all controllers from the set. In this way, the resulting control signal takes into
account the deadband and makes the reduction of process input events Eu possible.

The whole EBC scheme was applied to the greenhouse inside temperature con-
trol problem. The simulations have been performed using the TrueTime MAT-
LAB/Simulink toolbox. TrueTime is a tool developed to simulate real-time sys-
tems, networked control systems, communication models, and wireless sensor net-
works [82].



174 3 Climate and Irrigation Control

To compare classical time-based (TB) and event-based (EB) configuration a spe-
cific performance indexes for this type of control strategieswere considered [328]. As
a first measure, the IAE is used to evaluate the control accuracy IAE = ∫∞

0 |E(t)|dt .
The IAEP compares the EBC with the time-based control used as a reference
IAEP = ∫∞

0 |YTB(t) − YEB(t)|dt , where YTB(t) is the response of the time-based
classical GPC. An efficiency measure index for EBC systems can be defined as
NE = IAEP

IAE . Additionally, Ey and Eu measurements are considered to show the
number of events for the process output and input, respectively.

The greenhouse inside temperature problem, used as the test bench, can be con-
sidered as a MISO system such as presented in Sect. 3.2.6, which is summarized in
the Fig. 3.29 and described by the CARIMA model presented in (3.28).

The event-based GPC control structures were implemented with the following
parameters. The sensor deadband configuration was implemented with tbase = 1
min, tmax = 4 min, nmax = 4, and thus t f ∈ [1, 2, 3, 4]. The control horizon was
selected to N nmax

u = 5 samples. The prediction horizon was set to N c
2 = 20 min in

continuous time, and the control weighting factor to λ f = 1.
For the actuator deadband configuration, simulations were performed for the fol-

lowing system parameters: N2 = 10, Nu = 5, and λ = 1. The minimum and
maximum control signal increments of the vents opening percentage were set to
m = −20% and M = 20%, respectively. The actuator virtual deadband was set to
βu = [0.1, 0.5, 1, 2] in order to check its influence on the control performance.

The complete event-based GPC considers actuator and sensor deadbands at
the same time. In this case, the control system configuration is as follows: tbase
= 1 min, tmax = 4 min, nmax = 4, and thus t f ∈ [1, 2, 3, 4]. The control horizon
was selected to N nmax

u = 5 samples, the prediction horizon was set to N c
2 = 20, and

the control signal weighting factor was adjusted to λ f = 1. In this configuration,
the actuator virtual deadband was set to βu = [0.1, 0.5, 1] and the sensor deadband
βy = [0.2, 0.5].

Due to the physical limitation of the actuator, all controllers consider constraints
on the control signal 0 ≤ U (t) ≤ 100%.

Table3.5 collects performance indexes for all analyzed control configurations for
19 simulation days (using real data for disturbances) and Fig. 3.42 shows graphical
results for a representative day. As can be observed, the deadband values have a direct
influence on the control performance obtained for the different configurations. The
event-based GPC with sensor deadband is characterized by an important reduction
for process output events Ey , where the number of events depends directly on the
deadband value. For this event-based configuration, the sensor deadband value rep-
resents a desired trade-off between control performance and number of events (see
Fig. 3.42). The event-based GPC with actuator deadband is characterized by accept-
able control performance for most of the tested deadband values, which is confirmed
by the performance indexes from Table3.5. Interesting results for this configuration
are obtained for βu = 1, where IAE increases about 15.9%, an event reduction of
the order of 74% is obtained. Likewise in the previous configuration, the deadband
value can be tuned to obtain a desired process input event reduction at an acceptable
control accuracy. On the other hand, even the smaller actuator deadband, βu = 0.1,
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Table 3.5 Numerical results of the event-based GPC control scheme for 19days

Deadband Performance indexes

βu βy IAE Eu Ey IAEP NE

TB – – 2,275 5,173 5,173 – –

EB – 0.1 2,292 4,383 4,383 715 0.31

– 0.2 2,343 3,829 3,829 727 0.31

– 0.5 2,799 2,656 2,656 1,013 0.36

– 0.75 3,283 2,161 2,161 1,457 0.44

0.1 – 2,277 4,665 5,173 12 0.01

0.5 – 2,352 2,694 5,173 300 0.13

1 – 2,637 1,317 5,173 845 0.32

2 – 4,457 453 5,173 2,894 0.65

0.1 0.2 2,307 4,411 4,530 489 0.21

0.1 0.5 2,525 2,991 3,049 486 0.19

0.5 0.2 2,416 3,435 4,271 717 0.29

0.5 0.5 2,516 2,792 3,005 492 0.19

1 0.2 2,597 2,028 4,957 939 0.36

1 0.5 2,998 2,165 2,693 800 0.26

results in an important event reduction, Eu , where savings of 9.9% are achieved
compared to the time-based GPC.

The complete event-based configuration merges the advantages of both previ-
ously introducedmethods. In the resulting configuration, the process input and output
events can be tuned independently using the actuator or the sensor deadband, respec-
tively. The analyzed scheme is characterized by acceptable control performance and
obtains minimum and maximum IAE values between 1.4 and 33.6% higher than
the TB configuration. For the configuration with [βy = 0.5, βu = 0.5], the best
trade-off between control performance and the number of events was obtained. In
this case, IAE increases 10.6%, while Ey and Eu were reduced by about 41.3 and
46%, respectively. The bottom graph on Fig. 3.42 shows how events are generated
for this configuration.

3.2.9 Switching Control Approaches for Combined Daytime
and Nighttime Temperature Control

To account both for daytime and nighttime greenhouse climate control, the previously
explained adaptive and predictive control strategies can be used. The system dynam-
ics at this level can be described with hybrid models that arise due to the different
modes of operating/controlling the greenhouse climate (heating and ventilation). As
a result, different choices for the state of the system can be considered where inner
temperature, solar radiation, and optimized set points will act as logical conditions
in the description of the hybrid system. The hybrid dynamics are described both in a
general way and using aMLD representation, this result being useful for control pur-
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Fig. 3.42 Comparison of control results for different GPC configurations for a representative day
[315]

poses in the greenhouse climate control community [165, 362]. A different switching
approach evaluated in simulation can be found in [232, 474].

The switching operation modes may arise due to changes in the actuator, and thus
in the source supplying the energy to the process under control. These changes in the
operation mode may occur in the day/night transition or along the nominal daytime
and nighttime operation due to the operating conditions or control objectives, and also
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due to the crop evolution (slow time scale) requiring changes in the climate control
policies. If the temperature set point or the inner temperature are outside certain
security limits, the heating and ventilation systems will have to switch along the day;
such security limits will take different values for the day and the night. The daytime
and nighttime set points can be modified based on the humidity specifications [237].
So, the modified set points could reach low values during the night being difficult
to track them using only heating, or high values during the day being also hard to
reach them using the ventilation system. Therefore, some extreme situations could
cause the commutation of the heating and ventilation system along the day. Note that,
usually these two actuators never will be turned on together because their effects are
the opposite.

In order to include this switchingphenomenon into the control systemarchitecture,
a supervisory layer is devoted to detect when the commutation between the control
systems must be performed, in such a way that the full temperature dynamics can
be expressed as a hybrid system with the temperature set point, the heating control
signal, the ventilation control signal, and the disturbances as inputs, where the system
dynamics are switched based on the combination of the solar radiation (day or night),
set point temperature, and the inner temperature. The greenhouse dynamics are thus
represented as an hybrid system, which also expresses as a MLD system, where
two different discrete variables produce the operation mode changes [362]. Other
approaches can be found in [336].

In order to control temperature using natural ventilation, the adaptive plus FF
control scheme explained in Sect. 3.2.2 can be used (see Fig. 3.12) [43]. The scheme
to control temperature using heating has been explained in Sect. 3.2.7 [342].

Regarding humidity, the greenhouse air water content control has two main draw-
backs previously commented in this text: The temperature and the humidity closely
interact with each other presenting a correlation coefficient higher than −0.9. On
the other hand, in order to control both variables, the same actuators are used (vents
and heating). When the heating system is turned on, the vents are closed, so there is
no mixing between the outside and inside of the greenhouse. The water content in
the greenhouse air is constant, so if the temperature raises then the relative humidity
decreases. In the opposite case, if the vents are opened (the heating system is turned
off) the temperature decreases, but the water content of the internal air also decreases
because there is a mixing with external air, generally with a humidity lower than that
of the inside greenhouse air.

There exist several methods to control the humidity [215]; the modification of
the nighttime and daytime temperature set points based on the priority given to
humidity has been selected in this section [362]. This method consists in adapting
the temperature set points in order to keep humidity in a specific range. So, the control
schema described above have a supervisory control to modify the temperature set
point based on the humidity control. As commented previously, the temperature
control is usually performed using ventilation during the day and heating during the
night. However, situationsmay occur being necessary to switch between both control
systems along the day. For example, the relative humidity could increase too much
in nighttime periods because the transpiration is stimulated under high-temperature
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Fig. 3.43 Limits in the reference temperature for detecting changes in the dynamic behavior

conditions. Therefore, it should be necessary to remove the water vapor using the
vents, and thus an additional nighttime set point is predetermined in order to force
the use of the ventilation. On the other hand, the daytime set point can be modified
to force the use of the heating system during the day in order to decrease the relative
humidity or stimulate the photosynthesis if the greenhouse air temperature is very
low. In summary, if the modified temperature set point or the inner temperature are
outside certain security limits, the heating and the ventilation systems will have to
switch along the day. Note that such security limits will take different values for
the day and the night (see Fig. 3.43). In order to include this switching phenomenon
in the control system architecture, a supervisory layer is devoted to detect when
the commutation between the control systems must be performed considering a
combination of the solar radiation, the inner temperature, and the humidity-based
modified set point (see Fig. 3.44).

To account for the switching nature described in previous paragraphs, the hybrid
systems framework can be used [362], as done in Sect. 3.2.8, by considering the
greenhouse as a dynamical systemwhose state has two components: One that evolves
in a continuous set such as Rn (typically, according to a differential or difference
equation) and another one that evolves in a discrete set such asN (typically, according
to some transition logic-based rule). Perhaps the simplest model for a hybrid system
is of the form [251]

Ẋ(t) = fσ(t)

(
X(t)

)
, X ∈ R

n,

σ (t) = limτ→t− φ(X(τ ), σ (τ )), σ ∈ N.
(3.41)

where X = xc and σ = xd denote the continuous and discrete components of the
state, respectively. Usually, { fp : p ∈ P} is a family (normally finite) of sufficiently
regular functions from R

n to R
n that is parameterized by some index set P , and

σ : [0,∞) → P is a piecewise constant function of time, called a switching signal.
Standard assumptions in this context are that the solution X(t) is everywhere con-
tinuous and that there are finite switches in finite time [251]. The particular value for
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Fig. 3.44 Hybrid control scheme. As a courtesy of the authors [362]

σ may be chosen by some higher process, such as a controller, computer, or human
operator, in which case the system is said to be controlled. It may also be a function
of time or state or both, in which case the system is said to be autonomous.

A relevant framework for the representation of hybrid systems is themixed logical
dynamical (MLD) systems [36]. The MLD framework tries to specify the evolution
of continuous variables through linear dynamic discrete-time equations, of discrete
variables through propositional logic statements and automata, and the mutual inter-
action between the two. The key idea of the approach consists of embedding the
logic part in the state equations by transforming Boolean variables into 0–1 inte-
gers, and by expressing the relations as mixed-integer linear inequalities. Therefore,
MLD systems are capable to model a broad class of systems arising in many applica-
tions: Linear hybrid dynamical systems, hybrid automata, nonlinear dynamic systems
where the nonlinearity can be approximated by a piecewise linear function, some
classes of discrete event systems. The general MLD representation is given by

X(t + 1) = AX(t) + G1U(t) + G2δ(t) + G3Z(t)

Y(t) = HX(t) + D1U(t) + D2δ(t) + D3Z(t) (3.42)

subject to
E2δ(t) + E3Z(t) ≤ E1U(t) + E4X(t) + E5

where X ∈ R
nl × 0, 1nl is a vector of continuous and binaries states, U ∈ R

mc ×
0, 1ml are the inputs, Y ∈ R

pc × 0, 1pl the outputs, δ ∈ 0, 1rl , Z ∈ R
rc represent

auxiliary binary and continuous variables respectively, which are introduced when
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transforming logic relations into mixed-integer linear inequalities, and A, G1, G2,
G3, H, D1, D2, D3, E1, E2, E3, E4, E5 are matrices of suitable dimensions.

In short, hybrid dynamics deals precisely with systems that result from the inter-
connection of differential equations with logic-based decision rules. This section is
devoted to show that the greenhouse climatic control problem can be described as a
hybrid system, where ventilation and heating dynamics are switched. First, it will be
shown that the greenhouse dynamics can be represented in the form of (3.41) as an
autonomous hybrid system, where two different discrete variables produce the oper-
ation mode changes. Afterward, the hybrid dynamics will be expressed as a MLD
system.

In the temperature control problem in a greenhouse, heating dynamics and venti-
lation dynamics are switched during the day and the night based on the value of the
temperature set point, the inner temperature, and several security limits. Typically, as
has been previously explained, the switching between ventilation and heating, that
is, the change of the energy source, is performed at dark and at dawn, in such a way
that the heating system is working only during the night and the ventilation system
is only working during the day. So, in this case the dynamics change is based on the
solar radiation. However, there exist some situations where heating has to be used
during the day and ventilation during the night, thus producing a commutation in the
representative dynamics of the system. For instance, and as commented previously,
the temperature set points (possibly optimized by the hierarchical layer explained in
Chap. 4) are modified in order to keep the inner humidity within some specific lim-
its. Therefore, it could be possible that after such modification, the new required set
point takes too high values during the day or too low values during the night, being
difficult to reach them using the ventilation and heating systems, respectively (see
Fig. 3.43). In these cases the ventilation and heating dynamics should be switched in
order to follow the new temperature references.

As described in previous sections, the greenhouse temperature dynamics can be
represented as a set of several subdynamics including the effect of the heating system,
the ventilation system, and disturbances such as outside temperature, wind speed,
and solar radiation. The effect of the different disturbances can be represented as
follows:

ẊT,a−rs = ArsXT,a−rs + BrsDrs,e;
YT,a−rs = CrsXT,a−rs + ErsDrs,e (3.43)

ẊT,a−ws = AwsXT,a−ws + BwsDws,e;
YT,a−ws = CwsXT,a−ws + EwsDws,e (3.44)

ẊT,a−Te = ATe XT,a−Te + BTe DT,e;
YT,a−Te = CTe XT,a−Te + ETe DT,e (3.45)

where XT,a−rs, XT,a−ws, XT,a−Te , YT,a−rs, YT,a−ws, YT,a−Te represent the states and
outputs of the dynamical system representing the influence on the inner temperature
due to solar radiation, wind speed, and outside temperature respectively. Drs,e is

http://dx.doi.org/10.1007/978-3-319-11134-6_4
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the solar radiation, Dws,e the wind speed, DT,e the outer temperature, and Ax , Bx ,
Cx , and Ex are matrices of corresponding size. The proposed extended vector Xd
including the disturbance dynamics is defined as

Xd = [XT,a−rs XT,a−ws XT,a−Te ]� (3.46)

Then, the effect of disturbances can be expressed in the following way

Ẋd = AdXd + BdDm (3.47)

Yd = CdXd + EdDm (3.48)

whereAd,Bd,Cd, andEd are diagonal matrices easily obtained from (3.43) to (3.45),
and Dm = [Drs,e Dws,e DT,e]� is the vector of measurable disturbances.

Certainly, and considering that ventilation and heating systems are usually not
used together (as was justified in previous comments), the greenhouse temperature
dynamic behavior is mainly described by two switched dynamics, heating dynamics,
and ventilation dynamics, both affected by the previous disturbances (see Fig. 3.44).
Therefore, the inner temperature will be represented by XT,a−v or XT,a−h when
the ventilation or heating systems are working, respectively. Such dynamics can be
represented as follows

ẊT,a−v = AvXT,a−v + BvUven + ϑx ;
YT,a−v = CvXT,a−v + EvUven + ϑy (3.49)

ẊT,a−h = Ah XT,a−h + BhUT,heat + ϑx ;
YT,a−h = Ch XT,a−h + EhUT,heat + ϑy (3.50)

where ϑx = Ẋd, ϑy = Yd, and Uven and UT,heat are the ventilation and heating
control signals, respectively.

Hence, considering the different dynamics described above, a preliminary repre-
sentation for the switched inner temperature dynamics, XT,a, is described as follows:

ẊT,a = (αAv + (1 − α)Ah)XT,a + αBvUven

+(1 − α)BhUT,heat + ϑx (3.51)

YT,a = (αCv + (1 − α)Ch)XT,a + αEvUven

+(1 − α)EhUT,heat + ϑy (3.52)

with α ∈ [0, 1], which is the discrete variable leading the commutation between both
dynamics.

As described previously, the main objective is to regulate the inner temperature to
a specific reference. Therefore, the following variable change X̃T,a = XT,a − Tref is
considered, in order to include the reference as an input signal in the previous system
description
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˙̃XT,a = AT X̃T,a + (AT − I )Tref + αBvUven + (1 − α)BhUT,heat + ϑx (3.53)

YT,a = CT X̃T,a + CT Tref + αEvUven + (1 − α)EhUT,heat + ϑy (3.54)

where AT = (αAv + (1 − α)Ah), CT = (αCv + (1 − α)Ch) and I is the identity
matrix of the corresponding size.

In summary, the full temperature dynamics can be expressed as a hybrid system
with the temperature set point, the heating control signal, the ventilation control
signal, and the disturbances as inputs, where the system dynamics is switched based
on the combination of the solar radiation (day or night), set point temperature, and
the inner temperature. Hence, and such as it can be observed from Fig. 3.44, the full
hybrid description of the system can be expressed in the form of (3.41) as follows:

˙̃XT,a = AT X̃T,a + [(AT − I )Tref αBv (1 − α)Bh]
⎡

⎣
Tref
Uven

UT,heat

⎤

⎦+ ϑx (3.55)

YT,a = CT X̃T,a + [CT αEv (1 − α)Eh]
⎡

⎣
Tref
Uven

UT,heat

⎤

⎦+ ϑy

subject to

η = XT,rs < XT,rs

α = (∼η ∧ Tref ≤ Tref ∧ XT,a ≥ Tref)∨
∨ [η ∧ (Tref ≤ Tref ∨ (Tref ≥ Tref ∧ XT,a > Tref))]

where η indicates the nightfall and [Tref, Tref] the set point limits which influence on
the use of the ventilation during the night, and the use of the heating system during
the day.

A graphical representation of the switched dynamics can be observed in Fig. 3.45,
where the full dynamics commutation is provided and [Tref, Tref] limits have been
set to [20, 30] ◦C for daytime and [10, 20] ◦C for nighttime periods, respectively.

As commented above, MLD representations are becoming a standard way to
model hybrid systems in the control community. The rules and properties proposed
in [175, 273] to help the translation of hybrid systems into MLD representation have
been followed in order to obtain a MLD model for the discrete version of system
(3.55). The MLD model has resulted as follows (from here t represents sample time
for the sake of simplicity):
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Fig. 3.45 3D representation for limits delimiting the switched inner temperature dynamics.Dashed
line represents nightfall. As a courtesy of the authors [362]

X̃T,a(t + 1) = Z1(t) + ϑx (t)
YT,a(t) = Z2(t) + ϑy(t)

subject to
(mh1−Mv1)α(t)+Z1(t)≤Ah XT,a−h(t)+BhUT,heat(t) δ7(t)−α(t)≤0

(mv1−Mh1)α(t)−Z1(t)≤−(Ah XT,a−h(t)+BhUT,heat(t)) δ10(t)−α(t)≤0

(Mh1−mv1)α(t)+Z1(t)≤(AvXT,a−v(t)+BvUven(t))+(Mh1−mv1) α(t)−δ7(t)−δ10(t)≤0

(Mv1−mh1)α(t)−Z1(t)≤−(AvXT,a−v(t)+BvUven(t))+(Mv1−mh1) δ7(t)−δ2(t)≤0

(mh2−Mv2)α(t)+Z2(t)≤Ch XT,a−h(t)+BhUT,heat(t) δ7(t)−δ3(t)≤0

(mv2−Mh2)α(t)−Z2(t)≤−(Ch XT,a−h(t)+BhUT,heat(t)) δ7(t)−δ6(t)≤0

(Mh2−mv2)α(t)+Z2(t)≤(CvXT,a−v(t)+CvUven(t))+(Mh2−mv2) δ2(t)+δ3(t)+δ6(t)−δ7(t)≤0

(Mv2−mh2)α(t)−Z2(t)≤−(CvXT,a−v(t)+CvUven(t))+(Mv2−mh2) δ8(t)−δ4(t)≤0

(mδ1−ξ)δ1(t)≤XT,rs(t)−XT,rs(t)−ξ δ8(t)−δ5(t)≤0

−(ξ+Mδ2 )δ2(t)≤−(XT,rs(t)−XT,rs(t))−ξ δ4(t)+δ5(t)−δ8(t)≤0

(mδ3−ξ)δ3(t)≤Tref(t)−Tref(t)−ξ δ3(t)−δ9(t)≤0

−(ξ+Mδ4 )δ4(t)≤−(Tref(t)−Tref(t))−ξ δ8(t)−δ9(t)≤0

−(ξ+Mδ5 )δ5(t)≤−(XT,a(t)−Tref(t))−ξ δ9(t)−δ3(t)+δ8(t)≤0

−(ξ+Mδ6 )δ6(t)≤−(XT,a(t)−Tref(t))−ξ δ1(t)−δ10(t)≤0

δ9(t)−δ10(t)≤0 δ1(t)−δ9(t)+δ10(t)≤0

(3.56)
This representation helps studying the hybrid dynamics of the greenhouse climatic
control problem. Therefore, this result is suitable to be used for designing hybrid con-
trol algorithms, for example, using the well-known hybrid toolbox for Matlab [35].
In fact, the work presented in this section only covers heating and ventilation dynam-
ics, but the approach can even be more useful if more control variables are taken into
account (e.g., shade screen and humidifiers).

Figure3.46 shows representative results of the performance of the GPC controller
explained in Sect. 3.2.6 for controlling temperature using the heating system and of
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Fig. 3.46 Temperature control. Commutation between heating and ventilation systems. As a cour-
tesy of the authors [362]

the AC treated in Sect. 3.2.2 for controlling temperature using ventilation system,
respectively. In nominal operation, the heating controller helps to achieve about
20% of saving in fuel consumption, the number of commutations being within the
ranges recommended by the supplier. On the other hand, the results obtained with
the AC have presented acceptable performance results, being tested to analyze both
short-term and long-term objectives. In [43] multiple results and graphics can be
found, being out of this section for saving space reasons. The most interesting results
are shown in Fig. 3.46, that summarizes the approach shown in this section. It is
possible to observe how heating and ventilation dynamics are switched along the
day and the night. At the instant time 994min ventilation control is switched on in
order to reach a new required low set point that is impossible to achieve using the
heating system. In the same way, at instant time 1,531min the heating systems begin
to work for a couple of hours in order to follow the new reference values modified
based on the humidity control, which are quite high to reach using the ventilation
system. This kind of behavior is not common in the greenhouse control field, but the
hybrid systems theory provides a framework to easily accommodate such situations.

3.2.10 Fuzzy Logic Control of Nighttime Temperature

Fuzzy logic controllers (FLC) are widely used within the greenhouse climate control
problem, as can be seen in the large number of references presented in Table3.2. This
sections presents a summary of the development of a FLC for temperature control
using heating systems of forced-air type [291]. The designed controllers are Takagi-
Sugeno (T–S) ones and the designmethod is iterative by solving a set of LinearMatrix
Inequalities (LMIs) to ensure stability and performance in closed loop. As shown in
some of the previous sections, most advanced control strategies make use of a linear
model of the temperature for a particular operation point, and this can be a serious
inconvenience given that the process is known to be nonlinear. Another disadvantage
of some of these techniques is the complexity of implementing the controller. In this
section, the nonlinear dynamics of greenhouse temperature are described by a set of
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linear models with fuzzy interpolation (see Sect. 2.1.3.3), proportioning a nonlinear
but easy to implement controller that ensures stability and performance [435, 438]. A
previous attempt to use LMIs for greenhouse control was presented in [84], but only
tested in simulation and practically complex to implement. Further developments
can be found in [89].

The controller design procedure explained in this section interpolates linear con-
trollers based on state feedback through membership functions that absorb the non-
linear terms (a technique known as Parallel Distributed Compensation (PDC) [472]).
The gain of each local controller will in turn be obtained as the solution to an opti-
mization problem formulated using LMIs, following an adaptation of the generic
technique proposed in [289, 290]. The resulting controller will only be a series of
state feedback controllers with nonlinear interpolation, thus enabling its implemen-
tation in these systems without the need for an excessive amount of calculation (like
a typical gain-scheduling controller). The approach is directly based on preexisting
physical models, and gives the region where the controller is ensured to be stable, so
it is appealing for plant engineers.

For greenhouses, the proposal starts from a simple nonlinear model obtained from
energy balances, which enables a TS model to be derived with only two fuzzy rules,
which represent precisely the nonlinear model. The resulting controller is simple to
implement in nighttime temperature control systems for greenhouses.

A T–S system in discrete time for a system with input vector U(t) ∈ R
m , output

vector Y(t) ∈ R
p, and state vector X(t) ∈ R

n , consists of a fuzzy set of ℵ rules that
give rise to the following global dynamic model:

X(t + 1) =
ℵ∑

i=1

μi(ς)(AiX(t) + BiU(t)) (3.57)

Y(t) =
ℵ∑

i=1

μi(ς)CiX(t)

where ς are the fuzzy variables (whose dependence on the state variables X(t) and
possible disturbances is omitted for simplicity),μi are the corresponding normalized
membership functions, andAi,Bi andCi are the state matrices corresponding to each
submodel (for details, see [435]). In this section, it is assumed that the state matrices
are precisely known, and a methodology is used to derive them from the nonlinear
dynamical model of a greenhouse. In the case where the parameters of the system
are not perfectly known, techniques are available to cope with uncertainty (see [59,
385] and references therein). The output matrices Ci are not assumed to be the same
for all the rules.

The controller shares the same fuzzy sets as the systemmodel, so it is given by the
interpolation of ℵ linear compensators. Using a static output feedback, the resulting
controller has the following structure:

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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U(t) =
ℵ∑

i=1

μi(ς)KiY(t). (3.58)

The complete algorithm to find stabilizing controllers is based on LMIs and provided
in [291]. The result of the algorithm is then a set of gains Ki that ensure closed loop
stability.

The development of T–Smodels is based on the simplified energy balances shown
in Chap. 2. As shown in [291], an equivalent T–S model to the first principles one
can be represented using a differential equation of the type:

XT,a(t + 1) = f (XT,a, ∗)XT,a(t) + QmaxUT,heat(t) (3.59)

where f (·) is a nonlinear function that depends on the temperature and on the rest
of the variables an parameters of the nonlinear model (explicitly developed in [291],
Qmax is the maximum energy that can be contributed by the system and UT,heat(t)
is the heater’s activation control signal (see Eq. (2.38)).

As f (·) is bounded between two values ( f ≤ f ≤ f ), then it can be written as:

f = f μ(XT,a, ∗) + f [1 − μ(XT,a, ∗)]. (3.60)

It is thus sufficient to consider μ as a fuzzy function in order to obtain the proposed
T–S model as the model of the greenhouse for designing the controllers:

XT,a(t + 1) = f μ(XT,a, ∗) + f [1− μ(XT,a, ∗)]XT,a(t) + QmaxUT,heat(t) (3.61)

where the membership function μ is simply evaluated as:

μ(·) = f (·) − f

f − f
(3.62)

The heating system used in the examples shown in this section consists of the hot
air heater explained in Sect. 3.1.2.2. The actuation variable UT,heat(t) is, in fact, used
as a reference for a simple control system that continuously turns the heater on and
off. Except for the generation of small perturbations on the output, this does not
significantly affect the design procedure used. In fact, it simplifies the procedure, as
rapid variations of UT,heat(t) do not significantly affect the duration of the actuator
(since it is continuously switching on and off in any case), so constraints on the
dynamics of the control signal are not very relevant in this case.

The T–S model was validated using the first principles models and using data
taken from the greenhouse during spring and autumn growing seasons (Fig. 2.17),
providing extreme values of the nonlinear smooth function as f = 0.000135 and
f = 0.000108, in order to obtain the correspondingmembership functions following
(3.62).

http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
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The structure of the regulator is thus:

UT,heat(t) = [K1μ(·) + K2(1 − μ(·))]XT,a(t) (3.63)

where Ki are the gains to be designed (see [291]) and μ(·) is a fuzzy membership
function, evaluated at the current conditions of the greenhouse (internal and external
temperatures, humidity, etc.). This regulator is simple to implement in greenhouse
control systems, as it corresponds to a simple feedback of the variable measured
using a variable gain (that depends on the measured variables). In fact, if necessary,
this gain can be prerecorded using a single look-up table.

Fig. 3.47 Control test with the fuzzy logic controller on the greenhouse (nighttime reference:
14 ◦C). As a courtesy of the authors [291]

Figure3.47 shows the results of three consecutive dayswhen heatingwas required,
using a set point of 14 ◦C,with amaximumdeviation of 1 ◦Cduring nightswith strong



188 3 Climate and Irrigation Control

external disturbances (the outside temperature is included in the plot and decreased
down to 9 ◦C). The corresponding control signal calculated by the proposed controller
is depicted in the same figure (this control signal corresponds to the activation time
of a lower level PWM controller that switches on/off the heating system). The whole
result is more than acceptable for this type of system.

3.2.11 Model-Based Irrigation Control

3.2.11.1 Introduction

In this section, an irrigation control algorithm based on evapotranspiration and rel-
ative humidity of substrate is developed, using computer-based on/off control based
on a determined criterion, such aswater level, amount of accumulated solar radiation,
or transpiration.

Related works on water supply control techniques mainly deal with FF control
[224, 400]. In [145], feedback control is implemented using drainage as feedback
signal, while water absorption is treated as a disturbance. Other works deal with
the application of FLC for fertigation purposes. In [487] FLC was used, so that the
irrigation time and amount of water to supply were determined from measurements
of soil moisture and the amount of drainage water and human experience. This FLC
was applied to control ornamental plants in greenhouses developed in a substrate
mixing peat and pine bark. In [366] the inputs to the fuzzy inference mechanism
were the moisture content of the substrate and the estimated evapotranspiration from
climatic data; decision rules were built to apply irrigation control on tomato grown
in sand. In [493] a fuzzy PID algorithm was designed using as inputs flow rate of
concentrated fertilizer solutions in mixing tank by Venturi regulated by a solenoid
valve with PWM method. A fuzzy PID control algorithm was developed to regulate
the fertilizer component ratio and the EC/pH value of the nutrient solution. In [488]
a wireless sensor network is used for irrigation purposes also based on fuzzy PID
control of soil temperature and humidity. In [166] a fuzzy controller is introduced to
control greenhouse climate (using a shading screen) to reduce tomato cracking using
as variables solar radiation, substrate temperature, and canopy temperature.

In soilless systems, control of irrigation water is closely linked to control of
nutrient supply, so that many of the works carried out are aimed at gaining control
of water and nutrients, as mentioned later.

In [224] FF control of the concentration of the nutrient solution is performed,
using models of photosynthesis, absorbed water (estimated by a transpiration model)
and assuming constant the content of main elements of the produced dry matter.
Following the same approach, [223] shows results where water and nutrients demand
is synchronized with their supply as a function of climatic parameters, producing set
points of daily nutrient solution based on an empirical estimate of the ratio between
water and nutrients demand [221]. Only FF control was implemented and authors
indicated that no feedback based on leachate was necessary. Tests were carried out
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in tomato and pepper reusing drainage water and compared with other in which
constant concentration in the nutrient solution was used. Feedforward control helped
to reduce blossom end rot of fruits and to increase fresh weight of fruit yield [222].

Other studies also used FF irrigation control using system identification in NFT
and substrate crops. The amount of water supplied to the system is a direct function
of solar radiation and control is performed to maintain a constant level of drainage.
Tests were performed in a system without plants [142]. In [143] multivariable FF
control was implemented to supply water and eight elements in the nutrient solution.
Simulations are included showing the controller is capable of reaching a constant
level in the potassium content in the leachate.

In [188] neural networks are proposed for controlling the supply of water and
nutrients, based on the expertise of the farmer. The input variables to the network
are solar radiation, temperature, relative humidity, water temperature, and carbon
dioxide concentration in the greenhouse. The output variables are the amount of
water and nutrients to be supplied to the system.

3.2.11.2 Algorithms and Illustrative Results

This section describes illustrative results of tests performed on irrigation based on a
model of transpiration. Irrigation scheduling based on transpirationwas performed in
such a way that after the initial irrigation, water supply was done using an estimation
of crop transpiration based on climatic data recorded every minute. Irrigation signal
activates when the volume specified by the user is reached, providing an amount of
water equivalent to the estimated transpiration plus a desired percentage of drainage.
On/off control techniques were applied and the transpiration model used was the one
described in Chap. 2, based on [419] but calibrated and validated for the system at
hand.

Figure3.48 shows the dynamics of transpiration and irrigation control during
2days. The initial irrigation during the first day was done manually till reaching a
drainage of around 10%,while during the second day the desired drainage percentage
was 20%. The irrigation rate was set at 180mlm−2, which was the equivalent of a
4min irrigation, according to the characteristics of the irrigation system. Figure3.48a
shows the estimated crop transpiration, that is smaller in the first day. The irrigation
activation signal and the water content in the substrate are included in Fig. 3.48b,
while the vapor pressure deficit and global irradiance inside the greenhouse are shown
in Fig. 3.48c. The variables associated with the dynamics of irrigation application
(drainage, electrical conductivity in the substrate, temperature, and relative humidity
of inside greenhouse air) can be seen in Fig. 3.49.

Transpiration dynamics showed a significant increase during the evening of the
first day mainly associated with low vapor pressure deficit, which showed a rise at
night, explained by the conditions of temperature and humidity. In response to this
increase in transpiration, the control system applied three irrigations during the night
of the first day (see Fig. 3.48a, b).

The environmental conditions during the second day increased transpiration, thus
producing 13 irrigations, unlike the first day in which 9 were applied. The drainage

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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Fig. 3.48 Results using irrigation control based on transpiration during 2days. a Crop transpiration.
b Moisture content in the substrate and control signal. c Water pressure deficit and global irradiance
in the greenhouse

Fig. 3.49 Variables associated with irrigation control based on transpiration. a Dynamic drainage.
b Electrical conductivity in the substrate. c Relative humidity and air temperature in the greenhouse

volume dynamics is shown in Fig. 3.49; obtaining 8 and 16% in the first and second
day. During the first three irrigations of the second day the drainage fraction was nil;
however, when the moisture content of the substrate increased, the volume fraction
of water drained and also showed a rising trend. The behavior of EC in the substrate
is shown in Fig. 3.49b, decreasing in each irrigation applied to the system.
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Fig. 3.50 Irrigation control based on demand tray. a Crop transpiration. b Moisture content in the
substrate and control signal. c Vapor pressure deficit of water and global radiation in the greenhouse

Other tests showed a similar behavior to that described above, while the drainage
fraction was 4–10% lower than the set point established by the user.

The irrigation system applied using irrigation tray demand during daytime hours
and responds to the amount of water that is absorbed by plants. The first irrigation
is supplied at a fixed time and from this irrigation performance is determined by
the level of water in the tray is detected by a sensor. Figure3.50 shows the behavior
of the irrigation system based on demand tray and the associated variables during
day, while Fig. 3.51 represents the dynamics of the volume of drainage, EC in the
substrate and greenhouse air temperature and humidity. The irrigation system based
on demand tray supplies water during daytime and responds to the amount of water
that is absorbed by the crop. The first irrigation is supplied at a fixed time and from
this moment irrigation is determined by the water level in the tray.

The drainage volume dynamics is shown in Fig. 3.51a; during the first two irri-
gations there was no drainage and the fraction of drainage during the day was 18%.
Although drainage chart for a day shows some uniformity, variations in environmen-
tal conditions through the growing season cause this system does not conform to
an established fraction of drains, being difficult to control them, as can be seen in
Fig. 3.52, which shows the variation in the drainage fraction for several months using
the demand try system.
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Fig. 3.51 Variables associatedwith irrigation. aDrainage.bElectrical conductivity in the substrate.
c Relative humidity and air temperature in the greenhouse

Fig. 3.52 Volume fraction of drainage during the growing season, applying irrigation based on
demand tray

3.2.11.3 Simulation of Irrigation Control Based on the Moisture Content
in the Substrate

A further possibility consists of controlling irrigation based on the moisture content
in the substrate. The hydric balance model developed in Chap.2 is used to determine
the moisture content in the substrate, and to decide when to irrigate based on a
set point established by the user. The simulations with this model were performed

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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using simple control techniques: On/off control with dead band and proportional
control. When using on/off control with dead band it is established that irrigation
is mainly performed during daytime, within a time interval during which humidity
must evolve within maximum and minimum bounds defined by the user, constituting
the control dead zone. Irrigation is activated when humidity is below the lower limit
and deactivated when it reaches the upper limit. This strategy defines the amount
of water, while the irrigation time is defined by the lower limit of the dead zone.
Overnight, this strategy is switched off, but a security limit is defined so that, if
it is surpassed, irrigation should be applied. Figure3.53a shows a simulation using
on/off control compared with the results obtained with demand try based control.
Despite the controller simplicity, the humidity content is maintained within the range
set by the user, and overnight prevents the amount of water in the substrate falls
below the threshold, as shown in activation of the first irrigation of Fig. 3.53a. The
on/off controller performs adequate control of moisture in the substrate relative to
the demand tray application, since the maximum fluctuation in the moisture content
is 0.6 over 3.3% in demand tray.

Irrigation supply applying a proportional controller in which a moisture content
set point is tracked has also been simulated. The approach is similar to the on/off
controller in terms of a defined period during the day when irrigation should be
applied. The simulation using this control technique canbe seen inFig. 3.53b; it is also
comparedwith the demand try controller, including the evolutionof the control signal.
Figure3.53 also includes other variables that are simulated by the water balance
model and interact with the irrigation control system. It is possible to observe the
dynamics of the structural dry matter in the root (Fig. 3.53c) and canopy (Fig. 3.53d),
the dynamics of water reserve in the root and the canopy, in Fig. 3.53e, f, respectively,
the temperature on the substrate (Fig. 3.53g) and transpiration (Fig. 3.53h).

Despite the apparent better performance of the proportional controller on on/off
controller, which keeps the moisture content with small variations of the order of
0.05%, the first one is difficult to use in irrigation systems because of the difficulty
of finding proportional valves and pumps in this operating range and the associated
costs.

Figure showing structural dry matter in the root and canopy (Fig. 3.53c, d) are
typical of the dynamics of a day; during the night the breathing process predominates
and simulated dry matter decreases, while during the light hours there is a sharp
increase due to photosynthesis. On the other hand, the simulation of water in the
canopy and root shows a close relationship between transpiration and the amount
of water in the canopy by an inverse relationship, the water reservoir in the canopy
decreases at noon and recovered overnight, while that of the root shows a temporal
storage pattern with variations during the day than stabilizes at night (Fig. 3.53e, f).
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Fig. 3.53 Irrigation control based on moisture content in the substrate and other variables of the
water balance model. a On/off control. b Proportional control. c Structural dry matter in the root.
d Structural dry matter in the canopy. e Mass of water in the root. f Mass of water in the canopy.
g Substrate temperature. h Transpiration
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3.3 Conclusions

About ventilation control: The greenhouse crop production is influenced by the inside
climate, so it is necessary to maintain the variables that characterize it within a
given range considered ideal. This chapter has described the general problem of
climate control,which is generated inside a greenhouse, and the problemsparticularly
related to each of the climatic variables, which are usually controlled in southeastern
Spain: temperature, relative humidity, and radiation. Furthermore, different strategies
have been developed, implemented, and validated in both simulation and real tests.
The algorithms developed have tried at all times to use information available of
measurable disturbances, as they are the main source of energy required for crop
growth, highlighting the proposal of FF and nonlinear controllers based on simplified
models based on energy balances. All control strategies try to find a trade-off between
performance and ease of understanding by users.

From all the experiences in this chapter, the following conclusions can be drawn:

• Although climate variables that affect crop growth are temperature, the PAR radi-
ation and the CO2 concentration, the main control is established on the indoor air
temperature.

• The two main actuation systems are ventilation and heating, which exhibit reverse
actions with respect to temperature, and do not usually act simultaneously.

• As in this application the temperature control specifications are not very restrictive
and also considering the nature of the signals involved, it is possible to control
greenhouse climate using classical strategies such as PID control or GS control
(used in commercial control systems).

• The relative humidity of indoor air indirectly affects the development of the crop, so
that it is convenient to maintain it within a predefined interval. The same actuators
are used to control both temperature and humidity, and they are highly correlated
with each other. Since temperature is the variable really affects the growth of plants,
it is considered as themain controllable variable and humidity ismaintainedwithin
a range, changing the set point temperature when required if humidity surpasses
its bounds.

About heating control: Traditional heating systems in greenhouses are based onon/off
control with dead zone. The evaluation of this kind of systems has shown that fuel
consumption is high. MPC algorithms have demonstrated to be a valuable alternative
for heating control minimizing fuel consumption, as the costs associated and outside
climate variables are taken into account in the control design stage. The classical
MPC algorithms have been modified to take into account the characteristics of the
actuators, implementing both a PWM approach and a branch, and bound algorithm
to obtain fuel savings of around 20% when compared with on/off controllers.
About irrigation control: An irrigation control scheme has been developed in this
chapter based on amodel of transpiration. The influence of unmodeled dynamics and
model accuracy has been studied in terms of subestimation of evapotranspiration or
delays in water retention. Nevertheless, it has been established that irrigation based
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on transpiration is a feasible method to control the water dynamics in the plants,
interacting with climate control as there is a close feedback relationship between the
transpiration process and the behavior of relative humidity and temperature inside
the greenhouse, as indicated in [27] and demonstrated in [294, 422, 425].

The developed method can be improved by including the model within a MPC
framework using a prediction horizon of around 30–40min so that observed transport
delays can be implicitly taken into account.



Chapter 4
Crop Growth Control

4.1 Hierarchical Control of Greenhouse Crop Growth

4.1.1 Introduction

As introduced in Chap.1, the greenhouse crop production problem can be described
as a hierarchical control system with three levels and different variations [177, 333,
355, 440, 461] (see Fig. 1.2). The existence of different timescales helps to decouple
the climate control dynamics from those of crop growth and development, in such a
way that the upper layer of a hierarchical control architecture calculates the climate
setpoints for the lower layer, generally using static versions of crop growth and cli-
mate models. In this section, temperature setpoints are obtained based on economic
criteria using a crop growth tomato model, economic data, and weather forecasts.
Once the temperature setpoints are obtained (one for diurnal operation and another
for nocturnal operation), these can be used by the climate control layer, but usually
are subject to modifications due to grower preferences and/or to special operating
conditions or security reasons, leading to changes in the mode of operation. The
temperature control implemented by the lower layer of the hierarchical architec-
ture is usually performed using ventilation during the day and heating during the
night, although mixed approaches such as the switching control scheme explained
in Sect. 3.2.9 can be implemented.

First, the hierarchical control architecture developed aimed at obtaining optimal
nocturnal and diurnal setpoints is explained, describing in detail the proposed cost
function and optimization procedure. Then, some experimental results representative
of those obtained during the recent years are shown, where control results of both
the optimization and regulatory layers are discussed.

© Springer International Publishing Switzerland 2015
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4.1.2 Hierarchical Control Architecture to Maximize Profits

In [355], a hierarchical control architecture was proposed as an integral solution to
crop growth control based on economic criteria. In this case, the control architecture
was composed of two layers, as shown in Fig. 4.1, that control the system composed
of crop and greenhouse climate, based on the existence of two different timescales.
The upper layer (second layer) solves an optimization problem as a function of the
expected production and associated costs or the desired date of harvesting. This opti-
mization problemmaximizes an objective function that represents the profit obtained
based on the climatic variables, providing as results the setpoints that these climatic
variables must follow along the season. The lower layer (first layer) includes the
controllers that try to cancel tracking errors and compensate for disturbances con-
sidering the setpoints calculated by the upper layer. Several controllers have been
proposed for this layer as described in Chap.3. As shown in Fig. 4.1, the main actu-
ators to control temperature and humidity are ventilation and heating. The shade
screen is used to diminish the radiation onto the canopy, the reason that the crop
growth rate also diminishes. This fact provides a new degree of freedom to con-
trol the production, delaying the harvesting date. Nevertheless, it is not considered
in the optimization process because the system often tries to obtain the maximum

Fig. 4.1 Multilayer hierarchical system proposed to control the crop growth

http://dx.doi.org/10.1007/978-3-319-11134-6_3
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production. So, the shade screen is only used under certain tactical circumstances
based on the experience of the producer, as will be discussed in the following section
where a three-layer hierarchical control approach is used.

The optimization problem follows a receding horizon strategy. Therefore, when a
night–day transition (or vice versa) occurs, the optimization problem is again solved
using new real measured data of climatic variables and crop growth, trying to reduce
errors coming from plant-model mismatch, deviations in the weather forecast, or
even because the climatic variables are not able to reach the setpoints.

The problem of crop growth control based on the greenhouse climatic conditions
and considering economic criteria has different variants depending on the aspects to
consider and the desired objective to reach. Particularly, the approach considered in
this book is based on the following general hypotheses:

1. A single harvesting at the end of the season is considered (this is not a restrictive
hypothesis, as the algorithm can easily manage continuous harvesting, as shown
in Sect. 4.2).

2. The crop growth variable to be controlled is the global dry weight of the plant
(measured using pattern plants or estimated using simplified models to simulate
the tomato growth as proposed in [212]). There are different studies demonstrating
that at the end of a season, the fraction of total dry weight that corresponds to the
tomato fruits is approximately 60%, as it is indicated in [184]. This fact has been
corroborated in our own tests. On the other hand, the market prices are referred
to the fresh weight. Some authors estimate that approximately the 6% of the fruit
weight correspond to dry matter (6.5% [184], 5.5% [213]). Our own experiences
have estimated a fraction of 7%, these data used to calculate the prices of the
harvested products.

3. The optimization process obtains the optimal setpoint trajectories of the air tem-
perature, which is the main control variable that affects the crop growth.

4. Two temperature setpoints per day are considered, one for diurnal time and another
for nocturnal time (the plants do not make the same vital functions at night and
at diurnal time). The commutation of the setpoints is made when the sun rises or
falls (threshold of 100Wm−2, as the duration of the nocturnal and diurnal time
periods is not constant along one year).

5. The system is well irrigated and fertilized.

One important component of the hierarchical control architecture is the coordina-
tion between the two layers.After analyzing and testing different alternatives, a reced-
ing horizon-based algorithm is selected, whose flow diagram is shown in Fig. 4.2.

At the beginning, some initial data must be set in order to initialize the control
process of the crop growth: Type of season, date of harvesting, initial crop status,
economic data (predicted final price of production sale and the price evolution of
the electricity and the fuel throughout the season), and prediction horizon N (to
generate 2N + 1 initial intervals to compute setpoints). Based on these data and
using a long-term weather prediction obtained from the AEMET weather forecast
(according to the disturbance forecast models described in Sect. 2.4), an optimization
problem is to determine the setpoints of temperature for all the time intervals along
the prediction horizon.

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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Fig. 4.2 Management algorithm of the hierarchical architecture. Courtesy of the authors of [360]

4.1.3 Cost Function and Optimization

The objective of the proposed hierarchical control problem consists in maximizing
profits, that is, the differences between the incomes obtained from thefinal production
sale and the associated production costs, which can be formulated as
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J = carea,ssVprice,cr(th)XW(th) −
th∫

ti

Vcos(τ ) dτ (4.1)

where carea,ss is the greenhouse soil surface, Vprice,cr are the sale prices of the pro-
duction at the harvesting date, th, XW is the dry weight (note that also fresh weight
of fruits XFF can be used here, as done in the following section), Vcos are the cost
incurred by the actuators (electricity and fuel), and ti is the initial time. It can be
demonstrated [355] that all the variables present in the objectives are functions of
the air temperature, as well as of measurable disturbances such as PAR radiation or
CO2 concentration. So, the cost function Eq. (4.1) can be expressed as a function of
the temperature (and measurable disturbances) using a steady-state version of a crop
growth model (Sect. 2.2.1.2).

The optimization problem is solved using SQP methods since a QP subproblem
is solved at each major iteration. The constraints of this process are based on the
internal air temperature, which must be between the lower and upper limits modified
by a yearly pattern.

4.1.4 Representative Results

This section outlines representative control results from the evaluation of the hierar-
chical control structure in the greenhouse type Almería.

Several tests have been performed to study the response of the system under
different conditions. The initial crop state is the same and the length of the crop
cycle is 91days.

The first tests were carried out to analyze the trends of the temperature setpoint
trajectories along the autumn and winter seasons. Constant energy prices were con-
sidered. The results are shown in Fig. 4.3, considering constant constraints along the
season. The optimal trajectories in each of the tests present a downward trend, main-
taining maximum temperatures at the beginning of the season, diminishing them to
theminimumallowed at the end. This result is not a common and typical strategy used
in tomato crop in this zone, where the temperature setpoints are relatively constant
and moderate along the season. The results improve the profit by around 12%.

There are several situations when the lower layer is not able to reach the tem-
perature setpoint calculated by the upper layer: The weather forecast is erroneous,
the actuators are saturated, the temperature in diurnal intervals is less than the diur-
nal setpoint or the temperature in nocturnal intervals is greater than the nocturnal
setpoint, the transitions between nocturnal and diurnal intervals are not immediate,
etc. For example, if the weather forecast is erroneous, the system is unable to track
the proposed setpoints, so the transition from high to low temperature is delayed.
The system tends to maintain high temperatures to produce more dry weight due to
the use of a receding horizon strategy. Similarly, if the harvesting date is modified,
the system increases the temperature setpoint when the harvesting date is shortened

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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Fig. 4.3 Temperature setpoint trajectories. Courtesy of the authors of [360]

Fig. 4.4 Response when harvesting date is brought forward. Courtesy of the authors of [360]. a
Season length=90days. b Season length= 80days

to help the crop growth and diminishes it when this date is delayed to decrease the
crop growth rate. For these reasons, sometimes it is better to use a three-layer hier-
archical architecture as described in Chap. 1, where the middle layer checks these
problems before providing the references to the lower layer and modifying them
when necessary.

Figure4.4 shows an examplewhen on the 36th day the harvesting date is shortened
by 10 days (the season is reduced from 90 to 80days). Figure4.4a shows the typical
temperature setpoint trajectories calculated by the optimization process on the 35th
day with a season length of 90days. When in the next few days the harvesting date
is changed, the system increases the diurnal and nocturnal temperature setpoints to
maximize the profit, obtaining the maximum production.

http://dx.doi.org/10.1007/978-3-319-11134-6_1


4.2 Multiobjective Hierarchical Control of Greenhouse Crop Growth 203

4.2 Multiobjective Hierarchical Control of Greenhouse
Crop Growth

4.2.1 Introduction

The problem of determining the trajectories to control greenhouse crop growth has
traditionally been solved using constrained optimization or applying artificial intel-
ligence techniques. As described in the previous section, the economic profit is used
as the main criterion in most research on optimization to obtain adequate climatic
control setpoints for crop growth. This section addresses the problem of greenhouse
crop growth also through a hierarchical control architecture, but in this case gov-
erned by a high-level multiobjective (MO) optimization approach, where the solution
to this problem is to find reference trajectories for diurnal and nocturnal tempera-
tures (climate-related setpoints) and electrical conductivity (fertirrigation-related set-
points). The objectives are to maximize profit, fruit quality, and water-use efficiency,
these being currently fostered by international rules. This hierarchical scheme is
similar to that used in Fig. 4.1, but with an intermediate layer for setpoint adaptation.
So, the resulting control architecture is composed of three layers according to the
scheme presented in Fig. 4.5), where short- and long-term weather forecast tools are
used to improve the prediction on the optimization process, andwhere the greenhouse
climate simulators are also included to assure that the resulting setpoint profiles are
reached by the local controllers at the greenhouse level. So, the first and the third
layers work in the same way as described in Sect. 4.1.2, and in the new second layer
the setpoints generated from the upper layer and sent to the lower layer for the next
day are modified and updated in order to avoid unfeasibility problems and allow

Fig. 4.5 Multilayer hierarchical control architecture with an adaptation layer. Courtesy of the
authors of [343]
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them to reach the reference values. These modifications are performed considering
the trajectories generated in the upper layer, the short-term weather prediction (that
has a lower degree of uncertainty), the current state of the crop, and the short-term
grower goals (considering his/her skill and the crop status, this being a necessary
degree of freedom to let the grower interact with the hierarchical control system).
Then, this information is used within the greenhouse models presented in Chap.2
to simulate the greenhouse behavior and to evaluate if the provided setpoints can be
reached. The optimization process is repeatedmodifying the constraints (diminishing
or increasing the setpoints) according to the simulation results. When the setpoints
are reachable, they are sent to the lower layer.

The tomato crop model presented in Sect. 2.2.1 is used to relate the greenhouse
crop production dynamics to the process decision variables. Finally, note that from a
methodological point of view and considering that this framework has been designed
in a modular and hierarchical way, it is straightforward to use this approach for other
horticultural crops, other latitudes, as well as including other models or objective
functions in the optimization process (for instance, to include additional variables
related to the growth crop, such as CO2, or considering objectives related to energy
saving and/or plant disease control). Illustrative results selected from those obtained
in an industrial greenhouse are shown and described in [343].

4.2.2 Multiobjective Optimization in Crop Production

AnMO optimization problem can be defined as finding a vector of decision variables
which satisfies constraints and optimizes a vector whose elements represent objective
functions [47]. The problems characterized by competing measures of performance
or objectives are considered as MO optimization problems, where n objectives Ji(p)

in the vector of variables p ∈ P are simultaneously minimized (or maximized) [256]

min
p∈P

(J1(p), J2(p), . . . , Jn(p)) (4.2)

satisfying m inequality constraints, gi(p) ≥ 0, i = 1, 2, . . . , m, and j equality
constraints, hi(p) = 0, i = 1, 2, . . . , j .

The problem often has no optimal solution that simultaneously optimizes all
objectives, but has a set of suboptimal or nondominated alternative solutions known
as Pareto optimal set [256], where a compromise solution may be selected from that
set by a decision process. Different criteria, such as physical yield, crop quality,
product quality, timing of production process, or production costs and risks, can
be formulated within greenhouse crop management. These criteria often give rise
to controversial climate and fertirrigation requirements, which have to be solved
explicitly or implicitly at the so-called tactical level where the grower has to make
decisions about several conflicting objectives. The solution of this MO optimization
process, p ∈ P , is the optimal diurnal and nocturnal present and future reference

http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
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trajectories of temperature, XT,a, and EC, XEC, for the rest of the crop cycle. That
is, p = [XT,a, XEC] ∈ P , where XT,a is a vector of the inside air temperature along
the optimization intervals, and XEC is a vector of the EC along the optimization
intervals. Two temperature setpoints are considered: Diurnal and nocturnal [362].
It is necessary to emphasize that although the process optimization is presented in
continuous time, it is solved in discrete time intervals for an optimization horizon,
Nf(t) (this horizon is variable and represents the remaining intervals until the end of
the agricultural season). Thus, the solution vectors XT,a and XEC are obtained as

XT,a = [XT,a(t), . . . , XT,a(t + Nf)]

XEC = [XEC(t), . . . , XEC(t + Nf)]

where t is the current discrete time instant.
Note that, for the proposed optimization problem, a greenhouse crop produc-

tion model is required to estimate the inner climate behavior and crop growth
through the different steps of the algorithm and relate the different objective func-
tions to the decision variables. Both climate conditions and crop growth influence
each other and their dynamic behavior can be characterized by different timescales.
Hence, as shown in Chap.2, the crop growth in response to the environment can
be described by two dynamic models, represented by two systems of differential
equations with a timescale associated to their dynamics, which can be represented
by [124, 341, 359, 363]

dXcl

dt
= fcl(Xcr, Xcl, U, Dm, V, C, t), Xcl(ti) = Xcl,i (4.3)

dXcr

dt
= fcr(Xcr, Xcl, U, Dm, V, C, t), Xcr(ti) = Xgr,i (4.4)

whereXcl = Xcl(t) is an n1-dimensional vector of greenhouse climate state variables
(mainly the inside air temperature and humidity, CO2 concentration, PAR radiation,
soil surface temperature, cover temperature, and plant temperature), Xcr = Xcr(t) is
an n2-dimensional vector of crop growth state variables (mainly number of nodes on
themain stem, LAI or surface of leaves by soil area, total dry matter which represents
all the plant constituents—root, stem, leaves, flower, and fruit—excluding water,
fruit dry matter being the biomass of the fruits excluding water, and mature fruit dry
matter or mature fruit biomass accumulation), U = U(t) is an m-dimensional vector
of input variables (natural vents and heating system in this work), Dm = Dm(t)
is an o-dimensional vector of measurable disturbances (outside temperature and
humidity, wind speed and direction, outside radiation, and rain), V = V(t) is a
q-dimensional vector of system variables (related to transpiration, condensation,
and other processes), C is an r -dimensional vector of system constants, t is the time,
Xcl,i and Xgr,i are the known states at the initial time ti, fcl = fcl(t) is a nonlinear
function based on mass and heat transfer balances, and fcr = fcr(t) is a nonlinear
function based on the basic physiological processes of the plants.

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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The following subsections show how the different objectives (cost functions) are
expressed as functions of the decision variables of the optimization problem (present
and future temperature and EC setpoints).

4.2.2.1 Maximization of Profits

Profits are calculated as the difference between the income from the selling of fresh
fruits and the costs associated to their production

J1 =
th∫

ti

Vprice,cr(τ )XFF(τ ) dτ −
th∫

ti

Vcos(τ ) dτ (4.5)

where Vprice,cr(t) is the selling price of the production (estimated from the market),
XFF(t) is the fresh fruit production obtained from the crop growth model (such as
described in Sect. 2.2.2.1), Vcos(t) are the costs incurred by heating, electricity, fer-
tilizers, and water (obtained from market and model estimations and measurements
in the installations), t is the time, ti is the initial time of crop cycle, and th is the latest
harvesting time, both selected by the grower. Note that in practice, the tomato crop
hasmultiple harvests during the growing season. For this reason, th represents the lat-
est harvesting time in Eq. (4.5). An alternative is to consider the next harvesting time
(tn) in the cost function and restart the optimization process once the previous har-
vest has been produced. Both alternatives are valid for multiple harvest. The income
depends on the price of tomato fruits ($ kg−1, e kg−1), the harvesting dates, and on
the yield in fresh weight per surface unit (kgm−2). The price policy requires market
models or historical data, this being a difficult prediction problem. The following
subsections describe how the fresh fruit production, XFF(t), and the process costs,
Vcos(t), can be estimated and related to the decision variables, p = [XT,a, XEC].

As a first approximation, the fresh fruit production, XFF, can be estimated as a
linear relationship, XFF � f1(XMF) = cMFXMF, on the mature fruit dry weight with
different values for spring and autumn seasons (note that the time dependence has
been removed in this section for space reasons), where cMF is the conversion factor
between fresh and dry matter, and XMF is the mature fruit dry weight. This function
assumes that crop growth is developed in optimal conditions with enough water of
good quality. However, there are some areas, such as in the Mediterranean regions,
where bad quality water or lack of water with nonoptimal nutritive dissolution can
be provided to the plants. Hence, the calculation of the fresh fruit production must be
modulated by the effects of the electrical conductivity, f2(XEC), the vapor pressure
deficit of the greenhouse air, f3(Vvpd), and the crop transpiration, f4(VET) (note
that in cases in which the soil surface is mulched [421], evapotranspiration can be
considered equal to crop transpiration, Mtrp,cr = VET), in the following way:

XFF = f1(XMF) f2(XEC) f3(VPD) f4(ET), (4.6)

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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where f2(XEC) is given by [262]

f2(XEC) =
⎧
⎨

⎩

0.67XEC XEC < 1.5
1 1.5 ≤ XEC ≤ 2.5
−0.07XEC + 1.18 XEC > 2.5

(4.7)

Regarding the functions f3(Vvpd) [110] and f4(VET) [286], the variables Vvpd and
VET can be estimated based on humidity and solar radiation, respectively (see
Sect. 2.1.1.6 and Eq. (2.44)). Therefore, these functions can be considered distur-
bances where their future values, to be used along the prediction horizon, are esti-
mated based on the short-term weather forecast included within the hierarchical
control architecture.

For estimation of XMF in f1, the Tomgro model described in Sect. 2.2.1 has been
used, see Eq. (2.90).

Note how XFF is related to the decision variables XT,a and XEC through the
functions f1 and f2 (Eq. (4.7) and those of the Tomgro model).

The costs, Vcos(t), usually include those of heating (fuel cost), electricity, fertil-
izers, and water. Such costs can be estimated in the following way:

Vcos(t) = Vfcos(t)Hheat(t) + Vecos(t)Eee(t)︸ ︷︷ ︸
f (XT,a)

+ Vwcos(t)Usw(t) + Vfecos(t)Usf(t)︸ ︷︷ ︸
f (XEC)

(4.8)

where Hheat(t) is the fuel consumption of the heating system, Eee(t) is the electrical
energy consumed by the heating system,Usw(t) is the suppliedwater (see Eq. (4.10)),
Usf(t) are the supplied fertilizers, and Vfcos(t), Vecos(t), Vwcos(t), and Vfecos(t) are the
fuel, electricity,water, and fertilizer costs, respectively.Asmentioned above, the costs
can be estimated from the market and the consumed fungibles are estimated from
energy and mass steady-state balance and measurements in the installations. Note
that, electrical consumption by the ventilation system is negligible. The estimation
of fuel consumption, Hheat(t), and wasted electrical energy, Eee(t), is based on
the activation of the heating system, and thus the function of the greenhouse air
temperature and other measurable climate variables and model calibration constants
using an energy and mass steady-state balance [363], assuming that the heating
system only works during the night and the vents are closed. In the same way, the
estimation of the supplied fertilizers, Usf(t), is based on the concentration of the
ions for nutrient dissolution supplied by the fertirrigation system in order to reach
the desired electrical conductivity.

The supplied water volume, Usw(t), is calculated considering the water absorbed
by the plants, Vabs,cr(t), the drainage volume, Vdr(t), and the increase inwater content
in the substrate �VH,s(t) in the optimization interval (these variables can be easily
obtained from water mass balances in Sect. 2.3.4),

Usw(t) = Vabs,cr(t) + Vdr(t) + �Vw,s(t). (4.9)

http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_2
http://dx.doi.org/10.1007/978-3-319-11134-6_4
http://dx.doi.org/10.1007/978-3-319-11134-6_2
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However, for the optimization process, we consider that the substrate is always sat-
urated with water (�Vw,s(t) � 0), and knowing that Vdr(t) = cdfVabs,cr(t), the
estimated supplied water volume Eq. (4.9) is obtained as follows:

Usw(t) = (1 + cdf)Vabs,cr(t) (4.10)

Vabs,cr(t) = (VET(t) + �XF(t))(1 − (XEC(t) − csuwa)csrwa) (4.11)

where cdf is a constant value representing the drainage fraction calculated based on
the quality of the irrigation water, fertilizers, and substrate [411], VET(t) = Mtrp,cr(t)
is the crop transpiration that can be estimated based on solar radiation as mentioned
above, �XF(t) is the estimated increment of the fruit dry weight based on Tom-
gro model (Eq. (2.89)) in the optimization interval, csuwa is a constant threshold of
XEC over which there is a decrease in water absorption, and csrwa is the reduction
coefficient of water absorption per unit of XEC.

Thus, from Eqs. (4.10) to (4.11), how the second term in Eq. (4.8) is related to the
decision variable XEC can be seen.

4.2.2.2 Maximization of Quality

Although maximizing profits can be understood as the main objective from the
growers’ point of view, this cannot always be used as the only target. The growers
usually belong to cooperatives or agrarian societies that facilitate the introduction of
horticultural products into the market. These associations fix the policies on qual-
ity products based on the different market requirements, and thus the growers must
adapt their production process to these policies in order to reach some minimum
quality levels. Food quality embraces both sensory attributes that are readily per-
ceived by the human senses and hidden attributes such as health and nutrition [394].
In fruits and vegetables, the sensory properties are determined by the amount of
sugars, organic acids, and volatile compounds, as well as color, shape, and texture.
However, sugars and acids are those reflecting overall taste preferences for a fruit.
For tomato crop, soluble solids have been related to sugars [249, 250, 411] and titrat-
able acidity to main organic acids [19, 411]; thus, they can be used as indicators of
fruit quality. Firmness of the fruit is another important quality parameter in the chain
grower-dealer-consumer. Nevertheless, some works have shown that in horticultural
vegetables, as tomato or flowers, some important parameters of sensory quality are in
conflict with yield [113, 249, 250, 411]. Hence, the fruit quality can be expressed as

J2 =
th∫

ti

(wssolVssol(τ ) + wtaVta(τ ) + wffVff(τ ) + wfsVfs(τ )) dτ (4.12)

where Vssol(t) is the soluble solids concentration in the fruit, Vta(t) is the titrat-
able acidity in fruits, Vff(t) is the fruit firmness, Vfs(t) is fruit size, and wssol, wta,

http://dx.doi.org/10.1007/978-3-319-11134-6_2
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wff , and wfs are weighting parameters. The weighting of the quality criteria has been
established based on interviews with consumers, retailers, farmers, agricultural tech-
nicians, and academics, and we have determined the following values: wssol = 0.3,
wta = 0.3, wff = 0.3, and wfs = 0.1.

In tomato fruits, soluble solids, titratable acidity, fruit firmness, and size may
be related to XT,a(t) and XEC(t) (decision variables) using the following linear
approach [113, 411]:

Y (t) = aq + bq(X (t) − g(X (t))) (4.13)

where Y (t) is the variable to be calculated (soluble solids, titratable acidity, fruit
firmness, or size), X (t) is the related decision variable (XEC(t) for VSSol(t), Vta(t),
Vfs(t); and XT,a(t) for Vff(t)), aq is a constant increment coefficient in Y (t), bq is
the increment coefficient in Y (t) per unit of increment in X (t), and g(X (t)) is a
piecewise function representing a threshold of X (t) over which there is an increment
in Y (t) (aq and bq of adequate units).

4.2.2.3 Maximization of Water-Use Efficiency

The explicit inclusion of this objective in the optimization problem has an environ-
mental purpose. In semi-arid climates, such as Mediterranean ones, water is a scarce
and expensive resource, mainly during some seasons of the year. Some authors main-
tain that productivity in such regions is determined by the available water and the
water efficiency use [191]. Thus, adequate management of water is required. With
the explicit inclusion of this objective, the grower can select a solution from the
Pareto front providing the desired water consumption during the growing cycle.
This objective tries to use the water quantities adequate to the crop growth in close
relationship with the supplied concentration of nutrient solution. In this section, the
water-use efficiency (WUE) is considered like the biomass efficiency defined as the
relationship between fresh fruit matter production and the water supplied. The sup-
plied water objective depends on multiple factors, including the EC and the inside
air temperature, as described in the following function:

J3 =
th∫

ti

XFF(τ )

Usw(τ )
dτ (4.14)

where XFFP(t) is the fresh fruit production given by Eq. (4.6) and Usw(t) is the
supplied water given by Eq. (4.10).
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4.2.2.4 Multiobjective Optimization Problem

Therefore, the MO optimization problem presented in this section is composed of
the previous objective functions described by Eqs. (4.5), (4.12) and (4.14). All the
variables presented in these objectives are functions of the air temperature, XT,a,

and/or the EC, XEC,
(

XFF(t), Usf(t), Usw(t), Vta(t), Vssol(t), Vfs(t), Vff(t)
)
, as well

as of measurable disturbances such as PAR radiation or CO2 concentration. That
is, the objective functions can be expressed as Ji(XT,a, XEC, Dm) for i = 1, 2, 3,
where XT,a is a vector of the inside air temperature along the optimization interval,
XEC is a vector of the EC along the optimization interval, and Dm is a vector of the
measurable disturbances that have to bepredicted along the optimization horizon.The
solution to theMOoptimization problemprovides both diurnal and nocturnal setpoint
trajectories of EC and inside air temperature for the rest of the control horizon.
Constant diurnal and nocturnal setpoints are defined, and steady-state models of
greenhouse climate and tomato crop summarized in Eqs. (4.3) and (4.4) are used
for optimization purposes [360, 362, 363]. Although several techniques have been
evaluated to solve theMO optimization problem [256], in this case, a goal attainment
algorithm has been used (SQP-based). Priorities for each objective are determined
using weights that are sequentially modified in each iteration. The constraints are
defined by maximum and minimum values of temperature and EC obtained from
expert knowledge that indicates “optimal” growing temperatures for tomato and by
analyzing local data from historical series. The resulting constraints are changing
with time with a yearly pattern designed on the basis of the last 20 years’ collected
data.

4.2.3 Representative Results

The results included in this section were obtained using a tomato crop Lycopersicon
esculentum, grown in Rockwool� substrate at a density of 2 plants m−2 and for
autumn–winter period when the external temperatures are low and there is a need for
heating at night to avoid reaching the vital temperature of the plants or for optimiza-
tion purposes. No carbon dioxidewas applied and runningwater is used for irrigation.
There is an important time interval for vegetative growth that must be considered
to optimize profits. The initial conditions were: Four nodes at initial time, LAI was
0.002, and total dry weight was 0.5gm−2. Figure4.6 shows an example of long-and
short-term predictions (solar radiation patterns and temperature respectively), for
the dates where the tests presented in this section were performed. As expected, for
the long-term predictions, there are relevant prediction errors,mainly at the end of the
prediction horizon. Therefore, the use of the receding horizon strategy included in
the optimization problem is an important factor to compensate for the uncertainty
induced by these prediction deviations. Note that the optimization problem is solved
each day for a horizon including the rest of the season.
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Fig. 4.6 Example of long-(left) and short-(right) term climate prediction

Figure4.7 shows the 3D Pareto front. From this figure, it can be seen how, when
profits and water-use efficiency increase, quality decreases; thus, it is possible to
achieve tradeoff solutions avoiding a drastic decrease of qualitywhile keeping accept-
able levels of profits and water-use efficiency. When the different objectives are
analyzed in groups of two objectives, some interesting conclusions can be obtained.
For instance, it can be deduced that there is a proportional relation between water-
use efficiency and profit, making it difficult to determine a Pareto front for such
objectives. When the crop quality and profit are analyzed, it can be concluded that
maximum values of quality imply decreasing values of profit. Table4.1 shows differ-
ent values of the objectives obtained from some of the nondominated solutions. The
quality values never reach the maximum (100%), being the quality range between
68% and 96%. Profits fluctuate between 1.11 and 2.65 em−2, while the water-use

Fig. 4.7 Pareto fronts obtained from the optimization process
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Table 4.1 Objectives by
nondominated solutions

Profits (e m−2) WUE (kgm−3) Quality index (%)

1.113 26.539 96.062

1.752 36.926 95.963

– – –

2.606 50.837 84.563

– – –

2.657 44.051 78.641

2.659 37.864 68.435

efficiency varies between 26.5 and 50.8kgm−3. Note that these values are for a sea-
son, and thus, the total profits per year are twice these quantities. On the other hand,
Fig. 4.8 shows the day/night setpoint trajectories for temperature and EC obtained
using the MO optimization for a cycle of 65days (130 setpoint intervals for each
variable). The figure shows the resulting trajectories for different solutions, maxi-
mizing each objective individually (Fig. 4.8a–c) and maximizing the three objectives
simultaneously (Fig. 4.8d).

When themain objective ismaximizing profits (Fig. 4.8a), the diurnal temperature
is regulated between 22 and 25 ◦Cto improve fruit growth. Once the fruits are well
formed, and from the mincemeat of fruits, the temperature profile tends to gradually
diminish looking for suitable temperatures to obtain a better nutrient distribution.
The EC is maintained through the whole horizon at 2.0mScm−1, which is the rec-
ommended value for the tomato crop in order to maintain production performance
and avoid reduction in yield due to salinity (note that there is an inverse relation-

Fig. 4.8 Resulting reference trajectories: Diurnal temperatures (td), nocturnal temperatures (tn),
electrical conductivity (ce). Courtesy of the authors of [343]
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Fig. 4.9 Real tests for climate control (04–11December 2009). From top to bottom: (1) greenhouse
temperature (solid), diurnal temperature setpoint (dashed), nocturnal temperature setpoint (dotted)
[◦C]; (2) ventilation (solid) and heating (dotted) control signals [%]; (3) solar radiation [Wm−2];
(4) wind speed [ms−1]; (5) and outside temperature [◦C]. As a courtesy of the authors [343]

ship between EC and production). If maximum quality is prioritized (Fig. 4.8b), the
diurnal temperature trajectories stay at the minimum values given by constraints
(21 ◦C) through the complete planning horizon, whereas the nocturnal temperature
trajectories remain at the allowed maximum. From the fruition stage, an evolution
is produced reaching the minimum values (15 ◦C), because through that policy, fruit
firmness is enhanced. The EC trajectory increases until reaching the maximum limit
to harness the maximum accumulation of sugar and titratable acidity, both being
important characteristics of fruit quality. If the water-use efficiency is themain objec-
tive (Fig. 4.8c), temperatures between 24 and 15 ◦C are combined during the day and
the night to achieve maximum growth in the first stage. When the first fruits appear,
the temperature profile should decrease to the lower allowed limits to reduce the
water consumption by decreasing transpiration. The EC increases to the maximum
limit from fruition as a consequence of decrease in water consumption when salin-
ity is increased. In Fig. 4.8d, the trajectories of a nondominated solution are shown.
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In this case, the diurnal temperature stays at high values at the beginning of the
horizon and diminishes at the end of the cycle, while the nocturnal temperature
is at the maximum limit and slightly diminishes at the end of the cycle. The EC
value is 2.0mScm−1 at the first stage of growth, and at the stage of fruition and
maturation increases to 4.5–5.0mScm−1 until the end of the horizon. This trajec-
tory corresponds to one of the nondominated solutions in which there seems to be
good balance between the different objectives. Figure4.9 shows some representa-
tive real experiments for temperature control. The diurnal temperature reference is
slightly decreasing from 25 to 24–23 ◦Cand the nocturnal temperature reference is
also decreasing from 18–17 to 15 ◦C. For these tests, a gain scheduling controller and
a predictive control algorithm [362] were used for diurnal and nocturnal temperature
control [342] respectively.

4.3 Conclusions

This chapter presented two different hierarchical control solutions for the greenhouse
crop growth control problem. First, a solution based only on a single objective, to
maximize profit, was presented. In this case, optimal setpoint temperatures were
obtained and for whole seasons of 80 and 90days. Although this solution provides
better results than classical nonhierarchical control approaches, some disadvantages
were observed. First, the setpoints from the upper layers cannot sometimes be reached
by the lower layer control algorithms. This fact was because of the lack of a middle
layer to check the feasibility of the resulting setpoints. On the other hand, some
other important aspects on the greenhouse crop growth problem were missing in the
optimization layer, such as fruit quality and water-use efficiency. Therefore, in the
second part of the chapter, an MO optimization problem is proposed and tested for
greenhouse crop growth management, obtaining tradeoff solutions of three objec-
tives:Maximization of economic benefits, fruit quality, andwater-use efficiency. This
optimization scheme is integrated into a hierarchical control architecture that auto-
matically generates setpoints for diurnal and nocturnal temperatures and EC through
a whole crop cycle (using a receding horizon strategy). The obtained results showed
logical trajectories both in short and long crop cycles.



Chapter 5
Advice and Suggestions for Greenhouse
Technicians and Producers

5.1 Main Conclusions, Advice, and Suggestions

The first suggestion to producers is to consider the problem as an integration of three
main interrelated systems, such as the greenhouse (climate and fertigation), crop,
and market, which have different timescales. The problem is to determine the control
signals to be sent to the actuation systems so that climate variables reach the climate
and fertigation optimal setpoints providing the maximum profit, which is related
to the crop (because the incomes come from the sale of production) and actuators
(because operation costs depend on their state). The solution to this problem depends
on the selected approach, either by obtaining the desired trajectories of climate and
fertigation variables, as in this book, or by directly obtaining the control signals,
as done by other authors (e.g., [147, 431]). What is really important is to address
the crop growth control in greenhouses from this point of view. This is a typical
hierarchical control problem, so it is needed to define a multilayer architecture. A
key and limiting issue is the need for developing reliable models describing the main
dynamics of thesemain subsystems. Asmentioned above, there exist several climate,
fertirrigation, and different crops growth models and well-known methodologies to
develop them. The main drawback of the hierarchical architecture is to have a good
model of the market behavior to predict the selling prices of production; the tasks
included in the tactical layer may be developed by technicians and producers, which
should provide the economic setpoints to the lower layers. This is an important change
in the actual working scheme, as the managing of crops is performed from a business
point of view instead of using the traditional view based on changing the climate
and fertigation setpoints. It is important to point out that these control systems do
not account for the occurrence of pests and diseases or other short-term objectives
that may arise, so the system must be flexible allowing for manual modification of
the control decisions proposed by the control algorithm.

Another important aspect to consider in this approach is that, as the control sys-
tems work with a crop growth planning with timescales corresponding to agricul-
tural seasons (months), it is also necessary to have a good weather forecast system

© Springer International Publishing Switzerland 2015
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in the location where the greenhouse is installed in order to predict the behavior of
the indoor climate and hence crop growth. Although there are tools available for
this purpose, meteorological forecast on these timescales (months) are vague and
erroneous, making it necessary to compensate the underlying uncertainty by imple-
menting receding horizon approaches, repeating the whole optimization process to
determine future setpoints at least once a day (to also take into account manual
modifications in setpoints performed by farmers due to pests and diseases or other
short-term objectives). Moreover, this also allows the producer to modify the initial
conditions of optimization such as expected harvesting date depending on trends in
selling prices to advance or delay the fruit maturing process. Furthermore, the user
can also change the electricity and fuel prices (or other operation-related costs); these
changes are published a few days in advance. On the other hand, errors in the climate
prediction involve errors in the estimation of the variables describing crop growth,
so that it is advisable to make biweekly real measurements of these variables (LAI,
dry matters, etc.) although they could require destructive testing of some plants.

Although themain goal of crop growth control in greenhouses is to obtain themax-
imum profit (defined as the difference between the incomes from the sale of the prod-
uct and the associated operation cost), in a second phase it would also be useful that
the high-level controller should consider other objectives such as production quality,
efficiency in the use of basic resources such as water and energy, emission of pollu-
tants or other objectives depending on the local conditions or facilities (which should
be also converted into operational costs). Thus, the original formulation becomes a
multiobjective problem that can be implemented on the same proposed hierarchi-
cal control architecture by modifying the cost functions of the upper layer of the
controller where the optimal control algorithm runs. Changing this approach, more
degrees of freedom are provided to the managers of the greenhouse to adapt both to
the different trade scenarios as the local environment conditions (e.g., continental or
Mediterranean climate, availability of renewable energy sources, semi-desert areas
with water problems, crop varieties for localized areas with demanding requirements
of quality taste, production for canning industry, etc.).

With respect to the lower layer of the proposed architecture, which corresponds
to climate and fertigation controllers, there are many commercial systems widely
installed in greenhouse facilities. These systems use classical controllers whose para-
meters are modified using heuristics based on the farmer and technicians experience.
Furthermore, in many cases it is necessary to define hundreds of parameters related
to the trajectories of climate and the actuators. The main problems identified in these
systems are [339, 355, 441]:

• Tracking of setpoints is not perfect, because the system is dynamic and there are
many interactions between the control loops and constraints on control devices.

• The climate, irrigation, and fertilizer setpoints are not scientifically defined regard-
ing the behavior of the crop, therefore, problems may arise regarding inefficiency
in the use of energy and other resources.
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• The number of setpoints and controller parameters to set up these systems is
so large that the system is not transparent and, therefore, the effects on energy
efficiency or performance are not easy to discern.

• Most commercial systems are not open (their control algorithms are not modifi-
able), neither are they interoperable with third-party systems. They do not allow
integration with the supervisory system of a hierarchically higher level, although
from the authors’ point of view, they must evolve following the process industry
standards.

• Systems installed outside the conditions under which where they were developed
require a process of adaptation and calibration of their different operating para-
meters to achieve acceptable results.

Some of these problems can be solved using successful proposals from other indus-
trial areas presented in this book. Some of the control algorithms shown are intuitive
and easy to understand and apply. Furthermore, the implementation of the optimal
control layer takes into account the crop growth and therefore the optimal setpoints
to be achieved by the different control variables. Even so, it should be noted that it is
essential to tune the controller, performing various tests to obtain the parameters that
relate the control variables (actuators) with the controlled variables. All controllers
(both commercial tools and new proposals) may work correctly, but adequate tuning
for each particular case is imperative. It is impossible that a control system works
properly without previously modifying the default configuration parameters. For
this, there are numerous techniques, although with a simple test like reaction curve
method [16], acceptable results can be obtained.

Another important issue, which is essential to correct, is that currently greenhouse
climate control systems are completely independent of fertigation control systems. It
is unthinkable that if crop growth and organoleptic properties depend on both sets of
variables, both systems do not communicate with each other to establish coordinated
control strategies. This is another reason why it is necessary to introduce a higher
layer that integrates all greenhouse systems.

Regarding actuators, some considerations can also be made:

• The actuators must be appropriately sized. It is believed that a control system can
regulate a variable with any actuator, but this is not true. In the past, as actuation
systems were undersized the control system operated in saturation (open loop),
and hence the influence on greenhouse climate was not relevant. Nowadays, there
is a trend to install oversized actuators with which there should be no problems
to conveniently control a particular variable, but usually they have drawbacks
related to nonlinear behavior, efficient use of energy, water, or fertilizers. When
the installation of an actuator is planned, it would be advisable that a control
engineer is involved in the process and not a posteriori (as is the typical situation).

• Climate variables inside a greenhouse are not homogeneous in the air volume
enclosed in the structure, mainly due to different vertical and horizontal air flow
patterns. Thereby, a spatial climate is produced. Obviously, this fact influences
the homogeneity of production in the different sectors of the greenhouse, which
is undesirable. Moreover, the control systems only regulate the variables using
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information about the area of influence where the sensors are installed. It would
be advisable the installation of distributed actuators that enable distributed control
of the different greenhouse sectors. For this, it should be necessary to extend the
sensorial subsystems and controllers (replicate the set of sensors and controllers
in each sector). Furthermore, new cooperative and coordinated control algorithms
must be designed. However, in the case where distributed actuators are not avail-
able (as in most installations), it is advisable to use sets of sensors to obtain an
average value of the different greenhouse sectors so that the control system makes
an “average” decision. For example, it is useful the installation of at least three
temperature sensors at crop height forming an “L” (East, West, and North) spaced
the same distance, being possible to obtain information about the temperature
distribution at every moment.

• In most greenhouse facilities, actuators to regulate the greenhouse air tempera-
ture and humidity are installed, but the use of CO2 enrichment systems is not
widespread, especially in locations with warm or semi-arid climates. It has been
demonstrated that the use of CO2 may increase by up to 20% the production, along
with quality. By recycling plant residues as biomass, the costs associated to the
CO2 production decreases, making it convenient and advisable to consider using
such actuators, as recently done in [376].

Finally, and related to the physical implementation of the proposed hierarchical
architecture, the data acquisition, and control system to be installed must fulfill the
following conditions:

• Interoperability, understood as the ability of two or more systems or components
to exchange information and use the information exchanged [196].

• Maximum level of decentralization with the objective of minimizing wiring
between the controller and the sensors and actuators. It can be suitable to merge
them (sensor, controller, and actuator) into a single component. The use of wireless
sensor networks is also an alternative to this problem.

• Theuse of a single communication bus,where all the sensors, actuators, and control
systems can be connected.

• Maximumflexibility to allow any topological configuration, simplify the cable lay-
out, easy reconfiguration of the system, and installation of a new device, involving
a simple electrical connection to the bus and further configuration from the main
control system.

• It must be a deterministic network communication understood as one in which
data transmission is ensured in a given time [197].

• Ease of maintenance, so as to permit fault detection and diagnosis and, system
reconfiguration, remotely.

• The installed equipment must have a good life span, as well as maintenance and
good flexibility to adapt to market changes.

• Electrical andmechanical normalizationmust be fulfilled so as to ensuremaximum
modularity and interchangeability of components.

• Operation in hostile environments (high temperature and humidity, dust, presence
of abrasive plant protection products, electromagnetic Interference, etc.).
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As a final remark, this book proposes an approach to what should be the new model
for greenhouse crop production, in which all systems must be integrated, taking into
account economic criteria and other objectives of local and/or general interest. As
discussed above, this is not a unique solution, since there are different approaches
and all are valid. The authors are convinced that this is the way this field must evolve
and encourages technicians and producers involved in the process to analyze their
facilities and decide to perform a step in this direction.



Appendix A
Main Characteristics of the Greenhouses
Used in This Book

Greenhouse Araba Inamed Almería

Location
Coordinates 36◦42′N, 2◦47′O 36◦42′N, 2◦47′O 36◦48′N, 2◦43′O
Locality El Ejido El Ejido Santa María del

(Almería) (Almería) Águila (Almería)
Structure
Cover Symmetric curve Asymmetric curve Symmetric plane
Ridge orientation North–South East–West East–West
Surface shape Rectangular Rectangular Irregular
Cover material Polyethylene Polyethylene Polyethylene

800 gauges 800 gauges 720 gauges
Surface area [m2] 1500 1575 877
Width [m] 37.5 45 23.2
Length [m] 40 35 37.8
Ridge height [m] 5.50 5.60 4.4
Lateral height [m] 3.75 4 2.8
Number of chapels 5 6 5
Chapel width [m] 7.5 7.5 7.6
Chapel length [m] 40 35 23.2
Actuators
Cenit natural • Zip • Zip • Zip
ventilation • One per chapel • One per chapel • One per chapel to the West

• 2.22 [m] × 40 [m] • 2.75 [m] × 35 [m] • 2.75 [m] × 35 [m]
• Aperture of 38◦ • Aperture of 33◦ • Aperture of 45◦

(continued)
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(continued)
Greenhouse Araba Inamed Almería
Actuators
Lateral natural • Two (N-S) • Two (N-S) • Two (N-S)
ventilation • Rolling • Rolling • Rolling

• 1.8 [m] × 37.5 [m] • 1.7 [m] × 37.5 [m] • 1.7 [m] × 37.5 [m]

Aerial pipes • Heater of 2 106 kcal • Heater of 150 kW
heating system • Diesel as combustible • Biomass combustible

• Heater temperature of • Heater temperature
80◦C of 60◦C

• Steel pipes: 5.2 cm • Steel pipes: 5.2 cm
diameter, 11 cm diameter, 11 cm on
on the ground the ground

Air heating • Power of 95 103 kcal
system • Diesel as combustible

• Fan for air distribution
Shade screen • 10 Thermo-reflected • 5 Thermo-reflected

screens of 4 [m] screens of 7 [m]
• Transmission • Transmission coefficient
coefficient of 0.5 of 0.5

Fertirrigation • NFT (Nutrient Film • Hydroponic
system Technique)

• Programmed irrigation • On demand irrigation
• Typical fertigation • Typical fertigation
of 5.5 pH and of 6 pH and EC
EC of 2 dS m−1 of 2.2 dS m−1

Measurement system
Inside • 1 air temperature • 3 air temperature
greenhouse • 1 soil temperature • 1 soil temperature

• 1 humidity • 8 cover temperature
• 1 solar radiation • 4 leaves temperature
• 1 PAR radiation • 1 soil temperature at 40 cm

• 3 humidity
• 2 solar radiation
• 2 PAR radiation
• 1 CO2 concentration
• 1 air speed
• 1 air speed by heat wire
• 1 air speed by ultrasonics

Outside • Temperature • Temperature
greenhouse • Humidity • Humidity

• Solar radiation • Solar radiation
• PAR radiation • PAR radiation
• Wind speed • Wind speed
• Wind direction • Wind direction
• Rain detection • Rain detection

• CO2 concentration

(continued)
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(continued)
Greenhouse Araba Inamed Almería
Hydric • 1 lysimeter
requirements • 1 drainage balance

• 4 substrate water contents
• 1 substrate temperature

Fertilizers • EC of water and drainage • EC of water and drainage
• pH of water and drainage • pH of water and drainage
• Water counter • Water counter

• EC of substrate
Measurement system
Actuator state • Boiler water temperature • Boiler water temperature

• Pipe water temperature • Pipe water temperature
• Lateral vents position
• CO2 tank pressure
• Flow and temperature of
• CO2 pipe
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